
HAL Id: tel-03728262
https://theses.hal.science/tel-03728262

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rigorous modeling and performance evaluation of
networking systems

Siham Khoussi

To cite this version:
Siham Khoussi. Rigorous modeling and performance evaluation of networking systems. Other [cs.OH].
Université Grenoble Alpes [2020-..], 2021. English. �NNT : 2021GRALM077�. �tel-03728262�

https://theses.hal.science/tel-03728262
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Siham Khoussi

Thèse dirigée par Saddek BENSALEM, Université Grenoble
Alpes et co-encadrée par Abdella BATTOU, National Institute of
Standards and Technology

préparée au sein du Laboratoire VERIMAG
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Modélisation et vérification formelle
des performances des systèmes de
réseau

Rigorous modeling and performance
evaluation of networking systems

Thèse soutenue publiquement le 3 Décembre 2021
devant le jury composé de:

M. Ahmed Lbath, Président du jury
Professor, Université Grenoble Alpes

M. Panagiotis Katsaros, Rapporteur du jury
Professor associé, Aristoteleio Panepistimio Thessalonikis
M. Axel Legay, Rapporteur du jury
Professor, Université catholique de Louvain

Mme. Erika Abraham, Examinatrice
Professor, Rheinisch-Westfaelische Tech. Hoch. Aa

M. Eugene Asarin, Examinateur
Professor, Université Paris 7 - Denis Diderot

M. Saddek Bensalem, Directeur de thèse
Professor, Université Grenoble Alpes,

M. Ayoub Nouri, Examinateur
Docteur en sciences, Huawei

iii

v

Acknowledgements

First, I would like to express my most sincere gratitude and appreciation to my
advisor, Professor Saddek Bensalem for giving me the opportunity to pursue my
PhD under his supervision. Over the last few years, he provided me with invaluable
research advice and continuous support during my PhD study.

I am, also, extremely grateful to my supervisor at the National Institute of Stan-
dards and Technology (NIST) Dr. Abdella Battou for his guidance and for providing
me with a good research environment and the resources needed to do research. A
special thank you to the lovely secretaries Cindy Messina and Jocelyn Malones from
NIST for their assistance and encouraging words.

Additionally, I would like to thank all the administrative staff from the Univer-
sity of Grenoble, particularly Mrs Zilora Zouaoui for her help and assistance, re-
motely.

Next, I would like to thank my previous advisor Dr. Lotfi Benmohamed for his
technical support and helpful advice during the initial phase of my PhD.

I would like to express my gratitude to Alan Heckert for his invaluable research
advice and the technical support during the second part of my thesis.

Moreover, I am grateful to my collaborators including Ayoub Nouri, Davide
Pesavento, Junxiao Shi, James Filliben. I have learnt many things from them that
helped me improve and implement my work.

I am very grateful to all the reviewers and the members of the jury for accepting
to review this work and for their valuable feedback on the manuscript.

Finally, I would like to thank my family and friends, particularly, my mother,
my sister, my brother and my father (although no longer with us) for their support
during my studies and for their affection. None of my accomplishments would have
been possible without them.

vii

Abstract
The demand for faster performance, increased accessibility, mobility and secure

communications has driven significant advancements in Internet architectures, pro-
tocols and applications. Whether Internet usage relates to businesses or entertain-
ment, its performance and security are two of the highest orders. Recent advances in
modern technology and network innovations have driven the desire to move away
from manual error-prone methods of testing network components and evolve from
the ad-hoc tools and simulation based testing which are, traditionally, used in as-
sessing the performance of networking components but fail to achieve high accuracy
results and obtain trustworthy analysis.

Despite the criticism that formal verification (FV) methods have been receiving
and lack of appreciation, they have achieved undeniable results and made great con-
tributions in this field and other mature fields. For this reason, we investigate a FV
methodology for analyzing the performance aspect of networking systems. We rely
on a model-based approach that is based on building a rich faithful stochastic model
of a system, then apply statistical model checking to assess its performance against
a specified requirement. We explain that the stochastic behavior of the model is
captured by introducing probabilistic variables which are updated via probability
distributions. The latter are, typically, obtained by collecting and analyzing mea-
surements from the system’s execution using traditional statistical tests to select the
best fit distribution (i.e., process of distribution fitting). Unfortunately, distribution
fitting requires a good statistical background and familiarity with several distribu-
tions which is beyond the expertise of some analysts.

As such, we developed a tool called DeepFit that combines traditional statistical
tests and deep learning to automate the distribution fitting task. DeepFit is then
integrated into the workflow of our FV methodology for rigorous modeling and
performance assessment of networking systems.

ix

Contents

Acknowledgements v

Abstract vii

Abbreviations xvii

1 Introduction 1

1.1 Motivation . 1
1.2 State of the art . 4

1.2.1 Performance metrics . 5
Delay . 6
Round Trip Time (RTT) . 6
Bandwidth . 6
Jitter . 6
Loss and error . 7

1.2.2 Related work . 7
Techniques for formal verification 8
Examples of formal verification in networking 9

1.3 Discussion and organization . 10

I Methodology and application 13

2 Formalisms and methodology 15

2.1 Methodology . 16
2.2 Stochastic Systems Modeling . 17

2.2.1 Discrete Time Markov Chains . 17
Definitions . 17
Example of DTMC . 19

2.2.2 Markov decision process . 19
Definitions . 19
Example MDP . 20

2.3 Statistical Model Checking . 21
2.3.1 Background . 21
2.3.2 SMC in a nutshell . 21
2.3.3 Qualitative analysis of SMC . 22

Single Sampling Plan . 23
Sequential Probability Ratio Test 23

2.3.4 Quantitative analysis of SMC . 24
2.4 Requirement formalization . 25

2.4.1 Linear Temporal Logic . 25
2.4.2 Bounded LTL: BLTL . 25

2.5 Stochastic Component-based Modeling 26

x

2.5.1 BIP formalism . 27
Atomic components . 27
Composition operators . 29
Compound component example 33

2.5.2 BIP stochastic extension: SBIP . 34
Stochastic atomic components 35
Composition of Stochastic Components 37

2.6 The BIPSMC engine . 37
2.7 Conclusion . 38

3 Use case 41

3.1 Introduction . 41
3.2 Named Data Networking . 42

3.2.1 Overview . 42
3.2.2 The NDN-DPDK Forwarder . 43

3.3 Formal Model-based Approach . 44
3.3.1 Summary of the methodology 45

3.4 NDN-DPDK Modeling . 46
3.4.1 A Parameterized Functional BIP Model 46
3.4.2 Building the Performance Model 46

Forwarder Instrumentation. 47
Model Fitting. 49
Model Calibration. 50

3.5 Performance Analysis using SMC . 50
3.5.1 Experimental Settings . 50
3.5.2 Analyses Results . 50

Queues Dimensioning. 50
NUMA placement, number of forwarding threads and packet

name length. 52
3.6 Lessons learned . 54

II Automated distributional modeling 57

4 Statistical inference 59

4.1 Distribution fitting . 60
4.2 Traditional methodology . 62

4.2.1 Data screening . 62
Numerical techniques: . 62
Graphical techniques . 64

4.2.2 Exploratory analysis . 66
4.2.3 Parameter estimation . 69
4.2.4 Evaluation . 73

4.3 Weaknesses of the traditional methodology 74
4.4 Automated techniques . 74
4.5 Conclusion . 75

5 Neural Networks for Classifying Probability Distributions 77

5.1 Introduction . 77
5.2 Approach . 78

5.2.1 Collecting data for training . 79

xi

5.2.2 Training the neural networks . 82
5.3 Evaluation . 83

5.3.1 Preparing the testing data . 84
5.3.2 Results . 86

5.4 Limitation . 97
5.5 Future work . 98
5.6 Conclusion . 99

6 DeepFit 101

6.1 Introduction . 101
6.2 Architecture . 102

6.2.1 Data screening . 102
6.2.2 Neural Network classification . 105
6.2.3 Parameter estimation . 106

Basic statistics . 107
Parameter estimates . 107
Confidence intervals . 107

6.2.4 Evaluation . 108
6.2.5 Best fit ranking . 109

6.3 Tool Assessment . 110
6.4 Conclusion . 114

7 Conclusion 117

Bibliography 119

xiii

List of Figures

1.1 TCP/IP protocol suite layering diagram [71] 2
1.2 Delay and RTT . 6
1.3 Proposed methodology . 11

2.1 Performance evaluation approach . 16
2.2 A DTMC of a fair coin flipping game . 19
2.3 A MDP example . 20
2.4 A BIP atomic component . 28
2.5 Non-determinism at the level of the atomic component [156] 29
2.6 Example of a broadcast interaction . 31
2.7 Example of a rendezvous interaction . 32
2.8 Example of a compound component . 33
2.9 Example of a stochastic atomic component 36
2.10 Stochastic behavior of the atomic component 36
2.11 A stochastic BIP component; client behavior issuing requests each

time unit p. 36
2.12 A Statistical Model Checking Engine for the BIP framework [160] . . . 38

3.1 Diagram of the NDN-DPDK forwarder 44
3.2 Methodology and framework . 45
3.3 A functional BIP model of the NDN-DPDK forwarder 46
3.4 Considered network topology . 46
3.5 Main Effects Plot for Interest and Data packets 49
3.6 One Forwarding thread with different sending rates 51
3.7 Many Forwarding threads with a sending rate set to 106 pps 51
3.8 small names, 700 ns . 53
3.9 small names, 500 ns . 53
3.10 medium names, 700 ns . 53
3.11 medium names, 500 ns . 53
3.12 large names, 700 ns . 53
3.13 large names, 500 ns . 53

4.1 Normal probability distribution . 60
4.2 Gumbel distribution: types I and II . 61
4.3 Traditional approach of conducting distribution fitting 62
4.4 Lag plot indicating a strong dependency in the data 64
4.5 Lag plot indicating independence in the data 65
4.6 No strong correlation is noticed . 66
4.7 Strong correlation is noticed . 66
4.8 Counts histogram . 67
4.9 Kernel density plot for the Uniform distribution 68
4.10 Kernel density plot . 69
4.11 Counts histogram . 69

xiv

4.12 Weibull pdf for various values of the shape parameter (γ) 70
4.13 Impact of the location parameter . 71
4.14 Impact of the scale parameter . 72

5.1 Uniform kdp based on the sample size 80
5.2 Double exponential kdp based on the sample size 81
5.3 Logistic kdp based on the sample size 81
5.4 Accuracy plot for the model trained on smaller sizes 83
5.5 Loss plot for the model trained on smaller sizes 83
5.6 Accuracy plot for the model trained on larger sizes 83
5.7 Loss plot for the model trained on larger sizes 83
5.8 U-score normalization . 85
5.9 kernel density normalization . 86
5.10 DEX mean plot for large sample sizes - all NN models 88
5.11 DEX mean plot for moderate sample sizes - all NN models 90
5.12 DEX mean plot for small sample sizes - all NN models 91
5.13 DEX mean plot for large sample sizes - best performing NN models . . 93
5.14 DEX mean plot for moderate sample sizes - best performing NN models 94
5.15 DEX mean plot for small sample sizes - best performing NN models . 95
5.16 Tabulation chart . 96

6.1 DeepFit architecture . 102
6.2 4-plot of 500 random normal points. 104
6.3 4-plot of 500 random gumbel max points. 105
6.4 Impact of the u-score normalization . 106
6.5 Impact of the kernel density normalization 106
6.6 Module 1 . 110
6.7 Module 2 . 111
6.8 Module 3 . 112
6.9 Module 4 - testing the NN model . 112
6.10 Module 4 - testing a different probability distribution 113
6.11 Module 5 . 114

7.1 Methodology . 118

xv

List of Tables

3.1 Factors used. NUMA mapping is described below. 48

5.1 Confusion matrix for the large category: Neural Networks (NN) vs
maximum likelihood/Anderson-Darling (MLE-AD) 97

5.2 Confusion matrix for the moderate category: Neural Networks (NN)
vs maximum likelihood/Anderson-Darling (MLE-AD) 97

5.3 Confusion matrix for the small category: Neural Networks (NN) vs
maximum likelihood/Anderson-Darling (MLE-AD) 98

xvii

List of Abbreviations

SMC Statistical Model Checking
DTMC Discrete Time Markov Chain
MDP Markov Ddcision Process
AP Atomic Propositions
LTS Labeled Transition System
SSP Single Sampling Plan
SPRT Sequential Probability Ratio Test
BIP Behavior Interaction Priority
SBIP Stochastic BIP

DARPA Defense Advanced Research Projects Agency
OSI Open Systems Interconnection
IP Internet Protocol
UDP User Datagram Protocol
TCP Transmission Control Protocol
FTP File Transfer Protocol
SMTP Simple Mail Transfer Protocol
IT Information Technology
CNMS Computer Network Monitoring System
CCNG Computer Communications Networks Group
ARPA Advanced Research Projects Agency
RTT Round Trip Time
RFC Requests For Comment
IETF Internet Engineering Task Force
DNS Domain Name System
IS Internet Society
ODL OpenDayLight
VoIP Voice Over IP

ICANN Internet Corporation for Assigned Names and Numbers
SDN Software Defined Networking
ONOS Open Network Operating System
NDN Named Data Networking
NSF National Science Foundation
QoS Quality Of Service
QoE Quality Of Experience
FV Formal Verification
MC Model Cheking
CNF Conjunctive Normal Form
PD Probability Distribution
HT Hypothesis Testing
PE Probability Estimation
LTL Linear Temporal Lolgic
BLTL Bounded Linear Temporal Lolgic
PBLTL Probabilistic Bounded Linear Temporal Lolgic

xviii

DL Deep Learning
PDF Probability Density Function
PPF Percent Point Function
CDF Cumulative Distribution Function
KDP Kernel Density Plot
GoF Goodness Of Fit
PPCC Probability Plot Correlation Coefficient
KS Kolmogorov Smirnov
AD Anderson Darling
AIC Akaike’s Information Criterion
BIC Bayesian Information Criterion
CAT Categorical Cross Entropy
MSE Mean Squared Error
NN Neural Networks
FNN FeedForward Neural Network
GPU Graphic Processing Unit
CPU Central Processing Unit
CSV Comma Separated Value
MOM Method Of Moments
MLE Maximum Likelihood Estimation

xix

I dedicate this work to my mother

1

Chapter 1

Introduction

1.1 Motivation

More than 4 billion users access and utilize the internet around the world every day
and the number of Internet users increases by more than 7% annually. The Internet
revolutionized our world since the last century as now billions of people can interact
with one another with simple clicks on their mobile phones. Additionally, The Inter-
net is making information and education available to everyone on the planet, hence
creating massive opportunities for advancing knowledge across the spectrum of hu-
man endeavors at a fast pace. Moreover, the Internet has contributed enormously to
the development of countless devices, applications and services and has completely
transformed the world of transportation. The Internet is an essential foundation for
business development, entertainments and social interactions and has become inte-
gral to our day-to-day lives and indispensable to the operation of all critical sectors
of our society.

The Internet is often described as a network of networks. A network can be as
small as two computers connected together to having millions of devices interacting
and sharing information and data. In fact, the Internet as we know it today is com-
prised of 65,536 autonomous systems (ASes) [204], which are run by entities such as
Internet service providers (ISPs), content providers, or public institutions. Each of
these ASes include thousands of smaller networks that implement several routing
policies and communication protocols that aim to connect participating end-devices
and rule out impractical or uneconomical communication paths as well as regulate
all communication exchanges.

Initially, the Internet as we know it today has come along way in the last half
century from its original purpose of creating a communication line between two
destinations [166, 68, 90]. Historically, the first small network example is the telex
messaging created in the 1930s as a way to distribute military text messages during
the world war. Another quotable example is the network pioneer SAGE Air Defense
System (Semi-Automatic Ground Environment) created in the early 1960s in North
America (NA) for the purpose of gathering data from many radar sites and sharing
it with counter-attack air-crafts in real time to further improve the North America’s
defense capability in response to any Soviet air attack. The SAGE was based on a
network of direct immediate connections between several machines which resulted
in cluttered cabling and a difficulty to achieve scalability. However, released in late
October 1969, the ARPAnet (Advanced Research Projects Agency Network) [114,
131], developed by the Advanced Research Projects Agency (ARPA) of the United
States Department of Defense [20], is the first large-scale connected computer net-
work that implemented the TCP/IP protocol suite which later became the Internet.

2 Chapter 1. Introduction

Even though it relied on phone lines, the ARPAnet still revolutionized communica-
tions because it introduced packet-switching [189] as a replacement to direct connec-
tions. Packet-switching consists of a switching system to which machines connect
to in order to avoid the cluttered wiring of direct connections. Communicated data
through a switch is regularized by a set of communication protocol that follows the
TCP/IP architecture so that, exchanged packets are encapsulated with protocol spe-
cific headers and trailers containing the source and destination addresses that allow
for easier routing from one device to another. These addresses inform the switch
of where to send the packet. Once at the destination, the headers and trailers are
removed to reveal the transmitted data. This way, the information will reach its in-
tended destination without the need for a single dedicated circuit between each pair
of device to create an end-to-end connection. ARPAnet has initially been used for
to connect time-sharing computer at mainly government-supported research sites
and universities in the United States (US). However, it soon became an important
research topic for the computer science and research community all over the world.

The invention of ground-based packet radio systems in the 1970s such as the
Packet Radio Network Protocols PRNET [99] by the Defense Advanced Research
Projects Agency (DARPA) [51], advanced the capability of ARPANET communica-
tions to incorporate mobile access of computer resources in the US. Furthermore, the
creation of packet satellite networks [165] paved the way for across continent com-
munication between the united states and some European countries. An example of
satellite networks include the Atlantic Packet Satellite Network SATNET [192] that
connected the united states-based ARPAnet to other countries. Later on, to connect
end users from different countries, the need for linking the packet satellite networks
and the packet radio networks with other networks became vital for a wider range
of exposure. We refer the reader to [191] for more information on packet radio and
satellite networks.

In an attempt to connect various research networks in the united states to Eu-
rope, scientists investigated the standardization of network interfaces. Each stan-
dard interface must implement similar protocols and communication guidelines on
both ends of the connection in order to convey and re-assemble packets accurately.
This effort resulted in the Internet. And this set of protocols is referred to as Inter-
net architectures. Popular examples of Internet architectures include the OSI model
(Open Systems Interconnection) and the TCP/IP model [47] (Figure 1.1) which is
the most adopted one. Note that, these architectures are established by international
universities or industry wide organizations.

FIGURE 1.1: TCP/IP protocol suite layering diagram [71]

Figure 1.1 shows the tcp/ip architecture which is based on a 4-layer model. The

1.1. Motivation 3

base layer (Network Access) implements a handful of protocols for hardware (e.g.,
network adapters and transportation medium) and software (e.g., a network device
driver). Similar protocols include the IEEE 802.3 [89] and the IEEE 802.11 [88] stan-
dards. The next layer (i.e., Internet) encompasses the Internet Protocol (IP) [93]. The
following layer is the transport layer and it incorporates two main protocols, that
is the User Datagram Protocol (UDP) [198] and the Transmission Control Protocol
(TCP) [194]. Finally, the top layer, also referred to as the application layer, repre-
sents a range of application specific protocols such as the Hypertext Transfer Pro-
tocol (HTTP) [86], File Transfer Protocol (FTP) [58], Simple Mail Transfer Protocol
(SMTP) [185], Domain Name System (DNS) [53], etc.

Note that, today a structured group of several individuals referred to as the In-
ternet Engineering Task Force (IETF) [92] collaborate in the development process for
Internet standards (i.e., architectures and protocols) which are maintained by other
nonprofit organizations such as the Internet Society (IS) [14], and the Internet Cor-
poration for Assigned Names and Numbers (ICANN) [91]. The latter’s main focus
is on Internet domain names and numbers.

Present-day Internet and networks are being challenged by the major increase
in data rates required to satisfy the emerging applications demands (e.g., streaming
and data transfer) efficiently in terms of both cost and energy. This constitutes a lim-
iting factor on how fast applications and services of the future develop as it relied
on the available network speeds and quality of service. In this context, one can start
questioning whether traditional network architectures should be re-examined from
a fresh viewpoint and completely be replaced to meet demanding applications over
heterogeneous networks at affordable costs and whether a single suite of communi-
cation protocols can perform in these networks at high efficiencies.

The answers to these questions are not so simple. In fact, the Internet is far too
complex to opt for a global replacement. Instead researchers tried to tackle this prob-
lem by partitioning each network function and deciding on the right architecture for
it. Nevertheless, there are still some brave attempts that opted for a global optimiza-
tion of the current Internet by proposing next generation architectures and protocol
suites designed for scalable, fast and reliable content delivery.

New technological advancements in network architectures and protocols are paving
the way for novel Internet paradigms [145] that best suit applications and services
of the future. Many ideas have participated in this evolution of the Internet, most of
which are motivated by the need for improved resource utilization (i.e., computation
and storage) and content distribution as well as the the rise in network virtualization
and softwarization, etc. Two novel paradigms include:

• Software defined networking (SDN) [190, 57, 178] is a concept aiming to decou-
ple the network forwarding functions from the control plane. This results in
several benefits such as allowing networks to become programmable and more
flexible as well as providing administrators with more visibility over their net-
works which helps them automate and improve their security through the use
of routing intelligence inside SDN controllers and calibrate the traffic based on
certain thresholds (jitter, latency, throughput, network capacity, ...) [72]. The
first generation of SDN controllers began with centralized controllers (NOX
classic [179], Ryu [94] and Floodlight [70, 64], etc). However they had suffered
from several problems such as the single point of failure and limited capacity.
Years later, another generation of distributed controllers have emerged that of-
fered solutions to these problems. Among them two open source distributions
have gained a lot of attention in the last few years due to their modularity,

4 Chapter 1. Introduction

multi-vendor support, high availability and cluster configuration: Open Net-
work Operating System (ONOS) [28] and OpenDayLight (ODL) [140, 13].

• Named Data Networking (NDN) [148] is one of the five projects funded by
the U.S. National Science Foundation agency (NSF) [164] under its Future In-
ternet Architecture Program (FIA). NDN was initially created to network the
world of computing devices by naming contents instead of end points as is the
case for the Internet Protocol (IP). This has several advantages such as builtin
multi-cast, in-network caching, multi-path forwarding and securing data di-
rectly [11]. Furthermore, NDN allows for a resiliency in communication in
intermittently connected and mobile ad hoc environments which is hard to
achieve seamlessly in the TCP/IP architecture. Many applications, services
and protocols from the IP world have been built over this novel architecture
in order to demonstrate its viability and capability in resolving the challenging
problems that the contemporary Internet faces, i.e., loss of universal connectiv-
ity mobility, scalability, etc. Similar applications and protocols include a path
tracing utility [108], fast packet forwarding [111], an attempt to NDNize ex-
isting IP protocols [129], an Open mHealth Application[212], video Streaming
over NDN [67, 196], a routing protocol [153] and others [150],

The demand for faster performance, increased accessibility, mobility and secure
communications has driven significant advancements in Internet architectures, pro-
tocols, applications and services. Whether Internet usage relates to social media or
business, Internet performance and security are two of the highest order. With the
immense growth of the Internet today, and the increased number of proposals for
novel Internet paradigms and protocols, the need for continued monitoring, evalua-
tion and large scale management of networks is still a priority. Therefore, researchers
in both academia and industry have understood this fact and have recently begun
building tools and establishing mechanisms designated for the supervision of net-
works.

In the next section, we will give a state of the art of the research conducted in
this area. Particularly, we will be targeting performance related enhancements of
Internet architectures and protocols as it is the main concern in this thesis.

1.2 State of the art

The Internet has come along way since it’s invention as a research experiment. The
Internet is now used to run businesses, streamline services (i.e., Netflix and youtube),
communicate via voice over IP (VoIP) [69], support distributed processing and cloud
computing [135]. The overwhelming success of the Internet and the complexity of
networks, has led to rapid innovations in architectures, applications and network
protocols.

Scientists are constantly investigating methods to secure networks against ma-
licious attacks as well as unintentional bugs and errors and to maintain a good
quality of service in network speed and performance, particularly when it concerns
businesses and healthcare systems. Unfortunately, it has been observed that their
attempts of monitoring networks performances and quality of service value more a
culture of running code, heuristics and engineering judgements rather than a culture
of sound proofs and rigorous verification methods.

In the next subsections, we first overview some of the most important metrics,
typically captured and monitored when discussing network performances. Note

1.2. State of the art 5

that, in this thesis we are particularly targeting the performance aspects of Internet
architectures and communication protocols. Next, we review some related works
and introduce our methodology.

1.2.1 Performance metrics

In modern days, where communication and information are the center of Informa-
tion Technology (IT), network performance is of utmost importance. In fact, to run
an enterprise effectively, a decent budget is allocated yearly for the provision of In-
ternet connectivity to maintain day-to-day office tasks without unnecessary delay or
down times.

Historically, network performance has been monitored by using architectural
know-how and the good old-fashioned intuition. However, the accuracy obtained
by these methods varies greatly and is especially true as networks grow increas-
ingly complex. Ultimately, loss of real insights into how the network acts can lead to
unforeseen performance issues that can be difficult to remedy. Nevertheless, bench-
marking and simulation based testing are still considered the default option for net-
work analysis and supervision. Whether the subject of interest is an application, a
service, a protocol or a novel Internet paradigm, the fundamental motivations for
network performance analysis include:

1. Observing the performance to determine if the quality of service level is satis-
factory;

2. Unravelling and checking for malfunctions and performance decline;

3. Troubleshooting connectivity interruptions;

4. Assessing the viability and efficiency of newly developed applications and
protocols.

5. Measuring the resources used and making appropriate energy and cost charges.

For this reason, many metrics have been created to indicate networks perfor-
mance levels [74]. Some of these have been documented in standards such as Re-
quests for Comments (RFCs) of IETF [92] and some are commonly collected by net-
work operators based on their intuitions and heuristics. However, the ones of great-
est relevance that are critical in assessing the service level of network traffic can be
classified to five main categories:

1. Delay;

2. Round Trip Time;

3. Bandwidth;

4. Jitter;

5. Loss and error;

6 Chapter 1. Introduction

Delay

Delay, sometimes referred to as latency is a bi-directional performance metric quan-
tified in time units to indicate any form of delay in communication that occurs over a
network between a client and a server and between distant end hosts. This metric is
usually assessed against a threshold beyond which the network experience worsens
and the performance declines. Figure 1.2 shows examples of the latency between
two hosts A and B. Note that, TAB is the delay from B to A and TBA is the delay from
A to B.

A B

RTT

�me �me

TBA

TAB

Request

Response

FIGURE 1.2: Delay and RTT

Round Trip Time (RTT)

Round Trip Time (RTT) is a performance metric that is quantified in time units. It
is often used when assessing client server communications as it indicates the time
it takes for for a server to respond to a client’s request. The RTT is expected to
go higher when performance worsens and lower when optimal conditions are met.
Note that, RTT is more or less defined as the network delay from point A to B and
back. Figure 1.2 shows how the RTT is calculated as a function of the latency, that is:
RTT = TBA + TAB, where TAB is the delay from B to A and TBA is the delay from A
to B.

Bandwidth

Bandwidth, sometimes referred to as throughput or Internet speed. This is a bidirec-
tional performance metric that’s computed as the rate of data crossing the network
from point A to point B per second. In other words, the bandwidth is the amount
of data that was successfully delivered over a communication channel in bits per
second (bit/s or bps).

Jitter

Jitter is defined as the variation in delay for received packets causing some of them
to take longer routes to travel between the same two points in a network. It is often

1.2. State of the art 7

due to network congestion, low bandwidth and poor hardware. As a consequence,
excessive Jitter leads to audio and video quality distortions such as display monitor
flickering, undesired effects in audio signals and loss of transmitted data.

Loss and error

Often, data delivery encounters setback in the form of packet loss due to buffer over-
flow or receiving damaged packets. In similar scenarios, it is best practise to com-
pute the rate of successfully transmitted packets. This metric is helpful to know as
it can be remedied by the re-transmission of lost or distorted packets in real time in
order to avoid a degraded quality of service in the network.

Over the past years, network specialists have relied on the use of automated soft-
ware engineering techniques for network monitoring and performance evaluation.
These techniques are often based on:

1. The use of uni-tests, and simulation based testing;

2. The use of existing application layer protocols such as Traceroute [193, 108] and
Ping [87] or the development of tools centered around management protocols
such as SNMP [12], [73] (SNMP is used for gathering information exchanges
in networks).

In the literature, many researchers published in this field. Surveys that overview
measurement related research in the context of networking are found in [18, 143].
The latter summarize different network supervision solutions, in addition to the dif-
ferent tools used for monitoring and analyzing network traffic. Another survey on
network measurement for Software-Defined Networks (SDN) is presented in [190].
In [144], the authors propose a network performance methodology based on Qual-
ity of Experience (QeE) benchmarks from an end-user experience. Another tool that
enables network performance measurement is developed in [186]. And a computer
network monitoring system (CNMS) developed by the University of Waterloo Com-
puter Communications Networks Group (CCNG) is described in details in [146].
Additionally, in [46] the authors describe their successful attempt and toolset used to
supervise the performance of the Advanced Research Projects Agency (ARPA) net-
work. Furthermore, [136] proposes a prototype implementation of network equip-
ment availability and performance reporting. The latter uses simulations based on
the SNMP protocol as well. More tools developed for the same purpose include [50]
and [134]. Finally, [105] presents an approach that combined controlled experimen-
tation and machine learning to estimate Quality of Experience (QoE) from encrypted
video traces using network level measurements only.

In the context of simulation based methods and benchmarks, researchers are con-
stantly looking to build newer software for evaluating and assessing networks per-
formances and behaviours by either making use of existing application layer proto-
cols or by inventing newer protocols. The latter is generally the case when it relates
to assessing future Internet paradigms such as our work in [108] and [150, 54]

1.2.2 Related work

Recent advances in modern technology and network innovations have driven the
desire to move away from manual error-prone methods of testing network compo-
nents and evolve from the ad-hoc tools and simulation based testing that have been

8 Chapter 1. Introduction

traditionally used in assessing the correctness of networking components. Despite
the criticism that formal verification (FV) methods have been receiving and lack of
appreciation, they have achieved undeniable results and made great contributions
in this field. In this section, we overview some popular FV methods and explore
their applications in the context of networking.

Techniques for formal verification

Formal verification [202, 180] refers to having two inputs: a rich and rigorous model
for the system that is being formally assessed and a set of properties that indicate the
requirement to be satisfied by this system. Existing computer-based tools for verifi-
cation typically, support at least one modeling formalism. In this thesis, we focus on
the BIP framework [24] which we will discuss in the next chapter. Generally, there
are many formal verification approaches that include both automated and interac-
tive techniques. We refer the reader to [170] for a survey that examines an exhaustive
list of methods and associated tools. Below we list popular methods:

1. Model Checking [126], a method developed by Clarke and Emerson [45] and
by and by Queille and Sifakis [80, 79] in the 1980s. Traditional formal verifi-
cation methods that came before model checking, were generally associated
with logic-based axiomatic or deductive techniques for establishing proofs of
correctness. In model checking, the statement M |= φ (i.e., M satisfies φ) is
assessed by representing the system behavior as a model M with a Kripke
structure or a labeled transition graph as the underlying formalism, whereas
the property to assess is a formula that is generally written in temporal logic.
Unfortunately, the state explosion problem limits the use of model checking
to small scale systems. Nevertheless, other lighter version of model checking
have been proposed to cope with this issue such as: symbolic model checking,
bounded model checking, and statistical model checking. We will cover the
latter (statistical model checking) in the next chapter.

2. Theorem proving [21] consists of focusing on deductive and sound proofs to
verify the system behavior against a set of properties, using computer pro-
grams. The system behavior and the properties are expressed as mathematical
theorems. Note that, fully automated theorem provers strive for power and
efficiency, often at the expense of guaranteed soundness [1]. For this reason,
interactive provers that require human-machine collaborations, are often used.
Similar tools include Isabelle, Isabelle/HOL [34], Coq [211], Hol Light [75], and
many more.

3. Static analysis [15, 176] is a technique that relies on analyzing software pro-
grams or configuration files without executing code. The way it works is by
extracting information about the run-time behavior of the software and con-
figuration files and assessing it prior to the deployment step to discover bugs.

4. Satisfiability solvers (SAT) [17, 180]: the main idea of traditional SAT solvers
is to express the verification problem M |= φ (i.e., M satisfies φ?) in proposi-
tional logic which is then negated and transformed to conjunctive normal form
(CNF) in such a way that ascertaining the Satisfiability of this CNF allows us
to deduce the validity of M |= φ [170].

1.2. State of the art 9

Examples of formal verification in networking

The application of formal verification (FV) in the context of networking, particularly
to tackle their performance aspect is still not a priority for the networking commu-
nity. FV is mainly used to assess safety critical and functional properties of a net-
work component rather than to examine quality of service and performance related
criteria. As such, the networking field still lacks rigor when compared against other
mature industries. Fortunately, the community is slowly catching up to the trend
of FV and realizing the need for better mechanisms for rigorous verification and as-
sessment of networking systems. However, given the fact that formal methods and
verification techniques require the use of professionals with a certain level of exper-
tise and take a considerable amount of time and computational resources to apply,
the networking industry typically relies on cheaper manpower and commercial soft-
ware and tools to complete the task and assess the performance of networks. There
are at least six networking domains to which formal verification has been applied:

1. Protocols: they are defined as a set of rules of communication between various
processes and devices in a network. Generally, FV has been applied to proto-
cols to detect weaknesses and vulnerabilities at an early stage of the design.
The properties evaluated are often associated with the functional behaviour of
the system and safety properties, such as:

(a) The deadlock, i.e., when the protocol constantly waits for a condition that
can never be fulfilled;

(b) The livelock, i.e., when the protocol repeatedly executes a sequence with
no progress;

(c) The improper termination of the protocol.

The primary FV methods used in this context are model checking and theorem
provers. Some related works include [85, 138, 31]. In the case of verifying non-
functional properties and establishing performance related concerns, some re-
searchers followed the direction of statistical model checking and probabilistic
model checking instead [26, 121, 112]. We refer the reader to [35] and [170]
for surveys that summarized the various efforts of applying FV to networking
protocols.

2. Network Property Verification: in this case, scientists analyze the traffic through-
out in a network topology. Some of the investigated properties include: reach-
ability, i.e., “Can a packet from node A reach node B?”, and loop detection,
i.e., the manipulation of packet headers by network routers and switches lead-
ing to some packets being circulated constantly over the same paths without
reaching their destination. In this context, model checking, symbolic execution
and theorem provers are often used in addition to many other methods.

3. Network configuration management: Writing wrong configuration files has
several consequences on the networks and can cause costly problems. Issues
like access control failure, loops, black-hole can manifest, hence causing inef-
ficient performance by extension. In this case, scientists use static analyzers to
asses and detect faulty configuration files offline prior to their execution.

4. Network security is a topic of utmost importance in the community. It is
crucial that security properties such as secrecy and authentication are satis-
fied. Thus, a multitude of FV methods have been applied. A good use case

10 Chapter 1. Introduction

is strengthening firewall security against malicious attacks or unintentional
bugs during deployment. For this category, techniques such as static analyz-
ers, model checking and SAT solvers are often used.

5. Formal synthesis: There have been efforts made for synthesizing protocol im-
plementations from high level specifications. We refer the reader to [201] and
[170] for examples.

6. Hardware verification: Formal verification can be applied to the hardware
aspect of networks (e.g., routers, switches). Existing research includes [19] [36]
[37].

7. Future Internet paradigms: the continued success of the Internet is constantly
being threatened by the various sophisticated security attacks and challenged
by the lack of performance reliability of Internet services. Unfortunately, very
few scientists studied the application of FV early on in the design phase, since
their main concern at this stage is about providing evidence of the viability
and feasibility of their proposals rather than their performances. In one of our
studies, we successfully applied statistical model checking to design and build
a high throughput software forwarder for a novel Internet architecture called
Named Data Networking (NDN), prior to its deployment [108].

1.3 Discussion and organization

The networking industry, routinely monitors the performance indicators to establish
the correctness and the robustness of applications, services and networking proto-
cols by ensuring a minimum level of testing, since exhaustive testing is generally
impossible. The absence of rigorous techniques often results in connectivity inter-
ruption and performance decline or subtle bugs that remain undetected until they
manifest themselves during critical situations (e.g., life threatening and financial
losses).

With the significant role that networks play in all aspects of our lives (business,
entertainment, etc), it has come to attention that the correct functioning of network-
ing components (e.g., protocols, devices, configurations) must be a top priority to
move away from manual error-prone methods of testing. As such, in recent years,
formal verification has been introduced to networking in various domains such as
network devices (e.g., routers, switches) [103], communication and routing proto-
cols [35, 31], network configurations and security [30], large software programs [42]
and many others.

Sadly, the community is not yet motivated by the application of formal verifi-
cation (FV) in the context of assessing the performance of networking components
(i.e., ensuring a good QoS and the continuity of service). Very few researchers ad-
dressed this subject (e.g., [108], [23]). Indeed, given the limiting factor on how much
effort FV requires (i.e., the knowledge and experience, time and computational re-
sources), network analysts prefer to stick to trial and error methods of performance
monitoring and simulation based-testing. Hence, due to the importance of this topic
and recent advancements in the networking community, we embark in a research
that aims to tackle the problem that relates to ensuring a good performance level
and quality of service by extension, of networking software components. In partic-
ular, we target applications, protocols, services and novel Internet architectures. We
propose a methodology for evaluating and assessing the performance of existing

1.3. Discussion and organization 11

networking software components as well as the ones that are in the design phase.
Note that, in this thesis, we do not concern ourselves with the functional behavior,
the safety properties nor hardware related problems since this topic has been widely
explored.

Stochas�c Model

(SBIP)

Property

(temporal logic)

SMC

(BIPSMC

engine)

Verdict

Func�onal Model (BIP)

Distribu�on

fi�ng (DeepFit)

FIGURE 1.3: Proposed methodology

This thesis has two parts. The first one presents our adopted methodology which
is based on a framework for modeling systems (e.g., applications, protocols, soft-
ware forwarders, architectures) called BIP and a formal verification approach that
relies on statistical model checking (SMC). SMC takes a stochastic model written in
the BIP formalism and a property to verify. The stochastic model is generally ob-
tained by modeling the functional behavior of a system, augmented with probabil-
ity distributions (PD). The latter are, typically, obtained by collecting measurements
from the system’s execution and analyzed using traditional statistical tests to select
the best fit distribution (i.e., distribution fitting). We demonstrate the benefits of our
methodology in addition to its feasibility and ease of use via an example of a soft-
ware forwarder to which we aim to maximize the throughput in chapter 2 of part 1.
This chapter further emphasizes the importance of distribution fitting for the correct
assessment via SMC. The second part of this thesis highlights our main contribution
of automating the selection process of the ’best’ fit probability distribution. We de-
veloped a tool called DeepFit that combines traditional statistical tests and machine
learning for distributional modeling. DeepFit is then integrated into the workflow
of our methodology as shown in figure Figure 1.3.

13

Part I

Methodology and application

15

Chapter 2

Formalisms and methodology

In this first part of the thesis, we propose a methodology for evaluating and im-
proving the performance of any network related system. This includes protocols,
applications, forwarders, etc. Our methodology targets fundamental and common
network performance metrics [74, 8] (e.g., bandwidth also called throughput and
latency also called delay, packet loss, jitter) which are typically analyzed by mon-
itoring live or synthetic traffic, running tests and gathering statistics to conclude
the overall performance of the system under study, from an end-user perspective.
Given the increasing complexity of networks, the variety of protocols included in
each communication, and the diverse intrusion attempts, networks are now evolv-
ing in an unpredictable manner and are subject to unexpected situations. Therefore,
regular simulations and tests encompass a high degree of uncertainty and can’t be
used to conclude an accurate assessment with high confidence.

Our proposed methodology is model-based and relies on a framework that en-
compasses a stochastic modeling formalism to correctly and faithfully capture the
behaviors of the studied component, in addition to its associated rigorous and ef-
ficient analysis techniques. This approach can be applied to existing network im-
plementations with the aim of increasing their current performances as well as to
systems that are still in their early design phases. Note that, the latter is typically
considered when the goal is to create implementations that satisfy the performance
requirement early on in the process. We propose a three step approach:

1. Building a rich faithful functional model of a networked system;

2. Augmenting the functional behavior with probability distributions obtained
by instrumenting the system and producing a calibrated stochastic model;

3. Assessing the performance of the system using statistical model checking (SMC)
which takes as input a stochastic model, a specification and a set of parameters
to control the accuracy of the assessment.

In this chapter, we start off by explaining how our methodology works in section
2.1 which is based on statistical model checking (SMC). In section 2.2, we explore
the underlying semantics of the modeling formalism adopted in this methodology.
Here, we provide general theoretical background information on stochastic systems
modeling, specifically a group of models referred to as Markov models. Next, in
section 2.3 we examine the theory of SMC as well as some of its algorithms. Then,
in section 2.4, we profoundly explore the requirement formalization of the specified
performance (i.e., the expected performance of the studied system) which is one in-
put to SMC. Additionally, in section 2.5, we present the stochastic modeling formal-
ism embraced in this thesis which constitutes another input to SMC. Furthermore,
we illustrate the software used in the analysis which implements the theory of SMC

16 Chapter 2. Formalisms and methodology

and its corresponding formalisms in section 2.6. Finally, we conclude this chapter
with a discussion about the advantages and/or challenges of our approach.

2.1 Methodology

As stated in the introductory chapter, often evaluating the performance of network
systems relies solely on simulations and tests to generalize the results. However, the
correctness of these statements is not supported by any verification technique or for-
mal proof. In this thesis, we propose using a formal model-based approach to over-
come the uncertainties of the traditional benchmarks. This is based on a framework
encompassing a stochastic modeling formalism as well as the associated analysis
techniques.

Modeling

Instrument/

execution

Data analysis

Model

calibration

Functional

model (BIP)

Code

generation

Specifications
Existing

implementation

Raw

performance

measures

Requirements

Stochastic perf.

Model (SBIP)

Probability

distributions

Performance

evaluation

Quantitative

Evaluation

results

guides

FIGURE 2.1: Performance evaluation approach

Our methodology (Figure 2.1) is based on a formal model. In order to evaluate a
system’s performance, its model must be faithful, i.e. it must reflect the real charac-
teristics and behavior of the system. Moreover, to allow for exhaustive analysis, this
model needs to be formally defined and the subsequent technique used in the analy-
sis needs to be trustworthy and scalable. Our approach adheres to these principles in
two ways. First, by relying on the formal framework SBIP (introduced later in this
chapter) that encompasses a stochastic component-based modeling formalism and
a Statistical Model Checking (SMC) engine for analysis [139]. Second, by providing
a method for systematically building formal stochastic models for verification that
combine accurate performance information with the functional behavior of the sys-
tem. This approach takes a functional system model and a set of requirements to
verify. The functional model could be obtained in two ways:

1. From a high level specification if the system is still in the design stage;

2. From an existing implementation, if we aim to improve its current perfor-
mance.

2.2. Stochastic Systems Modeling 17

After rigorously constructing a rich and faithful functional model, the next step
is to augment the model by incorporating the performance information. This is nec-
essary because our methodology is based on SMC which requires running simu-
lations of the system to generalize, under certain assumptions, the partial result
(obtained by simulating the system a number of times) to the whole system with
a fixed confidence and a controllable accuracy The collection of performance infor-
mation depends on the way the functional model was built. In fact, if using a high
level specification, an additional step must be performed. That is, code generation.
The execution of such code will be used to capture measurement data. Luckily, the
framework we proposed incorporates a handful of tools such as a compiler which
automatically generates and executes code tailored to the written model [33]. In the
case where the model is obtained from an existing implementation of the system, we
simply instrument it and collect the necessary performance measurements regarding
the requirements of interest (e.g., latency, throughput).

Once all measurements are collected, they are analyzed and characterized in the
form of probability density functions [205] with the help of statistical techniques
such as sensitivity analysis and distribution fitting [169], [118]. The obtained prob-
ability density functions are then introduced in the functional model using a well
defined calibration procedure [158]. The latter produces a stochastic timed model
(when measurements concern time), which will be analyzed using the SMC engine.

Note that the considered models in this approach or workflow can be parameter-
ized with respect to different aspects that we want to analyze and explore. Basically,
the defined components types are designed to be instantiated in different contexts,
e.g. with different probability density functions thus showing different performance
behaviors. While, the model considered for analysis using SMC is a specific in-
stance for which all the parameters are fixed, some degree of parameterization is
still allowed on the verified requirements. We will demonstrate this via a real-world
example in the next chapter.

In the next section, we provide a necessary theoretical background information
on stochastic systems as they serve as the underlying semantics for the formalism
adopted in SMC.

2.2 Stochastic Systems Modeling

Stochastic models can be grouped into various categories. However, in this thesis
we specifically focus on a category referred to as Markov models which are charac-
terized by the Markov property of being memory-less. This property indicates that
the evolution of the system relies solely on the current state and not on its progres-
sion history. That is, the future behavior of the whole system is independent of its
past behavior except the current state.

In the next subsection, we present two well known Markov models [141]: Dis-
crete Time Markov Chains (DTMC) and Markov Decision Process (MDP). Note that
we mainly focus on finite and discrete models. Additionally, we adopt a state-based
representation, with state labels, of stochastic processes referring to sequences of
random variables progressing in time.

2.2.1 Discrete Time Markov Chains

Definitions

First, we define the terminology that we use, hereafter, in this thesis:

18 Chapter 2. Formalisms and methodology

• Let AP be a set of atomic propositions1;

• Let the alphabet ∑ = 2AP and let us denote the subsets of ∑ with symbols;

• Let ∑∗ (or ∑w) be the sets of finite/infinite words over ∑ 2;

• Let S = {so..sN} be a finite set of N states (nonempty) 3;

• Let L : S 7→ ∑ be a a state labeling function. This function assigns a set of true
atomic propositions to each state;

• Let ν : S 7→ [0, 1] be the initial states distribution that satisfies the following
condition: ∑e∈S ν(e) = 1 referring to the states from which the system starts
evolving;

• Let µ : (S, S) 7→ [0, 1] be the state transition probability function over S. µ

has to satisfy the following condition ∀e ∈ S, ∑e′∈S µ(e, e′) = 1. This condition
specifies the probability to move from any state s ∈ S to s′ ∈ S through a single
transition. Note that for the discrete case, this probability is represented by a
matrix of size N x N such that N is the number of states in S.

A DTMC M is defined as the tuple (S, ∑, L, ν, µ).

Note that, for a given state s ∈ S, its set of predecessors is defined as all the states
s′ of S such that µ(s′, s) > 0 and its set of successors is respectively defined as all the
states s′ such that µ(s, s′) > 0. Additionally, we define the set of deterministic states
s ∈ S all states with a unique successor. That is, there exists a unique state s′ ∈ S
such that µ(s, s′) = 1. Observe that, a DTMC M is considered deterministic only if
the following two conditions persist:

1. ∃s0 ∈ S such that ν(s0) = 1

2. ∀s ∈ S, ∀w ∈ ∑, there is at most one s′ ∈ S such that µ(s, s′) > 0 and L(s′) = w

A path d of M is defined as a possible execution/evolution of M. That is an
infinite sequence s0s1s2... such that ν(s0) > 0 and ∀i ≥ 0, µ(si, si+1) > 0.

A trace t associated to a path d = s0s1s2...of M is the infinite words w0w1w2...
such that ∀i ≥ 0, L(si) = wi. Generally, given a path d, the corresponding trace can
be insinuated.

Let M = (S, ∑, L, ν, µ) be a DTMC and d a path d = s0s1s2... of M, the suffix of d
at the ith state is a sub-path of d that starts at si and is referred to as d[i..] = sisi+1....
Respectively, the prefix of d at the jth state is a sub-path of d that starts at the initial
state s0 and ends at sj. The latter is referred to as d[..j] = s0..sj.

1In this thesis we focus on finite discrete DTMC, thus finite AP
2In this thesis we focus on finite discrete DTMC, thus finite words
3In this thesis we focus on finite discrete DTMC, thus finite states

2.2. Stochastic Systems Modeling 19

Example of DTMC

S0

H

S1

T

1

2

1

2

1

2

1

2

FIGURE 2.2: A DTMC of a fair coin flipping game

To illustrate the above mentioned definitions, let’s consider a simple coin toss game
using a fair coin. Each flip produces one of two outcomes with equal probabilities:
to land on heads H or on tails T. In this way, we generate a sequence like "HTTTH..."
If we continue to toss the coin. This behaviour can be depicted using a DTMC which
we graphically present in Figure 2.2. We define:

• S = {s0, s1}

• L(s0) = H (i.e., heads), L(s1) = T (i.e., tails)

• ν(s0) = 1

• µ =
s0 s1

s0

s1

[

1
2

1
2

1
2

1
2

]

This example illustrates a DTMC with two states s0 and s1 and four transitions
of equal probabilities since each state can transition back to itself. ν and µ are valid
probability distributions. Note that the transition probability function µ is repre-
sented by a matrix since this is a discrete scenario.

2.2.2 Markov decision process

A Markov Decision Process (MDP) is an extension of the Markov chain in which
non-determinism is present in addition to the probabilistic behavior. A MDP pro-
vides a mathematical framework for modeling decision-making situations where
transitions typically depend on an action introduced via an input parameter (e.g.
user input, or some environment interaction). In the next subsections, we formally
present a few MDP related definitions and an example to illustrate their behavior.
Note that, unlike DTMCs, MDPs are assumed to have labels on both states and tran-
sitions.

Definitions

An MDP is a tuple (S, L, Act, ∑, ν, µ) such that: 4

4We assume a finite number of states and actions

20 Chapter 2. Formalisms and methodology

• S = {so...sN} is a finite non-empty set of states;

• AP is a set of atomic propositions and the alphabet ∑ = 2AP;

• L : S 7→ ∑ is a state labeling function. This function assigns a set of true atomic
propositions per state;

• Act is a finite set of action labels and Act(s) is the set of enabled actions at state
s ∈ S;

• ν : S 7→ [0, 1] is the initial states distribution which satisfies the following
condition: ∑s∈S ν(s) = 1;

• µ : (S, Act, S) 7→ [0, 1] is the transition probability function over S which satis-
fies the following condition ∀s, s′ ∈ S and ∀a ∈ Act, ∑s′∈S µ(s, a, s′) ∈ {0, 1}.

An action a ∈ Act is enabled in s ∈ S only if ∑s′∈S µ(s, a, s′) = 1. Note that, for
any s ∈ S, Act(s) should not be empty. Additionally, we define two more sets as
follow:

• ∀s ∈ S, the set of successors of s with action a ∈ Act as Successorsa(s) = {s′ ∈
S, s.t µ(s, a, s′) > 0};

• The set of states with a single deterministic transition is: DetM(S) = {s ∈ S,
s.t, ∃s′ ∈ Successorsa(s), s.t., µ(s, a, s′) = 1}.

An MDP, the process starts from a state s0 determined probabilistically using the
initial states distribution ν. An action a can be, non-deterministically, selected from
the set of enabled actions at s0 (i.e., a ∈ Act(s0)). Then the system can transition to
a new state s′ probabilistically via the transition probability function µ. Note that,
it is possible to have more than one initial distribution in a general MDP model.
However, in this thesis we focus on having a single ν.

A path d of M is defined as an infinite sequence s0a1s1a2... of states and actions,
such that ν(s0) > 0 and ∀i ≥ 0, µ(si, ai+1, si+1) > 0.

A trace t associated to a path d = s0a1s1a2...of M is the infinite word W =
w0a1w1a2w2... such that ∀i ≥ 0, L(si) = wi. Note that given a path d, the corre-
sponding trace can be obtained.

Example MDP

S0

S1

𝑏, 1 𝑎, 1
2

𝑐, 1

S2

𝑎, 1
2

𝑏, 1

FIGURE 2.3: A MDP example

2.3. Statistical Model Checking 21

Consider the MDP example in Figure 2.3. We define:

• S = {s0, s1, s2} the set of states

• Act = a, b, c, the set of actions

• A unique initial state s0 such that ν(s0) = 1

• The sets of enabled actions per states are: Act(s0) = {a}, Act(s1) = {b, c},
Act(s2) = {b}

• The transition probabilities are:
µ(s0, a, s1) = 1/2
µ(s0, a, s2) = 1/2
µ(s1, b, s0) = 1
µ(s1, c, s1) = 1
µ(s2, b, s1) = 1

In this example, we notice the non-determinism present between actions c and b
at the level of state s1.

2.3 Statistical Model Checking

2.3.1 Background

We recall that in this thesis, the methodology we propose for assessing the perfor-
mance of networked systems is a model-driven approach in which we rely on model
checking [126] for the verification of performance related requirements. The latter
suggests the need for quantitative methods to analyze the stochastic behavior. There
are several works in the literature that tried to investigate the probabilistic setting
as it relates to the traditional model checking [199, 175, 44, 98, 83, 40, 22, 168, 48].
This resulted in the development of many mature tools [120, 101, 39] that have been
used in diverse application domains such as: industrial process control [117], avion-
ics communication protocols [27], cloud computing [113], power management [154],
automotive [16], security [183], biology [78], network data plane [110, 112] and many
more.

Given a stochastic model M and a requirement φ, probabilistic model checking
typically answers the following question: what is the probability that M satisfies φ?
One way to solve this problem is to try and conduct an exhaustive state space explo-
ration of the system via numerical techniques (i.e., solving optimization problems).
This is very efficient and often produces accurate results. Nevertheless, when con-
fronted with real-world applications with large state spaces, these techniques are
not scalable. However, there is a wide range of ongoing research that try to miti-
gate this concern via techniques such as symmetry reduction [119], abstraction [167,
102], multi-terminal binary decision diagrams [65], etc. The second way is based on
Statistical Model Checking (SMC) and it is the method embraced in this thesis (next
subsection).

2.3.2 SMC in a nutshell

Statistical model checking [81, 207] is a formal verification method that combines
simulations with statistical reasoning to provide answers on whether a stochastic

22 Chapter 2. Formalisms and methodology

system, under certain assumptions, satisfies some requirements with a fixed confi-
dence. It emerged as a solution to the state space explosion problem associated with
using the classical model checking on probabilistic models. SMC consists of only ex-
ploring a sub-part of the state space and mainly relying on statistics and simulations
to generalize, under certain assumptions, the partial results that are obtained by sim-
ulating the system a number of times to the whole system with a fixed confidence
and a controllable accuracy.

Given a stochastic model and a formal property, SMC can answer the two fol-
lowing questions:

1. Qualitative: Can the model satisfy the specified requirement with a probabil-
ity p such that p ≥ θ, respectively p ≤ θ, where θ is a certain threshold?

2. Quantitative: What is the probability that the model satisfies the requirement
specification?

There are two techniques that were proposed in the literature for statistical model
checking to answer these two questions. On one hand, one algorithm provides a
qualitative answer to the first question by positioning the probability with respect
to a given threshold without computing it. This approach has been proposed by
Younes and Simmons [209, 210] and is referred to as hypothesis testing. On the
other hand, the algorithm proposed by Lassaigne and Peyronnet [124] provides a
quantitative answer to the second question by computing the actual probability for
a model to satisfy the required property. The latter is referred to as probability

estimation.
Formally, SMC relies on simulations and statistics in order to evaluate a Markov

Chain M (previous section) against a specified requirement φ written in some tem-
poral logic variant (typically LTL). Depending on the choice of algorithm selected,
SMC can provide a qualitative or a quantitative answer to M |= φ. Each simulation
of the modeled system is individually evaluated against φ. For this reason, a simula-
tion can be represented as a discrete random variable Bi with a Bernoulli distribution
of parameter p where i is the simulation index. This variable has two values when
Bi = 1 (i.e., the simulation satisfies the requirement φ) such that P(Bi = 1) = p or
Bi = 0, i.e., the simulation doesn’t satisfy the requirement, such that P(Bi = 0) =
1− p. The goal of the SMC algorithm is to generate N simulations of the system and
exploit the Bernoulli outcome to extract the global confidence on the system, given
some conditions.

In the next subsections, we overview two of the algorithms used in the early
stages of SMC to answer both the quantitative and the qualitative questions.

2.3.3 Qualitative analysis of SMC

Initial works [210, 181] proposed to answer the qualitative question are based on
hypothesis testing. Let M be a Markov chain model of a stochastic system, φ be the
specification to verify and p is the probability that M satisfies φ (i.e p = P(M |= φ).
In order to check if the probability p is greater or equal to a certain threshold θ (i.e
p ≥ θ)5, two hypothesis are tested against each other. That is:

• Hypothesis H: p ≥ θ

• Hypothesis K: p < θ

5The same analysis can be applied to p ≤ θ.

2.3. Statistical Model Checking 23

Typically, a traditional test-based solution cannot promise an accurate assess-
ment of the model and can’t guarantee that H and/or K is certainly true. However,
it is possible to bound the probability of making an error by controlling the confi-
dence results of the test via two parameters α and β. The pair (α, β) constitute the
strength of the test and are defined such that the probability of accepting K (respec-
tively, H) when H (respectively, K) holds, called a Type-I error (respectively, a Type-II
error), is less or equal to α (respectively, β). However, it is impossible to ensure a low
probability for both types of errors at the same time [200, 209]. A possible solution
[156] is to relax the test by considering an indifference region [p1, p0] with p1 ≤ p0

and θ ∈ [p1, p0] such that the new thresholds p0 and p1 are typically defined in terms
of the single threshold δ. That is, p0 = θ + δ and p1 = θ − δ. We denote the size of
the indifference region as t = p0 − p1. The solution consists of testing two new hy-
potheses with regards to the indifference region as opposed to the two previously
stated hypothesises H and K. The new hypothesis are:

• H0 : p ≥ p0

• H1 : p ≤ p1

Note that if p is between p1 and p0, we say that the probability is sufficiently
close to θ so that we are indifferent with respect to which of the two hypotheses K or
H is accepted. Younes in [208] proposed two hypothesis testing algorithms. Notably
Sequential Probability Ratio Test (SPRT) and Single Sampling Plan (SSP).

Single Sampling Plan

In this algorithm [187], to test H0 against H1, a constant c must be specified in ad-

vance such that if
n

∑
i=1

bi > c 6, then H1 is accepted, otherwise H0 is accepted. The

pair (n, c) is referred to as the single sampling plan (SSP), hence the name of the
algorithm. The main concern of this approach is the ability to find the necessary
number of simulations n and the constant c such that the two error bounds α and β

are respected.
Typically, one tries to work with the smallest value of n possible to minimize the

number of simulations performed. In [210], Younes proposes a binary search based
algorithm that, given p0, p1, α, β, computes an approximation of the minimal value
for c and n. Note that, when the threshold θ has to compare to 0 or 1, it is better to
use this algorithm.

Sequential Probability Ratio Test

In Sequential Probability Ratio Test (SPRT), two values A and B are selected such
that A > B, to ensure that the strength of the test is respected. Let m be the number
of simulations observed of the system under study. The test consists on computing
the following quotient:

p1m

p0m
=

m

∏
i=1

Pr(Bi = bi|p = p1)

Pr(Bi = bi|p = p0)
=

pdm
1 (1 − p1)

m−dm

pdm
0 (1 − p0)m−dm

6bi denotes the outcome of Bi, the Bernoulli variable for each simulation of the system: bi, is 1 if the
simulation satisfies φ and 0 otherwise.

24 Chapter 2. Formalisms and methodology

where m is the number of observations that have been made so far, bi is the value

of the Bernoulli variable for simulation index i and dm =
m

∑
i=1

bi. The idea behind the

test is to accept:

• H0 if
p1m

p0m
≥ A;

• H1 if
p1m

p0m
≤ B.

SPRT computes the quotient
p1m

p0m
for a successive number of simulations (m) until

H0 or H1 is satisfied. This algorithm terminates with probability 1. This has the ad-
vantage of minimizing the number of simulations. In [209], Younes proposed a log-
arithmic based algorithm SPRT that given p0, p1, α and β implements the sequential
ratio testing procedure.

Note that so far in this thesis, we demonstrate the hypothesis testing method by
considering the following specification: P(M |= φ) ≥ θ. However, the same analysis
can be applied to the opposite specification P(M |= φ) ≤ θ.

2.3.4 Quantitative analysis of SMC

Peyronnet et al [82] and [123] propose a probability estimation procedure called PES-

TIM to quantify the probability p that a Markov chain model M meets the require-
ment φ (i.e., p = Pr(M |= φ). Their solution relies on the Chernoff bound [84] to
compute the number of simulations needed to estimate p. The idea is to compute an
approximation p′ of p, given a precision δ, such that

|p − p′| ≤ δ

with a confidence parameter α. That is:

P(|p − p′| ≤ δ) ≥ 1 − α

Formally, let B1, B2, ..., Bn be n Bernoulli variables of parameter p corresponding
to n simulations of the system. Each variable can only have two values: 1 if the
simulation satisfies φ and 0 if it doesn’t. Following Peyronnet’s procedure, if we set
the approximation p′ to be:

p′ = ∑
n
i=1 bi

n

Then, the Chernoff-Hoeffding bound gives:

P(|p − p′| > δ) < 2e−
nδ2

4

Note that, if n is selected in a way that the condition below hold:

n >
4

δ2
log(

2

α
)

Then, it is guaranteed that: P(|p − p′| ≤ δ) ≥ 1 − α. Additionally, if p′ for a number
of simulations n returns p′ ≥ θ − δ, then, it is certain to achieve P(M |= φ) ≥ θ with
the confidence α.

2.4. Requirement formalization 25

2.4 Requirement formalization

We recall that SMC takes as input a stochastic model M and a formal specification
φ written in a variant of Linear Temporal Logic (LTL). This section explores the for-
malism used to express the latter.

2.4.1 Linear Temporal Logic

A Linear-time Temporal Logic (LTL) formula is constructed using:

• A finite set of atomic propositions AP;

• Basic logical operators (e.g., negation ¬, conjunction ∧);

• Basic temporal operators (e.g., Next N, Until U);

Note that, there are additional logic operators other than the negation ¬, conjunction
∧ such as the disjunction (⊕), the implication (⇒) and the equivalence (≡) operators.
Equivalently, additional temporal operators can be inferred using the two basic op-
erators Next N, Until U. This includes: G (always) and F (eventually). G and F are
defined as follow:

Fφ ≡ trueUφ

Gφ ≡ ¬F¬φ

Moreover, by combining G and F, more temporal operators are obtained (e.g., GFφ

infinitely often, FGφ eventually forever).
Given a finite set of atomic propositions AP, we define the alphabet ∑ = 2AP

and all elements of ∑ as symbols. Let ∑ ∗ be the set of infinite words over ∑. LTL
formulas are interpreted on infinite traces σ = σ0σ1... ∈ ∑ ∗ as follows:

• σ |= true;

• σ |= p if p ∈ σ0;

• σ |= ¬φ if σ 2 φ

• σ |= φ1 ∧ φ2 if σ |= φ1 and σ |= φ2

• σ |= Nφ if σ[1..] |= φ

• σ |= φ1Uφ2 if ∃k ≥ 0 s.t. σ[k..] |= φ2 and ∀j ∈ [0, k[, σ[j..] |= φ1

2.4.2 Bounded LTL: BLTL

In the context of SMC, it is necessary to run a number of simulations of the system in
order to generalize the partial results. Therefore, it is important to install a mecha-
nism that allows the termination of each simulation within a finite time. For this, the
formalism to be used to express the specification must be bounded (the bounds will
be introduced in the next paragraphs). Thus instead of LTL, Bounded LTL (BLTL) is
better suited for writing the requirements.

BLTL is a variant of LTL with bounded temporal operators used to enhance LTL
operators with bounds expressed in steps or time increments [32]. These bounds
generally provide the length of the run on which the BLTL requirement must hold.

26 Chapter 2. Formalisms and methodology

The difference between the classical LTL and the bounded LTL is the use of the ad-
ditional temporal operators ≥ and ≤ to express the bounds in terms of time or as a
number of steps.

In bounded LTL [32], a finite sequence of states in the system is considered while
LTL formulas specify the infinite behaviour of the system. BLTL binds the temporal
operators (F, G, N, U) by a temporal bound. This bound may be either a number
of steps using the syntax ≤ #Numerical, respectively ≥ #Numerical, or a real-time
bound using the syntax ≤ #Numerical, respectively ≥ #Numerical. If the model M
is untimed, the two syntaxes are equivalent.

In terms of the temporal operators, this translates to using the new bounded
variants Ui, Ni, Fi and Gi instead of U, N, F and G. Formally, given a set of atomic
propositions AP, BLTL’s grammar is:

φ :=true

|a ∈ AP

|¬φ

|φ1 ∧ φ2

|Niφ

|φ1Uiφ2

Similarly, additional logical operators can be used. That is, the disjunction (⊕),
the implication (⇒) and the equivalence (≡). In the same way, Gi and Fi can be
inferred as follow:

Fiφ ≡ trueUiφ

Giφ ≡ ¬Fi¬φ

As stated previously, BLTL formulas are used to bounded simulations and ex-
press a finite behaviour of the system. However, in order to allow expressing prob-
abilistic queries, a probabilistic variant of BLTL is usually used instead [156]. This
refers to PBLTL (Probabilistic Bounded Linear Temporal Logic) and it is typically the
formalism used in SMC to specify the requirements. We can define PBLTL formulas
as BLTL encapsulated within a probabilistic operator P[φ]. We write the P operator
in two ways according to desired requirement. If the requirement is qualitative, we
use P≤θ [φ] or P≥θ [φ]. Otherwise, we use P =? [φ].

2.5 Stochastic Component-based Modeling

So far in this chapter, we introduced our methodology that aims to formally assess
and evaluate the performance of networked systems and networks overall. We ex-
plained that our approach is model-based and relies on statistical model checking
for quantitative analysis of stochastic systems. In section 2.3, we established that
SMC takes as input a model and a requirement to verify. Then, it provides insights
on the probability for the model to satisfy the requirement, with a controllable accu-
racy, using a combination of simulations and statistics. In section 2.4, we described
the formalism used to express the requirements, i.e., PBLTL.

In this section we examine the modeling formalism adopted in our methodol-
ogy, i.e., BIP (Behavior, Interaction and Priority). BIP allows to faithfully express
and model the system’s functional behavior. However, to incorporate the ability to

2.5. Stochastic Component-based Modeling 27

make performance related decisions in networks (e.g., latency, throughput), we ex-
plore an extension of BIP called SBIP (Stochastic BIP) that is used to augment the
functional model with probability settings. SBIP will be explained in the subsequent
subsections.

2.5.1 BIP formalism

BIP (Behavior, Interaction, Priority) is a highly expressive component based frame-
work for rigorous system design [24]. It allows the construction of complex, hierar-
chically structured models from atomic components characterized by their behavior
and their interfaces. Such components are Labeled Transition System (LTS) [122] en-
riched with variables. Transitions are used to move from a source to a destination
location. Each time a transition is taken, component variables may be assigned new
values, computed by user-defined C/C++ functions. Composition of BIP compo-
nents is expressed by layered application of composition operators (i.e., interactions
and priorities) also referred to as the glue. Interactions express synchronization con-
straints between actions of the composed components while priorities are used to
filter among possible interactions e.g. to express scheduling policies.

As denoted above, the behavior of a BIP atomic component is an LTS which
consist of a set of states and a set of transitions between them with one state being
the initial state. Transitions are labeled by a set of actions. Formally, an LTS is defined
as the tuple (S, S0, Act, Tran) such that:

• S is a set of states;

• S0 is a set of initial states such that S0 ⊆ S;

• Act is a set of action labels ;

• Tran ⊆ S x Act x S is the set of labeled transitions.

Atomic components

Atomic components are the basic elements of BIP models. Their underlying be-
havior is an LTS with variables to store local data. Ports are action labels that can
be associated with data and used for interactions (i.e., synchronization) with other
components. States denote control locations at which components wait for synchro-
nization and transitions are execution steps between states to which action labels
and guards are associated. A guard is a Boolean condition that must hold to execute
the transition. In BIP, data and their related computations are written in C/C++,
whereas the LTS behavior is expressed in the BIP language (we refer the reader to
[195] for a detailed tutorial on BIP).

28 Chapter 2. Formalisms and methodology

FIGURE 2.4: A BIP atomic component

To sum up, atomic components can be defined as the tuple (S, S0, P, T, V) con-
sisting of:

• A set of communication ports P = {p1...pn}, representing action labels, are
used for synchronization with other components;

• A set of control states S = {s1...sk} in which the components await for external
interactions with other components;

• A set of deterministic variables V = {v1...vh} to store local data;

• A set of transitions T representing a move from a control state si ∈ S to a
control state sj ∈ S that is enabled if a guard is true allowing some interaction
if a port pm ∈ P is offered. Note that, guards refer to a boolean condition over
V. Executing a transition starts with verifying if a guard condition g ∈ Bool(v)
7 is satisfied and then is synchronized with one or many components via a port
p (if p is associated to this transition) with possible data exchange. Finally, an
internal computation specified by a function update f ∈ Func(V)8 can take
place (i.e., if v is a valuation of V after the interaction, then f(v) is the new
valuation when the transition is completed).

• S0 is the initial state set 9.

Figure 2.4 shows a simple atomic component (based on [25]) with two control
states S = {empty, f ull}, two ports P = {in, out} and two variables V = {x, y}. At
control state empty, the transition labeled in is executable if:

1) a synchronization through in takes place which eventually updates the value
of the variable x; 2) and if the guard condition x < 0 holds.

The transition in ends with updating the value of y by executing the function
f . At control state f ull, the transition labeled out can occur with an insinuated true
guard and no required internal computation.

In BIP, internal computations, variable updates and Boolean condition evalua-
tions are done in C/C+. The BIP syntax of the atomic component in Figure 2.4 is:

Atom type atomExample
port in , out

7Given a set of variables V, Bool(V) is the set of boolean conditions over V
8Given a set of variables V, Func(v) is the set of functions over V
9In this thesis, we consider models with a unique starting state

2.5. Stochastic Component-based Modeling 29

data x , y
place empty , f ull

i n i t i a l to empty
on in from empty to f ull provided (x > 0) do {y = f (x); }
on out from f ull to empty

end

This short BIP description consists of a declaration of the atomic component
atomExample, its two ports and two variables, followed by the definition of its be-
havior. A tutorial for writing BIP components can be found at [195]. Note that, for a
given control state, the BIP semantics forbid using the same port to enable outgoing
transitions.

FIGURE 2.5: Non-determinism at the level of the atomic component
[156]

In [156], an example of non-determinism at the atomic level is given, which oc-
curs when several transitions are enabled simultaneously. Figure 2.5 illustrates this.
In the control state l2, the transitions tick and update are both enabled at some point
in time t because both their guards are true (i.e., when t ≥ 10 is true, t < 20 is also
true). In this case, BIP typically conducts a non-deterministic choice. Typically, such
non-determinism can be remedied in two ways in order to force a single transition
at a time:

1. Using disjoint guards;

2. Using priorities (next subsection).

In the next section we introduce the composition operators that BIP uses to glue
the atomic components and construct complex hierarchical structures.

Composition operators

As previously noted, atomic components are the basic building blocks of a BIP
model that express individual sub-behavior of a larger model. In order to build a
more complex structure, atomic components are assembled together to form a hi-
erarchical structure representing the global behavior of the system being modeled.

30 Chapter 2. Formalisms and methodology

This requires having a composition operator that allow connecting and synchroniz-
ing the atomic components together (think of it as a glue operator). In BIP, there are
two operators: 1) interactions; 2) and priorities.

1. Interactions: The first composition operator is the connector. It provides a
mechanism to connect (i.e., synchronize) ports of different components to-
wards composition. Connectors are sets of interactions and an interaction is
a non-empty set of ports to be executed jointly. At each interaction, a guard
and a potential update function must be verified and executed to allow data
exchange across the involved ports.

To understand connectors and interactions a little better [25], let’s consider a
set of ports {p1, p2, p3} (we write p1|p2|p3 for simplification). We consider that
atomic components in a BIP model are composed using p1|p2|p3 with at most
one port from each atomic component. p1|p2|p3 is a referred to as a connec-
tor, that is a set of ports of atomic components composed through ports p1, p2

and p3. As previously stated, an interaction is a non empty subset of a connec-
tor. In this demonstrated example, with three ports from distinct components,
the connector γ = p1|p2|p3 has seven possible interactions that constitute a
synchronization between involved ports:

(a) p1

(b) p2

(c) p3

(d) p1|p2

(e) p1|p3

(f) p2|p3

(g) p1|p2|p3

In BIP, the connectors’ syntax starts with a description of the connector and
its participating ports and is followed by the behavior of the minimal com-
plete interaction list. Similarly to the atomic component’s transition behavior,
connectors may also have one or more specified guards associated with the
described interaction. Notably, the execution of a connector may result in data
sharing and a function update across participating ports, respectively atomic
components. BIP characterizes two types of interactions of a connector γ with
each expressing a specific mode of synchronization:

(a) Broadcast interactions indicate a weak synchronization between involved
atomic components. This translates to having a single port, respectively
atomic component, initiating the interaction. From the previous example
where γ = p1|p2|p3, the possible broadcasts initiated by port p1 are: 1) p1

2) p1|p2; 3) p1|p3; 4) p1|p2|p3.

Consider the example in Figure 2.6 consisting of three atomic compo-
nents. The connector γ is constructed using three ports each from a differ-
ent atomic component. We graphically represent a broadcast interaction
(i.e., weak synchronization) with a leaf/triangle on the initiating port (in
this example it’s p1). There are four possible interactions triggered by p1

in the connector γ, we assume, in this example, that only the maximum
interaction features a guard condition over the variable x associated with
the transition labeled by p1 and two variable update y and z (y and z are

2.5. Stochastic Component-based Modeling 31

associated with the transition labeled by p2 and p3 respectively) using a
function f . This results in data sharing across the participating atomic
components. Note that, we can also define guards on the remaining in-
teractions as well. In BIP, the syntax example for this connector is written
as:

FIGURE 2.6: Example of a broadcast interaction

Connector γ

def ine p1 , p2 , p3

on p1

on p1|p2

on p1|p3

on p1|p2|p3 provided (p1.x > 0)
do {p2.y = f (p1.x); p3.z = f (p1.x)}

end

(b) Rendezvous interactions indicate a strong synchronization between the
involved ports. That is all ports of a connector are involved in the inter-
action. This translates to selecting the maximum interaction of a given
connector. In the example above where γ = p1|p2|p3, the rendezvous
interaction is p1|p2|p3.

Consider the example in Figure 2.7 consisting of three atomic compo-
nents. The connector γ is constructed using three ports each from a dif-
ferent atomic component. We graphically represent a rendezvous inter-
action (i.e., strong synchronization) with a bullet in the end points of the
connector γ. In this example, we assume that this interaction features a
guard condition over the variable x associated with the transition labeled
by p1 and two variable update y and z (y and z are associated with the
transitions labeled by p2 and p3 respectively) using a function f . This re-
sults in data sharing across the participating atomic components. In BIP,
we write it as follow:

32 Chapter 2. Formalisms and methodology

FIGURE 2.7: Example of a rendezvous interaction

Connector γ

def ine p1 , p2 , p3

on p1|p2|p3 provided (p1.x > 0)
do {p2.y = f (p1.x); p3.z = f (p1.x)}

end

Note that, when an interaction is active, the involved transitions labeled by
the participating ports in the interaction are also enabled, provided that their
guarding conditions hold. This is referred to as synchronization.

Previously we demonstrated that at the level of atomic components, non-determinism
can manifest in having several transitions enabled simultaneously. We ex-
plained that BIP conducts a non-deterministic choice which can be remedied
by having disjoint guards or by implementing policies (i.e., priorities are ex-
plained in the rest of this section). Similarly, at the level of interactions, the
non-determinism can be encountered when several interactions are enabled
simultaneously (see [156] for more examples and details about this observa-
tion). This can also be resolved by using priorities.

It is worth mentioning that, assembling deterministic atomic components (re-
spectively non-deterministic atomic components) does not guarantee a deter-
ministic compound component (respectively a non-deterministic compound
component).

2. Priorities are the second form of BIP’s composition operators. A priority is
basically a scheduling policy to coordinate the execution of simultaneously
enabled interactions. Each priority is a rule consisting of an ordered pair of
interactions associated with a condition. Priorities can be established at the
atomic component level to eliminate the non-determinism when several tran-
sitions are enabled simultaneously in a specific state and can also be specified
at the level of the compound component (i.e., a component composed by as-
sembling several atomic components and their interactions) to enforce an or-
der of execution of internal interactions (We refer the reader to [195] for BIP
implementation details and tutorials). Note that, guards can be declared over
priorities as well. The syntax for a priority in BIP follows the structure below:

p r i o r i t y name
Ia < Ib provided guard

2.5. Stochastic Component-based Modeling 33

In the syntax above, we set a policy to order two interactions Ia and Ib and al-
low Ib to be executed prior to Ia if the guarding condition guard is true. In BIP,
the guard is a boolean expression over the variables declared in the compo-
nents involved in Ia and Ib. Note that guards are written in the C/C++. When
the boolean condition holds, and both Ia and Ib are enabled, the higher priority
interaction is selected (Ib in this case).

Compound component example

We can construct new components called compound components by assembling
several atomic components together via the composition operators (i.e., interactions
and priorities). Note that atomic components and connectors are recyclable, that is,
they could be re-used several times in a BIP model to construct larger and hierarchi-
cal complex structures.

FIGURE 2.8: Example of a compound component

In this section, we demonstrate how to build a simple compound component in
BIP using three atomic components a1, a2, a3, rendezvous interactions and priori-
ties. In this case, we are re-using the example in Figure 2.4 three times within the
same compound component. We recall that each instance ai of this atomic compo-
nent has two control states S = {empty, f ull}, two ports P = {in, out} and two
variables V = {x, y}. At control state empty, the transition labeled in is executable
if a synchronization through in takes place which eventually updates the value of
the variable x and if the Boolean condition x < 0 is true. Eventually, in updates y
through f . At state f ull, the transition labeled out can occur with an insinuated true
guard and no required internal computations. To construct a compound component,
we need connectors. we recall the BIP description for the atomic component below:

Atom type atomExample
port in , out
data x , y
place empty , f ull

i n i t i a l to empty
on in from empty to f ull provided (x > 0) do {y = f (x); }

34 Chapter 2. Formalisms and methodology

on out from f ull to empty

end

Let the BIP description below be a connector rdv for a strong synchronization
between two ports with no guards:

Connector type rdv
def ine p1 , p2

on p1|p2

end

Now let’s assemble the compound component. The BIP syntax for this example
is below. Notice the use of ‘*‘ in the priority rule to give less priority to interaction
connect1 regardless. Many other rule policies can be implemented either featuring
guards or not.

compound type compoundExample
component atomExample a1 , a2 , a3

connector rdv connect1 (a2.in , a1.out)
connector rdv connect2 (a3.in , a2.out)
p r i o r i t y scheduler connect1 : * < * : *

end

In this section, we overviewed the component-based modeling formalism BIP
and its semantics and showed an example of how to compose a compound compo-
nent from the basic building blocks of BIP (i.e., atomic component) in addition to the
composition operators (i.e., connectors and priorities). Furthermore, we explained
where the non-determinism at the level of atomic components and/or interactions
can occur and how BIP resolves it using disjoint guards and scheduling policies (i.e.,
setting priorities). In the next section, we present an extension of BIP referred to as
SBIP for the stochastic construction of models to include the probabilistic settings.

2.5.2 BIP stochastic extension: SBIP

In the previous section, we briefly examined the BIP formalism and its underlying
semantics (LTS) and grammar. Additionally, we located the possible non-determinism
at the level of atomic components and interactions and examined how BIP can re-
solve it via disjoint guards and priorities.

In this section, we introduce SBIP, a stochastic extension of the BIP formalism
for the probabilistic setting. We recall that our goal is to build stochastic models to
capture the performance of network systems over time and enable their quantitative
analysis, via SMC. We also recall that SMC takes as input a stochastic markov chain
M and a PBLTL φ to answer two questions about the system under study:

1. Is the probability for M to satisfy φ greater or equal (lower or equal) to a certain
threshold θ?

2.5. Stochastic Component-based Modeling 35

2. What is the probability for M to satisfy φ?

The stochastic semantics of SBIP was initially introduced in [162] and extended
for real-time systems in [161]. They enable the definition of stochastic components
encompassing probabilistic variables updated according to user-defined probability
distributions. The underlying mathematical model behind SBIP is a Discrete Time
Markov Chain (DTMC).

Stochastic atomic components

The stochastic aspect at the atomic component level is introduced by the use of prob-
abilistic variables which are variables that are updated via probability distributions
[169, 205]. Formally, a stochastic atomic component is an atomic component ex-
tended with probabilistic variables and is defined as the tuple (S, S0, P, T, V) where:

• S is a set of control states S = {s1...sk} in which the components await for
external interactions with other components;

• P is a set of communication ports P = {p1...pn} representing action labels used
for synchronization with other components;

• S0 is the initial state;

• V is a set of deterministic Vd = {vd
1...vd

h} and non deterministic variables Vnd =
{vnd

1 ...vnd
k } such that V = Vd ⋃ Vnd. Note that, each probabilistic variable vnd

i ∈
Vnd is associated to a probability distribution πvnd over D −→ [0, 1] where D is
a finite universal data domain. πvnd is a valid probability distribution if the
following condition applies:

∑
xi∈D

πvnd(xi) = 1

• T is a set of transitions representing a move from control state si ∈ S to con-
trol state sj ∈ S and it requires that a guard g ∈ Bool(v) holds 10 and some
interaction including a port pm ∈ P is enabled. Upon executing a transition, an
internal computation specified by a function update occurs via f = (f d, f nd)
where f d is a deterministic update function over V and f nd is a probabilistic
function.

For demonstration purposes, let’s consider the simplest example [156] of a stochas-
tic atomic component in Figure 2.9 with two states a and b, a probabilistic variable v
which is updated via the probability distribution π and a single transition between
the two states enabled via the port p. We graphically represent the probabilistic up-
date of v via π by a triangle near the variable name. Given the initial value of v is
set to x, when executing this transition, the variable v can take different valuations
according to π, thus engendering the stochastic behavior Figure 2.10 with several
possible transitions from a having the same action label p.

10Given a set of variables V, Bool(V) is the set of boolean conditions over V

36 Chapter 2. Formalisms and methodology

a b
v

p

v = x

v ~ π

FIGURE 2.9: Example of a stochastic atomic component

a

p

v = x

v ~ π
…

…
.

π(v)

p

FIGURE 2.10: Stochastic behavior of the atomic component

It is worth mentioning that updating multiple probabilistic variables results in a
distribution on transitions that’s the product of the distributions associated to each
variable. We refer the reader to [156] for some examples on this matter.

In the previous section on BIP, we stated that the non-determinism at the level
of atomic components occurs when multiple transitions are enabled simultaneously
in a given state, in which case, BIP conducts a non-deterministic choice unless spec-
ified otherwise by using disjoint guards and/or priorities. With SBIP, adding the
stochastic element to BIP via the probabilistic variables, yields not only the non-
determinism aspect but also the stochastic aspect. The semantics of a stochastic
atomic component is thus a Markov Decision Process (MDP). Note that SBIP handles
the non-determinism similarly to BIP.

Example: Figure 2.11 depicts a client behavior in a client-server setting where the
client issues a request (snd) each p time units. The period p is set probabilistically by
sampling a distribution function (p ⊲) given as a parameter of the model. Time is
introduced by explicit tick transitions and waiting is modeled by exclusive guards
on the tick and snd transitions with respect to time (captured in this example by the
variable t).

s0 s1
t = 0

p ⊲
recv

[t = p]
snd

[t < p]
tick

t ++

recv

FIGURE 2.11: A stochastic BIP component; client behavior issuing
requests each time unit p.

2.6. The BIPSMC engine 37

In this example, we observe that the atomic component (i.e., client-server behav-
ior) is modeled as a classical BIP component augmented with a probabilistic vari-
ables (p ⊲) which is the time it takes the client to submit a new request.

Composition of Stochastic Components

In this section, we examine the component-based composition of stochastic atomic
components. Similarly to subsection 2.5.1, the composition operators of SBIP re-
main the same as in BIP. That is, we use the same definitions of the connectors and
priorities when assembling SBIP compound components. Note that data transfer
functions on interactions might also be probabilistic. However, for the sake of sim-
plicity, in this thesis, we focus on deterministic functions only in order to have both
probabilistic and deterministic variables transferred in a deterministic manner. By
construction, assembling stochastic atomic components using the composition oper-
ators inherited from BIP, we produce stochastic atomic compound components with
a Markov Decision Process (MDP) semantics that encompasses non-deterministic
and probabilistic decisions.

In order to assess the performance of MDP models using statistical model check-
ing, it is required to resolve any non-determinism and obtain purely stochastic be-
haviors where only probabilistic choices are allowed. In [156], it is proposed using
probabilistic schedulers in order to produce purely stochastic Markov Chain seman-
tics of SBIP models from a Markov Decision Process.

2.6 The BIPSMC engine

In this section we present the BIPSMC engine [155, 160], a tool that implements sta-
tistical model checking and the associated algorithms described in the SMC section
2.3, i.e., hypothesis testing and probability estimation. Figure 2.12 indicates that the
tool takes as inputs a stochastic model description in SBIP, a PBLTL performance
specification, i.e., requirement to check and a set of confidence parameters to control
the accuracy of the simulations.

38 Chapter 2. Formalisms and methodology

FIGURE 2.12: A Statistical Model Checking Engine for the BIP frame-
work [160]

Initially, the tool starts by validating the entered PBLTL property through a parser
module. Then with the BIP engine, the tool compiles the stochastic model previously
written in SBIP to build an executable model. Next, the BIPSMC engine triggers the
BIP engine to generate several execution traces of the runnable model. Each trace
is monitored against the PBLTL formula to produce a local verdict. Finally, after N
executions and depending on the selected algorithm, the SMC core module reaches
a global verdict.

2.7 Conclusion

So far in this chapter, we presented our methodology that relies on building rich
stochastic performance models using the BIP formalism and its stochastic extension,
then using statistical model checking to quantitatively analyze them. We examined
BIP’s strong modeling feature which allows the construction of complex hierarchical
structures by composing reusable atomic components via the composition operators:
interactions and priorities. Furthermore, BIP models can be augmented to cover the
probabilistic setting with Markov Decision Processes as their underlying semantics.
Additionally, we discussed how the non-determinism can be alleviated by using
policies at the level of atomic components and at the level of interactions in BIP and
referred the reader to [156] where the author discusses the probabilistic schedulers
to produce purely stochastic components in SBIP with pure stochastic Markov chain
(MC) semantics. The reason why we emphasize the use of purely stochastic MC is
that our proposed methodology for evaluating the performance of networked sys-
tems, in this thesis, relies solely on statistical model checking, that we also described
in this chapter, which takes three parameters as inputs:

1. A stochastic markov chain M;

2. A PBLTL formula φ;

2.7. Conclusion 39

3. A set of parameters to control the accuracy of the results, depending on the
used algorithm (SSP, SPRT, PESTIM).

We recall that, SMC typically, answers two questions about the stochastic system
under study: 1) Is the probability for M to satisfy φ greater or equal (lower or equal) to a
certain threshold θ? 2) What is the probability for M to satisfy φ?

In this chapter, we also presented a tool that was designed for statistical model
checking of SBIP models. This tool implements both Hypothesis testing and the pa-
rameter estimation techniques for verifying PBLTL formulas. Moreover, via exam-
ples, we showed how simple and straightforward is to model MDPs and/or DTMCs
using BIP and it’s stochastic extension SBIP which also inherits BIP’s expressiveness.
We refer the reader to the many successful case studies that modeled systems using
the BIP and SBIP formalisms and successfully analyzed them with SMC. Such exam-
ples cover a multitude of domains including: (i) automotive [128],[127], (ii) avionics
[23, 27] (iii) many-cores embedded systems [159], (iv) multimedia [172] (v) network
data plane and protocols [110, 112]

In the next chapter, we present a real-world use case to demonstrate the viability
of our methodology in the context of networked systems. The use case relates to a
software forwarder (NDN-DPDK) designed for a novel internet architecture callled
Named Data Networking (NDN). The idea is to apply our methodology to the for-
warder’s design to increase its throughput performance on a high speed fiber optic
testbed (100Gbps). In this study, we use BIP to build a rich faithful model of the for-
warder and we calibrate the model with the stochastic behaviour captured via SBIP.
Then, we apply the SMC knowledge to parameterize the model and formally verify
if NDN-DPDK is capable of reaching a maximum throughput of 100Gbps.

41

Chapter 3

Use case

In this chapter, we apply the methodology we proposed in the previous chapter to
a novel Internet architecture, one of the five projects funded by the National Science
Foundation agency (NSF) [163]. This emerging Internet architecture is called Named
Data Networking (NDN).

NDN addresses some of the weaknesses of the Internet Protocol (IP). Since In-
ternet users and applications have demonstrated an ever-increasing need for high
speed packet forwarding, research groups have investigated different designs and
implementations for fast NDN data plane forwarders and claimed they were capa-
ble of achieving high throughput rates. However, the correctness of these statements
is not supported by any verification technique or formal proof. In this study, we pro-
pose using a formal model-based approach to overcome this issue. We consider the
NDN-DPDK prototype implementation of a forwarder developed at NIST, which
leverages concurrency to enhance overall quality of service. We use our approach to
improve its design and to formally demonstrate that it can achieve high throughput
rates.

3.1 Introduction

With the ever growing number of communicating devices, their intensive informa-
tion usage and the increasingly critical security issues, research groups have rec-
ognized the limitations of the current Internet architecture based on the internet
protocol (IP) [149]. Information-Centric Networking (ICN) is a new paradigm that
transforms the Internet from a host-centric paradigm, as we know it today, to an
end-to-end paradigm focusing on the content and it is hence more appropriate to
our modern communication practices. It promises better security, mobility and scal-
ability.

Several research projects grew out of ICN. Examples include content-centric ar-
chitecture[182], Data Oriented Network Architecture [116] and many others [206],
but one project stood out the most and was sponsored by the NSF called NDN [213].
NDN is gaining rapidly popularity and has even started being advertised by major
networking players [38].

IP was designed to answer a different challenge, that is of creating a communi-
cation network, where packets named only communication endpoints. The NDN
project proposes to generalize this setting, such that packets can name other objects,
i.e. “NDN changes the semantics of network services from delivering the packet to a given
destination address to fetching data identified by a given name. The name in an NDN packet
can name anything - an endpoint, a data chunk in a movie or a book, a command to turn on
some lights, etc.“ [213]. This simple change has deep implications in term of routers
forwarding performance since data needs to be fetched from an initially unknown
location.

42 Chapter 3. Use case

Being a new concept, NDN (Section 3.2) has not yet undergone any formal verifi-
cation. The initial phase of the project was meant to come up with a proof-of-concept
prototype for the proposed architecture. This has lead to a plethora of less perform-
ing implementations in terms of packets’ forwarding rates (throughput). A lot of
effort was then directed to optimizing NDN forwarders’ performance by trying dif-
ferent data structures (Hash maps) and targeting different hardware (GP-GPU). Un-
fortunately, validation was mainly carried using pure simulation and testing tech-
niques.

In this work, we take a step back and try to tackle the performance problem dif-
ferently. We consider the model-based approach, that we proposed in the previous
chapter, which allows for rigorous reasoning and formal verification. In particular,
we rely on the framework [139, 161] offering a stochastic component-based model-
ing formalism and Statistical Model Checking (SMC) engine which is used along an
iterative and systematic design process that consists of four phases:

1. Build a parameterized functional system model, which does not include per-
formance;

2. Run a corresponding implementation in order to collect context information
and performance measurements, characterized as probability distribution func-
tions;

3. Use these distributions to create a stochastic timed performance model;

4. Use SMC to verify that the obtained model satisfies requirements of interest.

This approach is applied to verify that the NDN Data Plane Development Kit
(NDN-DPDK) (an effort to develop a high performance forwarder for NDN net-
works at NIST can perform at high packet forwarding rates (Section 3.4). We inves-
tigate different design alternatives regarding concurrency (number of threads), sys-
tem dimensioning (queue sizes) and deployment (mapping threads to multi-cores).
Using our approach, we were able to figure out what are the best design parameters
to achieve higher performances (Section 3.5). These were taken into account by the
NDN developers at NIST to enhance the ongoing design and implementation. To
the best of our knowledge, this is the first work using formal methods in the context
of the NDN project.

Note that, in the next part of this thesis, we will propose an approach for au-
tomating the distribution fitting process using deep leaning. But first, we demon-
strate, the usefulness and efficiency of our proposed methodology with the NDN-
DPDK use case. At the end of this chapter, we show that the design modifications
we made through SMC, allowed the forwarder to achieve high throughput rates (up
to 100Gbps). We published our findings in [112, 110].

3.2 Named Data Networking

This section describes the NDN protocol and introduces the NDN-DPDK forwarder
being designed and implemented at NIST.

3.2.1 Overview

NDN is a new Internet architecture different from IP. Its core design is exclusively
based on naming contents rather than end points (IP addresses in the case of IP) and
its routing is based on name prefix lookups [95].

3.2. Named Data Networking 43

The protocol supports three types of packets, namely Interest, Data and Nack. In-
terests are consumer requests sent to a network and Data packets are content produc-
ers replies. The Nack lets the forwarder know of the network’s inability to forward
Interests further. One of NDN’s advantages is its ability to cache content (Data) ev-
erywhere the Data packet propagates, making the NDN router stateful. Thus, future
Interests are no longer required to fetch the content from the source, instead Data
could be retrieved directly from a closer node that has a cached copy.

Packets in NDN travel throughout a network as follows: first a client application
sends an Interest with a name prefix that represents the requested content. Names in
NDN are hierarchical (e.g., /YouTube/Alex/video1.mpg denotes a YouTube video
called Video1.mpg by a Youtuber Alex). Then, this packet is forwarded by the net-
work nodes based on its name prefix. Finally, this Interest is satisfied with Data by
the original source that produced this content or by intermediate routers that cached
it due to previous requests. It is also crucial to note that consecutive transmissions of
Interest packets with similar name prefix might not lead to the same path each time,
but could rather be forwarded along different paths each time a request is made, de-
pending on the forwarding strategy in place. This means that the same Data could
originate from different sources (producers or caches).

The NDN forwarding daemon (NFD) [152], has three different data structures:
Pending Interest Table (PIT), Content Store (CS) and Forwarding Interest Base (FIB). The
packet processing, according to the NDN protocol, is as follows: [1 –]

For Interests, the forwarder, upon receiving an Interest, starts off by querying the
CS for possible copies of the Data, if a CS match is found during this operation,
the cached Data is returned downstream towards the client. Otherwise, an entry is
created in the PIT with its source and destination faces (communication channels
that the forwarder uses for packet forwarding) for record keeping. Using the PIT,
the forwarder determines whether the Interest is looped in the network by checking
a global unique number called Nonce in the Interest against existing previous PIT
entries. If a duplicate nonce is found the Interest is dropped and a Nack of reason
Duplicate is sent towards the requester. Otherwise, the FIB is queried for a possible
next hop to forward the Interest towards an upstream node; if there is no FIB match,
the Interest is immediately dropped and replied with a Nack of reason No Route.

For Data, the forwarder starts with by querying the PIT. If a PIT entry is found, the
Data is sent to downstream nodes listed in the PIT entry, then the PIT arms a timer
to signal the deletion of this entry and a copy of the Data is immediately stored in
the CS for future queries. If no record is found in the PIT, the Data is considered
malicious and discarded.

3.2.2 The NDN-DPDK Forwarder

NDN-DPDK is a forwarder developed at NIST to follow the NDN protocol and to
leverage concurrency. In this study, we evaluate its capacity to achieve high through-
put rates using Statistical Model Checking (SMC).

The NDN-DPDK forwarder’s data plane has three stages: input, forwarding,
and output (Figure. 3.1). Each stage is implemented as one or more threads pinned
to CPU cores, allocated during initialization. Input threads receive packets from
a Network Interface Card (NIC) through faces, decode them, and dispatch them
to forwarding threads. The forwarding thread processes Interest, Data, or Nack
packets according to the NDN protocol. Output threads send packets via faces then
queue them for transmission on their respective NIC.

44 Chapter 3. Use case

Input

Thread 0

…

fifo

Input

Thread N

Fw Thread 0

fifo
Fw Thread N

fifo
Output

Thread 0

fifo
output

Thread N

… …
PCCT FIB

PCCT FIB

N

D

T

Face

0

Rx/Tx

Face

N

Rx/Tx

…

NIC

NIC

…

…

FIGURE 3.1: Diagram of the NDN-DPDK forwarder

During the forwarder’s initialization, each hardware NIC is provided with a
large memory pool to place incoming packets. The input thread continuously polls
the NIC to obtain bursts of 64 received packets. Then decodes, reassembles frag-
mented packets, and drops malformed ones. Then, it dispatches each packet to the
responsible forwarding thread which is determined as follows:

a) For an Interest, the input thread computes SipHash of its first two name com-
ponents and queries the last 16 bits of the hash value in the Name Dispatch
Table (NDT), a 65 536 entry lookup table configured by the operator, to select
the forwarding thread;

b) Data and Nack carry a 1-byte field in the packet header which indicates the
forwarding thread that handled the corresponding Interest. Once identified,
Data (or Nack) will be dispatched to the same one.

The forwarding thread receives packets dispatched by input threads through a
queue. It processes each packet according to the NDN protocol, using two data
structures both implemented as hash tables:

a) The FIB records where the content might be available and which forwarding
strategy is responsible for the name prefix;

b) The PIT-CS Composite Table (PCCT) records which downstream node requested
a piece of content, and also serves as a content cache; it combines the PIT and
CS found in a traditional NDN forwarder.

The output thread retrieves outgoing packets from forwarding threads through
a queue. Packets are fragmented if necessary and queued for transmission on a
NIC. The NIC driver automatically frees the memory used by packets after their
transmission, making it available for newly arrived packets.

3.3 Formal Model-based Approach

In this section, we summarize the adopted methodology in this thesis, which in-
cludes the underlying modeling formalism as well as the associated analysis tech-
nique. Then we explain how we apply it to the NDN-DPDK forwarder.

3.3. Formal Model-based Approach 45

3.3.1 Summary of the methodology

As we explained in the previous chapter, the methodology adopted in this thesis is a
model-based approach that relies on the construction of a faithful model of a system
that rigorously captures its most relevant characteristics. Then, the execution traces
of the model are verified against a set of requirements via statistical model checking.
Note that, our methodology requires that the model is well defined and reflects the
behavior of the system that’s being assessed, in order to have trustworthy analysis
and high accuracy results.

This methodology embraces a specific framework which is based on the BIP
modeling formalism and it’s stochastic extension SBIP for stochastic component-
based modeling in addition to a statistical model checking engine BIPSMC [139] (Fig-
ure 3.2)

Modeling

Instrument/

execution

Data analysis

Model

calibration

Functional

model (BIP)

Code

generation

Specifications
Existing

implementation

Raw

performance

measures

Requirements

Stochastic perf.

Model (SBIP)

Probability

distributions

Performance

evaluation

Quantitative

Evaluation

results

guides

FIGURE 3.2: Methodology and framework

The advantages of the framework is that it can either take a functional model of
a system obtained from a high-level specification or model an existing implemen-
tation. For the former case, an implementation is automatically generated from the
model. In this use case, we consider the latter.

The system’s implementation which could also be obtained by automatic code
generation, is instrumented and used to collect performance measurements regard-
ing the requirements of interest, e.g. throughput. These measurements are analyzed
and characterized in the form of probability density functions with the help of sta-
tistical techniques such as sensitivity analysis and distribution fitting. The obtained
probability density functions are then introduced in the functional model using a
well defined calibration procedure [158]. The latter produces a stochastic timed
model (when measurements concern time), which will be analyzed using the SMC
engine.

Note that the considered models in this approach or workflow can be parameter-
ized with respect to different aspects that we want to analyze and explore. Basically,
the defined components types are designed to be instantiated in different contexts,
e.g. with different probability density functions thus showing diverse performance
behaviors. While, the model considered for analysis using SMC is a specific instance
for which all the parameters are fixed, some degree of parameterization is still al-
lowed on the verified requirements.

46 Chapter 3. Use case

3.4 NDN-DPDK Modeling

In this section we present the modeling process of the NDN-DPDK from a functional
to a stochastic timed model for throughput evaluation.

3.4.1 A Parameterized Functional BIP Model

Figure 3.3 depicts the BIP model of the NDN-DPDK forwarder introduced in Sec-
tion 3.2 which shows its architecture in terms of interacting BIP components that can
easily be matched to the ones in Figure 3.1. The presented model is parameterized
with respect to the number of components, their mapping into specific CPU cores,
FIFOs sizes, etc. Due to space limitations, we present in [110] the behaviors of all
the components of the NDN-DPDK forwarder in Figure 3.3. It is worth mentioning
that the model is initially purely functional and untimed. Time is introduced later
through the calibration procedure.

Input Thread N

dispatch

pkt, t

fetch

Input Thread 0

pkt, t

fetch FiFo

FW thread 0 Output thread 0

FiFo

FW thread M Output thread N

…

fw_I

fw_D

fetch

fw_I

fw_D

…

…

fetch

…

push pop

push pop

FiFo

FiFo

push pop

push pop

…

fetch

fetch

snd

snd

pkt

pkt

tick

tick

dispatch

tick

tick

FIGURE 3.3: A functional BIP model of the NDN-DPDK forwarder

3.4.2 Building the Performance Model

Client

Server

snd_I

recv_I

recv_D

tick

fetch

snd

push pop

push pop

snd

push pop

tick

fetch

push pop

snd_D

Forwarder

FiFo

FiFo

FiFo

FiFo

FIGURE 3.4: Considered network topology

To build a performance model for our analysis, we consider the network topol-
ogy in Figure 3.4 which has a traffic generator client (consumer), a forwarder (NDN-
DPDK) and a traffic generator server (producer), arranged linearly.

The green line shows the Interest packet path from the client to the producer
through the forwarder and the red line indicates the Data path towards the client.

3.4. NDN-DPDK Modeling 47

The structure of our model (Figure 3.3) calls for four distribution functions to char-
acterize the performance:

1. Interest dispatching latency in input threads.

2. Data dispatching latency in input threads.

3. Interest forwarding latency in forwarding threads.

4. Data forwarding latency in forwarding threads.

Notice that Nack packets are out of the scope of these experiments. We identified
the following factors that can potentially affect the system’s performance:

a. Number of forwarding threads. Having more forwarding threads distributes
workload onto more CPU cores. The cores can compete for the shared L3
cache, and potentially increase forwarding latency of individual packets.

b. Placement of forwarding threads onto Non Uniform Memory Access nodes

(NUMA). Input threads and their memory pools are always placed on the
same NUMA node as the Ethernet adapter whereas the output threads and
the forwarding threads can be moved across the two nodes. If a packet is dis-
patched to a forwarding thread on a different node, the forwarding latency is
generally higher because memory access is crossing NUMA boundaries.

c. Packet name length measured by the number of its components. A longer
name requires more iterations during table lookups, potentially increasing In-
terest forwarding latency.

d. Data payload length. Although the Data payloads are never copied, a higher
payload length increases demand for memory bandwidth, thus potentially in-
creasing latencies.

e. Interest sending rate from the client. Higher sending rate requires more mem-
ory bandwidth, thus potentially increasing latencies. It may also lead to packet
loss if queues between input and forwarding threads overflow.

f. Number of PIT entries. Although the forwarder’s PIT is a hash table that nor-
mally offers O(1) lookup complexity, a large number of PIT entries inevitably
leads to hash collisions, which could increase forwarding latency.

g. Forwarding thread’s queue capacity. the queues are suspected to impact the
overall throughput of the router through packet overflow and loss rates. How-
ever, it does not influence packets individual latencies.

After identifying the factors with potential influence on packet latency, we in-
strument the real forwarder to collect latency measurements. Then, we perform
statistical analysis to identify which factors are more significant. This narrows down
the number of factors used and associated distribution functions.

Forwarder Instrumentation.

Factors a., b., c., d., e. and g. can be controlled by adjusting the forwarder and
traffic generator configuration, while factor f. is a result of network traffic and is
not in our control. To collect the measurements, we modified the forwarder to log

48 Chapter 3. Use case

packets latencies as well as the PIT size after each burst of packets. We minimized
the extra work that input threads and forwarding threads have to perform to enable
instrumentation, leaving the measurement collection to a separate logging thread or
post-processing scripts. It is important to mention that this task does in fact intro-
duce timing overhead. Therefore, the values obtained will have a bias (overestimate)
that translates into additional latency but the trends observed remain valid.

We conducted the experiment on a Supermicro server equipped with two In-
tel E5-2680V2 processors, 512 GB DDR4 memory in two channels, and four Mel-
lanox ConnectX-5 100 Gbit/s Ethernet adapters. The hardware resources are evenly
divided into two NUMA nodes. To create the topology in Fig. 3.4, we connected
two QSFP28 passive copper cables to connect the four Ethernet adapters and form
two point-to-point links. All forwarders and traffic generator processes were allo-
cated with separate hardware resources and could only communicate over Ethernet
adapters.

In each experiment, the consumer transmitted either at sending intervals of one
Interest per 700 ns or per 500 ns under 255 different name prefixes. There were
255 FIB entries registered in the NDN-DPDK forwarder at runtime (one for each
name prefix used by the consumer), all of which pointed to the producer node. The
producer would reply to every Interest with a Data packet of the same name. The
forwarder’s logging thread was configured to discard the first 67 108 864 samples
(either latency trace or PIT size) during warm-up period, and then collect the next
16 777 216 samples and ignore the cool down session. Each experiment represents
about 4 million Interest-Data exchanges.

TABLE 3.1: Factors used. NUMA mapping is described below.

Factors forwarding threads Name length Payload length Sending intervals

Values {1, 2, 3, 4, 5, 6, 7, 8} {3, 7, 13} {0, 300, 600, 900, 1200} {500 ns, 700 ns}

We repeated the experiment using different combinations of the factors in Ta-
ble 3.1 and the following NUMA arrangements:

(P1) Client and server faces and forwarding threads are all on the same NUMA,

(P2) Client face and forwarding threads on one NUMA, server face on the other,

(P3) Client face on one NUMA, forwarding threads and server face on the other,

(P4) Client face and server face on one NUMA, forwarding threads on the other.

In (P1), packet latency is expected to be the smallest because all processes are
placed on the same NUMA therefore, no inter-socket communication and no over-
head are introduced. In (P4), both Interests and Data packets are crossing NUMA
boundaries twice since the forwarding threads are pinned to one NUMA whereas
the client and the server faces, connected to the Ethernet adapters, reside on another.
This is suspected to increase packet latency tremendously as opposed to (P1), (P2)

and (P3). These suspicions predict that placement (P1) is the best case scenario and
placement (P4) is obviously the worst. However, we aim at getting more insight and
confidence through quantitative formal analysis. This will provide a recommen-
dation as to which placement is better suited based on the remaining parameters
combinations.

3.4. NDN-DPDK Modeling 49

Model Fitting.

Before calibrating our functional BIP model with multiple distinctive probability dis-
tributions representing each combination of the factors, we choose to reduce the
number of used distributions by performing a sensitivity analysis. This analysis ex-
amines the impact of several factors on the response (packet latency) and discovers
the ones that are more important. In this chapter, we use DataPlot [49] to produce
the Main Effect Plot (Figure ??) for factors a. to e..

FIGURE 3.5: Main Effects Plot for Interest and Data packets

The plot shows steeper line slopes for the packet type (packet type is not a fac-
tor). We intend to show how the NDN-DPDK forwarder processes both Interest and
Data differently) as well as factors (a.), (b.), (c.), and (e.) which indicates a greater
magnitude of the main effect on the latency. However, the plot shows almost a hori-
zontal line for factor d. inducing an insignificant impact on the latency. The latter is
explained by the fact that the forwarder processes packet names (headers) only and
doesn’t read Data payloads. As for the PIT size (factor f.), it is expected to heavily
increase packet latency when it is full. However, because this table’s implementa-
tion is optimized for high performance and entries are continuously removed when
Data packets arrive (PIT entries being satisfied), we confirmed through a correlation
analysis that we can ignore this factor’s impact.

Based on the analysis above, we build distribution functions for each of the fac-
tors that have greater impacts on packet latency in this study. These factors are:

1. The number of forwarding threads;

2. NUMA placement;

3. Packet name size (header);

4. Sending rate and;

5. FIFO capacity (FIFO impacts the loss rates and not individual packet latency).

50 Chapter 3. Use case

With the help of an expert statistician at NIST, we followed the traditional statis-
tical approach of conducting distribution fitting in order to map the collected mea-
surements to their best fitted probability distribution for each of these factors [110].
We describe this process in detail in chapter 4.

Model Calibration.

Calibration is a well defined model transformation that transforms functional com-
ponents into stochastic timed ones [157]. In this section, we use the probability dis-
tributions obtained above to calibrate the functional BIP model of the NDN-DPDK
forwarder shown in Figure 3.3. Due to space limitations, we refer the reader to [110]
where we describe the calibrated models of all the BIP components of the NDN-
DPDK forwarder.

In the next section, we perform SMC on the calibrated model of the NDN-DPDK
forwarder and explain the results.

3.5 Performance Analysis using SMC

3.5.1 Experimental Settings

We run the SMC tests using the probability estimation algorithm with a required
confidence of α = 0.1 and a precision of δ = 0.1. Each test is configured with a
different combination of values for the factors previously presented. And each exe-
cution of a test with a single set of parameters generates a single trace. The property
evaluated with the SMC engine is: Estimate the probability that all the issued Interests are
satisfied, i.e. a Data is obtained in return for each Interest. The SMC result is a probabil-
ity estimation p̂ which should be interpreted as being within the confidence interval
[p̂ − δ, p̂ + δ] with probability at least (1 − α). In the experiments below, the shown
results corresponds to p̂ = 1.

3.5.2 Analyses Results

Queues Dimensioning.

First, we explore the impact of sizing forwarding threads queues. Each forwarding
thread has an input queue. Initially, we consider a model with a single forwarding
thread and vary its queue capacity with 128, 1024 or 4096 (in packets). Then set the
client’s sending rate to: 105 packets per second (pps), 106 pps or 107 pps. The re-
sults are shown in Figures 3.6 and 3.7. The Y-axis represents the Interest satisfaction
rate such that 100 % (resp. 0 %) indicates no loss (resp. 100 % loss) and the x axis
represents the queue capacity under different sending rates.

Figure 3.6 indicates that at 105 pps (blue), the Interest satisfaction rate is 100%.
This means that the forwarder (with one forwarding thread) is capable of handling
all packets at this sending rate (105 pps of packet size 1500 bytes is equivalent to 1.2
Gbps), under any queue size. However, under a faster sender rate (where a single
forwarder shows signs of packet loss) we unexpectedly observed a better Interest
satisfaction rate with a smaller queue (Q=128). After a thorough investigation of the
real implementation, we found out that the queues don’t have proper management
in terms of insertion and eviction policies that would give priority to Data over In-
terest packets. In the absence of such policy, more Interests would be queued while
Data packets would be dropped resulting in Interests not being satisfied, thus lower

3.5. Performance Analysis using SMC 51

Q=128 Q=1024 Q=4096

Queue capacity under different sending rates

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t
s
a

ti
s
fa

c
ti
o

n
 r

a
te

 i
n

 %

10
5
 pps

10
6
 pps

10
7
 pps

FIGURE 3.6: One Forwarding thread with different sending rates

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t

s
a
ti
s
fa

c
ti
o
n
 r

a
te

 i
n
 %

Q = 128

Q = 4096

FIGURE 3.7: Many Forwarding threads with a sending rate set to 106

pps

performance (Interest satisfaction rate). It is thus advised for the final implementation
of the NDN-DPDK forwarder, to use a queue capacity smaller than 128 packets when the
forwarder has a single forwarding thread and packets are sent at a fast rate.

Similarly, we explore whether this observation remains true with more forward-
ing threads. In order to do that, we run SMC again on eight different models each
with a different number of forwarding threads (1 to 8) under a sending rate of 106

pps (1 Interest per 1 us) where a loss rate was observed in Figure 3.6. Then, we
experimented with two queue capacities, namely 128 and 4096 packets. The results
are reported in Figure 3.7. The x Axis represents the number of forwarding threads
while the y axis depicts the Interest satisfaction rate.

We observe that the queue size matters mainly in the case of a model with one
and two forwarding threads. In fact, for a two threads model, a bigger queue size
is preferred to maximize the performance, unlike when a single thread is used. As
for the other six models, both sizes achieve almost 100 % Interest satisfaction. This
is due to the fact that three forwarding threads or more are capable of splitting the
workload at 106 pps and can pull enough packets from each queue with a minimum
loss rate of 0.02 % . This result stresses that, to avoid being concerned about a proper queue

52 Chapter 3. Use case

size, more threads are needed for handling a faster sending rate with minimum Interest loss.

NUMA placement, number of forwarding threads and packet name length.

Another aspect to explore, is the impact of mapping the forwarding threads and/or
NDN Faces to the two NUMA nodes (0, 1) under different sending rates and for
multiple name lengths where Face 0 exchanges packets with the client and Face 1
with the server. To do that, we consider the four NUMA arrangements (P1), (P2),
(P3) and (P4) in section 3.4 as well as the factors in Table 3.1 in the SMC analysis.

In Figures 3.8 to 3.13, each row represents experiments with similar packet name
lengths {small=3, medium=7, large=13} and a queue capacity of 4096. The right-
hand column indicates results for a faster sending rate of 2 ∗ 106 pps (500 ns interval)
while the left-hand one shows results for a slower sending rate of 1.42 ∗ 106 pps (700
ns interval). The six figures includes four curves where each corresponds to the four
NUMA arrangement options: P1 to P4.

The six Figures 3.8 to 3.13 show that Interest satisfaction rates scale up with
the increase of forwarding threads then reach a saturation plateau where adding
more threads can no longer improve the performances. Furthermore, with fewer
forwarding threads, the loss rate is unavoidable and exceeds 80 %. This is because
the sending rate is faster than the forwarding threads processing capabilities causing
their FIFO queues to saturate and start dropping packets frequently. However, un-
der a slower sending rate and packets with small, medium and large name lengths
(3, 7, 13), Figures 3.8, 3.10 and 3.12 show that a maximum satisfaction rate of over
90 % is achievable with only five forwarding threads. Whereas when the client is
generating packets faster at 2 Mpps, a saturation plateau of over 90 % is reached
at six threads or more for small and medium names (Figures 3.9 and 3.11) and a
plateau of slightly over 70 %, with five threads, for larger names (Figure 3.13). Also,
Figures 3.8 and 3.10 demonstrate that placing all processes (threads and faces) on
a single NUMA (placement P1) outperforms the other three options. This obser-
vation is explained by the absence of inter-socket communication thus less timing
overhead added such as in the case of the purple plot where packets are crossing
NUMA boundaries twice from Face 0 to the forwarding threads then through Face
1 and back (placement P4).

Figures 3.9 and 3.11 show the impact of increasing the sending rate on packets
with smaller names. In this case, it is preferred to also position all the processes
on one NUMA such as the case of the yellow plot of the P1 series because NUMA
boundary crossing usually downgrades the performance. In fact, the difference be-
tween no NUMA crossing and the double crossing (yellow and purple series respec-
tively) is approximately 30 % loss rate with more than five threads. The second best
option P2 which is placing the forwarding threads on the NUMA receiving Inter-
est packets with Face 0 (NUMA hosting the Ethernet adapter that receives Interests
from the Client). However, when the number of threads is not in the saturation zone
and the threads get overworked and start to loose packets, it is recommended to opt
for placement P3. Based on these results, we recommend that for small to medium names,
to use a maximum of eight threads but no less than five arranged as in placement P1 for
optimum performances under a slower or a faster sending rate.

With a larger name however, Figure 3.12 depicts an unexpected behaviour when
using three threads or less. In this case, placing the forwarding threads on the same
NUMA as Face 1 (which is the Ethernet adapter connected to the server and receives
Data packets), surpasses the other three options. Our explanation is that since for-
warding threads take longer times to process incoming packets due to their longer

3.5. Performance Analysis using SMC 53

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t

s
a

ti
s
fa

c
ti
o

n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

FIGURE 3.8: small
names, 700 ns

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t

s
a

ti
s
fa

c
ti
o

n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

FIGURE 3.9: small
names, 500 ns

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t

s
a

ti
s
fa

c
ti
o

n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

FIGURE 3.10: medium
names, 700 ns

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t

s
a

ti
s
fa

c
ti
o

n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

FIGURE 3.11: medium
names, 500 ns

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t

s
a

ti
s
fa

c
ti
o

n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

FIGURE 3.12: large
names, 700 ns

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t

s
a

ti
s
fa

c
ti
o

n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

FIGURE 3.13: large
names, 500 ns

54 Chapter 3. Use case

name and timely lookup, particularly for Interests as they are searched by names
inside the two tables (PCCT and FIB) rather than a token such as the case for Data
packets. Placing the forwarding threads with the Data receiving Ethernet adapter
connected to Face 1, has the potential to yield better results by quickly processing
packets after a quick token search especially when the workload is bigger than the
threads’ processing capacity. When the sending rate is increased, the same results
are observed in Figure 3.13 for a similar name length but with a decrease in perfor-
mance. Thus, we recommend for larger names to use NUMA arrangement P3 only when
the number of forwarding threads is less than three regardless of the sending rate (not advised
due to high loss rate).

3.6 Lessons learned

This study shed light on a new networking paradigm called Named Data Network-
ing (NDN) and its forwarding daemon. Ongoing NDN research includes the devel-
opment of high-speed data plane forwarders that can operate at a hundred gigabits
per second while using modern multi-processor server hardware and kernel bypass
libraries. In this paper, we discussed the results of a performance evaluation effort
we undertook to reach well-founded conclusions on how the NDN forwarder proto-
type developed by NIST (NDN-DPDK) behaves in a network in terms of achievable
Interest satisfaction rate.

We conducted an extensive analysis under different factors such as the number
of threads carrying tasks and function mapping to CPUs, using a model-based ap-
proach and statistical model checking. Given the wide array of design parameters
involved, this effort contributes valuable insights into protocol operation and guides
the choice of such parameters. The use of statistical model checking for performance
analysis allowed us to discover potential sub-optimal operation and propose appro-
priate enhancement to the queue management solution. This has been taken into
account in the ongoing NDN-DPDK forwarder implementation. Moreover, our ex-
tensive analysis provides a characterization of the achievable forwarding through-
put for a given forwarder design and available hardware resources which would not
have been possible to obtain, with such controllable accuracy, using traditional mea-
surements and statistic methods. Furthermore, these results were communicated
and shared with members of the NDN community in a conference throughout a
poster interaction and gained attention from researchers who were interested in the
methodology and its applications. In addition to that, the use of a BIP model refined
at the right level of abstraction allows the generation of executable code that could
be used instead of the real implementation.

It is important to note however, that our analysis depends largely on a stochastic
model obtained using samples of data collected from the actual implementation of
the forwarder which is suspected to have introduced timing overhead. Neverthe-
less, the trends observed throughout this study remain accurate and have provided
valuable insight to the actual code. In the future, this analysis will be extended
to answer the reverse question, namely Given a desired throughput, what is the

best hardware setup and the forwarder design to use? rather than the question
Given a hardware setup and a forwarder design, what is the maximum achievable

throughput? that we have investigated in this study which we published in the
International Symposium on Automated Technology for Verification and Analysis
(ATVA) [112, 110].

3.6. Lessons learned 55

So far in this chapter, we examined an application of our proposed methodol-
ogy that relies on building parametrized BIP models of the NDN-DPDK forwarder.
Then, we collected measurement data by executing the forwarder’s prototype on a
local testbed. Each set of measurements is then analyzed via several statistical tests
to select probability distributions that best fit each dataset. This is referred to as
the distribution fitting process. We conducted this step under the supervision of an
expert statistician Dr. James J Filliben [97]. The identified probability distributions
are then integrated into the BIP models via the stochastic extension SBIP which we
evaluate using the BIPSMC engine.

It is important to emphasize that mapping a dataset to a probability distribution
is a tedious statistical task that is typically done by expert analysts as it requires a
good statistical knowledge and familiarity with many commonly used distributions,
mostly because the statistical methods used involve human interpretation of graphs
or numerical tests which is above the expertise of some analysts. In this context, it is
really important to fit the system data to accurate probability distributions in order
to build rich stochastic performance models and to be able to quantitatively ana-
lyze them via SMC. Any misconception on the data and inaccurate fitted probability
distributions will result in wrong verification of the whole system.

We discuss this point in the upcoming chapters (part 2 of this thesis). We present
a semi-blackbox method for automating the distribution fitting process to help ana-
lysts select the ’best’ probability distribution among many commonly models. Our
approach relies on deep learning. In chapter 6, we overview our developed tool
’DeepFit’ that combines traditional statistical tests and the trained neural networks
to conduct distributional modeling with high accuracy.

57

Part II

Automated distributional
modeling

59

Chapter 4

Statistical inference

In the first part of this thesis, we presented a methodology and its associated anal-
ysis tools for rigorous system modeling and performance evaluation of networking
systems (e.g., throughput, latency, delay). We recall that, this methodology is model-
based and takes as inputs: (a) a stochastic performance model with the semantics of a
Discrete Time Markov Chain (DTMC) expressed in the SBIP formalism. (b) a formal-
ized performance requirement expressed in Probabilistic Bounded Linear Temporal
Logic (PBLTL). (c) and a set of parameters to control the accuracy of the verification.
The analysis phase relies on the statistical model checking techniques, implemented
by the BIPSMC engine, which evaluates the DTMC model against the expected prop-
erties. The results of this process produces an answer to one of these two questions,
depending on the selected algorithm (i.e., Hypothesis Testing (HT), Probability Esti-
mation (PE)):

1. Qualitative: Can the model satisfy the specified requirement with a probability p?

2. Quantitative: What is the probability that the model satisfies the requirement speci-
fication?

Additionally, we also briefly described the missing element in the workflow of
this methodology which is how to characterize measurement data, obtained from
the system to be verified, as probability distributions (i.e., distribution fitting). In
general, the latter is an important preliminary step for any further analysis in sci-
ence or engineering. However, in the context of our methodology, it is extremely
crucial to obtain accurate probability distributions since any wrong characterization
of the data could lead to faulty verification results. Typically, distribution fitting is
a task that is done in collaboration with expert statisticians since it requires a good
statistical knowledge, familiarity with many commonly used distributions and the
ability to correctly interpret the results of graphs. As such, this second part of the
thesis presents an alternative approach which doesn’t require prior knowledge of
statistical methods nor previous assumptions on the available data. Instead, us-
ing Deep Learning, the best candidate distribution is extracted from the output of a
neural network that was previously trained on a large suitable database in order to
classify an array of observations into a matching distributional model.

This part of the thesis is organized as follows. Chapter 4 presents an overview of
the concept of distribution fitting and examines the traditional and associated tools
that expert statisticians rely on to fulfill this task. Next, chapter 5 introduces our
suggested method for distributional modeling which is based on the use of trained
neural networks to predict the best fit distribution from datasets, without the need
for a background in statistics, prior considerations of the process or phenomenon
under study nor familiarity with several distributions. Finally, chapter 6 concludes
this thesis with a tool, called DeepFit, that we developed, solely, for this purpose

60 Chapter 4. Statistical inference

and highlights its usefulness and benefits. In this final chapter, we also explain how
DeepFit can be incorporated into the statistical model checking analysis or used as a
standalone tool for any data analysis in science and engineering.

In this chapter we start with describing the concept of distribution fitting. Next,
we present the traditional workflow that has been used for many years by statisti-
cians and examine its strengths and weaknesses. Finally, we propose a complemen-
tary solution that can be used hand in hand with the traditional approach to offload
some of its pitfalls.

4.1 Distribution fitting

Probability distributions [197, 133] are a fundamental concept in statistics. They play
an important role in science and engineering due to the multitude of applications
that they can serve, some of which include:

1. Generating random numbers that follow a specific distribution in certain sim-
ulation studies, in order to learn how a stochastic system would react.

2. Modeling univariate data with a specific probability distribution.

The first application is rather simple as the analyst already knows which distri-
butional model to use to generate random numbers. Given that each model is typi-
cally defined in terms of a probability density function (pdf), that is, a mathematical
expression representing the probability that a measured variate has the value x. The
analyst can simply use one of these well known pdf to create a data set that follows
a specific model. Figure 4.1 shows a probability density plot for the normal distribu-
tion in its standard form (i.e., the mean is equal to zero and the standard deviation
is equal to one). The pdf function is:

f (x) =
1√
2π

e−x2/2

FIGURE 4.1: Normal probability distribution

Figure 4.2 shows a plot of the extreme value type I (also known as the Gumbel
distribution). Note that the gumbel distribution has two forms:

4.1. Distribution fitting 61

FIGURE 4.2: Gumbel distribution: types I and II

(a) Gumbel min: the general form of the extreme value type I probability density
function is:

f (x) =
e

x−µ
β e−e

x−µ
β

β

(b) Gumbel max: the general form of the extreme value type I probability density
function is:

f (x) =
e
−(x−µ)

β e−e
−(x−µ)

β

β

Where µ is the location parameter and β is the scale parameter.
The second application is another common use case of probability distributions.

Modeling a set of empirical observations obtained from repeatedly measuring a vari-
able of a system or phenomenon by a well known probability distribution is referred
to as distributional modeling or distribution fitting. Distribution fitting is a powerful
statistical technique that can be used in several contexts. Appropriate distributional
models are used to more accurately assess uncertainty of the measured variable and,
in particular, to assess the uncertainty over the full range of the data. They can also
be used to interpret the random fluctuations in the measurements as well as possi-
bly predict future frequency values of the measured variable to fall under a certain
interval.

Distributional modeling consists of running several statistical tests and typically
depends on certain assumptions for the underlying distribution. Many tests are
based on the assumption of normality, that is the underlying model is the normal
probability distribution (Figure 4.1) which has a bell shape like curve and has sym-
metric tails. However, this is not always true as the collected data may not be nor-
mally distributed.

Although a poorly chosen distributional model may suffice for measuring and
assessing the uncertainty of averages, this will not be the case for data that show

62 Chapter 4. Statistical inference

signs of asymmetry and/or extended tails. In many applications (e.g., reliability),
accurate assessment of the tail behavior is more critical than the average. (see Fig-
ure 4.2 for an example of a pdf with a tail). Obtaining an appropriate distributional
model can be an exhaustive process that takes time, patience and requires previous
knowledge of statistics and is, therefore, a difficult task for some analysts.

In the next section we explore a non extensive list of tools that statisticians have
been using for years to map data to an appropriate distributional model.

4.2 Traditional methodology

Statisticians rely on several graphical and quantitative methods to fit data to specific
distributions. Figure 4.3 presents the traditional approach used by statisticians to
obtain an appropriate distributional model of a uni-variate dataset. This approach
consists of four steps:

1. Data screening;

2. Exploratory analysis;

3. Parameter estimation;

4. Evaluation.

In the next subsections, we will examine these steps in detail.

FIGURE 4.3: Traditional approach of conducting distribution fitting

4.2.1 Data screening

This initial step consists of assessing whether the data are in fact independent with
each other, i.e. the collected dataset is from a random process. This can be done
either via standard statistical tests or via graphical tools.

Numerical techniques:

There are many standard statistical tests to assesses data randomness or auto-correlation.
Such tests include the runs test and Ljung Box:

4.2. Traditional methodology 63

• Ljung Box is based on the auto-correlation plot but assess the overall random-
ness of a time series Y (i.e. data points collected over a specific time horizon)
over several lags using the following mathematical formula:
Let H0 be the null hypothesis that data comes from a random process
let Ha be the hypothesis that data doesn’t come from a random proces.

Given a time series Y of length n, the test statistic is defined as:

Q(m) = n(n + 2)
m

∑
k=1

r2
k

n − k

where m is the number of lags considered and rk is the auto-correlation esti-
mate at lag k. rk is computed as follows:

rk =
∑

n−k
i=1 (Yi − Ȳ)(Y(i + k)− Ȳ)

∑
n
i=1(Yi − Ȳ)2

This test rejects the null hypothesis (H0) when:

Q(m) > X2
1−α,h

where X2
1−α,h is the chi-square distribution table value with h degrees of free-

dom and significance level α (see [9, 76] for more details).

• The runs Test is another statistical test that is used to search for data auto-
correlation. A runs test is defined as a sequence of symbols (e.g., +/−). For ex-
ample, tossing a coin 20 times could produce the following sequence of heads
(+) and tails (-):

++−−+−++++−++−−−−−++

A run is basically a series of consequent similar symbols and its length is the
count of symbols. In a random data set, the probability that the (k + 1)th sym-
bol is larger or smaller than the kth symbol follows a binomial distribution,
which forms the basis of the runs test. Let:

H0: The sequence was produced in a random manner

H1: The sequence was not produced in a random manner

The test statistic is calculated using the following formula:

Z =
R − R̄

sr

where R is the observed number of runs, R̄, is the expected number of runs,
and sr is the standard deviation of the number of runs. The values of R̄ and sr

are computed as follows:

R̄ =
2n1n2

n1 + n2
+ 1

64 Chapter 4. Statistical inference

s2
r =

2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)

n1 and n2 are the total numbers of positive and negative values in the series.
Given a significance level α, the H0 hypothesis is rejected if:

|Z| > Z1− α
2

Note that for large samples, Z1− α
2
= 1.96 and for smaller samples, there are

tables to determine critical values based on n1 and n2 (See [4] for more infor-
mation).

Graphical techniques

Data independence can also be assessed graphically using plots such as the lag plot
and the auto-correlation:

• The Lag plot, for example, can show if the dataset exhibits any identifiable
structure or patterns and can generally provide answers to the following ques-
tions:

1. Is the data random?

2. Is there serial correlation in the data?

3. What is a suitable model for the data?

4. Are there outliers in the data?

FIGURE 4.4: Lag plot indicating a strong dependency in the data

4.2. Traditional methodology 65

FIGURE 4.5: Lag plot indicating independence in the data

For a given dataset Y = Y1, Y2, ..., Yn, the lag plot is obtained by plotting Yi − 1
for all i in the x-axis against Yi for all i on the y-axis. Figures 4.4 and 4.5 show
two Lag plot examples obtained from two different datasets. The first plot
exhibits a linear pattern which means that the data is strongly non-random and
a strong dependency is present. The second plot, shows no visible patterns or
structures which indicates that the dataset comes from a random process.

• The auto-correlation plot is another great tool for checking randomness in a
time series. This plot is obtained by computing the auto-correlation function
for the data values at different time intervals. Its x-axis represents the time
progress and the y-axis represents the values of the auto-correlation function.
The graph itself shows vertical lines (“spikes”) corresponding to each lag. The
height of each spike shows the value of the auto-correlation function for the
lag. If at any interval separation an auto-correlation value is found to be sig-
nificantly greater than zero (i.e., the lag is very high), then surely the dataset
is non random. However, the same can not be said on the opposite statement.
That is, if the dataset is uncorrelated (i.e. lag is small), it doesn’t necessarily
mean that it’s completely random as the auto-correlation function is just one
of many measures for checking randomness and the non-randomness feature
can still be exhibited via other techniques.

Consider the examples in Figures 4.6 and 4.7. The plot shows that most of
the spikes are not statistically significant which insinuates that the measured
variable is not highly correlated and might potentially be random (further tests
are still required). Note that the first spike is significantly higher than the rest.
This is completely normal as it is always set to 1 by definition. The remaining
lags are all near zero. In addition, no significant patterns are apparent. From
the plot in Figure 4.7, however, we conclude that the data is sourced from an
auto-regression model that shows strong positive auto-correlation.

66 Chapter 4. Statistical inference

FIGURE 4.6: No strong correlation is noticed

FIGURE 4.7: Strong correlation is noticed

4.2.2 Exploratory analysis

This step consists of graphically summarizing the distribution of a univariate dataset.
That is, identifying potential distributional models that fit the data using well known
plots. Typically, a histogram [96] or a kernel density plot [104] is used to help iden-
tify the basic shape of the underlying distribution as well as certain properties such
as the skewness and the presence of multiple modes in the data. Generally, these
two plots provide answers to the following questions:

1. What kind of population distribution does the data come from?

2. Where is the data located?

4.2. Traditional methodology 67

3. How spread out is the data?

4. Are the data symmetric or skewed?

5. Are there outliers in the data?

• Histograms: are a graphical tool for displaying the distribution of a variable.
The response variable is divided into equally sized intervals referred to as bins.
The number of occurrences of the response variable is calculated for each bin.
There are at least three basic ways of displaying the y-axis which produces
three types of histograms:

-10 -5 0 5 10

0

50

100

150

200

250

300

Counts histogram for the exponential distribution

-10 -5 0 5 10

0

100

200

300

400

500

600

700

800

900

1000

Cumulative histogram for the exponential distribution

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Relative histogram for the exponential distribution

FIGURE 4.8: Counts histogram

1. The counts histogram in which the y-axis simply indicates a count of ob-
servations in each bin (Figure 4.8);

2. The cumulative histogram that is a variation of the count histogram in
which the vertical axis gives the observation counts for that bin plus all
previous bins (Figure 4.8);

3. The relative histogram that is obtained by normalizing the counts per bin
usually by dividing the count of each bin by the total number of obser-
vations to generate the relative proportion of observations. In this rel-
ative histogram, the sum of the y-coordinates should be one or 100 if a

68 Chapter 4. Statistical inference

percentage scale is used (Figure 4.8). This is actually an estimator of the
underlying probability distribution.

• Kernel density plot (kdp) also referred to as the prazen window is obtained by
plotting the kernel density estimator fn(n), of a set of n points {X1, X2, ...Xn}:

fn(x) =
∑

n
i=1 K(x − Xi)

nh

where K is the kernel function and h is the smoothing parameter or window
width. Figure 4.9 shows a kdp of a dataset with the uniform distribution as the
underlying model.

FIGURE 4.9: Kernel density plot for the Uniform distribution

Using the knowledge provided in this section, we attempt to apply it to a dataset.
Figures 4.10 and 4.11 present (respectively) a counts histogram and a kernel density
plot of 500 normally distributed observation points. Without knowing the origin of
the dataset and based solely on the plots, we learn that the set has no extreme points
and that it’s uni-modal (i.e., has a single peak). Moreover, the shapes of these two
plots are symmetric with a bell-like curve. All these observations clearly indicate
that the dataset follows a normal distribution.

However, identifying good potential models from plots requires human interpre-
tation which maybe subjective and change from one person to another. Furthermore,
many probability distributions are not a single distribution but are in fact a family
of distributions. In these families a shape parameter is responsible for changing the
shape of the distribution. Therefore, exploratory analysis typically requires some
degree of statistical knowledge, experience and familiarity with several commonly
used distributions.

4.2. Traditional methodology 69

FIGURE 4.10: Kernel density plot

FIGURE 4.11: Counts histogram

4.2.3 Parameter estimation

After selecting the best candidate distribution that fits the data from the previous
step, the next step focuses on estimating the parameters of the chosen distribution
(i.e., location, scale and shape).

Probability distributions are characterized by three types of parameters: a loca-
tion, a scale and one or more shape parameters. The standard form of the distri-
bution is the case where the location parameter is zero and the scale parameter is
one. Given a graph of the standard form of the probability density function, the ef-
fect of a non-zero location parameter is to shift the graph left for negative location

70 Chapter 4. Statistical inference

values or right for positive location values, on the horizontal axis. The effect of a
scale parameter is to either stretch the graph on the horizontal axis, for scale param-
eters greater than one, or to compress the graph along the horizontal axis, for scale
parameters less than one. Figures 4.13 and 4.14 show examples of this for the nor-
mal distribution whereas Figure 4.12 shows the impact of the shape parameter γ for
the weibull distribution. The relationship between the probability density function’s
general form and its standard form (i.e., location and scale not equal to zero and one)
is:

f (x; a, b) =
f ((x−a)

b ; 0, 1)

b

where a and b are the location and scale parameters, respectively.
Any parameter that is not a location or scale (or a parameter that is a function of

the location and scale) is a shape parameter. The shape factor allows a distribution
to take a variety of forms, thus, creating a distribution family. By shape, we mean
properties such as skewness and kurtosis (peakedness). The location and scale pa-
rameters have no effect on these properties. The weibull distribution is an example
of a distribution that has a shape parameter (γ). Figure 4.12 plots the weibull pdf for
different γ values: 1, 2, 3, 0.5.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

X

PLOT WEIPDF(X,0.5) FOR X = 0.05 0.01 2

P
R

O
B

A
B

IL
IT

Y

GAMMA = 1

GAMMA = 2

GAMMA = 5

GAMMA = 0.5

FIGURE 4.12: Weibull pdf for various values of the shape parameter
(γ)

4.2. Traditional methodology 71

-4 -3 -2 -1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

Normal distribution - standard form

-6 -5 -4 -3 -2 -1 0 1 2

0

0.1

0.2

0.3

0.4

Normal distribution (location = 2 scale = 1)

-2 -1 0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

Normal distribution (location = -2 scale = 1)

FIGURE 4.13: Impact of the location parameter

Estimating the parameters of a probability distributions (i.e. identifying the lo-
cation, scale, shape values) is generally done by solving an optimization problem
in which the unknown parameters of the distribution are the variables of the ob-
jective function that’s being minimized or maximized and the data points are the
coefficient of this function. There are various methods, both numerical and graphi-
cal, for estimating the parameters of a probability distribution. However, only a few
methods are widely used because they result in parameter estimators with good sta-
tistical properties. The major ones are the Maximum likelihood and the least squares
method. In this section, we illustrate four methods for the parameter estimation:

72 Chapter 4. Statistical inference

-4 -3 -2 -1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

Normal distribution - standard form

-2 -1 0 1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normal distribution (location = 0 scale = 2)

-10 -5 0 5 10

0

0.05

0.1

0.15

0.2

Normal distribution (location = 0 scale = 0.5)

FIGURE 4.14: Impact of the scale parameter

1. The maximum likelihood estimation (MLE) consists of maximizing the like-
lihood function defined by:

L(θ) =
n

∏
i=1

f (xi, θ) (4.1)

where f is the probability density function for the selected distribution, x1, x2, . . . , xn
are the observation points and θ = θ1, θ2, . . . , θk are the parameters to estimate.

Let’s consider the exponential distribution as an example. The pdf is defined
by:

f (x) = λe−λx∀x ≥ 0 (4.2)

The likelihood function to maximize is:

L(θ) =
n

∏
i=1

λe−λx = λne−λ ∑
n
i=1 xi (4.3)

In this case, solving this function means finding the value of the scale parame-
ter b = 1/λ. Note that the location value is set to 0 in this pdf.

MLE is a very consistent and efficient approach to the parameter estimation
problem, particularly when the model is correctly assumed. Its estimates can
be developed for a large variety of estimation situations and its algorithm is

4.2. Traditional methodology 73

already implemented in several statistical software packages and for many of
the commonly used distributions.

MLE produces unbiased estimates in larger data samples. However, it is usu-
ally sensitive to outliers and is often biased for smaller samples. In addition
to that, MLE’s numerical estimation is usually non-trivial and requires heavy
mathematical solvers to solve the likelihood function for certain distribution
models. Fortunately, this is easily mitigated as it is currently supported by
many general purpose statistical software programs.

2. The Probability Plot Correlation Coefficient Plot (PPCC): This method is a
graphical technique that is used to identify the shape parameter when the un-
derlying distribution of the data is suspected to be a distribution family such
as weibull, lognormal, etc. As stated before, distribution families are defined
by three parameters: location, scale and one or more shape parameters. Once
the PPCC plot identifies a good value for the shape parameter, the probability
plot is then generated to find the remaining parameters (location an scale). The
probability plot can also assess the accuracy of the fitted parameters.

3. Method of moments (MOM): This method had the advantage of simplicity as
its formula tends to be straightforward. However, it is not currently supported
on most general purpose statistical software. Moreover, this method is not
known to have the desirable optimal properties of the two major estimators:
maximum likelihood and least squares.

MLE is typically the estimation choice method for statisticians, due to having op-
timal theoretical properties. However, the MLE estimates approach their optimality
properties as the sample size gets larger. Note that, the MOM estimates tend to be
simpler than MLE estimates, but typically their statistical properties are not as desir-
able as the MLE estimates. MOM and PPCC are relatively generic methods that can
be applied in many different distributions. For some distributions where the MLE
does not work well, there are specialized methods that are specific to that distribu-
tion. There are variations of the MOM (specifically, probability weighted moments
and L-moments) that try to improve on the statistical properties of MOM estimates.

4.2.4 Evaluation

After identifying the best fit model for the data and estimating its parameters (see
previous two sections), statisticians typically may apply a handful of statistical good-
ness of fit tests to determine if the selected distributional model is in fact an appro-
priate distributional model for the data. Generally there are three basic categories of
goodness of fit tests [10, 137]:

1. The first class is based on comparing the empirical cumulative distribution
function (CDF) [66] (i.e., based on the data) to the theoretical CDF function.
This includes, but is not limited to, the Kolmogorov-Smirnov (KS) test, the
Anderson-Darling (AD) test and the Cramer Von Mises test. The KS test is
the original test of this class. It is based on the maximum distance between
the empirical and theoretical CDF. The Anderson-Darling and related variants
weight differences in the tails more than differences in the center of the distri-
bution. Another popular method is the chi-square goodness of fit. However,
this is most useful when dealing with pre-binned data. Scientists and engi-
neers are often more familiar with the chi-square. Note that AD and KS are
more powerful for unbinned data.

74 Chapter 4. Statistical inference

2. The second class is based on comparing the differences between the empirical
percent point function (PPF) [5] to the theoretical percent point function. This
category includes the probability plot correlation coefficient test (PPCC) [62].

3. The third class is based on the likelihood function. As the name "maximum
likelihood" implies, this module searches for the distribution that provides
the maximum value of the likelihood function. Although the rankings can be
based on just using the likelihood value, it is more common to use "informa-
tion critieria" [77]. The original statistic of this kind was Akaike’s Information
Criterion (AIC), whereas the Bayesian Information Criterion (BIC) seems to be
more commonly used. In any case, these various information critieria modify
the likelihood score based on the sample size and the number of parameters
being fit. The basic idea is to provide a penalty for including more parame-
ters (i.e., bias the ranking to simpler models where simpler in this case means
fewer parameters).

4.3 Weaknesses of the traditional methodology

Distributional modeling can be used in several contexts. Statistical tests typically
depend on certain assumptions regarding the underlying distribution (e.g., many
tests are based on the assumption of normality). Appropriate distributional models
are also used to more accurately assess uncertainty and, in particular, to assess the
uncertainty over the full range of the data. Although a poorly chosen distributional
model may suffice for measuring and assessing the uncertainty of averages, this will
not be the case for tails of the distribution. In many applications (e.g., reliability),
accurate assessment of the tail behavior is more critical than the average.

Most of the existing software used to determine the best fit model include plot-
ting graphs and interpreting them. This is often subjective and depends on the ana-
lyst’s perspective and statistical knowledge which may result in unfit model choices
or mis-interpretation of some data points as outliers. Moreover, for datasets with
a large number of observations, assessing the goodness of fit presents an issue. As
an analogy, when computing the confidence interval for the difference between two
means, this interval becomes increasingly small as the sample size gets large. That
is, very small differences (i.e., not significant in a practical sense), will test as statisti-
cally significant. Similarly, for small samples, practically significant differences may
not be statistically significant. Furthermore, for the Anderson-Darling test, a similar
problem can occur. That is, for very large sample sizes, a distribution that is in fact
providing a reasonable fit may well reject the distribution. Generally, statisticians
address this by estimating selected percentiles (based on 5,000 to 10,000 points) from
the data and apply probability plots and Anderson Darling goodness of fit on these
percentiles. Unfortunately, this is a knowledge that not every analyst is familiar with
as it needed experience and practise to learn it.

4.4 Automated techniques

Obtaining an appropriate distributional model can be an exhaustive process that
takes time, patience and requires previous knowledge of statistics and is, therefore,
a difficult task for some analysts. Therefore, there are several attempts to automate
the distributional modeling process by creating software and packages that let the
user know the “best” candidate distribution that matches their data. Generally, most

4.5. Conclusion 75

of them use traditional statistical techniques to pre-process data and run some good-
ness of fit tests in order to rank and identify a good representation of the data. Sim-
ilar tools and packages include: Dataplot [49], R code [171], fitdistrplus [52], ex-
pertFit[125] and easy-fit [177], etc. All of them have the same goal which is to help
analysts regardless of their knowledge of statistics, pin down the best candidate dis-
tribution matching their data and avoid using the wrong distribution while saving
them time. Nevertheless, a good statistical background is still required to interpret
the numerical and graphical outputs in these tools.

4.5 Conclusion

Probability distribution fitting of an unknown stochastic process is an important
preliminary step for any further analysis in science or engineering. However, as
seen in this chapter, it requires some background in statistics, prior considerations of
the process or phenomenon under study and familiarity with several distributions.
Although, there are several statistical tools that try to automate this process, they
still require the users to pre-screen and analyze their data via some graphical tools
for example. However, this often requires human interpretation which is subjective
and changes depending on the statistical experience of the analyst.

In this chapter, we learned that identifying the best model for a dataset is actu-
ally the most sensitive and essential step in distributional modeling (i.e., exploratory
analysis step in Figure 4.3). Once a good model is selected, the following two steps,
i.e., probability estimation and evaluation, become easy. However, we also learned
that the exploratory analysis step is subject to errors and misinterpretations because
it requires human interaction for analyzing graphs and the results of numerical tests.
This led us to investigate the use of deep learning as an alternative solution to auto-
mate this step.

77

Chapter 5

Neural Networks for Classifying
Probability Distributions

In the previous chapters we stated the importance of distributional modeling in sev-
eral applications in both science and engineering. It is also an essential step in our
methodology introduced in chapter 2. However, we also examined a non exhaustive
list of tools and techniques typically used by expert statisticians to conduct distri-
bution fitting and showed the amount of work and statistical knowledge this task
requires, to accurately asses and characterize data (step 1 and 2 from Figure 4.3).

This section presents an alternative approach of conducting distribution fitting
which doesn’t require prior knowledge of statistical methods nor previous assump-
tion on the available data. Instead, using Deep Learning (DL), the best candidate dis-
tribution is extracted from the output of neural networks that have been previously
trained on a large suitable database in order to classify an array of observations into
a matching distributional model. We find that our trained neural networks can per-
form this task comparably to using well known statistical estimators and goodness-
of-fit tests such as the maximum likelihood estimation with an Anderson-Darling
goodness of fit test. We published the results of this study in [109].

5.1 Introduction

This research focuses on the use of deep learning (DL) to assist in identifying the
best distributional model among a fixed set of candidate distributions (step 2 from
Figure 4.3) in order to help analysts who are not equipped with sufficient statisti-
cal background easily map a set of empirical observations obtained from an experi-
ment to an appropriate distributional model. Deep learning is a sub-field of machine
learning that applies neural network architectures to learn features of the object to
be classified. It has become more popular in recent years due to its high accuracy,
its capacity to deal with massive data and larger neural networks as well as its ca-
pability to deduce data features automatically. Although DL neural networks take a
longer duration to train and usually require high performance servers with graphic
processing units (GPU) which are expensive, it is still considered an efficient and
effective approach for object classification [43].

The approach proposed in this chapter exploits the strengths of deep learning for
classification of distributional models. As an initial prototype, we restrict ourselves
to the case of continuous measurements where the data is not binned, censored or
truncated. Moreover, we do not consider pathological distributions (e.g., Cauchy
distribution). In this chapter, we train a feed forward neural network to recognize
patterns in an input data set then predict the "best" candidate model from nine com-
monly used distributions that are widely encountered in science and engineering.

78 Chapter 5. Neural Networks for Classifying Probability Distributions

The distributions considered in this study are: uniform, normal, logistic, exponen-
tial, half normal, half logistic, gumbel max, gumbel min and double exponential. The
idea is to use deep learning as a replacement of the exploratory analysis step (step
2 according to Figure 4.3) that statisticians follow in order to identify the model that
best suits the data. Then once the neural networks have identified the "best" distribu-
tional model, the parameter estimation and the goodness of fit assessment still need
to be applied using traditional statistics. We demonstrate the validity of this study
by considering a limited list of distributions at the moment. However, the examined
distributions still cover the most encountered models. Moreover, this chapter and
our published results [109] are intended to serve as a proof of concept to show the
viability of our method. In the future, we plan to increase the number of distribu-
tions to cover families of distributions (i.e., with one or more shape parameters) and
other use cases.

Other researchers in the literature investigated the use of neural networks for
conducting parameter estimation of probability density functions which corresponds
to step 3 from Figure 4.3. Similar papers include [173], [130] and [147]. In another
group of related works, the authors focus on conditional density estimation using
artificial intelligence such as [115] and [203]. Additionally, [174] presented the best
practices for conditional density estimation for finance applications using neural net-
works. Finally, the authors in [41] used an ensemble of mixture density networks to
predict the probability density function of the surf height in order to know if it will
fall within a given ‘surfable’ range. However, there is limited research involving the
use of neural networks to tackle step 2 of Figure 4.3 and create a classifier for dis-
tribution models based on a set of independent empirical observations. In fact, this
task is the most important since once it is completed and the distribution model is
identified, it becomes extremely easy to estimate the parameters of the distribution
and formulate the probability density function (PDF).

In this chapter, we explain our suggested approach and evaluation metrics in
section 5.2. The results of our analysis are shown in section 5.3.2. We also discuss
the limitations of this work in section 5.4 and finally preview our ongoing and future
research in Section 5.5.

5.2 Approach

This section illustrates our empirical study that aims to identify the best candidate
distribution given an input dataset. We focus on nine uni-variate commonly used
distributions in order to provide a working proof of concept and demonstrate the
viability of the idea without covering all possible scoops (e.g., pathological distribu-
tion, mixture distribution,...). The goal of this research is not to completely replace
the traditional distribution fitting workflow but rather suggest an alternative to the
exploratory analysis step. As previously stated, exploratory analysis is a crucial step
in determining the best candidate distribution that characterizes the data, however,
it is also subject to the analyst’s own interpretation as it requires analyzing graph-
ical tools and running some numerical tests which typically need a good statistical
background and knowledge of several commonly used distributions.

We explain how we collected data for training and validation purposes of the
neural networks in subsection 5.2.1. Then, we describe the neural networks models
in subsection 5.2.2.

5.2. Approach 79

5.2.1 Collecting data for training

Prior to generating any data, a few questions were brought up in the investigation
phase:

(i) Which distributions to consider?

(ii) Since there are endless values for the location, scale and shape factors, how to
select the right values for training?

(iii) Since data comes in different sizes, what sample sizes are most appropriate?

(iv) Should a pre-processing or normalization method be applied to the training
data prior to passing it to the neural networks?

For the first question, we restrict ourselves to the case of continuous measure-
ments where the data is not binned, censored nor truncated. Moreover, we do not
consider pathological distribution (e.g., Cauchy distribution). In this chapter, we
train a feedforward neural network to recognize nine probability distributions: uni-
form, normal, logistic, exponential, half normal, half logistic, gumbel max, gumbel
min and double exponential. These are the typical options that statisticians initially
consider when screening the data as they are the most common.

Next, as previously explained in chapter 4, probability distributions are char-
acterized by three types of parameters: a location, a scale and one or more shape
parameters. The location parameter shifts the distribution left or right on the x-
axis, while the scale parameter compresses or stretches the distribution on the y-axis
(chapter 4 shows examples of this for the normal distribution). The relationship
between the probability density function of a general form of the distribution (i.e.,
location and scale not equal to zero and one) and its standard form (i.e., location
equals to zero scale equals to one) is:

f (x; a, b) =
f ((x−a)

b ; 0, 1)

b

where a and b are the location and scale parameters,
Any parameter that is not either a location or scale is considered a shape factor.

Shape parameters allow a distribution to take a variety of different shapes. By shape,
we mean properties such as the skewness and kurtosis (i.e., peakedness). We’ve al-
ready established that families of distributions are out of the scope of this work,
therefore we didn’t have to concern ourselves with the shape factor. Nevertheless,
data doesn’t always come in the standard form of the distribution (i.e. location = 0
and scale = 1) which means that there are endless possibilities for the location and
scale values per distribution. Thus, the choice for the location and scale must be jus-
tified. We explained in chapter 4 that the shape of the distribution does not depend
on the value of the location and scale parameters as they have no effect on its actual
silhouette. The location and scale factors don’t change the properties of any distri-
bution (i.e., skewness, peakness, the tails, etc). Thus, we utilized the standard form
of the distributions when collecting data for training the neural networks (answer to
question (ii)).

Even though, probability distributions are typically defined in terms of the prob-
ability density function (pdf), there are a number of other probability functions used
in applications (for more details please see [5]). Examples include:

1. Probability density functions;

80 Chapter 5. Neural Networks for Classifying Probability Distributions

2. Cumulative distribution function;

3. Percent Point Function;

4. Hazard Function;

5. Cumulative Hazard Function;

6. Survival Function;

7. Inverse Survival Function.

In this study, we used the kernel density plot (kdp) [104] as input to the neural
networks classifiers. The kdp is a graphical estimate of the underlying probability
density function and is considered a typical technique by statisticians to conduct
exploratory analysis of datasets in order to identify the shape of the underlying dis-
tribution. We generated kdp for each set of random numbers with the Dataplot
software [63] and used the Silverman recommendation for the smoothing parameter
h [184]. The kernel density estimate, fn(x), of a set of n points from a density f is
defined as:

fn(x) =
∑

n
j=1 K{ (x−Xj)

h }
nh

where K is the kernel function and h is the smoothing parameter or window
width. The Silverman algorithm uses a Gaussian kernel function. This down weights
points smoothly as the distance from x increases. We used the Silverman’s default
recommendation for the h parameter:

0.9 min(s, IQ/1.34)n−1/5

with s, IQ, and n denoting the sample standard deviation, the sample interquar-
tile range and the sample size, respectively.

-1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

100 UNIFORM RANDOM NUMBERS

-1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

500 UNIFORM RANDOM NUMBERS

-1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

1,000 UNIFORM RANDOM NUMBERS

-1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

5,000 UNIFORM RANDOM NUMBERS

FIGURE 5.1: Uniform kdp based on the sample size

5.2. Approach 81

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

100 DOUBLE EXPONENTIAL RANDOM NUMBERS

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

500 DOUBLE EXPONENTIAL RANDOM NUMBERS

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

1,000 DOUBLE EXPONENTIAL RANDOM NUMBERS

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

5,000 DOUBLE EXPONENTIAL RANDOM NUMBERS

FIGURE 5.2: Double exponential kdp based on the sample size

-10 -5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

100 LOGISTIC RANDOM NUMBERS

-10 -5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

500 LOGISTIC RANDOM NUMBERS

-10 -5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

1,000 LOGISTIC RANDOM NUMBERS

-10 -5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

5,000 LOGISTIC RANDOM NUMBERS

FIGURE 5.3: Logistic kdp based on the sample size

The choices of the sample size n to use per dataset was another concern in the
beginning of this study. For this, we tested several sample sizes ranging from small
(n = 30) to large (n = 10,000) as we tried to determine which ones were suitable.
Eventually, we selected the following sizes 30, 50, 100, 250, 500, 750, 1,000 and 10,000
(answer to question (iii)). This choice may seem arbitrary, however it is based on
the fact that the smoothness of the kernel density plot increases with the increase
of the number of available data points. Thus, the chances that the neural networks
accurately guesses the right distributional model would be higher. Figures 5.1, 5.2

82 Chapter 5. Neural Networks for Classifying Probability Distributions

and 5.3 show the impact of the sample size on the kernel density plot of the uniform,
the double exponential and logistic distributions, respectively.

For each of the nine distributions considered in this study, 10,000 datasets were
generated in the standard forms and at different sizes (30, 50, 100, 250, 500, 750, 1,000
and 10,000). The random numbers were generated with the Dataplot software [63]
and a congruential-Fibonnaci [100] generator that was used with a different seed
for each distribution/sample size configuration. For each set of the (distribution,
sample size) pair, the kernel density plot was sampled to generate 256 points. These
256 points constitute the inputs for the neural networks as the y-axis coordinates of
the kernel density plot with an implicit x-axis coordinates X = 1, 2, ..., 256.

5.2.2 Training the neural networks

An initial attempt at producing a single solid neural network model to classify an
arbitrary number of data points (n) to a matching probability density function (pdf)
has not yielded promising results especially when the sample size n is small. The
intuition behind the misclassification could be interpreted as follows: our approach
relies on building a kernel density estimator (kdp) from a set of independent empir-
ical observations. This kdp tends to be noisy for small n and becomes increasingly
smooth as n becomes larger. Thus, models trained on the larger sample sizes per-
form poorly on the smaller sample sizes and models trained on smaller sample sizes
perform poorly for larger sample sizes.

To improve the performance, we consider 20+ models. The data collected is gen-
erated using eight sample sizes: n=30, n=50, n=100, n=250, n=500, n=750, n=1,000
and n=10,000 and each model is trained on a specific sample size range. The idea
is to evaluate the models individually and collectively to deduce which ones work
best for small, moderate and large sample sizes. Examples of the considered models
include model 1: n ∈ [30, 100], model 2: n ∈ [100, 750], model 3: n ∈ [750, 10000],
etc. All the models have the same input and output layers. However, their hidden
layers differ in size and width. The input layer has 256 units representing the Y-
Axis coordinates for the kernel density plot whereas the output layer has 9 points
which refers to the one hot encoding of the nine distributional models considered
in this study. For each interval, we started with a very simple FeedForward neural
network (FNN) that overfits. We then proceeded to handle the overfiting by tuning
the FNN parameters to achieve the lowest loss and highest accuracy. We found that
the following work best:

1. 20% of the training data was allocated for the validation;

2. All models use Softmax as the activation function for the output layer and Relu
for the hidden layers;

3. The choice of the loss function was Categorical cross-entropy (CAT) for larger
intervals and Mean squared error (MSE) for smaller intervals;

4. The ADAM optimizer was used when the loss function was set to CAT and
RMSprop for MSE;

5. The learning rate is set to 10−6 or 10−5 in most cases;

6. The batch size is set to 200 for most models;

7. Each model was run for an average of 500 epochs;

5.3. Evaluation 83

8. The weights were initialized using the ’He uniform’ distribution;

9. The bias was enabled in the hidden layers and disabled in the output layer;

10. The depth of each neural networks model was 40, while the width was either
512 or 1024 nodes per layer;

11. Early stopping was deployed;

12. Regularization and dropout were used.

The models were all implemented using Python and Keras with Tensorflow as a
backend and the experiment was run on our testbed with 1 GPU and 40 CPU cores.
Figures 5.4 to 5.7 show the accuracy and loss plots of the two best performing neural
network models.

FIGURE 5.4: Accuracy
plot for the model
trained on smaller

sizes

FIGURE 5.5: Loss plot
for the model trained

on smaller sizes

FIGURE 5.6: Accuracy
plot for the model
trained on larger sizes

FIGURE 5.7: Loss plot
for the model trained

on larger sizes

5.3 Evaluation

After the training and validation steps of the neural networks were complete, ad-
ditional datasets were used to test the best performing models. Furthermore, to

84 Chapter 5. Neural Networks for Classifying Probability Distributions

determining the viability and effectiveness of our approach, the models’ accuracy
results were also compared against the results of a conventional statistical approach
as follows:

• The data is fit to each distribution using the maximum likelihood (MLE). The
one exception is that the half-logistic distribution is fit using the method of
moments.

• After estimating the parameters with the maximum likelihood, the distribu-
tions are ranked based on the Anderson-Darling (AD) goodness of fit statistic
[188]. The AD test is a refinement of the Kolmogorov-Smirnov (KS) statistic
that puts more weight in the tails of the distribution. The AD test is generally
considered to have more power than the KS test (chapter 4).

Given an ordered set of data points Yi of size N and a cumulative distribution
function F, the Anderson-Darling test statistic is defined as:

A2 = −N −
N

∑
i=1

(2i − 1)

N
[ln F(Yi) + ln (1 − F(YN+1−i))]

There are a variety of estimation methods and goodness of fit statistics that could
be used for this approach. However, the combination of MLE estimation and rank-
ing by the AD goodness of fit test provides a reasonable benchmark for assessing the
results of the neural networks. Moreover, it is important to mention that both ap-
proaches (neural networks and MLE-AD) were compared based on the same data.

5.3.1 Preparing the testing data

Typically, real world data might have location and scale values that are not in the
standard form (i.e., location = 0 and scale = 1). For this reason, we generated ran-
dom numbers for each distribution with different location and scale values. Specif-
ically, datasets were generated with sample sizes of 50, 100, 250, 500, 750, 1,000 and
10,000. For each sample size, datasets were generated with location values: 20, 60
and 100 and scale values: 10, 30 and 50. This adds up to a total of nine different
combinations of location and scale values per (distribution, sample size) pair. Then,
we generated 1,000 datasets for each distribution/sample size/location/scale com-
bination. Additionally, as with the training data, a kernel density plot was generated
for each dataset with the same algorithm used for creating the kernel density plots
in the training sets.

One question of interest is whether an appropriate normalization method can
address the issues introduced by the location and scale parameters. We recall that
the training and the validation sets were generated for the standard forms of the
distributions (location parameter = 0, scale parameter = 1) while the testing data
was generated with non-standard values of the location and scale parameters. The
y-coordinates (height) of the kernel density plots are used as inputs to the neural
networks, which gives an implicit x-coordinate scale of 1 to 256. Since the location
parameter mainly shifts the kdp right or left, using an implicit x-axis scale of 1 to 256
for both the training and the testing data should minimize the effects of the location
parameter. However, the scale parameter stretches the kdp across the y-axis which
ultimately changes the height of the kernel density plot. Therefore, there is a need to
transform the kernel density heights so that the testing data can be more effectively
compared to the training data.

5.3. Evaluation 85

To determine which normalization technique is best suited for this case, we ex-
perimented with several transformation algorithms on both the training, the valida-
tion and the testing data sets. But, only two yielded promising results:

1. The U-score, also referred to as the Min-Max normalization. The u-score al-
gorithm transforms the kernel density heights to a (0,1) scale according to the
following mathematical formulation:

u_score =
x − min(x)

max(x))− min(x)

where x is the original value, u_score is the normalized value, min(x) and
max(x) are respectively the minimum and maximum values of each dataset
x.

FIGURE 5.8: U-score normalization

86 Chapter 5. Neural Networks for Classifying Probability Distributions

FIGURE 5.9: kernel density normalization

This normalization preserves the shape of the original distribution and does
not meaningfully change the silhouette of the kernel density plot nor does it
reduce the importance of outliers. Figure 5.8 shows the kernel density plot of
100 normal random numbers before and after applying this normalization.

2. The kernel density normalization transforms the kernel density heights to in-
tegrate to 1 on the 1 to 256 x-coordinate scale:

k_score =
x

∑
256
i=1 xi

where x is the original value and k_score is the normalized value.

Figure 5.9 shows the kernel density plot of 100 normal random numbers before
and after applying the kernel density normalization.

After careful considerations, we found that these two normalization techniques
are non-distorting of the shape of the kernel density plot and preserve the form of
the probability distribution regardless of the location and scale values.

5.3.2 Results

Our primary metric of success was the percentage of times that the correct distribu-
tion was accurately identified by a neural networks model. For the mis-classified
cases, we also identify which distributions were chosen instead of the correct ones.
The following factors are examined while analyzing the results:

5.3. Evaluation 87

Factor 1: There are two different normalization algorithms considered: the u-score and
the kernel density normalization (subsection 5.3.1);

Factor 2: There were eight different sample sizes used for the testing datasets. We grouped
these into three categories: "small", that is datasets with 30 or 50 or 100 obser-
vations; "moderate", that is datasets with 100, 250, 500 or 750 observations; and
"large", that is datasets with 750, 1,000 or 10,000 observations. Note that these
categories contain overlaps in order to create three intervals: small [30, 100],
moderate [100, 750] and large [750, 10000]. These intervals are useful because
real world data is not confined to these particular eight sizes;

Factor 3: This study considered nine distinct distributions. These distributions allow for
location and scale parameters, but none of them have shape parameters;

Factor 4: There were 20+ NN models considered;

Factor 5: There were nine combinations of location/scale parameters for each (distribu-
tion, sample size) pair.

88 Chapter 5. Neural Networks for Classifying Probability Distributions

Distribution Training
Method

Normalization
Method

uscore kernel ml-ad

Location Scale

20

30

40

50

60

70

80

90

100

M
ea

n
 P

er
ce

n
t

C
o

rr
ec

t
C

la
ss

if
ic

at
io

n

FIGURE 5.10: DEX mean plot for large sample sizes - all NN models

As a first step, we generated Design of Experiments (DEX) mean plots [61] as
shown in Figures 5.10 to 5.15. The DEX mean plot is a useful graphical tool for
showing the most important factors from an experiment. This plot typically answers
the following two questions:

1. Which factors are clearly important and which factors are clearly or borderline
not important?

5.3. Evaluation 89

2. What is the ranking list of the important factors?

In a DEX mean plot, the horizontal axis represents all the considered factors, whereas
the vertical axis indicates the mean of the response variable for each level of the
factors. The means for a single factor are connected by a straight line which is used to
measure their importance (i.e., the longer the vertical line the higher the importance).
Refer to [2] for more information on this type of plots.

We generated separate DEX plots for the large (Figure 5.10), moderate (Figure 5.11)
and small (Figure 5.12) sample sizes for all of the 20+ models investigated. For these
DEX mean plots, the y-axis represents the mean percent correct classification of the
distributions and the x-axis represents the five variables in question:

1. Probability distributions;1

2. The trained neural networks model (out of the 20+);

3. The normalization method (u-score, k-score);

4. The location parameter values;

5. The scale parameter values.

From these DEX plots, we notice that the response variables for both the location
and scale factors almost form horizontal lines which leads us to believe that they
have very little effect on the accuracy of the classification of the probability distri-
butions. However, we can’t successfully identify the best performing model from
these plots. Therefore, we selected the most effective NN models based on their test-
ing accuracy rates and plotted a subset DEX graphs for each sample size category
(Figures 5.13, 5.14 and 5.15). Some initial conclusions from these plots include:

1uniform, 2: normal, 3: logistic, 4: exponential, 5: double-exponential, 6: half-normal, 7: half-
logistic, 8: gumbel-min, 9: gumbel-max

90 Chapter 5. Neural Networks for Classifying Probability Distributions

Distribution Training
Method

Normalization
Method

uscore kernel ml-ad

Location Scale

20

30

40

50

60

70

80

90

100

M
ea

n
 P

er
ce

n
t

C
o

rr
ec

t
C

la
ss

if
ic

at
io

n

FIGURE 5.11: DEX mean plot for moderate sample sizes - all NN
models

5.3. Evaluation 91

Distribution Training
Method

Normalization
Method

uscore kernel ml-ad

Location Scale

20

30

40

50

60

70

80

90

M
ea

n
 P

er
ce

n
t

C
o

rr
ec

t
C

la
ss

if
ic

at
io

n

FIGURE 5.12: DEX mean plot for small sample sizes - all NN models

• When we look at the location/scale factors for the plots that only include the
best performing training models, we confirm that the effect is indeed negligi-
ble. For this reason, in subsequent analysis, the data for all nine location/scale
combinations are aggregated into a single value.

• The u-score and kernel density normalization methods have similar perfor-
mance.

92 Chapter 5. Neural Networks for Classifying Probability Distributions

• For each sample size category, there is significant variability in the perfor-
mance of the different training models. The best training models are differ-
ent for the three sample size categories, but for a given sample size category
there are several training models that have similar performances. According
to Figures 5.13, 5.14 and 5.15, we highlight the following best three models: 2:

1. For moderate and large sample sizes, we choose the training model ’100-
250-500-750-1,000-10,000’ ((N ∈ [100, 10,000]) and the kernel normaliza-
tion. Tables 5.1 and 5.2 show the confusion matrix for this model com-
pared against MLE-AD for the moderate and the large categories (rounded
to two decimal places) and Figures 5.6-5.7 indicate the accuracy and loss
plots for this neural networks model, respectively.

2. For a small sample size, we choose the training model ’30-50-100’ ((N ∈
[30, 100]) and the u-score normalization. Table 5.3 shows the confusion
matrix for this model compared against MLE-AD (rounded to two dec-
imal places) and Figures 5.4-5.5 indicate the accuracy and loss plots for
this neural networks model, respectively.

• There are performance differences between the distributions. Specifically, the
half-logistic and and the logistic have significantly poorer performance than
the other distributions. This is not surprising as these have similar shapes to
the half-normal and normal distributions, respectively.

• As expected, performance improves as the sample size increases. According
to the DEX mean plots, for the small category, the overall performance was
approximately 70%, for the moderate category the overall performance was
close to 85%, and for the large category the overall performance was about
98%. The latter means that with a large number of observations, our NN can
identify "the correct" distribution.

2uniform, 2: normal, 3: logistic, 4: exponential, 5: double-exponential, 6: half-normal, 7: half-
logistic, 8: gumbel-min, 9: gumbel-max

5.3. Evaluation 93

Distribution Training
Method

Normalization
Method

uscore kernel ml-ad

Location Scale

93

94

95

96

97

98

99

100

M
ea

n
 P

er
ce

n
t

C
o

rr
ec

t
C

la
ss

if
ic

at
io

n

Training Models

1000-10000

750-1000-10000

500-750-1000-10000

250-500-750-1000-10000

50-100-250-500-750-1000-10000

100-250-500-750-1000-10000

ML-AD

Distributions

Double Exponential

Exponential

Half-Logistic

Half-Normal

Logistic

Gumbel (Max)

Gumbel (Min)

Normal

Uniform

FIGURE 5.13: DEX mean plot for large sample sizes - best performing
NN models

94 Chapter 5. Neural Networks for Classifying Probability Distributions

Distribution Training
Method

Normalization
Method

uscore kernel ml-ad

Location Scale

60

70

80

90

100

M
ea

n
 P

er
ce

n
t

C
o

rr
ec

t
C

la
ss

if
ic

at
io

n

Training Models

50-100-250

30-50-100-250

50-100-250-500

100-250

50-100-250

250-500-750-1000-10000

50-100-250-500-750-1000-10000

100-250-500-750-1000-10000

ML-AD

Distributions

Double Exponential

Exponential

Half-Logistic

Half-Normal

Logistic

Gumbel (Max)

Gumbel (Min)

Normal

Uniform

FIGURE 5.14: DEX mean plot for moderate sample sizes - best per-
forming NN models

5.3. Evaluation 95

Distribution Training
Method

Normalization
Method

uscore kernel ml-ad

Location Scale

30

40

50

60

70

80

90

100

M
ea

n
 P

er
ce

n
t

C
o

rr
ec

t
C

la
ss

if
ic

at
io

n

Training Models

30-50

30-50-100

50-100-250

30-50-100-250

50-100-250-500

100-250

50-100-250

50-100-250-500-750-1000-10000

100-250-500-750-1000-10000

ML-AD

Distributions

Double Exponential

Exponential

Half-Logistic

Half-Normal

Logistic

Gumbel (Max)

Gumbel (Min)

Normal

Uniform

FIGURE 5.15: DEX mean plot for small sample sizes - best performing
NN models

Furthermore, we also generated a tabulation chart in figure 5.16. This figure
simply shows the response variable (i.e., correct classification percentage) for the
selected few subset models.

96 Chapter 5. Neural Networks for Classifying Probability Distributions

3.7

41.8 41.1 38.8 39.4

53.8 44.8 38 40.8 35.9

42 39.7 37.9 39.1

30.4 41.8 36.2 57.3 51.7

75.4 73.7 79.4 77.1 69.2 71.8 64.1 64.5

69.1 61.9 73.5 68.2 74.7 71 73.8

70.1 67.6 76.8 67.6 71.2 73.8 79.1 72.1 69.5

63.5

75.8 65.6 77 73.4

74.2 72.8 77 77.4

75.5 66.5 76.1 70

70.1 69.3 70 71.2

68.8 79.3 69.7

81.8 80.7

83.2 81.8 89.1

81

86.5 87.2

88.3 85.8 86.6 85.6 85.6

89.9 89.8 88.9 86.2 86.2 86.6 87.2 86.3

89.1 87.8 88.2 85.5 85.9

84.5 85.1 85.6 82.7 84.7 86.9 89.4 88.9

89 88 82.1 80.9

91.4 91.5

90.4

90.9 91

91.6 90.6 90.3

91.4 91 92.7

92.2 92.2

94.2 93.2 94.9

94

93.8 94.4

94.9

93.5

97.4 97.1

97.3 97.8

97.1 97.6

97.2 97.1 98.8

97.2 97.2 98.6 98.3

97.1 97.8 98.9 98.6

96.8 97.3 98.1 98

98.7 98.5 97.3 96.6 96.7 96.4 95.9 98.2 97.6

98.5 98.6 95.5 96.2 95.9 96.6 96.2 97.8 97.1

98.6 98.4 96.2 95.8 96.5 96.2 96.3 95.2

98.7 98.9 95.2 96.3 96.5 96 96.9 96.7 96.8

96.4

99.2 100 100

99.9 99.9

99.9 100

99.9 99.9

99.9 99.9 100 100 100 100

99.4 99.3 99.9 99.8 100 100 100 100

99.5 99.4 99.9 99.6 100 100 100 100

99.6 99.7 99.9 100 100 100 100 100

99.7 99.9 99.6 99.1 100 100 100

u-u kd

Double

Exponential

u-u kd

Exponential

u-u kd

Half

Logistic

u-u kd

Half

Normal

u-u kd

Logistic

u-u kd

Gumbel

Max

u-u kd

Gumbel

Min

u-u kd

Normal

u-u kd

Uniform

30-50-100

50-100-250

30-50-100-250

ML-AD

50-100-250-500

50-100-250

50-100-250-500-750-1000-10000

100-250-500-750-1000-10000

ML-AD

750-1000-10000

500-750-1000-10000

250-500-750-1000-10000

100-250-500-750-1000-10000

ML-AD

1,000 Validation Sets (Response: Percentage of Correct Identification of Distribution)

Distribution/Normalization

>= 99

95 - 99

90 - 95

80 - 90

60 - 80

30 - 60

< 30

S
m

al
l

M
o

d
er

at
e

L
ar

g
e

Small: 50 100, Moderate: 100 250 500 750, Large: 750 1000 10000

FIGURE 5.16: Tabulation chart

For evaluation purposes, we also provide confusion matrices for MLE-AD in the
same tables as the output of the neural networks per sample size category (tables 5.1,
5.2 and 5.3). Theses tables indicate that our neural networks perform comparably to
MLE-AD and give better performance in a majority, but not all, of the cases than the
MLE-AD method. In fact:

5.4. Limitation 97

Selected distributionTrue

Distribution
Approach

1 2 3 4 5 6 7 8 9

NN 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Uniform

MLE-AD 99.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NN 0.00 96.77 3.20 0.00 0.00 0.00 0.00 0.01 0.02
Normal

MLE-AD 0.00 96.38 3.62 0.00 0.00 0.00 0.00 0.00 0.00

NN 0.00 1.87 96.94 0.00 1.13 0.00 0.00 0.03 0.03
Logistic

MLE-AD 0.00 0.79 99.08 0.00 0.12 0.00 0.00 0.00 0.01

NN 0.00 0.00 0.00 98.93 0.00 0.00 1.07 0.00 0.00
Exponential

MLE-AD 0.00 0.00 0.00 99.93 0.00 0.00 0.06 0.01 0.00

NN 0.00 0.00 0.30 0.00 99.70 0.00 0.00 0.00 0.00
Double Exponential

MLE-AD 0.00 0.00 0.34 0.00 99.64 0.00 0.00 0.01 0.00

NN 0.00 0.00 0.00 0.00 0.00 96.45 3.55 0.00 0.00
Half Normal

MLE-AD 0.00 0.00 0.00 0.00 0.00 99.57 0.34 0.00 0.09

NN 0.00 0.00 0.00 2.32 0.00 2.47 95.21 0.00 0.00
Half Logistic

MLE-AD 0.00 0.00 0.00 0.81 0.00 5.70 93.48 0.00 0.01

NN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00
Gumbel Min

MLE-AD 0.00 0.00 0.00 0.00 0.01 0.00 0.00 99.99 0.00

NN 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 99.98
Gumbel Max

MLE-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 99.99

TABLE 5.1: Confusion matrix for the large category: Neural Net-
works (NN) vs maximum likelihood/Anderson-Darling (MLE-AD)

Selected distributionTrue

Distribution
Approach

1 2 3 4 5 6 7 8 9

NN 99.95 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.01
Uniform

MLE-AD 73.78 15.48 0.07 0.00 0.00 0.94 0.00 5.30 4.43

NN 0.10 91.01 7.08 0.00 0.34 0.00 0.00 0.74 0.72
Normal

MLE-AD 0.00 79.27 18.55 0.00 0.38 0.00 0.00 0.93 0.86

NN 0.01 16.42 77.15 0.00 4.44 0.00 0.00 0.96 1.03
Logistic

MLE-AD 0.00 8.71 85.67 0.00 4.52 0.00 0.00 0.54 0.55

NN 0.00 0.00 0.00 86.62 0.00 1.30 12.07 0.00 0.00
Exponential

MLE-AD 0.00 0.00 0.00 87.98 0.00 0.43 10.89 0.00 0.70

NN 0.00 0.53 10.19 0.00 88.66 0.00 0.00 0.32 0.31
Double Exponential

MLE-AD 0.00 0.09 10.57 0.00 89.04 0.00 0.00 0.13 0.17

NN 0.03 0.00 0.00 0.29 0.00 88.85 9.24 0.00 1.58
Half Normal

MLE-AD 0.00 0.24 0.10 0.00 0.00 87.50 3.00 0.00 9.15

NN 0.00 0.00 0.00 8.55 0.00 15.93 74.96 0.00 0.57
Half Logistic

MLE-AD 0.00 0.01 0.01 5.18 0.00 20.69 68.84 0.00 5.27

NN 0.03 1.02 0.39 0.00 0.07 0.00 0.00 98.49 0.00
Gumbel Min

MLE-AD 0.00 0.59 1.60 0.00 0.20 0.00 0.00 97.62 0.00

NN 0.02 0.85 0.27 0.03 0.06 0.57 0.26 0.00 97.94
Gumbel Max

MLE-AD 0.00 0.54 1.46 0.00 0.20 0.13 0.01 0.00 97.66

TABLE 5.2: Confusion matrix for the moderate category: Neural Net-
works (NN) vs maximum likelihood/Anderson-Darling (MLE-AD)

• For the small category, NN outperforms MLE-AD for 6 out of 9 distributions
and they perform essentially the same for the half-logistic distribution;

• For the moderate category, NN outperforms MLE-AD for 6 out of the 9 distri-
butions and they perform essentially the same for the Gumbel max distribu-
tion;

• For the large category, ML-AD performs slightly better for 3 distributions, NN
performs slightly better for one distribution and for the remaining 5 distribu-
tions they perform essentially the same.

5.4 Limitation

In this study we proposed the use of deep learning to build a classifier for distribu-
tional modeling. This classifier takes as input a set of data points and provides a

98 Chapter 5. Neural Networks for Classifying Probability Distributions

Selected distributionTrue

Distribution
Approach

1 2 3 4 5 6 7 8 9

NN 97.44 0.89 0.00 0.01 0.00 0.73 0.02 0.58 0.33
Uniform

MLE-AD 3.72 52.00 0.64 0.00 0.00 2.68 0.01 21.72 19.24

NN 1.99 64.13 17.94 0.00 4.04 0.46 0.00 5.89 5.54
Normal

MLE-AD 0.00 51.72 31.96 0.00 3.07 0.00 0.00 6.81 6.44

NN 0.37 28.42 38.84 0.00 19.99 0.20 0.00 6.14 6.03
Logistic

MLE-AD 0.00 19.74 57.32 0.00 13.28 0.00 0.00 4.81 4.86

NN 0.02 0.00 0.00 79.29 0.00 5.96 14.58 0.00 0.16
Exponential

MLE-AD 0.00 0.11 0.09 30.44 0.00 1.58 51.80 0.00 15.98

NN 0.03 4.41 14.17 0.01 75.39 0.03 0.01 2.96 2.98
Double Exponential

MLE-AD 0.00 1.51 30.37 0.00 63.49 0.00 0.00 2.18 2.45

NN 1.04 0.22 0.01 4.67 0.01 69.24 19.06 0.00 5.76
Half Normal

MLE-AD 0.00 2.80 1.22 0.00 0.08 36.36 13.61 0.02 45.91

NN 0.13 0.01 0.01 24.99 0.00 29.99 41.84 0.00 3.03
Half Logistic

MLE-AD 0.00 0.49 0.39 3.79 0.03 19.34 41.84 0.01 34.10

NN 0.70 4.82 1.65 0.00 1.43 0.00 0.00 91.39 0.01
Gumbel Min

MLE-AD 0.00 4.29 6.81 0.00 1.67 0.00 0.00 87.21 0.03

NN 0.68 4.57 1.58 0.21 1.40 6.55 3.14 0.02 81.84
Gumbel Max

MLE-AD 0.00 4.07 6.44 0.00 1.74 0.69 0.46 0.05 86.54

TABLE 5.3: Confusion matrix for the small category: Neural Net-
works (NN) vs maximum likelihood/Anderson-Darling (MLE-AD)

distribution label that matches one of nine most common distributions.
This approach is not a complete replacement of the traditional statistical work-

flow that statisticians follow to analyze and fit the data. However, it is an alternative
to step 2 from figure 4.3 (i.e., exploratory analysis) which usually requires a good
background of statistical knowledge as well as a familiarity with several distribu-
tions to be able to recognize a good potential distribution from a set of empirical
observations. This is typically done via histograms or kernel density plots to help
pin down the basic shape of the underlying distribution and find properties such
as the skewness and the presence of multiple modes in the data. Moreover, this
paper considers uni-variate non-censored and non-truncated data and doesn’t con-
sider families of distributions (with one or more shape parameters) nor noisy data
(which is generally a mixture distributions).

In this research, We considered a limited number of distributions that correspond
to the most commonly used models that are widely encountered. The reason behind
our decision is that we hope to provide an initial working prototype that can prove
the viability and applicability of our methodology.

5.5 Future work

In future work, we will extend the training set beyond the nine currently supported
distributions. In particular, this will include commonly used families of distributions
such as the weibull, lognormal and gamma distributions. These families can gener-
ate a variety of shapes based on the value of their shape factors. For this reason, we
plan to incorporate the ability to make more specific classifications (e.g., distinguish
between a weibull or a lognormal distribution) and compare this to approaches such
as the likelihood ratio test [56], [55].

Furthermore, we developed a tool that automates the distributional fitting pro-
cess for uncensored and unbinned uni-variate data which deploys our trained neu-
ral networks to identify the best candidate model from the distributions presented
in this study. This tool takes empirical observation of any size, computes the kernel

5.6. Conclusion 99

density estimation on behalf of the user, then runs the corresponding neural net-
works classifier to predict the best fit model. We named this tool DeepFit and we
will discuss its architecture and design in chapter 6.

Additionally, DeepFit incorporates a handful of statistical tests to estimate the
parameters of the fitted distribution and assess its goodness of fit. We compare the
predictions to the results of the Anderson Darling, the Kolmogorov-Smirnov and the
probability plot correlation coefficient tests as well as the information criteria (AIC,
BIC).

Moreover, we include in the tool an interactive module to help the users screen
their dataset, pre-process it by selecting a normalization technique before starting
the neural networks classifier. This module will contain a step by step guide to
help users identify and eventually remove outliers prior to running the neural net-
works classification. This step is very important because identifying bad data in the
sense of being erroneous (e.g., data is mis-coded or there is an assignable cause for
why the observation is in error) could improve the clarity of the kernel density plot,
hence improve the accuracy of the prediction. However, statistical classification of
an observation as an outlier is dependent on the underlying distribution of the data,
which is what we are trying to determine, so simply being an "extreme" observation
is not a sufficient justification for removing it. In the future, we plan to enhance the
tool with more statistical tests for outliers identification.

5.6 Conclusion

In this study, we investigated the use of neural networks for distributional models
classification as an alternative to the exploratory analysis step (Figure 4.3). Given
a set of independent empirical observations obtained from an unknown process or
phenomenon, we showed that a neural networks classifier is capable of identifying
which distributional model is best suited for the input data. This study is intended
to serve as a proof of concept to demonstrate the viability of our method, and show
that it is possible to train neural networks to guess the ’best’ probability distribution
that characterizes a dataset. Even though, the number of distributions examined
in this research is limited, they still cover the most encountered models in science
and engineering. We are currently working to increase the number of distributions
classified by our neural networks to support distributions with one or more shape
parameters (e.g., weibul, lognormal,..) and other potential use cases.

We chose two neural networks models depending on the sample size and apply
a suitable normalization technique (kernel density normalization or u-score normal-
ization) then run the points through the neural networks to predict the "best fit"
distribution. We validated the results by comparing them to a traditional statistical
approach: parameter estimation by maximum likelihood with subsequent goodness
of fit ranking by Anderson-Darling (MLE-AD). We showed that our trained neural
networks outperform MLE-AD in a majority of cases.

101

Chapter 6

DeepFit

In the previous chapters, we showed the importance of distribution fitting in science
and engineering in general. We also explained that, determining a suitable distri-
butional model requires some background in statistics and familiarity with several
probability distributions, skills that some analysts may not be equipped with. As
such, this chapter presents DeepFit, a tool that uses the neural networks models,
which we previously trained on a large database of commonly used distributions, in
addition to traditional statistical tests to automate the distributional modeling pro-
cess. DeepFit is based on the two best performing neural networks that we presented
in chapter 5 and published in [109]-[107].

6.1 Introduction

Determining an appropriate probability distribution for a uni-variate dataset is a
critical first step as it can guide the subsequent statistical analysis and impact the
statistical model checking verification results. This step typically requires significant
statistical knowledge and familiarity with the properties of a number of probability
distributions, in order to fit the parameters of the identified model and assess its
goodness of fit. Some scientists have attempted automating this task by creating
tools that rely on traditional statistical assessments to pre-process data and run some
goodness of fit tests to be able to rank and identify a good representation of the data.
Similar tools and packages include Dataplot [49], Fitdistrplus [52], ExpertFit[125]
and Easy-fit [177].

In this chapter, we present DeepFit, a software that is based on a combination
of deep learning and the traditional statistical approach of conducting distributional
modeling. First, a neural networks (NN) model that was previously trained on a
large suitable database is used to identify the best candidate distribution from an
input data. Then statistical techniques such as maximum likelihood are used to
estimate the parameters of the selected model. Moreover, DeepFit applies several
goodness of fit tests to evaluate and confirm the NN classifications. Furthermore,
DeepFit users can also choose to, completely, bypass the NN classifier and use the
implemented goodness of fit tests to simply rank the probability distributions from
the best fit to the least. The details of the NN classifiers can be found in chapter 5.

Unlike existing tools, DeepFit does not require performing any parameter esti-
mation in the distribution identification stage. Moreover, DeepFit allows the use of
the standard statistical tests, the NN classifiers or both. This is particularly interest-
ing in the case where the traditional statistical approach performs poorly (e.g., for
datasets with larger/smaller numbers of observations).

102 Chapter 6. DeepFit

6.2 Architecture

Dataset

Data

screening

Best fit

ranking

Neural network

classifier

Parameter

es�ma�onNN Verdict

Sugges�on

Predic�on

Summary sta�s�cs

Generate samples

DeepFit GUI

Output Input

Evalua�on

Module

FIGURE 6.1: DeepFit architecture

DeepFit is a tool for automating the distribution fitting process for uncensored and
unbinned uni-variate data. It relies on neural networks in order to identify the ’best’
candidate model from a set of commonly used distributions.1 Then, it applies tra-
ditional statistical techniques such as the maximum likelihood and many goodness
of fit tests to estimate the parameters of the selected distribution and assesses its
appropriateness. The purpose of the tool is to help engineers with limited statisti-
cal background save time and more easily determine an appropriate distributional
model. DeepFit has four modules (Figure 6.1):

1. Data screening;

2. Neural networks classification;

3. Parameter estimation;

4. Evaluation;

5. Best Fit ranking.

In the next subsections, we will go over each module in details.

6.2.1 Data screening

The first step in using DeepFit is to pre-process and validate the input data for the
neural networks classifier.

A number of graphs are provided to help the analyst determine various charac-
teristics of the data (e.g., if the data is symmetric, if the data is skewed and in which
direction is the skewness, if there are any extreme observations). These graphs can
also help to identify outliers. In this context, the purpose of identifying outliers is
simply to help the analyst determine whether an observation is erroneous (e.g., is
it mis-coded?) and not to perform formal outlier analysis. Formal outlier analysis

1uniform, 2: normal, 3: logistic, 4: exponential, 5: double-exponential, 6: half-normal, 7: half-
logistic, 8: gumbel-min, 9: gumbel-max

6.2. Architecture 103

is based on assuming that the underlying distribution is known (most outlier tests
are based on assuming the data is normally distributed). However, DeepFit assumes
that the underlying distribution is unknown and in fact the purpose of the tool is to
determine an appropriate distributional model. An "extreme" point may indicate a
bad data value or it may be a reflection of the underlying distribution of the data, so
it is recommended that an observation be removed only if it can reasonably be de-
termined to be erroneous. It should be noted that "noisy" data is an indication that
the observations do not come from a single common distribution. This type of data
may be more appropriately modeled with a mixture distribution which is beyond
the scope of DeepFit tool at the time of this writing. However, further use cases and
more distributions will be supported soon.

This first module of DeepFit, screens the data by using the 4-plot method [59].
This method consists of generating four types of plots, designed to check whether
the data are independent with each other and draw from a common distribution
with fixed location and fixed scale values. Datasets that do not satisfy these as-
sumptions should not be modeled with a single distributional model. The analyst
is engaged in understanding their data while locating and removing any mis-coded
points that could be considered as outliers. Note that, simply being an "extreme"
observation is not a sufficient justification for removing a value from the input set.
DeepFit generates four graphs corresponding to the 4-plot method that James J Fil-
liben [97] developed [59]. The rationale is that the data should be random (i.e., in-
dependent) draws from a common distribution with a fixed location and fixed scale.
The four plots are:

1. The run sequence plot which is used to identify whether the fixed location and
fixed scale assumptions are reasonable. In addition, it can identify if there are
trends in the data which would indicate a lack of independence. This plot,
generally, answers three questions: Does the "location" or "scale" shift? Are
there any trends in the data over time? and Are there any "outliers"? Note that
this plot should be performed on the unsorted data.

2. The lag plot that is specifically testing for first order autocorrelation (a dataset
that shows significant autocorrelation is not independent). This plot should
basically look like a random blob. Patterns in the data are an indication that
the data is not independent. Note that these first two plots should only be
generated if the data is available in the order that it is collected. If the data
is pre-sorted, then these plots will show very strong dependence (e.g., the lag
plot will basically be a straight line).

3. The third plot which is designed to show the distribution of the data. This
can be either a histogram or a kernel density plot. If this plot is bell-shaped,
the underlying distribution is symmetric and perhaps approximately normal
(chapter 4).

4. The normal probability plot that though it is usually used to check for normal-
ity, in the context of screening the data it can be useful for identifying outlying
points.

104 Chapter 6. DeepFit

0 100 200 300 400 500

10

15

20

25

30

35

40

Run Sequence Plot of Unsorted Data

Index

R
es

p
o

n
se

10 15 20 25 30 35 40

10

15

20

25

30

35

40

Lag Plot of Unsorted Data

Y(i-1)

Y
(i

)

10 20 30 40 50

0

0.025

0.05

0.075

0.1

Kernel Density Plot

Response

D
en

si
ty

-3 -2 -1 0 1 2 3

10

15

20

25

30

35

40

Normal Probablity Plot

Percentiles of Normal Distribution

S
o

rt
ed

 D
at

a

X

X

X

FIGURE 6.2: 4-plot of 500 random normal points.

This module identifies some underlying assumptions (e.g., normality, shape,
scale and location, existence of outliers) about the input set and the process from
which the measurements were collected. DeepFit only advocates removing an ob-
servation from the set if it can be determined that the observation is in fact a bad
data point as opposed to simply being an outlier relative to a normal distribution.
Once the analysts are satisfied with the data, they can proceed to the next module
which uses the neural networks classifiers to fit the data.

Figure 6.2 shows an example of the 4-plot method applied to 500 normally dis-
tributed data points. Using these plots, we see no obvious patterns nor trends on the
lag plot and the run sequence plot. This indicates that the data is independent and
comes from a random process. Additionally, from the normal probability plot we
learn that there are no visible outliers to remove. Moreover, from the kernel density
plot (kdp), we can already interpret that the data is normally distributed since the
kdp has a bell like shape and is symmetric. But since we assume that the analysts are
unfamiliar with the shape of many probability distributions, they can proceed with
the next step and let our trained NN classifiers predict the ’correct’ model (chapter 5
explains the details of the neural networks used in DeepFit).

We also show another example of data sampled from the gumbel max distribu-
tion in Figure 6.3. Similar conclusions from figure 6.2 about the data independence
still apply to this figure as well. We can also confidently confirm the absence of any
extreme points from the normal probability plot. However, we can’t clearly identify
the shape of the distribution from the kernel density plot except that it’s an upper
tailed distribution. Therefore, the analyst is advised to use our neural networks clas-
sifier to predict the ’best’ model for their data. This figure and dataset is a great use
case that proves the usefulness of our tool.

6.2. Architecture 105

0 100 200 300 400 500

-100

-50

0

50

100

150

200

Run Sequence Plot of Unsorted Data

Index

R
es

p
o

n
se

-100 -50 0 50 100 150 200

-100

-50

0

50

100

150

200

Lag Plot of Unsorted Data

Y(i-1)

Y
(i

)

-100 -50 0 50 100 150 200

0

0.005

0.01

0.015

0.02

0.025

0.03

Kernel Density Plot

Response

D
en

si
ty

-3 -2 -1 0 1 2 3

-100

-50

0

50

100

150

200

Normal Probablity Plot

Percentiles of Normal Distribution

S
o

rt
ed

 D
at

a

FIGURE 6.3: 4-plot of 500 random gumbel max points.

6.2.2 Neural Network classification

In this module, an initial transformation is applied to the input dataset, after the
screening has been conducted in the first module and prior to using the neural net-
works. This transformation consists of either the u-score normalization or the kernel
density normalization explained in chapter 5. Figures 6.4 and 6.5, respectively, show
the impact of both normalization techniques on a dataset that was generated using
5000 random numbers from the logistic distribution.

The u-score algorithm transforms the kernel density heights to a (0,1) scale, whereas
the kernel density normalization transforms the kernel density heights to integrate
to 1 on the 1 to 256 x-coordinate scale. Nevertheless, as we stated in the previous
chapter (i.e., chapter 5), these two normalization methods are non-distorting of the
shape of the kernel density plot and preserve the form of the underlying probability
distribution regardless of the location and scale values. We also noticed, in chapter
5, that neither of these techniques has significant impact on the accuracy of the NN
classification. For this reason, the analyst doesn’t need to worry about choosing the
right method but is still encouraged to try both.

Additionally, DeepFit implements the two best performing NN models previ-
ously trained: one for smaller samples and one for larger samples. Therefore, de-
pending on the size of the input data, DeepFit selects the corresponding NN clas-
sifier and uses it to select the ’right’ candidate model from the list of supported
distributions.2

Note that we are continuously adding more distributions to the tool in order to
support families of distributions and other use cases. The details of how we trained
the neural networks can be found in chapter 5.

2uniform, normal, logistic, exponential, half normal, half logistic, gumbel max, gumbel min and
double exponential

106 Chapter 6. DeepFit

-10 -5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

Kernel density plot

0 50 100 150 200 250 300

0

0.25

0.5

0.75

1

U-score normalization

FIGURE 6.4: Impact of the u-score normalization

-10 -5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

Kernel density plot

0 50 100 150 200 250 300

0

0.005

0.01

0.015

0.02

Kernel density normalization

FIGURE 6.5: Impact of the kernel density normalization

6.2.3 Parameter estimation

Once the data has been pre-processed and the neural network classifier has identi-
fied the "best" distributional model, the parameters of the distribution are estimated
in this module using traditional statistics and more specifically the maximum likeli-
hood algorithm (MLE) explained in chapter 4 [60].

In this parameter estimation module, we present the analyst with different out-
put sections:

6.2. Architecture 107

Basic statistics

This first section prints out some basic summary statistics for the entered data. This
includes the sample minimum, maximimum, mean, standard deviation, range, Skew-
ness and kurtosis [3].

Parameter estimates

This next section computes and prints out the parameter estimates of the fitted dis-
tribution i.e., the location and scale values as well as the AIC, BIC and log-likelihood
[77]. The generic formula for the log-likelihood LL is:

LL =
N

∑
i=1

Ln(f (x))

That is, for each observation x in the dataset, a probability density function f (x)
for that observation is computed with the specified location/scale values. Then,
the log-likelihood is obtained by summing all their logs. In some cases, we used
the algorithms implemented in dataplot [49] when available to calculate these pa-
rameters as they include some simplifications for specific distributions. Once the
log-likelihood value is computed, BIC and AIC can be determined as follows:

BIC = −2 ∗ LL + p ∗ Ln(N)

AIC = −2 ∗ LL + 2 ∗ p

where LL is the log-likelihood value, N is the sample size and p is the number of
parameters. For the currently supported distributions, p is equal to 2 (i.e., location
and scale).

Confidence intervals

The confidence intervals for the location and scale parameters are computed for mul-
tiple confidence values of α:

α = 1 − c

100

where c is the confidence level (i.e., 90%, 95%, 99%). So, for a 95% confidence
level, α is usually given as 0.05, for a 90% confidence level α is given as 0.10 and for
a 99% confidence interval α is given as 0.01.

In DeepFit, the confidence intervals are computed via two methods: the non-
parametric bootstrap algorithm or using analytical methods which are based on the
the percent point function [5] of the chi-square [7] or the T-distributions [6]. As an
exception, the confidence intervals for the logistic distribution are computed using
assigned tables. The bootstrap can be used to calculate the confidence intervals for
the estimated parameters of the distribution (location and scale) as well as their stan-
dard errors. The latter is not currently supported at the time of this writing but we
will incorporate it in the future. The primary reason for including the bootstrap in
DeepFit is that sometimes analytical methods are too difficult or intractable to com-
pute. And the second reason is that the bootstrap can sometimes be more accurate
when the underlying assumptions on the data are not met. Additionally, in Deep-
Fit, we consider that if the analytical and bootstrap results are reasonably consistent,

108 Chapter 6. DeepFit

this is an indication that the selected distribution is, potentially, a good match for the
data.

The basic bootstrap algorithm is as follows (n is the number of observations for
the dataset):

Step 1: Generate a sample of size n from the original observations with replacement.
This idea of "with" replacement is key which means that the observations from
the original sample may occur multiple times or not at all in the bootstrap
sample. This means that, as an example, if the original sample size is 500, we
are generating an index value from 1 to 500 (i.e., the index value is the order
by which the original observations were collected) and we are generating 500
such index numbers. Note that, each index is randomly selected from 1 to 500,
so the 500th index values are not unique. We are currently using the Mersenne
Twister as the default random numbers generators in DeepFit [142].

Step 2: Compute the parameter estimates from the new sample (i.e., location and scale).
We are using the same algorithm used to compute the location and scale for the
original data, that is the maximum likelihood.

Step 3: Repeat the above two steps 10,000 times and obtain 10,000 scale and location
values. The standard errors for the location and scale are, simply, the stan-
dard deviations of the newly computed location and scale values. Whereas,
to determine the confidence intervals at different α, symmetric intervals are
used. For example, at α = 0.05 (i.e., 95% confidence level), we take the 2.5%
and 97.5% percent points function values of these samples. The percent point
function is another probability function used to define a probability distribu-
tion. It is commonly referred to as the inverse distribution function (see [5] for
more details on this function).

This bootstrap algorithm was applied to the following distributions: gumbel
max, gumbel min, half logistic and half normal whereas, for the normal, logistic,
exponential and double exponential, we used the T distribution percent point func-
tion and the chi-square percent point function to determine the confidence intervals.
Note that, DeepFit doesn’t implement the bootstrap method for the uniform distri-
bution. The reason for this is that the estimates for the lower and upper limits are
based on the sample minimum and sample maximum. Since the bootstrap samples
from the original dataset, the minimum and maximum in the bootstrap samples will
never be smaller (or larger for the upper limit) than the original sample. Therefore,
the bootstrap will not generate a reasonable lower bound for the confidence limit for
the lower limit and likewise a reasonable upper bound for the confidence limit for
the upper limit. Hence, we deployed the algorithm in these references [132, 151] for
the uniform distribution instead.

6.2.4 Evaluation

This module includes traditional statistical goodness of fit techniques to determine if
the distributional model suggested by the neural networks is in fact an appropriate
distributional model for the data. In chapter 4, we have examined the three class
categories for the goodness of fit test (GoF). That is

1. The first class is based on comparing the empirical cumulative distribution
function (CDF) [5] (i.e., based on the data) to the theoretical CDF function;

6.2. Architecture 109

2. The second class is based on comparing the differences between the empirical
percent point function (PPF) to the theoretical percent point function;

3. The third class is based on the likelihood function.

In DeepFit. we implemented the Anderson-darling and the Kolmogorov Smirnov
GoF tests from the first class category. Since DeepFit primarily focuses on unbinned
data at this time, we implemented the AD and KS tests because they are more pow-
erful for this type of observations. From the second class category, we implemented
the probability plot correlation coefficient test (PPCC). Finally, from the last class
category, we implemented the Akaike’s Information Criterion (AIC) and the the
Bayesian Information Criterion (BIC). We refer the reader to chapter 4 for more in-
formation on these tests.

Note that we are using these goodness of fit statistics for two distinct purposes:

Goal 1: Once the neural networks prediction of the ’best’ fit distribution is complete,
in order to assess the accuracy of the fitted distribution.

Goal 2: Without going through the neural networks classification, the GoF tests are
used to simply rank the supported distributions from the most probable fit to
the least probable fit. For this we compute the value of the statistic for each of
AD, KS and PPCC and provide a sorted list of distribution ranks.

Nevertheless, two additional concerns remain for consideration when using these
GoF tests. First, when computing critical values, there is a distinction between the
case where the parameters are "known" and the case where the parameters are esti-
mated from the data. We are really only interested in the case where the parameters
are estimated from the data. In particular, one claim for the KS is that the critical val-
ues are the same regardless of the underlying distribution. However, this is based on
the assumption that the parameters are known. Second, for some methods, there are
tables of critical values. Specifically, critical values for AD have been generated for a
number of common distributions. Alternatively, the critical values can be computed
via simulation.

6.2.5 Best fit ranking

When the analyst chooses to completely skip the neural networks classification and
strictly use traditional statistics to determine which distribution is better fitting for
the data, DeepFit offers this module which relies mainly on three goodness of fit tests
examined in the previous module: Anderson Darling (AD), Kolmogorov Smirnov
(KS) or the probability plot confidence coefficient (PPCC). This option allows to sim-
ply rank all the currently supported distributions from the "best" fit to the "least".
First, the analyst is prompt with selecting the goodness of fit test of choice. Then,
DeepFit relies on the computed values of the test statistic for all of the distributions
to establish a ranking. The ranking algorithm follows these steps:

Step 1: Select the method for the parameter estimation. That is, for KS and AD the
parameters are computed using the maximum likelihood algorithm whereas
for the PPCC, the estimates are based on the PPCC value from the probability
plot;

Step 2: Select a Goodness of fit test and compute its value of the test statistic (AD, KS
or PPCC);

110 Chapter 6. DeepFit

Step 3: Rank all the distributions based on their values of the test statistic. For the KS
and AD, a lower value is better ranked. Whereas, for the PPCC, a higher value
is preferred;

Step 4: Show the estimated location and scale values next to the established ranking,
for each distribution.

The output of this module is similar to the output generated using the dataplot
software [49]. Dataplot uses the "BEST DISTRIBUTIONAL FIT" command to display
the ranking of the supported distributions (see [29] for examples of dataplot).

6.3 Tool Assessment

DeepFit was evaluated on synthetic data [109] and real world data and successfully
modeled several commonly used distributions. In this section, we use one example
of real measurements obtained from a published study on Heat Flow Meter Calibra-
tion & Stability Analysis [106] to demonstrate the functionalities of DeepFit.

FIGURE 6.6: Module 1

Figure 6.6 shows the first module of the tool, in which the 4-plot method is de-
ployed to screen the data for randomness, test for data normality and check the
existence of any extreme points that might potentially be considered as outliers.

When uploading the Heat Flow Meter Calibration & Stability Analysis data to
DeepFit, we first notice that the kernel density plot is symmetric and that the normal
probability plot is linear. This suggests potential normality in the this set (i.e., the
underlying distribution might be the normal pdf). Furthermore, no visible trends
or structures are seen on the lag and the run sequence plot which indicates that the

6.3. Tool Assessment 111

data is from a random process. Note that, we intentionally colored the kernel density
plot in a color that’s different than the other three plots. This is because the analyst
is prompted to carefully inspect the kdp prior to passing it to the the neural network
classifiers to make sure that the shape is clear and not distorted.

Next, the pre-screened data is normalized by selecting one of the scaling methods
discussed previously (i.e., u-score or k-score) then ran through the neural network
model to predict the ’right’ candidate distribution for the data. Figure 6.7 shows that
DeepFit plots the original kdp of the data as well as the normalized kdp. Moreover,
this figure indicates that using the k-score, the NN classifier was able to identify the
underlying distribution as the normal pdf which matches our intuition from the first
module (i.e., Figure 6.6).

The next step, as shown in Figure 6.8 is to compute the parameters of the distri-
bution. That is, the location, scale estimates and their associated confidence intervals
in addition to some basic summary statistics. The analyst is also prompted with the
option to enter the number of observations N in order to generate N random num-
bers from the specified distribution. These numbers can be saved into a local file in
a comma separated values (csv) format. The tool also overlays the fitted probability
distribution plot on top of the kernel density plot of the original data. This feature
allows the user to graphically assess the validity of the fit. Figure 6.8 shows that the
stacked kernel density plots of the original data and 1000 random samples from the
NN estimation, are very similar in shape indicating that the prediction is somehow
accurate.

FIGURE 6.7: Module 2

112 Chapter 6. DeepFit

FIGURE 6.8: Module 3

FIGURE 6.9: Module 4 - testing the NN model

6.3. Tool Assessment 113

FIGURE 6.10: Module 4 - testing a different probability distribution

For further assessments, the analyst might choose to run several goodness of
fit tests, included in DeepFit to confirm that the hypothesis about the underlying
distribution is indeed correct. In Figure 6.9, we evaluate the data against the NN fit
(i.e., the normal distribution). Figure 6.10 demonstrates how the analyst can test a
different distribution other than the NN selected pdf. In this figure, we checked the
data against the uniform distribution which got eventually rejected by all four GoF
tests as expected. Note that, for each tested pdf, we complement the goodness of fit
tests with a graphical test (we currently use the probability plot).

In certain cases, the analyst might notice that different goodness of fit tests can
reach different conclusions or that for the same test different conclusions are ob-
tained according to the value of α. This is not uncommon. In fact, the first case can
be interpreted as each test evaluating specific features of the data. The AD, KS and
PPCC can be sensitive to different types of departures from the hypothesized dis-
tributions (e.g., AD .est is specifically designed to be more sensitive to differences
in the tails than the KS test). The second case, where opposing conclusions are ob-
tained withing the same GoF test, depending on the value of α, is also common and
happens often. The reasoning behind this is that, when we say something is “statis-
tically significant”, we are really saying “statistically significant at a specific confi-
dence level" (when the level is not specified it is assumed to be 95% by default). The
p-value (or alternatively, the cdf value) gives the specific cut-off for the statistical sig-
nificance. For the AD and KS, which are upper-tailed tests (i.e., smaller values of the
test statistic are better), the 90% level is actually a stricter test than the 95% level and
the 95% level is a stricter test than the 99% test. Whereas, the PPCC test is a lower
tailed test, hence, the directions get reversed (i.e., larger values of the test statistic
are preferred). Similarly, the 99% level is actually a stricter test than the 95% level
and the 95% level is a stricter test than the 90% level. However, in terms of users in-
terpretations, having different conclusions at 90%, 95% and 99% generally indicates

114 Chapter 6. DeepFit

that the fit is probably “borderline”. The intended usage of the distributional model
drives the practical interpretation as to what significance level is appropriate and
what action to take.

Figure 6.11 shows the final feature provided by DeepFit, which is the option to
bypass the neural networks and simply run a few goodness of fit tests. In this con-
text, we apply it to the Heat Flow Meter Calibration & Stability Analysis data. Note
that, there are two downside of strictly using the goodness of fit tests rather than our
proposed workflow (which combines the neural networks and traditional statistics).
For a small number of observations, the GoF tests can have low power (i.e., it takes
large departures from the hypothesized distribution to reject) and for large sample
sizes the tests can be overly sensitive (i.e., small departures from the hypothesized
distribution that have little practical significance can reject). In DeepFit, we resolve
these sample size concerns by complementing the neural networks prediction with
a variety of formal tests as well as probability plots. Because in some scenarios,
graphical tools are more illuminating than analytical methods.

FIGURE 6.11: Module 5

6.4 Conclusion

In this chapter, we propose DeepFit, a combined effort between neural networks and
statistical techniques for data analysis and distribution fitting. DeepFit provides a
preliminary step of data screening to remove bad data points in the sense of being
miscoded. Then uses one of the two neural network classifiers, that were previously
trained on a large database of commonly used distributions, to select the ’best’ can-
didate model given a set of empirical observations. Moreover, the tool incorporates
a variety of traditional statistics designed to compute the parameters of the selected
distribution as well as assess it’s appropriateness and accuracy.

6.4. Conclusion 115

In the future, we plan to extend the number of supported distributions to also
include families of distributions, such as the weibull, lognormal, Gamma distribu-
tions and other use cases as well as incorporate the ability to make more specific
classifications (e.g., distinguish between weibull or lognormal) and compare this to
approaches such as the likelihood ratio test [56], [55].

DeepFit has the advantage of being used as a standalone tool for scientists and
engineers or it could be integrated into the workflow of the methodology, which we
proposed in this thesis, for modeling and evaluating the performance of networking
systems via statistical model checking (SMC). In the next final chapter, we explain
how we combine DeepFit with SMC and conclude this thesis with perspectives and
future work.

117

Chapter 7

Conclusion

The demand for faster performance, increased accessibility, mobility and secure com-
munications has driven significant advancements in Internet architectures, proto-
cols and applications. As such, scientists are constantly investigating methods to
secure networks against malicious attacks, unintentional bugs and errors in addi-
tion to maintaining a good quality of service in network speed and performance.
Unfortunately, it has been observed that their attempts of evaluating network per-
formance and quality of service value more a culture of running code, heuristics and
engineering judgements rather than a culture of sound proofs and rigorous verifica-
tion methods. The accuracy obtained by these methods varies greatly, hence, loss of
real insights into how the network acts can lead to unforeseen performance issues
that degrade the quality of experience and service. Nevertheless, benchmarking and
simulation based testing are still considered the default option for network analysis
and supervision in the networking community, in spite of failing to achieve high
accuracy results and obtaining trustworthy analysis.

In this thesis, we presented a methodology which is based on a framework for
modeling systems called BIP and a formal verification approach that relies on SMC.
SMC takes a stochastic model written in the BIP formalism and a property to ver-
ify. The stochastic model is generally obtained by modeling the functional behavior
of a system, augmented with probabilistic variables, which are updated via prob-
ability distributions (PD). A PD is, typically, obtained by collecting and analyzing
measurements from the system’s execution using traditional statistical tests to se-
lect the best fit distribution (i.e., distribution fitting). We demonstrated the benefits
of our methodology in addition to its feasibility and ease of use via an example of
a software forwarder, of a novel Internet architecture, to which we maximized the
throughput rate.

Additionally, we showed that distribution fitting is crucial for the correct assess-
ment via SMC and it’s an important preliminary step in science and engineering, in
general. However, this task requires a good statistical background and familiarity
with several distributions which is beyond the expertise of some analysts. Therefore,
we built DeepFit, a tool that combines traditional statistical tests and deep learn-
ing to automate the distribution fitting process. DeepFit is then integrated into the
workflow of our methodology for rigorous modeling and performance assessment
of networking systems as seen in Figure 7.1.

118 Chapter 7. Conclusion

Modeling

Instrument/

execution

Data analysis

Model

calibration

Functional

model (BIP)

Code

generation

Specifications
Existing

implementation

Raw

performance

measures

Requirements

Stochastic perf.

Model (SBIP)

Probability

distributions

Performance

evaluation

Quantitative

Evaluation

results

guides

DeepFit

FIGURE 7.1: Methodology

119

Bibliography

[1] 1. Introduction — Theorem Proving in Lean 3.23.0 documentation. Jan. 2021. URL:
https://leanprover.github.io/theorem_proving_in_lean/introduction.

html.

[2] 1.3.3.12. DEX Mean Plot. 2003. URL: http://atomic.phys.uni-sofia.bg/
local/nist-e-handbook/e-handbook/eda/section3/eda33c.htm.

[3] 1.3.5.11. Measures of Skewness and Kurtosis. Jan. 2018. URL: https://www.itl.
nist.gov/div898/handbook/eda/section3/eda35b.htm.

[4] 1.3.5.13. Runs Test for Detecting Non-randomness. Jan. 2018. URL: https://www.
itl.nist.gov/div898/handbook/eda/section3/eda35d.htm.

[5] 1.3.6.2. Related Distributions. Jan. 2018. URL: https://www.itl.nist.gov/
div898/handbook/eda/section3/eda362.htm.

[6] 1.3.6.6.4. t Distribution. URL: https://www.itl.nist.gov/div898/handbook/
eda/section3/eda3664.htm.

[7] 1.3.6.6.6. Chi-Square Distribution. URL: https://www.itl.nist.gov/div898/
handbook/eda/section3/eda3666.htm.

[8] 1.5 Performance — Computer Networks: A Systems Approach Version 6.2-dev docu-
mentation. URL: https://book.systemsapproach.org/foundation/performance.
html.

[9] 6.4.4.8.1. Box-Ljung Test. Jan. 2018. URL: https://www.itl.nist.gov/div898/
handbook/pmc/section4/pmc4481.htm.

[10] 8.2.3.2. Goodness of fit tests. URL: https : / / www . itl . nist . gov / div898 /
handbook/apr/section2/apr232.htm.

[11] A Brief Introduction to Named Data Networking - Named Data Networking (NDN).
URL: https://named-data.net/publications/ndn18.

[12] A Simple Network Management Protocol (SNMP). URL: https://datatracker.
ietf.org/doc/html/rfc1157.

[13] About - OpenDaylight. URL: https://www.opendaylight.org/about.

[14] About Internet Society | Internet Society. URL: https://www.internetsociety.
org/about-internet-society.

[15] Ajin Abraham. “Chapter 3 - Static Analysis”. In: Automated Security Analysis
of Android and iOS Applications with Mobile Security Framework. Syngress, Jan.
2016, pp. 7–14. ISBN: 978-0-12-804718-7. DOI: 10.1016/B978-0-12-804718-
7.00003-5.

[16] Husain Aljazzar et al. “Safety Analysis of an Airbag System Using Proba-
bilistic FMEA and Probabilistic Counterexamples”. In: 2009 Sixth International
Conference on the Quantitative Evaluation of Systems. 2009, pp. 299–308. DOI:
10.1109/QEST.2009.8.

120 Bibliography

[17] Sahel Alouneh et al. “A comprehensive study and analysis on SAT-solvers:
advances, usages and achievements”. In: Artif. Intell. Rev. 52.4 (Dec. 2019),
pp. 2575–2601. ISSN: 1573-7462. DOI: 10.1007/s10462-018-9628-0.

[18] Leopoldo Angrisani and Claudio Narduzzi. “Measurements for Network-
ing: An Overview”. In: 2008 IEEE Instrumentation and Measurement Technology
Conference. 2008, pp. 1328–1333. DOI: 10.1109/IMTC.2008.4547248.

[19] D. Antos, V. Rehák, and J. Korenek. “Hardware Router’s Lookup Machine
and its Formal Verification”. In: 2004.

[20] ARPA Becomes DARPA. URL: https://www.darpa.mil/about-us/timeline/
arpa-name-change.

[21] P. Bagade, A. Banerjee, and S. K. S. Gupta. “Validation, Verification, and For-
mal Methods for Cyber-Physical Systems”. In: Cyber-Physical Systems. Cam-
bridge, MA, USA: Academic Press, Jan. 2017, pp. 175–191. ISBN: 978-0-12-
803801-7. DOI: 10.1016/B978-0-12-803801-7.00012-2.

[22] Christel Baier et al. “Symbolic model checking for probabilistic processes”. In:
Automata, Languages and Programming. Berlin, Germany: Springer, June 2005,
pp. 430–440. ISBN: 978-3-540-63165-1. DOI: 10.1007/3-540-63165-8_199.

[23] A. Basu et al. “Verification of an AFDX Infrastructure using Simulations and
Probabilities”. In: Runtime Verification, RV’10. Vol. 6418. LNCS. Springer, 2010.

[24] Ananda Basu, Marius Bozga, and Joseph Sifakis. “Modeling Heterogeneous
Real-time Components in BIP”. In: Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods. SEFM’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 3–12. ISBN: 0-7695-2678-0.

[25] Ananda Basu et al. “Rigorous Component-Based System Design Using the
BIP Framework”. In: IEEE Software 28.3 (May 2011), pp. 41–48. DOI: 10.1109/
MS.2011.27.

[26] Ananda Basu et al. “Verification of an AFDX Infrastructure Using Simula-
tions and Probabilities”. In: Runtime Verification. Berlin, Germany: Springer,
Nov. 2010, pp. 330–344. ISBN: 978-3-642-16611-2. DOI: 10.1007/978-3-642-
16612-9_25.

[27] Ananda Basu et al. “Verification of an AFDX Infrastructure Using Simula-
tions and Probabilities”. In: Runtime Verification. Berlin, Germany: Springer,
Nov. 2010, pp. 330–344. ISBN: 978-3-642-16611-2. DOI: 10.1007/978-3-642-
16612-9_25.

[28] Pankaj Berde et al. “ONOS: towards an open, distributed SDN OS”. In: HotSDN
’14: Proceedings of the third workshop on Hot topics in software defined network-
ing. New York, NY, USA: Association for Computing Machinery, Aug. 2014,
pp. 1–6. ISBN: 978-1-45032989-7. DOI: 10.1145/2620728.2620744.

[29] BEST DISTRIBUTIONAL FIT. Nov. 2020. URL: https://www.itl.nist.gov/
div898/software/dataplot/refman1/auxillar/bestfit.htm.

[30] K. Bhargavan et al. “Verisim: formal analysis of network simulations”. In:
IEEE Trans. Software Eng. 28.2 (Aug. 2002), pp. 129–145. ISSN: 1939-3520. DOI:
10.1109/32.988495.

[31] Karthikeyan Bhargavan, Davor Obradovic, and Carl A. Gunter. “Formal ver-
ification of standards for distance vector routing protocols”. In: J. ACM 49.4
(July 2002), pp. 538–576. ISSN: 0004-5411. DOI: 10.1145/581771.581775.

Bibliography 121

[32] Armin Biere et al. “Linear Encodings of Bounded LTL Model Checking”. In:
arXiv (Nov. 2006). DOI: 10.2168/LMCS-2(5:5)2006. eprint: cs/0611029.

[33] BIP Tools. Sept. 2015. URL: https://www-verimag.imag.fr/BIP-Tools-93.

[34] Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. “Auto-
matic Proof and Disproof in Isabelle/HOL”. In: Frontiers of Combining Sys-
tems. Berlin, Germany: Springer, Oct. 2011, pp. 12–27. ISBN: 978-3-642-24363-
9. DOI: 10.1007/978-3-642-24364-6_2.

[35] G. Bochmann and C. Sunshine. “Formal Methods in Communication Pro-
tocol Design”. In: IEEE Trans. Commun. 28.4 (Apr. 1980), pp. 624–631. ISSN:
1558-0857. DOI: 10.1109/TCOM.1980.1094685.

[36] Dominique Borrione et al. “A Formal Approach to the Verification of Net-
works on Chip”. In: J. Embedded Systems 2009.1 (Mar. 2009), pp. 548324–14.
ISSN: 1687-3963. DOI: 10.1155/2009/548324.

[37] Tom van den Broek and Julien Schmaltz. “Towards a formally verified network-
on-chip”. In: 2009 Formal Methods in Computer-Aided Design. IEEE, Nov. 2009,
pp. 184–187. ISBN: 978-1-4244-4966-8. DOI: 10.1109/FMCAD.2009.5351124.

[38] Brown, B. (2019). Cisco, UCLA & more launch Named Data Networking Con-
sortium. [online] Network World. URL: https : / / www . networkworld . com /
article/2602109/ucla-cisco-more-join-forces-to-replace-tcpip.

html.

[39] Peter Bulychev et al. “UPPAAL-SMC: Statistical Model Checking for Priced
Timed Automata”. In: arXiv (July 2012). DOI: 10.4204/EPTCS.85.1. eprint:
1207.1272.

[40] Doron Bustan, Sasha Rubin, and Moshe Y. Vardi. “Verifying ω-Regular Prop-
erties of Markov Chains”. In: Computer Aided Verification. Berlin, Germany:
Springer, July 2004, pp. 189–201. ISBN: 978-3-540-22342-9. DOI: 10.1007/978-
3-540-27813-9_15.

[41] Michael Carney et al. “Predicting probability distributions for surf height us-
ing an ensemble of mixture density networks”. In: Proceedings of the 22nd in-
ternational conference on Machine learning (2005).

[42] Hao Chen, Drew Dean, and David Wagner. “Model checking one million
lines of C code”. In: In Proceedings of the 11th Annual Network and Distributed
System Security Symposium (NDSS. 2004, pp. 171–185.

[43] Jen-Tzung Chien. “Chapter 7 - Deep Neural Network”. In: Source Separa-
tion and Machine Learning. Cambridge, MA, USA: Academic Press, Jan. 2019,
pp. 259–320. ISBN: 978-0-12-817796-9. DOI: 10.1016/B978- 0- 12- 804566-
4.00019-X.

[44] Frank Ciesinski and Marcus Größer. On Probabilistic Computation Tree Logic.
2002.

[45] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic verification of finite-
state concurrent systems using temporal logic specifications”. In: ACM Trans.
Program. Lang. Syst. 8.2 (Apr. 1986), pp. 244–263. ISSN: 0164-0925. DOI: 10.
1145/5397.5399.

[46] Gerald D. Cole, California Univ Los Angeles School Of Engineering Science,
and Applied. “Computer Network Measurements: Techniques and Experi-
ments”. In: DTIC (Oct. 1971). URL: https://apps.dtic.mil/sti/citations/
AD0739344.

122 Bibliography

[47] Eric Conrad, Seth Misenar, and Joshua Feldman. “Chapter 4 - Domain 4:
Communication and network security”. In: Eleventh Hour CISSP® (Third Edi-
tion). Syngress, Jan. 2017, pp. 95–116. ISBN: 978-0-12-811248-9. DOI: 10.1016/
B978-0-12-811248-9.00004-8.

[48] Costas Courcoubetis and Mihalis Yannakakis. “The complexity of probabilis-
tic verification”. In: J. ACM 42.4 (July 1995), pp. 857–907. ISSN: 0004-5411. DOI:
10.1145/210332.210339.

[49] Dataplot homepage. URL: https://www.itl.nist.gov/div898/software/
dataplot/homepage.htm.

[50] Mrinal Kanti Debbarma et al. “Performance analysis of network monitoring
tool through automated software engineering approach”. In: 2015 Interna-
tional Conference on Signal Processing and Communication Engineering Systems.
2015, pp. 402–406. DOI: 10.1109/SPACES.2015.7058294.

[51] Defense Advanced Research Projects Agency. URL: https://www.darpa.mil.

[52] M Delignette-Muller and C Dutang. “fitdistrplus: An R Package for Fitting
Distributions”. In: Journal of Statistical Software 64.4 (2015), pp. 1–34.

[53] DOMAIN NAMES. URL: https : / / datatracker . ietf . org / doc / html /
rfc1034.

[54] draft-asaeda-icnrg-contrace-02. URL: https://datatracker.ietf.org/doc/
html/draft-asaeda-icnrg-contrace-02.

[55] Robert Dumonceaux and Charles E. Antle. “Discrimination Between the Log-
Normal and the Weibull Distributions”. In: Technometrics 15.4 (1973), pp. 923–
926.

[56] Robert Dumonceaux, Charles E. Antle, and Gerald Haas. “Likelihood Ratio
Test for discrimination between two models with unknown scale and location
parameters”. In: Technometrics 15.1 (1973), p. 19.

[57] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The road to SDN: an in-
tellectual history of programmable networks”. In: SIGCOMM Comput. Com-
mun. Rev. 44.2 (Apr. 2014), pp. 87–98. ISSN: 0146-4833. DOI: 10.1145/2602204.
2602219.

[58] FILE TRANSFER PROTOCOL (FTP). URL: https://datatracker.ietf.org/
doc/html/rfc959.

[59] James J. Filliben. 4-Plot. National Institute of Standards and Technology, 2003.
URL: %7Bhttps://www.itl.nist.gov/div898/handbook/eda/section3/
4plot.htm%7D.

[60] James J. Filliben. Maximum Likelihood. National Institute of Standards and
Technology, 2003. URL: %7Bhttps://www.itl.nist.gov/div898/handbook/
eda/section3/eda3652.htm%7D.

[61] James J. Filliben. Mean Plot. National Institute of Standards and Technology,
2003. URL: %7Bhttp://web.archive.org/web/20180217195200/http://www.
itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm%7D.

[62] James J. Filliben. “The Probability Plot Correlation Coefficient Test for Nor-
mality”. In: (1975).

[63] James J. Filliben and Alan N. Heckert. Dataplot. National Institute of Stan-
dards and Technology, 1978. URL: %7Bhttp : / / web . archive . org / web /
20190819195854/https://www.itl.nist.gov/div898/software/dataplot/

%7D.

Bibliography 123

[64] Floodlight Controller - Project Floodlight. URL: https://floodlight.atlassian.
net/wiki/spaces/floodlightcontroller/overview.

[65] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. “Multi-Terminal Binary Decision
Diagrams: An Efficient Data Structure for Matrix Representation”. In: Formal
Methods in System Design 10.2 (Apr. 1997), pp. 149–169. ISSN: 1572-8102. DOI:
10.1023/A:1008647823331.

[66] Fabrizio Gabbiani and Steven J. Cox. “CHAPTER 11 - Probability and Ran-
dom Variables”. In: Mathematics for Neuroscientists. Cambridge, MA, USA:
Academic Press, Jan. 2010, pp. 155–173. ISBN: 978-0-12-374882-9. DOI: 10 .
1016/B978-0-12-374882-9.00011-3.

[67] Chavoosh Ghasemi, Hamed Yousefi, and Beichuan Zhang. “Internet-Scale
Video Streaming over NDN”. In: arXiv (Aug. 2020). eprint: 2008.02752. URL:
https://arxiv.org/abs/2008.02752v1.

[68] Jerry Glowniak. “History, structure, and function of the Internet”. In: Semin.
Nucl. Med. 28.2 (Apr. 1998), pp. 135–144. ISSN: 0001-2998. DOI: 10 . 1016 /
S0001-2998(98)80003-2.

[69] B. Goode. “Voice over Internet protocol (VoIP)”. In: Proceedings of the IEEE
90.9 (2002), pp. 1495–1517. DOI: 10.1109/JPROC.2002.802005.

[70] Paul Göransson, Chuck Black, and Timothy Culver. “Chapter 12 - SDN Ap-
plications”. In: Software Defined Networks (Second Edition). Morgan Kaufmann,
Jan. 2017, pp. 271–301. ISBN: 978-0-12-804555-8. DOI: 10.1016/B978-0-12-
804555-8.00012-0.

[71] Konstantinos Gotsis, Sotirios Goudos, and J.N. Sahalos. “A Test Lab for the
Performance Analysis of TCP Over Ethernet LAN on Windows Operating
System”. In: Education, IEEE Transactions on 48 (June 2005), pp. 318–328. DOI:
10.1109/TE.2004.842897.

[72] Khalid Halba and Charif Mahmoudi. “In-Vehicle Software Defined Network-
ing: An Enabler for Data Interoperability”. In: ICISDM ’18. Lakeland, FL,
USA: Association for Computing Machinery, 2018, pp. 93–97. ISBN: 9781450363549.
DOI: 10.1145/3206098.3206105. URL: https://doi.org/10.1145/3206098.
3206105.

[73] Yong-Qi Han et al. “Research of Network Monitoring Based on SNMP”. In:
2013 Third International Conference on Instrumentation, Measurement, Computer,
Communication and Control. 2013, pp. 411–414. DOI: 10.1109/IMCCC.2013.94.

[74] Andreas Hanemann et al. “A study on network performance metrics and
their composition”. In: Campus-Wide Information Systems (Aug. 2006). DOI: 10.
1108/10650740610704135.

[75] John Harrison. “HOL Light: An Overview”. In: Theorem Proving in Higher Or-
der Logics. Berlin, Germany: Springer, Aug. 2009, pp. 60–66. ISBN: 978-3-642-
03358-2. DOI: 10.1007/978-3-642-03359-9_4.

[76] Hossein Hassani and Mohammad Reza Yeganegi. “Selecting optimal lag or-
der in Ljung–Box test”. In: Physica A 541 (Mar. 2020), p. 123700. ISSN: 0378-
4371. DOI: 10.1016/j.physa.2019.123700.

[77] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning. New York, NY, USA: Springer, New York, NY, 2009. DOI:
10.1007/978-0-387-84858-7.

124 Bibliography

[78] John Heath et al. “Probabilistic model checking of complex biological path-
ways”. In: Theoret. Comput. Sci. 391.3 (Feb. 2008), pp. 239–257. ISSN: 0304-3975.
DOI: 10.1016/j.tcs.2007.11.013.

[79] T. A. Henzinger et al. “Symbolic Model Checking for Real-Time Systems”.
In: Inform. And Comput. 111.2 (June 1994), pp. 193–244. ISSN: 0890-5401. DOI:
10.1006/inco.1994.1045.

[80] T. A. Henzinger et al. “Symbolic model checking for real-time systems”. In:
[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer
Science. IEEE, June 1992, pp. 394–406. ISBN: 978-0-8186-2735. DOI: 10.1109/
LICS.1992.185551.

[81] T. Hérault et al. “Approximate Probabilistic Model Checking”. In: Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation, VM-
CAI’04. Jan. 2004, pp. 73–84.

[82] Thomas Hérault et al. “Approximate Probabilistic Model Checking”. In: Veri-
fication, Model Checking, and Abstract Interpretation. Berlin, Germany: Springer,
Jan. 2004, pp. 73–84. ISBN: 978-3-540-20803-7. DOI: 10.1007/978- 3- 540-
24622-0_8.

[83] Holger Hermanns, Björn Wachter, and Lijun Zhang. “Probabilistic CEGAR”.
In: Computer Aided Verification. Berlin, Germany: Springer, July 2008, pp. 162–
175. ISBN: 978-3-540-70543-7. DOI: 10.1007/978-3-540-70545-1_16.

[84] Wassily Hoeffding. “Probability Inequalities for Sums of Bounded Random
Variables”. In: J. Am. Stat. Assoc. 58.301 (Mar. 1963), pp. 13–30. ISSN: 0162-
1459. URL: http://www.jstor.org/stable/2282952.

[85] Katharina Hofer-Schmitz and Branka Stojanović. “Towards formal verifica-
tion of IoT protocols: A Review”. In: Comput. Networks 174 (June 2020), p. 107233.
ISSN: 1389-1286. DOI: 10.1016/j.comnet.2020.107233.

[86] Hypertext Transfer Protocol – HTTP/1.1. URL: https://datatracker.ietf.
org/doc/html/rfc2616.

[87] ICN Ping Protocol Specification. 2017. URL: https://tools.ietf.org/id/
draft-mastorakis-icnrg-icnping-02.html.

[88] IEEE 802.11, The Working Group Setting the Standards for Wireless LANs. URL:
https://www.ieee802.org/11.

[89] IEEE 802.3-2018 - IEEE Standard for Ethernet. URL: https://standards.ieee.
org/standard/802_3-2018.html.

[90] Internet - Foundation of the Internet. URL: https://www.britannica.com/
technology/Internet/Foundation-of-the-Internet.

[91] Internet Corporation for Assigned Names and Numbers (ICANN). URL: https:
//www.icann.org.

[92] Internet Engineering Task Force (IETF). URL: https://www.ietf.org/about.

[93] Internet Protocol. URL: https://datatracker.ietf.org/doc/html/rfc791.

[94] Md. Tariqul Islam, Nazrul Islam, and Md. Al Refat. “Node to Node Perfor-
mance Evaluation through RYU SDN Controller”. In: Wireless Pers. Commun.
112.1 (May 2020), pp. 555–570. ISSN: 1572-834X. DOI: 10.1007/s11277-020-
07060-4.

[95] Van Jacobson et al. Networking Named Content. 2009. ISBN: 9781605586366.
URL: https://named-data.net/wp-content/uploads/Jacob.pdf.

Bibliography 125

[96] Michel Jambu. “Chapter 3 - 1-D Statistical Data Analysis”. In: Exploratory and
Multivariate Data Analysis. Cambridge, MA, USA: Academic Press, Jan. 1991,
pp. 27–62. ISBN: 978-0-12-380090-9. DOI: 10.1016/B978-0-08-092367-3.
50007-1.

[97] James J Filliben. URL: https://www.nist.gov/people/james-j-filliben.

[98] David N. Jansen et al. “How fast and fat is your probabilistic model checker?
an experimental performance comparison”. In: HVC’07: Proceedings of the 3rd
international Haifa verification conference on Hardware and software: verification
and testing. Berlin, Germany: Springer-Verlag, Oct. 2007, pp. 69–85. ISBN: 978-
354077964. DOI: 10.5555/1787497.1787510.

[99] J. Jubin and J.D. Tornow. “The DARPA packet radio network protocols”. In:
Proceedings of the IEEE 75.1 (1987), pp. 21–32. DOI: 10.1109/PROC.1987.13702.

[100] David Kahaner et al. Numerical Methods and Software. Upper Saddle River,
NJ, USA: Prentice Hall, 1988. ISBN: 978-0-13627258-8. URL: https://books.
google.com/books?id=jipEAQAAIAAJ&newbks=0&hl=en&source=newbks_fb.

[101] Joost-Pieter Katoen et al. “The ins and outs of the probabilistic model checker
MRMC”. In: Perform. Eval. 68.2 (Feb. 2011), pp. 90–104. ISSN: 0166-5316. DOI:
10.1016/j.peva.2010.04.001.

[102] Joost-Pieter Katoen et al. “Three-valued abstraction for probabilistic systems”.
In: Journal of Logic and Algebraic Programming 81.4 (May 2012), pp. 356–389.
ISSN: 1567-8326. DOI: 10.1016/j.jlap.2012.03.007.

[103] Christoph Kern and Mark R. Greenstreet. “Formal verification in hardware
design: a survey”. In: ACM Trans. Des. Autom. Electron. Syst. 4.2 (Apr. 1999),
pp. 123–193. ISSN: 1084-4309. DOI: 10.1145/307988.307989.

[104] Kernel Density Plot. URL: https://www.itl.nist.gov/div898/software/
dataplot/refman1/auxillar/kernplot.htm.

[105] Muhammad Jawad Khokhar, Thibaut Ehlinger, and Chadi Barakat. “From
Network Traffic Measurements to QoE for Internet Video”. In: 2019 IFIP Net-
working Conference (IFIP Networking). 2019, pp. 1–9. DOI: 10.23919/IFIPNetworking.
2019.8816854.

[106] Siham Khoussi. “Some real data for testing”. In: GitHub repository (2021).

[107] Siham Khoussi et al. “A neural networks-based methodology for fitting data
to probability distributions”. In: 2021 IEEE/ACS 18th International Conference
on Computer Systems and Applications (AICCSA). 2021, pp. 1–7. DOI: 10.1109/
AICCSA53542.2021.9686821.

[108] Siham Khoussi et al. “NDN-trace: a path tracing utility for named data net-
working”. In: ICN ’17: Proceedings of the 4th ACM Conference on Information-
Centric Networking. New York, NY, USA: Association for Computing Machin-
ery, Sept. 2017, pp. 116–122. ISBN: 978-1-45035122-5. DOI: 10.1145/3125719.
3125738.

[109] Siham Khoussi et al. “Neural networks for classifying probability distribu-
tions”. In: NIST (2021). DOI: 10.6028/NIST.TN.2152. URL: https://nvlpubs.
nist.gov/nistpubs/TechnicalNotes/NIST.TN.2152.pdf.

[110] Siham Khoussi et al. “Performance evaluation of a NDN forwarder using sta-
tistical model checking”. In: CoRR abs/1905.01607 (2019). arXiv: 1905.01607.
URL: http://arxiv.org/abs/1905.01607.

126 Bibliography

[111] Siham Khoussi et al. “Performance Evaluation of the NDN Data Plane Us-
ing Statistical Model Checking”. In: Automated Technology for Verification and
Analysis. Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Cham:
Springer International Publishing, 2019, pp. 534–550.

[112] Siham Khoussi et al. “Performance Evaluation of the NDN Data Plane Us-
ing Statistical Model Checking”. In: Automated Technology for Verification and
Analysis. Cham, Switzerland: Springer, Oct. 2019, pp. 534–550. ISBN: 978-3-
030-31783-6. DOI: 10.1007/978-3-030-31784-3_31.

[113] Shinji Kikuchi and Yasuhide Matsumoto. “Performance Modeling of Concur-
rent Live Migration Operations in Cloud Computing Systems Using PRISM
Probabilistic Model Checker”. In: 2011 IEEE 4th International Conference on
Cloud Computing. IEEE, pp. 4–9. DOI: 10.1109/CLOUD.2011.48.

[114] P.T. Kirstein. “Early experiences with the Arpanet and Internet in the United
Kingdom”. In: IEEE Annals of the History of Computing 21.1 (1999), pp. 38–44.
DOI: 10.1109/85.759368.

[115] G. V. Kobyz and A. V. Zamyatin. “Conditional probability density estimation
using artificial neural network”. In: (2015), pp. 441–445.

[116] Teemu Koponen et al. “A data-oriented (and beyond) network architecture”.
In: SIGCOMM Comput. Commun. Rev. 37.4 (Aug. 2007), pp. 181–192. ISSN:
0146-4833. DOI: 10.1145/1282427.1282402.

[117] Heiko Koziolek, Bastian Schlich, and Carlos Bilich. “A Large-Scale Industrial
Case Study on Architecture-Based Software Reliability Analysis”. In: 2010
IEEE 21st International Symposium on Software Reliability Engineering. 2010,
pp. 279–288.

[118] Valeriyi Kuzmin et al. “Method of Probability Distribution Fitting for Statis-
tical Data with Small Sample Size”. In: 2020 10th International Conference on
Advanced Computer Information Technologies (ACIT). IEEE, Sept. 2020, pp. 221–
224. DOI: 10.1109/ACIT49673.2020.9208842.

[119] Marta Kwiatkowska, Gethin Norman, and David Parker. “Symmetry Reduc-
tion for Probabilistic Model Checking”. In: Computer Aided Verification. Berlin,
Germany: Springer, Aug. 2006, pp. 234–248. ISBN: 978-3-540-37406-0. DOI:
10.1007/11817963_23.

[120] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Veri-
fication of Probabilistic Real-time Systems. Vol. 6806. July 2011. ISBN: 978-3-642-
22109-5. DOI: 10.1007/978-3-642-22110-1_47.

[121] Marta Z. Kwiatkowska, Gethin Norman, and Jeremy Sproston. “Probabilistic
Model Checking of the IEEE 802.11 Wireless Local Area Network Protocol”.
In: PAPM-PROBMIV ’02: Proceedings of the Second Joint International Workshop
on Process Algebra and Probabilistic Methods, Performance Modeling and Verifi-
cation. Berlin, Germany: Springer-Verlag, July 2002, pp. 169–187. ISBN: 978-
354043913. DOI: 10.5555/645777.668436.

[122] Labelled Transition System - an overview | ScienceDirect Topics. URL: https://
www . sciencedirect . com / topics / mathematics / labelled - transition -

system.

[123] Sophie Laplante et al. Probabilistic Abstraction for Model Checking: An Approach
Based on Property Testing. IEEE Computer Society, July 2002. ISBN: 978-0-7695-
1483. DOI: 10.1109/LICS.2002.1029815.

Bibliography 127

[124] Richard Lassaigne and Sylvain Peyronnet. “Approximate Verification of Prob-
abilistic Systems”. In: PAPM-PROBMIV ’02: Proceedings of the Second Joint In-
ternational Workshop on Process Algebra and Probabilistic Methods, Performance
Modeling and Verification. Berlin, Germany: Springer-Verlag, July 2002, pp. 213–
214. ISBN: 978-354043913. DOI: 10.5555/645777.668441.

[125] A. M. Law and M. G. McComas. “How the ExpertFit distribution-fitting soft-
ware can make your simulation models more valid”. In: Proceedings of the
Winter Simulation Conference 1 (2011), pp. 199–204.

[126] Axel Legay, Benoıt Delahaye, and Saddek Bensalem. “Statistical Model Check-
ing: An Overview”. In: Runtime Verification. Berlin, Germany: Springer, Nov.
2010, pp. 122–135. ISBN: 978-3-642-16611-2. DOI: 10.1007/978-3-642-16612-
9_11.

[127] Alexios Lekidis, Marius Bozga, and Saddek Bensalem. “Model-based valida-
tion of CANopen systems”. In: May 2014. DOI: 10.1109/WFCS.2014.6837602.

[128] Alexios Lekidis et al. “A model-based design flow for CAN-based systems”.
In: Nov. 2013.

[129] Teng Liang, Ju Pan, and Beichuan Zhang. “NDNizing existing applications:
research issues and experiences”. In: ICN ’18: Proceedings of the 5th ACM Con-
ference on Information-Centric Networking. New York, NY, USA: Association for
Computing Machinery, Sept. 2018, pp. 172–183. ISBN: 978-1-45035959-7. DOI:
10.1145/3267955.3267969.

[130] Aristidis Likas. “Probability density estimation using artificial neural net-
works”. In: Computer Physics Communications 135 (2001), pp. 167–175.

[131] Stephen Lukasik. “Why the Arpanet Was Built”. In: IEEE Annals of the History
of Computing 33.3 (2011), pp. 4–21. DOI: 10.1109/MAHC.2010.11.

[132] N Hastings M Evans and B Peacock. “Statistical Distributions, Third Edition”.
In: Measurement Science and Technology 12.1 (Dec. 2000), pp. 117–117. DOI: 10.
1088 / 0957 - 0233 / 12 / 1 / 702. URL: https : / / doi . org / 10 . 1088 / 0957 -
0233/12/1/702.

[133] Rajib Maity. “Probability Distributions and Their Applications”. In: Statistical
Methods in Hydrology and Hydroclimatology. Singapore: Springer, May 2018,
pp. 93–143. ISBN: 978-981-10-8778-3. DOI: 10.1007/978-981-10-8779-0_4.

[134] Anggi Mardiyono, Walidatush Sholihah, and Faisal Hakim. “Mobile-based
Network Monitoring System Using Zabbix and Telegram”. In: 2020 3rd In-
ternational Conference on Computer and Informatics Engineering (IC2IE). 2020,
pp. 473–477. DOI: 10.1109/IC2IE50715.2020.9274582.

[135] Dan Marinescu. Cloud Computing. Morgan Kaufmann, Nov. 2017. ISBN: 978-
0-12812810-7. URL: https://www.elsevier.com/books/cloud-computing/
marinescu/978-0-12-812810-7.

[136] Baphumelele Masikisiki, Siyabulela Dyakalashe, and Mfundo Shakes Scott.
“Network monitoring system for network equipment availability and per-
formance reporting”. In: 2017 IST-Africa Week Conference (IST-Africa). 2017,
pp. 1–12. DOI: 10.23919/ISTAFRICA.2017.8102339.

[137] A. Maydeu-Olivares and C. Garcıa-Forero. “Goodness-of-Fit Testing”. In: In-
ternational Encyclopedia of Education (Third Edition). Walthm, MA, USA: Else-
vier, Jan. 2010, pp. 190–196. ISBN: 978-0-08-044894-7. DOI: 10.1016/B978-0-
08-044894-7.01333-6.

128 Bibliography

[138] Catherine Meadows. “Applying Formal Methods to the Analysis of a Key
Management Protocol”. In: J. Comput. Secur. 1.1 (Jan. 1992), pp. 5–35. ISSN:
0926-227X. DOI: 10.5555/2699855.2699857.

[139] Braham Lotfi Mediouni et al. “ 2.0: Statistical Model Checking Stochastic
Real-Time Systems”. In: Automated Technology for Verification and Analysis -
16th International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10,
2018, Proceedings. 2018, pp. 536–542.

[140] Jan Medved et al. “OpenDaylight: Towards a Model-Driven SDN Controller
architecture”. In: Proceeding of IEEE International Symposium on a World of Wire-
less, Mobile and Multimedia Networks 2014. 2014, pp. 1–6. DOI: 10.1109/WoWMoM.
2014.6918985.

[141] David O. Meltzer and Peter C. Smith. “Theoretical Issues Relevant to the Eco-
nomic Evaluation of Health Technologies”. In: Handbook of Health Economics.
Vol. 2. Walthm, MA, USA: Elsevier, Jan. 2011, pp. 433–469. DOI: 10.1016/
B978-0-444-53592-4.00007-4.

[142] Mersenne Twister - an overview | ScienceDirect Topics. June 2021. URL: https:
//www.sciencedirect.com/topics/computer-science/mersenne-twister.

[143] Devang Mistry et al. “Network traffic measurement and analysis”. In: 2016
IEEE Long Island Systems, Applications and Technology Conference (LISAT). 2016,
pp. 1–7. DOI: 10.1109/LISAT.2016.7494141.

[144] Decebal Constantin Mocanu et al. “Network performance assessment with
Quality of experience benchmarks”. In: 10th International Conference on Net-
work and Service Management (CNSM) and Workshop. 2014, pp. 332–335. DOI:
10.1109/CNSM.2014.7014187.

[145] Marie-Jose Montpetit, Serge Fdida, and Jianping Wang. “Future Internet: Ar-
chitectures and Protocols”. In: IEEE Communications Magazine 57.7 (2019),
pp. 12–12. DOI: 10.1109/MCOM.2019.8767072.

[146] David E. Morgan et al. “A computer network monitoring system”. In: IEEE
Transactions on Software Engineering SE-1.3 (1975), pp. 299–311. DOI: 10.1109/
TSE.1975.6312855.

[147] Yoshihiro Nakamura and Osamu Hasegawa. “Non parametric density esti-
mation based on self-organizing incremental neural network for large noisy
data”. In: IEEE Transactions on Neural Networks and Learning Systems 28.1 (2017),
pp. 8–17.

[148] Named Data Networking - Named Data Networking (NDN). URL: https : / /
named-data.net/publications/named_data_networking_ccr.

[149] Named Data Networking Project. USA, Oct. 2010. URL: http://named-data.
net/techreport/TR001ndn-proj.pdf.

[150] ndn-tools. URL: https://github.com/named-data/ndn-tools.

[151] VASERMANIS NECHVAL NECHVAL and MAKEEV. Constructing shortest-
length confidence intervals. URL: https://www.researchgate.net/profile/
Konstantin-Nechval/publication/267986471_CONSTRUCTING_SHORTEST-

LENGTH_CONFIDENCE_INTERVALS/links/55c37b3008aeb97567400f29/CONSTRUCTING-

SHORTEST-LENGTH-CONFIDENCE-INTERVALS.pdf.

[152] NFD Developer’s Guide. Tech. rep. URL: http://named-data.net/techreports.
html.

Bibliography 129

[153] NLSR - Named Data Link State Routing Protocol — Named Data Link State Rout-
ing Protocol (NLSR) 0.6.0-8-g3781c7e documentation. URL: https : / / named -
data.net/doc/NLSR/current.

[154] Gethin Norman et al. “Using probabilistic model checking for dynamic power
management”. In: Form. Asp. Comp. 17.2 (Aug. 2005), pp. 160–176. ISSN: 1433-
299X. DOI: 10.1007/s00165-005-0062-0.

[155] Ayoub Nouri. BIP-SMC : A Statistical Model Checking Engine for the BIP frame-
work. Dec. 2017. URL: https://www-verimag.imag.fr/BIP-SMC-A-Statistical-
Model-Checking.html.

[156] Ayoub Nouri. “Rigorous System-level Modeling and Performance Evalua-
tion for Embedded System Design”. PhD thesis. Grenoble, France: Université
Grenoble Alpes, Apr. 2015. URL: https://hal.inria.fr/tel-01148690.

[157] Ayoub Nouri. “Rigorous System-level Modeling and Performance Evalua-
tion for Embedded System Design.” PhD thesis. Grenoble Alpes University,
France, 2015.

[158] Ayoub Nouri et al. “ASTROLABE: A Rigorous Approach for System-Level
Performance Modeling and Analysis”. In: ACM Trans. Embedded Comput. Syst.
15.2 (2016), 31:1–31:26.

[159] Ayoub Nouri et al. “Building Faithful High-level Models and Performance
Evaluation of Manycore Embedded Systems”. In: MEMOCODE. Lausanne,
Switzerland, Oct. 2014. DOI: 10.1109/MEMCOD.2014.6961864. URL: https:
//hal.inria.fr/hal-01087671.

[160] Ayoub Nouri et al. “Performance Evaluation of Stochastic Real-Time Systems
with the SBIP Framework”. In: International Journal of Critical Computer-Based
Systems 8 (Jan. 2018). DOI: 10.1504/IJCCBS.2018.10017703.

[161] Ayoub Nouri et al. “Performance evaluation of stochastic real-time systems
with the SBIP framework”. In: International Journal of Critical Computer-Based
Systems 8.3-4 (2018), pp. 340–370.

[162] Ayoub Nouri et al. “Statistical Model Checking QoS Properties of Systems
with SBIP”. In: Int. J. Softw. Tools Technol. Transf. (STTT) 17.2 (Apr. 2015),
pp. 171–185. ISSN: 1433-2779.

[163] NSF Announces Future Internet Architecture Awards. URL: https://www.nsf.
gov/news/news_summ.jsp?cntn_id=117611.

[164] NSF Future Internet Architecture Project. June 2016. URL: http://www.nets-
fia.net.

[165] PACKET SATELLITE TECHNOLOGY REFERENCE SOURCES. URL: https:
//datatracker.ietf.org/doc/html/rfc829.

[166] Larry L. Peterson and Bruce S. Davie. “1 - Foundation”. In: Computer Networks
(Fifth Edition). Ed. by Larry L. Peterson and Bruce S. Davie. Fifth Edition. The
Morgan Kaufmann Series in Networking. Boston: Morgan Kaufmann, 2012,
pp. 1–69. ISBN: 978-0-12-385059-1. DOI: https://doi.org/10.1016/B978-0-
12-385059-1.00001-6. URL: https://www.sciencedirect.com/science/
article/pii/B9780123850591000016.

[167] Amir Pnueli, Jessie Xu, and Lenore D. Zuck. “Liveness with (0, 1, infty)-
Counter Abstraction”. In: CAV ’02: Proceedings of the 14th International Con-
ference on Computer Aided Verification. Berlin, Germany: Springer-Verlag, July
2002, pp. 107–122. ISBN: 978-354043997. DOI: 10.5555/647771.734286.

130 Bibliography

[168] Amir Pnueli and Lenore D. Zuck. “Probabilistic verification”. In: Inform. And
Comput. 103.1 (Mar. 1993), pp. 1–29. ISSN: 0890-5401. DOI: 10.1006/inco.
1993.1012.

[169] Probability Distribution Function - an overview | ScienceDirect Topics. URL: https:
//www.sciencedirect.com/topics/mathematics/probability-distribution-

function.

[170] Junaid Qadir and Osman Hasan. “Applying Formal Methods to Network-
ing: Theory, Techniques, and Applications”. In: IEEE Communications Surveys
Tutorials 17.1 (2015), pp. 256–291. DOI: 10.1109/COMST.2014.2345792.

[171] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Vienna, Austria, 2013. URL: http://www.R-
project.org/.

[172] L.R. Rabiner. “A tutorial on hidden Markov models and selected applications
in speech recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–286.
DOI: 10.1109/5.18626.

[173] Leonardo Reyneri, Valentina Colla, and Marco Vannucci. “Estimate of a prob-
ability density function through neural networks”. In: 6691.1 (2011), pp. 57–
64.

[174] Jonas Rothfuss et al. “Conditional Density Estimation with Neural Networks:
Best Practices and Benchmarks”. In: (2019). URL: %7Bhttp://arxiv.org/abs/
1903.00954%7D.

[175] J. Rutten et al. Mathematical Techniques for Analyzing Concurrent and Probabilis-
tic Systems, P. Panangaden and F. van Breugel (eds.) Vol. 23. CRM Monograph
Series. American Mathematical Society, 2004.

[176] Caitlin Sadowski et al. “Lessons from Building Static Analysis Tools at Google”.
In: Communications of the ACM (CACM) 61 Issue 4 (2018), pp. 58–66. URL:
https://dl.acm.org/citation.cfm?id=3188720.

[177] K. Schittkowski. “EASY-FIT: a software system for data fitting in dynamical
systems”. In: Structural and Multidisciplinary Optimization 23 (2002), pp. 153–
169.

[178] SDN Applications | Elsevier Enhanced Reader. DOI: 10 . 1016 / B978 - 0 - 12 -
804555-8.00012-0.

[179] SDN Series Part Three: NOX, the Original OpenFlow Controller - The New Stack.
URL: https://thenewstack.io/sdn-series-part-iii-nox-the-original-
openflow-controller.

[180] Erik Seligman, Tom Schubert, and M. V. Achutha Kiran Kumar. “Chapter 1 -
Formal verification: From dreams to reality”. In: Formal Verification. Morgan
Kaufmann, Jan. 2015, pp. 1–22. ISBN: 978-0-12-800727-3. DOI: 10.1016/B978-
0-12-800727-3.00001-0.

[181] Koushik Sen, Mahesh Viswanathan, and Gul Agha. “Statistical Model Check-
ing of Black-Box Probabilistic Systems”. In: Computer Aided Verification. Berlin,
Germany: Springer, July 2004, pp. 202–215. ISBN: 978-3-540-22342-9. DOI: 10.
1007/978-3-540-27813-9_16.

Bibliography 131

[182] Anita Shinde and S. M. Chaware. “Content Centric Networks (CCN): A Sur-
vey”. In: 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, An-
alytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud)
(I-SMAC), 2018 2nd International Conference on. IEEE, Aug. 2018, pp. 595–598.
DOI: 10.1109/I-SMAC.2018.8653769.

[183] Vitaly Shmatikov. “Probabilistic analysis of an anonymity system”. In: J. Com-
put. Secur. 12.3,4 (May 2004), pp. 355–377. ISSN: 0926-227X. DOI: 10.5555/
1297352.1297359.

[184] B. W. Silverman. Kernel Density Estimation Using the Fast Fourier Transform.
1982. URL: https://rss.onlinelibrary.wiley.com/doi/epdf/10.2307/
2347084.

[185] Simple Mail Transfer Protocol. URL: https://datatracker.ietf.org/doc/
html/rfc5321.

[186] Oktay Simsek and Marco Pospiech. “A network performance measurement
tool”. In: 2013 5th IEEE International Conference on Broadband Network Multi-
media Technology. 2013, pp. 45–48. DOI: 10.1109/ICBNMT.2013.6823912.

[187] Single Sample Acceptance Plan. URL: https://www.itl.nist.gov/div898/
software/dataplot/refman1/auxillar/singsamp.htm.

[188] M. A. Stephens. “EDF Statistics for Goodness of Fit and Some Comparisons”.
In: Journal of the American Statistical Association 69.347 (1974), p. 730.

[189] The Evolution of Packet Switching. URL: https://web.archive.org/web/
20160324033133/http://www.packet.cc/files/ev-packet-sw.html.

[190] The evolution of Software Defined Networking. URL: https://www.redhat.com/
en/blog/evolution-software-defined-networking.

[191] F. A. Tobagi, R. Binder, and B. Leiner. “Packet radio and satellite networks”.
In: IEEE Commun. Mag. 22 (Nov. 1984), pp. 24–40. ISSN: 0163-6804. URL: https:
//ui.adsabs.harvard.edu/abs/1984IComM..22...24T/abstract.

[192] Claudio Topdcic and Joachim Kaiser. “The SATNET Monitoring System”.
In: MILCOM 1985 - IEEE Military Communications Conference. Vol. 2. 1985,
pp. 468–476. DOI: 10.1109/MILCOM.1985.4795070.

[193] Traceroute Using an IP Option. URL: https://datatracker.ietf.org/doc/
html/rfc1393.

[194] TRANSMISSION CONTROL PROTOCOL. URL: https : / / datatracker .
ietf.org/doc/html/rfc793.

[195] Tutorial BIP2 2015.04 (RC7) documentation. Apr. 2015. URL: https : / / www -
verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/tutorial.html#

hello-world.

[196] Kazuaki Ueda et al. “Demo: Dynamic adaptive streaming over NDN using
explicit congestion feedback”. In: 2017 IEEE International Symposium on Lo-
cal and Metropolitan Area Networks (LANMAN). 2017, pp. 1–2. DOI: 10.1109/
LANMAN.2017.7972182.

[197] “Understanding and Choosing the Right Probability Distributions”. In: Ad-
vanced Analytical Models. Chichester, England, UK: John Wiley & Sons, Ltd,
Oct. 2015, pp. 899–917. DOI: 10.1002/9781119197096.app03.

[198] User Datagram Protocol. URL: https://datatracker.ietf.org/doc/html/
rfc768.

132 Bibliography

[199] Moshe Y. Vardi. “Automatic verification of probabilistic concurrent finite state
programs”. In: SFCS ’85: Proceedings of the 26th Annual Symposium on Founda-
tions of Computer Science. USA: IEEE Computer Society, Oct. 1985, pp. 327–
338. ISBN: 978-081860844. DOI: 10.1109/SFCS.1985.12.

[200] A. Wald. “Sequential Tests of Statistical Hypotheses”. In: Breakthroughs in
Statistics: Foundations and Basic Theory. New York, NY, USA: Springer, New
York, NY, 1992, pp. 256–298. ISBN: 978-0-387-94037-3. DOI: 10.1007/978-1-
4612-0919-5_18.

[201] Anduo Wang et al. “Formally Verifiable Networking”. In: (2009). URL: https:
//www.semanticscholar.org/paper/Formally-Verifiable-Networking-

Wang-Jia/4a3c5ff896c27697c19dedcfa01f10cb6698ce9e.

[202] Wambura Wasira. Formal Verification Methods. Feb. 2020. DOI: 10.1007/3-
540-.

[203] Karl Pichotta Wesley Tansey and James G. Scott. “Better Conditional Density
Estimation for Neural Networks”. In: (2016). URL: %7Bhttps://arxiv.org/
abs/1606.02321%7D.

[204] What are Autonomous System Numbers (ASN) for Internet? | ThousandEyes. URL:
https://www.thousandeyes.com/learning/glossary/as- autonomous-

system.

[205] What is a Probability Distribution. Jan. 2018. URL: https://www.itl.nist.gov/
div898/handbook/eda/section3/eda361.htm.

[206] G. Xylomenos et al. “A Survey of Information-Centric Networking Research”.
In: IEEE Communications Surveys Tutorials 16.2 (2014), pp. 1024–1049.

[207] H. L. S. Younes. “Verification and Planning for Stochastic Processes with
Asynchronous Events”. PhD thesis. Carnegie Mellon, 2005.

[208] Håkan L. S. Younes and R. Simmons. “Verification and planning for stochastic
processes with asynchronous events”. In: 2004.

[209] Håkan L. S. Younes and Reid G. Simmons. “Probabilistic Verification of Dis-
crete Event Systems Using Acceptance Sampling”. In: Computer Aided Veri-
fication. Berlin, Germany: Springer, Sept. 2002, pp. 223–235. ISBN: 978-3-540-
43997-4. DOI: 10.1007/3-540-45657-0_17.

[210] Hakan Lorens Samir Younes and Reid G. Simmons. “Verification and Plan-
ning for Stochastic Processes with Asynchronous Events”. AAI3159989. PhD
thesis. USA, 2004. ISBN: 0496934759.

[211] Artem Yushkovskiy. “Comparison of Two Theorem Provers: Isabelle/HOL
and Coq”. In: arXiv (Aug. 2018). eprint: 1808.09701. URL: https://arxiv.
org/abs/1808.09701v2.

[212] Haitao Zhang. NDNFit: An Open mHealth Application Built on Named Data Net-
working. 2018. URL: https://escholarship.org/uc/item/8h8950n3.

[213] Lixia Zhang et al. “Named Data Networking”. In: SIGCOMM Comput. Com-
mun. Rev. 44.3 (July 2014), pp. 66–73. ISSN: 0146-4833.

