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Summary

Ferritic steels, made of a body-centered cubic (bcc) iron matrix with interstitial carbon so-

lutes, are widely-used structural materials. However, the atomic-scale mechanisms which

control their plasticity are still only partially understood. At low temperature, the plastic

deformation of bcc metals is controlled by the mobility of the screw dislocations, which is

hindered by both a strong resistance of the lattice itself, and the presence of other crystal

defects, among which are solute atoms.

Atomic-scale models of dislocation mobility based on the Transition State Theory (TST)

constitute a useful framework to model plastic flow in pure metals and in alloys. However,

the approximations often used (harmonic approximation, constant activation entropy) yield

poor predictions in iron. We used the recent projected average force integrator method to

compute the activation free enthalpy for kink pair nucleation, including anharmonic effects.

The data show that the harmonic regime is limited to very low temperatures, below 20 K.

Non-linearities remain small below 100 K, allowing to compute an effective activation en-

tropy, which increases when the activation enthalpy decreases, corresponding to an inverse

Meyer-Neldel behavior. Integrating these effects in dislocation mobility models greatly im-

proves the agreement with direct molecular dynamics (MD) simulations.

Extensions to Fe-C alloys are limited by the realism of the interatomic potentials available

for this system. To address this issue, we combined two existing empirical potentials for Fe

and Fe-C to reproduce both the Peierls mechanism and the carbon-induced screw dislocation

core reconstruction found in ab initio calculations. Using this hybrid potential, MD simula-

tions of the glide of screw dislocations in random solid solutions confirm a strong solute

strengthening, caused by complex short-ranged interaction processes. We also considered

an idealized geometry where a screw dislocation interacts with a row of carbon atoms. Com-

bining MD simulations and saddle-point search methods, we unveil a very strong pinning

when the solute separation is below about 100 Burgers vectors. This effect is due to the ne-

cessity to nucleate two consecutive kink pairs on the screw dislocation, with the second kink

pair having a markedly increased activation enthalpy. We developed a harmonic TST model

of this process that also integrates the entropic effects observed in pure iron, which yields a
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good agreement with MD simulations conducted up to 300 K. This work provides elementary

processes and parameters that will be useful for larger-scale models and in particular kinetic

Monte Carlo simulations.
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Résumé

Les aciers ferritiques, constitués d’une matrice de fer cubique centré (CC) avec des solutés

de carbone interstitiels, sont des matériaux de structure largement utilisés. Pourtant, les mé-

canismes qui contrôlent leur plasticité à l’échelle atomique ne sont encore que partiellement

compris. A basse température, la déformation plastique des métaux CC est contrôlée par la

mobilité des dislocations vis, qui est limitée à la fois par une forte résistance du réseau lui-

même, et par la présence d’autres défauts cristallins, dont notamment les atomes de soluté.

Les modèles de mobilité des dislocations à l’échelle atomique basés sur la théorie de l’état

de transition (TET) fournissent un cadre pour modéliser la déformation plastique des métaux

purs et de leurs alliages. Cependant, les approximations couramment utilisées pour appli-

quer ces modèles (approximation harmonique, entropie d’activation constante) donnent de

médiocres résultats dans le fer. Nous avons calculé l’enthalpie libre d’activation pour la nu-

cléation de paires de crans grâce à la récente méthode projected average force integrator, qui

permet de prendre en compte les effets anharmoniques. Les données indiquent que le régime

harmonique est limité à des températures très basses, inférieures à 20 K. Les non-linéarités

restent faibles en dessous de 100 K, permettant de calculer une entropie d’activation effective,

qui augmente lorsque l’enthalpie d’activation diminue, ce qui correspond à un comportement

Meyer-Neldel inverse. L’intégration de ces effets dans les modèles de mobilité des dislocations

améliore considérablement l’accord avec les simulations de dynamique moléculaire (DM).

L’application de ces approches aux alliages Fe-C demeure limitée par le réalisme des po-

tentiels interatomiques disponibles pour ce système. Pour résoudre ce problème, nous avons

combiné deux potentiels empiriques existants pour Fe et Fe-C afin de reproduire à la fois

le mécanisme de Peierls et la reconstruction des coeurs de dislocation vis en présence de

carbone mise en évidence par des calculs ab initio. Des simulations de DM du glissement

d’une dislocation vis dans une solution solide aléatoire utilisant ce potentiel confirment un

fort durcissement, causé par des processus complexes d’interaction à courte distance entre

dislocation et solutés. Nous avons également étudié une géométrie idéalisée où une dislo-

cation vis interagit avec une rangée d’atomes de carbone. En combinant des simulations de

DM et des méthodes de recherche de point-col, nous dévoilons un très fort ancrage lorsque
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la séparation des solutés est inférieure à environ 100 vecteurs de Burgers. Cet effet est dû à

la nécessité de nucléer deux paires de cran consécutivement sur la dislocation, la deuxième

paire ayant une enthalpie d’activation nettement augmentée. Nous avons développé un mo-

dèle de ce processus basé sur la TET harmonique, qui intègre également les effets entropiques

observés dans le fer pur, en bon accord avec les simulations de DM menées jusqu’à 300 K.

Ce travail fournit des processus et des paramètres élémentaires qui seront utiles pour des

modèles à plus grande échelle et en particulier des simulations Monte Carlo cinétique.
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0 Introduction

0.1 Ageing of nuclear reactor vessels

Nuclear power is widely regarded as a low-carbon emission method of electricity genera-

tion (Lenzen, 2008; Warner and Heath, 2012). Compared to fossile fuels, which are used for

60% of worldwide electricity production (see Fig. 0.1) and account for a large part of global

greenhouse gas emissions, nuclear energy could contribute to the mitigation of global cli-

mate change and air pollution (Kharecha and Hansen, 2013). While the benefit of new in-

vestments in nuclear power compared to renewable energies is still debated (Sovacool et al.,

2020), it has become clear that leveraging existing nuclear power capacity can help reach

greenhouse gas reduction goals. However, this might be challenged by the limited lifetime

of nuclear reactors, often estimated as 50–60 years (Ballesteros et al., 2012). In France for

example, existing reactors have been exploited for 19 to 41 years, with a median age of 36

years (IAEA, 2019). Reactor closure would result in a reduction in electric production ca-

pacity, likely compensated by a massive use of fossile fuels —which would in turn increase

greenhouse gas emissions. Instead, operation should be prolonged to more than 50 years to

buy time as energetic transition and renewable deployment are ramping up (Mainsant, 2018).

The possiblity of extending the lifetime of existing nuclear power plants has thus become a

burning issue in the face of climate change emergency (Pachauri et al., 2014) and ubiquitous

calls to cut greenhouse gas emissions.

The main component of pressurized water reactors (PWR) is their vessel, made of 330–520

tons of ferritic steel (depending on the generation of the reactor) and housing the reactor

core, which cannot be replaced at a reasonable cost. The integrity of the vessel can therefore

be the limiting feature for the PWR operation lifetime. The vessel is also an essential safety

component, as it acts as the second barrier of containment of radioactive material. One key

aspect is thus to make sure that safety margins used for PWRs design remain valid, including

in the conditions of an accident. Material properties can be computed experimentally and

their evolution monitored, but investigating all relevant conditions is costly and difficult, es-

1



0 Introduction

1985 20201990 1995 2000 2005 2010 2015

0%

20%

40%

60%

80%

100%

Fossil fuels

Nuclear

Renewables

Figure 0.1: Share of the world total electricity production from fossil fuels, nuclear
and renewables. Source: Our World in Data based on BP Statistical Review of
World Energy & Ember (2021)

pecially for accidental conditions. The use of physical models to extend empirical approaches

is therefore growing (CEA-DEN, 2014).

Vessel steel is subject to thermal ageing and irradiation during operation, which cause

strengthening, i.e. an increase of the yield stress, and an embrittlement that reduces its abil-

ity to deform plastically under a high mechanical load. The yield stress increase and loss

of ductility that characterize irradiation hardening are illustrated in Fig. 0.2. The creation

of irradiation defects involves a number of mechanisms at the atomic scale: the impact of

an energetic particule results in a cascade of atomic displacements, and the formation of

residual point defects (i.e. the primary damage) (Becquart et al., 2021); new defects interact

with existing microstructural defects (e.g. dislocations, solutes), possibly affecting their mo-

bility (Zamzamian et al., 2019); and the accumulation or diffusion of these defects can create

strong obstacles to dislocation motion (e.g. precipitates, dislocation loops) that cause hard-

ening (Tipping, 2010). On the other hand, thermal ageing allows the diffusion of interstitial

solutes, such as carbon in iron, to crystal defects and notably to dislocations, where they

form Cottrell atmospheres (Cottrell and Bilby, 1949; Wilde et al., 2000) that limit disloca-

tions mobility (Berns and Theisen, 2008). While Cottrell atmosphere modelling has a long

history (Cottrell and Bilby, 1949; Zhao et al., 2000), and their formation in steels has been

studied by several authors at the atomic scale (Veiga et al., 2013; Waseda et al., 2017; Candela

et al., 2020), an atomistically-informed model of strengthening by interstitial solutes is still

lacking. Understanding the processes by which strengthening emerges is especially relevant

2



0.2 Multi-scale modelling approach of plasticity

in order to prevent failure in accidental conditions. Important modelling efforts are there-

fore devoted to their integration in plasticity models, which involves various techniques at

different scales (Lu and Kaxiras, 2004).

(a) Yield stress augmentation associated with
thermal ageing for different times and temper-
atures. Reproduced from De et al. (2000).

(b) Stress-strain curves for differ-
ent irradiation conditions. Unirr.
refers to the unirradiated material.
Reproduced from Tipping (2010)

Figure 0.2: Effect of thermal ageing and irradiation on ferritic steels.

0.2 Multi-scale modelling approach of plasticity

The development of plasticity models aims at understanding the relations between the mi-

crostructure and mechanical properties of metals. Continuous models of crystal plasticity

(CP), often based on the Finite-Element Method (FEM), are widely-used engineering tools,

able to predict the mechanical properties in conditions that were not necessarily tested ex-

perimentally using general constitutive laws. But the accuracy of such approaches can be

limited (Pinna et al., 2015; Mello et al., 2016) and they remain phenomenological (Tipping,

2010).

To improve the reliability of these models, connections should be drawn with lower-scale

plasticity models (van der Giessen et al., 2020) which are based on the deformation mecha-

nisms allowed by crystal defects —among which are dislocations, which control plastic de-

formation under most conditions (Kubin, 2013). As dislocation physics spans a wide range of

length and timescales, there is no unique technique able to model dislocations from the scale

3
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Figure 0.3: Multi-scale mapping of the main techniques used in metals plasticity
modelling.

of their core up to the polycrystalline microstructural scale, but a set of discrete and continu-

ous numerical methods which together form a multi-scale scheme, presented in Fig.0.3. It is

to be noted that several of these methods can be coupled within a single simulation, e.g. using

continuous methods in some regions to reduce the computational load and number of degrees

of freedom associated with discrete methods. Prominent examples of coupling methods in-

clude the quasicontinuum method (Shenoy et al., 1999; Miller and Tadmor, 2002; Kochmann

and Amelang, 2016), Coupled Atomistic/Discrete-Dislocation (CADD) models (Shilkrot et al.,

2002, 2004) or the Macroscopic, Atomistic, Ab initio Dynamics (MAAD) method (Abraham

et al., 1998).

At the mesoscopic scale, Discrete Dislocations Dynamics (DDD) methods represent dis-

locations as discrete lines, while Continuous Dislocations Dynamics (CDD) methods model

a continuous dislocation density field. Both can be used to model dislocation networks, ex-

plaining collective phenomena such as strain hardening (Sills et al., 2018), and to propose

constitutive laws usable in CP models. The velocity of dislocations in these simulations is

classically given by laws derived from atomistic simulations of dislocations conducted with

classical Molecular Dynamics (MD). As MD simulations operate at a much lower scale and

with up to 1010 times more degrees of freedom than DDD (Bertin et al., 2020), velocity laws

are obtained from simulations of single dislocations —with an already large computational

load— and the interaction between dislocations is thus not taken into account at the atom-

istic level. Yet, by leveraging important computational resources, it has become possible

to use MD to simulate ∼ 103 times larger systems than single dislocations, to compare the
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0.2 Multi-scale modelling approach of plasticity

predictions of DDD and MD at the same scale (≈ 1µm) (Zepeda-Ruiz et al., 2021), by iden-

tification of the dislocation network from atom positions using “in silico microscopy” tech-

niques (Stukowski and Albe, 2010). But beyond the scarcity of High Performance Computing

(HPC) platforms suited for this kind of approach, the treatment of the much more complex

dislocations-obstacles interaction mechanisms would require extravagant computational re-

sources.

Instead, a more classical approach uses a limited set of atomistic simulations of disloca-

tions in either pure metals or alloys and/or in the presence of other defects to parameterize

lightweight analytical (Rodney, 2007; Domain and Monnet, 2005; Maresca and Curtin, 2020)

or Monte Carlo (Stukowski et al., 2015; Zhao and Marian, 2018) mesoscale kinetic models of

dislocation velocity. Putting the different mechanisms identified at the atomic scale in com-

petition in mesocale models is especially useful to discriminate the most important ones,

which should then be integrated in DDD or CP models (Cereceda et al., 2016). The accuracy

of atomistically-informed models is fundamentally limited by the interatomic potential (IP)

used to compute forces in atomistic simulations (Bulatov and Cai, 2006; van der Giessen et al.,

2020), which can be only partially validated on experimental data (Alexander et al., 2020) and

has to be built on large ab initio databases (Cereceda et al., 2013) to achieve good accuracy

and transferability.

The widely-used Density Function Theory method (DFT) is capable of modelling atomic

interactions at the electronic level. It was used to model dislocations in a number of metals

and semiconductors (Rodney et al., 2017), shedding light on small-scale processes in the re-

gion of the core that are crucial for dislocation mobility in pure metals (Woodward and Rao,

2002; Itakura et al., 2012; Ventelon et al., 2013; Dezerald, 2014; Dezerald et al., 2016; Kraych

et al., 2019) and in alloys, including the Fe-C system and other interstitials (Ventelon et al.,

2015; Lüthi et al., 2017, 2018; Hachet et al., 2020; Romaner et al., 2010), which have to be trans-

ferred to larger scales. Indeed, the scale accessible to DFT calculations lies under a thousand

atoms in static simulations, and some elementary processes of dislocation motion —such as

the kink pair nucleation in b.c.c. metals (Proville and Rodney, 2020)— cannot be captured

with this method; dynamical simulations (i.e. ab initio molecular dynamics) are also not ap-

plicable. One option is to parameterize higher scale models from DFT, such as line tension

models Proville et al. (2013); Dezerald et al. (2015); Hachet et al. (2020), velocity laws (Hachet

et al., 2022), or kinetic Monte Carlo models (Zhao et al., 2020). Classical MD simulations can

also be used, while ensuring they are meaningfully connected to other scales, i.e. that the

IP used has a reasonable accuracy compared to ab initio data, and that the obtained predic-

tions are transferable to larger scales and other conditions (temperature, deformation rate,
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defects concentration,…), for example with the help of an analytical model based on rate

theory (Pollak and Talkner, 2005). The connections between different simulation techniques

used for modelling plasticity are illustrated in Fig. 0.4, with transfers of information between

techniques.

Figure 0.4: Flowchart of the multi-scale modelling approach illustrating information
transfer between techniques. Reproduced from Tipping (2010).

0.3 Towards a mobility law for dislocations in aged steel

Recent DFT results on the interaction between interstitials and dislocations mentioned above

offer promising perspectives to better understand how solutes (either in a Cottrell atmo-

sphere or a solid solution) can affect the mobility of dislocations, and ultimately the me-

chanical properties of steel. However, the results obtained in DFT simulations are limited

to the case of high solute concentrations, while the random case of dilute interstitial al-

loys cannot be treated with DFT, notably because large simulation cells are needed to model

kink pairs. The adaptation of existing models of solute strengthening developed for substi-

tutional alloys (Varvenne et al., 2017; Maresca and Curtin, 2020; Rao et al., 2021) to the case

of interstitial bcc alloys with large solute-dislocation interaction energies also remains diffi-

cult, as an underlying assumption is that solutes do not significantly distort the dislocation

6



0.3 Towards a mobility law for dislocations in aged steel

core (Varvenne et al., 2017), while the opposite is suggested by DFT calculations in interstitial

alloys (Ventelon et al., 2015; Lüthi et al., 2018). The treatment of interstitials diffusion close

to the dislocation core at high temperature also remains inaccessible to such models.

This motivates a detailed investigation of solute-dislocation interactions at the atomic scale

in the Fe-C system, to include ab initio insights into mesoscale dislocation dynamics models.

The aim is to develop a dislocation mobility law in the presence of C, and to extract local

rules of interaction with the defects from atomistic simulations (see Fig. 0.4). To achieve this,

a number of challenges must be overcome:

Atomic interactions The need of an accurate IP for the transfer of information from ab initio

to atomistic simulations constitutes a first barrier. A survey of existing IPs for Fe and

Fe-C presented in Chap. 2 exposes the lack of a Fe-C potential with satisfying disloca-

tion properties. We propose a novel Fe-C EAM potential, based on two potentials of

the litterature, which best reproduces dislocation properties in iron compared to DFT,

and unlocks the simulation of dislocation pinning by C.

Dislocation mobility in pure iron In pure bcc metals, dislocation mobility is strongly lim-

ited by the resistance of the lattice, which has to be well understood before integrating

the effect of solutes. In Chap. 3, we show that existing models of dislocation glide fail

to reproduce the flow stress obtained from low-temperature MD simulations in pure

iron. We compare different models and classical assumptions used within the har-

monic transition state theory to anharmonic Gibbs energy calculations by leveraging

the recent projected average force integrator method. Our results unveil strong entropic

effects, usually overlooked in dislocation glide models, and anharmonicity especially

at high temperature. We propose a model of dislocation glide in Fe in excellent agree-

ment with MD observations, setting the fundation for a model of dislocation glide in

the Fe-C system.

Effect of pinning by interstitial solutes In Chap.4, the effect of carbon atoms on dislocation

mobility is studied atomistically. MD simulations of dislocation glide in a random solid

solution confirm a powerful solute strengthening caused by complex processes. We

analyse it using a model geometry, where a row of aligned carbon atoms is inserted in

the dislocation core. We use a combination of MD simulations, minimum-energy path

calculations and extend a stochastic model validated in iron to explain the strengthen-

ing induced by carbon. We unveil that carbon disrupts the glide process, as unpinning

necessitates the successive nucleation of two kink-pairs, with an activation enthalpy
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markedly increased compared to iron at low C-C separations.
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1.1 Atomistic simulations

In this project, our goal is to use molecular dynamics (MD) to simulate the motion of screw

dislocations in bcc Fe and Fe-C alloys, with a 𝑏⃗ = 1
2[111] Burgers vector, gliding in a (1̄10)

plane. Due to the usual tradeoff between model size and computational time in atomistic

simulations, the simulation of dislocations, which are extended line defects able to interact

at long range, involves many technical concerns. General issues regarding the construction

of the dislocation model are discussed in this chapter. Chap. 2 is devoted to a discussion of

interatomic potentials.

All atomic system visualizations were produced using the Ovito software (Stukowski,

2010). Dislocation line positions were obtained from atomic positions using the DXA al-

gorithm available in Ovito (Stukowski and Albe, 2010).

1.1.1 Molecular dynamics simulations

To run MD simulations, we use the widely-adopted LAMMPS package (Plimpton, 1995), as

it offers numerous capabilities, has great parallel performance on CPU and GPU hardwares

and is a standard in the community.

All dynamical simulations are conducted in the NVE ensemble, i.e. using the fix nve

LAMMPS command. During dislocation motion, a temperature rise of a few kelvins is there-

fore observed due to the plastic work, and is included in our reported data. Dynamical sim-

ulations are run using the GPU package of LAMMPS (Brown et al., 2011) to accelerate force

evaluations. For dynamical simulation, LAMMPS was built based on the 19 Sep. 2019 release,

with MANYBODY, REPLICA and GPU packages enabled and support for the GZIP library

and openmpi. For static benchmarking of potentials (Chap. 2), we built the 4 Jan. 2019 release

with the REPLICA, MANYBODY and USER-MEAMC packages.
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1.1.2 Static simulation of dislocations

As the DFT method is highly computationally expensive, the number of simulated atoms

must not exceed a few hundred. Different methods that allow static simulations of disloca-

tions in small systems can be used (Rodney et al., 2017).

The most straightforward approach, called the cluster approach, consists in defining a cylin-

der of atoms, oriented along the [111] direction of the crystal. A screw dislocation is inserted

in the same direction at the centre of the crystal, with periodic boundaries along the line di-

rection. The dimension in this direction can be set to 1 Burgers vector for an infinite straight

dislocation. This method has several issues due to the limited size of the simulated domain,

notably regarding the elastic field of the core, the change of boundary conditions seen by

the dislocation when it moves, and the numerical efficiency due to the presence of vacuum

around the cylinder. More sophisticated approches use a combination of elasticity and inter-

atomic potentials to implement flexible boundary conditions, where atoms simulated by DFT

are surrounded by a wider domain where other simulation methods are applied. But this in-

troduces several technical complications, and does not allow to extract dislocation energies

(see Ref. (Rodney et al., 2017) for a detailed discussion).

Instead, to avoid external boundary issues, a method allowing the use of a tri-periodic

cell was developed (Bigger et al., 1992; Ismail-Beigi and Arias, 2000). To have fully periodic

conditions, a dislocation dipole of opposed Burgers vectors is inserted to obtain a null to-

tal Burgers vector. By periodicity, it is representative of a 2D square lattice of dislocations

quadrupoles. This arrangement has the advantage to cancel the Peach-Koehler image force

on the dislocations. The quadrupolar simulation cell is illustrated in Fig. 1.1. To construct

this square arrangement of dislocations of opposed burgers vectors, inserted in two equiva-

lent crystallographic positions (denoted as easy and described in Chap. 3), periodicity vectors

should respect geometrical constraints as described in Refs. (Ventelon and Willaime, 2007;

Ventelon et al., 2013). A setup that matches these constraints and typically used in ab initio

simulations is a cell of length 𝑛 × 𝑏 in the [111] direction, which contains 𝑛 × 135 atoms, with𝑛 being an integer. By construction, the dimensions in [1̄1̄2] and [11̄0] directions are respec-

tively 15 × √2/3𝑎0 and 9 × √2/2𝑎0. If a dislocation of the dipole moves (e.g. in simulations of

dislocation glide), the elastic energy is affected by both the elastic interaction of the dipole,

and the deformation associated with the motion of the dislocation. Elastic corrections based

on anisotropic linear elasticity can be used to deduce these effects from the total energy, and

can be applied using the Babel package1. The interested reader is referred to Clouet (2020)

1Available at http://emmanuel.clouet.free.fr/Programs/Babel/index.html
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1.1 Atomistic simulations

for a review on ab initio methods for the modelling of dislocations. This simulation setup

will be used to compare properties computed with interatomic potentials to ab initio results

in representative conditions.

Figure 1.1: Quadrupolar arrangement of dislocations typically used in DFT simula-
tions. The simulation cell (grey shape) contains two dislocations of burgers +𝑏⃗
and −𝑏⃗. Figure extracted from (Ventelon, 2008).

1.1.3 Dynamical simulation of dislocations

For dynamical simulations, it is preferable to avoid fully periodic simulation cells, as the

strong attraction between the dislocations of the dipole may result in cross-slip and disloca-

tion annihilation.

Instead, we used a cell represented in Fig. 1.2, where we introduced a single screw dislo-

cation along the 𝑥 = [111] direction using the isotropic elastic displacement solution (Hirth

and Lothe, 1982) followed by an energy minimization. Periodic boundary conditions are ap-

plied in the 𝑥𝑦 (1̄10) glide plane. Free surfaces are created by extending the cell dimension

in the 𝑧 = [1̄10] direction by more than the cutoff radius of the interatomic potential in use,

such that atoms in opposite boundaries do not interact. An additional tilt of 𝑏/2 is applied

in the 𝑦 direction, to account for the plastic strain of the dislocation, resulting in a triclinic

cell. These conditions generate a periodic array of dislocations (PAD) (Rodney, 2004; Bacon

et al., 2009).
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Different dimensions in the 𝑥 direction 𝐿𝑥 were tested, while dimensions along 𝑦 and 𝑧
and refered as 𝐿𝑦 and 𝐿𝑧 were set to (138Å, 159Å) in dynamic simulations (corresponding to192000 atoms if 𝐿𝑥 = 40𝑏) and (138Å, 80Å) at zero kelvins (96000 atoms). At finite tempera-

ture, a larger 𝑧 dimension is necessary to lower the attractive effect of free 𝑧 surfaces on the

dislocation, which induces cross-slip.

𝐿𝑦

𝐿𝑥

𝐿𝑧

𝑦 = [1̄1̄2]
𝑥 = [111]

𝑧 = [11̄0]

S+

S−

Figure 1.2: Simulation cell used for dynamical simulations. A screw dislocation (indi-
cated by a green line) is inserted along the [111] direction in the middle of a
crystal of bcc iron. Two regions denoted 𝑆± are used to shear the crystal (in blue).
Atoms visualization was obtained with Ovito.

Dynamical simulations were performed under constant strain rate, using the flexible bound-

ary conditions as presented in Rodney (2007). For this purpose, two slabs of atoms denoted𝑆+ and 𝑆− are defined underneath the top and bottom 𝑧-surfaces, with a thickness larger than

the interatomic potential cut-off radius (approximately 6Å for classical EAM potentials). An

initial velocity is applied to all atoms of each slab, depending on the desired 𝑥𝑧 shear rate ̇𝛾:
𝑣±0,𝑥 = ± ̇𝛾 𝐿𝑧2 . (1.1)

At every time step, the force in the 𝑥 = [111] direction on each atom 𝑖 in S± is corrected
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in order to ensure that the total force in S+ and S− is zero:

𝐹 𝑖𝑥 ← 𝐹 𝑖𝑥 − ⟨𝐹𝑥⟩±, (1.2)

where ⟨𝐹𝑥⟩± refers to the average force in S± in the 𝑥 direction. In this way, the centres of mass

of the slabs move at a constant velocity, thus imposing a constant strain rate, while allowing

atoms in S± to adapt to the motion of the dislocation (Rodney, 2007). A code example using

LAMMPS (version 2 Jul 2021) is given in List. 1.1.

1 # atoms slab 1 is a group of atoms

2 # CRYSTAL_LZ is the crystal dimension along z

3 variable avg_velocity_s1 equal vcm(atoms_slab_1,x)

4 variable vx_init equal v_gamma_dot*${CRYSTAL_LZ}/2-

v_avg_velocity_s1

5 velocity atoms_slab_1 set v_vx_init 0.0 0.0 sum yes

6

7 compute average_fx_s1 atoms_slab_1 reduce ave fx

8 variable fx_to_add_s1 equal -c_average_fx_s1

9 fix move_s1 atoms_slab_1 addforce v_fx_to_add_s1 0 0

Listing 1.1: LAMMPS code snipppet used to apply a constant shear rate on a slab of atoms.

A caveat of this type of simulation cell is the use of different boundary conditions in the𝑥, 𝑦 (both periodic) and 𝑧 (free surfaces) directions. As the crystal is allowed to change its𝐿𝑧 dimension while 𝐿𝑥 and 𝐿𝑦 are constrained, thermal expansion is possible along 𝑧 and

blocked along other directions, resulting in an anisotropic residual stress.

Remark The standard procedure presented above might be improved by imposing the 𝑧
coordinate of the centre of mass of 𝑆±, enabling an equivalent treatment of the thermal ex-

pansion in the 𝑥, 𝑦, and 𝑧 directions. This can be done by susbstracting the average force in

the atoms group to each atom of the group:

𝐹 𝑖𝑧 ← 𝐹 𝑖𝑧 − ⟨𝐹±𝑧 ⟩. (1.3)

Which corresponds to the following LAMMPS snippet:

1 compute average_fz_s1 atoms_slab_1 reduce ave fz

2 variable fz_to_add_s1 equal -c_average_fz_s1
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3 fix freeze_s1_z atoms_slab_1 addforce 0 0 v_fz_to_add_s1

Listing 1.2: LAMMPS code snipppet used to prevent atoms movement in z direction.

1.2 Computational techniques

The rate at which a system transits from one minimum energy state to the next by ther-

mal activation (e.g. a dislocation moving through a bcc lattice) is the key component for a

thermally activated velocity law, but its computation is notoriously difficult and requires

assumptions (Ásgeirsson and Jónsson, 2020).

The transition state theory (TST) (Wigner, 1938) allows to express the transition rate 𝑝
between minimum energy states (MES). In its most common form, it writes:

𝑝 ∝ exp (−Δ𝐺𝑘𝑇 ) , (1.4)

where the Gibbs energy of activation Δ𝐺 is the difference between the Gibbs energy of the

initial state 𝐺0 and the transition state 𝐺†.

Within the widely used harmonic approximation of atom vibrations (Vineyard, 1957), the

temperature dependence of the enthalpy Δ𝐻 and entropy Δ𝑆 is neglected. Δ𝐺 can then be

decomposed as Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆, yielding:

𝑝 ∝ exp (Δ𝑆𝑘 ) exp (−Δ𝐻𝑘𝑇 ) , (1.5)

Δ𝐻 and Δ𝑆 can be computed separately at zero Kelvin using the techniques described in

sections 1.2.1 and 1.3 respectively.

While the harmonic approximation is well verified at low temperature, the behaviour at

higher temperature can strongly differ from the harmonic prediction due to anharmonic ef-

fects (Swinburne, 2021; Sato et al., 2021). A recently developed technique (Swinburne and

Marinica, 2018) allows the direct computation of the Gibbs energy of activation and is usable

on systems containing millions of atoms, with no assumption on thermal vibrations. This

method is described in Section 1.3.1 and applied to the case of dislocation glide in iron in

Chap 3.
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1.2.1 Harmonic enthalpy calculation

Saddle-point search techniques are a class of numerical methods used to localise TS and

compute their activation enthalpy. In the case where the TS is located between two known

MES, double-ended search techniques can be used to find the minimum energy paths (MEP)

connecting both2. This is the case for the study of dislocation glide in the (1̄01) plane, where

the known MES are adjacent Peierls valleys.

The CI-NEB method

The Nudged Elastic Band (NEB) method (Henkelman et al., 2000) allows the convergence

to the MEP that is closest to an initial guess. This initial path is discretized in a series of

successive atomic states called replicas, which are usually obtained by linear interpolation

of atoms positions in cartesian coordinates between two known MES, designated as initial

and final. This simple approach is sufficient to provide an initial guess that is close to a

MEP in many cases, but is not optimal for the kink-pair mechanism. In this case, MES are

infinite straight dislocation lines in two adjacent Peierls valleys, symmetrical in the direction

of the line (i.e. the [111] direction). A linear interpolation between the two states preserves

this symmetry, which then has to be broken during the NEB calculation, thus increasing the

number of steps.

A more efficient approach is to explicitly provide an initial path where the transition goes

through the formation of a kink pair, as shown in Fig. 1.3. To do so, we slice the cell in three

regions, defined by cutting planes that are perpendicular to the 𝑥 ≡ [111] direction. The first

region has a thickness 𝑖/𝑅 × 𝐿, where 𝑖 is the index of the replica starting at 0, R the total

number of replicas and L the cell dimension along 𝑥. In this region, atomic positions are

taken from the final state, corresponding to the screw segment that has crossed the barrier.

A buffer region of thickness 𝑙0 makes a smooth transition to the rest of the cell where the

dislocation is in its initial position. In the presence of carbon atoms along the dislocation line,

a linear interpolation between the initial and final state is sufficient, as kinks are present in

either of both states (see Chap. 4 and especially Fig. 4.10 for more details).

After the initial path is defined, the replicas are relaxed iteratively in the direction of the

energy gradient projected in the hyperplane perpendicular to the path, allowing the conver-

gence to the MEP. In order to control the distribution of replicas along the MEP, an harmonic

bias spring force is added between adjacent images (Henkelman et al., 2000). This procedure,

2When only the initial state is known, single-ended techniques such as the Activation Relaxation Technique
presented in this section can be used to sample the accessible saddle states.
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Initial Initial

Final Final

ri
ri

i/R⨉L

l0

Direct interpolation Kink pair construction
[111]

Figure 1.3: Creation of an initial ”guessed” NEB path that explicitly contains a kink
pair. Direct interpolation (left) is compared to our approach (right). With direct
interpolation, atoms positions 𝑋 are linearly interpolated between the initial and
final state. In our approach, for replica 𝑟𝑖 (with 1 ≤ 𝑖 ≤ 𝑅 − 1), a zone of length𝑖/𝑅 × 𝐿 in [111] direction has the same atoms coordinate as the final state. A
buffer zone of size 𝑙0 = 5Å makes a linear transition to the rest of the cell, where
atoms positions are those of the initial state.

reffered to as the classical NEB method, necessitates a lot of iterations to reach an accurate

estimate of the energy of a state of interest, which is usually the activated state (i.e. the local

energy maximum). As forces are evaluated on all replicas at each iteration, this results in a

high computational workload to obtain the value of this state of interest. This issue is ad-

dressed in the climbing-image NEB method (CI-NEB), available in LAMMPS, which allows

to converge more efficiently to the saddle. After a limited number of classical NEB itera-

tions, the replica with the highest energy is selected as the best activated state candidate. It

is then forced to climb to the local maximum by reversing the component of the force in the

direction of the path tangent. The climbing force is thus:

𝐹𝑐 = −∇𝐸 + 2(∇𝐸 ⋅ ̂𝜏𝑐) ⋅ ̂𝜏𝑐 (1.6)

where ∇𝐸 is the energy gradient with respect to atoms coordinates and ̂𝜏𝑐 a normalized vec-

tor tangent to the path. A classical optimization algorithm is then used until the force has

converged.

Some of the limitations of the CI-NEB method are the sensitivity of the final MEP to the

strength of the bias spring force (Kolsbjerg et al., 2016), the high computational cost of in-

creasing the number of replicas along the path, or the addition of the bias force, which makes

the force convergence ill-defined. In the case of dislocation unpinning from carbon presented

in Chap. 4, complications arise for defining the position of carbon final state. We therefore

preferred to use CI-NEB in combination of a single-end search method, the ARTn technique
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described below, to automatically determine a final state which is connected by a simple bar-

rier to the initial state. The correct determination of the final state is especially important in

this case as we used it as the initial state of another calculation (see Chap. 4 for details).

NEB under an applied stress

The NEB method can be used to compute the enthalpy barrier between two positions of a

dislocation, under an applied stress. For this, the LAMMPS command fix addforce can be

used to add an arbitrary force on a group of atoms. Plastic work is produced as the disloca-

tion moves along the 𝑦 coordinate, which must be included in the total energy to obtain the

enthalpy. This is done by using the fix_modify energy keyword. A snippet illustrating

how to impose an external stress on a slab of atoms (as of LAMMPS ver. 2 Jul 2021) is

given in Listing 1.3.

1 # -- group definition --

2 region slab block EDGE EDGE EDGE EDGE ${bound} EDGE

3 group atoms_slab region slab

4 variable n_top equal count(atoms_slab)

5

6 # -- force and energy computation --

7 variable surface equal ly*lx

8 # stress in MPa

9 variable fx_slab equal -v_stress*-v_surface/v_n_top*6.242e-6

10 compute disptop atoms_slab displace/atom

11 variable enperat_slab atom -c_disptop[1]*v_fx_slab

12

13 # -- force and energy fixes --

14 fix stress_slab atoms_slab addforce v_fx_slab 0 0 energy

v_enperat_slab

15 fix_modify stress_slab energy yes

Listing 1.3: LAMMPS code snipppet used to apply an external stress on a slab of atoms, before

defining a fix neb and using the neb command.

When performing such calculations, we faced difficulties due to a bug in the NEB routine

of LAMMPS. When loading pre-defined atomic replicas (neb ... each command), the peri-

odic boundary conditions were not enforced, resulting in energy jumps when atoms crossed
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the cell boundaries. After we identified the bug, it was corrected in the main LAMMPS distri-

bution in its 30 Nov. 2020 version3. As a workaround before the bug was corrected, we used

an in-house MD code (“MERLIN”) which provides an alternative implementation of standard

MD techniques, including the NEB method. The code was previously used in several studies

on dislocations (Rodney, 2007; Proville et al., 2012). In the case of enthalpy barriers computed

under an applied stress, we present the results obtained with this implementation to avoid

re-running computationally intensive calculations. To allow the reproduction of our results,

the equivalent LAMMPS directives presented in Listing 1.3 can be used in the patched ver-

sion of the package. In our calculations using the MERLIN code, we used the ARTn technique

(presented below) in addition to the CI-NEB method, to avoid difficulties in the definition of

the final state.

The ARTn method

The activation relaxation technique nouveau (ARTn) technique (Barkema and Mousseau,

1996; Malek and Mousseau, 2000) is often used to explore the energy landscape around a

known MES (Mousseau et al., 2012), searching for saddle-points that connect to unknown

MES. It thus requires the knowledge of only one MES, which is highly valuable when final

states cannot be easily guessed. This method consists in three main steps:

1. Starting from the MES, the system is iteratively pushed in a random direction in order

to leave the harmonic bassin. After each iteration, a relaxation in the hyperplane per-

pendicular to the random direction is performed, and the lowest eigenvalue 𝜆0 of the

Hessian matrix is computed using the Lanczos method (Malek and Mousseau, 2000).

The system is considered to have left the harmonic basin when 𝜆0 is negative (or infe-

rior to a negative threshold set by the user).

2. The activation step, or minimum mode following step, is then performed to converge

to the activated state. The system is pushed in the direction of the saddle point fol-

lowing the direction of the eigenvector ̂𝑒0 associated with 𝜆0, and then relaxed in the

hyperplane perpendicular to ̂𝑒0. This operation is repeated until the total force is below

a preset force tolerance.

3. Starting from the found saddle state, the system is pushed in the direction of ̂𝑒0 and

then fully relaxed to obtain the final state. In order to verify that the saddle state is

3See the relevant pull-request on LAMMPS public development repository: https://github.com/lammps/

lammps/pull/2486#pullrequestreview-540994609
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1.3 Harmonic entropy calculation

directly connected to the initial state, the saddle state system is also pushed along − ̂𝑒0
and relaxed.

When using the MERLIN code (i.e. only for enthalpy calculations under an applied stress),

we used the ARTn technique in combination to the NEB method, as follows. CI-NEB was

first performed under an applied stress to obtain an estimate of the direction of the saddle

state and the overall shape of the barrier, using 250 NEB integration steps. The estimated

direction of the saddle state is used to push the system out of the harmonic bassin in the first

step of the ARTn technique, instead of a random vector. The ARTn method is then used as

described above to determine the saddle point with a force tolerance set to 2.5 × 10−5 eVÅ−1.

1.3 Harmonic entropy calculation

The effect of entropy is taken into account by TST models, but computing its value is often

difficult. Within the harmonic approximation, the vibrational entropy can be linked to the

frequency of each vibration mode 𝑖 in the initial 𝜈0𝑖 and the activated state 𝜈†𝑖 , obtained by

diagonalizing the Hessian matrix in the initial and activated states. The transition rate is then

written (Vineyard, 1957):

𝑝 = 𝜈⋆ ∏𝐷 𝜈0𝑖∏𝐷−1 𝜈†𝑖 exp (−Δ𝐻𝑘𝑇 ) , (1.7)

where 𝜈⋆ is a constant that accounts for the attempt frequency (of the order of the Debye

frequency), and the configurational entropy for the considered transition event. It can be a

function of other variables, such as the number of possible nucleation sites, the temperature

or an applied stress, but these dependencies are neglected here. The activated state is charac-

terized by a unique unstable mode which has a negative eigenvalue that should be excluded

from the calculation, as the system does not oscillate along this mode. There is therefore one

less vibration mode at the denominator.

Evaluating the terms 𝜈𝑖 requires the diagonalization of the Hessian matrix, i.e. the matrix of

the second-order derivatives of atoms cartesian coordinates scales by the atomic masses. For

each atom, the Hessian matrix has a 3 × 3 dimension, as there are three degrees of freedom

for atoms movement, resulting in a matrix of dimension 3𝑛 × 3𝑛 for a system of 𝑛 atoms.

After diagonalization, the eigenmodes frequencies are obtained from the real strictly positive

eigenvalues 𝜉𝑖 as:

𝜈𝑖 = 12𝜋√𝜉𝑖, (1.8)
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and the associated eigenvectors are also obtained. The diagonalization must be conducted

at both the initial state and the activated state, which can be obtained by the CI-NEB or ARTn

methods.

The main drawback of this approach is the high computational cost of diagonalizing the

Hessian matrix that scales cubically with the number of atoms, often leading authors to ne-

glect the effect of vibrational entropy in large systems. To reduce the size of the matrix,

we performed the calculation in a cylinder around the dislocation in a PAD cell (as used by

Barvinschi et al. (2014)), with a radius of ∼ 28Å containing about 𝑁𝑑 = 17 × 103 atoms. The

negligible effect of the finite size of the cylinder was checked by performing a few full diago-

nalizations in collaboration with M.C. Marinica, which required considerable CPU time and

advanced shared-memory linear algebra routines (Proville et al., 2012).

1.3.1 Free energy calculation

The use of harmonic enthalpy and entropy calculations has been ubiquitous over the last

two decades, and helped solve many problems in materials science. But the harmonic as-

sumption only holds at low temperatures (Lesar et al., 1989; Gilbert et al., 2013; Sato et al.,

2021) and a discrepancy can appear for temperatures as low as 10% of the melting temper-

ature (Swinburne, 2021). To account for anharmonic effects, several free energy calculation

methods are available. Among them, collective variable-based methods are able to reduce the

dimensionality of phase space (Laio and Gervasio, 2008), and have found enormous successes

in studies of molecular systems. But collective variables suited for the study of dislocation

glide cannot be identified (Swinburne and Marinica, 2018), making this method inapplicable

for this problem. A path-based thermodynamic integration method from Cheng and Ceriotti

(2018) requires the full diagonalization of the Hessian matrix, resulting in a prohibitive com-

putational cost for large systems. Another popular method is the finite temperature string

method (E et al., 2005), which features a linear scaling of the computational time, but requires

an ad-hoc parameterization (Swinburne and Marinica, 2018).

The projected average force integrator (PAFI) method recently introduced by Swinburne

and Marinica (2018) enables free energy calculations with a linear scaling of the computa-

tion time and no assumption on the nature of thermal vibrations. In this method, a MEP

is obtained by the CI-NEB method, and a series of hyperplanes perpendicular to the path

are defined, as represented in Fig. 1.4. Then, constrained molecular dynamics is performed

in each hyperplane, consisting in a thermalization followed by a sampling by overdamped

Langevin dynamics, which allows the system to move towards a minimum free energy posi-
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1.3 Harmonic entropy calculation

tion. Note that the sampling can be repeated independently (i.e. with perfect parallelism) in

order to localize the minimum free energy position more accurately: the number of repeti-

tions therefore provides a simple way of adjusting the precision of PAFI calculations. Under

the locality assumption —i.e. assuming the temperature pathway remains close to the MEP,

a common condition in path-based methods (E et al., 2005)— the free energy gradient can be

calculated (Swinburne and Marinica, 2018). By integrating the free energy gradient along

the path, the true free energy profile is finally obtained. Due to the sampling at finite tem-

perature and the numerical treatment to extract results, free energy data computed using

PAFI have an uncertainty4, which increases with the temperature, as systems are then able

to visit states that are far from the minimum free energy position, and which can be directly

reduced by performing more sampling.

Figure 1.4: Illustration of the sampling performed by PAFI. Starting from an initial min-
imum energy path (MEP) 𝑋0(𝑟), the system is thermalized and constrained MD is
performed in hyperplanes that are perpendicular to the MEP (shown in orange),
resulting in a global displacement towards a minimum free energy position. An
estimate of the minimum free energy position is obtained by repeating the ther-
malization and constrained MD several times. Following the same approach in
a series of hyperplanes along the MEP, the minimum free energy path is deter-
mined. (Courtesy of TD Swinburne.)

A C++/MPI implementation of PAFI is freely available to the community and maintained

by T.D. Swinburne5 It uses LAMMPS as its backend, with the fix pafi directive6, and is
4For a discussion on uncertainty in PAFI, see: https://github.com/tomswinburne/pafi/blob/master/

error_analysis.pdf
5Online access at: https://github.com/tomswinburne/pafi. The code version used in this work and

presented in this section is available at: https://github.com/tomswinburne/pafi/tree/fa82b82c73.
6Online documentation at: https://docs.lammps.org/fix_pafi.html
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thus fully compatible with all LAMMPS pair styles or settings, allowing e.g. Gibbs energy

calculations under an external applied stress.

Gibbs energy barrier calculations under an applied stress with PAFI raise several techni-

cal issues and require a specific methodology described in the next paragraph. PAFI sup-

ports the execution of arbitrary LAMMPS code before the thermalization/sampling starts.

To apply an external stress, we use the LAMMPS directives used to perform NEB under an

applied stress (see Listing 1.3) in the PreRun section of the PAFI configuration file. As mul-

tiple LAMMPS runs are performed by PAFI, the different fix, compute and region defined

in PreRun must all be discarded in the PostRun section using the unfix, uncompute and

region delete commands, respectively. The PAFI configuration used in our simulations is

available at https://github.com/arn-all/phd-thesis.

Construction of the MEP

To start with, a candidate for the MEP between two Peierls valleys is computed using the

CI-NEB method under an applied stress 𝜏 (as presented in Sec. 1.2.1), with a 1 × 10−5 eVÅ−1

force tolerance and 16 replicas (or knots). The obtained enthalpy profile is characterized by

an energy difference between the initial and final states due to the plastic work: 𝜏𝑏𝑑𝐿 (𝐿 is

the dislocation length, 𝑑 the distance between Peierls valleys). The activation enthalpy Δ𝐻
is also affected by the applied stress, and decreases as the stress increases. As a result, the

ratio between 𝜏𝑏𝑑𝐿 and Δ𝐻 rapidly increases with the stress (it is close to 10 when 500MPa

are applied) and the NEB knots distribution between the initial and activated states tends to

be sparse (see Fig. 1.5 (a)).

While this MEP candidate could in principle be used as a reference pathway in PAFI, a

spline interpolation between knots with a large energy difference is likely to result in both

poor integration accuracy, as the free energy gradient would experience large variations, and

a poor estimate of the MEP tangent, which is used for the projection. This would in turn lead

to erroneous projections of the reaction coordinate of thermalized systems, and in a large

error in the integration of the Gibbs energy. In addition, performing the PAFI sampling in

hyperplanes located after the activated state is useful to identify the maximum of the free

energy profile, but it represents an additional computational cost that can be important if

many knots are located after the saddle state. To increase the knots density in the zone

of interest —i.e. between the initial and activated states— and remove unnecessary knots, a

remeshing is performed7, as represented in Fig. 1.5.

7See https://github.com/arn-all/phd-thesis for the Python implementation used for our calcula-
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Figure 1.5: Strategy used to prepare a MEP for PAFI, based on a NEB path with
sparse knots density along the barrier. (a) Knots located after the saddle
state (𝑟 > 𝑟𝑚𝑎𝑥) and below an energy treshold (𝐸𝑡ℎ) are eliminated. (b) A series of
evenly spaced knots (in blue) is obtained by linear interpolation of atoms posi-
tion between the selected knots (in green). (c) The path created in (b) is relaxed
to a MEP using the“free-end NEB” method (see List. 1.4). Flat segments are then
eliminated to avoid spline issues when interpolating the MEP in PAFI.

After a series of knots is constructed (Fig. 1.5 (b)), a “free-end NEB” relaxation is performed,

using options of the LAMMPS fix neb command as shown in List. 1.4. The difference with

a regular CI-NEB is that the last knot is not necessarily an equilibrium position. On the last

knot, a spring force is applied perpendicularly to the energy path, preventing it from falling

in neighbouring energy bassins.

1 variable spring equal 0.4

2 variable u uloop 16

3 fix nebfix all neb ${spring} perp ${spring} end last ${spring}

4 neb 0.0 1e-5 10000 10000 50 each neb_pos_file.$u

Listing 1.4: LAMMPS code snipppet used to perform “free-end NEB”.

The spline interpolation of the MEP between knots that is performed by PAFI can be inac-

curate on flat segments, where splined functions tend to oscillate. To avoid flat segments, we

remove knots that have an absolute energy difference to the previous knot that is less than 1%

of the activation enthalpy. If the knot that should be removed is the one with the maximum

energy, the previous knot is removed instead. To avoid interpolation errors between knots,

the PAFI Rediscretize option is disabled, such that hyperplanes used by PAFI are located at

the position of the knots, instead of allowing arbitrary positions along the interpolated MEP.

The number of sampled hyperplanes is therefore the same as the number of knots along the

MEP.

tions.
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Following this procedure, we obtain a candidate MEP whose stability can be tested using

a tool provided in PAFI (pafi-test-path), which produces a report based on a 0 K PAFI

run which allows to identify flat energy segments, large energy jumps or large deviations

between the MEP and the MFEP caused by interpolation issues.

Computational load and parallelism

A single PAFI run requires about 1 × 106 force evaluations, and supports parallelism. The full

parallelization scheme of PAFI is represented in Fig. 1.6. For each hyperplane along the path,

several independent groups of CPUs (called workers) perform a MD sampling simultaneously

to improve statistical significance, without augmenting the total wall clock time and with

perfect parallelism. Each sampling consists in ∼ 103 thermalization steps and ∼ 103–104
sampling steps (Swinburne and Marinica, 2018). When limited by the number of available

CPUs, each worker can be instructed to successively perform several independant samplings

(called repeats) in the same hyperplane. Each worker is constituted of one or several CPUs,

which allows to accelerate their tasks by providing more CPUs per worker e.g. for faster

forces evaluation in large systems. These CPUs are made available to LAMMPS’s own MPI

implementation, with excellent but unperfect parallelism. Ressources allocation is handled

through MPI, such that CPUs used by a worker can be distributed accross any number of

computing nodes.

24



1.3 Harmonic entropy calculation

Worker 1

sampling

Repeat 1 Repeat 2

MPI node 1

CPU 1
CPU 2
CPU 3
CPU 4 MPI node 2

thermalization

steps

Hyperplane  1 Hyperplane  2

Worker 2

Repeat 1 Repeat 2

MPI node 1

MPI node 2

Repeat 1 Repeat 2
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Figure 1.6: Parallel scheme as implemented in the PAFI code. Here, the first two hyper-
planes are sampled by 2 workers, with 2 repetitions, with 4 CPUs per worker.
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2 Assessment of interatomic potentials

for Fe and Fe-C

The accuracy of MD simulations is highly dependent on the quality of the interatomic po-

tential used, and a careful choice of the potential is thus crucial.

Among the vast range of properties that can be tested, we chose to focus on the most

relevant for our study, which are dislocation properties in pure iron, and dislocation-carbon

interactions in dilute solutions. In iron, two main features of screw dislocations are their

core structure and their Peierls barrier, both known from DFT calculations (Ventelon and

Willaime, 2007; Rodney et al., 2017). Even if it has been widely studied in the last decades,

reproducing these properties with interatomic potentials while keeping an accurate descrip-

tion of other crystal properties remains difficult (Barvinschi et al., 2014; Alexander et al.,

2020; Starikov et al., 2021). In the next section, a litterature survey allows us to compare both

properties for the most used potentials for Fe. In the opposite, dislocation properties of Fe-C

potentials were often overlooked, and had to be computed.

We tested interatomic potentials for Fe-C alloys available on the NIST interatomic poten-

tials repository (Becker et al., 2013; Hale et al., 2018), listed in Table 2.1. The potentials are

based on different formalisms, namely Embedded Atom Method (EAM), Modified Embedded

Atom Method (MEAM) and Tersoff, all implemented in the LAMMPS MD package (Plimpton,

1995). The Fe-C potentials from Becquart, Veiga and Hepburn use the Fe interaction proposed

by Ackland, and therefore share the same properties in pure iron. While dislocation prop-

erties of the Ackland potential are known (Gordon et al., 2010), the Fe part of Liyanage, Lee

and Henriksson potentials, which were respectively developed in Refs. (Lee et al., 2012), (Lee

et al., 2001) and (Müller et al., 2007a) were never tested for dislocation properties. Table 2.1

also includes information about two EAM potentials for pure iron as well as ab initio DFT

data, used for benchmarking.

Following our tests, the poor dislocation properties of Fe-C potentials motivated the con-

struction of a new interatomic potential, denoted as “Hybrid”, which is an hybridization of the

potentials of Proville (Fe) and Becquart (Fe-C) aimed at improving the dislocation properties
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2 Assessment of interatomic potentials for Fe and Fe-C

of the Becquart potential. Details on the construction of the Hybrid potential can be found

in Sec. 2.4, while its properties are presented in comparison to other potentials throughout

this chapter.

For clarity, we refer to the interatomic potentials by the name of the

first author of the associated publication, e.g. “Ackland potential”.

Notation

Name Type Species Ref.

Hepburn EAM Fe, C Hepburn and Ackland (2008)
Veiga EAM Fe, C Veiga et al. (2014)
Becquart EAM Fe, C Becquart et al. (2007)
Lee MEAM Fe, C Lee (2006)
Henriksson Tersoff Fe, C Henriksson and Nordlund (2009)
Liyanage MEAM Fe, C Liyanage et al. (2014)
DFT ab initio Fe, C Becquart et al. (2007); Ventelon et al. (2013)
Ackland EAM Fe Ackland et al. (2004)
Proville EAM Fe Proville et al. (2012)

Table 2.1: List of interatomic potentials and ab initio data used in this study.

A comprehensive evaluation of the performance of interatomic potentials (i.e. beyond

dislocation properties) is a heavy task that is out of the scope of the present work, and rather

calls for a collective effort. Several online collaborative projects (Becker et al., 2013; Hale et al.,

2018; Elliott and Tadmor, 2011) aim at giving a comprehensive and reproductible assessment

of all available potentials, and provide readily-available properties to help potential selection.

But at the time of writing, only some classical potentials were available on these platforms;

tested properties were limited to basic crystal properties such as the linear thermal expansion

coefficient or the elastic constants; and the vacancy migration energy (Li, 2018) was the only

implemented test related to defects using the NEB method.

2.1 Dislocation core structure

2.1.1 Pure iron

The structure of dislocation cores drives many features of dislocation mobility in bcc met-

als (Rodney et al., 2017). Dislocation core structures can be visualized using “differential dis-
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2.1 Dislocation core structure

placement” (DD) maps (Vítek et al., 1970) which represent atomic displacements between the

perfect crystal taken as a reference, (𝑠0) and the relaxed dislocation (𝑠1). Maps are obtained by

projecting the position of atoms in cells with a thickness of 1 𝑏 along the [111] direction (i.e.

the 𝑥 axis), so each atom on the map represents an atomic column by periodicity, and their po-

sitions in 𝑠1 are marked by circles. Although the (𝑦 , 𝑧) atom positions are generally similar in𝑠0 and 𝑠1 in pure metals, where edge displacements are neglgible compared to displacements

directed in the [111] direction, representing the positions in 𝑠1 is useful in the presence of C

which can cause important displacements in the (𝑦 , 𝑧) plane. To analyse dislocation cores in

the presence of carbon, the reference system 𝑠0 used is a perfect iron crystal. The filling color

of circles (greyscale) represents the 𝑥 coordinate of atoms in 𝑠0 modulo 𝑏, which is either 0, 𝑏/3
or 2𝑏/3. Arrows represent the relative displacement between two adjacent atomic columns,

scaled such that an arrow joining two atomic columns represents a relative displacement of𝑏/3, and any shorter arrow represents a fraction of this displacement. DD maps presented

here were obtained with the atomman.defect.differential_displacement funtion im-

plemented in the 1.3.6 version of the atomman package. In the presence of solutes, red

circles are then added to the plot according to their coordinates in 𝑠1.

(a) (b)

(c) (d)

z

x

y

Figure 2.1: Differential displacements of atoms in the dislocation core region. See
main text for interpretation of. Different structures were obtained: (a) compact
core (DFT, all potentials except Lee and Henriksson); (b) degenerate core (Lee);
(c) symmetrical core (DFT); (d) asymmetrical core obtained with hybrid poten-
tial and other potentials (see text). Circles represent the relaxed position of the
atoms. Red circles represent carbon atoms. Head-up triangles correspond to easy
positions, and head-down triangles correspond to hard positions.
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Using this representation, the easy and hard core structures of screw dislocations present

a characteristic pattern and can be easily recognized. Burgers circuits are also visible, as they

are represented by closed circuits of head-to-tails arrows.

The compact, non-degenerate easy core structure, broadly accepted as the stable configu-

ration in iron (Domain and Monnet, 2005; Ventelon and Willaime, 2007; Rodney et al., 2017),

is shown in Fig. 2.1 (a). All potentials presented in table 2.1 were tested on this property by

inserting a dislocation in an easy position in iron, and minimizing the atomic forces with a

1 × 10−6 eVÅ−1 tolerance. Almost all tested potentials predict a non-degenerate, easy com-

pact core (shown in Fig. 2.1 (a)), in agreement with ab initio results. But the potential of

Lee predicts a degenerate core shown in Fig. 2.1 (b), and the Henriksson potential favours a

structure that is alike the hard structure, both results being in disagreement with ab initio

data and making these potentials unsuited for the simulation of screw dislocations.

2.1.2 Carbon-induced core reconstruction

In the presence of carbon, the structure of dislocation cores in iron can be greatly modified,

according to DFT calculations (Ventelon et al., 2015).

A dislocation relaxed with an array of carbon atoms placed every 𝑏⃗ in the octahedral posi-

tion nearest to the dislocation core (denoted 𝑂(1) and shown in Fig. 2.2) spontaneously shifts

to a hard position and adopts a prismatic configuration, where the three atomic columns

of the core have the same atomic coordinates projected along the [111] direction. In this

configuration, which is similar to the unstable hard configuration in pure iron (Dezerald,

2014), carbon atoms sit at the centre of the prisms and stabilize the hard core. The initial and

force-minimized structures are illustrated in Fig. 2.3. This arrangement has similarities with

the structure of cementite (Fe3C) and octahedral sites. As seen in Table 2.2, the first nearest

neighbour (1NN) Fe-C distances in the prismatic structure are close to the 1NN distance in

cementite, and to the 2NN distance in octahedral sites in bulk iron1. The core reconstruction

is not limited to the FeC system, but was also identified in other bcc metals (Lüthi et al., 2017)

and with other interstitial solutes (Lüthi et al., 2018).

For all tested potentials, we observed a conversion from an easy to a distorted hard core

structure as the dislocation was relaxed with C in the 𝑂(1) site. The observed structure is

close to the ab initio structure, although distorted and asymmetrical (see Fig. 2.1 (d) for the

1As EAM potentials take interatomic distances as their only input, this overlapping brings the difficulty of
accurately reproducing different environments which have similar interatomic distances with the same
potential. This issue is partly addressed in the case of MEAM potentials, which also include an angular
component (Baskes, 1992).

30



2.1 Dislocation core structure

O(1)

O(2)

O(3)

O(4)

O(5)

O(6)

O(7)

Figure 2.2: Naming convention for octahedral sites around a screwdislocation (green
cross). Reproduced from (Lüthi, 2017).

(a)

(b) (c)

Figure 2.3: Reconstruction of the dislocation core in the presence of C obtained with
DFT. (a) Dislocation core, with an array of C atoms in 𝑂(1) site every 𝑏, before
(left) and after (right) performing an energy relaxation. (b) and (c) are the corre-
sponding DD map for each system. Reproduced from (Lüthi, 2017).
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structure obtained with the hybrid potential), as opposed to the symmetrical structure found

by DFT calculation (Fig. 2.1 (c)). A 3D visualisation of the core structure and interatomic

distances obtained with the Hybrid potential is presented in Fig. 2.4. The length of the longer

side of the triangle (2.825Å) is close to the equilibrium lattice parameter (2.814Å).

2.40 Å

2.82 Å

1.92 Å
1.88 Å

2.00 Å
2.40 Å

Figure 2.4: 3D visualization of the asymmetrical reconstructed core. Obtained with the
Hybrid potential, after relaxation with a C atom (red) in a 𝑂(1) site. Iron atoms
are in blue. Interatomic bonds are represented for more clarity.

Octa. (bulk) 𝑃1𝑏 Fe3C

1NN 1.77 1.93 1.96–1.99
2NN 1.97

Table 2.2: Interatomic distances for different arrangements of Fe-C. Fe-C distances in
Å for the bulk octahedral configuration, the prismatic configuration with C atoms
every 𝑏 noted 𝑃1𝑏, and in cementite Fe3C, for first and second nearest neighbor
(NN). Reproduced from Ref. (Lüthi, 2017).

DFT calculations also evidenced a similar reconstruction upon relaxation when C atoms

are inserted in octahedral sites around the core, for distances as large as 3.5Å (Lüthi, 2017),

corresponding to the 𝑂(7) position. In our tests with interatomic potentials, the core recon-

struction was observed when C is inserted in 𝑂(2) for the potentials of Lee and Liyanage

only. In the case of Becquart, Veiga and Hybrid potential, the core is converted to a distorted

degenerate core shown in Fig. 2.5. With other interatomic potentials, the presence of C in𝑂(2) position did not involve a change of the core structure or a movement of the dislocation.

2.2 Peierls barrier

The potential proposed by Mendelev et al. (2003) was the first empirical potential to predict

a non-degenerate compact easy core (Mrovec et al., 2011) in agreement with DFT. Though, it
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2.2 Peierls barrier

Figure 2.5: Degenerate core structure induced byC, with the Hybrid potential. Differ-
ential displacements of atoms in the dislocation core region after relaxation with
an array of C atoms inserted in the 𝑂(2) every 𝑏.

features a metastable intermediate split-core structure (Gordon et al., 2010) associated with

a bent trajectory between easy positions, as shown in Fig. 2.6. Due to this artefact, glide

occurs by the nucleation of half-kinks with a low barrier, at odds with ab initio data both

qualitatively and quantitatively. Attempts to artificially enforce the nucleation of full kink-

pairs in NEB calculations of Wang et al. (2019) using the Becquart potential still resulted in

ill-shaped barriers, with a metastable intermediate state. The potential developed by Gordon

et al. (2011) aims at correcting the barrier shape, but still has a metastable split core (though

less deep), and a barrier height close to 12meV/𝑏. A recent potential based on the Angular-

Dependent Potential (ADP) formalism (Mishin et al., 2005), fitted with the help of machine

learning techniques (Mishin, 2021) by Starikov et al. (2021) also predicts a metastable inter-

mediate core structure, and is thus not usable for the simulation of screw dislocations.

The Peierls barrier predicted by the Liyanage potential was not available in the litterature,

and was thus computed. We used the LAMMPS implementation of the NEB method to de-

termine the Peierls barrier in the (1̄01) glide plane. NEB calculations are conducted using a

force criterion for convergence of 1 × 10−4 eVÅ−1, a spring force set to 0.1 eVÅ−1, with 48

replicas. The result is shown in Fig. 2.7. This potential, provides a poor description of the

Peierls barrier, with a stable intermediate state which has a lower energy than the easy core.

A potential proposed by Proville et al. (2012) succeeded at providing the correct shape

and height of the barrier, making it suitable for the simulation of screw dislocations. A re-

parameterization of this potential was proposed more recently to make it suitable for simula-

tions of C15 self-interstitial atom clusters (Alexander et al., 2020), but this was at the expense

of dislocation properties, resulting in a underestimate of the Peierls barrrier. Several more

sophisticated interatomic models predict a Peierls barrier with a single maximum, namely

a Bond Order Potential by Mrovec et al. (2011) (40meV/𝑏), a Gaussian Approximation Po-

tential developed by Maresca et al. (2018) (50meV/𝑏) or a Neural Network potential from
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Figure 2.6: Peierls barrier and corresponding core trajectory. DFT data (Ven-
telon and Willaime, 2007) is compared to different potentials. Figure
adapted from Ref. (Mori and Ozaki, 2020).
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Figure 2.7: Peierls barriers computed with different interatomic potentials. Potentials
used are indicated in each subplot title, and correspond to blue round symbols.
Ab initio data from Ventelon et al. (2013) is represented as red squares.
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Mori and Ozaki (2020) (36meV/𝑏). As an example, the Peierls barrier and corresponding

dislocation trajectory computed with Mori potential is represented on Fig. 2.6. Even though

they achieve a much better transferability than the Proville potential, these models are 3 to

5 orders of magnitude more computationally expensive (Starikov et al., 2021), making their

use for simulations at the scale of millions of atoms prohibitive, as seen in Fig. 2.8.

At the time of writing, Proville potential was therefore the only potential to achieve quan-

titative agreement with the ab initio Peierls barrier with a low computational load, and was

thus adopted by other authors (Narayanan et al., 2014; Shinzato et al., 2019; Ghafarollahi

et al., 2019). A complementary discussion on Proville potential can be found in Chap. 3.

100 101 102 103 104

Normalized computational time

Ac97
Ol09
Chi11
Zh04
Ch06

Men03
MCM11
Mar07

MEAM15
ADP

BOP11
Mori20
GAP18

Figure 2.8: Normalized computational time for different Fe interatomic potentials.
Time is normalized by 7.9 × 10−7 s/atom/step. Data extracted from (Starikov
et al., 2021), where we added our timing for the Mori NN potential (Mori and
Ozaki, 2020), which is ∼ 103 times slower than Mendelev. Potentials names fol-
low the convention adopted in Ref. (Starikov et al., 2021).

2.3 Alloy properties

The task of developing interatomic potentials for Fe-C alloys is very complex, as describ-

ing pure species accurately is already challenging. As an example, the great diversity of

phases and phase transformations found in iron (Ou, 2017; Meyer and Entel, 1998; Müller

et al., 2007b; Song and Hoyt, 2012), carbon (de Tomas et al., 2019), and in the Fe-C phase
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diagram (Okamoto, 1992) are hard to represent with potentials, especially considering the

difficulty to fit potentials on free energy data (Ackland and Bonny, 2020; Ackland, 2002),

instead of zero-temperature ab initio results. Available potentials can thus only provide a

limited description of Fe-C alloys.

At zero Kelvin, most FeC potentials predict that carbon occupies octahedral sites of the

bcc lattice -in agreement with ab initio calculations (Domain et al., 2004), which predict a

higher energy for tetrahedral interstitials (2.14 eV) than octahedral (1.25 eV) (Liyanage et al.,

2014). The migration energy for carbon across octahedral sites 𝐸𝑚 is thus 0.90 eV (Becquart

et al., 2007). Potentials favoring tetrahedral occupation (Ruda et al., 2002) are to be avoided,

especially to study the interaction of C and dislocation cores. Values of 𝐸𝑚 for potentials

available in the litterature are presented in Fig. 2.9. The potentials of Liyanage and Hen-

riksson strongly underestimate this value, resulting in a large overestimation of diffusion

kinetics.
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Figure 2.9: Migration barrier for carbon between octahedral sites. Data extracted from
Refs. (Hepburn and Ackland, 2008; Becquart et al., 2007; Lee, 2006; Liyanage et al.,
2014) compared to the DFT target value (Becquart et al., 2007).

2.3.1 Carbon-dislocation binding energy

The binding energy of carbon atoms to dislocations is of great importance in the mechanism

of solute strengthening (Labusch, 1970; Maresca and Curtin, 2020), and is close to −0.7 eV
according to ab initio methods in the Fe-C system (Lüthi, 2017) —denoting an highly attrac-

tive interaction— . It was calculated as the energy difference per Burgers vector between a
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2.3 Alloy properties

dislocation decorated by carbon atoms (𝐸𝑑+𝐶), evenly spaced at a distance 𝑑𝑐𝑐 along the dislo-

cation, and a dislocation in pure iron (𝐸𝑑), minus the energy associated with the introduction

of a carbon atom in bulk iron (𝐸𝑏+𝐶 − 𝐸𝑏) (Lüthi et al., 2018):

𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 12[𝐸𝑑+𝐶(𝑑𝑐𝑐) − 𝐸𝑑] − [𝐸𝑏+𝐶 − 𝐸𝑏]. (2.1)

Here, 𝐸𝑏+𝐶 is the energy per 𝑏 of a cell that contains one carbon atom in an octahedral posi-

tion, and 𝐸𝑏 is the energy of the same cell with no solute atom (subscript b stands for bulk).

The factor 1/2 accounts for the fact that there are two dislocations in the cell.

As seen in Fig. 2.10, the obtained binding energies are negative, meaning an attraction of

the carbon atoms to the dislocations, for all potentials except Hepburn potential. The mag-

nitude of the energy varies widely between potentials, with Henriksson and Lee potentials

being closest to ab initio results (Lüthi, 2017). Moreover, ab initio calculations showed that

the binding energy is minimum for a distance between carbon atoms in the core of 3𝑏, which

represents an optimum between the gain of adding a carbon atom in the core and the cost

of placing the dislocation in a hard configuration between carbon atoms. Most potentials

presented in Fig. 2.10 reproduce this feature, although with a minimum at 𝑑𝑐𝑐 = 2𝑏 in most

cases. The Hybrid potential reproduces the C-dislocation binding energy quantitatively for𝑑𝑐𝑐 larger than 1b.

2.3.2 Carbon-carbon binding energy in bulk Fe

In bulk iron, the interaction energy of carbon atoms sitting in octahedral sites has been cal-

culated by ab initio methods (Becquart et al., 2007), as a function of the separation distance

and crystallographic direction of the C-C pair. Here, we use the same simulation cell as in

Ref. (Becquart et al., 2007) in order to determine the binding energy in the [111] direction

predicted by interatomic potentials. The cell is fully periodic and contains 128 atoms of bulk

iron. The binding energy is calculated as:

𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔(𝑑) = 𝐸𝐶−𝐶(𝑑) − 𝐸𝑏 − 2[𝐸𝑏+𝐶 − 𝐸𝑏], (2.2)

where 𝐸𝐶−𝐶(𝑑) is the energy of a cell that contains two carbon atoms in octahedral positions

and separated by a distance 𝑑 in the [111] direction.

In DFT simulations, there is a repulsive interaction (0.09 eV) for carbon atoms separated

by 1𝑏 along the [111] direction, and an attraction (−0.16 eV) for a separation of 2𝑏 (Becquart

et al., 2007). The potentials presented in Fig. 2.11 show at best a partial agreement with these
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Figure 2.10: Carbon-dislocation binding energy, as a function of carbon spacing 𝑑𝑐𝑐
along the dislocation line. Values obtained with different interatomic poten-
tials are compared to ab initio data (Lüthi, 2017). Horizontal lines serve as guides
for the eye.
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2.3 Alloy properties

data. In particular, the second neighbor repulsion is systematically underestimated.

Regarding the hybrid potential, the interaction energies are close to Becquart and Veiga

potentials at a distance of 1b, but close to zero at 2b, instead of being attractive. The carbon-

carbon interaction energy we obtained is thus not fully satisfactory compared to DFT. Though,

it is negligible compared to dislocation core effects in this work, as we consider large C-C

distances in bulk, due to the relatively low carbon concentration of the cells.
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Figure 2.11: Carbon-carbon binding energy in bulk iron as a function of carbon spac-
ing 𝑑𝑐𝑐 in the [111] direction. Values obtained with different interatomic po-
tentials are compared to ab initio data (Becquart et al., 2007).

2.3.3 Dipolar tensor

In bulk iron, interstitial carbon atoms sitting in octahedral positions cause a local anisotropic

strain due to the anisotropy of the octahedral site. Within the framework of the linear elas-

ticity theory, this strain induces in a cell of fixed volume, 𝑉, a stress increment given by the

dipolar tensor 𝑃𝑖𝑗 (Veiga et al., 2011):

𝜎𝑖𝑗 = −1𝑉𝑃𝑖𝑗. (2.3)

One method to determine 𝑃𝑖𝑗 is to measure 𝜎𝑖𝑗 in relaxed, triperiodic, simulation cells of

varying volumes, in which a carbon atom is inserted in an octahedral position. We compared

the dipolar tensor obtained with the hybrid potential and with Becquart potential. The former

matched experimental values better, as seen in Fig. 2.12.
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2 Assessment of interatomic potentials for Fe and Fe-C

Figure 2.12: Stress induced by the insertion of a carbon atom in an octahedral site as
a function of the inverse volume of the simulation cell. Experimental data
are from (Schultz, 1968). Symbols correspond to our MD simulations. Dashed
lines are linear regressions.

2.4 Construction of an hybrid interatomic potential

Here, we showed that Proville potential features a Peierls barrier in good agreement with

DFT data (see Fig. 2.7), along with the correct dislocation core structure, but this potential

is limited to pure iron. For most Fe-C properties, there is a relatively large gap between

interatomic potentials and DFT values, and none of the potentials stand out. Yet, Veiga

potential qualitatively agrees with DFT on carbon-carbon and carbon-dislocation binding

energies. It was used in previous studies to investigate carbon-dislocation interactions, Cot-

trell atmospheres formation and locking mechanisms (Waseda et al., 2017; Veiga et al., 2015;

Tchitchekova et al., 2014; Candela et al., 2020). Both Proville and Veiga potentials are EAM

potentials derived from the seminal Mendelev potential (Mendelev et al., 2003). We thus pro-

pose here an hybridization of these potentials to combine their advantages, while keeping

the properties of Proville potential in pure Fe.

In EAM potentials, the energy 𝐸𝑖 of an atom 𝑖, of species 𝛼, is the sum of two terms within

a cutoff distance: a pairwise interaction 𝜙𝛼𝛽 summed over all neighbors 𝑗 (species 𝛽); and

the function 𝐹𝛼 that represents the embedding of atom 𝑖 in the electron cloud formed by its

neighbors. It is written as:

𝐸𝑖 = 𝐹𝛼 (∑
𝑖≠𝑗

𝜌𝛽 (𝑟𝑖𝑗)) + 12 ∑𝑖≠𝑗 𝜙𝛼𝛽 (𝑟𝑖𝑗), (2.4)
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2.4 Construction of an hybrid interatomic potential

where 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗, and 𝜌𝛽 is the electron density function.

In order to combine Proville and Veiga potentials, we used a classical Gauge transforma-

tion (Ackland and Bonny, 2020), which consists in rescaling the electron density and embed-

ding function of iron in a way that does not affect the Fe-Fe interaction. In iron, we define

the electron density function ̃𝜌𝐹𝑒 and the embedding function ̃𝐹𝐹𝑒(𝜌) of the new hybrid po-

tential as follows, based on the corresponding functions of the Proville potential which are

identified by a ⋆ symbol:

̃𝜌𝐹𝑒 = 𝐴 × 𝜌⋆𝐹𝑒 (2.5)̃𝐹𝐹𝑒 (𝜌𝐹𝑒) = 𝐹⋆𝐹𝑒 (𝜌𝐹𝑒𝐴 ) , (2.6)

where 𝐴 is a constant. The function 𝜙𝐹𝑒−𝐹𝑒(𝑟) was taken from Proville potential (Proville

et al., 2012) with no modification. As a consequence, the interaction between iron atoms

within the cutoff radius is the same as with the Proville potential:

̃𝐹𝐹𝑒 ( ̃𝜌𝐹𝑒) = 𝐹⋆𝐹𝑒 (𝜌⋆𝐹𝑒) (2.7)

This way, we emphasize that the hybrid potential has the same materials properties in pure

iron as Proville potential. However, it must be noted that in the case of alloys, the electron

density is modified, as all neighbors contribute to the term ∑𝑖≠𝑗 𝜌𝛽 (𝑟𝑖𝑗), regardless of their

species. All functions involving carbon, namely 𝜌𝐶 (𝑟), 𝐹𝐶 (𝜌), 𝜙𝐹𝑒−𝐶 (𝑟) and 𝜙𝐶−𝐶 (𝑟) were

taken from the Veiga potential (Veiga et al., 2014) with no modification.

The introduction of parameter 𝐴 in Eq. 2.5 provides a degree of freedom, which was used

to tune the hybrid potential in order to obtain the best agreement with the carbon-dislocation

interaction energies computed with DFT. The result is shown in Fig. 2.10 and was obtained

with 𝐴 = 0.55.

In the original tabulated Proville potential, the electronic density function 𝜌⋆ becomes

abruptly constant for 𝑟 <2Å, resulting in a discontinuity in the forces around 2.0Å. This

discontinuity is confirmed when computing the energy of a dimmer of Fe atoms and its

derivatives at a varying distance with LAMMPS. This result is available publicly in the online

OpenKIM archive (Tadmor, 2020; Elliott and Tadmor, 2011). In bcc iron, the discontinuity

is usually harmless as the shortest equilibrium interatomic distance, which corresponds to𝑏 = 1/2[111], is close to 2.4Å. But in the Fe-C system, octahedral sites have 1NN distances

below 2Å (see Table 2.2), possibly causing large errors in force integration and a shift of

the total energy. As a simple way to correct for this discontinuity, we replace the original
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2 Assessment of interatomic potentials for Fe and Fe-C

tabulated values between 1.95 and 2.05Å by a cubic spline using the UnivariateSpline

method of the SciPy 1.5.2 package.

The Hybrid potential is used throughout the rest of this work, with its parameter 𝐴 set to0.55. In additional tests, we obtained a migration barrier for C interstitials of 0.96 eV, which is

close to the ab initio value of 0.90 eV (Becquart et al., 2007), but with a rough energy landscape

around the migration path between octahedral sites. We thus do not recommend using this

potential for studies on diffusion mechanisms, or with large C concentrations where solutes

occupy adjacent lattice sites.

2.5 Conclusion and recommendations

Interatomic potentials were tested in regard to different Fe and Fe-C properties, yielding the

following conclusions:

Performance For the simulation of dislocations, only the most computationally efficient po-

tentials can be used. They are potentials based on the EAM, MEAM or ADP formalisms.

All tested Fe-C potentials follow these formalisms and are thus relatively fast.

Dislocation core Most tested potentials feature a compact non-degenerate core in iron, ex-

cept the potentials of Lee and Henriksson. The core reconstruction induced by C is

reproduced by most potentials, with artefacts.

Peierls barrier Proville potential provides the best quantitative agreement with DFT over

all reviewed potentials. Excluding the most computationally expensive potentials,

Proville is the only potential to agree qualitatively with DFT (single maximum). It

is thus the only available potential for Fe to provide a physical representation of screw

dislocations with good efficiency.

C-dislocation binding energy The potentials of Henriksson, Lee, and the Hybrid potential

are the only ones to accurately reproduce the DFT value of the C-dislocation binding

energy. Solute strengthening effects simulated with other potentials are expected to

differ from DFT predictions.

Energy landscape The Hybrid potential features a rough energy landscape around the car-

bon migration path, and should therefore be used with caution for simulations in-

volving the displacement of C. In this case, computational techniques that are highly
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dependent on the local topology of the energy landscape (e.g. Hessian matrix diago-

nalization) might provide incorrect results.

Following these results, it appears that Proville potential is the only potential to enable

large scale simulations of screw dislocations in iron in agreement with the Peierls barrier

obtained with DFT, and with an acceptable computational load. But as any simplified in-

teratomic model, it also has several downsides (Starikov et al., 2021) and does not describe

“real-Fe”: it poorly reproduces the phonon spectra for bcc Fe, the formation energy of self-

interstitial atoms, or the energy of symmetric grain boundaries, and the kink pair nucleation

enthalpy is underestimated (this value is compared to other methods in 3). As new fitting

strategies based on machine learning give promising results (Mishin, 2021), novel potentials

for Fe that outperform Proville, especially in terms of transferability, are expected to emerge

over the coming years.

For the Fe-C system, there was no available potential with a single-humped Peierls barrier,

leading us to recommend our hybridization of Proville and Veiga potential. While it also has

drawbacks and is likely to find a limited use, it unlocks a major limitation of current poten-

tials, allowing for the first time the simulation of carbon interacting with screw dislocations

that move with the correct glide mechanism.
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3 Thermally-activated glide of screw

dislocations in pure bcc iron

Low-temperature plasticity of bcc metals is controlled by the mobility of screw disloca-

tions (Caillard and Martin, 2003; Kubin, 2013; Proville and Rodney, 2020), which is limited by

both the strong resistance of the bcc atomic lattice, and interactions with other defects (Bacon

et al., 2009), among which are dislocations, grain boundaries, precipitates or solute atoms. In

this chapter, the effect of the bcc lattice itself on dislocation motion is studied, while interac-

tions between dislocations and interstitial carbon atoms will be discussed in Chap. 4.

3.1 Lattice resistance in bcc metals

In the bcc lattice projected in the (111) plane, the centers of the triangles formed by [111]

atomic rows are high-symmetry positions for 1
2⟨111⟩ screw dislocations (Kubin, 2013). The

center of upward triangles (in the convention adopted in Fig. 3.1 (b)) is a position of minimum

energy, denoted as easy, where the helicity is reversed compared to the perfect crystal. In

downward triangles, the helicity of the screw dislocation cancels with the helicity of the

crystal, and atoms of the core have the same coordinate along the [111] direction (Dezerald

et al., 2016). This position is an energy maximum according to ab initio calculations (Ventelon

and Willaime, 2007). Another high-symmetry position, called split, is obtained when the

dislocation is located in the close vicinity of one [111] atomic row1. This position has a high

energy according to DFT results, but it is a common artefact of interatomic potentials to

feature a metastable split structure (see Fig. 2.6).

To move from one easy position to the next, the dislocation has to pass through a high-

energy state located in the dividing plane defined by the hard and split positions (see Fig. 3.1

(b) and (c)). This position is a saddle point in the energy landscape and is associated to an

energy barrier called the Peierls barrier, which has the same periodicity 𝑑 as the crystal lattice

1As each row is at the intersection of three different triangles, each split position exists in three different
variants.
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3 Thermally-activated glide of screw dislocations in pure bcc iron

Figure 3.1: Screw dislocation motion in the bcc lattice. (a) Schematic represen-
tation of the (11̄0) glide plane and maximum resolved shear stress plane
(MRSSP). (b) Projection of the BCC lattice in the (111) plane showing the
high-symmetry dislocation positions (E, easy core; H, hard core; S, split core).
(c) Example of dislocation trajectory (green line) calculated with DFT in Mo
and. (d) Energy profile along the hard-split line calculated with DFT in
Mo. Reproduced from Dezerald et al. (2016).

in the direction of glide. The maximum stress experienced by the dislocation along the barrier

is called the Peierls stress and noted 𝜏𝑃.

Ab initio simulations showed that the position of the saddle state is deviated towards the

split position by an angle 𝛼 (see Fig 3.1(c)) rather than being midway between the hard and

split. This is due to an assymetry of the energy landscape between the twinning region (T)

where sits the split core, and antitwinning (AT) region where sits the hard core, illustrated

in green and pink in Fig. 3.1 (Dezerald et al., 2014). While this deviation is low in the case of

iron (Dezerald et al., 2016) (𝛼 = −1.7° in the absence of an applied stress), another common

artefact of interatomic potentials for iron is to predict a large deviation (see Fig. 2.6): in the

case of the Proville potential for iron, 𝛼 ∼ 24° (Dezerald, 2014).

The kink pair mechanism At finite temperature, thermal activation can help a short seg-

ment of the dislocation to cross the barrier, while it remains connected to the rest of the line

by two non-screw segments called kinks, forming a kink pair. Under an applied stress, kinks

experience a Peach-Koehler force that tends to move them in opposite directions along the

line, thus expanding the kink pair as shown in Fig 3.2, and allowing the entire line to cross

46



3.1 Lattice resistance in bcc metals

the barrier2. At low temperature and applied stress, the kink pair mechanism is the pre-

ferred mechanism for dislocation glide (Kubin, 2013). Conversely, for levels of stress that are

above the Peierls stress, the Peierls barrier vanishes (i.e. no thermal activation is required

for dislocations to move) and dislocations move while remaining straight.
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1 Kink-pair nucleation

Screw segments

Kinks

Kink-pair migration

a Peierls Valley
Peierls Barrier

d

2

Figure 3.2: Sketch of the nucleation andmigration of a kink-pair. The red line is a dislo-
cation of burgers vector 𝑏⃗ = 1

2[111]. The periodic energy landscape on which the
dislocation is gliding is represented by a sinusoidal gray surface. Green arrows
represent kinks migration due to the Peach-Koehler force.

Under an applied shear stress, a plastic work 𝜏𝑏𝑥𝐿 is dissipated when a dislocation of

length 𝐿 moves by a distance 𝑥 in the glide direction, and we note the enthalpy for kink

pair formation Δ𝐻𝑘𝑝. In Fig. 3.3 (a), two examples of minimum enthalpy paths are repre-

sented, one with a low applied stress, and the other with a higher stress. In Fig. 3.3 (b), the

stress-dependence of Δ𝐻𝑘𝑝 for Proville potential is presented up to 𝜏𝑃. With increasing levels

of stress, the difference between the equilibrium and saddle states for kink pair formation

decreases and kinks become smaller, as shown in Fig. 3.4.

It is common to fit the evolution of Δ𝐻(𝜏) by a Kocks law (Kocks et al., 1975) of the form:

Δ𝐻(𝜏) = Δ𝐻0 (1 − ( 𝜏𝜏𝑃)𝑝)
𝑞 , (3.1)

where 0 < 𝑝 ≤ 1 and 1 ≤ 𝑞 ≤ 2 are fitting constants and Δ𝐻0 is the zero-stress barrier for

kink pair nucleation. The low stress limit of the kink pair nucleation energy Δ𝐻(𝜏 = 0), also

2In pure bcc metals, the secondary Peierls barrier, which is the energetic cost of propagating the kinks along the
line, is negligible —while in alloys, kinks can be pinned by solute atoms (as described in Chap. 4). Kink-pair
nucleation and subsequent propagation in pure metals is thus often simply designed as kink pair nucleation
or formation.
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3 Thermally-activated glide of screw dislocations in pure bcc iron

noted 𝐸𝑘𝑝 is ill-defined as with no applied stress, the kinks are only stabilized by their inter-

action with periodic images: the activated kink pair is therefore symmetrical, with a width

that is one half of the simulation cell dimension 𝐿 in [111] direction, making Δ𝐻(𝜏 = 0)
L-dependent. The fitting parameter Δ𝐻0 of the Kocks law provides an estimate of Δ𝐻(𝜏 = 0)
by extrapolation. The value obtained with Proville potential, close to 0.60 eV (Proville et al.,

2012; Ghafarollahi and Curtin, 2020) can be compared to predictions of line tension models

parameterized on ab initio data. Depending on the line tension model and ab initio param-

eterization, reported values for 𝐸𝑘𝑝 are 0.86 eV (Proville et al., 2013), 𝐸𝑘𝑝 = 0.91 eV (Dezer-

ald et al., 2016) (using the same tension model but different ab initio parameterization) and𝐸𝑘𝑝 = 0.73 eV (Itakura et al., 2012) with a different model and ab initio code. A precise de-

termination of 𝐸𝑘𝑝 from experiments remains difficult (Dezerald et al., 2015) and leads to

different estimates of 𝐸𝑘𝑝 depending on the stress/temperature domain where experiments

are conducted and on the analytical treatment use to extract 𝐸𝑘𝑝. To avoid these issues, Dez-

erald et al. (2015) retained the lowest stress-high temperature values from Brunner and Diehl

(1991) as a reference: 0.83 eV, even though it gives an underestimation of 𝐸𝑘𝑝. Two recent

potentials for Fe trained on ab initio data using machine learning methods yield 𝐸𝑘𝑝 = 0.77 eV
and 0.84 eV (Goryaeva et al., 2021). The value obtained with Proville potential is therefore

underestimated compared to other methods, with the effect of underestimating the lattice

resistance to dislocation motion, and to possibly overestimate the relative effect of other

concurrent thermally activated processes (e.g. interactions with defects).

3.2 Glide of screw dislocations

3.2.1 Atomistic simulations

We simulated the glide of a screw dislocation in a PAD simulation cell (see Fig. 1.2) under

an imposed shear rate. Examples of stress strain curves obtained at different temperatures

with the Proville potential are shown in Fig. 3.5. In dynamical simulations, the stress can be

computed using the relation: 𝜏𝑥𝑧 = 𝐹+𝑥 − 𝐹−𝑥2𝐴 (3.2)

where 𝐹±𝑥 is the total force in the upper or lower slab (+ and − respectively), projected in

the 𝑥 direction (i.e. the glide direction) and A is the area of the free surfaces of the crystal,

i.e. 𝐴 = 𝐿𝑥 × 𝐿𝑦. The stress computed using Eq. 3.2 undergoes large oscillations (Rodney,
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3.2 Glide of screw dislocations

Figure 3.3: Kink pair nucleation enthalpy. (a) Minimum enthalpy path associated with
the nucleation of a kink-pair, at two different levels of stress. (b) kink pair nucle-
ation enthalpy as a function of the applied stress. All curves were obtained with
Proville potential. Reproduced from Proville et al. (2012) (Supp. Materials).

Figure 3.4: Shape of the transition state for kink pair formation as a function of
the applied stress, with Proville interatomic potential. The equilibrium
position of the initial straight dislocation 𝑔𝑒𝑞(𝜏 ) is indicated on the lower left.𝑧/𝑏 is the position along the [111] direction normalized by the burgers vec-
tor length and 𝑥/𝑎 the coordinate in the glide direction normalized by the dis-
tance between Peierls valleys. The stress 𝜏 is normalized by the Peierls stress 𝜏𝑃.
Reproduced from Ghafarollahi and Curtin (2020).
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3 Thermally-activated glide of screw dislocations in pure bcc iron

2007), which are eliminated using a Savitzky-Golay filter3 of order 1 (Savitzky and Golay,

1964), with a window of 51 points (the time difference between successive points is 0.5 ps).
The shear stress can also be calculated as the internal stress of the cell 𝜏𝑥𝑧 (named 𝑝𝑥𝑧 in

LAMMPS), multiplied by the fraction of the cell volume occupied by the crystal, resulting in

less oscillations. We verified that depending on the method used to calculate the shear stress

and the chosen average window length, variations of the average stress remained below

20MPa for the typical stress levels of our MD simulations.

The flow stress is then extracted as the average of the successive peaks of stress in the plas-

tic regime4 (marked by round symbols). It can be seen that the flow stress decreases with the

temperature, as glide is a thermally activated process, and that the peaks height can strongly

fluctuate, as dislocation jump is a stochastic process. Five independent MD simulations with

different initial atomic velocities were performed to obtain an accurate measure of the flow

stress.

Due to the computational load associated with the resolution of classical dynamics equa-

tions, our MD simulations are limited to ∼ 1010–1013 steps × atoms, corresponding e.g. to the∼ 105 atoms needed to model dislocation glide, simulated over ∼ 106 time steps of 1 fs, for

an overall simulated time of the order of 1 ns. In order to reach stress levels that are large

enough to observe plastic events in such limited simulated time, high strain rate and/or tem-

perature values are necessary. At low temperatures, typical MD simulations are therefore

conducted at strain rates ∼ 1010 times larger than experimental conditions (see e.g. Proville

and Rodney (2020) for a review on atomistic simulations of dislocations), leading to much

higher flow stress values.

3.2.2 Kinetic models

Kinetic models based on the Transition State Theory (see Chap.1.2) can help compare MD

simulations conducted at high shear rates to experimental conditions. In this section, we

consider different models of dislocation glide based on the TST, which are then discussed in

comparison to MD simulations.

3This type of smoothing filter uses a least-squares fits to polynomials on a moving window along the curve
to smooth its variations while preserving the height of peaks better than a simple rolling average.

4Peaks are detected using the scipy.signal.find_peaks Python module with a prominence set to 15. In-
creasing this parameter has the effect of ignoring smaller peaks.

50



3.2 Glide of screw dislocations

0.0 0.01 0.02 0.03 0.04 0.05
Shear strain

0

100

200

300

400

500

600

St
re

ss
 (M

Pa
)

542 MPa

461 MPa

397 MPa
335 MPa

150 K
200 K
250 K
300 K

Figure 3.5: Typical stress-strain curves from MD simulations, at different tempera-
tures. Simulations conducted with Proville potential with an imposed shear ratė𝛾 = 1 × 107 s−1. Stress peaks are represented by circles. A dashed line represents
the average of the peaks for each temperature (i.e. the computed flow stress).

Thermally-activated forward-jump model

Considering a dislocation jumping from one Peierls valley to the next, the dislocation velocity𝓋 is a funtion of the stress tensor [𝜎] and temperature 𝑇:

𝓋([𝜎], 𝑇 ) = 𝜈𝐿𝑒−𝛽Δ𝐺𝑘𝑝([𝜎],𝑇 ) (3.3)

where Δ𝐺𝑘𝑝 is the Gibbs free energy of nucleation for a kink-pair, 𝜈 is an attempt frequency

assumed constant, 𝛽 = 1/(𝑘𝑇 ), and 𝐿 is the dislocation segment length available for kink pair

nucleation. Although non-Schmid effects would be important to include in a comprehensive

study (Christian, 1983; Dezerald et al., 2016; Kraych et al., 2019), we here only consider the

effect of the resolved shear stress 𝜏 in the {110} glide plane of the dislocation, instead of the

whole stress tensor [𝜎].
Computing Δ𝐺𝑘𝑝 remains notoriously difficult (Swinburne, 2021), especially given the di-

mensions of the system that need to be considered to model the nucleation of kink-pairs,

which is beyond the limits of conventional methods (see Sec. 1.3.1). Several assumptions are

classically used to simplify the calculation of Δ𝐺𝑘𝑝, which will be discussed in regard to full

Gibbs energy calculations allowed by the recent PAFI method and presented in this chapter.
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3 Thermally-activated glide of screw dislocations in pure bcc iron

The connection between the dislocation velocity given in Eq. 3.3 and the flow stress com-

puted in strain-controlled simulations is obtained using Orowan’s equation in the steady-

state regime of deformation:

𝓋 = ̇𝛾𝜌𝑏 (3.4)

where 𝜌 = 1/(𝐿𝑦𝐿𝑧) is the dislocation density.

Neglecting stress fluctuations between jump events and equating Eq. 3.3 and 3.4, the flow

stress 𝜏∗ is solution of:

̇𝛾𝜌𝑏 = 𝜈𝐿𝑒−𝛽Δ𝐺𝑘𝑝(𝜏∗,𝑇 ), (3.5)

which can be written:

Δ𝐺𝑘𝑝 (𝜏∗, 𝑇 ) = 𝑘𝑇 log (𝜌𝑏𝜈𝐿̇𝛾 ) . (3.6)

For given simulation conditions, the dimensionless ratio Γ = 𝜌𝑏𝜈𝐿
̇𝛾 can be considered fixed

as well as 𝑇, and the value of 𝜏∗ can be determined numerically if Δ𝐺𝑘𝑝 is a known function

of 𝜏 and 𝑇. Within this approach, it is customary to adjust the term 𝜈 to best match the MD

data (Rodney, 2007), which is usually obtained with a frequency on the order of the Debye

frequency, i.e. 𝜈 ∼ 1 × 1013 s−1.

While it gives a simple way of modelling dislocation glide knowing only Δ𝐺𝑘𝑝 (or an ap-

proximation), this model has issues at low stress levels, as it only considers the forward

motion of the dislocation, and assumes the kink pair migration time negligible compared to

nucleation time. In the limit of a low applied stress, backward jumps become more likely

and must be accounted in the average velocity. In addition, kink propagation along the line

is driven by the applied stress, and becomes limited under a low stress. For both reasons,

the dislocation velocity should tend to zero for low stress levels, while in the above model,𝓋 = 𝜈𝐿 exp(−𝛽Δ𝐺(0, 𝑇 )) ≠ 0 at zero stress, which is unphysical.

Thermally-activated forward and backward-jump model

To account for the possibility of reverse-jumps at low stress (Nabarro, 2003), an additional

term can be added to Eq. 3.3. To move backwards, the reverse energy barrier is Δ𝐺𝑘𝑝 plus

an additional energy cost due to the plastic work between the initial and final states 𝜏𝑏𝑑𝐿,
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3.2 Glide of screw dislocations

which gives: 𝓋 = 𝜈𝐿 [𝑒−𝛽Δ𝐺𝑘𝑝 − 𝑒−𝛽 (Δ𝐺𝑘𝑝+𝜏𝑏𝑑𝐿)] (3.7)

When 𝜏𝑏𝑑𝐿 ≫ Δ𝐺𝑘𝑝, this expression is equivalent to Eq. 3.3. One consequence is that reverse

jump can remain unlikely down to low stress levels in the case of long segments, thus not

effectively reducing the dislocation velocity. Values ofΔ𝐺𝑘𝑝 will be given later in this chapter

(e.g. in Fig. 3.12), but it can already be noted that its low-stress, low-temperature values

are close to Δ𝐻(𝜏 = 0) = 0.54 eV (according to Fig. 3.3), and decrease with T and 𝜏. In

Fig. 3.6, we present values of 𝜏𝑏𝑑𝐿 as a function of the segment length 𝐿, showing that for

long segments, the plastic work remains dominant even for stress levels as low as 5-10MPa,

making reverse jumps highly unlikely. Experimental flow stress measurements conducted

at high-temperature typically feature long dislocation segments (𝐿 ∼ 1 µm), and low flow

stress values, corresponding to a domain where Δ𝐺𝑘𝑝 is reduced due to the temperature, and

possibly negligible compared to 𝜏𝑏𝑑𝐿. An estimation of experimental dislocation density

from the work of Brunner and Diehl (1991) yields an estimate of 𝐿 ≈ 1
√𝜌

= 103 to 104 Burgers

vectors. In our MD simulations in the other hand, where 𝐿 = 40 b, the plastic work is much

lower and backward jumps are more likely to happen under low stresses.
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Figure 3.6: Evolution of the plastic work 𝜏𝑏𝑑𝐿 as a function of L, for different values
of 𝜏. For comparison, a dashed line represents the upper bound for Δ𝐺𝑘𝑝 i.e. the
zero-stress enthalpy Δ𝐻𝑘𝑝(𝜏 = 0) (see Fig. 3.3).
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3 Thermally-activated glide of screw dislocations in pure bcc iron

Writing 𝑥 = 𝛽𝜏𝑏𝑑𝐿/2, Eq. 3.7 is equivalent to:

𝓋 = 𝜈𝐿𝑒−𝛽Δ𝐺𝑘𝑝𝑒−𝑥 (𝑒𝑥 − 𝑒−𝑥) (3.8)

Using 2 sinh(𝑥) = 𝑒𝑥 − 𝑒−𝑥, we obtain the following formulation:

𝓋 = 2𝜈𝐿 sinh (𝛽𝜏𝑏𝑑𝐿2 ) 𝑒−𝛽(Δ𝐺𝑘𝑝+𝜏𝑏𝑑𝐿/2) (3.9)

Because of the sinh term, this model allows the velocity to tend to zero when 𝜏 tends to zero,

as forward and backward jumps are equally probable under zero stress. Here, the flow stress𝜏∗ verifies: Δ𝐺(𝜏∗, 𝑇 ) = 𝑘𝑇 log (2𝜌𝑏𝜈𝐿̇𝛾 sinh (𝛽𝜏∗𝑏𝑑𝐿2 ) 𝑒−𝛽𝜏∗𝑏𝑑𝐿/2) , (3.10)

which can be solved numerically. The 𝑒𝑥 term in sinh can cause numerical overflow, and

better stability is therefore achieved by rewriting it as:

Δ𝐺(𝜏∗, 𝑇 ) = 𝑘𝑇 log (𝜌𝑏𝜈𝐿̇𝛾 (1 − 𝑒−𝛽𝜏∗𝑏𝑑𝐿)) , (3.11)

to obtain values of 𝜏∗ knowing Δ𝐺(𝜏∗, 𝑇 ).
Dislocation glide model by Po et al. (2016)

The low-stress domain can also be understood as a low kink migration velocity 𝓋𝑘(𝜏 , 𝑇 ) do-

main, where kink pair expansion is the limiting feature, even if there are many kink nu-

cleation events along the line e.g. at high temperature or for long segments. Since lattice

resistance on kinks is negligible in pure bcc metals, kink velocity is limited by phonon drag

and can be written as: 𝓋𝑘 = 𝜏𝑏𝐵(𝑇 ) (3.12)

where the effective drag coefficient is 𝐵(𝑇 ) = 𝐵0 + 𝐵1(𝑇 ). 𝐵(𝑇 ) depends on the temperature

in the general case, but is approximately constant in the case of screw dislocations, i.e. 𝐵1 =0 (Po et al., 2016). The value 𝐵0 = 9.8 × 10−4 Pa s was determined for screw dislocations

in tungsten based on the work of Stukowski et al. (2015) and the Frenkel-Kontorova model

from Swinburne et al. (2013). In this work, we use the same value as a rough estimate for

our calculations in iron with satisfactory results, even though a precise determination of 𝐵0
would be valuable. Reducing the value of 𝐵0 would result in a higher kink velocity, and

a softening at high temperatures where kink migration is dominant (see below), with no
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3.2 Glide of screw dislocations

significant change of the model predictions at low temperature. The dislocation velocity is

expressed as: 𝓋 = ℎ𝐽𝑘𝑝𝑋 (3.13)

where 𝐽𝑘𝑝 is the kink pair nucleation rate obtained from the classical kink-diffusion theory

of Hirth and Lothe (1982) and is proportional to 𝓋𝑘, and ℎ is the kink height. 𝑋 is the length

available for kink pair nucleation, which is the total segment length 𝐿 if it can only support

one kink pair (which is typical of MD simulations). For longer segments, it corresponds to

the average distance between existing kink-pairs 𝜆, which is obtained from the equilibrium

concentration of kink-pairs (Hirth and Lothe, 1982), as a function of Δ𝐺𝑘𝑝:

𝜆 = 2𝑎𝑒𝛽Δ𝐺𝑘𝑝/2 (3.14)

where 𝑎 is the crystal lattice parameter. An effective measure of 𝑋 is therefore obtained by

the geometrical average 𝑋 = 𝜆𝐿/(𝜆 + 𝐿).
The main result of the velocity law proposed by Po et al. is an expression of dislocation

velocity that accounts for both the low and high stress regime, written:

𝓋 = 𝓋𝑘 2ℎ𝑎 𝐿2𝑎𝑒𝛽Δ𝐺𝑘𝑝/2 + 𝐿𝑒−𝛽Δ𝐺𝑘𝑝/2. (3.15)

Note that 𝓋 is proportional to 𝜏 through the term 𝓋𝑘, giving a null velocity when the applied

resolved shear stress is zero. Isolating Δ𝐺𝑘𝑝 and introducing Orowan’s equation as above,

we obtain: Δ𝐺𝑘𝑝 (𝜏∗, 𝑇 ) = 2𝑘𝑇 log( 14𝑎 (√𝐿2 + 16ℎ𝐿𝜌𝑏2𝜏∗̇𝛾 𝐵(𝑇 ) − 𝐿)) . (3.16)

The models presented above all require the knowledge of Δ𝐺𝑘𝑝, which is usually approx-

imated using hypothesis presented below. A comparison of the models introduced in this

section and a discussion of their limits will then be presented in § 3.2.4.

3.2.3 Classical assumptions in Harmonic TST

While the harmonic assumption on atomic vibrations considerably simplifies the evaluation

of the Gibbs energy (Vineyard, 1957) —which can be decomposed in an enthalpic and en-

tropic contribution that are independent of the temperature— , further approximations are

often necessary to evaluate the entropic term. For large systems, harmonic entropy calcula-

tions are indeed limited by both the computational time and shared-memory cost associated
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3 Thermally-activated glide of screw dislocations in pure bcc iron

with the diagonalization of the full Hessian matrix (Proville et al., 2012). Gilbert et al. (2011)

proposed to fitΔ𝐻𝑘𝑝 based on MD simulations of dislocation glide, while neglecting the effect

of entropy. While it results in accurate velocity predictions, such approach uses a large num-

ber of numerical fitting parameters and does not provide an understanding of the physical

mechanisms.

Constant activation entropy

The simplest approach is to assimilate the activation entropy as a constant notedΔ𝑆0, yieldingΔ𝐺 = Δ𝐻 − 𝑇Δ𝑆0. In the case of a thermally activated velocity model (Eq. 3.3), the constantΔ𝑆0 can be included in the prefactor as:

𝓋 = 𝜈𝐿𝑒−𝛽(Δ𝐻(𝜏)−𝑇Δ𝑆0) = 𝜈𝐿𝑒Δ𝑆0/𝑘𝑒−𝛽Δ𝐻(𝜏) = 𝜈∗𝐿𝑒−𝛽Δ𝐻(𝜏), (3.17)

where the constant 𝜈∗ is an effective attempt frequency which can be fitted to best match

the MD data. However, as the model of Po et al. does not have an attempt frequency term

(see Eq. 3.15), we set 𝜈 = 2 × 1013 s−1 and only change the value of Δ𝑆0 for clarity in the

comparison between models.

If this approximation has been validated for a specific dislocation by comparison with MD

simulations of the glide of Lomer dislocations in Al (Rodney, 2007), there are evidence of

temperature dependence of energy barriers for other dislocation processes, including dislo-

cation nucleation (Warner and Curtin, 2009; Ryu et al., 2011), obstacle by-pass (Saroukhani

et al., 2016) and cross-slip (Esteban-Manzanares et al., 2020). Moreover, the Gibbs free en-

ergy of a straight screw dislocation in BCC iron has also been shown strongly dependent on

temperature (Gilbert et al., 2013).

Meyer-Neldel law

Another classical approximation to include the evolution of the entropy without explicitly

computing it is to invoke the Meyer-Neldel (MN) compensation rule (Yelon et al., 2006), which

states that the activation entropy of a process is proportional to its activation enthalpy:

Δ𝑆 = Δ𝐻/𝑇𝑀𝑁 + Δ𝑆0, (3.18)

with 𝑇𝑀𝑁 being a characteristic temperature and Δ𝑆0 a constant. If 𝑇𝑀𝑁 is positive, this

means that an increase of Δ𝐻 leads to an increase of Δ𝑆, leading to a partial compensation in
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3.2 Glide of screw dislocations

the Gibbs energy Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆. The Gibbs energy can then be written:

Δ𝐺𝑘𝑝 (𝜏∗, 𝑇 ) = Δ𝐻(1 − 𝑇𝑇𝑀𝑁
) + Δ𝑆0. (3.19)

Similarily to Eq. 3.17, Δ𝑆0 can be recasted in the 𝜈∗ term for thermally activated velocity

laws.

Usually observed when varying a material parameter, as in the diffusion of different solutes

in a given host matrix (Gelin et al., 2020) or magnetization reversals in memory elements of

different composition (Desplat and Kim, 2020), the compensation law has also been reported

for stress-driven processes in a given material, i.e. :

Δ𝑆([𝜎]) ∝ Δ𝐻([𝜎])𝑇𝑀𝑁
, (3.20)

for instance for dislocation nucleation (Hara and Li, 2010), creep (Wang et al., 2013), cross-slip

(Esteban-Manzanares et al., 2020) and twin motion (Sato et al., 2021) —and could similarily

be used for kink pair nucleation.

Applications of the MN law in TST models include dislocation nucleation (Zhu et al., 2008;

Amodeo et al., 2021) and glide (Clouet et al., 2021). Gelin et al. (2020) recently tracked down

the origin of the compensation law in the harmonic regime to a systematic softening of low-

frequency vibrational modes between the initial and activated states.

3.2.4 Comparison and discussion

In this section, we compare the flow stress predicted by each model introduced in Sec. 3.2.2,

using values of Δ𝐺 determined using different classical assumptions, with flow stress values

obtained from strain-rate controlled MD simulations. In MD simulations, 𝜌 = 4 × 1015 m−2,𝐿 = 40𝑏, we take 𝜈 = 2 × 1013 s−1 and ̇𝛾 is set to 1 × 106 s−1 or 1 × 107 s−1, yielding respectivelyΓ = 𝜌𝑏𝜈𝐿
̇𝛾 = 2 × 105 and 2 × 104. Values of Δ𝐻(𝜏) are taken from Proville et al. (2012) (readily

presented in Fig. 3.3).

Model comparison In Fig. 3.7 (a), we compare the three models as a function of T, all using

the same Gibbs energy with a typical constant activation entropy Δ𝐺𝑘𝑝 = Δ𝐻(𝜏)−7𝑘𝐵×𝑇. All

models predict that the flow stress tends to the Peierls stress at 0 K, which is close to 1000MPa

for this potential (see Fig 3.3), and yield similar predictions at low temperature. At higher

temperature, model predictions show different behaviors. With the simple forward-jump
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Figure 3.7: Flow stress predicted using the different models of dislocation glide, as a
function of (a) temperature and (b) the segment length (L). In (a), 𝐿 = 40 b
(Γ = 104). In (b), the same conditions are simulated, but the value of 𝐿 varies.

model, the flow stress decreases until reaching a critical temperature 𝑇𝐶 which can be seen

as the limit of the thermally-activated regime, before glide becomes athermal. 𝑇𝐶 satisfies

Eq. 3.6 : 𝑘𝑇𝐶 log (Γ) = Δ𝐺(𝜏∗ = 0, 𝑇𝐶), (3.21)

and corresponds to a null flow stress. We have here a well-defined athermal temperature,

but plastic flow occurs due to the imposed shear rate (with a finite dislocation velocity𝓋 = ̇𝛾/(𝜌𝑏)), while the stress remains zero on average. This behavior is unphysical and is

an artefact of the forward jump model, as dislocation glide by the kink pair mechanism can

only occur when a non-zero stress 𝜏 allows the expansion of kinks. This issue is addressed by

including the possibilty of backward jumps under a low stress. As a result, the athermal tem-

perature 𝑇𝐶 is no longer rigorously defined. However, we see in Fig. 3.7 (a) that the difference

between models is limited to only very low stresses, allowing to define 𝑇𝐶 by extrapolation,

yielding the same 𝑇𝐶 as the forward model. As the two thermally activated models show no

difference except for very low stress values, we do not use the simple forward jump model

in the rest of this chapter, and refer to the forward-and-backward jump model as “thermally

activated model”.

With the model of Po et al., the velocity is proportional to a kink velocity term: 𝓋 ∝ 𝓋𝑘 ∝ 𝜏
that enforces 𝓋 = 0 if 𝜏 = 0. With this model also, the limit of a null flow stress is never

reached, and the stress decreases asymptotically at high temperature. At high temperature,
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3.2 Glide of screw dislocations

the decrease of the flow stress is slower than with the thermally activated model, making it

more difficuly to extrapolate an athermal temperature from the low flow stress domain.

From the expression of the velocity in the model of Po et al. (Eq. 3.15), different regimes

emerge, where the velocity is limited either by kink migration or kink pair nucleation. For

long segments, where nucleation is readily achieved thanks to the great amount of available

nucleation sites, or at high temperature whereΔ𝐺𝑘𝑝 is lowered, the average distance between

kinks pairs is 𝜆. Kink pair migration then consists in kinks crossing the distance 𝜆 to anni-

hilate on one another, with an average migration time 𝑡𝑚𝑖𝑔 = 𝜆/𝓋𝓀 which does not depend

on 𝐿. In this domain, the flow stress is limited by kink migration, and is higher compared to

the thermally activated model —which only accounts for nucleation— as seen in Fig. 3.7. On

the other hand, if the segment length 𝐿 ≪ 𝜆, e.g. in the case of a simulation cell with a short

dislocation segment, kink migration will be faster, as it will stop after crossing the distance 𝐿.

In addition, short segments provide only a low number of nucleation sites, which limits the

kink pair nucleation rate. In this regime, kink nucleation becomes the limiting feature and 𝓋
depends on 𝐿 as both the nucleation time and the migration time 𝑡𝑚𝑖𝑔 = 𝐿/𝓋𝓀 depend on L.

These two regimes can be identified in the expression of the dislocation velocity (Eq. 3.15).

Using the approximation 𝐿 ≫ 2𝑎𝑒𝛽Δ𝐺𝑘𝑝/2 it is simplified as:

𝓋 = 𝓋𝑘 2ℎ𝑎 𝐿2𝑎𝑒𝛽Δ𝐺𝑘𝑝/2 + 𝐿𝑒−𝛽Δ𝐺𝑘𝑝/2 ∼ 𝓋𝑘 2ℎ𝑎 𝑒−𝛽Δ𝐺𝑘𝑝/2, (3.22)

which is dependent on 𝐿 and corresponds to the regime where kink migration is limiting. If

the contrary approximation 𝐿 ≪ 2𝑎𝑒𝛽Δ𝐺𝑘𝑝/2 is used to simplify Eq. 3.15, we obtain:

𝓋 = 𝓋𝑘 2ℎ𝑎 𝐿2𝑎𝑒𝛽Δ𝐺𝑘𝑝/2 + 𝐿𝑒−𝛽Δ𝐺𝑘𝑝/2 ∼ 𝓋 = 𝓋𝑘 2ℎ𝑎 𝐿𝑒−𝛽Δ𝐺𝑘𝑝 . (3.23)

which is close to the velocity of the thermally-activated model (Eq. 3.3).

The ratio 𝐿/𝜆 which determines the limiting feature for dislocation velocity is plotted

against Δ𝐺𝑘𝑝 in Fig. 3.8, at different temperatures and for different values of 𝐿. The up-

per part of the plot corresponds to the regime where kink migration is limiting. For a given

temperature and 𝐿, this is obtained with lower values of Δ𝐺𝑘𝑝(𝑇 , 𝜏 ), i.e. large applied stress

and high temperatures which help kink pair nucleation.

In Fig. 3.7 (b), the flow stress predicted by each model is plotted as a function of 𝐿 for con-

ditions typical of MD simulations (low temperature, high shear rate). In the short segment

regime, both models predict a strengthening, as kink pair nucleation becomes the limiting

process. With the model of Po et al., a length-independent regime is obtained for long seg-
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Figure 3.8: Comparison of the terms 𝐿 and 𝜆 = 2𝑎𝑒𝛽Δ𝐺𝑘𝑝/2 as a function of Δ𝐺𝑘𝑝. The
term 𝐿 is dominant in the upper half of the plot, i.e. for low values ofΔ𝐺𝑘𝑝. Orange
circles correspond to an estimation of 𝐿/𝜆 in typical MD simulations conditions
( 𝜌 = 4 × 1015 m−2, 𝐿 = 40𝑏, ̇𝛾 = 1 × 107 s−1), while red dots correspond to typical
experimental conditions (𝜌 = 1 × 1012 m−2, 𝐿 = 1 × 10−6 m, ̇𝛾 = 8.5 × 10−4 s−1).
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3.2 Glide of screw dislocations

ments. For the thermally activated model in the other hand, the flow stress slowly tends to

zero as longer segments increase the nucleation probability without augmenting the kink

migration time, which is neglected.

We emphasise that the kink migration or nucleation-limited regimes are not solely deter-

mined by the value of 𝐿, as 𝜆 is a function of Δ𝐺(𝜏 , 𝑇 ). In Fig. 3.8, it can be seen that the

motion of a long segment of 1 µm can be limited by kink nucleation if Δ𝐺 is large( i.e. in the

case of a low shear rate) or if the temperature is low5.

Gibbs energy approximations In Fig. 3.9, we compare our MD data to the flow stress ob-

tained based on both harmonic assumptions of Δ𝐺𝑘𝑝 presented in Sec. 3.2.3, i.e. either a con-

stant entropy, or a Meyer-Neldel law. Models presented side-by-side use the same expression

of Δ𝐺𝑘𝑝. It can be seen that assuming a constant entropy Δ𝑆0 = 7𝑘𝐵 yields good results at

low temperature. The thermally activated model gives a discrepancy at higher temperature,

which is larger with the model of Po et al. that predicts a slower decrease of the flow stress.

We also tested a Meyer Neldel law to compute Δ𝐺𝑘𝑝, which is presented in the second row

of Fig. 3.9 with 𝑇𝑀𝑁 = 500 K. We can see that the agreement with MD data is made worse by

introducing the MN law compared to the constant entropy assumption, as it makes the de-

crease of the flow stress much stiffer. The poor agreement strongly suggests that this system

doesn’t obey a Meyer-Neldel compensation rule.

These models are therefore not sufficient to explain the temperature evolution of the flow

stress observed in the MD simulations. In addition, they are based on unchecked assumptions

on Δ𝑆 whose effect is difficult to decorelate from the effect of the underlying velocity model.

The temperature and stress dependence of Δ𝐺𝑘𝑝 has been estimated by Gilbert et al. (2013)

using thermodynamic integration with the potential of Mendelev, showing a strong stress

and temperature dependence and marked anharmonicity. These results suggest that an im-

proved agreement with MD data could be obtained by determining Δ𝐺𝑘𝑝 more accurately. In

the following, we use direct Gibbs energy calculations to determineΔ𝐺𝑘𝑝, and implement our

results in the well-established velocity models discussed in this section to verify the validity

of commonly used expressions of Δ𝐺𝑘𝑝, using a minimum of adjustable parameters.

5This is precisely the case encountered at the end of this chapter, when testing glide models on typical exper-
imental conditions, based on Gibbs energies computed with the Proville potential.
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Figure 3.9: MD flow stress data compared to model predictions assuming either a
constant entropy or a Meyer Neldel law. Each subplot presents the predic-
tions of a model (thermally activated on the left, Po et al. on the right), for two dif-
ferent simulation conditions (continuous curves), and compared to corresponding
MD simulations (symbols, same color corresponds to same conditions). When
assuming a constant entropy, Δ𝑆0 is set to 8.5𝑘𝐵. For the MN law Δ𝑆0 = 6𝑘𝐵,𝑇𝑀𝑁 = 500 K.
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3.3 Beyond the harmonic approximation

3.3 Beyond the harmonic approximation

Approaches developed in the previous section are unable to accurately predict the flow stress

at high temperature. The harmonic assumption which sets the basis of the harmonic TST is

known to hold only at low temperatures, and anharmonic effects are expected to appear at

higher temperature (Lesar et al., 1989; Gilbert et al., 2013; Sato et al., 2021; Swinburne, 2021).

The PAFI method introduced in Sec. 1.3.1, which allows the evaluation of free enthalpy bar-

riers associated with kink pair nucleation, is used in this section to explore a broad range

of stress and temperature. Technical details regarding the PAFI method and our calculation

methodology were already presented in Sec. 1.3.1. In our calculations, we use simulation cells

that are twice smaller in the 𝑧 direction (i.e. the direction with no boundary conditions) com-

pared to the MD simulations, in order to reduce the computational load. The cell dimensions

are given by the following numbers of unit cells along 𝑥, 𝑦, 𝑧: (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) = (40, 20, 20). Ad-

ditional tests conducted with (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) = (40, 15, 15) and (40, 30, 20) showed no significant

effect of the cell dimension in the 𝑦, and 𝑧 directions.
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Figure 3.10: Gibbs activation energy at low temperature, at 200 and 500 MPa. PAFI
calculations were conducted with a high level of accuracy, resulting in a narrow
uncertainty domain (gray area). The results of harmonic entropy calculations
conducted at 200 and 500 MPa are presented as dashed lines.

In Fig. 3.10, we present values of the free enthalpy of activation for kink pair nucleationΔ𝐺𝑘𝑝 computed with applied stresses 𝜏 = 200MPa and 500MPa as a function of temperature.Δ𝐺𝑘𝑝 is calculated as the difference between the maximum and initial Gibbs energy along
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Figure 3.11: Minimum Gibbs free energy paths associated with the nucleation of a
kink pair under 200 MPa in Fe, at different temperatures. (a) MGEP pro-
files: PAFI free energy data (symbols) and corresponding splines (lines). (b) Tem-
perature evolution of the Gibbs energy of activation. A linear regression in the
domain below 100 K is shown as a dashed line. Both plots share the same 𝑦 axis.

barriers such as those presented in Fig. 3.11 (a). In Fig. 3.10, the values of Δ𝐺𝑘𝑝 computed

with the PAFI method are also compared to the harmonic prediction obtained by diagonaliza-

tion of the Hessian matrix (see Sec. 1.3). It appears that both methods are in agreement close

to zero Kelvin, but quickly diverge as Δ𝐺𝑘𝑝 becomes non-linear even at low temperature

(𝑇 ≳ 20 K). This unexpected behavior means that harmonic entropy calculations, a well-

established method for computing the low-temperature entropy (Vineyard, 1957) would lead

to a strong overestimation of the activation entropy in this case, even at low temperature.

The curvature of the energy landscape at the initial and activated states can therefore only be

used very locally, limiting the harmonic regime to very low temperatures. When temperature

allows the system to visit neighboring states around the equilibrium position, it experiences

a curvature that differs from the one of an idealized harmonic surface. This overestimation

of the entropy is likely due to a roughness of the potential energy landscape predicted by

Proville potential and to locally flat regions in the energy landscape of the interatomic po-

tential, which could be an artefact of the interatomic potential.

Nevertheless, the observed non-linearities remain small compared to the variations caused

by the stress or the temperature. In Fig 3.11, it can be seen that the overall curves remain

close to a linear behavior at low temperature. We have therefore linearized the Δ𝐺𝑘𝑝 data at
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3.3 Beyond the harmonic approximation

temperatures below 100 K, giving an approximation of Δ𝑆 = −𝜕𝐺𝑘𝑝/𝜕𝑇 assimilated to a con-

stant. This close-to-linear domain is alike a harmonic regime, with the difference that it does

not directly derive from the vibrational modes around the initial and activated states. We also

emphasise how the small deviations from linearity at low temperatures affect the computed

activation entropy, making such calculations very challenging. To be able to measure these

small variations in Fig. 3.10, we improved the precision of the Gibbs energy calculations by

increasing the number of independent samplings, resulting in a narrow uncertainty domain

(represented by a light grey region in Fig. 3.12) that allows to capture all non-linearities, but

with a high computational load. The linearization that we propose can thus also be seen as

a pragmatic approach to save computational resources by neglecting small non-linearities.

Figure 3.12: Gibbs free energy of nucleation of a kink pair in iron as a function of
temperature. PAFI data obtained for each level of stress are shown as symbols.
Linear regressions below 100 K are shown as (dotted lines).

In Fig. 3.12, we present values of Δ𝐺𝑘𝑝 computed over a large range of stresses and tem-

peratures. As expected, Δ𝐺𝑘𝑝 decreases when the temperature or the applied stress increase.

Also note that the sampling error is larger than in Fig 3.10, as less sampling repetitions were

realized to save computation time and explore more stress/temperature conditions. For all

tested values of the stress, the variations of Δ𝐺𝑘𝑝 remain close to linear below 100 K, as

highlighted by the blue dotted lines. The effective activation entropy Δ𝑆𝑟𝑒𝑔 obtained from
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3 Thermally-activated glide of screw dislocations in pure bcc iron

Figure 3.13: Effective activation entropyΔ𝑆 as a function of (a) the activation enthalpyΔ𝐻𝑘𝑝 and (b) the shear stress 𝜏. The slopes of linear regressions of Fig. 3.12 are
plotted as a function of the activation enthalpy in (a) and stress in (b) (square
symbols), and fitted to: (a) an inverse Meyer-Neldel entropy-enthalpy relation
(Eq. 3.18), (b) a linear stress-activation entropy relation.

low-temperature linear regressions is reported in Fig. 3.13 as a function of both the activa-

tion enthalpy Δ𝐻𝑘𝑝 and the stress. It appears that Δ𝑆𝑟𝑒𝑔 varies by several 𝑘𝐵, which contrasts

with the approximation of a constant activation entropy. In addition, a clear proportionality

is observed in both cases, which can be seen as two manifestations of a same effect, as Δ𝐻𝑘𝑝
varies close to linearly with the stress (see Fig. 3.3). At low temperature, Δ𝑆 can therefore be

expressed either as Δ𝑆 = −Δ𝐻𝑘𝑝

𝑇𝑀𝑁
+Δ𝑆0 with 𝑇𝑀𝑁 positive, corresponding to an inverse Meyer

Neldel behavior, or as a function of the stress Δ𝑆 = 𝛼𝜏 + Δ𝑆0. The parameterization of both

equations is presented in Fig. 3.13. Interestingly, the inverse Meyer Neldel behavior seen

at low temperature corresponds to a reinforcement effect between enthalpy and entropy, in

contrast to the classical compensation effect.

In Fig. 3.14, we implemented an inverse Meyer Neldel law in the glide models of Sec. 3.2.2

using the parameterized value of 𝑇𝑀𝑁 and Δ𝑆0, respectively 484 K and 12.3𝑘𝐵. Again, both

models presented side-by-side use the same expression of Δ𝐺𝑘𝑝. With the inverse MN law,

both models yield a satisfactory agreement with MD data. The thermally activated model

appears slightly more accurate, and its predictions go through the error bar of most data

points. We emphasize that this result is obtained with no adjustable parameter in the case

of the model of Po et al., and with 𝜈 as the only adjustable parameter in the case of the

thermally activated model (which was set to the same value 𝜈 = 5 × 1010 s−1 throughout this
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3.3 Beyond the harmonic approximation

chapter). Both models are reasonably accurate within the entire range of temperature and

shear rates presented here. These results suggest that the temperature dependence of the

flow stress seen in low temperature MD simulations can be explained within the framework

of the harmonic TST, using the inverse MN law. At higher temperature, anharmonicity is

expected, as a deviation from linearity of the Gibbs energy is seen in Fig. 3.12.

Figure 3.14: MD flow stress data compared to models predictions using an inverse
Meyer Neldel law. Each subplot presents the predictions of a model (ther-
mally activated on the left, Po et al. on the right), for two different simulation
conditions (continuous curves), and compared to corresponding MD simulations
(symbols, same color corresponds to same conditions).

Beyond the linear regime, a deviation from linearity is indeed observed in Fig. 3.12, corre-

sponding to an anharmonic regime whereΔ𝐺𝑘𝑝 decreases non-linearly. We have checked that

for the moderate stresses and temperatures considered here, both usually discussed anhar-

monic effects, i.e. thermal dilatation and weakening of the elastic moduli (Ryu et al., 2011),

do not affect the energy barriers. The main effect is probably a widening of the activated

kink pair (Swinburne and Marinica, 2018), which results in a deviation of the MGEP at finite

temperature from the zero-Kelvin MEP. Interestingly, we see in Fig. 3.12 that at low applied

stresses, Δ𝐺𝑘𝑝 decreases faster than the linear regression while it is the opposite at high ap-

plied stresses. This implies that using a linear approximation at high temperatures may result

in either over- or underestimating the dislocation velocity depending on the applied stress,

resulting in erroneous curvature of flow stress curves in Fig. 3.14 compared to MD.

The evolution of Δ𝐺𝑘𝑝 as a function of the applied stress is shown in Fig 3.15. At all
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Figure 3.15: Gibbs free energy of nucleation of a kink pair as a function of stress.
PAFI data (symbols) is fitted to Eq. 3.24, giving a set of parameters given in
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3.3 Beyond the harmonic approximation

temperatures (including the anharmonic regime), the data can be accurately fitted by a phe-

nomenological approach, using a modified Kocks law (Kocks et al., 1975):

Δ𝐺𝑘𝑝(𝜏 , 𝑇 ) = Δ𝐺0(𝑇 ) (1 − ( 𝜏𝜏𝑃(𝑇 ))𝑝)
𝑞 , (3.24)

with: 𝜏𝑃 (𝑇 ) = 𝑎𝑇 + 𝑇0 + 𝑏, (3.25)

and Δ𝐺0(𝑇 ) = Δ𝐺0 − 𝑇 × 𝐺𝑇, with Δ𝐺0 = 0.6 eV and 𝐺𝑇 = 2 × 10−4 eVK−1. Here, 𝜏𝑃(𝑇 ) is

analogous to the zero-temperature Peierls stress for a finite temperature 𝑇, since it verifies

Δ𝐺(𝜏𝑃 (𝑇 ), 𝑇) = 0. (3.26)

At low temperature (i.e. below ∼ 100 K), 𝜏𝑃 (𝑇 ) is strongly temperature-dependent, and be-

comes constant at higher temperature, as reflected by Eq. 3.25. The obtained set of fitting

parameters 𝑎, 𝑏, 𝑇0, 𝑝, 𝑞 in Fe are given in Tab. 3.1. For temperatures below 100 K, a linear fit

gives the best match to the data. The corresponding fit is shown as a function of the stress in

Fig. 3.15. It can be seen that the proposed expression is able to fit Gibbs energy data within a

wide range of temperature and stress in the anharmonic domain. With Eq. 3.24 and 3.25, we

propose a phenomenological expression of Δ𝐺𝑘𝑝(𝜏 , 𝑇 ) that accounts for anharmonic effects

encountered at high temperature.

We used Eq. 3.24 to compute Δ𝐺𝑘𝑝 and determine the flow stress of iron using the two

models previously discussed, with the results presented in Fig. 3.16. Following the approach

of Fig. 3.14, models predictions are compared with MD data. As can be seen, the agreement

of the anharmonic models with MD data is very satisfactory, and data points are well pre-

dicted by the models. We note that the agreement with MD is only very slightly improved

compared to the harmonic inverse MN law, which appears accurate enough, especially con-

sidering its great simplicity. However, at higher temperature, we expect the anharmonic

model to better predict the flow stress. But MD simulations could not be conducted at higher

temperature to verify this assumption, due to the instability of the dislocation, which tends

to exit the simulation cell through the free surfaces when the temperature reaches 400 K in

our simulation setup.

The values of Δ𝐺𝑘𝑝 obtained with PAFI (Eq. 3.24) can also be used to compare the predic-

tions of the different models to experimental flow stress data, e.g. from Brunner and Diehl

(1991). It must be noted that in the low temperature limit, a well-known discrepancy appears
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3 Thermally-activated glide of screw dislocations in pure bcc iron

Figure 3.16: MDflow stress data compared tomodels predictions using ourGibbs free
energy calculations. Each subplot presents the predictions of a model (ther-
mally activated on the left, Po et al. on the right), for two different simulation
conditions (continuous curves), and compared to corresponding MD simulations
(symbols, same color corresponds to same conditions).

Parameter Value Unit𝑎 1.44 × 105 MPa/K𝑏 299 MPa𝑇0 200 K𝑝 0.83 –𝑞 1.42 –

Table 3.1: Fitting parameters obtained by adjusting Eq. 3.24 to PAFI data in iron.
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between the 0 K extrapolation of experimental flow stress data, which is close to 0.4GPa in

iron (Kubamoto et al., 1979), and predictions of classical TST models, which are close to

1GPa (Fig. 3.3). Several authors proposed to correct this discrepancy either phenomenolog-

ically (Domain and Monnet, 2005) or by accounting for the effect of dislocations junctions

(Bulatov and Cai, 2002), collective dislocation dynamics effects (Gröger and Vitek, 2007) or

quantum effects (Proville et al., 2012). While these processes are of great importance, their

integration is beyond the scope of the present work. In order to compare relative variations,

we plot experimental and simulated data on separate scales (Clouet et al., 2021). Another

caveat of comparison to experimental data is the estimation of the segment length 𝐿 and

dislocation density 𝜌 (Brunner and Diehl, 1991). Here, we take 𝐿 = 1 µm, 𝜌 = 1 × 1012 m−1,̇𝛾 = 8.5 × 10−4 s−1 and use value of 𝜈 = 5 × 1010 s−1 used previously.

In Fig 3.17, we compare experimental flow stress data to the predictions of both dislocation

glide models, based on our parameterization of Eq. 3.24. Both models yield similar predic-

tions in this case, as we have 𝐿/𝜆 ∼ 10−2, i.e. glide is limited by kink pair nucleation. It can

be seen that this parameterization allows the models to reproduce well the overall relative

evolution of the experimental flow stress. The athermal temperature 𝑇𝐶 which marks the end

of the thermally activated regime is well defined with both models with this set of conditions,

even though the definition of 𝑇𝐶 has been discussed in this chapter (see Sec. 3.2.4). The differ-

ence between model predictions and experiments is mainly due to an underestimation of the

athermal temperature, leading to a discrepancy that gets larger with increasing temperature.

While this result is encouraging for the integration of entropic and anharmonic effects in

kinetic models of dislocation glide, a more realistic comparison to experimental data would

benefit from the integration of the low-temperature effects mentioned above, as well as the

use of a more realistic interatomic potential. In addition, neither our implementation of the

thermally activated model nor of the model of Po et al. include non-schmid effects which

are well-known to play a role in experimental conditions (Spitzig and Keh, 1970; Hale et al.,

2015; Stukowski et al., 2015; Kraych et al., 2019; Clouet et al., 2021).

3.4 Conclusions

In this chapter, we discussed different dislocation velocity models and tested their validity

using MD simulations. The tested models notably differ by their complexity, ranging from a

simple forward-jump model to the more comprehensive approach of Po et al. (2016) which

takes into account the kink migration velocity and the equilibrium density of kink pairs along
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Figure 3.17: Experimental flow stress compared to models predictions. Experimental
data from Brunner and Diehl (1991) is compared to the predictions of the ther-
mally activated model, which uses our parameterization of Eq. 3.24. Note that
experimental data is plotted on a separate axis to account for the usual low-
temperature discrepancy between TST models and experiments.

long segments.

When comparing to MD simulations, the accuracy of the predictions depends for a larger

part on the assumptions used for the calculation of Δ𝐺𝑘𝑝, often more than on the velocity

model itself. Comparison to MD also shows that common assumptions, such as a constant

entropy, or the Meyer-Neldel law, fail to reproduce the flow stress of iron at high tempera-

tures. We used a novel free energy integration method (PAFI) to evaluate Δ𝐺𝑘𝑝 beyond the

harmonic domain, showing strong anharmonic effects, and non-linearity at temperatures as

low as 20 K that quickly diverge from the predictions of HTST methods based on a diagonal-

ization of the Hessian matrix. Using the PAFI method, the Gibbs energy was computed in a

large range of stresses and temperatures and fitted with simple laws to be implemented in

kinetic models. The flow stress predicted using this fitted law is in excellent agreement with

MD simulations up to temperatures that are above the room temperature.

PAFI data also show that the Gibbs activation energy tends to follow an inverse Meyer-

Neldel behavior at temperatures below 100 K. Implementing an inverse Meyer-Neldel law

parameterized on our Gibbs energy data yields a satisfactory agreement with flow stress val-

ues obtained from MD simulations up to the high temperatures. Complementary analysis

of atomic vibration modes obtained by diagonalization of the Hessian matrix was performed
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following the approach of Gelin et al. (2020) as an attempt to understand the physical origins

of this inverse Meyer-Neldel behavior. The results show that when the applied stress (and

conversely, the enthalpy) changes, the vibrational modes of the iron matrix (i.e. delocalized

in the simulation cell) are affected. We observe that in contrast to the observations of Gelin

et al. (2020), the softening peak seen in the difference of vibrational density of states (VDOS)

between the initial and activated states is increased when the enthalpy decreases, resulting

in an increase of the activation entropy. However, the strong deviation of the Gibbs energy

from the HTST prediction starting at 20 K raises questions on the validity of these observa-

tions above very low temperatures. As the distance between the initial and activated states

in configurational space is reduced when the stress is close to the Peierls stress (as the crit-

ical kink is then only a small buldge, as seen in Fig. 3.2), we expect the activation entropy

to decrease in the high stress domain. We were able to confirm this prediction with com-

plementary HTST calculations using the EAM4 potential for tungsten (Marinica et al., 2013).

But the same calculations conducted in iron revealed that Δ𝑆 increases even more stiffly un-

der a high stress, corresponding to a softening of vibration modes, which is likely a local

artefact of the interatomic potential.

At this point, this work is limited by the realism of the Proville interatomic potential. The

strong anharmonicity of the potential at moderate temperature, as well as the non-linearity

that appears at low temperature raise questions on the realism of the potential. These results

should thus be confirmed with other interatomic potentials for iron that are valid for the

simulation of dislocations, such as the recently developed machine learning-based potentials

from Goryaeva et al. (2021). These potentials show an excellent agreement with the ab initio

Peierls barrier and kink-pair nucleation energies derived from ab initio-parameterized line

tension models.

3.5 Perspectives for the PAFI method

The PAFI method has shown a great efficiency for free-energy calculations, compared ei-

ther to classical harmonic approaches or to recent developments in free energy calculation

methods (Grabowski and Zotov, 2021). In the future, this method could be generalized to a

broad range of thermally activated processes, allowing a better understanding of these pro-

cesses as well as more accurate predictions. Using this type of method, new interatomic

potentials could be automatically compared to free energy data obtained e.g. with ab initio

methods (Ackland, 2002; Zhang et al., 2018; Grabowski et al., 2019), while it is common to
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3 Thermally-activated glide of screw dislocations in pure bcc iron

benchmark potentials on zero-kelvin properties, which offers no guarantee that predictions

remain valid at high temperature.

Several improvements to the PAFI method could be proposed to make it more easily usable

by the community and faster. A first limitation of the method in its current state is its sensi-

tivity to the density of knots along the initial minimum energy path (MEP), which must be

sufficiently high in regions where the free energy varies strongly, to avoid integration error

that would be caused by discontinuities of the free energy gradient. Here, we avoided this

issue by using a large number (20-30) of NEB replicas and PAFI hyperplanes to compute each

barrier, but this approach is highly inefficient and a similar result could be obained with less

hyperplanes placed at optimal positions. One difficulty is that the position of the regions

where the free energy varies strongly cannot be anticipated from 0 K calulations, as the po-

sition of the initial and transition states are typically shifted with increasing temperature

(see Fig. 3.18). This issue could be addressed by adding knots on-the-fly at optimal posi-

tions where large free energy gaps remain, e.g. by adapting approaches used for adaptative

NEB path construction (Kolsbjerg et al., 2016). The hyperplane associated with a new knot

is then defined by spline interpolation of the MEP, or using the free end NEB method for a

more precise result, which allows to find a minimum energy path between non-equilibrium

positions.

Reac. coord.

Free

Energy
NEB path

Free Energy gap

increasing 

temperature

shift of the intial state

Figure 3.18: Sketch of the distribution of knots along a free energy barrier at differ-
ent temperatures. As the temperature increases, the MFEP is more and more
deviated from the MEP and the difference between successive knots can become
large.

Another current limitation of the method is the time nedded to perform the several hun-

dreds of independent samplings that are necessary to compute a barrier with a good preci-

sion. The parallelization scheme of PAFI, shown in Fig. 1.6, allows to run several samplings on

the same hyperplane simultaneously, each on a different worker (group of CPUs), connected
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by the Message Passing Interface (MPI) with a perfect parallel scaling (i.e. no time is lost in

communication between workers, as they are fully independent). While offering a simple

way of starting a large number of simulations simultaneously and to collect their results,

this approach uses a fixed number of workers, meaning that all CPUs have to be requested

at once in shared high performance computing (HPC) platforms. On a busy computing plat-

form, this results in a long queue time until all requested CPUs are available. On the other

hand, if more CPUs are available on the plateform, only the requested number is used, thus

not fully exploiting the available resources. These limitations could be lifted by submitting an

independent job for each worker (or groups of workers) of all hyperplanes to the schedueler

at once, which will then be allocated depending on the available resources. This would in

addition allow to use computing nodes that are not designed for distributed parallel calcu-

lations, i.e. which are not connected by a high-performance network such as an Infiniband

network or do not have a MPI library installed. Workflow managers (see e.g. Rocklin (2015);

Huber et al. (2020); Köster et al. (2021)) could be used to automatically submit and track jobs

on HPC platfoms with minimum code addings to PAFI.
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4 Screw dislocation pinning by

interstitial carbon in iron

The presence of interstitial carbon atoms can affect the thermally-activated nucleation and

subsequent propagation of kink-pairs, even with low concentrations of solutes (Caillard,

2011). While theories of solute hardening are well established in substitutional alloys (Patinet

and Proville, 2008; Varvenne et al., 2017), their application to interstitials remains difficult due

to strong solute-dislocation interactions in the core region. In this chapter, we investigate

the effect of interstitial carbon on dislocation mobility in Fe-C with atomistic simulations,

confirming a powerful locking effect of carbon. We propose a model of dislocation pinning

based on our model of dislocation glide in Fe (Chap. 3), which explains the origin of the

strengthening effect induced by carbon.

4.1 Introduction

The addition of carbon in iron to improve mechanical properties is at the basis of steel met-

allurgy (Berns and Theisen, 2008). For dilute alloys, the change of mechanical properties

at low temperature is related to the interaction between solute atoms and dislocations1.

In substitutional alloys, solutes have a low mobility and dislocations can be considered as

moving through a field of fixed obstacles (Zhao and Marian, 2018). With interstitials on

the other hand, like carbon in iron, solutes are mobile and able to diffuse. The elastic field

of dislocations favors their segregation around dislocation lines, forming Cottrell atomo-

spheres (Cottrell and Bilby, 1949) that were evidenced experimentally using atom probe tech-

niques (Blavette et al., 1999; Wilde et al., 2000). Cottrell atmospheres can greatly reduce the

mobility of dislocations, which necessitate a high stress to escape their atmosphere and be

set into motion (Schoeck and Seeger, 1959). This effect is known as static strain ageing, and is

1In more concentrated alloys, other phases can appear depending on their stability as predicted by the phase
diagram. Here, we focus on low-carbon ferritic steel.
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4 Screw dislocation pinning by interstitial carbon in iron

typically associated with an important yield drop at the beginning of the plastic domain (Ku-

bin et al., 1992), caused by the collective depinning of dislocations from carbon. In a domain

of deformation rate and temperature where dislocations and carbon move at a comparable

velocity, a regime of serrated flow is observed (dynamic strain ageing) where atmospheres are

able to catch up with dislocations before they can move any further (Zhao et al., 2020) (see

e.g. Fig. 4.1). Cottrell atmosphere formation kinetics and mobility are therefore important

to predict the mechanical properties of aged steel and the plastic flow in the serrated flow

regime. Atomistic simulations of their formation using atomistic Monte Carlo approaches

were conducted by Waseda et al. (2017) and Candela et al. (2020) (Fig. 4.2), providing insights

on the filling of lattice sites near the dislocation. Molecular dynamics simulations of deco-

rated dislocations expose a powerful pinning effect of carbon, which increases the unpinning

stress more than 10-fold compared to a solid solution of low concentration (Veiga et al., 2015).

When solutes are homogeneously distributed in solid solution, a hardening and a soften-

ing are observed experimentally depending on the temperature domain (Caillard, 2011), as

represented schematically in Fig. 4.3.

Several solute strengthening theories were proposed to explain the strengthening in ran-

dom solid solutions of substitutional atoms, based on interactions between dislocations and

solutes at the atomic scale (Patinet and Proville, 2008; Varvenne et al., 2017). A classical

conception of hardening, which is typical of fcc metals, is attributed to the bowing of elastic

dislocation lines between pinning points under the applied stress (Foreman and Makin, 1966),

which increases until it reaches either a critical angle 𝜙𝐶 for weak obstacles, or until segments

on each side of the obstacle collide, resulting in their annihilation, in the case of strong obsta-

cles. In bcc metals, due a large Peierls barrier, this mechanism does not apply as straight dis-

location segments are favored and glide is allowed by the kink pair mechanism (see Sec. 3.1).

In this case, strengthening can be explained by an attractive interaction between the solutes

and the dislocation, impeding dislocation glide. Several authors implemented the solute-

dislocation interaction in analytical models of substitutional alloys (Labusch, 1970; Suzuki

et al., 1991; Patinet and Proville, 2008; Varvenne et al., 2017; LaRosa et al., 2019; Maresca and

Curtin, 2020; Rao et al., 2021; Ghafarollahi et al., 2019), or simulations based on the Kinetic

Monte Carlo (KMC) method (Zhao and Marian, 2018). Recently, Zhao et al. (2020) proposed

KMC simulations of interstitial W-O alloys, parameterized on DFT simulations (Zhao et al.,

2019), that were able to reproduce dynamical strain ageing behavior. A central parameter in

these approaches is the dislocation–solute binding energy which depends on the interatomic

potential used. Predictions of different interatomic potentials are compared to ab initio values

in Sec. 2.3.1.
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4.1 Introduction

Figure 4.1: Snapshots fromKMC simulations of a screw dislocation in tungsten inter-
acting with interstitial oxygen atoms, showing different dynamical regimes:
(a) with fast solute diffusion, the dislocation and solutes motion are uncorrelated,
(b) for comparable solutes and dislocation velocities, solutes are able to segre-
gate to the core and pin the dislocation before it can unpin and move further, (c)
when solutes diffusion is slow, the dislocation moves in a field of static obstacles.
Reproduced from (Zhao et al., 2020).
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4 Screw dislocation pinning by interstitial carbon in iron

Figure 4.2: Initial (a) and final (b) configurations of a mixed-lattice kinetic Monte Carlo simu-
lation containing a screw dislocation (the core is represented by three black dots)
and 25 C atoms (spheres) at 300 K. Black arrows in (a) represent the displacement
of atoms between (a) and (b). Reproduced from (Candela et al., 2020).

Figure 4.3: Softening and hardening effects due to carbon addition.
Figure reproduced from Caillard (2011).
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With interstitials, local effects of solutes on the dislocation core were evidenced in DFT

calculations (Ventelon et al., 2015; Lüthi et al., 2018), presented in Fig. 2.3. It consists in the

stabilization of a prismatic core structure unstable in pure Fe and other bcc metals (Lüthi et al.,

2017), evidenced with C and with other interstitial solutes in iron (Lüthi et al., 2018). Due

to its low mobility (Lüthi, 2017), this reconstructed, prismatic core is expected to control the

plasticity of bcc interstitial alloys when solutes are mobile and decorate the dislocations (Ha-

chet et al., 2020). But DFT simulations remain limited by their high computational cost as

studies at a larger scale are necessary.

MD simulations were also used to study the effect of carbon on non-screw dislocations in

iron Tapasa et al. (2007); Veiga et al. (2011); Waseda et al. (2017); Zamzamian et al. (2019); Ishii

et al. (2013), but simulating its effect on screw dislocations remains challenging. Screw dislo-

cation locking by carbon was simulated using MD Veiga et al. (2015); Khater et al. (2014) and

energetic computations Becquart et al. (2007); Clouet et al. (2008); Hanlumyuang et al. (2010),

showing a dramatic reduction of dislocation mobility, linked to a higher kink-pair nucleation

enthalpy Wang et al. (2019). However, the interatomic potentials used in these studies show

a poor agreement with dislocation properties in iron computed with DFT —including the

shape and height of the Peierls barrier— which makes their conclusions open to question. In

chapter 2, we compared Fe-C potentials from the literature and proposed a novel potential

which allows the simulation of screw dislocations interacting with carbon. In Chap. 3, we

investigated the temperature dependance of the flow stress in iron, and determined that us-

ing this potential, the harmonic approximation remains valid up to the ambiant temperature

in typical MD simulations conditions. At higher temperatures in the Fe-C system, a different

regime of deformation is seen experimentally, attributed to the effect of edge dislocations

that become less mobile than screws (Caillard, 2011).

Based on the hybrid interatomic potential developed in Chap. 2, it becomes possible to

simulate by MD the glide of screw dislocations in random solid solutions of C atoms, at

low temperature. Simulations of a full solid solution are used to assess the importance of

short-range core interactions compared to long-range elastic ones. A detailed analysis of

an elementary pinning configuration, where a screw dislocation interacts with C atoms of

varying separation is also performed. For this, we use a combination of MD simulations,

saddle-point search methods and a statistical model of the unpinning stress based on the

harmonic transition state theory (HTST).
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4 Screw dislocation pinning by interstitial carbon in iron

4.2 Dislocation mobility in a solid solution

We start by simulating the glide of a screw dislocation interacting with a random solid so-

lution of C atoms. In order to observe several pinning-unpinning events in the course of a

MD simulation, and the combined effect of several C atoms along the dislocation, we set the

concentration to 0.52 at%, i.e. 1000 solute atoms in a box containing 192000 Fe atoms. It was

created by inserting carbon atoms in octahedral sites randomly selected in the PAD simu-

lation cell. Considering the short simulated time (a few nanoseconds) and the investigated

temperatures, carbon atoms are not able to diffuse and are considered immobile in the rest

of this chapter.

Figure 4.4: Dislocation line (green) adopting a complex three-dimensional kinked
structure in presence of carbon atoms (red spheres). Only the solutes closest
to the dislocation are represented for clarity. The dislocation line was identified
using the DXA algorithm (Stukowski et al., 2012).

Using the DXA algorithm (Stukowski et al., 2012), we can visualize the position of the dislo-

cation line in MD simulations. Due to the high carbon-dislocation binding energy, nucleation

of kink-pairs in directions where carbon atoms are present is favoured, which includes cross-

slip planes. This results in strongly locked configurations, as illustrated in Fig.4.4, where

the dislocation line connects all neighbouring C atoms, with segments extended in different

planes giving the dislocation a three-dimensional shape.

Typical stress-strain curves are shown in Fig. 4.5 (a). As shear is increased at a constant

rate, the internal stress raises linearly before the flow stress is reached, or each time the dis-

location is in a pinned configuration. After each unpinning event, the stress drops as the

dislocation rapidly glides in the cell to the next obstacle, resulting in a strongly serrated

stress-strain curve. Unpinning stresses are on the order of 600MPa at 300 K, compared to a

flow stress of about 350MPa in pure Fe (the stress-strain curve in pure Fe is shown in gray
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4.2 Dislocation mobility in a solid solution

in Fig. 4.5 (a)). The strengthening can emerge from three mechanisms in the region of the

core (Maresca and Curtin, 2020): i) solutes block the kink migration along the line, ii) the

interaction between kinks in different planes result in cross-kink pinning, and iii) the nu-

cleation of double-kinks on segments between solutes can become harder, especially with

a reconstructed dislocation core (see section 4.3.2). The local conversion of the dislocation

core to a prismatic structure in the neighbourhood of carbon atoms is indeed observed in dy-

namic simulations, as illustrated in Fig. 4.6. As the interplay between the different strength-

ening mecanisms make solid solution simulations too complex to analyse, simplifications are

needed. In order to confirm the importance of short-range solute-dislocation interactions, we

artificially created a carbon-free volume around the glide plane as illustrated in Fig. 4.5 (b).

Solute atoms outside this volume are left unchanged between the different simulations. In

Fig. 4.5 (a), we compare the stress-strain curves obtained with a full solid solution (𝑛𝑝𝑙𝑎𝑛𝑒𝑠 = 0),

and a carbon-depleted zone around the dislocation glide plane comprised of 𝑛𝑝𝑙𝑎𝑛𝑒𝑠 atomic

planes on both sides. In the case 𝑛𝑝𝑙𝑎𝑛𝑒𝑠 = 2, the vicinity of carbon atoms attracts the dislo-

cation, which cross slips and gets pinned to the carbon, resulting in a strenghtening that is

comparable to the full solid solution. When 𝑛𝑝𝑙𝑎𝑛𝑒𝑠 is larger than 4 (corresponding to approx-

imately 8Å), the stress level reveals no significant strengthening in comparison to pure iron

(green curve). This advocates for a pinning mainly controlled by short-range interactions.
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Figure 4.5: Constant shear rate simulations with a carbon-depleted zone around the
glide plane. (a) Stress-strain curves during constant shear-rate MD simulations
of random solid solutions at 300 K. Blue lines represent simulations in which a
carbon depleted zone of 𝑛𝑝𝑙𝑎𝑛𝑒𝑠 atomic planes above and below the glide plane was
created, as illustrated in (b). The carbon concentration is 0.52 at when 𝑛𝑝𝑙𝑎𝑛𝑒𝑠 = 0.
The gray line in (a) represents the same deformation test conducted in pure Fe.
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4 Screw dislocation pinning by interstitial carbon in iron

Figure 4.6: Local conversion of the screw dislocation core during a dynamical simu-
lation. The smaller red atom is a carbon atom, while all others are iron atoms.
Iron atoms that adopt a distorted prismatic structure near the carbon atom, are
highlighted in blue. The dislocation line obtained using the DXA algorithm is
shown in green. For clarity, only core atoms are shown.

4.3 Unpinning from an array of C atoms

Given the complexity of dislocation glide in a random solid solution seen in previous sec-

tion, we defined a model system when a screw dislocation detaches from an array of carbon

atoms directly located in its core. This allows to exclude cross-kink pinning, and the effect of

mid- and long-range interactions, to focus on the elementary unpinning process. For these

simulations, two C atoms were inserted in second-nearest octahedral positions along the

dislocation line (denoted 𝑂(2), see Fig. 2.2), aligned in the [111] direction inside the disloca-

tion glide plane to avoid cross-slip. Due to the periodic boundary conditions in the [111]
direction, the carbon atoms form an infinite one-dimensional array with a spacing between

carbon atoms defined by two lengths: ℓ and 𝐿, with ℓ ≤ 𝐿 as illustrated in Fig. 4.7 (a).

Fig. 4.7 details the full unpinning processes of a dislocation, with the corresponding stress-

strain curve, simulated with ℓ = 10 𝑏, 𝐿 = 30 𝑏 at 40 K. A step-by-step visualisation of the MD

simulation can be decomposed in 6 successive images shown in Fig. 4.7 (a). The dislocation

is initially in the Peierls valley before the C atoms (step 1). It transits to the valley just

after the C atoms (step 2) at a relatively low stress of about 250MPa, which is marked by a

slight stress drop highlighted by a dashed circle in Fig. 4.7 (b). The magnitude of the stress

drop is Δ𝜏 = 𝜇𝜌𝑏𝑑 (𝑑 is the distance Peierls valleys) and correspond to the plastic work

associated with the first jump. This configuration is the true pinning configuration, which

resists dislocation motion until a high applied stress of about 950MPa. At this point, a kink
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Figure 4.7: Unpinning process for a dislocation pinned by two carbon atoms. (a) Snap-
shots taken at typical stages. The dislocation line is in green, carbon atoms are
red spheres. Dashed lines serve as a visual guide. (b) Corresponding stress-strain
curve. Numbers in (b) refer to the images in (a). Carbon atoms are separated byℓ = 10𝑏 along a 40𝑏-dislocation. The MD simulation was conducted at 40 K to
reduce thermal fluctuation, for 2 ns with a strain rate of 1 × 107 s−1.

pair forms on the longer 𝐿 segment (step 3). The kink height is one Peierls valley, although

it appears on Fig 4.7 (a) as a half kink due to an artefact of the DXA algorithm. Between

steps 3 and 4, double kinks have nucleated on both the short ℓ and long 𝐿 segments and

expanded along the entire available segment length. They have however stopped at the C

atoms that acted as strong obstacles blocking their annihilation2. Step 4 is followed by a

short period of stress increase, which suggests that this atomic configuration is stable under

the applied stress, i.e. the two kinks on both sides of the C atoms cannot annihilate, at least

on short timescales. Between steps 4 and 5, a second double kink nucleates on the longer

segment, which causes unpinning followed by a large stress drop on the stress-strain curve

in Fig. 4.7 (b).

C atoms are therefore strong enough obstacles to block the annihilation of kinks despite

the strong attractive kink-kink elastic interactions. The nucleation of a second kink pair is

needed, which creates a kink with a height of two Peierls valleys. This extended kink is able

to cross the C atom (left C atom in step 5 of Fig. 4.7 (a)), leading to the unpinning of the entire

dislocation. Moreover, nucleation of kink-pairs is a thermally-activated process, such that

2This effect is observed even though the annihilation of two opposite kinks would lead to a large energy gain,
which can be estimated from the drop of enthalpy in the last stage of the Peierls barrier under stress (for
0.6GPa the Fig. 3.3 (a)), and which is likely higher than the energy of the carbon in the dislocation. This
result suggests that there is a high energy barrier for the kinks to cross the carbon, which is larger than the
barrier of nucleation on top of the nucleated kink pair.
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4 Screw dislocation pinning by interstitial carbon in iron

the unpinning stress 𝜏∗ is a random variable affected by the random seed used to assign the

initial atomic velocities. This effect is illustrated in Fig. 4.8. To account for this, we performed𝑛 repetitions for each MD simulation with different random seeds (𝑛 ranging from 5 to 20),

and we compute the average unpinning stress 𝜏∗ and its uncertainty 𝜎/√𝑛, where 𝜎 is the

standard deviation of a series of 𝑛 independent measurements of 𝜏∗.
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Figure 4.8: Effect of the random initial velocity on the unpinning stress. Stress-strain
curves obtained with one C atom with 𝐿 = 40b, and with two C atoms ℓ = 𝐿 = 20b
at 100 K. 20 different random seeds are used for the initial atomic velocities. The
unpinning stress 𝜏∗ is marked by orange circles.

4.3.1 Effect of solutes spacing

We investigated the effect of solute spacing by varying ℓ and 𝐿 on dislocations of varying ℓ+𝐿
lengths. However, we have seen that the length of the shorter ℓ segment has a negligible

effect, such that all results can be presented in Fig. 4.9 as a function of 𝐿 only. The figure

also contains the flow stress computed in pure iron, which does not show any significant

dependence on the dislocation length 𝐿. This is coherent with the fact that without obstacles,

the flow stress depends only logarithmically on 𝐿. The reason is that the flow stress is solution

of Orowan equation ̇𝛾 = 𝜌𝑏𝑣, with 𝜌 the density of mobile dislocations (here 𝜌 = 1/𝐿𝑦𝐿𝑧)
and 𝑣, the dislocation velocity. As introduced in Sec. 3.2.2, the velocity 𝓋 of a dislocation of

length 𝐿 can be expressed by a thermally activated forward-jump model:
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4.3 Unpinning from an array of C atoms

Figure 4.9: Dependence of the average unpinning stress on the largest dislocation
segment length 𝐿. MD at (a) 100 K and (b) 300 K. Blue circles are when ℓ < 𝐿,
red squares when ℓ = 𝐿. Half-filled orange symbols refer to the flow stress in
pure iron computed by MD in cells of different lengths 𝐿. The dashed and solid
lines are predictions of a statistical model (see text for details).

𝓋 = 𝜈𝐿 exp ( − Δ𝐺𝑘𝑝(𝜏∗, 𝑡)𝑘𝐵𝑇 ) (4.1)

where 𝜈 is an attempt frequency and Δ𝐺𝑘𝑝 is the Gibbs activation energy. The flow stress 𝜏∗
is thus solution of Δ𝐺𝑘𝑝(𝜏∗, 𝑡) = 𝑘𝐵𝑇 log (𝜈𝜌𝑏𝐿̇𝛾 ), (4.2)

which depends only logarithmically on 𝐿. When used with correct values ofΔ𝐺𝑘𝑝, this simple

model showed very good agreement with MD data in Chap. 3. One caveat of this model is its

low-stress limit, which does not prevent the flow stress from going to zero as neither reverse

jump or kink migration is taken into account. However, this issue is irrelevant in the high-

stress, low-temperature domain considered in the following, where this model yields good

results.

By way of contrast, the average unpinning stress in presence of C atoms shows a very

strong 𝐿-dependence when 𝐿 100 𝑏. 𝜏∗ reaches more than 1 GPa when solutes are closest,

meaning that the stress required to overcome them is more than twice the flow stress and is

actually even higher than the 0 K Peierls stress in pure Fe (∼ 1GPa). This demonstrates the

powerful locking capability of an array of C atoms, with a spacing in the range 5 to ∼ 50 𝑏
when the temperature is small enough that the solute atoms cannot follow the dislocation
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4 Screw dislocation pinning by interstitial carbon in iron

in its glide. This very strong pinning for closely spaced C atoms is consistent with DFT

calculations (Lüthi et al., 2018). For larger C spacings, the unpinning stress reduces to the

flow stress in pure iron and no strengthening or weakening is observed when 𝐿 100 𝑏.
In addition, as mentioned above, the data show only a small difference in 𝜏∗ whether the

dislocation is pinned by evenly (ℓ = 𝐿, red squares) or unevenly spaced C atoms (ℓ ≤ 𝐿, blue

circles). The latter case was investigated by repeated simulations with different values of ℓ,
ranging between 0 and 𝐿, which is why different data points share the same 𝐿 in Fig. 4.9.

The reason for a negligible influence of the ℓ segment is that unpinning is controlled by the

nucleation of the second kink pair (step 5 of Fig. 4.7), which has a higher probability to occur

on the longer 𝐿 segment.

4.3.2 Effect of C atoms on kink pair nucleation enthalpy

NEB calculations

In order to better understand the origin of the very strong pinning induced by the C atoms

at short distance, we used the NEB method to identify the minimum energy paths that con-

nect the different stages of unpinning identified in MD simulations (i.e stages presented in

Fig. 4.7 (a)), followed with an ART convergence to identify precisely the saddle configura-

tions. We consider here the case 𝐿 = ℓ where only one C atom needs to be inserted in the

simulation cell. The reference state for the NEB calculations, 𝑆0, is constructed in the same

way as in the dynamic simulations, by inserting a C atom in an 𝑂(2) site, and relaxing the

system. Final states are constructed by introducing the dislocation in different Peierls valleys

in the glide direction. The initial NEB path was obtained by linear interpolation between the

initial and final state.

Equilibrium and activated states for a dislocation with 𝐿 = 30 𝑏 at an applied stress of

600MPa are shown in Fig. 4.10 (a), with the corresponding energy barriers in Fig. 4.10 (b).

Note that the enthalpy globally decreases due to the work of the applied stress, which tilts

the potential energy landscape.

The unpinning process involves the successive nucleation of two kink-pairs, between 𝑆1
and 𝑆2 and between 𝑆2 and 𝑆3. As can be seen in Fig. 4.10 (a), the kink-pairs in the activated

states (𝑆⋆1 and 𝑆⋆2 ) have not formed at the C atom, but rather in-between the C atom and

one of its periodic images. The configuration 𝑆2 contains two kinks on either side of the C

atom. It is metastable. This confirms the MD observation that kinks of opposite signs cannot

spontaneously annihilate when there is a C atom in-between them. The enthalpy barrier to

form this first kink pair is noted Δ𝐻1. A second barrier of height Δ𝐻2 has to be overcome
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Figure 4.10: NEB calculations of the two-step unpinning process of a dislocation from
a row of C atoms. (a) Successive metastable and activated states during the
interaction process. Atoms of the core are identified using the centrosymmetry
parameter (Kelchner et al., 1998). (b) Sketch of the corresponding energy profile.
(c) and (d) show the activation enthalpies of both transitions (circles) for two
different solute separations. The solid lines are fits using Kocks’ law (Eq. 4.9).
(e) and (f) show the fitted parameters Δ𝐻0,𝑖 and 𝜏𝑃,𝑖 of Kocks’ law. Solid lines in
(e) and (f) represent the average of Δ𝐻0 and a fit of 𝜏𝑃 using Eq. 4.10 for both
transitions. Dashed lines in (c) to (f) represent the corresponding quantities in
pure iron.
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4 Screw dislocation pinning by interstitial carbon in iron

to form a second kink pair (state 𝑆⋆2 ) and release the dislocation. This also confirms the MD

observation that a kink crossing two Peierls valleys can overcome a C atom and unpin the

dislocation. The next valleys (not shown here) are crossed with activation barriers close to

that in pure Fe, Δ𝐻Fe.

Fig. 4.10 (c,d) show examples of activation barriers for dislocation lengths 𝐿 = 20 and40 𝑏 as well as in pure Fe. When 𝐿 is small (20 𝑏), we observe a significant increase of Δ𝐻2
compared to Δ𝐻1, which on the other hand remains close to Δ𝐻Fe. Therefore, the C atom

does not affect significantly the nucleation of the first kink-pair, but the presence of this kink

pair which cannot annihilate because of the C atom makes nucleation of the second kink pair

much harder. This increase is at the origin of the strengthening seen in the MD simulation.

Conversely, larger values of 𝐿 (60 𝑏) yield almost no change compared to pure iron. When the

C atoms are widely separated, the kink-pairs, which form away from the C atoms, no longer

feel the presence of the solute atoms. We note a slight decrease of Δ𝐻1, implying that the C

atoms help somewhat the nucleation of the first kink-pair. But since Δ𝐻2, which controls the

unpinning, matches Δ𝐻Fe, no softening is produced, as confirmed by the MD simulations.

This is different from substitutional solid solutions, where solutes can help the nucleation of

kink-pairs and induce a softening effect (Ghafarollahi et al., 2019).

Statistical model

In order to connect the energy barriers with the MD simulations, we used a statistical model

based on the TST to predict the average unpinning stress. This model is adapted from

Ref. (Rodney, 2007), which considered thermally-activated glide in absence of obstacles.

The central quantity of the statistical model is the survival probability, 𝑊(𝑡, 𝑡′), the prob-

ability that the system in a metastable state at time 𝑡 remains in that state until 𝑡′.
𝑊𝑖(𝑡, 𝑡′) = exp (−∫𝑡′

𝑡
𝑝𝑖( ̇𝜏0𝑢) 𝑑𝑢) (4.3)

In the present case, we need to consider two survival probabilities: 𝑊1 in 𝑆1 and 𝑊2 in 𝑆2.

The probability that, starting at 𝑡 = 0 in an unstrained system, the dislocation is still pinned

at time 𝑡 is expressed as:

𝑊(𝑡) = 𝑊1(0, 𝑡) − ∫𝑡

0

𝜕𝑊1𝜕𝑡′ (0, 𝑡⋆)𝑊2(𝑡⋆, 𝑡)𝑑𝑡⋆, (4.4)

where the first term is the probability that the dislocation is still in state 𝑆1 at time 𝑡 and the
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4.3 Unpinning from an array of C atoms

second term is the probability that the dislocation jumps from 𝑆1 to 𝑆2 at time 𝑡⋆ ∈ [0, 𝑡] but

then remains in 𝑆2 until 𝑡. The survival probabilities depend on the transition rate, i.e. the

probabilities per unit time, 𝑝𝑖=1,2(𝜏 , 𝐿, 𝑇 ), that the dislocation jumps from 𝑆1 to 𝑆2 (𝑖 = 1) and

from 𝑆2 to 𝑆3 (𝑖 = 2). These rates are functions of the dislocation length 𝐿 and the temperature𝑇 as well as the internal stress 𝜏. Since the MD simulations are stain-rate controlled, the stress

increases linearly with time, at a rate ̇𝜏0 = 𝜇 ̇𝛾, where 𝜇 is the shear modulus. The survival

probability is then expressed as:

𝑊(𝑡) = exp(−∫𝑡

0
𝑝1( ̇𝜏0𝑢) 𝑑𝑢)

+∫𝑡

0
[𝑝1( ̇𝜏0𝑡∗) exp(−∫𝑡∗

0
𝑝1( ̇𝜏0𝑢) 𝑑𝑢) exp(−∫𝑡

𝑡∗
𝑝2( ̇𝜏0𝑢 − Δ𝜏) 𝑑𝑢)] 𝑑𝑡∗. (4.5)

The probability to unpin at time 𝑡 is given by 𝜔(𝑡) = −𝑑𝑊/𝑑𝑡 and the average unpinning

stress is thus: ⟨𝜏⋆⟩ = 𝜇 ̇𝛾 ∫∞

0
𝑡𝜔(𝑡)𝑑𝑡 (4.6)

To compute ⟨𝜏⋆⟩, we thus need to express the rates, 𝑝𝑖=1,2(𝜏 , 𝐿, 𝑇 ). Within the TST, they

are written as: 𝑝𝑖(𝜏 , 𝐿, 𝑇 ) = 𝜈𝐿 exp (−Δ𝐺𝑖(𝜏 , 𝐿, 𝑇 )𝑘𝑇 ) (4.7)

where 𝜈 is the attempt frequency and Δ𝐺𝑖 is the Gibbs activation energy of the process.

As extensively discussed in Chap. 3, Δ𝐺 is notoriously difficult to compute and approxima-

tions are often used. While we were able to directly compute Δ𝐺 in the case of a dislocation

gliding in pure iron, the present case is more complex and the use of the PAFI method remains

challenging. In our tests, difficulties arise from the competition between carbon migration

and kink pair formation, which both can happend during the constrained MD sampling done

by PAFI. Technical concerns on how to inhibit carbon migration while not affecting crystal

vibration modes remain difficult to address.

We therefore use approximations to compute Δ𝐺𝑖, based on the results obtained in pure

Fe (see Chap. 3). We consider that Δ𝐻 and Δ𝑆 do not depend on 𝑇 and Δ𝐻(𝜏 , 𝐿) is directly

obtained from the zero Kelvin MEP computed in previous section. At low temperature, we

derived a stress/entropy linear relation from our Gibbs energy calculations in Fe:

Δ𝑆 ≃ 𝑘𝐵𝛼𝐹𝑒𝜏 (4.8)

with 𝛼𝐹𝑒 = 1.6 × 10−2 MPa−1, which compared well with MD simulations. Here, we also use
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4 Screw dislocation pinning by interstitial carbon in iron

the attempt frequency 𝜈 = 5 × 1010 s−1 already used in Chap. 3.

Computing Eq. 4.7 requires a continuous expression of Δ𝐻𝑖(𝜏 , 𝐿). For this purpose, we

used again a classical Kocks law (Kocks et al., 1975):

Δ𝐻𝑖(𝜏 , 𝐿) = Δ𝐻0, 𝑖 (𝐿) (1 − ( 𝜏𝜏𝑃, 𝑖 (𝐿))
𝑝)𝑞 (4.9)

We found here sufficient to set the exponents 𝑝 = 0.6 and 𝑞 = 1.1 to the values obtained

by fitting the kink pair formation enthalpy in iron with Proville potential and to only adjustΔ𝐻0 and 𝜏𝑃. The fits are shown as continuous lines in Fig. 4.10 (c, d) while the values ofΔ𝐻0,𝑖(𝐿) and 𝜏𝑃,𝑖(𝐿) are reported in Fig. 4.10 (e, f). They represent the effect of the solute

spacing on the activation enthalpy. We found Δ𝐻0,1 ≈ Δ𝐻0,2, independent of 𝐿 and only

slightly larger than the value in pure iron (see Fig. 4.10 (e)). For the sake of simplicity, we

used their average value, Δ𝐻0,𝑖, in the model. The effective Peierls stresses 𝜏𝑃,𝑖 on the other

hand strongly depends on the solute spacing and are different for the first and second barrier.

As seen in Fig. 4.10(f), they can be accurately fitted as:

𝜏𝑃,𝑖(𝐿) = 𝑎𝑖(𝐿/𝑏)𝑏𝑖 + 𝑐𝑖 (4.10)

with 𝑎1 = 7.89 × 105 MPa, 𝑏1 = 3.0, 𝑐1 = 959MPa, 𝑎2 = 7.10 × 105 MPa, 𝑏2 = 2.7, 𝑐2 =
1.01 × 103 MPa. The strong dependence of Δ𝐻2 on L seen in Fig.4.10 (c) and (d) implies that

short segments have a much reduced nucleation probability compared to larger segments,

resulting in the negligible effect of ℓ observed in Sec. 4.3.1.

The unpinning stresses obtained from Eq. 4.5 with the continuous approximation of Δ𝐻𝑖 in

Eq. 4.9 and the attempt frequency and activation entropy computed in pure iron are shown

as a dashed line in Fig. 4.9. The model reproduces the strong pinning effect at short solute

spacing, which is caused by the increased activation enthalpy, and the convergence to the

flow stress in pure iron at large spacing. In-between, the model tends to underestimate the

pinning stress.

Length-dependent entropy We have made a strong simplification by assuming that the

activation entropy Δ𝑆 was not affected by the solute atoms. We can reasonably expect that

the presence of solute atoms along the dislocation will affect the vibrational modes of the

system and thus modify the activation entropy. We attempted to perform free energy barrier

calculations with the PAFI method in the case of Fe-C, but faced difficulties as carbon tends

to migrate to neighbouring sites during the sampling at finite temperature. In the limit of
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4.3 Unpinning from an array of C atoms

short segments (i.e. a few Burgers vectors), the available length is small enough for the line

to advances while remaining straight instead of forming a double kink. For this process,

a much reduced activation entropy is expected compared to the kink pair mechanism, as

(i) both the initial and activated states have a unique position due to the invariance in [111]

direction, leading to a null configuational entropy and (ii) the vibration modes of two straight

segments are likely to be less different than those of a straight line and a kink pair. For longer

segments on the other hand, the behaviour of pure iron is recovered, and Δ𝑆 ∼ 𝛼𝐹𝑒𝑘𝐵𝜏 at low

temperature, which is independent of L. In order to assess the possible effect of an activation

entropy which increases with 𝐿 and smoothly tends to the value of pure iron, we tested a

simple phenomenological law 𝛼(𝐿) = 𝛼𝐹𝑒 tanh ( 𝐿
100𝑏) for both barriers.
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Figure 4.11: Unpinning stress obtained in MD and predicted by the models. The pre-
diction of the model is compared with MD unpinning stress values at 100 K (left)
and 300 K (right). Two hypothesis are tested for 𝛼: the value previously deter-
mined in iron 𝛼𝐹𝑒, and the phenomenological length-dependent law 𝛼(𝐿).

This is again a simplification since we can expect the activation entropy to vary differently

for both barriers. However, we can see in Fig. 4.9 where the prediction of the model with

the length-dependent activation entropy is shown as a continuous line, that the simple phe-

nomenological law greatly improves the agreement between the statistical model and the

MD simulations. Fig. 4.11 allows to compare the prediction of the two models plotted on the

same scale. This suggests that the activation entropy is reduced for closely-spaced defects,

which is left to investigate in future work.
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4 Screw dislocation pinning by interstitial carbon in iron

4.4 Conclusions

We used atomistic simulations to study the interaction of screw dislocations with interstitial

carbon atoms in iron. Simulations of full solid solutions showed a strong locking caused

by the short-range attraction between the dislocation and the solutes. The contributions of

all carbon atoms close to the dislocation line result in a collective effect that amplifies the

strengthening.

In order to clarify the origin of this strengthening and to overpass the difficulty to anal-

yse such collective effect in MD simulation, we focus on elementary interaction processes

between a screw dislocation and an array of carbon atoms. Based on enthalpy calculations,

we built a statistical model which is able to reproduce MD results with good agreement.

Though generally neglected, the effect of entropy discussed in Chap. 3 was again significant

in the case of the Fe-C system. To take it into account, we incorporated a stress- and length-

dependent harmonic activation entropy law using a phenomenological approach, to avoid

explicitly computing the harmonic entropy. Indeed, diagonalizing the Hessian matrix for

the many possible configurations would result in a high computational cost, and instabilities

around the MEP already mentioned could flaw the results. A more detailed study, based on

free energy calculations in the FeC system for different solute spacings and levels of stress,

would be very valuable and is an important perspective of this work.
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Conclusion and perspectives

The addition of carbon in steels to improve mechanical properties make these alloys prone

to ageing, which can be detrimental over long timescales, especially in the case of nuclear

pressurized water reactors where it could limit the operation lifetime. Steel ageing is

caused by the locking of dislocations by carbon solutes, which strongly impedes plastic

deformation. In this work, we investigated atomic-scale mechanisms that enable the

mobility of dislocations in iron and carbon steels, in order to develop a mobility law of

dislocations in aged steels, transferable to larger-scale models.

Chapter 2: Assessment of interatomic potentials A first barrier for atomistic simulations

of dislocations in the Fe-C system is the accuracy of available interatomic potentials. In

Chap. 2, we tested all Fe-C empirical potentials available from the reference NIST database

(Becker et al., 2013; Hale et al., 2018) on screw dislocations and alloy properties, with a special

focus on the Peierls mechanism, the carbon-induced screw dislocation core reconstruction,

and the carbon-dislocation binding energy. Our calculations show that all tested potentials

fail to reproduce some or all of these properties accurately compared to reference ab initio

data. We therefore implemented a simple combination of two EAM potentials for Fe and

FeC with complementary properties, the Fe potential from Proville et al. (2012) and the Fe-C

from Becquart et al. (2007) modified in Veiga et al. (2014), in a way that Fe-Fe interactions are

unchanged compared to the potential of Proville et al. (2012). The resulting hybrid potential

shows a satisfactory agreement with ab initio data, with the limited computational footprint

of an EAM potential —while avoiding the heavy task of fitting a new interatomic potential

from an ab initio dataset. This hybrid potential opens the way for atomistic simulations of

carbon-dislocation interaction mechanisms, such as solute strenghthening.

However, one caveat of the hybrid potential is the roughness of its energy landscape along

the carbon migration path between octahedral positions, which makes this potential unsuited

for simulations involving diffusion mechanisms, where the potential of Becquart et al. (2007)

remains preferred. At the time of writing, it appears that there is still no available poten-
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tial suited for both screw dislocation glide and carbon diffusion simulations. The increasing

use of machine learning methods for interatomic potentials development will likely help

develop new potentials with better accuracy and transferability, thus overcoming the limita-

tions discussed here, perhaps with a computational cost several orders of magnitude larger

than classical EAM (see e.g. Mishin (2021) for a review).

Potentials testing remains a crucial methodological step, which is often overlooked and

cannot be comprehensive, due to the heavy task of setting up calculations of many different

properties, and multiple methods can often be used to determine the same property, possibly

leading to different results. Projects such as the iprPy tool (Hale et al., 2018) or OpenKIM

database (Elliott and Tadmor, 2011) address this issue by automating potential properties

calculations, making useful results freely available, but they still lack many important

material properties, and need to be extended by contributions from the community.

Chapter 3: dislocation glide in Fe In pure bcc iron, plastic deformation is controlled by

the mobility of dislocations, which is limited by the lattice resistance at low temperature. In

Chap. 3, we computed the flow stress of iron using shear-rate controlled MD simulations of

isolated screw dislocations based on the potential of Proville et al. (2012). We tested several

classical dislocation glide models based on the harmonic transition state theory as well as

often-used assumptions for the calculation of the Gibbs energy of activation for kink pair

nucleation (constant entropy, Meyer-Neldel law), which fail to reproduce our MD data in the

entire range of temperature.

The recent projected average force integrator (PAFI) method enables direct Gibbs activa-

tion energy Δ𝐺 calculations for thermally-activated processes in large systems, with no as-

sumption on the nature of atomic vibrations, i.e. unlocking the usual limitations of entropy

calculations based on harmonic TST, which scale cubically with the number of atoms in the

system, and become inaccurate at high temperature due to anharmonic effects (Swinburne,

2021). Calculations in a broad range of stresses and temperatures show a strong effect on Δ𝐺,

with marked anharmonic effects. A deviation from harmonic TST calculations is observed

starting at temperatures as low as 20 K, suggesting that harmonic calculations do not always

provide an accurate picture of the Gibbs energy landscape in the vicinity of the initial and

transition states, even at low temperature.

Since non-linearities remain small below ∼100 K, the Gibbs activation energy was lin-

earized to extract an effective activation enthalpy, which interestingly increases when the en-

thalpy decreases, corresponding to an inverse Meyer-Neldel behavior. Integrating the results
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of PAFI simulations into kinetic models of dislocation glide, we obtained a much improved

agreement with direct MD simulations compared to classical approaches. Using the inverse

Meyer-Neldel law, we were are able to reproduce MD simulations up to 200-300 K. These

results advocate for a better integration of entropic and anharmonic effects that are often

overlooked in atomistic studies of crystal defects. In the present case, the low-temperature

non-linearity could be caused by local irregularities of the Gibbs energy landscape of the po-

tential of Proville et al. (2012), and should be verified using other atomic interaction models,

such as the newly-developed machine-learning potential of Goryaeva et al. (2021).

PAFI is an efficient and versatile free-energy calculation method which can be very useful

for the study of a broad range of thermally activated processes. Yet, this recent method

still has to overcome some challenges to be more easily usable by the community and more

efficient, especially regarding its sensitivity to the initial MEP or its parallelization scheme.

Chapter 4: dislocation glide and pinning in Fe-C In steels, dislocation mobility is lim-

ited not only by the lattice resistance but also by their interactions with interstitial carbon

atoms. In Chap 4, we use the hybrid interatomic potential developed in Chap. 2 to simulate

dislocations interacting with a random solid solution of carbon atoms.

Our simulations confirm a local reorganization of the dislocation core as previously evi-

denced in ab initio simulations, and a strong dislocation pinning caused by complex short-

ranged carbon-dislocation interactions. In order to investigate the elementary pinning mech-

anisms, we studied the idealized case of a dislocation interacting with a row of carbon atoms,

using a combination of MD simulations, saddle-point search techniques, and a harmonic TST

kinetic model based on the calculations presented in Chap. 3. Our results indicate that carbon

stabilizes the first kink pair by preventing kink annihilation, likely due to the local recon-

struction of the dislocation core. As a result, a second kink pair has to form for the dislocation

to unpin, with a markedly increased activation enthalpy. This effect causes a high strenght-

ening effect, with an unpinning stress that can be more than twice the flow stress of pure

iron for closely-spaced solutes.

A more comprehensive investigation of entropic effects would be necessary, as these are

affected by the presence of solutes, but remains challenging. Preliminary tests with the PAFI

method revealed that under finite temperature and applied stress, carbon atoms tend to jump

to other sites during the sampling. We presented a simple phenomenological approach to

illustrate how a segment length-dependent activation entropy could improve the agreement

with MD simulations, but Gibbs energy calculations in this system remain challenging,
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and might require adaptations in the PAFI code. Yet, investigating anharmonicity in alloys

would have a great interest for studies above room temperature e.g. on serrated flow (Zhao

et al., 2020), where we expect anharmonic effects to be dominant. The present work remains

limited by the accuracy of the interatomic potential we used, and further investigation,

especially concerning entropic effects, is difficult without a more accurate potential for Fe-C.

We have shown here that the elementary interaction process between a screw dislocation

and carbon atoms involves the successive nucleation of two kink pairs, since a carbon atom

is able to block a single kink and prevent its annihilation with a kink on the other side at

least on MD timescale.

Our results in Fe and Fe-C could be combined and implemented in mesoscale models,

which constitutes the next step towards a constitutive law of aged steel. In Fig. 1, the

flowchart for multiscale simulation of plasticity proposed by Tipping (2010) is adapted to

highlight the contribution of the present work, as well as connections to larger scale models.

In particular, integrating both the effect of the lattice resistance at high temperature and the

effect of interstitial solute (which could be treated using local rules) in kinetic Monte Carlo

models of dislocation pinning as developed in Zhao and Marian (2018); Zhao et al. (2020);

Shinzato et al. (2019) is the main perspective of this work to better understand the effect

of carbon solutes. Such a model would allow the study of the complex and collective in-

terplay between solute-dislocation interactions and stress-mediated solute diffusion leading

to the formation of Cottrell atmospheres, over length- and time-scales unaccessible to MD

simulations, more accurately than approaches fully based on harmonic theories.
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Mesoscale models

Figure 1: Flowchart of multiscale modelling of plasticity adapted from Tipping (2010).
The contribution of the present work is emphasized (in green), as well as its main
perspectives (in blue).
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