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ABSTRACT

This work is motivated by the needs of large cryogenic facilities and aims to improve their thermal efficiency in the range of 40-80 K. It allows describing the thermodynamic properties of cryogenic mixtures accurately.

The empirical multiparameter equations of state explicit in the Helmholtz energy are developed for the binary mixtures of helium, neon, argon, and nitrogen. The development process is presented and consists of the experimental data review, data points weighting, and minimizing the objective function using the supervised non-linear regression.

The equations are valid in the single-phase and at the phase envelopes for the entire composition span and pressures as high as 1000 MPa. The single-phase uncertainties at low pressure (0 -10 MPa) reach 0.5 -2.5% for 95% of data points used for the EOS development. At higher pressures, some of the equations deviate up to 5% in density from the experimental data. The deviations in the speed of sound vary from 4 to 10%.

In 

Motivation and objectives

The importance of fluid mixtures in the petrochemical industry cannot be overestimated.

Their precise description is essential for extracting, refining, and separating oil and natural gas mixtures. Mixtures also gain interest within the industrial world, focused on refrigeration and cryogenic engineering. They allow to optimize the thermodynamic cycles and increase their overall thermal efficiency, e.g., by using the centrifugal compressors, so far impossible with pure helium-4 characterized by too low a molecular mass. The properties of fluid mixtures, sometimes very different from the behavior of pure fluids, brought interest of the scientific communities.

INTRODUCTION 1

One motivation for the following work is the conceptual design study of the Future Circular Collider (FCC), 3 a new generation particle accelerator, where gas mixtures are considered as a working fluid in the cryogenic precooling stage. [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF][START_REF] Savelyeva | Natural neon-helium mixture as working fluid for 40-80 K cryogenic refrigerators[END_REF] Improvement in the cooling production efficiency motivated this work, as two parallel industrial engineering studies, performed by Linde 6 and Air Liquide 7 for the FCC, concluded that accurate property description for the cryogenic mixtures is fundamental for the study results to be credible. If the cryogenic properties are to be precisely predicted, accurate equations of state have to be developed and available for the communities of engineers and scientists.

Other foreseen applications of the cryogenic, mixture-based systems include:

• hydrogen refrigeration and liquefaction;

• High-Temperature Superconductors (HTS) cooling; 8,[START_REF] Chang | Thermodynamic design of 10 kW Brayton cryocooler for HTS cable[END_REF] • small space-ready cryogenic refrigerators 10

• scientific samples refrigeration;

• zero-boil-off in the maritime LNG tanks;

• methane and biogas liquefaction.

Designing any of these systems requires precise fluid property description and, therefore, the equations of state capable of calculating the thermodynamic properties in a broad range of temperatures and pressures. Developing the equations of state for cryogenic mixtures is the objective of this work.

Document structure

The accurate, empirical Helmholtz equations of state (EOS) for the binary gas mixtures of helium, neon, argon, and nitrogen are developed and presented in the first part of this work (Chapters 2 and 3). The set of published equations ( 4 He -Ne, [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ar, and Ne -Ar) is extended with the equation of state for the thermodynamic properties of the helium-nitrogen mixture. These equations are meant to provide the state-of-the-art accuracy in both the single-phase regions and at the phase envelopes. They are fitted to experimental data collected from multiple sources in the literature.

In the second part (Chapters 4 and 5), the experimental setup for measuring the Joule-Thomson coefficient at cryogenic temperatures is presented, the methodology is discussed, and the results are analyzed. The experiment is conducted to confirm the performance of developed equations of state in the cryogenic regions with little or no experimental data. A significant effort is put into improving the measurement precision and discussing the encountered errors. 

Phase diagrams of cryogenic fluids

The fluids discussed in this work are predominantly the binary mixtures of noble gases: helium-4, neon, argon, extended with nitrogen. Some thermodynamic properties of these fluids are known for a century, 11 others have been measured more recently. 12 Today, the properties of pure fluids are known in broad pressure-temperature regions, and the state-of-the-art models which allow calculating these properties from other state properties are relatively recent, with the last out of four models released in 2018. 13 These models are the equations of state, the thermodynamic equations relating the state variables, and describing the state of matter under given physical conditions. all three phases -liquid, vapor, and solid coexist in equilibrium. The saturation line becomes the sublimation line for pressure and temperature below the triple point where the solid phase transforms directly into gas (sublimates). All the above is valid for the vast majority of fluids but not for helium. When analyzing the phase diagrams of neon, argon, and nitrogen, the similarities are apparent. For helium, the solid phase does not exist below 26 kPa, even at very low temperature. Liquid helium, when cooled down, transforms into a superfluid. This unusual state of matter can be described as a mixture of two pseudo-fluids: the first one is Newtonian and dissipative, the second one is non-dissipative -it is characterized by zero-viscosity, zero-entropy, and high thermal conductivity. The liquid phases of helium: He-I (normal fluid), and He-II (superfluid), are separated with a vertical lambda line, which meets the saturation line in the lambda point. Because of this phenomenon, helium-4 does not have the standard triple point of solid-liquid-vapor coexistence. Instead, at T λ ≈ 2.17 K and 5 kPa, the so-called lambda point is the triple point of vapor-He-I-He-II equilibrium.

Binary mixtures

The single-phase properties of mixtures are often not significantly different from those of pure fluids. However, the phase equilibria can be much more complex and, depending on the constituents, can show very different behavior.

The Gibbs phase rule 14 gives the number of thermodynamic degrees of freedom of any system, i.e., the number of independent variables that change the state of this system.

According to the phase rule, a binary mixture in the single-phase state has three degrees of freedom -its thermodynamic state is characterized by three variables, e.g., pressure, temperature, and the mole fraction. In a pure fluid, the critical state has no degree of freedom and is the critical point, whereas in a binary mixture, the critical states have one degree of freedom and form the critical line.

Various classes of phase equilibria exist. This work does not attempt to describe the phase equilibria in binary mixtures fully but focuses on helium-4 and a few other cryogenic fluids. A complete discussion on the phenomenology of phase diagrams is available in the extensive work of Deiters and Kraska,15 according to which, helium with practically all other substances forms the phase equilibria of class III, with vapor-liquid equilibrium (VLE) and open gas-gas equilibrium (GGE). The name gas-gas equilibrium implies that the phase separation occurs beyond the critical temperature of the heavier component. The isotherms in the gas-gas equilibrium maintain a positive slope and are not closed by a critical line.

An exemplary phase envelope with the supercritical vapor-liquid equilibrium and the gas-gas equilibrium is shown in Fig. 2.2. The left subfigure is the 3D phase envelope, whereas the right one shows its projections on log(p)-x and log(p)-T planes. The gray and yellow areas in Fig. 2.2b mark the VLE and the GGE, respectively. The black star in the figures is the critical point of the less volatile component (the second constituent of a helium mixture), and the dashed black line is the mixture critical line. The critical point of helium is not shown because it is too low in temperature. The light-grey lines are the isotherms. Red, green, and blue lines are selected isotherms where T red < T green < T blue .

The green and blue points are the critical points at T green and T blue . The green line is the isotherm of temperature close to the minimum temperature below which only DIFFERENT FORMS OF THE EQUATIONS OF STATE the VLE exists. Only the GGE exists above the critical temperature of the less volatile component (star), as illustrated by the T blue isotherm. The mole fraction maximum of an isothermal dew point curve is called the maxcondentherm (marked with a triangle for T green ). The mixture at T green and composition beyond the maxcondentherm of the vapor-liquid equilibrium can be expanded from high to low pressures without crossing the vapor-liquid phase boundary.

The vapor-liquid equilibria in mixtures discussed in this work are always supercritical, where helium is above its critical temperature, and the two-phase region starts at the boiling point of the second component. The dew lines of the phase envelope do not run to the boiling point of helium but bend around and reach the mixture critical line. The complex behavior at the phase boundaries described above can be one of the reasons why the reliable equations of state (EOS) were not established so far for the binary mixtures of helium-4.

No data is available for phase equilibria at high pressures for two out of four mixtures developed in this work. Therefore, no experimentally confirmed information is given on the existence of the gas-gas equilibrium. Although helium-4 is said to usually have the gas-gas equilibrium with other constituents, no attempt is made to model this behavior in the no-data regions.

Before discussing the equation development procedure, the EOS used today and throughout the history are presented, with a special focus put on the equation used in this work.

Equations of state

This section presents a general overview of the most important equations of state developed throughout history. Research on fluid behavior have existed for a few centuries.

However, the modern equations had started getting their shape in the late 19th century, when Johannes Diderik van der Waals introduced a description of the attractive and repulsive forces between the fluid particles. Inspired by the work of van der Waals, other physicists started describing fluid behavior with cubic and non-cubic equations.

This section discusses the important equations in brief detail, including the van der Waals-, statistical-based hard-sphere interactions-, the molecular-based-and the empirical Helmholtz energy equations of state.
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CHAPTER 2

Ideal gas equations of state

Ideal gas is a hypothetical fluid that can approximate the behavior of real substances under specific conditions of high temperature and low pressure. It neglects the molecular size (molecules are points) and the intermolecular forces (molecules do not interact), and results in the smallest error when used for monoatomic substances. The ideal gas low can be successfully applied to calculations of a dilute gas at high reduced temperature. It is often written as

pV = nRT, (2.1)
where p is the pressure in Pa, V is the volume in m 3 , T the is temperature in K, n is the number of moles enclosed in volume V , and R is the ideal gas constant in J (K mol) -1 .

Many gases, e.g., nitrogen, carbon dioxide, oxygen, and hydrogen, can be treated as ideal gas, but the approximation is only fairly accurate if used for fluids at standard conditions. The equation is useful for quick calculations in limited p -T space but the simplifications introduced are too large for most engineering applications.

Van der Waals equation of state

The van der Waals equation of state generalizes the ideal gas equation and tries to answer why the real gases do not act ideally. 16 It is based on the assumptions that all particles are hard spheres of the same finite radius and that attractive forces exist between these particles. The equation can be written in its extensive form as

p + n 2 a V 2 (V -nb) = nRT, (2.2)
where p is the pressure in Pa, T is the temperature in K, n = N /N A is the number of moles, R is the universal gas constant, a is a measure of the average attractions between particles in J mol x i x j (1 (2.4) where x i is the mole fraction of constituent i, a ii is the average attraction between particles in component i, b ii is the volume occupied by one mole of particles of component i, and k i j is the numerically fitted coupling parameter.

-k i j ) a ii a j j , (2.3) b = n i=1 x i b ii ,
According to van der Waals, all fluids should have similar properties when compared at the same reduced temperature and pressure. In other words, they should have similar thermodynamic properties at their corresponding states. The reduced quantities are defined,

p r = p p c , T r = T T c , V r = V V c , (2.5) 
where p c , T c , and V c are the pressure, temperature, and volume at the critical point.

These quantities, applied to Eq. ( 2.2), allow to rewrite the van der Waals equation in its reduced form:

p r + 3 V 2 r V r - 1 3 = 8 3 T r . (2.6)
The equation above is remarkably universal; it states that one can obtain V r for any fluid by imposing p r and T r , that is calculate V by knowing p, T , and the critical properties.

The Van der Waals equation can approximate the behavior of fluids above their critical temperatures and shows reasonable performance for low-pressure liquids and gases at low temperatures but fails to predict the phase transition. 

8 CHAPTER 2 p (T, v) = RT v -b - a(T ) (v -r 1 b) (v -r 2 b) . (2.7)
Some formulations represent the attraction between particles as a function of temperature, a = a(T ). Depending on the actual equation, the additional terms r 1 and r 2 are used. The cubic equations can show substantial improvements over the van der Waals equation and can be successfully used for accurate vapor-liquid equilibria calculations.

However, they often predict the critical behavior and the caloric properties with low accuracy. The deficiencies of the van der Waals, and cubic equations in general, initiated research on other, more complex, and more accurate equations of state. That includes a recent work of Aasen et al.,22 which introduces quantum corrections to the cubic equation and allows for accurate equilibria calculations for the mixtures of quantum fluids, e.g., [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne, H 2 -Ne, D 2 -Ne.

Non-cubic equations of state

The non-cubic EOS originate from the van der Waals equation and modify both its a and b terms. They represent the fluid properties more precisely at higher temperatures when repulsion between particles becomes more important. The general pressure-explicit formulation for the non-cubic equations is given as (2.8) where Z = Z(η) is the hard-sphere compressibility factor, a function of the packing fraction η. The packing fraction is the fraction of space occupied by the molecules, and it is a function of the molecular co-volume b, defined in the van der Waals equation. Several researchers worked on these equations, trying to reformulate the hard-sphere compressibility factor. There are many examples of the compressibility factor definitions based on the non-attracting rigid spheres models, e.g., the Reiss-Frisch-Lebowitz equation: 23

p = RT v Z - a v 2 ,
Z = 1 + η + η 2 (1 -η) 3 , (2.9) 
the Carnahan-Starling equation: 24 .10) or the Guggenheim equation: 25

Z = 1 + η + η 2 -η 3 (1 -η) 3 , ( 2 
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Z = 1 (1 -η) 4 .
(2.11)

A comprehensive study on the hard-sphere models for the fluid properties is presented by Mulero et al. 26 Various equations find use in different domains, depending on their performance in specific calculations, such as the vapor-liquid or solid-liquid equilibria, properties of polar fluids or molecules with arbitrary geometry.

The hard-sphere models, which modify only the co-volume term from the van der Waals equation, tend to work well at high temperatures but do not predict the fluid behavior well enough in near-critical conditions. There exist attempts to combine both the hard-sphere models with the temperature-dependent attractive term, a = a(T ). One of them is the Carnahan-Starling EOS combined with the Redlich-Kwong temperaturedependent term, 27 proposed by Carnahan and Starling themselves .12) This equation represents the phase equilibria of the hydrocarbons well and can accurately predict their high-temperature properties.

p = RT (1 + η + η 2 -η 3 ) v(1 -η) 3 - a v(v + b) T . ( 2 
The presented discussion is by no means complete. There exist a large number of equations of state developed from the van der Waals equation. They vary in performance and find use in domains where no other, more accurate equation is available.

Virial equation of state

In 1901, Heike Kamerlingh Onnes proposed the virial equation of state. It contains an infinite series of the molar specific volume raised to the negative power. Often, its first three terms are sufficient to represent the vapor-liquid equilibrium of many substances accurately. The compressibility factor can be expressed as a power series in molar density The virial equation is not the most convenient to use but has important advantages over the empirical equations -the coefficients of the equation, the virial coefficients can be estimated based on interactions between molecules described by statistical thermodynamics. They can also be calculated from low pressure ρpT data,

Z ≡ p RT ρ = A(T ) + B(T )ρ + C(T )ρ 2 + ... , ( 2 
B = lim ρ→0 ∂ Z ∂ ρ T and C = lim ρ→0 1 2! ∂ 2 Z ∂ ρ 2 T . (2.14)
The relations above show that the virial coefficients are the properties of a fluid at the limit of zero-density.

The virial equation can be used to predict properties at low and moderate densities and fails to do so accurately at high densities with no experimental and theoretical capabilities to estimate the higher-order virial coefficients.

Molecular-based equations

The cubic, non-cubic, and virial equations are valid for simple fluids, where the van der Waals forces are the only leading interactions between the fluid particles. For plenty of fluids used in industry, other forces must be considered, e.g., coulombic, polar activity, association, or chain flexibility. For these cases, standard cubic or non-cubic equations fail to predict fluid behavior accurately.

The molecular-based equations often adopt the concepts of chain molecules and the perturbation theory. 28 The molecular models are successfully applied to small, argon- 

a (ρ, T ) = a IDEAL + a MONO + a CHAIN + a ASSOC , (2.15) 
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where a IDEAL is the Helmholtz energy of ideal gas, a MONO is the monomer contribution to the Helmholtz energy, a CHAIN is the contribution to the formation of molecular chains, and a ASSOC is the contribution to association and bonding.

In order to describe the particle interactions in the SAFT equation, a pair-potential model is applied to calculate the intermolecular potential energy. Very often, the Lennard-Jones (LJ) potential is used. 31 It is a simple but realistic model of soft interactions in the form of

u Mie (r) = C(λ r , λ a ) ε σ r λ r - σ r λ a , (2.16)
where λ r is the repulsive exponent, λ a is the attractive exponent, r is the distance between two interacting particles, ε is the potential well depth, and σ is the distance at which u Mie (r) = 0. Eq. ( 2.16) describes a generalized potential developed from the Lennard-Jones potential (for the Lennard-Jones fluid: λ r = 12, λ a = 6, and

C(λ r , λ a ) = 4 
). Particles interacting with the LJ potential have no uniquely defined size, opposite to the hard sphere potential described in Sec. 2.2.4, yielding more realistic description of interactions. On the other hand, the phase equilibria for complex, quantum mixtures and the single-phase properties (including the caloric properties) are reproduced less accurately, compared to the empirical equations explicit in Helmholtz energy.

A corrected SAFT equation has recently been applied to quantum fluid mixtures and yields good phase equilibria predictions for some of the mixtures, i.e., H 2 -Ne, He -H 2 ,

or He -D 2 . 32

Pressure-explicit equations of state

The pressure-explicit equations are still important for technical applications up to these days. The Benedict-Webb-Rubin equation 33 (BWR) showed a significant advancement in predicting the fluid properties accurately, even at high densities. It defines pressure as

p = ρRT + B 0 RT -A 0 - C 0 T 2 ρ 2 + (bRT -a) ρ 3 + αaρ 6 + cρ 3 T 2 1 + γρ 2 exp -γρ 2 ,
(2.17 a n ρ 2n-17 , (2.18) where γ = 1/ρ 2 c and a n are 15 different polynomial coefficients defined with 32 constants. Thanks to the proven acceptance of the equation in representing the fluid properties of hydrocarbons, it is continuously used today for calculations of the thermodynamic properties of R123. 35 However, the BWR and mBWR formulations used for hydrocarbons and nitrogen were replaced by other equations of state providing more accurate predictions in wide pressure-temperature range. These equations are presented in the following section.

Empirical, multi-parameter equation of state explicit in Helmholtz energy

The equations explicit in Helmholtz energy are one of the most accurate equations developed over time. The Helmholtz energy itself, a (T, ρ) has two important advantages.

Unlike the internal energy u (v, s) and the enthalpy h (p, s), where v is the specific volume, s is the specific entropy, and p is the pressure, it is a function of measurable properties -temperature T and density ρ. Moreover, unlike the Gibbs energy g (T, p), it is continuous through the phase boundary.

Schmidt and Wagner were the first to propose a modern, functional form of the Helmholtz energy equation. 36 Its application to oxygen almost fully represented the experimental data accurately, within the experimental uncertainties, giving a precise description of the whole thermodynamic surface. The authors defined their equation in terms of reduced Helmholtz energy divided into an ideal gas part α o and a residual part α r : (2.20) where

α (δ, τ) = a (ρ, T ) RT = α o (δ, τ) + α r (δ, τ) , ( 2 
α o (δ, τ) = h o o τ RT c - s o o R -1 + ln δτ o δ o τ - τ R τ τ o c o p τ 2 dτ + 1 R τ τ o c o p τ dτ,
δ o = ρ o /ρ c , τ o = T c /T o , h o o = h o (ρ o , T o ) and s o o = s o (ρ o , T o )
are the reduced density and temperature; and the ideal gas enthalpy and entropy at arbitrary reference state (T o , p o , ρ o ). c o p is the ideal gas heat capacity. The residual part of the Helmholtz energy is defined as

α r (δ, τ) = 13 i=1 a i δ d i τ t i + exp -δ 2 24 i=14 a i δ d i τ t i + exp -δ 4 32 i=25 a i δ d i τ t i (2.21)
The exponential terms in the residual part of the Helmholtz energy, α r , are necessary to represent the critical region accurately.

Jacobsen et al. 37 used the same expression for the Helmholtz energy, divided into an ideal part α 0 and a residual part α r , with the same ideal gas term. They proposed a different formulation for the residual contribution:

α r (δ, τ) = N k=1 a k δ i k τ j k exp -γδ l k , (2.22)
where N is the number of terms in the equation, i k are positive integers, j k are real numbers, γ = 0 for l k = 0, and γ = 1 for l k = 0. This formulation allowed for accurate description of a complete thermodynamic surface for nitrogen and ethylene. 38,39 There exist various formulations of the equation explicit in Helmholtz energy. The modern form of the equation is a multi-fluid approximation that intends to describe the thermodynamic properties of non-ideal mixtures accurately. It takes advantage of both of the mentioned formulations for the residual contributions. 36,38 It is similar to Eq. (2.19), but its definition includes a departure function with the Gaussian-bell shaped terms, thanks to which the critical region description becomes more accurate. This equation of state is described in detail in Chapter 3 before discussing the optimization methods for its development.
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CHAPTER 2

DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES

This chapter presents the equation of state used to describe the thermodynamic properties of mixtures of helium-neon, helium-argon, neon-argon, and helium-nitrogen. The steps that led to the development of the multiparameter, empirical equations of state are presented. After a rigorous selection of the measurement points collected from the literature, the established equation is fitted to the data. Weights are applied to the measurements, and constraints are used to limit the behavior of the fitter in the regions of limited data availability. The fitting process is described in detail and followed by a discussion on the performance of these newly developed equations and a discussion on the applicability limits. A new metric is introduced to evaluate the equation performance at the phase envelope and is later attempted to be used for equation development. The Helmholtz energy of mixtures is defined as a sum of the ideal and residual contributions:

α (δ, τ, x) = a (ρ, T, x) RT = α o (ρ, T, x) + α r (δ, τ, x) , (3.1)
where x is the mole fraction vector, and R is the mole fraction-weighted average of the pure component values of the gas constant used for the development of the equations. 

DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES

Y r Y c,i β Y,i j Y i j T r T c,i β T,i j β T,i j γ T,i j T c,i T c, j 0.5 v r 1 ρ c,i β v,i j β v,i j γ v,i j 1 8 1 ρ 1/3 c,i + 1 ρ 1/3 c, j 3
The Helmholtz energy is used in its reduced form, and it is a function of non-dimensional quantities -reduced density and temperature

δ = ρ ρ r and τ = T r T , (3.2) 
where ρ r = ρ r (x) and T r = T r (x) are the composition dependent reducing density and temperature respectively. The most recent formulation 41,42 allows for the use of a common form for both mixture reducing parameters, T r and

v r = ρ -1 r , Y r (x) = N i=1 x 2 i Y c,i + N i=1 N j=i+1 2x i x j x i + x j β 2 Y,i j x i + x j Y i j , (3.3) 
where N is the number of components in the mixture, Y is the parameter of interest:

the temperature T or the molar specific volume v, given in Table 3.1. T c,i , ρ c,i are the critical temperature and density of the pure constituents. β T,i j , γ T,i j , β v,i j , and γ v,i j are the fitted parameters with both β parameters being asymmetric, that is β T,i j = β -1 T, ji , and

β v,i j = β -1
v, ji . The statistical thermodynamics is capable of predicting the behavior of a fluid in the ideal-gas state. However, there exist no physically founded equation, which accurately describes the real thermodynamic behavior of a fluid in complete fluid region. 43 For this purpose the residual contribution to Helmholtz energy is determined in an empirical way.

The ideal and residual contribution in Eq. (3.1) represent the Helmholtz energy for a mixture. Both are functions of the pure fluid Helmholtz energies

α o (ρ, T, x) = N i=1 x i α o oi (ρ, T ) + ln x i , (3.4) α r (δ, τ, x) = N i=1 x i α r oi (δ, τ) + N -1 i=1 N j=i+1 x i x j F i j α r i j (δ, τ) , (3.5)
where x i is the molar fraction of component i, α o oi is the pure fluid ideal Helmholtz energy, and α r oi is the pure fluid residual Helmholtz energy, both defined within the pure 16 CHAPTER 3 fluid EOS. α r i j (δ, τ) is a pairwise departure function, dependent only on the reduced variables δ and τ. A departure function is defined as the difference between the extended corresponding states model and the real fluid behavior. In the above case, the departure function is a concept introduced to further improve the thermodynamic surface description. F i j is the scaling parameter applied to the departure function, and is set to unity when the departure function is fitted. The definitions of the pure fluid ideal and residual Helmholtz energies can vary depending on the formulation used by the author of the pure fluid equation. For helium-4, 44 they are defined as follows

α o oi (δ, τ) = h o o τ RT c - s o o R -1 + ln δτ o δ o τ - τc o p R 1 τ - 1 τ o + c o p R ln τ τ o , (3.6) α r oi (δ, τ) = K p,i k=1 n oi,k δ d oi,k τ t oi,k + K p,i +K e,i k=K p,i +1 n oi,k δ d oi,k τ t oi,k exp -δ l oi,k + K p,i +K e,i +K c,i K p,i +K e,i +1 n oi,k δ d oi,k τ t oi,k exp -η oi,k δ -ε oi,k 2 -β oi,k τ -γ oi,k 2 , ( 3.7) 
where K p,i , K e,i , and K c,i represent the number of polynomial, exponential, and critical terms of the pure fluid i respectively. The last, previously undefined term from Eq. (3.5) is the departure function, α r i j (δ, τ). Unlike in the GERG-2008 definition, 42 the exponential term in the departure function used in this work is temperature dependent: (3.8) where

n oi,k , d oi,k , t oi,k , l oi,k , β oi,k , γ oi,k , ε oi,k ,
α r i j (δ, τ) = K k=1 n i j,k δ d i j,k τ t i j,k exp -η i j,k δ -ε i j,k 2 -β i j,k τ -γ i j,k 2 ,
d i j,k , n i j,k , t i j,k , β i j,k , γ i j,k , ε i j,k
, and η i j,k are the fitted parameters. Although they are empirical and arbitrary, constraints on their values were used during the fitting process in order to obtain physically correct EOS behavior. The summation comprises the polynomial terms when Calculating thermodynamic properties from Helmholtz energy

β i j,k = γ i j,k = ε i j,k = η i j,k = 0,
The thermodynamic properties are functions of the Helmholtz energy and its derivatives. The modern formulation presented in the previous section allows calculating the derivatives and the properties analytically. A complete discussion on derivatives necessary to calculate the thermodynamic properties is presented in several publications and is not repeated here. [42][43][44] The notation, essential for understanding the calculations, is introduced in two examples of derivatives of the ideal gas part and the residual part of Helmholtz energies for mixtures:

α o τ = ∂ α o ∂ τ δ,x = N i=1 x i T c,i T r ∂ α o oi ∂ T c,i /T ρ , (3.9) α r δ = ∂ α r ∂ δ τ,x = N i=1 x i ∂ α r oi ∂ δ τ + N -1 i=1 N j=i+1 x i x j F i j ∂ α r i j ∂ δ τ . ( 3.10) 
Analogically, the second mixed derivative of residual Helmholtz energy and the second derivative with respect to density is denoted as .11) The experimental data for four mixtures considered in this work is presented in Appendix A and is available for phase-equilibria, ρpT , speed of sound, and the second virial coefficient. The single-phase properties can be defined as a function of the Helmholtz energy:

α r δτ = ∂ 2 α r ∂ δ∂ τ x and α r δδ = ∂ 2 α r ∂ δ 2 τ,x . ( 3 
p (ρ, T, x) = ρRT 1 + δα r δ , (3.12) w (ρ, T, x) = RT M 1 + 2δα r δ + δ 2 α r δδ - 1 + δα r δ -δτα r δτ 2 τ 2 α o ττ + α r ττ , (3.13) µ JT (ρ, T, x) = 1 Rρ -δα r δ + δ 2 α r δδ + δτα r δτ 1 + δα r δ -δτα r δτ 2 -τ 2 α o ττ + α r ττ 1 + 2δα r δ + δ 2 α r δδ , (3.14) 18 CHAPTER 3 B (T, x) = 1 ρ r lim δ→0 α r δ . (3.15)
Other, often used thermodynamic properties are presented in Table B.1 in a similar form.

Apart from the single-phase properties, the criteria for phase equilibria in mixtures can be derived based on the Helmholtz energy formulation:

       T = T p = p µ i = µ i i = 1, ..., N , (3.16) 
where and denote the liquid and vapor phases, respectively. µ i is the chemical potential of fluid i, defined as

µ i = ∂ A ∂ n i T,V,n j =i = RT ∂ nα o ∂ n i T,V,n j =i + ∂ nα r ∂ n i T,V,n j =i , (3.17) 
where A = nRT α and n = N i n i . The following work uses an existing tracing algorithm written for this purpose 45 -an algorithm for calculating and plotting the phase envelopes.

Scaling the properties of helium-4 and neon with any physical theory can be challenging because of the quantum phenomena influencing fluid behavior. Classical or quantum effects will dominate depending on the length scale of interactions versus the thermal de Broglie wavelength,

λ th = h 2 2πmk B T , (3.18)
where T is the temperature at which λ th is calculated, h is the Planck constant, m = M /N A is the particle mass with molar mass M ; N A is the Avogadro constant, and k B is the Boltzmann constant, all given in Chapter Physical constants. Quantum effects are important in determining the thermodynamics of helium, and to a lesser extent, neon.

Argon and nitrogen can be considered classical for most practical purposes. Despite dealing with the fluids that show high and moderate quantum effects, the discussion on quantum physics is secondary since the presented equations are empirical, and the question about the origins of the intermolecular forces is irrelevant.

It is expected that the equation of state described above, and used throughout this work, can successfully describe the properties of quantum fluids. However, the ratio of critical temperatures of neon and helium-4 reaches 8. 3.2 Optimization algorithm

Methodology

The optimization method used for the equation of state development is based on nonlinear regression analysis and the Lavenberg-Marquardt algorithm (LMA), 47, 48 also known as the damped least-squares. The LMA method is used to solve the non-linear least-square problems and the curve fitting in particular. It is similar to the Gauss-Newton algorithm but is characterized by higher robustness and lower speed. 49 The non-linear fitting is presently the most effective method used to develop the equations of state and compared to the previously used linear least-squares regression, it does not require linearizing data with the use of preliminary equations of state. Like many fitting algorithms, the LMA finds only a local minimum, not necessarily the global minimum.

In order to find the global minimum or approach it sufficiently, so the EOS reproduces the experimental data within a satisfactory error, additional constants, randomized coefficients, and weights are applied to the sum of squares (SSQ) during the optimization procedure. Their impact on the SSQ minimization is described later in this chapter. The expression for the residual sum of squares is given by

SSQ = N ρ i=1 W ρ,i F 2 ρ,i + N w i=1 W w,i F 2 w,i + N c p i=1 W c p ,i F 2 c p ,i + . . . , (3.19) 
where W y,i is a weight applied to each data point of the thermodynamic property y.

F y,i is the function used to minimize the relative deviation between the value calculated with the equation of state y EOS,i x, β for a given vector of fitted parameters β and the data point y DATA,i measured at x. 50 The function F y,i for a single experimental point i is evaluated as

F y,i = y DATA,i -y EOS,i x, β y DATA,i . (3.20)
The algorithm minimizes the SSQ = SSQ x, β by changing β in an iterative procedure, starting from a guess value. In each iteration step, the parameter vector β is replaced
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with a new guess value β + δ, and the function y EOS,i x, β + δ is approximated as

y EOS,i x, β + δ = y EOS,i x, β + J i δ, (3.21)
where

J i = ∂ y EOS,i x, β ∂ β , (3.22)
is the gradient of y EOS,i with respect to β.

The initial guess value in the optimization process is often a recently developed equation of state for a similar fluid or mixture of fluids. Since this starting point is, most probably, far away from the global minimum in the multi-dimensional parameter space β, the fitting process is a supervised optimization that requires regular adjustments of the coefficients for the sum of squares to decrease.

The variable quantities restricting the fitter behavior are:

• upper and lower bounds for the four parameters of the reducing function: β T,i j , γ T,i j , β v,i j , γ v,i j ; • upper and lower bounds for n i j,k coefficients of the departure function;

• upper and lower bounds for the temperature exponents t i j,k of the departure function;

• upper and lower bounds for each of the Gaussian-bell shaped term within the departure function;

• factors for randomized splitting the temperature exponents t i j,k within imposed bounds;

• factors for randomized splitting the Gaussian-bell shaped terms within bounds;

• penalty coefficients for exceeding the limits imposed by bounds.

The limits are applied to the parameter space, so the minimization process is constrained. This frequent optimization practice prevents the algorithm from failing for huge parameter values and allows the minimization process to advance quicker.

Fitting the single-phase properties to a fluid mixture data, with well-established equations for its pure constituents, is relatively simple and requires only an acceptable starting point and minor adjustments of the fitter coefficients. Fitting the phase envelope is a more complex procedure and is much more time-consuming. Because of this complexity, the first optimization goal is to model the phase envelope accurately. It requires a sensible choice of the experimental data to pin the dew and bubble lines and multiple DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES iterations to approach the global minimum, passing through the local minima with a use of random coefficients and variable penalties. When the phase envelope is fitted to a satisfactory level defined through a visual inspection, the single-phase properties are added to the sum of squares. The first solution often shows a trade-off between the accurate fit of the phase-envelope and the single-phase properties. Additional iterations and adjustments to the coefficients and penalties allow minimizing the total SSQ.

Fitter

The fitter is a program written in Fortran, specifically developed for the application to the equations of state. It is a constantly evolving project, developed for the last two decades, led by Eric W. Lemmon. Its core part was first written by Robert D. McCarty and Vincent D. Arp, and it was first used to develop the equation of state for helium-4. 51 The fitter has evolved tremendously since then, and thanks to its present state, it allows for fitting the equations to data for complex mixtures.

The fitter uses the functional form of the Helmholtz energy EOS from Eq. (3.1), an algebraic form of a relationship between a dependent variable and the explanatory variables.

The fitter comprises the Helmholtz energy derivatives calculations, the thermodynamic properties, and the algorithm for tracing the phase equilibria.

The important starting point for the fluid mixture property description are the equations of state for pure fluids. The properties of helium-4, 44 neon, 13 argon, 52 and nitrogen 53 are well established and available in the form of the Helmholtz energy-explicit equations.

The variable parameters of the equation are the parameters of the departure function, described in Eq. ( 3.3) and Table 3.1, and the parameters within the departure function from Eq. (3.8). Depending on the number of Gaussian terms used in the equations, the total number of parameters varies from 42 to 49 in this work.

Constraining the fitter behavior

An important advantage of the non-linear regression methods is the possibility of applying unequal comparative operators (greater than or less than) in constraints for controlling the behavior of calculated properties. It is beneficial for properties extrapolated outside the experimental data availability regions. The slope and curvature of a thermodynamic surface can be adjusted in a region where no data is available, not impacting the EOS behavior in another region, where experimental data pin the surface.
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Fortunately, the equation of state for a mixture takes advantage of the equations of state for pure fluids composing the mixture. As a result, the constraining process for the mixture EOS development can be much more straightforward than the necessary constraints applied to a pure fluid equation.

In order to construct a constraint, three parameters are necessary: the constraint property, a variable to hold constant, and the attribute of constraint property -a line, a slope, the third, or the fourth derivative. For all the equations optimized in this work, only a few constraints are necessary. An example of one of them, applied to the [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne equation, is a positive curvature of the 40 K isotherm in the speed of sound calculations for pressures between 8 and 22 MPa.

Weighting the data

Weights are attributed to the data points or data sets during the EOS optimization procedure to impose direction for gradient calculations in the next minimization steps. A single measurement point with a high weight influences the SSQ more than a point with a small weight. For a known measurement uncertainty, U i , the relative residual of an experimental point i, measured as a function of temperature and pressure, is calculated.

An example for calculating the relative residual in density is given:

ζ i = ρ EOS,i p DATA,i , T DATA,i , x DATA,i , β -ρ DATA,i p DATA,i , T DATA,i , x DATA,i U i (ρ) . (3.23)
The absolute value of the relative residual equal to or lower than unity means that the property prediction from the EOS is within the limit of experimental uncertainty. The goal of assigning the weights to data is to drive the SSQ, so the relative residuals for most of the points decrease below unity.

A good starting point for weight w i assigned to data point i is

W i = 1 U 2 i . (3.24)
It favors the accurate measurements over the less accurate by increasing their weights and importance in the SSQ calculations. If a data set is provided without the uncertainty value or the specified uncertainty is questionable, the weighting process is subject to expertise and introduced corrections to further the optimization procedure.

DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES

Experimental data available for the equations development

Reviewing the literature to search the experimental data can be tedious. It includes searching for scientific publications, converting results between different unit systems, and translating languages. Fortunately, the work on the literature review for the thermodynamic properties was performed at NIST and is partly available within the ThermoLit library. 54 The scientific publications listed in ThermoLit are completed by additional literature review resulting in the data sets, presented in Tables A. 1-A.4. A summary of the experimental data from these tables is available in Table 3.2, the p -T space coverage of available experimental data for density measurements is plotted in Fig. 3.1.

In contrast to pure fluids, the region of existing state points is always broader for mixtures since it is also composition-dependent. The experimental data sets available for fluid mixtures are often smaller in size and more deficient in the thermodynamic properties coverage, e.g., the recent equation of state for helium-4 benefits from 145 data sets covering 15 different properties. 44 In contrast, the equation of state for [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne is developed based on 8 data sets covering three properties. Therefore, it is more challenging to cover a comparable number of states for mixtures. Additionally, the pure fluids benefit from historically longer interest among the experimental scientists.

Because of the relatively small number of data sets, data inconsistency is visible mainly in the outliers. The outliers problem is easily solved by visualizing the complete data sets in their measurement space and removing the large SSQ points based on the deviation plots. Minor inconsistencies are encountered between different data sets since they rarely overlap. Some issues are visible at the phase envelopes. Fortunately, a visual inspection based on the continuity of thermodynamic properties -pressure and temperature, is sufficient to solve the inconsistency problems in this work. Another previously described problem is the unknown phase envelope behavior at higher pressures. It is visible for helium-neon and neon-argon and is subject to interpretation. x 1 is the molar concentration of a lighter component

The equilibrium data available for the mixture of helium-neon are limited in pressure up to 20 MPa. Even though the shape of the phase envelope at higher pressures is unknown, this data availability limit is higher than most engineering applications need. 

Helium-neon

In addition to four reducing parameters from Table 3.3, the model optimization includes deriving the departure function from Eq. (3.8). The temperature and density-dependent parts of the departure function for the mixture of helium-4 and neon are presented in Table 3.4. This set of coefficients forms a valid equation of state.

The phase behavior of the helium-neon mixture is shown in Fig. 

Helium-argon

In analogy to the helium-neon mixture, the reducing parameters from Table 3.3 are completed with the departure function for helium-argon, given in Table 3.5. This EOS is capable of describing the fluid behavior in the vapor-liquid and gas-gas equilibria regions. The phase envelope for [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ar is of class III 15 and is shown in Fig. 3.5 in the three-dimensional, p -Tx space, together with its projection on the px plane. The measurements for [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ar at equilibrium and in single-phase cover a broader range of temperature and pressure compared to helium-neon. Not only are there more data sets, but a broader range of pressure is covered by the experimental data, reaching 1 GPa for ρpT and the phase equilibria measurements. At low pressures (0--10 MPa), the equation deviates by 0.5%-2.5% for 95% of density data points used for its development, as presented in Fig. 3.6a. The deviations in density at lower pressures are comparable with the measurement uncertainties, presented in Table A.2. However, for pressures above 100 MPa, the equation deviates from data by 5% in density, more than reported experimental uncertainties. The deviations of EOS to the speed of sound data are shown in Fig. 3.6b and reach 10% in the worst case.

Neon-argon

Similar to the helium-4 mixtures, the gas-gas equilibrium may exist at high pressures in the binary pair of neon and argon. However, no measurements are available in the literature on the gas-gas equilibrium. Therefore, the GGE shape is not anticipated, as the mathematical description is cut at 100 MPa -the highest available pressure for the equilibria measurements. Compared to the helium-neon mixture, the equilibria measurements for Ne -Ar provide a fuller description of the upper part of the phase envelope for the vapor-liquid equilibrium.

Following the two previous equations, the EOS for Ne -Ar is formed with the reducing parameters from Table 3.3 and the departure function from Table 3.6. The equation should probably be refitted with a larger number of the departure function terms, so its accuracy improves.

Uncertainty discussion at phase boundary

When applying the isothermal error calculations based on the comparison of the bubble or dew pressures for a given mixture composition, large calculated deviations can be obtained when an isotherm in the log(p) -x plane is vertical or very steep. However, the data point may still be very close to the phase envelope, which is a degeneracy in the means of error quantification.

In order to evaluate errors at phase equilibria, the orthogonal length scale for data versus EOS is defined. The dimensionless, orthogonal error is calculated by finding the smallest distance between the experimental data point ((x data , pdata ) , T data ) and the respective isotherm evaluated with the EOS x min calc , pmin calc , T calc , where T data = T calc and p is the reduced pressure, defined as: is represented schematically in Fig. 3.11, where the error value can be interpreted as the length of the solid black line. Numerically, the error is evaluated by calculating the distances between an experimental point and all points forming the respective isotherm.

p = p p r . ( 3 
The error is the smallest value among them. The sign convention is chosen, so the positive error represents the EOS calculating too large a pressure compared to data and negative when calculating too small a pressure. Two experimental compositions for liquid and vapor from one measurement are marked with circles (the same pressure and temperature). It is essential to highlight that the compositions at the minimum point and experimental point can be different. The advantage of the orthogonal metric over the pressure-based metric is visible for the prediction giving too small a composition compared to the actual experimental point placed above the calculated maxcondentherm.

For this case, the pressure-based metric does not provide the error value. Fig. 3.14a shows that 90% of all equilibria points have orthogonal error below 0.02 for [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne and Ne -Ar; and 78% of [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ar points have orthogonal error in this range.

The orthogonal metric is less intuitive than the pressure-based error description. However, it can be unfolded to the absolute units. in Fig. 3.14c shows a similar trend for all four equations. Compared to Fig. 3.13, where the error seems to be pressure-independent, its representation in absolute units reveals a clear pressure-dependence. This shortcoming of the orthogonal error definition can be explained by analyzing its definition from Eq. (3.28). While the composition error, (x data -x min calc ), takes uniform values over the composition range, the pressure error, calculated as an absolute difference of logarithms of reduced pressure, (ln(p data )-ln(p calc,x )), underemphasizes the errors at higher pressure. Fig. 3.12 may suggest that the phase equilibria description is more accurate for [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne than for, e.g., [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ar. Fig. 3.14c shows that lower error values of the helium-neon phase envelope description are driven by a narrower pressure range of available experimental data, and complete error analysis can be made only after unfolding the orthogonal error to absolute units.

38

CHAPTER 3

Compared to the conventional error evaluation, defined as a relative difference in pressure, the orthogonal metric is advantageous because it provides an error value for every data point independent of the slope of an isotherm. The pressure-based metric provides error values for 53.3% of points used for [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ar (the least out of four EOS) and 96.4%

of points for Ne -Ar (the most out of four EOS).

EOS performance comparison

The previously defined empirical equations of state, used in REFPROP 10.0, 116 for mixtures of [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne, [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ar, Ne -Ar, and [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -N 2 were developed by fitting the reducing parameters: β T , γ T , β V , γ V , together with the scaling parameter, F i j . The departure functions were not binary-specific, and the equations did not accurately represent the phase envelopes but were sufficiently precise in single-phase. The equation of state for helium-neon used the departure function for the nitrogen-ethane mixture. 117 The helium-argon and helium-nitrogen EOS used the generic departure function for hydrocarbon mixtures. 43 The model for neon-argon used the reducing function only and did not fit the F i j to any existing departure function. 118 As a result, the tracing routines for the phase equilibria failed for [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne and 4 He -N 2 , and did not provide any satisfactory description for the supercritical and high-pressure phase equilibria of [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ar.

The routines only provided an approximate phase equilibria description for Ne -Ar, resulting in a maximal error in composition equal to 12 mol-%.

The most considerable advantage of fitting the reducing parameters, together with the binary-specific departure functions, is the accurate description of phase-envelope properties for all the mixtures. This advantage cannot be underestimated since it provides essential insights for engineering applications that consider liquefaction or working con- 

ditions

Conclusions from the EOS development

All of the presented equations of state show satisfactory performance in single-phase and at the phase envelope for pressures up to 10 -20 MPa, which covers most of the engineering applications. For higher pressures, if the experimental data is available, the performance of the equations decreases. However, the error remains within 5% margin for the ρpT data and within 10% margin for the speed of sound data. Since the experimental data is only available for these two single-phase properties, the conclusions on accuracy of the equations cannot be easily extended to calculations of, e.g., the isobaric specific heat or the enthalpy change. In order to perform a complete cryogenic process cycle design with known uncertainty of the equation of state, additional measurements of, e.g., the isobaric heat capacity are necessary.

The results obtained in this work, as well as the recent work performed by A. Aasen et al.

show that the simple mixing rule, such as the Lorentz-Berthelot mixing rule, 120, 121 can be successfully applied to quantum fluids. The quantum-corrected cubic equation 22 and the Feynman-Hibbs-corrected equation for Mie fluids 32 may be faster to develop as the optimization process requires only a few parameters to be fitted. The multiparameter empirical equation of state from this work seems to provide the most accurate description at the phase envelope. The single-phase properties are not compared as the publications on cubic and SAFT equations do not discuss their performance in single-phase.

The orthogonal error is helpful for the performance validation in the phase envelope calculations since it provides the error values for all the equilibria data points, unlike the standard pressure-composition error metric. The orthogonal metric can also be con- The weights, w x y and w p , allow to compensate for unequal influence of composition errors compared to the reduced pressure errors in the sum of squares calculations:

SSQ vle = N i=1 err vle x,i + N i=1
err vle y,i , (3.30) where vle marks all possible equilibria calculations: vapor-liquid, gas-gas, liquid-liquid, or any other. Additionally to the sum of squares defined above, the weighted singlephase errors are calculated conventionally, as defined in Eq. (3.19). The total sum of squares is the sum of the two:

SSQ = N vle i=1 err vle x,i + N vle i=1 err vle y,i + N ρ i=1 W ρ,i F 2 ρ,i + N w i=1 W w,i F 2 w,i + N µ JT i=1 W µ JT ,i F 2 µ JT ,i . (3.31)
The single-phase experimental data available for the fluid mixtures considered in this work is limited to density, speed of sound, and the Joule-Thomson coefficients. Therefore, the sum of squares defined above is a function of these three properties. However, any other thermodynamic property can be analogously used to fit the equation to data.

Various stochastic and deterministic algorithms can be used, among which the Nelder-Mead method and differential evolution are tested and explored in more detail. [122][123][124] Deterministic methods require a guess value to start minimization. The parameters from an existing EOS used as the starting values allow to successfully decrease the singleobjective SSQ function and minimize deviations between the EOS and experimental data. Unfortunately, as discussed in Sec. 3.2.3, constraints are necessary to ensure the correct slope and curvature of the isolines. Since they are not implemented, the SSQ decreases over the iterations but the curvature of the isolines becomes incorrect.

Undoubtedly, the orthogonal metric has potential in EOS development. However, its correct implementation requires valid constraints applied on the slope and curvature of the isolines, which for the moment are missing in Eq. (3.31). Additional difficulty with the stochastic minimization is the sensitivity of the equilibria tracing algorithm to the departure function parameters. Initializing the stochastic algorithm, e.g., differential evolution with a random guess for both the reducing and departure functions, leads to repetitive failures in tracing the phase equilibria. Over the generations, many solutions are failures, which prevents the algorithm from calculating the orthogonal error and converging reliably.

Further work on the algorithm, and constraints, in particular, is necessary, but the discussed logic is a promising approach on the way to automatic EOS development.
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ISENTHALPIC JOULE-THOMSON COEFFICIENT MEASUREMENTS

A limited number of experimental data is found in the literature for the mixture of [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne at cryogenic temperatures. Fig. 3.3 and Table A.1 show no data available in the single-phase region for 50 -230 K temperature range. This region overlays with the equation applicability for designing the precooling cycles of the next-generation scientific instruments, e.g., fusion reactors and particle accelerators. 3 Therefore, the equation performance should be confirmed experimentally, so the complete thermodynamic surface is validated and the equation becomes a well-grounded source of properties in broad p -Tx space.

In this work, the measurements of the Joule-Thomson coefficient are discussed for temperature between 50 and 100 K and pressure up to 10 MPa. This p -T region is chosen based on the interest of the process cycle engineering.

Compared to other thermodynamic properties, the isenthalpic Joule-Thomson coefficient, µ JT has historically shown lower measurement accuracy. However, the experimental setup necessary for its acquisition can be simple and accessible.

This chapter describes the thermodynamics behind the Joule-Thomson (JT) coefficient and its meaning for the equations of state development. It reviews the literature on past measurements of the Joule-Thomson coefficient. Two measurement methods are presented, their advantages and shortcomings are discussed. One is chosen and adapted to the needs of this work.

Thermodynamic determination of the Joule-Thomson coefficient

The Joule-Thomson effect describes the temperature change of a real gas or liquid when throttled through a porous plug, a valve, or a capillary at constant enthalpy. The effect ISENTHALPIC JOULE-THOMSON COEFFICIENT MEASUREMENTS is characterized by the Joule-Thomson coefficient, which is the thermodynamic quantity that measures a differential temperature change of a fluid with a differential pressure change at constant enthalpy and composition

µ JT = ∂ T ∂ p h,x , (4.1) 
where T is the temperature in K, p is the pressure in Pa, h is the specific enthalpy in J kg -1 , and x is the molar composition vector. In order to measure the JT coefficient, the fluid is maintained at constant temperature and pressure and throttled under steadyflow conditions into a lower-pressure region. The JT coefficient can be positive, which corresponds to a fluid temperature decrease in the throttling process, or negative, which corresponds to its temperature increase.

In the Joule-Thomson transformation, the enthalpy,

H = U + pV, ( 4.2) 
remains constant. In the equation above, U is the internal energy of a fluid, p is the pressure, and V is the volume.

The Joule-Thomson coefficient can be derived from the fundamental equation of thermodynamics, dH = T dS + V dp and it can be expressed as

µ JT = 1 c p T ∂ v ∂ T p -v , (4.3) 
where c p is the specific heat in J (kg K) -1 and v is the specific volume in m 3 kg -1 .

Since v = RT /p for ideal gas, the derivative (∂ v/∂ T ) p simplifies to v/T = R/p. Therefore, the above, substituted into Eq. ( 4.3) results in µ JT = 0 for ideal gas. There is no Joule-Thomson effect in ideal gas because there are no interactions -no attraction and no repulsion. In this perspective, the Joule-Thomson coefficient is an image of the interactions. However, compared to the compressibility factor or the virial coefficients this image is somewhat distorted. At the limit of zero density, a real gas is characterized by

Z = 1 and B = C = 0 but µ JT = 0.
The Joule-Thomson coefficient for a gas obeying the van der Waals equation of state can be derived from the virial equation approximation for the van der Waals gas 125 where a is the measure of the average attraction between particles and b is the covolume or the repulsive term, as described in Sec. 2.2.3.

µ JT = 2a RT -b c p + . . . , (4.4 
For low temperatures, when T → 0, the Joule-Thomson coefficient can be, therefore, approximated with 2a/ c p RT + . . .. In contrast, for very high temperatures, it can be approximated with -b/c p +. . . With these relations, it can be concluded that at low temperatures, the inter-molecular attraction is the most significant interaction. Whereas, at high temperatures, the repulsive force dominates. It has to be emphasized that the analysis above serves only to understand the Joule-Thomson phenomenon. In reality, a very cold gas also observes a negative Joule-Thomson coefficient as later shown with the inversion curves -lines in p -T space at which µ JT changes signs. When a real gas expands at low temperatures inside its inversion curve, the average distance between molecules increases. Since the molecules attract each other, this process requires energy. In the adiabatic transformation, i.e., the Joule-Thomson transformation, the only source of energy is the internal energy of the gas itself. Therefore, the temperature has to decrease in a real gas.

The compressibility factor, Z, is the ratio of pV of a real gas to pV of ideal gas at the same temperature. At low temperature, Z and pV increase as the gas expands, resulting in a positive µ JT . At high temperatures, Z and pV decrease as the gas expands. If they decrease enough, the Joule-Thomson coefficient is negative. Both thermodynamic properties, µ JT and Z, measure deviations of a real gas behavior compared to ideal gas. helium and neon. It is visible that the lower the pressure and the higher the temperature, µ JT → 0 and Z → 1. That is where both helium and neon can be treated as ideal gas.

At low temperature and high pressure, the ideal gas approximation is no more valid.

It is important to emphasize that even in normal conditions, µ JT = 0 for neither of the fluids.

Both helium-4 and neon have the particularity of increasing their temperature when throttled from ambient temperature in the JT process. This phenomenon is visible for both gases in Fig. 4.1, where µ JT < 0 at 300 K independent on the pressure. Therefore, if measured accurately, the JT coefficient can be a useful property for the equations of state validation. Moreover, its definition from Eq. (3.14) shows that it comprises almost all the residual Helmholtz energy first and second derivatives, except

for α r τ (δ, τ, x) = (∂ α r /∂ τ) δ,x
. This definition makes the Joule-Thomson coefficient, next to the speed of sound, a good property to verify the equation behavior.

Literature review for the JT coefficient

Most of the research on the Joule-Thomson coefficient measurements in fluids was performed fifty to one hundred years ago. Extensive work on this topic was done by the team of J. R. Roebuck at the University of Wisconsin. [128][129][130][131][132][133] In the course of their studies, they developed the radial flow apparatus shown in Fig. 4.3, where a cylindricalshaped porous material imposed a small pressure drop. Two thermometers were placed directly in the fluid before and after the porous plug, not impacting the temperature measurements by additional thermal conductivity. They measured the Joule-Thomson coefficients at ambient temperatures for air; and at low temperatures for helium, argon, nitrogen, and carbon dioxide. Limited uncertainty discussion concludes that the results for nitrogen differ from µ JT data, calculated from compressibility factors 134 by 0.5% to 2.5%. However, the very accurate equation of state for pure nitrogen shows deviations in the order of 10% from measurements. 53 error at easily accessible pressure and temperature [139][140][141] ). When comparing the JT measurements against the equations at temperatures below 200 K, only 34.3% of data are within ±5% and 48.2% within ±10%. However, considering the advancements in cryogenic measurement techniques, the Joule-Thomson coefficient can be measured with uncertainties comparable with the specific heat.

Even if the temperature and pressure are measured with higher relative uncertainties, compared to, e.g., time which is used to calculate the speed of sound in fluids, 140,141 the experimental setup necessary to obtain the Joule-Thomson coefficients is simpler.

Part of the measurement sets, presented in Table 4.1, show coherent deviations from accurate EOS compared to the uncertainty values claimed by the authors. On the one hand, these measurements are characterized with AAD below 1.5%. On the other hand, they were performed at ambient -and above ambient temperatures. Deviations of the existing Joule-Thomson coefficient values, measured at cryogenic temperatures, are more significant when compared to EOS and, in the worst case, reach 50-70%, excluding the outliers.

Measurement methods

According to Smith, 137 the total derivative of temperature with respect to pressure can be described as

dT dp path = ∂ T ∂ p h + ∂ T ∂ h p dh dp path . (4.6)
From a definition of the specific heat capacity, the equation above becomes: 
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µ JT = ∂ T ∂ p h,x = ∆T ∆p path - Q ṁc p ∆p + ∆e k c p ∆p , ( 4.9) 
where x is the mixture mole fraction vector, Q is the heat exchanged by the fluid in W, c p is the average isobaric heat capacity in J (kg K) -1 , and ∆e k is the specific kinetic energy change in the throttling process in J kg -1 .

The Joule-Thomson coefficient can be determined directly from incrementally small pressure drop and respective temperature change, as done by Roebuck et al., [128][129][130][131][132][133] Smith, 137 and Potter et al. 135,136 in the past. It can also be measured indirectly, as an integrated coefficient when the pressure drop is significant. Both methods have their advantages and limitations.

The first measurement method, well explored in the past, relies on small pressure changes 50 CHAPTER 4

from which the isenthalpic Joule-Thomson coefficient can be directly derived. The smaller the pressure change, the more the measured angle β approaches the actual angle of the isenthalpic line α, as presented in Fig. 4.5a. Small pressure changes are imposed by small flow rates, which increase the thermal loss influence by decreasing the ṁ and ∆p in the denominator of the first correction term in Eq. (4.9). On the one hand, the method does not take advantage of the instrument accuracy, and the instrument errors significantly impact results. On the other hand, the kinetic energy change in the transformation can be neglected.

With a large pressure drop, the influence of the instrument inaccuracy decreases. Unfortunately, large ∆p imposes large ∆T and increased thermal transfer, Q. Large ∆p also imposes large kinetic energy change ∆e k , as presented in Eq. ( 4.9), and therefore non- already been used by Roebuck et al.,[128][129][130][131][132][133] Smith, 137 and others, it could be considered as an obvious solution. However, all the authors measured the local Joule-Thomson coefficients with similar cryostat designs and small ∆p across the porous plug. Despite the advantages of the technique, such as the homogeneous temperature distribution and the inflow temperature measurements, it is difficult to guarantee the leak-tightness between the two sides of the plug with imposed large pressure drop values. Additionally, the industrial companies in charge of the porous material casting have no commercial off-the-shelf solution for the plug with porosity low enough to provide high ∆p for the studied flow rates and sufficient material strength to withstand significant pressure drop values. An attempt was made in this work to design the porous plug assembly with industrially available cylindrical disks. However, the leak-tightness issue was not solved; the design was, therefore, abandoned.

In this work, a large pressure drop is provided to the fluid by a small diameter capillary.

The pressure and temperature values are measured at the capillary inlet and outlet.

Compared to the orifice plate and the porous plug, the leak-tightness and the pressure drop measurements are not expected to cause any complications. A broad range of capillary diameters and its freely chosen length allow for flexibility in the JT test bench design. A small enough capillary diameter can be chosen, so little gas is consumed per unit time. Choosing a small external diameter is also advantageous for the material strength at high pressures. As a result, the heat loss between the two ends of the capillary decreases with decreasing material cross-section area.

Calculations for the Joule-Thomson transformation in a capillary

The process allowing for the choice of the capillary size is iterative in its length. The If the flow in a pipe is laminar, the friction factor is proportional to the reciprocal Reynolds number f = 64 Re -1 and the Eq. ( 4.10) simplifies to

∆p l = 128 π µ V D 2 , (4.12)
where µ is the dynamic viscosity of the fluid in Pa s and V is the volumetric flow rate in m 3 s -1 .

The capillary imposing the pressure drop is helical in the selected setup due to its length and the cryostat geometrical constraints. The Dean number, an additional factor increasing the ∆p in a curved capillary, is defined. 150 It shows that the additional pressure drop is insignificant for the chosen geometry, and the curving radius being three orders of magnitude larger than the internal capillary diameter.

With Equations (4.10) and ( 4.11) the pressure p out at the outlet of the unitary length is calculated. The temperature of a fluid expanding in the isenthalpic transformation is a function of inlet enthalpy and outlet pressure where ∆E k is the kinetic energy change of the fluid in J. If the mass is conserved, the Eq. ( 4.14) can be reformulated:

T h out = T (p out , h (p in , T in )) . ( 4 
h in + u 2 in 2 = h out + u 2 out 2 , (4.15)
where h in , u in and h out , u out are the fluid specific enthalpy in J kg -1 and velocity values in m s -1 before and after the transformation respectively. The above equation states that the throttling process is truly isenthalpic only when no heat is exchanged with the surroundings and the kinetic energy of translation is not converted into the kinetic energy of vibration. The latter is only true when the fluid velocity change is negligible.

According to the enthalpy definition: 4.16) where β = 1/v (dv/dT ) p is the isobaric expansion coefficient. In the first approximation, assuming β = 1/T , the enthalpy simplifies to h = c p T and the corrected temperature in an isenthalpic transformation can be calculated as:

h = c p T + p ρ (1 -β T ) , ( 
T out = T h out - u 2 out -u 2 in 2c p,out . (4.17)
For the highest achievable pressure drop, the kinetic energy of translation is expected to convert into the kinetic energy of vibrations of molecules and results in the temperature change of fluid. If the error introduced by performing the measurements in non-isenthalpic conditions is to be kept below, e.g., 0.5%, the reduced pressure drop ∆p/∆p max should be kept below 0.9. As a result, if a fluid expands from, e.g., 10 MPa, the expansion is isenthalpic with 0.5% margin in T out , only when performed down to 1.1 MPa.

With the outlet temperature calculated from Eq. ( 4.17), the capillary made from 304L stainless steel is assumed to conduct heat from the warm end of its unitary length l to the cold end. The tube is placed in a vacuum on a glass fiber support, which limits numerically for T out using standard scipy.optimize.fsolve algorithm. 122 The total heat transferred from the inlet to the outlet of the capillary is calculated with the onedimensional Fourier's law

q L = -k(T )
dT dL , (4.18) where k(T ) is the 304L stainless steel thermal conductivity in W (m K) -1 , integrated over the capillary length with variable temperature, and dT /dL is the temperature gradient in K m -1 with unitary length dL = l.

The equations discussed above allow for determining the region of low measurement error according to the pressure drop, as discussed before. This region of low error is the region of experimental interest for the following work and is shown in the p -T space in Fig. 4.8. It comprises the pressure from 0.1 to 10 MPa, the temperature from 40 to 100 K, and the helium-4 concentration from 20 to 50 mol -%. Following the analysis described above, a case study is performed for various capillary diameters and lengths as a function of inlet conditions (p in , T in ), as presented in Fig. 4.9.

The pressure drop of a mixture in a capillary tube is also composition-dependent. To obtain the same pressure drop, e.g., p in -p out = 10 MPa -1.1 MPa at T in = 65 K in [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne ṁ(x He = 0.2) ṁ(x He = 0. that is, 1.34 times higher mass flow rate of the mixture with low helium concentration is necessary to achieve a similar pressure drop in both mixtures.

With an appropriately chosen downstream valve, a single capillary length should allow performing all the measurements.

The smaller the diameter of the capillary, the less gas is consumed in a single measurement. At the same time, the smaller the diameter, the more susceptible to clogging the capillary is. With this constraint in mind, the 0.4 mm internal diameter capillary is chosen as the key component. The external diameter is selected, based on the available capillaries and the requirements coming from material strength for high-pressure use.

In order to obtain the large enough pressure drop, the capillary should be at least 6 m long. This length should provide flexible measurement conditions with a flow rate ranging from near-zero to 0.2 g s -1 , assuring a long experimental time with an open cycle and few gas bottles used. If a large ∆T is to be measured in the expansion process, no measurements are foreseen to be taken for the helium-rich mixture. Therefore, the limit of x He ≤ 0.5 is set on the helium concentration.

       D int = 0.4 mm D out = 1.0 mm L ∈ 〈6, 10〉 m
Second, the chosen capillary dimensions from Eq. ( 4 composition values. From results presented in Fig. 4.11 the simple conclusions can be drawn:

1. The lower the inlet temperature, the higher the temperature drop in the expansion process;

2. The higher the inlet pressure, the lower the pressure drop obtained with the same mass flow rate;

3. Measurements at lower helium concentrations should be more precise since the expected temperature change is larger.

Test bench design

The Process Flow Diagram (PFD) is presented in Fig. 4.12, whereas the full The buffer smooths out the manual pressure corrections and decreases their frequency from seconds to minutes.

Inside the cryostat, marked with a dashed line, a copper block with a brazed heat exchanger is mounted on the cold head of the Cryomech AL300 cryocooler. It has sufficient capacity to cool down the flow from 300 K to around 40 K and can be regulated with a variable frequency ranging from 40 to 70 Hz. The minimal temperature of the cold head for the zero-load is 20 K. The pressure-reducing capillary is presented in a helical form, and two calibrated Lake Shore Cernox temperature sensors are placed upstream (TT101 measuring T in ) and downstream (TT102 measuring T out ) of the capillary. The temperature sensors wiring is thermalized at the cold head. PT101 and PT102 are the high accuracy CPT 6100 pressure transducers supplied by Mensor. They measure the capillary upstream p in and downstream p out pressure values.

Two fine-control needle valves HV013 and HV015, are installed in parallel in order to provide a broader range for regulating the downstream pressure p out . A gas analyzer GA016 is placed at the outlet of the system, so its pressure-dependent measurements are always performed at the atmospheric pressure. A complete list of equipment used in the experiment, divided into functional categories, is presented in Table D The inlet thermometer is placed outside the capillary. The outlet thermometer is placed in a copper block in direct contact with the fluid. From the point of view of heat transfer, the most advantageous measurement setup would be to use two in-flow thermometers.

However, the technical limitations of the high-pressure measurements with low capillary diameter drives the placement of the thermometers causing a difficult to qualify, systematic error from indirect measurements.
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Pressure measurements

A particular effort was put into evaluating the impact of the pressure measurements on final results, however, there is a risk that the systematic error from the pressure taps impacts the measurements. Both the temperature and the pressure uncertainties are discussed in details, together with the results analysis in Sec. 5.2.1 and 5.2.2. In order to achieve the acceptably low measurement errors in µ JT , compared to other thermophysical properties used for the EOS development, the pressure transducers with the highest achievable accuracy are used: U(p) = 0.01% of full scale with p max = 13.7 MPa.

Gas analyzer for composition measurements

The process gas analyzer BGA244HP manufactured by Stanford Research Systems is a binary gas analyzer that determines gas purity and mixture composition by measuring the temperature and the speed of sound in the gas. The measurements are based on the principle of corresponding states, with scaled fluid properties depending on the intermolecular forces. The analyzer determines the fluid composition with known mixture constituents with an accuracy of 0.1 mol -% by measuring the speed of sound in fluid and calculating the speed of sound in ideal gas:

w 0 = κRT M , (4.21)
where R is the ideal gas constant in J (mol K) -1 , T is the temperature in K, M is the molar mass in kg mol -1 , and κ = c p /c v = c p /(c p -R) is the ratio of heat capacities, calculated from fitted correlations. The speed of sound of ideal gas, w 0 , is corrected with empirical factors for viscosity, µ, thermal conductivity, k, second and third virial coefficients, B and C, known for each constituent. These empirical corrections allow to calculate the speed of sound of a real gas:

w = w 0 + f (µ) + f (k) + f (B) + f (C). ( 4 

.22)

A root-finding algorithm is employed on the calculated value of composition-dependentcorrected speed of sound and the measured value to find the molar composition ranging from 0 to 1. Unfortunately, it is unclear how each empirical correction impacts the calculated speed of sound since the user manual is incomplete, and the company is not willing to share any additional correlation nor fitted coefficients outside of the manual. 

Cold head

The cryocooler used in the system is the AL300 Gifford-McMahon cold head manufactured by Cryomech. Assuming the maximal pressure drop in the capillary in the order of 10 MPa, the maximal expected mass flow rate can reach 0.16 g s -1 , as presented in 

Measurement chain

Data from all the sensors in the system is acquired with 1 s time interval through Panorama E2 SCADA software. CABTR, for temperature measurements, is connected through the Modbus GateWay. The pressure sensors and the gas analyzer are directly connected through RS-232 to the Modbus GateWays. The Panorama software incorporates the proportional-integral-derivative controller and a safety thermal switch for the TT008 temperature regulation heaters.

Auxiliary equipment

Additional design choices are necessary to complete the choice of equipment installed on the test bench. The micrometric valves HV013 and HV015 are chosen based on the expected minimal and maximal mass flow rates presented in Fig. 4.10. The flow coefficient is calculated and shown in Fig. 4.16. The flow regions of both valves overlay but do not cover the full spectrum of necessary flow rates making the measurements with minimal pressure drop in the capillary impossible. However, no valve with smaller C v is found on the market, and the smallest ∆p measurements are expected to be less accurate as further discussed.
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Additional safety precautions for valves and welds are taken. All components, except the pressure sensors, are tested at 14 MPa, whereas the safety valve SV005 sets the maximal operational pressure to 11 MPa. 2. p in value is set at PT101 with pressure reducer RV004A. Regular manual adjustments are made every few minutes to compensate for pressure variations in the mixture supply bottle.

3. p out is set at PT102 with either HV013 or HV015 valves, depending on the required pressure drop.

4. T out stabilizes in the course of 15 to 20 minutes after keeping the other three measurement values constant.

5. After the T out stability is reached and all four measurements (p in , p out , T in , and T out ) are quasi-constant in the period of 1 minute, the timestamp is noted down

for later data extraction. The 1 minute time is evaluated to be long enough since the p out change results in changing T out within few seconds (t < 10 s).

6. new p out is set at PT102 by changing the setting at HV013 or HV015 valve.

7. Small adjustment in TT008 setting is necessary to keep the T in reading from TT101 constant, as explained in the first step.

The presented analysis is performed with the helium-nitrogen mixture as a part of the setup validation process before the measurements of the Joule- 1 7 : 0 0 : 0 0 1 7 : 1 1 : 1 7 1 7 : 2 5 : 1 7 1 7 : 3 9 : 4 9 1 8 : 0 0 : 4 1 1 8 : 2 0 : 1 2 1 7 : 3 9 : 4 9 1 7 : 3 7 : 3 9 1 7 : 3 5 : 3 The time-dependent mole fraction measurement shown in Fig. 4.18 is the data acquired in the same run as the pressure and temperature in Fig. 4.17. The composition variation in this particular measurement reaches 0.067 mol-% and is lower than the gas analyzer specified uncertainty.

_ p / MPa T in T out p out p in _ _ _ _ _ _ _

Thermal hysteresis verification

In order to fully validate the measurement methodology, a single isenthalpic line is measured twice, following the line in both directions. First, starting from low p out and decreasing the pressure drop ∆p = p in -p out in the course of the measurements. Second, starting from high p out and increasing the pressure drop. A comparison of both measurement sets, performed with nitrogen, is presented in Fig. The difference is visible in the two right figures. In the top one -as a deviation from the calculated Joule-Thomson coefficients. In the bottom one -as a relative difference between both measurements, reaching 0.25% in the worst case. No systematic dependence is visible in T out for increasing versus decreasing ∆p measurements. Therefore, the measurements can follow an isenthalpic line with either increasing or decreasing ∆p presenting no impact on the results.

Measured isenthalpic curves for pure fluids

To complete the experimental setup validation, the isenthalpic lines from the tabulated results in Table E.1 are shown in Fig. 4.20. Three sub-figures show the experimental points in the pressure-temperature space and the respective isenthalpic lines calculated from the pure fluid equations of state for nitrogen, helium-4, and argon.

The slope on an isenthalpic line is not monotonous if it reaches the saturation temperature. The above may happen if the pressure at the capillary outlet decreases below the saturation pressure -if the expansion, shown with the blue line for argon and the pink and yellow lines for nitrogen, continues to lower pressure values. Even though some measurements in nitrogen and argon approach the saturation line, marked in black in Fig. 4.20. Results of the p -T pairs measurements for pure fluids. Solid lines are the constant enthalpy lines calculated with EOS. 44,52,53 Black lines are the saturation lines, and black stars are the critical points. The color-coded numerical values of p -T measurements are available in Table E.1 and are represented with circles.

for each p in . Another reason for the measurements not being taken through the saturation line is the necessity of fitting a polynomial to the p -T pairs in post-processing

calculations. An accurate fit of a simple polynomial requires the isenthalpic line to be monotonous.

The measurements are qualitatively validated against their respective isenthalpic lines, calculated with the EOS. All measured points closely follow the lines. A quantitative validation with calculated Joule-Thomson coefficients is presented in the next chapter.
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CHAPTER 4

MEASUREMENTS ANALYSIS AND RESULTS COMPARISON AGAINST EOS

In Chapter 4, the method for measuring the pressure-temperature pairs in fluid at constant enthalpy is discussed. The Joule-Thomson coefficient values can be interpreted as the derivatives of an isenthalpic line in the p-T space w.r.t. pressure. In this chapter, the actual isenthalpic Joule-Thomson coefficients, µ JT are calculated and compared against the existing equations of state. First, the post-processing calculations are performed for the pure fluids, so the measurements are qualified against the known equations of state.

Later, the measurements for mixtures are compared against the equations developed in this work. Since the Joule-Thomson coefficient in a mixture is not directly dependent on mixture molar composition, the uncertainty discussion is completed with the Monte Carlo analysis quantifying the influence of the molar composition uncertainty on the final results.

Determining the Joule-Thomson coefficient

The results of performed measurements are the pressure-temperature pairs for pure fluids and the pressure-temperature pairs at constant molar composition for mixtures.

The p -T pairs measured at a single isenthalpic line for constant (p in , T in ) form a measurement set, s. The Joule-Thomson coefficient can be geometrically represented as the slope of an isenthalpic line in the two-dimensional space of pressure and temperature.

A line is fitted to measured p -T pairs so the coefficients can be determined. With a sensibly chosen equation of the fit, its first derivative is calculated for each measured pressure. This derivative is the isenthalpic Joule-Thomson coefficient, µ JT .

Fitting a polynomial and choosing its degree

Each measurement set s of size len(s) for both the pure fluids and mixtures is presented in Tables E.1 and E.2. In order to fit an isenthalpic line to set s, the equation for this line has to be chosen. The numpy.polynomial package, 153 used for fitting the equations and calculating their derivatives offers multiple polynomials forms:

1. power series;

2. Chebyshev polynomial;

3. Legendre polynomial;

4. Laguerre polynomial;

5. Hermite polynomial.

The equations of these polynomials are known and are described in detail in the numpy package documentation. The Chebyshev polynomial is selected for fitting the measurement data and calculating the Joule-Thomson coefficients. The influence of the polynomial choice on measured µ JT is later compared and is presented in Sec. 5.2.3.

The Chebyshev polynomial of the first kind at p = p 0 is given by

T (p 0 ) = n k=1 a k C k (p 0 ), n < len(s). (5.1) 
where T is the temperature in K, p is the pressure in Pa, a k are the fit coefficients in K Pa -k , and n is the order of the fit. The order n always has to be lower than the number of data points. The coefficients C k can be obtained from the recurrence relation

       C 0 (p 0 ) = 1 C 1 (p 0 ) = p 0 C k+1 (p 0 ) = 2pC k (p 0 ) -C k-1 (p 0 ) . ( 5.2) 
The Joule-Thomson coefficient is given by

µ JT (p 0 ) = n k=1 a k Q k (p 0 ) , n < len(s), (5.3) 
where the coefficients Q k are defined recurrently with a lower order of the fit is that some of the measurement errors are 'fitted out' for those lower-order polynomials, and the slope of this fit -the Joule-Thomson coefficient is somewhat corrected.

       Q 0 (p 0 ) = 0 Q 1 (p 0 ) = 1 Q k+1 (p 0 ) = 2C k (p 0 ) + 2p 0 Q k (p 0 ) -Q k-1 (p 0 ) . ( 5 

Fit behavior at extremities

The necessity of fitting a polynomial to data brings an issue of diverging results at data set extremities. It is visualized for an arbitrary function f (x) in Fig. 5. y can cause the final results to deviate only because the fit-to-line does not accurately represent the line. In this particular case, the order of the fit function is chosen, so the sum of errors is minimal; therefore, it does not influence the analysis. The derivatives of the fitted polynomial show maximal relative deviation of one of the extrema equal to 8.3%, whereas the maximum deviation of one of the intermediate points is equal to 2.2%. A complete analysis of the influence of fitted polynomial is later discussed in Sec. 5.2.2. It is, however, decided that the extremities of measured isenthalpic lines are fitted but are not included in the µ JT calculations to limit their impact on derivation.

Removing inlet measurements from the analysis

Since the Joule-Thomson transformation is isenthalpic, it is expected that all the output pairs (p out , T out ) follow the same isenthalpic line as the input pair (p in , T in ). Unfortunately, the unfavorable placement of the inlet thermometer (outside of a stainless steel T-piece) most probably causes a permanent offset of measured T in value. The inlet pressure-temperature values in each measurement set are, therefore, removed from the analysis and fitting. They are only used throughout the measurements to keep the inlet conditions stable, but they are not used for the µ JT calculations in the post-processing analysis.

T / K E.1, the calculated Joule-Thomson coefficients -in Table E.3.

Results analysis for pure fluids

The measurement results for pure fluids are tabulated in Table E.3. The correction introduced to the outlet temperature through Eq. ( 4.17 

Conventional uncertainty analysis

Since the measurement error is temperature-, pressure-, and molar composition-dependent, the uncertainty analysis performed prior to the experiment is used to choose the measurement regions characterized with low uncertainty values. The measurement uncertainty can be calculated with a general formula for error propagation of quantities with independent uncertainties. 154,155 If x, . . . , w are measured with independent uncertainties U(x), . . . , U(w), and are used to compute quantity q = x + . . . + z -(u + . . . + w), the uncertainty in q is the sum

U(q) = (U(x)) 2 + . . . + (U(z)) 2 + (U(u)) 2 + . . . + (U(w)) 2 .
(5.5)

If the same quantities are measured and used to compute q = (x × . . . × z) (u × . . . × w) , the relative uncertainty in q is the quadratic sum

U(q) |q| = U(x) x 2 + . . . + U(z) z 2 + U(u) u 2 + . . . + U(w) w 2
, q = 0. (5.6)
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The logic above, applied to the Joule-Thomson coefficient, defined in Eq. ( 4.1), results

in the following correlation for the uncertainty of differential temperature and pressure measurements

U(∆T ) = U 2 (∆T ) = U 2 (T in ) + U 2 (T out ), (5.7 
)

U(∆p) = U 2 (∆p) = U 2 (p in ) + U 2 (p out ), (5.8) 
where U(T ) is the uncertainty of the complete chain of temperature measurementsthe sum of the thermometer uncertainty, uncertainty of fitting the temperature to resistance specified for each thermometer, and the temperature acquisition module uncertainty. As described before, the measured (p in , T in ) pair is only used to drive the conditions at the capillary inlet and to keep them stable. Since it does not directly contribute to the measurements, it could be replaced with measured instability values for p in and T in . However, the inlet temperature and pressure are more stable throughout the measurements than their respective uncertainties. Therefore, the larger out of two values -the uncertainty is used as an input to the expanded relative standard uncertainty calculations, equal to The same formulation for the expanded relative standard uncertainty of the Joule-Thomson coefficient can also be obtained with differential analysis for uncertainty propagation:

U r (µ JT ) |µ JT | = k U 2 (T in ) + U 2 (T out ) (T in -T out ) 2 + U 2 (p in ) + U 2 (p out ) (p in -p out ) 2 , ( 5 
U r (µ JT ) |µ JT | = k |µ JT | ∂ µ JT ∂ (∆T ) 2 U 2 (∆T ) + ∂ µ JT ∂ (∆p) 2 U 2 (∆p) = k ∆p ∆T 1 ∆p 2 U 2 (∆T ) + - ∆T ∆p 2 2 U 2 (∆p) = k ¨B 1 ∆p 2 ∆T 2 1 ¨B 1 ∆p 2 U 2 (∆T ) + ¨B 1 ∆p 2 ¨¨B 1 ∆T 2 ¨¨B 1 ∆T 2 ¨B ∆p 2 ∆p 4 U 2 (∆p) = k U 2 (T in ) + U 2 (T out ) (T in -T out ) 2 + U 2 (p in ) + U 2 (p out ) (p in -p out ) 2 .
(5.10)

The analysis above, together with the hardware uncertainty, specified in Table 5.1, were used to choose the regions of low measurement uncertainty. Fig. 5.4 shows the results of calculated uncertainty values for actual measurements, marked with circles.
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The first major shortcoming of the analysis above is that it does not discuss the composition measurement uncertainty for the measurements with fluid mixtures. Since the composition is constant in the Joule-Thomson coefficient formulation and is constant during the measurements, it is not included in the relative standard uncertainty calculations. The second deficiency is that it does not consider the necessity for deriving the measured values to obtain the isenthalpic Joule-Thomson coefficient. These two issues are addressed in the Monte Carlo analysis.

Monte Carlo simulation for uncertainty propagation

The derived Joule-Thomson coefficient value µ JT = µ JT (p, T ) depends on a complete set of measurements, the number of points n = len(s) -measured on a single isenthalpic line -and the polynomial fitted to data. The number of measurement points n also has a non-negligible and variable impact on the final results. An attempt to quantify all these factors is presented below.

A single isenthalpic line for a given (p, T ) conditions is calculated with existing EOS. A number of n points overlay the isenthalpic line and represent the perfect measurements.

For each point i, i ∈ 〈1, n〉, a randomly distributed error, within the uncertainty range from Table 5.1, is added to temperature and pressure. Next, a polynomial is fitted to points with added random errors, and its derivative is calculated in all points n. The derivative values are the Joule-Thomson coefficients -they are compared against values obtained with the EOS. The calculations are repeated 300 × n times, so the distribution of errors is obtained for all points n. Finally, the standard deviation of ∆µ JT / µ EOS JT is computed, and the uncertainty is reported for each point separately for 95.45% confidence interval.

A schematic representation for the error calculations is illustrated in Fig. 5 Colors show the degree of the h = const. line, that is -its curvature. For deg = 1 and dark blue points, the isenthalpic line is linear in the p-T plane, whereas for deg = 6 and yellow points it is strongly curved, and in the complete ∆p = p in -p atm space it can only be accurately fitted with a polynomial of degree 6 (for the coefficient of determination R 2 > 0.999). Fig. 5.6a shows the average measurement error calculated with all n points, including the two points at the extremities. These extremities bring the highest error to the measurements, as discussed in Sec. 5.1.2 and Fig. 5.2. Fig. 5.6b calculates the average error excluding the extrema. The extremities are necessary to fit a polynomial accurately but the slope of the fit at these points can diverge significantly from the slope of the isenthalpic line. For this reason, dropping the extremities decreases the expected error of all µ JT measured on a single isenthalpic line.

Decreasing the number of measurement points always results in increasing error. However, even for many points, the mean error calculated for helium-4 does not decrease.

Even though the isenthalpic lines of helium can often be linearly approximated, the ∆T of the Joule-Thomson process is near-zero, which directly translates to high measurement error.

It can be concluded from Fig. 5.6b that a single isenthalpic line measured for neon, nitrogen, or argon with at least n = 5 -2 measurement points should yield errors lower MEASUREMENTS ANALYSIS AND RESULTS COMPARISON AGAINST EOS than 2% for most cases except a few strongly curved isenthalpic lines of neon. A more significant number of points measured at a single isenthalpic line for helium-4 is not expected to decrease the errors. If the extremities were to be kept in analysis, at least n = 7 points should be measured at a single line to decrease the mean error to the level of n = 5 -2 points at the same line without the extremities.

In analogy to conventional uncertainty analysis and the black error bars in Fig. 5.3, the gray bars represent the error values calculated with the Monte Carlo simulations, including the fitted polynomial derivation process. In contrast to the conventional analysis, it can be concluded that most of the measurements are taken with errors within the uncertainty range compared to the values calculated from the EOS. Another important conclusion, not available from the conventional uncertainty analysis, is that the order of a polynomial, its fitting, and derivation significantly influence final results and the uncertainties.

Polynomial selection to fit the data

The analysis from the previous Section and 

Results analysis for mixtures

The measurements of the isenthalpic Joule-Thomson coefficient in mixtures are performed at constant molar composition. Compared to the pure fluid measurements, preparing the gas mixture in a 50 liters volume is necessary before the measurements.

Precisely measured molar composition is fundamental to obtain the results with acceptably low uncertainty. The composition cannot be accurately calculated from the pressure measurements in the mixing process. Its precision does not decrease below ±2 mol -% according to the gas vendor. As shown in Table 5.1, the gas analyzer measures the molar composition of a binary mixture with known constituents with ±0.1 mol -% uncertainty.

Apart from the differences described above, the measurements for mixtures are performed by following the procedure detailed in Sec. 4.5. Numerical results from the Joule-Thomson coefficient measurements for helium-neon and helium-nitrogen are presented in Table E.2.

In analogy to the pure fluids, the Chebyshev polynomial from Eq. ( 5.1) is fitted to each isenthalpic line separately, and the Joule-Thomson coefficients are calculated from Eq. (5.3). The values, resulting from these calculations, are presented in Table E. As described before, the derivation process necessary to calculate µ JT is expected to bring additional errors to the analysis. However, the Joule-Thomson coefficients for both mixtures are measured at helium-4 concentrations below 50 mol-%. As a consequence, the resulting temperature change often approaches the one observed for pure nitrogen and argon. Besides, the curvature of most of the isenthalpic lines, measured for mixtures in this work, is not excessive. These two conditions should result in limited error caused by the derivation of a fit. However, it is visible in Figures 5.8 and 5.9 that the deviations between the measurements and the EOS are more significant compared to the pure High measurement error is visible for pure helium, where little temperature change is observed, and for pure neon with few experimental points taken, where the isenthalpic line curvature is the most pronounced. It is visible that at least n = 5 -2 = 3 points are necessary to approach the minimal measurement error, with better results obtained for n = 6 -2 = 4 points on a single line. Above this number, the derivation process does not influence the results in given conditions.

The impact of the composition measurement uncertainty on the Joule-Thomson coefficient is illustrated with the red lines and is independent of the number of points. This influence on the total error is marginal except for very low helium concentration values, where a minor change in the slope of a flat isenthalpic line results in a significant relative error. The helium concentration for measurements taken with [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne ranges from 20 to 50 mol -%, the mean error brought by the composition measurement uncertainty within these limits is equal to 0.3% in µ JT , the maximal error is equal to 1.5%.

Most of the isenthalpic lines in Fig. 5.8 are constructed using four to six measurement points. The mean, relative errors in the Joule-Thomson coefficient for the mixture with 20 to 50 mol -% of helium, calculated with the Monte Carlo simulations, are smaller than 5%. Therefore, neither the Eq. (5.9) nor the presented analysis explain the encountered differences between the EOS and the measurements.

Corrections for heat losses and kinetic energy

Too little information is available to calculate the thermal losses to the capillary assembly and thermometers in particular. An attempt to estimate the heat losses is made based on the minimization of µ JT deviations. not provide coherent results for all measurements, yielding higher deviations for part of corrected results.

The correction factors from Eq. (4.9) are quantified for the experimental conditions from this work and are presented in Table 5. On the one hand, the analysis shows that the heat losses and the kinetic energy change have a non-negligible impact on final results. On the other hand, the applied corrections do not consistently decrease the observed deviations. 

Conclusions from the measurements

The isenthalpic Joule-Thomson coefficient measurements in pure fluids (nitrogen and argon) are within the expected uncertainty from the accurate equations of state. The obtained precision allows for validating the experimental setup. The measurements characterized by small temperature change (pure helium-4) are burdened with high uncertainties, as shown with the Monte Carlo simulations. For helium, the encountered deviations from the EOS are even higher than expected as the thermal losses may strongly influence the isenthalpic process characterized by very low-temperature change.

The µ JT measurements for mixtures are characterized by higher deviations from the EOS compared to the pure fluids, excluding helium-4. An attempt was made to use the obtained experimental data and refit the equation of state for the mixture of helium-4 and neon. The minimization algorithm was not able to decrease the deviations between the EOS and the µ JT data, keeping the equation constrained by the phase envelope.

Even after releasing the phase envelope and fitting only the measured Joule-Thomson coefficients, the optimization did not result in significantly lower deviations than already presented. This minimization attempt is considered a valid answer to whether it is possible to further optimize the equation coefficients with given values of the Joule-Thomson coefficients. It is not -the deviations between the EOS for 4 He -Ne and µ JT reach 9%.

The analysis proposed by Smith 137 does not provide significant insights into encountered deviations between the measurements and EOS. As shortly discussed in Sec. 5.3.2, Smith's corrections only sometimes minimize the deviations of results with respect to EOS. As the analysis is assessed to be qualitatively correct, it yields incoherent corrections for the complete set of pure fluid and mixture measurements.

Neither of the uncertainty discussions thoroughly explains the deviations between the measurements and the equations of state. An additional source of errors can be the inlet thermometer placement, which regulates the isenthalpic conditions. Despite removing the (p in , T in ) pair from the measurement analysis, the inlet thermometer reading is used to keep the inlet temperature constant. Assuming a constant heat in-leak to the capillary assembly, the heat transfer from the fluid to the inlet thermometer varies with the mass flow rate. Therefore, the heat losses impacting the temperature measurements may cause the supposedly constant inlet temperature to change throughout a single isenthalpic line measurement, becoming another source of error.

Compared to the previously measured Joule-Thomson coefficients, the errors encountered in this work are lower, especially when studying other measurements in cryogenic T / K conditions. Fig. 5.12 presents the results obtained in this work, compared with the measurements from the literature. Even though not all the measurements from this work fit within 5% relative error, the results are satisfying and show that the Joule-Thomson coefficient can approach the precision of the specific heat measurements.
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CHAPTER 5

CONCLUSIONS

The presented work has been motivated by the development of new cryogenic facilities and improved cooling production efficiency at intermediate temperatures. The demand for accurate equations of state for mixtures has been identified. As a result, this work evolved from thermodynamic cycle-oriented to thermophysical property-oriented.

The state-of-the-art empirical formulation for the Helmholtz energy has been used to develop the equations of state for the binary mixtures of cryogenic fluids: helium-neon, helium-argon, neon-argon, and helium-nitrogen. For each equation, the errors in singlephase are evaluated, and the phase envelopes are constructed in the p -Tx space.

The equation of state for helium-nitrogen allows to accurately predict the fluid behavior at low-pressures of the phase envelope -its primary region of interest. However, the equation should be refined, so its reliability and accuracy improve. It fails more often to provide a single-phase property prediction compared to, e.g., the equation for heliumneon.

Extensive analysis of the errors at phase envelopes of the developed equations is concluded with a new metric implementation. In contrast to the traditional pressure-based metric, the new orthogonal metric defines the deviations at phase envelopes for the entire data set. The orthogonal distance definition has been presented and is a valuable metric for validating an equation of state at phase envelopes.

An attempt was made to employ the defined metric to develop the equation of state for the [START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -H 2 mixture. The stochastic minimization algorithms may minimize the sum of orthogonal distances between the isotherms and the experimental points, but no guess value used by these algorithms negatively influences the convergence. All attempts showed that it is difficult for the algorithm to converge when the reducing parameters are fitted together with all the departure function parameters. More precisely, the stochastic minimization is not successful due to the sensitivity of the phase equilibria tracing algorithm to the random guess values of the departure function parameters.

The algorithm minimizing the sum of orthogonal distances was demonstrated to work with a deterministic approach and good starting values for all the parameters. However, its successful operation requires the constraints on the thermodynamic properties to be implemented. The automatic optimization and successful convergence shall be the goal of future studies for which the orthogonal distance indicates the path.

The Joule-Thomson coefficient measurement setup has been designed, constructed, and used to measure the coefficients for pure fluids and mixtures. The results obtained with the indirect measurement method, where the integral of the Joule-Thomson coefficient has been measured, resulted in challenging post-processing analysis. The measurements with pure nitrogen, argon, and helium validated the experiment and the methodology.

The Joule-Thomson coefficients for helium-neon and helium-nitrogen were acquired for few different composition values in the regions of little or no experimental data. The measurements have been concluded with extensive uncertainty discussion and Monte Carlo analysis. The measured coefficients have been compared with the equations of state for mixtures developed within this work and are in good agreement with them.

The Joule-Thomson coefficient definition in terms of the Helmholtz energy contains almost all the first and second derivatives of the residual contribution, except for the first derivative w.r.t. reduced temperature, α r τ . Therefore, µ JT is an attractive property for the equation of state validation. The measurements reach relative errors in the order of ∆µ JT / µ JT ≤ 2% for pure fluids in advantageous conditions (nitrogen and argon for significant temperature difference in the isenthalpic process). Even with higher relative errors observed for mixtures (9%), a comparison with other existing cryogenic measurements shows that the results presented in this work are competitive and often more accurate. Performed measurements of the isenthalpic Joule-Thomson coefficient confirm the performance of the equations of state at cryogenic temperatures. The measurements should be repeated for other mixtures in different conditions, so the pure fluid errors demonstrated in this work are observed for mixtures. Additional important question should be raised on whether the modern functional form of the equation of state is capable of accurately describing all the state points for a mixture characterized by a high critical temperature ratio.

The accuracy of predictions for enthalpy, entropy, isobaric, and isochoric specific heat remains unknown for all presented mixtures as no measurements for these properties exist. Additionally, the question about the high-pressure phase envelope behavior of helium-neon is unanswered as the only two sources of measurements for the equilibria properties show some inconsistencies and are incomplete. Similarly, the potentially existing gas-gas equilibrium for neon-argon is not modeled because of lacking data.

With very few measurements reported for the density of neon-argon, further studies are needed to check whether the EOS provides accurate predictions. x He /x Ne = 0.50/0.50 H
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# r e d u c i n g p a r a m e t e r s from t h i s work ( " Helium " , " Neon " ) : ( 0 . 7 9 3 , 0 . 7 2 8 , 1 . 1 4 2 , 0 . 7 5 0 , 1 . 0 ) , ( " Helium " , " Argon " ) :

( 1 . 0 3 1 , 1 . 1 1 3 , 1 . 0 4 8 , 0 . 8 6 2 , 1 . 0 ) , ( " Neon " , " Argon " ) :

( 1 . 0 3 3 , 0 . 9 6 7 , 0 . 9 1 9 , 1 . 0 3 5 , 1 . 0 ) , ( " Helium " , " N i t r o g e n " ) : ( 1 . 0 2 8 , 1 . 2 2 9 , 1 . 0 3 6 , 0 . 
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  addition to the single-phase uncertainty discussion, a new metric is proposed to evaluate the uncertainties in phase equilibria calculations. Its advantages and shortcomings over the classical pressure-based metric are presented.The equations of state are validated at cryogenic temperatures in the single-phase region with measurements of the Joule-Thomson coefficient. Indirect measurements are first acquired for pure fluids, allowing for the experiment validation and then for mixtures, providing new results to the study. The expanded relative standard uncertainty is presented and discussed along with the Monte Carlo analysis for the combined uncertainty. The impact of the composition uncertainty on the Joule-Thomson coefficient is quantified for mixtures using the Monte Carlo simulations.The presented equations of state are in good agreement with the obtained Joule-Thomson coefficient values. A short discussion on perspectives and further steps concludes this work and aims at a more accurate mixture property description thanks to new, more accurate measurements and modern minimization algorithms used to develop the equations.ABSTRACT xxixRÉSUMÉCe travail est motivé par le développement de nouvelles installations cryogéniques de grande capacité et vise à améliorer leur efficacité thermique en tirant parti des propriétés des mélanges de gaz. Pour répondre à ces besoins, une connaissance précise des propriétés thermodynamiques de ces mélanges est nécessaire. Contrairement aux fluides purs, cette connaissance reste lacunaire aujourd'hui.Les résultats de la présente thèse permettent de déterminer avec précision l'équation d'état de mélanges binaires à base de gaz nobles: hélium-4, néon, argon et azote. Cette équation d'état permet de calculer les propriétés thermodynamiques de ces mélanges de façon fiable et précise. La première partie de ce travail est dédiée à la mise au point d'équations d'état (EOS) empiriques et précises. Une revue soigneuse de l'état de l'art montre que la formulation explicite des EOS en énergie de Helmholtz est la plus prometteuse pour atteindre les niveaux de précision recherchés, à la fois dans les régions monophasiques et aux enveloppes de phase où les changements d'état surviennent. La méthode de détermination de cette formulation est décrite de façon extensive dans les Chapitres 2 et 3. Le modèle résultant de cette étude est ajusté aux données expérimentales afin de déterminer un jeu de coefficients pour chacun des mélanges binaires étudiés dans cette thèse: 4 He -Ne, 4 He -Ar, Ne -Ar ainsi que 4 He -N 2 . Les résultats pour ces quatres premiers mélanges ont fait l'objet d'une publication dans le Journal of Physical and Chemical Reference Data et on été intégré dans la base de données REFPROP, CoolProp et TREND. La deuxième partie de ce document (Chapitres 4 et 5) décrit le travail expérimental de validation des EOS dans le domaine cryogénique (50-120 K) où les mesures manquent dans la littérature. Le banc expérimental de mesure du coefficient de Joule-Thomson aux températures cryogéniques est présenté, la méthodologie est discutée et les résultats obtenus sont analysés. Un effort important est consacré à l'amélioration de la précision des mesures et à la discussion des erreurs rencontrées. RESUME xxxi État de l'art des équations d'état pour les mélanges Les équations d'état peuvent être utilisées pour calculer les propriétés des fluides dans les régions monophasiques et aux envelopes de phases. Elles se traduisent graphiquement dans les diagrammes de phase où sont décrites les régions gazeuses, liquides, supercritiques et solides. Pour les quatre mélanges binaires discutés dans ce travail, les diagrammes de phases sont tracés dans la Fig. 2.1. Les enveloppes de phase pour les mélanges fluides diffèrent considérablement selon les constituants. D'intérêt particulier dans ce travail, l'hélium-4 forme les équilibres de phases de classe III comportant un équilibre vapeur-liquide (VLE) et un équilibre gaz-gaz ouvert (GGE). L'équilibre gaz-gaz implique une séparation de phase au-dessus de la température critique du composant le plus lourd. Les isothermes dans l'équilibre gaz-gaz gardent une pente positive et ne sont fermées par aucune ligne critique. Un exemple d'enveloppe de phase avec un équilibre vapeur-liquide supercritique et l'équilibre gaz-gaz est présenté Fig. 2.2. Dans notre étude, les équilibres vapeur-liquide dans les mélanges sont toujours supercritiques, où l'hélium est au-dessus de sa température critique, et la région diphasique commence au point d'ébullition du deuxième composant.Diverses équations d'état sont discutées à partir des modèles du gaz parfait et de Van der Waals, en terminant par la forme explicite en énergie de Helmholtz moderne des équations d'état empiriques multi-paramètres. Chaque équation est discutée à l'aune de nos besoins: une grande précision à la fois dans les domaines monophasiques mais également capable de décrire proprement les enveloppes de phase. À ce titre, l'équation d'état explicite en énergie de Helmholtz semble la plus prometteuse et est appliquée à nos mélanges dans les chapitres suivants. Détermination des équations d'état des mélanges L'énergie de Helmholtz pour les mélanges, α (δ, τ, x), est définie dans l'Eq. (3.1). Elle est présentée sous sa forme réduite fonction des quantités adimensionnelles -densité δ et température réduites τ. Les contributions parfaites α o (ρ, T, x) et résiduelle α r (δ, τ, x) dans l'équation constituent l'énergie de Helmholtz pour les mélanges. Ces deux quantités s'exprime comme une combinaison des énergies de Helmholtz pour les fluides purs composant le mélange α o oi (δ, τ) et α r oi (δ, τ). Outre ces contributions, l'équation d'état pour les mélanges comprend également une fonction de départ α r i j (δ, τ) -décrivant la différence entre le gaz parfait et les propriétés réelles du gaz. Cette fonction permet de décrire précisément des propriétés du fluide dans tout l'espace p -Tx. L'ensemble des relations entre ces différentes fonctions est décrit avec les équations (3.1) à (3.8). xxxii Les propriétés thermodynamiques du mélange sont alors déterminées en fonction de l'énergie de Helmholtz et de ses dérivées. Par exemple, le coefficient de Joule Thomson étudié dans ce travail est calculé via l'Eq. (3.14). D'autres propriétés souvent utilisées sont présentées dans le Chapitre 3 et plus généralement dans le Tableau B.1. La méthode d'optimisation utilisée tire avantage d'une régression non linéaire de Lavenberg-Marquardt (LMA). L'optimisation non linéaire est actuellement la méthode la plus efficace utilisée pour développer les équations d'état. Par rapport à la régression linéaire des moindres carrés parfois utilisée, elle ne nécessite pas de linéarisation des données à l'aide d'équations d'état préliminaires. Comme de nombreux algorithmes d'ajustement, le LMA ne trouve que le minimum local de la somme des moindres carrés (SSQ). Afin de trouver le minimum global ou de l'approcher suffisamment pour que l'EOS reproduise les données expérimentales avec une erreur satisfaisante, cette somme est modifiée par des constantes supplémentaires, des coefficients aléatoires et des pondérations pendant la procédure d'optimisation. L'algorithme utilisé pour minimiser le SSQ est un programme écrit en Fortran, spécifiquement développé au NIST pour l'application aux équations d'état. Il utilise la forme fonctionnelle de l'énergie de Helmholtz défini dans l'Eq. (3.1). C'est un projet en constante évolution, initié depuis plus de 20 ans et dirigé par Eric W. Lemmon (NIST). Sa partie centrale a été écrite pour la première fois par Robert D. McCarty et Vincent D. Arp pour développer l'équation d'état de l'hélium-4. L'algorithme a énormément évolué depuis et aujourd'hui, il permet d'ajuster les équations d'états aux données expérimentales pour des mélanges complexes. Le point de départ important pour la description des propriétés d'un mélange fluide est constitué par les équations d'état pour les fluides purs. Les propriétés de l'hélium-4, du néon, de l'argon et de l'azote sont bien établies et disponibles sous la forme des équations explicites d'énergie de Helmholtz. Les paramètres variables de l'équation sont les paramètres réducteurs, décrits dans l'Eq. (3.3) et Table 3.1, et les paramètres de la fonction de départ, décrits dans l'Eq. (3.8). Selon le nombre de termes gaussiens utilisés dans les équations, le nombre total de paramètres varie de 42 à 49 dans ce travail. Les résultats sont discutés pour chaque mélange séparément et les paramètres spécifiques pour tous les fluides présentés dans le Tableau 3.3. Les coefficients de la fonction de départ sont présentés dans les Tableaux 3.4 à 3.7. L'incertitude des équations en régime monophasique est discutée séparément pour chaque équation dans les Sec. 3.4.1 à 3.4.4. L'incertitude à la limite de phase est discutée pour les quatre mélanges dans Sec. 3.5, où l'erreur orthogonale est introduite. L'erreur orthogonale est une nouvelle métrique déterminée par la plus courte distance entre le point de données expérimen-RESUME xxxiii tales et l'isotherme respective évaluée avec l'EOS. Elle permet de pallier une limitation de la métrique standard qui diverge lorsque la pente de l'enveloppe de phase est verticale. Sa définition mathématique est donnée dans l'Eq. (3.28). L'erreur orthogonale absolue pour les équilibres vapeur-liquide et gaz-gaz est présentée Fig. 3.12. Les erreurs absolues calculées en convertissant l'erreur orthogonale sont illustrées Fig. 3.14. Toutes les équations d'état présentées montrent des performances satisfaisantes en monophasique et à l'enveloppe de phase pour des pressions allant jusqu'à 10 -20 MPa, ce qui couvre la plupart des applications d'ingénierie. Pour des pressions plus élevées, si les données expérimentales sont disponibles, les performances des équations diminuent. Cependant, l'erreur reste dans la marge de 5% pour les données ρpT et dans la marge de 10% pour la vitesse des données du son. Validation expérimentale des équations d'état dans le domaine cryogénique Un nombre limité de données expérimentales peut être trouvé dans la littérature pour les mélanges d'hélium-4 à des températures cryogéniques (aucune donnée dans la région monophasique pour 50 -230 K), cette partie expérimentale de mon travail vise à compléter ces données entre 50 et 100 K et des pressions jusque 10 MPa par des mesures du coefficient de Joule Thomson (JT) défini par l'Eq. (4.1). L'effet Joule-Thomson est une variation de température créée lors d'une détente isenthalpique. L'équation d'état moderne, explicite en énergie de Helmholtz développée au cours de cette thèse est capable de décrire avec précision les coefficients JT comme discuté dans le Chapitre 4.2. Par conséquent, s'il est mesuré avec précision, le coefficient JT doit permettre de démontrer la validité de notre équation d'état. La dériviation de ce coefficient à partie de l'équation d'état (Eq. (3.14)) comprend presque toutes les dérivées de l'énergie résiduelle de Helmholtz, à l'exception de α r τ (δ, τ, x) = (∂ α r /∂ τ) δ,x ce qui en fait, avec la vitesse du son, une excellente propriété pour vérifier le comportement de l'équation. Cette seconde partie de la thèse a en conséquence concerné la conception, la fabrication et l'exploitation d'un banc de mesure du coefficient JT des mélanges étudiés via. La chute de pression est assurée par un capillaire de petit diamètre. Les valeurs de pression et de température sont mesurées à l'entrée et à la sortie du capillaire. La Sec. 4.4.1 présente les calculs guidant le choix du diamètre du capillaire: perte de charge, transformation isenthalpique et effets non isenthalpiques provoqués par le changement d'énergie cinétique. Le banc expérimental ainsi conçu et fabriqué est décrit in extenso au Chapitre 4. xxxiv Les paires p -T mesurées sont les valeurs intégrales du coefficient de Joule-Thomson. La plupart des mesures de la littérature optent pour une approximation directe du coefficient en n'imposant que de petites variations de pression. Nous avons choisi une voie différente, le coefficient Joule-Thomson est mesuré indirectement par la dérivée des courbes T(P) obtenues par ajustement polynomial des mesures. Une représentation schématique de cette approche est présentée dans la Fig. 4.5b. Le schéma de principe du banc est présenté sur la Fig. 4.12, le diagramme complet de tuyauterie et d'instrumentation (P&ID) est illustré sur la Fig. D.1. Le cheminement du fluide débute par un volume de 50 litres, où un mélange est stocké à haute pression, connecté à la vanne de réduction de pression puis au volume tampon de 1 gallon, qui lisse les corrections de pression manuelles. À l'intérieur du cryostat, un échangeur de chaleur en cuivre est brasé sur la tête froide du cryoréfrigérateur Cryomech AL300 capable de refroidir le débit fluide de 300 K à environ 40 K à l'entrée du capillaire. Deux capteurs de température calibrés Lake Shore Cernox sont placés en amont et en aval du capillaire. Le câblage des sondes de température est thermalisé au niveau de la tête froide. Les mesures de pression en amont et en aval sont effectuées à l'aide des transducteurs de pression Mensor CPT 6100. Deux vannes à réglage fin sont installées en parallèle afin d'offrir une plage plus large de régulation de la pression en aval. Enfin, un analyseur de gaz est placé à la sortie du système permet de mesurer la composition du mélange à pression ambiante au cours du temps. Une liste complète des équipements utilisés dans l'expérience, divisée en catégories fonctionnelles, est présentée dans le Tableau D.1. Le banc expérimental et la méthode de mesure sont validés par des mesures de fluides purs, azote, argon et Hélium-4. Dans la Fig. 4.20, les points expérimentaux sont tracés dans l'espace p -T avec des lignes isenthalpiques respectives calculées à partir des équations d'état des fluides purs. Les résultats des mesures effectuées sont les couples pression-température pour les fluides purs et les couples pression-température à composition molaire constante pour les mélanges. Les paires p -T mesurées sur une seule ligne isenthalpique pour la constante (p in , T in ) forment un ensemble de mesures. Le coefficient de Joule-Thomson peut être représenté géométriquement comme la pente d'une ligne isenthalpique dans l'espace bidimensionnel de pression et de température. Un polynôme de Chebyshev est ajusté aux paires p -T mesurées, et la première dérivée est calculée à chaque pression mesurée et est rapportée comme le coefficient de Joule-Thomson isenthalpique, µ JT . RESUME xxxv Résultats et incertitudes des mesures du coefficient de Joule-Thomson La détermination indirecte des coefficients JT par la dérivée de la courbe ajustée T (p) exige quelques précautions. La nécessité d'ajuster un polynôme aux données pose un problème de résultats divergents aux extrémités de l'ensemble de données, ce qui est illustré sur la Fig. 5.2. Même les mesures idéales avec zéro erreur dans p et T peuvent entraîner une déviation des résultats uniquement parce que l'ajustement à la ligne ne représente pas avec précision la ligne insenthalpique. Ce problème est résolu en ajustant les extrémités des lignes isenthalpiques mesurées mais en les excluant des calculs de µ JT . La Fig. 5.3 montre les paires p -T mesurées pour les fluides purs, les coefficients Joule-Thomson résultants et les écarts de mesure par rapport à EOS avec leurs barres d'incertitude. Deux descriptions de l'incertitude sont présentées: l'analyse conventionnelle et l'analyse Monte Carlo. Le coefficient de Joule-Thomson dérivé µ JT = µ JT (p, T ) dépend de l'ensemble complet de mesures, du nombre de points mesuré sur une seule ligne isenthalpique, et du polynôme ajusté aux données. Une tentative de quantification de ces facteurs est présentée dans la discussion sur l'incertitude de Monte Carlo dans la Sec. 5.2.2. La Fig. 5.6b montre qu'une seule ligne isenthalpique mesurée pour le néon, l'azote ou l'argon avec au moins cinq points (y compris les extrémités) devrait donner des erreurs inférieures à 2% pour la plupart des cas, à l'exception de quelques lignes isenthalpiques de néon fortement courbéses. Un nombre plus important de points mesurés sur une seule ligne isenthalpique pour l'hélium-4 ne devrait pas réduire les erreurs. Si les extrémités sont conservées dans l'analyse, au moins sept points doivent être mesurés sur une seule ligne pour réduire l'erreur moyenne au niveau de cinq points sur la même ligne sans les extrémités. Une étude complète des incertitudes permet de valider les mesures et le banc expérimental. Fort de cette validation, la seconde partie du travail expérimental a été dédié à la mesure du coefficient Joule-Thomson isenthalpique des mélanges binaires. Par rapport aux mesures de fluides purs, la préparation du mélange gazeux a été nécessaire avant les mesures. La composition du mélange est contrôlée par l'analyseur de gaz et aucune dérive de composition n'a été observée durant les mesures. Par un procédé identique à celui mis en place pour les fluides purs, le polynôme de Chebyshev de l'Eq. (5.1) est ajusté à chaque ligne isenthalpique séparément, et les coefficients de Joule-Thomson sont calculés à partir de l'Eq. (5.3). La Fig. 5.8 montre les paires p-T mesurées pour le mélange 4 He -Ne avec une composition molaire variable, les coefficients de Joule-Thomson résultants et l'écart relatif par rapport à l'EOS. Encore xxxvi une fois, l'analyse d'incertitude conventionnelle est comparée aux simulations de Monte Carlo. La Fig. 5.9 montre des résultats similaires obtenus pour le mélange 4 He -N 2 à deux compositions molaires différentes. Dans la Fig. 5.

  different forms of the equations of state. The discussion starts with an overview of the phase diagrams and continues towards the mathematical forms of the equations. It focuses on the equations of state for fluid mixtures, their limitations, and their advantages.

2. 1 . 1 Fig. 2 . 1 .

 1121 Fig. 2.1. Phase diagrams of fluids used in this work, with isopycnic (ρ = const.) lines plotted in blue and critical points marked with black stars.

Fig. 2 . 2 .

 22 Fig. 2.2. Class III phase envelope with the vapor-liquid equilibrium (VLE) -gray area in (b), and existing gas-gas equilibrium (GGE) -yellow area in (b). x is the mole fraction of a lighter component. The star represents the critical point and the dashed line, the critical line.
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 1 b is the volume occupied by a mole of particles in m 3 mol -1 . In other words, the term b is the excluded volume per mole or the co-volume. In literature, it is sometimes referred to as the repulsive term. The equation can be derived using statistical thermodynamics, 17 where the values of a and b are estimated with the intermolecular potential constants and the molecular diameters. The equation has a clear physical significance, and it is the result for which Johannes Diderik van der Waals received the Noble price in 1910. Van der Waals proposed extending his equation to mixtures. 18 It can be done by substituting the pure fluid a and b terms with DIFFERENT FORMS OF THE EQUATIONS OF STATE

  .13) where A(T ), B(T ), C(T ), ... are the virial coefficients. The first term, A(T ) = 1, states that all fluids behave like ideal gas when density is small. The second virial coefficient, B(T ), describes the pair-wise interactions. The third, C(T ), depends on interactions between triplets of molecules. The j th virial coefficient can be calculated in terms of the interaction of j molecules in a volume V . The virial coefficients are only temperature-10CHAPTER 2 dependent for pure components. For mixtures, they are temperature and compositiondependent.

  size molecules and large polymeric fluid mixtures. Depending on the equation, the model can predict properties of non-associating, near-spherical fluids (methane); nonspherical fluids (polymers); and associating, non-spherical fluids (alkanols). Even though the consistency and the accuracy of results obtained with the molecular-based equations are sometimes questionable, they are often the only source of information on the properties of complex mixtures encountered in the petrochemical industry. 29 A commonly used example of the molecular-based equation is the Statistical Associating Fluid Theory (SAFT), 30 which considers the fluid composed of chain molecules. The SAFT equation if often expressed in terms of the Helmholtz energy of ideal gas with applied perturbation terms

  )where A 0 , B 0 , C 0 , a, b, c, α, and γ are the parameters of the equation. According to the authors, the exponential term allows for improved calculations in the critical region, better data reproduction at high densities, and improved equilibrium calculations. The12CHAPTER 2 BWR equation performs much better than the cubic equations of state and was further modified and improved. Jacobsen and Stewart proposed the most successful modification.34 Their equation, often called the mBWR equation, is still used for a large number of applications, e.g., investigation of particle fragmentation, entropy-scaling in refrigerants, or cryogenic storage calculations. The mBWR equation for nitrogen has been the reference equation for almost 30 years. It defines pressure as

  .19) where δ = ρ/ρ c and τ = T c /T are the density and the reciprocal temperature reduced with the critical properties, ρ c and T c . They define the ideal gas part as DIFFERENT FORMS OF THE EQUATIONS OF STATE

A

  large part of the work presented in this chapter has been published in the Journal of Physical and Chemical Reference Data under the title: Equations of state for the thermodynamic properties of binary mixtures for helium-4, neon, and argon. 40 3.1 Modern form of the Helmholtz energy equation of state Following the functional forms of the previously used equations of state, presented in Chapter 2, the modern form of the equation, explicit in Helmholtz energy, is discussed.

  and η oi,k are the fitted parameters. The pure fluid equations of state, which use only the polynomial and exponential terms, can accurately reproduce the fluid behavior except for the critical region. The exponential terms improve the equation behavior in the critical region compared to the purely polynomial formulation. However, the Gaussian-bell shaped terms allow for even more accurate reproduction of this behavior close to the critical point. At the same time, they disappear when moving away from the critical point itself.

  and the Gaussian bell-shaped DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES terms when all fitted parameters are non-zero. This functional term allows to accurately describe the thermal and caloric mixture properties within the uncertainty of measured data and ensures reasonable behavior of the model in regions with poor data coverage.43 

Fig. 3 .

 3 Fig. 3.1. p -T coverage of available ρpT data with composition dependent color scale. x 1 is the molar concentration of a lighter component

  to the lack of high-pressure data for[START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne and Ne -Ar.The quality of the equations of state in single-phase is determined by comparing the calculated deviations of data points and predictions obtained with these equations. Deviations in density are plotted as a function of pressure and in speed of sound -as a function of temperature. The phase envelopes for VLE and GGE calculations are constructed with the tracing algorithm for equilibria calculations of binary mixtures.45 The algorithm solves the differential equations, which become infinitely stiff in the close vicinity of the critical line. This property should be interpreted as the critical line prediction, and it is visible in all 3D and 2D figures as a white gap between the dew and bubble lines. The right plot in each equilibria figure is the projection of the phase envelope from the left figure on the two-dimensional log(p) -x plane.

3 . 2 .

 32 Fig. 3.3a. The speed of sound deviations reach 6%, as presented in Fig. 3.3b. As shown in Fig. 3.1, the pressure range of available data for this binary pair is narrower for ρpT , compared to other mixtures discussed in this work. A T -s diagram is shown in Fig. 3.4, as an exemplary plot of a thermodynamic property, calculated with the EOS. More plots for thermodynamic properties are available in Appendix B.
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 334 Fig. 3.2. Vapor-liquid equilibrium (VLE) of helium-neon

  Fig. 3.5. Vapor-liquid (VLE) and gas-gas equilibria (GGE) of helium-argon

Fig. 3 .

 3 Fig. 3.7 presents the constructed phase envelope for the mixture and the projected isotherms. Figures 3.8a and 3.8b show deviations of the single-phase data used for the EOS development, ρpT and the speed of sound measurements respectively. The density measurements reach 55 MPa in cryogenic conditions and 1 GPa at ambient tem-
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 38 Fig. 3.7. Vapor-liquid equilibrium (VLE) of neon-argon

  Fig. 3.10. Relative deviations of the 4 He -N 2 equation from the single-phase data

  .26) After comparing the impact of the reducing scales, p r , on the error value, the logarithmic reducing scale has been selected among the linear and density-temperature reducing scale (p r = p (ρ r , T r )),p r,x = exp x 1 ln p c,1 + x 2 ln p c,2 p r, y = exp y 1 ln p c,1 + y 2 ln p c,2 ,(3.27)where p c,i is the critical pressure of component i. p r,x reduces the pressure for the bubble points, and p r,y reduces the pressure for the dew points. The error itself is defined as a sum of distances between the data point x data and the closest point from the respective isotherm in the earlier defined px plane and pdata are the molar composition and reduced pressure for the experimental data point. x min calc and pmin calc,x are the molar composition and the reduced pressure evaluated with the EOS at the same temperature as the data point. This error definition DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES ln (p) 11. Schematic representation of the orthogonal error calculations for the phase envelopes. Circles are the VLE experimental data, star is the critical point, and triangle is the maxcondentherm. Green line is an isotherm evaluated with the EOS plotted in the two-dimensional space of reduced pressure p = p/p r versus mole fraction in liquid phase x and vapor phase y.
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 33 Fig.3.12 presents results for the described error calculations. The orthogonal error is plotted for four mixtures with a color-coded absolute value of error in equilibria calculations. The same values are plotted as a function of pressure in Fig.3.13. The histograms show the distribution of error values in the pressure range (x-axis) and the orthogonal error range (y-axis).

Fig. 3 .

 3 14b shows the molar composition error in equilibria calculations, obtained with orthogonal metrics and recalculated to absolute values. The absolute error in composition increases symmetrically and reaches a maximum at equimolar composition. The error is expected to decrease to negative infinity for both endpoints, where the mixture equation becomes the pure fluid equation with no composition dependence. The pressure-dependent performance validation, visible

Fig. 3 .

 3 Fig. 3.15. VLE isenthalps of 4 He -Ne calculated with empirical equations of state from this work, 40 quantum-corrected cubic equation, 22 and quantum-corrected SAFT equations. 32 Circles mark the experimental data.

  sidered a criterion for a single-objective optimization. It may contribute to finding a global minimum of the multiparameter space and obtaining the desired performance of an equation in the phase equilibria calculations. Two weights, w x y and w p , are applied to the metric, defined in Eq. (3.28), forming the dew-and bubble-line contributions to the objective function:    err vle x = w x y x d -x min c 2 + w p ln (p d ) -ln pmin c,x 2 err vle y = w x y y d -y min c 2 + w p ln (p d ) -ln pmin c

  Fig. 4.1. Joule-Thomson coefficient and compressibility factor for pure helium-4 and pure neon, calculated with CoolProp. 2
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 442 Fig. 4.1 shows the Joule-Thomson coefficient and the compressibility factor for pure

Fig. 4 1 T 2 Fig. 4 . 3 .

 41243 Fig. 4.3. One of the versions of the radial flow apparatus used by 

Fig. 4 . 4 .

 44 Fig. 4.4. Relative deviation of existing experimental data from EOS. Grey rectangle is the ±5% band. Colors vary for authors: green -Roebuck et al., red -Smith, blue -Potter et al., orange -Bier et al. A single outlier for nitrogen from Roebuck and Osterberg with deviation above 10 4 % is not shown. A complete reference list for measurements and EOS for each fluid is available in Table 4.1.

  Fig. 4.5. Schematic representation of two methodologies for the JT coefficient measurement with ∆p (a) << ∆p (b) , black dots representing the measurement points, and red dot representing the point at which the coefficient is to be defined.

Fig. 4 . 6 .Fig. 4 . 7 .

 4647 Fig. 4.6. Schematically represented cycles for the Joule-Thomson coefficient measurements with flow restriction, two pressure sensors, and two temperature sensors.

  pressure drop is defined by the Darcy-Weisbach equation147 ISENTHALPIC JOULE-THOMSON COEFFICIENT MEASUREMENTS the fluid density in kg m -3 averaged over the unitary length l, u is the mean flow velocity in m s -1 , f is the Darcy friction factor, D h is the pipe hydraulic diameter in m. For a circular pipe D h = D, the Darcy friction factor is defined by the Colebrook-D h is the relative pipe roughness and Re is the Reynolds number. Since the Colebrook-White equation defines the friction factor implicitly, it has to be solved iteratively. A fast and well suited algorithm for this type of continuous problem is the fixed-point iteration x n+1 = f (x n ), n = 0, 1, 2, ....149 

  .13) However, the actual outlet temperature can be influenced by a transformation of the kinetic energy of translation to the kinetic energy of vibration, changing the temperature of the fluid. If a fluid undergoes a transformation, no heat is exchanged to or from the surroundings, no work is done on or by the surroundings, and the potential energy change is negligible (d E p = 0), the first law of thermodynamics simplifies to

Fig. 4 . 8 .

 48 Fig. 4.8. Inversion curves for the 4 He -Ne mixture with helium mole fraction, x He as a parameter. The green rectangle marks the target pressure and temperature ranges for the µ JT measurements. Thick inversion curves mark the helium concentration range, x He = 〈0.2, 0.5〉, for which the Joule-Thomson coefficient is measured in this work.

Fig. 4 .

 4 Fig. 4.10. Downstream pressure, p out for 0.4 × 1 mm, 6 m long capillary calculated as a function of the mass flow rate, parametrized with inlet pressures ranging from 4 MPa to 10 MPa, plotted for four mixture compositions x He (columns) and two inlet temperatures T in (rows).

Fig. 4 .

 4 Fig. 4.11. Temperature change as a function of pressure, calculated for two inlet temperature values and four molar compositions with inlet pressure as a parameter.

Fig. 4 .

 4 Fig. 4.12. Process flow diagram (PFD) of the Joule-Thomson measurement setup. For P&ID see Fig. D.1.

Fig. 4 .

 4 Fig. 4.13. Joule-Thomson expansion capillary and the surrounding hardware. More photos are available in Appendix D.
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 444 Fig. 4.14. Diameter verification flow meter scheme and measurement results for 2 m long capillary.

Fig. 4 .Fig. 4 .

 44 Fig. 4.10 for T in = 65 K and x He = 0.2. The cold head should be qualified for these conditions. According to the heat transfer computations and Fig. 4.15, the maximal flow rate can be cooled to the desired temperature of 65 K with cryocooler working at its
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 5 Experimental procedure Measurements of the Joule-Thomson coefficient in pure fluids and mixtures follow the same experimental procedure. The calculated deviations for pure fluids (nitrogen, argon, and helium) use the EOS as a reference because of high deviations of experimental values reported in the literature. 53, 152 4.5.1 Step-by-step measurement description The fluid in the experimental setup undergoes the isenthalpic transformation when the inlet enthalpy h in = h (p in , T in ) is constant. By varying the outlet pressure p out , its outlet temperature T out = T (p out , h in ) changes. The following steps are taken in the course of the measurements of a single isenthalpic line: 1. T in value is set at TT101. p out varies in the course of the isenthalpic line measurements what influences the flow rate and, therefore, singular and small adjustments to the T in controller setting are necessary when the p out is set to a new value.

Fig. 4 .

 4 Fig.4.17. Pressure and temperature evolution during a single isenthalpic line measurements of He -N 2 .

Fig. 4 .

 4 Fig. 4.18. Composition stability during a single isenthalpic line measurements of He -N 2 .

Fig. 4 .

 4 Fig. 4.19. Measurements for 'hysteresis' verification. The isenthalpic line in plotted in the left figure. The upper-right figure shows deviations of measured µ JT with increasing (blue) and decreasing (red) pressure drop in the course of measurements. The lowerright figure shows a relative difference between the two values.

Fig. 4 .

 4 Fig. 4.20, the conditions at the capillary outlet always remain gaseous. Therefore, no liquefaction and no enthalpy change are observed. Whenever a gas liquefies, its transformation is no more isenthalpic, which is visible in the Tp diagrams as the h = const. line slope change. The saturation line is avoided by setting a minimal value on the p out

Fig. 5 . 1 .

 51 Fig. 5.1. AAD calculated for the Joule-Thomson coefficient of pure fluids as a function of the fit order. The filled points are the minima of the measurements deviations from the EOS.

2 .Fig. 5 . 2 .

 252 Fig. 5.2. Deviations of a fit (dashed line) from the polynomial (solid line).

Fig. 5 . 3 .

 53 Fig. 5.3. Measured p -T pairs (top figures), resulting Joule-Thomson coefficients (middle figures), and measurement deviation relative to EOS (bottom figures) plotted with uncertainty bars from conventional analysis in black and the Monte Carlo analysis in grey. The color-coded numerical values of p -T measurements at h = const. are available inTable E.1, the calculated Joule-Thomson coefficients -in Table E.3.

Fig. 5

 5 .3 discusses these results for three pure fluids: nitrogen, argon, and helium-4 (in columns). The top row shows the Chebyshev polynomial from Eq. (5.2) fitted to the measured p -T pairs for each isenthalpic line separately. The fits are plotted with dotted lines and the isenthalpic lines, calculated with the EOS -with solid lines. The two lines are indistinguishable because they overlay perfectly. Filled large points at extremities are not used for µ JT calculations. Rings represent the raw measurements, and small filled circles are the measurements corrected with the kinetic energy change from Eq. (4.17). The coeffi-MEASUREMENTS ANALYSIS AND RESULTS COMPARISON AGAINST EOS cients of the fit are used to calculate the Joule-Thomson coefficients with Eq. (5.3). The middle row shows the Joule-Thomson coefficient values, calculated with the EOS (solid lines) and calculated from the fit to measurements (points). The bottom row shows deviations of measured µ JT coefficients, compared to accurate pure fluid EOS. The uncertainty bars from the conventional analysis are illustrated in black. The uncertainty bars from the Monte Carlo analysis are shown in gray.Even though the polynomial fit and the isenthalpic line, calculated with the EOS, are indistinguishable in the p -T plane, the errors of derived Joule-Thomson coefficients from measured data are significant for helium-4. The conventional uncertainty propagation from Sec. 5.2.1 does not fully explain the encountered errors. An attempt to discuss the uncertainty of integrated measurements is made in Sec.5.2.2. 

  ) does not bring complete consistency to the results. The deviations from the EOS partially decrease except for helium-4 and single points in nitrogen. The change in the Joule-Thomson coefficient values, calculated with the kinetic energy correction, is often minor for nitrogen and argon. It is so because the precautions to the measurements are taken, and no p -T pairs are measured for p out = 0.1 MPa, where the expected influence on T out from the kinetic energy conversion is significant.

. 9 )aFig. 5 . 4 .

 954 Fig. 5.4. Relative expanded uncertainties for measured isenthalpic lines, calculated with Eq. (5.10). Circles mark values of measured p -T pairs from Fig. 5.3 and Table E.1.

Fig. 5 . 5 .

 55 Fig. 5.5. Visual representation of an isenthalpic line measurement error. Black points are the perfect measurements, ellipses are their statistically calculated uncertainties, and rings are the randomly selected measurements within the uncertainty bounds.

  Mean uncertainty excluding points at extremities.

Fig. 5 . 6 .

 56 Fig. 5.6. Mean relative expanded uncertainty for the measurements of the integrated Joule-Thomson coefficient in pure fluids, calculated with Monte Carlo uncertainty propagation.
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 557 Fig. 5.7. Influence of the type of polynomial used for fitting the measurements on the Joule-Thomson coefficient results.

Fig. 5 . 8 .

 58 Fig. 5.8. Measured p -T pairs for 4 He -Ne mixture with variable molar composition (top row). Resulting Joule-Thomson coefficients (middle row) and the relative deviation from the EOS (bottom row) presented with black uncertainty bars from Eq. (5.10) and gray bars from the Monte Carlo analysis. The color-coded numerical values of p -T measurements are available inTable E.2. The calculated Joule-Thomson coefficients are given in Table E.4.

Fig. 5 . 9 .Fig. 5 .

 595 Fig. 5.9. Measured p -T pairs and µ JT values for 4 He -N 2 mixture and two molar composition values. The color-coded numerical values of p -T measurements are available in Table E.2. The calculated Joule-Thomson coefficients are given in Table E.4.
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 55 Fig. 5.11. Estimated heat loss impact on deviations of measurements and EOS. Colors in the figures match the colors given in Tables E.3 and E.4.

2 .

 2 The estimations are based on the calculated mass flow rate (verified with the volumetric flow meter) and the calculated heat loss, impacting the T out measurement. The relative values for nitrogen and argon are lower since the isenthalpic lines in the p-T measurement space for these two fluids are steeper, yielding larger absolute values of the Joule-Thomson coefficients. The correction for kinetic energy may have been large for the large ∆p measurement method. However, successfully applied precautions limit ∆e k for all the measured p-T values, as discussed in Sec.4.4.1. 
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  Fig. D.3. Gas manifold.
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 5 Fig. D.5. Multi-layer insulation on the thermal shield around the capillary.

  

  available in Table E.2. The calculated Joule-Thomson coefficients are given in Table E.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.9 Measured p -T pairs and µ JT values for 4 He -N 2 mixture and two molar composition values. The color-coded numerical values of p -T measurements are available in Table E.2. The calculated Joule-Thomson coefficients are given in Table E.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  10, l'erreur de mesure du coefficient de Joule-Thomson isenthalpique pour[START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -Ne est tracée pour un nombre variable de points sur une seule ligne de l'entalpie constante, moyennée sur le nombre de points sur la ligne. Une erreur de mesure élevée est visible pour l'hélium pur, où peu de changement de température est observé, et pour le néon pur avec peu de points expérimentaux pris, et où la courbure de la ligne isenthalpique est la plus prononcée. L'impact de l'incertitude de mesure de la composition sur le coefficient JT est illustré par les lignes rouges et est indépendant du nombre de points. Cette influence sur l'erreur totale est marginale, sauf pour les valeurs de concentration d'hélium très faibles, où un changement mineur de la pente d'une ligne isenthalpique plate entraîne une augmentation significative de l'erreur relative.

	Conclusions	
	Les travaux sur les équations d'état ont déjà trouvé une application industrielle et acadé-	
	mique. Air Liquide a appliqué les équations d'état pour l'hélium-néon et l'hélium-azote	
	aux calculs du cycle cryogénique de Brayton avec des mélanges de gaz. L'équation 4 He -Ne a également été utilisée par l'Université de Dresde pour les calculs du cycle 1 INTRODUCTION	
	cryogénique de l'étage de prérefroidissement du Futur Collisionneur Circulaire (FCC).	
	Les équations développées montrent un potentiel d'application significatif avec le mé-	
	lange hélium-néon candidat pour la liquéfaction de l'hydrogène. L'attractivité des équa-tions publiées ( 4 He -Ne, 4 He -Ar et Ne -Ar) a été récemment soulignée en suivant Background	
	les publications sur d'autres équations d'état pour les propriétés thermodynamiques des The work described in this manuscript was performed in its majority in the Cryogenic mélanges quantiques. Les travaux sur les équations et les travaux parallèles sur leur ap-Engineering Department (DSBT) of the French Atomic Energy and Alternative Ener-plication se poursuivent à Linde, SINTEF, et à l'Université de Stuttgart. En conclusion, les gies Commission (CEA) in Grenoble, France. The Cryogenic Engineering Department équations d'état développées s'inscrivent dans la tendance industrielle à appliquer des focuses on technological research in a wide range of temperatures, from millikelvin to mélanges de gaz et ouvrent des portes à la conception d'infrastructures scientifiques à 120 K. Its main interests fall within the space applications, the fundamental research grande échelle de nouvelle génération, telles que le Futur Collisionneur Circulaire (FCC) facilities (CERN, Herschel, and others), and the fusion programs (JET, ITER, JT-60SA ou le démonstrateur de réacteur nucléaire par fusion (DEMO). for magnetic confinement, and Laser MegaJoule for inertial confinement). Thanks to	
	all the above, DSBT has been a favorable place to perform the presented work.	
	The modeling results achieved their quality thanks to the collaboration with the Ma-	
	terial Measurement Laboratory of the National Institute of Standards and Technology	
	(NIST) in Boulder, Colorado, USA. The industrial application of the work was possible	
	thanks to a local collaboration with Air Liquide Advanced Technologies (ALAT) based in Les mesures µ JT pour les mélanges se caractérisent par des écarts plus importants par rapport aux fluides purs, hors hélium-4. Les données expérimentales obtenues ont Sassenage, France.	
	été utilisées pour réajuster l'équation d'état pour le mélange d'hélium-4 et de néon. This thesis exists thanks to the H2020/MSCA/ITN funding for the Innovative Training	
	L'algorithme de minimisation n'a pas été en mesure de diminuer les écarts entre l'EOS Network EASITrain -European Advanced Superconductivity Innovation and Training.	
	et les données µ JT , en gardant l'équation contrainte par l'enveloppe de phase. Même	
	après avoir libéré l'enveloppe de phase et ajusté uniquement les coefficients de Joule-	
	Thomson mesurés, l'optimisation n'a pas entraîné d'écarts significativement inférieurs à	
	ceux déjà présentés. Cette tentative de minimisation est considérée comme une réponse	
	valable à la question de savoir si les mesures sont plus précises que l'EOS ou le contraire:	
	l'erreur de mesure pour 4 He -Ne est plus élevée que prévu et atteint 9% au maximum.	
	Par rapport aux coefficients de Joule-Thomson mesurés précédemment, les erreurs ren-	
	contrées dans ce travail sont plus faibles, notamment lors de l'étude d'autres mesures	
	en conditions cryogéniques. La Fig. 5.12 présente les résultats obtenus dans ce travail,	
	comparés aux mesures de la littérature. Même si toutes les mesures de ce travail ne	
	correspondent pas à une erreur relative inférieure à 5%, les résultats sont satisfaisants.	
	RESUME	xxxvii

Les mesures du coefficient Joule-Thomson isenthalpique dans les fluides purs (azote et argon) sont dans l'incertitude attendue des équations d'état précises. Cette précision obtenue permet de valider le banc expérimental. Les mesures caractérisées par un faible changement de température (hélium pur) sont chargées d'incertitudes élevées, comme le montrent les simulations de Monte Carlo. Pour l'hélium, les écarts rencontrés par rapport à l'EOS sont encore plus élevés que prévu car les pertes thermiques présentes dans le cryostat peuvent fortement influencer le processus isenthalpique caractérisé par un changement de température très faible.

Table 3 .

 3 

1. Reducing temperature and density parameters

  with long-chain hydrocarbons and for hydrogen mixed with, e.g., carbon dioxide.46 Describing the properties of mixtures, characterized by high critical temperature ratio, places high load on the departure function, necessary to accurately represent the state properties.

6. Similarly high values can be found in DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES mixtures of methane

Table 3 .

 3 

		2. Summary of the experimental data available for the equations development
		fluid	no. of properties no. of data sets no. of data points
		4 He -Ne 4 He -Ar	3 3	8 20	424 1974
		Ne -Ar 4 He -N 2	3 3	11 28	497 3788
	24	CHAPTER 3		

  representing the cross-virial coefficients using one adjustable parameter, has been recently proposed 55 but is not implemented in this work. For computing the AAD corresponding to the data sets from Tables A.1-A.4, an effective B 12 was calculated from the EOS at an equimolar composition.3.4 Results of the equations of state developmentThe results are discussed for each mixture separately except for the binary specific parameters for all fluids presented in Table3.3. The scaling parameter applied to departure function, F i j is set to unity for all mixtures since the departure function is fitted in this work. Following the GERG monograph, 43 a larger number of significant digits is given for the N k coefficients, compared to the other departure function parameters.

	AAD =	100 N	N i	y DATA,i -y EOS,i y DATA,i	,	(3.25)
	where y is the thermodynamic property of choice and N is the size of the data set.
	As shown in Appendix A, the only data that remain entirely unfitted in the EOS develop-

The model from this work shows satisfactory accuracy at lower pressures, with the extrapolation behavior being acceptable. The equilibrium data and ρpT data for other mixtures reach higher pressures, up to 1 GPa for helium-argon and helium-nitrogen, and 100 MPa for neon-argon. The data sets are categorized based on fluid mixture and measured property. In this form they are presented in Tables A.

1-A.4

. Whenever the authors provide a satisfactory uncertainty discussion, the uncertainty values are included in the table. Additionally, the last column in the table describes the Average Absolute Deviation (AAD) of the data set, compared to the equations of state developed in this work. The presented AAD values are calculated as follows: ment are the cross-virial coefficients, B. Physics dictates that it should only be a function of temperature. However, the mixing rule also produces dependence on composition in the multi-fluid model and, therefore, yields incoherent results. A combination rule,

DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES which allows accurately

Depending on the mixture, the phase envelopes vary in shape, as discussed in Sec. 2.1.2; they are either closed or open, and they can either have the gas-gas equilibrium (GGE) locus or just the vapor-liquid equilibrium (VLE) dome. It is probable that all mixtures considered in this work behave similarly, 15, 56 but this question is not investigated due

Table 3 .

 3 

			3. Binary specific parameters
		i -j	β T,i j	γ T,i j	β v,i j	γ v,i j
		4 He -Ne 0.793 0.728 1.142 0.750 4 He -Ar 1.031 1.113 1.048 0.862
		Ne -Ar 1.033 0.967 0.919 1.035 4 He -N 2 1.028 1.229 1.036 0.935
	26	CHAPTER 3			
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	k	N k	t k	d k	η k	β k	γ k	ε k
	1 -4.346 849	1.195	1	0	0	0	0
	2 -0.884 378	1.587	2	0	0	0	0
	3	0.258 416	1.434	3	0	0	0	0
	4	3.502 188	1.341	1	0.157	0.173	1.310	1.032
	5	0.831 330	1.189	2	0.931	1.070	1.356	1.978
	6	2.740 495	1.169	3	0.882	0.695	1.596	1.966
	7 -1.582 230	0.944	4	0.868	0.862	1.632	1.709
	8 -0.304 897	1.874	4	0.543	0.971	0.766	0.583

4. Departure function coefficients for the helium-neon mixture DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES

Table 3 .

 3 

		5. Departure function coefficients for the helium-argon mixture
	k	N k	t k	d k	η k	β k	γ k	ε k
	1 -2.643 654	1.030	1	0	0	0	0
	2 -0.347 501	0.288	2	0	0	0	0
	3	0.201 207	0.572	3	0	0	0	0
	4	1.171 326	1.425	1	0.371	0.320	1.409	0.378
	5	0.216 379	1.987	1	0.081	1.247	1.709	0.741
	6	0.561 370	0.024	2	0.375	1.152	0.705	0.322
	7	0.182 570	1.434	3	0.978	0.245	1.162	1.427
	8	0.017 879	0.270	4	0.971	1.030	0.869	2.088

DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES
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Table 3 .

 3 6. Departure function coefficients for the neon-argon mixture

	k	N k	t k	d k	η k	β k	γ k	ε k
	1 -1.039 686	0.723	1	0	0	0	0
	2	0.593 776	1.689	2	0	0	0	0
	3 -0.186 531	1.365	3	0	0	0	0
	4 -0.223 315	0.201	1	1.018	0.360	1.119	2.490
	5	0.160 847	0.164	2	0.556	0.373	1.395	1.202
	6	0.405 228	0.939	2	0.221	0.582	1.010	2.468
	7 -0.264 563	1.690	3	0.862	0.319	1.227	0.837
	8 -0.033 569	1.545	4	0.809	0.560	1.321	2.144
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Table 3 .

 3 7. Departure function coefficients for the helium-nitrogen mixture

	k	N k	t k	d k	η k	β k	γ k	ε k
	1 -3.122 496	0.786	1	0	0	0	0
	2 -0.245 826	0.232	2	0	0	0	0
	3	0.172 129	0.502	3	0	0	0	0
	4	1.455 886	0.304	1	0.736	0.590	1.048	0.387
	5	0.681 733	0.483	2	0.782	0.348	0.957	1.133
	6	0.228 133	1.419	3	0.846	0.576	1.539	1.357
	7	0.053 118	0.261	4	0.660	0.454	0.778	1.773

DEVELOPING THE MULTI-PARAMETER EQUATIONS OF STATE FOR MIXTURES

Table 4 .

 4 1. Deviations of existing experimental data for µ JT from Helmholtz energy EOS Number of measurement points with absolute deviation from EOS above 5%. c Single outlier with deviation above 10 4 % not taken into account.

	measurements	fluid (EOS) max	∆µ JT µ JT	/% AAD a /% n	∆µ JT µ JT ≥ 5%	b
	Bier et al. 138 Potter et al. 135, 136 Roebuck 128 Roebuck, Osterberg 129 Roebuck, Osterberg 130 Roebuck, Osterberg 131 Smith 137	propylene 142 nitrogen 53 air 143 helium 44 argon 52 nitrogen 53 n-butane 144	1.58 2.87 32.29 30.99 290.10 539.24 1.85	0.62 1.20 4.28 6.91 12.29 19.61 c 1.27	0/12 0/15 9/63 4/15 57/134 56/163 0/9
	a Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (4.5).

b 

  Fig. 4.9. Capillary length calculated for p in = 10 MPa, p out = 1.1 MPa, equimolar composition of 4 He -Ne, and internal diameter in mm as a parameter.

		L / m	10 10 10	0 1 2	T in = 65 K 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 .9 1 .0 1 .1	1 .2 1 .1 1 .0 T in = 80 K 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 .9	1 .2 1 .1 1 .0 0 .9 0 .8 0 . 7 0 . 6 0 . 5 0 . 4 T in = 100 K 0 . 3
		10	0 . 2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 m / (kg s 1 ) x 10 _ 3 x 10 x 10 _ 3 _ 3 _ 1 0 . 2 0 . 2
						5)	≈ 1.34,	(4.19)
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  .1.

			PT101 capillary
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		in le t	Cu block
			PT102 capillary
			TT101
			JT capillary
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			2. Mean absolute and relative corrections to	∆T ∆p path	from Eq. (4.9)
		correction	N 2	Ar	4 He	4 He -Ne
		-	Q ṁc p ∆p ∆e k c p ∆p	0.012 K MPa -1 (0.19%) 0.006 K MPa -1 (0.06%)	0.070 K MPa -1 (0.79%) 0.009 K MPa -1 (0.09%)	0.011 K MPa -1 (2.93%) 0.010 K MPa -1 (2.77%)	0.049 K MPa -1 (2.13%) 0.009 K MPa -1 (0.76%)
	88	CHAPTER 5		

  Fig. 5.12. Relative deviation of existing experimental data from Fig. 4.4, extended with data from this work, compared to the EOS. Grey rectangle is the ±5% band. Colors vary for authors: green -Roebuck and Osterberg, red -Smith, blue -King and Potter, orange -Bier et al., purple -this work. A complete reference list for measurements and EOS for each fluid is available in Table 4.1.

	100 JT / JT	3 2 1 0 0 1 2 3	SURS\OHQH QLWURJHQ DLU DUJRQ KHOLXP QEXWDQH KHOLXPQHRQ KHOLXPQLWURJHQ

  The presented set of 92CHAPTER 6 equations available for the binary mixtures allows forming a model for a ternary mixture from the binary constituents. The additional measurements for any thermodynamic property of a given ternary mixture, e.g., helium-neon-nitrogen, would allow validating the so far unknown predictions for ternary mixtures.The presented work on the equations of state has already found industrial and academic use. Air Liquide Advanced Technologies have applied the equations of state for heliumneon and helium-nitrogen to the cryogenic Brayton cycle calculations with mixed refrigerants. The 4 He -Ne equation has also been used for the cryogenic cycle calculations of the precooling stage for the Future Circular Collider, performed at Dresden University of Technology. 156 Developed equations show significant application potential with the helium-neon mixture being used for hydrogen liquefaction. The attractiveness of published equations for 4 He -Ne, 4 He -Ar, and Ne -Ar has been recently emphasized by following publications on other equations of state for the thermodynamic properties of quantum mixtures. 22, 32 The work on the equations and the parallel work on their application continues in Linde, SINTEF, and the University of Stuttgart. The developed equations of state fit in the industrial trend on applying fluid mixtures and open doors to the design of next-generation large-scale scientific infrastructures, such as the FCC or DEMO. The presented equations of state answer the industrial and scientific needs and can be easily integrated into the fluid property databases, such as REFPROP, 116 Cool-In Advances in Cryogenic Engineering, pages 146-157. Springer US, 1963. (Cited on page 113) 171 R. J. Witonsky and J. G. Miller. Compressibility of gases. IV. The Burnett methodapplied to gas mixtures at higher temperatures. The second virial coefficients of the helium-nitrogen system from 175°to 475°. Journal of the American Chemical Society,

	85(3):282-286, 1963. (Cited on page 113) 172 W. Zhang, J. A. Schouten, H. M. Hinze, and M. Jaeschke. PVT-x behavior of helium-APPENDIX A -EXPERIMENTAL DATA
	nitrogen mixtures from 270 to 353 K and up to 280 bar. Journal of Chemical & Engineering Data, 37(1):114-119, 1992. (Cited on page 113) FOR THE EOS DEVELOPMENT
			Table A.1. Experimental data for 4 He -Ne
	Data points Reference Available Used	T /K	p/MPa	x He		Uncertainty a	AAD b /%
	57	76	36	27 -42	VLE data 0.3 -20 0.01 -0.36 ±3% in p	15.0
	58	22	22	25 -27	0.6 -5.1 0.002 -0.03	 	± 0.02 K in T ±0.02% in x	4.3
								±0.1% in y
	Prop, 2 or TREND. 119 59 39 60 97 61 90 62 8 63 51	ρpT ρpT ρpT data 39 273 -673 2.5 -10 97 298 0.2 -12.2 0.23, 0.80 ±0.1% in ρ 0.28 N/A c 73 293 -303 0.1 -6.3 0.26 -0.95 ±0.1% in ρ 6 32 -41 0.5 -2.1 0.02 -0.03 N/A c 51 233 -313 0.1 -3.6 0.49 ±0.04% in Z	0.26 0.20 0.24 2.0 0.081
	64	41	36	Speed of sound (w) 26 -38 0.1 -15 0.01 -0.29 ±0.1% in w	9.6
	157 158 59 159 160 63	3 8 5 6 1 3	Second virial coefficient (B) 15 -20 0 148 -323 0 0 273 -673 0 15 -20 0 90 0 233 -313	±5% in B ±5% in B N/A c ±6% in B ±3% in B ±4% in B	55.3 d 3.9 d 8.8 d 57.6 d 5.9 d 3.6 d
	a Author claimed uncertainty. b Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25). c Undefined or poor uncertainty analysis. d EOS not fitted to this data set.
								CONCLUSIONS BIBLIOGRAPHY	93 107

Table A .

 A 2. Experimental data for 4 He -Ar

	Data points Reference Available Used	T /K	p/MPa	x He		Uncertainty a	AAD b /%
				VLE / GGE data		
							±0.03 K in T
	354	0 68 -108 2.0 -12	0.001 -0.02	   	±3% in y ±0.5% in p ±2% in x	24.0 d
							±0.03 K in T
	187	187 85 -140 0.5 -12 6 • 10 -5 -0.02	   	±3% in y ±0.5% in p ±2% in x	3.4
	50	0 86 -108 2.0 -12	0.002 -0.02	 	±0.03 K in T ±0.5% in p	3.6 d
							±1 -2% in x
	29 77	0 93 -148 1.7 -14 64 90 -115 2.9 -22 0.0005 -0.002 ±0.02 vol. % in x ±0.5% in p ±1.0% in x	12.0 d 3.5
	56 202	48 91 -148 1.4 -69 176 91 -160 0.6 -422	0.002 -0.44 0.02 -0.60	 	±0.02 K in T ±2 mol % in x ±0.1% in p ±0.01 K in T	15.0 15.0
							±0.1 mol % in x
	81	74 150 -199 386 -1048 0.27 -0.72	 	±0.01 K in T ±100 psi in p	7.7
							±0.15 mol % in x
				ρpT ρpT ρpT data		
	288 41 59 116	288 223 -323 0.3 -73 41 373, 473 50 -180 59 293 -353 29 -59 116 293 -423 180 -800	0.21 -0.80 0.66, 0.95 0.24 -0.79 0.31, 0.74 ±0.5% in ρ ±0.03 K in T ±0.06% in Z N/A c ±0.05 K in T ±0.3% in ρ	0.72 1.8 2.2 2.4
	45	45 293 -673 5.0 -40	0.11 -0.98	 	±0.05 K in T ±0.05% in p	1.3
	212	212 143 -183 0.2 -68	0.22 -0.80		±0.02% in x He N/A c	1.2
	31	31	298	0.1 -800	0.50	±0.2% in ρ	1.5
	13	13	298	80 -800	0.50	±0.2% in ρ	1.9
				Speed of sound (w)		
	51	27	298	109 -1972 0.50 -0.90 ±0.5% in w	5.1
	22	20 298 -422 100 -700	0.21	±0.63% in w	1.3
	47	47	298	201 -1696 0.50 -0.90 ±0.5% in w	11.0
	13	13	298	80 -800	0.50	±0.2% in w	2.4
	a Author claimed uncertainty. b Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25). Continued on next page

c 

Undefined or poor uncertainty analysis. d EOS not fitted to this data set.

Table A .

 A 2. (Continued.) Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25). c Undefined or poor uncertainty analysis. d EOS not fitted to this data set.

	Data points Reference Available Used	T /K	p/MPa	x He	Uncertainty a	AAD b /%
				Second virial coefficient (B)
	73 158 161 160 162 163	15 8 60 1 3 14	0 223 -323 0 148 -323 0 303 -773 0 90 0 290 -320 0 298			±0.03 K in T ±0.3% in B ±5% in B ±1.31% in B ± 2 -3% in B greater than 1.2% N/A c	21.0 d 11.0 d 16.9 d 6.1 d 5.9 d 18.9 d
	a Author claimed uncertainty.		

b 

Table A .

 A 3. Experimental data for Ne -Ar

	Data points Reference Available Used	T /K	p/MPa	x Ne		Uncertainty a	AAD b /%
	69 84 85	84 54 37	VLE data 54 91 -120 2.9 -20 0.03 -0.31 ±0.02 vol. % in x 53 84 -130 0.4 -7.3 0.05 -0.73 ±0.01 K in T ±0.01 MPa in p 36 95 -130 7.5 -62 0.09 -0.57 N/A c	8.0 11.0 12.0
	86	58	58	87 -93 6.4 -103 0.002 -0.09	 	±0.02 K in T ±0.1% in p	6.7
	87	67	 59 93 -138 0.5 -101 0.002 -0.57 ±0.1 mol % in x ±0.1 mol % in x	13.0
	60 85 79 80	21 109 31 13	ρpT ρpT ρpT data 0.4 -13.7 0.23, 0.73 ±0.1% in ρ 107 102 -121 3.0 -55.2 0.04 -0.50 ±1.0% in ρ 21 298 31 298 0.1 -800 0.50 ±0.2% in ρ 13 298 80 -800 0.50 ±0.2% in ρ	0.43 2.5 1.6 2.8
	88 80	10 13	0 13	Speed of sound (w) 102, 121 1.3 -15 0.22 298 80 -800 0.50	N/A c ±0.2% in w	60.0 d 1.2
	158 160	9 1	Second virial coefficient (B) 0 123 -323 0 90	±5% in B ± 2-3% in B	9.7 d 5.9 d
	a Author claimed uncertainty. b Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25). c Undefined or poor uncertainty analysis. d EOS not fitted to this data set.

Table A .

 A 4. Experimental data for[START_REF] Quack | Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K[END_REF] He -N 2 Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25). c Undefined or poor uncertainty analysis. d EOS not fitted to this data set.Table A.4. (Continued.) Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25). c Undefined or poor uncertainty analysis.

	Data points Reference Available Used Data points T /K Reference Available Used	p/MPa T /K	x He p/MPa	Uncertainty a x He Uncertainty a AAD b /%	AAD b /%
	VLE / GGE data 0.5 -5 0.002 -0.04 20 77 -123 1.1 -6.9 11 82, 113 0.003 -0.09 153 109 311, 373 0.3 -29.9 208 201 298 -423 100 -700 306 306 294 0.9 -10.0 7 77 3.6 -6.8 0.008 -0.015 0.16 -0.67      ±0.2 K in T ±0.1% in p ±0.15 mol % in x ±2 mol % in y N/A c  ±0.02 K in T 16.7   ±0.02% in p ±0.015% in ρ   ±0.2% in B 0.30, 0.54 ±0.5% in ρ 0.06 -0.99 ±0.14% in Z 26.7 ±0.1 K in T ±2% in x 93.3 0 77 -126 2 -10 0.11 -0.20 N/A c 55 37 295 -598 5.8 -34 0.22 -0.79  ±0.05 K in T  ±0.05% in p 54.5 131 76 -120 0.5 -13.8 0.001 -0.14 ±0.5 K in T ±0.2 mol % in x 45.0 13 78 -109 2.7 -28 0.009 -0.18 N/A c  ±0.02% in x He 30 30 69, 77 1.4 -6.9 0.01 -0.99 ±0.5 K in T ±10% in p 42.4 59 68 -111 0.45 -21.8 0.001 -0.14 N/A c 43.1 0 65 -77 0.04 -2.2 0.55 -0.61 34 34 77 -117 9.6 -55 0.016 -0.35  ±0.02 K in T  ±0.5 atm in p ±0.5 K in T 15.8  ±1.0% in x ±10% in p 13 67 -90 0.6 -2.6 0.0007 -0.009 ±0.02 vol. % in x 45.5 108 77 -137 13 -410 0.04 -0.64    103 100 298 212 -1018 0.25 -0.75  ±0.005 K in T  ±0.05% in p ±0.01 K in T 12.1  ±0.1% in ρ ±100 psi in p ±0.15 mol % in x 63 77 -121 6.8 -83 0.06 -0.56 N/A c Speed of sound (w) 20 20 75 -90 0.01 0.1 -0.7 N/A c 19.8 96 112 -162 246 -1020 0.24 -0.77    ±0.01 K in T ±100 psi in p 112 98 156 -298 200 -1000 0.498  ±0.002 K in T  ±0.05% in p 17.6  ±0.15% in w ±0.15 mol % in x 46 122 -126 3 -21 0.006 -0.34    Second virial coefficient (B) ±0.01 K in T ±2 psi(a) in p 20.0 30 0 310 -449   ±0.1 K in T ±0.1% in p ±0.04% in x He  ±1.25% in Z ρpT ρpT ρpT data 396 273 -298 0.1 -101 0.1 -0.9    ±0.015 K in T ±0.01% in p ±1.0% in ρ 29 0 296 -598   ±0.05 K in T ±0.05% in p 1.1 98 293 -353 29 -59 0.41 -0.84 N/A c 1.5 185 273 -373 6.9 -29.4 0.21 -0.84 N/A c 0.96 851 133 -273 0.3 -55 0.15 -0.87 ±0.15% in Z 0.84 43 298 10 -122.5 0.13 -0.92    ±0.01 K in T ±0.3% in p ±1.0% in x 2.3 131 83 -113 0.16 -22 0.3 -0.88 N/A c 0.08 a Author claimed uncertainty. 89 12 90 30 107, 108 109, 110 91 18 92 25 93 280 94 29 96 95 84 96 19 69 25 97 151 98 86 72 125 99 77 100 462 101 98 102 185 103 884 104 43 105 134 Continued on next page  ±0.02% in x He 1 0 298 ±5% in B 4 0 303 ±2% in B 30 0 100 -750 ±3 -5% in B 21 0 303 N/A c 10 0 292 -321 ±2% in B 54 0 133 -273 N/A c 8 0 148 -323 ±5% in B 58 0 298 -748 ±1.7% in B 1 0 90 ±2 -3% in B 31 0 270 -253 ±2 -5% in B	0.24 2.8 0.40 0.48 21.0 2.1 2.0 0.25 4.5 2.4 d 2.6 d 24.9 d 4.7 d 8.0 d 3.0 d 9.1 d 4.0 d 9.6 d 1.8 d 2.9 d 5.6 d
	a Author claimed uncertainty.			

b b d EOS not fitted to this data set.

Table E .

 E Table E.1. (Continued.) 2. p -Tx measurements for the Joule-Thomson coefficient in mixtures JT/(K MPa -1 ) 100∆µ JT /µ JT µ JT /(K MPa -1 ) 100∆µ JT /µ JT JT /(K MPa -1 )µ JT /(K MPa -1 )

	Table E.1. (Continued.) Table E.2. (Continued.) Table E.2. (Continued.) Table E.3. (Continued.) Table E.4. (Continued.)
	Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa Impurity Uncertainty(x) Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa Impurity Uncertainty(x) Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa x 1 x 2 Uncertainty(x) Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa x 1 x 2 Uncertainty(x) Uncorrected Corrected Uncorrected Corrected
	161.315 160.002 155.529 161.345 160.002 150.394 181.218 180.000 177.882 7.0001 7.0002 181.254 180.002 171.711 160.868 160.001 156.934 5.0000 161.031 160.001 146.451 5.0000 Green 65.292 65.162 63.787 65.283 65.160 61.978 Color p/MPa T /K µ Red 2.0013 67.059 -0.3067 3.9806 0.1449 0.8551 5.9090 0.0016 5.0027 0.0016 11.9999 11.0105 11.9985 9.0211 2.0139 0.1449 0.8551 5.0006 3.1349 0.3279 0.6721 0.0002 0.0002 0.0014 0.0021 0.0003 0.0003 5.0092 2.0914 0.3278 0.6722 3.6708 -0.2736 Color Red p/MPa T /K x 1 x 2 µ Red 6.0370 79.884 0.3264 0.6736 0.8864 0.8836 Purple 161.351 160.001 143.799 7.0000 4.0111 0.0015 0.0002 161.317 159.999 126.207 6.9999 2.0183 0.0014 0.0002 Blue 150.945 149.805 144.736 6.0004 5.0000 0.0013 0.0002 150.946 149.803 137.855 6.0000 4.0007 0.0014 0.0002 150.957 149.803 129.290 6.0000 3.0002 0.0013 0.0002 150.965 149.805 118.338 6.0000 1.9998 0.0013 0.0002 150.964 149.806 104.094 6.0000 1.0007 0.0012 0.0002 150.970 149.804 88.229 6.0000 0.1410 0.0009 0.0002 Yellow 161.208 159.991 157.131 9.0004 7.9904 0.0017 0.0002 161.186 159.990 153.414 9.0001 7.0112 0.0017 0.0002 161.147 159.997 148.901 8.9999 5.9972 0.0018 0.0002 161.157 159.994 143.339 8.9999 5.0070 0.0016 0.0002 161.206 159.998 136.550 9.0000 3.9947 0.0013 0.0002 161.187 160.002 128.117 9.0000 3.0169 0.0008 0.0002 161.149 160.001 116.714 9.0000 2.0005 0.0004 0.0002 Pink 161.371 159.984 158.539 11.9900 11.0257 0.0021 0.0002 161.362 160.000 156.617 12.0001 10.0132 0.0023 0.0002 161.258 159.992 154.270 12.0010 8.9826 0.0017 0.0002 161.256 160.000 148.758 12.0003 7.1160 0.0007 161.224 160.000 144.666 11.9994 6.0834 0.0010 161.219 160.000 139.251 12.0001 5.0011 0.0018 0.0002 161.190 160.000 132.706 12.0000 3.9939 0.0021 161.174 160.000 124.200 11.9990 3.0037 0.0024 0.0002 argon Red 180.835 180.000 174.256 5.0000 3.9900 0.0008 0.0002 180.944 180.003 165.672 4.9999 2.9990 0.0008 0.0002 181.034 180.001 155.620 5.0000 1.9738 0.0007 0.0002 181.062 180.000 144.619 5.0003 1.0080 0.0006 0.0002 Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa x 1 x 2 Uncertainty(x) 0.0002 0.0002 0.0003 0.0003 16.1308 helium-4 -nitrogen Blue 161.161 160.009 153.377 7.9999 5.9964 0.1451 0.8549 0.0003 161.161 159.999 149.319 8.0000 5.0593 0.1454 0.8546 0.0003 161.150 160.001 138.391 8.0002 2.9918 0.1456 0.8544 0.0003 161.136 159.996 131.425 8.0000 1.9437 0.1455 0.8545 0.0003 161.125 160.006 124.148 8.0000 0.9940 0.1454 0.8546 0.0003 Green 140.920 140.000 135.793 5.0000 3.9977 0.1450 0.8550 140.990 140.000 129.309 5.0000 3.0062 0.1451 0.8549 140.999 140.000 121.591 4.9998 2.0059 0.1450 0.8550 0.0003 141.012 140.000 112.796 5.0000 1.0390 0.1449 0.8551 80.505 80.435 75.904 7.9998 1.9925 0.3280 0.6720 0.0003 Blue 3.9757 59.168 0.3138 0.6862 1.5840 1.6091 0.0003 80.516 80.436 78.012 7.9997 3.9751 0.3275 0.6725 0.0003 Blue 5.9672 62.025 0.3138 0.6862 1.3009 1.3103 Red 80.546 80.432 79.884 7.9999 6.0370 0.3277 0.6723 0.0003 Blue 8.1522 64.467 0.3138 0.6862 0.9903 0.9824 0.0003 80.565 80.435 80.755 7.9999 6.9743 0.3263 0.6737 0.0003 Red 1.0031 54.131 0.2005 0.7995 2.8965 2.9085 0.0003 65.103 65.045 56.836 6.9999 1.9843 0.2158 0.7842 0.0004 65.101 65.044 54.131 7.0000 1.0031 0.2158 0.7842 0.0004 65.105 65.046 51.438 7.0002 0.1758 0.2157 0.7843 0.0004 Blue 65.236 65.142 65.412 10.0001 9.0746 0.3138 0.6862 0.0003 65.241 65.148 64.467 9.9999 8.1522 0.3145 0.6855 0.0003 65.200 65.143 62.025 10.0000 5.9672 0.3068 0.6932 0.0003 65.179 65.144 59.168 10.0006 3.9757 0.3029 0.6971 0.0003 65.162 65.146 55.796 10.0002 2.0371 0.3157 0.6843 0.0003 79.908 79.903 78.008 10.0003 4.0051 0.4672 0.5328 Purple 80.045 80.005 80.711 5.0000 3.9098 0.4670 0.5330 80.072 80.004 79.964 5.0000 3.0241 0.4669 0.5331 80.068 80.005 79.158 5.0006 1.9438 0.4669 0.5331 80.060 80.005 78.427 5.0009 0.9947 0.4668 0.5332 Yellow 80.090 79.994 79.880 7.0003 5.0184 0.4667 0.5333 80.074 79.997 79.257 7.0000 4.0014 0.4667 0.5333 80.076 79.999 78.631 7.0008 3.0050 0.4668 0.5332 Red 1.9843 56.836 0.2005 0.7995 2.6217 2.6365 0.0003 Red 3.2727 59.869 0.2005 0.7995 2.2608 2.2795 0.0003 Red 4.0289 61.429 0.2005 0.7995 2.0490 2.0699 0.0003 Red 5.3862 63.945 0.2005 0.7995 1.6688 1.6937 0.0003 Blue 1.0334 58.115 0.2154 0.7846 2.6888 2.6742 0.0003 Blue 2.0441 60.685 0.2154 0.7846 2.4711 2.4695 0.0003 Blue 3.1092 63.124 0.2154 0.7846 2.2417 2.2841 0.0003 helium-4 -neon 0.0003 0.0002 Red 65.115 65.046 61.429 7.0000 4.0289 0.2150 0.7850 0.0004 65.106 65.043 59.869 7.0000 3.2727 0.2157 0.7843 0.0004 79.925 79.901 78.558 10.0010 5.0058 0.4672 0.5328 0.0003 Red 2.0185 129.153 0.5026 0.4974 2.5329 2.7586 Red 79.925 79.897 79.152 10.0001 5.9909 0.4669 0.5331 Red 4.0073 133.818 0.5026 0.4974 2.1885 2.2738 0.0003 0.0002 65.126 65.043 63.945 7.0000 5.3862 0.2096 0.7904 0.0004 79.932 79.899 79.493 10.0002 6.5270 0.4666 0.5334 Red 5.0089 135.858 0.5026 0.4974 2.0151 2.0296 0.0003 0.0002 181.264 180.000 168.043 12.0000 8.0453 0.0022 0.0002 161.010 160.001 140.220 4.9990 1.0004 0.1448 0.8552 0.0003 65.284 65.158 59.991 5.0000 1.0472 0.3278 0.6722 0.0003 Green 8.0238 142.220 -0.4978 13.0741 -0.4773 17.9450 Red 3.9751 78.012 0.3264 0.6736 0.9943 1.0219 Blue 181.265 180.000 163.525 11.9997 7.0206 0.0020 0.0002 181.241 180.000 158.147 12.0000 5.9797 0.0020 0.0002 181.234 180.000 152.137 12.0010 5.0147 0.0020 0.0002 helium-4 Green 141.657 140.641 141.842 10.0000 9.0221 0.0015 0.0002 141.628 140.643 142.220 10.0002 8.0238 0.0004 0.0002 141.538 140.639 143.243 10.0056 5.9759 0.0009 0.0002 141.464 140.641 144.719 10.0038 3.1790 0.0013 0.0002 Blue 64.920 65.000 67.403 7.0019 5.0047 0.0004 0.0002 64.872 64.997 67.639 7.0000 3.9188 0.0005 0.0002 64.857 65.008 68.288 7.0000 3.0835 0.0009 0.0002 64.791 64.990 68.422 7.0000 2.0181 0.0007 0.0002 Red 64.996 64.992 66.387 5.0000 4.0426 0.0007 0.0002 64.971 64.998 66.787 5.0001 2.9983 0.0006 0.0002 64.951 64.998 67.059 5.0008 2.0013 0.0005 0.0002 64.914 64.996 67.383 5.0002 1.0044 0.0005 0.0002 Blue 140.800 140.005 139.685 5.0000 3.9984 0.5025 0.4975 0.0002 140.898 140.001 137.326 4.9990 3.2769 0.5026 0.4974 0.0002 140.969 139.998 134.955 5.0000 2.0098 0.5027 0.4973 0.0002 141.000 140.000 132.385 5.0000 0.9901 0.5027 0.4973 0.0002 Red 140.929 140.007 139.531 8.0000 6.9508 0.5026 0.4974 0.0002 140.980 139.999 137.696 7.9999 5.9792 0.5027 0.4973 0.0002 140.994 140.006 135.858 8.0000 5.0089 0.5027 0.4973 0.0002 141.000 140.003 133.818 8.0000 4.0073 0.5028 0.4972 0.0002 140.990 140.003 129.153 7.9997 2.0185 0.5030 0.4970 0.0002 140.992 140.011 126.386 8.0000 1.0034 0.5028 0.4972 0.0002 helium-4 -neon Blue 65.094 65.053 65.035 5.0000 3.9540 0.2154 0.7846 0.0004 65.125 65.053 63.124 5.0000 3.1092 0.2155 0.7845 0.0004 65.134 65.053 60.685 5.0000 2.0442 0.2154 0.7846 0.0004 65.133 65.053 58.115 5.0000 1.0334 0.2154 0.7846 0.0004 65.140 65.053 55.572 5.0000 0.1467 0.2154 0.7846 0.0004 65.119 65.047 65.132 7.0000 6.0111 0.2005 0.7995 0.0004 Blue 65.069 65.014 65.150 5.0000 3.8435 0.3967 0.6033 Green 5.9759 143.243 -0.4978 12.7272 -0.4773 17.5797 Green 2.0913 61.978 0.3279 0.6721 1.8181 1.8769 0.0003 65.100 65.016 64.081 5.0009 3.1354 0.3993 0.6007 Blue 3.1354 64.081 0.3967 0.6033 1.4491 1.4525 0.0003 65.099 65.014 62.581 5.0000 2.0727 0.3994 0.6006 Blue 2.0727 62.581 0.3967 0.6033 1.5003 1.5686 0.0003 65.110 65.015 60.875 4.9999 0.9803 0.3995 0.6005 Red 4.9649 64.018 0.3942 0.6058 1.2550 1.2570 0.0003 Red 65.028 64.995 65.263 7.0085 5.9934 0.3941 0.6059 0.0003 65.068 64.996 64.018 7.0031 4.9649 0.3903 0.6097 0.0003 65.079 64.997 62.858 6.9998 4.0554 0.3869 0.6131 0.0003 65.051 64.995 61.497 6.9979 3.0707 0.3799 0.6201 Red 4.0554 62.858 0.3942 0.6058 1.3120 1.3238 Table E.4. Calculated Joule-Thomson coefficient values for mixtures Uncorrected Red 3.0707 61.497 0.3942 0.6058 1.3737 1.3962 Corrected Color p/MPa T /K x 1 x 2 µ JT /(K MPa -1 ) Blue 6.0732 64.091 0.4623 0.5377 0.7811 0.7870 µ JT /(K MPa -1 ) Blue 4.1545 62.505 0.4623 0.5377 0.9452 0.9690 0.0003 65.065 64.998 60.024 7.0030 1.9997 0.3903 0.6097 helium-4 -nitrogen Green 5.0096 63.662 0.4673 0.5327 0.8568 0.8605 0.0003 Blue 65.841 65.702 65.483 10.0000 7.9988 0.4623 0.5377 Blue 5.0593 149.319 0.1451 0.8549 4.5754 4.6006 Green 3.8718 62.621 0.4673 0.5327 0.9843 0.9955 0.0003 65.739 65.702 64.091 9.9999 6.0732 0.4554 0.5446 Blue 2.9918 138.391 0.1451 0.8549 6.1213 6.1361 Red 5.9909 79.152 0.4666 0.5334 0.5887 0.5983 0.0003 65.703 65.700 62.505 9.9998 4.1545 0.4625 0.5375 Blue 1.9437 131.425 0.1451 0.8549 7.1524 7.3672 Red 5.0058 78.558 0.4666 0.5334 0.5887 0.5983 0.0003 65.690 65.701 60.453 10.0011 2.2046 0.4640 0.5360 Green 3.0062 129.309 0.1450 0.8550 7.1358 7.1490 Purple 3.0241 79.964 0.4670 0.5330 0.7786 0.8130 0.0003 Green 65.031 64.991 64.533 7.9997 6.0656 0.4673 0.5327 Green 2.0059 121.591 0.1450 0.8550 8.4263 Purple 1.9438 79.159 0.4670 0.5330 0.7786 0.8539 8.4867 0.0003 65.025 64.990 63.662 8.0000 5.0095 0.4665 0.5335 65.029 64.990 62.621 8.0001 3.8718 0.4668 0.5332 65.014 64.991 61.677 7.9999 2.9771 0.4671 0.5329 Red 5.9792 137.696 0.5026 0.4974 1.8470 1.7931 0.0003 Blue 2.0098 134.955 0.5025 0.4975 2.3361 2.3856 0.0003 Blue 3.2769 137.326 0.5025 0.4975 2.3361 2.3856 0.0003 Red 2.0139 146.451 0.1449 0.8551 5.8698 5.9704 Yellow 4.0014 79.257 0.4667 0.5333 0.6202 0.6321
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