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NOMENCLATURE

Symbol Unit Description

a J mol−1 Specific Helmholtz energy

a Pa m6 mol−2 Measure of average attraction between particles

A J Helmholtz energy

A - First virial coefficient

Ar - Argon

b m3 mol−1 Volume excluded by a mole of particles

B m3 mol−1 Second virial coefficient

C m6 mol−2 Third virial coefficient

Ck - k-th coefficient of Chebyshev polynomial

cp J (kg K)−1 Specific heat at constant pressure

co
p J (kg K)−1 Reference state specific heat at constant pressure

cv J (kg K)−1 Specific heat at constant volume

Cv - Valve flow coefficient

di j,k - Fitted parameter of a mixture departure function

doi,k - Fitted parameter for residual Helmholtz energy of pure fluid i

D m Diameter

Dext m External diameter

Dh m Hydraulic diameter

Dint m Internal diameter

err - Calculated relative error

ek J kg−1 Specific kinetic energy

f - Darcy friction factor

Fi j - Scaling parameter applied to departure function

Fy - Function minimizing relative deviations of property y

g J kg−1 Molar-specific Gibbs energy

h J kg−1 Molar-specific enthalpy

h J s Planck constant
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ho
o J mol−1 Reference state specific enthalpy

hin J mol−1 Inlet specific enthalpy

hout J mol−1 Outlet specific enthalpy

H J Enthalpy

H2 - Hydrogen

He - Helium–4

He-I - Normal component of helium–4

He-II - Superfluid component of helium–4

i - Iteration variable

Ji - Gradient in point i

k - Coverage factor for expanding uncertainty

k W (m K)−1 Thermal conductivity

kB J K−1 Boltzmann constant

ki j - Coupling parameter

Kc - Number of critical terms of pure fluid residual Helmholtz energy

Ke - Number of exponential terms of pure fluid residual Helmholtz energy

Kp - Number of polynomial terms of pure fluid residual Helmholtz energy

l m Unitary length

loi,k - Fitted parameter for residual Helmholtz energy of pure fluid i

L m Length

m kg Mass

ṁ kg s−1 Mass flow rate

M kg mol−1 Molar mass

n mol Number of moles

n - Number of points

noi,k - Fitted parameter for residual Helmholtz energy of pure fluid i

N - Number of particles

N - Number of points

NA mol−1 Avogadro constant

Ni j,k - Fitted parameter of a mixture departure function

Ne - Neon

N2 - Nitrogen

p Pa Pressure

patm Pa Atmospheric pressure

pi Pa Pressure at point i

pc Pa Critical point pressure of fluid

pcalc Pa Calculated pressure
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pr Pa Reducing pressure

pin Pa Inlet pressure

pmax Pa Maximal pressure in the system

pout Pa Outlet pressure

p̂ - Reduced pressure

qL W m−2 Heat transferred through conductivity

Qk - derivative of k-th coefficient of Chebyshev polynomial

Q̇ W Heat transfer rate

r m Distance between two interacting particles

R J (mol K)−1 Molar gas constant

Re - Reynolds number

s J (mol K)−1 Molar specific entropy

so
o J (mol K)−1 Reference state specific entropy

S J K−1 Entropy

t s Time

t i j,k - Fitted parameter of a mixture departure function

toi,k - Fitted parameter for residual Helmholtz energy of pure fluid i

T K Temperature

Tc,i K Critical point temperature of fluid i

Tin K Inlet temperature

Tout K Outlet temperature

T h
out K Outlet temperature at isenthalpic conditions

Tr K Reducing temperature

Tλ K Lambda point temperature of Helium–4

U(q) - Standard measurement uncertainty of property q

Uc - Combined expanded uncertainty

Ur - Relative standard expanded uncertainty

u J kg−1 Internal energy

ū m s−1 Mean flow velocity

uin m s−1 Inlet velocity

uout m s−1 Outlet velocity

v m3 kg−1 Specific volume

V m3 Volume

V̇ m3 s−1 Volumetric flow rate

w m s−1 Speed of sound

Wy - Weight assigned to data points of property y

x i - Mole fraction in liquid phase of component i
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xmin
calc - Calculated mole fraction

xdata - Mole fraction of a data point

x - Vector of mole fractions

yi - Mole fraction in vapor phase of component i

ydata,i - Value of experimental data point i

yEOS,i - Value calculated with equation of state in point i

Z - Compressibility factor

α - Total reduced Helmholtz energy

αo - Ideal gas part of total reduced Helmholtz energy

αo
τ

-
First derivative of ideal gas Helmholtz energy with respect

to reduced temperature

αo
ττ

-
Second derivative of ideal gas Helmholtz energy with respect

to reduced temperature

αo
oi - Pure fluid ideal Helmholtz energy

αr - Residual part of total reduced Helmholtz energy

αr
oi - Pure fluid residual Helmholtz energy

αr
i j - Pairwise departure function

αr
δ

-
First derivative of residual Helmholtz energy with respect

to reduced density

αr
δδ

-
Second derivative of residual Helmholtz energy with respect

to reduced density

αr
τ

-
First derivative of residual Helmholtz energy with respect

to reduced temperature

αr
ττ

-
Second derivative of residual Helmholtz energy with respect

to reduced temperature

αr
δτ

-
Second derivative of residual Helmholtz energy with respect

to reduced density and temperature

β K−1 Isobaric expansion coefficient

β - Vector of fitted parameters

βi j,k - Fitted parameter of a mixture departure function

βoi,k - Fitted parameter for residual Helmholtz energy of pure fluid i

βT,i j - Fitted parameter for reducing property calculations

βv,i j - Fitted parameter for reducing property calculations

γi j,k - Fitted parameter of a mixture departure function

γoi,k - Fitted parameter for residual Helmholtz energy of pure fluid i

γT,i j - Fitted parameter for reducing property calculations
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γv,i j - Fitted parameter for reducing property calculations

δ - Reduced density

∆y Change of property y

ε m Absolute pipe roughness

εoi,k - Fitted parameter for residual Helmholtz energy of pure fluid i

εi j,k - Fitted parameter of a mixture departure function

ζi - Relative residual of experimental point i

η - Packing fraction

ηi j,k - Fitted parameter of a mixture departure function

κ - Ratio of gas heat capacities

λa - Attractive exponent of the Lennard-Jones potential

λr - Repulsive exponent of the Lennard-Jones potential

λth m Thermal de Broglie wavelength

ρ mol dm−3 Molar density

ρc kg m−3 Critical density of fluid

ρm kg m−3 Mass density

µ Pa s Dynamic viscosity

µi J mol−1 Chemical potential

µJT K Pa−1 Joule-Thomson coefficient

τ - Reduced temperature

τo - Reduced temperature at reference state
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Acronym Description

AAD Average absolute deviation

ALAT Air Liquide Advanced Technology

CABTR Centrale d’Acquisition Basses Températures Rapide

CEA Commissariat à l’énergie atomique et aux énergies alternatives

CERN European Organization for Nuclear Research

DSBT Département des Systèmes Basses Températures

EASITrain European Advanced Superconductivity Innovation and Training

EOS Equation of state

FCC Future Circular Collider

FS Full scale

GGE Gas-gas equilibrium

HTS High temperature superconductor

ITER International Thermonuclear Experimental Reactor

JET Joint European Torus

JT Joule-Thomson effect, coefficient

JT-60SA Superconducting Japan Torus-60 research tokamak

ITN Innovative Training Network

LHC Large Hadron Collider

LLE Liquid-liquid equilibrium

LNG Liquid natural gas

LMA Lavenberg-Marquardt algorithm

MSCA Marie Skłodowska-Curie Action

MLI Multi-layer insulation

NIST National Institute of Standards and Technology

SSQ Sum of squares

VLE Vapor-liquid equilibrium

w.r.t. Derivative with respect to a variable
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PHYSICAL CONSTANTS

AND FLUID-SPECIFIC DATA

Symbol Value Unit Description

h 6.626 070 15× 10−34 J s Planck constanta

kB 1.380 649× 10−23 J K−1 Boltzmann constant

NA 6.022 140 76× 1023 mol−1 Avogadro constant

R 8.314 462 618 J (mol K)−1 Molar gas constanta

a Source: CODATA – database of the National Institute of Standards and Technology1
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Parameter Value Unit

argon

Molar mass 0.039 948 kg mol−1

Triple point temperature 83.806 K

Triple point pressure 68 892.477 Pa

Critical point temperature 150.687 K

Critical point pressure 4 863 000.0 Pa

Critical point density 13 407.4 mol m−3

helium–4

Molar mass 0.004 002 602 kg mol−1

Lower λ-point temperature 2.176 8 K

Lower λ-point pressure 5 033.548 Pa

Upper λ-point temperature 1.763 3 K

Upper λ-point pressure 3 013 000.0 Pa

Critical point temperature 5.195 3 K

Critical point pressure 227 600.0 Pa

Critical point density 18 130.0 mol m−3

nitrogen

Molar mass 0.028 013 48 kg mol−1

Triple point temperature 63.151 K

Critical point temperature 126.192 K

Critical point pressure 3 395 800.0 Pa

Critical point density 11 183.9 mol m−3

neon

Molar mass 0.020 179 kg mol−1

Triple point temperature 24.56 K

Critical point temperature 44.4 K

Critical point pressure 2 661 630.808 Pa

Critical point density 24 100.0 mol m−3

Source: CoolProp2
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ABSTRACT

This work is motivated by the needs of large cryogenic facilities and aims to improve

their thermal efficiency in the range of 40−80 K. It allows describing the thermodynamic

properties of cryogenic mixtures accurately.

The empirical multiparameter equations of state explicit in the Helmholtz energy are de-

veloped for the binary mixtures of helium, neon, argon, and nitrogen. The development

process is presented and consists of the experimental data review, data points weighting,

and minimizing the objective function using the supervised non-linear regression.

The equations are valid in the single-phase and at the phase envelopes for the entire

composition span and pressures as high as 1000 MPa. The single-phase uncertainties at

low pressure (0− 10 MPa) reach 0.5− 2.5% for 95% of data points used for the EOS

development. At higher pressures, some of the equations deviate up to 5% in density

from the experimental data. The deviations in the speed of sound vary from 4 to 10%.

In addition to the single-phase uncertainty discussion, a new metric is proposed to eval-

uate the uncertainties in phase equilibria calculations. Its advantages and shortcomings

over the classical pressure-based metric are presented.

The equations of state are validated at cryogenic temperatures in the single-phase re-

gion with measurements of the Joule-Thomson coefficient. Indirect measurements are

first acquired for pure fluids, allowing for the experiment validation and then for mix-

tures, providing new results to the study. The expanded relative standard uncertainty is

presented and discussed along with the Monte Carlo analysis for the combined uncer-

tainty. The impact of the composition uncertainty on the Joule-Thomson coefficient is

quantified for mixtures using the Monte Carlo simulations.

The presented equations of state are in good agreement with the obtained Joule-Thomson

coefficient values. A short discussion on perspectives and further steps concludes this

work and aims at a more accurate mixture property description thanks to new, more

accurate measurements and modern minimization algorithms used to develop the equa-

tions.
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RÉSUMÉ

Ce travail est motivé par le développement de nouvelles installations cryogéniques de

grande capacité et vise à améliorer leur efficacité thermique en tirant parti des pro-

priétés des mélanges de gaz. Pour répondre à ces besoins, une connaissance précise

des propriétés thermodynamiques de ces mélanges est nécessaire. Contrairement aux

fluides purs, cette connaissance reste lacunaire aujourd’hui.

Les résultats de la présente thèse permettent de déterminer avec précision l’équation

d’état de mélanges binaires à base de gaz nobles: hélium–4, néon, argon et azote. Cette

équation d’état permet de calculer les propriétés thermodynamiques de ces mélanges

de façon fiable et précise.

La première partie de ce travail est dédiée à la mise au point d’équations d’état (EOS)

empiriques et précises. Une revue soigneuse de l’état de l’art montre que la formula-

tion explicite des EOS en énergie de Helmholtz est la plus prometteuse pour atteindre

les niveaux de précision recherchés, à la fois dans les régions monophasiques et aux en-

veloppes de phase où les changements d’état surviennent. La méthode de détermination

de cette formulation est décrite de façon extensive dans les Chapitres 2 et 3. Le modèle

résultant de cette étude est ajusté aux données expérimentales afin de déterminer un jeu

de coefficients pour chacun des mélanges binaires étudiés dans cette thèse: 4He−Ne,
4He−Ar, Ne−Ar ainsi que 4He−N2. Les résultats pour ces quatres premiers mélanges

ont fait l’objet d’une publication dans le Journal of Physical and Chemical Reference Data

et on été intégré dans la base de données REFPROP, CoolProp et TREND.

La deuxième partie de ce document (Chapitres 4 et 5) décrit le travail expérimental de

validation des EOS dans le domaine cryogénique (50−120 K) où les mesures manquent

dans la littérature. Le banc expérimental de mesure du coefficient de Joule-Thomson

aux températures cryogéniques est présenté, la méthodologie est discutée et les résultats

obtenus sont analysés. Un effort important est consacré à l’amélioration de la précision

des mesures et à la discussion des erreurs rencontrées.
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État de l’art des équations d’état pour les mélanges

Les équations d’état peuvent être utilisées pour calculer les propriétés des fluides dans

les régions monophasiques et aux envelopes de phases. Elles se traduisent graphique-

ment dans les diagrammes de phase où sont décrites les régions gazeuses, liquides,

supercritiques et solides. Pour les quatre mélanges binaires discutés dans ce travail, les

diagrammes de phases sont tracés dans la Fig. 2.1. Les enveloppes de phase pour les

mélanges fluides diffèrent considérablement selon les constituants. D’intérêt particulier

dans ce travail, l’hélium–4 forme les équilibres de phases de classe III comportant un

équilibre vapeur-liquide (VLE) et un équilibre gaz-gaz ouvert (GGE). L’équilibre gaz-gaz

implique une séparation de phase au-dessus de la température critique du composant

le plus lourd. Les isothermes dans l’équilibre gaz-gaz gardent une pente positive et ne

sont fermées par aucune ligne critique. Un exemple d’enveloppe de phase avec un équili-

bre vapeur-liquide supercritique et l’équilibre gaz-gaz est présenté Fig. 2.2. Dans notre

étude, les équilibres vapeur-liquide dans les mélanges sont toujours supercritiques, où

l’hélium est au-dessus de sa température critique, et la région diphasique commence au

point d’ébullition du deuxième composant.

Diverses équations d’état sont discutées à partir des modèles du gaz parfait et de Van

der Waals, en terminant par la forme explicite en énergie de Helmholtz moderne des

équations d’état empiriques multi-paramètres. Chaque équation est discutée à l’aune

de nos besoins: une grande précision à la fois dans les domaines monophasiques mais

également capable de décrire proprement les enveloppes de phase. À ce titre, l’équation

d’état explicite en énergie de Helmholtz semble la plus prometteuse et est appliquée à

nos mélanges dans les chapitres suivants.

Détermination des équations d’état des mélanges

L’énergie de Helmholtz pour les mélanges, α (δ,τ, x), est définie dans l’Eq. (3.1). Elle est

présentée sous sa forme réduite fonction des quantités adimensionnelles – densité δ et

température réduites τ. Les contributions parfaites αo (ρ, T, x) et résiduelle αr (δ,τ, x)
dans l’équation constituent l’énergie de Helmholtz pour les mélanges. Ces deux quan-

tités s’exprime comme une combinaison des énergies de Helmholtz pour les fluides purs

composant le mélange αo
oi (δ,τ) et αr

oi (δ,τ). Outre ces contributions, l’équation d’état

pour les mélanges comprend également une fonction de départ αr
i j (δ,τ) – décrivant la

différence entre le gaz parfait et les propriétés réelles du gaz. Cette fonction permet de

décrire précisément des propriétés du fluide dans tout l’espace p − T − x . L’ensemble

des relations entre ces différentes fonctions est décrit avec les équations (3.1) à (3.8).
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Les propriétés thermodynamiques du mélange sont alors déterminées en fonction de

l’énergie de Helmholtz et de ses dérivées. Par exemple, le coefficient de Joule Thomson

étudié dans ce travail est calculé via l’Eq. (3.14). D’autres propriétés souvent utilisées

sont présentées dans le Chapitre 3 et plus généralement dans le Tableau B.1.

La méthode d’optimisation utilisée tire avantage d’une régression non linéaire de Laven-

berg-Marquardt (LMA). L’optimisation non linéaire est actuellement la méthode la plus

efficace utilisée pour développer les équations d’état. Par rapport à la régression linéaire

des moindres carrés parfois utilisée, elle ne nécessite pas de linéarisation des données à

l’aide d’équations d’état préliminaires. Comme de nombreux algorithmes d’ajustement,

le LMA ne trouve que le minimum local de la somme des moindres carrés (SSQ). Afin de

trouver le minimum global ou de l’approcher suffisamment pour que l’EOS reproduise

les données expérimentales avec une erreur satisfaisante, cette somme est modifiée par

des constantes supplémentaires, des coefficients aléatoires et des pondérations pendant

la procédure d’optimisation.

L’algorithme utilisé pour minimiser le SSQ est un programme écrit en Fortran, spéci-

fiquement développé au NIST pour l’application aux équations d’état. Il utilise la forme

fonctionnelle de l’énergie de Helmholtz défini dans l’Eq. (3.1). C’est un projet en con-

stante évolution, initié depuis plus de 20 ans et dirigé par Eric W. Lemmon (NIST). Sa

partie centrale a été écrite pour la première fois par Robert D. McCarty et Vincent D.

Arp pour développer l’équation d’état de l’hélium–4. L’algorithme a énormément évolué

depuis et aujourd’hui, il permet d’ajuster les équations d’états aux données expérimen-

tales pour des mélanges complexes.

Le point de départ important pour la description des propriétés d’un mélange fluide

est constitué par les équations d’état pour les fluides purs. Les propriétés de l’hélium–

4, du néon, de l’argon et de l’azote sont bien établies et disponibles sous la forme des

équations explicites d’énergie de Helmholtz. Les paramètres variables de l’équation sont

les paramètres réducteurs, décrits dans l’Eq. (3.3) et Table 3.1, et les paramètres de la

fonction de départ, décrits dans l’Eq. (3.8). Selon le nombre de termes gaussiens utilisés

dans les équations, le nombre total de paramètres varie de 42 à 49 dans ce travail.

Les résultats sont discutés pour chaque mélange séparément et les paramètres spéci-

fiques pour tous les fluides présentés dans le Tableau 3.3. Les coefficients de la fonction

de départ sont présentés dans les Tableaux 3.4 à 3.7. L’incertitude des équations en

régime monophasique est discutée séparément pour chaque équation dans les Sec. 3.4.1

à 3.4.4. L’incertitude à la limite de phase est discutée pour les quatre mélanges dans

Sec. 3.5, où l’erreur orthogonale est introduite. L’erreur orthogonale est une nouvelle

métrique déterminée par la plus courte distance entre le point de données expérimen-
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tales et l’isotherme respective évaluée avec l’EOS. Elle permet de pallier une limitation

de la métrique standard qui diverge lorsque la pente de l’enveloppe de phase est ver-

ticale. Sa définition mathématique est donnée dans l’Eq. (3.28). L’erreur orthogonale

absolue pour les équilibres vapeur-liquide et gaz-gaz est présentée Fig. 3.12. Les erreurs

absolues calculées en convertissant l’erreur orthogonale sont illustrées Fig. 3.14.

Toutes les équations d’état présentées montrent des performances satisfaisantes en mo-

nophasique et à l’enveloppe de phase pour des pressions allant jusqu’à 10−20 MPa, ce

qui couvre la plupart des applications d’ingénierie. Pour des pressions plus élevées, si

les données expérimentales sont disponibles, les performances des équations diminuent.

Cependant, l’erreur reste dans la marge de 5% pour les données ρpT et dans la marge

de 10% pour la vitesse des données du son.

Validation expérimentale des équations d’état

dans le domaine cryogénique

Un nombre limité de données expérimentales peut être trouvé dans la littérature pour

les mélanges d’hélium-4 à des températures cryogéniques (aucune donnée dans la ré-

gion monophasique pour 50− 230 K), cette partie expérimentale de mon travail vise à

compléter ces données entre 50 et 100 K et des pressions jusque 10 MPa par des mesures

du coefficient de Joule Thomson (JT) défini par l’Eq. (4.1). L’effet Joule-Thomson est

une variation de température créée lors d’une détente isenthalpique. L’équation d’état

moderne, explicite en énergie de Helmholtz développée au cours de cette thèse est ca-

pable de décrire avec précision les coefficients JT comme discuté dans le Chapitre 4.2.

Par conséquent, s’il est mesuré avec précision, le coefficient JT doit permettre de dé-

montrer la validité de notre équation d’état. La dériviation de ce coefficient à partie de

l’équation d’état (Eq. (3.14)) comprend presque toutes les dérivées de l’énergie résidu-

elle de Helmholtz, à l’exception de αr
τ
(δ,τ, x) = (∂ αr/∂ τ)δ,x ce qui en fait, avec la

vitesse du son, une excellente propriété pour vérifier le comportement de l’équation.

Cette seconde partie de la thèse a en conséquence concerné la conception, la fabri-

cation et l’exploitation d’un banc de mesure du coefficient JT des mélanges étudiés

via. La chute de pression est assurée par un capillaire de petit diamètre. Les valeurs

de pression et de température sont mesurées à l’entrée et à la sortie du capillaire.

La Sec. 4.4.1 présente les calculs guidant le choix du diamètre du capillaire: perte

de charge, transformation isenthalpique et effets non isenthalpiques provoqués par le

changement d’énergie cinétique. Le banc expérimental ainsi conçu et fabriqué est décrit

in extenso au Chapitre 4.
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Les paires p − T mesurées sont les valeurs intégrales du coefficient de Joule-Thomson.

La plupart des mesures de la littérature optent pour une approximation directe du co-

efficient en n’imposant que de petites variations de pression. Nous avons choisi une

voie différente, le coefficient Joule-Thomson est mesuré indirectement par la dérivée

des courbes T(P) obtenues par ajustement polynomial des mesures. Une représentation

schématique de cette approche est présentée dans la Fig. 4.5b.

Le schéma de principe du banc est présenté sur la Fig. 4.12, le diagramme complet de

tuyauterie et d’instrumentation (P&ID) est illustré sur la Fig. D.1. Le cheminement du

fluide débute par un volume de 50 litres, où un mélange est stocké à haute pression, con-

necté à la vanne de réduction de pression puis au volume tampon de 1 gallon, qui lisse

les corrections de pression manuelles. À l’intérieur du cryostat, un échangeur de chaleur

en cuivre est brasé sur la tête froide du cryoréfrigérateur Cryomech AL300 capable de

refroidir le débit fluide de 300 K à environ 40 K à l’entrée du capillaire. Deux capteurs de

température calibrés Lake Shore Cernox sont placés en amont et en aval du capillaire.

Le câblage des sondes de température est thermalisé au niveau de la tête froide. Les

mesures de pression en amont et en aval sont effectuées à l’aide des transducteurs de

pression Mensor CPT 6100. Deux vannes à réglage fin sont installées en parallèle afin

d’offrir une plage plus large de régulation de la pression en aval. Enfin, un analyseur

de gaz est placé à la sortie du système permet de mesurer la composition du mélange à

pression ambiante au cours du temps. Une liste complète des équipements utilisés dans

l’expérience, divisée en catégories fonctionnelles, est présentée dans le Tableau D.1.

Le banc expérimental et la méthode de mesure sont validés par des mesures de flu-

ides purs, azote, argon et Hélium-4. Dans la Fig. 4.20, les points expérimentaux sont

tracés dans l’espace p − T avec des lignes isenthalpiques respectives calculées à partir

des équations d’état des fluides purs. Les résultats des mesures effectuées sont les cou-

ples pression-température pour les fluides purs et les couples pression-température à

composition molaire constante pour les mélanges. Les paires p − T mesurées sur une

seule ligne isenthalpique pour la constante (pin, Tin) forment un ensemble de mesures.

Le coefficient de Joule-Thomson peut être représenté géométriquement comme la pente

d’une ligne isenthalpique dans l’espace bidimensionnel de pression et de température.

Un polynôme de Chebyshev est ajusté aux paires p−T mesurées, et la première dérivée

est calculée à chaque pression mesurée et est rapportée comme le coefficient de Joule-

Thomson isenthalpique, µJT.
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Résultats et incertitudes des mesures

du coefficient de Joule-Thomson

La détermination indirecte des coefficients JT par la dérivée de la courbe ajustée T (p)
exige quelques précautions. La nécessité d’ajuster un polynôme aux données pose un

problème de résultats divergents aux extrémités de l’ensemble de données, ce qui est

illustré sur la Fig. 5.2. Même les mesures idéales avec zéro erreur dans p et T peuvent

entraîner une déviation des résultats uniquement parce que l’ajustement à la ligne ne

représente pas avec précision la ligne insenthalpique. Ce problème est résolu en ajustant

les extrémités des lignes isenthalpiques mesurées mais en les excluant des calculs de µJT.

La Fig. 5.3 montre les paires p − T mesurées pour les fluides purs, les coefficients

Joule-Thomson résultants et les écarts de mesure par rapport à EOS avec leurs barres

d’incertitude. Deux descriptions de l’incertitude sont présentées: l’analyse convention-

nelle et l’analyse Monte Carlo. Le coefficient de Joule-Thomson dérivé µJT = µJT (p, T )
dépend de l’ensemble complet de mesures, du nombre de points mesuré sur une seule

ligne isenthalpique, et du polynôme ajusté aux données. Une tentative de quantifica-

tion de ces facteurs est présentée dans la discussion sur l’incertitude de Monte Carlo

dans la Sec. 5.2.2. La Fig. 5.6b montre qu’une seule ligne isenthalpique mesurée pour

le néon, l’azote ou l’argon avec au moins cinq points (y compris les extrémités) devrait

donner des erreurs inférieures à 2% pour la plupart des cas, à l’exception de quelques

lignes isenthalpiques de néon fortement courbéses. Un nombre plus important de points

mesurés sur une seule ligne isenthalpique pour l’hélium-4 ne devrait pas réduire les er-

reurs. Si les extrémités sont conservées dans l’analyse, au moins sept points doivent

être mesurés sur une seule ligne pour réduire l’erreur moyenne au niveau de cinq points

sur la même ligne sans les extrémités. Une étude complète des incertitudes permet de

valider les mesures et le banc expérimental.

Fort de cette validation, la seconde partie du travail expérimental a été dédié à la mesure

du coefficient Joule-Thomson isenthalpique des mélanges binaires. Par rapport aux

mesures de fluides purs, la préparation du mélange gazeux a été nécessaire avant les

mesures. La composition du mélange est contrôlée par l’analyseur de gaz et aucune

dérive de composition n’a été observée durant les mesures.

Par un procédé identique à celui mis en place pour les fluides purs, le polynôme de

Chebyshev de l’Eq. (5.1) est ajusté à chaque ligne isenthalpique séparément, et les co-

efficients de Joule-Thomson sont calculés à partir de l’Eq. (5.3). La Fig. 5.8 montre les

paires p−T mesurées pour le mélange 4He−Ne avec une composition molaire variable,

les coefficients de Joule-Thomson résultants et l’écart relatif par rapport à l’EOS. Encore
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une fois, l’analyse d’incertitude conventionnelle est comparée aux simulations de Monte

Carlo. La Fig. 5.9 montre des résultats similaires obtenus pour le mélange 4He−N2 à

deux compositions molaires différentes.

Dans la Fig. 5.10, l’erreur de mesure du coefficient de Joule-Thomson isenthalpique

pour 4He−Ne est tracée pour un nombre variable de points sur une seule ligne de

l’entalpie constante, moyennée sur le nombre de points sur la ligne. Une erreur de

mesure élevée est visible pour l’hélium pur, où peu de changement de température est

observé, et pour le néon pur avec peu de points expérimentaux pris, et où la courbure

de la ligne isenthalpique est la plus prononcée. L’impact de l’incertitude de mesure de la

composition sur le coefficient JT est illustré par les lignes rouges et est indépendant du

nombre de points. Cette influence sur l’erreur totale est marginale, sauf pour les valeurs

de concentration d’hélium très faibles, où un changement mineur de la pente d’une ligne

isenthalpique plate entraîne une augmentation significative de l’erreur relative.

Les mesures du coefficient Joule-Thomson isenthalpique dans les fluides purs (azote

et argon) sont dans l’incertitude attendue des équations d’état précises. Cette précision

obtenue permet de valider le banc expérimental. Les mesures caractérisées par un faible

changement de température (hélium pur) sont chargées d’incertitudes élevées, comme

le montrent les simulations de Monte Carlo. Pour l’hélium, les écarts rencontrés par

rapport à l’EOS sont encore plus élevés que prévu car les pertes thermiques présentes

dans le cryostat peuvent fortement influencer le processus isenthalpique caractérisé par

un changement de température très faible.

Les mesures µJT pour les mélanges se caractérisent par des écarts plus importants par

rapport aux fluides purs, hors hélium–4. Les données expérimentales obtenues ont

été utilisées pour réajuster l’équation d’état pour le mélange d’hélium–4 et de néon.

L’algorithme de minimisation n’a pas été en mesure de diminuer les écarts entre l’EOS

et les données µJT, en gardant l’équation contrainte par l’enveloppe de phase. Même

après avoir libéré l’enveloppe de phase et ajusté uniquement les coefficients de Joule-

Thomson mesurés, l’optimisation n’a pas entraîné d’écarts significativement inférieurs à

ceux déjà présentés. Cette tentative de minimisation est considérée comme une réponse

valable à la question de savoir si les mesures sont plus précises que l’EOS ou le contraire:

l’erreur de mesure pour 4He−Ne est plus élevée que prévu et atteint 9% au maximum.

Par rapport aux coefficients de Joule-Thomson mesurés précédemment, les erreurs ren-

contrées dans ce travail sont plus faibles, notamment lors de l’étude d’autres mesures

en conditions cryogéniques. La Fig. 5.12 présente les résultats obtenus dans ce travail,

comparés aux mesures de la littérature. Même si toutes les mesures de ce travail ne

correspondent pas à une erreur relative inférieure à 5%, les résultats sont satisfaisants.
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Conclusions

Les travaux sur les équations d’état ont déjà trouvé une application industrielle et acadé-

mique. Air Liquide a appliqué les équations d’état pour l’hélium-néon et l’hélium-azote

aux calculs du cycle cryogénique de Brayton avec des mélanges de gaz. L’équation
4He−Ne a également été utilisée par l’Université de Dresde pour les calculs du cycle

cryogénique de l’étage de prérefroidissement du Futur Collisionneur Circulaire (FCC).

Les équations développées montrent un potentiel d’application significatif avec le mé-

lange hélium-néon candidat pour la liquéfaction de l’hydrogène. L’attractivité des équa-

tions publiées (4He−Ne, 4He−Ar et Ne−Ar) a été récemment soulignée en suivant

les publications sur d’autres équations d’état pour les propriétés thermodynamiques des

mélanges quantiques. Les travaux sur les équations et les travaux parallèles sur leur ap-

plication se poursuivent à Linde, SINTEF, et à l’Université de Stuttgart. En conclusion, les

équations d’état développées s’inscrivent dans la tendance industrielle à appliquer des

mélanges de gaz et ouvrent des portes à la conception d’infrastructures scientifiques à

grande échelle de nouvelle génération, telles que le Futur Collisionneur Circulaire (FCC)

ou le démonstrateur de réacteur nucléaire par fusion (DEMO).
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1 INTRODUCTION

Background

The work described in this manuscript was performed in its majority in the Cryogenic

Engineering Department (DSBT) of the French Atomic Energy and Alternative Ener-

gies Commission (CEA) in Grenoble, France. The Cryogenic Engineering Department

focuses on technological research in a wide range of temperatures, from millikelvin to

120 K. Its main interests fall within the space applications, the fundamental research

facilities (CERN, Herschel, and others), and the fusion programs (JET, ITER, JT-60SA

for magnetic confinement, and Laser MegaJoule for inertial confinement). Thanks to

all the above, DSBT has been a favorable place to perform the presented work.

The modeling results achieved their quality thanks to the collaboration with the Ma-

terial Measurement Laboratory of the National Institute of Standards and Technology

(NIST) in Boulder, Colorado, USA. The industrial application of the work was possible

thanks to a local collaboration with Air Liquide Advanced Technologies (ALAT) based in

Sassenage, France.

This thesis exists thanks to the H2020/MSCA/ITN funding for the Innovative Training

Network EASITrain - European Advanced Superconductivity Innovation and Training.

Motivation and objectives

The importance of fluid mixtures in the petrochemical industry cannot be overestimated.

Their precise description is essential for extracting, refining, and separating oil and nat-

ural gas mixtures. Mixtures also gain interest within the industrial world, focused on

refrigeration and cryogenic engineering. They allow to optimize the thermodynamic

cycles and increase their overall thermal efficiency, e.g., by using the centrifugal com-

pressors, so far impossible with pure helium–4 characterized by too low a molecular

mass. The properties of fluid mixtures, sometimes very different from the behavior of

pure fluids, brought interest of the scientific communities.
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One motivation for the following work is the conceptual design study of the Future

Circular Collider (FCC),3 a new generation particle accelerator, where gas mixtures are

considered as a working fluid in the cryogenic precooling stage.4,5 Improvement in the

cooling production efficiency motivated this work, as two parallel industrial engineering

studies, performed by Linde6 and Air Liquide7 for the FCC, concluded that accurate

property description for the cryogenic mixtures is fundamental for the study results to be

credible. If the cryogenic properties are to be precisely predicted, accurate equations of

state have to be developed and available for the communities of engineers and scientists.

Other foreseen applications of the cryogenic, mixture-based systems include:

• hydrogen refrigeration and liquefaction;

• High-Temperature Superconductors (HTS) cooling;8,9

• small space-ready cryogenic refrigerators10

• scientific samples refrigeration;

• zero-boil-off in the maritime LNG tanks;

• methane and biogas liquefaction.

Designing any of these systems requires precise fluid property description and, therefore,

the equations of state capable of calculating the thermodynamic properties in a broad

range of temperatures and pressures. Developing the equations of state for cryogenic

mixtures is the objective of this work.

Document structure

The accurate, empirical Helmholtz equations of state (EOS) for the binary gas mixtures

of helium, neon, argon, and nitrogen are developed and presented in the first part of

this work (Chapters 2 and 3). The set of published equations (4He−Ne, 4He−Ar, and

Ne−Ar) is extended with the equation of state for the thermodynamic properties of

the helium-nitrogen mixture. These equations are meant to provide the state-of-the-art

accuracy in both the single-phase regions and at the phase envelopes. They are fitted to

experimental data collected from multiple sources in the literature.

In the second part (Chapters 4 and 5), the experimental setup for measuring the Joule-

Thomson coefficient at cryogenic temperatures is presented, the methodology is dis-

cussed, and the results are analyzed. The experiment is conducted to confirm the per-

formance of developed equations of state in the cryogenic regions with little or no ex-

perimental data. A significant effort is put into improving the measurement precision

and discussing the encountered errors.
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2 DIFFERENT FORMS OF THE EQUATIONS

OF STATE

This chapter reviews different forms of the equations of state. The discussion starts with

an overview of the phase diagrams and continues towards the mathematical forms of

the equations. It focuses on the equations of state for fluid mixtures, their limitations,

and their advantages.

2.1 Phase diagrams of cryogenic fluids

The fluids discussed in this work are predominantly the binary mixtures of noble gases:

helium–4, neon, argon, extended with nitrogen. Some thermodynamic properties of

these fluids are known for a century,11 others have been measured more recently.12

Today, the properties of pure fluids are known in broad pressure-temperature regions,

and the state-of-the-art models which allow calculating these properties from other state

properties are relatively recent, with the last out of four models released in 2018.13

These models are the equations of state, the thermodynamic equations relating the state

variables, and describing the state of matter under given physical conditions.

2.1.1 Pure fluids

The equations of state can be used to calculate the properties of fluids in the single-phase

regions and at phase boundaries. The properties at phase boundaries are shown in the

phase diagrams, where gaseous, liquid, supercritical, and solid regions are visible. For

four fluids discussed in this work, the phase diagrams are plotted in Fig. 2.1. A black star

in each diagram marks the critical point. The liquid cannot be distinguished from the

gas in the supercritical region, where pressure and temperature are above their critical

values (pc and Tc). The black line ending in the critical point is the saturation line,

the line above the pc is the melting line. These lines meet in the triple point, where
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Fig. 2.1. Phase diagrams of fluids used in this work, with isopycnic (ρ = const.) lines
plotted in blue and critical points marked with black stars.

all three phases - liquid, vapor, and solid coexist in equilibrium. The saturation line

becomes the sublimation line for pressure and temperature below the triple point where

the solid phase transforms directly into gas (sublimates). All the above is valid for the

vast majority of fluids but not for helium. When analyzing the phase diagrams of neon,

argon, and nitrogen, the similarities are apparent. For helium, the solid phase does

not exist below 26 kPa, even at very low temperature. Liquid helium, when cooled

down, transforms into a superfluid. This unusual state of matter can be described as a

mixture of two pseudo-fluids: the first one is Newtonian and dissipative, the second one

is non-dissipative – it is characterized by zero-viscosity, zero-entropy, and high thermal

conductivity. The liquid phases of helium: He-I (normal fluid), and He-II (superfluid),

are separated with a vertical lambda line, which meets the saturation line in the lambda

point. Because of this phenomenon, helium–4 does not have the standard triple point of

solid-liquid-vapor coexistence. Instead, at Tλ ≈ 2.17 K and 5 kPa, the so-called lambda

point is the triple point of vapor–He-I–He-II equilibrium.

2.1.2 Binary mixtures

The single-phase properties of mixtures are often not significantly different from those

of pure fluids. However, the phase equilibria can be much more complex and, depending

on the constituents, can show very different behavior.

The Gibbs phase rule14 gives the number of thermodynamic degrees of freedom of any

system, i.e., the number of independent variables that change the state of this system.

According to the phase rule, a binary mixture in the single-phase state has three degrees

of freedom – its thermodynamic state is characterized by three variables, e.g., pressure,

temperature, and the mole fraction. In a pure fluid, the critical state has no degree of
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log(p)

T
x

(a) Phase envelope in log(p) − T − x
three dimensional space

log(p)

T

log(p)

x

(b) 2D projections of the envelope

Fig. 2.2. Class III phase envelope with the vapor-liquid equilibrium (VLE) – gray area in
(b), and existing gas-gas equilibrium (GGE) – yellow area in (b). x is the mole fraction
of a lighter component. The star represents the critical point and the dashed line, the
critical line.

freedom and is the critical point, whereas in a binary mixture, the critical states have

one degree of freedom and form the critical line.

Various classes of phase equilibria exist. This work does not attempt to describe the

phase equilibria in binary mixtures fully but focuses on helium–4 and a few other cryo-

genic fluids. A complete discussion on the phenomenology of phase diagrams is avail-

able in the extensive work of Deiters and Kraska,15 according to which, helium with

practically all other substances forms the phase equilibria of class III, with vapor-liquid

equilibrium (VLE) and open gas-gas equilibrium (GGE). The name gas-gas equilibrium

implies that the phase separation occurs beyond the critical temperature of the heavier

component. The isotherms in the gas-gas equilibrium maintain a positive slope and are

not closed by a critical line.

An exemplary phase envelope with the supercritical vapor-liquid equilibrium and the

gas-gas equilibrium is shown in Fig. 2.2. The left subfigure is the 3D phase envelope,

whereas the right one shows its projections on log(p)−x and log(p)−T planes. The gray

and yellow areas in Fig. 2.2b mark the VLE and the GGE, respectively. The black star in

the figures is the critical point of the less volatile component (the second constituent of a

helium mixture), and the dashed black line is the mixture critical line. The critical point

of helium is not shown because it is too low in temperature. The light-grey lines are the

isotherms. Red, green, and blue lines are selected isotherms where Tred < Tgreen < Tblue.

The green and blue points are the critical points at Tgreen and Tblue. The green line

is the isotherm of temperature close to the minimum temperature below which only
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the VLE exists. Only the GGE exists above the critical temperature of the less volatile

component (star), as illustrated by the Tblue isotherm. The mole fraction maximum of

an isothermal dew point curve is called the maxcondentherm (marked with a triangle

for Tgreen). The mixture at Tgreen and composition beyond the maxcondentherm of the

vapor-liquid equilibrium can be expanded from high to low pressures without crossing

the vapor-liquid phase boundary.

The vapor-liquid equilibria in mixtures discussed in this work are always supercritical,

where helium is above its critical temperature, and the two-phase region starts at the

boiling point of the second component. The dew lines of the phase envelope do not run

to the boiling point of helium but bend around and reach the mixture critical line. The

complex behavior at the phase boundaries described above can be one of the reasons

why the reliable equations of state (EOS) were not established so far for the binary

mixtures of helium–4.

No data is available for phase equilibria at high pressures for two out of four mixtures

developed in this work. Therefore, no experimentally confirmed information is given on

the existence of the gas-gas equilibrium. Although helium–4 is said to usually have the

gas-gas equilibrium with other constituents, no attempt is made to model this behavior

in the no-data regions.

Before discussing the equation development procedure, the EOS used today and through-

out the history are presented, with a special focus put on the equation used in this work.

2.2 Equations of state

This section presents a general overview of the most important equations of state devel-

oped throughout history. Research on fluid behavior have existed for a few centuries.

However, the modern equations had started getting their shape in the late 19th cen-

tury, when Johannes Diderik van der Waals introduced a description of the attractive

and repulsive forces between the fluid particles. Inspired by the work of van der Waals,

other physicists started describing fluid behavior with cubic and non-cubic equations.

This section discusses the important equations in brief detail, including the van der

Waals-, statistical-based hard-sphere interactions-, the molecular-based- and the empir-

ical Helmholtz energy equations of state.
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2.2.1 Ideal gas equations of state

Ideal gas is a hypothetical fluid that can approximate the behavior of real substances un-

der specific conditions of high temperature and low pressure. It neglects the molecular

size (molecules are points) and the intermolecular forces (molecules do not interact),

and results in the smallest error when used for monoatomic substances. The ideal gas

low can be successfully applied to calculations of a dilute gas at high reduced tempera-

ture. It is often written as

pV = nRT, (2.1)

where p is the pressure in Pa, V is the volume in m3, T the is temperature in K, n is the

number of moles enclosed in volume V , and R is the ideal gas constant in J (K mol)−1.

Many gases, e.g., nitrogen, carbon dioxide, oxygen, and hydrogen, can be treated as

ideal gas, but the approximation is only fairly accurate if used for fluids at standard

conditions. The equation is useful for quick calculations in limited p− T space but the

simplifications introduced are too large for most engineering applications.

2.2.2 Van der Waals equation of state

The van der Waals equation of state generalizes the ideal gas equation and tries to answer

why the real gases do not act ideally.16 It is based on the assumptions that all particles

are hard spheres of the same finite radius and that attractive forces exist between these

particles. The equation can be written in its extensive form as

�

p+
n2a
V 2

�

(V − nb) = nRT, (2.2)

where p is the pressure in Pa, T is the temperature in K, n = N/NA is the number of

moles, R is the universal gas constant, a is a measure of the average attractions between

particles in J mol−1, b is the volume occupied by a mole of particles in m3 mol−1. In

other words, the term b is the excluded volume per mole or the co-volume. In liter-

ature, it is sometimes referred to as the repulsive term. The equation can be derived

using statistical thermodynamics,17 where the values of a and b are estimated with the

intermolecular potential constants and the molecular diameters. The equation has a

clear physical significance, and it is the result for which Johannes Diderik van der Waals

received the Noble price in 1910.

Van der Waals proposed extending his equation to mixtures.18 It can be done by substi-

tuting the pure fluid a and b terms with
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a =
n
∑

i=1

n
∑

j=1

x i x j(1− ki j)
p

aiia j j, (2.3)

b =
n
∑

i=1

x i bii, (2.4)

where x i is the mole fraction of constituent i, aii is the average attraction between par-

ticles in component i, bii is the volume occupied by one mole of particles of component

i, and ki j is the numerically fitted coupling parameter.

According to van der Waals, all fluids should have similar properties when compared at

the same reduced temperature and pressure. In other words, they should have similar

thermodynamic properties at their corresponding states. The reduced quantities are

defined,

pr =
p
pc

, Tr =
T
Tc

, Vr =
V
Vc

, (2.5)

where pc, Tc, and Vc are the pressure, temperature, and volume at the critical point.

These quantities, applied to Eq. (2.2), allow to rewrite the van der Waals equation in its

reduced form:

�

pr +
3

V 2
r

�

�

Vr −
1
3

�

=
8
3

Tr. (2.6)

The equation above is remarkably universal; it states that one can obtain Vr for any fluid

by imposing pr and Tr, that is calculate V by knowing p, T , and the critical properties.

The Van der Waals equation can approximate the behavior of fluids above their critical

temperatures and shows reasonable performance for low-pressure liquids and gases at

low temperatures but fails to predict the phase transition. It also gives unrealistic results

in the close vicinity of the critical point and cannot be used to accurately calculate the

properties of compressed gasses and liquids.19

2.2.3 Other cubic equations of state

When expanding Eq. (2.6), the volume is raised to the power of 3. It makes the van

der Waals equation the first out of many important cubic equations of state. The other

cubic equations, such as the Peng-Robinson20 or the Peng–Robinson-Stryjek-Vera21 can

be formulated as a pressure function of temperature T and molar volume v. The general

form of the cubic equations of state is:
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p (T, v) =
RT

v − b
−

a(T )
(v − r1 b) (v − r2 b)

. (2.7)

Some formulations represent the attraction between particles as a function of temper-

ature, a = a(T ). Depending on the actual equation, the additional terms r1 and r2 are

used. The cubic equations can show substantial improvements over the van der Waals

equation and can be successfully used for accurate vapor-liquid equilibria calculations.

However, they often predict the critical behavior and the caloric properties with low ac-

curacy. The deficiencies of the van der Waals, and cubic equations in general, initiated

research on other, more complex, and more accurate equations of state. That includes a

recent work of Aasen et al.,22 which introduces quantum corrections to the cubic equa-

tion and allows for accurate equilibria calculations for the mixtures of quantum fluids,

e.g., 4He−Ne, H2 −Ne, D2 −Ne.

2.2.4 Non-cubic equations of state

The non-cubic EOS originate from the van der Waals equation and modify both its a and

b terms. They represent the fluid properties more precisely at higher temperatures when

repulsion between particles becomes more important. The general pressure-explicit

formulation for the non-cubic equations is given as

p =
RT
v

Z −
a
v2

, (2.8)

where Z = Z(η) is the hard-sphere compressibility factor, a function of the packing frac-

tion η. The packing fraction is the fraction of space occupied by the molecules, and it is

a function of the molecular co-volume b, defined in the van der Waals equation. Several

researchers worked on these equations, trying to reformulate the hard-sphere compress-

ibility factor. There are many examples of the compressibility factor definitions based

on the non-attracting rigid spheres models, e.g., the Reiss-Frisch-Lebowitz equation:23

Z =
1+η+η2

(1−η)3
, (2.9)

the Carnahan-Starling equation:24

Z =
1+η+η2 −η3

(1−η)3
, (2.10)

or the Guggenheim equation:25
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Z =
1

(1−η)4
. (2.11)

A comprehensive study on the hard-sphere models for the fluid properties is presented

by Mulero et al.26 Various equations find use in different domains, depending on their

performance in specific calculations, such as the vapor-liquid or solid-liquid equilibria,

properties of polar fluids or molecules with arbitrary geometry.

The hard-sphere models, which modify only the co-volume term from the van der Waals

equation, tend to work well at high temperatures but do not predict the fluid behav-

ior well enough in near-critical conditions. There exist attempts to combine both the

hard-sphere models with the temperature-dependent attractive term, a = a(T ). One

of them is the Carnahan-Starling EOS combined with the Redlich-Kwong temperature-

dependent term,27 proposed by Carnahan and Starling themselves

p =
RT (1+η+η2 −η3)

v(1−η)3
−

a

v(v + b)
p

T
. (2.12)

This equation represents the phase equilibria of the hydrocarbons well and can accu-

rately predict their high-temperature properties.

The presented discussion is by no means complete. There exist a large number of equa-

tions of state developed from the van der Waals equation. They vary in performance

and find use in domains where no other, more accurate equation is available.

2.2.5 Virial equation of state

In 1901, Heike Kamerlingh Onnes proposed the virial equation of state. It contains an

infinite series of the molar specific volume raised to the negative power. Often, its first

three terms are sufficient to represent the vapor-liquid equilibrium of many substances

accurately. The compressibility factor can be expressed as a power series in molar den-

sity

Z ≡
p

RTρ
= A(T ) + B(T )ρ + C(T )ρ2 + ... , (2.13)

where A(T ), B(T ), C(T ), ... are the virial coefficients. The first term, A(T ) = 1, states

that all fluids behave like ideal gas when density is small. The second virial coefficient,

B(T ), describes the pair-wise interactions. The third, C(T ), depends on interactions

between triplets of molecules. The jth virial coefficient can be calculated in terms of the

interaction of j molecules in a volume V . The virial coefficients are only temperature-
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dependent for pure components. For mixtures, they are temperature and composition-

dependent.

The virial equation is not the most convenient to use but has important advantages over

the empirical equations – the coefficients of the equation, the virial coefficients can be

estimated based on interactions between molecules described by statistical thermody-

namics. They can also be calculated from low pressure ρpT data,

B = lim
ρ→0

�

∂ Z
∂ ρ

�

T
and C = lim

ρ→0

1
2!

�

∂ 2Z
∂ ρ2

�

T
. (2.14)

The relations above show that the virial coefficients are the properties of a fluid at the

limit of zero-density.

The virial equation can be used to predict properties at low and moderate densities

and fails to do so accurately at high densities with no experimental and theoretical

capabilities to estimate the higher-order virial coefficients.

2.2.6 Molecular-based equations

The cubic, non-cubic, and virial equations are valid for simple fluids, where the van der

Waals forces are the only leading interactions between the fluid particles. For plenty of

fluids used in industry, other forces must be considered, e.g., coulombic, polar activity,

association, or chain flexibility. For these cases, standard cubic or non-cubic equations

fail to predict fluid behavior accurately.

The molecular-based equations often adopt the concepts of chain molecules and the

perturbation theory.28 The molecular models are successfully applied to small, argon-

size molecules and large polymeric fluid mixtures. Depending on the equation, the

model can predict properties of non-associating, near-spherical fluids (methane); non-

spherical fluids (polymers); and associating, non-spherical fluids (alkanols). Even

though the consistency and the accuracy of results obtained with the molecular-based

equations are sometimes questionable, they are often the only source of information on

the properties of complex mixtures encountered in the petrochemical industry.29

A commonly used example of the molecular-based equation is the Statistical Associating

Fluid Theory (SAFT),30 which considers the fluid composed of chain molecules. The

SAFT equation if often expressed in terms of the Helmholtz energy of ideal gas with

applied perturbation terms

a (ρ, T ) = aIDEAL + aMONO + aCHAIN + aASSOC, (2.15)

DIFFERENT FORMS OF THE EQUATIONS OF STATE 11



where aIDEAL is the Helmholtz energy of ideal gas, aMONO is the monomer contribution

to the Helmholtz energy, aCHAIN is the contribution to the formation of molecular chains,

and aASSOC is the contribution to association and bonding.

In order to describe the particle interactions in the SAFT equation, a pair-potential model

is applied to calculate the intermolecular potential energy. Very often, the Lennard-Jones

(LJ) potential is used.31 It is a simple but realistic model of soft interactions in the form

of

uMie(r) = C(λr,λa) ε
�

�σ

r

�λr

−
�σ

r

�λa
�

, (2.16)

where λr is the repulsive exponent, λa is the attractive exponent, r is the distance be-

tween two interacting particles, ε is the potential well depth, and σ is the distance at

which uMie(r) = 0. Eq. (2.16) describes a generalized potential developed from the

Lennard-Jones potential (for the Lennard-Jones fluid: λr = 12, λa = 6, and C(λr,λa) =
4). Particles interacting with the LJ potential have no uniquely defined size, opposite

to the hard sphere potential described in Sec. 2.2.4, yielding more realistic description

of interactions. On the other hand, the phase equilibria for complex, quantum mixtures

and the single-phase properties (including the caloric properties) are reproduced less

accurately, compared to the empirical equations explicit in Helmholtz energy.

A corrected SAFT equation has recently been applied to quantum fluid mixtures and

yields good phase equilibria predictions for some of the mixtures, i.e., H2 −Ne, He−H2,

or He−D2.32

2.2.7 Pressure-explicit equations of state

The pressure-explicit equations are still important for technical applications up to these

days. The Benedict-Webb-Rubin equation33 (BWR) showed a significant advancement

in predicting the fluid properties accurately, even at high densities. It defines pressure

as

p = ρRT +
�

B0RT − A0 −
C0

T 2

�

ρ2 + (bRT − a)ρ3

+αaρ6 +
cρ3

T 2

�

1+ γρ2
�

exp
�

−γρ2
�

,
(2.17)

where A0, B0, C0, a, b, c, α, and γ are the parameters of the equation. According to

the authors, the exponential term allows for improved calculations in the critical region,

better data reproduction at high densities, and improved equilibrium calculations. The
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BWR equation performs much better than the cubic equations of state and was further

modified and improved. Jacobsen and Stewart proposed the most successful modifica-

tion.34 Their equation, often called the mBWR equation, is still used for a large number

of applications, e.g., investigation of particle fragmentation, entropy-scaling in refriger-

ants, or cryogenic storage calculations. The mBWR equation for nitrogen has been the

reference equation for almost 30 years. It defines pressure as

p =
9
∑

i=1

anρ
n + exp

�

−γρ2
�

15
∑

n=10

anρ
2n−17, (2.18)

where γ = 1/ρ2
c and an are 15 different polynomial coefficients defined with 32 con-

stants. Thanks to the proven acceptance of the equation in representing the fluid proper-

ties of hydrocarbons, it is continuously used today for calculations of the thermodynamic

properties of R123.35 However, the BWR and mBWR formulations used for hydrocar-

bons and nitrogen were replaced by other equations of state providing more accurate

predictions in wide pressure-temperature range. These equations are presented in the

following section.

2.2.8 Empirical, multi-parameter equation of state

explicit in Helmholtz energy

The equations explicit in Helmholtz energy are one of the most accurate equations de-

veloped over time. The Helmholtz energy itself, a (T,ρ) has two important advantages.

Unlike the internal energy u (v, s) and the enthalpy h (p, s), where v is the specific vol-

ume, s is the specific entropy, and p is the pressure, it is a function of measurable prop-

erties – temperature T and density ρ. Moreover, unlike the Gibbs energy g (T, p), it is

continuous through the phase boundary.

Schmidt and Wagner were the first to propose a modern, functional form of the Helm-

holtz energy equation.36 Its application to oxygen almost fully represented the experi-

mental data accurately, within the experimental uncertainties, giving a precise descrip-

tion of the whole thermodynamic surface. The authors defined their equation in terms

of reduced Helmholtz energy divided into an ideal gas part αo and a residual part αr:

α (δ,τ) =
a (ρ, T )

RT
= αo (δ,τ) +αr (δ,τ) , (2.19)

where δ = ρ/ρc and τ = Tc/T are the density and the reciprocal temperature reduced

with the critical properties, ρc and Tc. They define the ideal gas part as
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αo (δ,τ) =
ho

oτ

RTc
−

so
o

R
− 1+ ln

�

δτo

δoτ

�

−
τ

R

∫ τ

τo

co
p

τ2
dτ+

1
R

∫ τ

τo

co
p

τ
dτ, (2.20)

where δo = ρo/ρc, τo = Tc/To, ho
o = ho (ρo, To) and so

o = so (ρo, To) are the reduced

density and temperature; and the ideal gas enthalpy and entropy at arbitrary reference

state (To, po, ρo). co
p is the ideal gas heat capacity. The residual part of the Helmholtz

energy is defined as

αr (δ,τ) =
13
∑

i=1

aiδ
diτt i + exp

�

−δ2
�

24
∑

i=14

aiδ
diτt i + exp

�

−δ4
�

32
∑

i=25

aiδ
diτt i (2.21)

The exponential terms in the residual part of the Helmholtz energy, αr, are necessary to

represent the critical region accurately.

Jacobsen et al.37 used the same expression for the Helmholtz energy, divided into an

ideal part α0 and a residual part αr, with the same ideal gas term. They proposed a

different formulation for the residual contribution:

αr (δ,τ) =
N
∑

k=1

akδ
ikτ jk exp

�

−γδlk
�

, (2.22)

where N is the number of terms in the equation, ik are positive integers, jk are real

numbers, γ = 0 for lk = 0, and γ = 1 for lk 6= 0. This formulation allowed for accurate

description of a complete thermodynamic surface for nitrogen and ethylene.38,39

There exist various formulations of the equation explicit in Helmholtz energy. The mod-

ern form of the equation is a multi-fluid approximation that intends to describe the ther-

modynamic properties of non-ideal mixtures accurately. It takes advantage of both of the

mentioned formulations for the residual contributions.36,38 It is similar to Eq. (2.19),

but its definition includes a departure function with the Gaussian-bell shaped terms,

thanks to which the critical region description becomes more accurate. This equation

of state is described in detail in Chapter 3 before discussing the optimization methods

for its development.
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3 DEVELOPING THE MULTI-PARAMETER

EQUATIONS OF STATE FOR MIXTURES

This chapter presents the equation of state used to describe the thermodynamic proper-

ties of mixtures of helium-neon, helium-argon, neon-argon, and helium-nitrogen. The

steps that led to the development of the multiparameter, empirical equations of state

are presented. After a rigorous selection of the measurement points collected from the

literature, the established equation is fitted to the data. Weights are applied to the mea-

surements, and constraints are used to limit the behavior of the fitter in the regions of

limited data availability. The fitting process is described in detail and followed by a dis-

cussion on the performance of these newly developed equations and a discussion on the

applicability limits. A new metric is introduced to evaluate the equation performance

at the phase envelope and is later attempted to be used for equation development.

A large part of the work presented in this chapter has been published in the Journal of

Physical and Chemical Reference Data under the title: Equations of state for the thermo-

dynamic properties of binary mixtures for helium–4, neon, and argon.40

3.1 Modern form of the Helmholtz energy

equation of state

Following the functional forms of the previously used equations of state, presented in

Chapter 2, the modern form of the equation, explicit in Helmholtz energy, is discussed.

The Helmholtz energy of mixtures is defined as a sum of the ideal and residual contribu-

tions:

α (δ,τ, x) =
a (ρ, T, x)

RT
= αo (ρ, T, x) +αr (δ,τ, x) , (3.1)

where x is the mole fraction vector, and R is the mole fraction-weighted average of the

pure component values of the gas constant used for the development of the equations.
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Table 3.1. Reducing temperature and density parameters

Yr Yc,i βY,i j Yi j

Tr Tc,i βT,i j βT,i jγT,i j

�

Tc,i Tc, j

�0.5

vr
1
ρc,i

βv,i j βv,i jγv,i j
1
8

 

1

ρ
1/3
c,i

+
1

ρ
1/3
c, j

!3

The Helmholtz energy is used in its reduced form, and it is a function of non-dimensional

quantities – reduced density and temperature

δ =
ρ

ρr
and τ=

Tr

T
, (3.2)

where ρr = ρr(x) and Tr = Tr(x) are the composition dependent reducing density and

temperature respectively. The most recent formulation41,42 allows for the use of a com-

mon form for both mixture reducing parameters, Tr and vr = ρ−1
r ,

Yr (x) =
N
∑

i=1

x2
i Yc,i +

N
∑

i=1

N
∑

j=i+1

2x i x j

x i + x j

β2
Y,i j x i + x j

Yi j, (3.3)

where N is the number of components in the mixture, Y is the parameter of interest:

the temperature T or the molar specific volume v, given in Table 3.1. Tc,i, ρc,i are the

critical temperature and density of the pure constituents. βT,i j, γT,i j, βv,i j, and γv,i j are

the fitted parameters with both β parameters being asymmetric, that is βT,i j = β−1
T, ji, and

βv,i j = β−1
v, ji.

The statistical thermodynamics is capable of predicting the behavior of a fluid in the

ideal-gas state. However, there exist no physically founded equation, which accurately

describes the real thermodynamic behavior of a fluid in complete fluid region.43 For this

purpose the residual contribution to Helmholtz energy is determined in an empirical way.

The ideal and residual contribution in Eq. (3.1) represent the Helmholtz energy for a

mixture. Both are functions of the pure fluid Helmholtz energies

αo (ρ, T, x) =
N
∑

i=1

x i

�

αo
oi (ρ, T ) + ln x i

�

, (3.4)

αr (δ,τ, x) =
N
∑

i=1

x iα
r
oi (δ,τ) +

N−1
∑

i=1

N
∑

j=i+1

x i x j Fi jα
r
i j (δ,τ) , (3.5)

where x i is the molar fraction of component i, αo
oi is the pure fluid ideal Helmholtz en-

ergy, and αr
oi is the pure fluid residual Helmholtz energy, both defined within the pure
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fluid EOS. αr
i j (δ,τ) is a pairwise departure function, dependent only on the reduced

variables δ and τ. A departure function is defined as the difference between the ex-

tended corresponding states model and the real fluid behavior. In the above case, the

departure function is a concept introduced to further improve the thermodynamic sur-

face description. Fi j is the scaling parameter applied to the departure function, and is

set to unity when the departure function is fitted. The definitions of the pure fluid ideal

and residual Helmholtz energies can vary depending on the formulation used by the

author of the pure fluid equation. For helium–4,44 they are defined as follows

αo
oi (δ,τ) =

ho
oτ

RTc
−

so
o

R
− 1+ ln

�

δτo

δoτ

�

−
τco

p

R

�

1
τ
−

1
τo

�

+
co

p

R
ln
�

τ

τo

�

, (3.6)

αr
oi (δ,τ) =

Kp,i
∑

k=1

noi,kδ
doi,kτtoi,k +

Kp,i+Ke,i
∑

k=Kp,i+1

noi,kδ
doi,kτtoi,k exp

�

−δloi,k
�

+
Kp,i+Ke,i+Kc,i
∑

Kp,i+Ke,i+1

noi,kδ
doi,kτtoi,k exp

�

−ηoi,k

�

δ− εoi,k

�2
− βoi,k

�

τ− γoi,k

�2�

,

(3.7)

where Kp,i, Ke,i, and Kc,i represent the number of polynomial, exponential, and critical

terms of the pure fluid i respectively. noi,k, doi,k, toi,k, loi,k, βoi,k, γoi,k, εoi,k, and ηoi,k are

the fitted parameters. The pure fluid equations of state, which use only the polynomial

and exponential terms, can accurately reproduce the fluid behavior except for the critical

region. The exponential terms improve the equation behavior in the critical region

compared to the purely polynomial formulation. However, the Gaussian-bell shaped

terms allow for even more accurate reproduction of this behavior close to the critical

point. At the same time, they disappear when moving away from the critical point

itself.

The last, previously undefined term from Eq. (3.5) is the departure function, αr
i j (δ,τ).

Unlike in the GERG-2008 definition,42 the exponential term in the departure function

used in this work is temperature dependent:

αr
i j (δ,τ) =

K
∑

k=1

ni j,kδ
di j,kτt i j,k exp

�

−ηi j,k

�

δ− εi j,k

�2
− βi j,k

�

τ− γi j,k

�2�

, (3.8)

where di j,k, ni j,k, t i j,k, βi j,k, γi j,k, εi j,k, and ηi j,k are the fitted parameters. Although

they are empirical and arbitrary, constraints on their values were used during the fitting

process in order to obtain physically correct EOS behavior. The summation comprises

the polynomial terms when βi j,k = γi j,k = εi j,k = ηi j,k = 0, and the Gaussian bell-shaped
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terms when all fitted parameters are non-zero. This functional term allows to accurately

describe the thermal and caloric mixture properties within the uncertainty of measured

data and ensures reasonable behavior of the model in regions with poor data coverage.43

Calculating thermodynamic properties from Helmholtz energy

The thermodynamic properties are functions of the Helmholtz energy and its deriva-

tives. The modern formulation presented in the previous section allows calculating the

derivatives and the properties analytically. A complete discussion on derivatives neces-

sary to calculate the thermodynamic properties is presented in several publications and

is not repeated here.42–44 The notation, essential for understanding the calculations, is

introduced in two examples of derivatives of the ideal gas part and the residual part of

Helmholtz energies for mixtures:

αo
τ
=
�

∂ αo

∂ τ

�

δ,x
=

N
∑

i=1

x i

Tc,i

Tr

�

∂ αo
oi

∂
�

Tc,i/T
�

�

ρ

, (3.9)

αr
δ
=
�

∂ αr

∂ δ

�

τ,x
=

N
∑

i=1

x i

�

∂ αr
oi

∂ δ

�

τ

+
N−1
∑

i=1

N
∑

j=i+1

x i x j Fi j

�

∂ αr
i j

∂ δ

�

τ

. (3.10)

Analogically, the second mixed derivative of residual Helmholtz energy and the second

derivative with respect to density is denoted as

αr
δτ
=
�

∂ 2αr

∂ δ∂ τ

�

x
and αr

δδ
=
�

∂ 2αr

∂ δ2

�

τ,x
. (3.11)

The experimental data for four mixtures considered in this work is presented in Ap-

pendix A and is available for phase-equilibria, ρpT , speed of sound, and the second

virial coefficient. The single-phase properties can be defined as a function of the Helm-

holtz energy:

p (ρ, T, x) = ρRT
�

1+δαr
δ

�

, (3.12)

w (ρ, T, x) =

√

√

√

√

RT
M

 

1+ 2δαr
δ
+δ2αr

δδ
−

�

1+δαr
δ
−δταr

δτ

�2

τ2
�

αo
ττ
+αr

ττ

�

!

, (3.13)

µJT (ρ, T, x) =
1

Rρ

−
�

δαr
δ
+δ2αr

δδ
+δταr

δτ

�

�

1+δαr
δ
−δταr

δτ

�2
−τ2

�

αo
ττ
+αr

ττ

� �

1+ 2δαr
δ
+δ2αr

δδ

�

, (3.14)
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B (T, x) =
1
ρr

lim
δ→0
αr
δ
. (3.15)

Other, often used thermodynamic properties are presented in Table B.1 in a similar form.

Apart from the single-phase properties, the criteria for phase equilibria in mixtures can

be derived based on the Helmholtz energy formulation:















T ′ = T ′′

p′ = p′′

µ′i = µ
′′
i i = 1, ..., N

, (3.16)

where ′ and ′′ denote the liquid and vapor phases, respectively. µi is the chemical po-

tential of fluid i, defined as

µi =
�

∂ A
∂ ni

�

T,V,n j 6=i

= RT

�

�

∂ nαo

∂ ni

�

T,V,n j 6=i

+
�

∂ nαr

∂ ni

�

T,V,n j 6=i

�

, (3.17)

where A = nRTα and n =
∑N

i ni. The following work uses an existing tracing algo-

rithm written for this purpose45 – an algorithm for calculating and plotting the phase

envelopes.

Scaling the properties of helium–4 and neon with any physical theory can be challenging

because of the quantum phenomena influencing fluid behavior. Classical or quantum

effects will dominate depending on the length scale of interactions versus the thermal

de Broglie wavelength,

λth =

√

√ h2

2πmkBT
, (3.18)

where T is the temperature at which λth is calculated, h is the Planck constant, m =
M/NA is the particle mass with molar mass M ; NA is the Avogadro constant, and kB is

the Boltzmann constant, all given in Chapter Physical constants. Quantum effects are

important in determining the thermodynamics of helium, and to a lesser extent, neon.

Argon and nitrogen can be considered classical for most practical purposes. Despite

dealing with the fluids that show high and moderate quantum effects, the discussion

on quantum physics is secondary since the presented equations are empirical, and the

question about the origins of the intermolecular forces is irrelevant.

It is expected that the equation of state described above, and used throughout this work,

can successfully describe the properties of quantum fluids. However, the ratio of critical

temperatures of neon and helium–4 reaches 8.6. Similarly high values can be found in
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mixtures of methane with long-chain hydrocarbons and for hydrogen mixed with, e.g.,

carbon dioxide.46 Describing the properties of mixtures, characterized by high critical

temperature ratio, places high load on the departure function, necessary to accurately

represent the state properties.

3.2 Optimization algorithm

3.2.1 Methodology

The optimization method used for the equation of state development is based on non-

linear regression analysis and the Lavenberg-Marquardt algorithm (LMA),47,48 also

known as the damped least-squares. The LMA method is used to solve the non-linear

least-square problems and the curve fitting in particular. It is similar to the Gauss-

Newton algorithm but is characterized by higher robustness and lower speed.49 The

non-linear fitting is presently the most effective method used to develop the equations

of state and compared to the previously used linear least-squares regression, it does not

require linearizing data with the use of preliminary equations of state. Like many fitting

algorithms, the LMA finds only a local minimum, not necessarily the global minimum.

In order to find the global minimum or approach it sufficiently, so the EOS reproduces

the experimental data within a satisfactory error, additional constants, randomized co-

efficients, and weights are applied to the sum of squares (SSQ) during the optimization

procedure. Their impact on the SSQ minimization is described later in this chapter. The

expression for the residual sum of squares is given by

SSQ =
Nρ
∑

i=1

Wρ,i F
2
ρ,i +

Nw
∑

i=1

Ww,i F
2
w,i +

Ncp
∑

i=1

Wcp,i F
2
cp,i + . . . , (3.19)

where Wy,i is a weight applied to each data point of the thermodynamic property y .

Fy,i is the function used to minimize the relative deviation between the value calculated

with the equation of state yEOS,i

�

x ,β
�

for a given vector of fitted parameters β and the

data point yDATA,i measured at x .50 The function Fy,i for a single experimental point i is

evaluated as

Fy,i =
yDATA,i − yEOS,i

�

x ,β
�

yDATA,i
. (3.20)

The algorithm minimizes the SSQ = SSQ
�

x ,β
�

by changing β in an iterative procedure,

starting from a guess value. In each iteration step, the parameter vector β is replaced
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with a new guess value β +δ, and the function yEOS,i

�

x ,β +δ
�

is approximated as

yEOS,i

�

x ,β +δ
�

= yEOS,i

�

x ,β
�

+ Jiδ, (3.21)

where

Ji =
∂ yEOS,i

�

x ,β
�

∂ β
, (3.22)

is the gradient of yEOS,i with respect to β .

The initial guess value in the optimization process is often a recently developed equa-

tion of state for a similar fluid or mixture of fluids. Since this starting point is, most

probably, far away from the global minimum in the multi-dimensional parameter space

β , the fitting process is a supervised optimization that requires regular adjustments of

the coefficients for the sum of squares to decrease.

The variable quantities restricting the fitter behavior are:

• upper and lower bounds for the four parameters of the reducing function: βT,i j,

γT,i j, βv,i j, γv,i j;

• upper and lower bounds for ni j,k coefficients of the departure function;

• upper and lower bounds for the temperature exponents t i j,k of the departure func-

tion;

• upper and lower bounds for each of the Gaussian-bell shaped term within the

departure function;

• factors for randomized splitting the temperature exponents t i j,k within imposed

bounds;

• factors for randomized splitting the Gaussian-bell shaped terms within bounds;

• penalty coefficients for exceeding the limits imposed by bounds.

The limits are applied to the parameter space, so the minimization process is con-

strained. This frequent optimization practice prevents the algorithm from failing for

huge parameter values and allows the minimization process to advance quicker.

Fitting the single-phase properties to a fluid mixture data, with well-established equa-

tions for its pure constituents, is relatively simple and requires only an acceptable start-

ing point and minor adjustments of the fitter coefficients. Fitting the phase envelope

is a more complex procedure and is much more time-consuming. Because of this com-

plexity, the first optimization goal is to model the phase envelope accurately. It requires

a sensible choice of the experimental data to pin the dew and bubble lines and multiple
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iterations to approach the global minimum, passing through the local minima with a

use of random coefficients and variable penalties. When the phase envelope is fitted

to a satisfactory level defined through a visual inspection, the single-phase properties

are added to the sum of squares. The first solution often shows a trade-off between the

accurate fit of the phase-envelope and the single-phase properties. Additional iterations

and adjustments to the coefficients and penalties allow minimizing the total SSQ.

3.2.2 Fitter

The fitter is a program written in Fortran, specifically developed for the application to

the equations of state. It is a constantly evolving project, developed for the last two

decades, led by Eric W. Lemmon. Its core part was first written by Robert D. McCarty

and Vincent D. Arp, and it was first used to develop the equation of state for helium–4.51

The fitter has evolved tremendously since then, and thanks to its present state, it allows

for fitting the equations to data for complex mixtures.

The fitter uses the functional form of the Helmholtz energy EOS from Eq. (3.1), an alge-

braic form of a relationship between a dependent variable and the explanatory variables.

The fitter comprises the Helmholtz energy derivatives calculations, the thermodynamic

properties, and the algorithm for tracing the phase equilibria.

The important starting point for the fluid mixture property description are the equations

of state for pure fluids. The properties of helium–4,44 neon,13 argon,52 and nitrogen53

are well established and available in the form of the Helmholtz energy-explicit equa-

tions.

The variable parameters of the equation are the parameters of the departure function,

described in Eq. (3.3) and Table 3.1, and the parameters within the departure function

from Eq. (3.8). Depending on the number of Gaussian terms used in the equations, the

total number of parameters varies from 42 to 49 in this work.

3.2.3 Constraining the fitter behavior

An important advantage of the non-linear regression methods is the possibility of ap-

plying unequal comparative operators (greater than or less than) in constraints for con-

trolling the behavior of calculated properties. It is beneficial for properties extrapolated

outside the experimental data availability regions. The slope and curvature of a thermo-

dynamic surface can be adjusted in a region where no data is available, not impacting

the EOS behavior in another region, where experimental data pin the surface.
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Fortunately, the equation of state for a mixture takes advantage of the equations of

state for pure fluids composing the mixture. As a result, the constraining process for

the mixture EOS development can be much more straightforward than the necessary

constraints applied to a pure fluid equation.

In order to construct a constraint, three parameters are necessary: the constraint prop-

erty, a variable to hold constant, and the attribute of constraint property – a line, a slope,

the third, or the fourth derivative. For all the equations optimized in this work, only a

few constraints are necessary. An example of one of them, applied to the 4He−Ne equa-

tion, is a positive curvature of the 40 K isotherm in the speed of sound calculations for

pressures between 8 and 22 MPa.

3.2.4 Weighting the data

Weights are attributed to the data points or data sets during the EOS optimization pro-

cedure to impose direction for gradient calculations in the next minimization steps. A

single measurement point with a high weight influences the SSQ more than a point with

a small weight. For a known measurement uncertainty, Ui, the relative residual of an

experimental point i, measured as a function of temperature and pressure, is calculated.

An example for calculating the relative residual in density is given:

ζi =
ρEOS,i

�

pDATA,i, TDATA,i, xDATA,i,β
�

−ρDATA,i

�

pDATA,i, TDATA,i, xDATA,i

�

Ui(ρ)
. (3.23)

The absolute value of the relative residual equal to or lower than unity means that the

property prediction from the EOS is within the limit of experimental uncertainty. The

goal of assigning the weights to data is to drive the SSQ, so the relative residuals for

most of the points decrease below unity.

A good starting point for weight wi assigned to data point i is

Wi =
1

U2
i

. (3.24)

It favors the accurate measurements over the less accurate by increasing their weights

and importance in the SSQ calculations. If a data set is provided without the uncertainty

value or the specified uncertainty is questionable, the weighting process is subject to

expertise and introduced corrections to further the optimization procedure.
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3.3 Experimental data available

for the equations development

Reviewing the literature to search the experimental data can be tedious. It includes

searching for scientific publications, converting results between different unit systems,

and translating languages. Fortunately, the work on the literature review for the thermo-

dynamic properties was performed at NIST and is partly available within the ThermoLit

library.54 The scientific publications listed in ThermoLit are completed by additional lit-

erature review resulting in the data sets, presented in Tables A.1–A.4. A summary of the

experimental data from these tables is available in Table 3.2, the p− T space coverage

of available experimental data for density measurements is plotted in Fig. 3.1.

In contrast to pure fluids, the region of existing state points is always broader for mix-

tures since it is also composition-dependent. The experimental data sets available for

fluid mixtures are often smaller in size and more deficient in the thermodynamic prop-

erties coverage, e.g., the recent equation of state for helium–4 benefits from 145 data

sets covering 15 different properties.44 In contrast, the equation of state for 4He−Ne

is developed based on 8 data sets covering three properties. Therefore, it is more chal-

lenging to cover a comparable number of states for mixtures. Additionally, the pure

fluids benefit from historically longer interest among the experimental scientists.

Because of the relatively small number of data sets, data inconsistency is visible mainly

in the outliers. The outliers problem is easily solved by visualizing the complete data

sets in their measurement space and removing the large SSQ points based on the de-

viation plots. Minor inconsistencies are encountered between different data sets since

they rarely overlap. Some issues are visible at the phase envelopes. Fortunately, a visual

inspection based on the continuity of thermodynamic properties – pressure and temper-

ature, is sufficient to solve the inconsistency problems in this work. Another previously

described problem is the unknown phase envelope behavior at higher pressures. It is

visible for helium-neon and neon-argon and is subject to interpretation.

Table 3.2. Summary of the experimental data available for the equations development

fluid no. of properties no. of data sets no. of data points
4He−Ne 3 8 424
4He−Ar 3 20 1974
Ne−Ar 3 11 497

4He−N2 3 28 3788
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Fig. 3.1. p−T coverage of available ρpT data with composition dependent color scale.
x1 is the molar concentration of a lighter component

The equilibrium data available for the mixture of helium-neon are limited in pressure

up to 20 MPa. Even though the shape of the phase envelope at higher pressures is un-

known, this data availability limit is higher than most engineering applications need.

The model from this work shows satisfactory accuracy at lower pressures, with the ex-

trapolation behavior being acceptable. The equilibrium data and ρpT data for other

mixtures reach higher pressures, up to 1 GPa for helium-argon and helium-nitrogen,

and 100 MPa for neon-argon. The data sets are categorized based on fluid mixture and

measured property. In this form they are presented in Tables A.1–A.4. Whenever the au-

thors provide a satisfactory uncertainty discussion, the uncertainty values are included

in the table. Additionally, the last column in the table describes the Average Absolute

Deviation (AAD) of the data set, compared to the equations of state developed in this

work. The presented AAD values are calculated as follows:

AAD=
100
N

N
∑

i

�

�

�

�

yDATA,i − yEOS,i

yDATA,i

�

�

�

�

, (3.25)

where y is the thermodynamic property of choice and N is the size of the data set.

As shown in Appendix A, the only data that remain entirely unfitted in the EOS develop-

ment are the cross-virial coefficients, B. Physics dictates that it should only be a function

of temperature. However, the mixing rule also produces dependence on composition in

the multi-fluid model and, therefore, yields incoherent results. A combination rule,
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which allows accurately representing the cross-virial coefficients using one adjustable

parameter, has been recently proposed55 but is not implemented in this work. For com-

puting the AAD corresponding to the data sets from Tables A.1–A.4, an effective B12 was

calculated from the EOS at an equimolar composition.

3.4 Results of the equations of state development

The results are discussed for each mixture separately except for the binary specific pa-

rameters for all fluids presented in Table 3.3. The scaling parameter applied to departure

function, Fi j is set to unity for all mixtures since the departure function is fitted in this

work. Following the GERG monograph,43 a larger number of significant digits is given

for the Nk coefficients, compared to the other departure function parameters.

Depending on the mixture, the phase envelopes vary in shape, as discussed in Sec. 2.1.2;

they are either closed or open, and they can either have the gas-gas equilibrium (GGE)

locus or just the vapor-liquid equilibrium (VLE) dome. It is probable that all mixtures

considered in this work behave similarly,15,56 but this question is not investigated due

to the lack of high-pressure data for 4He−Ne and Ne−Ar.

The quality of the equations of state in single-phase is determined by comparing the

calculated deviations of data points and predictions obtained with these equations. De-

viations in density are plotted as a function of pressure and in speed of sound – as a

function of temperature. The phase envelopes for VLE and GGE calculations are con-

structed with the tracing algorithm for equilibria calculations of binary mixtures.45 The

algorithm solves the differential equations, which become infinitely stiff in the close

vicinity of the critical line. This property should be interpreted as the critical line pre-

diction, and it is visible in all 3D and 2D figures as a white gap between the dew and

bubble lines. The right plot in each equilibria figure is the projection of the phase enve-

lope from the left figure on the two-dimensional log(p)− x plane.

Table 3.3. Binary specific parameters

i − j βT,i j γT,i j βv,i j γv,i j

4He−Ne 0.793 0.728 1.142 0.750
4He−Ar 1.031 1.113 1.048 0.862
Ne−Ar 1.033 0.967 0.919 1.035

4He−N2 1.028 1.229 1.036 0.935
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3.4.1 Helium-neon

In addition to four reducing parameters from Table 3.3, the model optimization includes

deriving the departure function from Eq. (3.8). The temperature and density-dependent

parts of the departure function for the mixture of helium–4 and neon are presented in

Table 3.4. This set of coefficients forms a valid equation of state.

The phase behavior of the helium-neon mixture is shown in Fig. 3.2. The phase enve-

lope projection on p − x plane with plotted isotherms allows evaluating the equation

performance visually. Fig. 3.3 presents the relative deviations of the EOS with respect

to the experimental data used for its development. The density deviations are small

and do not exceed 0.5% except for the lower accuracy data at 30–40 K, as shown in

Fig. 3.3a. The speed of sound deviations reach 6%, as presented in Fig. 3.3b. As shown

in Fig. 3.1, the pressure range of available data for this binary pair is narrower for ρpT ,

compared to other mixtures discussed in this work. A T−s diagram is shown in Fig. 3.4,

as an exemplary plot of a thermodynamic property, calculated with the EOS. More plots

for thermodynamic properties are available in Appendix B.

Table 3.4. Departure function coefficients for the helium-neon mixture

k Nk tk dk ηk βk γk εk

1 -4.346 849 1.195 1 0 0 0 0
2 -0.884 378 1.587 2 0 0 0 0
3 0.258 416 1.434 3 0 0 0 0
4 3.502 188 1.341 1 0.157 0.173 1.310 1.032
5 0.831 330 1.189 2 0.931 1.070 1.356 1.978
6 2.740 495 1.169 3 0.882 0.695 1.596 1.966
7 -1.582 230 0.944 4 0.868 0.862 1.632 1.709
8 -0.304 897 1.874 4 0.543 0.971 0.766 0.583
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(a) Closed phase envelope shown in 3D space
of p− T − x with isobars in red and isotherms
in black
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(b) Projection of the VLE isotherms on the p−
x plane plotted with experimental data57,58 in
temperature-dependent color scale

Fig. 3.2. Vapor-liquid equilibrium (VLE) of helium-neon

(a) Deviations from density data59–63 as a function of pressure

(b) Deviations in speed of sound for data from Pashkov et al. (1985)64

Fig. 3.3. Relative deviations of the 4He−Ne equation from the single-phase data
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Fig. 3.4. Temperature-entropy diagram of the 4He−Ne mixture at equimolar (0.5/0.5)
composition with isobars, saturation line, and the critical point marked with a star. More
plots are available in Fig. B.1.

3.4.2 Helium-argon

In analogy to the helium-neon mixture, the reducing parameters from Table 3.3 are

completed with the departure function for helium-argon, given in Table 3.5. This EOS

is capable of describing the fluid behavior in the vapor-liquid and gas-gas equilibria

regions. The phase envelope for 4He−Ar is of class III15 and is shown in Fig. 3.5 in the

three-dimensional, p− T − x space, together with its projection on the p− x plane.

Table 3.5. Departure function coefficients for the helium-argon mixture

k Nk tk dk ηk βk γk εk

1 -2.643 654 1.030 1 0 0 0 0
2 -0.347 501 0.288 2 0 0 0 0
3 0.201 207 0.572 3 0 0 0 0
4 1.171 326 1.425 1 0.371 0.320 1.409 0.378
5 0.216 379 1.987 1 0.081 1.247 1.709 0.741
6 0.561 370 0.024 2 0.375 1.152 0.705 0.322
7 0.182 570 1.434 3 0.978 0.245 1.162 1.427
8 0.017 879 0.270 4 0.971 1.030 0.869 2.088
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(a) Open phase envelope of class III shown in
3D space of p− T − x with isobars in red and
isotherms in black
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(b) Projection of the VLE+GGE isotherms
on the p − x plane plotted with experimen-
tal data65–72 in temperature-dependent color
scale

Fig. 3.5. Vapor-liquid (VLE) and gas-gas equilibria (GGE) of helium-argon

(a) Deviations from density data73–80 as a function of pressure

(b) Deviations from speed of sound from data80–83 as a function of temperature
Fig. 3.6. Relative deviations of the 4He−Ar equation from the single-phase data
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The measurements for 4He−Ar at equilibrium and in single-phase cover a broader range

of temperature and pressure compared to helium-neon. Not only are there more data

sets, but a broader range of pressure is covered by the experimental data, reaching

1 GPa for ρpT and the phase equilibria measurements. At low pressures (0-–10 MPa),

the equation deviates by 0.5%—2.5% for 95% of density data points used for its de-

velopment, as presented in Fig. 3.6a. The deviations in density at lower pressures are

comparable with the measurement uncertainties, presented in Table A.2. However, for

pressures above 100 MPa, the equation deviates from data by 5% in density, more than

reported experimental uncertainties. The deviations of EOS to the speed of sound data

are shown in Fig. 3.6b and reach 10% in the worst case.

3.4.3 Neon-argon

Similar to the helium–4 mixtures, the gas-gas equilibrium may exist at high pressures

in the binary pair of neon and argon. However, no measurements are available in the

literature on the gas-gas equilibrium. Therefore, the GGE shape is not anticipated, as

the mathematical description is cut at 100 MPa – the highest available pressure for

the equilibria measurements. Compared to the helium-neon mixture, the equilibria

measurements for Ne−Ar provide a fuller description of the upper part of the phase

envelope for the vapor-liquid equilibrium.

Following the two previous equations, the EOS for Ne−Ar is formed with the reducing

parameters from Table 3.3 and the departure function from Table 3.6.

Fig. 3.7 presents the constructed phase envelope for the mixture and the projected

isotherms. Figures 3.8a and 3.8b show deviations of the single-phase data used for

the EOS development, ρpT and the speed of sound measurements respectively. The

density measurements reach 55 MPa in cryogenic conditions and 1 GPa at ambient tem-

Table 3.6. Departure function coefficients for the neon-argon mixture

k Nk tk dk ηk βk γk εk

1 -1.039 686 0.723 1 0 0 0 0
2 0.593 776 1.689 2 0 0 0 0
3 -0.186 531 1.365 3 0 0 0 0
4 -0.223 315 0.201 1 1.018 0.360 1.119 2.490
5 0.160 847 0.164 2 0.556 0.373 1.395 1.202
6 0.405 228 0.939 2 0.221 0.582 1.010 2.468
7 -0.264 563 1.690 3 0.862 0.319 1.227 0.837
8 -0.033 569 1.545 4 0.809 0.560 1.321 2.144
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(a) Phase envelope with visible opening to
GGE shown in 3D space of p− T − x with iso-
bars in red and isotherms in black
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(b) Projection of the VLE isotherms on the p−
x plane plotted with experimental data69,84–87

in temperature-dependent color scale

Fig. 3.7. Vapor-liquid equilibrium (VLE) of neon-argon

(a) Deviations from density data60,79,80,85 as a function
of pressure

(b) Deviations in speed of
sound for data from Konovod-
chenko et al. (1981)88

Fig. 3.8. Relative deviations of the Ne−Ar equation from the single-phase data

perature. The equation has maximal errors of 5% for the density data, but for 90% of

data, the error stays below 3%. Data sets are available for only four temperature values

and accurate experimental data are missing for temperatures from 120 to 298 K.
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(a) Open phase envelope of class III shown in
3D space of p− T − x with isobars in red and
isotherms in black
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(b) Projection of the VLE+GGE isotherms
on the p − x plane plotted with experimen-
tal data69,72,89–99 in temperature-dependent
color scale

Fig. 3.9. Vapor-liquid (VLE) and gas-gas equilibria (GGE) of helium-nitrogen

3.4.4 Helium-nitrogen

In contrary to the three mixtures described above, the equation of state for 4He−N2

has not been published. It was developed during a time-constrained collaboration with

the industry and needs further refinement to reach a satisfactory performance at the

phase envelope and in single-phase. The primary goal of its development was the low-

pressure (up to 5 MPa) phase-equilibria description, and in this region, the equation

performs well. The coefficients from Tables 3.3 and 3.7 form the equation of state for

the helium-nitrogen mixture.

Table 3.7. Departure function coefficients for the helium-nitrogen mixture

k Nk tk dk ηk βk γk εk

1 -3.122 496 0.786 1 0 0 0 0
2 -0.245 826 0.232 2 0 0 0 0
3 0.172 129 0.502 3 0 0 0 0
4 1.455 886 0.304 1 0.736 0.590 1.048 0.387
5 0.681 733 0.483 2 0.782 0.348 0.957 1.133
6 0.228 133 1.419 3 0.846 0.576 1.539 1.357
7 0.053 118 0.261 4 0.660 0.454 0.778 1.773
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(a) Deviations from density data96,100–113 as a function of pressure

(b) Deviations from speed of sound data114,115 as a function of pressure
Fig. 3.10. Relative deviations of the 4He−N2 equation from the single-phase data

Fig. 3.9 shows the phase envelope for the mixture. Deviations in density are presented

in Fig. 3.10a and deviations in speed of sound – in Fig. 3.10b. The 4He−N2 equation

provides similarly accurate predictions for density as, e.g., the 4He−Ar equation. How-

ever, it fails more often in single-phase properties calculations. At pressure values higher
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than 10 MPa, the equation deviates from density data for more than 2.5%. Additionally,

the phase equilibria calculations are less accurate, particularly in the separation region.

The equation should probably be refitted with a larger number of the departure function

terms, so its accuracy improves.

3.5 Uncertainty discussion at phase boundary

When applying the isothermal error calculations based on the comparison of the bubble

or dew pressures for a given mixture composition, large calculated deviations can be

obtained when an isotherm in the log(p)− x plane is vertical or very steep. However,

the data point may still be very close to the phase envelope, which is a degeneracy in

the means of error quantification.

In order to evaluate errors at phase equilibria, the orthogonal length scale for data

versus EOS is defined. The dimensionless, orthogonal error is calculated by finding

the smallest distance between the experimental data point ((xdata, p̂data) , Tdata) and the

respective isotherm evaluated with the EOS
��

xmin
calc , p̂min

calc

�

, Tcalc

�

, where Tdata = Tcalc and

p̂ is the reduced pressure, defined as:

p̂ =
p
pr

. (3.26)

After comparing the impact of the reducing scales, pr, on the error value, the logarithmic

reducing scale has been selected among the linear and density-temperature reducing

scale (pr = p (ρr, Tr)),

§

pr,x = exp
�

x1 ln
�

pc,1

�

+ x2 ln
�

pc,2

��

pr,y = exp
�

y1 ln
�

pc,1

�

+ y2 ln
�

pc,2

�� , (3.27)

where pc,i is the critical pressure of component i. pr,x reduces the pressure for the bubble

points, and pr,y reduces the pressure for the dew points. The error itself is defined as a

sum of distances between the data point xdata and the closest point from the respective

isotherm in the earlier defined p̂− x plane







errvle
x = ±

È

�

xdata − xmin
calc

�2
+
�

ln (p̂data)− ln
�

p̂min
calc,x

��2

errvle
y = ±

È

�

ydata − ymin
calc

�2
+
�

ln (p̂data)− ln
�

p̂min
calc,y

��2 , (3.28)

where xdata and p̂data are the molar composition and reduced pressure for the experi-

mental data point. xmin
calc and p̂min

calc,x are the molar composition and the reduced pressure

evaluated with the EOS at the same temperature as the data point. This error definition
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Fig. 3.11. Schematic representation of the orthogonal error calculations for the phase
envelopes. Circles are the VLE experimental data, star is the critical point, and triangle
is the maxcondentherm. Green line is an isotherm evaluated with the EOS plotted in
the two-dimensional space of reduced pressure p̂ = p/pr versus mole fraction in liquid
phase x and vapor phase y .

is represented schematically in Fig. 3.11, where the error value can be interpreted as

the length of the solid black line. Numerically, the error is evaluated by calculating the

distances between an experimental point and all points forming the respective isotherm.

The error is the smallest value among them. The sign convention is chosen, so the pos-

itive error represents the EOS calculating too large a pressure compared to data and

negative when calculating too small a pressure. Two experimental compositions for liq-

uid and vapor from one measurement are marked with circles (the same pressure and

temperature). It is essential to highlight that the compositions at the minimum point and

experimental point can be different. The advantage of the orthogonal metric over the

pressure-based metric is visible for the prediction giving too small a composition com-

pared to the actual experimental point placed above the calculated maxcondentherm.

For this case, the pressure-based metric does not provide the error value.

Fig. 3.12 presents results for the described error calculations. The orthogonal error is

plotted for four mixtures with a color-coded absolute value of error in equilibria calcula-

tions. The same values are plotted as a function of pressure in Fig. 3.13. The histograms

show the distribution of error values in the pressure range (x-axis) and the orthogonal

error range (y-axis).

While the composition for the phase equilibrium calculations is always in the range of

[0, 1], the logarithm of reduced pressure ln (p̂) can reach values up to 7 for the absolute

pressure of 1 GPa and the defined pressure metric. Therefore, the error definition from

Eq. (3.28) and the chosen pressure metric emphasize the pressure error more than the

composition error.
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(a) 4He−Ne phase envelope
with maximal error of 0.038
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(b) 4He−Ar phase envelope
with maximal error of 0.0979
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(c) Ne−Ar phase envelope
with maximal error of 0.0957

0.0 0.2 0.4 0.6 0.8 1.0
xHe, yHe / molar

10 2

10 1

100

101

102

103

p 
/ M

Pa

0

2

4

6

8

10

10
0 

 a
bs

ol
ut

e 
or

th
og

on
al

 e
rr

or

(d) 4He−N2 phase envelope
with maximal error of 0.0938

Fig. 3.12. Absolute orthogonal error for the vapor-liquid and gas-gas equilibria

Fig. 3.13. Distribution of the orthogonal error values plotted with marginal histograms
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composition plotted with
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Fig. 3.14. Orthogonal error and resulting absolute errors plotted for four mixtures.
Colors in subfigures (b) and (c) follow the colors imposed in subfigure (a).

Fig. 3.14a shows that 90% of all equilibria points have orthogonal error below 0.02 for
4He−Ne and Ne−Ar; and 78% of 4He−Ar points have orthogonal error in this range.

The orthogonal metric is less intuitive than the pressure-based error description. How-

ever, it can be unfolded to the absolute units. Fig. 3.14b shows the molar composition

error in equilibria calculations, obtained with orthogonal metrics and recalculated to ab-

solute values. The absolute error in composition increases symmetrically and reaches a

maximum at equimolar composition. The error is expected to decrease to negative infin-

ity for both endpoints, where the mixture equation becomes the pure fluid equation with

no composition dependence. The pressure-dependent performance validation, visible

in Fig. 3.14c shows a similar trend for all four equations. Compared to Fig. 3.13, where

the error seems to be pressure-independent, its representation in absolute units reveals

a clear pressure-dependence. This shortcoming of the orthogonal error definition can

be explained by analyzing its definition from Eq. (3.28). While the composition error,

(xdata−xmin
calc), takes uniform values over the composition range, the pressure error, calcu-

lated as an absolute difference of logarithms of reduced pressure, (ln(p̂data)− ln(p̂calc,x)),
underemphasizes the errors at higher pressure.

Fig. 3.12 may suggest that the phase equilibria description is more accurate for 4He−Ne

than for, e.g., 4He−Ar. Fig. 3.14c shows that lower error values of the helium-neon

phase envelope description are driven by a narrower pressure range of available exper-

imental data, and complete error analysis can be made only after unfolding the orthog-

onal error to absolute units.
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Compared to the conventional error evaluation, defined as a relative difference in pres-

sure, the orthogonal metric is advantageous because it provides an error value for every

data point independent of the slope of an isotherm. The pressure-based metric provides

error values for 53.3% of points used for 4He−Ar (the least out of four EOS) and 96.4%

of points for Ne−Ar (the most out of four EOS).

3.6 EOS performance comparison

The previously defined empirical equations of state, used in REFPROP 10.0,116 for mix-

tures of 4He−Ne, 4He−Ar, Ne−Ar, and 4He−N2 were developed by fitting the reduc-

ing parameters: βT, γT, βV, γV, together with the scaling parameter, Fi j. The departure

functions were not binary-specific, and the equations did not accurately represent the

phase envelopes but were sufficiently precise in single-phase. The equation of state

for helium-neon used the departure function for the nitrogen-ethane mixture.117 The

helium-argon and helium-nitrogen EOS used the generic departure function for hydro-

carbon mixtures.43 The model for neon-argon used the reducing function only and did

not fit the Fi j to any existing departure function.118 As a result, the tracing routines for

the phase equilibria failed for 4He−Ne and 4He−N2, and did not provide any satis-

factory description for the supercritical and high-pressure phase equilibria of 4He−Ar.

The routines only provided an approximate phase equilibria description for Ne−Ar,

resulting in a maximal error in composition equal to 12 mol-%.

The most considerable advantage of fitting the reducing parameters, together with the

binary-specific departure functions, is the accurate description of phase-envelope prop-

erties for all the mixtures. This advantage cannot be underestimated since it provides

essential insights for engineering applications that consider liquefaction or working con-

ditions in the vicinity of the two-phase region. The single-phase properties are also well

represented in the equations developed in this work.

A comparison of the equations developed within this work to the previously used equa-

tions shows that 70% of density points for all mixtures are represented more accurately

with new equations. However, only 41% of the speed of sound data is represented

more accurately. 82% of the Joule-Thomson coefficients, discussed in Chapters 4 and 5,

are represented more accurately with new equations. The inferior quality of the speed

of sound representation is caused by fitting the new equations to the phase equilibria

data. Since the new equations can model the behavior at phase envelopes, including

the high-pressure gas-gas equilibrium, the lower precision for the single-phase property

representation can be looked at as a cost.
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Fig. 3.15. VLE isenthalps of 4He−Ne calculated with empirical equations of state from
this work,40 quantum-corrected cubic equation,22 and quantum-corrected SAFT equa-
tions.32 Circles mark the experimental data.

Fig. 3.15 shows a comparison of isotherms at phase envelope of 4He−Ne, calculated

with the empirical Helmholtz energy equation developed in this work and three other,

recently published equations. The empirical equation gives by far the most accurate

predictions in the phase equilibria calculations. It is the only one that is capable of

providing the full description of the VLE and GGE phases for 4He−Ar and 4He−N2.

3.7 Validation data

When implementing new equations of state in software, such as REFPROP,116 CoolProp,2

or Trend,119 the EOS should be validated against the data points provided to verify if the

implementation was successful. If the software uses the same pure fluid equations as

given in this work (helium-4,44 neon,13 argon,52 and nitrogen53), the implementation of

mixture equations with CoolProp (version 6.4.2dev) should return the same results in

pressure calculations up to the last significant digit. A script in the Python language is

Table 3.8. Data points at equimolar (0.5/0.5) composition for EOS validation

i − j T/K ρ/
�

mol dm−3
�

p/Pa
4He−Ne 200.0 10.0 18 430 775.292 600 896
4He−Ar 200.0 10.0 17 128 034.388 362 616
Ne−Ar 200.0 10.0 15 905 875.375 781 253

4He−N2 200.0 10.0 17 996 716.424 240 347
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provided Appendix C in which calculations with CoolProp reproduce exactly the values

in Table 3.8. The fluid files are also provided in text form and loaded at runtime. The

calculated values in REFPROP 10.0 deviate by 10−3 Pa due to truncation of the reducing

density for argon after converting from kg m−3 to mol dm−3.

3.8 Conclusions from the EOS development

All of the presented equations of state show satisfactory performance in single-phase

and at the phase envelope for pressures up to 10− 20 MPa, which covers most of the

engineering applications. For higher pressures, if the experimental data is available, the

performance of the equations decreases. However, the error remains within 5% margin

for the ρpT data and within 10% margin for the speed of sound data. Since the exper-

imental data is only available for these two single-phase properties, the conclusions on

accuracy of the equations cannot be easily extended to calculations of, e.g., the isobaric

specific heat or the enthalpy change. In order to perform a complete cryogenic process

cycle design with known uncertainty of the equation of state, additional measurements

of, e.g., the isobaric heat capacity are necessary.

The results obtained in this work, as well as the recent work performed by A. Aasen et al.

show that the simple mixing rule, such as the Lorentz-Berthelot mixing rule,120,121 can

be successfully applied to quantum fluids. The quantum-corrected cubic equation22 and

the Feynman-Hibbs-corrected equation for Mie fluids32 may be faster to develop as the

optimization process requires only a few parameters to be fitted. The multiparameter

empirical equation of state from this work seems to provide the most accurate descrip-

tion at the phase envelope. The single-phase properties are not compared as the publi-

cations on cubic and SAFT equations do not discuss their performance in single-phase.

The orthogonal error is helpful for the performance validation in the phase envelope

calculations since it provides the error values for all the equilibria data points, unlike

the standard pressure-composition error metric. The orthogonal metric can also be con-

sidered a criterion for a single-objective optimization. It may contribute to finding a

global minimum of the multiparameter space and obtaining the desired performance of

an equation in the phase equilibria calculations. Two weights, wx y and wp, are applied

to the metric, defined in Eq. (3.28), forming the dew- and bubble-line contributions to

the objective function:







errvle
x =

È

wx y

�

xd − xmin
c

�2
+wp

�

ln (p̂d)− ln
�

p̂min
c,x

��2

errvle
y =

È

wx y

�

yd − ymin
c

�2
+wp

�

ln (p̂d)− ln
�

p̂min
c,y

��2 . (3.29)
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The weights, wx y and wp, allow to compensate for unequal influence of composition

errors compared to the reduced pressure errors in the sum of squares calculations:

SSQvle =
N
∑

i=1

errvle
x ,i +

N
∑

i=1

errvle
y,i, (3.30)

where vle marks all possible equilibria calculations: vapor-liquid, gas-gas, liquid-liquid,

or any other. Additionally to the sum of squares defined above, the weighted single-

phase errors are calculated conventionally, as defined in Eq. (3.19). The total sum of

squares is the sum of the two:

SSQ =
Nvle
∑

i=1

errvle
x ,i +

Nvle
∑

i=1

errvle
y,i +

Nρ
∑

i=1

Wρ,i F
2
ρ,i +

Nw
∑

i=1

Ww,i F
2
w,i +

NµJT
∑

i=1

WµJT ,i F
2
µJT ,i. (3.31)

The single-phase experimental data available for the fluid mixtures considered in this

work is limited to density, speed of sound, and the Joule-Thomson coefficients. There-

fore, the sum of squares defined above is a function of these three properties. However,

any other thermodynamic property can be analogously used to fit the equation to data.

Various stochastic and deterministic algorithms can be used, among which the Nelder-

Mead method and differential evolution are tested and explored in more detail.122–124

Deterministic methods require a guess value to start minimization. The parameters from

an existing EOS used as the starting values allow to successfully decrease the single-

objective SSQ function and minimize deviations between the EOS and experimental

data. Unfortunately, as discussed in Sec. 3.2.3, constraints are necessary to ensure the

correct slope and curvature of the isolines. Since they are not implemented, the SSQ

decreases over the iterations but the curvature of the isolines becomes incorrect.

Undoubtedly, the orthogonal metric has potential in EOS development. However, its

correct implementation requires valid constraints applied on the slope and curvature of

the isolines, which for the moment are missing in Eq. (3.31). Additional difficulty with

the stochastic minimization is the sensitivity of the equilibria tracing algorithm to the

departure function parameters. Initializing the stochastic algorithm, e.g., differential

evolution with a random guess for both the reducing and departure functions, leads to

repetitive failures in tracing the phase equilibria. Over the generations, many solutions

are failures, which prevents the algorithm from calculating the orthogonal error and

converging reliably.

Further work on the algorithm, and constraints, in particular, is necessary, but the dis-

cussed logic is a promising approach on the way to automatic EOS development.
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4 ISENTHALPIC JOULE-THOMSON

COEFFICIENT MEASUREMENTS

A limited number of experimental data is found in the literature for the mixture of
4He−Ne at cryogenic temperatures. Fig. 3.3 and Table A.1 show no data available in

the single-phase region for 50 – 230 K temperature range. This region overlays with the

equation applicability for designing the precooling cycles of the next-generation scien-

tific instruments, e.g., fusion reactors and particle accelerators.3 Therefore, the equa-

tion performance should be confirmed experimentally, so the complete thermodynamic

surface is validated and the equation becomes a well-grounded source of properties in

broad p− T − x space.

In this work, the measurements of the Joule-Thomson coefficient are discussed for tem-

perature between 50 and 100 K and pressure up to 10 MPa. This p− T region is chosen

based on the interest of the process cycle engineering.

Compared to other thermodynamic properties, the isenthalpic Joule-Thomson coeffi-

cient, µJT has historically shown lower measurement accuracy. However, the experi-

mental setup necessary for its acquisition can be simple and accessible.

This chapter describes the thermodynamics behind the Joule-Thomson (JT) coefficient

and its meaning for the equations of state development. It reviews the literature on

past measurements of the Joule-Thomson coefficient. Two measurement methods are

presented, their advantages and shortcomings are discussed. One is chosen and adapted

to the needs of this work.

4.1 Thermodynamic determination

of the Joule-Thomson coefficient

The Joule-Thomson effect describes the temperature change of a real gas or liquid when

throttled through a porous plug, a valve, or a capillary at constant enthalpy. The effect
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is characterized by the Joule-Thomson coefficient, which is the thermodynamic quantity

that measures a differential temperature change of a fluid with a differential pressure

change at constant enthalpy and composition

µJT =
∂ T
∂ p

�

�

�

�

h, x̄

, (4.1)

where T is the temperature in K, p is the pressure in Pa, h is the specific enthalpy in

J kg−1, and x̄ is the molar composition vector. In order to measure the JT coefficient, the

fluid is maintained at constant temperature and pressure and throttled under steady-

flow conditions into a lower-pressure region. The JT coefficient can be positive, which

corresponds to a fluid temperature decrease in the throttling process, or negative, which

corresponds to its temperature increase.

In the Joule-Thomson transformation, the enthalpy,

H = U + pV, (4.2)

remains constant. In the equation above, U is the internal energy of a fluid, p is the

pressure, and V is the volume.

The Joule-Thomson coefficient can be derived from the fundamental equation of ther-

modynamics, dH = TdS + Vdp and it can be expressed as

µJT =
1
cp

�

T
∂ v
∂ T

�

�

�

�

p

− v

�

, (4.3)

where cp is the specific heat in J (kg K)−1 and v is the specific volume in m3 kg−1.

Since v = RT/p for ideal gas, the derivative (∂ v/∂ T )p simplifies to v/T = R/p. There-

fore, the above, substituted into Eq. (4.3) results in µJT = 0 for ideal gas. There is no

Joule-Thomson effect in ideal gas because there are no interactions – no attraction and

no repulsion. In this perspective, the Joule-Thomson coefficient is an image of the inter-

actions. However, compared to the compressibility factor or the virial coefficients this

image is somewhat distorted. At the limit of zero density, a real gas is characterized by

Z = 1 and B = C = 0 but µJT 6= 0.

The Joule-Thomson coefficient for a gas obeying the van der Waals equation of state can

be derived from the virial equation approximation for the van der Waals gas125

µJT =
2a
RT − b

cp
+ . . . , (4.4)
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Fig. 4.1. Joule-Thomson coefficient and compressibility factor for pure helium–4 and
pure neon, calculated with CoolProp.2

where a is the measure of the average attraction between particles and b is the co-

volume or the repulsive term, as described in Sec. 2.2.3.

For low temperatures, when T → 0, the Joule-Thomson coefficient can be, therefore,

approximated with 2a/
�

cpRT
�

+ . . .. In contrast, for very high temperatures, it can be

approximated with −b/cp+. . . With these relations, it can be concluded that at low tem-

peratures, the inter-molecular attraction is the most significant interaction. Whereas,

at high temperatures, the repulsive force dominates. It has to be emphasized that the

analysis above serves only to understand the Joule-Thomson phenomenon. In reality,

a very cold gas also observes a negative Joule-Thomson coefficient as later shown with

the inversion curves – lines in p− T space at which µJT changes signs. When a real gas

expands at low temperatures inside its inversion curve, the average distance between

molecules increases. Since the molecules attract each other, this process requires en-

ergy. In the adiabatic transformation, i.e., the Joule-Thomson transformation, the only

source of energy is the internal energy of the gas itself. Therefore, the temperature has

to decrease in a real gas.

The compressibility factor, Z , is the ratio of pV of a real gas to pV of ideal gas at the

same temperature. At low temperature, Z and pV increase as the gas expands, resulting

in a positive µJT. At high temperatures, Z and pV decrease as the gas expands. If

they decrease enough, the Joule–Thomson coefficient is negative. Both thermodynamic

properties, µJT and Z , measure deviations of a real gas behavior compared to ideal gas.

Fig. 4.1 shows the Joule-Thomson coefficient and the compressibility factor for pure
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helium and neon. It is visible that the lower the pressure and the higher the temperature,

µJT → 0 and Z → 1. That is where both helium and neon can be treated as ideal gas.

At low temperature and high pressure, the ideal gas approximation is no more valid.

It is important to emphasize that even in normal conditions, µJT 6= 0 for neither of the

fluids.

Both helium–4 and neon have the particularity of increasing their temperature when

throttled from ambient temperature in the JT process. This phenomenon is visible for

both gases in Fig. 4.1, where µJT < 0 at 300 K independent on the pressure. Fig. 4.2 also

shows this particularity with the use of inversion curves plotted in p − T space. These

curves are the lines on which µJT changes sign from positive – inside to negative – out-

side. For neither of the fluids, the positive µJT region reaches 300 K. The only other

fluid experiencing similar behavior is hydrogen.126 Those three fluids can, of course,

experience cooling in the JT isenthalpic transformation but only when expanding from

inside their Joule-Thomson inversion temperatures. This specific temperature depends

on the expansion starting pressure, the nature of the fluid and occurs when the isen-

thalpic line is flat in the p − T space – when µJT = 0. Geometrically, this change of a

real gas behavior indicates a change of slope of the isenthalpic lines from positive, when

µJT = (∂ T/∂ p)h,x > 0 to negative, when (∂ T/∂ p)h,x < 0.

The Joule-Thomson coefficients calculated from the virial, Eq. (2.13) or the Benedict-

Webb-Rubin equation of state, Eq. (2.17) deviate from the experimental measurements

by an inexplicably high value.127 Modern equations of state, such as the empirical equa-

tion explicit in Helmholtz energy, Eq. (3.1) do not show this behavior. They can yield

results coherent with measured Joule-Thomson coefficients, as discussed in Sec. 4.2.
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Fig. 4.3. One of the versions of the radial flow apparatus used by Roebuck et al.128–133

Therefore, if measured accurately, the JT coefficient can be a useful property for the

equations of state validation. Moreover, its definition from Eq. (3.14) shows that it

comprises almost all the residual Helmholtz energy first and second derivatives, except

for αr
τ
(δ,τ, x) = (∂ αr/∂ τ)δ,x . This definition makes the Joule-Thomson coefficient,

next to the speed of sound, a good property to verify the equation behavior.

4.2 Literature review for the JT coefficient

Most of the research on the Joule-Thomson coefficient measurements in fluids was per-

formed fifty to one hundred years ago. Extensive work on this topic was done by the

team of J. R. Roebuck at the University of Wisconsin.128–133 In the course of their stud-

ies, they developed the radial flow apparatus shown in Fig. 4.3, where a cylindrical-

shaped porous material imposed a small pressure drop. Two thermometers were placed

directly in the fluid before and after the porous plug, not impacting the temperature

measurements by additional thermal conductivity. They measured the Joule-Thomson

coefficients at ambient temperatures for air; and at low temperatures for helium, argon,

nitrogen, and carbon dioxide. Limited uncertainty discussion concludes that the results

for nitrogen differ from µJT data, calculated from compressibility factors134 by 0.5% to

2.5%. However, the very accurate equation of state for pure nitrogen shows deviations

in the order of 10% from measurements.53 Roebuck et al. are the only authors to mea-

sure the Joule-Thomson coefficient at cryogenic temperatures. However, as shown later,

the consistency and accuracy of their measurements decrease significantly when moving

away from the ambient temperature.

R. C. King, J. H. Potter, and M. J. Levy135,136 used an experimental setup similar to the

Roebuck’s and measured the JT coefficient in nitrogen with low ∆p imposed by the

axial-flow porous plug. The authors measured the JT coefficient only at above-ambient

temperatures and pressures not exceeding 1 MPa.

More extensive work on the Joule-Thomson coefficient measurements for propane and

n-butane was performed at the California Institute of Technology and is described in the
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Ph.D. thesis of R. L. Smith.137 The author measured the JT coefficients in an axial-flow

setup, similar to the Roebuck’s for pressures up to 0.5 MPa and above ambient tempera-

tures. The reported maximal relative error is equal to 1.5% and accurately corresponds

to deviations calculated with the pure fluid Helmholtz EOS, shown in Table 4.1.

K. Bier, G. Ernst, and G. Maurer measured the Joule-Thomson coefficient values for

propylene with a throttling valve.138 These measurements at ambient temperature were

somewhat subsidiary to the measurements of the isobaric specific heat. The authors

reported 1.5% measurement uncertainty for µJT, which remains in agreement with de-

viations calculated from the pure fluid EOS.

The comparison of the µJT data found in literature with existing and accurate EOS ex-

plicit in Helmholtz energy is presented in Fig. 4.4 and Table 4.1. The Average Absolute

Deviation for the experimental data set of measured property y is calculated as

AAD=
100
N

N
∑

i

�

�

�

�

yEOS,i − yd,i

yEOS,i

�

�

�

�

. (4.5)

In contrary to the analysis performed with Eq. (3.25), this time, the equations of state are

treated as the reference values, and the measurement deviations are estimated against

those accurate EOS for pure fluids. The gray area in Fig. 4.4 shows ±5% deviations of

data compared to equations. 83.1% of all points are within ±5% of values calculated

with EOS and 88.4% within ±10%. The 5% deviation obtained for most points shows

that the Joule-Thomson coefficient can be measured with similar precision as the cp or cv,

the caloric properties necessary to constrain the EOS behavior in single-phase. However,

it cannot approach the precision of the speed of sound or density measurements (0.02%
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Table 4.1. Deviations of existing experimental data for µJT from Helmholtz energy EOS

measurements fluid (EOS) max
�

∆µJT
µJT

�

/% AADa/% n
�

∆µJT
µJT
≥ 5%

�b

Bier et al.138 propylene142 1.58 0.62 0/12
Potter et al.135,136 nitrogen53 2.87 1.20 0/15

Roebuck128 air143 32.29 4.28 9/63
Roebuck, Osterberg129 helium44 30.99 6.91 4/15
Roebuck, Osterberg130 argon52 290.10 12.29 57/134
Roebuck, Osterberg131 nitrogen53 539.24 19.61c 56/163

Smith137 n-butane144 1.85 1.27 0/9
a Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (4.5).
b Number of measurement points with absolute deviation from EOS above 5%.
c Single outlier with deviation above 104% not taken into account.

error at easily accessible pressure and temperature139–141). When comparing the JT

measurements against the equations at temperatures below 200 K, only 34.3% of data

are within ±5% and 48.2% within ±10%. However, considering the advancements

in cryogenic measurement techniques, the Joule-Thomson coefficient can be measured

with uncertainties comparable with the specific heat.

Even if the temperature and pressure are measured with higher relative uncertainties,

compared to, e.g., time which is used to calculate the speed of sound in fluids,140,141 the

experimental setup necessary to obtain the Joule-Thomson coefficients is simpler.

Part of the measurement sets, presented in Table 4.1, show coherent deviations from

accurate EOS compared to the uncertainty values claimed by the authors. On the one

hand, these measurements are characterized with AAD below 1.5%. On the other hand,

they were performed at ambient – and above ambient temperatures. Deviations of

the existing Joule-Thomson coefficient values, measured at cryogenic temperatures, are

more significant when compared to EOS and, in the worst case, reach 50-70%, excluding

the outliers.

4.3 Measurement methods

According to Smith,137 the total derivative of temperature with respect to pressure can

be described as

dT
dp

�

�

�

�

path

=
∂ T
∂ p

�

�

�

�

h

+
∂ T
∂ h

�

�

�

�

p

dh
dp

�

�

�

�

path

. (4.6)

From a definition of the specific heat capacity, the equation above becomes:
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�
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h

+
1
cp

dh
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�

�

�

�

path

. (4.7)

If the energy is conserved in the system, the potential energy change is negligible, and

no work is done on or by the system, the law of conservation of energy simplifies to:

Q̇
ṁ
= dh+ dek. (4.8)

Substituting Eq. (4.8) into Eq. (4.7) as the enthalpy change, the Joule-Thomson coeffi-

cient can be represented as the measured path-coefficient with two correction factors:

µJT =
∂ T
∂ p

�

�

�

�

h,x

=
∆T
∆p

�

�

�

�

path

−
Q̇

ṁcp∆p
+
∆ek

cp∆p
, (4.9)

where x is the mixture mole fraction vector, Q̇ is the heat exchanged by the fluid in W, cp

is the average isobaric heat capacity in J (kg K)−1, and∆ek is the specific kinetic energy

change in the throttling process in J kg−1.

The Joule-Thomson coefficient can be determined directly from incrementally small

pressure drop and respective temperature change, as done by Roebuck et al.,128–133

Smith,137 and Potter et al.135,136 in the past. It can also be measured indirectly, as

an integrated coefficient when the pressure drop is significant. Both methods have their

advantages and limitations.

The first measurement method, well explored in the past, relies on small pressure changes
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from which the isenthalpic Joule-Thomson coefficient can be directly derived. The

smaller the pressure change, the more the measured angle β approaches the actual

angle of the isenthalpic line α, as presented in Fig. 4.5a. Small pressure changes are

imposed by small flow rates, which increase the thermal loss influence by decreasing

the ṁ and ∆p in the denominator of the first correction term in Eq. (4.9). On the one

hand, the method does not take advantage of the instrument accuracy, and the instru-

ment errors significantly impact results. On the other hand, the kinetic energy change

in the transformation can be neglected.

With a large pressure drop, the influence of the instrument inaccuracy decreases. Unfor-

tunately, large ∆p imposes large ∆T and increased thermal transfer, Q̇. Large ∆p also

imposes large kinetic energy change ∆ek, as presented in Eq. (4.9), and therefore non-

isenthalpic conditions. Additionally, the measured p − T pairs are the Joule-Thomson

integral values, and the differential values must be calculated posterior to the measure-

ments. A schematic representation of this approach is presented in Fig. 4.5b, where

multiple experimental points, marked in black, are measured. A blue isenthalpic line

represents the integrated values of measured JT coefficient, from which, a local coeffi-

cient in (pC, TC) point is calculated as tanα.

One of the critical problems, reported in the past, was the inability to keep the inlet

conditions, especially the temperature, stable. With limitations of both methods and

advancement in the measurement hardware and techniques, the large pressure drop

measurements have been chosen in this work because of the simplicity of the test setup

implementation and the potential of decreasing the measurement uncertainty with the

accuracy of today’s equipment. Additionally, despite its potential and usefulness, few

results are obtained with this measurement method, which increases its attractiveness

if successful.

4.4 Experimental setup design

Taking advantage of the existing equation of state for the helium-neon mixture, the

experiment is planned by choosing regions of the highest expected accuracy within the

regions of unavailable other experimental data. It is essential to notice, however, that

the equations of state described in Chapter 3 do not discuss the correlations allowing

for the transport properties calculations. Without the auxiliary equations, neither the

viscosity nor the thermal conductivity is accurately calculated, hence the mole fraction-

weighted transport properties are used. The apparatus is designed, and the equipment

is chosen based on the results obtained with the thermophysical properties of fluids from
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CoolProp2 and REFPROP,116 and the cryogenic properties of solids from CryoComp.145

Different approaches in choosing the flow rate and the pressure drop values should be

taken according to the experiment structure. The fluid cycle can be either closed, con-

structed around a warm, high ∆p compressor (Fig. 4.6a), or open, using fluid provided

from large volume bottles (Fig. 4.6b). The closed cycle provides repeatability and a long

measurement time with a limited amount of fluid used. However, the system compli-

cations introduced to minimize gas pollution are critical. To limit the complexity of the

measurements, the open cycle is chosen as a base solution for the present work.

4.4.1 Equipment design and choice according to flow

and thermal considerations

Imposing the pressure drop

The fluid has to experience a pressure drop in order to observe its temperature change. It

can be provided by an orifice plate, a porous material, or a capillary tube. All solutions

can result in the isenthalpic transformation of the fluid, but some show benefits over

others.

The flow conditions in an orifice restriction and the necessary calculation procedure

are described in the ISO norm 5167-2:2003.146 The norm describes the pressure drop

and the respective temperature change, which is schematically represented in Fig. 4.7.

It is visible that the regions of well-established pressure and temperature downstream

of the orifice are far from the restriction. More importantly, the actual ∆p introduced

by an orifice cannot be defined with the pressure reading in the close vicinity of the

plate. Turbulent conditions introduce additional irreversibilities, impacting the fluid

properties. Despite the orifice plate being a good industrial standard for the mass flow

rate measurements, it is decided that it does not fulfill the requirements for the accurate

∆p−∆T measurements.

Another possibility to impose the pressure drop in the flow is a porous plug. Since it has
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already been used by Roebuck et al.,128–133 Smith,137 and others, it could be considered

as an obvious solution. However, all the authors measured the local Joule-Thomson

coefficients with similar cryostat designs and small ∆p across the porous plug. Despite

the advantages of the technique, such as the homogeneous temperature distribution

and the inflow temperature measurements, it is difficult to guarantee the leak-tightness

between the two sides of the plug with imposed large pressure drop values. Additionally,

the industrial companies in charge of the porous material casting have no commercial

off-the-shelf solution for the plug with porosity low enough to provide high ∆p for

the studied flow rates and sufficient material strength to withstand significant pressure

drop values. An attempt was made in this work to design the porous plug assembly

with industrially available cylindrical disks. However, the leak-tightness issue was not

solved; the design was, therefore, abandoned.

In this work, a large pressure drop is provided to the fluid by a small diameter capillary.

The pressure and temperature values are measured at the capillary inlet and outlet.

Compared to the orifice plate and the porous plug, the leak-tightness and the pressure

drop measurements are not expected to cause any complications. A broad range of

capillary diameters and its freely chosen length allow for flexibility in the JT test bench

design. A small enough capillary diameter can be chosen, so little gas is consumed

per unit time. Choosing a small external diameter is also advantageous for the material

strength at high pressures. As a result, the heat loss between the two ends of the capillary

decreases with decreasing material cross-section area.

Calculations for the Joule-Thomson transformation in a capillary

The process allowing for the choice of the capillary size is iterative in its length. The

pressure drop is defined by the Darcy-Weisbach equation147
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∆p
l
= f

ρ

2
u2

Dh
, (4.10)

where ρ is the fluid density in kg m−3 averaged over the unitary length l, u is the mean

flow velocity in m s−1, f is the Darcy friction factor, Dh is the pipe hydraulic diameter

in m. For a circular pipe Dh = D, the Darcy friction factor is defined by the Colebrook-

White equation148

1
p

f
= −2 log

�

ε

3.7Dh
+

2.51

Re
p

f

�

, (4.11)

where ε/Dh is the relative pipe roughness and Re is the Reynolds number. Since the

Colebrook-White equation defines the friction factor implicitly, it has to be solved it-

eratively. A fast and well suited algorithm for this type of continuous problem is the

fixed-point iteration xn+1 = f (xn), n= 0, 1,2, ....149

If the flow in a pipe is laminar, the friction factor is proportional to the reciprocal

Reynolds number f = 64 Re−1 and the Eq. (4.10) simplifies to

∆p
l
=

128
π

µV̇
D2

, (4.12)

where µ is the dynamic viscosity of the fluid in Pa s and V̇ is the volumetric flow rate in

m3 s−1.

The capillary imposing the pressure drop is helical in the selected setup due to its length

and the cryostat geometrical constraints. The Dean number, an additional factor increas-

ing the ∆p in a curved capillary, is defined.150 It shows that the additional pressure

drop is insignificant for the chosen geometry, and the curving radius being three orders

of magnitude larger than the internal capillary diameter.

With Equations (4.10) and (4.11) the pressure pout at the outlet of the unitary length is

calculated. The temperature of a fluid expanding in the isenthalpic transformation is a

function of inlet enthalpy and outlet pressure

T h
out = T (pout, h (pin, Tin)) . (4.13)

However, the actual outlet temperature can be influenced by a transformation of the

kinetic energy of translation to the kinetic energy of vibration, changing the temperature

of the fluid. If a fluid undergoes a transformation, no heat is exchanged to or from the

surroundings, no work is done on or by the surroundings, and the potential energy

change is negligible (dEp = 0), the first law of thermodynamics simplifies to
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∆Ek ≡
m∆u2

2
= m∆h, (4.14)

where ∆Ek is the kinetic energy change of the fluid in J. If the mass is conserved, the

Eq. (4.14) can be reformulated:

hin +
u2

in

2
= hout +

u2
out

2
, (4.15)

where hin, uin and hout, uout are the fluid specific enthalpy in J kg−1 and velocity values

in m s−1 before and after the transformation respectively. The above equation states

that the throttling process is truly isenthalpic only when no heat is exchanged with

the surroundings and the kinetic energy of translation is not converted into the kinetic

energy of vibration. The latter is only true when the fluid velocity change is negligible.

According to the enthalpy definition:

h= cpT +
p
ρ
(1− βT ) , (4.16)

where β = 1/v (dv/dT )p is the isobaric expansion coefficient. In the first approxima-

tion, assuming β = 1/T , the enthalpy simplifies to h = cpT and the corrected tempera-

ture in an isenthalpic transformation can be calculated as:

Tout = T h
out −

u2
out − u2

in

2cp,out
. (4.17)

For the highest achievable pressure drop, the kinetic energy of translation is expected

to convert into the kinetic energy of vibrations of molecules and results in the tem-

perature change of fluid. If the error introduced by performing the measurements in

non-isenthalpic conditions is to be kept below, e.g., 0.5%, the reduced pressure drop

∆p/∆pmax should be kept below 0.9. As a result, if a fluid expands from, e.g., 10 MPa,

the expansion is isenthalpic with 0.5% margin in Tout, only when performed down to

1.1 MPa.

With the outlet temperature calculated from Eq. (4.17), the capillary made from 304L

stainless steel is assumed to conduct heat from the warm end of its unitary length l

to the cold end. The tube is placed in a vacuum on a glass fiber support, which limits

the convective and conductive thermal transfer with the environment. The radiation is

minimized by a shield, thermally connected with the cold head, and wrapped in multi-

layer insulation. The capillary is expected to exchange only with the fluid, changing

its temperature at the outlet of unitary length from T h
out to Tout. The equations for the

isenthalpic transformation with conductive heat transfer in the pipe wall are solved
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Fig. 4.8. Inversion curves for the 4He−Ne mixture with helium mole fraction, xHe as a
parameter. The green rectangle marks the target pressure and temperature ranges for
the µJT measurements. Thick inversion curves mark the helium concentration range,
xHe = 〈0.2,0.5〉, for which the Joule-Thomson coefficient is measured in this work.

numerically for Tout using standard scipy.optimize.fsolve algorithm.122 The total

heat transferred from the inlet to the outlet of the capillary is calculated with the one-

dimensional Fourier’s law

qL = −k(T )
dT
dL

, (4.18)

where k(T ) is the 304L stainless steel thermal conductivity in W (m K)−1, integrated

over the capillary length with variable temperature, and dT/dL is the temperature gra-

dient in K m−1 with unitary length dL = l.

The equations discussed above allow for determining the region of low measurement

error according to the pressure drop, as discussed before. This region of low error is the

region of experimental interest for the following work and is shown in the p− T space

in Fig. 4.8. It comprises the pressure from 0.1 to 10 MPa, the temperature from 40 to

100 K, and the helium–4 concentration from 20 to 50 mol−%. Following the analysis

described above, a case study is performed for various capillary diameters and lengths

as a function of inlet conditions (pin, Tin), as presented in Fig. 4.9.

The pressure drop of a mixture in a capillary tube is also composition-dependent. To

obtain the same pressure drop, e.g., pin − pout = 10 MPa − 1.1 MPa at Tin = 65 K in
4He−Ne

ṁ(xHe = 0.2)
ṁ(xHe = 0.5)

≈ 1.34, (4.19)
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Fig. 4.9. Capillary length calculated for pin = 10 MPa, pout = 1.1 MPa, equimolar
composition of 4He−Ne, and internal diameter in mm as a parameter.

that is, 1.34 times higher mass flow rate of the mixture with low helium concentration

is necessary to achieve a similar pressure drop in both mixtures.

With an appropriately chosen downstream valve, a single capillary length should allow

performing all the measurements.

The smaller the diameter of the capillary, the less gas is consumed in a single measure-

ment. At the same time, the smaller the diameter, the more susceptible to clogging the

capillary is. With this constraint in mind, the 0.4 mm internal diameter capillary is cho-

sen as the key component. The external diameter is selected, based on the available

capillaries and the requirements coming from material strength for high-pressure use.

In order to obtain the large enough pressure drop, the capillary should be at least 6 m

long. This length should provide flexible measurement conditions with a flow rate rang-

ing from near-zero to 0.2 g s−1, assuring a long experimental time with an open cycle

and few gas bottles used.















Dint = 0.4 mm

Dout = 1.0 mm

L ∈ 〈6,10〉 m

(4.20)

Choice of the thermodynamic conditions for the experiment

With the mixture inversion curves, presented earlier in Fig. 4.8, and the 1D pressure drop

analysis concluded in Fig. 4.10, the thermodynamic conditions for the Joule-Thomson

coefficient measurements are chosen.

First, the inversion curves allow to anticipate the gas behavior in the Joule-Thomson
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expansions process and choose the p − T − x conditions for measurements with the

largest ∆T . In the interest of increasing the experimental accuracy, the measurement

points should be distant from the inversion curves, since in their proximity∆T → 0, and

the uncertainty increases. Thus, the method itself does not allow for precise qualification

of the inversion temperatures. However, it allows to confirm or improve the overall

equation performance and, as a result, confirm the fluid behavior in the vicinity of the

inversion curves. When mixture is helium-rich, the inversion curves pass through the

region of experimental interest for T ∈ 〈50, 100〉 K and p ≤ 10 MPa, shown in Fig. 4.8.

If a large∆T is to be measured in the expansion process, no measurements are foreseen

to be taken for the helium-rich mixture. Therefore, the limit of xHe ≤ 0.5 is set on the

helium concentration.

Second, the chosen capillary dimensions from Eq. (4.20) impose the pressure drop and

the temperature change. The results for the expected downstream pressure values as

a function of the molar composition and the inlet conditions are shown in Fig. 4.10.

Those calculations provide insight into the expected mass flow rate necessary to ob-

tain the required pressure drop and allow choosing the auxiliary equipment, such as the

valves. Despite the full pressure drop available, there is little interest in performing mea-

surements with full available ∆p, as discussed in Sec. 4.4.1. The temperature change

for the isenthalpic transformation can be calculated as a function of the absolute pres-

sure. These calculations are performed for already chosen inlet temperature and molar
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composition values. From results presented in Fig. 4.11 the simple conclusions can be

drawn:

1. The lower the inlet temperature, the higher the temperature drop in the expansion

process;

2. The higher the inlet pressure, the lower the pressure drop obtained with the same

mass flow rate;

3. Measurements at lower helium concentrations should be more precise since the

expected temperature change is larger.

4.4.2 Test bench design

The Process Flow Diagram (PFD) is presented in Fig. 4.12, whereas the full Piping and

Instrumentation Diagram (P&ID) is shown in Fig. D.1. The main fluid path consists of

a 50 liters volume, where a mixture is stored at high pressure. It is connected to the

pressure-reducing valve RV004A and, later, to the 1 U.S. gallon (3.596 liters) buffer

volume. The buffer volume is necessary for two reasons. First, it compensates for the

pressure instabilities of the reducing valve manual adjustments. Second, the pin at the

capillary inlet is dependent on the pressure in the mixture bottle, which decreases with

time. This time variation causes a permanent, undesired pressure change at the capillary

inlet. Without the buffer volume, the pressure conditions are unstable and must be
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Fig. 4.12. Process flow diagram (PFD) of the Joule-Thomson measurement setup. For
P&ID see Fig. D.1.

manually corrected every few seconds, resulting in permanent pressure fluctuations.

The buffer smooths out the manual pressure corrections and decreases their frequency

from seconds to minutes.

Inside the cryostat, marked with a dashed line, a copper block with a brazed heat ex-

changer is mounted on the cold head of the Cryomech AL300 cryocooler. It has sufficient

capacity to cool down the flow from 300 K to around 40 K and can be regulated with

a variable frequency ranging from 40 to 70 Hz. The minimal temperature of the cold

head for the zero-load is 20 K. The pressure-reducing capillary is presented in a helical

form, and two calibrated Lake Shore Cernox temperature sensors are placed upstream

(TT101 measuring Tin) and downstream (TT102 measuring Tout) of the capillary. The

temperature sensors wiring is thermalized at the cold head. PT101 and PT102 are the

high accuracy CPT 6100 pressure transducers supplied by Mensor. They measure the

capillary upstream pin and downstream pout pressure values.

Two fine-control needle valves HV013 and HV015, are installed in parallel in order to

provide a broader range for regulating the downstream pressure pout. A gas analyzer

GA016 is placed at the outlet of the system, so its pressure-dependent measurements

are always performed at the atmospheric pressure. A complete list of equipment used

in the experiment, divided into functional categories, is presented in Table D.1.
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Temperature measurements

Two thermometers, essential for the Joule-Thomson coefficient measurements: TT101

and TT102 are shown in Fig. 4.13 and are schematically represented in Fig. 4.12. They

are calibrated for temperatures ranging from 20 to 325 K (TT101) and 1.4 to 325 K

(TT102). These Lake Shore Cernox sensors are chosen based on the expected measure-

ment range to minimize the measurement uncertainty. The uncertainty varies from 11

to 14 mK for measurements from 50 to 100 K. Assuming minimal temperature to be

measured equal to 50 K, the respective thermometer uncertainty is equal to ±12 mK.

For the highest expected temperature of the 4He−Ne mixture equal to 100 K, the un-

certainty is ±17 mK. When measuring expansion in pure fluids or the 4He−N2 mixture

at temperature up to 200 K, a ±32 mK uncertainty is expected.

The above uncertainty values are given without considering the electronic measurement

chain. The thermometers are interfaced with CABTR (Centrale d’Acquisition Basses Tem-

pératures Rapide) – a temperature acquisition module, made by CEA/DSBT. All the un-

certainty components of the measurement chain are later presented in Table 5.1 and

discussed in Sec. 5.2.1.

The inlet thermometer is placed outside the capillary. The outlet thermometer is placed

in a copper block in direct contact with the fluid. From the point of view of heat transfer,

the most advantageous measurement setup would be to use two in-flow thermometers.

However, the technical limitations of the high-pressure measurements with low capil-

lary diameter drives the placement of the thermometers causing a difficult to qualify,

systematic error from indirect measurements.
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Pressure measurements

A particular effort was put into evaluating the impact of the pressure measurements on

final results, however, there is a risk that the systematic error from the pressure taps

impacts the measurements. Both the temperature and the pressure uncertainties are

discussed in details, together with the results analysis in Sec. 5.2.1 and 5.2.2. In order

to achieve the acceptably low measurement errors in µJT, compared to other thermo-

physical properties used for the EOS development, the pressure transducers with the

highest achievable accuracy are used: U(p) = 0.01% of full scale with pmax = 13.7 MPa.

Gas analyzer for composition measurements

The process gas analyzer BGA244HP manufactured by Stanford Research Systems is a

binary gas analyzer that determines gas purity and mixture composition by measuring

the temperature and the speed of sound in the gas. The measurements are based on the

principle of corresponding states, with scaled fluid properties depending on the inter-

molecular forces. The analyzer determines the fluid composition with known mixture

constituents with an accuracy of 0.1 mol−% by measuring the speed of sound in fluid

and calculating the speed of sound in ideal gas:

w0 =

√

√κRT
M

, (4.21)

where R is the ideal gas constant in J (mol K)−1, T is the temperature in K, M is the

molar mass in kg mol−1, and κ = cp/cv = cp/(cp − R) is the ratio of heat capacities,

calculated from fitted correlations. The speed of sound of ideal gas, w0, is corrected

with empirical factors for viscosity, µ, thermal conductivity, k, second and third virial

coefficients, B and C , known for each constituent. These empirical corrections allow to

calculate the speed of sound of a real gas:

w= w0 + f (µ) + f (k) + f (B) + f (C). (4.22)

A root-finding algorithm is employed on the calculated value of composition-dependent-

corrected speed of sound and the measured value to find the molar composition ranging

from 0 to 1. Unfortunately, it is unclear how each empirical correction impacts the calcu-

lated speed of sound since the user manual is incomplete, and the company is not willing

to share any additional correlation nor fitted coefficients outside of the manual.151
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Fig. 4.14. Diameter verification flow meter scheme and measurement results for 2 m
long capillary.

Capillary

Le Guellec SAS, the capillary manufacturer, specified the internal capillary diameter to

be 0.4±0.05 mm. However, the previous experiences in the laboratory showed that the

diameter variation could be more considerable. A 10 m capillary is first assembled from

2 m pieces, brazed together using a 1.4 mm internal diameter capillary. The possible

play in the capillary connections can introduce additional local, challenging to quantify

pressure drop values. The capillary is tested to qualify the global pressure drop, com-

pared with the design flow rate and the fine control valves accepted range. The tests are

performed in a simple test setup at ambient temperature for a single 2 m piece and a

complete 10 m long capillary. The only additional element with respect to the nominal

test setup necessary for the capillary validation is the in-house made volumetric flow

meter mounted at the outlet of the system. It is schematically shown in Fig. 4.14a. The

flow measurements are performed with helium–4 and water by measuring the time for

gas to fill the closed volume of the graduated cylinder. The helium-water pair is chosen

since no single gas has a lower solubility in water than does helium. At 20°C and 1 bar,

only 1.5 mg of helium dissolves in 1 kg of water, 13 times less than nitrogen in water

and 130 times less than nitrogen in pure ethanol. The error introduced by helium dis-

solving in water can reach 1.7 mm in the meniscus position, which corresponds to the

2 ml readout error in the given geometry of the graduated cylinder.
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The volumetric flow is measured for three inlet pressure values. Despite the method

being very simple, the volumetric flow measurement error reaches 4% in the worst case.

The 2 m long capillary provides the same pressure drop to the fluid as if it was a perfect,

0.365 mm diameter tube, as presented in Fig. 4.14b. Each of the three experimental

points is averaged from 8 measurements, and all the measured values are coherent

with calculations. It is, therefore, reasonable to use 0.365 mm as the internal capillary

diameter in further calculations.

Validation of the 10 m long capillary shows unexpectedly large ∆p, corresponding to

an equivalent, calculated diameter of 0.24 mm. Therefore, the capillary is cut into two

parts (6 and 4 m), and the pressure drop is measured for each of them. It appears that

the 4 m piece provides a much more significant pressure drop with a probable singularity

existing in the flow. In contrast, the 6 m piece provided the pressure drop expected for

0.365 mm internal diameter. It is decided to only use the 6 m long capillary in the

measurements instead of the 10 m one. For this reason, the calculations presented in

Fig. 4.10 and later in this work are performed for the length of 6 m.

Cold head

The cryocooler used in the system is the AL300 Gifford-McMahon cold head manufac-

tured by Cryomech. Assuming the maximal pressure drop in the capillary in the order

of 10 MPa, the maximal expected mass flow rate can reach 0.16 g s−1, as presented in

Fig. 4.10 for Tin = 65 K and xHe = 0.2. The cold head should be qualified for these con-

ditions. According to the heat transfer computations and Fig. 4.15, the maximal flow

rate can be cooled to the desired temperature of 65 K with cryocooler working at its
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minimal, 40 Hz frequency, leaving plenty of margin for higher refrigeration needs. The

calculations are based on the cold head qualification performed in DSBT.

Measurement chain

Data from all the sensors in the system is acquired with 1 s time interval through

Panorama E2 SCADA software. CABTR, for temperature measurements, is connected

through the Modbus GateWay. The pressure sensors and the gas analyzer are directly

connected through RS-232 to the Modbus GateWays. The Panorama software incorpo-

rates the proportional–integral–derivative controller and a safety thermal switch for the

TT008 temperature regulation heaters.

Auxiliary equipment

Additional design choices are necessary to complete the choice of equipment installed

on the test bench. The micrometric valves HV013 and HV015 are chosen based on

the expected minimal and maximal mass flow rates presented in Fig. 4.10. The flow

coefficient is calculated and shown in Fig. 4.16. The flow regions of both valves overlay

but do not cover the full spectrum of necessary flow rates making the measurements

with minimal pressure drop in the capillary impossible. However, no valve with smaller

Cv is found on the market, and the smallest ∆p measurements are expected to be less

accurate as further discussed.
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Additional safety precautions for valves and welds are taken. All components, except

the pressure sensors, are tested at 14 MPa, whereas the safety valve SV005 sets the

maximal operational pressure to 11 MPa.

4.5 Experimental procedure

Measurements of the Joule-Thomson coefficient in pure fluids and mixtures follow the

same experimental procedure. The calculated deviations for pure fluids (nitrogen, ar-

gon, and helium) use the EOS as a reference because of high deviations of experimental

values reported in the literature.53,152

4.5.1 Step-by-step measurement description

The fluid in the experimental setup undergoes the isenthalpic transformation when the

inlet enthalpy hin = h (pin, Tin) is constant. By varying the outlet pressure pout, its outlet

temperature Tout = T (pout, hin) changes. The following steps are taken in the course of

the measurements of a single isenthalpic line:

1. Tin value is set at TT101. pout varies in the course of the isenthalpic line measure-

ments what influences the flow rate and, therefore, singular and small adjustments

to the Tin controller setting are necessary when the pout is set to a new value.

2. pin value is set at PT101 with pressure reducer RV004A. Regular manual adjust-

ments are made every few minutes to compensate for pressure variations in the

mixture supply bottle.

3. pout is set at PT102 with either HV013 or HV015 valves, depending on the required

pressure drop.

4. Tout stabilizes in the course of 15 to 20 minutes after keeping the other three

measurement values constant.

5. After the Tout stability is reached and all four measurements (pin, pout, Tin, and

Tout) are quasi-constant in the period of 1 minute, the timestamp is noted down

for later data extraction. The 1 minute time is evaluated to be long enough since

the pout change results in changing Tout within few seconds (t < 10 s).
6. new pout is set at PT102 by changing the setting at HV013 or HV015 valve.

7. Small adjustment in TT008 setting is necessary to keep the Tin reading from TT101

constant, as explained in the first step.

The presented analysis is performed with the helium-nitrogen mixture as a part of the

setup validation process before the measurements of the Joule-Thomson coefficient in
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Fig. 4.17. Pressure and temperature evolution during a single isenthalpic line measure-
ments of He−N2.

ISENTHALPIC JOULE-THOMSON COEFFICIENT MEASUREMENTS 67



t / hh : mm : ss

17
:0
0:
00

17
:1
1:
17

17
:2
5:
17

17
:3
9:
49

18
:0
0:
41

18
:2
0:
12 17
:3
9:
49

17
:3
7:
39

17
:3
5:
30x H

e
 /

 m
o
l 

 %_

14.3

14.5

14.7

14.55

14.50

14.60

Fig. 4.18. Composition stability during a single isenthalpic line measurements of
He−N2.

helium-neon. Pressure variation during the single isenthalpic line measurements is

shown in the three top figures of Fig. 4.17, whereas the temperature evolution for the

same measurement is visualized in the three bottom figures. The vertical dashed lines

in all six figures represent the timestamps of actual measurement points, where all four

values are considered stable for 5 seconds. Over the stability period, five values of pin,

pout, Tin, and Tout are acquired and their mean values are calculated. These mean values

are used for further Joule-Thomson coefficient calculations in the post-processing anal-

ysis. The right column in Fig. 4.17 is the magnification of the measured values. The

top graph for each property represents raw data extracted from the data acquisition

software. In contrast, the other four figures represent the derivative in time of mea-

sured values, that is – their rate of change. They show the measurement stability and

fluctuation more precisely.

The time-dependent mole fraction measurement shown in Fig. 4.18 is the data acquired

in the same run as the pressure and temperature in Fig. 4.17. The composition variation

in this particular measurement reaches 0.067 mol−% and is lower than the gas analyzer

specified uncertainty.

Thermal hysteresis verification

In order to fully validate the measurement methodology, a single isenthalpic line is

measured twice, following the line in both directions. First, starting from low pout and

decreasing the pressure drop∆p = pin−pout in the course of the measurements. Second,

starting from high pout and increasing the pressure drop. A comparison of both mea-

surement sets, performed with nitrogen, is presented in Fig. 4.19. The left sub-figure

with blue and red points shows decreasing and increasing pressure drop measurements,

respectively. Both measurements overlay and are indistinguishable in the p − T space.
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Fig. 4.19. Measurements for ’hysteresis’ verification. The isenthalpic line in plotted in
the left figure. The upper-right figure shows deviations of measured µJT with increasing
(blue) and decreasing (red) pressure drop in the course of measurements. The lower-
right figure shows a relative difference between the two values.

The difference is visible in the two right figures. In the top one – as a deviation from

the calculated Joule-Thomson coefficients. In the bottom one – as a relative difference

between both measurements, reaching 0.25% in the worst case. No systematic depen-

dence is visible in Tout for increasing versus decreasing ∆p measurements. Therefore,

the measurements can follow an isenthalpic line with either increasing or decreasing

∆p presenting no impact on the results.

4.5.2 Measured isenthalpic curves for pure fluids

To complete the experimental setup validation, the isenthalpic lines from the tabulated

results in Table E.1 are shown in Fig. 4.20. Three sub-figures show the experimental

points in the pressure-temperature space and the respective isenthalpic lines calculated

from the pure fluid equations of state for nitrogen, helium–4, and argon.

The slope on an isenthalpic line is not monotonous if it reaches the saturation tempera-

ture. The above may happen if the pressure at the capillary outlet decreases below the

saturation pressure – if the expansion, shown with the blue line for argon and the pink

and yellow lines for nitrogen, continues to lower pressure values. Even though some

measurements in nitrogen and argon approach the saturation line, marked in black in

Fig. 4.20, the conditions at the capillary outlet always remain gaseous. Therefore, no

liquefaction and no enthalpy change are observed. Whenever a gas liquefies, its trans-

formation is no more isenthalpic, which is visible in the T−p diagrams as the h= const.

line slope change. The saturation line is avoided by setting a minimal value on the pout
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Fig. 4.20. Results of the p − T pairs measurements for pure fluids. Solid lines are
the constant enthalpy lines calculated with EOS.44,52,53 Black lines are the saturation
lines, and black stars are the critical points. The color-coded numerical values of p− T
measurements are available in Table E.1 and are represented with circles.

for each pin. Another reason for the measurements not being taken through the satu-

ration line is the necessity of fitting a polynomial to the p − T pairs in post-processing

calculations. An accurate fit of a simple polynomial requires the isenthalpic line to be

monotonous.

The measurements are qualitatively validated against their respective isenthalpic lines,

calculated with the EOS. All measured points closely follow the lines. A quantitative

validation with calculated Joule-Thomson coefficients is presented in the next chapter.
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5 MEASUREMENTS ANALYSIS AND

RESULTS COMPARISON AGAINST EOS

In Chapter 4, the method for measuring the pressure-temperature pairs in fluid at con-

stant enthalpy is discussed. The Joule-Thomson coefficient values can be interpreted as

the derivatives of an isenthalpic line in the p−T space w.r.t. pressure. In this chapter, the

actual isenthalpic Joule-Thomson coefficients, µJT are calculated and compared against

the existing equations of state. First, the post-processing calculations are performed for

the pure fluids, so the measurements are qualified against the known equations of state.

Later, the measurements for mixtures are compared against the equations developed in

this work. Since the Joule-Thomson coefficient in a mixture is not directly dependent

on mixture molar composition, the uncertainty discussion is completed with the Monte

Carlo analysis quantifying the influence of the molar composition uncertainty on the

final results.

5.1 Determining the Joule-Thomson coefficient

The results of performed measurements are the pressure-temperature pairs for pure

fluids and the pressure-temperature pairs at constant molar composition for mixtures.

The p− T pairs measured at a single isenthalpic line for constant (pin, Tin) form a mea-

surement set, s. The Joule-Thomson coefficient can be geometrically represented as the

slope of an isenthalpic line in the two-dimensional space of pressure and temperature.

A line is fitted to measured p − T pairs so the coefficients can be determined. With a

sensibly chosen equation of the fit, its first derivative is calculated for each measured

pressure. This derivative is the isenthalpic Joule-Thomson coefficient, µJT.
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5.1.1 Fitting a polynomial and choosing its degree

Each measurement set s of size len(s) for both the pure fluids and mixtures is presented

in Tables E.1 and E.2. In order to fit an isenthalpic line to set s, the equation for this line

has to be chosen. The numpy.polynomial package,153 used for fitting the equations

and calculating their derivatives offers multiple polynomials forms:

1. power series;

2. Chebyshev polynomial;

3. Legendre polynomial;

4. Laguerre polynomial;

5. Hermite polynomial.

The equations of these polynomials are known and are described in detail in the numpy
package documentation. The Chebyshev polynomial is selected for fitting the measure-

ment data and calculating the Joule-Thomson coefficients. The influence of the polyno-

mial choice on measured µJT is later compared and is presented in Sec. 5.2.3.

The Chebyshev polynomial of the first kind at p = p0 is given by

T (p0) =
n
∑

k=1

akCk(p0), n< len(s). (5.1)

where T is the temperature in K, p is the pressure in Pa, ak are the fit coefficients in

K Pa−k, and n is the order of the fit. The order n always has to be lower than the

number of data points. The coefficients Ck can be obtained from the recurrence relation















C0(p0) = 1

C1(p0) = p0

Ck+1(p0) = 2pCk(p0)− Ck−1(p0)

. (5.2)

The Joule-Thomson coefficient is given by

µJT (p0) =
n
∑

k=1

akQk (p0) , n< len(s), (5.3)

where the coefficients Qk are defined recurrently















Q0 (p0) = 0

Q1 (p0) = 1

Qk+1 (p0) = 2Ck (p0) + 2p0Qk (p0)−Qk−1 (p0)

. (5.4)
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Fig. 5.1. AAD calculated for the Joule-Thomson coefficient of pure fluids as a function
of the fit order. The filled points are the minima of the measurements deviations from
the EOS.

Apart from choosing the equation of the fitted function, the order of this equation has

to be selected. A simple analysis shows that not choosing the maximal possible order of

the function (n = len(s)− 1) often allows minimizing the Average Absolute Deviation

Eq. (3.25) of equation and data, as shown in Fig. 5.1. The reason for the AAD to decrease

with a lower order of the fit is that some of the measurement errors are ’fitted out’ for

those lower-order polynomials, and the slope of this fit – the Joule-Thomson coefficient

is somewhat corrected.

5.1.2 Fit behavior at extremities

The necessity of fitting a polynomial to data brings an issue of diverging results at data

set extremities. It is visualized for an arbitrary function f (x) in Fig. 5.2. In the analogy

to thermodynamics, the solid curve in the top figure represents an exemplary isenthalpic

line; the points are the perfect measurements of the p− T pairs, exactly overlaying the

h= const. line, whereas the dashed line represents a polynomial fit to those points. The

calculated Joule-Thomson coefficients measure the slope of the dashed line, not the solid

line. As shown in the top figure, the dashed fit line deviates when extrapolating the solid

line behavior. It is significant to the analysis since the slope of the fit is different at two

extremities compared to the slope of the solid line f (x). The bottom graph in Fig. 5.2

shows the relative deviations of values calculated with the fit versus the exact values

from the polynomial d f / dx . This pessimistic case of a strongly curved line with little

measurement points shows that even the ideal measurements with zero errors in x and
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y can cause the final results to deviate only because the fit-to-line does not accurately

represent the line. In this particular case, the order of the fit function is chosen, so the

sum of errors is minimal; therefore, it does not influence the analysis. The derivatives

of the fitted polynomial show maximal relative deviation of one of the extrema equal

to 8.3%, whereas the maximum deviation of one of the intermediate points is equal

to 2.2%. A complete analysis of the influence of fitted polynomial is later discussed in

Sec. 5.2.2. It is, however, decided that the extremities of measured isenthalpic lines are

fitted but are not included in the µJT calculations to limit their impact on derivation.

5.1.3 Removing inlet measurements from the analysis

Since the Joule-Thomson transformation is isenthalpic, it is expected that all the output

pairs (pout, Tout) follow the same isenthalpic line as the input pair (pin, Tin). Unfortu-

nately, the unfavorable placement of the inlet thermometer (outside of a stainless steel

T-piece) most probably causes a permanent offset of measured Tin value. The inlet

pressure-temperature values in each measurement set are, therefore, removed from the

analysis and fitting. They are only used throughout the measurements to keep the inlet

conditions stable, but they are not used for the µJT calculations in the post-processing

analysis.
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Fig. 5.3. Measured p−T pairs (top figures), resulting Joule-Thomson coefficients (mid-
dle figures), and measurement deviation relative to EOS (bottom figures) plotted with
uncertainty bars from conventional analysis in black and the Monte Carlo analysis in
grey. The color-coded numerical values of p− T measurements at h = const. are avail-
able in Table E.1, the calculated Joule-Thomson coefficients – in Table E.3.

5.2 Results analysis for pure fluids

The measurement results for pure fluids are tabulated in Table E.3. Fig. 5.3 discusses

these results for three pure fluids: nitrogen, argon, and helium–4 (in columns). The

top row shows the Chebyshev polynomial from Eq. (5.2) fitted to the measured p − T

pairs for each isenthalpic line separately. The fits are plotted with dotted lines and the

isenthalpic lines, calculated with the EOS – with solid lines. The two lines are indistin-

guishable because they overlay perfectly. Filled large points at extremities are not used

for µJT calculations. Rings represent the raw measurements, and small filled circles are

the measurements corrected with the kinetic energy change from Eq. (4.17). The coeffi-
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cients of the fit are used to calculate the Joule-Thomson coefficients with Eq. (5.3). The

middle row shows the Joule-Thomson coefficient values, calculated with the EOS (solid

lines) and calculated from the fit to measurements (points). The bottom row shows

deviations of measured µJT coefficients, compared to accurate pure fluid EOS. The un-

certainty bars from the conventional analysis are illustrated in black. The uncertainty

bars from the Monte Carlo analysis are shown in gray.

Even though the polynomial fit and the isenthalpic line, calculated with the EOS, are

indistinguishable in the p − T plane, the errors of derived Joule-Thomson coefficients

from measured data are significant for helium–4. The conventional uncertainty prop-

agation from Sec. 5.2.1 does not fully explain the encountered errors. An attempt to

discuss the uncertainty of integrated measurements is made in Sec. 5.2.2.

The correction introduced to the outlet temperature through Eq. (4.17) does not bring

complete consistency to the results. The deviations from the EOS partially decrease

except for helium–4 and single points in nitrogen. The change in the Joule-Thomson

coefficient values, calculated with the kinetic energy correction, is often minor for ni-

trogen and argon. It is so because the precautions to the measurements are taken, and

no p − T pairs are measured for pout = 0.1 MPa, where the expected influence on Tout

from the kinetic energy conversion is significant.

5.2.1 Conventional uncertainty analysis

Since the measurement error is temperature-, pressure-, and molar composition-depen-

dent, the uncertainty analysis performed prior to the experiment is used to choose the

measurement regions characterized with low uncertainty values. The measurement un-

certainty can be calculated with a general formula for error propagation of quantities

with independent uncertainties.154,155

If x , . . . , w are measured with independent uncertainties U(x), . . . , U(w), and are used

to compute quantity q = x + . . .+ z − (u+ . . .+w), the uncertainty in q is the sum

U(q) =
Æ

(U(x))2 + . . .+ (U(z))2 + (U(u))2 + . . .+ (U(w))2. (5.5)

If the same quantities are measured and used to compute q =
(x × . . .× z)
(u× . . .×w)

, the relative

uncertainty in q is the quadratic sum

U(q)
|q|

=

√

√

√

�

U(x)
x

�2

+ . . .+
�

U(z)
z

�2

+
�

U(u)
u

�2

+ . . .+
�

U(w)
w

�2

, q 6= 0. (5.6)
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The logic above, applied to the Joule-Thomson coefficient, defined in Eq. (4.1), results

in the following correlation for the uncertainty of differential temperature and pressure

measurements

U(∆T ) =
Æ

U2 (∆T ) =
Æ

U2 (Tin) + U2 (Tout), (5.7)

U(∆p) =
Æ

U2 (∆p) =
Æ

U2 (pin) + U2 (pout), (5.8)

where U(T ) is the uncertainty of the complete chain of temperature measurements –

the sum of the thermometer uncertainty, uncertainty of fitting the temperature to re-

sistance specified for each thermometer, and the temperature acquisition module un-

certainty. As described before, the measured (pin, Tin) pair is only used to drive the

conditions at the capillary inlet and to keep them stable. Since it does not directly con-

tribute to the measurements, it could be replaced with measured instability values for

pin and Tin. However, the inlet temperature and pressure are more stable throughout

the measurements than their respective uncertainties. Therefore, the larger out of two

values – the uncertainty is used as an input to the expanded relative standard uncertainty

calculations, equal to

Ur(µJT)
|µJT|

= k

√

√

√
U2 (Tin) + U2 (Tout)

(Tin − Tout)
2 +

U2 (pin) + U2 (pout)

(pin − pout)
2 , (5.9)

where k is the coverage factor for expanding the uncertainty. If k = 1 and the probability

distribution characterized by the measurements of the Joule-Thomson coefficient µJT is

approximately normal, U(µJT) is an estimate of the standard deviation of µJT. The in-

terval µJT ± U(µJT) embraces the value of µJT with a level of confidence of 68% that µJT

Table 5.1. Uncertainties of the key components

Component Measurement range Uncertainty

Temperature sensors: TT101 and TT102 20− 325 K ±9− 18.7 mKa

T (R) polynomial fit for TT101 and TT102 20− 325 K ±3.6− 13.5 mKa

Temperature acquisition moduleb 1− 300 K ±1.3− 7.1 mKa

Pressure sensors: PT101 and PT102 0.1− 13.7 MPa ±0.01% FS
Binary gas analyzer: GA016 0− 100 mol−% ±0.1 mol−%

(k = 2)c

aFor a single measurement in 20− 100 K temperature range.
bCABTR
cCoverage factor for 95.45% confidence interval.
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Fig. 5.4. Relative expanded uncertainties for measured isenthalpic lines, calculated with
Eq. (5.10). Circles mark values of measured p− T pairs from Fig. 5.3 and Table E.1.

is within the range of measured µJT ± U(µJT) from the mean value of µJT. Increasing

the coverage factor from 1 to 2 or 3 increases the level of confidence of measurements

to 95.45% or 99.73%. The uncertainty of pressure, temperature, and composition mea-

surements of the hardware used in the experiment is given for k = 2 with the confidence

interval of 95.45%.

The same formulation for the expanded relative standard uncertainty of the Joule-

Thomson coefficient can also be obtained with differential analysis for uncertainty prop-

agation:

Ur (µJT)
|µJT|

=
k
|µJT|

√

√

√

�

∂ µJT

∂ (∆T )

�2

U2 (∆T ) +
�

∂ µJT

∂ (∆p)

�2

U2 (∆p)

= k

�

�

�

�

∆p
∆T

�

�

�

�

√

√

√

�

1
∆p

�2

U2 (∆T ) +
�

−
∆T
∆p2

�2

U2 (∆p)

= k

√

√

√

√

√

��
�* 1

∆p2

∆T 2

1

��
�* 1

∆p2
U2 (∆T ) + �

��*
1

∆p2

��
�* 1

∆T 2

��
�* 1

∆T 2

��
�*∆p2

∆p4

U2 (∆p)

= k

√

√

√
U2 (Tin) + U2 (Tout)

(Tin − Tout)
2 +

U2 (pin) + U2 (pout)

(pin − pout)
2 .

(5.10)

The analysis above, together with the hardware uncertainty, specified in Table 5.1, were

used to choose the regions of low measurement uncertainty. Fig. 5.4 shows the results

of calculated uncertainty values for actual measurements, marked with circles.
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The first major shortcoming of the analysis above is that it does not discuss the com-

position measurement uncertainty for the measurements with fluid mixtures. Since the

composition is constant in the Joule-Thomson coefficient formulation and is constant

during the measurements, it is not included in the relative standard uncertainty calcu-

lations. The second deficiency is that it does not consider the necessity for deriving the

measured values to obtain the isenthalpic Joule-Thomson coefficient. These two issues

are addressed in the Monte Carlo analysis.

5.2.2 Monte Carlo simulation for uncertainty propagation

The derived Joule-Thomson coefficient value µJT = µJT (p, T ) depends on a complete

set of measurements, the number of points n= len(s) – measured on a single isenthalpic

line – and the polynomial fitted to data. The number of measurement points n also has a

non-negligible and variable impact on the final results. An attempt to quantify all these

factors is presented below.

A single isenthalpic line for a given (p, T ) conditions is calculated with existing EOS. A

number of n points overlay the isenthalpic line and represent the perfect measurements.

For each point i, i ∈ 〈1, n〉, a randomly distributed error, within the uncertainty range

from Table 5.1, is added to temperature and pressure. Next, a polynomial is fitted to

points with added random errors, and its derivative is calculated in all points n. The

derivative values are the Joule-Thomson coefficients – they are compared against values

obtained with the EOS. The calculations are repeated 300× n times, so the distribution

of errors is obtained for all points n. Finally, the standard deviation of ∆µJT / µ
EOS
JT is

computed, and the uncertainty is reported for each point separately for 95.45% confi-

dence interval.

A schematic representation for the error calculations is illustrated in Fig. 5.5. The solid

line is the isenthalpic line, calculated with an equation of state. Three points are the

points mimicking the measurements distributed over the isenthalpic line. A pressure-

dependent uncertainty in pressure U(p) and a temperature-dependent uncertainty in

temperature U(T ) embrace all possible solutions for a p− T pair forming the elliptical

region of statistical uncertainty. The selected measurement-like points are shown with

a ring. The fit-line passes through all the points and allows for calculating its derivative

– the Joule-Thomson coefficient. In the end, the calculated value is reported as a mean

relative uncertainty expanded to 95.45% confidence interval.

The results of the analysis are shown in Fig. 5.6a and 5.6b. Each point in the figures

represents the expanded mean relative uncertainty of all the points placed on a single
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Fig. 5.5. Visual representation of an isenthalpic line measurement error. Black points
are the perfect measurements, ellipses are their statistically calculated uncertainties,
and rings are the randomly selected measurements within the uncertainty bounds.

isenthalpic line. Since these are the mean values, the information about the uncertainty

distribution on a single isenthalpic line is lost. The exact values are given for actual

measurements. Each of the six sub-figures presents the results for a different number

of points n ∈ 〈3,8〉 distributed over a single line. The |∆T | / ∆pmax on the x-axes is the

temperature change in the isenthalpic transformation, relative to the pressure change

∆pmax = pin − patm. It is geometrically equivalent to the isenthalpic line steepness in

the p − T plane and thermodynamically equivalent to the temperature change in the

Joule-Thomson process from pin to patm. The absolute value of ∆T is used since it is

insignificant to the analysis whether the temperature change is positive or negative.

Colors show the degree of the h = const. line, that is – its curvature. For deg = 1 and

dark blue points, the isenthalpic line is linear in the p−T plane, whereas for deg= 6 and

yellow points it is strongly curved, and in the complete∆p = pin− patm space it can only

be accurately fitted with a polynomial of degree 6 (for the coefficient of determination

R2 > 0.999).

Fig. 5.6a shows the average measurement error calculated with all n points, including

the two points at the extremities. These extremities bring the highest error to the mea-

surements, as discussed in Sec. 5.1.2 and Fig. 5.2. Fig. 5.6b calculates the average error

excluding the extrema. The extremities are necessary to fit a polynomial accurately but

the slope of the fit at these points can diverge significantly from the slope of the isen-

thalpic line. For this reason, dropping the extremities decreases the expected error of

all µJT measured on a single isenthalpic line.

Decreasing the number of measurement points always results in increasing error. How-

ever, even for many points, the mean error calculated for helium–4 does not decrease.

Even though the isenthalpic lines of helium can often be linearly approximated, the∆T
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(b) Mean uncertainty excluding points at extremities.
Fig. 5.6. Mean relative expanded uncertainty for the measurements of the integrated
Joule-Thomson coefficient in pure fluids, calculated with Monte Carlo uncertainty prop-
agation.

of the Joule-Thomson process is near-zero, which directly translates to high measure-

ment error.

It can be concluded from Fig. 5.6b that a single isenthalpic line measured for neon,

nitrogen, or argon with at least n= 5−2 measurement points should yield errors lower
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than 2% for most cases except a few strongly curved isenthalpic lines of neon. A more

significant number of points measured at a single isenthalpic line for helium–4 is not

expected to decrease the errors. If the extremities were to be kept in analysis, at least

n= 7 points should be measured at a single line to decrease the mean error to the level

of n= 5− 2 points at the same line without the extremities.

In analogy to conventional uncertainty analysis and the black error bars in Fig. 5.3,

the gray bars represent the error values calculated with the Monte Carlo simulations,

including the fitted polynomial derivation process. In contrast to the conventional anal-

ysis, it can be concluded that most of the measurements are taken with errors within the

uncertainty range compared to the values calculated from the EOS. Another important

conclusion, not available from the conventional uncertainty analysis, is that the order

of a polynomial, its fitting, and derivation significantly influence final results and the

uncertainties.

5.2.3 Polynomial selection to fit the data

The analysis from the previous Section and Fig. 5.6 is repeated using different polynomi-

als available within the numpy.polynomial to fit the measurements and calculate the

derivatives. The errors are averaged for each fluid, independent from the |∆T | / pmax

value and the results are presented in Fig. 5.7. Each set of lines represents the aver-

aged differences between the calculated Joule-Thomson coefficient and the coefficients

obtained with an EOS for four different fluids. Every line in each set of lines calculates

the same results using a different polynomial. The left subfigure presents the average

values from Fig. 5.6a, the right one – from Fig. 5.6b. It is remarkable to the analysis

that the polynomial type has no impact on the calculated derivative values, that is, the

Joule-Thomson coefficients. All five lines of each color in both figures overlay for neon,

nitrogen, and argon. Little differences are visible for helium–4, but the impact is also

considered negligible since there is no obvious tendency.

The average error values presented in Fig. 5.7 are used only to compare the polynomi-

als against each other. It is essential to notice that some of the errors brought by the

differentiation encountered in the pure fluid measurements are much larger than the

presented mean values.

Since no influence of the polynomial type on the calculated Joule-Thomson coefficients

exists, each one, out of five compared polynomials, can be used for analysis. In this

work, the Chebyshev series is applied to the measurements to calculate the isenthalpic

Joule-Thomson coefficients.
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Fig. 5.7. Influence of the type of polynomial used for fitting the measurements on the
Joule-Thomson coefficient results.

5.3 Results analysis for mixtures

The measurements of the isenthalpic Joule-Thomson coefficient in mixtures are per-

formed at constant molar composition. Compared to the pure fluid measurements,

preparing the gas mixture in a 50 liters volume is necessary before the measurements.

Precisely measured molar composition is fundamental to obtain the results with accept-

ably low uncertainty. The composition cannot be accurately calculated from the pressure

measurements in the mixing process. Its precision does not decrease below ±2 mol−%

according to the gas vendor. As shown in Table 5.1, the gas analyzer measures the

molar composition of a binary mixture with known constituents with ±0.1 mol−% un-

certainty.

Apart from the differences described above, the measurements for mixtures are per-

formed by following the procedure detailed in Sec. 4.5. Numerical results from the

Joule-Thomson coefficient measurements for helium-neon and helium-nitrogen are pre-

sented in Table E.2.

In analogy to the pure fluids, the Chebyshev polynomial from Eq. (5.1) is fitted to

each isenthalpic line separately, and the Joule-Thomson coefficients are calculated from

Eq. (5.3). The values, resulting from these calculations, are presented in Table E.4 and

for the helium-neon mixture are visualized in Fig. 5.8. Columns show measurements

performed at four different mixture molar concentrations. Solid lines in the top figure

are the isenthalpic lines calculated with the equations of state, developed in Chapter 3.

Dotted lines represent the Chebyshev polynomials fitted to the experimental p−T points.

The subfigures in the middle row show the calculated and measured Joule-Thomson co-

efficients. The bottom row shows relative deviations between the measurements and
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Fig. 5.8. Measured p − T pairs for 4He−Ne mixture with variable molar composition
(top row). Resulting Joule-Thomson coefficients (middle row) and the relative deviation
from the EOS (bottom row) presented with black uncertainty bars from Eq. (5.10) and
gray bars from the Monte Carlo analysis. The color-coded numerical values of p − T
measurements are available in Table E.2. The calculated Joule-Thomson coefficients
are given in Table E.4.

the EOS. Black error bars are calculated with Eq. (5.9), gray – with the Monte Carlo sim-

ulations. Similarly, the Joule-Thomson coefficient measurements for pure fluids, rings

in all figures are the raw measurements, and dots are the measurements with applied

kinetic energy correction. By analogy, the measurements for helium-nitrogen, at two

different molar concentrations, are plotted in Fig. 5.9.

As described before, the derivation process necessary to calculate µJT is expected to

bring additional errors to the analysis. However, the Joule-Thomson coefficients for both

mixtures are measured at helium–4 concentrations below 50 mol−%. As a consequence,

the resulting temperature change often approaches the one observed for pure nitrogen

and argon. Besides, the curvature of most of the isenthalpic lines, measured for mixtures

in this work, is not excessive. These two conditions should result in limited error caused

by the derivation of a fit. However, it is visible in Figures 5.8 and 5.9 that the deviations

between the measurements and the EOS are more significant compared to the pure
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fluids. The reason for those higher deviations can lay either in incorrect measurements,

incorrect coefficients of developed equations of state, or possibly – limited capabilities

of the modern functional form of the equation of state in the Joule-Thomson coefficient

representation for mixtures with high critical temperature ratio.

As discussed in Sec. 3.4.4, the equation of state for the mixture of helium–4 and ni-

trogen is primarily developed to describe the phase equilibria at lower pressures. The

single-phase properties are fitted with low weights, compared to the other equations

from this work, therefore, further refinement should be possible. However, the equa-

tion of state for helium–4 and neon should not result in too high a deviation, considering

the advancement of its development. The influence of the composition measurement

uncertainty on the Joule-Thomson coefficient is evaluated before the conclusions from

the measurements are drawn.
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Fig. 5.10. Measurement error of differentiated isenthalpic Joule-Thomson coefficient
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show results of the Monte-Carlo analysis for mixture measurement uncertainty. The
yellow lines are the moving average for plotted points – including all uncertainty com-
ponents. The red lines are the moving average estimating the composition uncertainty
influence on µJT measurements.

5.3.1 Influence of the composition uncertainty

The influence of the measurement conditions and the hardware uncertainties on the

Joule-Thomson coefficients, measured for 4He−Ne, is evaluated. The analysis corre-

sponds to the one presented for the pure fluids in Fig. 5.6. In addition to the method-

ology discussed for the pure fluids, points on the isenthalpic line of a mixture are in-

fluenced by the composition error. The specified uncertainty of the gas analyzer is in-

dependent of the composition and is equal to ±0.1 mol−% for k = 2. In the Monte

Carlo analysis, the error in composition is applied to each point randomly, similarly to

pressure and temperature.

The mean error of the Joule-Thomson coefficient in Fig. 5.10 is calculated as a function

of the isenthalpic line steepness, its curvature, number of the p−T points measured on a

single line, and the mixture molar composition. The x-axes represents the temperature

change in the isenthalpic transformation, relative to the pressure change ∆pmax = pin−
patm. It characterizes the isenthalpic line steepness on the p− T plane. The points show

the mean error of a single Joule-Thomson coefficient for a variable number of points

n measured on a single isenthalpic line. The color of a point represents the mixture

molar concentration ranging from pure helium in yellow to pure neon in blue. The
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yellow lines are the moving averages calculated with all uncertainty components from

Table 5.1. The red trend lines are the moving averages calculated only for the influence

of the composition uncertainty, determined as the differences of the yellow lines and the

values obtained with all uncertainty components except the composition uncertainly.

High measurement error is visible for pure helium, where little temperature change is

observed, and for pure neon with few experimental points taken, where the isenthalpic

line curvature is the most pronounced. It is visible that at least n= 5−2= 3 points are

necessary to approach the minimal measurement error, with better results obtained for

n = 6− 2 = 4 points on a single line. Above this number, the derivation process does

not influence the results in given conditions.

The impact of the composition measurement uncertainty on the Joule-Thomson coeffi-

cient is illustrated with the red lines and is independent of the number of points. This

influence on the total error is marginal except for very low helium concentration values,

where a minor change in the slope of a flat isenthalpic line results in a significant relative

error. The helium concentration for measurements taken with 4He−Ne ranges from 20

to 50 mol−%, the mean error brought by the composition measurement uncertainty

within these limits is equal to 0.3% in µJT, the maximal error is equal to 1.5%.

Most of the isenthalpic lines in Fig. 5.8 are constructed using four to six measurement

points. The mean, relative errors in the Joule-Thomson coefficient for the mixture with

20 to 50 mol−% of helium, calculated with the Monte Carlo simulations, are smaller

than 5%. Therefore, neither the Eq. (5.9) nor the presented analysis explain the en-

countered differences between the EOS and the measurements.

5.3.2 Corrections for heat losses and kinetic energy

Too little information is available to calculate the thermal losses to the capillary assem-

bly and thermometers in particular. An attempt to estimate the heat losses is made

based on the minimization of µJT deviations. Fig. 5.11 presents the measurements devi-

ations from the EOS, plotted with circles. Filled points show deviations of the corrected

measurements assuming that a constant heat loss Q̇ = 27 mW is applied to the tempera-

ture sensor at the capillary outlet. The calculations impact only the outlet temperature,

Tout. The presented value is similar to the heat loss estimated in the experiment design

process.

The 27 mW heat in-leak is obtained by minimizing the sum of deviations of all the

Joule-Thomson coefficients, measured for nitrogen, helium, argon, and helium-neon. It

is not used to correct the values of measured Joule-Thomson coefficients since it does
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not provide coherent results for all measurements, yielding higher deviations for part

of corrected results.

The correction factors from Eq. (4.9) are quantified for the experimental conditions from

this work and are presented in Table 5.2. The estimations are based on the calculated

mass flow rate (verified with the volumetric flow meter) and the calculated heat loss,

impacting the Tout measurement. The relative values for nitrogen and argon are lower

since the isenthalpic lines in the p−T measurement space for these two fluids are steeper,

yielding larger absolute values of the Joule-Thomson coefficients. The correction for

kinetic energy may have been large for the large ∆p measurement method. However,

successfully applied precautions limit∆ek for all the measured p−T values, as discussed

in Sec. 4.4.1.

On the one hand, the analysis shows that the heat losses and the kinetic energy change

have a non-negligible impact on final results. On the other hand, the applied corrections

do not consistently decrease the observed deviations.

Table 5.2. Mean absolute and relative corrections to
∆T
∆p

�

�

�

�

path

from Eq. (4.9)

correction N2 Ar 4He 4He−Ne

−
Q̇

ṁcp∆p
0.012 K MPa−1

(0.19%)
0.070 K MPa−1

(0.79%)
0.011 K MPa−1

(2.93%)
0.049 K MPa−1

(2.13%)
∆ek

cp∆p
0.006 K MPa−1

(0.06%)
0.009 K MPa−1

(0.09%)
0.010 K MPa−1

(2.77%)
0.009 K MPa−1

(0.76%)
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5.4 Conclusions from the measurements

The isenthalpic Joule-Thomson coefficient measurements in pure fluids (nitrogen and

argon) are within the expected uncertainty from the accurate equations of state. The

obtained precision allows for validating the experimental setup. The measurements

characterized by small temperature change (pure helium–4) are burdened with high un-

certainties, as shown with the Monte Carlo simulations. For helium, the encountered de-

viations from the EOS are even higher than expected as the thermal losses may strongly

influence the isenthalpic process characterized by very low-temperature change.

The µJT measurements for mixtures are characterized by higher deviations from the

EOS compared to the pure fluids, excluding helium–4. An attempt was made to use the

obtained experimental data and refit the equation of state for the mixture of helium–4

and neon. The minimization algorithm was not able to decrease the deviations between

the EOS and the µJT data, keeping the equation constrained by the phase envelope.

Even after releasing the phase envelope and fitting only the measured Joule-Thomson

coefficients, the optimization did not result in significantly lower deviations than already

presented. This minimization attempt is considered a valid answer to whether it is

possible to further optimize the equation coefficients with given values of the Joule-

Thomson coefficients. It is not – the deviations between the EOS for 4He−Ne and µJT

reach 9%.

The analysis proposed by Smith137 does not provide significant insights into encoun-

tered deviations between the measurements and EOS. As shortly discussed in Sec. 5.3.2,

Smith’s corrections only sometimes minimize the deviations of results with respect to

EOS. As the analysis is assessed to be qualitatively correct, it yields incoherent correc-

tions for the complete set of pure fluid and mixture measurements.

Neither of the uncertainty discussions thoroughly explains the deviations between the

measurements and the equations of state. An additional source of errors can be the inlet

thermometer placement, which regulates the isenthalpic conditions. Despite removing

the (pin, Tin) pair from the measurement analysis, the inlet thermometer reading is used

to keep the inlet temperature constant. Assuming a constant heat in-leak to the capil-

lary assembly, the heat transfer from the fluid to the inlet thermometer varies with the

mass flow rate. Therefore, the heat losses impacting the temperature measurements

may cause the supposedly constant inlet temperature to change throughout a single

isenthalpic line measurement, becoming another source of error.

Compared to the previously measured Joule-Thomson coefficients, the errors encoun-

tered in this work are lower, especially when studying other measurements in cryogenic
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conditions. Fig. 5.12 presents the results obtained in this work, compared with the mea-

surements from the literature. Even though not all the measurements from this work

fit within 5% relative error, the results are satisfying and show that the Joule-Thomson

coefficient can approach the precision of the specific heat measurements.
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6 CONCLUSIONS

The presented work has been motivated by the development of new cryogenic facilities

and improved cooling production efficiency at intermediate temperatures. The demand

for accurate equations of state for mixtures has been identified. As a result, this work

evolved from thermodynamic cycle-oriented to thermophysical property-oriented.

The state-of-the-art empirical formulation for the Helmholtz energy has been used to

develop the equations of state for the binary mixtures of cryogenic fluids: helium-neon,

helium-argon, neon-argon, and helium-nitrogen. For each equation, the errors in single-

phase are evaluated, and the phase envelopes are constructed in the p− T − x space.

The equation of state for helium-nitrogen allows to accurately predict the fluid behavior

at low-pressures of the phase envelope – its primary region of interest. However, the

equation should be refined, so its reliability and accuracy improve. It fails more often to

provide a single-phase property prediction compared to, e.g., the equation for helium-

neon.

Extensive analysis of the errors at phase envelopes of the developed equations is con-

cluded with a new metric implementation. In contrast to the traditional pressure-based

metric, the new orthogonal metric defines the deviations at phase envelopes for the en-

tire data set. The orthogonal distance definition has been presented and is a valuable

metric for validating an equation of state at phase envelopes.

An attempt was made to employ the defined metric to develop the equation of state

for the 4He−H2 mixture. The stochastic minimization algorithms may minimize the

sum of orthogonal distances between the isotherms and the experimental points, but

no guess value used by these algorithms negatively influences the convergence. All

attempts showed that it is difficult for the algorithm to converge when the reducing pa-

rameters are fitted together with all the departure function parameters. More precisely,

the stochastic minimization is not successful due to the sensitivity of the phase equilib-

ria tracing algorithm to the random guess values of the departure function parameters.

The algorithm minimizing the sum of orthogonal distances was demonstrated to work

with a deterministic approach and good starting values for all the parameters. However,
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its successful operation requires the constraints on the thermodynamic properties to be

implemented. The automatic optimization and successful convergence shall be the goal

of future studies for which the orthogonal distance indicates the path.

The Joule-Thomson coefficient measurement setup has been designed, constructed, and

used to measure the coefficients for pure fluids and mixtures. The results obtained with

the indirect measurement method, where the integral of the Joule-Thomson coefficient

has been measured, resulted in challenging post-processing analysis. The measurements

with pure nitrogen, argon, and helium validated the experiment and the methodology.

The Joule-Thomson coefficients for helium-neon and helium-nitrogen were acquired for

few different composition values in the regions of little or no experimental data. The

measurements have been concluded with extensive uncertainty discussion and Monte

Carlo analysis. The measured coefficients have been compared with the equations of

state for mixtures developed within this work and are in good agreement with them.

The Joule-Thomson coefficient definition in terms of the Helmholtz energy contains al-

most all the first and second derivatives of the residual contribution, except for the first

derivative w.r.t. reduced temperature, αr
τ
. Therefore, µJT is an attractive property for

the equation of state validation. The measurements reach relative errors in the order

of ∆µJT / µJT ≤ 2% for pure fluids in advantageous conditions (nitrogen and argon

for significant temperature difference in the isenthalpic process). Even with higher rel-

ative errors observed for mixtures (9%), a comparison with other existing cryogenic

measurements shows that the results presented in this work are competitive and often

more accurate. Performed measurements of the isenthalpic Joule-Thomson coefficient

confirm the performance of the equations of state at cryogenic temperatures. The mea-

surements should be repeated for other mixtures in different conditions, so the pure

fluid errors demonstrated in this work are observed for mixtures. Additional important

question should be raised on whether the modern functional form of the equation of

state is capable of accurately describing all the state points for a mixture characterized

by a high critical temperature ratio.

The accuracy of predictions for enthalpy, entropy, isobaric, and isochoric specific heat

remains unknown for all presented mixtures as no measurements for these properties

exist. Additionally, the question about the high-pressure phase envelope behavior of

helium-neon is unanswered as the only two sources of measurements for the equilibria

properties show some inconsistencies and are incomplete. Similarly, the potentially

existing gas-gas equilibrium for neon-argon is not modeled because of lacking data.

With very few measurements reported for the density of neon-argon, further studies are

needed to check whether the EOS provides accurate predictions. The presented set of
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equations available for the binary mixtures allows forming a model for a ternary mixture

from the binary constituents. The additional measurements for any thermodynamic

property of a given ternary mixture, e.g., helium-neon-nitrogen, would allow validating

the so far unknown predictions for ternary mixtures.

The presented work on the equations of state has already found industrial and academic

use. Air Liquide Advanced Technologies have applied the equations of state for helium-

neon and helium-nitrogen to the cryogenic Brayton cycle calculations with mixed refrig-

erants. The 4He−Ne equation has also been used for the cryogenic cycle calculations

of the precooling stage for the Future Circular Collider, performed at Dresden Univer-

sity of Technology.156 Developed equations show significant application potential with

the helium-neon mixture being used for hydrogen liquefaction. The attractiveness of

published equations for 4He−Ne, 4He−Ar, and Ne−Ar has been recently emphasized

by following publications on other equations of state for the thermodynamic properties

of quantum mixtures.22,32 The work on the equations and the parallel work on their

application continues in Linde, SINTEF, and the University of Stuttgart. The developed

equations of state fit in the industrial trend on applying fluid mixtures and open doors

to the design of next-generation large-scale scientific infrastructures, such as the FCC or

DEMO. The presented equations of state answer the industrial and scientific needs and

can be easily integrated into the fluid property databases, such as REFPROP,116 Cool-

Prop,2 or TREND.119
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APPENDIX A - EXPERIMENTAL DATA

FOR THE EOS DEVELOPMENT

Table A.1. Experimental data for 4He−Ne

Data points
Reference Available Used T/K p/MPa xHe Uncertaintya AADb/%

VLE data
57 76 36 27 - 42 0.3 - 20 0.01 - 0.36 ±3% in p 15.0

58 22 22 25 - 27 0.6 - 5.1 0.002 - 0.03







± 0.02 K in T
±0.02% in x
±0.1% in y

4.3

ρpTρpTρpT data
59 39 39 273 - 673 2.5 - 10 0.28 N/Ac 0.26
60 97 97 298 0.2 - 12.2 0.23, 0.80 ±0.1% in ρ 0.20
61 90 73 293 - 303 0.1 - 6.3 0.26 - 0.95 ±0.1% in ρ 0.24
62 8 6 32 - 41 0.5 - 2.1 0.02 - 0.03 N/Ac 2.0
63 51 51 233 - 313 0.1 - 3.6 0.49 ±0.04% in Z 0.081

Speed of sound (w)
64 41 36 26 - 38 0.1 - 15 0.01 - 0.29 ±0.1% in w 9.6

Second virial coefficient (B)
157 3 0 15 - 20 ±5% in B 55.3d

158 8 0 148 - 323 ±5% in B 3.9d

59 5 0 273 - 673 N/Ac 8.8d

159 6 0 15 - 20 ±6% in B 57.6d

160 1 0 90 ±3% in B 5.9d

63 3 0 233 - 313 ±4% in B 3.6d

a Author claimed uncertainty.
b Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25).
c Undefined or poor uncertainty analysis.
d EOS not fitted to this data set.
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Table A.2. Experimental data for 4He−Ar

Data points
Reference Available Used T/K p/MPa xHe Uncertaintya AADb/%

VLE / GGE data

65 354 0 68 - 108 2.0 - 12 0.001 - 0.02











±0.03 K in T
±0.5% in p
±2% in x
±3% in y

24.0d

66 187 187 85 - 140 0.5 - 12 6 · 10−5 - 0.02











±0.03 K in T
±0.5% in p
±2% in x
±3% in y

3.4

67 50 0 86 - 108 2.0 - 12 0.002 - 0.02







±0.03 K in T
±0.5% in p
±1−2% in x

3.6d

68 29 0 93 - 148 1.7 - 14
§

±0.5% in p
±1.0% in x

12.0d

69 77 64 90 - 115 2.9 - 22 0.0005 - 0.002 ±0.02 vol. % in x 3.5
70 56 48 91 - 148 1.4 - 69 0.002 - 0.44

§

±0.02 K in T
±2 mol % in x

15.0

71 202 176 91 - 160 0.6 - 422 0.02 - 0.60







±0.1% in p
±0.01 K in T
±0.1 mol % in x

15.0

72 81 74 150 - 199 386 - 1048 0.27 - 0.72







±0.01 K in T
±100 psi in p
±0.15 mol % in x

7.7

ρpTρpTρpT data
73 288 288 223 - 323 0.3 - 73 0.21 - 0.80

§

±0.03 K in T
±0.06% in Z

0.72
74 41 41 373, 473 50 - 180 0.66, 0.95 N/Ac 1.8
75 59 59 293 - 353 29 - 59 0.24 - 0.79

§

±0.05 K in T
±0.3% in ρ

2.2
76 116 116 293 - 423 180 - 800 0.31, 0.74 ±0.5% in ρ 2.4

77 45 45 293 - 673 5.0 - 40 0.11 - 0.98







±0.05 K in T
±0.05% in p
±0.02% in xHe

1.3

78 212 212 143 - 183 0.2 - 68 0.22 - 0.80 N/Ac 1.2
79 31 31 298 0.1 - 800 0.50 ±0.2% in ρ 1.5
80 13 13 298 80 - 800 0.50 ±0.2% in ρ 1.9

Speed of sound (w)
81 51 27 298 109 - 1972 0.50 - 0.90 ±0.5% in w 5.1
82 22 20 298 - 422 100 - 700 0.21 ±0.63% in w 1.3
83 47 47 298 201 - 1696 0.50 - 0.90 ±0.5% in w 11.0
80 13 13 298 80 - 800 0.50 ±0.2% in w 2.4

a Author claimed uncertainty. Continued on next page
b Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25).
c Undefined or poor uncertainty analysis.
d EOS not fitted to this data set.
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Table A.2. (Continued.)

Data points
Reference Available Used T/K p/MPa xHe Uncertaintya AADb/%

Second virial coefficient (B)
73 15 0 223 - 323

§

±0.03 K in T
±0.3% in B

21.0d

158 8 0 148 - 323 ±5% in B 11.0d

161 60 0 303 - 773 ±1.31% in B 16.9d

160 1 0 90 ± 2 - 3% in B 6.1d

162 3 0 290 - 320 greater than 1.2% 5.9d

163 14 0 298 N/Ac 18.9d

a Author claimed uncertainty.
b Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25).
c Undefined or poor uncertainty analysis.
d EOS not fitted to this data set.

Table A.3. Experimental data for Ne−Ar

Data points
Reference Available Used T/K p/MPa xNe Uncertaintya AADb/%

VLE data
69 84 54 91 - 120 2.9 - 20 0.03 - 0.31 ±0.02 vol. % in x 8.0
84 54 53 84 - 130 0.4 - 7.3 0.05 - 0.73

§

±0.01 K in T
±0.01 MPa in p

11.0
85 37 36 95 - 130 7.5 - 62 0.09 - 0.57 N/Ac 12.0

86 58 58 87 - 93 6.4 - 103 0.002 - 0.09







±0.02 K in T
±0.1% in p
±0.1 mol % in x

6.7

87 67 59 93 - 138 0.5 - 101 0.002 - 0.57 ±0.1 mol % in x 13.0
ρpTρpTρpT data

60 21 21 298 0.4 - 13.7 0.23, 0.73 ±0.1% in ρ 0.43
85 109 107 102 - 121 3.0 - 55.2 0.04 - 0.50 ±1.0% in ρ 2.5
79 31 31 298 0.1 - 800 0.50 ±0.2% in ρ 1.6
80 13 13 298 80 - 800 0.50 ±0.2% in ρ 2.8

Speed of sound (w)
88 10 0 102, 121 1.3 - 15 0.22 N/Ac 60.0d

80 13 13 298 80 - 800 0.50 ±0.2% in w 1.2
Second virial coefficient (B)

158 9 0 123 - 323 ±5% in B 9.7d

160 1 0 90 ± 2-3% in B 5.9d

a Author claimed uncertainty.
b Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25).
c Undefined or poor uncertainty analysis.
d EOS not fitted to this data set.
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Table A.4. Experimental data for 4He−N2

Data points
Reference Available Used T/K p/MPa xHe Uncertaintya AADb/%

VLE / GGE data

89 12 11 82, 113 0.5 - 5 0.002 - 0.04











±0.2 K in T
±0.1% in p
±0.15 mol % in x
±2 mol % in y

16.7

90 30 20 77 - 123 1.1 - 6.9 0.003 - 0.09 N/Ac 26.7
91 18 7 77 3.6 - 6.8 0.008 - 0.015

§

±0.1 K in T
±2% in x

93.3
92 25 0 77 - 126 2 - 10 0.11 - 0.20 N/Ac 54.5
93 280 131 76 - 120 0.5 - 13.8 0.001 - 0.14

§

±0.5 K in T
±0.2 mol % in x

45.0
94 29 13 78 - 109 2.7 - 28 0.009 - 0.18 N/Ac 42.4
95 84 59 68 - 111 0.45 - 21.8 0.001 - 0.14 N/Ac 43.1
96 19 0 65 - 77 0.04 - 2.2 0.55 - 0.61

§

±0.5 K in T
±10% in p

15.8
69 25 13 67 - 90 0.6 - 2.6 0.0007 - 0.009 ±0.02 vol. % in x 45.5

97 151 108 77 - 137 13 - 410 0.04 - 0.64







±0.01 K in T
±100 psi in p
±0.15 mol % in x

12.1

98 86 63 77 - 121 6.8 - 83 0.06 - 0.56 N/Ac 19.8

72 125 96 112 - 162 246 - 1020 0.24 - 0.77







±0.01 K in T
±100 psi in p
±0.15 mol % in x

17.6

99 77 46 122 - 126 3 - 21 0.006 - 0.34







±0.01 K in T
±2 psi(a) in p
±0.04% in xHe

20.0

ρpTρpTρpT data

100 462 396 273 - 298 0.1 - 101 0.1 - 0.9







±0.015 K in T
±0.01% in p
±1.0% in ρ

1.1

101 98 98 293 - 353 29 - 59 0.41 - 0.84 N/Ac 1.5
102 185 185 273 - 373 6.9 - 29.4 0.21 - 0.84 N/Ac 0.96
103 884 851 133 - 273 0.3 - 55 0.15 - 0.87 ±0.15% in Z 0.84

104 43 43 298 10 - 122.5 0.13 - 0.92







±0.01 K in T
±0.3% in p
±1.0% in x

2.3

105 134 131 83 - 113 0.16 - 22 0.3 - 0.88 N/Ac 0.08
a Author claimed uncertainty. Continued on next page
b Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25).
c Undefined or poor uncertainty analysis.
d EOS not fitted to this data set.
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Table A.4. (Continued.)

Data points
Reference Available Used T/K p/MPa xHe Uncertaintya AADb/%

106 153 109 311, 373 0.3 - 29.9 0.16 - 0.67











±0.02 K in T
±0.02% in p
±0.015% in ρ
±0.2% in B

0.24

107,108 208 201 298 - 423 100 - 700 0.30, 0.54 ±0.5% in ρ 2.8
109,110 306 306 294 0.9 - 10.0 0.06 - 0.99 ±0.14% in Z 0.40

111 55 37 295 - 598 5.8 - 34 0.22 - 0.79







±0.05 K in T
±0.05% in p
±0.02% in xHe

0.48

96 30 30 69, 77 1.4 - 6.9 0.01 - 0.99
§

±0.5 K in T
±10% in p

21.0

112 34 34 77 - 117 9.6 - 55 0.016 - 0.35







±0.02 K in T
±0.5 atm in p
±1.0% in x

2.1

113 103 100 298 212 - 1018 0.25 - 0.75







±0.005 K in T
±0.05% in p
±0.1% in ρ

2.0

Speed of sound (w)
114 20 20 75 - 90 0.01 0.1 - 0.7 N/Ac 0.25

115 112 98 156 - 298 200 - 1000 0.498







±0.002 K in T
±0.05% in p
±0.15% in w

4.5

Second virial coefficient (B)

164 30 0 310 - 449







±0.1 K in T
±0.1% in p
±1.25% in Z

2.4d

111 29 0 296 - 598







±0.05 K in T
±0.05% in p
±0.02% in xHe

2.6d

165 1 0 298 ±5% in B 24.9d

166 4 0 303 ±2% in B 4.7d

167 30 0 100 - 750 ±3 - 5% in B 8.0d

168 21 0 303 N/Ac 3.0d

169 10 0 292 - 321 ±2% in B 9.1d

170 54 0 133 - 273 N/Ac 4.0d

158 8 0 148 - 323 ±5% in B 9.6d

171 58 0 298 - 748 ±1.7% in B 1.8d

160 1 0 90 ±2 - 3% in B 2.9d

172 31 0 270 - 253 ±2 - 5% in B 5.6d

a Author claimed uncertainty.
b Average absolute deviation (AAD) of data set from EOS, calculated with Eq. (3.25).
c Undefined or poor uncertainty analysis.
d EOS not fitted to this data set.
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APPENDIX B - THERMODYNAMIC PROPERTIES

CALCULATED WITH THE EOS

Table B.1. Single-phase properties as a function of Helmholtz energy.

Property Relation to Helmholtz energy
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Fig. B.1. Characteristic plots for 4He−Ne. Continued on next page
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Fig. B.1. Characteristic plots for 4He−Ne.
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Fig. B.2. Characteristic plots for 4He−Ar.
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Fig. B.3. Characteristic plots for Ne−Ar. Continued on next page
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Fig. B.3. Characteristic plots for Ne−Ar.
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Fig. B.4. Characteristic plots for 4He−N2.
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APPENDIX C - PYTHON SCRIPT

FOR VALIDATING EOS IMPLEMENTATION

CoolProp2 is required to run the test_data.py python script. It can be installed from

the following link: CoolProp-automatic-installation.

Helium.json, Neon.json, Argon.json, and Nitrogen.json files need to be placed

in the same directory as test_data.py. These json files are copies of the CoolProp fluid

files from CoolProp/dev/fluids directory.

test_data.py file:

import j son

import i t e r t o o l s

from c o l l e c t i o n s import namedtuple

import CoolProp

import CoolProp . CoolProp as CP

p r i n t ( ’ CoolProp ver s ion : ’ , CoolProp . __vers ion__ )

p r i n t ( ’ CoolProp g i t r e v i s i o n : ’ , CoolProp . _ _ g i t r e v i s i o n _ _ )

def setup_CoolProp ( f l u i d s ) :

CP . s e t _ con f i g_boo l (CP . OVERWRITE_FLUIDS , True )

# Read in the f l u i d f i l e s

f o r f l u i d in f l u i d s :

content s = j son . load ( open ( f l u i d + ’ . j son ’ ) )

CP . add_fluids_as_JSON ( ’HEOS’ , j son . dumps( [ content s ] ) )

# departure func t i on s f o r EOS developed in t h i s work

departure_JSON = [
{

"Name " : " Helium−Neon " ,

" a l i a s e s " : [ ] ,

" type " : " Gaussian+Exponent ia l " ,

" BibTeX " : " Tkaczuk−2020" ,

" Npower " : 3 ,

" n " : [−4.346849 , −0.884378 , 0.258416 , 3.502188 , 0.831330 , 2.740495 , −1.582230 , −0.304897] ,
" t " : [1.195 , 1.587 , 1.434 , 1.341 , 1.189 , 1.169 , 0.944 , 1.874] ,

" d " : [1 , 2 , 3 , 1 , 2 , 3 , 4 , 4] ,

" l " : [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ,

" e ta " : [0.000 , 0.000 , 0.000 , 0.157 , 0.931 , 0.882 , 0.868 , 0.543] ,

" beta " : [0.000 , 0.000 , 0.000 , 0.173 , 1.070 , 0.695 , 0.862 , 0.971] ,

"gamma " : [0.000 , 0.000 , 0.000 , 1.310 , 1.356 , 1.596 , 1.632 , 0.766] ,
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" ep s i l on " : [0.000 , 0.000 , 0.000 , 1.032 , 1.978 , 1.966 , 1.709 , 0.583]
} ,

{
"Name " : " Helium−Argon " ,

" a l i a s e s " : [ ] ,

" type " : " Gaussian+Exponent ia l " ,

" BibTeX " : " Tkaczuk−2020" ,

" Npower " : 3 ,

" n " : [−2.643654 , −0.347501 , 0.201207 , 1.171326 , 0.216379 , 0.561370 , 0.182570 , 0.017879] ,

" t " : [1.030 , 0.288 , 0.572 , 1.425 , 1.987 , 0.024 , 1.434 , 0.270] ,

" d " : [1 , 2 , 3 , 1 , 1 , 2 , 3 , 4] ,

" l " : [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ,

" e ta " : [0.000 , 0.000 , 0.000 , 0.371 , 0.081 , 0.375 , 0.978 , 0.971] ,

" beta " : [0.000 , 0.000 , 0.000 , 0.320 , 1.247 , 1.152 , 0.245 , 1.030] ,

"gamma " : [0.000 , 0.000 , 0.000 , 1.409 , 1.709 , 0.705 , 1.162 , 0.869] ,

" ep s i l on " : [0.000 , 0.000 , 0.000 , 0.378 , 0.741 , 0.322 , 1.427 , 2.088]
} ,

{
"Name " : " Neon−Argon " ,

" a l i a s e s " : [ ] ,

" type " : " Gaussian+Exponent ia l " ,

" BibTeX " : " Tkaczuk−2020" ,

" Npower " : 3 ,

" n " : [−1.039686 , 0.593776 , −0.186531 , −0.223315 , 0.160847 , 0.405228 , −0.264563 , −0.033569] ,
" t " : [0.723 , 1.689 , 1.365 , 0.201 , 0.164 , 0.939 , 1.690 , 1.545] ,

" d " : [1 , 2 , 3 , 1 , 2 , 2 , 3 , 4] ,

" l " : [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ,

" e ta " : [0.000 , 0.000 , 0.000 , 1.018 , 0.556 , 0.221 , 0.862 , 0.809] ,

" beta " : [0.000 , 0.000 , 0.000 , 0.360 , 0.373 , 0.582 , 0.319 , 0.560] ,

"gamma " : [0.000 , 0.000 , 0.000 , 1.119 , 1.395 , 1.010 , 1.227 , 1.321] ,

" ep s i l on " : [0.000 , 0.000 , 0.000 , 2.490 , 1.202 , 2.468 , 0.837 , 2.144]
} ,

{
"Name " : " Helium−Nitrogen " ,

" a l i a s e s " : [ ] ,

" type " : " Gaussian+Exponent ia l " ,

" BibTeX " : " Tkaczuk−2021" ,

" Npower " : 3 ,

" n " : [−3.122496 ,−0.245826 , 0.172129 , 1.455886 , 0.681733 , 0.228133 , 0.053118] ,

" t " : [0.786 , 0.232 , 0.502 , 0.304 , 0.483 , 1.419 , 0.261] ,

" d " : [1 , 2 , 3 , 1 , 2 , 3 , 4] ,

" l " : [0 , 0 , 0 , 0 , 0 , 0 , 0] ,

" e ta " : [0.000 , 0.000 , 0.000 , 0.736 , 0.782 , 0.846 , 0.660] ,

" beta " : [0.000 , 0.000 , 0.000 , 0.590 , 0.348 , 0.576 , 0.454] ,

"gamma " : [0.000 , 0.000 , 0.000 , 1.048 , 0.957 , 1.539 , 0.778] ,

" ep s i l on " : [0.000 , 0.000 , 0.000 , 0.387 , 1.133 , 1.357 , 1.773]
}
]
CP . s e t _ con f i g_boo l (CP . NORMALIZE_GAS_CONSTANTS, Fa l se )

CP . s e t _depa r tu re_ func t i on s ( j son . dumps( departure_JSON ))

fo r pa i r in i t e r t o o l s . combinations ( f l u i d s , 2) :

CP . apply_s imple_mix ing_rule ( pa i r [0 ] , pa i r [1 ] , ’ Lorentz−Ber the lo t ’ )

BIPs = namedtuple ( ’ BIPS ’ , [ ’ betaT ’ , ’gammaT ’ , ’ betaV ’ , ’gammaV’ , ’ F i j ’ ] )

def get_AS ( f l u i d s ) :

BIP = {
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# reducing parameters from t h i s work

( " Helium " , " Neon " ) : (0.793 , 0.728 , 1.142 , 0.750 , 1 .0) ,

( " Helium " , " Argon " ) : (1.031 , 1.113 , 1.048 , 0.862 , 1 .0) ,

( " Neon " , " Argon " ) : (1.033 , 0.967 , 0.919 , 1.035 , 1 .0) ,

( " Helium " , " Nitrogen " ) : (1.028 , 1.229 , 1.036 , 0.935 , 1 .0) ,

}
AS = CP . A b s t r a c t S t a t e ( ’HEOS’ , ’ & ’ . j o i n ( f l u i d s ))

b = BIPs ( BIP [ f l u i d s ] )
f o r k in [ ’ betaT ’ , ’gammaT ’ , ’ betaV ’ , ’gammaV’ , ’ F i j ’ ] :

AS . s e t _ b i n a r y _ i n t e r a c t i o n _d o ub l e (0 , 1 , k , g e t a t t r (b , k ))

AS . s e t _ b i n a r y _ i n t e r a c t i o n _ s t r i n g (0 , 1 , ’ funct ion ’ , ’ − ’ . j o i n ( f l u i d s ))

re turn AS

def do_calc ( z ) :

setup_CoolProp ( [ ’ Helium ’ , ’ Neon ’ , ’ Argon ’ , ’ Nitrogen ’ ] )

p r i n t ( ’ mixture , pres sure /Pa , alphar , rho_reducing /(mol m^{−3}), R/( J/mol K ) ’ )

f o r pair , rhomolar in [
( ( ’ Helium ’ , ’ Neon ’ ) , 1e4 ) ,

( ( ’ Helium ’ , ’ Argon ’ ) , 1e4 ) ,

( ( ’ Neon ’ , ’ Argon ’ ) , 1e4 ) ,

( ( ’ Helium ’ , ’ Nitrogen ’ ) , 1e4 )

] :
AS = get_AS ( pa i r )

AS . spec i f y_phase (CP . iphase_gas )

AS . s e t _mo le_ f r a c t i on s ( z )

AS . update (CP . DmolarT_INPUTS , rhomolar , 200)

re s = [AS . p ( ) , AS . a lphar ( ) , AS . rhomolar_reducing ( ) , AS . gas_cons tant ( ) ]
p r i n t ( pa i r [0] + ’ − ’ + pa i r [1] + ’ : ’ , r e s )

i f __name__ == ’ __main__ ’ :

do_calc ( [0 .5 , 0 .5 ] )
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APPENDIX D - EXPERIMENTAL SETUP

FOR THE JOULE-THOMSON COEFFICIENT

MEASUREMENTS

Table D.1. List of equipment used for measurements

Control

P&ID tag Equipment type Manufacturer and model

RV001 Pressure regulator Alphagaz LTH 400

PI001 Pressure indicator Alphagaz LTH 400

HV002 Diaphragm sealed valve Nupro SS-DSV51

HV003 Diaphragm sealed valve Nupro SS-DSV51

RV004A Pressure regulator Alphagaz LTH 400

PI004A Pressure indicator Alphagaz LTH 400

HV004B Diaphragm sealed valve Nupro SS-DSV51

SV005 Safety valve Swagelok SS-6R3A-MM

HV006 Diaphragm sealed valve Nupro SS-DSV51

TT007 Platinum temperature sensor

TT008 Platinum temperature sensor

Q008 Resistive heater in copper mass

TT009 Platinum temperature sensor

TT010 Platinum temperature sensor

Q011 Resistive heater

HV012 Diaphragm sealed valve Swagelok SS-DLVC04

HV013 Needle valve Hoke Mili-Mite 1335G4Y

HV014 Diaphragm sealed valve Swagelok SS-DLVC04

HV015 Needle valve Hoke Micromite 1654G4YA

Continued on next page
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Table D.1. (Continued.)

HV016 Needle valve Swagelok SS-4BMW-VCR

HV017 Diaphragm sealed valve Swagelok SS-DLVC04

NV018 Check valve Swagelok

cryocooler Gifford-McMahon refrigerator Cryomech AL300

Measurements

P&ID tag Equipment type Manufacturer and model

GA016 Gas analyzer SRS BGA244HP

PT101 Absolute pressure transducer Mensor CPT 6100

TT101 Cernox temperature sensor Lake Shore CX-1080-CU-HT-20L

PT102 Gauge pressure transducer Mensor CPT 6100

TT102 Cernox temperature sensor Lake Shore CX-1050-SD-HT-1.4L

Vacuum

P&ID tag Equipment type Manufacturer and model

M301 Turbo-molecular pump Alcatel

PT301 Vacuum pressure transmitter Alcatel CF2P

M302 Roughing pump Alcatel

HV303A Diaphragm sealed valve Nupro SS-DSV51

HV303B Manual vacuum valve

M303 Roughing pump

PT303 Vacuum pressure transmitter Adixen ACC2009-SP

HV304 Bellow sealed valve Swagelok SS-4H-V71

PI304 Pressure indicator Bourdon Haenni M1

M305 Turbo-molecular pump

M306 Roughing pump

PV306 Solenoid valve

PT307 Vacuum pressure transmitter Pfeiffer IKR 251
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Fig. D.2. Print screen from Panorama E2 SCADA - software for data acquisition and hardware control. Image taken during test setup
validation with pure argon.

132



HV015
HV016
HV013
HV017
HV304
PI304

HV014

HV012

gas analyzer GA016

Fig. D.3. Gas manifold.

PT101

PT102

cold head

power supplies
for heaters control

vacuum
control units

Fig. D.4. Complete experimental setup.

Fig. D.5. Multi-layer insulation on the thermal shield around the capillary.
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APPENDIX E - RESULTS

FROM THE JOULE-THOMSON COEFFICIENT

MEASUREMENTS

Raw measurements of the p−T pairs for pure fluids are given in Table E.1, for mixtures –

in Table E.2. Uncertainty(x) characterizes the purity measurements for pure fluids and

the composition measurements for mixtures. The measurements are reported separately

for each fluid, each isenthalpic line, and each mixture composition. The color code in the

first columns of Tables E.1 – E.4 represents points measured on different isenthalpic lines

and matches the color codes in Figures 4.20, 5.3, 5.4, 5.8, 5.9, and 5.11. The calculated

isenthalpic Joule-Thomson coefficients are reported in Table E.3 for pure fluids and in

Table E.4 for mixtures.

Table E.1. p− T measurements for the Joule-Thomson coefficient in pure fluids

Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa Impurity Uncertainty(x)

nitrogen

Red

160.949 160.000 155.335 5.0000 3.9955 0.0096 0.0004

161.068 160.000 148.407 5.0005 3.0135 0.0096 0.0004

161.130 160.000 140.377 5.0005 2.0024 0.0096 0.0004

161.170 160.001 131.322 5.0008 1.0065 0.0096 0.0004

Green

161.246 160.001 155.143 6.0000 4.9438 0.0014 0.0002

161.309 160.001 149.009 6.0030 3.9984 0.0015 0.0002

161.323 160.002 141.449 5.9998 2.9859 0.0014 0.0002

161.341 160.003 132.400 5.9999 1.9534 0.0010 0.0002

161.339 159.999 122.275 6.0000 0.9938 0.0013 0.0002
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Table E.1. (Continued.)

Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa Impurity Uncertainty(x)

Purple

161.315 160.002 155.529 7.0001 5.9090 0.0016 0.0002

161.345 160.002 150.394 7.0002 5.0027 0.0016 0.0002

161.351 160.001 143.799 7.0000 4.0111 0.0015 0.0002

161.317 159.999 126.207 6.9999 2.0183 0.0014 0.0002

Blue

150.945 149.805 144.736 6.0004 5.0000 0.0013 0.0002

150.946 149.803 137.855 6.0000 4.0007 0.0014 0.0002

150.957 149.803 129.290 6.0000 3.0002 0.0013 0.0002

150.965 149.805 118.338 6.0000 1.9998 0.0013 0.0002

150.964 149.806 104.094 6.0000 1.0007 0.0012 0.0002

150.970 149.804 88.229 6.0000 0.1410 0.0009 0.0002

Yellow

161.208 159.991 157.131 9.0004 7.9904 0.0017 0.0002

161.186 159.990 153.414 9.0001 7.0112 0.0017 0.0002

161.147 159.997 148.901 8.9999 5.9972 0.0018 0.0002

161.157 159.994 143.339 8.9999 5.0070 0.0016 0.0002

161.206 159.998 136.550 9.0000 3.9947 0.0013 0.0002

161.187 160.002 128.117 9.0000 3.0169 0.0008 0.0002

161.149 160.001 116.714 9.0000 2.0005 0.0004 0.0002

Pink

161.371 159.984 158.539 11.9900 11.0257 0.0021 0.0002

161.362 160.000 156.617 12.0001 10.0132 0.0023 0.0002

161.258 159.992 154.270 12.0010 8.9826 0.0017 0.0002

161.256 160.000 148.758 12.0003 7.1160 0.0007 0.0002

161.224 160.000 144.666 11.9994 6.0834 0.0010 0.0002

161.219 160.000 139.251 12.0001 5.0011 0.0018 0.0002

161.190 160.000 132.706 12.0000 3.9939 0.0021 0.0002

161.174 160.000 124.200 11.9990 3.0037 0.0024 0.0002

argon

Red

180.835 180.000 174.256 5.0000 3.9900 0.0008 0.0002

180.944 180.003 165.672 4.9999 2.9990 0.0008 0.0002

181.034 180.001 155.620 5.0000 1.9738 0.0007 0.0002

181.062 180.000 144.619 5.0003 1.0080 0.0006 0.0002
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Table E.1. (Continued.)

Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa Impurity Uncertainty(x)

Blue

181.218 180.000 177.882 11.9999 11.0105 0.0014 0.0002

181.254 180.002 171.711 11.9985 9.0211 0.0021 0.0002

181.264 180.000 168.043 12.0000 8.0453 0.0022 0.0002

181.265 180.000 163.525 11.9997 7.0206 0.0020 0.0002

181.241 180.000 158.147 12.0000 5.9797 0.0020 0.0002

181.234 180.000 152.137 12.0010 5.0147 0.0020 0.0002

helium-4

Green

141.657 140.641 141.842 10.0000 9.0221 0.0015 0.0002

141.628 140.643 142.220 10.0002 8.0238 0.0004 0.0002

141.538 140.639 143.243 10.0056 5.9759 0.0009 0.0002

141.464 140.641 144.719 10.0038 3.1790 0.0013 0.0002

Blue

64.920 65.000 67.403 7.0019 5.0047 0.0004 0.0002

64.872 64.997 67.639 7.0000 3.9188 0.0005 0.0002

64.857 65.008 68.288 7.0000 3.0835 0.0009 0.0002

64.791 64.990 68.422 7.0000 2.0181 0.0007 0.0002

Red

64.996 64.992 66.387 5.0000 4.0426 0.0007 0.0002

64.971 64.998 66.787 5.0001 2.9983 0.0006 0.0002

64.951 64.998 67.059 5.0008 2.0013 0.0005 0.0002

64.914 64.996 67.383 5.0002 1.0044 0.0005 0.0002

Table E.2. p− T − x measurements for the Joule-Thomson coefficient in mixtures

Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa x1 x2 Uncertainty(x)

helium-4 – nitrogen

Blue

161.161 160.009 153.377 7.9999 5.9964 0.1451 0.8549 0.0003

161.161 159.999 149.319 8.0000 5.0593 0.1454 0.8546 0.0003

161.150 160.001 138.391 8.0002 2.9918 0.1456 0.8544 0.0003

161.136 159.996 131.425 8.0000 1.9437 0.1455 0.8545 0.0003

161.125 160.006 124.148 8.0000 0.9940 0.1454 0.8546 0.0003

Green

140.920 140.000 135.793 5.0000 3.9977 0.1450 0.8550 0.0003

140.990 140.000 129.309 5.0000 3.0062 0.1451 0.8549 0.0003

140.999 140.000 121.591 4.9998 2.0059 0.1450 0.8550 0.0003

141.012 140.000 112.796 5.0000 1.0390 0.1449 0.8551 0.0003
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Table E.2. (Continued.)

Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa x1 x2 Uncertainty(x)

Red

160.868 160.001 156.934 5.0000 3.9806 0.1449 0.8551 0.0003

161.031 160.001 146.451 5.0000 2.0139 0.1449 0.8551 0.0003

161.010 160.001 140.220 4.9990 1.0004 0.1448 0.8552 0.0003

Blue

140.800 140.005 139.685 5.0000 3.9984 0.5025 0.4975 0.0002

140.898 140.001 137.326 4.9990 3.2769 0.5026 0.4974 0.0002

140.969 139.998 134.955 5.0000 2.0098 0.5027 0.4973 0.0002

141.000 140.000 132.385 5.0000 0.9901 0.5027 0.4973 0.0002

Red

140.929 140.007 139.531 8.0000 6.9508 0.5026 0.4974 0.0002

140.980 139.999 137.696 7.9999 5.9792 0.5027 0.4973 0.0002

140.994 140.006 135.858 8.0000 5.0089 0.5027 0.4973 0.0002

141.000 140.003 133.818 8.0000 4.0073 0.5028 0.4972 0.0002

140.990 140.003 129.153 7.9997 2.0185 0.5030 0.4970 0.0002

140.992 140.011 126.386 8.0000 1.0034 0.5028 0.4972 0.0002

helium-4 – neon

Blue

65.094 65.053 65.035 5.0000 3.9540 0.2154 0.7846 0.0004

65.125 65.053 63.124 5.0000 3.1092 0.2155 0.7845 0.0004

65.134 65.053 60.685 5.0000 2.0442 0.2154 0.7846 0.0004

65.133 65.053 58.115 5.0000 1.0334 0.2154 0.7846 0.0004

65.140 65.053 55.572 5.0000 0.1467 0.2154 0.7846 0.0004

Red

65.119 65.047 65.132 7.0000 6.0111 0.2005 0.7995 0.0004

65.126 65.043 63.945 7.0000 5.3862 0.2096 0.7904 0.0004

65.115 65.046 61.429 7.0000 4.0289 0.2150 0.7850 0.0004

65.106 65.043 59.869 7.0000 3.2727 0.2157 0.7843 0.0004

65.103 65.045 56.836 6.9999 1.9843 0.2158 0.7842 0.0004

65.101 65.044 54.131 7.0000 1.0031 0.2158 0.7842 0.0004

65.105 65.046 51.438 7.0002 0.1758 0.2157 0.7843 0.0004

Blue

65.236 65.142 65.412 10.0001 9.0746 0.3138 0.6862 0.0003

65.241 65.148 64.467 9.9999 8.1522 0.3145 0.6855 0.0003

65.200 65.143 62.025 10.0000 5.9672 0.3068 0.6932 0.0003

65.179 65.144 59.168 10.0006 3.9757 0.3029 0.6971 0.0003

65.162 65.146 55.796 10.0002 2.0371 0.3157 0.6843 0.0003

Red

80.565 80.435 80.755 7.9999 6.9743 0.3263 0.6737 0.0003

80.546 80.432 79.884 7.9999 6.0370 0.3277 0.6723 0.0003

80.516 80.436 78.012 7.9997 3.9751 0.3275 0.6725 0.0003

80.505 80.435 75.904 7.9998 1.9925 0.3280 0.6720 0.0003
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Table E.2. (Continued.)

Color TT008/K TT101/K TT102/K PT101/MPa PT102/MPa x1 x2 Uncertainty(x)

Green

65.292 65.162 63.787 5.0006 3.1349 0.3279 0.6721 0.0003

65.283 65.160 61.978 5.0092 2.0914 0.3278 0.6722 0.0003

65.284 65.158 59.991 5.0000 1.0472 0.3278 0.6722 0.0003

Blue

65.069 65.014 65.150 5.0000 3.8435 0.3967 0.6033 0.0003

65.100 65.016 64.081 5.0009 3.1354 0.3993 0.6007 0.0003

65.099 65.014 62.581 5.0000 2.0727 0.3994 0.6006 0.0003

65.110 65.015 60.875 4.9999 0.9803 0.3995 0.6005 0.0003

Red

65.028 64.995 65.263 7.0085 5.9934 0.3941 0.6059 0.0003

65.068 64.996 64.018 7.0031 4.9649 0.3903 0.6097 0.0003

65.079 64.997 62.858 6.9998 4.0554 0.3869 0.6131 0.0003

65.051 64.995 61.497 6.9979 3.0707 0.3799 0.6201 0.0003

65.065 64.998 60.024 7.0030 1.9997 0.3903 0.6097 0.0003

Blue

65.841 65.702 65.483 10.0000 7.9988 0.4623 0.5377 0.0003

65.739 65.702 64.091 9.9999 6.0732 0.4554 0.5446 0.0003

65.703 65.700 62.505 9.9998 4.1545 0.4625 0.5375 0.0003

65.690 65.701 60.453 10.0011 2.2046 0.4640 0.5360 0.0003

Green

65.031 64.991 64.533 7.9997 6.0656 0.4673 0.5327 0.0003

65.025 64.990 63.662 8.0000 5.0095 0.4665 0.5335 0.0003

65.029 64.990 62.621 8.0001 3.8718 0.4668 0.5332 0.0003

65.014 64.991 61.677 7.9999 2.9771 0.4671 0.5329 0.0003

Red

79.932 79.899 79.493 10.0002 6.5270 0.4666 0.5334 0.0003

79.925 79.897 79.152 10.0001 5.9909 0.4669 0.5331 0.0003

79.925 79.901 78.558 10.0010 5.0058 0.4672 0.5328 0.0003

79.908 79.903 78.008 10.0003 4.0051 0.4672 0.5328 0.0003

Purple

80.045 80.005 80.711 5.0000 3.9098 0.4670 0.5330 0.0003

80.072 80.004 79.964 5.0000 3.0241 0.4669 0.5331 0.0003

80.068 80.005 79.158 5.0006 1.9438 0.4669 0.5331 0.0003

80.060 80.005 78.427 5.0009 0.9947 0.4668 0.5332 0.0003

Yellow

80.090 79.994 79.880 7.0003 5.0184 0.4667 0.5333 0.0003

80.074 79.997 79.257 7.0000 4.0014 0.4667 0.5333 0.0003

80.076 79.999 78.631 7.0008 3.0050 0.4668 0.5332 0.0003
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Table E.3. Calculated Joule-Thomson coefficient values for pure fluids

Uncorrected Corrected

Color p/MPa T/K µJT/(K MPa−1) 100∆µJT/µJT µJT/(K MPa−1) 100∆µJT/µJT

nitrogen

Red 3.0135 148.407 7.5026 -1.0448 7.5209 -1.2774

Red 2.0024 140.377 8.5331 0.8188 8.6234 -0.1955

Green 3.9984 149.009 6.8900 -0.1527 6.9516 -1.0353

Green 2.9859 141.449 8.0387 1.5179 8.0448 1.4558

Green 1.9534 132.400 9.6312 0.7467 9.6622 0.4894

Purple 5.0027 150.394 6.0872 -0.8579 6.0881 -0.8724

Purple 4.0111 143.799 7.2672 -0.0584 7.2732 -0.1359

Blue 4.0007 137.855 7.6352 0.0197 7.6532 -0.2152

Blue 3.0002 129.290 9.6162 0.6212 9.6034 0.7615

Blue 1.9998 118.338 12.4185 0.4365 12.4963 -0.1512

Blue 1.0007 104.094 16.3176 0.0892 16.3901 -0.0319

Yellow 7.0112 153.414 4.1402 -2.0086 4.1417 -2.0432

Yellow 5.9972 148.901 4.9880 -0.7138 4.9894 -0.7411

Yellow 5.0070 143.339 6.0531 0.7067 6.0537 0.6957

Yellow 3.9947 136.550 7.6008 1.0793 7.6043 1.0333

Yellow 3.0169 128.117 9.7416 0.5574 9.7556 0.4258

Pink 10.0132 156.617 2.0602 -0.0267 2.0604 -0.0336

Pink 8.9826 154.270 2.4743 -0.1982 2.4746 -0.2101

Pink 7.1160 148.758 3.5361 0.2572 3.5366 0.2386

Pink 6.0834 144.666 4.4002 0.6588 4.4009 0.6378

Pink 5.0011 139.251 5.6895 0.6007 5.6905 0.5743

Pink 3.9939 132.706 7.4314 0.2591 7.4332 0.2235

argon

Red 2.9990 165.672 9.1458 0.8829 9.1401 0.9558

Red 1.9738 155.620 10.5451 1.8516 10.6486 0.9142

Blue 9.0211 171.711 3.5305 -0.6392 3.5307 -0.6446

Blue 8.0453 168.043 4.0474 0.2627 4.0476 0.2557

Blue 7.0206 163.525 4.7442 0.6431 4.7444 0.6353

Blue 5.9797 158.147 5.6777 0.9887 5.6777 0.9812

helium-4

Blue 3.9188 67.639 -0.3729 -2.9601 -0.3504 3.2639

Blue 3.0835 68.288 -0.3729 -6.6128 -0.3504 -0.6474

Red 2.9983 66.787 -0.3368 0.2690 -0.2736 23.4193
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Table E.3. (Continued.)

Uncorrected Corrected

Color p/MPa T/K µJT/(K MPa−1) 100∆µJT/µJT µJT/(K MPa−1) 100∆µJT/µJT

Red 2.0013 67.059 -0.3067 3.6708 -0.2736 16.1308

Green 8.0238 142.220 -0.4978 13.0741 -0.4773 17.9450

Green 5.9759 143.243 -0.4978 12.7272 -0.4773 17.5797

Table E.4. Calculated Joule-Thomson coefficient values for mixtures

Uncorrected Corrected

Color p/MPa T/K x1 x2 µJT/(K MPa−1) µJT/(K MPa−1)

helium-4 – nitrogen

Blue 5.0593 149.319 0.1451 0.8549 4.5754 4.6006

Blue 2.9918 138.391 0.1451 0.8549 6.1213 6.1361

Blue 1.9437 131.425 0.1451 0.8549 7.1524 7.3672

Green 3.0062 129.309 0.1450 0.8550 7.1358 7.1490

Green 2.0059 121.591 0.1450 0.8550 8.4263 8.4867

Red 2.0139 146.451 0.1449 0.8551 5.8698 5.9704

Blue 3.2769 137.326 0.5025 0.4975 2.3361 2.3856

Blue 2.0098 134.955 0.5025 0.4975 2.3361 2.3856

Red 5.9792 137.696 0.5026 0.4974 1.8470 1.7931

Red 5.0089 135.858 0.5026 0.4974 2.0151 2.0296

Red 4.0073 133.818 0.5026 0.4974 2.1885 2.2738

Red 2.0185 129.153 0.5026 0.4974 2.5329 2.7586

helium-4 – neon

Blue 3.1092 63.124 0.2154 0.7846 2.2417 2.2841

Blue 2.0441 60.685 0.2154 0.7846 2.4711 2.4695

Blue 1.0334 58.115 0.2154 0.7846 2.6888 2.6742

Red 5.3862 63.945 0.2005 0.7995 1.6688 1.6937

Red 4.0289 61.429 0.2005 0.7995 2.0490 2.0699

Red 3.2727 59.869 0.2005 0.7995 2.2608 2.2795

Red 1.9843 56.836 0.2005 0.7995 2.6217 2.6365

Red 1.0031 54.131 0.2005 0.7995 2.8965 2.9085

Blue 8.1522 64.467 0.3138 0.6862 0.9903 0.9824

Blue 5.9672 62.025 0.3138 0.6862 1.3009 1.3103

Blue 3.9757 59.168 0.3138 0.6862 1.5840 1.6091
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Table E.4. (Continued.)

Uncorrected Corrected

Color p/MPa T/K x1 x2 µJT/(K MPa−1) µJT/(K MPa−1)

Red 6.0370 79.884 0.3264 0.6736 0.8864 0.8836

Red 3.9751 78.012 0.3264 0.6736 0.9943 1.0219

Green 2.0913 61.978 0.3279 0.6721 1.8181 1.8769

Blue 3.1354 64.081 0.3967 0.6033 1.4491 1.4525

Blue 2.0727 62.581 0.3967 0.6033 1.5003 1.5686

Red 4.9649 64.018 0.3942 0.6058 1.2550 1.2570

Red 4.0554 62.858 0.3942 0.6058 1.3120 1.3238

Red 3.0707 61.497 0.3942 0.6058 1.3737 1.3962

Blue 6.0732 64.091 0.4623 0.5377 0.7811 0.7870

Blue 4.1545 62.505 0.4623 0.5377 0.9452 0.9690

Green 5.0096 63.662 0.4673 0.5327 0.8568 0.8605

Green 3.8718 62.621 0.4673 0.5327 0.9843 0.9955

Red 5.9909 79.152 0.4666 0.5334 0.5887 0.5983

Red 5.0058 78.558 0.4666 0.5334 0.5887 0.5983

Purple 3.0241 79.964 0.4670 0.5330 0.7786 0.8130

Purple 1.9438 79.159 0.4670 0.5330 0.7786 0.8539

Yellow 4.0014 79.257 0.4667 0.5333 0.6202 0.6321
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