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Stéphan Thomassé, Professeur des universités, ENS de Lyon Examinateur

Omar Fawzi, Directeur de recherche INRIA, ENS de Lyon Directeur de thèse
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Abstract

Understanding the properties of objects under a natural product operation is a central
theme in mathematics, computer science and physics. Examples of such basic objects
include noisy communication channels in information theory, computational problems in
algebraic complexity, and graphs in discrete mathematics. In this PhD thesis, we study
the asymptotic growth of relevant properties for the powers of such objects.

The first objects we consider are hypergraphs equipped with the strong product oper-
ation and the property of interest is the independence number. The asymptotic growth of
the independence number of a hypergraph is known as the Shannon capacity. We introduce
a general method for lower bounding the Shannon capacity of hypergraphs via combina-
torial degenerations, a notion which originates from the study of matrix multiplication
in algebraic complexity theory. This allows us to obtain the best-known lower bounds
for multiple combinatorial problems, including the corner problem and its application in
communication complexity.

Tensors are the second considered objects. We can equip them with the tensor product
and the property of interest is the symmetric subrank. The symmetric subrank is a notion
we introduce motivated by limitations of current tensor methods to bound the Shannon
capacity of hypergraphs. We prove precise relations and separations between subrank
and symmetric subrank. We also prove that for symmetric tensors, the subrank and
the symmetric subrank are asymptotically equal. This proves the asymptotic subrank
analogon of a conjecture known as Comon’s conjecture in the theory of tensors.

Finally, we study the growth of the divergence between tensor powers of quantum
channels. By exploiting symmetries, we propose efficient algorithms to approximate the
asymptotic channel divergence between channels. As an application, we obtain improved
bounds on quantum channel capacities.
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Résumé

Comprendre les propriétés des objets dans le cadre d’une opération de produit naturel est
un thème central en mathématiques, en informatique et en physique. Des exemples de tels
objets de base incluent les canaux de communication bruyants en théorie de l’information,
les problèmes de calcul en complexité algébrique et les graphes en mathématiques discrètes.
Dans cette thèse, nous étudions la croissance asymptotique de propriétés pertinentes pour
les puissances de tels objets.

Les premiers objets que nous considérons sont des hypergraphes munis de l’opération
de produit fort et la propriété d’intérêt est le nombre d’indépendance. La croissance
asymptotique du nombre d’indépendance d’un hypergraphe est connue sous le nom de
capacité de Shannon. Nous introduisons une méthode générale pour minorer la capacité
de Shannon des hypergraphes via des dégénérescences combinatoires, une notion issue
de l’étude de la multiplication matricielle en théorie de la complexité algébrique. Cela
nous permet d’obtenir les bornes inférieures les plus connues pour de multiples problèmes
combinatoires, y compris le problème du coin et son application dans la complexité de la
communication.

Les tenseurs sont les seconds objets considérés. Nous pouvons les équiper du produit
tensoriel et la propriété d’intérêt est le sous-rang symétrique. Le sous-rang symétrique
est une notion que nous introduisons motivée par les limitations des méthodes de tenseur
actuelles pour borner la capacité de Shannon des hypergraphes. Nous prouvons des re-
lations et séparations précises entre sous-rang et sous-rang symétrique. Nous prouvons
également que pour les tenseurs symétriques, le sous-rang et le sous-rang symétrique sont
asymptotiquement égaux. Cela prouve l’analogue de sous-rang asymptotique d’une con-
jecture connue sous le nom de conjecture de Comon dans la théorie des tenseurs.

Enfin, nous étudions la croissance de la divergence entre les puissances tensorielles des
canaux quantiques. En exploitant les symétries, nous proposons des algorithmes efficaces
pour approximer la divergence asymptotique des canaux entre canaux. Comme applica-
tion, nous obtenons des bornes améliorées sur les capacités des canaux quantiques.
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Contents of the thesis

This thesis is mainly based on three papers. The first one is joint work with Matthias
Christandl, Omar Fawzi, and Jeroen Zuiddam [CFTZ22] and is presented in Chapter 3.
The second paper is presented in Chapter 4 and is joint work with Matthias Christandl,
Omar Fawzi, and Jeroen Zuiddam [CFTZ21]. The third paper is joint work with Omar
Fawzi and Ala Shayeghi [FST21] and is presented in Chapter 5.
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Notation

Common

log Binary logarithm.
ln Natural logarithm.
N Natural numbers.
Z Integer numbers.
R Real numbers.
C Complex numbers.
Zm Integers modulo m.
A† Conjugate transpose of the matrix A.
[k] Set {1, . . . , k}.
Pr(E) Probability of the event E.
E[X] Expectation of a random variable X.
P([k]) Set of all probability distributions on [k].

Spaces

X,Y, . . . Hilbert spaces associated with the systems X,Y, . . .
dX Dimension of the space X.
XY Tensor product X ⊗ Y or composite system XY.
L (X,Y ) Space of linear operators from X to Y.
L (X) L (X,X).

Vectors

|ψ⟩X , |ϕ⟩X , . . . Vectors belonging to X.
⟨ψ|X Dual vectors in L(X,C).
⟨ψ|ϕ⟩ Inner product of the vectors |ψ⟩ and |ϕ⟩.
Operators

D(X) Set of density operators on X.
ρX Density operator on X.
idX Identity map on X or L(X).
∥.∥∞ Infinity norm .
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Chapter 1

Introduction

In this Chapter, we give a high-level introduction to this thesis. After this introduction
and the Preliminaries in Chapter 2, we get into the technical components of the thesis.

1.1 Asymptotics, regularization and amortization

The following question arises in several parts of mathematics, physics and computer sci-
ence. Let f : R → R be a real-valued function on R, where R is a universe. These objects
can have a variety of meanings depending on the context. In graph theory, R may be the
set of (un)directed graphs, and for each graph r ∈ R, the number f(r) can possibly be a
graph parameter, such as the independence number, the clique number or the matching
number of r. In complexity theory, R may be the set of computational tasks, and f(r)
may be minimum cost in time or space which is needed to perform r. In information
theory, R may be a set of noisy communication channels, and f(r) may be some entropic
measures of correlations. To fix notation, throughout the thesis we will use “task” to refer
to elements of R and “cost” to refer to the function f . In a general setting, computing
the cost f(r) of a task r may be very complex. For example, given an undirected graph
G, computing the independence number of G was known as NP-Hard [Kar72].

Let’s assume that R can be equipped with a binary multiplication operation (·) that is
closed in R. Given n ≥ 1 an integer and for a task r ∈ R, let rn denote the n-fold product
of r with itself. Intuitively, rn can be understood as “n copies of r”. More precisely, rn

is a task of performing the task r in n times. The asymptotic behavior of f(rn) for any
fixed r and as n grows is a main object of study in this thesis. Namely, we consider the
limit1 f̃(r) = limn→∞(f(rn))1/n where r is fixed. This notion captures some ideas such
as the amortized (in complexity theory) or the regularized (in information theory) cost of
performing r.

In this thesis, we study the asymptotic cost f̃(r) for a certain family of functions f
as well as their applications. The most appealing aspect of this study is that solving one
such general problem results in many computational and economic problems being solved
in batches. For example, computing the same function on multiple inputs, simultaneously
communicating many messages through parallel channels, buying or selling many identical
items, etc. In many areas of mathematics and physics, some mathematical operations such

1Assuming a limit exists, which will be considered in all cases throughout this thesis
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as “direct sum” and “tensor product” are often applied to different types of objects, and
it is natural to investigate how sum and product affect the various parameters of these
objects. Here are some concrete examples where we elucidate the above mentioned concept.

Matrix multiplication A well-known problem in computer science concerning tensors
is the number of arithmetic operations required to perform matrix multiplication between
two n× n matrices. The exponent of matrix multiplication is defined as the smallest real
number ω such that multiplying n × n matrices can be performed in O(nω) arithmetic
operations. It is known to be between 2 and 2.37 . . . [LG14, AW21]. Let t ∈ Fd ⊗ Fd ⊗ Fd

be a 3-order tensor over field F, the tensor rank R(t) of t is defined as the smallest number
k such that t can be written as

∑k
i=1 ui ⊗ vi ⊗ wi where ui, vi, wi ∈ Fd for all i ∈ [k].

Consider R the set of 3-order tensors equipped with the tensor product operation ⊗ and
the cost function, in this context, the tensor rank R, i.e., f = R, the complexity of
matrix multiplication can be determined by the tensor rank of the matrix multiplication
tensors ⟨m,m,m⟩ :=

∑m
i,j,k=1 eij ⊗ ejk ⊗ eki ∈ Fm2 ⊗ Fm2 ⊗ Fm2

, where {eij}mi,j=1 are

standard basis of Fm2 ∼= Fm ⊗ Fm. In fact, the exponent ω is exactly determined by the

asymptotic rank of ⟨2, 2, 2⟩ [Str88], that is, ω = log
(
R̃(⟨2, 2, 2⟩)

)
, where R̃(⟨2, 2, 2⟩ :=

limn→∞(R(⟨2, 2, 2⟩⊗n))1/n.

Zero-error communication In this context, we consider the universe R consisting
of all undirected graphs. Let G = (V (G), E(G)), H = (V (H), E(H)) be two undirected
graphs in R. The strong product G⊠H is the graph with vertex set given by V (G)×V (H)
and edge set given by all pairs {(u, v), (u′, v′)} such that ({u, u′} ∈ E(G) and v = v′) or
(u = u′ and {v, v′} ∈ E(H)) or ({u, u′} ∈ E(G) and {v, v′} ∈ E(H)). We equip R with
the strong product operation ⊠ and the cost function, in this context, is the independence
number. For any graph G ∈ R, let α(G) be the independence number of G. Then, the
respective asymptotic quantity is Θ(G) := limn→∞ α(G⊠n)1/n, also known as the Shannon
capacity of G which was introduced by Shannon [Sha56]. Since α has supermultiplicative
property, we can write Θ(G) = supn α(G

⊠n)1/n. The Shannon capacity is an important
and widely studied parameter in information theory. Rather indeed, its motivation comes
from studying the zero-error capacity of a discrete memoryless noisy channel [Sha56]. In
this model, a transmitter wants to send a message over the channel to a receiver, and
the receiver must decode the message without any error. The zero-error capacity is the
supremum over all achievable communication rates under this constraint, in the limit of
multiple channel uses. This problem can be modeled by a confusion graph G associated
to the channel. The vertices of G are labeled by the input symbols, and there is an edge
between two vertices if and only if the corresponding inputs can result in the same output.
By definition, for any n ∈ N, α(G⊠n) is the maximum number of messages that can be
transmitted in n uses of the channel with no confusion. Thus, the zero-error capacity of a
channel is often referred to as Shannon capacity of the confusion graph of the channel.

Finally, in many cases, the asymptotic cost f̃ may be easier to compute or study
analytically, than the actual function f , and thus, sometimes f̃(r) can be used to bound
f(r). The following problem illustrates such a situation.
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Nondeterministic communication complexity In the two-party communication
complexity model, we have two players (usually referred to as Alice and Bob) and a
boolean function g : X × Y → {0, 1}. Alice is given x ∈ X and Bob is given y ∈ Y . Both
know the function g and their goal is to collaboratively compute g(x, y). It is well known
that the nondeterministic communication complexity of g, denoted N1(g), is characterized
by the number of monochromatic rectangles needed to cover the matrix associated with
the function, which is defined as follows. Let Mg be a |X| × |Y | boolean matrix with
the rows labelled by elements of X and columns labelled by the elements of Y , and
Mg(x, y) = 1 iff g(x, y) = 1 for all x ∈ X, y ∈ Y . A rectangle of Mg is a submatrix of
the form A × B, where A ⊆ X,B ⊆ Y . A rectangle A × B is called 1-monochromatic if
Mg(x, y) = 1 for all (x, y) ∈ A × B. The nondeterministic cover number of the function
g, denoted by C1(g), is the minimum number of 1-monochromatic rectangles (allowing
overlaps) that can cover all the 1’s in Mg. In fact, we have N1(g) = log(C1(g)) for all
boolean functions g. Now, let R be the set of boolean matrices. We equip R with tensor
product operation and the cost function, in this context, is the cover number, i.e., f = C1.
Then, the asymptotic cover number of g, denoted C̃1(g), can be used to characterize
the amortized nondeterministic communication complexity [KKN95] of g, denoted Ñ1(g).
Namely, we have Ñ1(g) = log(C̃1(g)). Moreover, C̃1(g) is exactly the Fractional cover
number (see [KKN95] for the definition of Fractional cover number) of function g which
can be computed efficiently by a linear program [KKN95]. Finally, the C̃1 can also be
used as a lower bound for C1.

1.2 Asymptotic properties of hypergraphs: Shannon capac-
ity

1.2.1 Context

The first objects we consider are hypergraphs equipped with the strong product operation
and the cost of interest is the independence number, i.e., R is set of hypergraphs and f
is independence number. The asymptotic growth of the independence number in powers
of a hypergraph is known as the Shannon capacity. Many Ramsey type problems can be
expressed as the Shannon capacity of some fixed hypergraph, such as the cap set problem
that saw a recent breakthrough in [CLP17, EG17], and the USP problems that arise in
the study of matrix multiplication [CKSU05, ASU13]. Another important instance of
these problems is the corner problem studied in the context of multiparty communication
complexity in the Number On the Forehead (NOF) model [Shk06a, Shk06b, LM07, CFL83,
LPS18]. More precisely, let Fp be a finite field, the corner problem asks to determine the
size of largest subset of Fn

p × Fn
p that does not contain a configuration of the form

(x, y), (x+ λ, y), (x, y + λ) ,

where x, y, λ ∈ Fn
p and λ ̸= 0n.

To study this problem, we consider a more general one named generalized multidi-
mensional Szemerédi problem2 over Fn

p × Fn
p . Let S ⊆ Fp × Fp be an ordered nonempty

2Which is a generalization of the multidimensional Szemerédi question [FK79] over Fn
p × Fn

p that will
be presented in more detail in Section 3.2
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set of size k. A subset A ⊆ Fn
p × Fn

p is called S-free if for any k ordered distinct points

[(x1, y1), . . . , (xk, yk)] of A, there is a coordinate i ∈ [n] such that the ordered tuple
[(x1i , y

1
i ), . . . , (x

k
i , y

k
i )] does not have a form

{(a, b) + (λu, λv) : (u, v) ∈ S}, for some (a, b) ∈ Fp × Fp and λ ∈ {1, . . . , p− 1} .

Given an ordered nonempty set S ⊆ Fp × Fp, the generalized multidimensional Szemerédi
problem asks to determine the size of the largest S-free subset of Fn

p × Fn
p . It is easy to

verify that, the corner problem over Fn
p ×Fn

p as a special case of this problem by choosing
S = {(0, 0), (1, 0), (0, 1)}. More notably, it can be rephrased as determining the Shannon
capacity of a fixed hypergraph given a fixed S ⊆ Fp×Fp. The generalized multidimensional
Szemerédi problem over Fn

p × Fn
p will present in detail in Section 3.2.

1.2.2 Summary of the contributions

Chapter 3 We introduce and study a general algebraic method for lower bounding
the Shannon capacity of directed hypergraphs via combinatorial degenerations. It is a
combinatorial kind of “approximation” of subgraphs that originates from the study of
matrix multiplication in algebraic complexity theory (and plays an important role there)
but is used by us in a novel way. Using the combinatorial degeneration method, we make
progress on some special cases of the generalized multidimensional Szemerédi problem.
Especially, on the corner problem, our method gives an explicit construction of a corner-
free subset in Fn

2 × Fn
2 of size Ω(3.39n/poly(n)). Our result improves the previous lower

bound Ω(2.82n) of Linial, Pitassi and Shraibman [LPS18] and gets us closer to the best
upper bound 4n−o(n). Our new construction of corner-free sets also implies an improved
NOF protocol for the Eval problem. In the Eval problem over a group G, three players
need to determine whether their inputs x1, x2, x3 ∈ G sum to zero. We find that the NOF
communication complexity of the Eval problem over Fn

2 is at most 0.24n+O(log n), which
improves the previous upper bound 0.5n+O(log n) from [ACFN15]. More specifically, we
show several first lower bounds for some other special cases of generalized multidimensional
Szemerédi problem over Fn

p for some small value p. Finally, we investigate the existing
tensor methods for upper bounding the Shannon capacity (including slice rank, subrank,
analytic rank, geometric rank, and G-stable rank). We find that these methods have
strong limitations caused by the existence of large induced matchings. In particular, this
implies a strong barrier for these methods to be used to prove nontrivial upper bounds for
the corner problem.

1.3 Asymptotic symmetric subrank of tensors

1.3.1 Context

Tensors are the second objects we considered. We can equip them with the tensor product
and the cost of interest is the symmetric subrank. The symmetric subrank is a notion
of rank that we introduce that is motivated by limitations of current tensor methods
to bound the Shannon capacity of hypergraphs. The symmetric subrank upper bounds
the independence number of hypergraphs but not the induced matching number and we
propose this method as a route to circumvent the induced matching barrier.
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Our symmetric subrank is inspired by the notion of subrank, which was introduced by
Strassen [Str87] in the study of matrix multiplication and measures the size of the largest
“identity tensor” that can be obtained from a k-tensor by applying linear operations to the
k tensor legs. In the symmetric subrank we require these linear maps to be all equal. This
definition makes sense for symmetric as well as non-symmetric tensors, as long as we think
explicitly of our tensors as having equal side-lengths, so that applying one linear map to
all tensors legs makes sense. The symmetric subrank of f = (fi1,...,ik)i1,...,ik∈[d] ∈ (Fd)⊗k is
defined as

Qs(f) = max{r ∈ N : ⟨r⟩ ≤s f} ,

where ⟨r⟩ ≤s f means that there exists a matrix (Ai,j)i∈[r],j∈[d] ∈ Fr×d such that for any
i1, . . . , ik ∈ [r],

∑
j1,...,jk∈[d]

Ai1,j1 · · ·Aik,jkfj1,...,jk =

{
1 if i1 = i2 = · · · = ik

0 otherwise.
(1.1)

As we mentioned, the symmetric subrank is the symmetric variation on Strassen’s
subrank [Str87]. Namely, in the definition of the subrank of tensor f (denoted by Q(f)),
instead of using k times the same matrix A in equation (1.1), we may choose k possibly
different matrices A(1), . . . , A(k). The relation between the symmetric subrank and the
subrank is analogous to the relation between the symmetric rank and the rank [CGLM08].
Note though that unlike the symmetric rank which only makes sense for symmetric tensors,
the symmetric subrank can be defined for any tensor. Another simple observation about
the symmetric subrank is that it can never be larger than the other relevant notions of
rank: Qs(f) ≤ Q(f) ≤ d for any tensor f in dimension d.

An important component of our analysis is the study of the asymptotic behaviour of
the subrank and symmetric subrank. This is captured by the asymptotic subrank

Q̃(f) = lim
n→∞

Q(f⊗n)1/n

and the asymptotic symmetric subrank3

Q̃s(f) = lim
n→∞

Qs(f
⊗n)1/n.

These notions are relevant for instance for the study of Shannon capacity problems of
hypergraphs. More precisely, the important property of Q̃s is that it directly gives an upper
bound on the Shannon capacity of hypergraphs. Strassen [Str86, Str88, Str91, CVZ18]
proved a duality theorem for Q̃ of the form Q̃(f) = minϕ∈X ϕ(f) where the dual regionX is
the “asymptotic spectrum of tensors”, a set of very special well-behaved tensor parameters.
We are naturally lead to a theoretical study of symmetry in the asymptotic theory of
tensors of Strassen, the introduction of the asymptotic spectrum of symmetric tensors Xs

and the analogous duality theorem for Q̃s(f) (and more general related parameters).

3For this defition to make sense (i.e. the limit to exist) we need to put mild conditions on the tensor,
see Propoposition 4.3.1. However, we can give a more general definition by replacing the lim by a limsup
which is always valid.
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1.3.2 Summary of the contributions

Chapter 4 We prove precise relations and separations between subrank and symmetric
subrank. We prove that for symmetric tensors the subrank and the symmetric subrank
are asymptotically equal over appropriate fields4, i.e., Q̃(f) = Q̃s(f) for any symmetric
tensor f . This proves the asymptotic subrank analogon of a conjecture known as Comon’s
conjecture in the theory of tensors. This result allows us to prove a strong connection
between the general and symmetric version of an asymptotic duality theorem of Strassen.
We introduce a representation-theoretic method to asymptotically bound the symmetric
subrank called the symmetric quantum functional in analogy with the quantum function-
als [CVZ18], and we study the relations between these functionals.

1.4 Asymptotic divergence of quantum channels

1.4.1 Context

Lastly, the objects we considered are quantum channels whose operation and cost are the
tensor product of channels and the divergence, respectively. Namely, we use the recently
introduced D# Rényi channel divergences [FF21b] as the cost of interest. Our objective is
to study the asymptotic divergence between the channels. In this context, the asymptotic
quantity is also called regularized channel divergence.

Quantum channel discrimination is a fundamental information processing task in quan-
tum information theory and has been studied in various aspects [CPR00, Aci01, Sac05,
CMW16, FFRS20, WW19, WBHK20, FF21b, FGW22]. The problem asks to distinguish
between two quantum channels N and M having black box access to n uses for each of
them. The strategy involves the choice of n input quantum states and the observation of n
output quantum states. Choosing the inputs can be done either beforehand or adaptively
according to the previous outputs. The word “adaptive” refers to the fact that the input
to the used channel, at a fixed step, can depend on the previous outputs received. In con-
trast, a strategy is called parallel (or nonadaptive) if the n black boxes are used in parallel
on a fixed input state. Following the usual notation in hypothesis testing, we denote by
αn the type I error probability, which is the probability that the channel is actually N
but our procedure says M; and βn is the type II error probability which is the probability
that our procedure outputs N when the actual channel is M. In general, the goal is to
determine the trade-off between these two errors.

Although several regimes can be considered, the most studied is the asymmetric
hypothesis testing setting (Stein’s setting). This setting aims to consider the asymp-
totic behavior of the optimal type II error probability (− 1

n log βn), under the condi-
tion that the type I error probability αn does not exceed a constant ϵ ∈ (0, 1). The
works [FFRS20, WW19, WBHK20] showed that if we take ϵ → 0 this is given by the
regularized Umegaki channel divergence Dreg(N∥M) := limn→∞

1
nD(N⊗n∥M⊗n), where

D(N∥M) is the Umegaki channel divergence 5 between N and M.

4Algebraically closed of characteristic at least k + 1, where k is the order of the tensor
5For a divergence D defined on quantum states, the corresponding channel divergence is defined by

maximizing the divergence between the channel outputs over the set of possible inputs [LKDW18]. The
Umegaki divergence is defined as D(ρ∥σ) = tr(ρ(log ρ− log σ)) for positive semidefinite operators ρ and σ.
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In the strong converse regime, we consider the behavior of αn under the condition βn ≤
2−rn with r > Dreg(N∥M). From [FF21b], we know that this is determined by the regular-
ized sandwiched Rényi channel divergence D̃reg

α (N∥M) (defined as limn→∞
1
nD̃α(N⊗n∥M⊗n),

where D̃α(N∥M) is the sandwiched Rényi channel divergence6 between channels N and
M). In addition, in a recent work [FGW22], the authors conjectured that any strat-
egy that makes the type II error decay with an exponent larger than the regularized
Umegaki channel divergence will unavoidably result in the type I error converging to 1
exponentially fast in the asymptotic limit. This conjecture will imply the continuity of
the regularized Sandwiched Rényi channel divergence at α = 1. More precisely, the con-
jecture states that if the probability of type II error as n→ ∞ i.e. (lim infn→∞− 1

n log βn)
is greater than Dreg(N∥M), then there exists c > 0 such that the probability of type I
error (1 − αn) is lesser than 2−cn for sufficiently large n. If this conjecture holds, then
limα→1+ D̃reg

α (N∥M) = infα>1 D̃
reg
α (N∥M) = Dreg(N∥M).

As we have seen so far, the regularized sandwiched Rényi divergence between chan-
nels plays an importance role in this context. Given two quantum channels N and M,
we want to compute the quantity D̃reg

α (N∥M). Since the sandwiched Rényi divergence
between channels is non-additive in general [FFRS20], it is unclear whether its regulariza-
tion can be computed efficiently. In [FF21b], the authors provided a converging hierarchy
of upper bounds on the regularized divergence between channels. It allows us to show
that D̃reg

α (N∥M) can be approximated by 1
nD

#
α (N⊗n∥M⊗n) with arbitrary accuracy for

sufficiently large n in finite time. Moreover, D#
α (N⊗n∥M⊗n) can be written in terms of

a convex program as in [FF21b]. However, the size of this program grows exponentially
with n.

1.4.2 Summary of the contributions

Chapter 5 We exploit the symmetries in the D# in order to obtain a hierarchy of
semidefinite programming bounds on various regularized quantities. Specifically, for quan-
tum channels N ,M, we show that the optimization program defining D#(N⊗n∥M⊗n) can
be computed in poly(n) time, for fixed input and output dimensions. This result allows
us to prove that for fixed input and output dimensions, the regularized sandwiched Rényi
divergence between any two quantum channels can be approximated up to an ϵ accuracy
in time that is polynomial in 1/ϵ. As applications, we give a general procedure to give
efficient bounds on the regularized Umegaki channel divergence as well as the classical
capacity and two-way assisted quantum capacity of quantum channels. In particular, we
obtain slight improvements for the capacity of the amplitude damping channel.

6We recall that the sandwiched Rényi divergence [MDS+13, WWY14] of order α > 1 is defined as

D̃α(ρ∥σ) := 1
α−1

log tr
[(

σ
1−α
2α ρσ

1−α
2α

)α]
for positive semidefinite operators ρ and σ.
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Chapter 2

Preliminaries

The objective of this chapter is to introduce some notations and results that will be used
throughout this thesis.

2.1 Basic notations

Asymptotics We use the standard symbols from asymptotic analysis: O, o,Ω. We
write f = poly(n) if there is a constant c ≥ 0 such that f(n) = O(nc).

Groups and Fields We will typically use multiplicative notation for the group opera-
tion of groups. Two particular groups which will arise frequently are, for n ∈ N, the cyclic
group Cn, and the symmetric group Sn of permutations on n elements.

For p ∈ N, if p is a power of a prime, we write Fp for the finite field of order p.

Polynomial on a vector space. For a finite dimensional complex vector space H, the
dual vector space H∗ of H is the vector space of all linear transformations φ : H → C. The
coordinate ring of H, denoted O(H), is the algebra consisting of all C-linear combinations
of products of elements from H∗. An element of O(H) is called a polynomial on H. A
polynomial p ∈ O(H) is called homogeneous if it is a C-linear combination of a product of
k non-constant elements of H∗ (for a fixed non-negative integer k). We denote by Ok(H)
the set all homogeneous polynomials of degree k.

2.2 Tensor ranks

Tensors

Let f ∈ Fd1 ⊗ · · · ⊗ Fdk be a k-tensor over a field F. Let {e1, . . . , edj} denote the standard

basis of Fdj . We may then write f as

f =
∑

fi1,...,ik ei1 ⊗ . . . eik ,

where the sum goes over i ∈ [d1]× · · · × [dk]. In this way f corresponds to a k-way array
f ∈ Fd1×···×dk . For f ∈ Fd1 ⊗ · · · ⊗ Fdk and f ′ ∈ Fd′1 ⊗ · · · ⊗ Fd′k , we define the tensor
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product as (f ⊗ f ′)(i1,j1),...,(ik,jk) = fi1,...,ik · f ′j1,...,j′k . We define the support of f as the set

supp(f) := {(i1, . . . , ik) : fi1,...,ik ̸= 0} ⊆ [d1]× · · · × [dk].

For r ∈ N, we call ⟨r⟩ :=
∑r

i=1 e
⊗k
i the unit tensor of size r.

For f ∈ Fd1 ⊗ · · · ⊗ Fdk and i ∈ [k], we denote by flatteni(f) the image of f under the
grouping Fd1 ⊗ · · · ⊗ Fdk → Fdi ⊗

(⊗
j ̸=i Fdj

)
, which we call a flattening. We can think of

flatteni(f) as a di by
∏

j ̸=i dj matrix.

A k-tensor f ∈ (Fd)⊗k is said to be symmetric if fi1,...,ik = fiσ(1),...,iσ(k)
for any

i1, . . . , ik ∈ [d] and any permutation σ ∈ Sk. For example, a tensor f ∈ (Fd)⊗3 is
symmetric if fijk = fikj = fjik = fjki = fkij = fkji, for all i, j, k ∈ [d].

Overview: notions of tensor rank

In this section, we give an introduction to some of the existing notions of the rank of
tensors and their usefulness.

Let f ∈ Fd1⊗· · ·⊗Fdk be a tensor. The tensor rank R(f) of f is defined as the smallest
number r such that f can be written as

∑r
i=1 u

1
i ⊗ · · · ⊗ uki with uti ∈ Fdt for all t ∈ [k].

We say that the tensor f ∈ Fd1 ⊗ · · · ⊗ Fdk restricts to f ′ ∈ Fd′1 ⊗ · · · ⊗ Fd′k , and write
f ′ ≤ f if there exist linear maps A(i) : Fdi → Fd′i such that f ′ = (A(1) ⊗ · · · ⊗ A(k)) · f .
Written in the standard basis, this corresponds to having for all i1 ∈ [d′1], . . . , ik ∈ [d′k]
that

f ′i1,...,ik =
∑

j1∈[d1],...,jk∈[dk]

A
(1)
i1,j1

. . . A
(k)
ik,jk

fj1,...,jk .

Example 2.2.1. Here we see restriction in action in a small example. For the tensors

f = e0 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e1,

f ′ = e0 ⊗ (e0 ⊗ e0 + e1 ⊗ e1),

we have f ′ ≤ f by letting A(1) : e0 7→ e0, e1 7→ e0 and letting A(2) and A(3) be the identity
map.

Strassen [Str87] defined the subrank of f as

Q(f) := max{r ∈ N : ⟨r⟩ ≤ f}.

The subrank has been considered further in [CVZ18] for studying the capset problem
and has also been used to study the barrier for Coppersmith-Winograd method for matrix
multiplication problem in [CVZ19b, Alm19].

Similarly, one may define the “opposite” of the subrank as R(f) := min{r ∈ N : f ≤
⟨r⟩}, which redefines the notion of tensor rank. For k = 2, the subrank and rank of f are
the usual matrix rank: Q(f) = R(f) = rank(f). When k ≥ 3, however, there are f for
which Q(f) < R(f). In fact, the tensor rank can be larger than the dimensions d1, . . . , dk,
whereas the subrank cannot exceed mini di.
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There are many applications which need us to understand the rate of growth of the
rank and subrank of tensor product powers of a fixed tensor. Strassen [Str87] defined the
asymptotic subrank of f ∈ Fd1 ⊗ · · · ⊗ Fdk as

Q̃(f) := lim
n→∞

Q(f⊗n)1/n .

Since the subrank is super-multiplicative, we can, by Fekete’s lemma (see Lemma A.3.1),
replace the limit by a supremum. Similar to asymptotic subrank we can define the asymp-
totic rank of f ∈ Fd1 ⊗ · · · ⊗ Fdk as

R̃(f) = lim
n→∞

R(f⊗n)1/n .

A well-known problem in computer science concerning tensors is about the number of
arithmetic operations required for multiplying two n× n matrices. The answer is known
to be between n2 and O(n2.37...), or in other words, the exponent of matrix multiplication
ω is known to be between 2 and 2.37 . . . [LG14, AW21]. The complexity of matrix multi-
plication turns out to be determined by the tensor rank of matrix multiplication tensors
⟨m,m,m⟩ corresponding to taking the trace of the product of three m×m matrices. More
formally, we can write ⟨m,m,m⟩ as

∑m
i,j,k=1 eij ⊗ ejk ⊗ eki ∈ (Fm)⊗2 ⊗ (Fm)⊗2 ⊗ (Fm)⊗2,

where {eij}mi,j=1 are standard basis of (Fm)⊗2. In fact, the exponent ω is exactly deter-

mined by the asymptotic rank of ⟨2, 2, 2⟩, that is, ω = R̃(⟨2, 2, 2⟩).
The second tool we focus on is the slice rank. The notion of slice rank was introduced

by Tao [Tao16] and was further developed in [TS16] and [BCC+17] as a variation on
tensor rank to study cap sets and approaches to fast matrix multiplication algorithms.
A tensor in Fd1 ⊗ · · · ⊗ Fdk has slice rank one if it has the form u ⊗ v for u ∈ Fdi and
v ∈

⊗
j ̸=i Fdj for some i ∈ [k]. The slice rank of f , denoted by SR(f), is the smallest

number r such that f can be written as sum of r slice rank one tensors. Since slice rank is
not sub-multiplicative and not super-multiplicative, the limit limn→∞ SR(f⊗n)1/n might
not always exist [CVZ18]. We define

S̃R(f) = lim sup
n→∞

SR(f⊗n)1/n .

Since slice rank is monotonic under the restriction order and is normalized on ⟨r⟩ [Tao16],
i.e., SR(⟨r⟩) = r, it follows that Q(f) ≤ SR(f) and Q̃(f) ≤ S̃R(f).

2.3 Shannon capacity

We first recall some notations and basic concepts in graphs and hypergraphs. Then, in
Section 2.3.1 we recall the notion of Shannon capacity of graphs.

Graphs

Definition 2.3.1. An undirected graph is a pair (V,E), where V is a set of objects called
vertices and E is a set of two element subsets of V called edges.
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It is often common to add a notion of direction to the edges of a graph. This gives us
the concept of a directed graph (or digraph).

Definition 2.3.2. A directed graph, also called a digraph, is a pair (V,E), where V is a
set of objects called vertices and E ⊆ V × V is a collection of ordered pairs of elements of
V , called directed edges (or sometimes just edges).

Let G = (V,E) be an (un)directed graph. For each edge e = (u, v) of G, we call u, v
are endpoints of the edge e. An independent set or stable set in G is a subset of V such
that no edge has all its endpoints covered by vertices in the corresponding subset. The
independence number or stability number α(G) is the cardinality of the largest independent
set in G.

A directed walk in a directed graph G = (V,E) is a sequence of vertices v0, v1, . . . , vk
and edges (v0, v1), (v1, v2), . . . , (vk−1, vk). A directed path (or path) in a directed graph G
is a walk where the vertices in the walk are all different. A directed closed walk (or closed
walk) in a directed graph is a walk where v0 = vk. A directed cycle (or cycle) in a directed
graph is a closed walk where all the vertices vi are different for 0 ≤ i ≤ k.

Definition 2.3.3. A directed graph is called a directed acyclic graph (or acyclic graph) if
it does not contain any directed cycles.

Hypergraphs

Definition 2.3.4. A directed k-uniform hypergraph H is a pair H = (V,E) where V is
a finite set of elements called vertices, and E is a set of k-tuples of elements of V which
are called hyperedges or edges. If the set of edges E is invariant under permuting the
k coefficients of its elements, then we may also think of H as an undirected k-uniform
hypergraph.

Let H = (V,E) be a directed k-uniform hypergraph with n vertices. The adjacency
tensor A of H is defined as

Ai1,...,ik =

{
1 if i1 = i2 = · · · = ik or (i1, . . . , ik) ∈ E,

0 otherwise.

Definition 2.3.5. An independent set in a directed k-uniform hypergraph H = (V,E)
is a subset S of the vertices V that induces no edges, meaning for every (e1, . . . , ek) ∈ E
there is an i ∈ [k] such that ei ̸∈ S. The independence number of H, denoted by α(H), is
the maximal size of an independent set in H.

2.3.1 Shannon capacity of graphs

Let G,H be two (un)directed graphs. The strong product of G and H, denoted G⊠H, is
defined as

1. The vertex set V (G⊠H) = V (G)× V (H).

2. Any two distinct vertices (u, u′) and (v, v′) form an edge in G ⊠ H if u = v and
(v, v′) ∈ E(H) or (u, u′) ∈ E(G) and v = v′ or (u, u′) ∈ E(G) and (v, v′) ∈ E(H).
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One can observe that if S and T are independent sets in two directed graphs G and
H, respectively, then S×T is an independent set in the strong product G⊠H. Therefore,
we have α(G)α(H) ≤ α(G⊠H).

For any (un)directed graph G, let G⊠n denote the n-fold product of G with itself. The
Shannon capacity Θ(G) is defined as the limit

Θ(G) := lim
n→∞

α(G⊠n)1/n .

The limit exists and equals the supremum supn α(G
⊠n)1/n by Fekete’s lemma (Lemma A.3.1).

The Shannon capacity was introduced by Shannon [Sha56] and is an important and
widely studied parameter in information theory (see e.g., [Alo98, Boh03, Hae79, Lov79,
Zui19, PS19]). It is the effective size of an alphabet in an information channel (for more
formal definitions, refer to [Sha56]) represented by the graph G = (V,E). The input is
a set of letters V = {1, . . . , d} and two letters are confusable when transmitted over the
channel if and only if there is an edge between them in G. Then α(G) is the maximum
size of a set of pairwise non-confusable single letters. Moreover, for any n ∈ N, α(G⊠n) is
the maximum size of a set of pairwise non-confusable n-letter words. So the effective size
of the alphabet in the information channel is given by limn→∞(α(G⊠n))1/n (Note that this
is the Shannon capacity of the graph G).

Computing the Shannon capacity is nontrivial already for small graphs. In [Lov79],
Lovász computed the value Θ(C5) =

√
5, where Ck denotes the undirected cycle on k ver-

tices. In fact, even the value of Θ(C7) is currently not known. The algorithmic problem of
computing the Shannon capacity Θ is not even known to be decidable. On the other hand,
deciding whether α(G) ≤ k, given a graph G and some k ∈ N, is NP-complete [Kar72].

2.4 Asymptotic spectra theory

In this section, we recall the theory of asymptotic spectra of Strassen which introduced
in series of papers [Str86, Str87, Str88, Str91] and have been further developed in [Zui18,
Vra21, WZ21]. A lot of the following definitions are standard and we have used the
notations from [Zui18].

A semiring (S,+, ·, 0, 1) is a set S equipped with a binary addition operation +, a bi-
nary multiplication operation · and elements 0, 1 ∈ S, such that for all a, b, c ∈ S holds:

1. (a+ b) + c = a+ (b+ c), a+ b = b+ a

2. 0 + a = a, 0 · a = 0, 1 · a = a

3. (a · b) · c = a · (b · c)

4. a · (b+ c) = a · b+ a · c

A semiring (S,+, ·, 0, 1) is commutative if for all a, b ∈ S holds a · b = b ·a. For any natural
number n ∈ N, let n ∈ S denote the sum of n times the element 1 ∈ S.

A preorder ≤ on S is a relation such that for any a, b, c ∈ S holds that a ≤ a, and
that if a ≤ b and b ≤ c, then a ≤ c. A preorder ≤ on S is a Strassen preorder if for all
a, b, c ∈ S, n,m ∈ N holds
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1. n ≤ m in N if and only if n ≤ m in S

2. if a ≤ b, then a+ c ≤ b+ c and a · c ≤ b · c

3. if b ̸= 0, then there exists an r ∈ N such that a ≤ r · b.

Let S = (S,+, ·, 0, 1) and S′ = (S′,+, ·, 0, 1) be semirings. A semiring homomorphism
from S to S′ is a map ϕ : S → S′ such that ϕ(a+ b) = ϕ(a)+ϕ(b), ϕ(a · b) = ϕ(a) ·ϕ(b) for
all a, b ∈ S, and ϕ(1) = 1. Let R≥0 = (R≥0,+, ·, 0, 1) be the semiring of non-negative real
numbers with the usual addition and multiplication operations. The asymptotic spectrum
X(S,≤) of the semiring S = (S,+, ·, 0, 1) with respect to the preorder ≤ is the set of
≤-monotone semiring homomorphisms from S to R≥0, that is,

X(S,≤) := {ϕ ∈ Hom(S,R≥0) : ∀a, b ∈ S, a ≤ b ⇒ ϕ(a) ≤ ϕ(b)}.

Let a ∈ S. The rank of a is defined as R(a) := min{r ∈ N : a ≤ r} and the subrank of a
is defined as Q(a) := max{n ∈ N : n ≤ a}. Similarly, the asymptotic rank and asymptotic
subrank of a are defined as

R̃(a) := lim
N→∞

N

√
R(aN )

Q̃(a) := lim
N→∞

N

√
Q(aN ).

Since Q is supermultiplicative, and R is submultiplicative, Fekete’s lemma (Lemma A.3.1)
implies that these limits indeed exist and can be replaced by

R̃(a) = inf
N

N

√
R(aN )

Q̃(a) = sup
N

N

√
Q(aN ).

In [Str88], the author proved the following dual characterization of R̃(a) and Q̃(a) in
terms of the asymptotic spectrum.

Theorem 2.4.1 ([Str88], Theorem 3.8). Let S be a commutative semiring and let ≤ be a
Strassen preorder on S. For any a ∈ S such that 1 ≤ a and 2 ≤ ak for some k ∈ N, holds

R̃(a) = max
ϕ∈X(S,≤)

ϕ(a)

Q̃(a) = min
ϕ∈X(S,≤)

ϕ(a).

The asymptotic preorder ≲ associated to ≤ is defined by a ≲ b if there is a sequence
if natural numbers (xn)n∈N such that infn(xn)

1/n = 1 and such that for all n ∈ N we
have an ≤ xn · bn. The asymptotic spectrum of a commutative semiring with respect
to a Strassen preoder ≤ also characterizes the asymptotic preorder ≲ associated to ≤.
The dual characterization is that a ≲ b if and only if for all ϕ ∈ X(S,≤) it holds that
ϕ(a) ≤ ϕ(b). See [Str88, Corolary 2.6] and see also [Zui18, Theorem 2.12].
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Asymptotic spectrum of graphs

We present a semiring with a Strassen preorder on graphs which was introduced by Zuid-
dam [Zui19] to gain a better understanding of the Shannon capacity of graphs.

Let G and H be (un)directed graphs. The disjoint union G ⊔H is defined by

V (G ⊔H) = V (G) ⊔ V (H)

E(G ⊔H) = E(G) ⊔ E(H) .

For n ∈ N, the complete graph Kn is the graph with V (Kn) = {1, . . . , n} and E(Kn) =
{(i, j) : i, j ∈ {1, . . . , n}, i ̸= j}. Thus K0 is an empty graph and K1 is the graph consisting
of a single vertex and no edges. We denote Kn is a graph on n vertices and no edges.
Thus K0 = K0 and K1 = K1.

We define the cohomomorphism preoder ≤ on graphs by G ≤ H if and only if there is
an injective map f : V (G) → V (H) such that (u, v) /∈ E(G) then (f(u), f(v)) /∈ E(H).

Let G and H be graphs. A graph homomorphism f : G → H is a map f : V (G) →
V (H) such that for all u, v ∈ V (G), if (u, v) ∈ E(G), then (f(u), f(v)) ∈ E(H). A graph
homomorphism f : G → H is a graph isomorphism if the map f is bijective between
V (G) and V (H) and bijective as a map between E(G) and E(H). We write G ∼ H if
there is a graph isomorphism f : G → H. Let G be the set of isomorphism classes of
graphs (which is basically the set of equivalence classes with respect to ∼). In [Zui19],
the author proved that G = (G,⊔,⊠,K0,K1) is a commutative semiring and that the
cohomomorphism preorder ≤ is a Strassen preorder on G. By definition, the asymptotic
spectrum of graphs X(G,≤) consists of all maps ϕ : G → R≥0 such that, for all G,H ∈ G,
the following conditions hold:

1. ϕ(G ⊔H) = ϕ(G) + ϕ(H)

2. ϕ(G⊠H) = ϕ(G)ϕ(H)

3. ϕ(K1) = 1

4. G ≤ H then ϕ(G) ≤ ϕ(H).

Note that the subrank of a graph G equals the independence number of G, that is

α(G) = max{n ∈ N : Kn ≤ G}.

From Theorem 2.4.1, the Shannon capacity of G can be characterized by using asymptotic
spectrum of graphs as

Θ(G) = min
ϕ∈X(G,≤)

ϕ(G) .

2.5 Preliminaries on representation theory

In this section we give the definitions and notation from representation theory used
throughout the thesis. For further details, we refer the reader to Refs. [Ser77] and [FH13].
Let H be a finite dimensional complex Hilbert space and G be a finite group. A linear
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representation of G on H is a group homomorphism ϱ : G→ GL(H), where GL(H) is the
general linear group on H. The space H is called a G-module. For v ∈ H and g ∈ G, we
write g · v as shorthand for ϱ(g)v and denote by L (H) the set of linear operators on H.
For X ∈ L (H), the action of g ∈ G on X is given by ϱ(g)Xϱ(g)∗.

A representation ϱ : G → GL(H) of G is called irreducible if it contains no proper
submodule H′ of H such that gH′ ⊆ H′. Let H and H′ be G-modules, a linear map
ψ : H → H′ is called a G-equivariant map if g · ψ(v) = ψ(g · v) for all g ∈ G, v ∈ H.
Two G-modules H and H′ are called G-isomorphic, that is H ∼= H′, if there is a bijective
equivariant map from H to H′. We denote by EndG(H), the set of all G-equivariant maps
from H to H, i.e.,

EndG(H) = {T ∈ L (H) : T (g · v) = g · T (v),∀v ∈ H, g ∈ G}.

We recall the well-known Schur’s lemma, which characterizes all G-equivariant maps
between irreducible G-modules.

Lemma 2.5.1 (Schur’s lemma). Let V and W be irreducible G-modules, and let f : V →
W be a G-equivariant map.

1. If V and W are nonisomorphic, then f = 0.

2. If there exists a G-isomorphism ϕ : V →W , then f = λϕ for some λ ∈ C.

Let G be a finite group acting on a finite dimensional complex vector space H. Then
the space H can be decomposed as H = H1 ⊕ · · · ⊕ Ht such that each Hi is a direct
sum Hi,1 ⊕ · · · ⊕ Hi,mi of irreducible G-modules with the property that Hi,j

∼= Hi′,j′ if
and only if i = i′. The G-modules H1, . . . ,Ht are called the G-isotypical components and
(m1, . . . ,mt) are called the multiplicities of the corresponding irreducible representations.

Let d = dim(H). For n ∈ N, an integer partition is a sequence λ = (λ1, . . . , λd) of
nonnegative integers satisfying λ1 ≥ λ2 ≥ · · · ≥ λd. We say that λ is a partition of n
denoted by λ ⊢ n, if λ1 + · · · + λd = n. We denote the number of nonzero parts of λ
by ℓ(λ). Similarly we denote by λ ⊢d n, if λ ⊢ n and ℓ(λ) ≤ d. Consider the action of
the symmetric group Sn on the tensor power H⊗n by permuting the tensor legs (i.e. the
coordinates of the rank-1 tensor),

π · v1 ⊗ · · · ⊗ vn = vπ−1(1) ⊗ · · · ⊗ vπ−1(n) , π ∈ Sn .

Let the general linear group GL(H) act on H⊗n via the diagonal embedding g 7→
(g, . . . , g),

g · v1 ⊗ · · · ⊗ vn = (gv1)⊗ · · · ⊗ (gvn), g ∈ GL(H).

The action of Sn and GL(H) commute, so we have a well-defined action of the product
group Sn ×GL(H) on H⊗n. Schur-Weyl duality describes the decomposition of the space
H⊗n into direct sum of irreducible Sn ×GL(H) representations. This decomposition is

H⊗n ∼=
⊕
λ⊢dn

[λ]⊗ Sλ(H) ,

where [λ] is an irreducible Sn-module of type λ and Sλ(H) is an irreducible of GL(H)-
module of type λ when ℓ(λ) ≤ d and 0 when ℓ(λ) > d.
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2.6 Semidefinite programming

A matrix A ∈ Cn×n is called Hermitian if A∗ = A, where A∗ is the conjugate transpose
of A. The eigenvalues of a Hermitian matrix are real. Let A ∈ Cn×n. Then A is called
positive semidefinite, denoted by A ≥ 0, if A is Hermitian and all eigenvalues of A are
non-negative. It is known that the following are equivalent:

1. A ≥ 0,

2. A∗ = A and v∗Av ≥ 0 for all v ∈ Cn,

3. A = L∗L for some L ∈ Cn×n.

The space of complex matrices is equipped with a complex inner product denoted by
⟨X,Y ⟩ = tr(Y ∗X), which is linear in the first entry. One can also observe that the inner
product of two Hermitian matrices is always real.

We now describe the notion of semidefinite programming. Let m,n ∈ Z≥0, b1, . . . , bm ∈
R and let C,B1, . . . , Bm ∈ Cn×n. A (complex) semidefinite program is an optimization
problem of the form

Minimize: ⟨C,X⟩
subject to: ⟨Bi, X⟩ = bi for all i = 1, . . . ,m,

X ≥ 0.

Here X ∈ Cn×n is matrix variables. A Hermitian matrix X ∈ Cn×n is called a feasible
solution of the above program if it is positive semidefinite and fullfills all m linear con-
straints. It is called an optimal solution if it feasible and if for every feasible solution Y
we have ⟨C,X⟩ ≤ ⟨C, Y ⟩.

Semidefinite programs can be solved approximately up to any fixed precision in polyno-
mial time by the ellipsoid method [GLS12, Chapter 2]. In practice though, interior point
methods [NN94] are preferred, which also run in polynomial time. For further details
about semidefinite programming, refer to [Tod01].

2.7 Quantum information

Basic notation

Let H be a finite dimensional complex Hilbert space; we denote by L (H) the set of
linear operators on H, P(H) denotes the set of positive semidefinite operators on H, and
D(H) := {ρ ∈ P(H) : tr(ρ) = 1} is the set of density operators on H. For any two
Hermitian operators ρ, σ ∈ L (H), we write ρ ≤ σ if σ − ρ ∈ P(H). Given ρ ∈ L (H),
the support of ρ, denoted supp(ρ), is the orthogonal complement of its kernel. For ρ, σ ∈
L (H), we write ρ≪ σ, if supp(ρ) ⊆ supp(σ).

Let X,Y be finite dimensional complex Hilbert spaces. For A ∈ P(X ⊗ Y ), we often
explicitly indicate the quantum systems as a subscript by writing AXY . The marginal on
the subsystem X is denoted by AX = trY (AXY ).
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Let {|x⟩}x and {|y⟩}y be the standard bases for X and Y , respectively. We will use a
correspondence between linear operator in L (Y,X) and vectors in X ⊗ Y , given by the
linear map vec : L (Y,X) → X ⊗ Y , defined as vec (|x⟩⟨y|) = |x⟩|y⟩.

Quantum channels

The evolution of a quantum system is described mathematically by a quantum channel,
which is a linear, completely positive, and trace-preserving (CPTP) map acting on the
quantum states of the underlying Hilbert space of the system. In detail, let H,H′ be two
finite dimensional complex Hilbert spaces. Cosider a map N : L (H) → L (H′).

� N is called positive if it maps positive semidefinite operators to positive semidefinite
operators, i.e., N (A) ≥ 0 for all A ≥ 0. A map N is called completely positive if the
map Ik ⊗N is positive for all integers k ≥ 1, where Ik denotes the identity map on
L (Ck).

� N is called trace preserving if tr(N (A)) = tr(A) for all linear operators A.

Throughout this thesis, we write NX→Y to denote a map N : L (X) → L (Y ) taking
a quantum system X to a quantum system Y .

Choi representation

The Choi representation of a quantum channel gives a way to represent a quantum channel
as a bipartite operator and is an essential concept in quantum information theory. Let X ′

be isomorphic toX and |Φ⟩XX′ =
∑

x |x⟩X |x⟩X′ be the unnormalized maximally entangled
state. For a linear map NX′→Y , we denote by JN

XY ∈ P(X ⊗ Y ) the corresponding Choi
matrix defined as JN

XY = (IX ⊗ N )(|Φ⟩⟨Φ|XX′), where IX denotes the identity map on
L (X).
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Chapter 3

Shannon capacity of hypergraphs

This chapter is based on joint work with Matthias Christandl, Omar Fawzi, and Jeroen
Zuiddam [CFTZ22].

3.1 Introduction

In this chapter, we discuss the Shannon capacity of hypergraphs, which is a natural gen-
eralization of the Shannon capacity of graphs introduced in Section 2.3.1.

We first generalize the strong product operation from graphs to directed k-uniform
hypergraphs. The strong product of a pair of directed k-uniform hypergraphsG = (VG, EG)
and H = (VH , EH) is denoted by G ⊠ H and defined as follows. It is a directed k-
uniform hypergraph with vertex set VG × VH and the following edge set: Any k vertices
(g1, h1), . . . , (gk, hk) ∈ VG × VH form an edge ((g1, h1), . . . , (gk, hk)) if one of the following
three conditions holds:

1. g1 = · · · = gk and (h1, . . . , hk) ∈ EH

2. (g1, . . . , gk) ∈ EG and h1 = · · · = hk

3. (g1, . . . , gk) ∈ EG and (h1, . . . , hk) ∈ EH

It is easy to verify that, if S and T are independent sets in two directed k-uniform hy-
pergraphs G and H, respectively, then S × T is an independent set in the strong product
G ⊠ H. Therefore, we have α(G)α(H) ≤ α(G ⊠ H). For any directed k-uniform hyper-
graph H, let H⊠n denote the n-fold product of H with itself. The Shannon capacity1 of
a directed k-uniform hypergraph H is defined as the limit

Θ(H) := lim
n→∞

(α(H⊠n))1/n. (3.1)

By Fekete’s lemma (see Lemma A.3.1) we can write Θ(H) = supn(α(H
⊠n))1/n.

There is a large and important collection of Ramsey-type combinatorial problems such
as the capset problem which are closely related to central problems in complexity the-
ory. These problems can be formulated in terms of the asymptotic growth of the size of

1In the setting of directed graphs, also the term Sperner capacity (typically applied to the complement
graph) [GKV92, GKV93] is used for what we call Shannon capacity.
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the maximum independent sets in powers of a fixed small (directed or undirected) hy-
pergraph. An important instance of these problems is the corner problem studied in the
context of multiparty communication complexity in the Number On the Forehead (NOF)
model [Shk06a, Shk06b, LM07, CFL83, LPS18, LS21]. In the following, we briefly sum-
marize the connection between the NOF communication complexity and corner problem
as well as how to rephrase the corner problem to Shannon capacity of hypergraph.

NOF communication complexity

The NOF model is very rich in terms of connections to Ramsey theory and additive
combinatorics [BGG06, Shr18, LPS18, LS21], as well as applications to boolean models of
compution such as branching programs and boolean circuits [CFL83, BT94]. The goal in
the NOF model is for k players to compute a fixed given function F : X1×· · ·×Xk → {0, 1}
on inputs (x1, . . . , xk) ∈ X1 × · · · × Xk where player i has access to input xj for all j ̸= i
but no access to input xi. For k = 2, this model coincides with the standard two-party
communication model of Yao [Yao79], but when k ≥ 3, the shared information between
the players makes this model surprisingly powerful [Gro94, BGKL04, ACFN15, CS14],
and fundamental problems remain open. For instance, a sufficiently strong lower bound
for an explicit function F for k ≥ polylog(n) players with n = log |Xi| would imply a
breakthrough result in complexity theory, namely a lower bound on the complexity class
ACC0.

NOF complexity of the Eval problem

A central open problem in the theory of NOF communication is to construct an explicit
function for which randomized protocols are significantly more efficient than determin-
istic ones [BDPW07]. A well-studied candidate for this separation (for k = 3) is the
function EvalFn

2
, which is defined by EvalFn

2
(x1, x2, x3) = 1 if and only if x1 + x2 + x3 = 0,

where the additions are all in Fn
2 . Thus the Eval problem naturally generalizes the equality

problem for k = 2. It is known that in the randomized setting, the standard protocol for
the two-party equality problem that uses O(1) bits of communication works in the same
way for three parties for the Eval problem. However, in the deterministic setting, the
communication complexity D3(EvalFn

2
) remains wide open: the best known lower bound

Ω(log log n) follows from the work of Lacey and McClain [LM07] and, before this work,
the best upper bound was 0.5n+O(log n) [ACFN15].

Corner problem in combinatorics, and connection to the Eval problem

Chandra, Furst and Lipton [CFL83] found that the deterministic communication com-
plexity of many problems in the NOF model can be recast as Ramsey theory problems.
In particular, and this leads to the problem of interest in this chapter, the (deterministic)
communication complexity of EvalFn

2
can be characterized in terms of corner-free subsets

of Fn
2 × Fn

2 , as follows. Recall that any triple of elements (x, y), (x + λ, y), (x, λ + y) for
x, y, λ ∈ Fn

2 a corner. A subset S ⊆ Fn
2 × Fn

2 is called corner-free if it does not contain
any nontrivial corners (where nontrivial means that λ ̸= 0). Denoting by r∠(Fn

2 ) the size
of the largest corner-free set in Fn

2 × Fn
2 , the communication complexity of EvalFn

2
equals
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log(4n/r∠(Fn
2 )) up to a O(log n) additive term, which provides the close connection be-

tween the Eval problem in NOF communication and the corner problem in combinatorics.
In particular, large corner-free sets in Fn

2 ×Fn
2 correspond to efficient protocols for EvalFn

2
.

General paradigm: Shannon capacity of hypergraphs

The point of view we will take (and the general setting in which the methods we introduce
will apply) is to regard the corner problem as a Shannon capacity problem of directed
hypergraphs. Namely, the size r∠(Fn

2 ) of the largest corner-free set in Fn
2 × Fn

2 can be
characterized as the independence number of a (naturally defined) directed 3-uniform
hypergraph with 4n vertices. This hypergraph has a recursive form: it is obtained by taking
the n-th power of a fixed (directed) hypergraph Hcor,F2 on 4 vertices. (We discuss this in
more detail in Section 3.2.1.) The asymptotic growth of r∠(Fn

2 ) as n→ ∞ is characterized
by the Shannon capacity Θ(Hcor,F2) of the corner hypergraph Hcor,F2 . That is, we have
r∠(Fn

2 ) = Θ(Hcor,F2)
n−o(1). In this way, proving the strict upper bound Θ(Hcor,F2) < 4 is

equivalent to proving a linear lower bound on the communication complexity of EvalFn
2
.

A generalization of the multidimensional Szemerédi problem

Let S ⊆ Fp × Fp be an ordered nonempty set of size k, we can generalize the multidimen-
sional Szemerédi question [FK79] over Fn

p × Fn
p as follows. A subset A ⊆ Fn

p × Fn
p is called

S-free if for any k ordered distinct points [(x1, y1), . . . , (xk, yk)] of A, there is a coordinate
i ∈ [n] such that the ordered tuple [(x1i , y

1
i ), . . . , (x

k
i , y

k
i )] does not have the form

{(a, b) + (λu, λv) : (u, v) ∈ S}, for some (a, b) ∈ Fp × Fp and λ ∈ {1, . . . , p− 1} .

Given an ordered nonempty set S ⊆ Fp × Fp, the generalized multidimensional Szemerédi
problem asks to determine the size of the largest S-free subset of Fn

p × Fn
p . Many combi-

natorial problems can be considered as special cases of this problem including corner, cap
set, square, Lshape (for explicit definitions, see Sections 3.2.2 and 3.2.3). For instance, it
is easy to verify that, the corner problem over Fn

p × Fn
p (for p = 2) as a special case of

this problem by choosing S = {(0, 0), (1, 0), (0, 1)}. Moreover, for a fixed S ⊆ Fp × Fp,
the problem can be rephrased as determining the Shannon capacity of a fixed hypergraph.
We will present this problem and its special cases in more detail in Section 3.2.

New results in this chapter

Improved lower bounds for some combinatorial problems

Our first result consists of new lower bounds for multiple combinatorial problems, in-
cluding the corner, square, Lshape problems (for explicit definitions, see Sections 3.2.2
and 3.2.3) via a new technique to give lower bounds for the Shannon capacity of hyper-
graphs. Especially, from the new lower bounds for the corner problem over the groups F2

and F3, we obtain improved protocols for the Eval problem.
For a hypergraph H and any m ∈ N, if the m-th power H⊠m of a hypergraph H

contains an independent set of size s, then the capacity Θ(H) is at least s1/m. This was
used for example in [LPS18] with m = 2 on Hcor,F2 and they found an independent set of
size s = 8. We improve on this simple bound by observing that it is actually sufficient to
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construct a set of size s which does not contain “cycles”. In the context of graphs, the
notion of cycle is clear but for hypergraphs there are many possible definitions. Here, to
get new bounds we use the notion of combinatorial degeneration to model such a “cycle”
(see Theorem 3.3.3). Combinatorial degeneration is a method from algebraic complexity
theory [Str91], where it is used to construct fast matrix multiplication algorithms.

Using the combinatorial degeneration method on corner hypergraphs we find new
bounds for corner problem. There are follows (in the three equivalent forms):

Theorem 3.1.1 (Thm. 3.3.6). For the corner and Eval problem over Fn
2 we have:

� D3(EvalFn
2
) ≤ 0.24n+O(log n)

� r∠(Fn
2 ) ≥ 3.39n

poly(n)

� Θ(Hcor,F2) ≥ 3.39

Theorem 3.1.2 (Thm. 3.3.5). For the corner and Eval problem over Fn
3 we have:

� D3(EvalFn
3
) ≤ 0.37n+O(log n)

� r∠(Fn
3 ) ≥ 7n

poly(n)

� Θ(Hcor,F3) ≥ 7.

In addition, we also obtain the best-known lower bounds for square and Lshape (see
Section 3.2.3 for definitions) problems (see Table 3.1). We also introduce the notion
of an acyclic set of a hypergraph (Section 3.3.2) which puts a stronger requirement (it
implies a combinatorial degeneration) but might be simpler to check than combinatorial
degeneration.

Limitations of current upper bound methods for Shannon capacity

Our second result is a strong limitation of current methods to effectively upper bound the
Shannon capacity of hypergraphs. This limitation is caused by induced matchings and
applies to various combinatorial problems including the corner problem. We use a method
of Strassen to show that these limitations are indeed very strong for the corner problem.

In order to elaborate on these results let us first give an overview of upper bound
methods. The general question of upper bounds on the Shannon capacity of hypergraphs
is particularly well-studied in the special setting of undirected graphs. Even for undirected
graphs, it is not clear how to compute the Shannon capacity in general, but some tools
were developed to give upper bounds. The difficulty is to find a good upper bound on the
largest independent set that behaves well under the product ⊠. For undirected graphs, the
best known methods are the Lovász theta function [Lov79] and the Haemers bound which
is based on the matrix rank [Hae79]. For hypergraphs, we only know of algebraic methods
that are based on various notions of tensor rank, and in particular the slice rank [TS16],
and similar notions like the analytic rank [GW11, Lov19], the geometric rank [KMZ20],
and the G-stable rank [Der20]. Even though the slice rank is not multiplicative under ⊠
it is possible to give good upper bounds on the asymptotic slice rank via an asymptotic
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analysis [TS16], which is closely related to the Strassen support functionals [Str91] or the
more recent quantum functionals [CVZ18].

Most of the rank-based bounds actually give upper bounds on the size of induced
matchings and not only on the size of independent sets. It is simple and instructive to
see this argument in the setting of undirected graphs. For a given graph H = (V,E), let
A be the adjacency matrix in which we set all the diagonal coefficients to 1. Then for
any independent set I ⊆ V , the submatrix (Ai,j)i,j∈I of A is the identity matrix and as
a result |I| ≤ rank(A). As the matrix rank is multiplicative under tensor product, we
get Θ(H) ≤ rank(A). Observe that this argument works equally well if we consider an
induced matching instead of an independent set. An induced matching of size s of the
graphH = (V,E) can be defined by two lists of vertices I1(1), . . . , I1(s) and I2(1), . . . , I2(s)
of size s such that for any α, β ∈ {1, . . . , s} we have

((I1(α), I2(β)) ∈ E or I1(α) = I2(β)) ⇐⇒ α = β .

In other words, the submatrix (Ai,j)i∈I1,j∈I2 is an identity matrix, which also implies that
s ≤ rank(A). As such, the matrix rank is an upper bound on the asymptotic maximum
induced matching. Tensor rank methods such as the subrank, slice rank, analytic rank,
geometric rank and G-stable rank also provide upper bounds on the asymptotic maximum
induced matching.

Using a result of Strassen [Str91], we show that there is an induced matching of the
n-th power of Hcor,F2 of size 4n−o(1). This establishes a barrier on many existing tensor
methods (such as slice rank, subrank, analytic rank, etc.) to make progress on corner
problem.

Theorem 3.1.3. The hypergraph H⊠n
cor,F2

has an induced matching of size 4n−o(n). In

other words, for any n ≥ 1, there exist lists I1, I2, I3 ⊆ Fn
2 ×Fn

2 of size s(n) = 4n−o(n) such
that the following holds. For any α, β, γ ∈ {1, . . . , s(n)}

(I1(α), I2(β), I3(γ)) forms a corner ⇐⇒ α = β = γ . (3.2)

We prove this result by establishing in Theorem 3.4.3 that the adjacency tensor of the
hypergraph Hcor,F2 is tight (see Definition 3.4.2). Strassen showed in [Str91] that for tight
sets, the asymptotic induced matching is characterized by the support functionals. By
computing the support functionals for the relevant tensors, we establish the claimed result
in Corollary 3.4.6.

Related work. There have been many recent works on the rich connections between
NOF communication complexity and problems in combinatorics, including the works by
Shraibman [Shr18], Linial, Pitassi and Shraibman [LPS18], Viola [Vio19], Alon and Shraib-
man [AS20], and Linial and Shraibman [LS21]. This most recent result [LS21] constructs
large corner-free sets in [N ]× [N ] by improving the best known NOF communication pro-
tocols for the exactT problem by a constant factor. We note that, as far as we know,
these constructions do not carry over to the groups of the form Gn that we consider in this
chapter. Regarding the study of the generalization of multidimensional Szemerédi theorem
with polynomials in a finite field, there are several recent works by Peluse [Pel18, Pel19]
and Kuca [Kuc19, Kuc21]. As for the topic of Shannon capacity of hypergraphs, the no-
tably interesting paper [KM90] introduces and studies slightly different notion of Shannon
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capacity than ours. Among the tensor methods that suffer from the induced matching
barrier are: the slice rank [Tao16], analytic rank [GW11, Lov19, Bri19], geometric rank
[KMZ20], and G-stable rank [Der20]. Slice rank was used and studied extensively in com-
binatorics, in the context of cap sets [Tao16, KSS16], sunflowers [NS17] and right-corners
[Nas20].

Outline of the chapter. Section 3.2 briefly introduces the multidimensional Szemerédi
theorem and the generalized multidimensional Szemerédi problem over the finite field, as
well as some well-known special cases of this problem in additive combinatorics. In Sec-
tion 3.3, we introduce three methods in for constructing lower bounds for the Shannon
capacity of directed k-unifrom hypergraphs with emphasis on the combinatorial degenera-
tion method. Lastly, in Section 3.4, we discuss the limitations of some current tensor rank
methods to get upper bounds for the Shannon capacity of hypergraphs.

3.2 Multidimensional generalization of Szemerédi’s theorem
in the finite field

We start by recalling the following famous theorem of Szemerédi:

Theorem 3.2.1 (Szemerédi’s theorem, [Sze75]). Let k ≥ 1 be a natural number, and let
δ > 0. Then if N is sufficiently large, every subset A of [N ] of cardinality |A| ≥ δN
contains an arithmetic progression a, a+ r, . . . , a+ (k − 1)r of length k, where a ∈ Z and
r is a positive integer.

Szemerédi’s theorem was a major landmark in additive number theory for several
reasons. Not only did it solve a well-known conjecture in the subject, the powerful methods
introduced in order to prove this theorem have turned out to be extremely beneficial in a
variety of other problems, as well as stimulating development and progress in several fields
of mathematics. Also, the theorem itself has been applied to prove many other results;
for example, it was a significant component in the argument of Green and Tao [GT08](a
celebrated theorem in additive combinatorics) for demonstrating that the prime numbers
contain arbitrarily long arithmetic progressions. Namely, they proved that if A is a subset
of the primes of positive relative upper density, thus lim supN→∞ π(N)|A∩ [N ]| > 0, where
π(N) is the number of primes less than or equal to N , then A necessarily contains infinitely
many arithmetic progressions of length k for all k. Additionally, generalizing Szemerédi’s
theorem, Bergelson and Leibman [BL96] states that if A ⊂ [N ] contains no progression of
the form x, x + P1(y), . . . , x + Pk(y), where y ̸= 0 and P1, . . . , Pk ∈ Z[y] are polynomials
with integer coefficients satisfying P1(0) = · · · = Pk(0) = 0. Then |A| = o(N).

In [FK79], Furstenberg and Katznelson established a multidimensional generalization
of Szemerédi’s theorem and proved the question by using ergodic methods; after that, a
combinatorial approach was developed in [Gow07] and also independently in [NRS06].

Theorem 3.2.2 (Multidimensional Szemerédi theorem, Theorem B in [FK79]). Let d ≥
1 be a natural number, let v1, . . . , vk be elements of Zd, and let δ > 0. Then if N is
sufficiently large, every subset A of [N ]d of cardinality |A| ≥ δNd contains a set of the
form a+ rv1, . . . , a+ rvk, where a ∈ Zd and r is a positive integer.



30

Similar to Szemerédi theorem, the multidimensional Szemerédi theorem has had many
extensive generalizations as well as variants. For instance, Cook, Magyar, and Titichetrakun
in [CMT18] and Tao, Ziegler in [TZ15] independently proved a prime version of the mul-
tidimensional Szemerédi theorem. Shortly after, Fox-Zhao [FZ15] came up with a very
short proof of the same result. In the finite field setting, Kuca [Kuc21] proved the follow-
ing bound which can be seen as the finite field version of the multidimensional polynomial
Szemerédi theorem of Bergelson and Leibman [BL96].

Theorem 3.2.3 ([Kuc21]). Let n, k ∈ N≥1 and v1, . . . , vk ∈ Zn be nonzero vectors and
P1, . . . , Pk ∈ Z[y] be polynomials satisfying 0 < degP1 < · · · < degPk. There exists
constants c, C > 0 and a threshold p0 ∈ N such that for all primes p > p0, each subset
A ⊆ Fn

p of size at least Cpn−c contains

x, x+ v1P1(y), . . . , x+ vkPk(y) ,

for some x ∈ Fn
p and nonzero y ∈ Fp.

A special case of the Theorem 3.2.3 is that each subset of F2
p of size Ω(p2−c) contains

a nontrivial configuration of the form

(x, y), (x+ λ, y), (x, y + λ2) ,

previously proved in [HLY21] (nontrivial here mean λ ̸= 0).
For the one-dimensional (n = 1) case, there are some works in [Pel18, Pel19, Kuc19],

which provided upper bounds for some variants of the Szemerédi theorem in the finite
field setting.

As we have seen so far, in the some works in [Kuc21], or in [DLS20, HLY21] for the
generalization of the multidimensional Szemerédi question or in [Pel18, Pel19] for the one-
dimensional over finite field Fn

p , the authors consider the case when n is fixed and for p
large enough. In this chapter, we work in a different manner. Namely, we consider the
generalization of the multidimensional Szemerédi theorem over the finite field Fn

p when p
is fixed and for n arbitrary large. Before introducing the problem, we first need to define
some concepts.

Let S ⊆ Fp×Fp be an ordered nonempty set2. For any λ ∈ {0, 1, . . . , p−1}, we denote
λS = {(λx, λy) : (x, y) ∈ S}, where λx is the sum of λ times the element x. A nonempty
subset S ⊆ Fp × Fp is called non-degenerate if for all distinct pairs (x, y), (x′, y′) ∈ S, the
following condition holds

(λx, λy) ̸= (λx′, λy′) for all λ ∈ Fp \ {0} .

For n ∈ N≥1, let S ⊆ Fp × Fp be an ordered non-degenerate set of size k. We call
a set of k ordered pairs [(x1, y1), . . . , (xk, yk)], where (xt, yt) ∈ Fn

p × Fn
p for all t ∈ [k],

is a S-configuration on Fn
p × Fn

p if there is a (λ1, . . . , λn) ∈ Fn
p \ {0n} such that for all

i ∈ [n] each component [(x1i , y
1
i ), . . . , (x

k
i , y

k
i )] (in ordered) form a {(a, b) + λiS} for some

(a, b) ∈ Fp × Fp. A subset A ⊆ Fn
p × Fn

p is called S-free if it contain no k distinct points
that form a S-configuaration. Let rS(Fn

p ) be a size of largest S-free set in Fn
p × Fn

p . The
generalized multidimensional Szemerédi problem asks to determine rS(Fn

p ) given S.

2The following construction can be generalized for S ⊆ (Fp)
×d with arbitrary d ∈ N≥1.
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The rS(Fn
p ) can be characterized as the independence number of a k-uniform hyper-

graph with p2n vertices. Namely, consider a directed k-uniform hypergraph HS,Fp = (V,E)
with vertex set V = {(x, y) : x, y ∈ Fp} and E = {(x, y) + λS : x, y, λ ∈ Fp, λ ̸= 0}. Then
by construction:

Lemma 3.2.4. rS(Fn
p ) = α(H⊠n

S,Fp
). As a consequence, rS(Fn

p ) = Θ(HS,Fp)
n−o(n), where

Θ(H) is the Shannon capacity of the hypergraph H.

Proof. By the construction of HS,Fp , we have an edge in H⊠n
S,Fp

corresponding to a S-

configuration on Fn
p × Fn

p . Therefore each independent set in H⊠n
S,Fp

corresponds to an
S-free set in Fn

p × Fn
p . This prove the claim.

There are many well-known problems in combinatorics which are special cases of the
generalized multidimensional Szemerédi problem over Fn

p ×Fn
p and can be solved by taking

specific non-degenerate sets in each case. Next, we will present some of these problems and
their applications. However, in the following subsections, we will consider these problems
over any finite Abelian group (G,+) instead of restricting them to just Fp.

3.2.1 The corner problem and number on the forehead communication

Corner problem

A corner in G×G is a three-element set of the form {(x, y), (x+λ, y), (x, y+λ)} for some
x, y, λ ∈ G and λ ̸= 0. The element (x, y) is called the center of this corner. Let r∠(G) be
the size of the largest subset S ⊆ G×G such that no three elements in S form a corner,
and the set S is called corner-free. The corner problem asks to determine r∠(G) given G.

Trivially, we have the upper bound r∠(G) ≤ |G|2. The best-known general upper
bound on r∠(G) comes from [Shk06a, Shk06b], and reads

r∠(G) ≤
|G|2

(log log |G|)c
,

where 0 < c < 1
73 is an absolute constant. In the finite field setting, [LM07] obtained a

better upper bound for r∠(G) with G = Fn
2 as follows:

r∠(Fn
2 ) ≤ O

(
|G|2 log log log |G|

log log |G|

)
.

We may phrase the corner problem as a hypergraph independence problem. We define
Hcor,G = (V,E) to be the directed 3-uniform hypergraph with V = {(g1, g2) : g1, g2 ∈ G}
and E = {((g1, g2), (g1 + λ, g2), (g1, g2 + λ)) : g1, g2, λ ∈ G, λ ̸= 0}. Then by construction:

Lemma 3.2.5. r∠(G
n) = α(H⊠n

cor,G).

As a consequence, r∠(G
n) = Θ(Hcor,G)

n−o(n) .

Remark 3.2.6. For G = Fp, the corner problem is a special case of the generalized
multidimensional Szemerédi problem by taking S = {(0, 0), (1, 0), (0, 1)}, and it is easy to
verify that S is a non-degenerate set. In other words, rS(Fn

p ) = r∠(G
n) = α(H⊠n

cor,G) in
this setting.
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Example 3.2.7. Let G correspond to addition in F2. Then Hcor,G = (V,E) with

E = {((0, 0), (1, 0), (0, 1)), ((0, 1), (1, 1), (0, 0)), ((1, 0), (0, 0), (1, 1)), ((1, 1), (0, 1), (1, 0))}.

Under the labeling (0, 0) = 0, (0, 1) = 1, (1, 0) = 2 and (1, 1) = 3, we will think of Hcor,F2 as
the hypergraphHcor,F2 = (V,E) with V = (0, 1, 2, 3) and E = {(0, 2, 1), (1, 3, 0), (2, 0, 3), (3, 1, 2)}.

Closely related to r∠(G) is the minimum number of colors needed to color G × G so
that no corner is monochromatic, which we denote by c∠(G). Then:

Proposition 3.2.8 ([CFL83, LPS18]). Let (G,+) be a finite Abelian group. There is a
constant c, such that for every n ∈ N,

|G|2n

r∠(Gn)
≤ c∠(G

n) ≤ c
n|G|2n log |G|

r∠(Gn)
.

For G = F2, the current upper bound in the literature is c∠(Fn
2 ) ≤ O(n2n/2) [LPS18],

which we will improve later on.

Number on the forehead communication

The number on the forehead (NOF) model of communication [CFL83] is very rich both in
terms of connections to Ramsey theory and additive combinatorics [BGG06, Shr18, LS21],
as well as applications to boolean models of compution such as branching programs and
boolean circuits [CFL83, BT94]. In this model, k players wish to evaluate a function
F : X1×· · ·×Xk → {0, 1} on a given input x1, . . . , xk. The input is distributed among the
players in a way that player i sees every xj for j ̸= i. This scenario is visualized as xi being
written on the forehead of Player i. The computational power of everyone is unlimited, but
the number of exchanged bits has to be minimized. Let Dk(F ) be the minimum number
of bits they need to communicate to compute the function F in the NOF model with k
players. For k = 2, this model corresponds to the standard two-party communication
model [Yao79], but when k ≥ 3, the shared information between the players makes this
model surprisingly powerful [Gro94, BGKL04, ACFN15, CS14]. Fundamental problems
remain open. For instance, a sufficiently strong lower bound for an explicit function F
for k ≥ polylog(n) players with n = log |Xi| implies a breakthrough result in complexity
theory, namely a lower bound on the complexity class ACC0.

The Eval problem over Abelian group. A central open problem in NOF model is
to construct an explicit function for which randomized protocols are significantly more
efficient than deterministic ones [BDPW07]. A candidate for this separation (for k =
3) is the function EvalGn , a natural generalization of the equality problem, defined by
EvalGn(x1, x2, x3) = 1 if and only if x1 + x2 + x3 = 0. In the randomized setting, the
standard protocol for the two-party equality problem that uses O(1) (for fixed group G)
bits of communication works in the same way for three parties for the Eval problem.
However, in the deterministic setting, the communication complexity D3(EvalGn) remains
wide open. For G = F2, the best known lower bound Ω(log log n) follows from [LM07] and
the best upper bound was 0.5n+O(log n) [ACFN15]. On the other hand, for two players,
Yao [Yao79] proved that D2(EvalGn) = Ω(n) (for nontrivial G). But, it is an open problem
whether D3(EvalGn) = Ω(n) for three players.
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Chandra, Furst and Lipton [CFL83] found that the deterministic communication com-
plexity of many problems in the NOF model can be recast as Ramsey theory problems. In
particular, the deterministic communication complexity of EvalGn problem can be charac-
terized in terms of corner-free sets in Gn×Gn. More precisely, as a generalization a result
in [CFL83] (Theorem 4.2 in [CFL83]), [BGG06] showed that:

Lemma 3.2.9 ([BGG06]). log(c∠(G
n)) ≤ D3(EvalGn) ≤ 2 + log(c∠(G

n)) .

From Lemma 3.2.9 and Proposition 3.2.8, it follows that Θ(Hcor,G) < |G|2 would
imply that D3(EvalGn) = Ω(n), and also that lower bounds on r∠(G

n) give upper bounds
on D3(EvalGn). For G = F2, the best-known upper bound on D3(EvalFn

2
) is 0.5n+O(log n)

[ACFN15] which we improve later on.
Putting all the claims till now together, the open problem that motivates our work in

this chapter, and that is central in NOF communication complexity and combinatorics,
asks:

Problem 3.2.10. Are the following three equivalent statements true?

� D3(EvalGn) = Ω(n)

� r∠(G
n) ≤ O(cn) for some c < |G|2

� Θ(Hcor,G) < |G|2.

3.2.2 The capset problem

A three-term arithmetic progression in G is a three-element set of the form {x, x+λ, x+2λ}
for some x, λ ∈ G and λ ̸= 0. Let r3(G) be the size of the largest subset S ⊆ G such that
no three elements in S form a three-term arithmetic progression.

A three-term-arithmetic-progression-free subset of Fn
3 is also called a cap set. The

notorious cap set problem is to determine how r3(Fn
3 ) grows when n goes to infinity. A

priori we have that 2n ≤ r3(Fn
3 ) ≤ 3n. Using Fourier methods and the density increment

argument of Roth, the upper bound r3(Fn
3 ) ≤ O(3n/n) was obtained by Meshulam [Mes95],

and improved only as late as 2012 to O(3n/n1+ϵ) for some positive constant ϵ by Michael
Bateman and Nets Hawk Katz in [BK12]. Until recently it was not known whether r3(Fn

3 )
grows like 3n−o(n) or like cn−o(n) for some c < 3. Gijswijt and Ellenberg solved this
question in 2017, showing that r3(Fn

3 ) ≤ 2.756n+o(n) [EG17]. The best lower bound is
2.2174n ≤ r3(Fn

3 ) by Edel [Ede04]. In particular, using Lemma 3.2.12, this implies the
lower bound 3n · 2.2174n = 6.6522n ≤ r∠(Fn

3 ) for the corner problem. We will improve this
lower bound in Theorem 3.3.5.

We may phrase the cap set problem as a Shannon capacity of hypergraphHcap = (V,E)
with V = {0, 1, 2} and E = {(a, a + λ, a + 2λ)} for all a, λ ∈ F3 and λ ̸= 0. It is easy to
verify that the Hcap is undirected 3-uniform hypergraph with one edge E = {(0, 1, 2)}. By
the construction, the independence number α(H⊠n

cap) equals r3(Fn
3 ), and thus the Shannon

capacity of Hcap determines the rate of growth of r3(Fn
3 ).

Remark 3.2.11. By choosing S = {(0, 0), (0, 1), (0, 2)} ⊆ F3 × F3. Then, the cap set
problem is a special case of the generalized multidimensional Szemerédi problem.
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Moreover, following [Zha19, Corollary 3.24], there is a simple relation between corner-
free sets and three-term-arithmetic-progression-free sets:

Lemma 3.2.12. pn r3(Fn
p ) ≤ r∠(Fn

p )

Proof. Let S ⊆ Fn
p be a subset that is free of three-term arithmetic progressions. Define

the subset T = {(x, y) : x − y ∈ S}. Then T is a corner-free set of size pn|S|. Indeed, if
(x, y), (x+ λ, y), (x, y+ λ) are elements of T , then x− y, x+ λ− y, x− y− λ are in S and
these elements form a three-term arithmetic progression.

3.2.3 The Lshape and square problems

There are some other combinatorial problems that can be obtained by taking some special
non-degenerate sets S ⊆ Fp × Fp. For instance, the Lshape is a set of points {(x, y), (x+
λ, y), (x, y + λ), (x, y + 2λ)} for all x, y, λ ∈ Fn

p and λ ̸= 0. Denote rL(Fn
p ) to be the size of

largest subset of Fn
p × Fn

p that does not contain any nontrivial configuration of the form
{(x, y), (x+λ, y), (x, y+λ), (x, y+2λ)}. This problem of determining rL(Fn

p ) is called the
Lshape problem. The Lshape problem has been studied in [Pel22], and the author has
shown the following reasonable upper bounds for rL(Fn

p )

rL(Fn
p ) ≤

p2n

logm n
,

for some large constant m. Now, consider a S = {(0, 0), (1, 0), (0, 1), (0, 2)} ⊆ Fp × Fp,
it is easy to verify that S is non-degenerate. Then the Lshape problem can be seen
as a special case of generalized multidimensional Szemerédi problem. In other words,
we have rL(Fn

p ) = rS(Fn
p ). We denote by HLshape,Fp the directed 4-uniform hypergraph

corresponding to the Lshape problem over Fn
p × Fn

p .
Another shape we can consider is the square shape which is obtained by taking a

non-degenerate set S = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊆ Fp × Fp. Let r□(Fn
p ) be the size

of largest subset of Fn
p × Fn

p that does not contain nontrivial configuration of the form
{(x, y), (x+ λ, y), (x, y + λ), (x+ λ, y + λ)} for some x, y, λ ∈ Fn

p and λ ̸= 0n. It is easy to
verify that r□(Fn

p ) = rS(Fn
p ). The problem of determining r□(Fn

p ) is often referred to as the
square problem. Denote by Hsquare,Fp the directed 4-uniform hypergraph corresponding
to the square problem.

The square problem can also be considered as a generalization of Graham’s ques-
tion [Erd73] over Fn

p . Namely, in an integer grid [N ] × [N ], is it true that for any δ > 0,
there exists N0 = N0(δ) such that for any set A ⊆ [N ] × [N ], of size at least δN where
N > N0, one can find a quadruple of the form {(x, y), (x+λ, y), (x, y+λ), (x+λ, y+λ)} in
A for some λ ̸= 0. An affirmative answer for this question can be found in [BB07, Pre15].
For more information, we refer the reader to [Shk15, SS21].

3.3 Lower bounds on Shannon capacity from combinatorial
degenerations

We discuss three methods to obtain lower bounds on the Shannon capacity of directed
k-uniform hypergraphs: the combinatorial degeneration method, the acyclic set method
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and the probabilistic method. We apply these methods to the problems of constructing
large corner-free, Lshape-free, square-free sets. As a consequence of the construction of
corner-free set, we provide a better NOF communication protocols for the Eval function.

3.3.1 Combinatorial degeneration method

We first introduce the combinatorial degeneration method for lower bounding the Shan-
non capacity. Combinatorial degeneration is an existing concept from algebraic complexity
theory introduced by Strassen in [Str87, Section 6, in particular Theorem 6.1]3. In that
original setting it was used as part of the construction of fast matrix multiplication algo-
rithms [BCS97, Definition 15.29 and Lemma 15.31], and, in a broader setting, combinato-
rial degeneration was used to construct large induced matchings in [ASU13, Lemma 3.9],
[AW18, Lemma 5.1] and [CVZ18, Theorem 4.11]. However, we will be using it in a novel
manner in order to construct independent sets instead of induced matchings. We will
subsequently apply the combinatorial degeneration method to get new bounds for the cor-
ner, square, Lshape problems. We expect the method to be useful in the study of other
problems besides these problems as well. First we must define combinatorial degeneration.

Definition 3.3.1 (Combinatorial degeneration). Let I1, . . . , Ik be finite sets. Let Φ ⊆
Ψ ⊆ I1 × · · · × Ik. We say that Φ is a combinatorial degeneration of Ψ, and write Ψ⊵ Φ,
if there are maps ui : Ii → Z (i ∈ [k]) such that for every x = (x1, . . . , xk) ∈ I1 × · · · × Ik,
if x ∈ Ψ \ Φ, then

∑k
i=1 ui(xi) > 0, and if x ∈ Φ, then

∑k
i=1 ui(xi) = 0.

Example 3.3.2. As a quick example of a combinatorial degeneration, let

Φ = {(0, 0, 0), (1, 1, 0), (1, 0, 1)},
Ψ = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Then we have a combinatorial degeneration Ψ ⊵ Φ by picking the maps u1(0) = u2(0) =
u3(0) = 0, and u1(1) = −1, u2(1) = u3(1) = 1.

We apply combinatorial degeneration in the following fashion to get Shannon capacity
lower bounds:

Theorem 3.3.3 (Combinatorial degeneration method). Let H = (V,E) be a directed k-
uniform hypergraph. Let S ⊆ V . Let Ψ = E∪{(v, . . . , v) : v ∈ V } and let Φ = {(v, . . . , v) :
v ∈ S} and suppose that Ψ⊵ Φ. Then Θ(H) ≥ |S|.

Proof. Let ui be the maps given by the combinatorial degeneration Ψ⊵ Φ. Let n be any
multiple of |S|. Let (x(1), . . . , x(k)) ∈ Ψ⊗n. Suppose for every i ∈ [k] that the n elements

in the tuple x(i) = (x
(i)
1 , . . . , x

(i)
n ) are uniformly distributed over S, so that every element

of S appears n/|S| times in x(i). Then, using that
∑k

i=1 ui(s) = 0 for every s ∈ S and the

3The precise connection to [Str87] is as follows. Strassen defines the notion of M-degeneration on
tensors. In our terminology, a tensor is an M -degeneration of another tensor, if the support of the first is a
combinatorial degeneration of the support of the second. The terminology “combinatorial degeneration”,
which does not refer to tensors, but rather directly to their supports (hence the adjective “combinatorial”),
was introduced in [BCS97, Definition 15.29].
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uniformity of x(i), we have

k∑
i=1

n∑
j=1

ui(x
(i)
j ) =

n

|S|
∑
s∈S

k∑
i=1

ui(s) = 0. (3.3)

For every j ∈ [n], since (x
(1)
j , . . . , x

(k)
j ) ∈ Ψ, we have

∑k
i=1 ui(x

(i)
j ) ≥ 0. Suppose that there

is an index j ∈ [n] such that (x
(1)
j , . . . , x

(k)
j ) ̸∈ Φ. Then

k∑
i=1

ui(x
(i)
j ) > 0.

As a consequence,
∑n

j=1

∑k
i=1 ui(x

(i)
j ) > 0, which contradicts (3.3). Thus the uniform

strings in Sn form an independent set in H⊠n. There are( |S| n
|S|

n
|S| , . . . ,

n
|S|

)
≥ |S|n

(n+ 1)|S|

such strings. The inequality follows from the fact that the largest multinomial coefficient
is the central one, i.e.,

(
n

n1,...,n|S|

)
≤
(

n
n
|S| ,...,

n
|S|

)
and the number of possible partitions of n

into |S| parts is at most (n+ 1)|S|.

Remark 3.3.4. The above proof of Theorem 3.3.3 gives in fact the precise lower bound

α(H⊠n) ≥ |S|n

(n+ 1)|S|
. (3.4)

This lower bound is optimal up to a poly(n) factor. The following more careful analysis
improves this poly(n) factor, but may safely be skipped when the reader is satisfied by
the lower bound of (3.4).

We may without loss of generality assume that S = V . For p ∈ Z, let [V n]
(i)
p ⊆ V n be

the subset of all elements (x1, . . . , xn) ∈ V n such that
∑n

j=1 ui(xj) = p. For p1, . . . , pk ∈ Z,
we let [Ψ⊗n]p1,...,pk ⊆ Ψ⊗n denote the subset of all elements (x(1), . . . , x(k)) ∈ Ψ⊗n such

that for every i ∈ [k] we have
∑n

j=1 ui(x
(i)
j ) = pi. Thus [Ψ⊗n]p1,...,pk = Ψ⊗n ∩ ([V n]

(1)
p1 ×

· · · × [V n]
(k)
p1 ). Then

Ψ⊗n =
⊔

p1,...,pk

[Ψ⊗n]p1,...,pk

and from the definition of a combinatorial degeneration we get

Φ⊗n =
⊔

p1,...,pk:∑k
i=1 pi=0

[Ψ⊗n]p1,...,pk . (3.5)

Since Φ⊗n only contains elements of the form (x, . . . , x), we see that if [Ψ⊗n]p1,...,pk ̸= ∅
and

∑k
i=1 pi = 0, then the elements of [Ψ⊗n]p1,...,pk are all the elements (x, . . . , x) going

over all x ∈ ∩k
i=1[V

n]
(i)
pi . Thus α(H⊗n) ≥ |[Ψ⊗n]p1,...,pk | for any choice of p1, . . . , pk such

that
∑k

i=1 pi = 0.
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One good choice of p1, . . . , pk is obtained as follows, and lets us recover the lower bound
in (3.4). For notational simplicity we are still assuming S = V . Let (x1, . . . , xn) ∈ V n be
any element that is uniform on S. For every i ∈ [k] let pi =

∑n
j=1 ui(xj). Note that for

every i ∈ [k] the value of pi remains the same if we had picked another uniform element
(x1, . . . , xn) ∈ V n. We claim that

∑k
i=1 pi = 0. To prove this, let (x(1), . . . , x(k)) ∈ Ψn be

any element for which every x(i) is uniform on S. Then in the same way as in (3.3) we

have p1 + · · ·+ pk =
∑

i

∑
j ui(x

(i)
j ) = 0, using that for every s ∈ S we have

∑
i ui(s) = 0.

Finally, note that [Ψ⊗n]p1,...,pk contains all elements (x(1), . . . , x(k)) ∈ Ψ⊗n for which every
x(i) is uniform. Therefore, with this choice we recover a bound that is at least as good as
(3.4).

Another choice of p1, . . . , pk (that leads to an incomparable lower bound) is obtained
as follows. Note that if [Ψ⊗n]p1,...,pk ̸= ∅, then nminx∈V ui(x) ≤ pi ≤ nmaxx∈V ui(x).
Thus the number of nonzero summands in (3.5) is at most c|S|n

k−1 for a constant c|S| that

depends only on |S|. Therefore, there is a choice of p1, . . . , pk with
∑k

i=1 pi = 0 such that

α(H⊠n) ≥
∣∣[Ψ⊗n]p1,...,pk

∣∣ ≥ |Φ⊗n|
c|S|nk−1

=
|S|n

c|S|nk−1

which improves on (3.4) in some parameter regimes.

In order to construct combinatorial degenerations we employ integer linear program-
ming. For any directed k-uniform hypergraph H = (V,E), we naturally define β(H) to
be the size of the largest subset S ⊆ V such that {(v, . . . , v) : v ∈ S} is a combinatorial
degeneration of E ∪ {(v, . . . , v) : v ∈ V }. Clearly, Θ(H) ≥ β(H) by Theorem 3.3.3.

To state the integer program, we let t be a variable that takes values in {0, 1}|V | and
let u1, . . . , uk be variables that take values in Z|V |. We choose M ∈ N large enough. The
parameter β(H) can be then computed by the following integer linear program:

max
∑

i∈V t(i)
subject to u1(i1) + · · ·+ uk(ik) ≥ 1 ∀(i1, . . . , ik) ∈ E,

1− t(i) ≤ u1(i) + · · ·+ uk(i) ≤M(1− t(i)) ∀i ∈ V
(3.6)

Indeed, if (t, u1, . . . , uk) is a feasible solution of the program (3.6), then {(v, . . . , v) :
v ∈ S} is a combinatorial degeneration of E ∪ {(v, . . . , v) : v ∈ V } by choosing k integer
maps u1, . . . , uk, where S = {i ∈ V : t(i) = 1}. Therefore, one has β(H) ≥ A (A is a
maximum value of program (3.6)). On the other hand, for any S ⊆ V such that if there
is a combinatorial degeneration from E ∪ {(v, . . . , v) : v ∈ V } to {(v, . . . , v) : v ∈ S} with
k integer maps u1, . . . , uk, by defining t ∈ {0, 1}|V | so that t(i) = 1 iff i ∈ S, we have
(t, u1, . . . , uk) is a feasible solution of the program (3.6). Thus, β(H) ≤ A.

As a first application of the combinatorial degeneration method, we prove the following
new bound for corners over Fn

3 and Fn
2 .

Theorem 3.3.5. Θ(Hcor,F3) ≥ 7.

In other words, 7n/poly(n) ≤ r∠(Fn
3 ). This improves on the lower bound 6.6522n ≤

r∠(Fn
3 ) that can be obtained from Edel’s construction of cap sets [Ede04] and Lemma 3.2.12.
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As a consequence of the new lower bound, we find the bounds c∠(Fn
3 ) ≤ O(poly(n)(97)

n)
and D3(EvalFn

3
) ≤ n log(9/7) + O(log n) ≤ 0.37n + O(log n). Previously, only the weaker

bound D3(EvalFn
3
) ≤ n+O(log n) was known [LPS18].4

Proof. Let Ψ be the support of the adjacency tensor of Hcor,F3 . We label each pair (a, b)
for a, b ∈ {0, 1, 2} by the integer number 3a + b. The hypergraph Hcor,F3 has vertex set
V = {0, 1, 3, 4, 5, 6, 7, 8} and the set Ψ is given by

Ψ = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5), (6, 6, 6), (7, 7, 7), (8, 8, 8),
(0, 3, 1), (0, 6, 2), (1, 4, 2), (1, 7, 0), (2, 5, 0), (2, 8, 1), (3, 6, 4), (3, 0, 5), (4, 7, 5),

(4, 1, 3), (5, 8, 3), (5, 2, 4), (6, 0, 7), (6, 3, 8), (7, 1, 8), (7, 4, 6), (8, 2, 6), (8, 5, 7)} .

Let S ⊆ V (Hcor,F3) be the subset consisting of the following seven vertices:

S := {0, 1, 2, 3, 4, 7, 8} .

One directly verifies that the maps ui : V → Z provided in the following table give a
combinatorial degeneration from Ψ to ΦS := {(v, v, v) : v ∈ S}.

vertex u1 u2 u3

0 −5 1 4
1 −5 4 1
2 −5 1 4
3 −5 5 0
4 −3 2 1
5 −1 5 5
6 −1 5 5
7 −3 2 1
8 −5 5 0

We conclude that Θ(Hcor,F3) ≥ 7.

In the previous proof we only considered the first power of the relevant hypergraph.
For the next result we will be able to get good bounds by considering higher powers.

Theorem 3.3.6. β(H⊠2
cor,F2

) ≥ 11 and β(H⊠3
cor,F2

) ≥ 39, as a consequence Θ(Hcor,F2) ≥
3.39 .

In other words, 3.39n/poly(n) ≤ r∠(Fn
2 ). As a consequence, we have the upper bound

c∠(Fn
2 ) ≤ O(poly(n)1.18n) for the corner problem and the upper bound D3(EvalFn

2
) ≤

0.24n+O(log n) for the Eval problem.

Proof. Let H = Hcor,F2 ⊠Hcor,F2 . We will show β(H) ≥ 11, which implies Θ(Hcor,F2) ≥√
11. Let Ψ be the support of the adjacency tensor of H. Then Ψ is this rather large set

4We note that the NOF protocol in [ACFN15] for EvalFn2 does not in any direct way generalize to EvalFn3
as far as we know.
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of 64 triples:

Ψ = {((0, 0), (0, 0), (0, 0)), ((0, 1), (0, 1), (0, 1)), ((0, 2), (0, 2), (0, 2)), ((0, 3), (0, 3), (0, 3)),
((1, 0), (1, 0), (1, 0)), ((1, 1), (1, 1), (1, 1)), ((1, 2), (1, 2), (1, 2)), ((1, 3), (1, 3), (1, 3)),

((2, 0), (2, 0), (2, 0)), ((2, 1), (2, 1), (2, 1)), ((2, 2), (2, 2), (2, 2)), ((2, 3), (2, 3), (2, 3)),

((3, 0), (3, 0), (3, 0)), ((3, 1), (3, 1), (3, 1)), ((3, 2), (3, 2), (3, 2)), ((3, 3), (3, 3), (3, 3)),

((0, 0), (0, 2), (0, 1)), ((0, 0), (2, 0), (1, 0)), ((0, 0), (2, 2), (1, 1)), ((0, 1), (0, 3), (0, 0)),

((0, 1), (2, 1), (1, 1)), ((0, 1), (2, 3), (1, 0)), ((0, 2), (0, 0), (0, 3)), ((0, 2), (2, 0), (1, 3)),

((0, 2), (2, 2), (1, 2)), ((0, 3), (0, 1), (0, 2)), ((0, 3), (2, 1), (1, 2)), ((0, 3), (2, 3), (1, 3)),

((1, 0), (1, 2), (1, 1)), ((1, 0), (3, 0), (0, 0)), ((1, 0), (3, 2), (0, 1)), ((1, 1), (1, 3), (1, 0)),

((1, 1), (3, 1), (0, 1)), ((1, 1), (3, 3), (0, 0)), ((1, 2), (1, 0), (1, 3)), ((1, 2), (3, 0), (0, 3)),

((1, 2), (3, 2), (0, 2)), ((1, 3), (1, 1), (1, 2)), ((1, 3), (3, 1), (0, 2)), ((1, 3), (3, 3), (0, 3)),

((2, 0), (0, 0), (3, 0)), ((2, 0), (0, 2), (3, 1)), ((2, 0), (2, 2), (2, 1)), ((2, 1), (0, 1), (3, 1)),

((2, 1), (0, 3), (3, 0)), ((2, 1), (2, 3), (2, 0)), ((2, 2), (0, 0), (3, 3)), ((2, 2), (0, 2), (3, 2)),

((2, 2), (2, 0), (2, 3)), ((2, 3), (0, 1), (3, 2)), ((2, 3), (0, 3), (3, 3)), ((2, 3), (2, 1), (2, 2)),

((3, 0), (1, 0), (2, 0)), ((3, 0), (1, 2), (2, 1)), ((3, 0), (3, 2), (3, 1)), ((3, 1), (1, 1), (2, 1)),

((3, 1), (1, 3), (2, 0)), ((3, 1), (3, 3), (3, 0)), ((3, 2), (1, 0), (2, 3)), ((3, 2), (1, 2), (2, 2)),

((3, 2), (3, 0), (3, 3)), ((3, 3), (1, 1), (2, 2)), ((3, 3), (1, 3), (2, 3)), ((3, 3), (3, 1), (3, 2))}.

Let S ⊆ V (H) be the subset consisting of the following eleven vertices:

S := {(0, 0), (0, 1), (1, 0), (1, 2), (1, 3, )(2, 0), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)} .

One directly verifies that the maps ui : {0, 1, 2, 3}2 → Z provided in the following table
give a combinatorial degeneration from Ψ to ΦS := {(v, v, v) : v ∈ S}.

vertex u1 u2 u3

(0, 0) −10 0 10
(0, 1) −10 0 10
(0, 2) 10 1 −1
(0, 3) 10 1 1
(1, 0) −10 0 10
(1, 1) −8 10 10
(1, 2) 7 3 −10
(1, 3) 1 5 −6
(2, 0) −5 1 4
(2, 1) −6 1 5
(2, 2) 9 1 −10
(2, 3) 10 3 −7
(3, 0) −3 1 10
(3, 1) −8 1 7
(3, 2) 8 1 −9
(3, 3) 9 −1 −8

We make it easier to verify this by listing every element e = (v1, v2, v3) ∈ Ψ again,
together with the evaluation (u1(v1), u2(v2), u3(v3)), the sum of the evaluations

∑
i ui(vi),

and whether e is in Φ or in Ψ \ Φ:
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(v1, v2, v3) (u1, u2, u3)
∑

i ui

((0,0), (0,0), (0,0)) (−10, 0, 10) 0 Φ
((0,1), (0,1), (0,1)) (−10, 0, 10) 0 Φ
((0,2), (0,2), (0,2)) (10, 1,−1) 10 Ψ \ Φ
((0,3), (0,3), (0,3)) (10, 1, 1) 12 Ψ \ Φ
((1,0), (1,0), (1,0)) (−10, 0, 10) 0 Φ
((1,1), (1,1), (1,1)) (−8, 10, 10) 12 Ψ \ Φ
((1,2), (1,2), (1,2)) (7, 3,−10) 0 Φ
((1,3), (1,3), (1,3)) (1, 5,−6) 0 Φ
((2,0), (2,0), (2,0)) (−5, 1, 4) 0 Φ
((2,1), (2,1), (2,1)) (−6, 1, 5) 0 Φ
((2,2), (2,2), (2,2)) (9, 1,−10) 0 Φ
((2,3), (2,3), (2,3)) (10, 3,−7) 6 Ψ \ Φ
((3,0), (3,0), (3,0)) (−3, 1, 10) 8 Ψ \ Φ
((3,1), (3,1), (3,1)) (−8, 1, 7) 0 Φ
((3,2), (3,2), (3,2)) (8, 1,−9) 0 Φ
((3,3), (3,3), (3,3)) (9,−1,−8) 0 Φ
((0,0), (0,2), (0,1)) (−10, 1, 10) 1 Ψ \ Φ
((0,0), (2,0), (1,0)) (−10, 1, 10) 1 Ψ \ Φ
((0,0), (2,2), (1,1)) (−10, 1, 10) 1 Ψ \ Φ
((0,1), (0,3), (0,0)) (−10, 1, 10) 1 Ψ \ Φ
((0,1), (2,1), (1,1)) (−10, 1, 10) 1 Ψ \ Φ
((0,1), (2,3), (1,0)) (−10, 3, 10) 3 Ψ \ Φ
((0,2), (0,0), (0,3)) (10, 0, 1) 11 Ψ \ Φ
((0,2), (2,0), (1,3)) (10, 1,−6) 5 Ψ \ Φ
((0,2), (2,2), (1,2)) (10, 1,−10) 1 Ψ \ Φ
((0,3), (0,1), (0,2)) (10, 0,−1) 9 Ψ \ Φ
((0,3), (2,1), (1,2)) (10, 1,−10) 1 Ψ \ Φ
((0,3), (2,3), (1,3)) (10, 3,−6) 7 Ψ \ Φ
((1,0), (1,2), (1,1)) (−10, 3, 10) 3 Ψ \ Φ
((1,0), (3,0), (0,0)) (−10, 1, 10) 1 Ψ \ Φ
((1,0), (3,2), (0,1)) (−10, 1, 10) 1 Ψ \ Φ
((1,1), (1,3), (1,0)) (−8, 5, 10) 7 Ψ \ Φ

(v1, v2, v3) (u1, u2, u3)
∑

i ui

((1,1), (3,1), (0,1)) (−8, 1, 10) 3 Ψ \ Φ
((1,1), (3,3), (0,0)) (−8,−1, 10) 1 Ψ \ Φ
((1,2), (1,0), (1,3)) (7, 0,−6) 1 Ψ \ Φ
((1,2), (3,0), (0,3)) (7, 1, 1) 9 Ψ \ Φ
((1,2), (3,2), (0,2)) (7, 1,−1) 7 Ψ \ Φ
((1,3), (1,1), (1,2)) (1, 10,−10) 1 Ψ \ Φ
((1,3), (3,1), (0,2)) (1, 1,−1) 1 Ψ \ Φ
((1,3), (3,3), (0,3)) (1,−1, 1) 1 Ψ \ Φ
((2,0), (0,0), (3,0)) (−5, 0, 10) 5 Ψ \ Φ
((2,0), (0,2), (3,1)) (−5, 1, 7) 3 Ψ \ Φ
((2,0), (2,2), (2,1)) (−5, 1, 5) 1 Ψ \ Φ
((2,1), (0,1), (3,1)) (−6, 0, 7) 1 Ψ \ Φ
((2,1), (0,3), (3,0)) (−6, 1, 10) 5 Ψ \ Φ
((2,1), (2,3), (2,0)) (−6, 3, 4) 1 Ψ \ Φ
((2,2), (0,0), (3,3)) (9, 0,−8) 1 Ψ \ Φ
((2,2), (0,2), (3,2)) (9, 1,−9) 1 Ψ \ Φ
((2,2), (2,0), (2,3)) (9, 1,−7) 3 Ψ \ Φ
((2,3), (0,1), (3,2)) (10, 0,−9) 1 Ψ \ Φ
((2,3), (0,3), (3,3)) (10, 1,−8) 3 Ψ \ Φ
((2,3), (2,1), (2,2)) (10, 1,−10) 1 Ψ \ Φ
((3,0), (1,0), (2,0)) (−3, 0, 4) 1 Ψ \ Φ
((3,0), (1,2), (2,1)) (−3, 3, 5) 5 Ψ \ Φ
((3,0), (3,2), (3,1)) (−3, 1, 7) 5 Ψ \ Φ
((3,1), (1,1), (2,1)) (−8, 10, 5) 7 Ψ \ Φ
((3,1), (1,3), (2,0)) (−8, 5, 4) 1 Ψ \ Φ
((3,1), (3,3), (3,0)) (−8,−1, 10) 1 Ψ \ Φ
((3,2), (1,0), (2,3)) (8, 0,−7) 1 Ψ \ Φ
((3,2), (1,2), (2,2)) (8, 3,−10) 1 Ψ \ Φ
((3,2), (3,0), (3,3)) (8, 1,−8) 1 Ψ \ Φ
((3,3), (1,1), (2,2)) (9, 10,−10) 9 Ψ \ Φ
((3,3), (1,3), (2,3)) (9, 5,−7) 7 Ψ \ Φ
((3,3), (3,1), (3,2)) (9, 1,−9) 1 Ψ \ Φ

Indeed, we see that
∑

i ui(vi) is always nonnegative, and equals 0 if and only if (v1, v2, v3) ∈
Φ. Therefore we obtain β(H) ≥ 11.

For the construction to prove β(H⊠3
cor,Fn

2
) ≥ 39. Let S ⊆ V (H) be the subset consisting

of the following thirty-nine vertices:

S := {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 0), (0, 3, 1),
(0, 3, 3), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1), (1, 3, 2),

(1, 3, 3), (2, 0, 0), (2, 0, 1), (2, 0, 3), (2, 1, 2), (2, 1, 3), (2, 2, 0), (2, 2, 2), (2, 3, 0), (2, 3, 2),

(2, 3, 3), (3, 0, 0), (3, 0, 1), (3, 0, 2), (3, 1, 2), (3, 2, 0), (3, 2, 1), (3, 2, 3), (3, 3, 2)}.

One directly verifies that the maps ui : {0, 1, 2, 3}3 → Z provided in the following table
give a combinatorial degeneration from Ψ = {(v, v, v) : v ∈ V (H⊠3

cor,Fn
2
)} ∪ E(H⊠3

cor,Fn
2
) to

ΦS := {(v, v, v) : v ∈ S}.
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vertex u1 u2 u3

(0, 0, 0) 1 −4 3
(0, 0, 1) −15 −4 19
(0, 0, 2) −3 −17 20
(0, 0, 3) 20 20 20
(0, 1, 0) −5 7 −2
(0, 1, 1) 20 20 20
(0, 1, 2) −5 20 −15
(0, 1, 3) 1 0 −1
(0, 2, 0) 20 5 20
(0, 2, 1) 5 −4 −1
(0, 2, 2) 20 20 7
(0, 2, 3) 1 18 −19
(0, 3, 0) −4 3 1
(0, 3, 1) 20 −20 0
(0, 3, 2) 20 20 20
(0, 3, 3) 20 −20 0
(1, 0, 0) 20 20 20
(1, 0, 1) 20 20 20
(1, 0, 2) −2 −14 16
(1, 0, 3) 9 20 20
(1, 1, 0) −16 20 −4
(1, 1, 1) 0 1 −1
(1, 1, 2) 20 20 20
(1, 1, 3) −4 5 −1
(1, 2, 0) 20 20 20
(1, 2, 1) −5 1 4
(1, 2, 2) 18 2 −20
(1, 2, 3) 20 0 −20
(1, 3, 0) 20 20 20
(1, 3, 1) −4 −11 15
(1, 3, 2) 1 2 −3
(1, 3, 3) 20 −15 −5

vertex u1 u2 u3

(2, 0, 0) 5 −5 0
(2, 0, 1) −4 4 0
(2, 0, 2) 20 20 20
(2, 0, 3) −15 5 10
(2, 1, 0) 20 20 20
(2, 1, 1) 20 20 20
(2, 1, 2) −9 7 2
(2, 1, 3) 1 1 −2
(2, 2, 0) 2 5 −7
(2, 2, 1) 20 20 20
(2, 2, 2) 9 1 −10
(2, 2, 3) 20 20 20
(2, 3, 0) −4 0 4
(2, 3, 1) 20 20 20
(2, 3, 2) 4 −10 6
(2, 3, 3) 12 −9 −3
(3, 0, 0) 15 −16 1
(3, 0, 1) −19 6 13
(3, 0, 2) −3 −17 20
(3, 0, 3) 3 20 20
(3, 1, 0) −1 19 20
(3, 1, 1) 20 20 13
(3, 1, 2) −17 −3 20
(3, 1, 3) 20 20 20
(3, 2, 0) −2 4 −2
(3, 2, 1) 8 7 −15
(3, 2, 2) 9 20 20
(3, 2, 3) 10 0 −10
(3, 3, 0) 20 20 20
(3, 3, 1) 20 20 20
(3, 3, 2) −7 −2 9
(3, 3, 3) 20 20 20

We can see that any lower bound for corner problem is also a lower bound for the Lshape
and square problems. In Table 3.1, we compute the values of β(H) and independence
number α(H) for hypergraphs H = {corner, square,Lshape} over G = Fp on some small
values of p. As far as we know, these values in the table are the best-known lower bounds
for these problems.

p
corner square Lshape

β(Hcor,Fp) α(Hcor,Fp) β(Hsquare,Fp) α(Hsquare,Fp) β(HLshape,Fp) α(HLshape,Fp)

2 3 2 3 3

3 7 6 7 6 7 6

4 12 8 12 10 12 8

5 19 12 20 16 21 15

7 37 22 38 28 42 28

8 48 26 48 37 48 32

9 61 36 62 45 63 41

Table 3.1: The value of β(H) and α(H) for H = {corner, square,Lshape} over Fp for
p < 10.

Moreover, over F3 we can compute the β(H⊠2) for hypergraph H = {square,Lshape}



42

to obtain a better lower bound for the square and Lshape problems. Namely,

Lemma 3.3.7. We have, β(H⊠2
square,F3

) = 58 and β(H⊠2
Lshape,F3

) = 59. As a consequence,
r□(Fn

3 ) ≥ 7.61n/poly(n), rL(Fn
3 ) ≥ 7.68n/poly(n).

For any directed k-uniform hypergraph H, it is clear that α(H) ≤ β(H). The
combinatorial degeneration method has shown improvements on the lower bounds for
corner, square,Lshape hypergraphs compared to using the independence numbers in the
Table 3.1. On undirected hypergraphs (e.g. cap set hypergraph), we show that there is no
difference between the combinatorial degeneration method and the independence number
method.

Theorem 3.3.8. For any undirected k-uniform hypergraph H, then β(H) = α(H).

Proof. It is clear that α(H) ≤ β(H) for any undirected k-uniform hypergraph H. Let S be
a set such that there is combinatorial degeneration from V (H)∪E(H) to S. Let u1, . . . , uk
be maps corresponding to the combinatorial degeneration. For any k vertices v1, . . . , vk in
S, we will prove (v1, . . . , vk) /∈ E(H). Indeed, assume that there is an edge (v1, . . . , vk),
since H is an undirected hypergraph, so for any π ∈ Sk we have (vπ(1), . . . , vπ(k)) also in

E(H). On the other hand, since (v1, . . . , vk) ∈ E(H), this implies
∑k

i=1 ui(vπ(i)) > 0 for

any π ∈ Sk, thus
∑

π∈Sk

∑k
i=1 ui(vπ(i)) > 0, which contradicts with

∑k
i=1 ui(v) = 0 for

all v ∈ S. Therefore, the set S is an independent set of H and α(H) ≥ β(H), this proves
the claim.

We have yet to develop structural understanding of how the above combinatorial de-
generations that exhibit the new capacity lower bounds arise, and leave the investigation
of further generalizations and improvements to future work. As a partial remedy to our
limited understanding, we introduce in the next section the acyclic method as a tool to
construct combinatorial degenerations. While the acyclic method does not recover the
bounds of Theorem 3.3.6 and Theorem 3.3.5, it has the merits of being transparent and
simple to apply.

3.3.2 Acyclic set method

The acyclic set method that we are about to introduce is modeled on the fact that the
Shannon capacity of a directed graph G is at least the size of any induced acyclic sub-
graph of G [BM85]. We introduce the concept of an acyclic set in a directed k-uniform
hypergraph as an extension of the notion of an induced acyclic subgraph.

Definition 3.3.9. Let H be a directed k-uniform hypergraph. We associate to H the di-
rected graphGH with vertices V (G) = V (H) and edges E(G) = {(a1, a2) : (a1, a2, . . . , ak) ∈
E for some a3, . . . , ak}. For any subset A ⊆ V let H[A] denote the subhypergraph of H
induced by A, that is, H[A] is the directed k-uniform hypergraph with vertices S and
edges E ∩A×k. We call a subset A ⊆ V an acyclic set of H if the directed graph GH[A] is
a directed acyclic graph.
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Note that, if A is an independent set of H, then E(H[A]) = ∅ and thus E(GH[A]) = ∅,
and in particular A is an acyclic set of H. On the other hand, acyclic sets are not
necessarily independent sets. However, the existence of an acyclic set does imply strong
lower bounds on the Shannon capacity (via combinatorial degeneration, as we will see):

Theorem 3.3.10. Let H be a directed k-uniform hypergraph. For any acyclic set A of
H, we have Θ(H) ≥ |A|.

Theorem 3.3.10 follows directly from the combinatorial degeneration method (Theo-
rem 3.3.3) and the following lemma:

Lemma 3.3.11. Let H = (V,E) be a directed k-uniform hypergraph. Let A be an acyclic
set of H. Then there is a combinatorial degeneration from E ∪ {(v, . . . , v) : v ∈ V } to
Φ = {(v, . . . , v) : v ∈ A}.
Proof. We may assume that A = V = [n]. The proof for the case that A ⊊ V is a simple
adaptation. Recall that we construct the directed graph G associated to H with the same
vertex set as H and the edges as follows: for every edge e = (a1, a2, . . . , ak) in H we add
the edge (a1, a2) to G. Since V is an acyclic set we have that G is a directed acyclic graph.
Therefore, we have a topological ordering on the vertices of G. A topological ordering is a
total ordering > on the vertices such that if (u, v) forms an edge then u < v. Assume that
this ordering is 1 > 2 > · · · > n. For each vertex i ∈ [n], we define u1(i) = −i, u2(i) = i,
u3(i) = · · · = uk(i) = 0. For every i ∈ [n] we clearly have u1(i) + u2(i) + · · ·+ uk(i) = 0.
For each edge e = (a1, a2, . . . , ak) in H we have u1(a1)+u2(a2)+ · · ·+uk(ak) > 0 because
of the topological ordering and since we have the edge (a1, a2) in G. Therefore we have
a combinatorial degeneration from E ∪ {(v, . . . , v) : v ∈ V } to {(v, . . . , v) : v ∈ V }. For
the case A ⊊ V the proof is similar except that we define u1(i), u2(i), . . . , uk(i) to be some
large integer number for each i ∈ V \A.

As can be seen from the proof of Lemma 3.3.11, the combinatorial degenerations that
result from acyclic sets have a special form, and in particular the acyclic set method does
not recover the full power of the combinatorial degeneration method. However the acyclic
set method is much easier to apply than the combinatorial degeneration method. For
example, we can use the acyclic set method to quickly see that Θ(Hcor,F2) ≥ 3. Namely, it
is verified directly that the set S = {0, 1, 2} of size three is an acyclic set in Hcor,F2 , which
implies the claim by Theorem 3.3.10.

Finally, we note that for directed graphs (k = 2) the combinatorial degeneration
method can be used to characterize whether the Shannon capacity is full or not.

Theorem 3.3.12. Let G = (V,E) be a directed graph. Then Θ(G) = |V | if and only if
there is a combinatorial degeneration from E ∪ {(v, v) : v ∈ V } to {(v, v) : v ∈ V }.
Proof. The if direction follows directly from Theorem 3.3.3. For the only if direction,
it is shown in [BM85] that if Θ(G) = |V |, then G is an acyclic graph. Then, applying
Lemma 3.3.11 for k = 2 proves the claim.

Remark 3.3.13. We note that for any directed graph G = (V,E), by Theorem 3.3.12 and
Lemma 3.3.10, the graph G is acyclic if and only if there is a combinatorial degeneration
from {(v, v) : v ∈ V } ∪ E to {(v, v) : v ∈ V }. In other words, the notion of combinatorial
degeneration in directed k-uniform hypergraphs can be seen as a generalization of the
notion of acyclicity in directed graphs.
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3.3.3 Probabilistic method

We finish this section with a simple and general method for obtaining lower bounds on the
Shannon capacity. For any element g ∈ G, the set {(g, g + λ) : λ ∈ G} is an independent
set of Hcor,G, and therefore we have Θ(Hcor,G),Θ(Hsquare,G),Θ(HLshape,G) are at least |G|,
which we think of as the trivial lower bound. By using a simple probabilistic argument
(which does not use much of the structure of Hcor,G), we show the following nontrivial
lower bound for Θ(Hcor,G),Θ(Hsquare,G),Θ(HLshape,G).

Proposition 3.3.14. For any finite Abelian group G, we have all quantities Θ(Hcor,G),
Θ(Hsquare,G), Θ(HLshape,G) are at least |G|3/2.

Proof. Let |G| = m and n ∈ N. We will show that Θ(Hcor,G) ≥ |G|3/2, as a consequence
we also have Θ(Hsquare,G),Θ(HLshape,G) are at least |G|3/2.

Recall that the hypergraph H⊠n
cor,G has vertices given by the elements of Gn ×Gn and

edges given by the corners in Gn×Gn. Let p = 1/
√
3(mn − 1) and choose the subset A of

V (H⊠n
cor,G) randomly by choosing any element (g1, g2) ∈ Gn ×Gn to be in the set A with

probability p. Let HA be the directed subhypergraph of H⊠n
cor,G induced by A. We have

E[|V (HA)|] = m2np. Let e be any edge of H⊠n
cor,G. Then e is of the form

e =
(
(g1, g2), (g1 + λ, g2), (g1, g2 + λ)

)
for some g1, g2, λ ∈ Gn and λ ̸= 0. Since (g1, g2), (g1 +λ, g2) and (g1, g2 +λ) are different,
and for each the probability of being in A is p, we have that Pr[e ∈ E(HA)] = p3.
Therefore, since |E(H⊠n

cor,G)| = m2n(mn − 1), we have E[|E(HA)|] = m2n(mn − 1)p3. On
the other hand, for any hypergraph H we have α(H) ≥ |V (H)| − |E(H)|. Therefore

α(H⊠n
cor,G) ≥ E[|V (HA)|]− E[|E(HA)|] =

2m2n

3
√
3(mn − 1)

.

Thus find the lower bound Θ(Hcor,G) = limn→∞ α(H⊠n
cor,G)

1/n ≥ m3/2 .

The idea in the proof of Proposition 3.3.14 to apply the probabilistic method to lower
bound the number of remaining elements after a “pruning” procedure (in this case, pruning
vertices that induce edges) goes back to [CW87]. A similar probabilistic method construc-
tion is the driving component in the recent new upper bound on the matrix multiplication
exponent ω [AW21].

In terms of the corner problem, the lower bound on the Shannon capacity in Propo-
sition 3.3.14 for G = F2 corresponds to the upper bound c∠(Fn

2 ) ≤ O(n2n/2) (via Propo-
sition 3.2.8). This upper bound is similar to the bound provided in [LPS18, Corollary 26
in the ITCS version].

Remark 3.3.15. The proof of Proposition 3.3.14 directly extends from 2-dimensional
corners to k-dimensional corners, which are sets of the form

{(x1, x2, . . . , xk), (x1 + λ, x2, . . . , xk), . . . , (x1, x2, . . . , xk + λ)}.
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From a similar probabilistic method argument as in the proof of Proposition 3.3.14,
choosing each (x1, . . . , xk) ∈ (Gn)×k independently at random with probability p =

1
[(k+1)(|G|n−1)]1/k

, we get

rk,∠(G
n) ≥ k|G|kn

|G|n/k(k + 1)
k+1
k

,

where rk,∠(G
n) is the size of the largest k-dimensional corner free set in Gn×k. As a

consequence one has Θ(Hk,cor,G) ≥ |G|k−1/k, where Hk,cor,G is directed (k + 1)-uniform
hypergraph that construct for the k-dimensional corner.

Just like the Eval problem on 3 players is closely related to 2-dimensional corners in
(Gn)×2, the Eval function on k + 1 players is closely related to k-dimensional corners in
(Gn)×k. By a similar argument as the proof of Lemma 3.2.9 we have that the k+1 player
NOF complexity is upper bounded by Dk+1(EvalGn) ≤ k + ck,∠(G

n), where ck,∠(G
n) is

minimum number of colors that we can use to color (Gn)×k such that no k-dimensional
corner is monochromatic. We also have similar to Proposition 3.2.8 the relation between
rk,∠(G

n) and ck,∠(G
n) given by

|G|kn

rk,∠(Gn)
≤ ck,∠(G

n) ≤ nk|G|n log(|G|)
rk,∠(Gn)

,

which is proved in [LPS18]. Furthermore from the lower bound of rk,∠(G
n), we have

Dk+1(EvalGn) ≤ n

k
log |G|+ log n+ log log |G|+ (1 +

1

k
) log(1 + k) + k .

If we take k = log n (for instance), then Dk+1(EvalGn) ≤ n
logn log |G| + O(log n), that is,

we obtain a sublinear upper bound for Dlogn(EvalGn) in n.
We note that when G = F2, a better lower bound for rk,∠(Fn

2 ) with k = log n is given

by [ACFN15]. Namely, the authors showed that rk,∠(Fn
2 ) ≥ 2nk

nc logn for some constant c > 0.

3.4 Limitations of current upper bound methods for Shan-
non capacity

Our result in this section is a strong limitation of current tensor rank methods to effectively
upper bound the Shannon capacity of hypergraphs. This limitation is caused by induced
matchings and applies to various combinatorial problems including the corner problem.
The main point is to describe the induced matching barrier and apply it to the corner
problem.

3.4.1 Induced matchings and tightness

Now we discuss the notion of induced matchings and tight sets. Then we will discuss
Strassen’s theorem that gives a construction of large induced matchings under a tightness
condition.

Let H = (V,E) be a directed k-uniform hypergraph with adjacency tensor A. Let ΦH

be the support of A. A subset D ⊆ ΦH is called a matching if any two distinct elements
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a, b ∈ D differ in all k coordinates, that is, ai ̸= bi for all i ∈ [k]. We call a matching
D ⊆ ΦH an induced matching if D = ΦH ∩ (D1×· · ·×Dk), where Di = {ai : a ∈ D} is the
projection of D onto the i-th coordinate. We denote by QIM(ΦH) the maximum size of
an induced matching D ⊆ ΦH . The quantity QIM(ΦH) is called induced matching number
of H.

For two directed k-uniform hypergraphs G = (VG, EG) and H = (VH , EH), let ΦG

and ΦH be the support of the adjacency tensors of G and H, respectively. We define the
product ΦG×ΦH ⊆ (VG×VH)×· · ·×(VG×VH) by ΦG×ΦH := {((a1, b1), . . . , (ak, bk)) : a ∈
ΦG, b ∈ ΦH}. The asymptotic induced matching number of H is defined as Q̃IM(ΦH) :=
limn→∞QIM(Φ×n

H )1/n = supnQIM(Φ×n
H )1/n.

The induced matching number should be thought of as the combinatorial version of
the subrank, which was introduced in section 2.2, as follows. Let ΦH be the support of the
adjacency tensor AH of a directed k-uniform hypergraph H. Then the induced matching
number QIM(ΦH) is the largest number n such that ⟨n⟩ can be obtained from AH using a
restriction that consists of matrices that have at most one nonzero entry in each row and
in each column. Therefore, QIM(ΦH) ≤ Q(AH).

Lemma 3.4.1. Let H be a directed k-uniform hypergraph and AH be its adjacency tensor
with support ΦH = supp(AH). Then

Θ(H) ≤ Q̃IM(ΦH) ≤ Q̃(AH).

Proof. We begin with the first inequality. Let S be an independent set of H⊠n. We have
Φ×n
H = supp(A⊗n

H ). Thus Φ×n
H ∩ (S × S · · · × S) = {(a, . . . , a) : a ∈ S}. This means that

|S| ≤ QIM(Φ×n
H ). We conclude Θ(H) ≤ Q̃IM(ΦH). The second inequality follows from the

already established inequality QIM(ΦH) ≤ Q(AH).

Next, we discuss tight sets, a notion introduced by Strassen [Str91].

Definition 3.4.2 ([Str91], see also [CVZ18]). Let I1, . . . , Ik be finite sets. We call any
subset Φ ⊆ I1 × · · · × Ik tight if there are injective maps ui : Ii → Z for every i ∈ [k] such
that:

u1(a1) + · · ·+ uk(ak) = 0 for every (a1, . . . , ak) ∈ Φ.

When ΦH is tight, the asymptotic induced matching number is essentially known, and
can be described as a simple optimization. To explain the precise formula we recall some
definitions.

For any finite set X, let P(X) be the set of all distributions on X. For any probability
distribution P ∈ P(X) the Shannon entropy of P is defined asH(P ) := −

∑
x∈X P (x) log2 P (x)

with 0 log2 0 = 0. Given finite sets I1, . . . , Ik and a probability distribution P ∈ P(I1 ×
· · · × Ik) on the product set I1 × · · · × Ik we denote the marginal distribution of P on Ii
by Pi, that is, Pi(a) =

∑
x:xi=a P (x) for any a ∈ Ii.

Theorem 3.4.3 ([Str91]). Let H be a directed 3-uniform hypergraph. If ΦH is tight, then

Q̃IM(ΦH) = max
P∈P(ΦH)

min
i∈[3]

2H(Pi).



47

In particular, Theorem 3.4.3 implies that, for any directed 3-uniform hypergraph H =
(V,E) if there is a distribution P on ΦH such that every marginal distribution Pi is uniform
on V , then ΦH has asymptotically maximal induced matchings.

Note that Theorem 3.4.3 only applies to directed k-uniform hypergraphs for k = 3. For
the higher-order case k > 3, an extension of the lower bound of Theorem 3.4.3 was proven
in [CVZ19a, Theorem 1.2.4], by expanding the work of Coppersmith andWinograd [CW87]
and Strassen [Str91].

Theorem 3.4.4 (Higher-order CW method [CVZ19a] ). Let Φ ⊆ I1 × · · · × Ik be a
nonempty tight set. Let u1, . . . , uk be injective maps such that

u1(a1) + · · ·+ uk(ak) = 0 for every (a1, . . . , ak) ∈ Φ.

For any R ⊆ Φ× Φ, let r(R) be the rank over Q of the |R| × k matrix with rows

{u(x)− u(y) : (x, y) ∈ R},

where u(x) := (u1(x1), . . . , uk(xk)) ∈ Zk. Then

log2 Q̃IM(Φ) ≥ max
P∈P(Φ)

(
H(P )− (k − 2) max

R∈R(Φ)

maxQ∈DR,(P1,...,Pk)
H(Q)−H(P )

r(R)

)
(3.7)

where the parameters R and Q are taken over the following domains:

� R(Φ) is the set of all subsets R ∈ Φ × Φ such that R ⊈ {(x, x) : x ∈ Φ} and
R ⊆ {(x, y) ∈ Φ× Φ : xi = yi} for some i ∈ [k]

� DR,(P1,...,Pk) is the set of probability distributions on R ∈ Φ×Φ with marginal distri-
butions equal to P1, . . . , Pk respectively.

3.4.2 Tight tensors: corner, square, Lshape

We will first apply Theorem 3.4.3 to the corner problem. Before that, we see how the
tightness property is satisfied by the corner problem.

Theorem 3.4.5. For any finite Abelian group (G,+), let ΦHcor,G
be the support of the

adjacency tensor of Hcor,G. Then the set ΦHcor,G
is tight.

Proof. Let m = |G| and ϕ be a bijection between G and {0, 1, . . . ,m− 1}. We define

u1((g1, g2)) = ϕ(g1) +mϕ(g2)

u2((g1, g2)) = m2ϕ(g1 + g2)−mϕ(g2)

u3((g1, g2)) = −m2ϕ(g1 + g2)− ϕ(g1) .

It is easy to check that the maps u1, u2, u3 are injective and that for every triple of pairs
(g1, g2), (g1 + λ, g2), (g1, g2 + λ), it holds that

u1((g1, g2)) + u2((g1 + λ, g2)) + u3((g1, g2 + λ)) = 0 .

This proves the claim.
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As a result of Theorem 3.4.5 and Theorem 3.4.3, we have that the asymptotic induced
matching number of the corner hypergraph is maximal:

Corollary 3.4.6. For any group G, Q̃IM(Hcor,G) = |G|2.

Proof. We know that ΦHcor,G
is tight by Theorem 3.4.5, and so we may apply Theo-

rem 3.4.3. We take P ∈ P(ΦHcor,G
) to be the uniform probability distribution. It then suf-

fices to observe that every marginal distribution Pi is also uniform to obtain the claim.

In particular, Corollary 3.4.6 implies that no better upper bound on Θ(Hcor,G) can be
obtained via tools that also upper bound Q̃IM(Hcor,G). Such tools include the slice rank,
the analytic rank, the geometric rank and the G-stable rank. We computed the maximum
independent set and maximum induced matching for H⊠n

cor,F2
for small powers n = 1, 2, 3

(see Table 3.2) and we found that the maximum independent set is strictly smaller than the
maximum induced matching for n = 2 and n = 3. This motivates the search for methods
that go beyond the maximum induced matching barrier. For comparison, we also give the
analogous numbers for the cap set hypergraph Hcap (which is an undirected hypergraph),
where, interestingly, the maximum independent set and the maximum induced matching
are equal.

H⊠n
cap

n independence induced matching

1 2 2
2 4 4
3 9 9

H⊠n
cor,F2

n independence induced matching

1 2 2
2 8 9
3 24 32

Table 3.2: Independence number and induced matching number for small powers of the
cap set hypergraph and corner hypergraph.

Similar to the construction for showing the adjacency tensor of corner hypergraph is
tight. We prove in the following lemma that the support adjacency tensors of square and
Lshape hypergraphs are tight.

Lemma 3.4.7. For any finite Abelian group (G,+), let ΦLshape,G and Φsquare,G be the sup-
port of the adjacency tensor of HLshape,G and Hsquare,G, respectively. Then both ΦLshape,G

and Φsquare,G are tight.

Proof. Let m = |G| and ϕ be bijection between G and {0, 1, . . . ,m− 1}. We define

u1((g1, g2)) = ϕ(g1) +mϕ(g2)

u2((g1, g2)) = m2ϕ(g1)−mϕ(g2)

u3((g1, g2)) = m2ϕ(g2)−mϕ(g1)

u4((g1, g2)) = −m2ϕ(g1 + g2) + (m− 1)ϕ(g1) .

It is easy to check that the maps u1, u2, u3, u4 are injective and that for every (g1, g2), (g1+
λ, g2), (g1, g2 + λ), (g1, g2 + 2λ), it holds that

u1((g1, g2)) + u2((g1 + λ, g2)) + u3((g1, g2 + λ)) + u4((g1, g2 + 2λ)) = 0 .
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This shows that ΦLshape,G is tight. A similar argument with the maps defined below will
prove the Φsquare,G is tight.

u1((g1, g2)) = ϕ(g1) +mϕ(g2)

u2((g1, g2)) = m2ϕ(g1)− (m− 1)ϕ(g2)

u3((g1, g2)) = m2ϕ(g2)− 2ϕ(g1)

u4((g1, g2)) = −m2ϕ(g1 + g2) + ϕ(g1)− ϕ(g2) .

We have shown that the support of the adjacency tensor of the square and Lshape
hypergraphs are tight in Lemma 3.4.7. Similarly with the corner problem, we can ask
whether Q̃IM(ΦLshape,G) or Q̃IM(Φsquare,G) is full or not? One potential approach is to use
the Theorem 3.4.4 for k = 4, but computing the quantity in the right hand side of the
equation (3.7) is nontrivial for both Φsquare,G and ΦLshape,G. Thus, we leave this question
for future work.

In next subsection, we propose a simple and generic method based on fractional cover-
ings that in principle, does not suffer from the induced matchings barrier. For the corner
problem, however, it gives the trivial bound. We use it to give a simple example of a
graph for which the asymptotic induced matching is arbitrarily larger than the Shannon
capacity.

3.4.3 Fractional cover method

We discuss an upper bound method for the Shannon capacity based on the fractional cover
method. The fractional cover method was introduced in [FK00] for finding upper bounds
for the Sperner capacity of directed graphs and further improved in [KPS05]. The method
in [KPS05] is easily extended to upper bound the Shannon capacity of hypergraphs. We
discuss this extension here.

We say that a real-valued function, called γ, on directed k-uniform hypergraphs is
sub-multiplicative if γ(G⊠H) ≤ γ(G)γ(H) for all G and H.

Definition 3.4.8 (Upper function). Let γ be a map from directed k-uniform hypergraphs
to real nonnegative numbers. We say that γ is an upper function if γ is at least the
independence number α, and γ is sub-multiplicative.

Lemma 3.4.9. Let H1, . . . ,Hn be directed k-uniform hypergraphs. Let H = H1 ⊠ H2 ⊠
· · ·⊠Hn. Let γ be an upper function on directed k-uniform hypergraphs. Then

α(H) ≤
n∏

i=1

γ(Hi).

Proof. This follows immediately from the definition of an upper function (Definition 3.4.8).

Definition 3.4.10. (Fractional cover). Let H be a directed k-uniform hypergraph with
vertex set V (H). A function g : 2V (H) → R≥0 is called a fractional cover of V (H) if∑

U∈F :v∈U
g(U) ≥ 1 for all v ∈ V (H),
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where F is the family of all subsets of V (H).

The methods in [KPS05] are easily extended to get the following theorem.

Theorem 3.4.11. For any directed k-uniform hypergraph H, and any upper function γ,
we have

Θ(H) ≤ min
g

∑
U⊆V (H)

g(U)γ(H[U ]),

where the minimization is over all fractional covers g of V (H), and H[U ] is the directed
k-uniform hypergraph induced by U .

Proof. Let h be a nonnegative integer function from 2V (H) to Z≥0. For s ∈ Z≥0, h is called
an s-cover of V (H) if

∑
U :v∈U h(U) ≥ s hold for all v ∈ V (H). Then we have

min
g

∑
U⊆V (H)

g(U)γ(H[U ]) = inf
s

1

s
min
h

∑
U⊆V (H)

h(U)γ(H[U ]), (3.8)

where the minimization on the right-hand side is taken over all s-covers h and the min-
imization on the left-hand side is taken over all fractional covers g. Indeed, there is a
fractional cover g of V (H) that takes rational values and achieves the minimum on the
left-hand of (3.8). Therefore, there exists an integer number s such that h(U) = sg(U) is
an integral s-cover of V (H). In the other direction, if h is an s-cover of V (H) then the
function g(U) = h(U)/s is a fractional cover of V (H).

Let h be an s-cover of V (H) and denote U = {U1, . . . , Um} the multiset of subsets of
V (H) with U ⊆ V (H) appearing h(U) times in U . For any independent set I of H, we
have

m∑
i=1

α(H[Ui]) ≥
m∑
i=1

α(H[Ui ∩ I]) =
m∑
i=1

|Ui ∩ I| ≥ s|I| .

Fix s and let h be a nonnegative s-cover attained by the minimum on the right-hand
side of the equation (3.8). For n ∈ N, let Un be the multiset of all n-fold Cartesian
products of sets from U . For any A = U1 × U2 × · · · × Un, define a function h(n)(A) =
h(U1) · h(U2) · · ·h(Un) then h

(n) is an sn-cover of V (H⊠n) and the set A = U1 × · · · × Un

appear in Un with h(A) times. Let I(n) be a maximum independent set in H⊠n, we have

sn|I(n)| ≤
∑

×n
i=1Ui∈Un

α
(
H⊠n [×n

i=1Ui]
)

=
∑

×n
i=1Ui∈Un

α (H[U1]⊠ · · ·⊠H[Un])

≤
∑

×n
i=1Ui∈Un

n∏
i=1

γ(H[Ui])

=

∑
Ui∈U

γ(H[Ui])

n

.
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Recall that I(n) is a maximum independent set of H⊠n, by the definition of U , we have

α(H⊠n) = |I(n)| ≤ 1

sn

 ∑
U⊆V (H)

h(U)γ(H[U ])

n

.

This implies

Θ(H) ≤ inf
s

1

s

 ∑
U⊆V (H)

h(U)γ(H[U ])

 = min
g

∑
U⊆V (H)

g(U)γ(H[U ]),

completing the proof.

We give a quick example using the above method of an undirected graph G with
Shannon capacity strictly smaller than the asymptotic maximum induced matching of G.

Example 3.4.12. Let G be the undirected graph with adjacency matrix(
J I
I J

)
where I is the n×n identity matrix and J is the n×n all-ones matrix with n ≥ 2. Clearly
Θ(G) ≥ 2, since {1, n+2} is an independent set and QIM(G) ≥ n, since {(i, n+i) : i ∈ [n]}
is an induced matching. Therefore, Q̃IM(G) ≥ n. It remains to upper bound Θ(G). For
this we will use the fractional cover method.

For any graph H, define γ(H) as the matrix rank of the adjacency matrix of H (over
some arbitrary but fixed field). Then γ is an upper function, because matrix rank is multi-
plicative under the tensor product. Let V1 = {1, . . . , n} and V2 = {n+1, . . . , 2n}. Setting
g(V1) = 1 and g(V2) = 1 we have that g is a fractional cover of G. By Theorem 3.4.11, we
have

Θ(G) ≤ g(V1) rank(G[V1]) + g(V2) rank(G[V2]) ≤ 2,

because rank(G[V1]) = rank(G[V2]) = 1. Therefore, we have Θ(G) = 2.

3.5 Conclusion

In this chapter, we introduced the combinatorial degeneration method for finding lower
bounds for Shannon capacity of directed k-uniform hypergraph. We then applied this
method to improve the lower bound for the corner, square, Lshape, which are special
case of generalized multidimensional Szemerédi problem. Finally, we pointed out how
induced matchings in hypergraphs pose a barrier for existing tensor tools (such as slice
rank, subrank, analytic rank, geometric rank and G-stable rank) to efficiently obtain an
upper bound on the size of independent sets in hypergraphs. This implies a barrier for
these tools to effectively establish lower bounds on the communication complexity on the
NOF model of the Eval function over any group G.
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Chapter 4

Symmetric subrank of tensors

This chapter is based on joint work with Matthias Christandl, Omar Fawzi, and Jeroen
Zuiddam [CFTZ21].

4.1 Introduction

As we have seen in Chapter 3, various important problems in combinatorics are special
cases of the problem of determining the independence number of a hypergraph. The
parameter of interest in those problems is the Shannon capacity of the corresponding
hypergraphs. Several tensor methods have been introduced in this context to find good
upper bounds for the independence number, most notably slice rank [TS16], analytic
rank [Lov19], subrank [Str87, Zui18] and related parameters. We have shown, however,
that all those methods suffer from a barrier that renders them powerless in the case
where the independence number is low but the tensors fitting the hypergraph have large
induced matchings in their support. This “induced matching barrier” calls for an effort
to find methods for upper bounding the independence numbers that can go below the
induced matching number. To go beyond the induced matching barrier, we introduduce
a new notion of tensor rank called the symmetric subrank. The symmetric subrank upper
bounds the independence number of a hypergraph but not the induced matching number;
we propose this method as a route to circumvent the induced matching barrier.

Recall that the subrank Q(f) of a tensor f ∈ Fd1 ⊗ · · · ⊗ Fdk measures the largest
number r such that the diagonal tensor ⟨r⟩ =

∑r
i=1 ei⊗· · ·⊗ei ∈ Fr⊗· · ·⊗Fr (where the ei

form the standard basis of Fr) can be obtained from f by acting with linear operations
Ai : Fdi → Fr on f , that is ⟨r⟩ = (A1 ⊗ · · · ⊗ Ak)f , the symmetric subrank Qs(f) of a
tensor f ∈ Fd ⊗ · · · ⊗ Fd we define as the largest number r such that there is a linear
map A : Fn → Fr so that ⟨r⟩ = (A ⊗ · · · ⊗ A)f . Generally, Qs(f) ≤ Q(f) ≤ SR(f) ≤ d,
where SR(f) denote the slice rank. The relation between the symmetric subrank and the
subrank is analogous to the relation between the symmetric rank and the rank [CGLM08].
Note that unlike the symmetric rank which only makes sense for symmetric tensors, the
symmetric subrank can be defined for any tensor. We will see that the symmetric subrank
can be used to give an upper bound for the independence number but can still be strictly
smaller than the subrank, of which we give a precise analysis.
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4.1.1 Our results

In this section we discuss our main results on the symmetric subrank, the asymptotic
symmetric subrank for symmetric tensors and the symmetric quantum functional.

Symmetric subrank

We first investigate several properties of the symmetric subrank. It is simple to see that
for a hypergraph H with adjacency tensor AH , Qs(AH) provides an upper bound on the
maximum independent set of H. In general, the symmetric subrank Qs(AH) leads to a
better bound compared to the subrank:

� There exists a directed graph H such that over F2, Qs(AH) can be smaller than the
maximum induced matching (Example 4.2.3).

� There exists a directed graphH such that over C, Qs(AH) < Q(AH) (Example 4.2.8).

However, in some settings, we can show that they are equal:

� For any undirected hypergraph H on d vertices, then over C, Q(AH) = d implies
that Qs(AH) = d (Theorem 4.2.12).

Similar to Comon’s question about tensor rank, which was recently answered negatively
by Shitov [Shi18], we asked to find a symmetric tensor f over C satisfying Qs(f) < Q(f).
Subsequently, we have been informed by Shitov [Shi22] that he can construct such an
example f over C.

Asymptotic symmetric subrank for symmetric tensors

We prove a strong asymptotic connection between the symmetric subrank and the sub-
rank for symmetric tensors. Recall the definition of the asymptotic symmetric subrank
Q̃s(f) = limn→∞Qs(f

⊗n)1/n and the asymptotic subrank Q̃(f) = limn→∞Q(f⊗n)1/n. The
important property of Q̃s is that it directly gives an upper bound on the Shannon capacity
of hypergraphs, i.e., for any directed k-uniform hypergraph H, we have Θ(H) ≤ Q̃s(AH),
where AH is the adjacency tensor of H (see Proposition 4.3.2). Over appropriate fields1,
for any symmetric tensor f , we can prove that 2 (see Theorem 4.3.4)

Q̃s(f) = Q̃(f).

In fact we prove a far stronger result that the “asymptotic restriction preorder” and the
“asymptotic symmetric restriction preorder” coincide on symmetric tensors, which has
a strong implication in the theory of Strassen’s asymptotic spectra of tensors developed
in [Str86, Str88, Str88, Str91, Tob91, Bür90]. (See also the recent works [CVZ18, Zui18,
WZ21].) Specifically, our result implies that the asymptotic spectrum of symmetric tensors
Xs can be obtained as a natural projection of the asymptotic spectrum of tensors. While
this does not immediately tell us what Xs is (since it is not known whether X contains any

1algebraically closed of characteristic at least k + 1, where k is the order of the tensor
2The result implies that for undirected hypergraphs (e.g. capset hypergraph) Q̃s cannot go below the

asymptotic induced matching number.
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elements besides the quantum functionals that were introduced in [CVZ18]), it does give
us a lot of information about how the symmetric and non-symmetric theories interact.

Comon [CGLM08] conjectured that rank and symmetric rank coincide on symmetric
tensors. Shitov [Shi18] gave a counterexample to Comon’s conjecture. Our results can
be interpreted as saying that Comon’s conjecture is true asymptotically for rank, subrank
and the restriction preorder. This is discussed further in Section 4.3.2.

Symmetric quantum functional

To find upper bounds on Q̃s, we introduce the natural symmetric analogue of the quantum
functionals of [CVZ18] using the diagonal action of the group GLd on (Cd)⊗k instead of the
action of the group GL×k

d on (Cd)⊗k. The symmetric quantum functional F applied to a

tensor f ∈ (Cd)⊗k is obtained by constructing the k-partite density operator ρ(f) = ff†

∥f∥2
and computing the von Neumann entropy of the average of the k marginals. We refer
to Section 4.5 for a precise definition. The symmetric quantum functional does give an
upper bound on the asymptotic symmetric subrank, and thus also on the Shannon capac-
ity of hypergraphs, but unfortunately it gives trivial bounds for corner hypergraph: For
any tensor f , the asymptotic symmetric subrank is bounded by the symmetric quantum
functional (see Theorem 4.5.7):

lim sup
n→∞

Qs(f
⊗n)1/n ≤ F (f) .

However, it cannot overcome the induced matching barrier as we show that for any tensor
f :

lim sup
n→∞

SR(f⊗n)1/n ≤ F (f) .

In particular, when f = AHcor,G is the adjacency tensor of corner hypergraph, the
symmetric quantum functional give a trivial bound. In fact, we can show that for sym-
metric tensors f , the asymptotic slice rank is equal to symmetric quantum functional (see
Theorem 4.5.7):

lim sup
n→∞

SR(f⊗n)1/n = F (f) . (4.1)

Equation (4.1) also gives an alternative symmetric description of the quantum functional
with uniform weight θ = (1/k, . . . , 1/k) from [CVZ18] on symmetric tensors. This descrip-
tion may be advantageous in the development of numerical algorithms.

Outline of the chapter. We start by introducing the symmetric subrank and discuss its
basic properties in Section 4.2. Then, in Section 4.3, we analyze the asymptotic symmetric
subrank in a general fashion. Next, we discuss the asymptotic spectrum of symmetric ten-
sors in Section 4.4. Finally, in Section 4.5, we construct a symmetric quantum functional
for tensors and study its properties.
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4.2 Symmetric subrank

In this section we define the symmetric subrank. Then we discuss basic properties and
separations, which we do in three main parts each of which focuses on a subclass of tensors:
non-symmetric (i.e., general) tensors, symmetric matrices and symmetric tensors.

4.2.1 Symmetric subrank

The subrank of a k-tensor f , denoted Q(f), was defined in the Section 2.2 as the size
of the largest diagonal tensor that can be obtained from f by acting with k linear maps
A(1), . . . , A(k) on the k dimensions of f . The symmetric subrank of a tensor is defined in
the same way with the extra requirement that all linear maps A(i) must be the same.

Definition 4.2.1 (Symmetric restriction and symmetric subrank). For any two (not nec-
essarily symmetric) tensors f ∈ (Fd)⊗k and g ∈ (Fe)⊗k, we say that f symmetrically
restricts to g, and we write g ≤s f , if there exists a linear map A : Fd → Fe such that
g = A⊗kf . Thus g ≤s f if and only if there is an e × d matrix A such that for all
i1, . . . , ik ∈ [e] we have that

gi1,...,ik =
∑

j1,...,jk∈[d]

Ai1,j1 · · ·Aik,jk fj1,...,jk .

We define the symmetric subrank of f as the largest number r such that the diagonal
tensor ⟨r⟩ is a symmetric restriction of f , that is,

Qs(f) = max{r ∈ N : ⟨r⟩ ≤s f}.

Our main motivation for introducing the symmetric subrank is to upper bound the
independence number of k-uniform hypergraphs:

Proposition 4.2.2. Let H = (V,E) be a directed k-uniform hypergraph with n vertices
with adjacency tensor AH . Then, α(H) ≤ Qs(AH), where the symmetric subrank can be
understood over any field F. In fact, for any field F and tensor f ∈ (Fn)⊗k with support
included in the support of AH and with diagonal entries fi,...,i = 1 for all i ∈ [n], we have
α(H) ≤ Qs(f).

Proof. Let S = {i1, . . . , ir} be an independent set of H with size r ≤ n. Then take a
matrix B that has size r × n such that Bj,ij = 1 for all j ∈ [r], and other entries equal
to 0. Then the tensor t = (B⊗k) · f can be written as tj1,...,jk = fij1 ,...,ijk . As S is an
independent set, we have (AH)ij1 ,...,ijk = 1 if and only if j1 = j2 = · · · = jk. This means
that t = ⟨r⟩. Moreover, if any hypergraph is obtained from H by deleting some edges,
then its independent number is at least α(H), which proves the desired result.

Let H be a directed k-uniform hypergraph with adjacency tensor AH . Let ΦH be the
support of AH . We have seen from Section 2.2 and Proposition 4.2.2 that the symmetric
subrank Qs(AH) and the subrank Q(AH) can be used to upper bound the independence
number α(H). However, the Lemma 3.4.1 stated that Q(AH) (over any field) cannot give
good bounds when QIM(ΦH) (recall that QIM(ΦH) is the induced matching number of H,
which is introduced in Section 3.4.1) is much larger than α(H). We may thus think of
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QIM(ΦH) as a barrier for Q(AH) to give good upper bounds on α(H). Many other tensors
methods (slice rank, partition rank, analytic rank, geometric rank, G-stable rank) are also
lower bounded by this barrier QIM(ΦH). We will see that indeed the symmetric subrank
Qs(AH) can be strictly smaller than QIM(ΦH) in the following example.

Example 4.2.3. Let C5 be the directed cycle graph on vertices {1, . . . , 5} with edge set
{(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}. Let

f =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1


be the adjacency matrix of C5 over F2. Then QIM(ΦC5) is the size of the largest submatrix
of f that is an identity matrix up to permutation. We see that QIM(ΦC5) = 3. On the
other hand, we compute directly that Qs(f) = 2 over F2.

We note that for symmetric tensors, a natural dual to the symmetric subrank called
symmetric rank is well-studied [CGLM08]. The symmetric rank Rs(f) of a symmetric
tensor f is defined as the smallest number r such that f ≤s ⟨r⟩. In other words, it is the
smallest number r such that there are r vectors vi so that f =

∑s
i=1 v

⊗k
i .

4.2.2 Symmetric subrank of matrices

In Section 4.2.1, we introduced the symmetric subrank of tensors with the motivation in
mind of using symmetric subrank as a method to upper bound the independence number
of hypergraphs. It is natural to ask whether this method is better than using the subrank
itself. It follows directly from the definition of the symmetric subrank that for any k-
tensor f we have that Qs(f) ≤ Q(f). Can this inequality be strict? Over the finite field
F2, we have seen in Example 4.2.3 that the inequality can be strict. In this and the
following sections we will discuss relations and separations with the ordinary subrank. We
obtain precise results under assumptions about the order, ground field and symmetry of
the tensors.

In this section we consider tensors of order two. These we can simply think of as
matrices via the identification

∑
i,j fij ei ⊗ ej 7→ (fij)ij . In the language of matrices

the restriction order and symmetric restriction order are given as follows. For matrices
f ∈ Fn1×n2 and g ∈ Fm1×m2 we have f ≤ g if there are matrices A(i) ∈ Fni×mi such that
f = A(1)g(A(2))T . For matrices f ∈ Fn×n and g ∈ Fm×m we have f ≤s g if there is a
matrix A ∈ Fn×m such that f = AgAT . Note in particular how in this formulation we
multiply on the left by A and on the right by the transpose of A. When A is invertible
and f = AgAT the matrices f and g are often called congruent. However we will allow A
to be non-invertible. The (symmetric) subrank of a matrix f is now the largest number r
such that the r × r diagonal matrix ⟨r⟩ is a (symmetric) restriction of f .

First of all, as a basic fact that we will use later, we note that for any matrix f the
subrank Q(f) equals the usual notion of matrix rank rank(f).

Lemma 4.2.4. Let f be a matrix, then Q(f) = rank(f).
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Proof. Clearly Q(f) ≤ rank(f). It is well-known that by Gaussian elimination we can
find invertible matrices A(i) such that f is a diagonal matrix with rank(f) nonzero entries.
Thus Q(f) ≥ rank(f).

Lemma 4.2.5. Let f be a d× d matrix over an arbitrary field F such that fℓ,ℓ = 0 for all
ℓ ∈ [d] and fi,j = −fj,i for all i ̸= j ∈ [d]. Then Qs(f) = 0.

Proof. For any matrix B ∈ Fm×d let g = BfBT . Then the diagonal entries gkk are zero
for all k. Indeed we have gkk =

∑
i,j BkiBkjfij = 0 since fij = −fji for all i ̸= j. We

conclude that Qs(f) = 0.

In particular, if F ̸= F2, then the condition in Lemma 4.2.5 is equivalent to f = −fT ,
that is, f being skew-symmetric.

Example 4.2.6. It is easy to find a d×d matrix f of full rank that satisfies the condition
in Lemma 4.2.5. Then by Lemma 4.2.5 we have Qs(f) = 0 while Q(f) = d. For example,
for even d we may take f with entries fi,d+1−i = 1 for all 1 ≤ i ≤ d/2 and fi,d+1−i = −1
for all d/2 < i ≤ d and all other entries equal to zero, that is,

(
0 −1
1 0

)
,


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , . . .

Lemma 4.2.7. Let f be a non-symmetric d × d matrix over an arbitrary field F. Then
Qs(f) < d.

Proof. Suppose that Qs(f) = d. Then there is a matrix A such that ⟨d⟩ = AfAT . Since
⟨d⟩ has full rank, A must have full rank. We find that f = A−1⟨d⟩(AT )−1 = A−1(A−1)T

and so f is symmetric. This is a contradiction.

Example 4.2.8. Let C2k+1 be the directed cycle graph with vertex set {1, . . . , 2k + 1}
and edge set {(1, 2), (2, 3), . . . , (2k+1, 1)} and let f be the adjacency matrix of C2k+1 over
any fixed field, so that f is the (2k + 1)× (2k + 1) matrix

f =


1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1
1 0 0 0 · · · 0 1


We have Q(f) = rank(f) = 2k + 1 by Lemma 4.2.4. On the other hand, Qs(f) < 2k + 1
by Lemma 4.2.7.

4.2.3 Symmetric subrank of symmetric matrices

We have seen in the previous section that the symmetric subrank can be strictly smaller
than the subrank for non-symmetric matrices. For symmetric matrices, we now prove
that symmetric subrank and subrank are equal as long as the ground field is quadratically
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closed3, meaning that every element has a square root. Algebraically closed fields are in
particular quadratically closed.

Theorem 4.2.9. For any symmetric matrix f over a quadratically closed field F ̸= F2,
Q(f) = Qs(f).

It follows from Example 4.2.6 that the statement of Theorem 4.2.9 indeed fails over F2

if we let f be a full-rank anti-diagonal matrix.
The proof of Theorem 4.2.9 relies on the following theorem.

Theorem 4.2.10 (Ballantine [Bal68]). Let F be a field with size at least 3 and f be a
square matrix of size d over F that is not a nonzero skew-symmetric matrix. There is an
invertible matrix B of size d such that BfBT is a lower triangular matrix that has exactly
rank(f) nonzero elements on its diagonal.

Proof of Theorem 4.2.9. The symmetric matrix f is in particular not a nonzero skew-
symmetric matrix, so we may apply Theorem 4.2.10 to find an invertible matrix B such
that BfBT is lower triangular with exactly rank(f) nonzero elements on its diagonal.
Since f is symmetric, BfBT is also symmetric. It follows that BfBT is a diagonal
matrix. Since the ground field is quadratically closed, there is a diagonal matrix C such
that CBfBTCT is a diagonal matrix with only zeroes and ones on the diagonal. Then
clearly Qs(f) ≥ rank(f) = Q(f), which proves the claim.

4.2.4 Symmetric subrank of symmetric tensors

In Section 4.2.3 we proved that the symmetric subrank and subrank coincide on symmetric
matrices over the complex numbers. Extending the notion of a symmetric matrix, a tensor
f ∈ (Fd)⊗k is called symmetric if for all (i1, . . . , ik) ∈ [d]k and all permutations σ of [k] we
have fi1,...,ik = fiσ(1),...,iσ(k)

. For symmetric k-tensors f of order k ≥ 3, we find examples
of strict inequality Qs(f) < Q(f) over finite fields.

Example 4.2.11. Let f = e1 ⊗ e2 ⊗ e3 + e1 ⊗ e3 ⊗ e2 + e2 ⊗ e1 ⊗ e3 + e2 ⊗ e3 ⊗ e1 + e3 ⊗
e1 ⊗ e2 + e3 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e1, where e1, e2, e3 ∈ F3

2 is the standard basis of F3
2. It is

not hard to verify that Qs(f) = 1 while Q(f) = 2.

Over the complex filed C. Similar to Comon’s question about tensor rank, which was
recently answered negatively by Shitov [Shi18], we asked to find a symmetric tensor f
satisfying Qs(f) < Q(f). Subsequently, we have been informated by Shitov [Shi22] that
he can construct such an example f over C.

Next, we prove that there is a general case where Qs(f) = Q(f). Namely, for symmetric
complex tensors, if the subrank is maximal, then also the symmetric subrank is maximal,
in the following sense:

Theorem 4.2.12. Let f ∈ (Cd)⊗k be a symmetric tensor. If Q(f) = d then Qs(f) = d.

3One could consider an alternative definition of symmetric subrank in which the symmetric restriction
order is replaced by the following: let f ≤′

s g if and only if there is a matrix A and diagonal matrices
D1, . . . , Dk, E1, . . . , Ek such that f = (E1 ⊗· · ·⊗Ek)(A⊗· · ·⊗A)(D1 ⊗· · ·⊗Dk)g. Under this alternative
symmetric restriction preorder, the subrank and (alternative) symmetric subrank become equal for all
symmetric matrices over any field. [CGLM08] take a similar approach to this when dealing with the
symmetric rank over the reals (which is not quadratically closed).
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To prove Theorem 4.2.12 we use a simple corollary of the following theorem.

Theorem 4.2.13 (Belitskii and Sergeichuk [BS06]). Let f, f ′ ∈ (Cd)⊗k be tensors of order
k. If A1, . . . , Ak are invertible matrices of size d such that f ′ = (Aπ(1) ⊗ · · · ⊗ Aπ(k))f
for all permutations π ∈ Sk. Then there is an invertible matrix B of size d such that
f ′ = (B ⊗ · · · ⊗B)f .

Corollary 4.2.14 (Corollary of Theorem 4.2.13). Let f ′, f ∈ (Cd)⊗k be symmetric ten-
sors. If there are k invertible matrices A1, . . . , Ak of size d such that f ′ = (A1⊗· · ·⊗Ak)f .
Then there is an invertible matrix B of size d such that f ′ = (B ⊗ · · · ⊗B)f .

Proof of Corollary 4.2.14. For any permutation π ∈ Sk. We have∑
j1∈[d],...,jk∈[d]

A
π(1)
i1,j1

. . . A
π(k)
ik,jk

fj1,...,jk =
∑

j1∈[d],...,jk∈[d]

A1
iπ−1(1),j1

. . . Ak
iπ−1(k),jk

fj1,...,jk

= f ′iπ−1(1),...,iπ−1(k)
= f ′i1,...,ik .

Therefore f ′ = (Aπ(1) ⊗ · · · ⊗Aπ(k))f for all π ∈ Sk. By using Theorem 4.2.13, the proof
is completed.

Proof of Theorem 4.2.12. Since Q(f) = d, there are k matrices A1, . . . , Ak of size d × d
such that ⟨d⟩ = (A(1) ⊗ · · · ⊗ A(k))f . Suppose that there is a matrix A(i) which is not
invertible, then the rank of i-th flattening matrix of (A(1) ⊗ · · · ⊗ A(k))f is smaller than
d − 1, that is, rank(flatteni((A

(1) ⊗ · · · ⊗ A(k))f) ≤ d − 1. But the rank of all flattenings
of ⟨d⟩ are equal to d. Therefore all A(1), . . . , A(k) are invertible matrices. By the above
corollary, there is an invertible matrix B such that ⟨d⟩ = (B ⊗ · · · ⊗ B)f , this implies
Qs(f) = d.

Interpretation in terms of homogeneous polynomials

There is a natural identification between symmetric tensors on the one hand and homoge-
neous polynomials on the other hand. A homogeneous polynomial is a polynomial whose
monomials all have the same total degree k. Any symmetric k-tensor f ∈ (Fd)⊗k corre-
sponds uniquely to a homogeneous polynomial of degree k in d variables F ∈ F[x1, . . . , xd]k
via the expression:

F (x1, . . . , xd) =
∑

j1,...,jk∈[d]

fj1,...,jk · xj1 · xj2 · · ·xjk .

We define the symmetric subrank of F , written Qs(F ), as the largest number r ∈ N such
that there are d linear forms ℓ1(y1, . . . , yr), . . . , ℓd(y1, . . . , yr) in r variables y1, . . . , yr, such
that

F (ℓ1(y1, . . . , yr), . . . , ℓd(y1, . . . , yr)) =
r∑

i=1

yki .

To phrase it differently, the symmetric subrank Qs(F ) is the largest r ∈ N such that there
is a matrix A = (aij)i,j ∈ Fd×r such that F (A · Y ) =

∑r
i=1 y

k
i , where Y = (y1, . . . , yr)
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and A · Y = (a11y1 + · · · + a1ryr, . . . , ad1y1 + · · · + adryr). The symmetric subrank for
homogeneous polynomials and for symmetric tensors coincide via the above identification,
in the sense that Qs(F ) = Qs(f).

In a similar way, the symmetric rank of a symmetric tensor has a natural interpretation
in terms of the associated homogeneous polynomial [IK99]. This notion is also called the
Waring rank.

Also the notion of symmetric restriction of symmetric tensors carries over to homoge-
neous polynomials, as follows. Let F ∈ F[x1, . . . , xd]k and G ∈ F[y1, . . . , yd′ ]k be homo-
geneous polynomials of degree k in d and d′ variables, respectively. We say that F is a
symmetric restriction of G, and write F ≤s G, if there is a matrix A ∈ Fd′×d such that
F = G(A · X), where, as before, X = (x1, . . . , xd) and A · X is defined as before. The
symmetric restriction of symmetric tensors and for homogeneous polynomials coincide, in
the sense that F ≤s G if and only if f ≤s g, where f and g are the symmetric tensors
associated to F and G, respectively.

4.3 Asymptotic symmetric subrank

In Section 4.2, we introduced the symmetric subrank guided by the motivation of using
this tensor parameter to upper bound the independence number of hypergraphs. In many
hypergraph independence problems (e.g. the generalized multidimensional Szemerédi prob-
lem and its special cases: cap set, corner, etc.), the hypergraph under consideration has a
power structure (under the strong product ⊠, which is simply the tensor product on the
adjacency tensor). In other words, the parameter of interest in those problems is their
Shannon capacity of hypergraph that corresponds to these problems, which is introduced
in Section 3.2.

In this asymptotic context, and with upper bounding the Shannon capacity in mind,
we introduce and study the asymptotic symmetric subrank. We define the asymptotic
symmetric subrank of a tensor f ∈ (Fd)⊗k as

Q̃s(f) := lim sup
n→∞

Qs(f
⊗n)1/n.

(The fact that we are using the lim sup rather than lim or sup is a technicality which in
most relevant cases simplifies as we discuss below.) For any tensor f ∈ (Fd)⊗k, since we
have the basic inqualities Qs(f) ≤ Q(f) ≤ d, we also have that Q̃s(f) ≤ Q̃(f) ≤ d.

Note that, because of the earlier Example 4.2.6, this lim sup cannot generally be
replaced by a limit.4 However, we will be interested in the adjacency tensors of hypergraphs
which have the special property that the coefficients on the main diagonal are all one. In
that case we can replace the lim sup by a limit or supremum as follows:

Proposition 4.3.1. Let f ∈ (Fd)⊗k be a tensor such that there is an i ∈ [d] with fi,...,i = 1.
Then Q̃s(f) = supnQs(f

⊗n)1/n = limn→∞Qs(f
⊗n)1/n.

4For the usual subrank, the asymptotic subrank of the tensor f ∈ (Fd)⊗k was defined by Strassen as
the limit Q̃(f) = limn→∞ Q(f⊗n)1/n, which, since Q is super-multiplicative and Q(f) ≥ 1 if f ̸= 0, equals
the supremum supn Q(f⊗n)1/n (Fekete’s lemma). For the symmetric subrank, we have to be more careful
about how we define the asymptotic symmetric subrank. For example, in Example 4.2.6 we gave a matrix f
for which f⊗n is symmetric if n is even and skew-symmetric if n is odd, and so Qs(f

⊗n) = 2n if n is even,
and Qs(f

⊗n) = 0 when n is odd. Thus, the limit limn→∞ Qs(f
⊗n)1/n might not exist.
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Proof. Let B ∈ R1×d be the 1 × d matrix with B1,i = 1 and the other entries equal
to 0. Then ⟨1⟩ = (B ⊗ · · · ⊗ B)f . Therefore Qs(f) ≥ 1. The symmetric subrank is
super-multiplicative under tensor product. Thus, by Fekete’s lemma, we find the required
statement that Q̃s(f) = supnQs(f

⊗n)1/n = limn→∞Qs(f
⊗n)1/n.

The important property of Q̃s is that it directly gives an upper bound on the Shannon
capacity of hypergraphs.

Proposition 4.3.2. Let H = (V,E) be directed k-uniform hypergraph on n vertices. Let
F be any field. Let f ∈ (Fn)⊗k be a tensor such that, for every e ∈ [n]k if e ̸∈ E, then
fe1,...,ek = 0, and for every i ∈ [n], fi,...,i = 1. Then Θ(H) ≤ Q̃s(f).

Proof. By the definition of f , we have that f⊗n satisfies the condition of Proposition 4.2.2
for the hypergraph H⊠n. Therefore Θ(H) = supn(α(H

⊠n))1/n ≤ supn(Qs(A
⊗n
H ))1/n =

Q̃s(AH).

4.3.1 Asymptotic symmetric subrank of matrices

We conjecture that the asymptotic symmetric subrank of a k-tensor with k ≥ 3 can be
strictly smaller than the asymptotic subrank. This cannot happen for k = 2. In that case
we prove that there is no strict inequality, again using Theorem 4.2.10.

Theorem 4.3.3. For any matrix f over a quadratically closed field F ̸= F2 we have
Q̃(f) = Q̃s(f).

Proof. We will use Theorem 4.2.10. We may assume that f is a d × d matrix. Let
r = rank(f). Then Q̃(f) = rank(f) = r. Suppose that f is a skew-symmetric matrix.
Then we have Qs(f) = 0 by Lemma 4.2.5. The matrix f⊗n is symmetric if n is even and
skew-symmetric if n is odd. Then by Theorem 4.2.9 we have

Qs(f
⊗n) =

{
rn if n is even,

0 otherwise.

Therefore Q̃s(f) = r. Suppose that f is not skew-symmetric. By Theorem 4.2.10, there
is an invertible matrix B and a lower-triangular matrix L such that BfBT = L. Then
Qs(f) = Qs(L) and so Q̃s(f) = Q̃s(L). There is a principal submatrix A of L of size r
that has exactly r nonzero elements on its diagonal. Then A⊗n is a submatrix of L⊗n.
We choose n = rk for some k ∈ N≥1. Then the submatrix of A⊗n with rows and columns
indexed by the elements in [r]n of type (n/r, . . . , n/r) is diagonal and has size(

n

n/r, . . . , n/r

)
≥ rn−o(n).

We conclude that Q̃s(L) ≥ r.

It follows from Example 4.2.6 that the statement of Theorem 4.3.3 is false over F2 by
taking f to be an anti-diagonal matrix with ones on the antidiagonal.
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4.3.2 Asymptotic symmetric subrank of symmetric tensors

For symmetric tensors we prove that the asymptotic symmetric subrank is equal the
asymptotic subrank (as long as the field satisfies mild closedness and characteristic con-
ditions):

Theorem 4.3.4. Let f be a symmetric k-tensor over an algebraically closed field of char-
acteristic at least k + 1. Then Q̃(f) = Q̃s(f).

In particular, Theorem 4.3.4 holds for any symmetric tensor over the field of complex
numbers.

In fact we prove a much more general asymptotic statement about the restriction
preorder ≤ and the symmetric restriction preorder on symmetric tensors. We define the
asymptotic restiction preorder ≲ on tensors f, g by writing f ≲ g if and only if f⊗n ≤
g⊗n+o(n). Similarly we define the asymptotic symmetric restriction preorder ≲s on tensors
f, g by writing f ≲s g if and only if f⊗n ≤s g

⊗n+o(n).

Theorem 4.3.5. For symmetric k-tensors f, g over an algebraically closed field of char-
acteristic at least k + 1 we have f ≲ g if and only if f ≲s g.

It will also follow from our proof that on symmetric tensors (over an appropriate field)
the asymptotic rank and symmetric asymptotic rank are equal:

Theorem 4.3.6. Let f be a symmetric k-tensor over an algebraically closed field of char-
acteristic at least k + 1. Then Rs(f) ≤ 2k−1R(f) and in particular R̃(f) = R̃s(f).

For k = 3 the same relation between symmetric rank and rank for symmetric tensors
was found in [Kay12].

The above three theorems are related to Comon’s conjecture [CGLM08], which says
that rank and symmetric rank coincide on symmetric tensors. Shitov [Shi18] gave a coun-
terexample to Comon’s conjecture. Our Theorem 4.3.4, Theorem 4.3.5 and Theorem 4.3.6
can be interpreted as saying that “Comon’s conjecture” is true asymptotically, not only for
rank (Theorem 4.3.6), but also for subrank (Theorem 4.3.4) and the restriction preorder
(Theorem 4.3.5).

The proofs for all of the above will follow from three basic lemmas that we will discuss
now. A crucial role will be played by the following k-tensor.

Definition 4.3.7 (fully symmetric k-tensor). For any k ∈ N let Sk be the symmetric
group on k elements and define the k-tensor h =

∑
π∈Sk

eπ(1) ⊗ · · · ⊗ eπ(k). We will call h
the fully symmetric k-tensor.

For example, for k = 3, the tensor h is given by h = e1 ⊗ e2 ⊗ e3 + e1 ⊗ e3 ⊗ e2 + e2 ⊗
e1 ⊗ e3 + e2 ⊗ e3 ⊗ e1 + e3 ⊗ e1 ⊗ e2 + e3 ⊗ e2 ⊗ e1. The tensor h allows us to transform
any restriction to a symmetric restriction:

Lemma 4.3.8. Let f and g be symmetric k-tensors over a field of characteristic at least
k + 1. If f ≥ g, then f ⊗ h ≥s g ⊗ h, and hence also f ⊗ h ≥s g, where h is the fully
symmetric tensor.
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Proof. Let A1, . . . , Ak be linear maps such that (A1 ⊗ · · · ⊗ Ak)f = g. Let e∗i denote the
elements of the basis dual to the standard basis ei. Define the linear map B =

∑
iAi⊗eie∗i .

Then
(B⊗k)(f ⊗ h) = k!((A1 ⊗ · · · ⊗Ak)f)⊗ h.

Dividing by k! proves the claim.

In particular, Lemma 4.3.8 says that, if f⊗n ≥ ⟨r⟩, then f⊗n ⊗ h ≥s ⟨r⟩ for every
n ∈ N. Note that h is a fixed tensor that is independent of n. Our next goal is to prove
that for every f there is a constant c ∈ N depending on f such that f⊗c ≥s h. This is true
in the following sense.

Recall that for any subset S ⊆ [k] that is not empty and not [k], any k-tensor f ∈
V1 ⊗ · · · ⊗ Vk can be flattened into a 2-tensor (

⊗
i∈S Vi)⊗ (

⊗
i∈[k]\S Vi). For a k-tensor f

we call the ranks of these flattenings the flattening ranks of f .

Lemma 4.3.9. Let f be a symmetric k-tensor over an algebraically closed field. Suppose
that some flattening rank of f is at least 2. Then there is a c ∈ N such that f⊗c ≥s h.

To prepare for the proof of Lemma 4.3.9 we prove the following lemma.

Lemma 4.3.10. Let f be a symmetric k-tensor over an algebraically closed field. There
exists a basis transformation A ∈ Fd×d such that the support S = supp(A⊗kf) ⊆ [d]k of f
after applying the transformation A satisfies (i, . . . , i) ̸∈ S for every 1 ≤ i ≤ d− 1.

Proof. Suppose that f ∈ (Fd)⊗k. If no element of the form (i, . . . , i) appears in S, then
we are done. Otherwise, we may assume that (d, . . . , d) appears, so that the tensor f is
of the form f = f1e

⊗k
1 + f2e

⊗k
2 + · · · + fde

⊗k
d + other terms, for some coefficients fi with

fd ̸= 0.
We apply to f the invertible linear map that maps ei to ei for 1 ≤ i ≤ d − 1 and

maps ed to ed + ε1e1 + · · ·+ εd−1ed−1 for some εi ∈ F. This gives a tensor g ∈ (Fd)⊗k that
is isomorphic to f and of the form g = (f1 + εk1fd)e

⊗k
1 + · · ·+ (fd−1 + εkd−1fd)e

⊗k
d−1 + other

terms. Since fd is nonzero and the ground field is algebraically closed, there are values for
the εi such that fi + εki fi is zero for every 1 ≤ i ≤ d− 1, in which case (i, . . . , i) does not
appear in the support of g for every 1 ≤ i ≤ d− 1.

Proof of Lemma 4.3.9. Let f ∈ (Fd)⊗k. By Lemma 4.3.10 we may assume that (i, . . . , i)
does not appear in the support S = supp(f) ⊆ [d]k of f for 1 ≤ i ≤ d − 1. For every
element s ∈ S we define its type (y1, . . . , yd) by letting yi be the number of times that i
appears in s. Let Y be the set of types of elements of S. Since some flattening rank of f
is at least 2, we cannot have that S = {(d, . . . , d)}. Thus without loss of generality there
is a type y ∈ Y that satisfies 1 ≤ y1 ≤ k − 1 and such that for every other type y′ ∈ Y it
holds that y′1 ≤ y1 (maximality assumption).

Let R ⊆ [d]k be the set of all k-tuples in [d]k of type y. Let A be the |R| × k matrix
with rows given by the elements of R, in some arbitrary order. Let C be the set of columns
of A. Note that in any s ∈ S the element 1 can appear at most y1 times by our maximality
assumption.

We claim that f⊗|R| restricts symmetrically to the fully symmetric k-tensor h by zeroing
out all basis elements that are not in C. To prove this we need to show that for any choice
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of k elements v1, . . . , vk in C, if for every i we have that ((v1)i, . . . , (vk)i) ∈ S, then
v1, . . . , vk are all different.

By construction of C, for any y1 distinct elements v1, . . . , vy1 of C there is an 1 ≤ i ≤ |R|
such that (v1)i = · · · = (vy1)i = 1. Thus also for any y1 (not necessarily distinct) elements
v1, . . . , vy1 of C there is an 1 ≤ i ≤ |R| such that (v1)i = · · · = (vy1)i = 1.

Let v1, . . . , vk be an arbitrary collection of elements of C. Suppose that v1 = v2. By the
previous argument we know that there is an 1 ≤ i ≤ |R| such that (v2)i = · · · = (vy1+1)i =
1. From the assumption v1 = v2 it follows that (v1)i = (v2)i = · · · = (vy1+1)i = 1.
However, we picked the type (y1, . . . , yd) such that y1 is maximal and y1 ≤ k − 1. The
element 1 appears at least y1 + 1 times in ((v1)i, . . . , (vk)i). Therefore ((v1)i, . . . , (vk)i) is
not in S.

Proof of Theorem 4.3.5. Suppose that f ≳ g. This means that f⊗m+o(m) ≥ g⊗m. We
know from Lemma 4.3.9 that there is a constant c ∈ N, depending only on f , such that
f⊗c ≥s h. By Lemma 4.3.8 we then have

f⊗m+o(m) ⊗ f⊗c ≥s f
⊗m+o(m) ⊗ h ≥s g

⊗m.

This means f ≳s g, which proves the claim.

Although essentially Theorem 4.3.4 and Theorem 4.3.6 can be proven abstractly from
Theorem 4.3.5, we will give the (simple) proofs separately in terms of the above lemmas
for the convenience of the reader and to get the precise statement of Theorem 4.3.6:

Proof of Theorem 4.3.4. Suppose that Q(f⊗n) ≥ r. Then f⊗n ≥ ⟨r⟩. By Lemma 4.3.9
there is a constant c ∈ N, depending only on f , such that f⊗c ≥s h. By Lemma 4.3.8 we
then have

f⊗n+c ≥s f
⊗n ⊗ f⊗c ≥s f

⊗n ⊗ h ≥s ⟨r⟩.

Thus Qs(f
⊗n+c) ≥ r, which implies the claim.

Proof of Theorem 4.3.6. Suppose that R(f) ≤ r. Then f ≤ ⟨r⟩. Let s = Rs(h) be the
symmetric rank of the fully symmetric tensor h and note that s is a constant depending
only on k, the order of f . In fact, s ≤ 2k−1, which follows from the known identity

h =
1

2k−1

∑
εi=±1

( k∏
i=2

εi

)
(e1 + ε2e2 + ε3e3 + · · ·+ εkek)

⊗k

in which the sum goes over ε2, . . . , εk = ±1. We refer to [GW09, Lemma B.2.3] for a proof
of this identity. See also [LT10, Proposition 11.6]. Then

⟨rs⟩ = ⟨r⟩ ⊗ ⟨s⟩ ≥s ⟨r⟩ ⊗ h ≥s f.

Thus Rs(f) ≤ rs, which implies the first claim. Then, since s is constant, it follows that
R(f⊗n) ≤ Rs(f

⊗n) ≤ R(f⊗n)s for every n ∈ N, which implies the second claim.
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4.4 Asymptotic spectrum of symmetric tensors

In Section 4.2 we introduced the symmetric subrank and in Section 4.3 we introduced
the asymptotic symmetric subrank, both motivated by the problem of upper bounding
the independence number of hypergraphs (with the asymptotic symmetric subrank in
particular being relevant for capacity-type questions, where the hypergraphs at hand have
a power structure). We proved several equalities and separations for these parameters.

In this section we continue our analysis of the asymptotic symmetric subrank in a
general fashion that also allows us to discuss the asymptotic symmetric rank and the
asymptotic symmetric restriction preorder (which we will define).

At the core of this section is the duality theory of Strassen introduced and studied in
[Str86, Str88, Str88, Str91, Tob91, Bür90] (see also [CVZ18] and [Zui18]) that gives a dual
formulation for the (non-symmetric) asymptotic subrank, asymptotic rank and asymp-
totic restriction preorder in terms of the asymptotic spectrum of tensors. The asymptotic
subrank of f ∈ Fn1 ⊗ · · · ⊗ Fnk is defined as Q̃(f) = limn→∞Q(f⊗n)1/n, the asymptotic
rank is defined as R̃(f) = limn→∞R(f⊗n)1/n and the asymptotic restriction preorder is
defined by f ≲ g if and only if f⊗n ≤ g⊗(n+o(n)). As an application of the results of
Section 4.3.2 we prove a strong connection between this theory and the natural symmetric
variation.

The asymptotic spectrum of tensors (for any fixed k ∈ N and field F) is defined as
the set X of all real-valued maps from k-tensors over F to the nonnegative reals that
are additive under the direct sum, multiplicative under the tensor product, monotone
under the restriction preorder and normalized to 1 on the diagonal tensor ⟨1⟩ of size
one. The duality theory says that: the asymptotic rank equals the pointwise maximum
over all elements in the asymptotic spectrum of tensors, the asymptotic subrank equals
the pointwise minimum over all elements in the asymptotic spectrum of tensors, and the
asymptotic restriction preorder is characterized by f ≲ g if and only if for every ϕ in the
asymptotic spectrum X it holds that ϕ(f) ≤ ϕ(g).

4.4.1 Asymptotic spectrum duality

We introduce the asymptotic spectrum of symmetric tensors as the natural symmetric
variation on Strassen’s asymptotic spectrum of tensors, to give a duality theory for the
asymptotic symmetric (sub)rank and restriction preorder. We have defined the asymptotic
symmetric subrank before. The asymptotic symmetric rank is similarly defined as R̃s(f) =
limn→∞Rs(f

⊗n)1/n and the asymptotic symmetric restriction preorder is defined by f ≲s g
if and only if f⊗n ≤s g

⊗(n+o(n)).
We define the asymptotic spectrum of symmetric tensors (for any fixed k ∈ N and

field F) as the set Xs of all real-valued maps from symmetric k-tensors over F to the
nonnegative reals that are additive under the direct sum, multiplicative under the tensor
product, monotone under the symmetric restriction preorder, and normalized to 1 on the
diagonal tensor ⟨1⟩. It follows readily from the general part of the theory in [Str88] (see also
[Zui18]) that the asymptotic spectrum of symmetric tensorsXs gives a dual formulation for
the asymptotic symmetric subrank, asymptotic symmetric rank and asymptotic symmetric
restriction preorder.
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Theorem 4.4.1. Let F be an algbraically closed field of characteristic at least k+1. Let Xs

be the asymptotic spectrum of symmetric k-tensors. Let f and g be symmetric k-tensors.
Then

Q̃s(f) = min
ϕ∈Xs

ϕ(f),

R̃s(f) = max
ϕ∈Xs

ϕ(f),

f ≲s g ⇐⇒ ∀ϕ ∈ Xs, ϕ(f) ≤ ϕ(g).

We will not give the proof of Theorem 4.4.1 as it follows along the same lines as
the original proof in [Str88] (see also [Zui18]). The bulk of the proof is to show that
the symmetric restriction preorder is a so-called “good preorder” ([Str88]) or Strassen
preorder ([Zui18]). The only non-standard ingredient for the proof is the fact that for
every nonzero symmetric k-tensor f either f is equivalent to ⟨1⟩ or Q̃s(f) > 1, which
follows from Theorem 4.3.4 and the fact that this property holds for Q̃.

4.4.2 Surjective restriction from the asymptotic spectrum

The results of Section 4.3.2 answer a structural question: how are the asymptotic spectrum
of tensors X and the asymptotic spectrum of symmetric tensors Xs related? One relation
is clear: for every element ϕ ∈ X the restriction of ϕ to symmetric tensors is an element
of Xs. We thus have the restriction map r : X → Xs that maps ϕ ∈ X to the restriction
of ϕ to symmetric tensors. We prove:

Theorem 4.4.2. The restriction map r : X → Xs is surjective.

Theorem 4.4.2 has two readings: (1) if we understand what the elements are of the
asymptotic spectrum of tensors X, then we also understand what the elements are of
the asymptotic spectrum of symmetric tensors Xs by restriction, and (2) for any element
ψ ∈ Xs there is an extension ϕ ∈ X such that ϕ restricts to ψ.

Theorem 4.4.2 follows from our Theorem 4.3.5 together with an application of the
following powerful theorem from the theory of asymptotic spectra. The theorem uses
the notion of a good preorder or Strassen preorder for which we refer the reader to the
literature.

Theorem 4.4.3 ([Str88], [Zui18, Corollary 2.18]). Let S be a semiring with a Strassen
preorder P . Let T be a subsemiring of S. Then the restriction map from the asymptotic
spectrum of S to the asymptotic spectrum of T is surjective.

Proof of Theorem 4.4.2. We give a sketch of the proof. The proof is an application of
Theorem 4.4.3. Let S be the semiring of k-tensors and let P be the asymptotic restric-
tion preorder. This is a Strassen preorder. Let T be the subsemiring of S of symmetric
k-tensors. Then Theorem 4.4.3 implies that the restriction map from the asymptotic spec-
trum of S with the asymptotic restriction preorder to the asymptotic spectrum of T with
the asymptotic restriction preorder is surjective. Since the asymptotic restriction preorder
on symmetric tensors coincides with the asymptotic symmetric restriction preorder by
Theorem 4.4.2, the claim follows.
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To summarize what we have just seen, the asymptotic spectrum of tensors X and the
asymptotic spectrum of symmetric tensors Xs are tightly related since the restriction map
from the first to the second is surjective. What are the elements of X and Xs? A long
line of work [Str86, Str88, Str88, Str91, Str05, Tob91, Bür90, CVZ18, CLZ20] has been
devoted to this question. Our best understanding is for the case that the ground field F
is the complex numbers5 and that is what we will focus our discussion on here and in the
next section.

The known elements in X (over the complex numbers) are a family of functions
called the quantum functionals. These were introduced in [CVZ18] and are based on
an information-theoretic and representation-theoretic study of powers of tensors. The
quantum functionals more precisely form a continuous family F θ indexed by probability
distributions θ on [k]. This family includes the flattening ranks, but also includes more
interesting functions that are properly real-valued which reveal asymptotic information
that the flattening ranks do not reveal. It is possible but not known whether the quantum
functionals are all elements of X. Proving this is a central open problem of the theory. In
particular, the quantum functionals being all elements of X would imply that the matrix
multiplication exponent ω equals 2, which would be a breakthrough result in complexity
theory.

We may restrict the quantum functionals to symmetric tensors to find an infinite family
of elements in Xs. Since we do not know whether the quantum functionals are all elements
of X, we can, however, not conclude from Theorem 4.4.2 that their restriction gives all
elements of Xs.

What we will do in the next section is give a natural construction of a single element in
Xs following the same ideas as for the construction of the quantum functionals but applied
directly to the symmetric restriction preorder. This single element we call the symmetric
quantum functional. What we then find is that this symmetric quantum functional on
symmetric tensors in fact equals the uniform quantum functional F (1/k,...,1/k). Thus we
do not find a new element in Xs, but we do find a different description of the uniform
quantum functional restricted to symmetric tensors, and this might be algorithmically
beneficial. This symmetric quantum functional is the pointwise smallest element among
all elements in Xs that we currently know, and from previous work it follows that it equals
the asymptotic slice rank (on symmetric tensors). Having discussed the plan we will now
go into the details in the next section.

4.5 Symmetric quantum functional

In Section 4.4 we introduced the asymptotic spectrum of symmetric tensors Xs and proved
a duality theorem for the asymptotic symmetric (sub)rank and restriction preorder in
terms of it.

We use the ideas of the construction of the quantum functionals F θ ∈ X from [CVZ18]
to construct the symmetric quantum functional F ∈ Xs over the field of complex numbers.
Let us from now on fix the base field to be the field of complex numbers. In fact we will
take a more general approach and define the symmetric quantum functional not just for
symmetric tensors but for arbitrary tensors.

5It is known that the asymptotic spectrum can only depend on the characteristic of the field [Str88].
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Before recalling the definition of the quantum functionals F θ and giving the new defi-
nition of the symmetric quantum functional F , here is what we will find. For symmetric
tensors we will show that:

Theorem 4.5.1. On symmetric tensors F = F (1/k,...,1/k).

This gives an alternative description of the uniform quantum functional F (1/k,...,1/k),
which may have algorithmic benefits.

In particular on symmetric tensors the symmetric quantum functional is in the asymp-
totic spectrum of symmetric tensors Xs.

Theorem 4.5.2. On symmetric tensors we have F ∈ Xs.

For general tensors we find the following.

Theorem 4.5.3. On arbitrary tensors we have F ≥ F (1/k,...,1/k).

In particular, since F (1/k,...,1/k) ≥ Q̃ (because every quantum functional F θ is in the
asymptotic spectrum of tensors X), we also find F ≥ Q̃ on arbitrary tensors. However, via
a known connection from [CVZ18] between the quantum functionals and the asymptotic
slice rank (the pointwise minimum minθ F

θ equals the asymptotic slice rank), we find
that F , as a method to upper bound the Shannon capacity of hypergraphs, suffers from
the induced matching barrier.

4.5.1 From quantum functionals to symmetric quantum functional

Before defining the quantum functionals and symmetric quantum functional and giving
the proofs of the above, we must introduce some standard notation. Let H be a complex
finite-dimensional Hilbert space with dimension dim(H) = d. Thus H ∼= Cd. Recall a
state or density operator on H is a positive semidefinite linear map ρ : H → H with
tr(ρ) = 1. Let D(H) be the set of states on H. For ρ ∈ D(H), let spec(ρ) = (λ1, . . . , λd)
be the sequence of eigenvalues of ρ, ordered non-increasingly, that is, λ1 ≥ · · · ≥ λd. Since
tr(ρ) = 1, the sequence of eigenvalue of ρ is a probability distribution. It thus makes sense
to define H(spec(ρ)) := −

∑d
j=1 λj log λj .

Given a state ρ onH1⊗· · ·⊗Hk, the jthmarginal is the element ρj = trH1...Hj−1Hj+1...Hk
(ρ)

obtained from ρ by a partial trace. The jth marginal is itself a state, that is, ρj ∈ S(Hj).

Consider a nonzero element f ∈ H⊗k. Then ρ(f) = ff†

∥f∥2 ∈ D(H⊗k), where f † denotes the

conjugate transpose of f , and we can consider the jth marginal ρj(f) ∈ S(H). Let GL(d)

denote the set of invertible matrices acting onH. For a tensor f ∈ H⊗k, let GL(d) · f be the
Euclidean closure (or equivalently Zariski closure) of the orbit {(g⊗· · ·⊗g)f : g ∈ GL(d)}.

We begin with the definition of the symmetric quantum functional.

Definition 4.5.4 (Symmetric quantum functional). Let f ∈ H⊗k be nonzero. We define
the symmetric quantum functional F by F (f) = 2E(f) where

E(f) = max{H(p) : p ∈ ∆(f)},

where we define the subset ∆(f) ⊆ Rd, for d = dim(H), as

∆(f) =
{
spec

(ρ1(s) + · · ·+ ρk(s)

k

)
: s ∈ GL(d) · f \ {0}

}
.



69

From the work of [NM84] and [Bri87] it follows that ∆(f) is a convex polytope.
The definition of the symmetric quantum functional F is inspired by the family of

quantum functionals F θ. Our main results about the symmetric quantum functional give
precise relations between F and F θ.

Definition 4.5.5 (Quantum functionals). Let θ ∈ P([k]) and let f ∈ H⊗k. The quantum

functionals are defined by F θ(f) = 2E
θ(f) where

Eθ(f) = max

{
s∑

i=1

θ(i)H(ρi(s)) : s ∈ GL(d)×k · f \ {0}

}

where GL(d)×k · f = {(g1 ⊗ · · · ⊗ gk) · f : g1, . . . , gk ∈ GL(d)}.

There is an asymptotic connection between the quantum functionals and the slice rank,
which we will be using.

Theorem 4.5.6 ([CVZ18]). For any f ∈ H⊗k the limit limn→∞ SR(f⊗n)1/n exists and
equals the minimization minθ∈P([k]) F

θ(f).

4.5.2 Properties and relations

Now we are ready to state the precise results on the symmetric quantum functional. These
results in particular imply the three main results that we stated above in Theorem 4.5.1,
Theorem 4.5.2 and Theorem 4.5.3.

First of all, we prove that the symmetric quantum functional is at least the uniform
quantum functional, and we show that the latter can be obtained as the regularization of
the former:

Theorem 4.5.7. Let f ∈ H⊗k be any tensor. Let θ =
(
1
k , . . . ,

1
k

)
. Then

lim
n→∞

SR(f⊗n)1/n ≤ F θ(f) ≤ F (f) and lim
n→∞

F (f⊗n)1/n = inf
n
F (f⊗n)1/n = F θ(f).

Second, on symmetric tensors we prove the following even stronger connection between
the symmetric quantum functional and the uniform quantum functional:

Theorem 4.5.8. Let f ∈ H⊗k be a symmetric tensor. Then

lim
n→∞

SR(f⊗n)1/n = F (1/k,...,1/k)(f) = F (f).

Third, from the equality F = F (1/k,...,1/k) on symmetric tensors (Theorem 4.5.8), and
the known properties of F (1/k,...,1/k), we directly obtain all of the following properties of
the symmetric quantum functional F :

Corollary 4.5.9. For any symmetric f ∈ (Cd)⊗k and g ∈ (Ce)⊗k, and any r ∈ N, we
have

1. F (⟨r⟩) = r

2. F (f ⊕ g) = F (f) + F (g)
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3. F (f ⊗ g) = F (f)F (g)

4. if f ≤s g then F (f) ≤ F (g).

Therefore, the symmetric quantum functional belongs to the asymptotic spectrum of
symmetric tensors Xs, which we discussed in Section 4.4.

We will now give the proofs of the above Theorem 4.5.7 and Theorem 4.5.8. We will
need another characterization of ∆(f) from representation theory. Let λ be a partition of
nk into at most d parts. We denote this by λ ⊢d nk. Then λ̄ := λ/nk = (λ1/nk, . . . , λd/nk)
is a probability distribution on [d]. The symmetric group Snk acts on (H⊗k)⊗n by per-
muting the tensor legs, that is, π · (v1 ⊗ · · · ⊗ vnk) = vπ−1(1) ⊗ · · · ⊗ vπ−1(nk) for π ∈ Snk.

The general linear group GL(d) acts on (H⊗k)⊗n via the diagonal embedding GL(d) →
GL(d)×nk : g 7→ (g, . . . , g), that is, g · v = (g ⊗ · · · ⊗ g)v for g ∈ GL(d), v ∈ (H⊗k)⊗n.
The Schur–Weyl duality gives a decomposition of the space (H⊗k)⊗n into direct sum of
irreducible Snk ×GL(d) representations. More precisely,

(H⊗k)⊗n ∼=
⊕
λ⊢dnk

[λ]⊗ Sλ(H),

where Sλ(H) is an irreducible representation of GL(d) and [λ] is an irreducible repre-
sentation of Snk. Let Pλ : (H⊗k)⊗n → (H⊗k)⊗n be the equivariant projector onto the
isotypical component of type λ, that is, onto the subspace of (H⊗k)⊗n which isomorphic
to Sλ(H)⊗ [λ]. Based on [Bri87], [Fra02], [Str05] (and also [Wal14, Section 2.1] and [Zui18,
Chapter 6]) we have the following characterization of ∆(f).

Lemma 4.5.10. The polytope ∆(f) is the Euclidean closure of the set{
λ

nk
: ∃n ∈ N≥1, λ ⊢d nk, Pλf

⊗n ̸= 0

}
.

Proof. The proof of the Lemma 4.5.10 can be found in the Appendix A.1.

Proof of Theorem 4.5.7. We decompose H⊗n into a direct sum of irreducible Sn ×GL(d)
representations as

H⊗n ∼=
⊕
λ⊢dn

[λ]⊗ Sλ(H). (4.2)

Let Pλ be the equivariant projector onto the isotypical component of type λ. The uniform
quantum functional F ( 1

k
,..., 1

k
)(f) has another characterization as follows [CVZ18]:

F ( 1
k
,..., 1

k
)(f) = sup

{( k∏
i=1

dim[λi]
)1/kn

: ∃n ∈ N≥1, λ
i ⊢d n, (Pλ1 ⊗ · · · ⊗ Pλk)f⊗n ̸= 0

}
.

For the symmetric quantum functional, using the characterization of ∆(f) from represen-
tation theory, we have

F (f) = sup
{
(dim[λ])1/kn : ∃n ∈ N≥1, λ ⊢ kn, Pλf

⊗n ̸= 0
}
.
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We may write (H⊗n)⊗k as a direct sum of irreducibles under the action of Snk as(
H⊗n

)⊗k ∼=
⊕
λ⊢dkn

([λ])⊕mλ (4.3)

where mλ = dim (Sλ(H)). We view S×k
n naturally as a subgroup of Snk. For any λ ⊢d kn

the restriction of [λ] to the action ofS×k
n decomposes further as a direct sum of irreducibles

under the action of S×k
n , so that

[λ] ∼=
⊕

λ1⊢dn,...,λk⊢dn

(
[λ1]⊗ · · · ⊗ [λk]

)⊕c
λ1,...,λk

(4.4)

where cλ1,...,λk are multiplicities. Let λ1 ⊢d n, . . . , λk ⊢d n. Then [λ1] ⊗ · · · ⊗ [λk] is
irreducible representation of Sn × · · · × Sn. This gives us the finer decomposition into
irreducibles under the action of S×k

n as(
H⊗n

)⊗k ∼=
⊕

λ1⊢dn,...,λk⊢dn

(
[λ1]⊗ · · · ⊗ [λk]

)⊕m
λ1,...,λk

(4.5)

where mλ1,...,λk =
∏k

i=1 dim (Sλi
(H)).

For any n and λ1 ⊢d n, . . . , λ
k ⊢d n such that (Pλ1 ⊗ · · · ⊗ Pλk) f⊗n ̸= 0 the equivariant

projection of f⊗n on (
[λ1]⊗ · · · ⊗ [λk]

)⊕m
λ1,...,λk

is non-zero. From (4.4) we know that there is a λ ⊢d kn such that [λ1] ⊗ · · · ⊗ [λk] is a
subspace of [λ]. For this λ it holds that Pλf

⊗n ̸= 0 and dim[λ] ≥
∏k

i=1 dim
(
[λi]
)
. This

implies F (f) ≥ F ( 1
k
,..., 1

k
)(f).

For any tensor s ∈ H⊗k, it follows from a standard property of the von Neumann
entropy [NC11, Theorem 11.10] that

H

(
ρ1(s) + · · ·+ ρk(s)

k

)
≤ H(ρ1(s)) + · · ·+H(ρk(s))

k
+ log k.

This implies F (f) ≤ kF ( 1
k
,..., 1

k
)(f). Thus we have proven that

F ( 1
k
,..., 1

k
)(f) ≤ F (f) ≤ kF ( 1

k
,..., 1

k
)(f)

holds for every tensor f . In particular, applying this to the tensor power f⊗n we have

F ( 1
k
,..., 1

k
)(f⊗n) ≤ F (f⊗n) ≤ kF ( 1

k
,..., 1

k
)(f⊗n).

Since F ( 1
k
,..., 1

k
) is multiplicative [CVZ18], we have

F ( 1
k
,..., 1

k
)(f) ≤ F (f⊗n)1/n ≤ k1/nF ( 1

k
,..., 1

k
)(f).

Taking n→ ∞, we obtain limn→∞ F (f⊗n)1/n = F ( 1
k
,..., 1

k
)(f).

Finally, since F is sub-multiplicative (see in Appendix A.2), the limit limn→∞ F (f⊗n)1/n

equals the infimum infn F (f
⊗n)1/n by Fekete’s lemma.
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Proof of Theorem 4.5.8. Let S be the set of symmetric tensors in (GL(d)×k) · f \ {0}.
Since f is a symmetric tensor, for any matrix A the tensor (A ⊗ · · · ⊗ A)f is also a
symmetric tensor. Therefore GL(d) · f \ {0} ⊆ S. Moreover, if s is a symmetric tensor
then all marginal density matrices are equal: ρ1(s) = · · · = ρk(s). Thus, for any θ ∈ P([k]),
we have Eθ(s) = ρ1(s). This implies F (f) ≤ F θ(f) since both F (f) and F θ(f) are given by
the supremum of the same function and for F (f) the supremum is taken over a smaller set
than for F θ(f). By Theorem 4.5.7 we have F (f) = F θ(f) with θ = ( 1k , . . . ,

1
k ). Moreover,

from the Proposition 4.5.6 we have limn→∞ SR(f⊗n)1/n = minθ∈P([k]) F
θ(f) ≥ F (f),

which implies limn→∞ SR(f⊗n)1/n = F (f). This proves the claim.

4.6 Conclusion

In this chapter, we introduced the symmetric subrank of tensors and proved precise rela-
tions and separations between subrank and symmetric subrank. Then, we showed that for
symmetric tensors the subrank and the symmetric subrank are asymptotically equal. This
proves the asymptotic subrank analogon of a conjecture known as Comon’s conjecture
in the theory of tensors. This result allows us to prove a strong connection between the
general and the symmetric versions of an asymptotic duality theorem of Strassen. Finally,
we introduced a representation-theoretic method to asymptotically bound the symmetric
subrank called the symmetric quantum functional in analogy with the quantum function-
als, then studied the relations between these functionals. Nevertheless, the symmetric
quantum functional cannot give better bounds than the quantum functionals which itself
suffers from the induced matching barrier and cannot be used to make progress on corner
problem. But we hope that future improved asymptotic upper bounds on the symmetric
subrank can still overcome the induced matching barrier. In particular, we leave it as an
open question to define a good symmetric version of Strassen’s support functionals.
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Chapter 5

Efficient bounds on quantum
capacities

This chapter is based on joint work with Omar Fawzi and Ala Shayeghi [FST21].

5.1 Introduction

The optimal rates for many quantum information processing tasks of interest can be char-
acterized in terms of a regularized divergence between quantum channels. For a divergence
D defined on quantum states, the corresponding channel divergence is defined by maxi-
mizing the divergence between the channel outputs over the set of possible inputs. There
are two natural variants: for quantum channels N and M the non-stabilized divergence
is given by only allowing input states ρ in the input space of N and M

D(N∥M) = sup
ρ

D(N (ρ)∥M(ρ)) ,

whereas the stabilized version allows arbitrary input states

D(N∥M) = sup
ρ

D((I ⊗N )(ρ)∥(I ⊗M)(ρ)) ,

where I is the identity channel. The most well-known example illustrating these two
variants is when D is the trace distance, then D(N∥M) is the superoperator trace norm
and D(N∥M) is the diamond norm, and it is known that we can have D(N∥M) ≪
D(N∥M) [KSV02].

When analyzing tasks in the independent and identically distributed limit, an impor-
tant divergenceD is the Umegaki divergence D defined by D(ρ∥σ) = tr(ρ log ρ)−tr(ρ log σ).
For example, in asymmetric hypothesis testing between channels N and M, the Stein ex-
ponent is characterized using D, namely in terms of the regularized channel divergence
Dreg(N∥M) := supn

1
nD(N⊗n∥M⊗n) [WBHK20, WW19, FFRS20]. In fact, it turns out

that the channel divergence D is in general non-additive [FFRS20], in which case we have
Dreg(N∥M) > D(N∥M).

Another example is the Holevo information of a quantum channel N , which is given by
χ(N ) = minσ D(N∥Tσ) where Tσ is the replacer channel that outputs σ for any input den-
sity operator [OPW97]. The Holevo-Schumacher-Westmorland theorem (see e.g., [Wil13])
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states that the classical capacity of N is given by χreg(N ) := supn
1
nχ(N

⊗n) and the
regularization is needed for some channels, as shown by [Has09].

The objective of this chapter is to provide efficient ways of computing, or more specif-
ically upper bounding, such regularized channel divergences. In order to achieve this, we
use the recently introduced #-Rényi divergence [FF21b]. The #-Rényi divergence of order

α > 1, denoted by D#
α , between two positive semidefinite operators is defined as

D#
α (ρ∥σ) :=

1

α− 1
logQ#

α (ρ∥σ),

Q#
α (ρ∥σ) := min

A≥0
tr(A) s.t. ρ ≤ σ# 1

α
A ,

where #α denotes the α-geometric mean of two positive definite matrices ρ and σ. This
divergence has several desirable computational and operational properties such as an ef-
ficient semidefinite programming representation for states and channels, and a chain rule
property. An important property of this new divergence is that its regularization is equal
to the sandwiched (also known as the minimal) quantum Rényi divergence. Let NX→Y

and MX→Y be two quantum channels. The channel divergence corresponding to D#
α can

be expressed in terms of a convex optimization program [FF21b] as follows.

D#
α (N∥M) :=

1

α− 1
logQ#

α (N∥M),

Q#
α (N∥M) := min

AXY ≥0
∥trY (AXY )∥∞ s.t. (JN

XY ) ≤ (JM
XY )#1/αAXY ,

where ∥.∥∞ denotes the operator norm and JN
XY , J

M
XY are choi matrices of N ,M, respec-

tively.
As a first application, we consider the task of approximating the regularized sandwiched

Rényi divergence. For α ∈ (1,∞), the regularized sandwiched α-Rényi divergence between
channels NX→Y and MX→Y is defined as

D̃reg
α (N∥M) := lim

k→∞

1

k
D̃α(N⊗k∥M⊗k) .

Ref. [FF21b] provided a converging hierarchy of upper bounds on the regularized diver-
gence between channels:

1

k
D#

α (N⊗k∥M⊗k)− ν(d, k, α) ≤ D̃reg
α (N∥M) ≤ 1

k
D#

α (N⊗k∥M⊗k) , (5.1)

where d = dimX dimY and ν(d, k, α) = 1
k

α
α−1(d

2 + d) log(k + d). Here D̃α is the sand-
wiched Rényi divergence [MDS+13], [WWY14] of order α ∈ (1,∞) (see Section 5.2 for
definition). The regularized sandwiched Rényi divergence between channels can be used
to obtain improved characterization of many information processing tasks such as chan-
nel discrimination [FF21a, FF21b]. However, the sandwiched Rényi divergence between
channels is non-additive in general [FFRS20] and it is unclear whether its regularization
can be computed efficiently.

From 5.1, D̃reg
α (N∥M) can be approximated by 1

kD
#
α (N⊗k∥M⊗k) with arbitrary ac-

curacy for sufficiently large k in finite time. Namely, if we take k = ⌈ 8αd3

(α−1)ϵ⌉ then we
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have

|D̃reg
α (N∥M)− 1

k
D#

α (N⊗k∥M⊗k)| ≤ ϵ .

However, the size of the program for computing D#
α (N⊗k∥M⊗k) grows exponentially with

k.

New results in this chapter

We exploit the symmetries of the resulting hierarchy of optimization programs to obtain
a concise representation and solve it efficiently. Specifically, for quantum channels N ,M,
we show in Theorem 5.4.3 that the permutation symmetry of the optimization program
defining D#

α (N⊗k∥M⊗k) can be used to transform it into a semidefinite program with
poly(k) variables and constraints compared to the straightforward representation which is
of size exponential in k. However, as we will see, a direct implementation of this transfor-
mation would require an exponential time computation. In Theorem 5.4.6, we provide an
algorithm which performs this transformation in poly(k) time, for fixed input and output
dimensions. As a first application, we consider the task of approximating the regularized
sandwiched Rényi divergence between two channels. Note that the sandwiched Rényi di-
vergence (see Section 5.2 for the definition) is in general non-additive [FFRS20], and it is
not known whether its regularization is efficiently computable. Ref. [FF21b] shows that the

regularized quantity can be approximated up to arbitrary accuracy by 1
kD

#
α (N⊗k∥M⊗k),

for sufficiently large k. Our results imply that the regularized sandwiched Rényi diver-
gence between two channels can be approximated up to an accuracy ϵ ∈ (0, 1], in time
that is polynomial in 1/ϵ (for fixed input/output dimensions). Furthermore, when the
channels admit additional group symmetries, we present a general approach to combine
these symmetries with the intrinsic permutation invariance to further simplify the prob-
lem. As an example demonstrating the potential of this approach, in Section 5.4.2, we
apply our method to generalized amplitude damping channels and we show how a very
simple symmetry of these channels leads to considerable reductions in the size of the
convex optimization program for computing the channel divergence (see Table 5.2).

In Section 5.5, we present a procedure for efficiently computing improved strong con-
verse bounds on the classical capacity of quantum channels by considering the generalized
Upsilon-information [WFT19] induced by the D# Rényi divergences. To illustrate our
method, we apply it to the amplitude damping channel (see Table 5.3 for a comparison
with the best previously known bounds). Even though the improvements we obtain for
the classical capacity are very small for this channel, the amplitude damping channel Ap

is one of the current challenges as far as the classical capacity is concerned. In particular,
it remains open whether χreg(Ap) = χ(Ap). Finally, in Section 5.6, we use our method for
computing improved upper bounds on the two-way assisted quantum capacity of channels
by considering the generalized Theta-information [FF21a] induced by the D# divergences
and apply it to the amplitude damping channel, as an example (see Figure 5.2 for a
comparison with the best previously known bounds).

Outline of the chapter. We first briefly recall quantum divergences in Section 5.2.
Then, in Section 5.3 we present several tools to represent the convex program have sym-
metry. Next, we provide efficient ways of computing the regularized channel divergences
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in Section 5.4. In Section 5.5, we present a procedure for efficiently computing improved
strong converse bounds on the classical capacity of quantum channels. Lastly, we use our
method for computing improved upper bounds on the two-way assisted quantum capacity
of channels in Section 5.6.

5.2 Quantum divergences and Channel divergences

A functional D : D(H) × P(H) → R is a generalized quantum divergence [PV10, SW13]
if it satisfies the data-processing inequality

D(N (ρ)∥N (σ)) ≤ D(ρ∥σ).

Let ρ ∈ D(H) and σ ∈ P(H) such that ρ ≪ σ. The sandwiched Rényi diver-
gence [MDS+13], [WWY14] of order α ∈ (1,∞) is defined as

D̃α(ρ∥σ) :=
1

α− 1
log tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
.

The geometric Rényi divergence [PR98, Mat15, Tom15, HM17, FF21a] of order α is defined
as

D̂α(ρ∥σ) :=
1

α− 1
log tr

[
σ1/2

(
σ−1/2ρσ−1/2

)α
σ1/2

]
.

The max divergence is defined as

Dmax(ρ∥σ) := log inf{λ > 0 : ρ ≤ λσ}.

The inverses in these formulations are generalized inverses, i.e., the inverse on the sup-
port. When ρ≪ σ does not hold, these quantities are set to ∞. Recently, in [FF21b], the
authors introduced an interesting quantum Rényi divergence called #-Rényi divergence.
To define this divergence, we recall the geometric mean of two positive definite matrices.

For α ∈ (0, 1), the α-geometric mean of two positive definite matrices ρ and σ is defined
as

ρ#ασ = ρ1/2(ρ−1/2σρ−1/2)αρ1/2.

The α-geometric mean has the following properties (see Refs. [KA80] and [FF21b]):

1. Monotonicity: A ≤ C and B ≤ D implies A#αB ≤ C#αD.

2. Transformer inequality: M(A#αB)M∗ ≤ (MAM∗)#α(MBM∗), with equality if M
is invertible.

3. (aA)#α(bB) = a(b/a)α(A#α)B, for any a > 0 and b ≥ 0.

4. Joint-concavity/sub-additivity: for any Ai, Bi ≥ 0 we have

∑
i

Ai#αBi ≤

(∑
i

Ai

)
#α

(∑
i

Bi

)
.
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5. Direct sum: for any A1, A2, B1, B2 ≥ 0, we have

(A1 ⊕A2)#α(B1 ⊕B2) = (A1#αB1)⊕ (A2#αB2) ,

where A1 ⊕A2 form a block diagonal matrix

[
A1 0
0 A2

]
.

The #-Rényi divergence [FF21b] of order α between two positive semidefinite operators
is defined as

D#
α (ρ∥σ) :=

1

α− 1
logQ#

α (ρ∥σ),

Q#
α (ρ∥σ) := min

A≥0
tr(A) s.t. ρ ≤ σ# 1

α
A.

We note that the above convex program may be expressed as a semidefinite program when
α is a rational number [FS17, Sag13]. The order between these divergences is summarized
in the proposition below.

Proposition 5.2.1. For any ρ, σ ∈ P(H) and α ∈ (1, 2], we have

D(ρ∥σ) ≤ D̃α(ρ∥σ) ≤ D#
α (ρ∥σ) ≤ D̂α(ρ∥σ) ≤ Dmax(ρ∥σ).

For a quantum channel NX′→Y , a subchannel MX′→Y and a generalized quantum
divergence D the corresponding channel divergence [LKDW18] is defined as

D(N∥M) := sup
ρX∈D(X)

D(NX′→Y (ϕXX′)∥MX′→Y (ϕXX′)) ,

where ϕXX′ is a purification of ρX . For D = D#
α , the channel divergence can be expressed

in terms of a convex optimization program [FF21b] as follows.

D#
α (N∥M) :=

1

α− 1
logQ#

α (N∥M), (5.2)

Q#
α (N∥M) := min

AXY ≥0
∥trY (AXY )∥∞ s.t. (JN

XY ) ≤ (JM
XY )#1/αAXY , (5.3)

where ∥.∥∞ denotes the operator norm.

The generalization of D#
α to channels is subadditive under tensor products [FF21b]:

For any α ∈ (1,∞), quantum channels N1,N2, and subchannels M1,M2, we have

D#
α (N1 ⊗N2∥M1 ⊗M2) ≤ D#

α (N1∥M1) + D#
α (N2∥M2) .

5.3 Tools for efficiently representing structured convex pro-
grams

In this section, we provide the necessary mathematical background on how symmetries
in a convex optimization problem can be utilized to represent the program efficiently, we
refer the interested reader to references such as [LM11] for more information.
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5.3.1 Matrix ∗-algebra background

A subset A of the set of all n×n complex matrices is said to be a matrix ∗-algebra over C, if
it contains the identity operator and is closed under addition, scalar multiplication, matrix
multiplication, and taking the conjugate transpose. For our applications, the structure in
the optimization programs we consider will allow us to assume that the variables live in
such an algebra. A map φ : A → B between two matrix ∗-algebras A and B is called a
∗-isomorphism if

� φ is a linear bijection,

� φ(AB) = φ(A)φ(B) for all A,B ∈ A,

� φ(A∗) = φ(A)∗ for all A ∈ A.

The matrix algebras A and B are called isomorphic and we write A ∼= B. Note that,
by the second property above, ∗-isomorphisms preserve positive semidefiniteness. From a
standard result in the theory of matrix ∗-algebra, we get the following structure theorem.

Theorem 5.3.1 (Theorem 1,[Gij05]). Let A ⊆ Cn×n be a matrix ∗-algebra. There are
numbers t, m1, . . . ,mt such that there is a ∗-isomorphism ϕ between A and a direct sum
of complete matrix algebras

ϕ : A →
t⊕

i=1

Cmi×mi . (5.4)

In other words, under the mapping ϕ, all the elements of A have a common block-
diagonal structure. Moreover, this is the finest such decomposition for a generic element
of A. We remark that the ∗-isomorphism ϕ can be computed in polynomial time in
the dimension of the matrix ∗-algebra A (see e.g., Theorem 2.7 in Ref. [LM11] and the
following discussion, or Ref. [Gij05]).

Regular ∗-representation

In general, computing the block-diagonal decomposition above and the corresponding
mapping is a non-trivial procedure. In this section, we introduce a simpler ∗-isomorphism
which embeds A into Cm×m, where m = dimA.

Let A be a matrix ∗-algebra of dimension m and C = {C1, . . . , Cm} be an orthonormal
basis for A with respect to the Hilbert-Schmidt inner product. Let L be the linear map
defined for everyA ∈ A by the left-multiplication byA. Consider the matrix representation
of L with respect to the orthonormal basis C. For every A ∈ A, L(A) is represented
by an m × m complex matrix given by L(A)ij = ⟨Ci, ACj⟩, for every i, j ∈ [m]. The
map L : A → Cm×m, is called the regular ∗-representation of A associated with the
orthonormal basis C. Since L is a linear map, it is completely specified by its image for
the elements of the basis C. Let (ptrs)r,s,t∈[m] be the multiplication parameters of A with
respect to the basis C defined by CrCs =

∑m
t=1 p

t
rsCt. Then, L(Cr)ij = pirj , for every

r ∈ [m].



79

Theorem 5.3.2 ([KPS07]). Let L be the matrix ∗-algebra generated by the matrices
L(C1), . . . , L(Cm). Then the map ψ defined as

ψ : A → L , ψ(Cr) = L(Cr) , r ∈ [m] , (5.5)

is a ∗-isomorphism.

Note that under the ∗-isomorphism ψ of Theorem 5.3.2, for A ⊆ Cn×n, the matrix
dimensions are reduced from n×n tom×m, whereas the ∗-isomorphism ϕ of Theorem 5.3.1
provides a fine block-diagonal decomposition into t blocks where the block matrix i is of
size mi ×mi, satisfying m = m2

1 + . . .+m2
t .

5.3.2 Representative set of group action

Let G be a finite group acting on a finite dimensional complex vector space H. As we
have seen in Section 2.5, the space H can be decomposed as H = H1 ⊕ · · · ⊕Ht such that
each Hi is a direct sum Hi,1⊕ · · ·⊕Hi,mi of irreducible G-modules with the property that
Hi,j

∼= Hi′,j′ if and only if i = i′.
For each i ∈ [t] and j ∈ [mi], let ui,j ∈ Hi,j be a nonzero vector such that for each

i and all j, j′ ∈ [mi], there is a bijective G-equivariant map from Hi,j to Hi,j′ that maps
ui,j to ui,j′ . For i ∈ [t], we define a matrix Ui as [ui,1, . . . , ui,mi ], with ui,j forming the j-th
column of Ui. The matrix set {U1, . . . , Ut} obtained in this way is called a representative
for the action of G on H. The columns of the matrices Ui can be viewed as elements of
the dual space H∗ (by taking the standard inner product). Then each Ui is an ordered set
of linear functions on H.

Since Hi,j is the linear space spanned by G · ui,j (for each i, j), we have

H =
t⊕

i=1

mi⊕
j=1

CG · ui,j ,

where CG =
{∑

g∈G αgg : αg ∈ C
}

denotes the complex group algebra of G. Moreover,

by Schur’s lemma, one has

dimEndG(H) = dimEndG

 t⊕
i=1

mi⊕
j=1

Hi,j

 =
t∑

i=1

m2
i . (5.6)

Remark 5.3.3. It is straightforward to see that EndG(H) corresponds to the subset of
G-invariant matrices and has the structure of a matrix ∗-algebra. For A = EndG(H), the
structural parameters of Theorem 5.3.1 have a representation theoretic interpretation. In
particular, the number of the direct summands t corresponds to the number of isomor-
phism classes of irreducible G-submodules and mi is the multiplicity of the irreducible
G-submodules in class i.

Note that with the action of the finite groupG on the spaceH, any inner product ⟨ , ⟩ on
H gives rise to a G-invariant inner product ⟨ , ⟩G on H via the rule ⟨x, y⟩G := 1

|G|
∑

g∈G⟨g ·
x, g ·y⟩. Let ⟨ , ⟩ be a G-invariant inner product on H and {U1, . . . , Ut} be a representative
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for the action of G on H. Consider the linear map ϕ : EndG(H) →
⊕t

i=1Cmi×mi defined
as

ϕ(A) :=

t⊕
i=1

(
⟨Aui,j′ , ui,j⟩

)mi

j,j′=1
, ∀A ∈ EndG(H) . (5.7)

For i ∈ [t] and A ∈ EndG(H), we denote the matrix
(
⟨Aui,j′ , ui,j⟩

)mi

j,j′=1
corresponding to

the i-th block of ϕ(A) by Jϕ(A)Ki.

Lemma 5.3.4 (Proposition 2.4.4, [Pol19]). The linear map ϕ of Eq. (5.7) is bijective and
for every A ∈ EndG(H), we have A ≥ 0 if and only if ϕ(A) ≥ 0. Moreover, there is a
unitary matrix U such that

U∗AU =
t⊕

i=1

di⊕
j=1

Jϕ(A)Ki , ∀A ∈ EndG(H) ,

where di = dim(Hi,1), for every i ∈ [t].

Lemma 5.3.4 plays a very important role in our symmetry reductions. Note that
dim(EndG(H)) =

∑t
i=1m

2
i can be significantly smaller than dimH. Moreover, by this

lemma, for any A ∈ EndG(H), the task of checking whether A is a positive semidefinite
matrix can be reduced to checking if the smaller mi × mi matrices Jϕ(A)Ki are positive
semidefinite, for every i ∈ [t]. The mapping ϕ in Eq. (5.7) is a special case of the ∗-
isomorphism of Theorem 5.3.1, where A is the matrix ∗-algebra EndG(H).

5.3.3 Representation theory of the symmetric group

Fix k ∈ N and a finite-dimensional vector space H with dim(H) = d. We consider the
natural action of the symmetric group Sk on H⊗k by permuting the indices, i.e.,

π · (h1 ⊗ · · · ⊗ hk) = hπ−1(1) ⊗ · · · ⊗ hπ−1(k) , hi ∈ H ,∀π ∈ Sk .

Based on classical representation theory of the symmetric group, we describe a repre-
sentative set for the action of Sk on H⊗k. The concepts and notation we introduce in this
section will be used throughout this chapter.

A partiton λ of k is a sequence (λ1, . . . , λd) of natural numbers with λ1 ≥ . . . λd > 0
and λ1 + · · · + λd = k. The number d is called the height of λ. We write λ ⊢d k if λ is a
partition of k with height d. Let Par(d, k) := {λ : λ ⊢d k}. The Young shape Y (λ) of λ
is the set

Y (λ) := {(i, j) ∈ N2 : 1 ≤ j ≤ d, 1 ≤ i ≤ λj} .

Following the French notation [Pro07], for an index j0 ∈ [d], the j0-th row of Y (λ) is
set of elements (i, j0) in Y (λ). Similarly, fixing an element i0 ∈ [λ1], the i0-th column of
Y (λ) is set of elements (i0, j) in Y (λ). We label the elements in Y (λ) from 1 to k according
the lexicographic order on their positions. Then the row stabilizer Rλ of λ is the group
of permutations π of Y (λ) with π(L) = L for each row L of Y (λ). Similarly, the column
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stabilizer Cλ of λ is the group of permutations π of Y (λ) with π(L) = L for each column
L of Y (λ).

For λ ⊢d k, a λ-tableau is a function τ : Y (λ) → N. A λ-tableau is semistandard if
the entries are non-decreasing in each row and strictly increasing in each column. Let
Tλ,d be the collection of semistandard λ-tableaux with entries in [d]. We write τ ∼ τ ′ for
λ-tableaux τ, τ ′ if τ ′ = τr for some r ∈ Rλ. Let e1, . . . , ed be the standard basis of H. For
any τ ∈ Tλ,d, define uτ ∈ H⊗k as

uτ :=
∑
τ ′∼τ

∑
c∈Cλ

sgn(c)
⊗

y∈Y (λ)

eτ ′(c(y)) . (5.8)

Here the Young shape Y (λ) is ordered by concatenating its rows. Then the matrix set

{Uλ : λ ⊢d k} with Uλ = [uτ : τ ∈ Tλ,d] (5.9)

is a representative for the natural action of Sk on H⊗k [LPS17, Section 2.1]. Moreover,
we have

|Par(d, k)| ≤ (k + 1)d and |Tλ,d| ≤ (k + 1)d(d−1)/2 ,∀λ ∈ Par(d, k) . (5.10)

5.4 Efficient approximation of the regularized divergence of
channels

For α ∈ (1,∞), the regularized sandwiched α-Rényi divergence between channels NX→Y

and MX→Y is defined as

D̃reg
α (N∥M) := lim

k→∞

1

k
D̃α(N⊗k∥M⊗k) . (5.11)

The regularized sandwiched Rényi divergence between channels can be used to obtain
improved characterization of many information processing tasks such as channel discrim-
ination [FF21a, FF21b]. However, the sandwiched Rényi divergence between channels is
non-additive in general [FFRS20] and it is unclear whether its regularization can be com-
puted efficiently. Ref. [FF21b] provides a converging hierarchy of upper bounds on the
regularized divergence between channels:

Theorem 5.4.1 ([FF21b]). Let α ∈ (1,∞) and N ,M be completely positive maps from
L (X) to L (Y ). Then for any k ≥ 1,

1

k
D#

α (N⊗k∥M⊗k)− 1

k

α

α− 1
(d2 + d) log(k + d) ≤ D̃reg

α (N∥M) ≤ 1

k
D#

α (N⊗k∥M⊗k) ,

where d = dimX dimY .

We note that 1
kD

#
α (N⊗k∥M⊗k) is decreasing in k (since the D# channel divergence is

subadditive). Moreover, D#
α (N⊗k∥M⊗k) can be written in terms of a convex program as

([FF21b])

1

α− 1
log min

A
X⊗kY ⊗k≥0

∥trY ⊗k(AX⊗kY ⊗k)∥∞ s.t. (JN⊗k
) ≤ (JM⊗k

)#1/αAX⊗kY ⊗k .

(5.12)
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Therefore, Theorem 5.4.1 establishes that D̃reg
α (N∥M) can be approximated by 1

kD
#
α (N⊗k∥M⊗k)

with arbitrary accuracy for sufficiently large k in finite time. Namely, if we take k =
⌈ 8αd3

(α−1)ϵ⌉ then we have

|D̃reg
α (N∥M)− 1

k
D#

α (N⊗k∥M⊗k)| ≤ ϵ .

However, the size of Program (5.12) grows exponentially with k.

5.4.1 Exploiting symmetries to simplify the problem

In this section, we will show how the symmetries of Program (5.12) can be used to sim-
plify this optimization problem and solve it in time polynomial in k. We first focus on
the natural symmetries arising due to invariance under permutation of physical systems.
In Section 5.4.2, we show how additional symmetries can be utilized to further simplify
the problem. Our approach can be summarized as follows: First, we show that pro-
gram (5.12) is invariant with respect to the action of the symmetric group. Using this
observation, we show that the program can be transformed into an equivalent program
with polynomially many constraints, each of polynomial size in k. In order to show this,
we use the block-diagonal decomposition given by Lemma 5.3.4. A naive implementation
of this transformation, however, involves exponential time computations. We show that
the simplified form of the program can be directly computed in poly(k) time.

Recall that, for every π ∈ Sk, we consider the action of π on k copies of a finite
dimensional Hilbert space H as

π · (h1 ⊗ · · · ⊗ hk) = hπ−1(1) ⊗ · · · ⊗ hπ−1(k) , hi ∈ H , ∀i ∈ [k] .

Let PX(π) and PY (π) be the permutation matrices corresponding to the action of π
on X⊗k and Y ⊗k, respectively. Note that the action of π on (X ⊗ Y )⊗k corresponds
to the simultaneous permutation of the X and Y tensor factors and the correspond-
ing permutation matrix, when the subsystems are reordered as X⊗k ⊗ Y ⊗k, is given by
PX⊗Y (π) = PX(π)⊗ PY (π).

The following lemma shows that the feasible region of the convex program (5.12) may
be restricted to the permutation invariant algebra of operators on X⊗k ⊗ Y ⊗k without
changing the optimal value.

For a linear operator X ∈ L (H⊗k), we define its group average operator denoted X
as

X :=
1

|Sk|
∑
π∈Sk

PH(π)XPH(π)
∗ .

Lemma 5.4.2. The convex program of Eq. (5.12) has an optimal solution A ∈ EndSk
(
X⊗k ⊗ Y ⊗k

)
.

Proof. It is straightforward to check that by Slater’s condition the optimal value is achieved
by a feasible solution. We will prove that for every feasible solution A, the corresponding
group-average operator A is a feasible solution with an objective value not greater than
the original value.
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To simplify the notation, let Π(π) := PX⊗Y (π). We have

A #1/α J
M⊗k

=

 1

|Sk|
∑
π∈Sk

Π(π)AΠ(π)∗

#1/α

 1

|Sk|
∑
π∈Sk

Π(π)JM⊗k
Π(π)∗

 (5.13)

≥
∑
π∈Sk

(
1

|Sk|
Π(π)AΠ(π)∗

)
#1/α

(
1

|Sk|
Π(π)JM⊗k

Π(π)∗
)

(5.14)

=
1

|Sk|
∑
π∈Sk

Π(π)
(
A#1/αJ

M⊗k
)
Π(π)∗ (5.15)

≥ 1

|Sk|
∑
π∈Sk

Π(π)
(
JN⊗k

)
Π(π)∗ (5.16)

= JN⊗k
, (5.17)

where Eq. (5.13) holds since JM⊗k ∈ EndSk
(
X⊗k ⊗ Y ⊗k

)
, inequality (5.14) follows from

the joint-concavity property of the geometric mean, Eq. (5.15) is a consequence of proper-
ties 2 and 3 of the geometric mean, inequality (5.16) holds by feasibility of A, and finally,

Eq. (5.17) follows since JN⊗k ∈ EndSk
(
X⊗k ⊗ Y ⊗k

)
.

For the objective function, note that since Π(π) = PX(π)⊗ PY (π), we have

trY ⊗k

(
Π(π)AΠ(π)T

)
= PX(π) trY ⊗k(A)PX(π)T .

Therefore, by the triangle inequality and the unitary invariance of the operator norm, we
have

∥trY ⊗k

(
A
)
∥∞ =

∥∥∥∥∥∥trY ⊗k

 1

|Sk|
∑
π∈Sk

Π(π)AΠ(π)T

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥ 1

|Sk|
∑
π∈Sk

P (πX)trY ⊗k(A)P (πX)T

∥∥∥∥∥∥
∞

≤ 1

|Sk|
∑
π∈Sk

∥∥P (πX)trY ⊗k(A)P (πX)T
∥∥
∞

= ∥trY ⊗k(A)∥∞.

This concludes the proof.

Recall that in the convex program (5.12), the number of the variables and the size of the
PSD constraints grow exponentially with k. Using the observation made in Lemma 5.4.2,
we show that this optimization problem can be transformed into a form having a number
of variables and constraints that is polynomial in k. Before doing so, we introduce some
notation.

Let H ∈ {X,Y,X ⊗ Y } and dH := dimH. The algebra of Sk-invariant operators on
H⊗k is given by

EndSk

(
H⊗k

)
= {A ∈ L (H⊗k) : PH(π)APH(π)

∗ = A, ∀π ∈ Sk} .
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Let ϕH denote the linear map defined in Eq. (5.7) that maps the elements of EndSk
(
H⊗k

)
into block-diagonal form:

ϕH : EndSk

(
H⊗k

)
→

⊕
λ∈Par(dH,k)

CmH
λ ×mH

λ

A 7→
⊕

λ∈Par(dH,k)

(⟨Auγ , uτ ⟩)τ,γ∈Tλ,dH
. (5.18)

In this decomposition, the number of blocks and the size of the blocks are bounded by a
polynomial in k. In particular, we have

tH := |Par(dH, k)| ≤ (k + 1)dH , (5.19)

mH
λ := |Tλ,dH | ≤ (k + 1)dH(dH−1)/2 , ∀λ ∈ Par(dH, k) . (5.20)

From Eqs. (5.19) and (5.20), we get

mH := dim
[
EndSk(H⊗k)

]
≤ (k + 1)d

2
H (5.21)

Theorem 5.4.3. The channel divergence D#
α (N⊗k∥M⊗k) can be formulated as a convex

program with O
(
kd

2
)
variables and O

(
kd
)
PSD constraints involving matrices of size at

most (k + 1)d(d−1)/2, where d = dXdY .

Proof. By Lemma 5.4.2 and Property 2 of the α-geometric mean, after a permutation of
the X and Y tensor factors, the formulation (5.12) for D#

α (N⊗k∥M⊗k) can be written as

1

α− 1
log min

A,y
y (5.22)

s.t. trY ⊗k(A) ≤ y idX⊗k , (5.23)(
JN )⊗k ≤

(
JM)⊗k

#1/αA , (5.24)

where A ∈ P
(
(X ⊗ Y )⊗k

)
∩ EndSk

(
(X ⊗ Y )⊗k

)
and y ∈ R.

For H ∈ {X,X ⊗ Y }, let ϕH : EndSk(H⊗k) →
⊕tH

i=1CmH
i ×mH

i be the bijective linear
map defined in Eq. (5.18) which block-diagonalizes the corresponding invariant algebra,
where to simplify the notation, the blocks are indexed by i ∈ [tH] instead of λ ∈ Par(dH, k).
For Z ∈ EndSk(H⊗k), we denote the i-th block of ϕH(Z) by JϕH(Z)Ki. Note that by
Lemma 5.3.4, ϕH preserves positive semidefiniteness. Therefore, since trY ⊗k(A), idX⊗k ∈
EndSk(X⊗k), the constraint (5.23) can be mapped by ϕX into the direct sum form. By

Lemma 5.3.4 and Property 2 of the α-geometric mean, we have ϕX⊗Y

((
JM)⊗k

#1/αA
)
=

ϕX⊗Y

((
JM)⊗k

)
#1/αϕX⊗Y (A). Therefore, by Property 5 of the α-geometric mean (direct

sum property), the constraint (5.24) can be decomposed into constraints involving the
smaller diagonal blocks as well. The transformed convex program can be written as

1

α− 1
log min y

s.t.
q(
ϕX ◦ trY ⊗k ◦ ϕ−1

X⊗Y

)
(⊕lAl)

y
j
≤ y idmX

j
, j ∈

[
tX
]

r
ϕX⊗Y

((
JN )⊗k

)z
i
≤

r
ϕX⊗Y

((
JM)⊗k

)z
i
#1/αAi , i ∈

[
tX⊗Y

]
Ai ∈ P

(
CmX⊗Y

i

)
, i ∈

[
tX⊗Y

]



85

The statement of the theorem follows since for H ∈ {X,X⊗Y }, by Eq. (5.19), we have
tH ≤ (k+1)dH and by Eq. (5.20), for every i ∈

[
tH
]
, we have mH

i ≤ (k+1)dH(dH−1)/2.

Note that a direct implementation of the transformation mapping the convex pro-
gram (5.12) into the polynomial-size form of Theorem 5.4.3 involves exponential compu-
tations. Next, we show how to do this efficiently.

A basis for the invariant subspace. The canonical basis of the matrix ∗-algebra
EndSk

(
H⊗k

)
consists of zero-one incidence matrices of orbits of the group action on pairs

(see [KPS07, LM11] for more information). In particular, let the standard basis of H⊗k

be indexed by i ∈
[
(dH)

k
]
. Then the orbit of the pair (i, j) ∈

[
(dH)

k
]2

under the action
of the group Sk is given by

O(i, j) = {(π(i), π(j)) : π ∈ Sk},

where π(i) is the index of the basis vector PH(π)|i⟩. With this notation, for every A ∈
EndSk

(
H⊗k

)
, and every π ∈ Sk, we have Aij = Aπ−1(ij) = Aπ−1(i),π−1(j). The set[

(dH)
k
]2

decompose into orbits OH
1 , . . . , O

H
mH under the action of Sk. For each r ∈ [mH],

we construct a zero-one matrix CH
r of size (dH)

k × (dH)
k given by

(CH
r )ij =

{
1 if (i, j) ∈ OH

r ,

0 otherwise.
(5.25)

The set CH = {CH
1 , . . . , C

H
mH} forms an orthogonal basis of EndSk

(
H⊗k

)
with mH ≤

(k + 1)d
2
H .

Enumerating all orbits. For each r = 1, . . . ,mH, we need to compute a representa-
tive element of OH

r . In order to do so, we define a matrix E(i,j) ∈ ZdH×dH
≥0

(E(i,j))a,b := |{v ∈ [k] : iv = a, jv = b}| , ∀a, b ∈ [dH] . (5.26)

By the construction in Eq. (5.26), for two pairs (i, j), (i′, j′) ∈ [dH]
k × [dH]

k, we have
(i′, j′) = (π(i), π(j)), for some π ∈ Sk if and only if E(i,j) = E(i′,j′). Therefore, there
is a one-to-one correspondence between the orbits

{
OH

r

}
r∈[mH]

and E ∈ ZdH×dH
≥0 such

that
∑

a,bEa,b = k. Therefore, we can determine a representative element for every OH
r in

poly(k) time by listing all non-negative integer solutions of the equation
∑

a,b∈[dH]Ea,b = k.

Any matrix in EndSk(H⊗k) can be written in the basis CH as

M(z) :=
mH∑
r=1

zrC
H
r , for some z ∈ C[mH] . (5.27)

Using the representative matrix for the action of Sk on the space H⊗k in Eq. (5.9),
we get

ϕH(M(z)) =

mH∑
r=1

zrϕH
(
CH
r

)
=

mH∑
r=1

zr
⊕

λ⊢dHk

UT
λ C

H
r Uλ . (5.28)
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Note that Uλ is real matrix for all λ ∈ Par(dH, k).
We show that, for every r ∈ [mH], ϕH(C

H
r ) can be computed in poly(k) time. In

order to do so, we show how to efficiently compute each block UT
λ C

H
r Uλ indexed by λ ∈

Par(dH, k). This in fact boils down to efficiently computing uTτ C
H
r uγ , for every τ, γ ∈

Tλ,dH . We note that uτ , uγ , and C
H
r all have exponential size in k.

For H ∈ {X,Y,X ⊗ Y }, let WH := H⊗H. For every p = (i, j) ∈ [dH]
2, define

ap := ei ⊗ ej ∈WH ,

where {ei}i∈[dH] is the standard basis of H. Then the set B :=
{
ap : p ∈ [dH]

2
}
is a basis

of WH. Let B∗ :=
{
a∗p : p ∈ [dH]

2
}
be the corresponding dual basis for W ∗

H.

Using the natural identification of
[
(dH)

k
]2

and ([dH]
2)k, for every r ∈ [mH], we map

OH
r ⊆

[
(dH)

k
]2

to OH
r ⊆ ([dH]

2)k. Then corresponding to each operator CH
r , we define

CH
r :=

∑
(p1,...,pk)∈OH

r

ap1 ⊗ · · · ⊗ apk ∈W⊗k
H . (5.29)

Note that CH
r can be obtained from vec

(
CH
r

)
by applying the permutation operator which

maps
(
H⊗k

)⊗2
to
(
H⊗2

)⊗k
. For every (p1, . . . , pk) ∈

[
(dH)

2
]k
, let

m(p1, . . . , pk) := a∗p1 · · · a
∗
pk

∈ Ok(WH) (5.30)

be a degree k monomial expressed in the basis B∗. Note that, for a fixed r ∈ [mH],
m(p1, . . . , pk) is the same monomial, for every (p1, . . . , pk) ∈ OH

r . We denote this monomial

by m
(
OH

r

)
. Moreover,

{
OH

r

}
r∈[mH]

partitions
[
(dH)

2
]k

into disjoint subsets. Therefore,

there is a bijection between
{
OH

i

}
i∈[mH]

and the set of degree k monomials expressed in

the basis B∗.
Let ζ : (W ∗

H)
⊗k → Ok(WH) be the linear map defined as

ζ(w∗
1 ⊗ · · · ⊗ w∗

k) := w∗
1 · · ·w∗

k , ∀w∗
1, . . . , w

∗
k ∈W ∗

H .

To simplify the notation we write w = ζ(w), for every w ∈ (W ∗
H)

⊗k.
For every λ ∈ Par(dH, k) and τ, γ ∈ Tλ,dH , define the polynomial fτ,γ ∈ C[xi,j : i, j ∈

[dH]] by

fτ,γ(X) :=
∑
τ ′∼τ
γ′∼γ

∑
c,c′∈Cλ

sgn(cc′)
∏

y∈Y (λ)

xτ ′c(y),γ′c′(y) , (5.31)

for X = (xi,j)
dH
i,j=1 ∈ CdH×dH . Refs. [LPS17, Proposition 3] and [Gij09, Theorem 7] show

that the polynomial in Eq. (5.31) can be computed (i.e., expressed as a linear combination
of monomials in variables xi,j) in polynomial time.

Lemma 5.4.4. For every λ ∈ Par(dH, k) and every τ, γ ∈ Tλ,dH, expressing the polynomial
fτ,γ(X) as a linear combination of monomials can be done in poly(k) time, for fixed dH.

We use this to prove the following lemma:
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Lemma 5.4.5 (Lemma 2, [LPS17]). Let λ ∈ Par(dH, k), τ, γ ∈ Tλ,dH, and r ∈ [mH].
Then uTτ C

H
r uγ can be computed in polynomial time in k, for fixed dH.

Proof. The proof can be found in [LPS17], but we include a concise proof for the reader’s
convenience. For every r ∈ [mH], it is straightforward to see that uTτ C

H
r uγ = (uτ ⊗

uγ)
Tvec

(
CH
r

)
. Therefore, by a permutation of the tensor factors, we get uTτ C

H
r uγ = w CH

r ,

for w ∈ (W ∗
H)

⊗k given by

w =
∑
τ ′∼τ
γ′∼γ

∑
c,c′∈Cλ

sgn(cc′)
⊗

y∈Y (λ)

(A)τ ′(c(y)),γ′(c′(y)) ,

where A ∈ (W ∗)dH×dH with (A)x,y = a∗(x,y). Then∑
r∈[mH]

(
uTτ C

H
r uγ

)
m(OH

r ) =
∑

r∈[mH]

(
w CH

r

)
m(OH

r )

=
∑

(p1,...,pk)∈([dH]2)k

(w (ap1 ⊗ · · · ⊗ apk)) a
∗
p1 · · · a

∗
pk

= w =
∑
τ ′∼τ
γ′∼γ

∑
c,c′∈Cλ

sgn(cc′)
∏

y∈Y (λ)

(A)τ ′(c(y)),γ′(c′(y))

= fτ,γ(A) .

Therefore, uTτ C
H
r uγ is exactly the coefficient of the monomial m(OH

r ) in fτ,γ(A), which
by Lemma 5.4.4 can be computed in poly(k) time.

Theorem 5.4.6. There exists an algorithm which given as input JM, JN , and k ∈ N,
outputs in poly(k) time (for fixed dim(X⊗Y )) the description of a convex program of size

described in Theorem 5.4.3 for computing D#
α (N⊗k∥M⊗k).

Proof. ForH ∈ {X⊗Y,X}, let
{
OH

r

}
r∈[mH]

denote the set of orbits of pairs and
{
CH
r

}
r∈[mH]

denote the canonical basis of EndSk
(
H⊗k

)
defined in Eq. (5.25). For every r ∈ [mX⊗Y ],

we define Dr := trY ⊗k

(
CX⊗Y
r

)
. Note that Dr ∈ EndSk

(
X⊗k

)
. Then by Theorem 5.4.3,

D#
α (N⊗k∥M⊗k) can be formulated as the following convex program:

1

α− 1
log min y

s.t.
mX⊗Y∑
r=1

zr JϕX(Dr)Kj ≤ y idmX
j
, j ∈

[
tX
]

r
ϕX⊗Y

((
JN )⊗k

)z
i
≤

r
ϕX⊗Y

((
JM)⊗k

)z
i
#1/α

mX⊗Y∑
r=1

zr
q
ϕX⊗Y (C

X⊗Y
r )

y
i
, i ∈

[
tX⊗Y

]
mX⊗Y∑
r=1

zr
q
ϕX⊗Y (C

X⊗Y
r )

y
i
≥ 0 , i ∈

[
tX⊗Y

]
y, zr ∈ R , r ∈

[
mX⊗Y

]
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Here, we use the notation introduced in Theorem 5.4.3. By Lemma 5.4.5, the block
diagonal matrices ϕX⊗Y (C

H
r ) can be computed in poly(k) time, for every r ∈ [mH].

Therefore, to complete the proof it suffices to show how to expand
(
JN )⊗k

,
(
JM)⊗k

in
the basis

{
CX⊗Y
r

}
r∈[mX⊗Y ]

and Dr in the basis
{
CX
r

}
r∈[mX ]

, for every r ∈ [mX⊗Y ].

For
(
JM)⊗k ∈ EndSk

(
(X ⊗ Y )⊗k

)
, if we take an arbitrary representative element

(p1, . . . , pk) of O
X⊗Y
r , for every r ∈

[
mX⊗Y

]
, and define

zr :=
k∏

t=1

(JM)pt ,

then we have
(
JM)⊗k

=
∑mX⊗Y

r=1 zrC
X⊗Y
r . The same method can be used for

(
JN )⊗k

.
Recall that, for every r ∈

[
mX⊗Y

]
, we have

CX⊗Y
r =

∑
(i,j)∈OX⊗Y

r

|i⟩⟨j| ,

where i =
(
iX1 i

Y
1 · · · iXk iYk

)
and j =

(
jX1 j

Y
1 · · · jXk jYk

)
. For any representative element (i, j)

of OX⊗Y
r if iY = (iY1 · · · iYk ) ̸= jY = jY1 · · · jYk then trY ⊗k (|i⟩⟨j|) = 0. Therefore,

Dr =
∑

(i,j)∈OX⊗Y
r

iY =jY

|iX⟩⟨jX |.

Moreover, for any representative element (i, j) of OX⊗Y
r , we can determine the orbit OX

t

that contains (iX , jX) in poly(k) time. So if we define α := |{π ∈ Sk : π(iX) = iX , π(jX) =
jX}|, then

Dr = αCX
t .

Furthermore, we have α =
∏

a,b∈[dX ][(E
(iX ,jX))a,b]! with E(iX ,jX) ∈ ZdX×dX

≥0 defined in
Eq. (5.26). This concludes the proof.

Alternatively, the regular ∗-representation approach can be used to show that the
convex program (5.12) can be computed in poly(k) time. For H ∈ {X,X ⊗ Y }, let
ψH be the regular ∗-representation of EndSk

(
H⊗k

)
, defined explicitly in Theorem 5.3.2.

We denote by {OH
r }r∈[mH] and {CH

r }r∈[mH], the orbits of pairs and the canonical basis

of EndSk(H⊗k), following the construction in Eq. (5.25). The convex program can be
reformulated as

1

α− 1
log min y

s.t.
∑mX⊗Y

r=1 xr ψX(Dr) ≤ yidmX ,

ψX⊗Y

((
JN )⊗k

)
≤ ψX⊗Y

((
JM)⊗k

)
#1/α

∑mX⊗Y

r=1 xr ψX⊗Y

(
CX⊗Y
r

)
,∑

r xr ψX⊗Y

(
CX⊗Y
r

)
≥ 0 ,

x1, . . . , xmX⊗Y , y ∈ R .
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Recall that ψH
(
EndSk

(
H⊗k

))
⊆ CmH×mH

, where mH ≤ (k + 1)d
2
H .

Note that ∥CH
r ∥ :=

√
⟨CH

r , C
H
r ⟩ equals the size of the orbit OH

r . Using the structure
of the orbits, we can compute the multiplication parameters of EndSk

(
H⊗k

)
with respect

to the orthogonal basis {CH
1 , . . . , C

H
mH} as

ptrs =
∣∣∣{l ∈ [(dH)k] : (i, l) ∈ OH

r , (l, j) ∈ OH
s

}∣∣∣ ,
where (i, j) ∈ OH

t . Here, ptrs does not depend on the choice of i and j. Let Es, Er, Et

be the matrices defined in Eq. (5.26) for orbits OH
s , O

H
r , O

H
t , respectively. The following

proposition implies that ptrs can be computed in poly(k) time.

Proposition 5.4.7 ([Gij09]). The numbers ptrs are given by

ptrs =
∑
B

dH∏
x,y=1

(
(Et)x,y

Bx,1,y, . . . , Bx,dH,y

)
,

where the sum runs over all B ∈ ZdH×dH×dH
≥0 that satisfy

∑
z Bx,y,z = (Er)x,y,

∑
xBx,y,z =

(Es)y,z,
∑

y Bx,y,z = (Et)x,z for all x, y, z ∈ [dH] and
∑

x,y,z∈[dH]Bx,y,z = k.

Table 5.1 compares the reduction in the size of the matrices for different values of k,
using both methods of regular ∗-representation and block-diagonal decomposition. The
first column contains dim

[
L (X⊗k ⊗ Y ⊗k)

]
, for X = Y = C2 and different values of k.

The numbers in the second column correspond to the reduced matrix sizes using regular
∗-representation and the third column contains the block sizes in the block-diagonal de-
composition. As illustrated by these examples, the size of the variables and the constraint
matrices can be significantly reduced by using block-diagonalization. While the reduction
obtained by using the regular ∗-representation is not as strong, it has the advantage that
it is easy to compute using the explicit formula given in Eq. (5.5).

k dimL (X⊗k ⊗ Y ⊗k) dimEndSk
(
X⊗k ⊗ Y ⊗k

)
Block sizes

2 256 136 10, 6

3 4096 816 20, 20, 4

4 65536 3876 45, 35, 20, 15, 1

Table 5.1: Dimensions of L (X⊗k ⊗Y ⊗k), EndSk(X⊗k ⊗Y ⊗k), and the block sizes in the
block-diagonal form with X = Y = C2.

5.4.2 Beyond permutation invariance

So far, we have only focused on the permutation symmetries of convex optimization prob-
lem (5.12) arising from considering multiple copies of quantum channels. In this section,
we discuss how the group symmetries of the underlying channels may be used to further
simplify these convex programs. In particular, we show how the symmetries of the chan-
nels can be combined with the permutation symmetry and expressed as invariance under
the action of a single group. Theorem 5.3.1 is then used to simplify the programs.

Let G be a finite group, and denote by Gk, the k-fold direct product of G. Consider
the group H := Gk ⋊γ Sk, an outer semi-direct product of Gk and Sk, defined as follows:
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� The underlying set is the Cartesian product of the sets Gk and Sk, i.e., the set of
ordered pairs (g, π), where g = (g1, g2, . . . , gk) ∈ Gk and π ∈ Sk.

� γ : Sk → Aut
(
Gk
)
is a group homomorphism given by

γ(π) (g1, g2, . . . , gk) =
(
gπ(1), gπ(2), . . . , gπ(k)

)
,

for every π ∈ Sk and g = (g1, g2, . . . , gk) ∈ Gk.

� The group operation ∗ is defined for any pair (g, π), (g′, π′) ∈ H as

(g′, π′) ∗ (g, π) = (g′γ(π′)(g), π′π).

Consider an arbitrary action of G on a finite dimensional Hilbert space H, and the
natural action of Sk on H⊗k defined for every π ∈ Sk as

π · (h1 ⊗ · · · ⊗ hk) = hπ−1(1) ⊗ · · · ⊗ hπ−1(k) , hi ∈ H , ∀i ∈ [k] . (5.32)

Then it is easy to check that the following defines an action of H = Gk ⋊γ Sk on H⊗k:

(g, π) · (h1 ⊗ · · · ⊗ hk) = g1 · hπ−1(1) ⊗ · · · ⊗ gk · hπ−1(k) , hi ∈ H , ∀i ∈ [k] , (5.33)

for all π ∈ Sk and g ∈ Gk. In particular, we have

(g′, π′) · ((g, π) · (h1 ⊗ · · · ⊗ hk)) =
(
(g′, π′) ∗ ((g, π)) · (h1 ⊗ · · · ⊗ hk)

)
,

for every (g, π), (g′, π′) ∈ H.
For H ∈ {X,Y }, let ρH : G → GL(H) be the representation of G defined by its

action on H and ρX⊗Y := ρX ⊗ ρY . Let σH denote the representation of Gk on H⊗k

given by σH(g) := ρH(g1) ⊗ . . . ⊗ ρH(gk), for every g ∈ Gk. As before, denote by PH
the representation of Sk on H⊗k defined by the action (5.32). Then the representation
of H = Gk ⋊γ Sk defined above on H⊗k is given by σH(g)PH(π), for every (g, π) ∈ H.
Note that in (5.33), for H = X ⊗ Y , the action of (g, π) on (X ⊗ Y )⊗k corresponds
to the simultaneous permutation of the X and Y tensor factors followed by applying
ρX(gi) ⊗ ρY (gi) on i-th X ⊗ Y tensor factor. When the subsystems are reordered as
X⊗k ⊗ Y ⊗k, this action is simply given by σX(g)PX(π) ⊗ σY (g)PY (π). With the above
notation, we are now ready to state the following proposition:

Proposition 5.4.8. Let NX→Y and MX→Y be a quantum channels with Choi operators
JN , JM ∈ EndG(X ⊗ Y ), for some finite group G. Then the convex program (5.12) has
an optimal solution A ∈ EndH(X⊗k ⊗ Y ⊗k), where H = Gk ⋊γ Sk.

Proof. The proof is based on convexity and exactly follows the steps of the proof of
Lemma 5.4.2, except the group average operator Ā is now obtained with respect to the
group H.

Next, we discuss the irreducible representations of Gk ⋊γ Sk and the corresponding
multiplicities for the action of H on H⊗k, defined in Equation (5.33). First, we need to
introduce some notations.
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Suppose that G has t irreducible representations and let mi denote the multiplicity
of the i-th irreducible representation in the representation ρH of G on H. Let T (k) be
the collection of all t-tuples (k1, . . . , kt) of non-negative integers such that

∑t
i=1 ki = k.

For (k1, . . . , kt) ∈ T (k) and (λ1, . . . , λt) satisfying λi ⊢mi ki, for every i ∈ [t], we write
(λ1, . . . , λt) ⊢m (k1, . . . , kt), where m = (m1, . . . ,mt). We then use a result from [Pol19].

Proposition 5.4.9 (Proposition 3.1.1, [Pol19]). The irreducible representations of H =
Gk ⋊γ Sk are labeled by

{(k1, . . . , kt), (λ1, . . . , λt) : (k1, . . . , kt) ∈ T (k), (λ1, . . . , λt) ⊢m (k1, . . . , kt)}.

and the corresponding multiplicities are
∏t

i=1 |Tλi,mi
|.

Note that |T (k)| =
(
k+t−1
t−1

)
, where t, the number of irreducible representations of G,

is a property of G and independent of k. Since G is a finite group, we have t ≤ |G|.
Moreover, for a fixed tuple (k1, . . . , kt) ∈ T (k), by Inequality (5.19), we have the size of
the set {(λ1, . . . , λt) : (λ1, . . . , λt) ⊢ (k1, . . . , kt)} is at most

∏t
i=1(ki + 1)mi . Since mi ≤

dim(H), for every i ∈ [t], the number of irreducible representations of H is polynomial
in k. Since |Tλi,mi

| ≤ (ki + 1)mi(mi−1)/2, the multiplicity of the corresponding irreducible

representation of H is at most
∏t

i=1 |Tλi,mi
| ≤

∏t
i=1(ki + 1)mi(mi−1)/2.

Application to the generalized amplitude damping channel

As an application, we consider the generalized amplitude damping (GAD) channel defined
as

Ap,q(ρ) =

4∑
i=1

AiρA
∗
i , p, q ∈ [0, 1] (5.34)

with the Kraus operators

A1 =
√
1− q(|0⟩⟨0|+

√
1− p|1⟩⟨1|), A2 =

√
p(1− q)(|0⟩⟨1|),

A3 =
√
q(
√

1− p|0⟩⟨0|+ |1⟩⟨1|), A4 =
√
pq|1⟩⟨0|.

(5.35)

The GAD channel reduces to the conventional amplitude damping (AD) channel, when
q = 0. In this case we have X = Y = C2. Let Np,q be the Choi matrix of Ap,q. Note that
for the Pauli Z operator given by

Z =

(
1 0
0 −1

)
,

we have, (Z ⊗ Z)Np,q(Z ⊗ Z) = Np,q for all p, q ∈ [0, 1]. Let G = Z2 be the cyclic group
of order 2 and define the group representation ρ : G → GL(C2) given by ρ(1) = Z. Then
for the representation ρX⊗Y defined for every g ∈ Z2 as ρX⊗Y (g) = ρ(g) ⊗ ρ(g), we
have Np,q ∈ EndG(X ⊗ Y ). The representation ρX⊗Y has two irreducible representations,
which are both 1-dimensional (since G is an Abelian group). In this representation, the
multiplicities are (m1,m2) = (2, 2). Therefore, the multiplicities in the representation of
H = Gk⋊γ Sk on X⊗k⊗Y ⊗k are at most (k1+1)(k2+1) ≤ (k1+k2+2)2/4 = (k+2)2/4.
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Furthermore, since t = 2, we have |T (k)| = k, and for any (k1, k2) ∈ T (k), the size
of the set {(λ1, λ2) : (λ1, λ2) ⊢ (k1, k2)} is at most (k1 + 1)2(k2 + 1)2 ≤ (k + 2)4/16.
Therefore the number of irreducible representations of H is at most k(k+2)4/16. Since the
dimension of the invariant subspace is equal to the sum of squares of the multiplicities of the
irreducible representations, we have dimEndH(X⊗k⊗Y ⊗k) ≤

(
(k + 2)2/4

)2
k(k+2)4/16 =

k(k + 2)8/256.
Therefore, in this example, by considering the additional Z symmetry discussed above,

we can reduce the dimension of the invariant subspace from O
(
k16
)
for the permutation

action (see Eq. (5.21)) to O
(
k9
)
, when we combine the two symmetries. Moreover, the

maximum block size is reduced from O
(
k6
)
(see Eq. (5.20)) to O

(
k2
)
. This shows the

potential of the approach introduced above for channels with stronger symmetries.
In the following table, we compare the dimensions of the Sk-invariant and H-invariant

subspace of operators for X = Y = C2 and different values of k. We also list the number
of irreducible representations and the maximum block size of the invariant operators in
the block-diagonal form.

k
Sk Gk ⋊Sk

dimEndSk (H⊗k) max.block size #-irreps dimEndG
k⋊Sk (H⊗k) max.block size #-irreps

2 136 10 2 36 4 5
3 816 20 3 120 6 8
4 3876 45 5 330 9 14
5 15504 84 6 792 12 20
6 54264 140 9 1716 16 30
7 170544 224 11 3432 20 40
8 490314 360 15 6435 25 55
9 1307504 540 18 11440 30 70
10 3268760 770 23 19448 36 91

Table 5.2: The comparison of the reductions obtained by considering invariance under the
action of Sk and Gk ⋊Sk on H⊗k, where H = C2 ⊗ C2.

We use our method for efficient computation of the #-Rényi divergence between mul-
tiple copies of channels to provide improved upper bounds on the regularized Umegaki
divergence between the AD channel A0.3,0 and the GAD channel Ap,0.9, over the range
p ∈ [0.4, 0.8]. Note that the Umegaki divergence between these channels is known to be
non-additive [FFRS20], i.e., Dreg(A0.3,0∥Ap,0.9) > D(A0.3,0∥Ap,0.9). Figure 5.1 illustrates

the improvement obtained using D#
α on k = 1 and k = 6 copies compared to D̂α, for α = 2.

The convex programs are implemented in MATLAB using the CVX package [GB14] and
the CVXQUAD package [FSP18], via the MOSEK solver [ApS19]. Computations in this
experiment were done using Intel(R) Core i5-6300U with 16GB of RAM memory. The
running time for k = 6 copies on our program is less than 45 minutes while the program
without using symmetry cannot be carried out due to insufficient memory. We note that
without using the symmetry reduction the matrices are of size 4096× 4096.
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Figure 5.1: Comparison between different bounds on Dreg(A0.3,0∥Ap,0.9) over the range
p ∈ [0.4, 0.8].

5.5 Efficient bounds on classical capacity of quantum chan-
nels

The (unassisted) classical capacity of a quantum channel is defined as the maximum rate at
which classical information can be transmitted over the quantum channel in the asymp-
totic limit of many channel uses. For a quantum channel N , the classical capacity is
characterized by the regularized Holevo information [Hol98, SW97] as

C(N ) = lim
k→∞

1

k
χ(N⊗k) ,

where χ(N ) is the Holevo capacity of the channel N defined as

χ(N ) := max
E={pi,ρi}i

H

(∑
i

piρi

)
−
∑
i

piH(N (ρi)) ,

where the maximization is over all quantum ensembles E = {pi, ρi}i. Here, H denotes
the von Neumann entropy, defined as H(σ) := −tr (ρ log ρ), for every positive semidefinite
operator ρ. Note that the Holevo information is in general non-additive [Has09].

We denote by Vcb(X,Y ) the set of constant bounded subchannels from L (X) to L (Y )
defined as

Vcb(X,Y ) := {M ∈ CP(X : Y ) : ∃σ ∈ D(Y ) s.t. MX→Y (ρ) ≤ σ, ∀ρ ∈ D(X)} .
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Let V(X,Y ) := {M ∈ CP(X : Y ) : β(JM
XY ) ≤ 1}, with β(JM

XY ) defined in terms of the
following SDP

β(JM
XY ) := min

RXY ,SY

tr(SY ) s.t. RXY ± (JM
XY )

TY ≥ 0 , idX ⊗ SY ±RTY
XY ≥ 0 ,

where (·)TY denotes the partial transpose on system Y . Note that the set V(X,Y ) is a
convex subset of Vcb(X,Y ) containing all the constant channels [WFT19].

Let D be a generalized quantum divergence. For any quantum channel NX→Y , define

Υ(D, k)(N ) := min
M∈V(X⊗k,Y ⊗k)

D(N⊗k∥M).

The following proposition provides upper bounds on the classical capacity of a quantum
channel.

Proposition 5.5.1 ([WFT19]). Let D be a generalized quantum divergence. If D is
bounded below by the Umegaki relative entropy on quantum states and the corresponding
channel divergence is subadditive under tensor product of channels, then, for any k ≥ 1,

C(N ) ≤ 1

k
Υ(D, k)(N ) .

Proof. The proof can be found in [WFT19], but we include a concise proof for the reader’s
convenience. As shown in [OPW97] the Holevo information can be written as a divergence
radius:

χ(N ) = min
σ∈D(Y )

max
ρ∈D(X)

D(N (ρ)∥σ)

= min
M∈Vcb(X,Y )

max
ρ∈D(X)

D(N (ρ)∥M(ρ))

≤ min
M∈V(X,Y )

max
ρ∈D(X)

D(N (ρ)∥M(ρ))

≤ min
M∈V(X,Y )

D(N∥M)

where we used the fact that if σ ≤ σ′ then D(ρ∥σ) ≥ D(ρ∥σ′) and the fact that V(X,Y ) ⊆
Vcb(X,Y ). So, for n, k ∈ N, we have

χ(N⊗nk) ≤ min
M∈V(X⊗nk,Y ⊗nk)

D(N⊗nk∥M)

≤ min
M∈V(X⊗k,Y ⊗k)

D(N⊗nk∥M⊗n),

where we used the fact that if M ∈ V(X⊗k, Y ⊗k), then M⊗n ∈ V(X⊗nk, Y ⊗nk). Since D
is bounded below by D and subadditive under tensor product of channels, we have

1

nk
χ(N⊗nk) ≤ min

M∈V(X⊗k,Y ⊗k)

1

k
D(N⊗k∥M) =

1

k
Υ(D, k)(N ).

Taking the limit as n→ ∞, we get the desired result.
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Note that by Proposition 5.2.1, for α ∈ (1, 2], we have

Υ(D̃α, k)(N ) ≤ Υ(D#
α , k)(N ) ≤ Υ(D̂α, k)(N ) ≤ Υ(Dmax, k)(N ).

Remark 5.5.2. If in addition the generalized quantum divergence D satisfies D̃α ≤ D,
for some α ∈ (1,∞), then 1

kΥ(D, k)(N ) is a strong converse bound, i.e., above this com-
munication rate, the error probability goes to 1.

Both Dmax and D̂α have the desired properties and were used in [WFT19] and [FF21a]
to obtain bounds on the classical capacity. On the other hand, D̃α is not always addi-
tive [FFRS20] so it cannot be used in general. The best-known general strong converse

bound is given by 1
kΥ(D̂α, k), and it is SDP computable [FF21a]. For D = D#

α , using the
formulation of the channel divergence given in Eqs. (5.2) and (5.3), the converse bound of
Proposition 5.5.1 can be written in terms of a convex program. For every k ≥ 1, we have

Υ(D#
α , k)(N ) =

1

α− 1
log min ∥trY ⊗k(A)∥∞

s.t. JN⊗k ≤ JM#1/αA ,

R± (JM)TY ⊗k ≥ 0 ,

(IX⊗k ⊗ S)±RT
Y ⊗k ≥ 0 ,

tr(S) ≤ 1 ,

A, JM, R ∈ P(X⊗k ⊗ Y ⊗k) , S ∈ P(Y ⊗k) .

(5.36)

Note that the optimization problem in Eq. (5.36) does not scale well with k since the
sizes of the constraint matrices grow exponentially fast. This bottleneck will be addressed
in the next section.

5.5.1 Exploiting symmetries to simplify the problem

Using a similar argument as in Lemma 5.4.2, one may restrict the feasible region of the
convex program (5.36) to the Sk-invariant subspace of operators.

Lemma 5.5.3. For every α ∈ (1,∞), the convex program (5.36) has an optimal solution
(A,R, JM, S), with A,R, JM ∈ EndSk

(
X⊗k ⊗ Y ⊗k

)
and S ∈ EndSk(Y ⊗k).

Proof. It is straightforward to check that by Slater’s condition the optimal value is achieved
by a feasible solution. For an arbitrary feasible solution (A, JM, R, S), we will prove that
the corresponding group-average operators (A, JM, R, S) are feasible with an objective
value not greater than the original value.

For brevity of notation, we write Π(π) := PX⊗Y (π). The first constraint, JN⊗k ≤
JM #1/α A, follows from a similar argument as in Lemma 5.4.2. For the second constraint

note that, for every π ∈ Sk, Π(π)
∗ = Π(π)T , and we have(

Π(π)JMΠ(π)∗
)T

Y ⊗k =
(
Π(π)JMΠ(π)T

)T
Y ⊗k = Π(π)(JM)TY ⊗kΠ(π)T . (5.37)
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Therefore,

(
JM

)T
Y ⊗k

=

 1

|Sk|
∑
π∈Sk

Π(π)JMΠ(π)∗

T
Y ⊗k

=
1

|Sk|
∑
π∈Sk

Π(π)(JM)TY ⊗kΠ(π)∗ ,

(5.38)

and the feasibility of JM and R implies −R ≤
(
JM

)T
Y ⊗k

≤ R. Similarly, we get

(
R
)T

Y ⊗k =

 1

|Sk|
∑
π∈Sk

Π(π)RΠ(π)∗

T
Y ⊗k

=
1

|Sk|
∑
π∈Sk

Π(π)(R)TY ⊗kΠ(π)∗ , (5.39)

and the feasibility of S and R implies −idX⊗k ⊗ S ≤
(
R
)T

Y ⊗k ≤ idX⊗k ⊗ S. Finally, the
forth constraint holds since tr(S) = tr(S) ≤ 1.

For the objective function, using the same argument as in Lemma 5.4.2, we get
∥trY ⊗k

(
A
)
∥∞ ≤ ∥trY ⊗k(A)∥∞. This concludes the proof.

Next, we show that the convex program (5.36) may be reformulated so that it scales
only polynomially with k.

Theorem 5.5.4. Let NX→Y be a quantum channel. For every k ≥ 1, the strong converse
bound 1

kΥ(D#
α , k)(N ) of Proposition 5.5.1 can be formulated as a convex program with

only O
(
kd

2
)
variables and O

(
kd
)
PSD constraints involving matrices of size at most (k+

1)d(d−1)/2, where d = dXdY .

Proof. Let Q denote the permutation matrix which maps X⊗k⊗Y ⊗k to (X ⊗ Y )⊗k. Then,
by Lemma 5.5.3, the optimization problem (5.36) can be written as

Υ(D#
α , k)(N ) =

1

α− 1
log min y (5.40)

s.t. trY ⊗k(A) ≤ y idX⊗k , (5.41)(
JN )⊗k ≤ JM#1/αA , (5.42)

R± (JM)TY ⊗k ≥ 0 , (5.43)

Q(idX⊗k ⊗ S)QT ±RT
Y ⊗k ≥ 0 , (5.44)

tr(S) ≤ 1 , (5.45)

where A, JM, R ∈ EndSk

(
(X ⊗ Y )⊗k

)
and S ∈ EndSk

(
Y ⊗k

)
are positive semidefinite

operators and y ∈ R.
Following the notation introduced in Theorem 5.4.6, for H ∈ {X,Y,X ⊗ Y }, let ϕH :

EndSk(H⊗k) →
⊕tH

i=1CmH
i ×mH

i be the bijective linear map which block-diagonalizes the
corresponding invariant algebra, where to simplify the notation, the blocks are indexed
by i ∈ [tH] instead of λ ∈ Par(dH, k). For Z ∈ EndSk(H⊗k), we write JϕH(Z)Ki to

denote the i-th block of ϕH(Z). Since JN⊗k
, JM, A and R, (JM)TY ⊗k are elements of

EndSk

(
(X ⊗ Y )⊗k

)
, the constraints (5.42) and (5.43) can be mapped into the direct sum
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form under ϕX⊗Y . Similarly, since Q (idX⊗k ⊗ S)QT , RT
Y ⊗k ∈ EndSk

(
(X ⊗ Y )⊗k

)
, by

properties 2 and 5 of the α-geometric mean, the constraint (5.44) can be decomposed
into constraints involving the smaller diagonal blocks by applying ϕX⊗Y . Finally, since
trY ⊗k(A), idX⊗k ∈ EndSk(X⊗k), the constraint (5.41) can be mapped by ϕX into the
direct sum form. The transformed convex program is given by

1

α− 1
log min y

s.t.
q(
ϕX ◦ trY ⊗k ◦ ϕ−1

X⊗Y

)
(⊕lAl)

y
j
≤ y idmX

j
,

r
ϕX⊗Y

((
JN )⊗k

)z
i
≤ Ji#1/αAi ,

Ri ±
q(
ϕX⊗Y ◦ TY ⊗k ◦ ϕ−1

X⊗Y

)
(⊕lAl)

y
i
≥ 0 ,

q
ϕX⊗Y

(
Q
(
idX⊗k ⊗ ϕ−1

Y (⊕rSr)
)
QT
)y

i
±

q(
ϕX⊗Y ◦ TY ⊗k ◦ ϕ−1

X⊗Y

)
(⊕lRl)

y
i
≥ 0 ,∑

r tr(Sr) ≤ 1 ,

Ai, Ri, Ji ∈ P
(
CmX⊗Y

i

)
, Sr ∈ P

(
CmY

r

)
,

for all i ∈
[
tX⊗Y

]
, j ∈

[
tX
]
, and r ∈

[
tY
]
. The statement of the theorem follows since

for H ∈ {X,Y,X ⊗ Y }, we have tH ≤ (k + 1)dH and mH
i ≤ (k + 1)dH(dH−1)/2, for every

i ∈
[
tH
]
.

Finally, we show how to efficiently compute a formulation of 1
kΥ(D#

α , k)(N ) as a convex
program of polynomial size.

Theorem 5.5.5. Let NX→Y be a quantum channel. There exists an algorithm which given
as input JN and k ∈ N, outputs in poly(k) time (for fixed dim(X ⊗ Y )) the description
of a convex program of size described in Theorem 5.5.4 for computing the strong converse
bound 1

kΥ(D#
α , k)(N ).

Proof. As in the proof of Theorem 5.4.6, for H ∈ {X,Y,X ⊗ Y }, let
{
OH

r

}
r∈[mH]

denote

the set of orbits of pairs and
{
CH
r

}
r∈[mH]

denote the canonical basis of EndSk
(
H⊗k

)
defined in Eq. (5.25). For every r ∈ [mX⊗Y ], we define Dr := trY ⊗k

(
CX⊗Y
r

)
. Note that

Dr ∈ EndSk
(
X⊗k

)
. Then by Theorem 5.5.4, Υ(D#

α , k)(N ) can be formulated as the
following convex program:
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1

α− 1
log min y

s.t.

mX⊗Y∑
r=1

zr JϕX (Dr)Kj ≤ y idmX
j
,

r
ϕX⊗Y

((
JN )⊗k

)z
i
≤

mX⊗Y∑
l=1

xl

r
ϕX⊗Y

(
CX⊗Y
l

)z
i
#1/α

mX⊗Y∑
r=1

zr
q
ϕX⊗Y

(
CX⊗Y
r

)y
i
,

mX⊗Y∑
l=1

yl

r
ϕX⊗Y

(
CX⊗Y
l

)z
i
±

mX⊗Y∑
r=1

zr

r
ϕX⊗Y

((
CX⊗Y
r

)T
Y ⊗k
)z

i
≥ 0 ,

mY∑
s=1

ws

q
ϕX⊗Y

(
Q
(
idX⊗k ⊗ CY

s

)
QT
)y

i
±

mX⊗Y∑
l=1

yl

s
ϕX⊗Y

((
CX⊗Y
l

)T
Y ⊗k
){

i

≥ 0 ,

mY∑
s=1

ws tr(C
Y
s ) ≤ 1 ,

mX⊗Y∑
r=1

zr
q
ϕX⊗Y

(
CX⊗Y
r

)y
i
≥ 0 ,

mX⊗Y∑
r=1

yr
q
ϕX⊗Y

(
CX⊗Y
r

)y
i
≥ 0 ,

mX⊗Y∑
r=1

xr
q
ϕX⊗Y

(
CX⊗Y
r

)y
i
≥ 0 ,

mY∑
s=1

ws

q
ϕY
(
CY
s

)y
t
≥ 0 ,

xr, yr, zr, ws, y ∈ R, ∀r ∈ [mX⊗Y ], s ∈ [mY ] ,

where j ∈
[
tX
]
, i ∈

[
tX⊗Y

]
and t ∈

[
tY
]
.

In Theorem 5.4.6, we showed how to efficiently compute ϕX(Dr), ϕX⊗Y (C
X⊗Y
r ), and

ϕX⊗Y (
(
JN )⊗k

). Note that ϕY (C
Y
s ) can be similarly computed in poly(k) time. Therefore,

to complete the proof it suffices to show that ϕX⊗Y

((
CX⊗Y
r

)T
Y ⊗k
)
, ϕX⊗Y

(
QT (IX⊗k ⊗ CY

r )Q
)
,

and tr(CY
s ) can computed in poly(k) time.

Recall that, for every r ∈
[
mX⊗Y

]
, we have

CX⊗Y
r =

∑
(i,j)∈OX⊗Y

r

|i⟩⟨j| ,

where i =
(
iX1 i

Y
1 · · · iXk iYk

)
and j =

(
jX1 j

Y
1 · · · jXk jYk

)
. Therefore, we have(

CX⊗Y
r

)T
Y ⊗k =

∑
(i,j)∈OX⊗Y

r

|iX1 jY1 · · · iXk jYk ⟩⟨jX1 iY1 · · · jXk iYk | = CX⊗Y
T (r) ,
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where T (r) denotes the index of the orbit given by

OX⊗Y
T (r) =

{(
iX1 j

Y
1 · · · iXk jYk , jX1 iY1 · · · jXk iYk

)
: (i, j) ∈ OX⊗Y

r

}
.

Therefore, ϕX⊗Y

((
CX⊗Y
r

)T
Y ⊗k
)
= ϕX⊗Y

(
CX⊗Y
T (r)

)
can be computed efficiently.

For r = 1, . . . ,mX⊗Y , let (i, j) be an arbitrary representative element of OX⊗Y
r . Let

αr := (idX⊗k)(iX ,jX) · (CY
r )(iY ,jY ) ,

where iX =
(
iX1 . . . iXk

)
, iY =

(
iY1 . . . i

Y
k

)
, and jX and jY are defined in a similar way. Then

we haveQT (IX⊗k⊗CY
r )Q =

∑mX⊗Y

r=1 αrC
X⊗Y
r , which implies that ϕX⊗Y

(
QT (IX⊗k ⊗ CY

r )Q
)

can be computed in poly(k) time by Lemma 5.4.5.
Finally, for every s ∈ [mY ], we have

CY
s =

∑
(i1...ik,j1...jk)∈OY

s

|i1 . . . ik⟩⟨j1 . . . jk| .

Therefore, tr(CY
s ) > 0 iff OY

s = {(π(i), π(i)) : π ∈ Sk}, for some i ∈ [dY ]
k. Let s ∈ [mY ]

such that tr(CY
s ) > 0 and let (i1 . . . ik, i1 . . . ik) be an arbitrary representative element

of OY
s . For every a ∈ [dY ], define β(a) := |{v ∈ [k] : iv = a}|, then tr(CY

s ) =
k!/
∏

a∈[dY ] β(a)!.

As an example, Υ(D#
2 , 6) is computed for the amplitude damping (AD) channel Ap,0,

defined in Eq. (5.34), for different values of p. For this channel, the best previously
known upper bound on the classical capacity C(Ap,0) for p ∈ [0, 0.75] is given by quantity

Cβ(Ap,0) = log(1 +
√
1− p) in [WFD17]. Table 5.3 shows that 1

6Υ(D#
2 , 6) is a slightly

improved upper bound compared to the bounds obtained using D̂α and Dmax which happen
to coincide for the AD channel [FF21a] with the value log(1 +

√
1− p). We remark that

the best known upper bound for the AD channel Ap,0 with p ∈ [0.75, 1] is given by the
entanglement-assisted classical capacity [BSST99] of the channel.

p Υ(Dmax, 1), Υ(D̂2, 1) and Cβ
1
6Υ(D#

2 , 6)

0.1 0.9626 0.9615

0.2 0.9218 0.9201

0.3 0.8770 0.8745

0.4 0.8274 0.8239

0.5 0.7716 0.7670

0.6 0.7071 0.7014

0.7 0.6302 0.6234

0.75 0.5850 0.5777

Table 5.3: Upper bounds on the classical capacity of the amplitude damping channel Ap,0

with different parameters p.



100

5.6 Two-way assisted quantum capacity

In this section, we consider D#
α in the framework of generalized Theta-information which

was introduced in [FF21a]. As we will see, the generalized Theta-information induced by
#-channel divergence gives efficiently computable strong converse bounds on the two-way-
assisted quantum capacity, Q↔(N ), for any quantum channel N .

The two-way assisted quantum capacity of a quantum channel N is the maximum rate
at which quantum information can be transmitted reliably from a sender to a receiver,
when the parties are allowed to perform arbitrary LOCC (short for local operations and
classical communication) between consecutive channel uses [BDSW96]. While the two-
way assisted quantum capacity for some specific channels such as the quantum erasure
channel is known [BDS97], no general characterization of Q↔(N ) is known for an arbitrary
quantum channel N .

In [Rai99, Rai01], the authors relaxed the set LOCC to a larger class of operations
known as PPT-preserving operations, which is the set of channels that are positive partial
transpose preserving. A quantum channel PAB→A′B′ is PPT-preserving if the linear map
TB′ ◦PAB→A′B′ ◦TB is completely positive and trace-preserving [Rai01], where TB′ and TB
denote the partial transpose map. For any quantum channel N , we denote by QPPT,↔(N )
the PPT-assisted quantum capacity ofN . In this case, the operations between the channel
uses are allowed to be PPT-preserving operations. Because of the containment LOCC ⊂
PPT [Rai01], we have the following inequality

Q↔(N ) ≤ QPPT,↔(N ) ,

for all quantum channels N .
Inspired by the formulation of the Rains set [Rai01], in [FF21a] the authors introduced

the set of subchannels given by the zero set of the Holevo-Werner bound [HW01] as

Θ(X,Y ) := {M ∈ CP(X : Y ) : ∃RXY s.t. RXY ± (JM
XY )

TY ≥ 0, trY (RXY ) ≤ idX} .

Let D be a generalized divergence. For any quantum channel NX→Y , define

RΘ(D, k)(N ) := D(N⊗k∥M⊗k) ,

where M = argminM∈Θ(X,Y )D(N∥M).
For any quantum channelN , by [FF21a, Theorem 17], [FF21b, Proposition 5.9], [BW18,

Corollary 5] and the relation between the divergences in Proposition 5.2.1, the following
holds:

Proposition 5.6.1. Let N be a quantum channel. For any α ∈ (1, 2] and k ≥ 1,

Q↔(N ) ≤ QPPT,↔(N ) ≤ QPPT,↔,†(N ) ≤ 1

k
RΘ(D

#
α , k)(N ) ≤ RΘ(D̂α, 1)(N ) ≤ RΘ(Dmax, 1)(N ) ,

where QPPT,↔,†(N ) is the strong converse capacity corresponding to QPPT,↔(N ).

The squashed entanglement of the channel N introduced in [TGW14] is known to
be a converse bounds for QPPT,↔(N ). However, it remains open whether it is a strong
converse and the quantity itself is NP-hard to compute [Hua14]. Using a similar method
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as in Section 5.5, we can show that RΘ(D
#
α , k)(N ) can be computed in poly(k) time for

any quantum channel N .
As an example, RΘ(D

#
α , 6) is computed for the qubit amplitude damping channel Ap,0,

defined in Eq. (5.34), for values of p ∈ [0, 1]. The comparison between the two-way/PPT

assisted quantum capacity is given in Figure 5.2. The bound 1
6RΘ(D

#
2 , 6) demonstrates

an improvement compared to the best previously known strong converse bound given by
RΘ(D̂2, 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

p

D

Bound 1
6RΘ(D

#
2 , 6)(Ap,0)

Bound RΘ(D̂2, 1)(Ap,0)

Figure 5.2: Comparison between two strong converse bounds RΘ(D̂2, 1) and
1
6RΘ(D

#
2 , 6)

on for two-way/PPT assisted quantum capacity for the qubit amplitude damping channel
Ap,0 for p ∈ [0, 1]

5.7 Conclusion

Optimal rates for achieving an information processing task are often characterized in terms
of regularized information measures. In many cases of quantum tasks, we do not know
how to compute such quantities. Here, we exploited the symmetries in D# in order to
obtain a hierarchy of semidefinite programming bounds on various regularized quantities.
As applications, we gave a general procedure to give efficient bounds on the regularized
Umegaki channel divergence as well as the classical capacity and two-way assisted quan-
tum capacity of quantum channels. In particular, we obtained slight improvements for the
capacity of the amplitude damping channel. We also proved that for fixed input and out-
put dimensions, the regularized sandwiched Rényi divergence between any two quantum
channels can be approximated up to an ϵ accuracy in time that is polynomial in 1/ϵ.
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Chapter 6

Conclusion

In this thesis, we considered the asymptotic growth behavior of a property for the powers
of a fixed object for some types of objects.

The first objects we considered are hypergraphs equipped with the strong product op-
eration and the property of interest is the independence number. The asymptotic growth
of the independence number of a hypergraph is known as the Shannon capacity. We intro-
duced the combinatorial degeneration method for finding lower bounds for the Shannon
capacity of directed k-uniform hypergraph in Theorem 3.3.3. We then applied this method
to improve the lower bound for the corner, square, Lshape, which are special cases of the
generalized multidimensional Szemerédi problem in Theorem 3.3.6 and Table 3.1. More-
over, in Corollary 3.4.6, we pointed out how induced matchings in hypergraphs pose a
barrier for existing tensor tools (such as slice rank, subrank, analytic rank, geometric rank
and G-stable rank) to efficiently obtain an upper bound on the size of independent sets
in hypergraphs. This implies a barrier for these tools to effectively establish lower bounds
on the communication complexity on the NOF model of the Eval function over any group
G.

Tensors are the second considered objects. We equipped them with the tensor prod-
uct and the property of interest is the symmetric subrank. The symmetric subrank is
a notion we introduce motivated by limitations of current tensor methods to bound the
Shannon capacity of hypergraphs. In Section 4.2, we presented and proved precise rela-
tions and separations between subrank and symmetric subrank. Then, in Theorem 4.3.4,
we showed that for symmetric tensors the subrank and the symmetric subrank are asymp-
totically equal. This proves the asymptotic subrank analogon of a conjecture known as
Comon’s conjecture in the theory of tensors. This result allows us to prove a strong con-
nection between the general and the symmetric versions of an asymptotic duality theorem
of Strassen. Finally, in Section 4.5, we introduced a representation-theoretic method to
asymptotically bound the symmetric subrank called the symmetric quantum functional in
analogy with the quantum functionals, then studied the relations between these function-
als. Nevertheless, the symmetric quantum functional cannot give better bounds than the
quantum functionals which itself suffers from the induced matching barrier and cannot be
used to make progress on the corner problem. But we hope that future improved asymp-
totic upper bounds on the symmetric subrank can still overcome the induced matching
barrier. In particular, we leave it as an open question to define a good symmetric version
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of Strassen’s support functionals.
Our last considered objects are quantum channels whose operation and property are

the tensor product of channels and the divergence, respectively. Namely, we used the
recently introduced D# Rényi channel divergence [FF21b] as the property of interest. We
exploited the symmetries in D# in order to obtain a hierarchy of semidefinite programming
bounds on various regularized quantities. As applications, in Section 5.5 and 5.6 we gave a
general procedure to give efficient bounds on the regularized Umegaki channel divergence
as well as the classical capacity and two-way assisted quantum capacity of quantum chan-
nels. In particular, we obtained slight improvements for the capacity of the amplitude
damping channel. In Section 5.4, we proved that for fixed input and output dimensions,
the regularized sandwiched Rényi divergence between any two quantum channels can be
approximated up to an ϵ accuracy in time that is polynomial in 1/ϵ.
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Appendix A

Deferred proofs

A.1 Representation-theoretic characterization of the mo-
ment polytope

In this section we prove Lemma 4.5.10.
We recall some notions and results of geometric invariant theory and representation

theory. We refer to [NM84], [Bri87], [Fra02], [Wal14], and [BFG+19] for more information.
Let GL(d) be the group of d× d invertible matrices over the complex numbers. Let H be
a complex finite-dimensional vector space, with dim(H) = d. Denote by M(d) the set of
complex d× d matrices, and denote by Herm(d) the set of d× d Hermitian matrices. We
define the representation π of GL(d) on H⊗k by π(g)f := (g ⊗ · · · ⊗ g)f for all g ∈ GL(d)
and f ∈ H⊗k. Let GL(d) ·f := {π(g)f : g ∈ GL(d)} denote the orbit of f under the action
of GL(d). For any nonzero vector f ∈ H⊗k, we define the function:

Ff : GL(d) → R

g 7→ 1

2
log ∥π(g)f∥2.

The following definition defines the gradient of Ff at g = I.

Definition A.1.1. The moment map is the function µ : H⊗k \ {0} → Herm(d) defined
by the property that for all H ∈ Herm(d) we have tr[µ(f)H] = ∂t=0Ff (e

tH).

Let H ∈ Herm(d). Then ∂t=0Ff (e
tH) = ∂t=0

⟨f,π(etH)f⟩
∥f∥2 . Therefore, we have

tr[µ(f)H] = ∂t=0
⟨f, π(etH)f⟩

∥f∥2

=
⟨f, (

∑k
j=1 I

⊗j−1 ⊗H ⊗ I⊗n−j)f⟩
∥f∥2

=
k∑

j=1

tr

[
ff †

∥f∥2
(I⊗j−1 ⊗H ⊗ I⊗n−j)

]

=
k∑

j=1

tr[ρj(f)H],
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where ρj(f) denotes the jth reduced density matrix of ρ(f) = ff†

∥f∥2 . Thus, µ(f) =∑k
j=1 ρj(f).
Following [FH91], any rational irreducible representations of GL(d) can be labeled by

highest weight λ ∈ Nd such that λ1 ≥ · · · ≥ λd. For any natural number n ≥ 1, consider
the representation Π of GL(d) on (H⊗k)⊗n by Π(g) · v := (π(g) ⊗ · · · ⊗ π(g))v for all
v ∈ (H⊗k)⊗n. Let V be a finite-dimensional rational representation of GL(d). For each
highest weight λ of GL(d), we denote by Vλ the λ-isotypical component of V . Let Z ⊆ V
be a Zariski closed set. We denote by C[Z]n the degree-n part of the coordinate ring of
Z. Letting λ = (λ1, . . . , λd) be a highest weight of GL(d), we define λ∗ = (−λd, . . . ,−λ1).
For any nonzero vector f ∈ H⊗k, the following lemma says that the moment polytope
∆(f) has another representation theoretic description.

Lemma A.1.2 ([Bri87], [Fra02], [Str05, Theorem 11] or [Zui18, Chapter 6]). Let f ∈ H⊗k

be nonzero. Then

∆(f) =
{
λ/n : ∃n ∈ N≥1, (C[GL(d) · f ]n)λ∗ ̸= 0

}
= {λ/n : ∃n ∈ N≥1, Pλf⊗n ̸= 0},

where Pλ is the projector from (H⊗k)⊗n onto the λ-isotypical component in the decompo-
sition of (H⊗k)⊗n with respect to Π.

Proof of Theorem 4.5.10. By Schur–Weyl duality we have a decomposition of the space
(H⊗k)⊗n as

(H⊗k)⊗n ∼=
⊕
λ⊢dkn

Sλ(H)⊗ [λ].

For λ ⊢d kn, let Pλ be the projector onto the isotypical component of type λ, that
is, onto the subspace of (H⊗k)⊗n which isomorphic to Sλ(H) ⊗ [λ], since all irreducible
representations of Π are labeled by the partitions of kn in at most d parts. Therefore,

∆(f) =

{
λ

n
: ∃n ≥ N≥1, λ ⊢d kn, Pλf⊗n ̸= 0

}
,

completing the proof.

A.2 Sub-multiplicativity of the symmetric quantum func-
tional

In this section we prove that the symmetric quantum functional F is sub-multiplicative.
For symmetric tensors this follows from Theorem 4.5.2. (In fact, Theorem 4.5.2 says that
the symmetric quantum functional is multiplicative on symmetric tensors.) Here we prove
that the symmetric quantum functional is sub-multiplicative on arbitrary tensors (not
necessarily symmetric). The argument is an adaptation of the argument in [CVZ18] to
the symmetric quantum functional.
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Lemma A.2.1. For all tensors s ∈ V ⊗k and t ∈W⊗k we have ∆(s⊗t) ⊆ ∆(s)⊗Kron∆(t)
where

∆(s)⊗Kron ∆(t) := closure
{
µ̄ : λ̄ ∈ ∆(s), λ̄′ ∈ ∆(t), Pµ(Pλ ⊗ Pλ′) ̸= 0

}
.

Proof. Let dim(V ) = d and dim(W ) = d′. If µ̄ ∈ ∆(s ⊗ t), then for some n, we have
Pµ(s⊗ t)⊗n ̸= 0. We have

∑
λ⊢dkn

Pλ = IdV ⊗kn and
∑

λ′⊢d′kn
Pλ′ = IdW⊗kn . Thus, we can

write

Pµ(s⊗ t)⊗n = Pµ

(∑
λ,λ′

Pλ ⊗ Pλ′

)
(s⊗ t)⊗n.

So there exists λ, λ′ such that Pµ(Pλ⊗Pλ′)(s⊗ t)⊗n ̸= 0. But this implies that Pλs
⊗n ̸= 0,

Pλ′t⊗n ̸= 0, and Pµ(Pλ ⊗ Pλ′) ̸= 0, which completes the proof.

Proposition A.2.2 (Sub-multiplicativity of the symmetric quantum functional). For
every s ∈ V ⊗k and t ∈W⊗k we have F (s⊗ t) ≤ F (s)F (t).

Proof. Let d = dim(V ) and d′ = dim(W ). Let E = log2 F . We need to prove E(s⊗ t) ≤
E(s) + E(t). By definition

E(s⊗ t) = max
p∈∆(s⊗t)

H(p) ≤ max
p∈∆(s)⊗Kron∆(t)

H(p).

But if p ∈ ∆(s)⊗Kron ∆(t), then there exists µ a partition of kn in at most dd′ parts such
that Pµ(Pλ ⊗ Pλ′) ̸= 0 with λ̄ ∈ ∆(s) and λ̄′ ∈ ∆(t) by Lemma A.2.1. It is shown in
[CM06, Proposition 3] that if Pµ(Pλ ⊗ Pλ′) ̸= 0, then H(µ̄) ≤ H(λ̄) +H(λ̄′). This shows
that E(s⊗ t) ≤ E(s) + E(t).

A.3 Technical lemmas

Lemma A.3.1 (Fekete’s lemma, see [PS72]). Let x1, x2 · · · ∈ R≥0 satisfy xn+m ≤ xn+xm.
Then limn→∞ xn/n = infn xn/n.

Proof. Let y = infn xn/n. Let ϵ > 0. Let m ∈ N with xm/m < y + ϵ. Any nN can be
written in the form n = qm + r where r is an integer 0 ≤ r ≤ m − 1. Set x0 = 0. Then
xn = xqm+r ≤ xm + xm + · · ·+ xm + xr = qxm + r. Therefore

xn
n

=
xqm+r

qm+ r
≤ qxm + xr

qm+ r
=
xm
m

qm

qm+ r
+
xr
n
.

Thus

y ≤ xn
n
< (y + ϵ)

qm

n
+
xr
n
.

The claim follows because xr/n→ 0 and qm/n→ 1 when n→ ∞.
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Rényi divergence. 48th Annual Allerton Conference on Communication, Con-
trol, and Computing (Allerton), pages 1327–1333, September 2010. 76

http://www.jstor.org/stable/2374395
https://doi.org/10.1017/fms.2017.12
https://www.ias.edu/math/events/computer-sciencediscrete-mathematics-seminar-ii-495
https://www.ias.edu/math/events/computer-sciencediscrete-mathematics-seminar-ii-495


117

[Rai99] Eric M Rains. Bound on distillable entanglement. Physical Review A,
60(1):179, 1999. 100

[Rai01] Eric M Rains. A semidefinite program for distillable entanglement. IEEE
Transactions on Information Theory, 47(7):2921–2933, 2001. 100

[Sac05] Massimiliano F Sacchi. Optimal discrimination of quantum operations. Phys-
ical Review A, 71(6):062340, 2005. 12

[Sag13] Guillaume Sagnol. On the semidefinite representation of real functions applied
to symmetric matrices. Linear Algebra and its Applications, 439(10):2829 –
2843, 2013. URL: http://www.sciencedirect.com/science/article/pii/
S002437951300520X, doi:https://doi.org/10.1016/j.laa.2013.08.021.
77

[Ser77] Jean-Pierre Serre. Linear Representations of Finite Groups. Cambridge Uni-
versity Press, 1977. 20

[Sha56] Claude E. Shannon. The zero error capacity of a noisy channel. IRE Trans.
Inf. Theory, 2(3):8–19, 1956. doi:10.1109/TIT.1956.1056798. 8, 18

[Shi18] Yaroslav Shitov. A counterexample to comon’s conjecture. SIAM J. Appl.
Algebra Geom., 2(3):428–443, 2018. doi:10.1137/17M1131970. 53, 54, 58, 62

[Shi22] Yaroslav Shitov. The ubrank of a complex symmetric tensor can exceed its
symmetric subrank. Personal communication, 2022. 53, 58

[Shk06a] I. D. Shkredov. On a generalization of Szemerédi’s theorem. Proc. London
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