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Abstract (en)

Perception and correct understanding of the road scene is crucial for any appli-
cation of assisted and automated driving. In order to guarantee safety of the
passenger and other road users, planning and navigation must be made on the
basis of a reliable environment representation. Multi-sensor data and prior in-
formation is used to build this representation which incorporates identification
of road users and road structure. For the latter, the focus is put on the drivable
space and lane repartition. On highways, urban streets and generally all over the
road network, the drivable space is organized in oriented corridors which enable
safer and predictable navigation for everyone. In the development of intelligent
vehicles, identifying the lane repartition and building an accurate road represen-
tation outlines the lane boundaries detection task. Depending on the specifics
of the target automated system, car manufacturers integrate in currently com-
mercialized vehicles ready-to-use lane detection solutions from Tier-1 suppliers
generally featuring single and vision-based smart sensors. Such solutions may
not be adequate in highly automated systems where the driver is allowed to di-
vert their attention from the driving task and become passenger.

This thesis addresses the problem of lane boundaries identification relying on
multi-sensor fusion of smart camera data (specifically, frontal and AVM cameras)
and HD-maps. In the first part, an appropriate modeling for smart sensor mea-
surements which is independent from the sensor nature is proposed. Uncertain
detections of markings, barriers and other road elements contribute to the track-
ing of the surrounding lane boundaries using a novel clothoid-spline model. The
second part focuses on the integration of prior information coming from digital
maps. Similarly to the modeling of smart sensors, the involved uncertainties in
the usage of map-providers have been taken into account to support the lane
boundaries estimation. For the testing of the proposed approaches, a custom
dataset of road data has been recorded using both off-the-shelf smart sensors
and live streamed HD-maps. Validated and tuned tracking solutions are then
integrated in close-loop experimentations on Renault prototype vehicle of SAE
Level 3 of automation.
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Resumé (fr)

La perception et la compréhension correcte de la scène routière sont cruciales
pour toute application de conduite assistée et automatisée. Afin de garantir la
sécurité du passager et des autres usagers de la route, la planification et la nav-
igation doivent être effectuées sur la base d’une représentation fiable de l’ envi-
ronnement. Les données multi-capteurs et les informations préalables sont util-
isées pour construire cette représentation qui intègre l’identification des usagers
de la route et de la structure de la route. Pour cette dernière, l’accent est mis
sur l’espace de conduite et la répartition en voies. Sur les autoroutes, les rues
urbaines et plus généralement sur l’ensemble du réseau routier, l’espace carross-
able est organisé en couloirs orientés qui permettent une navigation plus sûre et
prévisible pour tous. Dans le cadre du développement des véhicules intelligents,
l’identification de la répartition des voies et la construction d’une représentation
précise de la route constituent la tâche de détection des limites des voies. En fonc-
tion des spécificités du système automatisé cible, les constructeurs automobiles
intègrent dans les véhicules actuellement commercialisés des solutions de détec-
tion des voies prêtes à l’emploi provenant de fournisseurs Tier-1 et comprenant
généralement des capteurs intelligents simples et basés sur la vision. Ces solu-
tions peuvent ne pas être adéquates dans les systèmes hautement automatisés
où le conducteur est autorisé à détourner son attention de la tâche de conduite
pour devenir un passager.

Cette thèse aborde le problème de l’identification des limites de voies en
s’appuyant sur la fusion multi-capteurs des données des caméras intelligentes
(en particulier, les caméras frontales et AVM) et des cartes HD. Dans la première
partie, une modélisation appropriée pour les mesures des capteurs intelligents,
indépendante de la nature du capteur, est proposée. Les détections incertaines
des marquages, des barrières et d’autres éléments de la route contribuent au suivi
des limites des voies environnantes à l’aide d’un nouveau modèle de splines
de clothoïdes. La deuxième partie se concentre sur l’intégration d’informations
préalables provenant de cartes numériques. Comme pour la modélisation des
capteurs intelligents, les incertitudes liées à l’utilisation des fournisseurs de cartes
ont été prises en compte pour aider à l’estimation des limites de la voie. Pour
tester les approches proposées, un ensemble sur mesure de données routières
a été enregistré en utilisant à la fois des capteurs intelligents disponibles dans
le commerce et des cartes HD live stream. Les solutions de suivi validées et
tunées sont ensuite intégrées dans des expérimentations en boucle fermée sur
un véhicule prototype Renault de niveau 3 d’automatisation SAE.
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Abstract (it)

La percezione e la corretta comprensione della scena stradale è fondamentale
per qualsiasi applicazione di guida assistita e automatizzata. Per garantire la si-
curezza del passeggero e degli altri utenti della strada, la pianificazione e la nav-
igazione devono essere effettuate sulla base di una rappresentazione affidabile
dell’ambiente. Dati di origine multi-sensore e informazioni disponibili a priori
sono utilizzati per costruire questa rappresentazione che incorpora l’ identifi-
cazione degli utenti della strada e la struttura della strada stessa. Per quest’ultima,
l’ attenzione è posta sullo spazio percorribile e sulla ripartizione in corsie. Sulle
autostrade, le strade urbane e in generale su tutta la rete stradale, lo spazio per-
corribile è organizzato in corridoi orientati che permettono una navigazione più
sicura e prevedibile per tutti. Nello sviluppo di veicoli intelligenti, l’ identifi-
cazione della ripartizione in corsie e la costruzione di una rappresentazione ac-
curata della strada delinea il compito di rilevamento dei confini delle corsie o
lane boundaries detection. A seconda delle specifiche del sistema automatizzato
di destinazione, le case automobilistiche integrano nei veicoli attualmente com-
mercializzati soluzioni di rilevamento di corsia pronte all’uso da fornitori Tier-1,
generalmente composte di singoli sensori intelligenti e basate sulla visione com-
puterizzata. Tali soluzioni potrebbero non essere adeguate in sistemi altamente
automatizzati dove al guidatore è permesso di distogliere l’attenzione dal com-
pito di guida e di diventare passeggero.

Questa tesi di dottorato affronta il problema dell’identificazione dei limiti di
corsia basandosi sulla fusione multi-sensore di dati provenienti da telecamere
intelligenti (in particolare, telecamere frontali e AVM) e mappe HD. Nella prima
parte, viene proposta una modellazione appropriata per le misure dei sensori
intelligenti che è indipendente dalla natura del sensore. I rilevamenti incerti di
marcature, barriere e altri elementi stradali contribuiscono alla stima dei limiti
delle corsie circostanti utilizzando un nuovo modello di spline di clotoidi. La sec-
onda parte si concentra sull’integrazione di informazioni provenienti da mappe
digitali. Analogamente alla modellazione dei sensori intelligenti, le incertezze
coinvolte nell’uso di map-providers sono state prese in considerazione per sup-
portare l’identificazione dei limiti di corsia. Per testare gli approcci proposti, è
stato registrato un dataset personalizzato di dati stradali utilizzando sia sensori
intelligenti off-the-shelf che mappe HD in live streaming. Le soluzioni di track-
ing convalidate e correttamente regolate sono poi integrate in sperimentazioni a
circuito chiuso su un veicolo prototipo Renault di livello 3 di automazione SAE.
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Chapter 1

General introduction

1.1 ADAS and AD

The automotive industry is experiencing a full-scale technological revolution.
Advanced driving assistant systems (ADAS) and development of autonomous
driving (AD) are currently part of the vision of most car manufacturer in the
market. In fact, convenient assistance features for easier highway driving or es-
sential safety capabilities are expected to be available on newly manufactured
vehicles.

As customers get used to vehicles with on-board technology, the task of driv-
ing has become safer other than easier. Since its peak in 1972 [ONISR, 2020], road
mortality has been continuously decreasing. Despite the ever-increasing spread
of motorized vehicles, this trend has been supported by the evolution of the road
network, the introduction of more adequate traffic laws and the refinement of
driving licences. While the driving context keeps developing towards safety,
recent studies point out that the main causes of road accidents can be directly
attributed to driver. Even though many accidents are prevented every day by
enhancing the driver awareness with the aid of informative ADAS, for a large
portion of cases this approach would have not been effective. For example, in
the case of tired driver or driver under influences, any amount of additional in-
formation about the surroundings may not be appropriately taken advantage of.
This cases would be better handled by proactive ADAS, which act and control
the vehicle on behalf of the driver. This approach taken to the extreme concer-
tizes itself in the self-driving or autonomous vehicle (AV): the role of the driver
is completely replaced and deployed by an automated system which is in charge
of safely transporting the user to the destination.

Within this vision of automated transportation system, other forward-looking
consequences or possible implementations become possible. Of course, safe and
easily accessible transport for a larger public would be an immediate reality.
New business models would be possible where fleets of vehicles are deployed
for automatically addressing the need of transporting goods and passengers in-
between locations. This might even imply disruptive demographic changes where
the technology proves to be scalable, cost-efficient, compatible with the public ac-
ceptance and evolution of the road regulations. Also the carbon footprint, which

12
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Figure 1.1: Past and potential future evolution toward Automated Driving
[Bengler et al., 2014]. Early driving assistance systems relied on monitoring the ego-
vehicle while more sophisticated solutions now observe the other road users and com-
municate with them.

challenge is currently of great interest and related to the deployment of renew-
able energies and electric vehicle, would be a key factor in the possible spread of
AVs.

These considerations remain pure speculation on how would it be living in a
world with AVs, however this technology is not available yet and appears long
in coming. Fig.1.1 shows past and potential future evolution from assisted to
automated driving.

1.1.1 Informative ADAS

Hereinafter, we present some example of informative ADAS. This kind of equip-
ment is designed to assist the driver with goal of enhancing its awareness with
some additional information that may be useful to the driving task. Depending
on the seriousness of the information to be reported, different approaches of re-
porting it may be considered. For example, in case of immediate danger, strong
alert sound may be preferred to simple notifications on the vehicle user interface
(HMI). Most of commercialized vehicle nowadays may integrate:

• Lane Departure Warning (LDW): an alarm informs the driver when the ve-
hicle dangerously approaches or crosses one of the lane boundaries of its
lane

• Blind Spot Warning (BSW): indicator lights in the lateral rear-view mirrors
inform the driver about the presence of others in the blind spots around the
vehicle
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• Parking Sensor: in the parking phase, the driver has better knowledge of
close obstacles through changing frequency sound alert which helps avoid-
ing damage to the vehicles itself or other’s

• Driver Monitoring System (DMS): this time is the driver themself to be
monitored. Warnings or encouragement to take a break are issued when
tiredness or inattentive driving behaviour are detected

This approaches already contributed to the decrease of road mortality. However,
they might be ineffective in many cases such as when the driver is unable to react
to those warnings or when it is under the effect of substances. In fact, these cases
still reflect a vast majority of the reported accidents [ONISR, 2020]. Informative
ADAS can not prevent improper use of the vehicle, no matter how aggressive
the alarm might be. It is not rare to find experienced drivers who prefer to de-
liberately ignore parking sensors alerts and, eventually, end up bumping into
obstacles. Scratching car bumpers might not be an issue, yet other misuses can
have safety consequences such as applying workarounds in order to disable the
seat belt chime. It is quite clear that human decisions have a major impact on
road causalities and that more active approaches of driving assistance are neces-
sary to mitigate them.

1.1.2 Actuating ADAS

Driving assistance systems are also developed to be capable of actively take par-
tial control of vehicle where certain conditions are met. Relevant examples are
presented in the following. Some of them have been designed to be active exten-
sions of the previously introduced informative ADAS. In fact, in many driving
situations, after acknowledging relevant events around the vehicle, consecutive
and automated actions can be operated in order to react and generally bring bet-
ter safety. Most of commercialized vehicle nowadays may integrate:

• Adaptive Cruise Control (ACC): regular cruise control handles the throt-
tling control by keeping the speed of the car as close as possible to a given
value stated by the driver. Its "adaptive" extension adjust this value to
the behaviour of the preceding vehicle while respecting the recommended
inter-distance

• Lane Keeping Assistance (LKA): example of actuating system which ex-
tends the informative LDW. Controlled action of the steering wheel is en-
forced to maintain the car within the lane boundaries

• Lane Centering Assistance (LCA): further refinement of LKA, the vehicle is
kept at the center of the lane. This systems aims at maintaining this trail the
whole time after it is enabled by the driver.

• Automatic Emergency Braking (AEB): in case of sudden danger, the braking
system is immediately activated. This is particularly precious in cases of
unexpected pedestrians or animals on the roadway
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• Traffic Jam Pilot (TJP): acceleration and braking are automatically handled
in heavy traffic conditions

• Automatic Parking: completely automated routine for performing angle,
perpendicular or parallel parking

All these features are generally implemented by acting separately on distinguished
control dimensions of the vehicle. While steering wheel determines the car lat-
eral position, action on throttle and breaking operates on the longitudinal po-
sition. Any measure of automated control of the vehicle must be acted in con-
firmed safety conditions. Besides, here we find first examples of actively actu-
ating on the control of the vehicle as a way of easing the driving task, not only
with the aim of reacting to dangerous situations.

1.1.3 Automated Driving

The development of more and more advanced ADAS suggests the real possibility
of reducing to the minimum the required input from a human driver within the
driving task. In the ideal case of automated driving (AD), as presented and stud-
ied by [Anderson et al., 2014], the driver would become a passenger and would
simply indicate its preferred destination. The specific sequence of actuating con-
trol in order to safely transport the vehicle containing the passenger up to its
destination would be completely handled by the driving system. The design of
such system is expected to be incremental with respect to the currently available
driving assistance systems and different degrees of automation have been de-
fined. Firstly published in 2014, updated report [SAE International, 2021] from
the Society of Automotive Engineers (SAE) declines six levels of automated driv-
ing as presented in Fig.1.2. As outlined in the table columns colouring, from level
0 to level 2 the human driver involvement is still required. From level 3 to level
5, the driving task is more and totally delegated to the system. Abbreviated nota-
tion is often adopted in the automotive industry associating labels from L0 (level
0) to L5 (level 5) to specific models of vehicles. Indeed, the prototype vehicle
used in this research and presented in the following chapter is used at Renault
for level 3 experiments, hence its naming L3 prototype. It is however important
to note that it is not a specific system that identifies its level of automation, it is
rather its utilization.

Let us illustrate few examples of common driving routines observing Fig. 1.3.
From top to bottom, six examples of driving routines are given specifying what
is the SAE AD Level that characterize each segment of the path from departure to
arrival. The first example is trivial, there is no use of any driving assistance sys-
tem activated by the human driver. In the third example, the vehicle is equipped
with Automatic Parking and (possibly) no other ADAS. In this commute, the
driver is completely involved in the driving task (level 0) expect for the very
last maneuver (level 2). Differently, the vehicle deployed in the fourth exam-
ple disposes instead of Automatic Parking and TJP: in the case of heavy traffic,
the driver is allowed to delegate this sub-part of the trip to its vehicle. As this
concerns more than a simple maneuver, phases of level 3/4 are identified in its
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Figure 1.2: Levels of driving automation [SAE International, 2021]. From level 0 to level
2 the human driver involvement is still required. From level 3 to level 5, the driving task
is more and totally delegated to the system

commute, depending on the specifics of its TJP. All the examples in Fig.1.3 drawn
from [SAE International, 2021] entail the definition of an Operational Design Do-
main (ODD). The ODD, according to SAE, is the operating conditions under
which a given driving automation system is specifically designed to function,
including, but not limited to, environmental, geographical, and time-of-day re-
strictions, and/or the requisite presence or absence of certain traffic or roadway
characteristics.

1.2 Intelligent vehicles technology

We have presented so far the taxonomy of useful features that would make a ve-
hicle "intelligent" and able to perform maneuvers of high level of autonomy. In
the following, we are introducing how this automation is realized and what is
the enabling technology deployed. At any degree of automation complexity, the
system would have to be able to perceive an event, to elaborate the appropriate
response and to put into practice its response. Consequently, onboard technol-
ogy has to enable the vehicle to:

• Sensing - as much as possible about the driving scene and its users (ego-
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Figure 1.3: Six examples of driving routines [SAE International, 2021] are given specify-
ing what is the SAE AD Level that characterize each segment of the path from departure
to arrival.

Figure 1.4: A schematic of the AD/ADAS workflow in its three main phases: sensing,
computing and actuating.

vehicle included)

• Computing - the appropriate reaction to environmental events

• Actuating - and finally affecting the position of the ego-vehicle

These three main phases of the workflow in automated driving systems are illus-
trated in Fig.1.4 and enabled by specific technological

1.2.1 Onboard sensors

Information about the surrounding environment are given to the vehicle com-
puting unit via streams of sensor data. Depending on the specific sensor, the
device is installed on the vehicle body generally "facing" the area or elements
that it aims at observing. For example, a tachometer would be observing the
engine shaft in the car measuring its rotation speed while a dash cam would be
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Figure 1.5: Exteroceptive sensors [Lengyel and Szalay, 2019] installed on a vehicle dept-
ing FoVs and ADAS features.

oriented and installed in order to have an optimal view of the driving scene. Fig.
1.5 shows an example of vehicle equipped of several exteroceptive sensors and
presented in a bird-eye view schema. Each device identifies a surface around the
vehicle representing its Field of View (FoV). In the illustration, a different colour
is adopted for distinct technologies and a (possible) driving assistance feature is
indicated for that sensor.

A Camera

Cameras are among the most popular perception sensors used in the industry.
Installed nowadays on millions of vehicles, they are cheap and easy to be in-
tegrated in the car architecture. Images are 2D projections of portions (which
depends on the field of view) of the surrounding 3D scene. At data-level, they
are represented as matrices where each cell is pixel of a specific colour. Pixels
may contain different information other than colour of the area they represent,
such as heat-map for from thermal cameras. Usage of multiple cameras allows
up to 360∘field of view (as in Around Monitor View - AVM) or depth measur-
ing (stereo vision camera). Several years of developments in computer vision
and use of Artificial Intelligence (AI) make these sensors extremely powerful in
shape recognition and object detection. Nevertheless, lighting condition have
major impact on the operability of this technology, unlike others.
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B Lidar

Lidar (acronym for Light Detection and Ranging) sensors enable time-of-flight
distance measurements without physical contact using laser emitter and receiver.
Mechanical lidars use rotating mirrors in order to produce multi-layer point
clouds (set of range detections acquired in a unique scan) using a single emit-
ter. Emerging solid-state lidars do not contain rotational elements, which make
them preferable for easier maintenance and integration. On the one hand, this
technology is robust to both dark and glaring lightning conditions. On the other
hand, it suffers heavy weather, especially dense fog [Carballo et al., 2020], while
each measurement return of intensity depends on the encountered material and
colour.

C Radar

Most of currently commercialied ACC use radar technology in their implementa-
tion. Radio waves are exploited to measure the time of flight of the radar pulse,
hence calculating distances from obstacles. Frequency modulation and use of
Doppler measurements enhance these application enabling measurements of tar-
get velocity. This technology do not suffer from poor lighting condition and may
allow for "see-through" obstacle detections in some cases. It is generally less ac-
curate than others in distance measurements and may suffer ghost detections.

D Ultrasounds

Enabling for close obstacles detection, it finds application mostly in Parking As-
sist and Automatic Parking. Time of flight for ultrasonic waves is measured as in
the case of radar technology. They are generally installed at multiple occurrences
in front and back bumpers in order to monitor their immediate surroundings in
any weather or lighting conditions.

E Proprioceptive sensors

This class includes all those sensors designed to provide information about the
vehicle itself. Low cost and generally available on most vehicles (for implemen-
tation of Anti-lock braking system (ABS) and Electronic Stability Program (ESP)),
they are used to monitor velocity, acceleration, wheel rotation speed, and yaw
rate. Odometry information is essential for estimating ego-vehicle trajectory and
computing relative velocities of other road users. Where greater accuracy is re-
quired (in research application, mapping or higher levels of automated driving)
the use of Inertial Measurement Units (IMU) is preferred, which might entail
increases in equipment costs.

F Sensors integration

Car manufacturers do not generally dispose the required expertise for sensor de-
sign and production. First of all, this know-how was not essential in car produc-
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tion up a few years go. Also, similar to the manufacturing of other components
such as headlights and windshield wipers, specialized companies have emerged
which address the needs of more than a single car manufacturer. That is the case
of tier-1 suppliers: serving has middle-men between car OEMs (original equip-
ment manufacturer) and hardware suppliers, they provide adapted solutions for
automotive use cases. In Fig.1.6, the supply chain for relevant industrial cases
is shown. OEMs generally interface with tier-1 suppliers negotiating product
specifics and unit pricing. This would impact the production vehicle pricing and
the remaining charge of integration work to be completed from the car manu-
facturer. In fact, answering the "make-or-buy" dilemma is not trivial. For the
implementation of a radar-based AEB, for example, OEM may simply buy and
integrate a ready-made solution which would directly communicate with the
braking system. They would not have to invest in any in-house workforce for
data-processing development, they would have to handle the incorporation of
the system within the vehicle architecture. However, because of this "total-buy"
approach, they may lack of flexibility and be less competitive with respect to
other ADAS offered in the market. "Total-make" would not imply the production
of the sensor itself, rather the integration of a bare radar and in-house develop-
ment from raw data understanding up to the braking conditions. Intermediate
approaches also exist and often represent a good compromise for car assemblers.
Tier-1 suppliers offer equipment including bare sensor and a first layer of data
processing. So-called "smart sensors" (detailed in Section 2.2) deliver measure-
ments at higher level of abstraction (object-level or lane-level) which are easier
to be managed and demand lighter integration effort for the car manufacturer.

1.2.2 Embedded computing

Expanding the sensor set implies having to deal with multiple data sources and
flows of data. Simple solutions features low-cost and low-consuming micropro-
cessors, integrated in electronic control units (ECU). Several ECUs are found in
commercialized vehicle, some of them merely implement state machines (e.g.
handling passenger window up-down status). For larger system architectures,
it is be necessary to dispose of substantial computational power. Especially in
need of vision algorithms to be implemented and consistently executed, specific
systems-on-a-chip (SOC) are designed to be as performing as workstation com-
puters.

A Electronic control unit

Embedded systems that are used to control one or more electrical system in a car
architecture are called electronic control units (ECU).

The aggregation of multiple ECUs (up to hundreads of them) compose the
"computer’s car". Currently commercialized vehicles have not, in fact, a single
computational unit. Single ECUs have few computational resources and differ-
ent denominations in function of the part they control. Some examples are Brake
Control Module (BCM or EBCM), Suspension Control Module (SCM).
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Figure 1.6: Automotive supply chain as illustrated by [Arteris, 2018] semiconductor sup-
plier. This materials are used to build SoC and hardware which is used in Tier-1 solutions
integrated in commercialized vehicles by car manufacturers.

B System-on-a-chip

As managing more and more ECUs with complex and sophisticated software
is becoming impracticable, some of the most advanced OEMs are preferring a
centralized and more poweful computing units. Systems-on-a-chip (SOCs), oc-
casionally named autonomous driving chips, are specifcally designed to intake
several data flows from different sensors such as multiple cameras and lidars.
They typically integrate high-throughput interface for sensory inputs, neural
processing units for efficient implementation of neutal netwroks, GPUs, com-
puter vision processor and generally a large number of cores. Examples of com-
mercial autonomous driving SOCs are Mobileye EyeQ series, Tesla FSD Chip,
Nvidia DRIVE series.

1.2.3 Electronic control systems

Mechanical linkages are traditionally used for performing basic vehicle functions
such as steering and braking. Electronic control systems, or Drive-by-wire solu-
tions, can replace mechanical control systems using electromechanical actuators
for both communicating with human-machine interfaces (pedals, steering feel
emulators) or machine-machine interfaces, in the case of actuating ADAS or AD.
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The embedded computing unit can, in fact, communicate with these actuators
and implement automated control of the vehicle. Eliminating components such
as pumps, belts, steering column and intermediate shafts can generally improve
safety, ergonomics and reduce weight of the system.

A Throttle-by-wire

Vehicle propulsion is controlled with an electronic throttle which does not re-
quire any cable from the accelerator pedal. In the specific case of vehicles pow-
ered by electric engines, monitoring of the pedal transmits to the power inverter
modules bringing sudden acceleration.

B Steer-by-wire

Electronic control units monitor the steering wheel input from the driver and
control the direction of the wheels through electric motors, avoiding mechani-
cal linkages in-between. Extreme implementations of steer-by-wire propose to
replace the steering wheel with joystics or equivalent interfaces, yet these pro-
posals currently had very limited commercial success. Electric Power Steering
technology consists of a first step from mechanical steering which eases the pro-
cess for the human driver.

C Brake-by-wire

Same as for Throttle-by-wire implementation, monitoring of the pedal with elec-
tronic components avoid the deployment of mechanicals. In this case, hydraulics
and pressurized systems are replaced favoring responsiveness.

1.3 Thesis scope

The above introduction presented the context where our study is situated. This
domain has been considerably active from both industrial and academic point of
view. Incremental progress in each of the three areas mentioned in Section 1.2 is
contributing to more advanced automation in the driving task and more easier
accessibility to the technology. For example, the kind of on-board sensors named
in Section 1.2.1 are just the major produced sensors in the industry. Currently
underrated or scarcely known technologies are being developed and studied to
potentially offer that specific environment understanding needed for the driv-
ing task. Similarly, in the so-called Computing area, technological progress may
enable better data processing at lower costs.

The aim of this thesis is to propose a general solution for appropriately com-
bining observations from exteroceptive sensors which is independent of the sen-
sor technology. In the following, the interest of performing multi-sensor fusion
in this context is outlined together with the framework where the thesis research
is developed.
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1.3.1 Multi-sensor fusion for lane detection

The above presented sensor technologies allow to on-board computer to build a
representation of the environment which features both other road users and rel-
evant road elements to the navigation. Supposing a fully operational sensor set,
each device actively gives a distinct point of view on the state of the surrounding
environment. Certainly due to the fact that each sensor is installed at a different
position on the body of the vehicle, the main differences in those points of view
are due to the specific perception technology.

In Fig.1.7, the table presents several usage of three exteroceptive sensors and
whether they can perform well or not. As previously noted, cameras and lidars
are very sensitive to weather conditions differently from radars. This technology
may be completely ineffective for the detection of road markings, yet it is the only
capable of perceiving through some occlusions. This complementarity among
sensor technologies justifies and encourage the growing literature in the field of
data fusion which has been lately included in commercialized solution for lane
detection for automated driving.

Figure 1.7: Comparison of sensor technologies [Derome, 2019]. Complementary advan-
tages in using distinct technologies motivates research in sensor fusion.

1.3.2 Research framework

This PhD thesis is the result of a close collaboration between industrial and aca-
demic research in the field of autonomous driving. Under a Conventions in-
dustrielles de formation par la recherche (CIFRE) agreement granted by french
Association Nationale Recherche Technologie (ANRT), Renault Group and Uni-
versité de Technologie de Compiègne (UTC) co-managed this research project.

Heudiasyc Heudiasyc’s research is in the field of information and digital tech-
nology (computer science, automatic control, robotics, and artificial intelligence).
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From the start Heudiasyc has been closely allied to CNRS and is attached to
CNRS’s INS2I (Information Sciences) section. Heudiasyc disposes of a fleet of
instrumented vehicles dedicated to experiments, developments and integrations
of technologies for Advanced Driver Assistance Systems and Autonomous Driv-
ing.

SIVALab This work has been carried out within SIVALab, a shared laboratory
between Renault and Heudiasyc (UTC/CNRS). SIVALab is a partnership be-
tween a research laboratory and a car manufacturer, with the intention of imple-
menting a programme of research and innovation extending over at least four
years.

Renault Group DEA-LEA1 This work is developed within the Renault’s UET
(Unité Elementaire de Travail) DEA-LEA1: Algorithmes Fusion et Véhicule Au-
tonome. This team works across several projects typically associated to a vehicle
model or to a class of models. Each projects defines the system architectures (e.g.
available sensors, control units, computational power repartition and more) and
a set of features offered available to the customer, such as AEB and ACC. These
functions were used to be straightforwardly implemented through the integra-
tion of ADAS solutions provided by suppliers. For competitiveness reasons and
because of the growing complexity of these functions, car manufacturers are now
used to internally extend these packed solutions. This extensions consists here
of a multi-sensor fusion layer which is ultimately demanded to identity the ef-
fectively meaningful targets to fulfill the user needs.

1.3.3 Structure of the manuscript

This thesis is organized as follows:

Chapter 2 formulates the problem, taking into account the industrial constraints
and the target case study. At first, the existing kind of pipeline are presented
before detailing the one chosen for this research. Thereafter, the state of the
art of smart sensors for lane detection and map-providers is illustrated. The
objectives of this thesis are then stated within a spotlight of the L3 industrial
project which consists of the use case of this research.

Chapter 3 presents the onboard sensors solution for the estimation of lane bound-
aries. The deployed model for a generic smart sensor input is presented
where probabilistc polynomials are used in the detection of road elements.
The proposed tracking methodology is detailed in its main steps: initializa-
tion, prediction, association, update and adaptation to the clothoid spline
road model. The solution is tested within the L3 experimental setup, both
offline and on-vehicle. Qualitative and quantitative results are shown and
discussed.

Chapter 4 presents solution with both onboard sensors and use of HD-maps.
The adopted modelling of the map-provider input is presented together
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with the tracking methodology. The proposed solution is tested within the
L3 experimental setup. Qualitative and quantitative results are detailed and
discussed.

Chapter 5 discusses general conclusions of the research work. Future perspec-
tives are proposed, presenting preliminary results for those that have been
investigated.

1.4 Contributions

The contributions of this thesis are listed and briefly introduced in the following.
It is noted that the aforementioned thesis scoped entailed technical constraints
on this work. This research have finally been oriented towards the addressing
of the industrial use case with well-known information fusion methods, adopt-
ing elements of novelty in the modelling of the road elements and the involved
uncertainties. End-to-end and deep-learning based solutions for lane detection
have been investigated although not explored nor implemented. These choices
of research are thoroughly discussed in Chapter 2 together with the state-of-the-
art and the formulation of the problem. Hereinafter, the main contributions of
this thesis:

• Feature-tracking (Section 3.3), used in Renault L3 experimentations, method
for multi-sensor fusion of lane boundaries issued of smart sensors. This
method models the single lane boundaries as a set of ordered road fea-
tures, used to track position, orientantion and curvature at that point. This
representation is updated when new smart sensor measurements are suc-
cessfully associated. Each set of road features is then interpolated into a
clothoid-spline, which is output to the next module in the pipeline.

• Quantitative evaluation w.r.t. HD-map (Section 3.4.2) of lane boundaries
tracking methods in terms of lateral RMSE. In order to quantitatively mea-
sure the contribution of each sensor to the lane boundaries estimation, a
comparison metric has been defined which takes into account the lateral
distance.

• Lane boundaries probabilistic association method (Section 4.3) enabling
measure-to-track pairing in our tracking proposals. Using road features
projection and Mahalanobis distances, this method decides if two represen-
tations of lane boundaries refer to the same physical object.

• Map-tracking (Section 4.3), method for multi-sensor fusion of lane bound-
aries issued of smart sensors and map-providers.

• Precision metric (Section 4.4) enabling false-positives detection and multi-
hypotheses localization scoring.
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Chapter 2

Problem formulation

This chapter presents the related field of research and finally details the problem
we aim at solving. As mentioned, in the functioning of autonomous vehicles, a
comprehensive knowledge of the surroundings is crucial. We are interested in
the lane repartition of the roadway and we present at first where this knowledge
is shaped within the "Computing" stage of an AV operation. Within this stage, a
wide range of task breakdown alternatives is possible. We are presenting some
relevant examples of pipeline together with the chosen one for our working case
and the reasons that brought to this choice in our industrial working conditions.
Selecting a pipeline defines the position of a Fusion module in the architecture.
Hence, the inputs of this module are in-depth described presenting the state of
the art for lane detecting smart sensors and map-providers. At this point where
the context is completely defined and clarified to the reader, our mission and
formulation of the lane boundaries estimation problem is outlined. Our objective
of drawing the best of the multiple information sources about the environment
also traduces in "client" (in term of pipeline modules) expectations. According to
the intended usage of the final lane boundaries estimation, we tailor quantitative
key indicators (such as driver comfort, estimated range extension or coherency)
that would guide the definition of our data fusion solutions.

2.1 Autonomous driving pipeline

The developments toward autonomous driving technology have been heavily in-
fluenced by a same pace steady progress in artificial intelligence. Learned mod-
els has pushed the boundaries in the usage of sensor data but they also shaped
valid alternatives in defining the system architecture of autonomous vehicles.

2.1.1 Learned architectures

Since [Pomerleau, 1989], proposals of training a neural network which directly
mapped output of the sensors onto control signals of the vehicle have shown
their potential. These solutions, so-called end-to-end, are relatively easy to im-
plement and obtaining labeled data for their training as immediate as recording
a naturally driving. A general schema is illustrated in Fig.2.1 and some examples

27
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Figure 2.1: End-to-end [Urtasun, 2020] pipeline are completely learned architectures
which are simple to be trained on the end task but hard to diagnose in case of (likely)
issues in the general task.

are described in the followings. More recent years developments in graphic cards
technology and further works from NVIDIA researchers [Bojarski et al., 2016]
brought to working learned models of the road following task without neces-
sarily decomposing it into lane detection, semantic abstraction, path planning
and control. This simplification would be ideal and unburdening for the en-
gineering of the AD problem, yet end-to-end deep learning-based approaches
did not turn out to be the universal panacea for autonomous driving. In fact,
the self-driving control of a vehicle generally consists a sequence of decisions
and each step should be modelled in the automated system. Also, condensing
the mapping between image data and steering/acceleration into a single neu-
ral network heavily struggles in the interpretability and diagnostic of faulty be-
haviours. These issues can not be fixed with larger training dataset or models,
more advanced approaches propose architectural adjustments to face this.

Waymo’s [Bansal et al., 2018] opted for mid-level learning where it has been
taken better advantage of perception and control components. In this case, learn-
ing from both simulated and on-road recorded data is possible as the inputs of
their recurrent neural network (RNN) are now abstract representations of the
road agents rather than pure sensor data and directly output the control com-
mand.

Uber’s [Zeng et al., 2019] sticks with the end-to-end deep learning-based ar-
chitecture yet proposing interpretable intermediate representations such as 3D
detections and explicit trajectories.
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2.1.2 Traditional autonomy stack

It can be understood that vivid activity in the scientific community is pushing for
learned architectures, which would be preferable for easier implementation and
generally less burdensome developer cost. However, within the industrial con-
text, a traditional engineering stack for the development and commercialization
of vehicles enabled for (partial) automated driving seems to prevail. This config-
uration seemingly supports validation of the system’s functional safety which is
crucial for any commercialized product that involves human safety. The scope
of functional safety for automotive applications has been defined by the Inter-
national Organization for Standardization (ISO) which published the ISO 26262
standard [ISO, 2018]. Target systems are characterized in terms risk in Automo-
tive Safety Integrity Levels (ASIL), which scale from A to D grading from the
least through the most critical.

In the scope of this work, as developments took place within an industrial
context, the system architecture of reference is traditional and linear. This ap-
proach encourages modular developments where engineering contributions and
intervention in debugging and diagnostic. An example is given in Fig.2.2 and
described in the followings. From raw sensor measurements to control instruc-
tions, this pipeline features the following key phases:

• Sensors/Maps: observations (Section 1.2.1) of the surroundings are taken
as input, both regarding static and dynamic entities. Accordingly with the
working conditions of the sensors, frame of reference transformations may
be necessary before heading to the next step.

• Perception: raw observations may confirm consistent detections of road
agents or elements. In this case, tracks are defined which identifies posi-
tion and other relevant proprieties of these entities.

• Prediction: according to evolutional models of objects and their estimated
proprieties (or state variables), track representation allows for a prediction
of their behaviour in the future. On the one hand, mechanical models en-
able short-term motional predictions in the order of few seconds. On the
other hand, more complex and behavioural models of the agents provides
insights on the qualifying path alternatives that may be considered (e.g.
likelihood for another vehicle of turning right or maintaining its route at an
intersection).

• Planning: retrieved information about the driving scene and deducted mod-
els of the players within it are the foundation for defining a safe future tra-
jectory which is complying with the specified destination. Motion consists
of planning the next move of the ego-vehicle, this can be done at different
levels of abstraction. At navigation level, the road network has to be consid-
ered for targeting the correct turns and macro-choices for finally reaching
the target. These are the kinds of instructions we are currently used to fol-
low, when manually driving with the aid of navigation systems. As we
know, road design data is crucial for this process and real-time information
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Figure 2.2: Traditional pipelines [Urtasun, 2020] require significant engineering effort
but modularity eases prior knowledge incorporation and troubleshooting.

on traffic conditions may also affect our decisions at this level. At maneu-
ver level, behaviour for close time horizon is planned. In the short-term,
it might be convenient to overtake a slower vehicle or to perform a lane
change. These lower-level-of-granularity kind of decision can be taken in-
dependently of the final destination. At last, for an even shorter (order of
milliseconds) horizon of time, at immediate motional level, control of steer-
ing and acceleration in the next instants is sized to offer comfortable drive
to the passenger.

• Control: depending on the specific technology of electronic control installed
on the intelligent vehicle (Section 1.2.3), instructions at steering/accelera-
tion level are executed with the lowest possible latency. This causes, evi-
dently, to move the ego-vehicle at a new location. Together with the dis-
placement of the other agents in the environment, this causes the sensors
to perceive changes in the driving scene and to the pipeline to be execute
again in the next iteration.

This kind of architecture shows noticeable advantages in diagnostics and mal-
functioning fix. As example, it may occur that an issue in the pipeline is causing
the brake control to instruct frequent decelerations of the vehicle. Probing the
individual output of each of the key phases in the stack may unveil that the es-
timated velocity of all the other road agents is constantly being assigned a null
value, which causes them to being perceived as static objects. This kind of track-
ing issue can be individually addressed in the Perception module, eventually
avoiding incorrect inference in Prediction, Planning and unnecessary breaking.
Reasoning of this sort in the development of automotive applications may not be
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Figure 2.3: Adopted pipeline [Derome, 2019] with integration of smart sensors and a
specific module for track-level fusion for both objects and road elements.

possible in the use of learned models, especially in hardly interpretable end-to-
end deep learning-based architectures.

Chosen pipeline The above presented general autonomy stack sets the guide-
lines for the definition of the specific pipeline for our working case. Additional
constraints are taken into account in this definition, which may vary from in-
dustrial regulations and relations with suppliers to practical work repartition in
the company departments. The decision of adopting this same pipeline for this
research work is motivated by several arguments. As first, the most practical, be-
ing conform to a previously defined architecture allows for the implementations
to be carried on in a well-established environment. Conforming to the same de-
velopment tools enable for a large set of ad-hoc utilities and recorded data to be
directly available. Consequently, as we will be working within the first two mod-
ule referred to in the architecture, the fact that existing versions of the following
modules are being developed and compatible with our work enables debugging
and analysis of our impact on the whole architecture.

Let us now detail, from raw sensor measurements to control instructions, the
specific key phases of the adopted pipeline which is illustrated in Fig.2.3:

• Smart sensors: this is one of the major constraint applied to this research
when adopting this scheme. As Section 1.2.1.F recalls, integration of ready-
to-use solutions from Tier-1 suppliers is often easier for OEMs than dealing
with specific raw sensor data. As this situation precisely corresponds to
our working case, so-called smart sensors (and map-providers, for navi-
gation information) will be the very first input of our pipeline. The main
difference lies in the fact that with "pure" sensors we would be in control
of the whole data processing. The use of smart sensors delegates handling
of raw data in return of more abstract yet more practical abstraction of the
elements in the driving scene. As example, in case our architecture is in-
cluding a frontal camera for the detection of road markings, we will not
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be dealing the pixel matrices issued of the camera observations. The smart
camera, and from there the definition of "smart", will be performing image-
processing-specific transformations in order to present its observations as a
straightforward list of road elements, stepping up of a level of abstraction.

• Fusion: combining data from different point of view and sensors of dif-
ferent technology is key for a complete and reliable understanding of the
environment. This specific module will be implementing the proposed so-
lutions from this research. Information fusion can be performed at different
level of abstraction. Because of the "smart sensor hypothesis", it will be best
suited for applying of techniques of information fusion at track-level. Even-
tually, a comprehensive list of all objects and lane boundaries detected and
tracked in the environment will be set up for the next module. Each element
shall be presented in its state at a coherent and agreed time instant. Aware
that a communication delay "Computing" and "Actuating" phase exists and
may affect the motion planning, the future state of the scene elements is
accordingly predicted through adequate motional models.

• Target selection : any of the objects and road elements delivered to this
moduled has been confirmed to be detected in the scene with a certain
amount of confidence. However, not all of these detections are critical in
the immediate future, from the motional point of view of the ego-vehicle.
Because of this, a sub-set of relevant targets is selected according to specific
ADAS-related criteria. For example, in the simple case of AEB implemen-
tation, the closest ahead vehicle is eligible in the target selection if it is as
close as its predicted trajectory collides with ego-vehicles’s in the next few
seconds. Critical target does not necessarily mean threatening, it refers to
the need of correctly observing given elements in order to put into action a
functionality. Left and right lane boundaries are generally key for any LKA
and LCA implementation.

• Action decision : before defining and applying action on the vehicle actua-
tors, the selected targets contribute as determining factors for deciding the
ego-vehicle’s next action. A mission to be followed is here implied always
relying on specific criteria on the state of selected targets. At this stage, the
calibration of individual thresholds may drastically affect the behaviour of
the vehicle. As in case of series production it affects millions of vehicles in
the road network, specific protocols are defined in the automotive industry
in order to fairly test safety functionalities. At European level, these valida-
tion protocols are proposed by the European New Car Assessment Program
(Euro NCAP).

• Control ADAS : the mission would generally imply active response in the
vehicle system. Electronic systems may require to be solicited in some cases,
such as turning signal or alerting in the Human Machine Interface (HMI),
yet the most impactful action to be taken is determining the exact path for
the vehicle to be followed. In order to facilitate comfortable driving for the
passenger, the path for the successive few seconds is planned and delivered.
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• Control chassis : planned path is rendered into specific actions and elec-
tronic commands delivered to the actuators, which may vary depending on
the vehicle model, architecture or propulsion technology.

• Actuators : instructions at steering/acceleration level are executed which
causes to move the ego-vehicle at a new location and to perceive changes
in the driving scene and the pipeline to be execute again, as in the general
definition of autonomy stack

Related state-of-the-art As it has been seen from the presentation of these pipelines,
perception is an essential stage in the development of autonomous driving sys-
tems. It precedes and lays the basis for path planning and decision making. In
this key phase, the goal is to pursue two main outcomes: an overview of other
users in the driving scene and a solid representation of the surrounding environ-
ment. The latter is tackled in this work, specifically proposing information fusion
approaches. For this reason, it is important to elucidate as much as possible on
the functioning of the inputs to the fusion module. In the following, the state of
the art of smart sensors for lane detection and map-providers is presented before
ultimately providing the formulation of the problem targeted in this research.

2.2 Smart sensors: state-of-the-art

An extensive knowledge of the lanes repartition around a vehicle is necessary
in order to enable it to perform autonomous navigation. In the lane detection
problem, the aim is to identify the number of the surrounding lanes and their
geometric shape. This has to be estimated with respect to the ego vehicle, which
will base its navigation decisions on this representation. This approach to the
problem is centered on the vehicle and its only aim is to perform at best with
available priors and data from propriospective and exterospective sensors. Dif-
ferent approaches based on different levels of prior knowledge exists such as pre-
cise localization approaches. In this case, the work of [Poggenhans et al., 2018b]
is a valid example, the lane detection problem is addressed by localizing pre-
cisely (with centimetre accuracy) in the frame of reference of a so-called high
definition map, a lane-level representation of the environment. In this work and
others [Li et al., 2017], the lane detection problem is solved accessing the geo-
graphic representation of the environment and querying this prior knowledge
(usually stored in the form of a database).

In the usage of smart sensors, however, this prior is generally not available.
The chosen approach therefore generally follows the structure proposed in
[Huang and Teller, 2011]. Here, some main steps are defined to describe the syn-
thesis of an accurate lane representation on the basis of raw sensor data. The
choices made in these steps determine the final result, the working conditions
and the scope of the possible application. An overview of the process, as pro-
posed in [Huang and Teller, 2011] and its illustration (reported in Fig. 2.4), can
be given as follows:
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1. Lane model

2. Features extraction

3. Lane detection and tracking

These three main axes of the problem are taken as guidelines for the exploration
of the literature, without forgetting the above presented industrial context. In
fact, it is recalled that our solution would ideally exploit and combine existing
commercial smart sensors. Also, the designed data-fusion architecture would be
itself applicable, not too far in the future, to a marketed product or vehicle. Ac-
cordingly, this work will mostly focus on lane modelling, detection and tracking.
Different feature extraction techniques are nevertheless examined in order to be
optimally exploited, in the form of smart sensors (e.g. MobilEye Camera and
other).

Figure 2.4: Lane detection pipeline [Huang and Teller, 2011].

2.2.1 Lane model

The choice of the lane model affects which types of lanes can be represented
and the applicable estimation algorithms to fit it. Lane and road models can be
categorized into three classes: parametric models, non-parametric models, and
semi-parametric models.

1. Parametric models: a finite number of parameters maps into simple geo-
metric curves. Common representations are straight lines, parabolic curves,
circumferences arcs and hyperbolas. This first category has limited degrees
of representation but it is suitable for efficient fitting algorithms such as
RANSAC, Hough transform and vanishing point [Kong et al., 2009]. This
enables simple applications but strong outlier and noise resistance, such as
[Zou et al., 2019] which exploits RANSAC and Kalman Filter with a straight
line model. On the other hand, if the intended application is anything more
complex than an LKA (Lane Keeping Assistant), more flexibility is needed
and strictly parametric are not a viable solution.

2. Non-parametric models: without an a priori specified structure the result
is determined by the data. It may consist of a continuous representation
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(e.g. continuous pixels), but it might not contemplate any smoothness or
differentiability. This paradigma is preferred in all of those applications
where features are issued of image matrix and extracted directly from a
camera point of view, generally based on deep learning [Pan et al., 2018].

3. Semi-parametric models: in the presence of parametric and non-parametric
components, these models do not assume any specific global geometry for
the path. This category primarily includes different declinations of piece-
wise defined functions, so-called splines. The work presented in
[Fatemi et al., 2014] has constraints quiet similar to those affecting our study.
Relying on smart sensors, a clothoid-spline model is chosen guaranteeing
the continuity of the curve’s curvature all along the different segments. This
model presents flexibility and interesting results, even thought the model
proposed in
[Fatemi et al., 2014] is based on strong and facilitating hypotheses. More-
over, the results from Bertolazzi [Bertolazzi and Frego, 2015] have been an-
alyzed to evaluate if they could possibly benefit a clothoid-spline based lane
tracking algorithm such as the latter. On the other hand, [Abramov et al., 2016]
presents an even more generic lane model, which also implements con-
straints and priors between lanes (parallelism, minimal lane width, etc.)
as form of edges in a Graph-SLAM approach.

2.2.2 Features extraction

At this stage, sensor data is processed to extract environmental features useful
for the actual estimation. Accordingly with the nature of the sensor, there is a
variety of possible features to consider and extract.

For cameras and vision-based sensors, several existing works focus on ex-
tracting features based on colours, shapes and textures. The classic work
[Bertozzi and Broggi, 1998] bases its lane detection module on the horizontal bright-
ness variation of the input stereo-image, after the application of an Inverse Per-
spective Mapping (IPM) transformation. Lately instead, [Pan et al., 2018] repre-
sents the cutting-edge for lane detection, according to [Bai et al., 2019] and to the
TuSimple Benchmark Lane Detection Challenge [TuSimple, 2021]. Its deep learn-
ing approach takes into account wide spatial relationships and results effective
on extended objects with few appearance clues, i.e. traffic lanes, poles, and walls.
[Lee et al., 2021] achieves state-of-the-art performance in CULane and BDD100K
and distinct improvement on TuSimple dataset. [Xu et al., 2020] proposes a novel
lane-sensitive architecture search framework named CurveLane-NAS to auto-
matically capture both long-ranged coherent and accurate short-range curve in-
formation.

Other proprieties are considered with sensors of different nature, such as re-
flectivity of the material for lidars [Kammel and Pitzer, 2008] and echoes com-
ing from road barriers for radars [Kim and Song, 2016]. In [He et al., 2016], lane
marking features are detected according to intensity of the laser reflection, trans-
formed into an intensity image and classified by the means of a Convolutional
Neural Network (CNN). [Ghallabi et al., 2018] bases his work on the same fea-



2.2. Smart sensors: state-of-the-art 36

ture, with a simple straight line model in order to enhance the cross track local-
ization of the vehicle.

2.2.3 Lane detection and tracking

Selected features are processed in the detection step to infer the presence of one
or more lanes. Features are fit into the chosen lane model and an initial estimate
is generated. If these detections are successively confirmed by fresh measure-
ments, they are validated as actual tracks and at tracking stage we can exploit
spatial and temporal continuity constraints to update the lane estimates as the
vehicle moves and new observations are available. In this part, noisy detec-
tions have not to be confirmed as tracks. The algorithm resistance to outliers
is tested, as well as its reaction to false positives. Additionally, new observa-
tions of already detected lanes have to be correctly associated to existing tracks
and contribute to their estimate and update. In these steps, the representation
of uncertainties plays a crucial role when classical association techniques are ap-
plied. [Hasberg and Hensel, 2008] estimates the geometry of a railway track us-
ing a spline model and localization samples from GNSS receivers installed on the
trains. Each point of the curve has an associated uncertainty, which is taken into
account in the update step of its Kalman Filter.

2.2.4 Track-level fusion

As smart sensors typically implement and deploy tracking algorithms, perform-
ing information fusion on their outcome would imply performing a form of
track-level fusion. These methods applied to lane detection have generally got-
ten less attention in the academic sphere with respect to raw data fusion solu-
tions. However, they can be particularly useful in technical and industrial situa-
tions such as the one we want to address. Specifically, recent developments from
[MATLAB Sensor Fusion and Tracking Toolbox, 2021] eased accessibility for the
development of track-level solutions. In Fig.2.5, the outline of a track-level fusion
example for objects detection. The schematic of the workflow shows how radar
and lidar measurements are respectively processed in an extended object tracker
with Gaussian mixture probability hypothesis density (GM-PHD) and in a con-
ventional joint probabilistic data association (JPDA) tracker configured with an
interacting multiple model (IMM) filter.

Relevant works from the literature such as [Houenou et al., 2012] present a
modular high level track-fusion architecture for a multisensor environment. Here
the multisensor track-to-track association issue is addressed with a particular
track-to-track distance computation. [Duraisamy et al., 2013] presents an overview
of track level fusion algorithms such as fusion with Cross Covariance, Informa-
tion Matrix fusion, Reconstructed Measurements method and Covariance In-
tersection. In these cases, several metrics are designed for comparing perfor-
mances. Generalized Optimal SubPattern Assignment Metric (GOSPA) metric
from [Rahmathullah et al., 2017] allows to penalize localization errors for de-
tected targets and the errors due to missed and false targets.
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Figure 2.5: Example workflow from [MATLAB Sensor Fusion and Tracking Toolbox, 2021]
featuring radar and lidar track-level fusion.

2.3 Map-providers: state-of-the-art

Similarly to what have been done for smart sensors, we will be describing the
functioning and current state of the art of another important input of the Fu-
sion module: the map-provider. Using the term "map-provider" we identify a
complete system which is able to deliver (or provide) a representation of the
surroundings of the ego-vehicle taking into account its current position. This
representation is provided in form of structured data and generally extracted
from a larger and more complete map. The aim is to exploit as much as possi-
ble this additional clue about the road network structure to support automated
driving functionalities. Again, as for smart sensors, car manufacturers have the
possibility to buy and integrate ready-to-use map-providing solutions choosing
in a rather large market of specialized suppliers. Expertise for on-board deliv-
ering exploitable road maps for ADAS and AD are specific and require consid-
erable amount of dedicated upstream work for tasks such as map building and
maintenance. The main players in this sector, such as TomTom and HERE, are
currently focusing on the creation of High Definition (HD) maps of all those sec-
tions of the road network where automated driving features are most likely to be
allowed from the regulators. Fig. 2.6 shows a preview of TomTom’s Road DNA
[TomTom, 2019] which aims at characterizing meaningful information from the
roadway in order to facilitate precise localization.

Figure 2.6: TomTom’s Road DNA [TomTom, 2019] aims at characterizing meaningful
information from the roadway in order to facilitate precise localization
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2.3.1 Mapping

Since the early usage of paper or cassette-stocked maps [Newcomb, 2013], dis-
posing of navigation maps has always been of great support to the driving task.
Where most electronic maps allowed to be updated according to changes in the
road networks, they all differed for specific characteristic such as the level of de-
tail or the stocked information within the map. In order of chronological in-car
availability and growing accuracy (Table 2.1) enabled by technological advance-
ment, three main categories of digital navigation maps are presented in the fol-
lowing, all of which are milestones in the driving assistance progress.

Year Map Type Geometry Accuracy
1930 Paper maps Two-Dimensional (2D), at road level
1990 Digital maps 2D, at road level 5–10 m
2000 Enhanced digital maps Digital maps (including ADAS support) 50 cm
2010 HD Map 3D, Digital maps (at lane level) 10–20 cm

Table 2.1: In-car navigation map evolution [Liu et al., 2019].

A Digital Maps

Traditional digital maps were the first evolution step from in-car use of paper
maps [Leite, 2018]. Interactive and accessible through in-dash screen, they al-
lowed search functions and turn-by-turn guided navigation. The road network
is represented as a 2D-graph where the shortest path from departure to desti-
nation is calculated and the driver is instructed through each manoeuvre, while
their position within the map is know thanks to Global Navigation Satellite Sys-
tems (GNSS). Global Positioning System (GPS)-based localization is sufficient as
the level of precision of the map is generally in the order of 5-10 m and the rep-
resentation of the navigation path stops at road level.

B Enhanced Digital Maps

More advanced maps became useful for ADAS applications as additional infor-
mation on the road network integrated the electronic map. The environment is
still represented in two dimensions, however road connections can be detailed at
lane-level while including specific attributes such as [TomTom, 2019]:

• Road curvature: can improve passenger comfort advising (or enforcing) on
the appropriate speed and predictive cruise control.

• Gradient: or slope of the road, can improve fuel efficiency and safer usage
of braking system (to be managed particularly carefully onto heavy vehicles
in down-sloping path).

• Curvature at junction: knowledge of the "angularity" of a junction can sup-
port passenger comfort in safety conditions.
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• Lane at junction: information on lane repartition at/before a junction eluci-
dates on potential turning opportunities.

• Traffic signs: both existence and spatial position of important signage can
support ADAS functioning and AV road segment localization.

• Speed restrictions: can enhance ACC.

These type of maps can reach a granularity of up to 50 cm and potentially sup-
port automated driving applications. With respect to their even more detailed
counterpart, they are also called Standard Definition (SD) Maps. Unlike digital
maps, that were usually designed to solely support the turn-by-turn navigation
system, SD Maps may need to be transmitted to one or more ADAS ECUs on
the vehicle implementing specific features on the basis of map data. For this
purpose, the Advance Driver Assistant Systems Interface Specifications (ADA-
SIS) Forum [ADASIS, 2002] has defined an ad-hoc protocol for easing the com-
munication with on-board map-providers avoiding the usage of a different pro-
prietary language with each different map. In the case of SD Maps, the ADA-
SIS v2 Protocol [Ress et al., 2008] has been defined and it is currently studied
[Bhonsle, 2016] and implemented in commercialized vehicles.

C High Definition Maps

Currently the most detailed format of navigation maps for automotive use, High
Definition (HD) Maps represent the world in three dimensions and usually im-
plement several layers of information. Several map makers have defined their
own kind of HD Map, with different terminology and proprietary data struc-
tures, however most of them established an information hierarchy over three
layers with similar meanings.

In the following, the naming proposed by [HERE, 2017] and displayed in Fig.
2.7 is adopted for describing the content of each layer, from the most general to
the most specific:

1. Road model. An ordered sequence of shape points represents the geome-
try of the road. Start and end point of distinct roads are used to describe
intersections. Increased density of shape points can enhance the curvature
description of the road, however it would imply a larger storage of informa-
tion. The better trade-off is held with a mathematically efficient represen-
tation where a new shape point is used in the presence of appreciable cur-
vature variation. This layer can be extended with additional information,
tending to the content of whole SD Maps. It is generally used at strategic
level of navigation planning. The most convenient path to destination can
be computed taking into account real-time information, where available, on
current traffic and road conditions.

2. Lane model. Early implementation of 2D lane models, in the format of
Road Network Description File (RDNF), have been used in the famous De-
fense Advanced Research Projects Agency (DARPA) Urban Challenge al-
ready [Buehler et al., 2009]. More recent realizations, as in the Bertha Drive
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Figure 2.7: HERE three-layers HD Map [HERE, 2017]. From Road to Lane up to Local-
ization data, the HD Map supports and enable advanced driving assistance

project [Ziegler et al., 2014], implement 3D lane models in the form of lanelets,
which have been specifically designed to describe drivable sections in all
their characteristics. A lanelet [Poggenhans et al., 2018a] contains the fol-
lowing information: highly accurate geometry model, lane attributes, traf-
fic regulations, road furniture and parking, lane connectivity. In Fig.2.8,
an example of lanelet is presented. At this level of abstraction, left and
right bounds are analogous to the lane boundaries this research is focused
on. They describe the geometry of the lane limits and integrated the afore-
mentioned semantic information. This map layer is designed for naviga-
tion planning at manoeuvre level, performing lane-level operations such as
changing lanes in anticipation of an intersection.

Figure 2.8: Lanelet example. Left and right bounds described the geometry of the lane
boundaries and integrate additionaly attributes such as semantics and connectivity
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3. Localization model. At this layer, the high definition of the map finds ex-
pression for supporting the precise localization of the vehicle within the
map. Specific methods for this process are discussed in the followings (Sec-
tion 2.3.2), yet we can introduce two distinct categories of road elements
which entail distinct localization models. On the one hand, a feature-based
localization model can be stored as a graph where each node represent a
3D landmark in the environment described by feature descriptors. Feature
maps may be efficient and compact but they rely on the fact that data pro-
cessing and feature extraction from sensor data can be done both offline,
in the map making phase, and online. The more are the available land-
marks stored in the feature map, the more the localization method can be
effective. Lane boundaries with their type attribute (stop lines, curbs, solid,
dashed), traffic signs, highway reflective markers can all be used for this
purpose. On the other hand, dense information-based localisation model
are generally more demanding in terms of memory. They can stock sen-
sor data in 2D spatial grids (which can extend over to 2.5D with reflectivity
and height information) or in view-based representations. The latter is the
one preferred by some of the most advanced automated driving companies
such as Waymo [Sun et al., 2020] which enable their robotaxi fleet to level
4 autonomous driving, albeit in only few selected areas of USA cities. This
model can in fact deliver outstanding accuracy in map relative localization
but it requires for lidar-based point cloud map to be stored and maintained.
Voxelization of point clouds [Vo et al., 2015] may help in stocking the data
more efficiently, yet keeping it up-to-date remains a major challenge. Many
elements in the driving scene can vary or be perceived differently under
different weather or seasonal conditions. [Maddern et al., 2015] even intro-
duced the concept of Experience Based Navigation (EBN) to address this
problem in the usage of point clouds.

The use of HD Maps in commercialized vehicles is currently not usual but its
spread might not take too long. ADASIS proposed an extension of its protocol
(releasing v3), supporting their integration and pushing the idea of electronic
horizon (e-Horizon) in assisted driving. Taking advantage of detailed represen-
tation of the environment which are not limited by occlusions or maximum sen-
sor range has proven to be an enabling factor in higher level of autonomy. Chal-
lenges remain for the maintenance of this framework while numerous objections
have been raised to the need of HD-mapping every single road on Earth. Either
way, some map makers (e.g. TomTom) are already moving in that direction and
offering HD maps of most highways to their customers car manufacturers.

Creation process of HD Maps Before reviewing the existing localization meth-
ods, it is worth discussing how maps are created, in the case of HD Maps. The
basic idea is to collect geo-referenced and timestamped sensor data in order to
be able to aggregate and extract the appropriate localization model. Fleet of
mapping vehicles are typically used which are generally equipped with lidars
and cameras for environment perception and with Inertial Measurement Units
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(IMU), GNSS receivers, proprioceptive motion sensors such as wheel odometers
for tracking the position of the mapping vehicle.

Rather than using dedicated mapping vehicles, emerging approaches of crowd-
sourced HD Map are being proposed in the AV industry. [Mobileye, 2017] intro-
duced Roadbook and Road Experience Management (REM) to leverage on the
millions of smart camera equipped vehicles for updating in real-time the shared
and feature-based HD Map. Relying on the "wisdom of the crowd" could even-
tually be more reactive and reliable than adopting lower frequency updates del-
egated to few over-equipped vehicles, if the amount of data to be uploaded from
the vehicle is as modest as promised (10kb/km) and the human supervision ef-
fort is also limited.

2.3.2 Localization

Awareness of its own position is essential in the context of automated and as-
sisted driving where the ego-vehicle aims at correctly and intentionally navi-
gating the environment. The approaches to this problem, which is the estima-
tion of the observer position within a frame of reference, are based on many
of the concepts coming from the world of robotic navigation. Unlike use cases
of indoor navigation, where autonomous robots can rely on fixed beacons and
active sensors installed in the environment, the localization of an intelligent ve-
hicle is addressed outdoor and using proprioceptive and exteroceptive sensors
mounted on-board. Intelligent road equipment and communication vehicle-to-
infrastructure (V2I) consists of a valid analogous to indoor localization
[Chen et al., 2015], yet this case is not discussed in the following as vehicle-to-
everything (V2X) solutions are currently far from mainstream adoption in the
automotive industry. Hereinafter, approaches for vehicle localization are pre-
sented reviewing existing solution to this problem in two distinct cases: position
tracking and global localization.

A Position tracking

This is actually the case of most commercialized driving assistance applications.
At vehicle ignition, the starting position is supposed to be known. Its evolu-
tion wants to be correctly observed to understand the relative positioning with
respect to other entities in the driving scene, whether they are static or dynamic.

The displacement of the ego-vehicle can be estimated comparing two consec-
utive measurements from the same sensor. In case of proprioceptives, the change
in the pose can be computed via direct integration of accelerometers, odometers
and gyroscope data. The solution to the dead reckoning navigation problem is a
traditional approach to position tracking [Chung et al., 2001] [Park et al., 1997].

On the other hand, estimating the same displacement using exteroceptive
sensors can be more challenging and, dependently on the specific sensor, may
need the use of more advanced techniques. The problem to be solved can be for-
mulated as follows. Given sensor readings 𝑆0..𝑛 = {𝑆0, 𝑆1, ..., 𝑆𝑛}, calculate the
transformation matrix 𝑇𝑘−1,𝑘 ∈ R4𝑥4 describing the rotation and translation nec-
essary to displace the ego-vehicle from pose 𝑃𝑘−1 to pose 𝑃𝑘. Let us now review
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some of the existing solutions in the literature, which differ for the deployed
sensors:

• Camera: the use of vision sensor for the ego-motion estimation has been
widely explored. Single or stereo cameras can be adopted. In both cases
they can be referred to as visual odometry (VO) approaches. Most effective
solutions from the earliest [Longuet-Higgins, 1981] are composed of four
main steps: feature extraction, feature matching, motion estimation and lo-
cal optimization. More recent propositions [Wang et al., 2017] focus on de-
veloping end-to-end trained deep models, avoiding the standard pipeline
and leveraging on deep learning techniques.

• Lidar: with laser scanners the term point cloud registration is preferred when
the displacement is being estimated on the basis of two sequential point
clouds. For this purpose, the traditional approach since
[Besl and McKay, 1992] is the Iterative Closest Point (ICP) algorithm. It con-
sists of four main steps: selection (which is similar to feature extraction in
VO), matching between selected points, weighting the correspondences be-
tween points accordingly with how reliable and relevant to the transfor-
mation and finally minimization. At this last step, a specific cost function
is minimized optimizing for the best geometric transformation from 𝑃𝑘−1 to
𝑃𝑘. Current reference for the state of the art in point cloud registration is the
Lidar Odometry And Mapping (LOAM) technique [Zhang and Singh, 2018].

• Other sensors such as radars [Schuster et al., 2016] and sonars
[Ribas et al., 2008] are less commonly used propriceptive sensors in address-
ing the position tracking problem, but might be of interest in specific use
cases.

B Global localization

If position tracking can be conceived as a continuous estimation problem from
a known starting position, when facing global localization the starting configu-
ration is not relevant anymore. Approaches to this problem can be purely based
on GNSS-based or extend their prior knowledge with an HD Map. The first
category has been extensively studied in [Obradovic et al., 2007], where GNSS
pseudo ranges are used as main source and a Kalman filter fuses odometer and
gyroscope sensors into a dead-reckoning process. The second category concerns
all those methods adopted for exploiting the HD Maps presented in Section 2.3.1.
Depending on the accuracy-level of the localization technique, we might be able
to answer one or more of the three questions presented in Fig. 2.9:

• What road? Most navigation systems, even purely GNSS-based, can pro-
vide this level of accuracy. The position of the vehicle is correctly estimated
within 5-10 m using an ordinary Global Positioning System (GPS).

• Which lane? In order to distinguish in which of the lanes composing the
identified road is situated the ego-vehicle, an accuracy of about 1 m is re-
quired.
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Figure 2.9: What road? Which lane? Where? [Consortium et al., 2004]. This macro char-
acterization of localization systems assists in the identification of technical requirements
for specific applications. In the illustration, more accurate localization entails more so-
phisticated equippement.

• Where in lane? A precise position of the vehicle within its lane, within 30
cm of its actual localization. This accuracy is attained with more sophisti-
cated systems such as differential GPS and Real Time Kinematic (RTK).

This differentiation in three levels of accuracy may be beneficial in the de-
scription of the requirements for the realization of a give ADAS. For example, in
order to offer map-based ACC which adapts the speed of the vehicle taking into
account the speed restrictions of the road, a "What road" localization might be
sufficient. In case of distinct limitations for distinct lanes, "What lane" accuracy
might be required but no further precision would be needed.

Recent methods based on HD Maps and exteroceptive sensors have proven
to be capable of centimeter-level localization. In the case of feature-based lo-
calization models (Section 2.3.1.C), these techniques generally adopt a pipeline
composed of three steps:

1. Feature extraction from sensor data.

2. Matching with map features.



2.4. Objective of this thesis 45

3. Position error minimization.

Varying the type of extracted feature and the deployed sensors, several solu-
tion have been studied. [Li et al., 2018] uses smart camera detections of lane
markings, achieving lane-level localization while improving safety with integrity
monitoring. [Ghallabi et al., 2018] exploits reflectivity of lane markings detected
in highway using laser scanners. Another lidar application of is proposed by
[Welte et al., 2020], which method improves data association in the matching
step utilizing specific buffer adjustment.

2.3.3 Simultaneous Localization And Mapping (SLAM)

We presented so the Mapping task and the estimation of the vehicle Localization
as two distinct problems. As a matter of fact, these two challenges are intrin-
sically connected and ordinarily addressed as one. In the case we are not map-
ping with known pose, than the challenge named Simultaneous Localization And
Mapping (SLAM) arises. Traditional [Smith and Cheeseman, 1986] challenge in
robotic sector, the aim is to build a consistent map of the environment while si-
multaneously estimating the position of the robot within it. In their two part tuto-
rial, [Durrant-Whyte and Bailey, 2006] and [Bailey and Durrant-Whyte, 2006] il-
lustrate the EKF-based SLAM where the Gaussian distribution of current robot
and landmark positions are recursively estimated.

2.4 Objective of this thesis

This research aims at developing information fusion solutions in the scope of
lane boundaries detection. The above has served as introduction to the context
we will be working in and where the data fusion will happen. As the contextual
system architecture has been presented together with the functioning of the in-
puts, which might be issued from both smart sensors and map-providers, it is
now introduced the specific case study we want to address.

2.4.1 L3 automated driving project

The aim of this project is to realize a working prototype of L3 automated ve-
hicle. According to the definition proposed by SAE [SAE International, 2021],
this is the first level of automation where actual automated driving features are
available. Specifically, the driver is not assisted anymore: when certain conditions
are met, automated driving features can be engaged letting the driving system
"take control". The driver is now to all effects a passenger, even though they are
still in the driver’s seat. In fact, they may initiate leisure activities during this
phase, such as reading or enjoying entertainment features proposed by the vehi-
cle itself, but without being allowed to complete isolation. They have to be able,
at any time the vehicle may require it, to take back the vehicle control within a
limited time-frame. The automated system may, in fact, have verified that the re-
quired conditions for automated driving are not met anymore and the passenger
shall be ready to "become driver" again.
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It is worth specifying what kind of conditions are being referred to and what
is the order of magnitude of the limited time-frame. These specifics, in fact, make
all the difference. For example, the desired conditions may be so hard to be met
(e.g. on-board sensors have to detect lane markings at 500 m distance at least)
making the "self-driving mode" virtually impossible to be activated. Yet again,
a 20 ms time-frame would make the car-to-driver hand-off impossible to be at-
tained for the passenger. For these reasons, the correct balance between usability
and safety have to be identified in designing the system. In this project, the hand-
off time-frame has been sized in the 10-15 s. This time interval is both sufficient
for the passenger to switch from its current activity back to the driving and task
and for the vehicle to plan the eventual Minimum Risk Maneuver (MRM). The
case of an user not being able to take back control of the vehicle shall be foreseen
and handled. The automated system demanding and not obtaining an hand-off
should engage in the MRM. The term MRM identifies an action to be performed
by the automated vehicle which minimizes the risk of occurring in hazardous
situation, even beyond the required conditions for self-driving. For instance, in
highway scenario, the MRM would be the minimal trajectory for reaching the
first available road-shoulder [Zhang et al., 2021]. The clarification of the car-to-
driver handoff is a delicate subject as it defines where the responsibility in the
vehicle behaviour passes from the car (manufacturer) to the driver. This distinc-
tion would be crucial in the event of an accident and the implication of insurance
and law regulations.

The required conditions for the activation of the automated driving features,
in this specific project, have been defined to be the followings:

• The vehicle has to be located in the Autonomous Driving Operational De-
sign Domain (ODD). These areas are generally sections of motorways which
have been qualified to be eligible for this purpose. Additionally, an HD Map
of these roads is generally issued by the installed map-provider.

• Reliable localization of the vehicle has to be available, in order to validate
that it is within the ODD and the use of HD-Map-based navigation is viable.

• A minimal sensor (sub-)set for safe navigation has to operational and no
flag of malfunctioning has to be reported.

• Minimal quality of lane markings (or generic lane boundaries) is respected
to guarantee comfortable driving to the passenger.

• Estimation of the lane repartition is available at sufficient range to perform
predictive control of the vehicle and/or complex maneuvers (lane change
or other vehicles takeover).

In the case of compliance with all of these requirements, the driver is allowed
(and prompted from the HMI) to enter the "automated driving mode". After
activation, the following functionalities are available to the passenger:

• They can indicate at any moment the desired speed of the vehicle (condi-
tioned to speed regulation) and it will be maintained as possible.
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• Turn directions can be used to apply for a lane change which is actuated as
it is possible.

• An additional slider can be used to regulate the minimal inter-distance to
be maintained from the preceding vehicle.

These complex functionalities are being implemented while it is being guar-
anteed safety inter-distance from other vehicles, safe reactions to cut-in or un-
expected braking of other road users. The realization of the system is deployed
according to a specific traditional autonomy stack (Section 2.1.2) of modules con-
nected in pipeline. In order to comply with the automated driving requirements,
each distinct module has therefore specific objective to maintain.

Lane boundaries estimation objectives Let us detail the specific objectives in the
area addressed by this study, the estimation of the surrounding lane boundaries.

First of all, we are introducing some fundamental terminology. Hereinafter,
the term "lane boundary" equivalently identifies lane markings, barriers and any
other road element relevant to the partition of the roadway into lanes. This envi-
ronment modeling approach aims at identifying the edges of these fundamental
travel corridors where vehicles can drive safely and efficiently. A reliable and ac-
curate characterization of the roadway and its lanes would enormously benefit
a lane-based navigation. Positively supported tasks would be lane assignment,
path prediction, lateral and longitudinal control of the vehicle. It is proposed in
this work to exploit multiple sources of smart sensor and map-provided data in
order to support these tasks which come with specific requirements on the lane
representation:

• Lane assignment is the task of correctly understanding in which of the sur-
rounding lane the other vehicles are driving. It is required an estimation of
the position of the lane boundaries, at medium-long range.

• Path prediction is the task of forecasting the future trajectory of the other
vehicles. Kinematics models of the road agents are central in this matter,
yet a knowledge of the lane repartition can offer decisive factors in this pre-
diction. It is required an estimation of the position of the lane boundaries,
at medium-long range.

• Lateral control is the task of actuating on the lateral position of the ego-
vehicle in order to follow the planned trajectory. It is required an estimation
of the position, orientation and curvature of the ego-lane boundaries, at
short range.

• Longitudinal control is the task of actuating on the longitudinal position of
the ego-vehicle in order to follow the planned trajectory. It is required an
estimation of the position, orientation and curvature of the ego-lane bound-
aries, at medium range.

Two general principles in the lane boundaries estimation which are being fol-
lowed are simple to be expressed but are generally reflect in not trivial chal-
lenges:
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1. Be robust: when lane boundaries are being detected, it is vital to detect the
all and only existing lane boundaries in the environment. More specifically,
we want to avoid missed-detections and false-detections.

2. Be precise: when estimating the state of a detected lane boundary, it is
important to be as precise as possible in its state estimation. In example of
curvature estimation, we want to as true as possible

2.4.2 L3 prototype vehicle and sensor set

The deployed vehicle for our experiments (an ad-hoc configured Renault Espace)
is shown in Fig. 2.10 from two different viewpoints. Additionally, a detail of
the front bumper shows how the sensors have been integrated. The vehicle is
equipped for the perception of its surroundings with:

• Smart FrontCam, 30Hz, FoV: 53∘ × 120 𝑚

• Smart AVM (4 cameras), 20Hz, FoV: 360∘ × 20 𝑚

These sensors implement device-specific data processing algorithms. Specifi-
cally, the Smart FrontCam can send out up to 4 measurements per delivery. The
Smart AVM has similar capabilities, however we narrow down its usage to the
ego-lane estimation (up to 2 measurements). This limitation is due to the differ-
ence in maturity of the two sensors.

Another specific unit handles the localization of the vehicle. It implements
particle-based localization algorithms applied within a remotely provided HD-
map (streamed via Ethernet according to ADASISv3 [Ress et al., 2008] standards),
using a commercial positioning system.

2.4.3 Custom dataset of recorded sensor data

Sensor output and map data has been recorded for testing, driving the prototype
vehicle on the French A86 (Créteil-Versailles). This highway presents the tar-
get use case where the automated driving features are going to be available. In
fact, the map-provider setup installed on vehicle can deliver an HD Map of these
roadway, as it is part of "autonomous driving suitable" road. The on-board main
computer can execute specific ADAS functionatilies running a precompiled li-
brary or record sensor data useful for offline testing of fusion algorithms. In
"recording mode" the following data stream are being recorded:

• Perception sensors measurements (which include the above mentioned smart
sensors and others)

• All map-provider deliveries

• Proprioceptive sensors measurements

• Context (3) cameras video stream
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Figure 2.10: L3 prototype vehicle. On the left side of the illustration, the vehicle from
two different viewpoints. On the right side, a detail of the front bumper featuring a front
lidar and one of the sensors of the Smart AVM.

A proprietary data format has been defined to coherently timestamp each data
package according to a common clock. Recorded data is stocked in "capsules" of
maximum duration 5 minutes. Each capsule is associated with a metadata file,
adding useful information on the driving conditions. A complementary kind
of information is given by the above-mentioned observations, timestamped and
classified in four classes:

• Weather: sunny, rainy, cloudy, snowy, foggy

• Road type: highway, urban, country road

• Traffic: light, heavy

• Event: roadwork, tunnel, bridge, toll, roundabout

Additional comments of meaningful events can be expressed by the copilot in
free form. Some examples may be "hay truck", "wrong blinker lane change" or
"red light + pedestrian".
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2.5 Concluding remarks

Presenting the specific use case and challenges to be addressed in this research
entails the definition of two distinct situations. Despite the advanced develop-
ments in solutions for precise localization of the vehicle, it is likely to occur in
unexploitable HD maps or unavailable map-providers. Based on this distinc-
tion, the rest of the manuscript is divided as follows:

• Multi-sensor fusion for lane boundaries estimation

• Map-aided multi-sensor fusion for lane boundaries estimation

In both cases, the proposed solutions are presented in details for clarifying the
methodology and the implementation. Quantitative results obtained from the
experimental setup and recorded dataset are being discussed and eventually con-
firmed by on-vehicle trials in closed loop configuration.



Chapter 3

Multi-sensor fusion for lane
boundaries estimation

This chapter addresses the problem of lane boundaries estimation using mea-
surements issued of smart sensors. In order to benefit the multi-sensor fusion,
which generally result in improved reliability and accuracy provided by diver-
sity in perception technology, a model for smart sensor lane boundaries detec-
tions is firstly presented. In what follows, the proposed tracking solution is de-
tailed, taking into account the use case objectives previously stated. A different
lane boundaries model is adopted in the tracking procedure, which allows for
better flexibility and manageability. Ultimately, a novel clothoid spline repre-
sentation is issued as a result to the subsequent modules. This methodology is
studied in three different experimental setups where it is at first implemented,
then quantitatively evaluated and lastly on-road tested on the L3 prototype ve-
hicle.

3.1 Introduction

In the challenge of lane boundaries estimation, we defined our goal as deliver-
ing the best representation of the surrounding lane repartition when using ob-
servations from smart sensors. These sensors are generally characterized by dis-
tinct field of view, technology, feature extraction algorithm and measurement
frequency. This last quantity is extremely important as it affects the availabil-
ity rate of updated information of the road scene. In practice, commercialized
smart sensors generally have a sufficient frequency for the target application we
described. These rates are however specific to the sensor and, in general, differ-
ent from each other. We are working with asynchronous sensors, but the pro-
posed solution aims at delivering an updated lane boundaries estimation with
a constant and reliable rate, therefore the input measurements will be processed
periodically after being stored in specific buffer. The workflow of our method
is shown in Fig. 3.1. On the left, the environment is outlined highlighting the
field of view of the two sensors available in the experimental platform. It is also
depicted, on the ego-vehicle, the frame of reference used for presenting any in-
formation in the scene: the body frame. On the right, the blocks describe the
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Figure 3.1: Lane boundaries detection and tracking pipeline.

main steps of the proposed solution, presented in the following of this chapter.

3.2 Smart sensor model

We present at first the model adopted for presenting input data to our lane
boundaries tracking solution. The sensor set of the target architecture is sup-
posedly composed of smart sensors, capable of extracting meaningful features
for lane boundaries detection. Independently of the sensor nature, their mea-
surements are detection of lane boundaries in the driving scene which described
in each delivery of smart sensor data. In the following, the content of a smart
sensor delivery is illustrated. The meaning of each field is described, focusing on
the probabilistic representation of lane boundaries.

3.2.1 Smart sensor delivery

Let us introduce the adopted notation. Despite the involved smart sensors are
generally asynchronous, the time repartition is considered discrete as the mea-
surements are being processed periodically with regular and constant frequency.
The smart sensor delivery processed at instant 𝑡 issued of a generic sensor Sens
is detoned with the set zSens

t . Measures (or single detections of lane bounding
elements) 𝑀𝑖 ∈ zSens

t at each delivery are represented in the body frame (frame
𝐹𝑀 , with origin located at the middle of the rear axis of the car) and modeled
with polynomial curves, as follows:

𝑀𝑖 = [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥,Σ𝑃 ,𝑀𝑡𝑦𝑝𝑒] ∈ zSens
t (3.1)

The individual components of each 𝑀𝑖 respectively represent:

• 𝑐0, ..., 𝑐3 are the coefficients defining the polynomial curve that describes
the detected lane boundary

• 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 define the abscissa limits where the polynomial is defined

• Σ𝑃 ∈ R5×5 is the covariance matrix with respect to the aforementioned com-
ponents. Its use is detailed in the following.
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• 𝑀𝑡𝑦𝑝𝑒 ∈ {𝑚𝑎𝑟𝑘𝑖𝑛𝑔, 𝑏𝑎𝑟𝑟𝑖𝑒𝑟, 𝑐𝑢𝑟𝑏, ...} describes the type of the detected road
element

It is noted the continuous description of the measurement given by:

𝑃 (𝑥) = 𝑐0 + 𝑐1𝑥+ 𝑐2𝑥
2 + 𝑐3𝑥

3, 𝑥 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] (3.2)

This description entails a physical meaning for each of the polynomial coeffi-
cients: 𝑐0 represents the lateral offset of the polynomial curve at abscissa 𝑥 = 0,
𝑐1 represents the tangent of the polynomial curve at abscissa 𝑥 = 0, 𝑐2 is an indi-
cator of the curvature of the polynomial curve, 𝑐3 is an indicator of the curvature
rate of the polynomial curve. This polynomial model for measurements reflects
a standard output provided by off-the-shelf devices adopted in the automotive
industry.

The measurement uncertainty is given by the covariance matrix Σ𝑃 with re-
spect to each parameter. Each random variable in the measurement 𝑀 has its
correlation expressed with respect to itself and to the other variables. Under the
hypothesis of independent and uncorrelated random variables 𝜎2

𝑐𝑖𝑐𝑖
expresses the

uncertainty on the measurement of the polynomial coefficient 𝑐𝑖. The function
domain [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] where the polynomial 𝑃 (𝑥) is defined consists itself of an
interval of uncertain bounds. It is also likely that the calibration process (cor-
rect positioning of the smart sensor within 𝐹𝑀 for the transformation of sensor
measurements from sensor frame to body frame) could also come with imper-
fect accuracy. In an example case of inaccurate calibration in the longitudinal
positioning of 𝜖 = 1, referring to the state of a lane boundary measurement at
longitudinal distance 𝑥 would imply to be mistaking 𝑃 (𝑥) with 𝑃 (𝑥 ± 𝜖). For
this matter, in this representation, the uncertainty on the longitudinal distance is
uniquely expressed with a single random variable 𝑥 and a single covariance 𝜎2

𝑥𝑥,
ideally covering both calibration and interval size uncertainty.

Therefore, supposing independence of the random variables, the covariance
matrix would be filled and given in the following form:

Σ𝑃 =

⎡⎢⎢⎢⎢⎢⎣
𝜎2

𝑥𝑥 0 0
𝜎2

𝑐0𝑐0 0
𝜎2

𝑐1𝑐1
0 𝜎2

𝑐2𝑐2
0 0 𝜎2

𝑐3𝑐3

⎤⎥⎥⎥⎥⎥⎦ (3.3)

A graphical representation of its meaning is given in Fig. 3.2, where an exam-
ple of measurement and corresponding "envelope" of uncertainty are shown in
orange.

Empty Σ𝑃 in sensor delivery No guarantee is given that the sensor will be able
and willing to indicate the uncertainty for each detection. Therefore, empirical
models can be adopted for characterizing the behaviour of each sensor in the case
of empty covariance matrices. The models feature specific coefficients that can
be tuned and adapted for different sensors. This workaround for this deficiency
consists of experimentally characterizing the device and to filling out this matrix
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Figure 3.2: Smart sensor model. In orange, three polynomial measurements - detections
of lane boundaries in the driving scene. For 𝑀𝑖, the corresponding "envelope" of uncer-
tainty is shown as light orange area.

with constant values (this identification work has been done at Renault for the
standard deviation of Smart FrontCam’s coefficients 𝑐0 and 𝑐1, results reported
in the internal technical report [Michelet-Gignoux, 2019]).

In the following, an example of empirical model is given where the inaccuracy
of the measurement of the state variables grows exponentially with its euclidean
distance from the sensor. An initial uncertainty, in the form of covariance matrix,
is defined as:

Σ𝑃 (0) =

⎡⎢⎣𝜎
2
𝑥𝑥 0 0
0 𝜎2

𝑦𝑦 0
0 0 𝜎2

𝜃𝜃

⎤⎥⎦ (3.4)

The covariance matrix Σ𝑃 (0) contains initial parameters of the model to be char-
acterized with respect to the sensor performance in measuring position (state
variables 𝑥 and 𝑦) and orientation (variable Θ) of the lane boundary. For a
generic measurement sample (𝑥, 𝑃 (𝑥)), at euclidean distance 𝑑 = 𝑑(𝑥, 𝑃 (𝑥)) =√︁
𝑥2 + 𝑃 (𝑥)2, the measurement noise scales an the initial Σ𝑃 (0) by a factor that

grows exponentially with the euclidean distance. The measurement noise evolu-
tion is described as follows:

Σ𝑃 (𝑑) = 𝑒𝑥𝑝(𝛼𝑀𝑑)Σ𝑃 (0) (3.5)

where the characterization of the parameter 𝛼𝑀𝑑 is essential for the representa-
tiveness of the model. Its correct tuning is also essential for keeping reasonable
value of uncertainty within the range and field of view of the sensor. Values of
the parameter 𝛼𝑀𝑑 can be estimated fitting the exponential models to the em-
pirical error measured from measurement data obtained from the sensor and
compared to a reference ground truth.

The choice of this model favours the rapid growth of uncertainty for any state
variable regardless, in both lateral and longitudinal distance. In the effort of us-
ing a same generic noise model for any generic smart sensor, irrespective of the
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Figure 3.3: Three lane boundaries are being detected at instant 𝑡− 1 (zt−1 in orange) and
at instant 𝑡 (zt in red).

specific sensor technology, the model risks of being unrelated from the mathe-
matical descriptions of the specific phenomena that are causes of the measure-
ment noise. Indeed, for vision sensors such as cameras and AVMs, a model with
linear or quadratic scaling noise would be better physically appropriate - where
the exponential model lacks.

3.3 Proposed solution: Feature-tracking

This section describes the core of the proposed fusion architecture. Our goal
is to estimate the structure of the surrounding lane boundaries exploiting sensor
deliveries issued of different sensors and at different time instant (Fig. 3.3). Here-
inafter, we introduce two distinct models for representing the lane boundaries.
The first is more flexible and close to the actual design of roads and highways
with respect to the smart sensor model of Section 3.2. The second one is basic but
ideal in the tracking procedure.

Lane boundaries model A semi-parametric model (Fig. 3.5) is preferred to assure
a more general representation for the tracked lane boundaries, let us introduce it.
In the followings, the notation adopted to indicate the collection of the tracked
lane boundaries at instant 𝑡 uses the term x̂t, where the hat denotes the fact that
this entity represents an estimation of the surrounding road elements. The cho-
sen model for each individual track (or individual lane boundary) 𝑇𝑖 ∈ x̂t (track
collection at instant 𝑡) is the clothoid spline. Each track is a curve composed of a
variable but finite number of clothoid segments individually defined as follows:

𝑆𝑗 = [𝑥0, 𝑦0, 𝜓0, 𝜅0, 𝜅1, 𝑙,Σ𝑆] ∈ 𝑇𝑖 (3.6)

Each component of 𝑆𝑗 has a physical meaning in the description of the curve: 𝑥0
and 𝑦0 are the coordinates of the point where the clothoid segment originates, 𝜓0
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and 𝜅0 are respectively the initial orientation and curvature of the clothoid seg-
ment and 𝜅1 is the curvature rate. It is noted that the interest of using this specific
curve lies in its definition where its curvature linearly grows with its curvilinear
abscissa starting from 𝜅0 at a 𝜅1. The continuous description of each segment is
given at curvilinear abscissa 𝑠 by the Fresnel integrals [Marinelli et al., 2017]:

𝑥(𝑠) = 𝑥0 +
∫︁ 𝑠

0
𝑐𝑜𝑠

(︂1
2𝜅1𝜏

2 + 𝜅0𝜏 + 𝜓0

)︂
𝑑𝜏, 𝑠 ∈ [0, 𝑙] (3.7)

𝑦(𝑠) = 𝑦0 +
∫︁ 𝑠

0
𝑠𝑖𝑛

(︂1
2𝜅1𝜏

2 + 𝜅0𝜏 + 𝜓0

)︂
𝑑𝜏, 𝑠 ∈ [0, 𝑙] (3.8)

The uncertainty on this representation is given by the covariance matrix Σ𝑆 with
respect to each parameter of each segment. This transcendental functions require
approximation methods to be handled but they accurately reflect the techniques
used for road infrastructure design [Marinelli et al., 2017]. This representation is
also immediately suitable for curvature-based control of the vehicle.

Figure 3.4: Illustration and description of a clothoid curve.

Road features model Estimating the road boundaries under the clothoid spline
representation has several advantages, as we illustrated. However, the formula-
tion and parametric description of this curve brings additional complexity and
numerical difficulty in managing these mathematical objects. The basic idea is
that a set of ordered control points jointly with an appropriately chosen inter-
polation method can completely describe a geometric curve. In our framework,
these control points are tracked and referred to as features. A curve 𝐶𝑖 consists
of a finite number of features 𝐹𝑗 defined as:

𝐹𝑗 = [𝑥𝑗, 𝑦𝑗, 𝜃𝑗,Σ𝐹 ] ∈ 𝐶𝑖 (3.9)

This representation describes a curve specifying abscissa 𝑥𝑗 , ordinate 𝑦𝑗 and
heading 𝜃𝑗 of its control points. Considering the application domain and the
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Figure 3.5: Lane boundary model. Distinct clothoid segments allow for a more flexible
description of the individual road element.

𝐹𝑗
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𝑦 𝑥

Figure 3.6: Road feature model. Features 𝐹𝑗 are sampled along the measurement at con-
stant inter-distance. In light blue, ellipses and cones are respectively used to graphically
display position and orientation uncertainty.

uncertain nature of the described entity, these values constitute a random vector
and Σ𝐹 is its covariance matrix.

In Fig. 3.6, features 𝐹𝑗 are sampled along the measurement at constant inter-
distance. Ellipses and cones are respectively used to graphically display position
and orientation uncertainty.

Method overview In order to track and cumulatively refine the estimation of a
feature set, the adopted procedure consists of the following steps:

• Initialization

• Prediction

• Association
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• Update

For each detected and initialized feature, a filtering process is carried on using a
traditional Kalman filter. This method is selected for its low computational cost
and optimality under Gaussian noise assumption, which is supposed to be our
case.

3.3.1 Initialization

Whether the last measurements are not being associated to any of the existent
tracks or the tracking procedure is just being started, the initialization of new
track is addressed. First of all, the measurement might be subject to specific
checks in order to avoid unwanted observations beforehand. For example, in
case of a known field of view of the sensor, it might be wise to avoid any detec-
tion coming from outside of this surface. Additionally, some smart sensor are
capable of assigning a confidence value to each of the measurements. Whether
this value is expressed as a probability of existence or as discrete score of confi-
dence, it is possible to impose a minimum threshold in order to include in the
tracking only observations considered to be of "good quality". This preliminary
selection may improve the precision of the final outcome, but the overall unde-
tected lane boundaries (false negatives) count might raise too. The procedure
for track initialization mainly aims at converting the information in the measure-
ment 𝑀 into the road feature model, which is discrete and more manageable in
the tracking process. Two policies are being proposed to extract the most out of
each observation, which defines at what point the measure is being sampled and
a new road feature is being initialized:

• Constant abscissa inter-distance sampling For a given longitudinal dis-
tance parameter Δ𝑥, a new feature 𝐹 will be initialized for each distinct
𝑥𝑗 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] where:

𝑥𝑗 = 𝑥𝑚𝑖𝑛 + 𝑗Δ𝑥 (3.10)

• Constant length inter-distance sampling For a given length parameter Δ𝑙,
a new feature 𝐹 will be initialized for each distinct 𝑠𝑗 ∈ [0, 𝑙] where 𝑙 is the
total length of the measure 𝑀 :

𝑠𝑗 = 𝑗Δ𝑙 (3.11)

This sampling method is more adapt for observation with significant cur-
vature rate. The explicit expression of a polynomial curve length can be
used, however, if efficient methods for computation of clothoid abscissa are
implemented, it can be considered a conversion of the polynomial measure-
ment into clothoid segment. 𝑥(𝑠𝑗) would be then obtained from the Fresnel
integrals of Equation 3.7.

Whatever the policy, these 𝑥𝑗 samples are used to define the initial conditions
of each state variable. For a chosen 𝑥𝑗 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]:
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Figure 3.7: Feature set initialization. Measurement in orange and sampled features in
blue.

𝐹𝑗 =

⎡⎢⎣𝑥𝑗

𝑦𝑗

𝜃𝑗

⎤⎥⎦ =

⎡⎢⎣ 𝑥𝑗

𝑃 (𝑥𝑗)
arctan(𝑃 ′(𝑥𝑗))

⎤⎥⎦ =

⎡⎢⎣ 𝑥𝑗

𝑐0 + 𝑐1𝑥𝑗 + 𝑐2𝑥𝑗
2 + 𝑐3𝑥𝑗

3

arctan(𝑐1 + 2𝑐2𝑥𝑗 + 3𝑐3𝑥𝑗
2)

⎤⎥⎦ (3.12)

Σ𝐹 is set in accordance with the measurement model in Section 3.2 also taking
into account which sensor is providing the measurement.

In Fig. 3.7, a graphical representation of the initialization procedure is given.
From measurements 𝑀 , polynomial curve in light orange in the field of view of
the sensor, features 𝐹𝑗 are sampled initializing the filtering. Other useful infor-
mation for the tracking, such as date of initialization and 𝑀𝑡𝑦𝑝𝑒 are stored in the
lane boundary track.

We propagate the uncertainty of the polynomial coefficients Σ𝑃 with a first
order approximation yielding:

Σ𝐹 = 𝑉 𝑎𝑟(

⎡⎢⎣𝑥𝑗

𝑦𝑗

𝜃𝑗

⎤⎥⎦) =
[︃
𝜕𝐹𝑗

𝜕𝑀𝑖

]︃
Σ𝑃

[︃
𝜕𝐹𝑗

𝜕𝑀𝑖

]︃𝑇

∈ R3×3 (3.13)

3.3.2 Prediction

The goal of the prediction phase is to perform temporal alignment of previously
tracked elements to the latest sensor delivery to be processed. The fusion pro-
cedure is in fact performed periodically (40 ms period) while each smart sensor
has a distinct frequency in addiction to not being synchronized in any manner
with the other observers of the road. Another benefit of using the road feature
model comes out in this transformation. At this step, the appropriate rotation
and translation is applied to each curve in such a way that tracks are tempo-
rally and spatially coherent with the freshest sensor delivery. If rather than using
simple road feature we would have wanted to perform this transformation on a
polynomial curve, the result would have been hardly manageable (the rotation
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of a polynomial is generally not a polynomial anymore). Still, where this would
usually be handled with an ordinary geometric transformation, in this context it
consists of a prediction. In fact, the actual parameters required for this operation
are as well outcome of an estimation process. In the case of state prediction, an
evolution model is generally introduced and its definition strongly impacts the
final outcome. Within this context, however, the evolution model of our targets
is perfectly known and trivial: control points of lane boundaries do not (in our
scope) evolve in time, exclusively the reference frame is moving. This movement
is separately estimated and defined at each iteration as:

Δ𝐸𝑔𝑜𝑡 = [𝑑𝑥, 𝑑𝑦, 𝑑𝜃,Σ𝐸] (3.14)

In view of this, the affine transformation (operator ⊕) of the state vector 𝑡−1x̂t−1
is firstly performed:

x̂t−1 = 𝑡𝑇 𝑡−1 ⊕ 𝑡−1x̂t−1 (3.15)

where 𝑡𝑇 𝑡−1 describes the translation applied along with a rotation of 𝑑𝜃:

𝑡𝑇 𝑡−1 =

⎡⎢⎣𝑐𝑜𝑠(𝑑𝜃) −𝑠𝑖𝑛(𝑑𝜃) 𝑑𝑥
𝑠𝑖𝑛(𝑑𝜃) 𝑐𝑜𝑠(𝑑𝜃) 𝑑𝑦

0 0 1

⎤⎥⎦ (3.16)

The prediction step of our Kalman filter follows, according to the simple evolu-
tion model:

xt = xt−1 + wt (3.17)

The prediction of the state variables is here subject to the uncertain estimation
of the ego-movement, accordingly appearing in the filter prediction step, given
that:

wt ∼ 𝒩 (0,Σ𝐸) (3.18)

3.3.3 Association

The association between measurements and tracks is crucial to successively in-
tegrate fresh upcoming information. In order to do this, an appropriate metric
to express the distance between a feature set 𝐶𝑖 and a measurement 𝑀 has been
defined. It is supposed that, between 𝑡 − 1 and 𝑡, the ego-motion is sufficiently
small to allow at least the orthogonal projection of one feature on the measure, if
they represent the same lane boundary. Under this assumption, each feature is
projected on each measure as illustrated in Fig. 3.8. Each successful projection of
𝐹𝑗 ∈ 𝐶𝑖 appoints to a correspondent feature 𝑝⊥(𝐹𝑗) sampled along the measure
𝑀 at (𝑥⊥, 𝑦⊥). The Mahalanobis distance between the two can be computed as:

𝑑(𝑝⊥(𝐹𝑗), 𝐹𝑗) =
√︁

(𝑝⊥(𝐹𝑗)− 𝐹𝑗)𝑇 (Σ𝑀(𝑥⊥, 𝑦⊥) + Σ𝐹 )−1(𝑝⊥(𝐹𝑗)− 𝐹𝑗) (3.19)

The distance between a measure and a track is finally defined selecting the high-
est value, where multiple projections exist:

𝑑(𝑀,𝐶𝑖) = max
𝐹𝑗∈𝐶𝑖

𝑑(𝑝⊥(𝐹𝑗), 𝐹𝑗) (3.20)
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Figure 3.8: Tracked road features in blue are being projected for association onto the
latest measurements in red.

A distance matrix built on these values allows the use of a Global Neighrest
Neighbourd (GNN) algorithm to finalize the association (implementation details
included in Appendix B).

3.3.4 Update

Once the association between the measure 𝑀 and the feature set 𝐶𝑖 is confirmed,
the aim is to update the state of existing features and to possibly extend the track
with newly discovered elements. Existing features are updated in the filter up-
date step with their projection 𝑝⊥(𝐹𝑗) on the associated measurement. State vari-
ables and covariance update of 𝐹𝑗 is done according to the equations of Kalman
filter state update, using the corresponding measurement feature 𝑝⊥(𝐹𝑗) and ob-
taining the latest estimate of the road feature 𝐹𝑗 :

𝐹𝑗 = 𝐹𝑗 +𝐾(𝐹𝑗 − 𝑝⊥(𝐹𝑗)) (3.21)

Σ̂𝐹 = (𝐼 −𝐾)Σ𝐹 (3.22)

It is recalled that measurement noise (Σ𝑀(𝑥⊥, 𝑦⊥)) is involved in the computa-
tion of the Kalman gain 𝐾.

Where available, the remaining length of the measurement is exploited to ini-
tialize, as in Section 3.3.1, newly discovered features and extend 𝐶𝑖. Fig. 3.9
shows unchanged, updated and new features respectively displayed in grey,
green and blue.

3.3.5 Delivered output

Preparing the tracked lane boundaries for next module is necessary for exploitabil-
ity of the results of the procedure. As said, the road feature model is adopted
to ease the tracking but it has to be "reconstructed" into a continuous repre-
sentation. The above mentioned spline representation is attained at each iter-
ation interpolating the curve between two consecutive features by means of the
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𝑥𝑦

Figure 3.9: Feature set update. Unchanged, updated and new features respectively dis-
played in grey, green and blue.

algorithm proposed in [Bertolazzi and Frego, 2015]. This procedure builds the
clothoid spline by determining the appropriate initial curvature 𝜅0, curvature
rate 𝜅1 and clothoid segment length 𝑙 for each given couple of 𝐹𝑗 and 𝐹𝑗+1. This
method guarantees a 𝐺1 degree of continuity of the spline, which is a mandatory
requirement for an exploitable result. Therefore, for two consecutive clothoid
segments 𝑆𝑗 and 𝑆𝑗+1, it is verified that 𝑥𝑗(𝑙𝑗) = 𝑥𝑗+1(0), 𝑦𝑖(𝑙𝑗) = 𝑦𝑗+1(0) and
𝜓𝑗(𝑙𝑗) = 𝜓𝑗+1(0). This interpolation algorithm is efficient and ideal for the fam-
ily of regular clothoids encountered in highway navigation. Attaining 𝐺2 (cur-
vature) continuous curves would require more computationally expensive al-
gorithms (such as [Bertolazzi and Frego, 2018] which would imply resolving an
optimization problem for each couple of features) exceeding our working hy-
potheses of low computational requirements.

An additional prediction (similar to Section 3.3.2) is being applied to the final
result, in order to compensate the temporal delay between the fusion computa-
tion and the actual application of the control on the vehicle. The actual delivered
output is a representation of the surrounding lane boundaries at the specific in-
stant in time when the control module will be computing the action to be per-
formed by the actuators.

3.4 Experimental results

The aim of the following experiments is to test the effectiveness of the proposed
solution, using smart sensors as input. The feasibility of the on-board fusion
also has been verified, targeting highway scenarios in fluid traffic at medium-
high speed (up to 60 𝑘𝑚/ℎ). The specificity of our research focus did not allow
for an evaluation on public well-known datasets. For this reason, we collected
custom-tailored data to be replayed in the ad-hoc ADAS development frame-
work described hereinafter. This is one of the three different experimental setup
where our solution is being validated. The three following experiments describe
how the proposed method is being qualitatively tested using recorded data from
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the L3 prototype vehicle, quantitatively validated with respect to cartographic
ground truth and ultimately put to the "on-road" test.

3.4.1 Development setup

Figure 3.10: Development setup. From the driving of the prototype vehicle (top) sensor
data is recorded and stocked (right). Data replaying enables the testing of information
fusion solutions for ADAS/AD, implemented in the proprietary framework Fusionrun-
ner (bottom). The results are displayed (left) in bird-eye view and validated with with
the help of context cameras.

Fig. 3.10 illustrates the "offline" development setup, where the solution is
implemented, executed on recorded data and the output is displayed on screen.

As previously mentioned, the sensor set is composed of two different smart
sensors, Smart FrontCam and Smart AVM (Around View Monitoring) with dif-
ferent fields of view. The Renault L3 prototype vehicle is also equipped with
proprioceptive sensors to estimate its displacement. All of these data has been
recorded and replayed in a proprietary environment for ADAS development that
guarantees correct timestamp management and allows for testing of tracking so-
lutions.

In the development interface (in Fig. 3.11), it is presented on the left a bird eye
view of the environment centered on the ego-vehicle which is displayed in pink.
On the right the video stream from the context cameras (which are different from
the deployed smart sensors) is shown.

A prior qualitative analysis of the fusion result has been done through the
development platform output interface and with the aid of context cameras, con-
firming the soundness of the result on highway scenarios. In fact, the deployed
association criteria can robustly discriminate measurements and tracks that refer
to different lane boundaries (covering also close together road edges and mark-
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Figure 3.11: On the left, tracking results (blue) and measurements (orange for FrontCam,
brown for AVM) are displayed in a bird-eye view. On the right, the context cameras.

ings). It has also been reasonably observed that, processing the two data sources,
a fresher estimation is available at an higher rate. This corresponds in average to
the sum of the sensors frequency, namely 50 Hz in our experiment.

3.4.2 Evaluation setup

A further quantitative evaluation of the solution has been carried on and in Fig.
3.12 we show the evaluation setup. Same as before recorded sensor data is used
to track lane boundaries which are now compared to a lane level ground truth
(extracted from an HD map). In fact, the prototype vehicle is also equipped with
an RTK localization system which is able to precisely positionate itself within
an HD map that contains a trustworthy representation of the surrounding lane
boundaries. This comparison enables the computation of performance indicators
such as the lateral error of the estimation at a given range distance.

We considered the Smart FrontCam alone as our baseline. Over several kilo-
meters of recorded data, the distribution of lateral error with respect to the ground
truth at 0m and at 10m have been studied (where the intersection of FoVs occurs).
We verified that both the baseline and the Fusion result contains a bias w.r.t. the
HD map. However, according to the variance of the distribution we can affirm
that the fusion result is smoother than the Smart FrontCam alone. This can posi-
tively affect the lateral control of the vehicle.

The quantitative evaluation follows and assumes the topological information
in the map to be accurately geo-referenced. Jointly with the RTK pose estimation
and expressed in the body frame, it accounts for the ground-truth representation
xt of our lane boundaries estimation x̂t. Under these conditions, the FrontCam
error eFC

t (accounting for our baseline) and fusion error eFusion
t are described by:

eFC
t = xt − zFC

t (3.23)
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Figure 3.12: Evaluation setup. Tracking results are now being compared to the lane-level
ground truth. This allows quantitative benchmarking and algorithm validation.

eFusion
t = xt − x̂t (3.24)

where appropriate format transformations are applied to perform these compar-
isons. In the scope of this work, the analysis focus has been limited to the follow-
ing error indicators:

et = [𝑒𝐿
0 , 𝑒

𝐿
1 , 𝑒

𝑅
0 , 𝑒

𝑅
1 ] (3.25)

where, for left 𝐿 and right 𝑅 markings, a separated lateral error is considered
for different interval ranges of longitudinal distance (specifically, in [0,10] 𝑚 and
[10,20] 𝑚). These range intervals cover the FoVs intersection, where the multi-
sensor fusion occurs.
At first, a characterization of the sensor set has been carried on. In Fig. 3.13, the
histogram in blue shows an indicator of the FrontCam error distribution. On the
one hand, the reported error density supports the Gaussian hypothesis on the
measurement noise and the model presented in Section 3.2. This analysis also
guided the fine-tuning of the model’s covariance matrix and 𝛼𝑀 coefficient. On
the other hand, we can observe that this result does not appear to be zero mean
as supposed. This offset (in the centimeter magnitude) can be attributed to the
relative mismatching between the lane-level ground truth and our global posi-
tioning system. In fact, this gap occurs likewise in the error distribution of the
fusion result which is presented in red, always Fig. 3.13. This lightly narrower
density shows the smoothing effect of the filtering process and the contribution
of the complementary AVM sensor. More precisely, a comparison in term of
mean, variance and Root Mean Square Error (RMSE) of the selected indicators
has been finalized. The produced benchmark is presented in Table 3.1 and con-
firms previous observations. These results are based on a capsule (Section 2.4.3)
of highway data where the HD-map was available. For 250 s of recorded sensor
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Figure 3.13: Superposed, normalized error distributions 𝑒𝐿
0 for FrontCam (blue) and Fu-

sion (see-throught, red)

data while driving the prototype vehicle at medium-high speed, the travelled
distance amounts to about 7 km.

FrontCam only FrontCam + AVM fusion
𝜇[𝑚] 𝜎2 [m2] RMSE [m] 𝜇 𝜎2 RMSE

𝑒𝐿
0 -0.0638 0.0020 0.0781 -0.0620 0.0019 0.0755

𝑒𝐿
1 -0.0875 0.0027 0.1018 -0.0773 0.0022 0.0906

𝑒𝑅
0 -0.1277 0.0039 0.1421 -0.1018 0.0024 0.1131

𝑒𝑅
1 -0.1393 0.0044 0.1543 -0.1254 0.0037 0.1394

Table 3.1: Lateral error benchmark

3.4.3 On-board setup

This work-flow configuration is presented as a closed loop in Fig. 3.14. At this
stage, all the computation are being executed on-board. The sensor deliveries
are being directly processed in the on-board computer. The machine which is
deployed on the L3 prototype runs RTMaps (development environment for mul-
tisensor applications) over a Win32 system. The latest implementation of the
proposed solution is installed through a pre-compiled library containing all the
module necessary for the target ADAS application. This architecture is designed
to guarantee an easy migration to a smaller embedded computer (namely the
Fusion ECU), which would replace the on-board PC in the (eventual) commer-
cialized vehicle.
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Figure 3.14: On-board setup. In this closed-loop configuration, Feature-tracking is per-
formed in real-time. The clothoid-spline lane boundary tracks are used for the longitu-
dinal and lateral control of the vehicle. The passenger can activated automated driving
features such as ACC and Automated Lane Change

The experimentation in close-loop configuration featured lateral and longi-
tudinal control algorithms developed by other teams in Renault. Feeding the
control module with the ultimate output of our lane boundary tracking solu-
tion resulted in a successful execution of the target automated driving features
of L3. First-left and first-right tracked lane boundaries (with respect to the ego-
vehicle position) enabled LCA in highway scenario at elevated driving speed.
When available, detection of further lane markings in the scene and availabil-
ity of other lanes, our multisensor estimated lane repartition enabled automated
lane change (upon HMI user activation via direction indicators).

3.4.4 Evaluation and results discussion

In the followings we discuss some of the most relevant obtained results.

Smart sensor measurements analysis Prior to the implementation of any tracking
solution, a preliminary signal analysis has been carried on on the content of the
smart sensor deliveries. Plotting the main components of the smart sensor model
of Section 3.2, it is possible to drawn some considerations on the evolution of the
polynomial coefficients issued of two different smart sensors over the same driv-
ing trajectory. In Fig. 3.15 the value for 𝑐0 to 𝑐3 of the left-side ego-lane boundary
is presented over time. From the top to the bottom graph we can observe that:

• 𝑐0 coefficient represents the lateral offset of the polynomial curve at abscissa
𝑥 = 0. The two signals evolve in an equivalent manner. It could be pointed
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Figure 3.15: Left ego-lane boundaries detection: analysis of polynomial coefficients for
FrontCam (blue) and AVM (green).

out that the AVM trend is occasionally smoother, which is understandable.
The field of view of this sensor actually contains the 𝑥 = 0 region, which
allows for 𝑐0 to be directly observable.

• 𝑐1 coefficient represents the tangent of the polynomial curve at abscissa 𝑥 =
0. Similar observations as for 𝑐0 might be drawn as this coefficient is being
direcly observed by the AVM sensor, in this case too.

• 𝑐2 is an indicator of the curvature of the polynomial curve. In this case, the
two signals are evolving quite differently. The FrontCam is apparently able
to observe the curvature evolution in a smoother way. This could be due to
the large and further range of its field of view. However, this smoothness
could be also motivated by an heavier effect of the tracking in the smart
sensor itself.

• 𝑐3 is an indicator of the curvature rate of the polynomial curve. Evidently,
the polynomials issued of the AVM deliveries are confirmed to be of second
degree, as 𝑐3(𝑡) = 0, ∀𝑡. For the FrontCam, it is observed that the possible
values for this field are just a few and evidently discrete.

Time-correlated measurements and uncertainty An additional study of signal anal-
ysis has been carried on, within the development setup introduced in Section
3.4.1. In this case, the tracking result is being compared to the FrontCam mea-
surements used in the estimation at that same instant. In order to better under-
stand the causes of the observed phenomena, the result of this preliminary lane
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Figure 3.16: Poor tuning results in lane boundaries tracking over time. The tracked
lateral offset (in red) becomes rapidly overconfident in its estimation with respect to the
measurements (in blue).

Figure 3.17: Correct tuning results over the same driving record of Fig. 3.16. The tracked
lateral offset (in red) is more responsive to the measurements (in blue).
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boundary tracking solution did not include the information from any of AVM
deliveries. This example is indeed a case of single-source tracking of lane bound-
aries, where temporal fusion of FrontCam measurements is being deployed.

Given the above, the lateral offset between the measure (in blue) and the track
(in red) is being compared, at the level of the front bumper abscissa (𝑥 = 3.19𝑚).

In Fig. 3.16, the result of an initial version of the tracking algorithm is dis-
played. The track is smoothing the measure while being too rapidly confident
in its estimate. The usage of a Kalman filter in the presence of temporally corre-
lated measurements is indeed not ideal and may lead to a loss of consistency in
the result. If the chosen information fusion method wants to be kept, this over-
confidence issue can been addressed with two countermeasures: 1) the income of
time-correlated measurements can be limited and/or 2) the measure noise model
can be appropriately tuned. In our case, we decide not to limit the input sensor
frequency. The measurement issued of both FrontCam and AVM, in the continu-
ation, are all being processed applying an adapted uncertainty dilatation.

In Fig. 3.17, the result of the correctly tuned filter is displayed, which confirms
its smoothing effect and do not falls victim of overconfident estimation.

Clothoid-spline model representativeness In Fig. 3.18, it is already possible to
appreciate the flexibility of the model and a minimum correctness of the tracked
lines. These are anyhow qualitative considerations based on the comparison of
the tracking result and the associated context camera. As it may be expected,
we confirmed that low traffic and straight road allow for a correct estimation of
multiple lane markings up to a hundred meters. With traffic occlusions the range
is reduced and lines that might be in the field of view are being missed.

Usage of HD-Maps as lane-level ground truth The RTK localization systems al-
lows for a precise localization of the ego-vehicle using terrestrial antennae and
post-processing with ad-hoc software. The obtained estimation of the vehicle
pose is the de-facto ground truth for its positioning in the world frame, how-
ever this methodology does not give us access to a completely ideal lane-level
representation in the body frame.

In order to exploit the information on the lane boundaries stored in the HD-
Map according to WGS84 (World Geodetic System 1984, EPSG:4326), a transfor-
mation from the geographic coordinate system (GCS) is necessary. Two different
transformations have been tested in these steps of generation of the ground truth:
Mercator projection (TMERC) and Universal Transverse Mercator (UTM). Their
effects are illustrated in Fig. 3.19 and easily observable. In the illustration, both
sides show a measurement issued of the Smart FrontCam (polynomial curve in
blue) which is reported in the same reference frame of an HD-Map of the sur-
roundings. Sampled points along the curve are being projected onto the map
line (green dots along the black line) of reference in order to compute the lat-
eral error made by the FrontCam at different ranges. The lateral error for the
closest point to the sensor (𝑥 = 𝑥𝑚𝑖𝑛) has been computed over time for the two
considered transformations.
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Figure 3.18: Two examples of tracked lines. Top: Ego-vehicle (purple box), other vehicles
(grey boxes). Result (red and blue clothoid segments). Bottom: Corresponding context
camera view.
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Figure 3.19: Comparing two different transformations for the generation of the ground
truth: Mercator projection (TMERC) and Universal Transverse Mercator (UTM). Both
sides show a measurement issued of the Smart FrontCam (polynomial curve in blue)
which is reported in the same reference frame of an HD-Map of the surroundings. Sam-
pled points along the curve are being projected onto the map line (green dots along the
black line) of reference.

Figure 3.20: The lateral error for the closest point to the sensor (𝑥 = 𝑥𝑚𝑖𝑛) has been
computed over time for the two considered transformations. The discrepancy between
TMERC and UTM impacts the computation of the lateral error of about 10 cm.
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Figure 3.21: Left: tracking result (red and blue clothoid segments). Right: context cam-
era. The fourth track from the left has been initialized from a FrontCam false detection.
Noisy measurements are mistakenly accepted but correctly not associated to existing
tracks.

The discrepancy between TMERC and UTM impacts the computation of the
lateral error of about 10 cm, as the graph in Fig. 3.20, which is enormous rela-
tively to our application. The UTM transformation has been finally adopted, yet
this analysis highlighted the fact that the uncertainty of each distinct operation
applied to the involved data may have a huge impact on the final outcome.

False detections robustness Mistaken associations are not frequent, yet in Fig.
3.21 we can see the effects of noisy measurements. At the moment, the tracking
algorithm is not robust enough to reject them. As they are not being associated
to any existing track, they generate new ones leading to poor results.

3.5 Conclusions

In this chapter, a multi-sensor tracking approach for generic lane boundaries is
proposed. Although the experimental fusion of two smart sensors reported only
a slight improvement in term lateral RMSE, the solution confirmed its validity
and coherency w.r.t. the lane-level ground truth. Its real-time implementation
and execution can support potentially any multi-modal smart sensor set, pro-
viding redundancy and perception diversity in the overall lane geometry esti-
mation.

In the rest of the manuscript, the integration of additional a priori from navi-
gation maps is addressed, along with a closer focus on road curvature estimation
which remains a major challenge.



Chapter 4

Map-aided multi-sensor fusion for
lane boundaries estimation

4.1 Introduction

In this chapter, we approach the lane boundaries estimation problem in the case
where cartographic information is additionally made available. We will be recall-
ing the system architecture within this use case and presenting the map-provider
from the data fusion perspective. This additional component, the operation of
which is described Section 2.3, has its output modelled according to the involved
uncertainties. Both mapping and localization processes come, in fact, with pos-
sible inaccuracies which have to be taken into account before processing the data
in the identification of the surroundings.

At first, we exploit the map data in order to filter false-positive measurements
issued by smart sensors. This application helps in sanitizing the input of the
previously presented fusion method, in case of up-to-date map and in-what-lane
correct localization. Where this second hypothesis is called into question, an ad-
hoc indicator is defined to assess the coherence between the two sources and
possibly point out a localization fault.

These applications all consider the contribution of the map as a support to a
sensors-centered approach. We also extend the previously presented lane bound-
aries tracking solution with an outlook of HD-map as a sensor, resulting in effec-
tive tracking of road heading and curvature on map waypoints.

4.2 Map-provider model

In Section 2.3, we reviewed some of the existing works in mapping and localiza-
tion. These are the two assets which are essentials in the design of a so-called
map-provider. With a modular architecture in mind, we define "map-provider" a
set of technologies able to produce a representation of the vehicle surroundings
in the form of a map, at a given time 𝑡.

Les us define the global frame 𝐹𝑂, the frame in which the map has been orig-
inally built at mapping time. As we are focusing on lane boundaries estimation,
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these are the only elements of interest. However, depending on the target ap-
plication, additional entities or attributes may be included in the cartographic
representation. At this time, we consider the minimal amount of information
relevant to our task. A lane boundary 𝐿 is defined as a collection of landmark
points 𝑂X𝑖=1..𝑁𝑖

describing a polyline. At mapping time, the attributes of each
𝑂X𝑖=1..𝑁𝑖

are identified and fixed in the global representation in 𝐹𝑂. Since this
estimation process is accurate but generally not perfect, we are interested in car-
rying on a measure of this inaccuracy. Under the Gaussian hypothesis, the co-
variance matrix 𝑉 𝑎𝑟(𝑂X𝑖=1..𝑁𝑖

) completely describes the distribution and can be
graphically presented in ellipses form, as in Figure 4.1. This description of the
lane boundaries supposes the mapping process to be able to estimate the uncer-
tainty associated to each of the landmarks 𝑂X𝑖=1..𝑁𝑖

and allows for this uncer-
tainty to be different on every occasion. In fact, the estimation of each landmark
may be affected by weather, number of observations or other factors specific to
the mapping process. These factors may include impact of roadworks, road net-
work changes and even continental drift. Given the complexity in monitoring
and modelling these occurrences, it might be more practical to indicate a general
measure of accuracy of a whole map. In this case we are supposing that:

𝑉 𝑎𝑟(𝑂X𝑖) = 𝑉 𝑎𝑟(𝑂X𝑀𝑎𝑝)∀𝑖 = 1..𝑁𝑖 (4.1)

It can be noted that the number of landmarks per lane boundary𝑁𝑖 might also be
specific to the mapping process. In general, the density of landmarks along the
length of each curve is not constant. To offer the best trade-off between amount
of points (hence storage space) and expressiveness of the polyline, this density
generally varies with the curvature of the road.

Les us now define the body frame 𝐹𝑀 . Attached to the ego-vehicle, its origin
is conventionally located at the middle of the rear axis of the car, as illustrated
in Figure 4.1. It is the reference frame for our target application which implies
that positions and attributes of all relevant elements surrounding the vehicle will
have to be eventually expressed in 𝐹𝑀 . Map information is no exception and it
is the purpose of the localization process to determine the correct transformation

from 𝐹𝑂 to 𝐹𝑀 . Specifically, given a map positional landmark 𝑂X𝑖 =
[︃

𝑂𝑥𝑖
𝑂𝑦𝑖

]︃
in its

original frame, its position is reported in the body frame following the coordi-
nates transformation based on the ego-vehicle pose:

𝑀X𝑖 = 𝑀R𝑂

(︃[︃
𝑂𝑥𝑖
𝑂𝑦𝑖

]︃
−
[︃

𝑂𝑥𝑀
𝑂𝑦𝑀

]︃)︃
(4.2)

where 𝑀R𝑂 represents the rotation matrix from 𝐹𝑂 to 𝐹𝑀 :

𝑀R𝑂 = 𝑂R𝑀
𝑇 =

[︃
cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

]︃
(4.3)

Equation 4.2 describes the coordinate transformation which consists of two oper-
ations. Translation and rotation are applied and they are based on the estimated
pose of the ego-vehicle within the map at issue. This transformation opens up
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𝑦 𝑥

𝐿𝑖

𝐿𝑖−1

𝐿𝑖+1

Figure 4.1: Map-provider model. Lane boundaries are given in the local frame 𝐹𝑀 fol-
lowing the geometrical transformation based on 𝑂X𝑀 . For 𝐿𝑖, light red ellipses show
how the uncertainty evolves, notably influenced by 𝜎2

𝜃 .

for more uncertainty in the representation, in terms of the three random variables
involved: 𝑂𝑥𝑀 ,𝑂𝑦𝑀 ,𝜃.

Based on these considerations, we give in the followings the details of the de-
livery issued by the map-provider. Its content is dimensioned to be minimal in
the size and complete with the aim of an adequate representation of the involved
uncertainties. It follows a study of the evolution of positional uncertainty of the
map landmarks with typical values of mapping and localization standard devi-
ations. Finally, the adopted method for lane boundaries association is detailed,
before presenting its application in the next sections.

4.2.1 Use case map-provider

As for smart sensors, the integration of a map-provider for the implementation of
driving assistance features can be done within an existing pipeline in the form of
a closed sub-system, or a black box. In our research, the map-provider is being
developed internally. We are therefore able to describe its functioning before
characterizing its deliveries. Let us now outline some of the key elements for the
workflow of this unit:

• HD map database: the map-provider disposes of an entire HD-map of tar-
get ODD. The ODD of the use case application is highway driving. Specif-
ically, the involved map manufacturer produced an HD map for all high-
ways of France.

• Inputs for in-map localization: for this purpose multiple information are
being processed in order to provide the most accurate ego-localization. At
first, a non-precise ego absolute localization is delivered by a traditional
GNSS unit. This is the absolute positioning before any treatment or dead-
reckoning. Afterwards, perception measurements (such as lateral offsets or
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landmark positions) are being received. This is supposed to be issued of a
separated sensor set reserved for localization (e.g. the front lidar mentioned
in Section 2.4.2 for barriers and landmarks is not used for lane boundaries
estimation).

• Map-matching and position filtering: starting from the GNSS measure-
ment, generated localization candidates (or particles) are assigned a differ-
ent weight wheather the detected landmarks match the HD map content
or not. In addition, particle filtering for localization generally uses vehicle
direction of the closest centerline for map-matching.

• Localization candidates: the best (or multiple best) candidates for the ve-
hicle localization position are being selected. It is noted, however, that if
we suppose to keep 𝑁 multiple candidates then it would imply to perform
𝑁 transformations and to deliver 𝑁 map-provider deliveries to the client
(fusion) module. Map-provider deliveries are ego-centered, content can be
essentially different for a distinct candidate position.

• Electronic horizon computation: it is performed a map transformation
from absolute to relative coordinates. This is the specific transformation
affected by localization uncertainty and detailed in Section 4.2. It is addi-
tionally affected by mapping approximations and modeling such as UTM
and Mercator. Finally, cropping and selection in relative HD-map elements
is done according to client module requirements. In our use case, the Most
Probable Path (MPP) is being kept together with child roads at one-level
depth. Map way-points are limited to 500m in front of the vehicle and 100m
at its back. The content of the electronic horizon is also limited by specific
message size and bandwidth requirements. Fixing the ego position in the
map implies the definition of the ego-lane and ego-road.

• Map-provider wrapping and delivery: the map-provider delivery format
is filled with lane boundaries, mapping uncertainty (per point if available)
and localization uncertainty.

4.2.2 Map-provider delivery

The idea is to consider the localization module (or map provider) just as another
smart sensor, able to supply a representation of some elements of the surround-
ing environment. As for smart sensor with lane detection capabilities, the ele-
ments of interest are lane boundaries presented in the local frame (𝐹𝑀 frame,
with origin located at the middle of the rear axis of the car). Let zt be the sen-
sor delivery supplied by the map provider at instant 𝑡, featuring the following
components:

1. 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑎𝑡𝑒

2. 𝑂Σ𝑀

3. 𝑀𝐿𝑙=1..𝑁𝑙

Let us now details the meaning of the quantities in the sensor delivery.
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A 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑎𝑡𝑒

For simplicity, we suppose zt measurements to be available at each instant 𝑡 that
might be appropriate for the lane boundaries estimation process (for example, to
allow temporal alignation with other sensor deliveries). In practice, these sen-
sor deliveries depend on the specific localization module and its design. We
can equivalenty suppose the existence of a reliable evolution model of the ego-
movement, which enables us for a "backwards prediction" (via application of the
appropriately estimated rotation and translation) of that sensor delivery at any 𝑡.
However, each sensor delivery refers to a specific instant in time 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑎𝑡𝑒 where
the set of lane boundaries 𝑀𝐿𝑙=1..𝑁𝑙

has been observed to be surrounding the ego-
vehicle. In case of a smart camera, it would refer to the timestamp attached to
the raw image at the moment of capture. In case of a map provider, the mean-
ing of this quantity is different. We could be more interested to the timestamp
attached to the pose issued of the localization process of the car: the position
𝑂X𝑀 =

[︃
𝑂𝑥𝑀
𝑂𝑦𝑀

]︃
and orientation 𝜃, in the global frame 𝐹𝑂. Discussing instead

the "moment of capture" of map landmarks would mean to refer to the instant
of map construction, process that generally happens way far before its actual
deployment in a working architecture (with the exception of real-time crowd-
souced map servers).

B 𝑂Σ𝑀 localization uncertainty

The previously mentioned quantities 𝑂X𝑀 and 𝜃 are random variables and their
distributions impacts the exploitability of the set of lane boundaries 𝑀𝐿𝑙=1..𝑁𝑙

issued by the map-provider. In this case, we consider ourselves as clients of this
external unit. That is the reason why we will not be interested in (nor aware of)
the actual pose of the vehicle in 𝐹𝑂. In fact,

𝑂Σ𝑀 = 𝑉 𝑎𝑟(

⎡⎢⎣
𝑂𝑥𝑀
𝑂𝑦𝑀

𝜃

⎤⎥⎦) =

⎡⎢⎣ 𝜎2
𝑥

𝑂𝑝12
𝑂𝑝13

𝑂𝑝21 𝜎2
𝑦

𝑂𝑝23
𝑂𝑝31

𝑂𝑝32 𝜎2
𝜃

⎤⎥⎦ (4.4)

would be enough to characterize the localization uncertainty, whereas the ran-
dom variables are unbiased and Gaussians. We are specifically interested to the
standard deviations of the longitudinal and lateral localization of the vehicle, re-
spectively 𝜎𝑥 and 𝜎𝑦. Likewise, the uncertainty on the orientation of the vehicle
𝜎𝜃 affects the usability of the map-provider delivery.

C 𝑀 𝐿𝑙 lane boundary

Each 𝑀𝐿𝑙=1..𝑁𝑙
is a curve representing one of the lane boundaries in the environ-

ment. It is defined as follows:

• 𝑀X𝑖=1..𝑁𝑖
, 𝑉 𝑎𝑟(𝑂X𝑖=1..𝑁𝑖

) describing probabilistic position and distribution
of its forming map waypoints



4.2. Map-provider model 79

• 𝐿𝑡𝑦𝑝𝑒 ∈ {𝑚𝑎𝑟𝑘𝑖𝑛𝑔, 𝑏𝑎𝑟𝑟𝑖𝑒𝑟, 𝑐𝑢𝑟𝑏, ...} describes the type of the detected road
element

In the case of map-providers, the lane boundary model is a finite collection of

landmark points 𝑀X𝑖 =
[︃

𝑀𝑥𝑖
𝑀𝑦𝑖

]︃
. Where available, the spatial uncertainty that

comes with each map point 𝑂X𝑖 can be expressed with the following covariance
matrix (referring to the mapping error, supposed to be Gaussian):

𝑉 𝑎𝑟(𝑂X𝑖) =
[︃
𝑣𝑎𝑟(𝑂𝑥𝑖) 𝑂𝑝12

𝑂𝑝21 𝑣𝑎𝑟(𝑂𝑦𝑖)

]︃
(4.5)

This contributes to the uncertainty of each point 𝑀X𝑖 which is expressed with
respect to the observer (ego-vehicle) and also affected by the localization process
of the car within the global frame 𝐹𝑂. In fact, as from [Yu et al., 2020]:

𝑀X𝑖 =
[︃

𝑀𝑥𝑖
𝑀𝑦𝑖

]︃
= 𝑀R𝑂

(︃[︃
𝑂𝑥𝑖
𝑂𝑦𝑖

]︃
−
[︃

𝑂𝑥𝑀
𝑂𝑦𝑀

]︃)︃
= 𝑓(𝑂X𝑀 , 𝜃,

𝑂X𝑖) (4.6)

where 𝑀R𝑂 represents the rotation matrix from 𝐹𝑂 to 𝐹𝑀 :

𝑀R𝑂 = 𝑂R𝑀
𝑇 =

[︃
cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

]︃
(4.7)

giving:

𝑓(𝑂X𝑀 , 𝜃,
𝑂X𝑖) =

[︃
(𝑂𝑥𝑖 − 𝑂𝑥𝑀) cos(𝜃) + (𝑂𝑦𝑖 − 𝑂𝑦𝑀) sin(𝜃)
−(𝑂𝑥𝑖 − 𝑂𝑥𝑀) sin(𝜃) + (𝑂𝑦𝑖 − 𝑂𝑦𝑀) cos(𝜃)

]︃
(4.8)

We model the transfer of uncertainty from the five random variables 𝑂X5 =
(𝑂X𝑀 , 𝜃,

𝑂X𝑖) to each map point 𝑀X𝑖 with a first order approximation of equa-
tion (3):

𝑉 𝑎𝑟(𝑀X𝑖) =
[︃

𝜕𝑓

𝜕 𝑂X5

]︃ [︃
𝑂Σ𝑀 0

0 𝑉 𝑎𝑟(𝑂X𝑖)

]︃ [︃
𝜕𝑓

𝜕 𝑂X5

]︃𝑇

(4.9)

where the Jacobian for 𝑓 results in[︃
𝜕𝑓

𝜕 𝑂X5

]︃
=
[︃
− cos(𝜃) − sin(𝜃) −(𝑂𝑥𝑖 − 𝑂𝑥𝑀) sin(𝜃) + (𝑂𝑦𝑖 − 𝑂𝑦𝑀) cos(𝜃) cos(𝜃) sin(𝜃)
sin(𝜃) − cos(𝜃) −(𝑂𝑥𝑖 − 𝑂𝑥𝑀) cos(𝜃)− (𝑂𝑦𝑖 − 𝑂𝑦𝑀) sin(𝜃) − sin(𝜃) cos(𝜃)

]︃
(4.10)

= [︃
− cos(𝜃) − sin(𝜃) 𝑀𝑦𝑖 cos(𝜃) sin(𝜃)
sin(𝜃) − cos(𝜃) −𝑀𝑥𝑖 − sin(𝜃) cos(𝜃)

]︃
(4.11)

This expression allows the computation of 𝑉 𝑎𝑟(𝑀X𝑖) for any map point given in
frame 𝐹𝑀 by the map provider, whereas it is delivered with the corresponding lo-
calization uncertainty 𝑂Σ𝑀 and map (or single landmark) uncertainty 𝑉 𝑎𝑟(𝑂X𝑖).
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4.2.3 Study of uncertainty

As uncertainty of the map around the vehicle can be calculated, here in the fol-
lowing its evolution with example plausible values is presented. The examples
show how the uncertainty evolves around the ego-vehicle on map-provided lane
boundaries. Hereinafter, the ego-vehicle is positioned and centered in its lane
where the road is composed of other two lanes per-side. The lane boundaries are
presented in blue, the presence of a distinct map node is supposed at 5 meters
interdistance. For each map node, the uncertainty of its position is represented
with an ellipse based on the actual values in its covariance matrix 𝑉 𝑎𝑟(𝑀X𝑖) The
resulting uncertainty ellipses are shown in different figures for different values
of orientation standard deviation 𝜎𝜃, which evidently influences the outcome on
the distance.

Figure 4.2: Position uncertainty ellipses for localization error of heading 𝜎𝜃=1∘
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Figure 4.3: Position uncertainty ellipses for localization error of heading 𝜎𝜃=2∘

Figure 4.4: Position uncertainty ellipses for localization error of heading 𝜎𝜃=3∘
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Figure 4.5: Position uncertainty ellipses for localization error of heading 𝜎𝜃=4∘

It is noted that for short distances the impact of the heading error is negligible,
as expected. This behaviour can be observed equivalently for any of the studied
values of 𝜎𝜃 standard deviation, from Fig. 4.2 to Fig. 4.5. However, for higher
longitudinal distances, the heading uncertainty rapidly affects the usability of
the map-provider delivery. In Fig. 4.5, the overlapping of 3𝜎-ellipses is already
visible at relatively short range such as 25 meters in longitudinal distance.

4.2.4 Notes on uncertainty of the lane boundaries representation and integrity

In the previous, the proposed model allowed for taking into account both local-
ization and mapping uncertainty in the usage of HD-map data. The estimation
of the uncertainty associated with a given lane boundary representation can be
enabler for the definition of a perception integrity framework where safety is
ensured under expressed risk conditions. In fact, in civil aviation application,
the localization of the ego-vehicle (aircraft) is subject to state integrity monitor-
ing for guaranteeing system safety. In this work, the study of perception in-
tegrity has not been deepen, however some fundamental notions of the state
integrity monitoring can be transported from localization integrity monitoring
[Reid et al., 2019] to perception integrity monitoring.

The goal here, differently from ego-localization estimation, is to estimate the
state of a third object in the environment and to be able to represent the un-
certainty of this estimation in a measurable manner that also expresses the risk
implied by this uncertainty. This third object being a road feature 𝐹 with state
vector [𝑥, 𝑦, 𝜃], the final application that uses the representation of the environ-
ment in the form of road features should be able to specify a maximum accepted
Integrity Risk and the Alert Limits (AL). Depending on the safety requirements
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which are characteristics of the system application, these quantities would imply
the definition of a perception integrity framework where:

1. At first, the Protection Levels (PL) based on state variable uncertainty are
computed such that the probability of the PL to violated is < Integrity Risk.
This is done for each state variable, defining:

• Longitudinal PL for variable 𝑥
• Lateral PL for variable 𝑦
• Heading PL for variable 𝜃

2. If PL > AL, the integrity monitoring system throws a warning noticing the
managing unit that safety is not ensured using that road representation

The implementation of this framework would require proper uncertainty esti-
mation and correct definition of the safety requirements from the application.
Future developments in the definition and application of perception integrity
monitoring could enable safe and large scale deployment of automated systems
graded SAE Level 3 and higher.

4.3 Proposed solution: Map-tracking

So far, we discussed and detailed the modelling of map-provider output for it
to be processed in a fusion module. Equivalently, in Section 3.2 the smart sensor
delivery has been presented. These are the two templates for information sources
supposed to be available in the use case here discussed. In the following, the
process designed for combining these different sources is presented.

This use case is essentially different from the first that been addressed. Mul-
tiple inputs are being processed and, additionally, they are issued of "providers"
of different nature. Where in Section 3.3 the deliveries from Smart FrontCam and
Smart AVM came from distinct sensors, the adopted model was the same. As the
map-provider operates differently, its deliveries are also processed in another
way.

In Fig. 4.6, a graph represents the interactions among the components in the
solution and the temporal evolution of the lane boundaries estimation xt. In this
realization, we will be referring to xt by the name of map-track. The map-track
xt is still a set of tracked lane boundaries, each of them is described by map way-
points named road features 𝐹 in the tracking procedure. In the illustration, the
information converges towards the nodes xt where the incoming links indicate
the available information at the iteration 𝑡.

At any given instant, distinct operations are being executed accordingly with
the latest sensor delivery received. Specifically:

• Map-provider (first) : initialization

• Ego-movement : prediction

• Smart Sensor delivery : association (and update)

• Map-provider (new) : update
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Figure 4.6: Smart FrontCam and map-provider deliveries are asynchronous. At time
instant 𝑖, the estimation of the surrounding lane boundaries 𝑥𝑖 takes into account current
measurements and previous estimations.

4.3.1 Initialization

As in the case presented in Fig. 4.6, (at node x0) the initialization of the first map-
track is conditional to first delivery of the map-provider. Where this delivery is
not presented, the lane boundaries tracking would be in fact downscaled to the
method illustrated in the previous chapter, as the input to be processed would
be entirely issued of smart sensors.

According to the model in Section 4.2, the same information can be conve-
niently presented in form of road features, and initializes the map-track as fol-
lows:

𝐹𝑖 =

⎡⎢⎢⎢⎣
𝑀𝑥𝑖
𝑀𝑦𝑖

ℎ̄
𝑐

⎤⎥⎥⎥⎦ ,𝑀Σ𝐹 = 𝑉 𝑎𝑟(𝑀X𝑖) (4.12)

The structure of the map-track reflects the format used by the map-provider
for its deliveries. The road features model is adopted and the uncertainty on each
state variable is expressed in the body frame 𝐹𝑀 . With respect to the previous
tracking solution, we will be additionally tracking the curvature of the road at
that given point. However, as map-provider deliveries generally contains only
positional information about map waypoints, the heading ℎ̄ and curvature 𝑐 state
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𝐿𝑖

𝑀𝑗

𝑥𝑦

Figure 4.7: Road features from the map-track (in blue) are being projected onto the latest
sensors measurements (in red). Association distances are computed according to the
uncertainty models and the result of the projection 𝑝⊥(𝐹𝑗) (in purple).

variable will to be properly initialized until a successful association of the map-
track line with a smart sensor measurement.

4.3.2 Prediction

Ego-movement estimation is used to predict the map-track. Similarly to Section
3.3.2, the estimated rotation and translation of the ego-vehicle is applied to the
content of the map-track. Accordigly, the covariance matrix 𝑀Σ𝐹 is updated
following the prediction step of the Kalman filter. This operations implies that
if the estimation of the ego-movement is especially uncertain, the position (and
the other state variables) of any given road features around the car would be
consequently uncertain.

4.3.3 Association

When matching lane boundaries detections from different sources, positional in-
formation is not the only clue we can lean on. In fact, both HD-maps and smart
sensors provide type information for each presented lane element. This classifi-
cation allows for an initial screening of the possible matches between candidates.
As step-by-step detailed in Algorithm 1, we shall consider an association to be
viable when the lane boundary types𝑀𝑡𝑦𝑝𝑒 and 𝐿𝑡𝑦𝑝𝑒 do correspond (for example,
they are both lane markings), or when 𝑀𝑡𝑦𝑝𝑒 is unknown.

It may occur that an on-board sensor has not been able to label all the mea-
surements within one of the classification possibilities. This preliminary test en-
hances correctness and considerably saves computational time. At this point,
we are dealing with two probabilistic representations of the lane boundaries sur-
rounding the ego-vehicle and presented in the local frame. In order to identify
any existing correspondence between the two representations, they shall be ex-
pressed in a comparable form. Smart sensor measurements are expressed with a
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Algorithm 1 Lane boundaries association

1: procedure ASSOCIATE(zSens
t , zMap

t )
2: for each measure 𝑀𝑖 in zSens

t do
3: for each map line 𝐿𝑗 in zMap

t do
4: if 𝑀𝑡𝑦𝑝𝑒 = unknown or 𝑀𝑡𝑦𝑝𝑒 = 𝐿𝑡𝑦𝑝𝑒 then
5: 𝐷𝑖,𝑗 ← 𝑑(𝑀𝑖, 𝐿𝑗)
6: else
7: 𝐷𝑖,𝑗 ← dmax
8: end if
9: end for

10: end for
11: Return GNN(𝐷,dmax)
12: end procedure

continuous model, whereas the information given by the map-track is punctual -
discrete. Let us make use of this, looking for a correspondent in the sensor mea-
surements per each of the road features in the map-track. It is supposed that a
sufficient number of map points is available for each lane boundary, allowing at
least one orthogonal projection of these features on the measurement, if they rep-
resent the actual same lane boundary. Under this assumption, each map feature
is projected on each of the measurements as illustrated in Fig. 4.7.

Each successful projection of 𝐹𝑗 ∈ 𝐿 appoints to a corresponding road fea-
ture 𝑝⊥(𝐹𝑗) sampled along the measure 𝑀 at (𝑥⊥, 𝑦⊥). The Mahalanobis distance
between the two can be computed as:

𝑑2(𝑝⊥(𝐹𝑗), 𝐹𝑗) = (𝑝⊥(𝐹𝑗)− 𝐹𝑗)𝑇 (𝑀Σ𝐹 + 𝑉 𝑎𝑟(𝑀X𝑖))−1(𝑝⊥(𝐹𝑗)− 𝐹𝑗) (4.13)

The distance between a sensor measure and a map-track line is finally defined
selecting the highest value, where multiple projections exist:

𝑑(𝑀,𝐿) = max
𝐹𝑗∈𝐿

𝑑(𝑝⊥(𝐹𝑗), 𝐹𝑗) (4.14)

A distance matrix built on these values allows the use of a Global Neighrest
Neighbourd (GNN) algorithm to finalize the association (implementation details
included in Appendix B).

4.3.4 Update (smart sensor delivery)

In the case of smart sensor delivery, the content of the map-track can be updated
but it is possible to consider different strategies for including this information in
the estimation.

Road feature labelling After completing a successful association between a smart
sensor measurement𝑀 and a map-track lane boundary𝐿, it is confirmed that the
two represent the same physical object. In this update strategy, it is proposed not
to update the state variables of the tracked road features with the smart sensor
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measurements. However, we want to store the fact that an on-board sensor has
recently observed the existence of that (set of) road features. This association
gives more credibility to the map-provided information, which is confirmed by
the freshest environmental observation.

Successfully associated road features are being, therefore, labelled with a unique
identifier per each sensor in the current architecture. In our case, labels assigned
to each road features may be: {∅, 𝐹 𝑟𝑜𝑛𝑡𝐶𝑎𝑚,𝐴𝑉𝑀, {𝐹𝑟𝑜𝑛𝑡𝐶𝑎𝑚,𝐴𝑉𝑀}}. A
road feature observed by the whole sensor set would give maximum confidence
to the estimation.

Road feature state update Updating the state variables of the road feature, which
have been firstly generated from a map-provider delivery, with sensor measure-
ments would imply to put on the same level the to kind of processed input. In
this strategy, the road feature state variables of the map-track 𝐹𝑗 are updated
with their corresponding equivalent feature on the measurements, previously
indicated with 𝑝⊥(𝐹𝑗). Again, as in Section 3.3.4, the Kalman update step is
adopted for the information fusion. In this case, the implications of indifferently
fusing sensor and map data may be hazardous. The accurate (and occasionally
hand-built) topological structure of the map is put at risk while inaccurate sensor
measurements are being integrated.

Road feature partial state update The idea of partially integrating the information
from sensor measurements may be wiser and easier to maintain. It is proposed to
update a subset of the state variables in a road feature. The approach is different
for qualitative and quantitative state variables. For the former, while updating
the lane boundary type variable 𝐿𝑡𝑦𝑝𝑒, more confidence may be attributed to the
live observed information which would overwrite the map-stored lane boundary
type. The latter, the actual state variable of the road feature, would be updated as
previously indicated, though leaving unchanged critical state variables. This ap-
proach would preserve the map topology when the subset of updated variables
do not include 𝑥 and 𝑦 which indicate the spatial position of the road feature.

4.3.5 Update (map-provider sensor delivery)

A new map delivery would generally add new information at a distant range
and crop out a section of the past path. As the delivered subsection of the map
depends on the vehicle position, new lanes and roads may be included other
than new map points for the existing lane boundaries. Nodes of the map that
were already being tracked in the current map-track would also be present and
the tracking process for those nodes do not need to be reinitialized.

For these reasons, unique identifiers for map nodes are adopted in order to
match the initialized nodes in the current map-track with their counterpart in
the map delivery. In the absence of a unique identifier, the original absolute
coordinates of the map node in the global frame may be a valid replacement for
the matching.
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4.4 Experimental results

In this section, experiments and tools deployed for testing our models and al-
gorithm are presented. At first, we recall the technical setup which includes
currently relevant vision sensors and a development platform. It follows the de-
scription of two experimental applications that take advantage of the proposed
methodology and serve for evaluation: anomalies detection for smart sensors
and multi-hypothesis localization scoring. Lastly, adopting the road feature par-
tial state update strategy for heading and curvature tracking, the effect of the
filtering are measured against two distinct references.

4.4.1 Setup

The core equipment useful for the completion of our tests is installed on our pro-
totype autonomous vehicle (an ad-hoc configured Renault Espace). It is equipped
for the perception of its surroundings with:

• a Smart FrontCam, 30Hz, FoV: 53∘ × 120 𝑚

• a Smart AVM (4 cameras), 20Hz, FoV: 360∘ × 20 𝑚

These sensors implement device-specific data processing algorithms and issue
measurements in the format specified in Section 3.2. Specifically, the Smart Front-
Cam can send out up to 4 measurements per delivery. The Smart AVM has sim-
ilar capabilities, however we narrow down its usage to the ego-lane estimation
(up to 2 measurements). This limitation is due to the difference in maturity of
the two sensors.

Another specific unit handles the localization of the vehicle and function as
a map-provider. It implements particle-based localization algorithms applied
within a remotely provided HD-map (streamed via Ethernet according to ADA-
SISv3 [Ress et al., 2008] standards), using a commercial positioning system. Its
output is presented in the local frame and complies with the probabilistic model
proposed in Section 4.2. Sensor output and map data has been recorded for test-
ing, driving the prototype vehicle on the French A86 (Créteil-Versailles).

The lane boundaries association algorithm, detailed in Section 4.3.3, has been
implemented in a proprietary environment for ADAS design. On this platform,
the development is carried out mostly in C language, following MISRA C
[MIRA, 2008] guidelines for safe, reliable and portable code for embedded sys-
tems. The presented solution is, in fact, specifically designed to comply with
real-time constraints and low resources availability typical of ADAS ECUs. An
interface example of the platform is reported in Fig. 4.8. The video stream shows
a view of the driving scene at each instant and it can be used for a qualitative
evaluation of the results, as it is shown hereinafter.

4.4.2 Anomalies detection for smart sensors

This first application is proposed as prior qualitative analysis of the anomalies
detected by our solution and it has been carried on within the interface of the
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Figure 4.8: Left: orange FrontCam measurements are displayed in a bird-eye view. Cen-
ter: map-provided lane boundaries (red and green lines) are associated to the measure-
ments with the exception of one (highlighted in black). Right: the context cameras con-
firm the false positive detection.

software development platform itself. Making use of the bird-eye view data vi-
sualization, we want to display the measurements and, specifically, highlight
those that have not been successfully associated to any of the map-provided lane
elements.

As a matter of fact, in Fig. 4.8, one of the measurements issued of the smart
sensor is correctly classified as false detection and highlighted in black. This
picture presents on left the delivery of the Smart FrontCam "as is", a set of poly-
nomial measurements displayed in orange. In the middle, the map-provider de-
livery has been added (lane boundaries are shown in red or green, whereas they
represent road barriers) and the outcome of the association algorithm pointed
out. Finally, the perspective of the context camera, displayed on right the side,
confirms that the wrongly detected lane marking does not exist while the other
measurements are properly associated to the map.

In this case and in similar others, we managed to identify a potentially dan-
gerous false detection. Filtering it out would positively benefit the overall per-
formance of the automated vehicle. We consider this experimental application
as a positive and qualitative evaluation of the previously introduced models.

4.4.3 Scoring for multi-hypothesis localization

The second application brings to a further analysis, which aims at a quantitative
evaluation of the solution despite the fact that no ground truth is available for
this kind of experimental applications. As the recorded data comes from high-
way drivings and the number of the surrounding lanes 𝑁𝑙 is known through the
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Figure 4.9: 𝑁𝑙 = 3 variations of a same driving record. Respectively from the left: Al-
tered1, Altered2 and Correct. Highlighted in black, some of the measurements have not
been successfully associated to any of the map-provided lane boundaries.

HD-map, we propose the following test and use case for our solution:

• The original driving record is labelled as Correct, considering that the local-
ization system correctly positionate the vehicle (at least) within the correct
lane.

• Based on Correct, 𝑁𝑙 − 1 alterations of the driving record are generated,
exploiting the HD-map to relocate the ego-vehicle within the other lanes.
Context camera also confirms that these datasets are Altered hypothesis of
localization.

Fig. 4.9 presents our specific case, where driving data recorded on a three-
laned section of the highway provides 𝑁𝑙 = 3 candidate hyphotheses of ego-
localization.

Defining now a common evaluation metric, we can expect this indicator to be
a discriminatory factor in distinguishing the Correct recording from the Altered
ones. We chose the Precision metric, which is a meaningful index in those con-
ditions where false positives are of strong impact on the application outcome,
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as it is here. In this experiment, a false positive 𝐹𝑃 is a measurement issued of
an on-board sensor which has not been successfully associated with the use of
Algorithm 1 and a complete HD-map. True positives 𝑇𝑃 are therefore all the
remaining received measurements. We compute 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡 − 5, 𝑡) separately
for each smart sensor over a time window of 5 seconds and it is defined as the
following ratio:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡− 5, 𝑡) = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.15)

Fig. 4.10 show the evolution of this indicator throughout our driving record of
about two minutes, presented in three variations - one per drivable lane.

As would be expected from the setup, we are actually capable of differentiat-
ing Correct from Altered1 and Altered2 by making use of the Precision indicator. In
terms of lane boundaries association, the computed Precision of the Smart Front-
Cam is crucial to make this distinction. On the other hand, all of the 𝑁𝑙 record-
ings report similar trends from the standpoint of the Smart AVM. For this last
sensor, we can suppose that not enough information is disposable in the deliv-
ered measurements to allow for the disambiguation of the altered datasets. Due
to its limited field of view, it understandable that no contradiction is reported in
terms of lane boundaries association regardless of the lane to be Correct or Al-
tered. Table 4.1 ultimately presents the global 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑) indexes in the
form of percentages, computed over the whole recorded data. This benchmark is
based on a capsule (Section 2.4.3) of highway data. For 300 s of recorded sensor
data while driving the prototype vehicle at medium-high speed, the travelled
distance amounts to slightly less than 10 km.

Smart FrontCam Smart AVM
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 89.43% 99.07%
𝐴𝑙𝑡𝑒𝑟𝑒𝑑1 57.31% 98.31%
𝐴𝑙𝑡𝑒𝑟𝑒𝑑2 79.00% 98.60%

Table 4.1: Precision over complete driving

4.4.4 Tracking results

In case of positive association between lane boundaries in the map-track and
sensor measurements, the Update step describes how the latest information is
integrated in the estimation. In the following investigation, the tracking effects
on the estimation of heading and curvature have been studied. A comparison
between the state of measurement and track is carried on, separately computing
the error for different position indicators of the measurements (∈ 𝐿𝐿,𝐿,𝑅,𝑅𝑅).
Samples for this evaluation have been grouped for distinct interval of longitudi-
nal distance. The Root Mean Square Error (RMSE) has been computed consider-
ing the difference between the state variable of interest and the reference.

Heading and curvature reference In our experimental setup, the identification of
an appropriate reference to be deployed as ground truth is not trivial. A sup-
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Figure 4.10: In the case of Smart FrontCam, Precision results generally higher for Correct,
which makes possible its distinction from Altered1 and Altered2. On the other hand, all
of the 𝑁𝑙 recordings report similar trends from the standpoint of the Smart AVM.

posedly perfect "oracle" would be unaffected by the estimation error that have
been modelled in the smart sensor and map-provider deliveries. Hereinafter, the
HD-map have been considered to be the most accurate representation of the lane
boundaries available in the setup. This representation has been exploited for the
computation of heading and curvature reference for each map node. Specifically,
two hypotheses have been considered for the lane boundaries model and ground
truth computation:

• Circular arc: at each map node, it has been supposed that the lane boundary
passing through that node is a circular arc. Therefore, the equation of this
arc is being computed exploiting additionally the two adjacent map points,
generally the previous and the subsequent if available.

• Clothoid spline: at each map node, it has been supposed that the lane
boundary passing through that node is a clothoid spline. The computation
of this semi-parametric curve is not trivial and depends on the additional
points considered for its estimation, other that of the computation method.
In our case, the adopted method is presented in [Baran et al., 2010] and uses
optimization for the regression of the clothoid spline.

Two distinct benchmarks are presented in the following, using the two different
references mentioned above.
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RMSE of heading and curvature w.r.t. HD-map reference As expected, the RMSE
computed for the measure grows with the longitudinal distance. It can be ob-
served in Fig. 4.11 and Fig. 4.12 that performing tracking of heading and curva-
ture data on the map nodes positively affects the estimation of these variables,
when the reference is based on the circular arc hypothesis.

Figure 4.11: Heading error w.r.t. HD-map

Figure 4.12: Curvature error w.r.t. HD-map

RMSE of heading and curvature w.r.t. Cornu-map reference Analogous results are
obtained with the adoption of the clothoid spline reference, which could be con-
sidered to be a more accurate model of the road. The effectiveness of the im-
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plemented lane boundaries tracking solution is confirmed in Fig. 4.13 and Fig.
4.14.

Figure 4.13: Heading error w.r.t. Cornu-map

Figure 4.14: Curvature error w.r.t. Cornu-map

4.5 Conclusions

In this chapter, we presented our methodology and work in the task of lane
boundaries estimation based on smart sensors and map-provider measurements.
The information fusion solution takes input from the two different sources ap-
plying distinct models for representing the uncertainty in their deliveries. In this
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instance, the model proposed for the map-provider takes into account of both
localization and mapping uncertainties.

The results issued of experimental applications show that the use of lane
boundaries association enables false positives detection for on-board smart sen-
sors, whether the measurements sufficiently contradicts the content of the map.
Specifically, applying our method to the Smart FrontCam resulted effective and
correctly performed in the scoring of multiple hypotheses of ego-vehicle local-
ization within the HD-map. Additionally, the tracking of sensor-issued heading
and curvature information on the map nodes resulted effective with respect to
two different references.

These experiments completed our work in regards of the lane boundaries esti-
mation in presence of multiple information sources. In the rest of the manuscript,
the general conclusions that can be drawn from this research are presented to-
gether with the immediate pespectives that would be interesting to explore when
starting from what have been accomplished up to here.



Chapter 5

Conclusion

5.1 Concluding remarks

In this research, the task of lane boundaries detection in automated driving have
been formulated over the SAE-L3 industrial use case and addressed with multi-
ple information sources and data fusion methodology.

At first, the general context of ADAS and AD have been introduced to the
reader together with some specificities from the automotive industry, such as the
integration of smart sensors. The state of the art of automated driving pipelines
and lane detection related methods have been subsequently presented, before
formulating the problem as estimation of the surrounding lane boundaries. Two
distinct solutions have been proposed and presented in the above and we present
in following some considerations in their regards.

Feature-tracking In the first case, measurements from different smart sensors
are being accumulated and fused in a set of global lane boundaries tracks. Our
approach allowed for the adoption of a geometric lane model which is more
complex than the polynomial curve implemented by off-the-shelf sensors. Fur-
thermore, the information fusion method is independent from the nature of the
input sensor and it performed well in a benchmark with respect to an HD-map
lane-level reference. The deployment of this solution as a module of working ar-
chitecture of L3 prototype vehicle confirmed the viability of the approach within
real-time constraints and its compatibility with quasi-industrial implementation.

The advantages of using multiple sensor fusion in the lane boundaries estima-
tion task are manifolds. The environment representation range can be expanded
together with increased redundancy in the sensor set, implying better fault re-
sistance. The overall safety is further enhanced adopting distinct technologies of
perception where one can contribute in the shortcomings of the other. Lastly, the
novel clothoid spline model allowed better representation of the road structure
with curvature evolution that is more suitable for driving the vehicle in comfort-
able conditions for the passenger.

Map-tracking The first segment of the research work focused on the usage and
fusion of smart sensors pointing out the possibility of faulty detections in the sen-

96
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sor measurements. This scenario motivated the second part of this work where
an additional source of a distinct nature have been included as support to the
lane boundaries estimation task. Appropriate modelling of the involved uncer-
tainties and inclusion of a map-provider in the system architecture allowed for
experimenting map-aided approaches.

In these experiments, our lane boundaries association method has proven to
be effective in the detection of erroneous measurements. This method has been
additionally deployed in the computation of an indicator of coherence between
map and on-board sensors, which can potentially detect faults in the localization
system. Additionally, tracking of road heading and curvature on map waypoints
resulted more effective that solely using the smart sensor measurements.

Limitations An assessment of the limitations of this research work can be done
retrospectively, commenting on the main difficulties encountered:

• Disposing of ground truth at lane boundary level is technically challenging.
There is no "oracle" given that even HD-Maps suffer from inaccuracies. In
absence of a perfect reference, it has been supposed that one of the available
information sources ranks to be better than the others (e.g. more accurate
sensor has perfect calibration or post-processed localization is considered
accurate).

• Working with smart sensors or other kind of integrated black boxes do not
allow for the use of public datasets and the quantitative results are strictly
sensor dependant.

• Uncertainty representation and estimation has a fundamental impact and it
is not trivial. In our study, the Gaussian hypothesis have been supported by
some of the experiments (Section 3.4.2) but still results in a strong hypothe-
sis.

5.2 Perspectives

Given the work up to here and the comments on accomplished research and
limitations, here are some of the most interesting perspectives which have been
considered and partially explored.

Other vehicles as additional source The implemented fusion architecture is suffi-
ciently general to be compatible with other possible environmental clues about
the existence of lane boundaries. One might speculate on the presence of other
vehicles in the roadway. In this use case, the following assumptions on the other
vehicles in the driving scene are adopted:

• Vehicles drive at a constant and known lateral distance from a lane marker
on their right side (plausible behaviour of an autonomous vehicle)

• Vehicles’ pose is accurately estimated by the ego-vehicle on-board sensors



5.2. Perspectives 98

These are quiet strong hypotheses, but by relying on them we can suppose the
presence of a road marking line beside each vehicle (also they are mostly equiv-
alent to those in [Sakr et al., 2017]). To resist potential ghosts or noisy targets, a
vehicle is traced only after a few seconds of track confirmation. A confidence
index of the targets would interestingly contribute to this step. The traces left
behind these other vehicles are processed as input measurements, in the form of
clothoid splines. This experiment only consist of a proof of concept but, under
the above-mentioned assumptions, can extend the lane detection range up to the
object-detector’s range (generally much higher).

In Fig. 5.1 (left and center), the cameras can detect lane markings up to 110 m
(presented as before in orange) while exploiting the other vehicles the estimation
reaches up to 150 m (vehicle’s trail displayed in light and dark grey segments).
Note also that the curve shape is reasonable because it is faithfully interpolated
by the clothoid spline model.

Also in Fig. 5.1 (right), we present a case where the assumptions are not met.
This situation would be quiet frequent in experimental recordings, where object
detection is performed by on-board commercial sensors.
This additional test of "multiple-sources" estimation will be subject of further
works, in more appropriate conditions or on a different set of assumptions.

Large scale testing on Fusion dataset Specific AD/ADAS features developed within
the Renault framework are afterwards integrated in a class of upcoming com-
mercialized vehicles. These vehicles can offer functions such as AEB and AD1
("Autonomous Driving 1", a kind of enhanced ACC), implemented with suppli-
ers sensors and in-house fusion algorithms. Before allowing for mass production,
these solutions are being to be completed and tested. This validation requires for
a certain level of performance to be guaranteed over a large number of kilome-
ters. To achieve this, a fleet of prototype vehicles in currently recording sensor
data on the most varies road of Europe (France, Netherlands and United King-
dom at the moment). This collection of data, which amouts of more than 60 000
km of driving recordings, is complemented with observations of events by the
copilot (presence of roundabouts, weather conditions, vehicles cutting-in, etc.)
and is consumed in this validation phase. A set of indicators corresponding to
each demanded feature has been identified along with a performance target to
be attained.

As a perspective for this research work, it would be of interest to evaluate the
possible exploitation of this huge amount of data.
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Figure 5.1: Left and center: both camera (orange) and other vehicles (light and dark
grey trail) are exploited to track lane markings. Right: the front vehicle is not precisely
tracked and leads to poor results.



Appendix A

Notes on the submitted patent
application

This appendix details and illustrates the patent filed for application on the sub-
ject of the methodology presented in Chapter 4.

The invention consists of two main components. The first component is the
lane boundaries association method applied to smart sensor maps and HD-maps.
In this case, the association method is used to detect faulty measurements issued
of the smart sensor. The second component leans on the first one to rank distinct
hypothesis of localization of the vehicle within the HD-map.

The drafting of the technical memo for the preparation of the patent began in
April 2021. The final text of the patent has been redacted in french language and
consists of 31 pages. It has been completed and submitted to the Institut National
de la Propriété Industrielle (INPI) in October 2021. The patent application has
identifier n∘2110938, hereinafter it is noted its full reference:

• F. Camarda, B. Durand, F. Davoine, V. Cherfaoui. Procédé de détection d’une
limite d’une voie de circulation. Renault/CNRS patent. Applied for European
patenting at Institut National de la Propriété Industrielle (INPI) under the
identifier n∘2110938, Oct 2021.

Some of the illustrations from the patent are presented in the following. Here
is the description of the illustrations that follow:

• Fig. A.1a is a first schematic view from above of the vehicle on a road com-
prising two traffic lanes, on which are represented limits of a traffic lane as
detected by a detection means on board the vehicle.

• Fig. A.1b is a second schematic top view of the vehicle, in which lane
boundaries determined by means of map data are shown.

• Fig. A.1c is a third schematic top view of the vehicle, on which are repre-
sented, by road features modeling, the limits of the traffic lane as detected
by the detection means on board of the vehicle.

• Fig. A.1d is a schematic top view of the vehicle on a road comprising five
traffic lanes.
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(a) (b)

(c)

(d)

Figure A.1: Illustrations from the patent application



Appendix B

Global Nearest Neighbor algorithm
implementation

The Global Nearest Neighbor (GNN) algorithm has a cost matrix 𝑥𝑥 as given
input. In our case, the matrix contains distances between measurements (rows)
and tracks (columns). Specifically, the cell 𝑥𝑥[𝑖, 𝑗] contains the Mahalanobis dis-
tance between the measurement 𝑖 and the track 𝑗. The aim of the algorithm is
to find the best association between rows and columns that globally minimizes
the association cost. The output is the solution column 𝑦 to the Linear Assign-
ment Problem (LAP) and indicates per each measure the index of the associate
column, if any. In fact, it is possible for a measurement not to be associated to
any of the tracks. Distances are saturated according to the gating variable 𝑐ℎ𝑖2.
The implementation of the GNN algorithm adopted in the ADAS development
framework of our use case is the following:

1 /* * GlobalNearestNeighbor funct ion
2 *
3 * Computes y as the column s o l u t i o n of lap problem with c o s t matrix x
4 * I f row i i s a s s o c i a t e d to a column , then y ( i ) i s the column number ( i and y (

i ) s t a r t s a t 0 )
5 * I f row i i s not assoc ia ted , y ( i ) =P_NT_LAP_NOTASSIGNED_VALUE
6 *
7 * y should have been a l l o c a t e d with a P_NT_LAP_MAX_DIM length
8 *
9 */

10 u i n t 3 2 _ t c_GlobalNearestNeighbor ( f l o a t _ t * xx ,
11 const u i n t 3 2 _ t nRow,
12 const u i n t 3 2 _ t nCol ,
13 const f l o a t _ t chi2 ,
14 u i n t 8 _ t * yy ) {
15 u i n t 3 2 _ t s t a t u s = S_OK ;
16 // check input s i z e
17 i f ( ( nRow < 1u ) || (nRow > P_NT_LAP_MAX_DIM) || ( nCol < 1u ) || ( nCol >

P_NT_LAP_MAX_DIM) ) {
18 s t a t u s = S_FATAL_MATH_UNCOMPLIANT_MATRIX_DIM;
19 } e l s e {
20 u i n t 3 2 _ t i i , j j ;
21 // Reduce Column
22 u i n t 8 _ t skipCol [P_NT_LAP_MAX_DIM ] ;
23 f o r ( i i = 0 ; i i < nCol ; i i ++) {
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24 skipCol [ i i ] = 1 ;
25 f o r ( j j = 0 ; j j < nRow ; j j ++) {
26 i f ( xx [ ( j j * nCol ) + i i ] < chi2 ) {
27 skipCol [ i i ] = 0 ;
28 break ;
29 }
30 }
31 }
32 j j = nCol ;
33 f o r ( i i = 0 ; i i < nCol ; i i ++) {
34 j j −= skipCol [ i i ] ;
35 }
36 u i n t 3 2 _ t x1nCol = j j ;
37 // Reduce Row
38 u i n t 8 _ t skipRow [P_NT_LAP_MAX_DIM ] ;
39 f o r ( j j = 0 ; j j < nRow ; j j ++) {
40 skipRow [ j j ] = 1 ;
41 f o r ( i i = 0 ; i i < nCol ; i i ++) {
42 i f ( xx [ ( j j * nCol ) + i i ] < chi2 ) {
43 skipRow [ j j ] = 0 ;
44 break ;
45 }
46 }
47 }
48 j j = nRow ;
49 f o r ( i i = 0 ; i i < nRow ; i i ++) {
50 j j −= skipRow [ i i ] ;
51 }
52 u i n t 3 2 _ t x1nRow = j j ;
53 i f ( ( 0 u != x1nCol ) && (0u != x1nRow ) ) {
54 f l o a t _ t * x1 = xx ;
55 u i n t 8 _ t revCol [P_NT_LAP_MAX_DIM ] ;
56 u i n t 8 _ t c o l s o l [P_NT_LAP_MAX_DIM ] ;
57 f l o a t _ t const *pX = xx ;
58 f l o a t _ t *pX1 = x1 ;
59 f o r ( u i n t 3 2 _ t kk = 0 ; kk < nRow ; kk++) {
60 i f (0u != skipRow [ kk ] ) {
61 pX += nCol ;
62 continue ;
63 }
64 f o r ( i i = 0 ; i i < nCol ; i i ++) {
65 f l o a t _ t fx = *pX ;
66 pX++;
67 i f (0u != skipCol [ i i ] ) {
68 continue ;
69 }
70 *pX1 = fx ;
71 pX1++;
72 }
73 }
74 memset ( revCol , 0 , MAX( ( s i z e _ t )nRow, ( s i z e _ t ) nCol ) ) ;
75 j j = 0 ;
76 f o r ( i i = 0 ; i i < nCol ; i i ++) {
77 i f (0u != skipCol [ i i ] ) {
78 continue ;
79 }
80 revCol [ j j ] = ( u i n t 8 _ t ) i i ;
81 j j ++;
82 }
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83 u i n t 8 _ t * y1 = skipCol ;
84 FUSCOMCALL( s ta tus , c_lap ( x1nRow , x1nCol , x1 , y1 , c o l s o l ) ) ;
85 j j = 0 ;
86 f o r ( i i = 0u ; i i < nRow ; i i ++) {
87 i f (0u != skipRow [ i i ] ) {
88 yy [ i i ] = P_NT_LAP_NOTASSIGNED_VALUE ;
89 continue ;
90 }
91 i f ( y1 [ j j ] != P_NT_LAP_NOTASSIGNED_VALUE) {
92 i f ( x1 [ ( j j * x1nCol ) + y1 [ j j ] ] < chi2 ) {
93 yy [ i i ] = revCol [ y1 [ j j ] ] ;
94 } e l s e {
95 yy [ i i ] = P_NT_LAP_NOTASSIGNED_VALUE ;
96 }
97 } e l s e {
98 yy [ i i ] = P_NT_LAP_NOTASSIGNED_VALUE ;
99 }

100 j j ++;
101 }
102 } e l s e {
103 f o r ( i i = 0 ; i i < nRow ; i i ++) {
104 yy [ i i ] = P_NT_LAP_NOTASSIGNED_VALUE ;
105 }
106 } // i f ( j j )
107 }
108 re turn s t a t u s ;
109 }
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