
HAL Id: tel-03736216
https://theses.hal.science/tel-03736216

Submitted on 22 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal verification at design stage of diagnosis related
properties for discrete event and real-time systems

Lulu He

To cite this version:
Lulu He. Formal verification at design stage of diagnosis related properties for discrete event and
real-time systems. Automatic Control Engineering. Université Paris-Saclay, 2022. English. �NNT :
2022UPASG037�. �tel-03736216�

https://theses.hal.science/tel-03736216
https://hal.archives-ouvertes.fr

T
H

E
S

E
D

E
D

O
C

T
O

R
AT

N
N

T
:2

02
2U

PA
S

G
03

7

Formal verification at design stage
of diagnosis related properties

for discrete event and real-time systems
Vérification formelle au stade de la conception

de propriétés liées au diagnostic
des systèmes à événements discrets et temps réel

Thèse de doctorat de l’université Paris-Saclay

École doctorale n˝ 580,
Sciences et Technologies de l’Information et de la Communication (STIC)

Spécialité de doctorat: Informatique
Graduate School : Informatique et Sciences du Numérique,

Référent : Faculté des Sciences d’Orsay

Thèse préparée dans l’unité de recherche Laboratoire Méthodes Formelles
(Université Paris-Saclay, CNRS, ENS Paris-Saclay), sous la direction de

Philippe DAGUE, professeur émérite, et sous le co-encadrement de Lina YE,
maître de conférences

Thèse soutenue à Paris-Saclay, le 18 mai 2022, par

Lulu HE

Composition du jury
Sylvain CONCHON Président
Professeur, Université Paris-Saclay, LMF
Yannick PENCOLÉ Rapporteur & Examinateur
Chargé de Recherche CNRS, HDR, LAAS-CNRS
Toulouse
Lakhdar SAÏS Rapporteur & Examinateur
Professeur, Université d’Artois, CRIL
Thierry JÉRON Examinateur
Directeur de Recherche Inria, Centre Inria Rennes
– Bretagne Atlantique
Philippe DAGUE Directeur de thèse
Professeur émérite, Université Paris-Saclay, LMF

Titre : Vérification formelle au stade de la conception de propriétés liées au diagnostic des systèmes à
événements discrets et temps réel
Mots clés : vérification formelle, diagnostic de panne, diagnosticabilité, manifestabilité

Résumé : Le diagnostic de pannes est une
tâche cruciale et difficile dans le contrôle automa-
tique des systèmes complexes, dont l’efficacité
dépend d’une propriété du système appelée diag-
nosticabilité. La diagnosticabilité décrit la pro-
priété du système permettant de déterminer dès
la phase de conception si un défaut donné se
produisant en ligne sera identifiable avec certi-
tude sur la base des observations disponibles, ce
qui est une alternative aux tests qui ne peu-
vent que montrer la présence de défaillances sans
garantir leur absence. Le problème de diagnos-
ticabilité des systèmes à événements discrets a
reçu une attention considérable dans la littéra-
ture, mais peu nombreux sont les travaux qui pren-
nent en compte des contraintes de temps explicites
lors de cette analyse. Or de telles contraintes
sont naturellement présentes dans les systèmes
réels et ne peuvent être négligées compte tenu
de leur impact sur cette propriété. Nous avons
proposé dans notre travail de master une nou-
velle approche à base de SMT (Satisfiability Mod-
ulo Theories) pour vérifier la diagnosticabilité en
temps borné sur les automates temporisés. L’idée
est d’encoder en SMT la condition nécessaire et
suffisante de diagnosticabilité. Afin d’améliorer
l’efficacité de notre méthode (le problème est
PSPACE-complet), nous en proposons à présent
une extension incrémentale fondée sur l’utilisation
de sur- et sous-approximations paramétrées dans
une généralisation de la méthode CEGAR (raffine-
ment d’abstraction guidé par un contre-exemple).
Nous montrons l’amélioration apportée au travers
de résultats expérimentaux.

Néanmoins, la diagnosticabilité est une pro-
priété assez forte, qui nécessite généralement un
nombre élevé de capteurs. Par conséquent, il n’est
pas rare que le développement d’un système diag-
nosticable soit trop coûteux. Afin de garantir dès la
conception un certain niveau de sûreté de fonction-
nement de manière économique et efficace, nous
proposons deux approches.

La première consiste à concevoir des systèmes
à événements discrets diagnosticables en utilisant
des blocs de retard. En effet, que se passe-t-il si

un système se révèle comme non diagnosticable ?
Une manière classique est d’ajouter des capteurs.
Nous proposons une nouvelle manière non intru-
sive de rendre diagnosticable un système non di-
agnosticable en ajoutant simplement des blocs de
retard sur certains événements observables, repor-
tant ainsi leurs observations. Pour autant que nous
le sachions, il s’agit de la première tentative de sup-
pression de la non-diagnosticabilité avec des blocs
de retard sans utiliser d’événements contrôlables ni
modifier la structure des systèmes. Notre approche
est codée dans une formule SMT, dont l’exactitude
et l’efficacité sont démontrées par nos résultats ex-
périmentaux.

La seconde consiste à analyser une nouvelle
propriété du système appelée manifestabilité, qui
est une exigence plus faible sur les observations
du système pour avoir une chance d’identifier
l’occurrence des défauts en ligne et peut être
vérifiée au stade de la conception. Intuitive-
ment, cette propriété garantit qu’un système dé-
fectueux ne peut pas toujours apparaître sain,
c’est-à-dire qu’il a au moins un comportement fu-
tur après l’apparition d’un défaut qui se distingue
par l’observation de tous les comportements nor-
maux. Nous définissons d’abord la manifestabil-
ité des automates à états finis pour les systèmes
à événements discrets et proposons un algorithme
de complexité PSPACE pour la vérifier automa-
tiquement et prouvons que le problème de vérifi-
cation de la manifestabilité lui-même est PSPACE-
complet. Les résultats expérimentaux montrent la
faisabilité de notre algorithme d’un point de vue
pratique. Ensuite, nous définissons la manifesta-
bilité des systèmes temps-réel modélisés par des
automates temporisés en tenant compte des con-
traintes de temps, et étendons notre approche pour
vérifier la manifestabilité de ces systèmes, prou-
vant qu’elle est indécidable en général mais, sous
certaines conditions restreintes, devient PSPACE-
complet. Enfin, nous encodons cette propriété
dans une formule SMT, dont la satisfaisabilité té-
moigne de la manifestabilité, avant de présenter
des résultats expérimentaux montrant le passage à
l’échelle de notre approche.

Title: Formal verification at design stage of diagnosis related properties for discrete event and real-time
systems
Keywords: formal verification, fault diagnosis, diagnosability, manifestability

Abstract: Fault diagnosis is a crucial and chal-
lenging task in the automatic control of complex
systems, whose efficiency depends on a system
property called diagnosability. Diagnosability de-
scribes the system property allowing one to deter-
mine at design stage whether a given fault occur-
ring online will be identifiable with certainty based
on the available observations, which is an alterna-
tive to testing that can only show the presence of
failures without guaranteeing their absence. The
diagnosability problem of discrete event systems
has received considerable attention in the litera-
ture, but little work takes into account explicit time
constraints during this analysis. However such
constraints are naturally present in real-life sys-
tems and cannot be neglected considering their im-
pact on this property. We proposed in our master
work a new SMT (Satisfiability Modulo Theories)-
based approach to verify bounded time diagnos-
ability on timed automata. The idea is to en-
code in SMT the necessary and sufficient condi-
tion for diagnosability. In order to improve the
efficiency of our method (the problem is PSPACE-
complete), we propose now an incremental ex-
tension of it based on the use of parameterized
over- and under-approximations generalizing the
CEGAR (CounterExample-Guided Abstraction Re-
finement) method. We show the improvement pro-
vided through experimental results.

Nevertheless, diagnosability is a quite strong
property, which generally requires a high number
of sensors. Consequently, it is not rare that devel-
oping a diagnosable system is too expensive. In
order to guarantee from design an adequate level
of safety in an economical and efficient way, we
propose two approaches.

The first one consists in designing diagnos-
able discrete event systems by using delay blocks.

Indeed, what if a system is revealed as non-
diagnosable? One classical way is to add sen-
sors. We propose a new non-intrusive way to make
diagnosable a non-diagnosable system by merely
adding delay blocks on some observable events,
thus deferring their observations. As far as we
know, this is the first attempt to remove non-
diagnosability with delay blocks without using con-
trollable events or changing the structure of sys-
tems. Our approach is encoded into an SMT for-
mula, whose correctness and efficiency are demon-
strated by our experimental results.

The second one consists in analyzing a new
system property called manifestability, that is a
weaker requirement on system observations for
having a chance to identify online fault occurrence
and can be verified at design stage. Intuitively,
this property makes sure that a faulty system can-
not always appear healthy, i.e., has at least one
future behavior after fault occurrence observably
distinguishable from all normal behaviors. We first
define the manifestability of finite state automata
for discrete event systems and propose an algo-
rithm with PSPACE complexity to automatically
verify it and prove that the problem of manifesta-
bility verification itself is PSPACE-complete. The
experimental results show the feasibility of our al-
gorithm from a practical point of view. Then
we define the manifestability of real-time systems
modeled by timed automata by taking into ac-
count time constraints, and extend our approach
to verify manifestability for these systems, proving
that it is undecidable in general but, under some
restricted conditions, becomes PSPACE-complete.
Finally we encode this property into an SMT for-
mula, whose satisfiability witnesses manifestability,
before presenting experimental results showing the
scalability of our approach.

Acknowledgements

I want to acknowledge financial support of this thesis during the past three years by a scholarship

from the French government, in particular from the Science and Technologies of Information

and Communication doctoral school of Paris-Saclay. Besides, I also want to thank the France

nation for hosting and taking care of me. Special gratitude to the Paris city: its beautiful

scenery, delicious food, interesting activities and lovely citizens have left a wonderful impression

on me. They helped me to have a nice leisure time and to get through the difficult moments

in the working process.

I would like to gratefully acknowledge the reviewers of this thesis, Professor Yannick Pencolé

and Professor Lakhdar Saïs for the valuable time they have allocated in order to evaluate the

quality of this work, despite their busy schedules. And thanks to Professor Sylvain Conchon

and Professor Thierry Jéron for having accepted to be members of my thesis committee.

I would like to express my special thanks of gratitude to my supervisor Professor Philippe

Dague and co-supervisor Associate Professor Lina Ye who gave me the golden opportunity to

focus on this wonderful project and also helped me in doing a lot of research. Moreover, they

were always kind, encouraging and supportive. They played a role of advisor, boss, psychologist,

teacher and good friend, more than just a supervisor.

It was extremely difficult to live far away from my family in China. Sincere thanks from

my deep heart to my dear friends in France, including: Yiran Zhang, Wenbo Zhou and Feng

Jin.etc. thank you all of you for the help and companionship. Wonderful moments together

will last forever.

Finally, all my deep love to my parents for the endless of love and support and I sincerely

appreciate to be your daughter. How lucky I am to be your little daughter. Now it is an end

for my student career lasting for more than 20 years. During the past 20 years, I started from

learning how to speak and write to acquiring knowledge and skills. And now I try to find a

problem, analyze it critically and create a new small world. What a wonderful journey. Life is

a journey not a destination. I will keep moving.

3

Contents

1 General Introduction 11
1.1 Motivation . 11
1.2 Contributions . 12
1.3 Thesis Organization . 15

2 Preliminaries and State of the Art 17
2.1 Introduction to Fault Diagnosis . 17
2.2 Modeling Formalism . 19

2.2.1 Discrete Event Systems . 20
2.2.2 Real-Time Systems . 22

2.3 Diagnosability . 24
2.3.1 Diagnosability Checking in DESs . 25
2.3.2 Diagnosability Checking in RTSs . 26

2.4 SAT Problem . 28
2.4.1 SAT Algorithms and Heuristics . 30
2.4.2 SAT-based Diagnosability Encoding for DESs . 32

2.5 SMT Problem . 35
2.5.1 Background . 36
2.5.2 SMT Algorithm . 37
2.5.3 SMT Solver . 39
2.5.4 SMT-based Diagnosability Encoding for RTSs . 40
2.5.5 Encoding Timed Automaton . 41
2.5.6 Encoding Bounded Diagnosability . 42

2.6 CEGAR and RECAR Algorithms . 45
2.6.1 CEGAR Algorithm . 46
2.6.2 RECAR Algorithm . 49

3 An Approximation-based Incremental SMT-based Approach to Diagnosability Analysis of
Real-Time Systems 51
3.1 Motivation . 51
3.2 CEGAR-over for Bounded Diagnosability Analysis of RTS 52
3.3 CEGAR-under for Bounded Diagnosability Analysis of RTS 55
3.4 A RECAR-like Approach for Bounded Diagnosability Analysis of RTS 57
3.5 Encoding RECAR-like Approach . 59

3.5.1 Pre-processing . 59
3.5.2 Encoding Changeable Parameters . 60

3.6 Experiments . 61
3.7 Results and Discussion . 64

5

3.8 Conclusion . 66

4 Designing Diagnosable Discrete Event Systems by using Delay Blocks 69
4.1 Motivation/Introduction . 69
4.2 Designing Diagnosable Systems with Delay Blocks . 70

4.2.1 Automata with Delay Blocks (ADB) . 72
4.2.2 Unfolding FSA into Flow Network . 74
4.2.3 Encoding Min-cut . 75
4.2.4 Diagnosability Conditions . 79

4.3 Implementation and Validation . 79
4.4 Related Work . 80
4.5 Conclusion . 81

5 Manifestability Property and its Verification 83
5.1 Motivation/Introduction . 83

5.1.1 Motivating Example . 84
5.2 Manifestability Analysis for Discrete Event Systems . 85

5.2.1 Manifestability Property for DESs . 85
5.2.2 Manifestability Verification . 90
5.2.3 Experimental Results . 97

5.3 Manifestability Analysis for Real-Time Systems . 98
5.3.1 Motivation/Introduction . 98
5.3.2 Manifestability Property for RTSs . 99
5.3.3 Undecidability and Decidability Results . 100
5.3.4 Encoding Bounded Manifestability . 103
5.3.5 Experimental Results . 108

5.4 Related Work . 109
5.5 Comparison with Opacity . 110
5.6 Conclusion . 114

6 Conclusion 115
6.1 Thesis Overview . 115

6.1.1 Diagnosability . 115
6.1.2 Manifestability . 116

6.2 Future Work . 117

A French synthesis 119

B Publications 123

C Software 125

6

List of Figures

2.1 Model-based diagnosis. 18
2.2 A system example modeled by a finite automaton. 21
2.3 A system example modeled by a timed automaton. 24
2.4 A schematic overview of Z3. 40
2.5 The CEGAR framework with over-approximation. 48
2.6 The CEGAR framework with under-approximation. 48
2.7 The RECAR framework . 50
2.8 The RECAR algorithm . 50

3.1 The CEGAR-over framework for diagnosability checking. 53
3.2 Over-approximation refinement process. 53
3.3 The CEGAR-under framework for diagnosability checking. 55
3.4 Under-approximation refinement process. 55
3.5 The RECAR-like framework for diagnosability checking. 58

4.1 Diagnoser of the system in Figure 2.2 71
4.2 Refined diagnoser of the system in Figure 2.2 71
4.3 Twin plant of the system in Figure 2.2 71
4.4 Critical twin plant of the system in Figure 2.2 72
4.5 An example of ADB . 74
4.6 Unfolding the critical twin plant of Figure 4.4 75

5.1 A simplified HVAC system. 84
5.2 A system model (top) and its diagnoser (bottom) 86
5.3 Fault diagnoser (top) and its refined version (bottom) for Example

11 . 91
5.4 Normal diagnoser (top) and its refined version (bottom) for Exam-

ple 11 . 92
5.5 The pair verifier for the system in Example 11 93
5.6 A real-time system model TA. 100
5.7 The fault pair verifier V F

A for the system whose model is depicted
in Figure 4.1 (top); the fault diagnoser DF

A (bottom). 101

7

List of Tables

3.1 Experimental results before optimization 60
3.2 Experimental results after optimization 60
3.3 Experimental results for CEGAR-over 62
3.4 Experimental results for CEGAR-under 63

4.1 Experimental results . 80

5.1 Experimental results of manifestability checking for DESs 97
5.2 Experimental results of manifestability checking for SS-DTA 109

9

1 - General Introduction

1.1 . Motivation

Safety issues are essential in the development of complex systems. Computer
scientists agree on the fact that it is preferable to verify safety-critical systems
during the design stage before running them, which is an alternative to testing
that can only show the presence of failures without guaranteeing their absence.
Hence, automated formal verification has emerged as a promising useful comple-
ment. Suitable also for the classical safety properties, this thesis is about ensuring
at design stage the possibility of performing later on-line diagnosis, particularly by
formally performing diagnosability and manifestability (a new property we intro-
duce) analysis in discrete event systems and real-time systems using a logic based
approach, in particular using SMT solver.

Fault diagnosis [74, 91, 43, 18] is a crucial and challenging task in the auto-
matic control of complex systems, whose efficiency depends on a system property
called diagnosability. Diagnosability describes the capability of a partially observ-
able system to determine with certainty whether a fault has effectively occurred
based on a sequence of observations. The diagnosability problem of discrete event
systems has received considerable attention in the literature since its introduction
[82]. However, up to now little work takes into account explicit time constraints
during this analysis, which are however naturally present in real-life systems and
thus cannot be neglected considering their impact on this property. Therefore,
in my master research, I focused on verifying diagnosability of real-time systems
and proposed a new SMT-based approach to analyse it. Now, in order to im-
prove the efficiency of our method, we propose an incremental approach based on
approximations of the problem.

It is known from literature that the diagnosability verification problem of dis-
crete event systems is in the class P for finite state automata and becomes
PSPACE-complete for timed automata. Combining Satisfiability (SAT) and Sat-
isfiability Modulo Theories (SMT) technologies, which have proved to be a very
successful practical approach to solve NP-complete problems, have achieved good
results in this case. Nevertheless, scalability is not guaranteed and too large au-
tomata cannot be handled. As Recursive Explore and Check Abstraction Refine-
ment (RECAR) [63] appears promising for dealing with beyond NP problems, in
particular PSPACE-complete problems, we propose to verify diagnosability of real-
time systems efficiently by taking advantage of the RECAR framework, which
requires defining over- and under-approximations and their refinements.

Diagnosable systems play a key role in automatic control and complex systems,
and it is important to design a diagnosable system, which will prove to be sub-
stantially convenient for subsequent system diagnosis. One aim of diagnosability

11

verification is to ensure some diagnosis related properties of the system at the de-
sign stage. However, it is not easy to ensure that a designed system is diagnosable.
Usually, when the system is revealed as non-diagnosable, one classical way is to
just redesign a new system based on results of diagnosability analysis, in particular
add new sensors, but again this is in general too expensive and may require a lot
of iterations. Another way relies on controllable events that may constrain the
system behaviors such that the allowed behaviors are diagnosable, which is not
always feasible in practice. Up to now, most work has focused on diagnosability
verification of the system, while little work has considered designing a diagnosable
system economically. Thus, it is interesting and meaningful to focus on how to
transform non-diagnosable systems into diagnosable ones.

The study of diagnosability of discrete event systems and real-time systems
respectively shows that diagnosability, characterizing whether one can distinguish
with certainty faulty behaviors from normal ones based on sequences of observable
events emitted from the system, is however a quite strong property that generally
requires a high number of sensors. Consequently, it is not rare that developing
a diagnosable system is not practically feasible. In order to achieve a trade-off
between the cost, i.e., a reasonable number of sensors, and the possibility to observe
a fault manifestation, we analyze a new system property called manifestability
that represents the weakest requirement on observations for having a chance to
identify online fault occurrences and can be verified at design stage. Intuitively,
this property makes sure that a faulty system cannot always appear healthy, i.e.,
has at least one future behavior after fault occurrence observably distinguishable
from all normal behaviors.

1.2 . Contributions

Our contributions are threefold, as follows:

• Approximation-based diagnosability analysis of real-time systems (chap-
ter 3). We use the CounterExample-Guided Abstraction Refinement (CE-
GAR) [36] framework and its generalization RECAR to optimize diagnos-
ability checking algorithm for timed automata. Since diagnosability verifi-
cation problem is PSPACE-complete for timed automata and RECAR ap-
pears promising for dealing with beyond NP problems, in particular PSPACE-
complete problems, we take the advantage of the RECAR framework and
propose a RECAR-like approach for the diagnosability problem, which im-
proves the efficiency of diagnosability verification of real-time systems. In
this part our contributions are as follows:

– We apply CEGAR-over (i.e., CEGAR using over-approximations) to
time bounded diagnosability verification of real-time systems by defin-
ing three changeable parameters for the approxmations.

12

– We propose three methods to apply CEGAR-under (i.e., CEGAR using
under-approximations) to bounded diagnosability verification of real-
time systems. The first one controls two changeable parameters. The
second one replaces observation equivalence checking by the weaker
and easier to prove semi-equivalence checking. And the last one re-
duces the size of the formula to check for satisfiability by selecting only
a part of it.

– We propose a RECAR-like algorithm alternating CEGAR-over and
CEGAR-under defined above.

– We encode our RECAR-like algorithm in SMT formulas and show how
to realize changeable parameters by selectors in SMT. Meanwhile, we
propose a method for pre-processing the transitions constituting the
system that can effectively reduce the search space, which is also ap-
plicable to direct bounded diagnosability verification without the use
of CEGAR.

– To show the feasibility of our algorithm, we realize a number of ex-
periments on different benchmarks and give some conclusions on the
basis of the experimental results.

• Designing diagnosable discrete event systems by using delay blocks
(chapter 4). In order to design a diagnosable discrete event system, we
propose a new non-intrusive approach by merely deferring some observable
events while keeping the original system structure. More precisely, we use
finite automata with delay blocks (ADB) to eliminate all critical pairs in the
twin plant by taking care to not create new ones and then every faulty trace
can be observably distinguished from normal traces. Our contributions to
the design of diagnosable DESs are as follows:

– We redefine a simpler version of automaton with delay blocks (ADB) by
using its deferral aspect which is enough to be applied to our problem.

– In order to efficiently eliminate all pairs violating diagnosability by
adding the fewest delay blocks possible, we calculate the minimum
number of corresponding transitions in normal trajectories according to
the max-flow min-cut theorem, encoded in SMT. This is done in a way
such that every path in the normal diagnoser that constitutes a critical
pair will change its observations order and then, after synchronization
with the fault diagnoser, all previous critical pairs will be eliminated.

– We analyze the scope of our approach by characterizing the systems
for which it is applicable.

– We present experimental results on benchmarks to demonstrate the
efficiency and correctness of our approach.

13

• Fault manifestability analysis for discrete event and timed systems
(chapter 5). On the basis of our previous research, we could analyze di-
agnosability of systems modeled as Timed Automata (TA) based on SMT
and further design more secure real-time systems. However, it is costly in
practice since it usually requires a large number of sensors. Actually, diag-
nosability requires that all of future behaviors of all fault occurrences should
be distinguishable from all normal behaviors, which is a strong property and
sensor demanding. It is why we introduced a new system property, called
manifestability (resp., strong manifestability), that requires only that at least
one future behavior after at least one fault occurrence (resp., after all fault
occurrences) observably distinguishes from all normal behaviors. It is in fact
the weakest property to require from the system to have a chance to identify
the fault occurrence. With the assumption that no behavior described in the
model has zero probability, the fault will then necessarily show itself if this
property holds, i.e., the system cannot always appear healthy when a fault
occurs in it. Obviously, one has to continue to rely on diagnosability for
online safety requirements, i.e., for those faults which may have dramatic
consequence if they are not surely detected when they occur, in order to trig-
ger corrective actions. However, for all other faults that do not need to be
detected at their first occurrence, manifestability checking, which is cheaper
in terms of sensors needed, is enough under the probabilistic assumption
above. In chapter 3, we first give the definition of the (strong) manifestabil-
ity for finite automata and its characterization by a sufficient and necessary
condition as language equivalence. And we prove that the manifestability
problem itself is a PSPACE-complete problem. Furthermore, the correctness
and efficiency of the algorithm are also revealed by our implementation with
the SMT solver Z3 and experimental results. Additionally, we extend this
work to real-time systems modeled by timed automata with the following
contributions.

– We redefine (strong) manifestability property for timed automata that
takes into account time constraints in an explicit way and we provide
a sufficient and necessary condition to check it.

– We prove that the manifestability problem for timed automata is unde-
cidable by reducing to it the undecidable inclusion problem of languages
of timed automata. We also study a subclass of timed automata by
providing corresponding conditions, under which the manifestability
problem becomes decidable (PSPACE-complete).

– For those decidable cases, we propose to encode this problem in an
SMT formula, whose satisfiability witnesses manifestability.

– We also provide some preliminary experimental results for this SMT-
based algorithm to check manifestability for timed automata, which

14

shows feastibility and reasonable scalability.

1.3 . Thesis Organization

This thesis is organized into six chapters, including this first introduction chap-
ter and the last conclusion and future work chapter. Chapter 2 reviews the state
of the art mainly about the diagnosability checking methods for discrete event sys-
tems (modeled as automata) and real-time systems (modeled as timed automata),
by using SAT and SMT, respectively, whose principles are reminded. Then we
introduce the CEGAR and RECAR frameworks that we will use in Chapter 3 to
optimize diagnosability verification for real-time systems. Chapters 3 to 5 present
our contributions. In chapter 3, we present our new algorithm to optimize diagnos-
ability verification problem for timed automata by taking advantage of the RECAR
framework making use of over- and under-approximations of the problem. In chap-
ter 4, we propose a new non-intrusive way to make a non-diagnosable system
diagnosable by using automata with delay blocks (ADB). In chapter 5 we consider
another system property called manifestability, which is weaker than diagnosability,
and we provide the methods for verifying manifestability for both automata and
timed automata. In Chapter 6, we recapitulate our contributions, point out the
limitations of the present work and suggest new ideas for future research.

15

2 - Preliminaries and State of the Art

In this chapter we provide the preliminaries required for this thesis, which
will be referenced in the next chapters whenever needed. It contains the formal
definitions for the system model that we adapted in our study, such as discrete event
systems modeled with finite state machines (FSMs) and real-time systems with
timed automata. We recall the diagnosability problem definition and review how
it is addressed in the literature. The basics to understand satisfiability (SAT) and
satisfiability modulo theories (SMT) will follow, then we recall the diagnosability
checking for discrete event systems and real-time systems and show how they have
been used to encode the diagnosability problems in SAT and SMT respectively.
Finally, we introduce the theory of counterexample-guided abstraction refinement
(CEGAR) and of recursive explore and check abstraction refinement (RECAR),
which are the important theoretical basis I used in my thesis.

2.1 . Introduction to Fault Diagnosis

Fault diagnosis is an action of identifying a malfunctioning system based on
observing its behavior. In the past few decades, science and technology have
developed rapidly. With the increase of the human requirements, various devices
have become more complex. While enjoying the convenience of these devices, we
are also faced with losses due to equipment failures. Therefore, fault diagnosis
is an important domain that will be always needed to ensure the safe availability
of these systems. It is an important branch of Artificial Intelligence (AI) and has
received a lot of attention from scholars.

There are four traditional fault diagnosis methods: fault tree diagnosis, redun-
dancy diagnosis, expert system diagnosis, and model-based diagnosis (MBD). The
first three methods were earlier proposed, which generally have the following draw-
backs: low flexibility, strong equipment dependency and limitations in practical
applications. The specific principles, advantages and disadvantages of these three
fault diagnosis methods can be found in the literature [39]. In order to overcome
the shortcomings of these three fault diagnosis methods, Reiter first proposed the
MBD algorithm in 1987 [74], which provides an inverse deduction process based
on a behavioral model of the system to be diagnosed and on consistency-based
reasoning. The principle of MBD is shown in Figure 2.1. It can be seen from the
figure that a model of the system to be diagnosed needs to be established first,
and the model is simulated to obtain the expected behavior of the system, and
then the actual behavior of the system is obtained through observation. When
the behavior is inconsistent with the actual behavior, it can be considered that the
system has failed. At this time, the system needs to be diagnosed and reasoning
to be conducted to explain the actual behavior of the system. This is achieved

17

by changing the by-default assumptions of correct behavior of some components
into assumptions of faulty behavior until consistency between real observation and
predicted observation is restored. MBD has the following characteristics: versa-
tility, flexibility, and reliability. Because of these characteristics, MBD is widely
used in various practical applications, such as: communication systems, aerospace
systems, network systems, etc. The diagnosis method used in this paper is also
the MBD algorithm.

Figure 2.1: Model-based diagnosis.

In real production life, systems to be diagnosed can be divided into two main
categories: static systems and dynamic systems. In static systems, the outputs are
just determined by the inputs, the typical example of a static system is combina-
torial circuit. With the development of MBD, the diagnosis of the static systems
can no longer meet the needs of human beings. So scholars gradually began to pay
attention to the diagnosis of dynamic systems, in which the outputs are determined
by the inputs, state and time. Due to the uncertainty of the system, it is difficult
to model dynamic systems. In order to diagnose dynamic systems, scholars have
proposed as models discrete event system (DES) and real-time system (RTS), that
is, time and thus the dynamics of the system are abstracted, so as to obtain a kind
of system whose state evolution is driven by discrete events.

The MBD problem of DES has attracted wide attention from experts and
scholars, they all try to deal with the main problem which is the compromise be-
tween the number of possible diagnoses to the faulty system and the number of
observations which must be given to make the decision. DES is a modeling frame-
work for dynamic systems whose behavior is described through discrete changes
(the events), but it cannot express temporal information, which has an important
impact on diagnosis. Then Alur and Dill proposed timed automaton (TA) which

18

is an extension of DES. In such a model, quantitative properties of delays between
events can easily be expressed. The diagnosis problem always needs to cope with
an explosion in the number of system model states and its complexity has actually
been proved to be NP-hard.

In order to take the appropriate action in the diagnosis process, the diagnosis
question must be answered precisely. However, the diagnosis decision maybe al-
ways uncertain, and thus running a diagnosis algorithm may not be accurate. For
example, in the same system, the diagnostic results may be divergent because of
different observations provided by different sets of sensors or at different times.
This uncertainty raises the problem of diagnosability which is an essential property
to be ensured at the design stage of modeling system. It simply means the ability
to get the precise diagnosis. After that, the MBD will be used in applications to
explain any anomaly, with a guarantee of correctness and precision, at least for
each anticipated fault in the model.

2.2 . Modeling Formalism

In this section, we introduce a way to model different systems. As the name
implies, MBD firstly needs to establish a model of the system to complete its di-
agnosis. There are three main types of modeling for DES: process algebra, Petri
net and finite state automaton (FSA). Then, in order to express temporal infor-
mation in the system, we also used timed automaton modeling real-time system.
In fault diagnosis with process algebra, the DES is represented as two models:
structural model and behavioral model. Then the system is finally diagnosed by
evaluating the process algebra in terms of performance [37]. Petri net and FSA
are based on a state transition structure, that is, in each state of the system, a
specific event drives the system to a next state. A Petri net is composed of three
elements: places, transitions, and directed edges for connections, each place can
contain multiple marks. If all the fault places of the Petri net do not contain any
mark, then the system is normal, otherwise the system is faulty.

FSA is the most classic DES modeling method (used in particular in the foun-
dations of diagnosability analysis proposed by Sampath et al. in 1995 [82]), which
assumes that the system behavior and fault are known in advance. This formalism
abstracts away from time, retaining only the sequencing of events. In the linear
time model, it is assumed that an execution can be completely modeled as a se-
quence of states or system events, called an execution trace (or just trace). The
behavior of the system is a set of such execution traces. When the systems are
finite-state, as many are, we can use finite automata, leading to effective construc-
tions and decision procedures for automatically manipulating and analyzing system
behavior.

Although the decision to abstract away from quantitative time has many advan-
tages, often, it is necessary to consider real-time aspects: quantitative information

19

about time elapsing has to be handled explicitly. This can be the case when describ-
ing a particular behavior (for instance, a time-out) or stating a complex property
(for example, “the alarm has to be activated within at most 5 time units after a
problem has occurred”). In 1991, Alur and Dill have proposed timed automata as
a model to represent the behavior of real-time systems [3]. This formalism extends
classical automata with a set of real-valued variables - called clocks - that increase
synchronously with time, and associates guards (specifying when, i.e. for which
values of the clocks, the transition can be performed) and update operations (to
be applied when the transition is performed) with every transition. Thanks to
these clocks, it becomes possible to express constraints over delays between two
transitions.

There are sensors with each FSA and TA to monitor events occurring in the
system. Events that can be sensed by the sensor are called observable events,
those that cannot be sensed are called unobservable events. Because the sensors
can directly monitor observable events, it is usually assumed that the fault events
which need to be diagnosed are unobservable events. When a fault event occurs,
it is assumed that the system enters a fault state and cannot recover by itself. The
modeling methods in our study are FSA and TA.

2.2.1 . Discrete Event Systems

Most of the systems in real life are dynamic. Therefore, the diagnosis of
dynamic systems has attracted wide attention of scholars. Because it is difficult to
diagnose dynamic systems, scholars abstract dynamic systems at discrete points in
time as DES, and the diagnosis of the system is performed from a model of it, as
a DES. This part mainly introduces the basic concepts of DES that will be used in
particular for diagnosability and manifestability checking of the system.

Definition 1 (Discrete Event System) A discrete event system is a process that
is driven by (in general) asynchronous discrete events leading to the evolution of
discrete states in the system.

DES is a bridge between static and dynamic systems: there is no explicit infor-
mation about real-time but discrete events are ordered as if they happened at
successive unknown discrete instants. In real life, queuing systems, communica-
tion systems, manufacturing systems, and database systems can all be expressed
as DES. The modeling method of DES studied in this paper is FSA.

Definition 2 (Finite State Automaton) A finite state automaton is a four-tuple:
G “ pQ,Σ, δ, q0q, where:

• Q is a finite set of states;

• Σ is a finite set of events;

20

• δ Ď Qˆ ΣˆQ is a finite set of transitions;

• q0 is the initial state.

The set of events Σ is divided into three disjoint parts: Σ “ ΣoZΣuZΣf , where
Σo is the set of observable events, Σu the set of unobservable normal events and
Σf the set of unobservable fault events. For representing a transition from state
q1 P Q to state q2 P Q with event σ P Σ , we will use indifferently the relational
description pq1, σ, q2q P δ or the functional description q2 P transpq1, σq. Σ˚ is
the set of finite-length event sequences composed of events in Σ, and it is easy to
extend inductively δ to δ Ď Qˆ Σ˚ ˆQ as follows:

• pq, ϵ, qq P δ, where ϵ is the null event.

• pq, se, q1q P δ iff (if and only if) Dq1 P Q, pq, s, q1q P δ and pq1, e, q1q P δ,
where s P Σ˚, e P Σ.

The second case can be simply expressed as:

transpq, seq “ transptranspq, sq, eq.

Example 1 (FSA example) Consider the simple system model depicted in the
Figure 2.2, where Σo “ to1, o2u, Σu “ tuu, Σf “ tF u, and q0 is the initial state.

Figure 2.2: A system example modeled by a finite automaton.

Given a system G, the behavior of G is represented by the prefix closed language
LpGq Ď Σ˚, which is the set of words produced by G:

LpGq “ ts P Σ˚ | Dq P Q, pq0, s, qq P δu.

In the following, we call a word from LpGq a trajectory in the system G and a
sequence q0σ0q1σ1 . . . a path in G, where for all i, pqi, σi, qi`1q P δ, whose label
σ0σ1... is a trajectory in G. Given s P LpGq, we denote the length of s by |s| and
we denote the post-language of LpGq after s by LpGq{s, formally defined as:

LpGq{s “ tt P Σ˚ | s.t P LpGqu.

21

In the definitions of diagnosability and manifestability, we will need the operation
of projection that consists in removing unobservable events from a trajectory.

Definition 3 (Projection) The projection P : Σ˚ Ñ Σ˚o on observable events is
defined as P pϵq “ ϵ, and, for any e P Σ, s P Σ˚, P pseq “ P psqP peq, where:

P peq “

#

e if e P Σo

ϵ otherwise
(2.1)

The elements of P pLpGqq are called observed trajectories. The inverse projection
for trajectories is defined by P´1psoq “ ts P LpGq | P psq “ sou for so P P pLpGqq.
Two trajectories having same observation are called observably equivalent.

2.2.2 . Real-Time Systems

Timed automata (TA) have been proposed by R.Alur and D.Dill in the 1990s [3]
as a model for real-time systems. A timed automaton is an extended classical finite
automaton which can manipulate clocks, evolving continuously and synchronously
with absolute time. Each transition of such an automaton is labeled by a constraint
over clock values (also called guard), which indicates when the transition can be
fired, and a set of clocks to be reset when the transition is fired. Each location
is constrained by an invariant, which restricts the possible values of the clocks for
being in the state, which can then enforce a transition to be taken. The time
domain can be either discrete as N, the set of non-negative integers, or dense as
Q`, the set of non-negative rationals, or R`, the set of non-negative real numbers.
In this study, we will consider dense time. TA constitute a theory for modeling
and verifying real-time systems. A TA is essentially a finite automaton, thus with
a finite set of states and a finite set of labeled transitions between them, extended
with a finite set of real-valued variables modeling clocks. During a run of a TA,
clock values are initialized with zero when starting in the initial state, and then
are increased all with the same speed. Clock values can be compared to constants
or between them. These comparisons form guards that may enable or disable
instantaneous transitions and by doing so constrain the possible behaviors of the
TA. Furthermore, clocks can be also reset to zero on some of the transitions.

Before introducing the formal definition of TA, we first give the set of possible
clock constraints considered in this paper. The time constraints called diagonal
constraints are formally described by:

g ::“ true | x ’ c | x´ y ’ c | g ^ g

where x, y are clock variables, c is a constant and ’ P tă,ď,“,ě,ąu.
Note that a TA allowing such clock constraints is exponentially more concise

than its classical variant with only diagonal-free constraints (where the comparison
can be done only between a clock value and a constant) but both have same

22

expressiveness. Let X be a finite set of clock variables. A clock valuation over X
is a function v : X Ñ R, where R denotes the set R` of non-negative real numbers
(actually, for implementation, the set Q` of non-negative rational numbers is used
to have an exact computer representation). Then the set of all clock valuations
over X is denoted by RX and the set of time constraints over X by CpXq, where
such a constraint is given by a collection of clock constraints. If a clock valuation
v satisfies the time constraint g, then it is denoted by v |ù g. In the following, we
denote vgw the set of clock valuations that satisfy g, i.e., vgw “ tv P RX | v |ù gu.

Definition 4 (Timed Automaton) A timed automaton (TA) is a tuple A “

pQ,Σ, X, δX , q0, Iq, where:

• Q is a finite set of states;

• Σ is a finite set of events;

• X is a finite set of clock variables;

• δX Ď Qˆ CpXq ˆ Σˆ 2X ˆQ is a finite set of transitions;

• q0 P Q is the initial state;

• I : QÑ CpXq is a function that assigns invariants to states.

Example 2 (TA example) The figure 2.3 represents a TA obtained by adding
some time constraints to the system model of figure 2.2. In this example, x is a
clock variable that is used to impose certain period between events or to restrain
the possible time during which one is allowed to stay in some states. For example,
pq0, x ą 1, o1, txu, q1q P δ

X means that only when the guard x ą 1 is satisfied, i.e.,
the clock value is greater than 1, the event o1 can occur, inducing an instantaneous
state change from q0 to q1 and simultaneously the reset to 0 of the clock x. We
denote this transition also as q0

xą1; o1; x:“0
ÝÝÝÝÝÝÝÝÑ q1. Furthermore, Ipq1q “ x ă 6

imposes that we can stay in the state q1 only when the clock value is smaller than
6. In other words, once the invariant ceases to be satisfied, one is obliged to leave
the corresponding state (for readability reasons, we did not represent invariants
that define also sojourn time upper bounds in states q2, q3, q4).

We call a state with a clock valuation an extension state, i.e., pq, vq with
q P Q and v P RX . Let t P R, the valuation v ` t is defined by pv ` tqpxq “

vpxq ` t,@x P X. Suppose X 1 Ď X, we denote by vrX 1 Ð 0s the valuation such
that @x P X 1, vrX 1 Ð 0spxq “ 0 and @x P XzX 1, vrX 1 Ð 0spxq “ vpxq. A
TA gives rise to an infinite transition system with two types of transitions between
extension states. One is a time transition representing time passage in the same
state q, during which the invariant inv “ Ipqq for q should be always satisfied.
The other one is a discrete transition issued from a labeled transition q g; σ; r

ÝÝÝÝÑ q1

23

Figure 2.3: A system example modeled by a timed automaton.

for TA, associated with an event σ, which is fired (a necessary condition being
that the guard g is satisfied) and should be executed instantaneously, i.e.,the clock
valuation cannot be modified by the transition itself but only by the reset to 0 of
those clock variables belonging to r, if any. In the following, both are denoted by
pq, vq

ν
ÝÑ pq1, v1q, where ν P ΣYR. Thus, if ν P Σ, then v should satisfy the guard

g in the corresponding TA transition and v1 “ vrr Ð 0s for r the clock variables
reset to 0 in this transition, if any. Otherwise, if ν P R, then q1 “ q and v1 “ v`ν,
where all of v` t, for 0 ď t ď ν, should satisfy the invariant inv associated to the
state q.

Given A a TA, a sequence of such transitions pq0, v0 “ 0q
ν1
ÝÑ pq1, v1q . . .

νn
ÝÑ

pqn, vnq is a feasible execution in A if @i P t0, ..., n´1u, pqi, viq
νi`1
ÝÝÝÑ pqi`1, vi`1q is

either a time or a discrete transition in it. Then the word ν1...νn P pΣYRq‹ is called
a timed trajectory or a run. This extends to infinite sequences and trajectories.
The set of timed trajectories for A is denoted by LpAq. By summing up successive
time periods, we can always assume that between any two successive events there
is exactly one time period, i.e., periods and events alternate in a timed trajectory.
For ρ a timed trajectory, we denote by timepρq P RYt`8u the total time duration
for ρ, i.e., timepρq “

ř

νiPR^νiPρ
νi.

We redefine a projection operator P for TA as follows. Given a timed trajec-
tory ρ and a set of events Σ1 Ď Σ, P pρ,Σ1q is the timed trajectory obtained by
erasing from ρ all events not in Σ1 and summing the periods between successive
events in the resulting sequence. For example, if ρ “ 2 o1 3 u 2 o2 3 o1, then
P pρ, to1, o2uq “ 2 o1 5 o2 3 o1. In the following, Σ is divided into three disjoint
parts as above and we simply denote P pρq the projection of the timed trajectory
ρ to observable events, i.e., P pρq “ P pρ,Σoq.

2.3 . Diagnosability

Diagnosability, resp. bounded diagnosability, of the considered systems is a
property defined to verify the possibility to distinguish any possible faulty behavior
in the system from any other behavior without this fault (i.e., correct or with a
different fault), resp. within a finite number of transitions (for a FSA) or a finite
time (for a TA) after the occurrence of the fault. A fault is diagnosable, resp. with

24

bound, if it can be surely identified from the partial observation available, resp.
within a given number of transitions or a given delay after its occurrence. The first
introduction to the notion of diagnosability was by Sampath et al. in 1995 [82].

2.3.1 . Diagnosability Checking in DESs

Following other studies about diagnosability in DES, we adopt the following
set of assumptions to hold in all this thesis.

Assumption 1 (Living system) The DES G is live, i.e., from any state, there
is at least one transition issued from this state.

This assumption of liveliness of the language LpGq ensures that the post-
language of LpGq after any finite trajectory is never empty, so contains arbitrarily
long sequences.

Assumption 2 (Observably living system) The DES G is observably live, i.e.,
any infinite trajectory has infinitely many occurrences of observable events.

This means that there is no cycle made up only of unobservable events. As
studying diagnosability relies on the observations, so accepting infinite behaviors
of the system without getting any observation would make the study meaningless.

Intuitively, a predefined fault is considered as diagnosable if one can be sure
about its occurrence after sufficient observations, which can be formally defined as
follows [82], where sF denotes a trajectory s that ends with the fault F .

Definition 5 (Diagnosability of FSA) Given a FSA G and a fault F P Σf :

1. given k P N, F is k-diagnosable in G iff

@sF P LpGq,@t P LpGq{sF , p|t| ě k ñ @p P LpGq, pP ppq “ P psF .tq ñ

F P pqq.

2. F is diagnosable in G iff

Dk P N such that F is k-diagnosable in G.

We denote the length from (the first occurrence of) fault F in p by
lengthpp, F q “ |t|, where p “ sF t with F R s. The above definition states
that for each trajectory sF in G, for each t that is an extension of sF with at
least k events (for k-diagnosability) or sufficient events (for diagnosability), every
trajectory p in G that is observationally equivalent to sF .t should contain in it F .
In other words, the k-diagnosability (resp., diagnosability) checking consists in ver-
ifying the non-existence of a pair of trajectories p and p1 constituting what is called
a k-critical pair (resp., a critical pair) according to the following definition [72].

25

Definition 6 (Critical pair) Given a FSA G, the considered fault F and k P N,
two trajectories p, p1 P LpGq are called a k-critical pair, denoted by p ȷk p

1,
if the following conditions are satisfied: 1) p contains F and p1 does not; 2)
lengthpp, F q ě k; 3) P ppq “ P pp1q. They are called a critical pair, denoted by
p ȷ p1, if the following conditions are satisfied: 1) p contains F and p1 does not;
2) p and p1 are infinite; 3) P ppq “ P pp1q.

A k-critical pair (resp., a critical pair) has been proven to violate Definition 5
and thus witnesses non-k-diagnosability (resp., non-diagnosability). Consider the
example in Figure 2.2, where the pair of trajectories o1.o2.F.o1ω and o1.u.o2.o1ω

is a critical pair since it satisfies the above three conditions. In other words,
once we observe the sequence of events o1.o2.o1ω, we can never be sure about
the occurrence of the fault since in this system, there does exist one trajectory
containing the fault and the other without the fault, while both have exactly this
same sequence of observations.

Theorem 1 Given G a FSA, a fault F is k-diagnosable (resp., diagnosable) in G
iff there is no k-critical pair (resp., critical pair) w.r.t. F in G.

For the sake of simplicity, we conventionally assume, in this thesis, that there
is only one fault F (with multiple occurrences), i.e. Σf “ tF u, which can be
directly extended to the case of a set of faults by applying the approach as many
times as the number of faults.

The diagnosability analysis for DES has actually been proved to be polynomial
in the number of states [59].

2.3.2 . Diagnosability Checking in RTSs

We make for TA the analog assumptions (the role of the length being played
by the time) made for DES about the liveness of the system and the necessity to
observe any infinite behavior.

Assumption 3 (Timed living system) The TA A is timed living (or well-
timed), i.e., for any reachable state, there is an infinite time timed trajectory
ρ (timepρq “ `8) starting at this state.

Assumption 4 (Timed observably living system) The TAA is timed observably
living, i.e., it has no time infinite execution from a reachable state without any
observable event, and thus any time infinite timed trajectory has infinitely many
observable event occurrences.

This implies in particular that the system cannot stay an infinitely long time in a
same state. We rephrase a useful notion, originally introduced by [94].

26

Definition 7 (∆-faulty runs) Given A a TA, let ρ “ ν1ν2 . . . be a faulty timed
trajectory, i.e., for some i P t1, ...u, νi “ F . Let then j be the smallest i such that
νi “ F and let ρ1 “ νj`1 We denote the period from (the first occurrence
of) fault F in ρ by timepρ, F q “ timepρ1q. If timepρ, F q ą ∆, where ∆ P R,
then we say that more than ∆ time units pass after the first occurrence of F in ρ,
or, in short, that ρ is ∆-faulty.

Notice that we chose in the definition greater than ∆ instead of greater or equal
because some technical aspects in the encoding become easier, but there is no
difference in substance, as a ∆-faulty run (for ą) is ∆-faulty (for ě) and a ∆-
faulty run (for ě) is ∆1-faulty (for ą) for any ∆1 ă ∆. Now we adapt Definition 5
to define diagnosability of TA.

Definition 8 (Diagnosability of TA) Given a TA A and a fault F :

1. given ∆ P R, F is ∆-diagnosable in A iff

@ρ P LpAq pρ ∆-faulty ñ @ρ1 P LpAq pP pρq “ P pρ1q ñ F P ρ1qq.

2. F is diagnosable in A iff

D∆ P R such that F is ∆-diagnosable in A.

Now we define the analog of a a k-critical pair (resp., critical pair) in the timed
framework, called (timed) ∆-critical pair (resp., timed critical pair):

Definition 9 (Timed critical pair) Given a TA A, the considered fault F and
∆ P R, two timed trajectories ρ, ρ1 P LpAq are called a (timed) ∆-critical pair
(∆-CP), denoted by ρ ff∆ ρ1, if the following conditions are satisfied: 1) ρ1 does
not contain F ; 2) ρ is ∆-faulty; 3) P pρq “ P pρ1q. They are called a critical pair
(CP), denoted by ρ ff ρ1, if the following conditions are satisfied: 1) ρ contains F
and ρ1 does not; 2) timepρq “ timepρ1q “ `8; 3) P pρq “ P pρ1q.

Note that, in a timed critical pair, ρ and ρ1 are necessarily infinite. It is obvious
to prove that the existence of such a pair violates the diagnosability for TA in
Definition 8 (2), and the converse has been proved too by [94].

Theorem 2 Given A a TA, F is ∆-diagnosable (resp., diagnosable) in A iff there
is no timed ∆-critical pair (resp., timed critical pair) w.r.t. F in A.

Thus, in a way similar to FSA, the diagnosability verification for TA consists in
checking the non-existence of timed critical pairs. The complexity for diagnosabil-
ity analysis of RTS has been proved to be P-SPACE [94]. For example, consider
the system modeled by the TA of Figure 2.3. The system has both faulty behaviors
(where F occurs) and normal ones. Indeed, in all behaviors, the observable events

27

occur in the same order, i.e., o1.o2.o1˚, as in the FSA without time constraints
(Figure 2.2). However, in every faulty behavior, the time duration between the
successive observable events o2 and o1 is smaller than 2 time units. While in every
normal behavior, this duration is greater than 2. Thus, observing o2 and then o1
and measuring the duration between them, one can tell with certainty whether a
fault has occurred or not. One can clearly see that adding time constraints some-
times makes a non-diagnosable system diagnosable by distinguishing temporally
the two trajectories that are considered as a critical pair in the untimed setting,
e.g., with different durations between two successive observable events.

2.4 . SAT Problem

This section of the state-of-the-art follows part of [57]. In logic and computer
science, the Boolean satisfiability problem, also called propositional satisfiability
problem or SAT problem, is the problem of determining if there exists an interpre-
tation that satisfies a given Boolean formula. In other words, it asks whether the
variables of a given Boolean formula can be consistently replaced by the values
TRUE or FALSE in such a way that the formula evaluates to TRUE. The given
Boolean formula constituted by Boolean variables and conjunction of a set of
clauses from these variables, its called Conjuctive Normal Form, denoted by CNF.
If this is the case, the formula is called satisfiable. On the other hand, if no such
assignment exists, the function expressed by the formula is FALSE for all possible
variable assignments and the formula is unsatisfiable. Let us define some terms
below. Boolean variables, also known as propositional variables, are symbols for
0-ary predicates that take their values in tTrue, Falseu,or t1, 0u of logical truth
values. Assignments (resp. partial assignments) are evaluations of variables (resp.
part of them). An assignment that satisfies a given formula is called a model of
that formula. A formula that has a model is said to be satisfiable. A formula is
constructed over a set of propositional variables by using the following five logical
operators or connectives:

• the binary conjunction operator AND, denoted by ^,

• the binary disjunction operator OR, denoted by _,

• the unary negation operator, denoted by ␣,

• the binary implication operator, denoted by Ñ,

• the binary equivalence operator, denoted by Ø.

Note that the operators above are not independent and that these operators can
be transformed into each other, for example, if we restrict the logical formulae to
only the conjunction and negation operators, the other connectives can be easily
expressed using these two operators. Let Φ and Ψ be two logical formulas, and
these equivalences (denoted by ”) hold as follows:

28

• Φ^Ψ ” ␣p␣Φ_␣Ψq

• ΦÑ Ψ ” ␣Φ_Ψ

• ΦØ Ψ ” pΦÑ Ψq ^ pΨÑ Φq

In satisfiability studies, in order to push negation operators to propositional vari-
ables, we keep negation, disjunction and conjunction operators. A propositional
variable or its negation is called a literal, a clause is a disjunction of literals, so if
there exists an assignment that sets at least one of its literal to True, this clause
is satisfied by this assignment. A CNF formula, is a conjunction of clauses, so to
satisfy a CNF formula we must satisfy all its clauses, in other words, one unsat-
isfiable clause is sufficient to make the whole CNF formula unsatisfiable. It has
been shown that any logical formula can be polynomially transformed into a CNF
formula while keeping the possibility of satisfaction unchanged [95].

A simple illustrative example of a SAT problem is given below.

Example 3 (SAT Instance) Let x,y,z be propositional variables and Φ “ p␣x_

yq^ p␣y_ zq a CNF formula. Then, verifying the possibility to satisfy Φ, denoted
by SatpΦq?, is the SAT problem for Φ.

For the above problem, if we use any of the sat solvers, then the solver will return
SAT and a set of assignments, for example, the assignment s “ 0, y “ 1, z “ 1

is a possible solution, this assignment make the formula ϕ True, so we say the
formula Φ is satisfiable or Φ is SAT, and conversely, if no assignment satisfies Φ,
the solver returns UNSAT, in this case, we say that the formula Φ is UNSAT, or
Φ is unsatisfiable.

Nowadays, SAT is widely used in a number of areas for a number of reasons.
Firstly, SAT is the prototype of NP-complete problems. From an application point
of view, it is sufficient to know that an NP-complete problem is hard, that there is
no way to find a solution efficiently (but it may be possible to find an approximate
best solution efficiently), and that NP-complete problems are interchangeable in
polynomial time (i.e., you can take one NP-complete problem and solve another
obtained from the first by polynomial reduction). In the field of research, many
mathematical, computer, and even industrial problems can be reduced to SAT
problems, which can be naturally abstracted as constraint-based problems that
consist in satisfying a set of requirements, where each requirement can be sat-
isfied in multiple ways, and where the ways in which the different requirements
are satisfied may contradict each other, thus they can be easily mapped to CNF
formulations. Secondly, the solving method of SAT is well developed. SAT is the
oldest and best-known NP-complete problem, and many algorithms and techniques
have been developed to solve it. In particular, the efficiency of the SAT solvers
can be greatly increased [67] when the Conflict Driven Clause Learning (CDCL)
component is available [88], and regular SAT solver competitions like [90, 7] in-
spired developers to provide more efficient SAT solvers. Nowadays, CDCL solvers

29

can handle problems with millions of clauses and hundreds of thousands of propo-
sitional variables. This is why we now find SAT applications in many areas, such
as:

• Formal methods, such as Bounded Model Checking [21], Test generation,
etc.

• AI, as in Planning [60], Knowledge Representation, Games.

• Design Automation, as in fault diagnosis [52, 24, 96].

• Other applications in security, bio-informatics, mathematical problems and
in the core of other constraint solvers: MAXSAT, #SAT, etc.

In addition, the successful application and rapid development of SAT techniques
are also due to a community of developers who have assembled a number of well-
designed algorithms and heuristics that have been designed together to answer
SAT questions very effectively. In our research, we have used SAT techniques to
deal with the studied problem, which may be seen as an additional application to
this successful technology, and have not contributed to the development of SAT
techniques, so we will recall their underlying principles here and only what we think
will be useful for the reader to understand our contribution.

2.4.1 . SAT Algorithms and Heuristics

The principal rule of logical reasoning also used in the SAT algorithms is the
resolution rule. Resolution is a process to generate a clause from two clauses,
for example, given two clauses p␣x _ yq and p␣y _ zq, the resolution of these
two clauses is p␣x _ zq, because p␣x _ yq ^ p␣y _ zq is satisfiable iff p␣x _
yq ^ p␣y_ zq ^ p␣x_ zq is satisfiable. This is noted as: ␣x_y ␣y_z

␣x_z . Using the
relations cited above between the logical connectives, we can read this example as:
if x implies y and y implies z, then x implies z.

Then we have the following basic result: a set (conjunction) of clauses is
unsatisfiable iff it is possible to produce an empty clause from it by repeatedly
applying a finite number of times the resolution rule.

Unit Propagation

Unit propagation (UP) is a procedure of automated theorem proving that can
simplify a set of (usually propositional) clauses, which is a special case of application
of the resolution rule. The procedure is based on unit clauses, i.e. clauses that are
composed of a single literal l. Because each clause needs to be satisfied, we know
that this literal must be true. If a set of clauses contains a unit clause, the other
clauses are simplified by the application of the two following rules:

30

• Every clause (other than the unit clause itself) containing l is removed (the
clause is satisfied if l is);

• In every clause that contains ␣l this literal is deleted (␣l cannot contribute
to the satisfiability).

The application of these two rules leads to a new set of clauses that is equivalent
to the old one.

Davis and Putnam algorithm (1960) and DPLL (1962)

In 1960, Davis and Putnam proposed the first algorithm for solving the SAT
problem, denoted by DP60, [41]. This algorithm used simple iteration of the reso-
lution rule, i.e., in solving the SAT problem, the resolution rule is used iteratively
until either formula becomes empty, in this case, the formula is satisfiable or, if
one clause becomes empty, the formula is unsatisfiable. Although this algorithm
can solve the SAT problem, it requires a huge amount of memory even after op-
timization like deleting pure literals and shrinking clauses with unit propagation,
and because of this obvious drawback, DP60 was not used for large instances.

To optimize DP60, the DPLL (Davis-Putnam-Logemann-Loveland) algorithm
was introduced two years later [42], which is a complete, backtracking-based al-
gorithm for solving the satisfiability problem for propositional logic in CNF form.
DPLL was the basis for future efficient SAT and SMT solvers and many automatic
theorem proving methods in first order logic. The idea of DPLL is as follows:

• First apply unit propagation as long as possible.

• If we cannot proceed by unit propagation or trivial observations then choose a
variable p, introduce the cases p and␣p, and for both cases go on recursively.

This recursive process must terminate since every recursive call decreases the num-
ber of variables. If "satisfiable" is returned then all involved unit clauses yield a
satisfying assignment. Otherwise, it is a big case analysis yielding K for all cases,
so unsat. DPLL efficiency strongly depends on the choice of the variable. Current
SAT solvers follow this scheme, combined with good heuristics for variable choice,
CDCL component, restarts and other optimizations.

Incremental SAT

Incremental SAT is the effective solution of a sequence of related SAT problems.
It uses information already learned to avoid repeating redundant work. A typical
stand-alone SAT-solver accepts a problem as input, and outputs a model or UNSAT
as result. This can be inadequate if we wish to solve many similar SAT-instances.
The most obvious overhead is re-parsing the same clause set and carrying out

31

the same inferences over and over again. So, equipping the SAT-solver with an
interface that allows the next SAT-instance to be specified incrementally from the
current (solved) instance will certainly remove the parsing problem. And actually
it may reduce the number of inferences too. In our study, we focus on the type of
solver based on conflict analysis and clause recording, such solver implements
a DPLL-style backtracking search procedure. The idea of incremental SAT is to
spend some effort on finding a “reason” for every conflict detected during the search,
that can be encoded as a clause and added to the clause set. The recorded clauses
will serve as a cache for the same type of conflicts in later part of the search-space
of this SAT-instance, it may be useful also in later similar SAT-instances. In this
respect, we add a set of hypotheses to each clause of the original formula, then
when the solver gets a new input instance to test, it will first apply the assumptions
in the first level of the decision to filter the learned clauses and keep only those
which are consistent with the current assumptions, then it will proceed to classical
test (the coding of assumptions in SMT Z3 through selectors will be used in chapter
3 and presented in subsection 3.5.2). In this way, we can ensure the soundness of
the test and improve efficiency by avoiding re-parsing the same clauses.

2.4.2 . SAT-based Diagnosability Encoding for DESs

With respect to the properties we studied, a straightforward rephrasing of the
definition 5 shows that in a system G with fault F , if it exists a pair of trajectories
corresponding to cycles (and hence to infinite paths), which includes a faulty one
and a normal one, sharing the same observable events, shows that F is non-
diagnosable. This corresponds to the existence of an ambiguous (i.e., made up of
pairs of states reachable respectively by a faulty path and a correct path) cycle in
the product of G by itself, synchronized over observable events, which is the origin
of the so-called twin plant structure introduced in [59].

In [52, 76], the authors formulated non-diagnosability test as a satisfiability
problem in propositional logic for a Succinct Transition System (SLTS) which the
state is defined as a valuation of a set of Boolean state variables. To do this, the
authors introduced two copies of path (faulty and normal) to distinguish between
an occurrence of an event in one or the other, this idea is the same as [59].
The difference lies in the fact that this approach constructs a logical formula and
the task of the solver is to find a model (if any). In other words, provided with
diagnosability property encoding, the (progressive and incomplete) construction
of the twin plant is due to the solver and only the search space is given to it.
Thus, for each possible step in the system, it may contain observable events which
belong to both the faulty sequence and the normal sequence, but which must occur
simultaneously. Afterwards, the authors consider n steps by making the conjunction
of their local formulas to constitute a unique logical formula that represents the
sequence of events occurrences through the two sequences (normal and faulty).

32

Finally, they provide the resulting formula to the SAT solver. The satisfiability of
this formula corresponds to finding a critical pair of length at most n, i.e. the
non-diagnosability of the fault when limited to a range of n steps (bounded model
checking).

We recall below this encoding with the variables and the formulas used, where
superscripts t refer to steps and petoq and

`

êto
˘

refer respectively to the faulty and
correct sequences of event occurrences (corresponding states being described by
valuations of

`

at
˘

and
`

ât
˘

) of a pair of trajectories witnessing non-diagnosability
(so sharing the same observable events represented by petq and forming a cy-
cle). The increasing of the step corresponds to the triggering of at least one
transition and the extension by an event of at least one of the two trajectories.
T “ xA,Σo,Σu,Σf , δ, s0y being an SLTS, the propositional variables are thus:

• at and ât for all a P A and t P t0, . . . , nu,

• eto for all e P Σo Y Σu Y Σf , o P δpeq and t P t0, . . . , n´ 1u,

• êto for all e P Σo Y Σu, o P δpeq and t P t0, . . . , n´ 1u,

• et for all e P Σo and t P t0, . . . , n´ 1u.

The following formulas express the constraints that must be applied at each step
t or between t and t` 1.

• 1. The event occurrence eto must be possible in the current state:

eto Ñ ϕt for o “ xϕ, cy P δpeq

and its effects must hold at the next step:

eto Ñ
ľ

lPc

lt`1 for o “ xϕ, cy P δpeq

Where δpeq assigns to each event a set of pairs xϕ, cy, each pair represents
an occurrence of the event such that precondition ϕ is given by a formula,
the propositional language built on A, that has to be satisfied by the source
state of the transition and effects c are given by a set of elements in L, the
literals built from A, expressing the positive and negative changes of the
valuation of the destination state of the transition w.r.t. the valuation of its
source state. We have the same formulas with êto.

• 2. The present value (True or False) of a state variable changes to a new
value (False or True, respectively) only if there is a reason for this change,
i.e., because of an event that has the new value in its effects (so, change
without reason is prohibited). Here is the change from True to False (the
change from False to True is defined similarly by interchanging a and ␣a):

`

at ^␣at`1
˘

Ñ

´

eti1oj1
_ ¨ ¨ ¨ _ etikojk

¯

33

where the ojl “ xϕjl , cjly P δ peilq are all the occurrences of events eil with
␣a P cjl . We have the same formulas with ât and êtilojl

.

• 3. At most one occurrence of a given event can occur at a given step
and the occurrences of two different events cannot be simultaneous if they
interfere (i.e., if they have two contradicting effects or if the precondition of
one contradicts the effect of the other):

␣
`

eto ^ e
t
o1

˘

@e P Σ,@
␣

o, o1
(

Ď δpeq, o ‰ o1

␣
`

eto ^ e
1t
o1

˘

@
␣

e, e1
(

Ď Σ, e ‰ e1,@o P δpeq,@o1 P δ
`

e1
˘

, interferepo, o1q

We have the same formulas with êto.

• 4. The formulas that connect the two event sequences require that observ-
able events take place in both sequences whenever they take place (use of
et for synchronization):

ł

oPδpeq

eto Ø et and
ł

oPδpeq

êto Ø et @e P Σo

• 5. To avoid trivial cycles (silent loops with no state change) we require that
at every step at least one event takes place:

ł

ePΣo

et _
ł

ePΣuYΣf ,oPδpeq

eto _
ł

ePΣu,oPδpeq

êto

The conjunction of all the above formulas for a given t is denoted by Tpt, t`

1q. A formula for the initial state s0 is:

I0 “
ľ

aPA,s0paq“1

`

a0 ^ â0
˘

^
ľ

aPA,s0paq“0

`

␣a0 ^␣â0
˘

At last, the following formula can be defined to encode the fact that a pair of
trajectories is found with the same observable events and no fault in one trajectory,
but the fault F (recall that Σf “ tF u) in the other, which are infinite, witnessing
non-diagnosability:

Φn “ I0 ^ Tp0, 1q ^ ¨ ¨ ¨ ^ Tpn´ 1, nq ^

n´1
ł

t“0

ł

oPδpF q

F t
o ^

n´1
ł

m“0

˜

ľ

aPA

ppan Ø amq ^ pân Ø âmqq

¸

From this encoding in propositional logic, follows the result that an SLTS T is
not diagnosable if and only if Dn ě 1,Φn is satisfiable. It is also equivalent to

34

Φ22|A|

being satisfiable, as the twin plant state number (square of the system state
number) is an obvious upper bound for n.

Note that we have presented here the SAT encoding of diagnosability checking.
The encoding of k-diagnosability checking is similar. Actually, we have just to
replace the last conjunct in the formula Φn, that checks the existence of a cycle
(condition for trajectories to be infinite), by a formula that encodes lengthpp, F q “
k, where p is the faulty path, which is easily done by adding variables vFt counting
the number of events in p after the first occurrence of F , providing thus a formula
Φn
k .

2.5 . SMT Problem

The diagnosability problem of discrete event systems has received considerable
attention in the literature from [82]. However, up to now, few work takes into
account explicit time constraints during this analysis, which are however naturally
present in real-life systems and thus cannot be neglected considering their impact
on this property. Therefore, my research focused on verifying diagnosability of real-
time systems. As linear real arithmetic is required to deal with time constraints,
we used SMT to express timed automata and then analyse their diagnosability.

The state-of-the art part of this section partly follows [12], to which we refer for
more details. Applications in artificial intelligence and formal methods for hardware
and software development have greatly benefited from the recent advances in SAT.
Often, however, applications in these fields require determining the satisfiability of
formulas in more expressive logics such as first-order logic. Despite the great
progress made in the last twenty years, general-purpose first-order theorem provers
(such as provers based on the resolution calculus) are typically not able to solve
such formulas directly. The main reason for this is that many applications do
not require general first-order satisfiability, but rather satisfiability with respect
to some background theory, which fixes the interpretations of certain predicate
and function symbols. For instance, applications using integer arithmetic are not
interested in whether there exists a nonstandard interpretation of the symbols ă,
`, and 0 that makes the formula x ă y ^␣px ă y ` 0q satisfiable. Instead, they
are interested in whether the formula is satisfiable in an interpretation in which ă
is the usual ordering over the integers, ` is the integer addition function, and 0
is the additive neutral element. General-purpose reasoning methods can be forced
to consider only interpretations consistent with a background theory T , but only
by explicitly incorporating the axioms for T into their input formulas. Even when
this is possible, the performance of such provers is often unacceptable. For some
background theories, a more viable alternative is to use reasoning methods tailored
to the theory in question. This is particularly the case for quantifier-free formulas,
first-order formulas with no quantifiers but possibly with variables, such as the
formula above.

35

For many theories, specialized methods actually yield decision procedures for
the satisfiability of quantifier-free formulas or some subclass thereof. This is the
case, because of classical results in mathematics, for the theory of real numbers and
the theory of integer arithmetic (without multiplication). In the last two decades,
however, specialized decision procedures have also been discovered for a long and
still growing list of other theories with practical applications. These include certain
theories of arrays and of strings, several variants of the theory of finite sets or
multisets, the theories of several classes of lattices, the theories of finite, regular
and infinite trees, of lists, tuples, records, queues, hash tables, and bit-vectors of
a fixed or arbitrary finite size.

The research field concerned with the satisfiability of formulas with respect
to some background theory is called Satisfiability Modulo Theories (SMT), which
generalizes SAT by adding equality reasoning, arithmetic, and other useful first-
order theories. An SMT solver is a tool for deciding the satisfiability (or dually
the validity) of formulas in these theories. SMT solvers enable application of
bounded model checking to infinite systems. They have numerous applications
in theorem proving and other domains such as real-time scheduling, temporal or
metric planning, and test-case generation. In analogy with SAT, SMT procedures
(whether they are decision procedures or not) are usually referred to as SMT
solvers. The roots of SMT can be traced back to early work in the late 1970s
and early 1980s on using decision procedures in formal methods by such pioneers
as Nelson and Oppen, Shostak, and Boyer and Moore [70, 69]. Modern SMT
research started in the late 1990s with various independent attempts [6, 51] to
build more scalable SMT solvers by exploiting advances in SAT technology. The
last few years have seen a great deal of interest and research on the foundational
and practical aspects of SMT. SMT solvers have been developed in academia and
industry with increasing scope and performance. SMT solvers or techniques have
been integrated into: interactive theorem provers for high-order logic (such as
HOL, Isabelle, and PVS), extended static checkers (such as Boogie and ESC/Java
2), verification systems (such as ACL2, Caduceus, SAL, UCLID, and Why), formal
CASE environments (such as KeY), model checkers (such as BLAST, Eureka,
MAGIC and SLAM), certifying compilers (such as Touchstone and TVOC), unit
test generators (such as DART, EXE, CUTE and PEX).

This section provides a brief overview of SMT and its main approaches, together
with references to the relevant literature for a deeper study. In particular, it focuses
on the two most successful major approaches so far for implementing SMT solvers,
usually referred to as the “eager” and the “lazy” approach.

2.5.1 . Background

Satisfiability Modulo Theories (SMT) problem is a decision problem for logical
first order formulas with respect to combinations of background theories such

36

as: arithmetic, bit-vectors, arrays, and uninterpreted functions. Z3 is a new and
efficient SMT Solver freely available from Microsoft Research. It is used in various
software verification and analysis applications.

In our study, we work in the context of (classical) first-order logic with equality
and also use Z3. In order to better understand SMT, we introduce here the relevant
basic concepts and notation. In the following, a theory T is a set of closed first-order
formulas. A formula F is called T ´ satisfiable or T ´ consistent when F ^ T
is satisfiable in the first-order sense. In the other case, it is T ´ unsatisfiable

or T ´ inconsistent. A partial assignment M will occasionally be seen as a
conjunction of literals and also as a formula. If M is a T ´ consistent partial
assignment and F is a formula such that M |ù F , i.e., M is a (propositional)
model of F , then M is called a T ´model of F . If F and G are both formulas
then F entails G in T , if F ^ ␣G is T ´ inconsistent. The short notation is
F |ùT G. In the case that both F |ùT G and G |ùT F are true, then F and G
are called T ´ equivalent. A clause C is called a theory lemma if H |ùT C is
true. Given a theory T and a formula F , one SMT problem is deciding whether
F is T ´ satisfiable. For a background theory T , only the SMT problem for
ground (and hence quantifier-free) CNF formulas F will be considered. These
formulas often contain so-called free constants which are constant symbols not
in the signature of T . When satisfiability is concerned, these constants can be
considered as existential variables. Excluding the free constants, all other function
and predicate symbols in the formulas will come from the signature of T . The only
theories that will be considered are such that the T´satisfiability of conjunctions
of such ground literals is decidable. Any decision procedure for this problem is called
a T ´ solver.

2.5.2 . SMT Algorithm

There are traditionally two approaches for deciding the satisfiability of a ground
formula F with respect to a background theory T : the eager approach and the
lazy approach.

Eager SMT techniques

The eager approach is based on devising efficient, specialized translations to
convert an input formula into an equisatisfiable propositional formula using enough
relevant consequences of the theory T . The approach applies in principle to any
theory with a decidable ground satisfiability problem, possibly however at the cost
of a significant blow-up in the translation. Its main allure is that the translation
imposes upfront all theory-specific constraints on the SAT solver’s search space,
potentially solving the input formula quickly, in addition, the translated formula
can be given to any off-the-shelf SAT solver. Its viability depends on the ability of

37

modern SAT solvers to quickly process relevant theory-specific information encoded
into large SAT formulas. Eager encoding methods have been demonstrated for the
following theories:

1. Equality and uninterpreted functions.

2. Integer linear arithmetic.

3. Restricted lambda expressions, such as arrays, memories.

4. Finite-precision bit-vector arithmetic.

5. Strings.

Using the eager algorithm makes easy to express SMT problem into SAT problem,
but in this case one does without efficient specific algorithms that exist for solving
corresponding theories, e.g., systems of linear equations: indeed, the SAT solver
cannot use these algorithms after the SMT problem has been encoded into a SAT
problem. Moreover, as the eager algorithm is not highly modular, the user has to
design and code separately each theory, and thus, when different theories are mixed,
it is difficult to ensure that the coding methods are compatible. The correctness
of the eager technique for SAT depends on both the correctness of the translation,
which is unique for each theory and the SAT theory. Despite the effort spent in
making efficient translations, on many practical problems the SAT solver or the
translation process run out of either time or memory. The techniques explained
below are much faster.

Lazy SMT techniques

The lazy approach consists in building ad-hoc procedures implementing, in
essence, an inference system specialized on a background theory T . The main
advantage of theory-specific solvers is that one can use whatever specialized al-
gorithms and data structures are best for the theory in question, which typically
leads to better performance. The common practice is to write theory solvers
just for conjunctions of literals, i.e., atomic formulas and their negations. These
pared-down solvers are then embedded as separate sub-modules into an efficient
SAT solver, allowing the joint system to accept quantifier-free formulas with an
arbitrary Boolean structure. Given a formula F , each of its atoms that has to
be checked is considered at first as a propositional symbol, forgetting the the-
ory T . Then the SAT solver will determine whether F is satisfiable, if not, F is
T ´ unsatisfiable, otherwise the SAT solver will return a propositional model M
of F and the assignment (which is only seen as a conjunction of literals) is checked
by a T ´ solver. M is a T ´ model of F if it is T ´ consistent. If not, the
T ´ solver builds a ground clause that is a logical consequence of T (a theory
lemma), precluding that assignment. Then this lemma is added to F and the SAT
solver is started again until the SAT solver returns UNSAT or a T ´model.

38

2.5.3 . SMT Solver

SMT-LIB

When using SMT solvers, it is important to follow the SMT-LIB [11] standard,
which is characterised by:

1. Provide standard rigorous descriptions of background theories used in sys-
tems, i.e., SMT logics [11].

2. Develop and promote common input and output language for SMT solvers,
i.e., SMT-LIB standard [13].

3. Build a SMT community to connect the SMT developers, researchers, and
users.

4. Create and make available to the research community a large library of
benchmarks.

5. Collect and promote software tools useful to the community. This is achieved
through an annual competition called The Satisfiability Modulo Theories
Competition or SMT-COMP [14].

The SMT-LIB standard [13] defines concepts, formal languages, and a command
language. It also introduces the concepts of Theories and Logics in order to classify
problems or instances. A problem belongs to a logic, a logic refers to some theories,
and a theory is a specific set of symbols together with a set of axioms that defines
a well-known system. Almost all SMT solvers support SMT-LIB, the standard used
in the annual SMT competition.

SMT solver Z3

SMT solvers, or automatic theorem provers for SMT, are pieces of software
designed as tools to automatically decide the satisfiability of a given formula re-
lated to a set of theories. Generally, a solver core relies on the DPLL(T) procedure.
Z3 [68] is a microsoft research’s SMT solver, which is one of the most advanced
theorem provers to check the satisfiability of logic formulas on one or more back-
ground theories. Its development was targeted at solving problems that arise in
software verification and software analysis. It has been considered as the overall
most reliable solver by winning SMT-COMP from its beginning in 2007 until 2017
(since 2014, it has been the symbolic winner because its non-competitive partici-
pation). Z3 takes advantage of an open and strong design strategy which helps to
drastically improve its performances.

Figure 2.4 depicts the schematic overview of Z3, which integrates a modern
DPLL-based SAT solver, a core theory solver that handles equalities and uninter-

39

Figure 2.4: A schematic overview of Z3.

preted functions, satellite solvers (for arithmetic, arrays, etc.), and an E-matching
abstract machine (for quantifiers).

As a low-level tool, Z3 is mainly regarded as a component applied to other tools
that need to solve logical formulas. For ease of use, Z3 provides many APIs, and
these APIs support languages such as C, .NET, and OCaml. At the same time, Z3
can also be executed directly through the command line. Its core is the simplifier
and comparator, and its simplification strategy is very efficient. For example, it
simplifies p ^ true to p, x “ 4 ^ fpxq to fp4q, etc. In addition to software
verification and program analysis, it is also used in other industrial applications for
its powerful functions, such as in the field of network security, where Z3 can be
used to solve problems such as cryptography, binary reversal, symbolic execution,
etc.

2.5.4 . SMT-based Diagnosability Encoding for RTSs

Subsections 2.5.4, 2.5.5 and 2.5.6 refer to my work during my master intern-
ship [55].

Recall that the existence of timed critical pairs violates diagnosability of TA.
However, the time duration for both trajectories should be infinitely long. For a
real system that satisfies diagnosability defined in Definition 8 (2), i.e., for which
such a timed critical pair does not exist, it is possible that a faulty trajectory may
be distinguished from normal ones only after an unacceptably long time. To be
more practical when applied to real systems, we use ∆ P R to represent a time
upper bound after the fault occurrence to identify it, i.e., we rest on the concept

40

of ∆-diagnosability as defined in Definition 8 (1). So, saying that F is not ∆-
diagnosable means that it exists a ∆-faulty run which cannot be distinguished by
observation from at least one normal timed trajectory, i.e., it exists a ∆-critical
pair as defined in Definition 9, whose existence violates ∆-diagnosability.

From Theorem 2, diagnosability (resp., timed critical pair) corresponds thus
to `8-diagnosability (resp. `8-critical pair), if we extend Definition 7 to ∆ “

`8 by replacing ą ∆ by “ `8. Consider the case of an infinite ∆-CP. As
timepρ, F q ą ∆ (possibly `8), it exists a finite ∆-faulty prefix of ρ ending by
a time transition. It results that we can replace, in the statement of Theorem 2,
∆-CP by finite ∆-CP ending by a time transition.

2.5.5 . Encoding Timed Automaton

In this section, we will show how to logically encode in SMT a ∆-CP for a TA
such that, if the SMT solver finds a model for the proposed logic formula, then
the considered fault is not ∆-diagnosable in this TA (and conversely if the formula
length is large enough). In this case, the corresponding model, that is actually a
∆-CP, is finally returned. As we saw it is enough to look for a finite ∆-CP, it is thus
possible to encode it by a finite formula. We will then consider bounded length
timed trajectories with length parameter n, i.e., diagnosability checking is done
on timed trajectories with length n, denoted by LnpAq “ tρ P LpAq | |ρ| “ nu,
where n varies from 1 to a fixed given bound. As explained in Section 2.2.2, we
can assume that time and discrete transitions alternate in any timed trajectory.
Hence, we rewrite pq, vq t

ÝÑ pq, v2q
σ
ÝÑ pq1, v1q, where t P R and σ P Σ, as

pq, vq
t,σ
ÝÝÑ pq1, v1q. In the following, we consider this kind of combined time-

discrete transition during the encoding. Accordingly, a timed trajectory of length
n is a finite sequence pt0, σ0q, pt1, σ1q, ..., ptn´1, σn´1q, where ti P R, σi P Σ, and
@i, 0 ď i ď n ´ 1, pqi, viq

ti,σi
ÝÝÝÑ pqi`1, vi`1q is allowed by A. As seen above,

we can assume that the timed trajectory ends by a time transition, that we will
represent by setting σn´1 “ ϵ as an unobservable event. For the example in Figure
2.3, one 4-length timed trajectory is ρ “ p1.5, o1q, p3, uq, p0.5, o2q, p1, ϵq that is
witnessed by the feasible execution pq0, x “ 0q

1.5,o1
ÝÝÝÑ pq1, x “ 0q

3,u
ÝÝÑ pq3, x “

3q
0.5,o2
ÝÝÝÑ pq5, x “ 0q

1,ϵ
ÝÑ pq5, x “ 1q. Given a TA A “ pQ,Σ, X, δX , q0, Iq, we

encode essential static parts in A as follows:

• the set of states is encoded by positive integers through the function EQ :

QÑ QE “ t1, ..., }Q}u.

• the set of events is encoded by positive integersEΣ : ΣÑ ΣE “ t1, ..., }Σ}u,
where ΣE “ ΣE

o Z ΣE
u Z ΣE

f , corresponding to Σ “ Σo Z Σu Z Σf . We
assume that normal events Σn “ Σo Z Σu are encoded by integers from 1
to }Σn} and fault events by integers from }Σn} ` 1 to }Σ}.

41

• the set of symbolic transitions is encoded by a set of tuples EδX : δX Ñ

δE Ď pQE ˆ CpXq ˆ ΣE ˆ 2X ˆ QEq such that EδX pq, g, σ, r, q
1q “

pEQpqq, g, EΣpσq, r, EQpq
1qq.

2.5.6 . Encoding Bounded Diagnosability

In this section, given a TA with fault F and given ∆, duration after (first

occurrence of) F , we show how to define, for arbitrary integers k, k̂, a formula Ψk,k̂
∆

whose satisfiability is equivalent to the existence of a ∆-CP pρ, ρ̂q with |ρ| “ k

and |ρ̂| “ k̂. In order to describe this formula as intuitively as possible, we present

it with different separate parts. Since the satisfiability of Ψk,k̂
∆ represents the

existence of a ∆-CP, two timed trajectories ρ and ρ̂ are concerned, which makes
this property more complicated to encode (in absence of an explicit construction of
the twin plant) than for example safety properties, for which it is not necessary to
compare between different timed trajectories. To distinguish the value of variables
between the two timed trajectories, the variables equipped with a hat are associated
to the normal trajectory ρ̂ of length k̂ while the variables without a hat are attached
to the faulty trajectory ρ of length k.

• The integer-valued variables e0, ..., ek´1 (resp. ê0, ..., êk̂´1) encode the
events in the faulty (resp. normal) timed trajectory (with ek´1 and êk̂´1
encoding ϵ).

• The integer-valued variables s0, ..., sk (resp. ŝ0, ..., ŝk̂) represent the states
in the faulty (resp. normal) timed trajectory.

• The real-valued variables t0, ..., tk´1 (resp. t̂0, ..., t̂k̂´1) encode the time
periods in the faulty (resp. normal) timed trajectory.

• The real-valued variables vx0 , ..., v
x
k , @x P X (resp. v̂x0 , ..., v̂

x
k̂
) represent the

values of the corresponding clock x in each state in the faulty (resp. normal)
timed trajectory, initialized as 0, i.e., vx0 “ v̂x0 “ 0.

• The real-valued variables vt0, ..., v
t
k (resp. v̂t0, ..., v̂

t
k̂
) encode the values of an

additional global clock that should be initialized as 0 but never be reset to
0.

• The additional real-valued variables vF0 , ..., v
F
k represent the time elapsed af-

ter the first fault occurrence in the faulty timed trajectory (´1 by convention
before the fault occurrence).

Initialization

The two timed trajectories should start in the initial state with the initialization
of all clock variables.

42

• for the faulty timed trajectory:

ΦInit :“ p
Ź

xPXYttu

vx0 “ 0q ^ pvF0 “ ´1q ^ ps0 “ EQpq0qq

• for the normal timed trajectory:

Φ̂Init :“ p
Ź

xPXYttu

v̂x0 “ 0q ^ pŝ0 “ EQpq0qq

Well-formedness of timed trajectories

The well-formedness of timed trajectories represents the fact that each time
period between two discrete transitions should be nonnegative. Furthermore, the
value of integer-valued variables representing all events in the two trajectories
should be in t1...}Σ}u for the faulty one and in t1...}Σn}u for the normal one.
This is encoded as follows.

• for the faulty timed trajectory:

ΦWF :“ p
k´1
Ź

i“0
0 ď tiq ^ p

k´1
Ź

i“0
1 ď ei ^ ei ď }Σ}q ^p

k´1
Ź

i“0
1 ď si ^ si ď }Q}q

• for the normal timed trajectory:

Φ̂WF :“ p
k̂´1
Ź

i“0
0 ď t̂iq ^ p

k̂´1
Ź

i“0
1 ď êi ^ êi ď }Σn}q ^p

k̂´1
Ź

i“0
1 ď ŝi ^ ŝi ď }Q}q

Acceptance of timed trajectories

We formalize here that the two timed trajectories represented by values for the
predefined variables as described above should be accepted by A. Precisely, in each
timed trajectory, each pair of adjacent states has to be connected by a transition
that is allowed in A.

• for the faulty timed trajectory:

ΦAcc :“ p
k´1
Ź

i“0
p

Ž

psi,g,ei,r,si`1qPδE
rrgssi ^ ¶r

i qq

Here rrgssi represents that the clock valuations after the i-th period in the
faulty timed trajectory, i.e., vxi ` ti, should satisfy the guard g, such as:

– rrx ’ cssi :“ pv
x
i ` tiq ’ c

– rrx´ y ’ cssi :“ pv
x
i ´ v

y
i q ’ c

43

– rrg1 ^ g2ssi :“ rrg1ssi ^ rrg2ssi

¶r
i in the above expression formalizes the time progression, i.e., time tran-

sition, by resetting clocks in the subset r and by increasing all other clocks,
including the global one (and also the time elapsed from the first fault oc-
currence if triggered) with the corresponding period ti:

¶r
i :“ p

Ź

xPr
vxi`1 “ 0q ^ p

Ź

xPpXzrqYttu

vxi`1 “ vxi ` tiq

^p0 ď vFi ñ vFi`1 “ vFi ` tiq

• for the normal timed trajectory:

Φ̂Acc :“ p
k̂´1
Ź

i“0
p

Ž

pŝi,g,êi,r,ŝi`1qPδE
rrĝssi ^ ¶̂r

i qq

In a similar way, rrĝssi for the normal timed trajectory is encoded as follows:

– rr{x ’ cssi :“ pv̂
x
i ` t̂iq ’ c

– rr {x´ y ’ cssi :“ pv̂
x
i ´ v̂

y
i q ’ c

– rr {g1 ^ g2ssi :“ rrĝ1ssi ^ rrĝ2ssi

The following is the time progression for the normal timed trajectory:

¶̂r
i :“ p

Ź

xPr
v̂xi`1 “ 0q ^ p

Ź

xPpXzrqYttu

v̂xi`1 “ v̂xi ` t̂iq

Fault

The faulty timed trajectory contains a fault occurrence (with one fault type,
the fault occurrence can be simplified as }Σn} ` 1 “ eiq). Furthermore, after the
first occurrence of a fault at step i, the value of the variable vFi`1 is assigned to 0
to trigger counting the time elapsed from this fault occurrence (otherwise it stays
equal to ´1).

ΦF :“ p
k´1
Ž

i“0
}Σn} ă eiq ^ p

k´1
Ź

i“0
pvFi “ ´1ñ

pp}Σn} ă ei ñ vFi`1 “ 0q ^ pei ď }Σn} ñ vFi`1 “ ´1qqqq

Equivalent observations

The next condition to consider for a timed critical pair is that both timed
trajectories should have exactly the same observations, i.e., the same observable
event should be observed at the same time, which can be guaranteed by the global
clock (that is never reset). This condition can be encoded as follows.

44

Φ”obs :“ p
Ź

σPΣE
o

p
k´1
Ź

i“0
pei “ σ ñ p

k̂´1
Ž

j“0
pêj “ σ ^ vti “ v̂tjqqqq

^p
k̂´1
Ź

i“0
pêi “ σ ñ p

k´1
Ž

j“0
pej “ σ ^ vtj “ v̂tiqqqqq

For allowing null time elapse between two successive discrete transitions, i.e., al-
lowing multiple simultaneous event occurrences, we require in addition (by means
equality of ordered lists) that, at a same given time, all simultaneous observable
events occur in the same order in both trajectories.

Time elapsed after fault

The last condition is that the time elapsed after the first occurrence of a fault
is greater than ∆, which is encoded as follows.

ΦT ime
∆ :“ vFk ą ∆

Bounded diagnosability checking

We have formalized all conditions required for two timed trajectories to con-
stitute a ∆-CP. Now we are ready to define:

Ψk,k̂
∆ :“ ΦInit ^ Φ̂Init ^ ΦWF ^ Φ̂WF

^ΦAcc ^ Φ̂Acc ^ ΦF ^ Φ”obs ^ ΦTime
∆

Note that for the sake of simplicity, in the proposed formula, we do not handle
state invariants. However, one can extend Ψk,k̂

∆ by adding such constraints in a
quite straightforward way. It suffices to enrich ΦAcc and Φ̂Acc by verifying that the
clock valuations in each state do not violate the corresponding invariant, which
has to be done only when entering the state and leaving it.

Theorem 3 Given a TA A and a considered fault F , F is ∆-diagnosable iff, for
all k, k̂, Ψk,k̂

∆ is not satisfiable in A.

2.6 . CEGAR and RECAR Algorithms

This section is partly borrowed from [63]. SAT technology has proven to be
a very successful practical approach to solve some NP-complete problems. One
of the main issues is to find the "right" encoding for the problem, i.e. to find
a polynomial reduction from the original problem into a propositional formula in
Conjunctive Normal Form (CNF, a set of clauses) which can be efficiently solved by
a SAT solver. The SAT solver is a generic problem solving engine, whose input is
a satisfiability equivalent CNF representing the original problem. It often happens

45

that either the SAT solver can solve efficiently the CNF or not at all (see, e.g.,
the results of the SAT competitions). A particular case is when the resulting CNF
is very large: the time for generating and reading the input is greater than the
time to solve it. This is due to the limited available main memory allocated to the
approach and not the SAT solver itself.

For huge CNF encodings, specific approaches have been designed in the past,
where a SAT solver is used as an oracle in a more complex procedure. One such
procedure is called CounterExample-Guided Abstraction Refinement (CEGAR) [36].
The SAT solver is fed with an abstraction of the original problem allowing more
models (which we will call under-approximation). If the abstraction is unsatisfi-
able, then the original problem is also unsatisfiable (UNSAT shortcut). Else the
procedure is able to verify if the model found for that abstraction is a correct so-
lution for the original problem. In this case, we have an additional SAT shortcut
to decide the satisfiability of the formula. If it is not the case, new constraints are
added to prevent the solver from finding such spurious examples (refinement step)
and the process repeats. Eventually, a complete satisfiability equivalent proposi-
tional formula is provided, and the SAT solver can decide the problem. One of the
reasons for using CEGAR is that the complete formula is in practice too large to
even be generated, so the only hope to solve the original problem is to “get lucky”
(satisfiable shortcut) or to be able to take into account a specific structure of the
problem (unsatisfiable shortcut).

This framework is elegant and has been applied to many areas: Satisfiability
Modulo Theory, Planning and more recently QBF. The latter is especially inspiring,
because it appears to be the best practical solution overall to solve QBF formulas
according to the latest QBF competition. The aim of the RECAR extension [63]
was to follow these steps on another PSPACE complete problem, which is the
satisfiability of modal logic K formulas.

2.6.1 . CEGAR Algorithm

CounterExample-Guided Abstraction Refinement (CEGAR) is an incremental
way to decide the satisfiability of formulas in classical propositional logic. It has
been originally designed for model checking [36], i.e., to answer questions such
as "Does S |ù P hold?" or, equivalently, "Is S ^ ␣P unsatisfiable?", where S
describes a system and P a property. In such highly structured problems, it is often
the case that only a small part of the formula is needed to answer the question.
The idea behind CEGAR is to replace ϕ “ S^␣P by an approximation ϕ1, where
ϕ1 is easier to solve in practice than ϕ. There are two kinds of approximations:

• (1) An over-approximation of ϕ is a formula ϕ̂ such that ϕ̂ (ϕ holds: ϕ̂
has at most as many models as ϕ;

• (2) An under-approximation of ϕ is a formula ϕ̌ such that ϕ |ù ϕ̌ holds: ϕ̌

46

has at least as many models as ϕ;

where ϕ is usually a CNF.

Over-approximation

The over-approximation has less models than the original problem, it receives
a problem ϕ as input and outputs a problem ϕ̂ which is more constrained than ϕ.
Thus if ϕ̂ has a model, then so does ϕ. A classical way to over-approximate is to
bound the generation of the formula ϕ to a given n smaller than the one needed
to reach equi-satisfiability to the original problem (as in bounded model checking
or planning). As such a model of ϕ̂ can be extended to a model of ϕ but the
unsatisfiability of ϕ̂ means that the bound n has to be increased and the process
is repeated. Such over-approximation is successfully used in planning by bounding
the size of the authorized plan [76].

Under-approximation

Similarly, the under-approximation has more models than the original prob-
lem, it also receives a problem ϕ as input and outputs a problem ϕ̌ which is less
constrained than ϕ. Thus if ϕ̌ has no model, then so does ϕ. A classical way
to under-approximate ϕ is to "forget" some clauses, i.e., ϕ is a subset of the
clauses in ϕ. A model of ϕ̌ also may by chance satisfy ϕ. This double possibility
to conclude earlier makes under-approximation based CEGAR very popular. Such
under-approximation is successfully used in constraint-based reasoning under the
name of Relaxation [40].

So, we have two different types of approximations and different ways to imple-
ment them. Over-approximation and under-approximation are the basis of CEGAR,
which is a framework to make "user-friendly" the use of these approximations to
solve problems. CEGAR usually takes into consideration decision problems and is
of two kinds, according to which kind of approximation is adopted.

CEGAR with over-approximation

CEGAR-over represents the CEGAR framework instantiated with over-approximation.
An example of CEGAR using over-approximations is given in Figure 2.5. It receives
a formula ϕ as input and computes an over-approximation ψ of ϕ. Then it uses
a SAT solver to check whether ψ is satisfiable. If so it concludes that ϕ is sat-
isfiable. Otherwise, ψ is refined, i.e., it gets closer to ϕ, until it is satisfiable, or
until the refined over-approximation is detected to be equi-satisfiable to ϕ, denoted
ψ ”sat ϕ, where it concludes that ϕ is unsatisfiable. In the following, ϕ ”?

sat ψ

means an incomplete efficient equi-satisfiability test which returns yes or unknown.
Recent SAT solvers are able to check satisfiability "under assumption" [45], i.e.,

47

given the satisfiability of a set of literals called assumptions, and to provide in case
of unsatisfiability a "reason" in terms of those literals for the unsatisfiability of a
formula.

ψ Ð ϕ̂CEGARoverpϕq

checkpψq

SAT

ψ “ refinepψq

ψ ”?
sat ϕ

UNSAT

over-approximation

sat

unsat

Yes

No

Figure 2.5: The CEGAR framework with over-approximation.

CEGAR with under-approximation

CEGAR-under represents the CEGAR framework instantiated with under-approximation.
An example of CEGAR using under-approximations is given in Figure 2.6. It re-
ceives a formula ϕ as input and computes an under-approximation χ of ϕ. Then it
calls SAT oracle to check whether χ is unsatisfiable. If so it can conclude that ϕ
is unsatisfiable. Otherwise, χ is refined closer to ϕ, until it is unsatisfiable, or until
the model λ for the refined under-approximation is detected to be also a model for
ϕ, denoted λ |ù? ϕ, in this case it concludes that ϕ is satisfiable.

χ Ð ϕ̌CEGARunderpϕq

checkpχq

UNSAT

χ “ refinepχq

λ |ù? ϕ?

SAT

under-approximation

unsat

sat, λ

Yes

No

Figure 2.6: The CEGAR framework with under-approximation.

48

2.6.2 . RECAR Algorithm

A classic CEGAR approach with over-approximation and a SAT shortcut per-
forms well when the input is satisfiable. But generally, it does not perform well in
problems which are unsatisfiable. The reason is that it has then to keep refining
until it reaches equi-satisfiability with the original problem. Conversely a CEGAR
approach with under-approximation and UNSAT shortcut does not in general per-
form well in problems which are satisfiable. One way to address this issue is to mix
SAT and UNSAT shortcuts, as in [29] and [97]. In these approaches, the methods
alternate between over and under approximations.

The Recursive Explore and Check Abstraction Refinement (RECAR) approach [63]
is a sound, complete and terminating framework to mix both over- and under-
approximation and to be able to interleave them during the search. As in the
CEGAR framework, it can be used in two modes. We present the one where the
first call is on an over-approximation.

RECAR-over

The RECAR-over approach, depicted in Figures 2.7 and Algorithm 2.8, inter-
leaves both kinds of approximation each abstraction is performed with the informa-
tion retrieved from solving the previous one. The UNSAT shortcut is implemented
using a recursive call to the main procedure when a strict under-approximation ϕ̌
can be built. One should also note that the proposed approach permits abstrac-
tions on two different levels: one is used to simplify the problem at the domain
level (recursive call), while the other one is used to approximate the problem at the
oracle level. In order to apply RECAR, the under-approximation ϕ̌ and the over-
approximation ϕ̂ must satisfy some properties. In the following, isSAT(ϕ) means
that ϕ is satisfiable p*1 ␣ϕq and isUNSAT pϕq means ϕ is unsatisfiable p|ù2 ␣ϕq,
but on possibly different consequence relations. RCpϕ, ϕ̌q denotes a Boolean func-
tion deciding if a Recursive Call should occur. The RECAR-over assumptions are
thus:

1. Function ’check’ is a sound and complete implementation of ’isSAT’ which
terminates.

2. isSAT pϕ̂q implies isSAT(refine pϕ̂q).

3. There exists n P N such that refine npϕ̂q ”?
sat ϕ.

4. isUNSAT pϕ̌q implies isUNSAT pϕq.

5. Let underpϕq “ ϕ̌. There exists n P N such that RC (under npϕq, under
n`1pϕq

˘

evaluates to false.

Note that we have isSAT pϕ̂q implies ϕ is satisfiable by Assumptions 2 and 3
together.

49

Figure 2.7: The RECAR framework

Under these assumptions, [63] proves, based on the presentation of the al-
gorithm recarpϕq in Figure 2.8, that RECAR is sound (if recarpϕq returns SAT
then ϕ is satisfiable), complete (if recarpϕq returns UNSAT then isUNSAT pϕq)
and terminates (RECAR terminates for any input ϕ).

Figure 2.8: The RECAR algorithm

This RECAR-over framework has successfully been used to solve modal logic
K satisfiability problem [63].

50

3 - An Approximation-based Incremental SMT-
based Approach to Diagnosability Analysis
of Real-Time Systems

In this chapter, we focus on improving the efficiency of diagnosability checking
for real-time systems modeled as timed automata. Inspired by an extension of
the classical CEGAR (CounterExample-Guided Abstraction Refinement) algorithm
introduced recently, namely the RECAR (Recursive Explore and Check Abstraction
Refinement) algorithm, we propose new RECAR-like algorithms that combine over-
and under-approximation techniques. We use CEGAR for early termination of
over- and under-approximation refinement loop, in the case the original formula
is satisifiable or unsatisfiable respectively, and then we show soundness of our
RECAR-like approach applied to an arbitrary formula. Finally, we evaluate the
effectiveness of our method on different benchmarks using the SMT solver Z3 by
comparing with the naïve method without approximation shortcut.

3.1 . Motivation

In our previous research, we found that when verifying the diagnosability on
an automaton (finite state automaton or timed automaton), a considerable part of
the transitions in the state space is not relevant, i.e., it will not affect the result,
which provides the possibility to improve the efficiency. In consequence, we take
advantage of the new paradigm of resolution of RECAR to verify diagnosability of
timed systems with a good efficiency in practice.

Work on diagnosability has mainly focused on models of discrete event sys-
tems and real-time systems. It has been shown that any pair of sufficiently long
trajectories sharing the same observation, one of which is faulty and the other is
normal (called (timed) critical pair), constitutes a witness of non-diagnosability.

From previous research, it was proved that diagnosability verification problem
of discrete event systems was in the class P for finite state automata and became
PSPACE-complete for timed automata. Combining SAT and SMT technologies
have proved to be a very successful practical approach to solve some NP-complete
problems, achieving good results in this case. Nevertheless, scalability is not guar-
anteed and too large automata cannot be handled. As RECAR appears promising
for dealing with beyond NP problems, in particular PSPACE-complete problems,
we verify diagnosability of real-time systems by using the RECAR framework.

CEGAR (see section 2.6.1 for detail) is an incremental way to decide the sat-
isfiability of formulas in classical propositional logic, based on the use of either
over- or under-approximations of the original formula. We saw that CEGAR-over
does not perform well for unsatisfiable problems whereas CEGAR-under does not

51

perform well for satisfiable problems and that one way to address this issue is to
alternate between over- and under-approximations. The RECAR approach (see
section 2.6.2 for detail) precisely interleaves both kinds of approximations.

In order to verify the bounded ∆-diagnosability of real-time systems with the
RECAR framework, we propose a RECAR-like approach, which includes refine-
ment iteration steps that may switch between CEGAR-over and CEGAR-under by
estimating the ease of verifying a next refinement or of using another type of ap-
proximation. In each iteration step, CEGAR starts by refining the formula which
had been the last one processed by CEGAR of the same type.

This chapter is organized as follows. Section 3.2 introduces CEGAR with
over-approximations and refinement determined by three changeable parameters
for diagnosability checking problem. Section 3.3 introduces CEGAR with under-
approximations and refinement determined by two changeable parameters. We also
define the semi-equivalence of observations instead of equivalence as an under-
approximation for an easier check of diagnosability. Finally, we consider reducing
the number of formulas to satisfy to perform an under-approximation at the oracle
level. Section 3.4 proposes a RECAR-like algorithm alternating CEGAR-over and
CEGAR-under, by defining a switch function SF to decide whether to switch from
one type of approximation to the other one. Section 3.5 shows how to encode
changeable parameters in SMT in order to support the incremental processing of
refinements. Section 3.6 presents the construction of a scalable benchmark and
experimental results of the CEGAR and RECAR-like algorithms on several of its
instances. Section 3.7 analyzes the experiment results, indicates that the key factor
of complexity and thus non-efficiency is the length of the critical pair searched,
which cannot be improved with our under-approximations for UNSAT problems.
Section 3.8 concludes and draws perspectives of future research.

3.2 . CEGAR-over for Bounded Diagnosability Analysis of RTS

As we stated above, CEGAR is a framework to make easily use of over- or
under-approximations to solve problems. It is widely used in a large number of
decision problems. There are two kinds of CEGAR according to which kind of
approximation function we are using. In order to remain sound and complete,
CEGAR techniques are typically combined with a refinement loop.

Figure 3.1 shows the CEGAR-over framework for diagnosability checking prob-
lem. It receives original formula ϕ as input, representing a parameterized critical
pair candidate, and over-approximates it to ψ at first, then calls SMT solver to
check whether ψ is satisfiable. If so we can conclude ϕ is satisfiable, i.e., the
existence of parameterized critical pairs. Otherwise, ψ is refined to make it closer
to ϕ, until it is satisfiable, or until the refined over-approximation is equal to ϕ ,

52

denoted ψ “ ϕ, in which case we can conclude that ϕ is unsatisfiable.

ψ Ð ϕ̂CEGARoverpϕq

checkpψq

SAT

ψ “ ϕ?

ψ “ refinepψq

UNSAT

over-approximation

sat

unsat

Yes

No

Figure 3.1: The CEGAR-over framework for diagnosability checking.

In the classical CEGAR-over way depicted in Figure 2.5, it usually defines an
equisatisfiable function for ψ and ϕ to terminate the refinement process, denoted
ψ ”sat ϕ. In our study, we have not defined an equisatisfiable function between ϕ
and ψ for over-approximation, so here we simply set ψ “ ϕ. Figure 3.2 illustrates
that the successive over-approximations are becoming closer and closer to the
original problem (Ď meaning entailment of formulas or inclusion of their models,
and refineipϕ̂q representing the ith refinement on ϕ̂).

ϕ
over´approximation
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ ϕ̂ Ď refine1pϕ̂q Ď refine2pϕ̂q Ď ‚ ‚ ‚ Ď refinenpϕ̂q “ ϕ

Figure 3.2: Over-approximation refinement process.

Let A “ pQ,Σ, X, δX , q0, Iq be a timed automaton as explained in Definition
4, where:

• δX Ď Q ˆ CpXq ˆ Σ ˆ 2X ˆ Q is a finite set of transitions pq, g, σ, r, q1q,
where the guard g P CpXq, which has to be satisfied for the transition to be
fired, and the clocks r Ď X reset to zero, when not specified, are by default
true and H, respectively;

• Σ is the set of events as the labels of δX , which we assume partitioned as
Σ “ Σo Z Σu Z Σf .

• I : Q Ñ CpXq is the invariant function that associates with each state q
the invariant Ipqq, a constraint that has to be satisfied by clocks in state q,
whose value by default, when not specified, is true. We require 0 P vIpq0qw.

53

For given bound B and ∆, the diagnosability verification for TA consists in checking
the existence of a ∆-critical pair (see Definition 9) of length at most B. I.e., a
pair of trajectories issued from q0, the length of each one at most B, composed
of labeled transitions in δX , one trajectory being a ∆-faulty run (see Definition
7), i.e., containing a transition labeled by the fault F , with a period after the first
occurrence of F equal to ∆, and the other trajectory being correct, while sharing
the same timed sequence of observable events. In other words, the existence of a
timed critical pair violates the ∆-diagnosability of TA.

Now, we can represent the diagnosability problem as P “ CP pB,∆, δX ,Σoq,
where B and ∆ are given by the user, and δX is the set of transitions that constitute
the system (timed automaton), i.e., the search space of the SMT solver, and Σo

the observable events, all of these parameters being changeable in the various
approximations during the diagnosability verification with the CEGAR algorithm. In
order to apply the CEGAR framework, we denote the over- or under-approximation
of the original problem P as P 1 “ CP pB1,∆1, δX

1
,Σ1oq.

We define three types of over-approximations of the bounded ∆-diagnosability
problem according to three parameters:

• Bound (parameter B). Decrease the bound (length) admissible, denoted
by P 1 “ CP pB1,∆, δX ,Σoq, where B1 ă B. So if the SMT oracle returns
SAT, we prove non-∆-diagnosability, if UNSAT we can refine this over-
approximation by refining B1 to B2 with B1 ă B2 ă B.

• Transition set (parameter δX). Decrease the set of transitions used, de-
noted by P 1 “ CP pB,∆, δX

1

,Σq, where δX
1

Ă δX . So if the SMT oracle
returns SAT, we prove non-∆-diagnosability, if UNSAT we can refine this
over-approximation by refining δX

1

to δX
2

with δX
1

Ă δX
2

Ă δX .

• Observable event set (parameter Σo). Increase the set of observable
events, denoted by P 1 “ CP pB,∆, δX ,Σ1oq, where Σ1 “ Σ1o Z Σ1u Z Σf

and Σ1o Ą Σo (thus Σ1u “ ΣuzpΣ
1
ozΣoq), i.e., turning some unobservable

events into observable ones. So if the SMT oracle returns SAT, we prove
non-∆-diagnosability, if UNSAT we may refine this over-approximation by
refining Σ1o to Σ2o with Σ1o Ą Σ2o Ą Σo (thus Σ2u “ Σ1u Y pΣ

1
ozΣ

2
oq).

Obviously all three parameters can be combined (with one to three simultane-
ous changes) for defining an over-approximation, denoted by P 1 “ CP pB1,∆, δX

1

,Σ1oq.
Thus the refinement is defined by increasing the bound (while keeping it smaller
than the initial one) and/or increasing the subset of admissible transitions and/or
decreasing the set of observable events (while keeping it greater than the initial
one).

54

3.3 . CEGAR-under for Bounded Diagnosability Analysis of RTS

Indeed, the CEGAR framework can also be instantiated with under-approximation.

χ Ð ϕ̌CEGARunderpϕq

checkpχq

UNSAT

χ “ ϕ?

χ “ refinepχq

SAT

under-approximation

unsat

sat

Yes

No

Figure 3.3: The CEGAR-under framework for diagnosability checking.

CEGAR-under for diagnosability checking problem is given in Figure 3.3. It
receives original formula ϕ as input and under approximates it to χ, then calls
SMT solver to check whether χ is unsatisfiable. If so we can conclude that ϕ
is unsatisfiable, i.e., the non-existence of parameterized critical pairs. Otherwise,
χ is refined to make it closer to ϕ, until it is unsatisfiable, or until the refined
under-approximation is equal to ϕ, denoted χ “ ϕ, in which case we can conclude
that ϕ is satisfiable.

In the classical CEGAR-under framework depicted in Figure 2.6, the refinement
process possibly early terminates when the model λ for under-approximation χ is
detected to be also adapted to ϕ, denoted λ |ù? ϕ. In this case, ϕ is satisfiable. In
our study, since we have not checked whether the model for χ could be extended
in a model for ϕ, similar to CEGAR-over, we simply set χ “ ϕ here. Figure 3.4
illustrates that the successive under-approximations are becoming closer and closer
to the original problem.

ϕ
under´approximation
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ ϕ̌ Ě refine1pϕ̌q Ě refine2pϕ̌q Ě ‚ ‚ ‚ Ě refinenpϕ̌q “ ϕ

Figure 3.4: Under-approximation refinement process.

As with CEGAR-over, we have defined two types of under-approximations ac-
cording to two parameters:

• Time after fault occurrence (parameter ∆). Decrease ∆, denoted by
P 1 “ CP pB,∆1, δX ,Σoq, where ∆1 ă ∆. So if the SMT oracle returns

55

UNSAT, we prove ∆-diagnosability. As non-existence of ∆1-critical pair
implies non-existence of ∆-critical pair. Otherwise, if the oracle returns
SAT, we may refine this under-approximation by ∆2 with ∆1 ă ∆2 ă ∆.

• Observable event set (parameter Σo). Decrease the set of observable
events, denoted by P 1 “ CP pB,∆, δX ,Σ1oq, where Σ1 “ Σ1oZΣ1uZΣf and
Σ1o Ă Σo (thus Σ1u “ Σu Y pΣozΣ

1
oq), i.e., turning some observable events

into unobservable ones. So if the SMT oracle returns UNSAT, we prove ∆-
diagnosability. As non-existence of ∆-critical pair with less observable events
guarantees non-existence with more observable events. If SAT we may refine
this under-approximation by refining Σ1o to Σ2o with Σ1o Ă Σ2o Ă Σo (thus
Σ2u “ Σ1uzpΣ

2
ozΣ

1
oq).

Obviously both parameters can be combined (with one to two simultaneous
changes) for defining an under-approximation, denoted by P 1 “ CP pB,∆1, δX ,Σ1oq.
Thus the refinement is defined by increasing the time after fault occurrence (∆)
(while keeping it smaller than the initial one) and/or increasing the set of observable
events (while keeping it smaller than the initial one). Note that the parameter Σo is
the only one that can be used both for over- and under-approximation, depending
on its increase or decrease, respectively.

Now, we can also define an under-approximation by weakening the condition
of equality of timed observations between the faulty and the normal trajectories of
the timed critical pair.

Definition 10 (Semi-Equivalence of Observations) Given a TA A, the consid-
ered fault F , two timed trajectories ρ, ρ1 P LpAq, with ρ faulty (containing F) and
ρ1 normal (not containing F ,) are observationally semi-equivalent, if P pρq Ď P pρ1q.

where P is the projection of the timed trajectory to observable events . Obviously
semi-equivalence is weaker than equivalence as only inclusion of timed observations
is required instead of equality. For an easier diagnosability checking, we look for a
pair of timed trajectories such that the observations of the faulty one are included
in the observations of the normal one, regardless of whether the two trajectories
can form a critical pair. If SMT oracle returns UNSAT, we can conclude that ϕ
is unsatisfiable. We could as well define semi-equivalence in the other way, i.e.,
observations of the normal trajectory included in those of the faulty trajectory, but
this requirement is trivially satisfied by taking as normal trajectory any prefix of
the faulty trajectory before the first fault occurrence.

Typically, based on SMT, a real-time system and its diagnosability property are
represented by formulas. These formulas are combined into a single verification
formula which is then checked by an SMT solver. The solver tries to refute the
diagnosability property by finding a counter-example where the system violates this
property. If the formula is satisfiable, most modern SMT solvers can generate a
model of it. This model can be used to construct a concrete execution of the timed

56

critical pair that leads to the diagnosability violation. In order to apply the RECAR
framework, we use the over- and under-approximations of the initial formula defined
above. For under-approximations we can also, similarly to the classical approach,
simply "forget" some part of the diagnosability formula in conjunctive form, i.e.,
select a partial diagnosability formula for verification, which effectively reduces the
size of formulas.

3.4 . A RECAR-like Approach for Bounded Diagnosability Anal-
ysis of RTS

CEGAR-over is efficient for early determination, through over-approximation re-
finement loops, of satisfiability of an original formula which is satisfiable. CEGAR-
under is efficient for early determination, through under-approximation refinement
loops, of unsatisfiability of an original formula which is unsatisfiable. However,
CEGAR-over is not performing well for an original formula which is unsatisfiable
and CEGAR-under is not performing well for an original foumula which is satisfi-
able. For a system, in order to verify its diagnosability efficiently, inspired by the
RECAR algorithm, we present a new framework that we call RECAR-like approach,
which is sound, complete and terminating. It alternates between CEGAR-over and
CEGAR-under during search of a solution, i.e., it switches the type of approxima-
tion of CEGAR when it estimates that this will be more efficient than continuing
to refine the same type. In the following, isSAT pϕq means that ϕ is satisfiable
and isUNSAT pϕq means ϕ is unsatisfiable.

Definition 11 (RECAR-like Assumptions) To be able to perform a RECAR-like
framework to decide a problem, one must verify a list of assumptions. We assume
that isSAT is the satisfiability in the corresponding logic of ϕ̂, and isUNSAT is
the unsatisfiability in the corresponding logic of ϕ̌.

1. Function check is a sound and complete implementation of isSAT (so of
isUNSAT also) which terminates.

2. isSAT pϕ̂q implies isSAT prefinepϕ̂qq.

3. isUNSAT pϕ̌q implies isUNSAT prefinepϕ̌qq.

4. There exists n P N such that refinenpϕ̂q “ ϕ and refinenpϕ̌q “ ϕ.

5. isUNSAT pϕ̌q implies isUNSAT pϕq.

6. isSAT pϕ̂q implies isSAT pϕq.

Actually, 5 is a consequence of 3 and 4 and 6 is a consequence of 2 and 4.
Assumptions 2 and 3 are satisfied by the way we have constructed refinements.
The reason why assumption 4 is satisfied comes from the fact that most of the

57

parameters (B, δX ,Σo) whose variations define the successive refinements have a
finite domain of values. Only ∆ parameter is continuous but we chose to make
evolve it by integer multiples of a given time unit, so its domain of values is also
finite.

CEGARoverpϕq

ψ Ð ϕ̂

checkpψqSAT ψ “ refinepψq

ψ “ ϕ?UNSAT SF pψq U_appear? CEGARunderrpϕq

χ Ð ϕ̌

checkpχq UNSATχ “ refinepχq

χ “ ϕ? SATSF pχq

over-approximation

sat

unsat

Yes No

No

Yes No

Yes

under-approximation

unsat

sat

YesNo

No

Yes

Figure 3.5: The RECAR-like framework for diagnosability checking.

Figure 3.5 shows how over-approximation and under-approximation techniques
can be combined to solve diagnosability problem with a SMT solver. The switch
function SF is a Boolean function that determines if an alternation should occur,
which reflects an estimate of the efficiency of either continuing the refinement
process or switching CEGAR type. Here, SF makes a conclusion by comparing
the time of the last two checks. Thus the idea of RECAR-like approach is to
alternate both kinds of approximations, and use switch function SF to decide
whether to switch from CEGAR-over to CEGAR-under or conversely, otherwise
to continue refining the over- or under-approximation until the result is obtained.
U_appear is also a Boolean function that judges whether the under-approximation
has already been called.

First of all, we perform CEGAR-over combination of the three parameters.
Then, if we cannot make any conclusions, we decide whether to move to CEGAR-
under with a combination of its two parameters (plus possibly using semi-equivalence).
In each iteration we call the SMT solver. Depending on the result we have to per-
form an additional function to decide whether to continue with the RECAR-like
algorithm, i.e. to judge if the approximation reaches the original formula.

For the CEGAR-over, if the result is unsatisfiable we need to check if the
current formula is equivalent to the original one. If not, we have to decide whether
moving to CEGAR-under. As each alternation starts by refining the formula which
had been the last one processed by CEGAR of the same type, we also need to
check whether CEGAR-under has been called before entering CEGAR-under.

58

3.5 . Encoding RECAR-like Approach

In this section, we will show how to encode our RECAR-like approach combin-
ing python and SMT solver Z3. First, we encode TA and bounded ∆-diagnosability
as explained in Section 2.5.5 and Section 2.5.6. As the CEGAR algorithm consists
in an iteration process, we use selectors to choose the values of the changeable
parameters in SMT in order to support the incremental processing of the refine-
ments.

3.5.1 . Pre-processing

Before encoding CEGAR and RECAR, in order to improve efficiency, the data
is pre-processed and the transitions are sorted as follows:

1. We define and pre-compute an index value to each transition, which repre-
sents the shortest distance from the initial state to the source state of this
transition. In this way, in the search process, for a specific bound value, the
SMT solver Z3 only searches for satisfiable transitions in the space consisting
of those transitions whose index is not greater than bound, so the search
space of Z3 is greatly reduced.

2. The fault diagnoser (Definition 21) and the normal diagnoser (Definition
22) are pre-computed and their transitions indexed (a same transition may
belong to both diagnosers, so have both indexes), so that Z3 searches the
transitions for the faulty path only in the faulty diagnoser and for the normal
path only in the normal diagnoser.

In our previous work (see subsection 2.5.6 for detail), we have theoretically proved
the correctness and feasibility of our algorithm for verifying diagnosability of real-
time systems. By adopting item 1, the optimization effect becomes more evident
with larger state spaces. Note that we executed all the experiments by keeping the
same experimental conditions: running on a Mac OS laptop with a 2.7 GHz Intel
Core i5 processor and 8 Go 1600 MHz DDR3 of memory. Similarly, we performed
the same experiments on two benchmarks.

Tables 3.1 and 3.2 show part of our experimental results before and after
optimization respectively, where the 2nd column shows the upper bound B for the
length of the critical pair and the time ∆ after the fault occurrence chosen, the
3rd shows the size of the formula expressed by its number of clauses, the 4th is the
required memory, the 5th in 3.1 presents the number of transitions of the system
and in 3.2 presents the number of transitions whose index is not greater than B,
the 6th gives the execution time in seconds (including in 3.2 the preprocessing time
for computing the transitions whose index is not greater than B) and the last one
is the satisfiability verdict.

59

B/∆ |clauses| mem. |trans.| time SAT?

hvac1 9/6 345756 33 15 26 Yes
hvac2 5/3 496963 69 15 30 No
hvac3 9/5 465393 52 15 21 Yes
hvac4 6/3 737395 63 15 39 No
hvac5 15/7 1353321 75 156 152 Yes
hvac6 7/6 1709069 129 156 306 No
ex1 21/15 246563 21 123 21 Yes
ex2 9/6 903296 285 123 135 No

Table 3.1: Experimental results before optimization

B/∆ |clauses| mem. |trans.| within B time SAT?

hvac1 9/6 345756 33 15 26 Yes
hvac2 5/3 172836 16 11 13 No
hvac3 9/5 465393 52 15 21 Yes
hvac4 6/3 362738 43 12 16 No
hvac5 15/7 701523 39 30 69 Yes
hvac6 7/6 253648 31 16 22 No
ex1 21/15 174536 17 28 16 Yes
ex2 9/6 146328 14 16 12 No

Table 3.2: Experimental results after optimization

From Table 3.2, one can see that our optimization approach is feasible since
even the hand-crafted versions terminated well within the timeout (that we set to
3600 seconds).

The experiments results show the advantage of the optimization approach on
reducing the search space. Comparing with our experimental results shown in
Table 3.1 corresponding to Section 2.5.6, one can see from Table 3.2 that the
code efficiency has been greatly improved. Thus this optimization will be applied
in all experiments that follow.

3.5.2 . Encoding Changeable Parameters

In the CEGAR approach using the over- and under-approximation, we play
with the parameters Bound, Time after fault occurrence, Transition set,
Observable event set, the values of all of which being able to be changed in
the different refinement loops. We will call the corresponding variables L, D, T ,
O respectively, initialized to their respective values B, ∆, δX , Σo in the initial
problem. We show in the following how to choose their values in SMT.

Bound L. Given tniu the possible values of L in the over-approximation of
the initial problem and its successive refinements (e.g., all integers from 1 to B),

60

we use a formula that associates a fresh variable li (a selector) to each value ni.
In the over-approximation and its refinements, L is thus set by the SMT solver to
the given value ni by setting li to True (then the lj ’s, j ‰ i, are automatically
set to False, as L has only one value). This is encoded as:

pL “ niq ^ li, ni P N.

Time after fault occurrence D. Similar to bound, given ttiu a finite set
of possible values of D in the under-approximation of the initial problem and its
successive refinements (e.g., all integer multiples of a given fraction of ∆), we use
a formula that associates a fresh variable di (a selector) to each value ti. In the
under-approximation and its refinements, D is set by the SMT solver to the given
value ti by setting di to True and the dj ’s, j ‰ i, to False. This is encoded as:

pD “ tiq ^ di, ti P R.

Transition set T . We associate a fresh variable (selector) tri to each transi-
tion transi of the system. In the over-approximation and its successive refinements,
T is set by the SMT solver to a given subset of δX by setting tri to True for all
those transitions transi that belong to this subset and trj to False for all those
transitions transj that do not belong to this subset. Taking into account that
only those transitions whose pre-computed index is not greater than the present
value of the bound L, the formula is finally encoded as:

Ź

transiPδX
pptransi P T q ^ pIndexptransiq ď Lq ^ triq.

.
Observable event set O. To make observable events changeable, we associate

a fresh variable (selector) oi to each event ei P ΣzΣf . O is set by the SMT solver to
a given subset of ΣzΣf (that contains Σo in the case of an over-approximation and
its successive refinements, or is included in Σo in the case of an under-approximation
and its successive refinements) by setting oi to True for all those events ei that
belong to this subset and oj to False for all those events ej that do not belong
to this subset. This is encoded as:

Ź

eiPΣzΣf

ppei P Oq ^ oiq.

.

3.6 . Experiments

The correctness of our algorithm is a consequence of it for that is satisfied
the RECAR-like assumptions of Defination 11. We have theoretically proved the
correctness of our algorithm. To show its feasibility, we compared our RECAR-
like approach with CEGAR-over and CEGAR-under with different parameters, and

61

carried out a prototype implementation done in Python by using the SMT solver
Z3.

We reported on several versions of four benchmarks from literature. Consid-
ering that such literature examples are normally quite small, in order to show the
scalability we tested hand-crafted versions of them where the state space was gen-
erated in a partially random way while keeping the verdicts. Furthermore, all of
which have been modified in order to get diagnosable and non-diagnosable ver-
sions. The first literature benchmark is inspired by the HVAC system from [82], in
which we added different temporal constraints since it was a finite automaton and
an arbitrary number of events in the system in a way such that the verdict remains
the same by enlarging the size of the TA. hvac2 is a version modified by adding a
clock to constraint the close_valve such that this delay is always different for a
normal trajectory and for a faulty one. The system is diagnosable (No SAT). Then
by modifying this delay on faulty trajectories without any constraint, the system
becomes not diagnosable, as shown by example hvac1. Similarly, the second group
examples, denoted by jiangi, are obtained by modifying the example from [59].
The third group examples from [104] and the fourth group examples are models of
traffic light controller at a pedestrian crossing from [64], these two group exam-
ples are TA in the literature, we only modified them into two non-diagnosable and
diagnosable versions and enlarging them to ensure scaliability, denoted by zbrzi
and leei respectively. The last group examples, denoted by exi, are totally our
hand-crafted ones for testing structurally complex systems, i.e., TA with many
cycles.

B ∆ |trans.| Over_L Over_T Over_O Over_all Refinements WithoutCEGAR Switch RECAR ´ like SAT?

hvac1 50 50 500 0.40 3.23 8.33 0.35 4 6.57 0 0.36 Yes
hvac2 50 50 500 2.40 5.15 10.12 2.47 50 4.4 0 2.51 No
jiang1 50 50 500 0.10 2.32 5.33 0.09 3 5.15 0 0.11 Yes
jiang2 50 50 500 2.00 4.23 8.32 2.05 50 1.77 0 2.11 No
zbrz1 30 30 500 0.04 3.87 3.32 0.04 2 1.55 0 0.04 Yes
zbrz2 30 30 500 0.80 5.48 8.96 0.62 30 1.56 0 0.65 No
lee1 23 23 450 0.08 98.32 110.22 0.06 3 1.08 0 0.06 Yes
lee2 23 23 450 ą500 200.03 ą500 ą500 23 141.12 5 165.87 No
ex1 20 16 34 0.66 3.96 4.98 0.48 10 3.85 0 0.46 Yes
ex2 20 16 34 ą500 189.32 ą500 ą500 20 217.97 3 264.35 No

Table 3.3: Experimental results for CEGAR-over

Table 3.3 shows part of our experimental results for CEGAR-over with different
over-approximations, where the 2nd and 3rd column show the Bound B and Time
after fault occurrence ∆ given as parameters of the initial problem, the 4th
column shows the number of transitions of the system, the 5th, 6th, 7th columns
give the execution times in seconds of CEGAR-over for approximations defined
by the Bound L, Transition set T , Observable event set O respectively, the
8th and 9 th columns give the execution times and the number of refinements
of CEGAR-over with a combination of these three parameters, the 10th and 11th
columns give the execution times of the direct checking of diagnosability without
using CEGAR and using our RECAR-like approach, the last column in the table

62

provides the diagnosability verdict. Execution times for CEGAR-over techniques
are obtained by adding the execution time for the first over-approximation chosen
and those for each successive refinement of this approximation until the verdict is
obtained.

B ∆ |trans.| Under_D Under_O Under_all Refinements WithoutCEGAR Switch RECAR ´ like SAT?

hvac1 50 50 500 25.65 38.33 22.31 50 6.57 0 0.36 Yes
hvac2 50 50 500 7.94 7.45 6.95 3 4.4 0 2.51 No
jiang1 50 50 500 30.12 28.33 24.22 50 5.15 0 0.11 Yes
jiang2 50 50 500 2.01 3.13 5.32 3 1.77 0 2.11 No
zbrz1 30 30 500 4.04 6.15 3.88 30 1.55 0 0.04 Yes
zbrz2 30 30 500 3.50 3.33 3.32 7 1.56 0 0.65 No
lee1 23 23 450 3.20 4.32 3.44 23 1.08 0 0.04 Yes
lee2 23 23 450 455.77 ą500 482.28 4 141.12 5 165.87 No
ex1 20 16 34 15.56 9.78 10.92 20 3.85 0 0.46 Yes
ex2 20 16 34 344.32 202.17 210.06 8 217.97 3 264.35 No

Table 3.4: Experimental results for CEGAR-under

Table 3.4 shows part of our experimental results for CEGAR-under with differ-
ent under-approximations. The first 4 columns and last 2 columns are the same
as Table 3.3. The 5th, 6th columns give the execution times of CEGAR-under for
approximations defined by the Time after fault occurrence D and Observable
events set O respectively, the 7th column shows the execution times for the ap-
proximation defined by checking semi ´ equivalence of observations instead of
equivalence, the 8th and 9th columns give the execution times and the number of
refinements of CEGAR-under with a combination of the two parameters D and O.
Execution times for CEGAR-under techniques are obtained by adding the execu-
tion time for the first under-approximation chosen and those for each successive
refinement of this approximation until the verdict is obtained.

Refinement Strategies

We explain below the refinement strategies used, i.e., how the initial values of
the parameters defining the first over- or under-approximation are chosen and how
their changes are fixed in the successive refinements.

• Bound L. In CEGAR-over, L is initialized to 1, i.e., n1 “ 1, and then at
each refinement step the value of L is increased by 1, i.e. ni`1 “ ni ` 1,
until we obtain the satisfiable conclusion, or until ni “ B is satisfied, in
which case if the SMT solver still returns unsat, we obtain the unsatisfiable
conclusion. So, there are at most B refinements. In CEGAR-under, L is
fixed to B (L “ B) and there is no refinement.

• Time after fault occurrence D. In CEGAR-under, D is initialized to one-
tenth of the initial ∆, i.e., t1 “ 0.1 ˆ∆ and then at each refinement step
the value of D is increased by one-tenth of ∆, i.e., ti`1 “ ti`0.1ˆ∆, until
we obtain the unsatisfiable conclusion, or until ti “ ∆ is satisfied, in which
case if the SMT solver still returns sat, we obtain the satisfiable conclusion.

63

In this way, we can ensure that refinement occurs at most 10 times. In
CEGAR-under, D is fixed to ∆ (D “ ∆) and there is no refinement.

• Transition set T . In CEGAR-over, T is initialized to some nonempty subset
of those transitions in δX based on B, i.e., whose index is not greater than
B (e.g., 10% of them, randomly chosen) and then at each refinement step,
others among those transitions (e.g., another randomly chosen 10% of them)
are added to T , until we obtain the satisfiable conclusion or until T equals
the whole set of transitions based on B, in which case if the SMT solver
still returns unsat, we obtain the unsatisfiable conclusion. If parameters T
and L are mixed together in the definition of the over-approximation and its
refinements, T is initialized to some nonempty subset of those transitions in
δX based on n1 (the initial value of L), and then at each refinement step
some nonempty subset of new transitions based on ni (the current value of
L in this refinement) are added to T . In CEGAR-under, T is fixed to the
subset of δX based on B and there is no refinement.

• Observable event set O. In CEGAR-over, O is initialized to ΣzΣf , i.e,
treating all unobservable events as observable ones, with the exception of
faults, and then, at each refinement step, we remove an unobservable event
(the first remaining according to a random order on ΣuzΣf) from O, until
we obtain the satisfiable conclusion or until O “ Σo, in which case if the
SMT solver still returns unsat, we obtain the unsatisfiable conclusion. In
CEGAR-under, O is initialized to a single observable event (the first accord-
ing to a random order on Σo), then in each refinement step we add another
observable event to O (the first remaining according to the previous order),
until we obtain the unsatisfiable result or until O “ Σo, in which case if the
SMT solver still returns sat, we obtain the satisfiable conclusion.

As usual our bounded model checking approach can verify non-diagnosability,
i.e., SAT cases, as bounded non-diagnosability implies non-diagnosability. However,
note that bounded diagnosability, i.e., UNSAT cases, does not imply diagnosability,
as the problem could become SAT when increasing the given initial bound B.

3.7 . Results and Discussion

The experimental results in Tables 3.3 and 3.4 show, as expected, that CEGAR-
over techniques with over-approximations parameterized by the parameter Bound
L or the three mixed parameters Bound L, Transition set T , Observable event
set O speed up checking of satisfiable instances, meanwhile slow down checking of
most unsatisfiable instances. Unfortunately, CEGAR-under techniques with under-
approximations are inefficient not only (as expected) for satisfiable instances but
also (which was not expected) for unsatisfiable instances. This is the key factor

64

that will cause inefficiency also in RECAR-like approaches. Based on these visual
data, we summarize further observations and analyze them.

First, CEGAR-over with parameter Bound L performs as good as CEGAR-
over with mixed three parameters Bound L, Transition set T , Observable
event set O on the satisfiable instances. However, CEGAR-over with only pa-
rameter Transition set T or parameter Observable event set O performs worse
on the same instances. Second, CEGAR-over performs poorly on most unsatisfi-
able benchmarks. Third, CEGAR-under does not perform well on all benchmarks,
even on the instances that are unsatisfiable. It results that our RECAR-like ap-
proach is more efficient to verify diagnosability for satisfiable instances but shows
no improvement for unsatisfiable instances. The reasons for this situation are as
follows:

1. For unsatisfiable instances, a CEGAR approach using an over-approximation
and its refinements defined earlier will take a long time before finally conclude
as the refinement will have to reach the initial problem, i.e., ϕ̂ “ ϕ (no SAT
shortcut).

2. For satisfiable instances, a CEGAR approach using and under-approximation
and its refinements defined earlier will take a long time before finally conclude
as the refinement will have to reach the initial problem, i.e., ϕ̌ “ ϕ (no
UNSAT shortcut).

3. The key factor of complexity and thus non-efficiency seems to be the length
of the critical pair searched, thus the size of the formula checked for satis-
fiability. For over-approximations, this length L is one parameter that can
be considerably reduced and can lead to a SAT shortcut for satisfiable in-
stances. But for under-approximations, this length has to be kept to the
value B given for the Bound, thus bringing no improvement even for unsat-
isfiable instances. This very probably explains why CEGAR-under, and thus
RECAR-like approach, remains inefficient for unsatisfiable instances.

With the RECAR-like approach, we begin by using the CEGAR-over algorithm
to check the system diagnosability. If this is not conclusive, then there is the
chance to switch to CEGAR-under when the switch function SF is triggered. If the
instance is satisfiable, since the switch function SF is evaluated based on the time
difference between the current and the last verification times, there is little chance
of triggering the SF function because over-approximations with parameter Bound
L always perform well for satisfiable instances even after several refinement loops,
i.e., the last verification time usually is almost no longer than the previous one, due
also to the use of incremental SMT. In this case, the RECAR-like approach keeps
running the CEGAR-over algorithm, which is obviously good for the satisfiable
cases, and effectiveness of the first comes from effectiveness of the second. If now
the instance is unsatisfiable, we get the following situations:

65

1. The switch function SF is not triggered, i.e., it is always the CEGAR-over al-
gorithm that is running and does not switch to CEGAR-under. This happens
for example in the three first groups of examples in Table 3.3. CEGAR-over
with L parameter or with combined L, T,O parameters is actually often
more efficient than solving directly the problem even when the instances are
unsatifiable, so is RECAR-like approach.

2. SF is triggered, then the CEGAR-under algorithm is executed, and, possibly
after several switches, we get the unsatisfiable conclusion from CEGAR-
under that returns unsat, in which case the RECAR-like algorithm contains
the entire CEGAR-under process (which we saw is inefficient) plus part of
the CEGAR-over process.

3. SF is triggered several times, similar to 2., but we get the unsatisfiable con-
clusion from CEGAR-over, so only after the condition ϕ̂ “ ϕ is satisfied, in
which case the RECAR-like algorithm contains the entire CEGAR-over pro-
cess plus part of the additional CEGAR-under process (which is inefficient).

Both cases 2 and 3 above contain the full or partial CEGAR-under process. As
CEGAR-under does not improve efficiency because it does not play with the key
factor Bound L, RECAR-like approach is inefficient for the unsatisfiable, i.e.,
diagnosable, instances.

3.8 . Conclusion

We proposed in this chapter a new approach for improving the efficiency of di-
agnosability problem using an alternating abstraction refinement approach. Mean-
while, we discussed different techniques and showed how they can be implemented
on this problem enabling further optimizations like early sat termination. Finally,
we evaluated the effectiveness of our approach on benchmarks from the literature
using the SMT solver Z3. Our RECAR-like approach, mixing SAT and UNSAT
shortcuts, has good performance for satisfiable (non-diagnosable) instances. From
the fact it does not perform well for unsatisfiable (diagnosable) instances, we
got the conclusion that the key factor of complexity is the length of the critical
pair that is looked for. In future work, we will focus on how to play with this
Bound L parameter in under-approximations, in order to increase the efficiency
of CEGAR-under and thus of our RECAR-like approach. We will also try to de-
fine under-approximations by "forgetting" some part of the diagnosability formula
in conjunctive form, but preliminary experiments seem to show that, in the unsat
case, most subformulas we tried are found to be satisfiable and an unsatisfable sub-
formula would probably be close in size from the global formula. Another possible
way is to play with time constraints expressed in the guards and invariants, i.e.,
tightening these constraints for defining over-approximations and relaxing them for
defining under-approximations. But again very preliminary experiments seem to

66

show that for under-approximations the parameter L fixed to Bound B remains
the cause of inefficiency.

67

4 - Designing Diagnosable Discrete Event Sys-
tems by using Delay Blocks

We propose in this chapter a new non-intrusive way to make a non-diagnosable
discrete event system diagnosable by merely adding delay blocks on some observ-
able events. It consists in calculating the set of observable event occurrences
whose deferral can turn a non-diagnosable system into a diagnosable. This calcu-
lation uses the max-flow min-cut theorem [48], which is encoded in SMT. We first
present our motivations and the potential interests intended from studying such
problem. Then we remind what finite automata with delay blocks (ADB) are. And
we adapt the concept of ADB to eliminate all pairs of trajectories witnessing non-
diagnosability by taking care not to create new ones, based on max-flow min-cut
theorem. As far as we know, this is the first attempt to remove non-diagnosability
with delay blocks without using controllable events, or changing the structure of
systems. Our approach is encoded into an SMT formula, whose correctness and
efficiency are then demonstrated by experimental results.

4.1 . Motivation/Introduction

We have reminded in the second chapter of this thesis the problem of diagnos-
ability checking for discrete event systems (DESs). In a given DES, the existence
of two infinite behaviors, with the same observations but one containing the con-
sidered fault and not the other, violates diagnosability. Existing work searches for
such ambiguous behaviors both in centralized ([82, 59, 75, 35, 50]) and distributed
([73, 85, 100]) ways. The most classical method is to construct a structure called
twin plant that captures all pairs of observationally equivalent behaviors to directly
check the existence of such ambiguous pairs.

As diagnosability is one critical property of the system, it is important to design
a diagnosable system, which will prove to be substantially convenient for subsequent
system diagnosis. But this goal is not trivial and up to now, most work has focused
on checking diagnosability of the system, while little work has considered improving
diagnosability efficiently and economically. It is thus interesting to study how to
transform non-diagnosable systems into diagnosable ones.

In this chapter, we propose a new non-intrusive approach for this purpose
by merely deferring some observable events, while keeping the original system
structure. For the sake of simplicity, this work has been conducted on classical
DESs, modeled by finite state automata (FSA).

We calculate the set of occurrences of observable events whose deferral can
make a non-diagnosable system diagnosable. To this end, we use the max-flow min-
cut theorem, which is then encoded in SMT. The reason that we chose SMT instead

69

of SAT is to make our approach extensible in order to handle timed automata in
a straightforward way in a later work. More precisely, we adapt finite automata
with delay blocks (ADB) ([34]) to eliminate all pairs of trajectories witnessing non-
diagnosability by taking care not to create new ones, based on the max-flow min-cut
theorem, encoded in SMT, so that every faulty trajectory can be distinguished by
observation from all normal ones.

Our contribution to the design of diagnosable DESs is multifold. First, in
order to eliminate efficiently all pairs violating diagnosability by adding the fewest
delay blocks possible, we calculate the minimum number of transitions in normal
trajectories according to the max-flow min-cut theorem, encoded in SMT. Secondly,
we analyze the scope of our approach by characterizing the systems for which it is
applicable. Thirdly, we present experimental results on benchmarks to demonstrate
the efficiency and correctness of our approach.

4.2 . Designing Diagnosable Systems with Delay Blocks

In this section, we will remind the concept of Automaton with Delay Blocks
(ADB) and present how to use it to design a diagnosable system.

Given a discrete event system (DES) G, we model it as a FSA as explained
in Section 2.2.1 (see Definition 2). Also, for the sake of simplicity, we adopt the
Assumptions 1 and 2 about liveness of the system and the possibility to infinitely
observe the infinite trajectories.

Now, based on Definition 5, diagnosability checking consists in verifying the
non-existence of a critical pair (see Definition 6), which has been proven to violate
diagnosability defined by Definition 5 and thus witnesses non-diagnosability. One
classical algorithm to check this property is to construct a structure, often called
twin plant in literature, obtained by synchronizing normal and faulty trajectories
based on observable events such that we can directly check the existence of such
a critical pair on the twin plant. More precisely, the twin plant is obtained as
the product, synchronized on observable events, of the diagnoser of the system
by itself. We will consider directly the refined form of the twin plant, obtained as
the synchronized product (actually, in this case, just the product) of the refined
diagnoser by itself.

Based on the Definition 20, each state of the diagnoser DG is a pair made up
of a system state and a fault label equal to F when a fault occurs on the path
being considered from the initial state to the present state, N otherwise.

Example 4 Figure 4.1 shows the diagnoser DG of the system G depicted in Figure
2.2.

The refined diagnoser is obtained by keeping only observable information, which
is defined as the delay closure (see Definition 17) of the diagnoser w.r.t. the set
of observable event Σo and denoted by DR

G “ AΣopDGq.

70

q0, N q1, N

q2, N

q3, N

q4, F q6, F

q5, No1

o2

F

u o2

o1
o1

o1

Figure 4.1: Diagnoser of the system in Figure 2.2

Example 5 Figure 4.2 shows the refined diagnoser DR
G constructed from the di-

agnoser DG depicted in Figure 4.1.

q0, N q1, N

q2, N q6, F

q5, No1

o2

o2

o1
o1

o1

Figure 4.2: Refined diagnoser of the system in Figure 2.2

Definition 12 (Twin plant). Given a system model G, its (refined) twin plant TG
is obtained by taking the product of the corresponding refined diagnoser DR

G by
itself, i.e., TG “ DR

G ∥Σo D
R
G “ DR

G ˆD
R
G.

q0, N
q0, N

q1, N
q1, N

q2, N
q2, N

q6, F
q6, F

q2, N
q5, N

q5, N
q5, N

q6, F
q5, N

o1

o2

o1

o2 o1

o2

o1

o1

o1

Figure 4.3: Twin plant of the system in Figure 2.2

Each state of a twin plant is composed of a pair of diagnoser states, which is called
ambiguous state if one of the fault labels is F and the other is N . An ambiguous
cycle is a cycle that contains only ambiguous states. Figure 4.3 depicts the twin
plant based on the refined diagnoser shown in Figure 4.2. Note that the gray node
is an ambiguous state, whose self-cycle is thus an ambiguous cycle.

71

As our goal is to identify all critical pairs in order to eliminate them later by
adding delay blocks, we can further reduce the twin plant by retaining only its parts
that are useful for this purpose.

Definition 13 (Critical twin plant). Given a twin plant TG, its critical version
TC
G is obtained by keeping only all its states from which an ambiguous cycle is

reachable (and removing possible normal cycles that could remain on paths from
the initial state to such an ambiguous cycle).

Example 6 The critical twin plant TC
G obtained from the twin plant TG of Fig-

ure 4.3 is shown in Figure 4.4.

q0, N
q0, N

q1, N
q1, N

q2, N
q5, N

q6, F
q5, N

o1 o2 o1
o1

Figure 4.4: Critical twin plant of the system in Figure 2.2

4.2.1 . Automata with Delay Blocks (ADB)

We now introduce finite automata with delay blocks (ADB) ([34]) by adapting
them to our problem. ADB, obtained by extending finite state automata with time
delay blocks, can be used to defer some observable events. Our idea is to use
the deferral aspect of ADB to eliminate all critical pairs in the twin plant without
creating new ones, so that every faulty trajectory can be distinguished from normal
ones.

Definition 14 (ADB) An automaton with delay blocks (ADB) is a quintuple B “
pQ,D,Σ, δ, q0q, where:

• Q is a finite set of states;

• q0 P Q is the initial state;

• Σ “ Σo Z Σu Z Σf is a finite set of events;

• D is a finite set of delay blocks. Each delay block d P D is indexed by a
natural number t ě 0 to indicate the amount of delay for the outputs. We
will limit here to two delay blocks: one indexed by 0 (no delay), the other
by 1 (delay, say of one time unit);

• δ is a set of transitions, defined by

δ : pQˆ Σo ˆDq Z pQˆ pΣu Z Σf qq Ñ 2Q.

72

General delay blocks indexed by integers would be useful for a future extension
of our work but, in the present untimed framework, we just need blocks with no
delay or some non-null (fixed) delay, say 1, given that events will keep their usual
order in each class (not deferred and deferred by 1). Note also that we do not
need tick transitions.

Compared to the underlying FSA, i.e., the corresponding version without D,
the order of observable events may be changed due to delay blocks. There are two
kinds of transitions with different types of events:

• δpq, σ, dq “ Q1, where σ P Σo and Q1 Ď Q, denoting the transitions from q
to a state in Q1, with the event σ whose observation is either deferred when
the associated value of d is 1, or not otherwise.

• δpq, σq “ Q1, where σ P Σu Z Σf and Q1 Ď Q, unobserved transitions
without delay blocks.

For a finite word w, let |w| denote its length, and wris its (i ` 1)th element
(starting from 0), if |w| ą i. Given an ADB B, its timed language LpBq is defined
by:

LpBq “ tw P pΣˆ t0, 1uq˚ | Dq P Q, pq0, w, qq P δu

where the timed word w is a finite string of tuples xσ, dy P Σ ˆ t0, 1u “ pΣo ˆ

t0, 1uq Z ppΣu Z Σf q ˆ t0uq, all unobservable events implicitly associated with 0.
We refer to the first component of the tuple wris as the event and to the second
as the timestamp, the latter denoting being deferred or not.

We redefine for an ADB the projection operator P of a finite timed trajectory
w on observable events. Given w, P pwq “ P0pwq1P1pwq is made up of the
concatenation of the two subsequences of observable events in w whose timestamps
are all 0 or 1, respectively, with a delay of one between. Thus, given w and w1,
P pwq “ P pw1q iff P0pwq “ P0pw

1q and P1pwq “ P1pw
1q.

Consider the example in Figure 4.5, which is an ADB extended from the
FSA of Figure 2.2. Here, the delay values for all observable transitions are 0
and omitted, except for the transition pq3, o2, q5q, where the value is 1. Con-
sider wn “ xo1, 0yxu, 0yxo2, 1yxo1, 0yn, then P0pwnq “ o1n`1 and P1pwnq “

o2. Hence, F is now diagnosable in this ADB as the fault trajectory wnF “

xo1, 0yxo2, 0yxF, 0yxo1, 0yn is distinguished from normal ones by observations, as
P pwnq “ o1n`1o2 ‰ P pwnF q “ o1o2o1n (here the order is enough to distinguish
and we even do not need to know when the delay of one occurs but this is not true
in general).

Take care that the observation language P pLpBqq is no longer live (as o1n`1o2
is not the prefix of a longer word), but this does not matter as this language is
not the one generated by the behavior of B but reflects just how it is observation
is modified by the delays. Note also that the time of the delay (one unit) plays

73

actually no role, except differing the corresponding observable event at the end of
the observation sequence. More than a time delay, it is actually a logical delay.
But time delays would be necessary if we would consider time automata instead of
automata.

q0 q1

q2

q3

q4 q6

q5o1

o2

F

u o2

d “ 1

o1
o1

o1

Figure 4.5: An example of ADB

Our novel diagnosable transformation approach, based on ADBs, comprises
the following major steps:

1. Synchronizing on observable events the refined diagnoser DR
G with itself to

get the twin plant TG.

2. Unfolding its critical version TC
G into a flow network FN .

3. Calculating a constrained min-cut set of this flow network through SMT and
adding to each selected transition of this min-cut a 1-valued delay block such
that the corresponding critical pairs disappear in the resulting ADB.

4.2.2 . Unfolding FSA into Flow Network

We now briefly introduce the classical notion of flow network before showing
how to unfold a given FSA into a specific flow network adapted to our approach
(see [2] for more details about flow network theory).

Definition 15 (Flow network) A flow network is a directed and connected graph
FN “ pV,Eq with a capacity function w assigning a weight to each edge:

• V is the set of nodes (vertices);

• E Ď V ˆ V is the set of edges;

• w is a function : E Ñ R`;

• source node ι P V and target node t P V are two distinguished nodes, with
no incoming (resp., outgoing) edge of positive capacity for ι (resp., t).

Given an FSA, we construct its corresponding flow network. The idea is to
adapt Floyd’s cycle detection algorithm in order to link the last node of each cycle

74

to a newly created node, target node t (unfolding). We just extend slightly the
definition of a flow network by keeping the original transition labels of the FSA
in addition to the weights. And, in our case, each edge has the unique weight 1
since our goal is to find the minimal set of observable transitions that can make
all critical pairs disappear by using additional delay blocks.

We thus unfold TC
G as a flow network FN . The way we construct FN guaran-

tees that any reachable cycle in TC
G is transformed into a path reaching the target

node t (note that TC
G contains only ambiguous cycles). In other words, if we can

block all paths from ι to t, we can then forbid all ambiguous cycles, thus all critical
pairs. We will show, in the next section, how to use the max-flow min-cut theorem
to calculate a minimal set of transitions from a given critical twin plant, that can
block all its existing ambiguous cycles.

Example 7 Figure 4.6 shows the unfolding FN of the critical twin plant TC
G of

Figure 4.4.

ι
q1, N
q1, N

q2, N
q5, N

q6, F
q5, N t

o1 o2 o1 o1

Figure 4.6: Unfolding the critical twin plant of Figure 4.4

4.2.3 . Encoding Min-cut

To improve efficiency and reduce costs (of installing delay blocks), we calculate
a minimum number of transitions, to which the addition of 1-valued delay blocks
will make disappear all existing critical pairs. To do this, we encode the problem
in SMT by using the max-flow min-cut theorem.

In graph theory, a cut of a given flow network partitions the set of nodes into
two disjoint subsets.

Definition 16 (Min-cut) Given a flow network FN “ pV,Eq with the source node
ι and the target node t, an ι´ t cut pS, T q is a partition of V such that ι P S and
t P T . The corresponding cutting edges XpS,T q are:

XpS,T q :“ pS ˆ T q X E “ tpu, vq P E | u P S, v P T u.

The capacity cpS, T q of a cut pS, T q is the total weight of the corresponding cutting
edges:

cpS, T q :“ Σpu,vqPXpS,T q
wpu, vq.

A min-cut of FN is a cut whose capacity is minimum over all cuts of FN .

75

For an ι´ t cut pS, T q, if we remove all the cutting edges of pS, T q, no path
exists from ι to t and consequently there is no positive flow from ι to t. Considering
the diagnosability problem, the idea is to find a minimum set of transitions in the
normal part of all critical pairs such that adding delay blocks can eliminate these
critical pairs simultaneously.

Theorem 4 (max-flow min-cut theorem) In a flow network, the value of a maxi-
mum flow passing from the source node to the target node is equal to the capacity
of a min-cut.

We now sketch the basic idea for computing the set of cutting edges of a
min-cut, i.e., a min-cut set:
(i) Computing the value of a max-flow based on Ford-Fulkerson algorithm (whose
complexity is polynomial [62]), which is equal to the capacity of a min-cut by the
max-flow min-cut theorem and equal also to the number of all the cutting edges,
as each one has capacity 1.
(ii) Calculating the cutting edges of a min-cut through SMT encoding by using the
max-flow computed at the precedent step (this hitting set problem is known to be
NP-complete).

Now we show how to build an SMT formula Ψ, whose any satisfying assign-
ment corresponds to a min-cut set. Ψ is composed of different parts to provide
a comprehensive description. Given a flow network FN of a given FSA, we first
encode the essential static parts and then the S and T sets by integers 0 and 1
through a function C : V Ñ t0, 1u, where integer 0 encodes the nodes in S and 1
the nodes in T .

Initialization

The source state (ι) and the target state (t) should be in S and T, respectively.

ΦInit :“ ppCpιq “ 0q ^ pCptq “ 1qq

Uniqueness

We formalize here that every state is in S or in T . In addition, due to the
way an SMT codes a function, a variable cannot be assigned different values
simultaneously, that is, a state cannot both belong to S and T .

ΦUniqueness :“ p
Ź

qPV

pCpqq “ 0_ Cpqq “ 1qq

Weight of the edges

The weights of the edges are valued by 0 or 1 through a function CE : E Ñ

t0, 1u. For any edge pq, q1q P E, with q P S and q1 P T , this edge is in the cut set

76

and its weight is 1. Otherwise, its weight is 0.

ΦWeight :“ p
Ź

pq,q1PEq

pCpqq “ 0^ Cpq1q “ 1ñ CEpq, q1q “ 1q ^ pCpqq “

1_ Cpq1q “ 0ñ CEpq, q1q “ 0qq

Max-flow

In the calculation process, at each step i, we calculate a new edge, whose
weight is added to the current flow. For a min-cut, the latter must be less than
or equal to the max-flow, denoted by M , and previously computed. And in this
case, based on the max-flow min-cut theorem, the current flow computed at the
last step is equal to M .

ΦM´flow :“ p
n´1
Ź

i“0
pprocesspiq ďMqq

where n is the number of edges.
Here the function processpiq denotes the current number of edges in the cut

in construction at step i, which is updated based on the weight of the current edge
pq, q1q P E chosen at step i and the previous number. This function is initialized
to 0:

ΦUpdate :“ pp
n´1
Ź

i“1
pprocesspiq “ pprocesspi´1q`CEpq, q1qqqq^pprocessp0q “ 0qq

SMT formula encoding min-cut

We have formalized all conditions, whose satisfying assignment can be easily
proved to correspond to a min-cut set. Thus we have:

Ψ :“ ΦInit ^ ΦUniqueness ^ ΦWeight ^ ΦM´flow ^ ΦUpdate

and the min-cut set corresponding to any given solution is obtained as the set of
the edges pq, q1q such that CEpq, q1q “ 1. Note that a min-cut set is not unique,
but the formula Ψ ensures that for every path from ι to t, representing a critical
pair, at least one of its transitions will be counted in the min-cut set.

Example 8 For the unfolded TC
G of the Figure 4.6, there are four min-cut sets of

size one, corresponding to its four transitions.

Applied to the flow network FN which is the unfolding of the critical twin plant
TC
G of the system G, a min-cut set is thus made up of pairs of transitions in G

(each one corresponding to observable transitions in the faulty path and normal
path, respectively, of some critical pair). The idea is thus to differ one transition
of such each pair by adding to it a 1-valued delay block. Now, it may happen

77

that both transitions of a pair are equal. This is the case of pq0, o1, q1q from the
example depicted in Figure 2.2, which appears twice in the first transition (issued
from the initial state) of the corresponding TC

G of Figure 4.4 and thus in the
first transition of its unfolded FN of Figure 4.6. Obviously, adding a delay block
to such a transition would have the same effect on the normal and faulty event
sequences of the concerned critical pair, that will thus not be disambiguated. So,
all min-cut sets containing such a pair of identical transitions have to be discarded
as disambiguating all critical pairs from such a min-cut set is impossible. For the
example, it means that the min-cut set corresponding to the first transition of the
FN of Figure 4.6 is discarded and thus only three min-cut sets remain. In practice,
the transitions of the critical twin plant TC

G that are made up of a pair of identical
transitions are eliminated when constructing its unfolded FN by the analog of
the delay closure operation by considering these transitions as silent ones. In the
example, this means that the first transition is removed from FN in Figure 4.6
(transition labeled by o2 goes directly from state ι to state ppq2, Nq, pq5, Nqq) and
there are thus only three possible min-cut sets of size one.

Now, it is reasonable, in a pair of transitions of G constituting an element of a
min-cut set, to choose to add a 1-valued delay block to the transition belonging to
the normal path (as the normal part of G is the one issued from its design). Thus
a solution to our problem of making the system diagnosable will be obtained from
any given min-cut set X by adding a 1-valued delay block to all the transitions in
G appearing in X as the normal components of the pairs of transitions it is made
up of. We denote by δX the set of these transitions:

δX “ tt “ pq, σ, q
1q P δ | DtF P δ ptF , tq P Xu where X “ te P E | Cpeq “ 1u in

a solution of Ψ for unfolded TC
G

Note that it may happen that two distinct transitions of the min-cut set X have
the same normal component (this means that this normal transition appears in two
different critical pairs). Thus |δX | may be smaller than |X|. It may also happen
that two different min-cut sets X and X 1 give rise to the same solution in terms
of transitions to be delayed: δX “ δX 1 . Actually, if by construction there is no
cycle in FN , which is the unfolded TC

G , it may occur cycles, and thus several
occurrences of a same transition of G, in the normal path corresponding to a path
from ι to t in FN , thus a same transition of G may appear several times as a
candidate to block some critical pair.

Example 9 This is the case of the example as the third and fourth transitions
(both labeled o1) of Figure 4.6 give rise to the same normal transition pq5, o1, q5q of
G (see Figure 2.2) to delay. The second transition (labeled o2) provides pq3, o2, q5q.
There are thus only two ways of adding a 1-valued delay block to a transition of
G to make G diagnosable (the second gives the ADB of Figure 4.5).

78

4.2.4 . Diagnosability Conditions

We have seen that it was necessary to remove transitions in FN (the unfolded
TC
G) that are made up of a pair of identical transitions. But this elimination

may create an empty path in FN between ι and t, meaning that the system
cannot be made diagnosable this way. In fact, our method fails if and only if,
after elimination of those common transitions, FN contains an empty path. The
simplest prototypical case of such an impossibility is given when G is made up
of faulty and unobservable transitions, both from the initial state q0 to a state
q1, followed by an observable loop in q1. The latter transition is common to
both normal and faulty paths of the existing critical pair, which thus cannot be
eliminated. Actually, all the cases where the method fails are generalizations of
the above-mentioned one.

Note also that a loop of an observable transition, so an infinite succession of
a same observable event, in a critical pair does not pose a problem only if we
take care to consider timed observations, i.e., to distinguish a same observable
event occurring at time 0 (without delay) and at time 1 (with a delay): adding
a delay block to such a transition does not change the trajectory observed when
considering only order but changes it when also considering time. This is the case in
our example (see Figure 2.2) when adding a delay block to pq5, o1, q5q: the untimed
normal trajectory remains identical, and the same as the untimed faulty trajectory,
i.e., o1o2o1˚, while the timed normal trajectory becomes o1p0qo2p0qo1p1q˚ “ o1o2

1 o1˚, different from the timed faulty trajectory o1p0qo2p0qo1p0q˚ “ o1o2o1˚.
In the same way, in the absence of common transitions in the normal and faulty

diagnosers, adding delay blocks cannot create new critical pairs when considering
timed observations because all faulty trajectories have their observable events oc-
curring at time 0.

4.3 . Implementation and Validation

To show the feasibility of our approach, we carried out a prototype implemen-
tation done in Python by using the SMT solver Z3. All our experimental results are
obtained by running our programs on a Mac OS laptop with the processor 2.7 GHz
Intel Core i5, 8 Go 1600 MHz DDR3 of memory. Source code and experiments are
available at https://github.com/lu-1993/Designing-DIA-via-delay-blocks.

We reported on several versions of five benchmarks from literature, which are
all non-diagnosable DESs. Furthermore, considering that such literature examples
are normally quite small, to study the scalability, we tested also some hand-crafted
versions whose state space was generated in a partially random way while keeping
the verdicts. The first one concerns the example shown in Figure 2.2. The second
is about the HVAC system from [82]. The third is a modified model from [92].
The fourth is an example from [32]. And the last one was presented in [59].
Furthermore, ex2, ex3, hvac2, hvac3, Su2, Su3, Mehdi2, Mehdi3 and Jiang2,

79

Jiang3 are corresponding hand-crafted versions.

Size |clauses| |Cut| SAT? timepN_Cq timepM_Cq

ex1 16 89 3 Yes 15.07 14.72
ex2 213 1800 3 Yes 15.38 14.86
ex3 500 19855 3 Yes 100.32 24.57
hvac1 14 191 2 Yes 0.72 0.58
hvac2 114 1920 2 Yes 0.82 0.63
hvac3 500 8576 2 Yes 40.33 10.44
Su1 14 64 1 Yes 0.27 0.18
Su2 108 643 1 Yes 0.50 0.61
Su3 500 6753 1 Yes 18.22 9.83

Mehdi1 12 407 2 Yes 0.70 0.18
Mehdi2 116 3248 2 Yes 0.80 0.65
Mehdi3 500 8975 2 Yes 49.33 12.22
Jiang1 10 36 2 No 0.48 0.03
Jiang2 114 450 2 No 0.63 0.42
Jiang3 500 8675 2 No 28.33 9.22

Table 4.1: Experimental results

Table 4.1 shows part of our experimental results, the 2nd column gives the
number of transitions of the system, the 3rd shows the size of the formula ex-
pressed by its number of clauses when min-cut value is used, the 4th is the min-cut
value, obtained by pre-processing, which equals the max-flow value, the 5th is the
satisfiability verdict, the last two are the execution times in seconds when min-cut
value is used or not used (in this case, a cut is computed without size condition and
then a cut of smaller size that the one just obtained is searched and the process is
iterated up to having no solution, in which case the last cut obtained is a min-cut),
respectively. As can be seen, our approach is feasible in practice as Z3 can get the
min-cut set in the time we specified (set to 1500 seconds). In addition, it shows
that the use of min-cut value (computed in advance as the value of max-flow)
improves the efficiency, which justifies our strategy. It is worth noting that we
have carefully chosen and modified the examples, Jiangi, for which our approach
cannot work for the reason that we have explained in Section 4.2.4.

4.4 . Related Work

After introducing the diagnosability definition of DESs, a fair amount of re-
search has dealt with how to guarantee this property under limited sensor capaci-
ties, which is an important decision-making problem for automated systems. One
well-known approach called active diagnosis has been initially proposed by [83].

80

Precisely, if a given system is not diagnosable, then a partial-observation controller
is synthesized in order to force the system to stay within a diagnosable subset of
its behaviors. An active diagnoser is composed of the controller and the diagnoser.
After that, [33] has proposed another planning-based approach by construct-
ing a twin plant. Then [53] has proved that the active diagnosability problem is
EXPTIME-complete and proposed a way to synthesize a memory-optimal active
diagnoser.

Another way to handle this problem is to calculate a subset of observable
events with minimum cardinality to satisfy diagnosability, provided that the original
observable set is enough to guarantee this property. This problem has been proved
to be NP-complete by [103]. Then followed some work on designing a mimimal
sensor set for diagnosability, that contains the original sensor set when the system
is not diagnosable ([28, 16]). However, its cardinality could be quite large and thus
not very practical in reality.

Different from the above methods, our approach is applied on the existing non-
diagnosable system to make it diagnosable with delay blocks in a non-intrusive way,
whose complexity is NP.

4.5 . Conclusion

Given a non-diagnosable system, we have shown how to find a relatively small
set of transitions such that adding delay blocks to them can disambiguate all
critical pairs without generating new ones. This is done by using max-flow min-
cut theorem, encoded in SMT. We have shown the efficiency of our algorithm
with benchmarks. However, this cannot guarantee to provide a solution for any
system. And, for real applications, assuming that a subset of observable events
occur at the same time unit, is not realistic, as in practice, event occurrence is never
instantaneous. To handle such various occurrence times, an interesting perspective
is to investigate how to extend the current approach to general delay blocks, i.e.,
delay blocks with various delays. This requires computing the delays in order to
avoid as far as possible creating new critical pairs.

81

5 - Manifestability Property and its Verifica-
tion

In this chapter, we present our last contribution during my PhD studies. After
having analyzed diagnosability both for DESs and RTSs, we realized that developing
a diagnosable system in real life is sometimes too expensive because it requires a
very high number of sensors. Therefore, in order to achieve a trade-off between
the cost at design stage and the possibility to observe a fault manifestation, we
propose a new system property called manifestability, which makes sure that a faulty
system has at least one future observable behavior after some fault occurrence
distinguishable from all normal behaviors, while requiring only a reasonable number
of sensors. We define formally this property and study how to verify it, for DESs
and RTSs successively. We implement our algorithms for FSA and a subclass of
TA (the problem being in general not decidable for TA) and provide experimental
results that show the feasibility of our approach from a practical point of view.
This chapter has been the subject of publications [101, 38].

5.1 . Motivation/Introduction

Fault diagnosis is a crucial and challenging task in the automatic control of
complex systems, whose efficiency depends as we have seen on a system prop-
erty called diagnosability. Recall that this property describes whether one can
distinguish with certainty fault behaviors from normal ones based on sequences of
observable events emitted from the system. In a given system, the existence of two
infinite behaviors with the same observations, where exactly one contains the con-
sidered fault, violates diagnosability. Following our previous work on diagnosability
analysis of discrete-event systems based on SAT and real-time systems based on
SMT, we are able to design quite secure systems. However, in reality, diagnosabil-
ity turns out to be a quite strong property that generally requires a high number of
sensors. Consequently, it is often too expensive to develop a diagnosable system.

To achieve a trade-off between the cost, i.e., a reasonable number of sensors,
and the possibility to observe a fault manifestation, we introduce a new property
that we call manifestability, a term borrowed from philosophy: “... which I shall
call the ’manifestability of the mental’, that if two systems are mentally different,
then there must be some physical contexts in which this difference will display itself
in differential physical consequences” [71]. In the domain of diagnosis, similarly,
the manifestability property describes the capability of a system to manifest a fault
occurrence in at least one future behavior. It is the weakest property a system
model should have to have a chance to identify a fault occurrence and it should
be analyzed at design stage on the system model. The fault will then necessarily

83

show itself with nonzero probability after enough runs of the system under the
assumption that no behavior described in the model has zero probability. For di-
agnosability, each future behavior of all fault occurrences should be distinguishable
from all normal behaviors, which is a strong property and thus requires high sensor
demanding, and this is where diagnosability differs from manifestability. Obviously
one has to continue to rely on diagnosability for online safety requirements, i.e., for
those faults which may have dramatic consequences if they are not surely detected
shortly after they occur, in order to trigger corrective actions. But for all other
faults that do not need to be detected at their first occurrence (e.g., whose con-
sequence is a degraded but acceptable functioning that will require maintenance
actions in some near future), manifestability checking, which is cheaper in terms
of sensors needed, is enough under the fairness assumption above.

5.1.1 . Motivating Example

Now, we explain why it is worth analyzing the manifestability property with a
motivating example.

q0

q1

q2

q3

q4 q5

q6 q7 q8 q9

q10

q11 q12

V alve_open Pump_start

Pump_stopV alve_close
Pump_failed

V alve_close

V alve_open

Sensor_failed τ Pump_start Pump_stop

V alve_close

V alve_open

τ
V alve_close

V alve_open

Figure 5.1: A simplified HVAC system.

Example 10 Figure 5.1 shows a modified version of the HVAC system from [82],
which is a composite model that captures the interactions between the three com-
ponents, i.e., a pump, a valve, and a controller. In this system, the initial state
is q0, the events Valve_open, Pump_start , Pump_stop, Valve_close are ob-
servable and the fault events Pump_failed , Sensor_failed are not observable, as
well as the silent (unobservable normal) event τ , the latter is used to represent
non-deterministic behaviors after the occurrence of the fault event Sensor_failed .

84

In this system, the infinite correct behavior is (Valve_open Pump_start

Pump_stop Valve_closeqω, where ω denotes the infinite concatenation. After
the unobservable fault Pump_failed , the system exhibits different observations
from the correct behavior, this event is thus diagnosable (see Definition 5). Now
consider the other fault event Sensor_failed , whose occurrence leads to non-
deterministic behaviors: one with the same observations as the correct behavior,
the other with different observations. Actually temperature sensor fault can cause
valve improperly controlled [15]. Here we consider two independent typical be-
haviors: either entering q7 by only degrading the efficiency of energy consumption
while the system can still assume its basic functionality, or entering q11, where
the valve closes immediately without executing the pump, leading to observa-
tions that are distinguishable from the correct behavior. Suppose that the issue
of energy consumption is not the priority of diagnosis. Hence the fact that the
fault Sensor_failed can be detected only when it makes enter the state q11 is
still acceptable in this case. The original (stochastic) diagnosability property is
not suitable to handle such situations. If we consider manifestability, the fault
Sensor_failed is effectively manifestable since its occurrence has at least one
future that is distinguishable from the correct behavior.

5.2 . Manifestability Analysis for Discrete Event Systems

In this section, we first define the manifestability for finite state automata and
provide a sufficient and necessary condition with an algorithm based on equivalence
checking of languages. Then, we show that the manifestability problem itself
is PSPACE-complete; finally we give experimental results to show the practical
efficiency of the algorithm.

5.2.1 . Manifestability Property for DESs

We model a DES as a finite state automaton defined in Chapter 2 (see Def-
inition 2). Similar to diagnosability, the manifestability algorithm we will propose
would have exponential complexity in the number of fault types (i.e., fault labels,
or more generally a partition of fault labels) if all those fault types were considered
at once. As in [73, 85], to reduce it to linear complexity in the number of fault
types, we consider only one fault type at a time. However, multiple occurrences
of faults of the given type are allowed. The faults of other types are processed as
unobservable normal events. This is justified as the system is manifestable iff it
is manifestable for each fault type. In the following, Σf “ tF u, where F is the
currently considered fault type.

Example 11 The top part of Figure 5.2 shows an example of a system model G,
where Σo “ to1, o2, o3u,Σu “ tu1, u2u, and Σf “ tF u. Notice that for diagnosis

85

Figure 5.2: A system model (top) and its diagnoser (bottom)

problem, fault is predefined as an unobservable event in the model. This is different
from testing, where faulty behaviors are judged against a specification.

Given a system modelG, and LpGq its language , i.e., the set of words produced
by G, we denote by LF pGq (resp., LN pGq) those words containing (resp., not
containing) F . Traditionally, we do the Assumptions 1 and 2 (see subsection 2.3.1)
about the possibility to always continue a trajectory and to observe infinitely the
infinite trajectories.

We will need some infinite objects. We denote by Σω the set of infinite words
on Σ. We define in an obvious way infinite paths in G and thus LωpGq the
language of infinite words recognized by G in the sense of Büchi automata. As
all states of G are considered as final states, those infinite trajectories are just the
labels of infinite paths, and the concept of Büchi automaton coincides with that
of Muller automaton, which can be determinized, according to the McNaughton
theorem. We can conclude from this that LωpGq is the set of infinite words
whose prefixes belong to LpGq and that two equivalent system models G1 and
G2, i.e., such that L pG1q “ L pG2q, define the same infinite trajectories, i.e.,
Lω pG1q “ Lω pG2q . Particularly, we use Lω

F pGq “ LωpGqXΣ˚FΣω for the set of
infinite faulty trajectories, and Lω

N pGq “ LωpGqX pΣztF uqω for the set of infinite
normal trajectories, where z denotes set subtraction. In the following, we use the
classical synchronization operation on Σs Ď Σ between two automata G1 and G2

with events Σ, denoted by G1}ΣsG2, i.e., any event in Σs should be synchronized

86

while others can occur whenever possible.
The following basic operation is aimed at keeping only information about a

given set of events. It boils down to replace by ϵ the events not concerned and
eliminate the ϵ-transitions (silent transitions) thus created. It will be used to sim-
plify some intermediate structures when checking manifestability without affecting
the validity of the result obtained.

Definition 17 (Delay Closure) Given an automaton G “ pQ,Σ, δ, q0q, its delay
closure with respect to Σd, with Σd Ď Σ, is AΣd

pGq “ pQd,Σd, δd, q0q, where:

1. Qd “ tq0u Y tq P Q | Ds P Σ
˚, Dσ P Σd, pq0, sσ, qq P δu;

2. pq, σ, q1q P δd if σ P Σd and Ds P pΣzΣdq
˚ , pq, sσ, q1q P δ.

We saw that, for designing a diagnosable (Definition 5) system, each faulty tra-
jectory should be distinguished from all normal trajectories, which is often very
expensive in terms of number of sensors required. To reduce such a cost and still
make it possible to show the fault after enough runs of the system, we propose
now another system property that we call manifestability, which is much weaker
than diagnosability. Intuitively, manifestability describes whether or not a fault oc-
currence has the possibility to manifest itself through observations. More precisely,
if a fault is not manifestable, then we can never be sure about its occurrence no
matter which trajectory is executed after it. Thus, the system model should be
necessarily revised.

Definition 18 (Manifestability of FSA) F is manifestable in a system model as
a finite state automaton G iff

Ds P LF pGq,@p P LpGq, P ppq “ P psq ñ F P p.

F is manifestable iff there exists at least one faulty trajectory s in G such that
every trajectory p that is observably equivalent to s should contain F . In other
words, manifestability is violated iff each occurrence of the fault can never manifest
itself in any future. This can be rephrased in terms of diagnosis. Let Diag be
the diagnosis procedure with input an observation in Σ˚o and output a diagnosis
in tN,F, tN,F uu. Then, F is manifestable in G iff there exists a trajectory s in
G such that DiagpP psqq “ tF u, i.e., the correct diagnosis of the occurrence of F
can be made for at least one faulty trajectory. This emphasizes that manifestability
is actually the weakest requirement for the existence of a useful (i.e., not always
ambiguous from any observed faulty trajectory) diagnosis procedure.

Theorem 5 A fault F is manifestable in a system model G iff one or the other
of the following equivalent conditions is satisfied (where ȷ|t| and ȷ denote critical
pairs, see Definition 6):

pMq DsF t P LF pGq, Es1 P LN pGq, s
F t ȷ|t| s

1,

87

pMωq Ds P Lω
F pGq, Es

1 P Lω
N pGq, s ȷ s1.

Proof 1 Condition M is a straightforward rephrasing of Definition 18. We demon-
strate condition Mω.
ñ Suppose that F is manifestable inG. Thus from Definition 18, Ds P LF pGq such
that Es1 P LN pGq with P psq “ P ps1q. By extending s with enough events, which
is possible since the system is living, we obtain then Ds P Lω

F pGq, Es
1 P Lω

N pGq,
such that s ȷ s1.
ð Suppose now that F is not manifestable in G and show that the condition
Mω is consequently not true. From non-manifestability of F and Definition 18,
we have @s P LF pGq, Dp P LN pGq, P ppq “ P psq. This can be formulated as
equality of the languages of two automata, as it will be seen in section 5.2.2
(LapVGq “ LF pD

FR
G q). It results that this equality of the languages still holds for

infinite words (Lω
a pVGq “ Lω

F pD
FR
G q), i.e., @s P Lω

F pGq, Dp P L
ω
N pGq such that

s ȷ p, which is ␣Mω, i.e., the condition Mω is not true.

Manifestability expresses whether it is possible to have at least one faulty path
in a system that is observably distinct from all normal paths, i.e., that there exists
a fault occurrence showing itself in at least one of its futures. Therefore, we can
define a strong version of manifestability, which requires that any occurrence of
the fault should show itself in at least one of its futures in a similar way. We give
now the definition of this strong version of manifestability.

Definition 19 (Strong Manifestability for FSA) Given a system model G and
a fault F :

1. given k P N, F is strongly k-manifestable in G if

@sF P LpGq, Dt P LpGq{sF , |t| ď k,

@p P LpGq, P ppq “ P
`

sF t
˘

ñ F P p.

2. F is strongly manifestable in G if

Dk P N such that F is strongly k-manifestable in G.

F is strongly manifestable if, for each sF in G (and not just for only one as
in Definition 18), there exists at least one extension t of sF in G, such that every
trajectory p in G that is observably equivalent to sF t should contain F . In other
words, each occurrence of F should show itself in at least one of its futures. In
terms of the diagnosis procedure Diag, it means that any occurrence sF of F in
G possesses a future t such that Diag

`

P
`

sF t
˘˘

“ tF u, i.e., the correct diagnosis
of any occurrence of F can be made for at least one future trajectory. In a similar
way as Theorem 5, we can prove the following theorem, which provides a sufficient
and necessary condition for strong manifestability.

88

Theorem 6 Given a system model G and a fault F :

1. given k P N, F is strongly k-manifestable in G iff the following condition is
satisfied:

pMs
kq @sF P LpGq, Dt P LpGq{sF , |t| ď k,

Es1 P LN pGq, s
F t ȷ|t| s

1.

2. F is strongly manifestable inG iff one or the other of the following equivalent
conditions is satisfied:

pMsq @sF P LpGq, Dt P LpGq{sF ,
Es1 P LN pGq, s

F t ȷ s1,
pMs

ωq @sF P LpGq, Dt P LωpGq{sF ,
Es1 P Lω

N pGq, s
F t ȷ s1.

Proof 2 1. is just a rephrasing of Definition 19.1 and condition Ms of 2. a
rephrasing of Definition 19.2. It is straightforward, by using liveness of LpGq,
that strong manifestability implies Ms

ω. Consider the reverse. If F is not strongly
manifestable, then DsF P LpGq,@t P LpGq{sF , Ds1 P LN pGq, s

F t ȷ|t| s
1. This

means that any faulty trajectory of prefix sF in G is equal to a trajectory in the
synchronized product of G by itself on observable events (after having erased the
unobservable events of the second copy), which can be expressed as languages
equality of two automata (see section 5.2.2), which still holds for infinite words,
giving ␣Ms

ω.

The following theorem provides the relationships between diagnosability, strong
manifestability and manifestability.

Theorem 7 Given a system model G and a fault F , we have:

1. F is k-diagnosable (resp., diagnosable) in G implying that F is strongly
k-manifestable (resp., strongly manifestable) in G.

2. F is strongly manifestable in G implying that F is manifestable in G.

Proof 3 1. Suppose that F is not strongly manifestable, then from Theorem 6,
we have ␣Ms

ω, i.e., DsF P LpGq,@t P LωpGq{sF , Ds1 P Lω
N pGq such that

sF t ȷ s1. This implies that there does exist at least one critical pair in the
system. From Theorem 1 , F is not diagnosable (the proof is similar for k).

2. Suppose that F is not manifestable. From Theorem 5, we have @s P Lω
F pGq,

Ds1 P Lω
N pGq, such that s ȷ s1. By choosing arbitrarily one sF P LpGq

and taking all s of prefix sF , we obtain DsF P LpGq,@t P LωpGq{sF ,
Ds1 P Lω

N pGq such that sF t ȷ s1, i.e., ␣Ms
ω. Hence F is not strongly

manifestable.

89

5.2.2 . Manifestability Verification

Manifestability verification consists in checking whether the condition Mω (or
M) in Theorem 5 is satisfied for a given system model. In this section, we show
how to construct different structures based on a system model to obtain Lω

F pGq,
Lω
N pGq as well as the set of critical pairs. The condition Mω (or M) can then be

checked by using equivalence techniques with these intermediate structures.

System Diagnosers

Given a system model, the first step is to construct a structure showing fault
information for each state, i.e., whether the fault has effectively occurred up to
this state from the initial state.

Definition 20 (Diagnoser) Given a system model G, its diagnoser with respect
to a considered fault F is the automaton DG “ pQD,Σ, δD, q0q, where:

• QD Ď Qˆ tN,F u is the set of states;

• Σ is the set of events;

• δD Ď QD ˆ ΣD ˆQD is the set of transitions;

• q0 “ pq0, Nq is the initial state.

The transitions of δD are those ppq, ℓq, e, pq1, ℓ1qq, with pq, ℓq reachable from q0 such
that there is a transition pq, e, q1q P δ, and ℓ1 “ F if ℓ “ F _ e “ F , otherwise
ℓ1 “ N .

Example 12 The bottom part of Figure 5.2 shows the diagnoser for the system
depicted in the top part, where each state has its own fault information. More
precisely, given a system state q, if the fault has occurred in all paths from q0 to
q, then the fault label for q is F. Such a state is called fault (diagnoser) state. If
the fault has not occurred in any path from q0 to q, then the fault label for q is
N and the state is called normal (diagnoser) state. Otherwise q is split into two
states, one labeled with F and the other with N (q5 in the example). Diagnoser
construction keeps the same set of trajectories and splits into two (fault state and
normal state) those states reachable by both a faulty and a normal path pq5 in the
example).

Lemma 1 Given a system model G and its corresponding diagnoser DG, then we
have LpGq “ L pDGq and LωpGq “ Lω pDGq.

In order to simplify the automata handled, the idea is to keep only the minimal
subparts of DG useful for the following manifestability checking, while containing
all faulty (resp., normal) trajectories.

90

Figure 5.3: Fault diagnoser (top) and its refined version (bottom) for
Example 11

Definition 21 (Fault (Refined) Diagnoser) Given a diagnoser DG, its fault di-
agnoser is the automaton DF

G “ pQDF ,ΣDF , δDF , q0q, where:

1. QDF “ tqD P QD | Dq
1
D “ pq, F q P QD, Ds

1 P Σ˚, pqD, s
1, q1Dq P δ

˚
Du;

2. δDF “
␣`

q1D, σ, q
2
D

˘

P δD | q
2
D P QDF

(

;

3. ΣDF “ tσ P Σ | Dpq1D, σ, q
2
Dq P δDF u.

The fault refined diagnoser is obtained by performing the delay closure with respect
to the set of observable events Σo on the fault diagnoser: DFR

G “ AΣopD
F
Gq.

The fault diagnoser keeps all reachable fault states as well as all transitions
and intermediate normal states on paths from the initial state q0 to any faulty one.
Then we refine this fault diagnoser by only keeping the observable information,
which is sufficient to obtain the set of critical pairs. The top (resp., bottom) part
of Figure 5.3 shows the fault diagnoser (resp., fault refined diagnoser) for Example
12.

By construction, the sets of faulty trajectories inDF
G and inG are equal and this

is still true for infinite faulty trajectories. This is also the case for faulty trajectories
in DFR

G (defined as labels of paths in DFR
G containing a fault state or whose last

state reached owns a transition to a fault state and denoted as LF pD
FR
G q) and

observed faulty trajectories in G (finite or infinite). But take care that it may exist
infinite normal trajectories in DF

G (resp., DFR
G

˘

if it exists in G a normal cycle in
a path to a first fault state (e.g., adding a loop in state q1 of the system model of
Example 12).

91

Figure 5.4: Normal diagnoser (top) and its refined version (bottom) for
Example 11

Lemma 2 Given a system model G and its corresponding fault diagnoser DF
G and

fault refined diagnoser DFR
G , we have LF pGq “ LF

`

DF
G

˘

, Lω
F pGq “ Lω

F

`

DF
G

˘

and P pLF pGqq “ LF

`

DFR
G

˘

, P pLω
F pGqq “ Lω

F

`

DFR
G

˘

.

Similarly, we obtain the subpart of DG containing only normal trajectories.

Definition 22 (Normal (Refined) Diagnoser) Given a diagnoser DG, its nor-
mal diagnoser is the automaton DN

G “ pQDN ,ΣDN , δDN , q0q, where:

1. QDN “ tpq,Nq P QDu;

2. δDN “
␣`

q1D, σ, q
2
D

˘

P δD | q
2
D P QDN u;

3. ΣDN “
␣

σ P Σ | D
`

q1D, σ, q
2
D

˘

P δDN

(

.

The normal refined diagnoser is obtained by performing the delay closure with
respect to Σo on the normal diagnoser: DNR

G “ AΣopD
N
G q.

The top (resp., bottom) part of Figure 5.4 shows the normal diagnoser (resp.,
normal refined diagnoser) for Example 12. Note the presence of the deadlock state
pq1, Nq, showing that LN pGq is not necessarily alive.

Lemma 3 Given a system model G and its corresponding normal diagnoser DN
G

and normal refined diagnoserDNR
G , we have LN pGq “ L

`

DN
G

˘

, Lω
N pGq “ Lω

`

DN
G

˘

and P pLN pGqq “ L
`

DNR
G

˘

, P pLω
N pGqq “ Lω

`

DNR
G

˘

.

92

Figure 5.5: The pair verifier for the system in Example 11

Manifestability Checking

In the precedent subsection we have given the definition of different diagnosers.
Now we show how to obtain the set of critical pairs based on them. On this basis,
an equivalence checking will be used to test the manifestability condition Mω (or
M) in Theorem 5.

Definition 23 (Pair Verifier) Given a system model G, its pair verifier VG is
obtained by synchronizing the corresponding fault and normal refined diagnosers
DFR

G and DNR
G based on the set of observable events, i.e., VG “ DFR

G }ΣoD
NR
G .

To construct a pair verifier, all observable events are synchornized. Then VG
is actually the product of DFR

G and DNR
G and the language of the pair verifier is

thus the intersection of the language of the fault refined diagnoser and that of
the normal refined diagnoser. In the pair verifier, each state is composed of two
diagnoser states, among which one is from the fault refined diagnoser and indicates
the effective occurrence of the fault in the corresponding trajectory with the label
F, otherwise with N. And the other one is from the normal refined diagnoser, so
all labels are N . If one of the two labels in a verifier state is F , then this verifier
state is called an ambiguous state. The reason is that to reach this state, both
trajectories have the same observations with exactly one trajectory containing the
fault. Trajectories of VG are thus either normal (both labels are N) or ambiguous
(all state labels from a certain state are pF,Nq or the last state reached owns a
transition to an ambiguous state), the latter ones being denoted by La pVGq (resp.,
Lω
a pVGq for infinite ones).

Lemma 4 Given a system modelG with itsDFR
G , DNR

G and VG, we have La pVGq “

LF

`

DFR
G

˘

X L
`

DNR
G

˘

and Lω
a pVGq “ Lω

F

`

DFR
G

˘

X Lω
`

DNR
G

˘

.

In the pair verifier depicted in Figure 5.5 , the gray node represents an ambiguous
state.

From Lemmas 2, 3, 4, Definition 6 plus Theorems 1 and 5, it is straightforward
to get the two following theorems.

93

Theorem 8 Given a system model G, a fault F is diagnosable in G iff Lω
a pVGq “

H.

Proof 4 Lω
a pVGq ‰ H ô Lω

F pD
FR
G q X LωpDNR

G q ‰ H (from Lemma 4) ô
P pLω

F pGqq X P pLω
N pGqq ‰ H (from Lemmas 2 and 3) ô Ds P Lω

F pGq, Ds
1 P

Lω
N pGq P psq “ P ps1q ô Ds, s1 P LωpGq s ȷ s1 (from Definition 6) ô F is not

diagnosable (from Theorem 1).

Theorem 9 Given a system model G, a fault F is manifestable in G iff La pVGq Ă

LF

`

DFR
G

˘

or, equivalently, iff Lω
a pVGq Ă Lω

F

`

DFR
G

˘

, where Ă is the strict inclu-
sion.

Proof 5 Lω
a pVGq Ć Lω

F pD
FR
G q ô Lω

F pD
FR
G q Ď LωpDNR

G q (from Lemma 4) ô
P pLω

F pGqq Ď P pLω
N pGqq (from Lemmas 2 and 3) ô @s P Lω

F pGq, Ds
1 P Lω

N pGq

P psq “ P ps1q ô @s P Lω
F pGq, Ds

1 P Lω
N pGq s ȷ s1 (from Definition 6) ô

␣Mω ô F is not manifestable (from Theorem 5). The proof is identical when
using finite trajectories and property M.

From this Theorem, it follows that the system in Example 11 is manifestable
as Figure 5.3 and Figure 5.5 show that Lω

F pD
FR
G qzLω

a pVGq “ to1o3o1o
ω
3 u.

Adapting the proof of Theorem 9 by using Theorem 6 instead of Theorem 5,
i.e., by reasoning on property Ms

ω (or equivalently Ms) instead of property Mω

(or equivalently M), one obtains:

Theorem 10 Given a system model G, a fault F is strongly manifestable in G

iff @sF P LpGq, LapVGq X P psF qΣ˚o Ă LF pD
FR
G q X P psF qΣ˚o or, equivalently,

Lω
a pVGq X P ps

F qΣω
o Ă Lω

F pD
FR
G q X P psF qΣω

o .

So, when manifestabilty requires only strict inclusion of the language LapVGq into
the language LF pD

FR
G q, strong manifestability requires that this strict inclusion

holds for all corresponding sub-languages made up of the words of both languages
having a given prefix equal to the observation of an arbitrary trajectory ending by
an occurrence of F . Conversely, to verify non-strong manifestability, it is enough
to find one fault trajectory sF such that there is equality of both sub-languages
made up of words of prefix P psF q: LapVGq X P ps

F qΣ˚o “ LF pD
FR
G q X P psF qΣ˚o .

Algorithm

Now, we give the pseudo-code as Algorithm 1 to verify manifestability, which
can verify diagnosability simultaneously.

Given the input as the system model G and the fault F , we first construct the
diagnoser (line 1) as defined by Definition 20. We then construct the fault and
normal refined diagnosers (lines 2-3) as defined by Definitions 21 and 22. Next, we
obtain the pair verifier VG (line 4) by synchronizing DFR

G and DNR
G . With DFR

G

and VG, we have the following verdicts:

94

Algorithme 1 : Manifestability and Diagnosability Algorithm
for DESs

Input : System model G; the considered fault F
1 DG Ð ConstructDiagnoser pGq;
2 DFR

G Ð ConstructFRDiagnoser pDGq;
3 DNR

G Ð ConstructNRDiagnoser pDGq;
4 VG Ð DFR

G }ΣoD
NR
G ;

5 if Lω
a pVGq “ ∅ then

6 return “F is diagnosable and manifestable in G”
7 else if Lω

a pVGq “ Lω
F

`

DFR
G

˘

(or, equivalently,
La pVGq “ LF pDFR

G q) then
8 return “F is neither diagnosable nor manifestable in G”
9 else

10 return “F is not diagnosable but manifestable in G”;

• if Lω
a pVGq “ ∅ (line 5), F is diagnosable and thus manifestable (line 6).

• if Lω
a pVGq “ Lω

F

`

DFR
G

˘

or, equivalently, La pVGq “ LF pD
FR
G q (line 7),

both nonempty necessarily, F is not manifestable and thus not diagnosable
(line 8).

• if Lω
a pVGq ‰ ∅ and if Lω

a pVGq Ă Lω
F

`

DFR
G

˘

or, equivalently, La pVGq Ă

LF

`

DFR
G

˘

(line 9), F is not diagnosable but manifestable (line 10).

Note that, as the infinite normal trajectories are identical in VG and in DFR
G (and

idem for finite trajectories), the condition Lω
a pVGq “ Lω

F

`

DFR
G

˘

is equivalent to
Lω pVGq “ Lω

`

DFR
G

˘

. Note also that Lω
F

`

DFR
G

˘

“ Lω
`

D1FR
G

˘

(resp., Lω
a pVGq “

Lω pV 1Gq) where D1FR
G is identical to DFR

G (resp., V 1G identical to VG), except
that the final states, for Büchi acceptance conditions, are limited to fault (resp.,
ambiguous) states.

Complexity

In algorithm 1, the complexity of any diagnoser construction is polynomial.
When we synchronise the fault and the normal refined diagnosers to obtain the pair
verifier, the complexity is polynomial in the number of system states. Finally, when
we check the manifestability condition, the language equivalence checking (line 7)
is known to be a PSPACE problem (even for infinite words). Thus, the total com-
plexity of algorithm 1 is PSPACE. This algorithm suggests that the manifestability
problem is more complex than diagnosability, for which a test of language empti-
ness is sufficient (line 5), which implies a total NLOGSPACE complexity (in fact it
is a result already known that checking diagnosability is NLOGSPACE-complete).
In fact, we have shown [38] that the manifestability verification problem itself is

95

PSPACE-complete by the reduction to it of rational language equivalence checking,
known to be PSPACE-complete.

Theorem 11 Given a system model G and a fault F , the problem of checking
whether F is manifestable in G is PSPACE-complete.

Proof 6 The complexity of Algorithm 1 is PSPACE. We show that the problem of
checking manifestability is PSPACE-hard. Let G1 “ pQ1,Σ, δ1, q

1
0q and G2 “ pQ2,

Σ, δ2, q
2
0q be two arbitrary (non-deterministic) automata on the same vocabulary

defining prefix-closed live languages. One can always assume that Q1 XQ2 “ H.
Based on G1 and G2, one can construct a new automaton, representing a sys-
tem model, G “ pQ,Σ Y tτ, F u, δ, q0q, where Q “ Q1 Y Q2 Y tq0u and δ “

δ1 Y δ2 Y tpq0, F, q
1
0q, pq0, τ, q

2
0qu, with Σo “ Σ, Σu “ tτu and Σf “ tF u. From

the construction of G, one has LpG1q “ P pLF pGqq and LpG2q “ P pLN pGqq.
From Lemmas 2, 3 and 4, one obtains LapVGq “ P pLF pGqq X P pLN pGqq. This
implies LpG1q X LpG2q “ LapVGq. From Theorem 9, one has LpG1q X LpG2q Ă

LpG1q ðñ F is manifestable in G, i.e., LpG1q Ď LpG2q ðñ F is not mani-
festable in G. So, rational languages inclusion testing boils down to manifestability
checking, which gives the result. Note that we could do exactly the same proof
using the languages of infinite words and again Theorem 9, and the fact that the
problem of checking non-deterministic automata equivalence on infinite words has
also been proved to be PSPACE-complete [89]. And note that the proof shows
also that checking strong manifestability is PSPACE-hard.

Let now consider verifying strong manifestability. It is obvious from Defini-
tion 19 that F is strongly manifestable in G iff each occurrence of F as a tran-
sition label is strongly manifestable in G. We can thus assume that there is only
one transition in G labeled by F , say pqF , F, q1F q. From Theorem 10, proving
non-strong manifestability of F in G is equivalent to find sF P LpGq such that
LF pD

FR
G q X P psF qΣ˚o Ď LapVGq X P psF qΣ˚o . In order to simplify the notations,

assume in this paragraph that the fault refined diagnoser DFR
G is obtained by the

delay closure with respect to Σo Y tF u, i.e., decide to keep the event F in DFR
G

and thus in VG too (this changes nothing to statement of Theorem 10). So, we
check the existence of sF P LF pD

FR
G q such that:

LF pD
FR
G q X sFΣ˚o Ď LapVGq X sFΣ

˚
o . (NSM)

Let tpqF , qiquiPI be the set of all states of VG (trimmed w.r.t. ambiguous states
co-accessibility) whose first component is qF (we omit to write associated fault
labels, N – and possibly also F if the F transition is part of a cycle – for qF and
N for the qi’s). Note that qF appears once among the qi’s. If the property (NSM)
is satisfied for some sF , then any extension of sF in LF pD

FR
G q has to appear as

an extension of sF in LapVGq, i.e., Lq1
F
pDFR

G q Ď
Ť

iPI Lpq1
F ,qiqpVGq, where LqpGq

denotes the set of words produced by G from state q, i.e., as if q was the initial state

96

of G. But this is only a necessary condition, not sufficient in general. Actually,
if corresponding extensions in VG need several pq1F , qiq as starting states, (NSM)
property to be satisfied requires that a common prefix s exists for all of them, i.e., a
common word in the associated languages LpVG, pqF , qiqq, where LpG, qq denotes
the set of words produced from paths from initial state to q in G, i.e., as if q was the
only final state (s will then necessarily be a prefix in LpDFR

G , qF q too). Finally, the
existence of sF verifying (NSM) is equivalent to the existence of J Ď I, such that:
Lq1

F
pDFR

G q Ď
Ť

iPJ Lpq1
F ,qiqpVGq and

Ş

iPJ LpVG, pqF , qiqq ‰ H. This equivalence
provides an algorithm for checking non-strong manifestability, which boils down
to a finite number of tests of language equivalence and language emptiness. In
the worst case, this algorithm may require testing all subsets J of I, thus giving
an EXPTIME complexity in the size of G. Nevertheless, under the particular
assumption that there is no cycle in G before the occurrence of F or containing
F , the system has then only a finite number of fault occurrences, i.e., of possible
prefixes sF , as the language LpDFR

G , qF q is finite. Processing each word sF of
this language separately, one has just to do each time one language equivalence
test between the fault refined diagnoser and the pair verifier limited to sF , which
gives a PSPACE complexity for the corresponding algorithm. This proves that
checking strong manifestability is a PSPACE-complete problem for the class of
systems verifying this assumption.

5.2.3 . Experimental Results

We have theoretically proved the correctness of our Algorithm. To show its fea-
sibility, we implemented Algorithm 1, including emptiness and equivalence check-
ing, on a Mac OS laptop with a 1.7 GHz Intel Core i7 processor and 8 Go 1600
MHz DDR3 memory, and applied it on more than one hundred examples, including
literature and hand-crafted ones. The latter were built to show the scalability, as
the former are very small in size.

LitSys |S|{|T | |S|{|T |pPV q Time Verdict HCSys |S|{|T | |S|{|T |pPV q Time Verdict
Ex.12 8/10 4/4 15 SManifes h-c1 22/24 18/18 32 SManifes
[85] 16/23 7/11 39 Manifes h-c2 36/39 74/77 90 Manifes
[73] 16/20 7/9 25 Manifes h-c3 87/90 63/68 105 Manifes
[54] 4/7 3/3 12 SManifes h-c4 52/57 32/30 63 SManifes
[100] 15/21 11/16 52 SManifes h-c5 57/69 32/37 78 SManifes
[84] 11/15 2/1 16 Diagno h-c6 509/570 79/81 132 Manifes
[82] 8/12 8/11 53 NManifes h-c7 986/1032 870/861 312 NManifes

Table 5.1: Experimental results of manifestability checking for DESs

Some of our experimental results are shown in Table 5.1. On the left of the
table are examples (LitSys) including our Example 12 with illustrative examples
of other papers. On the right are hand-crafted examples (HCSys) constructed by
extending the examples (LitSys), while focusing on non-diagnosable examples. For
example, for a manifestable system, an arbitrary automaton without fault is added

97

such that at least one faulty trajectory can always manifest itself (and obviously
critical pairs are preserved as nothing is deleted from the system model). We give
the number of states and transitions of the system (|S|{|T |), of the pair verifier
(|S|{|T |pPV q), as well as the execution time (in milliseconds) and the verdicts
including Manifes(tability), Diagno(sability), N(on-)Manifes(tability), which show
the strongest property satisfied by the system, strong level described by Theorem 7.

From our experimental results, it appears that the algorithm execution time
depends on the size of the system and the size of the pair verifier. We can see that
the original HVAC system in [82] (as well as its extension h-c7) is not manifestable.
It is thus necessary to go back to design stage to revise the system model. Also, we
employ the construction in the proof of Theorem 11 as hand-crafted example h-c7
to achieve a worst case. Now, for manifestable but not diagnosable systems, it is
more interesting to study time bounded-manifestability by taking time constraints
into account, making sure to detect the fault in bounded time after its occurrence.
This is the subject of the next section.

5.3 . Manifestability Analysis for Real-Time Systems

In the previous section, we proposed a new system property called manifesta-
bility and designed an algorithm to check manifestability for discrete-event systems
whose complexity is PSPACE. In this section, we extend our approach to real-time
systems modeled by timed automata. To do so, we redefine manifestability by
taking into account time constraints. We prove that the problem is undecidable
for general timed automata but we define a particular subclass of them for which
it is PSPACE.

5.3.1 . Motivation/Introduction

In real life, there are many complex time-dependent systems, i.e., real-time
systems, where explicit time constraints must be taken into account when analyzing
the behavior of the system. These time constraints naturally exist in real-life
systems, such as transmission delays, response times, etc., and therefore cannot
be neglected considering their impact on some properties, such as manifestability.
For example, in an untimed DES, if there are two ambiguous behaviors, by adding
explicit time constraints, e.g., the delay between some two successive observable
events is bounded, we can easily distinguish them. However, such time constraints
cannot be expressed in classical models such as automata and Petri nets, so we
choose to adopt timed automata (TA) as real-time system models to analyze
manifestability thanks to their formal semantics. In timed automata, quantitative
properties of delays between events can easily be expressed. The execution traces
of TA are modeled by timed words, i.e., sequences of events associated with the
time at which they occur. TA are thus considered as acceptors for the languages of

98

timed words. In this section, we thus extend our approach to TA for manifestability
problem.

5.3.2 . Manifestability Property for RTSs

As seen in section 2.2.2, timed automata constitute a framework for modeling
and verifying RTSs. We thus redefine manifestability for timed automata.

Definition 24 (Manifestability of TA) F is manifestable in a TA A if

Dρ P LF pAq,

@ρ1 P LpAq, P
`

ρ1
˘

“ P pρq ñ F P ρ1.

Note that we could also adopt a weaker definition of manifestability that allows ρ
to be an arbitrary time-finite run, i.e., not only a finite run in LF pAq but also a
Zeno run in Lω

F pAq, but as Zeno runs are usually non-desirable behaviors due to
modeling errors, we adopt this stronger version excluding manifestability via Zeno
runs only. By using Definition 9, a straightforward rephrasing of Definition 24 gives
the following result, which is similar to Theorem 5.

Theorem 12 A fault F is manifestable in a TA A iff the following condition is
satisfied (where ff∆ denotes a timed critical pair, see Definition 9):

pMtq Dρ P LF pAq, Eρ
1 P LN pAq, ρ fftimepρ,F q ρ

1.

In the same way, Definition 19 can be adapted to define strong manifestability of
TA.

Definition 25 (Strong Manifestability of TA) Given a TA A and a fault F :

1. given ∆ P R,F is strongly ∆-manifestable in A if

@ρF P LpAq, Dt P LpAq{ρF , timeptq ď ∆,

@ρ1 P LpAq, P pρ1q “ P pρF tq ñ F P ρ1.

2. F is strongly manifestable in A if

D∆ P R such that F is strongly ∆-manifestable in A.

Similar to Theorem 6.1, we obtain the following result.

Theorem 13 Given a TA A, a fault F and ∆ P R,F is strongly ∆-manifestable
in A iff the following condition is satisfied:

`

Mts
∆

˘

@ρF P LpAq, Dt P LpAq{ρF , time ptq ď ∆,
Eρ1 P LN pAq, ρ

F t fftime ptq ρ
1.

99

Therefore, in a similar way as for DESs, verifying manifestability for TA consists
in checking the existence of a faulty trajectory that can be distinguishable from
all normal ones. But in timed automata, we must consider the occurrence time
of observable events, i.e., a non-manifestable DES possibly becomes manifestable
by adding some time constraints such that at least one faulty trajectory can be
distinguishable from normal ones thanks to the different occurrence time of the
same observable events.

Example 13 Consider the system modeled by the TA in Figure 5.6. If there were
no time constraints, that is considering just the underlying automaton modeling a
simple DES, we can see it would not be manifestable since all faulty trajectories
would have the same observations as the normal ones, i.e., o1o2o3˚. With the
addition of time constraints as shown on the figure, at least one faulty timed
trajectory can manifest itself and be distinguished from the normal one, in such
a way that the system, now a timed automaton, becomes manifestable. More
precisely, the faulty trajectory with the event u1 can be distinguished from the
normal one since the time duration between the successive observable events o1
and o2 is not larger than 3 time units for the former, whereas it is larger than 3
time units for the latter. When the time elapsed between the observations of o1
and o2 is not larger than 3, we can be sure a fault has occurred.

q0

q1 q2 q4 q5

q3

q6 q7

F

o1; c :“ 0

c ď 1;u1 0 ă c ď 3; o2

c ą 3; o2 o3

u2 o1; c :“ 0 c ą 3; o2

o3

Figure 5.6: A real-time system model TA.

It is therefore clear that the addition of time constraints can sometimes turn
a non-manifestable system into a manifesatble one by distinguishing temporally
a faulty trajectory, which cannot manifest itself in the untimed setting, from all
normal trajectories.

5.3.3 . Undecidability and Decidability Results

From a given TA A modeling a real-time system, we first construct its corre-
sponding fault diagnoser DF

A as Definition 21 and refined normal diagnoser DNR
A

as Definition 22, then synchronise DF
A with DNR

A based on the set of observable
events to obtain the fault pair verifier V F

A as Definition 23 (it is not necessary
to do the refinement of DF

A ; the reason for limiting as much as possible the use
of the refinement process for timed automata is explained just below). We also

100

define the final states in DF
A and V F

A as the faulty states and the ambiguous states,
respectively. Thus, manifestability verification consists in checking whether there
does exist an accepted timed trajectory in DF

A that is not accepted by V F
A . The

reason is that each ambiguous timed trajectory in V F
A corresponds to a faulty timed

trajectory in the original system, for which there exists at least one normal timed
trajectory with the same observation, i.e., such that the fault cannot manifest
itself.

q0 N

q0 N

q1 F

q0 N

q2 F

q7 N

q3 F

q7 N

q4 F

q5 N

q5 F

q5 N

q0 N q1 F q2 F q3 F q5 F

q4 F

F o1;
c1 :“ 0, c2 :“ 0

c1 ď 1;
u1

0 ă c1 ď 3 ^ c2 ą 3;
o2

c1 ą 3 ^ c2 ą 3;
o2

o3
o3

F o1;
c :“ 0

o3
c ď 1;
u1

0 ă c ď 3;
o2

o2

c ą 3;
o3

o3

Figure 5.7: The fault pair verifier V F
A for the system whose model is

depicted in Figure 4.1 (top); the fault diagnoser DF
A (bottom).

Example 14 For the example depicted in Figure 5.6, V F
A and DF

A are shown in
Figure 5.7. Since we synchronize two timed trajectories in V F

A , their corresponding
clock variable c is distinguished by renaming as c1 and c2 [94]. Since the transition
in V F

A following u1 can never be fired due to its clock constraints, any timed
trajectory of DF

A containing unobservable event u1 (and o3) is not accepted by
V F
A , which proves that F is manifestable.

The problem in the general case is that, to construct DNR
A from DN

A , we
are obliged to rest on the delay closure operation, i.e., on removing unobservable
events or equivalently removing ϵ-transitions. But it is known that this is not always
possible. Actually, it has been proved [17] that, contrary to the case of FSM,
ϵ-transitions strictly increase the power of TA, if there is a self-loop containing ϵ-
transitions which reset some clocks. However, ϵ-transitions can be removed if they
do not reset clocks, in order to obtain a TA accepting the same timed language.
More generally, it has been proved [44] that a TA such that no ϵ-transition with
non-empty reset set lies on any directed cycle can be effectively transformed into a
TA without ϵ-transitions that accepts at least the timed language of the initial TA
and whose non-Zeno accepted timed words are the same with those accepted by the
initial TA. In our study, since we do not exclude Zeno runs, we will assume simply
that in the normal diagnoser DN

A , there is no clock reset for the transitions with
unobservable events. Other unobservable events are not handled as ϵ-transitions.

101

Example 13 fulfills this assumption since clock c is not reset in transition labeled u2
(but it could be reset in transition labeled u1, which does not exist in DN

A). Thus,
in our case, we adopt the method proposed in [17] to obtain DNR

A by removing
unobservable events in DN

A .

Assumption 5 (Limited clock reset TA) Any transition in A from a state q

reachable from q0 by a normal (i.e., not containing F) execution, and associated
to an unobservable normal event σ, is of the form pq, g, σ,∅, q1q, i.e., has no clock
reset.

Assumption 5 formally states that in our study there is no clock reset for
transitions with unobservable events in DN

A . Thus, we can further extend Theorem
9 to TA from the construction of the two structures DF

A and DNR
A .

Theorem 14 Given a real-time system model A with limited clock reset, a fault
F is manifestable in A iff La

`

V F
A

˘

Ă LF

`

DF
A

˘

, with V F
A “ DF

A}ΣoD
NR
A .

Now, we can check manifestability as checking inclusion between the languages
defined by the two TA V F

A and DF
A . However, it is well-known that this problem

is undecidable for general TA [5]. Actually, in a similar way to that in the dis-
crete framework, we can reduce the inclusion problem of TA to the manifestability
problem of TA, which proves that checking manifestability in TA is undecidable.

Theorem 15 Given a TA A and a fault F , the problem of checking whether F is
manifestable in A is undecidable.

Proof 7 Reducing the undecidable inclusion problem of TA to the manifestability
problem is achieved by adapting to TA the construction in the proof of Theo-
rem 11. Let A1 “ pQ1,Σ, X1, δ

X1
1 , q10, I1q, A2 “ pQ2,Σ, X2, δ

X2
2 , q20, I2q be

two arbitrary (non-deterministic) time living TA on the same vocabulary defin-
ing prefix-closed timed languages. One can assume that Q1 X Q2 “ H. Based
on A1 and A2, one can construct a new TA representing a system model, A “

pQ,ΣY tτ, F u, X, δX , q0, Iq, where Q “ Q1 YQ2 Y tq0u, X “ X1 YX2 Y tx0u,
δX “ δX1

1 Y δX2
2 Ytpq0, x0 “ 0, F,H, q10q, pq0, x0 “ 0, τ,H, q20qu and I “ I1Y I2,

with Σo “ Σ, Σu “ tτu and Σf “ tF u. A satisfies the assumption of lim-
ited clock reset. From the construction of A, one has LpA1q “ P pLF pAqq and
LpA2q “ P pLN pAqq. In the same way as the proof of Theorem 11, one gets finally
LpA1q X LpA2q Ă LpA1q ðñ F is manifestable in A, i.e., LpA1q Ď LpA2q ðñ

F is not manifestable in A. So, languages inclusion testing for TA boils down to
manifestability checking of TA. The proof shows also that checking strong mani-
festability is undecidable.

102

Since the manifestability problem of TA is undecidable, we now analyze a sub-
class of TA whose manifestability problem is decidable. The idea comes from
the fact that the inclusion problem of deterministic TA is PSPACE-complete [5].
Where, for a TA A, we say it is deterministic whenever given two distinct dis-
crete transitions from the same state with the same label pq, g1, σ, r1, q11q and
pq, g2, σ, r2, q

1
2q, it holds that g1^g2 is unsatisfiable, i.e., there is no common time

where one or the other could be indifferently fired.

Definition 26 (Single-Silent Deterministic TA) Given a TAA with limited clock
reset, we call it Single-Silent Deterministic TA (SS-DTA), if A is deterministic and,
from any state q reachable from q0 by a normal execution, if a transition by an
unobservable normal event exists from q, then it is the only one normal transition
from q, i.e., if pq, g1, σ1, r1, q11q and pq, g2, σ2, r2, q12q are two different transitions
with σ1, σ2 ‰ F , then σ1 P Σo and σ2 P Σo.

The TA of Figure 5.6 is an SS-DTA. We can see that for an SS-DTA A, as A
is deterministic, so are both its normal diagnoser DN

A and its fault diagnoser DF
A .

The condition of Definition 26 also implies that any unobservable normal transition
in DN

A is the only one transition issued from its source state. And with Assumption
5, it is easy to show that DNR

A (obtained by deleting unobservable events in DN
A)

keeps deterministic. Since both DNR
A and DF

A are deterministic, then V F
A obtained

from their synchronization is also deterministic (this can be verified for the example
in Figure 5.7).

Theorem 16 Given an SS-DTA and a fault F, its manifestability problem is PSPACE-
complete.

By adopting a similar way as for the proof of Theorem 11, Theorem 16 can be
proved by reducing the inclusion problem of two deterministic TA to manifestability
problem of an SS-DTA (note that Assumption 5 and the second condition of
Definition 26 are trivially satisfied as τ is the unique unobservable normal event).

5.3.4 . Encoding Bounded Manifestability

In this section, we will show how to verify the manifestability property of a SS-
DTA by encoding it into SMT formula. As it is already known that the problem
of deciding whether a TA is determinizable is actually undecidable [47], we do not
consider the problem of deciding if an arbitrary TA can be transformed into a SS-
DTA. However, there exist some subclasses of TA that are determinizable by using
for example the algorithm proposed in [10]. To make easier SMT encoding for the
inclusion checking problem, we add to the deterministic fault pair verifier V F

A an
additional non-final state sink, such that V F

A is deterministic and complete. This
is done by adding transitions from other states to the state sink and a self-loop for

103

state sink (see [4] for details, in the case where invariants are True). By Theorem
14, checking manifestability of an SS-DTA A is equivalent to finding a faulty
timed trajectory ρ, which is accepted by DF

A , such that the timed trajectory of V F
A

identical to ρ (which exists as V F
A is complete and is unique as V F

A is deterministic)
is not accepted by V F

A . Thus we can check manifestability via finding a timed
trajectory which is accepted by DF

A and rejected by V F
A . To code this problem as

a (finite) logical formula whose satisfiability will be determined by bounded model
checking, it is necessary to bound the length of the timed trajectories considered.
Thus given an input integer parameter k, only timed trajectories ρ such that |ρ| ď
k will be considered. Now, for the end-user, it is important that, in case of
manifestability, the fault will manifest itself after an acceptably long time. That
is, his requirement will not be the length k, but the time delay △ indicating a
time upper-bound after its occurrence for the fault to manifest itself (similar to
the concept of △-manifestability used in Definition 25.1). In general, there is no
relationship between k and △ among timed trajectories (except that, for a given
timed trajectory, the two parameters vary in the same sense), as a longer timed
trajectory may have a smaller time, thus the usage of the method is as follows: one
checks if it exists a timed trajectory of length at most k (input of the algorithm)
and of time after fault at most △ (input from the end-user), in which case the
requirements of the end-user are realized; otherwise one repeats the process with
a greater k. One can at any step query without the parameter △ in order to get
back a delay △1 (greater than △), proving the manifestability in time △1 after the
fault, and see if it could be acceptable by the end-user. Obviously, if no theoretical
length upper-bound exists for manifestability, the absence of solution will not be a
guarantee that the fault is not manifestable.

Encoding (deterministic) TA

We now show how to logically encode bounded manifestability in SMT, i.e.,
checking the existence of a timed trajectory (of length at most k and postibly
of time after fault at most △) accepted by DF

A and rejected by V F
A , such that

the satisifiablity of the logical formula is equivalent to the existence of such a
trajectory, which witnesses manifestability of the system. If the result is satisfiable,
a model is returned, which actually provides such a timed trajectory. As shown in
Section 2.2.2, we can assume that time and discrete transitions alternate in any
timed trajectory. Hence, we rewrite pq, vq t

Ñ pq, v2q
σ
Ñ pq1, v1q, where t P R and

σ P Σ, as pq, vq t,σ
ÝÑ pq1, v1q. We consider this kind of combined time-discrete

transition during the SMT encoding. Accordingly, a timed trajectory of length k
is a finite sequence pt0, σ0q , pt1, σ1q , . . . , ptk´1, σk´1q, where ti P R, σi P Σ, and
@i, 0 ď i ď k ´ 1, pqi, viq

ti,σi
ÝÑ pqi`1, vi`1q is allowed by A. We can assume that

the timed trajectory ends by a time transition, that we will represent by setting
σk´1 “ ϵ as a silent event.

104

Example 15 For the example depicted in Figure 5.6, one 4-length timed trajectory
is ρ “ p1.5, u2q, p3, o1q, p5, o2q, p1, ϵq that is witnessed by the feasible execution
pq0, c “ 0q

1.5,u2
ÝÑ pq6, c “ 1.5q

3,o1
ÝÑ pq7, c “ 0q

5,o2
ÝÑ pq5, c “ 5q

1,ϵ
ÝÑ pq5, c “ 6q.

Given a TA A and a fault F , to check its manifestability, we first construct
the fault pair verifier V F

A and the fault diagnoser DF
A from A as described before.

We denote them V F
A “

´

Q̂,Σ, X̂, δ̂X , q̂0, Î
¯

and DF
A “

`

Q,Σ, X, δX , q0, I
˘

, both
with Σ, the set of events of A. Then similar to Section 2.5.5, we encode the
essential static parts in V F

A and DF
A as follows.

• The set of states is encoded by positive integers with the function EQ : QÑ

QE “ t1, ..., }Q}u (resp., ÊQ : Q̂ Ñ Q̂E “ t1, ..., }Q̂}u, where QF Ď QE

(resp. Q̂F Ď Q̂E) codes the final states, i.e., QF corresponds to the set of
faulty states (resp., Q̂F to the set of ambiguous states).

• The set of events for both TA is encoded by positive integers EΣ : Σ Ñ

ΣE “ t1, ..., }Σ}u, where ΣE “ ΣE
o Z ΣE

u Z ΣE
f , corresponding to Σ “

Σo Z Σu Z Σf . The normal events Σn “ Σo Z Σu are encoded by integers
from 1 to }Σn} and fault events by integers from }Σn} ` 1 to }Σ}.

• The set of symbolic transitions is encoded by a set of tuples EδX : δX Ñ

δE “ pQEˆCpXqˆΣEˆ2XˆQEq withEδX pq, g, σ, r, q
1q “ pEQpqq, g, EΣpσq,

r, EQpq
1qq. A similar way to define ÊδX on δ̂X for δ̂E .

Encoding Bounded Manifestability

Given k and ∆, the essential point is to define a formula Ψk
∆ whose satisfiability

is equivalent to the existence of a timed trajectory ρ with |ρ| “ k and time(ρ, F q ď
∆ which is accepted by DF

A and rejected by V F
A . In order to describe the formula

Ψk
∆ as intuitively as possible, we present it with different separate parts. The

variables used in the encoding of the timed trajectory are similar to those presented
in 2.5.6: those equipped with a hat are associated to V F

A while those without a
hat are attached to DF

A , except for variables representing the events and the time
periods which are now the same, say, without a hat (and there is no need here of
global clock).

• Initialization. The two timed trajectories should start in the initial state with
the initialization of all clock variables. We set initial state as q0, initial clock
value as 0.

– For the timed trajectory in DF
A :

ΦInit :“ p
Ź

xPX

vx0 “ 0q ^ ps0 “ EQpq0qq ^pv
F
0 “ ´1q.

– For the timed trajectory in V F
A :

105

Φ̂Init :“ p
Ź

xPX̂

v̂x0 “ 0q ^ pŝ0 “ ÊQpq̂0qq.

• Well-formedness of timed trajectories. Three points have to be verified
for well-formedness: 1) each time period between two discrete transitions
should be non-negative; 2) the values of integer-valued variables representing
all events should be in t1 . . . }Σ}u; 3) the values of variables representing all
states should be in t1 . . . }Q}u for DF

A and in t1 . . . }Q̂}u for V F
A . As it is

about the same timed word, it is enough to check the first two points only
once.

– For the timed trajectory in DF
A :

ΦWF :“ p
k´1
Ź

i“0
0 ď tiq ^ p

k´1
Ź

i“0
1 ď ei ^ ei ď }Σ}q

^p
k´1
Ź

i“0
1 ď si ^ si ď }Q}q.

– For the timed trajectory in V F
A :

Φ̂WF :“ p
k´1
Ź

i“0
1 ď ŝi ^ ŝi ď }Q̂}q.

• Acceptance of the timed trajectory in DF
A and rejection of the same timed

trajectory in V F
A . We formalize here that the timed trajectory represented by

values for the predefined variables without hat should be accepted by DF
A ,

where final states are faulty ones. And the timed trajectory represented by
those for variables with hat should be rejected by V F

A , where final states are
ambiguous ones. Precisely, in each timed trajectory, each pair of adjacent
states has to be connected by a transition that is allowed in the corresponding
TA. The last state in the trajectory in V F

A is not a final one, while the last
state in DF

A is a final one with the length bound k.

– For the timed trajectory in DF
A :

ΦAcc :“ p
k´1
Ź

i“0
p

Ž

psi,g,ei,r,si`1qPδE
rrgssi ^ TPr

i qq ^ p
Ž

qPQF

ŝk “ qq.

Here rrgssi represents that the clock valuations after the i-th step in
this timed trajectory, i.e., vxi ` ti, should satisfy the guard g, such as:

* rrx ’ cssi :“ pv
x
i ` tiq ’ c.

* rrx´ y ’ cssi :“ pv
x
i ´ v

y
i q ’ c.

* rrg1 ^ g2ssi :“ rrg1ssi ^ rrg2ssi .

TP r
i in the above expression formalizes the time progression, i.e., time

transition, by resetting clocks in the subset r and by increasing all
other clocks, including the time elapsed from the first fault occurrence
if triggered, with the corresponding period ti:

106

TPr
i :“ p

Ź

xPr
vxi`1 “ 0q ^ p

Ź

xPpXzrq

vxi`1 “ vxi ` tiq

^p0 ď vFi ñ vFi`1 “ vFi ` tiq.

– For the timed trajectory in V F
A :

Φ̂Rej :“ p
k´1
Ź

i“0
p

Ž

pŝi,ĝ,ei,r̂,ŝi`1qPδ̂E
rrĝssi ^yTP

r

i qq ^ p
Ź

qPQ̂F

ŝk ‰ qq.

In a similar way, rrĝssi for the timed trajectory in V F
A is encoded as

follows:

* rr{x ’ cssi :“ pv̂
x
i ` tiq ’ c.

* rr {x´ y ’ cssi :“ pv̂
x
i ´ v̂

y
i q ’ c.

* rr{g1 ^ g2ssi :“ rrĝ1ssi ^ rrĝ2ssi.

The following is the time progression for this timed trajectory:

yTP
r̂

i :“ p
Ź

xPr̂

v̂xi`1 “ 0q ^ p
Ź

xPpXzr̂q

v̂xi`1 “ v̂xi ` tiq.

• The timed trajectory contains a fault occurrence (with one fault type, the
fault occurrence coding can be simplified as }Σn} ` 1 “ ei). Furthermore,
after the first occurrence of a fault at step i, the value of the variable vFi`1 is
assigned to 0 to trigger counting the time elapsed from this fault occurrence
(otherwise it stays equal to ´1). Finally, we check whether the time elapsed
after fault is at most ∆ (in absence of given ∆, nothing is added).

Φ∆ :“ p
k´1
Ź

i“0
pvFi “ ´1ñ pp}Σn} ă ei ñ vFi`1 “ 0q

^pei ď }Σn} ñ vFi`1 “ ´1qqqq ^ v
F
k ď ∆.

Now the formula Ψk
∆ whose satisfiability witnesses manifestability (in time after

fault at most ∆) is presented as follows:

Ψk
∆ :“ ΦInit ^ Φ̂Init ^ ΦWF ^ Φ̂WF ^ ΦAcc ^ Φ̂Rej ^ Φ∆.

Note that for the sake of simplicity, in the proposed formula, there is no state
invariant. But considering timed automata without state invariants does not entail
any loss of generality as the invariants can be added to the guards [56]. And,
if really wanted, the formula Ψk

∆ can be extended to handle such invariants (by
verifying that the clock valuations in each state do not violate the corresponding
invariant, which has to be done only when entering the state and leaving it).

107

5.3.5 . Experimental Results

In this section, we provide some experimental results to show the feasibility of
our approach to check manifestability of TA. We realized a prototype implemen-
tation in Python by using the SMT solver Z3. The program was executed on the
same machine as for the first set of experiences shown in Section 5.2.3.

Given an SS-DTA A, we construct its fault pair verifier V F
A as described in

Section 5.3.3, which is done at the syntactic level. Then, based on DF
A and V F

A ,
we encode the formula Ψk

∆ as described in Section 5.3.4. The satisfiability of Ψk
∆,

i.e., the construction of a corresponding adequate timed trajectory, is checked by
Z3. With a bounded model checking process, we test for different values of the
bound k (length of the trajectory and thus measure of the size of the formula).
We report on different versions of three literature examples, including Example 13
which is ex00, that are modified by adding different temporal constraints such that
we have both manifestable and non-manifestable models for each of them. Note
that some original literature examples are finite state automata. For example,
ex01 is obtained from ex00 by changing the guard from q3 to q5 as c ě 3 and
becomes thus non-manifestable because no faulty timed trajectory can manifest
itself. Furthermore, considering that such literature examples are normally quite
small, to show the scalability, we have tested also some hand-crafted systems (hcs),
constructed in a partially random way based on the chosen literature ones without
changing the verdict. For example, ex02 is constructed based on ex00 by adding
a deterministic TA whose initial state is the destination state of an additional
transition with source state q2, remaining thus manifestable. Similarly, ex03 is
generated from ex01 by adding a deterministic TA without fault to the state q6,
and remains thus non-manifestable.

Table 5.2 shows part of our experimental results, where column 2 shows the
number of transitions of the corresponding system model, columns 3 and 4 the
upper bound k for the length of timed trajectories and the time upper bound ∆

after fault occurrence. Then one can find the size of the formula expressed by
its number of clauses, the required memory and the execution time in seconds
in the columns 5, 6 and 7, respectively. The final column shows the verdict for
each system, where SAT witnesses manifestability, while UNSAT implies non-
manifestability. For the manifestable systems, we try to give k and ∆ as small as
possible. A small ∆ is interesting from a practical point of view since it represents
how much time after the fault occurrence this fault manifests itself. Another
important observation is that for non-manifestable systems, we increase the value
of k as well as ∆ to show the scalability. From the size of the formulas, one can
see that SMT solvers can check for satisfiability relatively large formulas.

108

Sys |trans.| k ∆ |clauses| mem. time SAT?

ex00 10 5 1 668 3.98 0.09 SAT
ex01 10 430 10000 89423 18.28 859.72 UNSAT

ex02(hcs) 233 5 3 16781 8.76 1.78 SAT
ex03(hcs) 365 51 10000 510972 17.50 802.53 UNSAT
ex04(hcs) 1782 7 5 441563 29.27 573.36 SAT
ex05(hcs) 1620 15 1000 512308 30.22 1216.82 UNSAT
ex10 [54] 6 2 3 243 2.50 0.03 SAT
ex11 [54] 6 420 10000 118267 16.62 767.73 UNSAT
ex12(hcs) 287 3 5 6051 5.31 0.63 SAT
ex13(hcs) 381 56 20000 557073 18.21 721.15 UNSAT
ex14(hcs) 2030 7 5 36754 25.09 37.81 SAT
ex15(hcs) 2436 9 20000 521857 32.63 763.02 UNSAT
ex20 [59] 9 5 1 578 3.6 0.12 SAT
ex21 [59] 9 380 15000 127778 17.60 743.43 UNSAT
ex22(hcs) 296 5 2 16008 5.52 2.1 SAT
ex23(hcs) 315 32 20000 507318 17.53 933.21 UNSAT
ex24(hcs) 2120 5 3 120003 27.09 90.06 SAT
ex25(hcs) 1695 8 23000 423305 28.36 1545.20 UNSAT

Table 5.2: Experimental results of manifestability checking for SS-DTA

5.4 . Related Work

In [86, 87], the authors proposed different variants of detectability (such as
strong detectability) about state estimation. The system is detectable (resp.,
strongly detectable) if, based on a sequence of observations, one can be sure
about the state in which the system is for some given trajectory (resp., all trajec-
tories). They proposed a polynomial algorithm for strong detectability, for which
two different trajectories with the same observations witness its violation. How-
ever, to analyze detectability, they constructed a deterministic observer that has
exponential complexity with the number of system states. Our approach can be
adapted to handle state estimation by considering an ambiguous state as one that
contains different system states. Thus, we can improve their state estimation by
using the improved equivalence checking techniques (e.g., the approach of [25]
normally constructs a small part of the deterministic automaton). Furthermore,
we proved that the problem of manifestability itself is PSPACE-complete.

The authors of [1, 50] proposed an approach for weak diagnosability in a con-
current system by using Petri nets, i.e., impose a constraint of weak fairness by
disallowing the enabled transition to be perpetually ignored. The idea is to make
impossible some non-diagnosable scenarios in order to upgrade the diagnosability
level. They focused on how to get a more appropriate model, based on which a
polynomial solution like that for classical diagnosability can be applied.

Two definitions for stochastic diagnosability were introduced and analyzed
in [93], which are weaker than diagnosability. A-diagnosability requires that the

109

ambiguous behaviors have a null probability. While AA-diagnosability admits er-
rors in the provided information which should have an arbitrary small probability.
Then four variants of diagnosability (FA, IA, FF, IF) were introduced and studied
for different probabilistic system models [19, 20]. Different ambiguity criteria were
then defined according to different types of runs: for faulty runs only or for all runs;
for infinite runs or for finite sub-runs. Among them IF-diagnosability (for infinite
faulty runs) is the weakest one. Note that IF-diagnosability of a finite probabilistic
system is equivalent to A-diagnosability.

The authors of [54, 18] analyzed (safe) active diagnosability by introducing
controllable actions for (probabilistic) DESs, where the complexity of these prob-
lems was also studied. The idea is to design controllers (resp., label activation
strategies for probabilistic version) to enable a subset of actions in order to make
the system diagnosable (resp., stochastically diagnosable).

On the other hand, concerning TA, [26] analyzed the diagnosability problem
of TA by constraining the class of diagnosers considered and demonstrated that
it is 2EXPTIME-complete for a deterministic TA diagnoser, by using timed game
construction. Some works proposed to use SMT techniques to perform verification
on TA with quite good results. In [8], a SMT-based approach was proposed to
incrementally analyze TA for some special decidable problems, including universal-
ity for deterministic TA and language inclusion of a non-deterministic one into a
deterministic one. This is done by adopting bounded version for the sake of effi-
ciency. To verify reachability for TA, [61] introduced a SMT-based bounded model
checking to handle non-lasso-shaped infinite runs by integrating region abstraction.
More recently, attention was payed to verification of special failure models, called
Failure Propagation Models (FPMs), where failure propagation information is ab-
stracted from the original system model. The approach proposed in [27] presents
how to encode in SMT the diagnosability problem for a given timed FPM. It is
worth noting that TA are totally different from FPMs, the former being considered
as original system models, based on which FPMs can be abstracted. However,
this transformation is not trivial at all, as demonstrated in ([22, 23]. Then, we
have proposed in [55] a new approach to verify diagnosability directly on TA by
using SMT techniques, which provides an alternative to systems for which the
abstraction to a FPM is not convenient.

5.5 . Comparison with Opacity

A very close research field worth comparing in this dedicated section is the
opacity analysis of discrete event systems, introduced in 2005, which has become
a very fertile field of research over the last decade, driven by safety and privacy
concerns in network communications and online services (see [58] for a survey). A
system is opaque if an external observer (the intruder) is unable to infer a “secret”
about the system behavior, i.e., if for any secret behavior, there exists at least one

110

other non-secret behavior that looks the same (for observation) to the intruder. In
our context, if we consider the occurrence of a fault as the secret, and thus faulty
trajectories as secret behavior and normal trajectories as non-secret behavior, then
intuitively fault manifestability and opacity are dual concepts, each one being in
some sense the negation of the other. But, as there are various notions of opacity
and as fault occurrence is a specific type of secret, the various concepts and their
relationships have to be studied carefully.

For DESs, opacity properties are classified into two families: language-based
opacity (LBO) and state-based opacity (SBO), depending if a language or a set
of states is the secret. The closest to fault manifestability is LBO, which is not
surprising as it has been already shown in [66] that related properties such as
observability, diagnosability and detectability can all be reformulated as opacity.
Indeed, defining, for a system model G with fault F , the secret language LS as
LF pGq and the non-secret language LNS as LN pGq, then the strong opacity of
LS with respect to LNS and P , defined in [66] as any word of LS has same
projection by P that some word of LNS , is exactly equivalent to the negation of
F manifestability. Actually, manifestability is directly related to a special case of
opacity, called secrecy [9]. A language property of a system is said strongly secret
if it is strongly opaque with respect to its complement. Considering to be faulty
as property, i.e., considering as language the faulty trajectories, we obtain that
strong secrecy is equivalent to the negation of manifestability. As checking strong
secrecy has been proved to be PSPACE-complete [31], it results that checking
manifestability is at most PSPACE (actually also PSPACE-complete as we proved,
and it is the same for strong opacity).

A smoother LBO property, named weak opacity, is also defined in [66] as some
word of LS has same projection by P that some word of LNS . And, analogously,
weak secrecy for a property is defined as its weak opacity with respect to its com-
plement (i.e., LNS “ LpGqzLS). It is proved in [105] that checking weak opacity
is polynomial. But this concept of weak secrecy is not pertinent in the context
of fault manifestability, as its negation would mean that any faulty trajectory is
distinguishable from all normal trajectories, which never happens (any trajectory
ending by a first occurrence of the fault cannot be distinguished from its normal
longer strict prefix). Nevertheless, changing slightly the definition of LS as faulty
trajectories with at least one observable event after the fault occurrence, then the
negation of weak secrecy would be exactly 1-step diagnosability, i.e., each occur-
rence of the fault is diagnosable from the first observation after its occurrence,
which is a very strong property. Our strong manifestability is actually much more
smooth, while having no studied equivalence in opacity. Indeed, the negation of
strong manifestability means that it exists a trajectory sF ended by the fault F
such that any trajectory with prefix sF remains secret with respect to normal tra-
jectories and P (i.e., has same observation that some normal trajectory). Thus this
particular secrecy does not concern any faulty trajectory as strong secrecy or some

111

faulty trajectory as would do weak secrecy, but any faulty trajectory having some
given minimal faulty prefix. One points here a specificity of fault manifestability
with respect to general secrecy or opacity properties, i.e., by construction the secret
language LS considered is suffix-closed in LpGq (and thus LNS is prefix-closed),
expressing that the faults we consider are permanent.

Different in its approach, SBO, introduced by [78] for automata, relates to the
intruder ability to infer that the secret is or has been in a given secret state or set
of states. Depending on the nature of the secret set, different SBO properties have
been defined [58]. Thus one can distinguish among others Current-State Opacity
(CSO), if the intruder can never infer, from its observations, whether the current
state of the system is a secret state or not (i.e., for every trajectory that leads
to a secret state, there exists another trajectory with same observation leading to
a non-secret state) and Initial-State Opacity (ISO), if the intruder is never sure
whether the system’s initial state was a secret state or not (i.e., for every trajectory
that originates from a secret initial state, there exists another trajectory with same
observation originating from a non-secret initial state). Both CSO and ISO have
been proven to be PSPACE-complete and transformation mappings between LBO,
CSO and ISO have been studied in [99]. Note that our approach can be adapted
by duality in a very straightforward way to analyze ISO, which can be considered as
a special case of manifestability : it is enough to add an initial state and transitions
from this new initial state to the previous initial states, labeled with the fault
event for those who are secret and with an unobservable normal event for those
who are non-secret. However, the approach proposed in [81] to analyze ISO
requires space complexity that is exponential in the number of states of the given
automaton, which is hence improved by our method. Regarding CSO, we may have
the following constatation: if we define secret states either as all states reachable
by a faulty trajectory or those states that are destination states of a fault event,
CSO does not apply to manifestability analysis (in particular, in CSO, a trajectory
leading to a secret state may be normal).

In fact, most SBO properties are to mask the critical moments of the system,
such that they cannot be revealed immediately to an external observer, and do not
consider the system behavior once it has exited a secret state (in particular, the set
of secret states is not required to be stable). Actually, the more general problem
to keep secret the fact the system was in a secret state a few steps ago has been
studied under the name of K-step opacity [78, 77], i.e., for every trajectory that
leads to a secret state and every extension of it with at most K observable events,
there exists another trajectory with same observation leading to a non-secret state
with an extension with same observation that the previous extension (thus CSO is
0-step opacity). It has been proven to be NP-hard and was extended to infinite-
step opacity [79, 77, 80, 102], proven to be PSPACE-hard. Note that here the goal
is to mask a secret state by a non-secret state at the same place in the sequence of
observations, which is insufficient in general to prevent an intruder for discovering

112

that a secret state was crossed at some place during the last K observations.
To avoid this, a language-based translation of K-step opacity is suggested in [77]
as trajectory-based K-step opacity, a stronger property ensuring that an intruder
cannot determine whether the system has reached a secret state at any point during
the last K observations (independently of its exact place). Actually, it looks to
be identical to K-step strong opacity, introduced later in [46] to express that, for
each trajectory, there exists a trajectory with same observation that never crossed
a secret state during the last K observations. But again the dual notion, i.e., the
presence of a secret sate in the last K observations necessarily manifests itself,
is different from our strong k-manifestability, i.e., any fault event manifests itself
in at least one of its future in at most k steps (could be as well k observations)
after its occurrence. This is because our approach of fault manifestability, as fault
diagnosability, is event-based and not state-based and thus the "faulty" character
of a state is not related to that state but to the way it can be reached. In particular,
a same state can be reached by a faulty trajectory and a normal one, i.e., a normal,
so non-secret, trajectory may contain secret states. In a state-based framework of
faulty systems, i.e., if a fault was characteristic of a state and possibly intermittent
(i.e., the set of faulty states is not required to be stable), then there would exist a
duality worthwhile to study between fault manifestability and SBO.

Opacity analysis for TA has been studied (almost exclusively) in [30], where
the (language-based) opacity property for a secret timed language S with respect
to a TA A and P is defined as the property that, for any run, it exists a run with
same observation that does not belong to S. A state-based opacity property, called
L-opacity is also defined, where a set SL of secret locations is said to be opaque
with respect to A and P if, for any run, it exists a run with same observation whose
last location reached does not belong to SL. L-opacity problem is proven to be
undecidable, not only for general TA but also for DTA and even for the subclass of
event-recording automata (ERA), where each clock is associated with an event and
is reset when this event occurs. It is then shown that opacity can be reduced to
L-opacity, with the consequence that opacity problem is undecidable even for ERA
with secrets given by ERA. In the context of fault manifestability for a TA A, taking
for S the language of faulty runs, we obtain that the opacity of S is equivalent to
the negation of manifestability as we defined it. So, our undecidability result for
checking manifestability of TA, for which we gave a direct proof, can be obtained
by adapting the proof in [30]. In [98] the language-based opacity problem for real-
time automata (RTA), a subclass of TA (not comparable with ERA) which has a
single clock which is reset at each transition and thus can be regarded as finite state
automata with time information for each transition, has been proven to be decidable
without more precision. But, except this very particular subclass, there is no work,
as far as we know, that succeeded to give a sufficient condition on TA such that the
opacity problem becomes decidable. In our work, we proved that, for the subclass
of SS-DTA, the manifestability problem is PSPACE-complete and we proposed an

113

SMT-based approach to check it. Another close property called non-interference
is to guarantee the safety of flow information by capturing causal dependency
between high-level actions (private) and low-level behavior (public). The authors
of [49] analyzed different variants of this property for TA and proved some of them
decidable by transforming them into weak simulation problem between TA with
event set excluding private events and TA with that hiding private events.

5.6 . Conclusion

In this chapter, we have addressed the formal verification of manifestability for
both DESs and real-time systems. To bring an alternative to (stochastic) diagnos-
ability analysis, whose satisfaction is very demanding in terms of sensors placement,
we have defined (strong) manifestability, a new weaker property, actually the weak-
est one to satisfy to have a chance to diagnose a given fault. It is especially useful
when the stochastic model is not available during diagnosability analysis. Note
that non-manifestability of a system implies its non-stochastic diagnosability, but
the converse is not necessarily true. It is worth noting that for today’s complex
systems, it is not realistic to analyze (stochastic) diagnosability for each type of
faults (e.g., hundreds of faults may occur for even one HVAC subsystem in a given
building with different categories such as abrupt and degradation [65]). It is more
reasonable to verify different properties (e.g., diagnosability for abrupt faults and
manifestability for degradation faults) for different faults according to their sever-
ity. We also want to emphasize that if stochastic diagnosability is very useful and
interesting when the fault occurrence probability distributions are available, very
limited studies have been conducted about this availability even for quite mature
HVAC systems [65].

We have demonstrated that manifestability problem for finite state automata
(resp., TA) is PSPACE-complete (resp., undecidable). We further defined SS-DTA,
a subclass of deterministic TA, for which this problem becomes PSPACE-complete.
It is thus encoded into an SMT formula, which can be checked automatically by an
SMT solver. The feasibility and reasonable scalability of this approach have also
been shown by preliminary experimental results. With such tools at his disposal,
the designer may thus check both manifestability and diagnosability of each given
fault. If manifestability is not satisfied, he knows that this fault, if it occurs,
will never be detectable and he has thus necessarily to add sensors to make it
manifest itself. If the fault has been proven manifestable but non-diagnosable, he
knows, from the outputs of the algorithms, both a future trajectory of the fault
that is distinguishable from correct behavior and another future trajectory that is
indistinguishable from correct behavior. Depending on the severity of the fault,
of the estimated "probability" of the distinguishable future trajectory and of the
impact of the fault in the indistinguishable future trajectory, he can thus decide to
change or add sensors and check again both manifestability and diagnosability.

114

6 - Conclusion

6.1 . Thesis Overview

In this work, we explored how to design a safe system more economically. To
achieve it, we figured out different solutions from different perspectives. Firstly,
in order to improve the efficiency of our previous SMT-based approach used to
verify time bounded diagnosability on timed automata, we tried to take advantage
of the RECAR framework by making use of approximations. Secondly, we focused
on how to design a diagnosable system with delay blocks. Thirdly, we proposed
a weaker system property than diagnosability to ensure that a fault in the system
will manifest itself at some point in the future. Our work is structured around the
two following system properties.

6.1.1 . Diagnosability

First of all, we analyzed the diagnosability of real-time systems based on SMT.
The diagnosability problem of discrete event systems has received considerable
attention in the literature. However, up to now litter work takes into account
explicit time constraints during this analysis, which are however naturally present in
the real-time systems and thus cannot be neglected considering their impact on this
property. Thus, inspired by the way checking diagnosability of finite state automata
for discrete event systems using SAT technology, we analyzed the diagnoability of
timed automata for real-time systems using SMT technology, which can provide a
natural symbolic representation for timed automata. To do this, both TA and the
sufficient and necessary condition of this property, i.e., the existence of a timed
critical pair, are encoded in SMT as a logic formula interpreted in linear arithmetic
theory whose satisfiability witnesses bounded non-diagnosability. We have not
only theoretically proved the correctness of our approach but also demonstrated
its feasibility by applying it on different versions of two benchmarks selected from
literature.

Diagnosability verification for RTSs with RECAR-like approach

Since the diagnosability verification problem for timed automata is known to
be PSPACE-complete and RECAR appears promising in dealing with PSPACE-
complete problems, in order to improve the efficiency of diagnosability verification
for RTS, we proposed a RECAR-like approach for diagnosability verification of
timed automata by taking the advantage of the RECAR framework. In this part
of the study, first, to realize CEGAR-over and CEGAR-under, we defined different
parameterized over- and under-approximations of the original problem. Then, we

115

defined a switching function to construct a RECAR-like approach, i.e., to alternate
between the two kinds of CEGAR. The RECAR-like approach precisely interleaves
both kinds of approximations: each one is performed with the information retrieved
from solving the previous one. Finally, to show the feasibility and efficiency of our
approach, we performed several experiments on different benchmarks. Based on
the experimental results, we concluded that the key factor in the complexity of
our method is the length (i.e., the value of the bound in this bounded model
checking framework) of the critical pair that is looked for, which also provides us
with directions for future research.

Designing diagnosable DESs

One aim of diagnosabiliy verification is to design a diagnosable system, however,
it is not easy to ensure in practice that a designed system is diagnosable. In
some cases, if the system has revealed as non-diagnosable, one classical way to
solve this problem is to reconfigure the observable events, but again is in general
too expensive in terms of sensors and may require a lot of iterations. So we
proposed a new non-intrusive way to make a non-diagnosabile system diagnosable
by merely adding delay blocks on some observable events, keeping the original
system structure. In order to efficient eliminate all existing critical pairs by adding
delay blocks as less as possible and without generating new ones, we calculated the
minimum number of transitions of the normal diagnoser, where delay blocks will
be added, according to the max-flow min-cut theorem. This approach is encoded
into an SMT formula, whose correctness and efficiency are demonstrated by our
experimental results.

6.1.2 . Manifestability

Since diagnosability generally requires a high number of sensors, it is often too
expensive to develop a diagnosable system. In order to bring an alternative to
diagnosability analysis, whose satisfaction is very demanding in terms of sensors
placement, we have defined manifestabiliy property, that represents the weakest re-
quirement on observations for having a chance to identify online fault occurrences
and can be verified at design stage. In our study, we not only defined manifestabil-
ity, but also addressed its formal verification for both DESs and real-time systems
modeled as TA. For this, we have constructed different structures from the system
model.

Manifestability for DESs

For discrete event systems (modeled as finite state automata), first, we have
defined (strong) manifestability, then we proposed an algorithm with PSPACE

116

complexity to automatically verify it. Furthermore, we have demonstrated that
manifestability checking boils down to languages inclusion checking and that the
manfestability problem is PSPACE-complete for finite automata, for which we have
provided preliminary experimental results showing the efficiency and scalability of
this approach.

Manifestability for RTSs

For real-time systems (modeled as timed autaomata), we extended our man-
festability verification approach for DESs to RTSs. To do this, we redefined
(strong) manifestability by taking into account time constraints, then we proved
that manifestability checking problem is undecidable for TA. Thus we further de-
fined SS-DTA, a subclass of deterministic TA, for which this problem becomes
PSPACE-complete. It is thus encoded into an SMT formula, and checked auto-
matically by SMT solver Z3, finally, the preliminary experimental results showed
the efficiency and scalability of this approach.

We are at the end of this thesis and we can sum-up quickly our contributions
as: a new system property called manifesability that describes the capability of
a system to manifest a fault occurrence in at least one of its future behavior; a
new method to designing diagnosable discrete event systems using delay blocks;
a new RECAR-like framework to optimize diagnosability verification for real-time
systems.

Obviously, this thesis raises more questions than it solves and we give in the
next sections few directions that we consider worth exploring.

6.2 . Future Work

We see several important research lines to explore in order to enhance our
results.

• In order to optimize RECAR-like framework for diagnosability verification of
TA, try to play with time constraints expressed in the guards and invariants,
i.e., for over-approximations, tightening these constraints and, for under-
approximations, relaxing these constraints.

• Investigate the conditions under which the (length) bounded non-diagnosability
implies also non-diagnosability in RTSs, i.e., have an estimate of a sufficient
length upper bound.

• Find out a larger subclass of TA than SS-DTA, for which manifesatbility
problem is decidable and relate this problem to opacity.

• Extend our diagnosability checking framework to distributed systems by con-
sidering communicating automata.

117

• Investigate how to design a diagnosable system with general delay blocks. In
our current work, we assumed that observable events all occur at the same
time when they are not deferred and all at a same later time when they are
deferred, considering thus a single delay block with only one delay. Even
if it can theoretically solve most problems for DESs, is not realistic, as in
practice, event occurrence is never instantaneous. In order to handle such
various occurrence times and generalize this method to RTSs, investigate
how to extend the current approach to general delay blocks, i.e., delay blocks
with various delays. This requires computing the delays in order to avoid as
far as possible creating new critical pairs.

• Study manifestability problem for distributed systems with a modular method,
more interestingly, by taking into account probabilistic aspects.

• Since the complexity of manifestability verification problem is PSPACE-
complete for finite state automata and for a deterministic subclass of timed
automata, try to analyse manifestability with RECAR-like approach for both
kinds of systems.

• Study other related properties, such as predictability, when taking into ac-
count time constraints.

118

A - French synthesis

Le diagnostic de pannes est une tâche cruciale et difficile dans le contrôle
automatique des systèmes complexes, dont l’efficacité dépend d’une propriété du
système appelée diagnosticabilité. La diagnosticabilité décrit la propriété du sys-
tème permettant de déterminer dès la phase de conception si un défaut donné se
produisant en ligne sera identifiable avec certitude sur la base des observations
disponibles, ce qui est une alternative aux tests qui ne peuvent que montrer la
présence de défaillances sans garantir leur absence. Le problème de la diagnostica-
bilité des systèmes à événements discrets a reçu une attention considérable dans
la littérature, mais peu nombreux sont les travaux qui prennent en compte des
contraintes de temps explicites lors de cette analyse. Or de telles contraintes sont
naturellement présentes dans les systèmes réels et ne peuvent être négligées compte
tenu de leur impact sur cette propriété. Nous avions proposé dans notre travail de
master une nouvelle approche à base de SMT (Satisfiability Modulo Theories) pour
vérifier la diagnosticabilité en temps borné sur les automates temporisés. L’idée
était d’encoder en SMT une condition nécessaire et suffisante de diagnosticabilité
dans une démarche de model checking borné. Dans ce travail, nous n’avions pas
seulement prouvé la correction de notre approche mais aussi amélioré son efficacité
grâce à une indexation des transitions du système réduisant la taille de l’espace de
recherche défini par la borne et montré sa faisabilité en l’appliquant à des bench-
marks. Néanmoins, le problème étant PSPACE-complet, nous nous heurtions au
passage à l’échelle lorsque le nombre d’états du système s’accroît. Suivant le
schéma de l’algorithme RECAR (exploration et vérification récursives de raffine-
ments d’abstraction), qui apparaît prometteur pour traiter des problèmes au delà
de NP, en particulier des problèmes PSPACE-complets, nous proposons à présent
un algorithme de type RECAR incluant une extension incrémentale de ce travail
fondée sur l’utilisation de sur- et sous-approximations paramétrées généralisant la
méthode CEGAR (raffinement d’abstraction guidé par un contre-exemple). Afin
d’utiliser CEGAR pour une terminaison précoce de la boucle d’itération des raffine-
ments des sur- (resp., sous-) approximations lorsque la formule originale est satis-
faisable (resp., insatisfaisable), nous définissons trois types de sur-approximations
(resp., deux types de sous-approximations). Ensuite nous alternons CEGAR avec
sur-approximations et CEGAR avec sous-approximations en définissant une fonc-
tion de commutation pour décider du passage d’un type d’approximations à l’autre.
Nous montrons l’amélioration apportée au travers de résultats expérimentaux et
identifions la longueur de la paire critique recherchée comme le facteur clé de la
complexité.

Néanmoins, la diagnosticabilité est une propriété assez forte, qui nécessite
généralement un nombre élevé de capteurs. Par conséquent, il n’est pas rare que

119

le développement d’un système diagnosticable soit trop coûteux. Afin de garan-
tir dès la conception un certain niveau de sûreté de fonctionnement de manière
économique et efficace, nous proposons deux approches.

La première consiste à concevoir des systèmes à événements discrets diagnosti-
cables en utilisant des blocs de retard. La diagnosticabilité étant une propriété cri-
tique d’un système, il est en effet important que la phase de conception aboutisse à
un système diagnosticable, ce qui s’avèrera déterminant pour le diagnostic ultérieur
du système. Mais cette tâche est loin d’être triviale et jusqu’à présent la plupart
des travaux se sont focalisés sur la vérification de la diagnosticabilité, sans répon-
dre à la question : que faire si un système se révèle comme non diagnosticable
? On doit en fait dans ce cas étudier comment le rendre diagnosticable. Une
manière classique est d’ajouter des capteurs, ce qui est en général coûteux et peut
requérir beaucoup d’itérations. Un autre moyen repose sur des événements con-
trôlables qui peuvent contraindre les comportements du système de façon à ce
que les comportements autorisés sont diagnosticables. Nous proposons une nou-
velle manière non intrusive de rendre diagnosticable un système non diagnosticable
en ajoutant simplement des blocs de retard sur certains événements observables,
différant ainsi leurs observations. Pour autant que nous le sachions, il s’agit de
la première tentative de suppression de la non diagnosticabilité avec des blocs de
retard sans utiliser d’événements contrôlables et sans modifier la structure des sys-
tèmes. Pour des raisons de simplicité, ce travail a été conduit sur des systèmes
à événements discrets classiques sans contraintes temporelles, donc seul l’ordre
des événements observables est pris en compte. On calcule, à l’aide du théorème
flot-max coupe-min, un ensemble minimal d’événements observables dont le retard
rend diagnosticable un système non diagnosticable. Plus précisément, on adapte
le concept d’automates finis avec blocs de retard pour éliminer toutes les paires de
trajectoires témoignant de la non diagnosticabilité en prenant soin de ne pas en
créer de nouvelles, de façon à ce que toute trajectoire avec présence d’un défaut
puisse être distinguée par les observations (avec prise en compte des retards) de
toutes les trajectoires normales. Notre approche est codée dans une formule SMT,
dont l’exactitude et l’efficacité sont démontrées par nos résultats expérimentaux.

La seconde consiste à analyser une nouvelle propriété d’un système appelée
manifestabilité, moins forte que la diagnosticabilité, afin de réaliser un compro-
mis entre le coût, c’est-à-dire un nombre raisonnable de capteurs, et la possibilité
d’observer la manifestation d’un défaut. La manifestabilité est une exigence plus
faible sur les observations du système pour avoir une chance d’identifier l’occurrence
des défauts en ligne et peut être vérifiée au stade de la conception. Intuitivement,
cette propriété garantit qu’un système défectueux ne peut pas toujours apparaître
sain, c’est-à-dire qu’il a au moins un comportement futur après l’apparition d’un
défaut (et non pas tous les comportements futurs comme pour la diagnosticabilité)

120

qui se distingue par l’observation de tous les comportements normaux. Naturelle-
ment on doit continuer à se reposer sur la diagnosticabilité pour les exigences de
sûreté en ligne, c’est-à-dire pour les défauts qui peuvent avoir des conséquences
dramatiques s’ils ne sont pas détectés à temps pour déclencher des actions correc-
trices. Mais pour tous les autres défauts qui ne nécessitent pas d’être détectés dès
leur apparition (c’est-à-dire dont la conséquence est un fonctionnement dégradé
mais acceptable du système qui nécessitera des actions de maintenance dans un cer-
tain futur proche), la vérification de leur manifestabilité, moins coûteuse en termes
de capteurs nécessaires, est suffisante sous l’hypothèse probabiliste qu’aucun com-
portement décrit du système n’a une probabilité nulle. Nous définissons d’abord
la manifestabilité des systèmes à événements discrets modélisés par des automates
à états finis, proposons un algorithme de complexité PSPACE pour la vérifier au-
tomatiquement et prouvons que le problème de vérification de la manifestabilité
lui-même est PSPACE- complet. Les résultats expérimentaux montrent la faisabil-
ité de notre algorithme d’un point de vue pratique. Ensuite, nous définissons la
manifestabilité des systèmes temps-réel modélisés par des automates temporisés
en tenant compte des contraintes de temps, et étendons notre approche pour véri-
fier la manifestabilité de ces systèmes, prouvant qu’elle est indécidable en général
mais, sous certaines conditions restreintes, devient PSPACE- complet. Enfin, nous
encodons cette propriété dans une formule SMT, dont la satisfaisabilité témoigne
de la manifestabilité, avant de présenter des résultats expérimentaux montrant le
passage à l’échelle de notre approche.

121

B - Publications

[1] P. Dague, L. He, and L. Ye. How to be sure a faulty system does not
always appear healthy? Innovations in Systems and Software Engineering,
16(2):121–142, 2020.

[2] L. Ye, P. Dague, and L. He. Manifestability verification of discrete event
systems. In Proceedings of the 30th International Workshop on Principles of
Diagnosis DX’19, 2019.

[3] L. He, L. Ye, and P. Dague. SMT-based diagnosability analysis of real-time sys-
tems. In Proceedings of the 10th Symposium on Fault Detection, Supervision
and Safety for Technical Processes, IFAC SAFEPROCESS 2018, 2018.

123

C - Software

In chapter 2, we showed how to encode the verification of the bounded diag-
nosability (where a a counterexample is defined as a critical pair, please see the
paper DiagnosabilityDES.pdf) for finite automata in smt with the files available in
https://github.com/lu-1993/Diagnosability, and a very simple example stored in
model.txt. This simple system contains six events, where three observable events
are represented by integers 1-3 and two unobservable normal events by 4-5 and
one unobservable faulty event by 6. There are ten transitions in this system that
one can find in the file model.txt beginning from line 2 (one transition per line).
The file diagWithQuantifier.smt contains the smt formula simplified from that
is presented in the paper DiagnosabilitySMTtimedAutomata.pdf, the latter is for
timed automata. The file diagNoQuantifier.smt is a quantifier-free version for
the same example. And result.txt contains a model satisfying the smt formula, i.e.,
a critical pair which is a pair of trajectories of the system where only one of them
contains the fault while both of them have the same observations.

An optimized version is also available in the OptimizedDiagSMT package, a
python package that generates automatically an smt formula in an optimized way
in terms of the path length for this problem with different parameters for a given
system. To obtain the verification result, it is enough to run the python file
main.py that generates the smt formula, which is checked by calling z3 in an
optimized way, whose results are then analyzed before returning the final results.

For the example in model.txt, the parameters are: Bound 5 K_value 2 observ-
able=o1,o2,o3 unobservable=un1,un2 fault=f

The final result is:
If (7 o3 8) in model.txt, return:
SAT
critical pair: the length of faulty path is: 4
[’ 1’, ’o1’, ’ 2’, ’o2’, ’ 3’, ’f’, ’ 4’, ’un1’, ’ 5’, ’o3’, ’ 5’]
[’ 1’, ’o1’, ’ 2’, ’o2’, ’ 6’, ’un2’, ’ 7’, ’o3’, ’ 8’]
observations: [" ’o1’", " ’o2’", " ’o3’"]
If (7 o2 8) in model.txt, return:
UNSAT
possible critical pair : the length of faulty path is: 4
[’ 1’, ’o1’, ’ 3’, ’f’, ’ 4’, ’un1’, ’ 5’, ’o3’, ’ 5’]
[’ 1’, ’o1’, ’ 2’]
blocked in: ’o3’
possible critical pair : the length of faulty path is: 5
[’ 1’, ’o1’, ’ 2’, ’o2’, ’ 3’, ’f’, ’ 4’, ’un1’, ’ 5’, ’o3’, ’ 5’]
[’ 1’, ’o1’, ’ 2’, ’o2’, ’ 6’, ’un2’, ’ 7’, ’o2’, ’ 8’, ’o2’, ’ 8’]
blocked in: ’o3’

125

In chapter 3, we showed the feasibility of the RECAR-like algorithm and we
pushed our code in https://github.com/lu-1993/diaForTA.

• cegarWithoutIncT.py is checking diagnosability of timed automata with-
out using CEGAR algorithm.

• cegarwithBTnew.py is CEGAR-over algorithm with parameter bound change-
able.

• cegarwithTTnew.py is CEGAR-over algorithm with parameter transition
set changeable.

• cegarwithOT_over.py is CEGAR-over algorithm with parameter observ-
able event set changeable.

• cegarwithDTnew.py is CEGAR-under algorithm with parameter time after
first fault occurrence changeable.

• cegarwithOT_under.py is CEGAR-under algorithm with observable event
set changeable.

• semi_under.py is semi-equivalence program.

• switch_new.py is RECAR-like algorithm.

In the console enter the command line python3 name.py model.txt that can
run different programs, where name.py is the program name and model.txt is a
txt file that stores different models.

In chapter 4, to show the feasibility of our approach, we carried out a prototype
implementation done in Python by using the SMT solver Z3. All our experimental
results are obtained by running our programs on a Mac OS laptop with the processor
2.7 GHz Intel Core i5, 8 Go 1600 MHz DDR3 of memory. Source code and
experiments are available at https://github.com/lu-1993/Designing-DIA-via-delay-
blocks.

Run python program through console: python3 diaV iaDB.py model.txt.
In chapter 5, to show the feasibility of our approach to verify manifestability,

we pushed our programs at https://github.com/lu-1993/manifestability.

• modeleg1.txt stores the fault(refined) diagnoser.

• modeleg2.txt stores the fault pair verifier.

• testmani.py is the main program for checking manifestability of a SS-DTA.

To run our program, enter the command line: python3 testmani.py model.txt.

126

Bibliography

[1] A. Agarwal, A. Madalinski, and S. Haar. Effective Verification of Weak Di-
agnosability. In Proceedings of the 8th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes (SAFEPROCESS’12), pages
636–641. IFAC, 2012.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, USA,
1993.

[3] R. Alur and D. Dill. The theory of timed automata. In Work-
shop/School/Symposium of the REX Project (Research and Education in
Concurrent Systems), pages 45–73. Springer, 1991.

[4] R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

[5] R. Alur and P. Madhusudan. Decision problems for timed automata: A
survey. In Formal Methods for the Design of Real-Time Systems, pages
1–24. Springer, 2004.

[6] A. Armando and E. Giunchiglia. Embedding complex decision procedures
inside an interactive theorem prover. Annals of Mathematics and Artificial
Intelligence, 8(3):475–502, 1993.

[7] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
sat solvers. In Proceedings of the 21st International Joint Conference on
Artificial Intelligence IJCAI’09, pages 399–404, 2009.

[8] B. Badban and M. Lange. Exact incremental analysis of timed automata
with an smt-solver. In Proceedings of International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’11), volume 6919 of
Lecture Notes in Computer Science. Springer, 2011.

[9] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P. Daron-
deau. Concurrent secrets. Discrete Event Dynamic Systems, 17(4):425–446,
2007.

[10] C. Baier, N. Bertrand, P. Bouyer, and T. Brihaye. When are timed automata
determinizable? In Proceedings of the 36th International Colloquium on
Automata, Languages, and Programming ICALP’09, pages 43–54. Springer,
2009.

127

[11] C. Barrett and C. Tinelli. Satisfiability modulo theories. In Handbook of
model checking, pages 305–343. Springer, 2018.

[12] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Handbook of satisfi-
ability, Biere, Heule and van Maaren, eds., chapter 12, Satisfiability modulo
theories, pages 737–797. IOS press, 2008.

[13] C. Barrett, A. Stump, C. Tinelli, et al. The smt-lib standard: Version 2.0.
In Proceedings of the 8th international workshop on satisfiability modulo
theories (Edinburgh, England), volume 13, page 14, 2010.

[14] C. Barrett, M. Deters, L. De Moura, A. Oliveras, and A. Stump. 6 years of
smt-comp. Journal of Automated Reasoning, 50(3):243–277, 2013.

[15] M. Basarkar, X. Pang, L. Wang, P. Haves, and T. Hong. Modeling and simu-
lation of HVAC faults in EnergyPlus. In Proceedings of Building Simulation
2011: 12th Conference of International Building Performance Simulation
Association, pages 2897–2903, Jan 2011.

[16] J. C. Basilio, S. T. S. Lima, S. Lafortune, and M. V. Moreira. Computation
of minimal event bases that ensure diagnosability. Discrete Event Dynamic
Systems: Theory and Applications, 22(3):249–292, 2012.

[17] B. Bérard, P. Gastin, and A. Petit. On the power of non-observable actions in
timed automata. In Proceedings of 13th Annual Symposium on Theoretical
Aspects of Computer Science STACS’96, pages 257–268. Springer, 1996.

[18] N. Bertrand, E. Fabre, S. Haar, S. Haddad, and L. Hélouët. Active diagnosis
for probabilistic systems. In International Conference on Foundations of
Software Science and Computation Structures, pages 29–42. Springer, 2014.

[19] N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of diagnosis and
predictability in probabilistic systems. In 34th International Conference
on Foundation of Software Technology and Theoretical Computer Science,
FSTTCS 2014, December 15-17, 2014, New Delhi, India, pages 417–429,
2014.

[20] N. Bertrand, S. Haddad, and E. Lefaucheux. Diagnosis in infinite-state prob-
abilistic systems. In 27th International Conference on Concurrency Theory,
CONCUR 2016, August 23-26, 2016, Québec City, Canada, pages 37:1–
37:15, 2016.

[21] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using sat procedures instead of bdds. In Proceedings of the 36th
annual ACM/IEEE Design Automation Conference, pages 317–320, 1999.

128

[22] B. Bittner, M. Bozzano, and A. Cimatti. Automated synthesis of timed
failure propagation graphs. In Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI’16), pages 972–978, 2016.

[23] B. Bittner, M. Bozzano, A. Cimatti, and G. Zampedri. Automated verifi-
cation and tightening of failure propagation models. In Proceedings of the
30th Conference on Artificial Intelligence (AAAI’16), pages 907–913, 2016.

[24] P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs in an alpha mi-
croprocessor using satisfiability solvers. In Proceedings of the International
Conference on Computer Aided Verification, pages 454–464. Springer, 2001.

[25] F. Bonchi and D. Pous. Checking NFA Equivalence with Bisimulations Up to
Congruence. In Proceedings of 40th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL-2013), pages 457–468. ACM,
2013.

[26] P. Bouyer, F. Chevalier, and D. D’Souza. Fault diagnosis using timed au-
tomata. In Proceedings of International Conference on Foundations of Soft-
ware Science and Computation Structures (FoSSaCS’05), Lecture Notes in
Computer Science. Springer, 2005.

[27] M. Bozzano, A. Cimatti, M. Gario, and A. Micheli. Smt-based validation of
timed failure propagation graphs. In Proceedings of the 29th Conference on
Artificial Intelligence (AAAI’15), pages 3724 –3730, 2015.

[28] L. Brandán Briones, A. Lazovik, and P. Dague. Optimizing the system
observability level for diagnosability. In Proceedings of the 3rd International
Symposium on Leveraging Applications of Formal Methods, Verification and
Validation ISoLA’08, 2008.

[29] R. Brummayer and A. Biere. Boolector: An efficient smt solver for bit-
vectors and arrays. In Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 174–
177. Springer, 2009.

[30] F. Cassez. The dark side of timed opacity. In Proceedings of the 3rd Inter-
national Conference on Information Security and Assurance ISA’09, pages
21–30, 2009.

[31] F. Cassez, J. Dubreil, and H. Marchand. Dynamic observers for the synthesis
of opaque systems. In Proceedings of the 7th International Symposium on
Automated Technology for Verification and Analysis ATVA’09, pages 352–
367, 2009.

129

[32] M. Chankate, A. Philippot, V. Carre-Menetrier, and P. Marangé. Checking
diagnosability on centralized model of the system. In Proceedings of the
3rd IEEE International Conference on Control, Automation and Diagnosis
ICCAD’19, pages 386–391, 2019.

[33] E. Chanthery and Y. Pencolé. Monitoring and active diagnosis for discrete-
event systems. In Proceedings of the 7th IFAC International Symposium on
Fault Detection, Supervision and Safety for Technical Processes SafePro-
cess’09, 2009.

[34] K. Chatterjee, T.A., Henzinger, and V.S.Prabhu. Finite automata with time-
delay blocks. Proceedings of the 10th ACM international conference on
Embedded software EMSOFT’12, pages 43–52, 2012.

[35] A. Cimatti, C. Pecheur, and R. Cavada. Formal Verification of Diagnosability
via Symbolic Model Checking. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence IJCAI’03, pages 363–369, 2003.

[36] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proceedings of the 12th International Conference
on Computer Aided Verification CAV 2000, pages 154–169. Lecture Notes
in Computer Science, vol. 1855, Springer, 2000.

[37] L. Console, C. Picardi, and M. Ribaudo. Process algebras for systems diag-
nosis. Artificial Intelligence, 142(1):19–51, 2002.

[38] P. Dague, L. He, and L. Ye. How to be sure a faulty system does not always
appear healthy? Fault manifestability analysis for discrete event and timed
systems. Innovations in Systems and Software Engineering (ISSE), a NASA
journal, 2019.

[39] A. Darwiche and G. Provan. Exploiting system structure in model-based
diagnosis of discrete-event systems. In Proceedings of the 7th International
Workshop on Principles of Diagnosis, 1996.

[40] J. Davies and F. Bacchus. Exploiting the power of mip solvers in maxsat. In
International conference on theory and applications of satisfiability testing,
pages 166–181. Springer, 2013.

[41] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM (JACM), 7(3):201–215, 1960.

[42] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

130

[43] R. Debouk, R. Malik, and B. Brandin. A modular architecture for diagnosis
of discrete event systems. In Proceedings of the 41st IEEE Conference on
Decision and Control, 2002., volume 1, pages 417–422. IEEE, 2002.

[44] V. Diekert, P. Gastin, and A. Petit. Removing ϵ-transitions in timed au-
tomata. In Proceedings of 14th Annual Symposium on Theoretical Aspects
of Computer Science STACS’97, pages 583–594, 1997.

[45] N. Eén and N. Sörensson. An extensible sat-solver. In Proceedings of SAT’03,
pages 502–518, 2003.

[46] Y. Falcone and H. Marchand. Enforcement and validation (at runtime) of
various notions of opacity. Discrete Event Dynamic Systems, 25(4):531–570,
2014.

[47] O. Finkel. Undecidable problems about timed automata. In Proceedings of
the 4th International Conference on Formal Modeling and Analysis of Timed
Systems FORMATS 2006, pages 187–199. Springer, 2006.

[48] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

[49] G. Gardey, J. Mullins, and O. Roux. Non-interference control synthesis for
security timed automata. Electronic Notes in Theoretical Computer Science,
180(1):35–53, June 2007.

[50] V. Germanos, S. Haar, V. Khomenko, and S. Schwoon. Diagnosability under
weak fairness. In Proceedings of the 14th International Conference on Appli-
cation of Concurrency to System Design ACSD’14. IEEE Computer Society
Press, 2014.

[51] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal
logics from propositional decision procedures—the case study of modal k.
In Proceedings of the International Conference on Automated Deduction,
pages 583–597. Springer, 1996.

[52] A. Grastien, A. Anbulagan, J. Rintanen, and E. Kelareva. Diagnosis of
discrete-event systems using satisfiability algorithms. In Proceedings of the
22nd National Conference on Artificial Intelligence AAAI’07, pages 305–310,
2007.

[53] S. Haar, S. Haddad, T. Melliti, and S. Schwoon. Optimal constructions
for active diagnosis. In A. Seth and N. Vishnoi, editors, Proceedings of the
33rd Conference on Foundations of Software Technology and Theoretical
Computer Science FSTTCS’13, volume 24, pages 527–539, 2013.

131

[54] S. Haar, S. Haddad, T. Melliti, and S. Schwoon. Optimal construction for
active diagnosis. J Comput Syst Sci., 83(1):101–120, 2017.

[55] L. He, L. Ye, and P. Dague. SMT-based diagnosability analysis of real-
time systems. In Proceedings of the 10th Symposium on Fault Detection,
Supervision and Safety for Technical Processes, IFAC SAFEPROCESS 2018,
2018.

[56] F. Herbreteau, B. Srivathsan, and I. Walukiewicz. Lazy abstractions for
timed automata. In Proceedings of the 25th International Conference on
Computer Aided Verification CAV 2013, pages 990–1005, 2013.

[57] H. Ibrahim. Analyse à base de SAT de la diagnosticabilité et de la pré-
dictabilité des systèmes à événements discrets centralisés et distribués. PhD
thesis, Université Paris-Saclay, 2016.

[58] R. Jacob, J.-J. Lesage, and J.-M. Faure. Opacity of discrete event systems:
models, validation and quantification. In Proceedings of the 5th IFAC Work-
shop on Dependable Control of Discrete Systems DCDS’15, pages 174–181,
2015.

[59] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm
for testing diagnosability of discrete-event systems. IEEE Transactions on
Automatic Control, 46(8):1318–1321, 2001.

[60] H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the
10th European Conference on Artificial Intelligence ECAI’92, pages 359–363,
1992.

[61] R. Kindermann, T. Junttila, and I. Niemela. Beyond lassos: Complete smt-
based bounded model checking for timed automata. In Proceedings of Joint
FMOODS 2012 and FORTE 2012, volume 7273 of Lecture Notes in Com-
puter Science. Springer, 2012.

[62] J. Kleinberg and E. Tardos. Network flow. In Algorithm design, pages 337–
411. Pearson Education India, 2006.

[63] J. Lagniez, D. Le Berre, T. de Lima, and V. Montmirail. A recursive short-
cut for CEGAR: application to the modal logic K satisfiability problem. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence IJCAI’17, pages 674–680, 2017.

[64] E. A. Lee and S. A. Seshia. Introduction to embedded systems: A cyber-
physical systems approach. Mit Press, 2016.

132

[65] Y. Li and Z. O’Neill. A critical review of fault modeling of HVAC systems
in buildings. Building Simulation, 11(5):953–975, 2018.

[66] F. Lin. Opacity of discrete event systems and its applications. Automatica,
47(3):496–503, 2011.

[67] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient sat solver. In Proceedings of the 38th annual Design
Automation Conference, pages 530–535, 2001.

[68] L. d. Moura and N. Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[69] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1(2):245–257, 1979.

[70] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM (JACM), 27(2):356–364, 1980.

[71] D. Papineau. Philosophical naturalism. Blackwell, Oxford, 1993.

[72] C. Pecheur, A. Cimatti, and R. Cimatti. Formal verification of diagnosability
via symbolic model checking. In Proceedings of the Workshop on Model
Checking and Artificial Intelligence (MoChArt-2002), Lyon, France, 2002.

[73] Y. Pencolé. Diagnosability analysis of distributed discrete event systems.
In Proceedings of the 16th European conference on artificial intelligence
ECAI’04, pages 43–47, 2004.

[74] R. Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence,
32(1):57–95, 1987.

[75] J. Rintanen. Diagnosers and Diagnosability of Succinct Transition Systems.
In Proceedings of the 20th International Joint Conference on Artificial Intel-
ligence IJCAI’07, pages 538–544, 2007.

[76] J. Rintanen and A. Grastien. Diagnosability testing with satisfiability al-
gorithms. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence IJCAI’07, pages 532–537, 2007.

[77] A. Saboori. Verification and enforcement of state-based notions of opacity
in discrete event systems. Ph.D. thesis, University of Illinois at Urbana-
Champaign, 2011.

133

[78] A. Saboori and C.-N. Hadjicostis. Notions of security and opacity in discrete
event systems. In Proceedings of the 46th IEEE Conference on Decision and
Control CDC’07, pages 5056–5061, 2007.

[79] A. Saboori and C.-N. Hadjicostis. Verification of infinite-step opacity and
analysis of its complexity. In Proceedings of the 2nd IFAC Workshop on
Dependable Control of Discrete Systems DCDS’09, pages 46–51, 2009.

[80] A. Saboori and C.-N. Hadjicostis. Verification of infinite-step opacity and
complexity considerations. IEEE Transactions on Automatic Control, 57(5):
1265–1269, 2012.

[81] A. Saboori and C.-N. Hadjicostis. Verification of initial-state opacity in
security applications of discrete event systems. Information Sciences, 246:
115–132, 2013.

[82] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneket-
zis. Diagnosability of discrete-event systems. IEEE Transactions on auto-
matic control, 40(9):1555–1575, 1995.

[83] M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-
event systems. IEEE Trans. Autom. Control., 43(7):908–929, 1998.

[84] A. Schumann and Y. Pencolé. Scalable diagnosability checking of event-
driven system. In Proceedings of the 20th international joint conference on
artificial intelligence IJCAI’07, pages 575–580, 2007.

[85] A. Schumann, J. Huang, et al. A scalable jointree algorithm for diagnos-
ability. In Proceedings of the 23rd American national conference on artificial
intelligence AAAI’08, pages 535–540, 2008.

[86] S. Shu and F. Lin. Detectability of Discrete Event Systems with Dynamic
Event Observation. Systems and Control Letters, 59(1):9–17, 2010.

[87] S. Shu and F. Lin. I-Detectability of Discrete-Event Systems. IEEE T.
Automation Science and Engineering, 10(1):187–196, 2013.

[88] J. P. M. Silva and K. A. Sakallah. Grasp—a new search algorithm for
satisfiability. In The Best of ICCAD, pages 73–89. Springer, 2003.

[89] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for
Büchi automata with applications to temporal logic. Theoretical Computer
Science, 49(2-3):217–237, 1987.

[90] N. Sorensson and N. Een. Minisat v1. 13-a sat solver with conflict-clause
minimization. SAT, 2005(53):1–2, 2005.

134

[91] P. Struss. Fundamentals of model-based diagnosis of dynamic systems. In
Proceedings of the 15th International Joint Conference on Artificial Intelli-
gence IJCAI’97, pages 480–485, 1997.

[92] X. Su, M. Zanella, and A. Grastien. Diagnosability of discrete-event systems
with uncertain observations. In Proceedings of the 25th International Joint
Conference on Artificial Intelligence IJCAI’16, pages 1265–1271, 2016.

[93] D. Thorsley and D. Teneketzis. Diagnosability of stochastic discrete-event
systems. IEEE Trans. Automat. Contr., 50(4):476–492, 2005.

[94] S. Tripakis. Fault diagnosis for timed automata. In Proceedings of the
International symposium on formal techniques in real-time and fault-tolerant
systems, pages 205–221. Springer, 2002.

[95] G. S. Tseitin. The upper bounds of enumerable sets of constructive real
numbers. Trudy Matematicheskogo Instituta imeni VA Steklova, 113:102–
172, 1970.

[96] M. N. Velev and R. E. Bryant. Effective use of boolean satisfiability pro-
cedures in the formal verification of superscalar and vliw microprocessors.
Journal of Symbolic Computation, 35(2):73–106, 2003.

[97] J. Wang, M. Agrawala, and M. F. Cohen. Soft scissors: an interactive tool
for realtime high quality matting. ACM SIGGRAPH 2007 papers, 26(3):
9–14, 2007.

[98] L. Wang, N. Zhan, and J. An. The opacity of real-time automata. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
37(11):2845–2856, 2018.

[99] Y.-C. Wu and S. Lafortune. Comparative analysis of related notions of
opacity in centralized and coordinated architectures. Discrete Event Dynamic
Systems, 23(3):307–339, 2013.

[100] L. Ye and P. Dague. Diagnosability analysis of discrete event systems with
autonomous components. In Proceedings of the 19th European conference
on Artificial Intelligence ECAI’10, pages 105–110, 2010.

[101] L. Ye, P. Dague, D. Longuet, L. B. Briones, and A. Madalinski. How to
be sure a faulty system does not always appear healthy? In International
Conference on Verification and Evaluation of Computer and Communication
Systems, pages 114–129. Springer, 2018.

[102] X. Yin and S. Lafortune. A new approach for the verification of infinite-step
and k-step opacity using two-way observers. Automatica, 80:162–171, 2017.

135

[103] T.-S. Yoo and S. Lafortune. NP-completeness of sensor selection problems
arising in partially observed discrete-event systems. IEEE Trans. Autom.
Control., 47(9):1495–1499, 2002.

[104] A. Zbrzezny and A. Półrola. Sat-based reachability checking for timed au-
tomata with discrete data. Fundamenta Informaticae, 79(3-4):579–593,
2007.

[105] B. Zhang, S. Shu, and F. Lin. Polynomial algorithms to check opacity
in discrete event system. In Proceedings of the 24th Chinese Control and
Decision Conference CCDC’12, pages 763–769, 2012.

136

	General Introduction
	Motivation
	Contributions
	Thesis Organization

	Preliminaries and State of the Art
	Introduction to Fault Diagnosis
	Modeling Formalism
	Discrete Event Systems
	Real-Time Systems

	Diagnosability
	Diagnosability Checking in DESs
	Diagnosability Checking in RTSs

	SAT Problem
	SAT Algorithms and Heuristics
	SAT-based Diagnosability Encoding for DESs

	SMT Problem
	Background
	SMT Algorithm
	SMT Solver
	SMT-based Diagnosability Encoding for RTSs
	Encoding Timed Automaton
	Encoding Bounded Diagnosability

	CEGAR and RECAR Algorithms
	CEGAR Algorithm
	RECAR Algorithm

	An Approximation-based Incremental SMT-based Approach to Diagnosability Analysis of Real-Time Systems
	Motivation
	CEGAR-over for Bounded Diagnosability Analysis of RTS
	CEGAR-under for Bounded Diagnosability Analysis of RTS
	A RECAR-like Approach for Bounded Diagnosability Analysis of RTS
	Encoding RECAR-like Approach
	Pre-processing
	Encoding Changeable Parameters

	Experiments
	Results and Discussion
	Conclusion

	Designing Diagnosable Discrete Event Systems by using Delay Blocks
	Motivation/Introduction
	Designing Diagnosable Systems with Delay Blocks
	Automata with Delay Blocks (ADB)
	Unfolding FSA into Flow Network
	Encoding Min-cut
	Diagnosability Conditions

	Implementation and Validation
	Related Work
	Conclusion

	Manifestability Property and its Verification
	Motivation/Introduction
	Motivating Example

	Manifestability Analysis for Discrete Event Systems
	Manifestability Property for DESs
	Manifestability Verification
	Experimental Results

	Manifestability Analysis for Real-Time Systems
	Motivation/Introduction
	Manifestability Property for RTSs
	Undecidability and Decidability Results
	Encoding Bounded Manifestability
	Experimental Results

	Related Work
	Comparison with Opacity
	Conclusion

	Conclusion
	Thesis Overview
	Diagnosability
	Manifestability

	Future Work

	French synthesis
	Publications
	Software

