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General introduction

General introduction

E nergy, in its multitude of forms and manifestations, is at the heart of describing al-
most all physical, chemical and biological phenomena. Whether it be the orbits of the
planets, the stability of an atom, or the function of a cell – energy is always at play. If
we wish to describe these phenomena as scientists, we need therefore to understand how
energy behaves. In addition to satisfying general curiosity about the world, an under-
standing of energy is also practically advantageous. As humans we have learned how to
exploit energy by directing it in its useful form, work, towards a host of tasks that make
life easier or enhanced in some way. Moreover, we have developed the tools of thermo-
dynamics to extract additional energy to that which our bodies can provide from other
sources, resulting in inventions such as the combustion engine that eventually led to the
industrial revolution.

Both the natural and human-induced phenomena described above rely on the transfer
and transformation of energy, from one place or object to another, from one form to
another. The energy transfer may take place via a variety of mechanisms, or channels, and
in this work we focus on one channel: radiation. The random motion of electric charges in
a body establish electromagnetic fields that may be felt and do work on charges in another
body, resulting in the transfer of energy. Unlike other channels of heat transfer where
some physical contact between bodies is required, radiation may occur between bodies
that are spatially separated. In this case, the energy under discussion is often referred
to as heat since the transfer is typically irreversible. A full classical description of the
electromagnetic fields was given in the 19th century by Maxwell’s equations. However,
the full ramifications of this description on how energy may be exchanged via radiation
are still being uncovered. At large length scales the transfer is governed by emission
and absorption of real propagating photons. However, at small length scales, known as
the near field, evanescent waves may carry heat which corresponds to photon tunnelling.
This near-field radiative heat transfer is the primary focus of this thesis.

The difference between the heat transfer between objects via radiation in the near field
vs the far field is due to the differing character of the relevant electromagnetic waves. In
the far field, we have the typical picture of radiation corresponding to travelling waves
whose speed and attenuation is determined by the medium through which they move. On
the other hand, in the near field the radiation is dominated by evanescent waves, those
which are pinned to the material surface but leak out a small distance into the region
of space surrounding the object. The evanescent waves typically result in a significant
enhancement of the heat current between bodies in the near field. However, exactly how
the radiative heat transfer behaves is dependent on more than just the length scale. In
particular, it is depends on how the materials interact with the electromagnetic field, which
may itself depend on the temperature. For materials like metals, such descriptions enter
into the rich field of condensed matter physics. Despite the principles of radiative heat
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General introduction

transfer as outlined above being well-understood, the existence of a plethora of different
materials as well as geometries and temperature scales that are practically relevant and
realisable means that there is still much to investigate.

On a general level, there is renewed interest in theoretical descriptions of the near
field due to the advancement of modern nanofabrication methods. The continued minia-
turisation of electronics calls for a proper theoretical understanding of heat flow at small
scales. For example, it is essential to know how heat shall be dissipated in a nanomet-
ric transistor since overheating or heat leakage may cause device instability or failure.
On the other hand, there are prospects for how near-field radiative heat transfer may be
advantageous, for example in near-field thermophotovoltaics, a novel form of electricity
production that involves placing a photovoltaic cell within the near field of a hot emitter.
The recent advent of two, one and even zero-dimensional material bodies, whose emis-
sive and absorptive behaviour may radically differ due to the reduced dimensionality, also
increases the pertinence of these otherwise merely academic studies.

In this work we address some of the important questions regarding radiative heat trans-
fer. For example, does confinement in one or several dimensions impede the motion of the
relevant charges altering how they may excite and be excited by electromagnetic fields?
Does the nonlocality in the material response play a role? Do the charges exhibit col-
lective excitations, and if so how are they damped? How does the radiative heat current
between bodies fluctuate, and what can we learn by measuring these fluctuations? Rather
than performing material-specific studies whose conclusions may be only narrowly appli-
cable, we attempt to use general models that encode widely-present physical phenomena.
In addition, we perform analytical calculations under various approximation schemes, al-
lowing a clear view of what impact the physical ingredients of the model may have. We
focus on a two-dimensional geometry, due to its newfound relevance thanks to novel 2D
materials but also due to the ease of calculations with respect to the three-dimensional
case. Our theoretical studies could in principle be used to inform future experimental
investigations or even aid novel device design.

The structure of the thesis is as follows: In Ch. 1 we provide a brief history of the at-
tempts to describe radiative heat transfer, going on to give the foundations of the primary
framework used today, fluctuational electrodynamics. We discuss the general implica-
tions of fluctuational electrodynamics regarding the origins of near-field behaviours in
evanescent waves. Finally we provide a brief review of modern advances in near-field
radiative heat transfer, which we use to highlight the motivations to address the specific
problems covered in this thesis. In Ch. 2 we perform a general study in the framework of
fluctuational electrodynamics of the average heat current exchanged by two-dimensional
parallel metallic layers. By performing an analytical calculation of all the contributions to
the radiative heat current including both traveling and evanescent waves of both electric
and magnetic fields, we seek to quantify when the electromagnetic interaction is domi-
nated by electrostatics, known as the Coulomb limit. Having clarified this issue, in Ch. 3
we work in the Coulomb limit and explore the roles played by material disorder, spatial
dispersion in the material response and collective electron density excitations known as
surface plasmons. Motivated by the possibility of a dominant resonant heat transfer chan-
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nel via surface plasmons, we investigate in Ch. 4 the fluctuations of the radiative heat cur-
rent in the same system of two-dimensional layers, but also in a simpler zero-dimensional
one modelled by an electric circuit. We attempt to see what information is accessible via
the noise, since this could provide an experimental probe of the importance of resonant
modes. Details of some of the longer calculations are included in Appendices A–D.

Publications related to this thesis

• J. L. Wise, D. M. Basko, and F. W. J. Hekking, Role of disorder in plasmon-
assisted near-field heat transfer between two-dimensional metals, Phys. Rev. B,
101, 205411, May 2020
doi:10.1103/PhysRevB.101.205411

• J. L. Wise and D. M. Basko, Near field versus far field in radiative heat transfer
between two-dimensional metals, Phys. Rev. B, 103, 165423, Apr 2021
doi:10.1103/PhysRevB.103.165423
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General introduction

Introduction générale

L ’énergie, dans sa multitude de formes et de manifestations, est au cœur de la de-
scription de presque tous les phénomènes physiques, chimiques et biologiques. Qu’il
s’agisse des orbites des planètes, de la stabilité d’un atome ou de la fonction d’une cel-
lule, l’énergie est toujours en jeu. Si nous voulons décrire ces phénomènes en tant que
scientifiques, nous devons donc comprendre comment l’énergie se comporte. En plus
de satisfaire la curiosité générale sur le monde, la compréhension de l’énergie présente
également des avantages pratiques. En tant que humains, nous avons appris à exploiter
l’énergie en la dirigeant sous sa forme utile, le travail, vers un grand nombre de tâches
qui facilitent ou améliorent la vie d’une manière ou d’une autre. De plus, nous avons
développé les outils de la thermodynamique pour extraire de l’énergie supplémentaire
à celle que notre corps peut fournir à partir d’autres sources, ce qui a donné lieu à des
inventions telles que le moteur à combustion qui a finalement conduit à la révolution
industrielle.

Les phénomènes naturels et induits par l’homme décrits ci-dessus reposent tous sur
le transfert et la transformation de l’énergie, d’un lieu ou d’un objet à un autre, d’une
forme à une autre. Le transfert d’énergie peut s’effectuer via une variété de mécanismes,
ou canaux, et dans ce travail, nous nous concentrons sur un canal : le rayonnement. Le
mouvement aléatoire des charges électriques dans un corps crée des champs électromag-
nétiques qui peuvent être ressentis et agir sur les charges d’un autre corps, entraînant un
transfert d’énergie. Contrairement à d’autres canaux de transfert de chaleur où un contact
physique entre les corps est nécessaire, le rayonnement peut se produire entre des corps
séparés dans l’espace. Dans ce cas, l’énergie en question est souvent appelée chaleur car
le transfert est généralement irréversible. Une description classique complète des champs
électromagnétiques a été donnée au 19e siècle par les équations de Maxwell. Cepen-
dant, les ramifications complètes de cette description sur la façon dont l’énergie peut être
échangée par rayonnement sont encore en cours de découverte. Aux grandes échelles de
longueur, le transfert est régi par l’émission et l’absorption de photons réels propagatives.
Cependant, à de petites échelles de longueur, appelées champ proche, les ondes évanes-
centes peuvent transporter de la chaleur qui correspond au transfert par l’effet tunnel. Ce
transfert de chaleur radiative en champ proche est l’objet principal de cette thèse.

La différence entre le transfert de chaleur entre objets par rayonnement en champ
proche et en champ lointain est due au caractère différent des ondes électromagnétiques
concernées. Dans le champ lointain, nous avons l’image typique du rayonnement cor-
respondant à des ondes dont la vitesse de propagation et l’atténuation sont déterminées
par le milieu qu’elles traversent. En revanche, dans le champ proche, le rayonnement
est dominé par les ondes évanescentes, c’est-à-dire celles qui sont fixées à la surface du
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General introduction

matériau mais qui s’échappent sur une petite distance dans la région de l’espace entourant
l’objet. Les ondes évanescentes entraînent généralement une augmentation significative
du courant thermique entre les corps dans le champ proche. Cependant, le comportement
exact du transfert de chaleur radiatif ne dépend pas uniquement de l’échelle de longueur.
En particulier, il dépend de la façon dont les matériaux interagissent avec le champ
électromagnétique, qui peut lui-même dépendre de la température. Pour des matériaux
comme les métaux, ces descriptions entrent dans le riche domaine de la physique de
la matière condensée. Bien que les principes du transfert radiatif de chaleur décrits ci-
dessus soient bien compris, l’existence d’une pléthore de matériaux différents ainsi que
de géométries et d’échelles de température pertinentes et réalisables dans les expériences
signifie qu’il reste encore beaucoup à étudier.

D’une manière générale, les descriptions théoriques du champ proche suscitent un
regain d’intérêt en raison des progrès des méthodes modernes de nanofabrication. La
miniaturisation continue de l’électronique exige une bonne compréhension théorique du
flux thermique à petite échelle. Par exemple, il est essentiel de savoir comment la chaleur
sera dissipée dans un transistor nanométrique, car une surchauffe ou une fuite de chaleur
peut entraîner l’instabilité ou la défaillance du dispositif. D’autre part, il existe des per-
spectives sur la façon dont le transfert de chaleur radiative en champ proche peut être
avantageux, par exemple dans la thermophotovoltaïque en champ proche, une nouvelle
forme de production d’électricité qui consiste à placer une cellule photovoltaïque dans
le champ proche d’un émetteur chaud. L’avènement récent de corps matériels à deux,
une et même zéro dimensions, dont le comportement émissif et absorbant peut différer
radicalement en raison de la dimensionnalité réduite, accroît également la pertinence de
ces études, par ailleurs purement académiques.

Dans ce travail, nous abordons certaines questions importantes concernant le trans-
fert de chaleur radiatif. Par exemple, le confinement dans une ou plusieurs dimensions
empêche-t-il le mouvement des charges pertinentes, modifiant la façon dont elles peuvent
exciter et être excitées par les champs électromagnétiques ? La non-localité de la réponse
du matériau joue-t-elle un rôle ? Les charges présentent-elles des excitations collectives
et, dans ce cas, comment sont-elles amorties ? Comment fluctue le courant thermique
radiatif entre les corps, et que pouvons-nous apprendre en mesurant ces fluctuations ?
Plutôt que de réaliser des études spécifiques à un matériau dont les conclusions pourraient
n’être applicables que de manière limitée, nous essayons d’utiliser des modèles généraux
qui codent des phénomènes physiques largement répandus. En outre, nous effectuons des
calculs analytiques selon différents schémas d’approximation, ce qui permet d’avoir une
vision claire de l’impact que peuvent avoir les ingrédients physiques du modèle. Nous
nous concentrons sur une géométrie bidimensionnelle, en raison de sa nouvelle pertinence
grâce aux nouveaux matériaux 2D, mais aussi en raison de la facilité des calculs par rap-
port au cas tridimensionnel. Nos études théoriques pourraient en principe être utilisées
pour informer les futures recherches expérimentales ou même aider à la conception de
nouveaux dispositifs.

La structure de la thèse est la suivante : Au Ch. 1, nous présentons un bref historique
des tentatives de description du transfert de chaleur radiatif, puis nous donnons les bases
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General introduction

du principal cadre utilisé aujourd’hui, l’électrodynamique fluctuationnelle. Nous dis-
cutons des implications générales de l’électrodynamique fluctuationnelle concernant les
origines des comportements de champ proche dans les ondes évanescentes. Enfin, nous
fournissons une brève revue des avancées modernes dans le transfert de chaleur radi-
atif en champ proche, que nous utilisons pour mettre en évidence les motivations pour
aborder les problèmes spécifiques couverts dans cette thèse. Dans le Ch. 2, nous effec-
tuons une étude générale dans le cadre de l’électrodynamique fluctuationnelle du courant
thermique moyen échangé par des couches métalliques parallèles bidimensionnelles. En
effectuant un calcul analytique de toutes les contributions au courant thermique radiatif,
y compris les ondes propagatives et évanescentes des champs électriques et magnétiques,
nous cherchons à quantifier le moment où l’interaction électromagnétique est dominée par
l’électrostatique, connu comme la limite de Coulomb. Après avoir clarifié cette question,
dans le Ch. 3 nous travaillons dans la limite de Coulomb et explorons les rôles joués par le
désordre du matériau, la dispersion spatiale dans la réponse du matériau et les excitations
collectives de densité électronique connues sous le nom de plasmons de surface. Motivés
par la possibilité d’un canal de transfert de chaleur résonnant dominant via les plasmons
de surface, nous étudions au Ch. 4 les fluctuations du courant thermique radiatif dans le
même système de couches bidimensionnelles, mais aussi dans un système plus simple de
dimension zéro modélisé par un circuit électrique. Nous essayons de voir quelles infor-
mations sont accessibles via le bruit, car cela pourrait fournir une sonde expérimentale de
l’importance des modes résonants. Les détails de certains des calculs les plus longs sont
inclus dans les annexes A–D.
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Chapter 1. Introduction and history of radiative heat transfer

1.1 Historical background

The transfer of energy is essential for both natural processes and human inventions. Al-
though energy may take many forms – for example chemical or gravitational – thermal
energy, that which is related to the random kinetic motion of particles, is ubiquitous in all
areas of life. It is therefore highly advantageous to understand how this thermal energy,
or heat, may be transferred. The temperature of an object is a measure of its thermal en-
ergy and objects with different temperatures may exchange heat, eventually altering the
temperatures of both objects. This heat exchange may occur naturally or be induced, and
there are roughly three main mechanisms by which it may be achieved, as depicted in
Fig. 1.1.

Figure 1.1: Illustration of the three main physical mechanisms of heat transfer: convec-
tion, conduction and radiation [Soffar19].

Convection describes the transfer of heat via the collective motion of particles in a
homogenous fluid or gas. For example, in Fig. 1.1 the hot air particles surrounding the
fire rise due to buoyancy forces displacing colder particles resulting in a flow of heat
upwards. If the heat transfer is due to the movement of another type of matter dissolved
or suspended in the fluid, it may be known as advection. Here the heat transfer is mediated
by the transfer of matter – i.e. hot particles possessing lots of thermal energy ‘carry heat
away’ by moving to another point in space, while the space that they leave behind is
filled by colder particles hence creating a net transfer of thermal energy in the direction
of motion of the hot particles. Convection is usually the dominant mechanism of heat
transfer in fluids, for example Earth’s atmosphere.

Conversely, conduction describes the process of heat transfer via collisions of indi-
vidual particles with higher energies with those of lower energies – it is not accompanied
by the transfer of mass. In each collision some energy is transferred from particle to par-
ticle, eventually resulting in a spatial diffusion of heat through space, for example, in a
material. In conduction, the microscopic motion of particles is important, but the transfer
of heat is not driven by macroscopic mass transfer like in convection. Heat conduction
within a metal, for example, is due to collisions between electrons and/or phonons, and is
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1.1. Historical background

well-described by Fourier’s law which states [baron de Fourier22]

J =−κ∇T, (1.1)

where J is the (vector) local heat current density, ∇T is the temperature gradient, and κ

is the thermal conductivity which may be found from Wiedemann-Franz law [Franz53].
Heat is transferred via conduction from left to right in the metal bar in Fig. 1.1, where
the temperature gradient is indicated by the changing colour. Conduction is usually the
dominant mechanism of heat transfer for solid materials in contact with one and other.

Finally, objects separated by a gap devoid of matter, i.e. a vacuum, may still exchange
heat. Contrary to the previous mechanisms, heat transfer via radiation does not involve
movement or collisions of massive particles and is instead mediated by electromagnetic
fields. Radiative heat transfer is what warms the hands on the bottom right in Fig. 1.1.
The importance of this mechanism cannot be understated, since it is only via radiation
that energy from the Sun – the source of all life on earth – reaches us. It is also the
most recent mechanism to be accurately explained by physical laws, and constitutes the
principal phenomenon investigated in this thesis.

The developments of classical electromagnetism and thermodynamics were two of the
great successes of 19th century physics, however around the turn of the 20th century there
were some important phenomena that remained unexplained. One unanswered question
was how bodies radiate heat. In particular, the focus was on black-body radiation, where
a black body is an idealised object that absorbs all radiation regardless of frequency or
angle of incidence. Attempts to solve this problem via classical theories of equipartition
of energy and electromagnetism led naturally to the Rayleigh-Jeans law for the spectrum
of radiation [Kutner03]. Although reliable at low frequency, this description reveals an
unphysical divergence in the radiation intensity at high frequency, known as the ultraviolet
catastrophe.

Planck famously solved the problem by (reluctantly) postulating that bodies may only
emit heat in finite packets of energy ∆E = h̄ω where h̄ is what would become known
as the famous (reduced, h̄ = h/2π) Planck’s constant and ω is the (angular, ω = 2πν)
wave frequency. In other words, the electromagnetic fields of Maxwell needed to be
quantised. In this way, Planck arrived in 1900 at the expression for the radiation spectrum
of a blackbody at temperature T [Planck00]:

L0
ω(T )dω =

ω2

4π3c2
h̄ω

eh̄ω/kBT −1
dω, (1.2)

where c is the speed of light in vacuum and kB is the Boltzmann constant. In his de-
scription of the photoelectric effect in 1905, Einstein relied on the same postulate of the
quantisation of light, in what is sometimes regarded as the birth of quantum mechanics
[Einstein05]. The finite packets of light later became known as photons and the idea
of light behaving as a particle, rather than a wave as described by Maxwell’s equations,
proved to be revolutionary. Planck’s law removed the ultraviolet catastrophe, faithfully
matching experimental data of the spectra of stars at both low and high frequency. Simple
manipulations of the expression Eq. (1.2) lead naturally to two previously observed laws
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Chapter 1. Introduction and history of radiative heat transfer

on black-body radiation from a body at temperature T :

1. By differentiation we find Wien’s law for the wavelength of the peak of the radiation
spectrum [Wien96]:

λmax =
b
T
, (1.3)

where b = 2.90 mm K is a transcendental number.

2. By integration we find the Stefan-Boltzmann law for the power emitted per unit
area [Boltzmann84]:

J(T ) = σT 4, (1.4)

where σ = 2π5k4
B/(15c2h3) is the Stefan-Boltzmann constant.

Real bodies are not perfect absorbers, and their deviation from black-body radiative effi-
ciency is described by the material emissivity. The emissivity may be incorporated into
the theory of Planckian radiative heat transfer, leading to a modified expression for the
power emitted by a given realistic body, away from the Stefan-Boltzmann law, Eq. (1.4).

Even with the added notion of emissivity, the Planckian approach described above,
based on the particle nature of light, is fundamentally limited. The reason for this limita-
tion is related to one of the central debates of 20th century physics: wave-particle duality.
Although the photon picture appeared to solve various outstanding problems in physics,
it still had to be rationalised with the irrefutable wave-like behaviour of light that was
readily observed (reflection, diffraction etc.). As the development of quantum physics
gradually showed, the interplay between the importance of the two descriptions – wave
and particle, classical and quantum – is determined by the length or energy scales of each
particular system.

In the context of radiative heat transfer, Planck’s law may fail when the physical length
scale of a problem decreases towards that of the dominant wavelength of light, the ther-
mal wavelength of photons, λ̄ T = h̄c/T (taking kB = 1), where λ̄ T ≈ λmax of Wien’s law,
Eq. (1.3). At length scales smaller thanλ̄ T , also known as the near field, wave-like charac-
teristics absent from Planck’s law may result in photon tunnelling between bodies, which
may contribute significantly to the radiative heat transfer. Indeed, a more complete theory
than Planck’s law is needed to accurately predict radiative heat transfer between closely
spaced bodies, and this is the subject of the next section.

1.2 Fluctuational electrodynamics

The framework used to study radiative heat transfer between bodies is known as fluc-
tuational electrodynamics (FE). This phenomenological theory combines the theories of
random quantum and thermal fluctuations with Maxwell’s description of the electromag-
netic fields. The theory of fluctuations encodes Planck’s corpuscular nature of light, while
Maxwell’s equations ensure that the wave-like behaviour is taken into account. FE is a
semi-classical scheme in the sense that the electromagnetic fields are treated classically,
but quantum fluctuations are included – indicated by the presence of h̄ in the fluctuation
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1.2. Fluctuational electrodynamics

dissipation theorem. As long as the quantum system may be represented as a collection
of harmonic oscillators – which is always the case for a system whose response is linear
– the quantum fields obey the same equations as the corresponding classical ones, and so
nothing is lost when applying Maxwell’s equations.

The resulting FE is a theory that may be used to reliably predict the heat transfer
across (in principle) all length scales. We note also that the framework of FE allows one
to calculate not only the energy transfer (heat), but also the momentum transfer (forces)
between isolated bodies. These phenomena, known as Casimir effects, have been exten-
sively studied: see the original papers by Casimir [Casimir48b, Casimir48a], the seminal
paper connecting the force to fluctuating currents by Lifshitz [Lifshitz56], and more re-
cent reviews [Mostepanenko97, Joulain05, Volokitin07] and references therein. However,
here we tell the story of FE in the context of heat transfer.

Based on the early work in this direction by Rytov in the 1950s [Rytov53, Rytov89],
the theory of FE was first successfully applied to calculate radiative heat transfer by
Polder and Van Hove in 1971 [Polder71]. Since then, FE has been applied to predict the
heat transfer in many systems based on different geometries, materials and temperature
regimes. A brief timeline of the works most relevant to this thesis is given in Sec. 1.5.1,
as well as related experiments in Sec. 1.5.2. First we detail the ingredients and steps of
the phenomenological theory of FE, which is illustrated in Fig. 1.2.

Figure 1.2: Schematic of radiative heat transfer between two metals, described through
the framework of fluctuational electrodynamics. The bodies are described by their elec-
trical conductivities, σ1 and σ2, and are at thermal equilibrium with temperatures T1 and
T2, respectively. In principle the bodies may have arbitrary shape and they are spatially
separated by some gap, d. Illustrated by the arrow is the heat transferred via electromag-
netic fields from body 1 to body 2: The thermal fluctuations of electrons in body 1 give rise
to current fluctuations that are described by the FDT. These current sources determine the
electromagnetic fields that are felt by the charges in body 2. The dissipation in body 2 due
to the presence of the fluctuating currents in body 1 is given by the induced current mul-
tiplied by the electric field. The same process should then be imagined in reverse, where
the fluctuating currents in body 2 lead to dissipation in body 1, where the difference gives
the net heat transfer between the bodies.

For a material in thermal equilibrium at temperature T , charges (ions or electrons)
move randomly due to quantum (zero-point) and thermal fluctuations. The motion of
these charges drives random fluctuating currents. Although the average of these currents
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vanishes, their presence affects the electromagnetic field present inside and outside of the
material. In particular, the electromagnetic field due to current fluctuations in one body
may do work on charges in a second body, spatially separated from the first. This work
eventually manifests itself as dissipation, known as Joule heating, in the second body. The
same process occurs in reverse where dissipation in the first body occurs due to current
fluctuations in the second, and a net heat current between the bodies may be calculated.
In the following subsections the key ingredients and steps mentioned in this paragraph are
detailed in the following order:

1. Material response function: the key ingredient that describes all aspects of the
material’s behaviour in the presence of an electromagnetic field

2. Fluctuation dissipation theorem: the fundamental result describing the statistics
of the random fluctuating currents in the material that arise as a result of the random
thermal motion of charges

3. Maxwell’s equations: the standard dynamical equations that describe how the elec-
tromagnetic fields produced by the currents fill the given geometry

4. Joule heating: the calculation of the quantity of interest, the heat transfer between
spatially separated objects via the electromagnetic fields

1.2.1 Material response function

The first essential ingredient is a description of how the material interacts with external
electromagnetic fields, also known as the material’s optical response. The material re-
sponse function may be defined in terms of the induced charge density or current density,
but in general it describes the willingness of the relevant charges in the material to be in-
fluenced by the presence of an electromagnetic field. In the framework of linear response
theory the current response function of a given material, known as the electrical conduc-
tivity tensor, σlm, is defined in terms of the current density induced due to the presence of
an external electric field via the relation [Bruus04]

jl(r, t) =
∫

dt ′
∫

dr′σlm(r, t;r′, t ′)Em(r′, t ′), (1.5)

where l,m are Cartesian indices (summation is implied over the repeated index, m). The
conductivity is the linear response coefficient for the current density, and as shown de-
scribes the ease with which currents are established in a material when placed in an elec-
tric field – its inverse is the resistivity. Considering instead of the current the response
in the charge density, the density response function, Π, is defined in terms of the charge
density induced due to the presence of an external potential via the analogous relation
[Bruus04]

ρ(r, t) =
∫

dt ′
∫

dr′Π(r, t;r′, t ′)φ(r′, t ′). (1.6)

The density response function, Π, describes how the charge is redistributed in a material
upon application of an external electromagnetic potential, or in other words the material’s
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propensity to acquire an electric dipole moment. The density response function is an
important quantity because, via the dielectric function, it describes the ability of a material
to screen an external potential.

The two response functions Eqs. (1.5) and (1.6) are related due to the continuity
equation that expresses the fundamental law of conservation of charge in the material
[Landau75]:

∇ · j(r, t)+
∂ρ(r, t)

∂ t
= 0. (1.7)

Naively one may think that the formulation of FE may therefore be carried out equiv-
alently either in terms of currents and fields, or densities and potentials. However, the
formulation of FE in terms of current is the more complete one, since in the density de-
scription the contributions made by transverse currents (i.e. zero divergence) are not taken
into account.

It is also useful to introduce here another quantity used to describe the reshuffling of
the charges inside a medium in response to the application of an external field, the electric
polarisation vector, P (not to be confused with the polarisation direction of waves). P
may be defined inside a medium via the definitions (equivalent by the continuity equation
(1.7)):

ρ(r, t) =−∇ ·P(r, t),⇐⇒ j(r, t) =
∂P(r, t)

∂ t
, (1.8)

where P gives the dipole moment per unit volume of the medium subject to an external
field. In the formulation of Maxwell’s equations in the presence of dielectric media, the
polarisation often appears in the definition of the electric induction, or displacement field,
D = E+4πP (we use CGS units throughout, unless stated otherwise).

In general the response function for a particular material object may be very compli-
cated. In space and time invariant systems (such is the case for homogenous, isotropic
materials in equilibrium) the dependence on the coordinates reduces, for example for the
conductivity, to: σ(r, t;r′, t ′)→ σ(r−r′, t− t ′) with σ = 0 for t < t ′ due to causality. The
dependence on two spatial coordinates and two time coordinates shows that the response
may nonetheless be nonlocal. That is, the response at a given point in space within the
material at a certain time may depend on the perturbation at some other point elsewhere
in the material at some earlier time. Inserting the time and space invariant form of σ into
Eq. (1.5) we notice the form of a convolution. It is therefore advantageous to work in
Fourier space, where the Fourier transform in space and time are defined as

σ(k,ω) =
∫

∞

−∞

dt
∫

ddrσ(r− r′, t− t ′)e−ik ·(r−r′)+iω(t−t ′), (1.9)

where d is the dimension of the material, k is the d-dimensional wavevector and ω is
the frequency of the perturbation – i.e. the electric field. By the convolution theorem the
integral equation Eq. (1.5) therefore becomes an algebraic equation in Fourier space:

jl(k,ω) = σlm(k,ω)Em(k,ω), (1.10)

highlighting the utility of working in Fourier space in space and time invariant systems.
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The aforementioned spatial and temporal nonlocality is encoded in the conductivity’s
dependence on k and ω . The dependence on ω , known as frequency dispersion, represents
memory effects in the material, while the dependence on k, known as spatial dispersion,
represents force spreading phenomena [Landau84]. From the continuity equation (1.7)
and the fact that the electric field is given by the gradient of the scalar potential, we
may relate the previously defined density response function appearing in Eq. (1.6) to the
conductivity tensor of Eq. (1.9):

iω e2
Π(k,ω) = klkmσlm(k,ω), (1.11)

where e is the electron charge.
For metals, which represent the focus of this work, the temporal dispersion is often

significant while the spatial dispersion tends only to be significant at microscopic length
scales. Spatial dispersion is therefore often neglected, in other words assuming a point-
like spatial dependence of the conductivity ∼ δ (r− r′), leading to no k-dependence in
Eq. (1.9). In this case, the conductivity in a metal is well described by the Drude model,
where the longitudinal (diagonal) conductivity is given by

σ(ω) =
e2νD

1− iωτ
, (1.12)

where ν is the electron density of states at the Fermi level, and D = v2
Fτ/2 is the diffusion

coefficient given in terms of the Fermi velocity vF and electron momentum relaxation time
τ . Equation (1.12) is very general and is a result of electron scattering with impurities –
it may be derived by semi-classical transport equation or by a quantum diagrammatic ap-
proach [Bruus04]. Although using a local model simplifies the calculation, work has been
done to investigate the role of spatial dispersion on radiative heat transfer [Chapuis08c],
and we investigate this further in Ch. 3.

The most direct method of calculation of the response function is the famous Kubo for-
mula [Kubo57a, Kubo57b, Bruus04], however under certain conditions one may also use
the semiclassical Boltzmann kinetic equation [Abrikosov88], as in App. D. Further dis-
cussion of methods of calculating the response function are found in Sec. 2.1 and App. D.
We see in the following subsections 1.2.2-1.2.4 that the material response function, once
known, plays a crucial role in FE.

1.2.2 Fluctuation dissipation theorem

The material response functions described in the previous section pertain to the more
general framework of linear response theory. In particular, they describe the average
response of a particular observable of a system in equilibrium to the application of an
external perturbation, to linear order in the perturbation. The remarkable result of the
fluctuation dissipation theorem is that these very same response functions describe the
random fluctuations of the corresponding observables, present even in the absence of the
perturbation. This is the fundamental result used to describe the random current density
fluctuations that act as the source of thermal radiation in FE.
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1.2. Fluctuational electrodynamics

The perturbations considered in linear response theory take the form V̂ = − fi(t)x̂i,
where fi is a periodic external force of the form fi(t) = 1

2

[
f0ie−iωt + f ∗0ie

iωt] which cou-
ples to the coordinate, or observable, xi, described by the operator x̂i [Landau80]. The
generalised susceptibility is defined as the kernel giving the average response of the coor-
dinate upon application of a set of forces, x̄i =αik fk, i.e. αik describes how susceptible the
coordinate xi is to the influence of the force fk. Following basic arguments for quantum
mechanical transition probabilities and averaging over the Gibbs ensemble for a system in
equilibrium at temperature T , it is possible to arrive at the expression for the fluctuations
of the coordinates [Landau80]

1
2
〈
x̂i(t)x̂k(t ′)+ x̂k(t ′)x̂i(t)

〉
=
∫

∞

−∞

dω

2π

1
2

ih̄ [α∗ki(ω)−αik(ω)]coth
h̄ω

2T
e−iω(t−t ′), (1.13)

which represents the fluctuation dissipation theorem, where x̂i(t) are Heisenberg opera-
tors and we have used the property of the generalised susceptibility, α(−ω) = α∗(ω).
First derived by Callen in 1951 [Callen51], Eq. (1.13) describes either the fluctuations
of a given observable (if i = k) or the correlation between two different observables
(if i 6= k) in terms of the components of the generalised susceptibility and the system
temperature. These fluctuations are present with or without the presence of the exter-
nal force, i.e. regardless of whether x̄i is non-zero. The term in square brackets of
Eq. (1.13) may be shown to describe the dissipative processes of the system, hence ex-
pressing a deep connection between random fluctuations and energy dissipation. Not-
ing that (1/2)coth(h̄ω/2T ) = 1/2+N (ω), where N (ω) = 1/(eh̄ω/T − 1) is the Bose-
Einstein distribution function, we identify the average energy of a harmonic oscillator –
the same function that appears in Planck’s law, Eq. (1.2).

The formalism briefly introduced above may be applied to a wide range of physical
problems. For example, the Brownian motion of a particle in a fluid is explained by the
coupling of the particle coordinates to random Langevin forces whose statistics are given
by FDT [Joulain05]. For the problem of electromagnetic fluctuations in the presence of
a medium, the corresponding force-coordinate pair is an external electric field, E, which
couples to the polarisation vector, P. The average response in the coordinate, P, is given
in terms of the external force, E, via the generalised susceptibility, labelled χ:

Pi(r, t) =
∫

dt ′
∫

dr′χik(r, t;r′, t ′)Ek(r′, t′), (1.14)

By the FDT, we may therefore write down the fluctuations of the polarisation vector,
present even in the absence of an external electric field (generalising Eq. (1.13) for spa-
tially distributed quantities):〈

Pi(r, t)Pk(r′, t ′)
〉
=
∫

∞

−∞

dω

2π

1
2

ih̄
[
χ
∗
ki(r
′,r,ω)−χik(r,r′,ω)

]
coth

h̄ω

2T
e−iω(t−t ′). (1.15)

Specifying to a three-dimensional translationally invariant system we introduce the Fourier
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transform in space and use Eq. (1.8) to rewrite the FDT for current fluctuations as

〈
ji(r, t) jk(r′, t ′)

〉
=
∫ d3k

(2π)3

∫
∞

−∞

dω

2π
h̄ω Reσik(k,ω)coth

h̄ω

2T
eik(r−r′)−iω(t−t ′), (1.16)

where we have used that σik(ω) = −iωχik(ω) via the definition of the polarisation vec-
tor. The fluctuating current sources, whose statistics are given by FDT Eq. (1.16), enter
directly into Maxwell’s equations and eventually result in radiative heat transfer via Joule
heating.

1.2.3 Maxwell’s equations

The fluctuating currents of the previous section in one body act as source terms for the
electromagnetic field experienced by another, spatially separated body. To calculate the
field in the presence of dielectric media with intrinsic fluctuations, we solve Maxwell’s
equations. Solutions to these equations correspond to a complete picture of the electro-
magnetic system. We utilise Maxwell’s equations for monochromatic field components
of frequency ω [Landau84]

∇ ·E(r,ω) = 4πρ(r,ω), (1.17a)

∇ ·B(r,ω) = 0, (1.17b)

∇∧E(r,ω) =
iω
c

B(r,ω) (1.17c)

∇∧B(r,ω) =
1
c
[4πj(r,ω)− iωE(r,ω)] , (1.17d)

where all contributions to the currents and densities are present in ρ and j. In particu-
lar, j consists of the sum of two contributions: (i) the induced current due to the electric
field present at the position r, given in general by Eq. (1.5) and (ii) the randomly fluctu-
ating currents whose correlation is described by the FDT of Eq. (1.16). In the spirit of
the previous sections, the contributions (i) and (ii) may be seen as the induced current,
and the intrinsic fluctuations, respectively. We note that the Coulomb limit, that which
describes electrostatics, is obtained from Eqs. (1.17) by sending c→ ∞. We note also
that sometimes, authors choose to define the electric displacement field, D, as mentioned
previously, which takes into account the induced current, via the relation:

D(r,ω) =
∫

dr′ ε(r,r′,ω)E(r′,ω), (1.18)

where the dielectric function is defined by

ε(ω) = 1+4πχ(ω) = 1− 4πσ(ω)

iω
. (1.19)

The properties of the dielectric function regarding spatial locality are therefore given by
those of the conductivity. However, we continue with Maxwell’s equations as given in
Eqs. (1.17), with the geometry of the problem encoded in σ(r,r′,ω) – i.e. σ is only
non-zero within the charge containing bodies.
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One may in principle proceed to solve Maxwell’s equations and construct E and B ev-
erywhere ensuring the fields satisfy the regular boundary conditions at interfaces between
media [Landau84]: continuity of the normal B-field and tangential E-field, and jumps in
the normal E-field and the tangential B-field given by the total surface charge and current
densities, respectively.

The energy current density pertaining to an electromagnetic wave is given by the
Poynting vector, S:[Landau84]

S(r,ω) =
c

4π
E(r,ω)∧B(r,ω). (1.20)

Since in a travelling wave the electric and magnetic field components are transverse, we
note that the Poynting vector points in the direction of propagation of the wave, giving rise
to the idea of energy being ‘carried’ from one point in space to another by the fields. The
Poynting vector is ultimately responsible for heat transfer by radiation, and is therefore
central to this topic.

1.2.4 Joule heating

Finally, we wish to calculate the quantity of interest, namely, the heat deposited into a
body at temperature T1 (body 1), via radiation when in the presence of another body
at temperature T2 (body 2). Although the theory of dissipation in systems with linear re-
sponse appears to arise naturally, there is nonetheless some subtlety regarding the quantity
of interest. As a reminder, for a system perturbed by a periodic external force as described
in Sec. 1.2.2, the dissipation due to the force may be shown to be given by:

Q =
i
4

ω [α∗ki(ω)−αik(ω)] f0k f ∗0i, (1.21)

where indeed we note the appearance in square brackets of the exact same object as in the
FDT, Eq. (1.13), hence justifying its name. For the case of heat deposited via radiation
into body 1, we begin by writing the expression of the total work done by the field on the
charges inside the body:

J1 =
∫

1
dr〈j1(r, t) ·E1(r, t)〉, (1.22)

where 〈.〉 denotes an average over the fluctuating sources whose statistics are controlled
by the FDT [Eq. (1.16)] and r spans the volume of body 1. The current and electric
field in Eq. (1.22) may be split into additive contributions. The field, E1, consists of two
contributions: (i) the field present in body 1 due to the current fluctuations in body 2,
denoted E(2)

1 , and (ii) the field present in body 1 due to the current fluctuations in body 1,
E(1)

1 . The current, j1, therefore consists of three contributions: the two induced currents
given by Eq. (1.5) that are associated to the fields (i) and (ii), as well as the intrinsic
fluctuations, jfl.

1 . Decomposing the current and field in Eq. (1.22) in this way leads to the
expression (suppressing for brevity all arguments, integrals over intermediate space and

17



Chapter 1. Introduction and history of radiative heat transfer

time variables and sums over tensorial indices):

J1 =
∫

1
dr
〈(

jfl.
1 +σ1E(1)

1

)
·E(1)

1

〉
+
〈

σ1E(2)
1 ·E(2)

1

〉
, (1.23)

where cross terms involving current fluctuations in opposing bodies have been evaluated
to give zero since the fluctuations in each body are independent. The two separate contri-
butions in Eq. (1.23) have distinct physical interpretation. The first term may be identified
as the energy emitted by body 1, while the second term is the energy absorbed by body
1 due to fluctuations in body 2. Clearly, these two contributions to the work done inside
body 1 will have opposite sign. This is illustrated schematically in Fig. 1.3 where the first
term corresponds to all blue arrows (dashed and solid) leaving body 1. The second term
corresponds to the solid red arrow leaving body 2 and arriving at body 1 subtract the dot-
ted red arrow leaving body 1, corresponding to transmission. The transmission should be
born in mind when writing the Joule losses in terms of the Poynting vector, as we discuss
later in Sec. 1.4.

Figure 1.3: Schematic illustrating the energy exchange between body 1 and body 2 and
their surroundings. The expression for the work done on charges in body 1 in Eq. (1.22)
corresponds to all the arrows arriving and leaving body 1 – i.e. it includes both the energy
dissipated in body 1 due to radiation from body 2 (solid red arrow from body 2 to body 1
subtract dotted red arrow leaving body 1), but also radiation emitted by body 1 (all blue
arrows leaving body 1). The same picture is illustrated for the work done inside body 2.
The Joule losses in body 1 given in Eq. (1.25) correspond to the solid minus the dotted
red arrow, subtract the solid minus the dotted blue arrow. The importance of the dotted
arrows which correspond to transmission of radiation by the bodies is dependent on the
geometry of the particular problem.

One may write the corresponding expression for the work done by the fields on the
charges in body 2:

J2 =
∫

2
dr
〈(

jfl.
2 +σ2E(2)

2

)
·E(2)

2

〉
+
〈

σ2E(1)
2 ·E(1)

2

〉
, (1.24)

where we once again identify the two terms as the energy emitted by body 2 and the
energy absorbed by body 2 due to fluctuations in body 1, respectively. The work done
in body 2 is represented analogously in Fig. 1.3. Considering Eqs. (1.23) and (1.24), we
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recognise that due to energy balance the second term in each equation (corresponding to
dissipation due to the presence of the other body) is contained (with opposite sign) within
the first term of the other equation (corresponding to total energy emission). However,
exactly how the first term in each equation splits into this radiation that is absorbed by the
other body, and radiation that escapes to infinity is non-trivial and situation dependent.
Since we are interested in energy transferred between the bodies rather than radiation lost
to infinity, we may simply focus on the second two terms, defining the Joule losses in
body 1 by their difference (reinstating the arguments)

J2→1 = J̃1− J̃2 =
∫

1
dr
〈

j̃1(r, t) ·E(2)
1 (r, t)

〉
−
∫

2
dr
〈

j̃2(r, t) ·E(1)
2 (r, t)

〉
, (1.25)

where j̃1,2 are the induced currents appearing in the second terms of Eqs. (1.23) and (1.24),
respectively. In this picture, the different contributions to the heat current J̃1,2 are seen
to arise by sequentially treating one body as active (emitter) while the other is passive
(receiver) – i.e. to calculate each term J̃1,2 one needs to solve Maxwell’s equations with
fluctuations only in the opposing body.

With the Joule losses written in the form of Eq. (1.25) it is possible to make contact
with the general result for dissipation in linear response theory, Eq. (1.21). Taking J̃1 and
writing the induced current explicitly in terms of the conductivity of body 1 via Eq. (1.5)
leads to the expression

J̃1 =
∫

∞

0

dω

2π

∫ dk
(2π)d [σ∗ki(k,ω)+σik(k,ω)]Ek(k,ω)E∗i (k,ω), (1.26)

where we have specified to the case of a d-dimensional translationally invariant body 1.
Rewriting the conductivity in terms of the generalised susceptibility results in the gen-
eral form given in Eq. (1.21). This expression for the Joule losses Eq. (1.25) concludes
the explanation of the phenomenological theory of FE for the purposes of radiative heat
transfer.

1.3 Extensions and validity of FE

1.3.1 FE in circuits

In the above description, FE has been set up for macroscopic bodies that have a relevant,
but simple, geometry. When one can neglect the details of the internal structure of the
bodies, it is often desirable to represent the physical system by an effective circuit, where
lumped elements such as resistors, capacitors and inductors mimic the behaviour of the
real material bodies. Photonic heat transfer in such circuits has been measured experimen-
tally – in particular in Refs. [Meschke06, Timofeev09], the authors confirmed the thermal
conductance quantum (predicted in Ref. [Pendry83]) in a microscale circuit at low tem-
peratures. For a review of the recent advances in field of quantum thermal transport in
circuits, see Ref. [Pekola21].

A version of FE has been developed to treat the problem of photonic heat transfer
in circuits [Schmidt04, Pascal11]. Notably, this theory allows one to calculate the heat

19



Chapter 1. Introduction and history of radiative heat transfer

current between dissipative impedances held at different temperatures, depending on the
circuit that couples the two. Some examples of these circuits are shown in Fig. 1.4.

Figure 1.4: Examples of circuits with different types of coupling, treatable via circuit FE
[Pascal11]. A: two dissipative impedances, Z1 and Z2, (Re Z1,2 6= 0) coupled by a reactive
impedance, Zc (i.e. Re Zc = 0). B: Z1 and Z2 are coupled via mutual inductances, M, to
an LC resonator. C: Z1 and Z2 are coupled via a transmission line of length N.

Here we briefly describe the analogy between the macroscopic FE developed in the
previous subsections, and the circuit FE used to calculate photonic heat transfer in circuits
like those of Fig. 1.4. The bodies transferring heat are here represented by the different
coloured impedances, Z1 and Z2, which may be thought of as baths where dissipation may
take place. For the key ingredients and steps of macroscopic FE (Secs. 1.2.1-1.2.4), we
provide the circuit FE equivalent:

1. Material response function ⇒ Instead of the response functions that describe
how the materials respond in the presence of an external electromagnetic field, the
impedances Z1 and Z2 describe the behaviour of the baths in the presence of ap-
plied voltages and currents. In the simplest case Z1 and Z2 may be just resistors, but
in analogy to Eq. (1.5) we have the general definition for the complex impedance,
Z(ω), defined to give the current, I, induced upon application of an alternating
(complex) voltage, V :

I =
1

Z(ω)
V, (1.27)

where we note that 1/Z, known as the admittance, is the circuit equivalent of the
material conductivity.

2. Fluctuation dissipation theorem⇒ The current that passes through the dissipative
elements Z1 and Z2 may once again be decomposed into a linear response due to an
applied potential difference, and intrinsic fluctuations. For the fluctuations, one may
view each dissipative element as being associated with a fluctuating current source
connected in parallel. These thermal current fluctuations are known as Johnson-
Nyquist noise, which satisfy the fluctuation dissipation theorem (in direct analogy
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with Eq. (1.16) for the current density fluctuations):

〈Ii(t)I j(t ′)〉= δi j

∫
∞

−∞

dω

2π
h̄ω Re

1
Zi(ω)

coth
h̄ω

2Ti
e−iω(t−t ′), (1.28)

where i, j = 1,2 label the elements and δi j indicates that the intrinsic current fluc-
tuations in each dissipative element are independent, as in macroscopic FE. This
expression reflects the fact that the impedances Z1 and Z2 act as photonic reservoirs,
characterised by Bose-Einstein distribution functions at temperatures T1 and T2.

3. Maxwell’s equations⇒ Rather than solving Maxwell’s equations for the electro-
magnetic fields in the presence of the material bodies, the circuit problem is solved
via Kirchoff’s laws for the conservation of charge (in the form of current) at circuit
nodes and conservation of energy (in the form of potential difference) around closed
loops. The solutions are determined by the circuit structure that couple the baths
Z1 and Z2. Recalling the physical nature of different circuit elements it is possi-
ble to make the connection between different lumped elements, and the underlying
electromagnetic mechanisms. In particular, coupling directly via capacitors (for ex-
ample, taking Zc = 1/iωC in the top left circuit of Fig. 1.4) represents electrostatic
coupling of charge density fluctuations, while coupling via inductors (for exam-
ple, the top right circuit of Fig. 1.4) represents magnetostatic coupling of transverse
current fluctuations.

4. Joule heating ⇒ Finally, the Joule losses of macroscopic FE correspond to the
Ohmic dissipation that occurs in Z1,2 as a result of the established current and po-
tential difference. The well known expression for the dissipation in, say Z1, is given
by [in analogy with Eq. (1.22)]

P2→1 = 〈I1(t)V1(t)〉 , (1.29)

where there is not the same subtlety around the work done as in the macroscopic
case (Fig. 1.3), since all the energy is confined to the circuit.

The description of circuit FE given above allows one to calculate heat transfer between
dissipative elements of a circuit. This is applied in Ch. 3 where we discuss the applicabil-
ity of the effective circuit model for a real physical system.

1.3.2 Fluctuations of the heat transfer

In all of the above discussion of FE, the quantity of interest is the average heat current
between spatially separated bodies held at different temperatures. While accurate predic-
tion of the average of a physical quantity is important for applications and experiments,
there is often more information to be learned about the system via the fluctuations around
the average, also known as the noise. In the context of electrical current, the noise has
been studied to reveal information about the conduction mechanisms and the nature of
charge carriers [Landauer98]. Although the calculation of fluctuations is in general more
difficult since it involves higher order moments of the electromagnetic fields, the theory
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of FE has recently been applied to radiative heat current noise [Biehs18, Herz20]. Just
as for the average, FE predicts fluctuations that differ significantly in the near field (see
Sec. 1.4 for the definition) compared to those predicted by the Planckian approach.

There have been some works on heat current noise in particular systems, where typ-
ically one calculates the full counting statistics of the energy transferred in a given time
interval. The heat current average and fluctuations may be accessed via the cumulants of
the appropriate generating functional of the theory. For example, Ref. [Tang18] investi-
gates numerically the heat current statistics between two semi-infinite metallic bodies in
the Coulomb limit, revealing significant deviations in the fluctuations at large tempera-
ture differences compared to linear response results given in terms of heat conductance.
In circuits, Ref. [Golubev15] develops a theory for the full counting statistics of photon
mediated heat exchange between two metallic resistors. The results for the low frequency
noise differ from the classical case for both low and high temperatures. Ref. [Karimi21]
investigates finite frequency heat current noise in circuits and proposes a modulation pro-
cedure to allow experimental observation of the high frequency behaviour. Despite these
advances, the question of how to extract information on the nature of heat-carrying exci-
tations remains largely open (see Sec. 4.3.3).

1.3.3 Validity of FE

Finally, we discuss briefly the validity of FE. Although it is a phenomenological theory,
based on linear response and a macroscopic description of the materials and fields, FE
may be justified microscopically for the average heat current via nonequilibrium Green’s
functions (NEGFs) [Ojanen07, Ojanen08, Zhang18, Kamenev18]. The NEGFs are used
to describe the many-body electron system that constitute the radiating bodies, where the
electron-electron interactions responsible for the heat transfer may be treated via diagram-
matic perturbation theory in the random phase approximation (RPA), which is valid for
for sufficiently high electron density [Bruus04]. In App. C this procedure is performed
for two-dimensional metallic layers in the Coulomb limit. The current fluctuations obey-
ing FDT introduced as sources in FE arise naturally in the microscopic theory so long
as each radiating body is in equilibrium with itself, but not with the other one. Here,
equilibrium means that each body has its own homogenous temperature profile (i.e. there
are no temperature gradients inside each body), while the total system represents a non-
equilibrium steady state. The fact that the microscopic approach coincides with FE rep-
resents an equivalence of Maxwell’s equations and the full electromagnetic interaction
between electrons in RPA [Abrikosov75]. We add that a similar microscopic justification
for FE for the case of noise is apparently still lacking, and we approach this problem in
Ch. 4.

The assumption of homogenous temperature profiles may be interrogated – indeed
one may imagine the appearance of ‘hot-spots’ near a material surface where the fields
penetrate. By introducing in the model a physical mechanism for radiation-conduction
coupling (this is how the radiative heat is actually dissipated), one may observe the es-
tablishment of inhomogeneous temperature profiles according to the size and shapes of
the bodies, as well as the timescales of the relevant processes [Reina20]. For two slabs
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of semiconductor, this inhomogeneity is found to reduce the radiative heat transfer com-
pared to that predicted by FE, however the discrepancy is generally only significant for
slabs > 1 µm thickness, indicating that the FE approach is sufficient in a wide terrain of
experimental contexts.

1.4 Travelling and evanescent waves

All the work of the previous Sec. 1.2 establishing the framework of FE is worthwhile
because it captures the contributions of all types of electromagnetic wave to the radiative
heat transfer. Namely, the solutions of Maxwell’s equations will include both travelling
and evanescent waves which contribute additively. Conversely, the Planckian approach
briefly recalled in Sec. 1.1 only takes into account travelling waves and hence does not
provide reliable predictions in all settings. Here we briefly illustrate this fundamental
difference in wave character and mention when we may expect the evanescent waves to
play a role.

To simplify the illustration of the two possible wave characters, we restrict ourselves
to a planar geometry. The two bodies transferring heat are infinite in extent in, say, the
x− y plane, but are restricted in the normal, or z, direction – for example parallel two-
dimensional sheets, or three-dimensional half-spaces, both separated by some gap (see
Fig. 1.5). In these cases the in-plane symmetry means that there is zero average lateral
heat transfer (since each body is in equilibrium) and we seek the heat current in the z
direction.

We take Maxwell’s equations Eqns. (1.17) in vacuum which result in the wave equa-
tion for the electric field

∇
2E(r,ω) =−ω2

c2 E(r,ω), (1.30)

and identically for the magnetic field. The solutions to this equation are plane waves, with
spatial variation of the type E(r) = E0eik ·r, where k is the three-dimensional wavevector.
In general the wavevector may be decomposed into in-plane and z components, which
according to Eq. (1.30) satisfy the relation: |k|2 = k2

‖+ k2
z = (ω/c)2. Focusing on the z

direction, it is therefore indicative to write the equation

kz =±
√

ω2

c2 − k2
‖, (1.31)

revealing that kz may be either real or imaginary, according to the relation between k‖
and ω . For k‖ < |ω|/c, the normal component is real, and so the wave travels, or prop-
agates, in the z direction (as well as in x and y directions according to k‖). These waves
may be reflected between bodies (perhaps multiple times leading to Fabry-Perot modes)
before being absorbed, as shown in Fig. 1.5 (a). The travelling waves give the ‘radiant’
contribution to the heat transfer, which corresponds to the fraction of black body radiation
predicted by Planck’s law according to the material emissivity. According to the geometry
of the problem, this energy may escape to infinity.

If instead k‖> |ω|/c, then kz = i|kz| is imaginary and the wave propagation is confined
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to the plane, while the field strength decays exponentially in the z-direction according to
e−|kz|z, as shown in Fig. 1.5 (b). The wave travels along the surface of the material, or in
other words the field amplitude is oscillatory in the plane, while it decreases rapidly to
zero away from the surface – this is known as an evanescent wave. Although evanescent
waves do not propagate in the z-direction, and therefore may not carry energy away to
infinity through the vacuum, they do contribute to the energy density of the field close
to the material surface. When two bodies are placed in close vicinity of one and other,
evanescent waves on the surface of each body may be ‘felt’ by the other body, and lead
to a contribution to the heat transfer – this process is known as photon tunnelling. Al-
though this mechanism is inherently ‘non-radiative’, the evanescent wave contribution is
nonetheless referred to as a form of radiative heat transfer, since the transfer of heat occurs
via the electromagnetic field (see Fig. 1.1).

Figure 1.5: Illustrations of the possible wave types and phenomenon for planar geome-
tries: (a) and (b) show two-dimensional layers while (c) is three-dimensional semi-infinite
bodies. (a): k‖ < |ω|/c leads to reflection and transmission of travelling waves. Finite
transmission means some energy may ‘escape’ to infinity. (b): k‖ > |ω|/c leads to the
formation of evanescent waves that travel along the hot (red) and cold (blue) layers. The
exponential decay of the field strength away from the body surfaces is indicated. (c): for
semi-infinite bodies the incoming radiation is entirely attenuated within the body, leading
to an equivalence of the Joule losses and the average Poynting vector in the gap.

The two contributions to the heat transfer from travelling and evanescent waves are
additive and therefore either one may be dominant. The travelling waves are known to
dominate when bodies are separated by large distances, where the relevant length scale
is the decay scale of the evanescent waves, |kz|−1. This decay scale is often, but not
always, determined by the thermal wavelength of photons at the temperature of the source,
λ̄ T = h̄c/T (for example,λ̄ T = 7.6µm at T = 300K). So for bodies at higher temperatures,
the field strength of evanescent waves is larger at the surface, but decays faster away
from the surface, as indicated in Fig. 1.5 (b). In the near field, where the separation is
less than the thermal wavelength, we may expect evanescent wave dominance, leading
to a significant enhancement of the overall heat current predicted by Planckian theory
including material emissivity, which is said to be valid only in the far field (separation
larger than the thermal wavelength). Since its earliest predictions by Polder and Van Hove
[Polder71], this enhanced near-field radiative heat transfer has become a burgeoning field
of research. A brief timeline of theoretical and experimental works as well as a discussion
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of some applications of these advances is given in Sec. 1.5. The competition between
near-field and far-field contributions is investigated thoroughly in Ch. 2.

We make an important remark regarding the different planar geometries shown in
Fig. 1.5. In the case of semi-infinite bodies [Fig. 1.5 (c)], all the energy carried by the
electromagnetic field in the gap is eventually dissipated in the material, and therefore
the Joule losses [as defined in Eq. (1.25)] per unit area are equal to the average of the
z-component of the Poynting vector, Eq. (1.20), in the gap. In the case of metals, the
absorption occurs very quickly on the scale of the skin depth [Abrikosov88], but even if
the absorption is slow (for example, in dielectrics), the field has nowhere to escape so
will eventually be attenuated via the Joule heating. On the contrary, for two-dimensional
layers or finite width slabs, there may be a part of the energy which is transmitted by the
media and escapes to infinity [Fig. 1.5 (a)]. In these cases the Joule losses are therefore
not equal to the Poynting vector in the gap, but rather the Poynting vector in the gap minus
the Poynting vector on the other side of the medium. Whether the radiation transmitted
by the medium escapes or not is dependent on the particular experimental setup, and so in
order to compare experiment to theory one must take careful note of how the measurement
is taken (discussed further in Sec. 2.2.5).

Finally, we discuss briefly which frequencies give particularly strong contributions to
the heat transfer. This is determined by the energetic behaviour of the relevant charge
carriers, or the dispersion relation, of the material. As postulated by Planck, energy may
only be received and emitted in finite packets, and the size of these packets corresponds
to energy level transitions in the material. For a metal, the behaviour of the interacting
unbound electrons responsible for the heat transfer may be found via perturbation theory
in the random phase approximation (RPA). In this picture, the energy is stored in electron-
hole excitations around the Fermi surface allowing a continuum of radiation to be emitted
and absorbed [Bruus04]. The electron-hole excitations represent pairs of fermions, and
are therefore bosonic in their statistics as reflected by the appearance of the Bose-Einstein
distribution function in the FDT.

Meanwhile, the electrons may also form collective charge density oscillations known
as plasmons [Bruus04]. Similarly to phonons which describe collective oscillations of
ions in a material, plasmons may be thought of as quasi-particles that may be created
or destroyed via the absorption or emission of radiation of a particular frequency and
wavevector, determined by the plasmon dispersion relation. Plasmon excitations may
therefore lead to resonances in the absorption and emission spectra, and eventually pro-
vide the dominant channel for heat transfer depending on the material and experimental
parameters. For three-dimensional metals, plasmons may propagate either through the
bulk, or along the surface as evanescent waves. Bulk plasmons are typically activated at
higher frequencies than surface plasmons and are therefore less likely to play a significant
role in the heat transfer [Abrikosov88]. Information about all the material excitations is
encoded in the response functions – in particular, plasmons appear as damped poles in
response functions dressed by interactions with the field. The potential role of surface
plasmons in radiative heat transfer represents an active area of research (see Sec. 1.5) to
which this thesis contributes in Ch. 3.

25



Chapter 1. Introduction and history of radiative heat transfer

1.5 Near-field enhancement

In the previous sections we have described the most common framework used to solve
problems of radiative heat transfer: fluctuational electrodynamics. This framework has
been used to reveal that radiative heat transfer may be different, and in particular en-
hanced, with respect to the Planckian picture. Typically this enhancement occurs in the
near field, where the evanescent waves not accounted for in Planck’s law provide the
dominant channel of heat transfer. We note immediately that there exists in the literature
two similar measures for the near-field enhancement: the ratio of the total radiative heat
current with respect to (i) the heat current exchanged by black bodies given by Stefan
Boltzmann, and (ii) the actual far-field radiative heat current based on the material emis-
sivity (less than black-body radiation since no real material is a perfect emitter/absorber).
Although quantitatively different, both measures (i) and (ii) correspond to an increase in
the radiative heat transfer due to the dominance of separation dependent evanescent wave
contributions.

Numerous theoretical works have been devoted to the calculation of this enhance-
ment, and also to the identification of the physical mechanisms responsible. Meanwhile,
a wide range of experiments have been conducted using different materials, geometries
and temperatures in order to probe these effects. Excellent review papers are available
[Joulain05, Volokitin07, Basu09, Song15a, Cuevas18, Biehs21], however in this section
we give historical context and discuss the most important theoretical and experimental
advances that set the stage for the original work contained in this thesis. We also provide
a discussion of possible applications of near-field radiative heat transfer, which represents
a growing field of technological research and development.

1.5.1 Theoretical studies

The prediction of near-field enhancement of radiative heat transfer dates to the earliest
works by Rytov himself [Rytov53], where he suggests that the energy flow between bod-
ies could increase "without limit" as the spatial separation between them decreases. This
points immediately to the principal difference of near-field radiative heat transfer, to that
of the far field: dependence on the body separation, d. In the far field in the planar ge-
ometry the heat transfer does not depend on d, while near-field contributions increase as
bodies move closer. As discussed in Sec. 1.4, this reflects the fact that in the near field the
waves responsible for transferring heat are evanescent, whose strength decays exponen-
tially with d – in the particle picture of light this process may be seen as photon tunnelling.
Typically, this dependence on d is what facilitates the enhancement of the heat transfer
with respect to the far field, where the transfer is independent of the separation [as in the
Stefan-Boltzmann law, Eq. (1.4)].

After some only partially successful attempts to calculate near-field radiative heat
transfer [Emslie62, Cravalho67, Olivei68], Polder and Van Hove provided the first com-
plete study of radiative heat current via FE between three-dimensional metals [Polder71].
In this seminal work the authors treat the case of two chromium half-spaces described by
local Drude optical response separated by a vacuum gap – the geometry considered here
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of three-dimensional semi-infinite half-spaces would go on to be the most studied. The
contributions of evanescent and travelling waves of transverse electric (TE) and transverse
magnetic (TM) polarisations are separated naturally. The authors provide semi-analytical
results in terms of integrals but also give approximate closed-form expressions in limiting
cases revealing the dependence of the heat current on temperature and separation (these
expressions are rederived in this thesis in App. B). The major results of Ref. [Polder71]
have been beautifully reproduced in Ref. [Song15a], as shown in Fig. 1.6.

Figure 1.6: Numerical results for radiative heat transfer between two chromium half-
spaces around room temperature as studied in Ref. [Polder71], reproduced in Fig. 1 of
Ref. [Song15a]. (a) Black-body spectral power given by Planck’s law [closely related
to Eq. (1.2)] in terms of wavelength for a variety of temperatures. (b) The spectral heat
transfer coefficient as a function of frequency, hω , defined as the derivative with respect
to temperature of the heat transfer spectrum for propagating waves of both polarisations
for gap sizes d = 10 µm and d→ ∞. The solid lines clearly indicate the effects of wave
interference. (c) hω for evanescent waves of both polarisations for gap size d = 2 µm.
(d) Total heat transfer coefficients, h, for the different wave types and polarisations, as
well as the total indicating the vast enhancement of the heat transfer in the near field
over the far-field result predicted by Planck’s law. Material parameters for the chromium
bodies described by Drude conductivity come from Ref. [Polder71].

As shown in Fig. 1.6 (d), the work of Ref. [Polder71] concludes that depending on the
separation either the TM or TE evanescent contribution may dominate the heat transfer in
the near field (rememberλ̄ T = 7.6 µm at T = 300 K) and be responsible for the enhance-
ment over the far-field result. At separations of a few microns it is the TM polarisation [see
Fig. 1.6 (c)] while at even smaller nanometric separations TE evanescent waves provide
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the dominant contribution that results in an enhancement by many orders of magnitude
with respect to the far-field result. This dramatic divergence from the Planckian theory
becomes a familiar theme in the subsequent field of near-field radiative heat transfer. Al-
though illuminating, the work of Polder and Van Hove calculated only the derivative with
respect to temperature of the heat current, and so was only valid for small temperature
differences between materials. They also did not address the possible effects of spatial
dispersion in the material conductivity.

After some further contributions by Caren [Caren72a, Caren72b, Caren74], the next
pioneering work came from Levin, Polevoi and Rytov [Levin80]. This very general study
investigated good conductors in the three-dimensional half-space geometry in the nor-
mal and anomalous skin effect regimes, allowing in principle for anisotropic media with
spatial dispersion. Unlike in Polder and Van Hove, the heat current itself is calculated
meaning there is no restriction on the difference in temperature of the two bodies. Results
are given in terms of generalised surface impedance tensors and the authors indicate that
spatial dispersion in the conductivity could play a role at very small separations.

Fairly few papers on radiative heat transfer appeared in the following years. Loomis
and Maris performed a calculation similar to that of Polder and Van Hove investigating the
role of the dc conductivity of Drude metals on the temperature and separation dependence
of the heat current [Loomis94]. Pendry offered an alternative viewpoint on the subject
of near-field radiative heat transfer [Pendry99], in which he considered different wave
vectors as channels for heat transfer via tunnelling, and suggested an upper limit for the
heat flux through each channel related to quantum information theory. Around the turn of
the millennium, the field was reinvigorated by a variety of works. In Ref. [Volokitin01]
the heat current between three-dimensional half-spaces is first cast in a simple general
form in terms of the material reflectivities – we derive the analogous, almost identical
expression for the heat current between two-dimensional layers in Sec. 2.1.

The continued reinvigoration of the field of radiative heat transfer has largely been
driven by investigations into the roles played by two material-dependent phenomena:

• Collective excitations, in particular resonant surface waves

• Spatial dispersion in the conductivity, representing spatial nonlocality in the mate-
rial response

Coupled with the emergence of new geometries made experimentally relevant through
modern fabrication methods and the advent of two-dimensional materials, the above phe-
nomena have inspired the growth of the field of near-field radiative heat transfer in the
21st century. Below we review some of the most significant advances made in the context
of this thesis.

The first avenue of exploration taken by theoretical works on radiative heat trans-
fer has to do with collective phenomena, notably resonant surface waves. In doing so,
works appear focussing not only on metals (as in the aforementioned papers) where the
(low frequency) optical response is determined by conduction electrons, but also on di-
electrics, where optical phonons are responsible for heat exchange. For dielectrics, the
phonons represent the resonant excitations, while in metals they are surface plasmons.
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The phonons and surface plasmons describe collective oscillations of the crystal lattice
and electron densities, respectively. These excitations couple to electromagnetic sur-
face waves, forming surface phonon polaritons (SPhPs) and surface plasmon polaritons
(SPPs), respectively. These are manifested by peaks in the emission and absorption spec-
tra of the materials, and so depending on the parameters and experimental conditions they
may provide a significant channel for radiative heat exchange. Meanwhile, more complex
geometries are also studied, motivated by the concurrent experimental realisations that
shall be discussed in Sec. 1.5.2. For some examples of theoretical works one may see
Ref. [Volokitin01] for a sphere and a plane, Ref. [Narayanaswamy08a] for arbitrary sized
spheres or Refs. [Chapuis08a, Chapuis08b] for nanoparticles.

As mentioned, the materials treated in the literature essentially fall into one of two
categories: metals and doped semiconductors, where the charge carriers are free, or
dielectrics, where they are bound. The focus in this thesis is on metals, however we
briefly mention some notable contributions to the study of radiative heat transfer via
SPhPs in polar dielectrics. Mulet et. al [Mulet01b, Mulet02] showed that the already
enhanced near-field heat transfer between a small spherical particle and a semi-infinite
bulk may be even further enhanced if either the surface or the particle support resonant
surface waves, in which case the heat transfer becomes almost monochromatic. Simi-
larly, Ref. [Francoeur08] investigated radiative heat transfer between a thin film and a
semi-infinite half-space of silicon carbide (SiC). As shown in Fig. 1.7, the heat transfer
is essentially monochromatic at the resonant frequency given by the SPhP dispersion of
the system. In fact, the resonance comes about via the coupling inside the film of the
evanescent waves on the opposing surfaces of the film, and therefore the SPhP contribu-
tion increases as the SiC film thickness decreases – as shown in the inset of Fig. 1.7.

Another numerical study investigated the effect of adding a thin dielectric film to a
metallic emitter [Fu09] reporting that the heat transferred to a metallic receiver may actu-
ally decrease as a result. This is because although the SPhPs enhance the contribution of
TM polarisation (SPhPs and SPPs exist only in TM polarisation for nonmagnetic materi-
als [Joulain05]), the dominant TE contribution (TE is known to be dominant for metals
in the near field, as found in Refs. [Polder71, Chapuis08a] and we investigate later in
Ch. 2) is actually reduced as the effective distance between the metals increases due to
the dielectric film.

The behaviour and potential role of surface plasmon polaritons (SPPs) in metals is
very similar to the above discussion of SPhPs in dielectrics. Ref. [Biehs07] looked at
the effect of adding a metallic film to various dielectric and metal substrates, provid-
ing estimates for the effect that the added surface plasmon coupling may have on the
separation dependence of the near-field energy density. Recently, many studies have
found that SPPs may dominate the radiative heat transfer between two-dimensional ma-
terials such as graphene and hexagonal boron nitride monolayers [Svetovoy12, Ilic12,
Rodriguez-López15, Jiang17, Zhao17, Zhang19] – the materials are doped such that the
charge carriers are free. Similarly, radiative heat transfer between highly doped silicon
has been shown to be dominated at sufficiently small separations by a SPP contribution
[Rousseau09a]. On the other hand, working in the Coulomb limit Ref. [Mahan17] con-
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Figure 1.7: Numerical calculation of the spectrum of the radiative heat flux between a
SiC film of thickness t (imagined to be suspended in vacuum at 300 K, emitter) and bulk
SiC (at 0 K, receiver) separated by a 10 nm vacuum gap. The large peak corresponds to
the resonant frequency of the SPhP of the SiC emitter, while the small peak corresponds
to the tunnelling of regular evanescent waves. The contribution of the former increases as
the film thickness, t, decreases (since the coupling of surface waves on opposite sides of
the film increase with decreasing thickness), while that of the latter decreases as the film
thickness (and therefore volume) decreases. Fig. 2 in Ref. [Francoeur08].

cluded that surface plasmons were unimportant for the heat transfer between semi-infinite
metallic half-spaces. Whether or not plasmons make a substantial contribution to the heat
transfer may depend on the energy scales in the problem – for room temperature the ther-
mal photons typically responsible for energy exchange are at around 25 meV, while a
surface plasmon of a typical bulk metal may have energy larger than 2 eV so will not
be excited [Rousseau09a]. For doped semiconductors and two-dimensional materials the
plasmon frequency may be tuned allowing one to modulate the resulting heat transfer
[Svetovoy12].

Regarding the effects of spatial dispersion in the conductivity, Chapuis et al. [Chapuis08c]
studied its effect on near-field radiative heat transfer between semi-infinite metallic half-
spaces by using two different nonlocal models for the dielectric function. The main con-
clusion of the work is that the effects of spatial dispersion are negligible for gaps larger
than a few nanometers, while for even smaller gaps the nonlocality produces a saturation
in the radiative heat flux as d → 0. This is in contrast with the divergence as ∼ 1/dn

with some power n predicted by the local theory, whose physicality has been debated
(see Ref. [Pan00] and the associated comment Ref. [Mulet01a], and also the discussion
in Ref. [Joulain05]). Ref. [Svetovoy12] also implemented a nonlocal dielectric function
in their numerical study of graphene, however the effects of the spatial dispersion are dif-
ficult to extract – we perform an analytical calculation using the same nonlocal model in
Ch. 3.

Finally, of particular interest to this thesis are two recent theoretical studies focusing
on two-dimensional metal layers, which is a system that has received far less attention
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than the three-dimensional one. Ref. [Kamenev18] performed an analytical calculation in
the Coulomb limit (c→∞, where c is the speed of light) comprising contributions coming
from clean and diffusive limits of the metallic conductivity. Treating the disorder in this
way the author reported no plasmonic contribution to the radiative heat transfer between
the layers. On the other hand, treating the full electromagnetic interaction Ref. [Wang19]
provides a numerical study of ultrathin films of silver modelled by a local Drude con-
ductivity. The authors report a dominant contribution that is associated with optical and
acoustic branches of the coupled surface plasmons in the system, exhibited by the peaks
in the energy transmission coefficient seen in Fig. 1.8 (b).

Figure 1.8: Results of a simulation of radiative heat transfer between two theoretically
imagined silver monoloayers, held near room temperature. (a) Spectral heat flux [the
same quantity seen in Figs. 1.6 (b) and (c)] for different gap sizes. Solid lines are the total
heat flux while the dotted lines give the contributions from travelling waves only. Note
that the x-axis scale is linear while the y-axis scale is logarithmic. (b) The energy trans-
mission coefficient for d = 50 nm indicating the optical and acoustic plasmon branches
that come about due to the splitting of the dispersion relation of plasmons in a single
silver monolayer, shown by the white dotted line. Fig. 2 in Ref. [Wang19].

Ref. [Wang19] concludes that the effect of plasmons diminishes as the number of
atomic layers of silver (i.e. the layer thickness) increases, in agreement with previous
works. The general focus of this and many of the works in recent years has been on in-
cluding precise details of particular materials leading to detailed and sometimes heavy
numerical simulations. In our work we perform analytical calculations using more gen-
eral, widely-applicable models. In doing so, we find that we are able to make conclusions
about physical ingredients such as surface plasmons and spatial dispersion that have not
been seen in these previous works.

1.5.2 Experimental studies

Ever since its theoretical prediction researchers have attempted to design experiments to
observe the near-field enhancement of radiative heat transfer. The experiments have varied
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widely in terms of the materials used, size of the setup and temperature range probed. One
interesting classification of the experiments performed to date may be seen in Fig. 1.9.

Figure 1.9: Classification of experiments on near-field radiative heat transfer according
to heat exchange area and temperature difference between emitter and receiver. Also
indicated is the geometry of each corresponding experiment: parallel plates, sphere-plate
or tip-plate. Fig. 2 in Ref. [Lucchesi21].

As shown in Fig. 1.9, the classification of experiments according to exchange area and
temperature difference leads to the fairly natural separation of the three main geometries
investigated: parallel plates, sphere-plate and tip-plate. The work of this thesis focuses on
macroscopic parallel plates (upper dot-dashed rectangle of Fig. 1.9), and so in this section
we briefly sketch the history focusing on some of these experiments.

While proposing some of the earliest theoretical attempts to incorporate evanescent
wave contributions [Cravalho67], the same group reported the first near-field heat transfer
measurements between parallel plates [Cravalho68, Domoto70]. Their experiment con-
sisted of parallel copper disks immersed in liquid helium with the top disk being heated
by a few degrees via resistors to act as the emitter. The radiative heat current was esti-
mated by measuring the increase in temperature of the receiver. Modifying the spatial
separation between 2mm and 10 µm the heat current was observed to increase as the sep-
aration decreased, the hallmark feature of near-field radiative heat transfer. However, due
to the lack of a complete theoretical description at the time, it was difficult to draw strong
conclusions and the experiment suffered from a lack of control over the parallelism of the
disks.

Hargreaves performed a similar experiment where he measured the heat current be-
tween 100nm thick chromium layers on pyrex disks separated by vacuum [Hargreaves69].
His preliminary results [Hargreaves69] followed by more precise measurements reported
in his PhD thesis [Hargreaves73] represented the first experiment performed at room tem-
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perature. The emitter and receiver plate temperatures were measured by embedded ther-
mistors and the heat current was estimated by the heat input required to keep the emitter
at a constant temperature. As shown in Fig. 1.10 (adapted in Ref. [Song15a] from Harg-
reaves’ thesis [Hargreaves73]), the heat current exhibited a strong dependence on the gap
size and matched rather well the theory from Polder and Van Hove [Polder71] (dashed
curves). Experimental control over the separation and the parallelism of the plates was
ensured by piezolelectric ceramic tubes, which could be adjusted according to capacitance
measurements at three different locations between the layers, indicated in the schematic
in Fig. 1.10 (inset).

Figure 1.10: Results for heat current versus gap size between chromium-coated surfaces
at 313 K and 295 K, adapted in Ref. [Song15a] from Hargreaves’ thesis [Hargreaves73].
Solid lines are fits to the experimental data before (1) and after (2) accounting for heat
losses to the environment, while dashed lines are theoretical results from Ref. [Polder71]
with Drude model values from literature (3) and fitted empirically (4). Inset: schematic
top view of receiver surface indicating the three sectors that couple to analogous areas
on the emitter surface to act as capacitors to tune surface parallelism.

Issues around plate parallelism and surface roughness persisted preventing sub-micron
gap sizes, which led to a long drought in experiments on the parallel plates geometry. In
the meantime, the development of the scanning tunnelling microscope and atomic force
microscope inspired interest in near-field heat transfer in the tip-plate geometry. Using
a nanometric sharp tip and a planar sample allowed experimenters to delve deeper into
the near field reaching minimum gap sizes of ∼ 1 nm, without the technical challenges of
alignment. The trade-off was that the radiative heat currents associated with such small
exchange areas (see lower dot-dashed rectangle, Fig. 1.9) become extremely small and so
the method of measurement must have a high resolution.

Nevertheless a wave of experimental research followed in near-field radiative heat
transfer in systems of this geometry, including the inventions of scanning thermal profiler
[Williams86, Xu94] and scanning thermal microscope [Müller-Hirsch99] (for a more de-
tailed discussion see Ref. [Song15a]). A particular study by Kittel et al. [Kittel05] mea-
sured the heat transfer in a scanning thermal microscope setup comprised of a gold tip and
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a gold or gallium nitride surface. The separation between the room temperature tip and
the 100 K surface was decreased from 200 nm down to 1 nm, revealing enhancement of
3 orders of magnitude relative to far-field values. Interestingly, the heat current appears
to saturate for gaps less than 10 nm, in contrast to the power-law divergent behaviour
at vanishing separation predicted by earlier studies [Polder71, Pan00]. As mentioned in
the previous section, this effect was subsequently attributed to spatial dispersion in the
material response [Kittel05, Chapuis08c].

Sphere-plate geometries [Narayanaswamy08b, Shen09, Rousseau09b, van Zwol12a,
van Zwol12b, Song15b, Lucchesi19] and integrated microelectromechanical systems (MEMS)
[St-Gelais14, St-Gelais16] have also been heavily investigated due both to the reduced
technical challenge surrounding alignment compared to the macroscopic parallel plates
geometry, and larger exchange area compared to tip-plate setups. In some sense these
setups represent a compromise that has allowed the experimental exploration of some of
the outstanding phenomena related to near-field radiative heat transfer. However, a small
number of modern experiments have nonetheless been devised to further probe the ele-
gantly simple geometry of parallel plates. Other than its theoretical simplicity, the interest
in this old problem has also been rekindled due to the development of thin film fabrica-
tion techniques and the advent of two-dimensional materials. We describe some of these
modern experiments, to which we explicitly compare our theoretical work in Ch. 2, in the
following paragraphs.

After some experiments on dielectrics [Hu08, Ottens11] exhibited strong enhance-
ment beyond the blackbody radiation limit due to SPhPs, the first investigation of macro-
scopic metal plates in around 40 years was due to Kralik et al. [Kralik12]. In particular,
they performed measurements of heat transfer between two 150 nm thick tungsten layers
on 2.5 mm thick, 35 mm diameter alumina substrates over a wide range of vacuum sepa-
rations (1− 500 µm) and cryogenic temperatures (T1 = 5 K, T2 = 10− 40 K). As shown
in Fig. 1.11 (a) [Kralik11], the hot sample is brought into the vicinity of the cold sample
via a differential screw, while the parallelism between the two is carefully controlled via
a mechanical equaliser. The heat flux meter at the cold sample consists of a calibration
heater, a thermal resistor and a copper thermal stabilisation wing, which together provide
direct access to the temperature of the cold sample itself, without influence of the substrate
or sample holder beneath it. This important experimental specificity determines whether
or not the radiation emitted/absorbed by the substrate should be taken into account in a
theoretical model – this is discussed in more detail in Sec. 2.2.5.

The results are shown in Fig. 1.11 (b) for the heat current normalised to that of black
bodies against the product of the hot temperature and the gap size, for which the authors
observe a data collapse. Near-field behaviour is observed (i.e. gap size dependence) for
separations less than λmax/3, with enhanced heat currents reaching 102 and 104 times the
black-body and far-field values, respectively, for the smallest gap sizes. There is good
agreement with numerical simulations that are based on a Drude model of parallel finite
thickness metallic slabs where the material constants are used as fitting parameters.

A recent room temperature study recorded radiative heat transfer between 100 nm
gold layers on two silicon microdevices, with an effective exchange area of 48×48 µm2
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Figure 1.11: (a) Scheme of experimental apparatus used for near-field radiative heat
transfer measurements between tungsten layers. Fig. 1 in Ref. [Kralik11]. (b) Results
for the radiative heat current normalised to the black-body result against the product
of the hot sample temperature, T2, and the gap size, d. Lines correspond to numerical
calculations based on a Drude model where the electron scattering time is used as a
fitting parameter. Inset: Results from two experimental runs for T2 = 20 K. Fig. 2 in
Ref. [Kralik12].

[Song16]. A custom nanopositioning system allowed the emitter and receiver to be
brought within < 100 nm of each other via a piezoelectric actuator, while also precisely
controlling the parallelism via a motorised goniometer. Once again by measuring tem-
perature changes in the receiver, they observed strong gap dependence on the thermal
conductance below a certain threshold, and enhancements of 10 and 103 times the black-
body and far-field values, respectively. The data is shown along with results of theoretical
modelling in Fig. 1.12 (a). The computed spectral conductance shown in Fig. 1.12 (b)
are broad indicating that the near-field enhancement is a result of non-resonant evanes-
cent modes, as expected since the surface plasmons in the gold layers are not thermally
excited.

A recent work [Sabbaghi20] sought to combine the macroscopic heat exchange area
of the type in Ref. [Kralik12] with the nanometer sized gaps like those of Ref. [Song16].
Sabbaghi et al. used nanosized polystyrene particles to create a fixed nanometer-sized
gap between aluminium thin films of varying thicknesses 13− 80 nm on 5× 5 mm2 sili-
con substrates. The experiment is performed around room temperature, with the emitter
heated such that ∆T = 25− 65 K. The authors observe that the radiative heat flux in-
creases as the film thickness decreases, and for the thinnest films and largest temperature
difference they obtain similar order of magnitude enhancements over far-field (6.4×) and
black-body (420×) results as previous works.

The fixed gap size was determined via fitting heat transfer measurements for bare sil-
icon separated by the same solution of polystyrene particles, which led to a large degree
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Figure 1.12: (a) Experimentally measured radiative thermal conductance between gold
layers as well as computational data based on a Drude model for the dielectric function
from Ref. [Ordal83]. (b) Computed spectral conductance curves indicating contributions
from a broad range of frequencies. Inset: Radiative heat transfer transmission coefficient
for the TE modes at d = 50 nm. Fig. 4 in Ref. [Song16].

of uncertainty: d = 215+55
−50 nm. Considering the high sensitivity to gap size expected

in the near-field regime, this uncertainty made comparisons to theory unconvincing. In
particular, we question the experimental observation that the thermal conductance is in-
dependent of the layer thickness in Sec. 2.3. In addition, according to the experimental
setup the receiver temperature was actually measured behind the substrate, meaning the
radiation associated with the silicon should also be taken into account.

We make one general comment on the experiments discussed on conventional metal
films [Kralik12, Song16, Sabbaghi20] regarding the plate thickness. The numerical simu-
lations that usually accompany the experimental results are generally performed for finite
thickness slabs. While more precise they become computationally heavy, and in order
to make theoretical progress analytically one should determine whether, according to the
thickness, the plates better correspond to three-dimensional half-spaces (like those most
studied, e.g. Ref. [Polder71]) or two-dimensional sheets (like those studied in the remain-
der of this thesis). Even for thin films, it is not a priori clear which is the appropriate
approximate model, and one must compare the plate thickness to material skin depth (see
Sec. 2.3 for a continued discussion).

The question of three-dimensional half-spaces versus two-dimensional sheets is self-
evident when regarding atomically thin two-dimensional materials such as graphene and
transition metal dichalcogenides. A recent experiment measured radiative heat flux be-
tween 2×2 cm2 doped monolayer graphene sheets (EF = 0.27 eV) on insulating silicon,
separated by a fixed 430±25nm vacuum gap ensured by four photoresist posts [Yang18].
As in the case of Ref. [Sabbaghi20], the temperature measurement takes place in a copper
layer behind the substrate so the substrate radiation (albeit small for insulating silicon) is
captured. Indeed the experimental results for the radiative heat current measured between
the insulating silicon substrates with and without the graphene layers as a function of the
emitter/receiver temperature difference are shown in Fig. 1.13 (a).
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Figure 1.13: (a) Measured heat current density between insulating silicon substrates with
and without layers of monolayer graphene as a function of temperature difference where
the receiver temperature is 30 ◦C. Simulations based on measured material parameters
and gap size including uncertainties. (b), (c) TM polarisation photon transmission prob-
ability for ∆T = 50 ◦C without and with graphene, respectively. The steep dashed lines
should read ω = ck, where c is the speed of light in vacuum. (d) The magnetic mode
pattern of the plasmon peak at a point in the ω− k‖-plane. Fig. 3 in Ref. [Yang18].

Fig. 1.13 (a) shows enhancement in the heat flux with respect to the black-body limit
due to the presence of the graphene layers by a factor of nearly 4.5 at ∆T = 36 ◦C. The
surface plasmons of graphene are thought to be primarily responsible for the enhancement
of the radiative flux, as indicated by Figs. 1.13 (b) and (c). They show the computed TM
polarisation photon transmission probability across the gap without and with the graphene
layers, respectively. While the pattern inside the silicon light cone (above the line ω =

νk, where ν is the speed of light in silicon) remains largely unchanged, the addition of
graphene introduces a peak outside the silicon light cone associated with a plasmonic
resonance coupled to evanescent modes, i.e. a surface plasmon polariton. Yang et al. go
on to repeat the experiment with doped silicon substrates where the graphene plasmons are
also visible, and propose a thermophotovoltaic cell based on this heterostructure, which
is an idea that will be discussed further in the next section.

1.5.3 Applications of near-field heat transfer

Now that the theoretical descriptions and experimental observations of enhanced radiative
heat transfer have been discussed in the previous sections, it is important to ask what im-
pact these phenomena may have on the real world. In this section we discuss very briefly
some of the novel techniques and devices that are direct applications of the fundamen-
tal physics explored in this thesis. For more thorough discussions one may refer to the
relevant sections on applications in the reviews [Basu09, Lucchesi21, Song21].
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Before launching into how researchers are attempting to wield near-field radiative heat
transfer to their advantage, it should be noted that its effects may also be parasitic. As
the miniaturisation of electronics has progressed steadily, near-field effects not originally
accounted for in device design may come into play and cause undesired behaviour. The
distribution of heat is generally critical to device performance and durability, so it is vital
to understand how different parts of engineered devices may exchange heat, even when
galvanically isolated. One can easily imagine that the massive enhancement that has been
demonstrated leads to the possibility of heat leakage, which could even result in device
failure. If the trend of miniaturisation is to continue, this may prompt a redesign of certain
ubiquitous micro and nanoelectronics components.

On the other hand, the radiation in the near field may be used to our advantage. Near-
field radiation invites a wide variety of novel applications not only due to its increased
magnitude – i.e. the enhancement that has occupied most of the previous sections – but
also due to its coherence properties. As has been widely studied [Carminati99, Henkel00,
Greffet02, Marquier04, Laroche05, Greffet07], depending on the materials and geome-
tries of bodies involved, the spatial and temporal coherence of radiation in the near field
may be very different to typical incoherent thermal (far-field) radiation. A particular ex-
ample is the possibility of quasi-monochromatic radiation emitted by a system dominated
by resonant surface waves, like those discussed previously due to SPhPs or SPPs. The
concentration of energy around a particular frequency makes this radiation more desirable
for certain applications than the typical broad-band radiation emitted by a black body.

The exploitation of coherence properties and enhancement of near-field radiation has
led to wide-ranging applications. A nanofabrication method known as thermal lithog-
raphy has been proposed as an alternative to electron bean lithography [Pendry99]. A
plasmon-assisted version has been simulated [Liu05] and actually performed [Wang06] to
create sub-diffraction limit patterns. Inspired by the earliest experiments on tip-plate ge-
ometries [Williams86] researchers have developed an imaging technique known as scan-
ning thermal microscopy [De Wilde06, Kittel08] which operates without external illu-
mination to construct an image of a material surface by detecting the local density of
states of thermally excited electromagnetic modes. There has also been applications in
thermal management such as near-field refrigeration [Chen15, Liu16] and rectification
[Otey10, Iizuka12, Yang13, Fiorino18a], which are achieved by exploiting the chemical
potential and temperature dependence of the materials’ emission spectra, respectively.

As explained in Sec. 1.3.1 there is an analogue of radiative heat transfer in electric
circuits, which dominates over electron-phonon and electron conduction contributions at
low temperatures [Meschke06]. By continuation of the analogy, resonant photons sup-
ported by the particular circuit elements play the role of SPhPs or SPPs in real materials.
In quantum circuits theoretical proposals and pioneering experimental realisations have
also been made for photonic refrigeration [Kosloff14, Karimi16] (see also the earlier re-
view [Giazotto06]) and rectification [Ronzani18, Senior20]. Here, the thermal transport
properties of the system are controlled via a heat valve, for which schematic and real
scanning tunnelling micrograph images are shown in Fig. 1.14. The basic structure of
the device is two reservoirs (resistors) at different temperatures that are each coupled to

38



1.5. Near-field enhancement

an LC resonator, and are coupled to each other via a two-level system, realised here by
a superconducting transmon qubit. Different heat management regimes are achieved by
adjusting the frequencies of microwave resonators associated with each reservoir as well
as the gap of the two-level system. These state of the art proposals and experiments repre-
sent significant progress at the intersection of the fields of quantum thermodynamics and
quantum information.

Figure 1.14: (a) Conceptual depiction of a quantum heat valve. (b) Thermal model in-
dicating power from source to drain and the interaction of the electrons with the phonon
bath of the cryostat. (c) Lumped-element idealisation of the device where capacitors Cg
couple the transmon to each LrCr resonator. (d, e) Scanning tunnelling micrograph of a
waveguide termination and the SQUID element of the transmon qubit, respectively. Fig. 1
in Ref. [Ronzani18].

One of the most exciting and relevant applications appears to be that of near-field
thermophotovoltaics (TPV) – for reviews see Ref. [Basu07, Basu09, Ben-Abdallah19].
The basic idea builds on the standard model of electricity generation from radiation, but
instead of placing the p-n junction photovoltaic material in the far field of the Sun, it is
placed in the near field of some terrestrial thermal emitter. In this way, one may take
advantage of the aforementioned enhancement and coherence of near-field radiation by
choosing optimally the materials, emitter/receiver separation distance and temperature. In
particular, for an emitter material that supports a resonant surface mode and as such emits
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quasi-monochromatically, one may try to match this to the band gap frequency of the cho-
sen direct band gap semiconductor that forms the photovoltaic cell. By capitalising on the
frequency-matched near-field heat transfer one may hope to generate more photocurrent
than in a standard solar (far-field) setup. In addition, the coherence properties could in
principle lead to improved device efficiency since one may design the device to minimise
losses via Joule heating brought about by impinging photons that have insufficient energy
to create electron-hole pairs.

A quantitative study [Laroche06] has been performed via FE to numerically evaluate
the performance of an ideal TPV system comprised of a gallium antimonide receiver at
300K and an emitter that is either tungsten or a fictitious Drude material (chosen to match
the semiconductor gap) at 2000 K. The authors show that the choice of material for the
emitter and receiver is non-trivial, since the angular coherence of the emitter radiation is
not an intrinsic property, and rather it is affected by the presence of the receiver. Nev-
ertheless for both emitters they report an increase in the photogeneration current by at
least one order of magnitude compared to the case where the emitter is a black body at
the same temperature. Ref. [Park08] performed a more realistic study in which they con-
sidered non-ideal photovoltaic cell made of an alloy of indium antimonide and gallium
antimonide (300 K) due to a tungsten emitter (2000 K) and calculated the conversion effi-
ciency (ratio of electric power generated to the radiative power absorbed by the cell) as a
function of separation distance. Due to electron-hole diffusion and recombination events,
they found that the conversion efficiency actually begins to decrease at separations below
10 nm. Nevertheless at d = 10 nm, where the conversion efficiency is estimated to be
slightly above 20%, the electricity production is 1 MWm−2, which for a device with an
area of just 25cm2 would be enough to meet the per household USA demand (at the time)
[Basu09].

In reality, it is difficult to take advantage of the resonant surface mode of the emitter
because of a mismatch between its frequency and the band gap of real semiconductor ma-
terials. One proposed method of overcoming this mismatch is to add a layer of graphene
on top of the receiver cell [Messina13]. The tunability of the graphene Fermi level allows
one to improve the coupling between emitter and receiver, resulting in significant gains
in the device efficiency as shown in Fig. 1.15 (b). Meanwhile, following closely the work
of Ref. [Park08], a theoretical analysis was performed on the effect of adding a highly re-
flective gold mirror to the back of the photovoltaic cell [Bright14]. The authors reported
moderate improvements in the device efficiency since the radiation that passes through
the cell may be recycled back to the tungsten emitter, hence reducing losses.

Experimental demonstrations of near-field thermophotvoltaic devices remain scarse,
however a recent investigation reported 40× the far-field electrical power output for a
microscale TPV system comprised of a silicon emitter at 655 K separated by a 60 nm
vacuum gap from a commercial photodiode at room temperature [Fiorino18b]. Despite
the impressive enhancement, the conversion efficiency remained low (0.02%) due to high
energy absorption in the receiver cell. On the question of the real-world viability of
thermophotovoltaic energy generation, the elephant in the room is, of course, where does
the energy to heat the emitter come from? Although the subject is often omitted in studies
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Figure 1.15: (a) Schematic of the thermovoltaic device proposed in Ref. [Messina13]
comprised of a hexagonal boron nitride emitter and an indium antimonide cell with an
added layer of graphene. (b) Top and middle panels: The computed conversion efficiency
and the ratio of the photocurrent generated in the cell with and without the graphene at
various chemical potentials, as a function of separation distance. Bottom panel: Conver-
sion efficiency at d = 16 nm with and without graphene as a function of source tempera-
ture. Fig. 1 and 2 in Ref. [Messina13].

like those mentioned, there appears to be some hope of directing heat produced by other
(industrial) processes that would otherwise be wasted for this task. Despite the evident
challenges, researchers are optimistic that near-field thermophovoltaics will continue to
improve in terms of power outputs and efficiencies, eventually providing a versatile and
effective way to recover waste heat from other processes [Ben-Abdallah19].

1.6 Motivation for the thesis

In the previous sections we have seen that significant progress has been made in the field
of radiative heat transfer. In particular, its enhancement due to near-field effects has now
been well established theoretically for over 50 years, and it may be described within
the phenomenological framework of fluctuational electrodynamics for any system whose
electrodynamic response is linear. More recently, well-controlled experimental setups
have been refined in various geometries that have allowed for direct confirmation of this
theory, as well as the conception of novel devices that harness the near-field radiation.
However, there still remain some open questions in the field. They motivate the work of
this thesis.

The advent of atomically thin two-dimensional materials such as graphene and tran-
sition metal dichalcogenides – as well as the increased prevalence of metallic thin films -
calls for a complete study of this formerly unrealistic geometry. As compared to the well-
studied case of three-dimensional half-spaces, this geometry has the same in-plane trans-
lational invariance that makes analytical progress feasible, while also offering the pos-
sibility of observing markedly different behaviour due to the perpendicular confinement
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governed by the layer thickness. The combination of the wish to make analytical progress
and the appearance of these new materials motivate us to focus on the two-dimensional
geometry. Further, we use models that describe materials with free charge carriers (metals
and doped semiconductors and semimetals) since these are the most relevant in modern
micro and nanotechnologies.

In nanoscale devices operating at sub-Kelvin temperatures some new aspects of heat
transfer, unimportant in macroscopic systems at room temperatures, can become relevant.
On the one hand, the nanostructures often have a complicated geometry which makes
microscopic simulations numerically costly. On the other hand, their size is often small
compared to intrinsic length scales relevant to the heat transfer, which justifies a phe-
nomenological description in terms of effective circuits made of lumped elements. For
our model system of two-dimensional layers, we can compare the microscopic and phe-
nomenological descriptions and check when they match.

Within the remit outlined above, we identify some open questions, to be explained in
more detail below:

• Validity of the Coulomb limit

• Role of spatial dispersion

• Role of surface plasmons

• Validity of the effective circuit description

Most often, FE calculations involve the solution of the full set of Maxwell’s equations,
including all retardation effects. However, at short distances the electromagnetic interac-
tion is dominated by the instantaneous Coulomb contribution. It has sometimes been
assumed that the small length scales associated with the near field guarantee the valid-
ity of the Coulomb limit [Svetovoy12, Jiang17, Mahan17, Kamenev18, Zhang18], which
has the advantage of simpler calculations. However, the threshold of validity has not been
explicitly evaluated – i.e. how small must the body separation be to safely neglect retarda-
tion and focus on the Coulomb limit? In Ch. 2 we address this question for radiative heat
transfer between two-dimensional metallic layers described by local Drude conductivity.
We compute and compare asymptotic expressions for near-field and far-field contribu-
tions to the heat transfer coming from TM and TE polarisations, revealing dependencies
on material and setup parameters such as conductivity, temperature and separation. From
these we identify regimes with different dominant heat transfer channels and predict the
length scale which determines the significance (or lackthereof) of retardation i.e. the con-
ditions of validity of the Coulomb limit. We also interrogate the common wisdom that
the evanescent contributions dominate only when the material separation is small com-
pared to the thermal wavelength of photons. The results reveal the qualitative role played
by the dc conductivity of the metals that gives rise to a classification of materials into
two groups. In Ch. 2, we also remark on some of the key differences as compared to
the three-dimensional case, and compare quantitatively to relevant experiments discussed
previously.
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A tacit assumption that often goes un-interrogated in studies of near-field radiative
heat transfer is that of spatial locality of the material response (neglecting spatial disper-
sion in the conductivity). It is naturally assumed that nonlocal effects are important only at
extremely small length scales, and authors often assume the setups they wish to describe
fall above this threshold, hence ensuring the validity of simpler local models. However,
once again this threshold is rarely mentioned explicitly or explored. It has been argued
that the local/nonlocal length scale is given by a microscopic material property such as
the material mean free path [Landau84], although some claim the threshold depends on
the observable in question [Rodriguez-López15]. Spatial dispersion is included in the
model of graphene in Ref. [Svetovoy12], but its effect is unclear from the numerical re-
sults. Ref. [Chapuis08c] reported the saturation of the heat current between metallic half-
spaces as a direct consequence of nonlocal effects when the separation is below ∼ 1 nm.
Similar results regarding saturation at extremely small distances due to spatial dispersion
are reported for two-dimensional metals in Ref. [Kamenev18]. Working in the Coulomb
limit, in Ch. 3 we employ a general and under-utilised nonlocal model for the conductiv-
ity of a two-dimensional electron gas with disorder, where once again we identify distinct
regimes of the heat transfer. From the details of our analytical calculation, we establish
quantitatively the length scale of the local/nonlocal threshold.

While the importance of surface phonon polaritons in radiative heat transfer between
dielectrics appears beyond much doubt [Joulain05, Francoeur08], the role of surface plas-
mon polaritons in metals, doped semiconductors and two-dimensional materials is less
certain. On the one hand SPPs have been identified to play a crucial role in the enhance-
ment of near-field radiative heat transfer in several studies. This has included theoret-
ical works on graphene [Svetovoy12], doped semiconductor [Rousseau09a] and metal
[Biehs07] films, as well as experimental observation in graphene [Yang18]. On the other
hand, Ref. [Kamenev18] reported no plasmon contribution to the heat current between
two-dimensional disordered conductors, and Ref. [Mahan17] explicitly claimed the con-
tribution of SPPs to be unimportant for three-dimensional, disorder-free metallic half-
spaces (both studies were in the Coulomb limit). Questions naturally arise regarding the
source of this discrepancy, in particular around whether the absence of a plasmonic con-
tribution in some studies is an artefact of the Coulomb limit or related to the model of
disorder taken for the material. In the analytical calculation in Ch. 3 we find that the
plasmon contribution to the heat current may in fact be dominant for two-dimensional
metallic layers, but it disappears if one takes clean or diffusive limits for electron motion.
We determine the conditions for which this plasmonic contribution dominates.

As discussed in Sec. 1.3.1, radiative heat transfer may be calculated in electric circuits,
and in Ch. 3 we address the open question of when and how a given structure may be
described by an effective circuit that is justified by a microscopic model. Using the afore-
mentioned model for a two-dimensional electron gas with disorder, we check whether the
radiative heat transfer between two metallic layers may be represented by photonic heat
transfer in an effective circuit. We make qualitative observations that connect effective
circuit parameters to material values from the microscopic model, and find the limits of
validity of the circuit representation.
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In Ch. 4, we graduate from studying the average radiative heat current to instead study
its fluctuations. As discussed in Sec. 1.3.2, heat current fluctuations, or noise, remain
much less well-studied both theoretically and experimentally. However, it is known that
the noise of a signal may contain additional information about the system compared to the
average [Landauer98]. In particular, information about the relevant excitations of a system
may be visible in the fluctuations. With this in mind, we study the finite-frequency heat
current noise spectrum in two systems whose radiative heat transfer may be dominated
by discrete resonant modes. Firstly, we report on the recent study Ref. [Roubinowitz21]
of heat current fluctuations in a zero dimensional system modelled by an effective circuit
based on an experiment [Meschke06]. It has been found that the radiative heat current
in such a system, which dominates over other transfer channels at low temperatures, may
have a resonant character due to the structure of the circuit. Secondly, we study the sys-
tem of two-dimensional metallic layers, where as shown in Ch. 3 the radiative heat current
may be due to resonant surface plasmons. We calculate the finite-frequency noise spectra
of these systems in Secs. 4.2 and 4.3, finding that in both cases the resonant behaviour
is indeed encoded in the noise spectrum. Via measurements of receiver temperature fluc-
tuations, these predictions provide a potential way to observe directly the importance of
resonant modes.

In some sense, our wish to perform analytical calculations is in itself motivated by the
generality of the open questions discussed above. Recently there have been many stud-
ies that use detailed, material-specific models that are handled numerically [Svetovoy12,
Zhao17, Zhang19]. While offering precise results and perhaps insight into the role of the
above physical ingredients (retardation, spatial dispersion and plasmons) in a particular
material, it is difficult to make general conclusions from these studies that are applicable
to a wider class of materials. By performing analytical work on widely-applicable gen-
eral models, we reveal some new general conclusions on each of the physical ingredients
discussed above.
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Chapter 2. Near field versus far field in radiative heat transfer between two-dimensional
metals

2.1 Radiative heat transfer via FE

Many theoretical works have been dedicated to different material systems in the near-field
regime ([Joulain05, Volokitin07, Song15a, Biehs21] and references therein), in which var-
ious models for material response have been employed and different dominant channels
for heat transfer identified. The common wisdom is that the evanescent modes dominate
the heat transfer when the spatial separation d�λ̄ T ≡ h̄c/T , the wavelength of photons
at temperature T (here h̄ and c are the Planck constant and the speed of light, respectively,
and we set the Boltzmann constant to unity). Indeed, for d > λ̄ T the evanescent waves
with the typical frequency ω ∼ T/h̄ decay exponentially outside the material, while at
d � λ̄ T the region of the wave vectors k occupied by evanescent waves, k ∼ 1/d, is
larger than that of travelling states, k ∼ 1/λ̄ T [Volokitin07]. The importance of magnetic
coupling in the near-field heat transfer between well-conducting metals has been empha-
sised [Chapuis08c, Chapuis08a]. In the extreme near-field limit, heat transfer due to the
electrostatic Coulomb interaction has also been studied [Prunnila13, Mahan17, Zhang18,
Wang18, Kamenev18, Ying20]. Here, we perform a calculation using the full retarded
electromagnetic interaction in order to establish the conditions of validity of the Coulomb
limit, and interrogate the common wisdom that evanescent waves dominate the heat trans-
fer only if d�λ̄ T .

2.1.1 Model: local Drude conductivity

We consider two identical 2D metal sheets held at different temperatures T1 and T2, em-
bedded in vacuum and separated by a gap of width d. A more realistic configuration
would be to place a medium with a dielectric constant ε in the half-space behind each
sheet, since in experiments the layers are placed on a substrate. For the sake of simplicity,
we will focus on ε = 1 in most of the chapter, and check for the effect of the substrate
when specifically needed (see Sec. 2.2.5).

We model the metal sheets as infinitely thin layers, characterised by a local 2D Drude
conductivity [introduced in Eq. (1.12)],

σ(ω) =
σ2D

1− iωτ
, (2.1)

with τ being the electron momentum relaxation time, assumed to be temperature-independent.
This is the case if τ is determined by elastic scattering on static impurities. In Ch. 3 we em-
ploy a richer model for the material conductivity including spatial dispersion, however we
find that under certain conditions the simpler Drude model is sufficient for describing the
radiative heat transfer. We incorporate those validity conditions here. Eq. (2.1) neglects
(i) the spatial dispersion of the conductivity, and (ii) field variation over the layer thick-
ness. For atomically thin materials, such as doped graphene or transition metal dichalco-
genides, condition (ii) is irrelevant, and condition (i) holds at distances d�

√
a2D` (a2D

and ` being the 2D screening radius and the electron mean free path, respectively) – see
Ch. 3. For thin but macroscopic layers of conventional metals, condition (ii) imposes that
the thickness must be small compared both to the typical wavelength of the waves domi-
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nating the heat transfer (which may be rather short for evanescent waves) and to the skin
depth at the typical frequency of these waves, while condition (i) requires the wavelength
and the skin depth to be longer than the electron mean free path in the metal.

We also emphasise that our study applies to metals only. Optical response of Drude
metals and dielectrics is governed by qualitatively different physical mechanisms: con-
duction electrons and optical phonons, respectively, whose response is concentrated at
low and high frequencies (e. g., the optical phonon frequency in SiO2 is more than three
times higher than the room temperature). We do not include the contribution of such
high-frequency resonances in our model. This is a valid approximation even for bad met-
als at sufficiently low frequencies/temperatures, since the electronic Drude contribution to
the layer polarisability diverges at low frequencies, while the optical phonon contribution
stays finite. Comparing the two contributions, one can estimate the temperature below
which the Drude model is sufficient for a specific material.

2.1.2 Explicit general expression for the heat current between two
thin metallic sheets

Our calculation of the heat current between the metals follows the standard FE procedure
set out in Sec. 1.2. The fluctuating in-plane surface currents j(α)(r, t) in each sheet obey
the fluctuation-dissipation theorem,

〈 jl(r, t) jm(r′, t ′)〉= δlm

∫ d2kdω

(2π)3 h̄ω coth
h̄ω

2T
Reσ(k,ω)eik(r−r′)−iω(t−t ′), (2.2)

where k is the two-dimensional in-plane wavevector, l,m = x,y label the orthogonal in-
plane directions and T = T1 or T2. These currents appear as sources in Maxwell’s equa-
tions, whose solution in the presence of the conducting sheets determines the fluctuating
electric fields E(r, t). Then, the heat current J (per unit area) from layer 1 to layer 2 is
given by the average Joule loss power (per unit area) 〈j̃(2) ·E(2)〉−〈j̃(1) ·E(1)〉, where j̃(α)

is the surface current in layer α , induced by the electric field E(α) in this layer, which, in
turn, is produced by the fluctuating current in the other layer.

We emphasize that for thin layers, the Joule losses 〈j̃(2) ·E(2)〉− 〈j̃(1) ·E(1)〉 are not
equal to the average normal component of the Poynting vector in the gap between the
layers. The reason is that some part of the radiation emitted by layer 1 may pass through
layer 2 and escape to infinity, and vice versa. Whether this escaped radiation should be
included in the heat current or not, depends on the precise measurement setup, which
may collect this escaped radiation or not. Our calculation thus assumes that the escaped
radiation is lost. As discussed in Sec. 2.2.5, here we focus on the heat transfer from one
metal to the other, so we calculate the Joule losses, not the Poynting vector. Note that
for two semi-infinite metals (the most studied setup), everything is collected inside the
metals, so the Poynting vector and the Joule losses match exactly.

We solve Maxwell’s equations (in CGS units) for the monochromatic components of
the electric and magnetic field, Ekω(z)eikr−iωt and Bkω(z)eikr−iωt in the planar geometry
with the two metallic sheets placed at z = z1,z2 with z2− z1 = d, while the position-
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dependent dielectric constant ε(z) accounts for whatever (non-magnetic, isotropic) di-
electric medium surrounds the layers:(

ik+ ez
∂

∂ z

)
∧Ekω =

iω
c

Bkω , (2.3)(
ik+ ez

∂

∂ z

)
∧Bkω =

4π

c ∑
α=1,2

δ (z− zα)
(

j(α)
kω

+ j̃(α)
kω

)
− iω

c
ε(z)Ekω , (2.4)

where ez is the unit vector in the z direction, perpendicular to the layers. The surface
current in each layer α = 1,2 consists of two contributions: j̃(α)

kω
= σα(ω)Ekω(zα) is the

induced current due to the electric field, while the fluctuating currents j(α)
kω

= (j(α)
−k,−ω

)∗

are complex Gaussian random variables with the correlator determined by the fluctuation-
dissipation theorem (2.2):

〈 j(α)
kω,l j(α

′)
k′ω ′,m〉= (2π)3

δ (k+k′)δ (ω +ω
′)δαα ′δlm h̄ω coth

h̄ω

2Tα

Reσα(k,ω) (2.5)

Because of δlm on the right-hand side of this equation, current fluctuations are indepen-
dent for any two orthogonal directions, so it is convenient to pass to the longitudinal and
transverse basis (p and s polarisations, respectively):

j(α)
kω

= j(α)
kω

k
k
+ j(α)

kω

ez∧k
k

. (2.6)

In this basis the solutions of Maxwell’s equations decouple into transverse magnetic (TM)
and transverse electric (TE) modes, whose contribution to the heat current is simply addi-
tive. To model different metal sheets mounted on identical dielectric substrates separated
by vacuum, we take ε(z1 < z < z2) = 1, ε(z < z1) = ε(z > z2) = ε > 1. This leads to
the spatial dependence of the electric and magnetic fields ∝ eikr±iqzz for z1 < z < z2, and
∝ eikr+iq′zz,eikr−iq′zz for z > z2 and z < z1, respectively. Here we defined

qz =


√

ω2/c2− k2 signω, |ω|> ck,

i
√

k2−ω2/c2, |ω|< ck,
(2.7a)

q′z =


√

εω2/c2− k2 signω,
√

ε|ω|> ck,

i
√

k2− εω2/c2,
√

ε|ω|< ck.
(2.7b)

At |ω| > ck, the metallic layers are coupled by travelling waves, while for |ω| < ck the
solutions in the gap are evanescent waves, where the fields’ strength decays away from
the layers. The solutions are matched at z = z1 and z = z2 using the standard boundary
conditions: continuity of the in-plane component of the electric field E‖, and a jump
in the magnetic field in-plane component, determined by the total surface current (the
fluctuating sources as well as the induced current σE‖). The heat current from, say,
sheet 2 to the sheet 1 is given by the average Joule loss power per unit area, J(T1,T2) =

〈j̃(1) ·E‖(z1)〉− 〈j̃(2) ·E‖(z2)〉, determined unambiguously due to the continuity of E‖(z).
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For a temperature-independent relaxation time this heat current splits into J(T1,T2) =

J(T2)− J(T1), where

J(T ) =
∞∫

0

dω

2π

h̄ω

eh̄ω/T −1

∫ d2k
(2π)2 ∑

j=p,s

a1 ja2 j |eiqzd|2

|1− r1 jr2 je2iqzd|2
(2.8)

is expressed in terms of reflectivities rα j and emissivities aα j for the p and s polarisations:

rα p =
qz−q′z/ε +4πσαqzq′z/(εω)

qz +q′z/ε +4πσαqzq′z/(εω)
, (2.9a)

aα p =
4|qz||q′z/ε|2(4π Reσα/ω)

|qz +q′z/ε +4πσαqzq′z/(εω)|2
, (2.9b)

rαs =
qz−q′z−4πωσα/c2

qz +q′z +4πωσα/c2 , (2.9c)

aαs =
4|qz|(4πω Reσα/c2)

|qz +q′z +4πωσα/c2|2
. (2.9d)

The emissivities can also be written as

aα p = (1−|rα p|2)θ(|ω|− ck)+2Imrα p θ(ck−|ω|)−
∣∣∣∣ q′z
εqz

∣∣∣∣ |tα p|2 θ(
√

ε|ω|− ck),

(2.10a)

aαs = (1−|rαs|2)θ(|ω|− ck)+2Imrαs θ(ck−|ω|)−
∣∣∣∣q′zqz

∣∣∣∣ |tαs|2 θ(
√

ε|ω|− ck),

(2.10b)

where θ(x) is the Heaviside step function, and tα j are the transmittivities:

tα p =
2qz

qz +q′z/ε +4πσαqzq′z/(εω)
, (2.11a)

tαs =
2qz

qz +q′z +4πωσα/c2 . (2.11b)

First, we note that the Stefan-Boltzmann law Eq. (1.4) is recovered from the full formula
Eq. (2.8) by assuming perfect absorption of the layers (setting rα j = tα j = 0 leads to
aα j = θ(|ω| − ck), i.e. unit emissivity for travelling waves). More subtly, note the dif-
ference between Eqs. (2.10) and Eq. (2) of Ref. [Wang19], where the third term is absent
in both polarisations. Without the third term, Eq. (2.8) gives the average value of the
Poynting vector in the gap between the two layers, which counts the heat flux that is not
absorbed by the metal, but irradiated to infinity behind it, due to the finite transmission.
Eqs. (2.10) without the third term originally appeared in Ref. [Volokitin01] for the prob-
lem of heat transfer between two semi-infinite materials. In that geometry, all heat flux
transmitted through the surface is eventually absorbed by the material. In the thin layer
geometry, whether the transmitted flux is detected or not, depends on the specific experi-
mental measurement scheme. In our calculation, we assume that the transmitted radiation
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is lost, and thus use the full Eqs. (2.10).

To summarise, in the planar geometry considered here, the solutions of Maxwell’s
equations are classified by in-plane wave vector k, frequency ω , and two polarisations
p = TE,TM – transverse electric and transverse magnetic, respectively, for which the
electric or the magnetic field vector is parallel to the layers and perpendicular to k. The
contributions to the heat current from modes with different k,ω, p add up independently,
so the heat current J(T1,T2) is given by by an integral over k and ω , and a sum over the
polarisations. The integral splits in two contributions: the interior of the light cone, ω > ck
hosts travelling modes, while in the region ω < ck the solutions are evanescent. The
resulting heat current is comprised of four additive contributions (TM and TE, travelling
and evanescent). Which contribution dominates, depends on the material conductivity, as
well as the system temperature and length scales.

2.1.3 Asymptotic expressions for limiting cases

For temperature-independent relaxation time, the heat current naturally splits into the
difference J(T1,T2) = J(T1)− J(T2). In Appendix A we perform analytically the k,ω
integrals in Eq. (2.8) and derive simple asymptotic expressions for J(T ) according to
the separation and the temperature. For each expression, we can identify the dominant
contribution (TM or TE, travelling or evanescent). Our results are approximate; one can
describe the heat transfer much more precisely by solving Maxwell’s equations for finite-
thickness slabs with a material-specific frequency dependence of the conductivity and
numerically evaluating the integrals, as routinely done in many works. However, simple
approximate expressions (i) are rather useful when a quick estimate of the heat current is
needed, and (ii) offer a general insight into the dominant physical mechanisms responsible
for the heat transfer and enable one to characterise different possibilities.

The detailed analysis of different asymptotic regimes of the k,ω integrals results
in several asymptotic expressions for J(T ) in different parametric ranges of d. The
magnitudes of the TM and TE travelling contributions are sensitive to the dimension-
less conductivity parameter G = 2πσ2D/c (we use CGS units throughout, in SI units
G = (σ2D/2)

√
µ0/ε0) so we proceed to present the results sequentially for small and

large values of G.
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Figure 2.1: The domains of validity for asymptotic expressions, Eqs. (2.12) and (2.14) in
the parameter plane (1/d,T ), shown in the dimensionless variables x≡ cτ/d, y≡ T τ/h̄.
The crossovers between the regimes are governed by the dimensionless conductivity pa-
rameter G ≡ 2πσ2D/c, the upper and lower panels corresponding to G � 1 and G � 1,
respectively. The encircled label of each region corresponds to the subscript at J(T )
in Eqs. (2.12) and (2.14). Solid lines indicate crossovers between different expressions;
straight lines y/x = const are not labeled for readability (the coefficient can be deduced
from the endpoints). The blue line (solid or dashed) corresponds to d ∼ λ̄ T . The shad-
ing color indicates the heat being predominantly carried by TM modes (red), TE modes
(green), or both (white); dominance of travelling waves is indicated by wavy hatching.
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For G � 1, the asymptotic expressions for J(T ) are:

Jlp(T ) =
ζ (3)
4π

T 3

h̄2cGd
, (2.12a)

Jhp(T ) =
T

16πτd2 L(Gcτ/d), (2.12b)

Jld(T ) =
ζ (3)
8π

T 3

h̄2cGd
, (2.12c)

Jhd(T ) =
1

16π

Gc
d3 T, (2.12d)

Jlte(T ) =
π2

15
G2

h̄3c2
T 4 ln

1
G
, (2.12e)

Jhte(T ) =
1

4π

G2

c2τ3 T ln
1
G
, (2.12f)

valid in the corresponding regions of the (1/d,T ) plane, schematically shown in Fig. 2.1 (up-
per). The contributions given by Eqs. (2.12a)–(2.12d), with labels corresponding to low-
temperature plasmonic, high-temperature plasmonic, low-temperature diffusive, high-
temperature diffusive, are the TM evanescent contributions that remain in the Coulomb
limit (c→ 0) whose calculation is given in App. A.4. Their survival in the Coulomb limit
is manifested by their dependence on the product Gc. Equations (2.12e) and (2.12f) (with
labels corresponding to low-temperature travelling electric and high-temperature travel-
ling electric) are the travelling TE contributions which dominate over the travelling TM
contributions by the logarithmic factor ln(1/G). In Eqs. (2.12), ζ (x) is the Riemann zeta
function, and L(x) is a slow logarithmic function, approximately given by (see App. A.4)

L(x)≈ 4ln3 x
1+(lnx)/ ln(1+ lnx)

. (2.13)

For G � 1, in addition to the expressions given in Eqs. (2.12a)–(2.12c) we also have:

Jle(T ) =
π2

15
G2

h̄3c2
T 4 ln

λ̄ T

Gd
, (2.14a)

Jhe1(T ) =
1

4π

G2

c2τ3 T ln
cτ

Gd
, (2.14b)

Jhe2(T ) =
ζ (3)
16π

c
Gd3 T, (2.14c)

Jlt(T ) =
π2

45
T 4

h̄3c2G
, (2.14d)

Jit(T ) =
1

12
T 2

h̄c2τ2 , (2.14e)

Jht(T ) =

(√
2

12π
+

1
4π

)
G

c2τ3 T, (2.14f)

valid in the corresponding regions of the (1/d,T ) plane, schematically shown in Fig. 2.1 (lower).
The contributions given by Eqs. (2.14a)–(2.14c) are the TE evanescent contributions,
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while Eqs. (2.14d)–(2.14f) are the sums of travelling contributions from both polarisa-
tions which are of the same order.

For G � 1, the travelling channels support resonant Fabry-Perot (FP) modes. In (lt)
and (it) regions, many sharp FP modes contribute significantly to the heat current. In the
high-temperature case (ht) the FP modes are overdamped since the conductivity σ(ω)

becomes small at high frequencies. For temperatures lower than the first mode cutoff
energy, T � π h̄c/d, the contributions from the FP modes are exponentially suppressed.
However, the prefactor in front of the small thermal exponential turns out to be larger than
the evanescent contribution (2.14c) in (he2) region. Thus, the FP additive contribution is
potentially significant for cτ/d <

√
G, where it is dominated by the first FP mode:

JFP1(T ) =
πcT

[2G+(πcτ/d)2]d3 e−π h̄c/(T d). (2.15)

2.2 Discussion of results

2.2.1 Two classes of 2D structures

As shown in Fig. 2.1, we find two qualitatively different types of behaviour, depending
on the value of the two-dimensional dc conductivity σ2D of the sheets. The parameter
G = 2πσ2D/c characterises the impedance mismatch between a 2D metal and vacuum; its
importance is not restricted to the heat transfer problem and is rather general. Notably,
two distinct regimes in the behaviour of 2D plasmon polaritons for G < 1 and G > 1 have
been identified [Govorov89, Fal’ko89, Volkov14, Muravev15, Gusikhin18, Oriekhov20].
In our heat transfer problem, we find no sharp distinction between G < 1 and G > 1, but
rather a smooth crossover between the two limiting situations. As we shall see below,
the poor metal (G � 1) case may be realised by doped two-dimensional materials, while
the good metal (G � 1) case represents typical thin films of conventional metals. In the
following subsections, we discuss in detail various observations based on the results of
Sec. 2.1.3, drawing attention to the differences between the two cases of poor and good
metals.

2.2.2 Near-field enhancement beyond the thermal wavelength

In Fig. 2.1, the areas with wavy hatching indicate the regions where the heat transfer is
dominated by travelling wave contributions, while areas with solid colours indicate where
it is evanesecent contributions that dominate. Before discussing the physical difference
between the two polarisations (indicated by the colour of each region), we comment on
the position of the boundary between wavy and solid regions, i.e. the crossover between
travelling and evanescent wave dominance.

For G � 1, the evanescent waves dominate at separations up to d ∼ G−1/3λ̄ T , para-
metrically larger than the commonly used condition for the near field, d�λ̄ T [y� x in
Fig. 2.1 (upper)]. One would naturally expect the exponential suppression of the evanes-
cent waves to be significant at such separations as we enter into the far field. The reason
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for such counter-intuitive behaviour is that the low-temperature TM evanescent contri-
bution is determined by k� 1/d for which the exponential suppression is not efficient.
For G � 1, the commonly used inequality d � λ̄ T does become the accurate condition
for evanescent contribution dominance, except for high temperatures where the Drude
conductivity is suppressed by high frequency.

2.2.3 The role of electrostatics and magnetostatics

The contributions by evanescent waves from the two polarisations may be understood as
being due to different types of electromagnetic coupling. In the extreme near-field limit,
k� ω/c, the TM mode field is mostly electric and longitudinal, while the magnetic field
is smaller by a factor ∼ ω/(ck); these modes represent the electrostatic coupling by the
Coulomb interaction between charge density fluctuations in the two layers. At the same
time, for TE modes the field is mostly magnetic, while the electric field is smaller by
a factor ∼ ω/(ck); these modes represent magnetostatic coupling, where the magnetic
field established by transverse current fluctuations in one layer drives eddy currents in the
second layer. The commonly used Coulomb limit, given by sending c→ ∞, corresponds
to electrostatics (no magnetic fields) and is therefore given by retaining only the TM
evanescent contribution from Eq. (2.8) – this is discussed further in Ch. 3.

For G � 1 the near-field transfer is dominated by the TM evanescent contribution
[red shading in Fig. 2.1 (upper)], basically, by electrostatic (capacitive) coupling between
the two layers. This happens because in a poor metal, the charge density response is
not fast enough to dynamically screen the fluctuating Coulomb field. Moreover, the TE
evanescent contributions never dominate, indicating that the Coulomb limit is valid in and
beyond the near field.

For G� 1 we observe that in a large part of the near-field region of the parameter plane
the heat current is governed by TE evanescent modes [green shading in Fig. 2.1 (lower)],
which correspond to magnetostatic (inductive) coupling between the layers. As discussed
in Refs. [Chapuis08c, Chapuis08a] for bulk metals, large conductivity leads to efficient
screening of the electric fields, so the magnetostatic coupling becomes more important.
The electrostatic coupling takes over only at very short distances or low temperatures,
d�λ̄ T/(πG)3, determined by Jle(T )∼ Jld(T ).

However, for very small d the finite layer thickness of a conventional metal may
become important, and/or the assumption of the local response, Eq. (2.1), may break
down. Taking, for example, a h = 10 nm-thick gold film with the bulk plasma frequency
ωp = 0.6× 1016 s−1 and relaxation time τ = 6 fs [Ordal85] we may use the relation
4πσ2D = ω2

pτh (found from Eqs. (1.12) and (1.19) and the fact that σ2D = σ3Dh for a
local model) to arrive at the estimate G ≈ 3.6. Since λ̄ T = 7.6 µm at T = 300 K, in
such structure the predicted crossover to electrostatics occurs at a few nanometers. We
note that in the (ld) regime, the heat transfer is mainly determined by rather small wave
vectors k ∼ (Gλ̄ T d)−1/2 (App. A.4), so that even at d = 1 nm we obtain 1/k & 100 nm,
and the local response assumption should still be formally valid. However, at nanometric
distances other physical effects may come into play (electron or phonon tunnelling, sur-
face roughness, etc.), so for ultrathin films of conventional metal we expect the Coulomb
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mechanism to be relevant mostly at low temperatures. These kind of low temperature
regimes are explored in many experimental mesoscopic physics scenarios. Taking, for
example, the 10 nm thick gold films discussed above with G ≈ 3.6 we find at T = 0.1 K,
the crossover between electrostatics and magnetostatics occurs at d ≈ 16 µm, where the
thermal conductance per unit area is∼ 2×10−8 WK−1m−2. The result is similar for other
very well conducting metals such as copper and silver. Note however that the crossover
length scale decreases quickly (∝ 1/h3) with increasing film thickness.

2.2.4 Comparison to the bulk case

The results presented in the previous section show two qualitatively different pictures
of the near-field heat transfer between two metallic layers, depending on the value of
their dimensionless 2D dc conductivity: for G � 1, the heat transfer is mostly due to
electrostatic coupling between the layers, up to distances significanly exceedingλ̄ T , while
for G � 1 the near-field magnetostatic coupling dominates up to distances d ∼ λ̄ T , in
close analogy with earlier results on bulk metals. This picture is consistent with the
results of Ref. [Wang19] where the very same problem of radiative heat transfer between
parallel 2D layers was studied numerically. There, a distinction was made between thin
and thick metallic films. In this formulation G is proportional to the layer thickness h
(in the local approximation, the 2D conductivity is simply σ2D = σ3Dh, where σ3D is
the bulk conductivity). In Ref. [Wang19], the heat transfer between two theoretically
imagined atomic monolayers of silver, described by a 2D Drude model with G ≈ 2, is
found to be driven by TM evanescent waves, while for thicker films it is TE evanescent
waves.

The peculiarity of the 2D geometry is that the 2D conductivity can be compared to
two universal scales. One is the speed of light, hence the dimensionless parameter G =

2πσ2D/c we introduced earlier. The other universal scale is the conductance quantum,
e2/(2π h̄). For σ2D . e2/(2π h̄), or G . e2/(h̄c) ≈ 1/137, the disorder is too strong, so
the metallic conduction is destroyed by localization effects [Altshuler85, Lee85]. Thus,
the poor metal regime discussed above, can be realised in the interval 1/137 . G � 1.

The situation is quite different for the bulk metal case. The 3D conductivity σ3D

has the dimensionality of the inverse time, so that 1/(4πσ3D) (in CGS units, while in SI
it is ε0/σ3D) would have the meaning of the RC time needed to dissolve a charge den-
sity perturbation if the conductivity were frequency independent. In conventional metals
1/(4πσ3D) is extremely short (in the attosecond range). Still, one can compare 4πσ3D

to other scales. One is the electron relaxation time τ; typically, 4πσ3Dτ = ω2
pτ2 � 1

(ωp being the bulk plasma frequency). Moreover, at T � h̄/τ the relaxation time drops
out of the problem, so one cannot construct a dimensionless parameter out of σ3D, which
could produce different ‘asymptotic maps’ of the kind shown in Fig. 2.1. The bulk case
turns out to be somewhat similar to the 2D case with G � 1.

To see the reason for this similarity, let us recall the asymptotic expressions for the
heat current between semi-infinite bulk metals, assuming T τ � h̄ (the derivation can be
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found in Ref. [Polder71], we also give it in Appendix B):

Ja(T ) =
π2

60
h̄(T/h̄)4

(2πσ3D)2d2 ln
2πσ3D

T/h̄
, d�

δ 3
T

λ̄
2
T
, (2.16a)

Jb(T ) =
ζ (3)
4π2

2πσ3Dh̄(T/h̄)3

c2 ,
δ 3

T

λ̄
2
T
� d� δT , (2.16b)

Jc(T ) =
3ζ (3)
4π2

c2T
2πσ3Dd4 ln

d
δT

, δT � d� (λ̄ 2
T δT )

1/3, (2.16c)

Jd(T ) =
75ζ (7/2)

256
√

π

h̄(T/h̄)7/2
√

2πσ3Dcd
, (λ̄ 2

T δT )
1/3� d�λ̄ T , (2.16d)

Je(T ) =
35ζ (9/2)

16π3/2
h̄(T/h̄)9/2
√

2πσ3Dc2 , λ̄ T � d, (2.16e)

where the parametric intervals of d are conveniently defined in terms of two length scales:
the thermal wavelength λ̄ T = h̄c/T and the normal skin depth at the thermal frequency,
δT = c/

√
2πσ3DT/h̄� λ̄ T . The shortest-distance expression (2.16a) is determined by

the TM evanescent contribution and corresponds to the Coulomb limit (indeed, it does
not contain the speed of light); however, the length scale δ 3

T/λ̄
2
T is extremely short: for

4πσ3D = 1017 s−1 at T = 300 K, we have δT = 0.22 µm and λ̄ T = 7.6 µm, so δ 3
T/λ̄

2
T ∼

2 Å and becomes even smaller at lower temperatures, invalidating the local approxi-
mation and making Eq. (2.16a) irrelevant for conventional metals. Equations (2.16b)
and (2.16c) originate from the TE evanescent contribution and correspond to magneto-
static coupling [Chapuis08c]. Equation (2.16d) contains both TM evanescent and TM
travelling contributions which are of the same order at such distances (only the evanes-
cent one was evaluated in Ref. [Polder71]); in fact, for both contributions the integral is
dominated by wave vectors k very close to ω/c, and the fields vary weakly across the
gap so there is no sharp physical distinction between travelling and evanescent waves.
Finally, Eq. (2.16e) comes from the TE and TM travelling waves and is contributed by
many Fabry-Perot modes inside the gap.

It is easy to see that by the order of magnitude, Eqs. (2.16b), (2.16c), (2.16d) and
(2.16e) can be obtained from Eqs. (2.14a), (2.14c), (2.12c) and (2.14d), respectively, by
replacing G = 2πσ2D/c→ 2πσ3Dδω/c, where the skin depth δω = c/

√
2πσ3Dω corre-

sponds to the typical frequency scale determining the integral: it is δT for Eqs. (2.16b),
(2.16d) and (2.16e), determined by frequencies ω ∼ T/h̄, and δω ∼ d for Eq. (2.16c),
where the frequency integral is logarithmic, with the lower cutoff corresponding to δω ∼ d
(see Appendix B for details). This replacement roughly corresponds to modelling the
semi-infinite metal as an effective metallic layer whose thickness corresponds to the
field penetration depth. Such an effective layer is characterised by the dimensionless
Geff ∼

√
2πσ3D/ω , so that Geff� 1 for conventional metals and reasonable temperatures.

We note that this effective layer analogy should be used with caution, since the frequency
dependence of δω sometimes makes the convergence scale of the frequency integral dif-
ferent from the case of fixed layer thickness.
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2.2.5 Role of the substrates

The expressions given in Sec. 2.1.3 correspond to the heat transferred from one metallic
sheet to the other, not including the radiation transmitted behind each sheet. In an ex-
periment, this transmitted radiation can be absorbed by dielectric substrates (even if the
absorption by the dielectric material is very weak, the transmitted radiation can still be
absorbed if the substrate is thick enough) or captured by some background parts of the
structure. Whether the transmitted radiation should be included in the measured heat cur-
rent or not, depends on the specific measurement scheme. The measurement can be done
directly on the metallic layers as, for example, in Ref. [Kralik12]; the radiation absorbed
in the substrate leads to a very weak heating of the latter since this absorption occurs
in a large volume, and has little effect on the metallic layers. The opposite example is
Ref. [Yang18], where the measurement was actually performed behind the substrate, so
that all radiation was collected, and good thermal contact between graphene sheets and
the substrate was ensured.

If radiation absorbed by the thick dielectric substrate is included, one should also
include radiation emitted by the substrate, which is equivalent to adding an incident black-
body heat flux

Jbb(T ) =
π2

60
T 4

c2h̄3 . (2.17)

Its effect is especially important for G � 1 since the transmission of each sheet is close
to unity in this case. For thick dielectric substrates with dielectric constant ε = 1 and
an infinitesimal imaginary part, almost all incident black-body heat flux is transmitted
through the sheets and absorbed on the other side, so the far-field expressions Jlte(T )
and Jhte(T ), Eqs. (2.12e) and (2.12f), should be replaced by Eq. (2.17). This starts to
dominate over the near-field contribution Jhd(T ) at shorter distances, d ∼λ̄ TG1/3�λ̄ T .
This is natural, since the near-field contribution is still determined by the sheets, while the
far-field transfer is essentially between the substrates.

For G � 1, the low-temperature far-field expression (2.14d) remains valid, since the
layer transmission is too small. At intermediate temperatures,

√
G � T τ/h̄� G, the

sheet transmission is still small, but it is already larger than the absorption, so the far-field
contribution is determined by the fraction of the black-body radiation entering the Fabry-
Perot resonator, J(T ) ∼ Jbb(T )(T τ/h̄G)2, which is larger than Jit(T ), Eq. (2.14e). At
T τ/h̄� 1 the conductivity at relevant frequencies is so small, that the transmission of the
layers is close to 1, and instead of Eq. (2.14f) the far-field heat current is the black-body
one, Eq. (2.17).

2.2.6 Quantifying the near-field enhancement of the heat transfer

When studying radiative heat transfer between objects, one is often interested in compar-
ing it to the radiative transfer between black bodies of the same geometry. In the planar
geometry considered here, the black-body heat current is given by Eq. (2.17) and does not
depend on d. Metals are not perfect emitters/absorbers, so in the far field they exchange
less heat than black bodies. This is seen by comparing the far-field expressions (2.12e),
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(2.12f), (2.14d)–(2.14f), which are all d independent, to Eq. (2.17). At the lowest temper-
atures, we have Jlte(T )/Jbb(T ) = 4G2 ln(1/G) and Jlt(T )/Jbb(T ) = 4/(3G), for G� 1 and
G � 1, respectively. At higher temperatures, even smaller values are obtained. Only at
G ∼ 1 the metallic sheets approach the black-body limit in the far field, due to impedance
matching with vacuum.

However, it is well known that the coupling of evanescent modes can lead to signif-
icant, d-dependent contributions to the heat transfer between closely spaced conducting
bodies, resulting in an overall enhancement of the radiative power compared to the black-
body result ([Joulain05, Volokitin07, Song15a, Biehs21] and references therein). So there
are two competing effects: the far-field contribution is weaker than that of black bodies
due to metals being imperfect emitters, meanwhile between metals there is an extra con-
tribution from the evanescent waves that dominates in the near field (evanescent waves
do not contribute to black-body radiation into the vacuum). To assess when the near-field
contribution leads to an enhancement over the black-body result, one needs to compare
various near-field expressions in Sec. 2.1.3 to Eq. (2.17). For example, at the lowest tem-
peratures, Jhd(T ) and Jhe2(T ) [Eqs. (2.12d) and (2.14c)] overcome the black-body current
at d .λ̄ TG1/3 and d .λ̄ TG−1/3, respectively, for G � 1 and G � 1.

The strongest enhacement is obtained at small separations (since the near-field con-
tribution always grows with decreasing d) and low temperatures (since the black-body
expression has the highest power of temperature). Thus, we need the ratio of Eqs. (2.12c)
and (2.17):

Jld(T )
Jbb(T )

=
15ζ (3)

2π3
1
G

λ̄ T

d
. (2.18)

Note that the enhancement is stronger for smaller G; indeed, in this regime the near-field
transfer is dominated by the Coulomb interaction which is screened less efficiently in
poorly conducting metals. Taking T = 300 K, d = 10 nm, and G = 0.01 (we remind that
for smaller values of G the Drude description is not valid), we obtain the ratio of 2×104.
For bulk metals, the relevant ratio is Jb(T )/Jbb(T )≈ 0.19(4π h̄σ3D/T ) [Eq. (2.16b), since
Eq. (2.16a) becomes valid at unrealistically short distances], which amounts to about
3×104 for 4πσ3D = 7×1018 s−1 (silver at room temperature).

2.3 Comparison to experiments

Values G . 1 are characteristic of atomically thin 2D materials. This is illustrated by a
recent experiment [Yang18], where two doped monolayer graphene sheets were placed on
insulating silicon (ε = 11.7) and separated by a 400 nm wide vacuum gap. For tempera-
tures corresponding to energies well below the Fermi energy EF (counted from the Dirac
point) the electrons in graphene can be viewed as a conventional 2D electron gas with the
density of states per unit area coming from free electron theory: ν = 2|EF |/(π h̄2v2

F) (in-
cluding the valley and spin degeneracies). The Fermi energy of 0.27eV and the relaxation
time τ = 100 fs reported in Ref. [Yang18] give G = 0.6. The linear thermal conductance
per unit area dJ/dT = 30 Wm−2 K−1 was measured around room temperature. These
conditions correspond to the high-temperature plasmon regime, Eq. (2.12b), where the
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substrate dielectric constant ε enters only inside the logarithmic function L (App. A).
Setting L = 1 in Eq. (2.12b) gives dJ/dT = 11 Wm−2 K−1, which agrees by order of
magnitude with the experimental value.

Thin layers of conventional metals are typically characterised by G � 1. Several
experiments have been reported in the literature. In each case, it is important to compare
the layer thickness h to the the skin depth δω at the relevant frequency, to ensure the
layers should correspond to the 2D limit, rather than the bulk one (we discuss this more in
Sec. 3.2.2 and one may show that the latter is the case of Refs. [Hargreaves69, Song16]).

Heat transfer in a wide range of interlayer separations and temperatures was studied in
Ref. [Kralik12] for two 150nm thick tungsten layers on alumina substrates. The measured
dc conductivity of the material 4πσ3D = 0.6×1018 s−1 (constant in the temperature range
of the experiment) corresponds to a value of the dimensionless conductivity parameter
G ≈ 150. The skin depth at T = 40 K is δT = 240 nm, and even longer at lower tem-
peratures, so the layers are close to the 2D limit. The separation between the layers was
varied over d = 1− 300 µm, while the temperatures were T1 = 5K and T2 = 10− 40K,
corresponding to regions (he2) and (lt) in Fig. 2.1 (lower). It can be easily checked that
in these regions, the dielectric substrate plays no role as long as

√
ε � G, which clearly

holds here. Although the numerical calculation accounting for the finite layer thickness
does better in closely matching the experimental points (see Fig. 2 of Ref. [Kralik12]), our
simple expressions (2.14c) and (2.14d) (i) agree with the observed values within a factor
of 3 without any fitting parameters, (ii) give the correct distance dependence throughout
the experiment, (iii) capture the observed approximate collapse of the rescaled data for
J(T )/T 4 on a function of a single variable T d, and (iv) correctly predict the separation
d ≈ 0.5λ̄ T , at which the crossover between the near-field and the far-field regimes occurs,
Jhe2(T ) = Jle(T ).

A recent publication [Sabbaghi20] presents measurements of heat transfer between
two aluminium films of varying thicknesses h = 13−79nm, separated by a fixed vacuum
gap d = 215nm and attached to silicon substrates. The experiment was performed around
room temperature with one film being heated such that ∆T = 25−65K. Taking the values
ωp = 1.93×1016 s−1 and τ ≈ 5fs [Modest13] used in Ref. [Sabbaghi20] to interpret the
data, we obtain δT ≈ 50 nm and G ≈ 40 for the thinnest layer with h = 13 nm. Then
Eq. (2.14c) predicts dJ/dT = 250Wm−2/K, which agrees in order of magnitude with
the reported value, dJ/dT = 60Wm−2/K.

An intriguing feature of the results reported in Ref. [Sabbaghi20] is the independence
of dJ/dT of the layer thickness. This agrees neither with our 2D expressions, nor with
the more precise simulations done in Ref. [Sabbaghi20]. All theoretical results point to
a non-monotonic dependence of the heat current on the layer thickness or dc conduc-
tivity [the latter is also true for the bulk limit expressions (2.16)]. Further experimental
investigations of this dependence would be interesting.
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2.4 Summary and outlook

In this chapter, we have performed an analytical calculation of the radiative heat current
between two thin metallic layers, using the standard framework of fluctuational electro-
dynamics and a local 2D Drude model for the electromagnetic response of each layer. We
have identified two different classes of such structures, distinguished by the dimension-
less 2D dc conductivity G = 2πσ2D/c. For poor metals with G � 1, typically represented
by atomically thin 2D materials, the heat transfer is dominated by evanescent modes at
distances d extending well beyond λ̄ T , and the main coupling mechanism in this near-
field regime is the Coulomb interaction between electrons in the two layers. Good metals
with G � 1, such as thin films of conventional metals, behave more similarly to the bulk
limit, studied in earlier works: the crossover from near to far field occurs at d ∼λ̄ T at not
too high temperatures, and the near-field transfer is dominated by magnetostatic (induc-
tive) coupling between the layers in a wide range of parameters. We remind that for the
two-dimensional geometry considered here, the role of the substrates may be important
according to the specific experimental setup, how the temperature difference is main-
tained, and how the heat current is measured. In relation to this, we found that our result
about evanescent mode dominance beyond λ̄ T applies only to the heat current from one
sheet to the other, not including the radiation emitted and absorbed by the substrates.

We have derived several simple approximate asymptotic expressions for the heat cur-
rent valid in different parametric ranges of interlayer separation distance and temperature.
We quantified the degree of enhancement that may be achieved in the near field with re-
spect to the far-field and black-body results. In agreement with previous work, we find
that at small enough separations the radiative heat transfer may realistically be ∼ 104

times that of black bodies. Comparing our expressions with the available experimental
data, we saw that they give valid order-of-magnitude estimates of the heat current and
correctly capture its dependence on the distance and temperature. Better agreement with
the experimental results can be reached by a more detailed modelling of each system
geometry and the dielectric response, which is strongly system-specific and lies beyond
the scope of our work. Still, our approximate results offer a useful insight into the main
physical mechanisms responsible for the heat transfer.

We have found that the Coulomb limit is valid for poor metals up to and even beyond
the thermal wavelength, while for good metals the Coulomb interaction is predicted to
dominate only at unrealistically small separations. Focusing therefore on poor metals, we
are motivated to take advantage of the simplifications of the Coulomb limit to investigate a
richer model for the material response at small separations. In particular, we are motivated
to study the effect of nonlocality in the material response, which is expected to play a role
at extremely small separations where the local Drude model may fail. This nonlocality,
manifested by spatial dispersion in the conductivity, is investigated in the next chapter,
where not only do we reveal quantitatively the limits of validity of the local Drude model,
but also we identify the regions in parameter space where the dominant heat transfer
channel is provided by surface plasmons.
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Dans ce chapitre, nous avons effectué un calcul analytique du courant thermique radiatif
entre deux couches métalliques minces, en utilisant le cadre standard de l’électrodynamique
fluctuationnelle et le modèle de Drude 2D local pour la réponse électromagnétique de
chaque couche. Nous avons identifié deux classes différentes de telles structures, distin-
guées par la conductivité dc 2D adimensionnelle G = 2πσ2D/c. Pour les mauvais métaux
avec G � 1, typiquement représentés par des matériaux 2D atomiquement minces, le
transfert de chaleur est dominé par des modes évanescents à des distances d s’étendant
bien au-delà de λ̄ T , et le principal mécanisme de couplage dans ce régime de champ
proche est l’interaction de Coulomb entre les électrons dans les deux couches. Les bons
métaux avec G� 1, tels que les couches minces de métaux conventionnels, se comportent
de manière plus similaire à la limite 3D, étudiée dans des travaux antérieurs : le passage
du champ proche au champ lointain se produit à d ∼ λ̄ T à des températures pas trop
élevées, et le transfert en champ proche est dominé par le couplage magnétostatique (in-
ductif) entre les couches dans une large gamme de paramètres. Nous rappelons que pour
la géométrie bidimensionnelle considérée ici, le rôle des substrats peut être important en
fonction du montage expérimental spécifique, de la façon dont la différence de tempéra-
ture est maintenue et de la façon dont le courant thermique est mesuré. À cet égard, nous
avons constaté que notre résultat concernant la dominance du mode évanescent au-delà
deλ̄ T ne s’applique qu’au courant thermique d’une feuille à l’autre, sans tenir compte du
rayonnement émis et absorbé par les substrats.

Nous avons dérivé plusieurs expressions asymptotiques approximatives simples pour
le courant thermique, valables dans différentes plages paramétriques de distance de sépa-
ration entre les couches et de température. Nous avons quantifié le degré d’amélioration
qui peut être atteint dans le champ proche par rapport au champ lointain et aux résultats
du corps noir. En accord avec les travaux antérieurs, nous constatons qu’à des sépara-
tions suffisamment petites, le transfert de chaleur radiatif peut, de manière réaliste, être
∼ 104 fois celui des corps noirs. En comparant nos expressions avec les données expéri-
mentales disponibles, nous avons vu qu’elles donnent des estimations valides de l’ordre
de grandeur du courant thermique et qu’elles capturent correctement sa dépendance à la
distance et à la température. Un meilleur accord avec les résultats expérimentaux peut
être obtenu par une modélisation plus détaillée de la géométrie de chaque système et de
la réponse diélectrique, ce qui est fortement spécifique au système et dépasse le cadre de
notre travail. Néanmoins, nos résultats approximatifs offrent un aperçu utile des princi-
paux mécanismes physiques responsables du transfert de chaleur.

Nous avons constaté que la limite de Coulomb est valable pour les mauvais métaux
jusqu’à et même au-delà de la longueur d’onde thermique, tandis que pour les bons mé-
taux, l’interaction de Coulomb ne devrait dominer que pour des séparations irréalisable-
ment petites. En nous concentrant donc sur les mauvais métaux, nous sommes motivés
pour profiter des simplifications de la limite de Coulomb pour étudier un modèle plus
riche pour la réponse du matériau. En particulier, nous sommes motivés pour étudier
l’effet de la non-localité dans la réponse du matériau, qui devrait jouer un rôle à des
séparations extrêmement petites où le modèle local de Drude peut échouer. Cette non-
localité, qui se manifeste par une dispersion spatiale de la conductivité, est étudiée dans le
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chapitre suivant, où non seulement nous révélons quantitativement les limites de validité
du modèle local de Drude, mais où nous identifions également les régions de l’espace des
paramètres où le canal de transfert de chaleur dominant est fourni par les plasmons de
surface.
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Chapter 3. Role of disorder in plasmon-assisted near-field heat transfer between
two-dimensional metals

3.1 Radiative heat transfer in the Coulomb limit

Having clarified in the previous chapter the role of retardation in the electromagnetic in-
teraction, we here focus on the case where it is unimportant: the Coulomb limit, where
only the electrostatic contribution to the interaction is retained. Valid at sufficiently
small distances, many studies of the radiative heat transfer have been carried out in
the Coulomb limit. In particular, in several works dedicated to different materials in
the near-field regime, the important role played by collective plasmon excitations has
been pointed out [Rousseau09a, Svetovoy12, Ilic12, Rodriguez-López15, Yu17, Jiang17,
Zhao17, Zhang19, Wang19]. However, Ref. [Mahan17] concluded that surface plasmons
were unimportant for the heat transfer between two bulk semi-infinite metals, and in
Ref. [Kamenev18] no plasmon contribution was reported for heat current between two
thin metallic layers in the clean and diffusive limits. Here we revisit the problem of ra-
diative heat transfer between two thin parallel metallic sheets in the Coulomb limit, and
establish definitively the role of surface plasmons. Building on previous investigations
including the effects of spatial dispersion [Chapuis08c], we employ a nonlocal model
for the material response function which interpolates between clean and diffuse levels of
disorder in the material.

3.1.1 Caroli formula

For radiative heat transfer between parallel two-dimensional layers, the Coulomb limit
corresponds to taking the limit c → ∞ in the general equation Eq. (2.8). Regarding
Eq. (2.8) and the way in which c enters into the emmissitivities in Eqs. (2.9b), (2.9d),
we see that the heat current in the Coulomb limit is equivalent to retaining only the TM
evanescent contribution from the full retarded calculation. Eq. (2.8) for the heat current
per unit area then reduces to the well known formula [Yu17, Jiang17, Zhang18, Wang18,
Kamenev18]:

J(T1,T2) =
∫

∞

0

dω

π

∫ d2k
(2π)2 h̄ω [N2(ω)−N1(ω)]T (k,ω), (3.1)

T (k,ω) = 2 |V12(k,ω)|2 ImΠ1(k,ω) ImΠ2(k,ω), (3.2)

often called the Caroli formula, in analogy to a similar expression for electron current
across a tunnel junction [Caroli71]. In Eq. (3.1),N1,2(ω) = 1/[exp(h̄ω/T1,2)−1] are the
Bose distribution functions in the two layers. In Eq. (3.2),

V12(k,ω) =
vke−qd

(1− vkΠ1)(1− vkΠ2)− v2
kΠ1Π2e−2kd (3.3)

is the Coulomb interaction between the layers, screened in the random-phase approxi-
mation (RPA), with vk = 2πe2/k being the bare 2D Coulomb potential and e < 0 the
electron charge. Finally, Π1(k,ω) and Π2(k,ω) are the susceptibilities determining the
linear response δρi(r, t) = Πi(k,ω)eϕk,ω eikr−iωt of the 2D electron density ρi in the cor-
responding layer i = 1,2 to a perturbing electrostatic potential ϕk,ω eikr−iωt applied to that
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layer. As discussed in Sec. 1.2.1, the density response function is related to the in-plane
longitudinal optical conductivity, σ(k,ω) = (iω/k2)e2Π(k,ω), where the k-dependence
represents the spatial dispersion that was not taken into account in Ch. 2 where we used
the simple Drude model, Eq. (2.1). As we have seen here, Eq. (3.1) can be derived from
the Coulomb limit of fluctuational dynamics. In Appendix C we also derive it from non-
equilibrium Green’s function formalism, hence providing a microscopic justification for
the phenomenological fluctuational electrodynamics.

3.1.2 Model: 2D electron gas with impurity scattering

The density response functions encode all material characteristics of the two layers. We
model each layer as a degenerate isotropic 2D electron gas with short-range impurities.
Such a system can be characterised by three parameters: (i) ν , the electronic density
of states per unit area at the Fermi level including both spin projections, whose energy
dependence is neglected; (ii) vF , the Fermi velocity; and (iii) τ , the elastic scattering
time. The Fermi momentum pF is assumed to be the largest momentum scale, pF/h̄�
k, ω/vF , T/(h̄vF), 1/(vFτ). This assumption is economical in view of making analytical
progress, and sufficient since we will always consider temperatures much lower than the
Fermi energy – going to higher temperatures would require use of the more complicated
Lindhard functions [Mihaila11, Stern67]). Under these assumptions, the density response
function of each layer is temperature-independent and given by [Zala01]

Π(k,ω) =−ν

[
1+

iωτ√
(1− iωτ)2 +(vFkτ)2−1

]
, (3.4)

for an arbitrary relation between ω , vFk, and τ . Equation (3.4) interpolates between two
well-known expressions corresponding to the clean limit (τ → ∞) and the diffusive limit
(ω,vFk� 1/τ):

Π(k,ω) =−ν

[
1+

iω√
(vFk)2−ω2

]
(clean), (3.5a)

Π(k,ω) =− νDk2

Dk2− iω
(diffusive), (3.5b)

where D = v2
Fτ/2 is the diffusion coefficient. Equation (3.4) corresponds to a 2D analog

of Mermin’s prescription [Mermin70], which was recently used to model the response
in monolayer graphene [Jablan09, Svetovoy12]. In Appendix D we give a derivation of
Eq. (3.4) based on the Boltzmann equation for electrons scattering on impurities. Equa-
tion (3.4) may also be found by resummation of Feynman diagrams for impurity scattering
[Bruus04]. In spite of several assumptions underlying Eq. (3.4), its simplicity enables one
to obtain an important insight into the interplay between the spatial dispersion [that is, the
k dependence of the conductivity σ(k,ω)] and the impurity scattering. For simplicity we
also assume the two metals to be identical.

The three independent material parameters, introduced above, define two important
length scales: (i) the 2D screening length 1/κ = (2πe2ν)−1, and (ii) the mean free path
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`= vFτ . Typically, the screening length is very short, so we assume κ`� 1 and κd� 1.
The mean free path can vary from several nanometers to several microns, and may be
larger or smaller than the separation d between the two layers.

3.1.3 Asymptotic expressions for limiting cases

In the isotropic model, formulated above, Eq. (3.1) represents a two-dimensional inte-
gral over k and ω . This integral can be rather straightforwardly evaluated numerically,
but much better insight into relevant physics is obtained by studying different asymp-
totics of the integral in various parameter regimes. The latter approach was adopted in
Ref. [Kamenev18] using the two limiting expressions (3.5a) and (3.5b). It turns out, how-
ever, that these expressions miss the plasmon contribution.

Figure 3.1: A schematic picture showing the behaviour of T (k,ω) [Eq. (3.2)] in the (k,ω)
plane for d � `. For k� 1/d (to the right of the hatched area), T (k,ω) is suppressed
by the factor e−kd . In the hatched area, T (k,ω) is well approximated by the clean limit
expression (3.5a), while the shaded area k`� 1, ωτ � 1 corresponds to the diffusive
limit (3.5b). In the white region above the shaded and hatched areas (ω� 1/τ , ω > vFk)
the integrand is small except, maybe, in the vicinity of the symmetric and antisymmetric
plasmon dispersions (upper and lower solid lines, respectively) where |V12|2 is peaked.

We show schematically the behaviour of of T (k,ω) [Eq. (3.2)] in the (k,ω) plane for
d� ` in Fig. 3.1. At large ω & max{T1,T2}/h̄, the integrand in Eq. (3.1) is suppressed
by the Bose function at ω , and this cutoff may be positioned anywhere in Fig. 3.1, de-
pending on the temperatures. At large k & 1/d, the integrand is suppressed by e−kd in the
numerator of Eq. (3.3); Fig. 3.1 corresponds to the case d� `, but for larger d the spatial
cutoff may shift to the diffusive shaded area.

The strongly coupled plasmon modes (in the case of identical layers, symmetric and
antisymmetric, denoted by “±”) manifest themselves as poles of V12(k,ω). In the clean
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limit, τ → ∞, the plasmon frequencies are real and given by (for k� κ)

ω± = vF

√
κk

1± e−kd

2
. (3.6)

At finite τ , but such that ω±τ� 1, the poles acquire a small imaginary part, so |V12(k,ω)|2
is peaked around the dispersions (3.6). At ω±τ . 1, when the diffusive expression (3.5b)
applies, the plasmons are overdamped and do not produce a separate contribution to the
integral. In the strictly clean limit, τ → ∞, their contribution vanishes as well, since
for ω > vFk the integrand vanishes because ImΠ(k,ω > vFk) = 0. In Refs. [Mahan17,
Kamenev18], the authors focussed on the clean and diffusive limits and therefore missed
the plasmon contribution.

For temperature-independent Π(k,ω), Eq. (3.1) naturally splits into the difference
J(T1,T2) = J(T2)− J(T1). A detailed analysis of different asymptotic regimes for the
integral in Eq. (3.1) (given in App. A.4) results in several asymptotic expressions for
J(T ):

Jlc(T ) =
π2

60
T 4

h̄3v2
F(κd)2

ln
vF

T d
, (3.7a)

Jhc(T ) =
π2

900
vF

d3
T

(κd)2 , (3.7b)

Jlp(T ) =
ζ (3)
4π

T 3

h̄2Dκd
, (3.7c)

Jhp(T ) =
T

16πτd2 L(`
2
κ/4d), (3.7d)

Jld(T ) =
ζ (3)
8π

T 3

h̄2Dκd
, (3.7e)

Jhd(T ) =
1

16π

Dκ

d3 T. (3.7f)

In the labels “l" and “h” denote low and high temperature, while “c", “p", and “d” stand
for clean, plasmonic, and diffusive, respectively. Here ζ (x) is the Riemann zeta function,
and L(x) is a slow logarithmic function defined in Eq. (A.37). For moderate values of
ln(`2κ/4d)< 10, it can be approximated with 10% precision as

L(x)≈ 4ln3 x
1+(lnx)/ ln(1+ lnx)

. (3.8)

Figure 3.2 schematically shows the domains of validity for expressions (3.7) in the (1/d,T )
plane. The clean and diffusive regimes were also identified in Ref. [Kamenev18].

Each of the above regimes is characterised by typical scales of k and ω , which are
found to dominate the integral in Eq. (3.1) – see App. A.4. Namely, k∼ 1/d in the all high
temperature cases, T/(h̄vF

√
κd) in the low temperature plasmonic case and

√
T/(h̄Dκd)

in the low temperature diffusive case. In the low temperature clean case, the momentum
integral is logarithmic, determined by the whole interval T/(h̄vF) < k < 1/d. In order
for the results to be valid for some real sample with a finite in-plane size, this size should
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be much larger than the corresponding convergence scale 1/k specified here. The con-
vergence scale of the frequency integral is ω ∼ T/h̄ in all low temperature cases, while
in the high temperature cases it is vF

√
κ/d in the plasmonic case, Dκ/d in the diffusive

case, and vF/d in the clean case. In all three high-temperature regions, one can approxi-
mate the Bose distribution as N (ω)≈ T/(h̄ω), so the density fluctuations can be treated
classically and the resulting J(T ) ∝ T .

𝑦≡𝑇/(𝜅𝑣	)

𝑥≡1/(𝜅𝑑)

𝜂

𝜂 𝜂½ 𝜂⅓ 1

1

𝑦~√𝑥

𝑦~𝑥²/√𝜂

𝑦~𝜂/𝑥

𝑦~𝑥

𝑦~𝑥/𝜂

F

hc
hp

ld

hd
lc

lp

𝜂²

Figure 3.2: The regions in which clean (blue), plasmonic (grey) and diffusive (red), con-
tributions are dominant in the heat current and the domains of validity for asymptotic
expressions (3.7) in the parameter plane (1/d,T ), shown in the dimensionless variables
x≡ 1/(κd), y≡ T/(h̄κvF). The boundaries between the regimes are governed by a single
dimensionless material parameter η = 1/(κ`)� 1.

3.2 Discussion of the results

3.2.1 Roles of coupled surface plasmons and spatial dispersion

As shown in Fig. 3.2, plasmon contributions dominate in a parametrically wide region
of the parameter space. Crucially, this behaviour is captured by neither of the limiting
expressions (3.5a) nor (3.5b), but by the leading term of the small k expansion of the
full expression (3.4). This is equivalent to using the Drude expression for the optical
conductivity, σ(ω) = e2νD/(1− iωτ), that is, neglecting the spatial dispersion. We note
that our modelling does contain finite Landau damping of the plasmons via excitation of
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electron hole pairs. However, due to the large plasmon velocity this damping only occurs
to extremely high energy plasmons that lie above the thermal cut-off and therefore do not
play an important role in the heat transfer. We find that the spatial dispersion can also be
neglected to describe the diffusive contribution, where once again the Drude expression
for the conductivity is sufficient – the details may be found in App. A.4. This is why the
contributions given by Eqs. (3.7c)–(3.7f) could be used in the previous chapter for the
TM evanescent contribution to the full retarded calculation, in Eqs. (2.12a)–(2.12d).

Here, in the Coulomb limit, we find that the spatial dispersion becomes important only
in the clean region where J(T ) is dominated by the hatched area in Fig. 3.1. Observing
the relevant regions in Fig. 3.2, we see that the spatial dispersion may be safely neglected
at all temperatures for d�

√
a2D`, where a2D = 1/κ is the 2D electron screening radius,

and down to even smaller separations at low temperature. For sufficiently large separa-
tions, the dominant heat transfer behaviour is described by a Drude model for the layer
conductivity, as quoted in Sec. 2.1.1. One may ask how the length scale determining the
importance of spatial dispersion discussed here compares with that of the validity of the
Coulomb limit discussed in Ch. 2, which is λ̄ T/G1/3 for the poor metals that may cor-
respond to the two-dimensional materials addressed in this investigation. The former is
expected to be significantly smaller than the latter hence ensuring the compatibility of
the two conclusions on the thresholds of the Coulomb limit and spatial dispersion. This
may be verified explicitly by taking, for example, the parameters of the experiment on
graphene monolayers in Ref. [Yang18].

In the literature on near-field radiative heat transfer, there has been a debate about the
separation dependence as bodies are brought vanishingly close to one and other [Pan00,
Mulet01a]. While local models predict a divergence of the heat current at small distances
(for example, Ref. [Polder71]), it has been shown numerically that spatial dispersion in
the conductivity leads to a more physical saturation at d → 0 [Chapuis08c]. In all of
our final expressions, including those relevant at the smallest separations Jld and Jlc, we
have assumed d� 1/κ . However, by relaxing this assumption Ref. [Kamenev18] showed
analytically that these contributions do indeed saturate as d→ 0.

3.2.2 Generality of the results

The above results were derived for a specific model of a 2D metal, described in Sec. 3.1.2.
We now discuss how sensitive these results are to the details of the model.

Expressions (3.7) were obtained for two identical metallic layers. If they are different,
but the material parameters ν ,vF and τ are of the same order, our expressions are still valid
as order-of-magnitude estimates. In particular, this applies to the plasmon contribution:
the plasmons remain strongly hybridised even when the bare plasmonic dispersions of
each layer do not match exactly. The case when the two materials are strongly different,
is beyond the scope of this work.

One assumption used in the derivation of Eq. (3.4) is that the electron scattering is
dominated by short-range impurities. If it is relaxed, Eq. (3.4) is not valid quantitatively
(see Appendix D). Note, however, that in the clean regimes (lc, hc), the result is not sensi-
tive to the electron scattering at all, so expressions (3.7a) and (3.7b) remain quantitatively
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valid. In the other four regimes (ld, hd, lp, hp, and crossovers between them) it is suf-
ficient to use only the local Drude conductivity σ(ω), which is very general. Thus, all
information about the electron scattering, needed to describe these regimes, is encoded
in the momentum relaxation time τ , and expressions (3.7c)–(3.7f) remain valid for any
disorder (weak enough, not to induce Anderson localisation effects).

If the electron momentum relaxation is due to some inelastic scattering mechanism
(such as electron-phonon), the relaxation time acquires a temperature dependence. Then,
the screened Coulomb interaction depends on both temperatures through the respective
polarisation operators, so the heat current can no longer be written as J(T1,T2) = J(T2)−
J(T1). Even if the layers are made of the same material, when kept at different tem-
peratures, they should be treated as different because their inelastic scattering times are
different. If the two temperatures are of the same order, our expressions can still be used
as order-of-magnitude estimates; the situation when they are strongly different is beyond
the scope of this work.

Another strong assumption behind Eq. (3.4) is the strictly 2D character of the electron
motion, valid for atomically thin materials. For a metallic slab whose thickness h exceeds
a few Fermi wavelengths, several electronic transverse modes contribute to the density
response, making Eq. (3.4) invalid even in the clean limit. However, in electrodynamics,
the conditions for a material slab to be described as an infinitely thin layer with some
density response function Π(k,ω), are much weaker. Namely, (i) the normal component
of the electric field should not penetrate inside the slab, since the description in terms
of a 2D density response function implies that the electrons respond only to the in-plane
component, and (ii) the in-plane component should be approximately constant over the
slab thickness. Condition (i) is usually satisfied in conventional metals at frequencies be-
low the bulk plasma frequency ωp (typically, several eV), when the normal electric field
component is screened on the length scale of the bulk screening radius (typically, on the
atomic scale). Condition (ii) requires the layer thickness h to be smaller compared to both
1/k and the skin depth δ (ω) in the corresponding regime of the skin effect [Lifshitz81].
The relevant values of k and ω are determined by the convergence scales of the corre-
sponding integrals [as specified after Eqs. (3.7)]. Note that in all cases the 2D response
function must satisfy Π(k� 1/h,ω = 0) = −ν , where ν = ν3Dh is determined by the
bulk density of states per unit volume, ν3D. This defines κ = 2πe2ν , as before.

3.2.3 Numerical verification of analytical expressions

As discussed in Sec. 2.3, there are fairly few experiments on near-field heat transfer in
the parallel plate geometry, and those that do exist are typically close to the crossover
where retardation may play a role and so their analysis was included in the previous
chapter. In order to illustrate the various behaviours and crossovers indicated in Fig. 3.2
in the Coulomb limit, and to verify our asymptotic expressions (3.7), we therefore evaluate
numerically the integral in Eq. (3.1) using the full response function (3.4).

To describe clean and plasmonic regimes, we take parameters typical for doped graphene.
If the temperature is well below the Fermi energy EF (counted from the Dirac point) the
electrons in graphene can be viewed as a conventional 2D electron gas with the density
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of states per unit area ν = 2|EF |/(π h̄2v2
F), including the valley and spin degeneracies. In

Fig. 3.3, we plot J(T ) taking vF = 106 ms−1 [Yang18] for two sets of parameters corre-
sponding to 1/(κd)≈ η1/3 = 0.034, and 1/(κd)≈ η1/2 [we remind that η ≡ 1/(κ`)].

To study the diffusive crossover for realistic materials, we introduce dielectric screen-
ing. Equation (3.3), written for metallic layers surrounded by vacuum, can be generalised
to the situation when the layers are embedded in a dielectric medium. This generalisa-
tion is particularly simple when the medium is characterised by a uniaxially anisotropic
dielectric constant, ε‖ in the plane parallel to the layers, and ε⊥ along the z direction,
perpendicular to the layers. The solution of the Poisson equation in such a medium gives
the 2D Coulomb potential at a distance z from a charged layer:

vk(z) =
2πe2

√
ε‖ε⊥ k

e−
√

ε‖/ε⊥ k|z|. (3.9)

Thus, in all expressions (3.7) it is sufficient to rescale

κ → κ
√

ε‖ε⊥
, d→

√
ε‖/ε⊥ d. (3.10)

In Fig. 3.4 we show the crossover between low- and high-temperature diffusive asymp-
totics (3.7e) and (3.7f) for two hole-doped tungsten diselenide monolayers embedded in
boron nitride. The valence band of WSe2 is parabolic with the hole effective mass mh

being about half of the free electron mass. The spin degeneracy is lifted by a strong spin-
orbit coupling, so only valley degeneracy remains, and the density of states per unit area
is ν = mh/(h̄2

π). We take EF = 50 meV and a very short ` = 2 nm, still consistent with
κ`� 1, pF`/h̄� 1. The taken separation d = 100 nm corresponds to 1/(κd) = 0.006,
well below η2 = 0.1, and hence to the diffusive region.

We are not showing the high-temperature clean and plasmonic regimes; for realistic
material parameters, they correspond to temperatures so high that the assumptions behind
our model (degenerate Fermi gas, near-field Coulomb regime) are no longer valid. How-
ever, we checked numerically the validity of the asymptotic expressions (3.7b) and (3.7d)
for Jhc(T ) and Jhp(T ).

3.3 On the possibility of an effective circuit description
for two-dimensional metals

Often, complicated structures can be described in terms of effective electric circuits made
of lumped elements (capacitors, inductors, and resistors) [Pekola21]. In this approach,
all details of the structure’s geometry are hidden inside the effective circuit parameters,
resulting in a much simpler description (provided that such reduction is valid). As dis-
cussed in Sec. 1.3.1, the theory of heat transfer in electric circuits was developed in
Ref. [Pascal11]. In the circuit analog of the fluctuational electrodynamics, dissipative cir-
cuit elements represent thermal baths and provide thermal voltage fluctuations (Johnson-
Nyquist noise), while reactive elements mediate the electromagnetic interactions, result-
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Figure 3.3: Power per unit area as a function of temperature, J(T ), for ν =
0.29 eV−1nm−2, vF = 106 m/s, and ` = 10 µm, d = 10 nm (upper panel), ` = 1 µm,
d = 20 nm (lower panel), characteristic of two graphene monolayers with Fermi energy
EF = 0.2 eV, suspended in vacuum (the 2D screening length κ−1 = 0.4 nm, the Fermi
momentum pF/h̄ = 0.3 nm−1). The black crosses show numerical results, while the red,
black and blue solid lines represent Eqs. (3.7e), (3.7c) and (3.7a), respectively.
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Figure 3.4: Power per unit area as a function of temperature, J(T ), for ν = 2.1eV−1nm−2,
vF = 0.94×105 m/s, and ` = 2 µm, d = 100 nm, characteristic of two WSe2 monolayers
with Fermi energy EF = 50meV, embedded in boron nitride with ε‖= 7, ε⊥= 5 [Geick66]
(the 2D screening length κ−1 = 0.3 nm, the Fermi momentum pF/h̄ = 1.6 nm−1). The
black crosses show the numerical integration results, while the solid and dashed red lines
represent expressions (3.7e) and (3.7f), respectively.

ing in energy exchange between the baths. We check now whether such a circuit approach
can be applied to the heat transfer between two metallic layers.

Let us focus on the diffusive regime. As we have seen, the dynamics of density exci-
tations is overdamped in this regime, so it is natural to consider a circuit made of resistors
and capacitors only, such as shown in Fig. 3.5 (a). Indeed, the electronic excitations in
each layer constitute a dissipative bath analogous to a resistor. To mimic charge oscil-
lations within each layer, the resistor should be shunted by a capacitor. The Coulomb
interaction between the layers resembles that between the plates of a capacitor, so the two
RC contours are connected by two coupling capacitors Cc.

For the circuit in Fig. 3.5 (a), the power transferred from resistor R2 to resistor R1 is
given by [Pascal11]

P(T1,T2) =
∫

∞

0

dω

π
h̄ω [N2(ω)−N1(ω)]T (ω), (3.11)

T (ω) =
2 ReZ1(ω) ReZ2(ω)

|Z1(ω)+Z2(ω)−2/(iωCc)|2
, (3.12)

where Z1,2(ω) = (1/R1,2− iωC1,2)
−1 is the impedance of each RC contour. As for the

layers, for simplicity we assume the two subsystems to be identical: R1 = R2 = R, C1 =

C2 =C. Writing the transmission as

T (ω) =
ω2(RCc)

2

2[1+ω2(RC)2][1+ω2R2(C+Cc)2]
, (3.13)
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Figure 3.5: Circuit representation of two parallel metallic layers. (a) The elementary RC
circuit whose heat transfer is governed by the transmission coefficient given in Eq. (3.12).
(b) The infinite 2D system represented as a tiling of the elementary circuits, each one
corresponding to a region of size L.

we obtain the following asymptotic expressions for the transferred power P(T1,T2) =

P(T2)−P(T1):

P(T ) =
π3

30
(RCc)

2 T 4

h̄3 , T/h̄� 1
R(C+Cc)

. (3.14a)

P(T ) =
π

12
T 2

h̄
,

1
R(C+Cc)

� T/h̄� 1
RC

, (3.14b)

P(T ) =
C2

c
4(C+Cc)(2C+Cc)

T
RC

, T/h̄� 1
RC

. (3.14c)

Differentiating the expression (3.14b) we note the appearance of the thermal conductance
quantum, ∂P(T )/∂T = πT/6h̄ ≡ GQ. This highlights the fact that the circuit model
represents a system with only one heat transfer channel (namely the zero wavevector
channel), which in this regime achieves the maximum thermal conductance [Pendry83];
in the high and low temperature regimes the thermal conductance is much smaller than
GQ because the transmission coefficient is small. This intermediate “universal” regime,
where the power depends only on the temperature, but not on the circuit, is present only
when C�Cc.

To relate results (3.14) to those of Sec. 3.1.3 for parallel layers, it is important to realise
that while Eqs. (3.14) give the full transferred power, Eqs. (3.7) give the power per unit
area. To make a meaningful comparison we must therefore invoke a length scale L, such
that the infinite sample can be divided into squares of size L. Then Eqs. (3.14) describe
the power transferred in each square, and the contributions of different squares can be
added up independently, as schematically shown in Fig. 3.5 (b). Thus, the relevant length
scale should be associated with the typical convergence scale of the k integral in Eq. (3.1).

In the diffusive regime, it is natural to associate the resistance R to the resistance per
square 1/σ2D of each metallic layer, R ∼ 1/σ2D = 2π/(κD). The coupling capacitance
is associated to the geometric capacitance between the two layers, Cc ∼ L2/d, where the
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in-plane length scale L & d must be invoked because the capacitance is proportional to
the area. The capacitance C should be associated to an intrinsic property of each layer,
so C ∼ L, the only intrinsic length scale of the layer. Recalling the convergence scales
of the k integral in Sec. A.4.2, we associate L ∼

√
h̄Dκd/T and L ∼ d in the low- and

high-temperature diffusive regimes, respectively. Then Eqs. (3.14a) and (3.14c) match
Eqs. (3.7e) and (3.7f) at low and high temperatures, respectively. Expression (3.14b) does
not correspond to any parametric region because at T/h̄� Dκ/d the two capacitances
become of the same order.

Thus, while the proposed effective RC circuit does capture the qualitative picture of the
heat transfer in the diffusive regime, one cannot completely disregard the 2D geometry of
the system. This geometry manifests itself in the appearance of the length scale L, which
must supplement the circuit picture in order to reproduce the temperature dependence of
the heat current. Moreover, this length scale is temperature-dependent, so one cannot
represent a given system by a given array of elementary circuits in the whole temperature
range. This strongly limits the usefulness of the circuit analogy for large 2D samples.

However, the situation is different for 2D samples whose lateral size is smaller than
the length scale L deduced above. Indeed, consider a rectangular sample with side lengths
Wx and Wy, such that d �Wx,Wy � L, which is only possible in the low-temperature
diffusive regime. Then integration over the continuum of diffusion modes labelled by k
in Eq. (3.1) should be replaced by a sum over discrete modes with kx = ±nπ/Wx and
ky = ±mπ/Wy, where n and m are integers. This sum is dominated by the first non-zero
modes kx = ±π/Wx, ky = 0 and kx = 0, ky = ±π/Wy, leading to the expression for the
total power

Pld(T ) =
1

15π

W 4
x +W 4

y

(Dκd)2
T 4

h̄3 . (3.15)

Once again associating the coupling capacitance to the the geometric capacitance between
the layers, Cc ∼WxWy/d, we find that the expression (3.15) matches the appropriate low-
temperature circuit expression (3.14a) if the resistance is given by

R =
1

π3

√√√√1
2

[(
1

σ2D

Wx

Wy

)2

+

(
1

σ2D

Wy

Wx

)2
]
, (3.16)

where the square root may be identified as the root mean square of the two directional
sample resistances. Contrary to the case of large samples, we therefore find that for small
samples (side lengths smaller than L ∼

√
h̄Dκd/T ), the heat transfer may be correctly

modelled by an effective circuit whose parameters are determined by the system size and
geometry. Taking as an estimate L∼ d, we obtain the typical scale L∼ h̄Dκd/T = Gλ̄ T ;
using the estimates for G in different structures given in Sec. 2.3 we find this distance to
well exceed 1 mm at T = 1 K.

This points to a more general result regarding the validity of modelling the heat trans-
fer in a physical system by heat transfer in an effective circuits. Essentially, if the size
of the physical system is smaller than the length scale of photons responsible for the
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heat transfer (i.e. the scale that determines the integral in the microscopic theory) then
a zero-dimensional effective circuit model is appropriate. However, the choice of circuit
elements in such a circuit must come from a prior knowledge of the dominant physical
mechanisms at play – for example, for weakly damped density excitations one would
also require inductors. This prior knowledge would be difficult to access without first
performing the microscopic calculation, somewhat limiting the circuit approach.

3.4 Summary and outlook

We have studied the problem of heat transfer between two thin parallel metallic layers,
mediated by the Coulomb interaction. Using a simple model for a 2D electron gas sub-
ject to scattering on short-range impurities, we described the crossover between clean
and diffusive limits and showed that strongly coupled surface plasmons dominate the heat
transfer in a parametrically wide region at sufficiently high temperatures, but their con-
tribution is suppressed in both the clean and diffusive limits. We also clarified the role
of the spatial dispersion of the optical conductivity, which turns out to be important only
in the clean limit. In all other regimes, the effect of disorder is correctly captured by the
relaxation time in the local Drude conductivity.

We have shown that in the diffusive limit, the heat transfer is quantitatively similar to
that in an effective RC circuit. However, for this analogy to be meaningful for large sheets,
one must specify a length scale. This length scale should correspond to the size of regions
where the transfer occurs independently. In other words, each region can be described by
a separate circuit, and contributions from different regions add up. This length scale must
be determined from the microscopic theory and turns out to be temperature-dependent.
This greatly limits the usefulness of the circuit analogy for large sheets, especially when
the two temperatures are strongly different. However, for sheets smaller than the length
scale discussed above, we find that an effective circuit picture may be used to calculate the
heat current, where the circuit parameters are determined by the system size and geometry.
The circuit description is therefore more useful for systems with small spatial dimensions.

We have seen from the details of our calculation that the average heat current may
be dominated by a surface plasmon channel. Although it is possible to test this in an ex-
periment by comparing the dependence on separation and temperature to our asymptotic
expressions, in reality this is a somewhat weak demonstration of the importance of plas-
mons since many of the expressions have similar dependences – crucially, the resonant
behaviour responsible for the heat transfer is not reflected in the final expressions for the
average. In the next chapter we study an observable where the resonant behaviour may be
more explicitly manifested: the fluctuations. In the surface plasmon regime we calculate
the fluctuation, or noise, spectrum of the heat current, in the hope of recovering resonant
signatures linked to plasmons that could be measured experimentally.
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Nous avons étudié le problème du transfert de chaleur entre deux fines couches mé-
talliques parallèles, médié par l’interaction de Coulomb. En utilisant un modèle simple
pour un gaz d’électrons 2D soumis à la diffusion sur des impuretés à courte portée, nous
avons décrit le passage entre les limites propre et diffusive et montré que les plasmons de
surface fortement couplés dominent le transfert de chaleur dans une région paramétrique-
ment large à des températures suffisamment élevées, mais que leur contribution disparait
dans les limites propre et diffusive. Nous avons également clarifié le rôle de la dispersion
spatiale de la conductivité optique, qui s’avère être importante uniquement dans la limite
propre. Dans tous les autres régimes, l’effet du désordre est correctement capturé par le
temps de relaxation dans la conductivité de Drude locale.

Nous avons montré que dans la limite diffusive, le transfert de chaleur est quantita-
tivement similaire à celui d’un circuit effectif RC. Cependant, pour que cette analogie soit
significative pour des grands échantillons, il faut spécifier une échelle de longueur. Cette
échelle de longueur doit correspondre à la taille des régions où le transfert se produit in-
dépendamment. En d’autres termes, chaque région peut être décrite par un circuit séparé,
et les contributions des différentes régions s’additionnent. Cette échelle de longueur doit
être déterminée à partir de la théorie microscopique et s’avère dépendre de la tempéra-
ture. Cela limite considérablement l’utilité de l’analogie du circuit pour les grands échan-
tillons, surtout lorsque les deux températures sont fortement différentes. Cependant, pour
des échantillons plus petits que l’échelle de longueur discutée ci-dessus, nous constatons
qu’une image d’un circuit effectif peut être utilisée pour calculer le courant thermique,
où les paramètres du circuit sont déterminés par la taille et la géométrie du système. La
description du circuit est donc plus utile pour les systèmes de petites dimensions spatiales.

Nous avons vu dans les détails de notre calcul que le courant thermique moyen peut
être dominé par un canal plasmonique. Bien qu’il soit possible de tester cela dans une
expérience en comparant la dépendance de la séparation et de la température à nos expres-
sions asymptotiques, il s’agit en réalité d’une démonstration un peu faible de l’importance
des plasmons puisque de nombreuses expressions ont des dépendances similaires – de
manière cruciale, le comportement résonant responsable du transfert de chaleur n’est pas
reflété dans les expressions finales pour le moyen. Dans le chapitre suivant, nous étu-
dions une observable où le comportement résonant peut se manifester plus explicitement
: les fluctuations. Dans le régime des plasmons de surface, nous tentons de calculer le
spectre de fluctuations, ou de bruit, du courant thermique, dans l’espoir de retrouver des
résonances liées aux plasmons qui pourraient être mesurées expérimentalement.
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4.1. Why study the noise spectrum?

4.1 Why study the noise spectrum?

For a more complete understanding of the behaviour of a physical quantity pertaining
to a system, one needs not only to study its average, but also its fluctuations, or noise.
These fluctuations about the average occur due to correlations in time and perhaps space
of the sources of the signal. It is well known that noise may contain additional physical
information about a particular system as compared to the average. For example, by study-
ing electric current noise, researchers have been able to probe the effects of interaction
on electron dynamics [Landauer98]. However, studying noise is in general more com-
plex than the average signal, and there are often many possible ways for the fluctuations
to be characterised. We introduce here some of the measures associated with studying
fluctuations and discuss what has been done so far on the topic of radiative heat current
noise.

We found in chapters 2 and 3 that the average radiative heat current exhibits many
different behaviours not predicted by Planckian theory. A few theoretical works have
started to confirm that the same is true of the fluctuations. A recent work conducted in the
framework of fluctuational electrodynamics studied the variance of the Poynting vector,
Sz, between semi-infinite bodies, given by [Biehs18]

σ
2
S = 〈S2

z 〉−〈Sz〉2, (4.1)

where the Poynting vector Sz is always taken at coinciding positions and times. The
variance therefore gives a measure of the magnitude of the fluctuations happening over
all frequency scales. They show that like the average heat current, the variance obtains a
separation dependence in the near field due to evanescent wave coupling. In Ref. [Herz20]
the authors also study the variance of the Poynting vector developing a general trace
formula for bodies of arbitrary shape. They apply their theory to heat transfer between
closely spaced dielectric nanoparticles where they are able to show analytically that the
separation dependence of the standard deviation (square root of the variance) is the same
as that of the average heat flux.

To go beyond the average and the variance of a quantity, one may study the low-
frequency fluctuations via the full counting statistics (FCS). In FCS, one constructs a
generating functional with a counting field, from which the moments of arbitrarily high
order may be found via differentiation. The FCS of photonic heat current between resis-
tors in a circuit model has been developed in Ref. [Golubev15], while in Ref. [Tang18] the
authors study the FCS of near-field radiative heat transfer between metals in the Coulomb
limit working in the framework of nonequilibrium Green’s functions. From the FCS they
are able to verify some important thermodynamic properties, e.g. that the probability of
backwards heat flow from the cold body to the hot body is exponentially suppressed with
respect to the forward heat flow [Tang18].

The variance and higher order moments discussed so far give information about mag-
nitude of fluctuations but do not say over which frequency or time scale they occur. This
scale determines whether the fluctuations are measurable for both technical and funda-
mental reasons. Technically, the measurement apparatus used in a heat current exper-
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iment has some finite time resolution – one can imagine a time series of measurements
with some minimum spacing between each measurements. If the fluctuations happen over
timescales shorter than the experimental resolution, the signal will appear smooth with the
noise averaged out.

On a more fundamental level, the timescale of heat current fluctuations is important
since it brings into question the physical definition of heat itself. Instead of measuring
the heat current directly like one would for, say, electrical current, the heat absorbed by
a body, dQ, is inferred from the measured change in its temperature, dT , via the relation
dQ = C dT , where C is the absorbing body’s heat capacity. While this correspondence
is clearly meaningful for the average heat, the situation is more subtle for the fluctua-
tions. Whether or not the thermodynamic quantity temperature may actually fluctuate,
and therefore be measured to give an accurate picture of heat current fluctuations, has
been debated [Landau80, Kittel88, Day97]. Imagine a system that is receiving energy
via a noisy incoming heat current. The system temperature is only well-defined on time
scales that are larger than the system’s local equilibration time, which is the time it takes
for particles to collide sufficiently in order to establish the equilibrium distribution func-
tion, e.g. Fermi-Dirac for electrons in a small but macroscopic region of the sample. For
time scales shorter than this time, the temperature is ill-defined and therefore finite fre-
quency fluctuations in the Joule losses may only be meaningful for frequencies slower
than the equilibration rate. Typically, this rate is slower than the thermal rate τ

−1
T = T/h̄,

so experiments tend to be limited to observing only the zero or low-frequency fluctuations.

A recent experiment measured the time dependent temperature of electrons in the
absorber (normal metal) of a nano-calirometer at low temperatures [Karimi20]. The elec-
trons receive a fluctuating heat current via coupling to a phonon bath. With an experi-
mental time resolution of 100 µs the authors show that under equilibrium conditions the
low-frequency electron temperature fluctuations obey a fluctuation dissipation theorem.
Regarding the electron equilibration time, the authors have a good separation of time
scales ensuring that the measured temperature fluctuations illustrate the incoming fluctu-
ating heat current.

Bearing in mind the importance of these timescales, equal time correlation func-
tions such as the variance are clearly not enough to fully understand the fluctuations. In
Ref. [Biehs18] the authors do evaluate numerically the time resolved correlation function
〈Sz(t)Sz(t ′)〉 indicating the timescale over which the fluctuations occur. For blackbody
radiation, the typical timescale is given by the thermal time τT = h̄/T which for room
temperature is very short; τT ≈ 25 fs at T = 300 K so the fluctuations appear as struc-
tureless white noise on practical timescales. On the other hand, they find that for SiC
bodies whose near-field heat exchange is dominated by surface phonon polaritons, the
heat current is temporally correlated over a much longer time. However, this interest-
ing fact which opens the possibility to observe a nontrivial structure of the noise was not
analysed in detail in Ref. [Biehs18]. Here we want to perform such a study and focus on
situations where the heat transfer is mediated by a narrow resonance in the transmission.

In our work, we study the fluctuation spectrum of the Joule losses, defined by the
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Fourier transform

S(K,Ω) =
∫

∞

−∞

d(t− t ′)eiΩ(t−t ′)
∫

d(r− r′)e−iK ·(r−r′)S(r− r′, t− t ′), (4.2)

where the space- and time-resolved symmetrised heat current correlator is given by

S(r− r′, t− t ′) =
1
2
〈{

J(r, t),J(r′, t ′)
}〉
−〈J(r, t)〉2, (4.3)

where J(r, t) gives the heat current absorbed (per unit area) by a macroscopic receiving
body that arrives at position r and time t – i.e. in general J(r, t)= j(r, t) ·E(r, t). For three-
dimensional semi-infinite bodies, J(r, t) is given by the divergence of the total Poynting
vector, while for two-dimensional layers it is equal to the jump in the normal component
of the Poynting vector at the absorbing layer. Notice that the correlation function Eq. (4.3)
depends only on coordinate and time differences since we assume a translationally invari-
ant system in a steady state. The variation of the corresponding spectrum Eq. (4.2) in
wavevector and frequency describes the relative significance of fluctuations on different
length and time scales.

Based on the discussion above regarding the manifestation of heat current by temper-
ature change, the spectrum Eq. (4.2) should be used only under certain conditions. For
heat exchange between metals at temperatures T1 and T2 with T2 > T1, we should have
Ω� 1/τeq.� T1/h̄ where τeq. is the local electron equilibration time. This inequality re-
flects the fact that heat current fluctuations are only detectable if they occur slowly enough
such that the temperature of the body is always well-defined – i.e. the temperature ‘reacts’
to the noisy incoming heat current.

In a realistic experiment, the electrons and phonons in the metal may interact not only
with each other but also with the substrate or leads. In the following we assume that
the phonons in the metal are in thermal equilibrium with the substrate, which itself is in
thermal equilibrium with the cryostat. The electrons on the other hand are perturbed by
the incoming radiation so they are not in thermal equilibrium with the phonons nor the
cryostat. We shall choose to focus on the case T2� T1, where the dominant contribution
to the fluctuations comes from the correlations of fluctuating sources in body 2, rather
than those in body 1. Then, the fluctuations of the incoming heat are strong enough not to
be drowned out by the internal energy fluctuations present in the receiving body.

We are particularly interested in studying noise where resonant modes are expected to
be important, since the resonant behaviour will likely leave a signature on the noise spec-
trum. Revealing these signatures in observable quantities should provide a route to exper-
imental demonstrations of the resonant modes themselves. We remind the reader that our
study in Ch. 3 showed that the average radiative heat current between two-dimensional
metallic layers in the Coulomb limit may be dominated by a surface plasmon channel over
a parametrically wide region. However, as mentioned in Sec. 3.4, the resonant behaviour
responsible is not easily identified empirically in the results for the average current – the
temperature and separation dependence of the final expression is not necessarily differ-
ent than for regimes dominated by continuum excitations – see expressions Jld and Jlp in
Eq. (3.7). We therefore study in Sec. 4.3 the noise spectrum of the type of (4.2) of the heat
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current in this physical system focusing on the low-temperature plasmon regime, in the
hope of revealing more explicit signatures of the resonant collective behaviour that would
be potentially measurable. We start, however, in Sec. 4.2 with a simpler example of a
zero-dimensional system represented by an effective circuit. As we will see, the general
structure of the expressions is quite analogous in the two cases, but the absence of spatial
variables makes the calculations simpler in the circuit model.

4.2 Heat current noise spectrum in a superconducting
resonator

A recent experiment measured the heat exchange between two small pieces of normal
metal held at different temperatures connected by superconducting leads interrupted by
SQUIDs (superconducting quantum interference device) [Meschke06]. The supercon-
ducting leads are ideal insulators against conventional electronic thermal conduction, and
the experiment was conducted at sub-Kelvin temperatures such that heat transport via
phonons is frozen out. The dominant channel for heat exchange between the metals is
therefore radiation via photons in the superconducting resonator. We stress that the pho-
tons here pass through the superconducting material, not vacuum, and therefore have
some material-dependent velocity. For the linear response of heat transfer to a temper-
ature gradient the authors of Ref. [Meschke06] confirm the apparition of the universal
thermal conductance quantum [Pendry83] for photonic heat transfer.

In the experiment described above, the metals are much smaller than the thermal
wavelength of photons in the resonator at the low temperatures used for the investi-
gation. Moreover, the physics of the system in Ref. [Meschke06] may be expected
to be dominated by the near field; indeed taking the overall system size L ∼ 50 µm
and the thermal wavelength of photons λ̄ T = 2.3 cm at T = 100 mK we have the ratio
L/λ̄ T = 2×10−3� 1. As discussed in Sec. 3.3, the experiment in Ref. [Meschke06] may
therefore be represented by an effective zero-dimensional electrical circuit comprised of
lumped elements [Pascal11]. For our calculation we choose the circuit in Fig. 4.1 (a). The
normal metals are represented by resistors held at different temperatures, and the super-
conducting resonator by an LC contour coupled to each resistor via mutual inductances.
The magnitudes of the mutual inductances play the role of the coupling constant.

The average radiative heat current in such circuits is fairly well understood (see, for
example Ref. [Pascal11]) and heat current fluctuations have begun to be addressed (for a
review see Ref. [Pekola21]) – the finite frequency heat current noise spectrum has even
been analysed in some circuits in thermal equilibrium [Karimi21]. However, the case of
an out-of-equilibrium circuit whose transmission has a resonance has not yet been studied.
A student performing a Masters internship under the co-supervision of D. M. Basko and
myself has recently solved this problem. In their internship report Ref. [Roubinowitz21]
the author has provided a quantum description of this circuit and has calculated the spec-
trum of heat current fluctuations. We present (without derivation) some of the results here,
focusing on the exposition of a resonant feature in the heat current noise, which is due to
the nature of the coupling being that of a harmonic oscillator. These results will help us
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understand the more complex two-dimensional structure studied in Sec. 4.3.

4.2.1 Heat current noise correlator

The circuit of Fig. 4.1 (a) is described as a collection of quantum harmonic oscillators.
The LC loop constitutes a single harmonic oscillator whose conjugate variables are the
charge stored by the capacitor and the magnetic flux threading the loop. The fundamental
frequency of the oscillator is given by ω0 = 1/

√
LC. Each resistor acts as a thermal bath

which may be described by a large ensemble of independent harmonic oscillators whose
eigenfrequencies form a continuous spectrum. The quantum mechanical circuit represen-
tation of a resistor is therefore a parallel chain of LC series, as shown in Fig. 4.1 (b) where
the current through the resistor a = 1,2 is denoted Ia and the continuum limit N → ∞

must be taken. Defining properly the operator Îa, we may verify that in the continuum
limit it indeed fluctuates according to the fluctuation dissipation theorem, yielding the so-
called Johnson-Nyquist noise. As discussed in Sec. 1.3.1, the Johnson-Nyquist noise is
the circuit analogue of the charge density fluctuations that drive radiative heat transfer in
macroscopic bodies.

Figure 4.1: (a) Effective circuit used to model two small pieces of metal exchanging
heat by radiation via a superconducting resonator. The pieces of metal may be repre-
sented simply by resistors, however here we denote them as general frequency dependent
impedances Z1,2(ω). (b) Circuit representation of an impedance as an ensemble of N LC
loops that allows a quantum mechanical description in terms of charge qk and current q̇k
in each loop characterised by capacitance ck and inductance lk.

We formalise what was written above, by writing the Langrangian for the full circuit
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of Fig. 4.1 (a):

L=
L
2

Q̇2− Q2

2C
+

+ ∑
a=1,2

N

∑
k=1

(
la,k
2

q̇2
a,k−

q2
a,k

2ca,k

)

+M2Q̇
N

∑
k=1

q̇2,k− M1Q̇
N

∑
k=1

q̇1,k, (4.4)

The first line corresponds to the LC loop, whose Lagrangian is that of a harmonic oscil-
lator where Q is the charge stored by the capacitor. The second line denotes the loops
containing the impedances Z1,2(ω), each of which may be thought of as a long chain of
LC loops connected in parallel, where in the Lagrangian la,k and ca,k are the inductance
and capacitance in the k-th loop of impedance Za, and qa,k is the charge stored at the
corresponding capacitor [see Fig. 4.1 (b)]. By computing the auto-correlation function
of the current through the impedances when decoupled from the rest of the circuit, it is
possible to show that the macroscopic impedance is related to the constituent inductances
and capacitances via

1
Za(ω)

=
N

∑
k=1

(
−iωla,k−

1
iωca,k

)−1

. (4.5)

In the continuum limit (N → ∞), Za(ω) becomes a smooth function of ω . Finally, the
third line in Eq. (4.4) represents the coupling of the loops containing the impedances
Z1,2(ω) with the central LC loop via mutual inductances. The inductive coupling is given
simply by the product of the currents in the coupled loops, where the sign of the cou-
pling constant Ma depends on the choice of convention for the directions of the different
currents in the circuit (the observable quantity will not depend on this arbitrary choice).
From the classical Lagrangian (4.4) we may write the expression for the heat dissipated
in impedance 1

P2→1 =
d
dt

N

∑
n=1

[
l1,k
2

q̇2
1,k +

q2
1,k

2c1,k

]
, (4.6)

= I1 M1
dILC

dt
, (4.7)

where we identify that the power dissipated in Z1 is given by the product of the cur-
rent through it, I1, and the electromotive force exerted on the loop, M1 dILC/dt [see
Fig. 4.1 (a)]. This expression for the dissipation in the impedance is analogous to J = j ·E
in a continuous medium. The Langrangian (4.4) is quadratic, i.e. we may write

L=
1
2
[
q̇T Lq̇−qT C−1q

]
, (4.8)

where q and q̇ are column vectors of length 2N + 1 and L and C are the corresponding
inductance and conductance matrices. Passing from the Lagrangian to the Hamiltonian
and performing the canonical quantisation leads to the desired representation of the circuit
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4.2. Heat current noise spectrum in a superconducting resonator

as a system of coupled quantum harmonic oscillators. The quantum mechanical operator
for the heat current in impedance Z1 is:

P̂2→1(t) =
1
2

{
Î1(t),M1

dÎLC(t)
dt

}
, (4.9)

where {.} is the anticommutator and the current operators are in the Heisenberg represen-
tation. They may be found by solving the appropriate Heisenberg equations of motion,
which take the form of quantum Langevin equations whose random forces are nothing but
the Johnson-Nyquist current noise associated with each resistor.

The moments of the power transferred may then be calculated by taking the average of
operators in the Heisenberg representation over the noninteracting density matrix, which
just takes the form of a tensor product of the uncoupled loops: ρ̂ = ρ̂1⊗ ρ̂LC⊗ ρ̂2, assum-
ing that the couplings M1,2 were turned on adiabatically in the remote past. The average
power transferred is found to be given by

〈P̂2→1(t)〉=
∫

∞

−∞

dω

2π
h̄ω
∣∣ŨR

12(ω)
∣∣2 Re

1
Z1(ω)

Re
1

Z2(ω)

[
coth

h̄ω

2T2
− coth

h̄ω

2T1

]
, (4.10)

where the result does not depend on time, as expected for the average in a steady state.
Here, we have introduced the notation

ŨR
ab(ω) =

iω3CMaMb

1−ω2LC− iω3C
[
M2

1/Z1(ω)+M2
2/Z2(ω)

] , (4.11)

in order to make connections to expressions in Sec. 4.3. Notice the similarity to the
Caroli formula for the average heat current between parallel layers, Eq. (3.1), where the
only difference is the additional integration over wavevector brought about by the spatial
dimension. The term here ŨR

12 describes the coupling between the two impedances via
the circuit, and is directly analogous to the RPA screened interaction term, Eq. (3.3), that
describes the coupling of the electrons in the metallic layers. As with the Caroli formula,
the heat transfer splits into two terms: P(T1,T2) =P(T2)−P(T1), where the resulting form
of P(T ) depends on the circuit parameters and the temperature.

The fluctuations in time of the power transferred to impedance 1 may be characterised
by the symmetrised correlator

S(t− t ′) =
1
2
〈{

P̂2→1(t), P̂2→1(t ′)
}〉
−
〈
P̂2→1(t)

〉2
, (4.12)

where the correlator depends only on the time difference since we assume to be in a steady
state. Plugging in the operators and performing the average leads to the following general
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expression

S(t− t ′) =− h̄2

4

∫
∞

−∞

dω

2π

∫
∞

−∞

dω ′

2π
e−i(ω+ω ′)(t−t ′)

×∑
a,b

(δ1a +
1
Z1

ŨR
1a

)
DK

IaIb

(
δb1 +ŨA

b1
1

Z∗1

)
︸ ︷︷ ︸

ω

ŨR
1aDK

IaIb
ŨA

b1︸ ︷︷ ︸
ω ′

+ŨR
1aDK

IaIb

(
δb1 +ŨA

b1
1

Z∗1

)
︸ ︷︷ ︸

ω

(
δ1a +

1
Z1

ŨR
1a

)
DK

IaIb
ŨA

b1︸ ︷︷ ︸
ω ′

+[DK
IaIb
→ DR−A

IaIb

]
,

(4.13)

where ŨA
ab = [ŨR

ba]
∗ and we have introduced the notations

DK
IaIb

(ω) =−iδab Re
2ω

Za(ω)
coth

h̄ω

2Tα

, (4.14a)

DR−A
IaIb

(ω) =−iδab Re
2ω

Za(ω)
, (4.14b)

which is once again for comparison with results in Sec. 4.3. For the spectrum of the
fluctuations, we seek the Fourier transform

S(Ω) =
∫

∞

−∞

d(t− t ′)eiΩ(t−t ′)S(t− t ′). (4.15)

We focus on the case where T2� T1, such that the dominant terms in the spectrum (4.13)
are those which contain the product of two hyperbolic cotangents both with arguments
involving T2. i.e. DK

I2I2
DK

I2I2
. Taking only these terms leads to a divergence that is saved

by taking also the corresponding term in DR−A
I2I2

DR−A
I2I2

, which according to Eqs. (4.14) con-
tributes the same but with 1 in place of the product of hyperbolic cotangents. As we
shall see in Sec. 4.3, DR−A represents a commutator, and therefore it is only non-zero in a
quantum mechanical calculation. We see then that in a classical electrodynamics calcula-
tion we would arrive at this unphysical divergence, and in order to correctly calculate the
heat current noise a quantum mechanical treatment is required. In this case of T2 � T1

where we take a = b = 2 we notice that the Kronecker delta functions in Eq. (4.13) do not
contribute, resulting in the expression

S(Ω) = h̄2
∫

∞

−∞

dω

2π

[
1+ coth

h̄ω

2T2
coth

h̄(Ω−ω)

2T2

]
ω (Ω−ω)

×Re
1

Z2(ω)
Re

1
Z2(Ω−ω)

∣∣ŨR
12(ω)ŨR

12(Ω−ω)
∣∣2

×

[
1

|Z1(ω)|2
+

1
Z1(ω)∗

1
Z1(Ω−ω)

]
. (4.16)
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4.2. Heat current noise spectrum in a superconducting resonator

From these general results Eqs. (4.10) and (4.16), it is possible to evaluate the integrals
revealing different regimes of behaviour for the average heat current and its fluctuations
according to the circuit parameters and the temperatures. In the following section we
focus on the case where the heat current is dominated by a resonance associated with the
LC loop fundamental frequency.

4.2.2 Resonant feature in the noise spectrum

We specify to the case where the impedances are replaced by simple resistors, i.e. Z1,2(ω)=

R1,2. In the expression for the average heat current (4.10), we notice the appearance of
the complicated factor |ŨR

12(ω)|2. We note that for sufficiently small M1,2, the function
|Ũ12(ω)|2 is highly peaked in the vicinity of ω = ω0 ≡ LC, corresponding to resonant
heat transfer via photons whose frequency matches the fundamental frequency of the LC
resonator, ω0. This resonant behaviour may be captured by approximating

∣∣Ũ12(ω)
∣∣2 as a

Lorentzian, and setting ω→ ω0 in all non-resonant factors. This leads to the contribution

Pres.(T ) =
h̄ω0

2π

γ1γ2

eh̄ω0/T −1

∫
∞

0

dω

(ω−ω0)
2 +
(

γ1+γ2
2

)2

=
γ1γ2

γ1 + γ2
T, (4.17)

where γa = ω2
0 M2

a/RaL is the damping rate associated with each resistance loop, and we
assume weak damping such that γ1,2 � ω0 which translates into the condition on the
mutual inductances M1,2 �

√
R1,2L/ω0. In the final expression we have expanded the

hyperbolic cotangent in Eq. (4.10) for T � h̄ω0, while for lower temperatures the contri-
bution is exponentially suppressed. It is found that the contribution (4.17) dominates over
other non-resonant contributions to the average heat current in the temperature window:
h̄ω0� T � h̄ω0(ω0/γ)1/3, where γ = γ1 + γ2.

For T2� T1 we regard the heat current spectrum in the regime described above where
resonant transfer dominates, i.e. h̄ω0� T2� h̄ω0(ω0/γ)1/3. In the expression (4.16) we
have once again the appearance of the resonant coupling terms. In particular, |ŨR

12(ω)|2
is highly peaked at ω = ±ω0 and |ŨR

12(Ω−ω)|2 is peaked at ω = Ω±ω0. The overlap
of these peaks results in resonant contributions to the heat current spectrum. Focusing
on the case where we have Ω� ω0 � T2/h̄, these contributions may be evaluated by
approximating the coupling terms as Lorentzians (just as for the average heat current) and
setting non-resonant terms to the centres of the Lorentzians. The resulting products of
Lorentzians may be integrated leading to the following contribution to the noise spectrum

Sres.(Ω) = 2
γ2

Ω2 + γ2
γ2

1 γ2
2

γ3 T 2
2 , (4.18)

where we see a Lorentzian resonant feature at Ω = 0 with width γ . There is also a
frequency-independent (structureless) background contribution to the heat current noise
spectrum, to which the resonant contribution (4.18) should be added. We notice that the
resonant contribution (4.18) may be written in terms of the average resonant heat current
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expression (4.17) as

Sres.(Ω) = 2h̄ω0 Pres.(T2)F s(Ω), (4.19)

where we have defined the Fano factor

F =
T2

h̄ω0

γ1γ2

γ2 � 1, (4.20)

and the dimensionless function encoding the structure of the noise

s(Ω) =
γ2

Ω2 + γ2 . (4.21)

We notice that for γ1 = γ2 we have s(Ω = 0) = 1 and Eq. (4.19) has the form of an energy
current shot noise. Shot noise is a well-known regime of behaviour for charge current
through a potential barrier, where for low frequency the noise is frequency independent
and given simply by twice the product of the average charge current and the magnitude of
the charge carriers, 2e〈I〉 [Blanter00]. Here in Eq. (4.19) we see the situation is analogous
since we have the product of the average energy current and the energy of photons, h̄ω0.
The additional large Fano factor enhances the noise with respect to shot noise, reflecting
bunching of the photons in the superconductor (as is typical for bosons). The physical
meaning of the final term in Eq. (4.21) is that the fluctuations of the heat current around its
average value – in other words, momentary overheating or overcooling events – dissolve
on a timescale 1/γ .

In an experimental setup like that of Ref. [Meschke06], revealing these signatures in
heat current noise behaviour may provide a way to confirm the significance of a resonant
photonic heat transfer channel. However, as we discussed previously the measurability
depends on many factors, most notably the time resolution of the experiment which should
be small compared to the width of the resonant feature. We shall see in the next section
that the situation for radiative heat current between two-dimensional metallic layers is
quite analogous, where the resonant behaviour is due to the emission and absorption of
surface plasmons.

4.3 Heat current noise spectrum for two-dimensional met-
als

In this section we study the heat current noise spectrum between two-dimensional metal-
lic layers in the Coulomb limit. As found in Ch. 3, in a particular parametric region the
main contribution to the radiative heat current comes from the emission and absorption
of antisymmetric surface plasmons – see Jlp in Fig. 3.2. We give a microscopic deriva-
tion of the radiative heat current fluctuations in the framework of nonequilibrium Green’s
functions. We include in the following Sec. 4.3.1 some details of the derivation before
discussion in Sec. 4.3.2 of the main result concerning a resonant feature in the spectrum
due to dominant surface plasmons.
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4.3. Heat current noise spectrum for two-dimensional metals

4.3.1 Heat current noise correlator

For the physical system of two galvanically isolated bodies held at different temperatures
T1 and T2, the Joule losses in body 1 given in electrodynamics by j ·E, where j is the
electric current and E is the electric field. We write it here in the Coulomb limit as the
operator (see App. C.1 for details)

Ĵ(r, t) =−
∫

dr′ ĵi(r, t)∇i
rV0(r− r′)ρ̂(r′, t), (4.22)

where the operators ĵi and ρ̂ are the particle current and particle density, respectively, and
V0(r− r′) is the bare Coulomb interaction with the electrical charge, e2, absorbed. The
position r resides in layer 1, while the integration variable r′ extends over the whole vol-
ume including both layers. The domain of integration represents the fact that dissipation
is caused in layer 1 due to fields produced by density fluctuations either in layer 2, or else-
where in layer 1 – the latter gives no contribution to the average heat current since each
subsystem is assumed to have a homogenous temperature (when averaged over time).

For the fluctuations, we are interested in the symmetrised heat current correlator

S(r,r′, t− t ′) =
1
2
〈{

Ĵ(r, t), Ĵ(r′, t ′)
}〉
−〈Ĵ(r, t)〉2, (4.23)

where {.} is the anticommutator and we have assumed a steady state so the correlator
depends only on the time difference. In the Keldysh formalism, the operators appearing
in Eq. (4.23) Ĵ(r, t) are in the Heisenberg picture including both intra- and inter-layer
Coulomb interactions, and the ensemble average 〈.〉 should be taken over the noninteract-
ing density matrix, which is built of a tensor product of the noninteracting hamiltonians,
ρ̂ = e−Ĥ1/T1⊗e−Ĥ2/T2 , since the interactions are assumed to be adiabatically switched on
in the remote past. To evaluate the correlator, we employ a generating functional approach
in the framework of nonequilibrium Green’s functions, where the resulting averages con-
tained in Eq. (4.23) may be found by functional differentiation. The procedure may be
found in App. C.4, which results in the following general expression for the fluctuations:

S(r,r′, t− t ′) =− h̄2

4

∞∫
−∞

dω

2π

∞∫
−∞

dω ′

2π
e−i(ω+ω ′)(t−t ′)

∫
dr1

∫
dr2∇

i
rV0(r− r1)∇

k
r′V0(r′− r2)

×
[
D̃K

ji jk(r,r
′,ω)D̃K

ρρ(r1,r2,ω
′)+ D̃R−A

ji jk (r,r′,ω)D̃R−A
ρρ (r1,r2,ω

′)

+ D̃K
ρ jk(r1,r′,ω)D̃K

jiρ(r,r2,ω
′)+ D̃R−A

ρ jk (r1,r′,ω)D̃R−A
jiρ (r,r2,ω

′)
]
,

(4.24)

where the spatial integrations are over the volumes of both layers and we have intro-
duced the retarded (R), advanced (A) and Keldysh (K) components of the contour ordered
Green’s functions (GFs). For two arbitrary operators A(r, t) and B(r, t) the GFs are con-
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structed in the time domain according to

DR
AB(r,r

′; t, t ′) =− i
h̄

θ(t− t ′)
[
〈A(r, t)B(r′, t ′)〉−〈B(r′, t ′)A(r, t)〉

]
, (4.25a)

DA
AB(r,r

′; t, t ′) =− i
h̄

θ(t ′− t)
[
〈B(r′, t ′)A(r, t)〉−〈A(r, t)B(r′, t ′)〉

]
, (4.25b)

DK
AB(r,r

′; t, t ′) =− i
h̄

[
〈A(r, t)B(r′, t ′)〉+ 〈B(r′, t ′)A(r, t)〉

]
, (4.25c)

and in Eq. (4.24) we have defined DR−A = DR−DA. From the above definitions we
see explicitly that DR−A is a commutator, and is therefore a strictly quantum object as
mentioned in the previous section. These components (4.25) may be collected into a
triangular matrix form

D =

 0 DA

DR DK

 , (4.26)

where in what follows the lack of a superscript implies a matrix. In a steady state the GFs
depend only on time difference, leading to the Fourier transform:

DAB(r,r′,ω) =
∫

∞

−∞

d(t− t ′)eiω(t−t ′)DAB(r,r′, t− t ′). (4.27)

On a final point of notation, we may have GFs with tilde like those appearing in Eq. (4.24),
and those without. D̃ are GFs dressed by Coulomb interactions, i.e. the Heisenberg evo-
lution of the operators is taken with the full interacting Hamiltonian. D are noninteracting
GFs, where the Heisenberg evolution is taken without any electron-electron interactions.
In the random phase approximation, the dressed density-density GF is given by the infinite
series

D̃ρρ = Dρρ +Dρρ

 0 V0

V0 0

Dρρ +Dρρ

 0 V0

V0 0

Dρρ

 0 V0

V0 0

Dρρ + . . . (4.28)

where integration over intermediate spatial variables is implied and DR
ρρ ≡ Π is the den-

sity response function already met in Sec. 3.1.2. Summation of the geometric series in
Eq. (4.28) is equivalent to Dyson’s equation for the dressed GF

D̃ρρ = Dρρ +Dρρσ1V0D̃ρρ , (4.29)

where σ1 is the first Pauli matrix that gives the correct matrix structure in this basis.
Similarly to Eq. (4.29), we may write an iterative equation for the screened Coulomb
interaction

VRPA =V0σ1 +V0σ1DρρVRPA, (4.30)

The retarded component of the above is what appeared in the Caroli formula for the
average heat current in Eq. (3.3). Inverting both equations (4.29) and (4.30) leads to
expressions for the components of the dressed GF D̃ρρ and screened interaction VRPA in
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terms of components of the noninteracting GF Dρρ and the bare interaction V0: 0 D̃A

D̃R D̃K

=

 0 DA(11−V0DA)−1

DR(11−V0DR)−1 (11−DRV0)
−1DK(11−V0DA)−1

 , (4.31)

V K
RPA V R

RPA

V A
RPA 0

=

(11−V0DR)−1V0DK(11−V0DA)−1 (11−V0DR)−1V0

(11−V0DA)−1V0 0

 , (4.32)

where integrations over intermediate spatial variables is always implied and 11 = δ (r−r′)
is the Dirac delta function playing the role of the unit operator in the coordinate space. We
seek an expression analogous to the Caroli formula for the average heat current, Eq. (3.1),
that gives the fluctuations in terms of the known objects. So it is useful to write the dressed
GF in terms of the screened interaction, i.e. combining Eqs. (4.29) and (4.30):

D̃ρρ = Dρρ +DρρVRPADρρ . (4.33)

The above equations (4.29)–(4.33) refer to the density-density GF, Dρρ , while the
other current-density, density-current and current-current GFs appearing in Eq. (4.24) are
related via the continuity equation,

−→
∇

i
r ji(r, t)+

∂ρ(r, t)
∂ t

= 0, (4.34)

which leads to the relations:

Dρρ(r,r′,ω) =
1

ω2
−→
∇

i
rD ji jk(r,r

′,ω)
←−
∇

k
r′, (4.35a)

D jiρ(r,r
′,ω) =− 1

iω
D ji jk(r,r

′,ω)
←−
∇

k
r′, (4.35b)

Dρ jk(r,r
′,ω) =

1
iω
−→
∇

i
rD ji jk(r,r

′,ω), (4.35c)

where the gradient operators
−→
∇ and

←−
∇ act in the direction of the arrow.

It is convenient to express the final expression Eq. (4.24) in terms of bare current-
current GFs and retarded and advanced components of the RPA screened interaction po-
tentials. The detailed manipulations are included in App. C.4, but here we sketch briefly
the procedure in words: Taking the first term of the first line of Eq. (4.24), we notice
that we may immediately write the gradients on the outside of the integral and replace
V0D̃K

ρρV0 = V R
RPADK

ρρV A
RPA via Dyson’s equations, Eqs. (4.31) and (4.32). We replace the

density-density GF by current-current GF via Eq. (4.35a), where the gradient operators
act on integration variables and so their direction may be flipped via integration by parts
to act on the newly introduced RPA screened interaction potentials. Finally D̃K

ji jk is found
via its own Dyson equation where we employ Eqs. (4.35) to write everything in terms
of current-current GFs. The second term in the first line of Eq. (4.24) is found by the
observation that D̃R−A obeys the same equations as D̃K , and the second line is approached
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in the same way as the first. Performing these manipulations as shown in App. C.4 we
obtain the following expression for the correlator

S(r,r′, t− t ′) =− h̄2

4

∫
∞

−∞

dω

2π

∫
∞

−∞

dω ′

2π
ei(ω+ω ′)(t−t ′)

×


(

11+
1

ω2 DRV R
∇

)
DK
(

11+
1

ω2V A
∇

DA
)

︸ ︷︷ ︸
r,r′,ω

1
ω ′2

V R
∇

DKV A
∇︸ ︷︷ ︸

r,r′,ω ′

+
1
ω

V R
∇

DK
(

11+
1

ω2V A
∇

DA
)

︸ ︷︷ ︸
r,r′,ω

(
11+

1
ω ′2

DRV R
∇

)
1

ω ′
DKV A

∇︸ ︷︷ ︸
r,r′,ω ′

+[DK → DR−A
]
,

(4.36)

where all GFs D are noninteracting current-current and tensors V∇ are RPA screened
interaction terms sandwiched by gradients acting on either side, which may be seen as
dipole-dipole interactions. Once again integration of intermediate spatial variables over
the whole volume is implied, while the coordinates r and r′ which appear as indicated
reside necessarily in body 1 due to the definition of the heat current operator, Eq. (4.22).
Due to the presence of Cartesian indices on the current-current GFs and the gradient
terms, the unit operator 11 now includes also the Kronecker delta in the Cartesian indices,
11 = δ (r− r′)δik.

As long as the Coulomb limit is justified, expression (4.36) is valid for bodies of
arbitrary shape, size and dimension – it may even be used if there are more than two
bodies. To specify to the case of two-dimensional parallel layers separated by a distance d,
the geometry is encoded in the bare GFs appearing in Eq. (4.36):

DR(A)
ji jl (r,r′,ω) =

∫ d2k
(2π)2 eik ·(r‖−r′‖) kikl

k4 ω
2

×
[
Π

(∗)
1 (k,ω)δ (z)δ (z′)+Π

(∗)
2 (k,ω)δ (z−d)δ (z′−d)

]
, (4.37a)

DK
ji jl(r,r

′,ω) =
∫ d2k

(2π)2 eik ·(r‖−r′‖) kikl

k4 ω
2(2i)

×
[

ImΠ1(k,ω)δ (z)δ (z′)coth
h̄ω

2T1
+ ImΠ2(k,ω)δ (z−d)δ (z′−d)coth

h̄ω

2T2

]
,

(4.37b)

where we used Eq. (4.35a) to go back to density-density GFs and the relation for bosons
in equilibrium that relates the Keldysh component to the occupation number. We also
used that DR

ρρ(k,ω) = Π(k,ω) and DA
ρρ(k,ω) = Π∗(k,ω). The Coulomb limit is re-

flected in Eqs. (4.37) since it assumes only longitudinal modes (j parallel to k) contribute
to Eq. (4.36). Going beyond the Coulomb limit, the inclusion of also the transverse con-
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ductivity would account for transverse electric (TE) modes representing magnetostatic
coupling as discussed in Ch. 2. According to Eqs. (4.37) the correlator now bears the
in-plane translational symmetry: S(r,r′, t− t ′) = S2D(r‖− r′‖, t− t ′)δ (z)δ (z′).

Just as we found for the average heat current in Sec. 3.1.3, the general equation for
the fluctuations Eq. (4.36) will lead to a range of different behaviours according to the
temperatures T1 and T2 and layer separation d. For T2 � T1, the dominant contribution
to Eq. (4.36) comes from taking only the term in coth h̄ω/2T2 in Eq. (4.37b). This corre-
sponds to considering only fields induced by charge fluctuations in layer 2. In this case
we notice that the terms 11 in Eq. (4.36) do not contribute since the Dirac delta functions
always have mismatched z coordinates (r and r′ reside on layer 1 while the integration
variables reside in layer 2).

Inserting Eqs. (4.37a) and (4.37b) for T2� T1 into Eq. (4.36) and taking the Fourier
transform in the form

S2D(K,Ω) =
∫

∞

−∞

d(t− t ′)eiΩ(t−t ′)
∫

d2(r‖− r′‖)e
−iK ·(r‖−r′‖)S(r‖− r′‖, t− t ′), (4.38)

leads to the spectrum
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, (4.39)

The two terms in square brackets arise from the two lines of Eq. (4.36), which themselves
may be traced back to the two lines of Eq. (4.24). The screened inter-layer interaction term
V R

12 is the same as in the calculation of the average heat current, and is given explicitly
in Eq. (3.3). We may notice the correspondence between Eqs. (4.36) and (4.39) for two-
dimensional layers and the analogous expressions for the heat current noise in a circuit
presented in the previous section, Eqs. (4.13) and (4.16). The only major difference is the
additional integration over wavevector in the case of the two-dimensional layers, while
the circuit model may be thought of as zero-dimensional.

4.3.2 Plasmon resonance feature in the noise spectrum

We see from Eq. (4.39) that there are many possible regimes of behaviour for the noise
spectrum, valid for different values of Ω and K according to the temperature T2 and the
material parameters encoded in Π1,2. We specify to the case where the two layers are
identical, i.e. Π1 = Π2. Rather than computing the full map of behaviour resulting from
Eq. (4.39), we focus on the regime where we know that the main radiative heat trans-
fer channel is emission and absorption of surface plasmons – in particular, in the low-
temperature regime Jlp of Fig. 3.2 where the antisymmetric plasmon gives the dominant
contribution. Here, as discussed in App. A.4.1, the screened interaction |V12|2 is highly
peaked in the vicinity of the antisymmetric surface plasmon dispersion, and the spatial
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dispersion in the conductivity does not play a role. In order to pick up the contribution,
the integrand was approximated as a Lorentzian centred at the linear plasmon dispersion,
ω = v−k, with v− = vF

√
κd/2 the antisymmetric plasmon speed [see Eq. (3.6)], and

width 1/τ .

Analogously, in the same region of validity 1/τ � T2/h̄� vF
√

κ/d, we may ap-
proximate the integrand in Eq. (4.39) as a product of two Lorentzians corresponding to
the two factors of |V12|2, whose centres are for ω > 0 at k = ω/v− and the solution of
|K−k|= (ω−Ω)/v−. For Ω, v−K� T2/h̄, we expand the k integral in plane polar co-
ordinates approximating |K−k| ≈ k−K cosφ and set all non-singular terms in k to the
centres of the Lorentzians. There is an identical contribution from ω < 0, leading to the
total expression

S2D(K,Ω) =− h̄2
τ4v−2(4+Ω2τ2)
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(4.40)

where we made the change of variables ϖ = v−k. We extend the lower limit of inte-
gration over ϖ to −∞ and integrate over the product of Lorentzians, resulting in another
Lorentzian in cosφ which may be integrated exactly. The remaining integral in ω is de-
termined by the temperature so according to T2/h̄� 1/τ we may neglect unity in the
denominator in the second line of Eq. (4.40) and since T2/h̄�Ω we approximate every-
where ω −Ω ≈ ω leading to an integral that may be done exactly, leading to the final
expression

S2D(K,Ω) =
3π3ζ (3)

64
Im

[
1√

(Ω− i/τ)2− (v−K)2

]
4+Ω2τ2

dσDCτ

T 4
2

h̄2 , (4.41)

where we observe immediately the resonant structure of the spectrum in the vicinity of
the antisymmetric plasmon dispersion, Ω = v−K, with a width 1/τ . The spectrum in
Eq. (4.41) is a function of the dimensionless variables X = v−τK and Y = Ωτ , and may
be written in terms of the expression for the average heat current in the low-temperature
plasmon regime given in Eq. (3.7c), resulting in

S2D(X ,Y ) = 2π
5Jlp(T2)T2 s2D(X ,Y ), (4.42)

where we introduced the dimensionless function containing the structure of the noise

s2D(X ,Y ) =
[
1+(Y/2)2] Im

 1√
(Y − i)2−X2

 , (4.43)
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In Eq. (4.42) we may once again make the connection to the famous shot noise [Blanter00],
as discussed in the previous section for heat current noise through a circuit. For Ω=K = 0
we have that s2D(0,0) = 1 and the heat current fluctuations are simply given as twice the
product of the average energy current and the average energy of carriers, given by tem-
perature. The large prefactor π5 indicates bunching of plasmons (bosons), as we found in
the case of photonic heat current in a zero-dimensional system in Sec. 4.2. However, here
there is no variable Fano factor like T2/(h̄ω0) in Eq. (4.20) since the frequency integral is
determined by ω ∼ T2/h̄.

Figure 4.2: Plasmonic noise spectrum resonant feature given by the dimensionless ex-
pression (4.43) in terms of the dimensionless parameters X = v−τK and Y = Ωτ . We
observe clearly a resonant feature at the antisymmetric plasmon dispersion Ω = v−K.
Inset: Indicates the dimensionless spectrum value s2D for fixed wavevector along the ver-
tical black line of the main plot as a function of frequency.

In Fig. 4.2 we plot the dimensionless function (4.43) indicating the resonant feature.
As shown, the noise spectrum varies by several orders of magnitude close to the plasmon
resonance, which may provide a clear experimental signature of surface plasmons’ con-
tribution to the radiative heat transfer. The width of the resonant feature is simply related
to the surface plasmon lifetime. This indicates that in order to detect the resonant peak
in an experiment, one requires temporal resolution shorter than this lifetime. While for a
typical Fermi liquid the quasiparticle lifetime is very short, for resonant modes it may be
increased significantly, meaning the resonant feature could be visible experimentally.
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4.3.3 Observability of the heat current noise

We have shown in the previous section that the structure of the heat current noise spec-
trum may contain information about the system excitations and their relaxation properties.
However, in order to extract this information, we must ask whether the noise spectrum is
observable in an experiment. This question may be both fundamentally nontrivial as dis-
cussed in Sec. 4.1 and situation dependent, since the answer depends on the measurement
technique. Typically, the heat current absorbed is inferred from measurements of the
changing temperature of the receiving body. Fluctuations of the heat current may there-
fore be sought in the fluctuations of the temperature, as investigated experimentally in
Ref. [Karimi20] for the temperature of electrons exchanging heat with a phonon bath.
In this section we investigate how the fluctuations of the radiative heat current between
two-dimensional layers are translated into temperature fluctuations of the receiving layer,
and what this means for the experimental observability.

Without the incoming radiation, the receiving layer is held at a uniform temperature
T1 by coupling to some external bath. Here, the phonons in the layer represent the bath,
since the phonons are assumed to be in equilibrium with the substrate/cryostat of the
experimental setup. The addition of the space- and time-varying incident radiation causes
the electron temperature field in the layer, T1(r, t), to vary according to the heat transport
equation

C ∂T1(r, t)
∂ t

= κ∇
2
rT1(r, t)+ J(r, t)− Jph.(r, t), (4.44)

where C is the heat capacity (per unit area), κ is the thermal conductivity, J(r, t) is the
incoming radiative heat current absorbed by the electrons and Jph.(r, t) is the energy cur-
rent given by electrons to phonons in the layer. Equation (4.44) is the classical diffusion
equation for the energy density inside the layer, written in terms of the temperature field.
The temperature field may be written in terms of the change with respect to the constant
bath temperature brought about by the incoming radiation: T1(r, t) = T1 +∆T1(r, t). The
radiative source and phonon sink terms may be further decomposed into an average value
and fluctuations, via the expressions

Jph.(r, t) = Gth.∆T1(r, t)+δJph.(r, t), (4.45a)

J(r, t) = 〈J〉+δJ(r, t), (4.45b)

where Gth. is the electron-phonon heat conductance (per unit area) of the layer. The
fluctuations of the heat exchange between electrons and phonons defined by

Sph.(K,Ω) =
∫

∞

−∞

d(t− t ′)eiΩ(t−t ′)
∫

d(r− r′)e−iK(r−r′)〈δJph.(r, t)δJph.(r′, t ′)〉, (4.46)

has been calculated in Ref. [Pekola18] where it is shown to satisfy the general fluctuation
dissipation theorem Sph.(K,Ω) = 2T 2

1 Gth., which is valid up to frequencies Ω on the order
of the temperature. It is convenient to further decompose the total change in the layer
temperature, ∆T1(r, t) into a uniform response to the average incoming heat current and
fluctuations, i.e. ∆T1(r, t) = 〈J〉/Gth. + δT1(r, t). Substituting this redefinition and the
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expressions (4.45) into the transport equation (4.44) leads to the equation

C ∂δT1(r, t)
∂ t

= κ∇
2
rδT1(r, t)−Gth.δT1(r, t)+δJ(r, t)−δJph.(r, t). (4.47)

which is solved by going to Fourier space resulting in the expression

δT1(k,ω) =
δJ(k,ω)−δJph.(k,ω)

(Gth. +κk2)− iωC
. (4.48)

Just as for the radiative heat current in Eq. (4.38), we seek the spectrum for the tem-
perature fluctuations in the form

ST1(K,Ω) =
∫

∞

−∞

d(t− t ′)eiΩ(t−t ′)
∫

d2(r− r′)e−iK ·(r−r′)〈δT1(r, t)δT1(r′, t ′)〉, (4.49)

where we once again use the fact that the object in angular brackets above depends only
on the difference in the space and time coordinates due to the temporal and in-plane trans-
lational invariance. Plugging in the solution for the temperature fluctuations Eq. (4.48)
leads to the temperature fluctuation spectrum

ST1(K,Ω) =
S2D(K,Ω)+Sph.(K,Ω)

(Gth. +κK2)
2
+Ω2C2

, (4.50)

where we have used the fact that the radiative heat current and the heat exchange between
electrons and phonons are uncorrelated. So the temperature fluctuation spectrum is given
by a sum of contributions from the incoming radiative heat current and the heat exchange
with phonons, modulated by a frequency and wavevector dependent denominator that
depends on the receiving material’s thermal properties.

The expression (4.50) determines the conditions for which the features of the radiative
heat current noise spectrum in Eq. (4.41) are observable in measurements of temperature
fluctuations. In particular Eq. (4.50) gives rise to two conditions: (i) in the numerator,
the radiative contribution to the spectrum should not be too small in comparison with
the phonon contribution, and (ii) ST1(K,Ω) should not be too strongly suppressed by the
denominator at frequencies and wavevectors corresponding to the interesting features of
S2D(K,Ω). Condition (i) means we should compare the overall magnitude of S2D(K,Ω)

with 2T 2
1 Gth.. Analysing Fig. 4.2, we see that the resonant feature of S2D(K,Ω) becomes

pronounced at scales above Ω ∼ 1/τ and K ∼ 1/(v−τ). Condition (ii) implies that the
denominator in Eq. (4.50) should be roughly flat over these scales, i.e. we require 1/τ .
Gth./C and 1/(v−τ).

√
Gth./κ .

To evaluate the feasibility of satisfying the conditions formulated above, we take the
example of doped graphene monolayers where plasmon dominated radiative heat transfer
has been observed (see the discussion in Sec. 2.3 of Ref. [Yang18]). We require estimates
for the material parameters appearing in the denominator of Eq. (4.50). The thermal con-
ductivity is estimated from the Drude electrical conductivity via the Wiedemann-Franz
law as κ = (π/3)EFτT1/h̄2, and the heat capacity per unit area is found from free electron
theory as C = (2π/3)EFT1/(h̄2v2

F). Meanwhile, the thermal conductance between elec-
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trons and phonons Gth. may be estimated from experimental data on graphene monolayers
at low temperatures in Ref. [Fong13], where it shown that 〈Jph.〉= Σ(T 3

1 −T 3
ph.), with Tph.

the phonon (bath) temperature and Σ≈ 1.25 WK−3 m−2. This leads to the expression for
the thermal conductance Gth. = 3ΣT 2

1 , which is shown to be roughly independent of Fermi
energy away from the Dirac point – see Fig. 3 (b) of Ref. [Fong13].

We may now use the conditions (i) and (ii) formulated above to test when the radia-
tive heat current fluctuations will be visible in the temperature fluctuations of the receiving
layer. Using the known value vF = 106 ms−1 [Yang18] and taking Fermi energy EF =

100meV, we find that the frequency scale in the denominator of ST1(K,Ω) to be Gth./C =
(6.5× 109)T1/(1 K) s−1. Taking a mean free path of ` = 3 µm we find then that condi-
tion (ii) on frequency 1/τ . Gth./C is satisfied for temperatures T1 & 50K. In this regime,
we may check that the corresponding condition on wavevector 1/(v−τ) .

√
Gth./κ is

satisfied automatically since for Gth./C ∼ 1/τ , we have
√

Gth./κ ∼ 1/(vFτ)� 1/(v−τ).
For lower temperatures or smaller mean free paths, the denominator of ST1(K,Ω) does
indeed mask the interesting resonant feature of S2D(K,Ω). Condition (i) regarding the
relative magnitude of the two contributions in the numerator of ST1(K,Ω) is easily sat-
isfied – for example, taking T2 = 300 K and d = 430 nm as in Ref. [Yang18] we find
S2D(K,Ω)/Sph.(K,Ω)∼ 104.

The overall difficulty in the observability of the resonant feature in the radiative heat
current spectrum stems from the fact that it only appears at relatively high frequencies,
Ω & 1/τ . This could have been expected since we know from Sec. 3.2 that the plasmon
contribution to the heat current is overdamped at lower frequencies. We have subsequently
found that there is a tradeoff in terms of the value of the thermal conductance between
electrons and phonons. If Gth. is too large, the electrons lose their energy to the phonons
too quickly such that the resulting electron temperature fluctuations are dominated by the
contribution from this “internal” heat exchange. On the other hand, if Gth. is too small,
the high frequency resonant feature of the incoming radiative heat current noise is masked
because the thermal response of the metal is too slow, so the heat current fluctuations are
effectively averaged out.

4.4 Summary and outlook

In this chapter we have moved on from the study of the average radiative heat current to
instead discuss its fluctuations, or noise. We have focused on two systems that exhibit
a resonant heat transfer channel that is dominant under certain conditions. The first was
a zero-dimensional system modelled quantum mechanically by an electric circuit, while
the second was a system of parallel two-dimensional metallic layers, as studied in Chs. 2
and 3. The general forms of the expressions for the heat current noise in the two systems
is found to be quite analogous.

Focusing on the case where the heat transfer in the system is dominated by thermal
fluctuations in the hotter body (i.e. when the temperatures are strongly different), we
find that for both systems a resonant signature is imprinted on the noise spectrum. These
signatures reflect the detail of the resonant transfer channel: for the circuit we found a
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Lorentzian resonance at zero frequency, and for the parallel layers we find a resonance
at the antisymmetric plasmon dispersion. The additional spatial dimension of the parallel
layers meant that the resonance has a different shape. At low frequency (and wavevector)
we find a heat current shot noise-like regime in both systems. Finally, for the system of
two-dimensional layers we discussed the observability of the plasmonic resonant feature
of the heat current noise spectrum, finding that in certain situations the electron-phonon
coupling in the material may lead to the resonant feature being masked in the measured
temperature fluctuations. Generally, the resonant feature in the noise spectrum is easier to
observe in cleaner systems where the plasmon damping is weak. We hope that this work
paves the way for more experimental and theoretical investigation into finite frequency
heat current fluctuations in systems with a resonant transfer channel.

Dans ce chapitre, nous sommes passés de l’étude du courant thermique radiatif moyen à
celle de ses fluctuations, ou bruit. Nous nous sommes concentrés sur deux systèmes qui
présentent un canal de transfert de chaleur résonant dominant dans certaines conditions.
Le premier était un système de dimension zéro modélisé par un circuit électrique quan-
tique, tandis que le second était un système de couches métalliques bidimensionnelles
parallèles, tel qu’étudié dans les chapitres 2 et 3. Les formes générales des expressions
pour le bruit du courant de chaleur dans les deux systèmes s’avèrent être assez analogues.

En se concentrant sur le cas où le transfert de chaleur dans le système est dominé par
les fluctuations thermiques dans le corps le plus chaud (c’est-à-dire lorsque les tempéra-
tures sont fortement différentes), nous trouvons que pour les deux systèmes une signature
résonante est imprimée sur le spectre de bruit. Ces signatures reflètent le détail du canal
de transfert résonant : pour le circuit, nous avons trouvé une résonance lorentzienne liée
à fréquence zero, et pour les couches parallèles, nous trouvons une résonance à la disper-
sion du plasmon antisymétrique. En raison de la dimension spatiale supplémentaire des
couches parallèles, la résonance a une forme différente. À basse fréquence (et vecteur
d’onde), nous trouvons un régime semblable au bruit de grenaille thermique dans les
deux systèmes. Enfin, pour le système de couches bidimensionnelles, nous avons dis-
cuté de l’observabilité de la résonance plasmonique dans le spectre de bruit du courant
thermique, en constatant que dans certaines situations, le couplage électron-phonon dans
le matériau peut conduire à ce que la caractéristique de résonance soit masquée dans les
fluctuations de température mesurées. Généralement, la résonance dans le spectre du bruit
est plus facile à observer dans des systèmes propres où l’amortissement du plasmon est
faible. Nous espérons que ce travail ouvre la voie à d’autres recherches expérimentales et
théoriques sur les fluctuations de courant thermique à fréquence finie dans les systèmes
avec un canal de transfert résonant.

99



General conclusion and outlook

General conclusion and outlook

In this thesis we have performed detailed studies of radiative heat transfer between
spatially separated bodies. We focused on performing analytical calculations using gen-
eral models in order to reveal the roles and interplay of key physical ingredients. The
work has led to many interesting conclusions regarding radiative heat transfer behaviour
that we summarise here. Our findings also stimulate further research in a number of open
questions which we also mention.

Working in the framework of fluctuational electrodynamics, we studied the average
radiative heat current between two-dimensional metallic layers characterised by Drude
conductivity separated by a vacuum gap. We were able to see explicitly the origins of
the sometimes many order of magnitude enhancement of the heat current due to evanes-
cent waves. The decaying character of the evanescent waves is reflected in the heat cur-
rent’s dependence on the body separation of the analytical expressions obtained. The
calculation revealed the existence of two classes of materials: For poor metals such as
doped semiconductors and atomically thin two-dimensional materials, the heat current at
layer separations up to and even beyond the thermal wavelength of photons is dominated
by electrostatic coupling of electrons between the layers. Meanwhile, for good metals
such as thin films of conventional metal the heat current in the near field is primarily
dominated by magnetostatic coupling, where the magnetic field established by transverse
current fluctuations in one layer drives eddy currents that cause dissipation in the other
layer – this behaviour is reminiscent of what had already been discovered for bulk three-
dimensional metals. Our theoretical results showed order of magnitude agreement with
experimental data, indicating that they could be useful in providing quick estimates of the
heat current in a given context and revealing the main physical mechanisms responsible.

Focusing on the Coulomb limit shown mainly to be relevant for poor metals, we
studied the same problem of average radiative heat current between parallel layers, but
with a richer model for the material response. Modelling the layers as an interacting
two-dimensional electron gas with elastic impurity scattering, we showed that collective
charge density excitations known as surface plasmons become coupled in the near field
and may contribute significantly to the radiative heat transfer. We find that the disor-
der, if too weak or too strong has a tendency to mask this plasmon contribution but that
it nonetheless may be expected to dominate for a wide class of parameters. This kind
of plasmonic heat transport may be utilised in the design of novel devices where control
over the heat flow may be tuned via material parameters. We find that the surface plasmon
contribution is not sensitive to nonlocality in the material response, which only plays a
role at extremely small body separations. We explored the possibility of representing the
heat transfer in a physical system like that described above by an effective circuit without
spatial dimension. As may be expected this analogy is limited for large objects, while
for objects that are small compared to the characteristic length scale of the relevant heat
carriers we find that an effective circuit picture may indeed be used. This is in support of
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what is commonly done when studying electric charge current in nanometric systems via
an effective circuit.

In an attempt to delve deeper into the characteristics of radiative heat transfer, we
studied its fluctuations. In particular, we were motivated to study the fluctuations in sys-
tems whose heat transfer may be dominated by a resonant channel since while effectively
invisible in the average heat current signal, it was expected that this resonant behaviour
would be imprinted in the fluctuations’ frequency spectrum. This signature could be vis-
ible when compared to the structureless noise that one expects from processes involving
continuum excitations. First, we reported on findings of a study of an effective zero-
dimensional system modelled by an electric circuit, where the heat transfer may be dom-
inated by photons at the natural frequency of a superconducting resonator. It was shown
that to capture the behaviour of the heat current fluctuations a fully quantum description
of the system is necessary, and that indeed the finite-frequency heat current noise spec-
trum exhibits a signature of the resonance in the transmission that could potentially be
measurable. Subsequently, we have worked in the framework of nonequilibrium Green’s
functions to calculate the finite frequency and wavevector heat current noise spectrum for
the system of two-dimensional metallic layers separated by a gap. The general structure
of the noise is reminiscent of the simpler zero-dimensional case, and here we also find a
resonant feature in the noise due to the aforementioned resonant heat transfer channel via
the emission and absorption of surface plasmons. The resonant feature encodes details
of the collective excitations themselves both in the form of their dispersion relation but
also their lifetime. If measured, this type of feature would provide a demonstration of the
important role played by these collective excitations in the heat transfer, but also provide
a general method of probing the character of the excitations themselves. We have briefly
discussed the observability of the heat current noise resonant feature via temperature mea-
surements, finding that according to the material parameters the feature may actually be
masked due to the dynamics controlling the temperature relaxation.

The problem of heat current noise (radiative or otherwise) remains subtle with many
open questions. In particular, there remains much to explore on the question of its mea-
surability. Since the heat current signal itself is generally inferred from measurements
of temperature in a receiving body, one needs to explore exactly how and over what
timescale this heat-to-temperature correspondence takes place. This involves questions
not only of technical and experimental capability in terms of measurement resolution, but
also fundamental questions related to thermal equilibration and energy-time uncertainty.
Indeed, one may consider the case of observing heat current fluctuations when the elec-
trons are out of equilibrium and therefore do not have a well-defined temperature. In this
case it may be possible to construct a theory that takes into account the out-of-equilibrium
electron dynamics to infer the heat current from measurements of some other observable
which is well-defined such as, for example, electric current.

A rare regime of electron dynamical behaviour known as electron hydrodynamics
has recently realised experimentally in graphene [Gallagher19]. This fluid-like behaviour
may occur only in extremely clean samples, where the dominant collisions are those be-
tween the electrons themselves, rather than with impurities or phonons. We have not
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addressed the hydrodynamic regime in this work, since our calculations do not explicitly
take electron-electron collisions into account. The question of radiative heat transfer for
hydrodynamic electrons therefore remains open and would be interesting to investigate.

Although we have tackled a variety of problems regarding radiative heat transfer, they
have all nonetheless been harmonic. We have considered only linear electrodynamics,
and only ever linear circuit elements, meaning all the systems studied eventually amount
to collections of harmonic oscillators. For conventional metals at high temperatures, the
linear approximation holds very well. However, in nanoscale structures operating at sub-
Kelvin temperatures nonlinearities are expected to become important. The study of heat
transfer in systems with a nonlinearity is likely to reveal rich physics. For example, aver-
age heat transport between reservoirs coupled via a two-level system has been shown to
display radically different behaviours depending on the relation between the temperature
and the two-level energy splitting [Ruokola11], as well as the mechanism and strength
of the coupling of the two-level system to the baths [Yamamoto18, Xu21]. This kind of
a system has been realised experimentally [Ronzani18], where the two-level system is
achieved by a superconducting transmon qubit, whose level separation may be tuned via
an external magnetic field allowing for the modulation of heat flow. The investigation of
radiative heat current fluctuations through a two-level system remains an open question
whose answer may have significant implications on the design of novel devices based on
nonlinear elements of this type.
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Conclusion générale et perspectives

Dans cette thèse, nous avons réalisé des études détaillées sur le transfert de chaleur
radiative entre des corps séparés dans l’espace. Nous nous sommes concentrés sur la
réalisation de calculs analytiques en utilisant des modèles généraux afin de révéler les
rôles et l’interaction des ingrédients physiques clés. Ce travail a conduit à de nombreuses
conclusions intéressantes concernant le comportement du transfert de chaleur radiatif que
nous résumons ici. Nos résultats stimulent également la recherche dans un certain nombre
de questions ouvertes que nous mentionnons également.

En travaillant dans le cadre de l’électrodynamique fluctuante, nous avons étudié le
courant thermique radiatif moyen entre des couches métalliques bidimensionnelles car-
actérisées par une conductivité de Drude et séparées par un vide. Nous avons pu voir
explicitement les origines de l’augmentation parfois de plusieurs ordres de grandeur du
courant thermique due aux ondes évanescentes. Le caractère décroissant des ondes évanes-
centes est reflété dans la dépendance du courant thermique par rapport à la séparation
des corps des expressions analytiques obtenues. Le calcul a révélé l’existence de deux
classes de matériaux : Pour les mauvais métaux tels que les semi-conducteurs dopés et
les matériaux bidimensionnels atomiquement minces, le courant thermique à des separa-
tions de couches jusqu’à et même au-delà de la longueur d’onde thermique des photons
est dominé par le couplage électrostatique des électrons entre les couches. En revanche,
pour les bons métaux tels que les films minces de métaux classiques, le courant thermique
dans le champ proche est principalement dominé par le couplage magnétostatique, où le
champ magnétique établi par les fluctuations de courant transversales dans une couche
entraîne des courants de Foucault qui provoquent une dissipation dans l’autre couche - ce
comportement rappelle ce qui a déjà été découvert pour les métaux tridimensionnels mas-
sifs. Nos résultats théoriques ont montré un accord d’ordre de grandeur avec les données
expérimentales, indiquant qu’ils pourraient être utiles pour fournir des estimations rapi-
des du courant thermique dans un contexte donné et révéler les principaux mécanismes
physiques responsables.

En nous concentrant sur la limite de Coulomb, qui s’avère principalement pertinente
pour les mauvais métaux, nous avons étudié le même problème de courant thermique radi-
atif moyen entre des couches parallèles, mais avec un modèle plus riche pour la réponse
du matériau. En modélisant les couches comme un gaz d’électrons bidimensionnel en
interaction avec une diffusion élastique des impuretés, nous avons montré que les ex-
citations collectives de densité de charge connues sous le nom de plasmons de surface
deviennent couplées dans le champ proche et peuvent contribuer de manière significative
au transfert de chaleur radiatif. Nous avons constaté que le désordre, s’il est trop faible
ou trop fort, a tendance à masquer cette contribution plasmonique, mais qu’on peut néan-
moins s’attendre à ce qu’elle domine pour une large classe de paramètres. Ce type de
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transport de chaleur plasmonique peut être utilisé dans la conception de nouveaux dis-
positifs où le contrôle du flux de chaleur peut être réglé par des paramètres matériels.
Nous constatons que la contribution des plasmons de surface n’est pas sensible à la non-
localité dans la réponse du matériau, qui ne joue un rôle que pour des séparations de
corps extrêmement petites. Nous avons exploré la possibilité de représenter le transfert
de chaleur dans un système physique comme celui décrit ci-dessus par un circuit effec-
tif sans dimension spatiale. Comme on peut s’y attendre, cette analogie est limitée aux
objets de grande taille, alors que pour les objets de petite taille par rapport à l’échelle de
longueur caractéristique des transporteurs de chaleur concernés, nous constatons qu’une
image de circuit effectif peut effectivement être utilisée. Cela va dans le sens de ce qui
est généralement fait lors de l’étude du courant de charge électrique dans les systèmes
nanométriques via un circuit effectif.

Dans le but d’approfondir les caractéristiques du transfert de chaleur radiatif, nous
avons étudié ses fluctuations. En particulier, nous avons été motivés pour étudier les fluc-
tuations dans des systèmes dont le transfert de chaleur peut être dominé par un canal
résonnant. En effet, bien qu’invisible dans le signal moyen du courant thermique, on
s’attendait à ce que ce comportement résonnant soit imprimé dans le spectre de fréquence
des fluctuations. Cette signature pourrait être visible par rapport au bruit sans structure
que l’on attend des processus impliquant des excitations continues. Nous avons d’abord
présenté les résultats d’une étude d’un système effectif de dimension zéro modélisé par
un circuit électrique, où le transfert de chaleur peut être dominé par des photons à la
fréquence naturelle d’un résonateur supraconducteur. Il a été démontré que pour cap-
turer le comportement des fluctuations du courant thermique, une description entière-
ment quantique du système est nécessaire, et qu’en effet le spectre de bruit du courant
thermique à fréquence finie présente une signature de la résonance dans la transmission
qui pourrait potentiellement être mesurable. Par la suite, nous avons travaillé dans le
cadre des fonctions de Green de non-équilibre pour calculer le spectre de bruit du courant
thermique à fréquence finie et à vecteur d’onde pour le système de couches métalliques
bidimensionnelles séparées par un espace. La structure générale du bruit rappelle le cas
plus simple de la dimension zéro, et ici nous trouvons également une caractéristique réso-
nante dans le bruit due au canal de transfert de chaleur résonant mentionné ci-dessus via
l’émission et l’absorption de plasmons de surface. La caractéristique résonante code les
détails des excitations collectives elles-mêmes, à la fois sous la forme de leur relation de
dispersion et de leur durée de vie. S’il était mesuré, ce type de caractéristique fournirait
une démonstration du rôle important joué par ces excitations collectives dans le transfert
de chaleur, mais aussi une méthode générale pour sonder le caractère des excitations elles-
mêmes. Nous avons brièvement discuté de l’observabilité de la caractéristique résonante
du bruit du courant thermique par le biais de mesures de température, en constatant que
selon les paramètres du matériau, la caractéristique peut en fait être masquée en raison de
la dynamique contrôlant la relaxation de température.

Le problème du bruit du courant thermique (radiatif ou autre) reste subtil avec de nom-
breuses questions ouvertes. En particulier, il reste beaucoup à explorer sur la question de
sa mesurabilité. Puisque le signal du courant thermique lui-même est généralement déduit
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des mesures de la température dans un corps récepteur, il faut explorer exactement com-
ment et sur quelle échelle de temps cette correspondance chaleur-température a lieu. Cela
implique non seulement des questions de capacité technique et expérimentale en termes
de résolution de mesure, mais aussi des questions fondamentales liées à l’équilibre ther-
mique et à l’incertitude énergie-temps. En effet, on peut envisager le cas de l’observation
des fluctuations du courant thermique lorsque les électrons sont hors d’équilibre et n’ont
donc pas une température bien définie. Dans ce cas, il peut être possible de construire
une théorie qui prend en compte la dynamique des électrons hors équilibre pour déduire
le courant thermique à partir des mesures d’une autre observable bien définie comme, par
exemple, le courant électrique.

Un régime rare de comportement dynamique des électrons, connu sous le nom des
électrons hydrodynamiques, a récemment été réalisé expérimentalement dans le graphène
[Gallagher19]. Ce comportement de type fluide ne peut se produire que dans des échan-
tillons extrêmement propres, où les collisions dominantes sont celles entre les électrons
eux-mêmes, plutôt qu’avec des impuretés ou des phonons. Nous n’avons pas abordé le
régime hydrodynamique dans ce travail, car nos calculs ne prennent pas explicitement en
compte les collisions électron-électron. La question du transfert de chaleur radiatif pour
les électrons hydrodynamiques reste donc ouverte et serait intéressante à étudier.

Bien que nous ayons abordé une variété de problèmes concernant le transfert de
chaleur radiative, ils ont néanmoins tous été harmoniques. Nous n’avons considéré que
l’électrodynamique linéaire, et seulement des éléments de circuit toujours linéaires, ce qui
signifie que tous les systèmes étudiés se résument finalement à des collections d’oscillateurs
harmoniques. L’étude du transfert de chaleur dans des systèmes présentant une non-
linéarité est susceptible de révéler une physique riche. Par exemple, il a été démontré que
le transport de chaleur moyen entre des réservoirs couplés par un système à deux niveaux
présente des comportements radicalement différents selon la relation entre la température
et le fractionnement d’énergie à deux niveaux [Ruokola11], ainsi que le mécanisme et la
force du couplage du système à deux niveaux aux bains [Yamamoto18, Xu21]. Ce type de
système a été réalisé expérimentalement [Ronzani18], où le système à deux niveaux est
réalisé par un qubit transmon supraconducteur, dont la séparation des niveaux peut être
accordée via un champ magnétique externe permettant la modulation du flux de chaleur.
L’étude des fluctuations du courant thermique radiatif à travers un système à deux niveaux
reste une question ouverte dont la réponse peut avoir des implications importantes sur la
conception de nouveaux dispositifs basés sur des éléments non linéaires de ce type.
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Appendix A. Derivation of asymptotic expressions for the radiative heat transfer
between two-dimensional metallic layers

Here we derive asymptotic expressions for J(T ) of Eq. (2.8) for the average radia-
tive heat current per unit area between two-dimensional metallic sheets modelled by
Drude conductivity. We treat the specific case of identical sheets embedded in vacuum
[σ1(ω) = σ2(ω) and ε = 1] and compute separately the travelling and evanescent wave
contributions for each of the two polarisations. We quantify the contribution made by each
wave type and polarisation in each region of the (1/d,T ) parameter plane, before com-
paring the size of the additive contributions and identifying which are dominant. It is con-
venient to introduce the dimensionless parameters x≡ cτ/d and y≡ T τ/h̄, as well as di-
mensionless integration variables: ξ = |qz|cτ instead of k [noting that k dk = ξ dξ/(cτ)2],
and η = ωτ . For the travelling waves, the integration is over the region 0 < ξ < η < ∞,
while for the evanescent waves it is 0 < ξ ,η < ∞.

A.1 TM travelling contribution

In the dimensionless variables, the TM travelling contribution to Eq. (2.8) can be rewritten
exactly as

Jt
TM =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

∫
η

0

ξ 3 dξ

Dp
+Dp
−
, (A.1a)

Dp
± ≡ |η(1− iη)+Gξ (1± eiξ/x)|2. (A.1b)

The case G � 1 is very simple to handle, since for ε = 1 one can neglect the reflection
coefficients in the denominator of Eq. (2.8), and simply set G → 0 in Eq. (A.1b), since
ξ < η . This gives

Jt
TM =

h̄σ2
2D

c4τ4

∫
∞

0

η3 dη

(1+η2)2(eη/y−1)

=

 π2G2T 4/(60h̄3c2), y� 1,

G2T/(16πc2τ3), y� 1.
(A.2)

For G � 1, each layer behaves at low frequency as a well-reflecting mirror, so the struc-
ture may host Fabry-Perot modes. The Fabry-Perot modes manifest themselves as deep
minima in Dp

± at specific values of ξ/x= π,2π,3π, . . .. These minima are important when
Gξ � η

√
1+η2, which is precisely the condition of good reflection. Thus, a much more

elaborate analysis is needed to evaluate the integral.

Let us focus on the contributions from the region ξ � x, when many modes contribute,
and even if they are overdamped, eiξ/x oscillates fast. In the general case (2.8) we average
over the fast oscillations in the denominator which leads to the simple replacement [Fu06]:

a1 ja2 j∣∣1− r1 jr2 je2iqzd
∣∣2 → a1 ja2 j

1−
∣∣r1 j
∣∣2 ∣∣r2 j

∣∣2 , (A.3)

valid as long as aα j and rα j are smooth functions of qz on the scale qz ∼ 1/d.
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A.1. TM travelling contribution

Applying this averaging to the contribution in Eq. (A.1a) leads to

Jt
TM =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

η∫
0

ξ 3 dξ

[η2 +η4 +2Gξ η +2(Gξ )2][η2 +η4 +2Gξ η ]
. (A.4)

Note that x dropped out, and enters only through the condition ξ � x. Note also that the
ξ integral is always determined by the upper limit ξ ∼ η . As for the η integral, it may
converge at η ∼ y when cut off by the Bose function, or, for too large y, it may be cut off
by other factors in the denominator at some η� y. In this latter case, one can expand the
exponential in the Bose function, which becomes just y/η . We can identify three regions
in y.
(i) For y�

√
G, the integrals separate and converge at ξ ∼ η ∼ y, so the fast oscillation

condition is x� y:

Jt
TM =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

∫
η

0

ξ 3 dξ

4(Gξ )3η
=

π2T 4

60 h̄3c2G
. (A.5)

(ii) For
√
G� y�G, we keep 2(Gξ )2 in the first bracket and η4 in the second one (again,

oscillations are fast when x� y):

Jt
TM =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

∫
η

0

ξ 3 dξ

2(Gξ )2η4 =
T 2

24 h̄c2τ2 . (A.6)

(iii) For y � G, we expand the Bose function, the integral converges at η ∼ G (it is
convenient to write ξ = uη); the oscillations are fast when x�G:

Jt
TM =

h̄G2

π2c2τ4

∫
∞

0
yη

2 dη

∫ 1

0

η4u3 du
[η4 +2(Gη)2u2]η4 =

√
2GT

12πc2τ3 . (A.7)

Let us now pick the contributions from ξ � x. Then, eiξ/x can be expanded (we again
write ξ = uη):

Jt
TM =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

∫ 1

0

u3 du
[(1+2Gu)2 +η2][1+η2(1+Gu2/x)2]

. (A.8)

There are three possible cutoff scales for η : y, 1+2Gu, and (1+Gu2/x)−1. Which one of
the three is effective, depends on the positioning of y with repect to other scales. Again,
three cases arise.
(iv) For y� 1, we can neglect η2 in the first bracket in the denominator, so the η integral
converges at η ∼ y. In the second bracket, η2 plays a role only if Gu2/x� 1, so the
second bracket can be approximated as 1+(Gu2η/x)2 for any Gu2/x. We also assume
that Gu� 1, which will be verified afterwards. Then the denominator becomes 4G2u2[1+
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Appendix A. Derivation of asymptotic expressions for the radiative heat transfer
between two-dimensional metallic layers

(Gu2η/x)2], so the u integral converges at u∼min{1,
√

x/(Gy)}, giving

Jt
TM =

h̄
8π2Gcτ3d

∫
∞

0

η2 dη

eη/y−1
arctan

Gη

x

=

 π
2T 4/(120 h̄3c2), y� x/G,

ζ (3)T 3/(8π h̄2cGd), y� x/G.
(A.9)

The u integral converges at u∼ 1 and u∼
√

x/(Gy) in the two cases. In the first case, y�
x/G, the assumption Gu� 1, as well as the condition to expand the exponential, uy/x� 1,
are satisfied automatically. In the second case, y� x/G, both conditions translate into
y�Gx.
(v) For y� 1 but y� Gu we still have η ∼ y, so the denominator can be approximated
as 4Gu2η2(1+Gu2/x)2:

Jt
TM =

h̄
4π2c2τ4

∫
∞

0

η dη

eη/y−1

∫ 1

0

udu
[1+(G/x)u2]2

=
T 2/h̄

48cτ(cτ +Gd)
. (A.10)

Since the convergence occurs at u ∼ min{1,
√

x/G}, η ∼ y, the assumption y� Gu is
satisfied if y�min{

√
Gx,G}; if so, the condition uy/x� 1 to expand the exponential is

satisfied automatically. Thus, Eq. (A.10) is valid when 1� y�min{
√
Gx,G}.

(vi) For y� 1,Gu, the Bose function is y/η , so we integrate over η exactly (convergence
at η ∼ 1+2Gu), and obtain

Jt
TM =

G2T
2πc2τ3

∫ 1

0

u3 du
(1+2Gu)[1+(G/x)u2]2

=

 T x3/2/(16c2τ3G1/2), x�G,

GT/(12πc2τ3), x�G,
(A.11)

the convergence occurring at u∼min{
√

x/G,1}. At x�G the condition to expand eiξ/x

is not fulfilled, since we automatically have ξ/x = uη/x∼ 1. At x�G, we have Gu� 1
automatically, while uη/x∼G/x, so the second expression Eq. (A.11) is valid at x,y�G.

We schematically show the regions of validity of Eqs. (A.5)–(A.11) in the (x,y) plane
in Fig. A.1(a). In the overlapping region at y� x both ξ � x and ξ � x contributions
are valid, but the Fabry-Perot contributions from ξ � x naturally dominate. At y� x the
Fabry-Perot contributions are suppressed as e−πx/y = e−π h̄c/(T d), since the temperature is
lower than the first Fabry-Perot mode energy π h̄c/d. Nevertheless, it turns out that the
prefactor in front of the exponential is large, so the contribution from the first mode (the
one with the weakest exponential), coming from the narrow region around ξ = η = πx
[see Fig. A.1(b)] should be included together with the contribution from ξ � x, as long
as x,y�G (otherwise, the mode is overdamped because of low reflectivity).

To pick up the first Fabry-Perot mode contribution, we approximate the Bose function
by e−η/y and set η = πx everywhere else in the integrand, which is a smooth function
of η . We also set ξ = πx everywhere in the integrand except the exponential eiξ/x in Dp

+
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A.2. TE travelling contribution

Figure A.1: (a) Regions of validity of Eqs. (A.5)–(A.11) in the (x,y) plane. In the shaded
regions there are two valid contributions. (b) The (ξ ,η) plane with the integration domain
ξ < η (the lightly shaded area does not belong to the integration domain). The hatched
area at ξ � x contributes to Eqs. (A.9), (A.10).

[Eq. (A.1b)]. Then we find the minimum of Dp
+ as a function of ξ , reached at ξmin =

πx(1− x/G)+O(x3/G2), and approximate near the minimum

Dp
+ = (πGx)2

∣∣∣∣1− iπx
G

+1+ eiξ/x
∣∣∣∣2

≈ (πx)2
(

1+
π2x2

2G

)2

+(πG)2(ξ −ξmin)
2. (A.12)

Then, the integration over πx < η < ∞ and −∞ < ξ −ξmin < ∞ gives

Jt
TM =

πcT
2d3[2G+(πcτ/d)2]

e−π h̄c/(T d). (A.13)

A.2 TE travelling contribution

The TE travelling contribution to Eq. (2.8) can be rewritten exactly as

Jt
TE =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

∫
η

0

ξ 3 dξ

Ds
+Ds
−
, (A.14a)

Ds
± ≡ |ξ (1− iη)+Gη(1± eiξ/x)|2. (A.14b)

For G � 1, we may not simply set G → 0 in the denominator, as we did in the TM case:
here this leads to a logarithmic divergence at ξ → 0. To see how the divergence is cut
off, we note that convergence scale of the η integral is the same as in the TM case: η ∼ y
if y� 1 and η ∼ 1 if y� 1. This gives the small-ξ cutoff scales ξ ∼ Gη and ξ ∼ G,
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respectively. As a result,

Jt
TE =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

(1+η2)2(eη/y−1)
ln

η

min{G,Gη}

=

 [(π2G2T 4)/(15 h̄3c2)] ln(1/G), y� 1,

[(G2T )/(4πc2τ3)] ln[(T τ)/(Gh̄)], y� 1,
(A.15)

The overall map of behaviours in parameter space is therefore equivalent to the TM trav-
elling case given in Eq. (A.2), but the TE contribution (A.15) is always dominant due to
the logarithmic factors.

The calculation for G � 1 is very similar to that of the TM travelling wave contribu-
tion. Focusing firstly on the cases where ξ � x so the exponentials eiξ/x oscillate fast, the
averaged contribution from Eq. (A.14a) via Eq. (A.3) is given by

Jt
TE =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

∫
η

0

ξ 2 dξ

ξ (η2 +1)+2Gη

1

ξ 2 (η2 +1)+2Gξ η +2(Gη)2 .

(A.16)

At low frequency the system Fabry-Perot modes are indicated, as in the TM case, in the
minima in Ds

±, this time important when Gη � ξ
√

1+η2. The integral in η may again
converge at η ∼ y due to the Bose function, or something else if y is too large. We may
identify the same regions as in the TM case.
(i) For y�

√
G, we have that ξ ∼ η ∼ y, so the fast oscillation condition is x� y, and we

may neglect all terms in the denominator containing ξ :

Jt
TM =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

∫
η

0

ξ 2 dξ

4(Gη)3 =
π2T 4

180 h̄3c2G
. (A.17)

(ii) For
√
G � y�G, we keep ξ η2 in the denominator in the first line of Eq. (A.16) and

2(Gη)2 in the second line (again, oscillations are fast when x� y):

Jt
TE =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

∫
η

0

ξ 3 dξ

2(Gξ )2η4 =
T 2

24 h̄c2τ2 . (A.18)

(iii) For y�G, we expand the Bose function to give y/η and retain ξ η2 in the first line
of Eq. (A.16) and (ξ η)2 +2(Gη)2 in the second. The integrals converge at ξ , η ∼ G so
the oscillations are fast when x�G:

Jt
TE =

h̄G2

π2c2τ4

∫
∞

0
yη

2 dη

∫
η

0

ξ dξ

(ξ 2 +2G2)η4 =

√
2GT

4πc2τ3 . (A.19)

For the contributions coming from ξ � x, we expand the exponential eiξ/x:

Jt
TE =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1
1

1+η2(1+G/x)2

∫
η

0

ξ dξ

(ξ +2Gη)2 +ξ 2η2 . (A.20)
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A.2. TE travelling contribution

Since ξ < η and G � 1 we may neglect ξ in the first bracket of the denominator in the
last line. This allows the simple integration over ξ :

Jt
TE =

h̄G2

2π2c2τ4

∫
∞

0

η dη

eη/y−1
ln[1+η2/(2G)2]

1+η2(1+G/x)2 , (A.21)

the condition for the expansion of the exponential eiξ/x becoming η � x.
There are three possible cutoff scales for η : y, G, and (1+G/x)−1. Which one of the

three is effective, depends on the positioning of y with repect to other scales. Again, three
cases arise.
(iv) For y� (1 + G/x)−1 < 1, the logarithm is expanded for small argument and the
second term in the denominator is neglected since the integral converges at η ∼ y. The
condition y� x for the expansion of eiξ/x is satisfied automatically:

Jt
TE =

h̄
8π2c2τ4

∫
∞

0

η3 dη

eη/y−1
=

π2T 4

120h̄3c2
. (A.22)

(v) For (1+G/x)−1 � y� G, the integral is still determined by η ∼ y, but the second
term in the denominator dominates. eiξ/x may be expanded when y� x:

Jt
TE =

h̄
8π2c2τ4

x2

(x+G)2

∫
∞

0

η3 dη

eη/y−1
=

T 2/h̄

48(cτ +Gd)2 . (A.23)

(vi) For y�G, the Bose function is y/η and the integral converges at η ∼ G so we retain
the logarithm, and eiξ/x may be expanded as long as G � x:

Jt
TE =

G2T τ

2π2c2τ4
x2

(x+G)2

∞∫
0

dη

η2 ln
(

1+
η2

4G2

)
=
GT

4πc2τ3 . (A.24)

We schematically show the regions of validity of Eqs. (A.17)–(A.24) for G � 1 in the
(x,y) plane in Fig. A.2, where there is no such overlap as in the TM case Fig. A.1(a).

Figure A.2: Regions of validity of Eqs. (A.17)–(A.24) in the (x,y) plane.

As in the TM case, the first Fabry-Perot mode contribution should be included together
with the ξ � x contributions as long as x,y� G. The same procedure is performed
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between two-dimensional metallic layers

whereby the minimum of Ds
+ [Eq. (A.14b)] near ξ = πx is found, allowing the integrand

to be approximated by a Lorentzian. The minimum and therefore the eventual contribution
is found to be identical to the TM case, Eq. (A.13).

A.3 TE evanescent contribution

The TE evanescent contribution to Eq. (2.8) can be rewritten exactly as

Je
TE =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

∫
∞

0

e−2ξ/xξ 3 dξ

D̃s
+D̃s
−

, (A.25a)

D̃s
± ≡ |iξ (1− iη)+Gη(1± e−ξ/x)|2. (A.25b)

Despite the apparent similarity to the corresponding TE travelling contribution Eq. (A.14a),
there is no longer oscillatory behaviour in the denominator, so the resulting contributions
are completely different. In η there are two possible decay scales: η ∼ y from the Bose
function, and η ∼ ξ/(G+ξ ) from D̃s

+D̃s
−.

In the low temperature case y� ξ/(G+ξ )< 1 where the temperature cutoff is effec-
tive, expanding e−ξ/x ≈ 1 leads to logarithmic divergence at ξ → ∞. The large ξ cutoff
scale is therefore given by the decay scale of the exponential, ξ ∼ x, leading to the result
[valid for y� x/(G+ x)]:

Je
TE =

h̄G2

π2c2τ4

∞∫
0

η3 dη

eη/y−1
ln

x
Gη

=
π2G2T 4

15h̄3c2
ln

h̄c
GT d

. (A.26)

For high temperatures y� ξ/(G+ ξ ) the Bose function is y/η and it is convenient to
perform integration over η first keeping D̃s

± exact:

Je
TE =

G2T
4πc2τ3

∞∫
0

e−2ξ/xξ 2 dξ

(G+ξ )[(G+ξ )2−G2e−2ξ/x)]
, (A.27)

where the integrand may decay due to the exponential or the denominator. If x� G the
exponential is clearly active and terms in ξ may be neglected in the denominator (the
expansion of the Bose function is valid for y� x/G):

Je
TE =

T
4π2Gc2τ3

∫
∞

0

ξ 2 dξ

e2ξ/x−1
=

ζ (3)cT
16πGd3 . (A.28)

If x� G, expansion of e−ξ/x ≈ 1 in Eq. (A.27) again leads to logarithmic divergence at
ξ → ∞. As in the low temperature case, the divergence is cut off by ξ ∼ x (the expansion
of the Bose function is valid for y� 1):

Je
TE =

G2T
4πc2τ3

∫ ∼x

0

ξ dξ

(ξ +G)(ξ +2G)
=
G2T

4πc2τ3 ln
cτ

Gd
. (A.29)

The domains of validity of the TE evanescent contributions are shown in Fig. A.3.
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A.4. TM evanescent contribution and approximate evaluation of the Caroli formula

Figure A.3: Regions of validity of Eqs. (A.26)–(A.29) in the (x,y) plane.

A.4 TM evanescent contribution and approximate evalu-
ation of the Caroli formula

On the one hand, the TM evanescent contribution to Eq. (2.8) can be rewritten exactly as

Je
TM =

h̄G2

π2c2τ4

∫
∞

0

η3 dη

eη/y−1

∫
∞

0

e−2ξ/xξ 3 dξ

D̃p
+D̃p
−

, (A.30a)

D̃p
± ≡ |η(1− iη)+ iGξ (1± e−ξ/x)|2. (A.30b)

On the other hand, from the Caroli formula Eq. (3.1) for the radiative heat transfer between
identical two-dimensional layers in the Coulomb limit, we have the expression

J(T ) =
∫

∞

0

dω

π

∫ d2k
(2π)2

h̄ω

eh̄ω/T −1
T (k,ω), (A.31a)

T (k,ω) = 2
∣∣∣∣ ImΠvke−kd

[1−Πvk(1− e−kd)][1−Πvk(1+ e−kd)]

∣∣∣∣2 , (A.31b)

where the transmission coefficient T (k,ω) is given in terms of the bare 2D Coulomb
potential, vk = 2πe2/k, and the density response function of the layers, Π(k,ω). The
density response function is related to the in-plane material conductivity via the general
relation Π(k,ω) = (k2/iωe2)σ(k,ω). Taking Drude conductivity σ(k,ω) = σ(ω) =

(κD/2π)/(1− iωτ) we see that the two expressions (A.30) and (A.31) coincide exactly.
For the TM evanescent contribution in Ch. 2 we seek to evaluate the expression using
the local Drude conductivity, while for the Coulomb limit calculation of Ch. 3 we em-
ploy a richer model for the material response that includes spatial dispersion [given in
Eq. (3.4)]. We include here, therefore, the approximate evaluation of the integral in the
more general case using the nonlocal model, in the knowledge that the contributions that
are not influenced by the spatial dispersion comprise the TM evanescent contributions to
the calculation using the local model, Eq. (2.8).

Using the notation of Eq. (A.31) and the nonlocal model for the density response
Eq. (3.4), we analyse below the contributions from the three regions of the (k,ω) plane in
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Appendix A. Derivation of asymptotic expressions for the radiative heat transfer
between two-dimensional metallic layers

Fig. 3.1: the vicinity of the plasmon dispersions, the diffusive region, and the clean region.
In each region, we separate two temperature regimes. We see that in the high-temperature
regimes, the integral Eq. (3.1) is dominated by a certain frequency scale, different in each
regime, but always determined by k ∼ 1/d and being much lower than the temperature.
Then, the thermal cutoff plays no role, and one can approximate the Bose distribution
N (ω) ≈ T/(h̄ω) [that is why J(T ) ∝ T in Eqs. (A.36), (A.40) and (A.42)]. In the low-
temperature regimes, it is the e−kd cutoff which is ineffective, so the frequency integral is
determined by ω ∼ T/h̄, while the k integral converges on a scale much smaller than 1/d.
Then one can approximate e−kd ≈ 1 in the numerator of Eq. (A.31b) and 1+ e−kd ≈ 2,
1− e−kd ≈ kd in the denominator.

A.4.1 Plasmon contribution

As discussed earlier, the plasmon contribution comes from the region ω > 1/τ,vFk, since
otherwise the plasmons are overdamped. At such frequencies one can expand Π(k,ω) to
the leading order in k and approximate

Πvk =
v2

Fκk
2ω(ω + i/τ)

, (A.32)

which corresponds to neglecting the spatial dispersion in the conductivity which takes the
Drude form, σ(ω) = e2νD/(1− iωτ). (Generally, the spatial dispersion can be neglected
when k� max{

√
ω/D,ω/vF}.) The integral is then dominated by the vicinities of the

two plasmon dispersions, where one of the factors in the denominator of Eq. (A.31b) is
small. The plasmon contribution exists only if the plasmon frequencies ω± [see Eq. (3.6)]
at k∼ 1/d (when the spatial cutoff becomes effective) exceed 1/τ . This gives a condition
d� κ`2 (the vertical line x = η2 in Fig. 3.2).

Let us first consider the temperature interval 1/τ� T/h̄� vF
√

κ/d (the two inequal-
ities are consistent when d� κ`2), where the thermal cutoff plays first leaving the spatial
cutoff e−kd ineffective. Then one can expand e−kd and perform the k integration first,
approximating the integrand by a Lorentzian in the vicinity of each pole. The remaining
frequency integral can be calculated exactly:

Jlp(T ) =
∫

∞

0

dω

π

h̄ω

eh̄ω/T −1
ω

4τv2
Fκ2

(
ω2

v2
F
+

κ

d

)
=

T 3

2π h̄2
τv2

Fκd

[
ζ (3)+12ζ (5)

T 2d
h̄2v2

Fκ

]
. (A.33)

Here ζ (x) is the Riemann zeta function, and the first (second) term in the square brackets
comes from the antisymmetric (symmetric) plasmons, respectively. In the considered
region 1/τ � T/h̄� vF

√
κ/d the symmetric contribution is always small compared to

the antisymmetric one.
At high temperatures, T/h̄� vF

√
κ/d, the integral is determined by the spatial fac-

tor e−kd , while the thermal cutoff is ineffective so the Bose distributionN (ω)≈ T/(h̄ω).
Taking expression (A.32), Eq. (A.31b) can also be written in the form suitable for inte-
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A.4. TM evanescent contribution and approximate evaluation of the Caroli formula

gration over ω:

T (k,ω) =
ω2

2τ2
(ω2

+−ω2
−)

2

|ω(ω + i/τ)−ω2
+|2|ω(ω + i/τ)−ω2

−|2
. (A.34)

Note that one cannot just do two separate Lorentzian integrals because the separation
ω2
+−ω2

− becomes exponentially small at k & 1/d. Fortunately, the ω integral can be
calculated exactly:

∞∫
0

dω

π
T (k,ω) =

1
2τ

(ω2
+−ω2

−)
2

(ω2
+−ω2

−)
2 +2(ω2

++ω2
−)/τ2 . (A.35)

Then the k integral reads as

Jhp(T ) =
T
τ

∫
∞

0

k dk
4π

`2κk
`2κk+2e2kd

=
T

16πτd2 L(`
2
κ/4d), (A.36)

with the function L(x) defined as

L(x)≡
∫

∞

0

u2 du
u+ eu/x

. (A.37)

A.4.2 Diffusive contribution

Let us focus on the contribution from the shaded region in Fig. 3.1: k� 1/`, ω � 1/τ .
Then one can use expression (3.5b) for Π(k,ω), and since we are interested in k . 1/d�
κ , we have Dk2� Dκk(1± e−kd)/2, which is again equivalent to neglecting the spatial
dispersion in the conductivity. Thus, we can write

T ≈ 2ω2(Dκk)2e−2kd

[ω2 +(Dκk)2(1+ e−kd)2][ω2 +(Dκk)2(1− e−kd)2]
. (A.38)

At low frequencies, when the momentum integral should converge on some scale k�
1/d, the two factors in the denominator are strongly different, and it is the second factor
that determines the convergence scale k ∼

√
ω/(Dκd). When ω ∼ T/h̄� Dκ/d this

scale is indeed much smaller than 1/d, so we expand e−kd , integrate over k, then over ω ,
and arrive at

Jld(T ) =
∫

∞

0

dω

π

h̄ω

eh̄ω/T −1
ω2

2

∫
∞

0

k dk
2π

1

ω2 +(Dκdk2)
2

=
ζ (3)
8π

T 3

h̄2Dκd
, (A.39)

Moreover, the convergence scale
√

T/(h̄Dκd)� 1/` provided that T/h̄� κd/τ . Thus,
since we always assume κd� 1, Eq. (A.39) is valid for the diffusive contribution every-
where below the horizontal line y∼ η (T/h̄∼ 1/τ) in Fig. 3.2.

XXVII



Appendix A. Derivation of asymptotic expressions for the radiative heat transfer
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For T/h̄�Dκ/d, the k integral is dominated by k∼ 1/d. Then the typical frequency
scale of Eq. (A.38) is ω ∼ Dκ/d, so for T/h̄� Dκ/d the thermal cutoff is ineffective.
Then we approximate N (ω) ≈ T/(h̄ω), straightforwardly integrate over ω , then over k,
and arrive at

Jhd(T ) = T
∫

∞

0

k dk
2π

e−2kd (Dκk)2

×
∫

∞

0

dω

π

2ω2[
ω2 +(Dκk)2 (1+ e−kd

)2
][

ω2 +(Dκk)2 (1− e−kd
)2
]

=
1

16π

Dκ

d3 T (A.40)

Note that Eq. (A.40) is valid even at T/h̄� 1/τ provided that the convergence scale
ω ∼ Dκ/d� 1/τ , that is, to the left of the vertical line x = η2 in Fig. 3.2. As we have
seen, to the right of this line the plasmon contribution becomes important.

A.4.3 Clean contribution

For T/h̄ � 1/τ , 1/d � 1/`, one should take into account the contribution from the
hatched area in Fig. 3.1. Here one can take the limit τ → ∞ and use expression (3.5a)
for Π(k,ω). Then, in the integration region ω < vFk, ReΠ(k,ω)vk = −κ/k, so one can
neglect unity in both factors in the denominator of Eq. (A.31b) and write

T ≈ 2
v2

k

∣∣∣∣ImΠ

Π2

∣∣∣∣2 e−2kd

(1− e−2kd)2 =
ω2(v2

Fk2−ω2)

2v4
Fκ2k2 sinh2 kd

. (A.41)

For T/h̄� vF/d we approximate N (ω) ≈ T/(h̄ω), straightforwardly integrate over ω

between 0 and vFk, then integrate over k, and arrive at

Jhc(T ) =
T

2v4
Fκ2

∫
∞

0

k dk
2π

1
k2 sinh2 kd

∫ vF k

0

dω

π
ω

2 (v2
Fk2−ω

2)
=

π2

900
vF

d3
T

(κd)2 . (A.42)

For T/h̄� vF/d, in most of the integration region we have ω ∼ T/h̄� vFk, so the
upper limit ω < vFk is not important except for the narrow region k ∼ T/(h̄vF) which
determines the lower cutoff of the logarithmic k integral:

Jlc(T ) =
h̄

4π2

∞∫
0

ω3 dω

eh̄ω/T −1

∞∫
∼T/vF

k dk
sinh2 kd

=
π2

60
T 4

h̄3v2
F(κd)2

ln
vF

T d
. (A.43)

In the region T/h̄� 1/τ , 1/d� 1/`, the clean contribution and the plasmon contri-
bution both exist and should be added up, since they come from two distinct regions in
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A.4. TM evanescent contribution and approximate evaluation of the Caroli formula

the (k,ω) plane. Thus, to determine the dominant asymptotics, one can combine the four
expressions (A.33), (A.36), (A.43) and (A.42) as J = max{min{Jlp,Jhp},min{Jlc,Jhc}},
which results in the complicated shape of the boundary between the clean and plasmonic
regions in Fig. 3.1.

A.4.4 TM evanescent contribution to the local retarded calculation

As shown in Apps. A.4.1 and A.4.2, the plasmonic and diffusive contributions to the heat
current in the Coulomb limit are correctly obtained with a local Drude model for the con-
ductivity. They therefore correspond to the TM evanescent contribution to the full retarded
calculation, whose other contributions were evaluated in the preceeding Apps. A.1–A.3.
The corresponding expressions may be rewritten simply in terms of the dimensionless
conductivity parameter G = 2πσDC/c by using the relation κ = Gc/d:

Jld(T ) =
ζ (3)
8π

T 3

h̄2cGd
, (A.44a)

Jhd(T ) =
1

16π

Gc
d3 T (A.44b)

Jlp(T ) =
ζ (3)
4π

T 3

h̄2cGd
, (A.44c)

Jhp(T ) =
T

16πτd2 L(Gcτ/d), (A.44d)

The domains of validity of the above contributions, shown in Fig. 3.2 in terms of κ ,
are similarly recast in terms of G in Fig. A.4. Note that expression (A.44a) equals the
travelling contribution (A.9).

Figure A.4: Regions of validity of Eqs. (A.44a)–(A.44d) in the (x,y) plane.
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B.1. TM travelling contribution

In this section we give a derivation of asymptotic expressions for the heat current be-
tween two three-dimensional semi-infinite metallic half-spaces, separated by a vacuum
gap d, essentially reproducing the results obtained in Ref. [Polder71]. We take two iden-
tical metals, described by the complex dielectric functions ε(ω) = 1+4πiσ3D/ω , where
σ3D is the three-dimensional dc conductivity, which can be written in terms of the bulk
plasma frequency ωp and the electron relaxation time τ as 4πσ3D = ω2

pτ , and assumed
to be temperature-independent. For conventional metals, 4πσ3D� ωp� 1/τ , and it is
natural to assume T � h̄/τ (indeed, τ = 10−14 s corresponds to 760 K), so that for all
relevant frequencies ε(ω)≈ 4πiσ3D/ω � 1. Focusing on the local response regime, we
assume to be in the normal skin effect regime, characterised by the frequency-dependent
skin depth δω and its value at ω = T/h̄:

δω =
c√

2πσ3Dω
, δT ≡

c√
2πσ3DT/h̄

(B.1)

Since the metals are semi-infinite there can be no transmitted radiation and therefore
the Joule losses are equal unambiguously to the average Poynting vector in the gap. The
heat current per unit area J(T ) may once again be written in the form of Eq. (2.8), but
without the third term in the emissivities in Eq. (2.10) (corresponding to transmission in
the two-dimensional case), and with the reflectivities being just the Fresnel coefficients
[Volokitin01]:

rp =
qz−q′z/ε

qz +q′z/ε
, rs =

qz−q′z
qz +q′z

, (B.2)

where q′z =
√
[ε(ω)−1](ω2/c2)+q2

z is the normal component of the complex wavevec-
tor describing the electric and magnetic fields inside the metal, while qz is the same in
the vacuum gap. As in the two-dimensional case, the contributions from travelling and
evanescent waves for each polarisation are computed separately.

B.1 TM travelling contribution

The contribution may be written exactly as

Jt
TM =

h̄
4π2

∫
∞

0

ω dω

eh̄ω/T −1

∫
ω/c

0
qz dqz

(
1−
∣∣rp
∣∣2)2

∣∣1− r2
pe−2iqzd

∣∣2 . (B.3)

The Fresnel coefficient is simplified drastically by noticing that since cqz < ω � 4πσ3D

we may write

q′z ≈
ω

c

√
ε(ω), rp ≈ 1− ω

cqz

2√
ε(ω)

. (B.4)

Focussing firstly on the case where the exponential in the denominator is oscillating fast,
we may perform the same averaging according to Eq. (A.3), valid for qz � 1/d, which
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between three-dimensional metallic half-spaces

translates into d�λ̄ T . This gives

Jt
TM =

h̄
4π2c2

∫
∞

0

h̄ω3 dω

eh̄ω/T −1

√
ω

2πσ3D
=

105ζ (9/2)
64π3/2

h̄(T/h̄)9/2
√

2πσ3Dc2 . (B.5)

When qz � 1/d, the exponential in the denominator of Eq. (B.3) may be expanded as
1−2iqzd, so the denominator is approximately

1− r2
pe−2iqzd ≈ 2iqz

[
d− (1+ i)δω

ω2

c2q2
z

]
. (B.6)

This results in two expressions, depending on the relation between d and the thermal skin
depth δT :

Jt
TM =

h̄
4π2

∫
∞

0

ω dω

eh̄ω/T −1

∫
ω/c

0

δ 2
ωqz dqz

[(cqz/ω)2d−δω ]2 +δ 2
ω

=
15ζ (7/2)

128
√

π

h̄(T/h̄)7/2
√

2πσ3Dcd
, d� δT , (B.7a)

=
π2h̄(T/h̄)4

240c2 , d� δT . (B.7b)

Note that in the first case the qz integral converges at qz ∼ (ω/c)
√

δω/d� ω/c, so the
expansion of e−2iqzd is valid at d�λ̄

2
T/δT , which is a weaker condition than d� δT ; this

means that the small qz contribution may coexist with that of Fabry-Perot modes, but it is
subdominant. In the second case d� δT , the convergence is at qz ∼ω/c, so the condition
qzd� 1 is automatically satisfied when d� δT .

B.2 TE travelling contribution

The situation is quite analogous to the TM case. The TE contribution is given by Eq. (B.3),
but with the replacement rp→ rs. Instead of Eq. (B.4), we have

q′z ≈
ω

c

√
ε(ω), rs ≈−1+(1− i)qzδω . (B.8)

In the case of fast oscillation at d�λ̄ T , the denominator is again averaged using Eq. (A.3),
leading to an expression, smaller than Eq. (B.5) by a factor of 3.

When d�λ̄ T , expanding e−2iqzd ≈ 1−2iqzd, we obtain 1−r2
s e−2iqzd ≈ 2iqz[d−(1+

i)δω ], which again results in two expressions:

Jt
TE =

h̄
8π2c2

∫
∞

0

ω3 dω

eh̄ω/T −1
δ 2

ω(ω)

|d− (1+ i)δω |2

=
ζ (3)
4π2

h̄(T/h̄)3

2πσ3Dd2 , d� δT , (B.9a)

=
π2h̄(T/h̄)4

240c2 , d� δT . (B.9b)
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B.3. TM evanescent contribution

In contrast to the previous TM case, the integral is always dominated by qz ∼ ω/c. In
this case, analogously to Eq. (A.13), one can also take into account the contribution of the
first Fabry-Perot mode:

Jt
TE =

π2

4
cT δ1

d4 eπ h̄c/(T d), (B.10)

where δ1 is δω corresponding to ω = πc/d. This expression has an exponential smallness,
but its prefactor is parametrically larger than Eq. (B.9a).

B.3 TM evanescent contribution

The contribution may be written exactly as

Je
TM =

h̄
π2

∫
∞

0

ω dω

eh̄ω/T −1

∫
∞

0
q̃z dq̃z

(Imrp)
2 e−2q̃zd∣∣1− r2

pe−2q̃zd
∣∣2 , (B.11)

where the real integration variable q̃z is introduced since qz = iq̃z is purely imaginary.
Then q′z =

√
ε(ω)(ω/c)2− q̃2

z .

Let us first consider the case where the q̃2
z dominates over ε(ω/c)2 in the square root,

that is q̃zδω � 1. Then

rp ≈ 1− 2
ε(ω)

= 1+
iω

2πσ3D
, (B.12)

and

Je
TM =

h̄
4π2

∫
∞

0

ω dω

eh̄ω/T −1

∫
∞

0

[ω/(2πσ3D)]
2 q̃z dq̃z

sinh2 q̃zd +[ω/(πσ3D)]2

=
π2

60
h̄(T/h̄)4

(2πσ3D)2d2 lnmin
{

2πσ3D

T/h̄
,
δ 2

T
d2

}
. (B.13)

The q̃z integral is logarithmic, and is determined by a broad interval of q̃z from the upper
cutoff∼ 1/d down to the lower cutoff: for d� c/(2πσ3D) it is (1/d)

√
ω/(2πσ3D), while

at larger distances the small q̃z cutoff is determined by the condition of q̃zδω � 1. The
logarithmic region exists at all if ε(ω/c)2 can be neglected at q̃z ∼ 1/d, which translates
into d� δT .

In the opposite case, where we neglect q̃z� 1/δω in q′z, we still assume q̃z� (ω/c)/
√

ε ∼
(ω/c)2δω , so the reflection coefficient is still close to unity:

rp ≈ 1+(1+ i)
ω

cq̃z

√
ω

2πσ3D
. (B.14)

Then the q̃z integral is determined by small q̃z ∼
√

ω/(cd)[ω/(2πσ3D)]
1/4 � 1/d, so
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sinh q̃zd ≈ q̃zd:

Je
TM =

h̄
4π2

∫
∞

0

ω dω

eh̄ω/T −1

∫
∞

0
q̃z dq̃z

( q̃2
z cd
ω

√
2πσ3D

ω
−1

)2

+1

−1

=
45ζ (7/2)

256
√

π

h̄(T/h̄)7/2
√

2πσ3Dcd
. (B.15)

The conditions q̃zd� 1, (ω/c)2δω � q̃z� 1/δω result in the requirement

T/h̄
2πσ3D

δT � d� 2πσ3D

T/h̄
δT . (B.16)

Note that the lower limit on d is smaller than δT , so there is an interval where Eqs. (B.13)
and (B.15) are both valid, representing contributions from different regions of q̃z integra-
tion. However, when inequalities (B.16) hold, Eq. (B.15) automatically dominates over
Eq. (B.13). Going to longer distances, where the assumption (ω/c)/

√
ε� q̃z is violated,

is not necessary since at such distances (well exceeding λ̄ T ) the travelling wave contri-
butions dominate; indeed, Eq. (B.5) exceeds Eq. (B.15) in the common wisdom region
d�λ̄ T .

B.4 TE evanescent contribution

The TE contribution is given by Eq. (B.11), but with the replacement rp→ rs. If we try
to proceed as in the TM case and assume first q̃zδω � 1, we obtain an integral diverging
at small q̃z, invalidating the assumption.

Making the opposite assumption, qzδω � 1, for the reflection coefficient we obtain
the same approximation (B.8) with qz = iq̃z, which leads to

Je
TE =

h̄
4π2

∞∫
0

ω dω

eh̄ω/T −1

∞∫
0

q̃3
z dq̃z

[(sinh q̃zd)/δω + q̃z]2 + q̃2
z
. (B.17)

At d� δω the q̃z integral converges at q̃z ∼ 1/d, and the resulting logarithmic ω integral

Je
TE =

3ζ (3)
8π2d4

∞∫
0

δ 2
ω h̄ω dω

eh̄ω/T −1
=

3ζ (3)
4π2

c2T
2πσ3Dd4 ln

d
δT

, (B.18)

is cut off at low frequencies by the condition d ∼ δω , so that the validity condition is
d� δT .

For d � δT we are forced to consider q̃zδω ∼ 1 and use the exact expression q′z =√
2i− q̃2

z δ 2
ω/δω ; however, we can safely set d→ 0 as 1± rs ∼ 1. Then we obtain

(Imrs)
2

|1− r2
s |

2 =
(Req′z)

2

4|q′z|2
=

1/2
4+ q̃4

z δ 4
ω + q̃2

z δ 2
ω

√
4+ q̃4

z δ 4
ω

, (B.19)
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B.4. TE evanescent contribution

which gives

Je
TE =

2πσ3Dh̄
8π2c

∫
∞

0

ω2 dω

eh̄ω/T −1
=

ζ (3)
4π2

2πσ3Dh̄(T/h̄)3

c2 , (B.20)

the q̃z integral converging at q̃z ∼ 1/δω , as expected.
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C.1. Heat current operator

C.1 Heat current operator

We consider a total system given by the Hamiltonian

Ĥ = Ĥ1 + Ĥ2 + Ĥ12, (C.1)

where the first two terms represent subsystems at temperatures T1 and T2, respectively,
and the final term represents a coupling of the subsystems. The independent electronic
subsystem Hamiltonians Ĥa are taken to be (suppressing the time argument)

Ĥa =
∫

a
drΨ

†
a(r)

[
− h̄2

∇2

2m
+u(r)

]
Ψa(r)

+
1
2

∫
a

dr
∫

a
dr′Ψ†

a(r)Ψ
†
a(r
′)V (r− r′)Ψa(r′)Ψa(r), (C.2)

where Ψ (Ψ†) are the annihilation (creation) operators of electrons in the subsystems, and
the three terms represent the kinetic energy, impurity scattering, and (intra-subsystem)
Coulomb interactions, respectively. The coupling between subsystems is given similarly
by

Ĥ12 =
∫

2
dr
∫

1
dr′Ψ†

2(r)Ψ
†
1(r
′)V (r− r′)Ψ1(r′)Ψ2(r). (C.3)

We seek the operator corresponding to the heat current, or energy, absorbed by subsys-
tem 1, given by Heisenberg’s equation:

dĤ1

dt
=

i
h̄

[
Ĥ, Ĥ1

]
=

i
h̄

[
Ĥ1 + Ĥ12, Ĥ1

]
, (C.4)

since the electron creation and annihilation operators of the two subsystems commute
with each other. The only non-zero terms come from those which cannot be written in
terms of the electron density, that of the kinetic energy, which results in the commutator

[
Ĥ1 + Ĥ12, Ĥ1

]
=− h̄2

2m

∫
1

dr
∫

1
dr′
[
Ψ

†
1(r)Ψ1(r)Ṽ (r),Ψ†

1(r
′)∇2

r′Ψ1(r′)
]

(C.5)

=− h̄2

2m

∫
1

drΨ
†
1(r)

[
Ṽ (r),∇2

r
]

Ψ1(r) (C.6)

where Ṽ is the interaction term integrated over both subsystem densities:

Ṽ (r) = ∑
a=1,2

∫
a

dr′Ψ†
1(r)Ψ

†
a(r
′)V (r− r′)Ψa(r′)Ψ1(r). (C.7)

We arrive at the second line Eq. (C.6) simply by expanding the commutator and using
the commutation relations for the fermionic operators. The final commutator may be
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Appendix C. Derivation of Caroli formula and noise spectrum via nonequilibrium
Green’s functions

computed by performing integration by parts once arriving at

dĤ1

dt
=−

∫
1

dr
ih̄
2m

(
−Ψ

†
1(r)∇Ψ1(r)+∇(Ψ†

1(r))Ψ1(r)
)

·∇Ṽ (r)

=− ∑
a=1,2

∫
1

dr
∫

a
dr′ ĵ1(r) ·∇rV (r− r′)ρ̂a(r′) (C.8)

where we identified the particle current operator. The heat current absorbed locally at a
point r is thus (restoring the time arguments)

Ĵ1(r, t) =− ∑
a=1,2

∫
a

dr′ ĵ1(r, t) ·∇rV (r− r′)ρ̂a(r′, t), (C.9)

where the sum represents the fact that heat absorbed at point r in the subsystem 1 is due to
fields produced by density fluctuations either in subsystem 2, or elsewhere in subsystem 1.
In the main text we omit the sum and just remember that while r resides in subsystem 1,
the integration variable r′ runs over the total volume of the system.

C.2 Generating functional for interacting electrons with
disorder

Since we are dealing with a many body problem, the inclusion of interactions is a formidably
difficult task, and an approximation scheme is necessary. Working in the framework of
nonequilibrium Green’s functions, we construct the generating functional for disordered
electrons interacting via Coulomb interactions. The interactions are included within the
random phase approximation (RPA), which is expected to be valid for high electron den-
sity systems such as the metals treated in this work. As we shall see in the following
sections, the generating functional shall give us access via functional differentiation to
the expectation values required for computing the average heat current and its fluctua-
tions [first and second moments of Eq. (C.9)].

The generating functional, Z , is defined as the weighted functional field integral over
the action, S:

Z(V,A) =
∫
D[ψ̄ψ]eiS[ψ̄,ψ,V,A], (C.10)

where ψ̄,ψ are independent Grassman variables necessary to describe a fermionic system.
The action for interacting electrons corresponding to the Hamiltonian (C.1) with scalar
and vector source fields is given explicitly by [Kamenev11]

S =
∫
C

dt
∫

dr

{
ψ̄(r, t)

[
i∂t +

h̄2−→
∇ 2

r
2m

−u(r, t)

]
ψ(r, t)

− ψ̄(r, t)
[
V (r, t)+

1
2mi

(
A(r, t) ·

−→
∇ r−

←−
∇ r ·A(r, t)

)]
ψ(r, t)

− 1
2

∫
dr′ψ̄(r, t)ψ(r, t)V0(r− r′)ψ̄(r′, t)ψ(r′, t)

}
(C.11)
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C.2. Generating functional for interacting electrons with disorder

where the integration in time is over the Keldysh contour, C, which begins at −∞, when
the interactions are adiabatically switched on, runs forwards to +∞ and then runs back-
wards to −∞. The first line of Eq. (C.11) is the free part of the theory, with the three
terms representing the time evolution, the kinetic energy and interaction with an external
potential, u, respectively. Through the latter one may encode disorder in the system. The
second line represents the coupling to external scalar and vector source fields. The gra-
dient operators

−→
∇ and

←−
∇ act in the direction of the arrow. We recognise that the scalar

potential, V , couples to the fermion density, while the vector potential, A, couples to the
fermion current. We note that V and A are not the physical potentials, but just source
fields introduced formally to access the required observables (density and current). Fi-
nally the third line represents the electron-electron interactions, where we only take into
account the singlet channel and neglect triplet and Cooper channel interactions. V0 is the
fermion singlet interaction potential which for electrons is the Coulomb interaction.

We follow the standard procedure described in Ref. [Kamenev11] to separate the
forward and backward parts of the Keldysh time contour, perform a Keldysh rotation of
the Grassman fields using the Larkin and Ovchinnikov convention, and finally define the
classical and quantum components of the bosonic density and current fields and associated
sources. The Coulomb interaction in the last line of Eq. (C.11) is handled via the introduc-
tion of a Hubbard-Stratonovich bosonic field. The resulting integral over the fermionic
fields becomes Gaussian and so may be performed exactly, resulting in an effective non-
linear bosonic theory. Restricting ourselves to RPA, the action is then expanded to second
order in the bosonic fields and in the source terms. Then integration over the bosonic
Hubbard-Stratonovich field is performed resulting in the generating functional:

lnZ[V,A] =−i
∫

dx
∫

dx′
[
V αDαβ

ρρ V β +V αDαβ

ρ jkAβ

k +Aα
i Dαβ

ji jkAβ

k +Aα
i Dαβ

jiρV β

+
∫

dx1

∫
dx2

(
V αDαγ

ρρ +Aα
i Dαγ

jiρ

)
V γδ

RPA

(
Dδβ

ρρV β +Dδβ

ρ jkAk

)]
=−i

∫
dx
∫

dx′Aα
i (x)D̃

αβ

i j (x,x′)Aβ

j (x
′), (C.12)

where D̃αβ

i j (x,x′) =
[

Dαβ

i j (x,x′)+
∫

dx1

∫
dx2 Dαγ

ik (x,x1)V
γδ

kl (x1,x2)D
δβ

l j (x2,x′)
]

(C.13)

where Greek superscripts represent the Keldysh space in the classical–quantum (c− q)
basis and A= (V,Ax,Ay) is the three vector of the source terms, and associated latin sub-
scripts on the GFs refer to the corresponding observables, B = (ρ, jx, jy). The integration
variables x and x′ are 4-vectors of space and time. Since the interaction only couples
density to density, the interaction matrix in density-current space has just one non-zero
element (in the upper left corner), V γδ

ρρ = V γδ

RPA. The GFs themselves are defined as func-
tional derivatives with respect to the source fields (note that we use the opposite sign
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Appendix C. Derivation of Caroli formula and noise spectrum via nonequilibrium
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convention to Ref. [Kamenev11]):

Dαβ

i j (x,x′) =
i
2

δ 2 lnZ[V,A]

δAβ

j (x′)δAα
i (x)

∣∣∣∣∣∣
V=A=0

. (C.14)

Since the source fields couple to the observables, the GFs are proportional to averages of
products of the corresponding observables, remembering that classical component of the
source field couples to quantum component of the observable, and vice versa. Specifically,
the GFs give the expectation values according to

Dαβ

i j (x,x′) =−2i〈Bα ′
i (x)Bβ ′

j (x
′)〉, (C.15)

where if α = c then α ′ = q and vice versa. The classical and quantum field compo-
nent basis is defined with respect to the Keldysh contour forward and backward basis via
Bc(q) = (B f ±Bb)/2. In this construction the the GFs may be collected into a triangular
matrix structure

D =

 0 DA

DR DK

 . (C.16)

The general symmetry relations for bosonic GFs are

DR(x,x′) = DA(x′,x) (C.17a)

DK(x,x′) = DK(x′,x), (C.17b)

We define the Fourier transform in time of steady-state GFs (who depend only on the time
difference)

D(r,r′,ω) =
∫

∞

−∞

d(t− t ′)eiω(t−t ′)D(r,r′, t− t ′). (C.18)

Further, the bosonic GF components for a system in thermal equilibrium at temperature
T obey the relation [Kamenev11]

DK(ω) =
[
DR(ω)−DA(ω)

]
coth

h̄ω

2T
. (C.19)

In the triangular basis the screened GFs defined in Eq. (C.13) may be written in terms of
the screened Coulomb interaction, which for the density-density component gives the reg-
ular matrix Dyson equation (spatial integrations over intermediate variables are implied)

D̃ρρ = Dρρ +DρρVRPADρρ , (C.20)

The screened interaction may itself be expressed via the iterative Dyson equation

VRPA =V0σ1 +V0σ1DρρVRPA, (C.21)

where the first Pauli matrix, σ1 gives the matrix structure of the bare Coulomb interaction
in this basis. The screened GFs may be represented entirely in terms of noninteracting
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C.2. Generating functional for interacting electrons with disorder

GFs and bare interactions via 0 D̃A

D̃R D̃K

=

 0 DA(11−V0DA)−1

DR(11−V0DR)−1 (11−DRV0)
−1DK(11−V0DA)−1

 , (C.22)

and similarly for the screened Coulomb interactionV K
RPA V R

RPA

V A
RPA 0

=

(11−V0DR)−1V0DK(11−V0DA)−1 (11−V0DR)−1V0

(11−V0DA)−1V0 0

 , (C.23)

where intermediate variables are integrated over and 11 = δ (r− r′) is the Dirac delta
function.

Aside from the density-density GF, the other current-density, density-current and current-
current GFs appearing in Eq. (4.24) are related via the continuity equation,

−→
∇

i
r ji(r, t)+

∂ρ(r, t)
∂ t

= 0, (C.24)

which leads to the relations:

Dρρ(r,r′,ω) =
1

ω2
−→
∇

i
rD ji jk(r,r

′,ω)
←−
∇

k
r′, (C.25a)

D jiρ(r,r
′,ω) =− 1

iω
D ji jk(r,r

′,ω)
←−
∇

k
r′, (C.25b)

Dρ jk(r,r
′,ω) =

1
iω
−→
∇

i
rD ji jk(r,r

′,ω). (C.25c)

Using these relations, we may derive from the generating functional expressions for the
average heat current and the fluctuations.

Using the definitions written above, we may write the average of the heat current
Eq. (C.9) in terms of a functional derivative of the generating functional (transforming
fields from forwards-backwards basis into classical and quantum components)〈

Ĵ(r, t)
〉
=

1
2

[〈
Ĵ f (r, t)

〉
+
〈

Ĵb(r, t)
〉]

=−
∫

dr′
−→
∇

i
rV (r− r′)〈 jc

i (r, t)ρ
c(r′, t)〉

=
1
4

∫
dr′
−→
∇

i
rV (r− r′)

δ 2Z [V,A]

δV q(r′, t)δAq
i (r, t)

∣∣∣∣
V=A=0

. (C.26)

Similarly, we may write the expression for the fluctuations in terms of functional deriva-
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Appendix C. Derivation of Caroli formula and noise spectrum via nonequilibrium
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tives〈{
Ĵ f (r, t)Ĵb(r′, t ′)

}〉
=

1
16

∫
dr1

∫
dr2
−→
∇

i
rV (r− r1)

−→
∇

i
r′V (r′− r2)

×
[

δ 4Z [V,A]

δV q(r2, t ′)δAq
k(r′, t ′)δV q(r1, t)δAq

i (r, t)
+

δ 4Z [V,A]

δV c(r2, t ′)δAc
k(r′, t ′)δV q(r1, t)δAq

i (r, t)

+
δ 4Z [V,A]

δV q(r2, t ′)δAq
k(r′, t ′)δV c(r1, t)δAc

i (r, t)
+

δ 4Z [V,A]

δV c(r2, t ′)δAq
k(r′, t ′)δV c(r1, t)δAq

i (r, t)

− δ 4Z [V,A]

δV q(r2, t ′)δAc
k(r′, t ′)δV c(r1, t)δAq

i (r, t)
− δ 4Z [V,A]

δV c(r2, t ′)δAq
k(r′, t ′)δV q(r1, t)δAc

i (r, t)

− δ 4Z [V,A]

δV q(r2, t ′)δAc
k(r′, t ′)δV q(r1, t)δAc

i (r, t)

]
V=A=0

. (C.27)

C.3 Caroli formula for the average heat current

For the average of Eq. (C.9) the functional derivative in Eq. (C.26) may be identified as a
GF via its definition

〈Ĵ(r, t)〉=− i
2

∫
dr′
∫

∞

−∞

dω

2π
D̃K

jiρ(r,r
′,ω)
−→
∇

i
rV0(r− r′), (C.28)

which may be conveniently split into two equal pieces:

〈Ĵ(r, t)〉= i
4

∫
dr′
∫

∞

−∞

dω

2π

×
[
D̃K

jiρ(r,r
′,ω)V0(r′− r)

←−
∇

i
r−
−→
∇

i
rV0(r− r′)D̃K

ρ ji(r
′,r,ω)

]
, (C.29)

where we now seek to express each term in terms of noninteracting GFs and RPA screened
interaction terms. We have for the first dressed GF the relevant matrix Dyson equation:

D̃ jiρ = D jiρ +D jiρVRPADρρ (C.30)

= D jiρ +D jiρV0σ1Dρρ +D jiρV0σ1DρρVRPADρρ (C.31)

= D jiρ +D jiρV0σ1Dρρ +D jiρV0σ1D̃ρρV0σ1Dρρ . (C.32)

Performing the matrix multiplication multiplication and taking the Keldysh component
gives (suppressing everywhere the dependence on ω):

D̃K
jiρ(r,r

′,ω) = DK
jiρ(r,r

′)

+
∫

r1,r2

DR
jiρ(r,r1)V0(r1− r2)

[
DK

ρρ(r2,r′)+
∫

r3,r4

D̃R
ρρ(r2,r3)V0(r3− r4)DK

ρρ(r4,r′)
]

+
∫

r1,r2

DK
jiρ(r,r1)V0(r1− r2)

[
DA

ρρ(r2,r′)+
∫

r3,r4

D̃A
ρρ(r2,r3)V0(r3− r4)DA

ρρ(r4,r′)
]

+
∫

r1,r2,r3,r4

DR
jiρ(r,r1)V0(r1− r2)D̃K

ρρ(r2,r3)V0(r3− r4)DA
ρρ(r4,r′), (C.33)
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C.3. Caroli formula for the average heat current

where we have introduced the shorthand notation
∫

r1,r2
=
∫

dr1
∫

dr2. In the second
and third lines we may recognise the retarded and advanced component of the screened
interaction potential, respectively, and in the final line we may replace the screened
density-density sandwiched by bare interactions by the bare density-density sandwiched
by screened interactions, since we have V0D̃K

ρρV0 =V R
RPADK

ρρV A
RPA. Doing so leads to

D̃K
jiρ(r,r

′,ω) = DK
jiρ(r,r

′)

+
1

ω2

∫
r1,r2

DR
ji jn(r,r1)

−→
∇

n
r1

V R
RPA(r1,r2)

←−
∇

p
r2DK

jpρ(r2,r′)

+
1

ω2

∫
r1,r2

DK
ji jn(r,r1)

−→
∇

n
r1

V A
RPA(r1,r2)

←−
∇

p
r2DA

jpρ(r2,r′)

+
1

ω4

∫
r1,r2,r3,r4

DR
ji jn(r,r1)

−→
∇

n
r1

V R
RPA(r1,r2)

←−
∇

p
r2DK

jp jq(r2,r3)
−→
∇

q
r3V

A
RPA(r3,r4)

←−
∇

s
r4

DA
jsρ(r4,r′).

(C.34)

The remaining current-density GFs are written in terms of current-current GFs via the
relations (C.25), which when combined with the gradient of the bare interaction in the
expression for the heat current leads to the contribution∫

dr′D̃K
jiρ(r,r

′,ω)V0(r′− r)
←−
∇

i
r

=− 1
iω

∫
dr′
[
DK

ji jl(r,r
′)
←−
∇

l
r′

+
1

ω4

∫
r1,r2,r3,r4

DR
ji jn(r,r1)

−→
∇

n
r1

V R
RPA(r1,r2)

←−
∇

p
r2DK

jp jq(r2,r3)
−→
∇

q
r3V

A
RPA(r3,r4)

←−
∇

s
r4

DA
js jl(r4,r′)

←−
∇

l
r′

+
1

ω2

∫
r1,r2

DR
ji jn(r,r1)

−→
∇

n
r1

V R
RPA(r1,r2)

←−
∇

p
r2DK

jp jl(r2,r′)
←−
∇

l
r′

+
1

ω2

∫
r1,r2

DK
ji jn(r,r1)

−→
∇

n
r1

V A
RPA(r1,r2)

←−
∇

p
r2DA

jp jl(r2,r′)
←−
∇

l
r′

]
V0(r′− r)

←−
∇

i
r, (C.35)

where the direction of the additional gradient terms on the right hand side of all the terms
in square brackets may be flipped by integration by parts, and upon factorising the final
bare Coulomb interaction may be incorporated into the expression, leading ultimately to∫

dr′D̃K
jiρ(r,r

′,ω)V0(r′− r)
←−
∇

i
r =

(
11+

1
ω2 DRV R

∇

)
1

iω
DKV A

∇
, (C.36)

where the leftmost and rightmost spatial index are both r with Cartesian index i, while all
intermediate spatial variables are integrated over. 11 is the identity operator – i.e. Dirac
delta function in the spatial variables and Kronecker delta in Cartesian indices: 11 = δ (r−
r′)δik. The interaction terms V∇ are RPA screened Coulomb sandwiched by gradients on
either side as seen everywhere in the above equations. The other term in the equation
for the average heat current Eq. (C.29) is found in exactly the same way, leading to the
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general result

〈Ĵ(r, t)〉=−1
4

∫
∞

−∞

dω

2π

[(
11+

1
ω2 DRV R

∇

)
1
ω

DKV A
∇
+

1
ω

V R
∇

DK
(

11+
1

ω2V A
∇

DA
)]

,

(C.37)
Eq. (C.37) is general since we have not yet specified the geometry of the bodies. We just
have to remember that the leftmost and rightmost spatial coordinates are both r which
necessarily resides in body 1.

Specifying to the geometry of parallel layers amounts to specifying that the noninter-
acting GFs appearing in Eq (C.37) are only non-zero if their z-coordinates are either both
0 or both d. This may be taken care of by introducing a 2× 2 matrix structure encoding
the z-coordinate. Encoding the z-coordinate like this leads to the expression (the terms in
11 cancel due to parity for ω →−ω)

〈Ĵ(r, t)〉=−1
4

∫
∞

−∞

dω

2π

1
ω3

∫
d2r1d2r2d2r3

×
[
DR

1 (r− r1)V R
∇,1a(r1− r2)DK

a (r2− r3)V A
∇,a1(r3− r)

+V R
∇,2a(r− r1)DK

a (r1− r2)V A
∇,a2(r2− r3)DA

2 (r3− r)
]
, (C.38)

where a = 1,2 is summed over, and the spatial variables are now understood to be two-
dimensional. All functions depend only on in-plane coordinate difference due to the in-
plane translational invariance. Going to Fourier space in the in-plane spatial arguments
allows us to return to density-density GFs and screened Coulomb interactions (without
gradients). In doing so, we find that the ‘chosen’ position r drops out, as expected for
the average (as did, indeed, the time t). Using the symmetry relations of bosonic GFs
Eqs. (C.17), and the equilibrium relation for the Keldysh component Eq. (C.19), we find

〈Ĵ〉=
∞∫
−∞

dω

2π

∫ d2k
(2π)2 h̄ω ImΠ1(k,ω) ImΠa(k,ω)

∣∣V R
1a(k,ω)

∣∣2[coth
h̄ω

2Ta
− coth

h̄ω

2T1

]
,

(C.39)
where DR

ρρ(k,ω) = Π(k,ω) and DA
ρρ(k,ω) = Π∗(k,ω). We notice that the contribution

associated with heat transferred from within body 1, i.e. when a = 1, gives zero due to
the difference of hyperbolic cotangents. The remaining contribution is the well-known
Caroli formula (3.1) where V R

12 is the retarded component of the RPA screened inter-layer
interaction term (3.3). In Ch. 3 we carefully evaluate the Caroli formula for the average
heat current between identical metals using a particular model for the material density
response, Π.

C.4 Fluctuations of the heat current

For the fluctuations, we seek the correlator

S(r,r′, t− t ′) =
1
2
〈{

Ĵ(r, t), Ĵ(r′, t ′)
}〉
−〈Ĵ(r, t)〉2, (C.40)
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C.4. Fluctuations of the heat current

where in Eq. (C.27) we have already seen that the anticommutator may be found via
functional differentiation of the generating functional. For each term in Eq. (C.27) we
make use of the general relation valid when lnZ is a quadratic functional

〈 jα
i (r, t)ρ

β (r1, t) jγ

k(r
′, t ′)ρδ (r2, t ′)〉

=
1

16
δ 4Z [V,A]

δV δ ′(r2, t ′)δAγ ′

k (r′, t ′)δV β ′(r1, t)δAα ′
i (r, t)

∣∣∣∣∣
V=A=0

=
1

16

[
δ 2 lnZ

δAγ ′

k δAα ′
i

δ 2 lnZ
δV δ ′

2 δV β ′

1

+
δ 2 lnZ

δV δ ′
2 δAα ′

i

δ 2 lnZ
δAγ ′

k δV β ′

1

+
δ 2 lnZ

δV β ′

1 δAα ′
i

δ 2 lnZ
δV δ ′

2 δAγ ′

k

]
, (C.41)

where the final term is the average heat current squared, so is subtracted when investi-
gating the fluctuations, Eq. (C.40). Computing all the c,q combinations appearing in the
expression for the correlator (C.27) leads to the expression

S(r,r′, t− t ′) =−1
4

∞∫
−∞

dω

2π

∞∫
−∞

dω ′

2π
e−i(ω+ω ′)(t−t ′)

∫
dr1

∫
dr2∇

i
rV0(r− r1)∇

k
r′V0(r′− r2)

×
[
D̃K

ji jk(r,r
′,ω)D̃K

ρρ(r1,r2,ω
′)+ D̃R−A

ji jk (r,r′,ω)D̃R−A
ρρ (r1,r2,ω

′)

+ D̃K
ρ jk(r1,r′,ω)D̃K

jiρ(r,r2,ω
′)+ D̃R−A

ρ jk (r1,r′,ω)D̃R−A
jiρ (r,r2,ω

′)
]
,

(C.42)

where DR−A =DR−DA. We first tackle the first term of the first line, which via Eqs. (C.22)
and (C.23) may be written as

− D̃K
ji jk(r,r

′,ω)︸ ︷︷ ︸
r,r′,ω

−→
∇

i
r

[∫
r1,r2

V0(r− r1)D̃K
ρρ(r1,r2,ω

′)V0(r2− r′)
]
←−
∇

k
r′︸ ︷︷ ︸

r,r′,ω ′

(C.43)

=−D̃K
ji jk(r,r

′,ω)
1

ω ′2

∫
r1,r2

−→
∇

i
rV

R
RPA(r,r1,ω

′)
←−
∇

l
r1

DK
jl jm(r1,r2,ω

′)
−→
∇

m
r2

V A
RPA(r2,r′,ω ′)

←−
∇

k
r′

(C.44)

The remaining screened current-current GF to be computed in this first term is found via
its own Dyson equation

D̃ ji jk = D ji jk +D jiρVRPADρ jk (C.45)

= D ji jk +D jiρV0σ1Dρ jk +D jiρV0σ1DρρVRPADρ jk (C.46)

= D ji jk +D jiρV0σ1Dρ jk +D jiρV0σ1D̃ρρV0σ1Dρ jk . (C.47)
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Appendix C. Derivation of Caroli formula and noise spectrum via nonequilibrium
Green’s functions

Performing the matrix multiplication, taking the Keldysh component leads to (suppressing
everywhere the dependence on ω):

D̃K
ji jk(r,r

′,ω) = DK
ji jk(r,r

′)

+
∫

r1,r2

DR
jiρ(r,r1)V0(r1− r2)

[
DK

ρ jk(r2,r′)+
∫

r3,r4

D̃R
ρρ(r2,r3)V0(r3− r4)DK

ρ jk(r4,r′)
]

+
∫

r1,r2

DK
jiρ(r,r1)V0(r1− r2)

[
DA

ρ jk(r2,r′)+
∫

r3,r4

D̃A
ρρ(r2,r3)V0(r3− r4)DA

ρ jk(r4,r′)
]

+
∫

r1,r2,r3,r4

DR
jiρ(r,r1)V0(r1− r2)D̃K

ρρ(r2,r3)V0(r3− r4)DA
ρ jk(r4,r′), (C.48)

where in the second and third lines we may recognise the retarded and advanced com-
ponent of the screened interaction potential, respectively, and in the final line we may
replace the screened density-density sandwiched by bare interactions by the bare density-
density sandwiched by screened interactions, as above in the first factor. Doing so and
writing everything in terms of bare current-current GFs leads to

D̃K
ji jk(r,r

′,ω) = DK
ji jk(r,r

′)

+
1

ω2

∫
r1,r2

DR
ji jn(r,r1)

−→
∇

n
r1

V R
RPA(r1,r2)

←−
∇

p
r2DK

jp jk(r2,r′)

+
1

ω2

∫
r1,r2

DK
ji jn(r,r1)

−→
∇

n
r1

V A
RPA(r1,r2)

←−
∇

p
r2DA

jp jk(r2,r′)

+
1

ω4

∫
r1,r2,r3,r4

DR
ji jn(r,r1)

−→
∇

n
r1

V R
RPA(r1,r2)

←−
∇

p
r2DK

jp jq(r2,r3)
−→
∇

q
r3V

A
RPA(r3,r4)

←−
∇

s
r4

DA
js jk(r4,r′).

(C.49)

Multiplying by the other Keldysh component as given above leads to the result for the
first term of the first line of Eq. (4.24) (factorising where integration over intermediate
variables is implied)(

1+
1

ω2 DRV R
∇

)
DK
(

1+
1

ω2V A
∇

DA
)

︸ ︷︷ ︸
r,r′,ω

1
ω ′2

V R
∇

DKV A
∇︸ ︷︷ ︸

r,r′,ω ′

, (C.50)

where all GFs are bare current-current and the interaction terms V∇ are RPA screened
Coulomb sandwiched by gradients on either side [see Eq. (C.49)], which may be seen as
dipole-dipole interactions. Note that the cartesian indices i and k always appear on the
left and right hand sides, respectively, i.e. with the spatial indices r and r′. Note also that
the terms in brackets may be expressed entirely in terms of interactions (inverse bare and
screened interaction) so the result will depend explicitly only on the imaginary part of the
response function, as expected since we are computing (the square of) the dissipation.

The second term in the first line of Eq. (4.24) corresponds to sending D̃K → D̃R−
D̃A in the first term. We follow the same procedure and replace V0(D̃R

ρρ − D̃A
ρρ)V0 =

V R
RPA(D

R
ρρ −DA

ρρ)V
A
RPA, while for the remaining term we find that from Eq. (C.48) we
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C.4. Fluctuations of the heat current

have the correspondence:

D̃K
ji jk −→

DK→DR−DA
D̃R

ji jk− D̃A
ji jk , (C.51)

and so the term gives an equivalent contribution but with the corresponding replacement,
i. e. instead of Eq. (C.50) we have:(

1+
1

ω2 DRV R
∇

)
(DR−DA)

(
1+

1
ω2V A

∇
DA
)

︸ ︷︷ ︸
r,r′,ω

1
ω ′2

V R
∇
(DR−DA)V A

∇︸ ︷︷ ︸
r,r′,ω ′

. (C.52)

The second line of Eq. (4.24) is approached in a completely analogous way, eventually
leading to the expression for the total correlator

S(r,r′, t− t ′) =−1
4

∫
∞

−∞

dω

2π

∫
∞

−∞

dω ′

2π
ei(ω+ω ′)(t−t ′)

×


(

11+
1

ω2 DRV R
∇

)
DK
(

11+
1

ω2V A
∇

DA
)

︸ ︷︷ ︸
r,r′,ω

1
ω ′2

V R
∇

DKV A
∇︸ ︷︷ ︸

r,r′,ω ′

+
1
ω

V R
∇

DK
(

11+
1

ω2V A
∇

DA
)

︸ ︷︷ ︸
r,r′,ω

(
11+

1
ω ′2

DRV R
∇

)
1

ω ′
DKV A

∇︸ ︷︷ ︸
r,r′,ω ′

+[DK → DR−A].

(C.53)

Like Eq. (C.37) for the average, this equation (C.53) is general, since we have not yet
specified the geometry of the system. In Sec. 4.3 we focus on parallel two-dimensional
metallic layers in the parameter range where the heat current may be dominated by the
antisymmetric surface plasmon contribution.
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Derivation of the density response function

from the Boltzmann kinetic equation
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We assume the 2D electron gas to be in the good metallic regime, when the mean
free path ` is much larger than the Fermi wavelength, so we may neglect localization ef-
fects. In this limit, and for perturbations smooth on the scale of the Fermi wavelength,
the electron dynamics can be described by the semiclassical Boltzmann kinetic equa-
tion [Abrikosov88]. The electron distribution function fp(r, t) is assumed to depend on
the 2D momentum p and the 2D position r, while the dynamics in the third dimension is
assumed to be completely frozen by a tight confinement. Then the kinetic equation reads

∂ fp

∂ t
+vp ·

∂ fp

∂r
+F ·

∂ fp

∂p
= St[ f ], (D.1)

where F is an externally applied force, and vp = ∂εp/∂p is the electron group velocity
determined by the energy dispersion εp. The collision integral on the right-hand side,
written in the Born approximation,

St[ f ] = 2πni

∫ d2p′

(2π)2 |U(p−p′)|2 δ (εp− εp′)
(

fp′− fp
)
, (D.2)

is determined by the impurity concentration ni and the Fourier transform of the impurity
potential U(p−p′). Beyond the Born approximation, |U(p−p′)|2 should be replaced by
the exact scattering amplitude, properly normalized.

In the absence of perturbations, the electrons are assumed to have the Fermi-Dirac
distribution determined by the Fermi energy εF and the temperature T :

f eq
p =

1
e(εp−εF )/T +1

. (D.3)

If a perturbing electrostatic potential ϕk,ω eikr−iωt + c.c. is applied to the 2D system
(again, we neglect its dependence on the third coordinate), it enters Eq. (D.1) via the
associated electrostatic force F =−iekϕk,ω eikr−iωt + c.c.. To the linear order in the per-
turbation, the distribution function can be sought in the form

fp(r, t) = f eq
p + eϕk,ω gp eikr−iωt + c.c., (D.4)

where gp is position- and time-independent and satisfies the following linear integral
equation:

− iωgp + ikvpgp− ikvp
∂ f eq

∂εp

= 2πni

∫ d2p′

(2π)2 |U(p−p′)|2 δ (εp− εp′)
(
gp′−gp

)
. (D.5)

An explicit solution of this equation can be found only in the case of short-range impu-
rities when U(p−p′) does not depend on momentum. In this case the collision integral
reduces to the relaxation time approximation:

St[ f ] =
fp− fp

τ
, (D.6)
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Appendix D. Derivation of the density response function from the Boltzmann kinetic
equation

where the overbar denotes the average over the momentum directions on a constant energy
surface,

fp ≡
∫

d2p′ fp′ δ (εp′− εp)∫
d2p′ δ (εp′− εp)

, (D.7)

and the relaxation time and the density of states per unit area are given by (the factor of 2
in front of the integral takes into account two spin projections)

1
τ
= πνni|U |2, ν = 2

∫ d2p′

(2π)2 δ (εp− εp′). (D.8)

Then, Eq. (D.5) gives

gp =
ikvp(∂ f eq/∂εp)+(1/τ)gp

ikvp− iω +1/τ
. (D.9)

Averaging both sides over the momentum directions, one obtains a closed equation for gp
and readily finds

gp =
1+(iωτ−1)S

1−S
∂ f eq

∂εp
, (D.10)

where S stands for the following angular average:

S≡ (1− iωτ + ikvpτ)−1

=
∫ 2π

0

dφ

2π

1
1− iωτ + ivFk cosφ

=
1√

(1− iωτ)2 +(vFkτ)2
. (D.11)

The last two lines were written under the assumption of an isotropic dispersion εp. Finally,
since the electron density is given by

ρ(r, t) = 2
∫ d2p

(2π)2 fp(r, t) (D.12)

(again, the factor of 2 takes care of the spin multiplicity), the density response function
can be found as

Π(k,ω) = 2
∫ d2p

(2π)2 gp. (D.13)

Collecting all factors and assuming that −∂ f eq/∂εp is a narrow peak around the Fermi
energy of width ∼ T , so that the energy dependence of ν and vF can be neglected, we
arrive at Eq. (3.4).

If U(p− p′) is momentum dependent, no closed solution can be obtained even in
the simplest of isotropic scattering when the scattering amplitude depends only on the
difference φ − φ ′ of the polar angles φ ,φ ′ associated to the 2D vectors p,p′. Indeed,
in this case the solution can be sought as a sum over polar harmonics, gp = ∑m gmeimφ ,
which are the eigenfunctions of the collision integral. Different harmonics do not separate
because of the second term in Eq. (D.5), which is responsible for the spatial dispersion
of the conductivity σ(k,ω). Only when the spatial dispersion is neglected, the Drude
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conductivity σ(ω) can be written in terms of the transport relaxation time τ1, determined
by the first eigenvalue of the collision integral, −1/τ1. Otherwise, the result contains all
eigenvalues −1/τm>0. Still, qualitatively, it is τ1 that determines the relevant time scale:
in the limit of Eq. (D.6) all τm>0 = τ , while in the opposite limit of small-angle scattering
τm quickly grows with m, so high harmonics are suppressed and the result is determined
by the first few τm’s.
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Théorie du transfert de chaleur dans des nanostructures :
approches microscopique et phénoménologique

Theory of heat transfer in nanostructures: microscopic and
phenomenological approaches

Résumé
Des objets séparés spatialement peuvent échanger de la chaleur par rayonnement. L’origine de ce mécanisme est

le mouvement thermique aléatoire de charges à l’intérieur d’un corps qui induit des champs électromagnétiques qui
se comportent et interagissent avec d’autres corps selon les équations de Maxwell et la réponse électromagnétique
des matériaux. On sait depuis plus de 50 ans que la nature du transfert de chaleur par rayonnement est très différente
pour les corps éloignés les uns des autres et pour les corps proches les uns des autres. En particulier, pour les
corps proches, dans ce qu’on appelle le champ proche, le caractère ondulatoire des champs électromagnétiques
est important et les ondes évanescentes peuvent renforcer le transfert de chaleur. Il y a un regain d’intérêt pour
les études du champ proche en raison de la pertinence experimental relativement nouvelle des petites distances
associées, ainsi que des réalisations de nouveaux matériaux et structures de taille et/ou de dimension réduite.
Dans cette thèse, nous fournissons des contributions théoriques pour améliorer notre compréhension du transfert de
chaleur radiatif en champ proche.

Dans ce travail, nous élucidons les rôles joués dans le transfert de chaleur radiatif par des ingrédients physiques
clés qui sont communs à de nombreux systèmes. Tout d’abord, nous étudions la chaleur moyenne échangée par
des couches métalliques bidimensionnelles parallèles modélisées par la conductivité de Drude. Nous effectuons un
calcul analytique dans le cadre de l’électrodynamique fluctuationnelle où les contributions additives au transfert de
chaleur par des ondes de type différent se séparent naturellement. Cette étude nous permet d’évaluer l’importance
de retardation dans l’interaction électromagnétique en fonction de la température, de la séparation et de la conduc-
tivité des matériaux. En nous concentrant sur la limite de Coulomb valable pour les mauvais métaux à de petites
séparations, nous utilisons un modèle plus riche pour la réponse du matériau afin d’étudier les rôles et les interac-
tions du désordre, de la dispersion spatiale et des excitations collectives de densité de charge appelées plasmons
de surface. A partir de nos expressions analytiques, nous montrons que dans une fenêtre paramétrique d’échelles
de séparation et de température, le courant thermique radiatif est effectivement dominé par les plasmons de surface.

Nous poursuivons en étudiant les fluctuations, ou le bruit, du courant thermique radiatif autour de sa valeur
moyenne. Nous abordons cette quantité beaucoup moins bien comprise car elle est censée contenir plus
d’informations physiques sur les systèmes échangeant de la chaleur. En particulier, nous nous intéressons aux
systèmes où la contribution dominante au transfert de chaleur provient d’excitations collectives ou résonantes, où le
bruit du courant thermique peut fournir une sonde expérimentale de ces excitations. Nous étudions analytiquement
deux de ces systèmes : un système effectif de dimension zéro où le courant thermique est médié par un résonateur
supraconducteur, et le système familier de couches métalliques bidimensionnelles dont le transfert thermique peut
être dominé par des plasmons de surface. Dans les deux cas, le spectre de bruit à fréquence finie révèle une sig-
nature du canal de transfert résonant, qui pourrait potentiellement être mesurable et donc fournir une sonde des
excitations pertinentes.

Mots-clés : transfert de chaleur, interaction électron-électron, champ proche

Abstract
Spatially separated objects may exchange heat via radiation. The origin of this mechanism is the random ther-

mal motion of charges inside a body that induce electromagnetic fields that behave and interact with other bodies
according to Maxwell’s equations and the materials’ electromagnetic response. It has been understood for over 50
years that the nature of the radiative heat transfer is very different for bodies that are far apart than for bodies that
are close together. In particular, for bodies that are close together, in the so-called near field, the wave-like character
of the electromagnetic fields is significant and evanescent waves may enhance the heat transfer compared to the far
field. There is a renewed interest in studies of the near field due to the relatively newfound experimental relevance
of the associated small distances, as well as realisations of novel materials and structures with reduced size and/or
dimension. In this thesis we provide theoretical contributions to further our understanding of near field radiative heat
transfer.

In this work we elucidate the roles played in the radiative heat transfer by key physical ingredients that are common
to many systems. First, we study the average heat exchanged by parallel two-dimensional metallic layers modelled
by Drude conductivity. We perform an analytical calculation in the framework of fluctuational electrodynamics where
the additive contributions to the heat transfer by waves of different type separate naturally. This study allows us to
evaluate the importance of retardation in the electromagnetic interaction according to the temperature, separation,
and the material dc conductivity. Focusing on the Coulomb limit valid for poor metals at small separations, we use
a richer model for the material response to investigate the roles and interplay of disorder, spatial dispersion, and
collective charge density excitations called surface plasmons. From our analytical expressions we show that in a
parametric window of separation and temperature scales the radiative heat current is indeed dominated by surface
plasmons.

We go on to study the fluctuations, or noise, of the radiative heat current about its average value. We approach this
much less well-understood quantity because it is expected to contain more physical information about the systems
exchanging heat. In particular, we are interested in systems where the dominant contribution to the heat transfer
comes collective or resonant excitations, where the heat current noise may provide an experimental probe of these
excitations. We study analytically two such systems: an effective zero-dimensional system where the heat current
is mediated by a superconducting resonator, and the system of two-dimensional metallic layers whose heat transfer
may be dominated by surface plasmons. In both cases the finite-frequency noise spectrum reveals a signature of the
resonant transfer channel, that could potentially be measurable and hence provide a probe of the relevant excitations.

Keywords : Heat transport, electron-electron interaction, near field
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