
HAL Id: tel-03736418
https://theses.hal.science/tel-03736418

Submitted on 22 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

convex optimization for risk-sensitive learning
Yassine Laguel

To cite this version:
Yassine Laguel. convex optimization for risk-sensitive learning. Machine Learning [cs.LG]. Université
Grenoble Alpes [2020-..], 2021. English. �NNT : 2021GRALM053�. �tel-03736418�

https://theses.hal.science/tel-03736418
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques Appliquées

Arrêté ministériel : 25 mai 2016

Présentée par

Yassine LAGUEL

Thèse dirigée par Jerome MALICK

préparée au sein du Laboratoire Laboratoire Jean Kuntzmann
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Optimisation convexe pour l'apprentissage
robuste au risque

convex optimization for risk-sensitive learning

Thèse soutenue publiquement le 30 novembre 2021,
devant le jury composé de :

Monsieur JERÔME MALICK
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES, Directeur
de thèse

Monsieur ALEXANDRE D'ASPREMONT
DIRECTEUR DE RECHERCHE, CNRS DELEGATION PARIS CENTRE,
Examinateur

Monsieur MERT GÜRBÜZBALABAN
PROFESSEUR ASSISTANT, Rutgers, The State University New Jersey,
Examinateur

Monsieur PANAYOTIS MERTIKOPOULOS
CHARGE DE RECHERCHE HDR, CNRS DELEGATION ALPES,
Examinateur

Madame CLAUDIA SAGASTIZÁBAL
CHERCHEUR HDR, Universidade Estadual de Campinas, Rapporteure

Monsieur JOSEPH SALMON
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE MONTPELLIER,
Rapporteur

Madame NADIA BRAUNER
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES,
Présidente

¢8 AT☒

A

R I S K-AV E R S E O P T I M I Z AT I O N : M O D E L S ,

A LG O R I T H M S , A N D A P P L I CAT I O N S I N

M AC H I N E L E A R N I NG

������� ������

PhD. Thesis

����

����������� Claudia Sagastizábal

���������� Joseph Salmon

����������� Alexandre d’Aspremont

����������� Mert Gürbüzbalaban

����������� Panayotis Mertikopoulos

���������� Nadia Brauner

��������� �� ����� Jérôme Malick

������ ������ Zaid Harchaoui

������ ������ Wim Van Ackooĳ

Université Grenoble Alpes

Laboratoire Jean Kuntzmann

P R E FAC E

This thesis deals with optimization under uncertainty, which has a long history
in operations research and mathematical optimization. This field is currently
challenged by applications in artificial intelligence and data science, where risk
management has become a crucial issue. In this thesis, we consider nonsmooth
optimization problems involving risk measures and coming from statistical
learning applications. We pay a special attention to the risk measure called the
superquantile (also known as the "Conditional Value at Risk") and we show
how, in various contexts, it may enforce robustness for decision-making under
uncertainty.

First, we consider convex risk measures admitting a representation in terms
of superquantiles. We derive first-order oracles with optimal computational
complexity. These approximate oracles involve different smoothing techniques
for which we propose a unified analysis. We also propose an efficient implemen-
tation of these oracles, coupled with a series of classical optimization methods,
in an open-source software in python. We show empirically, on classification
and regression tasks, that the predictions obtained are robust to data shifts.

We then consider chance-constrained optimization problems. We propose a
reformulation of these problems in the form of bilevel programs that involve the
superquantile. We propose a (semi-) exact penalization for this reformulation,
which we treat with a bundle method. We implement our bilevel approach in
an open-source python software, which we illustrate on non-convex problems.

Finally, we investigate the use of the superquantile for federated learning. We
consider the case of users with heterogeneous data distributions and we show
how the superquantile allows for better performances on non-conforming users.
We propose an algorithm adapted to the constraints of federated learning, in
terms of communications and data privacy. We prove its theoretical convergence
in the convex case by controlling the drift induced by the local stochastic
gradient method and the dynamic reweighting induced by superquantiles. We
also propose an in-depth numerical study of our algorithm and compare its
performance with several established baselines, including FedAvg, FedProx and
Tilted-ERM and Agnostic Federated Learning.

iii

R É S U M É

Cette thèse s’inscrit dans le cadre de l’optimisation sous incertitude, qui a une
longue tradition en recherche opérationnelle et en optimisation mathématique.
Ce domaine trouve aujourd’hui de nouvelles applications en intelligence ar-
tificielle et science des données, où la prise en compte du risque est devenu
une question cruciale. Dans cette thèse, nous considérons des problèmes
d’optimisation, issus d’applications en apprentissage statistique, mettant en
jeu des mesures de risque. Nous accordons une attention particulière à la
mesure de risque appelée superquantile (également connue sous le nom de
"Conditional Value at Risk") et montrons comment, dans divers contextes, elle
permet d’obtenir de la robustesse dans la prise de décision.

Dans un premier temps, nous nous intéressons aux mesures de risque con-
vexes admettant une représentation en termes de superquantiles. Nous dérivons
des oracles du premier ordre avec une complexité de calcul optimale. Ces oracles
approchés font intervenir différentes techniques de lissage pour lesquelles nous
proposons une analyse unifiée. Nous proposons aussi une implémentation effi-
cace de ces oracles, couplée à une série de méthodes classiques d’optimisation,
dans un logiciel open-source en python. Nous montrons empiriquement, sur
des problèmes de classifications et de régression, que les prédictions obtenues
sont robustes aux perturbations des données.

Nous nous penchons ensuite sur les problèmes d’optimisation avec contraintes
en probabilités. Nous proposons une reformulation de ces problèmes sous
la forme de problèmes bi-niveaux qui font apparaître le superquantile. Nous
proposons une pénalisation (semi-)exacte pour cette reformulation, que nous
traitons avec une méthode de faisceaux. Nous implémentons notre approche
bi-niveau, dans un logiciel open-source, que nous illustrons sur des problèmes
non-convexes.

Enfin, nous nous penchons sur l’utilisation du superquantile dans le cadre de
l’apprentissage fédéré. Nous considérons le cas d’utilisateurs aux distributions
de données hétérogènes et montrons comment le superquantile permet d’obtenir
de meilleurs performances sur les utilisateurs les moins privilégiés. Notre
algorithme est adapté aux contraintes réelles, en terme de communications
et de protection des données. Nous en démontrons la convergence théorique
dans le cas convexe en contrôlant simultanément la dérive des modèles locaux
induite par la méthode de descente du gradient stochastique locale, ainsi que
la redistribution de poids induite par le superquantile. Nous proposons aussi
une étude numérique approfondie de notre algorithme en le comparant à
un ensemble d’algorithmes constituant l’état de l’art en apprentissage fédéré,
incluant notemment FedAvg, FedProx, Tilted-ERM et Agnostic Federated Learning.

v

R E M E RC I E M E N T S

Je souhaite tout d’abord exprimer mes plus chaleureux remerciements à mon
directeur de thèse, Jérôme Malick, pour la bienveillance avec laquelle il a su
me conseiller et me guider toutes ces années. J’ai découvert l’optimisation
numérique à travers ses cours de Master 1, et ma passion pour le sujet n’a cessé
de croître depuis. Son attention, sa générosité et sa patience ont sublimé mes
années de thèse et décuplé mon enthousiasme pour la recherche. Merci pour
tout.

Je tiens aussi à remercier chaleureusement Claudia Sagastizàbal et Joseph
Salmon d’avoir accepté de rapporter cette thèse, et pour leur commentaires
enthousiastes. Je remercie également Nadia Brauner, Alexandre d’Aspremont,
Mert Gürbüzbalaban et Panayotis Mertikopoulos, pour m’avoir fait l’honneur
d’être membre de mon jury de thèse.

Je tiens également à témoigner toute ma gratitude à Zaid Harchaoui pour
la collaboration qu’il m’a offerte pendant cette thèse. Sa vision et son sens de
l’exigence ont imprégné une part importante de mes travaux, pour lesquels
je souhaite lui rendre hommage. Je souhaite également remercier Wim Van
Ackooĳ et Franck Iutzeler pour les collaborations que nous avons eues, pour
leur expertise, pour leur patience. Je souhaite remercier et saluer mes plus
jeunes collaborateurs Gilles, Yu-Guan, Mitya and a special thanks for Krishna dont
j’ai beaucoup appris et à qui je souhaite une grande réussite.

Mon expérience à Grenoble est aussi le fruit d’un environnement scientifique
et humain fabuleux. Je souhaite en ce sens remercier les membres du petit
groupe de lecture que nous avons monté: merci à Roland, Kimon, Anastasia,
Sofiane, Panayotis, Waïss, Anatoli, Dima et Sergeï. Je salue aussi tous les autres
membres du laboratoire et visiteurs que j’ai eu le plaisir de connaître durant ces
trois dernières années. Je pense à vous Thibault, Anya, Modibo, Hubert, Nils,
Anatole et bien d’autres. Merci aux chercheurs permanents du département
pour leur bienveillance avec une pensée particulière pour Vincent et Adeline.
Je souhaite enfin remercier mes co-bureaux Guillaume et Simon pour tout le
soutien qu’ils m’ont apporté.

J’ai une pensée pour tous les enseignants que j’ai eu la chance d’avoir dans
ma scolarité et une pensée particulière pour mon professeur de classe spéciales
Hervé Gianella qui continue de m’inspirer aujourd’hui.

Je souhaite remercier mes amis de longue date (Sélim, Jean, Matthias, Georges,
Régis, Emmanuel, Bruno,. . .) et ceux que j’ai rencontré plus récemment à
Grenoble (Ghassen, Nelson, Osman, Zakaria, Houssam, . . .).

Enfin, je souhaite exprimer toute ma gratitude à ma famille. Merci à mes
frères Zakaria et Zoheir pour la force qu’ils me donnent, ma mère pour sa
bienveillance intarissable et mon père, pour son soutien indéfectible. C’est à
vous que je dédie cette thèse.

vii

viii

CO N T E N T S

������� iii

��������������� vii

1 ������������ 1
1.1 Optimizing under uncertainty 1
1.2 About this manuscript 3
1.3 Outline and Specific contributions 4

1.3.1 Contributions 4
1.3.2 Further works non included in this thesis 10
1.3.3 List of publications 10

2 �������� ������������ 13
2.1 From operations research 13

2.1.1 Portfolio optimization 13
2.1.2 Reservoir planning 14

2.2 From machine learning 15
2.2.1 Safe machine learning 15
2.2.2 Federated optimization 17
2.2.3 Fairness in AI 19

3 ��������� ������������� 23
3.1 Risk-averse optimization through the lens of duality theory 23

3.1.1 Duality in probability spaces 23
3.1.2 Convex risk measures and Fenchel-Moreau’s theorem 24
3.1.3 Supporting distributionally robust optimization 25
3.1.4 Subdifferential formula 27

3.2 Coherency of a class of support functions 28
3.3 Superquantiles and the Kusuoka representation 32

3.3.1 The superquantile risk measure 32
3.3.2 The Kusuoka representation 34

3.4 Minimization by first-order methods 35
3.5 Challenges in chance-constrained programming 37

4 ���������� �������������-����� ���� �������� 41
4.1 Introduction 41
4.2 Efficient (sub)-gradient computations 42

4.2.1 Subdifferentiation via the chain rule 42
4.2.2 Efficient Smoothing 44
4.2.3 Comparison to other smoothing schemes 49
4.2.4 Generalization to law-invariant comonotone risk-measures 52

4.3 SPQR: A python-toolbox for superquantile-based risk measures 62
4.4 Numerical experiments 65

4.4.1 Solving superquantile-based learning 65
4.4.2 Superquantile brings robustness against distributional shifts 67

4.5 Conclusion 69

5 ������� ������-����������� �������� 71
5.1 Introduction 71
5.2 Chance constrained problems seen as bilevel problems 72

ix

5.3 A double penalization scheme 73
5.3.1 Weak sharpness and analysis of the value function 74
5.3.2 Exact penalization for the hard constraint 77
5.3.3 Double penalization scheme 79
5.3.4 Uniform bound at the limit 80

5.4 Double penalization in practice 81
5.4.1 Solving penalized problems by a bundle algorithm 81
5.4.2 TACO: A python toolbox for chance-constrained problems 83

5.5 Numerical illustrations 85
5.5.1 Visualization of convergence on a 2D problem 85
5.5.2 Experiments on a family of problems 87
5.5.3 Limitations of MINLP approach 88

5.6 Conclusion 89

6 �������� ������������� �� ��������� �������� 91
6.1 Introduction 91
6.2 Problem setting 92

6.2.1 Vanilla federated learning and FedAvg 92
6.2.2 Problem formulation: conformity and heterogeneity 93

6.3 The �-FL framework 94
6.3.1 The framework 94
6.3.2 Federated optimization for �-FL 95
6.3.3 Illustration on a toy example 96

6.4 Convergence analysis 97
6.4.1 Assumptions and main result 97
6.4.2 Preliminary results 98
6.4.3 Adversarial gradient dissimilarity and client drift 99
6.4.4 Effect of one round 103

6.5 Numerical experiments 106
6.5.1 Datasets and tasks 106
6.5.2 Algorithms, hyperparameters and evaluation strategy 108
6.5.3 Experimental results 110
6.5.4 Performing secure aggregation 116

6.6 Conclusion 118

7 ���������� ��� ������������ 121

������������ 132

����� 133
�� ������� 133
�� ������ 136
�� ���������� 136

x

1
I N T RO D U C T I O N

This section serves as an overview of the content of this manuscript. We first
briefly introduce the topic of optimization under uncertainty with an emphasis
on probabilistic approaches and convex risk measure theory. We then lay down
the philosophy we adopt for the writing of this manuscript. We finally give a
detailed summary of our contributions.

1.1 ���������� ����� �����������

The proliferation of mobile phones, wearables and edge devices has led to an
unprecedented growth in the generation of user interaction data. Simultane-
ously, we observe in various branches of sciences (e.g. biology, astrophysics,
behavioural sciences, etc.) a steady commitment in the acquisition of massive
datasets to better address contemporary questions. Tapping into the power of
this rich data promises to greatly improve the next generation of intelligent
applications, devices, and decision-making systems. However, this upheaval
comes with a number of challenges, stemming either from technical limitations
(upscaling the learning processes, heterogenous data, dealing with communica-
tion constraints) or societal concerns (safety, privacy, fairness, carbon footprint).
The data involved is thus for decision-makers an important source of uncertainty
but also a great opportunity to tailor their strategy in accordance.

Such uncertainty is typically framed as a random variable ⇢ : ⌦ ! R
m that is Stochastic optimization

liable to affect a cost function 5 (F, ⇢) (or a constraint 6(F, ⇢)  0) for a given
decision F. In many cases, the random function 5 : R

3 ⇥R
m ! R [{+1} (resp.

6) is evaluated in expectation and the decision maker has the task to find an
optimal solution F8 of the associated stochastic optimization problem

min
F2R3

E
⇥
5 (F, ⇢)

⇤
. (1.1)

This approach has proved its relevance and efficiency in a number of applications;
see for instance the references in the textbook [149]. However, when high stakes
are involved, an estimation in expectation is unlikely to hedge decision makers
against risky outcomes. Fortunately, various options may be considered to
better handle these worst-case events.

Robust Optimization. Robust optimization (see e.g. the textbook [12]) has Robust optimization

played a significant role in the management of risk for a large portion of
optimization problems under uncertainty. The idea is to consider worst-case
possible outcomes in a specific uncertainty set and design conservative solution
in accordance with them. Formally, assuming that ⇢ lies almost surely in a subset
⇤ ⇢ R

m, one typically removes all the stochasticity from (1.1) by considering
the minimax variant

min
F2Rd

max
I2⇤

5 (F, I).

1

2 ������������

Though often computationally appealing, robust reformulations can lead to un-
necessarily conservative solutions. We have other modeling options, assuming
some a priori information on the randomness of ⇢.

Probabilistic Approaches. We may consider for instance a probabilistic recast-
ing of (1.1). That is, given a safety threshold " 2 R set by the modeler, we may
try to maximize the probability of landing below ":

max
F2Rd

P
⇥
5 (F, ⇢)  "

⇤
. (1.2)

Probabilistic approaches [158] are also frequently considered for stochasticChance constraints

constraints 6(G, ⇢)  0. Specifically, the modeler fixes an appropriate safety
probability threshold ? 2 (0, 1) and consider having the constraint

P
�
6(F, ⇢)  0

�
� ?

on his system. These constraints are hard to deal with, in particular because
of the non-continuity and non-convexity of the probabilistic function G 7!
P

�
6(F, ⇢)  0

�
. We dedicate Chapter 5 of this thesis to a new approach to

handle them in practice.

Quantile-based Optimization. A similar approach to (1.2) consists in minimiz-
ing a quantile of the random cost function. Precisely, for a fixed probability
threshold ? 2 [0, 1), one can consider in place of (1.2), the problem

min
F2Rd

&?(5 (F, ⇢)),

Here, &? denotes the quantile function, defined as the generalized inverse of theQuantile function

cumulative distribution function:

&?(-) = inf{C 2 R : P[-  C] � ?}, 8? 2 [0, 1). (1.3)

This approach has been particularly favoured in the financial industry [51]
where the quantile of a given portfolio investment is called the Value at Risk.
From an optimization perspective, this formulation remains hard to treat due
to the potential nonsmoothness and non-convexity of quantile functions.

Superquantile-based Optimization. Both quantile-based and probabilisticPrice of failure

programs are designed to ensure the success of a given strategy with high
probability. However, they do not account for the price of failure situations and
thus open the door to possibly disastrous outcomes. If one wishes instead to
tackle risky events, convex risk measures [138] may be a fruitful alternative.
Under reasonable assumptions (see recalls in Chapter 3) these risk measures
admit a dual formulation leading to problems of the form

min
F2Rd

max
@2A

E@

�
5 (F, ⇢

�
.

Here, the expectation E@ is taken with respect to the worst distribution @
in a set A of distributions which depends on the risk measure considered.
This formulation make appear the distributional robustness brought by the
convex risk measures. In this thesis we focus on a popular risk measure: theSuperquantile

superquantile – also called the Conditional Value at Risk, Tail Value at Risk,
Mean Excess Loss, or Mean Shortfall. Generally speaking, given an integrable
random variable - : ⌦ ! R, and a safety probability threshold ? 2 (0, 1),

1.2 ����� ���� ���������� 3

E[-]

&?(-)

(?(-) = E[- | - > &?(-)]

Figure 1.1: For a continuous random variable -, drawing of ?-quantile &?(-), and
?-superquantile (?(-), defined as an expectation.

the superquantile (?(-) is defined as the mean of quantiles greater than the
?-quantile,

(?(-) =
1

1� ?

π 1

?0=?
&?0(-)d?0. (1.4)

Superquantiles can be therefore interpreted as a measure of the upper tail of Link with quantiles and
cumulative distribution
function

the distribution of - with the parameter ? controlling the sensitivity to high
losses. One easily deduces from the above definition that the superquantile is a
continuous, non-decreasing function of ? and that it is a continuous, positively
homogeneous function of -. For a given random variable -, as a consequence
of [137, Th. 2], one can recover from the cumulative distribution function �-
of - both the ?-quantile and the ?-superquantile functions as functions of
?. Reciprocally, knowing either the ?-quantile or the ?-superquantile for all
? 2 [0, 1] suffices to recover �- .

From a statistical viewpoint, these three notions are also equally consistent
[136, Th. 4] in the sense that convergence in distribution for a sequence of
random variables (-=)=�0 is equivalent to the pointwise convergence of the two
sequences of functions ? 7! &?(-=), ? 7! (?(-=). This is particularly relevant
when the distributions are observed through data sampling. We can use the
empirical cumulative distribution functions, quantiles and superquantiles all
while upholding asymptotic convergence as the sample size grows.

In this thesis, we will exploit the properties of the superquantile under various
angles to tackle challenging data-driven applications.

1.2 ����� ���� ����������

Before diving into the contributions I made during my PhD time, I would like
to share with the reader the philosophy I adopted for this writing work. The
few remarks below clarify the perspective with which I introduced my work as
well as the scientific approach I adopted in each chapter of the contributions.

At the beginning of the writing of this thesis, I asked myself which coloration
I wanted this work to have. The last three years had indeed given me the
opportunity to work on different fields of research related to optimization which
could not all be gathered in this manuscript without compromising its unity.
Thus, I decided to select three research projects centered around the same topic
of interest: the practical minimization of risk measures.

Chapters 2 and 3 of this thesis serve as a preliminary introduction to this
work. First, I sought to stress the broad number of applications that probabilistic
constraint and convex risk measures may encompass. Although my PhD work
was not directly tied to industrial applications, I found important to illustrate

4 ������������

their relevance in various contexts and this led me to focus in Chapter 2 on
this task. Second, I wanted to emphasize in Chapter 3 the interplay between
convex analysis and (distributional) robustness for the design and study of risk
measures. Besides building upon the foundational works of A. Ruszczyński,
A. Shapiro, and T. Rockafellar to provide such interpretation in a general and
abstract context, I wished to showcase on a key class of risk measures, with
elementary proofs, how dual reasoning could yield a geometric interpretation
of risk aversion.

Such geometric considerations are the cornerstone of many rationales in my
own contributions. This is why a consistent effort has been put into illustrating
the concepts involved in each development of this thesis with figures, examples,
and numerical experiments. I genuinely hope those will facilitate the reading
of the more technical developments.

The personal contributions are contained in Chapters 4, 5, and 6. In each
chapter, I sought to keep an operational approach with a balance between
theoretical and practical contributions. Specifically, whenever this was possible,
the situation considered was tied to an existing concept of mathematical
optimization. In this sense, the titles of my sections are chosen to highlight the
different concepts in optimization and convex analysis that come into play in
this thesis. The practical implementation of these ideas and concepts stands
also as an important contribution of this work. This is reflected in particular in
Sections 4.3 and 5.4 with the short presentations of my software packages and
in Section 6.5 where the experimental setting for the large-scale experiments in
federated learning is presented.

1.3 ������� ��� �������� �������������

Chapters 2 and 3 are preliminary chapters that gather a number of definitions,
properties, examples, and illustrations to introduce the main concepts of this
thesis. The remaining chapters 4, 5, and 6 contain our personal contributions.
We provide now an overview of these results with two levels of presentation.
We start with a short high-level picture of them. Then, we specify for each
chapter how they are organized and give some context.

1.3.1 Contributions

We first lay down a brief summary of our contributions.

• Managing risk has become a central issue in machine learning.Minimizing
superquantile-based risk

measures
Superquantile-based risk measures offer a convenient way to model
risk-aversion by focusing on worst-case scenarios. In this thesis, we
consider the problem of minimizing such risk measures. We advocate for
the use of first-order methods with a special focus on the derivation of
efficient oracles. More precisely, we analyze the possible nonsmoothness
induced by superquantiles and provide a generic smoothing procedure.
We also extend our smoothing approaches to the class of law-invariant
comonotone risk measures. Finally, we release a companion software,
SPQR, which implements in python the algorithms described and allows
practitioners to easily experiments with superquantile-based supervised
learning.

• In contrast with convex risk measures, chance-constrained programsSolving
chance-constrained

problems
present specific challenges due to the non-convexity induced by the

1.3 ������� ��� �������� ������������� 5

chance constraint. We propose an algorithm for the solving of a general
chance-constrained problem. We first propose a reformulation as a bi-level
program. We then propose an approach to solve these problems mixing
a variety of techniques and concepts coming from different subdomains
of optimization (penalization, weak sharpness, error bounds, DC pro-
gramming, bundle algorithms, etc.). We finally release an open-source
python toolbox implementing the approach, with a special emphasis on
fast computational subroutines.

• The emergence of privacy and fairness concerns in distributed optimiza- Handling heterogeneity
in federated learningtion has spurred significant interest in the machine learning community.

Federated learning is a nascent privacy-friendly paradigm for large-scale
networks. In Federated learning, many devices (e.g. mobile phones)
collaboratively train a model under the orchestration of a central server
(e.g. a service provider), while keeping the data on device throughout
the training and coordination processes. We propose a federated learning
framework that operates on heterogeneous devices. The approach hinges
upon a superquantile-based learning objective to stress the impact of
disadvantaged users in the training process. We present a stochastic
training algorithm compatible with the privacy concerns of federated
frameworks. We analyze its convergence and we support it with extensive
numerical experiments.

We move now to a more in-depth overview of our contributions, that we
break down by chapters.

������� 4 : ���������� �������������-����� ���� ��������.

In Chapter 4, we aim at providing efficient minimization procedures for a prac- This chapter is mostly
based on our
papers ���, ��, ���.

tical class of convex risk measures provided by the Kusuoka representation [85].
That is, we aim at solving problems of the form

min
F

⇢
�
5 (F, ⇢)

�
(1.5)

where ⌧ a risk measure of the form

⇢(-) =

π 1

?=0

�(?)(?0(-)d?0,

with � : [0, 1] ! R
+ an arbitrary weight function and (?0 the superquantile (1.4)

at level ?0.
Context. The superquantile can be traced back to the paper [10]. It stands out
as one of prominent examples of risk measures, well established in economics
and finance [11, 141]. Superquantiles have been extensively studied from a
convex analysis perspective: we refer for instance to [141] for a variational
formulation of the superquantile, to [11, 27] for its generalization to a larger
class of risk measures, to [50] for a dual formulation (also later generalized in
[145] or [139]) and [137] for additional convex results: for a thorough discussion
and many references, we refer to the seminal work [141], the classical textbook
[148, Chap. 6], or the tutorial paper [136]. We will come back to these results in
Chapter 3. These nice theoretical properties have given interesting results in
various domains, including fair learning [173], adversarial classification [64] and
reinforcement learning [155]. We will come back to some of these applications
in Chapter 2. Regarding computational solving, the idea of using first-order

6 ������������

Figure 1.2: Illustration of a dual formulation of the superquantile as the support function
of a particular ambiguity set (in red).

methods to minimize superquantile-based risk measures has yet been put aside
until recently. Most historical applications considered linear programming
approaches. We note among the few exceptions (i) the PhD thesis [113] using
subgradient algorithms and (ii) the smoothing approaches laid down in [70, 106]
(both applied to specific problems). More recently, gradient-based methods for
the minimization of convex risk measures were developed for the large-scale
setting [19, 34, 89, 94] and special efforts have been made to show their relevance
in deep learning applications [13, 55, 150].
Contributions. This chapter proposes a general and practical framework for
the minimization of superquantile-based risk measures.

1. We provide explicit and implementable expressions of (non-Non-convex subgradient
oracles necessarily convex) subdifferential of superquantile-based cost func-

tions. Expressions of (convex) subdifferential of superquantile are well-
known in general settings; see e.g., [145] for a thorough study. Here
we study non-convex subdifferentials to treat cases when the random
cost 5 in (1.5) is not convex. We come up, in the data-driven context,
with concrete expressions. We give simple and direct proofs of these
results as applications of basic definitions and properties of variational
analysis [142].

2. We provide a unifying analysis of smoothing procedures of nonsmoothSmoothing of the
superquantile superquantile-based functions. We propose to use the infimal convo-

lution smoothing of [117] and establish precise connections to other
existing smoothing approaches. We provide optimal procedures for the
computation of first-order oracles for the smoothed superquantile.

3. We extend our smoothing procedures of superquantiles to law-Smoothing of the
Kusuoka representation invariant comonotone risk measures. Our analysis leverages both dual

properties of the superquantile together with the Kusuoka representa-
tion [85]. A special attention is paid to maintaining the optimal log-linear
computational complexity for these first-order oracles.

4. We release SPQR, a publicly-available and easy-to-use python toolboxSoftware package

for superquantile-based learning.This toolbox is built off the popular
software library scikit-learn. We provide computational experiments il-
lustrating (i) the interest of using quasi-Newton algorithms for minimizing
superquantile-based objective and (ii) the robustness of superquantile-
based models compared to the standard models obtained from empirical
risk minimization.

1.3 ������� ��� �������� ������������� 7

Figure 1.3: Trajectory of the iterates (in blue) of our bundle algorithm on a 2-dimensional
chance-constrained problem investigated in Chapter 5.

������� 5 : ������� ������-����������� ��������.

In Chapter 5, we consider the solving of chance-constrained problems in This chapter is based on
our paper ����data-driven contexts. Specifically, we study problems of the form

8>><
>>:

min
G2(

5 (G)

s.t. P[6(G, ⇢)  0] � ?
(1.6)

and assume 5 : R
d ! R and (⇢ R

d to be convex, 6 : R
d ⇥R

< ! R to be
convex with respect to G and ⇢ : ⌦ ! R

< to be observable through data
sampling.

Context. Solving (non-convex) chance-constrained problems is notoriously
difficult. Several computational methods have been proposed, regardless of any
considerations of convexity and smoothness, and under various assumptions on
uncertainty, see e.g. [158] for an overview. We note that when distributions are
observed through data sampling, two main approaches have been considered.
First, mixed-integer approaches [3] were considered to encode the probability
constraints via binary activation variables; we refer to [102–104] for a deeper dive
into this topic. Second, a considerable interest has been given to approximations
of the probabilistic constraints , e.g. via convolutions [4] or by a difference of
convex functions [36, 67].

In chapter 5, we propose a third approach based on a reformulation of
chance-constrained problems into bilevel programs. In recent years, bilevel
programming has received considerable interests in the field of machine learning,
where it is used for hyperparameter selection procedures [14]. The solving of
general bilevel programs via exact penalization was historically proposed in [175]
but still remains difficult due to the eventual non-convexity of the induced
penalization. In our case, we point out the "Difference of Convex" structure of
the obtained penalization and propose to use a bundle method to solve it. While
bundle methods [6, 121] were initially considered for convex problems, their
relevance on difference of convex objectives was recently showcased in [36, 166].

Contributions. In this chapter, we present a new reformulation of chance-
constrained programs as bilevel programs. We turn this reformulation into a
single-level problem with a Difference of Convex (DC) objective via a semi-exact
penalization. More specifically:

8 ������������

1. We derive an exact reformulation of (1.6) as a bilevel problem withBilevel reformulation

upper and lower level problems, both convex. Our reformulation strongly
relies on a variational formulation of superquantiles.

2. We derive a double penalization method for the obtained bilevel prob-Double penalization

lem, leading to single level Difference of Convex (DC)-program. We
first bring to light the weak-sharpness properties of the lower-level prob-
lem and exploit them to derive an exact penalization of the lower-level
constraint. The penalized problem presents a nonsmooth DC objective
for which we provide computable first-order oracles.

3. We propose to combine a suitable bundle method for the penalizedSolving by bundle
methods problem together with a dynamic update of the penalization parame-

ters. In addition we propose to smooth the concave component of the
DC objective, using the same tools as in Chapter 4, to ensure better
convergence properties of the method on our problem.

4. We release TACO, an open-source python toolbox which implements ourSoftware package

approach. We numerically illustrate the performances of this toolbox on
several toy problems.

������� 6 : �������� ������������� �� ��������� ��������.

The standard algorithm in federated learning is FedAvg [109]. It aims atThis chapter is based on
our papers ���, ���� fitting, in average, a model to the data distribution of the devices available for

training. Formally, given a stochastic objective �(F, ⇢) and # training devices
with respective data distributions @8 , FedAvg aims at minimizing the aggregated
objective:

min
F2Rd

E⇢⇠@̄ [�(F, ⇢)] +
⌫

2
kFk2 , (1.7)

where

@̄ =
1

#

#’
8=1

@8 (1.8)

denotes the aggregated distribution of data-points over the whole set of training
devices. While this approach works for users who conform to the aggregated
distribution @̄, it is liable to fail on non-conforming individuals, leading to poor
user experience (e.g. next word prediction on mobile phones). In Chapter 6,
we provide a new federated framework to address the statistical heterogeneity
among the devices of the network.

Context. Addressing statistical heterogeneity in federated learning has led
to two lines of work. The first develops algorithmic techniques to alleviate
the effect of heterogeneity on convergence rates while still minimizing the
classical expectation-based objective function (1.7). These techniques include
the use of proximal terms [96], control variates [73] or augmenting the server
updates [134, 170]; we refer to the recent survey [171] for details. The second line
of work addressing heterogeneity involves designing new objective functions
by modeling statistical heterogeneity. The AFL framework minimizes the worst-
case error across all training devices [114]. @-FFL framework [97] draws from
fair resource allocation literature and proposes to minimize the !? norm of the
per-device losses. A federated optimization algorithm for AFL was proposed
and its convergence was analyzed in [37]. Finally, a classical risk measure,
namely the entropic risk measure, was considered in [98]. We note that no

1.3 ������� ��� �������� ������������� 9

(a) FedAvg. (b) �-FL.

Figure 1.4: Comparative diagram between the baseline FedAvg and our algorithm �-FL
which handles heterogenous devices. Steps 1, 2 and 3 are identical and hold
as fundamental components of any practical federated framework: broadcast
of server models to a random subselection of devices - running of local
stochastic gradient updates - secure aggregation of the selected models.
Only step 10 is specific to �-FL and can be interpreted as an additional
filtering step among selected device to choose which device will run the local
updates. Mathematically, this filtering steps interpret as a composition with
the superquantile - see more in Chapter 6.

convergence guarantees are currently known for the stochastic optimization
algorithms developed for these non-usual frameworks.

Contributions. In this chapter, we design a practical and theory-backed frame-
work for the handling of non-conforming users in statistically heterogeneous
federated environments.

1. We introduce the �-FL framework which seeks to provide a minimal �-FL framework

level of predictive performance on nonconforming devices. The frame-
work relies on a superquantile-based objective to minimize the tail statistics
of the prediction errors on the client data distributions. Specifically, given
a scalar parameter ? 2 [0, 1], we propose to replace the standard objective
in (1.7) by

min
F2R3

(?⇢⇠@̄ (�(F; ⇢)) +
⌫

2
kFk2 , (1.9)

with @̄ as defined in (1.8).

2. We propose a new federated algorithm to solve this problem. Our Theory-backed algorithm

algorithm, illustrated in Figure 1.4 builds off the baseline FedAvg with an
additional filtering step over training devices with poorest performances.
We provide a convergence analysis in the strongly convex case.

3. We present extensive numerical results to support our framework. We Extensive numerical
experimentsuse linear models and neural networks, on tasks including image classifi-

cation and sentiment analysis based on public datasets. The simulations
demonstrate superior performances of �-FL over state-of-the-art baselines
on the upper quantiles of the error on test devices, with particular im-
provements on data-poor devices, while being competitive on the mean
error.

10 ������������

1.3.2 Further works non included in this thesis

During my time as a PhD student, I also had the opportunity to work on two
other projects that will not be developed in this thesis. I provide below a brief
summary of each. Further information can be found in my webpage

�������� ��������� �� ������-����������� ��������.

Probabilistic constraints result from taking the probability measure of a given setThis project led to the
paper ���� of random inequalities depending on the decision vector. Even if the original set

of inequalities is convex, this favourable property is not immediately transferred
to the probabilistically constrained feasible set and may in particular depend
on the chosen safety level. In this project, we provided results guaranteeing
the convexity of feasible sets to probabilistic constraints when the safety level
is greater than a computable threshold. This is often referred to as a situation
of "eventual convexity". The key idea in our approach is to reveal the level of
underlying convexity in the nominal problem data (e.g., log-concavity of the
probability function) by auxiliary transforming functions. We provided several
examples illustrating our theoretical developments.

���������� ��� ������������ �������� �� ����������� �������.

Progressive Hedging is a popular decomposition algorithm for solving multi-This project led to the
paper ��� stage stochastic optimization problems. A computational bottleneck of this

algorithm is that all scenario subproblems have to be solved at each iteration.
In this project, we introduced randomized versions of the algorithm able
to produce new iterates as soon as a single scenario subproblem is solved.
Building on its relation with monotone operators, we leveraged recent results on
randomized fixed point methods to derive and analyze the proposed methods.
Finally, we released the corresponding code as an easy-to-use Julia toolbox and
report computational experiments showing the practical interest of randomized
algorithms, notably in a parallel context.

1.3.3 List of publications

We end up this introduction with a list of our published/submitted papers
during our time as PhD candidate.

1. Y. Laguel, J. Malick, and Z. Harchaoui. First-order optimization for
superquantile-based learning. Proceedings of the IEEE International Workshop
on Machine learning for signal processing (MLSP), 2020.

2. G. Bareilles, Y. Laguel, D. Grishchenko, F. Iutzeler, and J. Malick. Random-
ized progressive hedging methods for multi-stage stochastic programming.
Annals of Operations Research, 2020.

3. Y. Laguel⇤, K. Pillutla⇤, J. Malick, and Z. Harchaoui. A Superquantile
Approach for Federated Learning with Heterogeneous Devices. 55th
Annual Conference on Information Sciences and Systems, 2021.

4. Y. Laguel, W. Van Ackooĳ, J. Malick, and G. M. Ramalho. On the convexity
of level-sets of probability functions. Journal of Convex Analysis, 2021.

5. Y. Laguel, K. Pillutla, J. Malick, and Z. Harchaoui. Superquantiles at Work :
Machine Learning Applications and Efficient (Sub)gradient Computation.
Set-Valued and Variational Analysis, 2021.

1.3 ������� ��� �������� ������������� 11

6. Y. Laguel, J. Malick, and W. Van Ackooĳ. Chance constrained problems:
a bilevel convex optimization perspective. Submitted to Computational
Optimization and Applications, 2021.

7. Y. Laguel⇤, K. Pillutla⇤, J. Malick, and Z. Harchaoui. Federated Learning
with Heterogeneous Devices:A Superquantile Optimization Approach.
Submitted to the Journal of Selected Topics in Signal Processing, 2021.

2
S E L E C T E D A P P L I CAT I O N S

In this section, we review a number of applications where probabilistic and
superquantile-based decision problems appears. We first start with traditional
applications in operation research (portfolio optimization and energy manage-
ment). We then move to the field of in machine learning. For each example,
we keep a high-level point of view: we insist only on the main elements of the
modeling process and we omit the technical details. This chapter has only an
illustrative purpose. It can be skipped without harming the understanding of
our contributions.

2.1 ���� ���������� ��������

In this section, we review two applications of optimization under uncertainty
in operations research. We start with a classical portfolio optimization problem.
We introduce then the problem of reservoir-planning in hydro-management.

2.1.1 Portfolio optimization

Since the pioneering work of Markowitz [108], portfolio selection has much Portfolio management

evolved, stemming from both the development of risk models and the derivation
of efficient computational methods. The objective of a typical asset allocation
problem is to maximize the expected return of a portfolio optimization problem
while hedging against potential losses. Formally, given a random vector of
returns ' = (A1, . . . , A=), one wishes to find an allocation solution of

(
max
F

E[F>']

s.t. ⇢ (�F>')  ⌘

where ⇢ : L1(⌦) ! R denotes a risk measure aimed at upper-bounding the
level risk exposition of the investment F>'.

Financial regulations on risk have often been set in terms of quantiles of Value at Risk

a distribution of losses or rewards. For instance, given a random variable *
that quantifies the losses of an investment, and a safety threshold ? 2 (0, 1),
the Value at Risk is defined as the ?-quantile &?(*) of * . It is commonly
considered for high levels of probability: ? 2 {0.95, 0.98, 0.99}. Asset allocation
problems involving the Value at Risk - see e.g. [101] - are commonly framed as

(
max
F

E([F
>']

s.t. &?(�F>')  ⇣
(2.1)

13

14 �������� ������������

where ⇣ denotes an arbitrary threshold to be set by the risk modeler and &?(.)
denotes the quantile function as defined in (1.3).

While very popular across the banking institutions, such measures of riskConditional Value at
Risk remain hard to optimize due to their non-convex properties (as showcased

in Figure 1.3). Over the past two decades, the superquantile, introduced in
Section 1.1, has become a powerful alternative, thanks to its nice convex and
regular properties. For a distribution of losses* and a probability threshold
? close to 1, the associated superquantile (?(*) returns the average of the
quantiles that are greater than the ?-quantile. Hence, for similar probability
levels, the superquantile offers a more conservative estimation of risk than the
Value at Risk. One may then reconsider problem (2.1) with the superquantile in
place of the quantile or even a penalization of this problem yielding for some
⇠ > 0

max
F

E([F
>']� ⇠(?(�F>')

Owing to the seminal work of Rockafellar and Uryasev [141], the practical
solving of such problems may be achieved by various methods including linear
programming and subgradient-based methods. In this thesis, special efforts
have been made for the use of the superquantiles in large-scale contexts.

2.1.2 Reservoir planning

Dealing with uncertainty is a recurrent challenge in energy planning. ForHydro valley
management instance, when considering the management of a hydro valley, one has to

deal with meteorological constraints of the surrounding environment. Such
constraints can be prone to unpredictable variations over a short time scale.
The hydro valley is composed of a network of hydro powers plants with their
associated turbines. Schematically, the aim of a reservoir planning problem is
to optimize the usage of the turbines to meet the power demand while ensuring
the feasibility of the operations, under the uncertainty of the inflows. Such
problems can be modeled as:

min
G�0,G2Rn

2>G

s.t �G  1

D + ⇠G  ⇢8  E + ⇠G. (2.2)

In the above problem, the variable G denotes the controls on the set of turbines
at stake, for instance in terms of cubic meters, per hour of turbined outflow.
The objective h2, .i encodes the amount of water processed together with the
quantity of electricity power generated. The first affine constraint encodes the
modeling of the flow within the network, the bounds on the turbining and the
global use of water. The second constraint involves the uncertain amount of
water stemming from uncertain inflows modeled by the realization ⇢8 of the
random vector ⇢ : ⌦ ! R

<(< 2 N). This constraint is present to ensure that
no overrun of the maximal reservoir capacity is observed. For more details
on the modeling of reservoir planning problems, we orient the reader to the
paper [165] and the thesis [164].

Satisfaction of the stochastic constraint (2.2) can either be required in expecta-Modeling via
chance constraints tion or with high probability. For the latter option, one thus needs to fix a safety

threshold ? close to 1 and consider the probabilistic constraint:

P [D + ⇠G  ⇢  E + ⇠G] � ?.

2.2 ���� ������� �������� 15

Modeling of reservoir planning problems via probabilistic constraints has
received considerable interest, e.g. [46, 100, 177] with use of various methods to
solve it including penalty methods [130], supporting hyperplane methods [129]
or bundle methods [121]. In the chapter 5 of this thesis, we will consider the
solving of a general class of chance-constrained problems.

2.2 ���� ������� ��������

We move now to a selection of more recent topics in machine learning where
superquantiles may be useful. The application from Section 2.2.2, in particular,
has motivated the developments of the whole Chapter 6.

2.2.1 Safe machine learning

Classical supervised learning via empirical risk minimization hinges upon the ERM limitations

assumption that the testing distribution coincides with the training distribution.
This assumption can be challenged in domain applications of machine learning
such as visual systems or dialog systems [133]. Learning machines may indeed
operate at prediction time with testing data whose distribution departs from the
one of the training data. Thus, in the face of prevalence of worst-case scenarios or
unexpected distributions at prediction time, ensuring robust behavior becomes
a relevant strategy. This highlights the importance of reconsidering the learning
objective used to train learning machines.

Formally, consider a data-driven setting where a random function 5 (F, ⇢) Data-driven setting

can be estimated through a sample of data-points ⇢1, . . . , ⇢= , (= 2 N). This is a
standard situation in classical supervised learning where, in the training phase,
we have access to = data-points: each data-point is a pair (0, 1), where 0 2 �
is a feature vector and 1 2 ⌫ is its corresponding target. For instance, for a
binary image classification task, 1 is a boolean encoding the membership of
the image 0 to one of the two classes. From this training data, the aim is to
learn a parameter F 2 , ⇢ R

d (as “weights”) of a given prediction function
!(F, ·) that produces, for an input 0 2 �, a prediction I = !(F, 0) 2 / of the
associated target 1 2 ⌫. Typical examples of prediction functions include simple
linear models !(F, 0) = F>0, polynomial models (as in Example 2.1 below), or
artificial neural networks

!(F, 0) = F>
B �B(· · · �1(F

>
1 0)) , (2.3)

which are successive compositions of linear models F 9 and non-linear activa-
tions �. The prediction error is then measured by a loss function ✓ : ⌫ ⇥ / ! R.
Typical examples of loss functions include the least-squares loss (⌫= R,/= R)
or the logistic loss (⌫ = {�1, 1},/ = R), defined respectively as

✓ (1, I) =
1

2
(1 � I)2 , and, ✓ (1, I) = log(1+ exp(�1 I)) . (2.4)

16 �������� ������������

Metric model (2.9) model (2.10)

Mean 7.23 10.62

80th perc. 9.73 13.94

90th perc. 17.29 15.93

95th perc. 24.00 17.83

Figure 2.1: Superquantile regression improves over worst-case datapoints. Left figure:
histograms of residuals A8 = |H8 � (F2G

2
8
+ F1G8 + F0)| for model (2.9) (in

violet) and model (2.10) (in orange). Right table: Gth perc. stands for G-th
percentile of final distribution of the residuals A8 .

In the risk-neutral setting, assuming1 that the training data are generated
from a given distribution % over � ⇥ ⌫, the “best" model parameter F solves
the optimization problem

min
F2,

⇥
'(F) = E(0,1)⇠%

⇥
✓ (1, !(F, 0)

⇤ ⇤
. (2.5)

This framework is currently challenged by important domain applications [e.g.,
71, 133], in which several of the standard assumptions turn out to be limiting.
Indeed classical supervised learning assumes that, at training time, the sampled
examples (01, 11), . . . , (0= , 1=) are drawn i.i.d. from a given distribution %, and
that, at testing time, we face a new example 00, also drawn from the same
distribution %. However, recent failures of learning systems when operating
in unknown environments [78, 111] emphasized the importance of taking into
account that we may not face the same distribution at test/prediction time.

A simple way to enforce robustness is to replace the expectation in (2.5) by aSafe machine learning

convex risk measure ⇢. The resulting objective is:

min
F2,

h
R(F) = ⇢(0,1)⇠%

⇥
✓ (1, !(F, 0)

⇤ i
. (2.6)

In this thesis, we focus on a particular class of risk measures that we will
introduce in Section 3.2. A special attention will be given to superquantiles,
defined in (1.4), for their fundamental role among such risk measures. We
provide a short illustrative example below.

Example 2.1. We illustrate the interest of superquantile learning in presenceSuperquantile
least-square regression of heterogeneous data, on an elementary regression task. Consider a dataset

gathering two different subgroups: for two unknown models F̄1 and F̄2 in '3

we assume 80% of the points are generated according to

H8 = F̄
1
0 + F̄

1
1 G8 + F̄

1
2 G

2
8 + ⌘8 where ⌘8 ⇠ N (0, �2) , (2.7)

and the remaining 20% are generated according to

H8 = F̄
2
0 + F̄

2
1 G8 + F̄

2
2 G

2
8 + ⌘9 where ⌘9 ⇠ N (0, �2) . (2.8)

1 When the assumption of the existence of an underlying distribution % is not realistic, the usual
approach is to still use the empirical risk minimization principal based on the given training dataset
P= = {(08 , 18)}18= .

2.2 ���� ������� �������� 17

Then we can compare the usual approach using ordinary least-squares

min
F2R3

E(G,H)⇠P=

⇥
(H � (F2F

2 +F1G +F0))
2
⇤

, (2.9)

with its superquantile counterpart of the form:

min
F2R3

[(?](G,H)⇠P=

⇥
(H � (F2F

2 +F1G +F0))
2
⇤

(2.10)

using ⇢ = (? for ? = 0.9.

We report on Figure 2.1 the distribution of residuals A8 = |H8 � (F2G
2
8
+F1G8 +

F0)| for both models. The superquantile model (2.10) shows an improvement of
90/95th quantiles of the distribution of residuals, which appears on histograms
as a shift of the upper tail to the left. This comes at the price of a degraded
performances on average, which appears on the figure as the shift of the peak
of residuals to the right. ⇤

2.2.2 Federated optimization

Federated learning is an emerging framework in machine learning where many
clients collaboratively train a common model under the orchestration of a central
server, while keeping their data decentralized [52, 109, 174]. In a standard
federated learning setting, we wish to optimize the performances of a single
model F 2 R

d deployed over a large population of clients. We assume that
each client has data, drawn i.i.d. from a distribution @. The loss incurred
on this device is �(F; @) := E⇢⇠@[5 (F; ⇢)], where 5 (F; ⇢) is the chosen loss
function (such as the logistic loss) on input-output pair ⇢ under the model F.
The expectation above is assumed to be well-defined and finite. For a given
distribution @, smaller values of �(·; @) denote a better fit of the model to the
data.

Given # client devices available for training, we denote the loss on device : Vanilla Federated
learningby �:(F) := �(F; @:). Vanilla Federated learning aims at minimizing a weighted

average of the losses attached to training devices,

min
F2Rd

#’
8=1

�8�8(F) (2.11)

where the weights �8 are typically set to be proportional to the size of the local
dataset in each device. While the minimization of such sums are ubiquitous in
machine learning, federated learning comes with a number of specific challenges
that we outline below. For detailed explanations, we point the reader to the
recent reviews [71, 95, 171].

Privacy constraints. The protection of user’s data is a critical issue in federated Federated learning
challengeslearning. This is achieved by keeping the processing of the data local to the de-

vices while the server coordinates with the devices for a secure aggregation(see
e.g. [20]) of model updates.

Communication constraints. In federated learning, the central server is re-
sponsible for the orchestration of a huge network with possibly unreliable
transmissions. Thus, communications rapidly become a bottleneck calling for
the design of communication-efficient algorithms. Efficiency can either be
performed through the development of compression algorithms [29, 125, 168] or
the reduction of communications via the execution of several local steps within

18 �������� ������������

Figure 2.2: Statistical Heterogeneity is a key feature of federated learning where clients
with heterogeneous distributions collaborate to learn a single model.

devices [73, 76, 153]. In addition, only a small random proportion of the training
clients is likely to be available at each stage of the training process.

Statistical heterogeneity. Statistical heterogeneity is also key feature of feder-
ated learning: client data distributions are not identical. Each user has unique
characteristics which are reflected in the data they generate. These characteris-
tics are influenced by personal, cultural, and geographical factors. For instance,
the varied use of language contributes to data heterogeneity in a next word
prediction task. In this context, the satisfaction of users that do not conform to
the average training data distribution and underlying fairness concerns have
attracted considerable interest in recent years.

Such limitations have motivated the development of new frameworks to serve
more fairly the entire population of users [89, 97, 114]. All aforementioned
references share the common feature of replacing the weighted average in the
objective (2.11) by a risk-aware function ⇢ : R

! R meant to better capture
non-conforming users. The objective considered becomes:

min
F2Rd

⇢ [�K(F)] (2.12)

where K : ~1,#�! R is a random variable satisfying P[K = :] / �: .

Example 2.2. Consider a specific instance of Example 2.1 in a federated setting.Federated regression

We consider that 80% of the data corresponds to four devices having the same
data distribution following (2.7), while the remaining 20% corresponds to a
fifth device having its own distribution following (2.8). In this example, for
: 2 ~1, 5�, the loss �: corresponds to the regression objective on the dataset
owned by the :C⌘ user. Figure 2.3 shows this bivalent dataset: blue points
correspond to the data of the four first devices, and red points correspond to the
last device. We want a regression that captures worst-cases for both behaviours.

We plot on Figure 2.3 the regression models given by the classical least-
squares regression (2.9), the superquantile least-squares regression (2.10), and a
federated variant of the superquantile least-squares that operates at a user level,
i.e. by using the superquantile as ⇢ in (2.12) . We can make three observations.
First the standard model (2.9) (in purple) tends to follow the trend imposed
by the first four devices. Second, the superquantile model (2.10) (in orange)
has better regression on worst-case data, irrespective of the group of the data
point. Finally the federated superquantile model (2.12) finds, in contrast, a
compromise between the two trends. Thus, federated superquantile regression
better captures the (red) data points of the non-conforming user. ⇤

2.2 ���� ������� �������� 19

Figure 2.3: Comparison of the three regressions for the toy federated learning setting
of Example 2.2. We want commensurate performances among users, which
means, graphically, a curve at the same distance from the data-points of the
conforming users (in blue) and the non-conforming user (red).

2.2.3 Fairness in AI

Algorithmic fairness has received much attention over the past decade due to
the fairness issues raised in a number of machine learning applications (e.g.
the pre-screening of job applications). The objective of a fair algorithm is to
reduce the bias that standard algorithms are prone to stress on one or several
subgroups of users while still maintaining reasonable estimation performances.

As recalled in Section 2.2.1, in classical supervised machine learning, we
consider problems of the form

min
F

E0,1[✓ (1, !(F, 0)]

where 0, 1 are drawn from a distribution over the input-output space �, ⌫,
!(F, ·) : � ! / is a predictor function parametrized by the weights vector
F 2 R

d and ✓ : ⌫ ⇥ / ! R is a given error function. In a fair machine learning Fair machine learning

context, one has to deal in addition with the presence of a sensitive feature B 2 (
(e.g. gender or race) calling for the satisfaction of a fairness constraint. Formally,
one first needs to design map F : ⌫ ⇥ / ⇥ (! R that permits to gauge the level
of unfairness of a given predictor !(F, ·) over the extended dataset (0, 1, B). A
fair formulation of the above problem is then to solve for a given ⌘ > 0:

(
min
F

E0,1[✓ (1, !(F, 0)]

s.t. F(1, !(F, 0), B)  ⌘
(2.13)

The fairness constraint may be designed in various ways that are not system-
atically coherent with each other - see e.g. the discussion [77]. While many
works have investigated the practical handling of fairness constraints for specific
learning tasks [1] such as classification or regression [2, 30], we limit this brief
introduction to a general supervised learning context. We adopt below the
perspective laid down in [173] to introduce several popular examples of fairness
constraints.

Perfect and approximate fairness. Situations of perfect fairness often allude to a Perfect fairness

condition of statistical independence between predictions and sensitive features.

20 �������� ������������

Model !1(F) (blue subgr.) !2(F) (red subgr.)

least-square (2.9) 4.59 17.76

superquantile (2.10) 9.88 13.62

federated superquantile (2.12) 10.87 11.46

Table 2.1: Average performances of each model over both subgroups.

Given weights F 2 R
d, demographic parity [45] denotes complete statistical

independence between the predictor !(F, ·) and the sensitive attributes B,

!(F, 0) ?? B

where ?? denotes the statistical independance. Alternatively, the concept of
equality of opportunity [58] allows for the prior knowledge of the outputs

!(F, 0) ?? B | 1.

Such assumptions, considered as ideal, often lead to singularly difficult optimiza-Approximate fairness

tion problems [1]. Instead one may consider approximate variants by bounding
for instance the level of dependence between B and !(F, ·). In [72], the authors
consider the Kullback-Leibler divergence to measure such independence:

F(1, !(F, 0), B) = !
⇣
P!(F,0),B | P!(F,0) ⇥PB

⌘
.

Solving such problems remains difficult in general due to the non-convexity
induced by the fairness constraint as a function of F.

Fairness via Subgroup Losses. The notion of subgroup risk, introducedSubgroup risk

in [173], consists in measuring the fairness of a given predictor with respect to
the sequence of losses evaluated among the subgroups defined by the sensitive
feature B. Specifically, given a sensitive attribute B̄ 2 (and a predictor !(F, ·),
the subgroup risk of !(F, ·) is defined by

!B̄(F) := E0,1 |B=B̄ ✓ (1, !(F, 0)).

The fairness constraint is then defined in terms of deviations of the conditional
expectation !B(F), turning (2.13) into

(
min
F

EB[!B(F)]

s.t. D(!B(F))  ⌘

where D : !1(⌦) ! R denotes an arbitrary measure of deviation. Penalization of
the above deviation constraint amounts to the minimization of a single objective
that holds as a composition of a risk measure ⇢ : !1(⌦) ! R with the subgroup
risks involved

min
F2Rd

⇢ (!B(F)) .

In this context, [173] advocate for the use of the superquantile and show
empirically how it may enforce fairness on illustrative examples. We will show
in Chapters 4 and 6 of this thesis that such approach may be extended to
large-scale situations thanks to the nice properties of the superquantile.

2.2 ���� ������� �������� 21

Example 2.3. Let us come back to the toy Example 2.2. We look at it with the Fair regression

perspective of fairness between the predominant group (the four blue users)
and the minority group (the fifth “red” user). Table 2.1 compares (i) the average
performance over the predominant group and (ii) the average performance on
the minority group. We observe that the difference between these performance
is minimal for the user-level superquantile model provided by (2.12), achieving
better approximate group fairness. ⇤

3
T E C H N I CA L P R E L I M I NA R I E S

In this chapter, we formally introduce some of the main concepts involved
in this thesis. We first provide a general framework for the measurement
of random losses with a particular focus on the role that convexity plays to
enforce distributional robustness. We then present the class of law-invariant
comonotone risk measures and lay out their nice geometric and functional
properties. We make a special emphasis on the superquantile which is at
the core of this thesis, especially in Chapters 4 and 6. We finally move to
chance-constrained problems and present some of their specific challenges that
will be addressed in Chapter 5. Experienced readers may skip this chapter: next
chapters provide precise pointers to the results below if needed.

3.1 ����-������ ������������ ������� ��� ���� �� ������� ������

We present in this section a general framework to model risk aversion in a
stochastic environment. We draw on the setup laid down in [145] and the
general topological and convexity results from the textbooks [144, 169, 176]. To
lighten the presentation, we will give precise pointers to references only for
the fundamental results. We will implicitly refer to these general textbooks for
intermediate or secondary results and developments.

3.1.1 Duality in probability spaces

We start this section with brief reminders on duality in probability spaces
through a rather abstract setting that will be specialized later in this chapter.

Pairing random variables and measures. Let (Ω,F) be a fixed measurable Topological dual of a set
of random variablesspace and consider a linear space X of random variables from Ω to R. We pair

X with an arbitrary linear space Y of finite signed measures satisfying:π
Ω

|- | d|⇠| < 1 8- 2 X , 8⇠ 2 Y

where |⇠| := ⇠+ + ⇠� and (⇠+,⇠�) denotes the Jordan decomposition of ⇠.
Furthermore, we assume that X and Y are locally convex topological vector

spaces such that the scalar product is compatible with the respective topologies
on X and Y . That is, Y is the topological dual of X and no linear functional of
the form h.,⇠i nor h-, .i is identically null for any - 2 X and ⇠ 2 Y .

Example 3.1 (Basic examples of pairings). A standard setting is to have, for any
�-finite measure � on (Ω,F) and ? 2 [1,1), X as the quotient space R?(Ω,F ,�).
A natural choice for Y is then the set of absolutely continuous measures ⇠ with
respect to � admitting a Radon-Nikodym derivative in R@ , where 1

? +
1
@ = 1. ⇤

The Fenchel conjugate. Given such pairing, we may define for any proper Fenchel conjugate and
bi-conjugate

23

24 ��������� �������������

functional ⇢ : X ! R [{+1} the Fenchel conjugate of ⇢, denoted ⇢⇤ : Y !
R [{+1} as:

⇢⇤(⇠) = sup
-2X

h-,⇠i � ⇢(-)

and the Fenchel biconjugate ⇢⇤⇤ : X ! R [{1} of ⌧ as

⇢⇤⇤(-) = sup
⇠2Y

h-,⇠i � ⇢⇤(⇠).

As the maximum of linear functions, the fenchel biconjugate is a convex
function with respect to -. Note that we always have ⇢⇤⇤(-) = (⇢⇤)⇤(-) for all
- 2 X but the equality ⇢⇤⇤ = (⇢⇤)⇤ does not necessarily hold, since X is not
necessarily equal to its bidual. It is however valid whenever X is a reflexive
Banach space (e.g. X = R? for ? > 1).

From random variables to random losses. In many applications, the randomMeasuring random
losses variable - is of the form 5 (F, ⇢) and characterizes the cost of a given model F 2

R
d while exposed to a random variable ⇢ : Ω ! R

m. Thus, a straightforward
way to measure the loss incurred by F is to fix a measure � 2 Y and consider:

�(F) := ⇢(5 (F, ⇢)) =

π
Ω

5 (F, ⇢($))d�($). (3.1)

Under suitable conditions, the expected value function � : R
d ! R may inherit

the properties satisfied by the integrand F 7! 5 (F, ⇢). For instance, if (8) 5
is lower semi-continuous with respect to F and (88) for F0 locally around F,
5 (F0, ·) can be uniformly dominated by an integrable random variable, then �
is known to be lower semi-continuous as well (see for instance proposition 14
from [144, Chapter 1]). If one assumes in addition 5 to be convex with respect
to F, then one may subdifferentiate � by interchanging the integral and the
subdifferential:

%�(F) =

π
Ω

% 5 (F, $)d�($) :=

⇢π
Ω

6 d�, B.C. 6:Ω!R
3 measurable

6($)2% 5 (F,$), 8$2⌦

�
. (3.2)

According to the terminology of [142], such functions F 7! 5 (F, ⇢) are called
normal convex integrands. For a proof of such standard result, see for instance
Theorem 9 of [144, Chapter 2].

3.1.2 Convex risk measures and Fenchel-Moreau’s theorem

Relying only on a single measure � to evaluate the cost of a given model FConvex risk measures

via (3.1) may be insufficient to hedge against risky events. Instead, we are
looking for some risk functional ⌧ : X ! R that can stress the impact of worst-
case possible outcomes under various distributional shifts. With this in mind, one
may note that convex risk measures, i.e, functionals satisfying

⇢(⌫- + (1�⌫).)  ⌫⇢(-) + (1�⌫)⇢(.), 8-,. 2 X ,8⌫ 2 [0, 1],

offer a natural interpretation of robustness. This a consequence of the Fenchel-
Moreau theorem:

Proposition 3.1. LetX be a locally compact Haussdorf space, paired with its topologicalThe Fenchel-Moreau
theorem

3.1 ����-������ ������������ ������� ��� ���� �� ������� ������ 25

Figure 3.1: The Fenchel conjugate and the bi-conjugate of a real function 5 . The
Fenchel conjugate is always convex. The Fenchel biconjugate 5 ⇤⇤ satisfies
epi 5 ⇤⇤ = conv epi 5 .

dual X ⇤, and ⇢ : X ! R a proper, convex, lower-semi-continuous functional. Then,
for all - 2 X , we have:

⇢(-) = ⇢⇤⇤(-) = sup
⇠2X ⇤

h-,⇠i � ⇢⇤(⇠). (3.3)

As a consequence, proper l.s.c. convex risk measures are pointwise solutions of robust
optimization problems over the space of measures X ⇤.

A proof of this standard result can be found in [176, Theorem 2.3.3]. This
duality result has been the cornerstone of many works seeking to model risk-
aversion (see in particular [145]): the correspondence between ⇢ and ⇢⇤ enables
to characterize robustness via desirable properties on ⇢⇤. In this thesis, we will
mostly focus on the cases where ⇢⇤ is the indicator of a convex set of measures.

3.1.3 Supporting distributionally robust optimization

When the Fenchel conjugate ⇢⇤ of ⇢ is the indicator of a closed convex set Support functions on X

A ⇢ Y , ⇢ is a support function and satisfies two additional properties:

(Sub-additivity) ⇢(- +-0)  ⇢(-) + ⇢(-0), for all -,-0 2 X (H1)

(Positive homogeneity) ⇢(⌫-) = ⌫⇢(-), for all - 2 X ,⌫ � 0. (H2)

Additional desirable properties may be set on ⇢ to model risk aversion. Among
such, the monotonicity property defined as:

(Monotonicity) ⇢(-)  ⇢(-0), for all -  -0 (0.B.). (H3)

ensures that the risk decreases when - := 5 (F, ⇢) gets decreased for almost all
values of ⇢. It is also convenient whenever F 7! 5 (F, I) is convex for all fixed
I 2 R

m as the composition F 7! ⇢(5 (F, ⇢) becomes also convex. From a dual
perspective, this translates into A ⇢ {⇠,⇠ � 0}. We will provide an elementary
proof of this statement in Proposition 3.4 of this chapter.

26 ��������� �������������

One last property we also wish to mention is the translation invariance, set as:

(Translation Invariance) ⇢(- + 2) = ⇢(-) + 2, for all - 2 X , 2 2 R. (H4)

Intuitively, this means that the risk functional ⇢ should not be perturbed byDistributionally robust
optimization deterministic outcomes. Interestingly, we will observe soon in Proposition 3.6

that support functions satisfying this property necessarily have their support
included in the hyperplan {⇠ 2 Y , s.t. ⇠(⌦) = 1}. Hence, combined with (H3),
this property ensures that all measures in the support A are necessarily proba-
bility measures. In such case, the support A is often called an ambiguity set and
the problem of minimizing the composition F 7! ⇢(5 (F, ⇢)) is referred to as a
distributionally robust optimization (DRO) problem:

⇢(-) = sup
⇠2A

E⇠[-]. (3.4)

Example 3.2. A popular approach for the modeling of a support goes throughDivergence-based
ambiguity sets the design of a divergence function [11, 33]. A closed proper convex map

! : R+ ! R+ [{+1} is called a divergence function if 1 2 int dom ! and
min ! = !(1) = 0. Then given some ground measure � 2 Y , the !-divergence
of a measure ⇡ ⌧ � that is absolutely continuous with respect to �, is defined
as:

D!(⇡,�) =

π
⌦

!

✓
3⇡

3 �

◆
d�.

where 3⇡
3 � denotes the Radon-Nikodym derivative of ⇡ with respect to �. For

a fixed threshold A > 0 designed to model the level of aversion to risk of the
decision maker, the associated distributionally robust optimization problem
writes:

min
F2Rd

sup
⇡⌧�

D!(⇡,�)A

E⇡[5 (F, ⇢)]

Example 3.3. The support A in (3.4) can also be a ball with respect to a givenWasserstein
ambiguity sets metric in the space of measures. For example, Wasserstein ambiguity sets have

been receiving much attention, e.g. [64, 84, 146]. For any couple of measures
⇠, ⇡ 2 Y , the Wasserstein distance between ⇠ and ⇡ is defined for ? � 1 as:

W(⇠, ⇡) := inf
�2⇧(⇠,⇡)

✓π
Ω

2

��G � H��? d�(G, H)

◆1/?

.

where ⇧(⇠, ⇡) denotes the set of product measures having marginals ⇠ and ⇡.
Given a sample of values ⇢1, . . . , ⇢= and the associated empirical distribution P= ,
for a safety radius A > 0, the data-driven Wassertein DRO problem writes

min
F2Rd

sup
⇠2Y

W(⇠,P=)A

E⇠[5 (G, ⇢)].

Support functions satisfying the properties (H1) to (H4) are called coherent risk
measures and were introduced in [5]. A growing body of literature has examined
their properties from various angles, including structural properties [138, 147],
statistical properties [94, 112] and applications [28, 89, 106]. This thesis may be
seen as following the same line of works, with a focus on a particular class of
coherent risk measures that will be specified in the forthcoming Section 3.2.

3.1 ����-������ ������������ ������� ��� ���� �� ������� ������ 27

3.1.4 Subdifferential formula

Given a random loss F 7! 5 (F, ⇢) and coherent risk measure ⇢ : X ! R, we
consider

min
F2Rd

�(F) := ⇢(5 (F, ⇢)). (3.5)

Various methods may be used for the minimization of such functions, de-
pending on the regularity properties of 5 , the statistical properties of ⇢, and
the geometry of the ambiguity set A. When 5 is a convex normal integrand,
one may solve (3.5) via subgradient-based methods [145]. Let us first recall the
subdifferentiation rules for ⇢.

We define an algebraic subgradient of a proper convex l.s.c. risk functional Subdifferential of a risk
measure⇢ : X ! R at - as any linear functional ✓ satisfying:

⇢(-0) � ⇢(-) + ✓ (-0 �-), 8-0 2 X . (3.6)

While such linear functionals need not be continuous, we call the subset of
those that are continuous the subdifferential of ⇢ and we denote it %⇢(-). Since Y

is assumed to be the topological dual of X , any element of this set is of the form
h⇠, .i for some ⇠ 2 Y .

For ⇠ 2 %⇢(-), we have by definition of the Fenchel conjugate:

⇢⇤(⇠) � h⇠,-i � ⇢(-).

Since relation (3.6) is equivalent to

h-,⇠i � ⇢(-) � h-0,⇠i � ⇢(-0), 8-0 2 X ,

taking the supremum on the right-hand side yields:

h-,⇠i � ⇢(-) = ⇢⇤(⇠)

By Fenchel-Moreau’s theorem, we thus have:

sup
⇡2Y

h-, ⇡i � ⇢⇤(⇡) = ⇢(-) = h-,⇠i � ⇢⇤(⇠)

which means
⇠ 2 arg max

⇡2Y
h-, ⇡i � ⇢⇤(⇡)

Conversely, if ⇠ 2 arg max⇡2Y h-, ⇡i � ⇢⇤(⇡), then using again Fenchel-Moreau’s
theorem yields for any -0 2 X :(

⌧(-) = h-,⇠i � ⇢⇤(⇠)

⌧(-0) � h-0,⇠i � ⇢⇤(⇠)

which implies
⌧(-0) � h-0,⇠i +

�
⌧(-)� h-,⇠i

�
.

which yields arg max⇡2Y h-, ⇡i �⇢⇤(⇡) ⇢ %⇢(-). Hence, we obtain a description
of the subdifferential of ⇢ as:

%⌧ (-) = arg max
⇡2Y

h-, ⇡i � ⇢⇤(⇡).

28 ��������� �������������

Finally, we may then invoke the chain formula [145] to subdifferentiate the
composition.

Proposition 3.2. Let F 7! 5 (F, ⇢) be a finite-valued convex normal integrand that isThe subdifferential
formula continuous at F̄. Then F 7! �(F) = ⇢(5 (F, ⇢)) is subdifferentiable at F̄ with

%�(F̄) = conv

(
sup

⇠2%⇢(5 (F̄,⇢))

π
Ω

%F 5 (F̄, ⇢)d⇠

)
. (3.7)

In Section 4.2.1, we will focus on the special case where ⇢ is the superquantile
risk measure. We will extend (3.7), to the case where � is not convex together
with an explicit reformulation.

3.2 ��������� �� � ����� �� ������� ���������

We present now a special class of risk measures that will be central in this thesis.
We first precise the concept of coherency for risk measures on finite support. We
consider then the class of risk measures of interest by introducing the concepts
of law-invariance and comonotonicity. We provide then a brief overview of the
superquantile risk measures. We finally explain how the superquantile enables
to recover any risk measures of interest via Kusuoka’s representation.

In this section, we provide proofs of all the results, lemmas and propositions,
though these results are known and actually hold in general setups (see
e.g. [120, 147]). Our proofs rely on basic results from linear algebra and convex
analysis that we highlight along the developments.
Coherency in Risk-averse Optimization. To simplify the presentation, assumeRisk measures in the

discrete setting the universe to be finite Ω = {⇢1, . . . , ⇢=}. The sigma-algebra is fixed as F = 2Ω,
and the probability measure is set to be the empirical distribution P=(⇢8) = 1/=
for all 8 2 ~1, =�. Random variables - 2 X and measures ⇠ 2 Y can both be
identified with vectors G, @ in R

n:

G8 = -(⇢8), @8 = ⇠({⇢8}), 8 1  8  =,

and the pairing reduces to the usual dot product:

E⇠[-] = @>G =

=’
8=1

-(⇢8)⇠({⇢8}), 8- 2 X ,8⇠ 2 Y .

In the previous section, we saw with Fenchel-Moreau’s theorem 3.1 that any
closed proper convex risk measure ⇢ may be written as the solution of a robust
problem (3.3). When the Fenchel conjugate ⇢⇤ of ⇢ is the indicator of a convex
compact subset C ⇢ R

n, ⇢ turns out to be a support function:

⇢(G) = sup
@2C

@>G. (3.8)

We actually have the following correspondence.

Proposition 3.3. The function ⇢ defined in (3.8) satisfies the following assertions:Standard properties of
support functions

(i) [Normalization] ⇢(0) = 0.

(ii) [Positive Homogeneity] For any ⌫ > 0, ⇢(⌫G) = ⌫⇢(G).

(iii) [Proper l.s.c convexity] ⇢ is proper, closed and convex on R
n.

(iv) [Finiteness] dom⇢ = R
n

3.2 ��������� �� � ����� �� ������� ��������� 29

Conversely any function ! : R
n ! R satisfying the above four assumptions is the

support function of a convex compact of R
n.

Proof. The first three assertions follow from Prop. 2.1.2 and 2.1.3 from chapter
C [62]. Conversely any function satisfying the first three assumptions is the
support function of a closed convex subset, by Prop. 3.1.1 from the Chapter C
of [62]. Fourth assumption falls from compactness of C. Conversely, we just
have to show the compactness of the support set C. We already know that C is
closed. It remains then to show that it is bounded to get compactness, since R

n

has finite dimension. We first note that since ⇢ is convex and dom⇢ = R
n, ⇢ is

continuous. By contradiction, if C is not bounded, let (@=)=�0 2 (C\{0})N such
that |@= | ! +1 and G= =

@=
k@= k . Since R

n has finite dimension, its unit ball is
compact we may extract a converging sequence (G#(=))=�0 ! Ḡ of (G=)=�0. Thus,
for all = 2 N, we have: ⇢(G#(=)) � @>

#(=)
G#(=) = k@#(=)k ! 1 which brings the

contradiction. ⇤

In this section, we investigate the relationship between additional properties
on the support function ⇢ and the geometry of the corresponding support C.

Proposition 3.4. Let ⇢ be a function defined as in (3.8). Then, the following assertions Growth and inclusion in
the positive coneare equivalent:

(i) The function ⇢ is increasing, i.e.: for any, G, H 2 R
n such that G8  H8 for all

8 2 {1, . . . , =} we have ⇢(G)  ⇢(H)

(ii) The support C belongs to the positive cone R
=
+.

Proof. (8) =) (88) : Let (41, . . . , 4=) denote the canonical basis of R
n. For any

8 2 {1, . . . , =}, we have: ⇢(�48)  ⇢(0) , inf@2C @8 � 0 which yields C ⇢ R
=
+.

(88) =) (8): Let G, H satisfying assumption (8). Then, since C ⇢ R
=
+, we have:

@>(H � G) � 0,8@ 2 C =) @>G  @>H,8@ 2 C =) ⇢(G) = max@2C @>G 
max@2C @>H = ⇢(H). ⇤

Proposition 3.5. Let ⇢ be a function defined as in (3.8). Then, the following assertions Translation invariance
and inclusion in the
simplex

are equivalent:

(i) The function ⇢ is translation invariant: ⇢(G + ⌫4) = ⇢(G) + ⌫ for any ⌫ 2 R,
where 4 = (1, . . . , 1)>

(ii) The support belongs to the hyperplane {@ 2 R
n,

Õ=
8=1 @8 = 1}.

Proof. The implication (8) =) (88) goes as follows. Note that ⇢(4) =

sup@2C
Õ=
8=1 @8 = ⇢(0) + 1 = 1 and ⇢(�4) = � inf@2C

Õ=
8=1 @8 = ⇢(0) � 1 = �1.

Hence C ⇢ {@ 2 R
n,

Õ=
8=1 @8 = 1}. The reverse implication is immediate. ⇤

Hence, if we assume our support function ⇢ to satisfy both the growth and the
translation invariance properties, its support belongs then to the unit simplex
∆ := {@ 2 R

n,
Õ=
8=1 @8 = 1, 0  @8 88 2 {1, . . . , =}}, which spans the space of

probability measures @ on the discrete space Ω = {⇢1, . . . , ⇢=}. We recover in this
discrete setting the concept of coherent risk measure introduced in Section 3.2.

Law-invariant risk measures. We propose now to focus, in this discrete setting, Law-invariance

on risk measures that only depends on the cumulative distribution function of
the input random variables G 2 R

n. Such risk measures are called law invariant.
As shown in the next lemma, law invariance is directly linked to the symmetry
properties of the support. Throughout, we will denote Sn the permutation set
of ~1, =�.

30 ��������� �������������

Proposition 3.6. Let ⇢ be defined as in (3.8). The two following assertions are thenLaw invariance and
symmetries of the
support

equivalent:

(i) The function ⇢ is invariant with respect to symmetries, i.e.:

⇢(G) = ⇢ ��(G) 8� 2 Sn,8G 2 R
n

(ii) The support C is invariant with respect to symmetries: C = �(C) for any � 2 Sn.

Proof. For any � 2 Sn, let us denote by)�, the associated permutation matrix
defined by:)� 8,9 = 1 if 9 = �(8) and 0 otherwise. We note then for any G 2 R

n,
� 2 Sn that:

⇢(�(G)) = max
@2C

h@,)�Gi = max
@2C

h)>
� @, Gi = max

@02)>
� (C)

h@0, Gi = max
@02��1(C)

h@0, Gi ,

(3.9)

since any permutation matrix is orthogonal. Hence ⇢ �� is the support function
of the set ��1(C). This gives (88) =) (8). Conversely, we know from [62] that
two closed convex sets are equal if and only if their support functions are equal,
which yields with (3.9) the result. ⇤

We can actually leverage the symmetry properties of the support of law-
invariant risk measures to recover information the distribution @ 2 C which
achieves the maximum of the support function for a given input G 2 R

n. To
do so, we define for any distribution @ 2 C the orbit of @, denoted O(@) as:
O(@) = {�(@), � 2 Sn}. The relation @0 2 O(@) defines then an equivalence
relation on C. For any @ 2 C, we will denote @̄ = O(@) its associated equivalence
class. For any D 2 R

n, we call sorting permutation any permutation �D 2 Sn,
such that:

D�D (1)  · · ·  D�D (=)

Lemma 3.7. Let G 2 R
n and @ 2 C be fixed. Let �G and �@ be two associated sortingLaw invariance and the

rearrangement inequality permutations:

G�G (1)  · · ·  G�G (=) and @�@ (1)  · · ·  @�@ (=)

Then, for any @0 2 O(@), we have:

@0>G  ��1
G (�@(@))

>G

Proof. By the rearrangement inequality, we have, for any @0 2 O(@) :

@0>G 
=’
8=1

@�@ (8)G�G (8)  h)�@ @,)�G Gi  h)�1
�G)�@ @, Gi

which yields the result. ⇤

Comonotonicity and generation of the support. We note that for a supportingComonotonicity

set C that is generated by a single distribution, i.e. C = conv(O(@)) for some
@ 2 ∆, the extreme points of C constitute the orbit O(@). Subsequently, this last
lemma ensures that evaluating the support function at G boils down to a sorting
of the elements of G. Let us now characterize risk measures supported on such
sets. For any G, H 2 R

n, we say that G and H are comonotone if:

G8  G 9 () H8  H 9 88, 9 2 ~1, =�

3.2 ��������� �� � ����� �� ������� ��������� 31

Comonotonicity yields a second equivalence relation. We note from lemma 3.7,
that for any law-invariant support function and for any G 2 R

n, arg max@2C @
>G

is comonotone to G.
A risk measure ⇢ is said to be comonotone if for all G, H 2 R

n that are
comonotone, ⇢ satisfies ⇢(G + H) = ⇢(G) + ⇢(H). As next Proposition shows,
comonotonicity can also be tied to the geometry of the support C.

Proposition 3.8. Let ⇢ be defined as in (3.8) and law-invariant. Then, the two Comonotonicity and
generation of the supportfollowing assertions are equivalent:

(i) The support function ⇢ is comonotone.

(ii) The support C is generated by a single distribution, i.e. there exists @ 2 C such
that C = conv(O(@)).

This well-known results was first established in atomless spaces within the
seminal paper [85]. Its extension to finite probability spaces was proposed
in [17] with a proof relying on submodularity considerations. Here we provide
a different proof based on elementary results from convex analysis.

Proof. (8) =) (88): Let @ 2 C be an exposed point of C. By law-invariance of ⇢,
we have O(@) ⇢ C and thus convexity of ⇠ ensures conv(O(@)) = C. We want to
show that conv(O(@)) = C. Let us assume by contradiction that there exists an
extreme point @̃ of C such that @̃ 8 conv(O(@)). By Straszewicz’s theorem [154]
and closedness of conv(O(@)), we may actually assume @̃ to be an exposed point
of C. It is then clear that O(@̃)\O(@) = ;. Let then @1, @2 2 O(@)⇥O(@̃) such that
@1 and @2 are comonotone. Let G1 and G2 two arbitrary points respectively in
NC(@1) andNC(@2). By the proposition 3.1.4 of the chapter C of [62],⇢(G1) = @>1 G1

and ⇢(G2) = @>2 G2. Hence by lemma 3.7 and transitivity of the comonotone
equivalence relation G1 is comonotone to G2. However, for any @ 2 C, since @1

and @2 are exposed, if @ < @1, @>G1 < ⇢(G1) and if @ < @2, @>G2 < ⇢(G2). Since
@1 < @2, we have:

@>(G1 + G2) < ⇢(G1) + ⇢(G2) 8@ 2 C)

By compactness of C, we get ⇢((G1 + G2) < ⇢(G1) + ⇢(G2) which yields the
contradiction.
(88) =) (8): By definition of support functions, G, H 2 R

n, ⇢(G + H) 
⇢(G) + ⇢(H). Let G, H 2 R

n be comonotone. Then the permutation �G 2 Sn that
sorts the coordinates of G is also a sorting permutation for H, i.e. we have:

G�G (1)  · · ·  G�G (=)

and H�G (1)  · · ·  H�G (=)

Let @ 2 C such that C = conv(O(@)). Then by lemma 3.7, we have for any @0 2
O(@), @0>G  ��1

G �@(@)>G and @0>H  ��1
G �@(@)>H. Now since arg max@02C @

0>G

and arg max@02C @
0>H both lie in the set of extreme points of C which is by

assumption the orbit of @, we have: ⇢(G) = ��1
G �@(@)>G and ⇢(H) = ��1

G �@(@)>H.
Hence, we have:

⇢(G) + ⇢(H) = ��1
G �@(@)

>(G + H)  sup
@02C

@0>(G + H) = ⇢(G + H)

which finishes the proof. ⇤

Combining the two previous lemmas yields the following corollary.

32 ��������� �������������

Corollary 3.9. Let ⌧ be defined as in 3.8, law-invariant and comonotone. Let @ 2 CRisk profile

such that C = conv(O(@)). Then, for any G 2 R
n, we have:

⌧(G) = h�@(@), �G(G)i = h��1
G (�@(@)), Gi

In other words, this result shows that when the support function ⌧ satisfies
the law-invariance and comonotonicity properties (and assuming that we know
an extreme point @ of the support C), evaluating ⌧ at a given G 2 R

n boils
down to a sorting of the coordinates of G. This is much less demanding than
solving the linear program (3.8) in general. Moreover, we note that designing a
law-invariant and comonotone support function amounts to designing a risk
profile, i.e. an increasing sequence @8 that sums to one. The support is then
recovered through the formula C = conv(O(@8)).

3.3 �������������� ��� ��� ������� ��������������

In this section, we present in detail the superquantile, which is a special example
of law-invariant comonotone risk measure. This risk measure was introduced
in the introductory Section 1.1 of this thesis. We insist here on its convex and
geometric properties, based on the above coherent framework.

3.3.1 The superquantile risk measure

In the discrete setting described in Section 3.2, the general formula (1.4) defining
the superquantile reduces to a sum that can be further split asSuperquantile of discrete

random variables

(?(G) =
1

=(1�?)
’
82�>
G8 +

⇣

1�?&?(G) with �>= {8 : G8 >&?(G)}. (3.10)

This expression involves the distance from ? to the next discontinuity point
of the quantile function: ⇣ = �G(&?(G))� ? =

1
= (= � |�> |)� ?,that we illustrate

in Figure 3.2. Hence, (3.10) gives an efficient way to compute superquantiles
from the following three step procedure: (a) compute the ?-quantile with the
specialized algorithm (called quickfind [65]) of complexity O(=); (b) select
all values greater or equal than the quantile; (c) average values along (3.10).
We note also that for probability values ? in

�
8
= , 1  8  =

, this expression

simplifies even more.

Lemma 3.10. Let G 2 R
n be a fixed vector and �G a sorting permutation for G. ForQuantiles,

superquantiles, and
coordinates of a vector

any 8 2 ~1, . . . , = � 1�, we have:

& 8
=
(G) = G�G (8) (8

=
(G) =

1

= � 8

=’
:=8+1

G�G (:)

Proof. Let 8 2 {1, . . . , = � 1} be fixed. Then, 1
=

Õ=
:=1 1G:G�G (8) � 8

= so G�G (8) �
& 8

=
(G). But for any C < G�G (8), it is also clear that: 1

=

Õ=
:=1 1G:C <

8
= which yields

3.3 �������������� ��� ��� ������� �������������� 33

Figure 3.2: Illustration of the integral expression of the superquantile. Cumulative
distribution function (on the left) and quantile function (on the right) are
each other’s inverse. The superquantile is obtained by averaging the quantiles
greater than the ?-quantile (red section on graph on the right).

the first result. It is in addition clear that for any 8 2 ~1, = � 1�, and for any
? 2 (8= , 8+1

=], &?(G) = & 8+1
=
(G) = G�G (8+1). Hence,

(8
=
(G) =

1

1� 8
=

π 1

?0= 8
=

&?0(G)d?
0
=

=

= � 8

=�1’
:=8

π :+1
=

?0= :
=

&?0(G)d?

=

=

= � 8

=�1’
:=8

1

=
& :+1

=
(G)d?0 =

1

= � 8

=’
:=8+1

G�G (8+1)

which ends the proof. ⇤

���� ������������.

On top of expression (3.10), the superquantile offers two other useful formu-
lations dual of each other:

• The superquantile is the support function of the intersection of the simplex Distributionally robust
representationwith a box (see Figure 3.3).

(?(G) = max
@2�?

@>G with �?=

(
@ 2 R

=
+ :

=’
8=1

@8 = 1, @8 
1

=(1� ?)

)
. (3.11)

This problem corresponds to a classical optimization problem, called the
fractional knapsack problem, which is solved, after sorting the G8 ’s, by
a simple greedy strategy of the associated @8 ’s [35], yielding back the
discrete formulation (3.10).

• Another expression, which initially appeared in [139], is Variational
representation

(?(G) = inf
◆2R

(
◆ +

1

=(1� ?)

=’
8=1

max(G8 � ◆, 0)

)
. (3.12)

This formulation can be derived through Lagrangian duality from (3.11)
(see. e.g [11]): it suffices to dualize the simplex constraint

Õ=
8=1 @8 = 1. It

will be central in the developments of Chapter 5 of this thesis.

As a support function given in (3.11), we see that the superquantile is a Extreme points of the
support

34 ��������� �������������

Figure 3.3: Illustration of the dual expression of the superquantile (recall of Figure 1.2
from Section 1.1). G 7! (?(G) is the support function of the red polytope.
The red point at the center represents the uniform distribution.

coherent risk measure. Moreover, we note that the support �? is the convex
hull of the orbit O(@?) with

@? :=

8>>>>>><
>>>>>>:

0, . . . , 0, ⇣,
1

=(1� ?) , . . . ,
1

=(1� ?)| {z }
=⇥(1�?�⇣) times

9>>>>>>=
>>>>>>;

.

We therefore deduce from Propositions 3.6 and 3.8 that the superquantile is
law-invariant and comonotone. In practice, superquantiles have been shown
experimentally to produce models more robust to distributional shifts in various
contexts; we refer to [34, 75, 86, 94]. We will provide numerical illustrations in
Section 4.4.

3.3.2 The Kusuoka representation

As we have seen with Corollary 3.9, any law-invariant comonotone risk measures
can be written as a convex combination of quantiles of the input vector G.
However, quantiles are known to be non-convex and nonsmooth functions. In
this section, we present a standard representation of law-invariant comonotone
risk measures known as the Kusuoka representation [85, 120]. We will leverage
this representation in Section 4.2 to produce efficient first-order oracles for the
minimization of such risk measures.

Proposition 3.11. Let ⌧ be defined as in (3.8), law-invariant and comonotone. LetKusuoka Representation

@ 2 C such that C = conv(O(@)) and � := �@(@). Then for any G 2 R
n, we have:

⌧(G) =
=’
:=1

�:(:�1
=
(G) (3.13)

where (�:)1:= satisfies : �1 = =�1, �8 = (= + 1� 8)(�8 � �8�1) for 8 2 {2, . . . , =}.

3.4 ������������ �� �����-����� ������� 35

Proof. Let G 2 R
n be fixed. For any 8 2 ~1, . . . , = � 1�, let -̄8 :=

Õ=
:=8 G�G (:) =

(= � 8 + 1)(8�1
=
(G). By corollary 3.9, we have:

⌧(G) =
=’
8=1

�8G�G (8) =
=’
8=1

�8

=’
:=8

G�G (:) �
=’

:0=8+1

G�G (:0)

!

=

=’
8=1

�8(-̄8 � -̄8+1)
�
with convention -̄=+1 = 0

�

=

=’
8=1

�8-̄8 �
=’
8=2

�8�1-̄8 = �1-̄1 +

=’
8=2

(�8 � �8�1)-̄8

= =�1(0(G) +

=’
8=2

(= + 1� 8)(�8 � �8�1)(8�1
=
(G)

which yields the result. ⇤

One may observe from the above proof that the Kusuoka representation
stems from an elementary "integration by part" technique. In particular, we
did not assume ⌧ to satisfy the growth condition from Proposition 3.4. Hence
the Kusuoka representation, usually given for coherent risk measures, holds
de facto for any linear combination of quantiles functions. In particular, the
developments of Section 4.2 will remain valid for other classes of functions alike
such as cardinality-based submodular functions.

3.4 ������������ �� �����-����� �������

Minimization of superquantile-based objective functions comes with a number
of technical challenges on the structure of the problem tackled, the size of the
dataset or the nonsmoothness of the objective. Standard works on minimizing
superquantiles considered linear programming or convex programming tech-
niques, including interior point algorithms; see the review of [135]. Surprisingly,
the use of first-order algorithm for superquantile-based optimization is quite
recent and seems to be driven by applications in machine learning.

In this section, we provide an overview of the range of first-order methods
to minimize superquantile-based objective functions. Precisely, we consider
problems of the form:

min
F2Rd

(?[5 (F, ⇢)] (3.14)

where ⇢ : ⌦ ! R is uniform over a a batch of training samples D = {⇢1, . . . , ⇢=}.
Our discussion focuses on practical considerations; we give pointers to references
presenting more details and theoretical analysis.
Batch algorithms. The first approach for minimizing superquantile-based
objective functions is to use standard subgradient-based methods (subgradient
and dual averaging) or gradient-based methods (gradient, accelerated gradient,
Quasi-Newton). More precisely, we have two cases:

• If F 7! 5 (F, I) is convex for all I, then composition 3.14 is convex and we Convex case

may compute a subgradient according to (3.7) (we will make this more
concrete in the forthcoming Proposition 4.1) with the same complexity as
the one for computing a quantile. We can use standard convex nonsmooth
optimization methods, such as subgradient methods and dual averaging.
These algorithms satisfy ergodic convergence guarantees in objective
values [15].

36 ��������� �������������

• If F 7! 5 (F, I) is smooth for all I, then we can smooth the superquantileSmooth case

(see forthcoming Section 4.2.2) to get a gradient oracle that approxi-
mates the composition 3.14. We can use standard methods for smooth
optimization: gradient method, accelerated gradient method, and quasi-
Newton (L-BFGS). If furthermore we have convexity, these algorithms
satisfy convergence guarantees in objective values [15, 16].

For small to medium-size datasets, such batch methods are shown to be
simple and efficient; see [86, Sec. 4] and forthcoming developments of Chapter 4.
For large-scale problems though, the oracles become too costly as they require
sorting loss values on the whole data set. We turn to the other formulations to
introduce stochastic and mini-batch algorithms, that usually are the methods of
choice for the case of standard learning using empirical risk minimization.
Mini-batch algorithms. Mini-batch algorithms for the minimization of the
superquantile have received much attention in recent years. Given the diverse
formulations of the superquantile, several approaches have been considered.

From the perspective of the formulation (3.12) of the objective, theSmoothing the
variational

representation (3.12)
superquantile-based learning problem writes

min
F2Rd

min
◆2R

(
1

=(1� ?)

=’
8=1

max{ 5 (F, ⇢8)� ◆, 0} + ◆

)
. (3.15)

When the loss is assumed to be smooth, one may again smooth the inner
max{·, 0} term to get a smooth approximation of this joint objective. One
can then perform a joint minimization with respect to the model F and the
dual variable ◆. In other words, superquantile learning reduces to a standard
empirical risk minimization with a modified loss function truncated by the
max-term. In practice batch methods may not be interesting here, since they
would not leverage the fact that the minimization over ◆ can be performed
explicitly. Thus [89] proposes, in a context of federated learning, to rather
perform independent minimization over G and ◆ alternatively. The min-min
approach paves the way to stochastic and mini-batch algorithms.

Several works , including [152] and [173] (as well as [48] without mentioningStochastic approaches
to (3.12) superquantile), use successfully standard stochastic optimization algorithms on

this modified objective. Observe though that, if a mini-batch of data is sampled
uniformly at random from the data, only a fraction (1� ?) carry (sub)gradient in-
formation. Furthermore, the (sub)gradients of these examples are scaled by 1

1�? ,
leading to exploding directions. Thus mini-batch estimates of (sub)gradients
of superquantile-based objectives may suffer from high variance. A solution
proposed by [34] is to perform an adaptive sampling rather than a uniform
one. This algorithm gradually adjusts its sampling distribution to increasingly
sample tail events, until it eventually minimizes the superquantile. This ap-
proach has a nice two-player interpretation related to the third formulation,
recalled below.

The DRO expression (3.11) of 5 leads to the following formulationMini-batch approaches
for the DRO

formulation (3.11)

min
F2Rd

max
@2�=

(
=’
8=1

@8 5 (F, ⇢8) : 0  @8 
1

=(1� ?)

)
. (3.16)

This min-max formulation offers several ways to solve the superquantile-
based learning. A first approach would consist in considering it as a generic
saddle point problem and using standard (extra-)gradient algorithms or recent
extensions exploiting some aspects of the problem (see e.g. [107] for a variance-

3.5 ���������� �� ������-����������� ����������� 37

reduced min-max with strongly concave max). In our specific case, computing
the max can be done systematically by a greedy algorithm with quasi-linear
time complexity (see Section 4.2). This key feature is exploited by the stochastic
algorithm of [44], and also by the one of [75] without relating it to superquantile.
This algorithm uses a biased sampling approximation to 5 or 5⇠ which has nice
guarantees. We briefly describe below this approach.

We sample a mini-batch S of size B, uniformly in D and we consider the Mini-batch stochastic
estimator of the
superquantile

restriction

e5 (F) = [(?](0,1)⇠S
�
5 (F, ⇢)

�
= max

@2�B

(’
82S

@8 5 (F, ⇢8) : 0  @8 
1

B(1� ?)

)
.

Alternatively, one may smooth this stochastic estimator. We will discuss possible
smoothing procedures in the upcoming Section 4.2.2. Specialized here for a
given smoothing parameter ⇡ > 0 and a strongly convex function ⇡, this gives

e5 ⇡(F) = max
@2�B

(’
82S

@8 5 (F, ⇢8)� ⇡⇡(@) : 0  @8 
1

B(1� ?)

)
. (3.17)

Using the (sub)gradient oracles that will be presented in Section 4.2 on e5 (⇡),
we can run stochastic gradient methods. These methods require a number of
gradient evaluations independent of training set size and number of parameters,
making them suitable for large-scale applications. However, one should note
that e5 happens to be a biased estimator of 5 , in view of the two following
results [94]. We will use them in Chapter 6.

Proposition 3.12. Let *B denote the uniform distribution over all subsets of [=] of Bias of e5 ����

size B. Assume that loss 5 is bounded: 5 (F, ⇢8)  ⌫, 8F 2 R
d,88 2 ~1, =�. Then,

for any F 2 R
d, we have

���ES⇠*B [
e5 (F)]� 5 (F)

���  ⌫p
(1� ?)B

Under similar assumptions, one may also bound the bias of the smoothed
stochastic estimator (3.17) as well as the variance of its gradient.

Proposition 3.13. Let *B denote the uniform distribution over all subsets of [=] of Bias and variance of

re5 ⇡ ����size B. Assume that loss 5 is Lipschitz with respect to F: 5 (F, ⇢8) � 5 (F0, ⇢8)| 
⌧, 8F,F0 2 R

d. Then, for any F 2 R
d, we have

���ES⇠*B [
e5 ⇡(F)]� 5 (F)

���  ⌫p
(1� ?)B

+ 2⇡ log B ,

E(⇠*<

���re5 ⇡(F)� rES⇠*B
e5 ⇡(F)���2

 8⌧2

(1� ?)B .

A comparison between batch and stochastic methods will be presented in the
Section 4.4 of this thesis.

3.5 ���������� �� ������-����������� �����������

We end this chapter with a related topic that will be explored in Chapter 5.
Chance constraints appear as a versatile way to model the exposure to uncertainty

38 ��������� �������������

in optimization. Introduced in [25], they have been used in many applications,
such as in energy [129, 162] and telecommunications [110]. We refer to the
seminal paper [127], the book chapter [38] for an introduction to the theory,
and to the recent article [158] for a discussion covering recent developments.

Chance constraints result from taking the probability measure of a given setChance constraints

of random inequalities depending on the decision vector. Formally speaking,
given a map 6 : ⇢ ⇥ R

< ! R
: , where ⇢ is a (reflexive) Banach space and a

random vector ⇢ 2 R
< defined on an appropriate probability space, we first

define the probabilistic constraint function ! : - ! [0, 1] as:

!(F) := P[6(F, ⇢)  0] . (3.18)

As its name suggests, a chance-constrained problem is an optimization problemChance-constrained
problems of the form: 8>><

>>:
min
F2(

5 (F)

s.t. !(F) � ?
(3.19)

where 5 : R
d ! R is a given objective function, (⇢ ⇢ is an arbitrary set

of deterministic constraints and ? 2 (0, 1) a user-defined safety level. The
interpretation of (3.19) is simple: one requires the decision F to minimize the
cost function 5 while satisfying both the deterministic constraint F 2 (, and, the
random inequality system 6(F, ⇢)  0 with a probability at least greater than ?.
Letting "(?) be the set of admissible points for the probabilistic constraint,

"(?) =
�
F, !(F) � ?

,

this problem rewrites
min

F2(\"(?)
5 (F).

From now on, we will assume 5 , 6, and (to be convex in order to bring to
light the inherent difficulties of chance constraints. Indeed, such problems
are still designated as especially difficult for two reasons in particular, that we
summarize below.
Nonsmoothness. When considering a parametric distribution in place of theNonsmoothness of

chance constraints random variable ⇢, one may deal with the above chance constraint through
the (generalized) differentiation of the probabilistic function !. Indeed, the
development of readily implementable oracles for probability functions has
been studied in a growing body of literature [143, 156, 160].

Nonetheless, when ⇢ follows a discrete distribution, which typically occurs
with sample-based approximations approaches, working through the subd-
ifferentiation of ! becomes impracticable and alternative methods may be
considered. Popular numerical methods for dealing with such constraints
may be boolean approaches, e.g., [80, 81], ?-efficient point based concepts, e.g.,
[39, 40, 163], robust optimization [9], penalty approach [47], scenario approx-
imation [23, 132], convex approximation [115], or yet other approximations
[53, 68].
Non-convexity. The possible non-convexity induced by the chance constraintNon-convexity of

chance constraints can considerably complicate the handling of the problem. Understanding when
"(?) is a convex set is important for the point of view of optimization, to
guarantee that local solutions are also globally optimal and to use numerical
solution methods that exploit this convexity. A first result of the convexity
of "(?) follows from Prékopa’s celebrated log-concavity theorem (see [49,
Proposition 4] for its infinite dimensional version and [43] for generalizations):

3.5 ���������� �� ������-����������� ����������� 39

Figure 3.4: Kataoka’s example of eventually convex chance constraint. Here ⇢ follows a
2-dimensional Gaussian distribution with parameters ⇠ = (1, 1) and ⌃ = �2.
Even in the simple Gaussian case, chance constraints are not garanteed to be
convex for all values of ?.

the convexity of "(?) is guaranteed for all ? 2 [0, 1], when �6 is jointly quasi-
concave in both arguments and ⇢ an appropriate random vector. However, joint-
quasi-concavity of �6 is rather exceptional and fails in many basic situations.

Example 3.4. Take 6(G, ⇢) = G>⇢ and ⇢ to be a multi-variate Gaussian with Kataoka’s example
See e.g. ����mean ⇠ 2 R

n and covariance matrix ⌃ 2 R
=⇥= . Then "(?) is known to be

convex only whenever ? � 1
2 . Indeed, denoting I an arbitrary 1-dimensional

standard Gaussian variable and) its cumulative distribution function, we
observe that for any G 2 R

n, one has

P[G>⇢] = P

h
G>⇠+

p
G>⌃GI  0

i
=)

✓ �G>⇠
p
G>⌃G

◆
.

Hence,

P[G>⇢] � ? ,)

✓ �G>⇠
p
G>⌃G

◆
� ? , G>⇠+

p
G>⌃G)�1(?)  0

Thus, in this example, the comvexity of the set "(?) boils down to quasi-
convexity of the function G 7! G>⇠+

p
G>⌃G)�1(?) which clearly occurs only

when)�1(?) � 0, that is when ? is greater than 0.5. ⇤

In the above example, we thus observe that if the convexity of "(?) does not
hold for all ?, there still exists a (computable) threshold ?⇤ 2 [0, 1] such that
the set "(?) is convex for all ? � ?⇤. This property is called eventual convexity
as observed by [128] and coined by [59] (which studies the case where 6 is
separable and ⇢ has independent components). Eventual convexity results are
further generalized in [60] by allowing for the components of ⇢ to be coupled
through a copulæ dependency structure. These results are refined, by allowing
for more copulæ and with sharper bounds for ?⇤ in [157], and extended to all
Archimedian copulæ in [159], where also an appropriate solution algorithm is
provided. When the mapping 6 is non-separable, eventual convexity results
are provided in [161] for the special case where ⇢ is elliptically symmetrically
distributed and generalized in [92].

In Chapter 5, we will focus on the practical solving of such chance-constrained
problems in the case where ⇢ is observable through data sampling.

4
M I N I M I Z I NG S U P E R Q UA N T I L E - BA S E D R I S K M E A S U R E S

This chapter is devoted to the practical minimization of a given class of convex
risk measures and their applications in machine learning. Namely, we consider
law-invariant comonotone convex risk measures and we show how they can be
efficiently minimized via first-order methods. An important focus is given
to the superquantile risk measures for its central role within the class. The
developments laid down below build upon the following works:

• Y. Laguel, J. Malick, and Z. Harchaoui. First-order optimization for
superquantile-based learning. Proceedings of the IEEE International Workshop
on Machine learning for signal processing (MLSP), 2020.

• Y. Laguel, K. Pillutla, J. Malick, and Z. Harchaoui. Superquantiles at work:
machine learning applications and efficient subgradient computation.
Accepted in Set-Valued and Variational Analysis.

• Y. Laguel, J. Malick, and Z. Harchaoui. Superquantile-based learning: a
direct approach using gradient-based optimization. Under review.

4.1 ������������

In view of the recalls of chapter 3 and the Fenchel-Moreau Theorem 3.1, convexity
is a natural assumption for the design of risk measures to enforce robustness in
uncertain environments. When the risk measure considered is coherent, (i.e.
sub-additive, positively homogeneous, monotone and translation-invariant), it
may be represented as the support function of a set in the space of measures,
called the ambiguity set. The study of the correspondence between the functional
properties of a given coherent risk measure and the associated ambiguity set
has drawn much attention, see [131] for an recent overview.

In this chapter, we focus on the practical solving of problems of the form: General problem

min
F2Rd

⇢(5 (F, ⇢)) (4.1)

where ⇢ denotes a law-invariant coherent comonotone risk measures – see
Section 3.2 for a brief overview. A special attention is given to the superquantile
risk measure which was first introduced in Section 1.1 of this thesis and further
developed in Section 3.3. Our developments rely on a careful analysis of the
dual properties of superquantile functions to produce first-order oracles with
optimal computational complexity. We also present our open-source python
software SPQR for the minimization of such risk measures and show how it
enforces (distributional) robustness in a sequence of numerical experiments.

In Section 4.2, we study the (sub)-gradient calculus of superquantile-based Outline

functions with a focus on computational efficiency. In particular, Section 4.2.1
specifies the general subgradient formula from Eq. (3.7) for superquantile-based

41

42 ���������� �������������-����� ���� ��������

functions and extend it to the case of non-convex losses. Section 4.2.2 considers
gradients of smooth approximations of the superquantile by inf-convolution.
We establish an equivalence result between smoothing various smoothing
procedures of superquantiles in Section 4.2.3. We generalize these smoothing
procedures to law-invariant comonotone risk measures in 4.2.4. We provide
in Section 4.3 a short presentation of the toolbox SPQR. Finally, we present in
Section 4.4 numerical experiments showing the interest of superquantile-based
risk measures.

4.2 ��������� (���)-�������� ������������

We propose to solve problems of the form (4.1) by first-order methods. We
first focus on superquantile-based learning objectives for which we provide
easy-to-implement expressions of subgradients in Section 4.2.1, and of gradients
of smoothed approximations of them in Section 4.2.2. For both oracles, we
provide efficient subroutines to implement them in linear time. We make
connections between several smoothing procedures of the superquantile in
Section 4.2.3. We finally generalize in section 4.2.4 these procedures to law-
invariant comonotone risk measures with a special care on maintaining the
optimal linear time complexity.

4.2.1 Subdifferentiation via the chain rule

In this section, we provide explicit and implementable expressions of theSuperquantile-based
losses subdifferential of a general superquantile-based loss:

5 (F) = (?(!(F)). (4.2)

where (? denotes the p-superquantile defined in (1.4) and ! : F 7! ! (F, ⇢8)18#
denotes a differentiable loss. In this chapter, we do not assume the components
of !, i.e. the terms !8(F) := !(F, ⇢8) to be convex.

Expressions for the (convex) subdifferential of superquantiles are well-known
in general settings; see e.g., [145] for a thorough study and Proposition 3.2 for a
general result. Here we study non-convex subdifferentials and derive concrete
expressions in the data-driven context; we give direct proofs as applications of
basic definitions and properties of nonsmooth analysis.

We start by recalling the standard notions of subgradients for nonsmooth
functions (in finite dimension), following the terminology of [140]. For a
function # : R

d ! R [{+1}, the regular (or Fréchet) subdifferential of # at F̄Fréchet subdifferential

(such that #(F̄) < +1) is defined by

%'#(F̄) =
�
B 2 R

3
: #(F) � #(F̄) + B>(F � F̄) + o(kF � F̄k)

.

The regular subdifferential thus corresponds to the set of gradients of smooth
functions that are below # and coincide with it at F̄. The limiting subdifferentialLimiting subdifferential

is the set of all limits produced by regular subgradients

%!#(F̄) = lim sup
F!F̄,#(F)!#(F̄)

%'#(F).

These notions generalize (sub)gradients of both smooth and convex functions:
for these functions indeed, the two subdifferentials coincide, and they reduce

4.2 ��������� (���)-�������� ������������ 43

to {r#(F̄)} when # is smooth and to the standard subdifferential from convex
analysis when # is convex.

For the function (4.2), which is the composition of a convex function and a
continuously differentiable function, we get from basic chain rules that the two
subdifferentials coincide; we simply denote it by % 5 (F). Moreover the dual
representation (3.11) expressing (? as a support function allows us to obtain
readily an expression of the subdifferential of %(? and, as a result, of the one
of 5 . We formalize all this in the following proposition.

Proposition 4.1. Consider the superquantile-based function (4.2) with ! continuously Explicit subdifferential of
superquantile-based
functions

differentiable. We have

% 5 (F̄) =
⇣
%! 5 (F̄) = %' 5 (F̄) =

⌘
r!(F̄)⇤% (?(!(F̄)) (4.3)

where r!(F̄)⇤ is the adjoint of the Jacobian of ! at F̄ and % (?(!(F̄)) the (convex)
subdifferential of (? taken at !(F̄). Moreover, for F 2 R

3, compute !(F) 2 R
n and

&?(!(F)) 2 R. Consider �> the set of indices such that !8(F) > &?(!(F)) and �
=

the
set of indices such that !8(F) = &?(!(F)). Then the subdifferential of 5 at F can be
written with the gradients r!8(F) for 8 2 �> [�

=
, as follows

% 5 (F) =

1

=(1� ?)
’
82�>

r!8(F) +
⇣

1� ? conv {r!8(F) : 8 2 �
=} . (4.4)

Proof. We apply the chain rule of [140, 10.6] to the composition (? � !: we have
that (? is convex with full domain, which implies that the two subdifferentials1

of 5 coincide (i.e., 5 is regular in the terminology of [140]) and we have (4.3).
Since (? is the support function of the set �? , standard subdifferential

calculus [61, Cor. 4.4.4] gives that %(?(!(F)) is the set of optimal solutions
of (3.11) with !(F) = (!8(F))18= . Knowing �> and �

=
, the so-called fractional

knapsack problem (3.11) can be solved by the simple greedy strategy [35] of
taking the largest @8 for 8 2 �> and completing to 1 with the @8 for 8 2 �

=
. Thus

@ solution of (3.11) ()

8>>>><
>>>>:

@8 =
1

=(1�?) if 8 2 �>
0  @8  1

=(1�?) if 8 2 �
=

s.t.
Õ
82�= @8 =

⇣
1�?

@8 = 0 otherwise.

By (4.3), this gives:

% 5 (F) =
1

=(1� ?)
’
82�>

r!8(F) +
(’
82�=

@8r!8(F), s.t.

(
0  @8 88 2 �=Õ
82�= @8 =

⇣
1�?

)
.

Finally, introducing weights �8 =
@8 (1�?)

⇣ for 8 2 �
=
, the right-hand term can be

written as the convex hull of r!8(F) for 8 2 �
=
, which gives the expression. ⇤

We observe that the expression of % 5 (F) does not involve the gradients of all
the !8 ’s, but only of those associated to the largest values. We also see that 5
is differentiable at F if and only if �

=
is reduced to a singleton. The objective

function is not differentiable in general, which poses a problem for a direct
application of machine-learning gradient-based algorithms.

1 Remark on the Clarke subdifferential: As another by-product of the chain rule [140, 10.6], the set of
horizon subgradients of 5 is reduced to 0 since so is the one of (? (convex and defined on R

n). As a
consequence, the Clarke subdifferential is the convex hull of the limiting subdifferential [140, 8.49].
Thus we have, in our case, that the three subdifferentials (regular, limiting and Clarke) coincide.

44 ���������� �������������-����� ���� ��������

4.2.2 Efficient Smoothing

In this paragraph, we study a smoothing of nonsmooth superquantile-based
functions (4.2). We propose to use the infimal convolution smoothing of [117];
the comparison to other smoothing approaches is postponed to the next section.
We follow the guidelines of [8] : we smooth only the superquantile (? rather
than the whole function 5 . Thus we consider

5⇡(F) = (?,⇡(!(F)) for (?,⇡ a smooth approximation of (? . (4.5)

Regularizing the dual representation (3.11) of superquantile, we consider theInf-convolution of the
superquantile function, parameterized by the smoothing parameter ⇡,

(?,⇡(G) = max
@2�?

�
@>G � ⇡⇡(@)

,8G 2 R

n, (4.6)

for a given strongly convex function ⇡. The following proposition establishes
that the resulting function 5⇡ as (4.5) is a smooth approximation of 5 , as a direct
application of e.g., [8, Theorem 4.1, Lemma 4.2], or [117, Theorem 1].

Proposition 4.2. In the above setting, the function 5⇡ provides a global approximationSmoothed approximation

of 5 , i.e.

5⇡(F)  5 (F)  5⇡(F) +
⇡

2
for all F 2 R

3.

Moreover (?,⇡ is differentiable, with r(?,⇡(G) being the argmax of (4.6), unique by
strong convexity of ⇡. When ! is differentiable, 5⇡ is differentiable as well, with

r 5⇡(F) = r !(F)⇤r(?,⇡(!(F)). (4.7)

In our quest for simple and implementable expressions, we study in the restStrongly convex
regularization of this section the case of separable strongly functions of the form:

⇡(@) =

=’
8=1

3(@8) given a strongly convex function 3 : [0, 1] ! R. (4.8)

We provide in Corollary 4.4 a general scheme to compute the gradient with
explicit expressions in Examples 4.1 and 4.2 for special choices of 3. Finally we
discuss the role of the smoothing parameter ⇡ on a numerical illustration.

We start with a lemma gathering the nice duality properties of (4.6). A
one-dimensional convex function plays a special role: it is the convex conjugateA special conjugate

function of the sum of ⇡3 and the indicator of the segment
⇥
0, 1/=(1� ?)

⇤

6⇡(B) =

✓
⇡3 + 8 h

0, 1
=(1�?)

i
◆⇤
(B) = max

0C 1
=(1�?)

{B C � ⇡ 3(C)} . (4.9)

Since 3 is strongly convex, standard (one-dimensional) convex analysis gives
(see e.g., [61, Prop.I.6.2.2]) that 6⇡ is continuously differentiable with derivative
60⇡(B) being the (unique) C achieving the above max. Simple calculus yields

60⇡(B) =

8>>>><
>>>>:

0 if B  ⇡ 30+(0)

1
=(1�?) if B � ⇡ 30�(1/(=(1� ?)))

(3⇤)0
�
B
⇡

�
otherwise.

(4.10)

4.2 ��������� (���)-�������� ������������ 45

where 30+(0) 2 [�1,+1) and 30�(1/(=(1� ?))) 2 [�1,+1) are respectively the
right-derivative of 3 at 0 and the left-derivative of 3 at 1/(=(1� ?)). Note finally
that 6⇡0 is a non-decreasing function.

Lemma 4.3. The dual problem of (4.6) can be expressed as the (smooth convex) Duality

one-dimensional problem:

min
◆

(◆) = ◆ +
=’
8=1

6⇡(G8 � ◆). (4.11)

Moreover, there is no duality gap between (4.6) and (4.11). There exists a primal-
dual solution (@8⇡ ,◆8) and the unique primal solution can be written @8⇡ = (60⇡(G8 �
◆8))8=1,...,= with the help of (4.10).

Proof. This lemma could be proved by applying a sequence of results from
abstract Lagrangian duality [61, Chap. XII]. Instead, we provide a simple proof
from the direct calculus developed so far. Consider the dualization of the

constraint
Õ=
8=1 @8 � 1 = 0 in �? . For a primal variable @ 2 ⌫? =

h
0, 1

=(1�?)

i=
and

a dual variable ◆ 2 R, we write the Lagrangian

!(@,◆) =
=’
8=1

@8G8 � ⇡38(@8)� ◆
⇣ =’
8=1

@8 � 1
⌘
= ◆ +

=’
8=1

@8(G8 � ◆)� ⇡38(@8) ,

and the associated dual function

(◆) = max
@2⌫?

!(@,◆) = ◆ +
=’
8=1

max
0@8 1

=(1�?)

�
@8(G8 � ◆)� ⇡ 38(@8)

,

which gives the expression of the dual function (4.11) from (4.9). Note for later
that we have, by construction, the so-called weak duality inequality

(◆) � !(@,◆) =
=’
8=1

@8G8 � ⇡38(@8) for all ◆ and all feasible @ 2 �? . (4.12)

Now recall that 6⇡ in (4.9) is differentiable and so is the dual function with

0(◆) = 1�
=’
8=1

60⇡(G8 � ◆) . (4.13)

The above expression also shows that

lim
◆!+1

0(◆) = 1 and lim
◆!�1

0(◆) = 1�
=’
8=1

1

=(1� ?) =
�?

1� ? .

By continuity of 60⇡ and 0, this implies that there exists ◆8 such that 0(◆8) = 0,
i.e., there exists a dual solution ◆8. On the primal side, the compactness of ⌫?
and strong convexity of 3 gives existence and uniqueness of the primal solution,
denoted @8⇡ . Observe now that (4.13) means that the vector (60⇡(G8 � ◆8))8=1,...,= ,
which lies in ⌫? by construction, is in fact primal feasible. From (4.12) and
uniqueness of the primal solution, this implies that Primal solution of (4.6)

@8⇡ = (60⇡(G8 � ◆8))8=1,...,= (4.14)

46 ���������� �������������-����� ���� ��������

and that there is no duality gap. ⇤

From Lemma 4.3, we get an almost explicit expressions of values and gradients
of the smooth approximation 5⇡.

Corollary 4.4. Consider 5⇡ defined by (4.5) with ! differentiable. With ◆8 an optimalOracle for smooth
approximation solution of (4.11) with G8 = !8(F),

5⇡(F) = ◆8 +

=’
8=1

6⇡(!8(F)� ◆8) , (4.15)

r 5⇡(F) =
=’
8=1

60⇡(!8(F)� ◆8)r!8(F) (4.16)

where 6⇡ and 60⇡ are given by (4.9) and (4.10).

Proof. The no-gap result of Lemma 4.3 gives that (?,⇡(G) is equal to the optimal
value of (4.11). This gives directly the above expression of 5⇡(F) = (?,⇡(!(F))
with ◆8 an optimal solution of (4.11) with G8 = !8(F). Regarding the expression
of the gradient, Proposition 4.2 states that r(?,⇡(G) is the optimal solution
of (4.6), and Lemma 4.3 expresses it as (60⇡(G8 � ◆8))8=1,...,= . We then get the
expression of r 5⇡(F) from (4.7). ⇤

Thus the computation of the first-order oracle of 5⇡ boils down to solving the
one-dimensional convex problem (4.11) with G8 = !8(F). This easy task can be
done in general by bisection or higher-order schemes. Here Lemma 4.3 allows
us to make an additional simplification with an initial interval tightening. We
can indeed shrink the segment where to find ◆8 to two consecutive points in

=

⇢
G8 � ⇡ 30+(0), G8 � ⇡ 30�

⇣ 1

(=(1� ?)
⌘
8 = 1, . . . , =

�
(4.17)

which is a set of special points regarding the structure of the dual function
(recall (4.10) and (4.11)). Denoting ◆ and ◆̄, defined respectively as the largest
point in # such that 0(◆)  0 and the smallest point in # such that 0(◆̄) � 0,
we get ◆8 by testing three cases:

• if 0(◆) = 0, take ◆8 = ◆ ; if 0(◆̄) = 0, take ◆8 = ◆̄ ;

• otherwise, compute ◆8 in the small interval [◆, ◆̄].

The initial interval tightening thus boils down to having sorted points in # ,
which is obtained directly from sorting the given data.

Finally we emphasize that we can sometimes go one step further ahead and
obtain explicit expressions of ◆8 and thus, readily implementable expressions
of r 5⇡(F). In the next two examples, we illustrate this for two cases of interest,
when we smooth the superquantile by a divergence to the uniform probability
(which is at the center of �? ; recall Figure 3.3). In particular the smoothing
detailed in the forthcoming Example 4.1 was used in the numerical illustrations
of Examples 2.1, 2.2, and 2.3 (where the resulting smoothed superquantile
optimization problems were solved by L-BFGS).

Example 4.1. We suggest to smooth the superquantile with the EuclideanEuclidean smoothing

distance to the uniform distribution

⇡(@) =
1

2
k@ � @̄k2 with @̄ =

✓
1

=
, . . . ,

1

=

◆
, (4.18)

4.2 ��������� (���)-�������� ������������ 47

which consists in taking in (4.8)

3(C) =
1

2

✓
C � 1

=

◆2

.

In this case, elementary calculus gives

30�(0) = � 1

=
, 30+

✓
1

=(1� ?)

◆
=

?

=(1� ?) , and (3⇤)0
✓
C

⇡

◆
=

C

⇡
+

1

=

so that we get from (4.10) the following expression

60⇡(G8 � ◆) =

8>>><
>>>:

0 if ◆ � G8 +
⇡
=

1
=(1�?) if ◆  G8 � ⇡

=
?

1�?
G8�◆
⇡ + 1

= otherwise.

(4.19)

We also have that 0 is piecewise linear in this case and that

=

⇢
G8 +

⇡

=
, G8 �

⇡

=

?

1� ? 8 = 1, . . . , =

�
.

Therefore from ◆ and ◆̄ in # , finding ◆8 in the interval [◆, ◆̄] simply reduces to Linear interpolation

interpolating linearly as

◆8 = ◆ �
0(◆)(◆̄ � ◆)

0(◆̄)� 0(◆)
. (4.20)

We can apply Corollary 4.4 to get an efficiently implemented expression of
the gradient. Note that the obtained expression of r 5⇡(F) involves only the
gradients r!8(F) for largest values of !8(F) (comparable to the expression of
%!(F) in Proposition 4.1). The overall procedure is laid down in Algorithm 1 ⇤

Example 4.2. We use here the Kullback-Lieber divergence to the uniform Entropic smoothing

probability

⇡(@) =

=’
8=1

@8 log(@8/@̄8) with @̄ =

✓
1

=
, . . . ,

1

=

◆
.

which consists in taking 3(C) = C log(C) in (4.8). Elementary calculus then gives

30+(0) = �1, 30�

✓
1

=(1� ?)

◆
= 1� log(=(1� ?)), and (3⇤)0

✓
C

⇡

◆
= exp

✓
C

⇡
� 1

◆

which in turn yields

60⇡(G8 � ◆) =

(
1

=(1�?) if ◆  G8 + ⇡
�
log(=(1� ?))� 1

�
exp (

G8�◆
⇡ � 1) otherwise

=

�
G8 + ⇡

�
log(=(1� ?))� 1

�
8 = 1, . . . , =

.

On the interval [◆, ◆̄], we have that

0(◆) = 1�
’
82�

1

=(1� ?) �
’
88�

exp
⇣ G8 � ◆

⇡
� 1

⌘

48 ���������� �������������-����� ���� ��������

Algorithm 1: Fast subroutine for smoothed oracle in the Euclidean setting

Initialization: 4 = (1, . . . , 1)>, G = !(F), ✓ = 1
=(1�?) , @⇠ = 0 2 R

=

1 Find in the points of non-differentiability P , 0 and 1 such that,
P := {G8 +

⇡
= , G8 � ⇡?

=(1�?) , 8 2 {1, . . . , =}}

0 := max {B 2 P ,0(B)  0}
1 := min {B 2 P ,0(B) > 0} ;

2 Set the dual optimal solution ◆8 := 0 � 0(0)(1�0)
0(1)�0(0) ;

3 Construct the primal solution component-wise:
4 for 1  :  = do

5 if ◆8 < G: � ⇡?
=(1�?) then

6 [@⇡]: =
1

=(1�?) ;

7 else if G: � ⇡?
=(1�?)  ◆8 < G: +

⇡
= then

8 [@⇡]: =
G:�◆8

⇡ + 1
= ;

9 else
10 [@⇡]: = 0
11 end

12 end
Output: @⇡ 2 R

= : solution of (4.6)

Figure 4.1: Impact of the smoothing parameter ⇡ on the relative weighing between data
points. Left: empirical cumulative distribution of = = 500 points sampled
from a standard Gaussian distribution. Right: distribution of weights, i.e.,
the optimal solution of (4.6) for ? = 0.5, with respect to sorted data points
(i.e., value at abscissa C is the weight attached to the C-quantile). Different
colours correspond to different values of ⇡.

with � = {8, G8 + ⇡
�
log(=(1� ?))� 1

�
 ◆} the set of indices of points in #

smaller than ◆. This yieldsEntropic interpolation

◆8 = ⇡ log

✓Õ
88� exp(G8/⇡ � 1)

1� |� |/
�
=(1� ?)

� ◆
(4.21)

We can then apply Corollary 4.4 to get the smoothed gradient. ⇤

We conclude this section on the infimal-smoothing of the superquantile with
two remarks illustrating the impact of the smoothing parameter ⇡.

Remark 4.1. We illustrate the impact of the smoothing parameter ⇡ on the relativeImpact of the smoothing
parameter on the weights weights given to the data. We consider the Euclidean smoothing of Example 4.1

with ? = 0.5; we sample = = 500 points from a Gaussian distribution; and

4.2 ��������� (���)-�������� ������������ 49

we compute, for different values of ⇡, the distribution of weights @8 of (4.19),
solutions to smoothed problem (4.6). The right-hand side of Figure 4.1 displays
the impact of ⇡ of the obtained weights. In particular, we note that as ⇡ grows,
the distribution @8 tends to spread uniformly over all data-points, so that the
smoothed superquantile acts like the expectation. In contrast, when ⇡ is close
to 0, the distribution approximates the uniform distribution over the interval
[?, 1], so that the smoothed superquantile acts like the superquantile. This
approximation is further discussed in the next remark. ⇤

Remark 4.2. We briefly illustrate here the impact of the smoothing parameter Impact of the smoothing
parameter on the
approximation

⇡: we fix a vector F̄ and we observe the values of smoothed approximations
of a superquantile-based function for different values of ⇡. More precisely, we
consider a logistic regression problem on the Australian credit dataset from
the UCI ML repository. We use the quadratic smoothing of Example 4.1 with
⇡ = 0.1; and we solve the problem by L-BFGS to get the reference point F̄. Then
we compute, at this point, the values of:

• the underlying superquantile-based objective (4.2) which corresponds to
the case ⇡ = 0;

• the smoothed approximations (which corresponds to (4.5) with (?,⇡

replacing (?) for a sequence of ⇡ evenly spread on a log scale;

• the usual empirical risk minimization objective, which corresponds to the
case ⇡ = +1. Indeed, in this regime ⇡ ! +1, the impact of the quadratic
penalization term (@ � @̄) increases so that the solution of (4.6) eventually
becomes the uniform distribution @̄, in which case (?,⇡ coincides with the
expectation.

We observe on Figure 4.2 what is expected: for small values of ⇡, the difference
between the superquantile-based objective and its smooth approximations
vanishes; for large values of ⇡, the smoothed superquantile loss tends to the
average loss and does not approximate the nonsmooth superquantile loss well.

A key benefit of smoothing the superquantile is to leverage efficient smooth
optimization algorithms, such as L-BFGS, for superquantile learning. When ⇡
is too small, the problem is almost nonsmooth, which leads to numerical issues
with convergence (on this instance, L-BGFS fails to converge when ⇡ is too
small or when used with the nonsmooth oracle of Proposition 4.1 due to a line
search failure). When ⇡ is too large, the smoothed superquantile gets close to
the expectation and the interest of using a superquantile approach disappears.
This illustrates the interest of having a moderate ⇡ for superquantile learning,
where the smoothed objective is a reasonable approximation of the nonsmooth
superquantile, while still being smooth enough to leverage fast optimization
algorithms. ⇤

4.2.3 Comparison to other smoothing schemes

We compare the proposed infimal convolution smoothing of the superquantile
(4.6) to other possible smoothing schemes. Classical smoothing techniques are
based either on convolution or infimal convolution. For superquantile, one
could either smooth the dual representation (3.11) or the variational representa-
tion (3.12). Together, this yields four natural ways to smooth the superquantile.

We first formalize the equivalence between the two infimal convolution
smoothings: indeed, smoothing the dual representation considered in the

50 ���������� �������������-����� ���� ��������

Figure 4.2: Impact of the smoothing parameter ⇡ solving a superquantile logistic regres-
sion on a classical dataset (Australian Credit dataset).

preceding section corresponds to a smoothing of max{·, 0} in the variational
formulation.

Corollary 4.5. The infimal convolution smoothing of (? with a separable stronglyEquivalence of
smoothings with infimal

convolution
convex function (4.8) is equivalent to the infimal convolution smoothing of the positive
part max{·, 0} as

<⇡(◆) = max
0C1

�
◆ C � ⇡ 3̃(C)

with 3̃(C) = =(1� ?)3

✓
C

=(1� ?)

◆
. (4.22)

More precisely, we have the following equality (to be compared with (3.12))

(?,⇡(G) = min
◆

(
◆ +

1

=(1� ?)

=’
8=1

<⇡(G8 � ◆)

)
.

Proof. A direct change of variable in (4.9) gives 6⇡(G8 � ◆) = 1
=(1�?)<⇡(G8 � ◆).

The proof is direct from the expression of the dual problem (4.11) and the
no-gap result stated in Lemma 4.3. ⇤

Next, we show an equivalence between the smoothing by infimal convolu-Smoothing by
convolution tion (4.22), and by convolution, as considered in [26, 106]. Given a continuous

probability density ⌘ : R ! R+, (such that
Ø 1
�1 |B |⌘(B)dB is finite) the smoothing

by convolution of the function max{·, 0} with smoothing parameter ⇡ > 0 is
defined by2

<̄⇡(◆) =
1

⇡

π 1

�1
max{◆ � B, 0}⌘

�
B
⇡

�
dB =

1

⇡

π ◆

�1
(◆ � B)⌘

�
B
⇡

�
dB . (4.23)

The function <̄⇡ is convex and smooth, with derivative

<̄0
⇡(◆) =

1

⇡

π ◆

�1
⌘
�
B
⇡

�
dB . (4.24)

2 Applied to max{G, ·}, the general smoothing by convolution as defined in (4.23) coincides with the
double integral representation used in [26, 106]. Indeed, integrating (4.24) yields

<̄⇡(◆) =
1
⇡

π ◆

�1

π ◆0

�1
⌘
�
B
⇡

�
dB d◆0 .

4.2 ��������� (���)-�������� ������������ 51

The next proposition, relating this smoothing to the previous one, involves
&C(⌘) the quantile function of a random variable with density ⌘.

Proposition 4.6. With the above notation, the convolution smoothing <̄⇡ of (4.23) for Equivalence of
convolution/inf-
convolution
smoothings

⇡ = 1 can be written as the infimal-convolution smoothing (to be compared with (4.22))

<̄1(◆) = max
0C1

�
◆ C � 3̄(C)

where 3̄(C) = C&C(⌘)� <̄1(&C(⌘)). (4.25)

Conversely, the infimal convolution smoothing <⇡ of (4.22) for ⇡ = 1 can be written as
the convolution smoothing (to be compared with (4.23))

<1(◆) = lim
B!�1

<1(B) +

π ◆

�1
(◆ � B)⌘̃(B)dB where ⌘̃(B) = <00

1 (B) a.e. (4.26)

Proof. For the first part, we consider the convex conjugate of <̄1

<̄⇤
1(C) = sup

◆2R

�
◆ C � <̄1(◆)

.

If C 8 [0, 1], the supremum is +1 since |<̄1(◆) � max{◆, 0}| is bounded by
an absolute constant. For C 2 [0, 1], the concave function ◆ 7! ◆C � <̄1(◆) is
maximized at ◆8 if and only if it satisfies the first-order optimality condition

C = <̄0
1(◆

8) =

π ◆8

�1
⌘(B)dB.

Since the latter is the cumulative distribution function, ◆8 = &C(⌘) is the
corresponding quantile function (well-defined since ⌘ is continuous). This
yields

<̄⇤
1 = 3̄ + 8[0,1], (4.27)

which in turn gives (4.25). Finally to establish the strong convexity of 3̄, we use
again (4.27) together with the smoothness of <̄1. Thus <̄1 corresponds to the
infimal-convolution smoothing with 3̄.

For the second part, we start by noting that since <0
1 is Lipschitz, <00

1 exists
almost everywhere, and ⌘̃ is well-defined. Since <1 is convex, it also holds that
<00

1 (B) � 0, and then that we have the normalization

π 1

�1
⌘̃(B)dB =

π 1

�1
<̃00

1 (B)dB = lim
◆!1

<0
1(◆)� lim

◆!�1
<0

1(◆) = 1� 0 = 1 ,

where we use <0(◆) is the (unique) optimal solution of (4.22). Then the proof
follows from the next two claims.

Claim 1: <1 admits a limit at �1. Convexity of <1 gives that <0
1 is non-

decreasing. Since limB!�1 <0
1(B) = 0, we get that <0

1 is non-negative. Thus,
<1 is non-decreasing and, since it is bounded from below, this implies that <1

admits a limit at �1 (that we denote <1(�1)).

Claim 2: limB!�1 B <0
1(B) = 0. For a given B, we write:

B <0
1(2B) 

π B

2B

<0
1(C)dC = <1(B)�<1(2B),

where the inequality comes from the fact that <0
1 is non-decreasing. Using that

<1 admits a limit at �1 (Claim 1), we then get Claim 2.

52 ���������� �������������-����� ���� ��������

Finally, we can conclude the proof with integrating by parts:

<1(◆) = <1(�1) +

π ◆

�1
<0

1(B)dB

= <1(�1) + [(B � ◆)<0
1(B)]

◆
�1 +

π ◆

�1
(◆ � B)⌘̃(B)dB

= <1(�1) +

π ◆

�1
(◆ � B)⌘̃(B)dB.

This establishes (4.26) and ends the proof. ⇤

Finally, we mention the smoothing of the dual representation (3.11) using
convolution, which would write:

(̄⇡?(G) =
1

⇡

π
R=

(?(G � I)⌘
�
I
⇡

�
dI = E/⇠⌘[(?(G � ⇡/)] ,

for the density ⌘ : R
= ! R and the parameter ⇡ > 0. We do not consider

this smoothing approach because it suffers from two drawbacks in view of
practical implementation. First, it usually cannot be computed in closed form,
unlike the other smoothing approaches considered here. Second, the Lipschitz
constant of the gradient (appearing in condition numbers, constant scalings,
and rates of convergence of first-order methods [116]) scales badly: as $(

p
=/⇡)

for the Lipschitz constant of r(̄⇡? [118, Lemma 2], as opposed to the dimension-
independent $(1/⇡) for r(⇡? [117, Theorem 1].

4.2.4 Generalization to law-invariant comonotone risk-measures

In this section, we provide fast smoothing procedures for the class of law-
invariant comonotone risk measures. These results generalize Section 4.2.2
while maintaining (up to a log factor) the linear time complexity of oracle
computations. In order to achieve this optimal complexity, we leverage the
Kusuoka representation recalled in Section 3.3.2 and extend the dual properties
of the superquantile given in Section 4.2.2. The developments of this section are
of algorithmic nature. We consider the Euclidean smoothing (see Example 4.1)
for its specific properties that we highlight thereafter.

��������� ���-��������� ���������� ���� ��������.

Consider a discrete risk measure ⇢ : R
n ! R as in (3.8) satisfying the law-

invariant and comonotone properties. Let (�:)1:= be the sequence yielding
the Kusuoka representation (3.13) of ⇢. We propose to approximate ⇢ via a
smoothing of the sequence of terms �:(:�1

=
(G). For a fixed parameter ⇡ > 0, we

thus consider the smooth counterpart ⇢⇡ defined as:

⇢⇡(G) =

=’
:=1

�:(:�1
= ,⇡(G). (4.28)

with (:�1
= ,⇡ the smooth approximation (4.6) of the superquantile provided

with Example 4.1. The following proposition is a direct generalization of
Proposition 4.2.

Proposition 4.7. For any ⇡ > 0, the function⇢⇡ defined in (4.28) is a⇠1 approximationSmoothing of ⇢

4.2 ��������� (���)-�������� ������������ 53

of ⇢:

| ⇢⇡(G)� ⇢(G)|  ⇡

2

=’
:=2

(�: � �1). (4.29)

where the sequence (�8) is as defined in Proposition 3.11.

Proof. Let ⇡ > 0 be fixed and � be defined as in Proposition (3.11). For any
G 2 R

d, since �0 is reduced to the singleton {1/=, . . . , 1/=}, we have

(0,⇡(G) = (0(G).

Thus,

| ⇢⇡(G)� ⇢(G)| 
�����
=’
:=2

�:(:�1
= ,⇡(G)� (:�1

=
(G)

����� 
=’
:=2

�:

���(:�1
= ,⇡(G)� (:�1

=
(G)

���
 ⇡

2

=’
:=2

�: 
⇡

2

=’
:=2

(= + 1� :) (�: � �:�1)

 ⇡

2

=’
:=2

(�: � �1),

where the last inequality resulted from an integration by part and the previous
one from the non-decrease of the sequence (�8). Smoothness is a direct
consequence of the smoothness of the terms (:�1

= ,⇡ given in Proposition 4.2. ⇤

In particular, we know from Proposition 3.5 that if the support C is included
in the simplex, then we necessarily have:

| ⇢⇡(G)� ⇢(G)|  ⇡

2
.

Computation of the smoothed gradient r⇢.(x). Let the parameter ⇡ > 0 be
fixed. Let us assume for the moment that we have at our disposal the whole
sequence of dual solutions (◆8

:
)0:=�1 of the problem (4.11) for the values of ?

in
�
:
= , 0  :  = � 1

. Then we have a gradient of ⇢⇡: Smoothed gradient of ⇢

r⇢⇡(G) =

=’
:=1

�:@
:�1 (4.30)

where @: denotes the associated primal solution given by (4.14). Let us explicit
this expression.

For : 2 ~0, = � 1�, let us denote : the objective of the dual problem (4.11)
with probability value ? =

:
= :

:(◆) = ◆ +
=’
8=1

6⇡,:(G8 � ◆)

where 6⇡,: : B 7! max0C 1

=(1� :
=)

{BC � ⇡3(C)} with 3 : C 7! 1
2

�
C � 1

=

�2
. Recall that

by strong convexity of 3, the functions 6⇡,: , : 2 ~0, = � 1�), are all continuously
differentiable and convex. Thus, for all : 2 ~0, = � 1�, : is continuously
differentiable and 0

:
admits everywhere left and right derivatives. We denote

54 ���������� �������������-����� ���� ��������

00+
:

(◆) the second-order right-derivative at ◆. Finally, we also recall from
Example 4.1 and the equation (4.10) that 6⇡,: has for derivative:

60⇡,:(B) =

8>>>><
>>>>:

0 if B  � ⇡
=

1
=�: if B > ⇡:

=(=�:)
B
⇡ +

1
= otherwise.

(4.31)

We note that for any : 2 ~2, = � 1�, we have by (4.19):

@: =

=’
8=1

1

= � : 1◆8
:
<G8� ⇡:

=(=�:)
+

✓
G8 � ◆8

:

⇡
+

1

=

◆
1G8� ⇡:

=(=�:)◆
8
:
<G8+

⇡
=
⌘8 (4.32)

which yields:Decomposition of the
smoothed gradient

r⇢⇡(G) =

=’
:=1

�:@
:�1

=

=’
:=1

�:

=’
8=1

1

= � (: � 1)
1
◆8
:�1

<G8� ⇡(:�1)
=�(:�1)

⌘8

| {z }
�

+

=’
:=1

�:

=’
8=1

G8 � ◆8
:�1

⇡
+

1

=

!
1
G8� ⇡(:�1)

=(=�:+1)
◆8

:�1
<G8+

⇡
=
⌘8

| {z }
⌫

(4.33)

Note that if one computes naively for a given G 2 R
n, r⇢⇡(G) by computing

separately the primal solutions @: from (4.32), it would boil down to a O(=2)

complexity. That would compromise the quasi-linear time complexity we aim
to achieve. In the rest of this section, we show how to compute r⇢⇡(G) in
quasi-linear time via the expression (4.33). More precisely, we show in the
following order:

1. how to compute the whole sequence of (◆8
:
)0:=�1 in quasi-linear time.

2. how to compute the term � from (4.33) in linear time.

3. how to compute the term ⌫ from (4.33) in linear time.

We denote by (G(8))18= be the sequence of coordinates of the input vector
G 2 R

= ranged in an (arbitrary) non-decreasing order.

������� ��� ���� �������� (†
k

.

We saw in Lemma 4.3 that finding the minimizer ◆8
:

of : can be done in linear
time. In this paragraph, we show the stronger claim that finding the complete
sequence of roots (◆8

:
)0:=�1 can be done in at most O(= log =) operations. We

start with two simple observations formalized as lemmas.

Lemma 4.8. ◆80 := G(0) � 1 is a minimizer of 0 and 00+
:

(G(0) � 1) = 0.First root

Proof. Noting that for all B  G(0) and 9 2 ~1, =� we have G 9 � B � 0, we have in
view of (4.31)

0
0(B) = 1�

=’
8=1

60⇡,0(G8 � B) = 0.

In particular, 0
0(B) = 00+

0 (B) = 0 ⇤

4.2 ��������� (���)-�������� ������������ 55

Lemma 4.9. The sequence (0
:
)0:=�1 is non-increasing on R. Non-increase of the

sequence (:)0:=�1

Proof. For any : 2 ~0, = � 1�, we note that

0
:(◆) = 1�

=’
8=1

60⇡,:(G8 � ◆) ,8◆ 2 R,

so it suffices to show the non-decrease of (60
⇡,:

)0:=�1. Let us fix : 2 ~0, = � 2�.

For all B  ⇡:
=(=�:) , we have by (4.31) 6⇡,:(B) = 6⇡,:(B). If B � ⇡(:+1)

=(=�:�1)
, we also

have 6⇡,:(B) =
1
=�: <

1
=�:�1 = 6⇡,:+1(B). Finally, if B 2 [⇡:

=(=�:) ,
⇡(:+1)

=(=�:�1)
], we have

6⇡,:(B) =
1

= � : =

: + = � :
=(= � :) =

:

=(= � :) +
1

=

=

1

⇡

⇡:

=(= � :) +
1

=
 B

⇡
+

1

=
= 6⇡,:+1(B),

which ends the proof. ⇤

Browsing through)0

k
. Let : 2 ~0, = � 1� be fixed and ◆ 2 R be such that

0
:
(◆)  0. As a specificity of the Euclidean prox function 3, we obtain that 0

:
is

a piece-wise affine non-decreasing function. The discontinuity points of 00
:

all Set of discontinuity
points #:belong to the set

#: :=

⇢
G(8) �

⇡:

=(= � :) , G(8) +
⇡

=
, 8 2 ~1, =�

�
.

Assume for now that we know the values of 0
:
(◆), 00+

:
(◆) and the two following

indices:

8�(◆, :) :=

(
min{8, G(8) +

⇡
= > ◆} if ◆ < G(=) +

⇡
=

= + 1 otherwise,

8+(◆, :) :=

(
min{8, G(8) � ⇡:

=(=�:) > ◆} if ◆ < G(=) � ⇡:
=(=�:)

= + 1 otherwise.

(4.34)

Intuitively, 8�(◆, :) and 8+(◆, :) are the indices of the first points in #: that are
strictly greater than ◆.

Let us then set ⌫ to be the first point in #: that is strictly greater than ◆3

⌫ := min
8
#: \ (◆,1) = min

⇢
G(8�(◆,:)) +

⇡

=
, G(8+(◆,:)) �

⇡:

=(= � :)

�
. (4.35)

3 It is well defined since (4.31) ensures 0
:
(G(=) +

⇡
=) = 1�Õ=

8=1 6
0
⇡,:

(G(8) � G(=) � ⇡
=) = 1 > (◆) ensures

that G(=) +
⇡
= > ◆ by non-decrease of 0

:
.

56 ���������� �������������-����� ���� ��������

One can get efficiently as follows the quantities0
:
(⌫),00+

:
(⌫), 8+(⌫, :) and 8�(⌫, :).

First observe that since ⌫ > ◆ implies 8�(⌫, :) � 8�(◆, :) and 8+(⌫, :) � 8+(◆, :),
we have:

8�(⌫, :) = 8�(◆, :) +

=’
8=8�(◆,:)

1⌫=G(8)+
⇡
=

and 8+(⌫, :) = 8+(◆, :) +

=’
8=8+(◆,:)

1⌫=G(8)� ⇡:
=(=�:)

.

(4.36)

Then, by definition of ⌫, the function 00+
:

has no discontinuity point on the
interval [◆,⌫). Thus,

0
:(⌫) = 0

:(◆) + (⌫ � ◆)00+
: (◆). (4.37)

Finally, noting that (3⇤)00 = 1, simple derivations of the function : yield

00+
: (⌫) =

1

⇡

8+(⌫,:)’
8=8�(⌫,:)

(3⇤)00
✓
G(8) �⌫

⇡

◆
=

1

⇡
(8+(⌫, :)� 8�(⌫, :)) . (4.38)

Remark 4.3. We observe that the computation of 8�(⌫, :) requires a single passFirst Complexity remark

on the points G(8) such that 8 2 ~8�(◆, :), 8�(⌫, :)�. Similarly, the computation of
8+(⌫, :) requires a single pass on the points G(8) such that 8 2 ~8+(◆, :), 8+(⌫, :)�.
Once these two values are found, according to (4.37) and (4.38), one may
compute 0

:
(⌫) and 00+

:
(⌫) in constant time. ⇤

From)0

k
to)0

k+1
. Assuming now that we know 0

:
(◆), 00+

:
(◆), 8�(◆, :) and

8+(◆, :) as defined in 4.34, we can compute efficiently these indices at : + 1 -
8�(◆, : + 1), 8+(◆, : + 1) - as well as 0

:+1
(◆) as well 00+

:+1
(◆).

Indeed, we first note by definition of 8�(◆, : + 1) and since :+1
=(=�:�1)

>
:

=(=�:)
that,

8�(◆, : + 1) = 8�(◆, :) ,

8+(◆, : + 1) = 1+

=’
8=1

1
◆�G8� ⇡(:+1)

=(=�:�1)

= 8+(◆, :) +

=’
8=8+(◆,:)

1
G(8)� ⇡:

=(=�:)>◆�G(8)�
⇡(:+1)

=(=�:�1)

.

(4.39)

We also note in view of (4.10) that

0
:(◆) = 1�

=’
8=1

60⇡,:(G8 � ◆)

= 1�
=’
8=1

1

= � : 1◆<G8� ⇡:
=(=�:)

+(3⇤)0
⇣ G8 � ◆

⇡

⌘
1G8� ⇡:

=(=�:)◆<G8+
⇡
=

= 1�
8+(◆,:)�1’
8=8�(◆,:)

(3⇤)0
⇣ G(8) � ◆

⇡

⌘
�

’
8�8+(◆,:)

1

= � : .

4.2 ��������� (���)-�������� ������������ 57

Figure 4.3: Illustration of the roots of the dual functions : . Once the G8 ’s are sorted, a
single pass over them suffices to compute the whole sequence (◆8

:
)0:=�1

Since 8�(◆, :) = 8�(◆, : + 1) and 8+(◆, : + 1) � 8+(◆, :), we obtain

0
:(◆)� 0

:+1(◆) =

8+(◆,:+1)�1’
8=8+(◆,:)

✓
G(8) � ◆

⇡
+

1

=
� 1

= � :

◆

+
�
= + 1� 8+(◆, : + 1)

� ✓
1

= � (: + 1)
� 1

= � :

◆
.

(4.40)

Finally, we also have by (4.38):

00+
:+1(◆) =

1

⇡

�
8+(◆, : + 1)� 8�(◆, : + 1)

�
. (4.41)

Remark 4.4. We observe that the computation of 8�(◆, : + 1) is immediate and Second Complexity
remarkthe computation of 8+(◆, : + 1) requires a single pass on the points G(8) such

that 8 2 ~8+(◆, :), 8+(◆, : + 1)�. Similarly, the computation of 0
:+1

(◆) requires a
single pass on the points G(8) such that 8 2 ~8+(◆, :), 8+(◆, : + 1)�. Finally, still in
view of (4.38), one may compute 00+

:
(⌫) in constant time. ⇤

Getting the whole sequence ((†
k
)0kn�1 in quasi-linear time. Previous ob-

servations offer a guideline for the computation of the sequence (◆8
:
)0:=�1.

We explain it here, we detail it Algorithm 2, and we illustrate it in Figure 4.3.

Theorem 4.10. Assuming the data points (G(8))18= are sorted, Algorithm 2 computes Getting (◆8
:
)0:=�1 in

O(= log =) operationsthe sequence of dual solutions (◆8
:
)0:=�1 in quasi-linear time.

We begin with several intermediate lemmas to bound the complexity of
a single iteration : of our Algorithm 2.4 We first note that for each rank
: 2 ~0, = � 1�, running lines 2 to 3 clearly requires at most 2 operations.

Let us now bound the complexity for running lines 5 to 16. We introduce for
: 2 ~1, = � 1�, the sets

": = (◆8:�1,◆8:)\#:

�+: =

⇢
8 2 ~1, =�, G(8) �

⇡:

=(= � :) 2 ":

�

��: =

n
8 2 ~1, =�, G(8) +

⇡

=
2 ":

o
4 We count as unitary operations any elementary operation between two float numbers (addition,

subtraction, multiplication, division, equality, inequality) and the reading or writing of a float
variable.

58 ���������� �������������-����� ���� ��������

Lemma 4.11. For any :, :0 2 ~1, = � 1� such that : < :0, we have:The sets �: do not
intersect

��: \ ��:0 = ; and �+: \ �+:0 = ;.

Proof. In view of Lemma 4.9 the sequence (◆8
:
)0:=�1 is non-decreasing. Hence,

for any :, :0 2 ~1, = � 1� such that : < :0, we have

": \":0 = ;.

Thus, it is clear that the sets ��
:
, : 2 ~1, = � 2� do not intersect each other. Let

us fix now : 2 ~1, = � 2� and 8 2 ~1, =�. If 8 2 �+
:
, then since the sequence

(⇡:/(=(= � :)))0:=�1 is increasing, we have

G(8) �
⇡(: + 1)

=(= � : � 1)
< G(8) �

⇡:

=(= � :) < ◆8:

so 8 < min �+
:+1

. Reciprocally, if 8 2 �+
:+1

, then we still have

G(8) �
⇡:

=(= � :) > G(8) �
⇡(: + 1)

=(= � : � 1)
> ◆8:

so 8 > max �+
:
. This also implies, that the sets �+

:
, : 2 ~1, = � 2� do not intersect

each other. ⇤

We can bound then the number of operations required to run the lines 5 to 16
in Algorithm 2.

Lemma 4.12. There exists a constant C1 such that for all : 2 ~1, = � 1�, the number⇡:Upper bound on the
complexity of lines �

to ��
of operations required to run the lines 5 to 16 in Algorithm 2 satisfies

⇡:  C1 (card(":) + 1). (4.42)

Proof. Observe that during the execution of the lines 5 to 16, we visit only points
in": and the first point in#: (according to the sorting of the G8 established) that
is greater or equal to ◆8

:
. Using the sorting of the G8 ’s previously computed we

can visit these points a single time in an increasing order if we rely on the indices
8�(·, :) and 8+(·, :) and formula (4.35) during this visit. The price of visiting
each point is constant: it is either a single equality test (which happens in (4.36)
when several points in ": are equal to ⌫), or a finite number of operations,
in view of formulas (4.37), (4.38) and the inequality tests in lines 7, 10 and 13.
Letting C1 be an upper bound of this finite number, which is independent of :,
we obtain (4.42). ⇤

We note that for each rank : 2 ~0, = � 1�, running lines 17 to 24 clearly
requires at most constant number of operations, independant of :, that we will
denote C2. Finally we can upper-bound the number of operations required
to run lines 26 to 29 with the following lemma. Let us now introduce for
: 2 ~0, = � 2�,

�: = ~8
+(◆8: , :)8+(◆8: , : + 1)� 1�

=

⇢
8 2 ~1, =�, G(8) �

⇡:

=(= � :) > ◆ � G(8) �
⇡(: + 1)

=(= � : � 1)

�

Lemma 4.13. For any :, :0 2 ~0, = � 1� such that : < :0, we have �: \ �:0 = ;.The sets �: do not
intersect

4.2 ��������� (���)-�������� ������������ 59

Algorithm 2: Computation of the sequence (◆8
:
)0:=�1 in O(= log =)

Require : (G(8))18= : sorted sequence of coordinates of G
Initialize :◆ := G(0) � 1, : := 0 8�(◆, 0) := 1, 8+(◆, 0) = 1, 0

0(◆) = 0,
00+

0 (◆) = 0;
1 while :  = � 1 do
2 if 0

:
(◆) = 0 then

3 Store ◆8
:
= ◆;

4 else
5 Set ⌫ as in (4.35) ;
6 Compute 0

:
(⌫) using to (4.37);

7 if 0
:
(⌫)  0 then

8 Compute 8�(⌫, :), 8+(⌫, :), and 00+
:

(⌫) using to (4.36)
and (4.38);

9 end
10 while 0

:
(⌫) < 0 do

11 ◆ := ⌫ ;
12 Set ⌫ as in (4.35) and compute 0

:
(⌫) using 4.37;

13 if 0
:
(⌫)  0 then

14 Compute the values of 8�(⌫, :), 8+(⌫, :) and 00+
:

(⌫)

according to (4.36), (4.37) and (4.38);
15 end

16 end
17 if 0

:
(⌫) = 0 then

18 Store ◆8
:

:= ⌫;
19 else if 0

:
(◆) = 0 then

20 Store ◆8
:

:= ◆;
21 else

22 Store ◆8
:
= ◆ � 0

:
(◆)(⌫�◆)

0
:
(⌫)�0

:
(◆) ;

23 end
24 Set ◆ = ◆8

:
;

25 end
26 : := : + 1;
27 if : < = then
28 Compute 8�(◆, :), 8+(◆, :), 0

:
(◆) and 00+

:
(◆) according to (4.39),

(4.40) and (4.41);
29 end

30 end
31 return The sequence (◆8

:
)0:=�1

Proof. Let 8 2 ~1, =� be fixed. If 8 2 �: , then since the sequence (◆8
:
)0:=�1 is non-

decreasing (in view of Lemma 4.9) and since the sequence (⇡:/(=(= � :)))0:=�1

increases, we have

G(8) �
⇡(: + 1)

=(= � : � 1)
 ◆8:  ◆8:+1

which implies 8 < min �:+1. Reciprocally, using the same properties, if 8 2 �:+1,
then

G(8) �
⇡(: + 1)

=(= � : � 1)
> ◆8:+1 � ◆8:

and we cannot have 8 > max �: . ⇤

60 ���������� �������������-����� ���� ��������

Lemma 4.14. There exists a constant C3 such that for any rank : 2 ~0, = � 1�, theUpper bound on the
complexity of lines ��
to ��

number ': of operations required to run the lines 26 to 29 in Algorithm 2 satisfies

':  C3 card(�:) + 6. (4.43)

Proof. Line 26 and 27 both require 1 operation. Computing 8�(◆8
:
, : + 1) accord-

ing to (4.39) also requires 1 operation. Computation of 8+(◆8
:
, : + 1) using (4.39)

clearly requires 2 card �: + 1 iterations (2 inequalities per term in �: + 1 inequality
for the term indexed by 8+(◆8

:
, : + 1)). Computation of 0

:+1
(◆) using (4.40) also

requires at most a constant multiple < of card �: operations (in view of (4.40),
< < 10). Finally once 8+(◆8

:
, : + 1) is known, computing 00+

:+1
(◆8
:
) using (4.41)

requires 3 operations. Overall, we obtain that

':  (< + 2) card �: + 3+ 1+ 1+ 1+ 1 = (< + 2) card �: + 7

which gives (4.43). ⇤

We can finally prove Theorem 4.10, which is the main result of this section.

Proof. Initialization of Algorithm 2 can clearly be done in constant time (as-Proof of Theorem (4.10)

suming the G8 ’s are already sorted). Let T= denotes the number of operations
required to run lines 1 to 30 of Algorithm 2. For the stage : = 0, we know that
the initial value of ◆, ◆80 � 1 is already a root of 0 by Lemma 4.8, which implies
that lines 4 to 25 are not run during this iteration. Thus, the total number of
iterations T= satisfies

T=  2+ '0|{z}
first stage

+

=�1’
:=1

(2+⇡: + C2 + ':)

| {z }
other stages

 (2+ C2) = +

=�1’
:=1

⇡: +

=�1’
:=0

':

By Lemma 4.12, we have

=’
:=0

⇡:  C1= + C1

=�1’
:=0

card":

 C1= + C1

=�1’
:=0

card ��: + card �+: , (by definition of ": , �
�
: and �+:)

by definition of ": , �
�
:
, and �+

:
. Now, by Lemma 4.11 and since all sets �+

:
and

��
:

are in ~1, =�, we have
Õ=�1
:=0 card ��

:
 =, and

Õ=�1
:=0 card �+

:
 =. Hence,

=’
:=0

⇡:  3C1=.

Finally, given Lemma 4.14 we have:

=’
:=0

':  7= + C3

=�1’
:=0

card �:

4.2 ��������� (���)-�������� ������������ 61

and by Lemma 4.13 we also have
Õ=
:=0 �:  = which yields

=’
:=0

':  (7+ C3)=.

Thus,
T=  (9+ 3C1 + C2 + C3))=

which finishes the proof. ⇤

���� �� ��� ����������� �� (4.33).

Let us show now how the terms � and ⌫ from (4.33) may be computed in
linear time.

Let (⌘1, . . . , ⌘=) denote the canonical basis of R
n. Let (G(8))18= be again the

sequence of coordinates of G sorted in an arbitrary non-decreasing order. If �
denotes the permutation that sorts the coordinates of G (i.e. G(8) = G�(8)), we will
accordingly transpose the notation by defining for 8 2 ~1, =�, ⌘(8) := ⌘�(8), etc...

We show in the next two paragraphs how the expressions � and ⌫ from (4.33)
may be computed in linear time.

Computing G from (4.33). We first show how the computation of � may be
performed in linear time. Indeed, observe that

� =

=’
:=1

�:

=’
8=8+(◆8

:�1
,:�1)

1

= � (: � 1)
⌘8

= �1
1

=

=’
8=80

◆8
0

⌘(8) + �2
1

= � 1

=’
8=81

◆8
1

⌘(8) + · · · + �=

=’
8=8=�1

◆8
=�1

⌘(8)

=

=’
:=1

:’
B=1

�B
1

= � (B � 1)

! 8+(◆8
:
,:)�1’

8=8+(◆8
:�1

,:�1)

⌘(8).

Hence, Computing �
in linear time

� =

=’
:=1

2:

8+(◆8
:
,:)�1’

8=8+(◆8
:�1

,:�1)

⌘(8) (4.44)

where 2: :=

Õ:
8=1 �8

1
=�8+1 . Finally, through direct considerations, one may

observe that the sequence (8+(◆8
:
, :))0:=�1 is non-decreasing. Hence, the

(possibly empty) intervals ~8+(◆8
:�1

, : � 1), 8+(◆8
:
, :)� 1� do not intersect each

other. Based on (4.44) , we propose in Algorithm 3 a computation of � in linear
time.

Computing H from (4.33). We note that expression ⌫ from (4.33) writes: Computing ⌫ in linear
time

⌫ =

=’
8=1

 ’
:2 8

�:
G(8) � ◆8

:�1

⇡
+

1

=

!
⌘(8) =

=’
8=1

(08G(8) + 18)⌘(8) (4.45)

62 ���������� �������������-����� ���� ��������

Algorithm 3: Computation of the term � from (4.33)

Require :Sorted sequence (G(8))18= ,
Sequence of dual solutions (◆8

:
)0:=�1,

Sequence of weights (�:)1:=
Initialize : : := 1, 8 := 1, 2 :=

�1

= , � := (0, . . . , 0)> 2 R
n.

1 while G(8) � ⇡ 1
=�(:�1)

 ◆8
:�1

do

2 8 = 8 + 1 ;
3 end
4 while 8  = do

5 while G(8) � ⇡ 1
=�:  ◆8

:
do

6 �(8) = �(8) + 2 ;
7 8 = 8 + 1 ;
8 if 8 = = + 1 then
9 Break;

10 end

11 : = : + 1, 2 = 2 + �:
1

=�(:�1)
;

12 end
13 return �.

where for 8 2 ~1, =�, we introduced

 8 :=

⇢
:, ◆8:�1 �

⇡

=
< G(8)  ◆8:�1 +

⇡(: � 1)

=(= � : + 1)

�

08 :=

’
:2 8

�:
⇡

18 :=

’
:2 8

��:◆8:�1

⇡
+

1

=
.

(4.46)

Algorithm 4 uses this formulation to reach a linear time complexity for the
computation of ⌫. We introduce there the sequence (C8)183= which is a
concatenation the sequences

(0 := (G8)18=

(1 := (◆8: �
⇡

=
)0:=�1

(2 := (◆8: +
⇡:

=(= � :))0:=�1

(4.47)

in an non-decreasing order. We assume also without harming the time com-
plexity of such sorting that in case of equality between any terms of these three
sequences, the terms in (0 always appear before the ones in (1 and (2. In
Algorithm 4, we perform a pass over the sequence (C8)183= and update the
variable ⌫ every time a point C8 initially in (0 is encountered. Variables 0 and 1
are designed to track the sequences (08)18= and (18)18= as defined in (4.46).

4.3 spqr: � ������-������� ��� �������������-����� ���� ��������

We provide a python software package for superquantile-based learning; it
is named SPQR for SuPer Quantile Risk optimization. The software package
includes modeling tools and optimization algorithms to minimize objectives of

4.3 spqr: � ������-������� ��� �������������-����� ���� �������� 63

Algorithm 4: Computation of the term ⌫ from (4.33)

Require :Sequence of weights (�:)1:=
(C8)183= : sorted union of (0, (1 and (2 as defined in (4.47)

Initialize : 0 := 0, 1 := 0, 8 := 1, ⌫ := (0, . . . , 0)> 2 R
n

1 while 8  3= do
2 if C8 2 (1 then
3 : := initial position of C8 in the sequence (1 ;

4 0 := 0 +
�:
⇡ ;

5 1 := 1 � �:◆
8
:�1

⇡ + 1
= ;

6 else if C8 2 (2 then
7 : := initial position of C8 in the sequence (2 ;

8 0 := 0 � �:
⇡ ;

9 1 := 1 +
�:◆

8
:�1

⇡ � 1
= ;

10 else
11 : := initial position of C8 in the sequence (0 ;
12 ⌫(:) := ⌫(:) + 0 ⇥ G(:) + 1;
13 end
14 8 = 8 + 1;
15 end
16 return ⌫

the form (4.2) with just a few lines of code. The implementation builds off basic
structures of scikit-learn [122] the popular python machine learning library.
SPQR routines rely on just-in-time compilation [93] to ensure efficient running
times. The software package is publicly available at

https://github.com/yassine-laguel/spqr.

We now walk the reader through the toolbox SPQR.

����� �����: ����� ������ ��� ���������.

The user provides a dataset modeled as a couple (�, ⌫) 2 R
=⇥? ⇥ R

? and Input format

a first-order oracle for the function !8 . The dataset is stored into two numpy
arrays A and B; for instance, for realizations of random variables:

import numpy as np

A = np.random.rand(100, 2)

alpha = np.array([1., 2.])

B = np.dot(A, alpha) + np.random.rand(100)

The two python functions L and L_prime are assumed to be functions of the
triplet (w,a,b) where w is the variable and (a,b) a datapoint. For instance, the
oracle for superquantile linear regression are the following one.

Define the loss and its derivative

def L(w,a,b):

return 0.5 * np.linalg.norm(b - np.dot(a,w))**2

def L_prime(w,a,b):

return -1.0 * (b - np.dot(a,w)) * a

Before minimizing (4.2), we instantiate the RiskOptimizer object with the The RiskOptimizer
object

https://github.com/yassine-laguel/spqr

64 ���������� �������������-����� ���� ��������

oracles, following the standard usage of scikit-learn. The basic instantiation
is:

from SPQR import RiskOptimizer

Instantiate a risk optimizer object

optimizer = RiskOptimizer(L, L_prime)

RiskOptimizer inherits from scikit-learn’s estimators: we use the fit
method to run the optimization algorithm on the provided data, to get a
minimizer of (4.2).

Running the algorithm

optimizer.fit(A,B)

sol = optimizer.solution

�������� ���: ���������� ��� spqr �������.

Options and parameters. The customizable parameters are stored in aCustomization

python dictionary, called params, which is designed as an attribute of
the RiskOptimizer class. The main parameters to tune are: the choice of
the oracle, the choice of the algorithm, the safety probability level p, the starting
point of the algorithm w_start, the maximum number of iterations max_iter.
The user can specify some of these parameters as an input and the others will be
filled with defaults values when instantiating a RiskOptimizer. For example:

custom_params = {’algorithm’: ’dualaveraging’, # selected algorithm

’p’: 0.2 } # safety probability level

custom_optimizer = RiskOptimizer(loss, loss_prime,

params=custom_params)

Some important parameters (such as the safety probability level, the algorithm
chosen, or the smoothing parameter ⇠) can be given directly to the constructor
of the class RiskOptimizerwhen instantiating the object. For example:

other_custom_optimizer = RiskOptimizer(loss, loss_prime, p=0.95,

algorithm=’bfgs’, mu=0.1)

Oracle classes. The selection of the oracle is automatically done when theAvailable oracles

user instantiates the RiskOptimizer object. Four different oracles are imple-
mented as python objects. The first two oracles, OracleSubgradient and
OracleSmoothGradient are designed for batch methods. The subgradient
oracle OracleSubgradient is the one instantiated when the algorithm cho-
sen by the user is ’subgradient’ or ’dual_averaging. The smoothed or-
acle is instantiated when the algorithm chosen is ’gradient’, ’nesterov’
or ’bfgs’. The last two oracles are designed for mini-batch methods:
OracleStochasticSubgradient and OracleStochasticGradient To avoid
having to deal with of optional parameters when instantiating an oracle, we
advise to go through the instantiation of a RiskOptimizer first.

custom_params = {’algorithm’: ’nesterov’, # selected algorithm

’p’: 0.5 # safety probability level

}

Instantiation of the Risk Optimizer

custom_optimizer = RiskOptimizer(loss, loss_prime,

params=custom_params)

4.4 ��������� ����������� 65

Recovery of the oracle

smooth_oracle = custom_optimizer.oracle

Algorithms class. The algorithm chosen is a parameter for the instantiation Available algorithms

of the RiskOptimizer class. This parameter can either be given in the input
dictionary params or directly to the constructor of RiskOptimizer. The user has
the choice among ’subgradient’, ’dual_averaging, ’gradient’, ’nesterov’,
’bfgs’ and ’sgd’.

Risk Optimizer class with nesterov accelerated gradient algorithm

custom_optimizer = RiskOptimizer(loss, loss_prime,

algorithm=’nesterov’)

Each algorithm is implemented as a python class that stores the oracle, together
with relevant parameters for the optimization process. The main method of each
implemented algorithm class is run, which is run when RiskOptimizer.fit is
called. The parameters of the algorithm selected are stored in the dictionary
params that is an input of the class RiskOptimizer. Hence, in a standard usage,
there is no need to interact with the algorithm python object.

4.4 ��������� �����������

We report two types of numerical experiments:

• In the first paragraph, we consider “Optimization" experiments. There
are many algorithmic options within the toolbox SPQR; we provide here a
comparison of batch vs. mini-batch algorithms and a discussion of the
tuning of the smoothness parameter.

• In the second paragraph, we consider “Learning" experiments. The
interest of using superquantile in learning has been shown empirically
in several recent papers, including [34, 89, 94, 152, 173]. We provide here
complementary experiments highlighting the robustness of superquantile-
learnt models.

All experiments are run using SPQR. The optimization algorithms are initialized
at F = 0 2 R

d. For these experiments, we use a bunch of standard datasets
from the UCI repository, which scale from 352 to 94644 datapoints. For each
dataset, categorical features were one-hot encoded so that the total number of
features ranges from 3 to 287. For one experiment, we report the agreggated
results for all the datasets. For the other experiments, we report in the main text
the detailed results for one representative dataset, and we provide in appendix
complementary results for others datasets.

4.4.1 Solving superquantile-based learning

In this section, we illustrate two different aspects of the optimization methods
available in SPQR. First, we compare the two families of algorithms available batch
vs. mini-batch (more precisely SGD with momentum and L-BFGS) showing
the interest of using batch algorithms for superquantile-based learning within
scikitlearn/SPQR. Second, we experiment with all the range of the smoothing
parameter, advocating to avoid extreme values.
Batch vs. mini-batch. We compare on a standard problem stochastic gradient
optimization (denoted SGD) and batch quasi-Newton optimization using low-
memory BFGS [119] (denoted BFGS).

66 ���������� �������������-����� ���� ��������

Figure 4.4: A comparison between batch/mini-batch algorithms in SPQR on a superquan-
tile logistic regression problem with MNIST. Left: comparison of the runs of
SGD with different batch sizes. Right: best SGD vs. batch quasi-Newton.

For this experiment, the set-up is similar to the one of [94]. We consider aSetup

supervised multi-class classification task with the superquantile multinomial
logistic loss on the MNIST dataset. We perform feature extraction from the
images using a pre-trained convolutional network similarly to [94]. For a fixed
probability threshold set to ? = 0.8, we then train a logistic regression on top of
the transformed data. For SGD, we use a momentum term of 0.9 and we use a
step decay scheme ◆C = ◆03

�bC/C0c , where ◆0 is tuned with respect to the size of
the mini-batch <, and where 3 = 0.5 and C0 = 10 epochs are fixed throughout all
the experiments. For each mini-batch size < 2 {10, 100, 1000}, we tune ◆0 via a
grid-search and take the highest initial value yielding a non-diverging sequence
of iterates. In constrast with SGD, the quasi-Newton algorithm does not require
specific tuning as it automatically calibrates stepsizes by line-searches at each
iteration.

On the left part of Figure 4.4, we compare the performance of SGD forComparison between
L-BFGS and SGD the different mini-batch sizes. Each color corresponds to a mini batch size

< 2 {10, 100, 1000}. Along iterates, the bold line represents the mean value over
the five seeds of the functions and the shaded region represent the difference
between the min and max values across the seeds. We observe that there is
no substantial difference among the sizes of the mini-batches: all curves show
a noisy behaviour (caused by the stochastic approximation of the gradient at
each step) and eventually converge to a suboptimal value. Unlike SGD, L-BFGS
(right part of Figure 4.4) presents a stable convergence. We observe also that
a large number of epochs is necessary for SGD to catch up with BFGS for
superquantile-based training. This is to be contrasted with the usually small
number of epochs necessary for SGD to catch with BFGS for expectation-based
training or ERM. Note that a a final bias remains visible between the stochastic
methods and the deterministic BFGS, as expected by the theory laid down
in [94].

Impact of the smoothing parameter on L-BFGS. We consider a logistic re-Impact of the smoothing
parameter on L-BFGS gression on the Australian Credit dataset. For a sequence of smoothing

parameters ⇡ evenly spread on a log scale, we trainF8
⇡ by solving the superquan-

tile learning objective with L-BFGS and ? = .99.
On Figure 4.5, we report both the value of the smoothed .99-superquantile

(purple) and the nonsmoothed .99-superquantile (dashed green) at the F8
⇡ .

4.4 ��������� ����������� 67

Figure 4.5: Impact of the smoothing parameter ⇡ on the results obtained by the
quasi-Newton algorithm solving a superquantile logistic regression on the
Australian Credit dataset. Medium values are preferable: small values
compromise convergence and large values give solutions close to the standard
ERM.

We also train the standard empirical risk minimizer F8 and we report both
the average loss (solid black line) and the nonsmoothed .99-superquantile loss
(dashed black line) at F8.

For very small values of ⇡ (< 10�3), we observe unsuccessful termination of
the L-BFGS algorithm, due to the failure of the line-search. For medium values
of ⇡ (< 1), the value of smooth superquantile-based function at F8

⇡ roughly
coincides the nonsmooth one. Finally for high values of ⇡(> 103), we observe
that the smooth superquantile tends to the same optimal function value of the
empirical risk minimizer F8, as expected from Section 4.2.

4.4.2 Superquantile brings robustness against distributional shifts

In the second part of the numerical experiments, we show the interest of
superquantile for worst-case learning by comparing superquantile-based mini-
mization vs empirical risk minimization, similarly to [34]. For the three next
standard regression or classification tasks, we proceed as follows. For each
dataset, we first perform a 80%-20% train-test split. Second, we minimize with
respect to the train set a regularized objective, both in expectation and with
respect to the superquantile:

min
F2Rd

E(G,H)⇠⇡train✓ (H,F>G) +
⌫

2
kFk2

2

min
F2Rd

[(?](G,H)⇠⇡train✓ (H,F>G) +
⌫

2
kFk2

2

(4.48)

We set the regularization parameter ⌫ to be the inverse of the number of training
data-points: ⌫ = 1/=train. The above problems are solved with SPQR using
L-BGFS. Then we perform three different types of distributional shifts on the

68 ���������� �������������-����� ���� ��������

Figure 4.6: Reshaping of the histogram of testing losses for superquantile regression
models (in red) as ? grows. We observe a shift to the left of the 90th quantile
of losses, at the price of degrading the average value.

testing set and we compare the behaviour of the superquantile-based models
and the ERM models. We develop this approach in the next three experiments.

Superquantile ridge-regression. We consider a ridge regression problem, thatSetup

is (4.48) with ✓ (H,F>G) = (H �F>G)2, on the dataset Cpu-small. We minimize
the two problems in expectation and (ii) with respect to the superquantile with
several safety thresholds ? 2 {0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99}.

We report in Figure 4.6 the histogram of losses on the test set and compareSuperquantiles reduce
worst-case losses each trained superquantile model (in red) with the ERM model (in blue). We

observe that as the probability threshold ? grows, the right tail distribution of
losses on the test set gets shifted to the left. In particular, a drastic decrease of the
90th quantile of the losses can be observed. Thus superquantile learning allows
us to reduce worst-case losses. This comes with the price of lower performances
on the left tail distribution.

Superquantile logistic regression.We consider a regularized logistic regressionSetup

problem, that is (4.48) with ✓ (H,F>G) = �H�(F>G) � (1 � H)�(F>G) (where
�(I) :=

1
1+4�I denotes the sigmoid function). We use 10 classification datasets

from the UCI repository library and we perform a distributional shift on the
train sets: we subsample the majority class so that it accounts for only 10% of
the minority class. Then we train a ERM and superquantile models. The safety
parameter ? is tuned via a cross validation procedure on the shifted train set.
We finally compute, for the best parameter obtained, the test accuracy and the
test loss.

We report our results in Table 4.1. For most datasets, we note a significantRobustness of
superquantile for a given

distributional shifts
decrease of the test loss with the superquantile model, when compared to ERM
model. In terms of accuracy, the superquantile model offers better performance
for this particular distributional shift.

Robustness to all possible distributional shifts. We take the same setting asSetup

before, focusing on the splice dataset, and now we perform a sequence of
distributional shifts on the training set by rebalancing all the proportions of the
two classes. More precisely, for a fixed � 2 (0, 1), we compute the number =min

of sample from the minority class; we randomly select d�=mine points from the
majority class and d(1� �)=mine from the minority class. We train on the shifted
train set the two logistic regression models of (4.48). We repeat this experiment
for 5 different seeds and we compute the average test loss and test accuracies of

4.5 ���������� 69

Superquantile Expectation

Dataset Accuracy Loss Accuracy Loss

Adult 53.2± 0.67 0.693± 0.00 55.4± 0.48 1.072± 0.01

Monks 64.4± 2.65 0.714± 0.05 54.0± 1.57 1.207± 0.08

Splice 82.7± 0.62 0.681± 0.05 81.7± 0.78 0.557± 0.04

Diabetes 42.5± 4.72 0.694± 0.00 45.1± 4.51 1.325± 0.12

Spambase 78.4± 1.23 0.761± 0.15 77.1± 0.87 0.635± 0.07

Mammography 39.1± 7.59 0.730± 0.01 39.1± 6.90 1.293± 0.09

Electricity 42.8± 0.40 0.693± 0.00 47.5± 0.63 1.060± 0.01

Phoneme 37.3± 5.38 0.737± 0.01 50.5± 3.10 1.292± 0.04

Nomao 87.5± 0.22 0.413± 0.03 87.4± 0.23 0.394± 0.02

Skin-segmentation 92.1± 0.11 0.420± 0.00 91.9± 0.05 0.537± 0.01

Table 4.1: Comparison of performances between a superquantile model and a risk-
neutral model for a logistic regression on a distributionally shifted dataset.

both models. The experiment is conducted for 100 values of � evenly spread on
(0, 1).

The histograms of Figure 4.7 depicts the performances, as � varies, of ERM Robustness of
superquantiles to
adversarial distributional
shifts

against the superquantile for a fixed probability threshold ?. In terms of losses,
the superquantile model brings better performances for almost all values of
?. In particular, the 90th quantile of the losses over all considered shifts gets
notably decreased for ?. In terms of accuracy, the superquantile models brings
better performance with respect to distributional shifts for all values of ?.

4.5 ����������

In this chapter, we addressed the problem of minimizing superquantile-based
risk measures by first-order methods. We provided explicit expressions of
(sub)gradients of (smoothed) superquantiles where we went down to the details
of computations in order to get efficient first-order oracles for superquantile-
based functions. We provided a generalization of such smoothing procedures
to coherent law-invariant comonotone risk measures with a special care on
maintaining a minimal complexity. We released an open-source python toolbox
for the minimization of superquantile-based objectives. The first one, built on top
of scikit-learn aims at tackling general convex problems of low or middle size.
We finally provided an overview of the recent applications of superquantiles
in machine learning and illustrated on real datasets, the performances of our
methods through several numerical experiments.

70 ���������� �������������-����� ���� ��������

Figure 4.7: Reshaping of histograms of test losses (top) and test accuracies (bottom) over
all class imbalances (for a classification task with logistic regression and the
splice dataset).

5
S O LV I NG CH A NC E - CO N ST R A I N E D P RO B L E M S

This chapter is devoted to a new algorithm for solving chance-constrained
(convex) programs.

The developments laid down below build upon the following work:

• Y. Laguel, W. Van Ackooĳ and J. Malick. Chance constrained convex
problems: a bilevel convex optimization perspective. Preprint: https:
//arxiv.org/pdf/2103.10832.pdf, 2021.

5.1 ������������

In this chapter, we address the solving of the general chance-constrained
optimization problem introduced in Section 3.5. That is, for a fixed safety General

chance-constrained
problem

probability level ? 2 [0, 1), we consider:

min
G2C

5 (F)

s.t. P[6(F, ⇢)  0] � ?,
(5.1)

where 5 : R
d ! R and 6 : R

d ⇥R
m ! R are two given functions, ⇢ is a random

vector valued in R
m and C ⇢ R

d is a (deterministic) closed constraint set. We
consider the case of underlying convexity: we assume that 5 and 6 are convex
(with respect to F). For our practical developments, we also assume that we
have first-order oracles for 5 and 6 and that the C is a box constraint on the
decision variable G. As discussed in Section 3.5, even with underlying convexity,
chance-constrained problems remain difficult to solve: the chance constraint
feasible can remain non-convex even in simple standard cases as illustrated in
Example 3.4.

We propose an original approach for solving chance-constrained optimization
problems. First, we present an exact reformulation of (nonconvex) chance-
constrained problems as (convex) bilevel optimization problems. This refor-
mulation is simple and natural, involving superquantiles. Second, exploit-
ing this bilevel reformulation, we propose a general algorithm for solving
chance-constrained problems, and we release an open-source python toolbox
implementation. In the case where we make no assumption on the underlying
uncertainty and have only samples of ⇢, we propose and analyse a double
penalization method, leading to an unconstrained single level DC (Difference
of Convex) program. Our approach enables to deal with a fairly large sample of
data-points in comparison with state-of-the-art methods based on mixed-integer
reformulations, e.g. [3]. Thus our work mixes a variety of techniques coming
from different subdomains of optimization: penalization, error bounds, DC
programming, bundle algorithm, Nesterov’s smoothing; relevant references are
given along the discussion.

This chapter is structured as follows. In Section 5.2, we leverage the known Outline

71

https://arxiv.org/pdf/2103.10832.pdf
https://arxiv.org/pdf/2103.10832.pdf

72 ������� ������-����������� ��������

link with (super)quantiles and chance-constraint to establish a novel bilevel
reformulation of general chance-constrained problems. In Section 5.3, we
propose and analyse a penalty approach revealing the underlying DC structure.
In Section 5.4, we discuss implementation of this approach in our publicly
available toolbox. In Section 5.5, we provide illustrative numerical experiments,
as a proof of concept, showing the interest of the method. Technical details on
secondary theoretical points and on implementation issues are postponed to
appendices.

5.2 ������ ����������� �������� ���� �� ������� ��������

In this section, we derive the reformulation of a chance constraint as a bilevel
program wherein both the upper and lower level problems, when taken indi-
vidually, are convex.

By definition, the chance constraint in (5.1) involves the cumulative distribu-
tion function: we have for any fixed F 2 R

d, P[6(F, ⇢)  0] � ? , �6(F,⇢)(0) �
?. We rewrite this constraint using quantiles, as formalized in the next lemma.

Lemma 5.1. For any F 2 R
d and ? 2 [0, 1), we have:From chance constraints

to quantile constraints

P[6(F, ⇢)  0] � ? () &?(6(F, ⇢))  0.

Proof. By definition of the quantile and continuity on the right of the cumulative
distribution function, we always have ?  P[6(F, ⇢)  &?(6(F, ⇢))]. Thus,
since cumulative distribution functions are increasing, if &?(6(F, ⇢))  0, then
P[6(F, ⇢)  &?(6(F, ⇢))]  P[6(F, ⇢)  0] which implies that P[6(F, ⇢)  0] �
?. Conversely, since&?(6(F, ⇢)) is the infimum of {C 2 R : P[6(F, ⇢)  C] � ?},
if &?(6(F, ⇢)) > 0, then necessarily we have P[6(F, ⇢)  0] < ?. ⇤

Such reformulation has already been investigated in previous works (see
e.g. [123]). Compared to the empirical cumulative distribution function, the
?-quantile benefits from more regularity: F 7! &?(6(F, ⇢)) is continuous
whenever 6 is continuous with respect to F. However, the quantile remains a
non-convex and nonsmooth function. We propose to reformulate once again this
problem in terms of superquantiles. To that end, we build upon the variational
formulation (3.12) of the superquantile in its general form.

Lemma 5.2. For an integrable random variable - and a probability level ?, theQuantile are solution to
the variational
problem (3.12)

superquantile (?(-) is the optimal value of the convex one-dimensional problem

inf
◆2R

◆ +
1

1� ? E[max(- � ◆, 0)]. (5.2)

Moreover, the quantile&?(-) is the left end-point of the solution interval of this problem

Together with (5.2), we obtain from the previous easy lemma a bilevel
formulation of the general chance-constrained problem (5.4). The idea is simple:
introducing an auxiliary variable ◆ 2 R

d to recast the potentially non-convex
chance constraint of (5.1) as two constraints, a simple bound constraint and a
difficult optimality constraint, forming a lower subproblem. Introducing the
lower objective function ⌧? : C ⇥ R ! R

⌧?(F, B) = B +
1

1� ? E[max(6(F, ⇢)� B, 0)], (5.3)

we have the following exact reformulation of chance-constrained problems.

5.3 � ������ ������������ ������ 73

Theorem 5.3. Problem (5.1) is equivalent to the bilevel problem: Bi-level reformulation of
chance constraints8>>><

>>>:
minF2C,◆2R 5 (F)

s.t. ◆  0

◆ 2 ((F) = arg minB2R
⌧?(F, B).

(5.4)

More precisely, if F8 is an optimal solution of (5.1), then (F8,&?(6(F
8, ⇢))) is an

optimal solution of the above bilevel problem, and conversely.

Proof. It is clear with Lemma 5.1 that problem (5.1) is equivalent to

8>>>><
>>>>:

min
F2C,◆2R

5 (F)

s.t. ◆  0

◆ = &?(6(F, ⇢))

. (5.5)

By Lemma 5.2, &?(6(F, ⇢)) 2 ((F) for any F 2 R
3. Hence, any solution (F,◆)

of (5.5) is feasible for (5.4). Conversely, any solution (F8,◆8) of (5.4) satisfies:
&?(6(F

8, ⇢))  ◆8  0 which implies that (F8,&?(6(F
8, ⇢)) is a feasible point

of (5.5). Since both problems have the same objective, they are equivalent. ⇤

The first constraint ◆  0 is an easy one-dimensional bound constraint
which does not involve the decision variable F. The second constraint, which
constitutes the lower level problem is more difficult; when this constraint is
satisfied, ◆ is an upper-bound on the ?-quantile of 6(F, ⇢). We readily see the
joint convexity of the objective function of the lower level problem in (5.4) with
respect to B and F. Note finally that the extension to joint chance-constrained
programs is straightforward: if 6 : R

3 ⇥ R
< ! R

: has all its components
68 , (1  8  :) convex with respect to F, we have:

P
⇥
6(F, ⇢)  0

⇤
� ? , P


max
18:

68(F, ⇢)  0

�
� ?

, &?

✓
max
18:

68(F, ⇢)

◆
 0

, 9 ◆  0

s.t. ◆ 2 arg min
B2R

B +
1

1� ? E


max
08:

68(F, ⇢)

�
(with 60 := 0)

and the lower-level problem remains convex.
This bilevel reformulation is nice, natural and seemingly new; we believe that

it opens the door to new approaches for solving chance-constrained convex
problems. In the next section, we propose such an approach based on the
reformulation.

5.3 � ������ ������������ ������

In this section, we explore one possibility offered by the bilevel formulation of
chance-constrained problems, presented in the previous section. We propose a
(double) penalization approach for solving the bilevel optimization problem,
with a different treatment of the two constraints: a basic penalization of the easy

74 ������� ������-����������� ��������

constraint together with an exact penalization of the hard constraint formalized
as the lower problem.

We first exhibit and analyze in Section 5.3.1, the weak sharpness properties of
the lower-level problem in (5.4). We show then in Section 5.3.2 to what extent
these properties help to provide an exact penalization of the “hard" constraint.
We finally present the double penalty scheme in section 5.3.3.

From the bilevel problem (5.4), we derive the two following penalized prob-
lems, associated with two penalization parameters ⇠,⌫ > 0 and

First penalization
(%⇠)

8>><
>>:

min
(F,◆)2C⇥R

5 (F) + ⇠max(◆, 0)

s.t. ◆ 2 arg minB2R
⌧?(F, B)

(5.6)

and

Second penalization (%⌫,⇠) min
(F,◆)2C⇥R

5 (F) +⌫

✓
⌧?(F,◆)�min

B2R

⌧?(F, B)

◆
+ ⇠max(◆, 0). (5.7)

We consider a general data-driven situation where the uncertainty ⇢ is just
known through a sample (or, said alternatively, follows an equiprobable dis-
crete distribution over = 2 N arbitrary values): we assume that there exists
⇢1, ⇢2, . . . , ⇢= 2 R

m such that P[⇢ = ⇢8] =
1
= for all 8 2 {1, . . . , =}. The set I=

defined as

I= =

⇢
8

=
, 8 2 {0, ..., = � 1}

�
(5.8)

plays a special role in our developments. In particular, we denote by distI= (?) :=

inf{k? � 8
< k, 0  8  = � 1}, the distance to I= , to define a key quantity appearing

in the variational results of this section: we introduce

⇣? =

8>>>><
>>>>:

1

=(1� ?) if ? 2 I=

distI= (?)

(1� ?) otherwise,
(5.9)

which depends implicitly on the number of samples = and the fixed safety
parameter ?.

5.3.1 Weak sharpness and analysis of the value function

In Chapter 4 of this thesis, we uncovered the nonsmoothness of the superquantile
function based on a study of its distributionally robust formulation (3.11). We
extend here the analysis by bringing to light the weak sharpness properties
of the superquantile, based on the variational formulation (5.2). Given an
optimization problem

min
F2X

!(F),

we recall that its solution set X8 is said to be weakly sharp (or equivalently that it
satisfies the first-order growth condition) if there exists a constant ⇣ > 0 such thatWeak sharpness

!(G) � !(H) + ⇣ distX8(G), 8G 2 X ,8H 2 X8.

The constant ⇣, specific to each problem is often called the weak-sharpness modulus
of this problem. Now, one may observe that weak sharpness of the problem (5.2)
is a direct consequence of its linearity, in view of the next Proposition.

5.3 � ������ ������������ ������ 75

Figure 5.1: Illustration of Example 5.1. A linear problem with a vanishing weak sharpness
modulus.

Proposition 5.4. If a linear programming problem in a Banach space has a nonempty See proposition �.���
of ����set of optimal solutions, then such solution set is weakly-sharp.

The proof of such result is based on Hoffman’s lemma (see e.g. [21][Proposition
2.200]) and guarantees the existence of a weak-sharpness modulus without
suggesting a way to derive the modulus of a specific problem. One should also
note that such modulus may be arbitrarily close to 0, in view of Example 5.1.

Example 5.1. For any ⌘ > 0, consider the 2-dimensional problem (P⌘) defined Vanishing Weak
Sharpnessas:

(P⌘)

8>>>><
>>>>:

min
(G,H)2R2

!&(G, H) = G � (1+ ⌘) H

s.t. H  0

H � G  0

(5.10)

This problem is illustrated in Figure 5.1. Note that for any ⌘ > 0 the solution
set of (%⌘) is reduced to the singleton 0. Observe now that the point (�1,�1)

is feasible for all ⌘ > 0 and !⌘(�1,�1) = ⌘ while distX8 =

p
2 does not depend

on ⌘. Hence taking ⌘ arbitrarily small lead to a problem P⌘ with arbitrarily
small weak sharp modulus. ⇤

Fortunately, the superquantile problem (5.2) admits for any ? 2 [0, 1) a weak-
sharpness modulus which will be key in the forthcoming exact penalization
procedure. We study here the value function ⌘ : C ⇥ R ! R defined, from ⌧?
in (5.3), as

⌘(F,◆) = ⌧?(F,◆)�min
B2R

⌧?(F, B). (5.11)

The next result relates ⌘ to dist((F)(·), the distance function to ((F), the solution
set of the lower level problems in (5.4). This is our main technical result, on
which next propositions are based.

Theorem 5.5. Let ? 2 [0, 1) be fixed but arbitrary. The function ⌘ defined in (5.11) Weak sharpness of the
superquantilesatisfies for any (F,◆) 2 C ⇥ R

⌘(F,◆) � ⇣? dist((F)(◆)

with ((F) and ⇣? defined respectively in (5.4) and (5.9). In other words, the variational
problem (5.2) is weakly sharp with a weak-sharpness modulus larger than ⇣? .

Proof. Let us fix F 2 C and denote by @? the ?-quantile of 6(F, ⇢). We first note
that by the arguments in the proof of Lemma 5.1, we have

?  P[6(F, ⇢)  @?],

76 ������� ������-����������� ��������

with equality holding in the left inequality, if and only if ? belongs to I= .

For any fixed but arbitrary ◆ 2 R, we have the following identity:

⌘(F,◆) = ◆ +
1

1� ?E[max(6(F, ⇢)� ◆, 0)]�
✓
@? +

1

1� ?E[max(6(F, ⇢)� @? , 0)]
◆

= (◆ � @?) +
1

1� ?E
⇥
max(6(F, ⇢),◆)� ◆ � (max(6(F, ⇢), @?)� @?)

⇤
= (◆ � @?)(1�

1

1� ?) +
1

1� ?E
⇥
max(6(F, ⇢),◆)�max(6(F, ⇢), @?)

⇤
.

Now, by employing a case distinction on the location of ◆ with respect to @? ,
we will derive the desired inequalities. Let us first consider that ◆ > @? , then
we have:

⌘(F,◆) = (◆ � @?)(1�
1

1� ?) +
1

1� ?E

h
(◆ � 6(F, ⇢)) 1@?<6(F,⇢)◆ +(◆ � @?) 16(F,⇢)@?

i

= (◆ � @?)(1�
1

1� ? +
1

1� ? P[6(F, ⇢)  @?]) +
1

1� ? E[(◆ � 6(F, ⇢)) 1@?<6(F,⇢)◆]

which finally gives:

⌘(F,◆) =
(◆ � @?)

1� ?

✓
P[6(F, ⇢)  @?]� ? + E


◆ � 6(F, ⇢)

◆ � @?
1@?<6(F,⇢)◆

� ◆
. (5.12)

Now if ? 8 I= , since P[6(F, ⇢)  @?] 2 I= , we have:

⌘(F,◆) � (◆ � @?)
1

1� ?
�
P[6(F, ⇢)  @?]� ?

�
�

distI= (?)

1� ? dist((F)(◆).

Here we use that clearly |◆ � @? | � dist((F)(◆), since @? 2 ((F) as already
recalled.

If ? 2 I= , we have two cases. First, if P[6(F, ⇢)  @?] > ?, then since
P[6(F, ⇢)  @?] 2 I= , we have by definition of I= , P[6(F, ⇢)] � ? � 1

= and
consequently

⌘(F,◆) � (◆ � @?)
1

1� ?
�
P[6(F, ⇢)  @?]� ?

�
� 1

=(1� ?) dist((F)(◆).

Second, if P[6(F, ⇢)  @?] = ?, then ⌘(F,◆) = 1
1�? E[(◆ � 6(F, ⇢)) 1@?<6(F,⇢)◆].

We let @+? be the successor quantile, i.e.,

@+? = inf{C � R : P[6(F, ⇢)  C] > ?}.

Now if ◆ 2 (@? , @
+
?), we have ⌘(F,◆) = 0. If ◆ � @+? , then

⌘(F,◆) =
1

1� ? E

h
(◆ � 6(F, ⇢)) 1@+? 6(F,⇢)◆

i

� (◆ � @+?)
P[6(F, ⇢) = @+?]

1� ? � 1

=(1� ?) dist((F)(◆)

where the last inequality results from our earlier estimates.

5.3 � ������ ������������ ������ 77

The second case to consider involves the situation ◆ < @? . Here, we have:

⌘(F,◆) = (◆ � @?)(1�
1

1� ?) +
1

1� ? E

h
(6(F, ⇢)� @?) 1◆<6(F,⇢)@? +(◆ � @?) 16(F,⇢)◆

i

= (◆ � @?)
✓
1� 1

1� ? +
1

1� ? P[6(F, ⇢)  ◆]

◆
+

1

1� ? E

h
(6(F, ⇢)� @?) 1◆<6(F,⇢)@?

i

which leads us to

⌘(F,◆) =
(@? � ◆)

1� ?

✓
? � P[6(F, ⇢)  ◆]� E


@? � 6(F, ⇢)

@? � ◆
1◆<6(F,⇢)@?

�◆
. (5.13)

Let us define the antecessor quantile @�? as

@�? = max
�
sup{C � R : P[6(F, ⇢)  C] < ?}, min{6(F, ⇢8)}

=
8=1 � 1

.

and note that: P[6(F, ⇢)  @�?] < ?  P[6(F, ⇢)  @?]. Hence, we have:

⌘(F,◆) =
(@? � ◆)

1� ?

✓
? � P[6(F, ⇢)  ◆]� E


@? � 6(F, ⇢)

@? � ◆
1◆<6(F,⇢)@�?

�◆
.

�
(@? � ◆)

1� ?
⇣
? � P[6(F, ⇢)  max(◆, @�?)]

⌘
.

If ? 8 I= , we get, since P[6(F, ⇢)  max(◆, @�?)] 2 I= :

⌘(F,◆) �
distI= (?)

1� ? dist((F)(◆).

If ? 2 I= we note subsequently that P[6(F, ⇢)  max(@�? ,◆)] = P[6(F, ⇢)  @�?]
since 1 @�?  6(F, ⇢)  ◆ = 0 under the assumption ◆  @? . Thus, since ? >

P[6(F, ⇢)  @�?] 2 I= we have necessarily ? � P[6(F, ⇢)  @�?] � 1
= which gives:

⌘(F,◆) � 1

=(1� ?) dist((F)(◆).

⇤

Following the terminology of [175], this theorem shows that ⌘ is a uniform
parametric error bound. We note that the quality of this bound is altered by the
number = of data points considered. This drawback actually passes to the limit
in the sense that (F,◆) 7! ⌘(F,◆) fails to be a uniform parametric error bound
when ⇢ follows a continuous distribution; this is an interesting but secondary
result that we prove in Section 5.3.4.

5.3.2 Exact penalization for the hard constraint

We show here that (%⌫,⇠) is an exact penalization of (%⇠), when ⌫ is large enough.
The proof of this result follows usual rationale (see e.g., [31, Prop. 2.4.3]); the
main technicality is the sharp growth of ⌘ established in Theorem 5.5.

Proposition 5.6. Let ⇠ > 0 be given and assume that there is a solution to (%⇠) defined Exact Penalization of the
hard constraintin (5.6). Then for any ⌫ > ⇠/⇣? with ⇣? defined in (5.9), the solution set of (%⇠)

coincides with the one of (%⌫,⇠) defined in (5.7).

78 ������� ������-����������� ��������

Proof. Take ⇠ > 0, define ⌫⇠ = ⇠/⇣? , and take ⌫ > ⌫⇠ arbitrary but fixed. Let us
first take a solution (F8,◆8) 2 C ⇥ R of (%⇠) and show by contradiction that it is
also a solution of (%⌫,⇠). Indeed, to the contrary, assume there exists some ⌘ > 0
and (F0,◆0) 2 C ⇥ R such that:

5 (F0) + ⇠max(0,◆0) +⌫⌘F0(◆0)  5 (F8) + ⇠max(0,◆8) +⌫ ⌘F8(◆8)� ⌘.

Let then ◆0? 2 ((F0) be such that : |◆0? � ◆0 |  dist((F0)(◆
0) + ⌘

2⇠ . Then the
point (F0,◆0?) is feasible for %⇠ (recall ◆0? 2 ((F0)) and since ◆ 7! ⇠max(0,◆) is
⇠-Lipschitz, we first have

5 (F0) + ⇠max(0,◆0?)  5 (F0) + ⇠max(◆0, 0) + ⇠|◆0? � ◆0 |

 5 (F0) + ⇠max(◆0, 0) + ⇠

✓
dist((F0)(◆

0) +
⌘

2⇠

◆
.

Using Theorem 5.5, we then have

5 (F0) + ⇠max(0,◆0?)  5 (F0) + ⇠max(◆0, 0) + ⇠

✓
1

⇣?
⌘(F0,◆0) +

⌘

2⇠

◆

 5 (F0) + ⇠max(◆0, 0) +⌫⇠ ⌘(F
0,◆0) +

⌘

2

 5 (F8) + ⇠max(◆8, 0)� ⌘

2

which gives the contradiction. Hence any solution of (%⇠) is also a solution to
problem (%⌫,⇠).

Let now (F̄, ◆̄) be a solution of (%⌫,⇠) and let us show that it is actually a
solution for %⇠. Let again (F8,◆8) be an arbitrary solution of (%⇠). We first note
that, by the optimality result of (Ḡ, ◆̄) for (%⌫,⇠), we have:

5 (F̄) + ⇠max(0, ◆̄) +⌫ ⌘(F̄◆̄)|{z}
�0

 5 (F8) + ⇠max(0,◆8) +⌫ ⌘(F8,◆8)| {z }
=0

,

which by positivity of the function ⌘ and feasibility for (%⇠), i.e., ⌘(F8,◆8) = 0
of (F8,◆8) yields:

5 (F̄) + ⇠max(0, ◆̄)  5 (F8) + ⇠max(0,◆8).

It remains to show that (F̄◆̄) is a feasible point for (%⇠). By the first point,
(F8,◆8) is both a solution of (%⌫,⇠) and (% ⌫+⌫⇠

2 ,⇠
). Hence, we have:

5 (F̄) + ⇠max(0, ◆̄) +⌫⌘(F̄, ◆̄)  5 (F8) + ⇠max(0,◆8)

= 5 (F8) + ⇠max(0,◆8) +
⌫ +⌫⇠

2
⌘(F8,◆8)

 5 (F̄) + ⇠max(0, ◆̄) +
⌫ +⌫⇠

2
⌘(F̄, ◆̄)

But since ⌫ > ⌫⇠ we necessarily have: ⌘(F̄, ◆̄) = 0 which implies by the
properties of the value function that (F̄, ◆̄) is a feasible point for (%⇠). ⇤

We note that the above result is a special case of theorem [175, Theorem 2.6]
which is meant for generalized bilevel programs. Based on the terminology
of [175], we have shown that %⇠ satisfies the partial calmness property, as the
value function ⌘ was shown to be a uniform parametric error bound.

5.3 � ������ ������������ ������ 79

5.3.3 Double penalization scheme

From the previous results, we get that solving the sequence of penalized prob-
lems gives approximations of the solution of the initial problem. We formalize
this in the next proposition suited for our context of double penalization. The
proof of this result follows standard arguments; see e.g. [105, Ch. 13.1].

Proposition 5.7. Assume that Problem (5.4) has a non-empty feasible set. Let (⇠:):�0 Penalization of the easy
constraintbe an increasing sequence such that ⇠: % 1, and (⌫:):�0 be taken such that ⌫: >

⇠:
⇣?

with ⇣? as defined in (5.9). If, for all :, there exists a solution of (%⌫: ,⇠:) (denoted by
(F: ,◆:)), then any cluster point of the sequence (F: ,◆:) is an optimal solution of (5.1).

Proof. The fact that (F: ,◆:) is an optimal solution of (%⌫: ,⇠:) implies that

5 (F:) + ⇠: max(0,◆:) +⌫: ⌘(F: ,◆:) (5.14)

 5 (F:+1) + ⇠: max(0,◆:+1) +⌫: ⌘(F:+1,◆:+1)

Similarly for (F:+1,◆:+1), we get

5 (F:+1) + ⇠:+1 max(0,◆:+1) +⌫:+1⌘(F:+1,◆:+1)

 5 (F:) + ⇠:+1 max(0,◆:) +⌫:+1⌘(F: ,◆:).

By Proposition 5.6, ◆: (resp. ◆:+1) is feasible for (%⇠:) (resp. (%⇠:+1)); in other
words, we have ⌘(F: ,◆:) = ⌘(F:+1,◆:+1) = 0. Hence summing up these two
inequalities yields

max(◆: , 0) � max(◆:+1, 0).

Using this last inequality with (5.14) gives:

5 (F:)� 5 (F:+1)  ⇠:
�
max(◆:+1, 0)�max(◆: , 0)

�
 0,

and as a consequence the sequence { 5 (F:)}:�0 increases. Let (F0,◆0) be an
arbitrary feasible solution for (%). By definition of the sequence (F: ,◆:), for any
: 2 N, we have:

5 (F:)  5 (F:) + ⇠: max(◆: , 0)  5 (F0) + ⇠: max(◆0, 0)  5 (F0). (5.15)

Therefore for any cluster point (F̄, ◆̄) of the sequence {(F: ,◆:)}:�0, we have
5 (F̄)  5 (F0). In order to show that (F̄, ◆̄) is a a solution of (5.4), it remains to
show its feasibility. With the right hand side inequality of (5.15), we obtain

max(◆: , 0) 
5 (F0)� 5 (F:)

⇠:

5 (F0)� 5 (F0)

⇠:
����!
:!1

0,

so that we may deduce that, ◆̄  0. Moreover, continuity of ⌘ ensures that
⌘(Ḡ, ◆̄) = 0 which completes the proof. ⇤

In words, cluster points of a sequence of solutions obtained as ⇠ grows to +1
are feasible solutions of the initial chance-constrained problem. In practice
though, we empirically observed that taking a fixed ⇠ is enough for reaching
good approximations of the solution with increasing ⌫’s; see in particular the
numerical experiments of Section 5.5. In the next section, we discuss further
the practical implementation of the conceptual double penalization scheme.

80 ������� ������-����������� ��������

5.3.4 Uniform bound at the limit

We show here that the uniform error bound derived in Section 5.3.1 vanishes
at the limiting case of continuous distributions. We assume that, for a fixed
G 2 R

d, the random variable 6(F, ⇢) has a continuous density 5F,⇢ : R ! R

denoted by 5F,⇢: we have, for all 0  1,

P[0  6(F, ⇢)  1] =

π 1

0

5F,⇢(C)d C.

Proposition 5.8. Fix G 2 R
3 and denote by @? the ?-quantile of the distributionWeak sharpness vanishes

with sample size followed by the random variable 6(F, ⇢). If 6(F, ⇢) has a continuous density, then
the value function ◆ 7! ⌘(F,◆) defined in (5.11) is differentiable at ◆ = @? (with
⌘0(F, @?) = 0).

Proof. We first note that the existence of a density ensures the continuity
of the cumulative distribution function of 6(F, ⇢), which in turns implies
P[6(F, ⇢)  @?] = ?. Let us now come back to expressions established in the
proof of Theorem 5.5. From (5.12), we have, for ◆ > @? ,

⌘(F,◆) = (◆ � @?)
1

1� ?

✓
P[6(F, ⇢)  @?]� ? + E


◆ � 6(F, ⇢)

◆ � @?
1@?<6(F,⇢)◆

� ◆

=

1

1� ? E

h
(◆ � 6(F, ⇢)) 1@?<6(F,⇢)◆

i
=

1

1� ?

π ◆

@?

(◆ � C) 5F,⇢(C)d C

=

1

1� ?

◆

π ◆

@?

5F,⇢(C)d C �
π ◆

@?

C 5F,⇢(C)d C

!
.

By continuity of the above integrands, we can use the fundamental theorem of
calculus to get that ⌘(F, ·) admits a right derivative at ◆ = @? such that

⌘0+(F,◆) = lim
◆!@?
◆>@?

⌘(F,◆)� ⌘(F, @?)

◆ � @?

= lim
◆!@?
◆>@?

1

1� ?
©≠́◆

Ø ◆

@?
5F,⇢(C)d C

◆ � @?
�

Ø ◆

@?
C 5F,⇢(C)d C

◆ � @?
™Æ̈

= lim
◆!@?
◆>@?

1

1� ?
�
◆ 5F,⇢(@?)� @? 5F,⇢(@?)

�
= 0 .

For the case ◆ < @? , we have from (5.13), together with P[6(F, ⇢) = @?] = 0:

⌘(F,◆) = (@? � ◆)
1

1� ?

✓
E


1�

(@? � 6(F, ⇢))

@? � ◆
1◆<6(F,⇢)<@?

�
+ P[6(F, ⇢) = @?]

◆

=

1

1� ?

✓
(◆ � @?)

π @?

◆
5F,⇢(C)d C �

π @?

◆
(@? � C) 5F,⇢(C))d C

◆
.

5.4 ������ ������������ �� �������� 81

Using again to the fundamental theorem of calculus, we get that ⌘(F, ·) admits
a left derivative at ◆ = @? with:

⌘0�(F,◆) = lim
◆!@?
◆<@?

⌘(F,◆)� ⌘(F, @?)

◆ � @?

= lim
◆!@?
◆<@?

1

1� ?
©≠́(◆ � @?)

Ø @?

◆
5F,⇢(C)d C

◆ � @?
�

Ø @?

◆
(@? � C) 5F,⇢(C)d C

◆ � @?
™Æ̈ = 0 .

We can conclude that ⌘(F, ·) is differentiable at @? with zero as derivative. ⇤

5.4 ������ ������������ �� ��������

In this section, we propose a practical version of the double penalization scheme
for solving chance-constrained optimization problems. First, we present in
Section 5.4.1 how to tackle the inner penalized problem (%⌫,⇠) by leveraging its
difference-of-convex (DC) structure. Then we quickly describe, in Section 5.4.2,
the python toolbox that we release, implementing this bundle algorithm and
efficient oracles within the double penalization method.

5.4.1 Solving penalized problems by a bundle algorithm

We discuss here an algorithm for solving (%⌫,⇠) by revealing the DC structure of
the objective function. Notice indeed that, introducing the two convex functions

!1(F,◆) = 5 (F) +⌫⌧?(F,◆) + ⇠max(◆, 0) and !2(F,◆) = ⌫min
B2R

⌧?(F, B)

we can write (%⌫,⇠) as the DC problem

min
(F,◆)2C⇥R

!(F,◆) = !1(F,◆)� !2(F,◆). (5.16)

We then propose to solve this problem by the bundle algorithm of [36], which
showed to be a method of choice for DC problems. This bundle algorithm
interacts with first-order oracles for !1 and !2; in our situation, there exist
computational procedures to compute subgradients of !1 and !2 from output
of oracles of 5 and 6, as formalized in the next proposition. Note that at the
price of more heavy expressions, we could derive the whole subdifferential.

Proposition 5.9. Let (F,◆) 2 C ⇥ R be fixed. Let B 5 be a subgradient of f at F and Oracle derivations

B61
, . . . , B6= be respective subgradients of 6(·, ⇢1), . . . , 6(·, ⇢=) at F. For a given C 2 R,

denote by �>C the set of indices such that 6(F, ⇢8) > C and by �
=C the set of indices such

that 6(F, ⇢8) = C. Let finally � =

P[6(F,⇢)&? (6(F,⇢)]�?
#(�

=&? (6(F,⇢)))
. Then, B!1 and B!2 2 R

3+1

defined as:

B!1 =
©≠́B 5 + ⌫

=(1� ?)

=’
82�>◆

B6 8 , 1+ ⇠ 1◆>0 �⌫
#(�>◆)

=(1� ?)
™Æ̈

B!2 =
©≠́ ⌫

=(1� ?)
©≠́ ’
82�>&? (6(F,⇢))

B6 8 + �
’

82�
=&? (6(F,⇢))

B6 8
™Æ̈ , 0

™Æ̈

82 ������� ������-����������� ��������

are respectively subgradients of !1 and !2 at (F,◆).

Notice now that the convergence result for the bundle algorithm [36, Th. 1]
guarantees convergence towards a point D̄ = (Ḡ, ◆̄) satisfying

%!2(D̄)\ %!1(D̄) < ;, (5.17)

which is a weak notion of criticality. Thus, we propose to furthermore replace
!2 in (5.16) by a smooth approximation of it, denoted by e!2. The reason
is that the bundle method minimizing e! = !1 � e!2 then reaches a Clarke-
stationary point: indeed, (5.17) reads re!2(D̄) ⇢ %!1(D̄), which gives 0 2
%!(D̄) = %!1(D̄) + re!2(D̄), i.e., that D̄ is Clarke-stationary (for the smoothed
problem). To smooth !2, we use the efficient smoothing procedure provided
in the Section 4.2.2 of this thesis with the Euclidean smoothing. This yields a
smooth approximation e!2 of the form,

e!2(F,◆) = ⌫ sup
0@8 1

=(1�?)
@1+···+@==1

=’
8=1

n
@8 6(F, ⇢8)�

⌧

2
(@8 � 1

=)
2
o

(5.18)

We provide now a direct proof of the subgradient expressions of Proposi-
tion 5.9.

Oracles subgradient computations. Let (F,◆) 2 C ⇥ R be fixed, and consider first
the oracle of !1. For 8 2 {1, . . . , =}, by successive applications of Theorems 4.1.1
and 4.4.2 from [63, Chap. D] to the functions

!
(8)
1 : (F,◆) 7! 1

=


5 (F) + ⇠max(◆, 0) +⌫

✓
◆ +

1

1� ? max(6(F, ⇢8)� ◆, 0)

◆�

we get for any 8 2 {1, . . . , =}

1

=
B 5 +

⌫

=(1� ?) 16(F,⇢8)>◆ B6 2 %F!
8
1(F,◆)

⇠

=
1◆>0 +

⌫

=
� ⌫

=(1� ?) 16(F,⇢8)>◆ 2 %◆!
8
1(F,◆).

Since !1 =

Õ=
8=1 !

(8)
1 , we thus have

©≠́B 5 + ⌫

=(1� ?)
’
82�>◆

B6 8 , ⇠ 1◆>0 +⌫ �⌫
#(�>◆)

=(1� ?)
™Æ̈ 2 %!1(F,◆)

For !2 we need first the whole subdifferential of the function ⌧? , which, using
above mentioned properties, writes

%⌧?(F,◆) =

(
1

1� ?

=’
8=1

B6 8
=

(16(F,⇢8)>◆ +�8 16(F,⇢8)=◆),

1� 1

1� ?

=’
8=1

1

=
(16(F,⇢8)>◆ +�8 16(F,⇢8)=◆)

!
, �8 2 [0, 1], 88 2 {1, . . . , =}

)
.

By taking �8 = � (for all 8 2 {1, . . . , =}) with the specific � given in the statement,
we can zero the second term in the above expression.

5.4 ������ ������������ �� �������� 83

Now since !2(F,◆) = ⌫minB2R ⌧?(F, B) with &?(6(F, ⇢)) 2
arg minB2R

⌧?(F, B), we apply Corollary 4.5.3 of [63, Chap. D] to obtain
a subgradient of !2:

B!2 =
©≠́ ⌫

=(1� ?)
©≠́ ’
82�>&? (6(F,⇢)

B6 8 + �
’

82�
=&? (6(F,⇢))

B6 8
™Æ̈ , 0

™Æ̈
which completes the proof. ⇤

5.4.2 TACO: A python toolbox for chance-constrained problems

TACO is an open-source python toolbox for solving chance-constrained opti-
mization problems (5.1). The toolbox implements the penalization approach
outlined in Section 5.3 together with the bundle method [36] for the inner pe-
nalized subproblems. TACO routines rely on just-in-time compilation supported
by Numba [93]. The routines are optimized to provide fast performance on
reasonably large datasets. Documentation is available at

https://yassine-laguel.github.io/taco.

We provide here basic information on TACO; for further information, we refer to
the online documentation.

The python class Problem wraps up all information about the problem to be
solved. This class possesses an attribute datawhich contains the values of ⇢ and
is formatted as a numpy array in 64-bit float precision. The class also implements
two methods giving first-order oracles: objective_func and objective_grad
for the objective function 5 , and constraint_func and constraint_grad for
the constraint function 6.

Let us take a simple quadratic problem in R
2 to illustrate the instantiation of Input format

a problem. We consider

min
F2R2

kF � 0k2 0 = [1.0, 2.0]>

s.t. P[F>⇢  0] � 0.9, with 1000 samples of ⇢ ⇠ N (0, 1).

The instance of Problem is in this case:

import numpy as np

class Problem:

def __init__(self, dim=2, sample_size=1000):

self.data = np.random.normal(size=(sample_size, dim),

dtype=np.float64)

self.a = np.array([1.0, 2.0], dtypte=np.float64)

def objective_fun(self,\variablemodel):

return np.dot(\variablemodel-self.a,x-self.a)

def objective_grad(self, \variablemodel):

return \variablemodel

def constraint_func(self, \variablemodel, z):

return np.dot(\variablemodel,z)

def constraint_grad(self, \variablemodel, z)

return z

problem = Problem()

TACO handles the optimization process with a python class named Optimizer. The Optimizer object

Given an instance of Problem and hyper-parameters provided by the user, the

https://yassine-laguel.github.io/taco

84 ������� ������-����������� ��������

class Optimizer runs an implementation of the bundle method of [36] on the
penalized problem (5.7). The toolbox gives the option to update the penalization
parameters ⇠,⌫ along the running process to escape possible stationary points
for the DC objective that are non-feasible for the chance constraint.

from taco import Optimizer

problem = Problem()

optimizer = Optimizer(problem, p=0.9, starting_point=np.zeros(2,

dtype=np.float64), pen1=1.0, pen2=10.0)

sol = optimizer.run()

Customizable parameters are stored in a python dictionary, called params,Customization

and designed as an attribute of the class Optimizer. The main parameters to
tune are: the safety level of probability p, the starting penalization parameters
⇠ = pen1 and⌫ = pen2, the starting point of the algorithm and the starting value
for the proximal parameter of the bundle method. We note that often a tuning
of both starting penalization parameters may be required to get a satisfying
solution for the problem considered. See for instance the experimental setup of
our numerical illustations in 5.5.2. Others parameters are filled with default
values when instantiating an Optimizer; for instance:

custom_options = {

’p’: 0.9,

’pen1’: 1.0,

’pen2’: 10.0,

’bund_mu_start’: 50.0,

’bund_max_size_bundle_set’: 30,

}

custom_optimizer = Optimizer(problem, params=custom_options)

Some important parameters (such as the safety probability level, or the
starting penalization parameters) may also be given directly to the constructor
of the class Optimizer, when instantiating the object; as in the first example.

�������������� ������� �� ����.

Further customization. TACO relies on a set of hyperparameters to be providedPenalization procedure

by the user and specified in a single dictionnary passed as an argument of
the class Optimizer. There are two families of parameters to be specified.
First, the parameters concerning the oracles !1 and !2. These are the starting
penalization parameters ⌫ and ⇠, the multiplicative factors to increment them
along the penalization process, and the smoothing parameter of !̃2.

The second family of parameters concerns the bundle method. It gathersParameters of the bundle
method the proximal parameters of the bundle method, the precision targeted, the

starting point of the algorithm, the maximal size of the bundle information,
and parameters related used when restarting the bundle method (see more in
the following section). Overall the most important parameters to specify are
the starting penalization parameters ⇠ and ⌫ with respective keys ‘pen1’ and
‘pen2’ and the starting proximal parameter of the bundle algorithm. In the
toolbox, we provide the set of parameters used in our numerical experiments.
In addition of the final solution, it is possible to log the iterates, function
values and time values, by calling the method with the option logs=True. The
verbose=True option also allows the user to observe in real time the progression
of the algorithm along the iterations.

5.5 ��������� ������������� 85

Finally we underline that TACO subroutines rely on just-in-time compilation
supported by Numba, which consistently improves the running time. Further
improvements can be achieved when the instance considered can be cast as
a Numba jitclass. The parameter ’numba’ in the input dictionnary of the
associated Optimizer object should then be set to True.

On the bundle algorithm. We give now some information on our implemen-
tation of the bundle algorithm of [36] to tackle the double penalized problem
(%⌫,⇠) written as a DC problem. We discuss the parameters used at various
steps of the procedure. We refer to [36] for more details.

• Overall run: The starting point, the maximum number of iterations as
well as the precision tolerance for termination may be set by the user.

• Subproblems: Each iteration of the bundle algorithm requires solving a
quadratic subproblem (see [36, Equation (9)]), for which we use the solver
cvxopt [167] by simplicity.

• Stabilization center: Whenever the solution of a subproblem satisfies a
sufficient decrease in terms a function value, it is considered as a new
stability center. The condition to qualify sufficient decrease is given in [36,
Equation (12)]. It involves a constant � which may be tuned by the user.

• Proximal parameters: The initial value of the proximal parameter involved
in quadratic subproblems can be set by the user. The user can also specify
upper and lower acceptance bounds for it. After each iteration, the prox-
parameter is updated: it is increased by a constant factor in case of serious
step, and decreased otherwise. Both factors can be tuned by the user.

• Bundle information: The bundle of cutting-planes is augmented after
each null step with new linearization, and emptied after each serious step.
We fix a maximum size for the bundle: above this parameter, the bundle
is emptied and proximal parameter is restarted to a specified restarting
value. When the bundle is emptied, we have the chance of a specific
improvement: if the stability center is feasible in the chance-constraint, we
replace the coordinate playing the role of ◆ by the ?-quantile of 6(F, ⇢),
thus decrease the objective function.

• Termination Criteria: We use a simple stopping criteria: we stop when
the Euclidean distance between the current iterate and the current stability
center falls below a certain threshold specified by the user.

5.5 ��������� �������������

We illustrate our double penalisation approach implemented in the toolbox
TACO on two problems: a 2-dimensional quadratic problem with a non-convex
chance constraint (in Section 5.5.1), and a family of problems with explicit
solutions (in Section 5.5.2). These proof-of-concept experiments are not meant
to be extensive but to show that our approach is viable. These experiments are
reproducible: the experimental framework is available on the toolbox’s website.

5.5.1 Visualization of convergence on a 2D problem

We consider a two-dimensional toy quadratic problem in order to track the Instance of eventually
convex problem

86 ������� ������-����������� ��������

convergence of the iterates on the sublevel sets. We take [92, Ex. 4.1] which
considers an instance of problem (5.1) with

5 (F) =
1

2
(F � 0)>&(F � 0) with 0 =

2.

2.

!
, & =

5.5 4.5

4.5 5.5

!

6(F, I) = I>,(F)I +F>I with,(F)=

F2

1 + 0.5 0.

0. |F2 � 1|3+1

!

⇢ ⇠ N (⇠,⌃) 104 samplings with ⇠ =

1.

1.

!
, ⌃ =

20. 0.

0. 20.

!
.

(5.19)

For this example, [92] shows that the chance constraint is convex for sufficiently
large probability levels, but here we take a low probability level ? = 0.008 to have
a non-convex chance-constraint. We can see this on Figure 5.2, plotting the level
sets of the objective function and the constraint function: the chance-constrained
region for ? = 0.008 is delimited by a black dashed line; the optimal value of
this problem is located at the star.

Figure 5.2: Trajectory of the iterates (in blue) on the plot of the level sets of the chance-
constraint and the objective for the 2d problem with data (5.19).

Experimental setting. For this 2d problem, we use the starting point G =Setup

(0.5, 1.5) (and◆ = 0.01) well-inside the chance-constraint. The initial penalization
parameters ⇠ and ⌫ are respectively initialized to 400 and 600. The initial
proximal parameter is fixed to 38.0 with lower and upper acceptance bounds set
to 10�3 and 103. Increasing and decreasing factors for this parameter are fixed
to 1.05 and 0.95. The classification rule parameter is set to 10�4. The maximal
size of the information bundle is set to 20 and the threshold of the termination
criteria is set to 10�7.

Results. We plot on the sublevel sets of Figure 5.2 the path (in deep blue) takenVisualization of the
convergence by the sequence of iterates starting from the point [0.5, 1.5] moving towards

the solution. We observe that the sequence of iterates, after an exploration
of the functions landscape, gets rapidly close to the optimal solution. At
the end of the convergence, we also see a zigzagging behaviour around the
frontier of the chance constraint.This can be explained by the penalization term
which is activated asymptotically whenever the sequence violates of the chance
constraint.

5.5 ��������� ������������� 87

5.5.2 Experiments on a family of problems

We consider the family of 3-dimensional norm problems of [67, section 5.1]. For Problems in larger
dimensiona given dimension 3, the problem writes as an instance of (5.1) with

5 (F) = �kGk1 and 6(F,/) = max
82{1,...,10}

3’
9=1

/2
8,9F

2
9 � 100 (5.20)

and ⇢ is random matrix of dimensions 10⇥ 3 statisfying for all 8, 9, ⇢8,9 ⇠ N (0, 1).
The interest of this family of problems is that they have explicit solutions: for
given 3, the optimal value is

5 8 = � 10 3r
�
(�1)

"2
3

(?
1
10)

where �"2
3

is "2 cumulative distribution with 3 degrees of freedom. We consider
four instances of this problems with dimension 3 from 2 to 200 and the safety
probability threshold ? set to 0.8. We consider the case of the rich information
on uncertainty: ⇢ is sampled 10000 times. In this case, a direct approach
consisting in solving the standard mixed-integer quadratic reformulations (see
e.g. [3]) with efficient MINLP solvers (we used Juniper [83]) does not provide
reasonable solutions; see basic information in forthcoming Section 5.5.3.

Figure 5.3: Convergence of our penalization algorithm on four norm problems (5.20)
with 3 = 2, 10.50, 200.

Experimental Setting 5.5.2. For any fixed dimension 3 comprised in Setup

{2, 10, 50, 200}, the algorithm is run from the starting point (0.1, . . . , 0.1) 2 R
3+1.

The starting penalization parameter ⇠, constant for the 4 instances, is set to

88 ������� ������-����������� ��������

⇠ = 10.0. We tuned the second penalization parameter ⌫ along problems: we
observed that ⌫ = {1.75, 1.5, 1.5, 2.0} give good performances for the considered
problems. The starting proximal parameters is fixed to 60.0 with lower and
upper acceptance bounds set to 10�4 and 105 respectively. Increasing and
decreasing factors for the proximal parameter are fixed to 1.01 and 0.99. The
classification rule parameter is set to 10�4. The maximal size of the information
bundle is set to 300.
Results. Figure 5.3 plots the relative suboptimalityAnalysis of the

convergence

(5 (F:)� 5 8)/| 5 8|

along iterations. The green (resp. red) regions represent iterates that, respec-
tively, satisfy (resp. do not satisfy) the chance constraint.

In the four instances, we take a first iterate well inside the feasible region.
We observe an initial decrease of the objective function down to optimal value.
Then the chance constraint starts to be violated only when this threshold is
reached, and the last part of convergence deals with local improvement of
precision and feasibility.

Table 5.1 reports the final suboptimality and satisfaction of the probabilistic
constraint. The probability constraint is evaluated for 100 sampled points from
of the total # = 10000 points. We give the resulting probability; the standard
deviation is 0.004 for the four instances.

Dimension Suboptimality P[6(F, ⇢)  0]

3 = 2 8.9⇥ 10�4 0.799

3 = 10 5.0⇥ 10�3 0.787

3 = 50 5.6⇥ 10�3 0.769

3 = 200 1.8⇥ 10�3 0.781

Table 5.1: Final suboptimality and feasibility for (5.20) (where ? = 0.8).

We observe that the algorithm reaches an accuracy of order of 10�3. Regarding
satisfaction of the constraint P[6(F, ⇢)  0] � 0.8, it is achieved to a 10�4

precision for 3 = 2 but it slightly degrades as the dimension grows.

5.5.3 Limitations of MINLP approach

We finish this chapter with a remark on Mixed Integer Non-Linear ProgrammingStandard MINLP
reformulation (MINLP) approaches. Mixed-integer reformulation approaches (see e.g. [3])

are often considered as the state-of-the-art to solve chance-constrained opti-
mization problems by sample average approximation. Applying directly such a
reformulation to Problem (5.20) in Section 5.5.2 leads to the equivalent mixed
integer quadratic program:

min
F2R3, I2{0,1}#

�
3’
8=1

F8

s.t.
3’
:=1

(⇢8)
2
9,:F

2
: � 100  " I8 , 88 2 ~1,#�, 89 2 ~1, 10�

#’
8=1

I8  ?# , F � 0.

5.6 ���������� 89

where " is a large “big-M" constant. In our setting, such formulation involves
10⇥# = 100000 quadratic constraint involving binary variables. We were not
able to solve the resulting mixed-integer problem in reasonable times using
the MINLP solver Juniper [83] (that is based on Ipopt and JuMP). This shows
that a direct application of reformulation techniques combined with reliable
software failed on this problem – in contrast with our approach.

5.6 ����������

In this chapter, we uncovered a new formulation of chance-constrained problems
based on the variational formulation of the superquantile. This reformulation
takes the form of a bilevel program with convex upper-level and lower-level
problems. We proposed a double penalization procedure to solve this bilevel
program. We analyzed and exploited the weak sharpness property of the
superquantile to show that exact penalization may be achieved for the hard
constraint of this problem. The objective of the penalized problem being a
Difference of Convex (DC) function, we proposed to address it with a recent
proximal bundle method. In order to ensure better convergence properties
of the method, we proposed to smooth the superquantile term involved in
the DC objective. We made available an open-source python toolbox with
fast computational procedures to solve chance-constrained problems with this
approach together with numerical illustrations showing the interest of the
approach.

6
H A N D L I NG H E T E RO G E N E I T Y I N F E D E R AT E D
L E A R N I NG

This chapter is devoted to the learning of models in heterogeneous distributed
environments.

The developments laid down below build upon the following work:

• Y. Laguel⇤, K. Pillutla⇤, J. Malick and Z. Harchaoui. A superquantile
approach to Federated Learning with heterogenuous devices. Proceedings
of the 55C⌘ Annual Conference on Information Sciences and Systems (CISS
2021), 2021.

• Y. Laguel⇤, K. Pillutla⇤, J. Malick and Z. Harchaoui. Federated Learning
with Heterogeneous Devices:A Superquantile Optimization Approach.
Submitted to the Journal of Selected Topics in Signal Processing, for the
special issue on distributed machine learning for wireless communication,
2021.

6.1 ������������

Federated learning is a distributed optimization paradigm with a central server
and a large number of clients. An introduction and references are provided in
the Section 2.2.2 of this thesis.

In federated learning statistical heterogeneity is a key feature: client data
distributions are not identical. Each user has unique characteristics which are
reflected in the data they generate. These characteristics are influenced by
personal, cultural, and geographical factors. For instance, the varied use of
language contributes to data heterogeneity in a next word prediction task.

We present in this chapter a robust approach to federated learning that
guarantees a minimal level of predictive performance to all devices even
in situations where the population is heterogeneous. Usual algorithms for
federated learning such as FedAvg [109] seek to minimize the prediction error
on average over the population of devices available for training. While this
approach can be effective in terms of predictive performance for each device
whose local data is close to the average distribution, it is liable to fail on devices
which are far from this distribution. The approach we develop addresses these
issues by minimizing a learning objective based on the superquantile, which
was introduced in the Section 3.3 of this thesis.

This approach, coined �-FL, allows one to control higher percentiles of the
distribution of errors over the (possibly heterogeneous) population of devices.
We shall show in the experiments that our approach is more efficient than a
direct approach simply seeking to minimize the worst error over the population
of devices. Compared to FedAvg,�-FL delivers improved prediction to data-poor
or non-conforming devices. We present theoretical convergence guarantees for

91

92 �������� ������������� �� ��������� ��������

the �-FL algorithm and show how to implement it in a way that is compatible
with basic federated learning ingredients.

In Section 6.2, we start with a formal description of the vanilla federatedOutline

framework and introduce the concept of conformity to capture its potential
statistical heterogeneity. Section 6.3 describes �-FL, the new framework we
propose to better handle non-conforming users together with a practical privacy-
compliant algorithm. In Section 6.4, we provide a convergence analysis of our
algorithm with a convergence rate in the strongly convex setting. Section 6.5
presents experimental results, comparing our proposed approach to existing
ones, on benchmark datasets for federated learning.

6.2 ������� �������

The federated learning paradigm, calls for optimization methods that are
compliant with the specific constraints aforementioned in Section 2.2.2. We
begin this Section with a brief presentation of FedAvg, the standard baseline in
federated learning. We introduce then in Section 6.2.2 the concept of conformity
to describe the statistical heterogeneity of a given federated framework.

6.2.1 Vanilla federated learning and FedAvg

Federated learning consists of heterogeneous client devices which collaboratively
train a machine learning model under the orchestration of a central server. The
model is then deployed on all devices, including those not seen during training.

Analogous to the classical expectation-based objective function in empiricalVanilla federated
learning objective risk minimization approach, the standard objective in federated learning is to

minimize the average loss on the training devices

min
F2R3

#’
:=1

�:�:(F) +
⌫

2
kFk2 , (6.1)

where the weight �: of training device : is chosen and ⌫ > 0 is a regularization
parameter. As mentioned in Section 2.2.2, each loss �: : F 7! E⇢⇠⇢:

⇥
5 (F, ⇢)

⇤
evaluates the performance of the model F on the device :, hosting the distribu-
tion @: . We assume that

Õ#
:=1 �: = 1 w.l.o.g. We call this objective the vanilla FL

objective.
The standard training algorithm to solve (6.1) is FedAvg [109]. We illustrate itFedAvg

in Figure 6.2. Each round of the algorithm consists in following steps:
1- The server samples a set (of < devices from ~1,#� and broadcasts the

current model F(C) to these devices.
2- Starting from F

(C)
:,0

= F(C), each device : 2 (makes � local gradient or

stochastic gradient descent steps1 with a learning rate ✏:

F
(C)
:,9+1

= F
(C)
:,9

� ✏ r �:(F(C)
:,9
) .

3- The models from the selected devices are sent to the server and aggregated
to update the server model

F(C+1)
=

Õ
:2(�:F

(C)
:,�Õ

:2(�:
.

1 For simplicity, we consider full gradient steps on each device.

6.2 ������� ������� 93

Trajectories of model parameters over time

Iteration !

M
od

el
p

ar
am

.
!

1 2 3 4

F1

F2

F3

F4

F0

In iteration C of training

Server

+
Sec.Agg.

selected
devices

At test time

Server

test devices select their level of conformity 

Figure 6.1: Schematic summary of the �-FL framework. Left: The server maintains
multiple models F9 , one for each level of conformity 9 . Middle: During
training, selected devices participate in training each model F9 . Individual
updates are securely aggregated to update the server model. Right: Each
test user is allowed to select their level of conformity , and are served the
corresponding model F .

FedAvg addresses the communication bottleneck by using � > 1 local com-
putation steps as opposed to � = 1 local steps in minibatch stochastic gradient
descent (SGD). It also performs the averaging step (c) securely to enhance data
privacy. However, the vanilla FL objective places a limit on how well statistical
heterogeneity can be addressed. By minimizing the average training loss, the
resulting model F can sacrifice performance on “difficult” devices in order to
perform well on average. In other words, it is not guaranteed to perform well on
individual test devices, whose distribution ? might be quite different from the
average training distribution

Õ#
:=1 �:@: . Our goal in this work is to design an

objective function, different from the vanilla FL objective (6.1) to better handle
statistical heterogeneity, and design a federated optimization algorithm similar
to FedAvg.

6.2.2 Problem formulation: conformity and heterogeneity

In this work, we consider test devices whose distribution ? can be written as
a mixture ?� :=

Õ#
:=1 �:@: of the training distribution @: of the devices with

weights � 2 �#�1. Here, �#�1 denotes the probability simplex in R
. The test

distribution ?� is different from the average training distribution ?� =

Õ#
:=1 �:@:

if the mixture weights � are different from the training weights � = (�1, . . . , �#).
We now define the conformity of a mixture ?� to the training distribution ?�,

as a measure of the degree of similarity between ?� and ?�.

Definition 6.1. The conformity conf(?�) 2 (0, 1] of a mixture ?� with weights Conformity

� is defined as min:2~1,#� �:/�: . The conformity of a device refers to the
conformity of its data distribution.

A mixture distribution ?� with conf(?�) =  must satisfy �:  �:/ for
each :. Since

Õ
: �: = 1, we also get that �: � max{0, �: � (1� )}/2.

Assuming that the training devices are a representative sample of the pop- Interpretation

ulation of devices, every device’s distribution can be well-approximated by a
mixture ?� for some � 2 �#�1. The conformity of a device is a scalar summary of
how close it is to the trend, modeled by the aggregated distribution ?� =

Õ
: �:@: .

A test device with conformity  ⇡ 1 closely conforms to the trend. For such
device, a model trained on ?� is expected to have a high predictive power. In

2 We do not directly impose a lower bound on �: , apart from the implied bound �: � max{0, �: �
(1� )}/, because it is not realistic to assume that the distribution on a test device must necessarily
contain a component of every training distribution @: .

94 �������� ������������� �� ��������� ��������

(a) FedAvg. (b) �-FL.

Figure 6.2: Comparative diagram between the baseline FedAvg and our algorithm �-FL
(recall of Figure 1.4). Both algorithms consist of the following steps (note
difference in step 1’). Step 1: Server selects < client devices and broadcasts
the model to each selected device. Step 1’ (�-FL only): Each selected device
computes the loss (a scalar) incurred by the model on its local data and sends
it to the server. Based on these losses, the server computes a threshold loss. It
only keeps devices whose losses are larger than this threshold, and un-selects
the other devices. Step 2: Each selected device computes an update to the
server model based on its local data. Step 3: Updates from selected devices
are securely aggregated to update the server model.

contrast, a test device with  ⇡ 0 can have a distribution that vastly differ from
?�, and the predictive power of a model trained on ?� can be poor.

There is a trade-off between fitting to the trend and supporting non-
conforming test devices. The conformity  presents a natural way to encapsulate
this tradeoff in a scalar parameter. That is, given a conformity  2 (0, 1), we
choose to only support test distributions ?� with conf(?�) � .

6.3 ��� �-�� ���������

In this section, we define the �-FL framework in Section 6.3.1, and propose
an algorithm to optimize in the federated setting in Section 6.3.2. Finally, we
illustrate our approach on a toy example in Section 6.3.3.

6.3.1 The framework

The �-FL framework aims to supply each test device with a model appropriate
to its conformity. Given a discretization {1, . . . ,A} of (0, 1], �-FL maintains A
models, one for each conformity level 9 . The local data is not allowed to leave a
device due to privacy restrictions; hence, the conformity of a test device cannot
be measured. Instead, we allow each test device to tune their conformity. See
the schematic in Figure 6.1 for an illustration.

To train a model for a conformity level , we aim to do well on all distributions�-FL’s objective

?� with conf(?�) � . Thus, we propose to solve:

min
F2R3


�(F) := max

�2P

�(F; ?�) +
⌫

2
kFk2

�
,

where, P :=

�
� 2 �#�1

: conf(?�) � 

.

(6.2)

In contrast, the vanilla FL objective optimizes �(F; ?�), which is defined on the
basis of the training distribution ?�. We observe that �-FL is designed to be
robust on all test devices with conformity greater than .

Noting that for any � 2 �#�1, we have by definitionConnection to the
Superquantile

6.3 ��� �-�� ��������� 95

�(F, ?�) =

#’
8=1

�8�(F, @8).

Thus, given the definition of conformity, problem (6.2) boils down to minimizing
with respect to F (

max�2P

Õ#
8=1 �8�(F, @8) +

⌫
2 kFk2 .

s.t. 0  �:  �:


One may recognize in the above problem the dual formulation (3.11) of the
(1 � )-superquantile over the distribution of losses (�:(F)):2~1,#�, weighted
with respective probabilities (�:):2~1,#�. Thus, the �-FL framework enforces ro-
bustness at the scale of the network by dynamically re-weighting the importance
of the devices involved in the training process.

6.3.2 Federated optimization for �-FL

We consider algorithms similar to FedAvg because of their ability to avoid
communication bottlenecks and preserve the privacy of user data. A practical
federated learning algorithm cannot assume that all the devices are always
available; it must be able to work with a subset of devices in each round. To this
end, we define the counterpart of the constraint set P from (6.2) defined on a
subset (⇢ ~1,#� of < devices as:

P,(=

�
� 2 �|(|�1

: �:  �:/(�(), for : 2 (

, (6.3)

where �(=

Õ
:2(�: is the cumulative weight in (and we denote (�:):2(2 R

|(|

by � with slight abuse of notation.
The optimization algorithm for the�-FL objective (6.2) is given in Algorithm 5, Algorithm for �-FL

and illustrated in Figure 6.2. It has the following four steps:
1- Model Broadcast (line 2): The server samples a set (of < devices from ~1,#�

and sends the current model F(C).
1’- Device Reweighting (line 3): Each device : 2 (sends its current loss �:(F(C)) to

the server; the server computes and sends back new weights �(C)
:

to device :.

2- Local Updates (loop of line 4): Staring from F
(C)
:,0

= F(C), each device : 2 (
makes � local gradient or stochastic gradient descent steps with a learning
rate ✏.

3- Update Aggregation (line 10): The models from the selected devices are sent
to the server and aggregated to update the server model (with the weights
�(C) computed in Line 3).

Compared to FedAvg, �-FL has the additional step of computing new weights Compliance to federated
constraints�

(C)
:

for each selected device : 2 (in Line 3. Let us consider �-FL in relation to
the three keys aspects of federated learning.
(a) Communication Bottleneck: Identical to FedAvg, �-FL algorithm performs

multiple computation rounds per communication round.
(b) Statistical Heterogeneity: The �-FL objective (6.2) is designed to better handle

the statistical heterogeneity by minimizing the worst-case over all test
distributions with conformity at least , while the vanilla FL objective cannot
handle non-conforming devices.

(c) Privacy: Identical to FedAvg, �-FL does not require any data transfer and the
aggregation of line 10 can be securely performed using secure multiparty
communication. However, as Algorithm 5 is currently stated, reweighting

96 �������� ������������� �� ��������� ��������

Algorithm 5: The �-FL Algorithm

Require : Initial iterate F(0), Number of communication rounds),
Number of devices per round <, Number of local updates �,
Local step size ✏

1 for C = 0, 1, · · · ,) � 1 do
2 Sample < devices from ~1,#� without replacement in (;
3 Compute �(C)

= arg max�2P,(

Õ
:2(�:�:(F

(C));
4 for each selected device : 2 (in parallel do

5 Initialize F(C)
:,0

= F(C);
6 for 9 = 0, · · · , � � 1 do

7 F
(C)
:,9+1

= (1� ✏⌫)F
(C)
:,9

� ✏r �:(F(C)
:,9
);

8 end

9 end

10 F(C+1)
=

Õ
:2(�

(C)
:
F

(C)
:,�

;
11 end
12 return F)

the selected devices (line 3) requires the per-device losses �:(F(C)) to be sent
visible to the server. We show in Section 6.5.4 how to compute the weights
�(C) using a secure aggregation oracle.

6.3.3 Illustration on a toy example

We now illustrate the �-FL objective on a simple example of a mixture ofA mean estimation
problem Gaussians. Consider a mixture of # = 3 Gaussian distributions in R

2, with
uniform weights (�: = 1/#), identity covariance and respective means ⇠1,⇠2,⇠3

which form a scalene triangle – see Figure 6.3. We assume that each distribution
represents a training device. Consider the task of mean estimation where
5 (F; ⇢) = k⇢ �Fk2

2 so that �(F; ?) is minimized by the mean of the mixture ?�.
Suppose in our toy federated learning scenario that a model F is trained on
the 3 available training devices before being deployed on a test device with
distribution ?�. Vanilla federated learning, which is a special case of the �-FL
framework with conformity  = 1, aims to minimize �(· ; ?�) over the training
distribution ?�. The minimizerF1 of the loss �(· ; ?�) on the training distribution
is simply the mean F1 := (⇠1 + ⇠2 + ⇠3)/3.

Now consider a conformity level of  = 2/3. In this case, a simple calculationPerformance on test
clients shows that the �-FL objective is a piecewise quadratic, which is minimized

at the midpoint of the longest side of the triangle formed by ⇠1,⇠2,⇠3. In the
example of Figure 6.3, this is F2/3 = (⇠1 + ⇠3)/2.

Next, consider the set P2/3 of all mixture weights � such that conf(?�) � 2/3.
We see from Figure 6.3 (middle) that there are mixtures for which F2/3 is better
than F1 and vice-versa. However, from the histogram of losses in Figure 6.3, we
see that the worst loss �(· ; ?�) over all such mixtures is lower for the �-FL model
F2/3. In practical terms, �-FL presents an improvement on devices with the
worst user experience. Moreover, by optimizing the superquantile, �-FL aims
for good performance on all test devices with a given conformity, irrespective of
their distribution. Note that while we use a uniform distribution in the illustration
of Figure 6.3 (right), this distribution is unknown in practice.

6.4 ����������� �������� 97

Figure 6.3: Illustration of �-FL with a uniform mixture of Gaussians. Left: Positions in
R

2 of the means ⇠1,⇠2,⇠3 of Gaussians @1, @2, @3 resp., the vanilla federated
learning model F1, and the �-FL model F2/3 at conformity  = 2/3. Center:
Comparison of the loss �(· ; ?�) for each possible mixture ?� with weights
� = (�1,�2,�3). Right: Histogram of losses �(·; ?�) for ?� drawn uniformly
from the set of all mixtures of @1, @2, @3 with conformity at least  = 2/3.

6.4 ����������� ��������

The principal result of this section is Theorem 6.1 which establishes a convergence
rate in the strongly convex setting. The main difficulties raised concern the
extension of the recent local SGD framework [42, 56, 82, 99, 153] to the dynamic
reweighting that the superquantile induces in line (3) of our Algorithm 5.
Alternatively, this analysis can be seen as an extension of the stochastic gradient
descent method [94] for superquantiles to federated frameworks.

6.4.1 Assumptions and main result

First, we assume without loss of generality that the weight of each training
device is �: = 1/#3. For each device : 2 [#], the objective �: is
(a) ⌫-bounded, i.e., 0  �:(F)  ⌫ for all F 2 R

3,
(b) ⌧-Lipschitz, i.e., |�:(F)� �:(F0)|  ⌧ kF �F0k for all F,F0 2 R

3, and,
(c) !-smooth, i.e., �: is continuously differentiable and its gradient r �: is

!-Lipschitz.

Theorem 6.1. Suppose each function �: is convex and that the three above assumptions Convergence result for
�-FLhold. Fix a time horizon) and consider the sequence (F(C)))C=0 of iterates produced by

the �-FL algorithm with smoothing. Define !0 = ⌫ + ! +⌧2
p
) and assume that the

learning rate ✏ satisfies

✏  min

⇢
1

4�!0
,

p
⌫

18�(! +⌫)
p
!0

�
.

Define the averaged iterate

F(C)
=

ÕC
8=0 �8F

(8)ÕC
8=0 �8

, where �8 =

✓
1� ✏⌫�

2

◆�(1+8)
.

Then, letting F8
= arg minF2R3 �⇡(F), we have the bound

E

h
�(F

())
)� �(F8)

i
 4 exp(�✏�⌫))

��F(0) �F8
��2

+ 2 T ,

3 This assumption is made to avoid technicalities with random sums
Õ
:2(�: . We can extend the

convergence analysis to the case of unequal �: ’s by performing a standard reduction of replacing
�: (F) with �0

:
(F) := #�:�: (F). The proofs hold in this case if ⌫,⌧, ! are multiplied by a factor of

max: �: .

98 �������� ������������� �� ��������� ��������

where 2 is a universal constant and

T =

⌧2!2✏2�(� � 1)

⌫
+

⌫p
<

+
⌧2✏�

<
+

log<
p
)

.

The first term in T is called client drift [73, 99]. It decays as$(✏2) and vanishesConstant terms in T and
the final rate if � = 1. The second and third terms stem from the bias and variance from

sampling devices in each round, and vanish if < = # . See Proposition 3.13 for
further details. The final term appears due to considering smoothed objective
�⇡ for the minimization of the nonsmooth �. These terms can be balanced by

taking ✏ = $(1/
p
�2)) to get $(1/

p
)) convergence up to the bias term. Finally,

the bias and variance due to partial participation encourage having < large
enough for the bound to be meaningful.

Proof Synopsis.

• In Section 6.4.2, we first recall and adapt the bias and variance of the
stochastic estimator of the superquantile from Section 3.4 together with a
few basic convex inequalities.

• In Section 6.4.3, we show how to bound the gradient dissimilarity within
the robust selection of devices performed in Lines 2-3 of Algorithm 5 and
the client drift caused by the local steps.

• In Section 6.4.4, we provide a descent lemma for one complete round of
communication and gather all the results to finish the proof.

6.4.2 Preliminary results

We first recall a few standard inequalities:

• Rob Peter to pay Paul: For any G, H 2 R
3 and � > 0 we have:

��G + H��2  (1+ �) kGk2 +

✓
1+

1

�

◆ ��H��2
. (6.4)

• Pythagoras theorem: For any R
3-valued random vector - such that

E k-k2
< 1,

E kDk2
= E kD � E [D]k2 + kE [D]k2 . (6.5)

• Strong convexity: Let � : R
d ! R be ⇠-strongly convex. Then for any

G, H 2 R
d, we have:

⌦
r�(G), G � H

↵
� �(G)� �(H) +

⇠

2

��G � H��2
. (6.6)

• Smoothness: Let � : R
d ! R be !-smooth and let �8 be the minimum

value of � (assuming it exists). Then for any G 2 R
d, we have:

kr�(G)k2  2!
�
�(G)� �8

�
. (6.7)

We handle the nonsmoothness of the objective due to the superquantile withSmoothing

the smoothing procedure from Section 4.2.2. More precisely, we consider the

6.4 ����������� �������� 99

entropic smoothing from Example 4.2 on the sequence of losses over the set
(⇢ [#] of selected devices:

⇡((�) =
’
:2(

�: log(< �:) .

We simply write ⇡(�) when (= [#]. We define the smooth counterpart to (6.2)
as [8, 41, 117]

�⇡(F) = max
�2P

(
#’
:=1

�:�:(F)� ⇡⇡(�)

)
+
⌫

2
kFk2 , (6.8)

where ⇡ > 0 is a fixed smoothing parameter. We have that |�⇡(F)� �(F)| 
2⇡ log# . We modify Line 3 of Algorithm 5 as

�(C)
= arg max

�2P,(

(’
:2(

�:�:(F
(C))� ⇡⇡((�)

)
.

As pointed out in the Section 4.2.2 of this thesis, for any (⇢ [#] of size <,
the partial superquantile is differentiable at F with :

r�⇡,((F) =
’
:2(

�8
:r�̃:(F) (6.9)

where �̃: , introduced to lighten the notations, denotes �̃:(F) = �:(F) +
(⌫/2) kFk2, and �8 denotes the solution to the maximization problem

�⇡,((F) = max
�2P,(

’
:2(

�: �̃:(F)� ⇡⇡((�).

In view of the assumptions on the losses �: , the following result falls from
standard [8, Theorem 4.1, Lemma 4.2].

Proposition 6.2. For every ⇡ > 0, we have that �⇡,(
and �

⇡

,(are !0-smooth with Smoothing and
smoothness constants

!0 = ! +⌫ + ⌧2

⇡ .

6.4.3 Adversarial gradient dissimilarity and client drift

In this section, we show how to bound the client drift that is accumulated during
the local steps of our Algorithm 5. We first analyze the client dissimilarity
among the training clients in our specific risk-averse setting. We derive then

Bounding gradient dissimilarity. Bounding of the variance of gradient esti-
mators is a key assumption in the analysis of stochastic gradients methods
(see e.g. the textbook [22]). In the centralized setting, when considering a
stochastic objective E⇢[5 (F, ⇢)], it is standard to assume for a given estimator
6F of rFE

⇥
5 (F, ⇢

⇤
that there exists some constants "1,"2 > 0 such that for

all F 2 R
d,

E

h��6F��2
i
 "1 or E

h��6F��2
i
 "1 +"2

��rFE
⇥
5 (F, ⇢

⇤��2

In the federated setting, the use of a subset (⇢ [#] of devices in each round Bounded on gradient
dissimilarity assumption
in federated learning

induces noise on the estimation of the average gradient over the whole network.

100 �������� ������������� �� ��������� ��������

Thus, such assumption translates into a bound on the gradient dissimilarity among
the agents [73, 172]:

1

#

’
:2[#]

��r�̃:(F)��2  "1 or
1

#

’
:2[#]

��r�̃:(F)��2  "1 +"2

������
1

#

’
:2[#]

r�̃:(F)

������
2

Here, we also consider the minimization of the global loss �⇡ by a stochastic
algorithm based on a partial participation of the devices in the network, with
the additional difficulties that we only have access to a biased estimator �

⇡



of the loss �⇡ and its gradient. In particular, the adaptive reweighting of the
clients selected at each round does not permit the direct use of such assumption.
We show instead in the next lemma that the variance of stochastic gradient
estimator can also be bounded, thanks to the Lipschitz assumption.

Proposition 6.3. Consider the quantities �(C),F(C) from Algorithm 5. We have,Adversarial Gradient
Dissimilarity

E

"’
:2(

�
(C)
:

��r�̃:(F(C))
��2

�����FC
#


✓
4+

8

<

◆
⌧2 +

���r�⇡(F(C))

���2

.

Proof. By (6.5), we have:

’
:2(

�
(C)
:

��r�̃9(F(C))
��2

=

’
:2(

�
(C)
:

���r�̃:(F(C))� r�⇡,((F
(C))

���2

+

���r�⇡,((F
(C))

���2

=

’
:2(

�
(C)
:

�����(r�:(F(C))�
’
82(

�
(C)
8
r�8(F(C)))

�����
2

+

���r�⇡,((F
(C))

���2

.

Now since the weights �(C)
:

sum to one, we may use the convexity of k·k2 to get:

’
:2(

�
(C)
:

��r�̃9(F(C))
��2 

’
:,82(

�
(C)
:
�
(C)
8

��r�8(F(C))� r�:(F(C))
��2

+

���r�⇡,((F
(C))

���2

.

The squared triangle inequality (cf. (6.4)) together with the Lipschitz assumption
on the functions �: yields:

’
:2(

�
(C)
:

��r�̃:(F(C))
��2  2

’
:,82(

�
(C)
:
�
(C)
8

⇣��r�:(F(C))
��2

+
��r�8(F(C))

��2
⌘ ���r�⇡,((F

(C))

���2

 4 ⌧2 +

���r�⇡,((F
(C))

���2

.

Thus, taking an expectation over (⇠ *< gives

E

"’
:2(

�
(C)
:

��r�̃9(F(C))
��2

�����FC
#
 4 ⌧2 + E(⇠*<

���r�⇡,((F
(C))

���2
�

.

By Pythagoras theorem (6.5), we get,

E

"’
:2(

�
(C)
:

��r�̃:(F(C))
��2

�����FC
#

 4 ⌧2 + E

���r�⇡,((F
(C))� r�⇡(F(C))

���2
����FC

�
+

���r�⇡(F(C))

���2

.

(6.10)

6.4 ����������� �������� 101

Finally, substituting the variance bound from Lemma 3.13 into (6.10) yields the
stated result. ⇤

Bounding the Client Drift. During federated learning, each device takes
multiple local steps. This causes the resulting update to be a biased estimator
of a descent direction for the global objective. This phenomenon has been
referred to as "client drift" [73, 99]. Current proof techniques rely on treating
this as a "noise" term which is to be controlled. In the context of this work, the
reweighting by �(C) requires us to adapt this typical definition of client drift
to our setting. We thus define the client drift 3(C) in outer iteration C of the Client drift

algorithm as

3(C) := E(⇠*<

266664
’
:2(

�
(C)
:

��1’
9=0

���F(C)
:,9

�F(C)
���2

������FC
377775

. (6.11)

Proposition 6.4. If ✏  1
4�(!+⌫) , we have the following bounds for any C � 0: Upper bound on client

drift

3(C)  �2(� � 1)✏242

✓✓
4+

8

<

◆
⌧2 +

����⇡(F(C))

���2
◆

and,

3(C)  �2(� � 1)✏242

✓✓
4+

8

<

◆
⌧2 + 2!0

⇣
�
⇡

(F
(C))� �⇡(F8

)
⌘◆

.

Proof. If � = 1, there is nothing to prove as both sides of the inequality are 0. We
assume now that � > 1. Let us first fix (⇢ [#] of size |(| = <. For any : 2 (
and 9 2 ~1, � � 1�, by (6.4), we have:

���F(C)
:,9

�F(C)
���2

=

���F(A)
:,9�1

� ✏r�̃:(F(C)
:,9�1

)�F(C)
���2


✓
1+

1

� � 1

◆ ���F(C)
:,9�1

�F(C)
���2

+ �✏2
���r�̃:(F(C)

:,9�1
)

���2

.

Using(6.4) and the smoothness of the local losses, this gives:

���F(C)
:,9

�F(C)
���2


✓
1+

1

� � 1

◆ ���F(C)
:,9�1

�F(C)
���2

+ 2�✏2

✓���r�̃:(F(C)
:,9�1

)� r�̃:(F(C))

���2

+
��r�̃:(F(C))

��2
◆


✓
1+

1

� � 1

◆ ���F(C)
:,9�1

�F(C)
���2

+ 2�✏2 (! +⌫)2
���F(C)

:,9�1
�F(C)

���2

+ 2�✏2
��r�̃:(F(C))

��2
.

Hence, for ✏  1
4�(!+⌫) , we get:

���F(C)
:,9

�F(C)
���2


✓
1+

1

� � 1
+ 2�✏2 (! +⌫)2

◆ ���F(C)
:,9�1

�F(C)
���2

+ 2�✏2
��r�̃:(F(C))

��2


✓
1+

2

� � 1

◆ ���F(C)
:,9�1

�F(C)
���2

+ 2�✏2
��r�̃:(F(C))

��2
.

102 �������� ������������� �� ��������� ��������

Unrolling this recursion yields for any 9  � � 1

���F(C)
:,9

�F(C)
���2


9�1’
8=0

✓
1+

2

� � 1

◆ 8 ⇣
2�✏2

��r�̃:(F(C))
��2

⌘

 � � 1

2

✓
1+

2

� � 1

◆ 9 ⇣
2�✏2

��r�̃:(F(C))
��2

⌘
.

Thus, for any 9  � � 1,

���F(C)
:,9

�F(C)
���2

 � � 1

2

✓
1+

2

� � 1

◆��1 ⇣
2�✏2

��r�̃:(F(C))
��2

⌘
 �(� � 1)✏242

��r �̃:(F(C))
��2

,

where we use (1+ 1/G)G  4 for any G > 0. Therefore, by Lemma 6.3, we get

3(C)  �2(� � 1)✏242
E(⇠*<

"’
:2(

�
(C)
:

��r�̃:(F(C))
��2

�����F (C)

#

 �2(� � 1)✏242

✓✓
4+

8

<

◆
⌧2 +

����⇡(F(C))

���2
◆

.

This gives the first bound. The second bound follows by smoothness (6.7). ⇤

Bound on the Norm of Each Update. We bound the expected squared norm
of each update F(C+1) �F(C), which has the closed form expression:

F(C+1) �F(C)
= �✏

’
:2(

�
(C)
:

��1’
9=0

r �̃:(F(C)
:,9
) . (6.12)

Proposition 6.5. We have the bounds,Bound on updates’ norm

✏2
E

2666664

������
’
:2(

�
(C)
:

��1’
9=0

r �̃:(F(C)
:,9
)

������
2
�������FC

3777775
 2✏2� (! +⌫)2 3(C) +

16�2✏2⌧2

<

+ 4�2✏2!0
⇣
�
⇡

(F
(C))� �⇡(F8

)
⌘

,

where 3(C) is the client drift term defined in (6.11).

Proof. Using (6.4) together with the gradient formula (6.9), we get:

�����
’
:2(

�
(C)
:

��1’
9=0

r �̃:(F(C)
:,9
)

������
 2

������
’
:2(

�
(C)
:

��1’
9=0

⇣
r�̃:(F(C)

:,9
)� r�̃:(F(C))

⌘������
2

+ 2

������
’
:2(

�
(C)
:

��1’
9=0

r�̃:(F(C))

������
2

 2�
’
:2(

�
(C)
:

��1’
9=0

���r�̃:(F(C)
:,9
)� r�̃:(F(C))

���2

+ 2�2
���r �⇡,((F

(C))

���2

.

6.4 ����������� �������� 103

For the first term, we invoke (! +⌫)-smoothness of �̃: and take the expectation
to get 2�(! +⌫)23(C). For the second term, we use (6.5) followed by the variance
bound of Proposition 3.13 to get:

E

���r �⇡,((F
(C))

���2
����FC

�
= E

266664
�����
’
:2(

�
(C)
:
r�̃:(F(C))� r�⇡(F(C))

�����
2
������FC

377775
+

���r�⇡(F(C))

���2

 8⌧2

<
+

���r�⇡(F(C))

���2

.

This gives

✏2
E

2666664

������
’
:2(

�
(C)
:

��1’
9=0

r �̃:(F(C)
:,9
)

������
2
�������FC

3777775
 2✏2� (! +⌫)2 3(C) +

16�2✏2⌧2

<

+ 2�2✏2
���r�⇡(F(C))

���2

.

The stated result follows by smoothness (6.7). ⇤

6.4.4 Effect of one round

The crux for proving Theorem 6.1 is the following statement.

Proposition 6.6. Consider the setting of Theorem 6.1. Let (F(C))C�0 the sequence of Descent Lemma

global models generated by Algorithm 5. For any C � 0, we have:

�
⇡

(F
(C))� �⇡(F8

)  1

✏�

✓
1� ⌫✏�

2

◆ ��F(C) �F8
��2 � 1

✏�

��F(C+1) �F8
��2

+
16�⌧2✏

<
+

9 (! +⌫)2

�⌫
3(C) ,

where 3(C) denotes the client drift, defined in (6.11).

Proof. We denote EC[·] := E[·|FC]. We expand the update 6.12 to get

EC kF(C+1) �F8k2
=

��F(C) �F8
��2 � 2✏EC

266664
’
:2(

�
(C)
:

��1’
9=0

D
r�̃:(F(C)

:,9
),F(C) �F8

E377775| {z }
=:�

+ ✏2
EC

������
’
:2(

�
(C)
:

��1’
9=0

r�̃:(F(C)
:,9
)

������
2

| {z }
=:⌫

.

104 �������� ������������� �� ��������� ��������

Let us first bound �. We use ⌫-strong convexity (6.6) of �̃: to get*’
:2(

�
(C)
:
r�̃:(F(C)

:,9
),F(C) �F8

+
=

*’
:2(

�
(C)
:
r�̃:(F(C)),F(C) �F8

+

+

*’
:2(

�
(C)
:

⇣
r�̃:(F(C)

:,9
)� r�̃:(F(C))

⌘
,F(C) �F8

+

��⇡,((F
(C))� �⇡,((F

8
) +

⌫

2

��F(C) �F8
��2

�
�����
*’
:2(

�
(C)
:

⇣
r�̃:(F(C)

:,9
)� r�̃:(F(C))

⌘
,F(C) �F8

+����� .

Next, using successively the triangle inequality, the Cauchy-Schwartz inequality
and (! +⌫)-smoothness of the �̃: yields:�����
*’
:2(

�
(C)
:

⇣
r�̃:(F(C)

:,9
)� r�̃:(F(C))

⌘
,F(C) �F8

+����� 
’
:2(

�
(C)
:

���Dr�̃:(F(C)
:,9
)� r�̃:(F(C)),F(C) �F8

E���


’
:2(

�
(C)
:
kr�̃:(F(C)

:,9
)� r�̃:(F(C))k

��F(C) �F8
��


’
:2(

�
(C)
:
(! +⌫) kF(C)

:,9
�F(C)k

��F(C) �F8
�� .

Finally, using 2|01 |  02/22 + 2212 and the convexity of C 7! C2,�����
*’
:2(

�
(C)
:

⇣
r�̃:(F(C)

:,9
)� r�̃:(F(C))

⌘
,F(C) �F8

+�����
 4

⌫

 ’
:2(

�
(C)
:
(! +⌫) kF(C)

:,9
�F(C)k

!2

+
⌫

4

��F(C) �F8
��2

 ⌫

4

��F(C) �F8
��2

+
4 (! +⌫)2

⌫

’
:2(

�
(C)
:

���F(C)
:,9

�F(C)
���2

.

Overall, we bound � as

� � 2✏ EC

266664
266664
��1’
9=0

�⇡,((F

(C))� �⇡,((F
8
) +

⌫

4

��F(C) �F8
��2 � 4 (! +⌫)2

⌫

’
:2(

�
(C)
:

���F(C)
:,9

�F(C)
���2

!377775
377775

� 2✏�
⇣
�
⇡

(F
(C))� �⇡(F8

)
⌘
+
⌫✏�

2

��F(C) �F8
��2 � 8✏ (! +⌫)2

⌫
3(C) ,

where we use the definition of 3(C) from (6.11). We bound ⌫ using Proposition 6.5.
Putting these together, we get,

EC

��F(C+1) �F8
��2 

✓
1� ⌫✏�

2

◆ ��F(C) �F8
��2 � (2✏� � 4✏2�2!0)(�

⇡

(F
(C))� �⇡(F8

))

+
16�2⌧2✏2

<
+ 2

✓
✏2� (! +⌫)2 + 4✏

(! +⌫)2

⌫

◆
3(C) .

6.4 ����������� �������� 105

With ✏  (4�!0)�1 we have 2✏� � 4✏2�2!0 � ✏�. Likewise, the same condition
on ✏ also implies 2(✏ (! +⌫)2 + 4(! +⌫)2/(�⌫))  9 (! +⌫)2 /(�⌫). Rearranging
terms completes the proof. ⇤

We have now all the ingredients to establish the proof of Theorem 6.1. Time for a conclusion�

Proof of Theorem 6.1. Plugging in the client drift bound of Proposition 6.4 into
the bound of Proposition 6.6 and rearranging, we get

1� 18!0 (! +⌫)2 �2✏242

⌫

! ⇣
�
⇡

(F
(C))� �⇡(F8

)
⌘

 1

✏�

✓
1� ⌫✏�

2

◆ ��F(C) �F8
��2 � 1

✏�
EC

��F(C+1) �F8
��2

+
16�⌧2✏

<
+

9⌧2 (! +⌫)2 �2✏242

⌫

✓
4+

8

<

◆
.

Since 3642  182 for ✏ 
p
⌫(18� (! +⌫)

p
!0)�1, we have

18!0 (! +⌫)2 �2✏242/⌫  1
2 which implies:

�
⇡

(F
(C))� �⇡(F8

)  2

✏�

✓
1� ⌫✏�

2

◆ ��F(C) �F8
��2 � 2

✏�
EC

��F(C+1) �F8
��2

+
32�⌧2✏

<
+

18⌧2 (! +⌫)2 �2✏242

⌫

✓
4+

8

<

◆
| {z }

=:T1

.

Next, we use convexity to get

E

h
�
⇡

(F
())

)� �⇡(F8
)
i
 1Õ)

C=0

⇣
1� ⌫✏�

2

⌘�(1+C)
)’
C=0

✓
1� ⌫✏�

2

◆�(1+C)
E

h
�
⇡

(F
(C))� �⇡(F8

)
i


2
Õ)
C=0

⇣
1� ⌫✏�

2

⌘�C
E

h��F(C) �F8
��2

i
�

⇣
1� ⌫✏�

2

⌘�(1+C)
E

h��F(C+1) �F8
��2

i
✏�

Õ)
C=0

⇣
1� ⌫✏�

2

⌘�(1+C) + T1 ,

so that telescoping the sum yields

E

h
�
⇡

(F
())

)� �⇡(F8
)
i


2
��F(0) �F8

��2

✏�
Õ)
C=0

⇣
1� ⌫✏�

2

⌘�(1+C) + T1 .

Now, we can lower bound the denominator with

)’
C=0

✓
1� ⌫✏�

2

◆�(1+C)
� 1

✏�⌫
4)✏�⌫ ,

to get the bound

E

h
�
⇡

(F
())

)� �⇡(F8
)
i
 2⌫4�)✏�⌫

��F(0) �F8
��2

+ T1 . (6.13)

106 �������� ������������� �� ��������� ��������

It remains to translate the results on �
⇡

 into �. For the left hand side, we use
the bias bound of Property 3.13. For the right hand side, we use the ⌫-strong
convexity of � and Property 3.13 we have:

��F(0) �F8
��2  2

��F(0) �F8
��2

+ 2
��F8 �F8

��2  2
��F(0) �F8

��2
+

4

⌫

�
�(F

8
)� �(F8)

�
 2

��F(0) �F8
��2

+
4

⌫

⇣
�(F

8
)� �⇡(F8

) + �
⇡

(F
8
)� �⇡(F8) + �

⇡

(F
8)� �(F8)

⌘

 2
��F(0) �F8

��2
+

4

⌫

✓
2⌫p
<

+ 4⇡ log<

◆

since �
⇡

(F
8
)� �⇡(F8)  0. Plugging this into (6.13) completes the proof. ⇤

6.5 ��������� �����������

In this section, we describe in details the experimental setup and the results.
Here is its outline:

• Section 6.5.1 describes the datasets and tasks.

• Section 6.5.2 gives a detailed description of the hyperparameters used and
the evaluation methodology.

• Section 6.5.3 details the experimental results we obtain for our algorithm�-
FL in comparison to a broad selection of baselines.

The code and the scripts to reproduce results are made publicly available at

https://github.com/krishnap25/simplicial-fl.

6.5.1 Datasets and tasks

We conduct our experiments on two datasets from computer vision and natural
language processing, described in detail below. These datasets contain a natural,
non-iid split of data which is reflective of data heterogeneity encountered in
federated learning. In these two examples, each device has a finite number
of datapoints. Thus, we let its probability distribution @: to be the empirical
distribution over the available examples, and the weight �: to be proportional
to the number of datapoints available on the device. The data was preprocessed
using LEAF [24].

������ ��� �����������-������ �����������.

Dataset. EMNIST [32] is a character recognition dataset. This dataset contains
images of handwritten digits or letters, labeled with their identification (a-z,A-Z,
0-9). The images are grey-scaled pictures of 28⇥ 28 = 784 pixels.
Train and Test Devices. Each image is also annotated with the “writer” of the
image, i.e., the human subject who hand-wrote the digit/letter during the data
collection process. A device consists in all the images supplied by the same
writer. From this set of devices, we discard all devices containing less than
100 images. The remaining devices were partitioned into two groups — 1730
training and 1730 testing devices. For each experiment we subsampled 865
training and 865 testing devices for computational tractability.
Model. We consider the following models for this task.

https://github.com/krishnap25/simplicial-fl

6.5 ��������� ����������� 107

• Linear Model: We use a linear softmax regression model. In this case
each �: is convex. We train parameters F 2 R

62⇥784. Given an input image
G 2 R

784, the score of each class 2 2 ~1, 62� is the dot product hF2 , Gi.
The probability ?2 assigned to each class is then computed as a softmax:
?2 = exp hF2 , Gi/

Õ
20 exp hF20 , Gi. The prediction for a given image is then

the class with the highest probability.

• ConvNet: We also consider a convolutional neural network. Its architec-
ture satisfies the following scheme:

Input
784

�!
Conv 2D
filter = 32

kernel = 5⇥ 5

�! ReLU �!
Max Pool

kernel = 2⇥ 2

stride = 2

�!
Conv 2D
filter = 64

kernel = 5⇥ 5

�! ReLU �!
Max Pool

kernel = 2⇥ 2

stride = 2

�! F.C.
units = 62

�! score

In other words, it contains two convolutional layers with max-pooling
and one fully connected layer (F.C) which outputs a vector in R

62. The
outputs of the ConvNet are scores with respect to each class. They are
also used with a softmax operation to compute probabilities.

The loss used to train both models is the multinomial logistic loss !(?, H) =
� log ?H , where ? denotes the vector of probabilities computed by the model,
and ?H denotes its Hth component. In the convex case we add a quadratic
regularization term of the form (⌫/2)kFk2

2.

����140 ��� ��������� ��������.

Dataset. Sent140 [54] is a text dataset of 1,600,498 tweets produced by 660,120
Twitter accounts. Each tweet is represented by a character string with emojis.
Each tweet is labeled with a binary sentiment reaction (i.e., positive or negative),
which is inferred based on the emojis in the original tweet.
Train and Test Devices. Each device represents a twitter account and contains
only tweets published by this account. From this set of devices we discarded all
devices containing less that 50 tweets, and split the 877 remaining devices into a
train set and a test set of sizes 438 and 439 respectively. This split was held fixed
for all experiments. Each word in the tweet is encoded by its 50-dimensional
GloVe embedding [124].
Model. We consider the following models.

• Linear Model: We consider a ;2-regularized linear logistic regression
model where the parameter vector F is of dimension 50. In this case,
each �: is convex. We summarize each tweet by the average of the GloVe
embeddings of the words of the tweet.

• RNN: The nonconvex model is a Long Short Term Memory (LSTM)
model [66] built on the GloVe embeddings of the words of the tweet. The
hidden dimension of the LSTM is same as the embedding dimension, i.e.,
50. We refer to it as “RNN”.

The loss function is the binary logistic loss. In the convex case, we also add a
quadratic regularization term of the form (⌫/2)kFk2

2

108 �������� ������������� �� ��������� ��������

6.5.2 Algorithms, hyperparameters and evaluation strategy

��������� ��� ���������.

The proposed �-FL is run for three values of  2 {0.8, 0.5, 0.1}. We compare it
to the following baselines:

• FedAvg [109]: It is the de facto standard for the vanilla federated learning
objective.

• FedAvg, : We also consider FedAvg with a random device filtering
step: local updates are run on a fraction of the initial number of devices
randomly selected per round. For each dataset, we try three fraction
values, corresponding to the average number of devices selected by �-FL
for the three values of  used (cf. Figure 6.11). We report as FedAvg-Sub
the performance of FedAvg,  with  2 {0.8, 0.5, 0.1} which gives the best
performance on �-FL (i.e., lowest 90th percentile of test misclassification
error).

• FedProx [96]: It augments FedAvg with a proximal term but still minimizes
the vanilla federated learning objective.

• @-FFL [97]: It raises the per-device losses to the power (1+ @), where @ � 0
is a parameter, in order to focus on devices with higher loss.

• AFL [114]: It aims at minimizing the worst per-device loss. We implement
it as an asymptotic version of @-FFL, using a large value of @, as this was
found to yield better convergence with comparable performance [97]. In
the experiments we take @ = 10.0.

• Tilted-ERM [98]: It aims at minimizing a parameterized variant of logsum-
exp function over the per-device losses.

The experiments are conducted on the datasets described in Section 6.5.1.

���������������.

Rounds. We measure the progress of each algorithm by the number of calls to
secure aggregation routine for weight vectors, i.e., the number of communication
rounds.

For the experiments, we choose the number of communication rounds
depending on the convergence of the optimization for FedAvg. For the EMNIST
dataset, we run the algorithm for 3000 communication rounds with the linear
model and 1000 for the ConvNet. For the Sent140 dataset, we run the 1000
communication rounds for the linear model and 600 for the RNN.

Devices per Round. We choose the same number of devices per round for
each method, with the exception of FedAvg,. All devices are assumed to be
available and selections are made uniformly at random. In particular, we select
100 devices per round for all experiments with the exception of Sent140 RNN
for which we used 50 devices per round.

Local Updates and Minibatch Size. Each selected device locally runs 1 epoch
of mini-batch stochastic gradient descent. The effect of this choice of local epochs
is explored further at the end of Section 6.5. We used the default mini-batch
of 10 for all experiments [109], except for 16 for EMNIST ConvNet. This is

6.5 ��������� ����������� 109

because the latter experiments were run using on a GPU, as we describe in the
forthcoming paragraph on the hardware.

Learning rate scheme. We now describe the learning rate ✏C used during
LocalUpdate. For the linear model we used a constant fixed learning rate ✏C ⌘ ✏0,
while for the neural network models, we used a step decay scheme ✏C = ✏02

�bC/C0c

where ✏0 and 0 < 2  1 are tuned. We tuned these parameters only for the
baseline FedAvg and used the same learning rate for the other baselines and
�-FL at all values of .

For the neural network models, we fixed C0 so that the learning rate was
decayed once or twice during the fixed time horizon). In particular, we used
C0 = 400 for EMNIST ConvNet (where) = 1000), and C0 = 200 for Sent140 RNN
(where) = 600). We tuned 2 from the set {2�3, 2�2, 2�1, 1}, while the choice
of the range of ✏0 depended on the dataset-model pair. The tuning criterion
we used was the mean of the loss distribution over the training devices (with
device : weighted by �:) at the end of the time horizon. That is, we chose the
✏0, 2 which gave the best terminal training loss.

Tuning of the regularization parameter. The regularization parameter ⌫
for linear models was tuned with cross validation from the set {10�: : : 2
{3, · · · , 8}}. This was performed as described below.

For each dataset, we held out half the training devices as validation devices.
Then, for different values of the regularization parameter, we trained a model
with the (smaller subset of) training devices and evaluate its performance on
the validation devices. We selected the value of the regularization parameter as
the one which gave the smallest 90th percentile of the misclassification error on
the validation devices.

Baseline Parameters. We tune the proximal parameter of FedProx with cross
validation. The procedure we followed is identical to the procedure we described
above for the regularization parameter ⌫. The set of parameters tested is
{10�9 , 9 2 {0, . . . , 3}}. We adopt the same strategy for @-FFL, where the set of
parameters @ tested is {109 , 9 2 {�3, · · · , 1}}, and Tilted-ERM, where the set of
temperatures C tested is {0.1, 0.5, 1., 5., 10., 50., 100., 200}}.

���������� �������� ��� ����� �������.

Evaluation metrics. We record the loss of each training device and the misclas-
sification error of each testing device, as measured on its local data.

The evaluation metrics noted in Section 6.5.3 are the following : the weighted
mean of the loss distribution over the training devices, the (unweighted)
mean misclassification error over the testing devices, the weighted ?-percentile
of the loss over the training device and the (unweighted) ?-percentile of
the misclassification error over the testing devices for values of ? among
{20%, 50%, 60%, 80%, 90%, 95%}. The weight �: used for training device : was
set proportional to the number of datapoints on the device.

Evaluation times. We evaluate the model during training process for once
every ; communication rounds. The value of ; used was ; = 50 for EMNIST
linear model, ; = 10 for EMNIST ConvNet, ; = 20 for Sent140 linear model and
; = 25 for Sent140 RNN.

Hardware. We run each experiment as a simulation as a single process. The
linear models were trained on m5.8xlarge AWS instances, each with an Intel
Xeon Platinum 8000 series processor with 128 GB of memory running at most
3.1 GHz. The neural network experiments were trained on workstation with an
Intel i9 processor with 128 GB of memory at 1.2 GHz, and two Nvidia Titan

110 �������� ������������� �� ��������� ��������

Xp GPUs. The Sent140 RNN experiments were run on a CPU while the other
neural network experiments were run using GPUs.

Software Packages. Our implementation is based on NumPy using the python
language. In the neural network experiments, we use PyTorch to implement the
LocalUpdate procedure, i.e., the model itself and the automatic differentiation
routines provided by PyTorch to make SGD updates.

Randomness. Since several sampling routines appear in the procedures such as
the selection of devices or the local stochastic gradient, we carry our experiments
with five different seeds and plot the average metric value over these seeds.
Each simulation is run on a single process. Where appropriate, we report one
standard deviation from the mean.

6.5.3 Experimental results

We now present the experimental results of the paper.
• We present different metrics on the distribution of test misclassification

error over the devices, comparing �-FL to baselines.

• We study the convergence of Algorithm 5 for �-FL over the course of the
optimization, and compare it with FedAvg.

• We plot the histograms of the distribution of losses over train devices as
well as the test misclassification errors over test devices at the end of the
training process.

• We present in the form of scatter plots the training loss and test misclassi-
fication error across devices achieved at the end of training, versus the
number of local data points on the device.

• We present the number of devices selected at each communication round
for �-FL (after device filtering).

• We finally present the impact of the number of local epochs on the
convergence of �-FL.

Comparison to Baselines. In Tables 6.1 to 6.4, we present a comparison of
various statistics of the test misclassification error distribution for different
methods. For each column, the smallest mean over five random runs is
highlighted in bold. Further, if no other method is within one standard
deviation of this method, the entire entry (i.e., mean± std) is highlighted in
bold. Our main findings are summarized below.
�-FL achieves a 3.3% absolute (12% relative) improvement over any vanilla�-FL consistently

achieves the smallest 90th

percentile error
FL objective on EMNIST-ConvNet. Among the heterogeneity aware objectives,
�-FL achieves 1.8% improvement over the next best objective, which is Tilted-
ERM. We note that @-FFL marginally outperforms �-FL on Sent140-Linear, but
the difference 0.05% is much smaller than the standard deviation across runs.

For EMNIST-ConvNet, �-FL with  2 {0.5, 0.8} is better in 90th percentile�-FL is competitive at
multiple values of  error than all other methods we compare to, and �-FL with  = 0.1 is tied

with Tilted-ERM, the next best method. We also empirically confirm that �-FL
interpolates between FedAvg ( ! 1) and AFL ( ! 0).

We observe that �-FL with  = 0.1 is unstable for Sent140-RNN. This is�-FL works best for
larger values of

conformity levels
consistent with our discussion following Theorem 6.1, where we advocate
for values < larger than 1/. Indeed, this can be explained by �-FL’s sparse
re-weighting, which only gives non-zero weights to < = 5 devices on average
in each round.

Perhaps surprisingly, �-FL actually gets the best test error performance on�-FL is yet competitive
in terms of average error

6.5 ��������� ����������� 111

EMNIST-ConvNet and Sent140-Linear. This suggests that the average test
distribution is shifted relative to the average training distribution ?�. In the
other cases, we find that the reduction in mean error is small relative to the
gains in the 90th percentile error compared to Vanilla FL methods.

Specifically, AFL which aims to minimize the worst error among all devices, Minimizing
superquantile loss over
all devices performs
better than minimizing
worst error over all
devices

as well as other objectives which approximate it (�-FL with  ! 0, @-FFL with
@ ! 1, Tilted-ERM with ⇡ ! 0) tend to achieve poor performance. We find that
AFL achieves the highest error both in terms of 90th percentile and the mean.
�-FL offers a more nuanced and more effective approach via the constraint set
conf(?�) �  than the straight pessimistic approach minimizing the worst error
among all devices.

Method Mean Standard Deviation 10C⌘ Percentile Median 90C⌘ Percentile

FedAvg 34.38± 0.38 18.39± 0.33 21.54± 0.35 32.61± 0.39 49.65± 0.67

FedAvg  = 0.5 34.51± 0.47 18.21± 0.30 21.40± 0.36 32.36± 0.59 50.28± 0.77

FedProx 33.82± 0.30 18.25± 0.23 21.37± 0.35 31.75± 0.20 49.15± 0.74

@-FFL (Best @ = 1.0) 34.71± 0.27 19.34± 0.30 22.33± 0.41 32.80± 0.23 49.90± 0.58

Tilted-ERM (Best C = 1.0) 34.15± 0.25 10.78± 0.30 22.43± 0.29 32.36± 0.23 48.59± 0.62

AFL 39.32± 0.27 25.42± 0.27 28.64± 0.43 38.16± 0.34 51.62± 0.28

�-FL  = 0.8 34.48± 0.26 19.16± 0.32 22.24± 0.32 32.85± 0.31 49.10± 0.24

�-FL  = 0.5 35.01± 0.20 20.46± 0.34 23.64± 0.22 33.83± 0.34 48.44± 0.38

�-FL  = 0.1 38.32± 0.48 23.86± 0.59 27.27± 0.64 37.52± 0.67 50.34± 0.95

Table 6.1: Metrics for the test misclassification error for EMNIST (Linear Model).

Method Mean Standard Deviation 10C⌘ Percentile Median 90C⌘ Percentile

FedAvg 16.63± 0.50 4.94± 0.14 6.43± 0.24 15.34± 0.37 28.46± 1.07

FedAvg  = 0.5 16.22± 0.23 5.06± 0.17 6.47± 0.28 15.05± 0.25 27.56± 0.81

FedProx 16.01± 0.54 5.16± 0.32 6.68± 0.44 14.88± 0.29 27.01± 1.86

@-FFL (Best @ = 0.001) 16.58± 0.30 5.05± 0.21 6.53± 0.20 15.40± 0.43 28.02± 0.80

Tilted-ERM (Best C = 1.0) 15.69± 0.38 7.31± 0.68 7.26± 0.51 14.66± 0.16 25.46± 1.49

AFL 33.00± 0.37 20.38± 0.23 22.92± 0.23 31.58± 0.27 45.07± 1.00

�-FL  = 0.8 16.08± 0.40 5.60± 0.14 7.31± 0.29 14.85± 0.48 26.23± 1.15

�-FL  = 0.5 15.48± 0.30 6.13± 0.15 8.08± 0.16 14.73± 0.22 23.69± 0.94

�-FL  = 0.1 16.37± 1.03 6.61± 0.42 8.28± 0.65 15.49± 1.03 25.45± 2.77

Table 6.2: Metrics for the test misclassification error for EMNIST (ConvNet Model).

Method Mean Standard Deviation 10C⌘ Percentile Median 90C⌘ Percentile

FedAvg 34.74± 0.31 12.16± 0.15 21.89± 0.24 34.81± 0.38 46.83± 0.54

FedAvg  = 0.8 34.47± 0.03 12.08± 0.16 21.69± 0.26 34.62± 0.17 46.59± 0.38

FedProx 34.74± 0.31 12.16± 0.15 21.89± 0.24 34.82± 0.39 46.83± 0.54

@-FFL (Best @ = 1.0) 34.48± 0.06 11.96± 0.14 21.61± 0.24 34.57± 0.16 46.38± 0.40

Tilted-ERM (Best C = 1.0) 34.71± 0.31 12.00± 0.14 21.83± 0.34 34.91± 0.39 46.70± 0.50

AFL 35.97± 0.08 11.83± 0.09 23.58± 0.28 36.09± 0.17 47.51± 0.32

�-FL  = 0.8 34.41± 0.22 12.17± 0.11 21.77± 0.34 34.64± 0.25 46.44± 0.38

�-FL  = 0.5 35.28± 0.25 11.68± 0.40 23.03± 0.38 35.55± 0.53 46.64± 0.41

�-FL  = 0.1 37.78± 0.89 12.86± 0.52 23.93± 0.99 37.80± 1.30 51.38± 1.07

Table 6.3: Metrics for the test misclassification error for Sent140 (Linear Model).

112 �������� ������������� �� ��������� ��������

Method Mean Standard Deviation 10C⌘ Percentile Median 90C⌘ Percentile

FedAvg 30.16± 0.44 4.36± 1.26 10.06± 2.06 29.51± 0.33 49.66± 3.95 1

FedAvg  = 0.8 29.85± 0.46 5.39± 1.32 11.90± 2.27 29.57± 0.31 46.93± 3.84 1

FedProx 30.20± 0.48 4.35± 1.23 10.37± 2.08 29.51± 0.32 49.85± 4.07

@-FFL (Best @ = 0.01) 29.99± 0.56 4.90± 1.66 10.98± 2.88 29.56± 0.39 48.65± 4.68

Tilted-ERM (Best C = 1.0) 30.13± 0.49 14.17± 2.10 13.18± 3.33 29.96± 0.84 46.54± 3.27

AFL 37.74± 0.65 9.90± 1.46 18.19± 1.99 36.95± 1.03 57.78± 1.19

�-FL  = 0.8 30.30± 0.33 6.75± 2.68 13.05± 3.87 29.92± 0.38 46.46± 4.39

�-FL  = 0.5 33.58± 2.44 8.74± 3.98 16.77± 6.62 33.28± 2.27 50.47± 8.24

�-FL  = 0.1 51.97± 11.81 9.11± 5.47 16.67± 9.15 52.44± 13.21 86.44± 10.95

Table 6.4: Metrics for the test misclassification error for Sent140 (RNN Model).

Performance Across Iterations. We present our results only for the EMNIST
dataset. For the other datasets, we point the reader to our papers [87, 88]. We
group plots by models and datasets. The G axis of the plots below represents the
number of communication rounds along the simulation. The H-axis represents
either the training loss or the testing accuracy (either the mean or some
percentile).

Overall, �-FL exhibits better convergence properties for the high percentiles
of the distribution of test misclassification errors over the devices: see for
instance the 99C⌘ , 95C⌘ and 90C⌘ percentiles in figure 6.5. This comes with the
price of lower performance than the baseline FedAvg on low percentiles of the
distribution.

Figure 6.4: Performance across iterations of EMNIST linear model.

6.5 ��������� ����������� 113

Figure 6.5: Performance across iterations of EMNIST ConvNet model.

Histograms of Loss and Test Misclassification Error over Devices. Here, we
plot in Figure 6.6 the histograms of the loss distribution over training devices
and in Figure 6.7 the histograms of the misclassification error distribution over
testing devices for the dataset EMNIST (for other datasets, see [87]). We report
the losses and errors obtained at the end of the training process. Each metric is
averaged per device over 5 runs of the random seed. We note that �-FL tends to
exhibit thinner upper tails at at multiple values of  and a lower variance of the
distribution in most of the cases. This is also confirmed by the figures in Tables
6.1 to 6.4. This shows the benefit of using �-FL over vanilla FedAvg.

Figure 6.6: Histogram of loss distribution over training devices from EMNIST. Top:linear –
Bottom:ConNet).

114 �������� ������������� �� ��������� ��������

Figure 6.7: Histogram of misclassification error distribution over testing devices for
EMNIST Top:linear – Bottom:ConNet).

Performance compared to local data size. Next, we plot the loss on training
devices versus the amount of local data on the device and the misclassification
error on the test devices versus the amount of local data on the device. See
Figures 6.8 and 6.9 for EMNIST and Figure 6.10 for Sent140.

Observe firstly that improvement over the worst cases is achieved regardless
of the local data size of the devices. Indeed, the device filtering step operates a
sorting of the loss of the devices which does not prevent small devices from
being selected. In contrary, FedAvg, by averaging with respect to the weights of
the devices is likely to put more the accent on the devices with larger local data
size. Secondly, �-FL appears to reduce the variance of the losses on the train
devices. Lastly, note that amongst test devices with a small number of data
points (e.g., < 200 for EMNIST or < 100 for Sent140), �-FL reduces the variance
of the misclassification error. Both effects are more pronounced on the neural
network models.

Figure 6.8: For FedAvg and �-FL with values of  in {0.1, 0.5, 0.8}, scatter plot of (left)
loss on training device vs. amount of local data, and (right) misclassification
error on testing device vs. amount of local data for EMNIST (Linear Model)

Number of Devices Selected per Communication Rounds. Next, we plot the
number of devices selected per round (after device filtering, if applicable). The
shaded area denotes the maximum and minimum over 5 random runs. We see
from Figure 6.11 that device-filtering is stable in the number of devices filtered
out.

6.5 ��������� ����������� 115

Figure 6.9: For FedAvg and �-FL with values of  in {0.1, 0.5, 0.8}, scatter plot of (left) loss
on training device vs. amount of local data, and (right) misclassification error
on testing device vs. amount of local data for EMNIST (ConvNet Model)

Figure 6.10: For FedAvg and �-FL with values of  in {0.1, 0.5, 0.8}, scatter plot of (left)
loss on training device vs. amount of local data, and (right) misclassification
error on testing device vs. amount of local data for Sent140.

Figure 6.11: Number of devices selected per round (after device filtering) for the EMNIST
dataset. The shaded region denotes the maximum and minimum over 5
random runs.

116 �������� ������������� �� ��������� ��������

Figure 6.12: Effect of the number of local epochs.

Effect of number of local epochs. We present in Figure 6.12, the effect of the
number of epochs in FedAvg, on the overall convergence of �-FL. We observe for
EMNIST ConvNet that a large number of local epochs leads to poor convergence.
A similar behaviour was observed in [109, Figure 3] for FedAvg. On Sent140
linear model, we see a minor improvement for a larger number of local epochs.

6.5.4 Performing secure aggregation

In this final section, we show how �-FL can address privacy concerns in
Section 6.5.4.

Recall that Algorithm 5 as stated, requires each selected client device to send
its loss to the server for the client filtering step (see line 3). We now present a
way to perform this step without any reduction in privacy from directly sending
client losses to the server. As noted earlier, line 3 consists in the computation of
the superquantile of the sequence of losses �:(F(C)). We saw in the Section 3.3 of
this thesis that such computation boils down to computing the (1 � )-quantile
of theses losses. We show now how to implement this quantile computation
using secure aggregation.

Setup. Suppose we wish to find the ?-quantile of G1, · · · , G< 2 R with respective
weights �1, · · · , �< > 0. It is known [79, e.g.,] that @? is a ?-quantile iff it it

�? is often referred to as
the "pinball" loss

minimizes �? : R ! R defined as

�?(@) :=

<’
:=1

�:!?(G: � @) , where, !?(⌧) :=

8>><
>>:
?⌧ , if ⌧ � 0 ,

�(1� ?)⌧ , if ⌧ < 0 .

Algorithm. Recall that secure aggregation can find a weighted mean of vectors
(and hence, scalars) distributed across< devices without revealing each device’s
vector to other devices or the server. We now show how to compute a quantile
as an iterative weighted mean, making it amenable to implementation via
secure aggregation. The underlying algorithm, based on the principle of
majorization-minimization was used, e.g., in [69].

6.5 ��������� ����������� 117

For any e@ 8 {G1, · · · , G<} , define

e�?(@;e@) :=

1

4

<’
:=1

�:


|G: � @ |2
|G: �e@ | + (4? � 2)(G: � @) + |G: �e@ |� ,

as a majorizing surrogate for �? at e@, i.e., e�?(· ;e@) � �? and e�?(e@;e@) = �?(e@).
Note that e�?(@;e@) is an isotropic quadratic in @.

A majorization-minimization algorithm to minimize � and hence find the
?-quantile can thus be given as

@C+1 =

8>><
>>:

arg min@
e�?(@; @C) if @C 8 {G1, · · · , G<}

G: if @C = G: for some : 2 [<]

=

8>><
>>:

Õ<
:=1 �:,CG:+(2?�1)Õ<

:=1 �:,C
if @C 8 {G1, · · · , G<}

G: if @C = G: for some : 2 [<] ,
(6.14)

where
�:,C =

�:
|G: � @C |

.

Communication Cost of Secure Aggregation For Quantile. Here we show in
regular cases that the communication cost of secure aggregation of quantile is
typically in the range 0.1�2.5% of the cost of secure aggregation of weight vectors
(table 6.5 contains a summary of the following discussion). The asymptotic total
communication cost of securely aggregating < vectors in R

3 is O(<2 + 3<)

bits [20] or O(< log< + 3< log<) bits [151]. In typical cross-device federated
learning applications, < ⇠ 100 � 500, while the model dimension is 3 ⇠
106 [57, 174]. Typically, = ⇠ 10 � 50 iterations of (6.14) will suffice to recover
exact filtering (see benchmarking below).

We now quantify the ratio ⇠@/⇠F of the communication cost of secure Overhead of secure
quantile computationaggregation for quantile ⇠@ to that of secure aggregation of weight vectors ⇠F .

In the case of [20], this ratio is

⇠@

⇠F
=

=(<2 +<)

<2 +<3
⇠ =<

3
,

while for the case of [151], it is

⇠@

⇠F
=

=(< log<)

< log< +<3 log<
⇠ =

3
.

Thus, the additional overhead of secure aggregation of the quantile is in the
range 0.1� 2.5% under typical range of values for the protocol of [20], while it
is in the range 0.01� 0.05% for the protocol of [151].

Secure Quantile Computation on Real Data. We now plot the convergence of
the secure quantile iterations in (6.14). We follow the experimental setup that
will be detailed in the forthcoming Section 6.5 and compute the (1� )-quantile
with (6.14). We repeat this experiment for  2 {0.2, 0.5, 0.9} at the 100C⌘ iteration
(“initial”) of Algorithm 5 as well as the the last iteration (“converged”). We plot
the difference of the iteration @C of (6.14) to the quantile @⇤ as well as the error
in filtering, i.e., |

Õ
: I(G: � @C) �

Õ
: I(G: � @⇤)|. See Figure 6.13 for plots. We

see that the secure update(6.14) converges rapidly and sometimes even finds an

118 �������� ������������� �� ��������� ��������

Table 6.5: Comparison of communication cost of (i) secure aggregation for quantile of
< scalars with = rounds of (6.14), versus, (ii) secure aggregation of < weight
vectors in 3 dimension. Typical values used are < 2 {100, 500}, = 2 {10, 50}
and 3 ⇠ 106.

Sec.Agg.

Protocol

Comm. Cost of

quantile, ⇠@

Comm. Cost of

weight vector, ⇠F
Ratio ⇠@/⇠F Range of ⇠@/⇠F

[20] =<2 + =< =2 + 3< =</3 0.1% to 2.5%

[151] =< log< < log< + 3< log< =/3 0.01% to 0.05%

(a) EMNIST ConvNet.

(b) Sent140 Linear Model.

Figure 6.13: Convergence of Secure (1 � )-Quantile using Iteration (6.14). The first row
denotes the error in the quantile estimate @C of (6.14), while the second
wrong row gives the error in filtering, i.e., difference in the number G: � @C
of devices filtered out @C vs. the same number G: � @⇤ for @⇤.

exact quantile. Moreover, it can find an estimate with zero filtering errors in
10� 50 updates.

6.6 ����������

We presented the �-FL framework that operates with heterogeneous client
devices while still guaranteeing a minimal level of predictive performance
to each individual device. We modeled the similarity between client data
distributions using the conformity, which is a scalar summary of how closely a
client device conforms to the population. �-FL relies on a superquantile-based
objective, parameterized by the conformity, to minimize the tail statistics of the
prediction errors on the client data distributions. We presented a federated
optimization algorithm compatible with secure aggregation, which interleaves
device reweighting steps with local stochastic gradient methods. We derived
finite time convergence guarantees in the convex setting. Experimental results

6.6 ���������� 119

on federated learning benchmarks demonstrate superior performances of �-FL
over state-of-the-art baselines on the upper quantiles of the error on test devices,
with particular improvements on data-poor devices, while being competitive
on the mean error.

7
CO NC LU S I O N A N D P E R S P E C T I V E S

We considered two related topics, in optimization with (super)quantiles. The Conclusion

first topic is the minimization of superquantile-based objectives for machine
learning in both centralized and federated settings. The second topic is the solv-
ing of non-convex problems with quantile constraints, for which we proposed a
bilevel reformulation. Our work leverages the strong interplay between convex
analysis and risk aversion to derive new optimization procedures in practical
data-driven contexts.

In Chapter 4, we highlighted the benefits of using the superquantile in
machine learning. Our software offers the possibility to seamlessly optimize a
learning loss with the superquantile in place of the expectation, for classical
learning tasks. We provided various numerical experiments that illustrate two
features of superquantile-based learning: its impact on worst-case scenarios and
its robustness to adversarial distributional shifts. Our procedures are based on
a thorough analysis of the smoothing techniques applied to the superquantile.
We also proposed an extension of such smoothing to law-invariant coherent
comonotone risk measures to provide decision makers with a broader set of
risk modeling tools without computational overhead.

In Chapter 5, we considered solving chance-constrained problems. We lever-
aged the dual properties of the superquantile to propose a bilevel reformulation
with convex upper and lower levels. In this second line of work (and contrary to
the previous contribution) we exploited the nonsmoothness of the superquantile
to derive a (semi-)exact penalisation procedure for our bilevel reformulation.
Our numerical experiments show that this approach can scale on datasets which
are difficulet to solve by direct (MINLP) approaches.

Finally, in Chapter 6, we proposed a new federated learning framework
to address statistical heterogeneity among users. We provided a theoretical
analysis that puts into perspective the properties of stochastic estimators
of the superquantile and their impact on the convergence of local gradient
schemes. We produced extensive numerical experiences showing the benefits
of a superquantile approach over other state of the art methods, for handling of
non-conforming users.

Each project presented above is just one step ahead and calls for further Further Perspectives

developments. They indeed open to some fundamental problems as well
as practical incremental developments. Here are a few interesting research
questions that triggered my attention.

How to fix the safety parameter ? in superquantile-based learning ? Knowing
how to set the parameter p in the definition of the superquantile is a question
that I have often seen myself asked when presenting my work. First I want to say
that this is essentially a modeling problem. In federated learning, for example,
setting a parameter p amounts to focus training only on the (1� ?)-proportion
of worst-performing users. Should we focus only on the worst 5% ? the worst

121

122 ���������� ��� ������������

10% ? Should this be decided based on the proportion of each user’s community
in the network? One could thus argue that the choice of p is mainly a political
issue. For now, state-of-the-art works run a cross-validation on a grid of values
of ?, typically between 0.8 and 0.99 and select the value giving the best accuracy
on the validation set. However, with the rise of quantitative methods to measure
the fairness of a given prediction models, it may be interesting to propose
automatic tuning procedures for tuning ?. This is the main question I would
like to tackle over the next months.
Can superquantiles help to model risk-aversion beyond law-invariant

comonotone risk measures ? Actually, this question has already been par-
tially answered in [18], where the authors propose a duality result which links
Wasserstein ambiguity on the probability of misclassification for a given model
to the superquantile of a computable associated quantity. Based on the dual
properties of the superquantiles which were exposed in Chapter 3, I believe
this could help to develop tractable approaches for a broad class of adversarial
problems based on Wasserstein ambiguity.
Can we derive better convergence guarantees for chance-constrained prob-

lems ? The bilevel reformulation of chance-constrained programs I proposed in
this thesis paves the way for several future directions. First the characterization
of optimality of the solutions of our algorithm may be further investigated. For
now, we are able only to build a sequence of critical points of the penalized
problems that we derived based on our (semi)-exact penalization procedures.
Whether or not cluster points of this sequence exhibit some notions of criticality
for the initial chance-constrained program remains an intriguing question to
solve. Second, the procedure for the partial update of the penalization param-
eters of such problems remains hard in practice since no prior information
(beyond the lower bound of Theorem 5.5) is available. In other words, our
algorithm is primal only. If we managed to turn it into a primal-dual procedure
with an automatic update of the penalization (i.e. dual) parameters, we could
hope for a better convergence in practice. Finally, the derivation of (local)
convergence rate for chance-constrained programs is a direction I’d like to think
of in medium term.
How to extend federated learning to decentralized frameworks ? The chal-
lenges raised by federated learning (see Section 2.2.2) have given rise to a number
of works in the distributed optimization community. I would be interested in
addressing these challenges in a fully decentralized setting, i.e. in the absence
of a central server. On top of the existing theoretical challenges of federated
optimization, the establishment of a consensus among the nodes of the network
raises additional questions which may be tackled with a unified analysis. This
would open the door to more resilient frameworks for a number of applications
where communication possibilities between the nodes are scarce and cannot be
handled by a central entity (e.g., for wireless sensor networks, IoT-enabled edge
devices, etc.).

B I B L I O G R A P H Y

[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna
Wallach. A reductions approach to fair classification. In International Conference on

Machine Learning, pages 60–69. PMLR, 2018.

[2] Alekh Agarwal, Miroslav Dudík, and Zhiwei Steven Wu. Fair regression: Quanti-
tative definitions and reduction-based algorithms. In International Conference on

Machine Learning, pages 120–129. PMLR, 2019.

[3] Shabbir Ahmed and Alexander Shapiro. Solving chance-constrained stochastic
programs via sampling and integer programming. In State-of-the-art decision-making

tools in the information-intensive age, pages 261–269. Informs, 2008.

[4] Laetitia Andrieu, Guy Cohen, and Felisa J Vázquez-Abad. Gradient-based simula-
tion optimization under probability constraints. European Journal of Operational

Research, 212(2):345–351, 2011.

[5] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent
Measures of Risk. Mathematical finance, 9(3):203–228, 1999.

[6] Léonard Bacaud, Claude Lemaréchal, Arnaud Renaud, and Claudia Sagastizábal.
Bundle methods in stochastic optimal power management: A disaggregated
approach using preconditioners. Computational Optimization and Applications, 20
(3):227–244, 2001.

[7] Gilles Bareilles, Yassine Laguel, Dmitry Grishchenko, Franck Iutzeler, and Jérôme
Malick. Randomized progressive hedging methods for multi-stage stochastic
programming. Annals of Operations Research, 295(2):535–560, 2020.

[8] Amir Beck and Marc Teboulle. Smoothing and First Order Methods: A Unified
Framework. SIAM Journal on Optimization, 22(2):557–580, 2012.

[9] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems
contaminated with uncertain data. Mathematical Programming, series A, 88:411–424,
2000.

[10] Aharon Ben-Tal and Marc Teboulle. Expected utility, penalty functions, and duality
in stochastic nonlinear programming. Management Science, 32(11):1445–1466, 1986.

[11] Aharon Ben-Tal and Marc Teboulle. An Old-New Concept of Convex Risk Measures:
The Optimized Certainty Equivalent. Mathematical Finance, 17(3):449–476, 2007.

[12] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimization,
volume 28. Princeton University Press, 2009.

[13] Leonard Berrada, Andrew Zisserman, and M. Pawan Kumar. Smooth loss func-
tions for deep top-k classification. In 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference

Track Proceedings. OpenReview.net, 2018.

[14] Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexan-
dre Gramfort, and Joseph Salmon. Implicit differentiation of lasso-type models
for hyperparameter optimization. In International Conference on Machine Learning,
pages 810–821. PMLR, 2020.

[15] D.P. Bertsekas. Convex Optimization Algorithms. Athena Scientific, 2015.

[16] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 2016.

[17] Dimitris Bertsimas and David B Brown. Constructing uncertainty sets for robust
linear optimization. Operations research, 57(6):1483–1495, 2009.

[18] Jose Blanchet and Karthyek Murthy. Quantifying distributional model risk via
optimal transport. Mathematics of Operations Research, 44(2):565–600, 2019.

123

124 Bibliography

[19] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast
differentiable sorting and ranking. In International Conference on Machine Learning,
pages 950–959. PMLR, 2020.

[20] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical
Secure Aggregation for Privacy-Preserving Machine Learning. In ACM SIGSAC

Conference on Computer and Communications Security, pages 1175–1191, 2017.

[21] J Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of optimization

problems. Springer Science & Business Media, 2013.

[22] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization Methods for
Large-Scale Machine Learning. Siam Review, 60(2):223–311, 2018.

[23] G. C. Calafiore and M. C. Campi. The scenario approach to robust control design.
IEEE Trans. Automat. Control, 51:742–753, 2006.

[24] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan,
Virginia Smith, and Ameet Talwalkar. LEAF: A benchmark for federated settings.
CoRR, abs/1812.01097, 2018.

[25] Abraham Charnes and William Wager Cooper. Chance-constrained programming.
Management science, 6(1):73–79, 1959.

[26] Chunhui Chen and Olvi L Mangasarian. A class of smoothing functions for
nonlinear and mixed complementarity problems. Computational Optimization and

Applications, 5(2):97–138, 1996.

[27] Emilie Chouzenoux, Henri Gérard, and Jean-Christophe Pesquet. General risk
measures for robust machine learning. arXiv preprint arXiv:1904.11707, 2019.

[28] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone.
Risk-constrained reinforcement learning with percentile risk criteria. The Journal

of Machine Learning Research, 18(1):6070–6120, 2017.

[29] Sélim Chraibi, Ahmed Khaled, Dmitry Kovalev, Peter Richtárik, Adil Salim, and
Martin Takác. Distributed fixed point methods with compressed iterates. CoRR,
abs/1912.09925, 2019.

[30] Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massim-
iliano Pontil. Fair regression with wasserstein barycenters. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference

on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,

virtual, 2020.

[31] Frank H Clarke. Optimization and Nonsmooth Analysis, volume 5. SIAM, 1990.

[32] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST:
extending MNIST to handwritten letters. In 2017 International Joint Conference

on Neural Networks, ĲCNN 2017, Anchorage, AK, USA, May 14-19, 2017, pages
2921–2926. IEEE, 2017. doi: 10.1109/ĲCNN.2017.7966217.

[33] Imre Csiszár. Information-type measures of difference of probability distributions
and indirect observation. studia scientiarum Mathematicarum Hungarica, 2:229–318,
1967.

[34] Sebastian Curi, Kfir Y Levy, Stefanie Jegelka, and Andreas Krause. Adaptive
sampling for stochastic risk-averse learning. NeurIPS, 2020.

[35] George B. Dantzig. Discrete-variable extremum problems. Oper. Res., 5(2):266–288,
1957. ISSN 0030-364X. doi: 10.1287/opre.5.2.266.

[36] Welington de Oliveira. Proximal bundle methods for nonsmooth DC programming.
Journal of Global Optimization, 2019.

[37] Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Distribu-
tionally Robust Federated Averaging. In Neural Information Processing Systems,
2020.

Bibliography 125

[38] D. Dentcheva. Optimisation models with probabilistic constraints. In A. Shapiro,
D. Dentcheva, and A. Ruszczyński, editors, Lectures on Stochastic Programming.

Modeling and Theory, volume 9 of MPS-SIAM series on optimization. 2009.

[39] D. Dentcheva and G. Martinez. Regularization methods for optimization problems
with probabilistic constraints. Mathematical Programming (series A), 138(1-2):223–
251, 2013.

[40] D. Dentcheva, A. Prékopa, and A. Ruszczyński. Concavity and efficient points for
discrete distributions in stochastic programming. Mathematical Programming, 89:
55–77, 2000.

[41] Olivier Devolder, François Glineur, and Yurii E. Nesterov. First-order methods of
smooth convex optimization with inexact oracle. Mathematical Program., 146(1-2):
37–75, 2014.

[42] Aymeric Dieuleveut and Kumar Kshitĳ Patel. Communication Trade-offs for
Local-SGD with Large Step Size. In Advances in Neural Information Processing

Systems, pages 13579–13590, 2019.

[43] A. L. Diniz and R. Henrion. On probabilistic constraints with multivariate truncated
Gaussian and lognormal distributions. Energy Systems, 8(1):149–167, 2017.

[44] John C Duchi and Hongseok Namkoong. Variance-based Regularization with
Convex Objectives. Journal of Machine Learning Research, 20(68):1–55, 2019.

[45] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. Fairness through awareness. In Proceedings of the 3rd innovations in

theoretical computer science conference, pages 214–226, 2012.

[46] NCP Edirisinghe, EI Patterson, and Nasreddine Saadouli. Capacity planning
model for a multipurpose water reservoir with target-priority operation. Annals of

Operations Research, 100(1):273–303, 2000.

[47] Y.M. Ermoliev, T.Y. Ermolieva, G.J. Macdonald, and V.I. Norkin. Stochastic
optimization of insurance portfolios for managing exposure to catastrophic risk.
Annals of Operations Research, 99:207–225, 2000.

[48] Yanbo Fan, Siwei Lyu, Yiming Ying, and Bao-Gang Hu. Learning with average
top-k loss. In NIPS, 2017.

[49] M. H. Farshbaf-Shaker, R. Henrion, and D. Hömberg. Properties of chance con-
straints in infinite dimensions with an application to pde constrained optimization.
Set Valued and Variational Analysis, 26(4):821–841, 2018.

[50] Hans Föllmer and Alexander Schied. Convex measures of risk and trading
constraints. Finance and stochastics, 6(4):429–447, 2002.

[51] Hans Föllmer and Alexander Schied. Stochastic finance. An introduction in discrete

time. Berlin: de Gruyter, 2016. doi: 10.1515/9783110463453.

[52] Tomer Gafni, Nir Shlezinger, Kobi Cohen, Yonina C. Eldar, and H. Vincent Poor.
Federated learning: A signal processing perspective. CoRR, abs/2103.17150, 2021.

[53] A. Geletu, A. Hoffmann, M. Klöppel, and P. Li. A tractable approximation of
non-convex chance constrained optimization with non-gaussian uncertainties.
Engineering Optimization, 47(4):495–520, 2015.

[54] Alec Go, Richa Bhayani, and Lei Huang. Twitter Sentiment Classification using
Distant Supervision. CS224N Project Report, Stanford, page 2009, 2009.

[55] Mert Gürbüzbalaban, Andrzej Ruszczynski, and Landi Zhu. A stochastic subgradi-
ent method for distributionally robust non-convex learning. CoRR, abs/2006.04873,
2020.

[56] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck
Cadambe. Local SGD with Periodic Averaging: Tighter Analysis and Adaptive
Synchronization. In Advances in Neural Information Processing Systems, pages
11080–11092, 2019.

[57] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction. CoRR, abs/1811.03604, 2018.

126 Bibliography

[58] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised
learning. Advances in neural information processing systems, 29:3315–3323, 2016.

[59] R. Henrion and C. Strugarek. Convexity of chance constraints with independent
random variables. Computational Optimization and Applications, 41:263–276, 2008.

[60] R. Henrion and C. Strugarek. Convexity of chance constraints with dependent
random variables: the use of copulae. In M. Bertocchi, G. Consigli, and M.A.H.
Dempster, editors, Stochastic Optimization Methods in Finance and Energy: New

Financial Products and Energy Market Strategies, International Series in Operations
Research and Management Science, pages 427–439. Springer-Verlag New York,
2011.

[61] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms.
Springer Verlag, Heidelberg, 1993. Two volumes.

[62] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex

analysis. Springer Science & Business Media, 2012.

[63] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimiza-

tion algorithms I: Fundamentals, volume 305. Springer science & business media,
2013.

[64] Nam Ho-Nguyen and Stephen J. Wright. Adversarial classification via distribu-
tional robustness with Wasserstein ambiguity. CoRR, abs/2005.13815, 2020.

[65] Charles AR Hoare. Algorithm 65: find. Communications of the ACM, 4(7):321–322,
1961.

[66] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural

computation, 9(8):1735–1780, 1997.

[67] L Jeff Hong, Yi Yang, and Liwei Zhang. Sequential convex approximations to joint
chance constrained programs: A monte carlo approach. Operations Research, 59(3),
2011.

[68] L.J. Hong, Y. Yang, and L. Zhang. Sequential convex approximations to joint
chance constrained programed: A monte carlo approach. Operations Research, 3
(59):617–630, 2011.

[69] David R Hunter and Kenneth Lange. Quantile Regression via an MM Algorithm.
Journal of Computational and Graphical Statistics, 9(1):60–77, 2000.

[70] Garud Iyengar and Alfred Ka Chun Ma. Fast gradient descent method for
mean-cvar optimization. Annals of Operations Research, 205(1):203–212, 2013.

[71] Peter Kairouz et al. Advances and open problems in federated learning. Found.

Trends Mach. Learn., 14(1-2):1–210, 2021. doi: 10.1561/2200000083.

[72] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-
Aware Classifier with Prejudice Remover Regularizer. In ECML PKDD, pages
35–50. Springer, 2012.

[73] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for
federated learning. In International Conference on Machine Learning, pages 5132–5143.
PMLR, 2020.

[74] S. Kataoka. A stochastic programming model. Econometrica, 31:181–196, 1963.

[75] Kenji Kawaguchi and Haihao Lu. Ordered sgd: A new stochastic optimization
framework for empirical risk minimization. In International Conference on Artificial

Intelligence and Statistics, pages 669–679. PMLR, 2020.

[76] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory
for local sgd on identical and heterogeneous data. In International Conference on

Artificial Intelligence and Statistics, pages 4519–4529. PMLR, 2020.

[77] Jon Kleinberg. Inherent trade-offs in algorithmic fairness. In Abstracts of the 2018

ACM International Conference on Measurement and Modeling of Computer Systems,
pages 40–40, 2018.

Bibliography 127

[78] Will Knight. A self-driving Uber has killed a pedestrian in Arizona. Ethical Tech,
March 2018.

[79] Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica: journal

of the Econometric Society, pages 33–50, 1978.

[80] A. Kogan and M. A. Lejeune. Threshold boolean form for joint probabilistic
constraints with random technology matrix. Mathematical Programming, 147(1-2):
391–427, 2014.

[81] A. Kogan, M. A. Lejeune, and J. Luedtke. Erratum to: Threshold boolean form
for joint probabilistic constraints with random technology matrix. Mathematical

Programming, 155(1):617–620, 2016.

[82] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U.
Stich. A unified theory of decentralized SGD with changing topology and local
updates. In Proceedings of the 37th International Conference on Machine Learning,

ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine

Learning Research, pages 5381–5393. PMLR, 2020.

[83] Ole Kröger, Carleton Coffrin, Hassan Hĳazi, and Harsha Nagarajan. Juniper: An
open-source nonlinear branch-and-bound solver in Julia. In Integration of Constraint

Programming, Artificial Intelligence, and Operations Research. Springer International
Publishing, 2018. ISBN 978-3-319-93031-2.

[84] Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh
Shafieezadeh-Abadeh. Wasserstein Distributionally Robust Optimization: Theory
and Applications in Machine Learning. In Operations Research & Management

Science in the Age of Analytics, pages 130–166. INFORMS, 2019.

[85] Shigeo Kusuoka. On law invariant coherent risk measures. In Advances in

mathematical economics, pages 83–95. Springer, 2001.

[86] Yassine Laguel, Jérôme Malick, and Zaid Harchaoui. First-order optimization for
superquantile-based supervised learning. In 2020 IEEE 30th International Workshop

on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2020.

[87] Yassine Laguel, Krishna Pillutla, Jérôme Malick, and Zaid Harchaoui. Device
heterogeneity in federated learning: A superquantile approach. arXiv preprint

arXiv:2002.11223, 2020.

[88] Yassine Laguel, Jérôme Malick, and Zaid Harchaoui. Superquantile-based learning:
a direct approach using gradient-based optimization. Under review for the Journal

of Signal Processing Systems, 2021.

[89] Yassine Laguel, Krishna Pillutla, Jérôme Malick, and Zaid Harchaoui. A Su-
perquantile Approach to Federated Learning with Heterogeneous Devices. In
IEEE CISS, 2021.

[90] Yassine Laguel, Krishna Pillutla, Jérôme Malick, and Zaid Harchaoui. Superquan-
tiles at work : Machine learning applications and efficient (sub)gradient computa-
tion. Set-Valued and Variational Analysis, 2021.

[91] Yassine Laguel, Wim Van Ackooĳ, and Jérôme Malick. Chance constrained
problems: a bilevel convex optimization perspective. Under review for Computational

Optimization and Applications, 2021.

[92] Yassine Laguel, Wim Van Ackooĳ, Jérôme Malick, and Guilherme Matiussi-
Ramalho. On the convexity of level-sets of probability functions. Journal of convex

analysis, 2021.

[93] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based
python jit compiler. In Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC, LLVM ’15, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450340052.

[94] Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods
for distributionally robust optimization. NeurIPS, 2020.

128 Bibliography

[95] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated
Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing

Magazine, 37(3):50–60, 2020.

[96] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. Federated Optimization in Heterogeneous Networks. In
Proceedings of Machine Learning and Systems, pages 429–450. 2020.

[97] Tian Li, Maziar Sanjabi, and Virginia Smith. Fair Resource Allocation in Federated
Learning. In International Conference on Learning Representations, 2020.

[98] Tian Li, Ahmad Beirami, Maziar Sanjabi, and Virginia Smith. Tilted Empirical
Risk Minimization. In International Conference on Learning Representations, 2021.

[99] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On
the Convergence of FedAvg on Non-IID Data. In ICLR, 2020.

[100] Daniel P Loucks, Jery R Stedinger, Douglas A Haith, et al. Water resource systems

planning and analysis. Prentice-Hall., 1981.

[101] Andre Lucas and Pieter Klaassen. Extreme returns, downside risk, and optimal
asset allocation. Journal of Portfolio Management, 25(1):71, 1998.

[102] James Luedtke. An integer programming and decomposition approach to general
chance-constrained mathematical programs. In International Conference on Integer

Programming and Combinatorial Optimization, pages 271–284. Springer, 2010.

[103] James Luedtke. A branch-and-cut decomposition algorithm for solving chance-
constrained mathematical programs with finite support. Mathematical Programming,
146(1):219–244, 2014.

[104] James Luedtke, Shabbir Ahmed, and George L Nemhauser. An integer program-
ming approach for linear programs with probabilistic constraints. Mathematical

programming, 122(2):247–272, 2010.

[105] David G Luenberger and Yinyu Ye. Linear and nonlinear programming, volume 2.
Springer, 1984.

[106] Juan Pablo Luna, Claudia Sagastizábal, and Mikhail Solodov. An approximation
scheme for a class of risk-averse stochastic equilibrium problems. Mathematical

Programming, 157(2):451–481, 2016.

[107] Luo Luo, Haishan Ye, Zhichao Huang, and Tong Zhang. Stochastic recursive gradi-
ent descent ascent for stochastic nonconvex-strongly-concave minimax problems.
Advances in Neural Information Processing Systems, 33, 2020.

[108] Harry Markowitz. Portfolio selection. Journal of Finance, 7, 1952.

[109] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-Efficient Learning of Deep Networks from
Decentralized Data. In Artificial Intelligence and Statistics, pages 1273–1282, 2017.

[110] Elena Medova. Chance-constrained stochastic programming forintegrated services
network management. Annals of Operations Research, 81:213–230, 1998.

[111] Rachel Metz. Microsoft’s neo-Nazi sexbot was a great lesson for makers of AI
assistants. Artificial Intelligence, March 2018.

[112] Zakaria Mhammedi, Benjamin Guedj, and Robert C. Williamson. PAC-Bayesian
Bound for the Conditional Value at Risk. In NeurIPS, 2020.

[113] Sofia I Miranda. Superquantile regression: theory, algorithms, and applications.
Technical report, Naval postgraduate school Monterey ca, 2014.

[114] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic Federated
Learning. In International Conference on Machine Learning, 2019.

[115] A. Nemirovski and A. Shapiro. Convex approximations of chance constrained
programs. SIAM Journal of Optimization, 17(4):969–996, 2006.

[116] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[117] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical

programming, 103(1):127–152, 2005.

Bibliography 129

[118] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of
convex functions. Foundations of Computational Mathematics, 17(2), 2017.

[119] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[120] Nilay Noyan and Gábor Rudolf. Kusuoka representations of coherent risk measures
in general probability spaces. Annals of Operations Research, 229(1):591–605, 2015.

[121] Welington de Oliveira and Claudia Sagastizábal. Bundle methods in the xxist
century: A bird’s-eye view. Pesquisa Operacional, 34(3):647–670, 2014.

[122] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 2011.

[123] Alejandra Peña-Ordieres, James R Luedtke, and Andreas Wächter. Solving chance-
constrained problems via a smooth sample-based nonlinear approximation. SIAM

Journal on Optimization, 30(3):2221–2250, 2020.

[124] Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global
Vectors for Word Representation. In Empirical Methods in Natural Language

Processing, pages 1532–1543, 2014.

[125] Constantin Philippenko and Aymeric Dieuleveut. Preserved central model for
faster bidirectional compression in distributed settings. CoRR, abs/2102.12528,
2021.

[126] Krishna Pillutla, Yassine Laguel, Jérôme Malick, and Zaid Harchaoui. Chance
constrained problems: a bilevel convex optimization perspective. Under review for

the IEEE Journal of Selected Topics in Signal Processing, 2021.

[127] A. Prékopa. Stochastic Programming. Kluwer, Dordrecht, 1995. doi: 10.1007/
978-94-017-3087-7.

[128] A. Prékopa. On the concavity of multivariate probability distributions functions.
Operations Research Letters, 29:1–4, 2001.

[129] András Prékopa and Tamás Szántai. Flood control reservoir system design using
stochastic programming. In Mathematical programming in use, pages 138–151.
Springer, 1978.

[130] András Prékopa, Tamás Rapcsák, and István Zsuffa. Serially linked reservoir
system design using stochastic programing. Water Resources Research, 14(4):672–678,
1978.

[131] Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A
review. arXiv preprint arXiv:1908.05659, 2019.

[132] F. A. Ramponi. Consistency of the scenario approach. SIAM Journal on Optimization,
28(1):135–162, 2018.

[133] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do
imagenet classifiers generalize to imagenet? In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine

Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages 5389–5400. PMLR, 2019.

[134] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečný, Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive Federated
Optimization. In International Conference on Learning Representations, 2021.

[135] R Terry Rockafellar, Johannes O Royset, and Sofia I Miranda. Superquantile
regression with applications to buffered reliability, uncertainty quantification, and
conditional value-at-risk. European Journal of Operational Research, 234(1):140–154,
2014.

[136] R Tyrrell Rockafellar and Johannes O Royset. Superquantiles and their applications
to risk, random variables, and regression. In Theory Driven by Influential Applications,
pages 151–167. INFORMS, 2013.

[137] R Tyrrell Rockafellar and Johannes O Royset. Random variables, monotone
relations, and convex analysis. Mathematical Programming, 148(1-2), 2014.

130 Bibliography

[138] R Tyrrell Rockafellar and Stan Uryasev. The Fundamental Risk Quadrangle in
Risk Management, Optimization and Statistical Estimation. Surveys in Operations

Research and Management Science, 18(1-2):33–53, 2013.

[139] R Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general
loss distributions. Journal of banking & finance, 26(7):1443–1471, 2002.

[140] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer
Science & Business Media, 2009.

[141] R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-
at-risk. Journal of risk, 2:21–42, 2000.

[142] R.T. Rockafellar and R.J.-B. Wets. Variational Analysis. Springer Verlag, Heidelberg,
1998.

[143] J.O. Royset and E. Polak. Extensions of stochastic optimization results to problems
with system failure probability functions. Journal of Optimization Theory and

Applications, 133(1):1–18, 2007.

[144] A Ruszczynski and A Shapiro. Stochastic programming (Handbooks in operations
research and management science), 2003.

[145] Andrzej Ruszczyński and Alexander Shapiro. Optimization of convex risk func-
tions. Mathematics of operations research, 31(3):433–452, 2006.

[146] Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, and Peyman Mohajerin Esfahani.
Regularization via mass transportation. Journal of Machine Learning Research, 20
(103):1–68, 2019.

[147] Alexander Shapiro. On Kusuoka representation of law invariant risk measures.
Mathematics of Operations Research., 38:142–152, 2013.

[148] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on

Stochastic Programming: Modeling and Theory, Second Edition. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2014. ISBN 1611973422,
9781611973426.

[149] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on

stochastic programming: modeling and theory. SIAM, 2021.

[150] Samarth Sinha, Zhengli Zhao, Anirudh Goyal, Colin Raffel, and Augustus Odena.
Top-k training of gans: Improving GAN performance by throwing away bad
samples. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing

Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS

2020, December 6-12, 2020, virtual, 2020.

[151] Jinhyun So, Basak Güler, and Amir Salman Avestimehr. Turbo-aggregate: Breaking
the quadratic aggregation barrier in secure federated learning. IEEE J. Sel. Areas

Inf. Theory, 2(1):479–489, 2021. doi: 10.1109/JSAIT.2021.3054610.

[152] Tasuku Soma and Yuichi Yoshida. Statistical learning with conditional value at
risk. CoRR, abs/2002.05826, 2020.

[153] Sebastian U. Stich. Local SGD Converges Fast and Communicates Little. In
International Conference on Learning Representations, 2019.

[154] Stefan Straszewicz. Über exponierte punkte abgeschlossener punktmengen. Fun-

damenta Mathematicae, 24(1):139–143, 1935.

[155] Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Policy
gradient for coherent risk measures. In Advances in Neural Information Processing

Systems, pages 1468–1476, 2015.

[156] S. Uryas’ev. Derivatives of probability functions and some applications. Annals of

Operations Research, 56:287–311, 1995.

[157] W. van Ackooĳ. Eventual convexity of chance constrained feasible sets. Optimization

(A Journal of Mathematical Programming and Operations Research), 64(5):1263–1284,
2015. doi: 10.1080/02331934.2013.855211.

Bibliography 131

[158] W. van Ackooĳ. A discussion of probability functions and constraints from a
variational perspective. Set-Valued and Variational Analysis (online), 28:585–609,
2020.

[159] W. van Ackooĳ and W. de Oliveira. Convexity and optimization with copulæ struc-
tured probabilistic constraints. Optimization: A Journal of Mathematical Programming

and Operations Research, 65(7):1349–1376, 2016.

[160] W. van Ackooĳ and R. Henrion. (Sub-) Gradient formulae for probability functions
of random inequality systems under Gaussian distribution. SIAM Journal on

Uncertainty Quantification, 5(1):63–87, 2017.

[161] W. van Ackooĳ and J. Malick. Eventual convexity of probability constraints
with elliptical distributions. Mathematical Programming, 175(1):1–27, 2019. doi:
10.1007/s10107-018-1230-3.

[162] W. van Ackooĳ, R. Henrion, A. Möller, and R. Zorgati. Joint chance constrained
programming for hydro reservoir management. Optimization and Engineering, 15,
2014.

[163] W. van Ackooĳ, V. Berge, W. de Oliveira, and C. Sagastizábal. Probabilistic
optimization via approximate p-efficient points and bundle methods. Computers

& Operations Research, 77:177–193, 2017.

[164] Wim Van Ackooĳ. Chance constrained programming: with applications in Energy

Management. PhD thesis, Ecole Centrale Paris, 2013.

[165] Wim van Ackooĳ, René Henrion, Andris Möller, and Riadh Zorgati. Joint chance
constrained programming for hydro reservoir management. Optimization and

Engineering, 15(2):509–531, 2014.

[166] Wim van Ackooĳ, Sophie Demassey, Paul Javal, Hugo Morais, Welington
de Oliveira, and Bhargav Swaminathan. A bundle method for nonsmooth dc
programming with application to chance-constrained problems. Computational

Optimization and Applications, 78(2):451–490, 2021.

[167] Lieven Vandenberghe. The cvxopt linear and quadratic cone program solvers.
Online: http://cvxopt. org/documentation/coneprog. pdf, 2010.

[168] Thĳs Vogels, Sai Praneeth Karinireddy, and Martin Jaggi. Powersgd: Practical
low-rank gradient compression for distributed optimization. Advances In Neural

Information Processing Systems 32 (Nips 2019), 32(CONF), 2019.

[169] Rudin Walter. Real and complex analysis. 1987.

[170] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling
the Objective Inconsistency Problem in Heterogeneous Federated Optimization.
In Neural Information Processing Systems, 2020.

[171] Jianyu Wang et al. A field guide to federated optimization. CoRR, abs/2107.06917,
2021.

[172] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian
Makaya, Ting He, and Kevin Chan. Adaptive federated learning in resource
constrained edge computing systems. IEEE J. Sel. Areas Commun., 37(6):1205–1221,
2019. doi: 10.1109/JSAC.2019.2904348.

[173] Robert Williamson and Aditya Menon. Fairness risk measures. In International

Conference on Machine Learning, pages 6786–6797. PMLR, 2019.

[174] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. Applied federated learning:
Improving google keyboard query suggestions. CoRR, abs/1812.02903, 2018.

[175] Jane J Ye, Daoli Zhu, and Qĳi Jim Zhu. Exact penalization and necessary optimality
conditions for generalized bilevel programming problems. SIAM Journal on

optimization, 7(2):481–507, 1997.

[176] Constantin Zalinescu. Convex analysis in general vector spaces. World scientific, 2002.

[177] Riadh Zorgati, Wim van Ackooĳ, and Romain Apparigliato. Supply shortage
hedging: estimating the electrical power margin for optimizing financial and

132 Bibliography

physical assets with chance-constrained programming. IEEE Transactions on Power

Systems, 24(2):533–540, 2009.

L I ST O F F I G U R E S

Figure 1.1 For a continuous random variable -, drawing of ?-quantile
&?(-), and ?-superquantile (?(-), defined as an expecta-
tion. 3

Figure 1.2 Illustration of a dual formulation of the superquantile
as the support function of a particular ambiguity set (in
red). 6

Figure 1.3 Trajectory of the iterates (in blue) of our bundle algo-
rithm on a 2-dimensional chance-constrained problem
investigated in Chapter 5. 7

Figure 1.4 Comparative diagram between the baseline FedAvg and
our algorithm �-FL which handles heterogenous devices.
Steps 1, 2 and 3 are identical and hold as fundamental
components of any practical federated framework: broad-
cast of server models to a random subselection of devices
- running of local stochastic gradient updates - secure
aggregation of the selected models. Only step 10 is specific
to �-FL and can be interpreted as an additional filtering
step among selected device to choose which device will
run the local updates. Mathematically, this filtering steps
interpret as a composition with the superquantile - see
more in Chapter 6. 9

Figure 2.1 Superquantile regression improves over worst-case dat-
apoints. Left figure: histograms of residuals A8 =

|H8 � (F2G
2
8
+ F1G8 + F0)| for model (2.9) (in violet) and

model (2.10) (in orange). Right table: Gth perc. stands
for G-th percentile of final distribution of the residuals
A8 . 16

Figure 2.2 Statistical Heterogeneity is a key feature of federated
learning where clients with heterogeneous distributions
collaborate to learn a single model. 18

Figure 2.3 Comparison of the three regressions for the toy federated
learning setting of Example 2.2. We want commensurate
performances among users, which means, graphically, a
curve at the same distance from the data-points of the
conforming users (in blue) and the non-conforming user
(red). 19

Figure 3.1 The Fenchel conjugate and the bi-conjugate of a real
function 5 . The Fenchel conjugate is always convex.
The Fenchel biconjugate 5 ⇤⇤ satisfies epi 5 ⇤⇤ = conv epi 5 .
25

Figure 3.2 Illustration of the integral expression of the superquan-
tile. Cumulative distribution function (on the left) and
quantile function (on the right) are each other’s inverse.
The superquantile is obtained by averaging the quantiles
greater than the ?-quantile (red section on graph on the
right). 33

133

134 List of Figures

Figure 3.3 Illustration of the dual expression of the superquantile
(recall of Figure 1.2 from Section 1.1). G 7! (?(G) is the
support function of the red polytope. The red point at
the center represents the uniform distribution. 34

Figure 3.4 Kataoka’s example of eventually convex chance con-
straint. Here ⇢ follows a 2-dimensional Gaussian dis-
tribution with parameters ⇠ = (1, 1) and ⌃ = �2. Even
in the simple Gaussian case, chance constraints are not
garanteed to be convex for all values of ?. 39

Figure 4.1 Impact of the smoothing parameter ⇡ on the relative
weighing between data points. Left: empirical cumu-
lative distribution of = = 500 points sampled from a
standard Gaussian distribution. Right: distribution of
weights, i.e., the optimal solution of (4.6) for ? = 0.5, with
respect to sorted data points (i.e., value at abscissa C is
the weight attached to the C-quantile). Different colours
correspond to different values of ⇡. 48

Figure 4.2 Impact of the smoothing parameter ⇡ solving a superquan-
tile logistic regression on a classical dataset (Australian
Credit dataset). 50

Figure 4.3 Illustration of the roots of the dual functions : . Once the
G8 ’s are sorted, a single pass over them suffices to compute
the whole sequence (◆8

:
)0:=�1 57

Figure 4.4 A comparison between batch/mini-batch algorithms in
SPQR on a superquantile logistic regression problem with
MNIST. Left: comparison of the runs of SGD with different
batch sizes. Right: best SGD vs. batch quasi-Newton.

66

Figure 4.5 Impact of the smoothing parameter ⇡ on the results
obtained by the quasi-Newton algorithm solving a su-
perquantile logistic regression on theAustralian Credit
dataset. Medium values are preferable: small values com-
promise convergence and large values give solutions close
to the standard ERM. 67

Figure 4.6 Reshaping of the histogram of testing losses for su-
perquantile regression models (in red) as ? grows. We
observe a shift to the left of the 90th quantile of losses, at
the price of degrading the average value. 68

Figure 4.7 Reshaping of histograms of test losses (top) and test
accuracies (bottom) over all class imbalances (for a clas-
sification task with logistic regression and the splice
dataset). 70

Figure 5.1 Illustration of Example 5.1. A linear problem with a
vanishing weak sharpness modulus. 75

Figure 5.2 Trajectory of the iterates (in blue) on the plot of the level
sets of the chance-constraint and the objective for the 2d
problem with data (5.19). 86

Figure 5.3 Convergence of our penalization algorithm on four norm
problems (5.20) with 3 = 2, 10.50, 200. 87

List of Figures 135

Figure 6.1 Schematic summary of the �-FL framework. Left: The
server maintains multiple models F9 , one for each level
of conformity 9 . Middle: During training, selected
devices participate in training each model F9 . Individual
updates are securely aggregated to update the server
model. Right: Each test user is allowed to select their
level of conformity , and are served the corresponding
model F. 93

Figure 6.2 Comparative diagram between the baseline FedAvg and
our algorithm �-FL (recall of Figure 1.4). Both algorithms
consist of the following steps (note difference in step 1’).
Step 1: Server selects < client devices and broadcasts
the model to each selected device. Step 1’ (�-FL only):
Each selected device computes the loss (a scalar) incurred
by the model on its local data and sends it to the server.
Based on these losses, the server computes a threshold
loss. It only keeps devices whose losses are larger than
this threshold, and un-selects the other devices. Step 2:
Each selected device computes an update to the server
model based on its local data. Step 3: Updates from
selected devices are securely aggregated to update the
server model. 94

Figure 6.3 Illustration of �-FL with a uniform mixture of Gaussians.
Left: Positions in R

2 of the means ⇠1,⇠2,⇠3 of Gaussians
@1, @2, @3 resp., the vanilla federated learning model F1,
and the �-FL model F2/3 at conformity  = 2/3. Center:
Comparison of the loss �(· ; ?�) for each possible mixture
?� with weights � = (�1,�2,�3). Right: Histogram of
losses �(·; ?�) for ?� drawn uniformly from the set of all
mixtures of @1, @2, @3 with conformity at least  = 2/3.
97

Figure 6.4 Performance across iterations of EMNIST linear
model. 112

Figure 6.5 Performance across iterations of EMNIST ConvNet
model. 113

Figure 6.6 Histogram of loss distribution over training devices from
EMNIST. Top:linear – Bottom:ConNet). 113

Figure 6.7 Histogram of misclassification error distribution
over testing devices for EMNIST Top:linear – Bot-
tom:ConNet). 114

Figure 6.8 For FedAvg and �-FL with values of  in {0.1, 0.5, 0.8},
scatter plot of (left) loss on training device vs. amount of
local data, and (right) misclassification error on testing
device vs. amount of local data for EMNIST (Linear
Model) 114

Figure 6.9 For FedAvg and �-FL with values of  in {0.1, 0.5, 0.8},
scatter plot of (left) loss on training device vs. amount of
local data, and (right) misclassification error on testing
device vs. amount of local data for EMNIST (ConvNet
Model) 115

Figure 6.10 For FedAvg and �-FL with values of  in {0.1, 0.5, 0.8},
scatter plot of (left) loss on training device vs. amount of
local data, and (right) misclassification error on testing
device vs. amount of local data for Sent140. 115

Figure 6.11 Number of devices selected per round (after device filter-
ing) for the EMNIST dataset. The shaded region denotes
the maximum and minimum over 5 random runs. 115

Figure 6.12 Effect of the number of local epochs. 116
Figure 6.13 Convergence of Secure (1 � )-Quantile using Itera-

tion (6.14). The first row denotes the error in the quantile
estimate @C of (6.14), while the second wrong row gives
the error in filtering, i.e., difference in the number G: � @C
of devices filtered out @C vs. the same number G: � @⇤ for
@⇤. 118

L I ST O F TA B L E S

Table 2.1 Average performances of each model over both sub-
groups. 20

Table 4.1 Comparison of performances between a superquantile
model and a risk-neutral model for a logistic regression
on a distributionally shifted dataset. 69

Table 5.1 Final suboptimality and feasibility for (5.20) (where ? =

0.8). 88
Table 6.1 Metrics for the test misclassification error for EMNIST

(Linear Model). 111
Table 6.2 Metrics for the test misclassification error for EMNIST

(ConvNet Model). 111
Table 6.3 Metrics for the test misclassification error for Sent140

(Linear Model). 111
Table 6.4 Metrics for the test misclassification error for Sent140

(RNN Model). 112
Table 6.5 Comparison of communication cost of (i) secure aggre-

gation for quantile of < scalars with = rounds of (6.14),
versus, (ii) secure aggregation of < weight vectors in
3 dimension. Typical values used are < 2 {100, 500},
= 2 {10, 50} and 3 ⇠ 106. 118

L I ST O F A LG O R I T H M S

1 Fast subroutine for smoothed oracle in the Euclidean setting 48
2 Computation of the sequence (◆8

:
)0:=�1 in O(= log =) 59

3 Computation of the term � from (4.33) 62

136

4 Computation of the term ⌫ from (4.33) 63

5 The �-FL Algorithm 96

��������

This manuscript was typeset with LATEX 2⌘ using Hermann Zapf’s Palatino type
face (the actual Type 1 PostScript fonts used were URW Palladio L and FPL).
The monospaced text (hyperlinks, etc.) was typeset in Bera Mono, originally
developed by Bitstream, Inc. as “Bitstream Vera” (with Type 1 PostScript fonts
by Malte Rosenau and Ulrich Dirr).

The typographic style of this dissertation was inspired by the authoritative
genius of Bringhurst’s Elements of Typographic Style, ported to LATEX by André
Miede, the original designer of the classicthesis template. Any unsightly
deviations from these works should be attributed solely to the author’s (not
always successful) efforts to conform to the awkward A4 paper size.

Risk-averse Optimization: Models, Algorithms, and Applications in Machine Learning

© Yassine Laguel 2021

Yassine Laguel

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/

	Frontispiece
	Preface
	preface
	Acknowledgments

	acknowledgments
	Contents

	1 Introduction
	1.1 Optimizing under uncertainty
	1.2 About this manuscript
	1.3 Outline and Specific contributions
	1.3.1 Contributions
	1.3.2 Further works non included in this thesis
	1.3.3 List of publications

	2 Selected applications
	2.1 From operations research
	2.1.1 Portfolio optimization
	2.1.2 Reservoir planning

	2.2 From machine learning
	2.2.1 Safe machine learning
	2.2.2 Federated optimization
	2.2.3 Fairness in AI

	3 Technical Preliminaries
	3.1 Risk-averse optimization through the lens of duality theory
	3.1.1 Duality in probability spaces
	3.1.2 Convex risk measures and Fenchel-Moreau's theorem
	3.1.3 Supporting distributionally robust optimization
	3.1.4 Subdifferential formula

	3.2 Coherency of a class of support functions
	3.3 Superquantiles and the Kusuoka representation
	3.3.1 The superquantile risk measure
	3.3.2 The Kusuoka representation

	3.4 Minimization by first-order methods
	3.5 Challenges in chance-constrained programming

	4 Minimizing superquantile-based risk measures
	4.1 Introduction
	4.2 Efficient (sub)-gradient computations
	4.2.1 Subdifferentiation via the chain rule
	4.2.2 Efficient Smoothing
	4.2.3 Comparison to other smoothing schemes
	4.2.4 Generalization to law-invariant comonotone risk-measures

	4.3 SPQR: A python-toolbox for superquantile-based risk measures
	4.4 Numerical experiments
	4.4.1 Solving superquantile-based learning
	4.4.2 Superquantile brings robustness against distributional shifts

	4.5 Conclusion

	5 Solving chance-constrained problems
	5.1 Introduction
	5.2 Chance constrained problems seen as bilevel problems
	5.3 A double penalization scheme
	5.3.1 Weak sharpness and analysis of the value function
	5.3.2 Exact penalization for the hard constraint
	5.3.3 Double penalization scheme
	5.3.4 Uniform bound at the limit

	5.4 Double penalization in practice
	5.4.1 Solving penalized problems by a bundle algorithm
	5.4.2 TACO: A python toolbox for chance-constrained problems

	5.5 Numerical illustrations
	5.5.1 Visualization of convergence on a 2D problem
	5.5.2 Experiments on a family of problems
	5.5.3 Limitations of MINLP approach

	5.6 Conclusion

	6 Handling heterogeneity in federated learning
	6.1 Introduction
	6.2 Problem setting
	6.2.1 Vanilla federated learning and FedAvg
	6.2.2 Problem formulation: conformity and heterogeneity

	6.3 The -FL framework
	6.3.1 The framework
	6.3.2 Federated optimization for -FL
	6.3.3 Illustration on a toy example

	6.4 Convergence analysis
	6.4.1 Assumptions and main result
	6.4.2 Preliminary results
	6.4.3 Adversarial gradient dissimilarity and client drift
	6.4.4 Effect of one round

	6.5 Numerical experiments
	6.5.1 Datasets and tasks
	6.5.2 Algorithms, hyperparameters and evaluation strategy
	6.5.3 Experimental results
	6.5.4 Performing secure aggregation

	6.6 Conclusion

	7 Conclusion and perspectives
	Bibliography

	bibliography
	index
	List of Figures
	of figures
	List of Tables
	of tables
	List of algorithms
	of algorithms

	Colophon

