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Résumé

Simulation numérique des états stationnaires associés aux processus
thermomécaniques

De nombreux procédés de fabrication thermomécanique comme le laminage, le soudage
ou encore l’usinage mettent en jeu soit des sollicitations mobiles par rapport à la matière
fixe, soit de la matière mobile par rapport à des sollicitations fixes. Dans tous les cas,
après un régime transitoire en général assez court, les champs thermiques, métallurgiques
et mécaniques associés à ces procédés atteignent un état stationnaire. La recherche de ces
états stationnaires à l’aide de la méthode des éléments finis classique nécessite de mettre
en œuvre des modèles complexes et couteux où les sollicitations se déplacent par rapport
à la matière (ou l’inverse).

La recherche directe des états stationnaires a fait l’objet de nombreux travaux de
recherche ces trente dernières années. Des méthodes sont aujourd’hui disponibles et pour
certaines sont proposées dans des codes de calcul du commerce. Ainsi, une option de
calcul dite repère mobile proposée par différents auteurs est disponible dans le logiciel
SYSWELDTM . Cette méthode permet de calculer les états thermique, métallurgique et
mécanique stationnaires associés à un procédé de soudage, en résolvant un problème de
diffusion-convection en thermique et en intégrant, en mécanique, les équations constitu-
tives du comportement du matériau le long des lignes de courant. Si cette méthode a été
utilisée avec succès dans de nombreuses applications, elle présente néanmoins quelques
limitations. Ainsi le maillage doit être structuré et la convergence des calculs est en
général assez lente.

Nous proposons dans cette thèse de résoudre le problème mécanique dans un repère liè
aux sollicitations, en nous appuyant sur une méthode de calcul par éléments finis reposant
sur l’intégration nodale et la technique SCNI (Stabilized Conforming Numerical Integra-
tion). Cette méthode permet l’utilisation de maillages en tétraèdres (ou triangles en 2D)
sans rencontrer de problème de verrouillage volumique résultant de l’incompressibilité
plastique associée au critère de plasticité de von Mises. Plutôt que de rechercher di-
rectement l’état stationnaire, l’idée générale est ici de construire l’état stationnaire à
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partir d’une analyse transitoire en faisant entrer pas à pas la matière par l’amont et en la
faisant sortir par l’aval d’un maillage fixe par rapport aux sollicitations et de taille limitée.
L’état (quasi-)stationnaire n’est donc atteint qu’au bout d’un certain temps d’analyse. Les
avantages de cette méthode résident dans:

1. L’utilisation d’un maillage libre en tétraèdres ou en triangles (au lieu des maillages
structurés),

2. Un maillage raffiné uniquement dans la zone située au voisinage des sollicitations,

3. Une grande robustesse et notamment une bonne convergence des calculs mé-
caniques non linéaires liée à la résolution des états transitoires.

Après une introduction générale (Chapitre 1) et un état de l’art sur les méthodes
existantes (Chapitre 2), nous présentons une approche de simulation du mouvement
de matière dans le cadre de la méthode des éléments finis classique sur un problème
de soudage (Chapitre 3). Nous y proposons également des conditions aux limites ther-
miques pertinentes pour calculer directement la distribution de températures en régime
stationnaire.

La méthode des éléments finis reposant sur l’intégration nodale est ensuite décrite au
Chapitre 4. Les avantages et inconvénients de la méthode sont discutés. La méthode est
validée sur une application en grandes déformations élastoplastiques, un problème de
flexion et une simulation thermomécanique de soudage.

La méthode des éléments finis reposant sur l’intégration nodale est alors développée
pour prendre en compte un mouvement de matière (Chapitre 5). Trois types de mouve-
ment sont considérés : en translation, circulaire et en hélice. Différentes méthodes de
transport de champ sont abordées et discutées ainsi que le couplage thermomécanique.
Des exemples d’application dans le domaine du laminage et du soudage pour différents
mouvements de matière montrent l’efficacité de la méthode développée

Des perspectives à ce travail sont proposées au Chapitre 6. Les perspectives envisagées
visent d’une part à améliorer la méthode proposée et d’autre part, à développer la méthode
pour simuler d’autres procédés. Une première application de la méthode à la simulation
de la coupe orthogonale y est présentée.

Mots clés: Méthode des éléments finis, intégration nodale, thermomécanique, mouvement
de matière, état stationnaire, repère mobile, soudage, laminage, usinage.
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Abstract

Numerical simulation of steady states associated with thermomechanical
processes

In the numerous thermomechanical manufacturing processes such as rolling, welding,
or even machining involve either moving loads with respect to the fixed material or
moving material with respect to fixed loads. In all cases, after a transient regime which is
generally quite short, the thermal, metallurgical, and mechanical fields associated with
these processes reach a steady state. The search for these stationary states using the
classical finite element method requires the implementation of complex and expensive
models where the loads move with respect to the material (or vice versa).

The steady-state simulation in one increment has been the subject of much researches
over the past thirty years. Methods are now available and some are integrated into calcu-
lation codes commercial. Thus, a so-called Moving Reference Frame method proposed
by various authors is available in the SYSWELDTM software. This method makes it
possible to calculate the steady-state of thermal, metallurgical, and mechanical states
associated with a welding process, by solving a thermal diffusion-convection problem in
thermal-metallurgy and by integrating, in mechanics, the constitutive equations of the
material along the streamline. Moreover, this method has been used successfully in many
applications, it nevertheless has some limitations. Thus the mesh must be structured and
the convergence of computations is generally quite slow.

In this thesis, we propose to solve the mechanical problem in a frame linked to the
solicitations, by relying on a finite element calculation method based on nodal integration
and the SCNI (Stabilized Conforming Numerical Integration) technique. This method
allows the use of tetrahedron meshes (or 2D triangles) without encountering a locking
problem resulting from the plastic incompressibility associated with the von Mises plas-
ticity criterion. Rather than directly calculating the steady-state, the general idea here is
to construct the steady-state from a transient analysis by bringing material step by step
upstream and by making it exit downstream of a fixed mesh related to the solicitations
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and of the limited mesh size. The (pseudo-) steady-state is therefore only achieved after
certain steps of analysis. The advantages of this method lie in:

1. The use of a tetrahedral or triangles mesh (instead of structured meshes),

2. A refined mesh is only needed in the area where the solicitation locates,

3. The method proposed shows the robustness and good convergence of nonlinear
mechanical calculations because of the resolution of the transient states.

Apart from a general introduction (Chapter 1) and a state of the art on the existing
methods (Chapter 2), we present an approach of simulation of the movement of material
within the framework of the classical finite element method on a welding problem
(Chapter 3). We also provide relevant thermal boundary conditions for directly calculating
the steady-state of temperature distribution.

The finite element method based on the nodal integration technique is then described
in Chapter 4. The advantages and disadvantages of the method are discussed. The nodal-
integration-based finite element is validated by comparing its simulation results with
classical finite element methods in large elastoplastic strains, a bending problem, and a
thermomechanical simulation of welding.

The nodal-integration-based finite element is then developed and applied to simulate
material motion (Chapter 5). Three types of movement are considered: translational,
circular, and helical. Different methods of field transport are approached and discussed
as well as thermomechanical coupling. Examples of applications in the field of rolling
and welding for different movements of material show the efficiency of the developed
method.

Perspectives for this work are presented in Chapter 6. The envisaged perspectives aim,
on the one hand, to improve the proposed method and on the other hand, to develop the
method to simulate other processes. A first application of the material motion method to
the simulation of the orthogonal cut is presented there.

Key words: Finite element method, nodal integration technique, thermal-mechanical,
material motion, steady-state, moving reference frame, welding, rolling, machining.
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1. Introduction

1.1 INTRODUCTION

The metal forming processes started from the Bronze Age in human history. These
processes are mainly used to transform or change the metal parts to the desired shape
by permanently mechanical deformation. Today, the high economic development and
improvement of daily comfort level cannot be achieved without those processes.

Nowadays, competition among industrial companies demands developing products
with increasingly reduced time and costs. The control of manufacturing industrial
processes often determines the quality of products and thus constitutes an essential factor
of success in this context.

Thermo-mechanical manufacturing processes, such as welding, rolling, machining,
or additive manufacturing, are the most widely used metal forming processes. The
numerical simulations of these processes are usually very time consuming due to the
moving load, then a fine mesh and minor time step are used to capture the evolution of
strain/stress. In the next subsections, since the numerical simulation of rolling, welding,
and machining processes constitute the aims of thesis work, a short introduction of each
process is presented.

1.1.1 Rolling processes

Rolling is a typical metal forming process, for example, the metal stock passes through
one or more sets of pairs of rolls to reduce and uniformize the thickness of the sheet
(figure-1.1). Rolling can be classified as either hot rolling or cold rolling, according to the
temperature of the metal during the rolling process. Hot rolling induces coupled phe-
nomena of recrystallization, phase transformation, and cooling that change the properties
of the material. With the microstructural’s modifications, metals could become stronger
with improved weldability and formability, and these properties have a significant impact
on its applications. According to the final form, the types of rolling processes can also be
classified as ring rolling, roll bending, roll forming, profile rolling, and so on.

Rolling is a general operation for the metal produced. The rolling always takes place
very early in the production chain, as soon as the metal becomes consistent enough to
undergo plastic deformations. The rolling usually corresponds at an intermediate stage
leading to a half-product that is subsequently intended for machining, cutting, or drawing,
which means the quality of rolling will directly affect the final product’s quality.

Even though the rolling process has been used for a very long time (the earliest rolling
mills were slitting mills introduced in 1590). The paper of Buchmayr et al. [26] has
provided an overview of recent steel market developments. It mentioned that the im-
provement of steel properties remains the main research field for many applications.
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1.1. INTRODUCTION

Figure 1.1 - Example of the rolling process.

For instance, an increase in the demand is expected regarding products with enhanced
strength for light-weight design, improved toughness to ensure safety in case of earth-
quakes and fires, improved formability to overcome geometrical limits, etc. Therefore,
developing a new efficient numerical model to model these physical problems is an in-
teresting subject. In the rolling processes, the tools are usually fixed in space while the
material will pass through between the tools.

1.1.2 Welding processes

Welding is one of the most common assembling processes to join materials by using high
energy to melt the parts and welding material together, which can ensure good continuity
of the assembly parts.

The welding processes often involve several physical coupled phenomena and interac-
tions. The arc welding is chosen as an example figure-1.2, So first of all, the heat source
providing the energy to melt the parts is an electric arc; the temperature will increase very
quickly and create the melt pool. The Heat-affected zone (HAZ) is a volume surrounding
the weld in which the temperature during the welding process exceeds the austenitization
temperature. Combined with the stresses of uneven heating and cooling, the HAZ is
generally where the high residual stress and strain appears after the welding process.

The mastering of welding processes is very important so that we can ensure the quality
of the products. The liberty ship accident underlines the problems related to the welding
process. To construct the ships in a more rapid and cheaper way, the liberty ships are
constructed by using the electric arc welding technique which is a new efficient method
but not a fully mastered technique at the time. Some ships suffered significant brittle
fracture even broke in half without warning due to structural defects related to welding
processes (figure-1.3).

The welding process is widely used in different domains, such as the nuclear industry,
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1. Introduction

Figure 1.2 - Diagram of arc and weld area, in shielded metal arc welding. 1. Welding
torch 2. Wire 3. Weld pool 4. Heat-affected zone 5. Base metal.

Figure 1.3 - Fracture problems in Liberty ship related to some defects in the welding
technique.

automobile, aeronautic. Welding processes lead to microstructural modifications, residual
stresses, and distortions, the knowledge of which is of considerable interest. One thus
wishes to be able to accurately predict the residual stress distribution in the weld region
(molten zone and heat-affected zone), to estimate the structural integrity of a welded
structure, or the distortions induced by welding, to control the feasibility of a welding
process. Stresses and distortions mainly arise from temperature gradients and possible
phase transformations occurring during cooling. Nowadays, mechanical engineers need
to study and analyze the weldability of different materials and should also be able to
optimize the welding processes parameters to make distortions and residual stresses
within reasonable limits.

One should note that the temperature gradients induced by heat sources are very
localized. The mechanical states are supposed to be stable once the heat source is far
away. Therefore, Studying the welding process in a moving reference frame related to the
solicitation could be useful and more efficient.

4



1.1. INTRODUCTION

1.1.3 Machining processes

Figure 1.4 - Schematic diagram for chip formation.

Machining is a controlled material removal process, which can be used to transform
the piece into the desired final shape. The principal machining processes can be classified
as turning, drilling, and milling.

To respond to the demand of high integrity parts, industrials tend to improve the
quality of their products. In the past decades, the experience mainly comes from the
practice, therefore, the progress of machining technique is made slowly while the cost
of development is considerable. Nowadays, the computation capacity and numerical
algorithms are well developed, many researchers can model the machining process and
study various factors such as the cutting velocity, thickness of the chip, lubrification
condition, and so on by the numerical method. If we take an example of chip formation
(figure-1.4), The main difficulty to control the machining process comes from the inter-
actions that occur between cutting tools and workpiece. Although experimental set-up,
with the use of a high-speed camera or other dispositions, can give us some information
on the process, while some other information cannot be obtained, such as the strain/stress
evolution or temperature at the separation zone. These limitations are the origin of the
use of numerical simulation to fully understand machining processes.

The machining processes are very complicated processes because there is strong cou-
pling between several physical phenomena. Moreover, in some fields (aeronautic, rail-
ways...), machined pieces require high precision control in terms of geometry, residual
stresses, and distortions. The development of an efficient numerical method to model this
complex phenomenon is one of the core subjects.

5



1. Introduction

1.1.4 Numerical simulation of thermo-mechanical processes

Numerical simulation is a great help in understanding and developing the thermomechan-
ical processes. It allows us to analyze the influence of the various parameters and to access
informations difficult or impossible to obtain by experimentation, such as temperature or
stress evaluations in the core of the material during the process. The numerical simulation
can reduce time, thus investigation costs in process development and mastering.

Nowadays, numerical simulation has become a decision-making tool. With the strongly
increasing capabilities of computers, computational mechanics has been used more and
more in engineering studies. Numerical simulation appears as a privileged tool to access
the physical parameters characterizing the manufacturing process, not only the metal
forming process. On the one hand, we can thus better understand the physical phenom-
ena involved and optimize the operating conditions to achieve a better quality of the
manufactured component. On the other hand, the material and mechanical modifications
induced by the process must be taken into account during the design stage to reach the
requirements in terms of mechanical strength and service life.

Most of the manufacturing processes, such as rolling, welding, and machining, involve
the interaction between several physical phenomena such as heat transfer, metallurgy,
and mechanics.

Figure 1.5 - Physical phenomena involved in welding simulation - couplings and
interactions.

As shown in Figure 1.5, the solid arrows represent couplings that are taken into
account, and dotted arrows stand for interactions neglected to simplify computation
models. Strong couplings are often performed to solve the thermo-metallurgical part
and weak couplings are generally sufficient to predict mechanical state (displacement,
residual stresses, distortions...). The strong coupling means that temperatures and phase
proportions are solved in the same system of equations, while the mechanical simulation
will take thermo-metallurgical results as input.

The numerical simulation of processes such as rolling, welding, or machining is
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1.1. INTRODUCTION

challenging because:

1. These processes involve moving loads (or heat source) in relation to solicitation
leading to very high temperatures gradients or stress gradients.

2. The problem to solve is strongly nonlinear.

Therefore, the finite element simulation of this type of process generally involves
meshes very fine along the solicitation path and very small time steps to capture tem-
perature gradients and stress gradients. Computation models are often two-dimensional
and limited to very localized areas near the interactions between the solicitations and
the material in welding (or additive manufacturing), or between the heat source and
the material in machining. Sometimes even though a reduced model is applied, it is
still impossible to calculate the thermo-mechanical fields for a duration necessary to
analyze some phenomena, such as the wear of the cutting tools in the machining process.
Indeed, the steady-state can be reached after several seconds of cutting, while the explicit
algorithms used to simulate the machining process can only simulate a few milliseconds.

It is obvious that solving the thermomechanical problems associated with this kind of
process in a reference frame linked to the solicitations could be very interesting. Indeed,
these simulations would involve smaller meshes that could be refined only near the
solicitation zone thus enabling important cost reduction of the simulation. This is the aim
of the present thesis work.

The thesis work is organized as follows:

1. In chapter 2, the state of art is presented. Different methods related to steady-state
simulation are introduced.

2. The finite element method with material motion method is proposed in chapter 3.
This material motion method is validated by comparing its simulation results with
those of the Moving Reference Method.

3. In chapter4, the nodal-integration-based finite element method is developed. The
numerical results obtained by the nodal-integration-based finite element are com-
pared to those generated by classical simulations. The comparisons make the
evidence of the efficiency of this new element proposed for various applications
(volumetric locking test, bending test, thermal-elastic-plastic problems).

4. The nodal-integration-based finite element method with material motion simulation
is introduced in chapter 5. As the nodal-integration-based finite element can
calculate all the internal variables at nodes, the variables transfer procedure related
to material motion simulation can perform in a more straight forward and easier
way.
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5. The conclusions and perspectives are presented in chapter 6.
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2. State of the art

2.1 State of the art

In the literature, different methods for steady-state simulations have been developed, such
as (Updated) Lagrangian method, Eulerian formulation, Moving Reference Frame method,
or Arbitrary Lagrangian-Eulerian (ALE) method, and other methods. In this section,
we will try to discuss different methods reported in the literature, their advantages and
limitations. Finally, a short conclusion will be addressed.

2.1.1 Lagrangian / updated Lagrangian formulation

The Lagrangian formulation is frequently used to solve the solid mechanic problem. The
advantage of this formulation is that the material points follow the mesh nodes, and the
history-dependent material properties related to the mechanical behavior of the solid
can be solved in a natural and simple way. Therefore, the Lagrangian formulation is
the primary choice for mechanical solid simulation, especially for thermal-mechanical
simulations, which concern the couplings of metallurgy, thermal, and mechanical [16,
43, 67, 98]. In order to take into account the large displacement/strain problem, the
update Lagrange formulation can be applied by updating the coordinates of nodes at the
beginning of each time step.

Despite its advantages, the Lagrangian formulation is not free of drawbacks. Firstly,
as the loads move in space, the mesh should be fine enough along the trajectory of
loads and the small-time step should be used to capture the rapid evolution of internal
variables. This refine mesh sometimes leads to computational inefficiency. Secondly,
oscillations appear in the Lagrangian description because of the interactions between
time and space discretizations. In the case of large transformation, the mesh tangling may
occur frequently, which could result in poor precision even divergence.

In order to make computation more efficient, Lindgren et al. [69] and Bergheau et al.
[17] have developed and used the adaptive meshing technique for welding simulation(see
Figure-2.1). The local refine mesh will move with the load, as a high gradient of tempera-
ture or strain could appear in these areas. With this adaptive re-meshing technique, the
mesh refinement is moving with the heat source, which could greatly decrease the size of
the discrete problem to be solved. However, this technique requires special re-meshing
tools and also physical quantities transfer procedures. And the re-meshing technique is
usually limited to split the hexahedron into smaller hexahedrons. The penalty method or
a Lagrange multiplier method should be applied to ensure the continuity for discontinu-
ous mesh between refined and coarse areas. At the same time, a special algorithm should
be developed to detect the refine mesh zone needed during the simulation. This adaptive
re-meshing technique seems to be useful to reduce computational resources (CPU time,
RAM) required for each time step while it is somehow complicated to use in the practice.
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Moreover, some strain and stress information at the fine mesh zone will be lost if the
refined mesh disappears.

Figure 2.1 - Procedure description for adaptive re-meshing [17].

The re-meshing procedure could also be used in simulations to avoid mesh tangling
problems [35, 68, 74]. Firstly, an efficient re-meshing tool is needed and one should note
that the hexahedral element is not always possible for meshing all geometry, especially for
geometry complex. Secondly, the data transfer from the old mesh to the new mesh should
be performed after the re-meshing procedure. In reality, the efficiency and accuracy are
often opposites to each other for variables transfer procedure, and choosing the suitable
variables transfer algorithm requires lots of experience. The variable transfer method has
been discussed a lot in the literature, especially in damage and fracture simulation[108].

2.1.2 Eulerian method

The Lagrangian formulation needs the mesh refinement along the trajectory or adaptive
meshing strategies with physical quantities transfer procedure, all these make Lagrangian
description sometimes computational inefficient for steady-state computation. Then,
Eulerian formulation with a spatial fixed grid seems to be more appropriate for steady-
state simulation.

In the literature, the velocity-based Eulerian formulation has been widely applied for
the steady-state simulations of the metal forming processes by the finite element method.
An Eulerian formulation for steady-state simulations benefits from several advantages: the
material flows through a frame of reference which is fixed in space, as we can see in figure
2.2. The mesh will not move with the material. Therefore, problems with grid distortion
due to large deformation do not exist (in the case of rolling or machining). In the point
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of view of Eulerian formulation, gap entry and exit lines can thus be tracked precisely,
avoiding the oscillations of forces, stresses, and strains from incremental models as nodes
come into contact and finish contact (in case of rolling). Such spurious oscillations are
particularly troublesome for simulation aiming to couple the thermo-elastic deformation
via the contact stresses with the incremental Lagrangian formulation. For Eulerian
formulation, the mesh refinement is only required in the areas where there is a high
strain/stress gradient or contact zone, which could largely reduce the size of the discrete
problem to be solved.

Figure 2.2 - The eulerian reference frame for rolling and welding simulation

As the mesh is fixed in space, Eulerian steady-state models sometimes require a free
surface correction algorithm. In the literature, several Eulerian methods have been
successfully implemented to model rolling processes in the past forty years. Nowadays,
the steady-state of rolling simulation is a well-studied domain.

A three-dimensional steady-state deformation method is proposed by Mori et al.[75]
and applied for plate rolling and edge rolling. This method is based on the rigid-plastic
finite element method. However, the method presented works only when the deformation
is uniform in the thickness direction. Then, this idea has been adopted by Yamada et al.
[60], and the free surface is corrected on the basis of the newly traced streamlines.

Then, Bertand-Corsini et al. [27] and Lee et al. [110] proposed a scheme for prediction
of the free surface by adding the condition assuming that no mass flow can cross the free
surface. The derived matrix equations are used to correct the free surface.

Kim et al. [62, 63] developed a steady-state simulation scheme for updating the
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mesh, by using a sectional sweeping technique based on the streamline tracing and
three-dimensional contact algorithm. While there are no clear descriptions about how to
precisely determine the contact area between the roll and workpiece, which is critical for
the precise prediction of the deformation behavior.

In the Riper et al.’s [94] work, the viscoplastic model with surface correction and
contact algorithm has been developed to model different steady-state of metal forming
processes, which seems efficient. The thermal steady-state has also been solved in the
Eulerian frame with streamline upwind Petrov–Galerkin (SUPG) technique or the least-
squares method without suffering thermal oscillations. However, this method cannot be
used to solve the elastoplastic problems efficiently like cold rolling. One should know
that the shrinkage of elastic deformation plays an important role in the final forme of the
workpiece, especially for a thin plate.

In some works which consider steady-state simulations of metal forming processes
[27, 60, 62, 63, 94], the rigid-plastic or rigid-viscoplastic model without elasticity is
commonly applied, because the elasticity can not only introduce numerical complicity of
elastic computation based on velocity but also lead to convergence difficulties related to
contact conditions (see. Table-2.1).

Table 2.1 - Influence of elasticity on computation time [52]

material behavior iterations number
Newton-Raphson
interations num-
ber

time

Viscoplasic 20 106 63 min

elasto-viscoplasic 20 2135 9 h 10 min

Other researchers studied the steady-state of a thermal-mechanical simulation with
an Eulerian formulation. Different from the rolling simulation, the thermo-mechanical
simulations, like laser surface treatment, require more information about residual stresses
to estimate the impact on fatigue life of the structure. Besides, the behavior of the material
used for thermo-mechanical processes is usually thermo-elastoplastic or thermo-elasto-
viscoplastic.

As the Eulerian formulation is a velocity-based formulation, calculating the stress
from the velocity field is problematic. A solution is to directly establish the relationship
between stress and strain rate by assuming that the material is incompressible. Since the
strain rate can be derived directly from the velocity field, this method avoids complex
deformation integration procedures by neglecting elastic deformations. However, this
approach can not predict residual stress.

In order to take the elastic deformation and history-dependent variables into account,
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the elastic deformation can be computed by an ’elastic reanalysis’ [114] or by the ’ini-
tial stress-rate method’ [39], and the history-dependent variables can be computed by
integrating the evolution equations along their streamline [39] or the material response
evolution equations can be solved simultaneously with the momentum balance equation
via the Galerkin method [102]. In the article of Agrawal et al [4], They note that, while
both methods yield accurate results, the numerical implementation of the latter method
is simpler than the streamline integration method. However, results obtained from the
latter method exhibit oscillations due to the hyperbolic nature of the evolution equations.
These numerical oscillations can be solved now by streamline upwind Petrov-Galerkin
method.

Thompson and Yu [103] have proposed an Eulerian method using a rate equilibrium
equation, which can solve pure elastic cases. However, for the elastoplastic condition, they
simply reduced the maximum effective stress to certain yield stress instead of considering
the plastic material flow.

Manitty et al. [73] presented an elasto-viscoplastic Eulerian method able to predict
residual stresses. However, this method cannot handle low strain rate conditions.

Qin and Michaleris [88] developed a Galerkin Eulerian formulation with four unknown
fields (velocity, stress, deformation gradient, and internal variable) to predict residual
stresses of elasto-viscoplastic materials using Anand’s model. A steady-state of welding
and rolling simulations have been presented. The Eulerian elasto-viscoplastic model can
accurately predict the residual stresses of a quasi-steady-state process as the lagrangian
analysis. Due to too many degrees of freedom at each node (Figure 2.3), it mays leads to a
significant increase in the size of the discrete problem to be solved, if the mesh model
becomes bigger.

Figure 2.3 - Mixed four-node quadrilateral element [88].

Abdelkhalek et al. [2, 3] has succeeded to apply the Asymptotic Numerical Method
(ANM) shell element model to simulate the steady-state of bite bucking during clod
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rolling. The computed stress profiles simulated by ANM shell element consist well with
experimental measurements.

2.1.3 Displacement-based reference frame formulation

In the the classical Eulerian formulation, we discuss the difficulty of residual stress
computation and the two existing solutions for Eulerian formulation. Both solutions have
advantages and limitations [4]. We can conclude that the Eulerian formulation seems to
be more suitable for steady-state simulation. However, the main issue comes from the
fact that Eulerian formulation use velocity as the primary field, which can not be used
directly for residual stress computation.

Balagangadhar et al. [8] introduced a displacement-based reference frame formulation
for steady-state thermo-elastoplastic processes (see Figure 2.4). They adopt a Reference
Frame kinematic description for simulating steady-state manufacturing processes. Dis-
placement was chosen as the primary field instead of velocity, thereby obviating the
need for free surface corrections and streamline integrations. As a result, the residual
stress computation for history-dependent material becomes efficient, and this method
was named mixed formulation. The hyperbolic material evolution equations are solved
via the streamline upwind Petrov-Galerkin method [25] to eliminate the oscillations. Fi-
nally, a laser surfacing problem in 2 dimensions with temperature-independent material
properties was studied. The results of displacement-based reference frame formulation
give good agreement with those of the Lagrangian formulation.

The steady-state simulations of drawing and rolling processes have also been presented
in a displacement-based reference frame by Balagangadhar et al. [9]. These simulations
show a good congruence with the Lagrangian formulation.

As we know, the temperature would change strongly in the welding process, and
the temperature-dependant material properties should be used, which is not the case
in Balagangadhar’s simulation [8]. The mixed formulation is reported to be difficult to
converge for temperature-dependent material properties and significant relaxation was
used according to Shanghvi et al.[97].

In order to solve the problems related to temperature-dependent material properties,
Shanghvi et al. [97] has modified the governing equations of Reference [8]. Temperature-
dependent material properties have been implemented in these equations, and the con-
vergence problems have been alleviated by applying smoothing functions proposed by
Rajadhyaksha et al. [92]. The stress analysis has been realized in an Eulerian formulation
with the mixed element [97]. Moreover, for a laser surfacing steady-state simulation, they
observe that the Eulerian formulation has a gain of 15 times faster than the Lagrangian
formulation.

15



2. State of the art

Figure 2.4 - Definition of moving reference [8].

2.1.4 Moving Reference Frame method with integration of con-

stitutive equations along the streamlines

This idea was originally proposed by Nguyen et al. [77]. And it has been applied to study
a moving crack in an elastoplastic medium; Dang Van et al. [38] and Maitournam [51]
have applied this method for the evaluation of stresses induced in rails by the roll of
wheels and other applications [38, 50, 51, 53, 77, 83]. Hacquin et al.[1] has formulated a
steady-state thermo-elastoviscoplastic model for modeling rolling simulation, while this
method becomes computational cost if the elastic is considered.

As a fully three-dimensional thermo-mechanical simulation is usually costly and time-
consuming, this method has been applied for 3D welding steady-state simulation. In
order to circumvent this difficulty, the simulation presented in the article of Bergheau
et al. [15] is established on the direct evaluation of the stationary state in a comoving
frame without calculating the transient intermediary states, which could significantly
shorten the computation time because of reducing the number of time-steps to only one.
Then a complete, thermal, metallurgical, and mechanical steady-state simulation of heat
treatment has been presented, using the SYSWELDTM software.

The thermo-mechanical steady-state simulation of the 3D welding process is then
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performed in a uncoupled manner:

First, a steady-state thermal simulation in the heat source co-moving frame gives the
temperature distributions corresponding to the end of the quasi-steady-state conditions.
We have to deal with a diffusion-convection problem represented by equation (2.1) with
appropriate boundary conditions.

ρW ·gradH −divλgradT −Q = 0 (2.1)

In the above equation, ρ, H , and Q represent the density, the enthalpy of the material,
and the heat source distribution respectively, and W is the speed of material points. For a
translation movement, W is equal to −v which is a constant velocity of the heat source.
The temperature-dependent material properties can be used in equation 2.1. Moreover,
all the classical boundary conditions are available, such as prescribed temperature or heat
flux.

The Galerkin method can be applied for such problems, while the finite element
formulated could lead to spurious spatial oscillations due to high Peclet numbers P e =
ρC∥W∥∆x

λ
, where the ∆x denotes the mesh size, and typically P e are greater than 2 with

first-order elements. A Petrov-Galerkin variational formulation with special discontin-
uous test functions has been suggested by Hughes et al. [25] to avoid spurious spatial
oscillations, and it works very well.

Figure 2.5 - Gauss points sequences.

As we can see in figure 2.5, the 3D mesh of the Moving Reference Frame (MRF)
method should be generated by the translation of a cross-section in the welding direction.
Therefore, the streamlines are parallel to the trajectory of the welding source. Before
starting the simulation, a pre-processor will determine the sequences of Gauss points, the
number of the preceding Gauss point on the streamline, and the element that contains
these Gauss points. The pseudo time steps ∆t denotes the time needed for a material
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particle to move from the previous Gauss point to the Gauss point studied, which depends
on the distance between two successive Gauss points and the speed of the welding source.

In order to calculate the phase proportion, the step by step computation procedure
starts from the first Gauss point (see figure 2.5) as the phase proportion corresponds to
the initial state. The phase proportion of the second Gauss point will be calculated by
using the phase proportion and temperature of the first Gauss point, the temperature of
the second Gauss point, and the pseudo time steps given by the pre-processor. The phase
proportion of 3rd, 4th, ... Gauss point can be computed in order. For the Gauss point
studied, all the information is stored in the Gauss points at upstream, and we can call
these points as the preceding points.

As the element has a mixture of phases, the latent heat effects can still be solved by the
classical subroutines to compute the finite element vectors and matrices. The density and
the enthalpy are calculated in the following manner:

ρ =
∑

N

piρi (2.2)

H =
∑

N

piHi (2.3)

where N , pi ,ρi and Hi are the number of phase, the proportion, the density and the
enthalpy of phase i, respectively. These parameters could be the function of temperature.
The equation (2.1) then becomes:

ρCW ·gradθ −divλgradθ −Q+ ρW ·
∑

phases

Higradpi = 0 (2.4)

with: C =
∑
N

pi
dHi

dθ
and W ·gradpi =

∆pi
∆t

, in which ∆pi is the increment of the proportion

of phase i between two successive Gauss points on a streamline and ∆t represents the
pseudo time step. Therefore:

ρW ·
∑
N

Higradpi = ρ
∑
N

Hi
∆pi
∆t

(2.5)

The steady-state mechanical simulation is solved in a moving reference frame associ-
ated with the welding source. The mechanical analysis is expressed in classical form:

div σ + ρf = 0 (2.6)

To integrate constitutive equations of material, a similar procedure as the metallurgical
transformation presented above is used. At each time step, the state variables at time
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t+∆t is calculated from the state variables at time t (i.e. stress components, plastic strains,
hardening parameters, etc.). At the beginning of each time step, The state variables of
each Gauss point will be replaced by the state variables of his preceding Gauss point.
Typically, the strain and stress of a Gauss point depend on all the preceding Gauss points
in the streamline. In order to avoid a full non-zeros stiffness matrix, only the nearest
preceding gauss point is used.

In conclusion, this procedure has been successfully applied for the simulation of
surface treatment or welding processes. The results presented by Leblond et al. [67] and
Bergheau et al. [15] show good agreements with experimental results. Moreover, this
method works well for classical elastoplastic and elastic-viscoplastic behavior.

The MRF method requires a regular mesh that should be obtained by translation
of a cross-section as mentioned so that integration of the constitutive equation along
streamline can be achieved directly with maximal efficacy. This method is dedicated to
the small deformations and small displacements hypothesis.

2.1.5 Arbitary Lagrangian-Eulerian method

Noh et al. [84] and Trulio et al. [104] originally developed the Arbitrary Lagrangian-
Eulerian method. The Arbitrary Lagrangian-Eulerian formulation has been applied for
fluid-structure interaction problems by Donea et al.[42]. Then, ALE formulation was
further extended to solve solid mechanics by various researchers Liu et al.[72], Benson
[13, 14], Huétink et al. [56] etc.

Huetink et al. [56] gives a review of the arbitrary Eulerian-Lagrangian finite element
method for simulation of forming processes. The ALE formulation allows mesh points
to move independently from material particles to reduce the possibilities of numerical
difficulties due to large element distortions (see Figure-2.6). The free surface can be taken
into account by adapting nodes in the Lagrangian way. The ALE formulation has been
widely applied for metal forming simulations[7, 19, 20, 32, 59, 90, 91] etc.

Each time step of ALE formulation can be generally split into two steps:

1. First step is a classical Lagrangian step, which means the mesh points are moving
with material particles. The equilibrated state will be calculated in the Lagrangian
configuration.

2. Second step is an Eulerian step. The mesh tool will define a new mesh by moving
the mesh points of the old mesh. Then the data transfer from the old mesh to the
new one will be performed.
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Figure 2.6 - Schematic representation of Eulerian, Lagrangian, and Arbitrary
Lagrangian-Eulerian formulation [18].

Compared to the re-meshing step in Update Lagrangian formulation, the ALE formu-
lation keeps the same topology of the mesh, such as the number of elements and the
element connectivity, during the entire simulation. Therefore, the transfer of physical
quantities is generally more accurate because the convection technique can be applied in
ALE simulations.

Wisselink et al. [106] presents the 3D FEM simulation of modeling the steady-state of
slitting and shape rolling processes. Crutzen et al. [32] apply ALE formalism to compute
the stationary state for complex roll-forming simulation. A classical Lagrangian approach
has also been used as a reference. They found that ALE and Lagrangian results are
generally quite similar.
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2.1.6 Mixed Eulerian-Lagrangian method

Unlike the ALE formulation, the Mixed Eulerian-Lagrangian coordinate system would
employ an Eulerian coordinate in the longitudinal direction and Lagrangian coordinates in
the remaining two directions to account for local deformation effects directly. This model
requires a systematic transformation of the weak formulation of the governing equations
and of its quantities involved in the intermediary reference frame. The velocity field,
mean stress, and the contact pressure is determined by the mixed variational formulation
[64, 65, 115].

According to Vetyukov et al.[105], compared with ALE formulation, one important
distinctive feature is the use of intrinsic strains, when the undeformed configuration
of the body is incompatible because of the variable velocity of generation of material.
Another difference is that the mixed Eulerian-Lagrangian method involves a two-stage
mapping from the reference to the actual state, as shown in figure 2.7.

Figure 2.7 - Configurations involved in the mathematical modeling of a rolled strip [105].

Synka et al.[100] has applied the Mixed formulation for steady-state hot rolling simula-
tion with a rigid-viscoplastic material behavior. As we know, the elasticity can change the
final forme for thin plate processes. Therefore, it’s still necessary to develop new methods
that can take elasticity into consideration.

2.2 Conclusion

To conclude the state of art, the thermal-mechanical processes are typically simulated
by Lagrangian formulation. Lagrangian formalism’s benefits are that there is no free
surface problem, and this formulation can take history-dependent material into account
in a most straightforward manner. The price for the Lagrangian formulation is that the
mesh should be fine along the load trajectory in space. However, in the case of large
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deformation, the mesh distortion can lead to less accurate results or even divergence in
the numerical simulation.

In order to overcome the mesh distortion problem in large deformation problems,
the updated Lagrangian formulation with the re-mesh technique has been proposed and
applied for 3D forming processes. The updated Lagrangian formulation can take large
displacement and deformation into consideration, and the re-mesh procedure can avoid
mesh distortion. However, the re-mesh technique for the 3D hexahedrons for all geometry
is still not always possible, and there is no robust mesh-generator for hexahedrons at the
moment. At the same time, a data transfer strategy is also needed. Using an updated
Lagrange formulation with re-mesh technique is less attractive if a large number of
re-mesh steps are needed because of localized deformations.

In the case of welding simulation, Several authors have proposed to use adaptive
re-meshing technique to reduce the size of meshes. The adaptive re-meshing technique
consists of cutting a mesh locally according to the position and nature of the source. Since
the thermal loads move on the structure, it is necessary to refine an initial coarse mesh at
several steps corresponding to the position of heat source. This technique works well for
the structure mesh (such as mesh is generated by translation or rotation of a section), in
which the data transfer and refinement would not lead to the particular difficulties.

Among these simulations carried out by Lagrangian formulation, one can observe
that the temperature, phase proportion, and residual stresses could reach steady-state
after specific steps of transient analysis. The Eulerian formulation could be suitable
for steady-state of rolling as the steady-state boundarys are knwon. The material flows
through a frame fixed in space. Therefore, problems with mesh distortion due to large
deformations do not exist in such a formulation. What’s more, mesh refinement is only
required around the load. However, in general, material boundaries are not equal to the
element edges. Thus special procedures are needed to solve free surfaces problem or
contact conditions and also to handle history-dependent material properties.

Mori et al. [75] solved free surface problems using an iterative surface correction
method. This method has been modified by Kim et al. [62, 63] to take contact condition
into consideration. Galerkin method [102] and streamlines integration technique [39]
has been applied for strain and stress histories by using the visco-plastic model. And
streamline upwind Petrov-Galerkin (SUPG) technique [Balagangadhar et al. [8]] can
remove numerical oscillations. Shanghvi et al. [97] has noted that the streamline of Bala-
gangadhar has difficulty in convergence, and significant relaxation was used. Therefore,
they try to use the SUPG method with the mixed element to remedy that difficulty, and
convergence problems have been alleviated by using smoothing functions. Their method
has been applied for welding simulation, and they obtain a gain of 15 for computation
time than classical Lagrange formulation. Bergheau et al. [15] has also proposed the MRF
method for steady-state simulation. This method gives good prediction results and is
computationally efficient, while the mesh should be obtained by translation of a section
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in the flow direction and the MRF method doesn’t converge for large transformation
problems.

In this thesis work, we would like to propose a general moving reference frame method
related to the solicitation for steady-state simulation. It would present several advantages:

1. A Nodal-integration-based finite element was developed, and triangle/tetrahedral
mesh can be used without suffering volumetric locking.

2. A new mixed Eulerian-Lagrangian formulation will be proposed. An eulerian
coordinate system is applied in solicitation’s moving direction, while the local
deformation can be taken into account directly in the Lagrangian manner. Therefore,
the free surface problem doesn’t exist.

3. All classical material behaviors are considered, such as viscoplastic, elastoplastic,
elastic-viscoplastic, thermo-elastoplastic, and so on.

4. The mesh refinement would be required only nearby solicitations, which can greatly
reduce the size of the discrete problem.

5. Compared with Lagrangian step by step simulation, the solicitation is fixed in space.
The contact conditions between tools and workpiece could be largely simplified
and become more stable, which presents advantages in terms of convergence and a
larger time step can be used.
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3. Finite element simulation with material motion

3.1 Introduction

In the first chapter, different methods in the literature have been presented, their advan-
tages, and their shortcomings. The MRF (Moving Reference Frame [15]) method seems
very efficient and accurate for steady-state welding simulation.

The MRF method has been developed for welding simulations and solves the steady-
state problem in a moving frame associated with the heat source. This method has been
implemented in SYSWELDTM and can deal with a uniform translatory, circular, or helical
motion. The latter option is interesting to simulate coating processes in cylindrical parts.
However, for a translatory or helical motion, steady-state conditions would only exist
for components presenting an “infinite” length in the welding direction. In practice,
experience shows that quasi-steady-state conditions are fulfilled for a large part of the
heat source path even if a circular motion in only one turn.

Therefore, in this chapter, a new Moving Reference Frame model related to the heat
source will be presented. With this model, we will calculate the steady-state by simulating
the motion of material in a reference frame linked to the heat source (see figure 3.1). Our
objective is to propose a new model that can give good results as the MRF method; at
the same time, as the steady-state can be achieved by simulating transient states, this
new model can remedy the difficulty in convergence that may occur in the MRF method.
Finally, we will present a validation test at the end of this chapter.

Figure 3.1 - A moving reference frame related to heat source.

In order to clarify this idea, we consider a case of welding or rolling, in which the
material moves in a uniform translation and is submitted to the local solicitations fixed in
this moving frame. The mesh is fixed in this reference frame. Upstream and downstream
of this area, mechanical fields are assumed to remain constant. From a physical point of
view, the material flow is supposed to go through the computation frame as indicated in
figure 3.2.

This proposed method seems quite similar to the arbitrary Lagrangian-Eulerian (ALE)
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methods while the departing is quite different. There is no re-mesh procedure and the
material point will move with the mesh. Rather than directly calculating the steady-
state by integrating the materials’ constitutive law along the streamline, we propose to
simulate material motion in the reference frame, which has more advantages in terms of
convergency.

Similar to the MRF method, the simulation is performed in two steps: first, a steady-
state thermal simulation; Secondly, the steady-state mechanical simulation. The second
step uses the thermal results of the first step, but the metallurgical phenomena as well as
the heat generated by plastic deformation are disregarded.

Figure 3.2 - Diagram of material motion simulation in the reference frame.

3.2 Thermal steady-state computation

The steady-state exists with the condition that the model should be long enough in
welding direction. Then the temperature distribution in the moving frame related to the
heat source becomes time-independent. Therefore, in order to validate the steady-state
thermal model, a transient thermal simulation has been prepared in advance, which is
presented as the reference.

We start with the heat transfers in a solid medium occupying a domain Ω. The
governing equation for transient heat transfer analysis is presented by the following:

ρ
dH
dt
−div(λgradT )−Q = 0, in Ω (3.1)

λgradT ·n = q(T ,t), with prescribed heat fluxes ∂Ωq (3.2)
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3. Finite element simulation with material motion

T = Tp(t), with prescribed temperatures ∂ΩT (3.3)

∂Ω = ∂Ωq ∪∂ΩT (3.4)

where ρ is density,

H mass enthalpy,

λ thermal conductivity,

T temperature,

Q internal heat source,

n normal to the surface of ∂Ω,

q surface heat flux which may depend on temperature and time to represent convec-
tion or radiation phenomena on the surface,

∂Ωq a part surface of ∂Ω on which a surface density of heat flux is imposed,

Tp temperature imposed,

∂ΩT a part surface of ∂Ω where the temperature is imposed.

The heat source can be represented by an internal volume heat source Q(x,y,z) or by a
surface heat flux density q(x,y), which depends on the manufacturing processes.

Figure 3.3 - Numerical model for thermal transient simulation.

The numerical model for thermal transient simulation is presented in figure 3.3. And
this 200 ∗ 20 ∗ 5mm model is long enough to create a thermal steady-state. The hexahedral
elements are applied. The material properties ρ = 8000kg/m3, λ = 30Wm−1K−1, thermal
capacity C = 500J/K are taken for the simulation. A double-ellipsoid heat source model
proposed by Goldak [49] was selected (see figure 3.4).
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3.2. Thermal steady-state computation

Figure 3.4 - A double-ellipsoid heat source.

Where the parameters a = 2mm, b1 = 6.5mm, c = 10mm, Q1 = 10000, b2 = 7mm,
Q2 = 9000,QR = 2.1 ∗ 103. xs, ys, zs are the coordinates of centre of heat source, which
could be a fonction of time. In this case, ys = y0 + vs ∗ t, vs is the welding speed equal to
2mm/s. An exchange coefficient with air KT = 150W/m2 is fixed during the simulation.
A symmetry plane is used. The stransient temperature simulation is considered as the
reference solution. Here the temperature distribution at time 85s is shown in figure 3.5.

Figure 3.5 - The steady-state temperature distribution in the step by step simulation.

The thermal steady-state problem can be solved by a convection-diffusion problem
with appropriate boundary conditions, at the same time, Petrov-Galerkin variational
formulation with special discontinuous test functions has been applied to avoid spurious
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3. Finite element simulation with material motion

spatial oscillations of the solution for high Peclet numbers. Finally, the heat equation of
steady-state in a moving frame associated with the heat source, takes the following form
as we have presented in chapter 1, and W is a steady-state velocity (simply equal to −vs):

ρW·gradH − divλgradT −Q = 0 (3.5)

3.2.1 How to choose boundary conditions

For the boundary conditions on the upstream and downstream faces of the mesh, one
could think to prescribe the thermal conditions existing at infinity upstream and down-
stream. These conditions are:

1. Temperature imposed to room temperature which is supposed to be the temperature
of the metal before welding:T = T0.

2. Conduction heat flux equal to zero: λ
∂T
∂n

= 0.

But sometimes imposing both conditions is not possible. We, therefore, have to choose
which condition to impose on each face. We suggest:

1. Upstream : Temperature imposed to room temperature: T = T0.

2. Downstream : Conduction heat flux equal to zero: λ
∂T
∂n

= 0.

But to strongly enforce the upstream condition on the upstream face, special care
should be paid to determine the distance between the heat source and the upstream face

of the mesh. The distance chosen should be long enough to satisfy also λ
∂T
∂n
≈ 0 on the

face and so, ensure that the temperature imposed on the upstream face will not affect the
steady-state temperature distribution given by the model.

To impose the downstream condition on the downstream face, one should consider a
mesh long enough so that the body can cool down to room temperature. One can notice
that if only the condition of null conduction heat flux is imposed, nothing ensures that
the temperature will reach the room temperature on the downstream face.

In order to limit the difficulties discussed above, we propose to define new boundary
conditions to the mesh. These new conditions are based on a semi-analytical solution of
the heat equation outside the mesh. We suppose that outside the mesh, the temperature
distribution is uniaxial. The temperature is therefore supposed to be uniform in any
section orthogonal to the weld path. We also supposed that the thermal properties are
temperature independent.
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3.2. Thermal steady-state computation

Let’s so consider the following model for the area beyond the upstream face (as we see
in figure 3.6).

Figure 3.6 - Upstream model.

One can note that for this situation, one has:

W = −W ex with W > 0
n = ex

dT
dn

=
dT
dx

(x = 0)

(3.6)

The temperature distribution T (x) for x ∈ [0;+∞[ is governed by the following equation:

λ
d2T

dx2 + ρCW
dT
dx

+K (T0 − T ) = 0 (3.7)

In the equation above, the term K(T0−T ) model the cooling condition with the ambient
air through the outside surface of the model. The volumic heat exchange coefficient K is
defined from the surface heat exchange coefficient H applied on the surface of the part
by:

K = H ∗ P
S

(3.8)

with P , the perimeter and S, the surface of a section.

The solution of equation 3.7 above is given by:

T (x) = T0 +Ae(α−β)x +Be(α+β)x (3.9)

With α = −
ρCW

2λ
and β =

√
(ρCW )2 + 4Kλ

2λ
=

√
α2 +

K
λ

and where A and B are 2 constants.

One can note that α − β < 0 and α + β > 0.

Because we should have lim
x→+∞

T (x) = T0, it follows B = 0 and so

T (x) = T0 +Ae(a−β)x (3.10)
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3. Finite element simulation with material motion

From equation 3.10, we deduce:

dT
dx

= A(α − β)e(α−β)x (3.11)

And then

λ
dT
dn

= λ
dT
dx

(x = 0) = λA(α − β) (3.12)

Finally, we obtain the boundary condition to apply on the upstream face as following:

λ
dτ
dn

= λ(β −α) (T0 − T (x = 0)) (3.13)

Let’s now consider the following model for the volume beyond the downstream face
(figure 3.7).

Figure 3.7 - Downstream model.

One can note that for this situation, one has:

W = −W ex with W > 0
n = −ex

dT
dn

= −dT
dx

(x = 0)

(3.14)

The temperature distribution T (x) for x ∈ [−∞;0[ is still governed by the following
equation 3.7:

The solution of equation 3.7 is again given by equation 3.9.

Because we should now have lim
x→−∞

T (x) = T0, it follows A = 0 and so

T (x) = T0 +Be(α+β)x (3.15)

From equation 3.15, we deduce :
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3.2. Thermal steady-state computation

dT
dx

= B(α + β)e(α+β)x (3.16)

And then

λ
dT
dn

= −λdT
dx

(x = 0) = −λB(α + β) (3.17)

λ
dT
dn

= λ(α + β) (T0 − T (x = 0)) (3.18)

Which is the boundary condition to apply on the downstream face.

One can notice that if the mesh used is long enough to satisfy λ
∂T
∂n
≈ 0 on the upstream

or downstream face, we concurrently have T ≈ T0.

One should also notice that :

upstream: λ(β −α) =
1
2
ρCW

1 +

√
1 +

K

λα2

 =
1
2
ρCW

1 +

√
1 +

4λK
(ρCW )2


downstream: λ(α + β) =

1
2
ρCW


√

1 +
K

λα2 − 1

 =
1
2
ρCW


√

1 +
4λK

(ρCW )2 − 1
) (3.19)

And so that λ(β −α) > λ(α + β).

For air-cooling conditions, both convection and radiation losses are taken into account.
The same coefficient as the transient simulation is set up.

Figure 3.8 - Material flow passes through the computation frame.

With the same heat source parameters, we try to simulate steady-state in a short
model (figure 3.9, dimension:100 ∗ 20 ∗ 5mm). Two steady-state temperature simulations
with different boundary conditions are carried out. The first one is performed with
classical boundary condition (upstream: temperature imposed to room temperature;
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3. Finite element simulation with material motion

Downstream: heat flux equal to zero). The second simulation is performed with new
boundary conditions described above.

Figure 3.9 - The numerical model for steady-state simulation.

Figure 3.10 shows the temperature distribution with two different boundary conditions.
Compared with the reference solution given by transient step by step (figure 3.5), the
simulation with the new boundary condition proposed gives a better prediction. Then, a
comparison of the temperature profile is presented in figure 3.11. The plotline chosen
locates at the symmetry plan (see figure 3.8). The temperature profile of the new boundary
condition gives perfect agreement with the reference.

Figure 3.10 - Steady-state temperature distribution simulated with classical boundary
condition (A) and new boundary condition (B).

This study has identified that boundary conditions can make a significant difference in
temperature computation. The steady-state temperature distribution will be simulated
with the new boundary condition for the following tests.
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3.3. Mechanical steady-state computation

Figure 3.11 - Comparison of temperature in the welding direction (0.83mm from top
surface).

3.3 Mechanical steady-state computation

3.3.1 Simulation of material motion

Once the thermal steady-state is validated, two mechanical steady-state simulations will
be carried out based on the same thermal result. The first simulation is calculated by the
MRF method [15], which is the reference simulation. Another simulation is calculated
with the material motion method that we proposed.

Figure 3.12 shows the diagram of the steady-state welding simulation.

Here, the material motion simulation diagram is presented in figure 3.13. We firstly
have a computation frame in space, and we can imagine the material flow passes through
this computation frame.

The mechanical steady-state simulation is carried out as follows:

1 With the thermal steady-state simulation results, the mechanical equilibrium is
supposed to be solved at an instant t.

2 In order to calculate the mechanical equilibrium at time t+∆t, the mesh is translated
for a distance of d = W ∗δt in space, which is supposed to be the length of a layer of
the mesh. This is a new model A.

3 Internal variables (stresses, strains, displacement, and so on) transfer procedure
are performed between two models: one is the model A of instant t + δt, another is
the model B with zero strain and stress. The mechanical fields of model A will be
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3. Finite element simulation with material motion

Figure 3.12 - Procedure for welding steady-state simulation.

projected to model B directly without any interpolations. The material motion is
simulated in this way. This new model B is the initial state for the next time step.
For simplicity of the projection procedure, one should note that the length of each
layer is identical and the new material layer arrives with zero strain/stress.

These steps will be repeated until the mechanical steady-state is observed.

3.4 Application to 3D welding simulation

In order to validate this new method, a 3D welding simulation test has been carried
out. The previous thermal steady-state result (B) (figure 3.10) has been adopted for both
methods.

For the mechanical boundary condition (figure 3.14), there is a symmetry plane as
mentioned in thermal simulation. A front red point has been fixed to avoid X,Y ,Z

translation. A behind violet point can prevent rotation around X axis.

A standard ASCII 316L thermo-elastoplastic mechanical properties from the database
of SYSWELDTM used for thermal-mechanical simulation.

As shown in figure 3.15, longitudinal stress distribution contours are very similar,
which indicates the method proposed works very well.
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3.4. Application to 3D welding simulation

Figure 3.13 - The material motion simulation procedure.
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3. Finite element simulation with material motion

Figure 3.14 - Mechanical boudary conditions.

Figure 3.15 - Steady-state longitudinal stress distribution, (a) MRF (b) method proposed.

3.5 Conclusion

We have first proposed and validated a new thermal boundary condition to obtain a
correct temperature prediction even though the steady-state condition is not fulfilled.
From the graph above (see figure 3.11), we can see that the new boundary condition gives
a great agreement with a reference solution.

For the mechanical aspects, a new steady-state simulation method is presented. In
place of calculating steady-state directly by integrating the constitutive equation along
the streamline, simulating material motion in a moving reference frame associated with
the heat source is proposed and a steady-state will be achieved after some computation
steps. Compared with the MRF method, the method proposed is easier to converge but
could be more time-consuming because of simulating transient states.
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3.5. Conclusion

Finally, a 3D welding steady-state simulation has been presented. A comparison of
steady-state mechanical simulations has been made. The very similar residual stress
contours prove that the method proposed works well as the MRF method for steady-state
simulation.

However, one should note that there are several limitations:

1 The projection presented in figure 3.13 should be performed from Gauss points
(model A) to Gauss points (model B) directly.

2 Each layer of mesh has the same length, which is similar to the mesh used in the
Lagrangian formulation. The mesh refined only near the source position is not
possible.

3 This method can solve the problem of translatory motion. The rotational and helical
motion is impossible.
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4. The nodal integration based finite element method

4.1 Introduction

In the last chapter, we discussed solving welding steady-state in a moving reference frame
with the heat source. As we present that there is a mechanical field transfer procedures in
order to simulate material motion in figure 3.13. In practice, the classical finite element
method (FEM) will store physical state variables both at nodes and integration points.
The transfer of physical quantities is usually performed with interpolation/extrapolation
between nodes and Gauss points, which may lead to lack of precision. In the literature,
different field transfer methods have been investigated to deal with different analyses and
to satisfy different requirements. Generally, these transfer processes could be classified
into three groups [108]:

1. The mechanical result field at integration point of old mesh (IP old) will be extrap-
olated to the nodal points of old mesh (NP old), and the values at the integration
points of the new mesh (IP new) are computed by interpolation using shape fonc-
tion of the old mesh. We can express this process as: IP old → NP old → IP new.
The value at nodal points of new mesh (NP new) can be obtained after the discrete
extrapolation.

2. Similiar as the first group, instead of computing the values at the integration points
of the new mesh (NP old → IP new), the nodal values of new mesh will be calculated
first. The field transfer will be expressed as: IP old →NP old →NP new→ IP new.

3. In the third group, mechanical field at integration point in old mesh are directly
transferred to integration points of new mesh (IP old → IP new).

More explications can be found in the works of Yang and Rassineux et al. [108, 109].
These interpolations or extrapolations can be performed continuously by averaging,
weighted averaging, or finite element shape function or least square method.

In our work, we focus on filed transfer processes that should be efficient and self-
consistency. In order to simplify the computational complexity of these field transfer
processes related to interpolation or extrapolation between the values at nodal points
and at integration points, the nodal-integration-based finite element seems an optimal
solution as the integration points coincide with nodes. Therefore, the field transfer of the
values at nodal points and at integration points can be handled at one time. Moreover,
the nodal integration technique does not suffer from locking phenomena due to plastic
incompressibility in metal forming simulations.

Finite element simulation of elastoplastic or viscoplastic problems based on the von
Mises criterion leads to difficulties associated with the plastic incompressibility imposed
by the constitutive equations. This nearly-incompressibility condition is imposed at
all integration points where the constitutive equations are solved. If the number of
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integration points is too large compared to the number of degrees of freedom (all the
displacements of the nodes), the number of degrees of freedom becomes insufficient to
solve both the incompressibility equations and the equilibrium equations. Then, this
leads to a volumetric locking phenomenon. In order to check if the system is able to
perform well in the case of nearly-incompressible media, Nagtegaal et al. [76] suggests to
define a constraint ratio as follows:

Constraint ratio =
number of dof

number of constraints
(4.1)

The optimal conditions are fulfilled when constaint ratio in Formula (4.2) is equal to 2
in 2D and 3 in 3D. If we consider a 3D mesh with first-order tetrahedrons, the number of
tetrahedrons is approximately equal to five times the number of nodes. As there is one
integration point per element and 3 degrees of freedom per node, the constraint ratio is
equal to 3/5, which is very bad. Thus, this element cannot be used in practice for such
simulations.

Constraint ratio =
number of equilibrium equations

number of incompressibility equations
(4.2)

To overcome this difficulty, several finite element formulations have been proposed
and are based either on reduced selectively integration schemes or mixed displacement-
pressure formulations [76, 57]. In practice, formulations using reduced selectively inte-
gration technique are easily applicable only on hexahedral elements (for example, the
so-called B-Bar element [57]). Nevertheless, these elements give rise to heavy meshing
operations in order to model complex geometries. The advantage of tetrahedron element
is that it can be used for all kinds of geometries and that automatic and robust meshing
tools now exist and can be used to mesh very complex geometries.

Mixed formulations [24, 10] can be applied to both hexahedra and tetrahedra by using
a Lagrange multiplier and adding other physical unknowns such as pressure (figure
4.2). However, the presence of different kinds of degrees of freedom (displacement and
pressure) or even that of additional internal degrees of freedom for certain elements (such
as the P1+/P1 element [6, 54]) can lead to significant extra costs in computation time of
non-linear problems. Likewise, high-order elements combined with a reduced integration
technique can also be used to avoid the locking problem, but it will lead to a significant
increase of the size of the discrete problem and, consequently, of the computation time.

Choosing nodes as integration points is optimal for incompressible or nearly-incompressible
materials. Indeed, the constraint ratio is always equal to the optimal values. This idea has
been developed in many research works during the last 20 years for 4 node tetrahedral
meshes.

The nodal integration technique is one of the many meshless methods, which is
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Figure 4.1 - Selective reduced integration scheme in 2D.

Figure 4.2 - P1/P1 and P1+/P1 scheme in 2D.

one of solution to avoid excessive mesh distortions problem due to large deformations.
Numerical integration techniques have therefore been developed for calculating integrals
appearing in the weak form of the problem directly from a cloud of points. Among these
techniques, the Stabilized Conforming Numerical Integration (SCNI) technique proposed
by Chen et al. [44, 29, 30] is extraordinarily efficient. This SCNI scheme satisfies the patch
test without using an unfeasible amount of integration points, and there is no volumetric
locking problem for incompressible media.

The SCNI method needs to construct a tesselation, in order to apply an integration
scheme on its geometrical component. Given a triangulation, each cell is computed by
connecting straight lines through the centroid of the triangle and the three midpoints
of its edges, as described in figure 4.3. Then different types of shape functions (moving
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least-squares, local maximum-entropy, linear triangular interpolation) are available [89].

Figure 4.3 - Geometrical objects used for computation [89].

Choosing nodes as integration points in FE methods is not recent, especially in large
strain explicit dynamic applications, as coordinate updating with quadrilateral or hexahe-
dral elements may lead to element overlap and tangling. The element choice is a serious
matter as the full possibilities offered by adaptive refinement or automatic correction
element quality currently cannot be easily exploited with 4-node quadrilateral or 8-node
hexahedral elements.

Bonnet et al. [21] proposed an average nodal pressure tetrahedral element (ANP)
that has been used in explicit dynamics applications involving nearly incompressible
materials. The advantage of the tetrahedral element is that the tetrahedron can be easily
produced for any geometry by existing powerful generators. However, the actual solutions
(linear pressure interpolation and bubble functions) for volumetric locking of tetrahedral
elements are unsuitable due to expensive computation time [12, 58, 113]. With the
average nodal pressure tetrahedron proposed, they avoided volumetric locking but the
use of such elements is still computationally costly. Zienkiewicz et al. [112] also avoided
the volumetric locking by using a fractional step method. A comparison of these two
methods can be found in [23].

Dohrmann et al.[41] introduced a node-based uniform strain element for three-node
triangular and four-node tetrahedral meshes. Compared with the element of Bonnet [21],
the uniform strain elements do not require additional degrees of freedom, what’s more, the
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node-based element is applied not only to the volumetric component of the strain energy
(same as Bonnet’s element), but also to the deviatoric component, which can improve
accuracy and have less sensitivity to shear locking. This idea was firstly applied for the
quadrilateral and hexahedron [48] and also extensions to other element types [40, 61]. The
initial results of node-based uniform strain elements are especially promising. However,
the element proposed shows a greatly improved convergence property compared to the
standard element for bending dominated problems in small strain elasticity case.

Then, an averaged nodal deformation gradient using linear tetrahedral element has
been investigated by Bonnet et al. [22] for large strain explicit dynamic applications. It
is then an extending idea of Dohrmann’s works. The gradient calculation is achieved
by applying the nodal averaging procedure used for the Jacobian ([21]) to the complete
deformation gradient tensor. This nodal integration based formulation can overcome the
excessive stiffness of tetrahedrons in bending problems.

Krysl et Zhu et al. [66], Puso et al. [86, 87], Pire et al. [5] have also applied nodal
integration technique for finite element method for various tests. The combination of
the SCNI technique with the Finite Element method has been the subject of recent work
[28, 89].

Liu et al. have combined the strain smoothing technique proposed by Chen [29] into
the finite element method using quadrilateral elements or n-sided polygonal elements
to formulate a cell-based smoothed finite element method (CS-FEM or nSFEM)[36, 37,
82]. This concept of smoothing domains have been extended to formulate a family of
smoothed FEM, such as node-based finite element method (NS-FEM) [71, 79], edge-based
finite element method (ES-FEM) [33, 70, 81], face-based finite element method (FS-FEM)
[78, 80]. These smoothed finite elements have been tested for various applications and
validated by comparing with classical FEM solutions and analytical solutions.

A stable node-based smoothed finite element method has also been implemented(SNS-
FEM)[111, 34] for heat transfer analysis and thermo-elastic analysis. According to the
tests, SNS-FEM gives better and smoother solutions than NS-FEM. As we can see in figure
4.4, the stable NS-FEM will create a smoother nodal domain than NS-FEM.

In this chapter, we propose a new 3D finite element method based on arbitrary
tetrahedral meshes, nodal integration, and the SCNI technique for solving 3D thermo-
elastoplastic problems. The aim is to check the method’s ability to provide robust and
accurate results for the simulation of welding compared to more classical finite element
approaches.

We first introduce nodal-integration-based finite element, its advantages and draw-
backs. Then different applications and validation tests are also presented.
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Figure 4.4 - The schematic of NS-FEM and SNS-FEM in 2D and 3D[34].

4.2 Presentation of the method

For the sake of simplicity, we place ourselves within the framework of the theory of
infinitesimal deformations. As we focus on welding simulations, this assumption is most
often sufficient.

Let Ω be the domain of study. The boundary ∂Ω = ∂Ωu ∪∂Ωt is decomposed into a
part ∂Ωu where the displacement u is prescribed and a part ∂Ωt where surface forces t
are imposed.

The finite element method, in its most classical form, allows to calculate an approxima-
tion of the displacement field u starting from the virtual work principle which is written,
neglecting the dynamic effects:

∀u∗
∫
Ω

u∗ ·bdτ +
∫
∂Ωt

u∗ ·tds −
∫
Ω

ε∗ : σdτ = 0 (4.3)

In equation 4.3, u∗ is a virtual displacement field satisfying u∗ = 0 on ∂Ωu , b are the

volume forces, ε∗ =
1
2

(
gradu∗ + gradT u∗

)
, the virtual strain and σ , the stress tensor.

The finite element approximation is a nodal approximation by subdomain. The domain
of study is then subdivided in a set of subdomains or finite elements (meshing step),
Ω = Uelements Ω

e with Ωe ∩Ωf = ∅, connected between them by nodes which support the
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degrees of freedom of the problem (in general the components of the displacement field).
The nodal values of the displacements are then interpolated inside the elements by the
shape functions to thus obtain an approximation of the displacement field u on the whole
domain Ω.

The integrals appearing in equation (4.3) are then decomposed on each finite element
and then calculated by a numerical integration technique (generally using Gauss points);

thus, taking the example of the term
∫
Ω

ε∗ : σdτ :

∫
Ω

ε∗ : σdτ =
∑

finite elements

∫
Ωe

ε∗ : σdτ

with
∫
Ωe

ε∗ : σdτ =
∑

Gauss points

ε∗g : σgωg

(4.4)

It is clear from equation 4.4 above that the constitutive equations of the material must
be solved at each Gauss point g to calculate the stress tensor σg. This stress tensor is
calculated at each instant from the mechanical state (stresses, internal variables) computed
at the previous time step and the strain tensor which is assumed to be known from the

displacement field ε∗ =
1
2

(
gradv∗ + gradT v∗

)
. Note that this approach obliges to store all

the necessary information (internal variables, strains, stresses) at each Gauss point.

The general principle of nodal integration is different in the sense that integrals are

not decomposed on each finite element. Thus, for the term
∫
Ω

ε∗ : σdτ , we directly write:

∫
Ω

ε∗ : σdτ =
∑

nodes

∫
Ωp

ε∗ : σdτ =
∑

nodes

ε∗p : σpωp (4.5)

In equation (4.5) above, Ωp represents the domain attached to the node p and ωp, its

volume. The domains Ωp must constitute a partition of Ω : Ω =
⋃
nodes

Ωp, and be disjoined

(Ωm ∩Ωn = ∅,m , n). Moreover, in the case of the Gaussian method, the computation of
the deformations at each Gauss point results from the interpolation of the displacements
directly, the computation of the deformations at a node must be specified.

4.2.1 Definition of nodal domains and nodal strains

The approach chosen is to rely on a mesh of first-order triangles or tetrahedra of any
domain of study. The domain associated with a node p is then constituted by the union of
the subdomains Ωe

p defined as in Figure 4.5 for all the finite elements e containing node p.
As suggested by Chen in 2D, the subdomain Ωe

p is the domain defined by the node p, the
midpoints of the edges connected to node p and the center of gravity of the triangle. In
3D, we propose to define the subdomain Ωe

p by the six sub-tetrahedra defined as shown
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4.2. Presentation of the method

in Figure 4.5 by the node p, the middle of one edge connected to node p, the center of
gravity of one face and the center of gravity of the tetrahedron.

Figure 4.5 - Definition of nodal domain in 2D and 3D.

Regarding the definition of nodal strains, Chen et al. [29, 30] propose to calculate
them on average over the volume Ωp. By applying the generalized divergence theorem,
the authors show that these strains can be expressed from an integral on the surface (or
contour in 2D) encompassing the domain Ωp.
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εpij =
1
ωp

∫
Ωp

εijdv =
1
ωp

∫
Ωp

1
2

(
ui,j +uj,i

)
dv =

1
ωp

∫
∂Ωp

1
2

(
uinj +ujni

)
ds (4.6)

Where ni is the component of the outside normal vector, if this last point can be an
advantage in the case of meshless methods because it avoids calculating the derivatives of
the displacement field, the advantage is less in a finite element context, the computation
of the deformations being very usual inside each finite element.

In addition, it can be noted that all the subdomains volumes are equal. The demon-
stration of this property is immediate for a regular tetraedron and results from the
equivalence of the four nodes in this case. In the case of an irregular tetraedron, there
exists a unique linear mapping F from a "reference" regular tetraedron onto the actual one.

We therefore have vol
(
Ωe

p

)
= detFvol

(
Ω

ref
p

)
. As F is a linear mapping, detF is constant

in each element e. The equality of all the subdomains Ω
ref
p volumes implies that of all

the subdomains Ωe
p volumes and so vol

(
Ωe

p

)
=

1
N e vol(Ωe) where N e is the number of

nodes of the element (3 for a triangle or 4 for a tetraedron). It follows that if the nodal
strain components are defined by equation (6), then, due to the previous property and the
homogeneity of the strain εeij within each first-order triangle or tetradron, one has:

εpij =
1
ωp

∫
Ωp

εijdv =

∑
e∈Sp

∫
Ωe

pεijdv∑
e∈Sp vol

(
Ωe

p

) =

∑
e∈Sp vol

(
Ωe

p

)
εeij∑

e∈Sp vol
(
Ωe

p

) =

∑
e∈Sp vol(Ωe)εeij∑
e∈Sp vol(Ωe)

(4.7)

where Sp is the set of elements containing node p. The nodal strains calculated using
the SCNI technique on the nodal domains defined above are identical to those coming
from the nodal averaging technique used by Dohrmann et al. [41] and in most research
works.

One could also think to define the nodal strains εpij in such a way that the strain field

εnodij defined by these nodal strains and the shape functions of the elements is equal, in a
weak sense, to the strain field calculated using the finite elements. We would then have
for each node p :

∫
Ω

Fp
(
εnodij − ε

e
ij

)
dv = 0 (4.8)

where Fp is the shape function associated with node p. As Fp vanishes in all the
elements not containing node p, it comes:

∑
e∈Sp

∫
Ωe

p

Fe
p

∑
q∈e

(
Fe
qεqij

)
− εeij

dv = 0 (4.9)
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Concentrating the first member matrix
∫
Ωe

Fe
pF

e
qdv on the diagonal and due to the

homogeneity of strain εeij within each element, it follows:

∑
e∈Sp

∫
Ωe

p

Fe
pdv


εpij =

∑
e∈Sp

∫
Ωe

p

Fe
pdv

εeij = 0 (4.10)

Noticing that
∫
Ωe

p

Fe
pdv =

1
N e vol(Ωe) , we then find that:

εpij =

∑
e∈Sp vol(Ωe)εeij∑
e∈Sp vol(Ωe)

(4.11)

The nodal strains thus calculated are again identical to that obtained with the 2
previous techniques.

4.2.2 Definition of nodal thermal strains

The calculation of the thermal strains at a node can simply be obtained from the nodal
temperature calculated by the previous thermal analysis. But this option is not consistent
with the SCNI approach for which the nodal strains are calculated on average over the
nodal volume Ωp (equation (4.6)). Therefore, a second option is to calculate the nodal
thermal strain in this way:

εthpij =
1
ωp

∫
Ωp

εthij dΩ. (4.12)

A last option, that is consistent with the nodal averaging technique, can be to calculate
the nodal thermal strains as the average of the thermal strains in the elements containing
the node. These three possibilities are compared in the following.

4.2.3 Calculation of stresses and internal variables

Thermal strains have now to be substracted to the nodal strains to get the mechanical part
of the nodal strains. Having the nodal mechanical strains, the computation of the stresses
and internal variables can now be carried out at each node by solving the constitutive
equations of the material.

The method has been implemented in SYSWELDTM and will be referred as nodal
approach in the sequel.
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4. The nodal integration based finite element method

4.2.4 Benefits and drawbacks of the nodal approach

The benefits of the method that has been implemented in SYSWELDTM are the following :

1. The systematic use of tetrahedral meshes.

2. The absence of volumetric locking for incompressible or nearly incompressible
media.

3. An easier transfer of the physical quantities: as all the physical quantities are
calculated at nodes, interpolations at any point may be performed in a more rigorous
way, using the shape functions of the elements.

4. Local remeshing in case of excessive distortion of the elements around a node: one
can change the local connectivity of the elements without moving the nodes, thus
avoiding any transfer of the mechanical fields.

5. Strong volumetric reduction of the results file: this comes from the fact that the
number of nodes in a finite element mesh is generally very much lower than the
number of Gauss points. In the case of first-order tetrahedral meshes, the ratio is
about 5.

Figure 4.6 - Couplings between node and its neighbors.

The nodal approach nevertheless has some drawbacks. The first one comes from the
definition of the nodal strains (formula 4.6). The strains at a node p depend on the
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4.3. Applications

displacements of all the nodes belonging to elements containing node p (first neighbor
nodes). This choice introduces couplings between each node and its second-neighbor
nodes in the tangent matrix (Figure 4.6), while in the classical FEM, couplings only arise
between first-neighbor nodes. An increase of the resolution time could, therefore, be
expected. In practice, this disadvantage is compensated by the fact that the constitutive
equations are now solved at nodes that are less numerous than the Gauss points in the
classical FEM.

The second drawback is associated with the possible presence of "hourglass" modes.
This zero-energy mode can be remedied by the technique proposed by Puso et al. [86, 87],
which consists in modifying the weak form in the following way:

∫
Ω

u∗ ·bdΩ+
∫
∂Ω

u∗ ·tdS −
∫
Ω

ε∗ : σ dΩ

+α


∫
Ω

ε∗ : σ elast dΩ︸              ︷︷              ︸
calculated using nodal integration

−
∫
Ω

ε∗ : σ elast dΩ︸              ︷︷              ︸
calculated using Gaussian integration


= 0

(4.13)

where α is a small, positive “stabilization parameter”, and σ elast denotes the stress ten-
sor calculated assuming a purely elastic behavior. In the expression between parentheses,
the first integral is calculated using nodal integration, while Gaussian integration is used
for the second.

4.3 Applications

4.3.1 Notched tensile specimen

The first classical validation test is to model a notched tensile specimen for compression.
The objective is to compare the nodal-integration-based finite element to classical FEM
solutions (P1, P1/P1, P1+/P1) on a 3D elastoplastic problem. Here, a 3D numerical model
is presented in figure 4.7. As the mesh is irregular, no stabilization parameter is used
(α = 0).

In order to take into account the large deformation, an Euler formulation is applied
for all elements type. An elastoplastic behavior with isotropic hardening is applied, with
module Young E = 200000MPa and Poisson ratio v = 0.3. Yield stress is a function of the
cumulated equivalent plastic strain:

σy
(
ε
p
eq

)
= A

(
ε
p
eq + ε

p
eq0

)n
(4.14)
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4. The nodal integration based finite element method

Figure 4.7 - Dimensions of the specimen (unit: mm) and mesh from two different angles
(7530 nodes, 33185 elements).

where A = 500MPa, n = 0.1 and ε
p
eq0 = 0.01 and initial yield stress σy0 = A

(
ε
p
eq0

)n
=

315.48MPa

Firstly, the results obtained from the preliminary analysis of force-axial displacement
and CPU time for P1, P1/P1, P1+/P1, and the nodal-integration-based finite element
are shown in figure 4.8. The P1 element has poor performance for incompressible media
as it is known. The others technique (P1/P1, P1+/P1, nodal-integration-based finite
element) provide the same numerical solutions. The figure 4.8 below illustrates that the
nodal-integration-based finite element not only gives a correct solution without "locking"
phenomena but also is the most efficient among all the chosen elements in terms of
computation time.

Secondly, figure 4.9 shows the displacement and axial stress contour results. The
nodal-integration-based finite element works as well as the P1+P1 element for stress
prediction.

In this study, we have successfully confirmed that the nodal-integration-based finite
element can avoid volumetric locking, as mentioned in the literature review. One unan-
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Figure 4.8 - Force-axial displacement and CPU time.

Figure 4.9 - Displacement and stress distribution of P1+/P1 (reference) and nodal-
integration-based finite element.

55



4. The nodal integration based finite element method

ticipated finding was that nodal-integration-based finite element is more efficient than
actual solutions (P1/P1 and P1+/P1) because the nodal-integration-based finite element
can use BFGS (Secant method) solver for non-linear problems while standard Newton
method is suggested for P1/P1 and P1+/P1 element for the sake of convergence.

4.3.2 Beam bending

Several reports of Bonnet et al. [21, 22, 23], and Zienkiewicz et al. [112] have shown
that their linear tetrahedral element formulation can overcome the shortcomings in
bending. The Objective of this part is to present the performance of the nodal-integration-
based finite element implemented in SYSWELDTM for static bending simulation. As we
know that the linear tetrahedral element suffers the shortcomings in bending dominated
problems for large strain. Figure 4.10 present the bending model (10*0.5*4 mm) and load
and boundary conditions (ex: SYM Uy means a condition symmetrical in Y direction).

Figure 4.10 - Load and boundary conditions for bending test.

Two meshes have been computed for simulations. Meshes are refined at the edges where
there exist high strain and stress gradient. The second-order hexahedral elements can
provide the reference result for bending simulation, and nodal-integration-based finite
element will be tested. What’s more, the P1/P1 element and Q1P0 element are also used
as these elements work well for solving the incompressibilities problem. The numerical
model (a) in figure 4.11 is a second-order hexahedron elements that contains 1761 nodes
and 280 3D elements, and numerical model (b) has 3075 nodes and 2300 3D first-order
elements, and numerical model (c) includes 3075 nodes and 13556 tetrahedrons.

Figure 4.12 provides displacement contour in Z direction. Table 4.2 presents maximum
displacement in Z direction. Compared with the displacement of the Q2 element, Q1P0
element and nodal-integration-based finite element have provided similar displacement
distribution, while the P1/P1 element has underestimated the maximum displacement.
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Figure 4.11 - Numerical model for simulations.

In this case, the result of the P1/P1 element further supports the conclusion that the
standard linear tetrahedral element suffers the shortcomings in bending simulations.

Figure 4.13 shows the von Mises stresses. Q2 element and linear tetrahedral proposed
and Q1P0 element provide similar stresses’ contours, while the P1/P1 element has a poor
performance in predicting the von Mises stress.

Figure 4.12 - Displacement contours.
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4. The nodal integration based finite element method

Figure 4.13 - Von Mise stress contours.

The mechanical model of the materials is elastoplastic. The mechanical properties are
specified in Table 4.1.

Table 4.1 - Material properties

Module Yuong E = 195122MPa

Poisson ratio v = 0.30

Elastic limit σY = 170MPa

Hardening slope constant H = 5000MPa

As shown in Table 4.2, the displacement Uz given by Q1P0 element is very approach
to that of Q2 element. However, the mesh of the Q1P0 element has about 3 times more
integration points. The nodal-integration-based finite element gives 0.04′s difference by
using only 3075 integration points.

Table 4.2 - Maximum displacement in Z direction

element type
integration
point

Uz ∆z ∆z
|Uz|

Q2 element 5600 -3.95 reference reference
Q1P0 element 18400 -3.88 -0.07 -0.0177
P1/P1 element 13556 -3.38 -0.57 -0.144
Nodal integra-
tion based finite
element

3075 -4.11 0.16 0.04
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4.3.3 Numerical simulation of welding

An application to welding simulation, involving very strong thermo-mechanical aspects,
will now be presented. Some comparisons of the results with those obtained with more
classical FE approaches will be made.

4.3.3.1 Benchmark model

The aim of this section is to test on a welding simulation the performances of the nodal
integration based finite element method with regard to more classical finite element
approaches. For nuclear company like FRAMATOME, numerical modeling of welding
processes becomes a decision making tool used to speed up and improve the development
and qualification of welding and repair techniques. The example we propose comes from
the European Network on Neutron Techniques Standardization for Structural Integrity
(NeT) Task Group 4. The NeT aims at developing experimental and numerical techniques
and standards for the reliable characterization of residual stresses in welded structures
[85]. Task Group 4 deals with the estimation of residual stress fields in a 3-pass slot
weld in an 18 mm thick 316L austenitic stainless steel plate. Welding process and type
of material are tungsten-inert-gas (TIG) welding and AISI 316L stainless steel [107].
Dimensions are illustrated in Figure 4.14; the bead length and depth are both somewhat
variable, the bead length varying from 74 to 82 mm and the bead depth from 2.1 to 2.7
mm. The welding process parameters are presented in Table-4.3.

Figure 4.14 - Diagram of the 3-pass slot weld sample [107].

Table 4.3 - Welding process parameters TG4 [107].

Puissance
(W )

Energy
(J/mm)

Traveling
speed
(mm.s−1)

Bead
length
(mm)

Interpass
tempera-
ture (◦C)

Pass 1 1650 1300 1.27 74 22
Pass 2 1463 1150 1.27 76 58
Pass 3 1388 1100 1.27 82 60
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The simulations are carried out in two steps. A thermal analysis is first performed and
provides the temperature distributions during the whole process. Then the calculated
temperature distributions are applied as a loading in a thermo-mechanical analysis which
gives the resulting stresses and strains. The thermal analysis is carried out using the
classical (Gaussian) finite element method on meshes made up of 4-node tetraedra or 8
node hexaedra. Three types of formulation are considered for the mechanical calculation.
The first one uses the nodal integration based finite element formulation on tetraedral
meshes. The results are compared to those obtained with more classical finite element
using mixed displacement-pressure Q1P0 hexaedrons (linear variation of displacements
and constant pressure within each element) and P1P1 tetraedrons (linear variations of
both displacements and pressure within each element). The comparison of the 3 kinds
of simulation is achieved on the residual stresses obtained after the first pass. All the
calculations are performed with the finite element code SYSWELDTM . The welding
process parameters are presented in Table 4.3 and all the material properties comes from
the SYSWELDTM database [101].

4.3.3.2 Meshes

The meshes were created using the VISUAL-MESHTM software. Thanks to the symmetry
(see the D-D line in Figure 4.14), only half of the geometry needs to be discretized. The
three different meshes considered are presented in Figure 4.15.

The first mesh (A) is intended for element type Q1P0, and the other two (B and C) for
the stabilized P1P1 element [47] and the nodal approach; this is summarized in Table
4.4. Mesh A was generated manually, but both meshes B and C were obtained with an
automatic mesh generator. Note that mesh C is more refined than the other two in the
weld pass (colored green in Figure 4.15) and in the heat-affected zone.

Table 4.4 - Meshes and elements used

Element & mesh Mesh A Mesh B Mesh C
Q1P0 element Yes - -
P1P1 element - Yes Yes
Nodal integration - Yes Yes

4.3.3.3 Thermal simulations

Thermal simulations have been realized for the three different meshes, by using the same
parameters given in Table 4.3 The part is supposed to be initially at 20 C. A two-offset-
double-ellipsoidal heat source model moving at a constant speed v in the y direction is
applied within the elements of the first weld pass, in the same way as Xu et al. [107].
Equation 4.15 defines the volumetric heat flux (q) inside the front and back regions of the
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Figure 4.15 - Meshes - Top: global meshes - Middle: 2D sections - Bottom: zooms on the
weld zone.

heat source 27 , where these regions are denoted by the subscript 1 and 2 respectively. An
element activation/deactivation option is used to simulate the material input in the weld
pass.

q1,2(x,y,z, t) =
3
√

3
π
√
π
f1,2

Q
abc1,2

exp

−3(y + vt)2

c2
1,2

exp
(
−3z2

b2

)
×
[
exp

(
−3(x+ x′)2

a2

)
+ exp

(
−3(x − x′)2

a2

)] (4.15)

where f1 = 50.63, f2 = 25.31, a = 1.799, b = 1.299, c1 = 1.5, c2 = 2. These parameters have
been adjusted to find by the simulation, the boundary of the experimental melted zone
[107]. The volumic density of power given by equation 4.15 is applied at the Gauss points
of the finite elements of the first weld pass. The total power really input in the model
may therefore depends on the local mesh where the heat source applies. Therefore, the Q
value is calculated at each moment in order to ensure that the total power input is equal
to 825 W for the geometry considered.

On all external surfaces of the mesh except the symmetry plane, an exchange coeffi-
cient of 10Wm−2(◦C)−1 is applied with an outside temperature of 20◦C. Metallurgical
transformations are not included in the simulations since the 316L stainless steel has only
one (austenitic) phase.

The temperature distributions obtained with the three meshes during the deposit of
the first weld pass are very close, as shown in Figure 4.16.
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Figure 4.16 - Temperature distributions calculated at t = 34s with (a) mesh A, (b) mesh B,
(c) mesh C.

4.3.3.4 Mechanical simulations

The temperature distributions are then put into the mechanical calculation as a loading.
The displacement in the x-direction of all the nodes of the symmetry plane are imposed
to 0. Three other kinematic conditions are applied to prevent any solid body movement.

A thermo-elastoplastic law with an isotropic hardening is used to describe the AISI316L
stainless steel behavior. Young’s modulus, yield stress, thermal expansion, and also
hardening law depend on temperature. The time of the welding and cooling simulation
process is fixed at 1000 seconds in order to obtain a completely cooled state.

The calculation based on the nodal approach has been achieved without any stabiliza-
tion (α = 0 in equation 4.13) and the nodal thermal strains have been obtained using the
nodal temperatures.

Table 4.5 gives the CPU times and hardware resources required for all the calculations.
All the calculations have been performed on the same computer, with the same precision
of convergence on the residual forces and the same number of time steps have been
calculated. A BFGS method [11] has been used for solving the non linear problem at
each time step for Q1P0 and nodal approach simulations. As the BFGS method did
not enable to reach convergence at all the time steps for the P1P1 simulations, a fully
Newton-Raphson procedure has been used with this element.

As expected, despite the increase of the bandwidth of the first-member matrix, the
CPU time of the nodal approach applied on the meshes B and C is comparable to that of
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Table 4.5 - Computing times and hardware resources for pass 1

Type of simulation &
resources

CPU time (h) RAM (Go) Disk space per
time step (Mo)

Q1P0 mesh (A) 0.96 0.47 46.7
P1P1 mesh (B) 2.27 0.51 29.9
P1P1 mesh (C) 4.02 0.76 41.5
Nodal mesh (B) 2.07 0.97 7.1
Nodal mesh (C) 3.37 1.5 9.9

Q1P0 elements and smaller than that of P1P1 elements. The increase of the bandwidth of
the nodal approach is thus compensated by the fact that the constitutive equations are
solved at nodes and not at Gauss points as for Q1P0 and P1P1 elements. Indeed, because
each hexaedron owns 8 Gauss points and each P1P1 tetrahedron one Gauss point, mesh
A contains 216000 Gauss points, mesh B, 129277 and mesh C 163798. These values are
between 5 and 9 times greater than the number of nodes of mesh B or C.

An other reason which explains that the CPU time of P1P1 elements is greater than
that of the nodal approach comes from the fact that with P1P1 elements, each node owns
4 degrees of freedom (3 components of displacement and the pressure) instead of 3 with
the nodal approach.

Because all the results of the nodal approach (stresses, strains, internal variables) are
stored at nodes instead of Gauss points, the disk space needed by the nodal approach
applied on mesh B is 8 to 9 time lower that required by Q1P0 elements on mesh A. But
due to the increase of the bandwidth, the RAM needed for the nodal approach is 2 to 3
times bigger than that of the other calculations.

Figure 4.17 shows a comparison of the distributions of the longitudinal residual stress
obtained with the different approaches after the welding of the first bead. In order to
ckeck the results in a more refined way. Figure 4.18 gives the transverse and longitudinal
residual stresses according to the depth. The line chosen is located at the middle of the
symmetry plane, where high residual stresses are located after the welding process. The
residual stresses calculated with Q1P0 mesh are taken as a reference.

The results of the five simulations are very close. Slight oscillations of the residual
stresses profiles calculated with the nodal approach on mesh B are observed (Figure 4.18).
These oscillations become very small when the mesh is refined in the weld bead and the
heat affected zone (mesh C). Calculations have been performed using the stabilization
procedure presented in section 2.5 without changing the oscillation level.

Smaller oscillations are also observed on the results obtained with P1/P1 elements
while the results given by Q1P0 element are very smooth. But it must be noted that the
results shown for the nodal approach come from stresses as calculated in each node while,
for the finite element simulations (Q1P0 ans P1/P1), an averaging procedure has been
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Figure 4.17 - Longitudinal σyy residual stress for (a) Q1P0 elements, (b) P1P1 elements
with mesh B, (c) P1P1 elements with mesh C, (d) Nodal approach with mesh B, (e) Nodal

approach with mesh C (unit: MPa) at t = 1000s.

first applied to get the stresses at nodes from the values at Gauss points. Such procedure
calculates the stresses at a node by averaging the values obtained at the Gauss point
nearest to the node in the elements containing the node.

One way to smooth the results obtained with the nodal approach on a quite coarse
mesh is to consider other options of calculation of the thermal strains presented in section
of thermal strain defination.

Figure 4.19 gives the residual mean stress (or pressure) distributions obtained on mesh
B with the different options proposed. Clearly the results obtained when averaging the
temperature on all the elements containing each node (case (b) of figure 4.19) or on the
nodal volume (case (c)) are better. The nodal volume averaging option which is consistent
with the SCNI approach is therefore recommended.

So as suggested by Puso et al. [86], some averaging procedure can also be applied to
the nodal approach results. This procedure consists in first calculating the stresses in
each tetrahedron from the stresses calculated at nodes and then, to go back to the nodes
by averaging at each node, the stresses so obtained in the elements containing the node.

Figure 4.20 give the mean stress (pressure) obtained using this procedure. The
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Figure 4.18 - Comparison of residual stresses σxx and σyy in-depth.
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smoothed results so obtained are very close to those coming from the Q1P0 simulation.

Figure 4.19 - Mean stress obtained on mesh B with various options for the calculation of
nodal thermal strains - (a) Nodal temperature, (b) nodal subvolume averaging, (c) element

averaging.

Figure 4.20 - Mean stress distributions - (A) Mesh A with elements Q1P0, (B) Nodal
approach with smoothed results.

4.3.3.5 Stabilization parameter

The stabilization parameter is a solution for "hour-glass" mode, while the portion energy
that we have imported could lead to a false solution. Therefore, a study of the effect of
the stabilization parameter is still necessary. A zero stabilization (α = 0) has been applied
for all the simulations above. The stabilizations tests are carried out with mesh (B).

We have applied α = 0, α = 5 ∗ 10−4, α = 5 ∗ 10−3 as different values. We have extracted
the residual stress for the same line in-depth as mentioned in Figure 4.21. For free
tetrahedral mesh, the stabilization parameter has a negligible effect or even creates the
oscillations. These free tetrahedron meshes generally will not create hour-glass mode;
thus stabilization parameter is not recommanded.
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Figure 4.21 - Comparison of residual stresses σxx and σyy in-depth with different
stabilization parameter.
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4.4 Conclusion

A nodal-integration-based finite element method was developed for the numerical so-
lution for incompressibility test, bending problem, and thermo-mechanical problems,
and implemented into the SYSWELDTM software. The approach uses linear triangular
(in 2D) or tetrahedral (in 3D) meshes, thus permitting the use of standard present-day
tools for automatic meshing. As a consequence of the placement of integration points at
the nodes instead of the Gauss points of the elements, it avoids volumetric locking phe-
nomena currently encountered with the standard finite element method, for elastoplastic
or viscoplastic constitutive equations involving plastic incompressibility.

Nodal subdomains, as required by Chen et al. [29, 30, 44]’s SCNI approach to nodal
integration, were defined for both triangular and tetrahedral meshes, as a natural byprod-
uct of the discretization of the domain of study into finite elements. It was shown that
with this definition of nodal subdomains, the nodal strains evaluated through the SCNI
approach are identical to those calculated using Dohrmann et al. [41]’s nodal averaging
technique. A natural weak formulation of the identity of the strain fields in the nodal
approach and the standard FEM was also shown to ultimately lead to the same definition
of nodal strains. In addition, three different methods were proposed for the calculation of
the nodal thermal strains required by thermo-mechanical analyses.

The objective of the notched tensile specimen is a verification of volumetric locking
test for nodal integration based finite element. The P1/P1, P1+/P1 are considered as the
reference element, as there is no volumetric locking for these two elements. Of course,
the P1 element suffers the volumetric locking. The comparison has shown that there is no
locking problem for the nodal-based finite elements. What’s more, the nodal integration
based finite element needs less computation time, which is very encouraging.

The second test is designed for bending simulation. We have used Q2 element (the
reference), Q1P0 element, P1/P1 element and nodal integration based finite element. The
nodal integration based finit element gives similiar contour like those of Q2 element and
Q1P0 element in terme of displacement and stress.

Several calculations of residual stresses induced by some welding process were per-
formed, using both the standard FEM and the nodal approach. The results obtained
with the nodal approach are globally consistent with those obtained using the classical
FEM with mixed displacement/pressure elements (Q1P0 hexahedra and P1P1 tetrahe-
dra). With the nodal approach, some spatial fluctuations of the residual stresses may
be obtained when using a coarse mesh. These oscillations may be reduced and virtually
eliminated by refining the mesh, and/or refining the method of calculation of nodal
thermal strains, and/or using a “smoothing procedure” of the stress components, similar
to that used within the classical FEM when evaluating the average stress components in
the elements from their values at Gauss points.
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The possible use of linear triangular or tetrahedral meshes, as permitted by the nodal
approach without the need for precautions for the prevention of locking phenomena, is a
major advantage in the context of numerical simulations of the mechanical consequences
induced by welding processes involving complex geometries and/or welding paths. In
spite of the increased bandwidth of the left-hand side matrix, the CPU time required
by the nodal approach is less than that necessary with the classical FEM with P1P1
elements. Also, convergence of the global “equilibrium iterations” is generally easier,
which permits the use of more economical quasi-Newton methods, instead of a full
Newton-Raphson method requiring calculation and inversion of a new tangent matrix
at each iteration. Finally, with the nodal approach, time-integration of the constitutive
equations is performed at the nodes instead of the Gauss points; since the ratio of the
total number of nodes over the total number of Gauss points is generally considerably
smaller than unity (of the order of 1/5 for a typical large tetrahedral mesh), the disk
space necessary to store the results (stresses, strains, internal variables) at each time-
step is appreciably reduced, which permits to envisage the simulation of larger welded
structures.

In summary, nodal integration based finite element provides promising results and
advantages:

1. Without additional new degrees of freedom ( like pressure for P1/P1 element), the
nodal approach can avoid the locking phenomena related to plastic incompressibil-
ity with standard 4-node tetrahedral elements, and free mesh tool for tetrahedrons
is available for complex geometries.

2. The nodal integration based finite element gives promising results in large strain
bending simulation, moreover, nodal integration based use less integration points
than other elements.

3. According to the welding benchmark test, thanks to the irregularity of the meshes
used, adding a stabilization term is not really necessary for the thermal-mechanical
simulations.

4. The Nodal integration based finite element works more efficiently than the P1/P1
element as it requires less time computation. However, the nodal integration
element needs a reasonable refinement for the high-stress zone.

5. We have also observed that the nodal integration based has a better convergence
during the computation. Furthermore, the nodal-integration-based finite element
seems less sensitive for mesh tangling than the P1/P1 element.

6. Compared with P1/P1 and Q1P0, the Nodal integration element needs much less
disk space for stocking results but more RAM for computation.
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Chapter 5

The nodal integration based finite
element method with material

motion
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5. The nodal integration based finite element method with material motion

5.1 Simulation of the material motion

In chapter 3, we present a new method to simulate steady-state by simulating material
motion in the frame related to the solicitation. With this new method, the mechanical
steady-state will be observed after numerous transient analysis steps. However, this new
method’s mesh must be obtained by translation of a 2D mesh in the welding direction,
and the length of each layer must be equal.

In chapter 4, a nodal-integration-based finite element method has been presented
and validated by different applications. The nodal-integration-based finite element gives
encouraging features. Firstly, the nodal integration based method uses linear tetrahedral
mesh, which can be generated easily for all geometry with a meshing tool. Moreover,
the nodal-integration-based finite element suffers no volumetric locking problem, better
bending performance, more efficient in terms of computing time (compared with P1/P1
element), and less disk space required for storing results. However, the drawback of
the nodal-integration-based finite element is that it requires more RAM for storing the
stiffness matrix.

In some cases, the FE mesh does not follow the material’s motion (case of remeshing,
calculation in a moving frame, ...). It is then necessary to « transfer » quantities from the
Gauss points of the previous mesh to those of the new mesh. Again this transfer is always
based on more or less heuristic and accurate methods. With nodal-integration-based
finite element, the transfers are still necessary but may be performed in a more rigorous
way, by using the values of the quantities at the nodes and shape functions of the triangle
or tetrahedral element.

This chapter will present the combination of these two methods for material motion
simulation in the moving reference related to solicitation. On the one hand, the linear
tetrahedral mesh can be used without locking problem, which can simplify the meshing
procedure. On the other hand, the variables transfer for simulating material motion can
be performed in a more simple and rigorous manner because all the internal variables
(displacement, strain, stress, ...) are computed at nodes.

5.1.1 The preceeding point technique

Figure 5.1 shows a diagram of the general principle for simulating material motion. The
pre-processor will firstly compute the distance S corresponding to the displacement of
material points for a given time step ∆t. Then, a procedure will compute the position
of the preceding points for all the nodes. These preceding points can coincide with an
existing node, fall into an element, or at the edge of an element.

First of all, we compute each node’s displacement S during the time step ∆t in the
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5.1. Simulation of the material motion

non-deformed mesh:

S = ∆t ∗W (5.1)

where W is the material speed in the non-deformed mesh.

Figure 5.1 - Schema principal for material motion simulation.

As we can see in figure 5.1, the point Pi is the preceding point of node Mi . The internal
variables (displacements, strains, stresses, ...) of Pi will be computed with the shape
function of the element containing Pi . If the preceding points coincide with the existing
nodes or at edges of the element, the first element found by the pre-processor will be
noted. One should note that this transfer procedure will be applied for all the nodes at
the beginning of each time step.

The nodes that can not find the element containing his preceding points will keep its
internal variables for the next time step, such as the nodes locating at the inlet boundary.

5.1.2 Different motions

Figure 5.2 shows different types of material motions that we will study. We suppose that
a material particle’s trajectory is the same as his streamline in the non-deformed mesh.
Therefore, considering a material particle at a given time t, we find this same particle at
the instant t −∆t, by upwinding its streamline.

We consider first the translational motion. For a given time step ∆t, the position X⃗P of
preceding points (P) for each node (M) can be computed as:

X⃗P = X⃗M − W⃗∆t (5.2)

where X⃗M is the position of node M, and W⃗ is the material displacement speed.

Then, we determine the finite element that contains P, and its number and shape
functions corresponding to X⃗P are stored in memory for a further calculation of internal
variables.
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5. The nodal integration based finite element method with material motion

Figure 5.2 - Principle of translational, circular and helical motion.

This idea can also be extended to circular (like pressure vessel and pipe welding
simulations) and helical motion (cladding applications, thixoforming simulations). In the
case where the material movement is a rotation around an axis passing through the origin

with the unit vector N⃗ =
Ω⃗

∥Ω⃗∥
(Ω⃗ is the rotation speed), the coordinates of the preceding

points are computed by applying a rotation of angle ϕ = ∥Ω⃗∥∆t and axis N⃗ to the vector
X⃗M .

In general, such a rotation applied to a given vector X⃗ is obtained in the following way.
We start by decomposing X⃗ in the form:

X⃗ = (X⃗ ·N⃗ )N⃗ + (X⃗ − (X⃗ ·N⃗ )N⃗ ) (5.3)

Notice that the vector (X⃗ ·N⃗ )N⃗ is invariant by the considered rotation. Only the vector
X⃗⊥ = X⃗ − (X⃗ ·N⃗ )N⃗ , which is orthogonal to the axis of rotation, will be modified. The
rotation of angle ϕ and axis N⃗ applied to X⃗⊥ immediately gives the vector Y⃗⊥ defined by:

Y⃗⊥ = cosϕX⃗⊥ + sinϕ
(
N⃗ ∧ X⃗⊥

)
(5.4)

Finally, noticing that N⃗ ∧ X⃗⊥ = N⃗ ∧ X⃗ the rotation of angle ϕ and axis N⃗ of any vector
X⃗ leads to Y⃗ :

Y⃗ = cosϕX⃗ + (1− cosϕ)(X⃗ ·N⃗ )N⃗ + sinϕ(N⃗ ∧ X⃗) (5.5)

These formulas are known as Rodrigues rotation formulas.

By writing the components associated with the above formula, we obtain:

Yi = cosϕXi + (1− cosϕ)NiNjXj + sinϕεijkNjXk (5.6)
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5.1. Simulation of the material motion

which gives us the following rotation matrix:

R = cosϕI + (1− cosϕ)N⃗ ⊗ N⃗ + sinϕ


0 −N3 N2

N3 0 −N1

−N2 N1 0

 (5.7)

This matrix is thus computed once for all the nodes, and the preceding point’s coordi-
nates are determined by:

X⃗P = R · X⃗M (5.8)

In the case of a helical motion, it is necessary to combine translation and rotation. As
the translation vector is necessarily collinear with the rotation vector, the combination
can be done in any order:

X⃗P = R ·
(
X⃗M − W⃗∆t

)
(5.9)

The material motion simulation is carried out step by step over time. The only modifi-
cation to be made in the standard resolution algorithm is that the initial mechanical states
of the nodes (displacements, constraints, stresses, ...) must be replaced by the variables of
the preceding point at the beginning of each time step.

Thus, at the beginning of each time step and for a given instant t, each node’s initial
mechanical state is exactly the mechanical state of his preceding point at time t −∆t.

The initial mechanical state at time t −∆t of each node is therefore obtained from a
simple interpolation of the nodal values of the element containing the preceding point
and the shape functions associated with this point. This mechanical state concerns
displacements, deformations, stresses, and all internal variables.

However, in the presence of material rotation, special attention should be paid to
"rotate" the vector and tensor quantities thus calculated and place them in the correct
coordinate system. The angle of rotation to take into account is now ∥Ω⃗∥∆t = −ϕ and the
corresponding matrix is:

R′ = cosϕI + (1− cosϕ)N⃗ ⊗ N⃗ − sinϕ


0 −N3 N2

N3 0 −N1

−N2 N1 0

 (5.10)

Figure 5.3 provides the algorithm of the material motion simulation procedure. All
variables transfer operations take place in the non-deformed mesh. The advantage of
working in such a mesh is that the material velocity is constant during the simulation.
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5. The nodal integration based finite element method with material motion

Figure 5.3 - Algorithm for material motion simulation.

It is thus not necessary to compute again the position of preceding points (which is
time-consuming) at each time step unless ∆t changes.

5.2 Mechanical fields transfer

5.2.1 Interpolation techniques associated with the preceeding

point technique

5.2.1.1 First-order interpolation

In order to compute internal variables of preceding points in a simple and efficient way,
a first solution is to calculate them using the first-order triangle or tetrahedral shape
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5.2. Mechanical fields transfer

function and the nodal values.

Figure 5.4 - Triangular and reference element.

The linear triangular element and the corresponding notations used are shown in
figure 5.4. The well known linear approximation of an unknown function φ within a
triangle is expressed by:

φ(x,y) = A+Bx+Cy (5.11)

The linear element form functions will be obtained from this approximation. Assuming
the values of φ on the nodes of the triangle are known, the coefficients A, B, and C are
determined by solving the system:

φ1 = A+Bx1 + cy1

φ2 = A+Bx2 + cy2

φ3 = A+Bx3 + cy3

(5.12)

The Jacobi determinant J is:

J =

∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣ (5.13)

where xi and yi are the coordinates of the nodes. Solving 5.12 for A , B , and C leads to:

77



5. The nodal integration based finite element method with material motion

A =
1
J

∣∣∣∣∣∣∣∣∣
φ1 x1 y1

φ2 x2 y2

φ3 x3 y3

∣∣∣∣∣∣∣∣∣ =
(x2y3 − x3y2)φ1 + (x3y1 − x1y3)φ2 + (x1y2 − x2y1)φ3

J

B =
1
J

∣∣∣∣∣∣∣∣∣
1 φ1 y1

1 φ2 y2

1 φ3 y3

∣∣∣∣∣∣∣∣∣ =
(y2 − y3)φ1 + (y3 − y1)φ2 + (y1 − y2)φ3

J

C =
1
J

∣∣∣∣∣∣∣∣∣
1 x1 φ1

1 x2 φ2

1 x3 φ3

∣∣∣∣∣∣∣∣∣ =
(x3 − x2)φ1 + (x1 − x3)φ2 + (x2 − x1)φ3

J

(5.14)

Then the internal variables of P can be computed from equation 5.11, equation 5.14 in
the form:

φp(x,y) =
x2y3 − x3y2 + (y2 − y3)x+ (x3 − x2)y

J
φ1

+
x3y1 − x1y3 + (y3 − y1)x+ (x1 − x3)y

J
φ2

+
x1y2 − x2y1 + (y1 − y2)x+ (x2 − x1)y

J
φ3

(5.15)

We can also express the internal variable P in the reference element as:

φp(ξ,η) = N1φ1 +N2φ2 +N3φ3 (5.16)

where N1 = 1− ξ − η, N2 = ξ, N3 = η.

Another simple and practical way to calculate the contribution of each node for
preceding point is to compute the barycentric coordinate (see figure 5.5).

Figure 5.5 - Schema of barycentric coordinate for triangle and tetrahedron.

The internal values at point P in 2D case can be expressed as:
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5.2. Mechanical fields transfer

φP = wA ∗φA +wB ∗φB +wC ∗φC

wA = SP BC/SABC

wB = SPAC/SABC

wC = SPAB/SABC

(5.17)

where φi represents the physical quantities at node i, and SABC ,SP BC ,SPAC ,SPAB are the
surface of triangles. wA, wB, wC satisfy 0 < wA, wB, wC < 1 and wA +wB +wC = 1.

Similarly, the barycentric coordinate in 3D can be expressed as:

φP = wA ∗φA +wB ∗φB +wC ∗φC +wD ∗φD

wA = VP BCD /VABCD

wB = VPACD /VABCD

wC = VPABD /VABCD

wD = VPABC/VABCD

(5.18)

where VABCD ,VP BCD ,VPACD ,VPABD , VPABC are the volume of tetrahedrons. wA, wB, wC ,
wD satisfy 0 < wA, wB, wC , wD < 1 and wA +wB +wC +wD = 1.

5.2.1.2 Second-order interpolation

In order for a better precision and interpolation, we also propose a complete second-order
g̃(x⃗) interpolation of each quantity g(x⃗) using the quadratic tetrahedron (or triangle) shape
functions:

g̃(x⃗) =
NN2∑
n=1

Nn(x⃗)g̃n =
NN∑
n=1

Nn(x⃗)gn +
NN2∑

k=NN+1

Nk(x⃗)g̃k = Ns(x⃗) ·G + Nm(x⃗) ·G̃ (5.19)

where NN represents the number of element nodes (3 or 4) and NN2 the number of nodes
for the corresponding second-order element (6 or 10). gn represents the nodal values of
the quantities actually calculated at the nodes. g̃k are the values estimated at middle edge
nodes. The g̃k values will be computed by reconstructing continuous functions from a
set of nodal values 1 via a moving least-squares method. We actually have g̃k = g̃ (x⃗k), for
k = NN + 1, ...,NN2.

Therefore, for all k = NN + 1, ...,NN2, we should calculate the quantities g̃k , which can
minimize the function:

1the nodes of the element that contains the preceding points and the nodes of neighbor’s
element.
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5. The nodal integration based finite element method with material motion

F(G̃) =
NVM∑
i=1

w (x⃗i) (gi − g̃ (x⃗i))
2 (5.20)

where NVM is the set of neighboring nodes of the element considered and w(x⃗i), a weight
function.

Finally, the minimization is carried out by equation 5.21:

NVM∑
i=1

Nm (x⃗i)
Tw (x⃗i)

(
gi −Ns (x⃗i) .G−Nm (x⃗i) .G̃

)
= 0 (5.21)

equation 5.21 can be expressed as:

NVM∑
i=1

Nm (x⃗i)
Tw (x⃗i)Nm (x⃗i)

 .G̃ =
NVM∑
i=1

Nm (x⃗i)
Tw (x⃗i) (gi −Ns (x⃗i) .G) (5.22)

The first member matrix M =

NVM∑
i=1

Nm (x⃗i)
Tw (x⃗i)Nm (x⃗i)

 is a 3x3 or 6x6 matrix,

which can be reversed once for all in the case of infinitesimal transformations. In large
deformations, it is necessary to take into account the current position of each node and
therefore compute the matrix M at each time step.

The evaluation of the quantity at point x⃗ will, therefore, require computation locally
the successive calculations of

Q =
NVM∑
i=1

Nm (x⃗i)
Tw (x⃗i) (gi −Ns (x⃗i) .G)

G̃ = M−1Q or solve M.G̃ = Q

g̃(x⃗) = Ns(x⃗).G + Nm(x⃗).G̃

(5.23)

To calculate the shape functions, it is necessary to calculate the barycentric coordinates
as in figure 5.6:

The shape functions of the 6-node reference triangle are defined as follows:

N1 = −α(1− 2α) N2 = 4ξα
N3 = −ξ(1− 2ξ) N4 = 4ξη
N5 = −η(1− 2η) N6 = 4αη

(5.24)

and the shape functions of the 10-node tetrahedron are:
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5.2. Mechanical fields transfer

Figure 5.6 - Barycentric coordinate for second-order element.

N2 = 4ξα

N1 = −α(1− 2α) N4 = 4ξη

N3 = −ξ(1− 2ξ) N6 = 4ηα

N5 = −η(1− 2η) N7 = 4ζα

N10 = −ζ(1− 2ζ) N8 = 4ξζ

N9 = 4ηζ

(5.25)

Finally, the internal variables of point P can be expressed as:

φP =
NN2∑
n=1

Nn ∗φn (5.26)

where Ni is the shape function and φi are the values at nodes.

5.2.2 The preceeding and subsequent point technique

The current technique consists of seeking his preceding point of each node, which precedes
it in the direction of material motion. Thus, for the blue node in figure 5.7, we search for
the element (in green) which contains the preceding point and the point itself (indicated
by a green star) and the initial mechanical state (at the start of the time step) of the blue
point is determined to be that of this point calculated by applying the shape function of
the green element.

This technique takes full advantage of the fact that all the mechanical quantities
(displacements, deformations, stresses, internal variables) are calculated at the nodes in
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5. The nodal integration based finite element method with material motion

Figure 5.7 - Principle of the preceding and the subsequent point.

the nodal approach. It is called "the preceding point technique".

This technique has the immense advantage of its simplicity. However, it has been re-
ported to create some numerical diffusion related to the variables transfer procedure. This
relatively modest numerical diffusion observed with structured meshes in the direction
of material motion becomes significantly larger, if the free tetrahedral mesh is applied,
especially in the 3D case.

It is clear that this technique has a clear tendency to smooth the transported fields and
in particular to reduce the differences between the extreme values.

Each node of the mesh has not only a preceding point but also a subsequent point in
the material motion direction. Such as in Figure 5.7, the green node has a subsequent
point indicated by a blue star, which is located in the blue element. The initial mechanical
state of the point indicated by a blue star is, therefore, that of the green node. We can
calculate the initial mechanical states of the subsequent point by using the shape function
of the blue triangle, and try to get as close as possible to the mechanical states of the green
node.

It is clear that this technique, unlike the previous one, accentuates the differences since
we adopt here an approach opposite to the previous one. On the other hand, this technique
does not guarantee the existence or the uniqueness of the solution (set of mechanical
states at all nodes of the mesh). We will call it "the subsequent point technique".

Therefore, the idea is to combine the preceding point and subsequent point techniques
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5.2. Mechanical fields transfer

in the least-squares sense to define a technique that will be called "the preceding and
subsequent points technique".

Figure 5.8 - Principle of the preceding and subsequent technique.

To clarify this technique:

- vn is the internal variables (strains, stresses, displacements, ...) to be transported to
node n at a given time t.

- v′n is the internal variables (strains, stresses, displacements, ...) transported to the
node n after the movement of material between the given time t and t +∆t.

- wp is the internal variables at point p : wp =
∑
i

N e
ipvp =

〈
Ne

p

〉
. {ve}, where N e

ip is the

shape function of material node n at point p.

- w′q is the internal variables at point q, the material node n will arrive at point q at

t +∆t: w′q =
∑
j

N
f
jqvf =

〈
Nf

q

〉
·
{
v′f

}

The preceding technique gives us internal variables of each node n:

v′n = wp =
〈
Ne

p

〉
. {ve} (5.27)

where p is the preceding point of the node n and e, the element containing this point.

The subsequent technique gives us internal variables of each node n:

vn = w′q =
〈
Nf

q

〉
·
{
v′f

}
(5.28)

where q is the subsequent point of the node n and f , the element containing this point.

The problem then consists in finding the values v′n which minimize:
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F (
{
v′
}
) =

∑
n

(
(1−α)

(
v′n −

〈
Ne

p

〉
. {ve}

)2
+α

(
vn −

〈
Nf

q

〉
.
{
v′f

})2
)

(5.29)

where α is a weight coefficient for each of the techniques.

We can obtain the solution by solving:

dF = 2
∑
n

(
(1−α)

(
v′n −

〈
Ne

p

〉
. {ve}

)
dv′n −α

{
Nf

q

}
·
(
vn −

〈
Nf

q

〉
.
{
v′,f

})
.
{
dv′f

})
= 0 (5.30)

{
v′
}

is thus solution of the following matrix system:

((1−α)[I] +α [Ms]) ·
{
v′
}

= (1−α)
{
Zp

}
+α{Z} (5.31)

Where [I] is the identity matrix associated with the "preceding point technique", [Ms]
is the matrix associated with the "subsequent point technique".

[
mf

q

]
=

{
Nf

q

}
·
〈
Nf

q

〉
are the

elementary matrices for all the nodes.
{
Zp

}
is the contribution to the second member of “

the preceding point technique” and is made up at line number n of the value
〈
Ne

p

〉
. {ve}.

{Zs} is the contribution to the second member of "the subsequent point technique" and
results from the assembly of the vectors

{
zf

q

}
=

{
Nf

q

}
vn.

When the preceding point of node n is outside of the mesh, then we will replaces(
v′n −

〈
Ne

p

〉
. {ve}

)
by (v′n − vn), at the same time, by adding the term (1−α) to the diagonal

term of the nth row of the matrix and the term Vn on the nth row of Zp. If the node n has
a subsequent point, the contribution of this subsequent point is treated in a conventional
manner. If the subsequent point of a node n is outside the mesh, this point makes no
contribution to the system.

One should note that if α = 0, the preceding and subsequent technique is the same as
the preceding point technique.

To conclude, various techniques have been implemented. The first-order interpolation
and second-order interpolation for computing internal variables of the preceding point
have been presented. We have proposed three variable transfer solutions:

1. APPRO 1: the preceding point technique with the first-order interpolation for
displacement and the other internal variables.

2. APPRO 2: the preceding point technique with the second-order interpolation for
displacement and the other internal variables.

3. APPRO 3.xx: the preceding and subsequent point technique with the first-order
interpolation for both displacement and the other internal variables. xx represents
the fraction of the subsequent point technique in this mixed approach.
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Then, we will try to solve different types of problems. APPRO 1 is always the priority
due to his simplicity. If the APPRO 1 can not provide enough precision, APPRO 2 and
APPRO 3 will be tested.

5.3 Coupling with thermal analysis

For welding steady-state simulation, we proposed the steady-state simulation methods for
both thermal and mechanical aspects. However, the temperature simulations for rolling
and machining haven’t been introduced.

From the physical point of view, it’s necessary to take into consideration of the interac-
tions between thermal and mechanical phenomena in the case of rolling and machining
simulations. Different from welding simulation, the heat generation in rolling and ma-
chining is due to the mechanical dissipation of the workpiece and friction phenomena
between the tool and workpiece. Feulvarch et al. [31, 46, 95] has developed a method for
simulating heat transfer during friction stir welding, and this method allows to take the
heat generated by the mechanical dissipation into consideration. This method is used in
this study for modeling the temperature during rolling simulation.

Welding steady-state simulation can be found in figure 3.12. Figure 5.9 shows the
general procedure for rolling and machining steady-state modeling. According to whether
temperature evolution is considered, the procedure can be split into two-part.

Part I can be used to solve the steady-state processes that temperature evolution can be
neglected, such as the hot rolling steady-state simulation, wire drawing simulation, and
so on.

The temperature plays an important role in certain processes, such as the machining
process; therefore, we propose a solution for coupling thermal, mechanical steady-state
simulation.

1. We start with Part I simulation, which means the material properties are temperature-
independent. Generally, the material properties at room temperature are chosen if
the temperature modeling is in consideration.

2. Once the mechanical steady-state is achieved, the steady-state mesh will be ex-
ported.

3. Temperature steady-state simulation will be carried out by using the steady-state
mesh obtained by step 1.

4. The steady-state temperature result is applied for the material motion simulation,
and the temperature-dependent material properties can be used.
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Figure 5.9 - The general procedure for steady-state simulation.

5. Material motion simulation will be continued until a new mechanical steady-state
is observed. A new steady-state mesh can be exported.

6. Set up steady-state criteria by the user; for example, temperature evolution simu-
lated in two successive steady-state mesh is inferior 5 degrees or residual stresses
are inferior 5 MPa.

7. If the steady-state criteria are satisfied, the simulation will be finished. Otherwise,
steps 3-6 will be repeated.

The following sections will introduce some numerical examples to validate the method
proposed.
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5.4 Applications

5.4.1 2D rolling application

5.4.1.1 Introduction

In this section, we will apply this new method for a 2D cold rolling simulation. The
contact condition is defined without friction. At the same time, three transfer techniques
will be tested for different mesh types. The aim is to investigate the influence due to the
different meshes (structured uniform, structure but non-uniform in operation direction,
auto-generate triangle mesh) and transfer solutions.

Figure 5.10 - Lagrange formulisme and proposed method, boudary conditions.

Figure 5.10 shows two different methods and boundary conditions applied. The
Lagrange formulation is considered as the reference. Material properties are presented in
Table 5.1. An isotropic hardening model is used.

Figure 5.12 presents the mesh for roll (radius r = 25mm) and workpiece (20 mm * 200
mm ). We will first apply this mesh for Lagrange step by step simulation and material
motion simulation, which are computed by nodal-integration-based finite element. 3 mm

will be laminated, and the moving speed is 1 mm/s.
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Table 5.1 - Material properties for rolling simulation

material properties Values

young’s modulus 144,000 Mpa

Poisson’s ratio 0.3

elastic limit 365 Mpa

hardening parameter see Figure
5.11

Figure 5.11 - Stress hardening function of plastic deformation for material properties in
Table 5.1.

Figure 5.12 - Mesh for roll and workpiece.
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5.4.1.2 Simulation comparisons

Figure 5.13 shows the contours of displacement Ux. The first contour is computed by
Lagrange step by step. The other contours are simulated by the material motion method.
These two methods give similar contours.

Figure 5.13 - The Ux displacement simulated by Lagrange formulation and material
motion method.

The curves of displacement in the rolling direction and in-depth have also been
compared (see figure 5.14). There is no difference in the steady-state zone.
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Figure 5.14 - Comparisons of displacements in rolling direction and in-depth at final
state.
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Then, in order to reduce computation time, a new mesh is created as we can see in
figure 5.15. Compared to the previous mesh (see figure 5.12), this new mesh is only
refined nearby solicitation. We consider the first mesh (figure 5.12) as a reference mesh
(REF), and the new mesh is a structured non-uniform mesh (STR). All these simulations
are carried out with APPRO 1.

Figure 5.15 - The non-uniform structured mesh.

Figure 5.16 presents the comparisons of displacement obtained by reference mesh and
structured non-uniform mesh. The same displacements are observed. The only difference
is the computation time required to achieve a steady-state.

Figure 5.16 - Comparisons of displacement in rolling direction.

If we now turn to computation time and CPU time (Table 5.2). Compared with
Lagrangian step by step simulation, Material motion simulation with REF mesh requires
180s of computation time to achieve steady-state, while it takes about only 1/4 CPU
time of Lagrange formulation. This could be explained as the contact condition is easier
to converge in material motion simulation. The simulation with structure mesh needs
190s of computation time, and it only takes 973.02 CPU time. The structured mesh can
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economize about 15% CPU time than that of REF mesh. What’s more, if we want to
continue to reduce the CPU time, a shorter numerical model with structured mesh can be
also applied for steady-state simulation, which could be more efficient.

Table 5.2 - Computation time to achieve steady-state and CPU time

Simulations Computating time
(time step)

CPU time

Lagrange step by step 170s (≈0.06s) 4246.22

Proposed method with REF mesh 180s (0.2s) 1148.65

Proposed method with STR mesh 190s (0.2s) 973.02

All the above simulations used APPRO 1 because all the nodes are aligned in the
rolling direction. Then an auto-generate tetrahedral mesh (FREE mesh) has also been
tested for simulations (see figure 5.17). Similarly, the simulation of Lagrangian step by
step simulation and material motion simulations are carried out with the same conditions
presented in figure 5.10.

Figure 5.17 - The auto-generate tetrahedral mesh.

Then, the displacement contours are shown in figure 5.18. Firstly, the Lagrange
step-by-step simulation presents the oscillations due to the discretization of the roll’s
displacement. Secondly, the contour of APPRO 2 gives great agreement with that of
Lagrange step by step simulation.

Figure 5.19 provides the displacement in rolling direction. APPRO 1 and APPRO
2 are very similar to those of Lagrange step by step simulation. For APPRO 3.2, The
displacement decreases in the rolling direction, which is possible due to the subsequent
technique. The displacement at curve 1 is not enough representative as all the nodes
are aligned in rolling direction. The displacement at curve 2 illustrates that APPRO 2
(second-order interpolation) can reduce numerical diffusion.

92



5.4. Applications

Figure 5.18 - Displacement contours of Lagrange simulation and material motion method
with different variable transfer techniques.
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Figure 5.19 - Comparisons of displacements in rolling direction at final state.
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Table 5.3 provides the computation time and CPU time for steady-state simulations.
Among all the simulations, the Lagrange step by step simulation requires the most CPU
time. Compared with the simulation with APPRO 1, APPRO 2 requires less CPU time.
The explication is perhaps that simulation with APPRO 2 suffers less numerical diffusion.
Therefore, it takes less computation time to achieve equilibrium and steady-state.

Table 5.3 - Computation time and CPU time for FREE mesh

Simulations computating time
(time step)

CPU time

Lagrange step by step 170s (0.1s) 3780.27

proposed method with APPRO 1 190s (0.2s) 1630.5

proposed method with APPRO 2 180s (0.2s) 1428.9

proposed method with APPRO 3.2 190s (0.2s) 1745.5

5.4.1.3 Conclusion

In this section, we have first tested different mesh (reference mesh, structure mesh, free
mesh) and variable transfer techniques (APPRO 1, APPRO 2, APPRO 3.xx).

For the REF mesh and STR mesh, the proposed method gives good agreement compared
with Lagrange simulation. In terms of CPU time, the material motion method is more
advantages. This advantage comes from the fact that the contact condition is quasi-stable
during the simulation. What’s more, as all the nodes are aligned in space, the numerical
diffusion is unidirectional in the rolling direction and this numerical diffusion in REF and
STR meshes is neglectable.

However, when the free mesh is tested, this numerical diffusion becomes two-directional
(in-depth and in the rolling direction) and non-negligible. Therefore, APPRO 2 and
APPRO 3 are developed for the objective to remedy this numerical diffusion problem.
According to figure 5.18 and figure 5.19, APPRO 2 works better than APPRO 1 and
APPRO 3 in free triangle mesh.

The choice of variable transfer technique depends on the mesh type. APPRO 1 and is
always the priority choice if REF’s or STR’s type mesh is used. Otherwise, APPRO 2 and
APPRO 3.xx can be tested.
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5.4.2 Simulation of 3D rolling

5.4.2.1 Numerical model

In this section, we will extend our method to 3D rolling simulations. A rigid ball will
create a groove (0.15 mm) on the sample (plate thickness is 1.39 mm). Figure 5.20 shows
the boundary conditions and schema of the process. The same material properties as
Table 5.1 are applied. Contact without friction is defined between the ball and the sample.
The moving speed of ball is 0.25 mm/s. The dimension of model is 45 ∗ 2.34 ∗ 1.39 mm.

Figure 5.20 - Schema of the process and boundary conditions.

Two numerical models have been prepared (see figure 5.21). The mesh (A) is for the
Q1P0 element. The mesh (B) is for the P1/P1 element and the nodal-integration-based
finite element. In order to compare the result (displacements, stresses), the mesh (B) has
been refined to have more integration points. In the rolling direction, the element length
in the hexahedral mesh is 0.207 mm, and that in the tetrahedral mesh is 0.151 mm. Table
5.4 shows the number of integration points for each element type.

Table 5.4 - Number of integration points

Q1P0 Nodal integration
based

P1/P1

In rolling direction 241 162 161
In depth 12 11 10
In width 20 19 18
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Figure 5.21 - Mesh (A) for Q1P0 element, mesh (B) for P1/P1 element, and
nodal-integration-based finite element

5.4.2.2 Transient simulations comparisons

Among the three simulations, the results of the Q1P0 element are considered as the refer-
ence, and we would like to compare the residual stresses simulated by nodal-integration-
based finite element and P1P1 element (solution actual for tetrahedral mesh) to those
of the Q1P0 element. In terms of computational efficiency, we would like to make a
comparison between the nodal-integration-based finite element and the P1P1 element.

Figure 5.22, figure 5.23, figure 5.24 shows the distribution of stresses. Compared with
the results of Q1P0 element, both P1P1 and nodal-integration-based finite element give
good agreement. The simulations use the update Lagrange formulation to take large
strain into account.

A comparison of CPU time and hardware resources has been presented in Table 5.5.
The nodal-integration-based finite element requires more RAM due to a larger bandwidth
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Figure 5.22 - von Mises (unit: MPa) for Q1P0 elements, P1/P1 elements and
Nodal-integration-based finite element.

Figure 5.23 - Stress XX (unit: MPa) for Q1P0 elements, P1/P1 elements and
Nodal-integration-based finite element.
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Figure 5.24 - Stress YY (unit: MPa) for Q1P0 elements, P1/P1 elements, and
Nodal-integration-based finite element.

of the stiffness matrix, as each node is coupled not only with his first neighbors but also
the second neighbors. The nodal-integration-based finite element needs less disk space
for storing the results because there are fewer integrations points than P1P1 elements. In
terms of CPU time, the Q1P0 element and nodal-integration-based finite element require
almost the same CPU time, while the P1P1 element needs about 3 times more CPU time.

Table 5.5 - Comparisons of CPU time, hardware resources

Simulations RAM (Go) disk space (Go) CPU time

Q1P0 element 0.43 1.5 17258

P1/P1 element 1.2 2.2 63324

Nodal-integration-based element 2.0 0.31 19569

5.4.2.3 Material motion simulation

The comparisons of transient simulations with different elements have been presented.
Then, we will try to simulate this rolling process in a moving reference frame.

The length of model is 45 mm, and 25 mm will be laminated. The rest 20 mm is to
ensure the steady-state boundary condition, as we know, if the sphere is too approach to
the inlet boundary (inlet boundary for material motion simulation), the boundary effect
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will become very important. Especially, the plastic deformation should not be observed at
the elements of the inlet boundary.

For the material motion simulation procedure, the elements at the inlet boundary
represent the initial material state. Therefore, the loading should be placed far away from
the inlet boundary. The first attempt is carried out with the same boundary condition
as transient simulations, while the nodes of the inlet boundary still suffer a loading that
augments progressively. This loading finally leads to deformation plastic non-negligible.
A second attempt is to create a zone non-deformable by imposing a new boundary
condition, which can ensure zero deformation and zero stress for the inlet boundary (see
figure 5.25).

Figure 5.25 - Boundary conditions for steady-state simulations.

For the first steady-state simulation, we start with the mesh (B) as the transient simula-
tion. APPRO 1 is applied for material motion simulations. A free tetrahedral mesh (see
figure 5.26) will also be tested for the steady-state simulation.

Figure 5.26 - Auto-generate tetrahedral mesh.
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As shown in Figure 5.27 shows, there is no significant difference among the three
contours of displacement.

Figure 5.27 - Steady-state of displacement Uz (unit: mm).

Turning now to stress comparisons, the numerical results with mesh (B) are very
similar both in steady-state and the final transient state, which confirms the conclusion
that structured mesh suffers less numerical diffusion.

The numerical diffusion can be observed for the numerical result of mesh (C) - APPRO
1, especially for Stress XX. According to figure 5.29, the second-order interpolation
APPRO 2 can improve variables transfer quality.

Figure 5.28 - Steady-state of von Mises (unit: MPa).
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Figure 5.29 - Steady-state of Stress XX (unit: MPa).

Figure 5.30 - Steady-state of Stress YY (unit: MPa).
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Mesh (B) has been used in both transient simulation and material motion simulation,
and Table 5.6 shows that material motion simulation requires less CPU time than that of
transient simulation. Moreover, APPRO 2 needs more computation for the calculation of
second-order interpolation while less CPU time for solving equilibrium equation after
the variables transfer, that’s why the simulation with APPRO 2 is more efficient.

Table 5.6 - Comparisons of CPU time, hardware resources

RAM (Go) CPU time

Mesh (B) - step by step 2.0 19569

Mesh (B) - APPRO 1 2.0 14125

Mesh (C) - APPRO 1 1.1 11595

Mesh (C) - APPRO 2 1.1 9554

5.4.2.4 Conclusion

In this section, we have first presented three transient simulations with different elements:
Q1P0 with hexahedral mesh, p1p1 and nodal-integration-based finite element with
tetrahedral mesh. The P1/P1 element uses the same mesh as the nodal-integration-based
finite element.

The comparison of transient simulation confirms that the Nodal-integration-based
finite element gives good simulations results as Q1P0 and it is more efficient than the
P1/P1 element. Moreover, the nodal-integration-based finite element requires less disk
space for storing transient results but more RAM for storing the stiffness matrix.

The objective is for steady-state simulation. The structured mesh (B) and free mesh (C)
are tested.

Mesh (B) with APPRO 1 gives similar contours as those computed by transient simula-
tion.

Auto-generate mesh (C) with APPRO 1 shows some numerical diffusion, which can be
remedied by APPRO 2.

5.4.3 3D roll forming process simulation

Similarly, we’d like to simulate the 3D roll forming process. Numerical model is shown
in figure 5.31. The rotation speed is 0.0333 rad/s, and translation speed is 0.05 mm/s.
The same material properties as previous simulations are applied. In this simulation, the
structured mesh with APPRO 2 is chosen to reduce numerical diffusion.
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Figure 5.31 - Numerical model for roll forming process.

Figure 5.32 presents the von Mises stress distribution. Simulation is carried out in two
steps: firstly, the tool movement is to apply the loading to the workpiece. Secondly, the
tool is fixed in space, then, the material motion method is activated to simulate material
movement.

In order to study the numerical diffusion due to variable transfer, we decide to show the
plastic deformation vs time, because the plastic deformation is a permanent deformation
that remains after unloading. According to figure 5.33, the plastic deformation gradually
decrease due to numerical diffusion.

3D roll forming simulation is an illustration test of helical material motion. Globally,
the results of the simulation are very encouraging, and the numerical diffusion problem
can be ameliorated if the mesh is finer.
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Figure 5.32 - von Mises stress distributions (unit: MPa).

105



5. The nodal integration based finite element method with material motion

Figure 5.33 - Plastic deformation distributions.
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5.4.4 Simulation of welding up to steady-state

5.4.4.1 Numerical model and boundary conditions

Figure 5.34 - Welding model and boundary conditions.

In this part, we will discuss the steady-state simulation of welding process, both MRF
method and material motion simulation method are presented. Figure 5.34 shows some
boundary conditions, dimension of the numerical model and welding parameters. A
double-ellipsoid (Qb1 = 25, Qb2 = 13.5, b1 = 1.3, b2 = 2.6, a = 2.5, c = 3 ) heat source is
applied. The total power input is 1007.4 Watt. Convection and radiation losses have been
taken into account.

SysweldTM provides thermal and mechanical material properties of 316L stainless
steel. The fusion temperature is 1400 degrees. The material properties are temperature-
dependent. An elastoplastic with isotropic hardening model is applied in this simulation.

5.4.4.2 Material motion simulation

With the heat source parameters presented above, the steady-state temperature distribu-
tion is shown (see figure 5.35). The temperature distribution is almost the same even if
the mesh changes. Therefore, only one temperature figure is presented.

For the MRF method, some specific refinement is required for the sake of convergency.
As we can see in figure 5.36, the mesh has been refined at the inlet, outlet boundary, and
the domain where we place the heat source. This mesh is obtained by the translation of
the 2D section in the welding direction.

For material motion simulation, the first mesh is presented in figure 5.37. All the
layers have the same length, and the preceding points of nodes are supposed to coincide
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Figure 5.35 - Steady-state temperature distribution.

Figure 5.36 - Mesh for MRF method simulation.

with nodes if the step is δt =
lengthlayer
vheat−source

, which means there is no numerical diffusion

related to interpolation.

The second mesh is a structured mesh. Mesh refinement appears only at the zone
where there is the heat source. The objective of structured mesh is to investigate the
influence of numerical diffusion existing only in the welding direction. As we can see
structured mesh has fewer nodes and 3D elements than those of reference mesh. The
same time step and APPRO 1 have been used for two simulations.

A comparison of residual stresses has been presented in figure 5.38. A Lagrange
simulation is also performed. Firstly, the material motion simulation with reference
mesh (A) gives great agreement with those of MRF method and Lagrange simulation.
No obvious differences have been observed. This encouraging report is obtained in the
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Figure 5.37 - Reference mesh [A] and structured mesh [B] for material motion simulation
method.

context of without numerical diffusion. Then, the stress contours simulated by mesh (A)
and mesh (B) are very similar, which means that numerical diffusion existing only in
the welding direction leads to negligible numerical diffusion, according to the stresses
contours.

Turning now to comparing the residual stress quantitively, figure 5.39 and figure 5.40
show the curves of residual stresses. The curve yellow is the line where there are high
residual stresses. In order to plot the curves of stresses, all the stresses are presented at
nodes. An average procedure from gauss points to nodes has been carried out for the
results of the MRF method.

Figure 5.39 displays the comparisons of the stress distributions of four simulations.
Figure 5.39 shows that the stresses are globally very similar. According to the stresses yy
in the welding direction, the Nodal approach works very well as the stress curves of step
by step simulation almost coincide with those of the MRF method.

From the figures, we can see that the stress of mesh (A) and mesh (B) are almost the
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Figure 5.38 - Residual stresses distributions for Lagrange simulation, MRF method
simulation, material motion simulation.

same. Thus, the conclusion that the numerical diffusion if only comes from welding
direction would lead to negligible influence, can be confirmed again. Therefore, the mesh
(B) could be an optimal choice both for the computational efficiency aspect and simulation
quality.

Figure 5.40 shows stress distribution in depth. The material motion method based
on the nodal integration technique works well. This difference between MRF method
and Nodal approach perhaps is perhaps due to the average procedure as there are high
residual stress gradients in depth. The average procedure can lead to the modification of
real stresses computed at gauss points. We should never forget that the nodal integration
based finite element has only 10 integration points in depth while the classical hexahedral
element has 18 integration points in this comparison. A better prediction can be produced
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Figure 5.39 - Residual stresses in welding direction for MRF-Q1P0, Nodal-mesh(A),
Nodal-mesh(B), and Setpbystep-mesh(A).
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if there are more integration points in depth.

Figure 5.40 - Residual stresses in depth directopn for MRF-Q1P0, Nodal-mesh(A),
Nodal-mesh(B) and Setpbystep-mesh(A).

After the reference mesh and structured mesh, a free tetrahedral mesh has also been
tested for steady-state simulation (see figure 5.41). As we can see the residual stresses
in figure 5.41, the nodal approach and P1/P1 element give almost the same contours
with the same mesh (C) in the Lagrangian step by step simulation. While the steady-
state simulation with free tetrahedral mesh presents severe numerical diffusion related
to first-order interpolation method, this numerical diffusion can be ameliorated by the
second-order interpolation.
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Figure 5.41 - Free tetrahedral mesh (D), mesh section.

Figure 5.42 - Stress-yy simulated by step by step Lagrangian formulation and material
motion simulation by first-order interpolation (E) and by second-order interpolation (F).

5.4.4.3 Circumferential welding

Another application is the circumferential welding, where classical 316L material proper-
ties are used. Figure 5.43 presents dimensions of model and boundary condition. Fine
mesh is created at the approximation of heat source. The number of nodes and 3D
elements is shown.

Thermal steady-state should be solved by diffusion convection equation firstly. Then
steady-state temperature distribution can be founded in figure 5.44.

Firstly, we try to use MRF method for solving mechanical steady-state. However, the
MRF method can not converge. After that, The material motion method is applied. The
stresses at different moments are shown in the figures below.

The material motion simulation method is a step by step simulation. Therefore, the
method proposed is more time consuming, but it is easier to converge than MRF method.
Compared with Lagrangian simulation, the advantage is that it is unnecessary to use fine
mesh along all the heat source trajectory.

Figure 5.45, and figure 5.46 provide the stresses distribution at different moments. We
can clearly observe that material flows in the mesh. Only one turn has been simulated
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Figure 5.43 - Circonferentiel welding model, boundary condition and mesh.

Figure 5.44 - Steady-state temperature distribution.
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Figure 5.45 - von Mises stress distribution as function of time.
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Figure 5.46 - Stress axial σrr distribution as function of time.
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here.

5.4.4.4 Conclusion

In this section, the material motion method is applied for steady-state welding simulation.
The simulations of Lagrange formulation based on nodal approach and MRF method can
be considered as the reference. Different meshes are tested.

The simulation results of nodal-mesh (A) can avoid the numerical diffusion related to
the variable transfer procedure. The comparisons of stresses simulated by MRF method
and nodal-mesh (A) show no difference. Therefore, the material motion method is
validated for steady-state welding simulations.

The results obtained by nodal-mesh (B) show that the numerical diffusion only existing
in the welding direction has negligible influence for steady-state welding simulation.
Table 5.7 presents that the mesh (B) can save considerable computing resources (RAM,
CPU time, disk space).

The first-order interpolation and second-order interpolation method are applied for the
mesh (C). The second-order interpolation method has improved the results’ quality but
the numerical diffusion cannot be eliminated. Therefore, how to remedy the numerical
diffusion due to variable transfer for the free tetrahedral mesh could be the future study.

Table 5.7 - Computing time and hardware resources

Type of simulation &
resources

CPU time RAM (Go) Disk space per
time step (Mo)

MRF-Q1P0 3286 0.657 91.4
MEL-mesh (A) 41034 3.6 21.04
MEL-mesh (B) 13679 1.5 9.95
stepbystep-mesh (A) 43647 3.6 21.24

As we can see in Table 4.5, the MRF method is the most efficient method in plate
welding simulation. However, the MRF method cannot converge for circumferential
welding simulation. The material motion method with selective refinement mesh (B) can
be used for steady-state simulation, which can not only greatly shorten computing time
but also reduce disk space required for storing results.

5.4.5 3D thermal-mechanical rolling simulation

This numerical example presents the possibility of taking the changing of temperature
into consideration for rolling simulation. We have introduced the procedures in figure
5.9; the simulation starts with ambient temperature T = 25 degree (Part I). 316L thermal-
mechanical properties are used for thermal-mechanical simulation. The basic information
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is given in figure 5.47. Friction between tool and workpiece is neglected. The symmetrical
conditions are used (top-base, left-right. The mesh used is only for a quatre of the
complete model.

Figure 5.47 - Numerical model for 3D rolling simulation.

Figure 5.48 presents the stress of von Mise. We can see that the stress became steady-
state after t = 60s. The steady-state mesh at t = 100s is exported for temperature cal-
culation. The geometry is obtained by updating the coordinates of nodes (taking the
displacements of nodes into account).

Figure 5.48 - Stress of von Mise (MPa) vs time.

The properties for temperature modeling are shown in Table 5.8 and Table 5.9. A
node-to-node formulation for non-matching meshes developed by Feulvarch et al.[45] is
used.

Once the temperature is obtained, we will continue the material motion simulation
with this new temperature load. The final mechanical state (t = 100s) will be considered
as the initial state for the following simulation. Figure 5.49 provides the temperature and
von Mises distribution.
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Table 5.8 - Material properties for tool

Temperature
(°C)

20 100 300 500 700 900 1100

conductivity
[W/(mm.K)]

0.11 0.105 0.098 0.090 0.082 0.075 0.066

Heat capacity
[J/(kg.K)]

220 365 290 320 331 337 338

Table 5.9 - Material properties for workpiece

Temperature (°C) 20 100 300 500 700 900 1100

conductivity
[W/(mm.K)]

0.012 0.013 0.016 0.019 0.022 0.026 0.029

Heat capacity*density
[∗10−5 J/(mm3.K)]

275 293 337 381 424 464 504

Parameter K 1207.9 1025 855 616 408 228.9 85

Figure 5.49 - The temperature simulated at t = 100s and von Mises at t = 200s.

Figure 5.50 - The temperature simulated at t = 200s and von Mises at t = 300s.
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Then, a second steady-state mechanical mesh at t = 200s is exported for the second
temperature calculation. The temperature at t = 100s is considered as the initial condition
for temperature calculation, and the stress at t = 200s is the initial state for mechanical
simulation. Figure 5.50 shows the temperature and von Mises stress. Compared with pre-
vious temperature and stress distribution, one can note that the workpiece’s temperature
has changed while the von Mises stress is almost the same.

The temperature plays an important role in stress and plastic cumulation distribution,
as we can see that the von Mises stress decreased about 150 MPa.

To conclude, the Part I presented in figure 5.9 provides solutions for the simulations
that neglected the temperature variation due to deformation plastic, such as hot rolling
simulation.

Part II is to take temperature into consideration. The thermal-mechanical coupling is
carried out in an uncoupled manner, as we can see in figure 5.9. Part II could be continued
until the difference of stresses or temperature between two successive cycles satisfies your
criteria.
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6. Conclusion and Perspectives

6.1 Conclusion

In this thesis, the research works have two principal parts: the first part concerns the
validation of nodal-integration-based finite element method. The second part is the
development of material motion simulation method.

Nodal-integration-based finite element method not only allows to use of tetrahedral
elements without locking problems related to von Mises criteria but also permits to
compute all the internal variables (displacement, strain, stress, ...) at nodes. As we know,
the triangle and tetrahedron can be generated automatically by existing meshing tools,
especially for complex industrial pieces. Several tests have been studied to validate the
nodal-integration-based finite element method.

1. Notched tensile specimen test has shown that the nodal-integration-based finite
element method can avoid locking problems (contrary to standard linear tetrahedral
elements in von Mise plasticity). Another finding is that nodal-integration-based
finite element method is more efficient than the actual solution (P1P1 element,
P1+P1 element).

2. The bending test has shown that the P1P1 element is too stiff. However, nodal-
integration-based finite element method gives a good performance in bending
dominated problems and more efficient than the P1P1 element.

3. TG4 benchmark simulation shows that the nodal-integration-based finite element
method works very well for thermo-mechanical problems. The nodal-integration-
based finite element method results are globally consistent with those obtained
using Q1P0 and P1P1 elements.

In these tests, the results of the nodal-integration-based finite element method are
always compared with a reference solution, such as P1+P1 for locking test, Q2 for bending
test, Q1P0 for welding simulation. The nodal-integration-based finite element gives
excellent agreement with the reference solution. Moreover, the nodal-integration-based
finite element is more efficient and requires less disk space for storing the results than the
P1P1 element for tetrahedral meshes, while more RAM is needed for storing the stiffness
matrix.

For the following parts, the nodal-integration-based FEM is used for solving the
problem in a moving reference frame related to the solicitations. Firstly, the material
motion is simulated by applying some preceding points technique at each time step. One
should note that we search the position of the preceding points for all the nodes in the
non-deformed mesh, in which the velocity of all the nodes is constant. Secondly, at the
beginning of each time step, all nodes’ internal variables should be replaced by those of
preceding points, which could be computed by the first-order shape function and nodal
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values of the element containing the preceding point. The equilibrium state is calculated
at each time step.

With the preceding point technique, the translational, circular, and helical mate-
rial movement can be solved. A relatively modest numerical diffusion can be observed
with structured tetrahedral mesh. However, numerical diffusion becomes significantly
important if a free tetrahedral mesh is used. In order to improve the numerical diffu-
sion problem in free meshes, the second-order shape function and "the preceding and
subsequent points technique" have been implemented.

Finally, the material motion method is applied to various tests. According to these
tests, we can conclude:

1. If a structured mesh is used for material motion simulation, the APPRO 1 is the
prior choice. If the important numerical diffusion is observed, APPRO 2 and APPRO
3.XX can be tested.

2. APPRO 2 can improve the precision of variables transfer in case of free meshes (as
we can see in figure 5.28, figure 5.29 and figure 5.30). But APPRO 2 cannot remedy
the numerical diffusion problem if the too strong stress gradient exist such as in the
welding simulation example (see figure 5.42).

3. The material motion method can be used for steady-state simulation, while this
new method can also provide the information of transient states.

The nodal-integration-based finite element method with material motion has been
validated by comparing simulation results with those obtained by the Lagrangian formula-
tion and MRF method. For transient-state simulation, this new method is an incremental
method similar to the Lagrangian method, while the new method requires a mesh refine-
ment only near the solicitation. This refinement selective can largely save the computing
resource compared to the Lagrangian formulation. For steady-state simulation, this new
method is much easier to converge but more time-consuming than MRF method as it
needs to simulate transient states, and it permits also to simulate the steady-state of large
deformation problem.

6.2 Perspectives

6.2.1 Improvements of the proposed methods

The nodal-integration-based finite element method and material motion simulation have
been applied for various typical tests, and the results given by the proposed method have
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a good consistent with those obtained by classical methods. However, there are still some
improvements that should be made:

Figure 6.1 - σ33 for welding simulation.

As we can see in figure 6.1, there are the symmetrical plan and free surface and the σ33

is perpendicular to the free surface. The first improvement concerns the stress calculation
on the free surface. It should be noted here that with the nodal-integration-based FEM, the
computation of the stresses in a node located on the surface takes into account the volume
located under this node and thus does not respect precisely the condition on the surface.
The finite element method does not respect either the condition on the surface (in fact it
respects it but in a weak sense) but it is less annoying because the computation is carried
out at the Gauss points which are generally not located on the surface. Therefore, the
resolution of the behavioral equations must be by adding the supplementary conditions to
be respected on the stresses on the free surface. Bergheau et Leblond has already worked
on this point and a solution is under development and validation.

The second point to be improved is to take the phase transformation into account for
thermal-mechanical simulation. As it is well-known that phase transformations play
an important role in residual stresses and distortions, especially for welding and heat
treatment.

The third improvement is vised to remedy numerical diffusion observed in the case of
free mesh. The diffuse approximation method proposed by Rassineux et al. [108, 109]
works very well for variables transfer. Therefore, applying the diffuse approximation
method for material motion simulation could be possible to remedy numerical diffusion.

6.2.2 Machining simulation

The machining process is governed by several phenomena, such as the energy dissipation
due to plastic deformation, chips formation, the fracture of chips, energy transferring
between chips and tool and the workpiece, and so on.

In the literature, lots of numerical models and finite element or meshless methods have
been reported [96], and we will not discuss the advantages and drawbacks of each method
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in this section. The objective is to present the possibility to simulate the steady-state of
machining processes by the material motion method presented in chapter 5. Steady-state
simulation is still necessary for specific requirements. For example, in order to predict
the remaining cutting tool life for maximizing the utilization of each machining tool,
the cutting force that is applied to the cutting tool in steady-state is the main factor for
predicting tool wear.

In this section, a simple illustration of steady-state mechanical simulation is presented.
Therefore, the phenomena related to material separation criteria are beyond this research
consideration. In addition, as the aim of the simulation is to calculate the steady-state of
the process, there is no need for a material separation criterion.

Figure 6.2 - Boundary conditions and numerical model for 2D machining simulation.

Figure 6.2 shows the numerical model and boundary conditions. A pre-crack is defined
and the simulation is carried out in two steps (figure 6.2):

1. Advancing the tool until to the end of the pre-crack.

2. Once the tool arrives at the end of the pre-crack, the material motion is simulated
until observation of steady-state.

An elastoplastic model with isotropic hardening is chosen. Young’s modulus is 144000
MPa, the yield stress is 229 MPa, and the strain hardening is presented in the table 6.2.
The friction between the tool and workpiece can also be taken into account (we neglected
the friction in our test).

Figure 6.3 provides a schema explication for steady-state simulation and also the
displacement UY during the simulation. The material motion simulation can be consid-
ered a manner of correction to revise the false mechanical states due to unreal material
separation.
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Table 6.1 - Work hardening relationship

plastc deforma-
tion

0 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3

Hardening
stress

229 251 264 274 284 292 329 388 436

Figure 6.3 - Modelling principle for machining simulation (displacement UY).

Then, a 3D machining simulation is also presented. Figure 6.4 shows the model di-
mensions and boundary conditions. SYSWELDTM has some macro-elements that are
designed for the contact between a deformable body (with large relative displacements)
and one or several rigid targets possibly mobile. Contact conditions and material proper-
ties are the same as 2D simulation. A pre-crack has been created for the zone of separation
of material. The presence of cutting tools is for considering heat exchange between the
cutting tool and workpiece.

Figure 6.5 shows a structured tetrahedral mesh to reduce numerical diffusion related
to the variables transfer procedure. Refinement can be found for the chip due to the
existence of a high gradient of strain/stress.

Figure 6.6 presents von Mises’ stress distribution during the simulation. The first
step is tool movement until the separation zone. The second step is the material motion
simulation. The chip formation can be observed. The steady-state is achieved at 80s.

In this section, the nodal integration based material motion simulation method has
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Figure 6.4 - Numerical model and boundary conditions for 3D machining simulation.

Figure 6.5 - Tetrahedral mesh for machining simulation.

been successfully applied for machining simulation. The object is to give a simple
demonstration and test the possibility of modeling machining processes. The model
proposed permits to couple a thermal analysis and a mechanical calculation. Temperature
changes during the machining process should be modeled in the future study.

Besides, it is interesting that the nodal-integration-based finite element method could
be implemented in conjunction with a remeshing technique or mesh adaptation technique
to avoid mesh tangling due to large deformation.
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Figure 6.6 - von Mises’ stress vs time for machining simulation.
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Simulation numérique des états stationnaires associés aux processus
thermomécaniques

Résumé

De nombreux procédés de fabrication thermomécanique comme le laminage, le soudage
ou encore l’usinage mettent en jeu soit des sollicitations mobiles par rapport à la matière
fixe, soit de la matière mobile par rapport à des sollicitations fixes. Dans tous les cas, après
un régime transitoire en général assez court, les champs thermiques, métallurgiques et
mécaniques associés à ces procédés atteignent un état stationnaire. La recherche de ces états
stationnaires à l’aide de la méthode des éléments finis classique nécessite de mettre en œuvre
des modèles complexes et couteux où les sollicitations se déplacent par rapport à la matière
(ou l’inverse).

La recherche directe des états stationnaires a fait l’objet de nombreux travaux de
recherche ces trente dernières années. Des méthodes sont aujourd’hui disponibles et pour
certaines sont proposées dans des codes de calcul du commerce. Ainsi, une option de
calcul dite repère mobile proposée par différents auteurs est disponible dans le logiciel
SYSWELDTM . Cette méthode permet de calculer les états thermique, métallurgique et
mécanique stationnaires associés à un procédé de soudage, en résolvant un problème de
diffusion-convection en thermique et en intégrant, en mécanique, les équations constitutives
du comportement du matériau le long des lignes de courant. Si cette méthode a été utilisée
avec succès dans de nombreuses applications, elle présente néanmoins quelques limitations.
Ainsi le maillage doit être structuré et la convergence des calculs est en général assez lente.

Nous proposons dans cette thèse de résoudre le problème mécanique dans un repère liè
aux sollicitations, en nous appuyant sur une méthode de calcul par éléments finis reposant
sur l’intégration nodale et la technique SCNI (Stabilized Conforming Numerical Integration).
Cette méthode permet l’utilisation de maillages en tétraèdres (ou triangles en 2D) sans
rencontrer de problème de verrouillage volumique résultant de l’incompressibilité plastique
associée au critère de plasticité de von Mises. Plutôt que de rechercher directement l’état
stationnaire, l’idée générale est ici de construire l’état stationnaire à partir d’une analyse
transitoire en faisant entrer pas à pas la matière par l’amont et en la faisant sortir par l’aval
d’un maillage fixe par rapport aux sollicitations et de taille limitée. L’état (quasi-)stationnaire
n’est donc atteint qu’au bout d’un certain temps d’analyse. Les avantages de cette méthode
résident dans:

1. L’utilisation d’un maillage libre en tétraèdres ou en triangles (au lieu des maillages
structurés),

2. Un maillage raffiné uniquement dans la zone située au voisinage des sollicitations,
3. Une grande robustesse et notamment une bonne convergence des calculs mécaniques

non linéaires liée à la résolution des états transitoires.

Après une introduction générale (Chapitre 1) et un état de l’art sur les méthodes
existantes (Chapitre 2), nous présentons une approche de simulation du mouvement de
matière dans le cadre de la méthode des éléments finis classique sur un problème de soudage
(Chapitre 3). Nous y proposons également des conditions aux limites thermiques pertinentes
pour calculer directement la distribution de températures en régime stationnaire.

La méthode des éléments finis reposant sur l’intégration nodale est ensuite décrite au
Chapitre 4. Les avantages et inconvénients de la méthode sont discutés. La méthode est
validée sur une application en grandes déformations élastoplastiques, un problème de flexion
et une simulation thermomécanique de soudage.

La méthode des éléments finis reposant sur l’intégration nodale est alors développée
pour prendre en compte un mouvement de matière (Chapitre 5). Trois types de mouvement
sont considérés : en translation, circulaire et en hélice. Différentes méthodes de transport
de champ sont abordées et discutées ainsi que le couplage thermomécanique. Des exemples
d’application dans le domaine du laminage et du soudage pour différents mouvements de
matière montrent l’efficacité de la méthode développée
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Des perspectives à ce travail sont proposées au Chapitre 6. Les perspectives envisagées
visent d’une part à améliorer la méthode proposée et d’autre part, à développer la méthode
pour simuler d’autres procédés. Une première application de la méthode à la simulation de la
coupe orthogonale y est présentée.

Mots clés: Méthode des éléments finis, intégration nodale, thermomécanique, mouvement de
matière, état stationnaire, repère mobile, soudage, laminage, usinage.
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Numerical simulation of steady states associated with thermomechanical
processes

Abstract

In the numerous thermomechanical manufacturing processes such as rolling, welding,
or even machining involve either moving loads with respect to the fixed material or moving
material with respect to fixed loads. In all cases, after a transient regime which is generally
quite short, the thermal, metallurgical, and mechanical fields associated with these processes
reach a steady state. The search for these stationary states using the classical finite element
method requires the implementation of complex and expensive models where the loads move
with respect to the material (or vice versa).

The steady-state simulation in one increment has been the subject of much researches
over the past thirty years. Methods are now available and some are integrated into calculation
codes commercial. Thus, a so-called Moving Reference Frame method proposed by various
authors is available in the SYSWELDTM software. This method makes it possible to calculate
the steady-state of thermal, metallurgical, and mechanical states associated with a welding
process, by solving a thermal diffusion-convection problem in thermal-metallurgy and by
integrating, in mechanics, the constitutive equations of the material along the streamline.
Moreover, this method has been used successfully in many applications, it nevertheless has
some limitations. Thus the mesh must be structured and the convergence of computations is
generally quite slow.

In this thesis, we propose to solve the mechanical problem in a frame linked to the
solicitations, by relying on a finite element calculation method based on nodal integration
and the SCNI (Stabilized Conforming Numerical Integration) technique. This method allows
the use of tetrahedron meshes (or 2D triangles) without encountering a locking problem
resulting from the plastic incompressibility associated with the von Mises plasticity criterion.
Rather than directly calculating the steady-state, the general idea here is to construct the
steady-state from a transient analysis by bringing material step by step upstream and by
making it exit downstream of a fixed mesh related to the solicitations and of the limited mesh
size. The (pseudo-) steady-state is therefore only achieved after certain steps of analysis. The
advantages of this method lie in:

1. The use of a tetrahedral or triangles mesh (instead of structured meshes),

2. A refined mesh is only needed in the area where the solicitation locates,

3. The method proposed shows the robustness and good convergence of nonlinear mechan-
ical calculations because of the resolution of the transient states.

Apart from a general introduction (Chapter 1) and a state of the art on the existing
methods (Chapter 2), we present an approach of simulation of the movement of material
within the framework of the classical finite element method on a welding problem (Chapter 3).
We also provide relevant thermal boundary conditions for directly calculating the steady-state
of temperature distribution.

The finite element method based on the nodal integration technique is then described
in Chapter 4. The advantages and disadvantages of the method are discussed. The nodal-
integration-based finite element is validated by comparing its simulation results with classical
finite element methods in large elastoplastic strains, a bending problem, and a thermome-
chanical simulation of welding.

The nodal-integration-based finite element is then developed and applied to simulate
material motion (Chapter 5). Three types of movement are considered: translational, circular,
and helical. Different methods of field transport are approached and discussed as well as
thermomechanical coupling. Examples of applications in the field of rolling and welding for
different movements of material show the efficiency of the developed method.

Perspectives for this work are presented in Chapter 6. The envisaged perspectives aim,
on the one hand, to improve the proposed method and on the other hand, to develop the
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method to simulate other processes. A first application of the material motion method to the
simulation of the orthogonal cut is presented there.

Key words: Finite element method, nodal integration technique, thermal-mechanical, mate-
rial motion, steady-state, moving reference frame, welding, rolling, machining.
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