

Développement de nouvelles stratégies de préparation de l'échantillon et d'analyse pour la recherche de traces de pesticides et de contaminants dans diverses matrices agroalimentaires.

Saïda Belarbi

▶ To cite this version:

Saïda Belarbi. Développement de nouvelles stratégies de préparation de l'échantillon et d'analyse pour la recherche de traces de pesticides et de contaminants dans diverses matrices agroalimentaires.. Chimie analytique. Normandie Université, 2021. Français. NNT: 2021NORMR068. tel-03738129

HAL Id: tel-03738129 https://theses.hal.science/tel-03738129v1

Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THÈSE

Pour obtenir le diplôme de doctorat

Spécialité Chimie

Préparée au sein de l'Université de Rouen Normandie

Développement de nouvelles stratégies de préparation de l'échantillon et d'analyse pour la recherche de traces de pesticides et de contaminants dans diverses matrices agroalimentaires

Présentée et soutenue par Saïda BELARBI

Thèse soutenue publiquement le 06 juillet 2021 devant le jury composé de					
Mme. Myriam BONOSE	Dr. HDR / Maître de conférences Université de Paris-Saclay	Rapportrice			
M. Xavier FERNANDEZ	Pr. Professeur des Universités Université de Nice	Rapporteur			
Mme. Emmanuelle BICHON	Dr. Ingénieure de Recherche LABERCA Nantes	Examinatrice			
M. Raphaël DELEPEE	Pr. Professeur des Universités Université de Caen	Examinateur			
M. Pascal CARDINAEL	Pr. Professeur des Universités Université de Rouen Normandie	Directeur de thèse			
Mme. Valérie PEULON-AGASSE	Dr. HDR / Maître de conférences Université de Rouen Normandie	Codirectrice de thèse			

Thèse dirigée par Pascal CARDINAEL et Valérie PEULON-AGASSE, laboratoire SMS, EA3233

Avant-propos

Cette thèse a été financée par la société SGS France, laboratoire de Rouen, et a été réalisée avec la collaboration d'un partenaire académique, l'équipe SMS (Sciences et méthodes séparative) EA 3332 de l'Université de Rouen. Cette thèse CIFRE n°2017/1389 a bénéficié d'une aide subvention de la part de l'ANRT (Association Nationale de la Recherche et de la Technologie). La doctorante a bénéficié d'un contrat à durée déterminée du 26 mars 2018 au 26 mars 2021 et a été inscrite à l'école doctorale de Chimie EDNC 508.

La Société Générale de Surveillance (SGS) a été créée en 1878 à Rouen afin d'inspecter des produits agricoles lors de leur expédition. Aujourd'hui leader mondial dans les domaines de l'inspection, de l'analyse et de la certification, SGS est présent dans 150 pays et emploie plus de 90 000 personnes à travers le monde. En France, SGS compte 2800 employés répartis dans plus de 120 bureaux et centres de contrôle ainsi que 34 laboratoires et centres d'essais. SGS possède une expertise dans un grand nombre de secteurs : les produits agricoles et agro-alimentaires, la pharmacie, la cosmétique, les biens de consommation, l'énergie, la chimie, l'environnement, les services industriels. Le laboratoire SGS de Rouen est installé au Technopôle du Madrillet à Saint-Etienne-du-Rouvray depuis 2005.

Remerciements

Tout d'abord, je tiens à remercier le docteur Myriam BONOSE et le professeur Xavier FERNANDEZ de rapporter mon travail de thèse. Un grand merci au docteur Emmanuelle BICHON et au professeur Raphaël DELEPEE d'examiner mon travail. Merci à tous d'avoir accepté de faire partie de mon jury, c'est un réel plaisir et un challenge pour moi de soutenir cette thèse devant vous.

Je voudrais exprimer ma reconnaissance à l'ancien directeur du laboratoire SGS, monsieur Yvon Gervaise, sans qui cette thèse n'aurait jamais pu avoir lieu. Merci de m'avoir donné l'opportunité de réaliser ces travaux au sein de votre laboratoire. Merci pour les échanges aussi bien scientifiques que humains très enrichissants à chaque fois. Merci également au professeur Gerard Coquerel, directeur du laboratoire SMS (Sciences et méthodes séparatives) EA 3233, Université de Rouen, de m'avoir accueillie dans son laboratoire et cela depuis mon stage de Master 2.

Ma très profonde gratitude et ma reconnaissance vont à mon directeur de thèse, le professeur Pascal Cardinael. Les mots ne seront jamais suffisants pour te remercier pour ton soutien indéfectible. D'abord, tu as été un excellent encadrant lors de mon stage de Master 2 sur le sujet de remplissage de puces, même si je t'en ai fait voir de toutes les couleurs (3 puces cassées sur 6) puis, tu t'es décarcassé pour que je fasse partie de ton équipe (quitte à avoir des problèmes avec la direction générale du travail (5) et enfin, tu m'as fait confiance en me gardant en thèse. Tu as su me transmettre ta passion pour la chromatographie et pour la recherche. Merci pour toutes tes idées très originales qui m'ont permis de finir ce projet avec succès ainsi que pour ton aide très précieuse lors de la rédaction des deux articles et des corrections du manuscrit. Merci pour tes encouragements dans mes moments de doute et pour tous les conseils et les mots que tu as su trouver à chaque fois pour me remonter le moral et me redonner confiance en moi. Ces trois ans de thèse n'ont pas été de tout repos pour toi à cause des nombreuses GAFFES que j'ai pu provoquer et pour lesquelles je tiens à m'excuser (je ne pourrai pas tout citer sinon il n'y aura plus de place pour remercier les autres!). Je n'aurais pas pu avoir un meilleur directeur de thèse que toi ainsi qu'un meilleur directeur d'équipe. Certes, ce ne sont que des mots, mais sache que le fait d'avoir travaillé avec toi, a changé le cours de ma vie professionnelle et personnelle à jamais!

Ma gratitude et ma reconnaissance vont également à ma co-directrice de thèse, le Docteur Valérie Agasse. Je t'ai d'abord appréciée en tant qu'enseignante de Chromatographie en L3, tu as su me transmettre ta passion pour cette discipline. Tu as ensuite accepté de me prendre en stage de Master 2, me permettant de découvrir une femme passionnée par son métier, toujours à l'écoute et surtout dotée d'une positivité à toute épreuve. Tu m'as donné l'occasion de travailler sur des sujets annexes grâce auxquels ma passion pour la chimie analytique n'a fait que de se confirmer. Merci de m'avoir embauchée en tant qu'ingénieur pendant deux mois lors des moments de galère, ça m'avait beaucoup aidée! Merci pour les nombreux bons moments partagés pendant les congrès. Navrée pour les frayeurs que j'ai pu nous causer à maintes reprises (la bise à l'organisatrice, le fer à repasser et les billets de train, ... (3)). Je te remercie également pour ton implication et ta rigueur lors de la correction de mon manuscrit de thèse. En dehors du fait que tu sois ma directrice de thèse, tu es une femme forte et pétillante avec qui j'ai adoré travailler et partager tous ces bons moments.

J'adresse mes remerciements à mes encadrants de thèse au sein du laboratoire SGS, M. Martin Vivier, Mme. Aude De Sloovere et Mme. Wafa Zaghouani. Merci de m'avoir aidé et guidé pendant ces trois années pour mener ce projet à terme. J'ai beaucoup appris de chacun d'entre vous! Merci Martin pour les corrections des articles et du manuscrit et pour tes constantes bonnes idées qui ont contribué au bon déroulement de mes travaux de thèse.

Une spéciale dédicace et un IMMENSE merci pour mes camarades doctorants avec qui j'ai partagé le bureau ces six derniers mois. Un merci tout particulier à Adeline, ma binôme de galère, on aura formé l'équipe en carton ③. Merci pour toutes les fois où tu as trouvé les mots justes pour me remonter le moral. J'ai aimé partager avec toi toutes les pauses détente, ainsi que la gestion du projet Uber Eats tous les vendredis. Je te souhaite le meilleur pour la fin de ta thèse. Je remercie très chaleureusement Arnaud alias « le Fragile » pour toute ton aide surtout avec les logiciels de traitement de données (2%), même quand je passais ma journée à te faire c....! Merci pour la playlist Scarface ainsi que pour les moments de détente devant mon écran se transformant en télé pour regarder ST à 19h, « on avait une affaire qui tournait ». Merci Amel et Lorris, pour tous les moments partagés avec vous dans le bureau Insane des DZ bien agité en ma présence. Vous avez tous contribué d'une manière ou d'une autre à ma réussite dans ce projet. Je vous souhaite le meilleur, et surtout beaucoup de succès pour la fin de votre thèse.

Mes remerciements vont également à madame Nathalie Hebert, dit « Tati » pour tes petites attentions bien sympathiques ainsi que pour le projet de « belle-mère ». Désolée pour mes gaffes répétitives (arommmbaz, notice ASE, ...). Merci également à Marie Vaccaro pour toutes les maintenances réalisées sur l'Orbitrap sans lesquelles je n'aurais pas pu finaliser ce projet. Je remercie également la madrilène, mademoiselle Victoria Böhm, pour ta sympathie et ta bonne humeur. Nos duels Quiz n'ont pas été de tout repos pour moi au vue l'adversaire de taille que j'avais en face. Merci à Christophe, Tiffen pour tous ces bons moments partagés avec vous.

En ce qui concerne mes collègues au sein de SGS, je voudrais remercier vivement monsieur Arnold Niassy, de m'avoir formée en HPLC-MS/MS, merci de m'avoir remonté le moral à chaque fois que je craquais, merci pour l'amitié si sincère que tu m'as témoignée pendant toutes ces années, ce fut un grand plaisir de travailler avec toi. Merci aussi à Florian Luc de m'avoir formée en GC-MS/MS. Merci pour ta disponibilité à chaque fois que j'avais besoin. Mes remerciements vont également à Richard Gourraud et surtout à Sandrine Baudry de m'avoir très bien intégrée dans leurs unités d'analyse de micropolluants et pesticides. Merci à mes collègues, néanmoins amis (Gaelle B., Florian R., Arnold, Guillaume B., Baptiste, Tony, Florian, Yan, Anne-Elisabeth et Alexandra) pour tous ces déjeuners partagés. Grâce à vous, ces trois années ont été fort sympathiques. Nos rigolades et discussions très sérieuses (économie, miel, tarot, kabyle et parfois commérage) ont enjolivé mes journées. Un grand merci aussi à mes anciens voisins de bureau qui ont su m'intégrer au sein de l'entreprise (Marie, Juliette, Marie-Christine et Philippe PATRY). Merci à Yves Chenu pour tous les cafés et toutes tes petites attentions.

J'aimerais aussi exprimer ma reconnaissance pour mes cousines parisiennes (Nora, Rosa et Assia) avec qui j'ai partagé de très bons moments. Un grand merci pour vos nombreuses aides financières tout au long de mes années d'études sans lesquelles je n'y serai jamais arrivée. Merci à Pierre Yves et Marie qui m'ont permis de subvenir à mes besoins tout au long de mes années de licence et master. J'ai beaucoup aimé garder vos enfants pendant ces cinq années. Merci de m'avoir considérée comme un membre de vote famille. Un gros bisou à Achille, Amédée et Colette.

Je voudrais remercier mes deux meilleures amies qui ont toujours été là pour moi depuis toutes ces années, Doudouche et Katia. Merci de croire en moi quotidiennement et de supporter mes « j'en peux plus ». Je vous souhaite beaucoup de réussite dans vos vies professionnelles et personnelles. Après tout, les amis sont la famille qu'on choisit.

Merci à ma tante Nadia et mon oncle Kaci de m'avoir accueillie chez eux à plusieurs reprises. Merci de m'encourager tous les jours et de croire en mon potentiel à mener à terme cette thèse. Nadia, merci de me bichonner tous les jours avec tes délicieux repas et pâtisseries de qualité.

J'aimerais remercier aussi mes chers parents (Ferroudja et Mohamed) qui ont fait de leur mieux pour que je puisse avoir une meilleure qualité de vie. Mon cher père qui a toujours cru en moi et m'a toujours soutenue dans mes choix. Ma maman chérie, tu as sacrifié tellement de choses pour que j'arrive là où j'en suis aujourd'hui, tu m'as toujours défendue et soutenue quel qu'en soit le prix. Je vous en serai éternellement reconnaissante. Merci à mes chers frères et sœurs (Nawel, Nissa, Ali et Meziane) d'avoir été aussi présents pour moi pendant ces trois années de thèse mais aussi durant toute ma vie, même à distance. Vous n'avez jamais cessé de m'encourager par tous les moyens. Vous avez toujours été fiers de moi et aujourd'hui je vous dis merci!

Je voudrais également remercier mon chéri pour chacun de ces moments où tu as été là pour me réconforter et m'aider à avancer tout au long de ces huit ans. Je ne te remercierai jamais assez pour tout ce que tu as fait pour moi. Dans les pires moments de ma vie, j'ai pu compter sur toi et je voulais que tu saches à quel point ton soutien et ton amour ont été d'une grande aide pour moi.

Pour finir, j'aimerais dédier cette thèse à mon grand-père, parti beaucoup trop tôt en temps de COVID sans que je ne puisse lui faire un adieu. Que ton âme puisse reposer en paix.

Cette dédicace est pour moi, la meilleure façon de vous honorer et vous montrer à quel point vous avez été magnifiques.

Publications et communications

Publications scientifiques

I. Comparison of new approach of GC-HRMS (Q-Orbitrap) to GC-MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices.

Belarbi, S., Vivier, M., Zaghouani, W., De Sloovere, A., Agasse, V., Cardinael. P. Food Chemistry 2021, 129932.

II. Multiresidue pesticide analysis in rapeseeds by using different d-SPE sorbents based on QuEChERS methodology followed by reversed-phase liquid chromatography-tandem mass spectrometry.

Belarbi, S., Vivier, M., Zaghouani, W., De Sloovere, A., Agasse, V., Cardinael. P. Soumis au journal de « Food Analytical Method".

Communications orales

- I. Quantification of pesticide residues in cereal fatty matrices: strategy for sample preparation for GC-MS/MS an HPLC-MS/MS Analyses. Saida Belarbi, Martin Vivier, Valérie Peulon Agasse, Pascal Cardinael. *ITP*, 26th international symposium on electroseparation and liquid phase separation techniques, Toulouse, France
- II. Quantification de résidus de pesticides dans les matrices à fortes teneurs en matières grasses : stratégie de préparation de l'échantillon en vue de leur analyse en LC-MS/MS et GC-MS/MS. Saida Belarbi, Martin Vivier, Valérie Peulon Agasse, Pascal Cardinael. SEP 2019, Paris (Congrès de l'association francophone des sciences séparatives).

Communications par affiche

- I. Development and optimization of an LC-MS/MS Method (liquid chromatography coupled with tandem mass spectrometry) for the analysis of 300 pesticides in various cereals. Saida Belarbi, Martin Vivier, Valérie Peulon Agasse, Pascal Cardinael. ISC 2018, Mandelieu (International Symposium on Chromatography).
- II. Quantification of pesticide residues by HPLC-MS/MS in fatty matrices: sample preparation strategy. Saida Belarbi, Martin Vivier, Valérie Peulon-Agasse, Pascal Cardinael. *HPLC 2019, Jun 2019, Milan, Italie.*

Liste des abréviations

ACN Acétonitrile

AFNOR Association Française de NORmalisation

AMPA Acide amino-méthyl-phosphonique

APCI Ionisation chimique à pression atmosphérique

API Ionisation à pression atmosphérique

ASE Accelerated solvent extraction

APPI Photoionisation à pression atmosphérique

BPa Bonnes pratiques agricoles

BPL Bonnes pratiques de laboratoire

C18 Chaine de 18 atomes de carbone greffée sur silice

C8 Chaine 8 atomes de carbone greffée sur silice

CE Energie de collision

CI Ionisation chimique

CID Collision Induced Dissociation

CL50 Concentration Létale 50

Cofrac Comité français d'accréditation

CV Coefficient de variation

CXP Cell Exit Potential

DL50 Dose Létale 50

d-SRM dynamic-Single Reaction Monitoring

DP Declustrering Potential

d-SPE Dispersive-Solid Phase Extraction

DVB Divinylbenzène

dw Dwell time

ECD Détecteur à capture d'électron

El Ionisation électronique

EMR Enhanced Matrix Removal

ESI Ionisation électrospray

FAB Fast Atom Bombardment

FID Détecteur à ionisation de flamme

FT-ICR Spectrométrie de masse à résonance cyclotronique ionique

FWHM Full width at half maximum (largeur à mi-hauteur)

GC Chromatographie en phase gazeuse

GCB Graphitized carbon black

GC-MS/MS Chromatographie en phase gazeuse couplée à la spectrométrie de masse en

tandem

GPC Chromatographie par perméation de gel

HAP Hydrocarbures aromatiques polycycliques

HCB Hexachlorobenzène

HCH Hexachlorocyclohexane

HILIC La chromatographie d'interactions hydrophiles

HPLC Chromographie liquide haute performance

HPLC-

MS/MS Chromographie liquide couplée à la spectrométrie de masse en tandem

HRMS Spectrométrie de masse à haute résolution

IS Etalon interne

ISO International Organisation for Standardization

IUPAC International Union of Pure and Applied Chemistry

LMR Limite maximale de résidus

LOD Limite de détection

LOQ Limite de quantification

m Masse

m/z Masse/charge

MALDI Matrix-Assisted Laser Desorption Ionisation

ME Effet matrice

MeOH Méthanol

MMI Multi Mode Injection

MRM Multiple Reaction Monitoring

MS Spectrométrie de masse

NF Normalisation en France

NPD Détecteur azote-phosphore

PCB Polychlorobiphényles

PIS Product Ion Scan

ppb Partie par milliard

ppm Partie par million

PSA Amines primaires et secondaires

PTV Programmed temperature vaporizer

QC Quality control

QqQ Triple quadripôle

QuEChERS Quick, Easy, Cheap, Effective, Rugged and Safe

R Résolution

Rdt Rendement

RPLC Reverse Phase Liquid Chromatography

RSD Residual Standard Deviation

S/B Signal/bruit

SIM Selected Ion Monitoring

SPE Extraction en phase solide

SRM Single Reaction Monitoring

TAG Triglycérides

TCD Thermal Conductivity Detector

TOF Temps de Vol

tR Temps de rétention

u.m.a Unité de masse atomique

UE Union Européenne

UHPLC Chromatographie liquide ultra haute performance

UV Ultraviolet

Liste des tableaux

Tableau I-1: Evolution des trois grandes classes de pesticides entre 1900 et 2000

Tableau I-2: Classification des grandes familles chimiques des pesticides

Tableau I-3 : Catégories de toxicité aiguë

Tableau I-4: Comparaison des sources ESI et APCI

Tableau I-5 : Exemples d'application de méthodes HPLC-MS/MS pour l'analyse de pesticides

Tableau I-6: Quelques applications du couplage GC-MS/MS pour l'analyse des pesticides

Tableau II-1: Paramètres de l'analyseur triple quadripolaire

Tableau II-2: Paramètres d'ionisation ESI+

Tableau II-3: Paramètres de la source de collision

Tableau II-4 : Paramètres MS/MS, t_R et CE obtenus pour les pesticides analysés en GC-MS/MS (1 correspond à la transition de quantification et 2 à celle de confirmation)

Tableau II-5 : Résultats des taux de récupération (%) et des CV (%) des pesticides et contaminants analysés en GC-MS/MS

Tableau II-6: Paramètres MS/MS, t_R, CE obtenus pour les pesticides analysés en HPLC-MS/MS

Tableau II-7 : Taux de récupération et coefficient de variation des pesticides et contaminants analysés en HPLC-MS/MS

Liste des figures

- Figure I.1 : Schéma de la propagation des pesticides dans l'environnement
- Figure I.2 : Principe de la méthode QuEChERS
- Figure I.3: Illustration de l'automate Q40
- Figure I.4: Représentation schématique des mécanismes de rétention en mode HILIC
- Figure I.5 : Phases stationnaires pour le mode HILIC et leur représentation
- Figure I.6: Processus d'ionisation avec une source ESI
- Figure I.7: Représentation du processus d'ionisation par APCI en mode positif
- Figure I.8 : Schéma de l'analyseur à champs quadripolaire
- Figure I.9: Représentation schématique d'un analyseur de type triple quadripolaire
- Figure I.10: Mode de balayage « full scan »
- Figure I.11: Mode de balayage « SIM »
- Figure I.12: Mode de balayage « PIS »
- Figure I.13: Mode de balayage « SRM » ou « MRM »
- Figure I.14 : Représentation tridimensionnelle de la distribution du potentiel quadrologarithmique
- Figure I.15 : Représentation tridimensionnelle du potentiel effectif formé par la distribution quadro-logarithmique du potentiel et le potentiel centrifuge
- Figure I.16 : Détection du courant à l'aide d'électrodes externes et d'un amplificateur différentiel
- Figure II.1: Composition de la phase stationnaire de la colonne (HP-5MS UI)
- Figure II.2 : Gradient d'élution utilisé pour la séparation des pesticides en HPLC-MS/MS (A= phase aqueuse et B= phase organique)
- Figure II.3: Réaction d'hydrolyse du chlorpropham conduisant à la 3-chloroaniline
- Figure II.4 : Chromatogramme de l'injection de la 3-chloroaniline (20 mg/L) en mode « full scan »
- Figure II.5 : Spectre obtenu en mode « Product Ion » de la 3-chloroaniline
- Figure II.6 : Intensité des pics en fonction de l'énergie de collision pour la 3-chloroaniline
- Figure II.7 : Structure chimique de l'étalon interne de préparation

- Figure II.8 : Structure chimique de l'étalon interne d'injection
- Figure II.9 : Courbe d'étalonnage de la 3-chloroaniline
- Figure II.10: Structure du nitenpyrame
- Figure II.11 : Spectre en mode « full scan » du nitenpyrame
- Figure II.12 : Spectre de la fragmentation de l'ion précurseur (m/z 271) du nitenpyrame
- Figure II.13: Structure chimique de l'atrazine-d₅
- Figure II.14 : Courbe d'étalonnage quadratique du nitenpyrame
- Figure II.15 : Structures chimiques des molécules ayant une fonction sulfonamide
- Figure II.16 : Variation des taux de récupération des pesticides en fonction de leur polarité

Liste des annexes

Annexe 1 : La méthode officielle américaine AOAC 2007.01 et la méthode normalisée NF EN 15662

Annexe 2 : Protocole QuEChERS de la méthode interne MO-O336

Annexe 3 : Méthode finale des 600 pesticides et contaminants proposée par SGS

Table des matières

INTRODUCTION GENERALE	<u> 2</u>
CHARITRE L. CENEDALITES ET ETAT DE L'ART	•
CHAPITRE I : GENERALITES ET ETAT DE L'ART	<u> </u>
Introduction	6
I.1. GENERALITES ET ETAT DE L'ART SUR LES PESTICIDES	7
I.1.1. DEFINITION ET HISTORIQUE	7
I.1.2. CLASSIFICATION DES PESTICIDES	9
I.1.2.1. Classification biologique	9
I.1.2.2. Classification chimique	10
I.1.3. LES SUBSTANCES ACTIVES DES PESTICIDES	13
I.1.4. DEVENIR DES PESTICIDES DANS L'ENVIRONNEMENT	14
I.1.5. TOXICITE DES PESTICIDES	14
1.1.5.1. Toxicité des pesticides	14
1.1.5.2. Effets sur la santé humaine	15
1.1.5.3. Effets sur la faune	16
1.1.5.4. Réglementation	16
I.1.6. PROBLEMATIQUES	18
I.2. APPLICATION DE LA METHODE QUECHERS POUR L'EXTRACTION DES PESTICIDES	20
I.2.1. METHODE QUECHERS ORIGINALE	20
I.2.1.1. Généralités et définitions	20
I.2.1.2. Limitations de la méthode QuEChERS	22
I.2.1.3. Principales évolutions	22
I.2.2. APPLICATION DE LA METHODE QUECHERS AUX MATRICES ALIMENTAIRES COMPLEXES	23
I.2.2.1. Céréales	24
I.2.2.2. Matrices grasses	25
I.2.2.3. Epices	26
I.2.2.4. Thé	28
I.2.3. AUTOMATISATION ET ROBOTISATION DE LA METHODE QUECHERS	29
1.3. Rappels theoriques sur les techniques analytiques conventionnelles utilisées pour l'analyse	DES
PESTICIDES	31
I.3.1. LA CHROMATOGRAPHIE LIQUIDE HAUTE PERFORMANCE	31
I.3.1.1. Généralités	31
I.3.1.2. Appareillage	31
I.3.1.3. Les différents modes de chromatographie en phase liquide	32
I.3.2. COUPLAGE CHROMATOGRAPHIE EN PHASE LIQUIDE-SPECTROMETRIE DE MASSE	37
I.3.2.1. Sources d'ionisation à pression atmosphérique	
I.3.2.2. Analyseurs	41
I.3.2.3. Couplage HPLC-MS/MS appliqué	46
I.3.2.4. Intérêt du couplage HPLC-MS/MS pour l'analyse multi-résidus de pesticides	47
I.3.3. LA CHROMATOGRAPHIE EN PHASE GAZEUSE	
I.3.3.1. L'injecteur split/Splitless et l'injecteur PTV	
I.3.3.2. Les colonnes	
I.3.3.4. Les détecteurs	
1.3.4. COUPLAGE DE LA CHROMATOGRAPHIE EN PHASE GAZEUSE A LA SPECTROMETRIE DE MASSE EN TANDEM	52

I.3.4.1. Généralités	52	
I.3.4.2. Les sources d'ionisation	52	
I.3.4.3. Intérêt du couplage GC-MS/MS pour l'analyse de multi-résidus de pesticides	54	
I.4. APPORT DE LA SPECTROMETRIE A HAUTE RESOLUTION POUR LES ANALYSES AGROALIMENTAIRES	56	
1.4.1. L'ANALYSEUR ORBITRAP	57	
I.4.2. Principes fondamentaux de l'Orbitrap	58	
I.4.2.1. Structure du piège	58	
I.4.2.2. Mouvement des ions piégés	59	
I.4.2.3. Piégeage des ions dans l'Orbitrap	60	
I.4.2.4. Détection des ions	61	
I.4.2.5. Formation de paquets d'ions cohérents	61	
I.4.2.6. Décomposition des paquets d'ions cohérents	62	
I.4.2.7. Effets de densité de charge dans l'analyseur Orbitrap	62	
I.4.2.8. Fragmentation à l'intérieur d'un analyseur Orbitrap	63	
I.4.2.9. Aperçu des principaux paramètres analytiques de l'analyseur de masse Orbitrap	63	
I.4.3. Principe de detection de la masse exacte	64	
I.4.3.1. Aperçu des instruments basés sur l'analyseur l'Orbitrap	64	
I.4.4. APPLICATIONS DE L'ORBITRAP POUR L'ANALYSE DES PESTICIDES	65	
CONCLUSION	66	
II.I. METHODES D'ANALYSE DE PESTICIDES DEVELOPPEES PRECEDEMMENTAU LABORATOIRE SGS	69	
II.I.4. Objectifs	73	
II.II. METHODOLOGIES PROPOSEES ET RESULTATS	74	
II.II.1. NOUVEAUX PESTICIDES ANALYSES EN GC-MS/MS	74	
II.II.I.2. Résultats de l'optimisation des paramètres MS/MS	76	
II.II.1.3. Extraction QuEChERS	79	
II.II.I.4. Résultats des extractions QuEChERS	81	
II.II.2. NOUVEAUX PESTICIDES ANALYSES EN HPLC-MS/MS	85	
· · · · · · · · · · · · · · · · · · ·		
II.II.2.2. Résultats de l'optimisation des paramètres MS/MS	87	
II.II.2.3. Extraction QuEChERS	90	
CONCLUSION	96	
REFERENCES BIBLIOGRAPHIQUES	98	
Piégeage des ions dans l'Orbitrap		
CHAFTINE III. QUANTIFICATION DE PESTICIDES DANS LES IVIATRICES A FORTES TENEURS EN	4	
MATIERES GRASSES		

INTRODUCTION	109
ARTICLE I. MULTIRESIDUE PESTICIDE ANALYSIS IN RAPESEEDS BY USING DIFFERENT D-SPE SORBENTS BASED ON	
QUECHERS METHODOLOGY FOLLOWED BY REVERSED-PHASE LIQUID CHROMATOGRAPHY-TANDEM MASS	
SPECTROMETRY	
CONCLUSION	.148
CHAPITRE IV : EVALUATION ET COMPARAISON DES PERFORMANCES GC-HRMS (Q-ORBITRAP) E	<u>T</u>
GC-MS/MS (TRIPLE QUADRIPOLE) POUR L'ANALYSE DE PESTICIDES DANS LES MATRICES	
ALIMENTAIRES COMPLEXES	.151
INTRODUCTION	.152
ARTICLE II. COMPARISON OF NEW APPROACH OF GC-HRMS (Q-ORBITRAP) TO GC-MS/MS (TRIPLE-QUADRUP	OLE)
IN ANALYZING THE PESTICIDE RESIDUES AND CONTAMINANTS IN COMPLEX FOOD MATRICES	
CONCLUSION	.170
CONCLUSION GENERALE ET PERSPECTIVES	.173
ANNEXES	179

INTRODUCTION GENERALE

Les pesticides sont des substances utilisées en agriculture afin de lutter contre les organismes nuisibles aux differentes plantes dans le but d'améliorer la qualité et la quantité des récoltes. Même si depuis quelques années, une prise de conscience sur l'abandon ou l'utilisation raisonnée de ces substances est menée par le monde agricole et même si les besoins alimentaires mondiaux ne cessent de croitre, une augmentation de l'utilisation des pesticides est incontournable afin de garantir les rendements de production. Ces molécules utilisées peuvent être classées, selon leur fonction biologique, en trois grandes familles qui sont les insecticides, les fongicides et les herbicides. Cependant, la consommation de produits alimentaires contenant ces substances, même à très faibles quantités, peut favoriser l'apparition de certaines maladies telles que certains cancers, maladies pulmonaires, malformations congénitales ou infertilité.

Afin de contrôler l'usage de ces pesticides, les autorités européennes établissent des réglementations de plus en plus strictes. Ces directives ont pour objectif d'établir des LMR (Limites Maximales de Résidus) dans les denrées alimentaires, les eaux ainsi que dans l'environnement. Les valeurs des LMR sont très faibles, en particulier pour les molécules ayant des effets indésirables sur la santé humaine et même certaines substances sont strictement interdites.

Afin de déterminer ces faibles teneurs de pesticides et contaminants dans diverses matrices agroalimentaires, les laboratoires d'analyse se doivent de développer des méthodes analytiques sensibles et robustes. Les deux techniques de référence utilisées pour l'analyse de ces substances à l'état de traces, sont les chromatographies en phase liquide et en phase gazeuse couplées à la spectrométrie de masse en tandem (triple quadripôle). La méthode de préparation de l'échantillon de référence utilisée pour l'extraction de ces molécules dans le domaine agroalimentaire est, depuis quelques années, la méthode QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe). Cette dernière est réalisée en deux étapes : l'extraction des pesticides de la matrice avec un solvant organique, généralement l'acétonitrile, suivie d'une purification sous forme d'une extraction sur phase solide dispersive.

Dans ce manuscrit, composé de quatre chapitres, une étude bibliographique ainsi que l'état de l'art dans ce domaine seront détaillés dans le premier chapitre. Après une présentation des généralités sur les pesticides, nous décrirons l'état de l'art sur l'application de la méthode

QuEChERS pour l'extraction des pesticides dans les matrices agroalimentaires. Nous focaliserons ensuite notre étude sur le principe et les applications du couplage des chromatographies en phase gazeuse et liquide haute performance à la spectrométrie de masse en tandem (GC-MS/MS et HPLC-MS/MS) pour l'analyse des pesticides. Dans la dernière partie de ce chapitre, nous présenterons le spectromètre de masse à très haute résolution de type Orbitrap ainsi que son apport pour l'analyse des pesticides.

Ensuite, les résultats de mes travaux de thèse seront présentés sont forme de trois grands chapitres. Le chapitre II est dédié à la description des deux méthodes d'analyse de résidus de pesticides et contaminants en GC-MS/MS et en HPLC-MS/MS utilisées au sein du laboratoire SGS. Ces méthodes HPLC-MS/MS et GC-MS/MS, permettaient d'analyser respectivement environ 200 et 150 pesticides et contaminants dans diverses matrices agroalimentaires. L'objectif premier de mes travaux a été d'étendre la liste des pesticides et contaminants proposée aux clients à environ 600 molécules. La deuxième partie de ce chapitre s'est focalisée sur la méthodologie utilisée pour l'optimisation des paramètres de spectrométrie de masse en tandem et la méthode de préparation de l'échantillon (QuEChERS) utilisée pour l'extraction de ces pesticides dans les céréales, les fruits et légumes. Ensuite, les résultats en termes de taux de récupération, de limites de quantification ainsi que le bilan des pesticides ajoutés seront détaillés.

Le chapitre 3 est consacré à l'étude de l'extraction des pesticides et contaminants dans les matrices à fortes teneurs en matière grasse, en particulier les graines de colza, en vue de leur analyse par HPLC-MS/MS. En effet, l'extraction de ces molécules dans les graines oléagineuses demeure problématique à cause des differents interferents qui peuvent êre co-extraits avec les molécules ciblées et qui peuvent fausser les résulttats de la quantification . Les molécules lipophiles peuvent persister dans la matière grasse mais aussi d'importants effets matrice sont généralement observés dus aux nombreux composés co-extraits avec les solutés d'intérêt. La méthode QuEChERS modifiée (purification réalisée en utilisant de nouveaux supports) a été testée pour l'extraction de 179 pesticides et contaminants dans des graines de colza. La méthodologie, ainsi que les résultats obtenus seront présentés sous forme de la publication scientifique soumise dans le journal Food Analytical Method.

Le dernier chapitre est rédigé sous forme d'une publication scientifique publiée dans le journal Food Chemistry. L'objectif principal de cet article a été d'évaluer les performances analytiques d'une méthode GC-Q-Orbitrap en mode « full scan » pour la quantification de 95 pesticides et 5 contaminants (congénères de PCB) dans différentes matrices agroalimentaires complexes, dont le blé, le colza, le cumin et le thé. Ces résultats seront comparés à ceux obtenus avec la méthode GC-triple-quadripôle en mode « SRM ». La méthode QuEChERS a été utilisée pour extraire ces 100 molécules de ces échantillons en utilisant un support solide de purification adapté (extraction en phase solide dispersive) à chaque matrice. Dans un premier temps, la méthode chromatographique a été optimisée pour éluer la totalité des molécules ciblées. Ensuite, les performances analytiques obtenues avec les méthodes GC-Q-Orbitrap et GC-triple quadripole, seront évaluées et comparées. Ainsi, la sensibilité, la linéarité, les taux de récupération, la répétabilité des taux de récupération (CV%, n = 5) et les limites de quantification seront étudiés. Enfin, l'apport de la spectrométrie de masse à haute résolution pour réaliser un screening rapide de pesticides et contaminants dans des extraits non-purifiés dilués, sera discuté.

CHAPITRE I : GENERALITES ET ETAT DE L'ART

INTRODUCTION

Les pesticides sont des substances chimiques utilisées en agriculture afin d'améliorer les rendements des récoltes et de lutter contre des organismes nuisibles [1]. Ces molécules peuvent être classées selon leur fonction biologique en trois grandes familles qui sont les insecticides, les fongicides et les herbicides. Cependant, ces substances chimiques peuvent être toxiques et retrouvées dans les eaux en raison de leur dissémination dans l'environnement durant l'épandage mais aussi dans l'organisme humain à cause de la consommation de produits contaminés. Certaines molécules peuvent être très dangereuses pour la santé humaine même à faibles concentrations. Elles peuvent être la cause de plusieurs maladies telles que certaines maladies pulmonaires, certains cancers, malformations congénitales ou infertilité [2]. De ce fait, il est très important d'établir des études bibliographiques afin de mieux connaitre la nature substances utilisées, leur toxicité ainsi que leurs effets sur la santé humaine.

Les autorités européennes ont mis en place un grand nombre de réglementations et de contrôles afin de couvrir tous les types de pesticides auxquels la population est exposée. En ce sens, diverses organisations ont établi des LMR pour les denrées alimentaires telles que les céréales, les fruits, les légumes, l'eau... Ces teneurs peuvent être très faibles (0,003mg/kg pour l'alimentation infantile par exemple). Afin de détecter ces faibles quantités de pesticides dans ces matrices alimentaires complexes, il est important de mettre en place des méthodes analytiques sensibles et robustes.

Dans ce chapitre d'études bibliographiques, quatre grandes parties seront étudiées. Après une présentation des généralités sur les pesticides, la méthode conventionnelle d'extraction des pesticides dans les matrices alimentaires (QuEChERS) sera détaillée. Nous focaliserons ensuite notre étude sur l'analyse des pesticides par le couplage des chromatographies en phase gazeuse et liquide haute performance avec la spectrométrie de masse en tandem (GC-MS/MS et HPLC-MS/MS). Dans une dernière partie, nous présenterons le spectromètre de masse à haute résolution de technologie Orbitrap et son apport pour l'analyse des pesticides et contaminants dans les matrices agroalimentaires.

I.1. GENERALITES ET ETAT DE L'ART SUR LES PESTICIDES

I.1.1. Définition et historique

Le terme pesticide provient du mot anglais pest qui signifie (animal, insecte ou nuisible) et du suffixe -cide (du latin -cida, du verbe latin caedo, caedere, « tuer ») [3]. Bien que majoritairement appelés « pesticides », les termes utilisés par la législation française relative à la protection des cultures sont : produits phytopharmaceutiques, produits phytosanitaires, produits agropharmaceutiques ou encore produits antiparasitaires à usage agricole [4]. Ces substances sont utilisées dans le but de réduire les pertes de rendements causées par des parasites, adventices et micro-organismes en assurant une protection durable de la plante. Leur utilisation permet également l'élimination des mycotoxines, substances qui peuvent engendrer des risques pour la santé humaine et animale [5].

Les premiers produits utilisés furent le soufre, dès la Grèce Antique, pour la fumigation ainsi que les produits arsenicaux dans la lutte contre les sauterelles dans l'Egypte Antique. Ensuite, les propriétés insecticides du tabac (nicotine) et des racines de Derris et Lonchocarpus (pyrèthre) ont été mises à profit pour la protection des récoltes. Les traitements à base de soufre ont permis d'empêcher de graves épidémies qui atteignaient des productions agricoles comme la pomme de terre, les vignes ou encore les céréales.

Les insectes ravageurs ont principalement été combattus avec des composés à base d'arsenic notamment l'arséniate de plomb et l'acéto-arséniate de plomb pour lutter respectivement contre l'Eudémis de la vigne en France (1881) et en Algérie (1888) ainsi que les doryphores aux USA (fin XIXème siècle). Les premiers insecticides organiques sont d'origine naturelle et sont extraits de fleurs séchées de Chrysanthemum ou de racines de diverses plantes des genres Derris, Lonchocarpu et Tephrosia. Après la première guerre mondiale, la chimie organique par voie de synthèse est apparue. En 1930, la synthèse du premier herbicide, le dinitro-orthocrésol (DNOC), a été brevetée, ce qui marque le début de l'ère des produits phytosanitaires de synthèse. La synthèse de l'insecticide dichlorodiphényltrichloroéthane (DDT) marque la première génération de pesticides.

Ce dernier a été développé pour lutter contre les ravageurs des cultures et les insectes vecteurs de maladies. Et juste après, la synthèse d'autres composés organochlorés (aldrine, dieldrine, lindane) a été développée. La synthèse des pesticides organophosphorés (malathion, parathion) marque la deuxième génération des pesticides. Leurs propriétés insecticides avaient été mises en évidence à travers le perfectionnement de gaz de combat tels que le gaz sarin. C'est à partir des années 1950 qu'une augmentation considérable du nombre et de la variété des pesticides de synthèse a été observée avec le développement de nouvelles familles telles que les dérivés d'ammoniums quaternaires (paraquat, diquat), les triazines (simazine, atrazine), urées et dérivés substitués (diuron, linuron).

La fin du vingtième siècle, signe l'arrivée d'une génération de pesticides caractérisée par une meilleure efficacité permettant une diminution des doses employées (rapport quantité/action) telles que les pyréthrinoïdes photostables (deltaméthrine) pour les insecticides et les sulfonyls urées (chlorsulfuron) pour les herbicides. De plus, la famille des phosphonates a été mise sur le marché avec dans ses rangs un herbicide très célèbre : le glyphosate.

La troisième génération des pesticides est apparue au début du vingt et unième siècle. La principale différence est que ces substances sont désormais développées à partir d'une recherche biorationnelle (nature biologique) afinn de limiter les effets indésirables que peuvent générer les substances chimiques. En effet, les pesticides des générations précédentes étaient développés à partir du criblage d'un grand nombre de molécules suite à des tests biologiques généraux. Le tableau I.1 ci-dessous résume l'évolution des trois grandes familles de produits phytosanitaires.

	HERBICIDES Sulfate de cuivre Sulfate de fer		FONGICIDES Soufre Sels de cuivre		Nicotine •	
Avant 1900						
1900 - 1920	Acide sulfurique				Sels d'arsenic	0
1920 - 1940	Colorants nitrės 🔻 💿					
1940 - 1950	Phytohormones	0			Organo-chlorés Organo-phosphorés	10
1950 - 1960	Triazines, Urées substituées Carbamates		Dithiocarbamates Phtalimides	•	Carbamates	1 0
1960 - 1970	Dipyridyles, Toluidines	•	Benzimidazoles	•		
1970 - 1980	Amino-phosphonates Propionates	0	Triazoles Dicarboximides Amides, Phosphites Morholines		Pyréthrinoïdes Benzoyl-urées (régulateurs de croissance)	
1980 - 1990	Sulfonyl urées	0				
1990 - 2000		****	Phénylpyrroles Strobilurines	*****		**

Tableau I.1: Evolution des trois grandes classes de pesticides entre 1900 et 2000 [6]

I.1.2. Classification des pesticides

Les pesticides peuvent être classés en fonction de leurs natures chimiques et de leurs actions biologiques.

I.1.2.1. Classification biologique

En fonction de leurs usages et des organismes ciblés, les pesticides peuvent être classés en quatre grandes familles.

Les herbicides

Les herbicides sont des substances chargées de ralentir la croissance ou de détruire les plantes cibles, nommées adventices. Les plantes adventices sont considérées comme ennemis des cultures car elles entrent en compétition avec la culture elle-même pour la ressource organique et minérale du sol, l'eau, l'espace et la lumière. Cette définition inclut également les repousses de cultures (repousses de colza, pommes de terre, tournesols, ...) à l'endroit où elles sont indésirables, c'est à dire dans les cultures qui suivent. Les herbicides peuvent agir dans le sol au niveau des racines ou directement sur feuilles [7].

Les fongicides

Les fongicides agricoles permettent de combattre les champignons phytopathogènes susceptibles de provoquer des dégâts sur les plantes cultivées et les récoltes. Les pertes potentielles provoquées par les maladies fongiques sont estimées entre 10 et 30%. En dehors des effets quantitatifs, il existe des champignons qui peuvent affecter les qualités des productions végétales comme la présence de mycotoxines toxiques pour l'homme, ou des altérations organoleptiques [8].

Les insecticides

Les insecticides sont des substances actives ayant la propriété de tuer les insectes, leurs larves et/ou leurs œufs. Les insecticides organiques de synthèse sont des molécules carbonées, synthétisées contrairement aux insecticides inorganiques ou minéraux. Parmi les insecticides organiques, trois grandes familles se distinguent : les organophosphorés, groupe existant depuis 1944, dont de nombreuses molécules ont été retirées du marché à cause de leur

toxicité ; les carbamates et enfin les pyréthrinoïdes de synthèse, qui présentent une toxicité moindre que les organophosphorés et les carbamates, et s'emploient à faible dose [9].

Les autres pesticides

D'autres classes mineures correspondent à des substances actives destinées à combattre des cibles spécifiques : acaricides (acariens), nématicides (nématodes), corvicides (oiseaux ravageurs), rodonticides (rongeurs) et molluscicides (limaces et escargots). On trouve également les fumigants qui servent à désinfecter les sols [10], mais également à la fumigation des récoltes céréalières également (phosphure d'hydrogène) pour tuer les insectes et rongeurs.

I.1.2.2. Classification chimique

Les pesticides peuvent être classés en trois catégories en fonction de leur nature chimique :

Les pesticides organo- métalliques

La plupart de ces pesticides sont constitués par un complexe fait d'un métal comme le zinc ou le manganèse et d'un anion organique dithiocarbamate (exemple : mancozèbe avec le zinc) [11].

Les pesticides inorganiques

Ce sont des pesticides très anciens dont l'emploi est apparu bien avant la chimie organique de synthèse comme le soufre ou le cuivre qui restent utilisés en grande quantité. Ils sont essentiellement dérivés de minéraux [12].

Les pesticides organiques

Ils appartiennent à diverses familles chimiques et peuvent être divisés en trois grands groupes : pesticides de synthèse (développés en laboratoire et produits en usine), pesticides naturels (d'origine animale, microbienne ou végétale) et les micro-organismes. Une famille chimique ou une classe chimique correspond à l'ensemble des molécules dérivées possédant le même groupe fonctionnel [13]. Il existe actuellement plus de 80 familles ou classes chimiques dont les plus connues sont présentées dans le tableau I.2 :

Famille chimique	Exem	ples
rannie chimique	Formule développée	Nom commun
Acides carboxyliques	CICIOH	Acide2,4- dichlorophénoxyacétique
Amines o Amines primaires	CI N OH CI NH ₂	Piclorame
 Amines secondaires 	O N N H	Ethirimol
 Amines tertiaires 	H ₃ C CH ₃ O' N O' O'	Trifluraline
Carbamates	CINNO	Chlorprophame
Thiocarbamates	H ₃ C / H ₃ S S CH ₃ CH ₃	Thirame
Hétérocycles azotés o Triazines	CH ₃ N N N	Atrazine
o Pyrimidines	CI OH CI	Fénarimol
o Pyridiniums	H_3C-N $N-CH_3$ $CI^ CI^-$	Paraquat

Azoles	N F F F CI	Tétraconazole
Organophosphorés Orthophosphates	CI CH ₃ CH ₃	Dichlorvos
 Thiophosphates 		Parathion éthyle
Pyréthrinoïdes	Br N	Deltaméthrine
Urées substituées	CI	Linuron
Sulfonylurées		Chlorsulfuron
Uraciles	Br N O	Bromacil
Diphényle éther	O NH2	Aclonifen
Organochlorés	CI CI CI	DDT

Tableau I.2 : Classification des grandes familles chimiques de pesticides [14]

I.1.3. Les substances actives des pesticides

Tous les produits phytosanitaires sont constitués d'un ou de plusieurs principes actifs, d'origine naturelle ou synthétique, auxquels sont ajoutées d'autres substances (solvants, mouillants, colorants, répulsifs...) afin d'améliorer leur efficacité et de faciliter leur emploi. La substance active (molécule) constitue le principe actif (celui qui agit sur les nuisibles) du produit. Les substances actives qui entrent dans la composition des pesticides sont étroitement liées à leurs usages [15].

Pour les insecticides, après l'interdiction des pesticides organochlorés au début des années 1970 (dont le DDT est le représentant le plus connu), du fait de leurs conséquences irrémédiables sur la santé et l'environnement, les pesticides organophosphorés se sont fortement développés. Par rapport aux pesticides organochlorés, les pesticides organophosphorés présentent le même mode d'action sur le système nerveux des ravageurs et ont généralement une toxicité aiguë plus élevée mais ils se dégradent beaucoup plus rapidement ce qui fait qu'ils ont une faible rémanence. À la même époque, sont apparus les pyréthrinoïdes de synthèse dont la composition se rapproche de celle des pyréthrines (substances naturelles présentes dans les fleurs de chrysanthème). Les pesticides organophosphorés représentent aujourd'hui la famille d'insecticides la plus utilisée. Parmi les autres familles d'insecticides commercialisées, on peut mentionner les dérivés carbamates, les carbinols, les dérivés sulfones et de sulfonates.

Si le principal moyen de lutter contre les champignons a longtemps été la bouillie bordelaise et le soufre, ces produits sont désormais supplantés par les fongicides de synthèse. Il en existe aujourd'hui de nombreuses familles : dérivés de carbamates, dérivés du benzène, dérivés du phénol, quinones, dérivés d'amines, amides et triazoles...

Enfin, s'agissant des désherbants, il en existe également de très nombreuses familles : les dérivés phénols nitrés, les benzonitriles, les dérivés de carbamates, les dérivés d'urées substituées, les dérivés d'amides, les triazines, les dérivés d'ammoniums quaternaires, les sulfonurées, les acides amino-phosphoriques, etc... Appartenant à cette dernière famille, le plus célèbre et le plus vendu dans le monde est le glyphosate, plus connu sous le nom commercial de Roundup.

I.1.4. Devenir des pesticides dans l'environnement

Au moment de la pulvérisation des pesticides, plus de 90 % des quantités utilisées de pesticides n'atteignent pas le ravageur visé. Bien au contraire, la part primitive de ce traitement aboutit dans les sols où elle subit plusieurs altérations. Dès lors, les sols constituent un compartiment clé dans l'environnement, car ils sont un lieu de passage quasi-obligé du contaminant agricole lors de son transfert et ils jouent un rôle important dans son devenir (figure I.1).

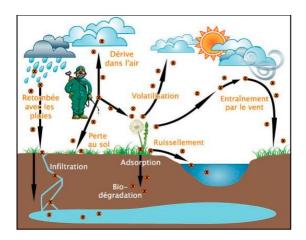


Figure I.1 : schéma de la propagation des pesticides dans l'environnement [16]

I.1.5. Toxicité des pesticides

1.1.5.1. Toxicité des pesticides

Certains pesticides présentent une toxicité aigüe mais peuvent être éliminés facilement et rapidement par l'organisme. Tandis que d'autres substances présentent une faible toxicité mais sont susceptibles de s'accumuler dans l'organisme et induire des effets graves à long terme. De plus, leurs métabolites peuvent être parfois tout aussi toxiques voire plus. Il a été prouvé que le malaoxon et le paraoxon qui sont des métabolites respectifs de malathion et parathion, sont plus toxiques que leurs parents respectifs.

Plusieurs niveaux de toxicité sont répertoriés :

❖ Toxicité aigüe : elle est évaluée par le pouvoir irritant pour la peau, les yeux et le pouvoir de provoquer une sensibilisation de la peau. Les substances sont classées comme le montre le tableau I.3 :

Catégorie	DL 50 orale rat (mg/kg)	DL 50 cutanée rat ou lapin (mg/kg)	CL 50 inhalation rat (mg/litre/4heures)
Très toxique	<25	<50	<0,5
Toxique	25-200	50-400	0,5-2
Nocive	200-2000	400-2000	2-20

Tableau I.3 : Catégories de toxicité aiguë [17]

Avec **DL 50**: Dose létale 50 est la dose de produit qui tue 50 % des animaux de l'expérience après une seule exposition dans des conditions d'études normalisées par adsorption. Et **CL50**: Concentration létale 50 est la dose ou la concentration du produit qui tue 50 % des animaux de l'expérience par inhalation après une seule exposition dans des conditions d'études normalisées.

❖ Toxicité chronique : elle est évaluée à partir des données expérimentales de la santé chronique chez l'animal et exigée lors du dossier d'homologation. Elle est représentée par différents symboles : T (toxique), T+ (très toxique), Xn (nocif), Xi (irritant).

1.1.5.2. Effets sur la santé humaine

Bien que les pesticides soient efficaces pour améliorer les rendements des cultures et lutter contre les organismes nuisibles, les effets de ces molécules peuvent être très nocifs pour la santé des animaux, l'environnement mais aussi pour la santé humaine. Il a été montré que certains résidus de pesticides peuvent entrainer des troubles de la reproduction, du développement du système nerveux [18, 19]. L'exposition aux pesticides peut aussi être la cause du développement de certains cancers [20, 21], des maux de tête [22], des éruptions cutanées [23] ou encore des troubles de la vision [24]. L'exposition à certaines substances peut entrainer un dérèglement du système immunitaire [25]. Certaines malformations congénitales et développements anormaux du fœtus en présence de ces substances dans le lait maternel ont été reportés [26-28].

Etant donné toutes les maladies causées par la toxicité de ces pesticides qui constituent un réel danger sanitaire, la protection du consommateur présente un enjeu important de santé

publique. C'est pour ces raisons que plusieurs réglementations portant sur les pesticides ont été mises en place par les différentes autorités [29].

1.1.5.3. Effets sur la faune

Le traitement des cultures avec les pesticides n'est pas sans conséquence sur la faune. Par exeemple, la responsabilité prépondérante, voire exclusive, des pesticides dans la surmortalité des abeilles fait l'objet de vifs débats. En effet, l'abeille est soumise, dans son environnement, à de nombreuses contraintes, tant externes (notamment les variations climatiques et l'appauvrissement pollinique), qu'internes (parasites et maladies). Ces pressions, qui peuvent être très importantes à certaines périodes de l'année ou dans certaines zones géographiques, sont alors susceptibles d'affaiblir notablement les colonies [30].

Le fait le plus préoccupant reste toutefois la synergie fréquente de plusieurs de ces facteurs. C'est cet argument de la multi factorialité qui est mis en avant par une majorité des acteurs qui réfutent la responsabilité exclusive des pesticides dans la surmortalité des abeilles. Certains scientifiques et les experts de l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (Anses) favorisent cette hypothèse tout en maintenant les pesticides comme cause potentielle parmi les nombreux facteurs. C'est pourquoi l'Agence européenne chargée de l'évaluation des risques associés aux pesticides en relation avec l'écotoxicologie aquatique et terrestre vient de réviser ses méthodes, estimant que le système précédent ne prenait pas entièrement en considération les risques associés à l'exposition chronique ou répétée aux pesticides, ni ceux auxquels seraient potentiellement soumises les larves.

1.1.5.4. Réglementation

Les pesticides évoluent quantitativement et qualitativement au cours du temps après leur application sur les végétaux. Les quantités de ces substances actives présentes dans le végétal à la récolte constituent le résidu. Ce dernier caractérise le passif du traitement phytosanitaire et, afin de garantir la sécurité du consommateur, il est nécessaire de passer par un certain nombre d'étapes avant de délivrer une autorisation de mise sur le marché d'une substance active :

- Proposer une définition du résidu dans les produits végétaux et éventuellement dans les produits animaux si la culture est destinée à l'alimentation animale
- Fixer une LMR pour les cultures bénéficiant d'une autorisation d'usage de la substance active
- S'assurer que les LMR proposées sont compatibles avec la santé du consommateur en réalisant une évaluation du risque.

Les autorités législatives dont le conseil de l'Union Européenne ont mis en place des réglementations de plus en plus strictes afin d'éviter les risques pour la consommation. Ces règlementations ont pour objectifs d'assurer la sécurité des matrices alimentaires ainsi garantir la santé des consommateurs et la qualité des cultures. Pour cela, des valeurs de LMR de pesticides dans différents produits de consommation ont été mis en place.

❖ Le résidu :

Après avoir appliqué les substances actives sur les végétaux, la détermination du devenir de ces molécules est une étape clé. La substance active est susceptible de se dégrader sous l'influence de facteurs physiques (température, rayonnement UV, eau) ou biologiques (métabolisation). Pour cela, des études de métabolisme sont réalisées dans des conditions représentatives des pratiques agricoles en utilisant du ¹⁴C (substance active radiomarquée). Ces études sont réalisées dans le but d'estimer la répartition des résidus dans le végétal, les teneurs en résidus totaux dans les diverses parties de la plante et enfin, d'identifier puis de quantifier les métabolites susceptibles d'apparaître après traitement. La substance active appliquée, appelée aussi molécule mère reste généralement le composé majoritaire dans la plante et le résidu est défini comme la substance active elle-même.

❖ La LMR

Les LMR des pesticides sont les quantités maximales autorisées, établies à partir des bonnes pratiques agricoles (BPa) déterminées lors de l'autorisation de la mise sur le marché des pesticides. L'élaboration de ces LMR est une procédure qui se déroule en deux étapes

distinctes correspondant d'abord à la définition de la BPa critique ensuite à la mise en place des essais résidus.

La BPa critique pour un pesticide appliqué à un végétal donné, correspond à la pratique qui conduit au risque résidu le plus important. Elle correspond, en général, à l'usage qui nécessite de connaître le délai avant récolte le plus court, la dose par hectare la plus élevée et le nombre maximum d'applications par saison [31].

Telle qu'elle est établie, la LMR apparaît comme une norme agronomique, reflet d'une utilisation de la substance active conforme à une bonne pratique agricole. Un dépassement de la LMR doit avant tout être interprété comme un non-respect d'une pratique agricole (Règlement 396/2003).

I.1.6. Problématiques

Les autorités ont établi les LMR des pesticides pour les produits de consommation disponibles sur le marché. Ces valeurs des LMR peuvent être très faibles de l'ordre du $\mu g/kg$ ou même ng/kg pour l'alimentation infantile. Pour cela, il est très important de développer des méthodes analytiques de plus en plus sensibles afin de détecter ces faibles teneurs mais aussi des méthodes d'extraction efficaces, robustes et rapides.

Les méthodes classiquement utilisées pour l'extraction des pesticides dans les matrices alimentaires étaient chronophages telles que les extractions accélérées par solvant, le soxhlet par exemple et nécessitaient des étapes de purification fastidieuses telles que l'extraction sur phase solide. L'arrivée de la méthode QuEChERS a révolutionné le domaine de l'analyse des pesticides. Elle a permis de réaliser des extractions et des purifications rapides et efficaces d'un grand nombre de molécules de familles chimiques variées simultanément en obtenant de bons taux de récupérations. Cette technique a été appliquée à diverses matrices telles que les fruits et légumes, les céréales. Les résultats ont été concluants et plusieurs méthodes ont été validées.

Cependant, malgré l'avancée des techniques analytiques, l'extraction de certaines molécules (pyréthrinoïdes) dans certaines matrices complexes (graines oléagineuses) reste difficile. La

polarité ou le caractère lipophile de quelques molécules rendent l'extraction difficile et les taux de récupération dans ces matrices ne sont pas satisfaisants. De plus, certaines matrices contiennent des composés susceptibles d'interférer avec les molécules d'intérêt.

La partie suivante se consacrera principalement à la description de la méthode QuEChERS utilisée pour l'extraction des pesticides dans les matrices alimentaires. Ensuite, les différentes modifications de la méthode QuEChERS pour améliorer les performances analytiques seront décrites. Enfin, l'application de la méthode QuEChERS pour l'extraction des pesticides dans les matrices complexes telles que les céréales, thés, les graines oléagineuses et les épices sera présentée.

I.2. APPLICATION DE LA METHODE QUECHERS POUR L'EXTRACTION DES PESTICIDES

I.2.1. Méthode QuEChERS Originale

I.2.1.1. Généralités et définitions

La méthode QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) a été, pour la première fois, développée par Anastassiades, Lehotay et Schenck en 2003 [32]. Elle combine l'extraction des pesticides dans les matrices alimentaires suivi d'une purification succincte. Ils ont proposé l'acronyme QuEChERS signifiant le caractère rapide, facile, bon marché, efficace, robuste et sûr. Cette méthode est de plus en plus utilisée dans le domaine de la chimie analytique surtout avec le développement du couplage de la chromatographie avec les spectromètres de masse en tandem qui sont très spécifiques. Elle est aussi appliquée à l'extraction et la purification d'autres familles de molécules (mycotoxines, bisphénols, HAP...) dans différentes matrices [33].

Son principe de base repose sur l'extraction des pesticides avec l'acétonitrile puis la purification de l'extrait obtenu par extraction sur phase solide dispersive (d-SPE) [32]. L'objectif de l'étape de purification est d'éliminer les interférents qui proviennent de la matrice, ce qui permet de limiter des effets matrice pour une large gamme de solutés de polarités très variées. Récemment, l'ajout d'un étalon interne marqué a permis de minimiser les erreurs liées aux différentes étapes de la méthode QuEChERS [34]. En effet, les molécules et leurs homologues marqués ont des structures chimiques très proches donc des propriétés physicochimiques voisines. Ainsi, une suppression ou une exaltation du signal devrait être observée théoriquement pour les deux composés d'une manière quasi similaire [34].

La méthode QuEChERS originale a été appliquée la première fois pour l'extraction de pesticides dans les fruits et légumes et a été réalisée en deux étapes distinctes (figure I.2) :

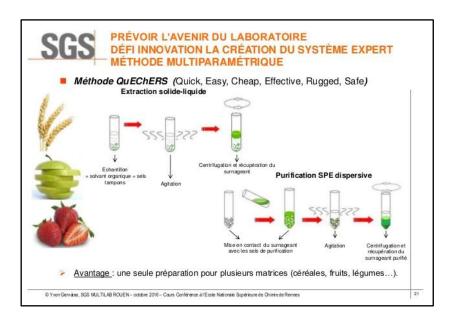


Figure I.2: Principe général de la méthode QuEChERS [35]

Première étape : l'extraction des pesticides de la matrice

Quelques millilitres d'ACN sont ajoutés à une prise d'essai de 10 g d'échantillon. Le mélange est agité vigoureusement pendant une minute à l'aide d'un vortex. Ensuite, un mélange de 4g de sulfate de magnésium anhydre, et de 1g de chlorure de sodium est ajouté afin de favoriser la séparation de la phase organique (l'ACN) et la phase aqueuse. Le tout est mélangé vigoureusement afin d'éviter la formation d'agglomérat de MgSO₄. L'extrait est ensuite centrifugé pour séparer les deux phases.

Deuxième étape : la purification par d-SPE

La totalité de la phase organique (ACN) est prélevée. L'élimination de l'eau résiduelle et la purification de l'extrait sont effectuées simultanément en transférant cette phase organique dans un tube contenant un mélange de 150mg de MgSO₄ (éliminer les résidus d'eau) et 25mg d'un adsorbant greffé par des amines primaires et secondaires (PSA). Le mélange est ensuite centrifugé.

Les extraits obtenus sont ensuite analysés en GC-MS/MS et HPLC-MS/MS. Pour les analyses en HPLC-MS/MS, les extraits sont injectés directement et pour les analyses en GC-MS/MS, un changement de solvant est nécessaire (hexane/acétone 70/30 v/v) car l'acétonitrile est peu compatible avec l'injection de volumes importants [36].

I.2.1.2. Limitations de la méthode QuEChERS

Les fruits et légumes ont des valeurs de pH très étendues comprises entre 2 et 7. Pour des extraits ayant un pH supérieur à 5, la perte de pesticides (comme le captane, le captafol, le folpet, le chlorothalonil, le tolylfluanide et le dichlofluanide) peut se produire au cours de l'étape d'extraction. Ce phénomène peut également se produire lors de l'étape de purification des pesticides ayant un caractère polaire. En effet, l'adsorbant PSA contient des amines primaires et secondaires qui sont susceptibles de piéger des pesticides tels que les phénoxyacides (imazamox, clopyralid, imazaquin, aminopyralid, piclorame) [33].

I.2.1.3. Principales évolutions

La méthode QuEChERS originale a été développée pour l'extraction des pesticides des fruits et légumes, ou de matrices présentant un fort taux d'humidité. Afin de pouvoir généraliser la méthode à un éventail plus large de matrices (céréales, fruits secs, épices, thés...), cette dernière a subi de nombreuses modifications. Elles portent notamment sur les natures des solvants d'extraction, des adsorbants, l'utilisation de différents tampons et l'ajout d'eau pour l'hydratation des matrices sèches. Ces adaptations contribuent à la diminution des risques de dégradation des pesticides et la diminution des effets matrice. Les deux méthodes de référence utilisant le principe QuEChERS sont : la méthode normée NF EN 15662 et la méthode normée américaine AOAC 2007.01 (annexe 1).

A. Utilisation d'autres solvants d'extraction

Dans la méthode originale, l'ACN est utilisé comme solvant d'extraction. D'autres solvants tels que l'acétone ou l'acétate d'éthyle ou encore l'éthanol ont été employés [32]. Cependant, l'acétonitrile reste le solvant le plus utilisé car la solubilité des lipides dans l'ACN est faible, ce qui limitera leur co-extraction.

B. Utilisation de tampons

Des tampons acides ou basiques ont été introduits dans la méthode QuEChERS pour obtenir un pH constant pendant l'étape d'extraction et ainsi éviter la dégradation des pesticides sensibles aux pH basiques [37]. L'utilisation de tampons permet ainsi d'étendre la méthode QuEChERS à un plus grand nombre de pesticides. Les deux méthodes AOAC 2007.01 et EN

15662 utilisent respectivement un tampon acétate et citrate de sodium pour fixer le pH des extraits [38].

C. Utilisation de nouveaux supports de purification

Les supports PSA sont utilisés dans la méthode originale afin de purifier l'extrait avant son analyse. Ils peuvent être mélangés à une silice greffée octadécylsilane (C18) afin d'éliminer les stérols et les interférents apolaires. Les PSA peuvent également être combinées à du charbon graphite (GCB) afin d'éliminer les pigments apolaires co-extraits comme la chlorophylle présente dans la laitue, les épinards, les feuilles ou les caroténoïdes dans les carottes [33].

I.2.2. Application de la méthode QuEChERS aux matrices alimentaires complexes

La version originale de la méthode QuEChERS a été développée pour l'extraction des pesticides dans les fruits et légumes considérés comme des matrices simples. Ces dernières sont des matrices non grasses, qui contiennent généralement plus de 80 % d'eau et contiennent peu d'interférents. Pour les denrées qui ne présentent pas ces caractéristiques, la méthode QuEChERS doit être modifiée afin d'obtenir des taux de récupération corrects mais aussi des extraits purifiés avec le moins d'interférents possibles. Les matrices complexes étudiées ont été choisies en raison de leur grande diversité : les céréales, matrices grasses, le thé et les épices. En effet, les céréales présentent un taux d'humidité inférieur à 25% et contiennent quelques acides gras, le thé et les épices sont des matrices sèches présentant de nombreuses molécules interférentes. Enfin, les matrices grasses contiennent des quantités importantes de lipides qui peuvent gêner l'extraction certains pesticides apolaires.

Dans la littérature, plusieurs études ont été réalisées afin de limiter la présence de nombreux interférents provenant des matrices complexes mais aussi optimiser les taux de récupération de ces diverses molécules de pesticides [34-48]. Ces études consistant à modifier la masse de l'échantillon, le solvant d'extraction, les quantités de sel utilisées mais aussi des différents matériaux de supports solide d-SPE sont présentées dans la suite de ce chapitre.

I.2.2.1. Céréales

Le choix de la quantité d'échantillon est une étape primordiale pour aboutir à de bons résultats analytiques [34]. Pour une grande majorité de matrices céréalières telles que les farines de blé et le riz, l'utilisation de 5 g d'échantillon est préconisée [39-42]. Cependant, de bon taux de récupération, de quelques pesticides, dans certaines matrices plus chargées telles que le maïs sont généralement plus difficiles à atteindre. En effet, cette matrice contient une importante quantité d'acides gras (acides linoléique, oléique et palmitique) qui sont co-extraits avec les analytes. En plus des co-élutions chromatographiques observées, ces acides gras peuvent diminuer la durée de vie des colonnes chromatographiques et en particulier les colonnes HPLC. He Z. *et al* [38] ont utilisé une masse d'échantillon de maïs moins importante (2,5 g contre 5 g) afin d'améliorer les étapes d'extraction. Les résultats obtenus démontrent qu'en diminuant la prise d'essai pour le maïs, les rendements de certains pesticides ont été significativement augmentés. De plus, les produits dont la teneur en eau est inférieure à 80% telles que les céréales nécessitent généralement l'addition d'eau afin d'affaiblir les interactions solutés-matrice et d'assurer une bonne extraction [43].

Certaines céréales contiennent aussi plusieurs minéraux, de la cellulose ainsi que quelques graisses, ce qui rend l'extraction des pesticides très difficile. He Z. *et al* en 2015 [38] ont comparé deux méthodes d'extraction utilisant des systèmes tampons (méthode NF EN 15662 et AOAC 2007.01) afin d'optimiser l'extraction des pesticides. Ils ont montré que la méthode AOAC est plus adaptée pour l'analyse de céréales puisque les effets matrice sont moins importants que pour la méthode NF EN 15662. Pour les pesticides instables à pH basique comme l'amitraze, le captafol, le folpet et le dicofol, aucune des deux méthodes n'a donné de résultats satisfaisants. En revanche, pour le chlorothalonil qui présente la même problématique, la méthode AOAC a donné de meilleurs résultats que la méthode EN (où le pH du système tampon est plus élevé). Ainsi, cette méthode QuEChERS modifiée, couplée à une analyse GC-MS/MS permet de quantifier simultanément plusieurs dizaines de pesticides dans des farines de maïs, de riz et de blé avec des limites de quantification inférieures à 50 µg/kg.

En ce qui concerne l'étape de purification des extraits de céréales, les méthodes QuEChERS NF EN 15662 et AOAC 2007.01 peuvent s'appliquer aux céréales en modulant la quantité de silice greffée C18. En effet, les céréales ne contiennent pas de pigments, l'ajout de GCB n'est

donc pas nécessaire. Comme évoqué précédemment [38], la méthode AOAC est plus efficace pour les céréales. Les auteurs ont seulement ajusté la purification en utilisant 400mg de supports PSA, 400mg de supports C18 et 1200mg MgSO₄.

I.2.2.2. Matrices grasses

Pour les matrices grasses telles que les graines oléagineuses, les huiles, le lait et certains fruits tels que les avocats, des modifications spécifiques de la méthode QuEChERS sont cruciales pour obtenir des taux de récupération satisfaisants. En effet, l'extraction des pesticides de ces matrices demeure complexe car certains lipides peuvent être extraits par l'acétonitrile alors que certains solutés apolaires et liposolubles peuvent rester dans l'échantillon gras [34]. Lorsque les lipides se trouvent dans les extraits finaux, ces derniers peuvent conduire à une exaltation du signal et à une diminution de la durée de vie des colonnes chromatographiques utilisées. Il est donc indispensable de modifier la méthode QuEChERS pour répondre à ces problématiques.

Castillo et al. en 2011 [44] ont testé différentes quantités d'acétonitrile saturé en n-hexane (7 mL et deux fois 15 mL) ainsi que plusieurs quantités d'échantillons (1g et 2g) pour réaliser l'extraction. Les meilleurs chromatogrammes en termes de résolution et de sensibilité ont été obtenus pour la plus petite quantité d'échantillon (1g) extraite par deux fois 15 mL de solvant. Laina et al. [45] ont étudié différentes méthodes d'extraction pour l'analyse en UHPLC-MS de plusieurs pesticides dans diverses matrices et plus particulièrement, des graines de tournesol. Celles-ci contiennent jusqu'à 50% de lipides et il est donc important d'en extraire le moins possible. A l'issue de différents tests, l'extraction de pesticides dans des graines préalablement hydratées avec de l'acétonitrile et un ajout d'un mélange de 4g de MgSO4 et de 1g de NaCl s'est avérée être la meilleure option (méthode A) comparée à une extraction dans les mêmes conditions sans ajout de sels (méthode B) ou à une simple extraction à l'acétonitrile sans hydratation préalable (méthode C). En raison de la polarité plus élevée du mélange eau-acétonitrile utilisé dans les méthodes A et B, aucun signal correspondant aux triglycérides (TAG) n'a été détecté dans l'extrait. Cependant, de faibles taux de récupération inférieurs à 60 % pour les solutés moins polaires notamment les pyréthrinoïdes, ont été obtenus avec la méthode B. De plus, aucune baisse des taux de récupération n'a été observée lors de l'extraction avec la méthode A.

Pour des matrices grasses telles que les olives, les graines oléagineuses, les huiles, les noix, le lait, le poisson ou encore la viande, des modifications spécifiques de la méthode QuEChERS sont cruciales pour obtenir de bonnes valeurs de taux de récupération et limiter l'effet matrice. Castillo et al. [44] en 2011 ont comparé trois méthodes de purification : la d-SPE, le traitement par oxydation et la chromatographie par perméation de gel (GPC). La d-SPE est précédée par une pré-purification de l'extrait acétonitrile. En effet, après extraction des pesticides par de l'acétonitrile saturé en n-hexane, les graisses sont précipitées par refroidissement (4°C pendant une nuit). L'extrait dégraissé est alors purifié par d-SPE en utilisant un mélange de MgSO₄ et de support C18 et PSA. Le traitement par oxydation consiste en l'oxydation de l'échantillon de graisse par de l'acide sulfurique concentré. Pour la GPC, l'échantillon est dissout dans du dichlorométhane puis est injecté. L'extrait collecté est ensuite purifié par d-SPE, la fraction collectée est alors plus pauvre en graisses. Les extraits obtenus avec la d-SPE contiennent moins d'interférents que ceux obtenus par la méthode GPC mais ont une pureté similaire aux extraits des échantillons traités par oxydation. En revanche, certains pesticides d'intérêt ont été dégradés par ce traitement acide (Exo-HCE, Endo-HCE, heptachlor, α et β - endosulfan).

1.2.2.3. Epices

Les épices sont des produits généralement très secs et font partie des ingrédients les plus utilisés à travers le monde en raison de leur goût, de leur fonction de conservation ou encore de leurs actions médicinales [37]. Afin d'obtenir des taux de récupération de pesticides corrects, une étape d'hydratation est donc nécessaire et cruciale. Si on prend l'exemple de la cardamome, Shabeer et al. [46] en 2018, ont comparé trois méthodes d'hydratation. Les résultats montrent qu'en utilisant la méthode du broyage de l'épice puis son hydratation pendant 30 minutes, une meilleure homogénéisation de l'épice a été obtenue. Cela est dû au fait que la cardamome contient entre 9,5 à 12,8% de fibres brutes et lorsque l'échantillon est hydraté avant (ou pendant) son broyage, les fibres dans la capsule empêchent l'obtention d'une poudre fine. Yogendrarajaha et al. [37] ont utilisé cette méthode d'hydratation pour extraire des pesticides dans le poivre noir, le poivre blanc et le piment rouge. L'hydratation a permis de gonfler la matrice ce qui s'est traduit par la diminution des interactions de l'analyte avec les composants de la matrice et a permis l'obtention de meilleurs taux de récupération.

Shabeer et al. [46] ont comparé quelques méthodes d'extraction dans le cadre de l'analyse de cardamome. Ils ont comparé les résultats d'extraction liquide-liquide avec l'acétate d'éthyle, puis avec l'acétonitrile, ensuite la méthode QuEChERS classique (extraction avec de l'acétonitrile) et enfin la méthode QuEChERS modifiée où l'extrait obtenu après évaporation de l'acétonitrile est redissous dans de l'acétate d'éthyle après l'étape de purification. Plus de 90% des composés ont un taux de récupération inférieur à 60% en utilisant l'acétate d'éthyle alors que 60% des composés ont un taux de récupération supérieur à 70% pour l'extraction avec l'acétonitrile. La cardamome renferme environ 9.5% d'huile volatile apolaire. Cette huile est plus soluble dans l'hexane et dans l'acétate d'éthyle que dans l'acétonitrile. Ainsi, en utilisant la méthode QuEChERS avec l'acétonitrile comme solvant d'extraction, la quantité de ce co-extrait huileux est réduite. Cependant, avec cette méthode, l'extrait d'acétonitrile contenait encore 11,2 mg/mL de co-extraits de la matrice ce qui a conduit à des effets matrice importants pour de nombreux composés tels que le triflusulfuron, tébuthiuron, disulfoton, terbufos, et le lindane. La méthode QuEChERS modifiée permet de transférer les pesticides extraits grâce à l'acétonitrile dans de l'acétate d'éthyle juste avant l'injection. Cette étape de changement de solvant permet de réduire la quantité de co-extraits à 4,5mg/mL et de réduire les effets matrice des pesticides cités ci-dessus.

Pour ces épices qui sont considérées comme des matrices très complexes et chargées, l'étape de purification se doit d'être très efficace. En effet, la cardamome contient des huiles essentielles, des sucres réducteurs et des pigments comme la chlorophylle et les caroténoïdes. En 2018, Shabeer et al [46] ont comparé diverses combinaisons de supports : PSA, C18 et GCB lors de l'étape de purification d'extraits de cardamome. L'adsorbant C18 est très efficace pour éliminer les composés lipidiques tandis que le GCB et le PSA adsorbent préférentiellement les pigments colorés et les sucres. Ainsi, une combinaison de 25mg de PSA, 100mg de C18 et 10mg de GCB a été considérée comme optimale pour l'étape de purification.

1.2.2.4. Thé

Le thé est l'une des matrices les plus chargées en interférents dans le domaine de l'agroalimentaire. Il peut être analysé sous forme solide ou liquide par le biais de feuilles ou d'infusions. Dans le cadre de l'analyse de quelques pesticides et mycotoxines dans le thé en HPLC-MS/MS, Cladière *et al* en 2018 [43] ont comparé les résultats d'extraction de ces contaminants en utilisant ces deux modes de préparation (feuille ou infusion). Les infusions de thé ont été préparées conformément à la norme ISO 3103 : 1980 [47]. Un volume de 200 mL d'eau est porté à ébullition puis mis en contact pendant 6 minutes avec 2 g de feuilles de thé placées dans un filtre à thé. Les feuilles de thé « brutes » sont, quant à elles simplement, broyées afin d'obtenir une poudre homogène. Les résultats montrent que l'extraction des contaminants dans le thé infusé sont plus concluants que ceux obtenus sur les feuilles de thé. Les taux de récupération de plus de 80% des contaminants ont été estimés entre 70% et 120%. Tandis que d'importants effets matrices ont été observés avec la méthode d'extraction sur les feuilles de thé.

Le thé est un produit alimentaire complexe car il contient une grande variété de composés biologiquement actifs : antioxydants, composés aromatiques, xanthines et alcaloïdes. Ces composés sont responsables d'effets matrice importants durant l'analyse. Ainsi, l'extraction est une étape clé pour s'en affranchir. En 2017, Wu [48] a appliqué une méthode QuEChERS modifiée pour l'extraction de 89 pesticides contenus dans un thé Oolong. Un thé Oolong a un état d'oxydation situé entre le thé vert et le thé noir. Après une extraction avec de l'acétonitrile acidifié à 1% puis un ajout d'un mélange d'acétate de sodium (NaCH₃CO₂) (1,5 g) et de MgSO₄ (6 g), l'extrait est évaporé à sec sous azote puis redissout dans un mélange (*n*-hexane/acétone). Enfin, l'extrait obtenu est filtré puis injecté dans le système chromatographique. Les résultats montrent que l'étape de redissolution dans un autre solvant permet d'éliminer certains interférents. Grâce à cette méthode QuEChERS modifiée, des composés tels que la bifenthrine, la cyhalothrine (pyréthrinoïdes) et le chlorpyrifos (organophosphoré-organochlorés) ont été quantifiés dans le thé de manière satisfaisante.

La caféine est l'alcaloïde principal du thé, qui est responsable de certains effets matrice en raison de sa concentration élevée et de sa solubilité dans l'acétonitrile. Il est donc difficile d'éliminer tous les composés interférents du thé en utilisant un seul type d'adsorbant [49]. Maa *et al.* [49], ont employé des oxydes de graphène possédant des groupements amine

(amine-rGO en tant qu'adsorbant). Ils ont montré que la tributylamine-rGO (tri-BuA-rGO) avait la plus grande capacité d'adsorption pour les catéchines et la caféine, comparé aux oxydes de graphène simples (GO) et aux autres rGO. De même, des analyses gravimétriques ont confirmé que la tri-BuA-rGO avait de meilleures performances de purification en comparaison avec les adsorbants utilisés "traditionnellement" en d-SPE tels que le PSA, le GCB ou le C18. Ainsi, une méthode d'analyse multi-résidus basée sur la purification à la tri-BuA-rGO a été validée pour 33 pesticides représentatifs retrouvés dans le thé vert.

I.2.3. Automatisation et robotisation de la méthode QuEChERS

Bien que la méthode QuEChERS soit la méthode de référence pour l'extraction des pesticides dans les matrices alimentaires en termes de coût, d'efficacité et de temps d'analyse, ce dernier peut encore être réduit par l'automatisation du procédé. Par exemple, le robot Automate-Q40 (Teledyne Takmar) automatise toutes les étapes de la méthode QuEChERS. Ce système garantit une meilleure reproductibilité ainsi qu'une meilleure précision [50].

Le système est configuré « prêt à l'emploi » pour exécuter les deux méthodes de préparation d'échantillons QuEChERS les plus utilisées : AOAC 2007.01 et EN 15662.2008. En début de processus, le solvant d'extraction puis les sels sont ajoutés à l'échantillon. Un système de détection optique identifie la couche organique et un volume prédéterminé du surnageant est transféré dans un autre flacon afin de procéder à l'étape de purification par d-SPE avec des adsorbants. Enfin, un volume spécifié est transféré dans un flacon d'extrait final qui peut ensuite être injecté dans le système chromatographique (LC-MS/MS ou GC-MS/MS). Des étapes de mélange et de centrifugation sont prévues tout au long du processus. L'enchainement de toutes ces étapes prend environ quatre heures pour préparer vingt échantillons. La figure I.3 présente le schéma de l'Automate Q40.

Simon *et al.* [51] ont comparé les résultats d'analyse obtenus après une préparation des échantillons manuelle et automatique avec le robot Q40. Ils se sont appuyés sur des échantillons de chou, d'orange, de farine de maïs et de raisins secs en utilisant la méthode QuEChERS AOAC 2007.01 pour la quantification de 204 pesticides. Ils ont prouvé que les limites de détection, de quantification et que le coefficient de détermination (R²) étaient

comparables. Pour les deux méthodes, les valeurs des R² étaient supérieures ou égales à 0.998 pour la plupart des analytes. Pour les échantillons de chou et d'orange, les taux de récupération des pesticides étaient de 10% plus élevés avec une préparation automatique. Pour la farine de maïs et les raisins secs, aucune différence n'a été relevée. D'autres études portant sur des matrices différentes telles que le thé [52], le miel [53] ou encore le vin [54] ont prouvé que les performances de l'Automate Q40 étaient comparables aux performances obtenues manuellement.

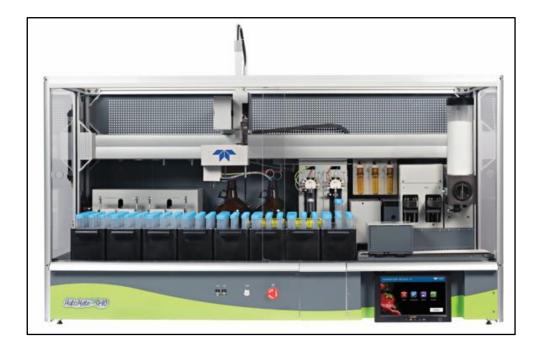


Figure I.3: Illustration de l'Automate Q40 [50]

I.3. RAPPELS THEORIQUES SUR LES TECHNIQUES ANALYTIQUES CONVENTIONNELLES UTILISEES POUR L'ANALYSE DES PESTICIDES

I.3.1. La chromatographie Liquide Haute Performance

I.3.1.1. Généralités

La Chromatographie liquide haute performance (HPLC) est une technique qui permet de séparer les différents composants d'un mélange. Elle implique l'utilisation d'une phase stationnaire et d'une phase mobile liquide [55]. De façon générale, la phase mobile circule à travers la phase stationnaire en entraînant avec elle les différents composants de l'échantillon. Les composés subissent deux effets antagonistes, l'un d'entrainement par la phase mobile dans laquelle ils sont solubles et l'autre de rétention exercée par la phase stationnaire. La rétention des composés dépend de leurs propriétés physicochimiques et de leurs interactions avec la phase stationnaire et la phase mobile. Ainsi, la séparation des composés repose sur leur différence d'affinités entre les phases stationnaire et mobile [56].

I.3.1.2. Appareillage

Une chaîne HPLC est constituée de 5 éléments majeurs : un système de pompage de la phase mobile, une colonne, un système d'injection, un détecteur et un système de traitement des données :

- Le système de pompage permet de faire circuler la phase mobile à l'intérieur du système et permet de réguler avec précision le débit et la composition de celle-ci.
- La colonne contient la phase stationnaire qui permet de séparer les constituants d'un mélange en fonction de leur polarité, leur charge ou bien encore leur taille. Il est également possible de faire varier la température des colonnes chromatographiques afin de d'améliorer le profil des pics chromatographiques et faire varier la sélectivité.
- Le système d'injection permet d'introduire un volume précis d'échantillon dans le système qui dépend des paramètres géométriques de la colonne et la sensibilité souhaitée.
- C'est ce qui permet d'obtenir les chromatogrammes et parmi les détecteurs les plus utilisés, on peut citer les détecteurs spectroscopiques dans l'ultraviolet (UV) et le visible, fluorimétriques ou le couplage avec les spectromètres de masse (MS).

L'analyse des données se fait à partir d'un logiciel qui donne des informations qualitative et quantitative de l'analyse réalisée.

1.3.1.3. Les différents modes de chromatographie en phase liquide

L'HPLC est une des techniques de séparation les plus utilisées dans divers domaines (environnement, pharmaceutique et agroalimentaire...). Les modes de chromatographie utilisés doivent être adaptés aux propriétés physicochimiques des solutés analysés. Le coefficient de partage octanol-eau d'un soluté constitue un critère d'évaluation de la polarité de celui-ci. Ainsi le logarithme du coefficient de partage (log P) est le logarithme du rapport de la concentration du composé dans l'octanol sur la concentration de ce dernier dans l'eau (équation I.1). Plus le log P est elevé, plus la molécule est apolaire.

$$\log P_{oct/eau} = \log \left(\frac{[solut\acute{e}]_{octanol}^{non-ionis\acute{e}}}{[solut\acute{e}]_{eau}^{non-ionis\acute{e}}} \right) \quad \acute{e} \text{quation I.1.}$$

En général, trois caractéristiques principales des composés chimiques peuvent être utilisées pour contrôler les séparations par HPLC : la polarité, la charge et la taille moléculaire [57]. Les différents modes de HPLC achirales les plus répandus [58] sont :

La chromatographie liquide en phase normale ou classique

La chromatographie liquide en phase normale fut la première technique en termes d'apparition. Ce mode est, par exemple, utilisé pour la séparation par classe de polarité des lipides selon leurs groupes fonctionnels. La phase stationnaire est principalement constituée de silice (stabilité de pH 2-8) ou d'alumine (stabilité de pH 2-12) et la rétention des composés est régie par un mécanisme d'adsorption des solutés sur la surface polaire, faiblement acide, du gel de silice [59]. De plus, des phases stationnaires à base de silices greffées cyanopropyle, diol ou aminopropyle ont été développées. Dans ce cas, le mécanisme impliqué est similaire à celui de la chromatographie de partage. La phase mobile est généralement constituée d'un mélange de solvants organiques non polaires tel que l'heptane avec un solvant miscible de polarité intermédiaire tel que l'isopropanol. La rétention des composés polaires est plus grande que celle des composés non polaires. Cependant, ce mode est limité : les solvants utilisés sont polluants et toxiques, non compatibles avec les sources électrospray (ESI) [60]. De plus, les composés très polaires ne sont pas suffisamment solubles dans ce type de

solvants. C'est pour ces deux dernières raisons, que ce mode de chromatographie reste très peu utilisé pour l'analyse de résidus de pesticides dans les matrices agroalimentaires [61-62].

La chromatographie liquide à polarité des phases inversées

La chromatographie liquide à polarité des phases inversée est le mode le plus utilisé. La phase mobile est constituée d'un mélange d'eau et un ou plusieurs solvants organiques (méthanol, acétonitrile, éthanol, isopropanol, tétrahydrofurane ...), miscibles avec l'eau. Les phases stationnaires sont le plus souvent à base de silice, poreuse ou partiellement poreuse, chimiquement modifiées par greffage d'une chaine alkyle octyle C8 ou octadécyle C18. De la silice greffée avec des groupements cyanopropyle ou phényle peut aussi être utilisée [63-68]. D'autres phases stationnaires à base de polymères telles qu'un copolymère styrène divinylbenzène sont également employées. Par ailleurs, d'autres phases à base de carbone graphite poreux (PGC) ont été étudiées. Ce type de phase stationnaire est réservé à l'analyse de certains composés polaires car elle présente une rétention particulière du fait de la polarisabilité de sa surface. Les mécanismes mis en œuvre entrainent aussi une forte rétention des substances apolaires. Ainsi, le PGC n'est pas recommandé lors du développement de méthodes d'analyse multi-résidus de pesticides du fait de sa capacité rétentive élevée qui conduit à des temps d'analyse en général plus long [66].

La chromatographie d'échange d'ions ou chromatographie ionique

La chromatographie d'échange d'ions est largement utilisée dans les processus industriels (séparation des ions inorganiques, biomolécules, oligosaccharides...). La chromatographie d'échange d'ions est probablement le procédé chromatographique à grande échelle le plus répandu, mais il est limité aux molécules ionisables solubles dans l'eau [69]. Cependant, la résine est généralement relativement coûteuse par rapport aux autres types de phases stationnaires.

Les phases stationnaires utilisées dans le mode d'échange d'ions sont caractérisées par la nature des fonctions acides ou basiques à leur surface et les types d'ions qu'ils retiennent. Les ions chargés positivement sont retenus et séparés sur une résine échangeuse de cations possédant des charges négatives en surface. Au contraire, les ions chargés négativement sont analysés sur une phase stationnaire porteuse de groupements échangeurs d'anions chargés positivement à la surface. La rétention et donc la séparation dépend de la densité de charge

et de la polarisabilité des solutés. On peut distinguer deux catégories d'échangeurs : les échangeurs d'ions forts et les échangeurs d'ions faibles.

En fonction du pH, les groupes fonctionnels (fonctions amines secondaires ou acides carboxyliques) sont chargés et retiennent les ions. Sous leur forme neutre, les échangeurs d'ions acide ou base faible peuvent retenir et séparer les solutés par des interactions hydrophobes ou hydrophiles. Ensuite, l'ordre d'élution est déterminé par la polarité des phases mobiles, de sorte que des échangeurs d'ions faibles peuvent être utilisés pour des séparations en mode mixte (séparations basées à la fois sur la polarité et la charge). Il est également possible de modifier le pH de la phase mobile pour moduler la sélectivité. Le type de phase stationnaire le plus utilisé est un copolymère synthétique de styrène et de divinylbenzène, produit sous forme de très petites billes de l'ordre de quelques micromètres. Le degré de réticulation, la porosité, la structure et la stabilité sont contrôlés par la quantité de DVB ajoutée lors de la polymérisation. Cependant, la chromatographie d'échange d'ions présente certaines limites : la faible cinétique conduit à une diminution de l'efficacité et la compatibilité avec la MS reste difficile une instrumentation spécifique est nécessaire. Néanmoins certaines applications pour l'analyse de pesticides ionisés ou ionisables tel le glyphosate et l'AMPA ont été développées récemment [70, 71].

La chromatographie liquide d'interactions hydrophiles (HILIC)

Initialement décrit par Alpert en 1990 [72], c'est depuis 2006, grâce aux travaux de McCalley, Hemstroem et de l'Irgum [73-74], que le mode HILIC s'est répandu. La majorité des applications est dédiée à l'analyse des composés très polaires avec une détection par MS. Cependant des travaux ont démontré que le mode HILIC était aussi applicable à des composés moins polaires [75]. Dans ce mode de chromatographie, les phases stationnaires sont polaires (silice, silice greffée aminopropyle, diol, sulfobétaïne par exemple) et la phase mobile est composée d'eau (≥3%), avec un pourcentage élevé de modificateur organique (>60%, principalement de l'acétonitrile). Les mécanismes de rétention dépendent de la chimie de la phase stationnaire, des caractéristiques physicochimiques de la phase mobile (pH, force ionique, nature du modificateur organique) et de la nature du soluté. Les mécanismes de rétention sont variés et complexes, parfois mal expliqués [76] et peuvent être résumés comme représenté sur la figure I.4 [76-78] :

- Interactions hydrophiles entre la phase mobile composée d'acétonitrile et la couche d'eau adsorbée à la surface de la silice par liaisons hydrogène.
- Adsorption des composés polaires à la surface de la phase stationnaire par liaisons hydrogène avec des silanols, des diols ou des groupes amides.
- Interactions électrostatiques entre les solutés ioniques et ionisables, et la surface de la phase stationnaire chargée (négativement silanols acides, positivement avec les groupements ammoniums ou les deux dans les greffons zwitterioniques).

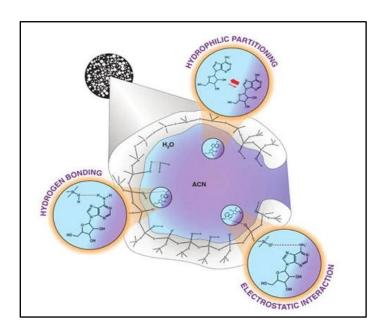


Figure I.4: Représentation schématique des mécanismes de rétention en mode HILIC [79]

La prédiction de l'ordre d'élution est délicate car elle dépend de la polarité, du nombre de liaisons hydrogène et de l'état d'ionisation des solutés [80-82], ce qui est difficile à prévoir en raison de la forte teneur en acétonitrile qui modifie le pH de la phase mobile et le pKa du soluté. Même s'il n'existe pas de phases stationnaires dédiées telles que les silices greffées octadécylsilane en RPLC, de nombreuses phases stationnaires sont disponibles, principalement sur support de silice ou de matériau polymérique comme présenté dans la figure I.5 [75], [83].

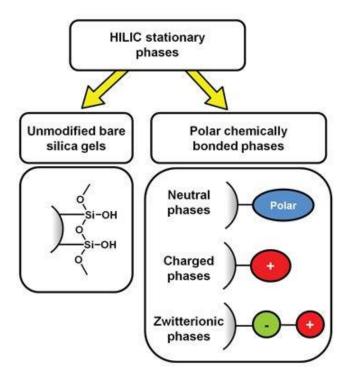


Figure I.5: phases stationnaires pour le mode HILIC et leur représentation [75, 83]

Plusieurs études ont confirmé l'intérêt de la chromatographie liquide en mode HILIC couplée à la spectrométrie de masse en tandem pour l'analyse de pesticides polaires. Une méthode HILIC couplée à la spectrométrie de masse en tandem a été développée et validée pour l'analyse de pesticides polaires (chlormequat, daminozide, diquat, mepiquat, paraquat, cyromazine et amitrole...) dans diverses matrices alimentaires [84]. D'autres études ont été réalisées pour l'analyse de pesticides organophosphorés polaires dans les eaux avec une méthode HILIC-MS/MS confirmant la faisabilité de ce couplage pour l'analyse de résidus de pesticides [85].

La chromatographie liquide à ultra haute performance (UHPLC)

Il est à noter que la chromatographie liquide à ultra haute performance présente le même principe que l'HPLC mais en employant des phases stationnaires composées de particules de diamètre inférieur à 2µm [86]. Cette technique a été développée par Waters en 2004 afin d'améliorer la sensibilité, la résolution et la vitesse d'analyse. Cependant, l'augmentation de pression requiert plus de maintenance et réduit la durée de vie des colonnes de ce type [87]. L'UHPLC-MS/MS est de plus en plus utilisée pour l'analyse de multi-résidus de pesticides car les durées d'analyses sont réduites et les sensibilités sont améliorées [88]. Plusieurs

méthodes UHPLC-MS/MS ont été développées et validées pour l'analyse de traces de pesticides dans les fruits et légumes [89] et aussi dans les matrices céréalières [90].

I.3.2. Couplage chromatographie en phase liquide-spectrométrie de masse

La spectrométrie de masse occupe une place importante grâce à ses capacités d'identification, sa spécificité ainsi que sa sensibilité [91-92]. La variété des applications témoigne de la polyvalence de cette technique analytique. Elle est, en effet, aussi bien utilisée en protéomique, en physique atomique, pour la cinétique des réactions, en géochronologie, dans toutes les formes d'analyse chimique quantitative et qualitative [93]. En vue de son couplage à l'HPLC, une interface d'ionisation est placée avant l'analyseur et le détecteur. Aucune interface universelle n'ayant émergé, plusieurs types d'interfaces ont été proposées au cours de ces dernières années afin de répondre aux différentes problématiques.

I.3.2.1. Sources d'ionisation à pression atmosphérique

Avant le développement des sources d'ionisation à pression atmosphérique (API) au milieu des années 1990, les interfaces entre l'HPLC et la MS utilisées étaient des interfaces Thermospray et FAB (Fast Atom Bombardment). Les sources API ont permis de limiter les différents problèmes existants lors de l'utilisation d'autres interfaces. Elles ont permis d'ioniser des molécules de polarité variée et être compatible avec des débits de phase mobile plus élevés [89]. Le développement de ces sources d'ionisation à pression atmosphérique a contribué à la percée des couplages HPLC à la MS [90] ce qui a révolutionné l'analyse par HPLC/MS des pesticides et micropolluants. L'électrospray (ESI) et l'ionisation chimique à pression atmosphérique (APCI) sont les deux sources les plus utilisées dans le domaine de l'analyse des pesticides en agroalimentaire.

Les sources d'ionisation à pression atmosphérique permettent de former un spray continu, issu d'un effluent de chromatographie liquide ou électrophorétique. Les ions préexistants en solution, ou formés ultérieurement en phase gazeuse, sont extraits dans un processus d'ionisation à pression atmosphérique à travers plusieurs étapes de pompages dans le vide du spectromètre de masse. Les trois avantages significatifs à l'origine du succès des sources API sont [94] :

- Elles peuvent supporter des débits plus élevés,
- Elles sont adaptées pour réaliser l'analyse de composés non-volatils et thermiquement instables et de polarités moyennes à très polaires,
- Elles sont très robustes et faciles d'utilisation.

A. Source ESI

La source ESI est considérée comme une source d'ionisation douce, qui permet de transférer les ions, majoritairement préformés en solution, en ions en phase gazeuse. Le processus d'ionisation se réalise en trois étapes principales [95]

- 1. Production de gouttelettes chargées à l'extrémité du capillaire
- 2. Rétrécissement des gouttelettes par évaporation du solvant et désintégrations répétées et successives des gouttelettes conduisant à des gouttelettes hautement chargées et de tailles réduites
- 3. Emission d'espèces ioniques solvatées en phase gazeuse à partir d'une gouttelette de petite taille selon un mécanisme encore sujet à discussion (figure I.6).

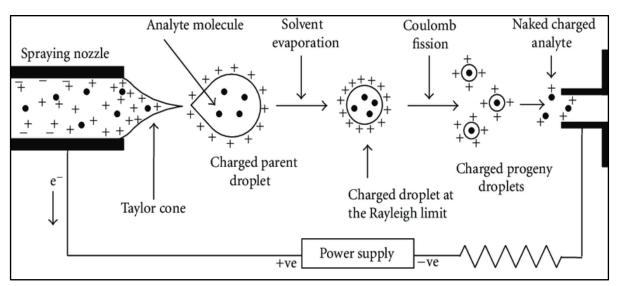


Figure I.6: Processus d'ionisation avec une source ESI [96]

Premièrement, un fort courant électrique, sous pression atmosphérique, est appliqué au liquide passant à dans le capillaire. Le courant est obtenu en appliquant une différence de potentiel (2,5 à 6 kV) entre le capillaire et une contre-électrode, séparés de 0,3 à 2 cm. Ceci créé un champ électrique qui engendre une accumulation de charge à la surface du liquide se trouvant à la sortie du capillaire. Cette accumulation de charges entraîne la déformation du

liquide qui se traduit par l'apparition d'un cône de Taylor, puis sa rupture par répulsion électrostatique et sa décomposition en gouttelettes chargées. Un gaz, qui est injecté à faible débit et de façon co-axiale au capillaire, permet de focaliser et stabiliser le spray. Les gouttelettes passent ensuite à travers un rideau de gaz inerte et chauffé, généralement de l'azote dirigé à contre-courant du trajet des ions, dans le but de compléter la désolvatation. Cette désolvatation cause un rétrécissement des gouttelettes et donc une augmentation de la charge par unité de volume, jusqu'à ce que la limite de Rayleigh soit atteinte. Cette limite correspond à la taille critique pour laquelle les répulsions coulombiennes entre les charges deviennent égales puis supérieures aux forces cohésives de la tension de surface du liquide. Les gouttelettes vont alors se déformer jusqu'à se rompre en des gouttelettes plus petites. Ce phénomène se poursuit sur ces dernières, et ainsi de suite, jusqu'à ce que le champ électrique à leur surface soit assez important pour permettre la désorption des ions qu'elles contiennent. Deux modes d'ionisation existent : le mode positif (ESI+) et le mode négatif (ESI-).

L'ESI peut générer des ions monochargés de type [M+H]⁺ en mode positif ou [M-H]⁻ en mode négatif mais également des ions multichargés [M+nH]ⁿ⁺ ou [M-nH]ⁿ⁻. En plus de ces ions multichargés, certains adduits peuvent être formés par combinaison de l'ion moléculaire du composé avec certains ions ou même certaines molécules neutres présentes dans la phase mobile (adduit avec le sodium, potassium ou ammonium) [97]. Néanmoins cette source souffre de quelques inconvénients lors de l'analyse de matrices chargées car la coélution des composés peut conduire à compétitions d'ionisation engendrant une suppression ou une exaltation du signal des composés analysés [98-99].

B. Source APCI

Dans le processus de l'ionisation chimique, les réactions ions-molécules se produisent essentiellement en phase gazeuse [100]. Cette source utilise un nébuliseur pneumatique à pour former un aérosol à l'intérieur d'une chambre chauffée à azote des températures élevées (entre 350°C et 500°C). Dans cette chambre, l'effluent de la colonne de chromatographie (solvant + soluté) est évaporé et se mélange avec le gaz nébuliseur (ou gaz de transport) pour amener les analytes vers l'électrode à décharge couronne (effet corona) constituée d'une aiguille et d'une chambre de nébulisation qui sert de contre-électrode. Une différence de potentiel élevée (entre ±2 et ±6kV) est appliquée sur cette électrode, provoquant une décharge couronne (décharge électrique lumineuse) de 2 à 3μA. Cette décharge est une source constante d'électrons pour le processus d'ionisation en APCI : elle ionise l'air ambiant et crée un plasma, c'est-à-dire un gaz ionisé, autour de la pointe de l'aiguille. Les ions radicalaires du plasma participent ensuite à des réactions chimiques qui donnent lieu à l'ionisation des molécules d'analyte.

Le processus d'ionisation se déroule en trois étapes :

- 1. Une décharge Corona produit un jet d'électrons qui permet l'ionisation du gaz qui produit des ions primaires de type N_2^+ et O_2^-
- 2. Les ions primaires formés réagissent avec les molécules de la phase mobile pour former des ions réactifs de type H_3O^+ (figure I.7).

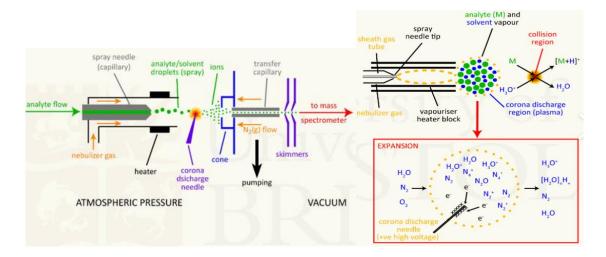


Figure I.7: Représentation du processus d'ionisation par APCI en mode positif [101]

Ces ions réactifs vont réagir avec les molécules du mélange injecté pour former des ions de type [M+H] ⁺ en mode positif ou [M-H] ⁻ en mode négatif. Cette source est beaucoup moins sujette aux effets de matrice mais n'est pas adaptée à l'analyse de composés de haut poids moléculaire car elle ne favorise pas la formation d'ions multichargés.

C. Comparaison de la source ESI et la source APCI

L'interface de choix pour le couplage de l'HPLC avec la MS dans le domaine de l'analyse multirésidus de pesticides reste l'ESI qui permet d'ioniser la plupart des pesticides. Il ne faut cependant pas délaisser totalement l'APCI qui constitue une véritable méthode complémentaire de l'ESI sur une gamme assez large de pesticides. Elle peut présenter moins d'effets matrice et permettre d'accéder à l'analyse de composés moins polaires. Un dernier point important concerne le changement de source ESI/APCI qui est généralement très aisé sur les spectromètres de masse.

Des comparaisons de ces deux sources d'ionisation pour l'analyse des pesticides ont été réalisées. Ces deux sources ne sont pas très différentes physiquement, toutefois, il demeure quelques distinctions générales à prendre en compte lors du choix de la source (tableau I.4).

ESI	APCI	
lonisation en phase liquide	Ionisation en phase gazeuse	
Ionisation douce	Ionisation par décharge couronne	
Molécules thermolabiles	Non recommandé aux molécules thermolabiles	
Molécules polaires à moyennement polaires	Molécules moyennement à faiblement polaires	
Poids des molécules analysées :	Poids des molécules analysées < 2000 uma	
Faible à très élevée		
Sensible aux effets matrice	Peu sensible aux effets matrice	
Réponse proportionnelle à la concentration	Réponse proportionnelle à la masse	

Tableau I.4: Comparaison des sources ESI et APCI [101]

1.3.2.2. Analyseurs

L'analyseur est la partie du spectromètre de masse où se fait la séparation des ions en fonction de leurs rapports m/z. Plusieurs analyseurs de masse sont utilisés couramment tels que les analyseurs à temps de vol (TOF ou Time Of Flight), piège à ions, résonance cyclotronique (Orbitrap) ou encore quadripôle ou triple quadripôle (QqQ).

Chaque analyseur est caractérisé par : la gamme en rapport de masse sur charge m/z, la vitesse de balayage, l'efficacité de transmission des ions, l'exactitude en masse et sa résolution.

- La gamme des rapports m/z : elle détermine les valeurs limites (minimale et maximale)
 des rapports m/z mesurables
- La vitesse de balayage : elle correspond au temps mis par le spectromètre pour analyser l'ensemble de la gamme des rapports m/z
- La transmission des ions : elle correspond au rapport entre le nombre d'ions arrivant au détecteur et celui entrant dans l'analyseur

L'exactitude sur la masse : elle détermine la précision ou plus correctement la justesse des rapports *m/z* mesurés, c'est-à-dire la concordance entre la masse mesurée et la masse théorique de la molécule. Elle s'exprime en partie par million (ppm) (équation I.2).

Exactitude (ppm) =
$$\frac{m_{\text{th\'eorique}} - m_{\text{exp\'erimentale}}}{m_{\text{th\'eorique}}} * 10^6$$
 équation I.2

 La résolution : elle peut être calculée à partir d'un spectre de masse en considérant un pic isolé de rapport m/z. Elle se détermine en effectuant le rapport de la masse m sur la largeur à mi-hauteur (FWHM : Full Width Half-height Maximum) (équation I.3).

$$R = \frac{m}{\Lambda m}$$
 équation I.3

A. L'analyseur à champ quadripolaire

Les analyseurs de type quadripolaire sont des analyseurs à basse résolution (R \approx 2000) à m/z 200 [98]. Ils font partie des analyseurs de basse résolution les plus utilisés. Ils sont constitués de quatre barres parfaitement parallèles ayant une section circulaire ou idéalement hyperbolique (figure I.8).

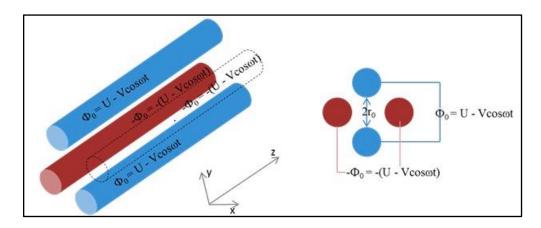


Figure I.8 : Schéma de l'analyseur à champs quadripolaire [104]

Une combinaison de voltage direct et alternatif est appliquée à chaque paire d'électrodes, l'un positif et l'autre négatif. Les ions pénétrant au sein du quadripôle vont osciller et leurs trajectoires seront plus ou moins stables en fonction des potentiels appliqués. Ainsi, seuls les ions ayant une trajectoire stable seront sélectionnés et transmis à la sortie du quadripôle, tandis que les autres s'élimineront sur les électrodes. En appliquant des voltages optimisés

pour stabiliser les trajectoires d'ions de rapport m/z choisi, un quadripôle peut, en ce sens, être considéré comme un sélecteur d'ions.

B. Analyseur triple quadripolaire (spectrométrie de masse en tandem)

La spectrométrie de masse en tandem (MS/MS) est une technique qui a pris beaucoup de place dans le domaine de la chimie analytique. Son principe consiste à sélectionner un ion stable issu de la source d'ionisation appelé l'ion précurseur ou l'ion parent à l'aide du premier quadripôle (Q1). Ensuite, l'ion précurseur sélectionné est fragmenté généralement dans une cellule de collision elle-même de type quadripolaire (q2). Les ions issus de la fragmentation de l'ion précurseur appelés ions fragments sont ensuite transférés vers le détecteur via le troisième quadripôle (Q3) (figure I.9). L'analyseur de type triple quadripolaire reste de loin l'analyseur de masse en tandem le plus utilisé pour l'analyse ciblée des pesticides et des contaminants dans les matrices environnementales et agroalimentaires.

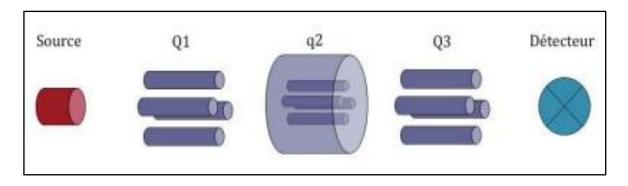


Figure I.9 : représentation schématique d'un analyseur de type triple quadripolaire [105]

Les modes de balayage de scan d'un spectromètre de type triple quadripôle

L'analyseur de type triple quadripolaire permet de travailler en spectrométrie de masse simple MS ou en tandem MS/MS. En mode MS simple, les ions produits dans la source sont séparés par le quadripôle Q1 sans être ensuite fragmentés. La spectrométrie de masse en tandem consiste à effectuer dans un premier temps une MS simple. Sur la base du spectre de masse obtenu lors de la MS1, un ion est sélectionné par le quadripôle Q1 puis fragmenté en q2 par percussions avec un gaz inerte avec une certaine énergie de collision (CE) qu'on peut faire varier selon les besoins. Les fragments sont ensuite analysés par le quadripôle Q3. Cet ensemble d'évènement constitue la MS/MS. En fonction des informations recherchées, différents modes de balayage sont possibles.

1. Mode « full scan » balayage complet

Les quadripôles ne jouent pas un rôle de filtre, tous les ions formés dans la source sont transférés jusqu'au détecteur. Ce mode d'acquisition non sélectif permet d'obtenir des spectres de masse complets (figure I.10). Il permet ainsi de sélectionner les ions précurseurs pour les modes « SIM » et « SRM » que nous exposerons dans la suite de ce manuscrit.

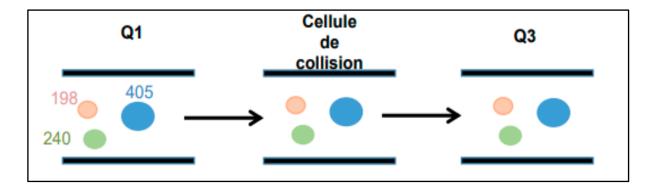


Figure I.10: mode de balayage « full scan » [106]

2. Mode Single ion monitoring « SIM »

Les tensions U et V sont réglées de manière à ne laisser passer que les ions possédant un seul rapport m/z comme illustré sur la figure I.11. Lorsque la molécule recherchée est connue, l'utilisation du mode « SIM » offre de grandes sélectivité et sensibilité puisqu'il permet de ne sélectionner que les ions possédant un seul rapport m/z pendant un temps déterminé (figure I.11).

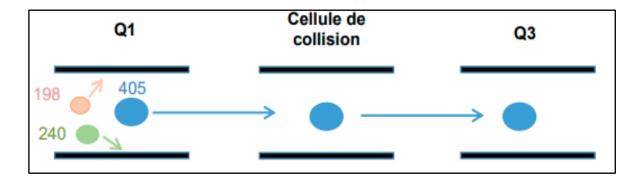


Figure I.11: mode de balayage « SIM » [106]

3. Mode Product ion scan « PIS »

Il consiste à sélectionner un ion spécifique dans le quadripôle Q1 (= mode « SIM ») puis à le fractionner dans la cellule de collision q2. Les ions appelés fragments sont alors analysés dans le quadripôle Q3 en mode « full scan » (figure I.12). Ce mode d'acquisition permet d'obtenir un spectre de masse caractéristique d'un ion de rapport m/z spécifique et donne accès ainsi à de nombreuses informations structurales. Le mode se révèle également très utile pour la confirmation d'identification d'une molécule connue par comparaison du spectre de masse obtenu avec celui de référence.

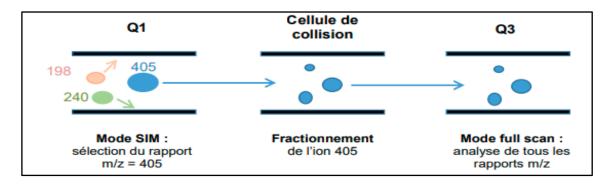


Figure I.12: mode de balayage « PIS » [106]

4. Mode Single Reaction Monitoring (« SRM »)

Ce mode d'acquisition « SRM » est obtenu en faisant fonctionner les quadripôles Q1 et Q3 en mode de balayage « SIM ». A noter que pour ce mode, l'abréviation « MRM », bien que non recommandée par l'IUPAC, est couramment utilisée [107]. L'utilisation du mode « SRM » permet de suivre un ion produit de rapport m/z spécifique issu de la fragmentation de l'ion précurseur de rapport m/z sélectionné (figure I.13). Cette relation entre un ion précurseur et un ion produit est communément appelée « transition ». Il est possible de suivre un nombre important de transitions au cours d'une même analyse mais cela dépend des performances du spectromètre de masse, notamment de sa vitesse de balayage des rapports m/z. Dans tous les cas, ce mode offre une très grande spécificité par le suivi d'une ou plusieurs transitions spécifiques d'un analyte. Une très grande sensibilité est obtenue de part une diminution du bruit de fond et l'optimisation des conditions de détection pour chaque transition. Le mode « SRM » est donc le mode d'acquisition de choix pour les méthodes d'analyses multi-résidus notamment dans les matrices complexes.

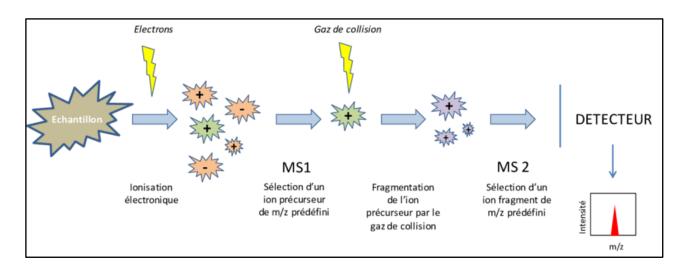


Figure I.13: mode de balayage « SRM » [108]

I.3.2.3. Couplage HPLC-MS/MS appliqué

L'HPLC-MS/MS s'est développée, il y a une vingtaine d'année, lorsque de nouveaux types de sources d'ionisation en spectrométrie de masse ont été commercialisées : l'ESI et l'APCI. Ces nouvelles sources ont permis d'augmenter la sensibilité des méthodes HPLC jusqu'à égaler celles développées en GC [109]. Puis, l'utilisation de la spectrométrie de masse en tandem a permis d'augmenter la spécificité et la sensibilité des méthodes. Le principal objectif du couplage HPLC avec un spectromètre de masse simple (MS1), ou en tandem, a été de pouvoir détecter un plus large panel de molécules que ce soit en termes de polarité, de poids moléculaire ou de stabilité thermique que la GC-MS. De plus, les étapes de dérivation des composés polaires, qui étaient indispensables pour l'analyse en GC-MS ne sont plus nécessaires. Cependant, la fragmentation obtenue en HPLC-MS/MS est moins reproductible qu'en GC-MS car elle peut varier de manière non négligeable entre deux instruments notamment en ce qui concerne l'abondance relative des ions [110]. Une bibliothèque de référence doit donc être créée pour chaque appareil. De plus, un composé coélué présent dans l'échantillon peut entrer en compétition d'ionisation avec le soluté. Les termes « effet de matrice » ou « suppression ionique » sont employés pour qualifier ce phénomène. Ce dernier peut grandement perturber les analyses et doit obligatoirement être évalué lors de l'étape de validation.

1.3.2.4. Intérêt du couplage HPLC-MS/MS pour l'analyse multi-résidus de pesticides

L'HPLC-MS/MS est capable de discriminer théoriquement plus efficacement que la HPLC-MS les différences entre le signal du composé ciblé et celui des interférents de la matrice [111]. De plus, le mode « SRM » permet une amélioration du rapport Signal/Bruit ce qui entraine la diminution des limites de détection et de quantification [112-115]. Par ailleurs, la sélectivité de ce mode permet la détection des pesticides sans avoir nécessairement une séparation chromatographique totale entre les composés et par conséquent une analyse plus rapide peut être effectuée. Il est en effet rare de trouver des molécules ayant la même et unique transition [116-117]. Cet aspect permet d'augmenter le nombre de pesticides pouvant être analysés simultanément en un temps raisonnable. L'analyse par HPLC-MS/MS est très répandue dans le domaine de l'analyse des pesticides. Le tableau I.5 résume diverses applications de la HPLC-MS/MS pour différentes familles chimiques de pesticides et avec différentes conditions chromatographiques.

Du fait de la gamme de polarité de la majorité de pesticides analysés en HPLC, c'est la chromatographie à polarité des phases inversée qui est la plus répandue. Les phases stationnaires à base de silice greffée octadécylsilane sont de loin les plus utilisées pour ce type d'analyse. Concernant la phase mobile, l'acétonitrile et le méthanol restent les solvants organiques les plus employés. Quelques additifs ont été utilisés tels qu'un tampon acétate d'ammonium ou formiate d'ammonium ou des acides tels que l'acide acétique ou l'acide formique pour contrôler l'ionisation des composés. Différentes dimensions de colonnes et débits de phases mobiles ont été employés. Comme évoqué précédemment, les sources ESI restent les sources les plus utilisées pour l'analyse des résidus de pesticides.

Familles chimiques	Ionisation	Phase mobile	Colonne	Débit (mL/min)	Réf
Ammoniums quaternaires	ESI+	ACN/ formate d'ammonium/15	Kromacil C8	0.12	118
Annionans quaternaires	LJII	mM acidifié	(200×2,1mm;5mM)		110
Triazoles	ESI+	ACN/ H₂O acidifiée à 0,01 d'acide	Discovery C18	0.3	119
Triuzoics	2311	formique	(50×2,1 mm ; 5μm)	0,3	113
Dinitroanilines	ESI-	MeOH/ eau acidifiée à 0,1 %	Zorbax SB-C8	0.9	120
Diniti Garinines	LSI	d'acide acétique	(75×4,6 mm ; 3,5μm)	(mL/min) Kromacil C8 0,12 (200×2,1mm; 5mM) 0,3 Discovery C18 0,3 (50×2,1 mm; 5μm) 0,9 Zorbax SB-C8 0,9 (75×4,6 mm; 3,5μm) 0,8 (50×3,2 mm; 5μm) 0,8 Ulltima C18 0,3 (150×3mm; 5μm) 0,3 ucleosil 100-5 C18HD, 70×2mm 0,3 Discovery C18 0,5 (50×2,1 mm; 5μm) 0,5 Genesis C18 0,3 (100×3mm; 4μm) 0,3 Zorbax SB-C18 0,12 50×4,6 mm; 3,5 μm) 0,5 Hypersil C18 BDS 0,5	120
Benzohydrazines	ESI-	ACN/H₂O (10mM d'acétate	Restek allure C18	Λ 8	121
Benzonyurazines	LJI-	d'ammonium)	(50×3,2 mm ; 5μm)	0,8	121
Organophosphorés, carbamates	ESI+	MeOH/H₂O acidifiée à 0,5% acide	Ulltima C18	•	122
Organophosphores, carbamates	LJIT	formique	(150×3mm ; 5μm)		122
Carbamates, conazoles, pyrimidines, benzimidazoles	ESI+	MeOH/H₂O acidifiée à 0,1% acide	Nucleosil 100-5 C18HD,	0,3	123
Carbamates, conazores, pyrimiumes, benzimuazores	LJIT	formique	70×2mm		123
Benzimidazoles, azoles, carbamates, phenylurées	ESI+/ ESI-	MeOH/H₂O	Discovery C18	0.5	124
benzimazoies, azoies, carbamates, prieminees	L3I+/ L3I-	WEOTI/TI2O	(50×2,1 mm ; 5μm)	0,5	124
Organophosphorés, carbamates, imidazoles, phenylurées,		MeOH/H₂O acidifiée avec 0,2%	Ganasis C18		
pyridines, hydroxyanilides	ESI+	acide acétique+20mM acétate		0,3	125
pyridines, riyuroxyariildes		d'ammonium	(100/311111 , 4μ111)		
Triazines, phenylurées, organophosphorés, chloroacétamides	ESI+/ ESI-	MeOH/H₂O (10mM	Zorbax SB-C18	0.12	126
inazines, phenyiurees, organophosphores, chioroacetalilides	ESIT/ ESI-	de formiate d'ammonium)	(50×4,6 mm ;3,5 μm)	0,12	120
Aryloxyacides, carbamates, carbamates, benzimidazoles,	ESI+/ ESI-	MeOH/H₂O (10mM	Hypersil C18 BDS	0.5	127
imidazoles, triazoles, pyridines, hydroxyanilides, strobilurines	E31+/ E31-	d'acétate d'ammonium)	(100×4,6 mm ; 3μm)	0,5	127

Dérivés nitrés, triazoles, biphenyls, imidazoles, thiophosphates.	APCI-	MeOH/H₂O	Luna C18 (250×4,6mm;	0,6	128
,,,,,,,,,,,			5μm)	-,-	
Carbamates, néonicotinoïdes, carbamates benzimidazoles,	APCI+	MeOH/H ₂ O	Luna C18 (250×4,6mm;	0,8	129
imidazoles, carboxamides	Aicii	WEOTI/TI ₂ O	5μm)		123
Strobilurines, carbamates, triazoles, morpholines, quinazolines,			Synergy nolar-PD		
hydroxyanilides, phénoxypyrazoles, carboxamides,	ESI+	ACN/H ₂ O (0,1% d'acide formique)	Synergy polar-RP	0,25	130
pyrazolamides			(150×2mm; 4μm)		
Aryloxyacides, carbamates, sulfonylurées, strobilurines,				0,2	
benzonitriles, cyclohexanones, phénylaminopyrimidines,		MeOH/H₂O 5mM de formiate d'ammonium	Aqua C18 (50×2mm ; 5μm)		
hydrazine, benzoylurées, phénylurées, morpholines,	ESI+/ ESI-				131
organophosphorés, imidazoles, oxadiazines, urées, pyridines,		a ammonium			
pyridaeines					
Organophosphorés, carbamates, triazines, nitromethylènes,					
strobilurines, nicotinoides, spiroacétalamines, benzonitriles,		NA-OH/H O (O 40/			
cyclohexanone, hydrazine, benzoylurées, phénylurées,	ESI+	MeOH/H ₂ O (0,1% d'acide	Atlantis C18 (100×2,1; 5μm)	0,2	132
morpholines, organophosphorés, imidazoles, oxadiazines,		formique)			
urées					

Tableau I.5 : Exemples d'applications de méthodes HPLC-MS/MS pour l'analyse de pesticides.

I.3.3. La chromatographie en phase gazeuse

La chromatographie gazeuse (GC) est une technique séparative appliquée à l'analyse de composés volatils et semi volatils et thermiquement stables [133]. Le chromatographe est constitué de trois modules principaux : un injecteur, une colonne placée dans un four et un détecteur [134]. La phase mobile est constituée d'un gaz inerte, très pur tel que l'hélium, l'hydrogène ou l'azote.

I.3.3.1. L'injecteur split/Splitless et l'injecteur PTV

L'injecteur est une zone chauffée où l'échantillon est introduit au moyen d'une seringue puis vaporisé. Son rôle consiste à transférer les composés jusqu'à la colonne analytique. Cette étape est délicate ce qui explique la variété de types et modes d'injection en GC. Nous discuterons ici uniquement des injecteurs dédiés à l'analyse de traces. Il est intéressant Les injecteurs utilisés actuellement sont équipés d'un régulateur électronique de débit [135].

L'injecteur le plus répandu est celui de type split/splitless (avec ou sans division). L'injection se fait à haute température. L'échantillon est rapidement introduit dans l'injecteur où il est instantanément vaporisé et mélangé au gaz vecteur. Une électrovanne permet de régler le débit de fuite [136]. Pour l'analyse de traces, seul le mode splitless est employé c'est-à-dire que l'électrovanne est fermée lors de l'introduction de l'échantillon et n'est ouverte que lorsque 90 % de l'échantillon ont été transférés dans la colonne. Néanmoins, ce type d'injection souffre de quelques inconvénients tels qu'une possible discrimination des composés dans l'aiguille ou la dégradation de ceux-ci en raison de la température élevée de l'injecteur.

Plus performants que les injecteurs split/splitless en termes de répétabilité et de sensibilité, les injecteurs de type "on column" et PTV (Programed Temperature Vaporizer) permettent d'introduire directement l'échantillon en solution à froid dans la colonne ou l'injecteur respectivement. Ce type d'injection permet l'introduction de volumes d'échantillon dix fois supérieurs à ceux injectés avec les injecteurs split/splitless (jusqu'à 10µL en "on column") voire même plusieurs dizaines de microlitres en mode 'solvent vent'. L'échantillon est ensuite rapidement vaporisé par une programmation de températures dédiée. Les injecteurs PTV sont maintenant très utilisés car ils permettent également une meilleure répétabilité d'injection mais aussi de limiter la dégradation des composés thermosensibles [137].

I.3.3.2. Les colonnes

De nos jours, les colonnes utilisées en GC sont pratiquement toutes des colonnes dites "capillaires". Elles sont constituées d'un tube de silice fondue dont la paroi interne est recouverte d'un film de polymère nommé « phase stationnaire » ; la paroi externe est gainée d'un revêtement en polyimide qui confère souplesse et robustesse à la colonne [138].

La phase stationnaire est le plus souvent un polysiloxane substitué par des groupements méthyle, phényle ou cyanopropyle par exemple, permettant de moduler la polarité de celleci. Des phases stationnaires plus polaires tels des polyéthylènes glycols et liquides ioniques ont été développées. Pour des mélanges complexes de volatilités variées, on privilégie souvent le choix d'une colonne peu polaire, en effet, ces phases stationnaires sont généralement plus robustes et thermiquement beaucoup plus stables que leurs homologues polaires [139].

Une colonne capillaire est caractérisée par trois paramètres géométriques : sa longueur (de 10 à 100 m), son diamètre interne (de 0,1 à 1,4 mm) et l'épaisseur de la phase stationnaire (de 0,1 à 5 µm). Chacun de ces paramètres impacte la rétention, l'efficacité et donc la résolution. La résolution augmente avec la longueur de la colonne et est inversement proportionnelle au diamètre interne de celle-ci, au détriment du temps d'analyse ou de la capacité d'échantillon respectivement. Une colonne de 15 m suffit à séparer des mélanges simples alors que l'analyse d'échantillons complexes nécessite une colonne de longueur supérieure à 30 voire 60 m [140].

I.3.3.4. Les détecteurs

Parmi les principaux détecteurs utilisés en GC, on peut citer :

- Le catharomètre : sa réponse est basée sur la mesure de la conductibilité thermique des gaz et est proportionnelle à la concentration du soluté dans la phase mobile. Il est universel mais peu sensible.
- Le FID (Détecteur à ionisation de flamme) : c'est le plus courant des détecteurs en GC grâce à sa sensibilité, il est adapté à l'analyse des composés organiques. Sa réponse est proportionnelle à la quantité massique de composés.
- Le photomètre de flamme (FPD) : utilisé pour les composés contenant du soufre ou du phosphore. Sa réponse est proportionnelle à la quantité massique de composé.

- Le détecteur à capture d'électrons (ECD) : utilisé pour la détection des composés contenant des éléments très électronégatifs comme les halogènes. Il a notamment été très employé pour l'analyse des pesticides et les contaminants chlorés. Sa réponse est proportionnelle à la concentration du soluté dans la phase mobile.
- Le détecteur Azote-Phosphore (NPD) : C'est un détecteur très semblable au FID, très sensible pour l'analyse des composés organoazotés et organophosphorés. Sa réponse est proportionnelle à la quantité massique de composés.

Comme l'HPLC, la GC peut être couplée à un spectromètre de masse mais en utilisant des interfaces d'ionisation très différentes comme l'ionisation électronique (EI) ou l'ionisation chimique (CI) par exemple. Les couplages GC-MS sont les instruments de choix pour l'analyse de résidus de pesticides. Ils ont remplacé dans les laboratoires environnementaux et agroalimentaires la quasi-totalité des équipements de GC équipés de détecteurs spécifiques (ECD, NPD et FPD).

I.3.4. Couplage de la chromatographie en phase gazeuse à la spectrométrie de masse en tandem

I.3.4.1. Généralités

Les spectromètres de masse équipés d'analyseurs dits quadripolaires représentent la très grande majorité des analyseurs à basse résolution utilisés en couplage GC-MS/MS pour trois raisons principales : fréquence d'acquisition, leur coût raisonnable, leur facilité de maintenance. La qualité du vide est un facteur déterminant pour l'analyse. Il s'agit d'évacuer les molécules neutres telles que le gaz vecteur, l'azote, l'oxygène et l'eau atmosphérique qui, pour la plupart, n'auront pas été ionisées (les rendements d'ionisation sont très faibles). Il s'agit également de garantir le bon fonctionnement du filament et du multiplicateur d'électrons qui sont extrêmement fragilisés par une pression trop élevée [141].

1.3.4.2. Les sources d'ionisation

La source est la partie du spectromètre de masse où sont produits des ions gazeux à partir des molécules introduites. La nature de la source utilisée dépend de l'état physique de la substance à analyser. En couplage avec un chromatographe en phase gazeuse, où les

composés élués arrivent au spectromètre à l'état gazeux, les sources utilisées sont principalement : l'ionisation électronique (EI) ou l'ionisation chimique (CI). La source est maintenue à une température élevée (généralement comprise entre 200 et 300°C) pour éviter la condensation des analytes [142].

L'El consiste à "bombarder" les molécules par un faisceau d'électrons de haute énergie. L'"impact" d'un électron (on parle toujours d'"impact électronique" alors que les physiciens ont démontré l'impossibilité d'un réel impact) sur la molécule M a pour effet d'arracher un électron à cette dernière, conduisant ainsi à la formation d'un ion radicalaire M⁺. L'énergie des électrons incidents est telle que l'ion M⁺. acquiert une grande quantité d'énergie interne qui l'amène généralement à se fragmenter spontanément en ions de rapport m/z inférieur, nommés "ions-fils" ou "ions-fragments". Les électrons sont produits par le chauffage d'un filament métallique (tungstène ou rhénium, le plus souvent) et accélérés le plus souvent par une différence de potentiel de 70 V, ce qui leur confère une énergie cinétique de 70 eV. La reproductibilité des spectres de masse obtenus à 70 eV sur différents appareils permet de construire des bases de données (comprenant plusieurs dizaines de milliers de spectres). Les algorithmes de recherche, extraits des bases de données, comparent et évaluent la similitude entre les spectres obtenus et ceux de référence. Néanmoins, les spectres obtenus avec différents analyseurs montrent parfois quelques différences dans l'intensité relative des ions observés rendant l'identification plus difficile. L'universalité de l'ionisation électronique (la quasi-totalité des molécules sont ionisables), justifie le succès de cette technique.

L'ionisation chimique est également largement employée en complément de l'ionisation électronique. La CI est plus sélective et toutes les molécules éluées ne sont pas ionisées, ce qui peut constituer un avantage avec des échantillons particulièrement complexes. Comparée à l'EI, la CI est un mode d'ionisation "doux" : les ions MH⁺ obtenus en CI ont beaucoup moins d'énergie interne que les ions M⁺ produits par EI et se fragmentent donc beaucoup moins que ces derniers [143]. Le spectre de CI informe presque toujours sur l'ion moléculaire du composé alors que celui d'EI fournit plus d'informations structurales mais sans certitude quant à la présence de l'ion moléculaire sur le spectre. D'une façon générale, l'analyste n'a jamais la certitude que l'ion de rapport m/z le plus élevé soit l'ion moléculaire dans un spectre d'EI, ce qui peut compliquer l'interprétation spectrale.

I.3.4.3. Intérêt du couplage GC-MS/MS pour l'analyse de multi-résidus de pesticides

Le couplage GC-MS/MS de type triple quadripolaire en mode « SRM » a permis un gain en spécificité et donc une sensibilité accrue par rapport aux couplages utilisés précédemment [144]. L'utilisation de la GC- MS/MS a permis de diviser par quatre les quantités minimales détectables par rapport aux couplages GC-MS lors de l'analyse de multi classes de pesticides et de contaminants dans des pommes (tableau I.6). De nombreuses méthodes multi-résidus basées sur ce couplage ont été ensuite développées pour diverses matrices alimentaires dont quelques exemples sont rassemblés dans le tableau I.6.

Ce couplage est facilité étant donné que les composés élués sont sous forme gazeuse à la sortie de la colonne chromatographique et seront directement introduits dans le spectromètre de masse. Le couplage de la GC et de la spectrométrie de masse tandem MS/MS présente les critères de sensibilité et de sélectivité nécessaires pour l'analyse de traces. Comme le montre le tableau I.6, l'analyse des pesticides en GC-MS/MS est appliquée à plusieurs familles chimiques de molécules dont le nombre analysé simultanément est de plus en plus important (plus de 200 molécules). Les premières applications ont été réalisées sur des matrices de fruits et légumes (pommes, haricots, carottes, concombres, oranges, ...). Plus récemment, la GC-MS/MS a été utilisée pour l'analyse de pesticides dans des matrices dans lesquelles leur extraction est plus difficile telles que les matrices sèches.

De plus, la spécificité de la spectrométrie MS/MS a permis de simplifier les étapes de préparation de l'échantillon qui étaient très chronophages et surtout spécifiques à chaque famille chimique. Cette spécificité a notamment permis d'utiliser la méthode QuEChERS pour l'extraction des pesticides dans diverses matrices alimentaires.

Cependant, la MS/MS (triple quadripôle) est limitée en termes de temps et de développement étant donné que chaque transition doit être optimisée et que le nombre de composés analysables est limité par la vitesse de balayage. De plus, la spectrométrie de masse à basse résolution peut conduire à limiter les interférences ce qui fait que les couplages HPLC ou GC avec les spectromètres de masse à haute résolution sont de plus en plus utilisés dans le domaine de l'analyse des pesticides.

Matrice	Temps d'analyse	Nombres de	LOD	Réf
	(min)	pesticides	(mg/kg)	
Pommes, haricots verts et	35	22	< 2.10 ⁻³	145
carottes			_	
Fruits et légumes	15	9	5.10 ⁻⁶ à	146
Traite et legames		Č	5.10 ⁻³	
Fruits et légumes	60	55	7.10 ⁻⁵ à	147
Traits et legames	00	33	4.10 ⁻³	17/
Concombros	68	22	1.10 ⁻⁵ à	148
Concombics	00			2.10 ⁻³
Eruits at lágumas	5.8	80	1.10 ⁻⁵ à	149
Truits et leguilles	30	80	3,5.10 ⁻³	143
Pommes, carottes, haricots			1 10 ⁻³ à	
verts, céleris, citrons, poires	32	19		150
et melons			5.10	
Matériels médicaux	29	74	10 ⁻²	151
Wateriels Medicadx	23	74	10	131
Matriagos chabas	42	226	1.10 ⁻³ à	152
iviatifices secties	42	230	2.10 ⁻³	132
	carottes Fruits et légumes Fruits et légumes Concombres Fruits et légumes Pommes, carottes, haricots verts, céleris, citrons, poires	Pommes, haricots verts et carottes Fruits et légumes Fruits et légumes Concombres 68 Fruits et légumes 58 Pommes, carottes, haricots verts, céleris, citrons, poires et melons Matériels médicaux 29	Pommes, haricots verts et carottes Fruits et légumes 15 9 Fruits et légumes 60 55 Concombres 68 22 Fruits et légumes 58 80 Pommes, carottes, haricots verts, céleris, citrons, poires et melons Matériels médicaux 29 74	Matrice (min) pesticides (mg/kg) Pommes, haricots verts et carottes 35 22 $< 2.10^3$ Fruits et légumes 15 9 $\frac{5.10^6 \text{ à}}{5.10^3}$ Fruits et légumes 60 55 $\frac{7.10^5 \text{ à}}{4.10^3}$ Concombres 68 22 $\frac{1.10^5 \text{ à}}{2.10^3}$ Fruits et légumes 58 80 $\frac{1.10^5 \text{ à}}{3.5.10^3}$ Pommes, carottes, haricots verts, céleris, citrons, poires et melons 32 19 $\frac{5.10^3}{5.10^3}$ Matériels médicaux 29 74 $\frac{10^2}{1.10^3 \text{ à}}$ Matrices sèches 42 $\frac{236}{236}$

Tableau I.6 : Quelques applications du couplage GC-MS/MS pour l'analyse des pesticides.

I.4. Apport de la spectrometrie a haute resolution pour les analyses agroalimentaires

La spectrométrie de masse à haute résolution permet de mesurer avec précision les rapports m/z des molécules et ainsi de déduire leur formule brute. Les analyseurs de masse à haute résolution les plus répandus sont l'analyseur à temps de vol (TOF), l'Orbitrap, le secteur magnétique et l'analyseur FT-ICR (Fourier-Transform Ion Cyclotron Resonance) [153].

Dans le domaine agroalimentaire, le secteur magnétique est principalement utilisé pour l'analyse des dioxines et des polychlorobiphényles (PCB) dans les aliments ou dans les matrices environnementales. Le FT-ICR est un analyseur à ultra haute résolution ($R=10^6$) qui est moins utilisé en raison de son coût très élevé. En revanche, l'analyseur TOF est très utilisé pour l'analyse de résidus de pesticides et est généralement couplé à un quadripôle. Il possède plusieurs avantages, comme sa vitesse d'analyse très rapide, une transmission très élevée proche de 100%, une gamme de m/z très élevée [154].

Les performances des couplages chromatographie liquide couplée à un quadripôle-temps de vol (HPLC-Q-TOF) et chromatographie gazeuse couplée à un quadripôle-temps de vol (GC-Q-TOF) ont été évaluées pour l'identification et la quantification de contaminants dans diverses matrices environnementales. A titre d'exemple, une méthode HPLC-Q-TOF pour l'analyse de 35 pesticides et 8 métabolites dans les eaux a été développée et validée et les valeurs des LOQ sont comprises entre 0,1 et 10,7 ng/L [155]. D'autres méthodes en GC-Q-TOF pour l'analyse de pesticides ont été développées et validées avec succès [156-157].

Le dernier chapitre de ce manuscrit de thèse a été rédigé sous forme de publication scientifique publié dans un journal international. Il comporte les résultats de la comparaison des performances analytiques d'un GC-triple quadripôle et celle d'un GC-Orbitrap lors de l'analyse d'une centaine de pesticides et de contaminants dans des matrices alimentaires. Ce qui fait que notre étude bibliographique de l'apport de la spectrométrie à haute résolution se focalisera sur le spectromètre de masse de type Orbitrap. Les principes fondamentaux de l'Orbitrap ainsi que quelques applications d'analyse des pesticides, seront détaillés.

1.4.1. L'analyseur Orbitrap

Bien que l'analyseur de masse de type Orbitrap soit considéré comme l'un des plus récents, son apparition remonte à 1923, lorsque le principe du piégeage orbital a été proposé par Kingdon [158, 159]. Dans cette expérience, les ions ont été formés par application d'un potentiel électrique à l'intérieur d'un cylindre métallique et ont été guidés par un fil chargé électriquement le long du cylindre. Les auteurs ont remarqué que plus l'ion a une vitesse tangentielle importante, plus il est en orbite longtemps autour du fil chargé. Des expériences menées au cours du dernier demi-siècle ont démontré la faisabilité du piégeage des ions par un champ électrique [160] mais son utilité pour la spectrométrie de masse n'avait pas encore été établie. Ce n'est qu'au fil des années que les progrès, dans le domaine de l'optique des particules chargées, ont permis le développement de champs électriques applicables aux expériences de spectrométrie de masse. A titre d'exemple, un champ avec une distribution potentielle quadro-logarithmique a été appliqué pour le piégeage orbital des ions produits au laser par Knight [161]. Malheureusement, cette expérience n'a pas permis de séparer tous les composants d'un mélange simple et a montré la nécessité d'améliorer la conception de l'appareillage avec une définition plus précise du champ électrique généré. Ces problèmes ont été résolus grâce aux travaux de Makarov [162, 163]. Contrairement aux précédents travaux, l'électrode centrale n'est plus un fil mince mais une électrode métallique massive. Les électrodes extérieures du piège sont identiques les unes aux autres et s'accordent à la forme de l'électrode centrale. De plus, une électrode supplémentaire appelée déflecteur a été ajoutée afin de permettre une injection par paquets d'ions en minimisant les pertes. Dans un tel système, le mouvement oscillatoire des ions au cours du temps est mesuré et sa transformée de Fourier permet d'avoir le spectre de masse.

Des avancées technologiques significatives ont été nécessaires pour rendre l'analyseur Orbitrap utilisable comme le développement d'un dispositif externe de stockage d'ions pour permettre de pulser l'injection des ions [164-165]. Le développement commercial de l'Orbitrap est récent et date du début des années 2000 et ce dernier fut disponible au grand public en 2005.

I.4.2. Principes fondamentaux de l'Orbitrap

I.4.2.1. Structure du piège

L'Orbitrap se compose de trois électrodes. Les deux électrodes périphériques se font face, sont en forme de coupe et sont distantes d'environ 100 µm. La troisième électrode, en forme de broche, est l'électrode centrale. La forme des électrodes permet de produire le champ électrique quadro-logarithmique (équation I.4) :

$$U(r, z) = \frac{k}{2} (z^2 - \frac{r^2}{2}) + \frac{k}{2} (R_m)^2 \cdot \ln \left[\frac{r}{R_m} \right] + C$$
 équation I.4

Avec r et z les coordonnées cylindriques (z =0 étant le plan de symétrie du champ), C est une constante, k est la courbure du champ, et R_m est le rayon caractéristique.

Cette distribution du potentiel est représentée en figure I.14 où les lignes équipotentielles révèlent la forme des électrodes. Ce potentiel électrostatique n'a pas de minimum et donc un ion initialement statique sera inévitablement dirigé vers l'axe r=0 ou vers $r \rightarrow \infty$. Pour les ions mobiles, ce potentiel s'ajoute au potentiel centrifuge formé en raison de l'élan initial d'ions (équation I.5) :

$$U_{eff}(r, z) = U(r, z) + E_0 \frac{r_0^2}{r^2}$$
 équation I.5

Avec $E_0 = mv_{\phi}^2/2$ (l'énergie initiale), v_{ϕ} est la composante tangentielle initiale de vitesse et r_0 est le rayon initial.

Il en résulte un changement radical de la distribution de potentiel comme montré en figure I.15. Un minimum se forme entre r=0 et r= Rm (marqué par une flèche) et les ions sont alors piégés dans ce « fossé ».

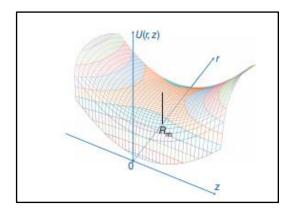


Figure I.14: Représentation tridimensionnelle de la distribution du potentiel quadro-logarithmique (le potentiel descend brusquement quand $r \rightarrow 0$) [166]

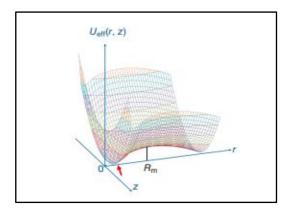


Figure I.15: Représentation tridimensionnelle du potentiel effectif formé par la distribution quadro-logarithmique du potentiel et le potentiel centrifuge. (un minimum local à z=0 et r= R est indiqué par une flèche) [166]

I.4.2.2. Mouvement des ions piégés

Lorsque l'énergie appliquée par le champ électrique correspond à l'énergie d'oscillation de l'ion, ce dernier se déplace selon une trajectoire stable, laquelle peut se décomposer en trois mouvements cycliques :

- -Mouvement de rotation autour de l'électrode centrale avec une fréquence de rotation ω_{φ}
- -Mouvement radial avec une fréquence ω_r (entre le rayon minimum et le rayon maximum à l'intérieur du « fossé »)
- Oscillations axiales le long de l'électrode centrale avec une fréquence ω (équation I.6).

$$\omega_{\varphi} = \omega \sqrt{\frac{(\frac{Rm}{R})^2 - 1}{2}}$$
 équation I.6

et la fréquence d'oscillation radiale ω_r est (équation I.7) :

$$\omega_r = \omega \sqrt{(\frac{R_m}{R})^2 - 2}$$
 équation I.7

et la fréquence d'oscillation axiale ω est (équation I.8):

$$\omega = \sqrt{\frac{e}{(m/z)}k}$$
 Avec *e* est la charge élémentaire (1,602 × 10⁻¹⁹ *C*). équation I.8

Comme le montre les 3 expressions mathématiques de fréquences précédentes, seule la fréquence axiale est complètement indépendante des vitesses initiales et des coordonnées des ions. Par conséquent, seule la fréquence axiale peut être utilisée pour la détermination des rapports (m/z).

I.4.2.3. Piégeage des ions dans l'Orbitrap

Etant donné qu'aucune source existante n'est capable de générer des ions stables directement dans l'Orbitrap, cette dernière doit se situer à l'extérieur de l'analyseur. Le piégeage des ions à partir de la source se réalise en appliquant le principe de « compression électrodynamique » [163] dans lequel une augmentation constante du champ électrique est appliquée afin de pénétrer dans le piège. Les électrodes extérieures restent à un potentiel fixe, tandis que le potentiel de l'électrode centrale est réduit (pour des ions de m/z positifs). Une fois que les ions sont entrés dans le piège, ils ne peuvent pas s'en échapper car le potentiel de piégeage évolue pour former une barrière de potentielle répulsive (figure I.16). Le temps de montée du champ (généralement 30-50 μ s) est choisi pour assurer la plus large gamme d'ions de rapport m/z piégés.

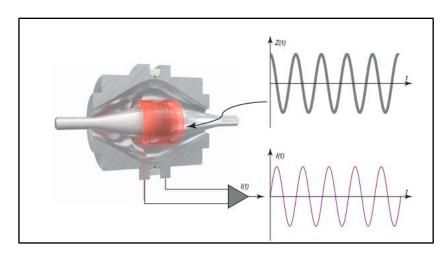


Figure I.16 : Détection du courant à l'aide d'électrodes externes et d'un amplificateur différentiel [166]

L'entrée des ions (par compression électrodynamique) est arrêtée lorsque les ions atteignent le rayon R (généralement, équidistant à la fois du centre et des électrodes externes), et la tension de l'électrode centrale est stabilisée pour empêcher la dérive de masse pendant la détection.

I.4.2.4. Détection des ions

Les fréquences d'oscillation axiale peuvent être détectées directement en mesurant le courant des électrodes externes. Comme les paquets d'ions oscillent harmoniquement le long de l'axe, une différence de courants entre électrodes est détectée puis amplifiée sur un large éventail de fréquences et donc un large éventail de rapports m/z (une fois la transformée de Fourier effectuée). Cette différence est numérisée et soumise à une transformée de Fourrier qui convertit le signal au cours du temps en spectre de masse (intensité en fonction de m/z) [164]. Comme la mesure du courant et sa technique d'amplification fonctionnent de la même manière que les analyseurs de type FT-ICR, la sensibilité et le rapport Signal/Bruit sont similaires à ceux de ce type d'analyseur. Cependant, de par la dépendance racine-carré propre au champ électrique, l'Orbitrap pourrait fournir une meilleure résolution que l'analyseur FT-ICR pour les rapports m/z supérieurs à 1000.

Il peut y avoir une autre façon de détecter les ions qui suit la proposition originale de Knight [161]. Le principe consiste à exciter l'ion axialement en utilisant une tension à la fréquence de résonance et de scanner la plage de m/z souhaitée en balayant cette fréquence. Le principal avantage de cette approche par rapport aux pièges conventionnels est la capacité d'éjecter n'importe quel ion, y compris ceux de très haut rapport m/z en utilisant uniquement des tensions RF très faibles. [163]. Toutefois, un tel piège ne permet pas de faire de la MSⁿ, ce qui limite considérablement son intérêt.

1.4.2.5. Formation de paquets d'ions cohérents

Le prérequis le plus important pour la détection des ions est la capacité de rassembler tous les ions de m/z dans le même espace (on appelle d'ailleurs généralement cette ensemble « paquet d'ions »). Cela pourrait être réalisé de l'une des deux façons :

- Excitation des ions du plan équatorial. Bien que cette technique soit utilisée avec l'analyseur de type FT-ICR, cette approche complexifie l'introduction des ions dans le piège [162]. Cette technique, déjà expérimentée sur un Orbitrap, consiste à appliquer un potentiel de résonance aux électrodes périphériques servant par la suite à la détection.
- Injection pulsée des ions (excitation par injection). Cette approche, plus pratique et robuste que la précédente, consiste à accumuler les ions dans une cellule en amont puis l'application de potentiel instantané permet de les expulser par paquet. Cette technique, consistant à

convertir le flux d'ions en une introduction pulsée, minimise les perturbations du champ quadro-logarithmique mais nécessite une éjection très rapide des ions de la source d'ionisation.

I.4.2.6. Décomposition des paquets d'ions cohérents

Dans des conditions idéales, les paquets d'ions doivent se mouvoir dans le piège indéfiniment en conservant en permanence leurs mouvements causés par le champ électrique. Malheureusement, la présence de gaz résiduel dans le piège entraine des collisions d'ions avec ce dernier provoquant alors la dispersion des ions et donc une incertitude de mesure (notamment une perte de résolution). Les collisions peuvent être encore plus néfastes et entraîner la fragmentation de l'ion, et ainsi une perte de matière.

Ces processus sont aléatoires dans le temps et le nombre de collisions est inversement proportionnel à la pression résiduelle à l'intérieur du piège et à la section transversale d'union. Pour une pression de 10⁻¹⁰ mbar, l'intervalle de temps entre deux collisions varie de plusieurs secondes pour les petites molécules à moins de 1s pour les protéines de petite et moyenne taille.

1.4.2.7. Effets de densité de charge dans l'analyseur Orbitrap

Comme dans tout système de piégeage d'ions, l'Orbitrap présente des effets de densité de charge pouvant influencer l'exactitude et la précision de la mesure. Ces effets incluent les éléments suivants [167] :

- Déplacement du rapport *m/z* causé par la dépendance de la période d'oscillation sur la charge totale dans le piège et l'intensité des pics individuels. Contrairement à d'autres types de pièges, les amplitudes relatives de ces changements sont généralement indépendantes du rapport *m/z* et pourraient donc être corrigées à l'aide d'un étalonnage. [165].
- Coalescence : c'est le regroupement d'ions de rapports m/z très proches dans le même « paquet ». Lors de la détection, un rapport m/z moyen sera mesuré.
- Diffusion : c'est le grossissement de la taille du « paquet » d'ions causé par les répulsions électrostatiques des ions. La diffusion peut être responsable d'une imprécision de mesure.
- Synchronisation : à l'inverse de la diffusion, c'est une diminution de la taille du « paquet » d'ions lorsqu'une certaine densité de charge est atteinte.

Dans l'analyseur Orbitrap, tous les effets de densité de charge sont considérablement réduits grâce à l'action de l'électrode centrale.

I.4.2.8. Fragmentation à l'intérieur d'un analyseur Orbitrap

Les ions piégés dans l'analyseur Orbitrap ont des énergies de l'ordre du keV. En présence de gaz résiduel, une fragmentation des ions se produit par collision avec ce dernier, et sa fréquence est inversement proportionnelle à la pression en gaz. L'application pulsée d'un laser est une autre façon de fragmenter les ions. Lorsqu'un ion en mouvement se fragmente, ses fragments auront la même vitesse. Comme leur énergie est proportionnelle à leurs rapports m/z, les trajectoires deviennent très elliptiques. Par conséquent, les fragments de faible masse (avec un rapport m/z généralement en dessous de 30-50% de celui de l'ion précurseur) s'échoueront sur l'électrode centrale, tandis que les fragments d'état (avec un rapport m/z généralement audessus de 50% de l'ion précurseur) s'échoueront sur les électrodes extérieures. Cet effet explique pourquoi l'abondance relative des ions observée avec cet analyseur est parfois différente de celle observée avec un analyseur de type quadripolaire.

I.4.2.9. Aperçu des principaux paramètres analytiques de l'analyseur de masse Orbitrap

Le niveau actuel de précision dans sa conception permet à l'Orbitrap d'atteindre une résolution de plusieurs centaines de milliers [168] ainsi qu'une bonne sensibilité. L'étalonnage de l'Orbitrap permet d'atteindre des erreurs de masse de l'ordre de 2-3 ppm mais n'est fiable que pour une durée de 24h principalement à cause des micro-variations de l'appareil et des effets de densité de charge expliquées précédemment. Cependant, une correction est possible par rapport aux ions présents dans la phase mobile comme les cyclosiloxanes en GC (« lock mass »). La fréquence d'acquisition du signal dépend de la résolution souhaitée et peut atteindre plusieurs dizaines d'Hertz. En effet, plus le courant d'ions sera mesuré longtemps, meilleure la résolution sera mais la fréquence d'acquisition sera plus faible.

La transmission des ions entre la cellule d'accumulation (pour la pulsation d'introduction dans l'Orbitrap) et le piège Orbitrap via le potentiel électrique appliqué permet de détecter de 30 à 50% des ions. Ce pourcentage est une à deux fois plus important que celui des autres analyseurs de masses précises ce qui permet par ailleurs d'obtenir une bonne sensibilité.

I.4.3. Principe de détection de la masse exacte

I.4.3.1. Aperçu des instruments basés sur l'analyseur l'Orbitrap

Comme expliqué précédemment, l'Orbitrap ne permet pas de réaliser une analyse de fragments MS/MS ou MSⁿ et cet inconvénient a conduit à une nouvelle solution. En effet, l'Orbitrap est aujourd'hui utilisé comme la seconde partie d'un appareil hybride dans lequel la première partie est un autre spectromètre de masse, capable de faire de la fragmentation. Dans cette configuration hybride, le premier spectromètre de masse réalise une première sélection puis les ions sélectionnés sont fragmentés dans une cellule de collision et l'Orbitrap permet de mesurer précisément les masses des fragments. Il existe plusieurs appareils hybride de ce type, le spectromètre de masse situés en amont de l'Orbitrap peut être un piège à ions classique ou un quadripôle par exemple [169].

<u>I.4.3.2. L'hybride quadripôle-Orbitrap</u>

L'hybridation d'un quadripôle avec un Orbitrap a été introduit en 2011 sous l'acronyme commercial « Q-Exactive MS ». Cet appareillage combine les avantages des deux spectromètres de masse le constituant. En particulier, le Q-Orbitrap est capable de sélectionner un ion de façon quasi-instantanée (grâce au temps de switch très rapide du quadripôle) et de le fragmenter en cellule de collision sur une échelle de temps similaire, permettant ainsi d'assurer la continuité du flux d'ions entrant dans la cellule de collision. De même, cette configuration permet de remplir d'ions la cellule de collision (permettant la fragmentation et la focalisation) pendant que l'Orbitrap réalise la détection du paquet d'ions précédent [170]. De même, le quadripôle peut fonctionner en « SIM » multiples c'est-à-dire que pendant que le quadripôle filtre les ions souhaités, ces derniers et leurs fragments s'accumulent dans la cellule de collision, permettant en même temps de générer le paquet d'ions qui doit être injecté de façon pulsée dans l'Orbitrap. Par conséquent, le temps d'accumulation des ions dans la cellule de collision et donc le temps de sélection des ions dans le quadripôle doit être égal au temps de détection dans l'Orbitrap, limitant alors la sensibilité lorsque le nombre d'ions ciblés dans le quadripôle augmente. L'intérêt du Q Exactive pour les études « omiques » a largement contribué à son développement [171].

I.4.4. Applications de l'Orbitrap pour l'analyse des pesticides

Les premières applications de la HRMS de type Orbitrap dans le domaine agroalimentaire et environnemental datent de 2011 [172]. Avant, les méthodes quantitatives des pesticides et des contaminants étaient développées et validées, généralement, en utilisant des analyseurs de type quadripolaire en tandem. Cependant, le développement de méthodes sur ce type de spectromètre de masse est chronophage puisque chaque transition doit être optimisée et le nombre de composés analysables est limité par la vitesse de balayage (fréquence d'acquisition).

Au cours des 5 dernières années, plusieurs études ont montré les performances des couplages chromatographiques à la spectrométrie de masse à haute résolution (Orbitrap) dans ce domaine. La sensibilité d'une méthode de spectrométrie de masse en tandem (triple quadripôle) est liée à la sélectivité des transitions « SRM » et à l'optimisation des paramètres de transmission et de fragmentation des composés d'intérêt. Avec l'analyseur de masse Orbitrap, les analyses peuvent être réalisées en mode « Full scan » permettant de garder l'ensemble de l'information analytique [173]. De plus, les problématiques critiques des méthodes validées dans le domaine agroalimentaire sont la présence faux positifs et de faux négatifs. Alors qu'il existe des évaluations formelles de cette spécificité pour les spectromètres de masse triple quadripôle, des lignes directrices analytiques pour la HRMS sont en train d'émerger.

Il a été aussi démontré dans une étude de comparaison des performances de l'analyseur TOF et l'analyseur Orbitrap que la précision de masse de l'Orbitrap était supérieure d'un facteur 3 par rapport un TOF [174]. Plusieurs études ont été réalisées afin d'évaluer les performances de l'Orbitrap pour l'analyses des pesticides et de contaminants dans diverses matrices alimentaires et environnementales [175-176]. Les résultats obtenus démontrent la faisabilité et l'efficacité en termes de sensibilité et de spécificité de cette technologie [177].

CONCLUSION

Bien que les pesticides soient des substances utilisées pour protéger les plantes de différents insectes et ravageurs et ainsi augmenter les rendements des récoltes, ces substances peuvent se retrouver dans les produits finaux et être dangereuses pour l'environnement et la santé humaine. Afin d'assurer la sécurité des consommateurs, les autorités européennes ont établi des valeurs de LMR dans les produits agroalimentaires qui peuvent être très faibles. Les méthodes chromatographiques HPLC et GC couplées à la spectrométrie de masse en tandem de type triple quadripolaires se sont imposées comme les méthodes de choix pour l'identification et la quantification des résidus de pesticides. Mais récemment le développement des analyseurs à haute résolution comme les analyseurs Q-TOF et Orbitrap ouvre de nouvelles perspectives en termes de nombres de molécules analysables mais aussi de retraitement ultérieur des données post-acquisition (recherche non-ciblée). De plus, leur sensibilité et leur précision de masse permettent de séparer les ions isobares limitant ainsi les faux positifs.

En termes de préparation d'échantillon, le développement de la méthode QuEChERS a permis de simplifier les étapes de préparation de l'échantillon. Néanmoins, l'extraction des pesticides dans certaines matrices complexes telles que les matrices grasses, présente des difficultés spécifiques. Ainsi, de nouveaux adsorbants ont été récemment commercialisés afin d'améliorer la purification d'extraits de ce type de matrice. Dans la suite de ce manuscrit, nous présenterons la mise au point des méthodes HPLC-MS/MS et GC-MS/MS pour l'analyse de plusieurs centaines de pesticides et contaminants. Puis nous évaluerons l'apport des nouveaux adsorbants (Z-Sep, Z-Sep+, EMR-Lipid) pour la purification des extraits de graines de Colza. Enfin, nous comparerons les performances analytiques d'une méthode GC-MS/MS (triple quadripôle) avec celles d'une méthode GC-Orbitrap en mode « full scan » pour l'identification et la quantification d'une centaine de pesticides et de contaminants dans diverses matrices alimentaires.

CHAPITRE II : STRATEGIES ANALYTIQUES POUR LA QUANTIFICATION DE RESIDUS DE PESTICIDES ET DE CONTAMINANTS EN GC-MS/MS ET HPLC-MS/MS

II.I. METHODES D'ANALYSE DE PESTICIDES DEVELOPPEES PRECEDEMMENTAU LABORATOIRE SGS

Actuellement, dans les laboratoires d'analyses agroalimentaires et environnementales, les résidus de pesticides et de contaminants sont généralement analysés avec les techniques séparatives couplées à la spectrométrie de masse (HPLC-MS/MS et GC-MS/MS). Les pesticides organophosphorés, organochlorés, pyréthrinoïdes, triazoles sont généralement analysés par GC-MS/MS [148] alors que ceux appartenant à la famille des urées, carbamates, triazines, strobilurines sont analysés en HPLC-MS/MS [125]. De plus, quelques molécules polaires telles que les glyphosate, éthéphon et ammoniums quaternaires nécessitent le développement de méthodes spécifiques appelées « mono-résidu » [70, 71].

Au sein du laboratoire SGS France, laboratoire de Rouen, où j'ai réalisé une grande partie de mes travaux de thèse, deux méthodes principales d'analyse de multi-résidus de pesticides et contaminants ont été développées.

Une méthode GC-MS/MS permettant l'analyse d'environ 170 pesticides et contaminants avait été mise en place. Cette méthode avait été validée pour l'analyse de pesticides dans les céréales, les fruits et légumes ainsi que certaines matrices grasses de type graines oléagineuses. En HPLC-MS/MS, une méthode permettant l'analyse d'environ 200 pesticides et contaminants avait été développée et validée sur quelques céréales.

La recherche de ces molécules dans diverses matrices agroalimentaires a impliqué le développement de différentes méthodes d'extraction avant l'analyse telles que la méthode QuEChERS pour l'extraction des pesticides dans les céréales telles que le blé, le riz, le maïs et le seigle, les fruits et légumes (pomme de terre, carotte, pomme et orange). Une méthode basée sur l'ASE a été utilisée pour l'extraction des pesticides dans les matrices à fortes teneurs en matières grasses telles que les graines oléagineuses, les amandes de karité, les graines de sésame, les huiles de poisson.

II.I.1. Méthode GC-MS/MS développée par SGS

La méthode GC-MS/MS utilisée au sein du laboratoire SGS pour l'analyse de multi-résidus de pesticides a été développée sur un chromatographe en phase gazeuse (7890 B) couplé à un spectromètre de masse de type triple quadripolaire 7010 (Agilent Technologies). Il est équipé de deux colonnes HP-5 MS UI (ultra inerte) (Agilent Technology, Santa Clara, USA) en série (15m x 0,25mm et 0,25µm d'épaisseur de film) contenant une phase stationnaire dont la structure est représentée en figure II.1 (5%-phényl-95%-méthylpolysiloxane).

Figure II.1: Composition de la phase stationnaire de la colonne (HP-5MS UI) [139]

La température de l'injecteur multimode (MMI) a été programmée de 60°C pendant 0,2min jusqu'à 310°C à une vitesse de 720°C/min. L'hélium (haute pureté, 99,999%) a été utilisé comme gaz vecteur (Air liquide, Bagneux, France) avec des débits de 0,9 et 1,1 mL/min dans la première et deuxième colonne respectivement. La température du four a été programmée comme suit : d'une température initiale de 60°C (1min) à 170°C à 35°C/min et jusqu'à 310°C à une vitesse de 10°C/min avec un palier de 2min à 310°C. L'injection a été réalisée en utilisant le mode sans division (splitless) avec un volume d'injection de 1 μ L. Le temps de rétention du chlorpyrifos méthyle (9,14min) a été utilisé pour ajuster les débits de gaz vecteur dans les deux colonnes afin de maintenir les temps de rétention constants après chaque maintenance.

L'ionisation des pesticides et contaminants a été réalisée en mode d'ionisation électronique (EI) avec une énergie de 70 eV. La température de la source d'ionisation a été fixée à 280°C.

La détection spécifique des molécules analysées en GC-MS/MS a été réalisée grâce à un spectromètre de masse de type triple quadripolaire en mode « SRM ». Deux transitions ont été choisies, la première transition correspond à la transition de quantification, généralement la plus intense, et la deuxième transition est pour la confirmation [144]. Le tableau II.1 résume les conditions de détection en spectrométrie de masse.

Gaz de collision	N ₂
Débit de gaz de collision	1,5 mL/min
Gaz tampon	He
Débit de gaz tampon	2,25 mL/min
Température des quadripôles	150°C

Tableau II.1: Paramètres de l'analyseur triple quadripolaire

II.I.2. Méthode HPLC-MS/MS développée par SGS

Dans le cadre de cette étude, la chaine HPLC utilisée est une chaine Thermo Scientific (pompe Ultimate 3000 RS, LPG 3400 RS) équipée d'un passeur d'échantillons HPLC (Ultimate 3000 WPS-300 TRS) (Brême, Allemagne). Le mode de chromatographie choisi est la chromatographie de partage à polarité de phases inversées. La colonne analytique retenue est une Aqua® C18 3 μ m, 125Å, 150×2mm (Phenomenex). C'est une phase stationnaire à base de silice totalement poreuse, greffée par des groupements octadécylsilane (C18) compatible avec des phases mobiles très riches en eau jusqu'à 100%. Le volume injecté a été fixé à 10 μ L. La température du four colonne a été fixée à 40°C. La perte de charge est d'environ 300 bars ce qui parfaitement compatible avec le système utilisé (ΔP_{Max} = 400 bars). La composition de la phase mobile est la suivante : phase aqueuse (A) : formiate d'ammonium 10 mM dans H₂O + 0,2% HCOOH (v/v) et phase organique (B) : formiate d'ammonium 10 mM dans MeOH + 0,2% HCOOH (v/v). Le débit de la phase mobile a été fixé à 0,5 mL/min. Le gradient d'élution a été optimisé de façon à éluer la totalité des pesticides étudiés en une dizaine de minutes et est présenté dans la figure II.2.

Temps (min)	A (%)	В (%)
0	95	5
6, 0	95	5
2,4	36	64
5,4	10	90
8,4	10	90
9,2	95	5
11,83	95	5

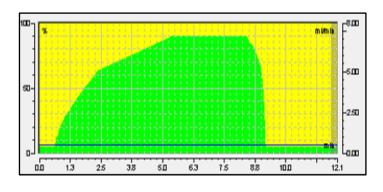


Figure II.2 : Gradient d'élution utilisé pour la séparation des pesticides en HPLC-MS/MS (A= phase aqueuse et B= phase organique)

La source d'ionisation ESI, en mode positif a été utilisée pour l'ionisation des pesticides et contaminants. Les paramètres d'ionisation de la source ESI+ pour l'analyse de ces molécules pesticides sont présentés dans le tableau II.2.

Curtain gas	25u.a
Spray voltage	5500 V
Capillary temperature	300°C
lon source gas1	50u.a
Ion source gas2	60u.a

Tableau II.2: Paramètres d'ionisation de la source ESI+

La détection spécifique des pesticides a été réalisée grâce à un spectromètre de masse de type triple quadripolaire. De même que pour la quantification en GC-MS/MS, deux transitions ont été choisies. Les différents paramètres opératoires de la cellule de collision sont présentés dans le tableau II.3.

Gaz de collision	Argon
Pression du gaz de collision	1,5mTorr
Source CID	14V

Tableau II.3 : Paramètres de la source de collision

II.I.3. Méthode de préparation de l'échantillon développée par SGS

Le protocole d'extraction/purification des pesticides dans les matrices agroalimentaires, utilisé au sein du laboratoire SGS correspond à la méthode interne MO-0366 qui est une application de la norme européenne NF EN 15662 de la méthode QuEChERS (ce protocole est présenté en annexe 2).

Cette méthode est basée sur le principe d'une extraction avec un solvant organique en présence de sels et de tampons [131]. Plusieurs paramètres sont à optimiser afin d'obtenir de meilleurs taux de récupération des pesticides. Pour les céréales, une quantité de 5 g est généralement préconisée suivie d'une hydratation de la matrice avec 10 mL de H₂O puis 10 mL d'ACN. Pour les fruits et légumes, une quantité de 10 g est préconisée. Ensuite, deux types de tampon peuvent être utilisés : la méthode officielle AOAC qui utilise le tampon acétate et la norme européenne EN 15662 qui implique l'utilisation du tampon citrate. Dans notre cas, la méthode développée est basée sur la norme européenne EN 15662 qui implique l'utilisation du tampon citrate.

Ensuite, l'étape de purification a pour but de limiter la présence d'interférents extraits en même temps que les composés d'intérêts et susceptibles de perturber l'analyse, phénomène couramment appelé effet matrice. Cette purification correspond à la deuxième étape de la procédure QuEChERS pour purifier l'extrait précédemment obtenu. L'extrait récupéré est placé dans un tube de polypropylène de 15 mL contenant differents adsorbants de type PSA, C18 ou un mélange des deux qui permettent d'éliminer les interférents.

II.I.4. Objectifs

Les pesticides légiférés dans les matrices agroalimentaires en Europe sont en constante évolution et le nombre de molécules contrôlées ne cesse de croitre [31], ce qui oblige les laboratoires d'analyse à adapter leurs méthodes et à étendre leurs listes. De plus, les valeurs de LMR sont de plus en plus faibles pour certains pesticides (inférieures à 10 µg/kg), ce qui fait que les méthodes d'analyse de ces substances (HPLC-MS/MS et GC-MS/MS) doivent être de plus en plus sensibles et spécifiques afin de quantifier avec précision et justesse ces molécules à de faibles teneurs.

Un des objectifs de ma thèse a été d'étendre la liste des pesticides et contaminants proposée aux clients à 600 pesticides et contaminants ce qui correspond à l'ajout de 150 nouvelles molécules environ. Le cahier des charges pour atteindre cet objectif est :

- Conserver les conditions chromatographiques en HPLC et en GC
- Pour la détection en MS/MS, réaliser la quantification sur deux transitions comme exigé dans le référentiel SANTE, 2017.
- Analyser un maximum de composés en un minimum de temps.
- Conserver la même méthode de préparation de l'échantillon (QuEChERS).
- Atteindre des limites de quantification de 10 μg/kg pour la totalité des molécules.
- Valider la méthode GC-MS/MS sur les céréales (blé, riz ; maïs et seigle) et fruits et légumes (pomme de terre, carotte, pomme et orange).
- Valider la méthode HPLC-MS/MS sur les céréales (blé, riz ; maïs et seigle).

II.II. METHODOLOGIES PROPOSEES ET RESULTATS

Dans le but d'étendre la liste des pesticides analysés selon le cahier des charges imposé, une recherche bibliographique des propriétés physicochimiques de ces molécules a tout d'abord été effectuée afin de les séparer en deux groupes. Le premier groupe contiendra les pesticides analysables en GC-MS/MS et le deuxième groupe comportera les pesticides analysables en HPLC-MS/MS. La polarité, la volatilité ainsi que la structure chimique des molécules ont été considérées pour effectuer ce choix. Les pesticides organophosphorés, organochlorés, pyréthrinoïdes, triazoles sont généralement analysés par GC-MS/MS [125, 148] alors que ceux appartenant à la famille des urées, carbamates, triazines, strobilurines sont analysés en HPLC-MS/MS [9]. Après optimisation des paramètres de détection en MS/MS de toutes les molécules, des tests d'extraction avec la méthode QuEChERS ont été réalisés sur diverses matrices agroalimentaires afin d'évaluer les taux de récupération.

II.II.1. Nouveaux pesticides analysés en GC-MS/MS

A l'issue de l'étude bibliographique préliminaire, une soixantaine de pesticides et contaminants a été sélectionnée pour analyse en GC-MS/MS.

II.II.1. Optimisation des paramètres de détection « SRM »

L'optimisation les paramètres de détection des molécules sélectionnées pour cette étude est réalisée en injectant individuellement chaque pesticide. Afin d'illustrer la méthodologie appliquée, la molécule de la 3-chloroaniline a été choisie comme exemple. Cette molécule provient de l'hydrolyse du chlorpropham (figure II.3).

Figure II.3: Réaction d'hydrolyse du chlorpropham conduisant à la 3-chloroaniline

Tout d'abord, la solution contenant environ 20 mg/L de soluté a été injectée en mode de détéction « full scan ». Ce mode permet d'obtenir le spectre complet d'une molécule, ses fragments (les plus intenses). La cellule de collision et le troisième quadripôle ne sont pas actifs. Les fragments les plus intenses, et préférentiellement ceux possédant les rapports m/z les plus importants, sont sélectionnés pour la suite du processus de développement. Le chromatogramme en mode « full scan » pour la 3-chloroaniline est présenté en figure II.4.

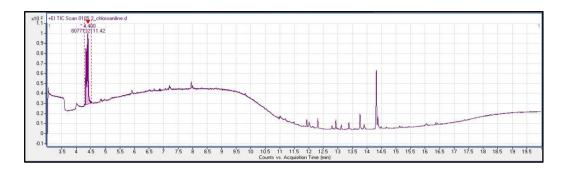


Figure II.4: Chromatogramme de l'injection de la 3-chloroaniline (20 mg/L) en mode « full scan »

La comparaison du spectre obtenu aux spectres de la bibliothèque (NIST 2020/2017/EPA/NIH) permet de confirmer l'identité de la molécule. Ici, le pic détecté à 4,4 min correspond bien à la molécule de 3-chloroaniline. Ce pic, le plus intense, correspond au rapport m/z de 127 correspondant à l'ion moléculaire. Il est sélectionné pour la suite de la procédure d'optimisation.

La même solution a été injectée en mode « Product Ion » afin de fragmenter l'ion sélectionné $(m/z \ 127)$. Ce mode permet ensuite d'identifier les ions fragments produits suite à la fragmentation de l'ion précurseur sélectionné, dans la cellule de collision. Les deux transitions les plus intenses et les plus pécifiques (si possible) sont choisies pour la suite du développement. Pour l'exemple de la 3-chloroaniline, les pics ayant les rapports $m/z \ 100$, $m/z \ 92$ et $m/z \ 65$ sont sélectionnés (figure II.5).

Figure II.5 : Spectre obtenu en mode « Product Ion » de la 3-chloroaniline

La dernière étape de l'optimisation consiste à injecter une solution plus diluée (0,2 mg/L) en mode « SRM » qui permet de sélectionner une transition donnée. Dans le cadre de l'analyse de nouvelles molécules, ce mode cécessite d'optimiser l'énergie de collision pour chaque transition. Cinq énergies de collision différentes (5-10-20-30-40-50 V) ont été testées pour chaque transition et les intensités des pics ont été comparées. L'énergie de collision retenue correspond à celle donnant la plus grande intensité de pic fragment.

L'exemple de la variation des intensités de pic en fonction de l'énergie de collision pour la molécule de 3-chloroaniline est présenté en figure II.6.

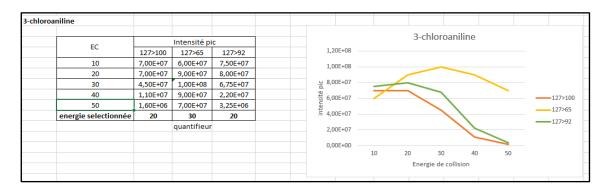


Figure II.6 : Intensité des pics en fonction de l'énergie de collision pour la 3-chloroaniline

La transition 127>65 correspondant au pic le plus intense sera sélectionnée comme transition de quantification tandis que les deux autres transitions (127>100 et 127>92) seront utilisées comme transition de confirmation. D'après la figure II.6, les énergies de collision retenues pour ces transitions sont respectivement 30 V, 20 V et 20 V. Cette démarche expérimentale a été appliquée à la totalité des pesticides et contaminants retenus pour être analysés en GC-MS/MS. Pour la suite du développement, seules deux transitions seront conservées (une transition de quantification et une transition de confirmation).

II.II.I.2. Résultats de l'optimisation des paramètres MS/MS

Le tableau II.4 présente les transitions retenues pour les pesticides et contaminants ajoutés, le temps de rétention, ainsi que les énergies de collision optimisées.

A l'issue de ce travail, seules 50 molécules ont été retenues pour être analysées en GC-MS/MS et 10 molécules ont été définitivement écartées. Ces dernières ne sont pas éluées avec la méthode GC utilisée ou ne sont pas détectées dans les conditions étudiées.

Molécule	lon précurseur (<i>m/z</i>)	Ion fragment (m/z)	t _R (min)	CE (v)	Molécule	lon précurseur (m/z)	Ion fragment (m/z)	t _R (min)	CE (v)
1-naphtyl acétamide 1	185	141	9,05	10	Disulfoton-sulfone 1	153	97	10,90	15
1-naphtyl acétamide 2	142	141	9,05	15	Disulfoton-sulfone 2	125	97	10,90	10
3-chloroaniline 1	127	100	4,22	20	Edifenphos 1	201	109	12,40	10
3-chloroaniline 2	127	65	4,22	30	Edifenphos 2	173	109	12,40	5
Alléthrine 1	123	81	16,51	10	Esfenvalerate 1	225	119	16,88	20
Alléthrine 2	107	91	16,51	10	Esfenvalerate 2	181	152	16,88	25
Amétryne 1	227	170	8,77	10	Fluazifop-p-butyl 1	383	282	11,49	10
Amétryne 2	227	58	8,77	10	Fluazifop-p-butyl 2	282	238	11,49	15
Aminocarb 1	151	150	7,61	15	Fluchloralin 1	326	63	7,89	10
Aminocarb 2	151	136	7,61	15	Fluchloralin 2	306	264	7,89	10
Barban 1	153	125	10,68	10	Flumethralin 1	143	107	10,34	20
Barban 2	153	90	10,68	20	Fluméthralin 2	157	129	10,34	15
Beflubutamid 1	221	193	10,19	5	Flutolanil 1	281	173	10,91	10
Beflubutamid 2	193	145	10,19	15	Flutolanil 2	173	145	10,91	15
Benazolin-ethyl 1	271	170	10,05	20	Folpet 1	117	82	10,24	40
Benazolin-ethyl 2	198	170	10,05	10	Folpet 2	297	271	10,24	5
Benfluraline 1	292	264	6,87	5	Hexachlorobutadiène 1	227	192	4,19	15
Benfluraline 2	292	206	6,87	10	Hexachlorobutadiène 2	227	190	4,19	15
Benthiocarb 1	257	100	9,29	5	lodofenphos 1	377	362	10,95	15
Benthiocarb 2	125	89	9,29	15	lodofenphos 2	125	79	10,95	5
Bifenazate 1	300	258	13,45	5	Lenacile 1	153	110	12,45	20
Bifenazate 2	258	199	13,45	10	Lenacile 2	153	82	12,45	20
Butafenacil 1	331	180	15,46	25	Leptophos 1	171	77	14,10	15
Butafenacil 2	331	124	15,46	45	Leptophos 2	171	51	14,10	40
Carfentrazone-éthyle 1	201	312	12,31	10	Méfenpyr-diéthyl 1	299	253	13,09	10
Carfentrazone-éthyle 2	330	310	12,31	10	Méfenpyr-diéthyl 2	253	190	13,09	20

	127 89	10,40	15	Mephosfolan 1	196	140	10,15	15
Chlorbenside 2	40=			•			10,10	13
	125 99	10,40	15	Mephosfolan 2	168	140	10,15	5
Chlorthiamide 1	173 100	4,91	25	Métolachlore 1	240	162	9,39	10
Chlorthiamide 2	171 136	4,91	15	Métolachlore 2	238	162	9,39	10
Captane 1	148 70	9,38	15	Nitraline 1	316	274	13,04	5
Captane 2	264 79	9,38	25	Nitraline 2	300	258	13,04	5
Crimidine 1	173 144	5,87	5	Nitrapyrine 1	196	135	4,48	15
Crimidine 2	171 142	5,87	5	Nitrapyrine 2	194	158	4,48	20
Cyanophos 1	125 47	7,71	15	Phenol, 4-chloro-3-methyl 1	142	107	4,58	15
Cyanophos 2	125 47	7,71	15	Phenol, 4-chloro-3-methyl- 2	142	77	4,58	30
Cycloate 1	154 83	6,63	5	Phtalimide 1	147	103	5,31	5
Cycloate 2	154 72	6,63	5	Phtalimide 2	147	76	5,31	25
3,4-dichloroaniline 1	161 99	5,38	30	Prodiamine 1	321	279	9,08	5
3,4-dichloroaniline 2	161 90	5,38	25	Prodiamine 2	321	203	9,08	10
3,5-dichloroaniline 1	163 90	5,21	20	Propisochlor 1	162	147	8,83	15
3,5-dichloroaniline 2	161 99	5,21	20	Propisochlor 2	162	120	8,83	15
2,6-dichlorobenzamide 1	189 173	6,91	5	Prosulfocarbe 1	251	128	8,92	5
2,6-dichlorobenzamide 2	173 145	6,91	15	Prosulfocarbe 2	128	86	8,92	5
4,4-dichlorobenzophénone1	141 113	9,54	10	Pyraflufen-éthyle 1	412	349	12,54	10
4,4-dichlorobenzophénone 2	139 111	9,54	10	Pyraflufen-éthyle2	349	307	12,54	15
Dimethenamide 1	232 154	8,53	10	Transfluthrine 1	165	91	8,65	10
Dimethenamide 2	230 154	8,53	10	Transfluthrine 2	163	143	8,65	20
Diphenamid 1	239 167	9,77	15	Triflumizole 1	287	218	10,36	10
Diphenamid 2	167 165	9,77	20	Triflumizole 2	206	179	10,36	20

Tableau II.4: Paramètres MS/MS, tR et CE obtenus pour les pesticides analysés en GC-MS/MS (1 correspond à la transition de quantification et 2 à celle de confirmation)

II.II.1.3. Extraction QuEChERS

Une fois, les paramètres de détection MS/MS et les temps de rétention des nouveaux pesticides déterminés, des tests d'extraction QuEChERS, selon la méthode MO-0336, ont été menés sur 4 familles de céréales (blé, riz, maïs et seigle) et 4 familles de fruits et légumes (pomme de terre, carotte, orange et pomme) issus de l'agriculture biologique afin d'évaluer les taux de récupération. Pour cela, ces matrices biologiques ont été dopées à 10 µg/kg avec une solution contenant les pesticides étudiés. Ce dopage correspond à la limite de quantification désirée pour ces pesticides. Cinq réplicats ont été réalisés afin d'évaluer la répétabilité de la méthode.

Après broyage et homogénéisation des échantillons, 5 g de céréales ou 10 g de fruits et légumes sont prélevés dans un tube de centrifugation. Un étalon interne de préparation (le chlorpyrifos-diéthyl-d₁₀) est ajouté aux échantillons (figure II.7). Pour la suite du projet, d'autres étalons internes pour chauque famille chimique de pesticides seront utilisés.

$$\begin{array}{c|c} CI & S \\ S & O-P-OCD_2CD_3 \\ OCD_2CD_3 \end{array}$$

Figure II.7 : Structure chimique de l'étalon interne de préparation

La solution de dopage a été également ajoutée à une concentration de $10 \,\mu\text{g/kg}$ (équation II.1). Pour les échantillons secs comme les céréales, $10 \,\text{mL}$ d'eau ont été ajoutés pour hydrater la matrice. Ensuite, $10 \,\text{mL}$ d'ACN ont été ajoutés pour l'extraction des pesticides. Il est à noter que le pH des extraits d'orange étant acide, $600 \,\mu\text{L}$ d'une solution de NaOH à 1mM ont été ajoutés.

Valeur du dopage théorique =
$$\frac{\text{volume de dopage} \times \text{concentration de la solution de dopage}}{\text{masse de l'échantillon dopé}}$$
 Équation II.1

Valeur du dopage théorique en μg/kg (= ppb) Volume de dopage en mL Concentration de la solution de dopage en μg/L Masse de l'échantillon dopé en g

Après homogénéisation, un mélange de sels QuEChERS a été ajouté (4 g de sulfate de magnésium anhydre, 1 g de chlorure de sodium, 1g de citrate trisodique hydraté et 0,5 g de citrate hydrogéne disodique sesquihydrate). Après agitation manuelle et centrifugation, le la

phase organique contenant les pesticides extraits est prélevé et ajouté dans un tube de purification contenant 300 mg de PSA et 900 mg de MgSO₄.

Après agitation et centrifugation, l'extrait purifié est placé dans un flacon contenant 40 μ L d'acide formique pour stabiliser l'extrait. Une étape de changement de solvant pour l'injection en GC est nécessaire. Ainsi, l'extrait sec, obtenu après évaporation sous azote est repris avec 1 mL avec un mélange d'hexane/acétone (70/30) (v/v). Un étalon interne d'injection : le lindane 13 C₆ (figure II.8) à une concentration de 2 μ g/L ainsi que de l'huile d'olive (à 200 μ g/L) ont été ajoutés à l'extrait. L'huile d'olive sert de protectant pour limiter l'adsorption des pesticides dans l'injecteur [32].

Figure II.8 : Structure chimique de l'étalon interne d'injection

La détermination des teneurs des pesticides dans les matrices dopées a été effectuée grâce à un étalonnage externe avec étalon interne (1-2-4-40-200 μ g/L). Les courbes de calibration quadratiques avec une pondération (1/x) ont été établies. La courbe d'étalonnage de la molécule de la 3-chloroaniline est présentée en figure II.9.

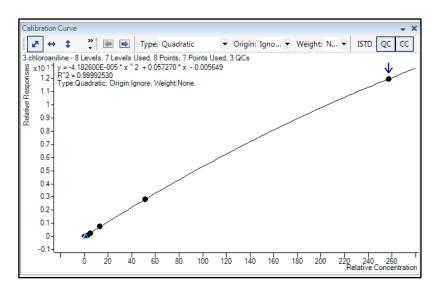


Figure II.9: Courbe de calibration de la 3-chloroaniline

Les taux de récupération sont calculés à partir des teneurs des pesticides déterminées grâce aux courbes d'étalonnage selon l'équation II.2.

 $Taux \ de \ r\'ecup\'eration = \frac{\text{teneur dans l'\'echantillon dop\'e-teneur dans l'\'echantillon non dop\'e}}{\text{valeur du dopage th\'eorique}} \times 100 \ \ \text{\'equation II.2}$

Avec:

Taux de récupération en %
Teneur en μg/kg (= ppb)
Valeur du dopage théorique en μg/kg (= ppb)
Volume de dopage en mL
Concentration de la solution de dopage en μg/L
Masse de l'échantillon dopé en g

Trois étalons correspondant aux concentrations les plus faibles $(1, 2, 4\mu g/L)$ ont été injectés dans le système après injection des échantillons. Ces étalons, appelés « Contrôle Qualité » (QC), permettent de vérifier l'absence de l'extinction ou l'exaltation du signal. Les variations des concentrations des QC doivent être comprises entre 70% et 130%. La concentration mesurée pour ces étalons doit être comprise entre 70 et 130% de la valeur théorique. La concentration de l'étalon la plus faible qui vérifie cette condition est prise en compte pour le calcul de la limite de quantification (équation II.3).

$$LOQ = \frac{Concentration \ de \ l' \'{e}talon \ QC \times Volume \ final}{Masse \ de \ prise \ d'essai} \hspace{1cm} Equation \ II.3$$

Avec:

 $LOQ en \mu g/kg (= ppb)$

Concentration de l'étalon QC en µg/L

Volume final en mL (10 mL pour le blé)

Masse de prise d'essai en g (5 g pour les céréales, 10 g pour les fruits et légumes)

Les taux de récupération calculés, suite aux extractions des pesticides et contaminants dans les matrices dopées, doivent être compris entre 70% et 120%, avec un coefficient de variation inférieur à 20% (SANTE 2017). Cependant, certains taux de récupération compris entre 30% et 70% ainsi qu'entre 120% et 140% peuvent être acceptés mais dans ce cas, les valeurs des LOQ doivent impérativement être corrigées.

II.II.1.4. Résultats des extractions QuEChERS

Le tableau II.5 présente les taux de récupération ainsi que les coefficients de variation obtenus pour les tests d'extraction QuEChERS des pesticides analysés dans les céréales ainsi que les fruits et légumes. Seules 44 molécules, répondant au cahier des charges, ont été ajoutées à la liste des pesticides analysés en GC-MS/MS. Ce tableau montre que les taux de récupération de

ces pesticides sont majoritairement compris entre 70% et 120% avec des coefficients de variation inférieurs à 20%.

Quelques exaltations des signaux ont été observées pour certaines molécules conduisant à des taux de récupération supérieurs à 120% dans le maïs (matrice riche en lipides par rapport aux autres céréales testées). Une diminution de la prise de masse est alors préconisée afin de diminuer ces effets matrice pour les extraits de maïs (2,5g) [43]. De plus, les taux de récupération obtenus pour les molécules de 3,5-dichloroaniline et 3,4-dichloroaniline sont globalement plus faibles que pour les autres pesticides, dans toutes les matrices à l'exception de l'orange. Ce phénomène peut s'expliquer par le fait qu'une quantité de NaOH a été ajoutée aux extraits d'oranges.

Un autre phénomène a été observé au niveau des molécules ayant une fonction ester (carfentrazone-éthyle, méfenpyr-diéthyl et pyraflufen-éthyle). Les taux de récupération sont faibles pour les extraits d'orange ce qui pourrait être attribué à une saponification d'une partie de ces molécules lors de l'étape de l'ajout de NaOH. Pour les autres molécules, la perte de composés d'intérêts peut se produire tout au long de la procédure d'extraction/purification puis lors de l'évaporation à sec de l'extrait nécessaire pour effectuer le changement de solvant (molécules volatiles).

En ce qui concerne les 6 pesticides non retenus, on peut citer le captan et le folpet dont la LOQ de $10~\mu g/kg$ n'a pas pu être atteinte (LOQ>40 $\mu g/kg$). Pour les quatre autres molécules (alléthrine, fluméthralin, phtalimide et disulfoton-sulfone), d'importants effets matrice ont été observés rendant la quantification très complexe ou impossible.

Pesticide	Rdt Blé %	CV%	Rdt Riz %	CV%	Rdt Maïs %	CV%	Rdt Seigle %	CV%	Rdt pomme %	CV%	Rdt orange %	CV%	Rdt carotte %	CV%	Rdt PDT %	CV%
1-naphtyl acétamide	93	15	102	10	104	13	117	8	90	09	94	10	73	27	79	7
3-chloroaniline	79	10	89	4	100	5	106	4	108	12	101	7	102	13	107	15
Amétryne	95	13	109	7	104	7	111	6	119	19	108	17	118	22	117	17
Aminocarb	113	10	118	7	130	9	129	7	116	3	119	9	113	4	119	5
Barban	79	14	70	4	70	15	81	14	109	9	86	7	119	12	114	8
Beflubutamid	76	16	66	14	74	17	84	15	113	11	90	17	8	18	118	6
Benazolin-ethyl	83	18	102	6	92	13	97	11	105	5	102	13	92	14	110	5
Benfluraline	115	10	118	6	115	19	118	24	93	6	80	19	74	13	89	4
Benthiocarb	116	16	115	6	122	6	122	6	104	5	103	6	85	12	83	5
Bifenazate	119	15	40	17	26	14	130	12	93	17	105	14	97	12	90	5
Butafenacil	100	13	96	7	88	2	104	5	56	15	71	2	76	14	51	12
Carfentrazone-éthyle	93	11	108	5	97	2	106	10	120	11	13	2	113	10	120	11
Chlorbenside	82	18	115	7	101	5	98	9	118	7	98	5	108	4	112	11
Chlorthiamide	100	15	108	7	69	12	93	9	75	19	81	12	63	17	59	7
Crimidine	95	12	96	24	95	15	110	20	104	7	116	15	120	3	107	12
Cyanophos	117	15	116	6	26	5	125	5	103	9	109	5	104	14	104	11
Cycloate	125	11	81	16	14	17	79	19	113	9	117	17	108	11	101	4
3,4-dichloroaniline	38	12	50	10	11	11	25	14	53	17	112	11	53	2	45	7
3,5-dichloroaniline	54	17	73	9	19	12	51	12	51	14	114	12	27	5	29	18
2,6-dichlorobenzamide	120	13	120	5	112	5	112	5	84	14	116	5	68	4	71	16
4,4-dichlorobenzophénone	119	19	111	6	115	16	114	6	102	12	102	16	114	3	113	5
Dimethenamide	88	15	115	15	80	19	92	5	90	20	108	19	21	38	90	6
Diphenamid	97	17	116	5	117	3	117	6	119	3	103	3	114	7	120	4
Edifenphos	119	13	112	25	128	20	125	9	92	6	89	20	92	11	92	8

Esfenvalerate	87	6	85	3	84	4	100	6	90	13	91	4	77	21	67	9
Fluazifop-p-butyl	81	15	88	7	61	17	88	7	117	12	119	17	99	17	112	6
Fluchloralin	111	11	104	11	107	3	116	5	80	16	67	3	76	11	77	10
Flutolanil	99	11	106	6	105	14	98	11	105	3	106	14	99	9	89	2
Hexachlorobutadiène	48	12	61	18	29	11	29	12	80	18	95	11	78	21	102	5
Iodofenphos	83	10	91	7	64	2	76	15	54	12	41	2	38	10	31	27
Lenacile	58	12	65	7	64	5	52	16	87	17	84	5	73	19	76	7
Leptophos	92	15	115	5	102	4	95	5	127	3	115	4	122	12	125	1
Méfenpyr-diéthyl	99	12	108	8	102	3	106	5	85	11	56	3	74	12	75	8
Mephosfolan	119	16	120	6	121	5	114	5	117	6	137	5	135	12	139	7
Métolachlore	98	16	98	9	102	2	108	8	99	6	91	2	91	6	93	6
Nitraline	80	22	73	22	80	5	75	19	74	8	20	5	77	11	59	0
Nitrapyrine	119	25	96	23	42	21	63	15	79	15	92	21	95	16	69	13
Phenol, 4-chloro-3-methyl	80	17	84	13	79	19	78	17	98	3	95	19	94	8	91	2
Prodiamine	94	10	107	12	77	3	102	13	75	13	64	3	55	12	72	6
Propisochlor	117	16	119	20	121	7	93	19	108	4	100	7	103	8	108	5
Prosulfocarbe	120	13	116	7	112	3	114	6	105	15	110	3	95	15	83	21
Pyraflufen-éthyle	112	10	111	6	118	2	120	6	94	7	5	2	86	13	71	18
Transfluthrine	118	14	95	12	115	9	109	11	99	12	104	9	92	17	62	11
Triflumizole	107	13	116	8	113	18	115	14	90	9	75	18	74	10	96	5

Tableau II.5: Résultats des taux de récupération (%) et des CV (%) des pesticides et contaminants analysés en GC-MS/MS

II.II.2. Nouveaux pesticides analysés en HPLC-MS/MS

A la suite des recherches bibliographiques préliminaires et des analyses réalisées en GC-MS/MS, environ 150 pesticides et contaminants ont été sélectionnés pour étude en HPLC-MS/MS. Une démarche analytique quasi-analogue à celle présentée pour les pesticides analysés en GC-MS/MS, a été appliquée. Le nombre total de pesticides étudié dans cette partie étant important, seuls les résultats obtenus pour l'analyse d'une soixantaine de molécules seront présentés. La méthode finale appliquée à l'analyse des pesticides et contaminants est donnée en annexe 3.

II.II.2.1. Optimisation des paramètres de détection « SRM »

Dans un premier temps, une introduction directe des composés via un pousse-seringue a été nécessaire afin de déterminer les ions précurseurs. Chaque molécule a été injectée individuellement et les solutions ont été préparées dans les mêmes solvants que ceux utilisés pour les phases mobiles (50% A/ 50% B) à une concentration de 1000 µg/L. Les ions précurseurs de chaque molécule ont été déterminés avec une ionisation en mode positif (l'ion précurseur étant généralement sous forme protonée [M+H]⁺). Cependant, quelques ions précurseurs sous forme d'adduits [M+NH₄]⁺ ont été choisis car ils correspondent aux pics les plus intenses. L'acquisition en mode « SRM » nécessite de déterminer un certain nombre de paramètres qualifiés de « composé-dépendant » pour chacun des pesticides étudiés.

- Le rapport m/z de l'ion précurseur (filtré en Q1)
- Les rapports m/z des deux fragments principaux (filtrés) en Q3
- La tension de déclustérisation optimum (DP)
- Les énergies de collision (CE) donnant les meilleurs rapports de fragmentation
- Les tensions de sorties (CXP) qui optimisent la transmission des ions fragments

Afin d'illustrer la méthodologie appliquée, le nitenpyrame (insecticide de la famille des néonicotinoïdes) a été choisi comme exemple pour détailler les étapes de la détermination des transitions « SRM » (figure II.10).

Figure II.10. Structure du nitenpyrame

Comme précédemment, une solution contenant le soluté à une concentration d'environ 1000 μ g/L a été injecté en mode « full scan ». Cette première étape permet d'identifier l'ion précurseur généralement sous forme de [M+H]⁺. La figure II.11 présente le spectre obtenu pour le nitenpyrame en mode full scan.

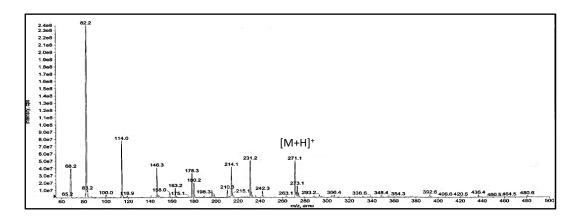


Figure II.11: Spectre en mode « full scan » du nitenpyrame

Comme attendu, l'ion correspondant à la molécule ionisée en mode positif ($[M+H]^+$) a été identifié sur le spectre pour un rapport m/z 271. Cet ion a été ensuite sélectionné pour être fragmenté dans la cellule de collision et les ions fragments ont été filtrés dans le troisième quadripôle (figure II.12). Les énergies de collision des 10 transitions ayant les intensités les plus importantes ont été optimisées automatiquement par le logiciel.

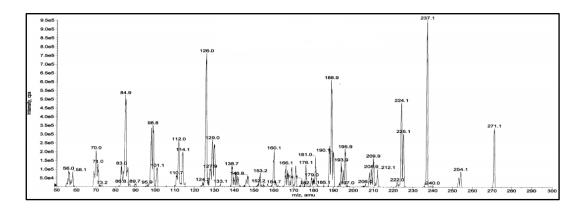


Figure II.12 : Spectre de la fragmentation de l'ion précurseur (m/z 271) du nitenpyrame

Cette démarche expérimentale a été étendue à la totalité des pesticides analysés en HPLC-MS/MS en mode ESI $^+$. Seules deux transitions « SRM » ont été retenues pour chaque molécules (une transition de quantification et une transition de confirmation), les plus intenses et spécifiques. Dans le cas du nitenpyrame, les transitons de rapport m/z 271>237 et 271>224 ont été sélectionnées.

Etant donné que le nombre de pesticides analysées en HPLC-MS/MS avec la même méthode en une seule injection (11,83 min), le mode « scheduled-SRM » a été utilisé en combinant le temps de rétention de chaque composé avec une fenêtre de détection et un temps de cycle fixé par l'utilisateur. Il permet au spectromètre de masse d'enregistrer les transitions dans une fenêtre de temps (généralement 60 s) autour du temps de rétention du soluté ciblé en générant des chromatogrammes ayant un nombre de points par pic suffisant (>10). Les transitions optimisées pour chaque pesticide ont été rajoutées à la méthode HPLC-MS/MS déjà utilisée pour l'analyse de 200 autres pesticides et contaminants.

II.II.2.2. Résultats de l'optimisation des paramètres MS/MS

Le tableau II.6 rassemble les résultats obtenus pour la première série de pesticides ajoutés, le temps de rétention, le DP, le CXP ainsi que les énergies de collision.

Pour la première liste de pesticides, une centaine de molécules de familles chimiques et polarité très variées a été testée dans les conditions HPLC-MS/MS définies précédemment. Suite aux premiers essais réalisés en introduction directe, il s'est avéré qu'une vingtaine de molécules ne sont pas analysables avec cette méthode. Ces pesticides correspondent généralement à des molécules appartenant à la famille des phénoxyacides. Ces pesticides sont généralement détectés en électrospray en mode négatif [98, 99]. Nous avons donc développé une méthode spécifique pour l'analyse de ces composés d'intérêt qui est donnée en annexe 3 dans la méthode finale.

20 1/ 1	Ion précurseur	Ion fragment	t _R	DP	CE	СХР	20.17	Ion précurseur	Ion fragment	t _R	DP	CE	СХР
Molécule	(m/z)	(m/z)	(min)	(v)	(v)	(v)	Molécule	(m/z)	(m/z)	(min)	(v)	(v)	(v)
6-benzylaminopurine 1	226	91	4,82	76	29	10	Fenamidone 1	312	92	5,93	44	33	4
6-benzylaminopurine 2	226	163	4,82	76	15	10	Fenamidone 2	312	236	5,93	44	19	12
Ametoctradine 1	276	70	7,15	26	81	10	Fenpiclonil 1	254	237	5,70	11	13	14
Ametoctradine 2	276	43	7,15	26	103	8	Fenpiclonil 2	254	140	5,70	11	61	10
Amisulbrom 1	466	227	7,25	86	31	10	Fénuron 1	165	46	4,48	61	19	8
Amisulbrom 2	466	148	7,25	86	73	16	Fénuron 2	165	72	4,48	61	21	10
Asulame 1	231	156	3,40	126	17	22	Flazasulfuron 1	408	182	5,62	96	23	12
Asulame 2	231	92	3,40	126	35	14	Flazasulfuron 2	408	83	5,62	96	57	12
Atraton 1	212	170	5,11	151	25	8	Flubendiamide 1	683	408	6,53	176	13	20
Atraton 2	212	100	5,11	151	35	8	Flubendiamide 2	683	274	6,53	176	45	18
Azaconazole 1	302	161	5,71	56	39	10	Fluométuron 1	233	72	5,32	131	23	10
Azaconazole 2	302	233	5,71	56	23	14	Fluométuron 2	233	145	5,32	131	47	18
Aziprotryne 1	226	156	6,13	76	21	12	Flurochloridon 1	314	294	6,16	156	31	26
Aziprotryne 2	226	125	6,13	76	17	14	Flurochloridon 2	314	145	6,16	156	61	14
Benodanil 1	324	231	5,46	111	31	16	Fluopyram 1	397	145	6,22	146	75	18
Benodanil 2	324	203	5,46	111	49	14	Fluopyram 2	397	173	6,22	146	41	16
Benoxacor 1	262	149	5,80	156	25	16	Fluxapyroxad 1	382	362	6,08	166	19	16
Benoxacor 2	262	134	5,80	156	39	14	Fluxapyroxad 2	382	342	6,08	166	29	32
Benzoylprop-éthyle 1	368	105	6,80	91	25	12	Forchlofenuron 1	248	129	5,59	111	23	12
Benzoylprop-éthyle 2	368	77	6,80	91	73	12	Forchlofenuron 2	248	93	5,59	111	49	14
Bixafene 1	415	395	6,55	126	21	24	Ipconazole 1	334	70	7,19	151	67	10
Bixafene 2	415	267	6,55	126	33	18	Ipconazole 2	334	125	7,19	151	61	16
Butocarboxim 1	191	75	4,83	46	19	10	Isoxabén e1	333	107	6,04	76	79	8
Butocarboxim 2	191	59	4,83	46	59	10	Isoxabéne 2	333	165	6,04	76	21	34
Buturon 1	237	84	5,55	61	19	10	Mésotrione 1	340	228	4,78	166	25	14
Buturon 2	237	126	5,55	61	41	16	Mésotrione 2	340	104	4,78	166	41	12
Carbetamide 1	237	192	4,98	31	11	20	Metaflumizone 1	507	178	7,44	176	33	10
Carbetamide 2	237	118	4,98	31	17	8	Metaflumizone 2	507	287	7,44	176	35	6
Carpropamide 1	336	103	6,67	126	61	16	Methiocarb-sulfone 1	258	122	4,63	146	27	8
Carpropamide 2	336	139	6,67	126	29	8	Methiocarb-sulfone 2	258	201	4,63	146	13	14
Chlorbromuron 1	295	206	6,01	136	27	20	Methiocarb-sulfoxide 1	242	185	5,92	111	23	12
Chlorbromuron 2	295	182	6,01	136	23	20	Methiocarb-sulfoxide 2	242	170	5,92	111	25	12
Chlorfluazuron 1	542	385	7,95	176	33	18	Métosulam 1	420	177	5,23	156	35	18
Chlorfluazuron 2	542	158	7,95	176	27	10	Métosulam 2	420	140	5,23	156	73	12

Chlorsulfuron 1 358														
Chloroxuron 1 291 72 6,24 151 25 10 Nicosulfuron 1 411 182 5,12 61 25 8 Chloroxuron 2 291 164 6,24 151 23 16 Nicosulfuron 2 411 213 5,12 61 23 10 Chromafenozide 1 395 91 6,26 86 79 12 Nitenpyramee 1 271 224 394 6 21 18 Clofentezine 1 303 138 6,99 60 27 10 Pencycuron 1 329 125 6,87 196 35 14 Clofentezine 2 303 100 6,99 60 27 10 Pencycuron 2 329 89 6,87 196 31 1 Clofentezine 2 303 30 13 71 27 16 Penthiopyrad 1 360 276 6,64 141 21 25 Cyantraniliprole 3 475	Chlorsulfuron 1	358	141	5,29	66	27	12	Metrafenone 1	409	209	7,00	39	21	10
Chloroxuron 2 291 164 6,24 151 23 16 Nicosulfuron 2 411 213 5,12 61 23 10 Chromafenozide 1 395 175 6,26 86 27 16 Nitrenpyramee 1 271 224 3,94 6 43 14 Chromafenozide 2 395 91 6,26 86 79 12 Nitrenpyramee 2 271 223 3,94 6 21 18 Clofentezine 1 303 138 6,99 60 27 10 Pencycuron 1 329 125 6,68 196 35 14 Clofentezine 2 303 100 6,99 60 21 8 Pencycuron 1 329 89 6,87 196 91 14 Cjortraniliprole 2 475 244 5,31 71 27 16 Penthiopyrad 2 360 177 6,64 141 12 20 Dialifos 1 394 </td <td>Chlorsulfuron 2</td> <td>358</td> <td>167</td> <td>5,29</td> <td>66</td> <td>27</td> <td>12</td> <td>Metrafenone 2</td> <td>409</td> <td>227</td> <td>7,00</td> <td>39</td> <td>25</td> <td>12</td>	Chlorsulfuron 2	358	167	5,29	66	27	12	Metrafenone 2	409	227	7,00	39	25	12
Chromafenozide 1 395 175 6,26 86 27 16 Nitenpyramee 1 271 224 3,94 6 43 14 Chromafenozide 2 395 91 6,26 86 79 12 Nitenpyramee 2 271 237 3,94 6 21 18 Clofentezine 1 303 138 6,99 60 27 10 Pencycuron 2 329 89 6,87 196 91 14 Clofentezine 2 303 100 6,99 60 21 8 Pencycuron 2 329 89 6,87 196 91 14 Cyantraniliprole 1 475 286 5,31 71 19 14 Penthiopyrad 1 360 276 6,64 141 11 12 29 141 12 26 6,64 14 14 12 26 6,64 14 14 12 26 6,14 14 12 26 21 <td< td=""><td>Chloroxuron 1</td><td>291</td><td>72</td><td>6,24</td><td>151</td><td>25</td><td>10</td><td>Nicosulfuron 1</td><td>411</td><td>182</td><td>5,12</td><td>61</td><td>25</td><td>8</td></td<>	Chloroxuron 1	291	72	6,24	151	25	10	Nicosulfuron 1	411	182	5,12	61	25	8
Chromafenozide 2 395 91 6,26 86 79 12 Nitenpyramee 2 271 237 3,94 6 21 18 Clofentezine 1 303 138 6,99 60 27 10 Pencycuron 1 329 125 6,87 196 35 14 Clofentezine 2 303 100 6,99 60 21 8 Pencycuron 2 329 89 6,87 196 35 14 Cyantraniliprole 1 475 286 5,31 71 19 14 Penthiopyrad 1 360 276 6,64 141 21 26 Cyantraniliprole 2 475 444 5,31 71 27 16 Penthiopyrad 2 360 177 6,64 141 1 12 Dialifos 1 394 287 7,03 39 23 10 Pinoxaden 2 401 57 6,92 121 13 10 Pinoxaden 1 401 57	Chloroxuron 2	291	164	6,24	151	23	16	Nicosulfuron 2	411	213	5,12	61	23	10
Clofentezine 1 303 138 6,99 60 27 10 Pencycuron 1 329 125 6,87 196 35 14 Clofentezine 2 303 100 6,99 60 21 8 Pencycuron 2 329 89 6,87 196 91 14 Cyantraniliprole 1 475 286 5,31 71 19 14 Penthiopyrad 1 360 177 6,64 141 41 12 26 Cyantraniliprole 2 475 444 5,31 71 27 16 Penthiopyrad 2 360 177 6,64 141 41 12 20 10 Pinosaden 1 401 317 6,92 121 29 14 10 10 10 Pinosaden 1 401 317 6,92 121 29 14 10 10 Pinosaden 1 401 37 6,92 121 29 14 10 Pinosaden 1 401 97 6,92 <t< td=""><td>Chromafenozide 1</td><td>395</td><td>175</td><td>6,26</td><td>86</td><td>27</td><td>16</td><td>Nitenpyramee 1</td><td>271</td><td>224</td><td>3,94</td><td>6</td><td>43</td><td>14</td></t<>	Chromafenozide 1	395	175	6,26	86	27	16	Nitenpyramee 1	271	224	3,94	6	43	14
Clofentezine 2 303 100 6,99 60 21 8 Pencycuron 2 329 89 6,87 196 91 14 Cyantraniliprole 1 475 286 5,31 71 19 14 Penthiopyrad 1 360 276 6,64 141 21 26 Cyantraniliprole 2 475 444 5,31 71 27 16 Penthiopyrad 2 360 177 6,64 141 41 12 26 Dialifos 1 394 208 7,03 39 17 10 Pinoxaden 1 401 37 6,92 121 59 14 10 Pinoxaden 2 401 57 6,92 121 59 645 1 15 10 Pinoxaden 2 401 57 6,92 121 59 645 1 15 10 Pinoxaden 2 401 59 422 76 109 10 Diffubenzuron 1 312 142 6,85 </td <td>Chromafenozide 2</td> <td>395</td> <td>91</td> <td>6,26</td> <td>86</td> <td>79</td> <td>12</td> <td>Nitenpyramee 2</td> <td>271</td> <td>237</td> <td>3,94</td> <td>6</td> <td>21</td> <td>18</td>	Chromafenozide 2	395	91	6,26	86	79	12	Nitenpyramee 2	271	237	3,94	6	21	18
Cyantraniliprole 1 475 286 5,31 71 19 14 Penthiopyrad 1 360 276 6,64 141 21 28 Cyantraniliprole 2 475 444 5,31 71 27 16 Penthiopyrad 2 360 177 6,64 141 41 12 29 14 Dialifos 1 394 208 7,03 39 23 10 Pinoxaden 2 401 57 6,92 121 53 10 Difflubenzuron 1 312 159 6,45 1 15 10 Pyridalyl 1 492 85 9,42 76 55 18 Difflubenzuron 2 312 142 6,45 1 47 16 Pyridalyl 2 492 109 9,42 76 55 18 Dinotéturane 2 203 87 3,58 86 67 10 Pyridate 2 379 351 8,71 101 15 6 101 15	Clofentezine 1	303	138	6,99	60	27	10	Pencycuron 1	329	125	6,87	196	35	14
Cyantraniliprole 2 475 444 5,31 71 27 16 Penthiopyrad 2 360 177 6,64 141 41 12 Dialifos 1 394 208 7,03 39 23 10 Pinoxaden 1 401 317 6,92 121 29 14 Diflubenzuron 1 312 159 6,45 1 15 10 Pyridalyl 1 492 85 9,42 76 109 10 Diflubenzuron 2 312 142 6,45 1 47 16 Pyridalyl 2 492 109 9,42 76 55 18 Dinotéfurane 1 203 114 3,58 86 67 10 Pyridate 1 379 207 8,71 101 23 20 Dinotéfurane 2 203 87 3,58 86 69 10 Pyridate 1 379 207 8,71 101 12 20 8,71 101 21 20	Clofentezine 2	303	100	6,99	60	21	8	Pencycuron 2	329	89	6,87	196	91	14
Dialifos 1 394 208 7,03 39 23 10 Pinoxaden 1 401 317 6,92 121 29 14	Cyantraniliprole 1	475	286	5,31	71	19	14	Penthiopyrad 1	360	276	6,64	141	21	26
Dialifos 2 394 187 7,03 39 17 10 Pinoxaden 2 401 57 6,92 121 53 10	Cyantraniliprole 2	475	444	5,31	71	27	16	Penthiopyrad 2	360	177	6,64	141	41	12
Diflubenzuron 1 312 159 6,45 1 15 10 Pyridalyl 1 492 85 9,42 76 109 10 Diflubenzuron 2 312 142 6,45 1 47 16 Pyridalyl 2 492 109 9,42 76 55 18 Dinotefurane 1 203 114 3,58 86 27 10 Pyridate 1 379 207 8,71 101 23 20 Dipropetryn 2 256 214 6,46 51 37 10 Quinoxyfen 1 308 162 7,78 21 43 10 Dipropetryn 2 256 144 6,46 51 37 10 Quinoxyfen 1 308 197 7,78 21 43 10 Dodémorphe 1 282 55 7,53 41 67 8 Rimsulfuron 1 432 182 5,29 161 29 16 Emamectine Benzoate 1 86 <	Dialifos 1	394	208	7,03	39	23	10	Pinoxaden 1	401	317	6,92	121	29	14
Diflubenzuron 2 312 142 6,45 1 47 16 Pyridalyl 2 492 109 9,42 76 55 18 Dinotéfurane 1 203 114 3,58 86 27 10 Pyridate 1 379 207 8,71 101 23 20 Dinotéfurane 2 203 87 3,58 86 69 10 Pyridate 2 379 351 8,71 101 15 16 Dipropetryn 1 256 214 6,46 51 37 10 Quinoxyfen 1 308 162 7,78 21 57 8 Dipropetryn 2 256 144 6,46 51 37 10 Quinoxyfen 2 308 197 7,78 21 43 10 Dodémorphe 1 282 55 7,53 41 67 8 Rimsulfuron 1 432 182 5,29 161 21 14 Emamectine Benzoate 1 886 <t< td=""><td>Dialifos 2</td><td>394</td><td>187</td><td>7,03</td><td>39</td><td>17</td><td>10</td><td>Pinoxaden 2</td><td>401</td><td>57</td><td>6,92</td><td>121</td><td>53</td><td>10</td></t<>	Dialifos 2	394	187	7,03	39	17	10	Pinoxaden 2	401	57	6,92	121	53	10
Dinotéfurane1 203 114 3,58 86 27 10 Pyridate 1 379 207 8,71 101 23 20	Diflubenzuron 1	312	159	6,45	1	15	10	Pyridalyl 1	492	85	9,42	76	109	10
Dinotéfurane 2 203 87 3,58 86 69 10 Pyridate 2 379 351 8,71 101 15 16	Diflubenzuron 2	312	142	6,45	1	47	16	Pyridalyl 2	492	109	9,42	76	55	18
Dipropetryn 1 256 214 6,46 51 31 12 Quinoxyfen 1 308 162 7,78 21 57 8 Dipropetryn 2 256 144 6,46 51 37 10 Quinoxyfen 2 308 197 7,78 21 43 10 Dodémorphe 1 282 55 7,53 41 53 8 Rimsulfuron 1 432 182 5,29 161 29 16 Dodémorphe 2 282 41 7,53 41 67 8 Rimsulfuron 2 432 325 5,29 161 21 14 Emamectine Benzoate 1 886 158 7,57 36 43 10 Spinétorame 1 760 142 7,58 101 37 10 Emmectine Benzoate 2 886 82 7,57 36 127 12 Spinétorame 2 760 98 7,58 101 101 12 EPTC 1 190	Dinotéfurane1	203	114	3,58	86	27	10	Pyridate 1	379	207	8,71	101	23	20
Dipropetryn 2 256 144 6,46 51 37 10 Quinoxyfen 2 308 197 7,78 21 43 10 Dodémorphe 1 282 55 7,53 41 53 8 Rimsulfuron 1 432 182 5,29 161 29 16 Dodémorphe 2 282 41 7,53 41 67 8 Rimsulfuron 2 432 325 5,29 161 29 16 Emamectine Benzoate 1 886 158 7,57 36 43 10 Spinétorame 1 760 142 7,58 101 37 10 Emamectine Benzoate 2 886 82 7,57 36 127 12 Spinétorame 2 760 98 7,58 101 101 12 EPTC 1 190 86 6,63 66 21 10 Spirotétramate 1 374 302 6,25 116 45 14 Etaconazole 1 329	Dinotéfurane 2	203	87	3,58	86	69	10	Pyridate 2	379	351	8,71	101	15	16
Dodémorphe 1 282 55 7,53 41 53 8 Rimsulfuron 1 432 182 5,29 161 29 16 Dodémorphe 2 282 41 7,53 41 67 8 Rimsulfuron 2 432 325 5,29 161 21 14 Emamectine Benzoate 1 886 158 7,57 36 43 10 Spinétorame 1 760 142 7,58 101 37 10 Emamectine Benzoate 2 886 82 7,57 36 127 12 Spinétorame 2 760 98 7,58 101 101 12 EPTC 1 190 86 6,63 66 21 10 Spirotétramate 1 374 216 6,25 116 45 14 EPTC 2 190 128 6,63 66 21 14 Spirotétramate 2 374 302 6,25 116 23 14 Etaconazole 1 329	Dipropetryn 1	256	214	6,46	51	31	12	Quinoxyfen 1	308	162	7,78	21	57	8
Dodémorphe 2 282 41 7,53 41 67 8 Rimsulfuron 2 432 325 5,29 161 21 14 Emamectine Benzoate 1 886 158 7,57 36 43 10 Spinétorame 1 760 142 7,58 101 37 10 Emamectine Benzoate 2 886 82 7,57 36 127 12 Spinétorame 2 760 98 7,58 101 101 12 EPTC 1 190 86 6,63 66 21 10 Spirotétramate 1 374 216 6,25 116 45 14 EPTC 2 190 128 6,63 66 21 14 Spirotétramate 2 374 302 6,25 116 23 14 Etaconazole 1 329 159 6,43 86 37 12 Teflubenzuron 1 383 158 7,49 151 21 10 Ethiprole 1 398	Dipropetryn 2	256	144	6,46	51	37	10	Quinoxyfen 2	308	197	7,78	21	43	10
Emamectine Benzoate 1 886 158 7,57 36 43 10 Spinétorame 1 760 142 7,58 101 37 10 Emamectine Benzoate 2 886 82 7,57 36 127 12 Spinétorame 2 760 98 7,58 101 101 12 EPTC 1 190 86 6,63 66 21 10 Spirotétramate 1 374 216 6,25 116 45 14 EPTC 2 190 128 6,63 66 21 14 Spirotétramate 2 374 302 6,25 116 23 14 Etaconazole 1 329 159 6,43 86 37 12 Teflubenzuron 1 383 158 7,49 151 21 10 Etaconazole 2 329 55 6,43 86 47 8 Teflubenzuron 2 383 141 7,49 0 51 12 Ethiprole 1 398 <td>Dodémorphe 1</td> <td>282</td> <td>55</td> <td>7,53</td> <td>41</td> <td></td> <td>8</td> <td>Rimsulfuron 1</td> <td>432</td> <td>182</td> <td>5,29</td> <td>161</td> <td>29</td> <td>16</td>	Dodémorphe 1	282	55	7,53	41		8	Rimsulfuron 1	432	182	5,29	161	29	16
Emamectine Benzoate 2 886 82 7,57 36 127 12 Spinétorame 2 760 98 7,58 101 101 12 EPTC 1 190 86 6,63 66 21 10 Spirotétramate 1 374 216 6,25 116 45 14 EPTC 2 190 128 6,63 66 21 14 Spirotétramate 2 374 302 6,25 116 23 14 Etaconazole 1 329 159 6,43 86 37 12 Teflubenzuron 1 383 158 7,49 151 21 10 Etaconazole 2 329 55 6,43 86 47 8 Teflubenzuron 2 383 141 7,49 0 51 12 Ethiprole 1 398 352 5,91 146 27 26 Tepraloxydime 1 342 250 6,30 116 19 26 Ethiprole 2 398	Dodémorphe 2	282	41	7,53	41	67	8	Rimsulfuron 2	432	325	5,29	161	21	14
EPTC 1 190 86 6,63 66 21 10 Spirotétramate 1 374 216 6,25 116 45 14 EPTC 2 190 128 6,63 66 21 14 Spirotétramate 2 374 302 6,25 116 23 14 Etaconazole 1 329 159 6,43 86 37 12 Teflubenzuron 1 383 158 7,49 151 21 10 Etaconazole 2 329 55 6,43 86 47 8 Teflubenzuron 2 383 141 7,49 0 51 12 Ethiprole 1 398 352 5,91 146 27 26 Tepraloxydime 1 342 250 6,30 116 19 26 Ethiprole 2 398 256 5,91 146 45 18 Tepraloxydime 2 342 166 6,30 116 29 18 Ethirimol 1 210	Emamectine Benzoate 1	886	158	7,57	36	43	10	Spinétorame 1	760	142	7,58	101	37	10
EPTC 2 190 128 6,63 66 21 14 Spirotétramate 2 374 302 6,25 116 23 14 Etaconazole 1 329 159 6,43 86 37 12 Teflubenzuron 1 383 158 7,49 151 21 10 Etaconazole 2 329 55 6,43 86 47 8 Teflubenzuron 2 383 141 7,49 0 51 12 Ethiprole 1 398 352 5,91 146 27 26 Tepraloxydime 1 342 250 6,30 116 19 26 Ethiprole 2 398 256 5,91 146 45 18 Tepraloxydime 2 342 166 6,30 116 29 18 Ethirimol 1 210 98 4,93 46 37 6 Tralkoxydime 1 330 284 7,78 126 17 18	Emamectine Benzoate 2	886	82	7,57	36	127	12	Spinétorame 2	760	98	7,58	101	101	12
Etaconazole 1 329 159 6,43 86 37 12 Teflubenzuron 1 383 158 7,49 151 21 10 Etaconazole 2 329 55 6,43 86 47 8 Teflubenzuron 2 383 141 7,49 0 51 12 Ethiprole 1 398 352 5,91 146 27 26 Tepraloxydime 1 342 250 6,30 116 19 26 Ethiprole 2 398 256 5,91 146 45 18 Tepraloxydime 2 342 166 6,30 116 29 18 Ethirimol 1 210 98 4,93 46 37 6 Tralkoxydime 1 330 284 7,78 126 17 18	EPTC 1	190	86	6,63	66	21	10	Spirotétramate 1	374	216	6,25	116	45	14
Etaconazole 2 329 55 6,43 86 47 8 Teflubenzuron 2 383 141 7,49 0 51 12 Ethiprole 1 398 352 5,91 146 27 26 Tepraloxydime 1 342 250 6,30 116 19 26 Ethiprole 2 398 256 5,91 146 45 18 Tepraloxydime 2 342 166 6,30 116 29 18 Ethirimol 1 210 98 4,93 46 37 6 Tralkoxydime 1 330 284 7,78 126 17 18	EPTC 2	190	128	6,63	66	21	14	Spirotétramate 2	374	302	6,25	116	23	14
Ethiprole 1 398 352 5,91 146 27 26 Tepraloxydime 1 342 250 6,30 116 19 26 Ethiprole 2 398 256 5,91 146 45 18 Tepraloxydime 2 342 166 6,30 116 29 18 Ethirimol 1 210 98 4,93 46 37 6 Tralkoxydime 1 330 284 7,78 126 17 18	Etaconazole 1	329	159	6,43	86	37	12	Teflubenzuron 1	383	158	7,49	151	21	10
Ethiprole 2 398 256 5,91 146 45 18 Tepraloxydime 2 342 166 6,30 116 29 18 Ethirimol 1 210 98 4,93 46 37 6 Tralkoxydime 1 330 284 7,78 126 17 18	Etaconazole 2	329	55	6,43	86	47	8	Teflubenzuron 2	383	141	7,49	0	51	12
Ethirimol 1 210 98 4,93 46 37 6 Tralkoxydime 1 330 284 7,78 126 17 18	Ethiprole 1	398	352	5,91	146	27	26	Tepraloxydime 1	342	250	6,30	116	19	26
	Ethiprole 2	398	256	5,91	146	45	18	Tepraloxydime 2	342	166	6,30	116	29	18
	Ethirimol 1	210	98	4,93	46	37	6	Tralkoxydime 1	330	284	7,78	126	17	18
Ethirimol 2 210 140 4,93 46 9 8 Tralkoxydime 2 330 138 7,78 126 27 10	Ethirimol 2	210	140	4,93	46	9	8	Tralkoxydime 2	330	138	7,78	126	27	10

Tableau II.6: Paramètres MS/MS, t_R, CE obtenus pour les pesticides analysés en HPLC-MS/MS

II.II.2.3. Extraction QuEChERS

Comme pour la méthodologie définie pour l'analyse des pesticides en GC-MS/MS, après optimisation des conditions de détection en MS/MS, des tests d'extraction QuEChERS, selon la méthode interne MO-0336, ont été réalisés sur 4 familles de céréales (blé, riz, maïs et seigle) issues de l'agriculture biologique. Dans un premier temps, les taux de récupération de ces pesticides ont été évalués sur ces matrices dopées à 10 µg/kg avec une solution contenant les pesticides étudiés. Cinq réplicats ont été réalisées et les coefficients de variation ont été calculés.

La même procédure d'extraction que celle présentée paragraphe II.II.1.3 a été appliquée. Cependant, l'étape de changement de solvant n'est pas nécessaire pour les extraits analysés en HPLC-MS/MS. L'étalon interne d'injection utilisé est l'atrazine- d_5 (figure II.13). Pour la mise en pilulier, 100 μ L d'étalon interne à une concentration de 20 μ g/L ont été ajoutés à 900 μ L d'extrait.

Figure II.13: Structure chimique de l'atrazine-d₅

La quantification des pesticides dans les matrices dopées a été réalisée par la méthode de l'étalonnage externe avec étalon interne (1-2-4-40-100 $\mu g/L$). Les courbes de calibration quadratiques pour tous les pesticides analysés, ont été établies. Pour le calcul des taux de récupération les équations II.1 et II.2 ont été utilisées.

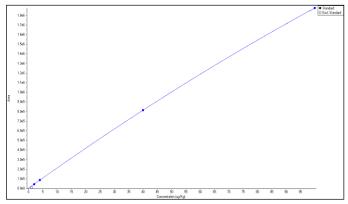


Figure II.14: Courbe de calibration quadratique du nitenpyrame

II.II.2.4. Résultats des extractions QuEChERS

Le tableau II.7 présente les taux de récupération ainsi que les coefficients de variation obtenus pour les tests d'extraction QuEChERS des pesticides analysés en HPLC-MS/MS dans les céréales (blé, riz, maïs et seigle). Le tableau montre que la majorité des taux de récupération de ces pesticides sont satisfaisants compris entre 70%-120% avec des valeurs de CV inférieures à 20%.

Il est à noter qu'une vingtaine de molécules sont très bien détectées dans les conditions opératoires, et répondent aux critères de validation, mais ne sont pas extraites avec la méthode QuEChERS (taux de récupération < 30%).

Molécule	Rdt Blé (%)	CV %	Rdt Riz (%)	CV %	Rdt Maïs (%)	CV %	Rdt Seigle (%)	CV %	Molécule	Rdt Blé (%)	CV %	Rdt Riz (%)	CV %	Rdt Maïs (%)	CV %	Rdt Seigle (%)	CV %
6-benzylaminopurine	72	3	78	5	67	6	77	11	Fenamidone	86	5	91	7	93	7	88	7
Ametoctradine	79	8	82	6	78	17	93	20	Fenpiclonil	78	18	81	26	116	17	70	26
Amisulbrom	85	16	78	4	80	12	69	13	Fénuron	85	11	91	8	63	10	82	12
Asulame	33	20	69	5	30	9	30	8	Flazasulfuron	36	29	65	13	40	16	44	16
Atraton	84	5	84	4	65	22	83	7	Flubendiamide	97	13	82	6	99	8	102	8
Azaconazole	92	13	92	8	94	6	91	14	Fluométuron	102	3	106	4	86	6	96	7
Aziprotryne	97	9	99	10	89	7	87	12	Flurochloridon	89	7	94	8	94	5	80	11
Benodanil	85	4	90	5	79	7	76	8	Fluopyram	89	4	97	6	93	6	81	5
Benoxacor	92	9	97	7	94	10	95	6	Fluxapyroxad	94	6	98	3	97	6	93	5
Benzoylprop-éthyle	88	7	93	5	89	5	84	14	Forchlofenuron	74	6	84	7	75	10	82	8
Bixafene	94	12	86	8	88	16	91	17	Ipconazole	97	7	100	3	94	6	97	6
Butocarboxim	110	9	104	11	95	11	81	12	Isoxabéne	107	10	123	11	111	10	112	10
Buturon	98	10	97	11	96	7	93	6	Mésotrione	25	17	75	12	23	14	26	13
Carbetamide	102	5	105	6	83	7	97	3	Metaflumizone	74	15	81	11	68	11	76	12
Carpropamide	93	7	106	3	100	7	97	7	Methiocarb-sulfone	90	6	100	9	78	4	92	10
Chlorbromuron	94	10	92	4	95	7	92	9	Methiocarb-sulfoxide	90	7	100	9	73	15	84	4
Chlorfluazuron	82	13	75	20	68	10	53	8	Métosulam	40	8	82	8	42	13	48	7
Chlorsulfuron	76	13	81	14	68	31	70	11	Metrafenone	83	10	81	19	82	8	83	9

Chloroxuron	65	13	77	18	83	14	82	6	Nicosulfuron	23	9	46	8	25	15	33	3
Chromafenozide	97	5	87	7	90	5	92	10	Nitenpyramee	88	7	91	9	89	6	84	6
Clofentezine	51	23	84	8	63	10	67	14	Pencycuron	83	10	89	6	81	7	82	6
Cyantraniliprole	89	15	83	10	65	23	84	17	Penthiopyrad	95	6	91	6	98	4	77	13
Dialifos	83	9	89	6	81	6	89	6	Pinoxaden	67	7	102	6	83	4	58	3
Diflubenzuron	62	12	39	13	50	14	40	16	Pyridalyl	87	14	79	24	75	16	68	23
Dinotéfurane	88	7	92	3	90	6	88	6	Pyridate	102	9	128	8	128	12	66	17
Dipropetryn	86	5	88	5	91	5	91	8	Quinoxyfen	82	8	81	10	75	11	72	8
Dodémorphe	88	4	87	5	93	4	90	11	Rimsulfuron	40	14	62	8	43	7	50	9
Emamectine Benzoate	98	8	101	12	89	4	99	10	Spinétorame	90	7	96	12	91	4	89	9
EPTC	75	14	88	11	86	16	67	21	Spirotétramate	88	4	94	8	83	9	86	8
Etaconazole	92	14	88	23	96	14	70	22	Teflubenzuron	55	18	72	14	69	20	71	17
Ethiprole	94	6	81	17	93	19	92	15	Tepraloxydime	80	10	92	8	85	15	68	10
Ethirimol	75	5	69	4	73	3	74	3	Tralkoxydime	75	5	85	9	70	9	71	10

Tableau II.7 : Taux de récupération et coefficient de variation des pesticides et contaminants analysés en HPLC-MS/MS

A partir de ces résultats, nous avons tenté d'expliquer les raisons pour lesquelles de faibles taux de récupération ont été obtenus pour certains pesticides dans ces céréales avec la méthode QuEChERS. Quelques hypothèses peuvent être émises :

A. Purification d-SPE avec l'adsorbant PSA/MgSO₄

L'adsorbant PSA est préconisé pour l'élimination des acides et des sucres issus de la matrice. Il est associé à du MgSO4 afin d'éliminer les traces d'eau résiduelles. Cependant, il est possible qu'il réagisse avec les pesticides possédant une ou plusieurs fonctions carboxyliques comme le daminozide et l'imazamox. Il est à noter aussi que la quantité de l'adsorbant utilisée peut avoir un impact sur les taux de récupération des pesticides [33]. Ici, les quantités utilisées (300 mg de PSA et 900 mg de MgSO₄) sont un bon compromis pour aboutir à des taux de récupération acceptables pour la majorité des molécules. De plus, les matrices riches en lipides telles que le maïs nécessitent une purification avec un autre support plus efficace (C18) afin d'éliminer ces lipides et diminuer les effets matrice.

B. Famille chimique des pesticides

Des taux de récupération de l'ordre de 50% ont été obtenus pour certains pesticides ayant une fonction sulfonamide, comme par exemple l'asulame (figure II.15 a), le métosulame (figure II.15 b) et le nicosulfuron (figure II.15 c). Ceci peut s'expliquer par la formation d'un complexe entre le cation Mg²⁺ et ce groupement fonctionnel lors de l'étape de purification.

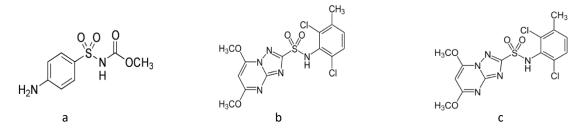


Figure II.15: Structures chimiques des molécules ayant une fonction sulfonamide

C. La polarité des molécules

Un profil de variation des taux de récupération en fonction de la polarité des pesticides a été établi figure II.16. La polarité est exprimée en Log P qui est une mesure de la solubilité différentielle de composés chimiques dans deux solvants (coefficient de partage octanol/eau). D'après ce graphique, on peut constater que globalement, pour les molécules les plus polaires (Log P<1), les taux de récupération sont inférieurs à 50%. Ceci peut s'expliquer par la difficulté de les extraire de la phase aqueuse après l'étape d'hydratation.

Figure II.16 : variation des taux de récupération des pesticides en fonction de leur polarité.

CONCLUSION

Ce chapitre 2 résume la partie matériels et méthode ainsi que les résultats de l'extension de la liste des pesticides et contaminants analysés au sein du laboratoire SGS France en GC-MS/MS et HPLC-MS/MS.

En GC-MS/MS, 170 pesticides et contaminants étaient analysés avec une méthode de 20 minutes. Une cinquantaine de molécules supplémentaires a pu être ajoutée à cette liste. D'abord, les transitions « SRM » ont été déterminées avec l'énergie de collision optimale pour chaque transition. Ensuite, des tests d'extraction QuEChERS ont été réalisés sur deux grandes familles de matrices alimentaires (céréales, fruits et légumes). Les taux de récupération de ces pesticides et contaminants ont été évalués grâce à des dopages correspondant aux valeurs de LOQ désirées (10 μg/kg). Les résultats obtenus pour les extractions des pesticides et contaminants dans les céréales sont satisfaisants sauf pour le maïs. En effet, les taux de récupération de quelques molécules sont supérieurs à 120%. Quant aux taux de récupération obtenus pour les fruits et légumes, les valeurs sont plus variées surtout pour les extraits d'orange. L'ajout de soude, réalisé dans les extraits d'orange est en partie responsable de ces résultats.

En HPLC-MS/MS, une liste de 200 pesticides et contaminants était analysée avec une méthode d'environ 12 minutes en ESI⁺. Plus d'une centaine de molécules ont pu être ajoutée à cette liste. Comme pour les pesticides ajoutés en GC-MS/MS, les transitions « SRM » ont été déterminées avec lénergies de collision optimale pour chaque transition. Ensuite, des tests d'extraction QuEChERS ont été réalisés sur quatre matrices céréalières (blé, riz, seigle et maïs) dopées à 10 μg/kg afin d'évaluer les taux de récupération. Les résultats obtenus pour ces extractions sont concluants et ont permis d'intégrer cette nouvelle liste de molécules à l'ancienne. Une autre méthode HPLC-MS/MS a pu être développée pour l'analyses de molécules de type phénoxyacides. Les taux de récupération de ces phénoxyacides dans le blé en utilisant la méthode QuEChERS sans l'étape de purification sont satisfaisants.

Grace à cette méthodologie et ce travail, actuellement, une méthode globale permettant l'analyse de 600 pesticides et contaminants en GC-MS/MS et en HPLC-MS/MS dans les matrices céréalières et les fruits et légumes est proposée aux clients SGS (annexe 3).

REFERENCES BIBLIOGRAPHIQUES

- [1] Hernández, A.F., Tsatsakis, A.M., Alegakis, A. (2021). *Exposure and Risk Assessment of Pesticide Use in Agriculture*, 329-345.
- [2] Aubertot, J.N., Barbier, J.M., Carpentier, A., Gril J.J., Guichard L., Lucas P., Savary S., Savini I., Voltz M. (2005). Réduire l'utilisation des pesticides et limiter leurs impacts environnementaux. *Pesticides, agriculture et environnement*.
- [3] Bain, C., Bernard, J-L., Fegeroux, A. (2010). Histoire de la protection des cultures, de 1850 à nos jours. Éditions Champ libre.
- [4] Couteux, A., Salaün, C. Index phytosanitaire acta, 45e éd., MAME, 2009.
- [5] Samsidar, A., Siddiquee S., Shaarani S. (2018). Trends in Food Science & Technology, 71, 188-201.
- [6] Collectif Pesticides et protection phytosanitaire dans une agriculture en mouvement ; ACTA, Association de coordination technique agricole, 2002.
- [7] Vidal-Ribeiro, V.H., Gontijo-Maia, L.S., Arneson, N.J., Coura-Oliveira, M., Wood-Read, H., Ané, J.M., dos Santos, J.B., Werle, R. (2021). *Crop Protection*, 144, 105576.
- [8] de Jaeger, C., Cherin, P., Fraoucene, N., Voronska., E. (2012). Médecine & Longévité, 4, 59-67.
- [9] Karallieddef, F.A.R.C.S., Senanayakef, R.C.P. (1989). British Journal of Anaesthesia, 63, 736-750.
- [10] Nahas, K.(1986). J.Chromatogr.A, 369, 445-448.
- [11] Shen, G., Lu, Y., Wang, M., Sun, Y. (2005). Journal of Environmental Management, 76, 355-362.
- [12] Khairy, M., A.Ayoub, H., A.Rashwan, F., F.Abdel-Hafezn, H. (2018). *Applied Clay Science*, *153*, 124-133.
- [13] Bertrand, C. Groupe francophone d'étude des pesticides organiques d'origine naturelle 2018. Laboratoire de Chimie des Biomolécules et de l'Environnement (Université de Perpignan).
- [14] F. Veillerette. ("Pesticides Le piège se referme", 03/2003 et "Pesticides, révélations sur un scandale français" avec Fabrice Nicolino chez Fayard, 2007).
- [15] SMITH, C., ROOT, E. (1999), The export of pesticides: shipments from US ports 1995-1996, Int. J. Of Occup. Environ. Health 5.
- [16] Bro, E., Millot, F., Decors, A., Devillers, J. (2015). *Science of The Total Environnement*, 521, 315-325.
- [17] Collectif Pesticides et protection phytosanitaire dans une agriculture en mouvement ; ACTA, Association de coordination technique agricole, 2002.
- [18] Berenji, M., Nemati, M., Pourheydar, B., Karimipour, M., Mohebbi, I., Jafari, A. (2021). *Chemosphere, 264*, 128464.

- [19] Cowie, A., Sarty, K., Mercer, A., Koh, J., Kidd, K., Martyniuka, C. (2017). *Journal of Proteomics*, 157, 71-82.
- [20] Sabarwal, A., Kumar, K., Singh, R. (2018). *Environmental Toxicology and Pharmacology, 63*, 103-114.
- [21] Costa, C., Teodoro, M., Rugolo, A., Alibrando, C., Giambò, F., Briguglio, G., Fenga, C. (2020). *Toxicology Reports, 7*, 759-767.
- [22] Mhlanga, S.M., Fuhrimann, S., Basera, W., Eeftens, M., Röösli, M., Aqiel-Dalvie, M. (2021). *Environment International, 146*, 106237.
- [23] Shao, Y., Jiang, L., Pan, J., He, Y.(2015). Journal of applied Microbiology, 191, 885-893.
- [24] Parrón, T., Requena, M., Antonio, A.F., Alarcón, R.(2011). *Toxicol Appl Pharmacol*, 256, 379-385.
- [25] Lee, G.H., Choi, K.C. (2020). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 235, 108789.
- [26] Tsai, M.S., Chen, M.H., Lin, C.C., Liu, C.Y., Che, P.C. (2019). Environmental Research, 179A, 108754.
- [27] Kielb, C., Lin, S., Herdt-Losavio, M., Bell, E., Chapman, B., Rocheleau, C.M., Lawson, C., Waters, M., Stewart, P., Olney, R., A. Romitti, P., Cao, Y., & Druschel, C. (2014). *International Journal of Hygiene and Environmental Health*, 217, 248-254.
- [28] Acosta-Maldonado, B., Sánchez-Ramírez, B., Reza-López, S., Levario-Carrillo, M. (2009). Mexico. *Human& Experimental Toxicology*, 28, 451-459.
- [29] Sauphanor, B., Miniggio, C., Faivre D'Arcier, F. (1993). J. Appl. Ent., 116, 467478.
- [30] Annual EU-wide Pesticide Residues Monitoring Report 2006.
- [31] Haib J., Hofer I., Renaud J.M.(2003). J.Chromatogr.A, 1020, 1173-1187.
- [32] Anastassiades, M., Lehotay, S.J., Štajnbaher, D., Schenck, F.J. (2003). *Journal of AOAC international*, 86, 412-431.
- [33] González-Curbelo, M.Á., Socas-Rodríguez, B., Herrera, A.V., González-Sálamo, J., Hernández-Borges, J., Rodríguez-Delgado, M.Á. (2015). *Trends in Analytical Chemistry, 71*, 169-185.
- [34] Rejczak, T., Tuzimski, T. A. (2015). Open Chemistry, 13, 980–1010.
- [35] Schenck, F.J., Hobbs, J.E., (2004). *Bulletin of Environmental Contamination and Toxicology*, 73, 24-30.
- [36] Pagliano, E., Zoltan, M., Juris, M. (2015). Analytica Chimica Acta, 896, 63–67.
- [37] Yogendrarajaha, P., Van Poucke, C., De Meulenaer, B., De Saeger, S. (2013). *Journal of Chromatogr*, 1297, 1–11.
- [38] He Z., Wang L., Peng Y., Luo M., Wang W., Liu, X. (2015). Food Chemistry, 169, 372-380.
- [39] Stoytcheva M. Pesticides Strategies for Pesticides Analysis. InTech (2011), Chine, 404 p., ISBN 978-953-307- 460-3.
- [40] Walorczyk, S. (2018). Journal of Chromatogr. A, (2008), 1208, 202–214.

- [41] Walorczyk, S., Drozdzynski, D. (2012). Journal of Chromatogr. A, 1251, 219–231.
- [42] Cladière, M., Delaporte, G., Le Roux, E., Camel, V. (2018). Food Chemistry, 242, 113-121.
- [43] Ohkawa, H., Miyagawa, H., Lee P.W. Pesticide chemistry. Crop protection, public health, environmental safety. Wiley-VCH (2007), Allemagne, 538 p., ISBN 978-3-527-31663-2.
- [44] Castillo, M., González, C., Miralles, A. (2011). *Analytical and Bioanalytical Chemistry*, 400, 1315–1328.
- [45] Lacina, O., Zachariasova, M., Urbanova, J., Vaclavikova, M., Cajka T., Hajslova, J. *Journal of Chromatogr. A*, 1262, 8-18.
- [46] Shabeer, T.P.A., Girame, R., Utture, S., Oulkar, D., Banerjee, K., Ajay, D., Arimboor, R., Menon, K.R.K. (2018). *Chemosphere*, 193, 447-453.
- [47] Tea Preparation of liquor for use in sensory tests. International Organization for Standardization (1980). ISO 3103:1980, 4 p.
- [48] Wu, C.C. (2017). Food Chemistry, 229, 580-587.
- [49] Maa, G., Zhanga, M., Zhua, L., Chena, H., Liua, X., Lua, C. (2018). *Journal of Chromatogr. A*, 1531, 22-31.
- [50] Simon, K., Wittenberg, J.B., Wong, J.W., Krynitsky, A.J., Noonan, G.O. Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD.
- [51] Simon, K.A., Wittenberg, J.B, Wong, J.W., Krynitsky, A.J., Noonan, O.J. Performance evaluation of an automated QuEChERS workflow platform for analysis of pesticides in fresh produce.
- [52] Trent, T. (2013). Determination of Pesticide Residues in tea by an Automated QuEChERS Solution. *Note application*, 1-9.
- [53] Trent, T., Trass, M. (2014). Determination of Pesticide Residues in honey by an Automated QuEChERS Solution. *Note application*, 1-7.
- [54] Olivier, M. (2016). Determination of 24 Pesticide Residues in Red Wine Using a QuEChERS Sample Preparation Approach and LC-MS/MS Detection, 1-8.
- [56] Christian, G. D. Anal. Chem., 5th Edition; 5e éd.; John Wiley & Sons, 1993.
- [57] Mehlis, B., Kertscher, U. (1997). *Anal. Chim. Acta*, 352, 71–83.
- [58] Benfenat, A., Gini, G., Piclin, N., Roncaglioni, A., Varì, M.R. (2003). Chemosphere, 53, 1155-1164.
- [59] Snyder, L.R., Kirkland, J.J., Glajch, J.L. *Practical HPLC Method Developpement*., Wiley-Interscience., Nw York, 1997.
- [60] Cai, S., Hanold, K.A., Syage, J. A. (2007). Anal. Chem., 79(6), 2491-2498.
- [61] Velkoska-Markovska, L., Petanovska-Ilievska, B., Vodeb, L. (2008). *Acta Chromatographica*, 21,109-118.
- [62] Tuzimski, T., Soczewiński, E. (2002). J. Chromatogr. A, 961, 277-283.

- [63] Zhanng, M., Chen, J., Mallik, A. K., Qiu, H., Jiang, S., Ihra, H. (2014). Anal. Chim. Acta, 833, 48-55.
- [64] Li, Y., Xu, L., Chen, T., Liu, X., Xu, Z., Zhang, H. (2012). Anal. Chim. Acta, 726, 102-108.
- [65] Wilson, N.S., Gilroy, J., Dolan, J.W., Snyder, L.R. (2004). J. Chromatogr. A, 1026 (1-2), 91-100.
- [66] Liu, X., Bordunov, A.V., Pohl, C.A. J. Chromatogr. A, 2006,1119 (1-2), 128-134.
- [67] Rahman, M.M., Takafuji, M., Ansarian, H.R., Ihara, H. (2005). Anal. Chem., 77(20),6671-6681.
- [68] Silva, C.R., Jardim, I.C.S.F., Airoldi, C. J. (2003). J. Chromatogr. A, 987 (1), 127-138.
- [69] Karu, N., Dicicnoski, G.W., Haddad, P.R. (2012). TrAC Trends in Anal. Chem., 40, 119-132.
- [70] Geerdink, R.B., Hassing, M., Ayarza, N., Bruggink, C., Wielheesen, P., Claassen, J., Epema, O.J. (2020). *Anal. Chim. Acta.1133*, 66-76.
- [71] Dovidauskas, S., Akemi-Okada, I., dos Santos, F.R. (2020). J. Chromatogr. A,1632, 461603.
- [72] Alpert, A.J. (1990). J. Chromatogr. A, 499,177-196.
- [73] McCalley, D.V. (2007). J. Chromatogr. A, 1171, 46-55.
- [74] Hemström, P., Irgum, K. (2006). *Journal of Separation Science*, 29, 1784-1821.
- [75] Buszewski, B., Noga, S. (2012). *Analytical BioAnal. Chem.*, 402, 231-247.
- [76] Tyteca, E., Périat, A., Rudas, S., Desmet, G., Guillarme, D. (2014). J. Chromatogr. A, 1337, 116-127.
- [77] Gama, M.R., da Costa Silva, R.G., Collins, C.H., Bottoli, C.B.G.(2012). *TrAC Trends in Anal. Chem.*, 37, 48-60.
- [78] Guo, Y. (2015). The Analyst, 140, 6452-6466.
- [79] A practical Guide to HILIC mechanisms, Method Developpemnt and TroubleShooting.
- [80] Espinosa, S., Bosch, E., Rosés, M. (2002). J. Chromatogr. A, 964, 55-66.
- [81] Subirats, X., Bosch, E., Rosés, M. (2009). J. Chromatogr. A, 1261, 2491-2498.
- [82] McCalley, D.V. (2015). J. Chromatogr. A, 1411, 41-49.
- [83] Jandera, P.(2011). Anal. Chim. Acta, 692 (1-2), 1-25.
- [84] Danezis, G.P., Anagnostopoulos, C.J., Liapis, K., Koupparis, M.A. (2016). *Anal. Chim. Acta*, 942, 121-138.
- [85] Hayama, T., Yoshida, H., K Todoroki. K., Nohta, H., Yamaguchi, M. (2008). *Rapid Commun. Mass Spectrom*, 22, 2203–2210.
- [86] Szpot, P., Buszewicz, B., Jurek, T., Teresiński, G. (2018). Journal of Chromatography, 18, 104-109.
- [87] W. Dong, M., Zhang, K. (2014). TrAC Trends in Anal. Chem, 63, 21-30.
- [88] Alves, J., Sonia, F., C.N, Queiroz. (2021). Journal of Food Composition and Analysis, 97, 126304.
- [89] N.M, Valera-Tarifaab., R, Santiago-Valverdeb., E, Hernández-Torresb., J.L, Martínez-Vidala., A, Garrido-Frenicha.(2020). *Food Chemistry*, *315*, 126304.
- [90] Tian, F., Qiao, C., Luo, J., Guo, L., Pang, T., Pang, R., Li, J., Wang, C., Wang, R., Xie, H. (2020). *Journal of Chromatography B*, 1152, 122261.

- [91] Kmellár, B., Fodor, P., Pareja, L., Ferrer, C., Martínez-Uroz, M. A., Valverde, A., Fernandez-Alba, A.R. (2008). *J. Chromatogr. A*, 1215, 37-50.
- [92] P. G. M. Kienhuis, R. B. Geerdink. (2000). TrAC Trends in Anal. Chem., 19, 249-259.
- [93] Hajslová, J., Zrostlíková, J. (2003). J. Chromatogr. A, 1000, 181-197.
- [94] Smelcerovic, A., Lamshoeft, M., Radulovic, N., Ilic, D., Palic, R. (2009). Chromatographia, 71, 113-116.
- [95] Cole, R. B. Electrospray ionization mass spectrometry: fundamentals, instrumentation, and applications; Wiley, 1997.
- [96] Gaskell, S.J. (1997). Journal of Mass Spectrometry, 32, 677-688.
- [97] Núñez, O., Moyano, E., Galceran, M. T. (2005). *TrAC Trends in Anal. Chem.*, 24, 683-703.
- [98] Periat, A., Kohler, I., Thomas, A., Nicoli, R., Boccard, J., Veuthey, J.L., Schappler, J., Guillarme, D.(2016). *J. Chromatogr. A, 1439, 42-53*.
- [99] Desfontaine, V., Capetti, F., Nicoli, R., Kuuranne, T., Veuthey, J.L., Guillarme, D.(2018). *Journal of Chromatography B*, 1079, 51-61
- [100] Kienhuis. P. G. M, R., Geerdink, B. (2000). TrAC Trends in Anal. Chem., 19, 249-259.
- [101] Thurman, E.M., Ferrern, I., Fernandez-Alba A., Comprehensive Anal. Chem., Volume XLIII, Chapter 8: LC-MS. I: Basic principles and technical aspects of LC-MS for pesticide analysis.
- [102] Zimmer, D. (2003). Chromatographia, 57, 325-332.
- [103] Hoffmann, E., Stroobant, V. Spectrométrie de masse ; Dunod, 2005.
- [104] Lawson, G., Todd, J.F.J., Bonner R.F., Dyn. Mass Spectrom. 1975, 4, 39.
- [105] Campana, J.E., Int. J. Mass Spectrom. Ion Phys. 1980, 33, 101.
- [106] Dawson, P.H., Whetten, N.R., J. Vac. Sci. Technol. 1968, 5, 11.
- [107] Murray, K.K., Boyd, R.K., Eberlin, M. N., Langley, G. J., Li, L., Naito, Y. Standard Definitions of Terms Relating to Mass Spectrometry (IUPAC Recommendations 2006).
- [108] Gas Chromatography and mass spectrometry: a practical guide, Kitson, Larsen & McEwen, academic press, 1996.
- [109] Alder, L., Greulich, K., Kempe, G., Vieth, B.(2006). Mass spectrometry reviews, 25,838-865.
- [110] Dresen, S., Ferreirós, N., Gnann, H., Zimmermann, R., Weinmann, W. (2010). *Analytical BioAnal. Chem.*, 396,2425-2434.
- [111] Sannino, A., Bolzoni, L., Bandini, M. (2004). J. Chromatogr. A, 1036, 161-169.
- [112] Garrido Frenich, A., Martínez Vidal, J.L., López, T., Cortés Aguado, S., Martínez Salvador, I. (2004). *J. Chromatogr. A*, 1048, 199-206.
- [113] Haib, J., Hofer, I., Renaud, J. M. (2003). J. Chromatogr. A, 1020, 173-187.
- [114] Hernández, F., Pozo, O.J., Sancho, J.V., Bijlsma, L., Barreda, M., Pitarch, E. (2006). *J. Chromatogr. A*, 1109, 242-252.

- [115] Hogendoorn, E., van Zoonen, P. (2000). J. Chromatogr. A, 892, 435-453.
- [116] Haib, J., Hofer, I., Renaud, J. M. (2003). J. Chromatogr. A, 1020, 173-187.
- [117] Slobodník, J., Hogenboom, A. C., Vreuls, J. J., Rontree, J. A., van Baar, B. L. M, Niessen, W. M. A., Brinkman, U. A. Th. (1996). *J. Chromatogr. A*, 741, 59-74.
- [118] Rocio, C., Moyano, E., Galceran, M.T. (2001). J. AOAC International, 84, 1903.
- [119] Sancho, J. V., Pozo, O. J., Zamora, T., Grimalt, S., Hernandez, F. (2003). *J. Agric. Food Chem.*, 51, 4202-4206.
- [120] West, S. D., Hastings, M. J., Shackelford, D. D., Dial, G. E. (2007). *J. Agric. Food Chem.*, 52, 5781-5786.
- [121] Hall, G. L., Engebretson, J., Hengel, M. J., Shibamoto, T. (2004). J. Agric. Food Chem., 52, 672-676.
- [122] Lehotay, S. J., de Kok, A., Hiemstra, M., van Bodegraven, P. (2005). J. AOAC International 88, 595.
- [123] Ortelli, D., Edder, P., Corvi, C. Anal. Chim. Acta 520 (2004) 33-45.
- [124] Zrostlíková, J., Hajšlová, J., Kovalczuk, T., Štěpán, R., Poustka, J. (2003). *J. AOAC International*, 86, 612.
- [125] Granby, K., Andersen, J. H., Christensen, H. B. (2004). Anal. Chim. Acta, 520, 165-176.
- [126] Hogenboom C., Hofman, M. P., Kok, S. J., Niessen, W. M. A., Brinkman U. A. (2000). *J. Chromatogr. A*, 892, 379-390.
- [127] Taylor, M. J., Hunter, K., Hunter, K. B., Lindsay, D., Le Bouhellec, S. (2002). *J. Chromatogr. A*, 982, 225-236.
- [128] Blasco, C., Font, G., Manes, J., Pico, Y. (2003). Anal. Chem., 75, 3606-3615.
- [129] Blasco, C., Font, G., Picó Y. (2004). J. Chromatogr. A, 1043, 231-238.
- [130] Sannino, A., Bolzoni, L., Bandini, M. (2004). J. Chromatogr. A, 1036, 161-169.
- [131] Klein, J., Alder, L. (2003). J. AOAC International, 86, 1015.
- [132] Hernández, F., Pozo, O.J., Sancho, J.V., Bijlsma, L., Barreda, M., Pitarch E. (2006). *J. Chromatogr. A*, 1109, 242-252.
- [133] Ettre, S.L., LCGC North America, vol. 26, no 1, 1e janvier 2008.
- [134] Gwenola Burgot, Jean-Louis Burgot, Lavoisier, 3^e édition, 2011.
- [135] Tranchant J., Manuel pratique de chromatographie en phase gazeuse, 1995, Masson.
- [136] Rouessac, F., Rouessac, A., Analyse chimique Méthodes et techniques instrumentales modernes 5^{ème} Ed., 2000, Dunod.
- [137] Concha-Graña. E., Turnes-Carou, I., Muniategui-Lorenzo, S., López-Mahía, P., Fernández-Fernández, E., .Prada-Rodríguez, D. (2002). *J. Chromatogr. A*, 958, 17-24.
- [138] Buser, H.R., Haglund, P., Müller, M.D., Poiger, T., Rappe, C. (2000). *Chemosphere*, 41, 4, 473-479.
- [139] Görgényi, M., Héberger, K. J. (2003). J. Chromatogr. A, 985, 11-19.
- [140] Wu, N., Medina, J.C., LLee, M. (2000). J. Chromatogr. A, 892, 3-13.

- [141] Bouchonnet, S., Hoppilliard, Y., Kargar-Grisel, T. (1999). Les différents types de spectromètres de masse utilisés pour l'analyse des composés organiques et bio-organiques, *Spectra Analyse*, 207, 11-25.
- [142] Hajšlová, J., Čajka, T. (2007). Food Toxicants Analysis, 419-473.
- [143] Longevialle, P., Principes de la spectrométrie de masse des substances organiques, 1981, Masson.
- [144] Fernández M., Pico Y., Manes, J. (2001). Chromatographia, 54, 302-308.
- [145] Fillion J., Sauvé F., Selwyn J. (2000). J. AOAC International, 83, 698.
- [146] Hernando, M. D., Agüera, A., Fernández-Alba, A. R., Piedra L., Contreras M. (2001). *The Analyst*, 126, 46-51.
- [147] Agüera, A., Contreras, M., Crespo, J., Fernández-Alba, A. R. (2002). The Analyst, 127, 347-354.
- [148] Arrebola, F. J., Martínez Vidal, J. L., Mateu-Sánchez, M., Álvarez-Castellón, F. J. (2003). *Anal. Chim. Acta*, 484, 167-180.
- [149] Gamón, M., Lleó, C., Ten, A., Mocholí, F. (2001). J. AOAC International, 84, 1209.
- [150] Schachterle, S., Feigel, C. (1996). J. Chromatogr. A, 754, 411-422.
- [151] Liu, X., Li, Y-F, Meng, W., Li, D-X., Sun, H., Tong, L., Sun, G. (2015). *Journal of Chromatography B*,1016, 1-12.
- [152] Rutkowsk, E., Łozowicka, B., Kaczyński, P. (2019). Food Chemistry, 279, 20-29.
- [153] Ariel Geer Wallace, M., P. McCord, J. (2020). *Breathborne Biomarkers and the Human Volatilome*, 253-270.
- [154] Chernushevich, V., Loboda, V.A., Thomson, B.A. An introduction to quadrupole–time-of-flight mass spectrometry.
- [156] Portolés, T., Sancho, J.V., Hernández, H., Newton, A., Hancock, P. (2010). *J. Mass. Spectrom.*, 45, 926-936.
- [157] Wua, L., Gaobc, X., Xiabd, F., Joshib, J., Borzab, T., Wang-Pruskiab, G; (2019). *Physiological and Molecular Plant Pathology*, 106, 49-56.
- [158] Kingdon, K.H., Phys. (1923) Rev., 21, 408-418.
- [159] Hu, Q., Noll, R.J., Li, H., Makarov, A., Hardman, M., Graham Cooks R.J. (2005). *Mass. Spectrom.*, 40, 430–443.
- [160] Perry, R.H., Cooks, R.G., Noll, R.J. (2008). Mass Spectrom. Rev., 27, 661–699.
- [161] Knight, R.D. (1981). Appl. Phys. Lett., 38, 221–223.
- [162] Makarov, A. (1999). US Patent No. 5,886,346.
- [163] Makarov, A. (2000). *Anal. Chem.*, 72, 1156–1162.
- [164] Hardman, M., Makarov, A. (2003). *Anal. Chem.*, 75, 1699–1705.
- [165] Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K. Horning, S. (2006). *Anal. Chem.*, 78, 2113–2120.

- [166] Hecht, E., Eliuk, S., Scigelova, M., Makarov, A. (2019). Encyclopedia of Analytical Chemistry, ©2000, John Wiley & Sons, Ltd.
- [167] Makarov, A. (2010). CRC Press, Boca Raton, 251–272, Vol. IV.
- [168] Denisov, E., Damoc, E., Lange, O., Makarov, A. (2012). Int. J. Mass Spectrom., 325–327, 80–85.
- [169] Olsen, J.V., Godoy, L.M.F., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov, A., Lange, O., Horning, S., Mann, M. (2005). *Mol. Cell. Proteomics.*, 4, 2010–2021.
- [170] Michalski, A., Damoc, E., Hauschild, J.P., Lange, O., Wieghaus, A., Makarov, A., Nagaraj, N., Cox, J., M., Mann, Horning, S. (2011). *Mol. Cell. Proteom.*, 10, M111 011015.
- [171] Belov, M., US Patent No. 9,887,074, 2018.
- [172] Senyuva, H.Z., Gökmen, V., Sarikaya, E.A. (2015). Food. Addit. Contam. Part A Chem. Anal. Control. Expo. Risk. Assess., 32, 1568–1606.
- [173] Sugimoto H., Iguchi, M., Jinno, F. (2017). Anal. Bioanal., Chem., 409, 3551–3560.
- [174] Alder, L., Steinborn, A., Bergelt, S. (2011). J. AOAC Int., 94, 1661–1673.
- [175] Kellmann, M., Muenster, H., Zomer, P., Mol, H. (2009). *J. Am. Soc. Mass Spectrom.*, 20, 1464–1476.
- [176] Mol, H.G., Van Dam, R.C., Zomer, P., Mulder, P.P. (2011). Food Addit. Contam. Chem. Anal. Control Expo. Risk Assess, 28, 1405–1423.
- [177] Hogenboom, A.C., Leerdam, J.A., Voogt, P. (2009). J. Chromatogr. A, 1216(3), 510–519.

	CIDES DANS LES RES GRASSES.

INTRODUCTION

La culture des graines de colza est considérée comme la deuxième culture de graines oléagineuses principalement en Europe orientale et en Asie. Dans le but d'améliorer les rendements des récoltes, de nombreux insecticides (pyréthrinoïdes, organochlorés, organophosphorés, carbamates), de fongicides (phtalimides, triazoles, imidazoles sulfamides) et d'herbicides (sulfonylurées et diphényléthers) peuvent être utilisés. Ces différents pesticides sont retrouvés sous forme de résidus dans les récoltes et peuvent être dangereux pour la santé humaine, ce qui a poussé les autorités européennes à accentuer la surveillance et la législation de ces substances.

Les principaux problèmes rencontrés lors de l'analyse des pesticides dans les graines de colza sont liés à l'étape de préparation de l'échantillon (extraction et purification). En effet, les échantillons de graines colza contiennent jusqu'à 40% de matières grasses, des fibres et des protéines. Les principaux composants de cette matière grasse sont les acides gras (oléique, linoléique et α-linoléique) et les TAG. La quantification d'une large gamme de pesticides à l'état de traces dans ces graines est complexe. En effet, certains pesticides lipophiles peuvent persister dans la matrice et de nombreux composés issus de la matrice peuvent être co-extraits avec les solutés et interférer lors de leur quantification.

Les techniques classiques d'extraction des pesticides de ces matrices, telles le Soxhlet et l'ASE sont très chronophages et nécessitent l'utilisation de quantités importantes de solvants organiques, représentant eux-mêmes un danger pour la santé humaine. En 2003, le développement d'une nouvelle méthode de préparation d'échantillon simplifiée (QuEChERS) dédiée à l'extraction des pesticides dans les fruits et légumes, riches en eau, a été décrite pour la première fois dans la littérature. Elle a permis de réduire considérablement la consommation de solvants organiques, de diminuer la durée de l'étape de préparation et le coût, tout en simplifiant et en uniformisant l'extraction et la purification. Cette méthode a été appliquée avec succès à l'extraction de résidus de pesticides dans diverses matrices grasses, telles que les huiles et les avocats, en utilisant différents adsorbants pour la purification d-SPE, comme le PSA et PSA/C18. Cependant, la purification des extraits de graines oléagineuses en utilisant ces supports n'est pas concluante.

Ce chapitre est rédigé sous forme d'une publication scientifique soumise dans le journal Food Analytical Methods : Multiresidue pesticide analysis in rapeseeds by using different d-SPE sorbents based on QuEChERS methodology followed by reversed-phase liquid chromatography-tandem mass spectrometry.

De nouveaux matériaux d-SPE (Z-Sep, Z-Sep $^+$ et EMR-Lipid) ont été testés pour la purification d'extraits de graines de colza en vue de la quantification de 179 résidus de pesticides de familles chimiques et polarités variées. Les résultats obtenus pour ces extraits seront comparés à ceux obtenus pour des extraits purifiés avec PSA/C18, des extraits congelés ou même des extraits non purifiés. Pour cela, les échantillons ont été dopés à deux niveaux, 10 μ g/kg et 50 μ g/kg et les taux de récupération, les effets de matrice et les LOQ ont été comparés. Enfin, les extraits purifiés ont été injectés en GC-Q-Orbitrap pour estimer l'efficacité de la purification de chacun des adsorbants.

Chapitre III : Quantification de pesticides dans les matrices à fortes teneurs en matières grasses.

ICLE I. MULTIRESIDUE PESTICIDE ANALYSIS IN RAPESEEDS BY USING DIFFERENT D- SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED PHASE LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY.		Chapitre III :						
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
SPE SORBENTS BASED ON QUECHERS METHODOLOGY FOLLOWED BY REVERSED								
PHASE LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY.	CLE I. I	Multiresi	DUE PESTIO	CIDE ANAL	YSIS IN RAP	ESEEDS BY	USING DIFFER	RENT D-
	SPE s	ORBENTS E	BASED ON (QUECHER	S метнор	DLOGY FOLL	OWED BY RE	
	SPE s	ORBENTS E	BASED ON (QUECHER	S метнор	DLOGY FOLL	OWED BY RE	
	SPE s	ORBENTS E	BASED ON (QUECHER	S метнор	DLOGY FOLL	OWED BY RE	
	SPE s	ORBENTS E	BASED ON (QUECHER	S метнор	DLOGY FOLL	OWED BY RE	
	SPE s	ORBENTS E	BASED ON (QUECHER	S метнор	DLOGY FOLL	OWED BY RE	
	SPE s	ORBENTS E	BASED ON (QUECHER	S метнор	DLOGY FOLL	OWED BY RE	
	SPE s	ORBENTS E	BASED ON (QUECHER	S метнор	DLOGY FOLL	OWED BY RE	
	SPE s	ORBENTS E	BASED ON (QUECHER	S метнор	DLOGY FOLL	OWED BY RE	
	SPE s	ORBENTS E	BASED ON (QUECHER	S метнор	DLOGY FOLL	OWED BY RE	
	SPE s	ORBENTS E	BASED ON (QUECHER	S метнор	DLOGY FOLL	OWED BY RE	

Multiresidue pesticide analysis in rapeseeds by using different d-SPE sorbents based on

QuEChERS methodology followed by reversed-phase liquid chromatography-tandem

mass spectrometry.

Saida Belarbi^{1,2}, Martin Vivier², Wafa Zaghouani², Aude De Sloovere², Valérie Agasse-

*Peulon*¹, *Pascal Cardinael*^{1*}.

¹Normandie Univ, Laboratoire SMS-EA3233 FR3038 CNRS, UNIROUEN, Place Emile

Blondel, F-76821, Mont-Saint-Aignan Cedex, France

²SGS France laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, Saint

Etienne du Rouvray F-76801 Cedex, France

* Corresponding author: https://orcid.org/0000-0001-8828-4527

E-mail address: pascal.cardinael@univ-rouen.fr

Full postal address: Laboratoire SMS-EA3233, UFR Sciences & Techniques, Place Emile

Blondel, F-76821, Mont-Saint-Aignan Cedex, France

Keywords

Multiresidue pesticide analysis.

HPLC-MS/MS method.

Rapeseeds.

QuEChERS.

113

Abstract

Extraction of pesticides in rapeseed samples remains a great analytical challenge due to the complexity of the matrix, which contains proteins, fatty acids, high amounts of triglycerides and cellulosic fibers. In this study, a method was developed for the quantification of 179 pesticides from a wide variety of chemical families in rapeseeds using HPLC-MS/MS in the selected reaction monitoring mode. The performance of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was evaluated using different purification methods, including freezing and applying four dispersive solid phase extraction (d-SPE) sorbents containing common octadecylsilane silica/primary-secondary amine adsorbent (PSA/C18) and new commercialized d-SPE materials dedicated to fatty matrices (Z-Sep, Z-Sep⁺ and enhanced matrix removal (EMR-Lipid) sorbents). The analytical performances of these different sorbents were compared according to the SANTE/12682/2019 document. Two spiking levels (10 µg/kg and 50 µg/kg) were tested in 5 replicates. The best results in terms of pesticide average recoveries were obtained using EMR-Lipid. With this d-SPE sorbent, the limits of quantification (LOQ) were in the range of 1.72 µg/kg to 6.39 µg/kg for 173 of the pesticides. Only the recovery for tralkoxydim was not satisfactory (29%). The matrix effect was evaluated and proved to be limited between -50% and 50% for 169 pesticides with this EMR-Lipid and freezing. GC-Q-Orbitrap analyses confirmed the best efficiency of the EMR-Lipid sorbent for the purification of rapeseeds in accordance with the observed matrix effects.

Introduction

Rapeseeds are the second most important oilseed crops worldwide and are mainly grown in Eastern Europe and Asia. They contain functional compounds, such as dietary fibers, unsaturated fatty acids, proteins and phenolic compounds, which are associated with several health benefits (EUROSTAT 2016). A wide range of insecticides (pyrethroids, organochlorines, organophosphorus, carbamates), fungicides (phthalimides, triazoles,

114

imidazole sulfamides) and herbicides (sulfonylureas and diphenyl ethers) are used to increase harvest yields (European Food Safety Authority 2014). Some pesticides may remain in the seeds at high levels after harvest. These pesticides pose a serious threat to environmental and human health (Alberto et al. 2016). Between 2013 and 2020, several studies confirmed the presence of these pesticides in various fatty matrices, such as olive oil (Anagnostopoulos and Miliadis 2013; Likudis et al. 2014; Tuzimski T and Rejczak T 2016), soybeans (Zhao et al. 2014) and sunflower oil (Bajpai et al. 2007).

To ensure consumer security, European authorities have established strict maximum residue limit (MRL) values for several pesticides. These MRL values can be very low; for instance, the MRL value was 0.01 mg/kg diflufenican in rapeseeds. The most frequently detected molecules in rapeseeds are pirimiphos-methyl, dichlorvos, and malathion. These insecticide residues are found at relatively low levels, on average 0.1 to 0.25 mg/kg, in most crude oil samples from rapeseeds and sunflower seeds (70-80% of cases) and in the seeds, themselves (20 in 30% of cases). Moreover, maximum levels of the sums of these residues in the crude oils can increase to 1 mg/kg (Parilla Vázquez 2016 et al.).

To ensure the accurate quantification of pesticides in rapeseed samples, purification steps were necessary before injecting extracts to remove fat and coextracted compounds and to avoid matrix effects (Gilbert-López et al. 2010; Gilbert-López et al. 2009). Indeed, rapeseed samples contain up to 40% fat, fibers and proteins, and the major components are fatty acids (oleic, linoleic, and α -linoleic) and triglycerides (Yanty et al. 2011). Analysis of a wide range of pesticides at trace levels in rapeseed samples is very challenging because lipid coextracts can affect the extraction and quantification performance (Farajzadeh et al. 2014). Moreover, nonpolar and fat-soluble pesticides remain difficult to extract, leading to poor recoveries.

Several purification methods have been developed to eliminate the fatty matrix from the extracts of various oil seeds. Freezing-out is the simplest method for fat removal from the

extract because fat precipitates below 0°C and subsequently can be separated by centrifugation. Unfortunately, this method is time consuming and does not totally remove the fatty matrix (Koesukwiwat et al. 2010; Nguyen et al. 2010). Gel permeation chromatography helps to separate low molecular mass compounds, such as pesticides, from high molecular mass compounds, such as lipids. However, this technique is not suitable for pesticides that have a high molecular weight, such as pyrethroids (Patel et al. 2005; Chung and Chen 2011).

QuEChERS (quick, easy, cheap, effective, rugged and safe) is the reference method for the extraction of pesticides in food matrices (fruits and vegetables) to achieve satisfactory recoveries (Anastassiades et al. 2003). This method was applied to the extraction of pesticide residues in various fatty matrices, such as vegetables containing high oil amounts, oils and oilseeds, using different sorbents for d-SPE cleanup, such as PSA (Hernando et al. 2007; Castillo et al. 2011) and PSA/C18 (Polgár et al. 2012; Anagnostopoulos and Miliadis 2013). This method appeared to be more convenient for enhancing pesticide recoveries and purifying extracts than the methods previously described (freezing and gel permeation). However, the extraction of some lipophilic pesticides remains problematic, especially in rapeseed. Currently, no sample preparation can sufficiently minimize the matrix effects for these specific compounds (Ferrer et al. 2005, Cunha et al. 2007).

A new type of d-SPE sorbent was developed by Merck based on zirconia sorbent materials (Z-Sep, Z-Sep⁺) for fatty acid removal from fatty samples to improve matrix cleanup. Z-Sep is a silica support coated with zirconium dioxide. Distinct classes of active sites are present on its surface: Lewis acid sites, Brønsted acid sites and Brønsted base sites. Z-Sep⁺ consists of silica particles coated with a zirconium dioxide layer that is grafted with octadecylsilane groups. Zirconium dioxide material has been demonstrated to be a good adsorbent for carboxylic acids derived from fatty acids due to Lewis acid-base interactions (Dobson and McQuillan 2000). The efficiency of this material has been demonstrated for pesticide residue quantifications in

116

different vegetable oils (Parrilla Vázquez et al. 2016) as well as in almonds and avocados (Rajskia et al. 2013).

Recently, studies with new d-SPE materials, such as the novel sorbent material Agilent Bond Eluant Enhanced Matrix Removal-Lipid (EMR-Lipid), were published, demonstrating the selective retention of fat compounds without retention of targeted pesticides (Parrilla Vázquez et al. 2015; Zhao and Lucas 2015). EMR-Lipid material is a porous sorbent that selectively retains long unbranched hydrocarbons that are characteristic of fatty matrices. Thus, large analytes such as pesticides cannot interact with the sorbent and remain in solution. QuEChERS extraction followed by EMR-Lipid d-SPE was successfully applied for multiresidue analyses of pesticides in avocado by GC-MS/MS (Zhao and Lucas 2015b) and LC-MS/MS (Zhao and Lucas 2015c). The performance of EMR-Lipid has also been tested for other representative high lipidic matrices, including bovine liver (Zhao and Lucas 2015a) and salmon (Lucas and Zhao 2015).

The main objective of this work was to evaluate different d-SPE materials, including Z-Sep, Z-Sep $^+$, EMR-Lipid and PSA/C18, as QuEChERS purification materials for pesticide analyses in rapeseeds. For this, a sensitive, robust, and reliable multiresidue analytical method based on QuEChERS followed by LC-MS/MS was developed on 179 pesticides of various polarities and chemical families. Organic rapeseed samples were spiked at two levels, $10 \,\mu\text{g/kg}$ and $50 \,\mu\text{g/kg}$. Then, the recovery rates, matrix effects and LOQs were compared. Finally, the purified extracts were injected using GC-Q-Orbitrap to estimate the amount of residual matrix compounds remaining and the purification efficiency.

Materials and methods

2.1. Chemicals and reagents

Ultrapure water (18.2M Ω .cm) was obtained from a Milli-Q water purification system (Millipore Ltd., Bedford, MA, USA). Acetonitrile (ACN) and methanol (MeOH) were purchased from VWR (Fontenay-sous-Bois, France). Formic acid and ammonium formate were purchased from Sigma Aldrich (Saint Quentin Fallavier, France).

QuEChERS extraction kits were purchased from Agilent Technologies (Santa Clara, CA, USA): kits contained 4 g of magnesium sulfate (MgSO₄), 1 g of sodium chloride (NaCl), 1 g of sodium citrate and 0.5 g of sodium citrate sesquihydrate. PSA/C18 and EMR-Lipid sorbents were purchased from Agilent Technologies (Santa Clara, CA, USA). Z-Sep and Z-Sep⁺ sorbents were obtained from Supelco (Bellefonte, PA, USA).

High purity pesticide standards from a wide variety of chemical families and a large range of polarities (organophosphorus, carbamates, benzimidazoles, triazoles, pyridines, hydroxyanilides, strobilurins, etc.) were purchased from Sigma Aldrich (Steinheim, Germany) and the Dr. Ehrenstorfer Laboratory (Augsburg, Germany).

2.2. Preparation of standard solutions

Individual stock solutions were prepared by dissolving 10 mg of standards in 20 mL of ACN to obtain a solution of 0.5 g/L for each pesticide. An intermediate solution containing pesticides at 1000 μ g/L was prepared by adding 0.1 mL to individual solutions to a 50 mL volumetric flask. Standard working solutions at various concentrations were prepared by dilution of the intermediate solutions in ACN appropriately. Then, a calibration range (1, 2, 4, 40, 100 μ g/L) was also prepared for the quantification step. Atrazine-d5 was also prepared at a concentration of 100 μ g/mL and further diluted to 2 μ g/mL in ACN and was added to the final concentration

prior to HPLC-MS/MS analysis as an internal standard (IS). All stock and working solutions, including the IS, were stored in amber vials with Teflon-lined caps and then stored at -20°C.

2.3. Samples and spiking procedure

Rapeseed samples were purchased from a local organic supermarket and had been previously determined to be free of the target pesticides. All samples were mechanically ground until homogeneity was reached. For recovery studies, the organic rapeseed samples were spiked with the standard solution in ACN at $10 \,\mu\text{g/kg}$ and $50 \,\mu\text{g/kg}$.

2.4. QuEChERS method

A mass of 5 g of homogenized samples of rapeseed was weighed into a 50 mL disposable polypropylene centrifuge tube. Thereafter, ultrapure water (10 mL) was added, the mixture was stirred vigorously for one minute, 10 mL of ACN was added, and then the mixture was immediately shaken for 1 min. Next, a salt mixture containing 4 g of anhydrous magnesium sulfate, 1 g of sodium chloride, 1 g of trisodium citrate dihydrate and 0.5 g of disodium hydrogen citrate sesquihydrate was added for good separation of the water and ACN phases. The tubes were immediately shaken for 1 min and then centrifuged for 5 min at 4,700 rpm at 20°C. A volume of 6 mL of the supernatant was transferred into a polypropylene centrifuge tube containing various purification supports (QuEChERS d-SPE cleanup):

- (a) d-SPE with PSA/C18 sorbent (750 mg of PSA and 125 mg of C18)
- (b) d-SPE with EMR-Lipid sorbent (175 mg)
- (c) d-SPE with Z-Sep sorbent (175 mg)
- (d) d-SPE with Z-Sep⁺ sorbent (175 mg)

In addition, one sample of rapeseed extract was frozen at -20°C before PSA/C18 purification to evaluate the influence of the freezing-out step. Purification tubes were immediately shaken for 1 min and then centrifuged for 5 min at 4,700 rpm at 20°C. A volume of 4 mL for each

extract was collected and acidified with 40 μ L of 5% formic acid in ACN. Finally, an unpurified rapeseed extract was also tested. The extracts were placed in a 1.5 mL vial (900 μ L of extract and 100 μ L of atrazine-d-5) and injected into the HPLC-MS/MS for the evaluation of the various sorbents.

2.5. HPLC-MS/MS conditions

HPLC-MS/MS using electrospray ionization in positive mode (ESI+) was used for the identification and quantification of the 179 targeted pesticides in rapeseed samples. A Thermo Scientific binary LC pump (Ultimate 3000 RS pump, LPG 3400 RS) equipped with an LC autosampler (Ultimate 3000 WPS-300 TRS) (Bremen, Germany) was operated at a flow rate of 0.4 mL/min using an Aqua® C18 column 3 μm, 125 Å, 150×2.0 mm (Phenomenex). A volume of 10 μL of sample was injected. The binary mobile phase consisted of water with 0.2% (v/v) formic acid and 10 mM ammonium formate (phase A) and methanol with 0.2% (v/v) formic acid and 10 mM ammonium formate (phase B). The elution gradient started from 5% B (v/v) and was held for 0.6 min, increased to 64% B (v/v) at 2.4 min and then increased to 90% B (v/v) at 5.4 min and was held for 3 min. Then, the mobile composition was returned to the initial conditions over 0.8 min and was held for 2.63 min for re-equilibration. The total analysis time was 11.83 min.

A 5500 Q-TRAP (AB Sciex Instrument, Foster City, CA) with an electrospray ionization source (ESI) was used for all experiments. The capillary voltage was maintained at 5500 V, and the temperature was set to 300°C. Nitrogen was used at the nebulizer gas (GS1), auxiliary gas (GS2) and curtain gas (CUR) at pressures of 50, 60, and 26 psi. Argon was used as collision gas. For optimization of the MS/MS parameters of each pesticide, individual standard solutions were directly injected into the source. The declustering potential (DP), collision energy (CE) and collision cell exit potential (CXP) were automatically optimized by employing the automatic function of Analyst Software 1.6.3 (AB Sciex). All pesticides were detected in the

120

1

multiple reaction monitoring mode « SRM ». Two « SRM » transitions (most sensitive) were selected, the first for quantification and the second for confirmation with a good ratio between them. The "scheduled-SRM" mode with a time window of 60 s was selected for the detection of these molecules.

2.6. GC-Q-Orbitrap operating conditions

Injections to evaluate the cleanup efficiency of the sample preparation step were performed using a GC-Q-Orbitrap system in « full scan »mode (Q Exactive, Thermo Scientific, Bremen, Germany) consisting of a GERSTEL MPS (Multi-Purpose Sampler) (Mülheim, Germany) autosampler, a trace 1310 GC with a PTV injector, an electron ionization (EI) source, and a hybrid Q-Orbitrap mass spectrometer. A PTV Cool Injection System (CIS 6) was used with splitless mode injection (1 µL injected) with the following temperature program: a t₀ of 60°C with a hold time of 0.2 min, followed by a temperature increase at a rate of 720°C/min until reaching 310°C with a hold time of 5 min (run time: 20 min). Helium (99.999%, Linde Gas, Schiedam, Netherlands) was used as a carrier gas at a constant flow of 1 mL/min. GC separations were performed using an HP-5 MS UI (30 m x 250 µm x 0.25 µm film thickness) (Agilent Technologies, Santa Clara, USA) column using the following temperature program: a t₀ of 60°C (1 min), a ramp up to 170°C at 35°C/min and then a subsequent increase to 310°C at a rate of 10°C/min with a hold time of 2 min at 310°C. The transfer line was maintained at 280°C. Electron ionization was performed at 70 eV with the source temperature set at 280°C. « Full scan »MS acquisition was performed in profile mode using an m/z range of 50-500. Nitrogen gas (Air liquid, Bagneux, France) was used for the C-Trap supply. For GC-Q-Orbitrap data processing, X-Calibur 4.0 (Thermo Scientific) was used for peak identifications.

Results and discussion

An HPLC-MS/MS method was developed for the identification and quantification of 179 pesticides from a wide range of chemical classes of compounds (carbamates, chloroacetamides, benzamides, triazines, uracils, *etc.*) in rapeseed samples. The sample preparation steps were carried out using the QuEChERS method. For the purification step (d-SPE), several sorbents were tested. The first sorbent selected was the PSA/C18 mixture, which is the Réfrence mixture for fatty matrix purifications. The performance of the PSA/C18 mixture was compared with those of the new sorbents, EMR-Lipid, Z-Sep, and Z-Sep⁺, which were developed specifically for fatty matrix purification. Performances were evaluated in terms of recovery rates, repeatability, LODs, LOQs and matrix effects. The purified extracts were also analyzed using a nontarget GC-Q-Orbitrap method to identify possible remaining interferents.

3.1. HPLC-MS/MS method optimization

Chromatographic performances were satisfactory using methanol as an organic modifier in terms of retention, selectivity, and peak shape. The mobile phase pH also plays an important role in acid pesticide retention. Formic acid and ammonium formate were added to the mobile phase at 10 mM to adjust the pH, and they improved the chromatographic separation for these pesticides. The flow rate was set at 0.4 mL/min as a compromise between analysis time and resolution.

To achieve the best signal intensity in HPLC-MS/MS, the single reaction monitoring « SRM » transitions were optimized using individual standard solutions (1000 μ g/L) in flow injection analysis mode. For electrospray ionization, positive mode (ESI+) was used for all pesticides. The precursor ions [M+H]⁺ of each pesticide were selected when they corresponded to the highest peak intensity. Otherwise, the adduct [M+NH₄]⁺ (cyflumetofen) was chosen. After fragmentation, the transition of the highest sensitivity was used for the quantifier transition, and

the second most sensitive transition was used for the qualifier transition. The detailed « SRM » transitions of each pesticide are listed in Table 1. All transitions were specific for each analyte, so the chromatographic resolution of pesticides is not mandatory, allowing the analytical run time to be reduced to 11.83 min.

3.2. Linearity

At concentrations ranging from 1 to $100 \,\mu\text{g/L}$ (1, 2, 4, 40, $100 \,\mu\text{g/L}$), the detector response was quadratic with a weighting of 1/x for almost all target molecules. A good correlation coefficient (more than 0.995) was observed for all the analytes. The S/N ratios of chromatographic peaks obtained for the lowest concentration of 1 $\mu\text{g/L}$ were greater than 10^3 for both the quantifier and qualifier transitions. Residual values were calculated and showed a deviation of less than \pm 20% from the calibration curve for each calibration level. The standard deviation of the IS peak area was less than \pm 20%.

3.3. Recoveries and precision

Recovery experiments were performed by analyzing rapeseed samples spiked at concentrations of 10 μ g/kg (n=5) and 50 μ g/kg (n=5). The extraction recoveries of 179 pesticides as well as the RSD (%) are presented in Table 2. Three QC (quality control) levels (1, 2, and 4 μ g/L) were injected after five sample injections to check the stability of the system. The standard deviations of the QC peak area were less than \pm 20%. As suggested by the SANTE/12682/2019 document, the acceptable criteria concerning recoveries of pesticides should be within the range 70–120%, with an associated repeatability RSD \leq 20%. Moreover, mean recovery rates inside the range of 30%-140% can be accepted if they are consistent, but the LOQ should be corrected.

For the majority of pesticides, the recoveries were similar for the samples spiked at $10 \mu g/kg$ and those spiked at $50 \mu g/kg$. No recovery below 30% was observed with samples spiked at $50 \mu g/kg$ regardless of the purification sorbent used. For the samples spiked at $10 \mu g/kg$, recoveries

below 30% were obtained for a few molecules, specifically for the extracts purified with PSA/C18 sorbent. Because the same sorbent amounts were used for each spiking level, adsorption on the sorbent had a greater impact on the lower concentration of molecules. The results showed that extracts purified with EMR-Lipid sorbent exhibited better recoveries with 103 and 70 of the 179 targeted pesticides, which had recoveries within 70-120% and 30-70%, respectively, with low RSD values (Figure 1). The recoveries were outside of the validation criteria for only 6 pesticides using this sorbent. The recovery of tralkoxydim was 29%, which might be explained by the specific interaction of this compound with polar moieties of the EMR-Lipid sorbent. For five pesticides (spirotetramat, saflufenacyl, isoxaflutole, foramsulfuron, flazasulfuron), recoveries were up to 120%, demonstrating an overestimation due to a lack of purification efficiency.

In comparison with EMR-Lipid, recoveries obtained using Z-Sep and PSA/C18 sorbents exhibited generally lower values. Moreover, the recoveries were below 30% for 20 pesticides and 7 pesticides, demonstrating important interactions between these analytes and these sorbents. However, the use of Z-Sep⁺ sorbent enhanced the recoveries of some pesticides. A freezing step before PSA/C18 purification improved the recoveries compared to those obtained with single PSA/C18 purification. This result could be attributed to precipitation of a lipid that released pesticides in the solvent.

The relationship between Log P and the recoveries of pesticides in rapeseed extracts spiked at $10 \,\mu\text{g/kg}$ depending on purification sorbents is presented in Figure 2. For pesticides possessing a Log P < 2, the recoveries were below 60% for most of these pesticides when PSA/C18 and Z-Sep were used, confirming the strong polar interactions between the sorbent and polar analytes. These results were consistent with the polar surface of amino groups (PSA) and zirconium dioxide (Lewis acid). By contrast, the recoveries obtained using Z-Sep⁺ sorbent for

the same kind of pesticide were higher due to the presence of octadecylsilane chains, which limited the accessibility of the zirconium dioxide surface.

It is interesting to note that 11 (cinosulfuron, fensulfothion, fensulfothion-oxon, fensulfothion-sulfone, fenthion sulfone, fenthion sulfoxide, flazasulfuron, foramsulfuron, florasulam, oxycarboxin, rimsulfuron) of the 20 molecules with the lowest recovery (<30%) for the extracts purified with PSA/C18 have a sulfoxide or sulfone functional group in their structure. Moreover, the low recovery observed for ametoctradin could be related to the presence of an aliphatic hydrocarbon chain in its structure that can interact with the octadecylsilane chain grafted onto silica through hydrophobic interactions. It is important to note that a few compounds, such as oxycarboxin, presented low recovery values in unpurified and all purified extracts. In this case, the low recoveries could be attributed to the extraction step due to the high affinity of this compound to water.

3.4. Limits of quantification

The document SANTE/12682/2019 describes the LOQ as the minimum quantifiable concentration; the criteria for this value are a mean recovery within the 70-120% range and an RSD of <20%. Recovery rates outside the range of 70-120% can be accepted if they are consistent (RSD \leq 20%), but the mean recovery should not be lower than 30% or above 140%. However, in these cases, a correction for recovery is required. Table 3 presents the LOD (μ g/kg), LOQ (μ g/kg) and matrix effects (ME%) for the 179 pesticides. For extracts purified with EMR-Lipid at a level of 10 μ g/kg, only 5 molecules could not be quantified due to having recoveries outside of the performance criteria. Otherwise, the calculated LOQ values of the other pesticides were less than 10 μ g/kg (from 1.72 μ g/kg to 6.39 μ g/kg), which is very satisfactory because they were lower than the MRL values. The method could not be validated at 10 μ g/kg for foramsulfuron, isoxaflutole, saflufenacyl, spirotetramat and tralkoxydim but could be validated at 50 μ g/kg. The LOQs calculated for the pesticides in the extracts purified

with the other sorbents showed that the values were on the same order of magnitude as those obtained with the EMR-Lipid sorbent, but the LOQs for 20, 7 and 6 pesticides could not be established using PSA/C18, Z-Sep and Z-Sep⁺, respectively.

3.5. Matrix effects

As a consequence of coeluting sample components, the targeted analyte signal may be enhanced or suppressed compared to the signal from the same targeted analyte when injected into a pure solvent. Matrix effects are evaluated by comparing the slope of the calibration curves for the standards in solvent against standards prepared in matrix extracts. The matrix effect (ME%) is calculated using eq. 1:

Matrix effect (ME%) = ((slope of matrix/slope of solvent) -1) \times 100 eq. 1

The soft matrix effect (suppression or enhancement of 0-20%) is negligible. However, if some of the analytes had a suppression or enhancement of 20-50%, the matrix effect appeared as medium. When the matrix effect (suppression or enhancement > 50%) is strong, it is necessary to use certain methods to overcome the ME, such as employing a matrix-matched calibration or sample dilution. The ME% values are presented in Table 3.

Figure 3 shows that EMR-Lipid and Z-Sep presented similar results. For rapeseed extract purified with EMR-Lipids, more than 90 molecules had a negligible matrix effect, and more than 70 pesticides had a medium matrix effect; these results confirm the efficiency of purification with the EMR-Lipid sorbent. The freezing process allowed us to significantly eliminate the matrix effect. Therefore, a combination of freezing followed by EMR-Lipid should be very efficient in limiting matrix effects. Moreover, the worst ME% values were obtained on the extracts of rapeseed purified with Z-Sep⁺, with more than 120 strong matrix effects. These purification materials appeared to be unsuitable for this specific matrix.

To evaluate the amount of the residual compounds in the extracts after the cleanup process, GC-Orbitrap analyses were performed in « full scan »mode. Rapeseed extracts purified with each sorbent in acetonitrile were evaporated and reconstituted in a mixture of hexane/acetone (70/30, v/v). The chromatograms of the extracts are presented in Figure 4. The intensity of the total ion current obtained for the extract purified using EMR-Lipid (red line) was significantly less intense. The EMR-Lipid sorbent appeared to be very efficient in removing free fatty acids. The total ion currents observed for extracts purified with Z-Sep and Z-Sep⁺ presented a broad peak at approximately 10 to 14 min, demonstrating a lack of purification with these sorbents correlated to the strong matrix effect previously observed.

Conclusions

QuEChERS using acetonitrile has proven to be an efficient method for extracting 178 pesticides (not including oxycarboxin) from rapeseeds. Among the d-SPE sorbents tested, the EMR-Lipid sorbent exhibited good performances in terms of recoveries, LOQs and matrix effects. The rapeseed extracts purified with Z-Sep and PSA/C18 sorbents exhibited important interactions with polar analytes. Matrix effect values obtained for the extracts purified with Z-Sep⁺ were not satisfactory, with more than 120 strong matrix effects. GC-O-Orbitrap analyses of the extract, performed in « full scan »mode, demonstrated that the EMR-Lipid sorbent was the most efficient for the elimination of fatty acids and lipids.

Acknowledgments

The authors would like to thank Arnold Niassy and Guillaume Benoit for their help concerning the HPLC-MS/MS analyses. The authors would also like to thank the National Association of Research and Technology (ANRT) for funding this thesis work.

References

Alberto D, Serra A A, Sulmon C, Gouesbet G, Couee I (2016) Herbicide-related signaling in plants reveals novel insights for herbicide use strategies, environmental risk assessment and global change assessment challenges. Sci. Total Environ. 569–570:1618-1628. https://doi.org/10.1016/j.scitotenv.2016.06.064

Anagnostopoulos C, Miliadis G E (2013) Development and validation of an easy multiresidue

method for the determination of multiclass pesticide residues using GC–MS/MS and LC-MS/MS in olive oil and olives. Talanta 112:1-10. https://doi.org/10.1016/j.talanta.2013.03.051

Anastassiades M, Lehotay S J, Stajnbaher D, Schenck F J (2003) Fast easy multiresidue method employing acetonitrile extraction partitioning and dispersive solid phase extraction for determination of pesticide residues in produce. J. AOAC Int. 86:412-431

Bajpai A, Shukla P, Dixit B S., Banerji R (2007) Concentrations of organochlorine insecticides in edible oils from different regions of India. Chemosphere 67:1403-1407. https://doi.org/10.1016/j.chemosphere.2006.10.026

Castillo M, González C, Miralles A (2011) An evaluation method for determination of non-polar pesticide residues in animal fat samples by using dispersive solid-phase extraction clean-up and GC-MS. Anal. Bioanal. Chem. 400: 1315–1328. https://doi.org/10.1007/s00216-011-4656-5

Chung S W C, Chen B L S (2011) Determination of organochlorine pesticide residues in fatty foods: A critical review on the analytical methods and their testing capabilities. J. Chromatogr. A 1218:5555 https://doi.org/10.1016/j.chroma.2011.06.066

Cunha S C, Lehotay S J, Mastovska K, Fernandes J O, Beatriz M, Oliveira P P (2007) Evaluation of the QuEChERS sample preparation approach for the analysis of pesticide residues in olives. J. Sep. Sci. 30:620-632. https://doi.org/10.1002/jssc.200600410

Dobson K D, McQuillan A J (2000) In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 56:557–565. https://doi.org/10.1016/S1386-1425(99)00154-7.

European Food Safety Authority (2014) The 2012 European Union Report on pesticide residues in food, EFSA J. 12:3942

EUROSTAT (2016) Agricultural production – crops http://ec.europa.eu/eurostat/statistics - explained/index.php/Agricultural production_-_Crops Oilseeds (July 2016). Accessed 17 March 2021

Farajzadeh M A, Khoshmaram L, Nabil A A (2014) Determination of pyrethroid pesticides residues in vegetable oils using liquid–liquid extraction and dispersive liquid–liquid microextraction followed by gas chromatography–flame ionization detection. J. Food Compos. Anal. 34:128-135. https://doi.org/10.1016/j.jfca.2014.03.004

Ferrer C, Gómez M J, García-Reyes J F, Ferrer I, Thurman E M, Fernández-Alba A R (2005) Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography—tandem mass spectrometry. J. Chromatogr. A 1069:183-194. https://doi.org/10.1016/j.chroma.2005.02.015 Gilbert-López B, García-Reyes J F, Lozano A, Fernández-Alba A R, Molina-Díaz A (2010) Large-scale pesticide testing in olives by liquid chromatography-electrospray tandem mass spectrometry using two sample preparation methods based on matrix solid-phase dispersion

and QuEChERS. J. Chromatogr. A 1217:6022-6035. https://doi.org/10.1016/j.chroma.2010.07.062

Gilbert-López B, García-Reyes J F, Molina-Díaz A (2009) Sample treatment and determination of pesticide residues in fatty vegetable matrices. Talanta 79:109-128. https://doi.org/10.1016/j.talanta.2009.04.022

Hernando M D, Ferrer C, Ulaszewska M, García-Reyes J F, Molina-Díaz A, Fernández-Alba A R (2007) Application of high-performance liquid chromatography–tandem mass spectrometry with a quadrupole/linear ion trap instrument for the analysis of pesticide residues in olive oil. Anal. Bioanal. Chem. 389:1815–1831. https://doi.org/10.1007/s00216-007-1464-z Koesukwiwat U, Lehotay S J, Mastovska K, Dorweiler K J, Leepipatpiboon N (2010) Extension of the QuEChERS method for pesticide residues in cereals to flaxseeds, peanuts, and doughs. J. Agric. Food Chem. 58:5950. https://doi.org/10.1021/jf902988b

Likudis Z, Costarelli. V, Vitoratos A, Apostolopoulos C (2014) Determination of pesticide residues in olive oils with protected geographical indication or designation of origin. Int. J. Food Sci. Technol. 49: 484-492. https://doi.org/10.1111/ijfs.12326

Lucas D, Zhao L (2015) PAH Analysis in Salmon with Enhanced Matrix Removal, Application Note, Agilent Technologies, Inc. (2015) 5991–6088EN.

Nguyen T D, Lee M H, Lee G H (2010) Rapid determination of 95 pesticides in soybean oil using liquid–liquid extraction followed by centrifugation, freezing and dispersive solid phase extraction as cleanup steps and gas chromatography with mass spectrometric detection. Microchem. J. 95:113-119. https://doi.org/10.1016/j.microc.2009.11.009

Parrilla Vázquez P, Hakme E, Uclés S, Cutillas V, Martínez Galera M, Mughari A R, Fernández-Alba A R (2016) Large multiresidue analysis of pesticides in edible vegetable oils

by using efficient solid-phase extraction sorbents based on quick, easy, cheap, effective, rugged, and safe methodology followed by gas chromatography—tandem mass spectrometry. J. Chromatogr. A 1463:20-31. https://doi.org/10.1016/j.chroma.2016.08.008

Parrilla Vázquez P, Lozano A, Uclés S, Gómez Ramos M M, Fernández-Alba A R (2015) A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A.1426:161-173. https://doi.org/10.1016/j.chroma.2015.11.081

Patel K, Fussell R J, Hetmanski M, Goodall DM, Keely B J (2005) Evaluation of gas chromatography—tandem quadrupole mass spectrometry for the determination of organochlorine pesticides in fats and oils. J. Chromatogr.1068:289-296. https://doi.org/10.1016/j.chroma.2005.01.040

Polgár L, Kmellár B, García-Reyes J F, Fodor P (2012) Comprehensive evaluation of the cleanup step in QuEChERS procedure for the multi-residue determination of pesticides in different vegetable oils using LC–MS/MS. Anal. Methods 4:1142-1148. https://doi.org/10.1039/C2AY05543K

Rajskia L, Lozano A, Uclés A, Ferrer C, Fernández-Alba A R (2013) Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry. J. Chromatogr.1304:109-120. https://doi.org/10.1016/j.chroma.2013.06.070

SANTE/12682/2019, Guidance document on analytic quality control and method validation procedures for pesticide residues and analysis in food and feed (2019).

Tuzimski T, Rejczak T (2016) Application of HPLC-DAD after SPE/QuEChERS with ZrO2-based sorbent in d-SPE clean-up step for pesticide analysis in edible oils. Food Chem. 190:71-79. https://doi.org/10.1016/j.foodchem.2015.05.072

Yanty N A M, Marikkar J M N, Long K (2011) Effect of Varietal Differences on Composition and Thermal Characteristics of Avocado Oil. J. Am. Oil Chem. Soc. 88:1997-2003. https://doi.org/10.1007/s11746-011-1877-x

Zhao L, Ge J, Liu F, Jiang N (2014) Effects of storage and processing on residue levels of chlorpyrifos in soybeans. Food Chem. 150:182-186. https://doi.org/10.1016/j.foodchem.2013.10.124

Zhao L, Lucas D (2015a) Multiresidue Analysis of Veterinary drugs in Bovine Liver by LC-MS/MS. Application Note, Agilent Technologies, Inc.5991–6096EN.

Zhao L, Lucas D (2015b) Multiresidue Analysis of Pesticides in Avocado with Agilent Bond Eluent EMR-Lipid by GC-MS/MS. Application Note, Agilent Technologies, Inc.5991–6097EN.

Zhao L, Lucas D (2015c) Multiresidue Analysis of Pesticides in Avocado with Agilent Bond Eluent EMR-Lipid by LC-MS/MS. Application Note, Agilent Technologies, Inc.5991–6098EN.

Table 1: Names, CAS number, Log P and HPLC-MS/MS acquisition parameters of studied pesticides and contaminants

Pesticides	CAS number	Log P	Quantification	on transition				Confirmation tr	ansition			
		C	Precursor	Fragment	DP (V)	CE (V)	CXP (V)	Precursor ions	Fragment ions	DP (V)	CE (V)	CXP (V)
			ions (m/z)	ions (m/z)				(m/z)	(m/z)			
Acephate	30650-19-1	-0.85	184	143	66	13	12	184	125	66	25	22
Acetochlor	34256-82-1	3.03	270	224	56	11	12	270	148	56	29	8
Acibenzolar-S- methyl	135158-54-2	3.01	211	136	46	39	6	211	140	46	31	6
Alachlor	15972-60-8	3.52	270	162	71	25	8	270	45	71	27	10
Aldicarb sulfone	1646-88-4	-0,57	223	86	76	29	14	223	148	76	13	14
Ametoctradin	865318-97-4	4.40	276	70	26	81	10	276	43	26	103	8
Ametryn	834-12-8	2.98	228	186	60	37	14	228	96	60	35	16
Anilofos	64249-01-0	3.81	368	199	66	19	18	368	125	66	45	18
Azaconazole	60207-31-0	2.32	302	161	56	39	10	302	231	56	23	12
Azinphos-methyl	86-50-0	2.75	318	261	71	11	20	318	132	71	21	8
Aziprotryne	4658-28-0	3.00	226	156	76	21	12	226	125	76	17	14
Azoxystrobin	131860-33-8	2.50	404	372	66	21	10	404	344	66	29	18
Barban	101-27-9	3.41	258	143	86	29	10	258	178	86	13	12
Benalaxyl	71626-11-4	3.40	326	148	76	27	8	326	208	76	21	10
Benoxacor	98730-04-2	2.70	262	149	156	25	16	262	134	156	39	14
Bifenox	42576-02-3	4.48	359	310	64	17	18	359	189	64	35	20
Bixafen	581809-46-3	4.70	415	395	126	21	24	415	267	126	33	18
Boscalid	188425-85-6	2.96	343	307	106	29	18	343	140	106	29	12
Bupirimate	41483-43-6	2.70	317	166	71	33	16	317	237	71	27	18
Buprofezin	69327-76-0	4.30	306	201	56	17	14	306	116	56	23	20
Chlorfenvinphos	470-90-6	3.81	359	155	69	19	8	359	99	69	43	16
Chlorobromuron	13360-45-7	3.09	295	206	136	27	20	293	203	136	31	12
Chlorfluazuron	71422-67-8	5.80	542	385	176	33	18	542	158	176	27	8
Chlorpyrifos	2921-88-2	4.96	350	97	86	41	6	350	198	86	25	10
Chlorpyrifos-methyl	5598-13-0	4.31	322	125	71	27	6	322	290	71	25	16
Cinosulfuron	94593-91-6	2.04	414	183	81	23	10	414	215	81	21	10
Climbazole	38083-17-9	3.70	293	197	111	23	24	293	69	111	59	16
Clodinafop-propargyl	105512-06-9	3.90	350	266	104	21	14	350	91	104	41	18
Clofentezine	74115-24-5	3.10	303	138	60	27	10	303	102	60	59	18
Cloquintocet-mexyl	99607-70-2	5.03	336	238	91	27	12	336	192	91	41	12
Coumaphos	56-72-4	4.13	363	227	101	35	12	363	307	101	23	16
Coumatetralyl	5836-29-3	3.46	293	175	66	45	16	293	141	66	41	12
Crufomate	299-86-5	3.42	292	236	96	27	14	292	108	96	39	6
Cyanazine	21725-46-2	2.22	241	214	81	25	12	241	243	81	25	14
Cycloxydim	101205-02-1	3.20	326	280	101	19	16	326	180	101	29	12
Cyflumetofen	400882-07-7	4.30	465	173	121	33	10	465	249	121	53	32
Cymiazole	61676-87-7	0.60	219	171	86	37	14	219	144	86	43	8
Cyproconazole	94361-06-5	2.9	292	70	81	35	10	292	125	81	35	6
Cyprodinil	121552-61-2	4.00	226	93	84	47	16	226	91	84	49	16
Demeton-S-methyl sulfone	17040-19-6	-0.30	263	169	61	23	14	263	121	61	23	10
Desmetryn	1014-69-3	2.38	214	172	126	23	10	214	124	126	59	20
Diafenthiuron	80060-09-9	6.00	385	329	26	25	20	385	270	26	19	18

Diazinion 333-41-5 3.81 305 169 71 29 8 305 97 71 41 6 Dickinfop-methyl 51383-27-3 4.62 358 281 64 21 16 358 120 64 39 8 Dickinfop-methyl 51383-27-3 4.62 358 281 64 21 16 358 120 64 39 8 Dickinfop-methyl 51383-27-3 4.62 358 226 81 15 12 268 180 81 23 10 Diriancomarole 119446-68-3 4.30 406 251 66 37 14 406 337 66 23 18 Dirintophic 5134-4 4.00 395 266 66 37 14 406 337 66 49 16 Diriancomarole 5134-4 4.00 395 266 66 33 16 205 246 66 49 16 Diriancomarole 5134-4 4.00 395 266 66 33 16 205 246 66 49 16 Diriancomarole 5134-4 4.00 395 266 66 33 16 205 246 66 49 16 Diriancomarole 14088-70-5 2.68 388 301 91 20 18 388 165 91 43 8 Diriancomarole 140961-52-4 3.90 327 205 56 15 12 327 116 56 57 14 Dicardinon 78-34-2 3.00 474 271 96 19 14 474 97 96 61 6 Diriancomarole 4147-51-7 3.81 256 214 51 31 12 256 144 51 37 10 Diriancomarole 13558-94 8 5.00 86 66 48 48 48 48 48 48	Dialifos	10311-84-9	4.69	394	208	39	23	10	394	187	39	13	12
Dickboferoarby \$1338-27-3 \$4.62 \$58 \$281 \$64 \$21 \$16 \$558 \$120 \$64 \$19 \$8 \$10													
Debelocinecards													
Diffuncionance 19446-68-3 4.90 4.96 251 66 37 14 4.96 337 66 23 18	1 2												
Diffilemented 8164-33-4 4-90 395 266 66 33 16 395 246 66 49 16													
Dimethember													
Dimehamanid 8764-68-8 215 276 244 44 29 10 276 168 44 33 10													
Dimenshomorph 110488-70-5 2.68 388 301 91 29 18 388 165 91 43 8													
Dimosystrebin 149961-52-4 3.90 327 2.05 56 15 12 327 116 56 57 14													
Discapling Pissart P													
Dipopertyn													
Dialimplos 5131-24-8 3.48 300 148 76 29 26 300 130 76 47 10 10 10 10 10 10 10 1													
Emamertin Bh	1 1 7												
Emmercin Bh	1												
Epostcomazole 133855-98-8 3.44 330 121 81 27 6 330 101 81 63 6 Elacomazole 60207-93-4 3.10 329 159 86 37 12 385 171 36 23 8 Elation 563-12-2 5.07 385 199 36 17 12 385 171 36 23 8 Elation 563-12-2 5.07 385 199 36 17 12 385 171 36 23 8 Elation 563-12-2 5.07 385 199 36 17 12 385 171 36 23 8 8 257 161 81 27 10 10 10 10 10 10 10 1													
Elation													
Ethion													
Ethorprophos 1394-48-4 3.59 243 131 56 29 6 243 97 56 41 10													
Ethorophos 13194-48-4 3.59 2.43 131 56 29 6 2.43 97 56 41 10													
Elixing 15233-91-1 5.59 360 141 71 41 14 360 113 71 79 8 Elixing 38206-54-7 3.20 293 125 81 33 6 293 265 81 21 14 24 24 24 24 25 24 25 26 27 27 25 28 27 28 28 28 28 28 28													
Erimfos 38260-54-7 3.20 293 125 81 33 6 293 265 81 21 14 Emmoxadone 131807-57-3 4.65 392 331 61 15 18 392 238 61 23 12 Fenamiphos 22224-92-6 3.23 304 217 81 31 12 304 202 81 45 10 Fenaraquin 10928-08-8 5.51 307 161 56 31 8 307 147 56 25 8 Fenbrognoidin 67306-00-7 5.50 274 147 76 37 6 337 70 76 63 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 70 76 33 6 6 2 7 7 76 33 6 6 <td></td>													
Femainphos 131807-57-3 4.65 392 331 61 15 18 392 238 61 23 12							33	6				21	
Fenamiphos 22224-92-6 3.23 304 217 81 31 12 304 202 81 45 10													
Fenarimol 60168-88-9 3.65 331 2.68 86 33 18 331 81 86 47 4													
Fenazaquin 120928-09-8 5.51 307 161 56 31 8 307 147 56 25 8													
Fenbuconazole													
Fenpropidin	1												
Fenproprimorph						76		8		117			6
Fenyroximate	1 1	67564-91-4			147	91	39	8	304	117	91	71	8
Fensulfothion	1 1 1					126	23	10			126	41	8
Fensulfothion-sulfone		115-90-2			281	66		16		253	66	25	16
Fensulfothion-sulfone	Fensulfothion-oxon	6552-21-2	1.40	264	231	101	23	14	264	216	101	33	14
Fenthion sulfone 3761-42-0 2.80 311 125 101 29 8 311 279 101 27 16 Fenthion sulfoxide 3761-41-9 2.70 295 280 96 25 16 295 127 96 41 22 Flamprop-isopropyl 52756-22-6 3.69 364 105 64 15 12 364 304 64 17 8 Flazasulfuron 104040-78-0 1.08 408 182 96 23 12 408 227 96 25 10 Florasulam 145701-23-1 1.22 360 129 80 29 8 360 192 80 23 10 Flubendiamide 272451-65-7 4.20 683 408 176 13 20 683 256 176 85 14 Flucycloxuron 94050-52-9 6.10 484 132 71 45 22 484<	Fensulfothion-sulfone	14255-72-2	2.56		269	51		16	325	297	51	17	18
Fenthion sulfone 3761-42-0 2.80 311 125 101 29 8 311 279 101 27 16 Fenthion sulfoxide 3761-41-9 2.70 295 280 96 25 16 295 127 96 41 22 Flamprop-isopropyl 52756-22-6 3.69 364 105 64 15 12 364 304 64 17 8 Flazasulfuron 104040-78-0 1.08 408 182 96 23 12 408 227 96 25 10 Florasulam 145701-23-1 1.22 360 129 80 29 8 360 192 80 23 10 Flubendiamide 272451-65-7 4.20 683 408 176 13 20 683 256 176 85 14 Flucycloxuron 94050-52-9 6.10 484 132 71 45 22 484<	Fenthion	55-38-9	4.09	279	247	66	19	16	279	169	66	17	14
Flamprop-isopropyl 52756-22-6 3.69 364 105 64 15 12 364 304 64 17 8 Flazasulfuron 104040-78-0 1.08 408 182 96 23 12 408 227 96 25 10 Florasulam 145701-23-1 1.22 360 129 80 29 8 360 192 80 23 10 Flubendiamide 272451-65-7 4.20 683 408 176 13 20 683 256 176 85 14 Flucycloxuron 94050-52-9 6.10 484 132 71 45 22 484 169 71 57 22 Flufenacet 142459-58-3 3.20 364 194 44 17 12 364 152 44 27 8 Flufenoxuron 101463-69-8 6.16 489 158 71 27 8 489 141 71 57 6 Fluopicolide 239110-15-7 3.26 385 175 71 33 14 385 173 71 33 14 Flurochloridon 61213-25-0 3.36 312 292 76 29 18 312 145 76 67 8 Flurprimidol 56425-91-3 3.34 313 270 36 33 16 313 201 36 23 12 Flurtamone 96525-23-4 4.50 334 247 81 39 14 334 178 81 67 10 Flusilazole 85509-19-9 3.70 316 247 106 27 14 316 169 106 25 14	Fenthion sulfone	3761-42-0	2.80		125	101	29	8	311	279	101	27	16
Flamprop-isopropyl 52756-22-6 3.69 364 105 64 15 12 364 304 64 17 8 Flazasulfuron 104040-78-0 1.08 408 182 96 23 12 408 227 96 25 10 Florasulam 145701-23-1 1.22 360 129 80 29 8 360 192 80 23 10 Flubendiamide 272451-65-7 4.20 683 408 176 13 20 683 256 176 85 14 Flucycloxuron 94050-52-9 6.10 484 132 71 45 22 484 169 71 57 22 Flufenacet 142459-58-3 3.20 364 194 44 17 12 364 152 44 27 8 Flufenoxuron 101463-69-8 6.16 489 158 71 27 8 489 141 71 57 6 Fluopicolide 239110-15-7 3.26 385 175 71 33 14 385 173 71 33 14 Flurochloridon 61213-25-0 3.36 312 292 76 29 18 312 145 76 67 8 Flurprimidol 56425-91-3 3.34 313 270 36 33 16 313 201 36 23 12 Flurtamone 96525-23-4 4.50 334 247 81 39 14 334 178 81 67 10 Flusilazole 85509-19-9 3.70 316 247 106 27 14 316 169 106 25 14	Fenthion sulfoxide	3761-41-9	2.70	295	280	96	25	16	295	127	96	41	22
Flazasulfuron 104040-78-0 1.08 408 182 96 23 12 408 227 96 25 10 Florasulam 145701-23-1 1.22 360 129 80 29 8 360 192 80 23 10 Flubendiamide 272451-65-7 4.20 683 408 176 13 20 683 256 176 85 14 Flucycloxuron 94050-52-9 6.10 484 132 71 45 22 484 169 71 57 22 Flufenacet 142459-58-3 3.20 364 194 44 17 12 364 152 44 27 8 Flufenoxuron 101463-69-8 6.16 489 158 71 27 8 489 141 71 57 57 6 Fluopicolide 239110-15-7 3.26 385 175 71 33 14 385 173 71 33 14 Flurochloridon 61213-25-0 3.36 312 292 76 29 18 312 145 76 67 8 Flurprimidol 56425-91-3 3.34 313 270 36 33 16 313 201 36 23 12 Flurtamone 96525-23-4 4.50 334 247 81 39 14 334 178 81 67 10 Flusilazole 85509-19-9 3.70 316 247 106 27 14 316 169 106 25 14	Flamprop-isopropyl	52756-22-6	3.69	364	105	64	15	12	364	304	64	17	8
Flubendiamide 272451-65-7 4.20 683 408 176 13 20 683 256 176 85 14 Flucycloxuron 94050-52-9 6.10 484 132 71 45 22 484 169 71 57 22 Flufenacet 142459-58-3 3.20 364 194 44 17 12 364 152 44 27 8 Flufenoxuron 101463-69-8 6.16 489 158 71 27 8 489 141 71 57 6 Fluoricolide 239110-15-7 3.26 385 175 71 33 14 385 173 71 33 14 Fluorichloridon 61213-25-0 3.36 312 292 76 29 18 312 145 76 67 8 Fluriprimidol 56425-91-3 3.34 313 270 36 33 16 313		104040-78-0	1.08	408	182	96	23	12	408	227	96	25	10
Flucycloxuron 94050-52-9 6.10 484 132 71 45 22 484 169 71 57 22 Flufenacet 142459-58-3 3.20 364 194 44 17 12 364 152 44 27 8 Flufenoxuron 101463-69-8 6.16 489 158 71 27 8 489 141 71 57 6 Fluopicolide 239110-15-7 3.26 385 175 71 33 14 385 173 71 33 14 Flurochloridon 61213-25-0 3.36 312 292 76 29 18 312 145 76 67 8 Flurprimidol 56425-91-3 3.34 313 270 36 33 16 313 201 36 23 12 Flurtamone 96525-23-4 4.50 334 247 81 39 14 334 178<	Florasulam	145701-23-1	1.22	360	129	80	29	8	360	192	80	23	10
Flurenacet 142459-58-3 3.20 364 194 44 17 12 364 152 44 27 8 Flufenoxuron 101463-69-8 6.16 489 158 71 27 8 489 141 71 57 6 Fluopicolide 239110-15-7 3.26 385 175 71 33 14 385 173 71 33 14 Flurochloridon 61213-25-0 3.36 312 292 76 29 18 312 145 76 67 8 Flurprimidol 56425-91-3 3.34 313 270 36 33 16 313 201 36 23 12 Flurtamone 96525-23-4 4.50 334 247 81 39 14 334 178 81 67 10 Flusilazole 85509-19-9 3.70 316 247 106 27 14 316 169 </td <td>Flubendiamide</td> <td>272451-65-7</td> <td>4.20</td> <td>683</td> <td>408</td> <td>176</td> <td>13</td> <td>20</td> <td>683</td> <td>256</td> <td>176</td> <td>85</td> <td></td>	Flubendiamide	272451-65-7	4.20	683	408	176	13	20	683	256	176	85	
Flufenoxuron 101463-69-8 6.16 489 158 71 27 8 489 141 71 57 6 Fluopicolide 239110-15-7 3.26 385 175 71 33 14 385 173 71 33 14 Flurochloridon 61213-25-0 3.36 312 292 76 29 18 312 145 76 67 8 Flurprimidol 56425-91-3 3.34 313 270 36 33 16 313 201 36 23 12 Flurtamone 96525-23-4 4.50 334 247 81 39 14 334 178 81 67 10 Flusilazole 85509-19-9 3.70 316 247 106 27 14 316 169 106 25 14	Flucycloxuron	94050-52-9	6.10	484	132	71	45	22	484	169	71	57	22
Fluopicolide 239110-15-7 3.26 385 175 71 33 14 385 173 71 33 14 Flurochloridon 61213-25-0 3.36 312 292 76 29 18 312 145 76 67 8 Flurprimidol 56425-91-3 3.34 313 270 36 33 16 313 201 36 23 12 Flurtamone 96525-23-4 4.50 334 247 81 39 14 334 178 81 67 10 Flusilazole 85509-19-9 3.70 316 247 106 27 14 316 169 106 25 14	Flufenacet	142459-58-3	3.20	364	194	44	17	12	364	152	44	27	8
Flurochloridon 61213-25-0 3.36 312 292 76 29 18 312 145 76 67 8 Flurprimidol 56425-91-3 3.34 313 270 36 33 16 313 201 36 23 12 Flurtamone 96525-23-4 4.50 334 247 81 39 14 334 178 81 67 10 Flusilazole 85509-19-9 3.70 316 247 106 27 14 316 169 106 25 14	Flufenoxuron	101463-69-8	6.16	489	158	71	27	8	489	141	71	57	6
Flurprimidol 56425-91-3 3.34 313 270 36 33 16 313 201 36 23 12 Flurtamone 96525-23-4 4.50 334 247 81 39 14 334 178 81 67 10 Flusilazole 85509-19-9 3.70 316 247 106 27 14 316 169 106 25 14	Fluopicolide	239110-15-7	3.26	385	175	71	33	14	385	173	71	33	14
Flurtamone 96525-23-4 4.50 334 247 81 39 14 334 178 81 67 10 Flusilazole 85509-19-9 3.70 316 247 106 27 14 316 169 106 25 14	Flurochloridon				292	76	29	18			76	67	
Flusilazole 85509-19-9 3.70 316 247 106 27 14 316 169 106 25 14	Flurprimidol	56425-91-3		313	270	36	33	16		201	36	23	12
	Flurtamone			334									
Fluxapyroxad 907204-31-3 3.70 382 362 166 19 16 382 342 166 29 32						106					106		
	Fluxapyroxad	907204-31-3	3.70	382	362	166	19	16	382	342	166	29	32

Fluxastrobin	887973-21-9	2.86	460	428	81	25	12	460	189	81	19	26
Fonofos	944-22-9	3.94	247	137	96	15	8	247	109	96	25	6
Foramsulfuron	173159-57-4	-0.78	453	182	61	27	12	453	272	61	21	16
Forchlofenuron	68157-60-8	3.20	248	129	111	23	12	248	155	111	23	10
Furmecyclox	60568-05-0	3.10	252	170	56	17	12	252	129	56	31	16
Haloxyfop-methyl	69806-40-2	4.07	376	316	129	23	18	376	288	129	33	14
Heptenophos	23560-59-0	2.32	251	127	96	23	22	251	109	96	37	6
Hexazinone	51235-04-2	1.85	253	171	71	21	8	253	71	71	47	4
Hexythiazox	78587-05-0	5.57	353	228	71	23	14	353	168	71	33	12
Imazalil	35554-44-0	3.82	297	159	66	31	14	297	201	66	23	10
Imazosulfuron	122548-33-8	2.43	413	153	61	19	10	413	156	61	29	10
Imibenconazole	86598-92-7	4.94	411	125	86	43	8	411	171	86	27	10
Indoxacarb	144171-61-9	4.65	528	293	64	21	18	528	203	64	51	12
Ipconazole	125225-28-7	4.21	334	70	151	67	10	334	125	151	61	16
Isofenphos	25311-71-1	4.12	346	245	86	17	14	346	217	86	33	16
Isofenphos-methyl	99675-03-3	3.80	332	231	61	19	20	332	273	61	7	14
Isopyrazam	881685-58-1	4.00	360	244	111	35	18	360	320	111	31	16
Isoxaflutole	141112-29-0	2.32	360	251	31	21	8	360	220	31	27	18
Kresoxim-methyl	143390-89-0	3.40	331	116	66	25	20	314	206	66	13	10
Linuron	330-55-2	3.20	249	160	66	25	10	249	182	66	23	12
Malaoxon	1634-78-2	0.60	315	127	66	19	8	315	269	66	13	16
Malathion	121-75-5	2.36	331	127	86	17	8	331	285	86	11	16
Mecarbam	2595-54-2	2.29	330	227	76	15	12	330	97	76	45	6
Mepanipyrim	110235-47-7	3.28	224	106	119	35	6	224	77	119	49	8
Metaflumizone	139968-49-3	6.20	507	178	176	33	10	507	287	176	35	6
Metalaxyl	57837-19-1	1.65	280	220	81	19	12	280	160	81	31	10
Metazachlor	67129-08-2	2.13	278	134	66	29	8	278	210	66	15	10
Methabenzthiazuron	18691-97-9	2.64	222	165	76	23	10	222	150	76	45	12
Methidathion	950-37-8	2.20	303	145	79	13	26	303	85	79	29	14
Methiocarb	2032-65-7	2.92	226	169	74	15	10	226	169	74	25	8
Methoprotryne	841-06-5	2.82	272	198	61	31	8	272	240	61	27	14
Methoxyfenozide	161050-58-4	3.70	369	149	86	23	8	369	133	86	31	8
Metobromuron	3060-89-7	2.38	259	148	81	23	10	259	172	81	27	10
Metolachlor	51218-45-2	3.13	284	252	76	21	16	284	176	76	35	10
Metrafenone	220899-03-6	4.60	409	209	39	21	10	409	227	39	25	14
Napropamid	15299-99-7	3.36	272	129	96	21	16	272	199	96	19	12
Norflurazon	27314-13-2	2.30	304	284	99	31	16	304	160	99	41	8
Oxadiargyl	39807-15-3	3.95	341	230	56	21	14	341	151	56	24	15
Oxycarboxim	5259-88-1	0.77	268	175	96	21	16	268	147	96	29	16
Paclobutrazol	76738-62-0	3.20	294	70	84	39	10	294	125	84	49	6
Pencycuron	66063-05-6	4.82	329	125	196	35	14	329	99	196	83	6
Penthiopyrad	183675-82-3	4.00	360	276	141	21	26	360	177	141	41	12
Pethoxamid	106700-29-2	3.50	296	131	46	29	8	296	250	46	19	16
Phenthoate	2597-03-7	3.69	321	163	81	17	8	321	163	81	17	10
Phosalone	2310-17-0	4.38	368	182	69	19	14	368	11	69	51	8
Phosmet	732-11-6	2.78	318	133	79	51	8	318	160	79	19	14
Phosphamidon	13171-21-6	0.79	300	127	76	29	12	300	174	76	19	8
Phoxim	14816-18-3	4.39	299	129	46	17	6	299	77	46	41	12
Picolinafen	137641-05-5	4.90	377	238	76	43	14	377	145	76	69	10

Picoxystrobin	117428-22-5	3.60	368	205	81	15	10	368	145	81	27	10
Pinoxaden	243973-20-8	3.20	401	317	121	29	14	401	57	121	29	18
Piperonyl Butoxyde	51-03-6	4.75	356	177	64	17	14	356	119	64	49	8
Pirimiphos-ethyl	23505-41-1	4.85	334	198	81	29	10	334	182	81	27	12
Pirimiphos-methyl	29232-93-7	4.20	306	164	71	29	8	306	108	71	39	6
Prochloraz	67747-09-5	4.10	376	308	66	17	16	376	266	66	23	14
Profenofos	41198-08-7	4.68	373	303	76	25	18	373	97	76	43	16
Prometon	1610-18-0	2.99	226	142	41	29	10	226	184	41	23	10
Prometryn	7287-19-6	3.51	242	158	86	33	10	242	200	86	25	12
Propaphos	7292-16-2	3.67	305	221	90	21	14	305	141	90	35	8
Propaguinazid	189278-12-4	5.50	373	331	41	21	30	373	289	41	33	16
Propargite	2312-35-8	5.00	368	231	49	17	24	368	175	49	23	16
Propazine	139-40-2	2.93	230	146	96	33	12	230	188	96	23	12
Propiconazole	60207-90-1	3.72	342	159	61	37	8	342	69	61	33	4
Propyzamide	23950-58-5	3.43	256	173	76	31	8	256	190	76	19	12
Prosulfocarb	52888-80-9	4.65	252	91	71	31	16	252	128	71	19	8
Pyraclostrobin	175013-18-0	3.99	388	194	66	19	16	388	163	66	29	6
Pyrazophos	13457-18-6	3.80	374	222	86	29	12	374	194	86	43	10
Pyridaben	96489-71-3	6.37	365	309	96	19	18	365	147	96	31	8
Pyridafenthion	119-12-0	3.20	341	189	61	29	10	341	205	61	27	10
Pyridate	55512-33-9	6.60	379	207	56	25	14	379	351	56	15	16
Rimsulfuron	122931-48-0	-1.46	432	182	161	29	16	432	325	161	21	14
Saflufenacil	372137-35-4	2.60	501	198	156	61	20	501	349	156	41	10
Spinosyn-A	131929-60-7	2.80	733	142	84	39	8	98	84	84	107	28
Spirotetramat	203313-25-1	2.51	374	216	116	45	14	374	302	116	23	14
Spiroxamine	118134-30-8	2.89	298	144	51	29	10	298	100	51	49	6
Sulfotep	3689-24-5	3.99	323	97	96	45	4	323	115	96	39	8
Tebufenozide	112410-23-8	4.25	353	133	71	23	6	353	297	71	15	16
Tebufenpyrad	119168-77-3	4.93	334	145	86	37	8	334	117	86	47	12
Tepraloxydim	149979-41-9	1.50	342	250	116	19	26	242	166	116	29	18
Terbufos	13071-79-9	4.48	289	103	69	13	6	289	233	69	9	14
Thiobencarb	28249-77-6	4.23	258	125	53	29	12	258	89	53	69	14
Tolfenpyrad	129558-76-5	5.61	384	197	121	41	16	384	154	121	59	10
Tralkoxydim	87820-88-0	2.10	330	284	126	17	18	330	138	126	27	10
Triadimefon	43121-43-3	2.77	294	197	71	23	14	294	69	71	59	8
Triallate	2303-17-5	4.60	304	86	81	25	14	304	143	81	37	12
Tridemorph	24602-86-6	6.90	298	130	51	35	6	298	116	51	33	8
Triforine	26644-46-2	2.20	435	390	81	15	10	435	98	81	31	10
Zoxamide	156052-68-5	3.76	336	159	100	47	16	336	187	100	29	14

Table 2: Pesticide recoveries and the relative standard deviations using different purification sorbents, freezing process and without clean-up for QuEChERS purification step of rapeseed extracts.

Analytes	Without cleanup 10 μg/kg 50 μg/kg				Freezi	ing			C18/P	SA			EMR	-Lipid			Z-Sep				Z-Sep+			
Tanaay top			_	/kg	10 μg/	- 0	50 μg/	kg	10 µg/		50 µg/	/kg	10 µg		50 да	/kg	10 μg/		50 µg	/kg	10 μg/kg		50 μg/	kg
	Rec.	RSD,	Rec,	RSD,	Rec,	RSD,	Rec,	RSD,	Rec,	RSD,	Rec,	RSD,	Rec.	RSD,	Rec,	RSD,	Rec,	RSD,	Rec,	RSD,	Rec, %	RSD,	Rec,	RSD,
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%		%	%	%
Acephate	63	11	64	7	66	8	58	3	72	4	68	22	80	12	82	4	59	8	60	9	81	12	67	4
Acetochlor	44	17	54	16	61	8	60	2	61	13	60	5	80	9	71	2	53	5	50	5	64	14	63	6
Acibenzolar-S- methyl	88	8	118	20	53	13	50	5	54	12	34	4	50	9	58	11	34	12	41	17	0	/	58	14
Alachlor	62	11	66	9	66	8	63	2	61	5	56	3	82	5	80	6	54	3	52	7	56	18	48	3
Aldicarb sulfone	92	3	89	4	45	6	31	11	90	11	82	6	103	4	101	7	0	/	0	/	104	11	91	5
Ametoctradin	82	19	94	10	77	14	65	7	56	10	59	6	77	4	79	7	65	11	59	7	57	18	46	11
Ametryn	48	7	52	8	41	5	40	2	29	4	28	5	64	5	63	8	34	2	33	6	49	22	47	9
Anilofos	64	14	44	3	51	7	42	3	37	6	28	3	67	14	57	3	41	4	33	8	72	19	51	4
Azaconazole	89	6	99	8	56	11	53	3	35	5	39	6	66	6	70	8	46	5	46	4	60	17	58	8
Azinphos-methyl	98	3	56	6	51	20	45	4	0	/	26	19	72	12	61	9	40	10	36	5	58	7	64	6
Aziprotryne	73	12	77	10	79	13	68	6	62	5	67	1	80	8	78	6	62	6	55	7	66	22	62	9
Azoxystrobin	74	9	72	5	63	10	56	3	47	8	44	5	75	6	76	5	51	2	46	6	59	19	55	9
Barban	109	18	90	21	73	19	67	10	74	12	59	11	52	36	70	17	74	3	60	10	0	/	60	31
Benalaxyl	64	13	60	14	72	17	65	2	57	4	55	3	90	5	91	9	63	5	60	11	69	19	71	14
Benoxacor	62	8	55	8	65	6	56	6	41	10	42	10	74	6	71	3	49	7	47	9	63	18	53	13
Bifenox	68	18	72	15	54	13	61	2	29	28	34	18	49	19	63	13	47	19	54	7	51	12	48	25
Bixafen	64	10	60	7	62	12	66	5	57	13	53	13	71	7	78	7	44	15	52	11	69	13	68	8
Boscalid	123	15	90	13	98	4	69	6	37	13	39	8	87	9	72	6	89	14	51	9	114	18	76	5
Bupirimate	68	12	60	13	63	9	61	3	50	4	48	5	73	5	71	4	52	5	52	5	62	25	62	5
Buprofezin	58	6	65	6	68	4	67	4	62	4	60	2	74	7	76	4	63	5	62	5	62	18	61	6
Chlorfenvinphos	66	19	70	9	57	5	53	3	40	7	44	4	66	7	71	7	45	5	45	4	72	12	69	7
Chlorobromuron	61	13	74	8	53	13	58	1	48	4	45	4	55	9	54	3	47	4	46	4	58	22	49	7
Chlorfluazuron	72	8	82	11	67	15	72	1	48	12	59	7	44	11	42	2	58	5	70	7	82	18	77	5
Chlorpyrifos	59	6	61	10	59	6	57	5	54	4	45	7	76	7	72	2	53	2	54	5	59	14	57	7
Chlorpyrifos-methyl	64	22	58	15	57	15	76	9	54	14	60	7	75	11	72	6	59	19	70	8	47	19	70	9
Cinosulfuron	50	9	60	4	28	4	29	4	16	5	22	5	114	4	118	4	34	5	35	6	80	11	79	6
Climbazole	64	7	56	9	49	7	48	3	29	6	35	7	81	10	74	5	37	7	39	6	64	29	57	6
Clodinafop-propargyl	71	13	77	12	62	7	63	3	42	7	44	6	79	8	92	3	49	6	52	5	75	18	79	7
Clofentezine	61	10	70	4	72	13	76	3	54	3	51	5	45	11	53	8	58	2	63	10	49	13	53	16
Cloquintocet-mexyl	66	1	70	8	71	10	70	2	62	4	62	2	74	4	76	3	63	3	63	6	59	21	56	4
Coumaphos	61	9	83	11	59	8	57	2	37	11	45	2	66	9	72	6	51	7	48	3	75	11	79	6
Coumatetralyl	45	6	48	11	53	8	49	6	46	3	46	2	70	5	67	6	36	6	34	4	54	27	50	6
Crufomate	65	10	75	9	83	12	81	3	63	13	63	2	91	11	95	7	67	3	69	6	63	27	59	6
Cyanazine	49	8	56	5	77	6	72	4	28	19	37	4	80	5	98	3	67	4	58	4	61	12	66	5
Cycloxydim	61	5	61	9	57	15	53	5	55	7	54	2	67	5	68	6	48	4	50	5	52	13	50	7
Cyflumetofen	76	20	77	4	85	12	75	5	82	22	56	11	100	11	87	4	81	2	76	7	85	26	77	8
Cymiazole	37	8	36	3	40	7	38	3	42	5	38	2	50	4	44	2	33	6	30	5	45	7	38	2
Cyproconazole	85	5	81	11	59	10	53	3	64	6	53	9	83	6	85	5	57	5	51	5	63	17	49	8
Cyprodinil	63	5	29	1	68	18	60	4	42	6	45	2	116	20	29	13	57	8	52	7	0	/	44	7
**																								

Demeton-S-methyl	48	2	49	5	61	7	59	1	50	4	51	3	59	2	57	4	57	2	57	5	57	10	51	7
sulfone																								
Desmetryn	45	3	49	8	41	5	39	4	13	8	17	4	61	4	68	2	32	2	29	6	48	12	38	6
Diafenthiuron	73	6	79	11	57	18	56	3	95	12	96	3	70	4	74	2	45	2	45	7	63	18	50	5
Dialifos	58	17	64	11	52	15	61	7	34	22	49	7	57	7	63	8	48	11	52	6	64	12	60	8
Diazinon	57	11	54	11	71	9	70	7	57	4	58	12	72	1	60	4	61	2	62	6	76	13	73	7
Diclofop-methyl	63	15	62	7	57	13	61	5	42	16	45	6	63	8	61	4	48	8	57	7	67	20	61	6
Diethofencarb	60	4	62	7	58	8	55	5	40	8	43	4	86	1	95	4	46	8	44	8	59	14	51	5
Difenoconazole	79	13	86	6	76	13	72	3	81	14	61	5	86	11	97	6	68	3	66	5	79	17	66	6
Diflufenican	70	8	74	7	70	8	62	7	43	10	51	20	58	9	75	10	63	4	56	16	71	23	81	13
Dimethachlor	58	11	61	12	61	7	61	5	42	3	49	6	68	5	64	4	48	2	50	6	71	31	70	9
Dimethenamid	58	15	65	16	59	9	59	4	50	8	43	1	70	9	73	5	46	5	48	6	59	20	60	9
Dimethomorph	83	12	86	6	62	9	57	2	31	7	37	6	81	5	88	9	50	8	46	5	73	21	72	1
Dimoxystrobin	66	13	70	9	68	11	66	8	46	28	42	4	76	14	84	8	52	8	55	5	72	21	74	6
Dioxathion	72	7	78	6	70	10	71	4	54	4	60	3	69	7	73	4	60	5	64	5	69	21	57	5
Dipropetryn	45	8	56	13	57	3	52	2	55	9	52	6	86	9	80	3	51	4	47	2	57	14	47	3
Ditalimphos	49	14	54	7	54	6	46	3	47	7	47	4	72	7	78	5	50	5	47	5	58	17	54	7
Emamectin Ba	85	6	94	9	77	2	74	4	102	9	97	6	92	6	93	3	68	9	67	6	101	18	94	6
Emameetin Bb	72	9	71	9	93	14	73	4	100	6	103	4	89	4	86	3	75	10	61	5	102	18	87	9
Epoxiconazole	59	15	61	17	72	13	72	9	57	10	53	6	104	7	83	5	62	18	55	10	66	16	61	6
Etaconazole	78	21	78	18	55	20	55	5	46	29	50	12	117	11	96	8	65	17	53	7	0	/	51	14
Ethion	56	4	61	6	64	5	63	3	61	5	59	3	61	7	58	4	54	2	56	5	71	15	62	7
Ethofumesate	64	14	72	9	0	,	87	3 15	53	17	52	3 4	72	13	85	4	0	7	0	,	75	13	55	11
Ethoprophos	48	17	63	9	63	6	58	3	53 57	8	53	9	83	6	87	7	52	6	49	5	60	20	52	12
Etiopropilos Etoxazole	48 61	7	64	10	59	11	60	3 4	54	8 4	56	4	63 40	0 11	29	8	50	2	50	5	68	20	61	5
Etrimfos		15		10	59 67		71	5		10		•		3		5		14		3 7	68		64	6
	63 70		55	19		10			62 47	7	64	10	74		72		61		66	•		21 33		4
Famoxadone		18	77 75		73	12	74	13			60	12	87	13	86	5	64	6	63	6	78		73	
Fenamiphos	54	14	75 77	15	76	7	73	5	54	9	62	5	80	7	80	2	59	3	61	2	61	20	48	5
Fenarimol	69	15	77 5.4	16	74	14	65	2	74	5	63	4	95 50	14	92	5	53	19	59	5	49	46	91	7
Fenazaquin	62	6	54	9	58	9	54	2	48	16	43	8	58	5	37	2	53	2	49	6	56	19	41	5
Fenbuconazole	76	14	83	18	71	12	63	6	47	10	46	5	79	8	84	8	57	9	58	7	70	28	74	14
Fenpropidin	72	8	74	8	60	2	54	3	50	5	46	4	89	8	92	4	60	6	52	3	73	22	63	7
Fenpropimorph	61	7	84	8	60	8	52	5	34	6	46	12	87	5	89	4	50	2	46	4	49	15	51	7
Fenpyroximate	72	7	73	7	63	19	66	5	53	5	57	1	52	5	51	4	55	2	60	5	75	24	71	5
Fensulfothion	53	4	63	8	49	4	43	2	28	7	30	3	61	5	85	9	40	1	37	7	59	27	54	8
Fensulfothion-oxon	33	5	31	5	34	5	29	2	20	5	20	4	77	6	75	6	28	3	22	5	39	8	29	4
Fensulfothion-sulfone	91	7	97	8	50	5	48	6	12	17	28	5	76	3	78	5	40	5	40	5	66	21	65	5
Fenthion	59	13	61	9	67	8	71	7	62	8	60	7	70	5	70	5	61	7	64	5	61	22	55	10
Fenthion sulfone	44	16	41	13	30	17	48	15	23	5	27	3	62	16	81	4	24	17	38	11	64	19	56	6
Fenthion sulfoxide	43	2	37	7	38	2	35	4	24	9	26	5	49	2	45	4	35	5	29	7	51	20	43	5
Flamprop-isopropyl	59	6	58	13	62	9	60	5	47	5	46	5	73	7	82	9	49	6	50	7	74	13	69	18
Flazasulfuron	102	12	125	13	32	7	32	4	20	16	23	11	127	7	142	3	41	5	41	7	100	35	110	4
Florasulam	57	5	63	8	57	6	58	7	21	14	25	7	88	5	98	5	74	7	46	4	92	15	90	9
Flubendiamide	69	19	79	16	61	19	70	9	78	7	49	4	79	15	116	16	57	18	59	4	77	23	95	13
Flucycloxuron	80	7	86	11	79	17	79	6	47	15	69	3	64	4	63	6	65	7	71	7	82	21	79	4
Flufenacet	66	14	75	9	90	14	79	12	49	4	57	30	72	7	73	4	72	2	68	7	105	27	103	4
Flufenoxuron	71	4	68	8	70	29	79	4	59	15	62	6	54	6	53	3	54	7	70	10	77	26	74	4
Fluopicolide	64	8	76	10	52	14	46	14	32	9	32	13	51	5	71	5	41	6	35	6	64	17	52	10
Flurochloridon	76	8	86	2	55	16	57	4	36	11	37	6	66	5	56	10	44	10	49	3	57	21	50	12

Fluramidol 82 20 80 6 71 13 64 6 59 6 54 8 85 7 86 4 60 8 57 2 70 44 59 12
Fluxastrobin 40
Flux Flux
Fonofos
Fonofos
Foramsulfuron 93 7 107 8 17 10 17 2 14 8 14 3 145 5 42 4 39 3 85 20 66 8 Forchlofenuron 67 10 58 5 71 3 67 3 0 / 46 15 63 8 82 2 60 7 57 5 5 93 25 77 11 49 7 7 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1
Forchlofenuron 67 10 58 5 71 3 67 3 0 / 46 15 63 8 82 2 60 7 57 5 93 25 77 11
Furmecyclox 50 5 51 13 68 5 65 3 52 5 68 6 6 65 6 60 10 59 2 55 5 5 5 10 49 7 Haloxyfop-methyl 70 6 71 7 69 11 70 4 43 6 47 2 76 6 78 5 58 3 61 4 75 16 77 10 Heptenophos 102 14 58 9 60 13 62 8 47 5 47 8 77 7 61 7 47 18 47 5 71 27 55 7 Hexazinone 37 5 37 6 37 6 34 4 32 3 21 3 20 4 46 5 5 50 4 30 4 26 6 42 13 35 6 Hexythiazox 52 6 57 10 57 10 59 6 37 14 47 4 45 12 46 7 49 11 51 8 56 14 54 3 Imazalil 47 5 45 6 55 7 52 5 44 8 43 7 82 5 75 7 45 8 41 6 69 12 62 8 Imazosulfuron 107 17 116 11 55 7 48 12 37 9 32 2 107 10 103 4 82 8 41 6 69 12 62 8 Imoteconazole 61 1 71 3 112 11 78 7 58 13 61 3 56 6 52 9 86 12 68 12 68 12 65 19 64 3 Indoxacarb 103 12 102 9 91 15 85 5 46 11 77 8 10 6 52 4 10 63 6 116 4 117 7 105 8 81 8 72 23 67 64 150 6 130 64 150 64 16 62 4 Isofenphos-methyl 72 11 75 12 58 6 73 7 64 6 66 63 4 44 4 4 168 7 143 3 79 8 69 6 112 21 21 99 6 150 67 11 72 16 66 64 4 11 72 7 150 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Haloxyfop-methyl 70 6 71 7 69 11 70 4 43 6 47 2 76 6 78 5 58 3 61 4 75 16 77 10 Heptenophos 102 14 58 9 60 13 62 8 47 5 47 8 77 7 61 7 47 18 47 5 71 27 55 7 Hexazinone 37 5 37 6 34 4 32 3 21 3 20 4 46 5 50 4 30 4 26 6 42 13 35 6 Hexythiazox 52 6 57 10 57 10 59 6 37 14 47 4 45 12 46 7 49 11 51 8 56 14 54 3 Imazalil 47 5 45 6 55 7 52 5 44 8 43 7 82 5 75 7 45 8 41 6 69 12 62 8 Imazosulfuron 107 17 116 11 55 7 48 12 37 9 32 2 107 10 103 4 82 8 54 8 131 24 118 5 Imibenonazole 61 1 71 3 112 11 78 7 58 13 61 3 56 6 52 9 86 12 68 12 65 19 64 3 Indoxacarb 103 12 102 9 91 15 85 5 46 11 77 8 106 3 108 9 88 7 80 8 117 20 83 2 Ipconazole 80 7 81 5 71 18 74 6 52 10 63 6 116 4 117 7 105 8 81 8 12 3 67 6 136 67 6 136 67 9 73 8 8 70 10 65 2 54 9 55 5 78 8 8 83 6 6 62 5 5 59 4 80 16 72 3 Isosaflutole 104 5 94 6 73 7 64 6 66 4 58 15 50 8 84 4 166 6 65 58 7 46 61 1 77 1 10 104 5 94 6 73 7 64 6 66 4 68 8 48 6 66 66 6 58 7 143 3 79 8 8 69 6 112 21 99 6 Kresoxim-methyl 70 16 67 11 72 6 6 66 4 58 15 50 8 84 6 66 66 6 58 7 46 11 43 5 75 10 54 6
Heptenophos 102 14 58 9 60 13 62 8 47 5 47 8 77 7 61 7 47 18 47 5 71 27 55 7 Hexazinone 37 5 37 6 34 4 32 3 21 3 20 4 46 5 50 4 30 4 26 6 42 13 35 6 Hexythiazox 52 6 57 10 57 10 59 6 37 14 47 4 45 12 46 7 49 11 51 8 56 14 54 3 Imazalil 47 5 45 6 55 7 52 5 44 8 43 7 82 5 75 7 45 8 41 6 69 12 62 8 Imazosulfuron 107 17 116 11 55 7 48 12 37 9 32 2 107 10 103 4 82 8 54 8 131 24 118 5 Imibenconazole 61 1 71 3 112 11 78 7 58 13 61 3 56 6 52 9 86 12 68 12 65 19 64 3 Indoxacarb 103 12 102 9 9 11 15 85 5 46 11 77 8 106 3 108 9 88 7 80 8 117 20 83 2 Ipconazole 80 7 81 5 91 11 80 6 40 9 46 3 77 5 81 9 83 4 77 8 88 81 8 72 23 8 8 64 8 Isofenphos-methyl 72 11 75 12 58 6 53 4 35 15 36 8 72 4 63 6 53 4 47 4 74 4 73 16 72 7 Isopyrazam 67 9 73 8 70 10 65 2 54 66 66 4 58 15 50 8 84 10 71 5 53 10 56 4 66 11 21 21 21 99 6 11 10 72 6 66 66 4 58 15 50 8 84 10 71 5 53 10 56 4 66 11 21 21 21 99 6 11 10 72 6 66 66 4 58 15 50 8 84 10 71 5 53 10 56 4 66 11 21 21 21 99 6 11 10 72 6 66 66 4 58 48 60 66 66 6 58 7 46 11 43 5 75 10 54 6
Hexazinone 37 5 37 6 34 4 32 3 21 3 20 4 46 5 50 4 30 4 26 6 42 13 35 6 Hexythiazox 52 6 57 10 57 10 59 6 37 14 47 4 45 12 46 7 49 11 51 8 56 14 54 3 Imazalil 47 5 45 6 55 7 52 5 44 8 43 7 82 5 75 7 45 8 11 6 69 12 62 8 Imazosulfuron 107 17 116 11 55 7 48 12 37 9 32 2 107 10 103 4 82 8 54 8 131 24 118 5 Imibenconazole 61 1 71 3 112 11 78 7 58 13 61 3 56 6 52 9 86 12 68 12 65 19 64 3 Indoxacarb 103 12 102 9 91 15 85 5 46 11 77 8 106 3 108 9 88 7 80 8 117 20 83 2 Ipconazole 80 7 81 5 71 18 74 6 52 10 63 6 116 4 117 7 105 8 81 8 72 23 67 6 Isofenphos 61 6 61 6 61 5 91 11 80 6 40 9 46 3 77 5 81 9 83 4 74 8 64 16 62 4 Isofenphos-methyl 72 11 75 12 58 6 53 4 35 15 36 8 72 4 63 6 53 4 47 4 73 16 72 7 Isopyrazam 67 9 73 8 70 10 65 2 54 9 55 5 78 8 8 83 6 62 5 59 4 80 16 72 7 Isopyrazam 67 9 70 16 67 11 72 6 66 4 4 58 15 50 8 84 10 71 5 53 10 56 4 66 11 21 99 6 Indoxacarbulled 104 5 94 6 67 11 72 6 66 4 4 58 15 50 8 84 10 71 5 53 10 56 4 66 11 21 99 6 Indoxacarbulled 104 5 94 6 67 11 72 6 66 4 4 58 15 50 8 84 10 71 5 53 10 56 4 66 11 4 4 64 4 Indoxacarbulled 104 5 6 54 11 61 13 56 3 46 8 48 6 66 66 6 58 7 46 11 43 5 75 10 54 6
Hexythiazox 52 6 57 10 57 10 59 6 37 14 47 4 45 12 46 7 49 11 51 8 56 14 54 3 Imazalil 47 5 45 6 55 7 52 5 44 8 43 7 82 5 75 7 45 8 41 6 69 12 62 8 Imazosulfuron 107 17 116 11 55 7 48 12 37 9 32 2 107 10 103 4 82 8 54 8 131 24 118 5 Imibenconazole 61 1 71 3 112 11 78 7 58 13 61 3 56 6 52 9 86 12 68 12 65 19 64 3 Imoxacarb 103 12 102 9 91 15 85 5 46 11 77 8 106 3 108 9 88 7 80 8 117 20 83 2 Ipconazole 80 7 81 5 71 18 74 6 52 10 63 6 116 4 117 7 105 8 81 8 72 23 67 6 Isofenphos 61 6 61 5 91 11 80 6 40 9 46 3 77 5 81 9 83 4 74 8 64 16 62 4 Isofenphos-methyl 72 11 75 12 58 6 53 4 35 15 36 8 72 4 63 6 53 4 47 4 73 16 72 7 Isopyrazam 67 9 73 8 70 10 65 2 54 9 55 5 78 8 8 83 6 62 5 59 4 80 16 72 3 Isoxaflutole 104 5 94 6 73 7 64 6 63 4 44 4 4 168 7 143 3 79 8 69 6 112 21 99 6 Kresoxim-methyl 70 16 67 11 72 6 6 66 4 58 45 6 8 45 6 66 6 6 58 7 46 11 43 5 75 10 54 6 Isofenphos 51 6 54 11 61 13 56 3 46 8 84 6 6 66 6 58 7 46 11 43 5 75 10 54 6
Imazalil 47 5 45 6 55 7 52 5 44 8 43 7 82 5 75 7 45 8 41 6 69 12 62 8 Imazosulfuron 107 17 116 11 55 7 48 12 37 9 32 2 107 10 103 4 82 8 54 8 131 24 118 5 Imibenconazole 61 1 71 3 112 11 78 7 58 13 61 3 56 6 52 9 86 12 68 12 65 19 64 3 Indoxacarb 103 12 102 9 91 15 85 5 46 11 77 8 106 3 108 9 88 7 80 8 117 20
Imazosulfuron 107 17 116 11 55 7 48 12 37 9 32 2 107 10 103 4 82 8 54 8 131 24 118 5 Imibenconazole 61 1 71 3 112 11 78 7 58 13 61 3 56 6 52 9 86 12 68 12 65 19 64 3 Indoxacarb 103 12 102 9 91 15 85 5 46 11 77 8 106 3 108 9 88 7 80 8 117 20 83 2 Ipconazole 80 7 81 5 71 18 74 6 52 10 63 6 116 4 117 7 105 8 81 8 72 23
Imibenconazole 61 1 71 3 112 11 78 7 58 13 61 3 56 6 52 9 86 12 68 12 65 19 64 3 Indoxacarb 103 12 102 9 91 15 85 5 46 11 77 8 106 3 108 9 88 7 80 8 117 20 83 2 Ipconazole 80 7 81 5 71 18 74 6 52 10 63 6 116 4 117 7 105 8 81 8 72 23 67 6 Isofenphos 61 6 61 5 91 11 80 6 40 9 46 3 77 5 81 9 83 4 74 8 64 16
Indoxacarb 103 12 102 9 91 15 85 5 46 11 77 8 106 3 108 9 88 7 80 8 117 20 83 2 Ipconazole 80 7 81 5 71 18 74 6 52 10 63 6 116 4 117 7 105 8 81 8 72 23 67 6 Isofenphos 61 6 61 5 91 11 80 6 40 9 46 3 77 5 81 9 83 4 74 8 64 16 62 4 Isofenphos-methyl 72 11 75 12 58 6 53 4 35 15 36 8 72 4 63 6 53 4 47 4 73 16
Ipconazole 80 7 81 5 71 18 74 6 52 10 63 6 116 4 117 7 105 8 81 8 72 23 67 6 6 61 5 91 11 80 6 40 9 46 3 77 5 81 9 83 4 74 8 64 16 62 4 62 4 63 64 65 64 65 65 65 65 65
Isofenphos 61 6 61 5 91 11 80 6 40 9 46 3 77 5 81 9 83 4 74 8 64 16 62 4 Isofenphos-methyl 72 11 75 12 58 6 53 4 35 15 36 8 72 4 63 6 53 4 47 4 73 16 72 7 Isopyrazam 67 9 73 8 70 10 65 2 54 9 55 5 78 8 83 6 62 5 59 4 80 16 72 3 Isoxaflutole 104 5 94 6 73 7 64 6 63 4 44 4 168 7 143 3 79 8 69 6 112 21 <td< td=""></td<>
Isofenphos-methyl 72 11 75 12 58 6 53 4 35 15 36 8 72 4 63 6 53 4 47 4 73 16 72 7
Isopyrazam 67 9 73 8 70 10 65 2 54 9 55 5 78 8 83 6 62 5 59 4 80 16 72 3 Isoxaflutole 104 5 94 6 73 7 64 6 63 4 44 4 168 7 143 3 79 8 69 6 112 21 99 6 Kresoxim-methyl 70 16 67 11 72 6 66 4 58 15 50 8 84 10 71 5 53 10 56 4 66 14 64 4 Linuron 51 6 54 11 61 13 56 3 46 8 48 6 66 6 58 7 46 11 43 5 75 10 54 6
Isoxaflutole 104 5 94 6 73 7 64 6 63 4 44 4 168 7 143 3 79 8 69 6 112 21 99 6 Kresoxim-methyl 70 16 67 11 72 6 66 4 58 15 50 8 84 10 71 5 53 10 56 4 66 14 64 4 Linuron 51 6 54 11 61 13 56 3 46 8 48 6 66 6 58 7 46 11 43 5 75 10 54 6
Kresoxim-methyl 70 16 67 11 72 6 66 4 58 15 50 8 84 10 71 5 53 10 56 4 66 14 64 4 Linuron 51 6 54 11 61 13 56 3 46 8 48 6 66 6 58 7 46 11 43 5 75 10 54 6
Linuron 51 6 54 11 61 13 56 3 46 8 48 6 66 6 58 7 46 11 43 5 75 10 54 6
Mepanipyrim 50 11 49 8 72 7 54 2 52 3 49 5 66 5 81 9 57 4 46 8 47 11 44 6
Metaflumizone 86 10 86 17 79 15 83 5 65 22 75 9 89 10 68 11 69 10 74 8 114 17 94 14 Metafluxul 65 5 59 3 63 7 55 3 41 9 41 7 95 5 92 7 53 2 44 5 80 24 65 5
Michael 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Metazachlor 38 16 56 7 49 7 53 4 34 6 36 5 67 5 67 4 42 4 43 4 57 14 44 8
Methabenzthiazuron 48 8 55 7 59 7 51 2 42 6 42 3 55 5 64 5 45 4 40 6 59 20 55 3
Methidathion 38 18 60 4 50 15 57 6 45 5 42 8 45 6 60 5 40 4 49 4 49 21 44 7
Methiocarb 56 3 68 10 64 10 61 4 59 7 60 3 65 2 72 3 49 4 48 4 87 9 63 5
Methoprotryne 51 6 57 6 58 10 55 6 43 4 46 7 81 4 84 7 49 5 47 6 60 13 58 6
Methoxyfenozide 53 18 72 12 50 9 50 4 37 6 31 5 54 13 72 7 38 5 42 7 61 14 58 6
Metobromuron 55 7 45 9 43 5 38 6 31 8 33 4 65 9 67 7 37 6 32 6 60 9 36 5
Metolachlor 52 13 59 10 62 6 60 3 46 1 50 3 78 6 78 3 50 8 51 4 56 19 58 6
Metrafenone 58 6 60 13 60 8 58 3 35 6 41 3 59 8 69 8 47 5 49 3 65 18 60 8
Napropamid 53 19 70 12 58 9 59 1 67 9 63 7 65 16 84 8 54 6 50 6 57 18 52 8
Norflurazon 53 5 50 6 49 8 50 4 31 15 30 10 55 9 69 6 36 5 40 7 49 13 37 6
Oxadiargyl 77 14 67 10 63 8 61 6 57 18 60 9 67 11 75 3 59 9 54 8 79 27 64 19
Oxycarboxim 27 3 24 4 24 8 29 3 22 5 28 5 31 6 33 2 21 7 26 6 31 7 27 2
Paclobutrazol 108 5 105 14 76 10 59 5 50 12 60 11 102 6 97 5 53 12 53 8 60 26 55 12
Pencycuron 54 4 85 10 65 12 62 6 47 7 44 8 74 5 80 9 58 5 55 7 70 19 79 7
Penthiopyrad 67 9 67 18 68 8 61 3 52 7 54 15 70 6 71 4 56 12 51 4 79 24 83 7
Pethoxamid 52 9 52 6 71 10 64 8 68 7 61 7 85 11 90 5 55 6 54 10 64 21 59 6
Phenthoate 58 12 62 17 62 9 65 5 46 7 46 5 72 9 74 5 53 6 55 4 70 18 73 9
Phosalone 56 16 61 8 58 13 56 4 38 11 46 5 54 7 55 3 50 5 48 6 59 17 56 5

Phosmet	40	6	48	5	45	42	55	8	34	23	32	6	51	14	54	6	37	9	40	13	58	28	65	9
Phosphamidon	44	8	58	9	42	7	40	3	42	3	37	5	70	4	69	8	38	4	34	7	58	12	44	4
Phoxim	56	10	68	7	60	6	56	4	59	2	52	7	75	3	73	4	54	3	54	5	60	20	62	6
Picolinafen	56	3	59	7	58	15	61	4	33	8	47	4	59	6	65	4	51	7	51	8	65	17	67	5
Picoxystrobin	54	2	58	13	58	7	57	4	41	3	41	2	79	3	75	3	54	5	53	3	69	24	73	11
Pinoxaden	73	5	78	9	65	7	52	4	53	4	49	7	88	5	86	8	53	3	47	3	64	21	57	3
Piperonyl Butoxyde	62	12	77	8	65	10	66	2	63	3	55	4	85	5	82	3	66	8	57	6	83	17	71	9
Pirimiphos-ethyl	57	7	60	7	65	6	63	3	56	1	50	3	66	11	68	5	61	2	58	6	64	19	64	3
Pirimiphos-methyl	63	5	62	7	69	7	62	4	63	2	52	7	91	10	70	3	64	3	60	5	68	28	63	8
Prochloraz	63	8	68	12	60	7	55	4	42	9	48	9	65	9	67	1	51	5	45	7	57	21	59	6
Profenofos	62	9	58	4	61	9	56	4	46	12	46	5	72	8	75	4	51	4	53	6	57	20	51	4
Prometon	37	8	43	10	55	8	56	4	31	3	25	3	67	5	67	8	45	3	46	6	60	17	47	6
Prometryn	68	4	71	5	69	5	69	2	50	5	48	3	67	3	64	4	56	8	56	6	57	27	59	6
Propaphos	65	11	66	11	71	14	69	5	50	4	48	3	83	6	83	14	57	5	58	4	65	17	60	10
Propquinazid	51	7	50	9	44	19	44	3	33	12	36	2	32	7	32	2	36	6	39	5	52	18	48	4
Propargite	64	6	67	9	67	9	68	3	69	9	61	3	55	6	58	4	59	3	58	5	73	18	67	5
Propazine	52	7	55	6	83	4	73	3	53	5	53	6	53	6	53	6	63	4	61	5	52	20	47	5
Propiconazole	58	11	61	10	58	4	55	6	53	10	55	6	70	5	73	6	54	3	51	4	60	16	55	4
Propyzamide	82	13	75	11	72	9	68	2	49	12	53	4	70	10	69	7	59	3	56	6	75	30	56	8
Prosulfocarb	73	14	63	16	84	8	71	5	69	4	64	6	68	7	68	8	66	8	61	4	77	26	62	6
Pyraclostrobin	58	8	65	7	58	7	55	5	47	6	45	4	67	6	66	3	51	4	49	4	67	19	68	5
Pyrazophos	69	1	74	8	62	10	62	2	47	11	49	5	85	9	90	7	52	3	55	4	77	21	72	8
Pyridaben	63	7	65	10	54	16	54	2	31	12	34	4	40	4	39	4	46	4	48	5	66	24	58	6
Pyridafenthion	74	19	90	8	59	14	55	6	39	16	35	4	77	12	78	6	47	8	44	5	68	19	64	8
Pyridate	67	5	59	6	45	10	37	6	42	3	23	4	50	4	36	3	83	5	66	6	64	19	54	6
Rimsulfuron	48	7	54	11	18	6	20	2	13	17	14	4	72	4	77	5	27	11	26	8	76	13	55	6
Saflufenacil	102	14	96	18	68	9	72	8	41	13	43	10	141	14	154	10	75	11	78	5	141	16	149	25
Spinosyn-A	71	6	70	13	60	7	60	5	72	4	71	3	70	8	69	8	49	4	50	7	74	18	67	4
Spirotetramat	87	9	91	14	63	10	56	6	50	31	54	6	156	4	144	7	51	4	46	5	94	17	84	5
Spiroxamine	73	10	80	9	70	10	56	3	56	7	53	5	96	5	96	6	64	2	55	5	69	24	68	11
Sulfotep	61	16	62	20	59	9	59	3	46	16	53	6	83	11	83	5	48	10	50	8	64	15	56	5
Tebufenozide	57	14	65	11	65	11	62	4	39	8	41	4	67	2	65	7	56	8	49	7	73	25	70	2
Tebufenpyrad	61	10	63	8	73	15	71	5	47	13	55	6	68	11	73	4	66	7	62	7	62	23	64	3
Tepraloxydim	71	3	72	7	51	6	45	8	35	13	37	11	63	7	73	4	44	9	42	3	72	24	64	7
Terbufos	72	7	72	11	74	16	64	5	69	13	66	14	63	8	63	9	71	13	66	5	89	23	65	5
Thiobencarb	65	8	65	11	69	12	62	7	55	8	57	13	72	6	68	5	57	12	58	4	65	20	60	6
Tolfenpyrad	64	4	72	5	73	14	74	3	41	12	52	5	64	8	69	3	63	5	67	5	69	24	70	4
Tralkoxydim	60	6	61	6	60	14	56	3	44	8	48	4	29	14	56	9	53	6	53	8	55	19	55	5
Triadimefon	124	9	109	8	74	7	76	4	59	10	63	6	81	12	82	8	66	4	65	7	68	22	57	4
Triallate	104	14	62	10	64	19	63	8	64	14	58	7	37	18	65	9	62	13	56	8	0	/	59	11
Tridemorph	56	12	66	17	64	10	52	8	52	3	54	5	94	9	84	11	70	7	54	3	73	13	61	5
Triforine	78	17	79	5	63	8	54	4	34	22	39	18	75	8	80	1	50	14	49	9	32	44	101	17
Zoxamide	55	4	52	19	63	12	61	3	58	6	39	2	71	7	74	13	52	9	52	6	72	24	67	8

Table 3: LODs, LOQs and ME of the different extraction/cleanup QuEChERS method in the rapeseed samples.

	Without	clean up		Freezing			C18/PSA	\		EMR-Li	pid		Z-Sep			Z-Sep+		
Molecules	LOD	LOO	ME	LOD	LOQ		LOD	LOQ		LOD	LOQ		LOD	LOO		LOD	LOO	
	(µg/kg)	(μg/kg)	(%)	(µg/kg)	(µg/kg)	ME (%)	(µg/kg)	(μg/kg)	ME (%)	(µg/kg)	(μg/kg)	ME (%)	(µg/kg)	(µg/kg)	ME (%)	(µg/kg)	(μg/kg)	ME (%)
Acephate	1.06	3.18	-59	1.01	3.02	2	0.92	2.77	-46	0.84	2.52	-14	1.13	3.40	-71	0.82	2.46	-50
Acetochlor	1.52	4.57	-39	1.09	3.28	-27	1.10	3.30	-12	0.84	2.51	-14	1.25	3.76	-41	1.05	3.14	-60
Acibenzolar-S-																		
methyl	0.76	2.27	-22	1.26	3.77	8	1.22	3.67	-6	1.33	3.99	-13	1.96	5.87	-31	/	/	-72
Alachlor	1.07	3.21	-36	1.01	3.03	-19	1.09	3.28	4	0.81	2.43	-37	1.24	3.71	-28	1.19	3.58	-60
Aldicarb sulfone	0.73	2.18	-41	1.50	4.49	-17	0.74	2.22	-10	0.65	1.94	-37	/	/	-42	0.64	1.93	-40
Ametoctradin	0.82	2.45	-21	0.87	2.61	-9	1.19	3.58	34	0.86	2.59	-22	1.03	3.08	-20	1.17	3.50	-60
Ametryn	1.40	4.20	-44	1.64	4.92	-10	/	/	7	1.04	3.11	-37	1.94	5.82	-30	1.35	4.05	-65
Anilofos	1.05	3.14	-12	1.31	3.93	-13	1.81	5.43	37	1.00	2.99	-6	1.62	4.87	-2	0.92	2.77	-48
Azaconazole	0.75	2.25	-24	1.19	3.58	-9	1.90	5.69	38	1.01	3.04	-11	1.46	4.38	-11	1.11	3.34	-65
Azinphos-methyl	0.68	2.04	-34	1.31	3.93	14	/	/	19	0.93	2.79	-32	1.69	5.06	-13	1.14	3.42	-49
Aziprotryne	0.91	2.73	-24	0.85	2.54	4	1.07	3.22	32	0.83	2.49	-22	1.08	3.24	-20	1.01	3.03	-68
Azoxystrobin	0.90	2.69	-22	1.06	3.18	-10	1.41	4.24	8	0.89	2.67	-24	1.31	3.94	-21	1.13	3.39	-58
Barban	0.73	2.19	-24	0.92	2.75	-6	0.90	2.71	16	1.27	3.82	-4	0.90	2.69	-5	/	/	-63
Benalaxyl	1.04	3.13	-15	0.93	2.78	4	1.18	3.54	37	0.74	2.21	-15	1.07	3.20	-1	0.96	2.89	-48
Benoxacor	1.08	3.25	-17	1.02	3.07	-1	1.64	4.91	12	0.91	2.72	-40	1.36	4.09	-12	1.06	3.17	-48
Bifenox	0.99	2.96	14	1.23	3.70	52	/	/	99	1.36	4.08	30	1.43	4.29	31	1.30	3.89	-54
Bixafen	1.05	3.15	-25	1.07	3.20	13	1.18	3.54	21	0.93	2.80	-10	1.51	4.54	-6	0.97	2.91	-53
Boscalid	0.82	2.45	-29	0.68	2.03	2	1.80	5.40	24	0.76	2.29	-6	0.75	2.25	-25	0.58	1.75	-55
Bupirimate	0.99	2.96	-25	1.06	3.17	-15	1.33	3.99	14	0.91	2.73	-37	1.27	3.81	-12	1.07	3.22	-51
Buprofezin	1.15	3.44	-77	0.98	2.94	5	1.08	3.23	29	0.90	2.69	-11	1.05	3.16	-9	1.07	3.21	-53
Chlorfenvinphos	1.01	3.03	-37	1.16	3.49	-14	1.65	4.95	19	1.01	3.02	-21	1.49	4.48	-23	0.93	2.79	-59
Chlorobromuron	1.09	3.28	-31	1.25	3.74	-30	1.38	4.14	-10	1.21	3.62	-43	1.41	4.22	-36	1.14	3.43	-73
Chlorfluazuron	0.92	2.76	-52	1.00	3.00	-48	1.40	4.19	-35	1.50	4.50	-34	1.15	3.45	-53	0.82	2.45	-76
Chlorpyrifos	1.13	3.40	-15	1.12	3.37	1	1.23	3.68	46	0.87	2.62	-8	1.25	3.76	-9	1.13	3.39	-58
Chlorpyrifos-methyl	1.05	3.14	-30	1.18	3.53	-23	1.22	3.67	-10	0.88	2.65	-21	1.12	3.36	-60	1.43	4.29	-69
Cinosulfuron	1.33	4.00	-29	/	/	32	/	/	54	0.58	1.75	2	1.99	5.96	21	0.84	2.51	-34
Climbazole	1.05	3.14	-43	1.37	4.11	5	/	/	29	0.82	2.46	-28	1.78	5.34	-15	1.03	3.10	-59
Clodinafop-propargyl	0.93	2.80	-4	1.08	3.23	13	1.60	4.79	25	0.85	2.54	-7	1.35	4.06	-12	0.89	2.67	-42
Clofentezine	1.09	3.26	-26	0.93	2.78	5	1.24	3.73	28	1.47	4.40	-21	1.15	3.46	-22	1.35	4.06	-57
Cloquintocet-mexyl	1.01	3.04	70	0.94	2.82	18	1.08	3.24	90	0.91	2.72	51	1.05	3.16	58	1.13	3.39	87
Coumaphos	1.10	3.29	-36	1.12	3.37	-16	1.79	5.37	22	1.00	3.01	-20	1.32	3.95	-15	0.89	2.66	-56
Coumatetralyl	1.50	4.49	-30	1.25	3.76	-5	1.46	4.39	10	0.95	2.84	-37	1.84	5.53	-20	1.23	3.69	-58
Crufomate	1.02	3.07	-13	0.81	2.42	4	1.07	3.20	37	0.74	2.21	-11	0.99	2.98	-14	1.05	3.15	-51
Cyanazine	1.36	4.09	-38	0.87	2.60	-5	/	/	3	0.84	2.51	-40	1.00	2.99	-28	1.09	3.26	-57
Cycloxydim	1.10	3.30	-60	1.18	3.53	5	1.22	3.65	60	0.99	2.98	1	1.39	4.17	-13	1.29	3.86	-48
Cyflumetofen	0.88	2.64	-27	0.78	2.35	-23	0.82	2.45	24	0.67	2.01	-22	0.82	2.46	-28	0.79	2.36	-62
Cymiazole	1.79	5.36	-62	1.65	4.95	-31	1.59	4.77	-33	1.34	4.03	-59	2.04	6.11	-50	1.48	4.43	-67
Cyproconazole	0.78	2.34	-32	1.13	3.40	5	1.04	3.12	20	0.80	2.40	-17	1.16	3.49	-20	1.06	3.18	-57
Cyprodinil	1.06	3.18	-18	0.98	2.94	2	1.57	4.71	31	0.57	1.72	-20	1.17	3.52	-18	/	/	-59

Demeton-S-methyl																		
sulfone	1.40	4.20	-55	1.09	3.28	-16	1.35	4.04	-9	1.14	3.41	-39	1.17	3.50	-40	1.17	3.50	-61
Desmetryn	1.49	4.46	-29	1.61	4.84	0	/	/	17	1.09	3.26	-20	2.06	6.19	-25	1.38	4.14	-55
Diafenthiuron	0.91	2.73	26	1.17	3.52	22	0.70	2.11	22	0.95	2.86	15	1.49	4.47	27	1.07	3.20	-46
Dialifos	1.14	3.43	-30	1.27	3.82	-2	1.94	5.81	28	1.16	3.49	-14	1.39	4.16	-14	1.05	3.14	-66
Diazinon	1.17	3.50	-21	0.94	2.83	-7	1.17	3.50	28	0.92	2.77	-21	1.08	3.25	-9	0.88	2.63	-54
Diclofop-methyl	1.05	3.16	-91	1.18	3.54	-58	1.59	4.78	-86	1.06	3.18	-91	1.39	4.18	-91	1.00	3.00	-95
Diethofencarb	1.11	3.33	-25	1.15	3.46	-13	1.65	4.95	-4	0.77	2.32	-19	1.44	4.33	-21	1.13	3.38	-54
Difenoconazole	0.85	2.54	-41	0.87	2.62	1	0.83	2.48	38	0.77	2.32	5	0.97	2.92	-13	0.84	2.52	-54
Diflufenican	0.95	2.86	50	0.95	2.86	25	1.57	4.70	62	1.14	3.43	10	1.06	3.17	-37	0.93	2.80	-48
Dimethachlor	1.16	3.47	-33	1.09	3.28	-18	1.58	4.75	10	0.98	2.93	-29	1.39	4.18	-18	0.94	2.81	-56
Dimethenamid	1.15	3.46	-33	1.12	3.37	-14	1.34	4.02	0	0.95	2.84	-29	1.45	4.34	-26	1.12	3.37	-58
Dimethomorph	0.80	2.40	53	1.08	3.24	13	2.16	6.49	41	0.83	2.48	11	1.34	4.03	2	0.91	2.74	-47
Dimoxystrobin	1.00	3.01	-16	0.98	2.95	-10	1.44	4.33	30	0.88	2.65	-13	1.27	3.81	-13	0.93	2.79	-55
Dioxathion	0.93	2.78	-23	0.95	2.86	-7	1.24	3.73	24	0.97	2.90	-22	1.11	3.34	-14	0.97	2.91	-56
Dipropetryn	1.49	4.46	-28	1.16	3.48	2	1.22	3.65	29	0.78	2.33	-24	1.30	3.89	-11	1.17	3.51	-50
Ditalimphos	1.37	4.12	-32	1.23	3.70	-11	1.42	4.25	21	0.93	2.79	-32	1.34	4.03	-13	1.15	3.45	-49
Emamectin Ba	0.79	2.36	-51	0.86	2.59	21	0.65	1.96	71	0.72	2.17	-9	0.98	2.93	12	0.66	1.99	-47
Emamectin Bb	0.93	2.78	-8	0.71	2.14	19	0.66	1.99	58	0.75	2.25	-6	0.89	2.66	8	0.66	1.97	-52
Epoxiconazole	1.12	3.37	-9	0.93	2.78	34	1.17	3.51	48	0.64	1.92	-17	1.08	3.23	18	1.01	3.04	-51
Etaconazole	0.86	2.57	-13	1.21	3.64	6	1.44	4.33	43	0.57	1.71	2	1.03	3.09	-17	/	/	-70
Ethion	1.19	3.56	-25	1.05	3.14	2	1.10	3.30	24	1.10	3.30	-24	1.23	3.69	-17	0.93	2.80	-57
Ethofumesate	1.05	3.15	-42	/	/	-24	1.25	3.75	-6	0.93	2.79	-33	/	/	-32	0.89	2.66	-58
Ethoprophos	1.37	4.12	-22	1.06	3.17	18	1.18	3.53	36	0.80	2.41	-31	1.29	3.88	-7	1.11	3.33	-46
Etoxazole	1.09	3.26	133	1.13	3.40	75	1.24	3.73	181	1.66	4.98	117	1.33	3.99	147	0.98	2.93	37
Etrimfos	1.07	3.20	-22	1.00	2.99	-1	1.07	3.20	24	0.90	2.70	-11	1.10	3.29	-8	0.98	2.95	-58
Famoxadone	0.95	2.86	-42	0.91	2.73	-25	1.41	4.23	17	0.77	2.30	-24	1.04	3.11	-28	0.86	2.57	-61
Fenamiphos	1.24	3.72	-11	0.88	2.63	-3	1.22	3.67	28	0.83	2.49	-28	1.12	3.36	-12	1.09	3.26	-49
Fenarimol	0.97	2.91	16	0.90	2.71	26	0.90	2.70	86	0.70	2.11	-5	1.25	3.75	36	1.37	4.10	-27
Fenazaguin	1.08	3.25	-20	1.16	3.47	-6	1.40	4.19	24	1.14	3.42	-21	1.26	3.77	-18	1.18	3.55	-58
Fenbuconazole	0.88	2.63	31	0.94	2.83	15	1.42	4.27	60	0.84	2.52	-20	1.18	3.53	5	0.95	2.86	-37
Fenpropidin	0.92	2.76	-4	1.11	3.32	12	1.34	4.03	52	0.75	2.24	-4	1.12	3.35	0	0.91	2.74	-47
Fenpropimorph	1.09	3.26	-22	1.12	3.36	-12	1.95	5.85	26	0.77	2.30	-17	1.32	3.96	-21	1.35	4.04	-46
Fenpyroximate	0.92	2.77	19	1.05	3.15	26	1.26	3.77	55	1.29	3.86	16	1.22	3.66	17	0.89	2.66	-39
Fensulfothion	1.26	3.78	-41	1.35	4.04	-72	/	/	-50	1.09	3.27	-28	1.65	4.96	-22	1.12	3.36	-54
Fensulfothion-oxon	2.01	6.03	-28	1.94	5.81	-12	,	,	27	0.86	2.59	-18	/	/	-9	1.72	5.16	-58
Fensulfothion-sulfone		2.21	-30	1.33	3.99	7	/	/	22	0.88	2.63	-18	1.67	5.00	-17	1.02	3.05	-46
Fenthion	1.13	3.40	-10	0.99	2.97	-2	1.08	3.23	37	0.95	2.86	5	1.10	3.29	-14	1.10	3.30	-56
Fenthion sulfone	1.51	4.52	-46	2.19	6.57	-34	/	/	-14	1.08	3.23	-42	/	/	-45	1.03	3.10	-60
Fenthion sulfoxide	1.55	4.66	-46	1.75	5.24	-30	,	/	-10	1.36	4.07	-41	1.89	5.66	-37	1.30	3.89	-59
Flamprop-isopropyl	1.13	3.39	-5	1.07	3.20	8	1.42	4.25	48	0.92	2.75	-8	1.37	4.12	5	0.90	2.70	-55
Flazasulfuron	0.68	2.03	16	2.07	6.21	10	/	/	60	0.85	2.55	30	1.64	4.91	19	0.67	2.00	-45
Florasulam	1.17	3.51	16	1.17	3.52	87	,	,	90	0.75	2.26	6	0.90	2.69	23	0.73	2.18	-17
Flubendiamide	0.97	2.92	-18	1.09	3.27	-9	0.85	2.55	23	0.84	2.53	-12	1.17	3.50	-14	0.86	2.59	-60
Flucycloxuron	0.84	2.51	-15	0.84	2.53	10	1.43	4.29	42	1.04	3.11	-12	1.02	3.06	-12	0.81	2.43	-57
Flufenacet	1.00	3.01	43	0.74	2.22	32	1.36	4.07	81	0.93	2.78	-1	0.93	2.79	17	0.64	1.91	-50
Flufenoxuron	0.94	2.81	-31	0.95	2.86	-2	1.13	3.38	20	1.23	3.69	-22	1.23	3.70	-23	0.86	2.58	-58
Fluopicolide	1.05	3.14	-45	1.29	3.88	14	2.08	6.24	35	1.30	3.91	-6	1.63	4.88	-9	1.04	3.13	-50
Flurochloridon	0.88	2.63	-30	1.22	3.66	-7	1.84	5.51	3	1.01	3.04	-58	1.53	4.60	-23	1.16	3.49	-57
									-				50			2.10		

Flurprimidol	0.81	2.43	-41	0.94	2.83	-8	1.13	3.40	14	0.78	2.34	-17	1.11	3.34	-19	0.95	2.86	-61
Flurtamone	1.03	3.08	-21	1.21	3.63	-10	1.87	5.61	19	0.80	2.39	-22	1.54	4.63	-18	1.07	3.22	-54
Flusilazole	1.05	3.15	18	0.83	2.49	8	1.00	3.01	72	0.86	2.58	7	1.04	3.13	0	1.10	3.29	-44
Fluxapyroxad	0.95	2.85	-30	1.17	3.50	-10	/	/	10	1.19	3.56	-21	1.75	5.26	-24	0.98	2.93	-57
Fluxastrobin	1.66	4.98	-20	1.28	3.85	-10	1.31	3.93	6	0.91	2.72	-45	1.92	5.75	-27	1.17	3.52	-57
Fonofos	0.98	2.95	-23	0.76	2.28	-1	0.90	2.69	83	0.82	2.47	29	0.81	2.44	-5	0.75	2.26	-56
Foramsulfuron	0.71	2.14	-89	/	/	-91	/	/	-85	/	/	-37	1.58	4.75	-89	0.78	2.35	-93
Forchlofenuron	0.99	2.97	-32	0.95	2.84	-5	/	/	14	1.05	3.15	-18	1.11	3.34	-29	0.71	2.14	-61
Furmecyclox	1.34	4.03	-24	0.97	2.92	0	1.27	3.81	32	1.03	3.08	-18	1.14	3.41	-8	1.21	3.64	-50
Haloxyfop-methyl	0.95	2.86	-55	0.96	2.88	5	1.56	4.68	55	0.88	2.64	-10	1.15	3.45	2	0.89	2.66	-63
Heptenophos	0.68	2.04	-45	1.11	3.32	9	1.42	4.27	17	0.87	2.61	-36	1.42	4.26	-16	0.94	2.82	-50
Hexazinone	1.78	5.34	-45	1.98	5.95	-26	/	/	-8	1.44	4.33	-41	/	/	-34	1.59	4.77	-59
Hexythiazox	1.27	3.82	-25	1.17	3.52	-1	1.80	5.39	35	1.47	4.41	-16	1.35	4.06	-14	1.19	3.56	-57
Imazalil	1.42	4.25	-37	1.21	3.64	-6	1.51	4.53	8	0.81	2.44	-44	1.49	4.47	-26	0.96	2.89	-62
Imazosulfuron	0.71	2.14	-3	1.21	3.64	-15	1.81	5.44	21	0.63	1.88	-9	0.81	2.44	-9	0.87	2.61	-70
Imibenconazole	1.09	3.26	-6	0.60	1.79	14	1.15	3.45	64	1.19	3.58	-8	0.78	2.33	-3	1.03	3.08	-51
Indoxacarb	0.68	2.05	15	0.73	2.20	24	1.45	4.34	50	0.63	1.89	-59	0.76	2.27	27	0.57	1.71	-48
Ipconazole	0.83	2.50	6	0.94	2.81	20	1.27	3.82	57	0.58	1.73	-5	0.64	1.91	-3	0.92	2.76	-41
Isofenphos	1.10	3.29	-21	0.73	2.19	-2	1.67	5.00	-59	0.87	2.61	-11	0.80	2.40	-11	1.04	3.12	-52
Isofenphos-methyl	0.93	2.78	-20	1.14	3.42	-8	1.90	5.71	40	0.92	2.77	-19	1.27	3.80	-9	0.91	2.74	-52
Isopyrazam	1.00	3.00	-17	0.95	2.85	6	1.23	3.70	44	0.85	2.55	-7	1.08	3.24	-15	0.83	2.49	-57
Isoxaflutole	0.70	2.09	19	0.91	2.73	-42	1.06	3.19	6	/	/	0	0.84	2.53	2	0.59	1.78	-38
Kresoxim-methyl	0.76	2.84	-14	0.92	2.76	0	1.14	3.43	46	0.79	2.38	-14	1.26	3.77	-13	1.02	3.05	-53
•											3.03	-20		4.39	-13 -7	0.88		-65
Linuron	1.30	3.91	-34	1.09	3.27	-6 20	1.44	4.31	23	1.01			1.46			0.88	2.65	
Malaoxon	1.78	5.35	-47	1.35	4.05	-38	1.85	5.54	-28	1.04	3.12	-45	1.48	4.45	-49	/	/	-70
Malathion	1.04	3.12	-23	0.98	2.95	12	1.53	4.60	2	0.89	2.66	-36	1.16	3.47	-34	0.98	2.93	-62
Mecarbam	1.04	3.13	-20	1.38	4.13	8	1.75	5.26	33	0.90	2.69	-37	1.73	5.18	0	1.04	3.12	-54
Mepanipyrim	1.34	4.03	-27	0.93	2.78	-4	1.27	3.82	39	1.01	3.02	-26	1.17	3.51	-24	1.42	4.26	-47
Metaflumizone	0.78	2.33	-6	0.84	2.52	18	1.03	3.10	72	0.75	2.26	-8	0.97	2.90	-7	0.59	1.76	-51
Metalaxyl	1.03	3.10	-32	1.05	3.16	1	1.65	4.94	25	0.70	2.10	-33	1.27	3.81	-17	0.83	2.50	-56
Metazachlor	1.75	5.25	-40	1.35	4.05	-10	1.95	5.86	11	1.00	3.00	-30	1.59	4.78	-29	1.17	3.50	-54
Methabenzthiazuron	1.38	4.13	-32	1.12	3.36	-5	1.58	4.73	-49	1.22	3.65	-30	1.48	4.43	-20	1.13	3.38	-59
Methidathion	1.76	5.27	-49	1.34	4.02	-14	1.48	4.44	0	1.49	4.48	-40	1.68	5.04	-20	1.36	4.09	-54
Methiocarb	1.78	3.55	-49 -27	1.04	3.12	-14		3.39	0	1.02	3.06	-28	1.35	4.05	-30	0.77	2.30	-54 -68
							1.13											
Methoprotryne	1.31	3.93	-25	1.14	3.43	-8	1.55	4.65	28	0.82	2.46	-26	1.37	4.10	-21	1.11	3.32	-58
Methoxyfenozide	1.26	3.77	-20	1.34	4.01	20	1.81	5.43	44	1.24	3.73	-3	1.73	5.20	-13	1.09	3.28	-47
Metobromuron	1.21	3.64	-44	1.55	4.64	-16	2.16	6.49	-7	1.03	3.09	-41	1.82	5.46	-44	1.11	3.32	-63
Metolachlor	1.27	3.82	-24	1.08	3.24	-19	1.44	4.33	16	0.85	2.56	-23	1.32	3.97	-19	1.18	3.55	-57
Metrafenone	1.16	3.47	-16	1.12	3.36	9	1.90	5.69	45	1.14	3.41	-8	1.42	4.26	-1	1.03	3.09	-54
Napropamid	1.26	3.79	22	1.14	3.43	-1	1.00	2.99	37	1.02	3.06	-33	1.24	3.73	-7	1.17	3.51	-51
Norflurazon	1.25	3.75	-66	1.37	4.11	-52	2.15	6.46	-35	1.20	3.61	-42	1.85	5.56	-57	1.36	4.09	-77
Oxadiargyl	0.87	2.60	-17	1.06	3.18	-12	1.16	3.49	11	0.99	2.97	-11	1.12	3.37	-2	0.84	2.53	-57
Oxycarboxim	/	/	-80	/	/	-71	/	/	-72	2.13	6.39	-59	/	/	-71	2.13	6.40	-82
Paclobutrazol	0.72	2.17	10	0.88	2.64	17	1.32	3.96	59	0.65	1.96	-1	1.25	3.75	9	1.11	3.32	-62
															-			
Pencycuron	1.24	3.73	-29	1.03	3.10	-1	1.42	4.25	29	0.90	2.69	-12	1.15	3.44	-17	0.95	2.86	-54
Penthiopyrad	1.00	3.00	-13	0.98	2.95	-1	1.28	3.84	30	0.95	2.86	-6	1.20	3.59	-10	0.84	2.52	-48
Pethoxamid	1.27	3.82	-16	0.93	2.80	-5	0.98	2.95	18	0.78	2.34	-43	1.21	3.64	-17	1.04	3.11	-58
Phenthoate	1.14	3.43	-19	1.07	3.21	14	1.44	4.32	39	0.92	2.77	-19	1.26	3.77	-6	0.95	2.84	-60
Phosalone	1.20	3.59	-32	1.15	3.45	-4	1.74	5.23	36	1.24	3.71	-17	1.32	3.97	-11	1.13	3.39	-64

Phosmet	1.66	4.99	-93	1.47	4.41	-68	1.94	5.83	-84	1.29	3.88	-49	1.79	5.36	-88	1.16	3.47	-94
Phosphamidon	1.52	4.57	-52	1.57	4.72	-35	1.60	4.79	-13	0.95	2.86	-44	1.74	5.22	-46	1.14	3.43	-70
Phoxim	1.19	3.57	-31	1.11	3.32	1	1.14	3.41	24	0.89	2.67	-13	1.24	3.73	-13	1.10	3.31	-62
Picolinafen	1.20	3.59	-14	1.15	3.44	12	2.04	6.12	30	1.12	3.37	-16	1.32	3.95	-5	1.03	3.10	-51
Picoxystrobin	1.23	3.70	-20	1.16	3.47	0	1.62	4.86	29	0.84	2.53	-12	1.24	3.73	-22	0.96	2.89	-41
Pinoxaden	0.92	2.75	-11	1.03	3.10	-5	1.26	3.77	32	0.76	2.28	-8	1.26	3.77	-48	1.03	3.10	-48
Piperonyl Butoxyde	1.07	3.21	-10	1.02	3.07	2	1.06	3.18	28	0.78	2.35	-8	1.01	3.02	-8	0.80	2.41	-16
Pirimiphos-ethyl	1.18	3.53	-13	1.02	3.06	9	1.19	3.57	32	1.02	3.05	-2	1.09	3.28	-4	1.04	3.13	-39
Pirimiphos-methyl	1.06	3.18	-31	0.96	2.88	-7	1.05	3.16	21	0.73	2.20	-18	1.04	3.13	-21	0.99	2.96	-56
Prochloraz	1.05	3.16	-23	1.11	3.34	-7	1.58	4.74	41	1.03	3.10	-20	1.31	3.93	10	1.16	3.49	-56
Profenofos	1.08	3.24	10	1.10	3.29	32	1.44	4.33	53	0.93	2.79	1	1.31	3.94	3	1.17	3.51	-48
Prometon	1.79	5.37	-37	1.22	3.67	-9	2.15	6.46	11	1.00	2.99	-29	1.47	4.40	-26	1.11	3.32	-63
Prometryn	0.99	2.96	-14	0.97	2.90	-2	1.34	4.03	20	0.99	2.98	-21	1.19	3.56	-23	1.17	3.51	-53
Propaphos	1.02	3.07	-10	0.94	2.81	3	1.34	4.03	47	0.81	2.42	1	1.17	3.51	8	1.02	3.06	-39
Propquinazid	1.31	3.92	-4	1.53	4.59	7	2.02	6.07	30	2.09	6.27	-1	1.84	5.52	0	1.29	3.86	-46
Propargite	1.04	3.11	-23	0.99	2.98	2	0.97	2.90	24	1.21	3.63	-18	1.14	3.41	-15	0.92	2.75	-54
Propagine	1.28	3.85	-28	0.80	2.41	-9	1.27	3.80	11	1.26	3.77	-31	1.06	3.17	-21	1.29	3.86	-55
Propiconazole	1.15	3.46	-26	1.15	3.45	-12	1.26	3.79	21	0.95	2.86	-94	1.23	3.68	-16	1.12	3.35	-53
Propyzamide	0.81	2.42	-20	0.92	2.76	13	1.35	4.06	4	0.95	2.86	-29	1.14	3.41	-33	0.89	2.67	-63
Prosulfocarb	0.91	2.72	161	0.79	2.37	51	0.96	2.88	30	0.98	2.95	71	1.01	3.03	65	0.86	2.59	18
Pyraclostrobin	1.16	3.47	-29	1.16	3.48	-2	1.42	4.25	-87	1.00	3.01	-24	1.31	3.94	-2	1.00	3.00	-49
Pyrazophos	0.97	2.92	-15	1.08	3.23	-2 -1	1.43	4.28	45	0.78	2.35	-4	1.28	3.83	1	0.87	2.61	-10
Pyridaben	1.06	3.19	-29	1.23	3.69	3	2.16	6.47	34	1.68	5.04	-12	1.45	4.35	-9	1.01	3.04	-55
Pyridafenthion	0.90	2.69	-15	1.13	3.39	0	1.73	5.18	28	0.86	2.58	2	1.43	4.30	2	0.99	2.96	-33 -42
Pyridate	1.00	2.09	-22	1.13	4.41	-68	1.73	4.74	-27	1.34	4.03	-21	0.81	2.42	-19	1.04	3.13	-42 -58
Rimsulfuron	1.40	4.21	-15	1.47	4.4 1	-08 -16	1.56	/./+	15	0.93	2.78	-21 -5	/	2.42	-3	0.87	2.62	-38 -47
Saflufenacil	0.68	2.05	10	0.98	2.94	-10 -8	1.64	4.93	54	0.93	2.70	-3 -19	0.89	2.67	-3 14	0.87	2.81	-63
Spinosyn-A	0.08	2.82	-20	1.12	3.36	-o -1	0.93	2.79	36	0.95	2.86	-19	1.36	4.08	-26	0.94	2.70	-62
Spirotetramat	0.77	2.30	0	1.06	3.30	-1 -5	1.34	4.03	35	0.93	2.80	-16 -16	1.32	3.95	-20 -1	0.71	2.70	-02 -45
Spiroxamine	0.77	2.72	-10	0.95	2.86	10	1.19	3.57	35	0.70	2.09	-8	1.04	3.11	-1 -7	0.71	2.12	-48
Sulfotep	1.10	3.31	-10 -19	1.12	3.36	-7	1.19	4.32	35	0.70	2.40	-o 1	1.38	4.14	-14	1.05	3.14	-46 -51
Tebufenozide	1.17	3.52	-13	1.03	3.09	4	1.71	5.13	-98	1.00	3.00	-11	1.19	3.58	-14 -6	0.92	2.76	-51 -51
Tebufenpyrad	1.17	3.32	-23	0.91	2.73	-5	1.71	4.23	20	0.97	2.92	-11 -16	1.02	3.05	-0 -19	1.08	3.25	-62
Tepraloxydim	0.94	2.82	-23 -51	1.31	3.93	-3 -11	1.41	4.23 5.67	20 17	1.05	3.16	-10 -7	1.51	4.53	-19 4	0.92	2.77	-62 -51
Terbufos	0.94	2.79	-9 -9	0.89	2.68	22	0.96	2.88	22	1.05	3.19	- / 1	0.94	2.82	7	0.75	2.77	-31 -49
Thiobencarb	1.03	3.09	-9 -11	0.89	2.08	6	1.22	2.88 3.65	6	0.92	2.76	7	1.17	3.51	-10	1.03	3.08	-49 -57
										1.05				3.17				-57 -55
Tolfenpyrad Tralkoxydim	1.05	3.14 3.34	-23 -18	0.91 1.11	2.73 3.32	6	1.61 1.50	4.83 4.50	6 1	1.05	3.14	-12 -10	1.06 1.26	3.17	-6 -5	0.96 1.20	2.89 3.61	-55 -56
•	1.11					7			-	0.92	2.47							
Triadimefon	0.82	2.47	-22	0.90	2.69	-7 -89	1.14	3.41	-7 20	0.82	2.47	-17 -70	1.00	3.01	-31	0.98	2.93	-56
Triallate	0.69	2.07	-71	1.04	3.11		1.04	3.11	-39	1.78	5.34		1.07	3.21	-91	0.00	276	-96
Tridemorph	1.19	3.58	-22	1.04	3.13	2	1.28	3.85	2	0.71	2.14	-11	0.95	2.85	-7	0.92	2.76	-56
Triforine	0.86	2.57	-30	1.06	3.18	-30	1.97	5.90	-30	0.88	2.65	-34	1.33	4.00	-23	2.10	6.30	-68
Zoxamide	1.20	3.61	-27	1.06	3.17	-8	1.16	3.48	-8	0.94	2.81	-21	1.29	3.86	-9	0.92	2.77	-54

Figures:

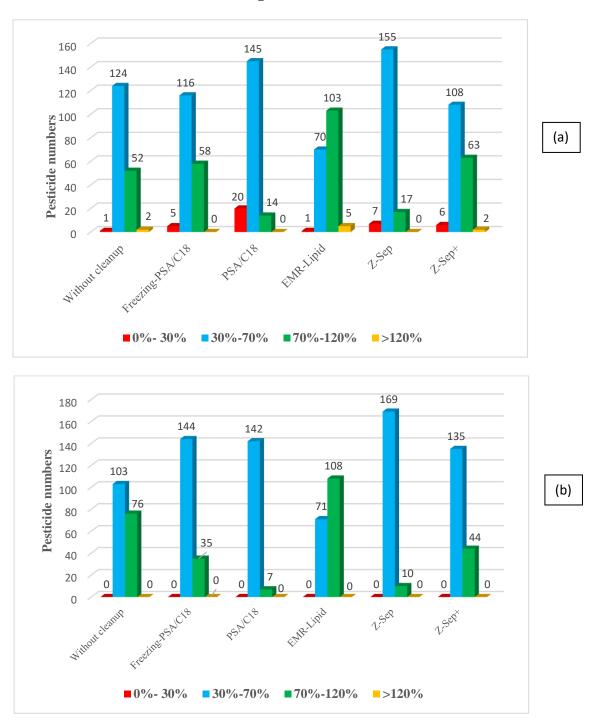


Figure 1: Pesticide recoveries in rapeseed extracts purified with different d-SPE sorbents at two spiking levels: $10 \,\mu\text{g/kg}$ (a) and $50 \,\mu\text{g/kg}$ (b).

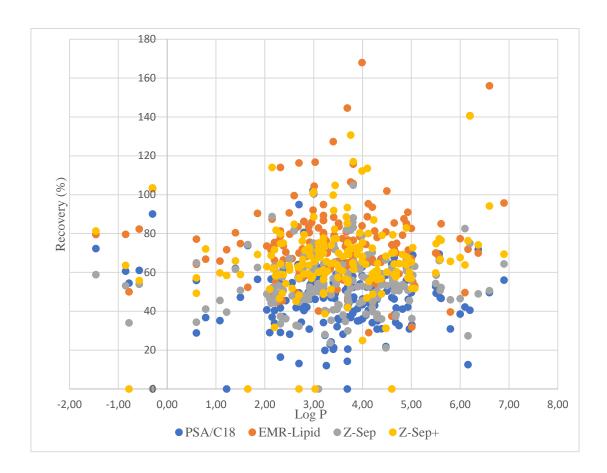


Figure 2: Relationship between Log P and pesticide recoveries from rapeseed samples using different purification adsorbents

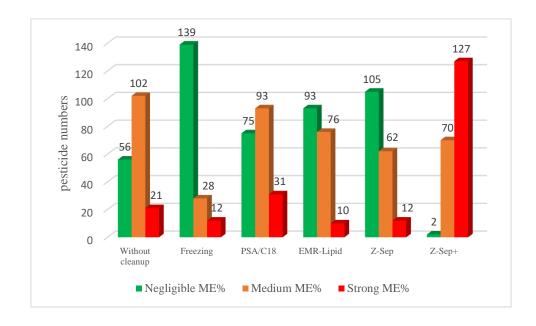


Figure 3: Matrix effect of pesticides in rapeseeds depending on the different purification sorbents.

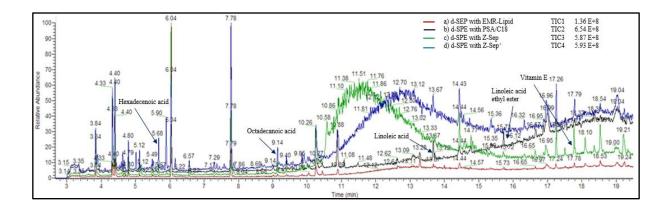


Figure 4: GC-Q-Orbitrap « full scan » chromatograms of rapeseed extracts using QuEChERS methodology with different d-SPE sorbents.

CONCLUSION

Ce chapitre sous forme de publication scientifique, a été rédigé dans le but de comparer les performances de nouveaux supports solides (d-SPE) dédiés à la purification des extraits de matrices grasses.

Ainsi, 179 pesticides de différentes polarités, appartenant à des familles chimiques variées, ont été choisis pour cette étude. Des échantillons de graines de colza, issus de l'agriculture biologique, ont été dopés avec le mélange de pesticides étudiés à deux niveaux de concentration : 10 μ g/kg et 50 μ g/kg. Ces molécules ont été extraites des graines par la méthode QuEChERS. Les extraits ont été purifiés avec ces nouveaux supports solides (EMR-Lipid, Z-Sep et Z-Sep⁺). Les taux de récupération, les LOD, les LOQ ainsi que les effets matrice obtenus ont été évalués et ont été comparés à ceux obtenus pour les extraits non purifiés.

Les résultats obtenus pour les extraits de graines de colza non purifiés ne sont pas satisfaisants en termes de taux de récupération et d'effets matrice. Une augmentation significative du bruit de fond a été observée lors de l'injection de ces extraits conduisant à une augmentation des valeurs de LOD et LOQ.

Les résultats de cette étude ont montré que la méthode QuEChERS utilisant l'adsorbant EMR-Lipid s'est avérée être une méthode efficace pour extraire 178 pesticides dans les graines de colza. Les taux de récupération obtenus pour la majorité des molécules étudiées, sont compris entre 70% et 120%. Seuls les taux de récupération de l'oxycarboxine ne sont pas satisfaisants (29%). De plus, les effets matrice observés pour les extraits purifiés avec cet adsorbant, sont moins importants que ceux obtenus avec les autres adsorbants d-SPE. Les LOQ fixées à 10 µg/kg ont pu être atteintes pour les 178 pesticides avec des critères de validations acceptables.

Les taux de récupération des pesticides obtenus pour les extraits de colza purifiés avec les autres adsorbants (Z-Sep et le PSA/C18) sont faibles, principalement pour les pesticides polaires. D'importants effets matrice ont été observés pour plus de 120 pesticides dans les extraits purifiés avec l'adsorbant Z-Sep⁺. Il est à noter que la congélation des extraits a permis d'améliorer les taux de récupération et de diminuer significativement les effets matrice. Une combinaison de la congélation des extraits de ces matrices avec la purification d-SPE utilisant

l'EMR-Lipid serait un bon compromis pour améliorer les résultats de quantification de ces pesticides.

Enfin, l'injection des extraits de ces graines, purifiés avec ces différents supports, a été réalisée en GC-Q-Orbitrap en mode « full scan » dans le but d'évaluer qualitativement l'efficacité de purification de l'EMR-Lipid, le PSA/C18, le Z-Sep et le Z-Sep⁺. Les résultats obtenus ont démontré que l'adsorbant EMR-Lipid était le plus efficace pour l'élimination des acides gras (acide hexadécanoïque, acide octadécanoïque, acide linoléique...).

CHAPITRE IV : EVALUATION ET COMPARAISON DES
PERFORMANCES GC-HRMS (Q-ORBITRAP) ET GC-MS/MS
(TRIPLE QUADRIPOLE) POUR L'ANALYSE DE PESTICIDES
DANS LES MATRICES ALIMENTAIRES COMPLEXES

INTRODUCTION

De manière générale, les pesticides et contaminants sont analysés avec les deux méthodes chromatographiques (GC ou HPLC) couplées à la spectrométrie de masse en tandem de type triple quadripolaire. Les résultats obtenus avec ces techniques sont globalement très satisfaisants en termes de sensibilité, répétabilité et robustesse. Cependant, en dépit des méthodes de préparation de l'échantillon de plus en plus efficaces, la quantification de résidus de pesticides et contaminants dans certaines matrices demeure un challenge en chimie analytique du fait de leur complexité et/ou de leur taux de lipides élevés. La spectrométrie de masse à basse résolution en tandem est limitée pour le nombre de composés analysés simultanément. Au cours de ces dernières années, la spectrométrie de masse à haute résolution en mode « full scan » a été utilisée pour l'analyse de pesticides dans les matrices agroalimentaires. Comme illustré dans l'introduction de l'article, différentes méthodes HPLC ou GC couplées à l'Orbitrap ont été développées et validées pour l'analyse de quelques pesticides et contaminants dans diverses matrices telles que les épices, les saumons, les fruits et légumes...etc. Les résultats obtenus sont satisfaisants et de très bonnes sensibilités ont été observées. De plus, la spécificité de la spectrométrie de masse à haute résolution a permis de limiter les interférences avec les ions de masses proches issus des composés de la matrice.

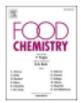
Ce dernier chapitre présente les résultats obtenus sous forme de l'article publié dans le journal Food Chemistry: Comparaison of new approach of GC-HRMS (Q-Orbitrap) to GC-MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices qui vient d'être accepté. Ces travaux ont permis de comparer les performances analytiques d'une méthode GC-MS/MS (triple quadripôle) en mode « SRM » avec celles d'une méthode GC-HRMS (Q-Orbitrap) en mode « full scan » pour la quantification d'une centaine de pesticides et contaminants dans diverses matrices complexes telles que les graines de blé, les graines de colza, le cumin ainsi que le thé.

Tout d'abord, l'optimisation des paramètres de détection sera réalisée afin d'identifier et quantifier les 100 molécules choisies pour cette étude. Les limites de détection obtenues avec la méthode GC-triple quadripôle en mode « SRM » seront comparées à celles obtenues avec la méthode GC-Q-Orbitrap en mode « full scan ». Ensuite, une validation des deux méthodes a été réalisée sur le blé en utilisant la méthode QuEChERS comme méthode de préparation de

l'échantillon. Les taux de récupération, la répétabilité (RSD%), les limites de quantification ainsi que les effets matrice seront évalués puis comparés. De plus, des extraits de blé non purifiés dopés à 10 µg/kg seront analysés avec les deux méthodes pour évaluer la capacité de la haute résolution à séparer les ions des composés ciblés de ceux des différents interférents issus de la matrice. Le screening sera étendu à des extraits de graines de colza, de thé et de cumin dopés.

Chapitre IV : Evaluation et comparaison des performances GC-HRMS (Q-Orbitrap) et GC-MS/MS (triple quadripôle) pour	l'analyse de
nesticides dans les matrices alimentaires complexes	

Chapitre IV : Evaluation et comparaison d p	les performances GC-HRMS (Q-Orbitrap) et GC-MS/MS (triple quadripôle) pour l'analyse de pesticides dans les matrices alimentaires complexes
	NEW APPROACH OF GC-HRMS (Q-ORBITRAP) TO GC-
CONTAMINANTS IN CON	DRUPOLE) IN ANALYZING THE PESTICIDE RESIDUES AND
CONTAININANTS IN COR	WPLEX FOOD WATRICES


Food Chemistry 359 (2021) 129932

Contents lists available at ScienceDirect

Food Chemistry

journal homepage: www.elsevier.com/locate/foodchem

Comparison of new approach of GC-HRMS (Q-Orbitrap) to GC-MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices

Saida Belarbi a, b, Martin Vivier b, Wafa Zaghouani b, Aude De Sloovere b, Valérie Agasse-Peulon a,

ARTICLEINFO

Keywords: Multiresidue pesticide analyses GC-triple quadruple GC-Q-Orbitrap Matrix effect Food matrices

ABSTRACT

Performances of multiresidue analysis of one hundred of pesticides and contaminants, using GC-Q-Orbitrap method in full scan mode were compared to those obtained with GC-triple-quadrupole method in multiple reaction monitoring mode. In terms of sensitivity, 86% of molecules exhibited lower limit of detection values using GC-Q-Orbitrap than using GC-triple-quadrupole. For the GC-Q-Orbitrap method, more than 85% of the pesticides and contaminants showed good recovery [70–120%] in wheat samples, with relative standard deviation values < 20%. GC-Q-Orbitrap method appeared the most sensitive for most pesticides studied in wheat with limit of quantification values ranged between 0.1 μ g/kg and 4 μ g/kg. Moreover, the matrix effect was acceptable in wheat extracts for 84 molecules but strong suppression of the chromatographic signal was observed for 16 molecules for the GC-Q-Orbitrap method. The injection of unpurified wheat extracts spiked at 10 μ g/kg proved the potential of the GC-Q-Orbitrap method for use in performing high-throughput pesticide screening.

1. Introduction

Pesticides, including herbicides, fungicides, and insecticides, are widely used in agriculture to control insect pests, fungi, parasites or weeds (Samsidar et al., 2018). Therefore, pesticide residues are found in food products after harvest (European Union Report on pesticide residues in food, 2014). As some molecules are toxic at very low levels (Maqbool et al., 2016), the European Union has established a maximum residual limit (MRL) (Pico et al., 2006). Triple-quadrupole mass spectrometers coupled with GC or HPLC are usually employed in multiple reaction monitoring (MRM) mode for pesticide residue analyses because of their specificity (Martinez Vidal et al., 2002). However, the number of compounds that can be monitored simultaneously is limited by the dwell time, which limits the peak data number.

Recently, full scan high-resolution mass spectrometry (HRMS) has gained popularity in residue and contaminant analyses for food and environmental samples, especially when high numbers of analytes need to be covered (Kaufmann, 2012, Leendert et al., 2015). Gas chromatography is coupled with different HRMS spectrometers, including time of flight (GC-TOF) and Q-Orbitrap mass spectrometers. The full scan mode enables targeted and nontargeted analyses combined with retrospective analyses in a single workflow. A GC-Q-Orbitrap system provides a high mass resolving power (120,000 full width at half maximum (FWHM) (m/z 200)) combined with a high mass accuracy (<3 ppm), which is needed to avoid isobaric interferences, allowing drastic reduction of the noise and thus decreasing the limit of detection (LOD) (Uclés et al., 2017). GC-Q-Orbitrap spectrometry has been successfully applied for the determination of different complex matrix compositions, such as biofuels and light oils (Kondyli and Schrader, 2019, Hung et al., 2020). In the metabolomic field, human plasma has been studied using both electron ionization and chemical ionization GC-Q-Orbitrap to identify many metabolites (Biswapriya and Olivier, 2020). A highthroughput screening method has also been developed for the toxicological analyses of 288 drugs and poisons in human blood samples for forensic intoxication analysis (Pan et al., 2019). In environmental matrices, various persistent organic pollutants have been identified in fly ash samples using a nontargeted strategy (Yang et al., 2019). Moreover, the performance of GC-Q-Orbitrap has been evaluated for the

https://doi.org/10.1016/j.foodchem.2021.129932

Received 29 January 2021; Received in revised form 20 April 2021; Accepted 20 April 2021

Available online 23 April 2021

0308-8146/© 2021 The Authors. Published by Elsevier Ltd. This is

Ltd. This is an open access article under the CC BY-NC-ND license

http://www.irecommun.org/liceurs/by-se-nd/4.0/3

^a Normandie Univ, Laboratoire SMS-EA3233, UNIROUEN, FR3038, Place Emile Blondel, F-76821, Mont-Saint-Aignan Cedex, France

b SGS France laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, Saint Etienne du Rouvray F-76801 Cedex, France

^{*} Corresponding author at: Laboratoire SMS-EA3233, UFR Sciences & Techniques, Place Emile Blondel, F-76821, Mont-Saint-Aignan Cedex, France. E-mail address: pascal.cardinael@univ-rouen.fr (P. Cardinael).

monitoring of organic pollutants in wastewater, demonstrating good linearity, sensitivity and recovery with precise values for 15 targeted polycyclic aromatic hydrocarbons (PAHs) (Dominguez et al., 2020). In food chemistry, several studies have been carried out to quantify pesticide multiresidues and persistent organic pollutants by using GC-Q-Orbitrap in various matrices, such as cereals, fruits and vegetables, as well as in some fishes. A method for the quantification of 8 alkenylbenzenes in different pepper varieties has been successfully validated with limits of quantification (LOQs) close to 0.02 mg/kg (Rivera-Pérez et al., 2020). Chlorinated paraffins and halogenated PAHs have been quantified with low LOQ values in farmed and wild salmons (Kratschmer et al., 2019) and tuna (Wickrama-Arachchige et al., 2020). A method for multiresidue pesticides and polychlorinated biphenyls in cereals and feed ingredients using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction has been successfully validated with LOQs below 10 μg/kg (Tienstra and Mol, 2018). Moreover, a study focused on GC-Q-Orbitrap performances for pesticide residue analyses in various fruits and vegetables has been carried out (Mol et al., 2016). In full scan mode, optimal acquisition conditions have been obtained at 60,000 FWHM with an automatic-gain-control target at 3E0 providing an optimum mass accuracy within 2 ppm, a minimum of 12 scans per peak. GC-Q-Orbitrap in full scan mode has been used to compare QuEChERS purification solid supports on the extract of spices before quantification using the GC-triple-quadrupole method (Hakme et al., 2018). Nontargeted contaminants in the environment have been investigated in honeybees using GC-Q-TOF and GC-Q-Orbitrap, demonstrating that they are useful for detecting a large range of contaminants (Gomez-Ramos et al., 2019).

Some comparisons between the performances of GC-Q-Orbitrap spectrometer and those of low-resolution mass spectrometers (quadrupole and triple-quadrupole analyzers) and with those of high-resolution (TOF analyzer) mass spectrometers have been published. In 2016 (Cortés-Francisco et al., 2016), the sensitivity of a GC-triple-quadrupole method with SIM and the full scan GC-Q-Orbitrap method for 9 PBDE analyses were compared. Both methods gave LOQs below 0.01 µg/kg for the 9 PBDEs in fish and seafood, except for DBE 209, with the GC-MS/MS method.

Currently, multiresidue pesticide quantification in some matrices, such as cereals (He et al., 2015), teas (Ma et al., 2018), spices (Shabeer et al., 2018), and different kinds of fatty matrices (Castillo et al., 2011), remains a challenge due to the presence of large amounts of compounds, such as sterols, pigments, and chlorophyll, which may interfere with the analytes. Cereals have less than 25% moisture and high levels of fatty acid, and fatty matrices contain significant amounts of lipids that may behave the same as some nonpolar pesticides (Lacina et al., 2012). Tea contains antioxidants, aromatic compounds, xanthine and alkaloids. Spices are dry samples and contain flavonoids, terpenes and alkaloids. All these compounds may interfere with targeted analyte detection, which can generate false positives and may interact with the targeted analytes, which decreases the extraction yield. Since early 2000, QuEChERS has been the most widely used extraction-purification method for pesticide analyses of food matrices. Despite the purification step, low-resolution mass spectrometry is not always able to separate matrix interferents from analytes, leading to a loss of sensitivity and false positives.

The main goal of this paper is to evaluate the analytical performances of the GC-Q-Orbitrap method in full scan mode for the determination of 95 pesticide residues and 5 contaminants (PCB congeners) in different complex food matrices, including wheat, rapeseed, cumin and tea. These results will be compared to those obtained with GC-triple-quadrupole method. As previously described, these matrices are challenging in terms of extraction, purification and matrix effects. Therefore, QuECh-ERS extraction was used to extract 100 molecules from these samples using an adapted purification solid support (dispersive solid phase extraction (d-SPE)) for each matrix.

2. Materials and methods

2.1. Chemicals and reagents

Ultrapure water (18.2 M\Omega.cm) was obtained from a Milli-Q water purification system (Millipore Ltd., Bedford, MA, USA). Acetonitrile (MeCN), acetone, and n-hexane were purchased from VWR (Fontenaysous-Bois, France). Formic acid was purchased from Sigma Aldrich (Saint Quentin Fallavier, France). Salt mixtures of 4 g of magnesium sulfate, 1 g of sodium chloride, 0.5 g of sodium citrate dibasic sesquihydrate, and 1 g of sodium citrate tribasic dehydrate were obtained from Agilent (Santa Clara, USA). Preweighted sorbent mixtures from different cleanup methods, PSA/MgSO4, PSA/C18 and Q-Carb®, were purchased from Agilent (Santa Clara, USA). One hundred pesticides and contaminants from a wide variety of chemical families (organochlorines, organophosphorus triazoles, carbamates, pyrethroids, PCBs, etc.), including 91 solid standards (purity > 98%) and 9 standards as singlecomponent solutions (100 mg/L), were purchased from Sigma Aldrich (Steinheim, Germany) and the Dr. Ehrenstorfer Laboratory (Augsburg, Germany). The internal standard (lindane 13C6) (purity > 99%) was also obtained from Sigma Aldrich (Saint Quentin Fallavier, France).

2.2. Standard solutions

A mixture containing the 100 pesticides and contaminants was prepared at a concentration of 2000 μ g/L in a mixture of hexane/acetone 70/30 (v/v). Standard working solutions from 1 to 200 μ g/L were prepared by dilution of the mixture solution at 2000 μ g/L in hexane/ acetone 70/30 v/v. Lindane 13 C₆ was used as an internal standard (IS) and was prepared at a concentration of 20 μ g/L in acetone. Then, 20 μ L of IS were added to 180 μ L of standard/extract. All stock and working solutions, including IS, were stored in amber vials with Teflon-lined caps at -20 °C.

2.3. Analysis by a GC-triple-quadrupole

An Agilent 7890B gas chromatograph was coupled to a 7000 MS/MS triple-quadrupole system (Agilent Technologies, Santa Clara, USA) equipped with an EI source and two HP-5 MS UI (Agilent Technology, Santa Clara, USA) columns in series (15 m long × 0.25 mm i.d., and 0.25 μm film thickness). The multimode injector was programmed to start at 60 °C for 0.2 min, and then was increased at a rate of 720 °C/min until it reached 310 °C. The carrier gas was helium (high purity, 99.999%) (Air liquid, Bagneux, France) with flow rates of 0.9 and 1.1 mL/min in the first and second columns, respectively. The programmed temperature oven was set as follows: from an initial temperature of 60 °C (1 min) to 170 °C at 35 °C/min and up to 310 °C at a rate of 10 °C/min with a hold time of 2 min at 310 °C. PTV injector was used in splitless mode with an injection volume of 1 µL. The retention time lock setting (RTL) used chlorpyriphos methyl as the locking compound at a retention time of 9.14 min. The ion source and quadrupole analyzer temperatures were fixed at 280 °C. High purity nitrogen (99.999%) (Air liquid, Bagneux, France) was used as the collision gas. The preliminary instrument setup included the optimization of collision energies for each MRM transition in the range of 5-50 eV. Agilent Mass Hunter Quantitative Analysis B07.00 software was used for data acquisition and processing.

2.4. Analysis by GC-Q-Orbitrap

Injections were performed using a GC-Q-Orbitrap system (Q Exactive, Thermo Scientific, Bremen, Germany) consisting of a GERSTEL MPS (Multi-Purpose Sampler) (Mülheim, Germany) autosampler, a trace 1310 GC with PTV injector, an electron ionization (EI) source, and a hybrid Q-Orbitrap mass spectrometer. PTV, Cool Injection System, CIS6 was used with splitless mode injection (1 µL injected) with the following temperature program: t₀: 60 °C, hold time of 0.2 min increased at

720 °C/min until reaching 310 °C with a hold time of 5 min (run time: 20 min). Helium (99.999%, Linde Gas, Schiedam, Netherlands) was used as a carrier gas at a constant flow of 1.0 mL/min. GC separations were performed using an HP-5 MS UI (30 m × 250 µm × 0.25 µm film thickness) (Agilent Technologies, Santa Clara, USA) column using the following temperature program: to: 60 °C (1 min), ramp up to 170 °C at 35 °C/min and then increased to 310 °C at a rate of 10 °C/min with a hold time of 2 min at 310 °C. The transfer line was maintained at 280 °C. Electron ionization was performed at 70 eV with the source temperature set at 280 °C. Full scan MS acquisition was performed in profile mode using an m/z range of 50-500. Nitrogen gas (Air liquid, Bagneux, France) was used for the C-Trap supply. The mass calibration procedure was performed before each acquisition batch (FC 43, CAS 311-89-7). The internal mass calibration was performed during the measurement of background ions from column bleeding as lock mass ions using (m/z) $(C_3H_9Si^+, 73.04680; C_3H_9O_2Si_2^+, 133.01356; C_5H_{15}O_3Si_3^+, 207.03235;$ C₂H₂₁O₄Si₄⁺, 281.05114; C₀H₂₇O₅Si⁺, 355.06993). For GC-Q-Orbitrap data processing, X-Calibur 4.0 and Trace Finder 4.1 (Thermo Scientific) were used for peak identification for GC-MS. For evaluation of the comparability of Orbitrap spectra with existing EI-library spectra, NIST 1.4 Mass spectral Library & Search Software (NIST 2014/EPA/NIH) version 2.2 build version June 10, 2014 was used.

2.5. Samples

Samples of wheat, rapeseed, cumin and tea were purchased from a local organic supermarket that had been previously checked to be free of the target pesticides. All samples were mechanically ground to be homogeneous.

2.6. Sample preparation and cleanup

Five grams of homogenized samples (wheat, rapeseed, cumin and tea) were weighed into a 50 mL disposable polypropylene centrifuge tube. For recovery studies, samples were spiked at 10 µg/kg with pesticide and contaminant working solutions at 2000 µg/kg, which corresponds to the MRL for most pesticides. Thereafter, ultrapure water (10 mL) was added, the mixture was stirred vigorously for 1 min, 10 mL of acetonitrile were added, and then, the mixture was immediately shaken for 1 min. Next, a salt mixture containing 4 g of anhydrous magnesium sulfate, 1 g of sodium chloride, 1 g of trisodium citrate dihydrate and 0.5 g of disodium hydrogen citrate sesquihydrate were added for good separation of the water and acetonitrile phases. The tubes were immediately shaken for 1 min and then centrifuged for 5 min at 4,700 rpm at 20 °C. On the one hand, 1 mL of unpurified extract from each matrix was collected; on the other hand, 6 mL of acetonitrile supernatant were transferred into a polypropylene centrifuge tube containing various purification supports (QuEChERS d-SPE cleanup):

- (a) d-SPE with PSA (300 mg) and MgSO₄ (900 mg) for purification of wheat extracts
- (b) d-SPE with PSA (150 mg), C18 (150 mg) and MgSO₄ (900 mg) for purification of rapeseed extracts
- (c) d-SPE with Q-Carb® containing PSA (150 mg), graphitized carbon black GCB (150 mg) and MgSO₄ (855 mg) for purification of tea and cumin extracts

A volume of 4 mL for each extract was collected and acidified with 40 µL of 5% formic acid in acetonitrile. Then, 1 mL of the extract was evaporated to dryness under nitrogen for a solvent change step because of the poor compatibility of acetonitrile with the gas chromatographic method. The evaporated extract was dissolved into a mixture of hexane/ acetone 70/30 (v/v). The same solvent change step was applied to the unpurified extract. The same extracts and standard solutions were injected at the same time in both the GC-triple-quadrupole and the GC-Q-Orbitrap systems. Moreover, the purified extracts were also diluted 5-, 10- and 20-fold and injected to evaluate the sensitivity and selectivity of both systems.

3. Results and discussion

The goal of this study was to challenge the sensitivity and selectivity of a well-established targeted GC-triple-quadrupole method with a full scan GC-Q-Orbitrap method for pesticide residue analyses of complex food matrices. The high mass accuracy of the HRMS-Orbitrap provides high selectivity that can avoid matrix interference. The performances in terms of selectivity in full scan mode using this high-resolution mass analyzer were compared to the selectivity of the MRM mode using the triple-quadrupole analyzer.

First, one hundred contaminants (Table S1) of various polarities from a wide variety of chemical families (organochlorines, organophosphorus triazoles, carbamates, pyrethroids, PCBs, etc.) were selected to cover a large panel of analytes. Moreover, almost all pesticides are registered in wheat with MRL values between 10 and 8,000 µg/kg by the European Commission (EU Pesticides Database (v.2.1), 2021). It was most important to use identical chromatographic conditions for both systems to ensure an accurate performance evaluation of both methods. Then, the chromatographic conditions were optimized to elute and separate the 100 targeted analytes for both systems in approximately 20 min. PTV injection was chosen to limit compound degradation, and the same operating conditions were used for both systems. In the same way, identical EI source conditions were set for both systems to limit the influence of the ionization process on the sensitivity even when the ionization source geometries were different.

3.1. GC-triple-quadrupole parameters

For each pesticide and contaminant, two characteristic MRM transitions (quantitative and qualitative) were selected after optimization. Table S1 shows the compound names, retention times, and quantitative and qualitative transitions at the selected collision energy voltages. First, each molecule was analyzed separately in full scan mode to select precursor ions in the first quadrupole, which were submitted to another set of analyses at different collision energy voltages in the second quadrupole to generate the MS/MS product ions. Once all MRM transitions were established for all molecules, the dwell time was optimized to maintain the number of cycles per second at 10 throughout the chromatographic run to obtain well-shaped chromatographic peaks, low detection limits, and sufficient chromatographic data points for all compounds (>10).

3.2. GC-Q-Orbitrap method

A resolving power set at 60,000 FWHM at m/z 200 with automatic gain control (AGC) at 1E⁶ was the best compromise between mass accuracy and acquisition rate for this kind of analysis (Hung et al., 2020). Because the injection time (IT) and AGC target regulate the number of ions in the Orbitrap cell, ion injection was stopped when one of the two conditions were met. For the first development, IT was set in automatic mode to maximize the number of ions transferred in the Orbitrap cell.

Starting from the NIST MS Search 2.2 library containing pesticide and contaminant Orbitrap databases, two ions were selected: the most intense for quantification and another intense ion as a qualifier ion for each compound. The qualifier ion should not be a mass isotope of the quantifier ion and should have a m/z > 100 if possible. Table S2 summarizes compound names, analyte formulas, quantifier ions, qualifier ions, retention times and mass accuracies.

For GC-Q-Orbitrap spectra, some differences were observed in ion abundance in comparison with those recorded with a quadrupole. As shown in Fig. 1, for triazophos, the ion m/z 161 presents the most relative intensity with both analyzers, but the relative intensity of the ion m/z 91 was two-fold lower for the Orbitrap analyzer than for the

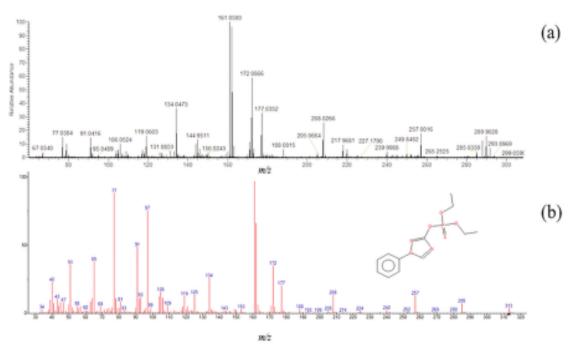


Fig. 1. (a) GC-Q-Orbitrap accurate mass spectrum for triazophos, resolving power of 60,000 FWHM, (b) GC-quadrupole mass spectrum for triazophos from NIST v2.2.

quadrupole analyzer. This phenomenon has already been reported (Mol et al., 2016) and can be attributed to lower trapping efficiency of ions with m/z < 100 in the C-trap. Moreover, the development of the method is less time-consuming than for GC-triple-quadrupole, especially when the mass spectra are already available in the database.

3.3. Impact of the resolving power

Depending on the complexity of the studied extracts, chromatographic separation and high resolving power were needed to separate isobaric ions of analytes from the ions of the matrix compounds. If the resolving power is not sufficient, coelution of the isobaric ion signals

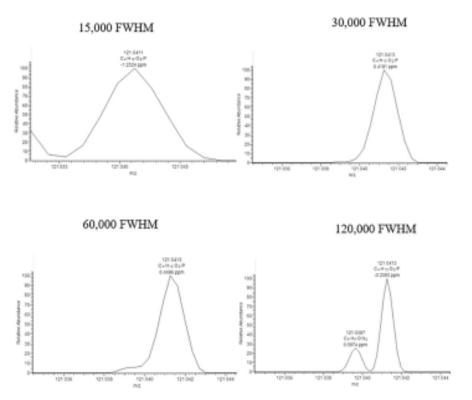


Fig. 2. Mass spectra zoomed in at m/2 121.0418 \pm 5 ppm (C₄H₁₀O₂P⁺) for chlormephos in wheat spiked at 10 μ g/kg with a resolving power setting of 15,000 FWHM,

from analytes and matrix compounds can be observed. However, higher resolving power allows a decrease in scan speed, which, therefore, reduces the number of collected data points per peak. Fig. 2 shows the extracted ion chromatograms for chlormephos ions $(m/z \ 121.0418 \pm 5)$ ppm corresponding to the $C_4H_{10}O_2P^+$ fragment) in wheat spiked at $10 \mu g/kg$ acquired at $15,000 \ FWHM$, $30,000 \ FWHM$, $60,000 \ FWHM$ and $120,000 \ FWHM$. The coelution between the signal of this ion and an interferent isobaric ion peak was observed at $15,000 \ FWHM$ and $30,000 \ FWHM$. However, when increasing the resolution at $60,000 \ FWHM$ and $120,000 \ FWHM$ (at $m/z \ 200$), both ion signals were partially and totally separated, respectively. As wheat extracts contain many coextractants, a resolving power greater than or equal to $60,000 \ FWHM$ was necessary to resolve the coelution signal and avoid overestimation of the targeted compound amount.

3.4. Qualitative results: Comparison of the limits of detection (LOD)

To evaluate the sensitivity of both analyzers, the LOD for the 100 pesticides and contaminants were estimated by injecting different standard calibration levels varying from 0.05 µg/L to 200 µg/L. Histograms for the LOD obtained are presented in Fig. 3. The values for 86 pesticides and contaminants analyzed with GC-Q-Orbitrap are lower than those obtained using the GC-triple-quadrupole. For 9 molecules, the same LODs were determined with both analyzers, and only 5 LOD values were higher for the GC-Q-Orbitrap method than those observed using the GC-triple-quadrupole method. This difference in sensitivity can be attributed to the high-resolution power of the GC-Q-Orbitrap MS analyzer, which drastically decreases the noise level. Because noise remains very low, a very small amount of targeted compound ions can be detected, allowing enhanced sensitivity. For the GC-triple-quadrupole, most molecules with LODs < 0.2 µg/L (aldrin, chinomethionat, chlorothalonil, endrin aldehyde, fenitrothion, haloxyfop-methyl, parathionethyl, parathion-methyl, pendimethalin, propham, prothiofos, and quinalphos) yielded signal-noise ratios between 3 and 10. In contrast, all the molecules that had LODs < 0.2 µg/L using the GC-Q-Orbitrap method exhibited S/N ratios >1000 in relation to the very low noise observed with this spectrometer analyzer.

3.5. Quantitative results in wheat

3.5.1. Linearity

At a concentration range of 0.4–40 µg/L, all the molecules analyzed with GC-Q-Orbitrap showed good linearity for the calibration curves (Table 1) with a good correlation coefficient (greater than 0.996). However, at a concentration of 200 µg/L, signal saturation was observed for some molecules. With the GC-triple-quadrupole method, the

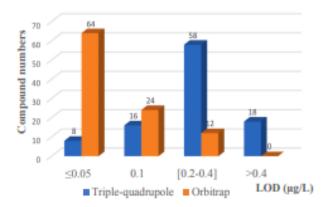


Fig. 3. Evaluation of LOD (μg/L) determined for 100 pesticides and contaminants in a mixture of hexane/acetone using the GC-Q-Orbitrap (orange) and GC-triple-quadrupole (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

response for the pesticides and contaminants was quadratic with a weight of 1/x and a wider concentration range (up to $200 \mu g/L$) than that observed in the GC-Q-Orbitrap method. Therefore, the dynamic range of the GC-Q-Orbitrap appeared, in the concentration range studied, less extended due to the saturation of the Orbitrap cell at the highest concentration tested. To achieve comparable results with both methods, calibration curves were established in quadratic mode with a weighting of 1/x.

3.5.2. Recovery

Recovery experiments were performed by analyzing wheat samples spiked at a concentration level of $10 \mu g/kg$ (n = 5). For the GC-Q-Orbitrap results, more than 85% of the pesticides and contaminants showed good recovery [70–120%], with RSD values < 20% demonstrating good repeatability (European Commission, 2017). Some organochlorine molecules presented intermediate recovery, such as aldrin ($62 \pm 10\%$), DDD (2,4') ($61 \pm 20\%$), hexachlorobenzene ($61 \pm 13\%$), mirex ($64 \pm 14\%$) and procymidone ($68 \pm 5\%$). No molecule had a recovery above 120%. The recovery of endrin aldehyde was 0%, and the same recovery was observed with the GC-triple-quadrupole. This result could be attributed to the reaction of the aldehyde function of this molecule with the primary secondary amine used during the purification step (d-SPE, PSA/MgSO₄).

For the GC-triple-quadrupole method, the recovery for pesticides and contaminants in wheat spiked at 10 µg/kg, was higher than that obtained with the GC-Q-Orbitrap method for most compounds. Moreover, for 33% of the analytes, the recovery in the wheat matrix was over 120%. This phenomenon can be attributed to the decrease in analyte adsorption in the injection insert due to the coinjection of the wheat matrix compounds (Anastassiades et al., 2003). As described previously (Anastassiades et al., 2003), the addition of protectant analytes can overcome matrix-induced effects during quantitation. Low recoveries (<70%) were observed with both methods (deltamethrin, DDD (2,4'), demeton-S-methyl and tetrachlorvinphos). This outcome is usually due to the interaction of analytes with compounds in the matrix, which reduces the extraction yield. For the GC-Q-Orbitrap method, the recovery was, in most cases, <100%, while for GC-triple-quadrupole method, the recovery was clearly greater than 100%. This phenomenon could be explained by a difference in ionization efficiency (competition between analytes and matrix interferent molecules) due to a difference in ionization source designs. The difference in recovery could be also attributed to a difference in selectivity of GC-triple-quadrupole in mode MRM and GC-Q-Orbitrap in full scan mode. To confirm these opposite trends, the matrix effects will be evaluated.

3.5.3. Limits of quantification

Document (European Commission, 2017) describes the LOQ as the minimum concentration, which means the criteria for a mean recovery within the 70-120% range and an RSD of <20%. Recovery rates outside the range of 70-120% can be accepted if they are consistent (RSD \le \cdots 20%), but the mean recovery should not be lower than 30% or above 140%. However, if recoveries were between 30% and 70 % or between 120 and 140 % and RSD ≤ 20%, a correction of LOD and LOQ is required even if uncertainty was enlarged. The GC-Q-Orbitrap method cannot be validated for only 4 molecules (chinomethionat, demeton-S-methyl, endrin aldehyde and quinalphos) because the criteria defined above were not met. To include these analytes, spiking at a higher concentration level is required. The LOQ values calculated for the other molecules that complied with the specifications described above ranges between 0.1 µg/kg and 2 µg/kg. These results are very satisfactory because the MRL values for these pesticides and contaminants are ≥ 10 µg/kg. For the GC-triple-quadrupole method, 7 molecules (bifenthrin, carbophenothion, endrin aldehyde, fluorochloridone, haloxyfopmethyl, malathion, mecarbam and phosmet) did not meet the criteria defined above and therefore could not be validated with this method due to the overestimated recovery values. As previously mentioned, the

Table 1 Evaluation of the GC-triple-quadrupole and GC-Q-Orbitrap quantitative results obtained for wheat spiked at $10 \mu g/kg$.

Analyte	Triple Qu	adrupole		Orbitrap						
	R ²	Recovery (%)	RSD (%)	LOQ (µg/kg)	ME (%)	R ²	Recovery (%)	RSD (%)	LOQ (µg/kg)	ME (%
2-Phenylphenol	0.9999	120	20	2.0	53	0.9999	101	4	0.1	-45
Alachlor	0.9999	132	14	0.8	62	0.9967	86	5	0.1	-36
Aldrin	0.9999	97	11	2,0	5	1.0000	62	8	0.2	-24
Anthraquinone	0.9999	132 124	15 8	0.8	51 70	0.9998	83 99	6	0.1	54 -41
Azinphos-ethyl Azinphos-methyl	0.9998	90	8	0.4	45	0.9999	117	9	0.2	-43
Bifenthrin	0.9997	143	20	/	84	0.9990	89	4	0.2	-36
Bromophos-ethyl	0.9998	119	20	2.0	69	0.9999	83	9	0.8	-40
Bromophos-methyl	0.9979	128	17	0.2	49	0.9991	85	3	0.2	-40
Butralin	0.9999	96	14	0.8	49	0.9999	115	7	0.4	-60
Carbophenothion	0.9996	147	28	/	75	0.9999	83	6	0.1	3
Chinomethionat	0.9996	61	19	2.0	-7	0.9999	25	20	/	-34
Chlormephos	0.9997	117	20	1.4	-1	0.9997	91	5	0.1	-22
Chlorfenson	0.9991	89	20	0.8	-27	0.9991	40	18	0.5	-47
Chlorobenzilate	0.9994	120	14	0.1	74	0.9997	77	7	0.1	-37
Chlorthal-dimethyl Chlorothalonil	0.9990	102 72	9	2.0	11 51	0.9999	87 85	8	0.1	-39 -33
Chlorpropham	0.9998	111	20	0.4	-45	1.0000	94	6	0.1	-74
Chlorpyriphos-ethyl	0.9991	109	19	0.8	28	0.9999	101	6	0.1	-34
Chlorpyriphos-methyl	1.0000	134	10	0.7	39	0.9999	94	5	0.1	-45
Coumaphos	0.9999	80	14	0.8	48	0.9999	91	8	0.1	4
DDD (2,4')	0.9999	46	14	0.8	-15	0.9999	61	20	0.7	2
DDE (2,4')	0.9967	68	23	1.2	-27	1.0000	35	10	1.9	-65
DDE (4,4')	0.9998	60	14	2.0	21	0.9999	44	14	1.2	-35
Deltamethrin	0.9998	59	28	0.6	18	1.0000	48	4	0.4	-11
Demeton-S-methyl	0.9997	40	26	1.7	70	0.9999	19	34	/	-39
Diszinon	0.9997	115	8	0.4	54	0.9998	94	4	0.1	-31
Dichlobenil	0.9993	107	20	0.3	9	0.9997	73	4	0.1	-32
Dichlofenthion	0.9997	108	12	0.1	24	1.0000	90	6	0.1	-16
Dichlorvos	0.9991	74	18	0.4	15	0.9989	71	8	0.1	-28
Dicloran	0.9998	139	14	0.2	29	0.9999	93	8	0.1	-20
Dimethoate Diphenylamine	0.9989	140 93	19	0.2	79 31	0.9994	113 70	5	0.1	-34 -32
Disulfoton	0.9967	90	20	1.5	13	1.0000	82	14	0.2	-61
Endosulfan sulfate	0.9998	126	16	0.2	65	0.9993	93	19	0.1	-75
Endrin aldehyde	0.9985	0	57	/	8	0.9995	0	0	/	-64
Ethion	0.9998	125	14	2.5	22	0.9992	73	15	0.1	-26
Ethoprophos	0.9997	126	14	0.2	53	0.9968	91	6	0.1	-28
Etridiszole	0.9997	86	20	0.4	26	1.0000	83	9	0.1	-62
Fenamiphos	1.0000	127	26	0.8	49	0.9999	84	11	0.4	-39
Fenchlorphos	0.9989	118	6	0.8	41	0.9999	83	4	0.1	27
Fenchlorphos-oxon	0.9998	127	7	0.2	68	1.0000	89	6	0.1	-22
Fenitrothion	0.9997	109	17	2.0	-37	0.9997	91	7	0.4	-32
Fenpropathrin	0.9988	136	23	0.4	48	0.9983	96	8	0.1	-57
Fenson	0.9993	135	18	0.4	38	0.9999	111	5	0.1	-61
Fludioxonil	0.9999	88	10	0.2	79	0.9999	77	15	0.2	-11
Fluorochloridone	1.0000	156	23	/	55	0.9999	114	4	0.2	-15
Formothion	1.0000	127	14	2.0	71	1.0000	86 50	5	0.2	-34
Haloxyfop-methyl HCH (a)	0.9988	156 120	15 4	0.4	64 16	0.9998	91	4	0.6	-31 -29
HCH (B)	0.9997	105	15	0.4	20	0.9999	92	4	0.1	-21
HCH (y)	0.9989	101	6	0.4	29	0.9997	96	5	0.1	-33
HCH (8)	1.0000	101	7	0.4	14	0.9997	92	5	0.1	-30
HCH (e)	0.9997	118	10	0.2	18	0.9999	96	6	0.1	-35
Heptachlor	0.9997	94	16	0.1	8	0.9997	86	11	0.2	-22
Heptenophos	0.9988	135	17	0.2	41	0.9999	96	5	0.1	-38
Hexachlorobenzene	0.9999	76	8	0.4	3	0.9997	61	13	0.4	-29
Isazophos	0.9999	95	20	2.0	27	1.0000	93	6	0.1	-13
Isodrin	0.9997	112	15	0.4	34	0.9988	84	8	0.1	54
Malaoxon	1.0000	136	22	0.4	70	0.9997	72	5	0.1	27
Malathion	0.9983	153	12	/	45	0.9999	101	2	0.2	12
Mecarbam	1.0000	148	22	/	61	0.9999	94	8	0.1	-39
Metalaxyl	0.9999	103	7	0.4	23	0.9995	101	7	0.1	-8
Methacriphos	0.9999	127	18	0.2	25	0.9995	92	4	0.1	11 -47
Methidathion Methoxychlor	0.9969	131 134	20 17	0.4	44 33	0.9996	84 90	5	0.1	30
Mevinphos	0.9998	122	19	0.2	61	0.9997	98	3	0.1	-50
Mirex	0.9983	103	7	0.2	13	0.9991	64	14	0.1	-19
Monochrotophos	0.9990	107	21	0.4	60	0.9993	98	5	0.1	-35
N-Desmethyl-pirimiphos-methyl	0.9999	106	20	2.0	58	0.9990	95	5	0.1	-35 -48
N-Desinetnyi-pinmipnos-metnyi Nitrofen	0.9991	120	11	0.4	86	0.9997	82	10	0.4	-15
Paraoxon-methyl	0.9997	84	17	0.8	63	0.9994	106	12	0.1	-39
			_	-	-			_		100

(continued on next page)

Table 1 (continued)

Analyte	Triple Qu	adrupole				Orbitrap				
	R ²	Recovery (%)	RSD (%)	LOQ (µg/kg)	ME (%)	R ²	Recovery (%)	RSD (%)	LOQ (µg/kg)	ME (%)
Parathion-methyl	0.9999	118	16	2.0	52	0.9999	99	7	0.1	-40
PCB 118	0.9992	87	16	0.6	70	0.9990	108	4	0.2	-65
PCB 138	0.9994	71	12	0.4	81	0.9989	91	8	0.2	-65
PCB 153	0.9999	117	25	0.1	52	1.0000	96	9	0.2	-39
PCB 28	0.9990	89	9	0.1	19	1.0000	76	10	0.1	-38
PCB 52	0.9999	101	19	0.1	-25	0.9992	59	10	0.4	-38
Pendimethalin	0.9999	140	23	3.8	65	0.9999	93	15	0.2	-32
Pentachloroanisole	0.9989	106	12	0.4	-10	0.9999	94	4	0.1	-37
Pentachlorobenzene	0.9973	89	7	0.8	8	0.9998	72	3	0.1	-54
Phosalone	0.9999	134	18	0.4	29	0.9997	96	10	0.2	-49
Phosmet	0.9999	155	18	/	57	0.9994	98	5	0.1	-8
Phosphamidon	0.9997	97	15	2.0	-41	0.9990	95	5	0.1	-31
Pirimiphos-ethyl	0.9997	107	11	0.8	51	0.9998	87	8	0.1	-23
Procymidone	0.9973	135	13	1.2	6	1.0000	68	5	0.6	-41
Profluralin	0.9989	92	17	0.8	40	0.9999	101	11	0.4	-33
Propham	0.9973	113	20	2.0	30	0.9992	98	2	0.1	-33
Prothiofos	0.9995	94	13	2.0	3	0.9973	36	14	0.6	-29
Quinalphos	0.9981	64	27	2.0	52	0.9984	23	13	/	-25
Quintozene	0.9997	99	12	0.4	7	0.9988	87	12	0.2	-27
Sulfotep	0.9984	118	15	0.6	12	0.9999	94	6	0.2	-25
Tecnazene	0.9983	103	9	0.4	17	1.0000	87	3	0.2	-38
Tetrachlorvinphos	0.9998	45	16	0.7	-40	0.9997	34	15	1.2	-50
Tetradifon	0.9999	139	19	0.4	69	0.9998	70	17	0.1	-37
Tolclofos-methyl	0.9999	105	12	0.5	34	0.9999	87	5	0.1	-46
Triazophos	0.9998	140	20	1.2	65	0.9999	88	3	0.1	-40
Trifluralin	0.9973	140	17	0.7	27	0.9999	101	4	0.1	-24
Vinclozolin	0.9999	129	8	0.6	32	1.0000	89	8	0.2	-29

^{*/:} not quantified

recovery value for endrin aldehyde was 0%, which meant it could not be quantified using this sample preparation. The LOQ values calculated for the other molecules that met the conditions described above ranged between $0.1~\mu g/kg$ and $4~\mu g/kg$.

The LOQ values for both methods are presented in Fig. 4. This figure demonstrates that the LOQ values obtained with the GC-triple-quadrupole are slightly higher than those obtained with the GC-Q-Orbitrap method. These results demonstrate that the GC-Q-Orbitrap method is more sensitive than the GC-triple-quadrupole method for most pesticides and contaminants studied in wheat.

3.5.4. Matrix effects

As a consequence of coeluting sample components, the targeted analyte signal may be enhanced or suppressed compared to the signal from the same targeted analyte when injected in pure solvent. The matrix effect is evaluated by comparing the slope of the calibration curves for the standards in solvent against standards prepared in matrix

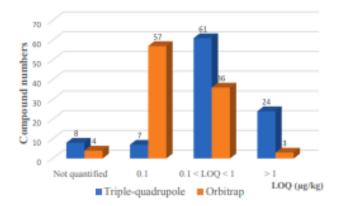


Fig. 4. Evaluation of LOQ ($\mu g/kg$) determined for 100 pesticides and contaminants in wheat spiked at 10 $\mu g/kg$ using the GC-Q-Orbitrap (orange) and GC-triple-quadrupole (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

extracts. The matrix effect (ME) is calculated using Eq. (1):

Matrix effect(ME) =
$$((slope matrix/slope solvent) - 1) \times 100$$
 (1)

The soft matrix effect (suppression or enhancement of 0–20%) is negligible. However, if some of the analytes had a suppression or enhancement of 20–50%, the matrix effect appeared as medium. When the matrix effect (suppression or enhancement > 50%) is strong, it is necessary to use some methods to overcome the ME, such as employing a matrix-matched calibration or sample dilution. ME % values are presented in Table 1.

For GC-triple-quadrupole analyses, 64 molecules had a medium matrix effect, and 36 molecules had a strong matrix effect; in most cases, they were positive. The enhancement of a signal is generally attributed to a decrease in analyte adsorption in the injector in the presence of matrix compounds, such as the addition of protectants in the sample vial before injection (Anastassiades et al., 2003). Suppression of the signal is often due to analyte degradation that can occur during extraction steps or in the EI source. When an enhanced signal was observed, in most cases with the GC-triple-quadrupole method, the opposite phenomenon was observed for the GC-Q-Orbitrap where the signal was suppressed. For the GC-Q-Orbitrap methods, the matrix effect for 84 molecules was acceptable, with values ranging between -50% and 50%. Strong suppression of the chromatographic signal was observed for 16 molecules. This phenomenon could be attributed to competition between targeted analyte ions and matrix compound ions during their transfer in the Ctrap. A possibility to prevent this phenomenon would be a SIM approach (selected ion monitoring) mode to overcome the signal suppression by selecting the ions transferred in the C-trap using the quadrupole implemented beforehand. In contrast to the full scan mode, this targeted approach limits the number of compounds that can be analyzed and the possibility of reprocessing the analysis data to detect the presence of other pesticides and contaminants in the injected extracts after acquisition.

3.5.5. Injection of unpurified wheat extract

Wheat extract spiked at 10 µg/kg without a purification step was injected using the GC-Q-Orbitrap method. Most of the pesticides and

contaminants (97%) were detected. Ten replicates of injection were performed without loss of sensitivity. According to the MRL, GC-Q-Orbitrap has been demonstrated to be a powerful method for the rapid screening of pesticides and contaminants in wheat without a purification step. Nevertheless, contamination of the inlet can occur with unpurified samples, and diluting can minimize this phenomenon. Then, the unpurified extracts spiked at 10 µg/kg were injected after different dilutions (5, 10 and 20 times). More than 70% of the pesticides and the contaminants were quantified in solution diluted 10-fold. The injection of QC standards after 10 unpurified extract injections has shown that the QC values were between 70 and 130 %. Nevertheless, after 30 unpurified extract injections a change of inlet and a cleaning of the ionization source appeared necessary.

3.5.6. Injection of wheat extracts of real sample

To prove the effectiveness of the two methods (GC-Q-Orbitrap and GC-triple quadrupole), they were applied to ten different real wheat samples. Results obtained with GC-Q-Orbitrap and those obtained with GC-triple quadrupole showed that only five pesticide residues were detected (chlorpyrifos ethyl, chlorpyrifos methyl, phosmet, chlorpropham and deltamethrin). The amount of detected pesticides in wheat extracts did not exceeded the MRL values of these pesticides in wheat samples which were 10, 10, 50, 10 and 1,000 µg/kg respectively.

Using GC-Q-Orbitrap, chlorpyrifos ethyl and chlorpyrifos methyl were detected in all the wheat samples, with concentration ranging from 2.6 to 6.3 µg/kg. Phosmet was detected at a concentration range from 18.9 to 21.5 µg/kg, chlorpropham was detected in three sample at a concentration range from 2.3 to 6.9 µg/kg and deltamethrin was detected in one sample at a concentration of 33.5 µg/kg. Almost similar values were obtained using the GC-triple quadripole: chlorpyrifos ethyl and chlorpyrifos methyl were detected in all the wheat samples, with concentration ranging from 3.1 to 7.7 µg/kg. Chlorpropham was detected in three sample at a concentration range from 3.0 to 8.6 µg/kg and deltamethrin was detected in one sample at a concentration of 36.6 μg/kg. Phosmet is detected using GC-triple quadripole method but could not be quantified due to the too high recovery value up to 140% obtained for pesticide. So, the results obtained with both approaches (MRM mode using GC-triple quadripole and full scan mode using GC-Q-Orbitrap) were consistent.

3.6. Injection of other complex matrix extracts

The final part of our study was dedicated to the influence of various matrices on the detection of both methods. The same extracts of

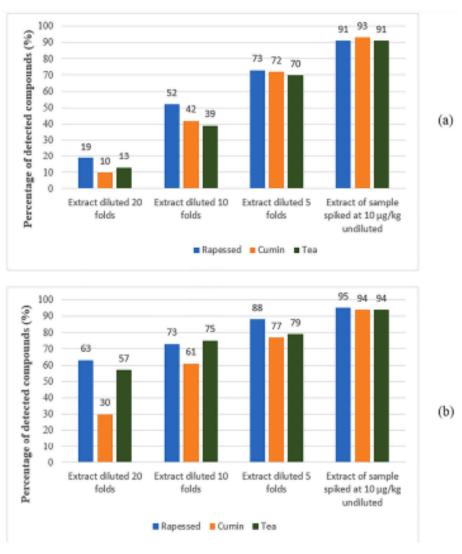


Fig. 5. Comparison of the percentage of detected compounds with different dilutions (5-, 10- and 20-fold) using the GC-triple-quadrupole (a) and GC-Q-Orbitrap (b) in the complex matrices spiked at 10 μg/kg: rapeseed (blue), cumin (orange) and black tea (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

rapeseed, cumin or tea samples spiked at 10 µg/kg were analyzed using the GC-triple-quadrupole and GC-Q-Orbitrap methods. For the latter method, optimized parameters, determined in this study, were selected: 60,000 FWHM and 1E⁶ for the AGC target value. For data treatment, tolerance for the mass (±5 ppm) and retention time (±0.1 min) was used. The extracts from these different matrices underwent different dilutions, 5-, 10- and 20-fold, to assess the sensitivity and selectivity of both methods. The histograms presented in Fig. 5 summarize the results obtained for the three matrices.

The results showed that for undiluted extracts for the three matrices, similar percentages of detected compounds were obtained regardless of the method used. The endrin aldehyde was recovered in rapeseed extracts. This result can be explained by the nature of the d-SPE material used for rapeseed purification that contains less amount of PSA. Concerning diluted extract analyses, the GC-Q-Orbitrap sensitivity appeared to be clearly higher than the GC-triple-quadrupole sensitivity due to the very low noise observed with the GC-Q-Orbitrap method. For the extract diluted 20-fold, the number of pesticides and contaminants still detected ranged from 30 to 63% (Fig. 5). Moreover, when injecting extracts diluted 20-fold into the GC-Q-Orbitrap system, some ions provided in matrices were clearly separated from the analyte ions.

4. Conclusion

In this study, the GC-Q-Orbitrap (60,000 FWHM at m/z 200) method and GC-triple-quadrupole method were evaluated and compared for the screening and quantification of 100 pesticides and contaminants in different complex food matrices, such as wheat, rapeseed, cumin and black tea. The GC-Q-Orbitrap method development in full scan mode was found to be less time-consuming than the GC-triple-quadrupole method. The GC-Q-Orbitrap and GC-triple-quadrupole methods were able to detect 100% of the pesticides and contaminants with an LOD of < 0.4 µg/L and < 2 µg/L, respectively. In terms of sensitivity, the LOD values were lower for 86 pesticides and contaminants analyzed with the GC-Q-Orbitrap method than those obtained using the GC-triplequadrupole method. Good linearity for the calibration curves at a concentration range of 0.4-40 µg/L with a good coefficient and correlation (greater than 0.996) was obtained for almost all the molecules studied. However, the GC-Q-Orbitrap method exhibited a smaller dynamic range than the GC-triple-quadrupole method. More than 85% of the pesticides and contaminants showed good recovery [70-120%] with the GC-Q-Orbitrap method, which can be attributed to better selectivity. Moreover, a negative matrix effect was observed with the GC-Q-Orbitrap method. This phenomenon may be due to competition between targeted analyte ions and matrix compound ions during their transfer in the C-trap, which that can be overcome using a SIM approach. In contrast to the full scan mode, this targeted approach limits the number of compounds that can be analyzed and the possibility of reprocessing the analysis data to detect the presence of other pesticides and contaminants in the injected extracts after acquisition. The injection of unpurified wheat extracts spiked at 10 µg/kg proved the potential of the GC-Q-Orbitrap method for use in performing high-throughput screening for pesticides and contaminants in food matrices.

CRediT authorship contribution statement

Saida Belarbi: Investigation, Validation, Writing - original draft, Visualization. Martin Vivier: Conceptualization, Writing - review & editing. Wafa Zaghouani: Writing - review & editing. Aude De Sloovere: Project administration, Funding acquisition. Valérie Agasse-Peulon: Writing - review & editing, Supervision. Pascal Cardinael: Conceptualization, Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Marie Vaccaro for her help concerning the GC-Q-Orbitrap analyses. Additionally, Florian Luc for GCtriple-quadrupole analyses. The authors would also like to thank the National Association of Research and Technology for funding this thesis work. Authors thank the French Ministry for Research and Education (for research grant) and the Region Normandie (Research Grant, Bioénaigie RIN projects) and FEDER for financial supports.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.foodchem.2021.129932,

References

- Anastassiades, M., Maštovská, K., & Lehotsy, S. (2003). Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. *Journal of Chromatography A*, 1015, 163–184. https://doi.org/10.1016/S0021-9673(03)01208-1.
- Biswapriya, M., & Olivier, M. (2020). High-resolution GC-Orbitrap-MS Metabolomics Using Both Electron Ionization and Chemical Ionization for Analysis of Human Plasma. Journal of Proteome Research, 7, 2717–2731. https://doi.org/10.1021/acs.iproteome.9b00774.
- Castillo, M., González, C., & Miralles, A. (2011). An evaluation method for determination of non-polar pesticide residues in animal fat samples by using dispersive solid-phase extraction clean-up and GC-MS. Analytical and Bioanalytical Chemistry, 400, 1315–1328. https://doi.org/10.1007/s00216-011-4656-5.
- Cortés-Francisco, N., Beguiristain, I., Rubies, A., Centrich, F., & Granados, M. (2016).
 New approach to PBDEs analysis: Comparison of high- and low-resolution mass spectrometry. Organolulogen Compounds, 78, 1012–1014.
- Domínguez, I., Árrebola, F. J., Martinez Vidal, J. L., & Garrido Frenich, A. (2020). Assessment of wastewater pollution by gas chromatography and high-resolution Orbitrap mass spectrometry. Journal of Chromatography A, 1619, Article 460964. https://doi.org/10.1016/j.chroma.2020.460964.
- European Commission (2017). Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed, SANTE/11813/2017.
- EU Pesticides Database (v.2.1), (2021), https://ec.europa.eu/food/plant/pesticides/eupesticides-database/products/?event=search.pr , April, 18th 2021.
- European Union Report on pesticide residues in food, (2014) European Food Safety Authority. 12 3942. https://doi.org/10.2903/j.efss.2014.3942.
- Gomez-Ramos, M. M., Uclés, S., Ferrer, C., Fernandes-Alba, A. R., & Hernando, M. D. (2019). Exploration of environmental contaminants in honeybees using GC-TOF-MS and GC-Oebitrap-MS. Science of the Total Environment, 647, 232–244. https://doi. org/10.1016/j.scitotesv.2018.08.009.
- Hakme, E., Lozano, A., Uclés, S., Gomez-Ramos, M. M., & Fernandez-Alba, A. R. (2018). High-throughput gas chromatography-mass spectrometry analysis of pesticide residues in spices by using the enhanced matrix removal-lipid and the sample dilution approach. Journal of Chromatography A, 1574, 28–41. https://doi.org/ 10.1016/j.chroma.2018.08.046.
- He, Z., Wang, L., Peng, Y., Luo, M., Wang, W., & Liu, X. (2015). Multiresidue analysis of over 200 pesticides in cereals using a QuEChERS and gas chromatography-tandem mass spectrometry-based method. Food Chemistry, 169, 372–380. https://doi.org/ 10.1016/j.foodchem.2014.07.102.
- Hung, N. V., Mohabber, C., Vaccaro, M., Marcotte, S., Agasse-Peulon, V., Abdelouahed, L., & Cardinael, P. (2020). Development of two-dimensional gas chromatography (GCxGC) coupled with Orbitrap technology-based mass spectrometer (MS) – Interest for the identification of bio-fuel composition. *Journal of Mass Spectrometry*, 55, Article e4495. https://doi.org/10.1002/jms.4495.
- Kaufmann, A. (2012). The current role of high-resolution mass spectrometry in food analysis. Analytical and Bioanalytical Chemistry, 403, 1233–1249. https://doi.org/ 10.1007/s00216-011-5629-4.
- Kondyli, A., & Schrader, W. (2019). High-resolution GC/MS studies of light crude oil fraction. Journal of Mass Spectrometry, 54, 47–54. https://doi.org/10.1002/ images/sept.com/
- Kratschmer, K., Schachtele, A., Malisch, R., & Vetter, W. (2019). Chlorinated paraffins (CPs) in salmon sold in southern Germany: Concentrations, homologue patterns an relation to other persistent organic pollutants. Chemosphere, 27, 630–637. https:// doi.org/10.1016/j.chemosphere.2019.04.016.
- Lacina, O., Zacharissova, M., Ürbanova, M., Vaclavikova, J., Cajka, T., & Hajslova, J. (2012). Critical assessment of extraction methods for the simultaneous determination of pesticide residues and mycotoxins in fruits, cereals, spices and oil seeds employing ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1262, 8–18. https://doi.org/10.1016/j.chroma.2012.08.097.

- Leendert, V., Van Langenhove, H., & Demeestere, K. (2015). Trends in liquid chromatography coupled to high-resolution mass spectrometry for multi-residue analysis of organic micropollutants in aquatic environments. Trends Analys Chen, 67, 192-208. https://doi.org/10.1016/j.trsc.2015.01.010.
- Ma, G., Zhang, M., Zhu, L., Chen, H., Liu, X., & Lu, C. (2018). Facile synthesis of aminefunctional reduced graphene exides as modified quick, easy, cheap, effective, rugged and safe adsorbent for multi-pesticide residues analysis of tea. J. Chromatogr. A,1531, 22-31. https://doi.org/10.1016/j.chroma.2017.11.044.Maqbool, F., Mostafalou, S., Bahadar, H., & Abdollahi, M. (2016). Review of endocrine
- Maqbool, F., Mostafalou, S., Bahadar, H., & Abdollahi, M. (2016). Review of endocrine disorders associated with environmental tooicants and possible involved mechanisms. *Life Sciences*, 14S, 265–273. https://doi.org/10.1016/j. 16.2015.10.022.
- Martinez Vidal, J. L., Arrebola, F. J., & Mateu-Sanchez, M. (2002). Application of gas chromatography-tandem mass spectrometry to the analysis of posticides in fruits and vegetables. Journal of Chromatography A, 959, 203–213. https://doi.org/10.1016/ S0021-96730(2)00444-2.
- Moi, H. G. J., Tienstra, M., & Zomer, P. (2016). Evaluation of gas chromatographyelectron ionization - full scan high-resolution Orbitrap mass spectrometry for pesticide residue analysis. Analytica Chimica Acm, 935, 161–172. https://doi.org/ 10.1016/j.acm.2016.06.017.
- Pan, M., Xiang, P., Yu, Z., Zhao, Y., & Yan, H. (2019). Development of a high-throughput screening analysis for 288 drugs and poisons in human blood using Orbitrap technology with gas chromatography-high-resolution accurate mass spectrometry. Journal of Chromatography A, 1558, 209–226. https://doi.org/10.1016/j. chroma.2018.12.02.
- Pico, Y., Font, G., Ruiz, M. J., & Fernández, M. (2006). Control of pesticide residues by liquid chromatography-mass spectrometry to ensure food safety. Mass Spectrometry Reviews, 25, 917–960. https://doi.org/10.1002/mas.20096.
- Rivera-Pérez, A., Lopez-Ruiz, R., Romero-Gonzalez, R., & Garrido-Frenich, A. (2020).
 A new strategy based on gas chromatography-high-resolution mass spectrometry

- (GC-HRMS-Q-Orbitrap) for the determination of alkenylbenzenes in pepper and its varieties. Food Chemistry, 321, Article 126727. https://doi.org/10.1016/j. foodchem.2020.126727.
- Samsidar, A., Siddiquee, S., & Shaarani, S. (2018). A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends in Food Science & Technology, 71, 188–201. https://doi.org/10.1016/j. ii6.2017.11.011.
- Shabeer, T. P. A., Girame, R., Utture, S., Oulkar, D., Banerjee, K., Ajay, D., ... Menon, K. R. K. (2018). Optimization of multi-residue method for targeted screening and quantitation of 243 pesticide residues in cardamom (Einturia cardamomum) by gas chromatography tandem mass spectrometry (GC-MS/MS) analysis. Chemosphere, 193, 447–453. https://doi.org/10.1016/j.chemosphere.2017.10.133.
- 193, 447–453. https://doi.org/10.1016/j.chemosphere.2017.10.133.
 Tienstra, M., & Mol, H. G. J. (2018). Application of Gas Chromatography Coupled to Quadrupole-Orbitrap Mass Spectrometry for Pesticide Residue Analysis in Cereals and Feed Ingredients. Journal of AOAC International, 101, 342–351. https://doi.org/10.5740/jsoacint.17-0408.
- Uclés, S., Uclés, A., Lozano, A., Martinez-Bueno, M. J., & Fernandez-Alba, A. R. (2017). Shifting the paradigm in gas chromatography mass spectrometry pesticide analysis using high-resolution accurate mass spectrometry. Journal of Chromatography A, 1501, 107–116. https://doi.org/10.1016/j.chroma.2017.04.025.
- Wickrama-Arachchige, A., Hirabayachi, T., Imai, Y., Guruge, K. S., Dharamratne, T. S., & Ohura, T. (2020). Accumulation of halogenated polycyclic asomatic hydrocarbons by different tuna species, determined by high-resolution gas chromatography Orbitrap mass spectrometry. Environmental Pollution, 256, Article 113487. https:// doi.org/10.1016/j.envpol.2019.113487.
- Yang, L., Wang, S., Peng, X., Zheng, M., Yang, Y., Xiao, K., & Guorui, L. (2019). Gas chromatography-Orbitrap mass spectrometry screening of organic chemicals in fly ash samples from industrial sources and implications for understanding the formation mechanisms of unintentional persistent organic pollutants. Science of the Total Environment, 664, 107–115. https://doi.org/10.1016/j.scitotenv.2019.02.001.

Table S1: The GC-triple-quadrupole acquisition parameters for 100 pesticides and contaminants.

No	Name	t _R (min)	Quantitative transition		Qualitative transition	
			Precursor>product (m/z)	CE (V)	Precursor>product (m/z)	CE (V)
1	2-Phenylphenol	6.47	169.1 > 141.1	10	141.1 > 115.1	10
2	Alachlor	9.56	188.1 > 160.1	10	188.1 > 132.1	25
3	Aldrin	10.23	254.9 > 220.0	20	257.0 > 222.0	20
4	Anthraquinone	10.23	180.0 > 152.1	10	208.0 > 152.2	20
5	Azinphos-ethyl	15.51	160.0 > 77.1	20	132.0 > 77.1	20
6	Azinphos-methyl	14.90	160.0 > 77.0	20	132.1 > 77.0	20
7	Bifenthrin	14.20	181.0 > 165.0	25	181.0 > 141.0	20
8	Bromophos-ethyl	11.32	357.0 > 301.0	20	241.9 > 96.9	15
9	Bromophos-methyl	10.58	125.0 > 47.0	20	330.9 > 285.9	35
10	Butralin	10.52	266.0 > 190.0	10	224.1 > 132.1	15
11	Carbophenothion	13.12	342.0 > 157.0	10	153.0 > 96.9	10
12	Chinomethionat	11.32	234.0 > 206.0	15	206.0 > 148.0	15
13	Chlormephos	11.67	175.0 > 111.0	15	111.0 > 75.0	15
14	Chlorfenson	6.05	153.9 > 121.1	5	121.1 > 65.0	10
15	Chlorobenzilate	12.48	251.1 > 139.1	15	139.1 > 75.1	15
16	Chlorthal-dimethyl	10.35	298.9 > 221.0	20	300.9 > 223.0	20
17	Chlorothalonil	8.91	265.9 > 133.0	25	265.9 > 230.9	25
18	Chlorpropham	7.43	153.0 > 90.0	15	127.0 > 65.1	10
19	Chlorpyriphos-ethyl	10.38	198.9 > 171.0	15	196.9 > 169.0	15
20	Chlorpyriphos-methyl	9.45	285.9 > 93.0	25	286.0 > 271.0	15
21	Coumaphos	16.16	361.9 > 109.0	15	210.0 > 182.0	15
22	DDD (2,4')	12.08	235.0 > 165.1	20	199.1 > 164.1	10
23	DDE (2,4')	11.37	317.8 > 248.0	20	246.0 > 176.2	15
24	DDE (4,4')	11.92	317.8 > 248.0	20	246.0 > 176.2	15
25	Deltamethrin	18.42	252.9 > 172.0	10	174.0 > 93.0	10
26	Demeton-S-methyl	7.25	142.0 > 78.9	15	88.0 > 60.0	10
27 28	Diazinon Dichlobenil	8.59 5.58	199.1 > 93.0	10 25	137.1 > 54.0	20 15
29	Dichlofenthion	3.38 9.27	173.0 > 100.0	23 15	171.0 > 136.0	15
30	Dichlorvos	9.27 4.99	279.0 > 223.0	20	279.0 > 204.9 109.0 > 79.0	15
31	Dichorvos	4.99 8.12	184.9 > 93.0 160.1 > 124.1	5	109.0 > 79.0 143.0 > 111.0	25
32	Dimethoate	8.12	100.1 > 124.1 125.0 > 47.0	10	143.0 > 111.0 143.0 > 111.0	23 15
33	Diphenylamine	7.29	169.0 > 139.1	30	169.0 > 77.1	35
34	Disulfoton	8.74	142.0 > 109.0	10	142.0 > 80.9	10
35	Endosulfan sulfate	13.32	271.9 > 237.0	15	273.8 > 236.9	15
36	Endrin aldehyde	12.95	344.9 > 280.9	20	249.9 > 214.9	25
37	Ethion	12.72	230.9 > 175.0	10	124.9 > 96.9	10
38	Ethoprophos	7.33	157.9 > 97.0	15	138.9 > 97.0	5
39	Etridiazole	6.16	213.1 > 185.0	10	183.0 > 140.0	25
40	Fenamiphos	11.64	303.0 > 154.0	15	154.0 > 139.0	5
41	Fenchlorphos	9.69	285.0 > 269.9	15	286.9 > 272.0	25
42	Fenchlorphos-oxon	9.14	261.9 > 247.1	20	261.9 > 217.0	20
43	Fenitrothion	9.89	277.0 > 109.0	20	277.0 > 260.1	5
44	Fenpropathrin	14.34	265.0 > 210.0	10	181.1 > 152.1	25
45	Fenson	10.50	141.0 > 77.1	5	267.9 > 77.1	15
46	Fludioxonil	11.85	248.0 > 127.1	30	248.0 > 154.1	20
47	Fluorochloridone	10.43	145.1 > 95.0	20	187.1 > 159.1	15
48	Formothion	9.08	170.0 > 93.0	5	170.0 > 63.0	25
49	Haloxyfop-methyl	11.23	375.1 > 316.0	20	180.0 > 160.0	10
50	$HCH(\alpha)$	7.96	218.9 > 183.0	15	180.9 > 145.0	15
51	$HCH(\beta)$	8.39	218.9 > 183.0	15	180.9 > 145.0	15
52	$HCH(\gamma)$	8.47	218.9 > 183.0	20	180.9 > 145.0	20
53	$HCH(\delta)$	8.86	218.9 > 183.0	20	180.9 > 145.0	15
54	HCH (ɛ)	9.02	218.9 > 183.0	5	180.9 > 145.0	15

Chapitre IV : Evaluation et comparaison des performances GC-HRMS (Q-Orbitrap) et GC-MS/MS (triple quadripôle) pour l'analyse de pesticides dans les matrices alimentaires complexes

						• •
55	Heptachlor	9.63	271.7 > 236.9	25	273.7 > 238.9	20
56	Heptenophos	6.92	124.0 > 89.0	10	124.0 > 63.0	35
57	Hexachlorobenzene	8.10	283.8 > 213.9	25	281.8 > 211.9	35
58	Isazophos	8.82	256.9 > 162.0	5	161.0 > 146.0	10
59	Isodrin	10.74	193.0 > 123.0	40	193.0 > 157.0	40
60	Malaoxon	9.38	126.9 > 99.0	15	195.0 > 109.0	15
61	Malathion	10.02	172.9 > 99.0	15	157.8 > 125.0	10
62	Mecarbam	10.96	130.9 > 86.0	15	130.9 > 74.0	20
63	Metalaxyl	9.63	234.0 > 146.1	20	234.0 > 174.1	10
64	Methacriphos	6.37	124.9 > 47.1	10	124.9 > 79.0	5
65	Methidathion	11.29	144.9 > 85.0	10	85.0 > 58.0	10
66	Methoxychlor	14.32	227.0 > 169.1	10	227.0 > 141.1	15
67	Mevinphos	5.92	127.0 > 94.9	15	109.0 > 78.9	20
68	Mirex	15.15	271.8 > 236.8	15	236.9 > 118.9	15
69	Monochrotophos	7.63	127.1 > 109.0	15	127.1 > 95.0	18
70	<i>N</i> -Desmethyl-	9.54	277.0 > 168.0	10	277.0 > 152.0	5
	pirimiphos-methyl					
71	Nitrofen	12.31	202.0 > 139.1	25	282.9 > 162.0	15
72	Paraoxon-methyl	8.73	229.9 > 136.1	5	247.0 > 96.0	10
73	Parathion-ethyl	10.27	291.0 > 109.0	10	109.0 > 81.0	10
74	Parathion-methyl	9.46	262.9 > 246.0	5	262.9 > 109.0	15
75	PCB 118	12.53	253.9 > 184.0	25	325.9 > 253.9	30
76	PCB 138	13.41	287.9 > 217.9	40	359.9 > 289.9	25
77	PCB 153	12.92	287.9 > 217.9	40	359.9 > 289.9	25
78	PCB 28	9.35	256.0 > 186.0	25	258.0 > 186.0	25
79	PCB 52	9.91	289.9 > 219.9	25	291.9 > 221.9	20
80	Pendimethalin	10.82	251.8 > 162.2	20	161.9 > 161.1	10
81	Pentachloroanisole	10.06	264.8 > 236.8	20	279.9 > 236.8	25
82	Pentachlorobenzene	6.68	249.9 > 215.0	40	248.0 > 213.0	20
83	Phosalone	14.88	182.0 > 75.0	10	182.0 > 111.0	20
84	Phosmet	14.20	160.0 > 77.1	20	160.0 > 105.0	15
85	Phosphamidon	8.64	264.0 > 127.0	15	264.0 > 193.0	10
86	Pirimiphos-ethyl	10.58	318.1 > 182.0	15	152.1 > 84.0	10
87	Procymidone	11.14	282.8 > 96.0	20	282.8 > 68.0	30
88	Profluralin	8.42	318.1 > 199.1	15	346.9 > 330.1	20
89	Propham	6.10	178.9 > 93.0	10	119.0 > 91.0	10
90	Prothiofos	11.79	308.9 > 238.9	25	266.9 > 239.0	15
91	Quinalphos	11.03	157.0 > 102.0	15	146.0 > 91.0	20
92	Quintozene	8.54	295.0 > 237.0	20	237.0 > 119.0	30
93	Sulfotep	7.68	321.8 > 201.9	15	201.8 > 145.9	25
94	Tecnazene	7.21	260.9 > 203.0	15	214.9 > 179.0	10
95	Tetrachlorvinphos	11.45	328.8 > 108.9	15	330.8 > 108.9	15
96	Tetradifon	14.71	158.9 > 111.0	10	158.9 > 131.0	10
97	Tolclofos-methyl	9.53	265.0 > 250.0	15	267.0 > 93.0	25
98	Triazophos	12.95	161.2 > 134.2	10	161.2 > 91.0	20
99	Trifluralin	7.56	306.1 > 264.0	10	264.0 > 160.1	15
100	Vinclozolin	9.42	197.9 > 145.0	15	212.0 > 172.1	15

Table S2: Analyte names, formula and retention times, experimental mass of quantifier and qualifier ions, and mass error of pesticides and contaminants.

No	Compound names	Formulas	Quantifier <i>m/z</i>	Δm (ppm)	Qualifier <i>m/z</i>	Δm (ppm)	t _R (min
1	2-Phenylphenol	$C_{12}H_{10}O$	169.0648	0.9	141.0698	0.4	6.23
2	Alachlor	$C_{14}H_{20}CINO_2$	188.1072	1.3	160.1122	0.5	9.32
	Aldrin	$C_{12}H_8Cl_6$	262.8565	0.4	292.9268	0.1	9.99
	Anthraquinone	$C_{14}H_8O_2$	208.0518	1.2	180.0569	0.1	9.99
	Azinphos-ethyl	$C_{12}H_{16}N_3O_3PS_2$	132.0444	0.5	104.0494	0.9	15.27
	Azinphos-methyl	$C_{10}H_{12}N_3O_3PS_2$	132.0444	0.2	104.0494	0.4	14.66
	Bifenthrin	$C_{23}H_{22}ClF_3O_2$	181.1011	0.3	166.0777	0.5	13.96
	Bromophos-ethyl	$C_{10}H_{12}BrCl_2O_3PS$	302.8463	0.3	358.9089	0.3	11.08
)	Bromophos-methyl	C ₈ H ₈ BrCl ₂ O ₃ PS	330.8779	0.5	124.9823	0.1	10.34
0	Butralin	$C_{14}H_{21}N_3O_4$	266.1136	0.0	277.1422	0.7	10.28
1	Carbophenothion	$C_{11}H_{16}ClO_2PS_3$	156.9873	1.0	199.0010	1.0	12.88
2	Chinomethionat	$C_{10}H_6N_2OS_2$	205.9972	1.2	233.9921	0.8	11.08
3	Chlormephos	$C_5H_{12}ClO_2PS_2$	121.0412	0.6	96.9507	1.0	5.81
4	Chlorfenson	$C_{12}H_8Cl_2O_3S$	174.9615	1.3	139.0055	0.2	11.43
5	Chlorobenzilate	$C_{12}H_8C_{12}O_3$ $C_{16}H_{14}Cl_2O_3$	138.9945	0.2	251.0025	0.2	12.24
6	Chlorthal-dimethyl	$C_{10}H_{14}C_{12}O_{3}$ $C_{10}H_{6}Cl_{4}O_{4}$	300.8802	0.1	331.8987	0.4	10.11
7	Chlorothalonil	C_{10} I_{6} C_{14} C_{4} C_{8} C_{14} N_{2}	265.8778	0.1	228.9121	0.3	8.67
8	Chlorpropham	$C_{8}C_{14}V_{2}$ $C_{10}H_{12}CINO_{2}$	171.0081	0.7	127.0184	1.1	7.19
9	Chlorpyriphos-ethyl	$C_9H_{11}Cl_3NO_3PS$	196.9196	0.7	313.9569	0.7	10.14
20	Chlorpyriphos-methyl	C ₇ H ₇ Cl ₃ NO ₃ PS	285.9259	0.7	124.9823	1.3	9.21
21			285.9259	0.3		0.8	15.92
22	Coumaphos DDD (2,4')	C ₁₄ H ₁₆ ClO ₅ PS C ₁₄ H ₁₀ Cl ₄	225.9830	0.5	362.0139 165.0700	1.1	13.92
3						0.5	
	DDE (2,4')	$C_{14}H_8Cl_4$	245.9997	0.6	317.9344		11.13
4	DDE (4,4')	C ₁₄ H ₈ Cl ₄	245.9997	0.8	317.9344	0.4	11.68
25	Deltamethrin	$C_{22}H_{19}Br_2NO_3$	181.0647	0.5	252.9046	0.1	18.18
6	Demeton-S-methyl	$C_6H_{15}O_3PS_2$	141.9848	1.2	169.0082	0.3	7.01
7	Diazinon	$C_{12}H_{21}N_2O_3PS$	179.1179	0.8	199.0631	0.4	8.35
8	Dichlobenil	C ₇ H ₃ Cl ₂ N	170.9637	0.2	100.0182	0.4	5.34
9	Dichlofenthion	$C_{10}H_{13}C_{12}O_3PS$	222.9382	1.1	279.0008	1.2	9.03
0	Dichlorvos	C ₄ H ₇ Cl ₂ O ₄ P	184.9765	0.7	109.0049	0.1	4.75
1	Dicloran	$C_6H_4Cl_2N_2O_2$	205.9644	0.4	175.9664	0.2	7.88
32	Dimethoate	$C_5H_{12}NO_3PS_2$	124.9822	0.5	142.9822	0.6	7.87
33	Diphenylamine	$C_{12}H_{11}N$	169.0884	0.7	154.0651	0.7	7.05
4	Disulfoton	$C_8H_{19}O_2PS_3$	141.9672	0.5	153.0135	0.7	8.51
5	Endosulfan sulfate	$C_9H_6Cl_6O_4S$	271.8097	0.4	236.8408	0.4	13.08
36	Endrin aldehyde	$C_{12}H_8Cl_6O$	249.8487	0.5	344.8983	1.1	12.71
37	Ethion	$C_9H_{22}O_4P_2S_4$	230.9731	0.9	153.0133	0.5	12.48
8	Ethoprophos	$C_8H_{19}O_2PS_2$	157.9619	0.4	138.9977	0.6	7.09
9	Etridiazole	$C_5H_5Cl_3N_2OS$	210.9494	0.6	182.9181	0.4	5.92
10	Fenamiphos	$C_{13}H_{22}NO_3PS$	303.1053	0.1	260.0506	0.1	11.41
1	Fenchlorphos	$C_8H_8Cl_3O_3PS$	284.9303	0.5	269.9068	0.4	9.45
2	Fenchlorphos-oxon	$C_8H_8Cl_3O_4P$	268.9532	0.6	166.9216	0.4	8.91
3	Fenitrothion	$C_9H_{12}NO_5PS$	260.0142	0.1	277.0169	0.1	9.65
4	Fenpropathrin	$C_{22}H_{23}NO_3$	181.0647	0.2	265.0734	0.8	14.11
5	Fenson	$C_{12}H_9ClO_3S$	141.0004	0.8	267.9957	0.1	10.26
6	Fludioxonil	$C_{12}H_6F_2N_2O_2$	248.0391	1.2	126.0361	0.1	11.61
7	Fluorochloridone	$C_{12}H_{10}Cl_2F_3NO$	187.0238	1.0	174.0524	0.2	10.19
8	Formothion	$C_6H_{12}NO_4PS_2$	124.9826	0.8	142.9390	0.6	8.84
9	Haloxyfop-methyl	$C_{16}H_{13}ClF_3NO_4$	316.0337	1.3	375.0469	1.1	10.99
0	HCH (a)	$C_6H_6Cl_6$	180.9374	0.9	218.9113	0.8	7.72
1	НСН (β)	$C_6H_6Cl_6$	180.9374	1.2	218.9113	0.1	8.15
52	HCH (γ)	$C_6H_6Cl_6$	180.9374	0.0	218.9113	0.6	8.23
33	$HCH(\delta)$	$C_6H_6Cl_6$	180.9374	0.6	218.9113	0.5	8.62
54	HCH (ε)	$C_6H_6Cl_6$	180.9374	0.4	218.9113	0.3	8.78

Chapitre IV : Evaluation et comparaison des performances GC-HRMS (Q-Orbitrap) et GC-MS/MS (triple quadripôle) pour l'analyse de pesticides dans les matrices alimentaires complexes

55	Uantachlar	$C_{10}H_5Cl_7$	271.8098	0.8	236.8408	0.2	9.39
56	Heptachlor Heptenophos	C_{10} H_{12} C_{10} H_{12} C_{10} H_{12} C_{10} H_{12} H_{12} H_{12} H_{12} H_{12} H_{12} H_{13} H_{14} H_{15} H_{1	124.0075	0.8	230.8408	1.3	9.39 6.68
57	Hexachlorobenzene	C ₆ Cl ₆	283.8098	0.3	141.9372	0.1	7.86
58	Isazophos	$C_9H_{17}CIN_3O_3PS$	162.0427	0.0	256.8784	0.1	8.58
59	Isodrin	C ₁₂ H ₈ Cl ₆	192.9372	0.4	262.8564	1.3	10.51
60	Malaoxon	$C_{10}H_{19}O_7PS$	127.0156	1.2	194.9875	0.1	9.14
61	Malathion	$C_{10}H_{19}O_6PS_2$	124.9821	0.2	173.0807	1.0	9.78
62	Mecarbam	$C_{10}H_{20}NO_5PS_2$	131.0036	0.1	160.0426	0.3	10.72
63	Metalaxyl	$C_{10}H_{20}NO_{3}IS_{2}$ $C_{15}H_{21}NO_{4}$	206.1177	0.7	160.1122	0.7	9.39
64	Methacriphos	$C_7H_{13}O_5PS$	207.9949	1.1	179.9999	0.9	6.13
65	Methidathion	$C_6H_{11}N_2O_4PS_3$	145.0066	0.0	85.0396	0.3	11.05
66	Methoxychlor	$C_{16}H_{15}Cl_3O_2$	227.1066	0.8	212.0831	0.6	14.08
67	Mevinphos	$C_7H_{13}O_6P$	127.0155	0.7	164.0233	0.1	5.68
68	Mirex	$C_{10}Cl_{12}$	271.8097	0.2	236.8408	0.2	14.91
69	Monochrotophos	$C_7H_{14}NO_5P$	127.0153	1.1	164.0231	0.1	7.39
70	<i>N</i> -Desmethyl-	$C_9H_{11}C_{12}O_3PS$	127.0153	0.4	164.0231	0.3	9.31
	pirimiphos-methyl	, 11 12 3					
71	Nitrofen	$C_{12}H_7Cl_2NO_3$	202.0179	1.0	282.9798	0.8	12.07
72	Paraoxon-methyl	$C_8H_{10}NO_6P$	230.0213	0.6	200.0233	0.1	8.49
73	Parathion-ethyl	$C_{10}H_{14}NO_5PS$	291.0326	0.2	109.0050	0.2	10.03
74	Parathion-methyl	$C_8H_{10}NO_5PS$	263.0011	0.9	124.9821	0.8	9.22
75	PCB 118	$C_{12}H_5Cl_5$	325.8798	0.4	253.9451	0.7	12.29
76	PCB 138	$C_{12}H_4Cl_6$	359.8406	0.9	289.9030	1.3	13.17
77	PCB 153	$C_{12}H_4Cl_6$	359.8406	0.0	289.9030	0.4	12.68
78	PCB 28	$C_{12}H_7Cl_3$.	255.9607	0.1	186.0231	0.1	9.11
79	PCB 52	$C_{12}H_6Cl_4$	219.9841	0.3	289.9218	0.3	9.67
80	Pendimethalin	$C_{13}H_{19}N_3O_4$	252.0979	1.1	208.0716	0.3	10.58
81	Pentachloroanisole	$C_7H_3Cl_5O$	264.8595	0.9	191.9169	0.5	7.88
82	Pentachlorobenzene	C_6HCl_5	249.8487	0.0	214.8797	0.1	6.44
83	Phosalone	$C_{12}H_{15}CINO_4PS_2$	183.0003	0.1	121.0414	0.6	14.64
84	Phosmet	$C_{11}H_{12}NO_4PS_2$	160.0393	1.1	133.0285	0.5	13.96
85	Phosphamidon	$C_{10}H_{19}CINO_5P$	127.0154	0.6	264.0996	1.3	8.9
86	Pirimiphos-ethyl	$C_{13}H_{24}N_3O_3PS$	168.0588	1.2	318.1034	0.3	10.38
87	Procymidone	$C_{13}H_{11}Cl_2NO_2$	283.0161	0.8	255.0161	0.4	10.91
88 89	Profluralin	$C_{14}H_{16}F_3N_3O_4$	318.0696	0.1 0.0	347.1087	0.1 0.3	8.18
89 90	Propham Prothiofos	$C_{10}H_{13}NO_2$	137.0471	0.0	179.0941	0.3	5.86
90 91		$C_{11}H_{15}Cl_2O_2PS_2$	308.9934 157.0759	0.2	161.9633 190.0558	0.2	11.55 10.79
91	Quinalphos	$C_{12}H_{15}N_2O_3PS$ $C_6C_{15}NO_2$	236.8408			0.8	8.31
93	Quintozene Sulfotep	$C_{8}H_{20}O_{5}P_{2}S_{2}$	237.9294	1.3 0.5	213.8718 322.0222	0.2	7.44
94	Tecnazene	C ₆ HCl ₄ NO ₂	202.8798	0.6	260.8729	0.2	6.97
9 5	Tetrachlorvinphos	C ₁₀ H ₉ Cl ₄ O ₄ P	328.9298	0.0	239.8876	0.2	11.21
96	Tetradifon	$C_{12}H_6Cl_4O_2S$	158.9666	0.9	226.8886	0.3	14.47
9 7	Tolclofos-methyl	$C_9H_{11}Cl_2O_3PS$	264.9849	0.3	249.9614	0.2	9.29
98	Triazophos	$C_{12}H_{16}N_3O_3PS$	162.0658	0.5	172.0869	0.7	12.71
99	Trifluralin	$C_{13}H_{16}F_3N_3O_4$	264.0223	1.4	306.0691	0.4	7.32
100	Vinclozolin	$C_{12}H_9Cl_2NO_3$	178.0418	0.3	212.0028	0.4	9.18
100	, 111010201111	0121190121103	1/0.0710	0.5	212.0020	0.7	7.10

CONCLUSION

Une comparaison des performances analytiques d'une méthode GC-triple quadripôle en mode « SRM » et une méthode GC-Q-Orbitrap a été réalisée pour la quantification de 100 pesticides et contaminants dans diverses matrices agroalimentaires complexes. La méthode GC-Q-Orbitrap, développée avec une résolution de 60000 FWHM à m/z 200 en mode « full scan », s'est avérée être le meilleur compromis.

La démarche expérimentale pour la mise au point des paramètres de détection des deux méthodes a été comparée. Les ions de quantification et de confirmation déterminés en GC-Q-Orbitrap ont été choisis grâce à une base de données Orbitrap Thermofisher. En revanche, l'optimisation des transitions « SRM » en GC-triple quadripôle, a nécessité l'injection des solutions individuelles de chaque molécule, et a été plus chronophage.

Les limites de détection des pesticides et contaminants ont été déterminées en injectant des étalons préparés dans un mélange hexane/acétone 70/30 (v/v). Les valeurs des LOD obtenues avec la méthode GC-Q-Orbitrap et la méthode GC-triple quadripôle sont toutes inférieures à 0,4 µg/L et à 2 µg/L respectivement. Les pics chromatographiques correspondant aux valeurs des LOD des molécules analysées en GC-Q-Orbitrap présentent des valeurs de rapport Signal/Bruit supérieures à 100 (bruit de fond quasi-inexistant), tandis que celles obtenues en GC-triple quadripôle sont comprises entre 3 et 10.

En ce qui concerne les gammes d'étalonnage, la réponse des pesticides et contaminants analysés en GC-triple quadripôle est quadratique avec une pondération de 1/x tandis que celle des pesticides et contaminants analysés en GC-Q-Orbitrap est linéaire. Cependant, une saturation du signal pour le point de gamme à 200 μg/L a été observée pour la majorité des pesticides analysés en GC-Q-Orbitrap. Ainsi, cette dernière présente une gamme dynamique plus petite que la méthode GC-triple-quadripôle.

L'injection d'extraits de blé non purifiés dopés à 10 µg/kg, a prouvé le potentiel de la méthode GC-Q-Orbitrap à réaliser un screening de pesticides et contaminants dans les matrices alimentaires complexes.

En termes de résultats quantitatifs, les taux de récupération de plus de 85% des pesticides et contaminants sont compris entre 70 et 120% avec la méthode GC-Q-Orbitrap alors qu'une

surestimation de ceux obtenus pour certains pesticides analysés en GC-triple quadripôle est observée. Ceci pourrait s'expliquer par une meilleure sélectivité de l'Orbitrap.

D'importants effets matrice négatifs ont été observés avec la méthode GC-Q-Orbitrap pour quelques pesticides. Ce phénomène peut être expliqué par la compétition entre les ions des pesticides et contaminants et les ions issus de la matrice lors de leur transfert dans le C-trap. L'utilisation d'une approche SIM pourrait diminuer ces effets matrice. Cependant, cette approche ciblée limiterait le nombre de composés analysables et la possibilité de retraiter les données d'analyse pour détecter la présence d'autres pesticides et contaminants dans les extraits injectés après acquisition.

CONCLUSION GENERALE ET PERSPECTIVES

Afin de protéger la santé des consommateurs, la législation envers les pesticides autorisés et leurs quantités résiduelles admissibles dans les matrices agroalimentaires, est en constante évolution. Les valeurs des LMR de ces substances sont de plus en plus strictes pour un plus grand nombre de composés. Afin de répondre à toutes ces exigences, ces travaux se sont focalisés sur l'identification et la quantification de pesticides et contaminants dans diverses matrices agroalimentaires par différentes méthodes analytiques et ont été réalisés en trois grandes parties.

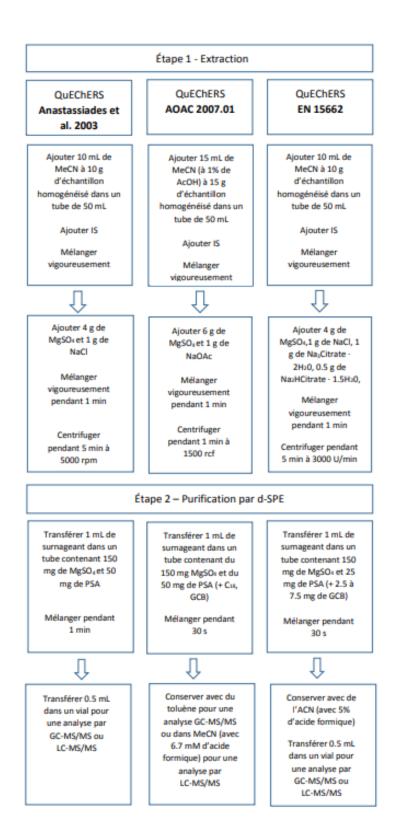
D'abord, deux méthodes d'analyse en GC-MS/MS d'une durée de 20 min et en HPLC-MS/MS d'une durée de 12 min, ont été mises au point pour l'analyse de plus de 220 et 350 pesticides et contaminants dans diverses céréales, fruits et légumes, respectivement. Pour cela, une optimisation des paramètres « SRM » de chaque molécule a été effectuée puis des tests d'extraction QuEChERS ont été réalisés sur ces matrices. Les taux de récupération de ces pesticides et contaminants ont été évalués grâce à des dopages de matrices issues de l'agriculture biologique à 10 μg/kg. Au total, une liste d'environ 600 pesticides et contaminants qui peuvent être analysés et quantifiés avec succès grâce à ces deux méthodes et deux autres méthodes spécifiques non présentées dans ce manuscrit, est actuellement proposée aux clients SGS dans des matrices agroalimentaires variées. Les perspectives de ce travail seraient de transposer la méthode HPLC-MS/MS vers une méthode UHPLC-MS/MS qui permettrait de gagner un temps précieux pour les unités d'analyses de pesticides dans les laboratoires de routine.

Néanmoins certaines matrices agroalimentaires, riches en lipides ou sèches et riches en molécules interférentes comme les thés ou les épices, présentent des spécificités qui ont nécessité d'adapter la méthode QuEChERS afin d'améliorer les taux de récupération des pesticides et de limiter les effets matrice pour une quantification plus juste et plus précise.

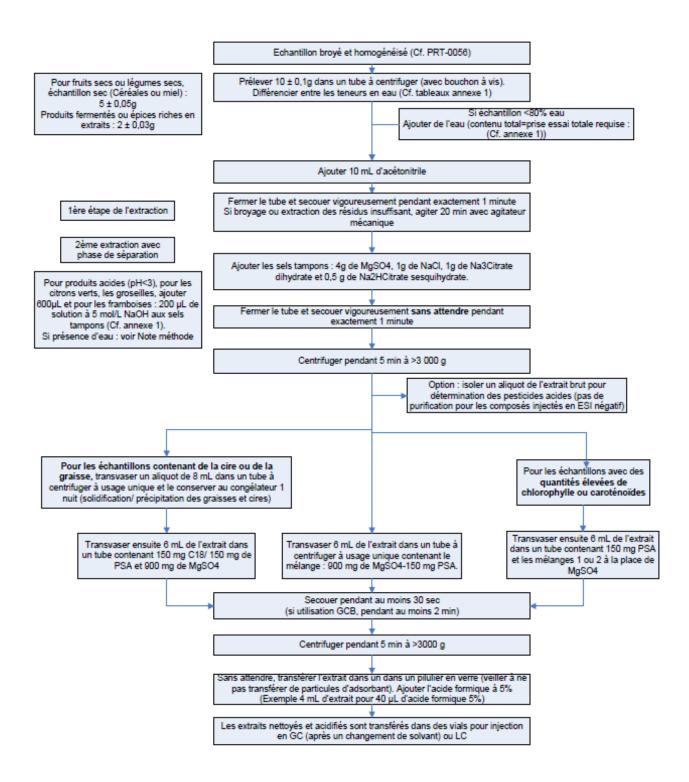
Ainsi, pour améliorer les performances de la méthode QuEChERS pour les matrices riches en lipides, telles que les graines de colza, il est apparu intéressant de tester plusieurs supports solides de purification d-SPE (EMR-Lipid, Z-Sep et Z-Sep $^+$) innovants et procédé comme la congélation de l'extrait. Pour cette étude, des graines de colza issues de l'agriculture biologique ont été dopées avec un mélange contenant les molécules étudiées, à deux niveaux de concentration : 10 μ g/kg et 50 μ g/kg. Les résultats obtenus montrent que pour les extraits non purifiés, une augmentation significative du bruit de fond a été observée lors de leur

injection qui peut être attribuée à la présence de nombreux interférents co-extraits. La purification avec l'adsorbant EMR-Lipid a donné les meilleurs résultats en termes de taux de récupération, d'effets matrice et de limites de quantification. De plus, la congélation des extraits de graines de colza après l'étape d'extraction QuEChERS, a amélioré significativement les taux de récupération ainsi que les effets matrice. Il apparait donc que la combinaison de l'utilisation d'un support EMR-Lipid et la congélation de l'extraction pourrait s'avérer très efficace plus limiter les effets matrice et améliorer les taux de récupération., Néanmoins, d'ores et déjà, une méthode HPLC-MS/MS en mode « SRM » utilisant une méthode QuEChERS avec une extraction avec l'acétonitrile et une purification d-SPE avec le support solide EMR-Lipid permet l'identification et la quantification de 178 pesticides et contaminants dans les graines de colza avec des LOQ inférieures à 10 μg/kg,.

Ces dernières années, la GC-HRMS (TOF et Orbitrap) est venue concurrencer la GC-MS/MS (triple quadripôle) en permettant notamment une analyse en approche non-ciblée des composés d'intérêts. La dernière partie de ces travaux de thèse a été dédiée à l'évaluation de l'apport de la GC-HRMS dans le cas spécifique de l'analyse de pesticides et contaminants dans des matrices agroalimentaires complexes. Ainsi, les performances analytiques d'une méthode GC-Q-Orbitrap en mode « full scan » et une méthode GC-triple quadripôle en mode « SRM », ont été comparées pour l'analyse d'une centaine de pesticides et contaminants dans les matrices agroalimentaires (blé, graines de colza, thé et cumin).


D'abord, la résolution fixée à 60000 FWHM à *m/z* 200 en mode « full scan », s'est avérée être le meilleur compromis pour obtenir un nombre de points par pic suffisant. La mise au point des conditions expérimentales s'est avérée beaucoup plus rapide pour la méthode GC-Q-Orbitrap. En termes de sensibilité, les valeurs obtenues avec la méthode GC-Q-Orbitrap et la méthode GC-triple quadripôle sont toutes inférieures à 0,4 μg/L et à 2 μg/L respectivement. Cependant, la gamme dynamique de la méthode GC-Q-Orbitrap est moins étendue que celle de la méthode GC-triple quadripôle. Les taux de récupération de plus de 85% des pesticides et contaminants sont compris entre 70 et 120% avec la méthode GC-Q-Orbitrap alors qu'une surestimation de ceux obtenus pour les pesticides analysés en GC-triple quadripôle est observée. Cependant, d'importants effets matrice négatifs ont été observés avec la méthode GC-Q-Orbitrap pour quelques pesticides. Ce phénomène peut être expliqué par la compétition entre les ions des pesticides et contaminants et les ions issus de la matrice lors de leur

transfert dans le C-trap. Enfin, l'injection d'extraits de blé non purifiés dopés à $10 \mu g/kg$, a prouvé le potentiel de la méthode GC-Q-Orbitrap, à réaliser un screening de pesticides et contaminants dans les matrices alimentaires complexes. L'injection des extraits de cumin, thé et graines de colza dilués, a démontré le potentiel de la GC-HRMS pour réaliser des dépistages rapides de l'absence ou de la présence des pesticides. Dans un deuxième temps, seuls les extraits 'positifs' seraient purifiés pour réaliser une analyse quantitative.


Les perspectives de ce travail seraient de développer une méthode GC×GC-HRMS pour limiter la saturation de la C-trap et les effets matrice négatifs. Cela nécessitera néanmoins de diminuer la résolution de l'analyseur de masse et générera un volume de données très élevé. De plus, les logiciels de retraitement de chromatogrammes bidimensionnels sont peu adaptés à des analyses de routines.

ANNEXES

Annexe 1 : La méthode normée NF EN 15662, La méthode normée américaine AOAC 2007.01 ainsi que la méthode origale

Annexe 2: Méthode interne MO-0336

Annexe 3 : Méthode finale des 600 pesticides et contaminants proposée par SGS

Liste globale des 600 pesticides et contaminants proposée par SGS France

I. Molécules analysées en HPLC-MS/MS

Matrices : Céréales et dérivés/ fruits et légumes riches en eau

- Peser 5 g (+/- 0,05 g) d'échantillon (homogénéiser avant) dans un Chromapack de 50 mL (céréales)
- Peser 10 g (+/- 0,10 g) d'échantillon (homogénéiser avant) dans un Chromapack de 50 mL (fruits et légumes)
- Ajouter 10 mL d'eau pour les céréales et les matrices ayant moins de 80 % d'eau (cf. norme 15662)
- Ajouter 10 mL d'acétonitrile
- Agiter manuellement et vigoureusement 1 min (si besoin 20 min d'agitation mécanique)
- Ajouter le mélange de sels 1 et agiter 1 min
- Centrifuger 5 min à 4700 tr/min à 20°C
- Prélever 1 mL de l'extrait non purifié pour l'analyse des Phenoxyacides
- Prélever environ 6 mL de l'extrait non purifié puis le verser dans le mélange de sels de purification, puis agiter 1 min
- Centrifuger 5 min à 4700 tr/min à 20°C
- Prélever 4 mL d'extrait, puis acidifier avec 40 μL d'acide formique 5% (ACN)

Dopage:

D1 HPLC total: Ajout de 250 μL du mélange total de pesticides à 0,2 mg/L

D2 phenoxyacides : Ajout de 50 μL du point à 1 mg/L (dopé à 0,01 mg/kg)

Deux injections:

- Mix HPLC final (364 molécules) : 100 μ L d'atrazine d5 (1 mg/L) + 900 μ L de la gamme ou de l'extrait (purifié)
- Mix Phenoxyacides (16 molécules): 1 mL de la gamme ou d'extrait (non purifié)

II. Molécules analysées en GC-MS/MS

Matrices : Céréales et dérivés/ fruits et légumes riches en eau

- Peser 5 g (+/- 0,05 g) d'échantillon (homogénéiser avant) dans un Chromapack de 50 mL (céréales
- Peser **10** g (+/- **0,10** g) d'échantillon (homogénéiser avant) dans un Chromapack de 50 mL (fruits et légumes)
- _ Ajouter 10 mL d'eau
- Ajouter 10 mL d'acétonitrile
- Agiter vigoureusement 1 min (si besoin 20 min d'agitation mécanique)
- Ajouter le mélange de sels 1 et agiter 1 min
- Centrifuger 5 min à 4700 tr/min à 20°C
- Ajouter le mélange de sels de purification et agiter 1 min
- Centrifuger 5 min à 4700 tr/min à 20°C
- Prélever 4 mL d'extrait, puis acidifier avec 40 μL d'acide formique 5% (ACN)
- Prélever 1 mL d'extrait, évaporer puis reprendre dans 1 mL d'hexane/acétone 70/30 (v/v)

Dopage:

Dopage 1:

D GC total: Ajout de 250 μL du mélange total à 0,2 mg/L (dopé à 0,01 mg/kg)

Dopage 2:

Mix Oeko-Tex/Captafol /Dicofol (4,4')

- -25 μL du mix Oeko-Tex à 2 mg/L (dopé à 0,01 mg/kg)
- -100 µL du captafol à 100 mg/L (dopé à 2 mg/kg)
- -100 μL du dicofol (4,4') à 100 mg/L (dopé à 2 mg/kg)

Deux injections:

- Mix GC total : 20 μL Mix EI marqués (0,2mg/L) + 20 μL huile d'olive + 160 μL (gamme/extrait).
- Pesticides Oeko-Tex:
- 20 μL lindane C₁₃ + 160 μL de gamme ou d'extrait

Liste des molécules analysées en HPLC :

Molécules	Numéro de CAS	LOQ (μg/kg)	Molécules	Numéro de CAS	LOQ (µg/kg)	Molécules	Numéro de CAS	LOQ (µg/kg)
6-benzylaminopurine	1214-39-7	10	Dipropetryn	4147-51-7	10	Metsulfuron-méthyl	74223-64-6	10
Acephate	30650-19-1	10	Disulfoton	298-04-4	10	Mevinphos	7786-34-7	10
Acétamipride	135410-20-7	10	Ditalimphos	5131-24-8	10	Molinate	2212-67-1	10
Acetochlor	34256-82-1	10	Diuron	330-54-1	10	Monocrotophos	6923-22-4	10
Acibenzolar-S-méthyle	135158-54-2	10	Dodémorphe	1593-77-7	10	Monolinuron	1746-81-2	10
Aclonifen	74070-46-5	10	Emamectin Benzoate a	155569-91-8	10	Myclobutanil	88671-89-0	10
Alachlore	15972-60-8	10	Emamectin Benzoate b	155569-91-8	10	Napropamide	15299-99-7	10
Aldicarbe	116-06-3	10	EPN	2104-64-5	10	Nicosulfuron	111991-09-4	10
Aldicarbe-Sulfone	1646-88-4	10	Epoxiconazole	133855-98-8	10	Nitenpyram	150824-47-8	10
Aldicarbe-sulfoxide	1646-87-3	10	EPTC (S-ethyl-dipropylthiocarbamate)	759-94-4	10	Norflurazon	27314-13-2	10
Allethrin	584-79-2	10	Etaconazole	60207-93-4	10	Novaluron	116714-46-6	10
Ametocradin	865318-97-4	10	Ethiofencarb	29973-13-5	10	Nuarimol	63284-71-9	10
Amétryne	834-12-8	10	Ethion	563-12-2	10	Ofurace	58810-48-3	10
Aminopyralid	150114-71-9	500	Ethiprole	181587-01-9	10	Ométhoate	1113-02-6	10
Amisulbrom	348635-87-0	10	Ethirimol	23947-60-6	10	Oxadiargyl	39807-15-3	10
Amitraze	33089-61-1	10	Ethofumésate	26225-79-6	10	Oxadixyl	77732-09-3	10
Anilazine	101-05-3	10	Ethoprophos	13194-48-4	10	Oxamyl	23135-22-0	10
Anilofos	64249-01-0	10	Ethylène thio-urée (ETU)	96-45-7	10	Oxasulfuron	144651-06-9	10
Asulam	3337-71-1	10	Etofenprox	80844-07-1	10	Oxycarboxine	5259-88-1	10
Atraton	1610-17-9	10	Etoxazole	153233-91-1	10	Paclobutrazol	76738-62-0	10

Atrazine	1912-24-9	10	Etrimphos	38260-54-7	10	Paraoxon	311-45-5	10
Azaconazole	60207-31-0	10	Famoxadone	131807-57-3	10	Paraoxon-méthyl	950-35-6	10
Azimsulfuron	120162-55-2	10	Fenamidone	161326-34-7	10	Penconazole	66246-88-6	10
Azinphos-éthyl	2642-71-9	10	Fenamiphos	244-848-1	10	Pencycuron	66063-05-6	10
Azinphos-méthyl	86-50-0	10	Fénarimol	60168-88-9	10	Penthiopyrad	183675-82-3	10
Aziprotryne	4658-28-0	10	Fenazaquin	120928-09-8	10	Pethoxamid	106700-29-2	10
Azoxystrobine	131860-33-8	10	Fenbuconazole	114369-43-6	10	Phentoate	2597-03 7	10
Barbane	101-27-9	10	Fenhexamid	126833-17-8	10	Phosalone	2310-17-0	10
Bénalaxyl	71626-11-4	10	Fenobucarbe	3766-81-2	10	Phosmet	732-11-6	10
Bendiocarbe	22781-23-3	10	Fénoxycarbe	72490-01-8	10	Phosphamidon	13171-21-6	10
Bénodanil	15310-01-7	10	Fenpiclonil	74738-17-3	10	Phoxime	14816-18-3	10
Benoxacor	98730-04-2	10	Fenpropidine	67306-00-7	10	Picolinafen	137641-05-5	10
Benzoximate	29104-30-1	10	Fenpropimorphe	67564-91-4	10	Picoxystrobine	117428-22-5	10
Benzoylprop-éthyl	22212-55-1	10	Fenpyroximate	134098-61-6	10	Pinoxaden	243973-20-8	10
Bifénox	42576-02-3	10	Fensulfothion	115-90-2	10	Piperonyl Butoxide	51-03-6	10
Bitertanol	55179-31-2	10	Fensulfothion-Oxon	6552-21-2	10	Pirimicarbe	23103-98-2	10
Bixafène	581809-46-3	10	Fensulfothion-Oxon-Sulfone	6132-17-8	10	Pirimiphos éthyle	23505-41-1	10
Boscalid	188425-85-6	10	Fensulfothion-Sulfone	14255-72-2	10	Pirimiphos méthyl	29232-93-7	10
Brodifacoum	56073-10-0	10	Fenthion	55-38-9	10	Prochloraze	67747-09-5	10
Bromacil	314-40-9	10	Fenthion sulfone	3761-42-0	10	Profénofos	41198-08-7	10
Bromoxynil	1689-84-5	10	Fenthion sulfoxide	3761-41-9	10	Promécarbe	2631-37-0	10
Bromuconazole	116255-48-2	10	Fenthion-Oxon	6552 12 1	10	Prometon	1610-18-0	10
Bupirimate	41483-43-6	10	Fenthion-Oxon-Sulfone	14086-35-2	10	Prométryne	7287-19-6	10
Buprofezine	69327-76-0	10	Fenthion-Oxon-Sulfoxide	6552-13-2	10	Propamocarb	24579-73-5	10

Butocarboxim	34681-10-2	10	Fénuron	101-42-8	10	Propaphos	7292-16-2	10
Buturon	3766-60-7	10	Flampropisopropyl	52756-22-6	10	Propaquizafop	111479-05-1	10
Butylate	2008-41-5	10	Flazasulfuron	104040-78-0	10	Propargite	2312-35-8	10
Carbaryl	63-25-2	10	Florasulam	145701-23-1	10	Propazine	139-40-2	10
Carbendazime	10605-21-7	10	Flubendiamide	272451-65-7	10	Propiconazole	60207-90-1	10
Carbétamide	16118-49-3	10	Flucycloxuron	94050-52-9	10	Propoxur	114-26-1	10
Carbofuran	1563-66-2	10	Flufénacet	142459-58-3	10	Propyzamide	23950-58-5	10
Carbofuran-3-Hydroxy	16655-82-6	10	Flufénoxuron	101463-69-8	10	Proquinazid	189278-12-4	10
Carbophenothion	786-19-6	10	Flumetsulam	98967-40-9	10	Prosulfocarb	52888-80-9	10
Carboxine	5234-68-4	10	Flumioxazine	103361-09-7	10	Prosulfuron	94125-34-5	10
Carpropamid	104030-54-8	10	Fluopicolide	239110-15-7	10	Prothiofos	34643-46-4	10
Chlorobromuron	13360-45-7	10	Fluopyram	658066-35-4	10	Pymetrozine	123312-89-0	10
Chlorbufame	1967-16-4	10	Fluoxastrobin	361377-29-9	10	Pyraclostrobine	175013-18-0	10
Chlordécone	143-50-0	10	Fluquinconazole	136426-54-5	10	Pyrazophos	13457-18-6	10
Chlorfenvinphos	470-90-6	10	Flurochloridon	61213-25-0	10	Pyridaben	96489-71-3	10
Chlorfluazuron	71422-67-8	10	Fluroxypyr	69377-81-7	10	pyridafol	40020-01-7	10
Chloridazone	1698-60-8	10	Flurprimidol	56425-91-3	10	Pyridalyl	79101-81-6	10
Chlorimuron-éthyl	90982-32-4	10	Flurtamone	96525-23-4	10	Pyridaphenthion	119-12-0	10
Chlorobenzuron	57160-47-1	10	Flusilazole	85509-19-9	10	Pyridate	55512-33-9	10
Chloroxuron	1982-47-4	10	Flutriafol	76674-21-0	10	Pyrifenox	88283-41-4	10
Chlorpyrifos-éthyl	2921-88-2	10	Fluxapyroxad	907204-31-3	10	Pyrimethanil	53112-28-0	10
Chlorpyrifos méthyl	5598-13-0	10	Fomesafen	72178-02-0	10	Pyriproxyfen	95737-68-1	10
Chlorsulfuron	64902-72-3	10	Fonofos	944-22-9	10	Quinalphos	13593-03-8	10
Chlorthion	500-28-7	10	Foramsulfuron	173159-57-4	10	Quinchlorac	84087-01-4	10

Chlorthiophos	60238-56-4	10	Forchlofenuron	68157-60-8	10	Quinoclamine	2797-51-5	10
Chlortoluron	15545-48-9	10	Fuberidazole	3878-19-1	10	Quinoxyfen	124495-18-7	10
Chromafenozide	143807-66-3	10	Furmecyclox	60568-05-0	10	Rimsulfuron	122931-48-0	10
Cinosulfuron	94593-91-6	10	Haloxyfop-Methyl	69806-40-2	10	Saflufenacil	372137-35-4	10
Clethodim	99129-21-2	10	Heptenophos	23560-59-0	10	Simazine	122-34-9	10
Climbazole	38083-17-9	10	Hexaconazole	79983-71-4	10	Spinetoram	187166-15-0	10
Clodinafop Propargyl Ester	105512-06-9	10	Hexaflumuron	86479-06-3	10	Spinosad	131929-60-7	10
Clofentezine	74115-24-5	10	Hexazinone	51235-04-2	10	Spirodiclofen	48477-71-8	10
Clopyralid	702-17-6	500	Hexythiazox	78587-05-0	10	Spirotetramat	203313-25-1	10
Cloquintocet-Mexyl	99607-70-2	10	Imazalil	35554-44-0	10	Spiroxamine	203313-25-1	10
Clothianidin	210880-92-5	10	Imazamox	114311-32-9	10	Spriomesifen	400882-07-7	10
Coumaphos	56-72-4	10	Imazethapyr	81335-77-5	10	Sulfosulfuron	141776-32-1	10
Coumatetralyl	5836-29-3	10	Imazosulfuron	122548-33-8	10	Sulfotep	3689-24-5	10
Crufomate	299-86-5	10	Imibenconazole	86598-92-7	10	T (2,4,5)	93-76-5	10
Cyanazine	21725-46-2	10	Imidaclopride	138261-41-3	10	Tebuconazole	107534-96-3	10
Cyanofenphos	13067-93-1	10	Indoxacarb	173584-44-6	10	Tebufenozide	112410-23-8	10
Cyantraniliprole	736994-63-1	10	loxynil	1689-83-4	10	Tebufenpyrad	119168-77-3	10
Cyazofamid	120116-88-3	10	Ipconazole	125225-28-7	10	Tebuthiuron	34014-18-1	10
Cycloxydim	101205-02-1	10	Iprobenfos	26087-47-8	10	Teflubenzuron	83121-18-0	10
Cyflumetofen	400882-07-7	10	Iprovalicarb	140923-17-7	10	Tepraloxydim	149979-41-9	10
Cyhalofop-butyl	61676-87-7	10	Isocarbophos	24353-61-5	10	Terbacil	5902-51-2	10
Cymiazole	61676-87-7	10	Isofenphos	25311-71-1	10	Terbufos	13071-79-9	10
Cymoxanil	57966-95-7	10	Isofenphos Methyl	99675-03-3	10	Terbumeton	33693-04-8	10
Cyproconazol	94361-06-5	10	Isoprocarb	2631-40-5	10	Terbuthylazine	5915-41-3	10

Constant of	424552.64.2	10	learned area	24422 50 6	40	Tools to a	006 50 0	10
Cyprodinil	121552-61-2	10	Isoproturon	34123-59-6	10	Terbutryn	886-50-0	10
Cythioate	115-93-5	10	Isopyrazam	881685-58-1	10	Tetrachlorvinphos	22248-79-9	10
D (2,4-)	4-75-7	10	Isoxaben	82558-50-7	10	Tetraconazole	112281-77-3	10
Db (2,4)	94-82-6	10	Isoxaflutole	141112-29-0	10	Thiabendazole	148-79-8	10
Demeton-S-Methyl	919-86-8	10	Kresoxim Methyl	143390-89-0	10	Thiacloprid	111988-49-9	10
Demeton-S-Methyl Sulfone	17040-19-6	10	Linuron	330-55-2	10	Thiamethoxam	153719-23-4	10
Desmedipham	13684-56-5	10	Lufenuron	103055-07-8	10	Thidiazuron	51707-55-2	10
Desmethyl pirimicarb	30614-22-3	10	Malaoxon	1634-78-2	10	Thifensulfuron Methyl	79277-27-3	10
Desmetryn	38083-17-9	10	Malathion	121-75-5	10	Thiobencarb	8249-77-6	10
Diafenthiuron	80060-09-9	10	Mandipropamid	374726-62-2	10	Thiofanox	39196-18-4	10
Dialifos	10311-84-9	10	Мсра	94-74-6	10	Thiometon	640-15-3	10
Diallate	2303-16-4	10	Mcpb	94-81-5	10	Thiophanate Methyl	23564-05-8	10
Diazinon	333-41-5	10	Mecarbam	2595-54-2	10	Tolfenpyrad	129558-76-5	10
Dicamba	1918-00-9	10	Mecoprop	93-65-2	10	Tralkoxydim	87820-88-0	10
Dichlofenthion	97-17-6	10	Mefenacet	73250-68-7	10	Triadimefon	43121-43-3	10
Dichlorprop	120-36-5	10	Mepanipyrim	110235-47-7	10	Triadimenol	55219-65-3	10
Dichlorvos	62-73-7	10	Metaflumizone	139968-49-3	10	Triallate	2303-17-5	10
Diclobutrazole	78-34-2	10	Metalaxyl	57837-19-1	10	Triasulfuron	82097-50-5	10
Diclofop-methyl	51338-27-3	10	Metamitron	41394-05-2	10	Triazophos	24017-47-8	10
Dicrotophos	141-66-2	10	Metazachlor	67129-08-2	10	Triazoxid	72459-58-6	10
Diethofencarb	141-66-2	10	Methabenzthiazuron	18691-97-9	10	Triclopyr	55335-06-3	10
Difenoconazole	119446-68-3	10	Methamidophos	10265-92-6	10	Tricyclazole	41814-78-2	10
Difenoxurone	14214-32-5	10	Methidathion	950-37-8	10	Tridemorph	24602-86-6	10
Diflufenican	83164-33-4	10	Methiocarb	2032-65-7	10	Trietazine	1912-26-1	10

Dimethachlor	50563-36-5	10	Methiocarb sulfone	2179-25-1	10	Trifloxystrobine	141517-21-7	10
Dimethenamid	87674-68-8	10	Methomyl	16752-77-5	10	Trifloxysulfuron sodium	99119-58-9	10
Dimethoate	60-51-7	10	Methoprotryne	841-06-5	10	Triflumuron	64628-44-0	10
Dimethomorph	110488-70-5	10	Methoxyfenozide	161050-58-4	10	Triforine	26644-46-2	10
Dimoxystrobin	149961-52-4	10	Metobromuron	3060-89-7	10	Trimethacarb (2,3,5-)	2655-15-4	10
Diniconazole	83657-24-3	10	Metolachlor	51218-45-2	10	Triticonazole	131983-72-7	10
Dinoseb	88-85-7	10	Metosulam	139528-85-1	10	Vamidothion	2275-23-2	10
Dinotefuran	83657-24-3	10	Metrafenone	220899-03-6	10	Zoxamide	156052-68-5	10
Dioxathion	78-34-2	10	Metribuzin	21087-64-9	10			

Liste des molécules analysées en GC :

Molécules	Numéro de CAS	LOQ (μg/kg)	Molécules	Numéro de CAS	LOQ (µg/kg)	Molécules	Numéro de CAS	LOQ (μg/kg)
2,6-dichlorobenzamide	2008-58-4	10	Dicloran	99-30-9	10	Methacrifos	62610-77-9	10
3,5 Dichloroaniline	626-43-7	10	Dicofol	16606-46-9	2000	Methamidophos	10265-92-6	10
3,4 Dichloroaniline	95-76-1	10	Dicrotophos	141-66-2	10	Methidathion	950-37-8	10
4-Chloro-3-Methylphenol	59-50-7	10	Dieldrine	60-57-1	10	Methoxychlor	77-43-5	10
Acephate	30650-19-1	10	Dimethenamid	87674-68-8	10	Metolachlor	51218-45-2	10
Acetochlor	34256-82-1	10	Dimethoate	60-51-7	10	Mevinphos	7786-34-7	10
Acibenzolar-S-Methyl	135158-54-2	10	Diphenamid	957-51-7	10	Mirex	2385-85-5	10
Aclonifen	74070-46-5	10	Diphenylamine	122-39-4	10	Monocrotophos	6923-22-4	10
Acrinathrine	101007-06-1	10	Disulfoton	298-04-4	10	N-Desethyl- Pirimiphos-Methyl	67018-59-1	10
Alachlor	15972-60-8	10	Edifenphos	17109-49-8	10	Nitralin	4726-14-1	10
Aldrine	309-00-2	10	Endosulfan (Alpha-)	559-98-8	10	Nitrapyrin	1929-82-4	10
Ametryne	834-12-8	10	Endosulfan (Beta-)	33213-65-9	10	Nitrofen	1836-75-5	10
Aminocarb	2032-59-9	10	Endosulfan Sulfate	1031-07-8	10	Nonachlor -Cis	5103-73-1	10
Anthraquinone	84-65-1	10	Endrine	72-20-8	10	Nonachlor -Trans	39765-80-5	10
Azamethiphos	35575-96-3	10	Endrine Aldehyde	7421-93-4	10	Omethoate	1113-02-6	10
Azinphos-ethyl	2642-71-9	10	Esfenvalerate	66230-04-4	10	Orthophenylphenol	90-43-7	10
Azinphos-methyl	86-50-0	10	Ethion	563-12-2	10	Oxadixyl	77732-09-3	10
Beflubetamid	11316-08-7	10	Ethoprophos	13194-48-4	10	Oxychlordane	27304-13-8	10
Benazolin-ethyl ester	25059-80-7	10	Etridiazole	2593-15-9	10	Oxyfluorfen	42874-03-3	10
Benfluralin	1861-40-1	10	Etrimphos	38260-54-7	10	Paraoxon	311-45-5	10

Bifenthrine	82657-04-3	10	Fenamiphos	244-848-1	10	Paraoxon Methyl	950-35-6	10
Bromocyclen	1715-40-8	10	Fenchlorphos	299-84-3	10	Parathion Ethyl	56-38-2	10
Bromophos Ethyl	4824-78-6	10	Fenchlorphos-Oxon	3983-45-7	10	Parathion Methyl	298-00-0	10
Bromophos Methyl	2104-96-3	10	Fenitrothion	204-524-2	10	Pcb 101	37680-73-2	10
Bromopropylate	18181-80-1	10	Fenpropathrin	39515-41-8	10	Pcb 118	31508-00-6	10
Bromoxyniloctanoate	1689-99-2	10	Fenson	80-38-6	10	Pcb 138	35065-28-2	10
Butafenacil	134605-64-4	10	Fensulfothion	115-90-2	10	Pcb 153	35065-27-1	10
Butralin	33629-74-9	10	Fensulfothion-Oxon	6552-21-2	10	Pcb 180	35065-29-3	10
Cadusafos	95465-99-9	10	Fensulfothion-Oxon-Sulfone	6132-17-8	10	Pcb 28	7012-37-5	10
Captafol	2425 06 1	2000	Fensulfothion-Sulfone	14255-72-2	10	Pcb 52	35693-99-3	10
Carbaryl	63-25-2	10	Fenthion	55-38-9	10	Pendimethalin	40487-42-1	10
Carbophenothion	786-19-6	10	Fenthion sulfoxide	3761-41-9	10	Pentachloroaniline	527-20-8	10
Carfentrazone ethyl	128639-02-1	10	Fenthion-Oxon	6552 12 1	10	Pentachloroanisole	1825-21-4	10
CHB25	8001-35-2	10	Fenthion-Oxon-Sulfone	14086-35-2	10	Pentachlorobenzene	608-93-5	10
CHB50	8001-35-2	10	Fenthion-Oxon-Sulfoxide	6552-13-2	10	Pentachlorophenylsu lfide (-Methyl)	1825-19-0	10
CHB62	8001-35-2	10	Fenthion-Sulfone	3761-42-0	10	Permethrine	52645-53-1	10
Chinomethionate	2439-01-2	10	Fenvalerate	66230-04-4	10	Perthane	72-56-0	10
Chlorbenside	103-17-3	10	Fipronil	120068-37-3	10	Phenothrine	6002-80-2	10
Chlordane (cis)	5103-71-9	10	Fluazifop-P-Butyl	79241-46-6	10	Phorate	298-02-2	10
Chlordane (Trans)	5103-74-2	10	Fluchloralin	33245-39-5	10	Phosalone	2310-17-0	10
Chlordimeform	6164-98-3	10	Flucythrinate	70124-77-5	10	Phosmet	732-11-6	10
Chlorfenapyr	122435-70-0	10	Fludioxonil	131341-86-1	10	Phosphamidon	13171-21-6	10
Chlorfenson	80-33-1	10	Flumioxazin	103361-09-7	10	Piperonyl Butoxide	51-03-6	10

470-90-6	10	Flurochloridon	61213-25-0	10	Pirimiphos Ethyl	23505-41-1	10
2439 01 2	10	Flutolanil	66332-96-5	10	Pirimiphos Methyl	29232-93-7	10
510-15-6	10	Fonofos	944-22-9	10	Procymidone	32809-16-8	10
2675-77-6	10	Formothion	2540-82-1	10	Prodiamine	29091-21-2	10
1861-32-1	10	Fosthiazate	98886-44-3	10	Profenofos	41198-08-7	10
1897-45-6	10	Haloxyfop-Methyl	69806-40-2	10	Profluraline	26399-36-0	10
101-21-3	10	Hch (Alpha-)	118-74-1	10	Propetamphos	31218-83-4	10
2921-88-2	10	HCH (Beta-)	118-74-1	10	Propham	122-42-9	10
5598-13-0	10	Hch (Delta)	118-74-1	10	Propisochlor	86763-47-5	10
84332-86-5	10	HCH (Gamma-)	118-74-1	10	Prosulfocarb	52888-80-9	10
56-72-4	10	Hch-Epsilon	118-74-1	10	Prothiofos	34643-46-4	10
535-89-7	10	Heptachlor	76-44-8	10	Pyraflufen-ethyl	129630-19-9	10
2636-26-2	10	Heptachlor Endo Epoxide	28044-83-9	10	Quinalphos	13593-03-8	10
1134-23-2	10	Heptachlor Exo Epoxyde	1024-57-3	10	Quintozene	82-68-8	10
180409-60-3	10	Heptenophos	23560-59-0	10	Resmethrin	10453-86-8	10
68359-37-5	10	Hexachloro-1,3-butadiene	87-68-3	10	S 421	127-90-2	10
91465-08-6	10	Hexachlorobenzene	118-74-1	10	Sulfotep	3689-24-5	10
52315-07-8	10	Iodofenphos	18181-70-9	10	Tau-Fluvalinate	102851-06-9	10
53-19-0	10	Iprodione	36734-19-7	10	Tecnazene	117-18-0	10
72-54-8	10	Isazophos	421509-80-8	10	Tefluthrine	79538-32-2	10
3424-82-6	10	Isobenzan	297-78-9	10	Terbufos	13071-79-9	10
72-55-9	10	Isodrine	465-73-6	10	Tetrachlorvinphos	22248-79-9	10
789-02-6	10	Isoprothiolane	50512-35-1	10	Tetradifon	116-29-0	10
50-29-3	10	Lenacil	01/08/2164	10	Tetramethrine	7696-12-0	10
	2439 01 2 510-15-6 2675-77-6 1861-32-1 1897-45-6 101-21-3 2921-88-2 5598-13-0 84332-86-5 56-72-4 535-89-7 2636-26-2 1134-23-2 180409-60-3 68359-37-5 91465-08-6 52315-07-8 53-19-0 72-54-8 3424-82-6 72-55-9 789-02-6	2439 01 2 10 510-15-6 10 2675-77-6 10 1861-32-1 10 1897-45-6 10 101-21-3 10 2921-88-2 10 5598-13-0 10 84332-86-5 10 56-72-4 10 535-89-7 10 2636-26-2 10 1134-23-2 10 180409-60-3 10 68359-37-5 10 91465-08-6 10 53-19-0 10 72-54-8 10 3424-82-6 10 72-55-9 10 789-02-6 10	2439 01 2 10 Flutolanil 510-15-6 10 Fonofos 2675-77-6 10 Formothion 1861-32-1 10 Fosthiazate 1897-45-6 10 Haloxyfop-Methyl 101-21-3 10 Hch (Alpha-) 2921-88-2 10 HCH (Beta-) 5598-13-0 10 Hch (Delta) 84332-86-5 10 HCH (Gamma-) 56-72-4 10 Heptachlor 535-89-7 10 Heptachlor 2636-26-2 10 Heptachlor Endo Epoxide 1134-23-2 10 Heptachlor Exo Epoxyde 180409-60-3 10 Heptachlor Exo Epoxyde 180409-60-3 10 Hexachloro-1,3-butadiene 91465-08-6 10 Hexachlorobenzene 52315-07-8 10 Iprodione 72-54-8 10 Isazophos 3424-82-6 10 Isobenzan 72-55-9 10 Isodrine 789-02-6 10 Isoprothiolane	2439 01 2 10 Flutolanil 66332-96-5 510-15-6 10 Fonofos 944-22-9 2675-77-6 10 Formothion 2540-82-1 1861-32-1 10 Fosthiazate 98886-44-3 1897-45-6 10 Haloxyfop-Methyl 69806-40-2 101-21-3 10 Hch (Alpha-) 118-74-1 2921-88-2 10 HCH (Beta-) 118-74-1 5598-13-0 10 Hch (Delta) 118-74-1 84332-86-5 10 HCH (Gamma-) 118-74-1 56-72-4 10 Hch-Epsilon 118-74-1 535-89-7 10 Heptachlor 76-44-8 2636-26-2 10 Heptachlor Endo Epoxide 28044-83-9 1134-23-2 10 Heptachlor Endo Epoxide 28044-83-9 1180409-60-3 10 Hexachloro-1,3-butadiene 87-68-3 91465-08-6 10 Hexachloro-1,3-butadiene 87-68-3 91465-08-6 10 Hexachlorobenzene 118-74-1 52315-07-8 10 Iodofenphos 18181-70-9 53-19-0 10<	2439 01 2 10 Flutolanil 66332-96-5 10 510-15-6 10 Fonofos 944-22-9 10 2675-77-6 10 Formothion 2540-82-1 10 1861-32-1 10 Fosthiazate 9886-44-3 10 1897-45-6 10 Haloxyfop-Methyl 69806-40-2 10 101-21-3 10 Hch (Alpha-) 118-74-1 10 2921-88-2 10 HCH (Beta-) 118-74-1 10 5598-13-0 10 Hch (Delta) 118-74-1 10 84332-86-5 10 HCH (Gamma-) 118-74-1 10 56-72-4 10 Hch-Epsilon 118-74-1 10 535-89-7 10 Heptachlor Endo Epoxide 28044-83-9 10 2636-26-2 10 Heptachlor Endo Epoxide 28044-83-9 10 1134-23-2 10 Heptachlor Exo Epoxyde 1024-57-3 10 180409-60-3 10 Hexachloro-1,3-butadiene 87-68-3 10 91465-08-6 10 Hexachlorobenzene 118-74-1 10 <	2439 01 2 10 Flutolanil 66332-96-5 10 Pirimiphos Methyl 510-15-6 10 Fonnofos 944-22-9 10 Procymidone 2675-77-6 10 Formothion 2540-82-1 10 Prodiamine 1861-32-1 10 Fosthiazate 98886-44-3 10 Profenofos 1897-45-6 10 Haloxyfop-Methyl 69806-40-2 10 Profluraline 101-21-3 10 Hch (Alpha-) 118-74-1 10 Propetamphos 2921-88-2 10 HCH (Beta-) 118-74-1 10 Propham 5598-13-0 10 Hch (Gelta) 118-74-1 10 Propisochlor 84332-86-5 10 HCH (Gamma-) 118-74-1 10 Prothiofos 56-72-4 10 Heh-Epsilon 118-74-1 10 Prothiofos 535-89-7 10 Heptachlor Endo Epoxide 28044-83-9 10 Quinalphos 1134-23-2 10 Heptachlor Exo Epoxyde 1024-57-3 10 <td< td=""><td>2439 01 2 10 Flutolanil 66332-96-5 10 Pirimiphos Methyl 29232-93-7 510-15-6 10 Fonnofos 944-22-9 10 Procymidone 32809-16-8 2675-77-6 10 Formothion 2540-82-1 10 Prodiamine 29091-21-2 1861-32-1 10 Fosthiazate 98886-44-3 10 Profenofos 41198-08-7 1897-45-6 10 Haloxyfop-Methyl 69806-40-2 10 Profluraline 26399-36-0 101-21-3 10 Hch (Alpha-) 118-74-1 10 Propham 122-42-9 5598-13-0 10 Hch (Beta-) 118-74-1 10 Propham 122-42-9 5598-13-0 10 Hch (Gelta) 118-74-1 10 Propisochlor 86763-47-5 84332-86-5 10 HCH (Gamma-) 118-74-1 10 Prosulfocarb 52888-80-9 56-72-4 10 Hch Epsilon 118-74-1 10 Prothiofos 34643-46-4 535-89-7 10</td></td<>	2439 01 2 10 Flutolanil 66332-96-5 10 Pirimiphos Methyl 29232-93-7 510-15-6 10 Fonnofos 944-22-9 10 Procymidone 32809-16-8 2675-77-6 10 Formothion 2540-82-1 10 Prodiamine 29091-21-2 1861-32-1 10 Fosthiazate 98886-44-3 10 Profenofos 41198-08-7 1897-45-6 10 Haloxyfop-Methyl 69806-40-2 10 Profluraline 26399-36-0 101-21-3 10 Hch (Alpha-) 118-74-1 10 Propham 122-42-9 5598-13-0 10 Hch (Beta-) 118-74-1 10 Propham 122-42-9 5598-13-0 10 Hch (Gelta) 118-74-1 10 Propisochlor 86763-47-5 84332-86-5 10 HCH (Gamma-) 118-74-1 10 Prosulfocarb 52888-80-9 56-72-4 10 Hch Epsilon 118-74-1 10 Prothiofos 34643-46-4 535-89-7 10

Deltamethrine	52918-63-5	10	Leptophos	21609-90-5	10	Tolclofos Methyl	57018-04-9	10
Demeton-S-Methyl	919-86-8	10	Malaoxon	1634-78-2	10	Transfluthrine	118712-89-3	10
Desmethyl primicarb	30614-22-3	10	Malathion	121-75-5	10	Triazophos	24017-47-8	10
Diazinon	333-41-5	10	Mecarbam	2595-54-2	10	Tribufos	78-48-8	10
Dichlobenil	1194-65-6	10	Mefenpyr-Diethyl	135590-91-9	10	Trichlorfon	52-68-6	10
Dichlofenthion	97-17-6	10	Mephosfolan	950-10-7	10	Triflumizole	68694-11-1	10
Dichlofluanide	1085-98-9	10	Mepronil	55814-41-0	10	Trifluraline	1582-09-8	10
Dichlorvos	62-73-7	10	Metalaxyl	57837-19-1	10	Vinclozoline	50471-44-8	10

<u>Résumé</u>

Le développement de méthodes analytiques très sensibles est crucial pour pouvoir détecter et quantifier les teneurs en pesticides dans les matrices agroalimentaires aux limites imposées par le législateur. Dans le cadre de ces travaux, une méthode HPLC-MS/MS (triple quadripôle) a été mise en place pour analyser plus de 350 pesticides et contaminants dans diverses céréales avec des valeurs de LOQ généralement fixées à 10 µg/kg. Une deuxième méthode d'analyse de plus de 220 pesticides et contaminants dans les céréales, les fruits et légumes avec des valeurs de LOQ également fixées à 10 µg/kg pour la quasi-totalité des molécules, a été développée en GC-MS/MS. Ensuite, une méthode HPLC-MS/MS pour l'identification et la quantification de 179 pesticides, de polarité et familles chimiques très variées, dans les graines de colza, a été développée. La méthode QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) en utilisant différents supports solides de d-SPE (PSA/C18, Z-Sep, Z-Sep et EMR-Lipid), a été employée afin d'évaluer les taux de récupération, les LOD, LOQ ainsi que les effets matrice. Les résultats obtenus ont montré que l'utilisation de l'adsorbant EMR-Lipid s'est avérée être la plus efficace pour la majorité des molécules étudiées. Enfin, les performances analytiques d'une méthode GC-triple quadripôle, en mode « SRM » et une méthode GC-Q-Orbitrap en mode « full scan », pour la quantification d'une centaine de pesticides et contaminants dans diverses matrices agroalimentaires complexes, ont été évaluées et comparées. Cette étude a démontré l'efficacité de l'Orbitrap en termes de sensibilité, de sélectivité ainsi que de spécificité.

<u>Abstract</u>

The development of very sensitive analytical methods is crucial to determine the low amounts (Maximum Residue Levels) of pesticides in food matrices. An HPLC-MS/MS (triple-quadrupole) method was developed to analyze more than 350 pesticides and contaminants in various cereals with LOQ values set at 10 µg/kg. A second analysis method was developed in GC-MS/MS to analyze more than 220 pesticides and contaminants in cereals, fruits, and vegetables with LOQ values set at 10 μg/kg. In the second part of these works, an HPLC-MS/MS method for the identification and quantification of 179 pesticides in rapeseed, was developed. The QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method using different solid supports of d-SPE (PSA/C18, Z-Sep, Z-Sep⁺ and EMR-Lipid), was tested to evaluate the recovery, the LODs, LOQs and the matrix effects. The results obtained showed that the use of the EMR-Lipid adsorbent proved to be the most efficient for most of the molecules studied. Finally, the analytical performances of a GC-triple-quadrupole method, in "SRM" mode and a GC-Q-Orbitrap method in "full scan" mode, to the quantification of a hundred pesticides and contaminants in various complex food matrices, were evaluated and compared. This study demonstrated the effectiveness of Orbitrap in terms of sensitivity, selectivity as well as specificity.