
HAL Id: tel-03738133
https://theses.hal.science/tel-03738133

Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning on High-Throughput Bioparticles
Image Recognition and Sizing

Shaobo Luo

To cite this version:
Shaobo Luo. Machine Learning on High-Throughput Bioparticles Image Recognition and Sizing.
Electronics. Université Gustave Eiffel, 2021. English. �NNT : 2021UEFL2013�. �tel-03738133�

https://theses.hal.science/tel-03738133
https://hal.archives-ouvertes.fr


 
  

 

 
 

 
 

 

École Doctorale MSTIC 

Mathématiques et Sciences et Technologies de l’Information et de la 

Communication 

Thèse 

Présentée pour l’obtention du grade de DOCTEUR  

DE L’UNIVERSITE GUSTAVE EIFFEL 

par 

Shaobo LUO 

Apprentissage automatique sur la reconnaissance et 

le dimensionnement d'images de bioparticules à 

haut débit 

Spécialité : Électronique, Optronique & Systèmes 

 

Jury 

 
Hugues TALBOT, Professeur, Université Paris-Saclay, France (Président) 

Etienne DECENCIERE, Directeur de Recherches, PSL Université, France (Rapporteur) 

Diaa KHALIL, Professeur, Ain-Shams University, Egypt (Rapporteur) 

Elodie PUYBAREAU, Professeur Assistant, EPITA, France (Examinateur) 

Xudong JIANG, Professeur, Nanyang Technological University, Singapore (Co-encadrant) 

Giovanni CHIERCHIA, Professeur Assistant, Université Gustave Eiffel, France (Co-encadrant) 

Tarik BOUROUINA, Professeur, Université Gustave Eiffel, France (Directeur de thèse) 

Ai-Qun LIU, Professeur, Nanyang Technological University, Singapore (Co-Directeur de thèse) 



 
  

 

 
 

 

 

 



 
 

 

 
 

 

 
 

Thèse effectuée au sein du Laboratoire ESYCOM (UMR 9007 CNRS)  

Électronique, SYstèmes de Communication 

& Microsystèmes 

de l’Université Gustave Eiffel 
5 bd Descartes, Cité Descartes,  

Champs-sur-Marne 77454 Marne-la-Vallée cedex 2 

France 

 
 

 

 

 

 

 

 

 

  



 
 

 

 
 

  



 
 

 

 
 

Machine Learning on High-Throughput 

Bioparticles Image Recognition and Sizing 

 



 
 

 

i 
 

Acknowledgements 

First and foremost, I would like to express my sincere gratitude and deep 

appreciations to my supervisors: Professor Tarik Bourouina, Professor Giovanni 

Chierchia, Professor Hugues Talbot, Professor Xudong Jiang, and Professor Ai-Qun 

Liu who gave me the great opportunity for this PhD project in University of Gustave 

Eiffel. During the whole project, they also gave me the unwavering guidance and 

constant support. They encouraged and innovated me with the methodologists and 

ideas when I did my research. I also express my gratitude to Dr Yuzhi Shi, Professor 

Yi Zhang, and Professor Bihan Wen for giving me the valuable guidance, suggestion 

and support. I also would like to thanks our group members: Dr Gong Zhang, Dr 

Nguyen Kim Truc, Dr Nguyen Thi Thanh, Dr Hailong Li, Dr Jingbo Zhang, Dr Yu 

Jiaqing, Dr Yang Liu, Mr Backiam Natesan Prakash, Miss Lipika Mahato, Mr Bin Li, 

Dr Shilun Feng, Dr Junfeng Wu, Dr Ping Su, Dr Lim Change Nong, Dr Jun Zou from 

Quantum Science & Engineering Centre (QSec), Nanyang Technological University 

of Singapore, Mr Ahmed Elsayed, Mazen Erfan from  University of Gustave Eiffel 

and Dr Yixin Wang, Dr Hui Dong, Dr Jun Li, Dr Ying Sun, Dr Kong Wah Wan, Dr 

Juanjuan Hu, Mr Beng Sing Tan, Mr Raymond Keh from Institute for Infocomm 

Research (I2R), Agency for Science, Technology and Research (A*STAR) for their 

kind help and support during my research work. Furthermore, I am grateful to 

University of Gustave Eiffel, University of Paris-Est (Paris-Est Sup), and Nanyang 

Technological University of Singapore for supporting my graduate studies for the 

entire PhD journey. Last but not least, I would like to thank my family for supporting 

me with space and time to finish my studies.  

 

  Luo Shaobo 



 
 

 

ii 
 

Summary 

 

Imaging flow cytometry is a high-throughput tool widely used for bioparticle analysis 

in various applications. However, the vast number of images generated by imaging 

flow cytometry imposes a great challenge for data analysis. Although various 

learning algorithms were optimized to achieve high predication accuracies, they 

overlooked the trade-off between speed and hardware requirements. This causes a 

major hurdle for mass deployment of these learning algorithms to commercial devices 

for high-throughput bioparticle analysis due to its high cost and high-power 

consumption. Moreover, rare bioparticle detection is still a significant challenge 

because the representative training images are hard to collect and the input images in 

inference may be different from the training images. Furthermore, the size 

measurement algorithms do not always lead to accurate sizing without size level 

calibration. In this thesis, we have developed an efficient neural network named 

MCellNet for a rapid, accurate and high-throughput detection of label-free 

Cryptosporidium, Giardia and other pollutants captured by imaging flow cytometry. 

MCellNet achieved a classification accuracy over 99.6% and a processing speed of 

346+ images per second on an embedded platforms, outperforming MobileNetV2 

(251 frames per second) with a similar classification accuracy. In addition, deep 

metric learning for rare bioparticle detection was also studied. Deep metric learning 

based classification algorithm enhanced the accuracy with traditional deep-learning-

based features as it encodes more semantic information into the network, thus deep 

metric learning performs better than simple classification of deep features and it is 

well adapted for inlier bioparticle detection. Furthermore, a machine-learning-based 

pipeline was established for the high accuracy bioparticle sizing. The pipeline 
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consisted of an image segmentation module for measuring the pixel size of the 

bioparticle and a machine learning model for accurate pixel-to-size conversion. The 

sizing algorithm showed significantly more accuracy and promised greater potential 

in a wide range of bioparticle sizing applications. The proposed methods could also 

be potentially applied to other high-throughput and real-time bioparticle analysis for 

biomedical diagnosis, environmental monitoring, and other bioparticle detection 

applications.  

 

Keywords:  

Deep learning, Bioparticle classification, Convolution neural network, Deep 

metric learning, Bioparticle sizing, Bioparticle images 



 
 

 

iv 
 

Résumé 
 

L'imagerie par cytométrie de flux est un outil à très haute cadence largement utilisé 

pour l'analyse des bioparticules. Néanmoins, le grand nombre d'images générées pose 

un grand défi pour l'analyse rapide des données. Bien que divers algorithmes 

d'apprentissage aient été optimisés pour atteindre une précision de prédiction élevée, 

ils ont négligé le compromis entre la vitesse et les exigences matérielles, ce qui a 

causé un obstacle majeur au déploiement de masse de ces algorithmes d'apprentissage 

sur des appareils commerciaux pour l'analyse des bioparticules à haut débit, ceci en 

raison de son coût et sa consommation d'énergie élevée. Dans cette thèse, nous avons 

développé un réseau neuronal efficace, appelé MCellNet, pour une approche rapide, 

précise et à haut débit pour la détection de bioparticules sans marquage fluorescent, 

adapté à la cytométrie de flux. MCellNet a atteint une précision de classification de 

plus de 99,6% et une vitesse de traitement de plus de 346 images par seconde dans 

les plates-formes intégrées, surpassant MobileNetV2 (251 images par seconde) avec 

une précision de classification similaire. En outre, l'apprentissage métrique profond 

pour la détection de bioparticules rares a également été étudié. En outre, un pipeline 

basé sur l'apprentissage automatique est établi pour la classification en taille et à haute 

précision des bioparticules. Le pipeline se compose d'un module de segmentation 

d'image pour mesurer la taille de pixel de la bioparticule et d'un modèle 

d'apprentissage automatique pour une conversion précise pixel-taille. L'algorithme a 

montré une capacité de classification en taille nettement plus précise et présente un 

grand potentiel pour une large gamme d'applications pour la détermination des tailles 

de bioparticules. Les méthodes proposées pourraient également être potentiellement 

appliquées à d'autres analyses de bioparticules à haut débit et en temps réel pour le 

diagnostic biomédical et la surveillance environnementale. 
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1.1 Motivation 

Flow cytometry is one of the most widely adopted technologies for bioparticle 

analysis in disease diagnostics [9-11], food inspection [12, 13], and water quality 

monitoring [14-16] among other bioparticle detection applications [17-21]. 

Conventional flow cytometry identifies bioparticles according to bioparticle optical 

signatures such as fluorescent profiles [17]. Bioparticle such as cells are often 

immunolabeled with fluorescent tags that target cell-specific biomarkers to facilitate 

analysis. Fluorescent labelling may alter cell properties and interfere with 

downstream analyses [22], and no knowledge of cell morphology may be derived 

from the information-sparse data obtained using conventional flow cytometry.  

Morphology is an important characteristic feature of bioparticles. These images 

are packed with rich information which could be used for bioparticle classification 

[3, 23-29]. Gold standards primarily rely on bioparticles morphology with 

microscopy-based imaging techniques for microbial identification [30]. For instance, 

pathogenic protozoans in drinking water, Cryptosporidium and Giardia as shown in 

Figure 1-1, are detected by analysing the morphology in microscopy images [31]. 

However, the traditional microscopy-based imaging approach requires labour-

intensive sample preparation and time-consuming manual data analysis, which 

significantly hinders its application in high-throughput bioparticles analysis [32].  

Imaging-based flow cytometry is a high-throughput image acquisition 
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technology by coupling imaging techniques with flow cytometry. Imaging flow 

cytometry has a significantly higher throughput than traditional microscopy-based 

imaging techniques and is capable of capturing thousands to millions of bioparticle 

images in a second using various imaging modalities [33]. The acquired images are 

packed with rich information on bioparticle morphologies. Nevertheless, the vast 

number of information-rich images imposes a great challenge for data analysis.  

Machine learning is often used to identify bioparticles such as cells, planktons 

and microalgae during image analysis [34, 35]. Except for a few cases where machine 

learning is used for image correction, enhancement and reconstruction [27], a number 

of machine learning algorithms have been developed for imaging-based cell detection 

and classification [5, 25, 36-39] with reported high accuracy in these works, but they 

were relatively slow and required high computation resources beyond the capability 

of embedded systems in order to build affordable imaging flow cytometry machine. 

For instance, a highly accurate algorithm based on a sophisticated densely connected 

neural network [40] for high-throughput cancer cell detection in blood was reported 

[5]. It shows a good detection performance, but its speed was limited to 100 fps, and 

it relies on a high-performance platform with high-end Nvidia GeForce GTX 1080Ti 

GPU. Intelligent image-activated cell sorting 2.0 achieve a higher throughput cell 

Figure 1-1: Categories of Cryptosporidium, Giardia and other viruses and bacteria. 
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sorting up to 2000 events per seconds, but requires a 8-PC server with 8 multicore 

CPUs and GPUs (NVIDIA GeForce GTX 1080 Ti) for image processing with deep 

learning [4]. Most existing machine learning algorithms developed for imaging flow 

cytometry primarily focus on the detection accuracy but overlook the efficiency in 

terms of speed and hardware requirements, which has practical implications. 

Deep learning with deep neural network has achieved surpassing performances 

for many applications with rich of data and supervised learning [5, 25, 36-39]. 

However, state-of-art deep neural networks still met challenges in practical 

applications such as the early warning system [8]. In that applications, the number of 

targets bioparticles are extremely small, and the number of background images are 

extremely large. Therefore, it requires the models to have a performance with a low 

false alarm as well as a high recover rate. Moreover, the target bioparticles are 

difficult to be collected for building representant training dataset. For example, the 

appearance of collected images of the bioparticles in the testing environments may 

be different from them in the training dataset in the particle applications. Those 

introduce difficulties to recognize them with traditional deep neural networks for the 

state-of-art deep neural networks assumed a static, closed world and cannot work well 

on open-set problem [41].  

Some imaging systems offer an image-based size measurement as well as high-

throughput bioparticle analysis [42]. Information-rich micrographs of individual 

particles are acquired at a high speed, and the particle size is determined by 

converting the pixel to length at a fixed conversion ratio that is calculated 

theoretically based on the specification of the optical components, called a 

calibration. For example, a single pixel corresponds to 0.33 µm in Amnis® 

ImageStream®X Mk II imaging flow cytometer [43] with a 60´ objective, and 0.5 
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µm with a 40´ objective according to the manufacturer’s specification. However, it 

has been noticed that this fixed conversion ratio does not always lead to accurate 

particle sizing.  

In summary, machine learning especially deep learning has spurred significant 

progress in high-throughput bioparticle images detection and sizing. Machine 

learning is a part of artificial intelligence and is capable of studying the experience 

from the training bioparticle data. It is widely adopted technologies for bioparticle 

analysis in disease diagnostics, food inspection, and water quality monitoring among 

other bioparticle detection applications. Current challenges in bioparticle images 

detection and sizing are high-throughput, achieving comparable accuracies using 

lower-cost embedded hardware, and high-accuracy sizing, etc. 
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1.2 Objectives 

The major objective of this doctorate thesis is to develop machine learning algorithms 

for detecting and sizing of microscale bioparticle by using machine learning 

especially deep learning methods. Specifically, three types of areas are explored and 

discussed, namely: (1) Deep learning-enabled high-speed bioparticle detection; (2) 

Deep metric learning for rare bioparticle detection; (3) Machine learning-based 

pipeline for bioparticle sizing. 

To enable low power and high throughput inference on resource limited 

embedded devices, for example low cost Nvidia Jetson TX2 [44], a deep learning-

enabled real-time detection program for high-throughput and label-free bioparticle, 

such as Cryptosporidium, Giardia, microplastic and other pollutants in the water, is 

proposed. This intelligent detection platform combines imaging-flow cytometry and 

an efficient neural network developed known as MCellNet with the optimized target 

for high processing speed and similar detection accuracy.  

For dealing with rare bioparticle detection problem, a deep neural network 

model based on metric learning is proposed. The algorithm leverages convolutional 

neural network to study the rich features inside training dataset and learns a distinct 

metric by using Siamese network and contrastive loss which learned to maximize the 

distance of different classes and minimize the distance of similar classes. The 

experimental results demonstrate that deep metric learning studies good features and 

high performance comparing with the traditional deep learning on rare bioparticle 

detection.   

To enable high accuracy bioparticle size measurement, an bioparticle sizing 

algorithm pipeline is developed by employing computer vision and machine learning. 

The algorithm automatically segments particles from the 2D micrographs, estimates 
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the pixel size of the particles, and predicts the actual size from the pixel information 

by using a machine learning model from mass training data. Compared to the 

conventional approaches, the results show that our intelligent pipeline offers more 

accurate particle sizing by learning from the mass calibration data. This will greatly 

extend conventional particle sizing and has great potential in the field of 

environmental monitoring, biomedical diagnostical, and material characterization, 

etc. 
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1.3 Major Contributions 

The major contributions of this PhD thesis are summarized as in the follows: 

1) An efficient image classification models of deep learning are derived which 

enables high-throughput deep learning system for predicting 

Cryptosporidium and Giardia in drinking water. This system combines 

imaging flow cytometry and an efficient artificial neural network called 

MCellNet, which achieves a classification accuracy > 99.6%. The system can 

detect Cryptosporidium and Giardia with a sensitivity of 97.37% and a 

specificity of 99.95%. The high-speed analysis reaches 346 frames per second, 

outperforming the state-of-the-art deep learning algorithm MobileNetV2 in 

speed (251 frames per second) with a comparable classification accuracy. The 

reported system empowers rapid, accurate, and high throughput bioparticle 

detection in clinical diagnostics, environmental monitoring and other 

potential biosensing applications. 

2) A model of deep metric learning for inlier bioparticle detection is derived and 

the deep metric learning algorithm leverages convolutional neural network to 

study the rich feature inside the dataset and learns distinct metric by using a 

Siamese network and contrastive loss, which learns to maximize the distance 

between dissimilar classes and simultaneously minimizes the distance 

between similar class. Deep metric learning offers a generative and uses 

distance information to model the similarity of the images by learning a 

functional maps from images pixels to latent space, playing a vital role in rare 

object detection. Experiments show that the deep metric neural network 

achieves a high accuracy of 99.86% in classification, 98.89% in precision rate, 

99.16% in recall rate and zero false alarm rate for inlier bioparticle detection. 
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The reported model leverages the use of the imaging flow cytometry in 

biomedical diagnosis, environmental monitoring, and other biosensing 

applications.  

3) An intelligent pipelined for bioparticle sizing by employing computer vision 

and machine learning for accuracy sizing is built up and the intelligent 

pipeline automatically identifies and segments particles from the micrographs, 

measures the pixel size of the particles, and converts the pixel into actual size 

using a machine learning model learned from large amounts of training data. 

Compared to conventional approaches, the particle size determined by the 

machine learning model only has a mean percentage error of 4.2% which is 

five times better than the methods using a fixed pixel-to-size conversion ratio 

(23.3%). This method leverages the use of different intelligent imaging 

systems such as imaging flow cytometry for high accurate particle sizing and 

promises great potential in a wide range of applications in the field of 

environmental sensing, biomedical diagnostics, and material characterization. 

4) A bright-field image database of Cryptosporidium parvum oocysts (2,082 

images) and Giardia lamblia cyst (3,569 images), 1.54-um beads (3,466 

images), 3-um beads (3,457 images), 4-um beads (5,783 images), 4.6-um 

beads (2,188 images), 5-um beads (9,637 images), 5.64-um beads (3,285 

images), 8-um beads (3,066 images), 10-um (8,270 images), 12-um (4,704 

images), 15-um beads (2,813 images), and natural pollutants of various shape 

and sizes (27,826 images) is built up. Each image is patched to a standard size 

with 120	 × 	120  pixels and it can be used to test bioparticle detection 

algorithms. 
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1.4 Organization of the Thesis 

This thesis is organized with six Chapters. The introduction Chapter of this thesis 

covers the motivation, objective, major contribution and organization of this thesis as 

presented in this Chapter. The motivation section shows how this PhD research is 

important and why it was carried out. The objective section states the main focus of 

this thesis. The contribution section lists the important findings and innovations in 

both technological and theoretical point of view.  

In Chapter two, a literature survey on current machine learning technologies in 

bioparticle imaging analysing is introduced. This Chapter provides an overview of 

basic knowledge of intelligent imaging flow cytometry, the evolution of machine 

learning and the typical applications, and how machine learning can be applied for 

assisted intelligent imaging flow cytometry. The future perspectives of machine 

learning in intelligent imaging flow cytometry are also discussed. 

In Chapter three, a deep learning-enabled high-throughput system for 

predicting bioparticle is reported. This system combines imaging flow cytometry and 

an efficient artificial neural network called MCellNet. In order to evaluated the 

bioparticle classification models, a bioparticle images dataset is built up. That bright-

field bioparticle image dataset includes Cryptosporidium parvum oocysts, Giardia 

lamblia cyst, beads and natural pollutants in the water. Moreover, a visualization 

analysing on the dataset is conducted. Furthermore, a deep learning-enabled high-

throughput system for predicting Cryptosporidium and Giardia in drinking water is 

reported. 	

In Chapter four, a deep metric learning based model for detecting rare 

bioparticle is studied. The deep metric learning based model studies a distance 

function to measure the similarity between the samples and has better classification 
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accuracy than transitional deep learning model by applying similarity measure 

between samples with increasing the similarity distance between negative samples 

and reducing the similarity distance between positive samples.  

In Chapter five, a bioparticle size measurement pipeline that combines image 

analysis and machine learning is studied for high accuracy measuring the bioparticle 

size on bioparticle imaging system. The pipeline consists of an image segmentation 

module for bioparticle identification and a machine learning model for accurate pixel-

to-size conversion. The segmentation algorithm include traditional computer vision-

based approaches with Gaussian pre-processing, Canny detector, dilation, erosion, 

and contours detection algorithms. The pixel-to-size conversion used a quadratic 

model for generating a prediction model for micrographs size measurement.  

In Chapter six, a summary with the major contributions of this thesis and the 

recommend future works are presented.  
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Imaging flow cytometry is widely adopted in environmental monitoring, clinical 

diagnostics, precision agriculture and other potential biosensing applications. 

Intelligent imaging flow cytometry incorporates machine learning algorithms for 

automated image analysis with high throughput in measurement, processing, 

identification, and sorting of biological entities. Recently, machine learning, 

especially deep learning has taken over in the field of data analysis for imaging flow 

cytometry and promised fantastic performance in intelligent imaging flow cytometry. 

This Chapter provides an overview of basic knowledge of intelligent imaging flow 

cytometry, the evolution of machine learning and the typical applications, and how 

machine learning can be applied for assisted intelligent imaging flow cytometry. 

Future perspectives of machine learning in intelligent imaging flow cytometry is also 

discussed. 
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2.1 Introduction	

 

Figure 2-1: Overview of intelligent imaging flow cytometry. 

 

Imaging flow cytometry is an analytical tool extensively used to detect, sort, count 

and measure phytoplankton, cells, and other bioparticles [17, 42, 45, 46]. By 

combining high-throughput flow cytometry with various imaging acquisition 

technologies such as multispectral imaging [33], imaging flow cytometry is capable 

of capturing thousands even millions of images with multiparametric morphology 

information, allowing automated high-throughput data collection. However, human 

expertise is often required for performing image analysis on traditional imaging flow 

cytometry. 

Intelligent Imaging Flow Cytometry (IIFC) as shown in Figure 2-1, which 

combines imaging flow cytometry and machine intelligence, has been demonstrated 

for imaging-based high-throughput biosensing [3, 8, 23-29, 47]. Artificial 

intelligence (particularly deep neural network) plays a critical role in IIFC by 

providing new approaches of image enhancement, reconstruction, correction, and 

more importantly automated object recognition and identification of bioparticles and 



Chapter 2 Literature Survey 
 

13 
 

other targets of interest. Advances in artificial intelligence lead the development of 

IIFC. Several IIFC using deep learning models, such as VGGNet, GoogleNet, 

ZooplanktoNet, DenseNets and deep active learning, have been demonstrated [4, 5, 

40, 48]. A typical IIFC combines flow cytometry, image acquisition technologies 

(laser/image sensors), and artificial intelligence. It supports multiparametric analysis 

and high-throughput detection of the properties of bioparticle from hundreds to 

millions of particles per second. IIFC are widely used in clinical diagnostics [49], 

environmental monitoring [50], precision agriculture [51], and other potential 

biosensing applications [17-21]. 

In this Chapter, we focus on recent development in IIFC from the perspective 

of imaging technologies, the evolution of machine learning for computer vision, and 

machine learning techniques that are developed specifically for IIFC. The emergent 

imaging technologies such as multispectral imaging, multi-field-of-view imaging, 

and serial time-encoded amplified microscopy (STEAM) are discussed to reveal 

more distinctive features in the bioparticle images. To understand machine learning 

in imaging flow cytometry, we introduce the fundamentals of visual understanding, 

the evolution and knowledge of machine learning, increasing the understanding of 

machine learning in visual perception. Next, we review the most interesting 

applications of machine learning in this field. Finally, we summarize the review and 

give the perspectives of future development of machine learning assisted IIFC. 
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2.2 Machine Learning 

2.2.1 Machine Vision and Image Analysis 

Imaging flow cytometry technologies enable capturing and analysing the images of 

single bioparticles in high quality and high throughput. Besides the challenges in 

image acquisition, storage and processing, image analysis also requires significant 

efforts in the development of IIFC, which promotes the advancements in machine 

vision. 

The working principle of machine vision system [52] is elaborated here. First, 

an object is converted into an image signal through a machine vision device such as 

a camera. Then, the image signal is sent to a dedicated image processing system to 

obtain the morphological information of the captured object. According to the pixel 

brightness, color and spatial distribution, the imaging system performs various 

algorithms on those signals to extract the characteristics of the target object. Next, a 

control operation of the equipment is generated according to the result of the 

discrimination algorithms. The goal of computer vision is to fully understand the 

image of the electromagnetic wave formed by the reflection of the object surface, 

mainly the visible and infrared parts, because this process is based on optical physics 

and solid-state physics, which can represent the real world. 

2.2.2 Traditional Machine Learning 

Since that time, a theoretical framework for object recognition was conceptualized, 

as well as several general vision theoretical frameworks, visual integration theoretical 

frameworks based on perceptual feature groups, and many other new research 

methods and theories have emerged. Consequently, the processing of general 2D 

information and the research on the model and algorithm of 3D images has greatly 
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improved and machine vision 

has developed vigorously with emerging new concepts and theories.  

Before the era of deep learning used in machine vision, image analysis methods 

could be roughly divided into the following five categories: image perception, image 

pre-processing, feature extraction, inference prediction, and recognition [53]. In the 

early stage of machine learning, among the dominant statistical machine learning 

groups, little attention was paid to features. The design feature is to combine these 

pixel values of the image in a statistical or non-statistical form to express the part or 

whole object that one wants to identify or detect.  

As an illustration we show a face-recognition approach using in real-time using 

Haar-like features to locate a face as shown in Figure 2-2 [6]. The Viola / Jones facial  

Figure 2-2: The first and second features selected by AdaBoost. The two features are 

shown in the top row and then overlayed on a typical training face in the bottom row. 

The first feature measures the difference in intensity between the region of the eyes 

and a region across the upper cheeks. The feature capitalizes on the observation that 

the eye region is often darker than the cheeks. The second feature compares the 

intensities in the eye regions to the intensity across the bridge of the nose. Reproduced 

with permission from IEEE [6]. 
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detector  is a powerful binary classifier consisting of several weak classifiers and is 

still widely studied today. However, it is time-consuming in the learning phase 

because adaptive boosting (Adaboost) is used to train the cascade of weak classifiers, 

such as finding the object of interest (e.g., face). The model needs to split the input 

image into multiple rectangular blocks and then submit them to the cascaded weak 

detectors. If the patch passes through all stages of the cascaded weak detectors, it is 

classified as a positive example. Otherwise, the algorithm will reject it immediately. 

Figure 2-3: Detections obtained with a single component person model. The model 

is defined by a coarse root filter (a), several higher resolution part filters (b) and a 

spatial model for the location of each part relative to the root (c). The filters specify 

weights for histogram of oriented gradients features. Their visualization show the 

positive weights at different orientations. The visualization of the spatial models 

reflects the “cost” of placing the center of a part at different locations relative to the 

root. Reproduced with permission from IEEE [7]. 
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This whole process is repeated multiple times on various hierarchy of image scales.  

In 2009, another important feature-based milestone work called Deformable 

Part Models (DPM) was developed [7] and is shown in Figure 2-3. DPM decomposes 

the object into partial collections, which follows the idea on the image model 

introduced in the 1970s, enforces a set of geometric constraints among them, and 

treats the simulated potential object center as a potential variable. DPM excels at 

object detection tasks (using bounding boxes for localizing objects) and defeating 

template matching as compared to other object detection methods that were popular 

at that time whereby the Histogram of oriented Gradient (HoG) [54] feature was used 

to generate the corresponding “filter” for various objects. The HoG filter can record 

the edge and contour information of the object and use to filter at various positions in 

different pictures. When the output response value exceeds a certain threshold, the 

filter and the object in the picture are treated as highly matched, thus completing the 

detection of the object.  

HoG is a good feature descriptor that has been successfully deployed in human 

detection problem [55]. HoG has an advantage on densely capturing the gradient 

information of images, which is similar to SIFT [56], but it demands fewer 

computation resources. HoG is also resistant to the lighting conditions, e.g., reduces 

shadows influence and other illumination variations such as smaller rotation and 

Figure 2-4: Working principle of histograms of oriented Gradients. 
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translation with the gradient and histogram algorithms. As depicted in Figure 2-4, 

HoG calculates on small bioparticles in a window of 8 × 8 pixels. In that window, the 

direction of gradient and magnitude are calculated by 

                              𝐺 = 0𝐺!"	+	𝐺#" ,  𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 $!
$"

                                          (2-1a) 

                         𝐺! =	𝐻! ∗ 𝐼(𝑥, 𝑦)	,			𝐺# =	𝐻# ∗ 𝐼(𝑥, 𝑦)	                                (2-1b) 
 

where I(𝑥, 𝑦) is the input,  𝐻!	is	the	vector	[−1 0 1] and 𝐻#	is	the	vector	 J−101 K. 
Finally, an unoriented gradients histogram of those 8 × 8  bioparticles are 

generated and put into 9 bins. Each bin is corresponded to the angles of direction of 

gradient in 0, 20, 40, 60, 80, 100, 120, 140, and 160 degrees. Since the gradient 

magnitude of the image is mostly sensitive to lighting, normalization on the histogram 

is desirable. The unoriented gradient histogram would guide to more robust feature 

sets because it can eliminate the effect of variations when the lighting conditions are 

varying.  

Figure 2-5: Local Binary Patterns. (a) The procedure diagram on local binary 

patterns histograms. (b) The diagram on how to calculate Local Binary Patterns.  

(a) 

(b) 
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Local Binary Patterns (LBP) is a popular texture feature with an excellent face 

detection performance [57, 58]. LBP excels in differentiating bright pixels from the 

dark background, which is used to describe edges, lines, spots, and flat areas. The 

procedure diagram of LBP features extraction is depicted in Figure 2-5a. First, the 

original input image is arranged into individual small bioparticles with 8 × 8 pixels. 

Then, LBP feature of each bioparticle is calculated by comparing the intensity of the 

8 neighbouring pixels with that center pixel and generating an 8-bit binary number in 

which 0 or 1 indicate that the intensity of the neighbouring pixel is lesser or higher 

than the center pixel, respectively (Figure 2-5b).  

Demonstrated examples of using traditional machine learning with imaging 

flow cytometry include an open-source imaging flow cytometry data analysis 

solution that uses the features generated from CellProfiler and together with Gradient 

Boosting (GB) [59] classifier and a random forest (RF) [60] classifier to recognize 

the Jurkat cells [61], and the identification of label-free white blood cells using the 

features generated from CellProfiler and classifiers such as K-Nearest Neighbours 

(KNN), AdaBoost, GB, RF, and Support Vector Machine (SVM) [62]. The SVM 

classifier [63] was one of the most popular discriminative classifier before the era of 

deep learning. It translates the vector of training data into a higher dimensional space 

and performs the discrimination. By doing this, the optimal hyper-plane can be 

generated, which splits the dataset into different classes via a training process. In the 

inference phase, it can be used to categorize new examples. SVMs can be expressed 

as the following optimization problem: 

           minimize  
%
"𝑊&𝑊 + 𝐶∑ 𝜉'(

')% 	 
           subject to  𝑦'(𝑊&𝜑(𝑥') + 𝑏) > 1 − 𝜉'                                            (2-2) 

                            𝜉' ≥ 0, 𝑖 = 1,… , 𝑛. 
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where the two-class problem (binary problem) was defined as y ∈	{1, -1}.  𝑊 ∈ ℛ𝒟 

is the weight, 𝜉 is the margin constant, b is the bias, and 𝐶 ∈ ℛ+ is the regularization 

constant. The 𝜑 function optionally projects the vector of training data into a high 

dimension feature space ℋ by the so-called “kernel trick”, where it can be easier to 

generate the boundary of decision surfaces. A good choice for 𝜑 is to use Radial Basis 

Function kernel is used as 𝐾[𝑥' , 𝑥,\ = 𝜑(𝑥')&𝜑(𝑥,)  and 𝐾[𝑥' , 𝑥,\ =
exp[−𝛾``𝑥' − 𝑥,`|"\ , 𝛾 > 0 for the kernels. 

Distance metric such as the Mahalanobis distance classifier is an extension of 

the Least-Square multi-class maximum likelihood classifier taking cross-correlations 

into account [64, 65]. It measures the number of standard deviation distance 𝑑 with 

calculated distance of 𝑥 to a dataset and a mean 𝑢'. The covariance matrix is defined 

as the equation ∑'-%  and T is a standard transpose operation. The result class is 

predicted by measuring the distance from 𝑥 to classes 𝑖 and assuming the result has 

the minimal distance from the true predicted class. The Mahalanobis distance can be 

reduced to the Euclidean distance when the covariance matrix is the identity matrix. 

The equation of Mahalanobis distance is expressed as [65] 

         	𝑑(𝑥, 𝑢) = (𝑥 − 𝑢')&Σ'-%(𝑥 − 𝑢')                                     (2-3) 

The classic problem of machine vision is to determine whether a set of image 

data contains a specific object, image feature, or motion state. This problem can 

sometimes be solved automatically by an algorithm, but so far, there is no single 

method that can be widely used to perform well in varied situations, i.e., identify any 

object in unpredictable environment. The prior art can only solve well in the 

recognition of specific targets, such as simple geometric figure recognition [66], face 

recognition [67], printed or handwritten document recognition [68], and vehicle 

recognition [69]. Unfortunately, these recognition often needs to have a specific 
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lighting, background, and target posture requirements in a specific environment. 

Designing features by hand requires a lot of experience such as a profound 

understanding of the field and data. It may also requires a lot of debugging. Moreover, 

machine vision engineers not only need to manually design features, but also design 

a more suitable classifier algorithm for the problem. Meanwhile, the combination of 

designing features and choosing a classifier at the same time to achieve the best 

results is a difficult task, requiring well-trained experts.  

2.2.3 Deep Learning 

Machine vision systems are developed such that users do not need to manually design 

features and choose classifiers. It is desirable for machine vision systems to learn 

features and classifiers simultaneously, which means that when designing a certain 

model, the input is just a picture and the output is its label. With the rapid 

development of deep learning, the emergence of convolutional neural networks (CNN) 

has made this idea possible, and the research of computer vision-based on deep 

learning has also developed rapidly. LeCun, a pioneer of the connectionist approach 

to AI proposed the first Convolutional Neural Network in LeNet [2] as shown in 

Figure 2-6 in 1989. The input image is a 32 × 32	grayscale image. The first layer 

Figure 2-6: The architecture of LeNet-5 neural network. A convolutional neural 

network for digital recognition. Reproduced with permission from IEEE [2]. 
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undergoes a set of convolution sums and generates six 28 × 28	feature maps, which 

pass a pooling layer to get six 14 × 14	feature maps and pass a convolution layer to 

generate sixteen 10 × 10	convolution layers. Next, they pass the pooling layer to 

generate sixteen 5 × 5	feature maps. It was use to classify hand-written digits 0-9 

with two fully connected layers as final layers. In 2012, a deeper and wider neural 

network – AlexNet was published, which achieved a breakthrough with proposed 10% 

higher accuracy than traditional methods in ImageNet LSVRC [70]. Nowadays, deep 

learning has been applied to a variety of areas and big progress has been made in 

those fields, including visual recognition [71], speech recognition [72], biomedicine 

[73], and natural language processing [74], etc.  

Deep learning methods are well-suited to constructing architectures that can be 

trained end-to-end from image data to result. This approach reduces manual 

engineering in the traditional approach as shown in Figure 2-7. It can automatically 

build multiple levels of representation of data with abstraction by end-to-end manner. 

For example, the first layer studies the edges or colors information. The second layer 

studies the motifs information. The third layer may learn the eyes and nose 

(a) 

(b) 

Figure 2-7: Comparison between (a) traditional handcrafted approach and (b) deep 

learning.  
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information. Finally, it can learn the weights for the classifier to detect the human 

face. The importance layers in the deep neural network are the convolutional layer, 

active layer (e.g., ReLU layer), and pooling layer (e.g., max-pooling), fully-

connected layer as shown in Figure 2-8. 

The convolution function is used to extract the features from the input. The 

basic operation of convolution is illustrated in Figure 2-9a. On the left side of the 

figure, the input has a dimension of 𝑁 × 𝑁 × 𝐷. It convolutes with a kernel H with a 

size of 𝑘 × 𝑘 × 𝐷 . Finally, a feature with 𝑁	 × 	𝑁	 × 	𝐻  dimension is generated, 

which is calculated by sliding the kernel from the top-left corner to the bottom-right 

on the input line by line and one layer of output is generated by the operating of 

element-by-element multiplied and accumulated with the kernel. For example, H 

number of kernels will generate H layers of output. Unique positions will be 

generated from left to right and top to bottom without pad with 𝑁	 = 	32 and 𝑘 = 3, 

30 × 30 [(𝑁	 − 𝑘 + 1) ×	(𝑁	 − 𝑘 + 1)\.  
 The ReLU layer, as shown in Figure 2-9b, is a rectified linear activation 

function. It implements a non-linear “trigger” function with the formula 𝑦	 =
	𝑚𝑎𝑥	(𝑥, 0) while the input has the same size as the output layer. The ReLU layer 

outputs zero when the input is negative. Comparing with other non-linear functions 

Figure 2-8: Convolutional neural network. 
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such as sigmoid, hyperbolic tangent, and absolute of hyperbolic tangent, the networks 

with ReLU learn several folds faster than equivalents of other non-linear functions. 

The max-pooling layer as depicted in Figure 2-9c is used to reduce the resolution of 

the features. It makes the features more robust with lower noise and distortion. For 

instance, the pooling layer cuts down sample from the input dimension of 

224	 × 	224	 × 	64 into an output dimension of 112	 × 	112	 × 	64 with a filter size 

of 2	 × 	2	and stride 2. 

 One or several fully-connected layers are normally added to the last layer of 

a convolutional neural network and acts as a classifier for the final decision. It always 

takes a vector of 𝑚  input as the input volume and generates 𝑛  output with the 

function, which is expressed as 

                               𝑌𝑛	 = 	𝑊	𝑋𝑚	+ 	𝑏	                                              (2-4) 

where 𝑚 is the input dimension, which is computed with the weights matrix 𝑊 with 

(a) (b) 

(c) 

𝑦 

𝑥 

Figure 2-9: Layers of convolutional neural network. (a) Convolutional operation. (b) 

Rectified Linear Unit (ReLU). (c) Max-pooling operation. 
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matrix multiplication and added to a bias offset 𝑏.  

 The learning and optimization process is used to generate the optimal values 

of the trainable parameters such as kernel weights in convolution layers and the 

weights in dense layers. The parameters are optimized by the backpropagation 

algorithm, which uses a gradient descent method to optimize the model iteratively by 

minimizing a loss function (e.g., cross-enthropy loss). The three frequently used GD 

algorithms are batch gradient descent, stochastic gradient descent, and mini-batch 

gradient descent. Softmax regression [75] of the classification layer outputs was 

employed to train the network., which can be written as 

                      𝑦, 	= 	 .!/0!#$1
∑ 3456!%$7&
%'(

	 , 𝑗 = 1, 2, … , 𝑛                                   (2-5) 

During the training, the loss is calculated from the model input with forwarding 

propagation whereby the loss difference backwards propagates from the output to the 

input layer to generate the gradient of each layer. The parameters of every layer are 

updated with that gradient and the parameters of the model are stabilized after the 

iterative process. 

A convolutional neural network is a powerful learning-ability neural network 

that is widely used by image classification and segmentation. The convolutional 

neural network is inspired by the natural visual perception mechanism from the 

human’s perception system. The early attempt was the proposed neocognitron system 

[76] in 1980. By improving the neocognitron, LeCun proposed LeNet-5 to solve the 

handwritten digits, which established the modern framework of the CNN [2]. LeNet-

5 gave a basic idea of CNN such as convolutional neural networks use a three-tier 

architecture: convolution, down sampling, and nonlinear activation functions. It 

extracts image space features by using convolution and reduces image average 

sparsity with down sampling. The activation function takes a hyperbolic tangent or 
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sigmoid function. Multilayer neural network as the final classifier uses sparse 

connection matrices between layers to avoid large computational costs. LeNet-5 can 

be trained using the backpropagation algorithm and derive an effective representation 

of the original image, which allows CNN to recognize the object directly from the 

original pixels with minimal pre-processing. However, due to the lack of large-scale 

training data and the computing power was limited, LeNet-5 could not work well on 

complex problems. From 1998 to 2010, the development of neural networks was 

intense in the machine-learning community, but not very visible to the computer 

vision community. The combination of theoretical advances or not only neural 

architectures but also optimisation methods (stochastic gradient descent, Nesterov 

accelerated descent, etc. [77]) with progress mostly with GPUs but also low-power 

CPUs, and fast, low latency disks such as SSDs brings cost-effective hardware to the 

world, making deep neural network computation affordable and opens the door for 

deep learning. In 2010, a GPU neural network was published [78].  

In 2012, AlexNet was published [70], which is relatively deeper than LeNet’s 

Figure 2-10: ImageNet challenge.
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network and won the first champion of the 2012 ImageNet competition as shown in 

Figure 2-10. AlexNet not only has deeper neural networks, but also learns more 

complex image with high-dimensional features. AlexNet introduced the ReLU 

function as an activation function. This activation function is convex and has no 

vanishing gradient for positive weights, considerably reducing computation time in 

the learning phase. Furthermore, it used the dropout technique to clip certain neurons 

during training to avoid over-fitting. It also introduced max-pooling technology and 

significantly reduce training time with GPU. After the success of AlexNet, 

researchers proposed other improvements, such as VGGNet [79], GoogleNet [80], 

Residual Network (ResNet) [81], MobileNetV2 [82], SENet [83], and BiT [84], etc. 

 From the structural point of view, one of the CNN’s development direction is 

focused on increasing the number of layers. As the ILSVRC 2015 champion, ResNet 

has 20 times more layers than AlexNet and 8 times more layers than VGGNet. By 

increasing the depth, the network can use the increased nonlinearity to derive the 

approximate structure of the objective function while yielding a better 

characterization. However, this also increases the overall complexity of the network 

and makes the network difficult. It can also easily overfit. As the depth of the network 

increases, the accuracy of the network should increase simultaneously. Adding layers 

significantly affects the parameter updating on the gradient propagating from the back 

to front. Increasing the network depth runs the risk of vanishing gradients, resulting 

in networks that are hard to optimize. In addition, the optimization problem becomes 

more difficult when the network becomes deeper, with larger parameter space. 

Therefore, simply increasing the network depth will result in higher training error. 

For example, the performance of a 56-layer network is not as good as that of the 20-

layer network. Due to this, ResNet was designed with a residual module that allows 
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us to train deeper networks [81].  

The core idea of ResNet is to add a direct connection channel to the network, 

known as identity shortcut connection, which is the idea of Highway Network [85]. 

The network structure of traditional deep learning is a nonlinear transformation that 

is performed on the input while ResNet allows the original input information to be 

passed directly to the subsequent layers as shown in Figure 2-11. In Ref [81], the 

authors argued that stacking layers will not degrade the network performance with 

stacking identity mappings (a layer that does not do anything) upon the current 

network and the resulting architecture would perform the same. In such a case, the 

deeper model should not produce a higher training error than its shallower 

counterparts. They hypothesized that fitting the stacked layers to a residual mapping 

is easier than fitting them directly to the desired underlaying mapping. Traditional 

convolutional networks or fully connected networks will have more information loss 

during information transmission. Consequently, they will also cause gradients to 

disappear or explode and make deep networks unable to train. ResNet solves this 

problem to a certain extent as it protects the integrity of the information by directly 

Figure 2-11: Residual learning building block. 
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bypassing the input information to the output. The entire network only needs to learn 

the part of the difference between input and output, simplifying the learning 

objectives and difficulty. The comparison of VGGNet and ResNet is shown in Figure 

2-12. The biggest difference of ResNet is the use of bypass connection to directly 

connect the input to the subsequent layers, which is also called shortcut or skip 

connections. 

Most existing deep learning algorithms developed mainly focus on the 

detection accuracy but overlook the tradeoff between speed and hardware 

requirements. The use of high-end GPU system makes it possible to train complex 

and deep neural networks, but it is a major hurdle for mass deployment of these deep 

learning algorithms to commercial IFC for bioparticle analysis due to its high cost 

and high-power consumption. Very recently, faster and efficient deep learning 

models, such as MobileNet [86], DenseNet [87], SENet [83], and MobileNetV2 [82], 

have attracted great interest from the research community because they are able to 

achieve only slightly degraded classification accuracies in return for using lower-cost 

embedded hardware. Various methods have been proposed to improve network 

performance with those problems in various aspects. The recent improvements of 

CNN include the convolutional layer, pooling layer, activation function, loss function, 

regularization, optimization, and fast computing techniques.  

MobileNet was proposed by Google LLC in 2017. It is a lightweight 

convolutional neural network focused on mobile devices and embedded devices. 

SENet won the 2017 ImageNet LSVRC (ImageNet last session) image classification 

task championship. Normal convolutional neural network aggregates spatial 

information and feature dimension (channels) information on a local receptive field 

in order to obtain global information. Many existing studies have shown the benefits 
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of enhancing spatial information dependence. However, SENet hopes to solve that 

by learning the importance of different channel characteristics and pay more attention 

to the dependence between channels. The characteristic of this model is that it 

proposes a new architecture "Squeeze-and-Excitation" (SE) block to explicitly model 

the dependencies between channels. Compared with the traditional CNN, it greatly 

reduces the model parameters and the amount of calculation under the premise of a 

small decrease in accuracy.  

DenseNet is proposed in the CVPR2017 best paper "Densely Connected 

Convolutional Networks". It does not improve network performance from the 

perspective of increasing the depth and width of the network like the previous 

network but draws on the idea of ResNet's shortcut connections and establishes dense 

connections between each layer and all other layers behind. It can alleviate the 

vanishing gradient problem, strengthen feature propagation, encourage feature reuse, 

and greatly reduce the number of parameters. However, they need extensive 

optimizations for specific tasks. 

MobileNetV2 (Inverted Residuals and Linear Bottlenecks) is an improved 

version based on the MobileNetV1 model, which has better accuracy and a smaller 

model than MobileNetV1. MobileNetV2 is characterized by the inverted residual 

with linear bottleneck. In the network, features can be further embedded into a low-

dimensional subspace through transformation (for example, dimensionality reduction 

through 1×1 convolution). In addition, MobileNetV1 also reduces the dimensionality 

of the feature layer through the width factor α, which is a compromise between the 

amount of calculation and accuracy. However, since the layers of the deep 

convolutional neural network have a non-linear activation function, reducing the 

dimensionality of the activation space may cause a lot of information to be lost when 
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using ReLU for activation transformation in a low-dimensional space. Because in the 

training process, some units of the feature map will inevitably output values below 0. 

After these values pass through the activation function, they have no contribution to 

the subsequent features. Moreover, the convolution parameters is lost. The author 

demonstrates that the information is lost when dimension equals to 2 or 3 through the 

change process of the information of interest in. More important, when the dimension 

is between 15 and 30, there are significantly more information recovered. 

Through the study of the activation function, the bottleneck in ResNet has been 

substantially improved for the problem of not bringing too much information loss 

when extracting features in low-dimensional space. One of the improvements is to 

use linear bottleneck (e.g., remove ReLU) to do linear transformation instead of the 

original nonlinear activation transformation. In addition to the above operations, the 

author considers that in order to reduce the loss of information, the input feature map 

can be expanded first, and useful information can be embedded into the high-

dimensional feature map as much as possible, and then proceed depth separable 

convolution and ReLU operations. 

The Inverted Residual Block (IRB) in the MobileNetV2 includes a 1 × 1 

expansion convolutional layer, a depthwise convolution layer, and a 1 × 1 projection. 

The depthwise convolution layer and 1 × 1  projection layer are referred as the 

depthwise separable convolution adopted by Xception [88], which consists of the 

depthwise convolution and follows by a pointwise convolution. The depthwise 

convolution is represented as 

                   𝑿m𝒙,𝒚,𝒛𝒌 = 𝛿[∑ 𝑭m𝒊,𝒋,𝒛𝒌 ∙ 𝑿𝒙+𝒊-𝟏,𝒚+𝒋-𝟏,𝒛𝒌-𝟏
',, +	𝑏@A\                       (2-6) 

where 𝑭m𝒌 is the depthwise filter in which the 𝑧BCchannel in 𝑭m𝒌 only calculates with 

the 𝑧BC channel of 𝑿𝒌-𝟏 and produces the feature 𝑿m𝒌 in the 𝑧BC channel.  
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Figure 2-12: Examples of network architecture for ImageNet. the VGG-19 model is 

in the left, a plain network with 34 parameter layers is in the middle, and a residual 

network with 34 parameter layers in the right. The dotted shortcuts increase 

dimensions. Reproduced with permission from IEEE [81].  
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Figure 2-13: (a) Depthwise convolution. (b) Pointwise convolution with 256 kernels. 

 

 The depthwise separable convolution [86] splits the traditional convolution 

operation into two separated steps by two convolutions: the depthwise convolution 

and the pointwise convolution. The depthwise convolution uses a separable filter with 

one filter per input channel to produce the output channel as shown in Figure 2-13a. 

A pointwise convolution uses a 1 × 1 filter to produce the final activation map as 

depicted in Figure 2-13b. Compared to the traditional convolution, the computation 

reduction of the depthwise separable convolution is 
%
D + %

E$)
, where 𝑁 is the number 

of output channels, and 𝐷A is the kernel size. Furthermore, IRB also increases the 

resource efficiency with its unique architecture. Besides, the skip connection 

structure is introduced to IRB, which allows the network to access features in earlier 

(a) 

(b) 
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stages and lead to a deeper neural network with high efficiency.  

Metric learning is used to learn a distance function that measures similarity 

whereby similar targets are associated with a small distance, and dissimilar ones with 

a large one. Deep metric learning (DML) currently mainly uses the deep learning 

based embedding network to extract embedding, and then uses L2-distance to 

measure the distance in the embedding space [89]. In general, DML consists of three 

parts: feature extraction network to map embedding, a sampling strategy to combine 

the samples in a mini-batch into many sub-sets, and finally the loss function 

calculates the loss on each sub-set as shown in Figure 2-14. Such as deep metric 

learning with contrastive loss [90]. The sampling algorithm random selects an 

example as an anchor. Then random select another one image from rest images of 

same class as the positive pair and select one image from others class as the negative 

pair. The popular loss functions are contrastive loss [90], triplet loss [91], etc. 

The contrastive loss is used to train Siamese network. For the pair of input 

(𝒙𝒊, 𝒙𝒋), it is a positive pair if 𝒙𝒊	 and 𝒙𝒋 are semantically similar and negative pair if 

Figure 2-14: General pipeline of deep metric learning. It includes embedding network 

for extracting features to latent embedding space, sampling strategies, and loss 

functions. 



Chapter 2 Literature Survey 
 

35 
 

they are dissimilar. The contrastive loss is expressed as [90] 

𝐿 tu𝑊(G), 𝑏(G)vG)%I w
= 	 x ℎ(𝑑J[𝒙𝒊, 𝒙𝒋\ − 𝜏%)

(',,)∈𝒮
+	 x ℎ(𝜏" − 	𝑑J[𝒙𝒊, 𝒙𝒋\)

(',,)∈𝒟
 

(2-7) 

where h(x) = max (0, x) is the hinge loss function, and 𝜏% and 𝜏" are two positive 

thresholds with 𝜏% <	𝜏" , respectively. 𝒮 = {(𝑖, 𝑗)}  is the similar pairs and 𝒟 =
{(𝑖, 𝑗)}  is the dissimilar pairs, and Euclidean distance 𝑑J  between 𝒙  and 𝒚  is 

expressed as 

 𝑑J(𝒙, 𝒚) = 	‖𝑓(𝒙) − 𝑓(𝒚)‖"							 
               =				 �[𝑓(𝒙) − 𝑓(𝒚)\&(𝑓(𝒙) − 𝑓(𝒚)))

 
(2-8) 

where 𝒙, 𝒚	 ∈ 𝝌. The triplet loss is expressed as [91] 

 𝐿(𝑥M , 𝑥/, 𝑥() = max	(0,𝑚 + �𝑓(𝑥M) − 𝑓[𝑥/\�"" − ‖𝑓(𝑥M) − 𝑓(𝑥()‖"") (2-9) 

where 𝑥M and 𝑥/ are from same class and 𝑥( is from difference class. 

2.3 Imaging Flow Cytometry 

Technologies to obtain images with both high temporal and spatial resolution are 

critical but challenging [33]. The fundamental trade-off in imaging technologies is 

sensitivity, acquisition speed, and the amount of acquired information. Commonly, 

there are two types of detectors used for imaging: (1) multi-pixelated imaging devices 

(camera-based), such as charge-coupled device (CCD) and complementary metal-

oxide-semiconductor (CMOS) [92], and (2) single-pixel photodetectors, e.g., 

photomultiplier tube (PMT) and avalanche photodiode (APD) [93]. 
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Figure 2-15: Optical systems of typical imaging flow cytometry. (a) Optical 

configuration of ImageStream imaging flow cytometry. (b) Multiple field-of-view 

imaging flow cytometer. (c) Schematic illustration of STEAM flow analyzer. 

Reproduced with permission from Royal Society of Chemistry [33]. 

 

The camera-based imaging flow cytometry has a dense 2D array of CCD or 

CMOS sensors, such as the commercial system ImageStream (Figure 2-15a) and 

FlowSight both developed by Millipore. They support multispectral imaging 

acquisition up to 12 images per bioparticle and three different imaging modes: 

brightfield, scattering, and fluorescence based on the time delay and integration (TDI) 

techniques [94-96]. The TDI sensor includes multiple rows of CCD or CMOS sensors. 

When applied to imaging, the objects move along the column direction and the 

imaging data are shifted row by row. It can read out weak imaging signal without 

motion blur even with increasing exposure time. Because the movement of the objects 

needs to be precisely synchronized with the vertical transfer direction on the rows of 

CCD or CMOS, the TDI technique requires an accurate control on the microfluidic 

(a) 

(b) 

(c) 
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system and the circuit to ensure that bioparticles flow at a constant speed without 

rotation. Unfortunately, data transfer between the rows without gain (e.g., electron 

multiplication) also limits it up to 3,000 bioparticles per second.  

To increase the throughput, a multi-field-of-view imaging flow cytometry [97] 

was developed as depicted in Figure 2-15b. This method projects multiple fields of 

view into a 2D camera, such as microfabricating multiple parallel microfluidic 

channels with 𝑁	 × 	𝑀  micro-lens arrays to capture the image of the 𝑁	 × 	𝑀 

channels simultaneously. Motion blur is a big problem in this kind of imaging 

cytometry when the targets move too fast and cannot be resolved by the imaging 

sensor under a fixed exposure time. Temporal coded excitation [98] is a technique 

used to avoid motion blur, which employs a pseudo-random code modulated 

excitation pulse to illuminate the object. A de-blurred algorithm is also applied with 

a known point spread function to reconstruct the final object. 

PMT sensors provide superb sensitivity for photon signals with high dynamic 

range, high bandwidth, and low dark noise, which serve as perfect candidates to 

implement high-throughput imaging flow cytometry. Normally, a laser scanner is 

used to generate the images from the time domain signals collected from PMTs such 

as the ultrafast STEAM [99, 100] as illustrated in Figure 2-15c. STEAM uses a near-

infrared laser light with a wide spectral bandwidth as the illumination. The broadband 

laser pulses are encoded to 2D with two diffraction grating for scanning and 

illuminating the bioparticle. The reflected signal is collected and stretched by a 

dispersive medium. Eventually, the rainbow signal is collected by an APD in series. 

STEAM can achieve a throughput of 100,000 bioparticles per second. Other 

examples using PMTs include fluorescence imaging by radiofrequency-tagged 

emission [101, 102] for high-speed fluorescence imaging, spatial-temporal 
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transformation cytometry, etc.  

The emerging commercial imaging flow cytometry empowers high-speed 

bioparticle splitting and microscopic imaging. For example, ImageStreamX Mk II as 

shown in Figure 2-16 uses high-resolution and high-sensitivity objective lenses to 

produce brightfield, darkfield, fluorescence, and fluorescence intensity images [96]. 

It contributes significantly to the advancement of a wide range of quantitative, 

statistically robust cellular analysis and makes more insight into the following areas 

such as cellular classification, cellular processes, cell-to-cell interactions, microalgae 

morphology, population dynamics, etc. 

Figure 2-16: ImageStreamX Mk II. 
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Figure 2-17: FlowCam System 

 

FlowCam as shown in Figure 2-17 is another imaging flow cytometer that was 

originally developed by Fluid Imaging Technologies (Yarmouth, ME, the USA) to 

study the oceanic plankton [103]. It uses camera and flash illumination to snap the 

image of the moving particles in real-time. An image processing software with 

machine learning algorithms is run to generate single grayscale or color image of 

single bioparticles instantly. The software supports different features extraction such 

as area, area-based diameter, length, width, equivalent spherical diameter, and others 

properties [104]. 

Submersible Imaging FlowCytobot as shown in Figure 2-18 is another type of 

imaging flow cytometer that can be submerged in water up to 40-m depth with a run 

for 6 months [105]. It can also transmit acquired data to the cloud in real-time. The 

Submersible Imaging FlowCytobot works similarly to a standard flow cytometer that 
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uses hydrodynamic focusing to focus the sample stream and laser (e.g., 635-nm red 

diode laser for chlorophyll) to excite the particles for light scattering and fluorescence 

imaging, which allows us to analyse large cells within 150 𝜇𝑚 . An automated 

taxonomic classification is used to classify them into 22 categories for the 

comparative evaluation.  

2.4 Deep Learning Applications 

Intelligence imaging flow cytometry that combines imaging flow cytometry and 

machine intelligence has emerged as a promising platform for imaging-based high-

throughput biosensing [106, 107]. With the development of imaging techniques, the 

imaging system could reflect the rich sets of bioparticle information that allow 

insightful and more rigorous analysis based on fluorescence signal through 

immunolabelling and scattering information originated from the interaction of the 

bioparticle structures with light. Based on the spatial arrangement of the bioparticle 

images, the analysis problem can be split into two classes: (1) images which contain 

multiple bioparticles, and (2) images that contain only a single bioparticles.  

When one image contains multiple bioparticles, detection and tracking 

Figure 2-18: Submersible Imaging FlowCytobot 
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problems occur. The detection task localizes all objects in the image with a bounding 

box such as applying deep learning to detect mitosis on breast history images. As the 

evolution with deep learning, two-stage model such as Faster-RCNN are used to 

detect malaria cells [108], and one-stage model such as SSD to detect neural cell 

[109]. Comparing with the previous model, Faster-RCNN and SSD provide better 

performance on the speed and detection accuracy. Nowadays, segmentation and 

detection joint approaches such as DeepLab [110] and Mask-RCNN [111] excel with 

the advantage of multi-task learning. DeepLab uses atrous convolution, atrous spatial 

pyramid pooling and probabilistic graphical models to achieve the qualitatively and 

quantitatively performance. On the other hand, Mask-RCNN provides a simple and 

flexible general framework for object instance segmentation. 

The detection and tracking task, for example, a pipelined real-time imaging 

processing algorithm based on convolutional neural network is demonstrated for 

imaging flow cytometry [3]. This algorithm uses a simple convolution neural network 

to identify microbeads and cells. The real-time image processing pipeline uses FCRN, 

the Hungarian assignment algorithm and convolutional classification algorithm for 

the segmentation, tracking and classification the cells in the microfluidic based image 

flow cytometry. A microfluidic channel is monitored by a CMOS camera via a 

microscope. Then, the real-time image is processed by real-time moving object 

detector (R-MOD) system as depicted in Figure 2-19. 

The R-MOD system contains two parts: (1) multiple objects tracking and (2) 

single-cell image acquisition and identification. The multiple objects tracking 

algorithm composes of three parts: image segmentation, detection, and tracking. The 

image segmentation algorithm is implied with a convolutional neural network, which 

performs a regression operation to convert the grayscale microscopy image to a 
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probability density map. The detection algorithm finds the mean 𝑢 and variance 𝜎 of 

the cell object. First, it finds the maximum pixel in the density map as the mean 𝑢. 

Then, the area around the maximum pixel with 𝜎 is cropped from the density map 

and the equation of  𝜎 is expressed as  

                                                 σ2	=	0.5pmax	                                              (2-10) 

This process continues until all gaussian distributions in the density map have 

be removed. The tracking algorithm uses the Hungarian algorithm to detect the 

objects in the consecutive images and assigns the object number to the detected 

Figure 2-19: R-MOD (Real-time Moving Object Detector) system. Reproduced with 

permission from Nature Research [3]. 
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objects. 

About 21 × 21 pixels are cropped around the centre of the object. A classifiers-based 

CNN is used to determine the cell type and the experiments are performed with DI 

water and the dataset is not sufficiently complex. They also do not account of the 

natural containment particles in the water. Furthermore, the computation power of 

this algorithm is high and needs to be run on high-end GPU workstation. Future 

consideration on object detection and tracking algorithms for imaging flow cytometry 

include Recurrent YOLO [112], SiamMask [113], Deep SORT [114], Tracking R- 

CNN [115], etc. 

Classification and segmentation are two fundamental problems in computer 

vision as well as single cell image analysis. The image classification (Figure 2-20a) 

predicts a label for a giving image, and the segmentation (Figure 2-20b) splits the 

digital imaging into subparts or super-pixels such that every super pixel has the same 

meaningful label. In general, the segmentation is a subset of classification, which 

predicts in pixel level. In an image with multiple cells, the algorithms split the image 

of multiple cells into single cells or subcellular parts and predict the label of each 

(a) 

(b) 

Figure 2-20: Classification and Segmentation. (a) Classification, (b) Segmentation. 
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single cell or subcellular part.  

 

Figure 2-21: U-Net. Reproduced with permission from Nature Research [1]. 

 

Early attempt used fully convolutional neural networks (FCNNs) on 

segmentation and classified cell such as the HEp-2 cell specimen [116]. FCNN [117]  

were a type of state-of-art segmentation architecture on image segmentation task in 

2014 and were trained to classify the HEp-2 cell specimen into seven catalogues. 

Comparing with the classification network, FCNN replaces the fully connected layers 

to 1 × 1 convolutional layers. The classification network generates a label for each 

image, but the FCNN gives a pixel label for every pixel. It learns a function, which 

maps the input pixel to the output pixel label. FCNN and CNN are different because 

the last three layers in the CNN network are one-dimensional vectors. The calculation 

method no longer involves convolution, and, therefore, the two-dimensional 

information is lost. While in the FCNNs, all three layers are converted into 1	 × 	1	
convolution kernel with the equivalent vector length corresponding to the multi-
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channel convolutional layer and the latter three layers in FCNNs are all convolution 

calculations. In the whole model, all layers are convolutional layers and without fully 

connected layers, which is called Full Convolution.  

Recently, U-Net and its variations have dominated cell level segmentation and 

counting [1]. U-Net is a generic fully convolutional neural network with 

concatenation at multiple scales. The U-Net architecture takes the features from 

multiple layers into account and provides good localization with utility on the context 

for pixel-level classification. Figure 2-21 illustrates the basic structure of the U-Net. 

The left part is the contracting path, which follows the standard approach of the 

traditional architecture of the convolutional neural network. In every block, it has two 

3 × 3	unpadded convolutions with each followed by the ReLU layer. At the end of 

each block, a 2 × 2	max-pooling down-sampling layer is attached. The right side is 

the expansive path with consecutive blocks of 2 × 2	up convolutional layer and 3 × 3	
conventional layers. To increase the local information, information from the 

contracting path is combined with concatenation. At the end of the whole network, a

Figure 2-22: Holographic deep learning. Reproduced with permission from 

American Association for the Advancement of Science [8]. 
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     1 × 1	convolutional layer is applied to map the feature map from 64 to 2 classes (cell 

and membrane).  

Examples of using deep learning in bioparticle classification and detection on 

non-commercial IIFC and commercial IIFC are summarized in the Table 2-1 and 

Table 2-2 respectively. One of the examples is a deep convolutional neural network 

used as an early warning system for anthrax detection [8]. As shown in Figure 2-22, 

a dataset was built with difference anthrax samples such as B. anthracis, B. 

thuringiensis, B. cereus, B. atrophaeus, and B. subtilis. A deep convolutional neural 

network, HoloConvNet, was also built with convolutional neural network for anthrax 

classification. It has three convolutional layers, two fully connected layers, and 

achieves an accuracy of 96.3%.  

An ImageJ plugin interface to U-Net is shown in Figure 2-23 to enable non-

machine-learning experts to count, segment, and detect cells [1]. The U-Net with 

ImageJ interface, which offers a step-by-step protocol for cell detection, counting, 

and segmentation such as the prediction of the center of the cell and the delineation 

of the outlines of individual cells. It can achieve results comparable with the human 

experts’ level. For the training, it requires a relatively low number of annotated 

Figure 2-23: U-Net: deep learning for cell counting, detection, and morphometry. 

Reproduced from ref. [1] with permission from Nature Research. 
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images with special data augmentation, which needs more data for training on 

particularly difficult cases. Furthermore, it can run with a larger image size without 

any modification. Being 100% convolutional, it can deal with arbitrary image 

resolution.  

A deep convolution neural network-enabled image-activated real-time cell 

sorter [4] with a processing speed of 2000 events per second was also demonstrated 

as depicted in Figure 2-24. However, it requires a complex hybrid hardware/soft data 

management system with 8-PC server with 8 multi-core CPUs and GPUs (NVIDIA 

GeForce GTX 1080 Ti) for image processing. First, the suspended cells in a sample 

Figure 2-24: Intelligent Image-Activated Cell Sorting. Reproduced with permission 

from Royal Society of Chemistry [4]. 
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tube are injected into the intelligent IACS, which are hydrodynamically focused to a 

single stream. Then, the cells are imaged by virtual-freezing fluorescence imaging 

[118]. Next, the images are analysed by a real-time intelligent image processor. 

Finally, the cells are sorted by a dual-membrane, which receives decisions from the 

image processor and employs cell push-pull mechanism for sorting. The whole 

process is operated in an automated and real-time manner. 

Another example of a deep learning-enabled portable imaging flow cytometer 

was developed by Gӧrӧcs et al [27]. This device combined holographic imaging and 

neural network for the rapid detection of harmful algae in the water. The resolution 

of the device was limited to 25	𝑢𝑚 and only suitable to identify large organisms. The 

highly accurate algorithm based on a sophisticated densely connected neural network 

[40] is shown in Figure 2-25 for high-throughput cancer cell detection in blood [5]. 

Figure 2-25: A classification network based on densely connected neural network. 

Reproduced from ref. [5] with permission from Nature Research. 
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It uses deep learning to reconstruct the cell image based on magnetically modulated 

lensless speckle imaging, which uses a periodic magnetic force and lensless time-

resolved holographic speckle imaging to generate target cells in three dimensions 

(3D). Next, it detects those cells through a densely connected pseudo-3D 

convolutional neural network. It automatically detects those rare cells of interest 

based on the spatial-temporal features under a controlled magnetic force. It has a good 

sensing performance but its speed is limited to 100 fps, and it had to rely on a high-

performance platform with Nvidia GeForce GTX 1080Ti GPU. High-end GPU 

empowers the training of complex deep neural networks, but it is a major hurdle for 

mass deployment of these machine learning algorithms to commercial imaging flow 

cytometry for real-time object identification and classification due to its high cost and 

high-power consumption. 

Machine learning algorithms are used in emerging commercial imaging flow 

cytometry for phytoplankton analysis, label-free cell-cycle identification, white blood 

cell identification, or label-free leukemia monitoring, etc. In early days, traditional 

feature extraction and classifiers [61, 62, 119], such as AdaBoost, Lsboosting, GB, 

KNN, RF and SVM were used. With the emerging of deep learning, researchers move 

their interest to deep learning-based algorithms [120-123]. For examples, the 

conventional convolutional neural network, AlexNet [70], VGG [79], GoogleNet 

[80], ResNet [81], DenseNet [40], NasNet [124], and PyramidNet [125], etc. Among 

these deep learning algorithms, they are optimized to achieve high prediction 

accuracies and required high computational resources, such as Nvidia GTX 1080Ti, 

which are power hungry, expensive, and occupy huge footprint when designing IIFC. 
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Table 2-1: Summary on machine learning papers with non-commercial IIFC 
Application Imaging Application Dataset Algorithm Result Hardware Referenc

e 

Cell 

Classification  

Time-

stretch 

imaging  

Classify the 

cells. THP1, 

MCF7, 

MB231, 

PBMC 

Collected CNN model 99 % 

accuracy  

Nvidia 

Tesla K40c 

[36] 

Cell Sorting   Cell sorting Collected CNN model NA Nvidia 

GTX-

1080Ti 

[4] 

Label-free 

Analysis of 

Natural Water 

Samples 

Lens-free 

holographic 

imaging 

Phase-

contrast color 

images 

reconstruction 

and 

identification 

of plankton 

Collected CNN model NA NA [27] 

Label-Free 

Bioaerosol 

Sensing  

Frequency-

division-

multiplexed 

(FDM) 

microscope 

Label-Free 

Bioaerosol 

detection 

Collected Resnet 

based 

accuracy 

>94% 

NA [25] 

Real-time 

Inference and 

Cell 

Sorting 

Time-

stretch 

imaging  

Cell sorting 

and cancer 

cell 

classification 

Collected CNN model 95% 

accuracy 

Nvidia 

Tesla P100 

GPU and 

Nvidia K80 

GPU 

[28] 

Image 

Construction 

and 

Classification  

Lens-less 

time-

resolved 

holographic 

speckle 

imaging 

  Collected CNN model   Nvidia 

GeForce 

GTX 

1080Ti 

GPU 

[5] 

Label-free 

Detection of 

Cellular 

Drug Responses 

Time-

stretch 

imaging  

Drug-treated 

and -untreated 

cells 

classification 

Collected linear 

SVM/CNN 

model 

accuracy of 

92%  

NA [24] 

Label-free Cell 

Cycle Analysis 

Microscopy Label-free 

cell-cycle 

classification 

of Jurkat cells 

Collected LSBoosting 70.2±2.2% 

(G1), 

90.1±1.1% 

(S), 

96.8±0.3% 

(G2) and 

44.0±8.4% 

(M) 

NA [23] 

Parasites 

Detection  

Lens-less 

time-

resolved 

holographic 

speckle 

imaging 

Parasitic 

detection 

Collected CNN model 68–76% (at 

the lower 

end of our 

tested 

concentratio

ns) to ~38–

39% (at the 

higher end 

of our 

tested 

concentratio

ns) 

 Nvidia 

GTX 1080 

[38] 

Label-free 

Detection 

Microscopy Detection 

Beads 

Collected CNN model 93.3% mAP Nvidia 

GTX 1080 

[3] 

Reconstructing 

Cell Cycle and 

Disease 

Progression  

Microscopy Cell cycle of 

Jurkat 

cells/diabetic 

retinopathy 

Collected CNN model accuracy of 

98.73%  

GPU [126] 
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Table 2-2: Summary on machine learning papers with commercial IIFC 
Application Imaging Application Dataset Algorithm Result Hardware Reference 

               

Imaging Analysis  ImageStrea

m or 

FlowSight 

(Amnis) 

Label-free cell-

cycle 

classification 

of Jurkat 

cells/segment 

image and 

extract 

features/multic

lass machine 

learning 

Collected Gradient 

Boosting and 

Random 

Forest  

92% 

accuracy  

NA [61] 

Plankton 

Classification 

NA Plankton 

classification 

WHOI, 

ZooScan, 

Kaggle 

AlexNet, 

GoogleNet, 

VGG, 

Resnet, 

DenseNet 

  

F1 <95% Nvidia 

TitanX GPU  

[121] 

Microalgae 

Classification 

FlowCAM Microalgae 

classification 

Collected CNN model 88.59% of 

accuracy  

Nvidia Titan 

X Pascal 

[120] 

Plankton and Coral 

Classification 

NA Automated 

system for 

monitoring 

underwater 

ecosystems 

3 plankton 

and 2 coral 

datasets 

AlexNet, 

GoogleNet, 

VGG, 

Resnet, 

DenseNet, 

MobileNetV

2, NasNet  

F1 <=95% Nvidia 

TitanX GPU  

[122] 

Plankton 

Classification 

NA Plankton 

image 

classification 

WHOI AlexNet, 

GoogLeNet, 

VGG16, 

ResNet, 

PyramidNet 

86.3% of 

accuracy  

Nvidia Titan 

X Pascal 

GPU  

[123] 

Label-Free 

Identification of 

White Blood Cells  

ImageStrea

m (Amnis) 

Identification 

of white blood 

Cells 

Collected AdaBoost, 

Gradient 

Boosting 

(GB), K-

Nearest 

Neighbors 

(KNN), 

Random 

Forest (RF), 

and Support 

Vector 

Machine 

(SVM) 

99% of 

accuracy 

NA [62] 

Label-Free Leukemia 

Monitoring  

ImageStrea

m (Amnis) 

Label-free 

Leukemia 

monitoring 

Collected  linear SVM 98.2% 

accuracy 

NA [119] 
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2.5 Summary 

In this Chapter, we presented recent developments in intelligent imaging flow 

cytometry, such as image acquisition technologies and artificial intelligence. We 

introduced different imaging technologies such as a multispectral imaging system, 

multi-field of view imaging, and serial time-encoded amplified microscopy, etc. 

Moreover, we depicted the fundamentals of visual understanding and deep learning, 

which is essential to understand machine learning in imaging flow cytometry. 

Furthermore, we discussed the successful examples using deep learning in this field 

by summarizing the challenges and limitations encountered when applying deep 

learning in imaging flow cytometry.  

IIFC has shown a board usage in environment monitoring, clinical diagnostics, 

and other biosensing applications. IIFC needs to improve the quality of imaging to 

reveal more distinctive features in bioparticles images while maintaining high 

throughput.  Various imaging modalities were proposed to satisfy this goal such as 

optofluidic time-stretch microscopy. It enables sub-micrometer resolution with clear 

visualization of internal cell structures without compromising the throughput of cell 

imaging [127]. In order to apply deep learning for intelligence imaging flow 

cytometry, immersive datasets are required to train the deep learning model to obtain 

a high accuracy classifier. Unfortunately, the development of large-scale dataset for 

imaging flow cytometry is quite challenging. The labelling requires intensive input 

from the experts to improve the productivity and quality of the labelling. Furthermore, 

to increase the intelligence and precision, more advanced deep learning models in 

general object detection need to be explored in the IIFC field. Recently, faster and 

more efficient deep learning models such as SENet [83], and MobileNetV2 [82], etc., 

have attracted great interest of research community to achieve comparable 
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classification accuracy on lower-cost hardware. Furthermore, as IIFC will be mass 

deployed to board area, the cost of the whole system will be considered in the future. 

Efficient deep learning models such as deep learning model for mobile processor or 

low-bits deep learning model for intelligent image flow cytometry is worthy of 

interest. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 Literature Survey 
 

54 
 

 

 

 

 

 

 

 



Chapter 3 Deep Learning-Enabled High-speed Bioparticle Detection 
 

55 
 

Imaging flow cytometry is a popular technology for bioparticle images analysis 

because of its capability of capturing thousands of images per second. Nevertheless, 

the vast number of images generated by imaging flow cytometry imposes great 

challenges for data analysis especially when the species have similar morphologies. 

In this Chapter, a deep learning-enabled high-throughput system for predicting 

Cryptosporidium and Giardia in drinking water using imaging flow cytometry is 

reported. An efficient artificial neural network called MCellNet is demostrated, 

which achieves a high classification accuracy > 99.6%, a sensitivity of 97.37% and a 

specificity of 99.95%. The high-speed analysis reaches 346 frames per second, 

outperforming the state-of-the-art deep learning algorithm MobileNetV2 in speed 

(251 frames per second) with a comparable classification accuracy. It has great 

potential in clinical diagnostics, environmental monitoring and other biosensing 

applications. 
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3.1 Introduction	

Imaging-based flow cytometry is a popular tool for bioparticle analysis and diseases 

diagnosis in recent years [128, 129]. Newly emerging imaging flow cytometers (IFC) 

are capable of capturing thousands to millions of images per second using various 

imaging modalities [33, 96, 97, 130]. However, the vast number of images with rich 

information of bioparticle morphologies which imposes a great challenge for data 

analysis such as classifying different species with similar morphologies by manual 

gating [131]. For example, the IDEAS-software [132] in Figure 3-1 uses length and 

florescent intensities of florescent images to illustrate the target bioparticles. In the 

gating processing, First, the collected bioparticles are plotted to 2D space with 

features such as intensities in florescent channel 2 and side scatter channel 6 as shown 

in Figure 3-2. Then, the target bioparticles (Cryptosporidium and Giardia [133]) are 

gated by expert with eclipse Cryptosporidium and Giardia (CG) area as shown in 

Figure 3-2. The eclipse CG area is further separated to individual Cryptosporidium 

(C) and Giardia (G) areas in the Figure 3-3. Finally, the histogram of C and G area 

are shown in the Figure 3-4. Conventional imaging flow cytometry captures a vast 

number of images with rich information of bioparticle morphologies, however, 

imposes a great challenge for data analysis such as classifying different species with 

similar morphologies.  

Automated bioparticle analysis via computer vision and machine learning has 

greatly free the scientists from cumbersome work on bioparticle identification [134]. 

Traditional machine learning uses feature engineering for automated bioparticle 

detection, such as using the feature finder algorithms of IDEAS-software on 

commercial IFC (Amnis® ImageStreamX Mk II Imaging Flow Cytometry, Luminex 

Corporation, Austin, United States [96]) to extract features and using classification 
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algorithms (e.g., Principal component analysis, linear discriminant analysis, SVM, 

random forests and neural networks) to build a bioparticle classification system [135]. 

Unfortunately, designing features by hand requires rich experience such as profound 

understanding of the subject and data. It also requires heavy work of debugging. 

Another difficulty is that machine learning engineers need to design both features and 

suitable classifier algorithm [136].  

Alternatively, deep learning has been widely used to identify bioparticles (e.g., 

cells) and planktons during image analysis by end-to-end learning [3, 8, 23-29, 47, 

137]. For example, Luminex released an AI image analysis software for its imaging 

flow cytometry [137]. An imaging analysis algorithm based on convolutional neural 

network was demonstrated on imaging flow cytometry [8]. A deep convolution neural 

network-enabled image-activated cell sorter was reported with a processing speed of 

100 events per second [26], but it required a complex and expensive hybrid 

Figure 3-1: Collected bioparticles which plotted by length and florescent intensity.  
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hardware/software data processing system (i.e., a field-programmable gate array 

(FPGA), three central processing units (CPUs), and a graphics processing unit (GPU)) 

to ensure a faster computation capability.  

With increasingly large image datasets and powerful hardware, several deep 

learning models such as AlexNet [70], ResNet [81], and DenseNets [40], etc., were 

reported. They were adopted from the winners of ImageNet [70]. For example, 

ResNet was the first place of the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) 2015. And DenseNet showed a more advanced performance comparing to 

ResNet. Those deep learning models were also introduced to IFC for detection and 

classification tasks [4, 5, 40, 48]. They achieved high prediction accuracies of > 95% 

but required relatively high-cost system, e.g., high-cost GPUs and CPU comparing to 

an embedded GPU system. For instance, the Intelligent Image-Activated Cell Sorting 

2.0 that achieved a high throughput cell sorting with 2000 cells per seconds but 

Figure 3-2: The selected CG area (Cryptosporidium and Giardia) with intensity by 

expert.  
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required an 8-PC server with 8-multicore CPUs and GPUs for image processing using 

deep learning [4]. Deep learning models have also been used on IFC for water quality 

assessment such as detection of algae [138-140].  

Most existing deep learning algorithms developed for IFC mainly focus on the 

detection accuracy but overlook the trade-off between speed and hardware 

requirements. High-end GPU system empowers the training of complex deep neural 

networks, but it is a major hurdle for mass deployment of these deep learning 

algorithms to commercial IFC for bioparticle analysis due to its high cost and high-

power consumption. Very recently, faster and efficient deep learning models, such as 

MobileNet [86], SENet [83], and MobileNetV2 [82], have attracted great interest 

from the research community because they are able to achieve comparable 

classification accuracies using lower-cost embedded hardware. However, they need 

extensive optimizations for specific tasks. 

Figure 3-3: The fine selected C (Cryptosporidium) area and G (Giardia) area.  



Chapter 3 Deep Learning-Enabled High-speed Bioparticle Detection 
 

60 
 

 

Figure 3-4: The histogram graph of the selected Cryptosporidium and Giardia.  

 

 

Figure 3-5: Overview of MCellNet, a deep neural network assists the imaging flow 

cytometry (Amnis® ImageStream®X Mk II) in Cryptosporidium and Giardia 

detection. The system consists of laser, flow cytometry, imaging system, image 

database and deep neural network. 
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In this Chapter, an efficient neural network called MCellNet for the high-speed 

detection and classification of Cryptosporidium and Giardia from microplastics and 

other pollutants in the water using the imaging flow cytometry is proposed as shown 

in Figure 3-5. Bioparticles were hydrodynamically focused by a sheath flow and 

flowed through the detection region with Phosphate Buffered Saline solution (PBS) 

as the sheath medium. Single bioparticles were illuminated with a LED light source 

[141], and bright-field images were acquired with a Charge-Coupled Device (CCD) 

camera [142] using a 60 × objective. Then, the MCellNet used the building block of 

a widely adopted efficient deep network, MobileNetV2, and optimize it to increase 

processing speed and accuracy for imaging flow cytometry.  

MCellNet image processing pipeline is a software that can detect 

Cryptosporidium, Giardia and microplastics using two methods, i.e., multiclass and 

binary class classifications, respectively. Multiclass classification is used to classify 

instances into 13 classes: Cryptosporidium, Giardia, 1.54-µ𝑚 beads, 3-µ𝑚 beads, 4-

µ𝑚 beads, 4.6-µ𝑚 beads, 5-µ𝑚 beads, 5.64-µ𝑚 beads, 8-µ𝑚 beads, 10-µ𝑚 beads, 

12-µ𝑚 beads, 15-µ𝑚 beads, and natural pollutants. And the binary classification is 

used to classify instances into two classes with the natural pollutant and microplastics 

in one class (Class 0), and all Cryptosporidium and Giardia images in another class 

(Class 1). The pipeline works by reading the raw data of bright-field images extracted 

by IDEAS software and patching to images with 120 ´ 120 pixels, then putting into 

MCellNet to generate classification output.  

This MCellNet only requires an embedded processor with low computational 

power such as Nvidia Jetson TX2 [44], thus can be used in affordable machines. By 

combining MCellNet and imaging flow cytometry, the proposed system achieves a 

detection speed of 346 frames per second, outperforming the state-of-the-art deep 
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learning algorithm MobileNetV2 (251 frames per second) under a comparable 

classification accuracy. Cryptosporidium and Giardia which are common pathogens 

in drinking water to cause gastrointestinal diseases and have already become a major 

source of pollution in drinking water and food industries [133, 143-145], are used as 

the case study to validate our system. Our testing results show that MCellNet 

significantly enhances both the accuracy and processing speed, allowing it to be 

incorporated in drinking water quality inspection. The system also empowers 

potential high-throughput bioparticle analysis applications in environmental 

monitoring [50], clinical diagnostics [49], and other biomedical applications. 
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3.2 Model for High-speed Bioparticle Detection 

3.2.1 Overall Structure of MCellNet 

 

Figure 3-6: MCellNet architecture, which contains one convolutional layer, 6 

inverted residual blocks, one flattened layer, and one fully connected layer. Each IRB 

forms a shortcut between the bottlenecks to perform identity mapping. 

 
MCellNet is an artificial intelligence neural network to distinguish the 

Cryptosporidium, Giardia, microplastics and water pollutants from bright-field 

images. MCellNet is developed by cascading six computation-efficient neural 

network blocks - Inverted Residual Blocks (IRBs) to achieve a high speed and 

accuracy. IRBs were introduced by MobileNetV2 with lower computational 

complexity and maintain high efficiency representational power.  

The overall structure of MCellNet is illustrated in Figure 3-6 and Table 3-1. 

The input of MCellNet is bright-field images of 120 × 120 pixels, and the output is 
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a probability vector 𝒚 that indicated the likelihood of the presence of each class. 

Table 3-1: Network parameters 
Layer/Block Type Output dimension Params 

Conv2d Convolution 60 × 60 × 24 744 

IRB0 Inverted Residual Block 60 × 60 × 24 760 

IRB1 Inverted Residual Block 30 × 30 × 24 5568 

IRB2 Inverted Residual Block 15 × 15 × 24 9456 

IRB3 Inverted Residual Block 8 × 8 × 24 9456 

IRB4 Inverted Residual Block 4 × 4 × 24 9456 

IRB5 Inverted Residual Block 2 × 2 × 16 8272 

Dense1 Fully Connected                 13 845 

 

The working principle of MCellNet is as follows. First, MCellNet consists of 

one convolutional layer with a filter size of 3	 × 	3 pixel. Then six IRBs (IRB0-5) is 

attached to the first convolution layer. Later, the output of the last IRB (IRB5) is 

flattened. Finally, a Fully-Connected (FC-13/FC-2) layer [136] with 13 output units 

for multiple classification or 2 output units for binary classification are attached to 

IRB5's output to generate the class score for bioparticles detection.  

The first convolutional 2D layer (Block Conv2D in Figure 3-6) [146] takes an 

ℎ	 × 	𝑤 × 𝑛 input feature map 𝑿𝒊, where ℎ is the spatial height, 𝑤 is the spatial width 

and the 𝑛 is the output channels of the feature map, and it is 120	 × 	120 × 1  in this 

case. The input is transformed into a  64	 × 	64 × 24  output feature maps 𝑿𝒐.  The 

input feature map 𝑿𝐢 is convoluted with a number of feature detectors, each of which 

is a three-dimensional filter 𝑭  in the present layer, and a bias 𝒃 . An activation 

function 𝛿(𝑥), ReLU in our case, is attached to this convolution operator. The whole 

layer can be expressed as [86] 

              𝑿!,#,@𝒐 = 𝛿[∑ 𝑭𝒊,𝒋,𝒌,𝒛 ∙ 𝑿𝒙+𝒊-𝟏,𝒚+𝒋-𝟏,𝒌𝒊
',,,A +	𝒃𝒛\                        (3-1) 
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where 𝑧 = 1, 2, …, 𝑚 and 𝑘 = 1, 2, …, n.  

The six IRBs (IRB0-5) attach to the first convolution layer is shown as IRB0-5 

in Figure 3-6. Each IRB is based on the inverted residual containing a narrow-wide-

narrow structure. Inside the IRB (sub graph inside the Figure 3-6), there are a 1 × 1 

expansion convolutional layer, a depthwise convolution layer and a 1 × 1 projection 

layer. The depthwise convolution and 1 × 1 projection layer are referred to as the 

depthwise separable convolution. The depthwise separable convolution was adopted 

by Xception [88] which consisted of the depthwise convolution followed by a 

pointwise convolution. The depthwise convolution can be represented as [86] 

                   𝑿m𝒙,𝒚,𝒛𝒌 = 𝛿[∑ 𝑭m𝒊,𝒋,𝒛𝒌 ∙ 𝑿𝒙+𝒊-𝟏,𝒚+𝒋-𝟏,𝒛𝒌-𝟏
',, +	𝒃𝒛𝒌\                      (3-2) 

where 𝑭m𝒊,𝒋,𝒛𝒌  is the depthwise filter in which the 𝑧BCchannel in 𝑭m𝒊,𝒋,𝒛𝒌  only calculates 

with the 𝑧BC  channel of 𝑿𝒙+𝒊-𝟏,𝒚+𝒋-𝟏,𝒛𝒌-𝟏  and produces the feature 𝑿m𝒙,𝒚,𝒛𝒌  in the 𝑧BC 

channel.  

Compared to the traditional convolution, the computational reduction of the 

depthwise separable convolution is 1/𝑁 + 1/𝐷A", where 𝑁 is the number of output 

channels, and 𝐷A is the kernel size. Furthermore, the resource efficiency of IRB also 

increases the resource efficiency with its unique architecture. In addition, the skip 

connection structure is introduced to IRB, which gives the network an opportunity to 

access features in earlier stages and lead to a deeper neural network with a high 

efficiency.  

The classification layer is a Fully-Connected layer (FC Layer in Figure 3-6). It 

takes the last output of IRB5 as the input and applies matrix multiplications to the 

weight matrix 𝑭 to produce the number of output classes (2 or 13). This operation 

generates class scores to distinguish the targets.  

The output equation of this layer can be expressed as 
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                              𝑿𝒐 = 	𝑭𝑿𝒊 + 	𝒃                                  (3-3) 

Softmax regression[75] of the classification layer outputs is employed to train the 

network. The output of Softmax regression 𝒚 can be written as 

                                  𝑦, 	= 	 .!/0!#$1
∑ 3456!%$7&
%'(

	 , 𝑗 = 1, 2, … , 𝑛                               (3-4) 

3.2.2 Training of the Model 

To train MCellNet and evaluate its performance in imaging-based high-speed 

Cryptosporidium, Giardia and microplastics detection, the image dataset was 

randomly split with into a training dataset (38,469 images), a validation dataset (9,618 

images) and a test dataset (32,059 images) that contained 48%, 12% and 40% of the 

total number of images by using scikit-learn library [147], respectively. In the task of 

binary classification, the images of microplastics and natural pollutants were 

combined into one single class, and the Cryptosporidium and Giardia images were 

merged into another. The training, validation and test dataset were used to tune the 

parameters of MCellNet during the training phase, tune the hyper-parameters, and 

assess the performance of MCellNet, respectively. 

Deep neural networks are implemented with TensorFlow [148] and are trained 

over an Ubuntu GPU server [149] with four GPU cards (Nvidia GeForce RTX 2080 

Ti) and one Intel CPU (Xeon E5-2650). The weight matrices of the deep neural 

networks (𝑭 and 𝒃) are initialized with the Glorot uniform initializer [150], and the 

networks (𝑭 and 𝒃) are trained in an end-to-end fashion using the Adam stochastic 

optimizing algorithm [151]. The parameters for Adam are 𝛽% = 0.9, 𝛽" = 0.999, and 

a learning rate decay is used for training. A data augmentation mechanism [152] is 

used in the training process to enhance the training dataset size. The images are 

augmented by random position transformation, horizontal and vertical flipping, and 
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image rotation and zooming during training. In addition, a class weights [153], 

parameter space search over the entire training phase with a learning rate and learning 

rate decay are also performed.  

3.2.3 Optimization of the Model 

Deep learning promises accurate and rapid imaging-based analysis of 

Cryptosporidium, Giardia and microplastics of different sizes. Nevertheless, existing 

works in this field rely on computer servers with powerful accelerator and fat neural 

network architecture [36] that outstrips the capability of many mobile and embedded 

processors for field biomedical applications. It is therefore necessary to develop 

efficient mobile neural networks with reduced hardware footprint and computing 

power requirements. Efficient neural network architecture design is a tradeoff 

between the accuracy and speed by carefully tuning the depth (𝑑), width (𝑤) and 

resolution (𝑟) of the neural network [154].  The target of optimization is to retain a 

high accuracy while reducing the floating-point operations (FLOPS) which is a key 

indicator of neural network efficiency. Previous study [154] suggests that FLOPS of 

a neural network is proportional to 𝑑, 𝑤" and 𝑟". A practical approach of optimizing 

a neural network starts with a handcrafted base neural network block and evolves it 

through an architecture search. According to this principle, we have designed an 

MCellNet based on IRB with a parameter search for trade-off between accuracy and 

efficiency.  

To find the optimal IRB numbers for the MCellNet, an IRB search is also 

performed. Because our dataset is less complex than ImageNet, a high-level block 

search with the goal to reduce 𝑤 and 𝑑 are conducted on the baseline MobileNetV2 

architecture for neural network optimization. The input resolution of the neural 

network is kept constant. The width of the neural network is reduced to search for a 
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suitable network scale for our tasks, and the depth of the neural network is reduced 

to further decrease the FLOPS. Several models with different number of IRB blocks 

ranging from 17 to 3 are built and tested (Table 3-2). The optimized configuration 

has 6 IRBs that shows a comparable accuracy score to the original MobileNetV2 (17 

IRBs) with lesser computation power and with faster processing speed on this dataset.  

Table 3-2: IRBs search for base network 
Methods Number of IRBs Images per Second Accuracy 

MobileNetV2 17 258.4 99.4697% 

Model1 10 301.5 99.6225% 

Model2 8 314.7 99.6849% 

MNetSearch 6 319.7 99.5134% 

Model4 3 274 99.4635% 

 

 

In order to further regularize the neural network, the stride parameters are 

adjusted on every IRB in addition to the network search. With this modification, the 

depth and width of MCellNet is shrunken from 120 × 120 to 2 × 2. Furthermore, a 

Fully-Connected (FC) layer is added to combine the structural features from the 

underlying features map. The above restructuring leads to MCellNetA with a 99.64% 

accuracy at a processing speed of 346 images per second, comparing with the best 

optimized MobileNetV2 in Table 3-2 of the accuracy of 99.51% at the speed of 319 

images per second on Nvidia Jetson TX2.  
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3.3 Experimental Results and Discussions 

3.3.1 Image Acquisition of Bioparticles using Imaging Flow 

Cytometry 

 

Figure 3-7: Raw image sequence of bioparticles. Each line represents one 

bioparticle’s images. From left to right is fluorescent image, bright-field image, and 

side scattering image. 

 
Cryptosporidium, Giardia, microplastics and pollutants such as dirt and cell debris 

with size from 3 to 14 µ𝑚 that naturally exist in drinking water were included in the 

study. The naturally existing pollutants were obtained by concentrating 10 liters of 

drinking water using a water filtration system. Formalin-treated Cryptosporidium, 

Giardia oocyst (Waterbornetm Inc) and synthetic microplastic beads (from Thermo 

Fisher Scientific, Duke Scientific and Polysciences Inc.) of different sizes (1.54 µ𝑚, 

3 µ𝑚, 4 µ𝑚, 4.6 µ𝑚, 5 µ𝑚, 5.64 µ𝑚, 8 µ𝑚, 10 µ𝑚, 12 µ𝑚, and 15 µ𝑚) samples 

were spiked separately into 200 µL water. Images of microparticles in spiked water 

samples were observed by imaging flow cytometry (Amnis® ImageStreamX Mk II 
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Imaging Flow Cytometry, Luminex Corporation, Austin, United States) [96]. 

Bioparticles such as Cryptosporidium and Giardia oocysts, microplastics and 

naturally existing particulate pollutants were hydrodynamically focused by a sheath 

flow and flowed through the detection region. The bright-field image of bioparticle 

was acquired by a CCD camera [142] using a 60 × objective with illuminated with a 

LED light source.  

The raw image sequence files (.RIF) of different samples were captured as 

shown in Figure 3-7. Each line represents one type of bioparticle’s imaging. From 

left to right are fluorescent imaging, bright-field imaging, and side scattering imaging. 

The raw bright-field images are extracted from the image sequence files by IDEAS 

software (accompanying with the ImageStream) and each raw image is patched to 

120 ´ 120 pixels as in Figure 3-8. The first row is Cryptosporidium, the second row 

is Giardia, the third row is microbeads, and the last row is natural pollutants. 

From millions of raw images acquired, 80,146 images were selected by experts 

for building the image database. The selected raw images were manually labeled and 

put into a database that consisted of 13 classes: Cryptosporidium (2,082 images, 

Figure 3-9a), Giardia (3,569 images, Figure 3-9b), 1.54-µ𝑚 beads (3,466 images, 

Figure 3-9c), 3-µ𝑚 beads (3,457 images, Figure 3-9d) , 4-µ𝑚 beads (5,783 images, 

Figure 3-9e), 4.6-µ𝑚 beads (2,188 images, Figure 3-9f), 5-µ𝑚 beads (9,637 images, 

Figure 3-9g), 5.64-µ𝑚  beads (3,285 images, Figure 3-9h), 8-µ𝑚  beads (3,066 

images, Figure 3-9i), 10-µ𝑚 (8,270 images, Figure 3-9j), 12-µ𝑚 (4,704 images, 

Figure 3-9k), 15-µ𝑚 beads (2,813 images, Figure 3-9l), and natural pollutants of 

various shapes and sizes (27,826 images, Figure 3-9m). All figures share the same 

scale bar in (Figure 3-9a). 
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Figure 3-8: Bioparticle image dataset. Each row represents one type of bioparticles. 

From the top to bottom are Cryptosporidium, Giardia, microbeads (12µ𝑚, 4µ𝑚, 

5.64µ𝑚, 8µ𝑚, 15µ𝑚, and 3µ𝑚.), and natural pollutants. All sub figures share the 

same scale bar. 

 

The bright-field images of Cryptosporidium, Giardia and other bioparticles has 

complex patterns such as distinct size, internal structure, and aggregation. The 

orientation and relative position of them in the image further complicated the matter 

(Figure 3-8). For example, Cryptosporidium and Giardia appear in the form of both 

single and aggregates in the captured images. Cryptosporidium appears spherical with 

a diameter of 3-6 µ𝑚, whereas Giardia appears oblong with a long axis of 8-14 µ𝑚. 

Giardia may appear in various shapes depending on its orientation. Microplastic 

beads appear sphere with different sizes. The naturally existing pollutants appear in 

various sizes and shapes. Some images appear a bit blur because they were slightly 

out of focus even though an autofocusing mechanism is applied. For example, the 

target bioparticle sometime is blur or out of focus as in Figure 3-10. The images are 

separated by a focus metric – gradient RMS score. The left part is the out of focus 

images and the right part is the focused images. In certain cases, bioparticles at the 

5um 
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edge of the field of view are partially occluded. Moreover, the fluctuation of 

illumination conditions and vibration will cause variability to the images, which 

further complicate the detection task.  

3.3.2 Evaluation Metrics 

MCellNet is capable of rapid and accurate imaging-based detection of 

Cryptosporidium and Giardia over microplastics and natural pollutants under both 

multiclass classification and binary classification. Multiclass classification is used to 

classify images into one of three or more classes so we can know detail information 

on Cryptosporidium, Giardia, microplastic beads, or other contaminated pollutants. 

Binary classification is used to evaluate the performance on two classes of 

classification condition. Binary classification is often used when we need to 

distinguish high-risk bio-contaminants, Cryptosporidium and Giardia, from low-risk 

microplastics and other naturally existing particle pollutants. We compare MCellNet 

with the state-of-the-art deep neural network MobileNetV2 in both tasks. For 

processing speed, all the models are evaluated on Nvidia Jetson TX2 (Jetson TX2 

Developer Kit, Nvidia Corporation, California, United States). 
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Figure 3-9: Single bioparticle image dataset. Each block represents one type of 

bioparticle. From the top to bottom are (a) Cryptosporidium, (b) Giardia, microbeads 

with size of (c) 1.54µ𝑚, (d) 3µ𝑚, (e) 4µ𝑚, (f) 4.6µ𝑚, (g) 5µ𝑚, (h) 5.64µ𝑚, (i) 8µ𝑚, 

(j) 10µ𝑚, (k) 12µ𝑚, and (l) 15µ𝑚, and (m) natural pollutants. All figures share the 

same scale bar in (a). 

 

 

(m) 
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Figure 3-10: Data Distribution on Gradient RMS. (a) The normalized histogram of 

Gradient RMS. (b) The example images with of lesser RMS (blur) and high RMS 

(clear).  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 Deep Learning-Enabled High-speed Bioparticle Detection 
 

81 
 

 

In order to evaluate the performance of MCellNet, the accuracy, precision, 

sensitivity or recall, F1-scores, specificity, and images per second are adopted for 

both multiclass classification and binary classification and listed in the Table 3-3.  

Table 3-3: Evaluation metrics  

Accuracy 
𝑇𝑃 + 𝑇𝑁𝑃 + 𝑁  

          (3-5a) 

Precision 𝑇𝑃𝑇𝑃 + 𝐹𝑃 
          (3-5b) 

Sensitivity or recall 𝑇𝑃𝑃  
          (3-5c) 

F1-scores 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙           (3-5d) 

Specificity 𝑇𝑁𝑁  
          (3-5e) 

False Negative Rate 
𝐹𝑁𝑃  

          (3-5f) 

False Positive Rate 𝐹𝑃𝑁  
          (3-5g) 

 

where TP is true positive, FP is false positive, TN is true negative, FN is false negative, 

P is condition positive and N is condition negative. Particularly, for multiclass 

classification, confusion matrices, also known as error matrix, are used for evaluating 

the performance. Each row of the confusion matrix presents the percentage of 

predicted class, and each column presents the actual class. 

Especially, for the binary classification, the False Negative Rate-False Positive 

Rate (FNR-FPR) curves are used to show the performance and compare the 

performance of different approaches at Equal Error Rate (EER), FNR at 0.1% and 

FPR at 0.1%. EER means the FNR and FPR are equal. Two version of MCellNet 
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binary classification models (MCellNetA and MCellNetB) are built for binary 

classification. MCellNetA is a deep neural network evolved directly from 

MNetSearch. When training MCellNetA, all images of microplastics are merged with 

the natural pollutant images into one class (Class 0), and all Cryptosporidium and 

Giardia images are merged into another class (Class 1). MCellNetB is generated by 

converting the neural network trained as a multiclass classifier (MCellNetM) into a 

binary classifier. Instead of merging the raw data into two classes, the output is 

merged into two classes.  

Table 3-4: Average accuracy, precision, recall and F1-score on test dataset 

Methods 

 Measurement (%)  

Accuracy Precision Recall F1-Score Images/s 

 MCellNetB 99.77 99.53 98.66 99.09 343 

Binary 

Classification 

MCellNetA 99.64 98.71 98.44 98.57 346 

MNetSearch 99.51 98.08 98.12 98.10 320 

MobileNetV2 99.47 98.15 97.70 97.92 258 

Multiclass 

Classification 

MCellNetM 99.69 99.67 99.41 99.54 343 

MobileNetV2 99.59 99.39 99.41 99.40 251 

 

3.3.3 Multiclass Classification 

MCellNet multiclass classification model (MCellNetM) shows a comparable 

performance in terms of average accuracy, precision, recall and F1-scores as 

compared to MobileNetV2 (Table 3-4). The individual precision and recall score on 

multiclass classification are shown in Table 3-5.  

The accuracy of MCellNetM reaches 99.69% using the macro average [155]. 

In terms of the processing speed, MCellNetM is about 37% faster (343 frames per 
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second) than MobileNetV2 (251 frames per second) in multiclass classification task 

on Nvidia Jetson TX2 board. The confusion matrices for MobileNetV2 and 

MCellNetM are shown in Figures 3-11a and b, respectively. In an ideal case with no 

misclassification, all boxes along the diagonal from the top left to bottom right have 

a value of 1 and appear white, and all the rest boxes have a value of zero and appear 

black. With misclassification, the non-diagonal boxes will have non-zero values and 

appear red. As seen in Figure 3-11, the confusion matrix of MobileNetV2 has 

significantly more red boxes, indicating higher classification errors. MobileNetV2 

has a less satisfactory performance even in the classification of microplastics which 

are supposedly easier to classify compared to Cryptosporidium and Giardia. This 

outcome may possibly result from overfitting of MobileNetV2 for it has richer 

parameters than MCellNetM. In MCellNetM, the microplastics are well separated. In 

very few occasions, misclassification is observed for microplastics of similar size. 

For example, a few 3-𝑢𝑚  microbeads are misidentified as 1.54-µ𝑚  and 4-µ𝑚 

microbeads. This error possibly results from a few out-of-focus images under existing 

autofocusing mechanism. In such a scenario, smaller objects may appear bigger. 

Another possible source of error may come from the natural water pollutants which 

come in diverse sizes and shapes. Some of the particulate pollutants show image 

patterns similar to bioparticles, leading to misclassification of pollutants to 

Cryptosporidium and Giardia.  
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Figure 3-11: The normalized confusion matrix on multiclass classification task. (a) 

MobileNetV2 and (b) Our proposed MCellNetM. 13 classes of output include 

naturally existing pollutants, Cryptosporidium, Giardia, and beads: 1.54 µ𝑚, 3 µ𝑚, 

4 µ𝑚, 4.6 µ𝑚, 5 µ𝑚, 5.64 µ𝑚, 8 µ𝑚, 10 µ𝑚, 12 µ𝑚, and 15 µ𝑚. The color grading 

represents the level of agreement between the prediction and the ground truth with 

white (1) being full agreement and black (0) being no agreement. In an ideal case 

with no misclassification, all boxes along the diagonal from the top left to bottom 
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right have a value of 1 and appear white, and all the rest boxes have a value of zero 

and appear black. With misclassification, the non-diagonal boxes would have non-

zero values and appear red. 

 

The feature maps generated from the IRB0-5 of MCellNetM in multiclass 

classification task are also examined with the t-distributed Stochastic Neighbor 

Embedding (t-SNE) algorithm [156]. t-SNE is a widely adopted visualization method 

that projects high-dimensional data into low dimensions and visualize in low 

dimensions. t-SNE gives you the intuition on how the data is arranged in high-

dimensional space. Unlike Principal Components Analysis (PCA) [157], t-SNE is a 

non-linear dimensions reduction technique. The PCA is a linear dimensions reduction 

technique that target to maximum variance and preserves large pairwise distances, 

and the t-SNE only preserves small pairwise distances (local similarities). The t-SNE 

algorithm builds the similarity relationship between the pairs of instances in high 

dimensional and low dimensional spaces.  

As shown in Figure 3-12, points in different colors that represent respective 

classes are projected from the vector presentation of respective IRB outputs into a 

two-dimensional space. The t-SNE graphs from IRB0 to IRB5 (a-f) show that the 

microbeads are well separated even in shallow layers. But deeper layers for the 

feature transformation are required to distinguish Cryptosporidium and Giardia from 

each other. These results suggest that the structure and the size of the neural network 

must match the task in terms of data size and distribution in order to balance the 

accuracy and speed.  
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Table 3-5: Individual precision and recall score on multiple classification  
Class MCellNetM MobileNetV2 

Precision Recall Precision Recall 

Pollutants 99.51 99.79 99.67 99.55 

Cryptosporidium 98.14 95.07 95.36 96.51 

1.54 µ𝑚 99.40 99.78 99.85 99.33 

3 µ𝑚 99.78 99.49 99.35 99.13 

4 µ𝑚 99.78 100.0 99.34 99.91 

4.6 µ𝑚 99.78 100.0 99.67 99.78 

5 µ𝑚 100.0 100.0 99.59 99.90 

5.64 µ𝑚 100.0 100.0 99.92 99.92 

8 µ𝑚 99.84 99.84 99.75 99.75 

Giardia 99.56 98.40 99.63 98.84 

10 µ𝑚 99.97 100.0 99.97 99.97 

12 µ𝑚 99.90 100.0 99.95 99.95 

15 µ𝑚 100.0 100.0 100.0 99.82 

Avg 99.67 99.41 99.39 99.41 
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Figure 3-12: The t-SNE visualization on the IRB0 to IRB5 (a)-(f) of MCellNetM in 

multiclass classification. Different color is the different target class of 

Cryptosporidium, Giardia, microbeads (1.54 µ𝑚, 3 µ𝑚, 4 µ𝑚, 4.6 µ𝑚, 5 µ𝑚, 5.64 

µ𝑚, 8 µ𝑚, 10 µ𝑚, 12 µ𝑚, and 15 µ𝑚.), and natural pollutants. 
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3.3.4 Binary Classification 

Table 3-6: Error rate of different approaches on binary classification 
Methods EER (%) 0.1%FNR (%) 0.1%FPR (%) 

MCellNetB 0.63 20.73 2.12 

MCellNetA 0.73 4.19 5.34 

MNetSearch 1.18 11.19 7.89 

MobileNetV2 1.45 39.87 7.29 

 

MCellNet binary classification model is used to evaluate the performance on two-

class classification condition. Results indicate that MCellNetA and MCellNetB are 

superior to MobileNetV2 in terms of average accuracy, pression, recall and F1-score 

(Table 3-4). In terms of the processing speed, MCellNetA achieves 346 frames per 

second and surpasses MobileNetV2 (258 frames per second) by 34%  in binary 

classification task on Nvidia Jetson TX2 board. Figure 3-13 shows the False 

Negative Rate-False Positive Rate (FNR-FPR) curve of MCellNetA and MCellNetB 

compared to MobileNetV2 and MNetSearch. MCellNetA and MCellNetB have 

significantly better performances with improved error rate compared to MobileNetV2, 

a well-established deep neural network architecture. The Equal Error Rate (EER), 

FNR at 𝐹𝑃𝑅 = 0.1%  and FPR at 𝐹𝑁𝑅 = 0.1%	 are summarized in Table 3-6. 

MCellNetB has an error rate of only 0.63% at EER. In comparison, MobileNetV2 

has a relatively large error rate of 1.45%. At the false negative rate of 0.1%, 

MCellNetA has a false-positive rate of 4.19%, whereas it is 39.87% for MobileNetV2. 

At the false positive rate of 0.1%, the false-negative rate of MCellNetB is 2.12%, 

whereas it is 7.29% for MobileNetV2 model.  
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Figure 3-13: The False Negative-False Positive rate curve on the binary classification 

task. The diagonal dashed is the EER. Natural pollutant images are class 0, and all 

Cryptosporidium and Giardia images are class 1. 

 

MCellNetB is evolved from multiclass classifier through a multiclass-to-binary 

strategy. MCellNetB is first trained with multiple outputs, 13 classes for our case. 

Next, binary class prediction labels are generated by merging the outputs into two 

classes. For instance, all labels for microplastics and natural pollutants are merged 

into a new pollutant class label "0", and both Cryptosporidium and Giardia labels are 

merged into a protozoa class "1". Using this approach, MCellNetB has achieved an 

accuracy of 99.77%. Results show that the multiclass-to-binary classifier MCellNetB 

outperforms the binary classifier (MCellNetA) and other deep neural networks in the 

binary classification task in terms of average accuracy, precision, recall and F1-score 

(Table 3-4). This observation suggests that rich labeling may offer more hints for 

optimization, thereby generating more precise filters for higher accuracies [158]. In 

term of protozoa classification, the MCellNetB achieves a sensitivity of 97.37%, a 

    MobileNetV2 MNetSearch MCellNetA MCellNetB 
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specificity of 99.95%, a positive predictive value of 99.26% and a negative predictive 

value of 99.92%.  

Figure 3-14: The t-SNE visualization on the IRB0 to IRB5 (a)-(f) of MCellNetB in 

binary classification. Natural pollutant images are class 0 (green), and all 

Cryptosporidium and Giardia images are class 1 (red). 
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The feature maps generated from the IRB0-5 of MCellNetB in the binary 

classification task with the t-SNE algorithm were also examined. As shown in Figure 

3-14, points in green represent microplastics and natural pollutants, and points in red 

represent protozoans. The t-SNE graphs from IRB0 to IRB5 (a-f) show that the 

microplastics and pollutants are well separated even in the shallow layers.   
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3.4 Summary 

In this Chapter, a deep neural network is demonstrated by using imaging flow 

cytometry as a system for the Cryptosporidium and Giardia detection. The self-

developed deep neural network MCellNet adopts the building block (IRB) from 

MobileNetV2 to achieve faster speed and lower power consumption for affordable 

machines. We used well-characterized samples, such as commercial 

Cryptosporidium and Giardia cell line and microplastic beads to demonstrate the 

capability of the proposed approach. For multiclass and binary classifications, 

MCellNet achieves accuracies of 99.69% and 99.7%, respectively. Our system is able 

to detect Cryptosporidium and Giardia with a sensitivity of 97.37% and a specificity 

of 99.95%. MCellNet has an analysis speed of 346 frames per second outperforming 

the state-of-the-art deep learning algorithm MobileNetV2 (251 frames per second) in 

demonstrated tasks. We also notice that even with good training, the machine learning 

model may still not work well on novelty data that the model did not see before. Deep 

learning with Bayesian inference may be a good solution. With enough high-quality 

training data, MCellNet could be extended to detect other types of bioparticles in high 

speed. The reported system, with its ability to detect and classify Cryptosporidium 

and Giardia with high speed and accuracy, would empower water monitoring and 

enable users to determine high-risk bio-contaminants and low-risk microplastics. It 

could also be potentially applied to other high-throughput single-cell analysis 

applications for environmental monitoring, clinical diagnostics, and other biomedical 

fields.   
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Recently, deep neural networks have shown superb performance in analysing 

bioimages for diseases diagnosis and bioparticle classification. Conventional deep 

neural networks use simple classifiers such as SoftMax to obtain high accuracy 

results. Therefore, they have limitations in many practical applications which require 

both low false alarm rate and high recovery, e.g., rare bioparticle detection, in which 

the representative image data is hard to collect, the training data is imbalance, and the 

input images in inference time could be different from the training images. Deep 

metric learning offers a better generatability by using distance information to model 

the similarity of the images and learning a function maps from images pixels to latent 

space, playing a vital role in the rare object detection. In this paper, we propose a 

robust model based on deep metric neural network for rare bioparticle detection. 

Experimental results show that the deep metric neural network achieved a high 

accuracy of 99.86% in classification, 98.89% in precision rate, 99.16% in recall rate 

and zero false alarm rate. The reported model empowers the imaging flow cytometry 

with capabilities of biomedical diagnosis, environmental monitoring, and other 

biosensing applications.  

 

Chapter 4   Deep Metric Learning-Enabled Rare 

Bioparticle Detection  
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4.1 Introduction 

 

Figure 4-1: Novel examples in the inference time. The conventional deep neural 

networks often make wrong predictions and do so confidently on some novel 

examples when the images are not seen in the training dataset. Such as the pollutions 

are predicted as Giardia or Cryptosporidium with confidence level > 99.99%. 

 

Rare bioparticle detection is essential to various applications such as cancer diagnosis 

and prognosis, viral infections, and implementing early warning systems [4, 5, 25, 

36-39]. In those applications, the target bioparticles in the sample are extremely rare 

with a huge abundant of background particles. For example, the ratio of the target 

bioparticle and background bioparticles could be 1 in 1000 (0.1%) or even less. 

Currently, bioimage analysis has made a huge progress, benefitting from rich-dataset 

supervised learning using deep neural networks [4, 5, 39]. However, conventional 

deep neural networks only use simple classifiers such as SoftMax to obtain high 

accuracy results with the confidence that the deep neural network learns more distinct 

features than traditional machine learning in classification. Thus, in many practical 

applications, e.g., rare bioparticle detection, they sometimes get unexpected results 

[41, 90, 159, 160]. This is because it is hard to collect representative image data in 

those applications and the input images in inference time may be distinct from those 

during training. Those applications also require the model to have a performance of 

low false alarm as well as high recovery rate in practical environments. For example, 
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a large amount of false alarms will introduce high-cost consequential actions [161]. 

Up to now, it remains a great challenge in the detection of rare bioparticles in practical 

applications.  

Conventional deep neural networks use simple classifier to make the decision 

of seen/unseen classes. Therefore, they often make wrong predictions, and do so 

confidently [162-165]. For example, the conventional deep neural network model 

sometimes predicts wrongly (It predicts the pollutants as Cryptosporidium or Giardia) 

with a high confidence level (> 99.99%) as shown in Figure 4-1. These inaccuracies 

arise from the conventional classification approaches (Figure 4-2), for example, 

convolutional neural networks (CNNs) use Softmax [160] classifier, which acts as a 

linear classifier, and limit their ability to detect novel examples [41, 162, 164, 166, 

167]. As a result, conventional Softmax based approaches are not suitable for open-

set rare bioparticle detection. For example, a highly accurate algorithm based on a 

sophisticated densely connected neural network for bioparticle classification was 

developed for rare bioparticle detection [5], but it only achieved a sensitivity and 

specificity of 77.3% and 99.5%, respectively. 

Figure 4-2: Conventional deep classification. In deep classification, the model only 

studies a boundary. 
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Deep metric learning [90] (Figure 4-3) provides a possible direction to improve 

out of distribution or open-set detection by learning a map from the input image space 

to an output embedding features in the latent space. Instead of using SoftMax 

classifier, this approach uses semantic similarity such as the Euclidean distance to 

constrain the models. It does not rely on cross-entropy loss but proposes another class 

of network loss, i.e., contrastive loss. Thus, the sum of the output class probabilities 

is not to be one and this provides it a generatability [41]. Generative model is 

essentially a metric learning problem whereby the key is to learn a large margin 

distance metric within the latent space when the testing data are usually disjoint from 

the training dataset.  

In this Chapter, a deep neural network model based on deep metric learning for 

rare bioparticle detection is demonstrated. The model leverages convolutional neural 

network to study the rich features in the dataset and learning distinct metric by using 

Siamese network [168] and contrastive loss, which maximizes the distance of 

Figure 4-3: Deep metric learning problem. In deep metric learning, the model studies 

a more generative representation with similar classes are close and the unsimilar 

classes are far away. 
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different classes and minimizes the distance of similar classes. Finally, experimental 

results such as comparing with conventional deep learning and rare bioparticle 

detection are presented. 
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4.2 Model for Rare Bioparticle Detection 

4.2.1 The Fundamental of Deep Metric Learning 

Unsupervised deep metric learning is used to learn a low-dimensional subspace to 

preserve useful geometrical information of samples. On the other hand, supervised 

deep metric learning is used to learn a projection from the sample space to the feature 

space and measure the Euclidean metric in this feature space to discriminate the 

results. The metric learning is defined to study a map function 𝑓 with a dataset 𝝌 =
{𝒙, 𝒚, 𝒛, … }, whereby 𝑓:	𝝌	 → ℝ( is well defined mapping and 𝑑:		ℝ( × ℝ( 	→ ℝ+ is 

the Euclidean distance over ℝ( . Then, 𝑑J(𝒙, 𝒚) = 𝑑[𝑓(𝒙), 𝑓(𝒚)\ = 	‖𝑓(𝒙) −
𝑓(𝒚)‖" is close to zero when 𝒙 and 𝒚 are similar. The mathematical definition of 

Euclidean distance 𝑑(𝒙, 𝒚) is expressed as [90] 

 𝑑(𝒙, 𝒚) = 	 ‖𝑓(𝒙) − 𝑓(𝒚)‖"							 
             =				 �[𝑓(𝒙) − 𝑓(𝒚)\&(𝑓(𝒙) − 𝑓(𝒚)))

 

                             
(4-1) 

 

where 𝒙, 𝒚 ∈ 𝝌  and it is assumed that metric 𝑑(𝒙, 𝒚):		𝝌 × 𝝌	 → ℝ+  satisfies the 

following properties as 

 𝑑(𝒙, 𝒚) ≥ 0 

 

(4-2a) 

 𝑑(𝒙, 𝒚) = 𝑑(𝒚, 𝒙) 
 

(4-2b) 

 𝑑(𝒙, 𝒛) ≤ 𝑑(𝒙, 𝒚) + 𝑑(𝒚, 𝒛) 
 

(4-2c) 

and 
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 𝑑(𝒙, 𝒙) = 	0 

 

(4-2d) 

Deep metric learning is widely applied in signature verification [168], face 

verification and recognition [169], and person re-identification [170]. 

4.2.2 Deep Metric Learning for Rare Bioparticle Detection 

The embedding network structure of deep metric learning model is shown in Figure 

4-4. The input of base network is a grayscale image with 120 × 	120 pixels and one 

convolutional layer with a filter size of 7	 × 	7 is in the first stage. Then, three residual 

network blocks (RB0 to RB2) [81] are attached to the first convolution neural 

network layer. The output of the last residual network block RB2 is flattened, and 

then followed by a fully-connected layer [136] together with a parametric ReLU 

(PReLU) layer [171]. Finally, a Fully-Connected layer with 2 output units is attached 

to the PReLU layer to generate the latent feature vector of bioparticles. The detail 

parameters of the embedding network are listed in Table 4-1.  

Table 4-1: Network parameters of the embedding network 
Layer/Block Type Output dimension Params 

Conv2d Convolution 60 × 60 × 64 9536 

RB0 Residual Block 30 × 30 × 64 147,968 

RB1 Residual Block 15 × 15 × 128 525,568 

RB2 Residual Block 8 × 8 × 256 2,099,712 

Pool Average Pool 2 × 2 × 256 0 

Dense1 Fully Connected 256 262,400 

PReLU Parametric ReLU 256 1 

Dense2 Fully Connected 2 514 
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Figure 4-4: Embedding network structure. 

 

The first convolutional 2D layer (Conv2D in Figure 4-4) [146] takes an 

ℎ × 𝑤 × 𝑛 input feature map 𝑿𝒊, where ℎ is the spatial height, 𝑤 is the spatial width 

and 𝑛 is the output channels of the feature map (120 × 120 × 1). 

The input 𝑿𝒊 is transformed into a  60	 × 	60 × 64  output feature maps 𝑿𝒐 and 

expressed as [86] 

  𝑿!,#,@𝒐 = 𝛿[∑ 𝑭𝒊,𝒋,𝒌,𝒛 ∙ 𝑿𝒙+𝒊-𝟏,𝒚+𝒋-𝟏,𝒌𝒊
',,,A +	𝒃𝒛\        (4-3) 

where 𝑧 = 1, 2, …, 𝑚 and 𝑘 = 1, 2, …, n. The input feature map 𝑿𝐢 is convoluted 

with a number of feature detectors, each of which is a three-dimensional filter 𝑭 in 

the present layer (7 × 7 × 1), and a bias 𝒃. An ReLU function 𝛿(𝑥) is attached to this 

convolution operator.  

Three cascaded residual network blocks (RB0-2 in Figure 4-4) [81] with down 

sample (stride = (2, 2)) are attached to the first convolution layer. The RB has two 

3 × 3 convolutional layers and the same number of output channels as shown in 

Figure 4-5. In the end, a batch normalization layer and a ReLU activation function 
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follow each convolutional layer. In addition, an identify path is added to connect the 

input to the output directly. 

The classifier is implemented by two fully connected layers (Dense Layer in 

Figure 4-4). It takes the last output of RB2 as the input and applied cascaded matrix 

multiplications and non-linear function to the weight matrix 𝑭 and bias 𝒃 to produce 

a vector with two dimensions in the latent space. The equation of fully-connected 

layer can be expressed as 

       𝑿𝒐 = 	𝛿(𝑭𝑿𝒊 + 	𝒃)                                   (4-4) 
 

Parametric ReLU (PReLU) layer is used after the fully-connected layer. The 

parametric ReLU layer is expressed as 

𝑓(𝑥') =  𝑥' ,													𝑖𝑓	𝑥' > 0𝑎'𝑥' , 𝑖𝑓	𝑥' ≤ 0  (4-5) 

where 𝑥' is the input value and 𝑎' is the parameter of the PReLU layer. 

Figure 4-5: Residual blocks in the embedding network. 
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4.2.3 Training of Deep Metric Learning  

 

Figure 4-6: The structure of Siamese network for training deep metric learning. The 

twin networks share same network parameters. A loss function is attached to this twin 

network to regularize the network. 

 
Siamese network [168] is the most popular deep metric learning network structure 

which is used to train the deep learning model as shown in Figure 4-6. The network 

consists of two embedding networks and a joint output neuron. In this work, residual 

network blocks are used as embedding networks to extract features. The two 

embedding networks share the same weights, the identical sub-networks extract 

feature vectors from two images simultaneously and the joined neuron measures the 

distance between the two feature vectors in the latent space using a metric.  In the 

training process, the similar and dissimilar pairs (𝒙𝒊	𝑎𝑛𝑑	𝒙𝒋) are passed through the 

network and generate features vector in the latent space named 𝑓(𝒙𝒊) and 𝑓[𝒙𝒋\. In 

the loss function, the distance metric 𝑑(𝑥, 𝑦) = ‖𝑓(𝑥) − 𝑓(𝑦)‖"  is regressed to 

minimize the distance between similar pairs and keep the distance of the dissimilar 

pairs. The contrastive loss is used to train the Siamese network. For the pair of input 

(𝒙𝒊, 𝒙𝒋), it is a positive pair if 𝒙𝒊	 and 𝒙𝒋 are semantically similar and negative pair if 

they are dissimilar. The training process of Siamese network deals with minimize a 
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contrastive loss which is expressed as 

               𝐿 tu𝑊(G), 𝑏(G)vG)%I w 

= x ℎ(𝑑J[𝒙𝒊, 𝒙𝒋\ − 𝜏%)"
(',,)∈𝒮

+ x ℎ(𝜏" − 	𝑑J[𝒙𝒊, 𝒙𝒋\)"
(',,)∈𝒟

 
(4-6) 

where h(x) = max (0, x) is the hinge loss function, 𝜏% = 0.9 and 𝜏" = 1.0 are two 

positive thresholds with 𝜏% <	𝜏", respectively, and 𝒮 = {(𝑖, 𝑗)} is the similar pairs 

and 𝒟 = {(𝑖, 𝑗)} is the dissimilar pairs.  

The deep metric learning model is implemented with deep learning framework-

PyTorch [172] and trained over an Ubuntu GPU server [149] with four Nvidia 

GeForce RTX 2080 cards as well as the Intel Xeon CPU E5-2650. To train and 

evaluate the performance of the model, the selected image dataset is randomly split 

into the training, validation and testing dataset with 48%, 12% and 40% of the total 

number of images, respectively. Later, images in training dataset are augmented to 

10,000 images, and each image is randomly sampled from the dataset and processed 

by position transformation, horizontal and vertical flipping, rotation or zooming. The 

weight of the deep neural networks is initialized with the Glorot uniform initializer 

[150] at a mean value of zero and a standard deviation at 10-", and the network is 

trained in an end-to-end fashion using the Adam stochastic optimizing algorithm 

[151]. The parameters for Adam are 𝛽% = 0.9, 𝛽" = 0.999, and a learning rate decay 

is used for training. Early stop is also used to prevent overfitting by stopping the 

training when the model’s performance on validation dataset start to degrade [173]. 

A maximum of 300 epochs is used to train the model. 



Chapter 4 Deep Metric Learning-Enabled Rare Bioparticle Detection 
 

104 
 

4.2.4 Deep Metric Learning based Model  

 

Figure 4-7: Deep metric learning based classification. The unknown bioparticle is 

classified to correspond classes. Class label is assigned to classify the unknown 

particles by the closed cluster center (red). Confidence level is used to present the 

similarity of unknown particles to certain databased collected by Cryptosporidium 

and Giardia samples. 

 

The deep metric network studies a map from images into a latent space and it cannot 

be directly used to classify images. In order to classify the rare bioparticle images 

with deep metric learning model, further processing is needed in the end of this neural 

network model. It converts the values in the latent vector into a target class label and 

a confidence score. As shown in Figure 4-7, the class label is assigned by the closed 

cluster center, which can be calculated by either mean latent vectors (Mean center) 

or Gaussian Mixture Models (GMM) [174] of a known class, such as 

Cryptosporidium, in the training dataset. The confidence score is used to present the 
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similarity between the target bioparticle to the certain classes, which are collected in 

the training phase. The confidence score can be calculated by the distance of the target 

bioparticle to the center of certain class on the distribution diagram of the latent space 

or a Gaussian estimator.  

 Gaussian distribution [175] is a continuous probability distribution, which has 

a characteristic with symmetric “Bell curve” shape that quickly falls off toward 0. 

GMM is a probabilistic model, which assumes that the underlying data belong to a 

linear combination of several gaussian distributions. A GMM model gives a posterior 

distribution over 𝐾 Gaussian distributions and show better performance on optimize 

model complexity [176]. The GMM can be represented as [177] 

 𝑃(𝑥|𝜋, 𝜇, ∑) = 	x𝜋'𝒩(𝑥|𝜇' , ∑')P

')%
 (4-7) 

where 𝒩(𝑥|𝜇, ∑) is a normal distribution, 𝑥 is a multidimension vector variable, 𝜇 is 

the mean of this x and ∑ is the covariance matrix. The 𝒩(𝑥|𝜇, ∑) is given by [177] 

 𝒩(𝑥|𝜇, ∑) = 1(2𝜋)E/"|∑|%/" exp	(−12 (𝑥 − 𝜇)&∑-%(𝑥 − 𝜇)) (4-8) 

where D is the number of dimensions of the feature vector. The 𝜋'  are mixing 

coefficients, satisfied 0 ≤ 𝜋' ≤ 1 and ∑ 𝜋'D
')R = 1. With the assumption that 𝑥' are 

come from independent 𝐾	mixture distributions insider 𝐶 . The equation can be 

expressed as [177] 

 𝑃(𝐶|𝜋, 𝜇, ∑) = 	£x𝜋'𝒩(𝑥(|𝜇' , ∑')P

')%

D

()%
 (4-9) 

Expectation-maximization (EM) algorithm is used to find the local maximum 

likelihood and estimates of individual parameters in GMM (μ and ∑). EM is an 

iterative algorithm which follows the rule that very iteration strictly increases the 

maximum likelihood. EM algorithm may not approach to the global optimize point 
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but it can guarantee to local saddle point. The EM algorithm consists two main steps: 

expectation and maximization. 

The expectation step calculates the expectation of the clusters when each 𝑥' ∈𝑋 is assigned to the clusters with given 𝜇, ∑, π. The maximization step maximizes the 

expectation in previous step by find suitable parameters. 

First, the program randomly assigns samples 𝑋 = {𝑥%, 𝑥", … , 𝑥(}  to 

components estimated mean �̂�%, �̂�", …, �̂�A,. For example,  �̂�% = 𝑥S, �̂�" = 𝑥"R, �̂�T =𝑥"% , �̂�U = 𝑥TT , �̂�V = 𝑥SR  when N = 100, K = 5. And assign Σ¦% = Σ¦" = ⋯ = Σ¦A =𝐶𝑜𝑣(𝑥) = 𝐸[(𝑋 − �̅�)(𝑋 − �̅�)&] where �̅� = 𝐸(𝑋). Last, all the mixing coefficients 

are set to a uniform distribution with 𝜋«% = 𝜋«" = ⋯𝜋«A = %
P . 

In the expectation step, the 𝑝(𝐶A|𝑥' , 𝜋«A , �̂�A , Σ¦A) is given by [177] 

 𝑝[𝐶A`𝑥' , 𝜋«A , �̂�A , Σ¦A\ = 𝜋«A𝒩[𝑥«'`�̂�A , Σ¦A\∑ 𝜋«,𝒩[𝑥'`�̂�, , Σ¦,\P
,)%

 
(4-10) 

In the maximization step, [𝜋«A , �̂�A , Σ¦A\('+%) =	arg	max
WX$,YX$,Z[$

𝑝 t𝐶A𝑥' , [𝜋«A , �̂�A , Σ¦A\'w 

where each item can be expressed as [177] 

 𝜋«A =x𝑝(𝐶A|𝑥' , 𝜋«A , �̂�A , Σ¦A)𝑁D

')%
 

(4-11a) 

 �̂�A = ∑ 𝑝(𝐶A|𝑥' , 𝜋«A , �̂�A , Σ¦A)𝑥'D
')%∑ 𝑝(𝐶A|𝑥' , 𝜋«A , �̂�A , Σ¦A)D
')%

 
(4-11b) 

 Σ¦A = ∑ 𝑝(𝐶A|𝑥' , 𝜋«A , �̂�A , Σ¦A)(𝑥' − �̂�A)(𝑥' − �̂�A)&D
')% ∑ 𝑝(𝐶A|𝑥' , 𝜋«A , �̂�A , Σ¦A)D

')%
 

(4-11c) 

The whole EM process repeats iteratively until the EM algorithm converges to  point 

and gives a maximum likelihood estimate for each 𝜋«A , �̂�A , Σ¦A. With the EM process, 

the parameters of individual Gaussian distributions can be estimated. The studied 

model can be used to predict the label and confidence of a unknown bioparticle. 

and 
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4.3 Experimental Results and Discussions 

4.3.1 Profiling of Bioparticles  

 

Figure 4-8: Overview of system setup. (a) A deep metric neural network that enables 

intelligent imaging flow cytometry (Amnis® ImageStream®X Mk II) for rare 

bioparticle detection. The system consists of laser, flow cytometry, imaging system, 

image database, and deep neural network, etc. (b) Images are collected into a database. 

 
The rare bioparticle detection system is illustrated in Figure 4-8. First, samples were 

spiked and imaged using the imaging flow cytometry (Amnis® ImageStream®X Mk 

II). Bioparticles such as Cryptosporidium, Giardia, microplastics and other pollutants 

such as dirt and cell debris with size all from 3 to 14 µ𝑚 that naturally exist in 

drinking water were included in the study. The naturally existing pollutants were 

obtained by concentrating 10 liters of drinking water using a water filtration system. 

Formalin-treated Cryptosporidium oocysts, Giardia cysts (Waterbornetm Inc) and 

synthetic microplastic beads (Thermo Fisher Scientific, Duke Scientific and 

Polysciences Inc.) of different sizes (1.54 µ𝑚, 3 µ𝑚, 4 µ𝑚, 4.6 µ𝑚, 5 µ𝑚, 5.64 µ𝑚, 

8 µ𝑚 , 10 µ𝑚 , 12 µ𝑚  and 15 µ𝑚 ) were spiked separately into 200 µL water. 

Bioparticles were hydrodynamically focused by a sheath flow and flowed through the 

detection region with PBS used as the sheath medium. Single bioparticles were 

illuminated with a LED light source, and bright-field images were acquired with a 
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CCD camera [142] using a 60 × objective (Figure 4-8a).  

The raw image sequence files (.RIF) of different samples were captured. The 

raw bright-field images were extracted from the image sequence files by IDEAS 

software (accompanying with the ImageStream) and patched to 120 ´ 120 pixels 

(Figure 4-8b). From millions of raw images acquired, 89,663 images (Figure 4-9) 

were selected to construct the dataset by experts. The image dataset consists of three 

classes: Cryptosporidium (2,078 images), Giardia (3,438 images), and other natural 

pollutants and beads (84,147 images). The bright-field images of bioparticle had 

complex patterns, such as distinct sizes, degree of aggregation and different internal 

structures, which complicated the learning task.  

Figure 4-9: Bioparticle image dataset. Each row represents one type of bioparticle. 

From the top to bottom are Cryptosporidium, Giardia, natural pollutants and beads. 

All subfigures share the same scale bar. 
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4.3.2 Bioparticle Classification Evaluation 

 

 

Figure 4-10: Visualization on 2D latent space of traditional deep classification-based 

model and deep metric learning. (a) traditional deep classification-based model, (b) 

deep metric learning based model. 

              
The output latent vectors of the deep metric neural network, which are mapped to a 

2D latent space as shown in Figure 4-10. Compared with the conventional deep 

classification method (Figure 4-10a), the deep metric learning model is trained using 

Siamese network (Figure 4-10b) and contrastive loss shows a better performance. 

The dots of the similar images in deep metric learning are closer and the dissimilar 

images are kept far away from others, providing the ability of generatability. 

Moreover, the t-SNE graphs from RB0 to RB2, which is low level to high level 

features (Figure 4-11), also show that the data is well separated in the deep metric 

learning based model (Figure 4-11a,c, and e) even in the shallow layers by 

comparing with the conventional classification-based method (Figure 4-11b,d, and 

f).   

For the classification, the GMM model is selected because it can tell us how 

much confidence it is associated with the target cluster, and it has the same accuracy 

(a)  (b)  
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of 99.86% with the mean center. The results of GMM with deep metric learning are 

shown in Figure 4-12. The blue color is the natural pollutants and beads, the yellow 

color is the Cryptosporidium and the green color is the Giardia. The dot and plus 

signs are training dataset and testing dataset respectively. The purple colour with 

white boundary is the estimated GMM cluster. The estimated parameters of GMM 

are listed in Table 4-2. 

Table 4-2: Estimated parameter of GMM with deep metric learning 
 Mean (𝝁) Covariances (𝚺) Coefficients (𝝅) 

Nature 

Pollutants 

-0.4795 0.8864 
3.9012E-6 -6.2244E-6 

0.6390 

-6.2244E-5 3.2312E-5 

Cryptosporidium -0.2034 -0.7312 

9.8237E-5 5.4069E-5 

0.1806 

5.4069E-5 5.5438E-5 

Giardia 0.6001 0.5226 

4.3410E-5 2.1701E-5 

0.1804 

2.1701E-5 2.3743E-5 
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Figure 4-11: Visualization on intermediate layers with t-SNE on deep metric learning 

and traditional classification-based model. (a, c, e) the lower, middle, and high level 

of deep metric learning, (b, d, f) the lower, middle, and high level of traditional deep 

classification-based model. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4-12: Visualize of the GMM result with deep metric learning. Blue color is 

the natural pollutants and beads, the yellow color is the Cryptosporidium and the 

green color is the Giardia. The purple colour with white boundary is the estimated 

GMM cluster.  

 

The results of the model comparison between deep metric learning and 

conventional deep classification are summarized in Table 4-3. The model based on 

deep metric learning is superior to the model based on conventional deep 

classification neural networks in terms of accuracy, precision, recall and F1 score. 

The model based on deep metric learning network achieves 99.86% in accuracy, 

98.89% in precision rate, 99.16% in recall rate and 99.02% in F1 score. On the other 
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hand, the model based on conventional deep classification gives 99.71% in accuracy, 

97.84% in precision, 98.55% in recall and 98.19% in F1 score. The results in Tables 

4-4 and 4-5 also show that the performance of the individual class in deep metric 

learn-based model is better when it has a large quantity of training data. For example, 

nature contaminated particles.  

Table 4-3: Precision, recall and F1-score on test dataset 
Methods Measurement (%) 

 Accuracy Precision Recall F1 Score 

Deep Classification 99.71 97.84 98.55 98.19 

Deep Metric Learning 99.86 98.84 99.17 99.00 

 

4.3.3 Model Verification using Spiked Samples 

In order to evaluate the performance of the deep metric learning model on rare 

bioparticle detection, Cryptosporidium and Giardia were spiked into the concentrated 

water sample to emulate rare bioparticle in contaminated water. In total, ten tests were 

run, and the captured images were detected by the software with confidence level at 

0.98 and verified by biological experts based on their morphologies. The results are 

summarized in Table 4-6. As shown in the table, the deep metric learning gives zero 

false warning signal, which is vital to implement the early warning system that needs 

the specificity of 100%. In comparing, conventional deep classification gives false 

positive signal in test 1, 3, 5, 6, 7, 10, especially false warning signals in test 7 and 

10 are not acceptable. For the recovery rate, the deep metric learning gives an average 

of 85.5%.              
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Table 4-4: Confusion matrix of traditional deep classification 

Class 

Prediction 

Nature 

Pollutants 

Cryptosporidium Giardia 

Actual 

Nature 

Pollutants 

29610 35 14 

Cryptosporidium 20 807 4 

Giardia 10 8 1357 

 

         

 

 

 

 

 

Table 4-5: Confusion matrix of deep metric learning-based classification 

Class 

Prediction 

Nature 

Pollutants 

Cryptosporidium Giardia 

Actual 

Nature 

Pollutants 

29639 17 3 

Cryptosporidium 9 820 2 

Giardia 6 9 1360 
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Table 4-6: Cryptosporidium and Giardia detection using deep metric learning 

S/N 
Spike 

Level 

Images 

Number 

Manual 

Counting 
Sensitivity Specificity Alarm 

Recovery 

Rate 

1 20C 23483 7 85.7% 100% Yes 85.7% 

2 20C 18422 8 75.0% 100% Yes 75.0% 

3 20C 21834 10 80.0% 100% Yes 80.0% 

4 20G 19383 7 100.0% 100% Yes 100.0% 

5 20G 18320 9 88.9% 100% Yes 88.9% 

6 20G 24872 6 83.3% 100% Yes 88.3% 

7 0 20000 0 - 100% No - 

8 0 20000 0 - 100% No - 

9 0 20000 0 - 100% No - 

10 0 20000 0 - 100% No - 

Mean 85.5% 100% - 85.5% 
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4.4 Summary 

Siamese based deep metric learning provides a set of new tools for learning latent 

vectors by leveraging both convolutional neural network and deep metric learning. In 

this Chapter, a deep neural network based on deep metric learning for rare bioparticle 

detection is presented by incorporating Siamese constraint in the learning process. 

The model contains one convolutional layer with a filter size of 7	 × 	7 is in the first 

stage, three residual network blocks (RB0 to RB2) and two fully-connected layer 

together with a parametric ReLU (PReLU) layer with two output units to generate the 

latent feature vector of bioparticles. For the classification, the GMM model is selected 

because it can tell us how much confidence it is associated with the target cluster, and 

it has the same accuracy of 99.86% with the mean center. The model can learn 

interpretable latent representation that preserves semantic structure of similar and 

dissimilar images. Well-characterized samples, such as commercial Cryptosporidium 

and Giardia cell line and microplastic beads to demonstrate the capability of the 

proposed approach. The experimental results demonstrate that Siamese based deep 

metric learning can achieve classification-based accuracy while encoding more 

semantic structural information in the latent embedding and suit for rare bioparticle 

detection which achieved 99.86% in accuracy and zero false alarm with 

Cryptosporidium and Giardia under complex background images. With enough high-

quality training data, the model could be extended to detect other types of rare 

bioparticles in high accuracy. The model would empower intelligent imaging flow 

cytometry for rare bioparticle detection in biomedical diagnosis, environmental 

monitoring, and other biosensing applications. 
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High accuracy measurement of size of bioparticle imaging is essential in biomedical 

detection and biomedical diagnosis. Various sizing techniques have been widely used 

in sorting colloidal materials, analysing bioparticles and detecting the qualities of 

food and atmosphere. Most imaging-free methods for example light scattering 

measure the averaged size of particles and have difficulties in determining non-

spherical particles. Imaging acquisition using camera is capable to observe individual 

particle in real time, but the accuracy is compromised by the image defocusing and 

instrumental calibration. In this Chapter, a machine learning-based pipeline is 

developed to facilitate a high accuracy imaging-based particle sizing. The pipeline 

consists of an image segmentation module for bioparticle identification and a 

machine learning model for accurate pixel-to-size conversion. The results manifest a 

significantly improved accuracy, showing great potential in a wide range of 

applications in environmental monitoring, biomedical diagnosis, and material 

characterization, etc. 
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5.1 Introduction 

High accuracy size measurement is important for characterizing nanoscale and 

microscale particles. Various sizing measurement techniques are widely used to sort 

colloidal materials [178], analyse natural bioparticles such as pollen [179], 

characterize cells [47, 133, 180, 181], examine soil particle [182], monitor food 

quality during harvest [183], and assess air quality [184]. For instance, a golden 

standard for monitoring parasites in drinking water systems identifies different types 

of bioparticles characterized by their sizes [133]. Commonly used particle sizing 

techniques include non-imaging-based sizing techniques such as sieve analysis [185], 

static laser light scattering [186], dynamic light scattering [187], nanoparticle 

tracking analysis [188], time-of-transition (TOT) principle [189], as well as imaging-

based sizing techniques such as bright-field microscopy [190], fluorescent 

microscopy [191, 192], and electron microscopy [193].  

Sieve analysis [185, 194] is a traditional method used to measure the particle 

size. It utilizes stacked sieves with increasing aperture sizes to clamp particles and 

generate a size distribution. As shown in Figure 5-1, sieve analysis device is made 

of four sieves and each sieve has a specific open size. The measured objects are 

transported by gravity force with vibration, air entrainment or flowing liquid. Each 

sieve classifies a partial object into bin. When there are 𝑛 sieves, the material can be 

divided into 𝑛 + 1 particle size bins, and the particle size of each particle size bin is 

expressed by the corresponding sieve hole size of two adjacent sieves. 

Other non-imaging-based sizing techniques estimate the particle size 

indirectly. For instance, static laser scattering [186] measures the gyration size instead 

of physical one based on the scattering pattern. Dynamic light scattering [187] 

retrieves the particle size based on the correlation function of scattered light signal, 
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which essentially measures the diffusion coefficient of the bioparticle.  

For nanoparticle tracking analysis [188], it is based on Brownian motion to 

obtain the size from the diffusion coefficient of particles by Stokes-Einstein equation. 

When light irradiates particles smaller than the wavelength, the light scatters in all 

directions around it. Since laser light is monochromatic and phase coherent, time-

dependent fluctuations in scattering intensity can be observed from laser light. The 

fluctuation of the scattering intensity is mainly due to the changes in the relative 

position of the particles in the solution caused by Brownian motion.  

 

 

Figure 5-1: Schematic of sieve analysis device that is divided of four sieves, which 

each sieve reduces open size to classifier the objects into bins. 
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Figure 5-2: Large particles in dynamic light scattering. Time-dependent fluctuations 

in scattering intensity can be used to calculate size. Large particles move slow, so that 

the intensity of scattered light fluctuates slowly. 

 

The Stokes-Einstein equation definition is given by 

 𝑑 = 𝐾\𝑇3𝜋𝜂R𝐷 
                                 (5-1) 

where 𝑑 is the hydrodynamic diameter, 𝐾\is Boltzmann constant, 𝑇 is the absolute 

temperature, 𝜂R  is the viscosity of the system, and 𝐷  is the diffusion coefficient. 

Large particles move slowly, and the intensity of scattered light fluctuates slowly as 

shown in Figure 5-2, while small particles move faster, and the intensity of scattered 

light fluctuates quickly as shown in Figure 5-3. 

The non-imaging-based sizing techniques mentioned above are unable to 

accurately determine the size of non-spherical particles due to the limit of applied 

models. Conventional flow cytometry [17] determines the size according to the 

scattering pattern or other optical signatures such as time-of-transition. Before that, 

the calibration using particles of known size is required. Unfortunately, the 

calibration is not generalizable because particles of the same size may have 

substantially different optical signatures due to the difference in materials, surface 

properties, internal structures, or fluorescent labels.  
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Figure 5-3: Small particle in dynamic light scattering. Time-dependent fluctuations 

in scattering intensity can be used to calculate size. Small particles move faster, so 

that the intensity of scattered light fluctuates more quickly. 

 

Imaging-based sizing techniques such as imaging flow cytometry as shown in 

Figure 5-4, which is able to provide a direct measurement of the physical size of 

particles based on image analysis.  

As illustrated in Figure 5-4, the optical system of an imaging flow cytometry 

includes a bright-field channel, a fluorescent channel and a side scatter channel. 

Bioparticles were hydrodynamically focused by a sheath flow and flowed through the 

detection region. Single bioparticles were illuminated with a LED light source and 

laser, and bright-field, fluorescent image, and side scatter image were acquired with 

a CCD/CMOS camera [142] using a 60 ×  objective. Each channel recodes 2D 

images with high speed simultaneously as shown in Figure 5-5.  

Image analysis is operated automatedly using intelligent software to analyse 

results of a huge number of images. Images of microscale and nanoscale particles are 

usually acquired using imaging-based microscopy. Commonly used image sensors 

include single-point photodetectors such as PMT and APD [195] as well as 2D 

photosensor arrays such as CCD or CMOS [196] as shown in Figure 5-6. 
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Figure 5-4: The schematic of the optical system for an imaging flow cytometry. The 

bioparticles passthrough the imaging centre and each channel records 2D images 

from a particularly CCD or CMOS camera simultaneously.  

 

 

 
 

Figure 5-5: 2D images of different channel. Each channel recodes 2D image from 

particularly imaging modality. (a) bright-field image, (b) fluorescent image, (c) side 

scatter image. 

  

a
(a) (b) (c) 
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Figure 5-6: 2D CCD or CMOS camera. The 2D CCD/CMOS camera has a height H 

and a width W. Each pixel is a rectangle with a pixel size (PH and PW). Normally, 

PH equal to PW. 

 

 In a 2D sensing case (CCD or CMOS Sensor), the size of individual particle is 

estimated by converting the pixel to size at a fixed conversion ratio which is 

determined theoretically according to the specifications of the optical components. 

For example, a single pixel in images taken corresponds to 0.33 µm with a 60´ 

objective, and 0.5 µm with a 40´ objective according to the product specifications. 

However, it is noted that this fixed conversion ratio does not always give rise to an 

accurate particle sizing, probably arising from factors such as the objective error, 

imaging error, and segmentation error. Hence, the relationship between the pixel 

number and physical size is difficult to be modelled due to possible nonlinearity. 
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 In this Chapter, the machine learning-based pipeline for imaging-based high 

accuracy particle sizing is studied. The machine learning-based pipeline 

automatically segments microparticles from the images, estimates the pixel size of 

particles, and predicts the physical size from the pixel information using a machine 

learning model to train there labelled images of calibration spherical beads. 

Compared to conventional approaches, our intelligent pipeline offers a more accurate 

particle sizing by learning from the massive calibration data. This machine learning-

enabled pipeline would greatly extend the applicability of imaging-based sizing in 

the field of biomedical diagnostical, environmental sensing, and material 

characterization. 
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5.2 The Model of High Accuracy Bioparticle Sizing  

 

Figure 5-7: Different stage of size measurement pipeline. (a) Bioparticle image. (b) 

Segmentation. (c) Bioparticle Shape. (d) Bioparticle size in pixel numbers. (e) 

Bioparticle size in 𝑢𝑚. (a), (b) and (c) share the same scale bar. 

 
The pipeline algorithm automatically analyzes the pixel information of the target 

particles and converts the pixel information into actual size based on a machine 

learning model is shown in Figures 5-7. First, it generates a contour of the particle 

using a segmentation algorithm. Then, the contour information is used to estimate the 

shape of the particle. Finally, the shape information is converted to physical length 

and width using the pixel-to-size module learnt by a quadratic machine learning 

model trained with least-squares regression [197] using the spherical beads of known 

sizes. All the aforementioned operations are integrated into an image processing 

pipeline to automatically predict the physical size of bioparticles from images 

acquired using an imaging flow cytometry (Amnis® ImageStream®X Mk II [43, 96]). 

5.2.1 Segmentation and Pixel Measurement 

Deep learning has recently made an impressive progress in imaging segmentation. 

For examples, U-Net [1], Deep Cell [198], Faster R-CNN [199], Mask R-CNN [111], 

and RetinaNet [200] have been demonstrated for instance segmentation in single 

bioparticle analysis [201]. However, those deep learning models are computationally 

intensive and require heavy labelling from human. Imaging flow cytometry is capable 

of generating single cell image with a clear background. Hence 

(a) (b) (c) (d) (e) 
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it is well-suited for computer-vision-based analysis.  

The computer-vision-based segmentation algorithm (Figure 5-8) first resizes 

the input single-particle images into 120 ´ 120 pixels and removes the noise using a 

Gaussian blurring module (Figure 5-8a). Then, a Canny detector is applied to the 

processed images to generate the edge images (Figure 5-8b) that are subsequently 

processed with erode (Figure 5-8c) and dilating (Figure 5-8d) algorithms to generate 

the output blob images. Next, the algorithm identifies the edge in the blob images and 

generates the contour information of the particle (Figure 5-8e). The height and width 

in terms of pixel numbers are estimated from particle contour (Figure 5-8f). In the 

case of spherical particles, the height and width have the same value. Finally, the 

physical size of the particles is determined based on the machine learning model.  

Signal noise often degrades the image quality and introduces error to 

subsequent processing submodules in the pipeline. Gaussian blur [202] is a popular 

(a) 

(d) (e) (f) 

(b) (c) 

Figure 5-8: Different processing stage of segmentation and pixel measurement: (a) 

Gaussian blur, (b) canny detector, (c) erode, (d) dilate, (e) find contours, and (f) 

estimate shape. All subfigures are in the same scale bar. 
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algorithm to reduce the noise and enhance the image quality. The formula of the 

Gaussian blur is expressed as [202] 

                      𝑔(𝑥, 𝑦) = ∑ 𝑓(𝑥 − 𝑖, 𝑦 − 𝑗)ℎ(𝑖, 𝑗)!,#                                     (5-2) 

where 𝑔(𝑥, 𝑦) is the output pixel value, 𝑓(𝑥, 𝑦) is the input image pixel, and	ℎ(𝑖, 𝑗) 
is a Gaussian kernel given by [202] 

                      ℎ(𝑖, 𝑗) = 𝐴𝑒𝑥𝑝 ±−²('-'*))"]%)
+	 (,-,*))"]#)

³´                                 (5-3) 

where 𝐴 is the amplitude of the gaussian kernel, 𝑖R and 𝑗R mark the center position of 

the kernel, and 𝜎 represents the standard deviation (SD) with respect to variables 𝑖 
and 𝑗. An example of Gaussian kernel with 𝜎 = 0.25 is shown in Figure 5-9. 

Canny detector [203] is a popular technique in edge detection given its 

advantages in low error rate, high localizability, and minimized response. The Canny 

edge detection algorithm contains gradient calculation, rounded and a non-maximum 

suppression. The gradient strength 𝐺 and direction 𝜃 are expressed as [203] 

                 𝐺 = 0𝐺!" + 𝐺#"      and      𝜃 = arctan t$"$!w                               (5-4) 

Figure 5-9: A Gaussian kernel with 𝜎 = 0.25. 
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Figure 5-10: Horizontal and vertical direction kernels. (a) 𝐺! and (b) 𝐺#. 

 

where the 𝐺# and 𝐺! are the first derivatives of vertical direction (𝐺#) and horizontal 

direction (𝐺!), respectively. The gradient kernels used for calculating the gradient 𝐺! 

and 𝐺# are shown in Figure 5-10. 

The 𝜃 is rounded to 0, 45, 90 or 135 degrees. For example, the 𝜃 in between 

22.5 degree to 67.5-degree are mapped to 45-degree. Next, a non-maximum 

suppression algorithm is applied to remove non-considered pixel so that only the thin 

lines remain. Finally, a hysteresis stage with high and low threshold is applied on the 

lines to further improve the results. 

Dilate and Erode [204] are two basic morphological operations for removing 

noise, isolating or jointing the individual components, and finding the intensity 

bumps or holes in an image. The dilate operation uses a kernel, such as 3	 × 	3 pixels, 

with an anchor point at the center of the kernel to scan over the image and calculate 

the maximum pixel value. That maximum value replaces the value in the anchor point. 

As a result, the bright regions are expanded, and the individual components with 

small gaps in between are connected. In contrast, the erode operation uses the 

minimal value to replace the value in the anchor point to render a thinner bright area.  
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Figure 5-11: Dilate operation. 

 

The example of dilate is shown in Figure 5-11. The black circle is the current pixel. 

The output is the maximum number of the neighboring pixels. And the example of 

erode is shown in Figure 5-12. The black circle is the current pixel. The output is the 

minimum number of the neighboring pixels.  

The find contours operation [205] obtains the contour information. A contour 

is a closed curve where all its points are on the boundary and have the same value. In 

our algorithm, ellipse is used to approximate the outline of the cells. In the last stage 

of the imaging processing, the contour information of the cells is passed into an 

estimator function to obtain the inscribed rotated rectangle of the ellipse.   

5.2.2 Conversion of Pixel Size to Physical Size 

The size converter algorithm converts the pixel to size in micrometers with the 

machine learning model. The calibration process started with the collecting images 

of microplastic beads with diameters of 3 	𝜇𝑚 , 4 	𝜇𝑚 , 4.6 	𝜇𝑚 , 5 	𝜇𝑚 , 5.64 	𝜇𝑚 , 
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7.32	𝜇𝑚, 8	𝜇𝑚, 10	𝜇𝑚, 12	𝜇𝑚, and 15	𝜇𝑚 (from Thermo Fisher Scientific, Duke 

Scientific and Polysciences Inc.). Then, they were processed with the segmentation 

algorithm to generate the beads diameters in pixels. Finally, parameters a, b, and c of 

the quadratic curve model 𝑦 = 𝑎𝑥" + 𝑏𝑥 + 𝑐 was learned by minimalizing the error 

which is expressed as 

 𝐸𝑟𝑟𝑜𝑟 = 	𝜀(𝑎, 𝑏, 𝑐) 
													=x(𝑎𝑥'" + 𝑏𝑥' + 𝑐 − 𝑦')"(

')%
 

(5-5) 

 

The partial derivative with 𝑎 can be calculated by  

 𝜕𝜀(𝑎, 𝑏, 𝑐)𝜕𝑎 =x2(𝑎𝑥'" + 𝑏𝑥' + 𝑐 − 𝑦')𝑥'"(

')%
 

(5-6a) 

Figure 5-12: Erode operation. 
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																		= 2 J𝑎x𝑥'U(

')%
+ 𝑏x𝑥'T(

')%
+ 𝑐x𝑥'"(

')%

−x𝑦'𝑥'"(

')%
	K 

																		= 0 

 

From the partial derivative and rearranging gives 

 

Jx𝑥'"(

')%
K 𝑐 + Jx𝑥'T(

')%
K 𝑏 + Jx𝑥'U(

')%
K 𝑎 =x𝑦'𝑥'"(

')%
 (5-6b) 

The partial derivative with 𝑏 can be calculated by  

 𝜕𝜀(𝑎, 𝑏, 𝑐)𝜕𝑎 =x2(𝑎𝑥'" + 𝑏𝑥' + 𝑐 − 𝑦')𝑥'(

')%
 

																					= 2 J𝑎x𝑥'T(

')%
+ 𝑏x𝑥'"(

')%
+ 𝑐x𝑥'(

')%
−x𝑦'𝑥'(

')%
	K 

																					= 0 

(5-7a) 

Base on the partial derivative, the Equation 5-7a can be rearranged as 

 Jx𝑥'(

')%
K 𝑐 + Jx𝑥'"(

')%
K 𝑏 + Jx𝑥'T(

')%
K 𝑎 =x𝑦'𝑥'(

')%
 (5-7b) 

The partial derivative deal with 𝑐 can be calculated by  

 𝜕𝜀(𝑎, 𝑏, 𝑐)𝜕𝑎 =x2(𝑎𝑥'" + 𝑏𝑥' + 𝑐 − 𝑦')(

')%
 

																					= 2 J𝑎x𝑥'"(

')%
+ 𝑏x𝑥'(

')%
+ 𝑐𝑛 −x𝑦'(

')%
	K 

																					= 0 

(5-8a) 
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From the partial derivative and rearranging gives 

𝑛𝑐 + Jx𝑥'(

')%
K 𝑏 + Jx𝑥'"(

')%
K 𝑎 =x𝑦'(

')%
 (5-8b) 

By use the linear algebra, the matrix equation regarding the least-square 

regression parameters of a, b, and c in quadratic curve 𝑦 = 𝑎𝑥" + 𝑏𝑥 + 𝑐 can be 

given by 

                                 J𝑛 𝑠% 𝑠"𝑠% 𝑠" 𝑠T𝑠" 𝑠T 𝑠UK ·
𝑐𝑏𝑎¸ = J z𝛾#!𝛾#!)K   (5-9) 

where 𝑠%, 𝑠", 𝑠T, 𝑠U, z, 𝛾#!, and 𝛾#!) can be expressed as 

 				𝑠^ =	x𝑥'A(

')%
 

                             (5-10a) 

 						𝑧 = 	x𝑦'(

')%
	 

                             (5-10b) 

 𝛾#!# =	x𝑦'𝑥',(

')%
 

                             (5-10c) 

where 𝑥' is the pixels size of the individual bead and 𝑦' is the corresponded physical 

size of the bead, and 𝑛 is the total number of beads. 

When the linear models are learned, we obtained the parameters m = 0.2905 

and b = 0.4785 for the linear model and a = - 0.000163, b = 0.301, and c = - 0.618 

for the quadratic curve model. As the RMSE of the quadratic model is smaller than 

the linear model (0.2657 vs 0.2668), the quadratic curve model was adopted to 

implement the size converter module. 
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5.3 Experimental Results and Discussions 

5.3.1 Performance Evaluation 

To evaluate the performance of the image processing pipeline, the image database of 

microplastic beads of known sizes and biological cells have been built. First, the 

image segmentation algorithm was evaluated with the Intersection over Union (IoU) 

metric [206]. The performance of the machine learning model was evaluated with 

Root Mean Square Error (RMSE) [207]. And the measurement on a realistic cell 

dataset was performed. The mathematical expressions of IoU and RMSE metrics are 

expressed as  

										𝐼𝑜𝑈 = 	 𝑡𝑎𝑟𝑔𝑒𝑡 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑡𝑎𝑟𝑔𝑒𝑡 ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛         (5-11) 

and 

𝑅𝑀𝑆𝐸 = 	¾1𝑛x[𝑦, 	− 	𝑦«,\"(

,)%
         (5-12) 

where 𝑡𝑎𝑟𝑔𝑒𝑡 is the area in ground truth and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is the target segmented area; 

𝑦, is the physical size, 𝑦«, is the predicted size and 𝑛	is the total number of particles. 

The graphic representation of IoU is shown in Figure 5-13. Furthermore, the height 

and width distributions of particles such as beads, Cryptosporidium and Giardia 

oocytes are determined using bright-field imaging flow cytometry. 

  



Chapter 5 Machine Learning-Based Pipeline for Bioparticle Sizing 
 

134 
 

 

 

(5-13) 

Figure 5-13: Graphic representation of Intersection over Union (IoU). 

 

 

Figure 5-14: Error analysis of segmentation algorithm. The image output of the 

segmentation algorithm of: (a) Segmentation results of Giardia, and (b) 

Segmentation results of Cryptosporidium. All subfigures are in the same scale bar.  
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5.3.2 Segmentation and Pixel Size Measurement 

 

Figure 5-15: Intersection over Union results of the segmentation algorithm.  

 
The segmentation results are evaluated with the IoU score between the contour 

labelled by human operators and the contour predicted by the algorithm. The output 

of the segmentation algorithm is depicted in Figure 5-14. The top two rows are the 

results of segmented Giardia oocyte images, and the lowest row is the results of 

segmented Cryptosporidium oocyte images. In these images, the green line is the 

ground truth (human labeled), and the red line is the output of the segmentation 

algorithm. As shown in Figure 5-14, the image outputs of the segmentation algorithm 

are close to the ground truth. Overall, the segmentation algorithm achieved 84.4% in 

mean IoU (red dotted line) as shown in Figure 5-15, in which each black dot 

represents the IoU of an individual image output of the testing dataset.  

5.3.3 Physical Size Measurement 

The imaging flow cytometer uses a fixed pixel-to-size ratio based on the 

specifications of the optics for particle sizing. However, this approach often leads to 

large errors in particle size (Table 5-1). Therefore, a machine learning model is 
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established to determine the pixel-to-size ratio for accurate sizing. Both linear and 

quadratic regression models are adopted to learn the relationship between the pixel 

(pixels) and length (𝑢𝑚) of microplastic beads of known sizes. As the RMSE of the 

quadratic model is smaller than the linear model (0.2657 vs 0.2668), the quadratic 

curve model was employed. Figure 5-16 shows the diameter versus the pixel size of 

the microplastic beads. The quadratic machine learning regression model is shown as 

the red curve.  

The sizes of the microplastic beads measured using our algorithm and using the 

fixed pixel-to-size ratio (0.33 𝜇𝑚/pixel with 60´ objective on Amnis Imagestream 

MKII) are summarized in Table 5-1 and Figure 5-17. The fixed pixel-to-size 

conversion ratio is the mainstream approach used by imaging flow cytometry. Our 

algorithm shows significantly more accurate sizing in comparison. Figure 5-17 

shows the length distribution in both axes of microplastic particles within a 

distribution range. The red dots represent the actual sizes of beads (ground truth based 

Figure 5-16: Quadratic curve-based calibration. 
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on manufacturer’s specifications), the brown dots present the size measured using the 

fixed pixel-to-size ratio, and the dark green dots represent the size measured using 

the machine learning model. The sizes of the dots represent the SD of the 

measurement. The microplastic particles have a narrow distribution with a CV < 2% 

according to product specifications.  

The machine learning model gives rise to significantly more accurate size 

measurement compared to the approach using fixed pixel-to-size ratio. The sizes of 

microplastic beads measured using the machine learning model deviate only slightly 

from the ground truth with a mean percentage error of 4.2% (Table 5-1). In contrast, 

Figure 5-17: The length distribution in both axes of microplastic particles within a 

distribution range. The circle represents the population distribution with the error in 2𝜎 range. Red color ones are the physical diameters of beads, pink color ones are the 

beads sizes based on assumption, and cyan color ones are the beads sizes based on 

machine learning calibration. 
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the mean percentage error using the fixed conversion ratio is 23.3% which is 5 times 

larger than the machine learning model. 

As shown in Figure 5-17, methods using fixed conversion ratio tends to 

overestimate the size of the particle. In the worst scenario, the percentage error even 

reaches a value close to 40%. In addition, the SD measured with the machine learning 

model is also smaller in comparison, which indicates a better precision of particle 

sizing. The individual measurements of microplastic beads of 3 𝜇𝑚, 5 𝜇𝑚, 12 𝜇𝑚 

and 15 𝜇𝑚 using the machine learning model are shown in Figure 5-18.  

Table 5-1: Measurement error analysis 

 
Beads 

Learnt model Fixed ratio (0.33𝝁𝒎/pixel) 

𝝁 𝝈 
Error 
(%) 𝝁 𝝈 

Error 
(%) 3.0𝜇𝑚 3.15 0.21 5.1 4.16 0.24 38.8 

4.0𝜇𝑚 4.54 0.73 13.5 5.71 0.82 42.7 

4.6𝜇𝑚 4.28 0.83 7.1 5.42 0.93 17.6 

5.0𝜇𝑚 4.66 0.61 6.9 5.84 0.69 16.8 

5.64𝑢𝑚						 5.50 0.46 2.5 6.78 0.51 20.2 

7.32𝜇𝑚						 7.29 0.66 0.4 8.80 0.74 20.2 

8.0𝜇𝑚 8.08 0.77 1.0 9.69 0.88 21.2 

10.0𝜇𝑚 10.27 1.11 2.7 12.18 1.27 21.8 

12.0𝜇𝑚 11.75 1.10 2.1 13.89 1.27 15.7 

15.0𝜇𝑚 15.02 1.10 0.1 17.67 1.29 17.8 

Avg.  0.76 4.2  0.86 23.3 
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Figure 5-18: Measurement of individual microplastic particles sizes distribution: (a) 3	𝑢𝑚, (b) 5	𝑢𝑚, (c) 8	𝑢𝑚, (d)10	𝑢𝑚, (e)12	𝑢𝑚, and (f)15	𝑢𝑚. 

 

The aforementioned algorithms are integrated into a pipeline. With this 

intelligent pipeline, the height and width distributions of Cryptosporidium and 
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Giardia oocytes are determined using bright-field images from the imaging flow 

cytometry. The results are presented in Figure 5-17 and Table 5-2. Our intelligent 

pipeline determines that the mean height of Giardia oocytes is 11.87	𝜇𝑚 with a SD 

of 1.9	𝜇𝑚. The mean width of the Giardia oocytes is 7.92	𝜇𝑚 with a SD of 0.75	𝜇𝑚. 

The Cryptosporidium oocytes are approximately spherical, and the mean diameter 

Cryptosporidium oocytes measured using our algorithm is 5.03	𝜇𝑚 with a SD of 

0.48	𝜇𝑚. In contrast, the mean height and width of Giardia oocytes are 12.94	𝜇𝑚 and 

8.45 	𝜇𝑚 , and the mean diameter Cryptosporidium oocytes is 5.17 	𝜇𝑚  when 

calculated using the fixed conversion ratio.  

          Table 5-2: Measurement results on bioparticles 
 

Feature Mean (𝝁𝒎) SD (𝝁𝒎) 

Giardia Height 11.87 1.99 

Width 7.92 0.75 

Cryptosporidium Diameter 5.03 0.48 
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Figure 5-19: Measurement on Cryptosporidium and Giardia. (a) Length of the 

Giardia. (b) Width of the Giardia. (c) Diameter of the Cryptosporidium. 

  

(a) 

(b) 

(c) 

R
e

la
ti

v
e

 f
re

q
u

e
n

cy
 

Length (𝒖𝒎) 

R
e

la
ti

v
e

 f
re

q
u

e
n

cy
 

Width (𝒖𝒎) 

R
e

la
ti

v
e

 f
re

q
u

e
n

cy
 

Diameter (𝒖𝒎) 



Chapter 5 Machine Learning-Based Pipeline for Bioparticle Sizing 
 

142 
 

5.4 Summary 

In this Chapter, a machine learning-based pipeline for imaging-based high-accuracy 

bioparticle sizing is demonstrated. The pipeline consists of an image segmentation 

module for extracting contours and estimating the pixel size of the bioparticle as well 

as a machine learning model for accurate pixel-to-size conversion. The computer 

vision-based segmentation algorithm first resizes the input single-particle images into 

120 ´ 120 pixels and removes the noise using a Gaussian blurring. Then, a Canny 

detector is applied to the processed images to generate the edge images that are 

subsequently processed with erode and dilating algorithms to generate the output blob 

images. The segmentation results are evaluated with the IoU score between the 

contour labelled by human operators and the contour predicted by the algorithm. The 

image segmentation algorithm achieves 84.4% in the mean IoU. The size converter 

module converts the pixel to size in micrometers with the machine learning model 

trained by the collected images of calibration beads. The performance of the machine 

learning model was evaluated with Root Mean Square Error (RMSE). Final, the 

particle size determined by the machine learning model only has a mean percentage 

error of 4.2% which is five times better than the method using a fixed pixel-to-size 

conversion ratio (23.3%). Our method empowers different intelligent imaging 

systems such as imaging flow cytometry for high-accurate particle sizing and 

promises great potential in a wide range of applications in the field of environmental 

sensing, biomedical diagnostics, and material characterization.  
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6.1 Conclusions 

In this PhD project, three areas in machine learning have been studied and 

demonstrated to detect or measure the size of the bioparticles for various applications 

including (1) Deep learning-enable high-speed bioparticle detection; (2) deep metric 

learning for rare bioparticle detection; (3) machine learning-based pipeline for 

bioparticle sizing. Model theoretical, design of the model, experimental results are 

discussed. 

In the study of deep learning-enable high-speed bioparticle detection, image 

classification models of the deep learning are derived. a deep learning-enabled high-

throughput system are developed for predicting Cryptosporidium and Giardia in 

drinking water. This system combines imaging flow cytometry and an efficient 

artificial neural network called MCellNet, which achieves a classification accuracy > 

99.6%. The system can detect Cryptosporidium and Giardia with a sensitivity of 

97.37% and a specificity of 99.95%. The high-speed analysis reaches 346 frames per 

second, outperforming the state-of-the-art deep learning algorithm MobileNetV2 in 

speed (251 frames per second) with a comparable classification accuracy.  

In the study of deep metric learning for rare bioparticle detection, a model of 

deep metric learning for rare bioparticle detection is derived and the deep metric 

learning algorithm leverages convolutional neural network to study the rich feature 

inside the dataset and learns distinct metric by using Siamese network and contrastive 

loss which learned to maximum the distance of different classes and minimal the 
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distance of similar class. Deep metric learning offers a generatability and uses 

distance information to model the similarity of the images by learning a function 

maps from images pixels to latent space, playing a vital role in rare object detection. 

Experiments show that the deep metric neural network achieved a high accuracy of 

99.86% in classification, 98.89% in precision rate, 99.16% in recall rate and zero 

false alarm rate for rare bioparticle detection.  

In the study of machine learning-based pipeline for bioparticle sizing, an 

intelligent pipelined for bioparticle sizing by employing computer vision and 

machine learning is built up and the intelligent pipeline automatically identifies and 

segments particles from the micrographs, measures the pixel size of the particles, and 

converts the pixel into actual size using a machine learning model learned from mass 

training data. Compared to the conventional approaches, the particle size determined 

by the machine learning model only has a mean percentage error of 4.2% which is 

five times better than the methods using a fixed pixel-to-size conversion ratio (23.3%). 

The method empowers different intelligent imaging systems such as imaging flow 

cytometry for high accurate particle sizing and promises great potential in a wide 

range of applications in the field of environmental sensing, biomedical diagnostics, 

and material characterization. 

Moreover, a bright-field image database of Cryptosporidium parvum oocysts 

(2,082 images) and Giardia lamblia cyst (3,569 images), 1.54-um beads (3,466 

images), 3-um beads (3,457 images), 4-um beads (5,783 images), 4.6-um beads 

(2,188 images), 5-um beads (9,637 images), 5.64-um beads (3,285 images), 8-um 

beads (3,066 images), 10-um (8,270 images), 12-um (4,704 images), 15-um beads 

(2,813 images), and natural pollutants of various shape and sizes (27,826 images) are 

built. Each image is patched to a standard size with 120	 × 	120 pixels and it can be 
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used to test bioparticle detection algorithms.  

These works empower rapid, accurate, and high throughput bioparticle 

detection and sizing, they promise great potential in a wide range of applications in 

the field of biomedical diagnostics, environmental monitoring, and material 

characterization, etc. 
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6.2 Recommendations 

Recommendations for future work are summarized as follows:  

6.2.1 Efficient Neural Networks Design 

Efficient neural networks (DNNs) [208, 209] become critical for embedded 

applications due to their low storage requirement and computing efficiency. In recent 

years, the performance of deep neural networks have been greatly improved, and the 

storage and computing complexity of the network have also increased. How to 

accelerate and compress deep neural networks and improve the operating efficiency 

of deep neural networks have become a research hotspot in the field of deep learning. 

In response to this problem, with the joint efforts of academia and industry, a series 

of methods have been proposed. Besides the compact network design, other 

approaches, such as network pruning [210, 211], low-rank decomposition [212-215], 

network quantification [216-218], knowledge transfer network [219, 220], are also 

valuable to be explored. 

6.2.2 Network Improving 

Supervised machine learning, especially deep neural network, is domestic today’s 

applications in solving the real problem [221, 222]. Unfortunately, in the traditional 

machine learning, there exist two main uncertainties: aleatoric uncertainty and 

epistemic uncertainty.  The aleatoric uncertainty is the uncertainty inherent in the 

data if there are some randomness. The epistemic uncertainty is due to lack of data 

and cannot estimate the model parameter without any doubt. The model may fail in 

novel data. Deep learning with metric learning is an important approach for those 

issues. Bayesian deep neural network is another approach [223]. Bayesian deep 

neural network can be understood as regularization by introducing uncertainty into 
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the weight of the neural network, which is equivalent to ensemble of infinite groups 

of neural networks on a certain weight distribution for prediction. For example, in the 

conventional deep neural network, all the parameters are a value, and the predicted 

output of the network is also a value. In contrast, all parameters of the Bayesian deep 

neural network are a distribution, and the predicted output of the network is also a 

distribution. An conventional deep neural network is to fit the data sample with 

maximum likelihood estimation (MLE).  

The difference between Bayesian deep neural network and conventional deep 

neural network is that its weight parameter is a random variable, rather than a definite 

value. It is a combination of probabilistic modelling and neural network, and can give 

the confidence of the prediction result. A priori is used to describe the key parameters 

and the input of the neural network. Bayesian deep neural network is very critical for 

many problems, because BNN has the ability to quantify uncertainty. It is very robust 

and it is a promised approach for further study in bioparticle detection. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 Concluding Remarks  

148 
 

 

 

 

 

 



Bibliography  

149 
 

Bibliography 

 
1. Falk, T., et al., U-Net: deep learning for cell counting, detection, and 

morphometry. Nat Methods, 2019. 16(1): p. 67-70. 

2. LeCun, Y., et al., Gradient-based learning applied to document recognition. 

Proceedings of the IEEE, 1998. 86(11): p. 2278-2324. 

3. Heo, Y.J., et al., Real-time image processing for microscopy-based label-free 

imaging flow cytometry in a microfluidic chip. Scientific reports, 2017. 7(1): p. 

11651. 

4. Isozaki, A., et al., Intelligent image-activated cell sorting 2.0. Lab on a Chip, 

2020. 20: p. 2263-2273. 

5. Zhang, Y., et al., Computational cytometer based on magnetically modulated 

coherent imaging and deep learning. Light: Science & Applications, 2019. 8(1): 

p. 1-15. 

6. Viola, P. and M. Jones, Rapid object detection using a boosted cascade of 

simple features. CVPR (1), 2001. 1(511-518): p. 3. 

7. Felzenszwalb, P., D. McAllester, and D. Ramanan. A discriminatively trained, 

multiscale, deformable part model. in 2008 IEEE conference on computer 

vision and pattern recognition. 2008. IEEE. 

8. Jo, Y., et al., Holographic deep learning for rapid optical screening of anthrax 

spores. Sci Adv, 2017. 3(8): p. e1700606. 



Bibliography  

150 
 

9. van Dongen, J.J.M., et al., Minimal residual disease diagnostics in acute 

lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. 

Blood, The Journal of the American Society of Hematology, 2015. 125(26): p. 

3996-4009. 

10. Kanegane, H., et al., Flow cytometry-based diagnosis of primary 

immunodeficiency diseases. Allergology International, 2018. 67(1): p. 43-54. 

11. Jennings, C.D. and K.A. Foon, Recent advances in flow cytometry: application 

to the diagnosis of hematologic malignancy. Blood, The Journal of the 

American Society of Hematology, 1997. 90(8): p. 2863-2892. 

12. Seo, K.H., R.E. Brackett, and J.F. Frank, Rapid detection of Escherichia coli 

O157: H7 using immuno-magnetic flow cytometry in ground beef, apple juice, 

and milk. International Journal of Food Microbiology, 1998. 44(1-2): p. 115-

123. 

13. Buzatu, D.A., et al., An integrated flow cytometry-based system for real-time, 

high sensitivity bacterial detection and identification. PloS one, 2014. 9(4): p. 

e94254. 

14. Gillespie, S., et al., Assessing microbiological water quality in drinking water 

distribution systems with disinfectant residual using flow cytometry. Water 

Research, 2014. 65: p. 224-234. 

15. Helmi, K., et al., Assessment of flow cytometry for microbial water quality 

monitoring in cooling tower water and oxidizing biocide treatment efficiency. 

Journal of microbiological methods, 2018. 152: p. 201-209. 



Bibliography  

151 
 

16. Safford, H.R. and H.N. Bischel, Flow cytometry applications in water 

treatment, distribution, and reuse: A review. Water research, 2019. 151: p. 110-

133. 

17. Adan, A., et al., Flow cytometry: basic principles and applications. Critical 

Reviews in Biotechnology, 2017. 37(2): p. 163-176. 

18. Zucker, R., et al., Detection of TiO2 nanoparticles in cells by flow cytometry. 

Cytometry Part A, 2010. 77(7): p. 677-685. 

19. Shapiro, H.M., Practical flow cytometry. 2005: John Wiley & Sons. 

20. McKinnon, K.M., Flow cytometry: an overview. Current protocols in 

immunology, 2018. 120(1): p. 5.1. 1-5.1. 11. 

21. Macey, M.G. and M.G. Macey, Flow cytometry. 2007: Springer. 

22. Marrison, J., et al., Ptychography–a label free, high-contrast imaging technique 

for live cells using quantitative phase information. Scientific Reports, 2013. 3: 

p. 2369. 

23. Blasi, T., et al., Label-free cell cycle analysis for high-throughput imaging flow 

cytometry. Nat Commun, 2016. 7: p. 10256. 

24. Kobayashi, H., et al., Label-free detection of cellular drug responses by high-

throughput bright-field imaging and machine learning. Sci Rep, 2017. 7(1): p. 

12454. 

25. Wu, Y., et al., Label-free bioaerosol sensing using mobile microscopy and deep 

learning. ACS Photonics, 2018. 5(11): p. 4617-4627. 



Bibliography  

152 
 

26. Nitta, N., et al., Intelligent image-activated cell sorting. Cell, 2018. 175(1): p. 

266-276. e13. 

27. Gorocs, Z., et al., A deep learning-enabled portable imaging flow cytometer for 

cost-effective, high-throughput, and label-free analysis of natural water 

samples. Light: Science & Applications, 2018. 

28. Li, Y., et al., Deep cytometry: deep learning with real-time inference in cell 

sorting and flow cytometry. Scientific reports, 2019. 9(1): p. 1-12. 

29. Peuß, R., et al., Label-independent flow cytometry and unsupervised neural 

network method for de novo clustering of cell populations. bioRxiv, 2019: p. 

603035. 

30. Nketia, T.A., et al., Analysis of live cell images: Methods, tools and 

opportunities. Methods, 2017. 115: p. 65-79. 

31. DiGiorgio, C.L., D.A. Gonzalez, and C.C. Huitt, Cryptosporidium and Giardia 

recoveries in natural waters by using environmental protection agency method 

1623. Applied and Environmental Microbiology, 2002. 68(12): p. 5952-5955. 

32. Vesey, G., et al., Application of flow cytometric methods for the routine 

detection of Cryptosporidium and Giardia in water. Cytometry: The Journal of 

the International Society for Analytical Cytology, 1994. 16(1): p. 1-6. 

33. Han, Y., et al., Imaging technologies for flow cytometry. Lab on a Chip, 2016. 

16(24): p. 4639-4647. 



Bibliography  

153 
 

34. Ruske, S., et al., Machine learning for improved data analysis of biological 

aerosol using the WIBS. Atmospheric Measurement Techniques, 2018. 11(11): 

p. 6203-6230. 

35. Rösch, P., et al., On-line monitoring and identification of bioaerosols. 

Analytical Chemistry, 2006. 78(7): p. 2163-2170. 

36. Meng, N., et al., Large-scale multi-class image-based cell classification with 

deep learning. IEEE Journal of Biomedical and Health Informatics, 2018. 23(5): 

p. 2091-2098. 

37. Gӧrӧcs, Z., et al., A deep learning-enabled portable imaging flow cytometer for 

cost-effective, high-throughput, and label-free analysis of natural water 

samples. Light: Science & Applications, 2018. 7(1): p. 1-12. 

38. Zhang, Y., et al., Motility-based label-free detection of parasites in bodily fluids 

using holographic speckle analysis and deep learning. Light: Science & 

Applications, 2018. 7(1): p. 1-18. 

39. Kim, G., et al., Learning-based screening of hematologic disorders using 

quantitative phase imaging of individual red blood cells. Biosensors and 

Bioelectronics, 2019. 123: p. 69-76. 

40. Huang, G., et al. Densely connected convolutional networks. in Proceedings of 

the IEEE conference on computer vision and pattern recognition. 2017. 

41. Masana, M., et al., Metric learning for novelty and anomaly detection. arXiv 

preprint arXiv:1808.05492, 2018. 

42. Barteneva, N.S. and I.A. Vorobjev, Imaging Flow Cytometry. 2016: Springer. 



Bibliography  

154 
 

43. Erdbrugger, U., S. La Salvia, and J. Lannigan, Detection of Extracellular 

Vesicles Using the ImageStream® X MKII Imaging Flow Cytometer. 

44. Franklin, D., Nvidia Jetson TX2 delivers twice the intelligence to the edge. 

NVIDIA Accelerated Computing—Parallel Forall, 2017. 

45. Basiji, D.A., et al., Cellular image analysis and imaging by flow cytometry. Clin 

Lab Med, 2007. 27(3): p. 653-70, viii. 

46. Bonner, W.A., et al., Fluorescence activated cell sorting. Review of Scientific 

Instruments, 1972. 43(3): p. 404-409. 

47. Shi, Y.Z., et al., Sculpting nanoparticle dynamics for single-bacteria-level 

screening and direct binding-efficiency measurement. Nature communications, 

2018. 9(1): p. 1-11. 

48. Lumini, A., L. Nanni, and G. Maguolo, Deep learning for plankton and coral 

classification. Applied Computing and Informatics, 2019. 

49. Pedreira, C.E., et al., Overview of clinical flow cytometry data analysis: recent 

advances and future challenges. Trends in biotechnology, 2013. 31(7): p. 415-

425. 

50. Wang, Y., et al., Past, present and future applications of flow cytometry in 

aquatic microbiology. Trends in biotechnology, 2010. 28(8): p. 416-424. 

51. Delaat, A., W. Gohde, and M. Vogelzakg, Determination of ploidy of single 

plants and plant populations by flow cytometry. Plant breeding, 1987. 99(4): p. 

303-307. 

52. Batchelor, B.G., Machine Vision Handbook. 2012: Springer. 



Bibliography  

155 
 

53. Nixon, M. and A. Aguado, Feature extraction and image processing for 

computer vision. 2019: Academic press. 

54. Dalal, N. and B. Triggs. Histograms of oriented gradients for human detection. 

2005. IEEE Computer Society. 

55. Satpathy, A., X. Jiang, and H.L. Eng, Human detection by quadratic 

classification on subspace of extended histogram of gradients. IEEE Trans 

Image Process, 2014. 23(1): p. 287-97. 

56. Lowe, D.G., Distinctive image features from scale-invariant keypoints. 

International Journal of Computer Vision, 2004. 60(2): p. 91-110. 

57. Ren, J., X. Jiang, and J. Yuan, Noise-resistant local binary pattern with an 

embedded error-correction mechanism. IEEE Trans Image Process, 2013. 

22(10): p. 4049-60. 

58. Satpathy, A., X. Jiang, and H.L. Eng, LBP-based edge-texture features for 

object recognition. IEEE Trans Image Process, 2014. 23(5): p. 1953-64. 

59. Natekin, A. and A. Knoll, Gradient boosting machines, a tutorial. Frontiers in 

neurorobotics, 2013. 7: p. 21. 

60. Biau, G. and E. Scornet, A random forest guided tour. Test, 2016. 25(2): p. 197-

227. 

61. Hennig, H., et al., An open-source solution for advanced imaging flow 

cytometry data analysis using machine learning. Methods, 2017. 112: p. 201-

210. 



Bibliography  

156 
 

62. Nassar, M., et al., Label‐free identification of white blood cells using machine 

learning. Cytometry Part A, 2019. 95(8): p. 836-842. 

63. Scholkopf, B., et al., Estimating the support of a high-dimensional distribution. 

Neural Comput, 2001. 13(7): p. 1443-71. 

64. Jiang, X., Linear subspace learning-based dimensionality reduction. IEEE 

Signal Processing Magazine, 2011. 28(2): p. 16-26. 

65. De Maesschalck, R., D. Jouan-Rimbaud, and D.L. Massart, The mahalanobis 

distance. Chemometrics and Intelligent Laboratory Systems, 2000. 50(1): p. 1-

18. 

66. Peterson, M.A. and B.S. Gibson, Shape recognition inputs to figure-ground 

organization in three-dimensional displays. Cognitive Psychology, 1993. 25(3): 

p. 383-429. 

67. Turk, M.A. and A.P. Pentland. Face recognition using eigenfaces. in 

Proceedings. 1991 IEEE computer society conference on computer vision and 

pattern recognition. 1991. IEEE Computer Society. 

68. Greanias, E.C., et al., The recognition of handwritten numerals by contour 

analysis. IBM Journal of Research and Development, 1963. 7(1): p. 14-21. 

69. Ferryman, J.M., et al. A Generic Deformable Model for Vehicle Recognition. in 

BMVC. 1995. Citeseer. 

70. Krizhevsky, A., I. Sutskever, and G.E. Hinton. Imagenet classification with 

deep convolutional neural networks. 2012. 



Bibliography  

157 
 

71. Zhao, Z.-Q., et al., Object detection with deep learning: A review. IEEE 

transactions on neural networks and learning systems, 2019. 30(11): p. 3212-

3232. 

72. Noda, K., et al., Audio-visual speech recognition using deep learning. Applied 

Intelligence, 2015. 42(4): p. 722-737. 

73. Wainberg, M., et al., Deep learning in biomedicine. Nature biotechnology, 

2018. 36(9): p. 829-838. 

74. Young, T., et al., Recent trends in deep learning based natural language 

processing. ieee Computational intelligenCe magazine, 2018. 13(3): p. 55-75. 

75. Goodfellow, I., Y. Bengio, and A. Courville, Deep learning. 2016: MIT press. 

76. Fukushima, K. and S. Miyake, Neocognitron: A self-organizing neural network 

model for a mechanism of visual pattern recognition, in Competition and 

cooperation in neural nets. 1982, Springer. p. 267-285. 

77. Ruder, S., An overview of gradient descent optimization algorithms. arXiv 

preprint arXiv:1609.04747, 2016. 

78. Ciresan, D.C., et al., Deep, big, simple neural nets for handwritten digit 

recognition. Neural computation, 2010. 22(12): p. 3207-3220. 

79. Simonyan, K. and A. Zisserman, Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 

80. Szegedy, C., et al. Going deeper with convolutions. 2015. 



Bibliography  

158 
 

81. He, K., et al. Deep residual learning for image recognition. in Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition. 2016. 

82. Sandler, M., et al., Mobilenetv2: Inverted residuals and linear bottlenecks. 

Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, 2018. 1(1): p. 4510-4520. 

83. Hu, J., L. Shen, and G. Sun. Squeeze-and-excitation networks. 2018. 

84. Kolesnikov, A., et al., Big Transfer (BiT): General Visual Representation 

Learning Supplementary Material. 

85. Srivastava, R.K., K. Greff, and J. Schmidhuber, Highway networks. arXiv 

preprint arXiv:1505.00387, 2015. 

86. Howard, A.G., et al., Mobilenets: Efficient convolutional neural networks for 

mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 

87. Huang, G., et al. Condensenet: An efficient densenet using learned group 

convolutions. 2018. 

88. Chollet, F., Xception: Deep Learning with Depthwise Separable Convolutions. 

Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, 2017: p. 1800-1807. 

89. Luo, S., et al., Rare bioparticle detection via deep metric learning. RSC 

Advances, 2021. 11(29): p. 17603-17610. 

90. Lu, J., J. Hu, and J. Zhou, Deep metric learning for visual understanding: An 

overview of recent advances. IEEE Signal Processing Magazine, 2017. 34(6): 

p. 76-84. 



Bibliography  

159 
 

91. Hoffer, E. and N. Ailon. Deep metric learning using triplet network. in 

International workshop on similarity-based pattern recognition. 2015. Springer. 

92. Hain, R., C.J. Kähler, and C. Tropea, Comparison of CCD, CMOS and 

intensified cameras. Experiments in fluids, 2007. 42(3): p. 403-411. 

93. McClish, M., et al., Recent advances of planar silicon APD technology. Nuclear 

Instruments and Methods in Physics Research Section A: Accelerators, 

Spectrometers, Detectors and Associated Equipment, 2006. 567(1): p. 36-40. 

94. Basiji, D.A., et al., Cellular image analysis and imaging by flow cytometry. 

Clinics in laboratory medicine, 2007. 27(3): p. 653-670. 

95. Elliott, G.S., Moving pictures: imaging flow cytometry for drug development. 

Combinatorial chemistry & high throughput screening, 2009. 12(9): p. 849-859. 

96. Basiji, D.A., Principles of Amnis imaging flow cytometry, in Imaging Flow 

Cytometry. 2016, Springer. p. 13-21. 

97. Schonbrun, E., S.S. Gorthi, and D. Schaak, Microfabricated multiple field of 

view imaging flow cytometry. Lab on a Chip, 2012. 12(2): p. 268-273. 

98. Gorthi, S.S., D. Schaak, and E. Schonbrun, Fluorescence imaging of flowing 

cells using a temporally coded excitation. Optics express, 2013. 21(4): p. 5164-

5170. 

99. Diebold, E.D., et al., Digitally synthesized beat frequency multiplexing for sub-

millisecond fluorescence microscopy. Nature Photonics, 2013. 7(10): p. 806-

810. 



Bibliography  

160 
 

100. Mikami, H., et al. Ultrafast Confocal Fluorescence Microscopy by Frequency-

Division-Multiplexed Multi-Line Focusing. in CLEO: Applications and 

Technology. 2016. Optical Society of America. 

101. Han, Y. and Y.-H. Lo, Imaging cells in flow cytometer using spatial-temporal 

transformation. Scientific reports, 2015. 5: p. 13267. 

102. Han, Y. and Y.-H. Lo. Imaging flow cytometer using computation and spatially 

coded filter. in High-Speed Biomedical Imaging and Spectroscopy: Toward Big 

Data Instrumentation and Management. 2016. International Society for Optics 

and Photonics. 

103. Sieracki, C.K., M.E. Sieracki, and C.S. Yentsch, An imaging-in-flow system for 

automated analysis of marine microplankton. Marine Ecology Progress Series, 

1998. 168: p. 285-296. 

104. Poulton, N.J., FlowCam: quantification and classification of phytoplankton by 

imaging flow cytometry, in Imaging Flow Cytometry. 2016, Springer. p. 237-

247. 

105. Olson, R.J. and H.M. Sosik, A submersible imaging‐in‐flow instrument to 

analyze nano‐and microplankton: Imaging FlowCytobot. Limnology and 

Oceanography: Methods, 2007. 5(6): p. 195-203. 

106. Luo, S., et al., Deep learning-enabled imaging flow cytometry for high-speed 

Cryptosporidium and Giardia detection. Cytometry Part A. n/a(n/a). 

107. Luo, S., et al., Machine Learning-Based Pipeline for High Accuracy 

Bioparticle Sizing. Micromachines, 2020. 11(12): p. 1084. 



Bibliography  

161 
 

108. Ciresan, D.C., et al., Mitosis detection in breast cancer histology images with 

deep neural networks. Med Image Comput Comput Assist Interv, 2013. 16(Pt 

2): p. 411-8. 

109. Hung, J. and A. Carpenter. Applying faster R-CNN for object detection on 

malaria images. 2017. 

110. Chen, L.C., et al., DeepLab: Semantic Image Segmentation with Deep 

Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE 

Trans Pattern Anal Mach Intell, 2018. 40(4): p. 834-848. 

111. He, K., et al., Mask R-CNN. IEEE Trans Pattern Anal Mach Intell, 2018. 

112. Ning, G., et al. Spatially supervised recurrent convolutional neural networks 

for visual object tracking. in 2017 IEEE International Symposium on Circuits 

and Systems (ISCAS). 2017. IEEE. 

113. Wang, Q., et al. Fast online object tracking and segmentation: A unifying 

approach. in Proceedings of the IEEE conference on computer vision and 

pattern recognition. 2019. 

114. Wojke, N., A. Bewley, and D. Paulus. Simple online and realtime tracking with 

a deep association metric. in 2017 IEEE international conference on image 

processing (ICIP). 2017. IEEE. 

115. Voigtlaender, P., et al. MOTS: Multi-object tracking and segmentation. in 

Proceedings of the IEEE conference on computer vision and pattern 

recognition. 2019. 



Bibliography  

162 
 

116. Li, Y., L. Shen, and S. Yu, HEp-2 Specimen Image Segmentation and 

Classification Using Very Deep Fully Convolutional Network. IEEE Trans Med 

Imaging, 2017. 36(7): p. 1561-1572. 

117. Shelhamer, E., J. Long, and T. Darrell, Fully Convolutional Networks for 

Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell, 2017. 39(4): p. 

640-651. 

118. Mikami, H., et al., Virtual-freezing fluorescence imaging flow cytometry. 

Nature communications, 2020. 11(1): p. 1-11. 

119. Doan, M., et al., Label‐free leukemia monitoring by computer vision. 

Cytometry Part A, 2020. 97(4): p. 407-414. 

120. Correa, I., et al. Deep learning for microalgae classification. in 2017 16th IEEE 

International Conference on Machine Learning and Applications (ICMLA). 

2017. IEEE. 

121. Lumini, A. and L. Nanni, Deep learning and transfer learning features for 

plankton classification. Ecological informatics, 2019. 51: p. 33-43. 

122. Lumini, A., L. Nanni, and G. Maguolo, Deep learning for plankton and coral 

classification. Applied Computing and Informatics, 2020. 

123. Liu, J., et al. Deep pyramidal residual networks for plankton image 

classification. in 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). 2018. 

IEEE. 

124. Qin, X. and Z. Wang, NASNet: A Neuron Attention Stage-by-Stage Net for 

Single Image Deraining. arXiv preprint arXiv:1912.03151, 2019. 



Bibliography  

163 
 

125. Han, D., J. Kim, and J. Kim. Deep pyramidal residual networks. in Proceedings 

of the IEEE conference on computer vision and pattern recognition. 2017. 

126. Eulenberg, P., et al., Reconstructing cell cycle and disease progression using 

deep learning. Nature communications, 2017. 8(1): p. 1-6. 

127. Lei, C., et al., High-throughput imaging flow cytometry by optofluidic time-

stretch microscopy. Nature protocols, 2018. 13(7): p. 1603-1631. 

128. Gupta, A., et al., Deep learning in image cytometry: a review. Cytometry Part 

A, 2019. 95(4): p. 366-380. 

129. Sun, J., A. Tárnok, and X. Su, Deep learning‐based single‐cell optical image 

studies. Cytometry Part A, 2020. 97(3): p. 226-240. 

130. Goda, K., et al., High-throughput single-microparticle imaging flow analyzer. 

Proceedings of the National Academy of Sciences, 2012. 109(29): p. 11630-

11635. 

131. Lippeveld, M., et al., Classification of human white blood cells using machine 

learning for stain‐free imaging flow cytometry. Cytometry Part A, 2020. 97(3): 

p. 308-319. 

132. Millipore, A.p.o.E. IDEAS Image Data Exploration and Analysis Software 

User’s Manual. 2015. 

133. Dreelin, E.A., et al., Cryptosporidium and Giardia in surface water: a case 

study from Michigan, USA to inform management of rural water systems. 

International journal of environmental research and public health, 2014. 11(10): 

p. 10480-10503. 



Bibliography  

164 
 

134. Shifat‐E‐Rabbi, M., et al., Cell image classification: a comparative overview. 

Cytometry Part A, 2020. 97(4): p. 347-362. 

135. Erdbrügger, U., et al., Imaging flow cytometry elucidates limitations of 

microparticle analysis by conventional flow cytometry. Cytometry Part A, 2014. 

85(9): p. 756-770. 

136. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): 

p. 436-44. 

137. Corporation, L. Amnis® AI Image Analysis Software.  [cited 2021 25 Jan]; 

Available from: https://www.luminexcorp.com/download/amnis-ai-image-

analysis-software/. 

138. Park, J., et al., Algal morphological identification in watersheds for drinking 

water supply using neural architecture search for convolutional neural network. 

Water, 2019. 11(7): p. 1338. 

139. Dunker, S., et al., Combining high-throughput imaging flow cytometry and 

deep learning for efficient species and life-cycle stage identification of 

phytoplankton. BMC ecology, 2018. 18(1): p. 51. 

140. Liu, P., et al., Analysis and prediction of water quality using LSTM deep neural 

networks in IoT environment. Sustainability, 2019. 11(7): p. 2058. 

141. Bürmen, M., F. Pernuš, and B. Likar, LED light sources: a survey of quality-

affecting factors and methods for their assessment. Measurement science and 

technology, 2008. 19(12): p. 122002. 



Bibliography  

165 
 

142. Fossum, E.R. and D.B. Hondongwa, A review of the pinned photodiode for 

CCD and CMOS image sensors. IEEE Journal of the Electron Devices Society, 

2014. 

143. Rose, J.B. and T.R. Slifko, Giardia, Cryptosporidium, and Cyclospora and 

their impact on foods: a review. Journal of food protection, 1999. 62(9): p. 

1059-1070. 

144. Sato, M.I.Z., et al., Assessing the infection risk of Giardia and Cryptosporidium 

in public drinking water delivered by surface water systems in Sao Paulo State, 

Brazil. Science of The Total Environment, 2013. 442: p. 389-396. 

145. Koelmans, A.A., et al., Microplastics in freshwaters and drinking water: 

critical review and assessment of data quality. Water research, 2019. 155: p. 

410-422. 

146. LeCun, Y., et al. Handwritten digit recognition with a back-propagation 

network. in Advances in Neural Information Processing Systems. 1990. 

147. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. the Journal of 

machine Learning research, 2011. 12: p. 2825-2830. 

148. Abadi, M., et al. Tensorflow: A system for large-scale machine learning. in 12th 

{USENIX} Symposium on Operating Systems Design and Implementation 

({OSDI} 16). 2016. 

149. Brown, L., Deep learning with GPUs. Larry Brown Ph. D., Johns Hopkins 

University, 2015. 



Bibliography  

166 
 

150. Glorot, X. and Y. Bengio. Understanding the difficulty of training deep 

feedforward neural networks. in Proceedings of the Thirteenth International 

Conference on Artificial Intelligence and Statistics. 2010. 

151. Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv 

preprint arXiv:1412.6980, 2014. 

152. Perez, L. and J. Wang, The effectiveness of data augmentation in image 

classification using deep learning. arXiv preprint arXiv:1712.04621, 2017. 

153. Bekkar, M. and T.A. Alitouche, Imbalanced data learning approaches review. 

International Journal of Data Mining & Knowledge Management Process, 2013. 

3(4): p. 15. 

154. Tan, M. and Q.V. Le, EfficientNet: Rethinking Model Scaling for Convolutional 

Neural Networks. arXiv preprint arXiv:1905.11946, 2019. 

155. Van Asch, V., Macro-and micro-averaged evaluation measures [[basic draft]]. 

Belgium: CLiPS, 2013. 49. 

156. Maaten, L.v.d. and G. Hinton, Visualizing data using t-SNE. Journal of 

Machine Learning Research, 2008. 9(Nov): p. 2579-2605. 

157. Dunteman, G.H., Principal components analysis. 1989: Sage. 

158. Caruana, R., Multitask learning. Machine Learning, 1997. 28(1): p. 41-75. 

159. Chen, Y., et al., Rare cell isolation and analysis in microfluidics. Lab on a Chip, 

2014. 14(4): p. 626-645. 

160. Goodfellow, I., et al., Deep learning. Vol. 1. 2016: MIT press Cambridge. 



Bibliography  

167 
 

161. Reichardt, T.A., et al. Analysis of flow-cytometer scattering and fluorescence 

data to identify particle mixtures. in Optics and Photonics in Global Homeland 

Security IV. 2008. International Society for Optics and Photonics. 

162. Bendale, A. and T. Boult. Towards open world recognition. in Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition. 2015. 

163. Pimentel, M.A., et al., A review of novelty detection. Signal Processing, 2014. 

99: p. 215-249. 

164. Bendale, A. and T.E. Boult. Towards open set deep networks. in Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. 

165. Hendrycks, D. and K. Gimpel, A baseline for detecting misclassified and out-

of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136, 

2016. 

166. Meyer, B.J., B. Harwood, and T. Drummond. Deep metric learning and image 

classification with nearest neighbour gaussian kernels. in 2018 25th IEEE 

International Conference on Image Processing (ICIP). 2018. IEEE. 

167. Trigueros, D.S., L. Meng, and M. Hartnett, Face recognition: From traditional 

to deep learning methods. arXiv preprint arXiv:1811.00116, 2018. 

168. Bromley, J., et al. Signature verification using a" siamese" time delay neural 

network. in Advances in Neural Information Processing Systems. 1994. 

169. Taigman, Y., et al. Deepface: Closing the gap to human-level performance in 

face verification. in Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition. 2014. 



Bibliography  

168 
 

170. Varior, R.R., M. Haloi, and G. Wang. Gated siamese convolutional neural 

network architecture for human re-identification. in European Conference on 

Computer Vision. 2016. Springer. 

171. He, K., et al. Delving deep into rectifiers: Surpassing human-level performance 

on imagenet classification. in Proceedings of the IEEE International 

Conference on Computer Vision. 2015. 

172. Paszke, A., et al. Pytorch: An imperative style, high-performance deep learning 

library. in Advances in Neural Information Processing Systems. 2019. 

173. Caruana, R., S. Lawrence, and C.L. Giles. Overfitting in neural nets: 

Backpropagation, conjugate gradient, and early stopping. in Advances in 

Neural Information Processing Systems. 2001. 

174. Reynolds, D.A., Gaussian Mixture Models. Encyclopedia of Biometrics, 2009. 

741. 

175. Mendenhall, W.M. and T.L. Sincich, Statistics for Engineering and the 

Sciences. 2016: CRC Press. 

176. Corduneanu, A. and C.M. Bishop. Variational Bayesian model selection for 

mixture distributions. in Artificial Intelligence and Statistics. 2001. Morgan 

Kaufmann Waltham, MA. 

177. Forsyth, D.A. and J. Ponce, Computer vision: a modern approach. 2012: 

Pearson. 

178. Mage, P.L., et al., Shape-based separation of synthetic microparticles. Nature 

materials, 2019. 18(1): p. 82  



Bibliography  

169 
 

179. Park, J.H., et al., Inflated sporopollenin exine capsules obtained from thin-

walled pollen. Scientific reports, 2016. 6(1): p. 1-10. 

180. Viles, C.L. and M.E. Sieracki, Measurement of marine picoplankton cell size 

by using a cooled, charge-coupled device camera with image-analyzed 

fluorescence microscopy. Applied and environmental microbiology, 1992. 

58(2): p. 584-592. 

181. Medema, G.J., et al., Sedimentation of Free and AttachedCryptosporidium 

Oocysts and Giardia Cysts in Water. Appl. Environ. Microbiol., 1998. 64(11): 

p. 4460-4466. 

182. Abbireddy, C.O. and C.R. Clayton, A review of modern particle sizing methods. 

Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 

2009. 162(4): p. 193-201. 

183. Costa, C., et al., Extracting fish size using dual underwater cameras. 

Aquacultural Engineering, 2006. 35(3): p. 218-227. 

184. Almeida, S.M., et al., Approaching PM2. 5 and PM2. 5− 10 source 

apportionment by mass balance analysis, principal component analysis and 

particle size distribution. Science of the Total Environment, 2006. 368(2-3): p. 

663-674. 

185. Fernlund, J.M., The effect of particle form on sieve analysis: a test by image 

analysis. Engineering Geology, 1998. 50(1-2): p. 111-124. 



Bibliography  

170 
 

186. Saveyn, H., et al., In‐line comparison of particle sizing by static light scattering, 

time‐of‐transition, and dynamic image analysis. Particle & Particle Systems 

Characterization, 2006. 23(2): p. 145-153. 

187. Brown, W., Dynamic light scattering: the method and some applications. Vol. 

313. 1993: Clarendon Press Oxford. 

188. Filipe, V., A. Hawe, and W. Jiskoot, Critical evaluation of Nanoparticle 

Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles 

and protein aggregates. Pharmaceutical research, 2010. 27(5): p. 796-810. 

189. Weiner, B., W.W. Tscharnuter, and N. Karasikov, Improvements in Accuracy 

and Speed Using the Time-of-Transition Method and Dynamic Image Analysis 

for Particle Sizing: Some Real-World Examples. 1998, ACS Publications. 

190. Bradbury, S., et al., Introduction to light microscopy. 1998: Bios Scientific 

Oxford, UK. 

191. Hamilton, N., Quantification and its applications in fluorescent microscopy 

imaging. Traffic, 2009. 10(8): p. 951-961. 

192. Shi, Y., et al., Chirality-assisted lateral momentum transfer for bidirectional 

enantioselective separation. Light: Science & Applications, 2020. 9(1): p. 1-12. 

193. Flegler, S.L. and S.L. Flegler, Scanning & Transmission Electron Microscopy. 

1997: Oxford University Press. 

194. Shi, Y., et al., Nanophotonic array-induced dynamic behavior for label-free 

shape-selective bacteria sieving. ACS nano, 2019. 13(10): p. 12070-12080. 



Bibliography  

171 
 

195. Lawrence, W.G., et al. A comparison of avalanche photodiode and 

photomultiplier tube detectors for flow cytometry. in Imaging, Manipulation, 

and Analysis of Biomolecules, Cells, and Tissues VI. 2008. International 

Society for Optics and Photonics. 

196. Han, Y., et al., Review: imaging technologies for flow cytometry. Lab Chip, 

2016. 16(24): p. 4639-4647. 

197. Pham, H., Springer handbook of engineering statistics. 2006: Springer Science 

& Business Media. 

198. Van Valen, D.A., et al., Deep learning automates the quantitative analysis of 

individual cells in live-cell imaging experiments. PLoS computational biology, 

2016. 12(11): p. e1005177. 

199. Girshick, R. Fast r-cnn. in Proceedings of the IEEE international conference 

on computer vision. 2015. 

200. Lin, T.-Y., et al. Focal loss for dense object detection. in Proceedings of the 

IEEE international conference on computer vision. 2017. 

201. Moen, E., et al., Deep learning for cellular image analysis. Nature methods, 

2019: p. 1-14. 

202. Szeliski, R., Computer Vision: Algorithms and Applications. Instructor, 2019. 

201901. 

203. Canny, J., A computational approach to edge detection. IEEE Transactions on 

pattern analysis and machine intelligence, 1986(6): p. 679-698. 



Bibliography  

172 
 

204. Gil, J.Y. and R. Kimmel, Efficient dilation, erosion, opening, and closing 

algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

2002. 24(12): p. 1606-1617. 

205. Suzuki, S., Topological structural analysis of digitized binary images by border 

following. Computer vision, graphics, and image processing, 1985. 30(1): p. 

32-46. 

206. Udupa, J.K., et al. Methodology for evaluating image-segmentation algorithms. 

2002. International Society for Optics and Photonics. 

207. Chai, T. and R.R. Draxler, Root mean square error (RMSE) or mean absolute 

error (MAE)?–Arguments against avoiding RMSE in the literature. 

Geoscientific model development, 2014. 7(3): p. 1247-1250. 

208. Cheng, J., et al., Recent advances in efficient computation of deep convolutional 

neural networks. Frontiers of Information Technology & Electronic 

Engineering, 2018. 19(1): p. 64-77. 

209. Yang, Z., et al., Searching for low-bit weights in quantized neural networks. 

arXiv preprint arXiv:2009.08695, 2020. 

210. Han, S., et al., Learning both weights and connections for efficient neural 

networks. arXiv preprint arXiv:1506.02626, 2015. 

211. Han, S., H. Mao, and W.J. Dally, Deep compression: Compressing deep neural 

networks with pruning, trained quantization and huffman coding. arXiv 

preprint arXiv:1510.00149, 2015. 



Bibliography  

173 
 

212. Kolda, T.G. and B.W. Bader, Tensor decompositions and applications. SIAM 

review, 2009. 51(3): p. 455-500. 

213. Zhang, X., et al., Accelerating very deep convolutional networks for 

classification and detection. IEEE transactions on pattern analysis and machine 

intelligence, 2015. 38(10): p. 1943-1955. 

214. Kim, Y.-D., et al., Compression of deep convolutional neural networks for fast 

and low power mobile applications. arXiv preprint arXiv:1511.06530, 2015. 

215. Denil, M., et al., Predicting parameters in deep learning. arXiv preprint 

arXiv:1306.0543, 2013. 

216. Chen, W., et al. Compressing neural networks with the hashing trick. in 

International conference on machine learning. 2015. PMLR. 

217. Miyashita, D., E.H. Lee, and B. Murmann, Convolutional neural networks 

using logarithmic data representation. arXiv preprint arXiv:1603.01025, 2016. 

218. Hammerstrom, D. A VLSI architecture for high-performance, low-cost, on-chip 

learning. in 1990 IJCNN International Joint Conference on Neural Networks. 

1990. IEEE. 

219. Chen, G., et al. Learning efficient object detection models with knowledge 

distillation. in Proceedings of the 31st International Conference on Neural 

Information Processing Systems. 2017. 

220. Hinton, G., O. Vinyals, and J. Dean, Distilling the knowledge in a neural 

network. arXiv preprint arXiv:1503.02531, 2015. 



Bibliography  

174 
 

221. Patel, A.B., T. Nguyen, and R.G. Baraniuk, A probabilistic theory of deep 

learning. arXiv preprint arXiv:1504.00641, 2015. 

222. Tran, D., et al., Deep probabilistic programming. arXiv preprint 

arXiv:1701.03757, 2017. 

223. Depeweg, S., Modeling Epistemic and Aleatoric Uncertainty with Bayesian 

Neural Networks and Latent Variables. 2019, Technische Universität München. 

 

 

 

 

 

 

 



Author’s Publications  

175 
 

Author’s Publications 

Journal Publications 

1. S. Luo, K. T. Nguyen, B. T. T. Nguyen, S. Feng, Y. Shi, A. Elsayed, Y. Zhang, X. 

Zhou, B. Wen, G. Chierchia, H. Talbot, T. Bourouina, X. Jiang, and A. Q. Liu. 

“Deep Learning-Enabled Imaging Flow Cytometry for High-Speed 

Cryptosporidium and Giardia Detection”. Cytometry Part A, 2021. 

10.1002/cyto.a.24321. 

2. S. Luo, Y. Zhang, K. T. Nguyen, S.L. Feng, H. Yu, G. Chierchia, H. Talbot, X. 

Jiang, T. Bourouina, A. Q. Liu. “Machine Learning-Based Pipeline for High 

Accuracy Bioparticle Sizing”. Micromachine, 2020. 11(12): p.1084. 

3. S. Luo, Y. Shi, L. K. Chin, Y. Zhang, B. Wen, Y. Sun, G. Chierchia, H. Talbot, 

X. Jiang, T. Bourouina, A. Q. Liu. “Rare Bioparticle Detection vi Deep Metric 

Learning”. RSC Advances, 2021; 11:17603-17610 

4. S. Luo, Y. Shi, L. K. Chin, P. Hutchinson, Y. Zhang, G. Chierchia, H. Talbot, X. 

Jiang, T. Bourouina, and A. Q. Liu. “Machine Learning Assisted Intelligent 

Imaging Flow Cytometry: A Review”. Advanced Intelligent System, 2021 

(Accepted). 

5. Z. Li, H. Zhang, B.T.T. Nguyen, S. Luo, Y. Liu, J. Zou, Y. Shi, H. Cai, Z. Yang, 

Y. Jin, Y. Hao, Y. Zhang, and A. Q. Liu. “Smart Ring Resonator-based Sensor for 

Multicomponent Chemical Analysis via Machine Learning”. Photonics Research, 

2020. 9(2):B38-44 

6. A. Elsayed, M. Erfan, Y. M. Sabry, R. Dris, J. Gasperi, J. Barbier, F. Marty, F. 

Bouanis, S. Luo, B. T. T. Nguyen, A. Q. Liu, B. Tassin, T. Bourouina, “A 

microfluidic chip enables fast analysis of water microplastics by optical 

spectroscopy”. Scientific Reports, 2021. 11: 10533.  



Author’s Publications  

176 
 

  



Author’s Publications  

177 
 

Conference Presentations 

1. S. Luo, K. T. Nguyen, X. Jiang, J. Wu, B. Wen, Y. Zhang, G. Chierchia, H. Talbot, 

T. Bourouina, A. Q. Liu, (2019, July). “A High Performance of Single Cell 

Imaging Detection with Deep Learning”. In 2019 IEEE 4th International 

Conference on Image, Vision and Computing (ICIVC) (pp. 356-360). IEEE. 

(Oral)  



Author’s Publications  

178 
 

Awards 

1. System Design Contest Second Place (Embedded System Implementation of 

Neural Network based Object Detection for Drones), IEEE/ACM Design 

Automation Conference, 2020. 

 

  



Author’s Publications  

179 
 

 

 

 

 



Résumé   

180 
 

 

 

 

Apprentissage automatique sur la reconnaissance et 

le dimensionnement d'images de bioparticules à 

haut débit 

  



Résumé   

181 
 

La cytométrie de flux est l'une des technologies les plus largement adoptées pour 

l'analyse des bioparticules dans le diagnostic des maladies [9-11], l'inspection des 

aliments [12, 13] et la surveillance de la qualité de l'eau [14-16] parmi d'autres 

applications de détection de bioparticules [17-21]. La cytométrie en flux 

conventionnelle identifie les bioparticules en fonction des signatures optiques des 

bioparticules telles que leurs profils fluorescents [17]. Les bioparticules telles que les 

cellules sont généralement immuno-marquées avec des marqueurs fluorescents qui 

ciblent des biomarqueurs spécifiques aux cellules pour faciliter l'analyse. Le 

marquage fluorescent peut toutefois altérer les propriétés cellulaires et interférer avec 

les analyses en aval [22], et aucune connaissance de la morphologie cellulaire n'a pu 

être dérivée des données rares obtenues à l'aide de la cytométrie en flux 

conventionnelle. 

La morphologie est une caractéristique importante des bioparticules. Les 

images regorgent d'informations riches sur la morphologie qui pourraient être 

utilisées pour la détection des bioparticules [15-22]. Les méthodes de référence 

reposent principalement sur la morphologie des bioparticules avec des techniques 

d'imagerie basées sur la microscopie pour l'identification microbienne [23]. Par 

exemple, les protozoaires pathogènes dans l'eau potable, Cryptosporidium et Giardia, 

sont détectés en analysant la morphologie des images microscopiques [24]. 

Cependant, l'approche d'imagerie traditionnelle basée sur la microscopie nécessite 

une préparation intensive des échantillons et une analyse manuelle des données, ce 

qui entrave considérablement son application dans l'analyse de bioparticules à haut 

débit [25]. 

La cytométrie en flux basée sur l'imagerie est une technologie d'acquisition 

d'images à haut débit en couplant des techniques d'imagerie à la cytométrie en flux. 
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La cytométrie en flux d'imagerie a un débit significativement plus élevé que les 

techniques d'imagerie traditionnelles basées sur la microscopie et est capable de 

capturer des milliers à des millions d'images de bioparticules en une seconde en 

utilisant diverses modalités d'imagerie [33]. Les images acquises regorgent 

d'informations riches sur la morphologie des cellules et des microparticules. 

Néanmoins, le grand nombre d'images riches en informations pose un grand défi pour 

l'analyse des données. 

L'apprentissage automatique est souvent utilisé pour identifier les bioparticules 

telles que les cellules, les planctons et les micro-algues lors de l'analyse d'images [34, 

35]. À l'exception de quelques cas où l'apprentissage automatique est utilisé pour la 

correction, l'amélioration et la reconstruction d'image [27], un certain nombre 

d'algorithmes d'apprentissage automatique ont été développés pour la détection et la 

classification des cellules basées sur l'imagerie [5, 25, 36-39] avec une précision 

élevée dans ces travaux, mais ils étaient relativement lents et nécessitaient des 

ressources de calcul élevées au-delà de la capacité des systèmes embarqués afin de 

construire une machine de cytométrie en flux d'imagerie abordable. Par exemple, un 

algorithme très précis basé sur un réseau neuronal sophistiqué et densément connecté 

[40] pour la détection de cellules cancéreuses à haut débit dans le sang a été rapporté 

[5]. Il avait de bonnes performances de détection, mais sa vitesse était limitée à 100 

fps (frames per second), et il devait s'appuyer sur une plate-forme haute performance 

avec un GPU Nvidia GeForce GTX 1080Ti haut de gamme. Le tri intelligent de 

cellules activé par l'image 2.0 (Intelligent image-activated cell sorting 2.0) permet 

d'atteindre un débit plus élevé en triant jusqu'à 2000 événements par seconde, mais il 

nécessite un serveur de 8 PC avec 8 processeurs multi-cœurs et GPU (NVIDIA 

GeForce GTX 1080 Ti) pour le traitement d'image avec apprentissage profond [4]. 
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La plupart des algorithmes d'apprentissage automatique développés pour l'imagerie 

de la cytométrie en flux se concentrent principalement sur la précision de détection, 

mais négligent l'efficacité en termes de vitesse et d'exigences matérielles, ce qui a des 

implications pratiques. 

L'apprentissage profond avec un réseau neuronal profond a atteint des 

performances très élevées pour de nombreuses applications riches en données et en 

apprentissage supervisé [5, 25, 36-39]. Cependant, les réseaux neuronaux profonds 

de pointe rencontrent encore des défis dans des applications pratiques telles que le 

système d'alerte précoce [8]. Dans ces applications, le nombre de bioparticules cibles 

est extrêmement faible et le nombre d'images d'arrière-plan est extrêmement 

important. Par conséquent, les modèles doivent avoir une performance avec une 

faible fausse alarme ainsi qu'un taux de récupération élevé. De plus, les images des 

bioparticules cibles sont difficiles à collecter pour créer un ensemble de données de 

référence. Par exemple, l'apparence des images collectées des bioparticules dans les 

environnements de test peut être différente de celles de l'ensemble de données 

d'apprentissage. Ces différences introduisent des difficultés pour les reconnaître avec 

les réseaux de neurones profonds traditionnels étant donné que le recours aux réseaux 

de neurones profonds suppose un monde statique et fermé et ne peuvent pas bien 

fonctionner sur un problème à jeu ouvert, de sorte que l'entrée au moment de 

l'inférence doit appartenir à la même distribution pendant l'entraînement afin 

d'obtenir de bonnes performances de détection [41]. 

Le système d'imagerie offre une mesure de taille basée sur l'image ainsi qu'une 

analyse de bioparticules à haut débit [42]. Des micrographies riches en informations 

de particules individuelles sont acquises à une vitesse élevée, et la taille des particules 

est déterminée en convertissant le pixel en longueur à un taux de conversion fixe qui 
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est calculé théoriquement sur la base de la spécification des composants optiques. Par 

exemple, un seul pixel correspond à 0,33 µm dans le cytomètre de flux d'imagerie 

Amnis® ImageStream®X Mk II [43] avec un objectif de 60´ et 0,5 µm avec un 

objectif de 40´ selon les spécifications du fabricant. Cependant, nous avons remarqué 

que ce taux de conversion fixe ne conduit pas toujours à un dimensionnement précis 

des particules. 

Face à ces défis, l'objectif majeur de cette thèse de doctorat est de développer 

les algorithmes d'apprentissage automatique pour détecter et dimensionner la 

bioparticule microscopique en utilisant l'apprentissage automatique, en particulier les 

méthodes d'apprentissage profond. Plus précisément, trois types de domaines sont 

explorés et discutés, à savoir : (1) détection de bioparticules à grande vitesse activée 

par l'apprentissage profond ; (2) Apprentissage métrique profond pour la détection de 

Figure 1: Vue d'ensemble de MCellNet, un réseau de neurones profonds qui permet 

l'imagerie par cytométrie en flux (Amnis® ImageStream®X Mk II) pour la détection 

de Cryptosporidium et Giardia. Le système comprend un laser, une cytométrie en 

flux, un système d'imagerie, une base de données d'images et un réseau neuronal 

profond. 
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bioparticules rares ; (3) Pipeline basé sur l'apprentissage automatique pour la 

classification en taille des bioparticules. 

Pour permettre l'inférence à faible puissance et à haut débit sur les périphériques 

embarqués à ressources limitées, par exemple Nvidia Jetson TX2 [44] à faible coût, 

un programme de détection en temps réel activé par l'apprentissage profond pour la 

détection de bioparticules à haut débit et sans marqueur fluorescent, comme le montre 

la Figure 1, a été proposé. Cette plate-forme de détection intelligente combine 

l'imagerie-cytométrie en flux et un réseau neuronal efficace que nous avons 

Figure 2: Vue d'ensemble de la configuration du système, un réseau neuronal 

métrique profond qui permet une cytométrie en flux d'imagerie intelligente (Amnis® 

ImageStream®X Mk II) pour la détection de bioparticules rares. Le système 

comprend (a) un système d'imagerie de cytométrie en flux, (b) une base de données 

d'images, (c) un réseau neuronal métrique profond et (d) un algorithme de décision, 

etc. 

(a) (b) 

(c) (d) 
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développé, connu sous le nom de MCellNet, avec une cible optimisée pour la vitesse 

de traitement et la précision de détection. Nous rapportons un système à haut débit 

activé par l'apprentissage profond pour prédire Cryptosporidium et Giardia à l'aide 

de la cytométrie en flux par imagerie. Ce système combine l'algorithme 

d'apprentissage profond de pointe MobileNetV2 en vitesse (251 images par seconde) 

avec une précision de classification comparable. Le système signalé permet une 

détection de bioparticules rapide, précise et à haut débit dans les diagnostics cliniques, 

la surveillance environnementale et d'autres applications potentielles de biocapteur. 

Pour traiter le problème de détection de bioparticules rares, un modèle de réseau 

neuronal profond basé sur l'apprentissage métrique comme le montre la Figure 2 a 

été proposé. L'algorithme exploite le réseau de neurones convolutifs pour étudier les 

fonctionnalités riches de l'ensemble de données d'entraînement et apprend une 

métrique distincte en utilisant un réseau siamois et une fonction de perte contrastive 

qui a appris à maximiser la distance des différentes classes et à minimiser la distance 

des classes similaires. L'apprentissage métrique profond offre une possibilité de 

génération et utilise les informations de distance pour modéliser la similitude des 

images en apprenant une fonction mappe des pixels d'images à l'espace latent, jouant 

un rôle essentiel dans la détection d'objets rares. Dans cette partie, nous proposons un 

modèle robuste basé sur un réseau neuronal métrique profond pour la détection de 

bioparticules rares. Les expériences montrent que le réseau neuronal métrique 

profond a atteint une précision élevée de 99,86% dans la classification, 98,89% en 

taux de précision, 99,16% en taux de rappel et zéro taux de fausse alarme pour la 

détection de bioparticules rares. Le modèle rapporté permet à l'imagerie de cytométrie 

en flux dans le diagnostic biomédical, la surveillance environnementale et d'autres 

applications de biodétection. 
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Pour permettre une mesure de la taille des bioparticules de haute précision, un 

pipeline basé sur l'apprentissage automatique pour le dimensionnement des 

bioparticules de haute précision basé sur l'imagerie, comme le montre la Figure 3, 

est démontré. Le pipeline se compose d'un module de segmentation d'image pour 

extraire les contours et estimer la taille de pixel de la bioparticule ainsi que d'un 

modèle d'apprentissage automatique pour une conversion pixel-taille précise. 

L'algorithme de segmentation d'image atteint 84,4% de l'IoU moyenne, et la taille de 

particule déterminée par le modèle d'apprentissage automatique n'a qu'un 

pourcentage d'erreur moyen de 4,2%, ce qui est cinq fois mieux que la méthode 

utilisant un rapport de conversion pixel-taille fixe (23,3%). Notre méthode permet à 

différents systèmes d'imagerie intelligents tels que l'imagerie de cytométrie en flux 

pour le dimensionnement des particules de haute précision et promet un grand 

potentiel pour une large gamme d'applications dans le domaine de la détection 

environnementale, du diagnostic biomédical et de la caractérisation des matériaux. 

 

 

 

 

Figure 3 : Différentes étapes du pipeline de mesure de taille. (a) Image de 

bioparticules. (b) Segmentation. (c) Forme des bioparticules. (d) Taille des 

bioparticules en nombre de pixels. (e) Taille des bioparticules en µm. (a), (b) et (c) 

partagent la même barre d'échelle. 


