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Résumé

En raison de la demande croissante de sécurité et de fiabilité accrues des systèmes

dynamiques, la détection et le diagnostic des défauts (FDD) ainsi que la commande

tolérante aux fautes (FTC) deviennent des méthodes attrayantes pour éviter les pannes

et les catastrophes des grands systèmes. Cette thèse porte sur le développement de

stratégies de FDD et de FTC basées sur des observateurs pour des systèmes non

linéaires complexes. Une étude de cas sur un réacteur/échangeur de chaleur (réacteur

HEX) intensifié est proposée afin d’illustrer et de démontrer l’efficacité des algorithmes

de commande tolérante aux fautes développés.

Dans le domaine du génie chimique, un réacteur HEX intensifié est un dispositif

multifonctionnel qui combine un échangeur de chaleur et un réacteur chimique dans une

unité hybride. Grâce à ses remarquables performances thermiques et hydrodynamiques,

le réacteur HEX intensifié est un moyen prometteur de répondre aux exigences crois-

santes en matière de sécurité, de réduction des coûts et de déchets. Cependant, des

défaillances telles que l’encrassement des canaux ou un mauvais contrôle thermique

pouvant conduire à un emballement thermique constituent des menaces importantes

pour la mise en œuvre de ce procédé intensifié. Pour résoudre ces problèmes, il est

nécessaire de mettre en place des systèmes de diagnostic et de commande tolérante aux

fautes afin de garantir des performances satisfaisantes, même en cas de d’apparition de

certains défauts.

Un modèle mathématique du réacteur HEX est proposé dont la validité est prou-

vée en comparant les performances obtenues par simulation avec des données expéri-

mentales. Afin de superviser le changement d’un paramètre susceptible de varier, un

observateur adaptatif et un observateur par intervalles sont proposés. Ces observa-

teurs qui portent non seulement sur l’estimation de l’état mais aussi sur le changement

de paramètres, sont appliqués au réacteur HEX considéré. Les résultats montrent

que la méthode FDD basée sur l’observateur adaptatif et la méthode FDD basée sur

l’observateur par intervalles permettent de bien diagnostiquer les défauts dynamiques

et les défauts liés à des capteurs.

Pour concevoir une stratégie de commande tolérante aux fautes pour le réacteur

HEX, une loi de contrôle nominale basée sur l’approche Backstepping est proposée en

premier lieu pour garantir que la température du fluide du procédé suive la valeur

désirée. Ensuite, le contrôleur backstepping obtenu est combiné avec les schémas FDD

basés sur les deux types d’observateurs, respectivement. Ainsi, deux stratégies de FTC
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actives basées sur des observateurs sont proposées. L’idée principale de ces schémas

FTC actifs est la reconfiguration de la commande. Une fois le défaut isolé et identifié,

la loi de commande est reconstruite de façon à ce que le système continue à satisfaire

les performances attendues en présence du défaut.

Les stratégies FTC développées sont appliquées au réacteur HEX considéré et leur

efficacité est démontrée. Dans les deux cas, défaut dynamique ou défaut lié à un

capteur, les résultats obtenus sont satisfaisants. On peut noter que la stratégie FTC

utilisant l’observateur par intervalles présente une vitesse d’isolation de défaut plus

rapide.

Mots clés: commande tolérante aux fautes; diagnostic de défauts; detection

et isolation de faults; commande backstepping; observateur adaptatif; observa-

teur d’intervalle; observateur non linéaire; systèmes non linéaires; échangeur de

chaleur/réacteur
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Abstract

Due to the increasing demand for higher safety and reliability of the dynamic sys-

tem, fault detection and diagnosis (FDD), as well as fault tolerant control (FTC) are

becoming effective methods to avoid breakdowns and disasters of major systems. There-

fore, this thesis focuses on developing observer based fault diagnosis and fault tolerant

control strategies for complex nonlinear systems. A case study on an intensified heat ex-

changer/reactor (HEX reactor) is proposed to illustrate and demonstrate the proposed

fault tolerant control techniques.

In chemical engineering field, an intensified HEX reactor is a multifunctional device

that combines heat exchanger and chemical reactor in one hybrid unit. Thanks to

its remarkable thermal and hydrodynamic performance, the intensified HEX reactor

is a promising way to meet the increasing requirements for safer operating conditions

and lower cost as well as energy waste in the chemical engineering field. However,

undesirable failures, such as thermal runaway, and fouling in channels, still pose a

great threat to such intensified process. To solve this, FDD and FTC schemes are

needed to make it have a satisfactory performance even under the faulty situation

To start, a mathematical model of the HEX reactor is proposed. The effectiveness of

the proposed modeling is proved by comparing its performances obtained by simulation

with the experimental data. In order to supervise the change of the possible faulty

parameter, adaptive observer, and interval observer, which focus on not only the state

estimation but also the parameter change, are applied to the considered HEX reactor.

Simulation results show that both dynamic fault and sensor fault can be well diagnosed

by the adaptive observer based FDD method and the interval observer based FDD

method.

And then, to design a fault tolerant control strategy for the considered HEX reactor,

a nominal control law based on the backstepping technique has been proposed firstly

to guarantee the temperature of process fluid follows the desired value. After that,

the designed backstepping controller is combined with the FDD schemes based on two

kinds of observers, respectively. Thus, two active FTC strategies based on observers

are obtained. The main idea of the active FTC schemes is the same, controller recon-

figuration. Once the fault is isolated and identified by the observer, the control law

is reconstructed to make the system still satisfy the expected performance under the

faulty case. Both the dynamic fault and sensor fault are considered in this thesis.

After applying the proposed FTC strategies to the considered HEX reactor, their
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effectiveness has been demonstrated. Even though the system is influenced by a dy-

namic fault or sensor fault, the temperature of process fluid still provides a satisfactory

tracking performance. Besides, the interval observer based FTC strategy has a faster

fault isolation speed after comparing the performances of the proposed FTC strategies.

Key words: fault tolerant control; fault diagnosis; fault detection and isolation;

backstepping control; adaptive observer; interval observer; nonlinear observer; con-

troller reconfiguration; nonlinear system; heat-exchanger/reactor.
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Chapter 1

Introduction

Fault detection and diagnosis (FDD), as well as fault tolerant control (FTC), are critical

techniques to ensure the safety and reliability of industrial systems. Based on the

analysis of the background in this field, this chapter outlines the motivations and the

objectives of this study. The structure of the thesis is also presented here.
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1.1 Backgrounds

With the evolution of modern technologies, many engineering systems, such as aero en-

gines, vehicle dynamics, chemical processes, manufacturing systems, power networks,

etc, are becoming increasingly complex. As a consequence, one tiny component of the

overall industrial system can cause an unanticipated economic cost due to unplanned

shutdown and repairing/maintenance. Therefore, to guarantee the safety and relia-

bility of these systems, it is of great interest to design advanced fault detection and

diagnosis (FDD) techniques and fault tolerant control (FTC) programs to automat-

ically supervise the behavior of industrial systems and prevent further degradation

caused by unexpected faults.

A fault is defined as an unexpected deviation of at least one characteristic property

or parameter of the system from its nominal condition [65]. This may be an intermittent

event in the system, for example, sticking valves, leaks in the pipes, a pressure drop

in hydraulic components, etc. It can also be a wrong control signal given by the

controllers, or a change in ambient devices, such as sensor drift. In all cases, the fault

can result in a degradation of system performance, such as reduced production and

product quality, or worse, it can cause serious accidents in terms of human mortality

and environmental impact. We can cite the following examples: [67] claims that the

petrochemical industry in the United States loses between 10 to 20 billion dollars

annually due to abnormal situation management. [117] declares that the operational

unavailability of wind turbines reaches 3% of the lifetime of a wind turbine, and the

maintenance for its onshore and offshore can account for 10% to 15% and 20% to 35%

of the total life costs of wind conversion systems. Besides, faults can lead to fatalities

in safety critical processes such as aircraft, nuclear reactors, etc. For example, due

to complete loss of flying surface in the tail, Japan Airlines Flight 123 was crashed

on 12 August 1984 killing 520 people [113]. Another famous example is the explosion

that occurred in a huge nuclear power plant in the city of Chernobyl in 1986. The

main cause for this tragedy was the faulty outdated technology and the lack of a fault

handling mechanism. Therefore, to avoid, or at least minimize economic losses and

fatalities, faults must be found as quickly as possible and decisions must be made to

stop the spread of their effects [16]. Thus, even if a fault occurs in the system, the

FDD scheme and FTC scheme can still ensure that the system maintains an acceptable

performance.

In the chemical industries, the intensification of the process has become a growing

interest in recent decades, see in [35, 52, 107]. It aims to replace the traditional energy
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consuming unit operations with novel sustainable and economical ones by combining

two or more traditional operations in one hybrid unit. Among the numerous options

for intensifying a process, the conversion from a batch reactor to a continuous plug flow

reactor is a good alternative when selectivity and heat exchange is a problem. As a

consequence, an intensified heat-exchanger (HEX)/reactor is developed to remove the

barrier related to the dissipation of the generated reaction heat [6, 34, 114]. It com-

bines a heat-exchanger and a reactor in the same unit. Thus, by using HEX reactors,

many benefits are expected such as waste reduction, energy and raw materials saving,

increasing efficiency and selectivity, and cost reduction. Besides, thanks to its strong

heat transfer capacity and good mixing performance, the safety of the chemical pro-

cesses is improved because the temperature of chemical reactions can be guaranteed at

a quite stable value.

However, for the considered HEX reactor, it is always possible to be affected by

an unexpected fault during the production process, especially when it is assembled

with ambient devices, for example, the sticking of the valves that control the flow rate

of the reactants, the fouling caused by chemical reactions inside the reactors, etc. In

addition, according to the investigation of its characteristics and performances, the

HEX reactor presents high nonlinearities [6, 10, 112]. So, the development of FDD

and FTC strategies for the intensified heat-exchanger/reactor is still necessary both in

academia and industry.

1.2 Motivations and objectives

For the proposed HEX reactor, the most important objective is to guarantee a stable

temperature for chemical reaction not only for a good productivity but also for the

security of the production process, even in presence of a fault. Thus, the overall aim

of this thesis is to propose and develop FDD schemes, as well as FTC systems for the

considered intensified HEX reactor, which is an interesting class of chemical industries.

During the past decades, fruitful results have been reported on FD methods, FTC

techniques and their applications in various industrial processes and systems. A number

of survey papers and books were written. For instance, [41, 49, 63, 73, 88] give an review

in FDD methods, and [15–17, 69, 70, 84, 97, 135] provide a review on the existing

FTC technologies. When a fault occurs in the system, the desired performance can

be achieved sometimes by designing a robust controller. However, a fixed controller

is usually not flexible enough to deal with different kinds of fault. Therefore, to well
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maintain the performance of the system in the presence of a fault, detailed information

of the fault such as the location of the faulty component, the size of the fault etc, is

highly required for the controller redesign, which are exactly the task of FDD.

FDD can be achieved by using the concept of redundancy, either hardware (or phys-

ical) redundancy or software (or analytical) redundancy. As shown in Figure 1.1, the

idea of hardware redundancy is to use additional (redundant) components in parallel

to the process components such as sensors, actuators, controllers and computers to per-

form the same function. If the behavior of a process component is different from that of

the redundant component, it gives an indication of the occurrence of a fault. The hard-

ware redundancy is reliable, but expensive and increasing weights and occupying more

space [46, 73]. With the mature of modern control theory, the analytical redundancy

technique has become the main stream of the fault diagnosis research since the 1980s.

Functional relationships governed by physical laws and a fault diagnosis algorithm are

employed to check the consistency of real-time process characteristic information car-

ried by the input and output data against pre-knowledge about a healthy system, and

fault information is then given by using diagnostic logic such as residual generation and

evaluation, as presented in Figure 1.2. Compared with hardware redundancy methods,

analytical redundancy diagnostic methods are more cost effective.

Figure 1.1: Structure of the hardware redundancy scheme

Among the analytical redundancy based fault detection schemes, analytical model-

based techniques use the deepest knowledge of the monitored process and, therefore,

are the most suitable approaches for FD when the mathematical model of the process

is available. Among the model-based approaches, observer based methods have been

widely applied because of their advantages such as, quick detection, less restrictions,

requiring no excitation signal, possibility of online implementation etc [1].

Based on the before mentioned facts, this thesis focuses on developing observer

based fault estimation and FTC strategies, which can be applied to the considered
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Figure 1.2: Structure of the analytical redundancy scheme

HEX reactor to increase system reliability and safety. The specific objectives of this

thesis are the following:

• Review different FDD and FTC existing techniques and discuss their applicability

in the HEX reactor;

• Develop a general mathematical model for the intensified heat-exchanger/reactor

for control and diagnostic use;

• Review classical observers and compare their performances of state estimation;

• Design a nonlinear controller for the HEX reactor to make its performances follow

the desired ones;

• Design different fault detection and diagnosis strategies combined with FTC

scheme for the HEX reactor in presence of different kinds of fault;

• Test, over a simulation environment, the designed FDD and FTC techniques and

compare their dynamics.

1.3 Structure of the thesis

This thesis is divided into eight chapters. Following the introduction in Chapter 1,

Chapter 2 reviews recent FDD and FTC techniques. It begins with the definitions of

basic concepts such as faults, failures etc. A classification of FDD and FTC methods,

with a brief discussion on each approach, is also presented in this chapter.

Chapter 3 provides the modeling process of the intensified heat-exchanger/reactor.

Physical structure and hydrodynamic and thermal performance of the HEX reactor

are studied. A typical exothermic reaction, which was used in experiments, is also

modeled in details. Finally, a non-linear numerical model of 255 calculating modules
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is developed on the Matlab/Simulink platform. Simulations of this model are done

under conditions with and without chemical reactions. In addition, simulation results

are compared with reserved experimental data to show its validity and accuracy.

Chapter 4 introduces two kinds of FDD schemes based on adaptive observer and

interval observer. First, an overview of observers are presented. Since the adaptive

observer and interval observer focus on not only the state estimation but also the

parameter estimation, they are used to develop fault diagnosis algorithms. And then,

the presented FDD schemes are applied to the HEX reactor to verify their effectiveness.

Chapter 5 develops a nonlinear controller for the HEX reactor based on backstepping

approach. The backstepping scheme is firstly introduced and studied. And then, the

backstepping controller is designed for the HEX reactor, so as to make the output

temperatures follow the desired values.

Chapter 6 presents two active FTC schemes for the considered HEX reactor by

combining the nominal backstepping control law with the presented FDD schemes. The

differences between these two methods are the fault detection and diagnose schemes,

one is based on the adaptive observers, the other is based on the interval observers.

For each FTC strategy, both dynamic fault and sensor fault are considered. Once the

fault is detected, isolated and identified, the controller is redesigned to guarantee the

performance of the HEX reactor follows the desired one. Simulation results proves the

effectiveness of the presented FTC schemes. In addition, the performances of these two

strategies are compared.

Chapter 7 summarizes and concludes the overall work described by this thesis and

makes suggestions and recommendations as to how the research can be further devel-

oped in the future.
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Chapter 2

Fault diagnosis and fault tolerant

control: the state of the art

This chapter reviews the existing methods for fault detection and diagnosis (FDD)

and fault tolerant control (FTC) in nonlinear systems. Fundamental concepts, such

as fault, failure, fault detection, and fault isolation are introduced. And the different

types of faults and their effects on the system performances are explained. In addition,

several methods for FDD existed in the literature, and a widely accepted classification

of these methods are presented in this chapter. Besides, a brief introduction of FTC

and its classification are also presented in detail.
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2.1 Basic concepts

In order to recognize the terminology in the field of fault diagnosis and to understand

the goals of the specific contributions, the IFAC Technical Committee: SAFEPRO-

CESS has launched an initiative to define a common terminology [65]. Throughout the

text, a fault means an unpermitted deviation of at least one characteristic property or

parameter of a system from the acceptable/usual/standard condition. It is the result

of a defect in a component or subsystem which degrade the function and performance

of the system. A very related term is failure which is a permanent interruption of the

system’s ability to perform a required function under specified operating conditions.

Usually, failure means a complete breakdown of a component, whereas fault is the only

deviation from normal characteristics, but a permanent fault may result in a failure.

From the viewpoint of the mathematical model, faults can be modeled as external

inputs or parameter deviations which change the behavior of the process. Like faults,

disturbances and uncertainties can also be modeled as external inputs, and they may

have similar effects on the process. However, compared to faults, disturbances and un-

certainties are present even during the normal operation of the process, so they should

be taken into consideration in the controller design. By contrast, faults are considered

as more severe changes and their effects cannot be overcome by a fixed controller. Thus,

it is necessary to detect the fault so as to prevent any serious consequences.

2.1.1 Definitions

The purpose of FDD is to monitor the system and generate information about the

abnormal behavior of its components. The procedure of FDD consists of three steps

namely fault detection, fault isolation, and fault identification.

• Fault detection: to determine the presence of faults and when they occur in a

system.

• Fault isolation: to determine the location of the fault.

• Fault identification: to estimate the size of the fault

In the literature, fault detection and isolation (FDI) or fault detection and identi-

fication (again, FDI) are often used. To avoid any confusion, this thesis has adopted

FDI to stand fault detection and isolation, while FDD stands for fault detection and

diagnosis. Fault diagnosis (FD) consists of the determination of the kind, size, location,
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and time of occurrence of a fault. The procedure of FD includes both fault isolation

and identification.

Except for the basic steps of FDD, other definitions that are often used are intro-

duced below.

(1) Monitoring

A continuous real-time task of determining the conditions of a physical system, by

recording information, recognising and indicating anomalies in the behaviour.

(2) Quantitative model

Use of static and dynamic relations among system variables and parameters in order

to describe a system’s behaviour in quantitative mathematical terms.

(3) Qualitative model

Use of static and dynamic relations among system variables and parameters in order

to describe a system’s behaviour in qualitative terms such as causalities or if-then rules.

2.1.2 Type of faults

For a complex industrial system, the faults may occur at any level of the system, as

shown in Figure 2.1. From a different point of view, faults can be classified into different

categories.

Figure 2.1: Fault types and effects in system

Based on the location of occurrence

Based on the physical location of their occurrence, faults can generally be categorized

into three types: component fault, actuator fault, and sensor fault.

(1) Component fault

They are faults that appear in the process components. Component fault, which

is also called the dynamic fault or process fault, alters the physical parameters of the
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process which, in turn, leads to changes in the normal dynamics of the system. Com-

ponent faults are usually caused by wear and tear, aging of components, etc. Some

examples of component faults are leakages in tanks, breakages or cracks in gearbox

systems, etc. For the considered HEX reactor, internal fouling can lead to a compo-

nent fault. Component faults may result in instability of the process, therefore, it is

extremely important to detect these faults.

(2) Actuator fault

Actuator faults act on the operative part of the control system and destroy the

transformation from control signals into proper actuation signals. An actuator fault

represents the discrepancy between the input command of an actuator and its actual

output, and it may cause a total or partial loss of the actuator. A total loss of an

actuator can occur, for example, as a result of a broken or cut-off of electrical wire

connecting the actuator to the system. An example of partial loss of an actuator

is hydraulic or pneumatic leakage or the drop in supply voltage. Actuator fault may

result in higher energy consumption to a total loss of control [106], and therefore special

attention is paid to the determination of this kind of fault. Examples of actuator faults

include stuck-up of control valves, faults in pumps, motors, etc. The actuator faults can

be classified into four types [33]: (a) lock-in-place, (b) hard-over failure, (c) float, and

(d) loss-of-effectiveness, as shown in Figure 2.2, where dotted lines show the desired

value of actuator and the solid lines show actual value.

Figure 2.2: Common types of actuator faults: (a) floating around trim, (b) lock-in-

place, (c) hard-over failure, and (d) loss of effectiveness [130]

(3) Sensor fault
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Sensor faults represent the deviations between the measured and the actual value of

a plant’s output variable. In closed-loop systems, the measurements obtained by sensors

are used to generate the control inputs. So, any fault in sensors can cause operating

points far from the nominal ones, and then result in degradation in the performance

of the system. Therefore, it is very important to detect these faults. Typical examples

of sensor faults are listed in [33] [106]: bias, drift, performance degradation (or loss of

accuracy), sensor freezing, and calibration error, as illustrated in Figure 2.3. Solid lines

show the actual values whereas the dotted lines show the measured values.

Figure 2.3: Common types of sensor faults: (a) bias, (b) drift, (c) performance degra-

dation (or loss of accuracy), (d) sensor freezing, and (e) calibration [130]

Based on the behavior of fault

According to the time profiles of faults, they can be classified as abrupt, incipient, and

intermittent fault [63], as shown in Figure 2.4, tf is the time of fault occurrence.

(1) Abrupt fault

An abrupt fault is a nearly instantaneous occurring fault, like a step change, as de-

scribed in (2.1). They have more severe effects and may result in damage to equipment.

Fortunately, abrupt faults are easier to detect.

f(t� tf) =

8><>:
�; t � tf

0; t < tf
(2.1)

(2) Incipient fault
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An incipient fault is a slowly developing one, its magnitude develops over a period

of time. It is often modeled as a time-varying change in the parameters of a system. In-

cipient faults can also degrade the performance of equipment, and this slowly changing

behavior makes it difficult to detect.

f(t� tf) =

8><>:
�(1� e��t); t � tf

0; t < tf
(2.2)

(3) Intermittent fault

An intermittent fault is a fault that shows up at some time intervals or operating

conditions, not all the time, as shown in Figure 2.4 (c).

Figure 2.4: Types of faults based on behavior [130]

Based on the way faults are modelled

From the point of view of how the faults are added to the system, faults can be classified

as additive faults and multiplicative faults [63].

(1) Additive fault

An additive fault is modeled by an additive term which can influence the input or

output of the system. Additive faults are often dealt with by the FTC control. For

a linear time invariant system (2.3), its state representation with an additive fault is

given by (2.4): 8><>:
_x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.3)

8><>:
_x(t) = Ax(t) +Bu(t) + Lfl(t)

y(t) = Cx(t) +Mfm(t)
(2.4)

where x(t), u(t), y(t) represent the state, input and output of the system, respec-

tively. The matrices A, B, and C are system matrix, input matrix and output matrix,

respectively. fl(t) and fm(t) are additive faults, L and M are fault entry matrices.
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(2) multiplicative fault

Multiplicative fault is modeled as changes in the parameter matrices �A, �B or

�C, the process behavior becomes:

8><>:
_x(t) = (A+�A)x(t) + (B +�B)u(t)

y(t) = (C +�C)x(t)
(2.5)

2.2 Fault detection and diagnosis methods

Since the 1970s, a number of FDD theories and methods have been developed, and

many excellent survey papers were written, for example, [41, 49, 63, 73, 88]. In 2003, a

comprehensive review on the development of FDD process has appeared in a series of

papers including three parts [119–121], describing quantitative model-based methods,

qualitative model-based methods, and process history based methods. These meth-

ods are also recalled below. Most recently, a two-part survey paper [46, 47] on fault

diagnosis and fault tolerant techniques was presented in 2015, according to this, fault

diagnosis approaches can be categorized into model-based methods, signal-based meth-

ods, knowledge-based methods, and hybrid/active methods.

2.2.1 Model-based approaches

Model-based fault diagnosis is suitable for non-stationary operations for engineering

plants and can provide systematic design solutions. This method requires a well-

known mathematical model of the system obtained by using either physical principles

or systems identification techniques.

The model of the system is used to design a nominal system, i.e. a fault free

system. Then, the behavior of the nominal system is compared with the behavior of

the real system. In case of the absence of fault, the behavior of the real system is

consistent with the behavior of the nominal system. However, a fault is detected when

the behavior of the real system is different from the behavior of the nominal system.

The reflected inconsistencies between nominal and faulty system operation are named

as residual, and FDD can be achieved by inspecting the residual. The procedure of

creating the residual signal, which is called residual generation, is the first part of the

model-based fault diagnosis approach. The following part is called residual evaluation,

i.e. the procedure of checking the residual. The schematic diagram of model-based

fault diagnosis is illustrated in Figure 2.5.
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Figure 2.5: Schematic diagram of model-based fault diagnosis

Residual generation method

As described before, residual generation is a procedure for detecting faults in the

system. The algorithm (or processor) used to generate residuals is called a residual

generator. Well-known model-based approaches for residual generation techniques in-

clude observer based techniques, parity space approaches, and parameter estimation

approaches. Specifically, observer based techniques have better sensitivity to faults and

robustness against disturbances compared with the parity space approach. Moreover,

they depend less on the precision of the measured parameters and an explicit corre-

spondence with the physical coefficient than on the parameter estimation methods. As

a result, observer based fault diagnosis methods become popular and lead to fruitful

results.

(1) Observer based approach

Observers are computational algorithms designed to estimate unmeasured state vari-

ables due to the lack of appropriate estimating devices or to replace high priced sensors

in a plant. The main idea of observer based residual generation is achieved by compar-

ing measurements from the process with their estimations generated by observers [64].

Then, the weighted estimation error is used as a residual for the purpose of FDD [22].

The residual should be normally zero or close to zero when no fault is present, but it is

distinguishably different from zero when a fault occurs. However, due to the presence

of disturbance, noise, and model uncertainties, the residual also becomes a nonzero

value. Thus, the ideal situation is that the residual is insensitive to noise, disturbance,

and model uncertainties, but sensitive to faults. To isolate and identify faults, a bank
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of state estimators are usually used where each one is sensitive to a particular fault and

insensitive to others.

Observer based method has received high attention for the systems which can be

described by ordinary differential equations (ODEs). Compared to the parity space

method and parameter estimation method, the fault can be detected quickly. Besides,

excitation signal, as well as supplemental conditions or assumptions are not needed.

In addition, control engineers are more familiar with the concepts of observer design.

In the past few decades, a number of results for observer design have been presented,

details are described in Section 4.

(2) Parity space approach

Parity space approach was firstly developed in the early 1980s. The basic idea of

the parity space approach is to provide a proper check of the parity (consistency) of

the measurements acquired from the monitored system, while the parity equations are

derived from the system model or transformed version of the state space model. The

parity relation approach can be applied to either time-domain state-space model or

frequency-domain input-output model, which is well revisited by [22] [27]. Recently,

the parity space method is extended for fault diagnosis for more complex models such

as TS fuzzy nonlinear systems and fuzzy tree models, it is also applied to various

industrial systems such as aircraft control surface actuators [94] and electromechanical

brake systems [61].

Actually, parity space approach and observer based approach are similar as shown

in [42] [98], and there exists a one-to-one mapping between the design parameters of

observer and parity relation based residual generator. [27] presents two theorems that

show how to calculate parity vector corresponding to observer based residual generator

and vice versa. Thus, we can design a residual generator in parity space and transform

the parity vector into diagnostic observer parameters for online implementation. The

implementation of the parity relation based residual generator uses a non-recursive

form, while the observer based residual generator represents a recursive form. Thus, it

is usual to design in parity space and to realize in observer based structure.

(3) Parameter estimation approach

Parameter estimation approach is a method based on system identification tech-

niques such as least squares (LS), recursive least squares (RLS), extended least squares

(ELS), etc. In this approach, the faults are assumed to be reflected in system param-

eters, and only the model structure is needed to be known. Parameters are firstly

estimated on-line by using the input and the output of the system. Then, the esti-

mated parameters are compared with the parameters of the reference model obtained
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in fault free condition. If the estimation value deviates from its nominal value, then

decisions about fault occurrence are made. This method is well reviewed in the early

survey papers [62] [63]. Recent development of this approach can be found in [2] [30].

An advantage of the parameter estimation approach is that with only one input and

one output signal, several parameters can be estimated which give a detailed picture

on internal process quantities [63]. Another advantage of the method is that it yields

the size of the deviations which is important for fault analysis [43]. Parameter esti-

mation based approach is useful for component fault detection, although it can also

detect sensor and actuator faults. A disadvantage is that excitation is always needed

in order to estimate the parameters that can cause problems if the process is operating

at stationary points [43].

As demonstrated in [48], there is a close relationship between the parameter identifi-

cation based fault detection approach and the observer based fault detection approach.

Compared to observer based and parity relation based methods, parameter estimation

methods are more flexible in how faults can affect the system. Therefore, parameter

estimation methods are more suitable for multiplicative faults detection, especially for

multiplicative component fault detection.

Residual evaluation method

Residual evaluation is the second step in a model-based FDD scheme. This is a decision

making step that consists of performing appropriate statistical tests on the residuals

generated in order to make a decision on the diagnosis of the fault. The proper scheme

for residual evaluation plays a significant role in the satisfactory performance of the

FDD scheme. For the system affected by unknown input such as disturbance, noise,

and model uncertainties, residual evaluation should consider the trade-off between fast

and reliable detection.

The residual evaluation block, shown in Figure 2.5, may perform a simple threshold

test on the instantaneous values or moving averages of the residuals. On the other hand,

it may consist of statistical methods, for example, hypothesis tests on mean, covariance,

and whiteness, weighted sum-squared residual (WSSR) test, sequential probability ra-

tio test (SPRT), cumulative sum (CUSUM), generalized likelihood ratio (GLR) test,

multiple hypothesis test (MHT). Besides, residual evaluation can be finished by neural

network approach and fuzzy logic symptom method [9] [76].
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2.2.2 Signal-based approaches

Signal-based methods utilize measured signals rather than explicit input-output models

for fault diagnosis. The faults in the process are reflected in the measured signals, whose

features are extracted and a diagnostic decision is then made based on the symptom

analysis and prior knowledge on the symptoms of the health systems. The schematic

diagram is illustrated in Figure. 2.6 to show its methodology.

The feature signals to be extracted for symptom (or pattern) analysis can be either

time-domain (e.g., mean, trends, standard deviation, phases, slope, and magnitudes

such as peak and root mean square) or frequency-domain (e.g., spectrum). Therefore,

signal-based fault diagnosis methods can be classified into time-domain signal-based

approach, frequency-domain signal-based approach, and time-frequency signal-based

approach.

Figure 2.6: Schematic diagram of signal-based fault diagnosis

Time-domain signal-based method

For a continuous dynamical process to be monitored, it is natural to extract time-

domain features for fault diagnosis. Thus, time-domain signal-based fault diagnosis

utilizes time-domain parameters reflecting component failures such as root-mean-square

[21], slop and kurtosis [57] straightforwardly to monitor the dynamics. Besides, the

statistical method is also used for the sensor abrupt faults detection in [101], where the

covariance of the sensing signals was used for feature extraction.

Different from the approaches for FDD using features of the measured signal in one-

dimension domain, a two-dimension signal-based method was proposed in [25], where

the vibration signal was translated into an image (two dimensions), and the local fea-

tures were then extracted from the image using scale invariant feature transform (SIFT)
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for FDD under a pattern classification framework. Very recently, a two-dimension

approach was reported in [102] for fault diagnosis of induction motors, where time-

domain vibration signals acquired from the operating motor were firstly converted into

two-dimension gray-scale images, and the discriminating texture features were then

extracted from these images utilizing local binary patterns (LBP) technique.

Frequency-domain signal-based method

Frequency-domain signal-based fault diagnosis employs a variety of spectrum analy-

sis tools, such as discrete Fourier transformation (DFT) which can be computed by

fast Fourier transformation (FFT) [128] to convert a time-domain waveform into its

frequency-domain equivalence for monitoring the systems. One of the most powerful

frequency-domain methods for diagnosing motor faults is motor-current signature anal-

ysis (MCSA), which utilizes the spectral analysis of the stator current to sense rotor

faults associated with broken rotor bars and mechanical balance. Without requiring

access to the motor, the MCSA approach has received much attention, which was well

reviewed in [11] [92]. Recent development of current based spectrum signature analysis

for fault diagnosis can be found in [51] [71].

Time-frequency domain signal-based method

When the measured signals are transient and dynamic under the concerned time sec-

tion, it is difficult to monitor or detect faults via either a pure time-domain or frequency-

domain method. Therefore, time-frequency analysis, which can identify the signal fre-

quency component, and reveal their time variant features, becomes an effective tool

for monitoring and fault diagnosis by extracting feature information contained in non-

stationary signals. Among the time-frequency methods, short-time Fourier transform

(STFT), wavelet transforms (WT), Hilbert-Huang transform (HHT), and Wigner-Ville

distribution (WVD) are the most commonly used approaches. For instance, STFT

method allows determining signal frequency contents of local sections as the signal

changes in time [91]. WT based method can provide a good resolution in time for high-

frequency components of a signal and a good resolution in frequency for low-frequency

components [53]. Compared to STFT and WT, the HHT method is not constrained

by the uncertain limitations, and therefore has shown quite interesting performance

in terms of fault severity evaluation [126]. Among the presented methods, the WVD

method features a relatively low computational cost and high resolution [110].
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2.2.3 Knowledge-based approaches

In contrast to model-based and signal-based diagnosis requiring either mathematical

models or extracted signal patterns, a knowledge-based approach relies on a large vol-

ume of historic data available to train universal approximations in order to recognize

faulty patterns. The underlying knowledge, which implicitly represents the dependency

of the variables of the system, is extracted by applying a variety of artificial intelligence

techniques to the available historic data. The consistency between the behavior of the

operating system and the knowledge base is then checked, and a fault diagnosis decision

is made with the help of classifier. The schematic diagram of knowledge-based fault

diagnosis is shown in Figure 2.7.

Figure 2.7: Schematic diagram of knowledge-based fault diagnosis

Knowledge-based methods, as well as model-based methods and signal-based meth-

ods, have to use real-time data to monitor the operating system and to do online

fault diagnosis decisions. However, the knowledge-based approach is the only scheme

that needs to employ a large volume of historical data. From this point of view,

the knowledge-based method is also referred to data-driven method. The extraction

process of the knowledge base can be either qualitative or quantitative. Therefore,

knowledge-based fault diagnosis methods can be classified into qualitative methods

and quantitative methods.

Qualitative knowledge-based FD method

The expert system based method is one of the most known qualitative fault diagnosis

methods. As a branch of artificial intelligence, the expert system emerged in the

late 1960s, it is a rule-based system by presenting human’s expertise in a set of rules
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[26]. The expert system based fault diagnosis was initialized in the 1980s, which was

performed based on the evaluation of on-line monitored data in terms of a set of rules,

learned by the human experts from experience. Until now, expert system FD methods

are still widely used in different industrial systems [18] [32].

The qualitative trend analysis (QTA) method is also a popular data-driven tech-

nique to identify the process trends from noisy process data and to associate the ex-

tracted trends to fault trends in the database [120]. Recent developments of the QTA

have been integrated with other qualitative tools such as signed directed graphs (SDG)

to take advantage of the completeness property of SDG and the high diagnostic reso-

lution property of QTA [31] [89].

Quantitative knowledge-based FD method

The quantitative knowledge-based method formulates the diagnostic problem-solving

as a pattern recognition problem. Quantitative information (or features) can be either

extracted by using statistical or non-statistical methods. Therefore, the quantitative

knowledge-based fault diagnosis can be roughly classified into statistical analysis based

fault diagnosis and nonstatistical analysis based fault diagnosis.

(1) Statistical-analysis data-driven fault diagnosis

Principle component analysis (PCA), partial least squares (PLS), independent com-

ponent analysis (ICA), statistical pattern classifiers, and the most recent developed sup-

port vector machine (SVM), are commonly used statistical data-driven fault diagnosis

techniques. An introduction of these methods and a comparison of their advantages

have been shown in [127]. It is evident that the above methods require a large amount

of training data to capture the key characteristics of the process by using statistical

analysis.

PCA is the most popular statistically-based monitoring technique, which is utilized

to find factors with a much lower dimension than the original data set so that the

major trends in the original data set can be properly described. PLS is one of the

dominant data-driven tools for complex industrial processes. The recent development

of the PLS based monitoring and fault diagnosis can be found in [86]. Based on a

further decomposition for the obtained PLS structure, an improved structure namely

total projection to latent structures (T-PLS), was addressed in [124]. It can well detect

quality-relevant faults in industrial processes subjected to a variety of raw materials

and changeable control conditions. ICA plays an important role in real-time monitoring

and diagnosis for practical industrial processes as it allows latent variables not to follow
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Gaussian distribution [134]. Compare to other methods, SVM is a relatively new

machine learning technique relying on statistical learning theory, which is capable of

achieving high generalization and dealing with problems with low samples and high

input features, as addressed in [123]. Associated with appropriate nonlinear kernels

tested on the data set, statistical analysis-based methods can achieve more accurate

and reliable identifications.

(2) Nonstatistical-analysis data-driven fault diagnosis

Owing to its powerful ability in nonlinear approximation and adaptive learning,

neural network (NN) has been the most well-established non-statistical based data-

driven fault diagnosis tool. By using unsupervised learning, the knowledge base can be

extracted from the historical data to emulate normal system behaviour, which is utilized

to check whether the behaviour of the real-time process deviates from the normal system

behaviour. By using supervised learning, the knowledge bases for normal systems and

faulty conditions are all extracted, which are then utilized for real-time monitoring.

Recent developments of the NN can be found in a variety of real-time applications

[122] [125].

Fuzzy logic (FL) is an approach of partitioning a feature space into fuzzy sets

and utilizing fuzzy rules for reasoning, which essentially provides approximate human

reasoning [136]. Recent development has shown an interest in adaptive Neuro-Fuzzy

Inference System (ANFIS) to combine these two methods, such that better diagnosis

performance can be achieved (e.g. [102]).

2.2.4 Hybrid approaches

Model-based, signal-based, and knowledge-based fault diagnosis methods have their dis-

tinctive advantages and various constraints. For instance, Model-based fault diagnosis

has the capability to detect unknown types of faults and requires a small amount of

online data. However, precise physical models are required. Signal-based approaches

and knowledge-based approaches are independent of explicit mathematical models.

Nevertheless, without considering system inputs, the performance of signal-based fault

diagnosis can be degraded by extra disturbances. Knowledge-based approaches require

a vast value of reliable historic data and can be time consuming. In order to leverage

the strength of the various fault diagnosis methods, an integration or combination of

two or more fault diagnosis methods, called hybrid fault diagnosis approaches, are often

exploited for a variety of engineering applications. For example, in [54], signal-based

method and data-driven method were hybridized to monitor and diagnose plastic bear-
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ing faults. In [103], a hybrid data-driven and model-based fault diagnosis method are

proposed for chemical reactors subjected to high nonlinearities and high variability of

dynamics.

2.3 Fault tolerant control

A conventional feedback control design for a complex system may result in unsatisfac-

tory performance, or even instability, in the event of malfunctions in actuators, sensors,

or other system components. Even though FDD can detect and diagnose the fault when

a fault occurs in the industrial system, the original control law, which performs well

under fault free cases, cannot make the system maintain its expected performance

anymore without the intervene of engineers. To overcome such weaknesses, new ap-

proaches to control system design have been developed in order to tolerate component

malfunctions while maintaining desirable stability and performance properties. This is

particularly important for safety-critical systems, such as aircraft, spacecraft, nuclear

power plants, and chemical plants processing hazardous materials, because a minor

fault in a system component can be catastrophic in such systems. Therefore, it is nec-

essary to design control systems that are able to tolerate potential faults to improve

reliability and availability while providing a desirable performance. These types of

control systems are often known as fault tolerant control systems (FTCS).

According to its definition, a FTCS is a closed-loop control system that processes

the ability to accommodate component failures automatically and maintain desirable

performance and stability properties [16, 135]. More recently, FTC has attracted more

and more attention in both industry and academic communities due to increased de-

mands for safety, high system performance, productivity, and operating efficiency in a

wider engineering application, not limited to traditional safety-critical systems. Several

review papers and books on FTCS have been presented in [15–17, 69, 70, 84, 97, 135].

Generally, FTC can be achieved either passively by the use of a control law de-

signed to be insensitive to some known faults, or actively by an FDI mechanism, and

the redesign of a new control law. In a passive approach, once the control system is de-

signed, it will remain fixed during the entire system operation. Contrary to the passive

methods, active methods react to the system component failures actively by properly

reconfiguring its control actions so that the stability/performance of the entire system

can still be acceptable. To achieve a successful control system reconfiguration, this

approach relies heavily on a real-time FDD scheme to supervise the behaviors of the
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system and present detailed fault information.

2.3.1 Passive FTC

In the passive approach, the controllers are synthesized so that they are robust to

certain faults. The main idea is to make the closed-loop system robust to uncertainties

and a few specific faults and without the online use of fault information. This approach

does not require any FDD scheme or any reconfiguration of the control law. Therefore,

the term ‘passive’ indicates that no additional action needs to be taken by the existing

control system in response to the design basis faults. As shown in Figure 2.8, a passive

FTCS is a control system designed to tolerate system component faults by using the

robust controller design. In the passive case, the faulty system continues to operate

with the same controller and the same system structure: objectives and performance

remain the same as those of the nominal system.

Several approaches have been used in designing passive FTC varies from sliding

mode control (SMC) approach [5], adaptive control approach [77] toH1 control method

[104], Linear Quadratic control [58], fuzzy logic control [129], Lyapunov-based control

[12], and control allocation [59]. Such control strategies are commonly less complicated

and are popular due to their simplicity in design and application, less lag between fault

occurrence and accommodation, and their low computation load [38, 90].

Figure 2.8: Architecture of the passive FTC

2.3.2 Active FTC

An active FTCS reacts to system component malfunctions (including actuators, pro-

cesses, and sensors) by redesigning the controller based on the real-time information

from a FDD scheme. The term ‘active’ represents corrective actions taken actively by

the reconfiguration mechanism to adapt the control system in response to the detected

system faults. As shown in Figure 2.9, an active FTCS typically consists of a FDD

scheme, a redesignable controller, and a controller redesign mechanism. These three
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units have to work in harmony to complete successful control tasks. Based on this

architecture, the design objectives of an active FTC are:

• develop an effective FDD scheme (as presented in Section 2.2) to provide infor-

mation about the fault with minimal uncertainties in a timely manner;

• redesign the existing control scheme effectively to achieve stability and acceptable

closed-loop system performance;

• commission the reconstructed controller smoothly into the system by minimizing

potential switching transients.

Figure 2.9: Architecture of the active FTC

Two principal ways of controller redesign have to be distinguished, which are fault

accommodation and control reconfiguration [16]. Fault accommodation means adapt-

ing the controller parameters to the dynamical properties of the faulty plant. The input

and output of the plant used in the control loop are not changed, just the same as for

fault-free cases. For fault accommodation, one simple but well established way is based

on a predesigned controller, each of which has been selected off-line for a specific fault.

Then, the redesign step only needs to set the switch among the different laws. This step

is quick and can meet strong real-time constraints. However, all possible faults should

be considered before the system is put into operation and all resulting controllers have

to be stored in the control software. Control reconfiguration is another way to redesign

the controller, and it includes the selection of a new control configuration where alter-

native input and output signals are used. The necessity of control reconfiguration is

particularly obvious if sensor or actuator failures are considered. If these components

fail completely, the fault will lead to a break-down of the control loop, and there is no

possibility to adapt the controller by simply changing its parameters to the faulty sit-

uation. Therefore, the control signal should be reconfigured to satisfy the performance

of the closed-loop system.
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In order to make the closed-loop system can match the reference model even in the

presence of a fault, several redesign methods have been developed in [68, 84].

Pseudo-inverse method

The pseudo-inverse method [44] consists of modifying the control law by state feedback

so that the dynamic of the failed closed-loop system is approximately equal to that of

the nominal closed-loop system by minimizing a given criterion. The main drawback

of this method lies in the fact that the optimal control law does not always guarantee

the closed-loop stability of the faulty system. To overcome this problem, the modified

pseudo-inverse method was developed in [45] by adding additional constraints such that

the closed-loop system is stable.

Linear model-following method

The model-following method is an active FTC approach that allows designing a new

control law so that the performance of the faulty system under control comes as close as

possible to that of a reference model. Most of these methods have been developed for

linear systems. For instance, the first one, the perfect model following method [108],

uses stabilizing feedback with dynamic compensators. The second one, the adaptive

model-following method [19], applies an adaptive feedback control algorithm consisting

of state feedback, a reference prefilter and an affine term to the faulty plant. In the

eigenstructure assignment method [75], the nominal eigenvalues and eigenvectors are

recovered after a fault has occurred.

Multiple model method

The multiple model approach is attracting the attention of many researchers to solve the

accommodation problem in nonlinear systems [99, 111]. Indeed, these techniques make

it possible to control a nonlinear system over a large operating area broken down into

several linearized areas around different operating points. Multiple model approaches

deal with fault diagnosis problems in a way to avoid the complicated process of observer

and controller design of the real system. However, complexities still exist in integrated

controller design for sub-models, especially when the considered system is complex and

highly nonlinear.
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Optimal control method

Optimal control methods such as linear quadratic (LQ) optimal control, model predic-

tive control (MPC) can also be used for the controller redesign. The basic idea of LQ

optimal control is to design a linear time-invariant controller off-line using LQ-optimal

design according to the optimization goal. After a fault is identified, a new controller

is designed by recalculating the state feedback of the faulty plant and the nominal

weights. The main drawback of this method lies in completely discarding the nominal

controller. LQ regulator design was used in [82], and more recently in [109].

Model predictive control (MPC) is capable of solving the reconfiguration problem

with little extra effort compared with control of the nominal plant [44, 54]. A basic

model predictive control scheme generates at each discrete time step an optimal se-

quence of control inputs for the control horizon with respect to the predicted output

error trajectory. The input is calculated to minimize a cost function. To achieve con-

trol reconfiguration after fault identification, the internal plant model of the MPC is

updated to reflect the faults. Developments on MPC are presented in [85] [66].

2.4 Summary

This chapter introduced the state of arts of the existing FDD and FTC scheme. Defini-

tions of elementary nomenclature such as fault and failure are firstly provided. Different

types of faults are then presented from various points of view. Moreover, a classification

of FDD (model-based approach, signal-based approach, knowledge-based approach, and

hybrid approach) and FTC (passive FTC and active FTC) schemes were presented with

the description of each approach.
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Chapter 3

Modeling of the

Heat-exchanger/Reactor

For the model-based FDD methods, a known mathematical model of the whole process

is indispensable. In this chapter, we present the modeling process of an intensified

heat-exchanger (HEX) /reactor. First of all, the physical structure of the HEX reactor

is briefly introduced. According to its physical structure, this HEX reactor consists of

three parts: process plate, utility plate, and plate wall. And then, a cell-based modeling

scheme is presented. The HEX reactor is divided into numbers of cells according to its

physical structure. And then, the mathematical equations corresponding to each cell

are presented.
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3.1 Introduction

With the development of process intensification [35] [52] [107] in chemical industries,

traditional batch chemical reactors is gradually replaced by novel reactors which com-

bine two or more traditional operations in one hybrid unit. Poor heat exchanging

performances of discontinuous reactors may cause the degradation of safety and pro-

ductivity in whole processes. Therefore, develop new devices based on the coupling

of high heat transfer behavior and good mixing performances has been an increasing

interest. As a consequence, an intensified HEX reactor, which combines heat-exchanger

and chemical reactor together, is developed by French laboratory LGC (Laboratoire de

Génie Chimique à Toulouse) in the frame of the RAPIC project [7]. This HEX reactor

presents a strong ability of heat and mass transfer and good thermal and hydrodynamic

performances [6].

3.2 Physical structure

Based on the concept of plate heat-exchanger in a modular block, the HEX reactor

consists of three process plates sandwiched between four utility plates. The process

plates, as well as the utility plates, have been engraved by laser machining to obtain

2 mm square cross-section channels. Process and utility channels are presented in 3.1

(a) and (b). Chemical reactions are taken place in process channel, where the single

channel offers the longest possible residence time for reactants. Utility fluid (usually

is water) flows in parallel zigzag-type channels so as to bring in or take reaction heat

away as soon as possible.

Figure 3.1: Physical structure of the heat exchanger/reactor: (a) Process channel; (b)

utility channel; (c) the heat exchanger/reactor after assembly

The reactor material is 316L stainless steel and the different plates have been as-

sembled by hot isostatic pressing (HIP) [7] [115] [116]. After assembly, the reactor has a

32 cm height, a 14 cm width, a 3.26 cm thickness, and a mass of 10.84 kg, which makes
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it a very compact HEX reactor. Geometrical parameters such as curvature radius, the

straight length between two bends, aspect ratio, and bend angle, which have a great

impact on the thermal performances, residence time, and pressure drop distribution,

have been studied at lab-scale. More details are described in a previous paper dedicated

to the experimental study of the reactor [8].

3.3 Modeling

3.3.1 General Modeling of the Reactor

Figure 3.2 shows a realistic description based on a modular structure of the HEX

reactor, it also presents the flow configuration of two different fluids, process fluid,

and utility fluid. Three kinds of plates, process plate, utility plate, and plate wall,

are represented in different colors, red, blue, and grey, respectively. Two (or several)

feeding lines, R1 and R2, ensure that reactants could be introduced in the reactor. Two

loops, process fluid, and utility fluid, are in charge of reacting and cooling/heating,

respectively. Arrows indicate the inner flow directions of the process fluid and utility

fluid.

Figure 3.2: Block modeling description, showing (a) process plate, (b) utility plate,

and (c) plate wall

The HEX reactor operates as a plug-flow reactor, thus, its modeling is based on the

same hypothesis as the one used for the modeling of real continuous reactors [93], which

is represented by a series of perfectly stirred tank reactors (called cells). The number

of cells is generally defined by the requirement of accuracy. More cells are defined,
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the more accurate model we will have, but the calculation cost also increases with the

increase of cell numbers. Therefore, in order to find a balance between model accuracy

and calculation cost, a modeling scheme that is based on the geometry and physical

structure of the process channel is used. As shown in Figure 3.2, there are 17 horizontal

lines in each process place, so, 17 computing units are defined, as presented in Figure

3.3. In each unit, there are 15 cells: 3 process cells, 4 utility cells, and 8 plate wall cells,

see Figure 3.4. Therefore, the HEX reactor considered in this paper was divided into

255 cells in total. The reaction heat is generated in each process cell, and we assume

that the convective heat exchange (bi-directional arrows in Figure 3.4) mainly occurs

between neighboring cells in the horizontal direction inside one computing unit. In

the vertical direction, it is the fluids inside process channels and utility channels that

transfer the heat. Besides, the far-right plate wall, as well as the far-left one is assumed

adiabatic since they are covered by low heat transfer materials.

Figure 3.3: Structure of units dividing

Figure 3.4: Internal description of one computing unit and convective heat exchange

Therefore, the flow configurations of the reactor (co-current, counter-current) are

clearly represented. In such a way, the behavior of a cell only depends on the inlet

streams and phenomena taking place inside, such as chemical reaction, heat transfer,

etc. And for a given cell, its inlets are exactly the outlets of the preceding one. Thus,

the configuration of flows can be represented by correct discretization. In addition,

this modeling scheme can be easily applied to any HEX reactor by adjusting the cor-

responding plate number and cell number in the plate.
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For each cell, the expression of mass balance, energy balance, and constraint equa-

tions are the foundation of the modeling procedure. The constraint equations concern

the geometric characteristics of the reactor and the physical properties of the medium

mentioned. The relations which concern temperature, mass composition, etc. are de-

scribed by the balance equation below:

8<:Accumulation

flow

9=; =
n
Inlet

o
�
n
Outlet

o
+

8<:Productionflow

9=; (3.1)

The HEX reactor mentioned in this paper has three main parts, process plate, utility

plate, and plate wall. Among these three parts, the process plate is the most complex

part, because we should consider both heat transfers and hydrodynamics, especially the

hydrodynamics coupled with reactions when chemical reactions are considered. The

modeling of utility plate will be the same as that of process plat as long as chemical

reactions are not considered. For the rest plate wall, only heat transfer aspect is

concerned.

3.3.2 Modeling of process plate

The process plate is sandwiched between two plate walls (right and left), so each pro-

cess cell is also sandwiched by two plate wall cells. Assume that each process cell is

filled with a perfectly stirred homogeneous medium which is homogeneous in charac-

teristic values (temperature, flow rate, composition, etc.), physical properties (density,

viscosity, etc.), and chemical phenomena (mixing, reaction, etc.). Besides, the volume

of the fluid (reactants) mixture is invariable.

According to the energy balance (W ) inside process cell k, the mathematical ex-

pression of process cell can be expressed as:

�kpV
k
p C

k
p;p

dT k
p

dt
= F k

p �
k
pC

k
p;p(T

k�1
p � T k

p ) +�qkp � V k
p + hkpA

k
p(T

k
wL � T k

p ) + hkpA
k
p(T

k
wR � T k

p )

(3.2)

where �kp(kg ·m�3) V k
p (m

3) and Ck
p;p(J · kg�1 ·K�1) are density, volume and specific

heat of material in process plate cell k, respectively; F k
p (m

3 · s�1) is volume flow rate

in process plate cell k; T k
p (K) is temperature in process plate cell k; �qkp(W ·m�3)

denotes heat generated by the reactions in process plate cell k; hkp(W ·m�2 ·K�2) and

Ak
p(m

2) represent heat transfer coefficient and area between process plate and plate

wall for cell k, respectively; and T k
wL(K) and T k

wR(K) are temperatures of left and right

plate wall cells of the targeting cell k.

31



3.3.3 Modeling of utility plate and plate wall

To represent the reactor structure precisely, all the different heat transfer zones must

be considered. Therefore, elements involved in the heat balance described by the model

are utility plate and plate wall. But we should pay attention that, there are two kinds of

plate wall, one is the plate wall sandwiched between the process plate and utility plate,

the other is the two far-left and far-right plate wall that only have contact with utility

process in one side. And these two special pieces are called adiabatic plates because

we assume that there is no heat exchange between the reactor and environment.

As shown in Figure 3.4, a utility plate cell is sandwiched between two plate wall

cells (right and left), and the description of heat transfer based on energy balance of

utility fluid (W ) is as follows:

�kuV
k
u C

k
p;u

dT k
u

dt
= F k

u�
k
uCp; u

k(T k�1
u � T k

u ) + hkuA
k
u(T

k
wL � T k

u ) + hkuA
k
u(T

k
wR � T k

u ) (3.3)

where �ku(kg ·m�3), V k
u (m

3) and Ck
p;u(J · kg�1 ·K�1) are density, volume, and specific

heat of material in utility plate cell k respectively; F k
u (m

3 · s�1) is volume flow rate in

utility plate cell k; T k
u (K) is temperature in utility plate cell k; hku(W ·m�2 ·K�1) and

Ak
u(m

2) represent heat transfer coefficient and area between utility plate and plate wall

for cell k, respectively.

A plate wall cell (except the adiabatic plate) is always sandwiched between a process

plate cell and a utility plate cell, between which only heat transfer is considered, as

presented in Figure 3.4.

Energy balance on the plate wall (W ):

�kwV
k
wC

k
p;w

dT k
w

dt
= hkpA

k
p(T

k
p � T k

w) + hkuA
k
u(T

k
u � T k

w) (3.4)

where �kw(kg ·m�3), V k
w (m

3) and Ck
p;w(J · kg�1 ·K�1) are density, volume, and specific

heat of plate wall cell k respectively; T k
w(K) is temperature of plate wall cell k.

Adiabatic plates assembled on both sides of the HEX reactor are special plate walls,

for which heat transfer is taking place between utility plate and environment. However,

in our case, it is assumed that the adiabatic plates are heat-insulated, i.e. there is no

heat transfer between adiabatic plates and the environment.

Energy balance on the adiabatic plate (W ):

�kwV
k
wC

k
p;w

dT k
w

dt
= hkuA

k
u(T

k
u � T k

w) (3.5)

According to the energy balance and mass balance, the mathematical model of each

cell has been clearly expressed. Then, these cells are connected to construct the model

of the HEX reactor.
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3.3.4 Reaction modeling

To improve the mathematical modeling of the HEX reactor, chemical reactions must

be considered. In [112], experiments were carried out step by step. First, only water is

injected into both process channel and utility channel to verify the thermal description

of the reactor. And then, the reaction of sodium thiosulfate oxidation by hydrogen

peroxide is carried out in the reactor in the second step. The reaction takes place in a

homogeneous liquid phase and shows the following characteristics: irreversibility, fast

kinetics, and very strong exothermicity. These features make it an ideal example for

validation of the thermal and kinetic aspects of the HEX reactor and its model. So,

the following part gives the modeling information when this reaction is considered.

2Na2S2O3 + 4H2O2 ! Na2S3O6 +Na2SO4 + 4H2O (3.6)

As the reaction goes, the concentrations of the reactants (Ck
i ) gradually decrease,

and this decrease of reactant concentration indicates the speed of the reaction. There-

fore, the production rate of a given constituent (�nki ), the total production rate (�nk),

and the heat generated (�qk) by this reaction can be estimated according to the known

reaction speed.

These estimations, which are used within the mass and energy balance of the cell,

are based on the following relations:

The production rate of constituent i in cell k:

�nk =
X

�ir
k (3.7)

where �(i) represents stoichiometric coefficient of constituent i in the given reaction.

Total production rate:

�nk =
X
i

�nki (3.8)

Heat generated:

�qk =
X

(�Hr � rk) (3.9)

where �Hr is the heat of the given reaction (J ·mol�1).

In our case, the kinetic constant of the reaction is assumed to be governed by an

Arrhenius law, which makes it possible to estimate the evolution of the constant as a

function of temperature:

kc = k0cexp(�
Ea

RT
) (3.10)

where k0c (m3 ·mol�1 · s�1) is the pre-exponential factor; Ea (J ·mol�1) is activation

energy; and R (J ·mol�1 ·K�1) is the perfect gas constant. Each chemical reaction has
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Table 3.1: Characteristics of the reaction of sodium thiosulfate oxidation by hydrogen

peroxide [6]

Item Value

heat of reaction �Hr (J ·mol�1) �5:86� 105

pre-exponential factor k0c (m3 ·mol�1 · s�1) 8:13� 108

activation energy Ea (J ·mol�1) 7:6123� 104

perfect gas constant R (J ·mol�1 ·K�1) 8:314

its corresponding pre-exponential factor and activation energy. For the reaction of

sodium thiosulfate oxidation by hydrogen peroxide, these values are presented in Table

3.1.

Considering the stoichiometric scheme of the reactions and Equations (3.7) to (3.10),

the concentration of each reactant in a cell behaves according to the following relation-

ships:
dCk

Na2S2O3

dt
=
FNa2S2O3

V k
p

Ck�1
Na2S2O3

�
FNa2S2O3

V k
p

Ck
Na2S2O3

� 2rk (3.11)

dCk
H2O2

dt
=
FH2O2

V k
p

Ck�1
H2O2

�
FH2O2

V k
p

Ck
H2O2

� 4rk (3.12)

where Ck
Na2S2O3

and Ck
H2O2

(mol ·m�3) are the concentrations of Na2S2O3 and H2O2 in

process cell k, respectively; and rk is the speed of the reaction taking place in cell k.

It is expressed as a function of the concentrations of the reactants, as follows:

rk = kcC
k
Na2S2O3

Ck
H2O2

(3.13)

where kc (m3 ·mol�1 · s�1) is the kinetic constant of the reaction and is given in Equa-

tion (3.10).

3.3.5 Simulation result

The system was modeled and simulated in Simulink. As described before, it is com-

posed of 17 units, in each unit, there are three plate cells, four utility cells, and eight

plate wall cells. Every cell is named as a calculation module, and it is expressed by

several hybrid differential and algebraic equations (DAE). For example, mass balance,

and energy balance are express by ordinary differential equations (ODE) (3.2) (3.3)

(3.4) (3.5), while constraints and physical properties of the reactor are expressed by

algebraic equation (AE). Different equations are applied to express the behaviors of
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different cells, for instance, the process plate cells should consider both mass and en-

ergy balance equations to evaluate the temperature and concentration of the fluid, and

energy balance equations are enough to express the utility cells and plate wall cells.

During the modeling process, the order of connection is restricted to that presented

in Figure 3.2 and Figure 3.3, the order of units is in the vertical direction, while

the order of cells in one given unit is in the horizontal direction. These connections

maximize the heat transfer efficiency, it makes the heat generated by reactions can be

rapidly taken away by utility fluid. According to the manner of the connection, heat

exchange mostly takes place in the horizontal direction, i.e. between different kinds of

cells inside a unit, and in the vertical direction, the heat is transferred by the flowing

of fluid.

In order to investigate the accuracy of the model proposed in this chapter, the same

situations as in [112] are used in the simulations. And the chemical reaction of sodium

thiosulfate oxidation by hydrogen peroxide is considered. Firstly, by injecting water

into both channels, the reactor reaches a balanced state for the heat exchange procedure

without reaction. Then, reactants (sodium thiosulfate Na2S2O3 and hydrogen peroxide

H2O2 with a concentration of 9% in mass) are injected into the reactor and the reaction

begins.

Figure 3.5: Simulated temperature profiles for experiment 1 (reaction was introduced

at 150 s)

The dynamic procedure of the simulation with reaction is shown in Figure 3.5. As
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described before, water is injected into both process channel (with the flow rate of

Fp = 14 L ·h�1 at temperature Tp;in = 17:6 �C) and utility channel (with the flow

rate of Fu = 113 L ·h�1 at temperature Tu;in = 39:7 �C) until the reactor reaches a

steady state (at about 100 s). Then, reactants are introduced at time t = 100 s with

the same temperature Tp;in = 17:6 �C as before. The flow rate of the reactants sodium

thiosulfate Na2S2O3 and hydrogen peroxide H2O2 are Fp1 = 9:3 L ·h�1 and Fp2 = 4:7

L ·h�1, respectively. At the same time, the utility fluid keeps injecting with the flow

rate of Fu = 113 L ·h�1 at 39:7 �C. After a residence time, the output temperature

starts to increase because of the heat generated by the reaction. And this trend is

consistent with the experiment presented in Figure 16 of [112].

More simulation results and the comparison between simulation and experimental

data are presented in [55]. The comparison is lunched by two steps, which is the same

as that in real case [112]. First, only heat exchange part is considered, i.e. only water is

used for both process channel and utility channel to verify the heat transfer procedure.

At the second step, the reaction of sodium thiosulfate oxidation by hydrogen peroxide

is carried out to the constructed model.

Overall, from the comparisons between experiments and simulations in each step, it

could be deduced that the model proposed in this paper is generally valid to the HEX

reactor for both the heat exchange and reaction parts.

3.4 Summary

This chapter presents the modeling process of the intensified HEX reactor. First of all,

the physical structure of the HEX reactor is introduced. Due to its physical structure,

the continuous process is discretized into cells. Consequently, each cell is expressed by

mathematical equations according to the properties of heat exchange, fluid movement,

and chemical reaction. In the following step, the cell-based HEX reactor model is

constructed in the general simulation platform Matlab/Simulink. The dynamic of the

proposed model obtained by simulation is shortly presented when the chemical reaction

is considered. Detailed comparisons between simulation and experimental data are

presented in [55], and the simulation results are quite consistent with the experiments.

The purpose of modeling the HEX reactor is for further control use. With the

developed model, internal states are easily obtained by simulation. In the following

chapter, controller and model-based observer are designed for the proposed model to

diagnose and tolerant the possible faults.
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Chapter 4

Observer based FDD schemes and their

applications for the

Heat-exchanger/Reactor

In this chapter, two kinds of observer based FDD schemes are presented and applied

to the intensified HEX reactor. First, an overview of the recent nonlinear observers is

introduced. Then, some special forms of system representation and basic properties of

nonlinear systems are presented. Besides, the mathematical expression of the dynamic

and sensor faulty model is also given. In the following, we introduce the structure of

two kinds of observers, adaptive observer, and interval observer, which focus not only

on the internal states but also on the system parameters. The FDD schemes based on

these two observers are also presented. Moreover, the intensified HEX reactor presented

in Section 3 is used to validate the effectiveness of the FDD schemes. Both dynamic

fault and sensor fault are considered in this chapter.
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4.1 Introduction

In general, for a given system, we cannot use as many sensors as signals of interest

characterizing the system behavior (for cost reasons, technological constraints, etc.).

The only quantities accessible to the system are the input and output variables in

most cases, but they are not enough for the modeling (identification) monitoring (fault

detection), or driving (control) of the system. Therefore, there is a need for internal

information to keep the given system under control. The state observers, which use the

structure of the real system and a minimum set of measurements, are then constructed

to provide the estimation of the actual states of the system in real time. As presented

in Figure 4.1, observer acts as the heart of a general control problem [14].

Figure 4.1: Observer as the heart of control systems [14]

4.2 Classification of nonlinear observers

Luenberger [83] and Kalman [72] introduced the basic concepts of state observers and

Kalman Filter (KF) in the 1960s, and then, research in the design of observers has

become popular over the years. Survey papers such as [3] [29] [37] [78] has reviewed

the developed observers in linear and nonlinear systems since the year 2000. Due

to the variety of methodologies in observer design for nonlinear systems, combining

and classifying them into several different groups would be highly useful to serve as

guidelines to select and then design the appropriate observers for a specific application.

In [3], observers are classified into six major classes based on the review of the recent
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observers applied to chemical process systems. These classes are the Luenberger-based

observers, finite-dimensional system observers, Bayesian estimators, disturbances and

fault detection observers, artificial intelligence-based observers, and hybrid observers.

Table 4.1 sorts the specific observers into their respective classes.

Table 4.1: Recent observers categorized under different classes

Class

Luenberger-based
observers

Finite-dimensional
system observers

Bayesian
estimators

Disturbance and
fault detection

observers

Artificial
intelligence-based

observers

Hybrid
observers

Specific observer

1. Extended Luenberger
observer
2. Sliding mode
observer
3. Adaptive observer
4. High gain
observer
5. Zeitz nonlinear
observer
6. Discrete-time
nonlinear recursive
observer
7. Geometric observer
8. Backstepping observer

1. Reduced-order
observer
2. Low-order observer
3. High gain observer
4. Asymptotic observer
5. Exponential observer
6. Integral observer
7. Interval observer

1. Particle filter
2. Extended Kalman
filter
3. Unscented Kalman
filter
4. Ensemble Kalman
filter
5. Steady state
Kalman filter
6. Adaptive fading
Kalman filtering
7. Moving horizon
estimator
8. Generic observer
9. Specific observer

1. Disturbance observer
2. Modified disturbance
observer
3. Fractional-order
disturbance observer
4. Bode-ideal cut-off
observer
5. Unknown input
observer
6. Nonlinear unknown
input observer
7. Extended unknown
input observer
8. Modified proportional
observer

1. Fuzzy Kalman
filter
2. Augmented fuzzy
Kalman filter
3. Differential neural
network observer
4. EKF with neurl
network model

1. Extended
Luenberger-asymptotic
observer
2. Proportional-integral
observer
3. Proportional-SMO
4. Continuous-discrete
observer
5. Continuous-discrete-
interval observer
6. Continuous-discrete-
EKF
7. Continuous-descrete-
high gain observer

The first category is the Luenberger-based observers, which involves the extended

versions of the classical Luenberger observer itself [29]. This type of observer is famous

for its simple computation, but it is always based on the perfect knowledge of system

parameters. It is useful for crucial state and parameter estimation.

The category of finite-dimensional system observers is the second class. They have

simple formulation and are easily implemented to the system with less kinetic infor-

mation. However, the accuracy of the convergence rate is uncertain. It is worth noting

that asymptotic/exponential and interval observers can also be extended to infinite

dimensional systems (i.e., distributed parameter systems) such as for tubular reactors

and plug flow reactors [28].

The third category is the Bayesian estimators [36], which uses probability distri-

bution and mathematical inference of the system. Internal states can be estimated

rapidly based on the prediction-correction method and versatile estimators. But the

complexity of their computational method is sometimes infeasible for high dimensional

systems.

The fourth class is the disturbance and fault detection observers, which are mostly

applied to estimate irregularities in the system, either through disturbances or faults

[95]. Examples of disturbance and fault detection observers are the disturbance ob-
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server (DOB), the modified disturbance observer (MDOB), the unknown input observer

(UIO), and the nonlinear unknown input observer (NUIO). These are highly specific

types of observers and focus only on disturbances or fault detection related variables

during the estimation process.

The fifth category is the artificial intelligence (AI)-based observers [96] [105], which

is based on AI technologies such as fuzzy logic, artificial neural networks (ANN), ex-

pert systems are genetic algorithms. AI-based observers can overcome the limitations of

single observers and are suitable for systems with incomplete model structures and in-

formation. However, it may be difficult and time consuming for online implementation

compared to other hybrid observers in some systems.

The sixth class is the hybrid observers that combine more than one observer to

obtain improved estimation results. For example, the combination of extended Luen-

berger observer and asymptotic observer in [60], the combination of fuzzy logic and

sliding mode observer in [4]. Normally, this class of observer is suitable for conditions

where the single observer is not accurate enough for the process systems.

The author of [3] also gives the detailed applications of various observers under these

six classes and the general guideline for selecting observers. In our case, the principles

of observer selection are easy implementation and less complex computation.

A great number of work concerning the development of observers for all types of

systems has been carried out since the founding work of Luenberger and the model-

based FDI has benefited from this. For linear systems, the first case corresponds to

the Luenberger observers [83], in the deterministic framework, for linear time invariant

(LTI) systems. While the second concerns the Kalman observers [72], in the stochas-

tic framework, for the linear time variant (LTV) systems. For nonlinear systems, as

presented in the former section, the structure of observers varies a lot. Some of them

are based on the linearization of the model, some of them are based on the probability

distribution theory, and some of them are based on the artificial intelligent algorithm.

In the following part, different structures of observers are presented for linear and

nonlinear systems.

4.3 Nonlinear model under consideration

Systems can be classified into three categories: continuous time systems, discrete sys-

tems, and hybrid systems. In this chapter, we will focus on the first one, continuous

time systems. For continuous systems, the model of the dynamic systems can be linear
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or nonlinear systems [100]. In chemical engineering, most of the systems are nonlinear.

So, we will investigate the mathematical expression of the nonlinear system and its

properties.

4.3.1 Expressions of nonlinear system

The system under consideration can be described by a state-space representation gen-

erally of the following form: 8><>:
_x(t) = f(x(t); u(t))

y(t) = h(x(t); u(t))
(4.1)

where x is the state vector (x 2 X � Rn), u is the external input vector (u 2 U � Rm),

y is the measured output vector (y 2 Y � Rp). Functions f(:) and h(:) are assumed

to be C1 [14].

Generally, the dynamics might explicitly depend on time via f(x(t); u(t); t), while y

might further directly depend on input u and even time t, via h(x(t); u(t); t). Such an

explicitly time-dependent system is usually called ’time-varying’ and generalizes (4.1)

into: 8><>:
_x(t) = f(x(t); u(t); t)

y(t) = h(x(t); u(t); t)
(4.2)

As described in [14], an observer can be defined as follows:

Definition 4.1 (Observer):

Considering a system 4.1, an observer is given by an auxiliary system:

_̂x(t) = f(x̂(t); u(t)) + k(t; h(x̂(t))� y(t)); with k(t; 0) = 0 (4.3)

such that:

(i) x̂(0) = x(0)) x̂(t) = x(t); 8t � 0;

(ii) kx̂(t)� x(t)k ! 0 as t!1;

If (ii) holds for any x(0), x̂(0), the observer is global.

If (ii) holds with exponential convergence, the observer is exponential.

If (ii) holds with a convergence rate which can be runed, the observer is tunable.

where x̂ represents the estimated state vector, k(:) is called observer gain.

Notice that the difference x̂(t)� x(t) is called observer error, it is usually denoted

by ex(t), the term �u(t; x0) represent the solution of equation (4.1) when we apply the

input u in time interval [0; t].

41



4.3.2 Properties of nonlinear system

For a nonlinear observer, one must be able to recover the information on the state via

the output measured from the initial time, i.e., the notion of observability is based on

the possibility of distinguishing various initial conditions, or equivalently, on cannot

admit indistinguishable states. More details can be found in the work of [50] [56] and

[14].

Definition 4.2 (Indistinguishability):

A paire (x0; x
0
0) � R

n �Rn is indistinguishable for a system (4.1) if:

8u � U;8t � 0; h(�u(t; x0)) = h(�u(t; x
0
0)) (4.4)

A state x is indistinguishable from x0 if the pair (x; x0) is indistinguishable.

From this, observability can be defined:

Definition 4.3 (Observability [resp. at x0]):

A system (4.1) is observable [resp. at x0] if it does not admit any indistinguishable

paire [resp. any state indistinguishable from x0].

This definition is quite general for practical use, since one might be mainly interested

in distinguishing states from their neighbors. For example, consider the following

system:

_x = u; y = sin(x) (4.5)

Clearly, output y cannot help distinguishing between [x0, x0+2k�], and thus the system

is not observable. Ti is yet clear that y allows to distinguish states of [��
2
; �
2
]. This

brings to consider a weaker notion of observability.

Definition 4.4 (Weak observability [resp. at x0]):

A system (4.1) is weakly observable [resp. at x0] if there exists a neighborhood V

of any x [resp. of x0] such that there is no indistinguishable state from x [resp.

x0] in V .

Definition 4.5 (Local weak observability [resp. at x0]):

A system (4.1) is locally weakly observable [resp. at x0] if there exists a neighbor-

hood V of any x [resp. of x0] such that for any neighborhood W of x [resp. x0]

contained in V , there is no indistinguishable state from x [resp. x0] in W when

considering time intervals for which trajectories remain in W .

This roughly means that one can distinguish every state from its neighbors without

”going too far”. Such a condition relies on the notion of observation space roughly

corresponding to the space of all observable states:
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Definition 4.6 (Observation space):

The observation space for a system (4.1) is defined as the smallest real vector

space (denoted by O(h)) of C1 functions containing the components of h and

closed under Lie derivation along fu := f(:; u) for any constant u 2 Rm (namely

such that for any ' 2 O(h), Lfu' 2 O(h), where Lfu'(x) =
@'
@x
f(x; u).

Definition 4.7 (Observability rank condition [resp. at x0]):

A system (4.1) is said to satisfy the observability rank condition [resp. at x0] if:

8x; dim(dO(h))jx = n [resp: dim(dO(h))jx0 = n] (4.6)

where dO(h)jx is the set of d'(x) with ' 2 O(h).

Theorem 4.1:

A system (4.1) satisfying the observability rank condition at x0 is locally weakly

observable at x0.

More generally a system (4.1) satisfying the observability rank condition is

locally weakly observable.

Conversely, a system (4.1) locally weakly observable satisfies the observability

rank condition in an open dense subset of X.

However, the observability of a nonlinear system sometimes is not sufficient for

the design of observer, we have to take into account the problem of inputs. Hence,

it is important to study the characteristics of the inputs for such a system to build

an observer. The notions of universal inputs and uniform observability for systems

(4.1) are first introduced in [20] and they are cited below.

Definition 4.8 (Universal inputs [resp. on [0, t]]):

An input u is universal (resp. on [0; t]) for system (4.1) if 8x0 6= x00, 9� � 0 (resp.

9� 2 [0; t]) s.t. h(�u(�; x0)) 6= h(�u(�; x
0
0)).

An input u is a singular input if it is not universal.

Definition 4.9 (Universal observable systems [resp. locally]):

A system is uniformly observable (UO) if every input is universal (resp. on [0; t]).

4.3.3 Dynamic and sensor faulty model

According to the location of fault occurrence, the fault can be divided into component

fault (dynamic fault), actuator fault, and sensor fault. In closed-loop, the actuator fault

could be compensated automatically by the controller. So, in our case, we will mainly
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focus on the FDD and FTC of the dynamic fault and sensor fault. The expression of

the system which is interrupted by dynamic fault or sensor fault is presented in the

following.

Considering the following nonlinear model:8><>:
_x = f(x) + g(x)u+ p(x)�

y = Cx
(4.7)

where f(x) 2 Rn is a nonlinear vector function, g(x) 2 Rn�k, p(x) 2 Rn�m are matrix

functions with nonlinear elements, C 2 Rq�n is a constant matrix. x 2 Rn, u 2 Rk,

y 2 Rq represent the state vector, input vector and system output vector, respectively.

� 2 Rm is a vector composed of possible faulty parameters, its nominal value is denoted

by �0 and it is known. Assume that f(x) and g(x) are both Lipchitz.

Dynamic fault refers to the variations of the process parameter. If a fault occurs at

the jth parameter, then we have �fj (t) = �0j (t) + fpj = �pj(t) for t > tf , j = 1; 2; :::;m,

and limt!1 j�
0
j (t) � �pj(t)j 6= 0. Here, the constant fpj is the jth element of the

parameter fault vector fp. �fj (t) is the actual value of the jth parameter when it is

faulty, while �0j (t) is the expected value when it is healthy.

The corresponding dynamic fault model for nonlinear system (4.7) is:
8>><>>:
_x = f(x) + g(x)u+

X
l 6=j

pl(x)�l + pj(x)�
f
j ; l 2 1; 2; :::;m

y = Cx

(4.8)

where p(x) =
h
p1(x) : : : pm(x)

i
.

The sensor fault can be modeled in the same way as the dynamic fault, except that

the unknown fault item is added to the output equation. If the jth sensor is faulty, we

have yfj (t) = yj(t)+fsj = �sj(t) for t > tf , j = 1; 2; :::; q, and limt!1 jyj(t)��sj(t)j 6= 0,

where fsj is a constant as well as the jth element of the sensor fault vector fs. y
f
j (t) is

the actual faulty output for the jth sensor, while yj(t) is the expected healthy output.

Then, the sensor fault model becomes:8><>:
_x = f(x) + g(x)u+ p(x)�

y = Cx+ fs
(4.9)

where C =
h
c1 : : : cq

iT
.

In our case, both fault vectors fp and fs are limited signals, i.e. kfpk 6 Mp, and

kfsk 6 Ms (Mp and Ms are positive known constants).

44



In reality, the considered HEX reactor may be affected by unexpected dynamic fault

or sensor fault, and a single fault may cause the degradation of its performance. As

introduced in former section, the HEX reactor is a high intensified devise, so it cannot

be opened for cleaning once the assembly is finished. According to the functions of

process channels and utility channels, the chemical reaction is taken place in process

channels, so, the accumulation of products may cause the fouling of the process channel.

In the contrast, the utility channel is less affected by the fouling compared to the process

channel, because the fluid injected into the utility channel is usually water. The fouling

in process channels will directly influence the performance of heat exchange between

the process channel and plate wall, i.e. the decrease of the heat transfer coefficient hp.

Besides, the temperature of the inlet fluid Tp;in and Tu;in may change due to various

reasons, such as environmental change, malfunction of the thermocouples installed in

the injection pipes. Except for the possible faults presented before, output temperature

sensors, which are used to measure not only the output temperatures of process fluid

and utility fluid, but also the temperature of the plate wall, may also be bothered with

an unexpected fault. These two kinds of faults are mainly treated in the process of

fault diagnosis and fault tolerant control design.

In order to detect and diagnose the dynamic fault or sensor fault of the the system,

two kinds of observers, adaptive observers and interval observers, will be introduced

in the following part. Because they focus on both states and parameters compared to

other kinds of observers. Besides, dynamic or sensor fault diagnosis schemes based on

these two types of observers will also be presented and applied to the considered HEX

reactor.

4.4 Adaptive observer

The adaptive observer is a well-known robust observer which can estimate the system

states under the parameter uncertainties and modeling errors. One of the advantages

of AO is that it can estimate the state and the unknown parameter at the same time,

which is quite useful for obtain the details of faulty parameters. The design of AO

is based on online adaption for joint estimation of state and some of the parameters

(or for state estimation only, despite the presence of some unknown parameters) [132].

Early works on adaptive observers for linear systems can be traced back to the 70s.

And the design for the nonlinear cases started from the early 90s. Nonlinear adaptive

observer can be achieved for the nonlinear systems whose dynamics can be linearized
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by coordinate change and output injection [87], or it can also be accomplished by some

Lyapunov functions satisfying particular conditions instead of linearization [13]. Then,

adaptive observers are widely used in actuator, sensor, and process fault diagnosis [23]

[40] [100].

4.4.1 Structure of adaptive observer

Consider a nonlinear system described in [13]:8><>:
_x = f(x; u) + g(x; u)�

y = h(x)
(4.10)

where x, y and u are state vector, output vector and measurable bounded input vector,

� is a vector of unknown constant parameters.

The adaptive observer design are divided into two steps, the first one is to transform

the system into nonlinear adaptive observer form:8><>:
_y = �(y; z; u) + �(y; z; u)�

_z = 
(y; z; u)
(4.11)

where y is the output vector of the system which is also the measurable states, z is the

vector of the unmeasurable states. �(:) and �(:) are globally Lipschitz functions with

respect to z, and uniformly with respect to (y; u). �(:) is globally bounded.

And then, an adaptive observer in the following form is design in the second step:

8>>>><>>>>:
_̂y = �(y; ẑ; u) + �(y; ẑ; u)�̂ � ky(ŷ � y)

_̂z = 
(y; ẑ; u)

_̂� = �k��
T (y; ẑ; u)(ŷ � y)

(4.12)

where ky > 0 and k� > 0 are the observer gains. However, it is recommended to take

ky < k�, such that for any ŷ(0), ẑ(0), any y(0), z(0) and measurable bounded u, the

estimation errors kŷ(t)�y(t)k and kẑ(t)�z(t)k asymptotically go to zero when t tends

to infinity, while k�̂(t) � �k remains bounded. Moreover, if �T (y; ẑ; u) is persistently

exciting, and its time derivative is bounded, then k�̂(t)� �kt!1 ! 0.

If all the states can be measured, a reduced order asymptotic state observer is

obtained by: 8><>:
_̂y = �(y; u) + �(y; u)�̂ � ky(ŷ � y)

_̂� = �k��
T (y; u)(ŷ � y)

(4.13)
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4.4.2 Adaptive observer based FDD scheme

FDD for dynamic fault

In order to detect, isolate and identify the faulty parameter, the author of [23] [39] [133]

proposed a FDD method based on a bank of adaptive observers, where each observer

is specified for one faulty parameter. These observers are state-based observers, which

assumes that the system states are available. The number of the observers is equal

to the number of the possible faulty parameters m. For the faulty model (4.8), the

structure of this observer are given as follows:

1 � i � m;

8>>>>>><>>>>>>:

_̂x(i) = f(x̂(i)) + g(x̂(i))u+
X
l 6=i

pl(x̂
(i))�l + pi(x̂

(i))�̂(pi) +Hi(ŷ
(i) � x)

_̂�(pi) = �2
i(x̂
(i) � x)TSipi(x̂

(i))

ŷ(i) = x̂(i)

(4.14)

where x̂(i), and ŷ(i) are the estimated state vector and output vector, �̂(pi) is the fault

estimation of the ith observer, pi(x̂(i)) is the ith column of matrix p(x̂(i)). Hi is a

Hurwitz matrix that can be chosen freely with a goal to increase as much as possible

the dynamic of the observer, 
i is a design constant, and Si is a positive definite matrix.

S(i) can be calculated with the help of (4.15), where Qi is a positive definite matrix

that can be chosen freely:

HT
i Si + SiHi = �Qi (4.15)

Each observer gives an estimation of one particular parameter, and we have to

choose the appropriate gain matrices Hi, Si, as well as gain constant 
i to have a good

fault estimation performance. Details about the observer used can be found in [23]

[39].

Once the fault occurs at the jth dynamic parameter, it can be detected and isolated

using the following residual:

ri = kŷ
(i) � yk; i 2 1; : : : ;m: (4.16)

where ŷ(i) and y represent the output vector of the ith observer and the output vector

of the system, respectively.

These residuals are designed to be insensitive to the fault of a particular parameter

while being sensitive to others, i.e. if the jth parameter is faulty, then the jth residual

converges to zero and the other m� 1 residuals converge to a nonzero constant. Thus,

the fault is isolated.
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When the fault on the jth parameter is isolated, we can obtain the faulty value

according to the parameter estimation of the corresponding adaptive observer:

f̂pj = �̂(pj) � �0j (4.17)

FDD for sensor fault

A healthy sensor is one of the most important tools to obtain the output of the system

in real-time, especially for the closed-loop systems. In the closed-loop system, the

measured output are used to calculate the control law. So, a single sensor fault affects

all of the system variables. To supervise the performances of sensors, a similar FDD

scheme is applied for the sensors. A bank of adaptive observers in the following form

are constructed for the faulty model (4.9) [24] [39]:

1 � i � q;

8>>>><>>>>:
_̂x(i) = f(x̂(i)) + g(x̂(i))u+H(i)(ŷ(i) � x)

ŷ
(i)
l = x̂

(i)
l ; l = 1; : : : ; i� 1; i+ 1; : : : ; n

_̂y
(i)
i = �2
i(ŷ

(i) � x)TSici

(4.18)

where ci is the ith row vector of the n dimensional unit matrix C. The gain matrices

Hi, Si, and constant 
i is chosen as the same manners as that in dynamic fault case.

The number of the observers is equal to the number of the sensors q.

Then, residuals of the form (4.16) are calculated to detect and isolate the fault.

The isolation idea is the same as we presented in dynamic fault case. The residuals are

insensitive to the faulty sensor, but they are sensitive to others. That is to say, if the

jth parameter is faulty, then the jth residual converges to zero while the other p � 1

residuals converge to a nonzero constant. And then, the estimation of the faulty value

can be calculated by:

f̂sj = ŷ
(j)
j � x̂

(j)
j (4.19)

4.4.3 Application to HEX reactor: adaptive observer based FDD

scheme

In this part, we will apply the presented adaptive observer based FDD scheme for the

considered HEX reactor in open-loop. For simplicity, only the heat exchange part is

considered in this section. Water with different temperatures (Tp;in, Tu;in) is injected

into process channel and utility channel respectively. And the flow rate of utility fluid

is the only input signal u = Fu. Define the state vector as x = [Tp Tu Tw]
T , all
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these temperatures are measurable. According to the energy balance equation, the

mathematical model of the HEX reactor is:8>>>>>>>>><>>>>>>>>>:

_Tp =
Fp
Vp

(Tp;in � Tp) +
hpAp

�pVpCp;p

(Tw � Tp)

_Tu =
Fu
Vu

(Tu;in � Tu) +
huAu

�uVuCp;u

(Tw � Tu)

_Tw =
hpAp

�wVwCp;w

(Tp � Tw) +
huAu

�wVwCp;w

(Tu � Tw)

(4.20)

where the subscript p, u and w represent the process fluid, utility fluid and plate wall,

the subscript in represents the inlet fluid.

The model above is just for one cell, which may cause slight differences in the

dynamic behavior of the real reactor. However, the application of the FDD scheme will

not be affected. Table 4.2 gives the nominal values of the operating conditions used in

the simulation. Further details about the studied system could be found in [112].

Table 4.2: Physical data of the pilot

Constant Value Units

Vp 2:68� 10�5 m3

�p; �u 103 kg ·m�3

Cp;p; Cp;u 4:186� 103 J · kg�1 ·K�1

hp 7:5975� 103 W ·m2 ·K�1

Ap 2:68� 10�2 m2

Vu 1:141� 10�4 m3

hu 7:5833� 102 W ·m2 ·K�1

Au 4:564� 10�1 m2

Vw 1:355� 10�3 m3

�w 8� 103 kg ·m�3

Cp;w 5� 102 J · kg�1 ·K�1

To start, the utility fluid is injected into the utility channel with a flow rate

Fu = 62:2 L ·h�1 and a fixed temperature Tu;in = 15:6 �C. When they reach a

steady state, the process fluid is injected into the process channel with a constant

flow rate Fp = 10 L ·h�1 and a constant temperature Tp;in = 77 �C. That is to

say, the initial temperatures of process channel, utility channel and plate wall are

x(0) =
h
Tp(0) Tu(0) Tw(0)

iT
=
h
77 15:6 15:6

iT
. After a period of time, the fault is

introduced. Since the fault is introduced in the open-loop, so the input signal will be

a constant other than a variable.
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Simulation with dynamic fault

we consider the two possible faulty parameters caused by the fouling in process chan-

nels, and the inlet fluid temperature change, respectively. The first one is the heat

transfer coefficient between the process channel and the plate wall hp. The second one

is the inlet process fluid temperature Tp;in. As can be seen from the model (4.20), the

inlet temperature change in utility fluid Tu;in can be compensated directly by increas-

ing or decreasing the utility fluid flow rate Fu. We will focus on the parameter which

can not be compensated automatically when it is faulty. Therefore, out possible fault

vector � =
h
hp Tp;in

iT
. Their nominal values are � =

h
7:5975� 103 77

iT
.

Then, similar to (4.7), the mathematical model of the HEX reactor can be rewritten

into the following form:

_x = f(x) + g(x)Fu + p(x)

24 hp

Tp;in

35 (4.21)

where x =
h
Tp Tu Tw

iT
,

f(x) =

26664
�Fp

Vp
Tp

huAu

�uVuCp;u
(Tw � Tu)

huAu

�wVwCp;w
(Tu � Tw)

37775

g(x) =

26664
0

Tu;in�Tu
Vu

0

37775

p(x) =

26664
Ap

�pVpCp;p
(Tw � Tp)

Fp
Vp

0 0
Ap

�wVwCp;w
(Tp � Tw) 0

37775
Thus, two adaptive observers (4.22) (4.23) are constructed to detect and diagnose

the possible dynamic fault.

8>>>>>>>><>>>>>>>>:

_̂x(1) = f(x̂(1)) + g(x̂(1))Fu + p(x̂(1))

24 ĥ(1)p

Tp;in

35+H1(x̂
(1) � x)

_̂h(1)p = �2
1(x̂
(1) � x)S1p1(x̂

(1))

ŷ(1) = x̂(1)

(4.22)
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8>>>>>>>><>>>>>>>>:

_̂x(2) = f(x̂(2)) + g(x̂(2))Fu + p(x̂(2))

24 hp

T̂
(2)
p;in

35+H2(x̂
(2) � x)

_̂T
(2)
p;in = �2
2(x̂

(2) � x)S2p2(x̂
(2))

ŷ(2) = x̂(2)

(4.23)

First of all, we suppose that the process channel is fouled at tf = 400s, which

causes a decrease of the heat transfer coefficient hp to 85% of its nominal value h0p (i.e.

fp1 = �1:1393 � 103 W ·m2 ·K�1). Then the heat transfer coefficient in faulty case

becomes hfp = h0p + fp1 = 6:4852� 103 W ·m2 ·K�1.

Figure 4.2: Temperature performances of the HEX reactor: dynamic hp is faulty at

400s

Figure 4.2 presents the performances of the measured temperatures of process fluid,

utility fluid, and plate wall. The dot lines represent temperatures in fault free case,

and the solid line represents the real performance of the HEX reactor. According to

the initial values of both fluid, the utility fluid is used to cool down the process fluid.

So the temperature of process fluid Tp drops greatly at the beginning. And then, it

reaches at a steady state about 27:93�C. At 400s, the heat transfer coefficient hp drops

to 85% of its nominal value, that means the heat is gathered in process channel and

cannot be taken away as quickly as before. As a consequence, the temperature of utility

fluid Tu and the temperature of plate wall Tw all change slightly.

The residuals of both observers are shown in Figure 4.3. The residuals leave zero at

400s, that means there is a fault in the system. After a few second, the first residual

r1 corresponding to the first observer comes back to zero while the second residual

r2 stays at a nonzero value. According to our isolation principle, the fault is isolated
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in the first element of the possible faulty parameter, i.e. hp. Moreover, the adaptive

observer gives the estimation of the fault, as presented inn Figure 4.4. The estimated

value f̂p1 is the same as the fault we applied.

Figure 4.3: Residuals of both adaptive observers: dynamic hp is faulty at 400s

Figure 4.4: Estimated fault value f̂p1: dynamic hp is faulty at 400s

In the second case, we introduce a fault fp2 = �5 �C in the second parameter Tp;in,

the temperature of the inlet process fluid, at tf = 400s. Then, Tp;in drops to the faulty

case T f
p;in = Tp;in+fp2 = 72 �C. The performance of the HEX reactor is given in Figure

4.5. The dot line represents the fault free case, while the solid line represents the faulty

case.

As presented in Figure 4.5, the decrease of inlet process fluid temperature Tp;in

causes the temperature decrease of the whole HEX reactor. The residuals are presented

in Figure 4.6. It is obvious that both residuals change at 400s, which indicates the

occurrence of fault. After a period of time, the second residual r2 converges to zero,

while the first residual r1 converges to a nonzero value. Then, we can judge that
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Figure 4.5: Temperature performances of the HEX reactor: dynamic Tp;in is faulty at

400s

the fault occurs at the second parameter Tp;in. Besides, the second observer gives the

estimation of the faulty value f̂p2 = �5, it equals the faulty value we introduced.

Figure 4.6: Residuals of both adaptive observers: dynamic Tp;in is faulty at 400s

Simulation with sensor fault

For the considered HEX reactor, we mainly focus on the temperature of process fluid

and utility fluid, because the plate wall is a heat transfer media whose temperature

varies according to the temperatures of both flowing fluid. So, we mainly focus on

the sensor of process fluid temperature and the sensor of utility fluid. Normally, the

measured output should equal the real output of the system, i.e. ymea = ysys. When

the jth sensor is faulty, then, yj;mea = yj;sys + fsj, while other elements of measured
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Figure 4.7: Estimated fault value f̂p2: dynamic Tp;in is faulty at 400s

output still equal to the output of the system. To detect and isolate the fault, two

observers are constructed in form (4.18) are constructed.

First, we consider a temperature sensor fault fs1 = 3 �C occurring at the process

fluid temperature sensor s1 at 400s. So the output of the faulty sensor is yf1 = y1+ fs1.

Simulation results are presented in Figure 4.8. The real output of the system Tp;sys

is presented in blue dot line, and the measured value (the output of the sensor) Tp;mea

is represented by the red line. The black dot line represents the desired process fluid

temperature Tpd.

Figure 4.8: Temperature performances of the HEX reactor: sensor Tp is faulty at 400s

Since the fault fs1 is introduced in open-loop, so one sensor fault will not affect all

the other measured output but only the faulty one. In Figure 4.8, the first sensor is

faulty, so the measured process fluid temperature Tp;mea no longer equals to the fault
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free case. And, the measured temperature of utility fluid Tu;mea, and the measured

temperature of plate wall Tw;mea still equal to their value under fault free case.

Residuals of each observers are given in Figure 4.9. Obviously, the residuals do not

stay at zero at 400s. Then, the first residual goes back to zero while the second one

stays at a nonzero value. That is to say, the fault occurs at the first sensor. And the

faulty value is presented in Figure 4.10. The estimated faulty value f̂s1 equals to the

real faulty value fs1 = 3 �C.

Figure 4.9: Residuals of both adaptive observers: sensor Tp is faulty at 400s

Figure 4.10: Estimated fault value f̂s1: sensor Tp is faulty at 400s

In the next, a fault fs2 = 7 �C is applied to the utility fluid temperature sensor s2
at 400s. Then, the faulty temperature measurement is yf2 = y2 + fs2. The measured

temperatures of the HEX reactor is presented in Figure 4.11. After 400s, the measured

utility fluid temperature changes greatly because of the interruption of sensor fault.

And the other measurements stays at its healthy value since the fault is introduced in

open-loop.
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Figure 4.11: Temperature performances of the HEX reactor: sensor Tu is faulty at 400s

Figure 4.12 shows the performance of residuals. At 400s, the variations of residual

indicate the occurrence of fault. After a few seconds, the second residual returns to

zero and the first residual stays at a nonzero value. Thus, the fault is isolated according

to our isolation principle. The estimated faulty value is shown in 4.13. The fault fs2
that we applied to the second sensor is well estimated by the second observer.

Figure 4.12: Residuals of both adaptive observers: sensor Tu is faulty at 400s

Simulation results show that the adaptive observer based FDD scheme can well

detect, isolate, and identify the dynamic fault, and sensor fault.
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Figure 4.13: Estimated fault value f̂s1: sensor Tu is faulty at 400s

4.5 Interval observer

Interval observer is a kind of observer that focuses on the speed of fault isolation and

identification. It is firstly proposed in [80], and then applied to numbers of nonlinear

systems [81] [100] [131]. The main idea of this method is to divide the practical domain

of the value of each system parameter into a certain number of intervals. After verifying

all the intervals whether or not one of them contains the faulty parameter value of the

system, the faulty parameter value is found, the fault is therefore isolated and identified.

The principle of the verification is based on the local monotonous characteristic of the

observer prediction error, i.e. residual. The only condition for the application of this

method is that the system dynamic is a monotonous function with respect to the

considered parameter. Therefore, it fits many kinds of nonlinear systems.

4.5.1 Structure of interval observer

For the considered nonlinear system:8><>:
_x = f(x; �; u)

y = Cx
(4.24)

where x 2 Rn is the state vector, � 2 Rm is the possible faulty parameter vector,

y 2 Rq is the measurable output vector C 2 Rq�n is the output matrix. f(x; �; u) is a

nonlinear vector function, and its first partial derivatives on x and � are contimuous,

bounded, Lipschitz in x and �. The nominal value of the parameter vector � is denoted

by �0 and is known.

Once the parameter vector difference �� = � � �0 is great, it will cause a great
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dynamic difference between the system (4.24) and its nominal model _x = f(x; �0; u):

�(x; �; �0; u) = f(x; �; u)� f(x; �0; u) (4.25)

and this is defined as a fault. The faulty parameter vector is denoted by �f .

Then considered observer is given by:8>>>><>>>>:
_̂x = f(x̂; �ob; u) +H(ŷ � y)

ŷ = Cx̂

ey;h = ŷh � yh

(4.26)

where yh is the hth element of the output vector y. �ob is the observer parameter vector,

and �ob = �0 for t < tf . tf is the fault occurrence time. H is the observer gain matrix.

At tf , the sth parameter changes due to the fault, and then, to isolate the fault,

the jth parameter is switched to a preselected value by the isolation procedure once

the fault is detected:8><>:
�fs = �0s +�f ;

�fl = �0l ; l 6= s;
t � tf ;

8><>:
�obj = �0j +�ob;

�obl = �0l ; l 6= j;
t � tf (4.27)

where �f , �ob are real numbers. �f is the value change caused by the fault, �0j +�ob

is the preselected value of the observer, which is a bound of a parameter interval of

jth system parameter. For each interval bounds, there arre two particular cases of the

isolation observer: 8>>>><>>>>:
_̂xa = f(x̂a; �oba; u) +H(ŷa � y)

ŷa = Cx̂a

eay = ŷa � y

(4.28)

8>>>><>>>>:
_̂xb = f(x̂b; �obb; u) +H(ŷb � y)

ŷb = Cx̂b

eby = ŷb � y

(4.29)

where

�obaj =

8><>:
�0j ; t < tf

�aj ; t � tf
�obal = �0l 8t; l 6= j

�obbj =

8><>:
�0j ; t < tf

�bj; t � tf
�obbl = �0l 8t; l 6= j

where �aj and �bj are two bounds of the parameter interval
h
�aj �bj

i
of the jth parameter.

�0l is the nominal value of the lth parameter.

The isolation principles are presented by the following theorems.
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Theorem 4.2:

It is assumed that the parameter changes of the system and of the observers are at

the same parameter, that is to say, s = j. Two bounds of a considered parameter

interval are noted by �aj and �bj, respectively. The interval is smaller than a certain

size which will be mentioned later. The residuals eay(t) and eby(t) correspond to the

two interval bounds while ey(t) represents residual in general case.

(1)If �fj 2
h
�aj �bj

i
, then, sgn(eay(t)) = �sgn(eby(t)) 8t, and ey(t) is a monotonous

function of the parameter difference ��j = �ob � �f jt�tf when �obj 2
h
�aj �bj

i
. Spe-

cially, lim��!0 ey(t) = 0 8t � tf .

(2) If �fj =2
h
�aj �bj

i
, then, at the period beginning after the fault occurrence, the

equality sgn(eay(t)) = sgn(eby(t)) is satisfied.

Theorem 4.3:

It is assumed that after the fault occurrence the parameter changes of the sys-

tem and of the observers are not at the same parameter, i.e. s 6= j. If

the parameter interval
h
�aj �bj

i
is small enough, then the time te exists that

sgn(eay(te)) = sgn(eby(te)).

The proofs of these theorems can be found in [81].

According to Theorem 4.2 and Theorem 4.3, we can conclude that: for the parameter

interval
h
�aj �bj

i
which is small enough, if the faulty parameter value is not contained

in this interval, the isolation index:

v(t) = sgn(eay(t))sgn(e
b
y(t)) (4.30)

will be ‘1’ some time after the fault occurrence. If the parameter interval contains the

faulty parameter value, the isolation index v(t) will be maintained as ‘�1’ all the time.

4.5.2 Interval observer based FDD scheme

FDD for dynamic fault

First of all, the practical domain of each possible faulty parameter is divided into a

certain number of intervals. For instance, parameter �j is partitioned into n intervals,

their bounds are �(0)j , �(1)j , : : : , �(i)j , : : : , �(n)j . The bounds of ith interval are �(i�1)j and

�
(i)
j , they are also noted as �a(ij)j and �

b(ij)
j .

To detect and isolate the faulty parameter, each bound of parameter intervals is

used as a parameter to build an isolation observer. For n intervals in series, there are

(n+1) bounds, so, (n+1) observers are constructed. On the other hand, each isolation
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observer serves two neighboring intervals. And the interval which contains a parameter

nominal value is unable to contain the faulty parameter value.

Therefore, for the ith interval, the isolation observers corresponding to each bound

are given below:

8>>>><>>>>:
_̂xa(ij) = f(x̂a(ij); �oba(ij)(t); u) +H(ŷa(ij) � y)

ŷa(ij) = Cx̂a(ij)

ea(ij)y = ŷa(ij) � y

(4.31)

8>>>><>>>>:
_̂xb(ij) = f(x̂b(ij); �obb(ij)(t); u) +H(ŷb(ij) � y)

ŷb(ij) = Cx̂b(ij)

eb(ij)y = ŷb(ij) � y

(4.32)

where

�
oba(ij)
j (t) =

8><>:
�0j ; t < tf

�i�1j ; t � tf
�
oba(ij)
l (t) = �0l 8t; l 6= j

�
obb(ij)
j (t) =

8><>:
�0j ; t < tf

�ij; t � tf
�
obb(ij)
l (t) = �0l 8t; l 6= j

To detect the fault, we will use the residuals presented in (4.16). Once the residuals

leave zero, that indicates the occurrence of fault. And the parameter of the observer is

changed to the preselected value. To isolate the fault, we calculate the isolation index

of each interval by:

v(ij)(t) = sgn(ea(ij)y (t))sgn(eb(ij)y (t)) (4.33)

v(ij)(t) = 1 indicates that this interval does not contain the faulty parameter value.

In the contrast, v(ij)(t) = �1 indicates that the faulty parameter value is located in

this interval.

Assume that the ith interval of jth parameter contains the faulty parameter, the

fault value can be obtained by the following:

�̂fj =
1

2
(�

a(ij)
j + �

b(ij)
j ) (4.34)

This estimation of the faulty parameter value and the obtained parameter bounds

do not rely on classic parameter identification methods but rely on the proposed fault

isolation method. As soon as the fault is isolated, they are obtained.
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FDD for sensor fault

A similar idea can be used for sensor fault isolation and identification. In this case,

the system parameters are all in nominal condition, while the measured output is

malfunction. Since the sensor fault will affect the calculation of the input signal, which

will cause an unexpected performance of the whole closed-loop system, we still have to

find the fault as soon as possible.

At tf , the sth sensor of the system is faulty, then, the jth sensor of the observer is

switched to a preselected value to isolate the fault:8><>:
yfs;mea = ys;sys + fss;

yfl;mea = yl;sys; l 6= s;
t � tf ;

8><>:
yobj;mea = yobj;sys +�ob;

yobl;mea = yobl;sys; l 6= j;
t � tf (4.35)

where ys;sys and yl;sys represent the sth and lth output of the real system, which can

be calculated by ys;sys = csx, yl;sys = clx. yobj;sys and yobl;sys are the jth and lth output of

the observer, they can be calculated in the similar way yobj;sys = cjx
ob, yobj;sys = clx

ob. cs
and cl are the sth and jth row of the output matrix C. fs;s is the sensor s value change

caused by the fault, �ob is the preselected value of the observer, which represent the

possible variation of the sensor. Thus, cjx+�ob is a bound of jth sensor’s interval.

Firstly, each variation range of possible faulty sensor are divided into several inter-

vals. For example, the variation �j of jth measured output yj;mea can divided into m

intervals according to different variations: �
(0)
j , �(1)

j , : : : , �(m)
j . Thus, the measured

output yj;mea are changed into m intervals: yj;sys+�
(0)
j , yj;sys+�

(1)
j , : : : , yj;sys+�

(m)
j .

For simplicity, we will discuss the intervals of sensor variations. The bounds of ith

interval are �(i�1)
j and �

(i)
j , which are also noted as �a(ij)

j and �
b(ij)
j .

Therefore, similar to the dynamic fault case, (m + 1) observers corresponding to

(m+1) bounds are constructed for m intervals in the second step. For the ith interval,

the isolation observers are shown as follows:8>>>>><>>>>>:

_̂xa(ij) = f(x̂a(ij); �0; u) +H(ŷa(ij) � y)

ŷa(ij) =
h
c1x̂

a(ij) ::: ŷoba(ij)(t) ::: cqx̂
a(ij)

iT
ea(ij)y = ŷa(ij) � y

(4.36)

8>>>>><>>>>>:

_̂xb(ij) = f(x̂b(ij); �0; u) +H(ŷb(ij) � y)

ŷb(ij) =
h
c1x̂

b(ij) ::: ŷobb(ij)(t) ::: cqx̂
b(ij)

iT
eb(ij)y = ŷb(ij) � y

(4.37)

where
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ŷ
oba(ij)
j (t) =

8><>:
cjx̂

a(ij); t < tf

cjx̂
a(ij) +�

a(ij)
j ; t � tf

ŷ
oba(ij)
l (t) = clx̂

a(ij) 8t; l 6= j

ŷ
obb(ij)
j (t) =

8><>:
cjx̂

b(ij); t < tf

cjx̂
b(ij) +�

b(ij)
j ; t � tf

ŷ
obb(ij)
l (t) = clx̂

b(ij) 8t; l 6= j

The fault detection is the same with that used in dynamic fault case. Once the

fault is detected, the performance of estimation error between the observers and real

system ey are analyzed. And then, the isolation index of each interval is calculated:

v(ij)(t) = sgn(ea(ij)y (t))sgn(eb(ij)y (t)) (4.38)

The principle to isolate the fault is the same as the one we used before. If the faulty

parameter value is contained in this interval, then v(ij)(t) = 1. Otherwise, v(ij)(t) = �1.

Since the faulty measured output is easily got, what we need to to in the identifica-

tion part is to find out the faulty variance value �f . Suppose that the fault has been

isolated in the ith interval of jth sensor, the fault value can be identified at the same

time:

f̂sj =
1

2
(�

a(ij)
j +�

b(ij)
j ) (4.39)

4.5.3 Application to HEX reactor: interval observer based FDD

scheme

The interval observer based FDD scheme is applied to the HEX reactor (4.20). The

same initial values are given to the considered HEX reactor model. The same faulty

situation is used as the former section, dynamic fault and sensor fault are introduced

respectively.

Simulation with dynamic fault

The dynamic fault vector considered is
h
hp Tp;in

iT
, and their nominal values areh

h0p T 0
p;in

iT
=
h
7:5975� 103 77

iT
. Both parameters are divided into five intervals,

the bounds of each interval are given in Table 4.3 and Table 4.4. The interval diving

of hp is different percentages of its nominal value h0p.

Once the fault is detected, the parameter of observers will changes to the preselected

value, i.e. every observer will use the parameter value corresponds to each bound. In
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Table 4.3: The value of interval bounds for hp

No. of interval 1 2 3 4 5

h(a)p 100% 90% 80% 70% 60%

h(b)p 90% 80% 70% 60% 50%

Table 4.4: The value of interval bounds for Tp;in

No. of interval 1 2 3 4 5

T
(a)
p;in 81 79 77 75 73

T
(b)
p;in 79 77 75 73 71

our case, both possible faulty parameters are divided into five intervals with six bounds.

So, twelve observers are constructed in total.

In this part, the same dynamic faults, fp1 = �15%h0p, fp2 = �5 in heat transfer

coefficient hp and the inlet process fluid temperature Tp;in, are applied to the considered

HEX reactor (4.20). The performances of the reactor in presence of fault have been

presented in the former section Figure 4.2 and Figure 4.5. So, we will focus on the

fault isolation and identification part.

Figure 4.14: Output errors ey;Tp correspond to intervals of hp when dynamic hp is faulty

at 400s

First of all, the fault is introduced in the first parameter hp at 400s, it decreases to

85% of its nominal value. To isolate the fault, we verify the performances of output

errors shown in Figure 4.14 and Figure 4.15. We can easily find that the sign of the
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Figure 4.15: Output errors ey;Tu correspond to intervals of hp when dynamic hp is faulty

at 400s

second output error and third output error are different after t = 400s. They lie on both

sides of zero. After checking the interval bounds value in Table 4.3, they correspond

to the second bound and third bound of hp interval. That means the fault is located

in this interval [80%; 90%] of parameter hp. Thus, the fault is isolated.

Figure 4.16: Output errors ey;Tp correspond to intervals of Tp;in when dynamic hp is

faulty at 400s

We should pay attention that both output errors ey;Tp and ey;Tu should be considered.

For instance, in Figure 4.14, e(2)y;Tp and e
(3)
y;Tp lie in different sides of zero. Only if we

make sure that the output error e(2)y;Tu and e(3)y;Tu also locate in different sides of zero, can
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Figure 4.17: Output errors ey;Tu correspond to intervals of Tp;in when dynamic hp is

faulty at 400s

we judge that the faulty parameter is contained in the second interval. Otherwise, if

e
(2)
y;Tp and e

(3)
y;Tp stay in different sides of zero, while e(2)y;Tu and e3y;Tu lie in the same side

of zero, then, the fault is not contained in the second interval.

However, we should not forget that, there are several observers whose parameters

are changed to the preselected bounds correspond to the second parameter Tp;in once

the fault is detected. The output errors between the interval observers corresponding

to Tp;in and real system are shown in Figure 4.16 and Figure 4.17. For both output

error of process fluid temperature ey;Tp and output error of utility fluid temperature

ey;Tu, they all stay on the same side of zero, either the negative side or the positive

side. That is to say, the fault is not located in the intervals of Tp;in.

Therefore, the fault is isolated in the second interval of parameter hp, and its iden-

tification can be obtained easily by the following:

ĥfp =
1

2
(h(2)p + h(3)p )

=
1

2
(90%h0p + 80%h0p)

= 85%h0p

(4.40)

In the second case, the fault is introduced at the second parameter Tp;in, the inlet

temperature of process fluid decrease to 72 �C from its nominal value T 0
p;in = 77 �C

at 400s. Once the fault is detected, the observer parameter changes to the preselected

value. The bounds of intervals corresponding to each parameter are the same as in

Table 4.3 and Table 4.4.
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Figure 4.18: Output errors ey;Tp correspond to intervals of hp when dynamic Tp;in is

faulty at 400s

Figure 4.19: Output errors ey;Tu correspond to intervals of hp when dynamic Tp;in is

faulty at 400s

Figure 4.18 and Figure 4.19 present the output error ey;Tp and ey;Tu corresponding

to the interval of hp. All the output error ey;Tp between hp interval observers and real

system stay in the upper side of zero, while ey;Tu stay under zero. That means the

faulty parameter does not lie in the interval of hp.

Then, we check the performances of the observer whose parameter is changed at

Tp;in. The output errors of process fluid temperature ey;Tp between Tp;in interval ob-

servers and real system are presented in Figure 4.20. We can find that the error
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Figure 4.20: Output errors ey;Tp correspond to intervals of Tp;in when dynamic Tp;in is

faulty at 400s

corresponding to the sixth bound of Tp;in interval lies under zero, while the fifth bound

of Tp;in interval locates in the upper side of zero.

Figure 4.21: Output errors ey;Tu correspond to intervals of Tp;in when dynamic Tp;in is

faulty at 400s

Figure 4.21 shows the output error of utility fluid temperature ey;Tu between Tp;in

interval observers and real system. It has the same phenomenon that the fifth bound

and the sixth bound of Tp;in interval stay in different sides of zero. Therefore, we can

conclude that the faulty parameter is contained in the fifth interval [71; 73] of Tp;in
parameters.
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Therefore, we can calculate the estimation of faulty value by calculating the average

value of the interval bounds:

T̂ f
p;in =

1

2
(T

(5)
p;in + T

(6)
p;in)

=
1

2
(71 + 73)

= 72

(4.41)

Simulation with sensor fault

In this part, sensor faults fs1 = 3 �C, fs2 = 7 �C are introduced to the sensor of

process fluid temperature Tp and the sensor of the utility fluid temperature Tu. The

performances of the faulty reactor have been shown in Figure 4.8 and Figure 4.11.

To isolate and identify the fault, the possible variation of each sensor is divided

into four intervals with five bounds. They are presented in Table 4.5 and Table 4.6.

Once the fault is detected, the measured output of the observer will vary in the way

expressed in (4.35). In our case, we consider two possible faulty sensors, and each

possible variation range is divided into four intervals with five bounds. Thus, ten

observers are constructed in total.

Table 4.5: The value of variation �Tp interval bounds for sensor Tp

No. of interval 1 2 3 4

�
(a)
Tp

0 2 4 6

�
(b)
Tp

2 4 6 8

Table 4.6: The value of variation �Tu interval bounds for sensor Tu

No. of interval 1 2 3 4

�
(a)
Tu

0 2 4 6

�
(b)
Tu

2 4 6 8

At the beginning, we will consider the fault fs1 = 3 �C in the first sensor, the

process fluid temperature sensor s1. Once the fault is detected, the measured output

of each observer varies to different values in Table 4.5 and Table 4.6.

Figure 4.22 and Figure 4.23 shows the performances of measured output error be-

tween the measurements of observers with �Tp variations and the measurements of the

system (the output of sensor). In Figure 4.22, the sign of the second measured output

error e2y;mea;Tp
are different from the sign of the third measured output error e3y;mea;Tp

.
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Figure 4.22: Output errors ey;mea;Tp correspond to variation intervals of�Tp when sensor

Tp is faulty at 400s

Figure 4.23: Output errors ey;mea;Tu correspond to variation intervals of �Tp when

sensor Tp is faulty at 400s

Figure 4.23 shows the same phenomena, the zero is sandwiched by the second measured

output error e2y;mea;Tu
and the third measured output error e3y;mea;Tu

. That indicates the

faulty value is located in the second interval [2; 4] of variation �Tp.

To make sure we have isolated the faulty parameter correctly, we need to check the

performance of other observers who has the parameter change in the second sensor �Tu .

Once the fault is detected, the second element of measured output of observers yTu are

changed according to Table 4.6. The measurement error between these observers and
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Figure 4.24: Output errors ey;mea;Tp correspond to variation intervals of �Tu when

sensor Tp is faulty at 400s

the measurement of the real system is presented in Figure 4.24 and Figure 4.25. It

is obvious that measured output error between the interval observer corresponding to

�Tu variation and the measurement of the real system are located on the same side of

zero, either the upper side for ey;mea;Tp or the lower side for ey;mea;Tu. According to our

isolation principle, the same sign means the fault is not located in these intervals of

�Tu variation.

Figure 4.25: Output errors ey;mea;Tu correspond to variation intervals of �Tu when

sensor Tp is faulty at 400s

Thus, the estimation of the faulty value can be calculated by using the bounds value
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of the first interval:
f̂s1 =

1

2
(�

(2)
Tp +�

(3)
Tp )

=
1

2
(2 + 4)

= 3

(4.42)

and the value is the same as the fault we introduced.

In the second case, the sensor fault fs2 = 7 �C is introduced in the utility fluid

temperature sensor s2 at 400s. Then, the faulty output of sensor (the measurement of

the system) is yf2 = y2 + fs2.

Figure 4.26: Output errors ey;mea;Tp correspond to variation intervals of�Tp when sensor

Tu is faulty at 400s

The measured output errors ey;mea between the variation �Tp interval observers

and the measurement of the system are presented in Figure 4.26 and Figure 4.27. It

is obvious that all the measured output errors ey;mea;Tp stay on the same side of zero.

And all the ey;mea;Tu perform in the same way, they all lie under zero. So, the faulty

value is not contained in any of the preselected intervals.

Then, we check the performance of the observers whose measured output changes at

�Tu. The measured output error ey;mea between these observers and the measurement

of the system are presented in Figure 4.28 and Figure 4.29. We can find that in Figure

4.28, the performances of e4y;mea;Tp and e5y;mea;Tp lie in different sides of zero. That may

indicate the existence of faulty value. Then, we have to check if the fourth measured

output error of utility temperature e4y;mea;Tu and the fifth measured output error of

utility temperature e5y;mea;Tu has the same trend in Figure 4.29. We can easily find that
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Figure 4.27: Output errors ey;mea;Tu correspond to variation intervals of �Tp when

sensor Tu is faulty at 400s

Figure 4.28: Output errors ey;mea;Tp correspond to variation intervals of �Tu when

sensor Tu is faulty at 400s

the zero is sandwiched by these two lines e4y;mea;Tu and e5y;mea;Tu. And they correspond to

the fourth bound and fifth bound of variance �Tu interval. Therefore, we can conclude

that the faulty value is contained in the fourth interval [6; 8] of �Tu.

Finally, the sensor fault is isolated in the second sensor s2. Since we have bounded
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Figure 4.29: Output errors ey;mea;Tu correspond to variation intervals of �Tu when

sensor Tu is faulty at 400s

the faulty value in one small interval, then it can be easily calculated:

f̂s2 =
1

2
(�

(4)
Tu +�

(5)
Tu )

=
1

2
(6 + 8)

= 7

(4.43)

According to the simulation results, we can conclude that both dynamic fault and

sensor fault are well detected and diagnosed by the presented interval observer based

FDD scheme.

4.6 Summary

This chapter started from an overview of the existing observers in the past decades.

Basic properties of nonlinear systems, such as indistinguishability, observability, etc

have been introduced firstly. Besides, the dynamic and sensor faulty model were also

constructed. Then, we mainly focused on the introduction of two kinds of observers,

adaptive observer and interval observers. Their structures, as well as the FDD schemes

based on these two observers were all presented. Both observer based FDD schemes

were applied to the HEX reactor to validate their effectiveness. According to the

simulation results, not only the dynamic fault but also the sensor fault could be well

detected, isolated and identified.
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Chapter 5

Backstepping controller design for the

Heat-exchanger/Reactor

Backstepping [74] [79] is a recursive procedure that breaks a controller design problem

for the full system into a sequence of design problems for lower order systems. In this

chapter, a backstepping controller is designed for the nonlinear HEX reactor. Firstly,

various backstepping design techniques, including integrator backstepping, backstep-

ping for strict-feedback systems, adaptive backstepping, and robust backstepping, for

nonlinear systems are reviewed. And then, the recursive backstepping controller design

procedure is presented for the considered HEX reactor. Finally, simulation results are

presented to prove the control ability of the designed controller.
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5.1 Backstepping design

In this section, the backstepping design is introduced. The key idea of backstepping

is to start with a system which is stabilizable with a known feedback law for a known

Lyapunov function, and then to add to its input an integrator [74]. First, the backstep-

ping procedure for scalar systems which are extended with a single integrator is given.

Then, using this integrator backstepping approach, a recursive design procedure for

strict feedback systems is defined. Besides, the adaptive backstepping and the robust

backstepping design procedures for a class of nonlinear systems with uncertainties are

also presented.

5.1.1 Integrator backstepping

Integrator backstepping as a design tool is based on the following assumption.
Assumption 5.1:

Consider a system

_x = f(x) + g(x)u; f(0) = 0 (5.1)

where x 2 Rn is the state, and u 2 R is the control input. There exist a continu-

ously differentiable feedback control law

u = �(x); �(0) = 0 (5.2)

and a smooth, positive definite, radially unbounded function V : Rn ! R+ such

that
@V

@x
(x) [f(x) + g(x)�(x)] � �W (x) � 0; 8x 2 Rn (5.3)

where W : Rn ! R is positive semidefinite.

Under this assumption, the control signal (5.2) applied to the system (5.1) guar-

antees global boundedness of x(t), and via the LaSalle-Yoshizawa theorem [79], the

regulation of W (x(t)):

lim
t!1

W (x(t)) = 0 (5.4)

The result of integrator backstepping is summarized in the following lemma.

Lemma 5.1 (Integrator Backstepping [79]):

Let the system 5.1 be augmented with an integrator

_x1 = f(x1) + g(x1)x2 (5.5a)

_x2 = u (5.5b)

and suppose that (5.5a) satisfies assumption 5.1 with x2 2 R as its control.
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• If W (x1) is positive definite, then

Va(x1; x2) = V (x1) +
1

2
[x2 � �(x1)]

2 (5.6)

is a control Lyapunov function (CLF) for the full system (5.5), that is, there

exists a feedback control u = �a(x1; x2) which renders x1 = 0, x2 = 0 the global

asymptotically stable (GAS) equilibrium of (5.5). one such control is

u = �c(x2 � �(x1)) +
@�

@x1
(x1) [f(x1) + g(x1)x2]�

@V

@x1
(x1)g(x1); c > 0 (5.7)

• If W (x1) is only positive semidefinite, then there exists a feedback control

which renders _Va � �Wa(x1; x2) � 0, such that Wa(x1; x2) > 0 whenever

W (x1) > 0 or x2 6= �(x1). This guarantees global boundedness and conver-

gence of

24x1(t)
x2(t)

35 to the largest invariant set Ma contained in the set

Ea =

8<:
24x1
x2

35 2 Rn+1jW (x1) = 0; x2 = �(x1)

9=;

The proof is given in chapter 2 of [79].

5.1.2 Backstepping for strict-feedback systems

Based on the recursive implementation of the integrator backstepping methodology,

the same controller design procedure can be applied recursively to a strict feedback

system of a higher order. The only difference is that there are more "virtual states" to

step through. The method starts with the state separated from the actual control input

by the largest number of integrators, and at each step, the backstepping technique can

be divided into three parts [118].

Firstly, a virtual control signal and error state variable are introduced. And then,

the current state equation can be rewritten in terms of these variables. Secondly, we

choose a CLF for the system, treat it as if it were the final stage. Thirdly, a stabilizing

feedback term is chosen for the virtual control signal to make the CLF stabilizable.
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Consider the following nonlinear strict-feedback systems:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

_x1 = f1(x1) + g1(x1)x2

_x2 = f2(x1; x2) + g2(x1; x2)x3

: : :

_xi = fi(x1; x2; : : : ; xi) + gi(x1; x2; : : : ; xi)xi+1

: : :

_xn = fn(x1; x2; : : : ; xn) + gn(x1; x2; : : : ; xn)u

(5.8)

where xj 2 R, u 2 R and gj 6= 0 8x. The control objective is to let y = x1 asymptoti-

calloy track a reference signal yref(t) whose first n derivatives are assumed known and

bounded. The backstepping starts by defining the tracking errors:

zi = xi � �i�1 (5.9)

where �0 = yref , and rewrite the dynamics of the error system as:

_zi = fi(x1; : : : ; xi) + gi(x1; : : : ; xi)xi+1 � _�i�1 (5.10)

where xn+1 = u.

Then, for each subsystem, a CLF function Vi(z1; : : : ; zi) is constructed as:

_Vi(z1; : : : ; zi) = Vi�1(z1; : : : ; zi�1) +
1

2
zTi zi (5.11)

where �i is a stabilizing feedback law that satisfies (5.3) for the xi�1-subsystem. Such

intermediate control laws are called stabilizing functions or virtual control laws.

Now, the derivative of Vi with respect to time has to made non-positive when

xi+1 = �i. Thus, a possible feedback control law is obtained:

�i(x1; : : : ; xi) = g�1i (�cizi � fi + _�i�1 � gTi�1zi�1) (5.12)

with gains ci > 0.

Theorem 5.1 (Recursive backstepping design for tracking):

If Vn is radially unbounded and gi 6= 0 holds globally, then the closed-loop system

consisting of the tracking error dynamics (5.10) and the feedback control laws

(5.12) has a globally asymptotic equilibrium at (z1; : : : ; zn) = 0, and zi ! 0 as

t ! 1. Since the tracking errors go to zero, this means that global asymptotic

tracking is achieved:

lim
t!1

z1 = lim
t!1

(x1 � yref) = 0 (5.13)
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5.1.3 Adaptive backstepping

In the previous two subsections, the backstepping designs for nonlinear systems satis-

fying certain structured properties are presented. When there are unknown parameters

in the system, the former backstepping methods cannot be used. However, an adaptive

backstepping design is suitable for this kind of situation. Examples in [79] [74] present

the procedure of the adaptive backstepping design clearly. As shown in [118], this

approach can be divided into adaptive integrator backstepping and recursive adaptive

backstepping according to different forms of the nonlinear systems.

Adaptive integrator backstepping

Even though the integrator backstepping design cannot be applied to the system with

unknow parameters, its main idea can still be used. The adaptive backstepping is based

on the following assumption:

Assumption 5.2:

Consider the system

_x = f(x) + F (x)� + g(x)u (5.14)

where x 2 Rn is the state vector, � 2 Rp is a vector of unknown constant param-

eters, and u 2 R is the control input. There exist an adaptive controller

u = �(x; �̂1)

_̂�1 = T (x; �̂1)
(5.15)

where �̂1 2 Rq is the parameter estimation, and a smooth function V (x; �̂1) : Rn+q ! R

which is positive definite and radially unbounded in the variables (x; �̂1 � �) such that

for all (x; �̂1) 2 Rn+q:

@V

@x
(x; �̂1)

h
f(x) + F (x)� + g(x)�(x; �̂1)

i
+
@V

@�̂1
(x; �̂1)T (x; �̂1) � �W (x; �̂1) � 0 (5.16)

where W : Rn+q ! R is positive semidefinite.

Under this assumption, the control signal (5.15), which is applied to the system

(5.14), guarantees global boundedness of x(t), �̂1, and, by the LaSalle-Yoshizawa the-

orem [79], regulation of W (x(t); �̂1) converges to zero as t ! 1. Besides, adaptive

integrator backstepping allows us to achieve the same properties for the augmented

system.

79



Lemma 5.2 (Adaptive integrator backstepping):

Let the system (5.14) be augmented by an integrator,

_x1 = f(x1) + F (x1)� + g(x1)x2 (5.17a)

_x2 = u (5.17b)

where x2 2 R.

Consider for this system the dynamic feedback controller

u =� c(x2 � �(x1; �̂1)) +
@�

@x1
(x1; �̂1)

h
f(x1) + F (x1)�̂2 + g(x1)x2

i
+

@�

@�̂1
(x1; �̂1)T (x1; �̂1)�

@V

@x1
(x1; �̂1)g(x1); c > 0 (5.18a)

_̂�1 =T (x1; �̂1) (5.18b)

_̂�2 =� �

"
@�

@x1
(x1; �̂1)F (x1)

#T
(x2 � �(x1; �̂1)) (5.18c)

where �̂2 is a new estimate of �, � = �T > 0 is the adaptation gain matrix. Under

Assumption 5.2, this adaptive controller guarantees global boundedness of x1(t),

x2(t), �̂1, �̂2, and the regulation of W (x1(t); �̂1) and (x2(t)� �(x1(t); �̂1)) go to zero

as t!1. These properties can be established with the Lyapunov function:

Va(x1; x2; �̂1; �̂2) = V (x1; �̂1) +
1

2

h
x2 � �(x1; �̂1)

i2
+

1

2
(� � �̂2)

T��1(� � �̂2) (5.19)

The proof in detail can be found in chapter 3 of [79].

Recursive adaptive backstepping for strict-feedback systems

The same controller design procedure can be applied repeatedly to the nonlinear

systems which can be transformed through a diffeomorphism into parametric strict-

feedback form [118]:
8>>>>>>>>>>><>>>>>>>>>>>:

_x1 = x2 + f1(x1) + 'T
1 (x1)�

_x2 = x3 + f2(x1; x2) + 'T
2 (x1; x2)�

: : :

_xn�1 = xn + fn�1(x1; : : : ; xn�1) + 'T
n�1(x1; : : : ; xn�1)�

_xn = fn(x) + g(x)u+ 'T
n(x1; : : : ; xn)�

(5.20)

where g(x) 6= 0 for all x 2 Rn, f represents the known dynamics, and � 2 Rp is the

unknown constant parameter vector. For these systems, n design steps are required

80



which is equal to the relative degree of the system. At each step, an error variable zi,

a stabilizing function �i, and a parameter estimation �i are generated. Therefore, if

a system has p unknown parameters, the controller has to estimate p � n parameter

estimations.

A controller for the system (5.20) can be designed which achieves tracking of a

differentiable reference signal yref . Introduce the tracking errors:

zi = xi � �i�1(x1; : : : ; xi�1; yref ; : : : ; y
i�1
ref ; �̂1; : : : ; �̂i�1) (5.21)

with �0 = yref , z0 = 0. Then, the stabilizing functions �i are defined by:

�i =� cizi � zi�1 � fi �

0@'i �
i�1X
j=1

@�i�1

@xj
'j

1AT

�̂i

+
i�1X
j=1

24@�i�1

@xj
(xj+1 + fj+1) +

@�i�1

@�̂j
�j

0@'j �
j�1X
k=1

@�j�1

@xk
'k

1A zj
35

(5.22)

The control law for u and parameter update laws for each �i are defined by:

u = g�1(x)�n(x; yref ; : : : ; y
n
ref ; �̂1; : : : ; �̂n)

_̂�i = �i

0@'i �
i�1X
j=1

@�i�1

@xj
'j

1A zi (5.23)

where �i = �Ti > 0 is the adaptation gain matrix, ci > 0 are the controller gains. The

controller design (5.22) (5.23) guarantee global boundedness of x(t), �̂1(t), : : : , �̂n(t),

and regulation of z(t) to zero. Consider then simple quadratic Lyapunov function:

Vn(z1; : : : ; zn; �̂1; : : : ; �̂n) =
1

2

nX
i=1

h
z2i + (� � �̂i)

T��1i (� � �̂i)
i

(5.24)

to prove this. Its derivative using the adaptive backstepping control design is:

_Vn = �
nX
i=1

zTi cizi (5.25)

Thus, convergence of the parameter estimates �̂i is guaranteed, yet they do not

necessarily converge to the true value �.

5.1.4 Robust backstepping

The adaptive backstepping controller is useful for the nonlinear system with an un-

known constant. For the system with uncertain nonlinearities, the robust backstep-

ping controller becomes a suitable choice. By adding a nonlinear damping term to the

control law, the boundedness of the state vector can be guaranteed.

The robust backstepping design is based on the Assumtion 5.3:
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Assumption 5.3:

Consider the system:

_x = f(x) + g(x) + F (x)�1(x; u; t) (5.26)

where x 2 Rn, u 2 R are state vector and input vector respectively. F (x) is a

n� q matrix of known smooth nonlinear function, and �1(x; u; t) is a q� 1 vector

of uncertain nonlinearities which is uniformly bounded for all values of x, u, t.

Suppose that there exists a feedback control u = �(x) that renders x(t) globally

uniformly bounded, and that this is established via positive definite and radially

unbounded functions V (x), W (x) and a constant b, such that

@V

@x
(x) [f(x) + g(x)alpha(x) + F (x)�1(x; u; t)] � �W (x) + b (5.27)

The results of robust backstepping is presented in the following lemma.

Lemma 5.3 (Boundedness via backstepping):

Consider the augmented system:

8><>:
_x1 = f(x1) + g(x1)x2 + 'T

1 (x1)�1(x1; u; t)

_x2 = u+ 'T
2 (x1; x2)�2(x1; x2; u; t)

(5.28)

where '1(x1) and '2(x1; x2) are vectors of known, snooth nonlinear functions,

�1(x1; u; t) and �2(x1; x2; u; t) are uncertain nonlinearities vectors which are uni-

formly bounded for all values x1, x2, u and t.

For this system (5.28), the feedback control:

u = �c2(x2��1)+
@�1

@x1
(f1+g1x2)�g

T
1

@V

@x1
�

0@'T
2 �2'2 +

 
@�1

@x1
'1

!T
�2
@�1

@x1
'1

1A (x2��1)

(5.29)

guarantees global uniform boundedness of x1(t) and x2(t) with any c2 > 0, � > 0,

and �2 > 0.

Details of proof is presented in chapter 2 of [79].

Then, we consider the class of strict-feedback systems with uncertainties:8>>>>>>>><>>>>>>>>:

_x1 = f1(x1) + g1(x1)x2 + 'T
1 (x1)�1(x; u; t)

_x2 = f2(x1; x2) + g2(x1; x2)x3 + 'T
2 (x1; x2)�2(x; u; t)

: : :

_xn = fn(x1; : : : ; xn) + gn(x1; : : : ; xn)u+ 'T
n(x; u; t)

(5.30)
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where gi 6= 0, 8x 2 Rn, and 'i(x1; : : : ; xi) is a p� 1 vector of known smooth nonlinear

functions, and �(x; u; t) is a p�1 vector of uncertain nonlinearities which are uniformly

bounded for all values x, u and t.

Then, the state x(t) of system (5.30) is globally, uniformly bounded if the control

signal is chosen as:

zi =xi � �i�1

�i =g
�1
i

 
�cizi � fi +

i�1X
k=1

@�i�1

@xk
(fk + gkxk+1)� gTi�1zi�1

+
i�1X
k=1

@�i�1

@y
(k�1)
ref

y
(k)
ref � 'T

i �i'izi

�

0@i�1X
j=1

@�i�1

@xj
'j

1AT

�i

0@i�1X
j=1

@�i�1

@xj
'j

1A )

(5.31)

with �0 = yref , u = �n, xn+1 = u and ci, �i, �i are positive definite design matrices.

Using the derivative of the Lyapunov function, it can be shown that z(t) is globally

uniformly bounded, and that the tracking errors z converge to the compact set
nX
i=1

zTi cizi �
1

4

nX
i=1

�T��1i �+
1

4

nX
i=1

_�T��1i _� (5.32)

Examples of robust backstepping design can be found in [118] [74].

5.2 Backstepping controller design for the considered

HEX reactor

In chemical processes, temperature control is a principal problem. To guarantee the

safety of the whole process, as well as the productivity and efficiencies of the reaction,

the temperature of the reactor is usually kept at a proper stable temperature. In this

section, we will design a backstepping controller for the considered HEX reactor.

According to the physical structure of the HEX reactor described in Section 3,

reactants are injected into the process channel and the chemical reaction is taken place

there, while water is injected into the utility channel to heat or take away the reaction

heat. So, our control objective is to make the temperature of the process fluid Tp

follows the desired value Tpd by adjusting the flowrate of utility fluid Fu.

To start, only the heat exchange part is considered in this section, i.e. water with

different temperatures is injected into both process channel and utility channel respec-

tively. According to the energy balance equation, the mathematical model of the HEX
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reactor is given below in its entirety:8>>>>>>>>><>>>>>>>>>:

_Tp =
Fp
Vp

(Tp;in � Tp) +
hpAp

�pVpCp;p

(Tw � Tp)

_Tu =
Fu
Vu

(Tu;in � Tu) +
huAu

�uVuCp;u

(Tw � Tu)

_Tw =
hpAp

�wVwCp;w

(Tp � Tw) +
huAu

�wVwCp;w

(Tu � Tw)

(5.33)

where the state vector and the measurable output vector are xT =
h
Tp Tu Tw

i
, yT =h

Tp Tu
i
respectively. T (�C) represents the temperature, and the subscript p, u and

w represent the process fluid, utility fluid and plate wall. Tp;in and Tu;in are the

temperature of the inlet process and utility fluid. The physical date of the HEX reator

has been given in Table 4.2.

In our case, the flow rate of utility fluid Fu is set as the only input to control the

temperature of the process fluid Tp, since the inputs of reactants Fp would generally

have a fixed optimal proportion and flow rate to have high productive resultants.

5.2.1 Controller design procedure

For the system (5.33), it satisfies the form of strict-feedback systems (5.8). Therefore,

the controller design is base on the recursive backstepping for strict-feedback systems,

which has been presented in the former section, and the desired process fluid temper-

ature is represented by Tpd.

As can be seen from its mathematical model (5.33), the change in the flow rate of

utility fluid Fu will firstly result in the temperature change of utility fluid Tu, then,

the temperature of plate wall Tw will be influenced in the second step. Finally, the

temperature of process fluid Tp will change. To make the process fluid temperature

follows the desired value Tpd, we have to ‘step back’ until we get the expression of

utility fluid flow rate Fu.

Define the process fluid temperature tracking error zTp bewteen the actual value Tp
and desired temperature Tpd as:

zTp = Tpd � Tp (5.34)

The dynamic of zTp is:

_zTp = _Tpd � _Tp

= _Tpd �
Fp
Vp

(Tp;in � Tp)�
hpAp

�pVpCp;p

(Tw � Tp)
(5.35)
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And then, a CLF is defined as:

VTp =
1

2
z2Tp (5.36)

By deriving (5.36), we obtain:

_VTp = zTp _zTp = zTp( _Tpd �
Fp
Vp

(Tp;in � Tp)�
hpAp

�pVpCp;p

(Tw � Tp)) (5.37)

To make _VTp negative definite, the temperature of plate wall Tw is chosen as the first

virtual element of control to make the tracking error zTp converge to zero, its desired

value Twd is defined as:

Twd =
�pVpCp;p

hpAp

"
_Tpd + k1zTp �

Fp
Vp

(Tp;in � Tp)

#
+ Tp (5.38)

where k1 is a positive design parameter.

By setting Tw = Twd in (5.37), we get:

_VTp = �k1z
2
Tp
� 0 (5.39)

Then, the stability of the tracking error system zTp is guaranteed.

However, only one step is not enough to get the expression of the backstepping

controller Fu. In the next step, we define a tracking error zTw as:

zTw = Twd � Tw (5.40)

and its dynamic is calculated by:

_zTw = _Twd � _Tw

=
�pVpCp;p

hpAp

( �Tpd + k1 _zTp +
Fp
Vp

_Tp) + _Tp �
hpAp

�wVwCp;w

(Tp � Tw)�
huAu

�wVwCp;w

(Tu � Tw)

(5.41)

In order to guarantee the stability of tracking error system zTw , we define a CLF:

VTw =
1

2
z2Tp +

1

2
z2Tw

= VTp +
1

2
z2Tw

(5.42)

The dynamic of (5.42) is:
_VTw = _VTp + zTw _zTw (5.43)

To make _VTw negative definite, the temperature of utility fluid Tu is chosen as the

second element of virtual control to stabilizing zTw , its desired value Tud is defined as:

Tud =
�wVwCp;w

huAu

"
hpAp

�pVpCp;p

zTp +
�pVpCp;p

hpAp

( �Tpd + k1 _zTp +
Fp
Vp

_Tp) + _Tp

�
hpAp

�wVwCp;w

(Tp � Tw) + k2zTw

#
+ Tw

(5.44)
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where k2 is a positive design parameter.

By setting Tu = Tud and substituting (5.41) in (5.43), we obtain that:

_VTw = �k1z
2
Tp
� k2z

2
Tw
� 0 (5.45)

i.e. the tracking error system zTw is stable.

To get the final expression of controller Fu, just like what we did in the former

steps, a tracking error zTu is defined in the third step:

zTu = Tud � Tu (5.46)

and its dynamic is easily obtained:

_zTu = _Tud � _Tu (5.47)

Our goal is to make the tracking error system zTu also converge to zero. So, a third

CLF is defined:
VTu =

1

2
z2Tp +

1

2
z2Tw +

1

2
z2Tu

=VTw +
1

2
z2Tu

(5.48)

and its derivative is calculated:

_VTu = _VTw + zTu _zTu (5.49)

In order to make _VTu negative definite, we can finally obtain the expression of the

real control law Fu:

Fu =
Vu

Tu;in � Tu

(
huAu

�wVwCp;w

(Twd � Tw) +
�wVwCp;w

huAu

"
hpAp

�pVpCp;p

( _Tpd � _Tp) +
�pVpCp;p

hpAp

(
...
T pd

+k1( �Tpd � �Tp) +
Fp
Vp

�Tp

!
+ �Tp �

hpAp

�wVwCp;w

( _Tp � _Tw) + k2( _Twd � _Tw)

#
+

hpAp

�wVwCp;w

(Tp � Tw)

+
huAu

�wVwCp;w

(Tu � Tw)�
huAu

�uVuCp;u

(Tw � Tu) + k3(Tud � Tu)

)
(5.50)

where k3 is a positive design parameter.

Substituting (5.47) and (5.50) to (5.49), the dynamic of the CLF (5.48) _VTu becomes:

_VTu = �k1z
2
Tp
� k2z

2
Tw
� k3z

2
Tu
� 0 (5.51)

this implies that the tracking error system zTu is stable.

After the ‘step back’ deduction, the control law Fu for this HEX reactor in nominal

case is obtained in (5.50). And the closed-loop tracking system is globally asymptoti-

cally stable since each tracking subsystem is stable during the design procedure.
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5.2.2 Simulation result

In this section, the obtained control signal (5.50) is applied to the reactor system (5.33)

to verify the tracking performance of process fluid temperature. In this part, only the

heat exchange procedure is considered. The initial values are chosen the same as the

experimental data presented in Table 3 of [112]. The flow rate of process fluid Fp is set

at 10 kg ·h�1 with a temperature of 77 �C . The initial flow rate of the utility fluid Fu is

set as 62:2 kg ·h�1 with a temperature of 15:6 �C. Due to the physical limitation of the

pump, the flow rate of both fluids has a range from 0 to 150 kg ·h�1. In this case, the

utility fluid is used to cool down the process fluid temperature. In the beginning, water

is injected into the utility channel first to make the plate wall has the same temperature

as the utility fluid. Then, the process fluid is injected. The desired temperature Tpd is

fixed at 27 �C, and then changed to 25 �C at t = 400s. As presented in (5.50), the third

derivative, the second derivative, and the first derivative of the desired temperature

Tpd are used to calculate the control signal. To get a smoothing input signal, a filter is

applied to the reference signal. Therefore, start from t = 400s, the desired temperature

Tpd changes smoothly until it reaches the new desired value 25 �C. The dynamics of

process fluid temperature Tp and utility fluid flow rate Fu are presented in Figure 5.1.

Figure 5.1: Without chemical reaction case: measured process fluid temperature Tp

and utility fluid flow rate Fu

In Figure 5.1, the desired temperature Tpd is represented by the black dot line, while

the measured process fluid temperature is presented by the red line. With the help of

control signal (5.50), the temperature of process fluid Tp can well follow the desired

value Tpd. At t = 400s, the desired temperature decreases to 25 �C, in order to cool
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down the process fluid, the flow rate of utility fluid increases, since the utility fluid has

a lower temperature of 15 �C. For the considered HEX reactor, there is a quite huge

thermal inertia due to the existence of plate wall. To track the desired temperature as

fast as possible, the flow rate of utility fluid is quickly set either the minimum value

0 kg ·h�1 or the maximum value 150 kg ·h�1 until the process fluid Tp converges to

the desired value. Simulation result shows that the control law obtained in the former

section works. The desired temperature is well tracked by the output temperature.

5.3 Summary

In this chapter, a control law based on the backstepping technique has been proposed

for the considered HEX reactor. In the first section, four kinds of backstepping de-

sign methods have been introduced, integrator backstepping, backstepping for strict-

feedback systems, adaptive backstepping, and robust backstepping. Then, the back-

stepping design procedure was presented for the HEX reactor. Besides, simulation has

been done to validate the control effect of the obtained control law. The control objec-

tive is to make the temperature of the process fluid follow the desired value. Finally,

the simulation result proved that the obtained backstepping control law can make the

temperature of the process fluid well track the desired temperature.
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Chapter 6

Backstpping fault tolerant control for

the Heat-exchanger/Reactor based on

different observers

Based on the backstepping controller obtained in the Chapter 5 and the presented

observer based FDD scheme in Chapter 4, a backstepping fault tolerant control system

is designed for the considered HEX reactor in this chapter. The fault is firstly detected

and diagnosed by the observer based FDD scheme. Then, the backstepping controller is

redesigned according to the estimated fault information. In this chapter, both dynamic

fault and sensor fault are considered. The proposed FTC strategies are applied to the

HEX reactor, and the simulation results are presented to prove their effectiveness.

Besides, the performances of each FTC strategy are compared.
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6.1 Backstepping fault tolerant control based on ob-

servers

As introduced in Chapter 2, FTC can be divided into passive FTC and active FTC

according to the construction of control law. The passive approach depends on a fixed

controller which is insensitive to some known faults, while the active approach is based

on the redesigning of the controller according to the real-time faulty information from

a FDD scheme.

In Chapter 4, two FDD schemes based on the adaptive observer and interval observer

have been presented. By combing the FDD scheme and the proposed backstepping

controller in Chapter 5, two active FTC strategies based on the adaptive observer and

interval observer are obtained. The main idea of the proposed active FTC strategies is

controller reconfiguration. The fault is firstly detected and diagnosed by the observer

based FDD scheme. Then, the control law is reconstructed according to the details

of the fault. With the help of FTC strategy, the performance of the system can be

guaranteed even in the presence of a fault.

6.1.1 Dynamic FTC design

Normally, the control law is constructed with the nominal value of parameter vector �0.

When the fault occurs in the plant, the jth parameter will change to an unexpected

value �f = �0 + fp. But, the controller design is still based on the nominal value of the

parameter. So, we have to compensate the influence of the unexpected change fp.

Here, we use a short expression (6.1) to represent the nominal backstepping control

law (5.50) obtained in Chapter 5.

Fu = '(Tpd; y; �
0; k) (6.1)

where ' is the nonlinear function expressed in (5.50), �0 represents the nominal value

of the parameter vector, and k = [k1; k2; k3] is the controller gain matrix. Assume that

the fault occurs in the jth parameter, after the fault detection and isolation, the faulty

value can be estimated f̂pj, then, a new control law is redesigned by using the estimated

faulty value:

Fu = '(Tpd; y; �
0
l ; �

0
j + f̂pj; k); l = 1; : : : ; j � 1; j + 1; : : : ;m (6.2)

where the faulty parameter is compensated.
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6.1.2 Sensor FTC design

Generally, the measurements of the system are used for the control law design in closed-

loop. So, a sensor fault will cause the performance degradation of the entire system.

That is the reason why we also need to find out the sensor fault and redesign the

controller as the dynamic fault case.

For the obtained backstepping control law (6.1), y represents the measurements of

the system. If the fault occurs in jth sensor, then the control law becomes:

Fu = '(Tpd; yl; y
f
j ; �

0; k); l = 1; : : : ; j � 1; j + 1; : : : ; q (6.3)

where yfj = yj + fsj, yj represents the output of jth sensor when it is healthy, yfj
represents the output of jth sensor when it is faulty.

To eliminate the effect of sensor fault, the estimated faulty value f̂sj offered by the

FDD scheme is used to redesign the control signal:

Fu = '(Tpd; yl; y
f
j � f̂sj; �

0
j ; k); l = 1; : : : ; j � 1; j + 1; : : : ; q (6.4)

where ' is the nonlinear function expressed in (5.50).

6.2 Application to the HEX reactor

In this part, the FTC strategies based on different observers are applied to the HEX

reactor (4.20). The objective is the same as that we proposed in the backstepping

controller design part: guarantee the temperature of the process fluid Tp stay at the

desired value Tpd, even though with the interruption of an unexpected fault.

6.2.1 Backstepping fault tolerant control based on adaptive ob-

servers

Method presentation

In the first step, the adaptive observer based FDD scheme presented in Chapter 4.4 is

used to detect and isolate the fault. A bank of observers are constructed, where each

one gives an estimation of the possible faulty parameter/sensor. Residuals (4.16) are

calculated to detect the state change.

However, in the closed-loop system, these residuals are easily affected by the change

of the input signal, which makes it difficult to identify the reason for the residual change,

the change is caused by the occurrence of a fault or by the variance of the input signal.
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Even though the input signal change may also be caused by the actuator fault, in our

case, only dynamic fault and sensor fault are considered. So, we suppose that all the

actuators are in nominal condition, and the input change comes from the adjustment

of the control signal.

To identify the reason of residual variance, auxiliary residuals calculated by (6.5)

are used in the fault isolation procedure:

Dri =
dkŷ(i) � yk

dt
; i 2 1; : : : ;m: (6.5)

Then, we name the residual ri calculated by (4.16) as original residual. When the

original residuals ri leave zero, it indicates the detection of the state change. In order

to make sure the reason for this state change (the occurrence of a fault or the input

change), we must analyze the stable values of each residual ri. Then, the auxiliary

residuals Dri are used to check the stability of the original residuals. When one of the

residual is stable (i.e. the corresponding Dri go back under the threshold), the final

value of the original residual is verified. The procedure is not finished until all the

original residuals are stable and their values are checked. If all the original residuals

lie under the threshold, we can judge that the state variation is caused by the change

of input signal. However, if only one original residual goes under the threshold while

the rest stay at a nonzero value, we can know that a fault occurs. Besides, the residual

that returns to zero corresponds to the faulty parameter.

Once the fault is isolated and identified, the control law is redesigned as (6.2) or

(6.4).

Simulation results: fault free case

To validate the effectiveness of the proposed FTC scheme, numerical simulations were

performed using the MATLAB. In these simulations, dynamic faults and sensor faults

are considered. The objective is to make the measured process fluid temperature Tp
follows the desired value Tpd in presence of different kinds of fault. For simplicity, only

the heat exchange part is considered. The mathematical model of the HEX reactor is

presented in (4.20).

The initial values of the HEX reactor is settled the same as in Chapter 4.4. The

process fluid is injected into the process channel with a constant flow rate Fp = 10

L ·h�1 and a constant temperature Tp;in = 77 �C, while the utility fluid is injected into

the utility channel with a initial flow rate Fu(0) = 62:2 L ·h�1 and a fixed tempera-

ture Tu;in = 15:6 �C. The flow rates of the both fluids have a range from 0 to 150
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L ·h�1 because of the physical limitation of the pumps. The initial temperatures of

process channel, utility channel and plate wall are x(0) =
h
Tp(0) Tu(0) Tw(0)

iT
=h

77 15:6 15:6
iT
. The desired temperature Tpd is firstly settled at 27 �C and then

resettled at 25 �C at 400s.

Figure 6.1 shows the measured temperature of process fluid Tp and the variable

control input utility fluid flow rate Fu in fault free case. The temperature of process

fluid Tp in red can follow the desired temperature Tpd in the black dot line, even the

desired value changes at 400s.

Figure 6.1: Measured process fluid temperature Tp and utility fluid flow rate Fu in fault

free case

Simulation results: dynamic fault case

The considered fault is the same as that in Section 4.4, the heat transfer coefficient

between the process fluid and plate wall hp, and the inlet temperature of process fluid

Tp;in. Their nominal values are � =
h
7:5975� 103 77

iT
.

The first fault fp1 is introduced in the decrease of heat transfer coefficient hp at

200s i.e. hfp = hp + fp1, where fp1 = �15%h0p.

Figure 6.2 and Figure 6.3 represent the faulty reactor without FTC and with FTC,

respectively. When the fault occurs at 200s, the measured temperature of the process

fluid Tp is affected, as well as the control signal Fu. As shown in Figure 6.2, the control

single varies due to the influence of the fault, however, it still can not make the process

fluid temperature Tp follow the expected value in presence of the fault.
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Figure 6.2: hp is faulty at 200s, without FTC case

Figure 6.3: hp is faulty at 200s, with FTC case

On the contrary, when the proposed FTC strategy is applied, the bad tracking

performance disappears, as presented in Figure 6.3. Once the fault is isolated, the

control signal is reconstructed by using the estimated fault value. Thus, the output

temperature of process fluid Tp can track the expected value Tpd under the faulty

situation. And it still well follows the desired temperature even if this reference value

changes at t = 400s.

The residuals used for fault detection and isolation are presented in Figure 6.4.

Figure 6.5 and Figure 6.6 show the zoom in of the residuals. At about t = 72s,

the original residuals ri change, when the auxiliary residuals go under the threshold
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Figure 6.4: Original residual ri and auxiliary residual Dri when hp is faulty at 200s

Figure 6.5: Zoom in 60s to 100s: original residual ri and auxiliary residual Dri when

hp is faulty at 200s

Figure 6.6: Zoom in 170s to 280s: original residual ri and auxiliary residual Dri when

hp is faulty at 200s

ThDr = �2�10�6, we check the values of the original residual ri, and they all go under

the threshold Thr = �1� 10�4. Thus, this change is caused by a change of the control
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signal and there is no fault at this time. At 200s, the residuals ri change again. After

218:3s, the auxiliary residuals all go under the threshold, which means the value of

the original residuals is stable. Then, we find that the first original residual r1, which

corresponds to the first observer lies under the threshold, while the other residual r2
stays at a nonzero constant. As discussed in the former part, this indicates that the

fault occurs at the first parameter hp. And the time used for fault isolation is 18:3s.

And then, the residuals change at 400s and 470s, but the isolation result is always the

same. The estimated faulty value f̂p1 is also presented in Figure 6.7, and it matches

with the given value fp1.

Figure 6.7: Estimated fault value f̂p1 when hp is faulty at 200s

In the second case, fault fp2 = �5 �C is added to the inlet temperature of process

fluid Tp;in at tf = 200s. Then, Tp;in drops to the faulty case T f
p;in = Tp;in+ fp2 = 73 �C.

Simulation results are shown in Figure 6.8 and Figure 6.9.

Figure 6.8: Tp;in is faulty at 200s, without FTC case
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Figure 6.9: Tp;in is faulty at 200s, with FTC case

Apparently, the measured process fluid temperature Tp can not track the expected

Tpd in the presence of the fault, as presented in Figure 6.8. The decrease of Tp;in causes

a decrease in the temperature of process fluid directly, which makes it can not follow

the desired temperature anymore. Actually, the control tries to compensate for this

fault by adjusting the utility fluid flow rate, but it is not enough to eliminate the effect

of the fault.

The performance of the proposed FTC strategy is presented in Figure 6.9. When the

fault is isolated, the control signal is redesigned to adapt the existed faulty parameter

and make the measured Tp always follow the expected value, even if the reference signal

changes at 400s.

Figure 6.10: Original residual ri and auxiliary residual Dri when Tp;in is faulty at 200s

Figure 6.10 shows the residuals used for fault detection and isolation. The adjust-

ment of Fu appears in the change of residuals, as well as the disturbing of the estimated
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faulty value f̂p2 at about t = 72s, as shown in Figure 6.11. The similar phenomenon

happens at about t = 219s and t = 400s. But, the fault is detected at about 200s,

because only at this time, the original residuals ri vary to different values at the first

time, r2 equals zero while the residual r1 stay at a nonzero constant. Thus, the fault is

isolated at Tp;in, and the fault value is estimated by the corresponding second adaptive

observer.

Figure 6.11: Estimated fault value f̂p2 when Tp;in is faulty at 200s

With the proposed FTC scheme, simulation results show that the reference signal

is well tracked even in the presence of a dynamic fault.

Simulation results: sensor fault case

Figure 6.12: Sensor of Tp is faulty at 200s, without FTC case

First, we consider a temperature sensor fault fs1 = 3 �C occurring at the process

fluid temperature sensor s1 at tf = 200s. So the output of the faulty sensor is yf1 =
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y1 + fs1. Simulation results are presented in Figure 6.12 and Figure 6.13. The real

output of the system Tp;sys is presented in blue dot line, and the measured value (the

output of the sensor) Tp;mea is represented by the red line. The black dot line represents

the desired process fluid temperature Tpd.

Figure 6.13: Sensor of Tp is faulty at 200s, with FTC case

We should pay attention that our objective is to make the real output process fluid

temperature follow the desired value even in the case of a fault. As shown in Figure

6.12, not only the measured temperature (the output of sensor) is affected by the sensor

fault, but also the real output value (the blue dot line) due to the closed-loop system.

Under this situation, the tracking task can not be accomplished. However, in Figure

6.13, the real output Tp has a good tracking performance with the help of the proposed

FTC strategy. At 400s, the reference signal is also changed like in the nominal case, but

it still has a good tracking performance even though the sensor fault still exists. Since

the sensor can not compensate the fault, the measured value (the output of sensor)

Tp;mea still has an offset with respect to the output of the system Tp;sys.

The dynamic of utility fluid temperature Tu;sys and Tu;mea under different situations,

with and without FTC strategy, are presented in Figure 6.14. When the fault occurs

in the first sensor, the temperature of utility fluid is also influenced. Since the fault is

not located in the second sensor, the measured utility fluid temperature (the output

of sensor) Tu;mea is equal to the real output of system Tu;sys. However, without the

application of FTC strategy, the utility fluid temperature cannot in line with that in

fault free cases.

The residuals are shown in Figure 6.15. The fault is easily detected and isolated
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Figure 6.14: Utility fluid temperature when sensor of Tp is faulty at 200s

Figure 6.15: Original residual ri and auxiliary residual Dri when sensor of Tp is faulty

at 200s

Figure 6.16: Estimated fault value f̂s1 when sensor of Tp is faulty at 200s

by using the presented fault diagnosis scheme. r1 equals to zeros while r2 is a nonzero

constant when all the auxiliary residuals go under the threshold at 219:2s. That is to
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say, the fault occurs at the first sensor. The estimated faulty value f̂s1 is also shown

in Figure 6.16, and the estimated fault equals the faulty value we applied. Then, this

sensor fault is compensated during the redesign procedure of the control law Fu. At

400s, the residuals vary slightly because of the control single adjustment to follow the

new reference signal.

Finally, a fault fs2 = 7 �C is applied to the utility fluid temperature sensor s2 at

tf = 200s. Then, the faulty temperature measurement is yf2 = y2 + fs2.

Figure 6.17: Sensor of Tu is faulty at 200s, without FTC case

Figure 6.18: Sensor of Tu is faulty at 200s, with FTC case

Figure 6.17 shows the process fluid temperature Tp and the control signal Fu without

the intervention of FTC, and Figure 6.18 shows the tracking performance with the
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proposed FTC scheme. The output of the sensor is shown in the red line, and the

output of the system is shown as a blue dot line. Even though the fault is applied

on the sensor of utility fluid temperature Tu, the temperature of process fluid Tp is

also affected. But their measured value Tp;mea and the real system output Tp;sys are

the same. Then, adaptive observers are constructed to isolate the fault. Residuals are

presented in Figure 6.19.

Figure 6.19: Original residual ri and auxiliary residual Dri when sensor of Tu is faulty

at 200s

Since the second residual r2 returns to zero at about 207s, and the first residual

remains nonzero, then the fault is isolated in the second sensor. Then, the control

law is reconstructed to follow the reference signal. The estimated faulty value used for

control compensation is presented in Figure 6.20, and it converges to the faulty value

fs2 after a transition time. As shown in Figure 6.18 the process fluid can follow the

reference signal once the controller is redesigned. And the tracking task is well finished

when the desired temperature is changed at 400s in presence of the sensor fault.

Figure 6.20: Estimated fault value f̂s2 when sensor of Tu is faulty at 200s

To show the second sensor fault clearly, the utility fluid temperature is presented
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in Figure 6.21 under different cases, with FTC, and without FTC. The nominal utility

fluid temperature is presented in the black dot line. When there is a fault, the output

of the system (blue dot line) and the output of the sensor (red line) are both changed.

But the system output goes back to the nominal value because the FTC strategy works.

However, without the intervention of FTC, the output of the system stays at a faulty

value.

Figure 6.21: Utility fluid temperature when sensor of Tu is faulty at 200s

6.2.2 Backstepping fault tolerant control based on interval ob-

servers

Method presentation

In this part, the interval observer based FDD scheme presented in Section 4.5 is used to

detect and isolate the fault. The practical domain of the value of each system parameter

is divided into a certain number of intervals. After verifying all the intervals whether or

not one of them contains the faulty parameter value of the system, the faulty parameter

value is found, the fault is therefore isolated and identified.

To detect and isolate the fault, we will use the same manners to analyse the residual

as presented in the adaptive observer based FTC case, that is to say, the combination of

original residual (4.16) and auxiliary residual (6.5). But, we only need to pay attention

to one special observer. In general, when we divide the practical domain of each

parameter into intervals, the nominal value of the parameter is chosen to be one of

the interval bounds. For simplicity, we defined the observer who uses the nominal
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parameter value as the standard observer. By analysing the residual of the standard

observer, we can detect the occurrence of the fault and prevent the fake alarm caused

by input change. Firstly, the residual change indicates the state variation. And then,

when the residual is stable i.e. the auxiliary residual goes under the threshold ThDr,

if the original residual lies under the threshold Thr, this change is caused by the input

change, otherwise, this change is caused by a fault. Besides, to make sure the fault

is isolated correctly, we will use the stable value of estimation error to calculate the

isolation index, i.e. once the auxiliary residual goes under the threshold, if we make

sure the occurrence of a fault, then the isolation index (4.33) (4.38) is calculated.

To clearly present the isolation results, we define a fault signature for each interval.

That is to say, if the fault is located in this interval, then, the fault signature sends 1.

Otherwise, the fault signature sends 0. Then, after the isolation and identification of

fault, the control law is redesigned as (6.2) or (6.4).

The temperature of process fluid Tp and the dynamic flow rate of utility fluid Fu in

fault free case have been presented in Figure 6.1.

Simulation results: dynamic fault case

The dynamic fault vector considered is
h
hp Tp;in

iT
, and their nominal values areh

h0p T 0
p;in

iT
=
h
7:5975� 103 77

iT
. Both parameters are divided into five intervals,

the bounds of each interval are given in Table 4.3 and Table 4.4. The interval diving

of hp is different percentages of its nominal value h0p.

Figure 6.22: Original residual r1 and auxiliary residual Dr1 correspond to bound 1 of

hp when dynamic hp is faulty at 200s

First of all, the fault is introduced in the first parameter hp at 200s, it decreases to

85% of its nominal value. Figure 6.22 shows the performances of the original residual
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and auxiliary residual corresponding to the standard observer, the first observer which

uses the nominal value h0p. Figure 6.23 and Figure 6.24 show the zoom in of the residual

performances.

Figure 6.23: Zoom in 60s to 100s: original residual r1 and auxiliary residual Dr1
correspond to bound 1 of hp when dynamic hp is faulty at 200s

Figure 6.24: Zoom in 170s to 280s: original residual r1 and auxiliary residual Dr1
correspond to bound 1 of hp when dynamic hp is faulty at 200s

At about 72s, the residual r1 is nolonger zero, which indicates that there is a state

change in the system. When the auxiliary residual Dr1 goes under the threshold

ThDr = �2 � 10�6, we consider the residual r1 is stable and check its value. We can

find out that r1 goes under the threshold Thr = �1�10�4. That is to say, That means

this residual change is caused by the input change, not the fault. But, performances are

different after 200s. The original residual r1 stay at a nonzero value when the auxiliary

residual Dr1 goes under the threshold at t = 207:5s. This indicates that there is a fault

in our system.
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Figure 6.25: Output errors ey;Tp correspond to intervals of hp when dynamic hp is faulty

at 200s

Figure 6.26: Output errors ey;Tu correspond to intervals of hp when dynamic hp is faulty

at 200s

Figure 6.27: Output errors ey;Tp correspond to intervals of Tp;in when dynamic hp is

faulty at 200s

Figure 6.25 and Figure 6.26 present the output errors of process fluid temperature
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and utility fluid temperatures between different interval observers and real system.

After analyzing the performance of output errors of process fluid temperature and

utility fluid temperatures, the fault is located in the second interval of hp change

immediately.

Figure 6.28: Output errors ey;Tu correspond to intervals of Tp;in when dynamic hp is

faulty at 200s

The output errors between the interval observers corresponding to Tp;in change and

real system are shown in Figure 6.27 and Figure 6.28. For both output error of process

fluid temperature ey;Tp and output error of utility fluid temperature ey;Tu, they all stay

on the same side of zero, either the negative side or the positive side. That is to say,

the fault is not located in the intervals of Tp;in.

Figure 6.29: Fault signature correspond to intervals of hp when dynamic hp is faulty

at 200s
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Figure 6.29 presents the fault signature of different interval of hp. It is obvious that,

the fault signature of the second interval is equal to one after 200s, while others stay

at zero. That is to say, the fault is located in the second interval of hp.

Figure 6.30: Fault signature correspond to intervals of Tp;in when dynamic hp is faulty

at 200s

Fault signatures corresponding to parameter Tp;in is shown in Figure 6.30. All the

fault signatures stay at zero, and that indicates the fault is not contained in any interval

of Tp;in.

Figure 6.31: hp is faulty at 200s, with FTC case

Therefore, the fault is isolated in the second interval of parameter hp, and the identi-

fied fault information is used for controller reconstruction. The tracking performances
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Figure 6.32: hp is faulty at 200s, without FTC case

of process fluid temperature, as well as the dynamic of utility fluid flow rate under

different situations, are presented in Figure 6.31 and Figure 6.32. At 200s, the process

fluid temperature varies due to the effect of fault. The flow rate of utility is adjusted

automatically, but it can not compensate for the influence of fault. Once the fault is

isolated and the controller is re-designed, the temperature of process fluid can refollow

the desired temperature Tpd. Even though the reference signal changes at 400s, the

HEX reactor still presents a good tracking performance. On contrast, the temperature

of process fluid Tp cannot follow the expected value without the FTC strategy. The

fault in hp leads to a tracking offset, and this offset always exists since the fault is

considered a permanent fault.

Figure 6.33: Original residual r3 and auxiliary residual Dr3 correspond to bound 3 of

Tp;in when dynamic Tp;in is faulty at 200s

In the second case, the fault is introduced at the second parameter Tp;in, the inlet
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temperature of process fluid decrease to 72 �C from its nominal value T 0
p;in = 77 �C

at 200s. In this case, our standard observer that uses the nominal value of T 0
p;in is the

third one, it is the bound of the second interval and the third interval. Figure 6.33

shows the performances of the original residual and auxiliary residual corresponding to

the standard observer.

At about 72s, the original residual r3 has a variation, that indicates a state change

in the system. After verifying its stable value, this state change is caused by the input

signal change. However, after 200s, it is no longer zero anymore, and its stable value

indicates the occurrence of the fault.

Figure 6.34: Output errors ey;Tp correspond to intervals of hp when dynamic Tp;in is

faulty at 200s

Figure 6.35: Output errors ey;Tu correspond to intervals of hp when dynamic Tp;in is

faulty at 200s

Figure 6.34 and Figure 6.35 present the output error ey;Tp and ey;Tu corresponding

to the intervals of hp. According to the isolation principle, the fault is not located in

the interval of hp.
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Figure 6.36: Output errors ey;Tp correspond to intervals of Tp;in when dynamic Tp;in is

faulty at 200s

Figure 6.37: Output errors ey;Tu correspond to intervals of Tp;in when dynamic Tp;in is

faulty at 200s

Then, we check the performances of the observer whose parameter is changed at

Tp;in. The output errors of process fluid temperature ey;Tp between Tp;in interval ob-

servers and real system are presented in Figure 6.36 and Figure 6.37. We can find

that the output errors, which correspond to the fifth bound and the sixth bound of

interval Tp;in, stay in different sides of zero. Therefore, we can conclude that the faulty

parameter is contained in the fifth interval [71; 73] of Tp;in parameters.

Fault signatures of hp intervals and Tp;in intervals are presented in Figure 6.38 and

Figure 6.39. Obviously, the fault is contained in the fifth interval of Tp;in variation.

The bounds of this interval are [71; 73].

To tolerate the fault in Tp;in, the control signal is reconstructed. Different tracking

performances of the process fluid temperature are presented in Figure 6.40 and Figure

6.41.

With the help of the FTC strategy, the dynamic of the process fluid temperature
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Figure 6.38: Fault signature correspond to intervals of hp when dynamic Tp;in is faulty

at 200s

Figure 6.39: Fault signature correspond to intervals of Tp;in when dynamic Tp;in is faulty

at 200s

Tp and the input signal change Fu are presented in Figure 6.40. After 200s, the output

temperature Tp cannot follow the desired value anymore, because the inlet tempera-

ture of process fluid Tp;in is affected by a fault. Even though the control signal tries

to eliminate the difference between the reference signal and the real output, but it

failed without the intervention of controller reconstruction, as shown in Figure 6.41.

However, Figure 6.40 shows the importance of the proposed FTC strategy. The de-

sired temperature is well followed by the output temperature Tp once the controller is
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Figure 6.40: Tp;in is faulty at 200s, with FTC case

Figure 6.41: Tp;in is faulty at 200s, without FTC case

reconstructed.

Therefore, we can conclude that the proposed FTC strategy based on interval ob-

servers can well detect, diagnose, and tolerant the dynamic fault, it can guarantee the

tracking performance after the occurrence of the fault.

Simulation results: sensor fault case

In this part, two sensor faults are considered, the sensor of process fluid temperature

Tp, and the sensor of utility fluid temperature Tu. The faulty values are fs1 = 3 �C,

fs2 = 7 �C. The possible variation of each sensor is divided into four intervals with five
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bounds. They are presented in Table 4.5 and Table 4.6.

At the beginning, we will consider the fault fs1 = 3 �C in the first sensor, the process

fluid temperature sensor s1. To identify the reason for state change, the standard

observer is chosen as the first observer whose variation of �Tp equals to zero. Figure

6.42 shows the residual of the standard observer.

Figure 6.42: Original residual r1 and auxiliary residual Dr1 correspond to bound 1 of

�Tp when sensor Tp is faulty at 200s

At about 72s, there is a change in the original residual r1. When the auxiliary

residual Dr1 goes under the threshold ThDr
= �2 � 10�6, we consider the residual

r1 is stable and check its value. Result show that it goes under the threshold Thr =

�1� 10�4. That is to say, the change is caused by the input signal change. After 200s,

the residual is no longer zero anymore. So, we can know that there is a fault. Then,

the real outputs of each observer are added by the different variations in Table 4.5 and

Table 4.6.

Figure 6.43: Output errors ey;mea;Tp correspond to variation intervals of�Tp when sensor

Tp is faulty at 200s
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Figure 6.44: Output errors ey;mea;Tu correspond to variation intervals of �Tp when

sensor Tp is faulty at 200s

Figure 6.43 and Figure 6.44 shows the performances of measured output error be-

tween the measurements of observers with �Tp variations and the measurements of

the system (the output of sensor). We can find that the zero is sandwiched by the

second measured output error e2y;mea and the third measured output error e3y;mea. That

indicates the faulty value is located in the second interval [2; 4] of variation �Tp.

Figure 6.45: Output errors ey;mea;Tp correspond to variation intervals of �Tu when

sensor Tp is faulty at 200s

In the other hand, for the observer has the parameter change in the second sensor

�Tu, their measurement errors are presented in Figure 6.45 and Figure 6.46. Unfortu-

nately, the fault is not contained in these interval, because all the ey;mea;Tp or all the

ey;mea;Tu locate in the same side of zero.

Fault signatures corresponding to different variation intervals �Tp are also presented

in Figure 6.47 and 6.48. After 200s, the second interval [2; 4] of �Tp gives one, while

others stay at zero. That is to say, the faulty value is isolated in the second interval.
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Figure 6.46: Output errors ey;mea;Tu correspond to variation intervals of �Tu when

sensor Tp is faulty at 200s

Figure 6.47: Fault signature correspond to variation intervals of �Tp when sensor Tp is

faulty at 200s

Figure 6.49 and Figure 6.50 shows the tracking performances of process fluid tem-

perature Tp and the dynamic of utility fluid flow rate Fu under two different situation,

with FTC strategy, and without FTC strategy. As shown in both figures, the process

fluid temperature varies due to the influence of sensor fault at 200s. Not only the out-

put of the sensor (the measurement of the system) but also the output of the system is

affected by the sensor fault. And then, the control signal Fu is adjusted automatically

to eliminate the tracking error. However, in Figure 6.50, the effect of fault cannot be

compensated easily. The offset between the output of system Tp;sys and the desired

value Tp;d always exist without the help of FTC. The good news is that the output of

system Tp;sys can re-track the desired temperature after a few seconds with the help of
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Figure 6.48: Fault signature correspond to variation intervals of �Tu when sensor Tp is

faulty at 200s

the FTC strategy, as shown in Figure 6.49.

Figure 6.49: Sensor of Tp is faulty at 200s, with FTC case

We should pay attention to that, our control objective is to make the output of the

system follows the desired temperature. If the fault occurs in one of the sensors, there

is always an offset between the output of the sensor and the output of the system,

unless the faulty sensor is replaced. And the value of offset is the value of fault.

Figure 6.51 gives the performances of utility fluid temperature under the two sit-

uations. The black dot line represents the output of sensor Tu under fault free case.

In this case, since the fault does not occur in the utility fluid temperature sensor, the
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Figure 6.50: Sensor of Tp is faulty at 200s, without FTC case

output of the sensor is equal to the output of the system in both cases. When the fault

is introduced in the first sensor at 200s, the utility fluid temperature is also affected,

both output of sensor Tu;mea and output of system Tu;sys are not equal to the value

under fault free case. Fortunately, this difference is eliminated with the help of the

proposed FTC method. In the contrast, this difference always exists without the use

of FTC.

Figure 6.51: Utility fluid temperature when sensor of Tp is faulty at 200s

In the second case, the sensor fault fs2 = 7 �C is introduced in the utility fluid

temperature sensor s2 at 200s. Then, the faulty output of sensor (the measurement of

the system) is yf2 = y2 + fs2.
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Figure 6.52: Original residual r1 and auxiliary residual Dr1 correspond to bound 1 of

�Tu when sensor Tu is faulty at 200s

Figure 6.53: Output errors ey;mea;Tp correspond to variation intervals of�Tp when sensor

Tu is faulty at 200s

Figure 6.54: Output errors ey;mea;Tu correspond to variation intervals of �Tp when

sensor Tu is faulty at 200s

To detect the fault correctly, the first observer is named as the standard observer
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sine its variation is zero, which means it uses the same parameter value as the real

system before the fault is introduced. The performance of the residuals is presented in

Figure 6.52. The standard observer can help us find out the reason for state change, it

is caused by input change or caused by a fault. At 200s, the state change is caused by

a fault.

Figure 6.55: Output errors ey;mea;Tp correspond to variation intervals of �Tu when

sensor Tu is faulty at 200s

Figure 6.56: Output errors ey;mea;Tu correspond to variation intervals of �Tu when

sensor Tu is faulty at 200s

The measured output errors ey;mea between the variation �Tp interval observers and

the measurement of the system are presented in Figure 6.53 and Figure 6.54. We also

check the performance of the observers whose measured output change at �Tu. Their

measured output errors ey;mea are presented in Figure 6.55 and Figure 6.56. we can

easily find that the fault is contained in the fourth interval of �Tu variation.

Fault signature of each interval is shown in Figure 6.57 and 6.58. The fourth fault

signature of �Tu sends one after 200s to indicate the faulty value is contained. Other
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fault signatures keep zero because the faulty value is not contained in these intervals.

Figure 6.57: Fault signature correspond to variation intervals of �Tp when sensor Tu is

faulty at 200s

Figure 6.58: Fault signature correspond to variation intervals of �Tu when sensor Tu is

faulty at 200s

Figure 6.59 and Figure 6.60 present the tracking performance of process fluid tem-

perature Tp and the variation of input signal Fu are presented under different situations,

with and without FTC strategy. Before 200s, the process fluid temperature can well

follow the desired value Tpd. Because the fault occurs in the second sensor, the output

of the first sensor Tp;mea always equals the real output of the system Tp;sys. However,

the output of process fluid temperature is still influenced by the faulty sensor s2. And
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Figure 6.59: Sensor of Tu is faulty at 200s, with FTC case

Figure 6.60: Sensor of Tu is faulty at 200s, without FTC case

the tracking difference always exists after 200s without the application of TFC strategy,

see in Figure 6.60. Fortunately, this tracking error is eliminated by the reconstruction

of the control signal, as shown in Figure 6.59.

The measured utility fluid temperature Tu;mea and the real utility fluid temperature

output of system Tu;sys under different cases are presented in Figure 6.61. As we

described before, the fault is introduced in the second sensor, i.e. the senor of utility

fluid temperature, so there is an offset between the measured value and the real output

of the system. The value of the offset is the faulty value we applied 5 �C. Obviously,

the influence of sensor s2 fault is eliminated with the application of the proposed FTC
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Figure 6.61: Utility fluid temperature when sensor of Tu is faulty at 200s

method.

Therefore, we can conclude that the proposed interval observer based FTC strategy

works. The reference signal can be well tracked even with the existence of dynamic

fault or sensor fault.

6.3 Comparison between these two methods

In this part, we will compare the adaptive observer based FTC strategy and the interval

observer based FTC strategy proposed in Section 6.2 and Section 6.3. According to

the presented simulation results, both FTC strategies can achieve our objective, that

is to make the temperature of process fluid Tp stays at the desired temperature Tp;d by

adjusting the flow rate of utility fluid Fu under the interruption of dynamic fault or

sensor fault.

The main idea of both observer based FTC strategies proposed are control recon-

figuration. The nominal controller is based on the backstepping technique. Once the

fault is detected and diagnosed, the control law is reconstructed according to the fault

information. So, the fault diagnosis procedure is quite important for our FTC scheme.

If the fault can be quickly isolated and identified, the better tracking performance we

can get.

The only difference between the presented FTC strategies is their fault diagnosis

scheme. One uses a bank of adaptive observers to isolate the fault, each adaptive

observer corresponds to one possible faulty parameter. The other is based on parameter
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interval dividing, the working domain of each parameter is divided into several intervals,

and observers are constructed whose parameter is changed to the preselected interval

bounds. To prevent the fake alarm caused by input signal change, we will evaluate the

original residual until its value is stable. And the auxiliary residual is the tools to check

the stability of the original residual. Therefore, the fault can be immediately isolated

as long as we can make sure the state change in the system is caused by a fault, not by

the input signal change. To compare the performance of the proposed FTC method,

the same values including initial values, fault values and threshold, are used for both

observer based FTC scheme.

Table 6.1: Comparison between adaptive observer based FTC strategy and interval

observer based FTC strategy

Fault Magnitude f
Adaptive observer based FTC Interval observer based FTC

Isolation

Instant (s)
Estimation f̂

Isolation

Instant (s)
Estimation f̂

hp �15% h0p 218:3 �15% h0p 207:5 �15% h0p

Tp;in �5 222:2 �5 206:6 �5

Tp 3 219:6 3 207:1 3

Tu 7 217:4 7 212:1 7

Table 6.1 shows the comparison between these two strategies. The first column

represents the type of fault. And the first and second rows represent the dynamic fault

in hp, the heat transfer coefficient between process channel and plate wall, and Tp;in, the

inlet temperature of the process fluid. The third and fourth row represent the sensor

fault in Tp and Tu. The time of fault occurrence is 200s, and both of these methods can

detect the fault immediately, at 200:1s. Besides, the fault can be identified accurately.

In Table 6.1, we can see that the biggest difference between these two methods is

their isolation time. The interval observer based FTC strategy uses less time than the

adaptive observer based FTC method to isolate the fault. Thus, the controller can be

redesigned earlier than the adaptive observer based FTC method, and the influence of

fault can be quickly eliminated. This can be seen from the simulation results presented

in the former section.

As we described before, each adaptive observer gives an estimation of the fault, and

it is a time wasting procedure. Unfortunately, the fault can not be isolated until the

fault value is well estimated for the adaptive observer based method. For the interval
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observer based method, by calculating the average value of the interval bounds that

contain the faulty value, the faulty value can be easily and quickly obtained.

However, the faulty value estimation of the interval observer based method highly

relies on the parameter dividing. For example, the faulty value equals 0:8, but the inter-

val contains the faulty parameter is [0; 1]. Then, according to (4.34), we take the faulty

value estimation as 0:5, which is different from the real faulty value 0:8. Fortunately,

this difference can be decreased or eliminated by dividing more intervals, for instance,

we minimize the interval to [0:6; 1], then the faulty value is well estimated. But, more

intervals will increase the complexity of calculation at the same time. Besides, the

interval observer based FTC method needs a great number of observers compared to

the adaptive observer based method. For example, there are n possible faulty param-

eters in the system, and their practical domains are divided into m intervals, which

means there are m+1 bounds. Thus, n� (m+1) observers need to be constructed for

the interval observer based FTC strategy, while only n adaptive observers are needed

for the adaptive observer based FTC strategy. Nevertheless, with the development of

computer technology, the calculation complexity will not be a problem.

6.4 Summary

In this section, two active FTC strategies have been proposed based on the backstepping

control law obtained in Chapter 5 and the FDD schemes presented in Chapter 4. The

fault was firstly detected, isolated, and identified. Then, the controller is reconfigured

by using the estimated fault information. Since accurate fault information is important

for our FTC scheme, different observers were used to providing the details of the

fault, adaptive observer, and interval observer. Then, the adaptive observer based

FTC strategy and the interval observer based FTC strategy have been applied to the

HEX reactor. Both dynamic fault and sensor fault were considered in this chapter.

The effectiveness of both FTC strategies has been proved according to the simulation

results. They both provided a satisfactory tracking performance even the system has

been affected by the unexpected fault. Besides, the performances of the proposed

FTC strategies have been compared. Their advantages and disadvantages have been

analyzed. The adaptive observer based FTC strategy has less calculation complexity.

While the interval observer based FTC strategy presents a faster fault isolation speed.
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Chapter 7

Conclusion and suggestion of future

works

In this chapter, the main results obtained in this thesis are summarized, and conclusions

of this thesis are presented. Based on these conclusions and other observations made

during the research, new research directions for further developments are suggested.
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7.1 Conclusion

This thesis focuses on observer based fault diagnosis scheme and active fault tolerant

control strategy based on backstepping technique. The proposed FTC schemes can not

only be applied to an intensified HEX reactor system but also can be used for other

industrial systems. The fault is firstly detected, isolated, and identified by nonlinear

observers, and then, the estimated fault information is used for controller reconstruction

to make the whole system still achieve the desired performance with the interruption

of unexpected fault. The main results of this thesis are summarized as follows:

• Modeling of an intensified heat-exchanger/reeactor (HEX reactor).

The HEX reactor considered in this thesis is an intensified device that combines

heat exchanger and chemical reactor in the same module. The pilot consists of

three process plates sandwiched between four utility plates, both process plate

and utility plate are engraved by laser machining to obtain cross-section channels,

which are named as process channel and utility channel, respectively. Reactants

are injected into the process channel and the chemical reaction is taken place

here, while the utility fluid, (usually water) is fed into the utility channel to bring

in or take reaction heat away as soon as possible. This intensified channel-based

structure makes it provide excellent thermal and hydrodynamic performances.

To provide an accurate model for further control use, a cell-based modeling scheme

has been proposed in this thesis. The HEX reactor has been divided into 17 units

firstly according to its physical structure. Each unit consists of 15 cells with

different functions. According to the mass balance and energy balance, every cell

is represented by one particular mathematical equation. After connecting all these

cells in order, an integrated HEX reactor model is obtained. The effectiveness of

the proposed model has been proved by comparing the simulation results with

experimental data under two different situations, with and without consideration

of chemical reaction. Results prove that the performance of the proposed model

can well reflect the dynamic of the HEX reactor in reality.

• Application of nonlinear observer based FDD methods.

In order to supervise and investigate the dynamic of the considered HEX reactor

system, two kinds of nonlinear observers, adaptive observer and interval observer,

have been studied in Section 4. Firstly, an overview of the recent observers applied

to chemical process systems has been presented. Since the adaptive observer
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and interval observer can not only focus on the estimation of the internal states

but also the estimation of the parameters, they are typically investigated in this

section. Two kinds of FDD schemes based on adaptive observer and interval

observer have been presented and applied to the considered HEX reactor.

The adaptive observer based FDD scheme uses a bank of adaptive observers to

detect and isolate the fault, each adaptive observer corresponds to one possible

faulty parameter. Once the fault is isolated, the corresponding adaptive observer

can give the estimation of the faulty parameter. The interval observer based

FDD method relies on the construction of interval observers. The working do-

main of each parameter is divided into several intervals, and then, observers are

constructed by changing the possible faulty parameter into the preselected inter-

val bound value. The fault is isolated by verifying if the faulty value is contained

in the interval.

In this chapter, both dynamic fault and sensor have been taken into consideration.

With the occurrence of fault, there was a degradation in the performance of

the HEX reactor. By applying the presented FDD methods based on different

observers, the fault can be well detected, isolated and identified.

• Nonlinear control signal design for the considered HEX reactor based on back-

stepping technique.

For the considered HEX reactor, temperature control is a principal problem.

Therefore, a nominal control law has been designed based on the backstepping

technique. To guarantee the safety and productivity of chemical reactions, our

control objective is to make the temperature of the process fluid maintain at the

desired value. Considering a simplified working situation of the HEX reactor,

without chemical reaction, the backstepping control law has been proposed and

applied to the reactor. According to the presented simulation results, the pro-

posed nominal control law can make the process fluid temperature well follow the

desired temperature.

• Observer based fault tolerant control schemes design and their applications for

the HEX reactor under dynamic fault or sensor fault case.

Based on the FDD schemes presented in Section 5 and the backstepping con-

trol law obtained in Section 5, two active fault tolerant control strategies have

been proposed in Section 6 to deal with the HEX reactor with the interruption

of dynamic fault and sensor fault. Both FTC strategies are based on the idea
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of controller reconfiguration. The fault is firstly detected and diagnosed by an

observer based FDI scheme, and then, the controller is re-designed by using the

estimated fault information to guarantee the performance of the faulty system.

After applying the FTC strategies based on different observers, adaptive observer

and interval observer, to the HEX reactor, both of them can provide a satisfactory

tracking performance for the process fluid temperature even though the system

is affected by a dynamic fault or sensor fault. Besides, the performances of these

two strategies have been compared. Simulation results show that both of them

can well isolate and estimate the faulty parameter, but the interval observer based

FTC strategy has a faster isolation speed.

To summarize, the observer based backstepping fault tolerant control strategies

proposed in this thesis can make the system still achieve the desired performance

even though it is influenced by a dynamic fault or sensor fault. Besides, the designed

fault tolerant schemes are applicable for various types of engineering systems. The

application to the considered HEX reactor has shown the effectiveness of the proposed

FTC strategies.

7.2 Future works

Based on the work mentioned above, it is motivated to keep on researching about the

following problems.

• Application of proposed FTC strategies to the HEX reactor with consideration

of chemical reaction.

In the case study, the proposed FTC strategies are both applied to the HEX

reactor where only the heat exchange part is considered. When the chemical

reaction is introduced, the HEX reactor may be bothered with various faults

with the increase of the system complexity. Therefore, how to guarantee the

system performance after the implementation of the chemical reaction is another

interest for investigation.

• Application of proposed FTC strategies under the interruption of measurement

noise.

In reality, the existence of measurement noise will make it difficult to detect and

diagnose the fault. So, how to avoid the fake fault detection alarm and guarantee

the fault tolerant performance are the questions worthy of future research.
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• Fault tolerant control strategy design for actuator fault case.

The proposed FTC strategies are both based on the controller reconfiguration.

For the considered dynamic fault and sensor fault, the control law can be easily

re-designed. However, what if the fault occurs in the actuator. The fault tolerant

scheme can not be done by simply changing its parameters to the faulty situation.

Therefore, it is another direction of future study.

• Combination of the proposed adaptive observer based FTC strategy and interval

observer based FTC strategy.

As mentioned in the last section, both of the proposed FTC strategies have their

advantages and disadvantages. The adaptive observer based FTC scheme can

provide an accurate faulty value estimation while it takes a longer time for fault

isolation. In the contrast, the interval observer based FTC scheme has a faster

isolation speed, but the fault estimation highly relies on parameter interval divid-

ing. Thus, is there a possibility to take advantage of these two observers at the

same time? For example, replacing the observer corresponding to each interval

bounds with adaptive observers, which can give an accurate estimation of the

faulty parameter. Then, once the faulty value is isolated in one of the intervals,

its estimation can be given by the adaptive observer other than calculating the

average value of the bounds in (4.34) or (4.39). This is also a research interest in

future work.

131



132



Bibliography

[1] M. Abid. “Fault detection in nonlinear systems: An observer-based approach”.

In: Universitat Duisburg-Essen (2010).

[2] A. Akhenak, E. Duviella, L. Bako, and S. Lecoeuche. “Online fault diagnosis us-

ing recursive subspace identification: Application to a dam-gallery open channel

system”. In: Control Engineering Practice 21.6 (2013), pp. 797–806.

[3] J. M. Ali, N. H. Hoang, M. A. Hussain, and D. Dochain. “Review and classifi-

cation of recent observers applied in chemical process systems”. In: Computers

& Chemical Engineering 76 (2015), pp. 27–41.

[4] J. M. Ali, N. H. Hoang, M. A. Hussain, and D. Dochain. “Hybrid observer for

parameters estimation in ethylene polymerization reactor: A simulation study”.

In: Applied Soft Computing 49 (2016), pp. 687–698.

[5] H. Alwi, C. Edwards, O. Stroosma, and J. Mulder. “Fault tolerant sliding mode

control design with piloted simulator evaluation”. In: Journal of Guidance,

Control, and Dynamics 31.5 (2008), pp. 1186–1201.

[6] Z. Anxionnaz, M. Cabassud, C. Gourdon, and P. Tochon. “Heat ex-

changer/reactors (HEX reactors): concepts, technologies: state-of-the-art”. In:

Chemical Engineering and Processing: Process Intensification 47.12 (2008),

pp. 2029–2050.

[7] Z. Anxionnaz, F. Theron, P. Tochon, R. Couturier, C. Gourdon, M. Cabassud,

et al. “RAPIC project: toward competitive heat-exchanger/reactors”. In: EPIC,

3rd European Process Intensification Conference. 2011.

[8] Z. Anxionnaz-Minvielle, M. Cabassud, C. Gourdon, and P. Tochon. “Influence of

the meandering channel geometry on the thermo-hydraulic performances of an

intensified heat exchanger/reactor”. In: Chemical Engineering and Processing:

Process Intensification 73 (2013), pp. 67–80.

133



[9] G. Arji, H. Ahmadi, M. Nilashi, T. A. Rashid, O. H. Ahmed, N. Aljojo, et al.

“Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation,

literature and classification”. In: Biocybernetics and Biomedical Engineering

39.4 (2019), pp. 937–955.

[10] W. Benaissa, S. Elgue, N. Gabas, M. Cabassud, D. Carson, and M. Demissy.

“Dynamic behaviour of a continuous heat exchanger/reactor after flow failure”.

In: International Journal of Chemical Reactor Engineering 6.1 (2008).

[11] M. E. H. Benbouzid. “A review of induction motors signature analysis as a

medium for faults detection”. In: IEEE transactions on industrial electronics

47.5 (2000), pp. 984–993.

[12] M. Benosman and K.-Y. Lum. “Passive actuators’ fault-tolerant control for affine

nonlinear systems”. In: IEEE Transactions on Control Systems Technology

18.1 (2009), pp. 152–163.

[13] G. Besançon. “Remarks on nonlinear adaptive observer design”. In: Systems &

control letters 41.4 (2000), pp. 271–280.

[14] G. Besançon. Nonlinear observers and applications. Vol. 363. Springer, 2007.

[15] M. Blanke, R. Izadi-Zamanabadi, S. A. Bøgh, and C. P. Lunau. “Fault-tolerant

control systems—a holistic view”. In: Control Engineering Practice 5.5 (1997),

pp. 693–702.

[16] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J. Schröder. Diagnosis

and fault-tolerant control. Vol. 2. Springer, 2006.

[17] M. Blanke, M. Staroswiecki, and N. E. Wu. “Concepts and methods in fault-

tolerant control”. In: Proceedings of the 2001 American Control Confer-

ence.(Cat. No. 01CH37148). Vol. 4. IEEE. 2001, pp. 2606–2620.

[18] M. Bo, J. Zhi-nong, and W. Zhong-qing. “Development of the task-based expert

system for machine fault diagnosis”. In: Journal of Physics: Conference Series.

Vol. 364. 1. IOP Publishing. 2012, p. 012043.

[19] M. Bodson and J. E. Groszkiewicz. “Multivariable adaptive algorithms for recon-

figurable flight control”. In: IEEE transactions on control systems technology

5.2 (1997), pp. 217–229.

[20] G. Bornard, F. Celle-Couenne, and G. Gilles. “Observability and observers”. In:

Nonlinear Systems. Springer, 1995, pp. 173–216.

134



[21] H. Chen and S. Lu. “Fault diagnosis digital method for power transistors in

power converters of switched reluctance motors”. In: IEEE Transactions on

Industrial Electronics 60.2 (2012), pp. 749–763.

[22] J. Chen and R. J. Patton. Robust model-based fault diagnosis for dynamic

systems. Vol. 3. Springer Science & Business Media, 2012.

[23] W. Chen and M. Saif. “An actuator fault isolation strategy for linear and non-

linear systems”. In: Proceedings of the 2005, American Control Conference,

2005. IEEE. 2005, pp. 3321–3326.

[24] W. Chen and M. Saif. “Adaptive sensor fault detection and isolation in uncertain

systems”. In: 2007 American Control Conference. IEEE. 2007, pp. 3240–3245.

[25] U.-P. Chong et al. “Signal model-based fault detection and diagnosis for induc-

tion motors using features of vibration signal in two-dimension domain”. In:

Strojniški vestnik 57.9 (2011), pp. 655–666.

[26] X. Dai and Z. Gao. “From model, signal to knowledge: A data-driven perspec-

tive of fault detection and diagnosis”. In: IEEE Transactions on Industrial

Informatics 9.4 (2013), pp. 2226–2238.

[27] S. X. Ding. Model-based fault diagnosis techniques: design schemes, algo-

rithms, and tools. Springer Science & Business Media, 2008.

[28] D. Dochain. “State observers for tubular reactors with unknown kinetics”. In:

Journal of process control 10.2-3 (2000), pp. 259–268.

[29] D. Dochain. “State and parameter estimation in chemical and biochemical pro-

cesses: a tutorial”. In: Journal of process control 13.8 (2003), pp. 801–818.

[30] M. Döhler and L. Mevel. “Subspace-based fault detection robust to changes in

the noise covariances”. In: Automatica 49.9 (2013), pp. 2734–2743.

[31] G. Dong, W. Chongguang, B. Zhang, and M. Xin. “Signed directed graph and

qualitative trend analysis based fault diagnosis in chemical industry”. In: Chi-

nese Journal of Chemical Engineering 18.2 (2010), pp. 265–276.

[32] Z. Dong, J. Zhao, J. Duan, M. Wang, and H. Wang. “Research on agricultural

machinery fault diagnosis system based on expert system”. In: 2018 2nd IEEE

Advanced Information Management, Communicates, Electronic and Au-

tomation Control Conference (IMCEC). IEEE. 2018, pp. 2057–2060.

135



[33] G. J. Ducard. Fault-tolerant flight control and guidance systems: Practical

methods for small unmanned aerial vehicles. Springer Science & Business

Media, 2009.

[34] S. Elgue, A. Conte, C. Gourdon, and Y. Bastard. “Direct fluorination of 1,

3-dicarbonyl compound in a continuous flow reactor at industrial scale”. In:

Chemica Oggi/Chemistry Today 30.4 (2012).

[35] J. Etchells. “Process intensification: safety pros and cons”. In: Process Safety

and Environmental Protection 83.2 (2005), pp. 85–89.

[36] H. Fang, N. Tian, Y. Wang, M. Zhou, and M. A. Haile. “Nonlinear Bayesian esti-

mation: From Kalman filtering to a broader horizon”. In: IEEE/CAA Journal

of Automatica Sinica 5.2 (2018), pp. 401–417.

[37] M. Farza, H. Hammouri, S. Othman, and K. Busawon. “Nonlinear observers

for parameter estimation in bioprocesses”. In: Chemical Engineering Science

52.23 (1997), pp. 4251–4267.

[38] A. Fekih. “Fault diagnosis and fault tolerant control design for aerospace systems:

A bibliographical review”. In: 2014 American Control Conference. IEEE. 2014,

pp. 1286–1291.

[39] D. Fragkoulis. “Détection et localisation des défauts provenant des actionneurs

et des capteurs: application sur un système non linéaire”. PhD thesis. Université

de Toulouse, Université Toulouse III-Paul Sabatier, 2008.

[40] D. Fragkoulis, G. Roux, and B. Dahhou. “Detection, isolation and identification

of multiple actuator and sensor faults in nonlinear dynamic systems: Application

to a waste water treatment process”. In: Applied Mathematical Modelling 35.1

(2011), pp. 522–543.

[41] P. M. Frank. “Fault diagnosis in dynamic systems using analytical and

knowledge-based redundancy: A survey and some new results”. In: automat-

ica 26.3 (1990), pp. 459–474.

[42] P. M. Frank. “On-line fault detection in uncertain nonlinear systems using diag-

nostic observers: a survey”. In: International journal of systems science 25.12

(1994), pp. 2129–2154.

[43] P. M. Frank. “Analytical and qualitative model-based fault diagnosis–a survey

and some new results”. In: European Journal of control 2.1 (1996), pp. 6–28.

136



[44] Z. Gao and P. J. Antsaklis. “Stability of the pseudo-inverse method for recon-

figurable control systems”. In: international Journal of Control 53.3 (1991),

pp. 717–729.

[45] Z. Gao and P. J. Antsaklis. “Reconfigurable control system design via perfect

model following”. In: International Journal of Control 56.4 (1992), pp. 783–

798.

[46] Z. Gao, C. Cecati, and S. X. Ding. “A survey of fault diagnosis and fault-

tolerant techniques—Part I: Fault diagnosis with model-based and signal-based

approaches”. In: IEEE Transactions on Industrial Electronics 62.6 (2015),

pp. 3757–3767.

[47] Z. Gao, C. Cecati, and S. X. Ding. “A survey of fault diagnosis and fault-

tolerant techniques—Part I: Fault diagnosis with model-based and signal-based

approaches”. In: IEEE Transactions on Industrial Electronics 62.6 (2015),

pp. 3768–3774.

[48] E. A. Garcfa and P. Frank. “On the relationship between observer and param-

eter identification based approaches to fault detection”. In: IFAC Proceedings

Volumes 29.1 (1996), pp. 6349–6353.

[49] E. A. Garcia and P. M. Frank. “Deterministic nonlinear observer-based ap-

proaches to fault diagnosis: a survey”. In: Control Engineering Practice 5.5

(1997), pp. 663–670.

[50] J. Gauthier and G. Bornard. “Observability for any u (t) of a class of nonlinear

systems”. In: IEEE Transactions on Automatic Control 26.4 (1981), pp. 922–

926.

[51] X. Gong and W. Qiao. “Bearing fault diagnosis for direct-drive wind turbines

via current-demodulated signals”. In: IEEE Transactions on Industrial Elec-

tronics 60.8 (2013), pp. 3419–3428.

[52] A. Green, B. Johnson, and A. John. “Process intensification magnifies profits”.

In: Chemical engineering (New York, NY) 106.13 (1999), pp. 66–73.

[53] Y. Gritli, L. Zarri, C. Rossi, F. Filippetti, G.-A. Capolino, and D. Casadei.

“Advanced diagnosis of electrical faults in wound-rotor induction machines”. In:

IEEE Transactions on Industrial Electronics 60.9 (2012), pp. 4012–4024.

[54] D. He, R. Li, and J. Zhu. “Plastic bearing fault diagnosis based on a two-step

data mining approach”. In: IEEE Transactions on Industrial Electronics 60.8

(2012), pp. 3429–3440.

137



[55] M. He, Z. Li, X. Han, M. Cabassud, and B. Dahhou. “Development of a Numer-

ical Model for a Compact Intensified Heat-Exchanger/Reactor”. In: Processes

7.7 (2019), p. 454.

[56] R. Hermann and A. Krener. “Nonlinear controllability and observability”. In:

IEEE Transactions on automatic control 22.5 (1977), pp. 728–740.

[57] L. Hong and J. S. Dhupia. “A time domain approach to diagnose gearbox fault

based on measured vibration signals”. In: Journal of Sound and Vibration

333.7 (2014), pp. 2164–2180.

[58] C.-S. Hsieh. “Performance gain margins of the two-stage LQ reliable control”.

In: Automatica 38.11 (2002), pp. 1985–1990.

[59] M.-D. Hua, G. Ducard, T. Hamel, R. Mahony, and K. Rudin. “Implementation

of a nonlinear attitude estimator for aerial robotic vehicles”. In: IEEE Trans-

actions on Control Systems Technology 22.1 (2013), pp. 201–213.

[60] X. Hulhoven, A. V. Wouwer, and P. Bogaerts. “Hybrid extended Luenberger-

asymptotic observer for bioprocess state estimation”. In: Chemical engineering

science 61.21 (2006), pp. 7151–7160.

[61] W. Hwang and K. Huh. “Fault detection and estimation for electromechanical

brake systems using parity space approach”. In: Journal of Dynamic Systems,

Measurement, and Control 137.1 (2015).

[62] R. Isermann. “Process fault detection based on modeling and estimation meth-

ods—A survey”. In: automatica 20.4 (1984), pp. 387–404.

[63] R. Isermann. Fault-diagnosis systems: an introduction from fault detection

to fault tolerance. Springer Science & Business Media, 2005.

[64] R. Isermann. Fault-diagnosis applications: model-based condition monitor-

ing: actuators, drives, machinery, plants, sensors, and fault-tolerant sys-

tems. Springer Science & Business Media, 2011.

[65] R. Isermann and P. Balle. “Trends in the application of model-based fault de-

tection and diagnosis of technical processes”. In: Control engineering practice

5.5 (1997), pp. 709–719.

[66] H. A. Izadi, Y. Zhang, and B. W. Gordon. “Fault tolerant model predictive

control of quad-rotor helicopters with actuator fault estimation”. In: Proceedings

of the 18th IFAC World Congress. Vol. 18. 1. 2011, pp. 6343–6348.

138



[67] I. Izadi, S. L. Shah, D. S. Shook, and T. Chen. “An introduction to alarm analysis

and design”. In: IFAC Proceedings Volumes 42.8 (2009), pp. 645–650.

[68] A. Jarrou. “Diagnostic de defauts et commande tolerante aux defauts des sys-

temes a energie renouvelable”. PhD thesis. Universitd de Lorraine, 2020.

[69] J. Jiang. “Fault-tolerant control systems-an introductory overview”. In: Acta

Automatica Sinica 31.1 (2005), pp. 161–174.

[70] J. Jiang and X. Yu. “Fault-tolerant control systems: A comparative study be-

tween active and passive approaches”. In: Annual Reviews in control 36.1

(2012), pp. 60–72.

[71] G. M. Joksimović, J. Riger, T. M. Wolbank, N. Perić, and M. Vašak. “Stator-

current spectrum signature of healthy cage rotor induction machines”. In: IEEE

Transactions on Industrial Electronics 60.9 (2012), pp. 4025–4033.

[72] R. E. Kalman and R. S. Bucy. “New results in linear filtering and prediction

theory”. In: (1961).

[73] M. Kinnaert. “Fault diagnosis based on analytical models for linear and nonlinear

systems-a tutorial”. In: IFAC Proceedings Volumes 36.5 (2003), pp. 37–50.

[74] P. V. Kokotovic. “The joy of feedback: nonlinear and adaptive”. In: IEEE Con-

trol Systems Magazine 12.3 (1992), pp. 7–17.

[75] I. Konstantopoulos and P. Antsaklis. “An eigenstructure assignment approach to

control reconfiguration”. In: Proceedings of the 4th IEEE Mediterranean Sym-

posium on Control et Automation, Chania, Crete, Greece. 1996, pp. 328–

333.

[76] B. Koppen-Seliger, P. Frank, and A. Wolff. “Residual evaluation for fault detec-

tion and isolation with RCE neural networks”. In: Proceedings of 1995 Amer-

ican Control Conference-ACC’95. Vol. 5. IEEE. 1995, pp. 3264–3268.

[77] M. Kordestani, K. Salahshoor, A. A. Safavi, and M. Saif. “An adaptive passive

fault tolerant control system for a steam turbine using a PCA based inverse neu-

ral network control strategy”. In: 2018 World Automation Congress (WAC).

IEEE. 2018, pp. 1–6.

[78] C. Kravaris, J. Hahn, and Y. Chu. “Advances and selected recent developments

in state and parameter estimation”. In: Computers & chemical engineering 51

(2013), pp. 111–123.

139



[79] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos. Nonlinear and adaptive

control design. John Wiley & Sons, Inc., 1995.

[80] Z. Li and B. Dahhou. “Parameter intervals used for fault isolation in non-linear

dynamic systems”. In: International Journal of Modelling, Identification and

Control 1.3 (2006), pp. 215–229.

[81] Z. Li and B. Dahhou. “A new fault isolation and identification method for non-

linear dynamic systems: Application to a fermentation process”. In: Applied

Mathematical Modelling 32.12 (2008), pp. 2806–2830.

[82] D. Looze, J. Weiss, J. Eterno, and N. Barrett. “An automatic redesign approach

for restructurable control systems”. In: IEEE Control systems magazine 5.2

(1985), pp. 16–22.

[83] D. Luenberger. “Observers for multivariable systems”. In: IEEE Transactions

on Automatic Control 11.2 (1966), pp. 190–197.

[84] J. Lunze and J. H. Richter. “Reconfigurable fault-tolerant control: a tutorial

introduction”. In: European journal of control 14.5 (2008), pp. 359–386.

[85] J. M. Maciejowski and C. N. Jones. “MPC fault-tolerant flight control case study:

Flight 1862”. In: IFAC Proceedings Volumes 36.5 (2003), pp. 119–124.

[86] M. Mansouri, M. N. Nounou, and H. N. Nounou. “Multiscale kernel pls-based

exponentially weighted-glrt and its application to fault detection”. In: IEEE

Transactions on Emerging Topics in Computational Intelligence 3.1 (2017),

pp. 49–58.

[87] R. Marino and P. Tomei. “Adaptive observers with arbitrary exponential rate

of convergence for nonlinear systems”. In: IEEE Transactions on Automatic

Control 40.7 (1995), pp. 1300–1304.

[88] J. Marzat, H. Piet-Lahanier, F. Damongeot, and E. Walter. “Model-based fault

diagnosis for aerospace systems: a survey”. In: Proceedings of the Institution

of Mechanical Engineers, Part G: Journal of aerospace engineering 226.10

(2012), pp. 1329–1360.

[89] M. R. Maurya, R. Rengaswamy, and V. Venkatasubramanian. “A signed directed

graph and qualitative trend analysis-based framework for incipient fault diagno-

sis”. In: Chemical Engineering Research and Design 85.10 (2007), pp. 1407–

1422.

140



[90] T. Moor. “A discussion of fault-tolerant supervisory control in terms of formal

languages”. In: Annual Reviews in Control 41 (2016), pp. 159–169.

[91] S. Nandi, T. C. Ilamparithi, S. B. Lee, and D. Hyun. “Detection of eccentricity

faults in induction machines based on nameplate parameters”. In: IEEE Trans-

actions on Industrial Electronics 58.5 (2010), pp. 1673–1683.

[92] S. Nandi, H. A. Toliyat, and X. Li. “Condition monitoring and fault diagnosis

of electrical motors—A review”. In: IEEE transactions on energy conversion

20.4 (2005), pp. 719–729.

[93] E. B. Nauman. Chemical reactor design, optimization, and scaleup. John

Wiley & Sons, 2008.

[94] H. M. Odendaal and T. Jones. “Actuator fault detection and isolation: An op-

timised parity space approach”. In: Control Engineering Practice 26 (2014),

pp. 222–232.

[95] L. E. Olivier, I. K. Craig, and Y. Chen. “Fractional order and BICO disturbance

observers for a run-of-mine ore milling circuit”. In: Journal of Process Control

22.1 (2012), pp. 3–10.

[96] A. Al-Othman. “A fuzzy state estimator based on uncertain measurements”. In:

Measurement 42.4 (2009), pp. 628–637.

[97] R. J. Patton. “Fault-tolerant control: the 1997 situation”. In: IFAC Proceedings

Volumes 30.18 (1997), pp. 1029–1051.

[98] R. J. Patton and J. Chen. “Review of parity space approaches to fault diagnosis

for aerospace systems”. In: Journal of Guidance, Control, and Dynamics 17.2

(1994), pp. 278–285.

[99] M. Rodrigues. “Diagnostic et commande active tolerante aux defauts appliques

aux systemes decrits par des multi-modeles lineaires”. PhD thesis. 2005.

[100] F. Sallem. “Détection et isolation de défauts actionneurs basées sur un modèle de

l’organe de commande”. PhD thesis. Université de Toulouse, Université Toulouse

III-Paul Sabatier, 2013.

[101] P. A. Samara, G. N. Fouskitakis, J. S. Sakellariou, and S. D. Fassois. “A statistical

method for the detection of sensor abrupt faults in aircraft control systems”. In:

IEEE Transactions on Control Systems Technology 16.4 (2008), pp. 789–798.

141



[102] M. R. Shahriar, T. Ahsan, and U. Chong. “Fault diagnosis of induction motors

utilizing local binary pattern-based texture analysis”. In: EURASIP Journal

on Image and Video Processing 2013.1 (2013), p. 29.

[103] N. Sheibat-Othman, N. Laouti, J.-P. Valour, and S. Othman. “Support vector

machines combined to observers for fault diagnosis in chemical reactors”. In:

The Canadian Journal of Chemical Engineering 92.4 (2014), pp. 685–695.

[104] H. Shen, L. Su, and J. H. Park. “Reliable mixed H1/passive control for T–

S fuzzy delayed systems based on a semi-Markov jump model approach”. In:

Fuzzy Sets and Systems 314 (2017), pp. 79–98.

[105] C. Shi, D. M. Blei, and V. Veitch. “Adapting neural networks for the estimation

of treatment effects”. In: arXiv preprint arXiv:1906.02120 (2019).

[106] E. Sobhani-Tehrani and K. Khorasani. Fault diagnosis of nonlinear systems

using a hybrid approach. Vol. 383. Springer Science & Business Media, 2009.

[107] A. I. Stankiewicz, J. A. Moulijn, et al. “Process intensification: transforming

chemical engineering”. In: Chemical engineering progress 96.1 (2000), pp. 22–

34.

[108] M. Staroswiecki. “Fault tolerant control using an admissible model matching

approach”. In: Proceedings of the 44th IEEE Conference on Decision and

Control. IEEE. 2005, pp. 2421–2426.

[109] M. Staroswiecki, H. Yang, and B. Jiang. “Progressive accommodation of aircraft

actuator faults”. In: IFAC Proceedings Volumes 39.13 (2006), pp. 825–830.

[110] B. Tang, W. Liu, and T. Song. “Wind turbine fault diagnosis based on Morlet

wavelet transformation and Wigner-Ville distribution”. In: Renewable Energy

35.12 (2010), pp. 2862–2866.

[111] D. Theilliol, D. Sauter, and J. Ponsart. “A multiple model based approach for

fault tolerant control in non-linear systems”. In: IFAC Proceedings Volumes

36.5 (2003), pp. 149–154.

[112] F. Theron, Z. Anxionnaz-Minvielle, M. Cabassud, C. Gourdon, and P. Tochon.

“Characterization of the performances of an innovative heat-exchanger/reactor”.

In: Chemical Engineering and Processing: Process Intensification 82 (2014),

pp. 30–41.

[113] S. Thomas. Reconfiguration and bifurcation in flight controls. Drexel Univer-

sity, 2004.

142



[114] B. Thonon and P. Tochon. “Compact multifunctional heat exchangers: a path-

way to process intensification”. In: Re-Engineering the Chemical Processing

Plant: Process Intensification (2003), p. 121.

[115] P. Tochon, R. Couturier, Z. Anxionnaz, S. Lomel, H. Runser, F. Picard, et

al. “Toward a competitive process intensification: a new generation of heat

exchanger-reactors”. In: Oil & Gas Science and Technology–Revue d’IFP En-

ergies nouvelles 65.5 (2010), pp. 785–792.

[116] P. Tochon, R. Couturier, and F. Vidotto. Method for producing a heat

exchanger system, preferably of the exchanger/reactor type. US Patent

8,468,697. June 2013.

[117] C. Tutivén Gálvez. “Fault detection and fault tolerant control in wind turbines”.

In: (2018).

[118] E. R. Van Oort. “Adaptive backstepping control and safety analysis for modern

fighter aircraft”. In: (2011).

[119] V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri. “A review of process

fault detection and diagnosis: Part II: Qualitative models and search strategies”.

In: Computers & chemical engineering 27.3 (2003), pp. 313–326.

[120] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin. “A review of

process fault detection and diagnosis: Part III: Process history based methods”.

In: Computers & chemical engineering 27.3 (2003), pp. 327–346.

[121] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri. “A review

of process fault detection and diagnosis: Part I: Quantitative model-based meth-

ods”. In: Computers & chemical engineering 27.3 (2003), pp. 293–311.

[122] L. Wen, X. Li, L. Gao, and Y. Zhang. “A new convolutional neural network-

based data-driven fault diagnosis method”. In: IEEE Transactions on Indus-

trial Electronics 65.7 (2017), pp. 5990–5998.

[123] A. Widodo and B.-S. Yang. “Support vector machine in machine condition mon-

itoring and fault diagnosis”. In:Mechanical systems and signal processing 21.6

(2007), pp. 2560–2574.

[124] Z. Xiaoqiang, X. Yongfei, and W. Tao. “Fault detection of batch process based

on multi-way Kernel T-PLS”. In: Journal of Chemical and Pharmaceutical

Research 6.7 (2014), pp. 338–346.

143



[125] X. Xu, D. Cao, Y. Zhou, and J. Gao. “Application of neural network algorithm in

fault diagnosis of mechanical intelligence”. In: Mechanical Systems and Signal

Processing (2020), p. 106625.

[126] R. Yan and R. X. Gao. “Hilbert–Huang transform-based vibration signal analysis

for machine health monitoring”. In: IEEE Transactions on Instrumentation

and measurement 55.6 (2006), pp. 2320–2329.

[127] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang. “A comparison study

of basic data-driven fault diagnosis and process monitoring methods on the

benchmark Tennessee Eastman process”. In: Journal of process control 22.9

(2012), pp. 1567–1581.

[128] D. Zappalá, P. J. Tavner, C. J. Crabtree, and S. Sheng. “Side-band algorithm

for automatic wind turbine gearbox fault detection and diagnosis”. In: IET Re-

newable Power Generation 8.4 (2014), pp. 380–389.

[129] S. Zeghlache, K. Kara, and D. Saigaa. “Fault tolerant control based on inter-

val type-2 fuzzy sliding mode controller for coaxial trirotor aircraft”. In: ISA

transactions 59 (2015), pp. 215–231.

[130] M. Zhang. “Fault diagnosis & root cause analysis of invertible dynamic system”.

PhD thesis. Université Paul Sabatier-Toulouse III, 2017.

[131] M. Zhang, Z. Li, M. Cabassud, and B. Dahhou. “An integrated FDD approach for

an intensified HEX/Reactor”. In: Journal of Control Science and Engineering

2018 (2018).

[132] Q. Zhang. Fault detection and isolation based on adaptive observers for

nonlinear dynamic systems. Citeseer, 1999.

[133] Q. Zhang. “A new residual generation and evaluation method for detection and

isolation of faults in non-linear systems”. In: International Journal of Adaptive

Control and Signal Processing 14.7 (2000), pp. 759–773.

[134] Y. Zhang, N. Yang, and S. Li. “Fault isolation of nonlinear processes based

on fault directions and features”. In: IEEE Transactions on Control Systems

Technology 22.4 (2013), pp. 1567–1572.

[135] Y. Zhang and J. Jiang. “Bibliographical review on reconfigurable fault-tolerant

control systems”. In: Annual reviews in control 32.2 (2008), pp. 229–252.

144



[136] F. Zidani, D. Diallo, M. E. H. Benbouzid, and R. Nait-Said. “A fuzzy-based ap-

proach for the diagnosis of fault modes in a voltage-fed PWM inverter induction

motor drive”. In: IEEE Transactions on industrial electronics 55.2 (2008),

pp. 586–593.

145


	Introduction
	Backgrounds
	Motivations and objectives
	Structure of the thesis

	Fault diagnosis and fault tolerant control: the state of the art 
	Basic concepts
	Definitions
	Type of faults

	Fault detection and diagnosis methods
	Model-based approaches
	Signal-based approaches
	Knowledge-based approaches
	Hybrid approaches

	Fault tolerant control
	Passive FTC
	Active FTC

	Summary

	Modeling of the Heat-exchanger/Reactor
	Introduction
	Physical structure
	Modeling
	General Modeling of the Reactor
	Modeling of process plate
	Modeling of utility plate and plate wall
	Reaction modeling
	Simulation result

	Summary

	Observer based FDD schemes and their applications for the Heat-exchanger/Reactor
	Introduction
	Classification of nonlinear observers
	Nonlinear model under consideration
	Expressions of nonlinear system
	Properties of nonlinear system
	Dynamic and sensor faulty model

	Adaptive observer
	Structure of adaptive observer
	Adaptive observer based FDD scheme
	Application to HEX reactor: adaptive observer based FDD scheme

	Interval observer
	Structure of interval observer
	Interval observer based FDD scheme
	Application to HEX reactor: interval observer based FDD scheme

	Summary

	Backstepping controller design for the Heat-exchanger/Reactor
	Backstepping design
	Integrator backstepping
	Backstepping for strict-feedback systems
	Adaptive backstepping
	Robust backstepping

	Backstepping controller design for the considered HEX reactor
	Controller design procedure
	Simulation result

	Summary

	Backstpping fault tolerant control for the Heat-exchanger/Reactor based on different observers
	Backstepping fault tolerant control based on observers
	Dynamic FTC design
	Sensor FTC design

	Application to the HEX reactor
	Backstepping fault tolerant control based on adaptive observers
	Backstepping fault tolerant control based on interval observers

	Comparison between these two methods
	Summary

	Conclusion and suggestion of future works
	Conclusion
	Future works

	Bibliography

