
HAL Id: tel-03738148
https://theses.hal.science/tel-03738148

Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of Qualimetry essentials applied to embedded
software development

Yann Argotti

To cite this version:
Yann Argotti. Study of Qualimetry essentials applied to embedded software development. Embedded
Systems. INSA de Toulouse, 2021. English. �NNT : 2021ISAT0034�. �tel-03738148�

https://theses.hal.science/tel-03738148
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Institut National des Sciences Appliquées
de Toulouse

Présentée et soutenue par

Yann ARGOTTI

Le 12 mai 2021

Etude des caractères essentiels de la qualimétrie appliqués au
développement du logiciel embarqué

Ecole doctorale : SYSTEMES

Spécialité : Informatique et Systèmes Embarqués

Unité de recherche :
LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes

Thèse dirigée par
Claude BARON et Philippe ESTEBAN

Président du jury
Rob VINGERHOEDS

Jury
M. Alain ABRAN, Professor, ETS - Université du Québec, Canada, Rapporteur

M. Alexander VERBRAECK, Full Professor, Technical University Delft, Pays Bas, Rapporteur

Mme Donna H. RHODES, Principal Research Scientist, MIT, USA, Rapporteuse
M. Rob VINGERHOEDS, Professeur, ISAE-SUPAERO, Examinateur

Mme Karama KANOUN, Directrice de Recherche, LAAS-CNRS, Examinatrice
M. Silverio MARTINEZ-FERNANDEZ, Assistant Professor, UPC, Espagne, Examinateur

Mme Claude BARON, Professeur des Universités, INSA de Toulouse, Directrice de thèse
M. Philippe ESTEBAN, Maitre de Conférences, Université Paul Sabatier, Co-directeur de thèse

Acknowledgments

1 | P a g e

“Dubium sapientiae initium” (Doubt is the origin of wisdom)

― René Descartes, Source: Meditations on First Philosophy

“One thing I have learned in a long life: that all our science, measured against
reality, is primitive and childlike — and yet it is the most precious thing we have”

― Albert Einstein, Source: American InsƟtute of Physics

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

2 | P a g e

Acknowledgments

3 | P a g e

Je dédie cette thèse à ma femme, Estelle, à mes filles, Alwena, Loanne et Erell,

À mes parents, Joëlle et Gérard, à mon frère Xavier, à toute ma famille

Ainsi qu’aux gens que j’aime.

Qu’à travers ce travail, ils y voient un reflet de ma pensée et de moi-même !

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

4 | P a g e

Acknowledgments

5 | P a g e

Acknowledgments

During the years of my thesis, I was able to meet and have the support of a number of people, from academia
and industry. It would obviously be too long to list all these people, and even if I do not quote them here, I do not
forget them.

First of all, I would like to thank Mrs Claude BARON, University Professor at INSA of Toulouse, responsible for the
ISI team at LAAS-CRNS, and Mr Philippe ESTEBAN, Lecturer at the University Paul Sabatier of Toulouse. Thanks to
their welcome, supervision, support and encouragement, these three years of thesis could be carried out under
the best conditions in spite of many pitfalls encountered. I also thank them very much for their kindness and their
precious advices which allowed me to grow both professionally and personally.

I would also like to thank Mr. Denis CHATON, Head of the DEA-LPC department at Renault SW Labs, and Mr.
Thierry CAMMAL, General Manager of Renault SW Labs, who believed in this project and in me, supporting me
in the setting up and the realization of this thesis.

My thanks also go to Mr. Rob VINGERHOEDS, Professor at ISAE-SUPAERO, and Mrs. Karama KANOUN, research
director at LAAS-CRNS, who kindly gave me the honor of composing my follow-up committee. I thank them for
their time, their listening, their judicious advices, and their kindness.

I would like to thank Mrs. Donna H. RHODES, Principal Research Scientist at MIT (USA), Mr. Alain ABRAN, Professor
at ETS - Université du Québec (Canada), and Mr. Alexander VERBRAECK, Full Professor at Technical University
Delft (The Netherlands) who have done me the honor and pleasure of being the reviewers of my thesis, as well
as Mr. Silverio MARTINEZ-FERNANDEZ, Assistant Professor at UPC (Spain), for having honored me by being part
of my thesis jury. Their academic and industrial experiences, their external and independent visions on my work,
their feedbacks and advices for improvements comfort me in my research approach and the resulting proposals.
They also allow me to appreciate even more the field of possibilities which results from it.

Finally, I would like to thank Mr. Alexander V. KOSTIN, Senior Researcher at Central Economics and Mathematics
Institute of Russian Academy of Sciences (Russia), creator of the on-line library QUALIMETRY.RU, for his interest
in my work and the exchanges we had around Qualimetry.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

6 | P a g e

Preamble

7 | P a g e

Preamble

Currently employee of the young Renault subsidiary, Renault Software Lab (formerly INTEL), located in
Toulouse and focused on onboard software development, I seized a rare opportunity that is offered to me by this
situation to achieve, with the downstream from my hierarchy, an important development in my career, namely to
move from the managerial sector to the expertise one. Within this new entity, I must indeed evolve to become the
specialist on Qualimetry. The objective is a scientific and technical challenge, and also constitutes a strategic
industrial issue; it is to be able to quantitatively assess the quality of software development, from requirements,
through models, code, to the maturity of the software product. Certainly, despite the existing models and quality
measurement solutions, the technical optimization and correction activities linked to the integration and
qualification, then acceptance and maintenance phases still represent 65% of the total cost of a project; non-
quality costs 5% of turnover (source AFQP 2017 [1]). Therefore, it is essential for the industry to be able to invest
in research on this subject in order to improve control, productivity, and quality not only for developers but also
for the entire organization. The evaluations to be carried out thus relate to the product, here the embedded
software, but also to the development processes of this software whose performance is to be estimated.
Completing a doctoral thesis on these subjects will allow me to consolidate and develop my expertise, to establish
my legitimacy as an expert and to promote this scientific field within the company. The ISI team at LAAS specializes
in product-process-project modeling and is already conducting research in the field of software qualimetry, which
is why I naturally built my research project with this team.

The Qualimetry science introduced by G. G. Azgaldov in 1968 [2], is an exciting multidisciplinary scientific field
that combines technical and non-technical aspects, quantification through numerous metrics, analyzes and
decisions thanks to statistics and data mining, methods, processes, etc. Scientific literature confirms that the
subject is vast and indicates to us the need to develop an optimized solution for the embedded software, allowing
to connect the two poles: adhesion and evaluation. In addition, this field links a variety of roles and responsibilities
which are in line with my background and professional experience because I have been able to take on the role of
developer, developer manager, program manager, test architect and validation team manager.

My early career, as a research and development engineer in the Computer Science and Applied Mathematics
Department of the Institut Français du Pétrole, undoubtedly reinforced my deep interest in research. This is the
reason why I completed my training with a DEA in the GRAVIR laboratory (Joint Research Unit between CRNS, the
National Polytechnic Institute of Grenoble, INRIA and the Joseph Fourier University). Then I started a doctoral
thesis in one of the laboratories of the “Center for Research and Education in Optics and Lasers” of the University
of Central Florida -UCF- in the United States, accumulating a grant from the “National Institute of Health” and
one from Lockheed-Martin , before making the choice to join an American start-up. Moreover, during this period,
I co-authored several publications published in international conferences and journals, including four as first
author. The rest of my career through various companies, including Intel, allowed me to develop numerous
computer science skills. These skills were whether technological, around real-time systems, computer graphics,
image processing, electronic payment systems, operating systems, or not technological, on the processes and
methods of development and quality. This skillset, my scientific rigor and my taste for research give me all the
keys to achieve this doctoral thesis in the best conditions.

Consequently, my objective during this thesis is to be able to scientifically contribute to advancing the state
of the art through an optimized quality model, which connects and quantifies not only the embedded software
development while combining the adhesion sides and evaluation, optimization of necessary and sufficient metrics
- given the multitude of ways of measuring that exist.

Finally, I want to highlight that all this research work is performed in parallel to the current day to day work
required by the company, even if the goal is to maximize the overlap between this additional workload and the
research work.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

8 | P a g e

Abstract

9 | P a g e

Abstract

Today, when a company designs, develops and manufactures goods or services, it must not only target a high
level of quality for the products to satisfy customers, but also comply with many standards and regulations. This
is particularly true with transportation systems where we can name few reference standards and guidelines: the
ISO 26262 [3] addresses the functional safety of road vehicles and covers the system, hardware and software, the
ARP4754 [4] provides guidelines for the development of civil aircrafts, and the DO-178C addresses software safety
[5] in aeronautics. Furthermore, these safety guidelines impose to the company to be at the state of the art for
processes and methods, when designing and developing a new vehicle. Therefore, to ensure a high level of quality
while complying with these standards and regulations, it is necessary that all quality requirements resulting from
them are translated into a quality model. This model is the keystone for defining, evaluating, controlling, and
even predicting the quality of the system.

Our research specifically addresses automotive systems (or software, depending on the choices made above),
and in the context of its development, we therefore focus on the quality of embedded software in automotive
vehicles.

Following an exploratory study of the literature in the field of quality models for embedded software, it is clear
that there is an abundance of these models, but that there is no unified and operational solution that currently
meets our needs. Our problematic of applying qualimetry essentials to the development of embedded software
is therefore shifting towards reinforcement and unification of the activities to define, evaluate, control, and
predict the quality of automotive embedded software.

To deal with it, we first explore the concepts of quality and qualimetry - the science of quality quantification - and
establish a state of the art of quality modeling for software, including embedded software. The result of this study
allows to synthesize the knowledge behind these complex concepts. It also makes it possible to conclude on the
choice of qualimetry as the most relevant approach for this reinforcement and unification of the activities related
to the quality modeling of embedded software. This conclusion is motivated not only by both theoretical and
applied treatment of quality quantification, but also by the existence of a scientific community (e.g. civil
engineers, economists, car manufacturers, architects) actively contributing to qualimetry.

Then, having noticed the existence of a similarity between the forms of evolutions, or adaptations, in quality
models and in biology, during our exploration of quality modeling, we continue our study by rightly considering
biology as a source of inspiration for solution guidance in our research.

We thus create a classified collection of more than 450 quality models for the software, which then shifts our
problematic towards the choice of a quality model for embedded software in cars among this plethora of models.
To make this model selection, which we will call the reference model, we analyze and take into account the
constraints coming from standards, regulations, the automotive industry and stakeholders. Then, and after
having introduced the concept of polymorphism in quality modeling as a built-in evolution and adaptation
mechanism of quality models, the answer we bring to the problematic is to define and demonstrate concretely a
methodology for adapting and operationalizing this reference model for embedded software in automotive
vehicles.

Finally, as a consolidation of this answer, we determine a unified form of the reference quality model not, as
suggested by Zouheyr Tamrabet et al [6], as a single quality model for software products, but as a meta-model
serving as an aggregator of quality models for software products. The end result is the proposal of the genome
of the software quality model that we model in the shape of 7 chromatids.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

10 | P a g e

Résumé

11 | P a g e

Résumé

Aujourd'hui, lorsqu'une entreprise conçoit, développe et fabrique des biens ou des services, elle doit non
seulement viser un niveau de qualité élevé pour que ses produits satisfassent les clients, mais également se
conformer à de nombreuses normes et réglementations. C'est particulièrement vrai pour les systèmes de
transport pour lesquels nous pouvons citer quelques normes et directives de référence : la norme ISO 26262 [3]
traite de la sécurité fonctionnelle des véhicules routiers et couvre le système, le matériel et le logiciel, l'ARP4754
[4] fournit des directives pour le développement des avions civils, et la DO-178C traite de la sécurité des logiciels
[5] dans l'aéronautique. En outre, ces directives de sécurité imposent à l'entreprise d'être à la pointe de la
technologie en matière de processus et de méthodes, lors de la conception et du développement d'un nouveau
véhicule. Aussi, pour s’assurer d’un niveau de qualité élevé tout en étant en conformité avec ces normes et
réglementations, il est nécessaire que toutes les exigences de qualité qui en découlent soient traduites au sein
d’un modèle qualité. Ce modèle est la clef de voûte de la définition, de l’évaluation, du contrôle, et même de la
prédiction de la qualité du système.

Nos recherches adressent spécifiquement les systèmes (ou logiciels, selon les choix faits plus haut) automobiles,
et dans le contexte de leurs développements, nous nous concentrons donc sur la qualité des logiciels embarqués
dans les véhicules automobiles.

À la suite d’une étude exploratoire de la littérature des modèles qualité pour le logiciel embarqué, force est de
constater l’abondance de ces modèles, sans qu’il n’existe aucune solution unifiée et opérationnelle répondant
actuellement à notre besoin. Notre problématique d’appliquer les caractères essentiels de la qualimétrie au
développement du logiciel embarqué se déporte ainsi vers le renforcement et l’unification des activités de
définition, d'évaluation, de contrôle et de prédiction de la qualité des logiciels embarqués dans les véhicules
automobiles.

Pour la traiter, nous explorons en premier lieu les concepts de qualité et de qualimétrie - la science de la
quantification de la qualité -, et établissons un état de l'art de la modélisation de la qualité pour le logiciel, incluant
le logiciel embarqué. Le résultat de cette étude permet de synthétiser les connaissances qui se cachent derrière
ces concepts complexes. Il permet aussi de conclure sur le choix de la qualimétrie comme l’approche la plus
pertinente pour ce renforcement et unification des activités liées à la modélisation de la qualité des logiciels
embarqués. Cette conclusion est motivée non seulement par un traitement à la fois théorique et appliquée de la
quantification de la qualité, mais aussi par l'existence d'une communauté scientifique (par exemple, ingénieurs
civiles, économistes, constructeurs automobiles, architectes) contribuant activement à la qualimétrie.

Puis, après avoir remarqué l’existence d’une similitude entre les formes d’évolutions, ou d’adaptations, dans les
modèles qualité et dans la biologie, durant notre exploration de la modélisation de la qualité, nous poursuivons
notre étude en considérant à juste titre la biologie comme source d’inspiration pour l’orientation de solutions
dans notre recherche.

Nous créons ainsi une collection classifiée de plus de 450 modèles qualité pour le logiciel, ce qui déplace alors
notre problématique vers le choix d’un modèle qualité pour le logiciel embarqué dans les véhicules automobiles
parmi cette pléthore de modèles. Pour réaliser cette sélection de modèle, que nous dénommerons modèle de
référence, nous analysons et prenons en compte les contraintes provenant des normes, des réglementations, de
l’automobile et des parties prenantes. Ensuite, et après avoir introduit le concept de polymorphisme dans la
modélisation de la qualité comme mécanisme d’évolution et d’adaptation intrinsèque des modèles qualité, la
réponse que nous apportons à la problématique se résume à définir et démontrer concrètement une
méthodologie d’adaptation et d’opérationnalisation de ce modèle de référence pour les logiciels embarqués dans
les véhicules automobiles.

Enfin, en guise de consolidation de cette réponse, nous déterminons une forme unifiée de modèle qualité de
référence non pas, comme le suggèrent Zouheyr Tamrabet et al. [6], en tant que modèle qualité unique pour les
produits logiciels, mais en tant que méta-modèle servant d’agrégateur de modèles qualité pour les produits
logiciels. Le résultat final est la proposition du génome du modèle qualité du logiciel que nous modélisons sur la
forme de 7 chromatides.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

12 | P a g e

Table of Contents

13 | P a g e

Table of Contents
Acknowledgment ... 5

Preamble .. 7

Abstract .. 9

Résumé ... 11

Table of Contents ... 13

List of Figures.. 17

List of Tables ... 21

List of Acronyms ... 23

Chapter I. Introduction .. 25

Chapter II. Context and Problems .. 29

1. Introduction .. 29

2. A complex industrial research context with a need of quality .. 29

3. Quality modeling applied to embedded software development .. 31

a. Quality model creation or use studies .. 32

b. Quality characteristics or/and quality model identification studies ... 35

c. Reliability growth model creation or use studies ... 38

d. Miscellaneous work related to quality modeling in embedded software .. 39

e. Limits to existing quality modeling applied to embedded software development 40

4. Research questions ... 42

5. Threats to validity and discussions .. 47

Chapter III. Research Methodology .. 49

1. Introduction .. 49

2. Initial research methodology: qualimetry, classification and decision ... 49

3. Realigning our methodology: from theory to practice ... 51

4. Last step: construction of a meta-model .. 53

5. Threats to validity and discussions .. 54

Chapter IV. Quality, Quality Modeling and Qualimetry .. 55

1. Introduction .. 55

2. The essence of quality ... 55

a. Integral quality .. 56

b. Perceived quality .. 56

c. Quality perspectives and views .. 57

d. Quality dimensions and characteristics .. 57

e. Lagging and leading indicators .. 59

3. The essence of quality modeling ... 60

a. Quality model ... 60

b. Measurements .. 63

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

14 | P a g e

c. Scale types .. 64

d. Aggregation ... 66

e. Threshold .. 68

4. Key contributions to quality modeling of software ... 70

5. Qualimetry: the science of quality quantification ... 74

6. Contributions to Qualimetry ... 77

a. The “House of Qualimetry” ... 77

b. Polymorphism applied to quality model ... 80

c. Quality model distance formula ... 83

d. Measurement process .. 87

7- Threats to validity and discussions .. 90

Chapter V. Quality Model Classification and Selection .. 93

1. Introduction .. 93

2. Systematic literature review on software quality model .. 93

3. Software quality model classification ... 100

4. Contributions... 105

a. Cladistic as Classification Method of Software Quality Models .. 105

b. The first list of 492 software quality models .. 107

c. Software quality model landscape and the selection question .. 110

5. Threats to validity and discussions .. 114

Chapter VI. Quality Model Operationalization .. 117

1. Introduction .. 117

2. Operational challenges and issues with quality model ... 117

3. Practical solutions to the operational issues ... 121

4. Operational Contributions .. 126

a. Quality model operational use: The “Quality Thermometer” .. 126

b. Quality model operational development: a 6 stages process .. 129

5. “Quality thermometer” and “6-stages” process comparison against current ISO/IEC standards 134

6. Threats to validity and discussions .. 136

Chapter VII. Put into Practice ... 137

1. Introduction .. 137

2. Quality modeling on a real-world use case: embedded software for the automotive industry 137

3. Initiating quality model construction via the 6-stages process ... 139

4. Survey result analysis .. 143

5. Contributions... 146

a. Importance values and weight factors ... 146

b. Three quality models for four sub-systems: IVI, IVC, ADAS & FOTA ... 149

c. The polymorphic quality models .. 151

Table of Contents

15 | P a g e

6. Threats to validity and discussions .. 153

Chapter VIII. Meta-Model: Software Quality Model Genome .. 155

1. Introduction .. 155

2. Motivation and analogy with genetic .. 155

3. Software quality model genome meta-model construction algorithm .. 158

a. Construction methodology ... 158

b. Construction algorithm ... 161

4. Software quality model genome meta-model construction ... 165

a. List of quality models .. 165

b. List of genes with their variations ... 166

c. Relationship links between genes and chromatid identification .. 171

5. Contributions: The 7 Chromatids of SW Quality Model Genome ... 172

a. “General Utility” Chromatid (A08) .. 175

b. “Product Operation” Chromatid (A16) ... 177

c. “Product Revision” Chromatic (A17) ... 179

d. “Product Transition” Chromatid (A18) ... 181

e. “Supportability” Chromatid (A24)... 182

f. “Product in Use” Chromatid (B08) .. 184

g. “Software Product” Chromatid (B12) ... 185

6. Threats to validity and discussions .. 188

Chapter IX. General Synthesis and Research Perspectives ... 191

1. General synthesis .. 191

2. Research Perspectives ... 195

References .. 197

Annexes .. 237

Annex 1. Catalog of the main existing aggregation operators (from Chapter IV.3.d) 237

Annex 2. Main sequence, string, or similarity distance formulas ... 241

Annex 3. Example of distance calculation: diversity or polymorphism degree applied to ISO/IEC/IEEE
25010 and ISO/IEC 9126 quality models .. 243

Annex 4. Measurement process key document: Evaluation plan template ... 247

Annex 5. Systematic literature review results .. 253

Annex 6. List of the 492 quality models, from 1968 to 2019 .. 299

Annex 7. Project scorecard description .. 337

Annex 8. ISO/IEC/IEEE 25010 quality models [23] .. 343

Annex 9. Survey used against our real-world use case ... 349

Annex 10. Survey results ... 357

Annex 11. Automotive real-world use case analysis results: importance values, inclusion / exclusion
decisions and weight factors.. 363

Annex 12. Basic set of measures to enable the real-world use case quality models 369

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

16 | P a g e

Annex 13. Details about the eight selected software quality models for the software quality model
genome meta-model construction .. 377

Annex 14. Variations of quality characteristic genes .. 391

Chapter X. Synthèse de la Thèse en Français ... 399

1. Synthèse Générale .. 399

2. Perspectives de recherche .. 402

List of Figures

17 | P a g e

List of Figures
Figure 1 - Dissertation chapters mapped against the 4 research questions .. 27

Figure 2 - Growing ECUs number per year for luxury cars (source Crolla et al. [15], chapter 14, figure 2) 30

Figure 3 - Embedded systems in contrast to other computing systems (source Lepistös [34]) 32

Figure 4 – Ontology of quality model definition from IEEE 1061 [40] .. 33

Figure 5 - Use of type of information as a helper to find and associate metrics to quality requirements, based on
Guessi et al. [68] .. 37

Figure 6 - Overview of our early research flow breakdown ... 51

Figure 7 - Overview of our research flow breakdown: in red the technological locks, in green our contributions
 ... 52

Figure 8 - Kano's model of perceived quality [58] .. 56

Figure 9 - Ontology of main quality keywords ... 59

Figure 10 - Leading indicator composition, Roedler et al. [106] .. 59

Figure 11 - The DAP classification introduced by Deissenboeck et al. 2009 [120] ... 61

Figure 12 – Example of a definition model: the ISO/IEC/IEEE 25010 System / Software product quality model
[23] .. 62

Figure 13 – Example of an assessment model: Maturity sub-characteristics measurement extension of
ISO/IEC/IEEE 25010 System / Software product quality model [23] ... 62

Figure 14 - Boehm's quality model (1976) [42] with an example of cycle in the graph structure 63

Figure 15 - Illustration of the concept of reliability and validity of measures [135] .. 64

Figure 16 – The Chrisman's scales [139], an extension of the Stevens' scales (in boldface) 66

Figure 17 – “Continuous Preference Logic” operators and corresponding weighted power mean parameter used
in the “Logic Scoring of Preference” of Dujmovic and Bayucan [141] ... 68

Figure 18 - Threshold for risk acceptance and opportunities: from ISO/IEC 25022 [140] theory to practice 69

Figure 19 - Timeline of the key contributions to quality modeling of software ... 71

Figure 20 - The “House of Qualimetry” and its 6 pillars ... 78

Figure 21 - The "House of Qualimetry" and its 6 pillars in a nutshell ... 79

Figure 22 - Example of a result from the application of the two of the three pillars of quality model architrave
against “software product”: the ISO/IEC/IEEE 25010 quality models [23]. ... 80

Figure 23 - Polymorphism mechanism showcased with butterfly analogy: example of a generic butterfly and its
variety of butterflies with heredity links (source: [167] & [165]) .. 81

Figure 24 - Polymorphism mechanism showcased with butterfly analogy: example of temporal evolution
(source: [168]) ... 82

Figure 25 - Example of some differences between ISO/IEC 9126 & ISO/IEC/IEEE 25010 87

Figure 26 - Software product quality evaluation process defined by ISO/IEC 25040 [144] 88

Figure 27 - Measurement process model of McGarry et al. [154] ... 88

Figure 28 - Our measurement process proposal articulated over three phases and cadenced with SDLC 89

Figure 29 - The distinct stages of the systematic literature review process for study selection, with selected
document numbers and publication years .. 97

Figure 30 - Ratio of the two types (i.e., conference and journal) of selected studies .. 98

Figure 31 - Ratio of context (i.e., academic, industry, both) of the selected studies ... 98

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

18 | P a g e

Figure 32 - Selected conference and journal paper distribution over publication year ... 99

Figure 33 - Citation numbers of systematic literature review qualified papers per year; top bar graph,
cumulative citation number, bottom bar graph, normalized citation number per number of papers 99

Figure 34 - Distributions of studies per type of study .. 101

Figure 35 - Basic vs. Tailored quality model categorization (source: Thapar et al. [11]) 103

Figure 36 – Distributions of study classification or comparison criteria categories ... 103

Figure 37 - Comparison done by Snyder [207] on citation metrics difference between Google Scholar, Web of
Science publisher and the reality .. 104

Figure 38 - The software quality model classification elements organized over five themes: id, bibliographic,
definition, scope and structural ... 105

Figure 39 - Software Quality Model Clade based on a homology and five taxa... 107

Figure 40 - The 492 created and published software quality models per formalism and year wise 108

Figure 41 - The normalized citation numbers of the 492 published software quality model papers year wise .. 108

Figure 42 - The normal distribution related to the number of quality models per study paper 109

Figure 43 - Cumulative number of quality model citations in the 136 study papers year wise 109

Figure 44 - The 35 most cited (i.e., cited more than 5 times) software quality models in the 136 study papers,
order by chronologic order .. 109

Figure 45 - DAP type distribution of the 492 software quality model samples ... 111

Figure 46 - Formalism type distribution of the 492 software quality model samples ... 111

Figure 47 - Insight on the main prediction method distribution of the 492 software quality model samples 112

Figure 48 - Main quality perspectives, distribution of the 492 software quality model samples 112

Figure 49 - Nuance in quality perspectives, distribution of the 492 software quality model samples 113

Figure 50 - Scope distribution of the 492 software quality model samples ... 113

Figure 51 - Comparison between creation of new quality models and derived quality models over the 492
software quality model samples .. 113

Figure 52 - Frequencies of the 9 main issues identified by Thapar et al. [11], which impede the development and
use of quality models... 119

Figure 53 - The A-SPICE capability levels of process maturity [21] .. 123

Figure 54 - Mapping of practical solutions against the 16 issues preventing development and use of quality
models ... 125

Figure 55 - The software project scorecard including indicators and metrics for project, process, and product 126

Figure 56 – Inheriting of the practical solutions to the operational issues, the “Quality Thermometer” process for
project ... 128

Figure 57 - Visual display of quality level done via color coding associated to range decomposition coming from
ISO/IEC 33020 [138] ... 129

Figure 58 - Example of a 5 points Likert's scale .. 130

Figure 59 - Example of a 6 points Likert's scale .. 130

Figure 60 - 6-stages process for quality model development .. 132

Figure 61 - Algorithm of our analysis based on Fleiss and Cohen's kappa ... 133

Figure 62 – Over-The-Air adoption timeline of major automobile manufacturers (sources: [247], [248]) 138

Figure 63 - Example of FOTA working principle with IVC, IVI and ADAS ECUs ... 139

List of Figures

19 | P a g e

Figure 64 - The ISO/IEC/IEEE 25010 quality models: "System / Software product quality model" and "Quality in
use model" ... 140

Figure 65 - Example of a mapping between quality models, properties, measures and an automotive systems
and software (source and inspiration from ISO/IEC/IEEE 25010 [23] & ISO/IEC 25030 [251]) 141

Figure 66 - Survey extract: participant role and project .. 141

Figure 67 - Survey extract: the ranking choice of quality characteristics ... 142

Figure 68 - Survey extract: the ranking choice of quality sub-characteristics .. 142

Figure 69 - Survey extract: the final open question of the survey ... 142

Figure 70 - Response distribution per order of importance ranking .. 143

Figure 71 - The resulting IVI embedded software quality model; numbers in parenthesis are characteristic /sub-
characteristic weight factors ... 149

Figure 72 - The resulting IVC embedded software quality model; numbers in parenthesis are characteristic /sub-
characteristic weight factors ... 150

Figure 73 - The resulting ADAS & FOTA embedded software quality model; numbers in parenthesis are
characteristic /sub-characteristic weight factors .. 150

Figure 74 - The common quality model from which the other quality models are derived 151

Figure 75 - The secondary common quality model from which IVI and ADAS & FOTA quality models are derived
 ... 151

Figure 76 - The polymorphism tree structure with the five polymorphic quality models 152

Figure 77 - Genetic-Quality analogy: global overview with chromosome, chromatids, and DNA sequence (genetic
terminology is in green, quality terminology is in purple) ... 156

Figure 78 - Genetic-Quality analogy: detail overview with locus, sites, genes and alleles (genetic terminology is in
green, quality terminology is in purple) .. 156

Figure 79 - Genetic-Quality analogy: an example based on ISO/IEC/IEEE 25010 quality models 157

Figure 80 - Genetic-Quality analogy: Meta-model ontology .. 157

Figure 81 - The seven steps in the software quality model genome meta-model construction algorithm 158

Figure 82 - Example of "Supportability" chromatid computation with the main gene and some of its sub-genes
(testability, adaptability, maintainability, changeability and reusability); sub-genes are site names with
color background ... 160

Figure 83 - Example from the online Semantic Atlas: three synonym constellations for "efficiency" word as
quality characteristic (source: http://www.atlas-semantiques.eu/) ... 164

Figure 84 – Links between the 43 genes; chromatids are identified by and dotted arrows indicate a
relationship link that requires to take into account parent gene context .. 172

Figure 85 - From the 43 linked genes to a specific the chromatid linked genes and the corresponding site
sequence.. 173

Figure 86 - The 27 genes of “General utility” chromatid, with their respective links .. 175

Figure 87 - "General utility" chromatid quality characteristic sequence with its 27 genes and the 114 sites,
including sites likelihood ... 176

Figure 88 - The 17 genes of “Product operation” chromatid, with their respective links 177

Figure 89 - "Product operation" chromatid quality characteristic sequence with its 17 genes and the 85 sites,
including sites likelihood ... 178

Figure 90 - The 15 genes of “Product revision” chromatid, with their respective links 179

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

20 | P a g e

Figure 91 - "Product revision" chromatid quality characteristic sequence with its 15 genes and the 96 sites,
including sites likelihood ... 180

Figure 92 - The 10 genes of “Product transition” chromatid, with their respective links 181

Figure 93 - "Product transition" chromatid quality characteristic sequence with its 10 genes and the 43 sites,
including sites likelihood ... 181

Figure 94 - The 15 genes of “Supportability” chromatid, with their respective links ... 182

Figure 95 - "Supportability" chromatid quality characteristic sequence with its 15 genes and the 72 sites,
including sites likelihood ... 183

Figure 96 - The 11 genes of “Product in use” chromatid, with their respective links .. 184

Figure 97 - "Product in use" chromatid quality characteristic sequence with its 11 genes and the 34 sites,
including sites likelihood ... 184

Figure 98 - The 32 genes of “Software product” chromatid, with their respective links 185

Figure 99 - "Software product" chromatid quality characteristic sequence with its 32 genes and the 195 sites,
including sites likelihood (part 1 of 2) ... 186

Figure 100 - "Software product" chromatid quality characteristic sequence with its 32 genes and the 195 sites,
including sites likelihood (part 2 of 2) ... 187

Figure 101 - Overview of the software quality model genome meta-model composed of 7 chromatids 188

Figure 102 - General synthesis of the thesis research work and achievements .. 194

Figure 103 - Synthèse générale des travaux de recherche et des réalisations de la thèse 403

List of Tables

21 | P a g e

List of Tables
TABLE 1 - DETAILED DISSERTATION PLAN .. 28

TABLE 2 – SUMMARY OF STUDY KEY POINTS ... 41

TABLE 3 - OUR FIRST THREE RESEARCH QUESTIONS ... 49

TABLE 4 - SUMMARY OF THE 4 SCALES OF MEASUREMENTS DEFINED BY S. S. STEVENS [139] ... 65

TABLE 5 – NOMINAL SCALE-BASED RATING, ACCORDING TO ISO/IEC 33020 [136] .. 65

TABLE 6 - ORDINAL SCALE-BASED RATING IN PERCENTAGE VALUES, ACCORDING TO ISO/IEC 33020 ... 66

TABLE 7 - EXAMPLE OF KHADDAJ AND HORGAN [148] RELATIONSHIP CHART USED FOR POLARITY PROFILE 69

TABLE 8 - GENERAL RULES FOR QUALITY MODEL TREE DERIVATION .. 75

TABLE 9 - SPECIFIC RULES FOR QUALITY MODEL TREE DERIVATION ... 75

TABLE 10 - COMPARISON OF EIGHT MAIN DISTINCT APPROACHES SUPPORTING QUALITY MODEL DEVELOPMENT AND USE 76

TABLE 11 - EXAMPLE OF DISTINCT MEASURABLE OBJECTIVES USING FURPS QUALITY MODEL FOR EACH LIFE CYCLE PHASE (SOURCE:
GRADY AND CASWELL [85], FIGURE 11-7, PAGE 161)... 80

TABLE 12 - EXAMPLE OF LEXICAL AND SEMANTIC COMPARISON RESULT BETWEEN TWO CHARACTERISTICS FROM ISO/IEC 9126 AND

ISO/IEC/IEEE 25010 .. 86

TABLE 13 - INTERMEDIATE CALCULATION LINKED TO PREVIOUS EXAMPLE .. 87

TABLE 14 - LIST OF ELECTRONIC DATABASE SOURCES .. 95

TABLE 15 - SEARCH QUERY ELEMENTS: KEYWORDS VS. OPERATORS VS. SEARCH FIELDS .. 95

TABLE 16 – THE FIVE DIGITAL LIBRARY SEARCH QUERIES .. 96

TABLE 17 - INCLUSION AND EXCLUSION CRITERIA RELATED TO OUR SEARCH STRATEGY ... 96

TABLE 18 - MAPPING OF THE 136 PAPER STUDIES AGAINST THE SEVEN TYPES OF STUDY .. 100

TABLE 19 - MAPPING OF THE 136 PAPERS STUDIES AGAINST THE EIGHT CATEGORIES OF CLASSIFICATION OR COMPARISON CRITERIA 102

TABLE 20 – ALPHABETICALLY SORTED LIST OF MAIN POTENTIAL ISSUES THAT CHALLENGE DEVELOPMENT AND USE OF QUALITY MODELS

 ... 121

TABLE 21 - KAPPA INTERPRETATION (SOURCE LANDIS AND KOCH [245]) ... 131

TABLE 22 - COMPARISON BETWEEN THE "QUALITY THERMOMETER" PROCESS AND THE CURRENT RELEVANT STANDARDS: ISO/IEC

250NN SERIES AND ISO/IEC/IEEE 15939 ... 135

TABLE 23 - COMPARISON BETWEEN THE "6-STAGES" PROCESS AND THE CURRENT RELEVANT STANDARD: ISO/IEC 250NN SERIES AND

ISO/IEC/IEEE 15939 .. 135

TABLE 24 - EXTRACTED NUMBER OF SURVEY RESPONSES PER QUALITY IN USE QUALITY CHARACTERISTICS AND IMPORTANCE FOR IVC

AND PROJECT MANAGER ROLE ... 144

TABLE 25 – THE ASSOCIATED RANKING RESPONSE MATCHES BETWEEN ALL POSSIBLE RESPONSE COMBINATIONS; THE GREEN CELLS

INDICATE PERFECT MATCH .. 144

TABLE 26 – EXTRACTED NUMBER OF SURVEY RESPONSES PER SYSTEM/SOFTWARE PRODUCT QUALITY CHARACTERISTICS AND

IMPORTANCE FOR IVC AND ANY ROLE ... 145

TABLE 27 - SURVEY DATA ANALYSIS WITH COHEN Κ AND FLEISS Κ. COLORED CELLS HIGHLIGHT Κ BASED CHOICE FOR EACH ECU;
GRAYED CELLS HIGHLIGHT AT LEAST MODERATE AGREEMENT ... 145

TABLE 28 - GENETIC-QUALITY ANALOGY: TERMINOLOGY SUMMARY .. 158

TABLE 29 - ALLELE AND SITE EXAMPLE FOR "PORTABILITY" QUALITY CHARACTERISTIC .. 159

TABLE 30 - GENE COMPUTATION EXAMPLE FOR "PORTABILITY" QUALITY CHARACTERISTIC ... 159

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

22 | P a g e

TABLE 31 - OVERVIEW OF THE EIGHT SELECTED QUALITY MODELS FOR SOFTWARE QUALITY MODEL GENOME META-MODEL

CONSTRUCTION .. 165

TABLE 32 – THE 55 DISTINCT QUALITY CHARACTERISTIC GROUPS FROM THE EIGHT SELECTED SOFTWARE QUALITY MODELS 166

TABLE 33 - THE 10 MERGED QUALITY CHARACTERISTIC GROUPS (GREEN BACKGROUND CELL INDICATES A MERGED ENTRY) 167

TABLE 34 - LIST OF THE 27 SINGLE QUALITY MODEL GENES .. 168

TABLE 35 - LIST OF THE 16 MULTI-QUALITY MODELS GENES ... 169

TABLE 36 - THE RELATIONSHIP LINKS BETWEEN THE QUALITY CHARACTERISTIC GENES .. 171

TABLE 37 - EXAMPLE OF GENE 05 "MAINTAINABILITY" DETAILED WITH ALL ITS SUB-GENES AND SITES: ON THE LEFT SIDE, THE DIRECT

DETAILED SITE SEQUENCE, ON THE RIGHT THE DETAILED AND OPTIMIZED SITE SEQUENCE WITH SAME QUALITY COVERAGE 174

TABLE 38 - DEGREE OF SUBJECTIVITY FOR EACH CHROMATID OF THE SOFTWARE QUALITY MODEL GENOME META-MODEL 188

TABLE 39 - CATALOG OF THE MAIN EXISTING AGGREGATION OPERATORS, BASED ON DETYNIECKI [143], WAGNER [27] AND DUJMOVIC

& BAYUCAN [144] ... 237

TABLE 40 - EXAMPLES OF HAMMING'S DISTANCE COMPUTATION: RED CHARACTERS INDICATE DIFFERING CHARACTERS 241

TABLE 41 - EXAMPLES OF LEVENSHTEIN'S DISTANCE COMPUTATION: RED CHARACTERS INDICATE DIFFERING CHARACTERS 241

TABLE 42 - EXAMPLES OF DAMERAU-LEVENSHTEIN'S DISTANCE COMPUTATION: RED CHARACTERS INDICATE DIFFERING CHARACTERS

 ... 241

TABLE 43 - EXAMPLES OF JARO'S DISTANCE COMPUTATION: RED CHARACTERS INDICATE DIFFERING CHARACTERS 242

TABLE 44 - EXAMPLES OF JARO-WINKLER'S DISTANCE COMPUTATION WITH L = 2: RED CHARACTERS INDICATE DIFFERING CHARACTERS

 ... 242

TABLE 45 - LIST OF FILTERED PUBLISHED STUDIES RESULTING THE SYSTEMATIC LITERATURE REVIEW .. 253

TABLE 46 - MAIN RAW RESULTS FROM THE SYSTEMATIC LITERATURE REVIEW .. 262

TABLE 47 - MAPPING SYSTEMATIC LITERATURE REVIEW STUDIES WITH QUALITY MODELS ... 272

TABLE 48 - THE 492 DISTINCT QUALITY MODELS, FROM 1968 TO 2019 .. 299

TABLE 49 - DEFINITIONS OF THE DIFFERENT ELEMENTS OF THE PROJECT SCORECARD ... 338

TABLE 50 - LIST OF THE 27 SINGLE-QUALITY MODEL GENES WITH THEIR POSSIBLE VARIATIONS .. 391

TABLE 51 - LIST OF THE 16 MULTI-QUALITY MODELS GENES WITH THEIR POSSIBLE VARIATIONS ... 393

List of Acronyms

23 | P a g e

List of Acronyms

ADAS Advanced Driver-Assistance Systems

AHP Analytic Hierarchy Process

ANP Analytic Network Process

ATAM Architecture Tradeoff Analysis Model

BCM Body Control Module

CNRS Centre National de la Recherche Scientifique, The French Center for Scientific Research

COTS Component On The Shelves

DAP Definition, Assessment, Prediction

DEA Direction Engineering Alliance

ECU Electronic Control Unit

FMEA Failure Model and Effects Analysis

FOTA Firmware Over The Air

GQM Goal - Question - Metrics

HEVC Hybrid and Electrical Vehicle Controller

HIL Hardware In the Loop

ISI Ingénierie Système et Intégration (i.e., Systems Engineering and Integration)

IVC In-Vehicle Communication

IVI In-Vehicle Infotainment

LAAS Laboratory of Analysis and Architecture of Systems

MTBF Mean Time Between Failure

NLP Natural Language Processing

ODC Orthogonal Defect Classification

QM Quality Model

SFMEA Software Failure Model and Effects Analysis

SFTA Software Failure Tree Analysis

SIL Software In the Loop

SOQUAL Software Quality project

SQM Software Quality Model

SQuaRE System and software Quality Requirements and Evaluation (i.e., ISO/IEC 250nn serie)

SW Software

SWFMEA Software Failure Mode Effects Analysis

TRL Technology Readiness Level

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

24 | P a g e

Introduction

25 | P a g e

Chapter I. Introduction
This thesis took place at LAAS – CNRS laboratory, in the ISI team via an industrial partnership with Renault
Software Labs, a subsidiary of Renault SAS company. This research project, founded by Renault Software Labs,
had its prequel in Renault several years before the creation of this subsidiary in July 2017. However, since the
industrial research problematic (i.e., define and evaluate automotive embedded software quality) remained still
valid and open, and for the sake of consolidating the new company’s expertise, it was decided to foster the
training through research approach against that problematic. In the following paragraphs we are going to review
successively the global context, the problematic, the thesis objective with the expected results and the
dissertation plan.

Research, focused on systems and software, is performed in an international research laboratory jointly with
strong relationships with the industry.

LAAS, Laboratory of Analysis and Architecture of Systems, is an own research unit of CNRS. Over its 52 years of
history1, it has settled close and strong relationships with regional, national, and international industries,
sometimes resulting in the creation of common laboratories (e.g., the common laboratory between LAAS and
Lacroix company created on end of 2016 [7]). The scientific research in LAAS is organized around 6 departments,
composed themselves from 3 to 7 teams. And even if each of them has its own field of expertise, these teams are
all working on a wide range of systems: “integrated systems, embedded systems with real time and safety
requirements, distributed systems, mobile systems, autonomous and robotics systems, micro and nano systems,
biological systems” [8].
Thus, as a member of the ISI research team (“Ingénierie Système et Intégration” in English “Systems Engineering
and Integration”), part of the RISC group (“Réseaux, Informatique, Systèmes de Confiance” in English “Trustworthy
Computing Systems and Networks”), my research is currently focused on systems engineering applied to
embedded system and software, which are both aligned with the company domains.

An industrial context of a distributed company whose business is the development of embedded software in
the automotive sector.

Today, when a company designs, develops and manufactures goods or services, it must not only target a high
level of quality for the products to satisfy customers, but also comply with many standards and regulations. This
is particularly true with transportation systems where we can name few famous standards and guidelines: the
ISO 26262 [3] addresses the software functional safety in automotive, the ARP4754 [4] provides guidelines for
the development of civil aircrafts, and the DO-178C addresses software safety [5] in aeronautics. Furthermore,
these safety guidelines impose to the company to be at the state of the art for processes and methods, when
designing and developing a new vehicle.
So, in order to take into account these obligations from standards while targeting at the same time a high level
of quality for the products to satisfy customers, the international car manufacturer Renault SAS, initiated an
internal project called SOQUAL (i.e., SOftware QUALity) in 2015. As the project name indicates, the point of
attention is set on the software because the quality and customer satisfaction company department identified
the software as one of the most problematic elements in a car since software is especially developed by suppliers
and only a minority of the company employees is familiar with software concepts. It should be noted also that
software becomes more and more important, functionally, in terms of volume and criticality for vehicles [9],
which therefore reinforces the general need to pay attention to this element. Nevertheless, at the time Renault
Software Labs joined Renault SAS, only 3 main indicator definitions (i.e., coverage, completeness, and consistency
indicators), a delivery checklist and a document listing some software measurements were the results of this
project.

An arrival that changes the rules in the company embedded software development model and quality, but a
remaining problematic.

With the arrival of Renault Software Labs on July 2017, bringing on board software experts over all activities, from
specification to validation, and from methods to tools, Renault SAS makes clear that software development is
considered as one of the company strategic activities since then. In this context of software activity

1 On May 2020

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

26 | P a g e

reinforcement, it becomes also crucial to strengthen and unify the definition, assessment, control, or prediction
of the embedded software quality. To solve this problematic, we have first to understand and accurately define
what qualimetry, the young science of quality quantification, as well as quality, are.

We can rephrase this statement under our first research question:

Research Question 1
Is Qualimetry, as the science of quality quantification, the right approach and
what are quality and Qualimetry essentials?

The answers to this question not only aim to remove any ambiguity, popularize, and synthetize the knowledge
behind these complex concepts but also, they should confirm or deny the choice of Qualimetry as the right
approach to solve our problematic.

Then, strong with that knowledge and assuming that Qualimetry is the right approach, the next step consists in
modeling the quality of embedded software within the context of automotive embedded systems.

Through some early investigation, we notice the existence of many software quality models in the literature (e.g.,
Kläs et al. identified 22 quality models [10], Thapar et al. conducted a comparison analysis over a reference set
of 24 quality models [11], and Oriol et al. collected and used a set of 51 distinct quality models [12]). So rather
than creating a quality model from scratch, we may select the most appropriate ones from this pool of existing
quality models since embedded software is sub-set of software.

This leads us to our second research question:

Research Question 2
Considering the set of software quality models, how to identify and decide
which quality model is the most suitable for embedded software?

Therefore, we expect to structure the knowledge of quality models for software via a taxonomy, for its
classification, and a cartography, to depict accurately and precisely its landscape interpretation. Both
classification and interpretation should serve as the decision basis to identify which quality model is the most
suitable one to address our needs within our embedded software scope.

Nevertheless, selecting a quality model is not enough to use it either for quality definition, assessment, control,
or prediction. This requires some further actions that be summarized and generalized under the action of
operationalizing a software quality model.

This is our third research question:

Research Question 3 Considering a quality model for a software product, how to operationalize it?

This pivotal question addresses the transition from the theory space to the practice space. Indeed, identifying a
quality model was the first major step to resolve our global problematic, however, to claim that we answered the
problematic, we must be able to use that quality model for assessment, control, or prediction activities. Thus,
with that third research question, we expect to build a process to guide the operationalization of quality models,
avoiding all technological locks, and demonstrate it against a real-world use case.

At this stage we have answered to our problematic, considering the specific case of embedded software within
the context of automotive embedded systems.

However, it would be relevant to conclude our research investigation about the generalization of our approach
to a broader software scope. We note that the specificity of our answer for a specific scope occurs in the research
question 2 with the search for the most suitable quality model. Thus, that generalization result is directly linked
by confirming or refuting that a unique quality model for software product is appropriate.

This is our final research questions:

Research Question 4 Can we have a unique reference quality model for software product?

The expected result is either the unique reference quality model, if it is viable, or a meta-model as quality model
aggregator for software product.

Introduction

27 | P a g e

All these four research questions can be summarized under the thesis subject “Study of Qualimetry essential
applied to embedded software development” and they cadence the chapter sequence of this dissertation (cf.
Figure 1).

Figure 1 - Dissertation chapters mapped against the 4 research questions

Consequently, the detailed plan of this document, shown in TABLE 1, follows our logical reasoning, starting with
introductory statements, detailing context, problems and our research approach, then addressing sequentially
each research question, before ending with our closure statements, summarizing the research achievements,
contributions and the opening research topics.

Introductory statements
•Chapter 1, Introduction
•Chapter 2, Context and Problems
•Chapter 3, Research Methodology

Research question 1
•Chapter 4, Quality, Quality

Modeling and Qualimetry

Research question 2
•Chapter 5, Quality Model

Classification and Selection

Research question 3
•Chapter 6, Quality Model

Operationalization
•Chapter 7, Put into Practice

Research question 4
•Chapter 8, Meta-Model:

Software Quality Model
Genome

Closure statements
•Chapter 9, General Synthesis and

Research Perspectives

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

28 | P a g e

TABLE 1 - DETAILED DISSERTATION PLAN

Introductory statements

•Chapter 1, Introduction
•This is the general dissertation introduction, introducing the main research problematic, questions,
and dissertation plan.

•Chapter 2, Context and Problems
•In this chapter deals about the current industrial context, the vehicle and embedded software, and the
quality modeling for embedded software problems we aim to solve, aligned with company needs.

•Chapter 3, Research Methodology
•During our research we didn’t follow a straight line, and we had to reconsider our research approach at
a certain time. So here we explain the different steps of our research flow, the analysis technological
locks and decision we made (e.g., we decide to reuse, adapt quality model rather than create a new
one: in fact when we look for quality model, we can notice that most of cases are reusing, changing or
being closed to what have been done rather than a complete disruption).

Is Qualimetry, as the science of quality quantification, the right approach
and what are quality and Qualimetry essentials?Research question 1

•Chapter 4, Quality, Quality Modeling and Qualimetry
•This chapter aims to understand what is behind quality, quality modeling (including
characteristics/sub-characteristics, attributes, metrics; with few quality model example), qualimetry,
what are the essential characters, introduce some new concepts such as polymorphism that extend
quality modeling.

Considering the set of software quality models, how to identify and decide
which quality model is the most suitable for embedded software?Research question 2

•Chapter 5, Quality Model Classification and Selection
•Following previous section, we understand that quality model is a pivot concept, there is no reference
list of software quality models. So, if possible, how to classify and select quality model. This is
completed with a systematic literature review and creation of a quality model landscape cartography.

Considering a quality model for a software product, how to operationalize
it?Research question 3

•Chapter 6, Quality Model Operationalization
•Here, we investigate how we can move from theory to practice with quality model, what issues
prevent the quality model operation (development and use of quality model), and then review
practical resolution of these issues, with some processes for polymorphic quality model tailoring.

•Chapter 7, Put into Practice
•We apply now what we have seen above to solve the company needs against a concrete example of 3
ECUs and one transverse function. We use a survey based on a reference quality model (i.e., from
standard), identify consensus, build polymorphic quality models, and connect with metrics,

Can we have a unique reference quality model for software product?Research question 4

•Chapter 8, Meta-Model: Software Quality Model Genome
•We analyze this key question which lead us to rather have a meta-model as a quality model aggregator
for software product. Furthermore, we benefit from genetic knowledge to create a meta-model that
can used as the beginning quality model to construct polymorphic quality model, considering that
there are variations of same concept over multiple quality characteristics, for example ; we are
avoiding to discard contribution on quality models

Closure statements

•Chapter 9, General Synthesis and Research Perspectives
•This last chapter wraps-up this dissertation and discuss on some openings.

Context and Problems

29 | P a g e

Chapter II. Context and Problems
1. Introduction

Precisely understanding our current context and our object of investigation are fundamental, otherwise we have
no guarantee to look for the right answer to our problematic related to quality definition, assessment, and
control.

The purpose of this chapter is thus to first review the industrial context, the automotive industry and more
particularly the automotive embedded software, understanding the specificities of vehicle platform development
and the standards that must be considered. For instance, a vehicle system follows a development life cycle of five
years which is much longer than smartphone or computer system where the development life cycle is on a six
months cadence.

As a second step, an enquiry on the current state of the art on quality modeling for embedded software is
performed, identifying 33 distinct contributions in embedded system and software quality domains, covering a
period going from 1999 to 2020. This literature review aims to confirm not only the existing solutions but also the
actual gaps, or road-blockers, that prevent to solve our problematic.

Last, a discussion and critic analysis on this chapter ensure a proper overhaul and boundary identification of the
research content and findings.

2. A complex industrial research context with a need of quality
As we already highlighted, the context of this research is an industrial one, and more specifically the automotive
industry one. Indeed, our mother company -Renault SAS- designs, develops, and produces automotive vehicles.
To achieve such development and productization, the company is structured into multiple engineering
departments called Direction Engineering Alliance (DEA) (e.g., DEA-S for systems engineering department, DEA-L
for software engineering department, DEA-M for mechanical engineering department, DQ-SC for quality and
customer satisfaction department) where there exist many different job types with their specific vocabulary,
process and tools. Therefore, this situation often makes it complex to interconnect people, processes, and tools.

Regarding the product, from a systems engineering point of view, a vehicle platform is a complex system [13],
itself part of a system of systems (e.g., one use case that the Architecture Reference for Cooperative and
Intelligent Transportation [14] addresses is where multiple cars are connected within a road system and its
infrastructures). Furthermore, a vehicle platform can be considered as one generic complex system from which
several vehicle variants such as mini-compacts, crossovers, super cars, vans, sport utility vehicles, convertibles,
etc. are derived. As Fairley [9] described, this system is made of sub-systems classified under domains (e.g.,
chassis, body, infotainment, X-by wire, powertrain) connected together through a gateway and internal car
networks. These subsystems are themselves composed of many distinct parts (e.g., electronic control units (ECU),
electrical wires, mechanical elements) whose number and complexity depend on the type and version of a car.
For instance, a premium car may have more than 60 distinct ECUs while a low-cost car has around 30 ones, and
we see in Crolla et al. [15] (cf. Figure 2) that the overall number of ECUs is constantly growing over time. So, to
produce high volumes of those parts, the company must rely on suppliers. However, the part specification and
assembly remain of the responsibility of Renault SAS, and the company must be extremely cautious in their
specification to ensure that during multi-system assembly, all separately developed parts fit and work well
together. Unfortunately, suppliers are usually working at their own cadence and sometimes release ECUs (both
hardware and software) that works fine alone but not all together.

Like any transportation systems (e.g., car, airplane, train, trucks, construction equipment vehicle), the overall
product life cycle is also longer compared to other industries such as consumer electronics (e.g., computer,
smartphone, tablet) where the design, development and delivery cadence is about 6 months. For a car, it usually
takes five years since the initialization of the project to the serial production in the company factories. Moreover,
the overall car operation lifetime is about 20 years, which means that during 20 years since the first produced
car, the company must keep all materials required for any car reparation, corrective maintenance, or inquisition
(in case of accident with injury or death).

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

30 | P a g e

Figure 2 - Growing ECUs number per year for luxury cars (source Crolla et al. [15], chapter 14, figure 2)

This also means that quality of the produced car is fundamental, and has some strong economic impact,
particularly in the case where quality level is not sufficient to handle such long lifetime period. In addition to this
requirement on quality, the company has legal responsibility for any produced vehicle which are reflected in
standards (e.g., security and safety [3], safety in autonomous vehicle context [16], cybersecurity [17]) and
regulations (e.g., European control on homologation [18] linked to the tighten rules for safer and cleaner cars, the
European Union General Data Protection Regulation [19] for personal data protection). All those requirement
assessments are centralized and tracked by the DQ-SC department which uses customer satisfaction as main
quality driver in addition to the compliance to these regulations and standards.

Coming back to our current problematic, the focus is set on the software embedded in the embedded systems
that are ECUs.

Prior to Renault Software Labs integration, that embedded software was considered only as a subpart of the
systems engineering deliveries. Thus, embedded software, developed by suppliers, was delivered as part of ECUs.
Furthermore, embedded software quality was previously tracked as part of system quality through SIL (simulation
in the loop) or HIL (hardware in the loop) intersystem tests. Since then, the company priorities evolved with the
current age of industrial revolution (i.e., the age of software and digital [20]). These priorities are then put on car
electrification, connected car and services, and justify the need of recognizing the importance of software in front
of systems. Indeed, with connected services for example (e.g., Firmware Over The Air (FOTA)), software is also
offboard (i.e., not in an ECU), and by consequence the software becomes highly configurable or changeable, at
the opposite to the hardware. In addition, company internal teams develop either models or embedded software
(e.g., FOTA source code) that are delivered to suppliers for integration in their own embedded software. The
responsibility and process of development is consequently more complex and previous company approach
doesn’t fit anymore.

Fortunately there is a standard for automotive software development process: Automotive -SPICE [21] (A-SPICE).
A-SPICE focuses on automotive software development2, management and support processes, and improvement
and assessment of the process capability level. It is neither a product quality assessment process, nor a product
quality control process, but its guidelines recommend the use of ISO/IEC/IEEE 25010 [21]3 software product
quality model (i.e., product view) and quality-in-use model (i.e., user view) to support quality assessment and
control activities. Consequently A-SPICE guidelines must be followed for the development of all ECU embedded
software. Note, ISO/IEC/IEEE 25010 is part of the ISO/IEC 250nn series [25], named System and software Quality
Requirements and Evaluation (SQuaRE) which aim to cover quality requirement definition and evaluation.

To summarize, the automotive industrial context jointly with the vehicle as complex system, the development
model with suppliers, and the current standard and regulation requirements are raising the overall complexity of
our problematic to define, assess, control, or predict embedded software quality.

2 The software development process is based on V-model [22].
3 In the previous Automotive-SPICE version, up to 2.5, the recommendation was to use ISO/IEC 9126 [24].

Context and Problems

31 | P a g e

Moreover, compare to pure academic research, the research performed within an industrial context requires to
address a concrete problem that a company has, and consequently the company expects to be able to use and
apply these research findings. In other words, in this type of context, one unavoidable aspect of the solution
under investigation is the operational aspect.

In our research work we must thereby address any issues that prevent practice of theory, which is not at all a
straightforward matter when dealing with quality because quality is an elusive target as rightly highlighted
Kitchenham and Pfleeger [26].

Therefore, in this context it is important to have a unified, operational, and appropriate way to define, assess,
control, or predict quality of embedded software.

3. Quality modeling applied to embedded software development
In section 2, we learnt about the complexity of the industrial context of this research work with a clear need of
quality for the developed embedded software. The goal of this section is to assess whether we already have a
viable solution to our current problematic. In the negative case, we should be able to identify the gaps that we
have then to address. So, after a clarification on our problematic about quality modeling applied embedded
software development, we perform a state-of-the-art analysis on quality modeling during the development of
the embedded system or software. This focus can be on process, specific development stages and/or product.

Today, there exists a myriad of embedded systems, more or less complex, from smart watch to printer, from
internet of thing to car, rocket, or airplane. They are not only part of our everyday life but also are the depiction
of the current technological revolution: “the age of software and digital” [20]. To succeed in this revolution, it is
of first importance to define, assess, control, or predict the quality level of the software embedded in such
systems.

This is achieved by applying properly quality modeling in embedded software development. Thus, quality
modeling consists in the build, reuse, or adaptation of a quality model composed of quality characteristics / sub-
characteristics, sometimes named attributes, together with metrics with the aim to define, assess, control, or
predict quality [27] of a specific object of interest. Quality characteristics / sub-characteristics represent the
qualitative side of the model while metrics represent the quantitative one. However, we remark that metrics are
often missing at least partially from published quality models, preventing the quality models to be operational.
Fortunately, one way to operationalize such a model is to use the Goal-Question-Metrics (GQM) paradigm [28].
Indeed, to measure quality characteristics / sub-characteristics, GQM starts by assigning goal to each
characteristic/ sub-characteristic. Then the goals are derived into sets of questions, themselves completed with
the proper metrics to answer to these questions. Unfortunately, the problem of defining quality characteristics /
sub-characteristics is not solved with GQM.

As opposed to traditional computing systems shown in Figure 3, embedded systems have specific runtime
constraints (e.g., safety, security, limited resources, real-time) and a specific application domain [29]. Both must
be taken into account in the quality modeling applied to the embedded system life cycle stages [13], and which
include software development. These specificities are expressed via quality requirements, characteristics / sub-
characteristics, attributes, or again quality aspects, and synthetized into quality model.

Thus, to investigate the research question associated to our problematic, “how quality modeling is applied to
embedded software”, we performed a review of the current state of the art in this field. To be more precise, we
performed an exploratory literature review [30], a method close a systematic mapping study [31],to seek what
already exist on “quality model” and “embedded software”, or “embedded systems” concepts over the software
engineering online digital libraries4 and the scholarly literature search engine, Google Scholar.

We took 1968 as starting year for our investigation because this is the publication year of the two first published
quality models in software engineering, term which emerged only few years before (1965) [32]: the quality
assessment model of Rubey and Hartwick [33] and the reliability prediction model of Shooman [34].

4 Ieeexplore, ACM digital library, Springer, Scopus, and Web of Science

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

32 | P a g e

We found 33 main relevant research works published over the period from 1999 to 2020, and organized around
four research focuses:

- quality model creation or use – for 42.4% of the studies,
- quality characteristics or/and quality model identification - for 30.3% of the studies,
- reliability growth model creation or use – for 15.2% of the studies,
- miscellaneous work related to quality modeling in embedded software – for 12.1% of the studies.

The following sections deep dive over each research focuses.

-

Figure 3 - Embedded systems in contrast to other computing systems (source Lepistös [35])

a. Quality model creation or use studies
Interestingly the principal research focus of these 33 studies, “Quality model creation or use”, is close to our
research question. Indeed, it deals with the analyze of the embedded system and software of interest, the build
of an appropriate quality model, and optionally with how to operate it.

As early as 2006, Alvaro et al. [36] designed a software Component Quality Model (CQM) focused on component-
based software development for embedded systems. That study was performed under the perspective of
reducing development costs and life cycles which can be achieved thanks to the reuse capability of software
component, especially the component developed by third parties. CQM was based on ISO / IEC 9126 [24] and
was composed of 7 quality characteristics, 29 sub-characteristics and 46 metrics. The authors decomposed sub-
characteristics into the ones observable on “runtime” (e.g., stability) and the ones observable during “life-cycle”
(e.g., testability). They also added marketability quality characteristic because they jugged about its importance
for a certification process and the credibility it could bring to the component customers.

Completing this work linked to embedded software component, Carvalho and Meira [37] refactored CQM to
came up with Embedded Component Quality Model (ECQM) and built a quality verification framework within the
scope of certification. The authors aligned their work on ECQM with ISO / IEC 25000 SQuaRE [25], keeping the
same 7 quality characteristics than CQM but with only 26 sub-characteristics, and used GQM to identify the
corresponding set of metrics. Regarding the new quality verification framework, Carvalho and Meira introduced
the Embedded software component Maturity Model, a maturity model similar to Capability Maturity Model for
software [38]. Thus, depending on environment, safety; security, economic and domain potential damage and
risk, the right maturity level for each component is selected, and then the evaluation technique(s) for each quality
characteristics is applied accordingly. We note that the overall framework process lacked maturity even if the
authors highlighted that it was used against Brazilian industry without any further detail.

In parallel, Choi et al. published [39] (2008) the Samsung software Component Quality evaluation Model (SCQM)
to evaluate embedded software components for Digital TV systems. This in-house quality model was based on
quality model definition from IEEE 1061 [37] (cf. Figure 4 showing the corresponding ontology where quality is
defined as one or more quality factors, themselves refined into quality sub-factors and finally into metrics), and
several well-known quality models such as ISO / IEC 9126, McCall [41] & Boehm [42]. The authors identified a list
of 8 quality characteristics jointly with 22 sub-characteristics but provided only few metrics as example to
illustrate their work. During the creation of SCQM, the authors used expert Delphi method to identify strongness

Context and Problems

33 | P a g e

relationships (i.e., strong versus weak) between characteristics and sub-characteristics. Consequently, they
organized the sub-characteristics into two categories, common (i.e., invariant) and variance (i.e., depending on
component quality requirements), where “variance” finally represents the candidate sub-characteristics used to
tailor the SCQM depending on the quality requirements of the targeted Digital TV Systems.

Figure 4 – Ontology of quality model definition from IEEE 1061 [40]

On another type of embedded system, Peper and Schneider were investigating the matching of quality of
ambient intelligence systems from a quality of service point of view [43] (2009). Indeed, this embedded system,
composed of software components, is an ad-hoc computer system (i.e., adaptive, distributed systems, acting like
ad-hoc network) and therefore it provides not only services but also uses services from other ad-hoc systems.
Those services must be negotiated between service provider and the client in term of provided versus requested
functionality and quality. So, the authors suggested a service quality reference model for the matching quality
problem between service provider and client components: they modeled quality (e.g., with a video system: video
size, video rate, audio rate) as discretized into small number of intervals or values, defined per feature which can
be similar, or shared, over other features.

Over a series of studies where the quality modeling apex was the DeLone & McLean success model [44], Jeong
et al. aimed to adapt this model from its original scope, information system, to the software of embedded
systems. They chose this model because of its frequent use by large audience, and the fact that it shows factors
that influence organization. In the first study [29] (2012), the authors noticed that embedded systems, as opposed
to desktop systems, deliver functionalities for specific domain, and also that their software can be considered as
a lightweight component software. So, the authors replaced the three original quality input factors (information,
system and service quality) of DeLone & McLean success model by a 5 quality factors (information, system,
function, efficiency and maintenance quality) with the corresponding sub-factors, linked to lightweight
component software. They continued in the next study [45] (2012) by regrouping the success model factors under
three categories: system design, system delivery and system outcomes. By system design, they considered
requirements of embedded system that a system designer must take into account such as interface, data flow,
or quality of services, and redefined three quality input factors, with their own sub-factors: system quality,
information quality and operation quality. The authors moved use and user satisfaction factors under system
delivery, and individual and organizational impact under system outcomes. With the next study [46] (2012), Jeong
et al. used ISO / IEC 9126 quality model to strengthen the quality input factors of the success model. They defined
four criterions and sub-criterions. We retrieved system quality and information quality from DeLone & McLean
success model but also two new ones: software process quality, representing a large part of ISO / IEC 9126 sub-
characteristics, and security quality. Finally, with the last study [47] (2013) of this series, Jeong took into
consideration an additional aspect of embedded software: software as a service (SaaS) with the cloud computing
environment. Therefore, he identified and completed sub-criterions of system quality, information quality,
software quality and security quality based on attributes for SaaS in cloud computing. Unfortunately, in none of
these studies, the authors neither gave details on their construction choice, provided metrics, nor explained how
to operate the model.

From another perspective Mayr et al. [48] (2012) investigated the creation of a code based quality model for
embedded systems (i.e., ESQM). They noticed that existing solutions didn’t provide any quality model that can
be easily operated for assessment or control activities. So, in order to create such model with enough
operationalization, they defined a four stages process jointly with the use of 336 metrics. They chose C and C++
code metrics evaluated with static analysis tools because their assumption is that embedded software is mainly
written in these two languages. The first stage of this process is the quality requirement elicitation. They start
from the embedded system and software characteristics to identify and group requirements linked to quality. In
the second stage, these requirements are organized hierarchically, and code metrics are identified and assigned
to each of them. With the third stage, they aim to associate these requirements and metrics to a higher level of
quality characteristics, which they called “quality aspect”, targeting high level management. The quality aspect is
achieved thanks to a mapping between these requirements and metrics with ISO / IEC 25010 quality view. To

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

34 | P a g e

consolidate the model, they introduced “factor” concept, and more particularly “product factor”, which is similar
to Dromey’s quality carrying properties [49], used as the central element connecting requirements, quality
aspects and measures. The purpose of the last stage is to finalize the quality model operationalization with
threshold definition and weighted aggregation, based on Trendowicz et al. [50] software quality assessment
method named SQUAD, a 5 steps approach using multi-criteria decision analysis. We noticed also that each stage
last step consists in a quality gate validation where few “experts”, with a focus on completeness and validity
quality factors and model, review the stage result. Finally based on their feedback, some adjustments are
performed before moving to next stage. So, even if this approach is interesting with the operationalization
assessment, similar to Trendowicz et al. method, the generalization to any embedded system is not straight
forward and obvious since it started from the assumption of software is written in C or C++ and then favored
code metrics. Moreover, the overall process is quite heavy to deploy, dependent of the set of selected “experts”.

Another attractive contribution is the creation, by Ahrens et al. [51] (2013), of a quality model, including its
metrics, for objective evaluation of automotive software architecture. To define such quality model, the authors
relied on general reference models such as McCall, Boehm, and ISO / IEC 9126 (see Annex 13 for details about
these quality models), as well as on some architecture quality characteristics. The result is a quality model dealing
with operating conditions (i.e., conformity, functionality, reliability), production costs (i.e., efficiency) and
development costs (i.e., portability, mutability, reusability). Moreover, the authors proposed to close the gap
between informal, qualitive evaluations methods, and objective quantitative measurement by comparing quality
model result against a previous, or reference architecture result. Therefore, unlikely most of published
contributions which have either quality model or metrics, Ahrens et al. ‘s contribution is an operational quality
model that must be used to compare software architecture against a previous, or reference one to improve it,
but unfortunately it cannot be used to assess automotive architecture quality.

On 2015, Al-Sarayreh [52], introduced a generic safety requirement model for any embedded and real-time
software product where safety aspect is mandatory. This requirement model is based on 8 entity types which can
be used as a basis for quality measurement, especially functional size. We note that the author didn’t refer to any
software related safety standard like ISO 26262 where some specific software functional metrics depending on
safety level (e.g., ASIL for automotive), for instance, can be found. Moreover, that generic safety requirement
model is not a quality model even if it can be considered as input for a quality model.

One year later, Silva and Vieira [53] introduced an innovative approach for quality modeling of satellite systems.
They extended Orthogonal Defect Classification (ODC) [54] to cover embedded system, and more particularly
critical ones with safety consideration. ODC is an efficient root cause analysis (i.e., it is 10 time faster compared
to traditional root cause analysis) which allows to classify defects over three opener section attributes (i.e., defect
removal activities, triggers, impact) and five closer section attributes (i.e., target, defect type, qualifier, age,
source), and then get measures of quality linked to these attributes. Thus, the authors extend these attributes to
include embedded system support (e.g., with safety), and their corresponding quality assessment was based on
defect classification attribute measures and not from a quality model other than defect based.

Next, on 2017, Garces et al. [55] achieved a systematic mapping study on software of Ambient Assisted Living
(AAL) for disabled or elder people. Due to its technical nature, an AAL is like an embedded system and its purpose
falls under one the following scopes:

- independent living,
- health and care,
- occupation in life,
- recreation in life.

So, the goal of that literature review was to identify quality attributes and quality models defined, used, or
assessed for AAL software. Over the 27 studies they found, Garces et al. retrieved only one quality model,
OptimAAL based on ISO / IEC 9126 and ISO / IEC 25010, composed of reliability, availability, safety, integrity and
maintainability, but this model was neither suitable for quality assessment, nor quality prediction of AAL
software. In parallel, they collected 97 quality attributes where the most important ones were security, freedom
from risk, usability, reliability, adaptivity, availability, fault tolerance and performance efficiency. To structure

Context and Problems

35 | P a g e

these quality attributes into a quality model, the authors defined a mapping algorithm to map these attributes
against first ISO / IEC 25010 quality models and then against ISO / IEC 9126 quality models and metrics, adding in
passing adaptivity quality characteristic to ISO / IEC 25010 existing quality characteristics. Their reinforced this
result by defining a taxonomy based on the four AAL scopes. The resulting quality model was the preliminary
version of the authors’ Quality Model for Ambient Assisted Living Systems (QM4AAL) [56]. Nevertheless, the
authors highlighted the need to get industry involved to increase the maturity of the quality attributes and
models, especially that out of all these 27 studies, only one was evaluated in industrial context.

The last relevant contribution with regard to “quality model creation or use“ theme is the definition of a Software
User Review Defect Corrective Model (SURDCM) from Kasiviswanathan and Ramalingam [57] on 2020, exercised
against a 3D-drawing application. In this paper, the authors are considering that a high-quality product means
that that product very few bugs, and consequently one of the major areas which requires strong attention to
produce quality product is requirement analysis: good quality requirements are essential. So, SURDCM is done
via a process starting from “customer requirement” up to “deployment and maintenance”. The idea is to perform
first an analyze with Kano model [58] (i.e., satisfaction versus unsatisfaction based on observer, or customer
perception) to understand the impact of each requirement against customer. Then, based on this analysis,
completed with a correlation coefficient of customer satisfaction (i.e., extent of satisfaction and extent of
dissatisfaction) and Saaty’s Analytic Hierarchy Process (AHP) [59], the requirement prioritization is finalized.
Indeed, AHP is an expert analysis process which evaluates pairs of alternatives (in this case the requirements)
based on criteria (in this case they are performance, design, security, and usability) to determine the most
important alternatives thanks to eigenmatrices, values, vectors and consistency index. The requirements are then
designed and implemented relatively to their priority. The last SURDCM step is a Software Failure Mode Effects
Analysis (SWFMEA)[60] which is triggered once the code is generated and entered the testing phase. SWFMEA is
a failure mode analysis of the impact of both functional and non-functional software failures which helps to find
any required corrective or evolutive action on requirements. So, in this contribution, the requirement quality
evaluation is not achieved via a quality model with metrics but rather through a complex process whose purpose
is to enhance requirements depending on failures.

We learnt with these studies related to “Quality model creation or use” that there is no obvious nor universal
solution for modeling quality of embedded software. Some studies focus on requirements while some others on
architecture or implemented code, but there is also no quality model usable during all development stages.
Moreover, only few contributions investigate the quality model reuse, or the operationalization by providing
metrics and a process, often complex to deploy, for objective, or subjective, quality evaluation.

b. Quality characteristics or/and quality model identification studies
“Quality characteristics or/and quality model identification” is the second principal research focus of the studies
we identified. This corresponds implicitly to a subset of our main research question because we are identifying
what model or quality characteristics is belonging to embedded software.

The first and earliest contribution on this research focus was done by Wijnstra [61] on 2001. He looked for
identifying the quality attributes and aspects of medical systems which are composed of devices made of
hardware and embedded software. He remarked that quality attributes can be derived into system, hardware,
mechanical and software aspects, from an architecture point of view, and by consequence, quality attributes and
aspects are both complementary. Thus, Wijnstra identified a list of seven quality attributes for embedded system
in medical domain (reliability, safety, functionality, portability, modifiability, testability, serviceability) with three
specificities belonging to modifiability for medical (configurability, extensibility and evolvability) and completed
with various aspects that must be took into account: for instance, operational, start-up, shutdown, error handling,
graceful degradation. Finally, even if there is a clear quality attributes for embedded systems with relevant
explanations, neither quality model, nor metrics are given in this contribution which foster its replication or
operationalization.

One year later, Purhonen [62] sought to identify quality attributes for digital signal processing embedded
software in wireless system. The author successfully identified three main quality attributes (performance, cost
and variability) which he derived from quality goals coming from either standards, customers or development

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

36 | P a g e

source. Furthermore, he used Barbacci et al.’s taxonomy [63] to classify these quality attributes. This taxonomy
is organized over 3 factors which are stimulus (i.e., events causing architecture response or change), response
(i.e., measurable or observable quantities to assess architecture) and architectural (i.e., parameters that define
architecture decision). Then, despite that software development for digital signal processing for wireless systems
is quite similar to some other embedded software developments, the resulting quality model in this contribution
covers only three quality attributes, without any metrics, and unfortunately the use of a taxonomy for its
refinement was not sufficient to generalize it to any embedded software.

Another relevant contribution in the field is the investigation done by Akerholm et al. [64] (2004) to spot the
most important quality attributes for component-based software embedded into vehicular systems (i.e., cars,
construction equipment vehicles, heavy trucks, trains). The authors’ methodology can be summarized over three
main steps. The first one was to build a list of relevant, to vehicular systems, quality attributes collected from
existing literature. These quality attributes are mainly associated to non-functional properties, also called extra-
functional properties, or -illities. The second step consisted in interviewing experts from several companies to
sort that list, creating groups from the most important ones to less important ones:

- safety, reliability, predictability
- usability,
- extendibility, maintainability,
- efficiency, testability,
- security and flexibility.

In the last step, the authors used Larsson’s classification [65] against these 10 quality attributes to complete their
description. This classification is based on the categorization of on how a quality attribute could be facilitated by
component technology, and where support of a quality attribute should be implemented. Thus, the classification-
based description can be one or a combination of: directly composable, architecture related, derived attribute,
usage dependent and system environment context. This list of quality attributes cannot serve as it is for
embedded software quality evaluation, but rather as a starting point for quality model definition of vehicular
systems.

On 2008, Paulitsch et al. [66] aimed to analyze the aerospace domain to build a list of non-functional
requirements for avionic embedded systems. These non-functional requirements are assimilated to embedded
system quality characteristics, or attributes, and therefore must be reflected in both hardware and software
architecture of such systems. Thus, the authors came up with a list of 10 requirements related to dependability,
performance, development, and operation (i.e., availability, diagnosis, integrity, maintenance, obsolescence,
temporal performance, testing, safety, schedulability, and security). Paulitsch et al. indicated also that this list is
not exhaustive but together with their analysis and explanations, they have provided a basement to be used and
integrated in further work related to non-functional requirements in avionic context.

At the same time, Sherman [67] shared a list of 30 quality attributes for embedded systems, where few of them
were specific physical attributes (e.g., weight, physical size). What makes this study interesting is the approach
that the author used to establish this list. Indeed, he identified quality attributes based on the evaluation of 11
embedded system architecture trade studies made with Architecture Tradeoff Analysis Model (ATAM). These
ATAM studies were performed with the main system, hardware, and software stakeholders to review
architecture solutions and then decide which architecture design tradeoff to choose. So, Sherman used those
architecture decisions to find which quality attributes were cited, and consolidate their knowledge with their
citation number, the number of studies where they were referred, and whether or not their definition changed
between studies (this happened for two third of the attributes).

To continue on embedded system architecture, Guessi et al. [68] (2012) led a systematic literature review [31]
to identify quality requirements and constraints for reference, and software, architectural description of
embedded systems. The authors found a set of 12 architecture concerns, declined into quality requirements:
adaptability, correctness, dependability, fault-tolerance, interoperability, knowledge reuse, maintainability,
performance, power consumption, reliability, safety, and timing. In addition, they remarked the existence of
architecture information types (components, interactions, interfaces, synchronization, timing, configuration,

Context and Problems

37 | P a g e

constraints, dataflow, processes, threads, connectors, concurrency, abstraction layers, concepts, design decision,
events, states, behavior) that they decided to associate with these quality requirements. They completed their
survey with an analyze of the most frequent architectural language description (e.g., the two main ones are the
Unified Modeling Language (UML) and Architecture Analysis and Design Language (AADL)).

We note that based on Guessi et al.’s contribution, we have an easier way to find and associate metrics to quality
requirements through these types of information. We depict our proposal in Figure 5 where types of information
act as the central joint between quality requirements and metrics. Indeed, one or more types of information (e.g.
interfaces, timing, dataflow, events, states) can be associated to a quality requirement, and each type of
information can be measured thanks to one or several metrics.

Figure 5 - Use of type of information as a helper to find and associate metrics to quality requirements, based

on Guessi et al. [68]

Another relevant systematic literature review is the one from Oliveira et al. [69] (2013). Their research objective
was to get a panorama about quality models and quality attributes defined, assessed, or used for embedded
system. The authors identified 11 studies where 27.3% of them proposed a quality model while the other 72.7%
concentrated only on quality attributes. Among all the information they extracted from their analysis, we learn
that 54.5% of studies were developed from document analysis (e.g., systems requirements), 36% from personal
experience and 27.3% from literature reviews. Also, 45.4% of the study contributions were evaluated through
academic or expert opinion, 27.3% via their application in embedded system, and the remaining 27.3% gathered
no clue on an evaluation method. In term of quality attributes, the authors identified 18 attributes (% of presence
in the studies):

- 91%: maintainability, reliability,
- 64%: security, safety, functionality, efficiency, portability, testability,
- 45%: performance, usability,
- 36%: availability, extensibility, reusability, cost,
- 27%: fault tolerance, recoverability / repairability, interoperability, flexibility.

The authors found also that defining quality model and attribute is complex task since it requires multiple sources
of information and there was still need for a quality model to be widely accepted or adopted. In fact, there was
no strong proposal from any of those studies, and only two studies showed some industrial evidence of the use
of their quality model and attributes.

In the continuity of the study series, we saw in the section a, where the assumption was completion of DeLone &
McLean success model, Jeong et al. [70] (2014) search identified what they considered as the most important
quality characteristics, as well as their weights, for secure embedded system. They used the Analytic Network
Process (ANP) method to compute the value of the degree of influence for each quality characteristics. AHP and
ANP are two closed methods, both based on the evaluation of pairwise importance relation between each
characteristic, and then on eigenmatrix, values and vectors to determine importance of quality characteristics.
However, AHP assumes the independence of the factors used for decision making which is the opposite behavior
the authors looked for. We note that surprisingly the authors didn’t include any security related characteristic for
such secured embedded system, but rather they tried to see which characteristics may be the most important in
this context.

Bianchi et al. [71] (2015) contributed as well to this topic but from a slightly distinct system perspective: they
focused on system of systems. And because a system of systems often includes embedded systems (e.g., internet
of objects / things, automotive, avionic, medical), we decided to include their contribution. So, over a systematic
literature review, the authors aimed to determine what quality attributes are associated to a system of systems
mainly due to its specific architecture, and to the interdependencies or interoperability relationship between the
different systems that compose it: for instance, safety or reliability are complex to determine since any systems
can impact in different ways and multiple workarounds can exist also. In their survey, Bianchi et al. retrieved from
the literature a list of 56 quality attributes where the five most cited are security, interoperability, performance,

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

38 | P a g e

reliability, and safety. Regarding their application domains, the-most frequent ones are military, IT systems, smart
grid, and automotive. The authors consolidated their survey by determining the amount of these quality
attributes which are present in ISO / IEC 25010, actual standard reference for system and software quality model.
They figured out that 48% of them are not present in this standard, nevertheless these missing attributes are not
the major cited ones, and it appeared that complex interdependencies of attributes are hardly achievable with a
hierarchical structure such as ISO/ IEC 25010 quality models, but rather with a general graph structure, for
instance.

To complete the quality characteristics or/and quality model identification studies, Zouheyr Tamrabet et al. [6]
(2018) did a survey on quality attributes and quality models for embedded software. The authors started with a
description of what an embedded system is, and then clarified software quality concept, including quality
attribute and model. Next, they established three groups of the most represented quality attributes in literature:

- standard characteristics: reliability, usability, maintainability, portability, performance,
functionality,

- sub-characteristics: availability, fair tolerance, interoperability, adaptability, recoverability,
reusability, testability,

- specific attributes: efficiency, safety, flexibility.

In their conclusion, they stated that there were neither consensus on a list of quality attributes, nor on quality
model for embedded systems, and therefore in their future work, they aim to propose a generic quality model
“that encompasses relevant quality attributes in order to define the quality of embedded software”.

Over these 10 studies related to quality characteristics or/and quality model identification, we remark that the
authors use either quality attribute or quality characteristic for the same concept but, in all cases, these
characteristics are non-functional quality characteristics, and they are mainly associated to requirements,
architecture design or constraints.

Moreover, none of these surveys introduce any metrics for quality characteristic, which are essential from an
operational aspect.

Finally, like Zouheyr Tamrabet et al., we can state that we didn’t notice any consensus on quality attributes and
quality model for embedded system and software through those contributions.

Furthermore, from what we saw, we may find a subset of quality attributes (e.g., maintainability, reliability,
safety, security, and testability) which are common to all embedded system or software.

However, each embedded system or software case is different, and that variety, or variant, must consequently
be reflected in the quality model and characteristic solution. Therefore, we may have some doubts on the
feasibility to build a generic quality model or come-up with a generic list of quality characteristics.

c. Reliability growth model creation or use studies
Our third group of studies is on “Reliability growth model creation or use” and thus consist in the stream of work
about the creation or use of reliability growth model. The objective of this type of model is to determine an
implicit or statistical quality model to evaluate and predict quality of embedded software prior to its operation,
for example. It is a complementary approach to the previous group of studies.

With Khoshgoftaar and Allen [72] (1999) and Khoshgoftaar et al. [73] (2002) studies, we have an illustration of
some of the research performed Khoshgoftaar et al.. They explored the construction and use of reliability growth
models to predict which software modules for telecommunication embedded system were the most fault prone.
The developed quality models were statistical models built from that telecommunication system historical data,
and their inputs were software process, product, and execution metrics. Unfortunately, the models cannot be
applied to other embedded systems because of the specific historical data set used to determine the statistics
models.

Regarding reliability evaluation for another type of telecommunication system, He and Li [74] (2012) developed
an alternative approach to determine the software reliability of voice over internet phone. Their inspiration came

Context and Problems

39 | P a g e

from safety analysis. Indeed, they achieved software reliability analysis and improvement based on a sequential
combination of Software Failure Tree Analysis (SFTA) and then Software Failure Model and Effects Analysis
(SFMEA). SFTA is used to retrieve the top events that cause failures as well as their related basic events through
a failure tree. SFMEA is the application of Failure Model and Effect Analysis (FMEA), originally developed by US
Military, to software domain since 1979. FMEA and therefore SFMEA are an analysis of the cause of failure mode
for top and basic events. So even if He and Li solution was not a reliability growth model, the overall behavior of
their approach is quite identical to evaluate and then increase the reliability of embedded system.

In 2016, J. Liu et al. [75] introduced a reliability growth model combining reverse engineering approach. That
reliability model aimed to evaluate embedded software quality of electric smart meter. The author innovation
was to reverse engineer binaries (i.e., compiled and lined code, as opposed to high-level language source code)
in order to reconstruct the software program into a high-level language. Then they evaluated the reliability of
that reconstructed software, based on utilization-oriented fault model and the reconstruction of the software
control flow graph. This contribution is similar to Goel-Okumoto software reliability model (i.e., G-O model) [76]
(1979) but the authors highlighted that their model was simpler to use. The obvious drawbacks are that the
deployment of that solution is complex, it requires to have binaries artifact and the reverse engineering software
code result is subject to interpretations which may differ from original software code.

The contribution of S. Juneja et al. [77] (2019) is different from the above research works. The authors proposed
a basic random model as reliability growth model for general embedded system. They considered both hardware
and software failure occurrences to elaborate their model and once completed, they compared this model against
five widely used software reliability growth models. The comparisons were done thought simulations of model
failure rate with Matlab tool. As expected, their proposed model gave the best result when predicting embedded
system reliability. The best result meant that model had the lowest failure rate because the authors characterized
embedded systems as mission critical ones and implicitly, assumed that such systems were developed to have
the highest reliability than other software systems (e.g., desktop computer, server). However, this mission critical
assumption is accurate for a subset of embedded systems but not for all embedded systems (e.g., smartphone,
smartwatch, printers, camera, tablet).

To sum up about reliability growth model, these studies are important because they show a complementary view
on quality modeling for embedded software. The reliability evaluation and prediction are achieved in most of the
cases with implicit or statistical models.

Unfortunately, these types of model prevent the direct model utilization to other embedded software because
the model was elaborated from a specific historical data set.

Finally, concerning the other minor approach which involves reliability analysis process, even if the process can
be generalized to any embedded software, that solution does not correspond to neither quality model, nor quality
characteristics.

d. Miscellaneous work related to quality modeling in embedded software
Our intent within this last group of research works is to collect some further studies that may of an interest in
quality modeling for embedded software, despite the fact that they don’t propose any quality model or quality
characteristic.

The first research study, driven by Rohloff et al. [78] (2006), introduced a practical solution to get real-time
feedback to control system quality and produce evidences for certification. That solution made of real-time utility
quality measures, was elaborated specifically for distributed real-time embedded systems, with a focus on
adaptive reflective middleware systems. The authors considered two aspects here, real-time and quality of
produced data. That last aspect is key for certification evidences and an enhancement of that study could be to
attach theses quality measures to a “utility” quality model.

With this other survey of Oliveira et al. [79] (2008) on space system design, the authors investigated the potential
existence of relationship between metrics, more precisely between software quality metrics (e.g., lines of code,
McCabe complexity, nested block depth, efferent coupling) and embedded software or system metrics (e.g.,

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

40 | P a g e

memory usage, performance and energy consumption metrics measured in a worst case scenario and also in a
best case scenario). The leading idea behind this comparison is to find correlations between these two sets of
metrics in order to support architecture trade-off decision between performance, maintainability, and
component reusability, to shrink time to market.

The last two studies of this group are concerning the same embedded system, automotive.

In 2012, Stürmer and Pohlheim [80] created an approach to measure and assess model-based design software.
The authors highlighted that embedded software development evolved to include frequently model-based
design. We remark that this statement is also aligned with ISO 26262 [5] and DO-178-C [7], for instance. So, to
evaluate quality, the authors defined a quality model to aggregate measures from model analysis, issue tracking,
test management and requirement management. They also included assessment of quality operations (e.g.,
testing, reviews) for all the generated development artifacts, and not only from model or code. There was no
reference to quality characteristic likes in legacy quality models such as McCall, Boehm, ISO / IEC 9126 but rather
the quality model in this study was a reference to the artifact that were analyzed and assessed. In other words,
the author’s quality model reflected the degree of success of the quality operation and not quality characteristic.

From another research perspective, Bouquet et al. [81] (2018) introduced model quality objective concept. The
model quality objective was an adaptation of software quality objective concept for model-based design,
frequently used in embedded system development. The authors described 16 model quality objectives that were
declined into requirements to ensure a high level of quality of embedded software which are developed through
model-based design.

These four contributions taught us few additional considerations that we must consider for quality modeling
applied to embedded software.

At first, we have to pay attention to quality of data, especially when generating the mandatory evidences for
certification.

We must also investigate potential correlations between metrics and quality characteristics to support trade-off
decisions (e.g., on architecture design).

And finally, an embedded software is not only a matter of code implementation, but as well from model-based
design.

e. Limits to existing quality modeling applied to embedded software
development

Over the 33 studies of this exploratory literature review, we saw a diversity of approaches and research works,
summarized in Table 2. We observed that this diversity is the reflection of the myriad of existing or possible
embedded systems and software, each of them having its own specificities and requirements. We remarked also
that often, quality characteristics for embedded software are non-functional quality characteristics which are
mainly expressed or associated to quality requirements, architecture design or constraints.

Nevertheless, among all embedded software, and thanks to systematic literature review studies, it is possible to
identify a limited set of shared properties, or quality characteristics likes maintainability, reliability, safety,
security, and testability.

Moreover, as Zouheyr Tamrabet et al. stated, there is no consensus on the adoption of quality attributes and
quality model for embedded system and software, despite the existence of standard such as ISO / IEC 25010
which is by construction the result of an international work and collegial decisions. But this is not a surprising
finding because the embedded software variety, or variant, must be retrieved also in the development of quality
model and quality characteristics.

So, there is no right and unique solution yet to our question “how quality modeling is applied to embedded
software”.

Context and Problems

41 | P a g e

TABLE 2 – SUMMARY OF STUDY KEY POINTS

Id Reference Year Type of work stream Embedded System Domain Embedded Software Domain Study relies specifically on

S01 [72] 1999 Reliability growth model creation or
use

Telecommunication systems Software module Classification And Regression Trees
algorithm

S02 [61] 2001 Quality characteristics or/and quality
model identification

Medical Component-Based Software
Development

-

S03 [73] 2002 Reliability growth model creation or
use

Telecommunication systems Software module Case-based reasoning model

S04 [62] 2002 Quality characteristics or/and quality
model identification

Wireless system Digital Signal Processing
software, Commercial Off-The-
Shelf

-

S05 [64] 2004 Quality characteristics or/and quality
model identification

Vehicular (i.e., cars,
construction equipment
vehicles, heavy trucks, trains)

Component-Based Software
Development

ISO/IEC 9126

S06 [78] 2006 Miscellaneous related work: real-
time utility measure to control
system and use them as evidence for
certification

Distributed real-time
embedded systems

Adaptive reflective middleware
software

-

S07 [36] 2006 Quality model creation or use Generic Embedded software
component, Component-Off-
The-Self; Component-Based
Software Development

CQM model, ISO/IEC 9126 model

S08 [66] 2008 Quality characteristics or/and quality
model identification

Aerospace, Integrated
modular avionics

Commercial Off-The-Shelf Multiple Independent Levels of
Security/Safety, ARP4754, ARP4761,
DO178B, model-based analysis

S09 [39] 2008 Quality model creation or use Digital TV Software component,
Commercial Off-The-Shelf, open
source

IEEE 1061, McCall model, Boehm
model, ISO/IEC 9126 model

S10 [67] 2008 Quality characteristics or/and quality
model identification

Generic Architecture Architecture Tradeoff Analysis Model
(ATAM)

S11 [79] 2008 Miscellaneous related work:
investigate the existence of
relationship between metrics

Design of space system Generic -

S12 [37] 2009 Quality model creation or use Generic Embedded software
component

CQM (S07), ISO /IEC 25010 model,
CMM

S13 [43] 2009 Quality model creation or use Ambient intelligence systems Ad-hoc computer systems -

S14 [29] 2011 Quality model creation or use Generic Lightweight embedded
software component

DeLone & McLean success model

S15 [45] 2012 Quality model creation or use Generic Software component S14, DeLone & McLean success model

S16 [46] 2012 Quality model creation or use Generic Software component DeLone & McLean success model,
ISO/IEC 9126 model

S17 [80] 2012 Miscellaneous related work: Creation
of an approach to measure and
assessment of model-based design
software

Automotive Generic ISO 26262

S18 [74] 2012 Reliability growth model creation or
use

Voice over Internet Phone Generic Software Failure Tree Analysis,
Software Failure Model and Effects
Analysis

S19 [48] 2012 Quality model creation or use Generic Generic Systematic literature review, S02, S05,
McCall model, Boehm model, ISO/IEC
9126 model, ISO/IEC 25010 model,
SQUAD

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

42 | P a g e

S20 [68] 2012 Quality characteristics or/and quality
model identification

Generic Architecture Systematic literature review

S21 [47] 2013 Quality model creation or use Generic Software as a Service S16, DeLone & McLean success
model, ISO/IEC 9126 model

S22 [51] 2013 Quality model creation or use Automotive Architecture McCall model, Boehm model, ISO/IEC
9126 model

S23 [69] 2013 Quality characteristics or/and quality
model identification

Generic Generic Systematic literature review, S02, S04,
S05, S08, S09, S10, S12, S13, S14, S20,
S23, McCall model, Boehm model,
ISO/IEC 25010

S24 [70] 2014 Quality characteristics or/and quality
model identification

Secure embedded system in
sensor network

Networking software, Software
As A Service

DeLone & McLean success model,
Analytic Network Process

S25 [52] 2015 Quality model creation or use Generic Embedded, real-time software
product with safety

ISO 25021

S26 [71] 2015 Quality characteristics or/and quality
model identification

Systems of Systems Generic Systematic literature review, ISO/IEC
25010 model

S27 [53] 2016 Quality model creation or use Satellite systems Generic Orthogonal Defect Classification

S28 [75] 2016 Reliability growth model creation or
use

Smart meter Reverse engineering Goel-Okumoto software reliability
model

S29 [55] 2017 Quality model creation or use Ambient assisted living Generic Systematic mapping study, OptimAAL
model, ISO/IEC 9126 model, ISO/IEC
25010 model

S30 [81] 2018 Miscellaneous related work:
introduction of model quality
objective for model-based design

Automotive Model based design Software quality objective

S31 [6] 2018 Quality characteristics or/and quality
model identification

Generic Generic S02, S09, S10, 12, S14, S20, S21, S22,
S23, S26, S28, ISO/IEC 9126 model,
ISO/IEC 25010 model

S32 [77] 2019 Reliability growth model creation or
use

Generic Generic Goel Okumoto Model, Jelinski
Moranda Model, Littlewood Verral
Model, Generalized Goel Model,
NHPP Model, Basic Random Model

S33 [57] 2020 Quality model creation or use 3D Drawing embedded
software

Generic Kano model, Analytic Hierarchy
Process, Software Failure Mode
Effects Analysis

Another limit that was not resolved with these research studies is the operationalization of quality model but,
nonetheless, we found some elements of answer in few of these studies. For example, Arhens et al. [51]
highlighted this operation aspect by emphasizing the importance of metrics, and aggregation of metrics together
with quality characteristic and quality model. We note also that most of these surveys didn’t introduce any
metrics for quality characteristics. A second operational blocking aspect, happening in quality assessment,
control, or prediction activities, is the objectivity versus subjectivity of the quality evaluation. Indeed, the
specification of threshold values used in decision making is often not obvious, and consequently decision in those
activities may be subjective. An alternate solution is to use relative threshold or evaluate quality against a
reference, or previous embedded software; for example, when improving the quality of a software over multiple
consecutive releases. In that case we are able to make objective quality evaluation and decision, but its usage
cannot be generalized to any decision making.

Next to that exploratory literature review and analysis of the main limits, we have enough elements to detail
our research questions.

4. Research questions
In the previous section 3, through an exploratory literature review, we analyzed 33 research contributions related
to quality model and quality characteristics for embedded software, or systems, and conclude that there does

Context and Problems

43 | P a g e

not exist a generally adopted solution to model quality of embedded software. However, to support our company
critical needs, we have to define, assess, control, and even predict embedded software quality as well as the
quality of its development. In addition, the resulting quality indicators must be robust to support embedded
software variants, which are the usual case in automotive domain, constraints coming from standards and
regulations, and mandatory evolution accordingly to the development life cycle stages.

We should also manage an overall complexity due to:

- An automotive system is a complex system to build with multiple elements that require alignments and
interoperability,

- Systems and software interface require alignment between process, technology, protocols, teams, and
tools,

- Alignment over the complete vehicle, architectures, many distinct jobs, and specific vocabulary,
- Safety compliance leads to complex and costly tasks (e.g., ASIL D recommend strongly to perform

Modified Conditions / Decision Coverage assessment which is costly and complex analysis),
- Mandatory continuous software evolution required to avoid obsolescence (first law of Lehman [82]),
- Evolving standard and regulations to support,
- Internal development process execution is complex due to sub-systems split over many teams and

suppliers,
- Difficulty to have objective quality assessment; for instance, management of suppliers with offshore

tracking where quality reporters tend to escape strong engagement by reporting an average quality
level.

Therefore, in this context, it is important to have a unified and right way to define, assess, control, or predict
embedded software quality.

If we take Automotive-Spice, the guidance is to use ISO/IEC 25010 for quality model. Nevertheless, this standard
lack of metrics, for example, and require a customization of quality model per ECU or transverse software to be
operationalized. This statement is aligned with Wagner et al. survey [83]. Indeed, in this survey Wagner et al.
found that only 28% of the survey participant companies use quality model from standards and over them 71%
customize them.

So, obviously a quality model coming from standard should not be used as it is. We note that such quality models
are often too generic because they aim to cover a wide range of cases. These models are regularly ambiguous in
their quality characteristic definitions, with a risk to be misunderstood and then hard to use, and they usually
require customization. From another perspective, if we look for quality models for software, we can find more
than 450 more or less distinct quality models.

Thus, it is not trivial to select one knowing that usually they are very case specific, hard to reuse or adapt. We
remark that creating a new quality model for automotive embedded software can drive us to that same situation:
a new specific quality model that could be hard to reuse or adapt. Thus, there seems to be a discrepancy between
to be at the state of the art, with a collection of more than 450 models, and the fact that we must consider
standard like ISO / IEC 25010 despite its issues.

Finally, the solution should consist in a trade-off between these two states and consequently, we should consider
an alternate approach like qualimetry.

This guides us to the following research questions:

Research Question 1
Is Qualimetry, as the science of quality quantification, the right approach and
what are quality and Qualimetry essentials?

Our first step is undeniably to understand and synthetize with clarity and unambiguity the concepts of quality,
quality modeling and qualimetry.

Once their main characteristics described, we should be in a position where we will be able to confirm or deny
that qualimetry is the right approach to use for quality quantification of automotive embedded software with
regards to other approaches.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

44 | P a g e

This research question 1 can then be refined into four research sub-questions:

Research Sub-question 1a What is the essence of quality?

Based on an exploration and analysis related to quality and their directly linked key concepts, we should
end with a clarification and synthesis of quality concept.

Research Sub-question 1b
What is the essence of quality modeling and particularly in software
field?

Like for quality, we aim to analyze and describe quality modeling concept. An investigation of the key
contributions in that domain will certainly foster its understanding and mastery.

Research Sub-question 1c What is qualimetry, and is this approach the right one for our needs?

Qualimetry is often misunderstood and therefore we should analyze this science of quality quantification
to synthetize and popularize its essential characteristics. Moreover, we have to compare qualimetry to
existing alternate approaches in order to confirm that qualimetry is the right approach to use for our
needs or deny and therefore realign our research by selecting the right one. Thus, the answer to this
sub-question is going to lead our research work.

Research Sub-question 1d How to unify diversity and time evolution in quality modeling?

In the automotive domain, we have to manage a wide variety, constraints and complexity. The variety
comes not only from the car variants to be supported, but also from the embedded software of ECUs.
The constraints are mainly linked to the requirement to be compliant with regulations and standards
(e.g., A-SPICE, ISO/IEC 25010, ISO 26262) but also specific requirements from stakeholders. About
complexity, it is due to automotive product development requirements, environment, and evolution
with respect to the life cycle stages.

Hence, we must find a solution, or a “mechanism”, that includes all those elements into a unified quality
modeling approach.

Research Question 2
Considering the set of software quality models, how to identify and decide
which quality model is the most suitable for embedded software?

Now that we have explored the key concepts about quality, quality modeling, and acknowledged which
quality quantification approach is the most suitable for our needs, the next step is to apply that approach
to model quality of embedded software.

In Chapter I, we highlighted the existence of many quality models for software, with evidences in Kläs et
al. [10], Thapar et al. [11], or and Oriol et al. [12], and even for embedded software in Chapter II.3. So
instead of creating a quality model from scratch, with a non-negligible risk to reinvent the wheel, our
research strategy is to take benefit of this pool of existing quality models and discover which one, if any,
is the most suitable for automotive embedded software.

Therefore, replying to this second research question requires to collect and list quality model within the
scope of software, englobing embedded software, classify them and identify decision criteria to decide
which quality model(s) answers best to our needs.

We rephrase these tasks into the following research sub-questions:

Research Sub-question 2a Considering software scope, what is the set of existing quality models?

Context and Problems

45 | P a g e

The goal is to collect and consolidate an exhaustive list of quality models for software by proceeding in
a systematic literature review as detailed by Kitchenham and Charter [31].

We are not limiting the research time range, but from our early exploratory literature review, the oldest
publications of software quality models we found were the quality assessment model of Rubey and
Hartwick [33], and the reliability prediction model of Shooman [34].

So, we suppose that our oldest finding won’t be older than 1968, or at least than 1965, year during
software engineering concept emerged.

Research Sub-question 2b
Considering a set of quality models, how to classify these quality
models, what are the methodology, the criteria, and the characteristics
to use?

Then, to analyze, get some fruitful benefits and make decisions based on that exhaustive list of quality
models, we must structure its knowledge.

Therefore, we are going to apply the right taxonomy, defining an appropriate set of criteria, or taxons,
to index and classify these models.

The expected result from this research sub-question, in addition to that classification methodology and
its criteria, is a cartography depicting the current panoramas of quality models for software.

Research Sub-question 2c
Considering at least two quality models, how to compare together
quality models, and can we define a reliable distance formula between
quality models?

Through this sub-question, we aim to clarify the relevant characteristics and criteria to compare quality
models together, keeping in mind that we are looking for the most appropriate quality model for our
needs, from a classified list of quality models.

The choice or definition of a formula to evaluate the distance between two quality models can also serve
for decision purpose, for example.

Research Sub-question 2d
What is the most appropriate quality model is for embedded software
in automotive?

This is the conclusion step of our research question 2.

From the classified list of software quality models we build, the key information we extracted, the
comparison criteria we identified, and our knowledge about automotive embedded software, we are
now able to conclude on which quality model is the most appropriate one for embedded software in
automotive.

Research Question 3 Considering a quality model for a software product, how to operationalize it?

The quality model identification, or creation, corresponds to the first phase in quality modeling: the
quality definition.

In the next phases, we operate the quality model. This operationalization enables its quality definition
completion, quality evaluation activities (e.g., assessment, control, or prediction), and quality model
evolution or adaptation management. However, there exist challenges and issues that may prevent the
development or use of quality models as Thapar et al. demonstrated [11].

So, through this third research question, we set our focus on identifying potential issues that may
prevent quality model operations, on finding practical solution(s) to these potential issues and then, on
applying our findings against our needs for automotive embedded software. The application success to
this real-world use case is the proof that we have answered to our problematic. We note that the

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

46 | P a g e

operationalization aspect is also fundamental for our research work to fulfill our company expectations
(see Chapter II.2).

The following research sub-questions address that problem decomposition:

Research Sub-question 3a
What are the main challenges and the issues that prevent
operationalization of quality model?

As we could expect, this first research sub-question explores the main operational challenges and issues
that prevent quality model development and use. Their synthesis is going to be reflected in a list of
challenges and issues with their own descriptions.

Research Sub-question 3b What are the practical solutions to those challenges and issues?

For each of the listed operational challenges and issues, we target to find practical solutions to all of
them. Practical solution means that the solution not only solve the linked challenge or issue, but also it
must be usable and deployable. Therefore, general statement or theorical solution alone should be
prohibited for those solutions.

Research Sub-question 3c What is the process to ensure quality model operationalization?

Over the two previous research sub-questions, the main operational challenges, and issues, which
prevent development and use of quality model, are listed, and associated at least to one practical
solution.

In order to finalize a proposal to solve our third research question, a process should be elaborated,
integrating the practical solutions to those operational challenges and issues, to ensure quality model
operationalization.

Research Sub-question 3d
What is the practical answer to our needs on automotive embedded
software case?

The last step of our research work is to exercise our findings against the real-use case coming from our
industrial needs. The success of this application is key because it should assess the correctness and
relevance of our research work.

Therefore, through this sub-question, we apply our practical solution to automotive embedded software
development, taking into account any necessary automotive specific requirements (i.e., related to
variants, complexity or constraints from standard, regulation, and stakeholders).

The result should be the development and use of the right operational quality model.

Research Question 4 Can we have a unique reference quality model for software product?

The successive responses to theses first three research questions, including their respective research
sub- questions, allow us to answer to our original needs to have a unified, operational, and appropriate
way to define, assess, control, or predict quality of embedded software.

However, with this final research question, we would like to go one step further. Indeed, Zouheyr
Tamrabet et al. [6] concluded their study by willing to propose a generic quality model “that
encompasses relevant quality attributes in order to define the quality of embedded software”.

So, we expect to assess whether a unique reference quality model for software product is more
appropriate than a meta-model as quality model aggregator for software product., and afterward define
how to build and initiate the construction of either this unique reference quality model or this meta-
model.

Context and Problems

47 | P a g e

Research Sub-question 4a
Is it possible to have a unique reference quality model for software
product, or instead should we have a meta-model?

Based on our research work, our findings, and a relevant analysis, we target to find and demonstrate the
proper answer to that research sub-question. Then, depending on the answer result, we select the
correct research sub-question set.

Case 1: Answer is a “unique reference quality model” for software product is possible

Research Sub-question 4b
What is the construction algorithm for such unique reference quality
model?

To elaborate and build such quality model, we design the unique reference quality model
construction algorithm.

Research Sub-question 4c
What is the first result of the unique reference quality model
construction?

We initiate the build of the unique reference quality model. Hence, we execute the construction
algorithm, provide the intermediary construction step results to facilitate its comprehension,
and deliver the first quality model result.

Case 2: Answer is a “unique reference quality model” for software product is not possible and therefore
a “meta-model” is the preferable solution

Research Sub-question 4b What is the construction algorithm for such meta-model?

To elaborate and build such meta-model, we design the meta-model construction algorithm.

Research Sub-question 4c What is the first result of the meta-model construction?

We initiate the build of the meta-model. Hence, we execute the construction algorithm, provide
the intermediary construction step results to facilitate its comprehension, and deliver the first
meta- model result.

5. Threats to validity and discussions
The purpose of this last section is to discuss, as needed, about what has been covered in the previous parts and,
above all, review threats to validity of this chapter content.

Regarding our analysis and synthesis of our complex industrial research context with a need of quality, we chose
to provide a high-level overview. In fact, a deeper analysis and description bring certainly much more details, but
the risk is to lose from our mind the most important aspects that characterize our research context and therefore
diverge from our original intention. However, at a later stage of this dissertation, we are going to push further
some analysis and then detail more precisely, for instance, automotive embedded systems.

On the methodology for the appraisal of the state of the art on quality modeling for embedded software, we
decided to perform an exploratory literature mapping instead of a systematic literature review, described in
Kitchenham and Charter’s guidelines [31]. The reason is directly linked to their definitions. Indeed, on the one
hand, the exploratory literature mapping aims to support the elaboration of unanswered research questions by
collecting theory, method, or empirical evidence on a specific topic. On the other hand, a systematic literature
review follows a clearly defined protocol (e.g., acceptance or rejection criteria to consider a literature
contribution) and relies on a strict analysis and synthesis of the identified research contributions, to answer to a
properly defined research question. By consequence, since we were looking for the current state of the art to set
and refined our research questions, the exploratory literature mapping appears to be the obvious methodology
to apply in this chapter.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

48 | P a g e

Furthermore, with the literature review, we enlarged our research scope. First of all, we extended our scope from
automotive embedded software to any embedded software, with the goal to avoid narrowing too much the
literature findings and allowing us to learn from other embedded software cases. Then we encompassed
embedded system to embedded software research scope because there are both closely related: systems
requirements are derived to hardware requirements and to embedded software requirements. Thus, the
inclusion of quality modeling for embedded system in our literature review is relevant. In addition, we decided
to accept reliability growth model as a valid result. This particular aspect of quality modeling is complementary.
Indeed, it covers quality prediction aspect, is often based on statistical or implicit model using historical data -as
opposed to hierarchical quality models (e.g., ISO /IEC 25010 quality models)-, relies on various sources of metrics
even other than software metrics (e.g., process metrics), and it depicts objective quality evaluation (e.g.,
comparison of the quality model result over successive software release).

At last, when we elaborated our research questions, we took some assumptions. Qualimetry is our privileged
approach for quality modeling, mainly because it is the science of quality quantification, without being restricted
to a specific domain, and consequently covers theory and applied aspect of quality quantification. We avoid
limiting quality characteristics, or requirements, to non-functional quality, despite the existing overlaps between
“quality requirements” and “non-functional requirements” that we noticed in the literature survey related to
embedded software. Thus, we decided to not use quality attributes found in our survey to build a new quality
model, but rather to construct on top of existing research contributions and quality models, fostering the reuse
of many valuable achievements.

Research Methodology

49 | P a g e

Chapter III. Research Methodology
1. Introduction

Over Chapter II, we explored our industrial context and the problematic related to quality modeling within the
context of automotive embedded software development. We also performed an exploratory literature review
about this problematic, analyzing many valuable contributions but also highlighting different gaps. That analysis
allowed us to define a series of four main research questions that we refined whenever it was necessary.

The purpose of this chapter is to pursue our study by explaining the research methodology we applied to address
these four research questions. It is therefore a pivot chapter since it structures the rest of the dissertation. Indeed,
our research work didn’t follow a straight line, and we had to change the direction of our research approach at a
certain moment.

So, this chapter give the overall picture of our research flow, explaining the different steps, the technological
locks, the decisions we made and gives hints about our contributions. For example, when we looked for quality
models, we noticed that most of the contributions reused and changed slightly what was previously done rather
than creating a complete disruption in the research. Thus, we decided to reuse and adapt quality model rather
than creating a new one but with some disruption created from biology knowledge and analogy. Figure 7 depicts
the summary of our research flow.

2. Initial research methodology: qualimetry, classification and decision
During our initial analysis of the problematic, we identified three research questions (cf. Table 3). We thought
about the fourth one (see Chapter II.4) only during our second analysis, at a later stage of the research.

TABLE 3 - OUR FIRST THREE RESEARCH QUESTIONS

Research Question 1
Is Qualimetry, as the science of quality quantification, the right approach and
what are quality and Qualimetry essentials?

Research Question 2
Considering the set of software quality models, how to identify and decide
which quality model is the most suitable for embedded software?

Research Question 3 Considering a quality model for a software product, how to operationalize it?

Thus, starting with the first research question (i.e., “Is Qualimetry, as the science of quality quantification, the
right approach and what are quality and Qualimetry essentials?”) as our primary step, we seek to understand and
learn accurately the complex concepts of quality, quality modeling, and qualimetry. We also seek to assess that
qualimetry is the right path to solve our problematic, considering that it fosters both quality quantification theory
and practice, for example. And since qualimetry is often misunderstood, we build a synthetic vision depicted by
the “House of Qualimetry” (cf. Chapter IV.6.a).

Moreover, during our investigation on quality modeling, we notice a recurrent fact. Effectively, quality models
are often more or less similar, and the variants for objects of interest (from a quality modeling point of view) is
handled like the customization with Horgans’ essential views of quality characteristics [84], the commonality
versus variation in quality characteristics of Choi et al. [39], or variation in metrics with FURPS [85], to cite few.

So, the global observation is that there is no generalized method to manage those variants on quality modeling.
Nevertheless, in object-oriented programming and genetic there is a simple way to manage variety via
polymorphism which represents multiple variations or evolutions of a same object, or gene.

We consequently introduce the polymorphism concept applied to quality modeling (see Chapter IV.6.b) to enable
built-in adaptation and evolution of quality modeling objects (e.g., quality model, quality characteristic,
measurement).

We pursue our quest of knowledge then on quality model for software and rapidly, our findings tend to
demonstrate that many quality models exist. For example in Oriol et al. study [12], the authors indexed up to 51
distinct quality models, building a genealogical tree of quality models highlighting parent links between them.
Unfortunately, we fail to find an exhaustive reference list of software quality models.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

50 | P a g e

Then, we naturally move to the second research question (i.e., “Considering the set of software quality models,
how to identify and decide which quality model is the most suitable for embedded software?”) that we split into
two complementary fields (see Figure 6): theoretical field and practical field.

Our focus in the theoretical field encompasses the research from a theory perspective while in the practical field,
the research embraces a practical perspective.

Theoretical field

Thus, in theory field, we start to identify the most appropriate methodology, categories, and criteria to classify
or index quality models. We find few studies about classification with some categories (e.g., Thapar et al. [11]
classification criteria relied on operational issue number ; Kläs et al. [10] defined a classification scheme based on
quality model characteristics) but none of them are unified. So, recalling the “genealogical tree of quality models”
shown by Oriol et al., we push that reasoning further and consequently arrive at the conclusion that we should
use cladistic to classify the variety of quality models (see Chapter V.4.a). Cladistic is usually used to classify species,
but it can also be used to organize and simply classify a large list of quality models, highlighting some specific
connections between those models.

Next to the classification is the decision methodology. Indeed, the purpose of this second stage of the theoretical
field is to identify criteria, characteristics and / or formula to compare together quality models and finally decide
on which quality model(s) fits best the requested needs.

About the comparison, a distance formula is a relevant approach to measure how closed quality models are
together. A quality model is generally composed of different level of quality characteristics. So, we took the
assumption that the distance formula in our case should focus on these characteristics, and since they are
expressed in natural language, we may rely on string metrics.

However, we prefer the Nei and Li formula from genetic [86] (see Chapter IV.6.c) rather than the frequently used
string metrics such as Hamming’s distance [87] (i.e., general sequences of symbols difference distance),
Levenshtein’s distance [88] (i.e., string edition distance ; Hamming’s distance generalization), Damerau–
Levenshtein’s distance [89] (i.e., string transformation distance ; extension of Levenshtein’s distance and distance
used also in biology as measure of variations on DNA sequence), Jaro’s distance [90] (i.e., string similarity
distance), Jaro-Winkler’s distance [91] (i.e., string similarity distance ; extension of Jaro’s distance), Gordieiev et
al. ‘s cumulative characteristics matching based distance [92], [93] (i.e., string semantic distance), Natural
Language Processing (NLP) based distance [94] (i.e., string lexical distance), or even other similarity distances like
Jaccard’s distance [95] (i.e., general sample similarity distance based on sample attributes). The main reason of
this choice is that compared to the other formulas, the genetic approach introduces a statistical notion that we
can use to represent the statistical presence of quality characteristics.

Practical field

Parallelly to the theoretical field, the practical field has also two stages synchronized with their corresponding
theoretical stage. The first one is related to the application of the classification methodology on a case study. Our
original case study is the embedded software but as we noticed above (cf. Chapter II.3), the set of embedded
software quality model is quite small (i.e., 17 models) and therefore, we decide to extend the scope to software
quality models. So, we perform a systematic literature review (see Chapter V.2) on software quality models, and
during this study, we remark that we get a collection of more than 450 quality models. Many of them are justified
variations of some previous quality models. The second stage takes as input the output of this first stage (i.e., the
classified set of software quality models) and applies the decision methodology in order to identify the most
appropriate quality models to apply to our company use cases.

Finally, the result of the second stage of practical field must be deployed and operationalized at our company
level in order to answer to third research question (i.e., “Considering a quality model for a software product, how
to operationalize it?”) and also to our problematic. The complete breakdown of this research flow is summarized
over the Figure 6.

Nevertheless, the decision task is tricky because quality model differences are sometimes subtle, and there exists
many criteria that we could use with no guaranty to make a right choice, especially from a qualitative point of
view. And in case of decision mistake, the risk impact may be reduced, if those decision criteria are properly

Research Methodology

51 | P a g e

chosen. However, decision action means that we discard many valuable contributions that could be very
beneficial for the solution at the end.

Thus, if we want to minimize proactively the impact of a wrong, not totally accurate decision, or even of a partial
solution, we must bring some nuances in the decision result and, integrate some of the potentially discardable
contributions to our quality model solution prior to its deployment.

In short, we must reconsider our original strategy about research approach, and update accordingly our heuristic.

Figure 6 - Overview of our early research flow breakdown

3. Realigning our methodology: from theory to practice
So, instead of directly deploying the selected quality model to the company, we realign our research strategy to
address operationalization aspect of quality model and proactive integration of some quality model valuable
contributions, that a decision result could discard but should not afford to ignore.

To do so, we investigate how to go from the theory to the practice in quality modeling, reviewing the key theory
concepts and the practical contributions in that domain. Thus, to answer to our third research questions (i.e.,
“Considering a quality model for a software product, how to operationalize it?”), we must work on these two
aspects.

First, we identify the potential issues that may prevents quality model operations (i.e., development and use).
We also find practical solution(s) to these potential issues, identifying the most important contributions in quality
modeling, and assess their respective similarities or alignment.

Second, we integrate these practical solutions through a consolidated process for the development and use of
quality models.

So, with further details, we begin by looking for papers dealing with quality model operationalization, or issues
preventing their use or development. For instance, Thapar et al. [11] identified 9 issues that prevent development
and use of quality models, Abran et al. [96] highlighted three main harmonization issues with ISO-based quality
models, Kläs et al. [97] investigated software quality model adaptation, and Wagner et al. [98] were proceeding
on a survey of quality models in practice among four software companies in Germany.

Based on the review and consolidation of the findings from these retrieved papers, we build a first list of issues.

Next, we proceed on a further analysis and raise our list to a total of 16 issues that prevent development and use
of quality models (see Chapter VI.2).

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

52 | P a g e

Figure 7 - Overview of our research flow breakdown: in red the technological locks, in green our contributions

Research Methodology

53 | P a g e

To continue, we address one by one these issues to find some practical solutions over the 50 years of research
contributions in quality modeling (see Chapter VI.3). Once each issue has been associated to at least one solution,
we design two processes to take implicitly benefit of these key contributions and to foster their usage.

The first process (see Chapter VI.4.a) focuses on the development or adaptation of quality models, emphasizing
their reuse. Indeed, even if we select a quality model for a subjective reason (e.g., use of standard quality model
for compliance to standard), this process allows to integrate contributions from other quality models, and to be
aligned with key stakeholders and any constraints. The second process (see Chapter VI.4.b) is dedicated to quality
model use and call the first process in is early stage.

Finally, to close the loop from the theory to the practice, we must successfully apply our findings against a real
use-case.

This real use case is naturally linked to the embedded software from our automotive industrial context: three
ECU embedded software and one transversal embedded software. In addition, the quality model selection criteria
have to be aligned also with our industrial context, and therefore to the guidelines from A-SPICE standard which
focuses on automotive development processes.

Thus, we select the two recommended quality models of ISO / IEC / IEEE 25010 (i.e., system and software product
quality model, and quality-in-use model), and apply our development process for quality model to them. The
result (see Chapter VII.5) is three polymorphic quality models with their characteristics and sub-characteristics
weights, and their “mother”, or common, quality model that could be used by default for a new ECU or
architecture, for example. Regarding their associated metrics, they are linked to a scorecard, where each
polymorphic quality model is used to compute quality product indicator.

So, we demonstrate that our new approach allows us to start from a subjective selection, arrives to an objective
and operational solution, and consequently, assesses the correctness of our answer to our company problematic.

4. Last step: construction of a meta-model
As we highlighted previously, at this stage of our research we have answered to our original problematic.
However, during our studies we noticed that there existed many quality models but no unique reference quality
model. Moreover, we subjectively selected two quality models from ISO standard as our reference models, like
the 71% of the 28% of the companies that Wagner et al. studied [83] and which use and customize quality models
from standard. So, to go one step further, we aim to address that last research question “Can we have a unique
reference quality model for software product?”.

Zouheyr Tamrabet et al. [6] finished their study with the opening to propose a generic quality model “that
encompasses relevant quality attributes in order to define the quality of embedded software”. Unfortunately, this
quest is hardly reachable, and even if we succeed on getting such unique and generic quality model, that solution
may become either less satisfactory, because of the constant evolution of our real-world resulting in constant
evolution of most of systems and software (e.g., Lehman’s laws [82], [99], [100] are depicting that evolution
aspect), or unsuitable, because of the wide diversity of both systems and software we have nowadays. So, the
preferable approach for this research question is to build a meta-model as quality model aggregator.

This meta-model can serve as an advice quality model where the main quality perspectives (e.g., Garvin quality
perspectives [101]) are present and where we have the notion of likelihood to have a quality characteristic or
sub-characteristic as well as consideration to their nuances which are present in existing quality models (e.g.,
resource utilization, resource behavior and utilization of resource ; instalability and deployability). That
description is comparable to what we can find in genetic, more particularly with the genome.

Therefore, strong from this analogy, we decide to construct a meta-model which is the genome of software
quality model. After defining the meta-model ontology, we initiate its construction based on eight quality models.
To select this set of quality models, we take the quality models from Thapar et al. study [11] with the least
operational issues that we complete with quality models from standard or widely used. We also pay attention to
the fact that those selected models must have definitions for all their quality characteristics and sub-
characteristics. At last, we limit the selection results to eight quality models since the purpose is to initiate the
meta-model construction. The selected quality models are ISO/IEC 25010 [23], ISO/IEC 9126 [24], Boehm [42],

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

54 | P a g e

McCall [41], Alvaro [36], FURPS [85], Kalaimagal Q'FActo 12 [102] and Bawane [103]. The genome builds finally
result in six distinct quality perspectives, with one of them (i.e., supportability) that can be interpreted as a
polymorphic variation of one of the other five quality perspectives (i.e., product revision).

Those quality perspectives are:

- General Utility,
- Product in Use,
- Product Operation,
- Product Revision,
- Product Transition,
- Supportability,
- Software Product.

5. Threats to validity and discussions
Like in previous chapter, this section goal is to review the chapter content, and particularly the threats to validity.

The main treat is with regards to our decision to change the research approach. Undoubtedly, we could proceed
further on the creation of an oracle to predict the best quality model for quality definition and assessment,
continuing our investigation of a sharpener list of quality model selection criteria, and then use experimentation
to validate the oracle prediction results. However, proceeding on such selection is only one side of the
problematic and certainly results in discarding many valuable and complementary contributions in quality
modeling. Indeed, during our research investigation on quality model, we noticed that there were many valuable
contributions that it would be interesting to take advantage of. And moreover, we noticed that many published
quality models are not operationalized yet. Thus, operational criteria should be included also as decision criteria.
Nevertheless, such inclusion may consequently reduce even more the pool of candidate quality models to only
few, but unfortunately with no guaranty that, from a qualitative point of view, the decision result is satisfying.
So, the real problem is not to find the best quality model but rather to make a subjective selected quality model
(i.e., selected based for some reasons such as criteria matching, use of standards, company forcing a solution, to
cite few) to become the right and optimum objective quality model for our needs. This is the main motivation of
our research methodology realignment.

Regarding our source of inspiration to elaborate solutions, we can obviously find many clues of research direction
in software engineering since its research domain is very active. However, sometimes we have to think out of the
box to tempt to bring some disruption. Like Oriol et al. [12] who relied on genealogical tree to represent kinship
line of quality models for web-service, our choice is to refer to biology, making analogy between our research
cases, technical locks and what we can find in biology.

Therefore, we borrow some solution from biology like cladistic to classify quality models, but also from a sub-
branch of biology: the genetic. We start with polymorphism, concept present also in object-oriented
programming, and the degree of polymorphism, or variety, formula that includes likelihood on the elements
considered for the measurement, as opposed to regular software engineering distance formulas where that
notion is missing. Then, the comparison of a quality characteristic with a specific DNA sequence (i.e., a gene), and
thus a quality model with a chromatid (i.e., a chromosome is composed of two identical chromatids), allowed us
to confirm the use of the degree of polymorphism in our case, and to construct a meta-model: the Software
Quality Model Genome.

All those research results affirm our choice of considering biology as one of our research drivers.

In conclusion, the doubt we had with regards to our initial research methodology, and which caused the
methodology realignment, together with our inspiration from biology were finally a salvation to solve successfully
our problematic while bringing some disruption.

Quality, Quality Modeling and Qualimetry

55 | P a g e

Chapter IV. Quality, Quality Modeling and Qualimetry
1. Introduction

The purpose of this chapter is to answer to the first research question, and therefore explore and understand
accurately the complex concepts of quality, quality modeling and qualimetry.

Research Question 1
Is Qualimetry, as the science of quality quantification, the right approach and
what are quality and Qualimetry essentials?

Indeed, quality definition evolved since the ancient philosophers on the 5th century B.C., and today a standardized
definition is hopefully available. Nevertheless, there are still some further subtilities to capture with quality like,
for example, the notions of quality perception with Kano’s model [58], Garvin’s quality perspectives [101] and
quality dimensions [104], Horgan et al.’s essential views [84], lagging or leading indicators [105], [106].

Regarding quality modeling concept resulting in quality model, it is pivotal for quality definition and evaluation
activities. We remark that, whatever the type of quality models is, those models can be perceived as composed
of dependent (i.e., computed from observation) and independent (i.e., observed) variables, themselves
consequently associated to either indicators, quality characteristics, sub-characteristics or measures.

So, we consolidate its knowledge thanks to a review of the key contributions in quality modeling. About the last
concept, we have to get to know qualimetry which is in fact the science of quality quantification, and more
particularly what the essential characteristics of that science are.

Finally, with this tripartite knowledge (i.e., quality, quality modeling and qualimetry), we are able to affirm which
quality modeling or quantification solution is the right one for our problematic case, parallelly contributing to the
resolution of the technical locks we encountered.

2. The essence of quality

Research Sub-question 1a What is the essence of quality?

Since the 5th century B.C. with the ancient Greek philosophers that are Socrates, Aristotle, Protagoras, Heraclitus
and Plato in the quest of “what is knowledge?” [107], and summarized by Aristotle through “By ‘quality’ I mean
that in virtue of which people are said to be such and such […] The body is called white because it contains
whiteness.” [108], the definition of quality evolved and nowadays, it is hopefully possible to find converged and
standardized definitions. This is, for instance, the case with the international standard for quality management,
ISO 9000 [109] and the ISO/IEC/IEEE 24765 International Standard Systems and software engineering—
Vocabulary [110] where quality definitions are similar despite their distinct scope and a more elaborated
definition for ISO/IEC/IEEE 24765:

 ISO 9000 quality definition: “The quality of an organization’s products and services is determined by the
ability to satisfy customers and the intended and unintended impact on relevant interested parties”.

 ISO/IEC/IEEE 24765 quality definition: “1. the degree to which a system, component, or process meets
specified requirements. (IEEE Standard for Software and System Test Documentation.3.1.25). 2. ability of
a product, service, system, component, or process to meet customer or user needs, expectations, or
requirements. 3. the totality of characteristics of an entity that bear on its ability to satisfy stated and
implied needs. (ISO/IEC 9126-1:2001, Software engineering — Product quality — Part 1: Quality
model.B.21). 4. conformity to user expectations, conformity to user requirements, customer satisfaction,
reliability, and level of defects present. (ISO/IEC 20926:2003, Software engineering — IFPUG 4.1
Unadjusted functional size measurement method — Counting practices manual) 5. the degree to which
a set of inherent characteristics fulfils requirements. (A Guide to the Project Management Body of
Knowledge (PMBOK® Guide) — Fourth Edition). 6. the degree to which a system, component, or process
meets customer or user needs or expectations. (IEEE Std 829-2008 IEEE Standard for Software and System
Test Documentation.3.1.25)”.

We remark that the International Software Testing Qualification Board glossary (ISTQB Glossary 3.1, [111]) refers
to the IEEE Standard glossary definition [112] which is as well similar to part 1 and 2 definition of ISO/IEC/IEEE

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

56 | P a g e

24765. Additionally, to this quality definition, there are some further nuances and concepts around quality to
understand in order to capture the very essence of quality. We cover them in the next sub-sections.

a. Integral quality
The first further nuance about quality is the concept of “integral quality”. This concept mainly comes from the
socioeconomic field [113], [114]. There are debates about integral quality [114], nevertheless, this concept is
important as its joints quality with cost. This last one may vary for same type of object of interest, depending on
project model, for example. Thus, the integral quality corresponds to the sum of quality with cost effectiveness
(cf. equation (1)). The cost effectiveness is described by the object properties that are linked to the input capital
for production and consumption of that object. This nuance with quality is important because selecting one or
the other concept can lead to different results in quality related activities.

Integral Quality = Quality + Cost Effectiveness (1)

b. Perceived quality
Recalling the knowledge quest of the ancient Greek philosophers, particularly the summary from Aristotle (i.e.,
“The body is called white because it contains whiteness”), and the second point of IEEE Standard glossary
definition of quality (i.e., “Customer or user needs or expectations”), we discern that quality is also a matter of
perception or interpretation. On 1984, Kano et al. [58] investigated how customers perceive quality, and
remarked that customer satisfaction and dissatisfaction are dissymmetrical. They noticed, for instance, that if the
existence of a feature can create a customer satisfaction, its absence doesn’t automatically create a
dissatisfaction, and vice-versa. Kano et al. summarized their findings over the Kano’s model depicted in Figure 8.
The two orthogonal axes of this model are the level of customer expectation, or requirements implementation,
versus the level of customer satisfaction or dissatisfaction. The main elements of the Kano’s model are:

- Must-be / basic: these are the basic mandatory customer expectations or requirements. Their absence5
creates dissatisfaction while their presence won’t create any satisfaction. Moreover, it is not required or
expected that they are asked by customer (e.g., this is the case of product legacy features).

- Attractive / exciting: these are not expected by customer. Their presence creates satisfaction while their
absence won’t create any dissatisfaction (e.g., this is the case with product innovation or disruptive
features).

- One-dimensional / required: These are the new customer expectation or requirements. Their presence
creates satisfaction while their absence creates dissatisfaction. Satisfaction and dissatisfaction are
proportional to the performance of implemented requirements (e.g., the new planned product
features).

- Indifference area: In this area neither absence, nor presence of customer expectations or requirements
don’t significantly influence customer satisfaction or dissatisfaction.

Figure 8 - Kano's model of perceived quality [58]

5 When we indicate presence, requirement must be implemented and working as expected, with absence it is when feature is missing or

doesn’t work as expected.

Quality, Quality Modeling and Qualimetry

57 | P a g e

Moreover, the quality perception evolves with time because of the evolution of customer expectations: an
“attractive” product feature may become a “required” product feature after a certain number of product
releases, and even later, may become a ”basic” feature.

As example to illustrate this evolution, we consider the creation of the first mobile-phone and then a new
generation of it. When creating the first mobile phone, the basic feature was “to emit and receive phone calls”,
the required feature was “to be mobile” and the attractive feature was “to have call log”. In the next generation,
moving one step to our today’ smartphone, the basic features became “to emit and receive phone calls” and “to
be mobile”, the required features were “to have call log” and “to send and receive SMS/MMS”, and finally the
attractive feature was “to take photos to attach to MMS”. We note that this behavior is what Lehman
characterized previously with his laws of software evolution [82]. We have the same behavior with quality, and
therefore, when dealing with quality, we must take into account these perception impacts and time evolution
like in von Dran et al. [115] or Liang et al. [116]. However, through his study [117], Han highlighted that these
considerations on perceived quality are not obvious in quality evaluation activities because of the existence of a
gap between perceived and measured data quality.

c. Quality perspectives and views
Through the description of the perceived quality, we could notice that quality is also a matter of point of view.
Indeed, in 1999, Horgan et al. [84] introduced the notions of quality essential views through two concepts: Key
Quality factors (KDF) and Locally Defined Factors (LDF). According to Horgan, quality, characterized by a set of
quality characteristics or factors (e.g., usability, correctness, reliability, maintainability), can be viewed from two
viewpoints. The KDF encompass the quality factors which are relatively invariant (i.e., they are key) over project,
product and/or stakeholders, while the LDF include the quality factors that change (i.e., they are locally defined),
depending on the project, product, or stakeholders.

In 1984 Garvin brought some further subtilities in the discernment of what quality is, by splitting quality aspect
into five quality perspectives or views [101]:

- Transcendental view: quality as an ideal that cannot be defined but can be recognized,

- User view: quality as a user's expected needs,

- Manufacturer view: quality as conformity to specifications, regulations, standards, involving
optimization during production and operation,

- Product view: quality as the internal characteristics of a product that influence its external ones,

- Value-based view: quality as how much a customer is willing to pay for the quality outcomes.

These five perspectives of quality are distinct and can be used alone or combined. As an example, a company
which wants to optimize the maintenance cost should focus on the manufacturer quality perspective and may
use a quality model accordingly to this perspective to predict its product quality during the development stages.

d. Quality dimensions and characteristics
Then in 1987, deepening his previous analysis, Garvin proposed eight critical dimensions of product quality [104].
These are performance, features, reliability, conformance, durability, serviceability, aesthetics, and perceived
quality. These quality dimensions must be aligned with the targeted quality perspective(s) to be used accurately.
With this proposal, he illustrated the elicitation of quality requirements [24] from stakeholders.

Moreover, we noticed that Garvin indifferently used quality dimension or quality category to express the same
concept. Over our literature studies, we also noticed the same behavior of using different terms for describing
the same concept. The consequence is a mix of vocabulary, sometimes slightly antinomic between contributions.
For example in Boehm et al. [42], ISO/IEC 9126 [24] or ISO/IEC 25010 [23], the authors deal with multiple levels
of quality characteristics and metrics, on their side, McCall et al. [41] consider perspectives, quality factors, quality
criteria, and metrics, Dromey [49] use quality attributes.

For all these sample cases, the targeted contribution is the creation of a quality model.

So, in order to avoid any confusion with regards to the terminology, here are the definition of the main keywords:

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

58 | P a g e

- Attribute: “Inherent property or characteristic of an entity that can be distinguished quantitively or
qualitatively by human or automated means” (from ISO/IEC 25000 [25]),

- Quality attribute: “1. characteristic of software, or a generic term applying to quality factors, quality
subfactors, or metric values. (IEEE Std 1061-1998 (R2004) IEEE Standard for Software Quality Metrics
Methodology.2.17). 2. feature or characteristic that affects an item's quality. 3. requirement that
specifies the degree of an attribute that affects the quality that the system or software must possess”
(from ISO/IEC/IEEE 24765 [110]),

- Quality factor:” 1. a management-oriented attribute of software that contributes to its quality. (IEEE Std
1061-1998 (R2004) IEEE Standard for Software Quality Metrics Methodology.2.18). 2. higher-level quality
attribute” (from ISO/IEC/IEEE 24765 [110])

- Quality characteristic: “inherent distinguishing feature of an object related to a requirement” (from
ISO/IEC 9000 [107]),

- Software quality characteristic: “category of software quality attributes that bears on software quality;
NOTE: Software quality characteristics can be refined into multiple levels of sub-characteristics and finally
into software quality attributes” (from ISO/IEC 25000 [25]),

- Quality criteria (or quality standards): “the parameters established or adopted by an organization to

- measure the compliance of its products, services and processes to a certain defined standard” (from IAEA
glossary terms [118]),

- Quality model: “defined set of characteristics, and of relationships between them, which provides a
framework for specifying quality requirements and evaluating quality” (from ISO/IEC 25000 [25]),

- Quality objective: “result to be achieved related to quality” (from ISO/IEC 9000 [107]),

- Quality requirement: “need or expectation related to quality, that is stated, generally implied or
obligatory” (from ISO/IEC 9000 [107]),

- Indicator: “measure that provides an estimate or evaluation of specified attributes derived from a model
with respect to defined information needs” (from ISO/IEC/IEEE 15939 [115])

- Metric: “measurement scale and the method used for measurement” (from ISO/IEC 14598-1 [115] and
ISTQB Glossary [111]).

- Quality measure: “derived measure (i.e., measure that is defined as a function of two or more values of
base measures (i.e., measure defined in terms of an attribute and the method for quantifying it), from
ISO/IEC/IEEE 15939 [119]) that is defined as a measurement function of two or more values of quality
measure elements” (from ISO/IEC 25021 [121])

- Quality measure element: “measure defined in term of a property and the measurement method for
quantifying it, including optionally the transformation by a mathematical function” (from ISO/IEC 25021
[121])

- Property to quantify: “property of a target entity that is related to a quality measure element and which
can be quantified by a measurement method” (from ISO/IEC 25021 [121])

Finally, we build an ontology depicted by Figure 9, taking profit of these definitions. That ontology
summarizes in one drawing the links between all these concepts.

Thus, to define, evaluate or predict quality, first we must enumerate and define accurately the corresponding
quality objectives. These objectives are then refined into quality requirements and quality criteria, or
standards. They also serve to identify the proper quality perspectives or views we aim our quality to focus
on. Next, the criteria guide the determination of the necessary indicators set. That set is used jointly with the
quality perspectives to construct the right quality models.

Quality models are directly elaborated from the set of quality characteristics compliant, not only to the
quality model properties (e.g., type, perspective, lagging or leading indicator) but mostly to the quality
requirements. At last, these quality characteristics are decomposed into quality sub-characteristics,
attributes, sub-attributes, and metrics, as needed.

Quality, Quality Modeling and Qualimetry

59 | P a g e

Figure 9 - Ontology of main quality keywords

e. Lagging and leading indicators
The last complementary aspect to consider about quality is whether we deal with lagging or leading indicators.
The lagging indicators focus on the past performance, what already happened, and therefore measure the
consequence (e.g., test results). They are easy to measure but hard to improve. The leading indicators focus on
the current or future performance, prediction and then measure the causes. They are composed of
characteristics, a condition which are both analyzed regularly or on-demand to predict a behavior with a certain
level of confidence and a lap range (see Figure 10). They are hard to measure but relatively easy to improve (e.g.,
monitor test development skillset of a team). Nevertheless, that difficulty can be skirted thanks to the work lead
by Roedler and Rhodes [105], completed by Roedler et al. [106], where a set of 18 leading indicators (e.g.,
requirements trends, interface trends, technical measurement trends, systems engineering staffing & skills
trends, schedule and cost pressure) is fully described and explained.

Knowing whether quality indicators happen in lagging and/or leading space is crucial in activities depending on
quality, including quality modeling and evaluation activities. This certainly influences the resulting quality model
since it may be sub-optimal or inefficient.

Figure 10 - Leading indicator composition, Roedler et al. [106]

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

60 | P a g e

All these further knowledges and nuances are keys to capture the essence of quality and for succeeding in the
modeling of quality, perceived or not.

3. The essence of quality modeling

Research Sub-question 1b
What is the essence of quality modeling and particularly in software
field?

The premises of quality modeling can be found through plethora of examples often associated to quality
quantification. For instance, back to 1910’s, the mechanic and shipbuilder A. N. Krylov defined quality
measurement in a scientific manner to find the best warship design [113].

From the previous Chapter IV.2, we understand what quality is, and what are the elements to use in order to
describe an object of interest (e.g., in our case embedded software product) qualitatively and quantitatively.
Although quality is an elusive target, as rightly highlighted by Kitchenham and Pfleeger in their article [26] on
1996, a quality model is a powerful tool, such as a bow and arrow, for hitting this target.

A quality model is the delivered result of quality modeling activity which enables quality definition, evaluation,
and prediction.

So, in the following paragraph, we review the distinct and fundamental elements characterizing the essence of
quality modeling starting with quality model, and then measurement, scale, aggregation, and threshold.

a. Quality model
As we have seen above in Chapter IV.2.d, the current international ISO standard for software product quality
requirements and evaluation (SQuaRE), ISO/IEC 25000 [25], defines a quality model as a “defined set of
characteristics, and of relationships between them, which provides a framework for specifying quality
requirements and evaluating quality”.

Based on this definition, we notice that a quality model is used for multiple purposes such as quality requirement
specification or quality evaluation. In 2009, Deissenboeck [122] classified quality models into three main
categories: definition, assessment and prediction. This is the concentric DAP (i.e., Definition, Assessment,
Prediction) classification (see Figure 11) where the further we move from the center, the more advanced our
model is.

At the center of the DAP classification, we found the first type of usage for a quality model. This is the set of
definition models which corresponds to “specifying quality requirements” through a set of quality characteristics
and sub-characteristics linked together. The goal is then to identify, refine and organize all quality characteristics
required for the quality6 objectives, and then quality requirements, related to the focused object of the quality
modeling activity. Figure 12 shows an example of such definition model ; this is the system / software product
quality model from ISO/IEC/IEEE 25010 [23]. We note, for instance, that “Functional suitability” quality
characteristic is refined into three quality sub-characteristics: functional completeness, functional correctness,
and functional appropriateness.

The second type of usage is the assessment, or control. Control activity is close to assessment one, except that
control is an assessment performed regularly. So, in order to assess quality, the definition model must be
extended with measurement information. The current SQuaRE standard ISO/IEC 25020 [119] recommends to
associate at least one software quality measure to each quality sub-characteristic. These software quality
measures are then structured under a method to perform the measurement and the elements to measure with
their properties, or attributes (cf. Chapter IV.2.d). For example, to measure the “Maturity” sub-characteristic of
“Reliability” characteristic, we use the mean time between failure (i.e., MTBF) as the measurement method. The
corresponding formula is defined as the ratio of the number of failures per duration period. Consequently, the
measure elements are “number of failures” and “duration period”, and the associated properties to quantify are
then “failures” and “duration”. This example is depicted in Figure 13. We remark that similarly than in

6 Perceived and not perceived quality.

Quality, Quality Modeling and Qualimetry

61 | P a g e

mathematics, physic or statistics, the properties to quantify, or to observe, can be seen as independent variables
– if the independency with the other independent variables is verified – and the measurement methods as
dependent variables, outcomes of some combination of those independent variables.

This observation leads us to the last level in the DAP classification: the prediction models. As the model name
indicates, the purpose of this type of model is to predict quality and its construction requires to have previously
defined the quality (i.e., identify the quality characteristics, sub-characteristics and their relationship) and also
the way to evaluate them. In general, this type of model cannot be used as a definition or assessment model
because of this model construction often results in statistics or implicit model (e.g., regression analysis over
historical data [124]). Equation (2) illustrates a prediction model for software fault from Khoshgoftaar and Szabo
[125]. The authors elaborated a Poisson regression (i.e., named preg by the authors) model, based on the
principal components derived from a set of observed software measures.

𝑭𝒂𝒖𝒍𝒕𝒑𝒓𝒆𝒈 = 𝒆ି𝟎.𝟏𝟗𝟑𝟗 ା𝟏.𝟏𝟐𝟒𝟖∗𝑷𝑪𝟏 ି𝟎.𝟐𝟐𝟕𝟕∗𝑷𝑪𝟐 (2)

where 𝑃𝐶ଵ = 𝑤𝜂భ
. 𝜂ଵ + 𝑤𝜂మ

. 𝜂ଶ + 𝑤𝑁భ
. 𝑁ଵ + 𝑤𝑁మ

. 𝑁ଶ + 𝑤௅ை஼ . 𝐿𝑂𝐶 + 𝑤௑ொ் . 𝑋𝑄𝑇

and 𝑃𝐶ଶ = 𝑤𝑉భ(ீ). 𝑉ଵ(𝐺) + 𝑤𝑉మ(ீ). 𝑉ଶ(𝐺)

PC1 is the principal component 1 and corresponds to a weighted 𝑤 sum of η1 (i.e., number of unique operators),
η2 (i.e., number of unique operands), N1 (i.e., total number of operators), N2 (i.e., total number of operands), LOC
(i.e., lines of code), and XQT (i.e., number of executable statements). PC2 is the principal component 2 set as a
weighted sum of V1(G) (i.e., McCabe’s cyclomatic number) and V2(G) (i.e., extended cyclomatic number, V1(G) +
the number of logical operators (see paper [125] regarding weights and further details).

Figure 11 - The DAP classification introduced by Deissenboeck et al. 2009 [122]

Additionally, to these three types of model, there is one last model to consider in the DAP classification. This is
the ideal model, or multi-purpose model. Its particularity is to cover the three levels of DAP. Based on Wagner
experience [27], this type of model is rare and one example we can cite is Kitchenham’s COQUAMO [126].
COQUAMO is a constructive quality model and therefore, this model has the transversal capability to address
definition, assessment, and prediction purpose. Nevertheless, the main difficulty with this quality model is around
the unclear relationship with measurements. And as Wagner [27] pointed out, on 1997 Kitchenman et al. finally
concluded that “there were no software product metrics that were, in general, likely to be good predictors of final
product qualities” [127] which calls into question COQUAMO as prediction model.

In parallel to the quality model purpose, with DAP classification, there exist several types of model
representation: hierarchical, statistic/implicit, and meta-model.

Figure 12 illustrates the hierarchical model representation. In fact, instead of hierarchical, or tree, graph, we
should rather speak about oriented graph (e.g., Boehm’ s quality model [42], [128] presents some cycles like “As-
is Utility”, ”Reliability”, ”Robustness /integrity” and ”Human engineering” and therefore this model is not by
definition a tree or hierarchical graph ; cf. Figure 14) which is a more generic graph representation, even if in most
of the cases, the quality model is an hierarchical graph (e.g., ISO/IEC 9126 [24] or ISO/IEC/IEEE 25010 [23]).
Nevertheless, it is possible to remove the cycles from the graphs by splitting and repeating some graph elements,
resulting finally in a hierarchical graph. For instance in Figure 14, we can break the highlighted cycle by splitting
and repeating the lowest level elements “Robustness /integrity”, having one “Robustness /integrity” for
”Reliability” and another for ”Human engineering”. The main advantage of this type of representation is its

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

62 | P a g e

human comprehension, readability. Indeed, not only the information organized hierarchically relies on natural
language, but also the hierarchical graph reflects the relationship between its elements in an obvious manner.
However, quality evaluation requires further completion of the model, including measurement and aggregation
method.

The next type of model representation is the statistics or implicit model. Those models are defined through
mathematical model or function (e.g., Khoshgoftaar and Szabo’s model [125] shown in equation (2)). The principal
interest of this type of model is the readiness to be used either for assessment or prediction purpose. This is due
to the mathematical description which uses measurements as inputs. The main drawback is the complexity to
understand or interpret the model, and the difficulty to retrieve the quality characteristics and sub-characteristics
behind the model.

The last type is the meta-model. A metal-model describes the general concepts, depicting a view that shows the
different these key concepts, their properties, their relationships (sometimes including description of relationship
type) and their cardinality. This is similar to a UML class diagram or to an ontology (e.g., Figure 9). Thus, by
conception a meta-model is a good candidate to become a multi-purpose quality model, but it requires to be
applied against the object of interest in order to be used either for definition, assessment or prediction.

Figure 12 – Example of a definition model: the ISO/IEC/IEEE 25010 System / Software product quality model

[23]

Figure 13 – Example of an assessment model: Maturity sub-characteristics measurement extension of

ISO/IEC/IEEE 25010 System / Software product quality model [23]

Quality, Quality Modeling and Qualimetry

63 | P a g e

Figure 14 - Boehm's quality model (1976) [42] with an example of cycle in the graph structure

To summarize, aligned to its purpose and representation, a quality model corresponds to the abstraction of
quality of interest via the identification of independent and dependent variables related to quality, and
completed with their mathematical or statistical relationships.

The independent variables are the measurements of quality characteristics (e.g., the eight critical dimensions of
Garvin [104]) while the dependent variables are the aggregated or combined results for some specific quality
perspective (e.g., Garvin’s five quality perspectives [101]).

The next fundamental element to proceed from a quality model definition to quantification, assessment, and
quality control, deals with those independent variables. This is the measurement.

b. Measurements
Historically, there are three may streams of measurement theory [129]. The “representational measurement”
theory, initiated with the work of von Helmholtz in 1887 [130], focuses on setting a relationship between objects
and number systems via equivalence classes. The second theory, the “operational measurement”, was introduced
by Bridgman in 1927 [131]; its focus is put only on operations used to proceed to measure, neglecting
relationships between equivalent measured objects. The last stream is not a single theory but rather a sort of
“melting pot” of various other theories [132], [133], minor in front of representational and operational theories.
In most of these theories, major or minor, we can find a common underlying factor: the scale. We cover “scale”
concept in the Chapter IV.3.c.

In parallel to these stream of measurement theories, the scientific study of measurement, called metrology [134],
establishes convergences related to measurement in human activities through three overlapping active topics:
definition, practical realization and traceability. The definition activity of units of measurement drives especially
the definition unifications of unit with standard (e.g., international system of units (SI)) and vocabulary (e.g., the
international vocabulary of metrology [134] which is written in both English and French). Concerning the practical
realization of these units of measurement, this activity aims to address calibration and uncertainty aspect of
measurements, including with measuring devices. At last, the traceability activity focuses on bridging the practical
realized measurements to the reference standards.

Another aspect linked to measure is the measurement properties. For instance, in Schneidewind’s methodology
to validate software metrics [135], the author proposed six validity criteria applicable to software metrics for
assessment, control or prediction: association, consistency, discriminative power, tracking, predictability, and
repeatability. In his analysis of software measurements thanks to metrology [136], Abran focused on the design
validation of software measures, including measurement methods, and highlighted key measurement properties
such as maturity, precision, uncertainty, calibration and traceability. In health related field [137], it is frequent to
use measurement reliability, measurement validity, construct validity, responsiveness for measurement tools or

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

64 | P a g e

interpretability property, for example. Among all these properties, there are in fact two main critical properties
to qualify a measure, encompassing the instrument and method used to perform it. These properties are
reliability and validity of the measure. The reliability means how repeatable over time the measurement is
providing consistent results (i.e., with same exact condition and same exact way to measure, measurement values
must be equal). Part of reliability is measurement error and internal consistency. Concerning validity, this
property means whether or not measured value is measuring what we are expecting to measure; it includes
content validity, construct validity and criterion validity. The Figure 15 gives a good visual explanation of impact
of these two measurement properties, based on the analogy of “target shooting”. Here, our “sniper” is trying to
hit the target shooting several times in the same conditions. If all shootings are in the target, result is valid, and
if shootings are close together, we can conclude that the shootings are repeatable over time and therefore result
is reliable.

Figure 15 - Illustration of the concept of reliability and validity of measures [138]

Starting from left to right of Figure 15, on the most left target, we no-ice that the shootings are both spread (i.e.,
not quite repeatable), inside and outside the target (i.e., they are not valid shootings). On the second target, the
shootings are still spread but now all of them are inside the target; we can conclude that the shootings are valid
but not repeatable, or reliable. With the third target, all shootings are grouped but some of them are outside; we
understand that shootings are repeatable over time but not valid. In the last case not only, shootings are close
together and they are all inside the target; the result is therefore valid and reliable. Therefore, we must be in that
last case when proceeding with measurement.

Finally, we note that despites which definition is used in any of those theories or activities, “size, amount, or
degree” and “standard units” are direct references to the scale theory of measurement, or scale types.

c. Scale types
Scale is essential when we measure quality attributes or properties, with the goal of either assessing that the
measurements are matching some criteria (e.g., being above a certain threshold) or controlling quality by
comparing their differences over a certain period, or even predicting what will be quality measures. It enables
measurement interpretation, standardization, and comparability by describing mathematically types of element
with their corresponding operators, properties, functions, permissible statistics, and distributions.

In 1946, S. S. Stevens7 introduced and published a theory of scales of measurements [139] which is part of the
representational measurement theory. This theory is still widely used by scientist nowadays, despite criticism
from statisticians [140]. Stevens categorized data into four typologies or scales: nominal, ordinal, interval, and
ratio. The ‘nominal’ scale represents the group of data related to labels or type of numbers and words or letters
(e.g., {“Red”, “Green”, “Blue”} or {“True”, “False”}). It can be used for classification and membership assessment.
The ‘ordinal’ scale corresponds to the data set characterized by order, rank, and therefore allows comparison and
sort of elements: for instance, it is possible to tell that a quality result is better or worse to another one. The third
scale, ‘interval’, is extending the field of possible operations one step further by adding difference and affinity
operations between values to be meaningful. Thereby, distances between measures are used to take action and
decision. For example, man can tell that a quality result is not only better or worse than previous one but also
about how much it progresses in term of difference. And last scale is ‘ratio’. At that level, and as its name is
indicating, the ratio - or magnitude - between measurement values is relevant and useful. It has also the
important property of having a unique and non-arbitrary zero value (i.e., Kelvin temperature scale is a good

7 An American psychologist who was the founder and director of psycho acoustic laboratory at Harvard University

Quality, Quality Modeling and Qualimetry

65 | P a g e

illustration of a ratio scale since its zero absolute corresponds to -273.15° Celsius, while Celsius temperature scale
is an interval scale).

Table 4 summarizes for each scale its associated measure properties, the permissible statistics, the mathematical
operators, and group. It is then possible so see that some operations or manipulations are permitted for a specific
scale but not for another scale. As illustration of this fact can be found with ISO/IEC 33020 [136].

Indeed, this standard describes a process measurement framework for assessment of process capability, and for
example, there are two process capability rating tables, one based on ‘nominal’ scale (see Table 5) and the second
one based on ‘ordinal’ scale (see Table 6).

It obviously appears that it is possible to compare together measurements in ‘ordinal’, knowing which one is
greater than the other. In ‘nominal’, this type of operation is not possible, nevertheless we can classify or verify
the group membership. Consequently, an accurate scale selection is primordial to operate, process and
manipulate appropriately the measures.

In addition to the Stevens’ four scales of measurement, there exist several other alternate scales such like
Chrisman [142] who proposed an extension of the original Stevens’ scale list in 1998, shown in Figure 16. That
extended typology is interesting since it is not diverging from Stevens’ one. It includes therefore six new scale
types that are useful in some particular cases (e.g., gradation of membership is key in fuzzy set theory, log interval
is widely use in stock market graphics, cyclical ratio is suitable for times and angles).

TABLE 4 - SUMMARY OF THE 4 SCALES OF MEASUREMENTS DEFINED BY S. S. STEVENS [139]

Scale
Measure

properties

Mathematical

operators
Mathematical group structure Permissible Statistics

Nominal Classification,
membership

=, ≠ Permutation group
𝒙ᇱ =f(𝒙)

f(𝑥) means any one-to-
one substitution

Grouping
(unordered)

Number of cases
Mode
Contingency correlation
χ2

Ordinal Comparison,
level

>, < Isotonic group
𝒙ᇱ =f(𝒙)

f(𝑥) means any
monotonic increasing
function

Sorting Median
Percentiles

Interval Difference,
affinity

+, − General linear group
𝒙ᇱ = 𝒂𝒙 + 𝒃

Step, affine line Mean
Standard deviation
Rank-order correlation
Product-moment
correlation
Regression
Variance analysis

Ratio Magnitude,
amount

×,÷ Similarity group
𝒙ᇱ = 𝒂𝒙

Ratio All statistics permitted for
interval scales, plus:
Geometric mean
Coefficient of variation
Harmonic mean
Logarithms

TABLE 5 – NOMINAL SCALE-BASED RATING, ACCORDING TO ISO/IEC 33020 [136]

Rating Meaning Description

N Not achieved There is little or no evidence of achievement of the defined process attribute in the assessed
process.

P Partially achieved There is some evidence of an approach to, and some achievement of, the defined process
attribute in the assessed process. Some aspects of achievement of the process attribute may
be unpredictable.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

66 | P a g e

L Largely achieved There is evidence of a systematic approach to, and significant achievement of, the defined
process attribute in the assessed process. Some weaknesses related to this process attribute
may exist in the assessed process.

F Fully achieved There is evidence of a complete and systematic approach to, and full achievement of, the
defined process attribute in the assessed process. No significant weaknesses related to this
process attribute exist in the assessed process.

TABLE 6 - ORDINAL SCALE-BASED RATING IN PERCENTAGE VALUES, ACCORDING TO ISO/IEC 33020

Rating Meaning Range values

N Not achieved 0 to ≤ 15% achievement

P Partially achieved > 15% to ≤ 50% achievement

L Largely achieved > 50% to ≤ 85% achievement

F Fully achieved > 85% to ≤ 100% achievement

Figure 16 – The Chrisman's scales [142], an extension of the Stevens' scales (in boldface)

To conclude on this part, it is important to select, apply and use the right measurement scale for each property,
attribute, and object where we want to apply metrics. Scale brings mathematical and statistical “tools” on
measures, rating (e.g., ISO / IEC 33020 [141]) allowing discretization, sampling (i.e., scale change) and validity and
reliability of measure such as in [138]. Knowing limits and recommendations from statisticians [140], but also the
fact that it is still widely adopted by scientists, we can safely consider Stevens’ typology as the main scale typology
to use. And, when it is required to bring more details, accuracy and control on measurement levels, Chrisman’s
extended types are offering a good practicable complement.

d. Aggregation
Aggregation consists in operations with the objective to combine elements together, going from a large set of
elements to smaller set of elements. In quality modeling, the aggregation is implicit with statistical quality model
(e.g., equation (2)), but for the other types of quality model, this is an important operation because it allows to
join properly quality measures, attributes, and characteristics for different purposes, thanks to the correct
aggregation operators.

According to Wagner [27], there are five major aggregation purposes to consider: assessment, prediction, hot
spot identification, comparison and trend analysis. For assessment, the objective is to assess the aggregation
results likes for a product quality assessment, where the measures of its quality attributes are aggregated to
define the product quality measure. Prediction purpose is identical to assessment but with a scope of prediction,
and frequently use of statistic model. About Hot spot identification, the intent is to focus on specific area of
interest, or properties instead of all system or software. It is used for improvement. Comparison aims to compare
sets of aggregated elements (e.g., systems, software components). Regarding the last purpose, trend analysis,
the goal is to focus on the evolution over time of some specific, or all, set of elements of interest.

Quality, Quality Modeling and Qualimetry

67 | P a g e

Knowing the aggregation purpose is important but not sufficient to clarify the objectives behind the data
aggregation. In fact, we must also identify which aggregation operator category we need before selecting the
correct aggregation operator(s). Wagner enumerated seven categories: grouping, rescaling, cluster analysis,
central tendency, dispersion, concentration, ratio and indices [27]. The goal of grouping operators is to regroup
elements together into sets, and therefore create groups. Concerning rescaling, this is close to the grouping
category. Indeed, the first step for this kind of operators is to group elements together following a certain scale,
and then change that scale. For example, we start with ordinal (e.g., Table 6) and then move to nominal (e.g.,
Table 5). Cluster analysis operators are closed to rescaled group, but the clusters are identified with a more thin
and refined analysis (e.g., K-means algorithm). The central tendency category corresponds to determine an
“average” of elements. Such operators can be mode8, median, arithmetic mean, geometric mean, or harmonic
mean. The dispersion operators qualify the scattering of inputs. In this category we have variation ratio (e.g., for
hotspot identification), maximum, minimum, range, median absolute deviation, variance, standard deviation.
From an opposite perspective, concentration operators (e.g., Lorenz curve – gives graphical hint of the
concentration-, Gini coefficient) focus on finding the strongest data cluster (i.e., closest data together). Finally,
the ratio and indices operators are binary operators because they are defined as the ratio of two measures, where
the ratio divider can be also a reference index value instead of a measure). Thus, this category is composed of
fraction measures, relation measures or indices.
In addition to the aggregation operators indicated in the above category descriptions, it is possible to find many
other aggregation operators. We are not detailing them here but rather initiate their exploration, first by citing
the mathematical and behavioral properties that defined them and second, by providing a catalog of the main
existing operators. Definition and applicability of these properties and operators are detailed in Detyniecki [143]
or Wagner [27]. So, the properties that defined, or characterized aggregation operators are:

 Mathematical properties: boundary conditions, Monotonicity (non-decreasing), continuity,
associativity, symmetry, bisymmetry, absorbent element, neutral element, idempotence,
compensation, counterbalance, reinforcement, stability for a linear function, invariance.

 Behavioral properties: decisional behavior, interpretability of the parameters, weighs on the arguments.

The catalog of the main existing aggregation operators is described in Table 39 in Annex 1. We remarked that
some operators are weighted (e.g., weighted mean). These weight factors depict the fact that characteristics are
of relative important to the other characteristics. Moreover these weight factors are often determined thought
surveys [27], [51], or expert-nonexpert-hybrid methods from qualimetry [113]. Finally, despite this list of the main
aggregation operators, respecting the mathematical and behavioral properties, there is an alternate aggregation
approach to include to complete that list. Indeed, in 1997 Dujmovic and Bayucan introduced the “Logic Scoring
of Preference” method and the “Continuous Preference Logic” operators [144] to evaluate quality software
products - in their particular case, it was windowed environment software products. The main idea, shown in
Figure 17 and by the equations (3), is to specify the relationships (i.e., the “Continuous Preference Logic”
operators) between the entries Ei and the output E(r), relying on some trade-off between conjunction (i.e., low
entry values influence output the most), neutral and disjunction (i.e., high entry values influence output the
most). Then the result of the “Continuous Preference Logic” operators gives the parameter r which is then injected
in the weighted power mean of weighted entries (i.e., Ei) to determine the output result E(r).

𝑬(𝒓) = ቐ
(∑ 𝒘𝒊. 𝑬𝒊

𝒏
𝒊ୀ𝟏)

𝟏

𝒓 𝐟𝐨𝐫 𝒓 ≠ +∞ 𝐚𝐧𝐝 𝒓 ≠ −∞

𝐦𝐚𝐱(𝑬𝟏, ⋯ , 𝑬𝒏) 𝐟𝐨𝐫 𝒓 = +∞

𝐦𝐢𝐧(𝑬𝟏, ⋯ , 𝑬𝒏) 𝐟𝐨𝐫 𝒓 = −∞

 (3)

where 0 ≤ 𝐸௜ ≤ 1, 0 < 𝑤௜ < 1 for 𝑖 ∈ [1; 𝑛] and ෍ 𝑤௜ = 1

௡

௜ୀଵ

8 Mode determines the value which occurs the most often; It is also the only way to determine an average with nominal scale.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

68 | P a g e

Figure 17 – “Continuous Preference Logic” operators and corresponding weighted power mean parameter

used in the “Logic Scoring of Preference” of Dujmovic and Bayucan [144]

e. Threshold
To complete our overview of the fundamental elements that characterized the essence of quality modeling, we
end with threshold concept. This concept is closely related to decision making and quality criteria, or quality
standards where compliance criteria rely on the comparison between measurements and threshold value (e.g.,
whether measurements are below, on, or above threshold value). Thus, threshold is mandatory to assess, control
or even predict the compliance of products, services, projects, and processes, but it is optional when the quality
modeling purpose is only to create, or manage, definition quality model.

Even if a threshold can be perceived as a level that may trigger decisions or actions, we found six distinct
categories of threshold from academic and industrial domains.

 Acceptance, or acceptable: this is the worst but still acceptable value of a measurement ; this
category corresponds to the most frequent use case of threshold and can be linked to risk
management (i.e., this is the minimum value from which risk is manageable) (e.g., Azgaldov et al.
[113], ISO/IEC 25022 [145]),

 Forecasted: this is the estimated or predicted value of a measurement ; this category is used within
a safety or a process maturity context, for instance (e.g., ISO 26262 [3], ISO/IEC 9126-4 [141], ISO/EC
25040 [141]),

 Opportunity: this is the minimum value of measurement from which opportunities (e.g., in
economics, health, environmental) can occurs; it is often associated to management of risk and
opportunity (e.g., ISO/IEC 25022 [145]),

 Rejection: this is the least worst but still rejected value of a measurement ; it is an alternate category
to the acceptable one (e.g., Azgaldov et al. [113]),

 Reference: this is the best value of the measurement currently achieved during evaluation period ;
the reference is usually the best world-wide achievement and may be used as target (e.g., Azgaldov
et al. [113]),

 Target: this is aimed value of the measurement; this category is between, or identical to, the
acceptance and the reference ones(e.g., Wagner [27], Azgaldov et al. [113], ISO/EC 25040[141]).

Quality, Quality Modeling and Qualimetry

69 | P a g e

Another interesting aspect of threshold is the simultaneous use of several thresholds from same or different
categories. For instance, the use of two acceptance thresholds defining a range of acceptable values, or the use
of acceptance, target, and reference, or again acceptance with opportunity (cf. Figure 18).

Figure 18 - Threshold for risk acceptance and opportunities: from ISO/IEC 25022 [140] theory to practice

Our final highlights on threshold are regarding two specific difficulties that may occur during threshold
elaboration. Firstly, it is sometimes hard to specify objective threshold but, as Arhens et al. [51] shown, it is
possible to get around this obstacle with the use of relative threshold (e.g., reference against a previous release,
results to see progress against it). Secondly, the relationship of quality characteristics to each other may influence
threshold values. Khaddaj and Horgan [148] established quality characteristics relationship to each other by
means of a factor polarity profile (see Table 7).

This polarity profile identifies the dependency links between characteristics or sub-characteristics. There are
three types of polarity profile relationship: direct (i.e., if a characteristic A is enhanced, the related characteristic
B is likely to be enhanced), neutral (i.e., if a characteristic A is enhanced, the related characteristic B is unlikely to
be enhanced) and inverse (i.e., if a characteristic A is enhanced, the related characteristic B is likely to be
degraded). For instance, an increase in the security quality characteristic may improve, or degrade the overall
performance quality characteristics. This example illustrates the inverse relationship. Further-more, the
relationship behaviors of polarity profiles are applicable as well to the thresholds or levels of quality assigned to
each quality characteristic.

In conclusion, to define the essence of quality modeling: namely, the abstraction of quality of interest via the
identification of independent and dependent variables related to quality (e.g., quality characteristics and sub-
characteristics), completed with their mathematical and statistical relationships.

TABLE 7 - EXAMPLE OF KHADDAJ AND HORGAN [148] RELATIONSHIP CHART USED FOR POLARITY PROFILE

 Criterion A

 Key Quality Factor (KQF) Locally Defined Factor (LDF)

 U S CB T C M R LDF1 … LDFn

Cr
ite

rio
n

B KQ
F

Usability (U) ⌀ ↷ ⇅ = = = = = =
Security (S) ↷ ⌀ ⇅ = = ↷ = = =

Cost/Benefit (CB) ⇅ ⇅ ⌀ ⇅⇅ ⇅ ⇅ =  =
Timeleness (T) = = ⇅ ⌀ = = = =  =

Correctness (C) = = ⇅ = ⌀ = = = =
Maintainability (M) = ↷ ⇅ = = ⌀ = = =

Reliability (R) = = ⇅ = = = ⌀ = =

LD
F

LDF1 = = = = = = = ⌀ =

… ⌀

LDFn = = = = = = = = ⌀

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

70 | P a g e

Legend: ⌀ None (same characteristic)
 ⇅ Direct (if criterion A is enhanced, then criterion B is likely to be enhanced)

 = Neutral (if criterion A is enhanced, then criterion B is unlikely to be enhanced)

 ↷ Inverse (if criterion A is enhanced, then criterion B is likely to be degraded)

4. Key contributions to quality modeling of software
To consolidate quality modeling theory, a narrow set of the most well-known, significant, or influential quality
models or contributions to quality modeling of software, is frequently cited in papers or used as a basis. In the
following content, after providing a timeline with the most significant contributions that we found in that field
(see Figure 19), we give details about each of them.

- 1965 – Software Engineering concept [32]: even if Alan Turing proposed the first theory about software,
and more precisely about algorithm, on 1936 [149], the "software engineering" concept only emerged
in the 1960s. The first publication that used this term, was “The Computer Directory and Buyer’s Guide”
of June 1965 [32]. This is the first key contribution of the timeline.

- 1968 - Rubey & Hartwick model [33]: Following their study on quality for spaceborne software, Rubey
and Hartwick contribution was the first published hierarchical quality model for software product. Their
model, organized around a set of 7 quality attributes from mathematical and logical correctness to
usability, is associated to 57 metrics composed of checklists, logical, mathematical or structural metrics.
The quality perspectives of this model are both product and user.

- 1968 - Shooman model [34]: Parallelly to Rubey and Hartwick, Shooman’model was the first published
quality model for software reliability. This model estimates the error detection rate based on the number
of errors per instruction and the average instruction processing rate. It is therefore the first published
software reliability model and by consequence reflects the manufacturer view.

- 1968 - Azgaldov et al. Qualimetry genesis [2]: Azgaldov et al. laid the foundations of “Qualimetry”, the
science of quality quantification. Thus, qualimetry is a scientific discipline which uses methods for
quantifying quality. It covers both the theorical and applied aspects of quality quantification with a range
of activities such as quality definition, assessment, control, or prediction. The main original contributer
to this science is Azgaldov whose PhD [2] was to build, study and develop qualimetry.

- 1976 - Boehm's quality model [42]: Boehm's quality model is one of the most famous hierarchical quality
models built by Boehm et al.. In 1973, a first model was published [150]. It consisted of 7 primitive
characteristics linked to 12 intermediate characteristics, themselves associated with about 151 metrics.
Subsequently, the model underwent successive evolutions during the 1970s. The first iteration was
completed in 1976 [42], mainly by grouping primitive characteristics under three types of actual use of
software, namely: general utility, as-is utility and maintainability. The last release of this quality model
in 1978 [128] was consolidated with a few more primitives and intermediate characteristics. The quality
perspective of this model is a product view.

- 1978 - McCall's quality model [41]: McCall's quality model is also one of the most well-known
hierarchical quality models, known also as FCM (i.e., Factor-Criteria-Metrics). It was published in 1977
by Mc Call et al. Their model is structured around a hierarchy of 3 factors, 11 criteria and a minimum of
23 to 35 metrics. It is sometimes known as the FCM model, the acronym for Factor-Criteria-Metrics. The
main difference with Boehm's model is that the factor decompositions are associated with three specific
software product activities: product revision, product transition and product operation. This quality
model reflects a product quality perspective.

- 1984 - Garvin’s quality perspectives [101]: In his study about quality Garvin remarked that previously
philosophy, economics, marketing and operations management disciplines considered quality from their
own vantage point of view, each view competing with the others. By summarizing the views on quality
over five distinct quality perspectives, Garvin offered a way to reunify these divergences and use “quality
as a competitive weapon”[101].

Quality, Quality Modeling and Qualimetry

71 | P a g e

Figure 19 - Timeline of the key contributions to quality modeling of software

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

72 | P a g e

- 1984 - Kano's model of perceived quality [58]: Kano’s model is a particular quality model since its
purpose is to integrate customer preferences and satisfaction thought the concept of perceived quality.
In addition, Kano et al. found that the perception of quality evolve with the time, similarly to Lehman’s
laws of software evolution [82], and therefore, quality definition and evaluation must be adapted
accordingly. This model can also be used to identify the most important product attributes from a
customer perception. This model covers product, user and value-based quality perspectives.

- 1987 – Kitchenham’s COQUAMO [126]: This research work was performed within ESPRIT9 project for
reliability and quality of European software. Thus, in this context Kitchenham defined the COnstructive
QUAlity MOdel (i.e., COQUAMO) approach, a ‘do your own’ quality model quite similar to the Boehm’s
constructive cost model, also known as COCOMO, approach [151]. She then used it to create a quality
model based on Boehm [42]and McCall models. So, she identified the main quality drivers, or factors,
from Boehm and McCall [41]models. She finally limited to five main factors for user perspective and
three for manufacturer one. Therefore, the quality perspective addressed by COQUAMO are the user
and manufacturer ones.

- 1987 the FURPS [85] & 1992 FURPS+ [152] quality models: The FURPS [85] quality model was built by
Grady and Caswell in 1987. This model is interesting in that it is adapted to the different stages of a
software life cycle without modifying its 5 characteristics (Functionality, Usability, Reliability,
Performance, Supportability). This is achieved by fitting the measures used for each characteristic to the
current stage. In 1992 a new model based on FURPS was created: FURPS+ [152]. This new model is an
extension of the original model, which specifies constraints with respect to design, implementation,
interface and physical properties and conditions. Both models cover a user and a product quality
perspective.

- 1988 - Humphrey's maturity model [153]: Humphrey’s maturity model is the first published maturity
model, and it corresponds to a framework for process maturity. This model is key because it is the
original foundation of many other maturity model likes the Capability Maturity Model (CMM) of the
Software Engineering Institute (SEI) [154] on 1991, or Automotive-SPICE [21] on 2001, for example. This
model represents the manufacturer quality view.

- 1990 - Khoshgoftaar and Munson model [124]: Khoshgoftaar and Munson model represents one of the
earliest starting point of a long series of research studies and fruitful contributions lead by Khoshgoftaar
on prediction of error-prone quality models for telecommunication systems software. During their
researches, they explored a wide range of likelihood methods to elaborate their quality models. To cite
few of them, they investigated regression analysis, discriminant analysis, neural network, logistic
regression, classification tree, genetic algorithm, analogy-based classification, and Poisson regression. It
appears that the resulting quality models were specific to their study case and therefore couldn’t be
reused as it for other type of systems or software. Obviously, they are focusing on manufacturer quality
perspective.

- 1991- the ISO/IEC 9126 quality models [24]: The ISO/IEC 9126 quality model was first published in 1991,
with a final release in 2001. This hierarchical quality model is the first standardized quality model. It got
its inspiration from the Boehm and McCall models. ISO/IEC 9126 is a hierarchical quality model
composed of two quality views (internal & external quality, quality-in-use), 10 quality characteristics and
27 quality sub-characteristics. The suggested metrics are provided by ISO/IEC TR 9126-2 (external
metrics) [155], ISO/IEC TR 9126-3 (internal metrics) [156] and ISO/IEC TR 9126-4 (quality-in-use metrics)
[146]. Its status as an official standard quality model made it a reference that is widely used as a basis
for many quality models. Obviously, this quality model is based on a user and a product quality
perspective.

- 1994 - the Goal-Question-Metric (GQM) paradigm and quality model of Basili et al. [28]: The Goal-
Question-Metric (GQM) paradigm and quality model of Basili et al. was first cited in 1984. It is frequently
used as a common process for creating quality models. Its process flow starts by identifying quality goals,

9 European Programme for Research and Development in Information Technologies: https://cordis.europa.eu/project/id/300

Quality, Quality Modeling and Qualimetry

73 | P a g e

followed by the related requirements needed to meet those goals, and finally completed by a set of
metrics to monitor the extent to which the requirements have been met. The quality perspective focused
with this approach and the resulting quality models cover product, manufacturer, and user views.

- 1995 - Dromey's "5 steps" approach and quality model [49]: After noticing that quality assessment
differs for each product and consequently requires a process to handle this behavior, Dromey defined a
5-step process to evaluate and construct a hierarchical quality model based on ISO/IEC 9126. His
approach is crucial because it allows quality model verification by establishing criteria for deciding
whether to include software properties as an integral part of a model, and a way of assessing whether
the model is complete or not. The quality perspectives addressed here are user and product views.

- 1999: Horgan et al.’s essential views model [84]: During his PhD on “Construction of a Quality Assurance
and Measurement Framework for Software Project”, Horgan noticed a specific behavior related to
quality characteristics, or factors. Indeed, he found that some factors were key, that is to say, almost
invariant whatever the project, product or stakeholders were (e.g., some quality factors that are always
requested or required) and some factors were merely local to a project, product or stakeholders (e.g., a
quality factor specific to a project and inadequate for another one). Horgan named them as the “Key
Quality Factors” and “Locally Defined Factors”. He merged them under the essential views model which
corresponds to both product and user quality perspectives.

- 2001 - McGarry et al. practical software measurement [157]: McGarry et al. constructed a practical
guide related to measure and based on the experience. They describe a measurement information
model to help on the definition and implementation of metrics, and a measurement process to guide
the planning and execution of measurement activities. In addition, in both model and process, they
included management concepts to ensure that the requirements and rationales for decision makers
were took into account in their definition (e.g., measurable concept, reason behind the metric) and risk
was reduced during their implementation. At last, this body of knowledge, on practical software
measurement, highlighted the importance of user feedback in measurement design. Hence, this
contribution is a key support material about measurement for software quality modeling.

- 2010 - Abran’s software metrics and software metrology [136]: In the same line of work of McGarry et
al., Abran not only analyzed knowledge about the most popular software measures in the industry (e.g.,
McCabe’s cyclomatic complexity, Halstead’s metrics, function points, use case points), but also
addressed specifically two issues: “how to correctly design software measures, and how to recognize if
a software measure is well designed, and worth using as a basis for decision - making”. To do so, the
author used the International Vocabulary of Basic and General Terms in Metrology [134] as the
foundations of his studies on software metrology, software measure design and measurement methods,
and then illustrated the COSMIC [158] design as an practical example of the lesson learns with those
analyses Finally, through this work, Abran aimed to avoid the main practical pitfalls with software
measure use in the industry by setting up a trust relationship between software measure use and
industry practitioner and managers.

- 2011 - the ISO/IEC 25010 quality model [23]: Subsequent to the ISO/IEC 9126 standard, ISO/IEC 25010
[13] was initiated at the end of 2007 and the result was published In 2011. This is the current official
standard for systems and software-quality models - with a wider scope than ISO/IEC 9126; consequently,
it is actively and widely used. At the current time, ISO/IEC 25010 consists of two hierarchical quality
model parts: a systems/software product quality model, with 8 quality characteristics and 31 quality sub-
characteristics, and a quality-in-use model, with 5 quality characteristics and 9 quality sub-
characteristics. This standard is supplemented with a data quality model, ISO/IEC 25012, for which there
are 15 “data quality characteristics that are required or evaluated from inherent and/or system-
dependent points of view” [133]. Suggested metrics are given by the ISO/IEC 2502n series. Like its
predecessor, the quality perspective scope of ISO/IEC 25010 is based on a user and a product view.

- 2013 - Wagner’ software product quality control [27]: on 2011, Wagner started to synthetize and
consolidate in a book the knowledge about software quality product. He integrated many research
contributions in that field, particularly thanks to his participation as the project leader of Quamoco

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

74 | P a g e

project [160] in which he accumulated experience. This project focused on quality models and quality
evaluation, and hence the book content covers those aspect. Indeed, the author began with
miscellaneous definitions and terminologies related to quality, then continued with knowledge about
quality models and software measures, description of quality planning and control, and ended the book
by sharing and describing six practical experiences Wagner had during the 10 years prior to this book.
So, the compiled knowledge about quality model and evaluation, complete with a 10 years’ experience
sharing makes this book a key contribution.

- 2015- Azgaldov et al. ABC of Qualimetry [113]: Through this book in English, Azgaldov et al. extended
the diffusion to qualimetry knowledge to a wider audience and continue to contribute to this science.
We note that this book is a key contribution because, many contributions to that science are in Russian
or address to some specific domain such as socioeconomics, and hopefully this book opens a bridge to
other discipline, such as software engineering. This is the last key contribution of the timeline.

5. Qualimetry: the science of quality quantification

Research Sub-question 1c What is qualimetry, and is this approach the right one for our needs?

Qualimetry, from the Latin qualis “of what kind” and the Greek μετρεω “to measure”, can be described as the
science of method and problem solving for quality quantification of any kind of object such as service, product,
people, project or process [113].

The concept of quality quantification is not recent as was indicating G.G. Azgaldov [113], the founder of
qualimetry; Diez in [132] also clearly emphasized this fact, citing works done by Helmholtz in 1887 or by Campbell
in 1920. However, until late 1960’s the quantification of quality was exclusively done for only one specific type of
object at a time, primarily product oriented one and without direct or explicit reuse or generalization over other
similar objects. On the beginning of 1968, in former U.S.S.R., a scientist group of interest around problems linked
to quality quantitative evaluation and control, published a common summary paper of their workshop [2]. The
force of this group was due to the fact that its members were coming from a large variety of domain horizons
(e.g., economists, architects, civil engineers, car makers) and shared the same concerns to unify theories and
practices used for quality quantification. It was the ignition of an international discussion that led to the birth of
qualimetry, a new scientific discipline, during 1968.

In addition, Azgaldov et al. [113] demonstrated that qualimetry was not only a scientific discipline but a real
science by itself, reminding what Plato said on the 5th century B.C. “Exclude from any science mathematics,
measure and weight, and it is left with very little”. In 1981, that science was split into two distinct disciplines:
theoretical qualimetry [161] (i.e., focusing on problems and method issues, with a mathematical view to object
to evaluate) and applied qualimetry [162] (i.e., application of qualimetry to evaluate type of objects that were
not evaluated before). We remark also that qualimetry relies on domain-independent concepts, or foundations,
and therefore can be applied to any domains.

In order to quantify quality, Azgaldov et al. defined a general quality modeling process via a quality assessment
algorithm [113]. This algorithm is composed of 9 sequential steps that rely on Quality Evaluation Method (QEM)
design, planification and execution. A QEM is a method used to define and assess quality, including definition of
evaluation context, quality characteristics, their measurable properties, or indices, their weight factors, to cite
some of them. There exists three distinct QEM: rigorous, short-cut, approximate. A rigorous method aims to be
exhaustive in the quality evaluation, to reduce error and to obtain the most reliable results, but it is expensive in
term of resource and time (e.g., detailing with a high precision details quality characteristics and sub-
characteristics, using all available measures to evaluate the quality). At the opposite, short-cut QEM tends to have
narrow quality evaluation, less accurate results, but still acceptable, and therefore is cheaper in term of resource
and time (e.g., applying ISO/IEC/IEEE 25010 with only one metric per quality characteristics). The last QEM,
approximate, is between rigorous and short-cut. Azgaldov et al. [113] highlighted that short-cut is the most used
internationally. Also, the team which is the source of information for QEM values can be either formed by expert,
non-expert, or hybrid (i.e., mix of expert and non-expert) from the domain where the quality evaluation is
required. In addition, the data origination used by qualimetry is a hierarchical quality model and to support the

Quality, Quality Modeling and Qualimetry

75 | P a g e

analysis and the model elaboration, a set of about 30 quality model tree derivation rules have been defined. The
16 principal rules are listed in Table 8, for general rules, and in Table 9, for specific rules, while their details are
available in Azgaldov et al. [113].

TABLE 8 - GENERAL RULES FOR QUALITY MODEL TREE DERIVATION

Id Rule
Global rules

1 Maximum height of tree
2 Branch a tree until only simple or quasi-simple properties remain at its top tier
3 Preference Indifference of Properties in a Group
4 Exhaustive consideration of the Application features of an object
5 Exclusion of reliability 10 properties (i.e., this must be part of integrated quality index => Kuse)
6 Structural rigidity of the primary tiers of a tree

General sub-tree rules

7 Division by an equal characteristic
8 Functional orientation of property statements
9 Necessary and sufficient number of properties in a group

10 Reference number of purpose properties within a group

TABLE 9 - SPECIFIC RULES FOR QUALITY MODEL TREE DERIVATION

Id Rule
Specific rules for the application of the expert method to weight factor

11 Random order of properties in a group
12 Minimum number of properties in a group (maximum ≤ 9)
Specific rules to be used if the amount of information obtained in a quality assessment can be reduced thought the
use of the rank scale

13 Exclusion of equally expressed properties when the rank scale is admissible
14 Truncated tree when the rank scale is admissible
Specific rules to be used if the amount of information obtained in a quality assessment may/may not be reduced
by more precise methods

15 Incomplete tree when a short-cut assessment of quality is admissible
16 Complete tree when exact quality assessment alone is admissible

After this introduction and global outline of qualimetry, we must address the second part of our research
question: “is this approach the right one for our needs?”. To recall our needs, we look for a unified, operational,
and appropriate way to define, assess, control, or predict quality of embedded software, including handling of
reuse, variant and respect of standards and regulations (cf. Chapter II.2). So, to answer to that question, we
propose to compare with other existing approaches and then determine which one is the optimum one. We have
identified eight main distinct streams of approaches for quality model development and use: Azgaldov et al. [113],
with qualimetry, Basili [28], with GQM paradigm, Dromey [49], with the 5-step approach, Gilb [163], with the
principles of software engineering management, Khoshgoftaar and Munson [124], to cover stream of statistic
models, ISO / IEC 250nn [23], [121], [123], [145], [147], [164], [165], to cover stream of hierarchical quality models
(including standard), Kitchenham [126], [127], with COQUAMO and SQUID, and Wagner [27], with QUAMOCO.
We may note that there exist other works quite similar to these quality modeling approaches, nevertheless, these
eight streams are a good synthesis of the current distinct approaches, and their main characteristics, from a
quality modeling perspective summarized in Table 10. Moreover, these approaches can be regrouped into three
categories: specific quality model solution, generic quality model solution and general methods.

First, the specific quality model solutions which have a narrow focus. This is the case with Khoshgoftaar and
Munson [124] where the authors showed how to develop and use statistic or implicit quality models. This type
of approach is often applied to a specific assessment or prediction case, and therefore it is hardly generalized or
reused. Another type of specific solution is the one from Gilb [163] who proposed some principles of software
engineering management to have a good software quality. He considered that quality requirements come from

10 Reliability include storability, faultless operation, maintainability and durability ; Published via a Russian regulatory documents (GOSTs)

decree [113].

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

76 | P a g e

the required operational properties of software product, or from its maintenance environment. His solution
finally is very specific and address neither development, not use of quality model.

TABLE 10 - COMPARISON OF EIGHT MAIN DISTINCT APPROACHES SUPPORTING QUALITY MODEL DEVELOPMENT AND USE

IS
O

 /
 IE

C
25

0n
n

[2
3]

, [
12

1]
,

[1
23

],
[1

45
],

[1
47

],
[1

64
],

[1
65

]:
St

re
am

 o
f H

ie
ra

rc
hi

ca
l Q

ua
lit

y
m

od
el

s
(a

nd
 s

ta
nd

ar
d)

Sy
st

em
 &

 S
of

tw
ar

e
pr

od
uc

t a
nd

 in

us
e

Ev
al

ua
tio

n
pl

an


 D

ef
in

iti
on


 A

ss
es

sm
en

t (
ev

al
ua

tio
n

pa
rt

)

N
ot

 s
pe

ci
fie

d
bu

t a
ss

um
es

 s
ho

rt
-

cu
t m

et
ho

d

H
yb

rid


 H

ie
ra

rc
hi

ca
l


 M

et
a-

m
od

el

Pe
r p

ro
pe

rt
y

/
ch

ar
ac

te
ris

tic

Ki
tc

he
nh

am

[1
26

],
[1

27
]:

CO
Q

U
AM

O
 a

nd

SQ
U

ID

So
ft

w
ar

e
pr

od
uc

t

-


 D

ef
in

iti
on


 A

ss
es

sm
en

t

sh
or

t-
cu

t m
et

ho
d

H
yb

rid


 H

ie
ra

rc
hi

ca
l


 M

et
a-

m
od

el

-

W
ag

ne
r

[2
7]

:

Q
U

AM
O

CO

Pr
oj

ec
t a

nd

So
ft

w
ar

e
pr

od
uc

t

-


 D

ef
in

iti
on



 A
ss

es
sm

en
t


 P

re
di

ct
io

n


 M

ul
ti-

pu
rp

os
e

N
ot

 s
pe

ci
fie

d
bu

t
as

su
m

es
 s

ho
rt

-
cu

t m
et

ho
d

H
yb

rid


 H

ie
ra

rc
hi

ca
l


 M

et
a-

m
od

el


 S

ta
tis

tic
al

 a
nd

Im

pl
ic

it

Pe
r p

ro
pe

rt
y

/
ch

ar
ac

te
ris

tic

St
re

am
 o

f a
pp

ro
ac

h

Q
ua

lit
y

m
od

el
 s

co
pe

Ev
al

ua
tio

n
co

nt
ex

t &

pl
an

Pu
rp

os
es

Q
EM

: m
et

ho
d

to

as
se

ss
 q

ua
lit

y

Q
EM

: s
ou

rc
e

of

in
fo

rm
at

io
n

ab
ou

t
va

lu
es

 in
 Q

EM

D
at

a
or

ga
ni

za
tio

na
l

ty
pe

s

W
ei

gh
t f

ac
to

rs

Az
ga

ld
ov

 e
t a

l.
[1

13
]:

Q
ua

lim
et

ry

An
y

do
m

ai
n

Ev
al

ua
tio

n
co

nt
ex

t


 D

ef
in

iti
on


 A

ss
es

sm
en

t


Ri

go
ro

us

m
et

ho
d


Sh

or
t-

cu
t

m
et

ho
d


Ap

pr
ox

im
at

e


 E

xp
er

t


 N
on

-e
xp

er
t


 H

yb
rid

H
ie

ra
rc

hi
ca

l

Pe
r p

ro
pe

rt
y

/
ch

ar
ac

te
ris

tic

Ba
si

li
[2

8]
:

G
Q

M

Pa
ra

di
gm

So
ft

w
ar

e
pr

od
uc

t

An
y

do
m

ai
n

-

As
se

ss
m

en
t

N
ot

 s
pe

ci
fie

d
bu

t a
ss

um
es

sh

or
t-

cu
t

m
et

ho
d

H
yb

rid

H
ie

ra
rc

hi
ca

l

-

D
ro

m
e

y
[4

9]
:

5-
st

ep

ap
pr

oa
ch

So
ft

w
ar

e
pr

od
uc

t

-

D
ef

in
iti

on

N
ot

sp

ec
ifi

ed

bu
t

as
su

m
es

sh

or
t-

cu
t

H
yb

rid

H
ie

ra
rc

hi
ca

l

-

G
ilb

 [1
63

]:

Pr
in

ci
pl

es
 o

f
so

ft
w

ar
e

en
gi

ne
er

in
g

m
an

ag
em

en
t

So
ft

w
ar

e
pr

od
uc

t

-

As
se

ss
m

en
t

sh
or

t-
cu

t m
et

ho
d

Ex
pe

rt

H
ie

ra
rc

hi
ca

l

-

Kh
os

hg
of

ta
ar

 &

M
un

so
n

[1
24

] :

St
re

am
 o

f S
ta

tis
tic

m

od
el

s

So
ft

w
ar

e
pr

od
uc

t

-


 A

ss
es

sm
en

t


 P

re
di

ct
io

n

Sh
or

t-
cu

t m
et

ho
d

Ex
pe

rt

St
at

is
tic

al
 a

nd
 im

pl
ic

it

pe
r v

ar
ia

bl
es

Quality, Quality Modeling and Qualimetry

77 | P a g e

The second category is the generic quality model solution. We choose ISO/IEC 250nnn [23], [121], [123], [145],
[147], [164], [165], the current standard for hierarchical quality modeling on software product, as the
representative solution here. Indeed, it provides a good illustration of existing contributions to create and publish
other hierarchical quality models, and that can be found in literature in general. ISO/IEC 250nnn suffers from
being too general since its quality characteristics / sub-characteristics definitions are relatively ambiguous (e.g.,
Abran et al. [96]) with the objective to cover a maximum of cases. In addition, this standard requires not only
customization (e.g., Wagner et al. [83]), but also a method to complete, for example, aggregation and weight
factor part.

The third and last category encompass the general methods for development and/or use of quality model.
Dromey [49] 5-steps approach, is a method which focus on the quality model development and more particularly
on the assessment of the built quality model. Regarding Basili’s GQM paradigm [28] (generalization of McCall
Factor/Crieria/Metric [41]), the approach is performed over 3 stages, starting from a series of goals, which are
split into a proper set of questions and where set of metrics, associated to these questions, are answering to the
goals (e.g., Shepperd [166]). This is a general method with a wide scope, but it doesn’t pay attention to some
details such as weight factors, aggregation or even operationalization. GQM result is subjective because of its
process flow starting from goals. Kitchenham [126], [127] proposed methods for ‘do your own model’ with
COQUAMO and SQUID. Thus, the approaches focus on only on quality model creation. Extending this work
through QUAMOCO research project [160], Wagner [27] consolidated in a book a complete set of knowledge
accompanied by methods to develop and use software product quality model. At last, Azgaldov et al. [113]
represent the general scope of qualimetry approach, quality assessment algorithm that includes characteristic
and property identification, tree construction, weight factors aggregations, and therefore covering both
development and use of quality model too.

In conclusion, by analyzing all the cited approaches together, and then against our needs, two optimum
approaches stand out:
- Wagner and his book, which is a consolidation of knowledge and experience in quality modeling,
- Azgaldov et al. and qualimetry, which is the science of quality quantification, merging methods and

approaches from various domains.

Both Wagner’s approach and qualimetry appear to be exhaustive and complete compare to the other
approaches, dealing with theory and applied aspect. Nevertheless, compared to Wagner’s approach, qualimetry
theoretical and applied aspect are actively developed, supported by a large community of scientists from a variety
of fields (e.g., architecture, economy, civil engineering, factory), and also addressing a larger scope of object to
quantify, even if Wagner focused on software product which is well aligned with embedded software.

Consequently, qualimetry is the optimum approach for a unified, operational, and appropriate way to define,
assess, control, or predict quality of embedded software.

However, we noticed that we could improve qualimetry with the following contributions.

6. Contributions to Qualimetry
a. The “House of Qualimetry”

The first contribution to qualimetry is linked to its comprehension. In fact, this relatively young science, which
has a large scope, is not widely used even in software engineering and in systems engineering. Indeed, we
encounter only specific applied qualimetry case studies which are mostly decorrelated from theoretical
qualimetry. So, in order to leverage qualimetry to a large range of audience, foster its accurate understanding,
and ensure that no major knowledges beneath it are eluded or forgotten, we propose a synthetized view of this
science through the “House of Qualimetry” and its 6 pillars, depicted by Figure 20. We note that by consequence,
this synthetic view answers to the first part of our research questions Q1 (i.e., “What are Qualimetry essentials
which make Qualimetry a right answer to quality quantification?”): the qualimetry essentials.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

78 | P a g e

Figure 20 - The “House of Qualimetry” and its 6 pillars

We initiated the elaboration of this synthetic view by exploring and analyzing qualimetry, on both aspects,
theorical and applied one. Then, we used our knowledge and experience with regards to quality modeling in
software engineering and systems engineering to determine the major qualimetry themes. In addition, we
voluntarily limited their numbers because from experimental psychology, as Azgadnov et al. pointed out [113],
we learn that the number of units of operational information an individual can handle simultaneously is limited
to an average of 7±2. The result by Argotti et al. [167] is shown in Figure 20 and an overall explanation is given
below with a global summary in Figure 21.

To describe the structure of these concepts, we make an analogy with architecture, borrowing Doric architecture
vocabulary. As a science, qualimetry relies naturally on two interlaced and complementary disciplines: theoretical
[161] and applied qualimetry [162]. These two disciplines are combined into an entablature which relies on two
architraves: “quality model” and “measurement”. “Quality model” covers the identification, organization, and
representation of the relevant quality characteristics while “measure” covers the evaluation, manipulation, and
control of them. Furthermore, each of these two architraves is relying on a set of three pillars, all settled on a
basement reflecting the object(s) of interest (i.e., the one(s) that is (are) aimed to be quality quantified).

i. The “Quality Model” pillars
While the first pillar (i.e., “object analysis”) is the major one, the other two are also mandatory in order to achieve
the right quality model.

 “Object analysis” pillar: This pillar gathers the necessary knowledge and activities to understand,
identify and organize the relevant quality goals, perspectives and characteristics linked to the analysis
of our object of interest (i.e., the one that it aims to have its quality quantified). Thus, we first define
the purpose of our analysis, aligned with the DAP classification (see Figure 11); we then analyze our
object of interest in order to identify the quality objectives, perspectives, characteristics, sub-
characteristics; attributes… that are relevant to us; finally, we decide how we are going to organize all
this data. We can note that quite often the data organization is achieved via a hierarchical structure
(i.e., tree structure) but can be also achieved through a statistical model.

 “Derivation rules” pillar: Here, the focus is with regards to global and specific qualimetry rules (see
TABLE 8 and TABLE 9) to help support the analysis and optimize the design of the organizational data
structure. For example, maximum tree height, division by equal characteristic, branch a tree until only
simple or quasi-simple characteristics remain at its top tier.

 “Weight factors” pillar: Regularly forgotten, even in standards such as ISO/IEC/IEEE 25000 series where
it is reduced to few words, the weighting factors are critical because they reflect the importance of
quality characteristics among the same level of quality characteristics.

Quality, Quality Modeling and Qualimetry

79 | P a g e

Figure 21 - The "House of Qualimetry" and its 6 pillars in a nutshell

ii. The “Measurement” pillars
As was the case for the previous set of pillars, these thee pillars are all mandatory in order to proceed accurately
on measurement taking, even if the “theories of measurement” pillar represents the main one.

 “Theories of measurement” pillar: This pillar is composed of three main streams of measurement
theories. [132], [133]: operational measurement (i.e., how to operate or use the measure),
representational measurement (i.e., how to represent the measure) and “various minor” theories. In a
sense this is a fundamental pillar as it is bringing together all scale, mathematical and statistical tools for
our measurements.

 “Aggregations” pillar: The aim is to deal with the way of combining (i.e., mean, median, variance and
more [143]) together either all or a subset of the measurements depending on their purpose [27]. The
aggregated measurements can either be weighted or un-weighted.

 “Thresholds” pillar: This pillar is associated with the measure of the ability to assess, control, or predict
and therefore make the correct decision. In general, man is using two types of thresholds: acceptance
and target. Acceptance is often confused with the rejection threshold even though they are not the
same: the acceptance threshold is the worst-case threshold level that may be accepted, it lies just above
the best case reject level. In fact, we counted six types of threshold exist as follows (refer to Chapter
IV.3.e): rejection, acceptance, target, reference, forecasted and opportunities. Target corresponds to
the threshold we are aiming for whereas reference corresponds to the reference value used in the
industry or in the community at the time when the measurement is taken. Opportunities threshold
corresponds to the level from which economical, health or environmental opportunities can occur. And
lastly, forecasted allows to express estimated or predicted threshold, often used within a safety or a
process maturity context.

Finally, by mean of the “House of Qualimetry”, we popularize a complex concept with a synthetic view easy to
remember, visualize, use, and understand. The Figure 22 illustrates an example of the application of two of three
“quality model” pillars against “software product” as object to quality quantify, demonstrating that could
elaborate the same quality models defined in the ISO/IEC/IEEE 25010 standard.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

80 | P a g e

Figure 22 - Example of a result from the application of the two of the three pillars of quality model architrave

against “software product”: the ISO/IEC/IEEE 25010 quality models [23].

b. Polymorphism applied to quality model

Research Sub-question 1d How to unify diversity and time evolution in quality modeling?

Within the goal to answer to this research sub-question 1d, the second contribution aims to overcome a lack in
quality modeling, and therefore in qualimetry. Indeed, even if there already exist some elements of solution,
there is no generic mechanism to link, unify and homogenize quality modeling, during development, use and
reuse of quality model. This is key for similar objects (e.g., variants of product) that are candidate to be quality
quantified. For instance, in 1999 Horgan et al. [84] identified the Key Quality Factors as the quality factors that
are invariant over similar product or project, but not equal, and the Locally Defined Factors as the quality factors
that must be customized to represent the differences between similar product or project: for instance different
releases of a smartphone series, variants of a car (e.g., same type of car but different options likes in premium
versus low-cost, or different car types such as convertible, mini, sport, van for instance). Another example Grady
and Caswell’s FURPS model [85] where depending on the development process stage, metrics are adapted to
current stage (cf. example extracted from Grady and Caswell’s book and shown over Table 11).

TABLE 11 - EXAMPLE OF DISTINCT MEASURABLE OBJECTIVES USING FURPS QUALITY MODEL FOR EACH LIFE CYCLE PHASE (SOURCE:
GRADY AND CASWELL [85], FIGURE 11-7, PAGE 161)

 Investigation /

Specification
Design Implementation Testing Support

Functional  # target uses to
review spec or
prototype

 % grade on report
card from user

 % features
competitive with
other products

 # interfaces with
existing products

 % spec included in
design

 # changes to spec
due to design
requirements

 # users to review
change if needed

 % designs included
in code

 # code changes
due to omissions
discovered

 % features
removed
(reviewed by
original target
user)

 % features tested at
alpha sites

 % user
documentation tested
against product

 # target alpha
customers

 Known problem
reports

 Sales act. Reports
(esp. lost sales)

 User surveys
 Internal HP user

surveys

Usability  # target uses to
review spec or
prototype

 % grade on
documentation
plan by target user

 % grade of deign as
compared to
objectives

 # changes to
prototype manuals
after review

 % grade by other
lab user

 % grade by
product marketing
documentation

 # changes to product
after alpha test

 % grade from usability
lab testing

 % grade by test sites

 # user
misunderstandings

Quality, Quality Modeling and Qualimetry

81 | P a g e

 % grade on
usability of
prototype

 % original users to
review any change

Reliability  # omissions noted
in reviews of
objectives
(reliability goals)

 # changes to
project plan, test
plan after review

 # changes to
design after review
due to error

 % grade of design
as compared to
objectives

 % code changed
due to reliability
errors discovered
in reviews

 % code covered by
test cases

 # defects / KNCSS
during module
testing

 MTTF (MTBF)
 % hrs reliability

testing
 # defects / 1K hrs
 # defects total
 Defect rate before

checkpoints

 # known problem
reports

 # defects / KNCSS

Performance  # changes to
objectives after
review

 % grade on
objectives by
target user

 % grade on
objective by
product managers

 % product to be
modeled in defined
modeled
environment

 Performance tests
achieve % of
modeled
expectations

 % of code tested
with targeted
performance suite
(module)

 Achieve performance
goal with regards to
environment(s) tested

 % of code tested with
targeted performance
suite (system)

Supportability  # changes to
support objectives
after review by
field & CPE

 # design changes
by CPE & field

 # diagnostic /
recovery changes
by CPE & field
input

 MTTR Objective
(time)

 MTTC Objective
(time)

 time to train
tester, use of
documentation

 MTTR Objective
(time)

 MTTC Objective
(time)

 MTTR Objective
(time)

 MTTC Objective
(time)

Fortunately, in genetic (e.g., Joron et al. [168]) as well as in program-oriented object (e.g., Cardelli and Wegner
[169]), we already have a mechanism for this type of behavior: the polymorphism concept. So, we propose to
integrate the concept of polymorphism to quality modeling, quality model, and by extension we contribute to
qualimetry.

Figure 23 - Polymorphism mechanism showcased with butterfly analogy: example of a generic butterfly and

its variety of butterflies with heredity links (source: [170] & [168])

Polymorphism means a multiplicity of morphs, or representations, which depends on phenotypic variety and / or
temporal aspects. To explain how the polymorphism mechanism can be applied to quality models, we rely on an
analogy with biology, substituting "butterfly" for "quality model". So, to describe the first aspect linked to
phenotypic variety, we start with how a butterfly can be commonly perceived. A “generic” butterfly can be

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

82 | P a g e

defined based on common characteristics found in any butterfly, such as a trunk, two antennas, two wings
covered with colored scales, three pairs of thoracic legs, a body divided into head, thorax and abdomen … In the
real world, this “generic” butterfly does not exist, but there are many different variants of it. And even though
they are distinct from each other, all of them inherit from the traits of this “generic’ butterfly. In Figure 23 our
“generic” butterfly is symbolized by a “black butterfly” and on its immediate right, we see some of the varieties
inherited from it. This illustrates one single level of polymorphism; however, we may have multiple levels of
polymorphism and this is what the arrow of “phenotypic variety” is pointing out, showing an example of variety
of butterflies with heredity links.

The second aspect of polymorphism is a temporal one. Continuing with the “butterfly” analogy, over its life, a
butterfly, independently of its variant, evolves from eggs to caterpillar to chrysalid to new-born butterfly and
when its wings are dry, to a fully-fledged (operational) butterfly flying away (see Figure 24).

Figure 24 - Polymorphism mechanism showcased with butterfly analogy: example of temporal evolution

(source: [171])

We remark that both phenotypic variety and temporal aspects demonstrate unification and homogenization
properties. This, if we now transcribe polymorphism from butterfly to quality modeling, a polymorphic quality
model means:

1. For the similar type of objects (i.e., phenotypic variety aspect), referring to Cardelli and Wegner [169]
and Cook et al. [172] regarding polymorphism, we may have

a. Ad hoc polymorphism can be understood as apparent common quality model characteristics, or
“interface”. Nevertheless, it is defined by two type of behaviors: overloading (e.g., same
characteristic name but different sub-characteristics or metrics depending on a context) and
coercion (e.g., forcing a sub-characteristic to abort or to behave like its parent characteristic). For
instance, ISO/IEC 9126 [24] or ISO/IEC/IEEE 25010 [23] mark the beginning of ad hoc polymorphism
because they are expected to cover a large spectrum of cases and their customization demonstrates
coercion and overloading. FURPS [85] and FURPS+ [152], for example, demonstrate ad hoc
polymorphism behavior with the overloading of the metrics used.

b. Universal polymorphism can be understood as variations with heritage between quality models. It
is defined by three types of behaviors: inheritance (e.g., creating a new quality model from an
existing quality model, keeping its characteristic definition and implementation; this is also called
sub-classing), overriding (e.g., replacing the sub-characteristics or metrics of a characteristic in a
new inherited quality model), and extension (e.g., a new inherited quality model has some extended
new characteristics to cover specific quality objectives). For example, Horgan et al. [84] with the Key
Quality Factors vs Locally Defined Factors and Khaddaj and Horgan [148] with their adaptable quality
model reflecting both ad hoc and universal polymorphism behavior (e.g., overriding of quality sub-
characteristics related to a stakeholder view)

2. For objects over their project or product life cycle (i.e., temporal aspect), for example, a quality model
can evolve, change (e.g., in the design phase we have a different focus than in the maintenance one).
This is the case with the FURPS [85] and FURPS+ [152] models since the measures of characteristics
evolve along with the product life cycle stages. McCall's model [41] is another example because of its
three software product activities (i.e., product operation, product revision and product transition).

Quality, Quality Modeling and Qualimetry

83 | P a g e

To sum up, we propose the polymorphism mechanism to consolidate qualimetry, and therefore enabling built-in
adaptation and evolution in quality modeling. This concept is transparent, unify many existing contributions in
quality modeling domains, and foster development, use and reuse of quality model.

Furthermore, it unifies diversity and time evolution in quality modeling by using natural links between similar, or
identical, objects and their evolution over the life cycle stages.

c. Quality model distance formula

Research Sub-question 2c
Considering at least two quality models, how to compare together
quality models, and can we define a reliable distance formula between
quality models?

Continuing the strengthening of qualimetry, our next contribution to quality modeling is devoted to determining
a reliable distance formula between quality models, and consequently, addressing the second part of this
research sub-question 2c.

A distance formula is certainly a relevant approach to measure how closed quality models are together. Indeed,
such tool helps us to compare and classify quality models, to estimate and explain what the impacts and
consequences are to change, update or adapt current quality model or to apply one quality model instead of
another one. Furthermore, the consequences are directly linked to what we aim to do with quality model. For
instance, let say that a company is currently using ISO/IEC 9126 standard and decides to be compliant with latest
available standard, which is ISO/IEC/IEEE 25010. Then this distance will help to understand and estimate:

 what the risks linked to such change are, considering not only that “small distance = low risk” and
therefore “large distance = high risk”, but also when a distance is small, change may be discarded, while
a large distance reinforces the necessity to apply this change,

 which areas are the most impacted, and where more changes in quality modeling happen, using the
distance on each quality characteristic for instance,

 how much work and resource it is going to cost to replace all, or partially, current quality model,

 where quality quantification, assessment, control, and prediction are changing,

 how deep the validation or evaluation path is changed, allowing to capture different types of issues
possibly never found before and discarding other areas and paths,

Quality model changes can also occur due to modification or evolution of targeted product, or to the stages in
the product life cycle. Thus, this formula can be used to support decision, and to control change or update of
quality models, including the case of polymorphism. It fosters split of quality model changes into reasonable
change increments, from an agile and risk point of view.

Before deciding which formula dovetails with measuring the distance between quality models, we must
distinguish two types of computing distance to explore.

The first type deals with the quantitative aspect of quality models. Thus, the idea is to determine a distance
between quality models from the results they give when they are exercised during quality evaluation activities.
This is for instance the case of Khoshgotaar et al. [173]. With the aim to find which software quality model, among
a set of statistic models, has the best cost benefit value, the authors performed a cost benefit analysis based on
the quality model results obtained over multiple software releases. So, here the distance formula was the profit
evaluation (i.e., “Profit = [Benefit resulting of quality model use (e.g., early fix of fault prone components)] - [Cost
of development and use of quality model]”). Another example is the case of Juneja et al. [77] on software reliability
growth models comparison. The quality model distance was the estimated failure rate for a set of reliability
growth models, thanks to a simulation against a specific use case. However, in both cases, this type of distance
approach requires a non-negligible effort to deploy and use quality model against specific use case set, and the
resulting distance values may be consequently neither valid, nor reused for a different use-case set.

The second kind of computing distance examines the qualitative aspect of quality models (e.g., quality
characteristics and sub-characteristics). Indeed, if we refer to the ontology shown by Figure 9, a quality model is
generally composed of different levels of quality characteristics. In this case, we take the assumption that the

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

84 | P a g e

distance formula focuses on these characteristics, often expressed in natural language with words, or character
strings. So, the most frequent and well-known word-based distances are:

 Hamming’s distance [87] is a widely used distance between two general sequences of symbols. The
distance represents the number of symbols which differs between these two sequences (see Annex 2
and Table 40).

 Levenshtein’s distance [88] can be considered as a generalization of Hamming’s distance but on strings.
It measures the difference between two strings by counting the number of edit operations (i.e., deletion,
insertion, replacement) required to go from one string to the other (see Annex 2 and Table 41).

 Damerau–Levenshtein’s distance [89] is an extension of Levenshtein’s distance and is also used in
biology as a measure of variations on DNA sequence. This distance measures the difference between
two strings by counting the number of transformation operations (i.e., string character edition, with
deletion, insertion, and replacement, completed with transposition of two adjacent string characters)
required to go from one string to the other. The additional operation (i.e; transposition) allows to
compute a distance without being too much impacted by human typo (see Annex 2 and Table 42).

 Jaro’s distance [90] is a measure of string similarity which is often used in string duplicate detection (see
Annex 2 and Table 43).

 Jaro-Winkler’s distance [91] is a variant of Jaro’s distance, well adapted for evaluating similarity of short
string since it includes a notion of string prefix. Moreover, the Jaro-Winkler distance is normalized and
therefore a distance value of 0 means no similarity, while 1 means the two strings are identical (see
Annex 2 and Table 44).

An alternate group of approaches to all these sequence-, or string-based distances is the similarity distance over
sample set. We can cite as principal example Jaccard’s distance [95] (see Annex 2) which is a general sample
diversity distance based on sample attributes (i.e., the greater the distance value is, the lowest is the similarity).
The idea is to evaluate how much the intersection of the sample sets is covering their union. If the intersection
and the union are superposed, then the sample sets are identical. Hence, these string, sequence, or sample set
similarity distance formulas are powerful tools to detect matches between any level of quality characteristics,
with a certain level of robustness. Unfortunately, they are manipulating quality characteristics only from a
character string set point of view, without any attention to lexical or semantic nuance. For example, productivity
is a synonym of efficiency, and thus term relatively closed lexically and semantically. Furthermore, any of the
previous distance formula applied to them shall indicate an opposite verdict: mismatch of the two words.
Consequently, these distances don’t dovetail with a proper distance between quality models.

Apropos semantic and lexical inclusion in distance formula, Motogna et al. [94] combined some natural language
processing measures to perform comparison of quality models through similarities analysis. The authors noted
that each quality model characteristic is defined not only by a set of words (i.e., name of the characteristic), but
also a description and a set of sub-characteristics themselves defined by a set of words (i.e., name of the sub-
characteristic) and a description. So, in their analysis, the authors determined the matching characteristics of two
quality models by taking the average of characteristic word set similarities (e.g., with Jaccard’ similarity distance)
and lexical characteristic similarities (e.g., Mihalcea et al.’s “corpus-based and knowledge-based measures of text
semantic similarity” [174]). To be more precise, the lexical similarity evaluation collected the semantic equivalent
list of words that matches the characteristic related word stems thank to WordNet lexical database [175] -
available online at Princeton University "About WordNet"11. Nevertheless, their methodology didn’t allow to
determine a global distance between two quality models but rather locally to characteristics whenever a similarity
can be calculated.

Another relevant contribution on semantic distance for quality model comparison is the research work done by
Gordieiev et al. ‘s [92], [93]. They compared four quality models against a reference quality model, ISO/IEC/IEEE
25010, by using a cumulative semantic matching-based distance (cf equation 4). The authors decomposed every
quality model into a set of model elements (i.e., characteristics and sub-characteristics) and a set of relationship
between model element together. Then, the distance calculation is an aggregation of the semantic match result
of each quality characteristic, and their sub-characteristics, with the ISO/IEC/IEEE 25010 ones. For example,

11 WordNet Princeton University 2010: https://wordnet.princeton.edu/

Quality, Quality Modeling and Qualimetry

85 | P a g e

Gordieiev et al. determined that the distance between ISO/IEC/IEEE 25010 and ISO/IEC 9126 gives 73.75% of
similarity.

With this latest research work, we have a real distance for quality models. It handles quality model structure,
relationship between its elements (i.e., characteristics and sub- characteristics) and semantic nuances between
them. Nonetheless, there are few flaws that should be addressed. For instance, the authors assumed that the
weight of characteristic similarities and the one of sub-characteristics similarities are equal. From our point of
view, and from Motogna et al. one too, this is not a correct assumption because it is not taking into account the
fact that a characteristic is already defined by its sub-characteristics, and therefore the characteristic similarity
evaluation has to include that impact. The distance formula should be also more generic (e.g., distance between
any two quality models).

𝑑௚௢௥ௗ௜௘௜௘௩ = ෍ ቌ𝐶𝑀𝑀௜ + ෍ 𝑆𝑀𝑀௜,௝

௡೔

௝ୀଵ

ቍ

௠

௜ୀଵ

 (4)

where 𝑚 is the number of quality model characterstics

𝑛௜ is the number of subcharacteristics of the 𝑖௧௛ characteristics

 𝐶𝑀𝑀௜ is the Characteristics Matching Metric of the 𝑖௧௛ characteristics

𝐶𝑀𝑀௜ = ൜0.5 if the 𝑖௧௛characteristic matchs semantically with ISO IEC IEEE⁄⁄ 25010 characteristic
0 otherwise

𝑆𝑀𝑀௜,௝ is the Subcharacterstics Matching Metric of the 𝑗௧௛ subcharacteristics of the 𝑖௧௛ characteristics

𝑆𝑀𝑀௜,௝ = ൝

0.5

𝑛௜

 if the 𝑗௧௛subcharacteristic matchs semantically with ISO IEC IEEE⁄⁄ 25010 subcharacteristic

0 otherwise

However, we remark that all the distances described above are mainly dealing with similarity and not with variety
to compare together quality model characteristics.

To handle properly variety, especially with a large set of quality models, we must have a statistical notion about
frequency or presence of quality characteristics in quality model, for example. This is not the case of any of the
above distances. Hopefully, with polymorphism in genetic, there is a well-known formula to compute the degree
of nucleotide diversity, also known as the degree of polymorphism. This is the Nei and Li formula [86] (1979)
depicted by equation 5.

This formula is made for DNA sequences from alleles and linked with the existence of single nucleotide
polymorphism (i.e., variation of nucleotide at a specific DNA location for more than 1% of a population) [176].
Nevertheless, we can see an analogy between DNA sequences and quality characteristics sequences both of them
coding behaviors (cf. Chapter VIII.2). So, in our case the πij represents the proportion of lexically and semantically
different quality model elements (e.g., characteristics, sub-characteristics, attributes), and the xi the frequency
of the ith quality model or characteristic sequence. In a case of quality model sequence, for instance, that
frequency indicates the likelihood to find a quality model among the other models that are part of our sample
set. In the same way for characteristic sequences, that frequency indicates the likelihood to find a characteristic
among the other characteristics that are part of our sample set. For instance, if a characteristic recurrently
appears in quality models, its probability is 1. If half of the time the characteristic is present and the other half is
another close (i.e., not disjoint) characteristic, then their respective probabilities are 0.5.

𝜋 = ෍ 𝓍௜𝓍௝𝜋௜௝

௜௝

 (5)

where 𝜋௜௝ proportion of different nucleotides between sequences 𝑖 and 𝑗

𝓍௜is the estimated frequency of the 𝑖௧௛ sequence in the population

𝓍௝is the estimated frequency of the 𝑗௧௛ sequence in the population

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

86 | P a g e

About lexical and semantic match, we consider three cases, identical, similar, or gaps (i.e., disjoint) and therefore
the calculation of the corresponding πij is given by equation 6. Moreover, we use the unbiased estimate of π (cf.
equation 7) to get normed distance result (i.e., between 0 and 1).

At last, to validate that our contribution to quality model distance formula is practicable and give right result, we
decided to apply it against ISO/IEC 9126 and ISO/IEC/IEEE 25010 because we have a reference result with
Gordieiev et al. So, we assume that we have two quality model sequences and the frequency of each sequence
are equal (i.e., 50 % for ISO/IEC 9126 and 50 % for ISO/IEC/IEEE 25010). We identified: 52 distinct sub-
characteristics, 31 unique, 8 similar (i.e., close but not identical: for instance, "Modifiability" versus
"Changeability"), and 13 identical. This lands us to calculate, with equations 6 and 7, a diversity degree of 67.31%
(cf. Annex 3 for the computation details) which also indicates that ISO/IEC 9126 and ISO/IEC/IEEE 25010 are
similar12 at 32.69%. We remark that distance result differs from Gordieiev et al. who found 73.75% of similarity
between these two models. The main reason why the results diverge is because of Gordieiev et al. assumed that
weight of characteristic similarities and the one of sub-characteristics similarities are equal, which is not our
assumption. The example in Table 12, Table 13 and Figure 25, proves us right: for instance “Maintainability”
characteristic is present on both models but their respective sub-characteristics are identical only at 28.57 %. So,
taking the assumption that the characteristics are already identical at 50% (i.e., weight of characteristic with
regard to its sub-characteristics) conducts to an incorrect result.

𝜋௜௝ = ෍ 𝑑௠௔௧௖௛൫𝑠𝑒𝑞௜ೖ
, 𝑠𝑒𝑞௝ೖ

൯

௡

௞ୀଵ

 (6)

where 𝑛 = card൫𝑠𝑒𝑞௜ ∪ 𝑠𝑒𝑞௝൯

𝑑௠௔௧௖ ൫𝑠𝑒𝑞௜ೖ
, 𝑠𝑒𝑞௝ೖ

൯ =

⎩
⎪
⎨

⎪
⎧

0 if 𝑠𝑒𝑞௜ೖ
 and 𝑠𝑒𝑞௝ೖ

 are lexically and semantically equal

0.5

𝑛
 if 𝑠𝑒𝑞௜ೖ

 and 𝑠𝑒𝑞௝ೖ
 are lexically and semantically close but not equal

1

𝑛
 otherwise

where 𝑠𝑒𝑞௜ is the 𝑖௧௛sequence and 𝑠𝑒𝑞௜ೖ
is the 𝑘௧௛ element in that sequence

and 𝑠𝑒𝑞௜ is the 𝑖௧௛sequence and 𝑠𝑒𝑞௜ೖ
is the 𝑘௧௛ element in that sequence

𝜋ො =
𝑛

(𝑛 − 1)
෍ 𝓍௜𝓍௝𝜋௜௝

௜௝

 (7)

To conclude on the quality model distance, our contribution reuses a proofed formula directly associated to
polymorphism, or variety concept. Through is application against the two consecutive standards of software
quality model, we assess that our formula is applicable and gives accurate results. We remark finally that our
approach is close to Hamming’s distance (i.e., number of symbols which differs between these two sequences),
Gordieiev et al.’s distance (i.e., semantic comparison on characteristics and sub-characteristics) and Motogna et
al. contribution (i.e., inclusion of description and sub-characteristics to define characteristics).

TABLE 12 - EXAMPLE OF LEXICAL AND SEMANTIC COMPARISON RESULT BETWEEN TWO CHARACTERISTICS FROM ISO/IEC 9126 AND
ISO/IEC/IEEE 25010

ISO/IEC/IEEE 25010 (Sequence 1) ISO/IEC 9126 (Sequence 2)

Functional suitability

Functional completeness Functionality Compliance Similar
Functional correctness Accuracy Similar

Functional appropriateness Suitability Similar
- Security Gap
- Interoperability Gap

12 Comparison between these two quality models are also available in Annex A of ISO/IEC/IEEE 25010 [23]

Quality, Quality Modeling and Qualimetry

87 | P a g e

Maintainability

Modularity - Gap
Reusability - Gap

Analysability Analysability Identical
Modifiability Changeability Similar

Testability Testability Identical
- Maintainability Compliance Gap
- Stability Gap

TABLE 13 - INTERMEDIATE CALCULATION LINKED TO PREVIOUS EXAMPLE

 Gap Similar Identical Total πij
Functional suitability 2 3 0 5 0.7000
Maintainability 4 1 2 7 0.6429

SUM 6 4 2 12 0.6667

Figure 25 - Example of some differences between ISO/IEC 9126 & ISO/IEC/IEEE 25010

d. Measurement process
As we detailed with qualimetry in sections Chapter IV.5 and Chapter IV.6.a, a proper quality model is one side of
the quality quantification problem. The other side concerns the measurement of the quality characteristics and
especially all measurement process activities.

Indeed, the aim of a measurement process is not only to proceed on, or collect, measure but also to record and
analyze the results, control quality, help on decision making, including doing some predictions and
communicating the results to the right stakeholders. ISO/IEC 25040 standard [147] defines a coarse and linear
evaluation process (see Figure 26) which define the main tasks that must be achieved for measurement,
beginning by establishing the evaluation requirements and ending with the conclusion of the evaluation. This
standard contains the same issue that we can detect with the rest of ISO/IEC 250nn standard series: it is not
precise enough, willing to cover all case for computer system and software quality evaluation, and consequently,
requires interpretation and strong complement.

Hopefully we may rely on practical work carried out for software related decision makers by, McGarry et al. [157]
(see Figure 27) which introduces a process articulated around four activities: establish and sustain commitment,
plan measurement, perform measurement and evaluate measurement. We note that this approach has been
adopted by INCOSE, for example, for the Systems Engineering measurement primer and the technical
measurement guide [177]. We can also find the measurement process introduction carried out by Miller et al.
[178], which has a scope of systems engineering and the process published by Dekkers et al. [179], a US-CERT
team on secure software development.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

88 | P a g e

Moreover, we recall that in automobile – our current industrial context -, A-SPICE [21] guidelines points out a
measurement process called MAN.6, part of management processes, but don’t provide it. Instead, A-SPICE
enumerate some recommendations linked to measurement process such as the type of process outputs for
measures definition and collection, data and reports, some categories of measures to collect (i.e., product quality,
field, project, risk, service level, process, personnel performance) and some base practices.

Figure 26 - Software product quality evaluation process defined by ISO/IEC 25040 [147]

Figure 27 - Measurement process model of McGarry et al. [157]

Thus, based on all these measurement processes, and in order to be aligned with company requirements, we
consolidate a measurement process based on A-SPICE MAN.6 process guidelines, McGarry et al. measurement
process mode with regards to the core measurement activities, ISO/IEC 25040 for evaluation plan, inclusion of
quality model and polymorphism in quality modeling which requires to be cadenced by the systems or software
development life cycle. Our proposal of measurement process (cf. Figure 28) is therefore articulated into three
sequential phases: Initial, Planning and Execution.

i. Initial phase
The purpose of this phase is to understand, identify and collect both requirements and context linked to
measurement goals and activities. That phase is performed over three tasks which can be realized in parallel. The
first task focuses on the identification and enumeration of all measurement objectives, taking measurement
requirements as inputs. The second task is dedicated to the measurement context definition which can be
understood as defining the scope, the boundaries, the dependencies, and the environment linked to
measurement activities. The last task of the initial phase relates to process improvement. In the first iteration of
these three phases, we may not yet have any lessons learned or post-mortem data from previous measurement
activities to take into account, however, with time, we will be able to integrate this data in order to improve our
current process. The different outputs of these three tasks will be merged and used as inputs to the second phase
which is planning.

ii. Planning phase
During this phase, we transform the requirements, context and process improvement into an evaluation plan
(see Annex 4), criteria and statistical and/or qualitative techniques to be ready for the execution of that plan.
Since that plan must be aligned with the system development life cycle [13], [180], this one is also one input of
the planning phase tasks. So, we start to transform measurement requirements and context into the quality
model and measurement specifications. Once this has been done, we must plan for their treatment. First by
planning for their collection and storage, where processes change, tools and training may be required, then for

Quality, Quality Modeling and Qualimetry

89 | P a g e

their analysis procedure and criteria, or thresholds, to apply assessment, control, and prediction. The final task
of this phase is the synthesis and organization of all outputs from these three previous tasks into one critical
document: the evaluation plan.

iii. Execution phase
The last phase of our process corresponds to the execution of our evaluation plan which is aligned with the system
development life cycle phase. The main task here is a loop to collect measurement data at the frequencies defined
in the evaluation plan. Each time data is collected, it needs to be stored as well as analyzed and assessed. The
results, containing analysis synthesis, predictions, recommendations, and conclusions, are generated under
various forms -graphical dashboards, analyst summary, detailed results, and reports- which are then
communicated to the stakeholders, for example, development teams, program managers and any key decision
makers.

Figure 28 - Our measurement process proposal articulated over three phases and cadenced with SDLC

To conclude on this new process definition achievement, if we do an analogy, for instance, between ISO/IEC
25040 process (cf. Figure 26) and our proposal (cf. Figure 28) we can clearly conclude that the standard process
is a sub-part of our proposed process. Indeed, “establish the evaluation requirements” is a subset of our initial

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

90 | P a g e

phase, both “specify the evaluation” and “design the evaluation” are included into our planning phase, and
“execute the evaluation” with “conclude the evaluation” are also a subset of the tasks of our execution phase.

If we compare with McGarry et al. process (cf. Figure 27), our process corresponds to the “core measurement
activities”. Our initial phase is located just before the “plan measurement” of McGarry et al. process, collecting
requirements, goals, and improvement actions from the “technical and management processes”, “establish and
sustain commitment” and “evaluate measurement”. The planning and execution phase are aligned respectively
to the “plan measurement” and “perform measurement” activities.

So, our measurement process is directly compatible with these two well-known measurement processes.

Furthermore, our contribution takes benefit of qualimetry, putting quality modeling activity at the center of the
measurement strategy, and remind that this process must be cadenced, like a processor, with systems or software
development life cycle, impacting measurement tasks (e.g., change of measurement context, objectives and
requirements; see FURPS example from TABLE 11) and critical for handling accurately polymorphism behavior.

7- Threats to validity and discussions
Over this chapter we have deep dived into the concepts of quality, quality modeling and qualimetry, with the
purpose to understand them enough to assess which research and technology approaches are the optimum one
to answer to our main problematic: have a unified, operational, and appropriate way to define, assess, control,
or predict quality of embedded software. However, there are several threats that may affect the validity of our
analysis and contributions.

So, in the concept exploration, our intention was to clarify these three concepts and their main vocabulary,
ensuring to have a strong grasp on them rather to be exhaustive and lost ourselves in tiny details. We rely also
on standards as much as possible because they are reflecting international discussions and agreements between
academic and industrial experts. And in automobile domain, for example, it is critical to rely on standards. In
addition, we made the choice of focusing on quality modeling and qualimetry instead of considering only applied
aspect of quality through the current usage of continuous, automated, and agile process, all of them often neglect
quality requirements, related to quality characteristics (see ontology of Figure 9), in favor to fast delivery [181],
for example. The reason behind this choice is that only quality modeling has the strength to structure,
homogenize and get control on the quality, especially when dealing with a diversity of product composed of
embedded software and systems.

On the key contributions to quality modeling of software, we didn’t perform a systematic literature review to
retrieve these key contributions. Rather, we took advantage of the knowledge that we incrementally built during
this thesis thought an exploratory literature review, on quality modeling applied to embedded software (see
Chapter II.3), and a systematic literature review, on software quality model (see next 0.2). By consequence, we
didn’t subjectively limit the number of key contributions, but took the research contributions in quality modeling
that we noticed to be the most disruptive ones, or the most recurrent and cited ones. However, we have hesitated
about the inclusion of some contributions since we had to deal with more than 50 years of continuous research
works. For instance, Boehm’s COCOMO [151] is often referred in quality modeling contributions. Nevertheless,
COCOMO is a cost model and not a quality model. Thus, its inclusion is not appropriate and could generate some
confusion causing misinterpretation of the concepts. Another example is COSMIC [158]. This functional size
measurement standard can be used to improve quality of requirements, or in the case of non-functional
requirements13 which can be declined into functional requirements, they can be measured with COSMIC [182].
Nonetheless, we decided to exclude COSMIC from our current list of key contributions because it is independent
to technology and quality considerations.

Once this list of key contributions achieved, we summarized them through a graphical timeline (cf. Figure 19)
which is an interesting medium for knowledge sharing. In fact, we used graphical medium to leverage some
complex concept and ensure people remind the principal information. This is the case for “The House of

13 Often associated to quality characteristics

Quality, Quality Modeling and Qualimetry

91 | P a g e

Qualimetry” (cf. Figure 20) for the science of quality quantification, and for polymorphism with the butterfly
analogy (cf. Figure 23, Figure 24).

Concerning the derivation rules from qualimetry, we cited only the most important ones that are part of the ABC
of qualimetry book [113], but unfortunately, we were not able to retrieve the full set of 30 derivation rules
pointed out by the authors. So, we trust the authors about the importance of these rules with regard to the
missing ones, but potentially there is some specific ones that we may miss, and which may impact our case for
quality modeling of embedded software.

On the scale topic, even if Stevens’ scale is well known and still widely used, it is subject to some criticism, such
as Velleman et al. [140] claiming that “Good data analysis does not assume data types” and therefore scale type
to be used must follow the analysis. In other words, we must know what we are planning to do first and how to
use what we are planning to collect in order to select right scale and data type (for property, attribute or object).
Moreover, some extension of Steven’ scale exists. We can cite for example Chrisman [142] who proposed an
extension of the original Stevens’ scale list in 1998. That extended typology is interesting since it is not diverging
from Stevens’ one and includes therefore 6 new scale types that are useful for some particular cases (e.g.,
gradation of membership is key in fuzzy set theory, log interval is widely use in stock market graphics, cyclical
ratio is suitable for times and angles …).

Regarding our quality model distance formula based on Nei and Li’s formula [86], we assumed implicitly that our
distance, described by equations 6 and 7, is a metric from a mathematical point of view. To demonstrate this fact,
a distance is a metric (i.e., in the metric space) if it respects the mathematical properties shown in 8, 9, 10 and 11
[183]. The non-negativity (8) is due to the fact that both equation 6 and 7 are positive equation (i.e., cannot
provide any negative results). The identity of indiscernible (9) is directly derived from equation 7 which gives 0
only if x and y semantically match. Symmetry property (10) is verified since both matching and summation,
composing equation 6 and 7 are commutative operations. About the subadditivity (11), we won’t demonstrate
it, but our distance formula satisfies also that property. By satisfying these properties we can claim that our
distance is a metrics in a mathematical sense. Conversely, Gordieiev et al. distance, equation 4, is not a metric.
For instance, 𝑑௚௢௥ௗ௜௘௜௘௩(𝑥, 𝑥) ≠ 0 which invalid identity of indiscernible property.

𝑜𝑛 𝑎 𝑠𝑒𝑡 𝑋, 𝑑 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑢𝑐ℎ: 𝑑: 𝑋 × 𝑋 → [0, +∞[∀𝑥, 𝑦, 𝑧 ∈ 𝑋

𝑑(𝑥, 𝑦) ≥ 0 𝐍𝐨𝐧 − 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐢𝐭𝐲 (8)

𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦 𝐈𝐝𝐞𝐧𝐭𝐢𝐭𝐲 𝐨𝐟 𝐢𝐧𝐝𝐢𝐬𝐜𝐞𝐫𝐧𝐢𝐛𝐥𝐞 (9)

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐲 (10)

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) ⊥ 𝑑(𝑧, 𝑦) 𝐒𝐮𝐛𝐚𝐝𝐝𝐢𝐭𝐢𝐯𝐢𝐭𝐲 𝐨𝐫 𝐭𝐫𝐢𝐚𝐧𝐠𝐥𝐞 𝐢𝐧𝐞𝐪𝐮𝐚𝐥𝐢𝐭𝐲 (11)

Lastly, we would like to remark that two of our contributions get their inspiration from nature, and more precisely
from genetic: this is the polymorphism concept and degree of polymorphism. The polymorphism is present also
in software engineering (i.e., in object-oriented programming) but with the genetic analogy we were able to go
further on that concept, and even explain it easier. For our last contribution on measurement process, we didn’t
aim to replace existing measurement processes, but rather clarify and adapt it to foster polymorphic quality
model development and usage. As we noticed too, our process can fit in the existing process ones, such as
McGarry et al.’s measurement process model [157] (see Figure 27).

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

92 | P a g e

Quality Model Classification and Selection

93 | P a g e

Chapter V. Quality Model Classification and Selection

1. Introduction
Following previous Chapter IV, we understand that quality model is a pivot concept in software quality
quantification. Unfortunately, it appears also that there is an abundance of software quality models (e.g., [10]–
[12]) while there is no obvious consolidated reference list of such models (see Chapter II) from which we could
select the most appropriate model to solve our problematic about quality modeling for embedded software. In
addition, identifying the most appropriate model among a pool of models requires to classify them and define a
set of criteria for decision. This classification gives the hints as well to initiate the resolution of the research
question 4 (i.e., “Can we have a unique reference quality model for software product?”).

Thus, these dilemmas can be summarized via the research question 2 and 4a:

Research Question 2
Considering the set of software quality models, how to identify and decide
which quality model is the most suitable for embedded software?

Research Sub-question 4a
Is it possible to have a unique reference quality model for software
product, or instead should we have a meta-model?

This chapter is organized around the refinement of research question 2 as followed.

As we highlighted in Chapter I and Chapter III, our research strategy aims to take advantage of existing quality
models, selecting the most suitable quality model, if any, for automotive embedded software, instead of creating
a new model. So, considering software scope, which encompasses embedded software one, we must retrieve
and enumerate the published software quality models thanks to a systematic literature review, addressing
consequently our research sub-question 2a: “considering software scope, what is the set of existing quality
models?”

Once this enumeration done, we must classify these software quality models, preparing the set of models to be
used for quality model selection purpose, for instance. So, the classification requires to identify the right
methodology and criteria which we rephrase into the research sub-question 2b: “Considering a set of quality
models, how to classify these quality models, what are the methodology, the criteria, and the characteristics to
use?”.

Finally, the classified collection of software quality model together with the classification criteria foster the
elaboration of a quality model landscape complementary to Kläs et al. one [10], expanding the knowledge on the
current research contributions done on software quality models, and supporting the selection of the most
appropriate quality model for embedded software in automotive (i.e., research sub-question 2d).

2. Systematic literature review on software quality model

Research Sub-question 2a Considering software scope, what is the set of existing quality models?

During our early investigation on quality modeling and model, we noticed a plethora of existing systematic
mappings or reviews with regards to the domain of software quality model. To name a few, we have for example,
Kläs et al. [10] (2009) CQML classification scheme for comprehensive quality model landscape, R. S. Jamwal and
D. Jamwal [184] (2009) with their 9-steps approach to evaluate software quality models, the comparative studies
on software quality models done by AL-Badareen et al. [185] (2011) and Ahmad et al. [186] (2013), Thapar et al.
[11] (2012) on the challenges linked to the development of standard software quality models, Polillo [187] (2012)
about quality models for web 2.0 sites, the reviews of Adewumi et al. [188] (2013) and [189] (2016) on software
quality models within the context of open source software, Oriol et al. [12] (2014) mapping of quality models for
web-services, Miguel et al. [190] (2014) review on software product quality models, Gordieiev et al. [92] (2014)
with regard to software quality model evolution against ISO/IEC/IEEE 25010 and their study [191] (2018) on
prevailing quality characteristics for IT-oriented software quality models, Buglione [192](2015) investigation on
quality model evolution and perspectives, Motogna et al. [94] (2019) software quality models evaluation based

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

94 | P a g e

on natural language processing, and the systematic mapping study on software quality assessment model done
by Yan et al. [193] (2019).

In addition, we notice that the studies related to software quality models rely in general on small sets of up to
ten quality models (e.g., [92], [94], [184]–[187], [190], [192], [194]) with some minor exceptions: Kläs et al. [10]
classified 22 quality models, from a publication range from 1978 to 2009, Thapar et al. [11] analyzed a reference
set of 24 quality models from 1977 to 2011, Oriol et al. [12] collected and exploited 51 quality models published
from 2002 to 2012, and Yan et al. [193] found 31 quality models that were published between 1998 and 2015.
Note, the quality model sets from these last four studies are partially overlapped and cover a publication period
going from 1977 to 2015.

Consequently, we can state that current available quality model collections aren't unified and should be
consolidated at least for the published ones.

To build such consolidated list, we need also to understand how quality models are identified, compared, and
classified, if there is a core subset of quality models, or rather a unique reference, that could be considered as
basis for any related work on quality models, and what motivates their creation.

So, we reformulate and synthetize our goals into 3 research questions (i.e., RQ) with their rationale:

- RQ1 - Considering software scope, what is the set of existing quality models? (i.e., research sub-
question 2a)

Coming-up with a consolidated list of the main quality models in the software domain could serve as the
reference starting quality model source of information, fostering academic or industrial survey work
related to quality modeling. This list must be achieved without any time limitations on published year,
and once the first iteration is achieved, it should be further maintained and completed to stay valuable.

- RQ2 - Considering a set of quality models, how to classify these quality models, what are the
methodology, the criteria, and the characteristics to use? (i.e., research sub-question 2b)

Identifying quality model classification and comparison methodologies, categories, and criteria teach us
not only how to handle collection of quality models, but also how quality models are chosen and
compared by our peers. Moreover, answering to this question is fundamental to have an unambiguous
characterization of quality models which is mandatory to proceed properly on any type of operations
(e.g., design, update, comparison, assessment) with or on them.

- RQ3 - Is it possible to have a unique reference quality model for software product? (i.e., first part of
research sub-question 4a)

We already know that many quality models exist, nevertheless we don’t know if they are finally closed
to a unique reference quality model for software product. Knowing if such unique reference exists is key
to frame efficiently any quality modeling activities, and the classified quality model collection is the
proper material requires to answer to that question.

In order to address these three research questions, we conduct a systematic literature review following
Kitchenham and Charter’s systematic literature review guidelines [31]. The systematic literature review process
and its stages are detailed in Figure 29. Overall, we apply the same search strategy than Adewumi et al. [189] and
Yan et al. [193], both based on Kitchenham and Charter’s guidelines too. Likewise, we rely on the same five digital
libraries, or electronic database sources (cf. Table 14) than Yan. et al. rather than Kitchenham and Charter
recommendation ones, even if the focus of both is on software engineering. We made this choice because of the
following five criteria:

- (1) source is a recognized and relevant reference in software engineering domain with a large covering
period,

- (2) source is a collection of relevant conference papers, books, and journals,
- (3) their online search engine accepts extended search query,
- (4) query results are freely downloadable from our institution,
- (5) referenced documents are downloadable from the source (i.e., source is not only an aggregator

engine).

Quality Model Classification and Selection

95 | P a g e

TABLE 14 - LIST OF ELECTRONIC DATABASE SOURCES

Online source name Online location

ACM digital library dl.acm.org

IEEE Xplore ieeexplore.ieee.org

Scopus www.scopus.com

Springer link.springer.com
Web of Science (also known as ISI Web of Knowledge) webofknowledge.com

The electronics database source exploration and search are realized via search queries. These search queries,
also named search strings, are composed of words to look for, combined with operators (e.g., OR, AND, NEAR,
NOT), sometimes with some wildcard characters (i.e., "?" replaces one alphanumeric character, or "*" replaces
zero to multiple alphanumeric characters) and often with indication to fields of narrow search interest in the
database (e.g., title, abstract, keywords, date, author). Moreover, each online database search engine has its own
query syntax and restriction (e.g., restriction on the number of allowed wildcards in search query). For instance,
to search over title and abstract field, with Scopus we must use "TITLE-ABS ()" while with ACM digital library, we
must use "Title:" and "Abstract:".

So, to create the right search strings from the research questions, independently to any search engine syntax, we
structure our "words" around three main concepts: domain of interest, object of interest and type of research
work. In this survey the domain of interest is the "software" domain. The objects of interest are the objects closed
or associated to "quality model" concept and therefore we can find "quality model", "quality factor", "quality
characteristic" and "quality ontology". For the type of research work, our focus must be aligned to the survey
concept since we are performing a systematic literature review. We identified then "survey", "study", "analysis",
"review", “mapping”, "comparison", “challenge”, “evolution” or "taxonomy". In addition to these words, we
completed that list with some frequent acronyms (e.g., quality model as QM), plural forms and use of proper
wildcards. The right search queries for each online database source can be then derived from the information
summarized in Table 15 and are given in Table 16.

TABLE 15 - SEARCH QUERY ELEMENTS: KEYWORDS VS. OPERATORS VS. SEARCH FIELDS

Concept Keywords Operator Fields

Domain of interest software*
SW

OR Any

 AND
Object of interest quality model*

QM
quality ontology
quality ontologies
QO
quality factor*
QF
quality characteri**
QC

OR Any

 AND
Type of research work analysis

challenge
challenges
classification
classifications
compar*
evolution
evolutions
mapping
mappings
taxonomy
review
reviews
study
studies
survey

OR Title
Keywords

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

96 | P a g e

TABLE 16 – THE FIVE DIGITAL LIBRARY SEARCH QUERIES

Online source name Search query

ACM digital library ("software*" SW) AND ("quality model*" QM "quality ontology" "quality ontologies" QO "quality
factor*" QF "quality characteri*" QC) AND acmdlTitle:(survey surveys study studies analysis review
reviews "compar*" classification classifications evolution evolutions taxonomy challenge
challenges mapping mappings)

IEEE Xplore ((“software*” OR SW) AND ("quality model*" OR QM OR "quality ontology" OR "quality ontologies"
OR QO OR "quality factor*" OR “quality characteri*”) AND (("Document Title":"survey") OR
("Document Title":"surveys") OR ("Document Title":study) OR ("Document Title":studies) OR
("Document Title":analysis) OR ("Document Title":"review") OR ("Document Title":"reviews") OR
("Document Title":"compar*") OR ("Document Title":"classification") OR ("Document
Title":"classifications") OR ("Document Title":"evolution") OR ("Document Title":"evolutions") OR
("Document Title":taxonomy) OR ("Document Title":"challenge") OR ("Document
Title":"challenges") OR ("Document Title":"mapping") OR ("Document Title":"mappings")))

Scopus (TITLE-ABS-KEY (("software*" OR sw)) AND TITLE-ABS-KEY (("quality model*" OR qm OR
"quality ontology" OR "quality ontologies" OR qo OR "quality factor*" OR qf OR "quality
characteri*")) AND TITLE ((survey OR surveys OR study OR studies OR analysis OR review
OR reviews OR compar* OR classification OR classifications OR evolution OR evolutions OR
taxonomy OR challenge OR challenges OR mapping OR mappings))) AND (LIMIT-TO (
SUBJAREA , "COMP") OR LIMIT-TO (SUBJAREA , "ENGI")) AND (LIMIT-TO (LANGUAGE ,
"English"))

Springer (“software*” OR SW) AND ("quality model*" OR QM OR "quality ontology" OR "quality ontologies"
OR QO OR "quality factor*" OR QF OR “quality characteri*” OR QC) AND (("Document
Title":"survey") ("Document Title":"surveys") OR ("Document Title":study) OR ("Document
Title":studies) OR ("Document Title":analysis) OR ("Document Title":"review") OR ("Document
Title":"reviews") OR ("Document Title":"compar*") OR ("Document Title":"classification") OR
("Document Title":"classifications") OR ("Document Title":"evolution") OR ("Document
Title":"evolutions") OR ("Document Title":taxonomy) OR ("Document Title":"challenge") OR
("Document Title":"challenges") OR ("Document Title":"mapping") OR ("Document
Title":"mappings"))

Web of Science (ALL=(SW or software) AND TS=("quality model*" OR QM OR "quality ontology" OR "quality
ontologies" OR QO OR "quality factor*" OR QF OR "quality characteri*") AND TI= (survey OR
surveys OR study OR studies OR analysis OR review OR reviews OR classification OR classifications
OR evolution OR evolutions OR "compar*" OR taxonomy OR challenge OR challenges OR mapping
OR mappings)) AND LANGUAGE: (English)

Thus, once any search query is performed over one of the sources main electronic databases, we obtain a raw
result of candidate documents. That raw result contains both relevant and irrelevant documents with our
research questions, and therefore must be screened through a process of selection. Our process of study
selection, shown in Figure 29, is a sequence of four filtering stages during which we assess the relevance of each
collected documents with respect to our research questions. In addition, the document relevance done in each
filtering stage relies on a set of inclusion and exclusion criteria, defined in Table 17, and like Oriol et al. [12], we
are setting minimum document quality by assessing the ranking level of the corresponding journal or conferences.

TABLE 17 - INCLUSION AND EXCLUSION CRITERIA RELATED TO OUR SEARCH STRATEGY

Inclusion criteria Exclusion criteria

Document focus is on software domain, Sources of quality model citation are not provided
Document is referencing multiple quality models Document is not only citing, enumerating quality models
Document contains a study, analysis, survey, or comparison
on quality models, with a minimum or argumentation

Document is not a poster, cover, course, conference, or
paper review

Document contains some description and details on
enumerated quality models

Document is not a retracted publication

Document is from ranked14 conferences, or journals Full document is not accessible or downloadable

 Document is not in English

14 Ranking is obtained via Core Computing Research & Education Portal: http://www.core.edu.au/conference-portal

Quality Model Classification and Selection

97 | P a g e

Figure 29 - The distinct stages of the systematic literature review process for study selection, with selected

document numbers and publication years

The four screening, or filtering, stages are incremental, each stage taking as inputs the outputs of previous one,
refining selection to the most relevant documents thanks to these inclusion and exclusion criteria. Furthermore,
the effort to perform each selection stage increase incrementally as well. This behavior is explained by the fact
that the more refined the list of selected documents is, the more thorough the analysis of the documents must
be.

With the first filter, we have a very large number of potential documents to crawl and therefore, the first selection
pass must be performed efficiently. Thus, the decision is made by considering only document type, language, and
its accessibility. The second stage focus on title and duplicate document removal. The next stage needs more
time investment on each document because the focus is on document abstract and therefore, it required to have
each document abstract to be read. Note, paper abstracts are always available online. At the fourth and final
stage, it is required to access, or download the full document and complete the last selection stage based on the
document content. Hopefully at this stage, the number of candidate documents is reduced: in our current
systematic, we started from a collection of 3,234 documents and reduced up to 151 documents at the input of
the last stage, which represents a screening of 95.33%.

The result of this document cascade filtering is a list of 121 relevant documents (i.e., 39 articles from journals and
82 papers from conferences) covering a period between 1979 and 2019, and the major difficulties we faced during
this systematic literature review were:

- Incorrect reference or pointer to retrieve the correct papers: sometimes there were some mistakes on
the referenced paper, which was not pointing to correct quality model,

- Inaccessibility to publications: some published documents were not accessible or downloadable (e.g.,
old books),

- Bad association or wrong focus with quality model scope:
o A publication describes quality activity that is not associated quality model or modeling: for

example, a QMS framework is not quality modeling with quality model,
o A model is not modeling quality: for instance, COCOMO [151] is a for cost modeling but not for

quality modeling,

- Difficulties in understanding contributions: for example, complex papers referring to specific technical
knowledge, or with unclear assumptions,

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

98 | P a g e

- Difficulties in the identification of quality model characters: for instance, retrieving which statistical
method is used for a quality model, or its quality perspective.

Although the review collection and methodology were rigorous, we looked for potential biases due to the online
database, the search query results or the filtering stages. So during this systematic literature review, we noted
that several relevant papers, we previously found either through our exploratory review (see Chapter II.3) or
some previous investigations, were missing. Consequently, we performed a complementary literature
exploration (i.e., considering results from previous exploratory review and manual searches) finding 15 additional
papers, four conference papers and 11 journal ones.

The result of the entire review process is a total of 136 publications done between 1979 and 2019, and
summarized into Table 45 of Annex 5. Almost two third (i.e., 64%) of the 136 publications comes from conference
while the source of the remaining 36% papers is journal (see Figure 30). Furthermore, most of these studies (i.e.,
79.41%) were performed in an academic context, without any concrete practical consideration from industry
partners whose are the primary demanders of these study results (see Figure 31). As depicted in Figure 32, 65.94%
of the selected study contributions were done during the last decade, and this period includes the years with the
most important number of selected studies: in 2014 we have 16 selected papers, in 2016 12 papers, and in both
2013 and 2018 11 papers. Therefore, we can infer that quality model study continues currently to be an active
topic, and even get stronger interest also over the last decade. In parallel, we remark that beside one contribution
from Mohanty [195] in 1979, no paper prior to 1994 passed our systematic review.

Figure 30 - Ratio of the two types (i.e., conference and journal) of selected studies

Figure 31 - Ratio of context (i.e., academic, industry, both) of the selected studies

Regarding the citations of these 136 papers, highlighting the publication impact factors, Figure 33 shows both
cumulative and normalized distribution per year of the paper citation count. Frakes and Terry’s journal paper
[196] (1996) on metrics and models linked to software reuse is the most cited paper of our review selection. The
cumulative citation bar graph confirms a high level of citation during last decade (e.g., in 2014, we can note a
total of 459 citations) but the bar graph for normalized citation per paper number highlight that proportionately
the highest ratio of the most cited happens before 2003, with few exceptions. Note, the 459 cumulative count in
2014 is due to a total of 16 papers, and thus the average citation is around 28 per paper. So, the average citation
is around 33 per paper, and the 11 papers cited more than 100 are:

- Frakes and Terry’s journal paper [196] (1996) “Software Reuse: Metrics and Models”: 507 citations,
- Kitchenham and Pfleeger ‘s journal paper [26] (1996) “Software quality: the elusive target”: 230 citations,
- Khoshgoftaar et al.’s conference paper [197] (1999) “Classification tree models of software quality over

multiple releases”: 145 citations,
- Olsina et al.’s journal paper [198] (1999) “Assessing the quality of academic websites: A case study”: 137

citations,

Quality Model Classification and Selection

99 | P a g e

- Zhang and von Dran’s conference paper [199] (2001) “Expectations and rankings of Web site quality
features: results of two studies on user perceptions”: 169 citations,

- Briand and Wüst’s journal paper [200] (2002) “Empirical studies of quality models in object-oriented
systems”: 228 citations,

- Rawashdeh and Matalkah’s journal paper [201] (2006) “A New Software Quality Model for Evaluating
COTS Components”: 148 citations,

- Lincke et al.’s journal paper [202] (2008) “Comparing Software Metrics Tools”: 263 citations,
- Mohagheghi et al. ’s journal paper [203] (2009) “Definitions and approaches to model quality in model-

based software development - A review of literature”: 160 citations,
- Kritikos et al. ’s journal paper [204] (2013) “A Survey on Service Quality Description”: 129 citations,
- Miguel et al. ’s journal paper [190] (2014) “A Review of Software Quality Models for the Evaluation of

Software Products”: 171 citations.

Figure 32 - Selected conference and journal paper distribution over publication year

Figure 33 - Citation numbers of systematic literature review qualified papers per year; top bar graph,

cumulative citation number, bottom bar graph, normalized citation number per number of papers

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

100 | P a g e

From this systematic literature review, 136 study papers, published between 1979 and 2019, were qualitied and
reviewed in order to address our three research questions.

Moreover, we remarked, based on these papers, that quality model study continues currently to be an active
topic, even getting a stronger interest over the last decade, and is mostly lead by the academic community.

In the next following sections, taking advantage of that selected literature, we analyze it to find answers to the
research questions, starting with software quality model classification aspect since this is linked to the topics and
methodologies used in these papers.

3. Software quality model classification

Research Sub-question 2b
Considering a set of quality models, how to classify these quality
models, what are the methodology, the criteria, and the characteristics
to use?

In order to answer to this research question, we start our analysis of the 136 papers collection by identifying what
kinds of study related to quality models each paper can be associated with. Knowing this information is crucial to
learn how information related to quality models are exploited. Indeed, while a comparison study aims to identify
and use relevant elements to classify and compare together quality models, a quality model creation study
generally sets its focus on identifying limitations or gaps against a specific research case, and then addresses
them. Thus, this analysis allows us to extract 65 types (see Table 46 of Annex 5) that we succeed to regroup into
seven distinct types of study. These types are:

- Analysis or survey on specific aspects or elements related to quality model: the study aims to investigate
a specific topic related to quality, quality characteristics or quality models.

- Comparison of quality models or characteristics: the purpose of such study is to identify a set of quality
models and then uses some criteria to compare together the selection of quality models; the conclusion
is often to identify the best quality model among that set.

- Creation of new model: the goal of this kind of survey is to reply to a need by creating a new quality
model either from an analysis on a context or domain, and / or from existing quality models or quality
characteristics.

- Evaluation of quality models or characteristics: this type of study is to perform against some specific use
cases to evaluate how well a quality model perform; it can reveal not only the quality model advantages
but also its disadvantages.

- Quality model customization: starting from a quality model, this kind of study describe the customization
work done to adapt and customize a quality model to answer to some specific needs.

- Quality model improvement: the study object here is to improve some specific aspects of a quality model
to answer to some predefined or analyzed constraints or limitations.

- Systematic mapping or literature review: the aim of this type of study is to address some specific research
questions related to quality model in order to acquire and build further knowledge from existing
literature and research work.

The mapping of the 136 papers against each of these seven types (cf. Table 18) reveals that they are not evenly
distributed as depicted by Figure 34. Three types gather 81.25% of the studies. The most frequent study type
concerns the creation of quality models, with 38.16% of the papers. This result reflects the fact that rather than
reusing or customizing a quality model (i.e., 3.47% of the papers), researchers tend to create new quality models.
Then, with respectively 26.39% and 16.67%, we have the analysis or survey on specific aspect, and comparison
of quality models.

TABLE 18 - MAPPING OF THE 136 PAPER STUDIES AGAINST THE SEVEN TYPES OF STUDY

Type of study Study Ids

Analysis or survey on specific aspects or
elements related to quality model

SLR-S01, SLR-S03, SLR-S04, SLR-S05, SLR-S06, SLR-S13, SLR-S14, SLR-S16, SLR-S17, SLR-
S26, SLR-S32, SLR-S42, SLR-S61, SLR-S62, SLR-S64, SLR-S65, SLR-S68, SLR-S69, SLR-S71,
SLR-S74, SLR-S75, SLR-S80, SLR-S86, SLR-S87, SLR-S88, SLR-S89, SLR-S100, SLR-S101,
SLR-S102, SLR-S107, SLR-S108, SLR-S110, SLR-S113, SLR-S119, SLR-S120, SLR-S128, SLR-
S129, SLR-S135

Quality Model Classification and Selection

101 | P a g e

Comparison of quality models or
characteristics

SLR-S19, SLR-S25, SLR-S41, SLR-S44, SLR-S49, SLR-S50, SLR-S53, SLR-S66, SLR-S67, SLR-
S70, SLR-S77, SLR-S81, SLR-S92, SLR-S93, SLR-S94, SLR-S96, SLR-S99, SLR-S109, SLR-
S114, SLR-S115, SLR-S122, SLR-S126, SLR-S127, SLR-S136

Creation of new model SLR-S07, SLR-S08, SLR-S09, SLR-S10, SLR-S11, SLR-S12, SLR-S15, SLR-S18, SLR-S21, SLR-
S22, SLR-S23, SLR-S24, SLR-S27, SLR-S29, SLR-S30, SLR-S31, SLR-S34, SLR-S35, SLR-S36,
SLR-S37, SLR-S38, SLR-S39, SLR-S43, SLR-S45, SLR-S46, SLR-S47, SLR-S48, SLR-S54, SLR-
S55, SLR-S56, SLR-S58, SLR-S59, SLR-S60, SLR-S63, SLR-S72, SLR-S73, SLR-S76, SLR-S78,
SLR-S83, SLR-S84, SLR-S85, SLR-S91, SLR-S97, SLR-S98, SLR-S103, SLR-S104, SLR-S105,
SLR-S118, SLR-S121, SLR-S122, SLR-S123, SLR-S124, SLR-S125, SLR-S130, SLR-S132

Evaluation of quality models or characteristics SLR-S19, SLR-S33, SLR-S99, SLR-S109, SLR-S114, SLR-S115, SLR-S136

Quality model customization SLR-S40, SLR-S51, SLR-S52, SLR-S79, SLR-S106

Quality model improvement SLR-S02, SLR-S20, SLR-S28, SLR-S94

Systematic mapping or literature review SLR-S57, SLR-S82, SLR-S90, SLR-S95, SLR-S111, SLR-S112, SLR-S116, SLR-S117, SLR-
S131, SLR-S133, SLR-S134

Figure 34 - Distributions of studies per type of study

Now that we have learnt the tendency of the different kinds of study that these 136 papers cover, our next step
is to find which classification or comparison criteria elements have been used. So, similarly to the type of study
analysis, we extracted from the papers, 114 distinct criteria combinations that we clustered into 8 unique criteria
categories (see TABLE 19):

- Against specific quality model or characteristics: under this category, the goal is to compare or classify
quality models against a specific quality model (e.g., the quality models evaluation against ISO/IEC/IEEE
25010 of Motogna et al. [94]) or some specific characteristics such as the evolution of quality
characteristics linked to mobile software of Gezici et al. study [205], for example.

- Context / purpose / scope / viewpoint: the aim here is to rely on several usual aspects of a quality model;
these are the context (e.g., from Yan et al. [206] academic, industrial, or both), the purpose (e.g.,
definition, assessment, prediction, multi-purpose from Deissenboeck’s DAP [122]), the scope composed
of the object of interest (e.g., web-service in Oriol et al. [12], open-source in Adewumi et al. [189] or in
Petrinja et al. [207]) and the quality focus described in the CQML classification scheme of Kläs et al. [10]
(e.g., general, specific, defects, maturity, cost), and the stakeholder viewpoint depicted by the essential
views of Horgan et al. [84].

- Description: either a brief or complete description of quality models is performed, often including some
historical motivation and context with authors, the main characteristics of the quality model, the
application domain (e.g., IT, transportation, medical, socio-economic from Fath-Allah et al. [208]), the
quality perspectives (e.g., the five quality perspectives of Garvin [101]: user, product, manufacturer,
transcendental, value-based).

- Evaluation / results / benefits vs limitations: the object of this category is to compare or classify quality
models based on the exercise and evaluation results of the model applied to sample use cases, or to
analyze the model in order to identify its benefits and limitations.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

102 | P a g e

- Formalism: the focus is put on the type of formalism used to model the quality ; we can rely on Wagner’s
guidelines [27]: meta-model, hierarchical, and statistical or implicit.

- None: neither comparison, nor classification criterion is used; this concerns only one paper related
describing a statistical quality model creation that is used to analyze and predict software defects in
Hitachi company; we notice no reference to other similar work from the authors.

- Quality characteristics / sub-characteristics / metrics / Tools: the classifications or comparisons are made
between the presence and the enumeration of quality characteristics, sub-characteristics, metrics and /
or tools associated to quality model.

- Quality model parent: this criterion spots the attention on the quality model parent(s) when the quality
model under focus is inheriting from one or several anterior quality models; Thapar et al. [11] (see Figure
35) qualified that relationship as basic versus tailored quality models ; the tailored quality models are
issued from basic quality models.

TABLE 19 - MAPPING OF THE 136 PAPERS STUDIES AGAINST THE EIGHT CATEGORIES OF CLASSIFICATION OR COMPARISON CRITERIA

Classification or comparison criteria Study Ids

Against specific quality model or
characteristics

SLR-S16, SLR-S41, SLR-S47, SLR-S57, SLR-S60, SLR-S76, SLR-S86, SLR-S95, SLR-S99, SLR-
S103, SLR-S106, SLR-S109, SLR-S110, SLR-S111, SLR-S112, SLR-S115, SLR-S125, SLR-S133,
SLR-S135, SLR-S136

Context / purpose / scope / viewpoint SLR-S03, SLR-S13, SLR-S15, SLR-S21, SLR-S40, SLR-S44, SLR-S51, SLR-S52, SLR-S54, SLR-
S58, SLR-S59, SLR-S61, SLR-S62, SLR-S68, SLR-S69, SLR-S75, SLR-S78, SLR-S79, SLR-S80,
SLR-S82, SLR-S84, SLR-S85, SLR-S89, SLR-S90, SLR-S91, SLR-S93, SLR-S94, SLR-S97, SLR-
S100, SLR-S102, SLR-S105, SLR-S111, SLR-S118, SLR-S120, SLR-S121, SLR-S131, SLR-S135

Description SLR-S06, SLR-S07, SLR-S17, SLR-S26, SLR-S36, SLR-S45, SLR-S51, SLR-S56, SLR-S59, SLR-
S63, SLR-S64, SLR-S66, SLR-S69, SLR-S70, SLR-S72, SLR-S75, SLR-S78, SLR-S81, SLR-S84,
SLR-S89, SLR-S91, SLR-S92, SLR-S94, SLR-S96, SLR-S100, SLR-S103, SLR-S108, SLR-S110,
SLR-S112, SLR-S113, SLR-S114, SLR-S115, SLR-S118, SLR-S120, SLR-S121, SLR-S122, SLR-
S124, SLR-S126, SLR-S131, SLR-S132, SLR-S133, SLR-S135

Evaluation / results / benefits vs limitations SLR-S02, SLR-S04, SLR-S10, SLR-S12, SLR-S14, SLR-S17, SLR-S19, SLR-S20, SLR-S23, SLR-
S25, SLR-S27, SLR-S29, SLR-S30, SLR-S32, SLR-S33, SLR-S35, SLR-S42, SLR-S43, SLR-S45,
SLR-S46, SLR-S47, SLR-S48, SLR-S49, SLR-S50, SLR-S53, SLR-S55, SLR-S59, SLR-S65, SLR-
S67, SLR-S69, SLR-S72, SLR-S73, SLR-S77, SLR-S83, SLR-S85, SLR-S90, SLR-S92, SLR-S96,
SLR-S115, SLR-S122, SLR-S123, SLR-S124, SLR-S129, SLR-S130

Formalism SLR-S10, SLR-S12, SLR-S14, SLR-S17, SLR-S20, SLR-S24, SLR-S29, SLR-S33, SLR-S45, SLR-
S66, SLR-S69, SLR-S70, SLR-S82, SLR-S83, SLR-S85, SLR-S107, SLR-S108, SLR-S111, SLR-
S112, SLR-S116, SLR-S117, SLR-S123, SLR-S126, SLR-S134

None SLR-S09

Quality characteristics / sub-characteristics
/ metrics / Tools

SLR-S01, SLR-S05, SLR-S08, SLR-S11, SLR-S16, SLR-S18, SLR-S22, SLR-S23, SLR-S25, SLR-
S26, SLR-S28, SLR-S30, SLR-S31, SLR-S34, SLR-S37, SLR-S38, SLR-S39, SLR-S41, SLR-S43,
SLR-S44, SLR-S45, SLR-S46, SLR-S47, SLR-S50, SLR-S53, SLR-S57, SLR-S58, SLR-S61, SLR-
S65, SLR-S66, SLR-S67, SLR-S68, SLR-S69, SLR-S70, SLR-S71, SLR-S75, SLR-S77, SLR-S80,
SLR-S81, SLR-S83, SLR-S84, SLR-S85, SLR-S86, SLR-S87, SLR-S88, SLR-S89, SLR-S90, SLR-
S91, SLR-S92, SLR-S93, SLR-S94, SLR-S95, SLR-S96, SLR-S97, SLR-S98, SLR-S99, SLR-S100,
SLR-S101, SLR-S103, SLR-S105, SLR-S106, SLR-S107, SLR-S109, SLR-S110, SLR-S111, SLR-
S112, SLR-S113, SLR-S116, SLR-S117, SLR-S118, SLR-S120, SLR-S121, SLR-S122, SLR-S123,
SLR-S124, SLR-S125, SLR-S126, SLR-S127, SLR-S128, SLR-S129, SLR-S131, SLR-S133, SLR-
S134, SLR-S135, SLR-S136

Quality model parent SLR-S77, SLR-S79, SLR-S82, SLR-S90, SLR-S93, SLR-S117

Once again, the criteria categories (cf. Figure 36) for quality model classification or comparisons are not evenly
distributed. Unsurprising, with 32.8% the predominant category relates to quality characteristics / sub-
characteristics / metrics / tools because those elements are the ones which composed a quality model. Moreover,
description, context / purpose /scope /viewpoint, and formalism, with respectively 16.22%, 14.29% and 9.27%,
complete the portrayal of a quality model. Nevertheless, the second most important category doesn’t belong to
them: this is the evaluation / results / benefits vs limitations. Therefore, we can conclude that after using quality
model elements such as quality characteristics for instance, researchers prefer to construct their classification or
comparison study on empirical or theorical evaluations and determine quality model benefits and limitations.

Quality Model Classification and Selection

103 | P a g e

Figure 35 - Basic vs. Tailored quality model categorization (source: Thapar et al. [11])

Figure 36 – Distributions of study classification or comparison criteria categories

So, based on these findings, five complementary themes emerge to describe and classify quality models. We have
id, bibliographic, definition, scope and structural. Figure 38 provides the full overview of these five themes
together with their refined distinct elements to practically describe, organize and classify quality models.

First, id is similar to an id card. It regroups the quality model name, its author(s), publication year, and its pedigree.
Under pedigree, we include the quality model parents used to inspire, create, or customize the quality model.

Bibliographic theme integrates the reference source, availability and accessibility, and its importance in front of
community thanks to citation counters. We have 3 citation counters: from the original source (i.e., publisher
counter) when available, from study papers (i.e., how many times the quality model is cited over the papers
issued from a systematic literature review) and from Google Scholar (https://scholar.google.com/). We note that
from Snyder’s analysis on citation counters [209], Google Scholar appears to provide a little bit optimist results
but they are closer to the reality than publisher ones. Indeed, publisher metrics often do not count for reference
in papers, thesis, or another scientific document outside the publisher scope. Therefore, we decided to use
Google Scholar as our counter reference but also keep the publisher citation metrics to strengthen the validity of
our citation metrics. Moreover, by using Google Scholar citation information independently of the publishers, we
have citation information generate in a consistent manner which brings confidence when we compare, in a
relative way (e.g., as ordinal), papers based on their citation results. Figure 37 illustrates the differences in citation
metrics depending on the metric source and highlighted by Snyder.

Next theme is the definition of three main elements that characterized a quality model. We have the basic or
tailored nature of a model as defined by Thapar et al. [11] (cf. Figure 35) and then relayed by Miguel et al. [190],
to which we can also attach standard nature (e.g., ISO/IEC 9126 or ISO/IEC/IEEE 25010). We recall that Wagner
et al. [83] concluded that 28% of companies in their survey use quality model standards, even if 79% of them are

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

104 | P a g e

finally customized. The second element is the quality model purpose. This is aligned with the Deissenboeck et al.
’s DAP classification [122] whose valid purposes are definition, assessment, prediction and multi-purpose. Model
formalism is the third and last main characterization elements. It indicates whether the model is defined by a
meta-model, a hierarchical model, or by an implicit or statistical model (see Wagner [27]).

Figure 37 - Comparison done by Snyder [209] on citation metrics difference between Google Scholar, Web of

Science publisher and the reality

Fourth, scope theme describes the quality model focus and its applicability areas. Thus, we have:
- the quality perspective as introduced by Garvin [101] ((i.e., user, product, manufacturer, transcendental,

and value-based),
- the quality focus likes in Kläs et al.’s CQML [10] (e.g., defects, maturity, general, functionality),
- the quality model domain used also by Fath-Allah et al. [208] (e.g., IT, transportation, medical, socio-

economic),
- the quality model context (i.e., academic, industrial, or both) that we can find also in Yan et al. [206],
- the object of interest (e.g., web-service (Oriol et al. [12]), open-source (Adewumi et al. [189], Petrinja et

al. [207]))
- the stakeholder viewpoint, identical to Horgan et al.’s essential views [84], and which we retrieved in

the Kläs et al. ‘s CQML classification scheme [10] (e.g., sponsors, users, developers).

To complete the quality model characterization, the last theme is the structural one. This corresponds to the
quality model constituent elements and their relationships. Consequently, we have first the vocable that used in
the quality model (e.g., characteristics, attributes, factors, metrics), the characteristic / sub-characteristic list and
definitions, the metrics list and definitions, and both qualitative and quantitative relationship (e.g., aggregation,
correlation between metrics and quality characteristics) found also in Kläs et al. ‘s CQML [10]. Note that the
characteristic / sub-characteristic and metrics could be either not defined, direct (i.e., available) and defined,
direct and partially defined, indirect (i.e., available elsewhere, e.g. in another quality model) and defined, or
indirect and partially defined. The notion of “direct” versus “indirect” was introduced and used by Thapar et al.
[11] and Fath-Allah et al. [208]. Concerning the notion of “defined” versus “not defined”, we rely on the work
done Oriol et al.[12] bringing more nuance with their rating Y (i.e., explicitly defined), Y+ (i.e., explicitly defined
and contains subdivisions), P (i.e., partially, not explicitly defined but a quality attribute or metric can support
that definition), P+ (i.e., partially, not explicitly defined but several quality attributes or metrics can support that
definition), and ND (i.e., not defined).

Finally, the result of the assembly of these five themes together with their characterization elements, shown in
Figure 38, covers all the classification or comparison criteria that were extracted from the systematic literature
review of 136 papers for a period from 1979 to 2019. This means that this consolidated result is therefore enough
for classifying software quality models.

Nevertheless, extracting all information required by these classification quality model elements is the preliminary
step in their classification. Next section addresses their use and organization to achieve the software quality
model classification.

Quality Model Classification and Selection

105 | P a g e

Figure 38 - The software quality model classification elements organized over five themes: id, bibliographic,

definition, scope and structural

4. Contributions
a. Cladistic as Classification Method of Software Quality Models

Research Sub-question 2b
Considering a set of quality models, how to classify these quality
models, what are the methodology, the criteria, and the characteristics
to use?

In Chapter V.3, we identified 20 software quality models classification elements that we organized into five
distinct themes. Consequently, a straightforward and valid classification methodology for software quality

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

106 | P a g e

models can be achieved by categorizing software quality models into groups that share the similar classification
element values. This kind of classification methodology is called a taxonomy, and its definition is “a system for
naming and organizing things, especially plants and animals, into groups that share similar qualities” [210].

Nevertheless, the number of combinations to explore for this classification approach is huge. Indeed, regarding
definition theme, we have 36 possible combinations (i.e., 3 nature possibilities x 4 purpose possibilities x 3
formalism possibilities). Likewise, the numbers of combinations for bibliographic, scope and structural theme are
respectively 4, at least 3,240 and at least 100. So, the total number of all possible combinations to explore is at
least 46,656,000 (i.e. 4 x 36 x 3,240 x 100), if we apply a taxonomy based on these elements. Note, we don’t
include id theme in this calculation since the only relevant element to consider here is the quality model pedigree,
and its cardinality is difficult to evaluate, or guesstimate without collecting software quality models. However,
knowing that there exists at least more than 46 millions of combination to explore is enough to conclude that this
method is not efficient for our needs.

Thus, instead of dealing only with a taxonomy, we can also take benefit of the timeline and evolutionary
knowledge contain in software quality model pedigree and which can be depicted likes the genealogical tree of
quality models achieved by Oriol et al. [12].

Therefore, our classification method proposal becomes a composition between the use of taxa (i.e. “taxonomic
categories, as species or genera” [211]), likes in taxonomy, but also, with the consideration of the timeline and
evolutionary knowledge and reflected into homologies (i.e., “a fundamental similarity based on common descent”
[212]). In other words, our proposal is to rely on cladistic, which is the “classification of organisms based on the
branching of descendant lineages from a common ancestor” [213], as classification methodology. Furthermore,
this proposal is directly aligned with the polymorphism mechanism introduced in Chapter IV.6.b integrating both
the phenotypic variety (cf. Figure 23) and the evolution over time (cf. Figure 24).

When applying cladistic, the result is a cladogram as shown in Figure 23 for instance. The cladogram specifies
degree of kinship relations between elements -in general organisms- which are then grouped into clade or taxon.
Moreover, a cladogram is different from a genealogical tree because it does not show how ancestor and
descendants are related together, but rather uses common ancestors and the study of shared characters to
classify the taxa which is more relevant for classifying software quality models.

We applied on the software quality model classification elements the compatibility cladistic analysis from
Estabrook et al. [214] where the objective is to optimize the element grouping (i.e., economy of hypotheses)
thanks to the maximum mutually compatible characters. So, we identified five taxa whose definitions come
directly from the definition, scope, and structural themes of the software quality model classification elements
and are organized from the most generic characters (i.e. with less distinct cases) to the most specific one (i.e.
with many distinct cases). We start with definition, considering “formalism” and “purpose” to describe the
characters considered in the first taxon. We use the two elements together since they are both closely related.
For instance, a meta-model formalism is often associated to definition purpose, while a statistic formalism is
often used for prediction purpose.

The next level of taxon is about structural theme with again two closely related elements that are “elements
(vocable)” and “qualitative & quantitative relationship”. This theme can be perceived as derived, or specialized,
from the definition-based taxon, especially from the “formalism” element point of view. For the remaining three
taxa, they are all linked to the scope theme. The most generic one is the “quality perspective” classification
element. We voluntary keep this element alone to define a taxon because it corresponds to the general
perspectives that Garvin expressed about quality [101]. Then, two complementary and related viewpoints define
the penultimate taxon. These are the “quality focus” and “stakeholder viewpoint”. Consequently, the final taxon
composed of the “domain” and “object of interest” elements which are the closest elements together compare
to the other scope elements.

As we highlighted, to complete the cladistic approach we must specify a homology in addition to these taxa. The
homology supports the identification of common ancestors and the evolutionary arrangement through a timeline
of evolution. This homology is defined by three classification elements: “publication year” and “pedigree” from
Id theme, and “nature” from definition theme.

Quality Model Classification and Selection

107 | P a g e

The resulting software quality model clade is described in Figure 39, and integrates homology and taxa
descriptions.

To proceed on software quality model classification, once software quality models are collected, their
classification elements must be filled, or completed, and then applied against our proposed software quality
model homology and taxa to generate the corresponding cladogram.

Figure 39 - Software Quality Model Clade based on a homology and five taxa

b. The first list of 492 software quality models

Research Sub-question 2a Considering software scope, what is the set of existing quality models?

The second contribution we achieve thanks to the systematic literature review is the elaboration of a consolidated
software quality model list, answering consequently to the research sub-question 2a.

During the reading of the 136 retained papers, we first collected information (see Table 46 of Annex 5) about
object of interest, domain and quality focus as specified in the taxa of the software quality model clade, described
in Chapter V.4.a. Then, we look for software quality models refer in each of these papers. To do so, we follow
snowballing approach as explained in Wohlin’s guidelines [215], [216]. The main approach idea is to collect
further data by reviewing the reference papers as well that are cited in each the original systematic literature
paper selection. Thus, we retrieved software quality models not only from the reference papers cited in each of
the 136 papers, but also subsequently from the cited papers in the reference papers.

To include any identified software quality model into our collection, we aimed to retrieved and access to the
source document, not only to confirm the relevance of the investigated contribution as software quality model
but also to retrieve taxa related information likes quality perspective, pedigree, publication information (i.e.,
publication year, author(s), citation counters, publisher reference), purpose and formalism. In the case where the
reference document was found but was not in English, or the reference was not accessible or retrievable, we

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

108 | P a g e

exclude it. This heavy literature review and investigation has resulted in the first list of 492 distinct software
quality models, covering the period going from 1968 to 2019, for a total of 51 years. The complete enumeration
of these 492 software quality models is available in Table 48 of Annex 6. We remark that 2008, 2009 and 2011
are the most productive years in term of software quality model creation and publication. Moreover, the last two
decades concentrate 71.95% of the quality model production, particularly during the range 2000-2009 which
represents 40.65% of the quality model production over the 51 years period. The details are shown in Figure 40.
Note, the hierarchical formalism the most frequent one.

Regarding the associated normalized citation counters (i.e., for each year, this is the number of citation of the
quality model reference papers per the number of quality models for that year), Figure 41 highlights the fact that
despite a low software quality model production rate before 2000, this period contains the most cited
contributions, even with a peak due to two widely cited contribution in 1984: Kano et al.‘s quality model [58],and
Basili and Weiss GQM quality model. [217].

Figure 40 - The 492 created and published software quality models per formalism and year wise

Figure 41 - The normalized citation numbers of the 492 published software quality model papers year wise

In parallel, we keep tracked of which software quality models were found or linked with each of the 136 study
papers, with a maximum of 48 quality models for Oriol et al systematic mapping [12]. That information is
aggregated into TABLE 47. As we can see in Figure 42 which represents the normal distribution of the number of
retrieved quality models per study paper, there is an average (i.e., μ, value of gaussian distribution center) of 9.5
quality models found per study paper, with a standard deviation (i.e., σ) of 7.4. We recall that with a normal law
distribution, a range of 2 times σ before and then after μ value includes 95.4499736% of samples.

The data drawn in Figure 41 come from Google Scholar citation counter, as explained in Chapter V.3. However,
we noticed that for few software quality models, this type of citation counter didn’t provide any answer. This is
for instance the case with standard quality model such as ISO / IEC 9126. Hopefully, the data that we generate
from the mapping of retrieved quality models against each study paper can fill these gaps, and ensure that the
citation results are collected homogenously over the 136 study papers, which we cannot assess for data from
Google Scholar counter. The result is shown in Figure 43, where we succeed to get citation data for all the 492
software quality models. We observe also that 7.11% of the 492 soft quality models (i.e., 35 over 492) represents

Quality Model Classification and Selection

109 | P a g e

44.38% of the cited quality models in these studies. Figure 44 is a zoom on these 35 most cited software quality
models (i.e., they are cited more than 5 times over the 136 study papers).

Figure 42 - The normal distribution related to the number of quality models per study paper

Figure 43 - Cumulative number of quality model citations in the 136 study papers year wise

Figure 44 - The 35 most cited (i.e., cited more than 5 times) software quality models in the 136 study papers,

order by chronologic order

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

110 | P a g e

To conclude this section, the 15 most cited software quality models from 1698 to 2019, and counting for 33.36%
of the total of citations, are:

- ISO / IEC 9126 [24]: published in 1991 and cited in 66.91% of the study papers (i.e., 91 times),

- McCall (also known as FCM or RADC) [41]: published in 1977 and cited in 42.65% of the study papers
(i.e., 58 times),

- ISO / IEC / IEEE 25010 [23]: published in 2011 and cited in 40.44% of the study papers (i.e., 55 times),
- Boehm [128]: published in 1978 and cited in 33.82% of the study papers (i.e., 46 times),
- Dromey [49]: published in 1995 and cited in 27.94% of the study papers (i.e., 38 times),

- FURPS [85]: published in 1987 and cited in 19.85% of the study papers (i.e., 27 times),

- Quality Model for Object-Oriented Design (QMOOD) [218]: published in 2002 and cited in 13.24% of
the study papers (i.e., 18 times),

- Capability Maturity Model Integration (CMMi) v1.1 [219]: published in 2002 and cited in 11.76% of the
study papers (i.e., 16 times),

- Basili (also known as GQM) [217]: published in 1984 and cited in 10.29% of the study papers (i.e., 14
times),

- SPICE (ISO / IEC 15504) [220]: published in 1993 and cited in 10.29% of the study papers (i.e., 14 times),
- CMM v1.0 from SEI team [154]: published on 1991 and cited in 9.56% of the study papers (i.e., 13 times),

- QUAMOCO [160]: published in 2012 and cited in 8.82% of the study papers (i.e., 12 times),
- Boehm [42]: published in 1976 and cited in 8.09% of the study papers (i.e., 11 times),

- Basili - Briand - Melo (also known as QCM) [221]: published in 1996 and cited in 7.35% of the study
papers (i.e., 10 times),

- SQO-OSS [222]: published in 2008 and cited in 7.35% of the study papers (i.e., 10 times).

c. Software quality model landscape and the selection question

Research Sub-question 2d
What is the most appropriate quality model is for embedded software
in automotive?

Research Sub-question 4a
Is it possible to have a unique reference quality model for software
product, or instead should we have a meta-model?

To answer to both research sub-question 2d and 4a, we must take profit of the underlying knowledge resulting
from this unique collection of 492 software quality models by building a software quality model landscape, and
then assess if there is a convergence to a unique reference quality model for software product, and which is the
most appropriate quality model to select for embedded software in automotive.

First, the 492 software quality models categorization against the Deissenboeck’s DAP classification [122] shows,
via Figure 45, that a majority (i.e., more than 58%) of published software quality models are assessment models,
followed by the prediction quality models with almost 28% of the models. This teaches us that the main objective
for modeling quality is put on the quality assessment and then on its prediction. This statement sounds logical
because we must know how to assess or control before being able to predict.

The next aspect of this landscape is regarding the formalism used for software quality model and illustrated by
Figure 46: the overall result is similar to the DAP classification one. Indeed, the principal formalism is the
hierarchical one, with around 63% of the cases, and, with about 33%, we find the statistic, or implicit models. We
could expect this kind of proportion because in most of the prediction times, a statistic, or implicit model is
construct, relying on historical data and specific expert knowledge to predict quality. Concerning the hierarchical
quality models, their usages are widely spread since this is the easiest formalism to understand and explain. We
remark that meta-model formalism represents only 3.45% of the cases while we have a bigger proportion (i.e.,
10.14%) for definition model. The reason of this difference is due to the fact that definition models are either
described through meta-model and hierarchical model.

Quality Model Classification and Selection

111 | P a g e

Figure 45 - DAP type distribution of the 492 software quality model samples

Figure 46 - Formalism type distribution of the 492 software quality model samples

Going one step further in the statistic or implicit formalism comprehension, we aimed to understand and retrieve
the main applied methods. We found 29 data mining methods, going from regression to classification, from fuzzy
logic to Bayesian or neural networks. We noticed that more than one method was often used together to
strengthen the prediction, but in our collected data, we counted only the predominant one for each prediction
software quality model.

So, with 17.58%, the statistical methods are the most applied type of data mining methods. There are often based
on various statistical analysis of historical data. The second most used method (i.e., 11.52%) is the logistic
regression due to its particular ‘S’ curve result. Its popularity sounds to recognize a better-adapted predictor for
software quality compared to classical regression analysis, used in 6.06% of the cases. Equally with 9.09% of
usage, fuzzy logic and neural network are the two next frequent methods, but their implementations are more
elaborated compare to regression methods. Another interesting recurrent (i.e., 8.48%) used method is the
capture – recapture approach. This is a statistical inference method usually used in ecology. Its main principle is
to consider only a subset of the studied population to infer, or predict, some specific result against the entire
population. Moving on with the next less frequent data mining methods, we retrieve the regression analysis with
6.06% likes the Bayesian network which can associated to a hierarchical model, and the following three methods,
classification, classification tree and genetic algorithm, that are applied each one in 3.03% of the statistic or
implicit quality model cases.

About the 19 other data mining methods, their usages occur in some minor cases. The complete result of the 29
method is enumerated through Figure 47.

To continue the construction of the software quality model landscape, we look for the quality perspectives, or
views, as described by Garvin [101], considered in the 492 quality models. The accumulated data demonstrate an
equi-distribution among three perspectives (cf. Figure 48): user, product, and manufacturer. Nevertheless, the

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

112 | P a g e

finer details of this distribution per software quality model reveal a more nuanced landscape (see Figure 49). In
fact, while we still have a single quality perspective in 61% of software quality models, for almost 39% of the
cases, software quality models integrate a mix of two or three quality perspectives. The single manufacturer
perspective is a little bit apart from the rest of the result since it counts for 31.44% of software quality models.
This result is explained by the fact that prediction quality models usually address a manufacturer quality
perspective.

Figure 47 - Insight on the main prediction method distribution of the 492 software quality model samples

Figure 48 - Main quality perspectives, distribution of the 492 software quality model samples

Regarding software quality model scope depicted by Figure 50, the main concern that emerges from the 492
quality models is with regards to the product scope alone. This scope happens in more than 79% of these 492
models, proving that quality for software is first a matter of product quality. The second most frequent scope is
the quality related to service software with only a little bit more than 12%, and then we found process, 3.45%, or
product and process, 3.25%. Despite that remaining scopes cover a very small minority of the concerns, this
doesn’t mean that they are insignificant or should be discarded. On the contrary, they highlight future directions
to investigate.

Quality Model Classification and Selection

113 | P a g e

Figure 49 - Nuance in quality perspectives, distribution of the 492 software quality model samples

Figure 50 - Scope distribution of the 492 software quality model samples

For the last landscape facet, we aim to verify Thaphar et al.’s postulate [11] (see also Figure 35) stating that before
year 2000, we have basic quality models, and since 2000, we have tailored quality models. From the 492 software
quality models, we distinguished the quality model with no parent model (i.e., new model creation) with the
quality model with at least one parent model (i.e., derived, adapted, or tailored quality model). Figure 51 displays
the result year wise. The result tends to affirm globally what Thapar et al. previously indicated but with some
nuances.

Figure 51 - Comparison between creation of new quality models and derived quality models over the 492

software quality model samples

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

114 | P a g e

First of all, we have three periods. Up to 1990, we have only few quality models that are mostly new quality
models. So, we retrieve here the basic. Then from 1990 to 2003, there is a transition period where tailoring of
published quality models is starting, but with still an important production of new quality model creation. Finally,
since 2003, less new quality models are created, and more new quality models are resulted from the
customization of other published quality models. Note, the two most customized quality models are the standard
quality models ISO / IEC 9126 and ISO / IEC /IEEE 25010, as depicted by Figure 44 also reflecting quality model
citation data.

Consequently, the second key nuance against Thapar et al’s postulate is the distinction between three type of
quality models rather than two: we have basic, tailored, and standard quality models.

Through the analysis and construction of this landscape, we see the main tendencies that characterize software
quality models, including their evolution since 1968. Therefore, published software quality models focus
principally on quality assessment, and then on prediction. They are commonly hierarchical except for prediction
where the adopted formalism is statistic or implicit. The quality perspectives are equally distributed over
manufacturer, user, and product perspectives, but the scope is usually about product. Finally, the software quality
model evolution is articulated around three periods: up to 1990, we have the basic quality model period, from
1990 to 2003, the transition period, and since 2003, we are in the quality model tailoring period.

Coming back to the research sub-questions 2d (i.e., “What is the most appropriate quality model is for embedded
software in automotive?”) and 4a (i.e., “Is it possible to have a unique reference quality model for software
product, or instead should we have a meta-model?”), from the landscape knowledge, it appears that there is not
one distinct quality model emerging from these 492 software quality models, especially because the quality
model depends on various variables such as the DAP, the quality perspective, or the object of interest, to cite a
few of them.

Moreover, as we saw in our systematic literature review, the quality model comparison studies represent 16.67%
of the 136 study papers (see Figure 34), with the latest study dealing on this topic published in 2019: Motogna et
al. [94]. This is a good indicator highlighting that the quest to find the best quality model -and not a unique one-
is still an active topic.

Thus, the answer to 4a is undoubtedly that it is not possible to have a unique reference quality model for software
product, and, with this list of 492 quality models, we can also conclude that having a unique quality model
covering all software product cases is an elusive target.

Regarding 2a, again from both the systematic literature review, combined with snowballing, and the exploratory
literature review (cf. Chapter II.3), no quality model for embedded software in automotive clearly emerged.
Nevertheless, if we refer to Figure 44, two of the three most cited software quality models among all the 492
models are the standard quality model ISO / IEC 9126 and ISO / IEC / IEEE 2501. And since we are in the quality
model tailoring period, an appropriate approach is similar to Arhens et al. [51] who customized ISO / IEC 9126 to
address their needs for a software quality model for automotive software architecture.

In conclusion, the answer to 2a is that there is no quality model ready yet for embedded software in automotive,
but rather, we select the latest standard, ISO / IEC / IEEE 25010, and then customized it to generate the most
appropriate model to reply to our needs in automotive domain.

5. Threats to validity and discussions

This chapter described a quite long work of investigation performed on quality models in current literature. This
investigation was possible thanks to the online available libraries that allowed us to retrieve and get access to a
plethora of candidate papers during our systematic literature review. Furthermore, the snowballing adjunction
to the review has assured us a successful harvest of 492 quality models. Nevertheless, this lengthy investigative
work and the corresponding contributions may have been impacted by several threats.

Firstly, concerning literature bias, we didn’t really consider the grey literature (i.e., the material and research
published outside the traditional commercial academic publishers). We use Google Scholar as a complementary

Quality Model Classification and Selection

115 | P a g e

source to find some further candidate study papers, but in a minor way, and certainly not as Haddaway et al.
[223] described about the role of Google Scholar in evidence reviews and grey literature searching. Rather, we
decided to use traditional commercial academic publishers because of the mandatory peer reviews to publish
papers through this type of media channel, and which automatically bring a certain level of scientific peer
recognition of the contribution. On the other hand, during our paper screening, we didn’t retain any study paper
in the range of 1980-1993 (see Figure 32). At last, this was not a blocker to our survey, but as a potential
improvement to fill that gaps, the grey literature could support us to identify any additional suitable contributions
within that range.

The 136 study papers were the first elements of our quest for quality models. Thus, for each reference about
quality models in those papers, we looked for retrieving the original reference papers. However, sometimes it
was not possible to retrieve or access to all the documents, even, the ones recommended by the authors and
consequently we missed some models. For example, this is the case with April et al.’s study [224] where some of
the quality models indicated by the authors were not available anymore. So, our choice was to exclude by default
any quality model for which we couldn’t get the original publications otherwise we could not confirm that the
model is really a quality model, and then collect multiple data about them for a later usage and the software
quality model landscape creation.

In addition, each time we found an original reference publication about quality model, we scrutinized the
referenced papers to find further quality models. This was the snowballing part in our systematic literature
review. We include also as valid quality model definition, the results of surveys where we have list of quality
attributes due to the nature of this type of quality model where the aim is mainly to describe or define the key
quality characteristics, or attributes. This the case for instance of Åkerholm et al. study [64] on the most important
quality attribute for vehicular software.

At the opposite, we exclude models for cost prediction (e.g., COCOMO [151]), for measure (e.g., COSMIC [158]
on functional size, IEEE 1045:1992 [212] on productivity, IEEE 1061:1998 [40] on metrics methodology) even if
studies like the Kläs et al. CQML classification [10] include them as valid quality model. We decided to not include
these models because they don’t directly define, assess, control, or predict quality but they may influence quality.
Moreover, we didn’t include quality model for information quality (e.g., Knight and Burn IQIP quality model [226])
since their focus is on data quality rather than software quality, despite the fact that quality of data may be linked
also to the quality of software. This is the same for Delone and McLean IS success model [44] which includes
quality aspect, but this model aims to predict the effect of Information System against the organization
performance and not on software quality.

Another potential threat is about the analysis performed on each quality model, and more particularly on
statistical or implicit quality models. It appears sometimes that the data mining method combine different
approaches together and therefore it could be challenging to identify accurately the right main method.
Moreover, our analysis was manual and because of the high volume of data to analyze, possibly some mistakes
could happen. We trust that their number is minimum since we crossed check the extracted from multiple
perspective (e.g., from other authors, during a second reading or data collection).

Lastly, concerning the appliance of our cladistic-based classification method, we didn’t use all the defined taxa.
The reasons are the manual treatment of a high volume of data and the lack of proper tool to support and handle
that work. Hopefully, we dispose of all the software quality model reference sources and, once an adapt tool is
available, we can perform the full classification with all taxa and homology (see Figure 39). Furthermore, this tool
should provide an online portal with free access to the quality model list, the classification elements, and allow
to the community to contribute such an open-source project to maintain and consolidate that list. We must
gather as well this cladistic method as an open-source structure jointly with the corresponding manipulation
library otherwise this research work will become deprecated and unused.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

116 | P a g e

Quality Model Operationalization

117 | P a g e

Chapter VI. Quality Model Operationalization
1. Introduction

As we saw in our study on quality modeling applied to embedded software development, in Chapter II.3, often
quality model solutions are not, or cannot be operational and use as they are defined. The quality model
operationalization requires a particular attention that is usually neglect but it is possible to find contributions
where one of the focus is to achieve an operational quality model. This is the case, for example, of Ahrens et al.
study [51]. Thus, it follows the purpose of this chapter, summarized through the research question 3:

Research Question 3 Considering a quality model for a software product, how to operationalize it?

By operation, we aim the development and use of quality model. So, to answer to this question, we must first
understand what type of issues, if any, can prevent development and use of quality model. We are rephrasing
this under the sub-questions 3a: What are the main challenges and the issues that prevent operationalization of
quality model?

Once the issues and the challenges identified, we then need to identify the proper solutions to resolve, or at least
to work-around, them. Nevertheless, we must avoid too general solutions which won’t bring any solutions but
rather bring more questions or issues. So, we must identify practical solution (i.e., solutions related “to actual
experience or to the use of knowledge in activities rather than to knowledge only or ideas” [227]) either from the
reuse of existing academic or industrial solutions, or from the creation new and tailored solution. This leads us to
our next research sub-question 3b: What are the practical solutions to those challenges and issues?

Finally, the final step is to have a repeatable and systematic way to operationalize, based on the findings of 3b, a
software quality model. To achieve repeatable and systematic behavior here, we must define a process that
handle the operationalization (i.e., development and use) of a software quality model. Therefore, we land the
research sub-question 3c: What is the process to ensure quality model operationalization? In the following
sections, we are addressing each of these questions sequentially because of their respective dependencies: 3c
depends on 3b results, which depends on 3a results.

2. Operational challenges and issues with quality model

Research Sub-question 3a
What are the main challenges and the issues that prevent
operationalization of quality model?

In 2012, Thapar et al. performed a comparative study on quality models with the aim to identify “what challenges
are posed by quality models” [11]. They first identified a group of 24 quality models that they considered
significatively representative for the purpose of their study. They categorized the quality models that emerged
until 2001 as basic quality model, and the later quality model as tailored quality models because these models
were basic quality models that were modified or completed to answer to the increase of software industry needs
on quality evaluation and improvement. We note that the authors’ basic quality model set was made of five
quality models that we also referred to as key contributions to quality modeling of software: Boehm’s quality
model [42], McCall’s quality model [41], Dromey’s quality model [49], FURPS’ quality model [85] and ISO/IEC 9126
quality model [24]. Then, Thapar et al. investigated the main obstacles, or challenging issues which impede the
development and practical use of quality models before applying these findings to compare the 24 models
together. Thus, the authors identified 9 main potential issues. These are:

 Association: The software development process and quality model are not, or not sufficiently,
formally associated together, thus affecting the implementation of quality characteristics and
measures. For example, in agile (i.e., incremental and iterative software development aligned with
the agile manifesto [228]) and rapid (e.g., Scrum, Extreme Programming) software developments,
often being customers centric, mis-association or lack of involvement with quality modeling may
results, for instance, in late consideration of quality characteristics and requirements, in business

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

118 | P a g e

value priority versus quality, in lack of awareness quality characteristics and requirements by
customer or DevOps team.

 Evolution: Limited evolution of quality models may lead to them becoming obsolescent, prevent
their being adapted or their scaling during the development process. This is often the case statistic
quality models, for example, since they are designed from specific data set. Another example is
Dromey’s quality model which is quite abstract and limited within its four quality characteristics
(i.e., correctness, internal, contextual, and descriptive) to evolve easily.

 General: Quality characteristics and sub-characteristics of quality models are too general to be
applicable as is, or too specific to be applicable to multiple use cases. This is often the case with
standards (e.g., ISO/IEC/IEEE 25010) which tend to cover a large set of possibilities; their drawback
is that their quality characteristics and sub-characteristics are too general. Wagner et al. conducted
a survey [83], [98] on quality model in international German companies and they found that 79% of
the companies that rely on quality models taken from standards have customized these models to
use them.

 Guidelines: Quality model guidelines or documentation are frequently not complete enough to
enable stakeholders, including software architects and developers, to understand or use the
specified quality model. For instance, the Garcés et al. quality model for ambient assisted living
systems [56] is not sufficiently detailed to be used because the authors explained only its main
definition and principles. At the opposite, McCall [41] and ISO/IEC 9126 [24], [146], [155], [156]
quality models are two examples described with enough definition, details and context explanation
to be deployed and use in software development.

 Maintainable: Quality models which cannot be maintained regularly may greatly impede
development due to having to fix defects (e.g., wrong quality sub-characteristic decomposition, or
incorrect metrics) or integrate new requirements. We saw in Chapter IV.2.b with Kano’s model
[58],quality perception like stakeholder quality requirements changes over times and therefore
quality models require regular changes to avoid becoming quickly obsolete or reflect a wrong view
of current quality. Moreover, under the maintainable scope we consider another aspect not covered
by Thapar et al. This is linked to configuration management and versioning of quality model. Indeed,
transportation system regulation (e.g., automotive, aeronautic) requires having mechanism to keep
and recover configuration elements of produced systems. This includes not only documentation,
source code, test material, development tools, to cite few, but also quality modeling material.

 Risk-Driven: The risk-driven aspect is limited or missing in the quality model, and therefore makes
early risk mitigation difficult to achieve. In development, for example, this is particularly important
with the case of quality characteristics describing non-functional requirements (e.g., usability,
security, reliability, or performance efficiency). Indeed, they are often deferred at a later stage of
the development process, and consequently their achievements may be in difficulty if the related
quality modeling is not connected with risk management.

 Stakeholders: Insufficient involvement, or participation of stakeholders in quality model
development, quality evaluation and quality framework challenge the quality model buy-in by
stakeholders, as well as the correct quality perception and expectation of final customer. In Rapid
development (e.g., extreme programming), for example, customer works closely with developers to
foster communication, feedback, and shorten loopback on what is being developed to successfully
match customer expectations.

 Subjective evaluation: Lack of objective quality evaluation, due to a lack of sufficiently detailed and
complete metrics, results in a less than objective assessment, as Ahrens et al. highlighted also in
their survey [51]. This is also the case where the quality assessment chain, including metrics, is
partially or not automated. Indeed, automation allows systematic reproducibility of outcomes,
increasing the objectivity. At the opposite, a lack of automation is a source of preface to subjectivity.
However, subjective evaluation happens in Rapid software development too, where continuous
integration and delivery rely on automated building, deployment, and testing capability. The cause

Quality Model Operationalization

119 | P a g e

of this subjectivity is the time constraint with short iterations which result in limited testing (i.e., in
assessment or control activity), for example [181].

 Validation fairness: The idea behind this quality modeling challenge is the fact that we cannot be
judge and party. Thus, once a quality model is developed, it must be validated by independent
experts - ideally-, otherwise the lack of independency in the quality model validation shall result in
biased quality assessment, control, or prediction.

In Thapar et al. studies, the 24 quality models were thus compared to each other based on the number of issues
found in each model. The study concluded that at least three issues - not always the same ones - were found in
each of these quality models, and five of them only had three issues. The short list of those with only three issues
includes ISO/IEC 9126 [24], GEQUAMO [229], Bawane [103], Alvaro [36] and Kalaimagal [102].

Although the authors detailed for each issue its rationale and an idea of solution, they did not evaluate the relative
importance of the issues, nor did they put forward practical solutions for meeting the corresponding challenges.
So, taking the data of Thapar et al., we analyzed the frequency of occurrence of the 9 issues with this set of 24
quality models – see Figure 52. We found that the three most frequent issues (risk-driven, association and
validation fairness) accounted for ~49% (cf. Figure 52) of the issues and, when we extended that list with the next
three most frequent issues (guidelines, evolution and maintainable), we found ~86% of the challenges. These
results mean that by solving risk-driven, association and validation fairness issues, ~49% of the challenges that
impede the development and use of quality models can be met; further, by also addressing the next three
challenges, ~86% in total of those issues were covered. But, according to the analysis of general, subjective
evaluation and stakeholder, these issues did not seem to occur often, which is surprising because the two last
issues occur more frequently in reality.

Figure 52 - Frequencies of the 9 main issues identified by Thapar et al. [11], which impede the development
and use of quality models

According to our readings and experience, these 9 potential issues are not the only main ones to be taken into
account. Indeed, when modeling quality, it is critically important that all new or reused terms, concepts and
associated definitions be unambiguous, agreed upon and understood by all stakeholders.

Moreover, attention needs to be paid to redundant or duplicated elements because they usually result in
rephrasing, thus increasing the risk of inconsistency and making knowledge more complex. These are terminology
and redundancy issues. There are references to them in some of the harmonization issues with ISO-based quality
models that were identified by Abran et al. [96]. So, to summarize:

 Terminology: Lack of unambiguity, consistency, agreement and understanding for reused terms,
concepts, and their definitions. This issue occurs particularly when standard glossaries (e.g., ISO/IEC/IEEE
24765 International Standard Systems and software engineering—Vocabulary [117], the international
vocabulary of metrology [134]) are ignored in favor of proprietary definitions or company jargon.

 Redundancy: Redundant or duplicated elements in quality model that usually result in rephrasing. For
example, over the ISO/IEC SQuaRE series, there are duplication of terms and definitions mainly defined
in the ISO/IEC 25000 [25] and ISO/IEC/IEEE 25010 [23] which is “contrary to the ISO practice” as Abran

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

120 | P a g e

et al. [96] pointed out. Indeed, ISO/IEC/IEEE 25010 and ISO/IEC 25012 [155] duplicate terms and
definitions from ISO/IEC 25000, ISO/IEC 25020 [121] duplicates terms and definitions from ISO/IEC 25000
and ISO/IEC/IEEE 15939 [118], ISO/IEC 25021 [160] duplicates terms and definitions from ISO/IEC 25000,
ISO/IEC 25010, ISO/IEC 25020 and ISO/IEC/IEEE 15939, … Additionally we remark that some duplications
are performed jointly with an adaption of the original definition (e.g., it is written in ISO/IEC 25021 that
definition of external measure of software quality is adapted from ISO/IEC/IEEE 25010 definition).
Nevertheless, duplication and rephrasing can be sometime saving. In Boehm's quality model [42] some
quality sub-characteristics are linked to two or three quality characteristics (e.g., accessibility is linked to
efficiency, human engineering and testability ; see Figure 14). Duplication of these sub-characteristics
surely helps to have a proper description of them based on the characteristic contexts.

Within a predictive quality modeling scheme, Khoshgoftaar et al. [173] performed cost-analysis on several
predictive quality-modelling software. They showed that accuracy and reliability - based on the effectiveness and
efficiency of quality models - are significant factors or issues as well.

 Accuracy: Lack quality model of accuracy, including in repeatable prediction results, where the quality
model results are not in the defined precision range and therefore produce invalid results.

 Reliability: Lack of quality model effectiveness or efficiency causing diverged results over repeatable
uses of quality model within the same conditions (cf. reliability in measurement in Figure 15).

Synthetizing both our research and our practical experience in quality modeling, we identified three other issues
which also affect the development and practical use of quality models.

First is their maturity. Maturity is not only a matter of age or youth of the quality model. It is a factor which
combines the intensity and history of model use, the development context (research vs. academic vs. industrial),
its application for an actual use case, its review history, its evolution, and revision history.

The next issue is expertise in quality modeling knowledge and activities. Without expertise, or expert people the
development and deployment of quality model is uncertain or at least shall suffer from lack of properly answering
to quality requirements. As well, a loss of expertise, or familiarity, due to a loss of competency or an unmastered
complexity increase in quality modeling leads to the same consequence. This issue can be therefore assimilated
to the fifth Lehman’s law of software evolution, “Conservation of Familiarity” [82].

Moreover, the importance of quality modeling may be underestimate or even overlooked. This leads us to the
final issues: neglect.

The neglect issue is the most critical one. Indeed, if quality modeling or quality model is purely and simply
neglected, ignored or underestimate then no quality modeling can happen. This is therefore the most critical and
first issue to solved.

 Maturity: Lack of quality model fully grown, developed, reused, and consolidate. A good illustration of
mature quality model is the ISO/IEC/IEEE 25010 quality models. These matured models are not only
evolution of the ones from ISO/IEC 9126, but also the results of the ISO document life cycle process,
involving international academic and industrial participants.

 Expertise: Lack of expertise in quality model development or use may inhibit quality modeling,
evaluation plan, measurement, quality assessment, control, or prediction activities. Likewise, without
security or safety expert, for instance, security or safety quality requirements implementation, testing -
manual or automated- and compliance to standard are extremely difficult tasks.

 Neglect: Lack of consideration of quality model, neglecting consciously or unconsciously quality
modeling activities is the most important threat to quality modeling. In Behutiye et al’ systematic study
on the management of quality requirements in agile and rapid software [181], the authors identified
several causes of the neglect of quality requirements, and consequently quality characteristic and
modeling, by agile software development teams. We can cite for example those teams focusing on
shorten delivery time (i.e., implementation and validation of quality requirements may be time
consuming) and on functional requirements, using of existing internal infrastructure, or waiting for a
request or need to proceed on the quality requirements.

Quality Model Operationalization

121 | P a g e

To conclude our exploration and analysis on issues preventing operational quality model development and use,
we end up with a list of 16 potential issues that are summarized in TABLE 20, by alphabetical order.

TABLE 20 – ALPHABETICALLY SORTED LIST OF MAIN POTENTIAL ISSUES THAT CHALLENGE DEVELOPMENT AND USE OF QUALITY

MODELS

Id Name Description

01 Association Lack of association between software development process and quality models

02 Accuracy Lack quality model of accuracy, including in repeatable prediction results

03 Evolution Lack of quality model evolution possibility, influencing its obsolescence, or preventing its adaptation
during development process

04 Expertise Lack of expertise in quality model development or use

05 General Quality characteristics and sub-characteristics too general to be applicable, or too specific to be
generalized to use cases

06 Guidelines Lack of quality model guidelines or documentation

07 Maintainable Lack of quality model maintenance possibility

08 Maturity Lack of quality model fully grown, developed, reused, and consolidated

09 Neglect Lack of consideration of quality model, neglecting consciously or unconsciously quality modeling
activities

10 Redundancy Redundant or duplicated elements that usually result in rephrasing

11 Reliability Lack of quality model effectiveness or efficiency

12 Risk-Driven Lack of risk-driven aspect in quality model

13 Subjective evaluation Lack of objectively quality evaluation, enough detailed and sufficient metrics

14 Stakeholders Lack of stakeholder participation in quality model development, quality evaluation and quality
framework

15 Terminology Lack of unambiguity, agreement and understanding for reused terms, concepts, and their definitions

16 Validation fairness Lack of quality model validation fairness

3. Practical solutions to the operational issues

Research Sub-question 3b What are the practical solutions to those challenges and issues?

In previous section, we have identified 16 obstacles that prevent operation of software quality model (i.e.,
development and use). Thus, in the following paragraphs, we are exploring how to resolve or workaround
practically these obstacles whenever it is possible, addressing then the research sub-question 3b: “What are the
practical solutions to those challenges and issues?”.

By practical solution, we mean solutions related to experiences, real situations or actions that are possible to
reproduce, reuse or deploy. Thereby, we aim to avoid enumeration of hints or ideas like in Thaphar et al. study
[11], which lead to inefficient resolutions because they require a non-negligible effort to make them in practice,
even when these ideas are good sense.

Hopefully, in sections from Chapter IV.3 to Chapter IV.6, we already explored quality modeling and qualimetry
technologies. So, we decided to take advantage of them since they are well documented, studied, and proven
practice.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

122 | P a g e

 Association: To address this issue, the practical solution must aim to foster the association between
quality modeling and software development process. Grady and Caswell’s FURPS [85] and then FURPS+
[152] quality modeling approach is a good illustration of what must be achieved to meet this challenge.
Indeed, they took into consideration the software development life cycle in the definition and
instantiation of their quality model, keeping for the same quality characteristics over the different
development life cycle stages but they associated a specific set of metrics to each stage. The interest
with that approach is that quality modeling remains constantly aligned with the current software
development process stage. An example is shown in TABLE 11.

 Accuracy: As we indicated previously this type of issue is similar to the accuracy measurement problem
exposed over Figure 15. So, the accuracy issue needs to be addressed by measuring, analyzing, and then
making the right adjustments and enhancements to quality models. Such practical solutions may be
inspired by the method of Khoshgoftaar et al. [173] with regard to accuracy aspect. The authors used
test data to evaluate the accuracy of their model, and after analyzing the results, they made decision on
the adjustments to propagate to their quality model.

 Evolution: Qualimetry offers a solution for meeting the evolution challenge. Its polymorphism
mechanism [230] (see also Chapter IV.6.b) enables built-in adaptation and evolution in quality modeling,
allowing smooth and natural evolution of quality modeling, deriving new quality models from previous
ones without breaking existing overload or inheritance behaviors. Furthermore, the polymorphic quality
model simplifies the building and using of quality models independently from their general
characteristics and the quality modeling target.

 Expertise: The practical solution for this issue is first linked to people management. Thus, recruiting and
developing people expertise in quality modeling is fundamental as well as retaining the talented people
[231] in that domain. An organization should be able to count on some experts that can drive the quality
modeling strategy, even on data science, and disseminate the knowledge over the organization. The
second element is to control or maintain the mastery of the quality modeling overall complexity. This
means that evolving development and use in quality modeling must be achieved with the respect of the
fifth Lehman’s law, “Conservation of Familiarity” [82]. Moreover, if we follow the Agile Manifesto [228],
“Continuous attention to technical excellence and good design enhances agility”. So, quality modeling
expertise cannot be skipped even in the modern software development methodology like Scaled Agile
Framework (SAFe) [232] where cross-functional agile teams concentrate all type of expertise around the
customer.

 General: Likes for evolution the polymorphism mechanism provided by qualimetry allows to derive
polymorphic quality models from general quality model or quality characteristics that are overly general,
independently of the quality modeling target. An example of practical build of polymorphic quality model
is given in next Chapter VII.5.

 Guidelines: Concerning guidelines issue, the solution is to follow the ISO 9001 recommendation or
guidelines [233] stating that it is critical to document everything with the right level of detail, for
instance. Moreover, the documentation must be versioned and easily accessible to the entire
organization using the dedicated and appropriate document management tool.

 Maintainable: To strengthen the maintainable aspect of quality model, the Miyoshi & Azuma [234]
recommended that the number of key factors, or characteristics should be kept between three to eight.
We find the same guidelines in qualimetry, where Azgadnov et al.[113] referred, without citing it, to
Miller’ study in experimental psychology [235] about the human capacity for processing information.
Thus, the recommended number is “7±2” and it is nicknamed “the magic number” or “Miller’s law”. In
both cases, we noted that these numbers are quite similar. Additionally, compliance with tree derivation
rules [38] (cf. TABLE 8 and TABLE 9) for controlling the analysis of quality characteristics, their organization
and the quality model complexity, formalized in qualimetry, fosters a high level of maintainability in the
case of hierarchical models. In parallel to these quality model attributes, a proper level of technical
documentation, aligned also to the Guidelines issue, is an important factor influencing the maintenance
capability such as documented source code can do.

Quality Model Operationalization

123 | P a g e

 Maturity: Due to the nature of maturity, this issue deserves a specific focus since it evolves over time,
and depends greatly on the changes, or decisions made in the quality modeling which should thus be
done carefully, while anticipating the next steps as in a game of chess. However, by applying a capability
maturity model such as CMM [154], CMMi [236], [237], or A-SPICE [21]to quality modeling activities (i.e.,
as a process, and to quality model characteristics, sub-characteristics and metrics), we can assess,
control, and enhance maturity, and consequently address this issue. Since our industrial context in
automotive, we recommend A-SPICE and its 5 capability levels shown in Figure 53. Highest level means
highest maturity, and in our case, level 0 indicates that there is no quality modeling performed.

Figure 53 - The A-SPICE capability levels of process maturity [21]

 Neglect: This issue is complex to solve without a strong and unwavering support to quality modeling, or
qualimetry, from the academic and industrial leaders. Therefore, role modeling, showcasing of big win
examples thanks to quality modeling (e.g., industry success in certification, academic student
evaluation), and proper explicit communication to software engineering and systems engineering teams
are the right tools for practical solution. One of the Agile Manifesto principle [228] is “Continuous
attention to technical excellence and good design enhances agility”. De facto, applying it means that
even quality modeling shouldn’t be neglected in software development, especially with agile and Rapid
software development methodology where quality requirements are often neglected or overlooked, and
consequently

 Redundancy: Following the ISO practices which advise to avoid duplication, it obviously makes sense to
be careful, rigorous and keep in mind this advice to limit redundancy when developing and using of
quality models. Moreover, factorization of concepts, terms, quality modeling elements (e.g., quality
characteristics, perspectives, metrics, quality model) jointly with references to standards such as the
international vocabulary of metrology [134], for example, decrease the risk that redundancy issue
occurs.

 Reliability: The reliability issue resolution is close to the accuracy one. Thus, it needs to be addressed by
measuring, analyzing, and then making the right adjustment and enhancements to quality models.
Khoshgoftaar et al. [173] method with regard to reliability aspect can also be considered. However, there
is a difference with the practical solution for accuracy. Indeed, to address reliability issue, we should rely
on automation to ensure repeatable quality model results.

 Risk-driven: Inspiration for resolving risk-driven issues can be found by combining ISO/IEC 25010 [22]
and ISO/IEC 25022 [74]: the “freedom from risk” quality characteristic, its sub-characteristics (both
defined in ISO/IEC 25010) and their measurements (defined in ISO/IEC 25022) demonstrate how the risk
aspect can be included in quality modeling. The ISO/IEC 25022 standard is of major importance because
it describes how the risk is managed with two quality threshold levels. This is risk versus opportunity
associated with the level of quality (see Figure 18). If the measured level of quality is below the lowest
threshold, the risk is unacceptable, or not manageable. If the measured level of quality is between these
two thresholds, then the risk is acceptable or manageable. Finally, if the quality level is above the highest

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

124 | P a g e

threshold, it is providing a development opportunity. In fact, by generalizing the use of these two quality
threshold levels instead of a single quality threshold level (e.g., acceptance threshold), we automatically
encompass the risk aspect in our quality modeling.

 Subjective evaluation: Regarding subjective evaluation, a complete metrics specification with enough
detail to apply them is required, and ideally most of them should be automated. We can use Boehm [42],
McCall [41]or ISO/IEC 9126-2,3,4 [104], [105], [106] as beginning source of information for metrics. Then
we have to select and apply correctly aggregation operators. There are many different types of
aggregation operators [143] (e.g., arithmetic mean, weighted mean, symmetric sum, k-order statistics)
and their choice depends on the purpose for which they are intended, according to Wagner [27] (e.g.,
assessment, prediction, comparison, hotspot identification and trend analysis). Chapter IV.3.d and TABLE

39 from Annex 1 give further details on aggregation topic. An alternate aggregation approach is the
“Logic Scoring of Preference” of Dujmovic and Bayucan [144] shown in Figure 17 and by the equation 3.
The main idea is to specify the relationships between the inputs and the output based on trade-off
between conjunction, neutral and disjunction relationships. Concerning the inclusion of quality
characteristics and sub-characteristics relationship, Khaddaj and Horgan [148] established quality
characteristics by means of a factor polarity profile (see TABLE 7) with direct, neutral and inverse
relationships. From another perspective, Perry’s quality control checklists [238] can be adapted to have
objective check procedures to quality modeling activities. Finally, to shorten continuous integration,
testing and delivery, agile and Rapid software development method encourage automation which
contributes as well as reducing subjectivity in the evaluation with repeatable and constant method to
evaluate quality.

 Stakeholders: For this issue, all stakeholders must be involved as early as possible to build or customize
a quality model that takes all stakeholders' visions into account in accordance with Horgan's views [84]:
“Key Quality Factors” are those quality factors which are relatively invariant per project, i.e., product
and stakeholders, while “Locally Defined Factors” are the quality factors that change, depending on the
project, product, or stakeholders. Over the “Quality Assessment Algorithm” of qualimetry [113], expert
and non-expert stakeholders participate in quality characteristics, sub-characteristics, and weight factor
determination through meeting sessions or surveys. Thus, since the stakeholders are part of the quality
model development, their vision is shared and aligned with the resulting quality model.

 Terminology: Like for redundancy, to reduce terminology issue, it is also vital to rely on terminology
standards likes the international vocabulary of metrology [134], ISO/IEC/IEEE 24765 International
Standard Systems and software engineering—Vocabulary [117], or the international software testing
qualifications board vocabulary [111], to cite few. These standards ensure that a set of common
vocabulary and concepts are clearly specified and shared broadly. Concerning other than standard
vocabulary or concepts used in quality modeling during development or use, the solution consists in
ensuring compliance of the terminology with the “five C’s” of requirements engineering (i.e.,
correctness, completeness, consistency, conciseness, and clarity) [9].

 Validation fairness: Resolution of validation fairness issue may be achieved thanks to qualimetry science
and its “Quality Assessment Algorithm”[113]. This algorithm guides quality model developers and helps
them assess quality models by upstream involvement of experts and non-experts through technical,
expert, and steering groups. A particular attention must be made with regard to the independency of
involved parties. This validation with expert can also be completed with a joint validation between
empirical results (e.g., results from the use of quality model to assess quality of a certain product) and
expert (e.g., results from validation expert who assesses quality of the same product that empirical one).
This approach was applied by to validate the QMOOD quality model they built [218].

So, we identified and proposed a complete set of practical solutions for the issues that may prevent the
operationalization of quality models. Figure 54 gives an overview of those practical solutions mapped to the
corresponding issues. Next section focuses on the construction of two processes that take advantage of these
solutions to guide efficiently development and use of quality models in quality evaluation.

Quality Model Operationalization

125 | P a g e

Figure 54 - Mapping of practical solutions against the 16 issues preventing development and use of quality

models

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

126 | P a g e

4. Operational Contributions

Research Sub-question 3c What is the process to ensure quality model operationalization?

After the analysis and finding of 16 issues that may prevent development and use of quality models, and then the
identification of practical solutions for each of them, we now explore how we can take benefit of them during
quality model operations. Thus, the result of this exploration responds to 3c: “What is the process to ensure
quality model operationalization?”.

We remark that the definition and deployment of such process linked to quality model development and use is
aligned to the process maturity capability level 2 (i.e., Managed) expectations (see Figure 53). Moreover, the
tailoring of that process to specific projects raises the process maturity to capability level 3 (i.e., Established).

a. Quality model operational use: The “Quality Thermometer”
The purpose of this process is to cover the operational development and use of quality models in a context of
monitoring project progress and status, including product quality.

There are various framework solutions for the visualization and monitoring of project progress and status such
as dashboards or scorecards [239].

A dashboard usually displays key performance indicators graphically, via graphics, gauges, or meters that are
updated frequently (i.e., hourly, daily), but users must interpret the data.

A scorecard consists in metrics, targets, and trends, showing how the measures performed against the targets.
The scorecard is usually updated on a weekly, monthly or quarterly basis, and like the balance scorecard [240], it
facilitates the alignment of company strategy and project objectives.

In our case, we decided to define and use a project scorecard with the necessary details to accurately monitor
status and progress for project, process and product. In addition, the division of our project scorecard (cf. Figure
55, Table 49 and Annex 7 for further details) into 6 main blocks was the result of two brainstorming sessions
organized with our main stakeholders. Each block addresses a specific status area of the project.

Figure 55 - The software project scorecard including indicators and metrics for project, process, and product

Thus, the main project scorecard blocks are:

 Project id: main identification details about the project, the current milestone or also its safety, or
Automotive Safety Integrity Level (ASIL) since we are working in the automotive domain (in aeronautics
we could use the Design Assurance Level (DAL).

Quality Model Operationalization

127 | P a g e

 Project dimensions: details about project and product sizes; these are used for the purpose of
normalization, weighting and/or for monitoring complex systems.

 Project indicators: a combination of metrics from a project (e.g., sprint or feature completion, scope
creep [241]), process (e.g., lead and cycle time) and product (e.g., software product quality).

 Quality performance indicators: a synthesis of the conformity to A-SPICE processes and their work-
products.

 Safety & regulation performance indicators: a synthesis of the conformity to safety and regulation
processes and their work-products, with regards to applicable standards.

 Internal and external software metrics: a collection of internal and external software metrics linked to
some quality characteristics and sub-characteristics of quality model; this collection is made up of the
most frequent metrics used by the development, verification, and validation teams.

In the project indicators block, we can see the reference to software product quality which is computed thanks
to a quality model, and a set of internal and external software metrics. We also note in passing that this quality
model and the required metric set depend on both the project scope and the current project milestone, or life
cycle stage.

However, even though the quality model usage appears to be transparent, hidden behind the unique software
quality product indicator in our current case, its use must be framed by a formal process in order to be clear and
consistent. As a result, we defined a seven-step process that is symbolized under the shape of the “quality
thermometer” for the project (shown in Figure 56), as "taking the temperature" of the software product quality.

The description of this process is intended to:

1. Identify the project characteristics: We capture the current project and product definitions, the current
targeted milestone, the ype of indicators (i.e., leading vs. lagging) and which quality perspective(s) we
aim to consider between product, user, manufacturer.

2. Define and customize the Quality Model: We build, or customize the right quality model, in conjunction
with polymorphism to match the project characteristics (e.g., type of product, project, and stage in the
product life cycle). Since the development of quality model requires multiple steps to integrate properly
practical solutions for association, evolution, general, maintainable, stakeholder involvement, and
terminology, we decided to build an independent and complementary process for quality model
development. The detail of this process is given in next Chapter VI.4.b.

3. Define the metrics and update the scorecard: We first identify the software metrics set associated with
the quality model characteristics and sub-characteristics, starting from the internal and external
software metrics pre-listed in the scorecard, completing this list as needed. This association is done
accordingly to the same approach than Grady and Caswell did with FURPS [85] and then FURPS+ [152],
taking into account development life cycle impact. Afterwards, we update the scorecard block for
internal and external software metrics to reflect the selected metrics set.

4. Define relationships and aggregation: During this stage we identify the weights and the relationships
between quality characteristics, sub-characteristics, and metrics. We rely on Logic Scoring of Preference
– combinations of conjunction and disjunction relationships between inputs and outputs-, polarity
profile, and aggregation operators.

5. Collect software metrics: We now have all the elements we need to start measuring the software
product quality by collecting the selected software metrics - from stage 3. We apply as necessary the
polymorphism behavior regarding evolution linked to time, or more precisely, aligned to the product
development life cycle stages. Moreover, we dispose of historical metric data allowing to perform any
data analysis or graphical display at that step.

6. Build quality indicator: To compute the quality indicator, we aggregate these metrics, quality
characteristics, and sub-characteristics based on the defined quality model - from stage 2-, then weights,
and relationships - from stage 4.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

128 | P a g e

Figure 56 – Inheriting of the practical solutions to the operational issues, the “Quality Thermometer”

process for project

Quality Model Operationalization

129 | P a g e

7. Apply threshold with color coding and report indicator: Finally, we report the quality indicator on the
project scorecard. We also use color coding associated with the range breakdown in ISO/IEC 33020 [138]
(see Figure 57) with the percentage of this quality indicator over the targeted threshold. This allows us
to give simple and direct visual feedback on the currently achieved quality level.

Figure 57 - Visual display of quality level done via color coding associated to range decomposition coming

from ISO/IEC 33020 [141]

Epilogue: Once this quality indicator has been reported, we are ready to loop, proceeding again - until it is
required - in stage 5, collecting new software metrics, building a new quality indicator, reporting it, and so forth.

Note that the scorecard gives an instantaneous view of the project status, and that it must thus be completed
with a set of trend charts, displaying dynamic views, showing trendlines - linear or not-, that may be useful for
prediction. In addition, we use two levels of thresholds based on ISO/IEC 25022 [142] (cf. Figure 18) –
risk/opportunities - to indicate when quality is at a risk level and thus manageable or not, and when we move to
an opportunity.

Finally, over this process a certain number of pratical solutions have been explicitly or implicitly included to
address association (i.e., at stage 3 and 5 levels), evolution (i.e., at stage 2, 3, 4, 5 and 6 levels), general (i.e., at
stage 2, 3, 4, 5 and 6 levels), risk-driven (i.e., at stage 3, 5,6 and 7 levels), subjective evaluation (i.e., at stage 3
level) and maturity (i.e., at process level) issues.

Moreover, the main benefits of this approach are that it offers synthetic homogeneous views between projects,
whether this be for supplier or internal development teams, as well as bridging different disciplinary teams thanks
to a common vocabulary from polymorphic quality models.

The next section describes the quaility model build process, completing the “Quality Thermometer” process for
project.

b. Quality model operational development: a 6 stages process
The purpose of this process is to cover the development aspect of the quality model operationalization. In order
to build the right quality polymorphic model, addressing then general and evolution issues, we must follow a
sequence of six stages as summarized in Figure 60: identify the origin of the quality model, build a survey item
list, organize the survey, analyze the survey results, construct quality models and determine which common
quality model to use as a basis.

1. Identify the origin of the quality model: In order to initiate the development of a quality model that can
be required by a project (i.e., in the scope of the “Quality Thermometer” process for project), for
instance, we begin our process by identifying coarsely a quality model to serve as starting model. Indeed,
with more than 50 years of active research contributions in quality modeling, there exists many valuable
quality models.

Therefore, our assumption is that by fostering reuse of quality model rather than creating from scratch
a new one, it allows us to better take advantage of existing contributions. So, by default we consider as
original model current standard for systems and software product: ISO/IEC/IEEE 25010 quality models
that cover both product and user views of quality and are conform to A-SPICE. However, this origin can
be different. For example, if a company has in-house quality models, it is recommended to use them as
origin.

Regarding common and specific product characteristics, the aim is to associate each of them with some
quality characteristics from the original quality model if possible, otherwise to complete them. For
example, “safety” can be associated with “freedom from risk” and also “security”, “human-machine

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

130 | P a g e

interface” with “satisfaction” and “usability”. Moreover, we model them by applying the ad hoc and
universal polymorphism mechanism to the quality model.

Nevertheless, such analysis and association are not straightforward. They require a large spectrum of
knowledge including the project, systems or software product, quality characteristics and quality
modeling. Furthermore, the stakeholders, who depend on that quality model, must buy-in to the
resulting quality model. We solved that requirement by involving the main experts and stakeholders in
the quality modeling activity, and more particularly by getting them to identify quality characteristics
and sub-characteristics thanks to a survey, as our next building stage.

2. Build the survey item list: The survey is divided into 4 stages. The first one introduced the objective of
the survey and collected the contributors' roles and projects. In term of contributor audience, we should
consider our main stakeholders likes project managers, architects, verification and validation leaders,
and assurance quality engineers, for instance.

For the second stage, we asked to the survey participants to rank the importance of each of the quality
characteristics - from the quality model(s) identified as origin and from product characteristics - on a
scale from -2 (“not important at all”) to +2 (“extremely important”) based on their technical knowledge
and their own vision of the product and project quality. We chose to use a 5 points Likert’s scale [242]
(e.g., Figure 58) because usually all the stakeholders are already familiar with it. This scale is symmetric
with the central value (i.e., point three here) considered to be the neutral value, and Likert’s items can
be assigned to values (e.g., 1 to 5, or -2 to +2) to facilitate their processing and analysis.

Figure 58 - Example of a 5 points Likert's scale

The survey's third stage also focused on ranking by order of importance, but rather on all the quality
sub-characteristics of the quality model(s) identified as origin and the and the product sub-
characteristics. We separated the assessment of quality characteristics from that of the sub-
characteristics to capture the stakeholders' perceptions of them. For instance, if a quality characteristic
was ranked -2 and all its sub-characteristics were ranked +1 or +2, it means that this quality characteristic
was misunderstood or was wrongly ranked. Another example could be, if one of the sub-characteristics
of a quality characteristic was highly ranked compared to the other sub-characteristics, then it became
the determinant sub-characteristic. Furthermore, we added a sixth ranking choice, +3 ("I don’t know")
because there were non-experts participating in the survey. This is because they might not have an
opinion, or correctly understand some quality sub-characteristics which are in fact more subtle than
quality characteristics. With this sixth ranking choice we avoided them biasing the overall survey results
by selecting another default answer.

Figure 59 - Example of a 6 points Likert's scale

The last stage consists in an open question, offering the survey participant to suggest some missing
characteristics and sub-characteristics, and share additional comments that may influence quality
modeling. Note that the survey elements (e.g., questions, answer proposal, descriptions) must rely as
much as possible on standard glossary and metrology vocabulary to avoid any confusion or rephrasing
in terminology.

3. Organize the survey (or hybrid method): This approach is similar to the qualimetry hybrid method [113],
where a panel of domain experts and non-experts is asked to evaluate the values of a set of quality
characteristics and sub-characteristics. So, during this stage each of the targeted participants are
contacted and asked to answer the survey based on their own understanding and perception of the
quality. Consequently, we incite the stakeholders to participate in the quality model development,
ensuring to get their implicit buy-in on the resulting quality model.

Quality Model Operationalization

131 | P a g e

4. Analyze the survey results: Once the survey had been answered and its data collected, we analyze the
data, our fourth building stage, by verifying the participant agreement consensus, or interrater reliability,
based on Cohen’s kappa ⲕ [243] (see equation 12) in the case of two raters (in this case the stakeholders
who contributed to our survey) for a set of answers and Fleiss’ kappa ⲕ [244] (see equation 13) for three
or more raters (see Chapter VII.4 for examples and explanation on the calculations of Cohen’s kappa ⲕ
and Fleiss’ kappa ⲕ).

For each project, we checked whether Fleiss ⲕ was available for all roles and if it was at least greater
than 0.4 (i.e., Moderate from Table 21). We thus selected a data set based on the highest Fleiss ⲕ for
each project, or product, and all roles, or where a role had the highest ⲕ. When this was not sufficient,
we used Cohen ⲕ as a decision criterion.

If no kappa showed at least a fair agreement, then we looked for consensus at the specific role level and
all projects, or products. In case of poor of slight consensus between participants, we perform another
survey round, restarting at stage 2 of the process but with highlighting the areas of divergences and
areas of convergences on quality characteristics and sub-characteristics.

𝜅𝑎𝑝𝑝𝑎஼௢௛௘௡ = 𝜅௖ =
𝑝௢ − 𝑝௘

1 − 𝑝௘

 (12)

where 𝑝௘ =
1

𝑁ଶ
෍ 𝑛௜ଵ𝑛௜ଶ

௞

௜ୀଵ

𝑝௢: the relative observed perfect agreement among the 2 raters

𝑛௜ଵ: 𝑛umber of times rater 1 predicted category i

𝑛௜ଶ: 𝑛umber of times rater 2 predicted category i

𝑁: number of observations to categorize

𝑘: number of categories

𝜅𝑎𝑝𝑝𝑎ி௟௘௜௦௦ = 𝜅௙ =
𝑃ത − 𝑃௘

ഥ

1 − 𝑃௘
ഥ

 (13)

where 𝑃ത =
1

𝑁
෍ 𝑃௜

ே

௜ୀଵ

=
1

𝑁. 𝑛(𝑛 − 1)
ቌ෍ ෍ 𝑛௜௝

ଶ − 𝑁. 𝑛

௞

௝ୀଵ

ே

௜ୀଵ

ቍ

𝑃௘
ഥ = ෍ 𝑝௝

ଶ

௞

௝ୀଵ

 and 𝑝௝ =
1

𝑁. 𝑛
෍ 𝑛௜௝

ே

௜ୀଵ

 with 1 = ෍ 𝑝௝

௞

௝ୀଵ

𝑛௜௝: 𝑛umber of raters who assigned the 𝑖௧௛subject to the 𝑗௧௛ category

𝑁: number of subjects

𝑛: number of ratings per subject

𝑘: number of categories

TABLE 21 - KAPPA INTERPRETATION (SOURCE LANDIS AND KOCH [245])

Kappa ⲕ Strength of Agreement

< 0 Poor

0.01 – 0.20 Slight

0.21 – 0.40 Fair

0.41 – 0.60 Moderate

0.61 – 0.80 Substantial

0.81 – 1.00 Almost Perfect

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

132 | P a g e

Figure 60 - 6-stages process for quality model development

Quality Model Operationalization

133 | P a g e

So, our analysis depicted by the algorithm in Figure 61 assumes that at least two raters participated to
the survey for each project. Moreover, it integrates the fact that a quality model can be composed of
sub-quality model corresponding to a specific perspective. For example, with ISO/IEC/IEEE 25010, we
can distinguish two quality perspective: system/software product quality and quality in use (i.e., user).

Then, for each project, and each specific perspective, we checked whether Fleiss ⲕ was available for all
roles (i.e., all raters for the project or ECU) and if it was at least greater than 0.4 (i.e., Moderate). We
thus selected the data set based on the highest Fleiss ⲕ for that project, or ECU, and all roles. If no Fleiss
ⲕ is at least moderate for all roles, we look for result for specific role. Otherwise, we used Cohen ⲕ as a
decision criterion starting from all roles and then specific role result, if any. If no kappa showed at least
a moderate agreement, then we first extend our analysis to all quality perspective for the current project
or ECU, applying the method describe above. If we still don’t succeed to find a proper Fleiss or Cohen’s
ⲕ then we look for consensus at all projects, or ECUs, level, starting from the current quality perspective
with all roles and applying again our analysis heuristic. Finally, in the case where no consensus can be
found at project, role, and quality perspective level, we must conduct a new survey.

Figure 61 - Algorithm of our analysis based on Fleiss and Cohen's kappa

5. Construct the quality models: Once the data set had been selected, to build our polymorphic quality
models we determined the most important characteristics and sub-characteristics using the scale set
value set: {-2; -1; 0; +1; +2}.

First for all characteristics and sub-characteristics, we determine their importance value by calculating
the mean values of their ranking values from “not at all important” (i.e., -2) to “extremely important”
(i.e., +2). For example, two raters answered “not at all important” and “extremely important” for a

characteristic, its importance value is:
(ିଵ)ା(ାଶ)

ଶ
= 0.5. So, all characteristics, with an importance value

at least very important (i.e., +1), are included in the polymorphic quality model. Regarding their sub-
characteristics, we apply the same rule and therefore include only sub-characteristics that are have an
importance value of at least very important (i.e., +1).

Furthermore, for characteristics where the importance is less than +1, we look for the influence of their
sub-characteristics. Indeed, if a characteristic is rejected during first step but has extremely important

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

134 | P a g e

sub-characteristics, then the characteristics should be finally included. To do so, we compute a new
characteristic importance value by considering for a half the current importance values of the
characteristic and combined with the importance values of its sub-characteristics s (i.e., complete
influence of the sub-characteristics like Gordieiev et al. [92]), and the second half the average value of
its sub-characteristics importance value that equal or greater than +1. Once a previous rejected
characteristic is finally included, we apply the include its quality sub-characteristics with an importance
value of at least +1. In the case where we have more than two levels of characteristics, we replicate this
mechanism to the different level of quality model hierarchy.

Calculation explanation and example are provided in Chapter VII.5.a. During this construction, we take
care to follow the Miller’s law and the tree derivation rules whenever they apply, to facilitate the
maintainability of quality model. In parallel, the polymorphic quality model construction prevents the
evolution and general operational issues.

6. Determine the common quality model: After we model quality for several products, for our final building
stage we take the mathematical intersection of these quality models to generate a common quality
model. This last model will then be used as the basis for other products for which we don’t already have
a quality model. It can be also used for the next generation of the same products and also as a basis for
building a new architecture: quality requirements drive systems and software feature requirements, and
then the corresponding architecture requirements.

To conclude on this contribution of the 6-stages process for building quality models, even if this process can be
used independently to the “Quality Thermometer” process, the two processes address two complementary
operational aspect: development and use of quality model.

In addition, the stages of this process include practical solutions to prevent the evolution, general, maintainable,
stakeholder and terminology operational issues. We notice that the elaboration of such process contributes also
to reach at least a maturity level 2 (i.e., managed) for quality modeling development.

Finally, rather than a creation of a new quality model that may be optimum only for a particular project and
product, we based our quality model development strategy on the reuse of existing, and valuable, quality models.

5. “Quality thermometer” and “6-stages” process comparison against current
ISO/IEC standards

In the previous section of this chapter, we described two processes which addresses the development and the
use of quality models. During these process elaborations, we referred to and embedded a certain number of
operationalization concepts coming from standards (e.g., ISO 9001 [233], ISO/IEC 25022 [145]) but without using
any of them as the backbone of our processes. And yet, we found that most of the documents in the ISO 250nn
series already address various aspects of operationalizing the quality models contained in ISO/IEC 2501n (i.e.,)
ISO/IEC/IEEE 25010 [23], ISO/IEC TS 25011 [246] and ISO/IEC 25012 [159]), particularly on the quality
requirements and model evaluation. Similarly, ISO 15939 addresses such aspects but from a measurement
process perspective.

Consequently, the objective of this section is to perform a comparison to verify the relevance of the two proposed
processes against the current relevant standards which are

 ISO/IEC 250nn series [25], the system and software quality requirement and evaluation standards, that
define an evaluation process using software quality models and measurements,

 ISO/IEC/IEEE 15939 [119], the measurement process standard.

The result of the comparison analysis is summarized through Table 22 and Table 23.

First, we note that in the “Quality Thermometer” and “6-Stages” process, any quality models can be used as entry
model while for ISO/IEC 250nn, the aim is to use the standard quality models defined in ISO/IEC/IEEE 25010 [23]
(i.e., systems and software product quality and quality in use models), ISO/IEC TS 25011 [246] (i.e., service quality
models) and ISO/IEC 25012 [159] (i.e., data quality model).

Quality Model Operationalization

135 | P a g e

Furthermore, quality model customization is natively included in our proposed approach which is not the case
with the ISO/IEC 250nn, where deletion or addition of quality characteristics is not advised. This customization
aspect is enabled thanks to the built-in evolution mechanism of polymorphism for product and life cycle. About
the standards, that evolution aspect is lighter. Indeed, there are only 3 levels (i.e., internal, external and in use)
of product quality life-cycle phase with a measurement focus of ISO/IEC 25020 [123] (i.e., the measurement
reference model and guide) and the optional life cycle applicability criteria of ISO/IEC/IEEE 1593.

Regarding relationships, aggregations, and weight factors, again, they are both embedded and refined into the
two proposed processes, especially their determinations are included in the “6-Stages” process. On their side,
the studied standards assume that aggregation should be achieved through measurements functions and
therefore, they do not address or cover them. This is the same case with weight factors where they are considered
optional and manually defined without any further detail. In consequence, the result is subjective for the standard
approach while we succeeded to setup an objective one in our processes.

Concerning reporting, both ISO/IEC 25040 [147] (i.e., evaluation process) and ISO/IEC/IEEE 15939 suggest some
informative evaluation guidelines which is less effective and consistent than the scorecard based solution of the
Quality Thermometer”. But since the “Quality Thermometer” is close to ISO/IEC 25040, this process is therefore
compatible with both ISO/IEC 250nn and ISO/IEC/IEEE 15939, and then it can benefit from them, and vice-versa.

However, even if we found several absent or limited concepts in the current standard compared to our two
proposed processes, we remarked that we missed the traceability with requirement which is highlighted in
ISO/IEC 25030 [247] (i.e., software product quality requirements). So, we will have to take into account and
integrate this traceability concept not only in the “Quality Thermometer” process but as well in the “6-Stages”
process.

TABLE 22 - COMPARISON BETWEEN THE "QUALITY THERMOMETER" PROCESS AND THE CURRENT RELEVANT STANDARDS: ISO/IEC
250NN SERIES AND ISO/IEC/IEEE 15939

“Quality Thermometer” process ISO/IEC 250nn & ISO/IEC/IEEE 15939

Any quality models as entry with customization ISO/IEC 2501n

Built-in evolution with polymorphism for
product and life cycle

Product Quality Life-cycle Phase (Measurement Focus): 3 levels
– internal/external/in use – ISO/IEC 25020
Life cycle applicability – ISO/IEC/IEEE 15939

Aggregation method and relationship definition Hierarchical relationship - ISO 2501n
Aggregation via measurement functions – ISO/IEC/IEEE 15939,
ISO/IEC 2502n

Scorecard for consistent reporting Informative evaluation report guidelines – ISO/IEC 25040,
ISO/IEC/IEEE 15939

Close to ISO/IEC 25040 : compatible with ISO/IEC
250nn and ISO/IEC/IEEE 15939

TABLE 23 - COMPARISON BETWEEN THE "6-STAGES" PROCESS AND THE CURRENT RELEVANT STANDARD: ISO/IEC 250NN SERIES
AND ISO/IEC/IEEE 15939

“6-stages” process ISO/IEC 250nn & ISO 15939

Any quality models as entry with
customization

ISO/IEC 2501n

Built-in evolution with polymorphism for
product and life cycle

Product Quality Life-cycle Phase (Measurement Focus): 3 levels –
internal/external/in use – ISO/IEC 25020
Life cycle applicability – ISO/IEC/IEEE 15939

Automatic weight determination Optional manual weight – ISO/IEC/IEEE 15939

Objective stakeholder consensus via
computation

Subjective validation and approval of quality requirements –
ISO/IEC 25030

Missing traceability with requirements Traceability with quality requirements – ISO/IEC 25030

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

136 | P a g e

To conclude, this comparison confirms that, even if both ISO/IEC 250nn series and ISO/IEC/IEEE 15939 standards
already cover some operationalization aspects for quality model and evaluation, the “Quality Thermometer” and
the “6-stages” process are relevant and bring additional values by filling gaps in the existing standards.

6. Threats to validity and discussions
The main motivation behind the study described in this chapter is about how to develop and use quality model
from a practical point of view. We observed that over the eight main approaches to support quality model
development and use (see Chapter IV.5 and Table 10), qualimetry is the most appropriate approach to proceed
for quality modeling. Moreover, as we highlighted previously (e.g., via the “House of Qualimetry”, Figure 20),
qualimetry covers both theoretical and applied aspect. Unfortunately, this applied aspect focuses more on
applying qualimetry to evaluate type of objects that were not evaluated before avoiding some pitfalls in
qualimetric analysis or quality evaluations [162], [248], rather than on challenges or issues that may prevent
applying qualimetry, or quality modeling.

We found only few contributions about the quality model operational issues in the literature likes Thapar et al.
[11], Ahrens et al. [51], Abran et al. [96], or Khoshgoftaar et al. [173]. Nevertheless, Thapar et al. study was the
most exhaustive exploration on this problematic, identifying a total of 9 issues that prevent quality model
development or use. In their study, the authors describe each issue and gave an idea of solution about it.
However, these solution hints were not practical solutions and the main authors’ focus was to identify the best
quality model over a list of 24 models using number of issues per model as comparison criteria.

Our survey explored further that problematic, identifying a total of 16 issues and consolidating for the first time
not only findings from previous contributions but also proposing three new ones. On the one hand, we succeeded
to find for each of these 16 issues some real practical solutions, based either on previous research and industrial
works, or our personal experience. On the other hand, we didn’t proceed on an additional analysis about the
frequency, the importance, or the relevance of the issues to each other.

In Chapter IV.6.d, we defined a measurement process (cf. Figure 28) aligned to other measurement processes
such as McGarry et al. [157] and ISO/IEC 25040 [144]. That process is designed more for expert audience. With
the “Quality Thermometer” process, we do not redefine another measurement process; in fact, this new process
is a practical stepped approach for operational (i.e., development and use) quality modeling. This process is
designed for a wider audience, especially to get buy-in from stakeholders. Thus, both processes are
complementary and can be aligned together: “initial phase” with “stage 1”, “plan phase” with “stage 2, 3 and 4”,
and “execution phase” with “stage 5, 6 and 7”. Moreover, the “Quality Thermometer” process is generic enough
to be applied to “take the quality temperature” of project, products, process, resource, supplier, organization…
Finally, we choose this name and graphical representation split into seven stages (i.e., applying Miller’s law) to
ensure that people keep in mind this key process.

Regarding the 6-stages process for quality development model, we decided to foster the reuse of previous quality
models rather than creating new one from scratch because we do not want to discard any valuable existing
contributions, give to stakeholders the perception that we reinvent the wheel for the umpteenth time, and many
quality models get their inspiration from other previous models (i.e., as we are proposing to do here). Then, the
construction, or model customization, starts from the selection of quality attributes that are the most relevant
according to the opinion of the interviewed stakeholders, present or not in the proposed quality model. The
selection of existing quality attributes joint with their weight factors form a set of polymorphic quality models
that derived from a mother quality model, itself derived from the chosen quality model in stage 1. The survey
together with the selection of quality attributes is not innovative, however the automatic construction of their
corresponding weight factors and creation of polymorphic quality models with their mother model are innovative
contributions.

Finally, although we have not mentioned quality perception in the development and use of quality model. This
concept is implicitly managed through objective quality evaluation and through quality modeling evolution
managed with polymorphism (i.e., evolution of the quality perception over time).

Put into Practice

137 | P a g e

Chapter VII. Put into Practice
1. Introduction

Through the previous chapters we cleared our thesis subject “Study of Qualimetry essential to embedded
software development” from a general perspective of theory and practice. We studied current contributions on
quality modeling applied to embedded software, acknowledging that none of them was answering properly to
our needs (see Chapter II). Then we reviewed theory about quality, quality modeling, qualimetry, confirming that
qualimetry is the right approach to our problematic before contributing to its consolidation (cf. Chapter IV). Next,
we explored the broad set of existing software quality models (cf. Chapter V) and finally investigated how to go
from theory to practical operation of quality modeling, the result being the proposal of two processes for
development and use of quality models (see Chapter VI).

Since now we have all the key findings to practically perform quality modeling, we are ready to exercise them to
answer to our company needs, “applying quality modeling to embedded software”, which are also summarized
in our research sub-question:

Research Sub-question 3d
What is the practical answer to our needs on automotive embedded
software case?

Consequently, this chapter is about a demonstration that our approach, detailed in the previous chapters,
successfully answers the company needs on automotive embedded software. Thus, we select four distinct and
representative software elements from the automotive real-world (i.e., three ECU embedded software and one
transverse software function) against which we apply quality modeling to develop the proper quality models for
these software elements.

In the following sections, we begin by the analysis of our automobile real-world use case. Then we apply the 6-
stages process to construct the embedded software polymorphic quality models, calculate their weight factors
and connect their quality sub-characteristics to a proper set of metrics. Lastly, we generate the quality model that
is common to these polymorphic quality models.

2. Quality modeling on a real-world use case: embedded software for the
automotive industry

From a systems engineering point of view, a car is a complex system [13], itself part of a system of systems (e.g.,
multiple connected cars within a road system and its infrastructures). Furthermore, a vehicle results from a mass-
produced of a vehicle platform instantiation. Consequently, a vehicle platform is one designed and developed
generic complex system from which a set of vehicle variants (e.g., mini-compacts, crossovers, super cars, vans,
utility vehicles, convertibles, etc.), with a set of available options (e.g., color, enhanced multimedia features,
leather seats) are derived.

This complex system is composed of more than 40 systems, themselves decomposed in several sub-systems
(ECU). To give an idea, a vehicle accounts for more than 60 ECUs combining hardware and embedded software.
Therewith, it is important to note that each ECU has:

- a set of common characteristics with other ECUs: e.g., it performs diagnostic functions and has a
connection interface, power, limited resources,

- a set of specific characteristics: e.g., human-machine interface, communication and safety features,
responsiveness,

- a specific context: e.g., door control, engine control, telematics, seat control, air conditioning.

As a matter of fact, we note that each ECU has a design specification, architecture, terminology, and quality
quantification which vary more or less with regards to the other sub-systems. This complexity therefore impacts
the quality modeling of our real-world use case, a selected subset of embedded software a vehicle-platform.

We chose to limit our real-world use case to a subset of four high priority embedded software projects: three
ECUs (In-Vehicle Infotainment (IVI) ECU, In-Vehicle Communication (IVC) ECU and Advanced Driver-Assistance
Systems (ADAS) ECU) and one ECU-transverse embedded software (Firmware Over The Air (FOTA)).

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

138 | P a g e

Their primary description and characteristics are the following:

- IVI: This ECU is responsible for the infotainment (e.g., radio, audio-Bluetooth, CD, DVD), navigation
system and is the principal human-machine interface to control the vehicle (e.g., air conditioning,
ambient light control, smartphone pairing, rear view camera). Thus, the performance efficiency is not as
important as quality in use aspect which must include efficiency, effectiveness, and satisfaction (e.g.,
quality characteristics such as pleasure or comfort). Indeed, since human-machine interface is key for
this ECU, the right performance criteria must be relying on the user perception of the performance
rather than pure processing time for instance. This ECU is part of the vehicle infotainment domain and
mainly rely on a class D network (speeds over 1 Mbit/s) because of the high volume of video data
transmitted from rear-camera or DVD, for instance. We note that network classification into 4 classes
was defined in 1994 by Society for Automotive Engineers (SAE) : SAE j2056 [249], and is based on
transmission speed and network performance.

- IVC: This ECU is responsible for vehicle telematics based on wireless communication (i.e., Bluetooth, Wi-
Fi, 3G and 4G/LTE). It has no direct interaction with user (i.e., there is no. human-machine interface on
IVC) but it is connected directly to IVI system by a class D ethernet network. Therefore, IVC is part of the
vehicle infotainment domain. Moreover, cyber security must be addressed carefully for this ECU since it
is the wireless remote access point to the vehicle network.

- ADAS: The advance driver assistance systems is responsible for assisting driver for safer driving and
easier parking. We can distinguish four groups of functionalities:

o Longitudinal control systems: e.g., anti-lock braking systems (i.e., ABS), adaptive cruise control
(i.e., ACC), hill descent control,

o Lateral control systems: e.g., electronic stability control (i.e., ESC), lane centering,

o Alert systems: e.g., automotive night vision, lane departure warning system (i.e., LDW), blind
spot monitor,

o Park assist systems: e.g., parking sensor, automatic parking.

Its real-time functionalities (for instance, rear view camera for park assistance, lane departure detection,
night vision assistance for pedestrian recognition) require processing high volumes of data, and
consequently its processing performance and network bandwidth needs are high. In addition to the
performance quality characteristics, a particular attention is required on security and safety, included
into freedom from risk quality characteristic, because ADAS interacts with many critical vehicle systems
(e.g., engine, braking system, steering) and a failure at its level can cause serious accident with injury.
Like IVC, there is no direct interaction with the user (i.e., there is no human-machine interface in the
ECU).

- FOTA: FOTA is a transverse embedded software, responsible for updating software and firmware. It may
also be used to change a car configuration or enable / disable remotely some functionalities. This is for
instance the case with Tesla which disabled remotely the autopilot feature on used Model S car, because
the company considered that the new car owners didn’t pay for that feature [250]. However, this OTA
technology is not yet widely used in automotive domain, but it is progressively adopted by car
manufacturers since 2012 (see Figure 62).

Figure 62 – Over-The-Air adoption timeline of major automobile manufacturers (sources: [251], [252])

FOTA is a strong tool to reduce or prevent the car obsolescence like what is done with evolving and
corrective software maintenance on smartphone, tablet, and computer (e.g., the regular operating

Put into Practice

139 | P a g e

system updates of Microsoft Windows, Linux distributions and Mac OSX) since several decades. The
corrective maintenance focus on a continuous quality increase, with performance increase, security, and
bug fixes. The evolving maintenance addresses the first Lehman’s law [82], “Continuing Change”: “an E-
type15 system must be continually adapted or it becomes progressively less satisfactory”. Hence, FOTA
provide the support to adapt software solution to customer needs, and to push innovation or new
content (e.g., navigation maps) towards vehicles. FOTA working principle is depicted by the example of
Figure 63: we have the corrective or evolving packages, generated on the company servers, that are
received wirelessly thought the IVC ECU and dispatched to the target ECUs. Nevertheless, there are many
challenges when developing and using FOTA for automotive systems:

o The multiplicity of system, software architectures and configuration to manage remotely,

o The multiple geographical locations to consider, with their own regulations, network capability
and infrastructures,

o The compliance on cybersecurity, safety, and regulation requirements to achieve,

o The size of data to be transferred: from kilobytes to gigabytes.

Figure 63 - Example of FOTA working principle with IVC, IVI and ADAS ECUs

So, thanks to these four overviews, we saw that the embedded software of the three ECUs and the FOTA
transverse feature have their own specificities but as well a set of commonalities and links which can be retrieved
through Figure 63.

In addition, in the automotive domain, software engineering must comply with regulations and standards such
as A-SPICE [21]. A-SPICE focuses on software development and management processes and improvement and
assessment of the process capability level. A-SPICE is neither a product quality assessment process nor a product
quality control process, but its guidelines recommend using the ISO/IEC 25010 [22]16 software product quality
model (i.e., product view) and quality-in-use model (i.e., user view). Some associated metrics samples are
available from ISO/IEC 25022 [74] for quality-in-use and ISO/IEC 25023 [84] for software product quality. Thus,
we must include this recommendation in the quality modeling of our real-world use case.

3. Initiating quality model construction via the 6-stages process
If we refer to Chapter VI.4.b and the 6-stages process, to initiate the construction of a quality model for the real-
world use case that is introduced in previous Chapter VII.2, the first stage is the identification or selection of a
reference model.

Because of our industrial automotive context, and as we saw in above, A-SPICE guidelines must be followed for
the development of all ECU embedded software. This means that all software may have one unique and identical

15 System to address real-world activity
16 In the previous Automotive-SPICE version, up to 2.5 [253], the recommendation was to use ISO/IEC 9126 [24]

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

140 | P a g e

quality model, ISO/IEC/IEEE 25010. Nevertheless, even though the ISO/IEC/IEEE 25010 quality model is a general
quality model, it does not take into consideration the specificities of each ECU: i.e., a specific context, but also
common and specific characteristics. This standard quality model must therefore be customized for each ECU in
order to be used properly. Note that the customization behavior has also been confirmed by a study on the use
of quality models done by Wagner et al. in 2009 [98] and finalized in 2012 [83]. Indeed, this study emphasized
that 28% of the companies interviewed use quality models taken from standards (e.g., CMM, ISO/IEC 9126) and
that 79% of these 28% customize these standard quality models.

So, we assume that our original model comes from ISO/IEC/IEEE 25010 (cf. Figure 64 and Annex 8). This model
covers both product and user quality perspectives and conforms to A-SPICE. Indeed, the product quality
perspective is defined by the system / software product quality model.

This model is structured into 8 quality characteristics themselves refined into 31 quality sub-characteristics. One
of these characteristics, the “functional suitability”, is dedicated to the functional quality requirements, while the
other seven are for non-functional quality requirements (i.e., performance efficiency, compatibility, usability,
reliability, security, maintainability, and portability).

The measures associated to this quality model are both internal and external measures. The internal measures
are the measures done directly on the software without any need to run the software. These are for example,
static code analysis, including McCabe cyclomatic complexity of model and code [254], functional requirement
implementation coverage. The external measures correspond to the measures performed dynamically against
the running software, and therefore requires a proper execution environment: built and lined software deployed
on hardware with an operating system and all necessary data for its execution. As to user quality perspective, it
is covered by the quality in use model with a set of five quality characteristics and 9 sub-characteristics.
Furthermore, the associated quality in use measures are performed specific contexts of use and therefore require
the complete system, simulated or not, as prerequisite of their realization.

Figure 64 - The ISO/IEC/IEEE 25010 quality models: "System / Software product quality model" and "Quality

in use model"

The Figure 65 summarizes the relationship between the quality models, the quality properties, the measures and
an automotive sample. We note the influence and dependency links between the different quality properties,
including the process quality properties coming from the software development process, for example.

Put into Practice

141 | P a g e

Figure 65 - Example of a mapping between quality models, properties, measures and an automotive systems

and software (source and inspiration from ISO/IEC/IEEE 25010 [23] & ISO/IEC 25030 [254])

Regarding common and specific characteristics of ECUs, the aim is to associate each of them with some quality
characteristics from the original quality model. For example, “safety” can be associated with “freedom from risk”
and “security”, “human-machine interface” with “satisfaction” and “usability”. In addition, we model them by
applying the ad hoc and universal polymorphism mechanism to the quality model (refer to Chapter IV.6.b).

The second and third steps of our 6-stages process are the construction and deployment of a survey. We remind
that the survey purpose is to involve the main experts and stakeholders in the quality modeling. So, we chose to
limit our survey to a subset of four high priority projects (i.e., corresponding to our real-world use case): IVI, IVC,
ADAS and FOTA. Our contributor audience was made up of our main stakeholders: project managers, architects,
verification and validation leaders, and assurance quality engineers who are involved in those embedded
software projects.

As we described previously in Chapter VI.4.b, the survey is organized into four parts and uses Likert scales [242]
for the enumeration of the possible answers (see Annex 9 for a copy of the survey). In the first part, we remind
to the participant the objective of the survey usage which is to be able generate right quality model, and aligned
A-SPICE, to qualify SW product quality of a variety of vehicle projects. We also ask to select their role and project
in which they are involved (cf. Figure 66). In the case of multiple role or project involvement, we asked to the
participant to answer several times the questionnaire.

Figure 66 - Survey extract: participant role and project

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

142 | P a g e

The next part of the survey consists in the evaluation by order of importance each of the 13 ISO/IEC 25010 quality
characteristics. Thus, for each of these quality characteristics, we ask to the participants to rank with a five points
Likert’s scale (see Figure 58 and Figure 67) the importance of the characteristics thanks to their technical
knowledge and own vision of the ECU and project quality. Note to avoid confusion or interpretation, the quality
characteristic definitions are documented in a wiki page and accessible to any participants.

Figure 67 - Survey extract: the ranking choice of quality characteristics

The survey's third part also focused on importance ranking, but rather on all the 40 ISO/IEC 25010 quality sub-
characteristics. Their definitions are also documented and accessible to any participants. Moreover, we
introduced a sixth choice in this part to give flexibility to the participant as explained in Chapter VI.4.b (see Figure
69).

Figure 68 - Survey extract: the ranking choice of quality sub-characteristics

Last part of the survey proposes to the participants to share their vision on quality and complete these quality
models through an open question shown in Figure 69.

Figure 69 - Survey extract: the final open question of the survey

Put into Practice

143 | P a g e

The survey construction doesn’t require any advanced functionality from a tool form. Therefore, we decided to
build the survey with Microsoft Form because this online tool is freely usable and accessible in our company, it is
easy to use, provide short report on survey responses and allows to export the survey responses in a Microsoft
Excel file. After the survey implementation in Microsoft Form, we invited a total of 25 participants to contribute
to the survey.

4. Survey result analysis
Once the survey had been answered and its data collected (cf. Annex 10 for the survey responses), we began
analyzing the data, our fourth building stage, by noticing a total of 48% participation (i.e., we collected 12
responses out of 25 invitations) and an average response time of 16 minutes and 23 seconds, with a rather
scattered standard deviation of 7 minutes and 26 seconds (if we exclude the exception from one stakeholder who
spent 3 hours and 22 minutes to complete the survey; after a quick inquiry, we figured out that that stakeholder
was interrupted during the survey and left the survey session open). So, since the survey was made of 16
questions, we can conclude that it took about 1 minute to answer to a question and the standard deviation taught
us that for around half of the participant they were familiar to these quality characteristics.

Regarding the ranking responses, both quality characteristics and sub-characteristics were homogenous (cf.
Figure 70) with a pick, respectively at 46.15% and 38.49%, of quality characteristics and sub-characteristics that
were judged as extremely important. Almost none of them were considered as not important at all, and
interestingly 12.30% of the sub-characteristics were no tanked by participant. We also remarked that no
additional quality characteristic or sub-characteristic have been suggested via the survey open question.

Figure 70 - Response distribution per order of importance ranking

Next, we verified the participant agreement consensus, or inter-rater reliability, based on Cohen’s kappa ⲕ [243]
in the case of two raters (in this case the stakeholders who contributed to our survey) for a set of answers and
Fleiss’ kappa ⲕ [244] for three or more raters. The following calculations exemplify both kappa computations on
two sample sets extracted from the survey responses.

- Cohen’s kappa ⲕ example: The sample set for this example is obtained for the quality characteristics of
the quality in use model on IVC for any project managers. We noticed that only 2 raters provide answers
for IVC. Thus, we have to use Cohen’s kappa ⲕ to determine the level of consensus regarding these
quality characteristics. The response counts are given in TABLE 24, however since we are using Cohen’s
kappa, we must rather extract and use the ranking response matches between all possible response
combinations. These response match data are given in TABLE 25. Note the green cells highlighting perfect
match. We remind that the Cohen’s kappa ⲕ equation is 𝜅௖ =

௣೚ି௣೐

ଵି௣೐
 . So, the calculations are then:

𝒑𝒆 =
1

𝑁ଶ
෍ 𝑛௜ଵ𝑛௜ଶ

௞

௜ୀଵ

=
1

5ଶ
(0 ∗ 0 + 0 ∗ 0 + 1 ∗ 3 + 1 ∗ 0 + 3 ∗ 2) =

1

25
(3 + 6) =

9

25
= 𝟎. 𝟑𝟔

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

144 | P a g e

𝒑𝒐 =
1 + 2

1 + 1 + 1 + 2
=

3

5
= 𝟎. 𝟔

Finally, 𝜿𝒄 =
𝑝௢ − 𝑝௘

1 − 𝑝௘

=
0.6 − 0.36

1 − 0.36
= 𝟎. 𝟑𝟕𝟓

TABLE 24 - EXTRACTED NUMBER OF SURVEY RESPONSES PER QUALITY IN USE QUALITY CHARACTERISTICS AND IMPORTANCE FOR IVC
AND PROJECT MANAGER ROLE

Not Important at
All

Somewhat
Important Important Very Important

Extremely
Important

Effectiveness 0 0 0 0 2

Efficiency 0 0 1 0 1

Satisfaction 0 0 0 0 2

Freedom From Risk 0 0 2 0 0

Context Coverage 0 0 1 1 0

TABLE 25 – THE ASSOCIATED RANKING RESPONSE MATCHES BETWEEN ALL POSSIBLE RESPONSE COMBINATIONS; THE GREEN CELLS
INDICATE PERFECT MATCH

 Project Manager 1

Not Important
at All

Somewhat
Important

Important
Very

Important
Extremely
Important

Pr
oj

ec
t

M
an

ag
er

 2

Not Important at All 0 0 0 0 0

Somewhat Important 0 0 0 0 0

Important 0 0 1 1 1

Very Important 0 0 0 0 0

Extremely Important 0 0 0 0 2

- Fleiss’ kappa ⲕ example: The sample set for this example is obtained for the quality characteristics of
the system/software product quality model on IVC for any roles. The response counts are given in TABLE

26. Moreover, since we consider any roles, we have 4 raters (i.e., 𝑛 = 4) for IVC, and thus we can use
Fleiss’ kappa ⲕ to determine the level of consensus regarding these quality characteristics (i.e., subjects;
𝑁 = 8). The levels of importance used in their ranking correspond to the categories are (i.e., 𝑘 = 5). We

remind that the Fleiss’ kappa ⲕ equation is 𝜅௙ =
௉തି௉೐തതത

ଵି௉೐തതത
 . So, the calculations are then:

𝑷𝒆
തതതത = ෍ 𝑝௝

ଶ

௞

௝ୀଵ

= ቆ
1

8 × 4
(0)ቇ

ଶ

+ ቆ
1

8 × 4
(1)ቇ

ଶ

+ ቆ
1

8 × 4
(2 + 3 + 3 + 1)ቇ

ଶ

+ ቆ
1

8 × 4
(1 + 3 + 2 + 2 + 1

+ 3)ቇ

ଶ

+ ቆ
1

8 × 4
(1 + 3 + 2 + 2 + 1 + 3)ቇ

ଶ

=
1 + 9ଶ + 12ଶ + 10ଶ

32ଶ
=

326

1024

= 𝟎. 𝟑𝟏𝟖𝟑𝟔

𝑷ഥ =
1

𝑁
෍ 𝑃௜

ே

௜ୀଵ

=
1

8
×

൫(1 + 9) + (9 + 1) + (4 + 4) + (1 + 4 + 1) + (4 + 4) + (9 + 1) + (9 + 1) + (9 + 1) − 4 ൯

4(4 − 1)

=
1

96
(10 + 10 + 8 + 6 + 8 + 10 + 10 + 10 − 4)

=
1

96
(10 + 10 + 8 + 6 + 8 + 10 + 10 + 10 − 32) =

68

96
= 𝟎. 𝟕𝟎𝟖𝟑𝟑𝟑

Finally, 𝜿𝒇 =
0.708333 − 0.31836

1 − 0.31836
= 𝟎. 𝟓𝟕𝟐𝟏𝟏

Put into Practice

145 | P a g e

TABLE 26 – EXTRACTED NUMBER OF SURVEY RESPONSES PER SYSTEM/SOFTWARE PRODUCT QUALITY CHARACTERISTICS AND
IMPORTANCE FOR IVC AND ANY ROLE

Not Important at
All

Somewhat
Important

Important Very Important Extremely
Important

Functional Suitability 0 0 0 1 3

Performance Efficiency 0 0 0 3 1

Compatibility 0 0 0 2 2

Usability 0 1 2 0 1

Reliability 0 0 0 2 2

Security 0 0 3 0 1

Maintainability 0 0 3 1 0

Portability 0 0 1 3 0

As detailed in Chapter VI.4.b and algorithm shown in Figure 61, for each project, we checked whether Fleiss ⲕ
was available for current quality perspective and all roles. If it was at least greater than 0.4 (i.e., Moderate). We
thus selected the data set based on the highest Fleiss ⲕ for each project, or ECU, and all roles, or where a role had
the highest ⲕ. When it was not sufficient, we used Cohen ⲕ as a decision criterion. If no kappa showed at least a
moderate agreement, then we looked for consensus at the specific role level, all quality perspectives and all
projects, or ECUs. For instance, for IVI ECU, project managers had the highest ⲕ. For ADAS ECU, we took assurance
quality engineers for all projects, or ECUs. In case where no consensus can be found at project or role level (i.e.,
no kappa greater or equal to 0.4 for any roles for the project and then for any roles when considering all projects
together), we conduct a new survey. The complete results of our kappa-based data analysis are summarized in
Table 27.

The result for sub-characteristics shown here excludes answers such as “I don’t know” simply because the overall
ⲕ values with and without this sixth rating were respectively 0.058276 and 0.120398: including these answers
reduces the agreement between raters. In addition, we noted that no architects and only one validation leader
contributed to our survey. This explains the cells where there is no ⲕ value. Furthermore, ⲕ values, 0.122846 and
0.120398, obtained for all projects and roles reveal that there is a slight agreement over all projects and between
all parties. Consequently, the quality view is different for each combination of project and roles, hence the
necessity to create a set of polymorphic quality models.

Furthermore, on both quality characteristics and sub-characteristics, Assurance Quality engineers were quite well
aligned over all projects, with a Fleiss ⲕ on characteristics of 0.444330 (i.e., Moderate agreement) and on sub-
characteristics of 0.577705 (i.e., Moderate agreement, but close to substantial agreement), while project
managers were aligned per project only: their Fleiss ⲕ is from to 0.328165 (i.e., Fair agreement) to 0.433414 (i.e.,
Moderate agreement).

TABLE 27 - SURVEY DATA ANALYSIS WITH COHEN Κ AND FLEISS Κ. COLORED CELLS HIGHLIGHT Κ BASED CHOICE FOR EACH ECU;
GRAYED CELLS HIGHLIGHT AT LEAST MODERATE AGREEMENT

All roles Assurance quality

engineer
Project

Manager
Validation Leader Architect

qu
al

ity
 c

ha
ra

ct
er

is
iti

cs

Al
l

All ECUs [ⲕF] 0.122846 [ⲕF] 0.444330 [ⲕF] 0.313977 ꓱ1 ø

IVI [ⲕF] 0.291964 ꓱ1 [ⲕF] 0.433414 ø ø

IVC [ⲕF] 0.488525 ꓱ1 [ⲕC] 0.356436 ꓱ1 ø

ADAS [ⲕC] 0.025 ꓱ1 ꓱ1 ø ø

FOTA ꓱ1 ꓱ1 ø ø ø

Sy
s/

SW
 p

ro
du

ct

All ECUs [ⲕF] 0.126425 [ⲕF] 0.412305 [ⲕF] 0.286275 ꓱ1 ø

IVI [ⲕF] 0.284314 ꓱ1 [ⲕF] 0.429208 ø ø

IVC [ⲕF] 0.572111 ꓱ1 [ⲕC] 0.368421 ꓱ1 ø

ADAS [ⲕC] 0 ꓱ1 ꓱ1 ø ø

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

146 | P a g e

FOTA ꓱ1 ꓱ1 ø ø ø

Q
ua

lit
y

in
 u

se
 All ECUs [ⲕF] 0.088664 [ⲕF] 0.385343 [ⲕF] 0.3013 ꓱ1 ø

IVI [ⲕF] 0.222350 ꓱ1 [ⲕF] 0.328165 ø ø

IVC [ⲕF] 0.248120 ꓱ1 [ⲕC] 0.375 ꓱ1 ø

ADAS [ⲕC] 0 ꓱ1 ꓱ1 ø ø

FOTA ꓱ1 ꓱ1 ø ø ø

qu
al

ity
 s

ub
-c

ha
ra

ct
er

is
iti

cs
x²

Al
l

All ECUs [ⲕF] 0.120398 [ⲕF] 0.577705 [ⲕF] 0.273017 ꓱ1 ø

IVI [ⲕF] 0.256983 ꓱ1 [ⲕF] 0.367483 ø ø

IVC [ⲕF] 0.630553 ꓱ1 [ⲕC] 0.147727 ꓱ1 ø

ADAS [ⲕC] 0.004739 ꓱ1 ꓱ1 ø ø

FOTA ꓱ1 ꓱ1 ø ø ø

Sy
s/

SW
 p

ro
du

ct
 All ECUs [ⲕF] 0.102039 [ⲕF] 0.520416 [ⲕF] 0.245621 ꓱ1 ø

IVI [ⲕF] 0.263481 ꓱ1 [ⲕF] 0.353019 ø ø

IVC [ⲕF] 0.581892 ꓱ1 [ⲕC] 0.067335 ꓱ1 ø

ADAS [ⲕC] -0.033333 ꓱ1 ꓱ1 ø ø

FOTA ꓱ1 ꓱ1 ø ø ø

Q
ua

lit
y

in
 u

se
 All ECUs [ⲕF] 0.137114 [ⲕF] 0.644681 [ⲕF] 0.295497 ꓱ1 ø

IVI [ⲕF] 0.185935 ꓱ1 [ⲕF] 0.333542 ø ø

IVC [ⲕF] 0.697851 ꓱ1 [ⲕC] 0.352941 ꓱ1 ø

ADAS [ⲕC] 0.104651 ꓱ1 ꓱ1 ø ø

FOTA ꓱ1 ꓱ1 ø ø ø

 [ⲕF] ... Fleiss' Kappa ꓱ1 no Kappa (one rater)

 [ⲕC] ... Cohen's Kappa ø no Kappa (no rater)

5. Contributions
Based on the survey data results and our analysis with Cohen and Fleiss ⲕ, we are able to finalize the elaboration
of the 3 polymorphic quality models, their weight factors, the metrics and the quality model which common (i.e.,
which is inherited by the 3 polymorphic quality models). These contributions are the evidences to confirm that
the approach that we have defined in the previous chapters is practically working and giving us right solution.

a. Importance values and weight factors
This is the first step of the construction because we are proceeding on some computation to determine what
characteristics or sub-characteristics is kept based on the analysis of the survey results. So, these computations
give us automatically the importance of each of these characteristics / sub-characteristics and by consequence,
they represent their weight factors once normalized.

For example, we determined for IVC ECU that we have rater consensus on quality characteristics between all
raters. The corresponding answers are therefore extracted from the survey for IVC ECU:

 IVI Raters
Quality
perspective

Characteristics Rater 1 Rater 2 Rater 3 Rater 4

System /
Software
product
quality

Functional Suitability Extremely Important Extremely Important Very Important Extremely Important

Performance Efficiency Very Important Very Important Very Important Extremely Important

Compatibility Very Important Extremely Important Very Important Extremely Important

Usability Important Extremely Important Somewhat Important Important

Reliability Very Important Extremely Important Very Important Extremely Important

Put into Practice

147 | P a g e

Security Important Important Extremely Important Important

Maintainability Very Important Important Important Important

Portability Very Important Important Very Important Very Important

Quality in
use

Effectiveness Very Important Extremely Important Very Important Extremely Important

Efficiency Very Important Important Important Extremely Important

Satisfaction Important Extremely Important Very Important Extremely Important

Freedom From Risk Very Important Important Extremely Important Important

Context Coverage Important Important Very Important Very Important

To calculate the quality characteristics importance value from these answers, and then determine which of them
are included or rejected (i.e., we remind that inclusion criteria is “importance value ≥ +1”), we apply the rules
explained in Chapter VI.4.b together with the 5 point Likert’ scale described in Figure 58.

Thus, the IVI quality characteristic importance values are (calculation details are shown):

Quality perspective Characteristics Importance value Decision

System / Software
product quality

Functional Suitability (+2) + (+2) + (+1) + (+2)

4
=

7

4
= 𝟏. 𝟕𝟓

Included

Performance Efficiency (+1) + (+1) + (+1) + (+2)

4
=

5

4
= 𝟏. 𝟐𝟓

Included

Compatibility (+1) + (+2) + (+1) + (+2)

4
=

6

4
= 𝟏. 𝟓

Included

Usability (0) + (+2) + (−1) + (0)

4
=

1

4
= 𝟎. 𝟐𝟓

Excluded

Reliability (+1) + (+2) + (+1) + (+2)

4
=

6

4
= 𝟏. 𝟓

Included

Security (0) + (0) + (2) + (0)

4
=

2

4
= 𝟎. 𝟓

Excluded

Maintainability (+1) + (0) + (0) + (0)

4
=

1

4
= 𝟎. 𝟐𝟓

Excluded

Portability (+1) + (0) + (+1) + (+1)

4
=

3

4
= 𝟎. 𝟕𝟓

Excluded

Quality in use

Effectiveness (+1) + (+2) + (+1) + (+2)

4
=

6

4
= 𝟏. 𝟓

Included

Efficiency (+1) + (0) + (0) + (+2)

4
=

3

4
= 𝟎. 𝟕𝟓

Excluded

Satisfaction (0) + (+2) + (+1) + (+2)

4
=

5

4
= 𝟏. 𝟐𝟓

Included

Freedom From Risk (+1) + (0) + (+2) + (0)

4
=

3

4
= 𝟎. 𝟕𝟓

Excluded

Context Coverage (0) + (0) + (+1) + (+1)

4
=

2

4
= 𝟎. 𝟓

Excluded

So, over the 13 quality characteristics, we found that six of them must be included in the quality model. We
proceed the same for the quality sub-characteristics to calculate the importance values and the decision to
include or exclude them. Next is to evaluate another time all excluded characteristics, taking into account the
influence of their sub-characteristics. In our example we have 7 characteristics excluded and therefore candidate
for this further consideration. We detail below the case for the “Usability” characteristic.

Its following sub-characteristics and their importance value computed as above:

Usability sub-characteristics Importance value Usability sub-characteristics mean importance value
Appropriateness Recognizability 1

1 + 0.33333 + 1 + 0.33333 − 0.66667 + 0.333333

6
= 𝟎. 𝟑𝟖𝟖𝟖𝟗

Learnability 1

3
= 0.33333

Operability 1
User Error Protection 1

3
= 0.33333

User Interface Aesthetics −2

3
= −0.66667

Accessibility 1

3
= 0.33333

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

148 | P a g e

Now, following Chapter VI.4.b explanations on the calculation of the new importance value of previously excluded
characteristics, we have for the seven characteristics of our example the following new inclusion / exclusion
analysis results:

Characteristics New importance value Final Decision

Usability
0.5 × ൬

0.25 + 0.38889

2
൰ + 0.5 × ൬

1 + 1

2
൰ = 𝟎. 𝟔𝟓𝟗𝟕𝟐𝟐𝟐

Excluded

Security
0.5 × ൬

0.5 + 0.8

2
൰ + 0.5 × ൬

1.3333 + 1.3333 + 1

2
൰ = 𝟎. 𝟗𝟑𝟔𝟏𝟏𝟏

Excluded

Maintainability
0.5 × ൬

0.25 + 1.2

2
൰ + 0.5 × ൬

1.3333 + 1.3333 + 1 + 1 + 1.3333

5
൰ = 𝟎. 𝟗𝟔𝟐𝟓

Excluded

Portability
0.5 × ൬

0.75 + 0.77778

2
൰ + 0.5 × (1.3333) = 𝟏. 𝟎𝟒𝟖𝟔𝟏𝟏𝟏

Included

Efficiency
0.5 × ൬

0.75 + 0.75

2
൰ + 0.5 × (0.75) = 𝟎. 𝟕𝟓

Excluded

Freedom From Risk
0.5 × ൬

0.75 + 0.8889

2
൰ + 0.5 × ൬

1 + 1.3333

2
൰ = 𝟎. 𝟗𝟗𝟑𝟎𝟓𝟓𝟔

Excluded

Context Coverage
0.5 × ൬

0.5 + 0.16667

2
൰ + 0.5 × (0) = 𝟎. 𝟏𝟔𝟔𝟔𝟔𝟕

Excluded

We recall, for instance, that for the “Usability” characteristic the current importance value is 0.25, 0.38889 is the
“Usability” sub-characteristics mean importance value and two of these sub-characteristics are very important
(i.e., +1 value in the 5-point Likert’ scale). Thereby, we found that only “Portability” characteristic received enough
influence from its sub-characteristics to be finally included. To summarize all the IVI ECU quality characteristics
with their final importance values and inclusion / exclusion decision. Note, the included quality characteristics
are the ones defining the IVI ECU quality model, and since their total number is seven, we respect the Miller’s law
[235].

Quality perspective Characteristics Final importance value Final Decision

System / Software
product quality

Functional Suitability 1.75 Included

Performance Efficiency 1.25 Included
Compatibility 1.5 Included
Usability 0.6597222 Excluded
Reliability 1.5 Included
Security 0.936111 Excluded
Maintainability 0.9625 Excluded
Portability 1.0486111 Included

Quality in use

Effectiveness 1.5 Included
Efficiency 0.75 Excluded
Satisfaction 1.25 Included
Freedom From Risk 0.9930556 Excluded
Context Coverage 0.166667 Excluded

To continue, the quality characteristic and sub-characteristic importance values are not only allowing us to
determine which of the quality characteristics and sub-characteristics must be taken into account to compose
our quality model, but these values provide implicitly the weight factors of the quality characteristics and sub-
characteristics. Indeed, by definition these values reflect the importance of a characteristics among the others.
We have the same behavior with the importance values and the sub-characteristics. Therefore, to obtain the
corresponding weight factors, considering for example a sum aggregator operator, the remaining step is simply
to norm the importance values. So, we first determine the total sum ∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦ of the included
characteristic importance value, per quality perspective, and lastly divide each of these importance values by
∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦. The sum of the resulting weight factors gives 1.

Continuing with our example, we have:
∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦ೄೊೄ/ೄೈ ೛ೝ೚೏ೠ೎೟೜ೠೌ೗೔೟೤

= 1.75 + 1.25 + 1.5 + 1.5 + 1.048611 = 𝟕. 𝟎𝟒𝟖𝟔𝟏𝟏𝟏𝟏

∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦ೂೠೌ೗೔೟೤ ೔೙ ೠೞ೐
= 1.5 + 1.25 = 𝟐. 𝟕𝟓

Put into Practice

149 | P a g e

And the resulting weight factors:

Quality perspective Characteristics Final importance value Weight factors

System / Software
product quality

Functional Suitability 1.75 1.75

∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦ೄೊೄ/ೄೈ ೛ೝ೚೏ೠ೎೟೜ೠೌ೗೔೟೤

= 𝟎. 𝟐𝟒𝟖𝟐𝟕

Performance Efficiency 1.25 1.25

∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦ೄೊೄ/ೄೈ ೛ೝ೚೏ೠ೎೟೜ೠೌ೗೔೟೤

= 𝟎. 𝟏𝟕𝟕𝟑𝟒

Compatibility 1.5 1.5

∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦ೄೊೄ/ೄೈ ೛ೝ೚೏ೠ೎೟೜ೠೌ೗೔೟೤

= 𝟎. 𝟐𝟏𝟐𝟖𝟏

Reliability 1.5 1.75

∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦ೄೊೄ/ೄೈ ೛ೝ೚೏ೠ೎೟೜ೠೌ೗೔೟೤

= 𝟎. 𝟐𝟏𝟐𝟖𝟏

Portability 1.0486111 1.0486111

∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦ೄೊೄ/ೄೈ ೛ೝ೚೏ೠ೎೟೜ೠೌ೗೔೟೤

= 𝟎. 𝟏𝟒𝟖𝟕𝟕

Quality in use

Effectiveness 1.5 1.75

∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦ೂೠೌ೗೔೟೤ ೔೙ ೠೞ೐

= 𝟎. 𝟓𝟒𝟓𝟒𝟓

Satisfaction 1.25 1.25

∑௜௠௣௢௥௧௔௡௖௘ ௩௔௟௨௘௦ೂೠೌ೗೔೟೤ ೔೙ ೠೞ೐

= 𝟎. 𝟒𝟓𝟒𝟓𝟓

Annex 11 contains the importance values, weight factors and the quality characteristic and sub-characteristic
selection results for our real-world.

b. Three quality models for four sub-systems: IVI, IVC, ADAS & FOTA
Based on the work done in the previous step with importance values and weight factors, we know what the
characteristics and sub-characteristics we have to keep. Then, even if we considered four sub-systems in our real-
world use case from automotive, we noticed from the survey result analysis that we come up with three distinct
groups of results. These groups are unique for IVI, IVC but common for ADAS and FOTA. Furthermore, to build
the corresponding three quality models, we use the existing hierarchical links between quality perspectives (i.e.,
“system / software product quality” and “quality in use”), quality characteristics, and quality sub-characteristics.
These links can be retrieved directly from the reference quality model selected in the first stage of the 6-stages
process; in our current example, this is the ISO/IEC/IEEE 25010 quality model.

Therefore, the IVI embedded software quality model is represented jointly with its weight factors by Figure 71,
and is composed of two quality perspectives, 9 quality characteristics and 24 quality sub-characteristics. This
model covers 69.23% of the quality characteristics of the selected reference quality model (i.e., ISO/IEC/IEEE
25010) and 57.14% of its quality sub-characteristics. The most important quality characteristics highlighted by
this IVI quality model are functional suitability, reliability and customer satisfaction.

Figure 71 - The resulting IVI embedded software quality model; numbers in parenthesis are characteristic

/sub-characteristic weight factors

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

150 | P a g e

Regarding the IVC embedded software quality model, Figure 72 depicts this hierarchical quality model with its
weight factors. This model is structured over two quality perspectives, seven quality characteristics and 12 quality
sub-characteristics. Thus, this model covers 53.85% of the quality characteristics of ISO/IEC/IEEE 25010 and only
28.57% of its quality sub-characteristics. We remark that functional suitability, compatibility reliability and
effectiveness are the most key quality characteristics for the IVC ECU.

Figure 72 - The resulting IVC embedded software quality model; numbers in parenthesis are characteristic

/sub-characteristic weight factors

The last embedded software quality model illustrated by Figure 73 covers both ADAS and FOTA embedded
software quality model. Indeed, the analysis results for ADAS and FOTA showed rater consensus at higher level
of project scope rather than specifically to either FOTA or ADAS, where rater agreements were slight or poor. This
hierarchical quality model is organized over two quality perspectives, 10 quality characteristics and 25 quality
sub-characteristics. Consequently, this model uses 76.92% of quality characteristics and 59.52% of quality sub-
characteristics of ISO/IEC/IEEE 25010. Functional suitability, performance efficiency, effectiveness, and efficiency
are the most critical quality characteristics to consider for ADAS ECU and FOTA.

Figure 73 - The resulting ADAS & FOTA embedded software quality model; numbers in parenthesis are

characteristic /sub-characteristic weight factors

Finally, with these three quality models, we see evidences that each embedded software has specific quality
characteristics, and thus quality requirements, that must be took into account during development. Moreover,
even if we note a certain level of similarity coverage between these quality models with regards to their quality
characteristic and sub-characteristic, their instantiations through weight factors clearly differ, showing that the
quality evaluation with these models is objective. Concerning ISO/IEC/IEEE 25010 standard, the three achieved

Put into Practice

151 | P a g e

quality models also demonstrate the needs of tailoring standard quality models because with these model
adaptations, almost 60%, and down to 29%, of the standard quality sub-characteristics are envisaged for our real-
world use case quality models. At last, each of the quality model sub-characteristics are completed by a proper
basic set of measures borrowed from ISO/IEC 25023 [161] (i.e., measures of system / software product quality),
and ISO/IEC 25022 [142] (i.e., measures of quality in use) to strengthen the operationalization of these three
quality models. This basic set of measures is described in Annex 12.

c. The polymorphic quality models
We reach our final building stage: the emphasis of polymorphism behavior with the construction of a common
quality model from which the other quality models of our real-world use case are finally derived.

To proceed, we take the mathematical intersection of these constructed quality models. This mathematical
operation gives a model with all the quality characteristics and sub-characteristics present in our constructed
quality models. The result is shown in Figure 74. This common model is made of six quality characteristics and 9
quality sub-characteristics. Moreover, this model has no weight factors since it can be considered as the common
“ancestor” of the quality models of the embedded software from our real-world use case, and not one specific
quality model instantiation.

We remark also that it is possible to create a secondary common quality model, which derived from that common
quality model and be the common “ancestor” of IVI, and ADAS & FOTA quality models. The construction is
therefore similar to the common quality model but the intersection is reduced to only to these subset of quality
models (cf. Figure 75). Behind these “ancestor” relationships is the concept of polymorphism (refer to Chapter
IV.6.b and Figure 23). The Figure 76 describes the polymorphism tree structure with the polymorphism five quality
models: two common quality models and three embedded software quality models.

Figure 74 - The common quality model from which the other quality models are derived

Figure 75 - The secondary common quality model from which IVI and ADAS & FOTA quality models are

derived

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

152 | P a g e

Figure 76 - The polymorphism tree structure with the five polymorphic quality models

Put into Practice

153 | P a g e

To conclude on this section, these two common quality models and the polymorphism tree structure
representation showcased the interest and how polymorphism is concretely applied.

They can serve as the basis for other ECU embedded software for which we don’t already have a quality model.
They can be also used for the next generation of the same ECUs and as a basis for building a new architecture:
quality requirements drive systems and software feature requirements, and then the corresponding architecture
requirements.

6. Threats to validity and discussions
The achievements covered by this chapter successfully demonstrate the validity of the quality modeling
operationalization we have built and detail in previous Chapter VI. Moreover, by constructing quality models
against embedded software real-world use case, not only we answered to the company needs, but also, we
concretely proved what polymorphic quality model concept is not a theoretical concept and is an efficient quality
modeling tool. Nevertheless, we notice several questionable and perfectible contribution elements.

First, our methodology relies on the reuse of quality models rather than creating a new model from scratch.
Indeed, by following the reuse approach, we benefit of more than 50 years of valuable contributions in software
quality models, including quality model analysis and consolidation studies that tend to mature some quality
models. This is the case, for example, of ISO/IEC/IEEE 25010 which is at the center of attention of many surveys
(e.g., Gordieiev et al. studies on quality model evolutions compare to ISO/IEC/IEEE 25010 [92], [191]). In addition,
the selection of the reference model is certainly perfectible. We didn’t define a specific process for this selection
but instead, we consider our real-world use case constraints from automotive industry to be at the state of the
art when developing a vehicle. So, we relied on A-SPICE and ISO/IEC/IEEE 25010, because we didn’t find any
specific and unique quality model for automotive in our exploratory and systematic literature review (see
chapters Chapter II.2 and 0.2).

Another element which requires some further attention is the number of survey participants which are missing
for some categories. For example, none of the invited software architects and only one validation leader replied
to the survey. The main drawback is that it can weaken our results and certainly the quality model buy-in of
software architects. However, we got strong support from project managers and assurance quality engineers,
and as we indicated previously, these results constitute a starting point and the quality models must continue to
evolve along to the projects and the platform vehicles. So, the next evolutions are obvious: we must first involve
and get contributions from software architect and validation leaders, and then perform the quality modeling over
to entire vehicle platform.

Regarding the calculated Kappa, a particular attention needs to be payed to Kappa interpretation because it
appears that there is no universal agreement on the meaning of the table from Landis and Koch [245]. This is
mainly due to the fact that Kappa interpretation is subjective and depend on the number of categories for
instance. In addition, to explore further our Kappa based analysis, we may calculate Kappa values for each
characteristics and sub-characteristic rather than calculating one Kappa value for all characteristics and one for
all sub-characteristics per quality perspective. The idea behind this refinement is to look for finer groups of
characteristics or sub-characteristics where consensus between raters exists.

The basic set of metrics, given in Annex 12, should be consolidated, or refactored to take into account the project
milestone or development life cycle likes in FURPS [85] and FURPS+ [152], and therefore the temporal
polymorphism applied to measures (see Chapter IV.6.b). Here our goal was to demonstrate the practicability of
the solution. Moreover, concerning the thresholds, beside some internal company ones (e.g., no critical bug is
allowed to pass a milestone, or a certain number of volatile and non-volatile memory footprint is allowed), we
adopt the same approach than Ahrens et al. [51] where the aims is to do better for each subsequent releases:
continue to improve through relative thresholds.

In conclusion, this chapter emphasizes the benefits to develop operational quality models, as well as the
practicality of the solution against real-world use cases. Our approach allows to homogenize quality models and
vocabulary over company engineering domains (e.g., systems, software, electrical, mechanical), keeping the
relationship between the vehicle platform elements, and between the projects together. It is also a unique and

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

154 | P a g e

simple way to determine weight factors jointly with quality model. Indeed, this is not only a matter of conducting
and using a survey, but rather benefiting of the survey results to determine which characteristics and sub-
characteristics are the most meaningful and contributing for the project under consideration. Finally, our
approach is a breakthrough by reinstituting quality modeling activity as the backbone of quality evaluation,
particularly compare to the current company solution, or even with usual Agile or Rapid development
methodology, that relies on measurement based on tools, quality assessment via a checklist and customer issue
reports or feedback.

Meta-Model: Software Quality Model Genome

155 | P a g e

Chapter VIII. Meta-Model: Software Quality Model Genome
1. Introduction

In Chapter V, the systematic literature review on software quality models and their classification allowed us to
answer to the research sub-question 4a “Is it possible to have a unique reference quality model for software
product, or instead should we have a meta-model?”. The conclusion was that there is no unique reference quality
model for software product. Indeed, we retrieved a huge number of software product quality models either for
quality definition, assessment, or prediction, and each of these quality models has a good reason to exist and to
be different from the other models.

Moreover, the current standard ISO/IEC/IEEE 25010 is defined as the reference of system and software product
quality model, but as the Wagner et al.’ survey [83] pointed out, the standard quality models are usually
customized due to the particularity of the products, projects or company requirements. Thus, because of this
customization necessity, we cannot conclude that even the current standard can be considered as the unique
software product quality model.

Consequently, the purpose of this chapter is to explore the alternate case of a meta-model as the preferable
solution instead of a unique reference quality model for software product.

As we did when we proposed polymorphism concept for quality model, we continue to take benefit of genetic
knowledge for the creation of a meta-model. We choose genetic since we notice an analogy between quality
model variations of the same quality concepts through different quality characteristics, and DNA variations
between alleles of same gene. This meta-model can be then used as the beginning quality model of polymorphic
quality model construction and offers a mechanism to include any quality models.

So, to elaborate such meta-model, we must respond to the research sub-question 4b:

Research Sub-question 4b What is the construction algorithm for such meta-model?

Once answered, we are ready to execute this construction algorithm and initiate the meta-model construction,
delivering finally the first metal model results. This step is summarized over:

Research Sub-question 4c What is the first result of the meta-model construction?

2. Motivation and analogy with genetic
Our main motivation behind the elaboration of a meta-model is to avoid the comparison and selection of a quality
model among a set of candidate quality model, resulting on discarding many potential valuable contributions for
the benefit of one. Instead, we prefer to privilege union of quality models to build a quality meta-model, and then
get benefit of all research works rather than selecting a subset of them. Our credo is “all research, academic and
industry work, should count”.

During our exploratory literature mapping and systematic literature review, we noticed that frequently same
quality concepts were defined more or less similarly between distinct contributions. The nuances were mainly on
the wording, definition, interpretation, or on the sub-elements (e.g., distinct set of sub-characteristics for same
characteristic in different quality models). For instance, in Boehm’s quality model [42], maintainability is refined
into modifiability, testability and understandability. In ISO/IEC 9126 [24], it is defined by analyzability,
changeability, maintainability compliance, stability, testability. And in ISO/IEC/IEEE 25010 [23], it corresponds to
the following sub-characteristics: analyzability, modifiability, modularity, reusability, testability. We remark that
over these three variations of the maintainability characteristic, only testability is common to these three models.
We note also that modifiability is also present in Boehm’s model and ISO/IEC/IEEE 25010, and both ISO/9126 and
ISO/IEC/IEEE 25010 share analyzability sub-characteristics.

So, our objectives are to identify not only convergences but also exceptions of quality perspectives,
characteristics, and sub-characteristics (e.g., same concept but different wording or set of sub-characteristics)
and represent these variations with statistics (e.g., probability to have a specific variation). For instance, in the

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

156 | P a g e

previous case with ISO/IEC 9126, ISO/IEC/IEEE 25010 and Boehm’s quality models, the probability to find
testability sub-characteristic for maintainability is 100%, for modifiability two third (i.e., 66.67%) and for
analyzability also two third (i.e., 66.67%). This type of variations jointly with likelihood consideration is frequent
in genetic. We can cite for example Nei and Li’s formula [86] (see Chapter IV.6.c) to evaluate the degree of
polymorphism or variety between several alleles, the non-parametric linkage technic [255] used for genetic
disease identification.

Therefore, our observations make us propose the Genetic–Quality analogy, and more precisely the analogy
between DNA sequences –sequence of nucleotides-, which encode genetic characters through protein
information, with sequences of quality characteristics and sub-characteristics, which implicitly encode quality
characters and requirements.

Thus, since in genetic a chromosome is composed of two identical copies of DNA sequences called chromatid, by
applying this analogy, a quality perspective can be assimilated to a chromatid while two copies of this quality
perspective correspond to a chromosome (see Figure 77).

Figure 77 - Genetic-Quality analogy: global overview with chromosome, chromatids, and DNA sequence

(genetic terminology is in green, quality terminology is in purple)

To go further, in genetic too, a gene is a subset of a DNA sequence “controlling the development of particular
characteristics” [256] and starts at a specific location called locus. This DNA sequence subset is unitary composed
of nucleotides located at specific sites. Consequently, by using our analogy Genetic-Quality, we associate a gene
with a quality characteristic, starting at a specific location (i.e., locus) in the sequence of quality characteristics
and sub-characteristics of a quality perspective. As to the nucleotide sites, they correspond to these quality
perspective characteristics and sub-characteristics. In addition, a gene (e.g., a gene responsible for the eye color)
in a pair of homologue chromosomes is represented by two alleles (i.e., one for each chromosome). These alleles
can be identical (e.g., same eye color), or different (e.g., different eye color), but in any case, each of the allele
variations has a certain probability to exist. We have the same mechanism in quality domain, where variations of
quality characteristic and sub-characteristics have their own likelihood to exist. Finally, we note that “a gene is
said to be polymorphic if more than one allele occupies that gene's locus within a population”[257], retrieving the
polymorphism behavior for quality model we introduced in Chapter IV.6.b. The Figure 78 illustrates these analogy
details and TABLE 28 summarizes the terminology analogy.

Figure 78 - Genetic-Quality analogy: detail overview with locus, sites, genes and alleles (genetic terminology

is in green, quality terminology is in purple)

Meta-Model: Software Quality Model Genome

157 | P a g e

Figure 79 illustrates and fosters the comprehension of the proposed Genetic-Quality analogy through an example
where this analogy is applied against the current standard ISO/IEC/IEEE 25010 quality models. In this example,
the two quality perspectives, software product quality and quality in use, are assimilated to two distinct
chromosomes. We notice the sequence of characteristics (i.e., genes) starting at specific locus and composed of
sequences of sub-characteristics themselves located at specific sites on those chromosomes.

Figure 79 - Genetic-Quality analogy: an example based on ISO/IEC/IEEE 25010 quality models

At last, we consolidate the description of this Genetic-Quality analogy proposal by detailing the associated
ontology (cf. Figure 80). This ontology described the relationship with their numeration between each concept
used in this analogy and will serve to structure our meta-model construction. Furthermore, we decided to reuse
the quality aligned genetic terminology (see Table 28) for conciseness purpose. Thus, a chromosome can have
none or many polymorphic chromosome variations and is composed of exactly two chromatids (i.e., quality
perspective). Each chromatid is itself composed of a sequence of DNA (i.e., sequence of quality characteristics
and their quality sub-characteristics). Moreover, and as we saw above, a DNA sequence can be decomposed into
subsets of genes, starting at specific locus in that sequence. Genes and DNA sequences can be also defined as
sequences of sites (i.e., quality characteristics and sub-characteristics) which can be themselves consider as other
variations of sites. Finally, a gene can have none to many variants, called allele, constituted of sites and each allele
is exactly one polymorphic variation of a gene.

Figure 80 - Genetic-Quality analogy: Meta-model ontology

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

158 | P a g e

TABLE 28 - GENETIC-QUALITY ANALOGY: TERMINOLOGY SUMMARY

Genetic domain Quality domain
Chromatid Quality perspective

Chromosome Two identical copies of a quality perspective

DNA sequence Sequence of quality characteristics and sub-characteristics

Sites Quality characteristic and sub-characteristics

Locus Location of a quality characteristic in a quality perspective

Gene Quality characteristic sequence of sub-characteristics at a specific locus

Polymorphic gene Existence of more than one variation at a specific locus of quality
characteristics and sub-characteristics

Alleles Variations of quality characteristics and sub-characteristics at a specific locus
with their own probability

3. Software quality model genome meta-model construction algorithm
a. Construction methodology

Based on the Genetic-Quality analogy described in previous section, we aim to elaborate an algorithm to
construct a meta-model for the whole group of genes, also known as genome in genetic, of a set of software
quality models.

Our construction methodology is organized around 3 stages. We start with a set of quality models as the sources
of the meta-model elements, then extract and prepare groups of quality characteristics from these models,
before ending with the genome construction. The Figure 81 shows the 3 stages with the associated seven steps.

Figure 81 - The seven steps in the software quality model genome meta-model construction algorithm

The first step consists in the identification of the quality models used as source for the meta-model construction.
In fact, we plan to use their characteristics, sub-characteristics, and all sub-sequent level of characteristics, as
entries for the meta-model site and gene definitions. We remark the constraint for including a quality model in
that source set: to be qualified, the quality model must be clearly defined, with all clear relationship between its
elements (e.g., characteristics with their sub-characteristics) and all element definitions. Once the selection is
done, the next step is the quality model detail collection. Thus, all quality model structures, with their quality
characteristics, quality sub-characteristics and definitions are extracted to initiate the meta-model construction.

During the third step, for each selected quality model quality characteristic groups are enumerated. We defined
a quality characteristic group as a quality characteristic that owns at least two sub-characteristics. In a case where
a quality characteristic has only one sub-characteristic, we named it orphan characteristic group and we consider
the name of this quality characteristic to have a likelihood of 50% for the quality characteristic name and 50% for
the quality sub-characteristic name. Through the next step, these quality characteristic groups are compared
together in order to identify the distinct ones. Note, during the comparison only the quality characteristic name
is used and not yet the sub-characteristics which may be different since they come from distinct quality models.
The last step of the quality characteristic groups stage (cf. Figure 81) focuses on reducing the number of distinct
quality characteristic groups by matching the similar ones, limiting potential redundancy with quality
characteristics. The match criteria are based on quality characteristic group name synonyms, their definitions,
and their list of sub-characteristics. For example, the “functionality” from ISO/IEC 9126 quality model [24]

Meta-Model: Software Quality Model Genome

159 | P a g e

matches the “functional suitability” from ISO/IEC/IEEE 25010 [23], the “efficiency” from Boehm [42] and ISO/IEC
9126 quality models matches the “performance efficiency” from ISO/IEC/IEEE 25010. After this fifth, we have
collected all the necessary elements to compute quality model genome (i.e., whole genes and their respective
chromatids).

Consequently, over the sixth the quality characteristic genes are calculated from the reduced and distinct quality
characteristics groups. So, by computing each gene we mean to identify for each quality characteristic all possible
quality sub-characteristics which are linked to the characteristic, with their respective likelihood to happen. The
different possible set of sub-characteristics from the quality models can be seen as the set of sites forming gene
alleles (see previous Chapter VIII.2 and Table 29 for an example on “portability” quality characteristics) from each
quality model source where it exists. Therefore, after identifying matching sites between alleles, for each distinct
site (i.e., sub-characteristic), we take the most dominant name as site name, determine statistics about the
probability to have this site (i.e., number of alleles where we find the site over the number of considered alleles)
and the frequency related to each similar name we find in the site (e.g., all identical names over considered alleles
give 100%, but if half of them are similar, we may have 50% or less: see result sample on “portability” quality
characteristics in Table 30). Note, group characteristic likelihood is computed from the number of quality model
sources which reference its quality characteristic.

TABLE 29 - ALLELE AND SITE EXAMPLE FOR "PORTABILITY" QUALITY CHARACTERISTIC
Gene: Portability Allele 1 Allele 2 Allele 3 Allele 4 Allele 5 Allele 6 Allele 7 Allele 8

site 1 Adaptability Adaptability Adaptability Adaptability Adaptability Adaptability
site 2 Instalability Instalability Instalability Deployability Instalability Instalability
site 3 Replaceability Replaceability Replaceability Replaceability Replaceability Replaceability

site 4 Conformance
Portability

Compliance

 Conformance

site 5 Modularity
Self-

containedness Modularity

site 6
Machine
independence

Device
independence

Machine
independence

site 7 Self-Descriptiveness Self-Descriptiveness Portability

site 8
Software system
independence

Software system
independence

site 9 Co-existence Co-existence
site 10 Reusability Reusability

TABLE 30 - GENE COMPUTATION EXAMPLE FOR "PORTABILITY" QUALITY CHARACTERISTIC

Gene: Portability
site 1 Adaptability Adaptability = 100%
site 2 Instalability Instalability = 80% Deployability = 20%
site 3 Replaceability Replaceability = 100%

site 4 Conformance Conformance = 50% Portability Compliance = 50%

site 5 Modularity Modularity = 50% Self-containedness = 50%

site 6 Machine independence Machine independence = 50% Device independence = 50%

site 7 Self-Descriptiveness Self-Descriptiveness = 50% Portability = 50% [i.e., Portability documentation = 25%, Portability complexity = 25%]

site 8
Software system
independence Software system independence = 100%

site 9 Co-existence Co-existence = 100%
site 10 Reusability Reusability = 100%

Over the seventh and final step in the meta-model construction, we regroup quality characteristic genes together
based on their quality characteristic and sub-characteristic relationship to build chromatids. A chromatid is
identified as a top-level gene, that is to say, it is not a child of another gene. So, for each identified chromatid, we
take its genes, sub-genes, and descent to sites in order to combine their probability values and list all sites (cf.
example depicted by Figure 82).

Moreover, to optimize the number of those sites, we try to merge identical sites together by applying the
following rules:

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

160 | P a g e

1- if inside a gene, two sites are identical, or similar (i.e., slight variations), and are not part of any sub-
genes, we replace these two sites by only one site which has a likelihood equal to the sum of the
probability values of these two sites (with a maximum value of 1 or 100%),

2- if inside a gene, two sites are identical, or similar (i.e., slight variations), and one of them is part of a sub-
gene, replace the two sites by only the sub-gene; then sum their probability values (with a maximum
value of 1 or 100%),

3- if inside a gene, two sites are identical, or similar (i.e., slight variations), and the two sites are part of two
distinct sub-genes, replace the two sites by

a. the merge of the two sub-genes, summing their probability values, if the gene joint is possible
without breaking any other existing gene joint,

b. otherwise use site variation to name them and refactor each sub-gene into distinct sites,

During merge, or refactor, we must try to reduce the number of sites by
A- Merge identical sites including their probability value, to reduce redundancy,

B- Integrate sites not belonging to sub-genes into sub-genes, whenever it is possible,

C- Optimize merge between sub-genes by maximizing sub-gene overlap, reducing the
number of sites through consideration to name variations (e.g., “simplicity” with
“self-descriptness”)

Moreover, if a quality characteristic loop exists (e.g., quality characteristic A point to quality characteristic B,
which point back to characteristic A), we must use chromatid context and common sense to remove the most
irrelevant relationship.

The Chapter VIII.4 and Chapter VIII.5 illustrate in details against the first metal-model construction that
methodology.

Figure 82 - Example of "Supportability" chromatid computation with the main gene and some of its sub-genes
(testability, adaptability, maintainability, changeability and reusability); sub-genes are site names with color

background

Meta-Model: Software Quality Model Genome

161 | P a g e

b. Construction algorithm

Research Sub-question 4b What is the construction algorithm for such meta-model?

To apply concretely this construction methodology, we create a software quality model genome meta-model
construction algorithm. It is organized around the three stages and their steps seen in the methodology (cf. Figure
81).The main construction algorithm is defined in the next three solid line boxes (i.e., one per construction stage)
and should be used sequentially. Moreover, to facilitate its applicability, we also describe three functions that
require a particular attention: the extraction of quality characteristic group elements, the estimation of distance
between two groups of quality characteristics and the creation of a gene node graph. Each of these three
functions are put in a dashed box.

Each comment in the algorithm starts by a # character, and the main variables are:

- Chromatids: list of identified chromatids
- Distance_Acceptance_Threshold: Maximum acceptance threshold to accept that two characteristics are

lexically and semantically closed,
- Genome_Metamodel: Software quality model genome meta-model (i.e., the result meta-model),
- Grp: Groups of distinct and reduced quality characteristics used to build chromatid and software quality

model genome meta-model,
- Grp_Graph: graph containing all characteristics groups with their sub-characteristics (i.e., their children),
- Pool_of_QM: pool of quality model sources to merge,
- Push: function to put new element on the top of the destination structure,
- QM_Grp: Groups of quality characteristics with their sub-characteristics extracted from the quality

model sources.

In the first stage, we assumed that quality model sources are already identified, and their data (i.e., quality
characteristics, sub-characteristics, their definition, their relationships) are available in loadable structures (e.g.,
quality model data store in files). Thus, the data initialization is achieved by loading the data from all quality model
sources into the data structure “Pool_of_QM”.

With the second stage, the aim is to extract and optimize all the quality characteristic groups “QM_Grp” from the
quality model sources “Pool_of_QM”. As indicated in the methodology, this optimization consists in limiting the
number of distinct quality characteristic groups by regrouping the similar ones. So, we crawl each quality
characteristic group from the quality model sources and verify if any similar quality characteristic group exist in
these current data. If this is the case, we keep only one instance of these data to avoid redundancy. However,
before any removing action, we merge the quality characteristic variations (e.g., “functionality” versus “functional
suitability”) and their respective likelihood to happen into the kept instance.

While the first two stages were responsible to extract and prepare the data related to quality characteristic
groups, the genome real meta-model construction is performed in the third and last stage. It is organized in three
phases. The first one is to structure the genes resulting from the groups of distinct and reduced quality
characteristics, “Grp”, under a graph “Grp_Graph”. The graph nodes (i.e., vertices) correspond to each quality
characteristics from “Grp” and their edges are the children relationship between theses quality characteristics
and their sub-characteristics which are also considered as part of the graph nodes. Next phase is to find all
chromatids “Chromatids”. Thus, for all nodes in the graph, we check if that node has a parent. If this node has
none, it is a chromatid. And finally, for each chromatid, we build list of from descendent gene sub- graphs and
add the result to our software quality model genome meta-model “Genome_Metamodel”

Create Genome quality meta-model from pool of n quality models
Stage 1: Quality model sources
Data initialization
Loop: i from 1 to n

Pool_of_QM[n]  Load data of quality model n
End loop

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

162 | P a g e

Stage 2: Quality characteristic groups
Collect quality characteristic group data
Loop: i from 1 to n

QM_Grp[i]  Get groups of quality characteristics w/sub-characteristics in
Pool_of_QM[i]
End loop

Identify and reduce distinct quality characteristic groups
by default, the first quality characteristic groups are is the ones from first quality model
Grp  QM_Grp[1]

Now, check the other groups from the remaining quality models
Loop: i from 2 to n

Extract candidate group elements based on distance with already identified group elements
Candidate_Grp  Extract element of QM_Grp [j] to be mapped to Grp
If Candidate_Grp is not empty

Insert Candidate_Grp quality characteristics and sub-characteristics
into Grp and combine their statistic data accordingly
Merge Candidate_Grp with Grp

End loop

Stage 3: Quality model genome
Construct gene graph
Grp_Graph  empty
Loop: i from 1 to size (Grp)

Create a graph node for the i-th element of Grp: the current element i, with child list, if any
Grp_Graph_Node  Get Graph Node for i -th element in Grp

Grp_Graph  Push Grp_Graph_Node
End loop

Identify chromatids
Chromatids  empty
Loop: i from 1 to size (Grp_Graph)

By default, we consider that current graph node is a candidate chromatid, until we refute it
Candidate_Chromatid  i
Loop: j from 1 to size (Grp_Graph)

If i is one of the children of Grp_Graph[j] child, this means that i has a parent
and cannot be considered anymore as a chromatid
If (j != i) and
 (i in child list of Grp_Graph[j])

Candidate_Chromatid  empty
break

End loop

Finally, if we still have a Candidate_Chromatid at that point, we can add it to the list of valid chromatids
If Candidate_Chromatid != empty

Chromatids  push Candidate_Chromatid
End loop

Construct software quality model genome meta-model based on those chromatids
Genome_Metamodel empty
Loop: i from 1 to size (Chromatids)

This is done by expanding all children levels from Grp_Graph graph for each chromatid
Genome_Metamodel  push (Grp_Graph[i], expand all children of Grp_Graph[i])

End loop

Final result of the software quality model genome meta-model construction
is stored in “Genome_Metamodel” variable

Meta-Model: Software Quality Model Genome

163 | P a g e

The extraction and optimization feature are performed through the “Extract element of QM_Grp_Set to be
mapped to Grp” function. This function is straightforward. Indeed, it goes through all the elements for current
quality model group set QM_Grp_Set and look for which one of these elements has the closest distance to the
quality characteristic groups Grp. If there is one element found, it is removed from the quality model group set
QM_Grp_Set and the found element is returned. When two elements are distinct, or too far from each other, the
distance function (i.e., Get distance between Ref_Grp and Tgt_Grp) gives a value of infinity. Therefore, if
all elements of the quality model group set QM_Grp_Set are distinct or too far from the quality characteristic
groups Grp, no result is found because the “If Tmp_Distance < Candidate_Distance” comparison will be
always false (i.e., this comparison becomes “If infinity < infinity”).

Regarding the distance function, “Get distance between Ref_Grp and Tgt_Grp”, we first test if the two
characteristic “words” (i.e., “Ref_Grp” and “Tgt_Grp”) are identical. In the positive case, the distance is equal to
0. Otherwise, we verify if the two characteristics “Ref_Grp” and “Tgt_Grp” are closed synonym, by are verifying
their lexical and semantic distance.

For this task we use both WordNet lexical database [175] - available online at Princeton University11, and the
online semantic Altas (i.e., http://www.atlas-semantiques.eu/) allowing to determine multiple levels of synonym
constellations (cf. example in Figure 83 of three synonym constellations for “efficiency” word). A synonym
constellation is a group of synonyms semantically close based on cliques (i.e., minimum semantic units with very
fine granularity).

So, if “Tgt_Grp” is within the “Ref_Grp” synonym constellations, or in the contrary case, if the intersection of
“Ref_Grp” and “Tgt_Grp” synonym constellations is not empty, then the distance result is the minimum
constellation distance. Finally, to avoid too long distance, the distance result is compared to a threshold value set
by user to acknowledge range of valid distance values. However, we consider that if this distance is higher to this
threshold, but both “Ref_Grp” and “Tgt_Grp” definitions and sub-characteristics are matching (see Motogna et
al. [94]) then we accept this distance. In all other cases, the distance is fixed to infinity to reflect the disjunction.

The “Get Graph Node for i -th element in Grp” function create a graph node, or vertex, for the ith element
of the groups of distinct and reduced quality characteristics, “Grp”. A graph node is made of the current “Grp”
index i, and the children list, if any exist, of this ith element of “Grp”. The children retrieval is achieved by crawling
all elements of “Grp” and then verifying if they are one of its sub-characteristics.

Find the closest element of QM_Grp_Set to Grp, if any, and remove it from QM_Grp_Set
Extract element of QM_Grp_Set to be mapped to Grp

Candidate_Grp  empty

Candidate_Distance  infinity

Candidate_Element_Id  0

Crawl all elements in QM_Grp_Set to find the closest element to Grp if it exists
Loop: i from 1 to size (QM_Grp_Set)

Tmp_Grp  Get element i from QM_Grp_Set

Determine the distance between these two elements
Tmp_Distance  Get distance between Grp and Tmp_Grp

If the distance is lower than previous one (note if distance is always infinity,
then elements are considered too far from each other: don’t take them)
If Tmp_Distance < Candidate_Distance

Candidate_Grp  Tmp_Grp

Candidate_Distance  Tmp_Distance

Candidate_Element_Id  i
End loop

We found a candidate element, so remove it from QM_Grp_Set
If Candidate_Element_Id != 0

Remove element Candidate_Element_Id from QM_Grp_Set
Return Candidate_Grp

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

164 | P a g e

Figure 83 - Example from the online Semantic Atlas: three synonym constellations for "efficiency" word as

quality characteristic (source: http://www.atlas-semantiques.eu/)

Compute distance between two groups of characteristics: Ref_Grp and Tgt_Grp
Get distance between Ref_Grp and Tgt_Grp

Distance  infinity

Test first if the two characteristic “words” are identical
If Ref_Grp = Tgt_Grp

Distance  0
Else

Otherwise check if Tgt_Grp is within the Ref_Grp synonym constellation
Cons_Ref_Grp  Get synonym constellation for Ref_Grp from

(https://wordnet.princeton.edu/ and
http://www.atlas-semantiques.eu/)

If Tgt_Grp is in Cons_Ref_Grp
Distance  Get constellation closest distance of Tgt_Grp in Const_Ref_Grp

Else
Otherwise check the intersection of Tgt_Grp and Ref_Grp synonym constellations is not empty
Const_Tgt_Grp  Get synonym constellation for Tgt_Grp from

(https://wordnet.princeton.edu/ and
http://www.atlas-semantiques.eu/)

If (Const_Ref_Grp ∩ Const_Tgt_Grp) is not empty
Distance  Get constellation closest distance of (Const_Ref_Grp ∩

Const_Tgt_Grp)

Finally, assess that the distance is not too high, so require user to acknowledge (above process is automatic)
If Distance > Distance_Acceptance_Threshold

Give a last chance through a test checking the definition of characteristics Tgt_Grp
If Not (Ref_Grp can be mapped to Tgt_Grp based on their definitions and sub-

characteristics)
Distance  infinity

Return Distance

Create a graph node for the i-th element of Grp: the current element i, with children list, if any
Get Graph Node for i -th element in Grp

Grp_Element  Grp [i]

Grp_Children  empty

crawl all Grp elements to verify which ones are sub-characteristics of the current element
Loop: j from 1 to size (Grp)

if (j != i) and
 (Grp[j] is in sub-characteristics of Grp_Element)

Grp_Children  push j
End loop
Return (i, Grp_Children)

Meta-Model: Software Quality Model Genome

165 | P a g e

4. Software quality model genome meta-model construction
a. List of quality models

As indicated in Chapter VIII.3, the preliminary assumption of the software quality model genome meta-model
construction algorithm is the existence of a set of software quality models to be used for the meta-model build.
Indeed, the algorithm generate a list of “quality” genes from the quality model characteristics and sub-
characteristics, identify the corresponding “quality” chromatids and finally synthetize a software quality model
genome meta-model resulting of these input quality models.

Moreover, these quality models must have their quality characteristics and sub-characteristics, together with
their definition and relationships, clearly defined to be exploitable. Note, as Oriol et al. study [12] highlighted,
definition completeness of quality models is often partial or incomplete. In their survey on quality models for
web-services, they found that only 51% of them had their definitions 100% complete.

So, considering Thapar et al. [11] study conclusion with regard to the challenges and issues in software quality
model development and use, we select four of the five quality models which have only three identified issues:
Alvaro [36], Bawane [103], ISO/IEC 9126 [24], and Kalaimagal’s Q'FActo 12 [102]. We reject GEQUAMO quality
model [229] from this selection since we were not able to retrieve all details (i.e., definitions and all sub-
characteristics) about this quality model. Furthermore, we complete that selection list with four additional and
widely used software quality models for which reference papers with quality model details, including definitions,
are available. These four quality models are Boehm [42], McCall [41], FURPS [85],and ISO/IEC/IEEE 25010 [23].

Thus, we identified a total of eight software quality models (i.e., Boehm, McCall, FURPS, ISO / IEC 9126, Alvaro,
Bawane, Kalaimagal’s Q'FActo 12, and ISO / IEC / IEEE 25010) to construct the first software quality model genome
meta-model. The quality model details are provided in Annex 13 while Table 31 is an overview of these models.

TABLE 31 - OVERVIEW OF THE EIGHT SELECTED QUALITY MODELS FOR SOFTWARE QUALITY MODEL GENOME META-MODEL
CONSTRUCTION

Quality model Reference Date Quality model element numbering and type
Boehm [42] 1976 3 high-level qualities

7 intermediate-level qualities
15 primitive quality characteristics

McCall [41] 1977 3 Perspectives
11 quality factors
23 quality criteria

FURPS [85] 1987 5 Components
25 Sub-components

ISO/IEC 9126 [24] 1991 2 quality perspectives
10 quality characteristics
31 quality sub-characteristics

Alvaro [36] 2010 6 quality characteristics
23 quality sub-characteristics
48 attributes

Bawane [103] 2010 2 quality perspectives
11 quality characteristics
28 quality sub-characteristics

Kalaimagal’s Q'FActo 12 [102] 2010 12 quality factors
30 quality criteria
44 quality measures

ISO/IEC/IEEE 25010 [23] 2011 2 quality perspectives
13 quality characteristics
42 quality sub-characteristics

We remark that these quality models total 396 quality characteristics and sub-characteristics. This corresponds
to an average of 49.5 quality characteristics and sub- characteristics per quality model, with a minimum of 30
with FURPS quality model and a maximum of 86 with Kalaimagal’s Q'FActo 12 quality model.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

166 | P a g e

Note, we don’t need to necessarily have distinct quality models here. Indeed, ISO/IEC/IEEE 25010 is the evolution
of ISO/IEC 9126, and consequently are not “purely” distinct, but it is valid to consider these two quality models
as well in the genome construction, because the evolution is a natural variation mechanism of a genome.

b. List of genes with their variations
Before generating the list of quality characteristic genes from these eight selected software quality models, there
are several intermediary steps to complete as shown in Figure 81.

Firstly, we must enumerate the groups of quality characteristics from these quality models. We qualified as group
of quality characteristics, a quality characteristic that owns at least one sub-characteristic. Thus, we are able to
retrieve 103 quality characteristic groups over the eight quality models, which corresponds to an average of
12.875 groups per quality model, and with the same two models for the extrema: five groups for FURPS and 25
for Kalaimagal Q'FActo 12. Moreover, a part of these 103 groups are identical and therefore can be clustered into
55 distinct quality characteristic groups.

The complete group list per quality model is described in Table 32. The two left columns summarize the name of
the 55 distinct quality characteristic groups and their number of occurrences over the eight models. For example,
“Efficiency” is used in six of these eight quality models (i.e., Boehm, McCall, Alvaro, ISO/IEC 9126, Bawane and
Kalaimagal Q'FActo 12) while “Compatibility” is defined only in Kalaimagal Q'FActo 12 and ISO/IEC/IEEE 25010.
The “Portability” group is indicated twice at this step because we retrieve this quality characteristic as quality
characteristic and quality sub-characteristic in Kalaimagal Q'FActo 12 model. In the next step, this redundancy is
removed, counting for only one group for that model.

TABLE 32 – THE 55 DISTINCT QUALITY CHARACTERISTIC GROUPS FROM THE EIGHT SELECTED SOFTWARE QUALITY MODELS

Total
Quality Characteristic

Name Boehm [42] McCall [41] FURPS [85]
ISO/IEC

9126 [24] Alvaro [36] Bawane [103]
Kalaimagal

Q'FActo 12 [102]
ISO/IEC/IEEE 25010

[23]
1 Adaptability

 Adaptability

1 Changeability

 Changeability

2 Compatibility

 Compatibility Compatibility
1 Compliance

 Compliance

1 Context coverage

Context coverage
1 Controllability

 Controllability

1 Correctness

Correctness

6 Efficiency Efficiency Efficiency Efficiency Efficiency Efficiency Efficiency

1 Fault-tolerance

 Fault
Tolerance

1 Freedom from risk

Freedom from risk
1 Flexibility

Flexibility

5 Functionality

Functionalit
y

Functionali
ty

Functionality Functionality Functionality

1 Functional suitability

Functional
suitability

1 General Utility General Utility

1 Generality

 Generality

1 Hardware/Software
Independence

 Hardware/Softwa
re Independence

1 Human engineering Human
engineering

1 Instalability

 Instalability

1 Integrity (security)

Integrity (security)

2 Interoperability

Interoperability Interoperability

1 Learnability

 Learnability

7 Maintainability Maintainability Maintainability Maintainab
ility

Maintainability Maintainability Maintainability Maintainability

1 Maturity

 Maturity

1 Modifiability Modifiability

2 Operability

 Operability Operability

1 Performance

Performanc
e

1 Performance
efficiency

 Performance
efficiency

7 Portability Portability Portability Portability Portability Portability Portability Portability

Meta-Model: Software Quality Model Genome

167 | P a g e

1 Portability

 Portability

2 Product in use

 Product in
use

 Product in use

1 Product operation

Product operation

1 Product revision

Product revision

1 Product transition

Product transition

1 Quality in use

Quality in use
1 Recoverability

 Recoverability

8 Reliability Reliability Reliability Reliability Reliability Reliability Reliability Reliability Reliability
1 Resource behavior

 Resource

behavior

4 Reusability

Reusability Reusability Reusability Reusability

1 Safety in use

 Safety in use

1 Satisfaction

Satisfaction
3 Security

 Security Security Security

1 Self-Contained

 Self-Contained

2 Software Product

 Software
Product

 Software
Product

1 Standardization /
Certification

 Standardization /
Certification

1 Suitability

 Suitability

1 Supportability

Supportabil
ity

1 System / Software
product

 System / Software
product

1 Test documentation

 Test
documentation

4 Testability Testability Testability Testability Testability

1 Time behavior

 Time behavior

1 Traceability

 Traceability

2 Understandability Understandabili
ty

 Understandabi

lity

7 Usability

Usability Usability Usability Usability Usability Usability Usability
1 Usability (As-is

utility)
Usability (As-is
utility)

1 Usability in use

 Usability in use

Secondly, the similar quality characteristic groups are merged together in order to avoid, or at least to reduce,
the lexical and semantic overlap between quality characteristic groups. This behavior is not only aligned with the
concept of word constellations but also with the gene variations of same genetic character. For example,
“Efficiency” and “Performance efficiency” have similar definition and sub-characteristics. Therefore, we can
conclude that they both cover the same quality characteristic concept and be regrouped then under “Efficiency”.

The regrouping results are shown in Table 33, and its consequence is a decrease of 12 distinct quality
characteristic groups, moving from 55 to 43 distinct quality characteristic groups for the same quality modeling
coverage. Moreover, 27 over the 43 groups (i.e., 62.28%) come from only one quality model, and 10 over the 43
groups (i.e., 23.26%) are quality characteristic groups found at least in four of the eight quality models, with three
of these groups (i.e., “Efficiency”, “Reliability” and “Usability”) present in the eight quality models.

TABLE 33 - THE 10 MERGED QUALITY CHARACTERISTIC GROUPS (GREEN BACKGROUND CELL INDICATES A MERGED ENTRY)

Total
Quality

Characteristic Name
Boehm [42] McCall [41] FURPS [85]

ISO/IEC 9126
[24] Alvaro [36]

Bawane
[103]

Kalaimagal
Q'FActo 12 [102]

ISO/IEC/IEEE 25010 [23]

2 Compliance

 Compliance Standardization /
Certification

8 Efficiency Efficiency Efficiency Performance Efficiency Efficiency Efficiency Efficiency Performance efficiency
2 Fault-tolerance

 Fault Tolerance Recoverability

6 Functionality

Functionality Functionality Functionality Functionality Functionality Functional suitability
3 Interoperability Interoperability Interoperability Compatibility
7 Portability Portability Portability Portability Portability Portability Portability Portability
4 Product in use

 Product in use Product in

use
Usability in use Quality in use

4 Security

Integrity (security) Security Security Security
3 Software Product

 Software

Product
 Software

Product

System / Software
product

8 Usability Usability (As-
is utility)

Usability Usability Usability Usability Usability Usability Usability

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

168 | P a g e

Finally, these 43 quality characteristic groups can be transformed into quality characteristic genes with their own
quality characteristic sites (i.e., equivalent to quality sub-characteristics as shown in Chapter VIII.2) and their
probability to happen.

Thus, the gene sites result from the aggregation of the quality sub-characteristics of the current quality
characteristic genes, regrouping the lexically and semantically similar sub-characteristics, or sites, together like
for the genes. An example with regards to “Portability” gene is described by Table 29 and Table 30, and the
complete list of genes with their sites, including their lexical and semantic variations, is given into Table 50 and
Table 51 of Annex 14.

The likelihood of a gene is determined by the number of its occurrence over the total number of merged quality
models -in our current case this is 8. So, for “Adaptability” gene, which is present only in Alavaro’s quality model,

the probability to happen is 0.125 (i.e., ଵ

଼
= 0.125). About “Portability” gene, found in all the selected quality

models except FURPS, its probability is 0.875 (i.e., ଻

଼
= 0.875). Concerning the site probability, the calculations

are identical and an example related to “Portability” gene is given in Table 30.

The final result is a list of 43 genes split into two parts:

- A list of the 27 genes resulting from a single quality model (cf. Table 34). The likelihood of these gene sites
is therefore 1 since each gene is only present in one quality model. There is a total of 81 sites for these 27
genes, which means an average of 3 sites per gene with a minimum of 2 sites (e.g., “Adaptability” gene) and
a maximum of 9 sites for “Supportability” gene. To facilitate identification in later usage, we identify these
genes with the prefix “A” and a number from 1 to 27.

- A list of the 16 genes resulting from more than one quality model (cf. Table 35). There is a total of 128 sites,
and consequently an average of 8 sites per gene, with a minimum of 2 sites for “Compliance” gene and a
maximum of 15 sites for “Testability” gene. To facilitate identification in later usage, we identify these genes
with the prefix “B” and a number from 1 to 16.

TABLE 34 - LIST OF THE 27 SINGLE QUALITY MODEL GENES

Gene ID Type Quality Characteristic Name Probability Gene ID Type Quality Characteristic Name Probability
A01 Gene Adaptability 0.125 A16 Gene Product operation 0.125

 site 1 Mobility 1.0 site 1 Correctness 1.0
 site 2 Configuration capacity 1.0 site 2 Reliability 1.0

A02 Gene Changeability 0.125 site 3 Efficiency 1.0
 site 1 Extensibility 1.0 site 4 Integrity (security) 1.0
 site 2 Customizability 1.0 site 5 Usability 1.0
 site 3 Modularity 1.0 A17 Gene Product revision 0.125

A03 Gene Context coverage 0.125 site 1 Maintainability 1.0
 site 1 context completeness 1.0 site 2 Flexibility 1.0
 site 2 Flexibility 1.0 site 3 Testability 1.0

A04 Gene Controllability 0.125 A18 Gene Product transition 0.125
 site 1 Component execution control 1.0 site 1 Portability 1.0

 site 2
Component environment
control

1.0 site 2 Reusability 1.0

 site 3
Component function feature
control

1.0 site 3 Interoperability 1.0

A05 Gene Correctness 0.125 A19 Gene Resource behavior 0.125
 site 1 Traceability 1.0 site 1 Memory utilization 1.0
 site 2 Consistency 1.0 site 2 Disk utilization 1.0
 site 3 Completeness 1.0 A20 Gene Safety in use 0.125

A06 Gene Freedom from risk 0.125 site 1 Risk of software 1.0
 site 1 Economic risk mitigation 1.0 site 2 Commercial risk in use 1.0
 site 2 Health and safety risk Mitigation 1.0 site 3 Risk to the operation in use 1.0
 site 3 Environmental risk mitigation 1.0 site 4 Risk to the public in use 1.0

A07 Gene Flexibility 0.125 A21 Gene Satisfaction 0.125
 site 1 Modularity 1.0 site 1 Usefulness 1.0

Meta-Model: Software Quality Model Genome

169 | P a g e

TABLE 35 - LIST OF THE 16 MULTI-QUALITY MODELS GENES

 site 2 Generality 1.0 site 2 Trust 1.0
 site 3 Expandability 1.0 site 3 Pleasure 1.0
 site 4 Self-Descriptiveness 1.0 site 4 Comfort 1.0

A08 Gene General utility 0.125 A22 Gene Self-Contained 0.125

 site 1 Portability 1.0 site 1
Presence of precondition &
postconditions

1.0

 site 2 Usability (As-is utility) 1.0 site 2 Modularity 1.0
 site 3 Maintainability 1.0 A23 Gene Suitability 0.125

A09 Gene Generality 0.125 site 1 Coverage 1.0
 site 1 Presence of domain abstraction 1.0 site 2 Completeness 1.0
 site 2 Reuse history 1.0 site 3 Pre- and Post-conditioned 1.0

A10 Gene
Hardware/Software
Independence

0.125 site 4
Proofs of Pre- and Post-
conditions

1.0

 site 1 Hardware independence 1.0 A24 Gene Supportability 0.125
 site 2 Software independence 1.0 site 1 Testability 1.0

A11 Gene Human engineering 0.125 site 2 Extensibility 1.0
 site 1 Robustness / Integrity 1.0 site 3 Adaptability 1.0
 site 2 Accessibility 1.0 site 4 Maintainability 1.0
 site 3 Communicativeness 1.0 site 5 Compatibility 1.0

A12 Gene Instalability 0.125 site 6 Configurability 1.0
 site 1 Instalability documentation 1.0 site 7 Serviceability 1.0
 site 2 Instalability complexity 1.0 site 8 Instability 1.0

A13 Gene Learnability 0.125 site 9 Localizability 1.0
 site 1 Training 1.0 A25 Gene Test documentation 0.125
 site 2 Presence of demonstration 1.0 site 1 Presence of test suites 1.0

A14 Gene Maturity 0.125 site 2 Proofs of previous tests 1.0
 site 1 Volatility 1.0 A26 Gene Time behavior 0.125
 site 2 Failure removal 1.0 site 1 Response time 1.0

A15 Gene Modifiability 0.125 site 2 Latency throughput ("out") 1.0

 site 1 Structuredness 1.0 site 3
Latency processing capacity
("in")

1.0

 site 2 Augmentability 1.0 A27 Gene Traceability 0.125
 site 1 Error trace 1.0
 site 2 Performance trace 1.0

Gene ID Type Quality Characteristic Name Probability Gene ID Type Quality Characteristic Name Probability
B01 Gene Efficiency 1.0 B10 Gene Reusability 0.5

site 1 Time-behavior 0.75 site 1 Self-Descriptiveness 0.75
site 2 Resource utilization 0.625 site 2 Generality 0.5
site 3 Storage efficiency 0.25 site 3 Modularity 0.5
site 4 Execution efficiency 0.25 site 4 Software independence 0.5
site 5 Efficiency Compliance 0.25 site 5 Hardware independence 0.5
site 6 Capacity 0.125 site 6 Coupling 0.5
site 7 Accountability 0.125 site 7 Domain abstraction level 0.25
site 8 Accessibility 0.125 site 8 Architecture compatibility 0.25
site 9 Scalability 0.125 site 9 Cohesion 0.25
site 10 Availability 0.125 site 10 Locability 0.25
site 11 Time of answers 0.125 site 11 Interoperability 0.25
site 12 Time of recovery 0.125 B11 Gene Security 0.5

B02 Gene Fault tolerance 0.25 site 1 Confidentiality 1
site 1 Mechanism availability 1.0 site 2 Auditability 0.5
site 2 Mechanism efficiency 0.5 site 3 Cipherability 0.5
site 3 Persistence 0.5 site 4 Integrity 0.25

B03 Gene Functionality 0.75 site 5 Non-repudiation 0.25
site 1 Accuracy 0.8333 site 6 Accountability 0.25
site 2 Security 0.6667 site 7 Authenticity 0.25

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

170 | P a g e

site 3 Suitability 0.6667 B12 Gene Software product 0.375
site 4 Interoperability 0.5 site 1 Functionality 1.0
site 5 Compliance 0.5 site 2 Usability 1.0
site 6 Self-contained 0.3333 site 3 Reliability 1.0
site 7 Functional Completeness 0.3333 site 4 Efficiency 1.0
site 8 Capacities 0.1667 site 5 Maintainability 1.0

B04 Gene Interoperability 0.375 site 6 Portability 1.0
site 1 Data commonality 0.6667 site 7 Compatibility 0.3333
site 2 Communication commonality 0.6667 site 8 Security 0.3333
site 3 Co-existence 0.6667 site 9 Reusability 0.3333
site 4 Modularity 0.33333 B13 Gene Compliance 0.25
site 5 Version compatibility 0.33333 site 1 Standardization 1.0

B05 Gene Maintainability 0.875 site 2 Certification 1.0
site 1 Changeability 0.75 B14 Gene Testability 0.5
site 2 Testability 0.625 site 1 Self-descriptiveness 0.5
site 3 Analyzability 0.625 site 2 Accountability 0.25
site 4 Stability 0.5 site 3 Accessibility 0.25
site 5 Modularity 0.25 site 4 Communicativeness 0.25
site 6 Reusability 0.125 site 5 Structuredness 0.25
site 7 Consistency 0.125 site 6 Simplicity 0.25
site 8 Conciseness 0.125 site 7 Modularity 0.25
site 9 Self-Descriptiveness 0.125 site 8 Instrumentation 0.25
site 10 Maintainability Compliance 0.125 site 9 Test suite provided 0.25

B06 Gene Operability 0.25 site 10 Extensive component test case 0.25
site 1 Effort to operate 1.0 site 11 Component tests in a specific

environment
0.25

site 2 Complexity level 0.5 site 12 Proofs the components tests 0.25
site 3 Provided Interfaces 0.5 site 13 Test documentation 0.25
site 4 Required Interfaces 0.5 site 14 Controllability 0.25
site 5 Effort to configure 0.5 site 15 Traceability 0.25

B07 Gene Portability 0.875 B15 Gene Understandability 0.25
site 1 Adaptability 0.625 site 1 Self-descriptiveness 1
site 2 Replaceability 0.625 site 2 Consistency 0.5
site 3 Instability 0.625 site 3 Structuredness 0.5

 site 4 Safety 0.5 site 4 Conciseness 0.5
 site 5 Freedom from risk 0.25 site 5 Legibility 0.5
 site 6 Machine independence 0.25 site 6 Documentation availability 0.5
 site 7 Self-Descriptiveness 0.25 site 7 Documentation readability and

quality
0.5

 site 8 Software system independence 0.125 B16 Gene Usability 1.0
 site 9 Co-existence 0.125 site 1 Learnability 0.875
 site 10 Reusability 0.125 site 2 Operability 0.75

B08 Gene Product in use 0.5 site 3 Understandability 0.75
 site 1 Effectiveness 1 site 4 Attractiveness 0.5
 site 2 Satisfaction 1 site 5 Human engineering 0.5
 site 3 Productivity 0.75 site 6 Reliability 0.25
 site 4 Safety 0.5 site 7 Usability compliance 0.125
 site 5 Freedom from risk 0.25 site 8 Efficiency 0.125

B09 Gene Reliability 1.0
 site 1 Fault tolerance 0.875
 site 2 Recoverability 0.625
 site 3 Maturity 0.5
 site 4 Accuracy 0.25
 site 5 Consistency 0.25
 site 6 Availability 0.25
 site 7 Reliability Compliance 0.25
 site 8 Simplicity 0.25
 site 9 Frequency and severity of

failures
0.125

Meta-Model: Software Quality Model Genome

171 | P a g e

c. Relationship links between genes and chromatid identification
Following the identification, construction, and definition of the 43 quality characteristic genes, the next step in
the construction of the software quality model genome meta-model is to look for any chromatid. A chromatid
corresponds to a quality perspective and can be retrieved as a top-level gene (i.e., the gene is not a child, or site,
of another gene).

So, to determine which gene, if any, is a top-level gene, we must find first which genes are sites of other genes,
and finally if a gene is not belonging, or linked to any other gene(s), we can conclude that it is a top-level gene,
or chromatid. To retrieve these gene relationship links, we look for quality characteristics that are quality sub-
characteristics in other quality characteristic(s), taking into account also the fact that a characteristic, or sub-
characteristic, can vary in its naming (see Table 50 and Table 51 of Annex 14).

The result of this analysis, synthetized in Table 36, shows 7 chromatids: A08 “General utility”, A16 “Product
operation”, A17 “Product revision”, A18 “Product transition”, A24 “Supportability”, B08 “Product in use”, and B12
“Software product”.

TABLE 36 - THE RELATIONSHIP LINKS BETWEEN THE QUALITY CHARACTERISTIC GENES

Gene ID Quality Characteristic Name Found in gene(s)

A01 Adaptability A24, B07
A02 Changeability B05
A03 Context coverage B08
A04 Controllability B11, B14
A05 Correctness A16, B03
A06 Freedom from risk B08
A07 Flexibility A03, A17

A08 General utility none
A09 Generality A07, B10
A10 Hardware/Software Independence B07, B10
A11 Human engineering B16
A12 Instalability B07
A13 Learnability B16
A14 Maturity B09
A15 Modifiability B05
A16 Product operation none
A17 Product revision none
A18 Product transition none
A19 Resource behavior B01
A20 Safety in use (B08)
A21 Satisfaction B08
A22 Self-Contained B03, (B07)
A23 Suitability B03
A24 Supportability none
A25 Test documentation B14
A26 Time behavior B01
A27 Traceability A05, B14
B01 Efficiency A16, B08, B12, B16
B02 Fault tolerance B09
B03 Functionality B12
B04 Interoperability A18, B03, B10, B12
B05 Maintainability A08, A17, A24, B12
B06 Operability B16
B07 Portability A08, A18, B12
B08 Product in use none
B09 Reliability A16, B12, B16
B10 Reusability A18, B05, B07, B12
B11 Security A16, B03, B12
B12 Software product none
B13 Compliance B03, (B01, B05, B07, B09, B16)
B14 Testability A17, A24, B05
B15 Understandability B05, B16

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

172 | P a g e

B16 Usability A08, A16, B12

Note, in “found in gene(s)“ column of Table 36, there are few genes in parenthesis. The parenthesis indicates that
the relationship between the two genes (i.e., gene as site and gene as parent gene) require to take into account
the context of the parent gene. For example, for gene A20 “Safety in use”, we can find it as a site of gene B08
“Product in use”. However, in “Product in use” gene the corresponding site to “Safety in use” is site 4 “Safety”
(see Table 51 from Annex 14). Thus, the parenthesis points out that a context nuance must be considered carefully
when using the “Safety in use” gene to detail “Safety” site.

A visual representation of Table 36 is performed through the oriented graph representation shown by Figure 84.
Each node is one of the 43 genes, the root nodes with a chromosome symbol are the chromatids, and the arrows
depict the links between genes. The beginning of each arrow represents the gene as site, and the dotted arrows
signal that the parent gene context has to be considered (i.e., the dotted arrows are equivalent to the parenthesis
highlight).

Figure 84 – Links between the 43 genes; chromatids are identified by and dotted arrows indicate a
relationship link that requires to take into account parent gene context

The remaining task to finalize the software quality model genome meta-model is the construction of each these
seven chromatids elaborated from this graph representation and the full gene details from Table 34 and Table
35.

5. Contributions: The 7 Chromatids of SW Quality Model Genome

Research Sub-question 4c What is the first result of the meta-model construction?

This section is the concluding construction step of the software quality model genome meta-model. From the
selected set of eight quality models, we successively extracted 43 quality characteristic genes with their own sites,
or quality sub-characteristics, calculated their likelihood values, determined the relationship links between all
genes and identified seven chromatids.

Meta-Model: Software Quality Model Genome

173 | P a g e

Thus, this final step consists in detailing each of these seven chromatids that constitute the software quality
model genome meta-model.

From the complete linked gene map shown through Figure 84, we extract a subset of this map by isolating only
the genes that are directly or indirectly linked to a specific chromatid. Once this sub-map done, we generate the
detailed chromatid site sequence, including probability values, by enumerating each gene sites starting from the
chromatid up to the furthest linked genes (see example in Figure 82 about a site enumeration beginning for
“Supportability” chromatid). Figure 85 illustrates that final chromatid creation chain.

Figure 85 - From the 43 linked genes to a specific the chromatid linked genes and the corresponding site

sequence

So, the final expected result for each chromatid is a complete detailed sequence of sites with their likelihood
values and the localization of each gene, and any sub-sequent levels of genes, composing the chromatid.

However, during the enumeration task of the site sequence, there are three aspects to be caution when replacing
a site by the corresponding gene and its sites For example, in gene A24 “Supportability”, its site 4 is
“Maintainability”, but this site can be replaced by gene B05 “Maintainability” which possesses itself 10 sites.

The first aspect concerns the site likelihood values. In our example, when site 4 of A24 is replaced by a detailed
version made of the 10 sites of B05, each likelihood values of these 10 sites are combined, or multiplied by the
likelihood of site 4 (e.g., site 1 “Changeability” of B05 is 0.875 and in A024 gene scope this value becomes 0.875
*1.0 (from site 4)= 0.875). In the case of more levels of site-gene, we propagate the calculation over all the levels.

The second aspect is about the optimization of the number of identical sites. Indeed, again with our example, in
gene B05, its site 5 is “Modularity” which is also present as site 7 of gene B14 “Testability” which replace
“Testability” site 2 in gene B05. Consequently, we sum the two probability values with a maximum of 1, paying
attention that we must first combine likelihood values of site 2 of B05 with site 7 of B14 (i.e., site replaced by a
gene with its site and therefore it requires to combine together the likelihood values).

The third aspect is related to the identical site optimization number. In fact, two identical sites sometimes cannot
be merged into one site because the result will be an incompatible gene overlap. Furthermore, since one of the
expected results for chromatid is to be able to localize each gene which composes the chromatid, and not only
to list all the distinct sites that compose the chromatid, a gene must be localized accurately at a specific locus but
also its sequence must be contiguous. Therefore, if a merge of two identical sites may result in the failure of one
of these two conditions, then the two identical sites must remain unmerged. Note, the site optimization may
result in the overlap of some genes whoever, we impose that the genes directly linked to the chromatid must not
be overlapped to retrieve the exact main quality characteristics of the chromatid.

Table 37 gives an example of two site sequence results for gene B05 “Maintainability”. The first one, on the left,
is the sequence obtained by replacing each site by the corresponding gene and it sites. The second one, on the
right, is the same sequence but optimized to reduce the number of similar sites. The quality coverage is identical,
and we remark that, for instance, we reduced the number of “modularity” sites from five occurrence to only two.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

174 | P a g e

TABLE 37 - EXAMPLE OF GENE 05 "MAINTAINABILITY" DETAILED WITH ALL ITS SUB-GENES AND SITES: ON THE LEFT SIDE, THE DIRECT
DETAILED SITE SEQUENCE, ON THE RIGHT THE DETAILED AND OPTIMIZED SITE SEQUENCE WITH SAME QUALITY COVERAGE

Detailed gene B05 “Maintainability” Detailed and optimized gene B05 “Maintainability”

Genes Sites Genes Sites

B05

A02

Extensibility

B05

A02

Extensibility
 Customizability Customizability
 Modularity Modularity

A15
Structuredness

A15
Structuredness

 Augmentability Augmentability

B14

 Self-descriptiveness Stability
 Accountability

B13
Standardization

 Accessibility Certification
 Communicativeness

B15

Consistency
 Structuredness Conciseness
 Simplicity Legibility
 Modularity Documentation availability
 Instrumentation Documentation readability and quality
 Test suite provided

B14

 Self-Descriptiveness
 Extensive component test case Structuredness

 Component tests in a specific
environment

 Instrumentation

 Proofs the components tests Test suite provided

A25
Presence of test suites Extensive component test case

Proofs of previous tests Component tests in a specific environment

A04

Component execution control Proofs the components tests

Component environment
control

A25
Presence of test suites

Component function feature
control

 Proofs of previous tests

A27
Error trace

A04

Component execution control

Performance trace Component environment control

B15

Code Readability Component function feature control
 Consistency

A27
Error trace

 Structuredness Performance trace
 Conciseness Accountability
 Legibility Accessibility
 Documentation availability Communicativeness

 Documentation readability and
quality

B10

 Simplicity

 Stability

B04

Modularity
 Modularity Data commonality

B10

 Self-Descriptiveness Communication commonality

A09
Presence of domain abstraction Co-existence

Reuse history Version compatibility
 Modularity Coupling

A10
Hardware independence Domain abstraction level

Software independence Architecture compatibility
 Coupling Cohesion
 Domain abstraction level Locability
 Architecture compatibility

A09
Presence of domain abstraction

 Cohesion Reuse history
 Locability A10 Hardware independence

Meta-Model: Software Quality Model Genome

175 | P a g e

B04

Data commonality Software independence

Communication commonality

Co-existence

Modularity

Version compatibility

 Consistency

 Conciseness

 Self-Descriptiveness

B13

Standardization

 Certification

By applying that final construction step against each of the seven chromatids, we are providing the sub-map of
chromatid linked genes and their corresponding site sequence, including likelihood values, in the following seven
sub-sections.

a. “General Utility” Chromatid (A08)
General utility perspective “reflects the actual uses to which evaluation of software quality would be put. In
general, when one is acquiring a software package, one is mainly concerned with three questions:

- How well (easily, reliably, efficiently) can I use it as is?

- How easy is it to maintain (understand, modify, and retest)?

- Can I still use it if I change my environment?”

(Source : Boehm et al. [42]).

This chromatid is composed of 27 quality characteristic genes linked together as depicted by Figure 86, subset of
the graph shown in Figure 84, and its complete “DNA” sequence made of 114 quality characteristic sites disclosed
in Figure 87.

Figure 86 - The 27 genes of “General utility” chromatid, with their respective links

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

176 | P a g e

Figure 87 - "General utility" chromatid quality characteristic sequence with its 27 genes and the 114 sites,

including sites likelihood

Meta-Model: Software Quality Model Genome

177 | P a g e

b. “Product Operation” Chromatid (A16)
The product operations perspective identifies “quality factors that influence the extent to which the software
fulfils its specification” (source: http://www.sqa.net/softwarequalityattributes.html and McCall et al. [41]).

This chromatid is composed of 17 quality characteristic genes linked together as depicted by Figure 88, subset of
the graph shown in Figure 84, and its complete “DNA” sequence made of 85 quality characteristic sites disclosed
in Figure 89.

Figure 88 - The 17 genes of “Product operation” chromatid, with their respective links

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

178 | P a g e

Figure 89 - "Product operation" chromatid quality characteristic sequence with its 17 genes and the 85 sites,
including sites likelihood

Meta-Model: Software Quality Model Genome

179 | P a g e

c. “Product Revision” Chromatic (A17)
The product revision perspective identifies “quality factors that influence the ability to change the software
product” (source: http://www.sqa.net/softwarequalityattributes.html and McCall et al. [41]).

This chromatid is composed of 15 quality characteristic genes linked together as depicted by Figure 90, subset of
the graph shown in Figure 84, and its complete “DNA” sequence made of 69 quality characteristic sites disclosed
in Figure 91.

Figure 90 - The 15 genes of “Product revision” chromatid, with their respective links

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

180 | P a g e

Figure 91 - "Product revision" chromatid quality characteristic sequence with its 15 genes and the 96 sites,

including sites likelihood

Meta-Model: Software Quality Model Genome

181 | P a g e

d. “Product Transition” Chromatid (A18)
The product transition perspective identifies “quality factors that influence the ability to adapt the software to
new environments” (source: http://www.sqa.net/softwarequalityattributes.html and McCall et al. [41]).

This chromatid is composed of 10 quality characteristic genes linked together as depicted by Figure 92, subset of
the graph shown in Figure 84, and its complete “DNA” sequence made of 43 quality characteristic sites disclosed
in Figure 93.

Figure 92 - The 10 genes of “Product transition” chromatid, with their respective links

Figure 93 - "Product transition" chromatid quality characteristic sequence with its 10 genes and the 43 sites,
including sites likelihood

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

182 | P a g e

e. “Supportability” Chromatid (A24)
Supportability perspective can be defined through a set of questions “Is it testable, extensible, serviceable,
installable, and configurable? Can it be monitored? How will system be extended? Who maintains the system?”
(source: Grady and Caswell [85]).

This chromatid is composed of 15 quality characteristic genes linked together as depicted by Figure 94, subset of
the graph shown in Figure 84, and its complete “DNA” sequence made of 72 quality characteristic sites disclosed
in Figure 95.

Note, this chromatid is close to “product revision” chromatid. Indeed, they are around 89% similar and thus
“Supportability” chromatid is a polymorphism variation of “product revision” chromatid, and vice-versa.

Figure 94 - The 15 genes of “Supportability” chromatid, with their respective links

Meta-Model: Software Quality Model Genome

183 | P a g e

Figure 95 - "Supportability" chromatid quality characteristic sequence with its 15 genes and the 72 sites,
including sites likelihood

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

184 | P a g e

f. “Product in Use” Chromatid (B08)
Product in use perspective “is the degree to which a product or system can be used by specific users to meet their
needs to achieve specific goals with effectiveness, efficiency, freedom from risk and satisfaction in specific contexts
of use” (source: ISO/IEC 25010 [23]).

This chromatid is composed of 11 quality characteristic genes linked together as depicted by Figure 96, subset of
the graph shown in Figure 84, and its complete “DNA” sequence made of 34 quality characteristic sites disclosed
in Figure 97.

Figure 96 - The 11 genes of “Product in use” chromatid, with their respective links

Figure 97 - "Product in use" chromatid quality characteristic sequence with its 11 genes and the 34 sites,
including sites likelihood

Meta-Model: Software Quality Model Genome

185 | P a g e

g. “Software Product” Chromatid (B12)
Software quality degree to which a software product satisfies stated and implied needs when used under
specified conditions (software quality has the same meaning as software product quality; (source: ISO/IEC 25010
[23]).

This chromatid is composed of 32 quality characteristic genes linked together as depicted by Figure 98, subset of
the graph shown in Figure 84, and its complete “DNA” sequence made of 195 quality characteristic sites disclosed
in Figure 99 and Figure 100.

Figure 98 - The 32 genes of “Software product” chromatid, with their respective links

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

186 | P a g e

Figure 99 - "Software product" chromatid quality characteristic sequence with its 32 genes and the 195 sites,
including sites likelihood (part 1 of 2)

Meta-Model: Software Quality Model Genome

187 | P a g e

Figure 100 - "Software product" chromatid quality characteristic sequence with its 32 genes and the 195 sites,
including sites likelihood (part 2 of 2)

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

188 | P a g e

6. Threats to validity and discussions
Through this eighth chapter, we detail the creation of a meta-model resulting from the aggregation of eight
existing software quality models. This aggregation is not a direct merge of these quality models but rather uses
an analogy with genetic to take into account not only the likelihood for each quality characteristics and sub-
characteristics to happen or exists in a particular quality perspective, but also to consider that a quality
characteristic, or sub-characteristic, may have some variations in their definition and naming, with a certain level
of probability too. The contributions are an analogy definition between quality modeling and genetic, a
construction algorithm and the first meta-model of software quality model genome made of seven quality
chromatids with their quality characteristic sequences, including their variations defined in Annex 14, and their
likelihoods to happen in each chromatid genes.

The overview shown in Figure 101 points out the complexity and length of each of these seven chromatids, as
well as the existence of two polymorphic chromatids: production revision and supportability.

Figure 101 - Overview of the software quality model genome meta-model composed of 7 chromatids

Moreover, during the meta-model elaboration, we noticed a certain level of subjectivity in grouping together
quality characteristics, or sub-characteristics, considering that they are potentially variations from each other.
Indeed, if they are similar (i.e., their names are identical, direct synonym, or have an identical definition) or are
distinct (i.e., their names are different, not synonym, and have disjoint definition), the grouping decision is thus
obvious and objective. Otherwise, the decision may be more or less subjective. This subjectivity impacts the
confidence of our meta-model, and therefore, to estimate the degree of subjectivity of the meta-model, we
calculate the ratio between the characteristic and sub-characteristic associations we have made subjectively over
the total number of characteristics and sub-characteristics. We find that the overall degree of subjectivity of the
meta-model is 20.65%, with supportability chromatid as the least subjective (i.e., 5.56%) and product transition
as the most subjective one (i.e., 34.88%). The calculation results are given in TABLE 38.

TABLE 38 - DEGREE OF SUBJECTIVITY FOR EACH CHROMATID OF THE SOFTWARE QUALITY MODEL GENOME META-MODEL

Chromatid Number of subjective sites Number of sites Percentage of subjectivity
General utility 23 114 20.18%
Product operation 23 85 27.06%
Product revision 4 69 5.80%
Product transition 15 43 34.88%
Supportability 4 72 5.56%
Product in use 6 34 17.65%
Software product 52 195 26.67%
Overall 127 615 20.65%

Meta-Model: Software Quality Model Genome

189 | P a g e

To add further quality characteristic nuances, include more valuable quality modeling contributions, and thus
consolidate these meta-model results, we must continue to integrate more software quality models, extending
the diversity scope to other software quality models (e.g., web-site [187], [258], web-services [12], COTS [201],
[259], open-source [189], [207], [260], IT software [191]). Note, the quality models that are candidate to be
integrated must have their definition with a proper completeness level. We aim “Y”, “Y+” and possible “P+” levels,
if we use Oriol et al. classification definition completeness level [12]:

- “Y (Yes): The (sub)characteristic is explicitly defined in the quality model.
- Y+ (Yes+): The (sub)characteristic is explicitly defined in the quality model and contains further subdivisions.

- P (Partially): The (sub)characteristic is not explicitly defined, but the quality model has a quality attribute or
metric which can be classified into this (sub)characteristic.

- P+ (Partially+): The (sub)characteristic is not explicitly defined, but the quality model has several quality
attributes or metrics which can be classified into this (sub)characteristic.

- ND (Not Defined): The (sub)characteristic is not defined, neither its quality attributes nor metrics.”

Regarding use of this meta-model, it was not the purpose of this chapter. However, the meta-model can be used
either as the input reference quality model of the 6-stages process for quality model development (see Chapter
VI.4.b), with quality characteristics and sub-characteristics likelihood emphasizing the most important ones, or as
is, with the likelihood values as weight factors, or again to develop a customized software quality model jointly,
or not, with GQM paradigm [28] for example.

Another kind of usage is the detection of characteristics that prevail to a specific domain, like Gordieiev et al.
[191] who were looking for the most important quality characteristics for IT-oriented software quality models
based on expert review and assessment. The analogy with genetic offers an alternate approach to resolve this
problematic. Indeed, the identification of prevailing quality characteristics for a specific domain can be solved
similarly to the genetic disease identification thanks to non-parametric linkage technic [255]: genes at specific set
of locus are looked for in a sample set, combining both healthy and sick samples; if a correlation is found between
a set of those locus and the disease under investigation, then the disease is a genetic one and is associated to this
specific set of locus. Nevertheless, a study must be performed to confirm the benefit of this genetic approach on
sample sets, for instance, for web-services [12] and open-source [189], [207], [260] software quality models.

Finally, through a unique and innovative approach relying on an analogy with genetic, we successfully construct
a metal-model against the software engineering domain Nevertheless, there is no restriction to apply such
construction of quality model genome meta-model to any types of domain (e.g., architecture, socio-economic,
systems engineering) which confirms that this achievement is another original contribution to qualimetry, the
science of quality quantification.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

190 | P a g e

General Synthesis and Research Perspectives

191 | P a g e

Chapter IX. General Synthesis and Research Perspectives
The objective of the thesis conducted us to define a theoretical framework for the supervision and piloting of
engineering processes and product development through quality.

This work has led to multiple contributions, partially valued in the form of two international conference papers
(cf. Argotti et al. [167], [230]). Above all, it was highlighted the need to have an exhaustive and in-depth study of
existing quality models in the literature in order to be able to go further in consolidated conceptual and
methodological proposals, and before being able to consider any application.

The purpose of this final thesis chapter is to conclude the three research work years synthetized in this document.
Consequently, in the next two sections, we are successively reviewing a synthesis of the research path together
with the related contributions, and then explore the resulting main research perspectives.

1. General synthesis
In Chapter I, we posed the thesis research problematic, “Study of Qualimetry essentials applied to embedded
software development”, that we rephrased into “strengthen and unify the definition, assessment, control, or
prediction of the embedded software quality”, with regard to our industrial context. We initiated its analysis,
identifying the four following research questions:

Research Question 1
Is Qualimetry, as the science of quality quantification, the right approach and
what are quality and Qualimetry essentials?

Research Question 2
Considering the set of software quality models, how to identify and decide
which quality model is the most suitable for embedded software?

Research Question 3 Considering a quality model for a software product, how to operationalize it?

Research Question 4 Can we have a unique reference quality model for software product?

We deepened then this analysis through Chapter II. We remarked that the automotive industrial context jointly
with the vehicle as complex system, the development model with suppliers, and the current standard and
regulation requirements are raising the overall complexity of our problematic. Therefore, in this context it is
critical to have a unified, operational, and appropriate way to define, assess, control, or predict quality of
embedded software.

In order to verify if such unified, operational and appropriate solution for quality of embedded software already
existed, we performed an exploratory literature review about “how quality modeling is applied to embedded
software”. We found the existence of a myriad of possible embedded systems and software, each of them with
their own specificities, quality characteristics, and possibly a diversity of quality models. So, it appeared that there
was no right and unique solution yet to our question.

Consequently, we refined these four research questions into 15 research sub-questions and then detailed our
research methodology in Chapter III. In this chapter, furthermore, we explained our research methodology
realignment highlighting not only the difficulties in the selection of a proper quality model for embedded
software, but also the consequences of such selection in discarding many valuable contributions.

Afterwards, we addressed these research questions from Chapter IV to Chapter VIII.

Research Question 1
Is Qualimetry, as the science of quality quantification, the right approach and
what are quality and Qualimetry essentials?

Thus, through Chapter IV, we explored the essence of quality (i.e. research sub-question 1a), and quality modeling
particularly in software field (i.e., research sub-questions 1b). We defined, clarified these knowledges and the
related concepts (e.g., perceived quality, quality perspectives, quality dimensions and characteristics, quality
model, measurements, scale), and concluded this exploration with the build of the first timeline of the key
contributions to software quality modeling, going from 1965 with the first appearance of software engineering

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

192 | P a g e

concept [32] to 2015 with Azgaldov et al. and the ABC of Qualimetry [113]. Next, we looked for Qualimetry,
acknowledging that we had the correct comprehension of the young science of quality quantification, before
demonstrating that the right approach for our needs is Qualimetry (i.e., research sub-question 1c).

During this investigation, we noted that Qualimetry was often misunderstood. Therefore, we start to contribute
to that science by popularizing it, summarizing its major concepts under a synthetic view: the “House of
Qualimetry” and its 6 pillars. We also remarked that it was possible to unify diversity and time evolution in quality
modeling (i.e., research sub-question 1d) by finding our inspiration in genetic, and thus introducing the concept
of polymorphism (i.e., ad hoc, universal and temporal polymorphism) in quality modeling. To complete this
contribution, we proposed and proved that using a genetic diversity-based formula [86] was more appropriate
for comparing quality models together (i.e., research sub-question 2c) than Hamming’s distance, for example,
and proposed a new measurement process cadenced with system and software life cycle to integrate temporal
polymorphism.

Research Question 2
Considering the set of software quality models, how to identify and decide
which quality model is the most suitable for embedded software?

The focus of Chapter V was to deep dive in the literature to retrieve existing software quality models, and then
determine which quality model could be selected to serve our needs with embedded software (i.e., research
question 2). To carry out this undertaking, we conducted a systematic literature review where we identified and
analyzed 136 study papers published during a period from 1979 to 2019. The result of this review, combined with
snowballing approach, as described by Wohlin [215], [216] and which consists in exploiting each referenced
papers as additional source of study papers, was the retrieval of 492 software quality models from 1968 to 2019
(i.e., research sub-question 2a). This software quality model list is a unique contribution since it represents a
collection of 10 times the maximum we found in published papers: Oriol et al. [12] enumerated 48 quality models
linked to web-services. Note, in Kläs et al. [97], the authors claimed that they have provided a classification for
about 80 quality models, nevertheless we failed to retrieve that list of quality models, even in the referenced
papers of that study or in the authors publication.

Strong of the systematic literature review results and speaking about classification, our next contribution was to
propose the usage of cladistic as classification method for the software quality models (i.e., research sub-question
2b). For that reason, the classification scheme was made of 20 software quality models classification elements
organized over five themes (i.e., id, bibliographic, definition, scope and structural), and then declined into
software quality model clades: homology-based (i.e., similarity related to shared ancestry) and taxa (i.e.,
conceptual entities).

Although we started to use a subset of these taxa to classify these 492 quality models, they were enough to
succeed on depicting a software quality model landscape. We found that these models were designed principally
for quality assessment and then for prediction, they are usually hierarchical except for prediction, where statistic
or implicit formalism is better adapted, with a scope often put on product, and a quality perspective equally
distributed over manufacturer, user, and product perspectives. In addition, our contribution on software quality
model landscape rectified Thapar et al. [11] postulate about quality model evolution (i.e., basic quality models
before 2000 and tailored quality models since 2000). Indeed, we showed that this evolution is articulated around
three periods: up to 1990, we have the basic quality model period, from 1990 to 2003, the transition period, and
since 2003, we are in the quality model tailoring period.

At last, the conclusion of this chapter confirmed the inadequacy to have a unique reference quality model
covering all software product cases (i.e., research sub-question 4a), and suggested the selection, as well the
customization, of the latest quality model standard, ISO / IEC / IEEE 25010, to generate an appropriate model for
embedded software in automotive domain (i.e., research sub-question 2d)

Research Question 3 Considering a quality model for a software product, how to operationalize it?

In Chapter VI, our aim was to investigate the transition from quality model theory to practice, and more
particularly about the quality model operationalization (i.e., research question 3). This operational aspect is

General Synthesis and Research Perspectives

193 | P a g e

critical to develop and deploy quality model against real word use case, or to succeed in replicating and benefiting
of quality model studies.

So, during our study, we identified a list of 16 distinct challenges or issues that prevent development and use of
software quality models (i.e., research sub-question 3a), and we succeeded afterwards to associate practical
solutions (i.e., solutions related to experiences, real situations or actions that are possible to reproduce, reuse or
deploy) to each of these 16 challenges (i.e., research sub-question 3b).

The consolidated synthesis of these issue identification and resolution was achieved through the proposal of two
complementary processes (i.e., research sub-question 3c):

- The “6 stages” process focuses on quality model operational development, with an analysis algorithm based
on survey, Fleiss and Cohen Kappa ; this algorithm, used for quality model construction, takes into account
constraint, stakeholder point of view and allows to determine automatically the quality characteristics and
sub-characteristics weight factors.

- The “Quality Thermometer” process focuses on quality model operational use; therefore, it includes the “6-
stages” process since one of the early stages of quality model usage concerns the quality model
development.

The innovative parts of these two process contributions are the transparent encapsulation of the practical
solutions and the use of polymorphism concept.

Next to the thinking and proposals about theory to practice transition, Chapter VII reflected the put into practice
of our findings and contributions against our real-world use case: embedded software for the automotive industry
(i.e., research sub-question 3d).

Thus, we decided to apply them against a subset of the vehicle embedded software (i.e., three electronic control
units – IVI, IVC, ADAS- with their own embedded software and a transversal embedded software functionality –
FOTA). The result was the creation of three distinct polymorphic quality models with their respective weight
factors. We noticed in the result the existence of two levels of polymorphic quality model inheritance, and a joint
quality model for ADAS and FOTA. Furthermore, all the construction steps, detailed in this chapter, can serve as
proofed guidelines to perform quality modeling against any software or systems.

Finally, this success on quality model operational development for a real word use case from automotive domain,
not only allowed us to answer to the company needs, but also demonstrated the merits and relevance of our
findings and contributions.

Research Question 4 Can we have a unique reference quality model for software product?

As a subsidiary chapter, since we already answered to the company demand, Chapter VIII objective was to go one
step further in the exploration of a reference software quality model. Indeed, Chapter V concludes on the
inadequacy to have a unique reference quality model covering all software product cases and accordingly we
could elaborate rather a quality meta-model, gathering knowledge from existing quality models, which could be
used a basis for developing new quality model.

Continuing with genetic, we found that a certain level of analogy could be achieved between DNA sequences and
quality characteristics and sub-characteristics sequence. Moreover, likes in DNA sequences, variation of quality
characteristics and sub-characteristics may exist with a certain level of likelihood, recalling the polymorphism
concept. So, the basis of our quality meta-model contribution relied on this analogy which was also captured into
a meta-model ontology.

After the detailed design of the meta-model construction algorithm (i.e., research sub-question 4b), we selected
a set of eight existing software quality models to initiate the creation of the meta-model first version (i.e.,
research sub-question 4c). The result of this unique and final contribution is the software quality genome
composed of 7 chromatids: general utility, product operation, product revision, product transition, supportability,
product in use and software product.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

194 | P a g e

The thesis research work and achievements are summarized also in the global synthesis done in Figure 102.

Figure 102 - General synthesis of the thesis research work and achievements

General Synthesis and Research Perspectives

195 | P a g e

2. Research Perspectives
This comprehensive and in-depth research study on software quality models is the beginning of an exciting but
hectic journey in the field of Qualimetry. The resulting research perspectives shed light on the first directions this
journey should take. There are three of them, namely: valorization, consolidation, and exploration.

- Valorization perspectives: the intend behind these perspectives is not only to share more widely our
research findings and contributions with the academic and industrial community, but also to improve our
proposal through feedback and measurement of effectiveness, as well as to promote its appropriation and
adaptation, through a strategy of deployment in company accompanied by training and tooling. The
timeframe for this kind of perspective is mainly between short-term and mid-term period.

Thus, one way to achieve the information sharing is to rely on literature media. We planned to gather the
following finding and contribution into several research paper submissions:

o Systematic literature review with snowballing resulting in a unique list of 492 software quality
model,

o Software quality model classification based on cladistic,

o Software quality model landscape and correction of Thapar et al.’s postulate,

o From theory to practice analysis resulting in 16 operationalization challenges and their practical
solutions,

o The processes to develop and use quality model, encapsulating practical solutions, and exemplified
against an example from automotive,

o Polymorphism quality model in practice,

o Software quality model genome meta-model, including the construction algorithm, and the 7
chromatids of the first meta-model result.

Furthermore, and as we already raised in Chapter V.5, an online portal tool must be created to spread the
sharing of the 492 software quality model collection and enable the collaboration for their use, completion
and maintenance. The motivation behind is to allow the academic and industrial community to collaborate
on this collection and avoid that this list becomes obsolete within the coming years.

An alternate way to enhance the value of our research results is to industrialize, scale and deploy against
actual production systems the thesis contributions. However, if we measure the technology maturity of our
thesis achievements using the Technology Readiness Level (TRL) [261] scale, we are currently reaching level
4, that is to say technology has been validated in laboratory environment, while industrialization, scaling and
deployment mean a level of 9. Hopefully, we can use the TRL to guide us on the path of the technology
readiness.

- Consolidation perspectives: this second kind of research perspectives lead us to continue the consolidation
of our current findings and contributions both from a research and development point of views. The
timeframe for this type of research perspective is at least mid-term. The following paragraphs briefly describe
the primary research and development directions.

Regarding the quality model collection and classification, the consolidation means that we have to create the
right tool and data model to gather, store and classify properly at minimum the 492 found quality models.
Then, we should be able to perform full classification based on cladistics and takes all benefits from these
related contributions.

On the meta-model side, that research perspective indicates that we must first complete the implementation
of a tool for the automatic meta-model construction, and next, integrate more quality models in the meta-
model during its construction. One of the expected results linked to more quality model inclusions in the
metal-model is to strengthen the convergence of the most relevant and important quality characteristics and
sub-characteristics. A further meta-model enhancement will be the integration of metrics.

Concerning quality model development consolidation perspective, we aim to use the meta-model as the
referenced quality model, foster quality model reuse through polymorphism, and build a tool to automate
the “6-stages” process for quality model development, including metrics consideration. In parallel, the
practical quality modeling for an entire complex system such as an entire vehicle should be handled.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

196 | P a g e

Similarly, to consolidate quality model usage with the “Quality Thermometer” process, the tooling aspect
must be addressed and should cover at least: the transparent use of polymorphic quality model, automated
operational deployment and execution of quality models and their metrics, online dashboard and scorecard
with data mining capability to enable prediction and prescription.

- Exploration perspectives: the objectives of such research perspectives are to explore, and study open
problems related to Qualimetry, quality model or modeling. Consequently, the corresponding timeframe
basis for that research work is long-term. A certain number of open problems has been already captured.

The first problem is about the assessing, or predicting, the value brough by quality model development and
use. This is a recurrent question often coming from company leaders to accept Qualimetry activity cost.
However, this question remains unanswered despite few research studies such as Khoshgoftaar et al. [173]
whose initiate the construction of quality modeling activity cost-benefit model based on the assumption of
quality model reuse over multiple software releases, Porta [262] with a survey on cost-benefit -analysis
model for quality assurance, or the integral quality composed of quality and cost effectiveness (see Chapter
IV.2.a).

A second type of problem is the formal definition and generalization of thresholds to assess, control or
predict objectively that a quality level of a product, for instance, is good. Unfortunately, we usually have
neither universal (i.e., commonly agreed) acceptance, reference, nor target threshold. One way to go around
that problem is to define a target, or an acceptance threshold based on previous results obtained from
identical product, like a previous software release. Thus, we remove the problem by considering only the
progress compare to previous achievements. Nevertheless, the original problem remains intact even if there
are few minor industrial attempts like the 15 acceptance ranges from the automotive HIS source code metrics
[263].

The third category of problem relates to the modeling generalization of quality trajectory and its velocity.
One parallel problem is about the discontinuity that may exist between assessment and prediction model
with identical scope and quality perspective but with distinct model formalisms.

Finally, the last set of problem encompasses modeling of contemporary quality area of interest and where
some research studies have been initiated but not yet solved the problem. We can cite for example:

o Software greenness and sustainability,
o Software aging and obsolescence,

o Quality data for connected software systems and services.

References

197 | P a g e

References
[1] “Enquête Nationale : les Coûts de la Non-Qualité dans l’Industrie.” Afnor Group (in French), Oct. 2017.

[Online]. Available: http://auditeur.afnor.org/wp-content/uploads/2018/02/Enqu%C3%AAte-nationale-les-
co%C3%BBts-de-la-non-qualit%C3%A9-dans-lindustrie.pdf

[2] G. G. Azgaldov et al., “Qualimetry: the Science of Product Quality Assessment,” Standart y i kachest vo, no.
1, 1968.

[3] “ISO 26262-6:2011 - Road vehicles - Functional safety - Part 6: Product development at the software level,”
International Organization for Standardization, 2011.

[4] “ARP4754A - Guidelines for Development of Civil Aircraft and Systems,” SAE International, Dec. 2010,
[Online]. Available: https://www.sae.org/standards/content/arp4754a/

[5] “DO-178C - Software Considerations in Airborne Systems and Equipment Certification,” Radio Technical
Commission for Aeronautics, Dec. 2011, [Online]. Available:
https://my.rtca.org/NC__Product?id=a1B36000001IcmqEAC

[6] Zouheyr Tamrabet, Toufik Marir, and Farid MOKHATI, “A Survey on Quality Attributes and Quality Models
for Embedded Software,” International Journal of Embedded and Real-Time Communication Systems
(IJERTCS), vol. 9, no. 2, pp. 1–17, 2018, doi: 10.4018/IJERTCS.2018070101.

[7] P. Rioux, “Le CNRS et Lacroix créent à Toulouse un laboratoire dédié aux systèmes pyrotechniques,” La
Dépêche du Midi, Nov. 2016, [Online]. Available: https://www.ladepeche.fr/article/2016/11/22/2463658-
cnrs-lacroix-creent-toulouse-laboratoire-dedie-systemes-pyrotechniques.html

[8] “LAAS - Laboratory presentation.” https://www.laas.fr/public/en/laboratory-presentation (accessed Oct. 15,
2020).

[9] R. E. Fairley, Systems Engineering of Software-Enabled Systems, IEEE Press. John Wiley & Sons, 2019.

[10] M. Kläs, J. Heidrich, J. Münch, and A. Trendowicz, “CQML Scheme: A Classification Scheme for
Comprehensive Quality Model Landscapes,” in 2009 35th Euromicro Conference on Software Engineering
and Advanced Applications, Aug. 2009, pp. 243–250. doi: 10.1109/SEAA.2009.88.

[11] S. S. Thapar, P. Singh, and S. Rani, “Challenges to the Development of Standard Software Quality Model,”
International Journal of Computer Applications, vol. 49, no. 10, Jul. 2012.

[12] M. Oriol, J. Marco, and X. Franch, “Quality Models for Web Services: A Systematic Mapping,” Information
and Software Technology, vol. 56, no. 10, pp. 1167–1182, Oct. 2014, doi: 10.1016/j.infsof.2014.03.012.

[13] D. D. Walden, G. J. Roedler, K. J. Forsberg, D. R. Hamelin, and T. M. Shortell, Systems Engineering Handbook:
a Guide for System Life Cycle Processes and Activities, Fourth. Wiley, 2015.

[14] United States Department of Transportation, “Architecture Reference for Cooperative and Intelligent
Transportation (ARC-IT) - version 8.3 of the National ITS Reference Architecture,” Oct. 14, 2019.
http://local.iteris.com/arc-it/index.html (accessed Nov. 02, 2020).

[15] D. Crolla, D. E. Foster, T. Kobayashl, and N. Vaughan, “Encyclopedia of Automotive Engineering , Chapter14.”
p. 4101, Feb. 2015.

[16] “ISO/PAS 21448:2019 Road vehicles - Safety of the intended functionality,” International Organization for
Standardization, Jan. 2019, [Online]. Available: https://www.iso.org/standard/70939.html

[17] “ISO/SAE DIS 21434 Road vehicles - Cybersecurity engineering (under development),” International
Organization for Standardization, 2020, [Online]. Available: https://www.iso.org/standard/70918.html

[18] L. Caudet, V. Von Hammerstein-Gesmold, and M. Noyon, “Agreement on Commission proposal to tighten
rules for safer and cleaner cars,” European Commission, Dec. 2017, [Online]. Available:
https://ec.europa.eu/commission/presscorner/detail/en/IP_17_5131

[19] European Parliament, “Regulation (EU) 2016/679 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation),” Apr. 27, 2016. https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:32016R0679

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

198 | P a g e

[20] C. Perez, Technological Revolutions and Financial Capital: The Dynamics of Bubbles and Golden Ages. Edward
Elgar Publishing Ltd, 2003.

[21] VDA QMC Working Group 13 / Automotive SIG, “Automotive SPICE Process Assessment / Reference Model.,
version 3.1 - revision 656.” Nov. 01, 2017. [Online]. Available:
http://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf

[22] K. Forsberg and H. Mooz, “The Relationship of Systems Engineering to the Project Cycle,” First Annual
Symposium of the National Council On Systems Engineering (NCOSE), Oct. 1991.

[23] “ISO/IEC 25010:2011 - Systems and software engineering – Systems and software Quality Requirements and
Evaluation (SQuaRE) – System and software quality models,” International Organization for Standardization,
2011, [Online]. Available: https://www.iso.org/standard/35733.html

[24] “ISO/IEC 9126-1:2001 - Software engineering - Product quality - Part1: Quality Model,” International
Organization for Standardization, 2001, [Online]. Available: https://www.iso.org/standard/22749.html

[25] “ISO/CEI 25000:2005 - Systems and software engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - Planning and management,” International Organization for Standardization, 2005,
[Online]. Available: https://www.iso.org/standard/35683.html

[26] B. Kitchenham and S. Pfleeger, “Software quality: the elusive target,” IEEE Software, vol. 13, no. 1, pp. 12–
21, 1996.

[27] S. Wagner, Software Product Quality Control, Springer-Verlag Berlin Heidelberg. 2013.

[28] V. Basili, G. Caldiera, and H. D. Rombach, “Goal Question Metric Approach,” Encyclopedia of Software
Engineering, John Wiley & Sons, Inc., pp. 528–532, 1994.

[29] H. Y. Jeong and Y. H. Kim, “A Quality Model of Lightweight Component for Embedded System,” Applied
Mechanics and Materials, vol. 121–126, pp. 4907–4911, 2012, doi: 10.4028/www.scientific.net/AMM.121-
126.4907.

[30] J. Adams, H. T. Khan, R. Raeside, and D. I. White, Research methods for graduate business and social science
students. SAGE publications India, 2007. [Online]. Available:
http://lib.mitc.edu.vn/bitstream/123456789/13168/1/7.pdf

[31] B. Kitchenham and S. Charters, Guidelines for performing Systematic Literature Reviews in Software
Engineering. 2007.

[32] E. C. Berkeley, M. M. Berlin, L. L. Lovett, and N. D. MacDonald, Eds., “The Computer Directory and Buyer’s
Guide,” in Computers and Automation, Jun. 1965, vol. 14. [Online]. Available: http://bitsavers.trailing-
edge.com/pdf/computersAndAutomation/196506.pdf

[33] R. J. Rubey and R. D. Hartwick, “Quantitative measurement of program quality,” in Proceedings of the 1968
23rd ACM national conference (ACM ’68), New York, NY, USA, 1968, pp. 671–677. doi:
http://dx.doi.org/10.1145/800186.810631.

[34] M. L. Shooman, Probabilistic reliability: an engineering approach. New York, N.Y.: McGraw-Hill, 1968.

[35] J. Lepistö, “Embedded Software Testing Methods,” Bachelor of Engineering Thesis, Helsinki Metropolia
University of Applied Sciences, 2012. [Online]. Available:
https://www.theseus.fi/bitstream/handle/10024/46873/Lepisto_ Juho.pdf?sequence=1

[36] A. Alvaro, E. S. De Almeida, and S. L. Meira, “A Software Component Quality Model: A Preliminary
Evaluation,” in 32nd EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO’06), Sep. 2006, pp. 28–37. doi: 10.1109/EUROMICRO.2006.13.

[37] F. Carvalho and S. Meira, “Towards an Embedded Software Component Quality Verification Framework,” in
2009 14th IEEE International Conference on Engineering of Complex Computer Systems, Jun. 2009, pp. 248–
257. doi: 10.1109/ICECCS.2009.26.

[38] M. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capability Maturity Model for Software v1.1,” Software
Engineering Institute, Pittsburgh, Pennsylvania, CMU/SEI-93-TR-24, 1993.

[39] Y. Choi, S. Lee, H. Song, J. Park, and S. Kim, “Practical S/W component quality evaluation model,” 2008, vol.
1, pp. 259–264. doi: 10.1109/ICACT.2008.4493757.

References

199 | P a g e

[40] IEEE Std 1061-1998, “textitIEEE Standard for a Software Quality Metrics Methodology, R2009, Revision of
IEEE Std 1061.” 1992.

[41] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in Software Quality,” Griffiths Air Force Base, N.Y.
Rome Air Development Center Air Force Systems Command, 1977.

[42] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative Evaluation of Software Quality,” in Proceedings of
the 2nd International Conference on Software Engineering (ICSE ’76), Los Alamitos, CA, USA, 1976, pp. 592–
605. [Online]. Available: http://dl.acm.org/citation.cfm?id=800253.807736

[43] C. Peper and D. Schneider, “On runtime service quality models in adaptive ad-hoc systems,” in Proceedings
of the 2009 ESEC/FSE workshop on Software integration and evolution @ runtime, Amsterdam, The
Netherlands, 2009, pp. 11–18. [Online]. Available: https://doi.org/10.1145/1596495.1596500

[44] W. H. DeLone and E. R. McLean, “Information systems success: The quest for the dependent variable,”
Information systems research, vol. 3, no. 1, pp. 60–95, 1992.

[45] H. Y. Jeong and Y. H. Kim, “A Design of Software Quality Model for Embedded System,” Applied Mechanics
and Materials, vol. 157–158, pp. 680–683, 2012, doi: 10.4028/www.scientific.net/AMM.157-158.680.

[46] H.-Y. Jeong and Y.-H. Kim, “A system software quality model using DeLone & McLean model and ISO/IEC
9126,” International Journal of Digital Content Technology and its Applications, vol. 6, no. 5, pp. 181–188,
2012.

[47] H. Jeong, “The Practical Quality Model for Embedded System and Software,” in 2013 16th International
Conference on Network-Based Information Systems, Sep. 2013, pp. 288–291. doi: 10.1109/NBiS.2013.44.

[48] A. Mayr, R. Plösch, M. Kläs, C. Lampasona, and M. Saft, “A Comprehensive Code-Based Quality Model for
Embedded Systems: Systematic Development and Validation by Industrial Projects,” in 2012 IEEE 23rd
International Symposium on Software Reliability Engineering, Nov. 2012, pp. 281–290. doi:
10.1109/ISSRE.2012.4.

[49] G. Dromey, “A Model for Software Product Quality,” IEEE Transactions on Software Engineering, vol. 146,
no. 21, 1995.

[50] A. Trendowicz and T. Punter, “Quality Modeling for Software Product Lines,” 2003.

[51] D. Ahrens, A. Frey, A. Pfeiffer, and T. Bertram, “Objective evaluation of software architectures in driver
assistance systems,” Computer Science - Research and Development, vol. 28, no. 1, pp. 23–43, Feb. 2013,
doi: 10.1007/s00450-011-0185-x.

[52] K. T. Al-Sarayreh, “A Quality Requirements Safety Model for Embedded and Real Time Software Product
Quality,” in Recent Advances in Computer Science, Kuala Lumpur, Malaysia, Apr. 2015, pp. 200–206.

[53] N. Silva and M. Vieira, “Software for Embedded Systems: A Quality Assessment Based on Improved ODC
Taxonomy,” in Proceedings of the 31st Annual ACM Symposium on Applied Computing, New York, NY, USA,
2016, pp. 1780–1783. doi: 10.1145/2851613.2851908.

[54] R. Chillarege et al., “Orthogonal defect classification-a concept for in-process measurements,” IEEE
Transactions on software Engineering, vol. 18, no. 11, pp. 943–956, Nov. 1992, doi: 10.1109/32.177364.

[55] L. Garces, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagaw, “Quality attributes and quality models for
ambient assisted living software systems: A systematic mapping,” INFORMATION AND SOFTWARE
TECHNOLOGY, vol. 82, pp. 121–138, Feb. 2017, doi: 10.1016/j.infsof.2016.10.005.

[56] L. Garcés, F. Oquendo, and E. Y. Nakagawa, “A Quality Model for AAL Software Systems,” in 2016 IEEE 29th
International Symposium on Computer-Based Medical Systems (CBMS), Jun. 2016, pp. 175–180. doi:
10.1109/CBMS.2016.46.

[57] S. Kasiviswanathan and D. Ramalingam, “Development and application of user review quality model for
embedded system,” Microprocessors and Microsystems, vol. 74, p. 103029, Apr. 2020, doi:
10.1016/j.micpro.2020.103029.

[58] N. Kano, N. Seraku, F. Takahashi, and S. Tsuji, “Attractive Quality and Must-Be Quality [in Japanese],” Journal
of the Japanese Society for Quality Control, vol. 14, no. 2, pp. 147–156, Apr. 1984.

[59] R. W. Saaty, “The analytic hierarchy process—what it is and how it is used,” Mathematical Modelling, vol. 9,
no. 3, pp. 161–176, Jan. 1987, doi: 10.1016/0270-0255(87)90473-8.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

200 | P a g e

[60] Y.-M. Zhu, “Software Failure Mode and Effects Analysis,” in Failure-Modes-Based Software Reading, Y.-M.
Zhu, Ed. Cham: Springer International Publishing, 2017, pp. 7–15. doi: 10.1007/978-3-319-65103-3_2.

[61] J. G. Wijnstra, “Quality attributes and aspects of a medical product family,” Proceedings of the Hawaii
International Conference on System Sciences, p. 284, 2001, doi: 10.1109/HICSS.2001.927254.

[62] A. Purhonen, “Quality attribute taxonomies for DSP software architecture design,” in Lecture Notes in
Computer Science, Berlin, Apr. 2002, vol. 2290, pp. 238–247. doi: 10.1007/3-540-47833-7_21.

[63] M. Barbacci, M. H. Klein, T. A. Longstaff, and C. B. Weinstock, “Quality Attributes,” Carnegie Mellon
University, Technical Report (CMU/SEI-95-TR-021), ESC-TR-95-021, 1995.

[64] M. Akerholm, J. Fredriksson, K. Sandström, and I. Crnkovic, “Quality attribute support in a component
technology for vehicular software,” Linköping, Sweden, 2004, pp. 1–9.

[65] M. Larsson, “Predicting Quality Attributes in Component-based Software Systems,” PhD Thesis, Mälardalen
University, 2004. [Online]. Available: http://www.es.mdh.se/publications/575-

[66] M. Paulitsch, H. Ruess, and M. Sorea, “Non-functional Avionics Requirements,” in Communications in
Computer and Information Science, Berlin, Heidelberg, 2008, vol. 17, pp. 369–384. doi: 10.1007/978-3-540-
88479-8_26.

[67] T. Sherman, “Quality attributes for embedded systems,” 2008, pp. 536–539. doi: 10.1007/978-1-4020-8741-
7_95.

[68] M. Guessi, E. Y. Nakagawa, F. Oquendo, and J. C. Maldonado, “Architectural description of embedded
systems: a systematic review,” in Proceedings of the 3rd international ACM SIGSOFT symposium on
Architecting Critical Systems, Bertinoro, Italy, 2012, pp. 31–40. [Online]. Available:
https://doi.org/10.1145/2304656.2304661

[69] L. Oliveira et al., “An investigation on quality models and quality attributes for embedded systems,” ICSEA,
vol. 13, pp. 1–6, 2013.

[70] H.-Y. Jeong, J. H. Park, and Y.-S. Jeong, “An ANP-Based Practical Quality Model for a Secure Embedded System
with Sensor Network,” International Journal of Distributed Sensor Networks, vol. 10, no. 2, p. 505242, Feb.
2014, doi: 10.1155/2014/505242.

[71] T. Bianchi, D. S. Santos, and K. R. Felizardo, “Quality Attributes of Systems-of-Systems: A Systematic
Literature Review,” in THIRD INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR SYSTEMS-OF-
SYSTEMS SESOS 2015, 2015, pp. 23–30. doi: 10.1109/SESoS.2015.12.

[72] T. Khoshgoftaar and E. B. Allen, “Predicting fault-prone software modules in embedded systems with
classification trees,” in Proceedings 4th IEEE International Symposium on High-Assurance Systems
Engineering, Nov. 1999, pp. 105–112. doi: 10.1109/HASE.1999.809481.

[73] T. Khoshgoftaar, B. Cukic, and N. Seliya, “Predicting Fault-Prone Modules in Embedded Systems Using
Analogy-Based Classification Models,” Int. J. Soft. Eng. Knowl. Eng., vol. 12, no. 02, pp. 201–221, Apr. 2002,
doi: 10.1142/S0218194002000883.

[74] X. He and Y. Li, “Software reliability analysis on embedded system based on SFMEA and SFTA model,” in 2012
International Conference on Systems and Informatics (ICSAI2012), May 2012, pp. 2471–2474. doi:
10.1109/ICSAI.2012.6223554.

[75] J. Liu, Y. Chen, L. Zhang, J. Deng, and W. Zhang, “The Evaluation of the Embedded Software Quality Based on
the Binary Code,” in 2016 IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS-C), Aug. 2016, pp. 167–170. doi: 10.1109/QRS-C.2016.26.

[76] A. L. Goel and K. Okumoto, “Time-Dependent Error-Detection Rate Model for Software Reliability and Other
Performance Measures,” IEEE Transactions on Reliability, vol. R-28, no. 3, pp. 206–211, Aug. 1979, doi:
10.1109/TR.1979.5220566.

[77] S. Juneja, A. Juneja, and R. Anand, “Reliability Modeling for Embedded System Environment compared to
available Software Reliability Growth Models,” in 2019 International Conference on Automation,
Computational and Technology Management (ICACTM), Apr. 2019, pp. 379–382. doi:
10.1109/ICACTM.2019.8776814.

References

201 | P a g e

[78] K. Rohloff, J. Loyall, and R. Schantz, “Quality Measures for Embedded Systems and Their Application to
Control and Certification,” SIGBED Rev., vol. 3, no. 4, pp. 58–62, Oct. 2006, doi: 10.1145/1183088.1183095.

[79] M. F. S. Oliveira, R. M. Redin, L. Carro, L. d. C. Lamb, and F. R. Wagner, “Software Quality Metrics and their
Impact on Embedded Software,” in 2008 5th International Workshop on Model-based Methodologies for
Pervasive and Embedded Software, Apr. 2008, pp. 68–77. doi: 10.1109/MOMPES.2008.11.

[80] I. Stürmer and H. Pohlheim, “Model Quality Assessment in Practice: How to Measure and Assess the Quality
of Software Models During the Embedded Software Development Process,” Toulouse, France, Feb. 2012.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-02263433

[81] J. Bouquet et al., “Model Quality Objectives for embedded software development with MATLAB and
Simulink,” Toulouse, France, Jan. 2018. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02156122

[82] M. M. Lehman, “Programs, Life Cycles, and Laws of Software Evolution,” In Proceedings of the IEEE, vol. 68,
no. 8, pp. 1060–1076, Sep. 1980.

[83] S. Wagner, K. Lochmann, S. Winter, A. Goeb, M. Kläs, and S. Nunnenmacher, “Software Quality Models in
Practice: Survey Results,” Technische Universität München Insitut für Informatik, TUM-I19, 2012. [Online].
Available: http://mediatum.ub.tum.de/doc/1110601/1110601.pdf

[84] G. Horgan, S. Khaddaj, and P. Forte, “An essential views model for software quality assurance,” 1999, pp.
387–396.

[85] R. B. Grady and D. L. Caswell, Software Metrics: Establishing a Company-Wide Program. Englewood Cliffs,
New Jersey, USA: Prentice Hall, Inc., 1987.

[86] M. Nei and W.-H. Li, “Mathematical model for studying genetic variation in terms of restriction
endonucleases,” in In Proceedings of the National Academy of Science of the USA, Oct. 1979, vol. 76, pp.
5269–5273.

[87] R. Hamming, “Error-Detecting and Error-Correcting Codes,” Bell System Technical Journal, vol. 29, no. 2, pp.
147–160, 1950.

[88] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and Reversals,” Soviet Physics
Doklady, vol. 10, p. 707, Feb. 1966.

[89] F. J. Damerau, “A Technique for Computer Detection and Correction of Spelling Errors,” Communications of
the ACM, vol. 7, no. 3, pp. 171–176, Mar. 1964, doi: 10.1145/363958.363994.

[90] M. A. Jaro, “Advances in record linking methodology as applied to the 1985 census of Tampa Florida,” Journal
of the American Statistical Society, vol. 84, no. 406, pp. 414–420, 1989.

[91] W. E. Winkler, “String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of
Record Linkage,” Proceedings of the Section on Survey Research Methods, American Statistical Association,
pp. 354–359, 1990.

[92] O. Gordieiev, V. Kharchenko, N. Fominykh, and V. Sklyar, “Evolution of Software Quality Models in Context
of the Standard ISO 25010,” in Proceedings of the 9-th International Conference on Dependability and
Complex Systems DepCoS-RELCOMEX. June 30 – July 4, 2014, Brunów, Poland, 2014, pp. 223–232.

[93] O. Gordieiev, V. Kharchenko, and M. Fusani, “Software Quality Standards and Models Evolution: Greenness
and Reliability Issues,” in INFORMATION AND COMMUNICATION TECHNOLOGIES IN EDUCATION, RESEARCH,
AND INDUSTRIAL APPLICATIONS, HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY, 2016, vol. 594, pp.
38–55. doi: 10.1007/978-3-319-30246-1_3.

[94] S. Motogna, D. Lupsa, and L. Ciuciu, “A NLP Approach to Software Quality Models Evaluation,” Feb. 2019,
vol. 11231, pp. 207–217.

[95] P. Jaccard, “Distribution de la Flore Alpine dans le Bassin des Dranses et dans quelques Régions Voisines,”
Bulletin de la Société vaudoise des sciences naturelles, vol. 37, pp. 241–272, Jan. 1901.

[96] A. Abran, R. Al Qutaish, J. Desharnais, and N. Habra, “ISO-based models to measure software product
quality,” Institute of Chartered Financial Analysts of India (ICFAI)-ICFAI Books, 2007.

[97] M. Kläs, C. Lampasona, and J. Munch, “Adapting Software Quality Models: Practical Challenges, Approach,
and First Empirical Results,” in 2011 37TH EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND
ADVANCED APPLICATIONS (SEAA 2011), 2011, pp. 341–348. doi: 10.1109/SEAA.2011.62.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

202 | P a g e

[98] S. Wagner, K. Lochmann, S. Winter, A. Goeb, and M. Kläs, “Quality Models in Practice: A Preliminary
Analysis,” in ESEM 2009 3rd International Symposium on Empirical Software Engineering and Measurement,
2009, pp. 464–467.

[99] M. . M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski, “Metrics and Laws of software
Evolution - The nineties View, journal,” in Proceedings of the 4th International Symposium on Software
Metrics, IEEE, 1997, pp. 20–32.

[100] E. Arch, “Lehman’s Laws of Software Evolution and the Staged-Model,” 2011.
https://blogs.msdn.microsoft.com/karchworld_identity/2011/04/01/lehmans-laws-of-software-evolution-
and-the-staged-model/

[101] D. Garvin, “What does ‘product quality’ really mean?,” Sloan Management Review, vol. 26, pp. 25–45,
1984.

[102] S. Kalaimagal and R. Srinivasan, “Q’Facto 12: an improved quality model for COTS components,” SIGSOFT
Softw. Eng. Notes, vol. 35, no. 2, pp. 1–4, 2010.

[103] N. Bawane and C. V. Srikrishna, “A Novel Method for Quantitative Assessment of Software Quality,”
International Journal of Computer Science and Security (IJCSS), vol. 3, no. 6, pp. 508–517, Jan. 2010.

[104] D. A. Garvin, “Competing in the Eight Dimensions of Quality,” Harvard Business Review, pp. 101–109,
1987.

[105] G. Roedler and D. H. Rhodes, “Systems engineering leading indicators guide - version 1.0,” LAI, INCOSE,
PSM & SEARI, p. 67, Jun. 2007.

[106] G. Roedler, D. H. Rhodes, H. Schimmoller, and C. Jones, “Systems engineering leading indicators guide -
version 2.0,” INCOSE Technical Product Number: INCOSE-TP-2005-001-03, p. 146, Jan. 2010.

[107] P. Antman, “From Aristotle to Descartes a Brief history of quality,” May 08, 2013.
https://blog.smartbear.com/software-quality/from-aristotle-to-descartes-a-brief-history-of-quality/

[108] G. P. Stavropoulos, The Complete Aristotle. Free GPS Library, 2013.

[109] “ISO/IEC 9000:2015 - Quality management systems - Fundamentals and vocabulary,” International
Organization for Standardization, 2015, [Online]. Available: https://www.iso.org/standard/45481.html

[110] “ISO/IEC/IEEE 24765 International Standard - Systems and software engineering--Vocabulary,”
ISO/IEC/IEEE 24765:2017(E), pp. 1–541, Aug. 2017, doi: 10.1109/IEEESTD.2017.8016712.

[111] “ISTQB glossary 3.1,” https://www.istqb.org/downloads/category/20-istqb-glossary.html.

[112] “IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990.” Institute of
Electrical and Electronic Engineers, Inc., New York, NY, Reaffirmed on 12-9-2002, Dec. 10, 1990.

[113] G. Azgaldov, A. Kostin, and A. Padilla Omiste, The ABC of Qualimetry, toolkit for measuring the
immeasurable, Ridero. 2015.

[114] A. S. Lobanov, “The Basic Concepts of Qualimetry,” Scientific and Technical In formation Processing, vol.
40, no. 2, pp. 72–82, 2013.

[115] G. von Dran, P. Zhang, and R. Small, “Quality Websites: An Application of the Kano Model to Website
Design,” in AMCIS 1999 Proceedings. 314, 1999, pp. 898–900. [Online]. Available:
https://aisel.aisnet.org/amcis1999/314

[116] S.-W. Liang, H.-P. Lu, and T.-K. Kuo, “A Study on Using the Kano Two-Dimensional Quality Model to
Evaluate the Service Quality of Government Websites,” JOURNAL OF INTERNET TECHNOLOGY, vol. 15, no. 2,
SI, pp. 149–162, Mar. 2014, doi: 10.6138/JIT.2014.15.2.01.

[117] W.-M. Han, “Evaluating perceived and estimated data quality for Web 2.0 applications: a gap analysis,”
SOFTWARE QUALITY JOURNAL, vol. 26, no. 2, pp. 367–383, Jun. 2018, doi: 10.1007/s11219-017-9365-7.

[118] “Glossary of Terms used in the Planning and Design of the IAEA Technical Cooperation Programme.”
International Atomic Energy Agency (IAEA), Jul. 04, 2016. [Online]. Available:
https://pcmf.iaea.org/DesktopModules/PCMF/docs/2017_18_Docs/other/Planning_and_Design_Glossary_
2016_07_05.pdf

References

203 | P a g e

[119] ISO/IEC JTC 1/SC 7 Software and systems engineering, “ISO/IEC/IEEE 15939:2017 Systems and software
engineering - Measurement process,” International Organization for Standardization, May 1999, [Online].
Available: https://www.iso.org/standard/71197.html

[120] ISO/IEC JTC 1/SC 7 Software and systems engineering, “ISO/IEC 14598-1:1999 Information technology -
Software product evaluation - Part 1: General overview,” International Organization for Standardization,
Apr. 1999, [Online]. Available: https://www.iso.org/standard/24902.html

[121] “ISO/IEC 25021:2012 - Systems and software engineering - System and software product Quality
Requirements and Evaluation (SQuaRE) - Quality measure elements,” International Organization for
Standardization, 2012.

[122] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, “Software quality models: Purposes, usage
scenarios and requirements,” 2009.

[123] “ISO/IEC 25020:2007 - Software engineering - Software product Quality Requirements and Evaluation
(SQuaRE) - Measurement reference model and guide,” International Organization for Standardization, 2007.

[124] T. M. Khoshgoftaar and J. C. Munson, “Predicting software development errors using software
complexity metrics,” IEEE Journal on Selected Areas in Communications, vol. 8, no. 2, pp. 253–261, Feb. 1990,
doi: 10.1109/49.46879.

[125] T. M. Khoshgoftaar and R. M. Szabo, “A Poisson Regression Model of Software Quality: A Comparative
Study,” in Reliability Modeling, Analysis and Optimization, vol. Volume 9, 0 vols., WORLD SCIENTIFIC, 2006,
pp. 131–154. doi: 10.1142/9789812707147_0007.

[126] B. Kitchenham, “Towards a constructive quality model. Part 1: Software quality modelling, measurement
and prediction,” Software Engineering Journal, vol. 2, no. 4, pp. 105-126(21), Jul. 1987.

[127] B. Kitchenham, S. Linkman, A. Pasquini, and V. Nanni, “The SQUID approach to defining a quality model,”
Software Quality Journal, vol. 6, no. 3, pp. 211–233, Sep. 1997, doi: 10.1023/A:1018516103435.

[128] B. W. Boehm, “Characteristics of Software Quality,” TRW Series of Software Technology, Jan. 1978.

[129] D. J. Hand, “Statistics and the Theory of Measurement,” Journal of the Royal Statistical Society, no. 159,
pp. 445–492, 1996.

[130] H. von Helmholtz, Epistemological Writings, The Paul Hertz/Moritz Schlick centenary edition of 1921,
with notes and commentary by the editors, Chapter 3: Numbering and Measuring from an Epistemological
Viewpoint, vol. 79. 1977.

[131] P. W. Bridgman, The Logic of Modern Physics. New York : Macmillan, 1927. [Online]. Available:
https://archive.org/details/logicofmodernphy00brid

[132] J. A. Diez, “A Hundred Years of Numbers. An Historical Introduction to Measurement Theory 1887-1990
Part I: The Formation Period. Two Lines of Research: Axiomatics and Real Morphisms, Scales and Invariance,”
Studies in History and Philosophy of Science, vol. 28, no. 1, pp. 167–185, 1997.

[133] J. A. Diez, “A Hundred Years of Numbers. An Historical Introduction to Measurement Theory 1887-1990
Part II: Suppes and the Mature Theory and Uniqueness Representation,” Studies in History and Philosophy
of Science, vol. 28, no. 2, pp. 237–265, 1997.

[134] I. BIPM, I. IFCC, I. IUPAC, and O. ISO, “The international vocabulary of metrology—basic and general
concepts and associated terms (VIM), 3rd edition JCGM 200: 2012,” JCGM (Joint Committee for Guides in
Metrology), p. 108, 2012.

[135] N. F. Schneidewind, “Methodology for validating software metrics,” IEEE Transactions on Software
Engineering, vol. 18, no. 5, pp. 410–422, May 1992, doi: 10.1109/32.135774.

[136] A. Abran, Software Metrics and Software Metrology, EEE Computer Society / Wiley Partnership. 2010.
[Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470606834

[137] L. B. Mokkink et al., “The COSMIN study reached international consensus on taxonomy, terminology,
and definitions of measurement properties for health-related patient-reported outcomes,” Journal of
Clinical Epidemiology, vol. 63, pp. 733–745, 2010.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

204 | P a g e

[138] A. C. de Souza, N. M. C. Alexandre, and E. de Brito Guirardello, “Psychometric properties in instruments
evaluation of reliability and validity,” in Epidemiol. Serv. Saude, Brasília, Sep. 2017, vol. 26. doi:
10.5123/S1679-4974201700030002.

[139] S. S. Stevens, “On the Theory of Scales of Measurement,” Science, New Series, vol. 103, no. 2687, pp.
677–680, Jun. 1946.

[140] P. Velleman and L. Wilkinson, “Nominal, Ordinal, Interval, and Ratio Typologies are Misleading,” The
American Statistician, vol. 47, no. 1, pp. 65–72, 1993.

[141] “ISO/IEC 33020:2015 - Information technology — Process assessment — Process measurement
framework for assessment of process capability,” International Organization for Standardization, 2015,
[Online]. Available: https://www.iso.org/standard/54195.html

[142] N. R. Chrisman, Rethinking levels of measurement for cartography, vol. 25. Cartography and geographic
information systems, 1998.

[143] M. Detyniecki, “Fundamentals on Aggregation Operators,” Computer Science Division University of
California, Berkeley United Sates of America, 2001. [Online]. Available:
http://www.cs.berkeley.edu/~marcin/agop.pdf

[144] J. J. Dujmovic and A. Bayucan, “A Quantitative Method for Software Evaluation and its Application in
Evaluating Windowed Environments,” 1997.

[145] “ISO/IEC 25022:2016 - Systems and software engineering - Systems and software product Quality
Requirements and Evaluation (SQuaRE) - Measurement of internal quality,” International Organization for
Standardization, 2016.

[146] “ISO/IEC TR 9126-4:2004 - Software engineering - Product quality - Part4: Quality in use Metrics,”
International Organization for Standardization, 2004, [Online]. Available:
https://www.iso.org/standard/39752.html

[147] “ISO/IEC 25040:2011 - Systems and software engineering - Systems and software Quality Requirements
and Evaluation (SQuaRE) -- Evaluation process,” International Organization for Standardization, 2011.

[148] S. Khaddaj and G. Horgan, “A Proposed Adaptable Quality Model for Software Quality Assurance,”
Journal of Computer Sciences, vol. 1, no. 4, pp. 481–486, Apr. 2005.

[149] A. Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem,” Proceedings of
the London Mathematical Society, London Mathematical Society, 1936, doi: 10.1112/PLMS/S2-42.1.230.

[150] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. MacLeod, and M. J. Merrit, “Characteristics of
Software Quality,” Document #25201-6001-RU-00, Dec. 1973.

[151] B. W. Boehm, Software Engineering Economics, Prentice Hall, Inc. Englewood Cliffs, New Jersey, USA,
1981.

[152] R. B. Grady, Practical Software Metrics for Project Management and Process Improvement. USA:
Prentice-Hall, Inc., 1992.

[153] W. S. Humphrey, “Characterizing the software process: a maturity framework,” IEEE Software, vol. 5, no.
2, pp. 73–79, Mar. 1988, doi: 10.1109/52.2014.

[154] M. Paulk, B. Curtis, and M. B. Chrissis, “Capability Maturity Model for Software v1.0,” Software
Engineering Institute, Pittsburgh, Pennsylvania, CMU/SEI-91-TR-24, 1991.

[155] “ISO/IEC TR 9126-2:2003 - Software engineering - Product quality - Part2: External Metrics,”
International Organization for Standardization, 2003, [Online]. Available:
https://www.iso.org/standard/22750.html

[156] “ISO/IEC TR 9126-3:2003 - Software engineering - Product quality - Part3: Internal Metrics,” International
Organization for Standardization, 2003, [Online]. Available: https://www.iso.org/standard/22891.html

[157] J. McGarry et al., Practical Software Measurement: Objective Information for Decision Makers. Addison-
Wesley, 2001.

References

205 | P a g e

[158] “GSO ISO/IEC 19761:2017, Software engineering - COSMIC: a functional size measurement method,”
GCC Standardization Organization, 2017, [Online]. Available:
https://www.gso.org.sa/store/gso/standards/GSO:745477/GSO%20ISO-IEC%2019761:2017?lang=en

[159] “ISO/IEC 25012:2008 - Software engineering - Software product Quality Requirements and Evaluation
(SQuaRE) - Data quality model,” International Organization for Standardization, 2008.

[160] S. Wagner et al., “The Quamoco Product Quality Modelling and Assessment Approach,” 2012.

[161] P. A. Florenskii, “Some Remarks on Product Quality Assessment,” Vestn. teor. eksperiment.
elektrotekhniki, no. 11, 1928.

[162] G. G. Azgaldov and A. V. Kostin, “Applied qualimetry: its origins, errors and misconceptions,”
Benchmarking: An International Journal, vol. 18, no. 3, pp. 428–444, 2011.

[163] T. Gilb, Principles of Software Engineering Management. Addison-Wesley, Reading, Mass., 1987.

[164] “ISO/IEC 25023:2016 - Systems and software engineering - System and software product Quality
Requirements and Evaluation (SQuaRE) - Measurement of system and software product quality,”
International Organization for Standardization, 2016.

[165] “ISO/IEC 25024:2015 - Systems and Software engineering - Systems and Software product Quality
Requirements and Evaluation (SQuaRE) - Measurement of data quality,” International Organization for
Standardization, 2015.

[166] M. Shepperd, “Early life-cycle metrics and software quality models,” Information and Software
Technology, vol. 32, no. 4, pp. 311–316, May 1990, doi: 10.1016/0950-5849(90)90065-Y.

[167] Y. Argotti, C. Baron, and P. Esteban, “Quality quantification in Systems Engineering from the Qualimetry
Eye,” presented at the 13th Annual IEEE International Systems Conference (SysCon), Orlando, USA, Apr.
2019.

[168] M. Joron, C. D. Jiggins, A. Papanicolaou, and W. O. McMillan, “Heliconius wing patterns: an evo-devo
model for understanding phenotypic diversity,” Heredity, vol. 97, no. 3, pp. 157–167, Sep. 2006, doi:
10.1038/sj.hdy.6800873.

[169] L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,” ACM
Comput. Surv., vol. 17, no. 4, pp. 471–523, Dec. 1985, doi: 10.1145/6041.6042.

[170] A. Meyer, “Repeating Patterns of Mimicry,” PLOS Biology, vol. 4, no. 10, p. e341, Oct. 2006, doi:
10.1371/journal.pbio.0040341.

[171] R. Deshmukh, S. Baral, A. Gandhimathi, M. Kuwalekar, and K. Kunte, “Mimicry in butterflies: co-option
and a bag of magnificent developmental genetic tricks,” WIREs Developmental Biology, 2017, [Online].
Available: https://www.advancedsciencenews.com/mimicry-butterflies-muse-palette-artist/

[172] W. R. Cook, W. Hill, and P. S. Canning, “Inheritance is Not Subtyping,” in Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, New York, NY, USA, 1989, pp. 125–
135. doi: 10.1145/96709.96721.

[173] T. Khoshgoftaar, E. Allen, W. Jones, and J. Hudepohl, “Cost-benefit analysis of software quality models,”
SOFTWARE QUALITY JOURNAL, vol. 9, no. 1, pp. 9–30, Jan. 2001, doi: 10.1023/A:1016621219262.

[174] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-Based and Knowledge-Based Measures of Text
Semantic Similarity,” in Proceedings of the 21st National Conference on Artificial Intelligence - Volume 1,
Boston, Massachusetts, 2006, pp. 775–780.

[175] G. A. Miller, “WordNet: A Lexical Database for English,” Communications of the ACM, vol. 38, no. 11, pp.
39–41, 1995.

[176] “Single Nucleotide Polymorphism (SNP),” Scitable by Nature Education. Accessed: Dec. 05, 2020.
[Online]. Available: https://www.nature.com/scitable/definition/snp-295/

[177] G. Roedler and R. Madachy, “Measurement, SEBoK Guide to the Systems Engineering Body of
Knowledge.” https://www.sebokwiki.org/wiki/Measurement (accessed Dec. 05, 2020).

[178] C. Miller, R. S. Carson, S. Fowler, D. J. Gantzer, and G. Roedler, “Systems Engineering Measurement
Primer: a Basic Introduction to Measurement Concepts and Use for Systems Engineering,” INCOSE, San

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

206 | P a g e

Diego, CA, Nov. 2010, [Online]. Available: https://www.incose.org/docs/default-
source/ProductsPublications/systems-engineering-measurement-primer---december-
2010.pdf?sfvrsn=2&sfvrsn=2

[179] C. Dekkers, D. Zubrow, and J. McCurley, “Measures and Measurement for Secure Software
Development,” 2013. https://www.us-cert.gov/bsi/articles/best-practices/measurement/measures-and-
measurement-secure-software-development

[180] “ISO/IEC/IEEE 15288:2015 -Systems and software engineering -- System life cycle processes,”
International Organization for Standardization, 2015, [Online]. Available:
https://www.iso.org/standard/63711.html

[181] W. Behutiye et al., “Management of quality requirements in agile and rapid software development: A
systematic mapping study,” Information and Software Technology, vol. 123, p. 106225, Jul. 2020, doi:
10.1016/j.infsof.2019.106225.

[182] A. Abran, P. Fagg, and A. Lesterhuis, COSMIC Measurement Manual for ISO 19761 - Part 2: Guidelines,
version 5.0. 2020. [Online]. Available: https://cosmic-sizing.org/measurement-manual/

[183] A. V. Arkhangel’skii and L. S. Pontryagin, General Topology I : Basic Concepts and Constructions
Dimension Theory, Springer-Verlag Berlin Heidelberg., vol. 17. 1990.

[184] R. S. Jamwal and D. Jamwal, “Issues & Factors For Evaluation of Software Quality Models,” presented at
the INDIACom-2009, Computing For Nation Developmen, New Delhi, India, Feb. 2009.

[185] A. B. AL-Badareen, M. H. Selamat, M. A. Jabar, J. Din, and S. Turaev, “Software Quality Models: A
Comparative Study,” in Software Engineering and Computer Systems, Berlin, Heidelberg, 2011, pp. 46–55.

[186] S. F. Ahmad, M. Rizwan Beg, and M. Haleem, “A Comparative Study of Software Quality Models,”
International Journal of Science, Engineering and Technology Research (IJSETR), vol. 2, no. 1, pp. 172–176,
Jan. 2013.

[187] R. Polillo, “Quality Models for Web [2.0] Sites: A Methodological Approach and a Proposal,” in Current
Trends in Web Engineering, 2011, pp. 251–265.

[188] A. Adewumi, S. Misra, and N. Omoregbe, “A Review of Models for Evaluating Quality in Open Source
Software,” IERI Procedia, vol. 4, pp. 88–92, Jan. 2013, doi: 10.1016/j.ieri.2013.11.014.

[189] A. Adewumi, S. Misra, N. Omoregbe, and B. Crawford, “A systematic literature review of open source
software quality assessment models,” SpringerPlus, vol. 2016, p. 1936, Nov. 2016, doi: 10.1186/s40064-016-
3612-4.

[190] J. P. Miguel, D. Mauricio, and G. Rodriguez, “A Review of Software Quality Models for the Evaluation of
Software Products,” International Journal of Software Engineering & Applications (IJSEA), vol. 5, no. 6, pp.
31–53, Nov. 2014.

[191] O. Gordieiev and V. Kharchenko, “IT-oriented software quality models and evolution of the prevailing
characteristics,” in 2018 IEEE 9th International Conference on Dependable Systems, Services and
Technologies (DESSERT), May 2018, pp. 375–380.

[192] L. Buglione, “Some thoughts on quality models: Evolution and perspectives,” International Measurement
Confederation (IMEKO), vol. 4, no. 3, pp. 72–79, Sep. 2015, doi: 10.21014/acta_imeko.v4i3.248.

[193] M. Yan, X. Xia, X. Zhang, L. Xu, D. Yang, and S. Li, “Software quality assessment model: a systematic
mapping study,” Science China Information Sciences, vol. 62, pp. 1–18, 2019.

[194] I. Tervonen, “A Unifying Model for Software Quality Engineering,” in Software Quality and Productivity:
Theory, practice, education and training, M. Lee, B.-Z. Barta, and P. Juliff, Eds. Boston, MA: Springer US, 1995,
pp. 200–205. doi: 10.1007/978-0-387-34848-3_30.

[195] S. N. Mohanty, “Models and Measurements for Quality Assessment of Software,” ACM Comput. Surv.,
vol. 11, no. 3, pp. 251–275, Sep. 1979, doi: 10.1145/356778.356783.

[196] W. Frakes and C. Terry, “Software Reuse: Metrics and Models,” ACM Comput. Surv., vol. 28, no. 2, pp.
415–435, Jun. 1996, doi: 10.1145/234528.234531.

References

207 | P a g e

[197] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. I. Hudepohl, “Classification tree models of software
quality over multiple releases,” in Proceedings 10th International Symposium on Software Reliability
Engineering (Cat. No.PR00443), Nov. 1999, pp. 116–125. doi: 10.1109/ISSRE.1999.809316.

[198] L. Olsina, D. Godoy, G. Lafuente, and G. Rossi, “Assessing the quality of academic websites: a case study,”
New Review of Hypermedia and Multimedia, vol. 5, no. 1, pp. 81–103, Jan. 1999, doi:
10.1080/13614569908914709.

[199] Ping Zhang and G. von Dran, “Expectations and rankings of Web site quality features: results of two
studies on user perceptions,” in Proceedings of the 34th Annual Hawaii International Conference on System
Sciences, Jan. 2001, p. 10 pp. doi: 10.1109/HICSS.2001.927050.

[200] L. Briand and J. Wust, “Empirical studies of quality models in object-oriented systems,” in ADVANCES IN
COMPUTERS, VOL 56, vol. 56, Zelkowitz, MV, Ed. 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA:
ELSEVIER ACADEMIC PRESS INC, 2002, pp. 97–166. doi: 10.1016/S0065-2458(02)80005-5.

[201] A. Rawashdeh and B. Matalkah, “A New Software Quality Model for Evaluating COTS Components,”
Journal of Computer Science, vol. 2, no. 4, pp. 373–381, 2006.

[202] R. Lincke, J. Lundberg, and W. Löwe, “Comparing Software Metrics Tools,” in Proceedings of the 2008
International Symposium on Software Testing and Analysis, New York, NY, USA, 2008, pp. 131–142. doi:
10.1145/1390630.1390648.

[203] P. Mohagheghi, V. Dehlen, and T. Neple, “Definitions and approaches to model quality in model-based
software development - A review of literature,” INFORMATION AND SOFTWARE TECHNOLOGY, vol. 51, no.
12, pp. 1646–1669, Dec. 2009, doi: 10.1016/j.infsof.2009.04.004.

[204] K. Kritikos et al., “A Survey on Service Quality Description,” ACM Comput. Surv., vol. 46, no. 1, Jul. 2013,
doi: 10.1145/2522968.2522969.

[205] B. Gezici, A. Tarhan, and O. Chouseinoglou, “Internal and external quality in the evolution of mobile
software: An exploratory study in open-source market,” INFORMATION AND SOFTWARE TECHNOLOGY, vol.
112, pp. 178–200, Aug. 2019, doi: 10.1016/j.infsof.2019.04.002.

[206] M. Yan, X. Xia, X. Zhang, L. Xu, and D. Yang, “A Systematic Mapping Study of Quality Assessment Models
for Software Products,” in 2017 International Conference on Software Analysis, Testing and Evolution (SATE),
Nov. 2017, pp. 63–71. doi: 10.1109/SATE.2017.16.

[207] E. Petrinja, A. Sillitti, and G. Succi, “Comparing OpenBRR, QSOS, and OMM Assessment Models,” in Open
Source Software: New Horizons, Notre Dame, IN, USA, Jun. 2010, vol. 319, pp. 224–238.

[208] A. Fath-Allah, L. Cheikhi, R. E. Al-Qutaish, and A. Idri, “A Comparative Analysis of E-Government Quality
Models,” International Journal of Social, Education, Economics and Management Engineering, vol. 8, no. 4,
pp. 3646–3650, 2014.

[209] J. Snyder, “Google Scholar vs. Scopus & Web of Science,” Feb. 29, 2012.
http://www.functionalneurogenesis.com/blog/2012/02/google-scholar-vs-scopus-web-of-science/

[210] “Definition of ‘Taxonomy,’” Cambridge Online English Dictionary. Dec. 08, 2020. Accessed: Dec. 08, 2020.
[Online]. Available: https://dictionary.cambridge.org/us/dictionary/english/taxonomy

[211] “Definition of ‘Taxon’, plural ‘taxa,’” Dictionnary.com (3rd version). Dec. 08, 2020. Accessed: Dec. 08,
2020. [Online]. Available: https://www.dictionary.com/browse/taxon

[212] “Definition of ‘homology,’” Dictionnary.com (3rd version). Dec. 08, 2020. Accessed: Dec. 08, 2020.
[Online]. Available: https://www.dictionary.com/browse/homology

[213] “Definition of ‘Cladistic,’” Dictionnary.com (3rd version). [Online]. Available:
https://www.dictionary.com/browse/cladistics

[214] G. F. Estabrook, C. S. Johnson, and F. R. McMorris, “A mathematical foundation for the analysis of
cladistic character compatibility,” Mathematical Biosciences, vol. 29, no. 1, pp. 181–187, Jan. 1976, doi:
10.1016/0025-5564(76)90035-3.

[215] C. Wohlin, “Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software
Engineering,” New York, NY, USA, 2014. doi: 10.1145/2601248.2601268.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

208 | P a g e

[216] C. Wohlin, “Second-Generation Systematic Literature Studies Using Snowballing,” New York, NY, USA,
2016. doi: 10.1145/2915970.2916006.

[217] V. R. Basili and D. M. Weiss, “A Methodology for Collecting Valid Software Engineering Data,” IEEE
Transactions on Software Engineering, vol. SE-10, no. 6, pp. 728–738, Nov. 1984, doi:
10.1109/TSE.1984.5010301.

[218] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality assessment,” IEEE
Transactions on Software Engineering, vol. 28, no. 1, pp. 4–17, Jan. 2002, doi: 10.1109/32.979986.

[219] C. P. Team, “Capability Maturity Model Integration for Software Engineering Version 1.1 Staged
Representation,” Technical Report, CMU/SEI-2002-TR-012, Software Engineering Institute …, 2002.

[220] “ISO/IEC 15504-1:2004 - Information technology – Process assessment – Part 1: Concepts and
vocabulary,” International Organization for Standardization, 2004, [Online]. Available:
https://www.iso.org/standard/38932.html

[221] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented design metrics as quality
indicators,” IEEE Transactions on Software Engineering, vol. 22, no. 10, pp. 751–761, Oct. 1996, doi:
10.1109/32.544352.

[222] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, “The SQO-OSS Quality Model: Measurement Based
Open Source Software Evaluation,” in Open Source Development, Communities and Quality, Boston, MA,
2008, pp. 237–248.

[223] N. R. Haddaway, A. M. Collins, D. Coughlin, and S. Kirk, “The Role of Google Scholar in Evidence Reviews
and Its Applicability to Grey Literature Searching,” PLOS ONE, vol. 10, no. 9, p. e0138237, Sep. 2015, doi:
10.1371/journal.pone.0138237.

[224] A. April, J. Huffman Hayes, A. Abran, and R. Dumke, “Software Maintenance Maturity Model (SMmm):
the software maintenance process model,” Journal of Software Maintenance and Evolution: Research and
Practice, vol. 17, no. 3, pp. 197–223, May 2005.

[225] 1045_WG - Std for Software Productivity Metrics Working Group, “IEEE 1045-1992 - IEEE Standard for
Software Productivity Metrics.” 1992. [Online]. Available: https://standards.ieee.org/standard/1045-
1992.html

[226] S. Knight and J. Burn, “Developing a framework for assessing information quality on the World Wide
Web.,” Informing Science, vol. 8, pp. 159–172, 2005.

[227] “Definition of ‘Practical,’” Cambridge Online English Dictionary. Dec. 08, 2020. Accessed: Dec. 08, 2020.
[Online]. Available: https://dictionary.cambridge.org/us/dictionary/english/practical

[228] K. Beck et al., “Manifesto for Agile Software Development,” 2001. http://agilemanifesto.org/

[229] E. Georgiadou, “GEQUAMO—A Generic, Multilayered, Customisable, Software Quality Model,” Software
Quality Journal, vol. 11, no. 4, pp. 313–323, Nov. 2003, doi: 10.1023/A:1025817312035.

[230] Y. Argotti, C. Baron, P. Esteban, and D. Chaton, “Quality Quantification Applied to Automotive Embedded
Systems and Software,” presented at the Embedded Real Time Systems (ERTS) 10th Edition, Toulouse,
France, Jan. 2020.

[231] Brooks, “No Silver Bullet Essence and Accidents of Software Engineering,” Computer, vol. 20, no. 4, pp.
10–19, Apr. 1987, doi: 10.1109/MC.1987.1663532.

[232] Scaled Agile, Inc., “SAFe: Team and Technical Agility Team,” Sep. 24, 2019.
https://www.scaledagileframework.com/team-and-technical-agility/ (accessed Dec. 10, 2020).

[233] ISO/TC 176/SC 2 Quality systems, “ISO 9001:1987 Quality systems — Model for quality assurance in
design/development, production, installation and servicing.” International Organization for Standardization,
Mar. 1987. [Online]. Available: https://www.iso.org/standard/16533.html

[234] T. Miyoshi and M. Azuma, “An Empirical-Study of Evaluating Software-Development Environment
Quality,” IEEE Transactions on Software Engineering, vol. 19, no. 5, pp. 425–435, May 1993, doi:
10.1109/32.232010.

[235] G. A. Miller, “The magical number seven, plus or minus two: some limits on our capacity for processing
information.,” Psychological Review, vol. 63, no. 2, pp. 81–97, Mar. 1956, doi: 10.1037/h0043158.

References

209 | P a g e

[236] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI for Development: Guidelines for Process Integration and
Product Improvement, 3rd ed. Addison-Wesley Professional, 2011.

[237] CMMI Institute, CMMI V2.0, model at-a-glance. 2019. Accessed: Dec. 12, 2020. [Online]. Available:
https://cmmiinstitute.com/getattachment/a9b733ec-dcee-4b98-8c37-8fbd30f731de/attachment.aspx

[238] W. Perry, Effective Methods for Software Testing, Third Edition. USA: John Wiley & Sons, Inc., 2006.

[239] J. Solomon, “Dashboards Vs Scorecards - An Insight,” Oct. 05, 2006.
https://ezinearticles.com/?Dashboards-Vs-Scorecards---An-Insight&id=319136 (accessed May 05, 2006).

[240] R. S. Kaplan and D. P. Norton, “The Balanced Scorecard—Measures that Drive Performance,” Feb. 1992.
https://hbr.org/1992/01/the-balanced-scorecard-measures-that-drive-performance-2 (accessed May 29,
2020).

[241] Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK Guide)
– Sixth Edition. Project Management Institute, Global Standard, 2017.

[242] R. Likert, A Technique for the Measurement of Attitudes, R. S. Woodworth, Editor., vol. 140. New-York,
1932. [Online]. Available: https://legacy.voteview.com/pdf/Likert_1932.pdf

[243] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educational and Psychological Measurement,
vol. 20, no. 1, pp. 37–46, Apr. 1960, doi: 10.1177/001316446002000104.

[244] J. L. Fleiss, “Measuring nominal scale agreement among many raters.,” Psychological Bulletin, vol. 76,
no. 5, pp. 378–382, 1971, doi: 10.1037/h0031619.

[245] J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement for Categorical Data,” Biometrics,
vol. 33, no. 1, pp. 159–174, 1977, doi: 10.2307/2529310.

[246] “ISO/IEC TS 25011:2017 - Information technology - Systems and software Quality Requirements and
Evaluation (SQuaRE) - Service quality models,” International Organization for Standardization, 2017.

[247] “ISO/IEC 25030:2007 - Software engineering - Software product Quality Requirements and Evaluation
(SQuaRE) - Quality requirements,” International Organization for Standardization, 2007.

[248] G. G. Azgaldov, The Theory and Practice of Product Quality Assessment. Essentials of Qualimetry,
Moscow: Ekonomika (in Russian). 1982. [Online]. Available:
http://www.labrate.ru/azgaldov/azgaldov_theory_and_practice_of_quality-assessment.pdf

[249] Society of Automotive Engineers, “Class C Application Requirement Considerations J2056/1_199306,”
SAE International, no. Vehicle Architecture For Data Communications Standards, Jun. 1993, doi:
10.4271/J2056/1_199306.

[250] N. Statt, “Tesla remotely disables Autopilot on used Model S after it was sold,” The Verge, Feb. 2020,
Accessed: Dec. 17, 2020. [Online]. Available: https://www.theverge.com/2020/2/6/21127243/tesla-model-
s-autopilot-disabled-remotely-used-car-update

[251] FutureBridge Analysis, “Evolution of Over-the-air Software Updates in Automotive,” Over-the-Air
Software Updates – Reaping Benefits for the Automotive Industry, Jan. 22, 2020.
https://www.futurebridge.com/blog/over-the-air-software-updates-reaping-benefits-for-the-automotive-
industry/ (accessed Dec. 17, 2020).

[252] J. Gill, J. Hu, L. Shan, S. Thackray, and S. Unger, “Over-the-Air Updates with Electric Vehicles,” New Media
in Business Blog, Aug. 15, 2020. https://www.newmediabusinessblog.org/index.php/Over-the-
Air_Updates_with_Electric_Vehicles (accessed Dec. 17, 2020).

[253] Automotive SIG, VDA, “Automotive SPICE Process Assessment, version 2.5.” May 10, 2010. [Online].
Available: http://www.automotivespice.com/fileadmin/software-download/automotiveSIG_PAM_v25.pdf

[254] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering, vol. SE-2, no. 4, pp.
308–320, Dec. 1976, doi: 10.1109/TSE.1976.233837.

[255] J. K. Haseman and R. C. Elston, “The investigation of linkage between a quantitative trait and a marker
locus,” Behavior Genetics, vol. 2, no. 1, pp. 3–19, Mar. 1972, doi: 10.1007/BF01066731.

[256] “Definition of ‘Gene,’” Cambridge Online English Dictionary. Dec. 08, 2020. Accessed: Dec. 08, 2020.
[Online]. Available: https://dictionary.cambridge.org/dictionary/english/gene

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

210 | P a g e

[257] “Genetic polymorphism,” Biology-Online Dictionary. Dec. 27, 2020. Accessed: Dec. 27, 2020. [Online].
Available: https://www.biologyonline.com/dictionary/genetic-polymorphism

[258] Z. Bo and Z. Yan, “FIT ANALYSIS OF WEB QUALITY MODEL BASED ON SEM APPROACH,” in 2011 3RD
INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY AND DEVELOPMENT (ICCTD 2011), VOL 2,
THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA, 2012, pp. 359–363.

[259] C. Alves, X. Franch, J. Carvallo, and A. Finkelstein, “Using goals and quality models to support the
matching analysis during COTS selection,” in COTS-BASED SOFTWARE SYSTEMS, PROCEEDINGS,
HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY, 2005, vol. 3412, pp. 146–156.

[260] A. Adewumi, S. Misra, and N. Omoregbe, “A Review of Models for Evaluating Quality in Open Source
Software,” IERI Procedia, vol. 4, pp. 88–92, Jan. 2013, doi: 10.1016/j.ieri.2013.11.014.

[261] European Space Agency and TEC-SHS, “Technology Readiness Levels Handbook for Sapce Applications,”
TEC-SHS/5551/MG/ap, Sep. 2008. [Online]. Available:
https://artes.esa.int/sites/default/files/TRL_Handbook.pdf

[262] N. F. Porta, “Towards a Model for Cost-Benefit-Analysis of Quality Assurance in the Automotive E/E
Development,” in Proceedings of the 1st International Workshop on Business Impact of Process
Improvements, New York, NY, USA, 2008, pp. 33–38. doi: 10.1145/1370837.1370844.

[263] H. Kuder et al., “HIS source code metrics, version 1.3.1,” Hersteller Initiative Software-AK Softwaretest,
vol. 1, no. 1, 2008.

[264] T. M. Khoshgoftaar and R. M. Szabo, “Improving neural network predictions of software quality using
principal components analysis,” in Proceedings of 1994 IEEE International Conference on Neural Networks
(ICNN’94), Jun. 1994, vol. 5, pp. 3295–3300 vol.5. doi: 10.1109/ICNN.1994.374764.

[265] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel, “The impact of software evolution and
reuse on software quality,” Empirical Software Engineering, vol. 1, no. 1, pp. 31–44, Jan. 1996, doi:
10.1007/BF00125810.

[266] T. Dahlberg and J. Jarvinen, “Challenges to IS quality,” INFORMATION AND SOFTWARE TECHNOLOGY,
vol. 39, no. 12, pp. 809–818, Dec. 1997, doi: 10.1016/S0950-5849(97)00039-6.

[267] J. C. Granja-Alvarez and M. J. Barranco-García, “A Method for Estimating Maintenance Cost in a Software
Project: A Case Study,” Journal of Software Maintenance: Research and Practice, vol. 9, no. 3, pp. 161–175,
May 1997, doi: 10.1002/(SICI)1096-908X(199705)9:3<161::AID-SMR148>3.0.CO;2-8.

[268] T. Khoshgoftaar, E. Allen, A. Naik, W. Jones, and J. Hudepohl, “Using classification trees for software
quality models: Lessons learned,” in THIRD IEEE INTERNATIONAL HIGH-ASSURANCE SYSTEMS ENGINEERING
SYMPOSIUM, PROCEEDINGS, 1998, pp. 82–89. doi: 10.1109/HASE.1998.731598.

[269] Y. Yokoyama and M. Kodaira, “Software cost and quality analysis by statistical approaches,” in
Proceedings of the 20th International Conference on Software Engineering, Apr. 1998, pp. 465–467. doi:
10.1109/ICSE.1998.671607.

[270] T. M. Khoshgoftaar, R. Shan, and E. B. Allen, “Improving tree-based models of software quality with
principal components analysis,” in Proceedings 11th International Symposium on Software Reliability
Engineering. ISSRE 2000, Oct. 2000, pp. 198–209. doi: 10.1109/ISSRE.2000.885872.

[271] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl, “Cost-Benefit Analysis of Software
Quality Models,” Software Quality Journal, vol. 9, no. 1, pp. 9–30, 2001, doi: 10.1023/A:1016621219262.

[272] H. Zhu, Y. Zhang, Q. Huo, and S. Greenwood, “Application of hazard analysis to software quality
modelling,” in Proceedings 26th Annual International Computer Software and Applications, Aug. 2002, pp.
139–144. doi: 10.1109/CMPSAC.2002.1044544.

[273] C. V. Ramamoorthy, “Evolution and evaluation of software quality models,” in 14th IEEE International
Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings., Nov. 2002, pp. 543–545.
doi: 10.1109/TAI.2002.1180850.

[274] L. E. Mendoza, A. C. Grimán, M. A. Pérez, and T. Rojas, “Evaluation of Environments for Portals
Development: A Case Study,” Information Systems Management, vol. 19, no. 2, pp. 70–84, Feb. 2002, doi:
10.1201/1078/43200.19.2.20020228/35141.7.

References

211 | P a g e

[275] T. M. Khoshgoftaar, E. Geleyn, and L. Nguyen, “Empirical case studies of combining software quality
classification models,” in Third International Conference on Quality Software, 2003. Proceedings., Nov. 2003,
pp. 40–49. doi: 10.1109/QSIC.2003.1319084.

[276] Y. Liu and T. Khoshgoftaar, “Reducing overfitting in genetic programming models for software quality
classification,” in Eighth IEEE International Symposium on High Assurance Systems Engineering, 2004.
Proceedings., Mar. 2004, pp. 56–65. doi: 10.1109/HASE.2004.1281730.

[277] J. Oh, D. Park, B. Lee, J. Lee, E. Hong, and C. Wu, “Certification of Software Packages Using Hierarchical
Classification,” in Software Engineering Research and Applications, Berlin, Heidelberg, 2004, pp. 209–224.

[278] M.-A. Côté, W. Suryn, C. Y. Laporte, and R. A. Martin, “The evolution path for industrial software quality
evaluation methods applying ISO/IEC 9126:2001 quality model: Example of MITRE’s SQAE method,” Software
Quality Journal, vol. 13, no. 1, pp. 17–30, 2005, doi: 10.1007/s11219-004-5259-6.

[279] Q. Zhang, J. Wu, and H. Zhu, “Tool Support to Model-based Quality Analysis of Software Architecture,”
in 30th Annual International Computer Software and Applications Conference (COMPSAC’06), Sep. 2006, vol.
1, pp. 121–128. doi: 10.1109/COMPSAC.2006.82.

[280] A. Mishra and D. Mishra, “Software quality assurance models in small and medium organisations: A
comparison,” International Journal of Information Technology and Management, vol. 5, no. 1, pp. 4–20,
2006, doi: 10.1504/IJITM.2006.008710.

[281] H. Jung, W. Jung, and H. Yang, “A study on the standard of software quality testing,” in COMPUTATIONAL
SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 4, 2006, vol. 3983, pp. 1052–1059.

[282] C.-T. Wang, C.-C. Lo, and T.-F. Jean, “Probabilistic models for software quality analysis,” Journal of the
Chinese Institute of Industrial Engineers, vol. 23, no. 4, pp. 328–336, 2006, doi:
10.1080/10170660609509329.

[283] J. Ruiz, C. Calero, and M. Piattini, “Web metrics selection through a practitioners’ survey,” in ICSOFT
2006: Proceedings of the First International Conference on Software and Data Technologies, Vol 1, 2006, pp.
238–244.

[284] O. Ormandjieva, I. Hussain, and L. Kosseim, “Toward a text classification system for the quality
assessment of software requirements written in natural language,” in Fourth international workshop on
Software quality assurance: in conjunction with the 6th ESEC/FSE joint meeting, Dubrovnik, Croatia, 2007,
pp. 39–45. [Online]. Available: https://doi.org/10.1145/1295074.1295082

[285] P. L. Roden, S. Virani, L. H. Etzkorn, and S. Messimer, “An Empirical Study of the Relationship of Stability
Metrics and the QMOOD Quality Models Over Software Developed Using Highly Iterative or Agile Software
Processes,” in Seventh IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM 2007), Oct. 2007, pp. 171–179. doi: 10.1109/SCAM.2007.29.

[286] Y. Ma and B. Cukic, “Adequate and Precise Evaluation of Quality Models in Software Engineering
Studies,” in Third International Workshop on Predictor Models in Software Engineering (PROMISE’07: ICSE
Workshops 2007), May 2007, pp. 1–1. doi: 10.1109/PROMISE.2007.1.

[287] S. Neti and H. A. Muller, “Quality Criteria and an Analysis Framework for Self-Healing Systems,” in
International Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS ’07), May
2007, pp. 6–6. doi: 10.1109/SEAMS.2007.15.

[288] L. Zhang, L. Li, and H. Gao, “2-D Software Quality Model and Case Study in Software Flexibility Research,”
in 2008 International Conference on Computational Intelligence for Modelling Control & Automation, Dec.
2008, pp. 1147–1152. doi: 10.1109/CIMCA.2008.70.

[289] A. A. Hamada, M. N. Moustafa, and H. I. Shaheen, “Software Quality model Analysis Program,” in 2008
International Conference on Computer Engineering & Systems, Nov. 2008, pp. 296–300. doi:
10.1109/ICCES.2008.4773015.

[290] X. Feng and Y. Liu, “A Study on Evaluation Model of Information Sharing Quality in Virtual Teams,” in
2008 International Conference on Computer Science and Software Engineering, Dec. 2008, vol. 5, pp. 117–
120. doi: 10.1109/CSSE.2008.150.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

212 | P a g e

[291] O. Alfonzo, K. Domínguez, L. Rivas, M. Pérez, L. Mendoza, and M. Ortega, “Quality Measurement Model
for Analysis and Design Tools Based on FLOSS,” in 19th Australian Conference on Software Engineering
(aswec 2008), Mar. 2008, pp. 258–268. doi: 10.1109/ASWEC.2008.4483214.

[292] M. Bombardieri and F. A. Fontana, “A specialisation of the SQuaRE quality model for the evaluation of
the software evolution and maintenance activity,” in 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering - Workshops, Sep. 2008, pp. 110–113. doi: 10.1109/ASEW.2008.4686328.

[293] H. P. Breivold and I. Crnkovic, “Analysis of Software Evolvability in Quality Models,” in 2009 35th
Euromicro Conference on Software Engineering and Advanced Applications, Aug. 2009, pp. 279–282. doi:
10.1109/SEAA.2009.10.

[294] F. Khomh, “SQUAD: Software Quality Understanding through the Analysis of Design,” in 2009 16th
Working Conference on Reverse Engineering, Oct. 2009, pp. 303–306. doi: 10.1109/WCRE.2009.22.

[295] R. Brcina, S. Bode, and M. Riebisch, “Optimisation Process for Maintaining Evolvability during Software
Evolution,” in 2009 16th Annual IEEE International Conference and Workshop on the Engineering of Computer
Based Systems, Apr. 2009, pp. 196–205. doi: 10.1109/ECBS.2009.20.

[296] Q. Yu-dong, Z. Ai-hong, X. Xiao-fang, and Y. Xiao-bin, “Analysis of contribution of conceptual model
quality to software reliability,” in 2010 International Conference on Computer Application and System
Modeling (ICCASM 2010), Oct. 2010, vol. 10, pp. V10-386. doi: 10.1109/ICCASM.2010.5622740.

[297] J. Letouzey and T. Coq, “The SQALE Analysis Model: An Analysis Model Compliant with the
Representation Condition for Assessing the Quality of Software Source Code,” in 2010 Second International
Conference on Advances in System Testing and Validation Lifecycle, Aug. 2010, pp. 43–48. doi:
10.1109/VALID.2010.31.

[298] R. Lincke, T. Gutzmann, and W. Löwe, “Software Quality Prediction Models Compared,” in 2010 10th
International Conference on Quality Software, Jul. 2010, pp. 82–91. doi: 10.1109/QSIC.2010.9.

[299] E. Chandra, D. Francis Xavier Christopher, and S. D. Vijaykumar, “Study of CMMI based process
framework for quality models,” in 3rd International Conference on Trendz in Information Sciences &
Computing (TISC2011), Dec. 2011, pp. 173–176. doi: 10.1109/TISC.2011.6169109.

[300] T. Coq and J.-P. Rosen, “The SQALE Quality and Analysis Models for Assessing the Quality of Ada Source
Code,” in RELIABLE SOFTWARE TECHNOLOGIES - ADA-EUROPE 2011, 2011, vol. 6652, pp. 61–74.

[301] K. Lochmann and L. Heinemann, “Integrating quality models and static analysis for comprehensive
quality assessment,” in Proceedings - International Conference on Software Engineering (ICSE), May 2011,
pp. 5–11.

[302] D. Nabil, A. Mosad, and H. A. Hefny, “Web-Based Applications quality factors: A survey and a proposed
conceptual model,” Egyptian Informatics Journal, vol. 12, no. 3, pp. 211–217, Nov. 2011.

[303] S. Montagud, S. Abrahao, and E. Insfran, “A systematic review of quality attributes and measures for
software product lines,” SOFTWARE QUALITY JOURNAL, vol. 20, no. 3–4, SI, pp. 425–486, Sep. 2012, doi:
10.1007/s11219-011-9146-7.

[304] L. Cheikhi, A. Abran, and L.-M. Desharnais, “Analysis of the ISBSG Software Repository from the ISO 9126
View of Software Product Quality,” in 38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS
SOCIETY (IECON 2012), 345 E 47TH ST, NEW YORK, NY 10017 USA, 2012, pp. 3086–3094.

[305] K. Lochmann, D. M. Fernandez, and S. Wagner, “A Case Study on Specifying Quality Requirements Using
a Quality Model,” in 2012 19TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC), VOL 1, 10662
LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA, 2012, pp. 577–582. doi:
10.1109/APSEC.2012.57.

[306] M. Galster and P. Avgeriou, “Qualitative Analysis of the Impact of SOA Patterns on Quality Attributes,”
in 2012 12TH INTERNATIONAL CONFERENCE ON QUALITY SOFTWARE (QSIC), 2012, pp. 167–170. doi:
10.1109/QSIC.2012.35.

[307] H. Wan-jiang and L. Tian-bo, “Study on quality evaluation model of communication system,” in 2012 3rd
International Conference on System Science, Engineering Design and Manufacturing Informatization, Oct.
2012, vol. 1, pp. 1–4. doi: 10.1109/ICSSEM.2012.6340726.

References

213 | P a g e

[308] G. A. García-Mireles, M. Á. Ángeles Moraga, and F. García, “Development of maturity models: A
systematic literature review,” in 16th International Conference on Evaluation & Assessment in Software
Engineering (EASE 2012), May 2012, pp. 279–283. doi: 10.1049/ic.2012.0036.

[309] H.-J. Jeong and S.-J. Hong, “The survey of quality model for software and system,” in Lecture Notes in
Electrical Engineering, Dec. 2012, vol. 114, pp. 569–577.

[310] S. K. Dubey, S. Ghosh, and A. Rana, “Comparison of Software Quality Models: An Analytical Approach,”
International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 2, pp. 111–119, Feb.
2012.

[311] B. Singh and S. P. Kannojia, “A Review on Software Quality Models,” in 2013 INTERNATIONAL
CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT 2013), 2013, pp. 801–
806. doi: 10.1109/CSNT.2013.171.

[312] C. Calero, M. F. Bertoa, and M. A. Moraga, “A Systematic Literature Review for Software Sustainability
Measures,” in 2013 2ND INTERNATIONAL WORKSHOP ON GREEN AND SUSTAINABLE SOFTWARE (GREENS),
2013, pp. 46–53.

[313] A. Adewumi, N. Omoregbe, S. Misra, and L. Fernandez, “Quantitative Quality Model for Evaluating Open
Source Web Applications: Case Study of Repository Software,” in 2013 IEEE 16TH INTERNATIONAL
CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, pp. 1207–1213. doi:
10.1109/CSE.2013.179.

[314] K. Li, J. Xiao, Y. Wang, and Q. Wang, “Analysis of the Key Factors for Software Quality in Crowdsourcing
Development: An Empirical Study on TopCoder.com,” in 2013 IEEE 37TH ANNUAL COMPUTER SOFTWARE
AND APPLICATIONS CONFERENCE (COMPSAC), 2013, pp. 812–817. doi: 10.1109/COMPSAC.2013.133.

[315] M. Ericsson, W. Lowe, T. Olsson, D. Toll, and A. Wingkvist, “A Study of the Effect of Data Normalization
on Software and Information Quality Assessment,” in 2013 20TH ASIA-PACIFIC SOFTWARE ENGINEERING
CONFERENCE (APSEC 2013), VOL 2, 2013, pp. 55–60. doi: 10.1109/APSEC.2013.112.

[316] H. K. A. Bakar and R. Razali, “A preliminary review of legacy information systems evaluation models,” in
2013 International Conference on Research and Innovation in Information Systems (ICRIIS), Nov. 2013, pp.
314–318. doi: 10.1109/ICRIIS.2013.6716728.

[317] P. Hegedüs, “A probabilistic quality model for C# -an industrial case study,” in Acta Cybernetica, Volume
21, Issue 1, 2013, pp. 135–147.

[318] A. B. Tomar and V. M. Thakare, “A Customized Model on Software Quality Assurance & Reuse,”
International Journal Of Computer Science And Applications, vol. 6, no. 2, Apr. 2013, [Online]. Available:
http://researchpublications.org/IJCSA/NCAICN-13/194.pdf

[319] S. Gupta and H. K. Singh, “A Semiautomated Method for Classifying Program Analysis Rules into a Quality
Model,” in Proceedings of the 22nd International Conference on Program Comprehension, New York, NY,
USA, 2014, pp. 266–270. doi: 10.1145/2597008.2597808.

[320] R. Goyal, P. Chandra, and Y. Singh, “Why Interaction between Metrics Should Be Considered in the
Development of Software Quality Models: A Preliminary Study,” SIGSOFT Softw. Eng. Notes, vol. 39, no. 4,
pp. 1–4, Aug. 2014, doi: 10.1145/2632434.2659853.

[321] T. Davuluru, J. Medida, and V. S. K. Reddy, “A Study of Software Quality Models,” 345 E 47TH ST, NEW
YORK, NY 10017 USA, 2014.

[322] S. Ouhbi, A. Idri, J. L. Fernandez Aleman, and A. Toval, “Evaluating Software Product Quality: A Systematic
Mapping Study,” in 2014 Joint Conference of the International Workshop on Software Measurement and the
International Conference on Software Process and Product Measurement, Oct. 2014, pp. 141–151. doi:
10.1109/IWSM.Mensura.2014.30.

[323] H. Zhu, Q. Zhang, and Y. Zhang, “HASARD: A Model-Based Method for Quality Analysis of Software
Architecture,” Relating System Quality and Software Architecture, pp. 123–156, Jul. 2014.

[324] E. Yildiz, S. Bilgen, G. Tokdemir, N. E. Cagiltay, and Y. N. Erturan, “Analysis of B2C mobile application
characteristics and quality factors based on ISO 25010 quality model,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, vol.
8640, pp. 261–274.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

214 | P a g e

[325] E. Ronchieri, M. Canaparo, and D. Salomoni, “A software quality model by using discriminant analysis
predictive technique,” Journal of Integrated Design and Process Science, vol. 18, no. 4, pp. 25–59, 2014.

[326] S. S.-S. Cherfi, A. D. Tuan, and I. Comyn-Wattiau, “An Exploratory Study on Websites Quality
Assessment,” in ADVANCES IN CONCEPTUAL MODELING, ER 2013, 2014, vol. 8697, pp. 170–179.

[327] M. Sarrab and O. M. H. Rehman, “Empirical study of open source software selection for adoption, based
on software quality characteristics,” ADVANCES IN ENGINEERING SOFTWARE, vol. 69, pp. 1–11, Mar. 2014,
doi: 10.1016/j.advengsoft.2013.12.001.

[328] L. Buglione, “Software product quality: Some thoughts about its evolution and perspectives,” in 20th
IMEKO TC4 Symposium on Measurements of Electrical Quantities: Research on Electrical and Electronic
Measurement for the Economic Upturn, Together with 18th TC4 International Workshop on ADC and DCA
Modeling and Testing, Sep. 2014, pp. 737–742.

[329] D. Gupta, A. Ahlawat, and K. Sagar, “A Critical Analysis of A Hierarchy Based Usability Model,” in 2014
INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, pp. 255–
260.

[330] S. Manoj Wadhwa, “A Comparative Study of Software Quality Models,” International Journal of
Computer Science and Information Technologies (IJCSIT), vol. 5, no. 4, pp. 5634–5638, 2014.

[331] K. Sheoran and O. P. Sangwan, “An Insight of software quality models applied in predicting software
quality attributes: A comparative analysis,” in 2015 4th International Conference on Reliability, Infocom
Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 2015, pp. 1–5. doi:
10.1109/ICRITO.2015.7359355.

[332] P. Hegedus, “Advances in Software Product Quality Measurement and Its Applications in Software
Evolution,” in 2015 31ST INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION
(ICSME) PROCEEDINGS, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2015, pp. 590–593.

[333] M. K. Chawla and I. Chhabra, “SQMMA: Software quality model for maintainability analysis,” in ACM
International Conference Proceeding Series, Oct. 2015, pp. 9–17.

[334] F. Imeri, L. Antovski, and M. Hamiti, “Empirical Analysis of Quality Models in Practice in Small IT
Companies in SEE Region,” Procedia - Social and Behavioral Sciences, vol. 191, pp. 969–974, Jun. 2015, doi:
10.1016/j.sbspro.2015.04.490.

[335] A. Ganser, H. Lichter, A. Roth, and B. Rumpe, “Staged model evolution and proactive quality guidance
for model libraries,” SOFTWARE QUALITY JOURNAL, vol. 24, no. 3, pp. 675–708, Sep. 2016, doi:
10.1007/s11219-015-9298-y.

[336] M. A. Kabir, M. U. Rehman, and S. I. Majumdar, “An Analytical and Comparative Study of Software
Usability Quality Factors Usability Model in Software Engineering Literature,” in PROCEEDINGS OF 2016 IEEE
7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2016), 2016,
pp. 800–803.

[337] D. Di Ruscio, D. S. Kolovos, Y. Korkontzelos, N. Matragkas, and J. Vinju, “Supporting Custom Quality
Models to Analyse and Compare Open-Source Software,” in PROCEEDINGS 2016 10TH INTERNATIONAL
CONFERENCE ON THE QUALITY OF INFORMATION AND COMMUNICATIONS TECHNOLOGY (QUATIC), 2016,
pp. 94–99. doi: 10.1109/QUATIC.2016.23.

[338] Z. Qian, C. Wan, and Y. Chen, “Evaluating quality-in-use of FLOSS through analyzing user reviews,” in
2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), Jun. 2016, pp. 547–552. doi: 10.1109/SNPD.2016.7515956.

[339] L. Sergio, P. Silva, S. C. B. Sampaio, E. R. de Souza, R. T. Moreira, and A. M. L. Vasconcelos, “Mapping
between the guide of it solution contract and CMMI models: A qualitative analysis,” in PROCEEDINGS 2016
10TH INTERNATIONAL CONFERENCE ON THE QUALITY OF INFORMATION AND COMMUNICATIONS
TECHNOLOGY (QUATIC), 2016, pp. 150–153. doi: 10.1109/QUATIC.2016.32.

[340] U. Devi, A. Sharma, and N. Kesswani, “A Review on Quality Models to Analyse the Impact of Refactored
Code on Maintainability with reference to Software Product Line,” in PROCEEDINGS OF THE 10TH INDIACOM
- 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT,
2016, pp. 3705–3708.

References

215 | P a g e

[341] S. Pattnaik and B. K. Pattanayak, “A survey on machine learning techniques used for software quality
prediction,” International Journal of Reasoning-based Intelligent Systems, vol. 8, no. 1/2, pp. 3–14, 2016, doi:
10.1504/IJRIS.2016.080058.

[342] C. I. M. Bezerra, R. M. C. Andrade, and J. M. Monteiro, “Exploring quality measures for the evaluation of
feature models: a case study,” JOURNAL OF SYSTEMS AND SOFTWARE, vol. 131, pp. 366–385, Sep. 2017, doi:
10.1016/j.jss.2016.07.040.

[343] M. Santos, P. J. Afonso, P. H. Bermejo, and H. Costa, “Metrics and Statistical Techniques Used to Evaluate
Internal Quality of Object-Oriented Software: A Systematic Mapping,” 2016.

[344] N. R. M. Suradi, S. Kahar, and N. A. A. Jamaludin, “A Review on Software Quality Attributes for Web-
Based Application,” in PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE OF ENGINEERING AND
APPLIED SCIENCE (INCEAS 2016), 2016, pp. 180–190.

[345] I. Griffith, C. Izurieta, and C. Huvaere, “An Industry Perspective to Comparing the SQALE and Quamoco
Software Quality Models,” in 11TH ACM/IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING AND MEASUREMENT (ESEM 2017), 2017, pp. 287–296. doi: 10.1109/ESEM.2017.42.

[346] K. Moumane and A. Idri, “Software quality in mobile environments: A comparative study,” in 2017 4th
International Conference on Control, Decision and Information Technologies (CoDIT), Apr. 2017, pp. 1123–
1128. doi: 10.1109/CoDIT.2017.8102750.

[347] T. Wahyuningrum and K. Mustofa, “A systematic mapping review of software quality measurement:
Research trends, model, and method,” International Journal of Electrical and Computer Engineering, vol. 7,
no. 5, pp. 2847–2854, Oct. 2017.

[348] F. D. Giraldo, S. España, Ó. Pastor, and W. J. Giraldo, “Considerations about quality in model-driven
engineering: Current state and challenges,” Software Quality Journal, vol. 26, no. 2, pp. 685–750, Jun. 2018.

[349] D. Russo, P. Ciancarini, T. Falasconi, and M. Tomasi, “A Meta-Model for Information Systems Quality: A
Mixed Study of the Financial Sector,” ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, vol.
9, no. 3, Nov. 2018, doi: 10.1145/3230713.

[350] R. Wahdiniwaty, E. B. Setiawan, and D. A. Wahab, “Comparative Analysis of Software Quality Model In
The Selection of Marketplace E-Commerce,” in 2018 INTERNATIONAL CONFERENCE ON INFORMATION
TECHNOLOGY SYSTEMS AND INNOVATION (ICITSI), 2018, pp. 386–391.

[351] D. Gatica, F. Ponce, R. Noël, and H. Astudillo, “Characterizing Architectural Evaluations and Identifying
Quality Attributes addressed in Systems-of-Systems: A Systematic Mapping Study,” in 2018 37th
International Conference of the Chilean Computer Science Society (SCCC), Nov. 2018, pp. 1–7. doi:
10.1109/SCCC.2018.8705229.

[352] A. J. Abdellatif, B. McCollum, and P. McMullan, “Serious Games: Quality Characteristics Evaluation
Framework and Case Study,” in PROCEEDINGS OF THE 8TH IEEE INTEGRATED STEM EDUCATION
CONFERENCE (ISEC 2018), 2018, pp. 112–119.

[353] N. Zighed, N. Bounour, and A.-D. Seriai, “Comparative Analysis of Object-Oriented Software
Maintainability Prediction Models,” FOUNDATIONS OF COMPUTING AND DECISION SCIENCES, vol. 43, no. 4,
pp. 359–374, Dec. 2018, doi: 10.1515/fcds-2018-0018.

[354] M. Rai and K. S. Virk, “Software Component Quality Models: A Survey,” in Advances in Intelligent Systems
and Computing, 2018, pp. 247–255.

[355] V. Nikolic et al., “Survey of quality models of e-learning systems,” PHYSICA A-STATISTICAL MECHANICS
AND ITS APPLICATIONS, vol. 511, pp. 324–330, Dec. 2018, doi: 10.1016/j.physa.2018.07.058.

[356] K. Mossakowska and A. Jarzebowicz, “A Survey Investigating the Influence of Business Analysis
Techniques on Software Quality Characteristics,” in TOWARDS A SYNERGISTIC COMBINATION OF RESEARCH
AND PRACTICE IN SOFTWARE ENGINEERING, 2018, vol. 733, pp. 135–148. doi: 10.1007/978-3-319-65208-
5_10.

[357] P. Nistala, K. V. Nori, and R. Reddy, “Software Quality Models: A Systematic Mapping Study,” in 2019
IEEE/ACM International Conference on Software and System Processes (ICSSP), May 2019, pp. 125–134. doi:
10.1109/ICSSP.2019.00025.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

216 | P a g e

[358] N. Condori-Fernandez and P. Lago, “Towards a Software Sustainability-Quality Model: Insights from a
Multi-Case Study,” in 2019 13th International Conference on Research Challenges in Information Science
(RCIS), May 2019, pp. 1–11. doi: 10.1109/RCIS.2019.8877084.

[359] G. Arcos-Medina and D. Mauricio, “Aspects of software quality applied to the process of agile software
development: a systematic literature review,” International Journal of Systems Assurance Engineering and
Management, vol. 10, no. 5, pp. 867–897, Oct. 2019.

[360] J. Jelinski and P. B. Moranda, “Software rehabillty research,” W. Freiberger (Ed), Academic Press, New
York, pp. 485–502, 1972.

[361] G. J. Schick and R. W. Wolverton, “Assessment of software reliability,” presented at the llth Annum
Meeting, German Operation Research Society, Hamburg, Germany, Sep. 1972.

[362] H. Mills, “On the statistical validation of computer programs,” IBM Federal Systems Division, Technical
Report FSC-72-6015, 1972.

[363] B. Littlewood and J. L. Verrall, “A Bayesian Reliability Growth Model for Computer Software,” Journal of
the Royal Statistical Society. Series C (Applied Statistics), vol. 22, no. 3, pp. 332–346, 1973, doi:
10.2307/2346781.

[364] J. D. Musa, “A theory of software reliability and its application,” IEEE Transactions on Software
Engineering, vol. SE-1, no. 3, pp. 312–327, Sep. 1975, doi: 10.1109/TSE.1975.6312856.

[365] Y. Funami and M. H. Halstead, “A software physics analysis of Aklyama’s debugging data,” in Proc. MRI
Symp. Computer Software Engineering, 1975, pp. 133–138.

[366] N. S. Mohanty and M. Adamowicz, “Proposed measures for the evaluation of software,” in Proc.
Symposium on Computer Soft. Eng. , MRI, New York Polytechnic, 1976, pp. 485–497. [Online]. Available:
https://www.oldcomputerbooks.com/pages/books/C811093/jerome-fox-polytechnic-press-of-the-
polytechnic-institute-of-new-york/proceedings-of-the-symposium-on-computer-software-engineering-
new-york-1976-microwave-research

[367] R. K. Klobert, “Calculation of error process of computer program,” in Proc. Computers, Los Angeles, Nov.
1977, pp. 442–426.

[368] N. F. Schneidewind, “The use of simulation in the evaluation of software,” Computer, vol. 10, no. 4, pp.
47–53, Apr. 1977.

[369] S. Henry and D. Kafura, “Software Structure Metrics Based on Information Flow,” IEEE Transactions on
Software Engineering, vol. SE-7, no. 5, pp. 510–518, Sep. 1981, doi: 10.1109/TSE.1981.231113.

[370] T. P. Bowen, J. V. Post, J. Tsai, P. E. Presson, and R. L. Schmidt, “Software Quality Measurement for
Distributed Systems. Volume 2. Guidebook for Software Quality Measurement,” Rome Air Development
Center, Air Force Systems Command, Griffis Air Force Base, NY, RADC-TR-83-175-VOL-2, Jul. 1983. [Online].
Available: https://apps.dtic.mil/docs/citations/ADA137956

[371] T. P. Bowen, G. B. Wigle, and I. T. Tsai, “Specification of software quality attributes,” Rome Air
Development Center, RADC-TR-85-37, vols. I & II, 1985.

[372] N. Langberg and N. D. Singpurwalla, “A Unification of Some Software Reliability Models,” SIAM J. Sci. and
Stat. Comput., vol. 6, no. 3, pp. 781–790, Jul. 1985, doi: 10.1137/0906053.

[373] V. Y. Shen, T. Yu, S. M. Thebaut, and L. R. Paulsen, “Identifying Error-Prone Software—An Empirical
Study,” IEEE Transactions on Software Engineering, vol. SE-11, no. 4, pp. 317–324, Apr. 1985, doi:
10.1109/TSE.1985.232222.

[374] T. Sunazuka, M. Azuma, and N. Yamagishi, “Software Quality Assessment Technology,” in Proceedings of
the 8th International Conference on Software Engineering, Washington, DC, USA, 1985, pp. 142–148.

[375] T. K. Nayak, “Software Reliability: Statistical Modeling & Estimation,” IEEE Transactions on Reliability,
vol. 35, no. 5, pp. 566–570, Dec. 1986, doi: 10.1109/TR.1986.4335548.

[376] National Institute of Standards and Technology, “The Malcolm Baldrige National Quality Award 1996,
Application Forms and Instructions,” presented at the United States Department of Commerce,
Gaithersburg, GA, 1996.

[377] M. Evans and J. Marciniak, “Software Quality Assurance and Management,” New York: John Wiley, 1987.

References

217 | P a g e

[378] D. N. Card and W. W. Agresti, “Measuring software design complexity,” Journal of Systems and Software,
vol. 8, no. 3, pp. 185–197, Jun. 1988, doi: 10.1016/0164-1212(88)90021-0.

[379] S. Wake and S. Henry, “A model based on software quality factors which predicts maintainability,” in
Proceedings. Conference on Software Maintenance, 1988., Oct. 1988, pp. 382–387. doi:
10.1109/ICSM.1988.10191.

[380] R. W. Selby and A. A. Porter, “Learning from examples: generation and evaluation of decision trees for
software resource analysis,” IEEE Transactions on Software Engineering, vol. 14, no. 12, pp. 1743–1757, Dec.
1988, doi: 10.1109/32.9061.

[381] V. A. Zeithaml, L. L. Berry, and A. Parasuraman, “SERVQUAL: a multiple-item scale for measuring
consumer perceptions of service quality,” Journal of retailing, vol. 64, no. 1, pp. 12–40, 1988.

[382] J. Gaffney and T. Durek, “Software reuse-key to enhanced productivity: some quantitative models,”
Information and Software Technology, vol. 31, no. 5, pp. 258–267, Jun. 1989, doi: 10.1016/0950-
5849(89)90005-0.

[383] S. Henry and S. Wake, “Predicting maintainability with software quality metrics,” Journal of Software
Maintenance: Research and Practice, vol. 3, no. 3, pp. 129–143, Sep. 1991, doi: 10.1002/smr.4360030302.

[384] P. Koltun and A. Hudson, “A reuse maturity model,” presented at the Fourth Annual Workshop on
Software Reuse, Herndon, VA, USA, 1991.

[385] I. Eriksson and A. Törn, “A Model for IS Quality,” Software Engineering Journal, pp. 152–158, Jul. 1991.

[386] ISO/IEC JTC 1/SC 7 Software and systems engineering, “ISO 9126:1991 Information Technology -
Software Product Evaluation - Quality Characteristics and Guidelines for Their Use.” International
Organization for Standardization, Dec. 1991. [Online]. Available: https://www.iso.org/standard/16722.html

[387] V. A. Zeithaml, L. L. Berry, and A. Parasuraman, “Refinement and reassess of the SERVQUAL scale,”
Journal of retailing, vol. 67, no. 4, pp. 420–450, 1991.

[388] W. E. Perry, Quality Assurance for Information Systems: Methods, Tools, and Techniques. USA: QED
Information Sciences, Inc., 1991.

[389] K. A. Dyson, “Quality Evaluation System (QUES) Software Quality Framework as Implemented in QUES.
Volume 2,” Rome Air Development Center, Rome, Defense Technical Information Center, RL-TR-91-407, Vol
II (of two), Dec. 1991. [Online]. Available: https://archive.org/details/DTIC_ADA252976/mode/2up

[390] Ghezzi, C. M. Jazayeri, and D. Mandrioli, “Fundamental of software Engineering,” Prentice–Hall, NJ, USA,
1991.

[391] B. Shackel, “Usability—Context, Framework, Definition, Design and Evaluation,” in Human Factors for
Informatics Usability, USA: Cambridge University Press, 1991, pp. 21–37.

[392] W. W. Agresti and W. M. Evanco, “Projecting software defects from analyzing Ada designs,” IEEE
Transactions on Software Engineering, vol. 18, no. 11, pp. 988–997, Nov. 1992, doi: 10.1109/32.177368.

[393] T. M. Khoshgoftaar, A. S. Pandya, and H. B. More, “A neural network approach for predicting software
development faults,” in [1992] Proceedings Third International Symposium on Software Reliability
Engineering, Oct. 1992, pp. 83–89. doi: 10.1109/ISSRE.1992.285855.

[394] L. C. Briand, V. R. Basili, and W. M. Thomas, “A pattern recognition approach for software engineering
data analysis,” IEEE Transactions on Software Engineering, vol. 18, no. 11, pp. 931–942, Nov. 1992, doi:
10.1109/32.177363.

[395] A. Gillies, “Modelling software quality in the commercial environment,” Software Quality Journal, vol. 1,
no. 3, pp. 175–191, Sep. 1992, doi: 10.1007/BF01720924.

[396] S. G. Eick, C. R. Loader, M. D. Long, L. G. Votta, and S. Vander Wiel, “Estimating Software Fault Content
before Coding,” in Proceedings of the 14th International Conference on Software Engineering, New York, NY,
USA, 1992, pp. 59–65. doi: 10.1145/143062.143090.

[397] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s maintainability,” in Proceedings
Conference on Software Maintenance 1992, Nov. 1992, pp. 337–344. doi: 10.1109/ICSM.1992.242525.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

218 | P a g e

[398] N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Using neural networks in reliability prediction,” IEEE
Software, vol. 9, no. 4, pp. 53–59, Jul. 1992, doi: 10.1109/52.143107.

[399] S. G. Eick, C. R. Loader, S. A. Vander Wiel, and L. G. Votta, “How many errors remain in a software design
document after inspection?,” Proceedings of the 25th Symposium on the Interface, pp. 195–202, 1993.

[400] W. M. Zage and D. M. Zage, “Evaluating design metrics on large-scale software,” IEEE Software, vol. 10,
no. 4, pp. 75–81, Jul. 1993, doi: 10.1109/52.219620.

[401] T. Davis, “The reuse capability model: a basis for improving an organization’s reuse capability,” in [1993]
Proceedings Advances in Software Reuse, Mar. 1993, pp. 126–133. doi: 10.1109/ASR.1993.291710.

[402] A. Dorling, “SPICE: Software process improvement and capability dEtermination,” Information and
Software Technology, vol. 35, no. 6, pp. 404–406, Jun. 1993, doi: 10.1016/0950-5849(93)90011-Q.

[403] L. C. Briand, V. R. Brasili, and C. J. Hetmanski, “Developing interpretable models with optimized set
reduction for identifying high-risk software components,” IEEE Transactions on Software Engineering, vol.
19, no. 11, pp. 1028–1044, Nov. 1993, doi: 10.1109/32.256851.

[404] “IEEE Standard for Software Maintenance,” IEEE Std 1219-1993, pp. 1–45, Jun. 1993, doi:
10.1109/IEEESTD.1993.115570.

[405] “Bootstrap: Europe’s assessment method,” IEEE Software, vol. 10, no. 3, pp. 93–95, May 1993, doi:
10.1109/52.210613.

[406] J. Nielsen, Usability engineering. Morgan Kaufmann, 1993.

[407] J. Preece, D. Benyon, G. Davies, L. Keller, and Y. Rogers, A guide to usability: Human factors in computing.
Addison-Wesley Longman Publishing Co., Inc., 1993.

[408] W. Li and S. Henry, “Object-oriented metrics that predict maintainability,” Journal of Systems and
Software, vol. 23, no. 2, pp. 111–122, Nov. 1993, doi: 10.1016/0164-1212(93)90077-B.

[409] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya, “A comparative study of pattern recognition
techniques for quality evaluation of telecommunications software,” IEEE Journal on Selected Areas in
Communications, vol. 12, no. 2, pp. 279–291, Feb. 1994, doi: 10.1109/49.272878.

[410] European Foundation for Quality Management (EFQM), “The European Foundation for Quality
Management, Guidelines for Identifying and Addressing Business Excellence Issues,” presented at the The
European Foundation for Quality Management, Brussels, Belgium, 1994.

[411] W. M. Evanco and W. W. Agresti, “A composite complexity approach for software defect modelling,”
Software Quality Journal, vol. 3, no. 1, pp. 27–44, Mar. 1994, doi: 10.1007/BF00426946.

[412] W. J. Kettinger and C. C. Lee, “Perceived Service Quality and User Satisfaction with the Information
Services Function*,” Decision Sciences, vol. 25, no. 5-6, pp. 737–766, Sep. 1994, doi: 10.1111/j.1540-
5915.1994.tb01868.x.

[413] S. H. Kan, V. R. Basili, and L. N. Shapiro, “Software quality: An overview from the perspective of total
quality management,” IBM Systems Journal, vol. 33, no. 1, pp. 4–19, 1994, doi: 10.1147/sj.331.0004.

[414] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to evaluate software system
maintainability,” Computer, vol. 27, no. 8, pp. 44–49, Aug. 1994, doi: 10.1109/2.303623.

[415] O. I. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in conceptual modeling,” IEEE Software,
vol. 11, no. 2, pp. 42–49, Mar. 1994, doi: 10.1109/52.268955.

[416] P. Zeephongsekul, G. Xia, and S. Kumar, “Software-reliability growth model: primary-failures generate
secondary-faults under imperfect debugging,” IEEE Transactions on Reliability, vol. 43, no. 3, pp. 408–413,
Sep. 1994, doi: 10.1109/24.326435.

[417] T. M. Khoshgoftaar and D. L. Lanning, “A neural network approach for early detection of program
modules having high risk in the maintenance phase,” Journal of Systems and Software, vol. 29, pp. 85–91,
1995.

[418] N. F. Schneidewind, “Software metrics validation: Space Shuttle flight software example,” Annals of
Software Engineering, vol. 1, no. 1, pp. 287–309, Dec. 1995, doi: 10.1007/BF02249054.

References

219 | P a g e

[419] J. Troster and J. Tian, “Measurement and defect modeling for a legacy software system,” Annals of
Software Engineering, vol. 1, no. 1, pp. 95–118, Dec. 1995, doi: 10.1007/BF02249047.

[420] N. Bevan, “Measuring usability as quality of use,” Software Quality Journal, vol. 4, no. 2, pp. 115–130,
Jun. 1995, doi: 10.1007/BF00402715.

[421] C. Wohlin, P. Runeson, and J. Brantestam, “An experimental evaluation of capture-recapture in software
inspections,” Software Testing, Verification and Reliability, vol. 5, no. 4, pp. 213–232, Jan. 1995, doi:
10.1002/stvr.4370050403.

[422] A. April and F. Coallier, “Trillium: a model for the assessment of telecom software system development
and maintenance capability,” in Proceedings of Software Engineering Standards Symposium, Aug. 1995, pp.
175–183. doi: 10.1109/SESS.1995.525963.

[423] J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and J. Mayrand, “Emerald: software metrics and
models on the desktop,” IEEE Software, vol. 13, no. 5, pp. 56–60, Sep. 1996, doi: 10.1109/52.536459.

[424] M. Azuma, “Software products evaluation system: quality models, metrics and processes—International
Standards and Japanese practice,” Information and Software Technology, vol. 38, no. 3, pp. 145–154, Mar.
1996, doi: 10.1016/0950-5849(95)01069-6.

[425] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel, “Early quality prediction: a case study in
telecommunications,” IEEE Software, vol. 13, no. 1, pp. 65–71, Jan. 1996, doi: 10.1109/52.476287.

[426] C. Ebert, “Fuzzy classification for software criticality analysis,” EXPERT SYSTEMS WITH APPLICATIONS,
vol. 11, no. 3, pp. 323–342, 1996, doi: 10.1016/S0957-4174(96)00048-6.

[427] J. J. Dujmovic, “A method for evaluation and selection of complex hardware and software systems,” in
CMG 96 Proceedings, 1996, pp. 368–378.

[428] M. D. Levi and F. G. Conrad, “A Heuristic Evaluation of a World Wide Web Prototype,” Interactions, vol.
3, no. 4, pp. 50–61, Jul. 1996, doi: 10.1145/234813.234819.

[429] R. A. Martin, L. H. Shafer, and M. H. Auditorium, “Providing a framework for effective software quality
assessment,” The MITRE Corporation, 1996.

[430] Software Analysis Team at Headquarters (HQ) AFOTEC, “Software Maintainability Evaluation Guide,”
Department of the Air Force, HQ Air Force Operational Test and Evaluation Center, Kirtland AFB, New
Mexico, AFOTEC Pamphlet 99-102, Vol. 3, Sep. 1996. [Online]. Available:
https://archive.org/details/DTIC_ADA324619/page/n3/mode/2up

[431] R. E. Park, W. B. Goethert, and W. A. Florac, “Goal-Driven Software Measurement. A Guidebook.,”
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, Handbook CMU/SEI-96-HB-002, 1996.
[Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/a313946.pdf

[432] F. Brito e Abreu and W. Melo, “Evaluating the impact of object-oriented design on software quality,” in
Proceedings of the 3rd International Software Metrics Symposium, Mar. 1996, pp. 90–99. doi:
10.1109/METRIC.1996.492446.

[433] R. Harrison, L. G. Samaraweera, M. R. Dobie, and P. H. Lewis, “An evaluation of code metrics for object-
oriented programs,” Information and Software Technology, vol. 38, no. 7, pp. 443–450, Jan. 1996, doi:
10.1016/0950-5849(95)01081-5.

[434] S. S. Gokhale and M. R. Lyu, “Regression tree modeling for the prediction of software quality,” in
proceedings of the Third ISSAT International Conference on Reliability and Quality in Design, 1997, pp. 31–
36.

[435] R. Takahashi, Y. Muraoka, and Y. Nakamura, “Building software quality classification trees: approach,
experimentation, evaluation,” in Proceedings The Eighth International Symposium on Software Reliability
Engineering, Nov. 1997, pp. 222–233. doi: 10.1109/ISSRE.1997.630869.

[436] N. F. Schneidewind, “Software metrics model for integrating quality control and prediction,” in
Proceedings The Eighth International Symposium on Software Reliability Engineering, Nov. 1997, pp. 402–
415. doi: 10.1109/ISSRE.1997.630888.

[437] R. V. Small, “Assessing the Motivational Quality of World Wide Websites,” ERIC Clearinghouse on
Information & Technology, Syracuse, NY, USA, Document available only on microfiche ED 407930, May 1997.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

220 | P a g e

[438] T. M. Khoshgoftaar, E. B. Allen, R. Halstead, G. P. Trio, and R. Flass, “Process measures for predicting
software quality,” in Proceedings 1997 High-Assurance Engineering Workshop, Aug. 1997, pp. 155–160. doi:
10.1109/HASE.1997.648056.

[439] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, “Automated Analysis of Requirement Specifications,” in
Proceedings of the 19th International Conference on Software Engineering, New York, NY, USA, 1997, pp.
161–171. doi: 10.1145/253228.253258.

[440] T. M. Khoshgoftaar et al., “Predicting fault-prone modules with case-based reasoning,” in Proceedings
The Eighth International Symposium on Software Reliability Engineering, Nov. 1997, pp. 27–35. doi:
10.1109/ISSRE.1997.630845.

[441] N. B. Ebrahimi, “On the statistical analysis of the number of errors remaining in a software design
document after inspection,” IEEE Transactions on Software Engineering, vol. 23, no. 8, pp. 529–532, Aug.
1997, doi: 10.1109/32.624308.

[442] K. D. Welker, P. W. Oman, and G. G. Atkinson, “Development and Application of an Automated Source
Code Maintainability Index,” Journal of Software Maintenance: Research and Practice, vol. 9, no. 3, pp. 127–
159, 1997, doi: https://doi.org/10.1002/(SICI)1096-908X(199705)9:3<127::AID-SMR149>3.0.CO;2-S.

[443] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J. Aud, “Application of neural networks to software
quality modeling of a very large telecommunications system,” IEEE Transactions on Neural Networks, vol. 8,
no. 4, pp. 902–909, Jul. 1997, doi: 10.1109/72.595888.

[444] B. Sabata, S. Chatterjee, M. Davis, J. J. Sydir, and T. F. Lawrence, “Taxonomy for QoS specifications,” in
Proceedings Third International Workshop on Object-Oriented Real-Time Dependable Systems, Feb. 1997, pp.
100–107. doi: 10.1109/WORDS.1997.609931.

[445] T. M. Khoshgoftaar and E. B. Allen, “Classification of Fault-Prone Software Modules: Prior Probabilities,
Costs, and Model Evaluation,” Empirical Software Engineering, vol. 3, no. 3, pp. 275–298, Sep. 1998, doi:
10.1023/A:1009736205722.

[446] N. F. Schneidewind, “An integrated process and product model,” in Proceedings Fifth International
Software Metrics Symposium. Metrics (Cat. No.98TB100262), Nov. 1998, pp. 224–234. doi:
10.1109/METRIC.1998.731249.

[447] J. Kirakowski and B. Cierlik, “Measuring the Usability of Web Sites,” Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, vol. 42, no. 4, pp. 424–428, Oct. 1998, doi:
10.1177/154193129804200405.

[448] N. Ohlsson, M. Zhao, and M. Helander, “Application of multivariate analysis for software fault
prediction,” Software Quality Journal, vol. 7, no. 1, pp. 51–66, Mar. 1998, doi:
10.1023/B:SQJO.0000042059.16470.f0.

[449] L. C. Briand, K. E. Emam, and B. G. Freimut, “A comparison and integration of capture-recapture models
and the detection profile method,” in Proceedings Ninth International Symposium on Software Reliability
Engineering (Cat. No.98TB100257), Nov. 1998, pp. 32–41. doi: 10.1109/ISSRE.1998.730766.

[450] P. Runeson and C. Wohlin, “An Experimental Evaluation of an Experience-Based Capture-Recapture
Method in Software Code Inspections,” Empirical Software Engineering, vol. 3, no. 4, pp. 381–406, Dec. 1998,
doi: 10.1023/A:1009728205264.

[451] A. Dix, J. Finlay, G. D. Abowd, and R. Beale, Human-computer interaction, 2nd Edition. Prentice Hall, Inc.,
1998.

[452] W. Pedrycz, J. F. Peters, and S. Ramanna, “Software quality measurement: concepts and fuzzy neural
relational model,” in 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress
on Computational Intelligence (Cat. No.98CH36228), May 1998, vol. 2, pp. 1026–1031 vol.2. doi:
10.1109/FUZZY.1998.686259.

[453] E. Veenendaal, “Questionnaire based usability testing,” Proceedings of European Software Quality Week,
pp. 1–9, Nov. 1998.

[454] W. D. Jones, J. P. Hudepohl, T. M. Khoshgoftaar, and E. B. Allen, “Application of a usage profile in software
quality models,” in Proceedings of the Third European Conference on Software Maintenance and
Reengineering (Cat. No. PR00090), Mar. 1999, pp. 148–157. doi: 10.1109/CSMR.1999.756692.

References

221 | P a g e

[455] T. M. Khoshgoftaar and E. B. Allen, “Logistic Regression Modeling of Software Quality,” Int. J. Rel. Qual.
Saf. Eng., vol. 06, no. 04, pp. 303–317, Dec. 1999, doi: 10.1142/S0218539399000292.

[456] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl, “Data Mining For Predictors of Software
Quality,” Int. J. Soft. Eng. Knowl. Eng., vol. 09, no. 05, pp. 547–563, Oct. 1999, doi:
10.1142/S0218194099000309.

[457] T. M. Khoshgoftaar, E. B. Allen, X. Yuan, W. D. Jones, and J. P. Huderpohl, “Preparing measurements of
legacy software for predicting operational faults,” in Proceedings IEEE International Conference on Software
Maintenance - 1999 (ICSM’99). “Software Maintenance for Business Change” (Cat. No.99CB36360), Sep.
1999, pp. 359–368. doi: 10.1109/ICSM.1999.792634.

[458] D. Gehrke and E. Turban, “Determinants of successful Website design: relative importance and
recommendations for effectiveness,” in Proceedings of the 32nd Annual Hawaii International Conference on
Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers, Jan. 1999, vol. Track5, p. 8 pp. doi:
10.1109/HICSS.1999.772943.

[459] S. Chulani and B. Boehm, “Modeling software defect introduction and removal: COQUALMO
(COnstructive QUALity MOdel).,” presented at the USC-CSE, 1999.

[460] J. Voas, “Certification: reducing the hidden costs of poor quality,” IEEE Software, vol. 16, no. 4, pp. 22–
25, Aug. 1999, doi: 10.1109/MS.1999.776944.

[461] H. Petersson and C. Wohlin, “An empirical study of experience-based software defect content estimation
methods,” in Proceedings 10th International Symposium on Software Reliability Engineering (Cat.
No.PR00443), Nov. 1999, pp. 126–135. doi: 10.1109/ISSRE.1999.809317.

[462] S. Benlarbi and W. L. Melo, “Polymorphism Measures for Early Risk Prediction,” in Proceedings of the
21st International Conference on Software Engineering, New York, NY, USA, 1999, pp. 334–344. doi:
10.1145/302405.302652.

[463] K. El Emam, S. Benlarbi, N. Goel, and S. Rai, “A validation of object-oriented metrics,” Citeseer, Technical
Report ERB-1063, NRG., 1999.

[464] Mei-Huei Tang, Ming-Hung Kao, and Mei-Hwa Chen, “An empirical study on object-oriented metrics,” in
Proceedings Sixth International Software Metrics Symposium (Cat. No.PR00403), Nov. 1999, pp. 242–249.
doi: 10.1109/METRIC.1999.809745.

[465] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl, “Accuracy of software quality models
over multiple releases,” Annals of Software Engineering, vol. 9, no. 1, pp. 103–116, May 2000, doi:
10.1023/A:1018972607783.

[466] T. Khoshgoftaar and E. Allen, “Improving tree-based models of software quality with principal
components analysis,” in 11TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING,
PROCEEDINGS, 2000, pp. 198–209. doi: 10.1109/ISSRE.2000.885872.

[467] P. Zhang, R. V. Small, G. M. V. Dran, and S. Barcellos, “A two factor theory for Website design,” in
Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Jan. 2000, p. 10 pp.
vol.1. doi: 10.1109/HICSS.2000.926847.

[468] T. Khoshgoftaar and E. Allen, “A practical classification-rule for software-quality models,” IEEE
TRANSACTIONS ON RELIABILITY, vol. 49, no. 2, pp. 209–216, Jun. 2000, doi: 10.1109/24.877340.

[469] H. Petersson and C. Wohlin, “Evaluating defect content estimation rules in software inspections,” 2000.

[470] T. Thelin and P. Runeson, “Robust estimations of fault content with capture–recapture and detection
profile estimators,” Journal of Systems and Software, vol. 52, no. 2, pp. 139–148, Jun. 2000, doi:
10.1016/S0164-1212(99)00140-5.

[471] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, “Exploring the relationships between design measures
and software quality in object-oriented systems,” Journal of Systems and Software, vol. 51, no. 3, pp. 245–
273, 2000, doi: https://doi.org/10.1016/S0164-1212(99)00102-8.

[472] S. Barnes and R. Vidgen, “WebQual: An Exploration of Website Quality,” presented at the 8th European
Conf. on Information Systems, Jul. 2000.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

222 | P a g e

[473] S. Muthanna, K. Kontogiannis, K. Ponnambalam, and B. Stacey, “A maintainability model for industrial
software systems using design level metrics,” in Proceedings Seventh Working Conference on Reverse
Engineering, Nov. 2000, pp. 248–256. doi: 10.1109/WCRE.2000.891476.

[474] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex software system,”
IEEE Transactions on Software Engineering, vol. 26, no. 8, pp. 797–814, Aug. 2000, doi: 10.1109/32.879815.

[475] X. Yuan, T. M. Khoshgoftaar, E. B. Allen, and K. Ganesan, “An application of fuzzy clustering to software
quality prediction,” in Proceedings 3rd IEEE Symposium on Application-Specific Systems and Software
Engineering Technology, Mar. 2000, pp. 85–90. doi: 10.1109/ASSET.2000.888052.

[476] Ping Guo and M. R. Lyu, “Software quality prediction using mixture models with EM algorithm,” in
Proceedings First Asia-Pacific Conference on Quality Software, Oct. 2000, pp. 69–78. doi:
10.1109/APAQ.2000.883780.

[477] S. Benlarbi, K. El Emam, N. Goel, and S. Rai, “Thresholds for object-oriented measures,” in Proceedings
11th International Symposium on Software Reliability Engineering. ISSRE 2000, Oct. 2000, pp. 24–38. doi:
10.1109/ISSRE.2000.885858.

[478] D. Glasberg, K. El Emam, W. Melo, and N. Madhavji, “Validating object-oriented design metrics on a
commercial java application,” Citeseer, TR ERB-1080, NRC, 2000.

[479] Y. Liu and T. M. Khoshgoftaar, “Genetic programming model for software quality classification,” in
Proceedings Sixth IEEE International Symposium on High Assurance Systems Engineering. Special Topic:
Impact of Networking, Oct. 2001, pp. 127–136. doi: 10.1109/HASE.2001.966814.

[480] O. Balci, “A Methodology for Certification of Modeling and Simulation Applications,” ACM Trans. Model.
Comput. Simul., vol. 11, no. 4, pp. 352–377, Oct. 2001, doi: 10.1145/508366.508369.

[481] H. K. N. Leung, “Quality metrics for intranet applications,” Information & Management, vol. 38, no. 3,
pp. 137–152, Jan. 2001, doi: 10.1016/S0378-7206(00)00060-4.

[482] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “An automatic quality evaluation for natural language
requirements,” in Proceedings of the Seventh International Workshop on Requirements Engineering:
Foundation for Software Quality REFSQ, 2001, vol. 1, pp. 4–5.

[483] F. Losavio, L. Chirinos, and M. Pérez, “Attribute-Based Techniques to Evaluate Architectural Styles for
Interactive Systems,” Journal of Object Oriented Programming, pp. 130–138, 2001.

[484] M. Kajko-Mattsson, S. Forssander, and U. Olsson, “Corrective maintenance maturity model (CM/sup 3/):
maintainer’s education and training,” in Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001, May 2001, pp. 610–619. doi: 10.1109/ICSE.2001.919135.

[485] S. Biffl and W. Grossmann, “Evaluating the accuracy of defect estimation models based on inspection
data from two inspection cycles,” in Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001, May 2001, pp. 145–154. doi: 10.1109/ICSE.2001.919089.

[486] L. Olsina, G. Lafuente, and G. Rossi, “Specifying Quality Characteristics and Attributes for Websites,” in
Web Engineering: Managing Diversity and Complexity of Web Application Development, S. Murugesan and
Y. Deshpande, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 266–278. doi: 10.1007/3-540-
45144-7_26.

[487] K. El Emam, W. Melo, and J. C. Machado, “The prediction of faulty classes using object-oriented design
metrics,” Journal of Systems and Software, vol. 56, no. 1, pp. 63–75, Feb. 2001, doi: 10.1016/S0164-
1212(00)00086-8.

[488] L. C. Briand, J. Wüst, and H. Lounis, “Replicated Case Studies for Investigating Quality Factors in Object-
Oriented Designs,” Empirical Software Engineering, vol. 6, no. 1, pp. 11–58, Mar. 2001, doi:
10.1023/A:1009815306478.

[489] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, “The confounding effect of class size on the validity of
object-oriented metrics,” IEEE Transactions on Software Engineering, vol. 27, no. 7, pp. 630–650, Jul. 2001,
doi: 10.1109/32.935855.

[490] T. M. Khoshgoftaar, E. B. Allen, and J. Deng, “Using regression trees to classify fault-prone software
modules,” IEEE Transactions on Reliability, vol. 51, no. 4, pp. 455–462, Dec. 2002, doi:
10.1109/TR.2002.804488.

References

223 | P a g e

[491] N. J. Pizzi, A. R. Summers, and W. Pedrycz, “Software quality prediction using median-adjusted class
labels,” in Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat.
No.02CH37290), May 2002, vol. 3, pp. 2405–2409 vol.3. doi: 10.1109/IJCNN.2002.1007518.

[492] L. C. Briand, W. L. Melo, and J. Wust, “Assessing the applicability of fault-proneness models across object-
oriented software projects,” IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 706–720, Jul.
2002, doi: 10.1109/TSE.2002.1019484.

[493] S. S. So, S. D. Cha, and Y. R. Kwon, “Empirical evaluation of a fuzzy logic-based software quality prediction
model,” Fuzzy Sets and Systems, vol. 127, no. 2, pp. 199–208, Apr. 2002, doi: 10.1016/S0165-0114(01)00128-
2.

[494] R. Ramler, E. Weippl, M. Winterer, W. Schwinger, and J. Altmann, “A quality-driven approach to web
testing,” in Iberoamerican Conference on Web Engineering, ICWE, 2002, vol. 2, pp. 81–95.

[495] T. M. Khoshgoftaar and N. Seliya, “Tree-based software quality estimation models for fault prediction,”
in Proceedings Eighth IEEE Symposium on Software Metrics, Jun. 2002, pp. 203–214. doi:
10.1109/METRIC.2002.1011339.

[496] J. Miller, F. Macdonald, and J. Ferguson, “ASSISTing Management Decisions in the Software Inspection
Process,” Information Technology and Management, vol. 3, no. 1, pp. 67–83, Jan. 2002, doi:
10.1023/A:1013112826330.

[497] F. Padberg, “Empirical Interval Estimates for the Defect Content after an Inspection,” in Proceedings of
the 24th International Conference on Software Engineering, New York, NY, USA, 2002, pp. 58–68. doi:
10.1145/581339.581350.

[498] M. Bertoa and A. Vallecillo, “Quality Attributes for COTS Components,” Spain, 2002.

[499] A. B. Albuquerque and A. D. Belchior, “E-commerce websites: a qualitative evaluation,” 11th
international WWW conference proceedings - Poster Session. Hawaii, pp. 294–300, 2002.

[500] P. Schubert, “Extended web assessment method (EWAM): evaluation of electronic commerce
applications from the customer’s viewpoint,” International Journal of Electronic Commerce, vol. 7, no. 2, pp.
51–80, 2002.

[501] A. Mani, “Understanding quality of service for Web services,” http://www-
106.ibm.com/developerworks/library/ws-quality.html, 2002.

[502] K. El Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis, and S. N. Rai, “The optimal class size for object-
oriented software,” IEEE Transactions on Software Engineering, vol. 28, no. 5, pp. 494–509, May 2002, doi:
10.1109/TSE.2002.1000452.

[503] T. M. Khoshgoftaar, N. Seliya, and Y. Liu, “Genetic programming-based decision trees for software quality
classification,” in Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence, Nov.
2003, pp. 374–383. doi: 10.1109/TAI.2003.1250214.

[504] R. Zeineddine and N. Mansour, “Software Quality Improvement Model for Small Organizations,” in
Computer and Information Sciences - ISCIS 2003, Berlin, Heidelberg, 2003, pp. 1027–1034.

[505] E. M. Herrera and R. A. T. Ramírez, “A Methodology for Self-Diagnosis for Software Quality Assurance in
Small and Medium-Sized Industries in Latin America,” The Electronic Journal of Information Systems in
Developing Countries, vol. 15, no. 1, pp. 1–13, Oct. 2003, doi: 10.1002/j.1681-4835.2003.tb00100.x.

[506] T.-S. Quah and M. M. T. Thwin, “Application of neural networks for software quality prediction using
object-oriented metrics,” in International Conference on Software Maintenance, 2003. ICSM 2003.
Proceedings., Sep. 2003, pp. 116–125. doi: 10.1109/ICSM.2003.1235412.

[507] J. Ruiz, Coral Calero, and M. Piattini, “A Three Dimensional Web Quality Model,” in Web Engineering,
Berlin, Heidelberg, 2003, pp. 384–385.

[508] M. Ortega, M. Pérez, and T. Rojas, “Construction of a Systemic Quality Model for Evaluating a Software
Product,” Software Quality Journal, vol. 11, no. 3, pp. 219–242, Jul. 2003, doi: 10.1023/A:1025166710988.

[509] R. P. S. Simão and A. D. Belchior, “Quality Characteristics for Software Components: Hierarchy and
Quality Guides,” Component-Based Software Quality. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg., vol. 2693, pp. 184–206, 2003, doi: https://doi.org/10.1007/978-3-540-45064-1_9.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

224 | P a g e

[510] F.-W. Duijnhouwer and C. Widdows, “Capgemini Expert Letter Open Source Maturity Model,” Capgemini
Expert Letter, pp. 1–18, 2003.

[511] A. Stefani, M. Xenos, and D. Stavrinoudis, “Modelling e-commerce systems’ quality with belief
networks,” in IEEE International Symposium on Virtual Environments, Human-Computer Interfaces and
Measurement Systems, 2003. VECIMS ’03. 2003, Jul. 2003, pp. 13–18. doi: 10.1109/VECIMS.2003.1227023.

[512] S. Golubic, “On software quality verification in the object-oriented development environment,” in
Proceedings of the 7th International Conference on Telecommunications, 2003. ConTEL 2003., Jun. 2003, vol.
2, pp. 557–563 vol.2. doi: 10.1109/CONTEL.2003.176961.

[513] L. Mich, M. Franch, and L. Gaio, “Evaluating and designing the quality of web sites,” IEEE MultiMedia,
vol. 10, no. 1, pp. 34–43, 2003.

[514] H. Zhang, S. Jarzabek, and B. Yang, “Quality Prediction and Assessment for Product Lines,” in Advanced
Information Systems Engineering, Berlin, Heidelberg, 2003, pp. 681–695.

[515] T. M. Khoshgoftaar and N. Seliya, “Analogy-Based Practical Classification Rules for Software Quality
Estimation,” Empirical Software Engineering, vol. 8, no. 4, pp. 325–350, Dec. 2003, doi:
10.1023/A:1025316301168.

[516] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability Meanings and Interpretations in ISO Standards,”
Software Quality Journal, vol. 11, no. 4, pp. 325–338, Nov. 2003, doi: 10.1023/A:1025869312943.

[517] S. Ran, “A Model for Web Services Discovery with QoS,” SIGecom Exch., vol. 4, no. 1, pp. 1–10, Mar.
2003, doi: 10.1145/844357.844360.

[518] K. Lee, J. Jeon, W. Lee, S.-H. Jeong, and S.-W. Park, “Qos for web services: Requirements and possible
approaches,” W3C working group note, vol. 25, no. 3, p. 119, 2003.

[519] C. Patel, K. Supekar, and Y. Lee, “A QoS oriented framework for adaptive management of web service
based workflows,” in International Conference on Database and Expert Systems Applications, 2003, pp. 826–
835. doi: 10.1007/978-3-540-45227-0_80.

[520] M. MORISIO, I. STAMELOS, and A. TSOUKIAS, “SOFTWARE PRODUCT AND PROCESS ASSESSMENT
THROUGH PROFILE-BASED EVALUATION,” Int. J. Soft. Eng. Knowl. Eng., vol. 13, no. 05, pp. 495–512, Oct.
2003, doi: 10.1142/S0218194003001433.

[521] L. Guo, Y. Ma, B. Cukic, and Harshinder Singh, “Robust prediction of fault-proneness by random forests,”
in 15th International Symposium on Software Reliability Engineering, Nov. 2004, pp. 417–428. doi:
10.1109/ISSRE.2004.35.

[522] Navica Inc., “The Open Source Maturity Model is a vital tool for planning open source success,” 2004.
http://www.navicasoft.com/pages/osmm.htm

[523] Atos Origin, “Method for Qualification and Selection of Open Source Software (QSOS),” 2004.
http://www.qsos.org/ (accessed Jan. 23, 2021).

[524] K. Khosravi and Y.-G. Guéhéneuc, “A quality model for design patterns,” University of Montreal,
Technical report 1249, Sep. 2004.

[525] G. A. Di Lucca, A. R. Fasolino, P. Tramontana, and C. A. Visaggio, “Towards the definition of a
maintainability model for Web applications,” in Eighth European Conference on Software Maintenance and
Reengineering, 2004. CSMR 2004. Proceedings., Mar. 2004, pp. 279–287. doi: 10.1109/CSMR.2004.1281430.

[526] Webb Harold W. and Webb Linda A., “SiteQual: an integrated measure of Web site quality,” Journal of
Enterprise Information Management, vol. 17, no. 6, pp. 430–440, Jan. 2004, doi:
10.1108/17410390410566724.

[527] E. M. Maximilien and M. P. Singh, “A framework and ontology for dynamic Web services selection,” IEEE
Internet Computing, vol. 8, no. 5, pp. 84–93, Oct. 2004, doi: 10.1109/MIC.2004.27.

[528] A. Avizienis, J. -. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of dependable and
secure computing,” IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Mar.
2004, doi: 10.1109/TDSC.2004.2.

References

225 | P a g e

[529] C. Patel, K. Supekar, and Yugyung Lee, “Provisioning resilient, adaptive Web services-based workflow: a
semantic modeling approach,” in Proceedings. IEEE International Conference on Web Services, 2004., Jul.
2004, pp. 480–487. doi: 10.1109/ICWS.2004.1314773.

[530] N. Looker, M. Munro, and J. Xu, “Assessing web service quality of service with fault injection,” 2004.

[531] R. Marinescu and D. Ratiu, “Quantifying the quality of object-oriented design: the factor-strategy
model,” in 11th Working Conference on Reverse Engineering, Nov. 2004, pp. 192–201. doi:
10.1109/WCRE.2004.31.

[532] B. B. Chua and L. E. Dyson, “Applying the ISO 9126 model to the evaluation of an e-learning system,” in
Proc. of ASCILITE, 2004, pp. 5–8.

[533] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki, “Non-functional requirements in industry - three
case studies adopting an experience-based NFR method,” in 13th IEEE International Conference on
Requirements Engineering (RE’05), Sep. 2005, pp. 373–382. doi: 10.1109/RE.2005.47.

[534] B. Freimut, C. Denger, and M. Ketterer, “An industrial case study of implementing and validating defect
classification for process improvement and quality management,” in 11th IEEE International Software
Metrics Symposium (METRICS’05), Sep. 2005, pp. 10 pp. – 19. doi: 10.1109/METRICS.2005.10.

[535] Kilsup Lee and Sung Jong Lee, “A quantitative software quality evaluation model for the artifacts of
component based development,” in Sixth International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-
Assembling Wireless Network, May 2005, pp. 20–25. doi: 10.1109/SNPD-SAWN.2005.7.

[536] M. M. T. Thwin and T.-S. Quah, “Application of neural networks for software quality prediction using
object-oriented metrics,” Journal of Systems and Software, vol. 76, no. 2, pp. 147–156, 2005, doi:
https://doi.org/10.1016/j.jss.2004.05.001.

[537] A. Wasserman, M. Pal, and C. Chan, “Business Readiness Rating Project,” BRR Whitepaper 2005 RFC 1,
pp. 1–22, 2005.

[538] O. Signore, “A comprehensive model for Web sites quality,” in Seventh IEEE International Symposium on
Web Site Evolution, Sep. 2005, pp. 30–36. doi: 10.1109/WSE.2005.1.

[539] A. Alvaro, E. Almeida, and S. Meira, “Quality attributes for a component quality model,” 10th WCOP/19th
ECCOP, Glasgow, Scotland, pp. 31–37, 2005.

[540] S. He, E. Qi, Z. He, and B. Nie, “A study on quality controlling of semiconductor assembly based on
principal component analysis,” in PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON INDUSTRIAL
ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1 AND 2: MODERN INDUSTRIAL ENGINEERING AND
INNOVATION IN ENTERPRISE MANAGEMENT, 2005, pp. 418–420.

[541] A. Parasuraman, V. A. Zeithaml, and A. Malhotra, “E-S-QUAL: A Multiple-Item Scale for Assessing
Electronic Service Quality,” Journal of Service Research, vol. 7, no. 3, pp. 123–233, Feb. 2005, doi:
10.1177/1094670504271156.

[542] G. Dobson, R. Lock, and I. Sommerville, “QoSOnt: a QoS ontology for service-centric systems,” in 31st
EUROMICRO Conference on Software Engineering and Advanced Applications, Sep. 2005, pp. 80–87. doi:
10.1109/EUROMICRO.2005.49.

[543] J. De Bruijn et al., “Web service modeling ontology (wsmo) (working draf fversion),” Interface, vol. 5, no.
1, p. 50, 2005.

[544] S. Amasaki, Y. Takagi, O. Mizuno, and T. Kikuno, “Constructing a Bayesian belief network to predict final
quality in embedded system development,” IEICE Transactions on Information and Systems, vol. 88, no. 6,
pp. 1134–1141, 2005.

[545] Fei Xing, Ping Guo, and M. R. Lyu, “A novel method for early software quality prediction based on support
vector machine,” in 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05), Nov.
2005, pp. 10 pp. – 222. doi: 10.1109/ISSRE.2005.6.

[546] D. Janakiram and M. S. Rajasree, “ReQuEst: Requirements-Driven Quality Estimator,” SIGSOFT Softw.
Eng. Notes, vol. 30, no. 1, p. 4, Jan. 2005, doi: 10.1145/1039174.1039194.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

226 | P a g e

[547] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented metrics on open source
software for fault prediction,” IEEE Transactions on Software Engineering, vol. 31, no. 10, pp. 897–910, Oct.
2005, doi: 10.1109/TSE.2005.112.

[548] C. van Koten and A. R. Gray, “An application of Bayesian network for predicting object-oriented software
maintainability,” Information and Software Technology, vol. 48, no. 1, pp. 59–67, 2006, doi:
https://doi.org/10.1016/j.infsof.2005.03.002.

[549] F. J. Miranda, R. Cortés, and C. Barriuso, “Quantitative evaluation of e-banking web sites: An empirical
study of Spanish banks.,” Electronic Journal of Information Systems Evaluation, vol. 9, no. 2, pp. 73–82, 2006.

[550] J. P. Carvallo and X. Franch, “Extending the ISO/IEC 9126-1 Quality Model with Non-Technical Factors for
COTS Components Selection,” in Proceedings of the 2006 International Workshop on Software Quality, New
York, NY, USA, 2006, pp. 9–14. doi: 10.1145/1137702.1137706.

[551] T. M. Khoshgoftaar, N. Seliya, and N. Sundaresh, “An empirical study of predicting software faults with
case-based reasoning,” Software Quality Journal, vol. 14, no. 2, pp. 85–111, Jun. 2006, doi: 10.1007/s11219-
006-7597-z.

[552] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda, “Usability measurement and metrics: A consolidated
model,” Software Quality Journal, vol. 14, no. 2, pp. 159–178, Jun. 2006, doi: 10.1007/s11219-006-7600-8.

[553] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, “A qos-aware selection model for semantic web services,”
in International Conference on Service-Oriented Computing, 2006, pp. 390–401. doi: 10.1007/11948148_32.

[554] S. Jiang and F. A. Aagesen, “An approach to integrated semantic service discovery,” in IFIP TC6
International Conference on Autonomic Networking, 2006, pp. 159–171.

[555] Gwyduk Yeom, Taewoong Yun, and Dugki Min, “A QoS model and testing mechanism for quality-driven
Web services selection,” in The Fourth IEEE Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems, and the Second International Workshop on Collaborative Computing, Integration, and
Assurance (SEUS-WCCIA’06), Apr. 2006, p. 6 pp. doi: 10.1109/SEUS-WCCIA.2006.34.

[556] D. T. Tsesmetzis, I. G. Roussaki, I. V. Papaioannou, and M. E. Anagnostou, “QoS awareness support in
Web-Service semantics,” in Advanced Int’l Conference on Telecommunications and Int’l Conference on
Internet and Web Applications and Services (AICT-ICIW’06), Feb. 2006, pp. 128–128. doi: 10.1109/AICT-
ICIW.2006.156.

[557] D. Z. G. Garcia and M. B. F. de Toledo, “Semantics-Enriched QoS Policies for Web Service Interactions,”
in Proceedings of the 12th Brazilian Symposium on Multimedia and the Web, New York, NY, USA, 2006, pp.
35–44. doi: 10.1145/1186595.1186601.

[558] H. Truong, R. Samborski, and T. Fahringer, “Towards a Framework for Monitoring and Analyzing QoS
Metrics of Grid Services,” in 2006 Second IEEE International Conference on e-Science and Grid Computing (e-
Science’06), Dec. 2006, pp. 65–65. doi: 10.1109/E-SCIENCE.2006.261149.

[559] Yuming Zhou and Hareton Leung, “Empirical Analysis of Object-Oriented Design Metrics for Predicting
High and Low Severity Faults,” IEEE Transactions on Software Engineering, vol. 32, no. 10, pp. 771–789, Oct.
2006, doi: 10.1109/TSE.2006.102.

[560] K. Kritikos and D. Plexousakis, “Semantic QoS Metric Matching,” in 2006 European Conference on Web
Services (ECOWS’06), Dec. 2006, pp. 265–274. doi: 10.1109/ECOWS.2006.34.

[561] S. Mavromoustakos and A. S. Andreou, “WAQE: a Web Application Quality Evaluation model,”
International Journal of Web Engineering and Technology, vol. 3, no. 1, pp. 96–120, Dec. 2006, doi:
10.1504/IJWET.2007.011529.

[562] A. S. Andreou and M. Tziakouris, “A quality framework for developing and evaluating original software
components,” Information and Software Technology, vol. 49, no. 2, pp. 122–141, 2007, doi:
https://doi.org/10.1016/j.infsof.2006.03.007.

[563] Y. Zhou and H. Leung, “Predicting object-oriented software maintainability using multivariate adaptive
regression splines,” Journal of Systems and Software, vol. 80, no. 8, pp. 1349–1361, 2007, doi:
https://doi.org/10.1016/j.jss.2006.10.049.

[564] D. Taibi, L. Lavazza, and S. Morasca, “OpenBQR: a framework for the assessment of OSS,” in Open Source
Development, Adoption and Innovation, Boston, MA, 2007, pp. 173–186.

References

227 | P a g e

[565] Mbusi Sibisi and C. C. van Waveren, “A process framework for customising software quality models,” in
AFRICON 2007, Sep. 2007, pp. 1–8. doi: 10.1109/AFRCON.2007.4401495.

[566] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J. -. Girard, “An Activity-Based Quality Model for
Maintainability,” in 2007 IEEE International Conference on Software Maintenance, Oct. 2007, pp. 184–193.
doi: 10.1109/ICSM.2007.4362631.

[567] S. Winter, S. Wagner, and F. Deissenboeck, “A Comprehensive Model of Usability,” in Engineering
Interactive Systems, Berlin, Heidelberg, 2007, pp. 106–122.

[568] I. Heitlager, T. Kuipers, and J. Visser, “A Practical Model for Measuring Maintainability,” in 6th
International Conference on the Quality of Information and Communications Technology (QUATIC 2007), Sep.
2007, pp. 30–39. doi: 10.1109/QUATIC.2007.8.

[569] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting Faults from Cached History,” in
29th International Conference on Software Engineering (ICSE’07), May 2007, pp. 489–498. doi:
10.1109/ICSE.2007.66.

[570] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai, “Object-oriented software fault
prediction using neural networks,” Information and Software Technology, vol. 49, no. 5, pp. 483–492, May
2007, doi: 10.1016/j.infsof.2006.07.005.

[571] G. Quirchmayr, S. Funilkul, and W. Chutimaskul, “A quality model of e-government services based on the
ISO/IEC 9126 standard,” in International Legal Informatics Symposium (IRIS), 2007, pp. 45–53.

[572] T. S. Dagger, J. C. Sweeney, and L. W. Johnson, “A hierarchical model of health service quality: scale
development and investigation of an integrated model,” Journal of Service Research, vol. 10, no. 2, pp. 123–
142, 2007.

[573] A. Henriksson, Y. Yi, B. Frost, and M. Middleton, “Evaluation instrument for e-government websites,”
Electronic Government, an International Journal (EG), vol. 4, no. 2, pp. 204–226, 2007.

[574] K. Ren, J. Chen, T. Chen, J. Song, and N. Xiao, “Grid-Based Semantic Web Service Discovery Model with
QoS Constraints,” in Third International Conference on Semantics, Knowledge and Grid (SKG 2007), Oct. 2007,
pp. 479–482. doi: 10.1109/SKG.2007.118.

[575] J. De Bruijn et al., “D2v1.4. Web service modeling ontology (wsmo),” Interface, p. 35, 2007.

[576] W. D. Yu, R. B. Radhakrishna, S. Pingali, and V. Kolluri, “Modeling the measurements of QoS requirements
in web service systems,” Simulation, vol. 83, no. 1, pp. 75–91, 2007.

[577] Y. Kang, “Extended Model Design for Quality Factor Based Web Service Management,” in Future
Generation Communication and Networking (FGCN 2007), Dec. 2007, vol. 2, pp. 484–487. doi:
10.1109/FGCN.2007.123.

[578] E. Giallonardo and E. Zimeo, “More Semantics in QoS Matching,” in IEEE International Conference on
Service-Oriented Computing and Applications (SOCA ’07), Jun. 2007, pp. 163–171. doi:
10.1109/SOCA.2007.30.

[579] Y. Lee and G. Yeom, “A Quality Chain Modeling Methodology for Ternary Web Services Quality View,” in
5th ACIS International Conference on Software Engineering Research, Management & Applications (SERA
2007), Aug. 2007, pp. 91–97. doi: 10.1109/SERA.2007.26.

[580] W. J. Sung, J. H. Kim, and S. Y. Rhew, “A Quality Model for Open Source Software Selection,” in Sixth
International Conference on Advanced Language Processing and Web Information Technology (ALPIT 2007),
Aug. 2007, pp. 515–519. doi: 10.1109/ALPIT.2007.81.

[581] G. J. Pai and J. Bechta Dugan, “Empirical Analysis of Software Fault Content and Fault Proneness Using
Bayesian Methods,” IEEE Transactions on Software Engineering, vol. 33, no. 10, pp. 675–686, Oct. 2007, doi:
10.1109/TSE.2007.70722.

[582] S. Wagner and F. Deissenboeck, “An Integrated Approach to Quality Modelling,” in Fifth International
Workshop on Software Quality (WoSQ’07: ICSE Workshops 2007), May 2007, pp. 1–1. doi:
10.1109/WOSQ.2007.3.

[583] H. M. Selim, “Critical success factors for e-learning acceptance: Confirmatory factor models,” Computers
& Education, vol. 49, no. 2, pp. 396–413, Sep. 2007, doi: 10.1016/j.compedu.2005.09.004.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

228 | P a g e

[584] F. Khomh and Y.-G. Guéhéneuc, “DEQUALITE: Building Design-Based Software Quality Models,” New
York, NY, USA, 2008. doi: 10.1145/1753196.1753199.

[585] H. Fang, “Modeling and Analysis for Educational Software Quality Hierarchy Triangle,” in 2008 Seventh
International Conference on Web-based Learning, Aug. 2008, pp. 14–18. doi: 10.1109/ICWL.2008.19.

[586] C.-W. Chang, C.-R. Wu, and H.-L. Lin, “Integrating fuzzy theory and hierarchy concepts to evaluate
software quality,” Software Quality Journal, vol. 16, no. 2, pp. 263–276, Jun. 2008, doi: 10.1007/s11219-007-
9035-2.

[587] A. Sharma, R. Kumar, and P. S. Grover, “Estimation of quality for software components: an empirical
approach,” ACM SIGSOFT Software Engineering Notes, vol. 33, no. 6, pp. 1–10, Nov. 2008.

[588] A. I. ELdesouky, H. Arafat, and H. Ramzey, “Toward complex academic Web-Sites Quality evaluation
method (QEM) framework: quality requirements phase definition and specification,” Computer and Systems
Engineering Department, 2008.

[589] B. Shim, S. Choue, S. Kim, and S. Park, “A Design Quality Model for Service-Oriented Architecture,” in
2008 15th Asia-Pacific Software Engineering Conference, Dec. 2008, pp. 403–410. doi:
10.1109/APSEC.2008.32.

[590] CITY et al., “Quality Reference Model for SBA,” Contractual Deliverable #CD-JRA-1.3.2 , S-Cube, the
European Network of Excellence in Software Services and Systems, p. 64, Mar. 2008.

[591] A. Stefani and M. Xenos, “E-commerce system quality assessment using a model based on ISO 9126 and
Belief Networks,” Software Quality Journal, vol. 16, no. 1, pp. 107–129, Mar. 2008, doi: 10.1007/s11219-007-
9032-5.

[592] P. M. Heck and M. van Eekelen, LaQuSo software product certification model (LSPCM). Technische
Universiteit Eindhoven, 2008.

[593] R. Plösch et al., “The EMISQ method and its tool support-expert-based evaluation of internal software
quality,” Innovations in Systems and Software Engineering, vol. 4, no. 1, pp. 3–15, Apr. 2008, doi:
10.1007/s11334-007-0039-7.

[594] J. Laval, A. Bergel, and S. Ducasse, “Assessing the Quality of your Software with MoQam,” Antwerp,
Belgium, Oct. 2008. [Online]. Available: https://hal.inria.fr/inria-00498482

[595] I. Gondra, “Applying machine learning to software fault-proneness prediction,” Journal of Systems and
Software, vol. 81, no. 2, pp. 186–195, Feb. 2008, doi: 10.1016/j.jss.2007.05.035.

[596] S. Cimino, S. Sperone, and F. Micali, “Web Q-Model: a new approach to the quality,” Apr. 2008.

[597] W. Chutimaskul, S. Funilkul, and V. Chongsuphajaisiddhi, “The Quality Framework of E-Government
Development,” in Proceedings of the 2nd International Conference on Theory and Practice of Electronic
Governance, New York, NY, USA, 2008, pp. 105–109. doi: 10.1145/1509096.1509117.

[598] W. Abramowicz, R. Hofman, W. Suryn, and D. Zyskowski, “SQuaRE based web services quality model,” in
Proceedings of The International MultiConference of Engineers and Computer Scientists 2008, 2008, pp. 827–
835.

[599] N. Artaiam and T. Senivongse, “Enhancing Service-Side QoS Monitoring for Web Services,” in 2008 Ninth
ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, Aug. 2008, pp. 765–770. doi: 10.1109/SNPD.2008.157.

[600] V. X. Tran, “WS-QoSOnto: A QoS Ontology for Web Services,” in 2008 IEEE International Symposium on
Service-Oriented System Engineering, Dec. 2008, pp. 233–238. doi: 10.1109/SOSE.2008.17.

[601] H. Mittal, P. Bhatia, and P. Goswami, “Software quality assessment based on fuzzy logic technique,”
International Journal of Software Computing Applications, vol. 34, no. 3, pp. 105–112, 2008.

[602] L. Etxeberria and G. Sagardui, “Quality assessment in software product lines,” in International
Conference on Software Reuse, 2008, pp. 178–181.

[603] L. Etxeberria and G. Sagardui, “Evaluation of Quality Attribute Variability in Software Product Families,”
in 15th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems
(ecbs 2008), Apr. 2008, pp. 255–264. doi: 10.1109/ECBS.2008.14.

References

229 | P a g e

[604] E. Raffoul, K. Domínguez, M. Pérez, L. E. Mendoza, and A. C. Grimán, “Quality model for the selection of
FLOSS-based Issue tracking system,” in Proceedings of the IASTED international conference on software
engineering, Innsbruck, Austria, 2008, vol. 12.

[605] H. M. Olague, L. H. Etzkorn, S. L. Messimer, and H. S. Delugach, “An empirical validation of object-
oriented class complexity metrics and their ability to predict error-prone classes in highly iterative, or agile,
software: a case study,” Journal of Software Maintenance and Evolution: Research and Practice, vol. 20, no.
3, pp. 171–197, May 2008, doi: 10.1002/smr.366.

[606] M. Kläs, H. Nakao, F. Elberzhager, and J. Münch, “Support planning and controlling of early quality
assurance by combining expert judgment and defect data—a case study,” Empirical Software Engineering,
vol. 15, no. 4, pp. 423–454, Aug. 2010, doi: 10.1007/s10664-009-9112-1.

[607] A. Bergel et al., “SQUALE – Software QUALity Enhancement,” in 2009 13th European Conference on
Software Maintenance and Reengineering, Mar. 2009, pp. 285–288. doi: 10.1109/CSMR.2009.13.

[608] E. Petrinja, R. Nambakam, and A. Sillitti, “Introducing the OpenSource Maturity Model,” in 2009 ICSE
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and Development, May 2009,
pp. 37–41. doi: 10.1109/FLOSS.2009.5071358.

[609] B. Behkamal, M. Kahani, and M. K. Akbari, “Customizing ISO 9126 quality model for evaluation of B2B
applications,” Information and Software Technology, vol. 51, no. 3, pp. 599–609, 2009, doi:
10.1016/j.infsof.2008.08.001.

[610] A. Kumar, P. S. Grover, and R. Kumar, “A quantitative evaluation of aspect-oriented software quality
model (AOSQUAMO),” ACM SIGSOFT Software Engineering Notes, vol. 34, no. 5, pp. 1–9, Sep. 2009.

[611] P. R. Srivastava and K. Kumar, “An Approach towards Software Quality Assessment,” in Information
Systems, Technology and Management, Berlin, Heidelberg, 2009, pp. 150–160.

[612] S. Wagner, “A Bayesian Network Approach to Assess and Predict Software Quality Using Activity-Based
Quality Models,” Vancouver, BC, Canada, May 2009. doi: 10.1145/1540438.1540447.

[613] M. Á. Moraga, C. Calero, J. Garzás, and M. Piattini, “Assessment of portlet quality: Collecting real
experience,” Computer Standards & Interfaces, vol. 31, no. 2, pp. 336–347, 2009, doi:
https://doi.org/10.1016/j.csi.2008.05.001.

[614] M. Soto and M. Ciolkowski, “The QualOSS open source assessment model measuring the performance
of open source communities,” in 2009 3rd International Symposium on Empirical Software Engineering and
Measurement, Oct. 2009, pp. 498–501. doi: 10.1109/ESEM.2009.5314237.

[615] R. Plösch, H. Gruber, C. Körner, G. Pomberger, and S. Schiffer, “A proposal for a quality model based on
a technical topic classification,” in SQMB 2009 Workshop, 2009, vol. 2.

[616] A. Hussain and M. Kutar, “Usability metric framework for mobile phone application,” 2009.

[617] V. del Bianco, L. Lavazza, S. Morasca, and D. Taibi, “Quality of Open Source Software: The QualiPSo
Trustworthiness Model,” Boldyreff C., Crowston K., Lundell B., Wasserman A.I. (eds) Open Source Ecosystems:
Diverse Communities Interacting. OSS 2009. IFIP Advances in Information and Communication Technology,
vol. 299, pp. 199–212, doi: 10.1007/978-3-642-02032-2_18.

[618] X. Papadomichelaki and G. Mentzas, “A Multiple-Item Scale for Assessing E-Government Service
Quality,” in Wimmer M.A., Scholl H.J., Janssen M., Traunmüller R. (eds) Electronic Government. EGOV 2009.
Lecture Notes in Computer Science, 2009, vol. 5693, pp. 163–175. doi: 10.1007/978-3-642-03516-6_14.

[619] H. M. Frutos, I. Kotsiopoulos, L. M. V. Gonzalez, and L. R. Merino, “Enhancing service selection by
semantic qos,” in European Semantic Web Conference, 2009, pp. 565–577.

[620] H. Chang and K. Lee, “Quality-Driven Web Service Composition for Ubiquitous Computing Environment,”
in 2009 International Conference on New Trends in Information and Service Science, Jul. 2009, pp. 156–161.
doi: 10.1109/NISS.2009.117.

[621] E. Al-Masri and Q. H. Mahmoud, “Understanding web service discovery goals,” in 2009 IEEE International
Conference on Systems, Man and Cybernetics, Oct. 2009, pp. 3714–3719. doi: 10.1109/ICSMC.2009.5346882.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

230 | P a g e

[622] Tong Hongxia, Cao Jian, Zhang ShenSheng, and Mou Yujie, “A fuzzy evaluation system for web services
selection using extended QoS model,” Kybernetes, vol. 38, no. 3/4, pp. 513–521, Jan. 2009, doi:
10.1108/03684920910944236.

[623] M. Comuzzi and B. Pernici, “A Framework for QoS-Based Web Service Contracting,” ACM Trans. Web,
vol. 3, no. 3, Jul. 2009, doi: 10.1145/1541822.1541825.

[624] Z. Balfagih and M. F. Hassan, “Quality Model for Web Services from Multi-stakeholders’ Perspective,” in
2009 International Conference on Information Management and Engineering, Apr. 2009, pp. 287–291. doi:
10.1109/ICIME.2009.11.

[625] S. Li and J. Zhou, “The WSMO-QoS Semantic Web Service Discovery Framework,” in 2009 International
Conference on Computational Intelligence and Software Engineering, Dec. 2009, pp. 1–5. doi:
10.1109/CISE.2009.5366383.

[626] K. K. Reddy D, K. Maralla, R. K. G, and M. Thirumaran, “A Greedy Approach with Criteria Factors for QoS
Based Web Service Discovery,” New York, NY, USA, 2009. doi: 10.1145/1517303.1517317.

[627] A. Marchetto, “OQMw: An OO Quality Model for Web Applications,” Journal of Applied Science and
Engineering, vol. 12, no. 4, pp. 459–470, Dec. 2009, doi: 10.6180/jase.2009.12.4.10.

[628] S. Ozkan and R. Koseler, “Multi-dimensional students’ evaluation of e-learning systems in the higher
education context: An empirical investigation,” Computers & Education, vol. 53, no. 4, pp. 1285–1296, Dec.
2009, doi: 10.1016/j.compedu.2009.06.011.

[629] C. Cappiello et al., “A quality model for service monitoring and adaptation,” in Workshop on Service
Monitoring, Adaptation and Beyond, 2009, p. 29.

[630] N. B. Mabrouk, N. Georgantas, and V. Issarny, “A semantic end-to-end QoS model for dynamic service
oriented environments,” in 2009 ICSE Workshop on Principles of Engineering Service Oriented Systems, May
2009, pp. 34–41. doi: 10.1109/PESOS.2009.5068817.

[631] D. Alonso-Ríos, A. Vázquez-García, E. Mosqueira-Rey, and V. Moret-Bonillo, “Usability: A Critical Analysis
and a Taxonomy,” null, vol. 26, no. 1, pp. 53–74, Dec. 2009, doi: 10.1080/10447310903025552.

[632] I. Castillo, F. Losavio, A. Matteo, and J. Bøegh, “REquirements, Aspects and Software Quality: the REASQ
model,” Journal Object Technology, vol. 9, no. 4, pp. 69–91, 2010.

[633] A. Alvaro, E. S. de Almeida, and S. R. de L. Meira, “A software component quality framework,” SIGSOFT
Softw. Eng. Notes, vol. 35, no. 1, pp. 1–18, 2010.

[634] S. Kalaimagal and R. Srinivasan, “Q’Facto 10-A commercial off-the-shelf component quality model
proposal,” Journal of Software Engineering, vol. 4, no. 1, pp. 1–15, 2010.

[635] G. Malak, H. Sahraoui, L. Badri, and M. Badri, “Modeling Web Quality Using a Probabilistic Approach: An
Empirical Validation,” ACM Trans. Web, vol. 4, no. 3, Jul. 2010, doi: 10.1145/1806916.1806918.

[636] P. Lew, L. Olsina, and L. Zhang, “Quality, Quality in Use, Actual Usability and User Experience as Key
Drivers for Web Application Evaluation,” in Web Engineering, Berlin, Heidelberg, 2010, pp. 218–232.

[637] M. Herrera, M. Á. Moraga, I. Caballero, and C. Calero, “Quality in Use Model for Web Portals (QiUWeP),”
in Current Trends in Web Engineering, Berlin, Heidelberg, 2010, pp. 91–101.

[638] Miao Fan, Yi Luo, Guoshi Wu, and Xiangling Fu, “An improved analytic hierarchy process model on
Software Quality Evaluation,” in The 2nd International Conference on Information Science and Engineering,
Dec. 2010, pp. 1838–1842. doi: 10.1109/ICISE.2010.5690372.

[639] M. Luckey, A. Baumann, D. Méndez, and S. Wagner, “Reusing Security Requirements Using an Extended
Quality Model,” in Proceedings of the 2010 ICSE Workshop on Software Engineering for Secure Systems, New
York, NY, USA, 2010, pp. 1–7. doi: 10.1145/1809100.1809101.

[640] R. Mohanty, V. Ravi, and M. R. Patra, “Web-services classification using intelligent techniques,” Expert
Systems with Applications, vol. 37, no. 7, pp. 5484–5490, Jul. 2010, doi: 10.1016/j.eswa.2010.02.063.

[641] B. Yin, H. Yang, P. Fu, and X. Chen, “A semantic web services discovery algorithm based on QoS ontology,”
in International Conference on Active Media Technology, 2010, vol. 6335, pp. 166–173.

References

231 | P a g e

[642] Z. Pan and J. Baik, “A QOS Enhanced Framework and Trust Model for Effective Web Services Selection.,”
Journal of Web Engineering, vol. 9, no. 2, pp. 186–204, 2010.

[643] S. Zhang and M. Song, “An architecture design of life cycle based SLA management,” in 2010 The 12th
International Conference on Advanced Communication Technology (ICACT), Feb. 2010, vol. 2, pp. 1351–1355.

[644] U. B. Corrêa, L. Lamb, L. Carro, L. Brisolara, and J. Mattos, “Towards Estimating Physical Properties of
Embedded Systems using Software Quality Metrics,” in 2010 10th IEEE International Conference on Computer
and Information Technology, Jul. 2010, pp. 2381–2386. doi: 10.1109/CIT.2010.409.

[645] F. J. Domínguez-Mayo, M. J. Escalona, M. Mejías, and A. H. Torres, “A Quality Model in a Quality
Evaluation Framework for MDWE methodologies,” in 2010 Fourth International Conference on Research
Challenges in Information Science (RCIS), May 2010, pp. 495–506. doi: 10.1109/RCIS.2010.5507323.

[646] S. M. Hwang and S. Im, “Korean Software Process Quality Certification Model,” in 2011 First ACIS/JNU
International Conference on Computers, Networks, Systems and Industrial Engineering, May 2011, pp. 123–
128. doi: 10.1109/CNSI.2011.55.

[647] N. Upadhyay, B. M. Despande, and V. P. Agrawal, “Towards a Software Component Quality Model,” in
Advances in Computer Science and Information Technology, Berlin, Heidelberg, 2011, pp. 398–412.

[648] A. B. AL-Badareen, M. H. Selamat, J. Din, M. A. Jabar, and S. Turaev, “Software Quality Evaluation: User’s
View,” International Journal of Applied Mathematics and Informatics, vol. 5, no. 3, pp. 200–207, 2011.

[649] K. Lochmann and A. Goeb, “A Software Quality Model for SOA,” in Proceedings of the 8th International
Workshop on Software Quality, New York, NY, USA, 2011, pp. 18–25. doi: 10.1145/2024587.2024593.

[650] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy, “A probabilistic software quality
model,” in 2011 27th IEEE International Conference on Software Maintenance (ICSM), Sep. 2011, pp. 243–
252. doi: 10.1109/ICSM.2011.6080791.

[651] L. Olsina, P. Lew, A. Dieser, and B. Rivera, “Using web quality models and a strategy for purpose-oriented
evaluations,” Journal of Web Engineering, vol. 10, no. 4, pp. 316–352, 2011.

[652] P. Murthy, S. K. V, T. Sharma, and K. Rao, “Quality Model Driven Dynamic Analysis,” in 2011 IEEE 35th
Annual Computer Software and Applications Conference, Jul. 2011, pp. 360–365. doi:
10.1109/COMPSAC.2011.54.

[653] P. D. D. Dominic and H. Jati, “A comparison of Asian airlines websites quality: using a non-parametric
test,” International Journal of Business Innovation and Research (IJBIR), vol. 5, no. 5, pp. 499–523, 2011.

[654] R. Rekik and I. Kallel, “Fuzzy reduced method for evaluating the quality of institutional web sites,” in
2011 7th International Conference on Next Generation Web Services Practices, Oct. 2011, pp. 296–301. doi:
10.1109/NWeSP.2011.6088194.

[655] Y. Singh, R. Malhotra, and P. Gupta, “Empirical validation of web metrics for improving the quality of
web page,” International Journal of Advanced Computer Science and Applications, vol. 2, no. 5, pp. 22–28,
2011.

[656] P. Bocciarelli and A. D’Ambrogio, “A model-driven method for describing and predicting the reliability of
composite services,” Software & Systems Modeling, vol. 10, no. 2, pp. 265–280, 2011.

[657] J. Qiu and F. Yu, “Research on Semantic Dynamic Service Combination Module,” in 2011 International
Conference on Internet Technology and Applications, Aug. 2011, pp. 1–4. doi: 10.1109/ITAP.2011.6006212.

[658] N. Debnath, P. Martellotto, M. Daniele, D. Riesco, and G. Montejano, “A method to evaluate QoS of web
services required by a workflow,” in 2011 11th International Conference on ITS Telecommunications, Aug.
2011, pp. 640–645. doi: 10.1109/ITST.2011.6060134.

[659] T. Mens, L. Doctors, N. Habra, B. Vanderose, and F. Kamseu, “QUALGEN: Modeling and Analysing the
Quality of Evolving Software Systems,” in 2011 15th European Conference on Software Maintenance and
Reengineering, Mar. 2011, pp. 351–354. doi: 10.1109/CSMR.2011.50.

[660] D. Azar and J. Vybihal, “An ant colony optimization algorithm to improve software quality prediction
models: Case of class stability,” Information and Software Technology, vol. 53, no. 4, pp. 388–393, Apr. 2011,
doi: 10.1016/j.infsof.2010.11.013.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

232 | P a g e

[661] \Lukasz Radliński, “A conceptual Bayesian net model for integrated software quality prediction,” Annales
Universitatis Mariae Curie-Sklodowska, sectio AI–Informatica, vol. 11, no. 4, pp. 49–60, 2011.

[662] E. Bagheri and D. Gasevic, “Assessing the maintainability of software product line feature models using
structural metrics,” Software Quality Journal, vol. 19, no. 3, pp. 579–612, Sep. 2011, doi: 10.1007/s11219-
010-9127-2.

[663] Müller Tristan, “How to choose a free and open source integrated library system,” OCLC Systems &
Services: International digital library perspectives, vol. 27, no. 1, pp. 57–78, Jan. 2011, doi:
10.1108/10650751111106573.

[664] C. Chirila, D. Juratoni, D. Tudor, and V. Creţu, “Towards a software quality assessment model based on
open-source statical code analyzers,” in 2011 6th IEEE International Symposium on Applied Computational
Intelligence and Informatics (SACI), May 2011, pp. 341–346. doi: 10.1109/SACI.2011.5873026.

[665] J. S. Challa, A. Paul, Y. Dada, V. Nerella, P. R. Srivastava, and A. P. Singh, “Integrated software quality
evaluation: a fuzzy multi-criteria approach,” Journal of Information Processing Systems, vol. 7, no. 3, pp. 473–
518, 2011.

[666] M. Espinilla, F. Domínguez-Mayo, M. Escalona, M. Mejías, M. Ross, and G. Staples, “A Method Based on
AHP to Define the Quality Model of QuEF,” in Knowledge Engineering and Management, Springer, 2011, pp.
685–694. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-642-25661-5_85

[667] M. Abdellatief, A. B. M. Sultan, M. A. Jabar, and R. Abdullah, “A technique for quality evaluation of e-
learning from developers perspective,” American Journal of Economics and Business Administration, vol. 3,
no. 1, pp. 157–164, 2011.

[668] T. Um, N. Kim, D. Lee, and H. P. In, “A Quality Attributes Evaluation Method for an Agile Approach,” in
2011 First ACIS/JNU International Conference on Computers, Networks, Systems and Industrial Engineering,
May 2011, pp. 460–461. doi: 10.1109/CNSI.2011.93.

[669] D. Franke, S. Kowalewski, and C. Weise, “A Mobile Software Quality Model,” in 2012 12th International
Conference on Quality Software, Aug. 2012, pp. 154–157. doi: 10.1109/QSIC.2012.49.

[670] L. Yu and A. Mishra, “Experience in Predicting Fault-Prone Software Modules Using Complexity Metrics,”
null, vol. 9, no. 4, pp. 421–434, Jan. 2012, doi: 10.1080/16843703.2012.11673302.

[671] B. Singh and S. P. Kannojia, “A Model for Software Product Quality Prediction,” Journal of Software
Engineering and Applications, vol. 5, no. 6, pp. 395–401, 2012, doi: 10.4236/jsea.2012.56046.

[672] R. Malhotra and A. Jain, “Fault Prediction Using Statistical and Machine Learning Methods for Improving
Software Quality,” Journal of Information Processing Systems, vol. 8, no. 2, pp. 241–262, Jun. 2012, doi:
10.3745/JIPS.2012.8.2.241.

[673] S. K. Dubey, A. Gulati, and A. Rana, “Integrated model for software usability,” International Journal on
Computer Science and Engineering, vol. 4, no. 3, p. 429, 2012.

[674] Bhattacharya Debjani, Gulla Umesh, and Gupta M.P., “E-service quality model for Indian government
portals: citizens’ perspective,” Journal of Enterprise Information Management, vol. 25, no. 3, pp. 246–271,
Jan. 2012, doi: 10.1108/17410391211224408.

[675] S. Elling, L. Lentz, M. de Jong, and H. van den Bergh, “Measuring the quality of governmental websites in
a controlled versus an online setting with the ‘Website Evaluation Questionnaire,’” Government Information
Quarterly, vol. 29, no. 3, pp. 383–393, Jul. 2012, doi: 10.1016/j.giq.2011.11.004.

[676] O. Moser, F. Rosenberg, and S. Dustdar, “Domain-Specific Service Selection for Composite Services,” IEEE
Transactions on Software Engineering, vol. 38, no. 4, pp. 828–843, Aug. 2012, doi: 10.1109/TSE.2011.43.

[677] O. Cabrera and X. Franch, “A quality model for analysing web service monitoring tools,” in 2012 Sixth
International Conference on Research Challenges in Information Science (RCIS), May 2012, pp. 1–12. doi:
10.1109/RCIS.2012.6240444.

[678] OASIS Web Services Quality Model Technical Committee, “Web Services Quality Factors Version 1.0,”
Oct. 31, 2012. http://docs.oasisopen.org/wsqm/wsqf/v1.0/WS-Quality-Factors.pdf

[679] R. Phalnikar and P. A. Khutade, “Survey of QoS based web service discovery,” in 2012 World Congress on
Information and Communication Technologies, Nov. 2012, pp. 657–661. doi: 10.1109/WICT.2012.6409157.

References

233 | P a g e

[680] P. Nadanam and R. Rajmohan, “QoS evaluation for web services in cloud computing,” in 2012 Third
International Conference on Computing, Communication and Networking Technologies (ICCCNT’12), Jul.
2012, pp. 1–8. doi: 10.1109/ICCCNT.2012.6395991.

[681] E. Rashid, S. Patnaik, and V. Bhattacherjee, “Software quality estimation using machine learning: Case-
Based reasoning technique,” International Journal of Computer Applications, vol. 58, no. 14, 2012.

[682] A. Raza, L. F. Capretz, and F. Ahmed, “An open source usability maturity model (OS-UMM),” Computers
in Human Behavior, vol. 28, no. 4, pp. 1109–1121, Jul. 2012, doi: 10.1016/j.chb.2012.01.018.

[683] E. K. El-Rayyes and I. M. Abu-Zaid, “New Model to Achieve Software Quality Assurance (SQA) in Web
Application,” International Journal of Science and Technology, vol. 2, no. 7, pp. 423–426, 2012.

[684] D. Masoumi and B. Lindström, “Quality in e-learning: a framework for promoting and assuring quality in
virtual institutions,” Journal of Computer Assisted Learning, vol. 28, no. 1, pp. 27–41, Feb. 2012, doi:
10.1111/j.1365-2729.2011.00440.x.

[685] J. Park, H. Kim, J. Shin, and J. Baik, “An Embedded Software Reliability Model with Consideration of
Hardware Related Software Failures,” in 2012 IEEE Sixth International Conference on Software Security and
Reliability, Jun. 2012, pp. 207–214. doi: 10.1109/SERE.2012.10.

[686] C. Calero and M. Bertoa, “25010+ S: A software quality model with sustainable characteristics.
Sustainability as an element of software quality,” in Proceeding of the Green in Software Engineering Green
by Software Engineerin (GIBSE), co-located with AOSD 2013, Fukuoka, Japan, Mar. 2013, vol. 18.

[687] R. D. Venkatasubramanyam and S. Nayak, “An Overview of Technical Models for Dynamic Analysis,”
Lecture Notes on Software Engineering, vol. 1, no. 2, p. 160, 2013.

[688] X. Wang, M. Ceberio, S. Virani, A. Garcia, and J. Cummins, “A hybrid algorithm to extract fuzzy measures
for software quality assessment,” Journal of Uncertain Systems, vol. 7, no. 3, pp. 219–237, 2013.

[689] N. Baliyan and S. Kumar, “Quality Assessment of Software as a Service on Cloud Using Fuzzy Logic,” in
2013 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), Oct. 2013, pp. 1–6.
doi: 10.1109/CCEM.2013.6684439.

[690] S. Zahra, A. Khalid, and A. Javed, “An efficient and effective new generation objective quality model for
mobile applications,” International Journal of Modern Education and Computer Science, vol. 5, no. 4, p. 36,
2013.

[691] M. Ulman, V. Vostrovskỳ, and J. Tyrychtr, “Agricultural e-government: Design of quality evaluation
method based on ISO square quality model,” AGRIS on-line Papers in Economics and Informatics, vol. 5, no.
665-2016–44964, pp. 211–222, 2013.

[692] O. Rababah, T. Hamtini, O. Harfoushi, B. Al-Shboul, R. Obiedat, and S. Nawafleh, “Towards developing
successful e-government websites,” Journal of Software Engineering and Applications, vol. 6, no. 11, p. 559,
2013.

[693] D. Dixit, “CBQM: Component Based Quality Model,” in Reliability, Infocom Technologies and
Optimization (ICRITO)(Trends and Future Directions), 2015 4th International Conference on, 2013, pp. 1–5.

[694] M. A. Ahmed and H. A. Al-Jamimi, “Machine learning approaches for predicting software maintainability:
a fuzzy-based transparent model,” IET Software, vol. 7, no. 6, pp. 317-326(9), Dec. 2013.

[695] Y. Duan, A. Kattepury, F. Getahun, A. Elfakiz, and W. Du, “Releasing the Power of Variability: Towards
Constraint Driven Quality Assurance,” in 2013 Second IIAI International Conference on Advanced Applied
Informatics, Sep. 2013, pp. 15–20. doi: 10.1109/IIAI-AAI.2013.23.

[696] L. Aversano and M. Tortorella, “Quality evaluation of floss projects: Application to ERP systems,”
Information and Software Technology, vol. 55, no. 7, pp. 1260–1276, Jul. 2013, doi:
10.1016/j.infsof.2013.01.007.

[697] N. J. Pizzi, “A fuzzy classifier approach to estimating software quality,” Information Sciences, vol. 241, pp.
1–11, Aug. 2013, doi: 10.1016/j.ins.2013.04.027.

[698] A. Mayr, R. Plösch, and M. Saft, “Objective Measurement of Safety in the Context of IEC 61508-3,” in
2013 39th Euromicro Conference on Software Engineering and Advanced Applications, Sep. 2013, pp. 45–52.
doi: 10.1109/SEAA.2013.32.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

234 | P a g e

[699] S. Srivastava and R. Kumar, “Indirect method to measure software quality using CK-OO suite,” in 2013
International Conference on Intelligent Systems and Signal Processing (ISSP), Mar. 2013, pp. 47–51. doi:
10.1109/ISSP.2013.6526872.

[700] G. Samarthyam, G. Suryanarayana, T. Sharma, and S. Gupta, “MIDAS: A design quality assessment
method for industrial software,” in 2013 35th International Conference on Software Engineering (ICSE), May
2013, pp. 911–920. doi: 10.1109/ICSE.2013.6606640.

[701] B. Penzenstadler and H. Femmer, “A Generic Model for Sustainability with Process- and Product-Specific
Instances,” in Proceedings of the 2013 Workshop on Green in/by Software Engineering, New York, NY, USA,
2013, pp. 3–8. doi: 10.1145/2451605.2451609.

[702] A. Roth, A. Ganser, H. Lichter, and B. Rumpe, “Staged Evolution with Quality Gates for Model Libraries,”
in the International Workshop on Document Changes: Modeling, Detection, Storage and Visualization, Sep.
2013, vol. 1008. [Online]. Available: https://arxiv.org/abs/1408.5707

[703] R. V. Small and M. P. Arnone, “WebCHECK: The Website Evaluation Instrument,” Knowledge Quest, vol.
42, no. 3, pp. 58–63, Feb. 2014.

[704] N. M. Hien, “A study on evaluation of e-government service quality,” International Journal of Humanities
and Social Sciences, vol. 8, no. 1, pp. 16–19, 2014.

[705] Z. Masood, S. Xuequn, and J. Yousaf, “Usability evaluation framework for software engineering
methodologies,” Lecture Notes on Software Engineering, vol. 2, no. 3, p. 225, 2014.

[706] A. Adline and M. Ramachandran, “Predicting the software fault using the method of genetic algorithm,”
International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 3,
no. 2, pp. 390–398, 2014.

[707] A. Puri and H. Singh, “Genetic algorithm based approach for finding faulty modules in open source
software systems,” International Journal of Computer Science and Engineering Survey, vol. 5, no. 3, p. 29,
2014.

[708] G. Zhang, H. Ye, and Y. Lin, “Quality attribute modeling and quality aware product configuration in
software product lines,” Software Quality Journal, vol. 22, no. 3, pp. 365–401, Sep. 2014, doi:
10.1007/s11219-013-9197-z.

[709] Y. Kuwata, K. Takeda, and H. Miura, “A Study on Maturity Model of Open Source Software Community
to Estimate the Quality of Products,” Procedia Computer Science, vol. 35, pp. 1711–1717, Jan. 2014, doi:
10.1016/j.procs.2014.08.264.

[710] X. Zheng, P. Martin, K. Brohman, and L. D. Xu, “CLOUDQUAL: A Quality Model for Cloud Services,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1527–1536, May 2014, doi:
10.1109/TII.2014.2306329.

[711] S. Gupta, H. K. Singh, R. D. Venkatasubramanyam, and U. Uppili, “SCQAM: A Scalable Structured Code
Quality Assessment Method for Industrial Software,” in Proceedings of the 22nd International Conference on
Program Comprehension, New York, NY, USA, 2014, pp. 244–252. doi: 10.1145/2597008.2597806.

[712] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test Code Quality and Its Relation to Issue
Handling Performance,” IEEE Transactions on Software Engineering, vol. 40, no. 11, pp. 1100–1125, Nov.
2014, doi: 10.1109/TSE.2014.2342227.

[713] I. Le stari and B. Hendradjaya, “The application model of learning management system quality in
asynchronous blended learning system,” in 2014 International Conference on Electrical Engineering and
Computer Science (ICEECS), Nov. 2014, pp. 223–228. doi: 10.1109/ICEECS.2014.7045251.

[714] U. L. Yuhana, A. B. Raharjo, and S. Rochimah, “Academic information system quality measurement using
quality instrument: A proposed model,” in 2014 International Conference on Data and Software Engineering
(ICODSE), Nov. 2014, pp. 1–6. doi: 10.1109/ICODSE.2014.7062684.

[715] E. Ziemba, T. Papaj, and D. Descours, “Factors affecting success of e-government portals: a perspective
of software quality model,” in Proceedings of European Conference on eGovernment, 2014, pp. 252–262.

[716] T. A. Alrawashdeh, M. I. Muhairat, and S. M. Alqatawneh, “A Quantitative Evaluation of ERP Systems
Quality Model,” in 2014 11th International Conference on Information Technology: New Generations, Apr.
2014, pp. 46–49. doi: 10.1109/ITNG.2014.37.

References

235 | P a g e

[717] M. U. Malik, H. Nasir, and A. Javed, “An efficient objective quality model for agile application
development,” International Journal of Computer Applications, vol. 85, no. 8, 2014.

[718] A. A. B. Baqais, M. Alshayeb, and Z. A. Baig, “Hybrid intelligent model for software maintenance
prediction,” Proceedings of World Congress on Engineering, pp. 358–362, 2014.

[719] C. I. Bezerra, R. M. Andrade, and J. M. S. Monteiro, “Measures for quality evaluation of feature models,”
in International Conference on Software Reuse, 2015, pp. 282–297.

[720] P. Sudhaman and C. Thangavel, “Efficiency analysis of ERP projects—software quality perspective,”
International Journal of Project Management, vol. 33, no. 4, pp. 961–970, May 2015, doi:
10.1016/j.ijproman.2014.10.011.

[721] H.-J. Sohn, M.-G. Lee, B.-M. Seong, and J.-B. Kim, “Quality evaluation criteria based on open source
mobile HTML5 UI framework for development of cross-platform,” International Journal of Software
Engineering and Its Applications, vol. 9, no. 6, pp. 1–12, 2015.

[722] J. M. Alves, C. Wangenheim, T. Lacerda, A. Savaris, and A. Wangenheim, “Adequate software quality
evaluation model v1. 0,” Instituto Nacional para Convergência Digital–INCoD, Tech. Rep, 2015.

[723] G. Ladányi, Z. Tóth, R. Ferenc, and T. Keresztesi, “A software quality model for RPG,” in 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengineering (SANER), Mar. 2015, pp. 91–
100. doi: 10.1109/SANER.2015.7081819.

[724] S. Rochimah, H. I. Rahmani, and U. L. Yuhana, “Usability characteristic evaluation on administration
module of Academic Information System using ISO/IEC 9126 quality model,” in 2015 International Seminar
on Intelligent Technology and Its Applications (ISITIA), May 2015, pp. 363–368. doi:
10.1109/ISITIA.2015.7220007.

[725] D. D. J. Suwawi, E. Darwiyanto, and M. Rochmani, “Evaluation of academic website using ISO/IEC 9126,”
in 2015 3rd International Conference on Information and Communication Technology (ICoICT), May 2015, pp.
222–227. doi: 10.1109/ICoICT.2015.7231426.

[726] A. Calderón and M. Ruiz, “A systematic literature review on serious games evaluation: An application to
software project management,” Computers & Education, vol. 87, pp. 396–422, Sep. 2015, doi:
10.1016/j.compedu.2015.07.011.

[727] W. Zhang, L. Huang, V. Ng, and J. Ge, “SMPLearner: learning to predict software maintainability,”
Automated Software Engineering, vol. 22, no. 1, pp. 111–141, Mar. 2015, doi: 10.1007/s10515-014-0161-3.

[728] R. Jindal, R. Malhotra, and A. Jain, “Predicting Software Maintenance effort using neural networks,” in
2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends
and Future Directions), Sep. 2015, pp. 1–6. doi: 10.1109/ICRITO.2015.7359258.

[729] C. Sharma and S. K. Dubey, “Reliability evaluation of software system using AHP and Fuzzy Topsis
approach,” in Proceedings of Fifth International Conference on Soft Computing for Problem Solving, 2016,
pp. 81–92.

[730] R. Andrian, B. Hendradjaya, and W. D. Sunindyo, “Software assessment model using metrics products
for e-Government in the G2B model,” in 2016 4th International Conference on Information and
Communication Technology (ICoICT), May 2016, pp. 1–6. doi: 10.1109/ICoICT.2016.7571931.

[731] T. Marir, F. Mokhati, H. Bouchlaghem-Seridi, Y. Acid, and M. Bouzid, “QM4MAS: a quality model for
multi-agent systems,” International Journal of Computer Applications in Technology, vol. 54, no. 4, pp. 297–
310, 2016.

[732] M. Sarrab, M. Elbasir, and S. Alnaeli, “Towards a quality model of technical aspects for mobile learning
services: An empirical investigation,” Computers in Human Behavior, vol. 55, pp. 100–112, Feb. 2016, doi:
10.1016/j.chb.2015.09.003.

[733] A. Jain, S. Tarwani, and A. Chug, “An empirical investigation of evolutionary algorithm for software
maintainability prediction,” in 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science
(SCEECS), Mar. 2016, pp. 1–6. doi: 10.1109/SCEECS.2016.7509314.

[734] S. Forouzani, Y. K. Chiam, and S. Forouzani, “Method for Assessing Software Quality Using Source Code
Analysis,” in Proceedings of the Fifth International Conference on Network, Communication and Computing,
New York, NY, USA, 2016, pp. 166–170. doi: 10.1145/3033288.3033316.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

236 | P a g e

[735] N. Kumar, R. Dadhich, and A. Shastri, “MAQM: a generic object-oriented framework to build quality
models for Web-based applications,” International Journal of System Assurance Engineering and
Management, vol. 8, no. 2, pp. 716–729, Nov. 2017, doi: 10.1007/s13198-016-0512-5.

[736] R. M. Wibowo, P. A. Erna, and I. Hidayah, “Heuristic evaluation and user testing with ISO 9126 in
evaluating of decision support system for recommendation of outstanding marketing officer,” in 2017
International Conference on Sustainable Information Engineering and Technology (SIET), Nov. 2017, pp. 454–
458. doi: 10.1109/SIET.2017.8304181.

[737] A. Tabassum, S. Nazir Bhatti Bahria, A. Rida Asghar Bahria, I. Manzoor, and A. Imtiaz, “Optimized Quality
Model for Agile Development: Extreme Programming (XP) as a Case Scenario,” IJACSA International Journal
of Advanced Computer Science and Applications, vol. 8, no. 4, 2017.

[738] Ramadiani, Azainil, U. Haryaka, F. Agus, and A. H. Kridalaksana, “User Satisfaction Model for e-Learning
Using Smartphone,” Procedia Computer Science, vol. 116, pp. 373–380, Jan. 2017, doi:
10.1016/j.procs.2017.10.070.

[739] S. Anwer, A. Adbellatif, M. Alshayeb, and M. S. Anjum, “Effect of coupling on software faults: An empirical
study,” in 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), Mar.
2017, pp. 211–215. doi: 10.1109/C-CODE.2017.7918930.

[740] N. R. M. Suradi, S. Kahar, and N. A. A. Jamaluddin, “Identification of software quality characteristics on
academic application in higher education institution (HEI),” Journal of Telecommunication, Electronic and
Computer Engineering (JTEC), vol. 10, no. 2–7, pp. 133–136, 2018.

[741] N. Condori-Fernandez and P. Lago, “Characterizing the contribution of quality requirements to software
sustainability,” Journal of Systems and Software, vol. 137, pp. 289–305, Mar. 2018, doi:
10.1016/j.jss.2017.12.005.

Annexes

237 | P a g e

Annexes
Annex 1. Catalog of the main existing aggregation operators (from Chapter IV.3.d)
TABLE 39 - CATALOG OF THE MAIN EXISTING AGGREGATION OPERATORS, BASED ON DETYNIECKI [143], WAGNER [27] AND

DUJMOVIC & BAYUCAN [144]

Group of aggregation
operators

Aggregation operator Formula

Basic operators

Arithmetic mean 𝜇 = 𝑀(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = ෍ ൬
1

𝑛
. 𝑥௜൰

௡

௜ୀଵ

Weighted mean 𝑀௪భ,…,௪೙
(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = ෍(𝑤௜ . 𝑥௜) where 𝑤௜ ≥ 0

௡

௜ୀଵ

 and ෍ 𝑤௜ = 1

௡

௜ୀଵ

Mode
𝑀௠(𝑥ଵ, 𝑥ଶ, … , 𝑥௞) = 𝑥௝ 𝑎𝑛𝑑 𝑛௝ = max(𝑛ଵ, 𝑛ଶ, … , 𝑛௞)

where (𝑛ଵ, 𝑛ଶ, … , 𝑛௞) are frequencies of(𝑥ଵ, 𝑥ଶ, … , 𝑥௞)

Median 𝑀଴.ହ(𝑥ଵ, 𝑥ଶ, … , 𝑥௞) = ൝

𝑥((௡ାଵ) ଶ⁄) ୧୤ ௡ ୧ୱ ୭ୢୢ

1

2
൫𝑥(௡ ଶ⁄) + 𝑥(௡ ଶ⁄ ାଵ)൯ otherwise

Median absolute
deviation

𝐷(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = ෍ ൬
1

𝑛
. |𝑥௜ − 𝑀଴.ହ(𝑥ଵ, 𝑥ଶ, … , 𝑥௡)|൰

௡

௜ୀଵ

Minimum ∀𝑥௜ , 𝑦 ≤ 𝑥௜ ⟹ 𝑦 = min(𝑥ଵ, 𝑥ଶ, … , 𝑥௞)

Maximum ∀𝑥௜ , 𝑦 ≥ 𝑥௜ ⟹ 𝑦 = max(𝑥ଵ, 𝑥ଶ, … , 𝑥௞)

Weighted minimum

min௪భ,…,௪೙
⨂ (𝑥ଵ, 𝑥ଶ, … , 𝑥௡)

= ෍ൣ𝑖. (𝑤ఙ(೔)ି − 𝑤ఙ(೔శభ)). min (𝑥ఙ(భ) , … , 𝑥ఙ(೔)൧

௡

௜ୀଵ

where 𝑤௜ ≥ 0 , ෍ 𝑤௜ = 1

௡

௜ୀଵ

𝜎(௜)

and 𝑤ఙ(భ) ≥ 𝑤ఙ(మ) ≥ ⋯ ≥ 𝑤ఙ(೙) , 𝑤ఙ(೔శభ) = 0

Weighted maximum

max௪భ,…,௪೙
⨂ (𝑥ଵ, 𝑥ଶ, … , 𝑥௡)

= ෍ൣ𝑖. (𝑤ఙ(೔)ି − 𝑤ఙ(೔శభ)). max (𝑥ఙ(భ) , … , 𝑥ఙ(೔)൧

௡

௜ୀଵ

where 𝑤௜ ≥ 0 , ෍ 𝑤௜ = 1

௡

௜ୀଵ

𝜎(௜)

𝑎𝑛𝑑 𝑤ఙ(భ) ≥ 𝑤ఙ(మ) ≥ ⋯ ≥ 𝑤ఙ(೙) , 𝑤ఙ(೔శభ) = 0

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

238 | P a g e

Range 𝑅(𝑥ଵ, 𝑥ଶ, … , 𝑥௞) = max(𝑥ଵ, 𝑥ଶ, … , 𝑥௞) − min(𝑥ଵ, 𝑥ଶ, … , 𝑥௞)

Variance

𝜎ଶ = 𝑆ଶ(𝑥ଵ, 𝑥ଶ, … , 𝑥௞) =
1

𝑛
෍(𝑥௜ − 𝜇)ଶ

௡

௜ୀଵ

=
1

𝑛
෍ ൭𝑥௜ − ෍ ൬

1

𝑛
. 𝑥௜൰

௡

௜ୀଵ

൱

ଶ௡

௜ୀଵ

Standard deviation

𝜎 = 𝑆(𝑥ଵ, 𝑥ଶ, … , 𝑥௞) = ඥ𝜎ଶ

= ඩ
1

𝑛
෍(𝑥௜ − 𝜇)ଶ

௡

௜ୀଵ

Quasi-arithmetic means

Geometric mean 𝑀௚௘௢௠௘௧௥௜௖(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = ൭ෑ 𝑥௜

௡

௜ୀଵ

൱

ଵ
௡

Harmonic mean 𝑀௛௔௥௠௢௡௜௖(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) =
𝑛

1
𝑥ଵ

+
1
𝑥ଶ

+ ⋯ +
1

𝑥௡

Generic quasi-
arithmetic mean 𝑀(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = ൥෍ ൬

1

𝑛
. 𝑥௜

ఈ൰

௡

௜ୀଵ

൩

ଵ
ఈ

Additive generated symmetric sum
𝑆(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = 𝑓ିଵ ൥෍ 𝑓(𝑥௜)

௡

௜ୀଵ

൩

where 𝑓 is a strictly monotone continuous function
and 𝑓(𝑥) + 𝑓(1 − 𝑥) = 0

Gini coefficient 𝐺௡ =
2 ∑ 𝑥(௜)

௡
௜ୀଵ − (𝑛 + 1) ∑ 𝑥(௜)

௡
௜ୀଵ

𝑛 ∑ 𝑥(௜)
௡
௜ୀଵ

Ordered Weighted
Averaging Operators

Ordered Weighted
Averaging

𝑂𝑊𝐴(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = ෍ 𝑤௜ . 𝑥ఙ(೔)

௡

௜ୀଵ

where 𝑤௜ ≥ 0 , ෍ 𝑤௜ = 1

௡

௜ୀଵ

and 0 ≤ 𝑤ఙ(భ) ≤ 𝑤ఙ(మ) ≤ ⋯ ≤ 𝑤ఙ(೙)

Degree of maxness
(or orness)

𝑚𝑎𝑥𝑛𝑒𝑠𝑠(𝑤ଵ, 𝑤ଶ, … , 𝑤௡) = ෍ 𝑤௜ .
𝑖 − 1

𝑛 − 1

௡

௜ୀଵ

Annexes

239 | P a g e

Degree of dispersion 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛(𝑤ଵ , 𝑤ଶ, … , 𝑤௡) = − ෍ 𝑤௜ . ln(𝑤௜)

௡

௜ୀଵ

Choquet and Sugeno
discrete Fuzzy Integrals

Discrete Sugeno
Integrals

𝑆𝑢𝑔𝑒𝑛𝑜ఓ(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = max௜ୀଵ
௡ ൬min ቀ𝑥ఙ(೔) , 𝜇൫𝐶ఙ(೔)൯ቁ൰

where 𝑥ఙ(భ) ≤ 𝑥ఙ(మ) ≤ ⋯ ≤ 𝑥ఙ(೙)

Discrete Choquet
Integrals

𝐶ℎ𝑜𝑞𝑢𝑒𝑡ఓ(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = ෍൫𝑥ఙ(೔) − 𝑥ఙ(೔షభ)൯. ቀ𝜇൫𝐶ఙ(೔)൯ቁ

௡

௜ୀଵ

where 𝑥ఙ(బ) = 0 and 𝑥ఙ(భ) ≤ 𝑥ఙ(మ) ≤ ⋯ ≤ 𝑥ఙ(೙)

Fusion operators

Bayesian fusion 𝑃(𝑥|𝑥ଵ, 𝑥ଶ) =
𝑃(𝑥ଵ|𝑥). 𝑃(𝑥ଶ|𝑥). 𝑃(𝑥)

𝑃(𝑥ଵ, 𝑥ଶ)

Probabilistic fusion:
prioritized conjunction

𝜋ଵ∧ଶ = min ቀ𝜋ଵ, max൫𝜋ଶ, 1 − ℎ(𝜋ଵ, 𝜋ଶ)൯ቁ

where ℎ(𝜋ଵ, 𝜋ଶ) = 𝑠𝑢𝑝௫൫min(𝜋ଵ(𝑥), 𝜋ଶ(𝑥))൯

Probabilistic fusion:
prioritized disjunction

𝜋ଵ∨ଶ = max ቀ𝜋ଵ, min൫𝜋ଶ, ℎ(𝜋ଵ, 𝜋ଶ)൯ቁ

where ℎ(𝜋ଵ, 𝜋ଶ) = 𝑠𝑢𝑝௫൫min(𝜋ଵ(𝑥), 𝜋ଶ(𝑥))൯

Compensatory
operators

Zimmermann and
Zysno

𝑍ఊ(𝑥ଵ, … , 𝑥௡) = ൭ෑ 𝑥௜

௡

௜ୀଵ

൱

ଵିఊ

. ൭1 − ෑ(1 − 𝑥௜)

௡

௜ୀଵ

൱

ఊ

where 𝛾 degree of compensation

Exponential
compensatory
operators

𝐸ఊ
்,ௌ(𝑥ଵ, … , 𝑥௡) = ൫𝑇(𝑥ଵ, … , 𝑥௡)൯

ଵିఊ
. ൫𝑆(𝑥ଵ, … , 𝑥௡)൯

ఊ

where 𝛾 degree of compensation

𝑇 is a t − norm and 𝑆 is a t − conorm

Convex-linear
compensatory
operator

𝐿ఊ
்,ௌ(𝑥ଵ, … , 𝑥௡) = (1 − 𝛾). 𝑇(𝑥ଵ, … , 𝑥௡) + 𝛾. 𝑆(𝑥ଵ, … , 𝑥௡)

where 𝛾 degree of compensation

𝑇 is a t − norm and 𝑆 is a t − conorm

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

240 | P a g e

Associative
compensatory
operator

𝐶(𝑥, 𝑦) = 𝑓ିଵ൫𝑓(𝑥) + 𝑓(𝑦)൯

where 𝑓(𝑥) = ൞
−𝑔 ቀ

𝑥

𝑒
ቁ if 𝑥 ≤ 𝑒

−𝑔 ቀ
𝑥 − 𝑒

1 − 𝑒
ቁ if 𝑥 ≥ 𝑒

where 𝑔 is an additive generator of a t − norm,

ℎ is an additive generator of a t − conorm

𝑒 is a neutral element

Uninorms

Minimal uninorms 𝑈௠௜௡(𝑥, 𝑦) =

⎩
⎪
⎨

⎪
⎧ 𝑒. 𝑇 ቀ

𝑥

𝑒
,
𝑦

𝑒
ቁ for 𝑥 ≤ 𝑒 and 𝑦 ≤ 𝑒

𝑒 + (1 − 𝑒). 𝑆 ቀ
𝑥 − 𝑒

1 − 𝑒
,
𝑦 − 𝑒

1 − 𝑒
ቁ for 𝑥 > 𝑒 and 𝑦 > 𝑒

min(𝑥, 𝑦) elsewhere

Maximal uninorms 𝑈௠௔௫(𝑥, 𝑦) =

⎩
⎪
⎨

⎪
⎧ 𝑒. 𝑇 ቀ

𝑥

𝑒
,
𝑦

𝑒
ቁ for 𝑥 ≤ 𝑒 and 𝑦 ≤ 𝑒

𝑒 + (1 − 𝑒). 𝑆 ቀ
𝑥 − 𝑒

1 − 𝑒
,
𝑦 − 𝑒

1 − 𝑒
ቁ for 𝑥 > 𝑒 and 𝑦 > 𝑒

min(𝑥, 𝑦) elsewhere

Generated uninorms 𝑈(𝑥, 𝑦) = 𝑔(ିଵ)൫𝑔(𝑥) + 𝑔(𝑦)൯

Nullnorms 𝑁(𝑥, 𝑦) =

⎩
⎪
⎨

⎪
⎧ 𝑎. 𝑆 ቀ

𝑥

𝑎
,
𝑦

𝑎
ቁ for 𝑥 ≤ 𝑎 and 𝑦 ≤ 𝑎

𝑎 + (1 − 𝑎). 𝑇 ቀ
𝑥 − 𝑎

1 − 𝑎
,
𝑦 − 𝑎

1 − 𝑎
ቁ for 𝑥 > 𝑎 and 𝑦 > 𝑎

𝑎 elsewhere

Weighted power mean “Continuous Preference
Logic” parameter of Dujmovic and Bayucan
[144]

𝑬(𝒓) =

⎩
⎪
⎨

⎪
⎧

൭෍ 𝒘𝒊. 𝑬𝒊

𝒏

𝒊ୀ𝟏

൱

𝟏
𝒓

 𝐟𝐨𝐫 𝒓 ≠ +∞ 𝐚𝐧𝐝 𝒓 ≠ −∞

𝐦𝐚𝐱(𝑬𝟏, ⋯ , 𝑬𝒏) 𝐟𝐨𝐫 𝒓 = +∞

𝐦𝐢𝐧(𝑬𝟏, ⋯ , 𝑬𝒏) 𝐟𝐨𝐫 𝒓 = −∞

𝐰𝐡𝐞𝐫𝐞 𝟎 ≤ 𝑬𝒊 ≤ 𝟏, 𝟎 < 𝒘𝒊 < 𝟏 𝐟𝐨𝐫 𝒊 ∈ [𝟏; 𝒏] 𝐚𝐧𝐝 ෍ 𝒘𝒊 = 𝟏

𝒏

𝒊ୀ𝟏

Annexes

241 | P a g e

Annex 2. Main sequence, string, or similarity distance formulas

Distance name Formula

Hamming’s distance [87]

𝑑௛௔௠௠௜௡௚(𝑥, 𝑦) = ෍(𝑥௜⨁𝑦௜)

௡ିଵ

௜ୀ଴

where 𝑥 and 𝑦 are 2 sequences of symbols

and (𝑥௜⨁𝑦௜) = ቄ
1 if 𝑥௜ ≠ 𝑦௜
0 otherwise

TABLE 40 - EXAMPLES OF HAMMING'S DISTANCE COMPUTATION: RED CHARACTERS INDICATE DIFFERING CHARACTERS

Example 1 Distance Example 2 Distance Example 3 Distance Example 4 Distance

Solar

1

imperial

3

acknowledgement

12

123456AD90

5 vs. vs. vs. vs.

polar interval accomplishments 124357AC97

Levenshtein’s distance [88] 𝑑௟௘௩ೣ,೤
(𝑖, 𝑗) =

⎩
⎪
⎨

⎪
⎧

max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0

𝑚𝑖𝑛 ൞

𝑙𝑒𝑣௫,௬(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣௫,௬(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣௫,௬(𝑖 − 1, 𝑗 − 1) + 1൫௫೔ஷ௬ೕ൯

otherwise

where 𝑥 and 𝑦 are 2 strings

TABLE 41 - EXAMPLES OF LEVENSHTEIN'S DISTANCE COMPUTATION: RED CHARACTERS INDICATE DIFFERING CHARACTERS

Example 1 Distance Example 2 Distance Example 3 Distance Example 4 Distance

solar

1

solar

7

acknowledgement

9

123456AD90

4 vs. vs. vs. vs.

polar solarization accomplishments 12457AC97

Damerau–Levenshtein’s distance
[89]

similar to Levenshtein’s distance but includes the additional operation:
transposition of two adjacent string characters.

TABLE 42 - EXAMPLES OF DAMERAU-LEVENSHTEIN'S DISTANCE COMPUTATION: RED CHARACTERS INDICATE DIFFERING CHARACTERS

Example 1 Distance Example 2 Distance Example 3 Distance Example 4 Distance

solar

1

solar

7

acknowledgement

3

123456AD90

4 vs. vs. vs. vs.

polar solarization akcnowlegdemnt 124357AC97

Jaro’s distance [90]
𝑑௝௔௥௢(𝑥, 𝑦) =

1

3
൬

𝑚

|𝑥|
+

𝑚

|𝑦|
+

𝑚 − 𝑡

𝑚
൰

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

242 | P a g e

where 𝑥 and 𝑦 are 2 strings,

|𝑥| is the character size of string 𝑥,

𝑡 is the number of character transpositons

𝑚 is the number of matching characters, with a position difference

≤ ቞
𝑚𝑎𝑥(|𝑥|, |𝑦|)

2
቟ − 1

TABLE 43 - EXAMPLES OF JARO'S DISTANCE COMPUTATION: RED CHARACTERS INDICATE DIFFERING CHARACTERS

Example 1 Distance Example 2 Distance Example 3 Distance Example 4 Distance

solar

0.86667

solar

0.80556

acknowledgement

0.97778

123456AD90

0.78333 vs. vs. vs. vs.

polar Solarization akcnowlegdemnt 124357AC97

Jaro-Winkler’s distance [91]

𝑑௝௔௥௢ି௪௜௡௞௟௘௥(𝑥, 𝑦) = 𝑑௝௔௥௢(𝑥, 𝑦) + ൬𝑙. 𝑝 ቀ1 − 𝑑௝௔௥௢(𝑥, 𝑦)ቁ൰

where 𝑥 and 𝑦 are 2 strings

𝑙 is the prefix length, with 𝑙 ≤ 4

𝑝 is a coefficient to foster strings with prefix. Winkler suggested 𝑝

= 0.1

TABLE 44 - EXAMPLES OF JARO-WINKLER'S DISTANCE COMPUTATION WITH L = 2: RED CHARACTERS INDICATE DIFFERING CHARACTERS

Example 1 Distance Example 2 Distance Example 3 Distance Example 4 Distance

Solar

0.89333

solar

0.84444

acknowledgement

0.98222

123456AD90

0.78766 vs. vs. vs. vs.

polar Solarization Akcnowlegdemnt 124357AC97

Jaccard’s distance [95] 𝑑௝௔௖௖௔௥ௗ(𝑥, 𝑦) =
|𝑥 ∪ 𝑦| − |𝑥 ∩ 𝑦|

|𝑥 ∪ 𝑦|

where 𝑥 and 𝑦 are 2 sample sets

Annexes

243 | P a g e

Annex 3. Example of distance calculation: diversity or polymorphism degree
applied to ISO/IEC/IEEE 25010 and ISO/IEC 9126 quality models

This annex presents the calculation of quality model distance based on degree of polymorphism, described in
Chapter IV.6.c and defined by the equations 6 and 7, between the two consecutive standards for quality model
in software engineering: ISO/IEC 9126 [24] and ISO/IEC/IEEE 25010 [23]. We note that a comparison between
these two quality models are also available in the Annex A of ISO/IEC/IEEE 25010.

To initiate the calculation, we have to identify the sequences, usually linked to alleles in genetic field, and their
frequencies. So, in the current case we consider two sequences, each of them directly associated to either ISO/IEC
9126 or ISO/IEC/IEEE 25010. Moreover, we assume that both model frequencies are identical, that is to say there
is equal chance to use for software one quality model or the other. Thus, both frequencies are equal to 50%.

Next step is to enumerate the two sequences together (i.e., list their quality characteristics and quality sub-
characteristics) and identify whether lexically and semantically they are identical, similar, or different. In this last
situation, we mark this as a gap like gap in a DNA sequence. So, the enumeration combined with difference results
are:

ISO/IEC/IEEE 25010 (Allele 1) ISO/IEC 916 (Allele 2)

System / Software product

Functional suitability Functionality Similar
Performance efficiency Efficiency Similar
Compatibility - Gap
Usability Usability identical
Reliability Reliability identical
Security - Gap
Maintainability Maintainability identical
Portability Portability identical

Quality in use

Effectiveness Effectiveness Identical
Efficiency Productivity Similar
Satisfaction Satisfaction Identical
Freedom from risk Safety Similar
Context coverage - Gap

System / Software product quality model part

ISO/IEC/IEEE 25010 (Allele 1) ISO/IEC 916 (Allele 2)

Functional suitability

Functional completeness Functionality Compliance Similar
Functional correctness Accuracy Similar
Functional appropriateness Suitability Similar
- Security Gap
- Interoperability Gap

Performance efficiency

Time-behavior Time-behavior Identical
Resource utilization Resource utilization Identical
Capacity - Gap

- Efficiency Compliance Gap

Compatibility

Co-existence - Gap
Interoperability - Gap

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

244 | P a g e

Usability

Appropriateness recognizability Attractiveness Similar
Learnability Learnability Identical
Operability Operability Identical
User error protection - Gap
User interface aesthetics - Gap
Accessibility - Gap
- Understandability Gap
- Usability Compliance Gap

Reliability

Maturity Maturity Identical
Availability - Gap
Fault tolerance Fault tolerance Identical
Recoverability Recoverability Identical
- Reliability Compliance Gap

Security

Confidentiality - Gap
Integrity - Gap
Non-repudiation - Gap
Accountability - Gap
Authenticity - Gap

Maintainability

Modularity - Gap
Reusability - Gap
Analyzability Analyzability Identical
Modifiability Changeability Similar
Testability Testability Identical
- Maintainability Compliance Gap
- Stability Gap

Portability

Adaptability Adaptability Identical
Instalability Instalability Identical
Replaceability Replaceability Identical
- Portability Compliance Gap
- Co-existence Gap

Quality in use model part

ISO/IEC/IEEE 25010 (Allele 1) ISO/IEC 916 (Allele 2)
Effectiveness

Effectiveness Effectiveness Identical

Efficiency
Efficiency Productivity Similar

Satisfaction
Usefulness - Gap
Trust - Gap
Pleasure Satisfaction Similar
Comfort - Gap

Freedom from risk
Economic risk mitigation - Gap
Health and safety risk mitigation Safety Similar
Environmental risk mitigation - Gap

Annexes

245 | P a g e

Context coverage
Context completeness - Gap
Flexibility - Gap

If we resume the findings of the enumeration with difference per characteristics, we can determine the πij of
each characteristic based on the numbers of similar, identical, and total sub-characteristics. Furthermore, we can
estimate the numbers of similar, identical, and total sub-characteristics for the two sequences, as well as the
corresponding πij: this is shown in “Global SUM” line of the below table.

 Gap Similar Identical Total πij
Functional suitability 2 3 0 5 0.7000
Performance efficiency 2 0 2 4 0.5000
Compatibility 2 0 0 2 1.0000
Usability 5 1 2 8 0.6875
Reliability 2 0 3 5 0.4000
Security 5 0 0 5 1.0000
Maintainability 4 1 2 7 0.6429
Portability 2 0 3 5 0.4000

SUM 24 5 12 41 0.6463
Effectiveness 0 0 1 1 0.0000
Efficiency 0 1 0 1 0.5000
Satisfaction 3 1 0 4 0.8750
Freedom from risk 2 1 0 3 0.8333
Context coverage 2 0 0 2 1.0000

SUM 7 3 1 11 0.7727
Global SUM 31 8 13 52 0.6731

The final step is then to calculate the degree of polymorphism π between these two software quality models
through equation 6, so we have:

𝜋ො =
𝑛

(𝑛 − 1)
෍ 𝓍௜𝓍௝𝜋௜௝

௜௝

=
2

(2 − 1)
∗ ൬0.5 ∗ 0.5 ∗

31 + 0.5 ∗ 8

52
൰ . ൬0.5 ∗ 0.5 ∗

31 + 0.5 ∗ 8

52
൰ = 𝟎. 𝟔𝟕𝟑𝟎𝟕𝟔𝟗𝟐𝟑

In conclusion, the degree of polymorphism between ISO/IEC 9126 and ISO/IEC/IEEE 25010 is ~0.6731, which
means that the two quality models are ~67.31% different.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

246 | P a g e

Annexes

247 | P a g e

Annex 4. Measurement process key document: Evaluation plan template

1 Context

1.1 Purpose

1.2 Audience

1.3 Intended

5.1.4 Definition of responsibilities

This chapter should define all responsibilities associated with the implementation of the Plan. This includes system(s)
and/or software quality requirements specification, all data collection, analysis tasks, implementation of other
supporting requirements, reporting, follow up and similar requirements. [ISO/IEC 25001]

This chapter should provide the purpose of the quality evaluation plan, introducing the context and situation of the
evaluation.

Organizations involved in the evaluation, such as the independent evaluation organization, product developers
and acquirer’s organizational units.

This chapter should provide information products expected from the evaluation.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

248 | P a g e

2 Objectives

2.1 Evaluation Objectives

2.2 Quality Objectives

2.3 List of priorities

2.4 Level of evaluation and compromises

This chapter should address questions such as accuracy and precision level, dedicated labor effort , repeatability and
generalization, or any acceptable vs non acceptable compromises/ trade off

This chapter should provide a clear statement about the objective(s) of the evaluation and the intended application of
the system(s) or software. This can be stated in terms of business needs. However, they should be useable for the
purpose of specifying quality requirements and setting quality objectives and respective criteria. [ISO/IEC 25001]

This chapter should provide quantifiable quality objectives (target values), which are verified against values measured
at interim or final phases of the project development. [ISO/IEC 25001]

This chapter should prioritize the above characteristics and should provide a supporting rationale for these priorities.
[ISO/IEC 25001]

Annexes

249 | P a g e

3 Evaluation Elements

3.1 Systems and software quality requirements and applicable quality characteristics

3.2 Evaluation design

This chapter should provide statements of the quality characteristics (e.g. ISO/IEC 25010) resulting from the
specification of system(s) or software quality requirements, which support the objectives prescribed in 5.2.1
"Evaluation Objectives ".
 NOTE: The stated quality objectives may be both product and process oriented. The purpose of this plan is to
address the product quality objectives only. [ISO/IEC 25001]

This chapter should define the measurements, which are planned to be carried out and cover required scope of
quality evaluation. The chapter should indicate at what phase(s) of the development cycle these measurements are to
be carried out, what evaluation process should be applied (from ISO/IEC 25041), how often they should be repeated,
what techniques or tools should be used to aid data capture and analysis, and what actions should be undertaken if
there are divergences from the stated objectives. [ISO/IEC 25001]

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

250 | P a g e

4 Execution Plan

4.1 Evaluation planning and execution

4.2 Using and analyzing data

4.3 Reporting

This chapter should provide a clear plan of activities with milestones and stated deliverables. [ISO/IEC 25001]

This chapter should define how data is to be analysed, what, if any, statistical methods are to be employed and what
presentation techniques are to be used. It should make references to previously stated responsibilities, supporting
tools and forms. It should also state how the information is to be integrated into the progress tracking process or into
the product acceptance process. [ISO/IEC 25001]. With regard to ISO2626: for ASIL A and greater we must have
process improvement. Therefore forecasted values (e.g. at the end of the development) should also be given,
considering the ratio obtained when comparing the planned measurement values to the current values.

This chapter should define all relevant reporting requirements. [ISO/IEC 25001]

Annexes

251 | P a g e

5 Other Requirements

5.1 Techniques and methods employed

5.2 Supporting tools

5.3 Supporting trainings

5.4 Relevant standards and guides

5.5 Suppliers' evaluation

This chapter should include requirements not covered previously, e.g. it can include the following
information: [ISO/IEC 25001]

Provide a full description (or references to other material) of the techniques and methods used, (e.g. method for
sizing; development maturity assessment; inspection method for error detection; defect removal model for predicting
error rates). [ISO/IEC 25001]

Describe or provide requirements and references for the supporting tools. This can include guides for the use of
databases, spreadsheet and statistical packages. [ISO/IEC 25001]

Refer to applicable standards and supporting guides. Describe their use and benefits relevant to the systems and
software product quality requirements and evaluation processes (e.g. ISO/IEC 25000; ISO 9001; ISO/IEC 90003).
[ISO/IEC 25001]

Include evaluation and measurement procedures for the effective quantitative assessment of the systems or software
product suppliers. This can cover the number of released copies, current error status, surveys about post installation
support performance, statistics about past and current users’ satisfaction, management [ISO/IEC 25001]

Describe or provide requirements and references for the supporting trainings

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

252 | P a g e

Annex A - List of point of contacts

Name Position

This chapter should enumerate all involved points of contact

Organization e-mail

Annexes

253 | P a g e

Annex 5. Systematic literature review results

TABLE 45 - LIST OF FILTERED PUBLISHED STUDIES RESULTING THE SYSTEMATIC LITERATURE REVIEW

Id Year Ref. Source17
Type

18
Citations

19 Authors Title Url20

SL
R-

S0
1 1979 [195] ACM digital

library
J 94 Siba N. Mohanty Models and Measurements for Quality

Assessment of Software
https://dl.acm.org/doi/10.1145/356778.356783

SL
R-

S0
2 1994 [264] IEEE Xplore C 18 T. M. Khoshgoftaar

R. M. Szabo
Improving neural network predictions of
software quality using principal
components analysis

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=374764

SL
R-

S0
3 1996 [196] ACM digital

library
J 507 William Frakes

Carol Terry
Software Reuse: Metrics and Models https://dl.acm.org/doi/10.1145/234528.234531

SL
R-

S0
4 1996 [265] Scopus J 35 Khoshgoftaar T.M.

Allen E.B.
Kalaichelvan K.S.
Goel N.

The impact of software evolution and
reuse on software quality

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
0029726553&doi=10.1007%2fBF00125810&partnerI
D=40&md5=22f6cf0451a62716aa68a29a14e0ca89

SL
R-

S0
5 1996 [26] IEEE Xplore J 230 B. Kitchenham

S.L. Pfleeger
Software quality: the elusive target
[special issues section]

https://ieeexplore.ieee.org/document/476281

SL
R-

S0
6 1997 [266] Scopus J 39 Dahlberg T.

Jarvinen J.
Challenges to IS quality https://www.scopus.com/inward/record.uri?eid=2-

s2.0-0031381685&doi=10.1016%2fS0950-
5849%2897%2900039-
6&partnerID=40&md5=79fa87af5c97be907d56f64dc
820839f

SL
R-

S0
7 1997 [267] Web of Science J 63 Granja Alvarez, JC

Barranco Garcia, MJ
A method for estimating maintenance
cost in a software project: A case study

https://onlinelibrary.wiley.com/doi/abs/10.1002/%2
8SICI%291096-
908X%28199705%299%3A3%3C161%3A%3AAID-
SMR148%3E3.0.CO%3B2-8

SL
R-

S0
8 1998 [268] IEEE Xplore C 44 T. M. Khoshgoftaar

E. B. Allen
A. Naik
W. D. Jones
J. Hudepohl

Using classification trees for software
quality models: lessons learned

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=731598

SL
R-

S0
9 1998 [269] Web of Science C 14 Yokoyama, Y

Kodaira, M
Software cost and quality analysis by
statistical approaches

https://ieeexplore.ieee.org/document/671607

SL
R-

S1
0 1999 [197] IEEE Xplore C 145 T. M. Khoshgoftaar

E. B. Allen
W. D. Jones
J. I. Hudepohl

Classification tree models of software
quality over multiple releases

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=809316

SL
R-

S1
1 1999 [198] Scopus J 137 Olsina L.

Godoy D.
Lafuente G.
Rossi G.

Assessing the quality of academic
websites: A case study

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
0033339710&doi=10.1080%2f13614569908914709&
partnerID=40&md5=48291fac8c23aabaaa12f022d99
a8855

SL
R-

S1
2 2000 [270] IEEE Xplore C 30 T. M. Khoshgoftaar

Ruqun Shan
E. B. Allen

Improving tree-based models of software
quality with principal components
analysis

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=885872

SL
R-

S1
3 2001 [199] IEEE Xplore C 169 Ping Zhang

G. von Dran
Expectations and rankings of Web site
quality features: results of two studies on
user perceptions

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=927050

17 Source: digital libraries for the main systematic literature review stream, or study found during exploratory review, or further manual search.
18 Type of document: C = Conference paper, J = Journal paper
19 Study citations are retrieved from google scholar for harmonization data despite the digital library source.
20 Main url to access to online paper

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

254 | P a g e

SL
R-

S1
4 2001 [271] Scopus J 19 Khoshgoftaar T.M.

Allen E.B.
Jones W.D.
Hudepohl J.P.

Cost-Benefit Analysis of Software Quality
Models

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
0038138707&doi=10.1023%2fA%3a1016621219262
&partnerID=40&md5=e236c7fd7357975ed5580c280
1139eb4

SL
R-

S1
5 2002 [272] IEEE Xplore C 14 Hong Zhu

Yanlong Zhang
Qingning Huo
S. Greenwood

Application of hazard analysis to
software quality modelling

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=1044544

SL
R-

S1
6 2002 [273] IEEE Xplore C 5 C. V. Ramamoorthy Evolution and evaluation of software

quality models
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=1180850

SL
R-

S1
7 2002 [200] Scopus J 228 Briand L.C.

Wüst J.
Empirical studies of quality models in
object-oriented systems

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-77957159740&doi=10.1016%2fS0065-
2458%2802%2980005-
5&partnerID=40&md5=1256de9aefbf034462dacc600
7f42689

SL
R-

S1
8 2002 [274] Web of Science J 17 Mendoza, LE

Griman, AC
Perez, MA
Rojas, T

Evaluation of environments for portals
development: A case study

https://www.tandfonline.com/doi/abs/10.1201/107
8/43200.19.2.20020228/35141.7

SL
R-

S1
9 2003 [275] IEEE Xplore C 22 T. M. Khoshgoftaar

E. Geleyn
L. Nguyen

Empirical case studies of combining
software quality classification models

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=1319084

SL
R-

S2
0 2004 [276] IEEE Xplore C 47 Yi Liu

T. Khoshgoftaar
Reducing overfitting in genetic
programming models for software
quality classification

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=1281730

SL
R-

S2
1 2004 [277] Web of Science C 5 Oh, J

Park, D
Lee, B
Lee, J
Hong, E
Wu, C

Certification of software packages using
hierarchical classification

https://link.springer.com/chapter/10.1007/978-3-
540-24675-6_17

SL
R-

S2
2 2005 [278] Scopus J 32 Côté M.-A.

Suryn W.
Laporte C.Y.
Martin R.A.

The evolution path for industrial
software quality evaluation methods
applying ISO/IEC 9126:2001 quality
model: Example of MITRE's SQAE
method

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-17444388547&doi=10.1007%2fs11219-004-
5259-
6&partnerID=40&md5=09ec05c221610b4c799ab611
1def6568

SL
R-

S2
3 2005 [148] Manual search J 24 S. Khaddaj

G. Horgan
A Proposed Adaptable Quality Model for
Software Quality Assurance

https://www.semanticscholar.org/paper/A-
Proposed-Adaptable-Quality-Model-for-Software-
Khaddaj-
Horgan/815debd01444997d7d20656204be767d7296
d660

SL
R-

S2
4 2006 [279] IEEE Xplore C 6 Q. Zhang

J. Wu
H. Zhu

Tool Support to Model-based Quality
Analysis of Software Architecture

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=4020069

SL
R-

S2
5 2006 [280] Scopus J 26 Mishra A.

Mishra D.
Software quality assurance models in
small and medium organisations: A
comparison

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
33845719178&doi=10.1504%2fIJITM.2006.008710&
partnerID=40&md5=42359aa8dd07631d8be7f435c7
e1f634

SL
R-

S2
6 2006 [281] Scopus C 11 Jung H.-J.

Jung W.-T.
Yang H.-S.

A study on the standard of software
quality testing

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
33745922863&doi=10.1007%2f11751632_113&part
nerID=40&md5=535bc40cf6bbac584b698ede7532b4
c5

SL
R-

S2
7 2006 [282] Scopus J 0 Wang C.-T.

Lo C.-C.
Jean T.-F.

Probabilistic models for software quality
analysis

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
33746862135&doi=10.1080%2f10170660609509329
&partnerID=40&md5=41cc8711f0c0c0eba87345026e
dcf678

SL
R-

S2
8 2006 [283] Web of Science C 0 Ruiz, Julian

Calero, Coral
Piattini, Mario

Web metrics selection through a
practitioners' survey

https://www.semanticscholar.org/paper/Web-
metrics-selection-through-a-practitioners'-Ruiz-
Calero/cf756d83396f40005ff49d4ffbfe3f467812472c

Annexes

255 | P a g e

SL
R-

S2
9 2006 [125] Web of Science C 0 Khoshgoftaar, TM

Szabo, RM
A Poisson regression model of software
quality: A comparative study

https://www.worldscientific.com/doi/10.1142/97898
12707147_0007

SL
R-

S3
0 2006 [201] Manual search J 148 A. Rawashdeh

B. Matalkah
A New Software Quality Model for
Evaluating COTS Components

https://www.semanticscholar.org/paper/A-New-
Software-Quality-Model-for-Evaluating-COTS-
Rawashdeh-
Matalkah/579ceadfed8bc605961742fb254bcc938927
843a

SL
R-

S3
1 2007 [284] ACM digital

library
J 55 Olga Ormandjieva

Ishrar Hussain
Leila Kosseim

Toward a Text Classification System for
the Quality Assessment of Software
Requirements Written in Natural
Language

https://dl.acm.org/doi/10.1145/1295074.1295082

SL
R-

S3
2 2007 [285] IEEE Xplore C 17 P. L. Roden

S. Virani
L. H. Etzkorn
S. Messimer

An Empirical Study of the Relationship of
Stability Metrics and the QMOOD Quality
Models Over Software Developed Using
Highly Iterative or Agile Software
Processes

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=4362911

SL
R-

S3
3 2007 [286] IEEE Xplore C 48 Y. Ma

B. Cukic
Adequate and Precise Evaluation of
Quality Models in Software Engineering
Studies

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=4273257

SL
R-

S3
4 2007 [287] IEEE Xplore C 37 S. Neti

H. A. Muller
Quality Criteria and an Analysis
Framework for Self-Healing Systems

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=4228606

SL
R-

S3
5 2008 [202] ACM digital

library
J 263 Rüdiger Lincke

Jonas Lundberg
Welf Löwe

Comparing Software Metrics Tools https://dl.acm.org/doi/10.1145/1390630.1390648

SL
R-

S3
6 2008 [288] IEEE Xplore C 7 L. Zhang

L. Li
H. Gao

2-D Software Quality Model and Case
Study in Software Flexibility Research

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=5172787

SL
R-

S3
7 2008 [289] IEEE Xplore C 2 A. A. Hamada

M. N. Moustafa
H. I. Shaheen

Software Quality model Analysis Program https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=4773015

SL
R-

S3
8 2008 [290] IEEE Xplore C 1 X. Feng

Y. Liu
A Study on Evaluation Model of
Information Sharing Quality in Virtual
Teams

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=4722856

SL
R-

S3
9 2008 [291] IEEE Xplore C 9 O. Alfonzo

K. Domínguez
L. Rivas
M. Pérez
L. Mendoza
M. Ortega

Quality Measurement Model for Analysis
and Design Tools Based on FLOSS

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=4483214

SL
R-

S4
0 2008 [292] IEEE Xplore C 6 M. Bombardieri

F. A. Fontana
A specialisation of the SQuaRE quality
model for the evaluation of the software
evolution and maintenance activity

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=4686328

SL
R-

S4
1 2009 [293] IEEE Xplore C 10 H. P. Breivold

I. Crnkovic
Analysis of Software Evolvability in
Quality Models

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=5349964

SL
R-

S4
2 2009 [98] IEEE Xplore C 32 S. Wagner

K. Lochmann
S. Winter
A. Goeb
M. Kläs

Quality models in practice: A preliminary
analysis

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=5316003

SL
R-

S4
3 2009 [294] IEEE Xplore C 8 F. Khomh SQUAD: Software Quality Understanding

through the Analysis of Design
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=5328744

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

256 | P a g e

SL
R-

S4
4 2009 [10] IEEE Xplore C 42 M. Kläs

J. Heidrich
J. Münch
A. Trendowicz

CQML Scheme: A Classification Scheme
for Comprehensive Quality Model
Landscapes

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=5349845

SL
R-

S4
5 2009 [203] Scopus J 160 Mohagheghi P.

Dehlen V.
Neple T.

Definitions and approaches to model
quality in model-based software
development - A review of literature

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
70349567623&doi=10.1016%2fj.infsof.2009.04.004&
partnerID=40&md5=8a2fb74f0c7b611214be792e6bb
810b1

SL
R-

S4
6 2009 [295] Scopus C 31 Brcina R.

Bode S.
Riebisch M.

Optimisation process for maintaining
evolvability during software evolution

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
67650330218&doi=10.1109%2fECBS.2009.20&partn
erID=40&md5=37457feb9b3cc283cf5f63de0710b7bd

SL
R-

S4
7 2010 [296] IEEE Xplore C 3 Qi Yu-dong

Zhu Ai-hong
Xie Xiao-fang
Yan Xiao-bin

Analysis of contribution of conceptual
model quality to software reliability

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=5622740

SL
R-

S4
8 2010 [297] IEEE Xplore C 62 J. Letouzey

T. Coq
The SQALE Analysis Model: An Analysis
Model Compliant with the
Representation Condition for Assessing
the Quality of Software Source Code

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=5617180

SL
R-

S4
9 2010 [298] IEEE Xplore C 26 R. Lincke

T. Gutzmann
W. Löwe

Software Quality Prediction Models
Compared

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=5562947

SL
R-

S5
0 2010 [207] Manual search C 70 E. Petrinja

A. Sillitti
G. Succi

Comparing OpenBRR, QSOS, and OMM
Assessment Models

https://hal.inria.fr/hal-01056052/

SL
R-

S5
1 2011 [299] IEEE Xplore C 3 E. Chandra

D. Francis Xavier
Christopher
S. D. Vijaykumar

Study of CMMI based process framework
for quality models

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6169109

SL
R-

S5
2 2011 [97] IEEE Xplore C 30 M. Kläs

C. Lampasona
J. Münch

Adapting Software Quality Models:
Practical Challenges, Approach, and First
Empirical Results

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6068366

SL
R-

S5
3 2011 [185] Scopus C 54 Al-Badareen A.B.

Selamat M.H.
A. Jabar M.
Din J.
Turaev S.

Software quality models: A comparative
study

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-79960369917&doi=10.1007%2f978-3-642-
22170-
5_4&partnerID=40&md5=7e35cefc32c4677e451f68a
330a436c9

SL
R-

S5
4 2011 [300] Scopus C 6 Coq T.

Rosen J.-P.
The SQALE quality and analysis models
for assessing the quality of Ada source
code

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-79960266130&doi=10.1007%2f978-3-642-
21338-
0_5&partnerID=40&md5=4bd77c3b9f3b5d7b424d29
5f1dd2d563

SL
R-

S5
5 2011 [301] Scopus C 15 Lochmann K.

Heinemann L.
Integrating quality models and static
analysis for comprehensive quality
assessment

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
79959854657&doi=10.1145%2f1985374.1985378&p
artnerID=40&md5=ddd65225476a4c260011649f9c9a
8066

SL
R-

S5
6 2011 [302] Scopus J 44 Nabil D.

Mosad A.
Hefny H.A.

Web-Based Applications quality factors:
A survey and a proposed conceptual
model

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
83555173273&doi=10.1016%2fj.eij.2011.09.003&par
tnerID=40&md5=6fb780a59c13bbd0dbbb2bc29caa2
958

SL
R-

S5
7 2011 [303] Scopus J 80 Montagud S.

Abrahão S.
Insfran E.

A systematic review of quality attributes
and measures for software product lines

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-84865626740&doi=10.1007%2fs11219-011-
9146-
7&partnerID=40&md5=33b25cd0a25fc09685e06cbc
9c988f14

Annexes

257 | P a g e

SL
R-

S5
8 2011 [187] Manual search J 37 R. Polillo Quality Models for Web [2.0] Sites: A

Methodological Approach and a Proposal
https://link.springer.com/chapter/10.1007/978-3-
642-27997-3_25

SL
R-

S5
9 2012 [48] Exploratory

review
C 18 A. Mayr

R. Plösch
M. Kläs
C. Lampasona, and M.
Saft,

A Comprehensive Code-Based Quality
Model for Embedded Systems:
Systematic Development and Validation
by Industrial Projects

https://ieeexplore.ieee.org/document/6405376

SL
R-

S6
0 2012 [304] IEEE Xplore C 3 L. Cheikhi

A. Abran
J. Desharnais

Analysis of the ISBSG software repository
from the ISO 9126 view of software
product quality

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6389405

SL
R-

S6
1 2012 [305] IEEE Xplore C 6 K. Lochmann

D. M. Fernandez
S. Wagner

A Case Study on Specifying Quality
Requirements Using a Quality Model

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6462713

SL
R-

S6
2 2012 [306] IEEE Xplore C 14 M. Galster

P. Avgeriou
Qualitative Analysis of the Impact of SOA
Patterns on Quality Attributes

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6319243

SL
R-

S6
3 2012 [307] IEEE Xplore C 5 H. Wan-jiang

L. Tian-bo
Study on quality evaluation model of
communication system

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6340726

SL
R-

S6
4 2012 [308] IEEE Xplore C 44 G. A. Garcia-Mireles

M. Angeles Moraga
F. Garcia

Development of maturity models: A
systematic literature review

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6272525

SL
R-

S6
5 2012 [309] Scopus C 1 Jeong H.-J.

Hong S.-J.
The survey of quality model for software
and system

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-84255199062&doi=10.1007%2f978-94-007-
2792-
2_54&partnerID=40&md5=790805eba6ac067ee6871
ed520a8804f

SL
R-

S6
6 2012 [310] Manual search J 48 S. K. Dubey

S. Ghosh
A. Rana

Comparison of Software Quality Models:
An Analytical Approach

https://www.semanticscholar.org/paper/Compariso
n-of-Software-Quality-Models%3A-An-Approach-
Dubey-
Ghosh/2fae30444bbd03a682753b75ddd8adcbe5350
feb

SL
R-

S6
7 2012 [11] Manual search J 19 S. S. Thapar

P. Singh
S. Rani

Challenges to the Development of
Standard Software Quality Model

https://citeseerx.ist.psu.edu/viewdoc/download?doi
=10.1.1.258.6465&rep=rep1&type=pdf

SL
R-

S6
8 2013 [69] Exploratory

review
C 14 Oliveira, L. B. R.

Guessi, M.
Feitosa, D.
Manteuffel, C.
Galster, M.
Oquendo, F.
Nakagawa, E. Y.

An investigation on quality models and
quality attributes for embedded systems

https://www.semanticscholar.org/paper/An-
Investigation-on-Quality-Models-and-Quality-for-
Oliveira-
Guessi/7eff018a46d1be728ea101ca246ec06c0871f6
ca

SL
R-

S6
9 2013 [204] ACM digital

library
C 129 Kyriakos Kritikos

Barbara Pernici
Pierluigi Plebani
Cinzia Cappiello
Marco Comuzzi
Salima Benrernou
Ivona Brandic
Attila Kertész
Michael Parkin
Manuel Carro

A Survey on Service Quality Description https://dl.acm.org/doi/10.1145/2522968.2522969

SL
R-

S7
0 2013 [311] IEEE Xplore C 25 B. Singh

S. P. Kannojia
A Review on Software Quality Models https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum

ber=6524514

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

258 | P a g e

SL
R-

S7
1 2013 [312] IEEE Xplore C 57 C. Calero

M. F. Bertoa
M. A. Moraga

A systematic literature review for
software sustainability measures

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6606421

SL
R-

S7
2 2013 [313] IEEE Xplore C 4 A. Adewumi

N. Omoregbe
S. Misra
L. Fernandez

Quantitative Quality Model for
Evaluating Open Source Web
Applications: Case Study of Repository
Software

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6755361

SL
R-

S7
3 2013 [314] IEEE Xplore C 45 K. Li

J. Xiao
Y. Wang
Q. Wang

Analysis of the Key Factors for Software
Quality in Crowdsourcing Development:
An Empirical Study on TopCoder.com

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6649922

SL
R-

S7
4 2013 [315] IEEE Xplore C 8 M. Ericsson

W. Lowe
T. Olsson
D. Toll
A. Wingkvist

A Study of the Effect of Data
Normalization on Software and
Information Quality Assessment

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6754351

SL
R-

S7
5 2013 [316] IEEE Xplore C 4 H. K. A. Bakar

R. Razali
A preliminary review of legacy
information systems evaluation models

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=6716728

SL
R-

S7
6 2013 [317] Scopus C 16 Hegedüs P. A probabilistic quality model for C# -an

industrial case study
https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
84885225033&doi=10.14232%2factacyb.21.1.2013.1
0&partnerID=40&md5=4d29f1e00f36804bac31cdf6f
995f34d

SL
R-

S7
7 2013 [260] Web of Science C 35 Adewumi, Adewole

Misra, Sanjay
Omoregbe, Nicholas

A Review of Models for Evaluating
Quality in Open Source Software

https://www.sciencedirect.com/science/article/pii/S
2212667813000178

SL
R-

S7
8 2013 [318] Manual search J 3 A. B. Tomar

V. M. Thakare
A Customized Model on Software Quality
Assurance & Reuse

https://www.semanticscholar.org/paper/A-
Customized-Model-on-Software-Quality-Assurance-
%26-Tomar-
Thakare/a3ff1ff3517fc8fb4670ba1e24f5f53c3459594
d

SL
R-

S7
9 2014 [319] ACM digital

library
J 2 Shrinath Gupta

Himanshu Kumar Singh
A Semiautomated Method for Classifying
Program Analysis Rules into a Quality
Model

https://dl.acm.org/doi/10.1145/2597008.2597808

SL
R-

S8
0 2014 [320] ACM digital

library
J 2 Rinkaj Goyal

Pravin Chandra
Yogesh Singh

Why Interaction Between Metrics Should
Be Considered in the Development of
Software Quality Models: A Preliminary
Study

https://dl.acm.org/doi/10.1145/2632434.2659853

SL
R-

S8
1 2014 [321] IEEE Xplore C 5 T. Davuluru

J. Medida
V. S. K. Reddy

A study of software quality models https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=7012958

SL
R-

S8
2 2014 [322] IEEE Xplore C 19 S. Ouhbi

A. Idri
J. L. F. Aleman
A. Toval

Evaluating Software Product Quality: A
Systematic Mapping Study

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=7000093

SL
R-

S8
3 2014 [323] Scopus J 1 Zhu H.

Zhang Q.
Zhang Y.

HASARD: A Model-Based Method for
Quality Analysis of Software Architecture

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-84942245243&doi=10.1016%2fB978-0-12-
417009-4.00005-
3&partnerID=40&md5=5dd4f34512f800291a453d8b
8c6b4fbe

SL
R-

S8
4 2014 [324] Scopus C 4 Yildiz E.

Bilgen S.
Tokdemir G.
Cagiltay N.E.
Erturan Y.N.

Analysis of B2C mobile application
characteristics and quality factors based
on ISO 25010 quality model

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-84906751837&doi=10.1007%2f978-3-319-
10359-
4_21&partnerID=40&md5=607063f7979ec7d03c477
248d68647bf

Annexes

259 | P a g e

SL
R-

S8
5 2014 [325] Scopus J 2 Ronchieri E.

Canaparo M.
Salomoni D.

A software quality model by using
discriminant analysis predictive
technique

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-84922863544&doi=10.3233%2fjid-2014-
0016&partnerID=40&md5=d74f98344fedb535c2e05
06a8ae96112

SL
R-

S8
6 2014 [326] Scopus C 3 Cherfi S.S.-S.

Tuan A.D.
Comyn-Wattiau I.

An exploratory study on websites quality
assessment

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
84919692097&partnerID=40&md5=5b6330cd813306
c387af6dce524ca189

SL
R-

S8
7 2014 [327] Scopus J 58 Sarrab M.

Rehman O.M.H.
Empirical study of open source software
selection for adoption, based on
software quality characteristics

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
84892601718&doi=10.1016%2fj.advengsoft.2013.12.
001&partnerID=40&md5=102b2e3d948a33890ff3d2
5521fd15c5

SL
R-

S8
8 2014 [92] Scopus C 40 Gordieiev O.

Kharchenko V.
Fominykh N.
Sklyar V.

Evolution of software quality models in
context of the standard ISO 25010

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-84917706898&doi=10.1007%2f978-3-319-
07013-
1_21&partnerID=40&md5=1f0d9169e64a51c5d55af
5b61f46eb2a

SL
R-

S8
9 2014 [328] Scopus C 0 Buglione L. Software product quality: Some thoughts

about its evolution and perspectives
https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
84918789815&partnerID=40&md5=c2ccd5c92585f8
27c4614c819db93b2d

SL
R-

S9
0 2014 [12] Web of Science J 83 Oriol, Marc

Marco, Jordi
Franch, Xavier

Quality models for web services: A
systematic mapping

https://www.sciencedirect.com/science/article/abs/
pii/S0950584914000822

SL
R-

S9
1 2014 [329] Web of Science C 33 Gupta, Deepak

Ahlawat, Anil
Sagar, Kalpna

A Critical Analysis of A Hierarchy Based
Usability Model

https://ieeexplore.ieee.org/document/7019810

SL
R-

S9
2 2014 [330] Manual search J 28 S. Manoj Wadhwa A Comparative Study of Software Quality

Models
http://ijcsit.com/docs/Volume%205/vol5issue04/ijcsi
t20140504177.pdf

SL
R-

S9
3 2014 [208] Manual search J 8 A. Fath-Allah

L. Cheikhi
R. E. Al-Qutaish
A. Idri

A Comparative Analysis of E-Government
Quality Models

https://www.semanticscholar.org/paper/A-
Comparative-Analysis-of-E-Government-Quality-
Fath-Allah-
Cheikhi/b1c5dff0d65d1db8c81cafbd30a2a20965143
4b4

SL
R-

S9
4 2014 [190] Manual search J 171 J. P. Miguel

D. Mauricio
G. Rodriguez

A Review of Software Quality Models for
the Evaluation of Software Products

https://www.semanticscholar.org/paper/A-Review-
of-Software-Quality-Models-for-the-of-Miguel-
Mauricio/0f6f7c5eaa44279c5208fa14f5489f710ecf26
83

SL
R-

S9
5 2015 [71] IEEE Xplore C 28 T. Bianchi

D. S. Santos
K. R. Felizardo

Quality Attributes of Systems-of-
Systems: A Systematic Literature Review

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=7179220

SL
R-

S9
6 2015 [331] IEEE Xplore C 13 K. Sheoran

O. P. Sangwan
An Insight of software quality models
applied in predicting software quality
attributes: A comparative analysis

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=7359355

SL
R-

S9
7 2015 [332] IEEE Xplore C 3 Hegedus, Peter Advances in software product quality

measurement and its applications in
software evolution

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=7332520

SL
R-

S9
8 2015 [333] Scopus C 9 Chawla M.K.,
Chhabra I.

SQMMA: Software quality model for
maintainability analysis

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
84959474131&doi=10.1145%2f2835043.2835062&p
artnerID=40&md5=131c1f1bcb41c56c81a08c011d12
596d

SL
R-

S9
9 2015 [93] Scopus C 13 Gordieiev O.

Kharchenko V.
Fusani M.

Evolution of software quality models:
Green and reliability issues

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
84930363322&partnerID=40&md5=32efb2b8555111
8b519e0ca8d176b314

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

260 | P a g e

SL
R-

S1
00 2015 [192] Scopus J 3 Buglione L. Some thoughts on quality models:

Evolution and perspectives
https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
84944450337&partnerID=40&md5=5b4de18eb17b9
41f18d3400811e14eef

SL
R-

S1
01

2015 [334] Web of Science C 0 Imeri, Florinda
Antovski, Ljupcho
Hamiti, Mentor

Empirical Analysis of Quality Models in
Practice in Small IT Companies in SEE
Region

https://www.sciencedirect.com/science/article/pii/S
1877042815027500

SL
R-

S1
02

2016 [335] Web of Science J 4 Ganser, Andreas
Lichter, Horst
Roth, Alexander
Rumpe, Bernhard

Staged model evolution and proactive
quality guidance for model libraries

https://link.springer.com/article/10.1007/s11219-
015-9298-y

SL
R-

S1
03

2016 [336] IEEE Xplore C 12 M. A. Kabir
M. U. Rehman
S. I. Majumdar

An analytical and comparative study of
software usability quality factors

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=7883188

SL
R-

S1
04

2016 [337] IEEE Xplore C 3 D. d. Ruscio
D. S. Kolovos
Y. Korkontzelos
N. Matragkas
J. Vinju

Supporting Custom Quality Models to
Analyse and Compare Open-Source
Software

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=7814523

SL
R-

S1
05

2016 [338] IEEE Xplore C 4 Z. Qian
C. Wan
Y. Chen

Evaluating quality-in-use of FLOSS
through analyzing user reviews

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=7515956

SL
R-

S1
06

2016 [339] IEEE Xplore C 0 L. S. P. Silva
S. C. B. Sampaio
E. R. d. Souza
R. T. Moreira
A. M. L. Vasconcelos

Mapping between the Guide of IT
Solution Contract and CMMI Models: A
Qualitative Analysis

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=7814535

SL
R-

S1
07 2016 [340] Scopus C 3 Devi U.

Sharma A.
Kesswani N.

A review on quality models to analyse
the impact of refactored code on
maintainability with reference to
software product line

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
84997503403&partnerID=40&md5=c1cc2086115f82
5aa0f6e2a0cf776b4e

SL
R-

S1
08

2016 [341] Scopus J 4 Pattnaik S.
Pattanayak B.K.

A survey on machine learning techniques
used for software quality prediction

https://www.inderscience.com/info/inarticle.php?art
id=80058

SL
R-

S1
09

2016 [93] Scopus C 5 Gordieiev O.
Kharchenko V.
Fusani M.

Software quality standards and models
evolution: Greenness and reliability
issues

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-84960404079&doi=10.1007%2f978-3-319-
30246-
1_3&partnerID=40&md5=7f0c7074dbbceb0e60779c
8e1a7d67f2

SL
R-

S1
10

2016 [342] Web of Science J 14 Bezerra, Carla I. M.
Andrade, Rossana M.
C.
Monteiro, Jose Maria

Exploring quality measures for the
evaluation of feature models: a case
study

https://www.sciencedirect.com/science/article/abs/
pii/S0164121216301340

SL
R-

S1
11

2016 [189] Web of Science J 26 Adewumi, Adewole
Misra, Sanjay
Omoregbe, Nicholas
Crawford, Broderick
Soto, Ricardo

A systematic literature review of open
source software quality assessment
models

https://springerplus.springeropen.com/articles/10.1
186/s40064-016-3612-4

SL
R-

S1
12

2016 [343] Web of Science C 6 Santos, Mariana
Afonso, Paulo Junior
Bermejo, Paulo
Henrique
Costa, Heitor

Metrics and Statistical Techniques Used
to Evaluate Internal Quality of Object-
Oriented Software: A Systematic
Mapping

https://ieeexplore.ieee.org/document/7836021

SL
R-

S1
13

2016 [344] Web of Science C 0 Suradi, Nur Razia
Mohd
Kahar, Saliyah
Jamaludin, Nor Azliana
Akmal

A Review on Software Quality Attributes
for Web-Based Application

https://www.researchgate.net/publication/3114539
41_A_Review_On_Software_Quality_Attributes_for_
Web-based_Application

Annexes

261 | P a g e

SL
R-

S1
14

2017 [345] IEEE Xplore C 11 C. Izurieta
I. Griffith
C. Huvaere

An Industry Perspective to Comparing
the SQALE and Quamoco Software
Quality Models

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=8170115

SL
R-

S1
15

2017 [346] IEEE Xplore C 1 K. Moumane
A. Idri

Software quality in mobile environments:
A comparative study

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=8102750

SL
R-

S1
16

2017 [206] IEEE Xplore C 6 M. Yan
X. Xia
X. Zhang
L. Xu
D. Yang

A Systematic Mapping Study of Quality
Assessment Models for Software
Products

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=8118522

SL
R-

S1
17

2017 [347] Scopus J 12 Wahyuningrum T.
Mustofa K.

A systematic mapping review of software
quality measurement: Research trends,
model, and method

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
85050120161&doi=10.11591%2fijece.v7i5.pp2847-
2854&partnerID=40&md5=4d2e29c8dd5634ee56182
bc4fc5b04aa

SL
R-

S1
18

2017 [55] Scopus J 46 Garcés L.
Ampatzoglou A.
Avgeriou P.
Nakagawa E.Y.

Quality attributes and quality models for
ambient assisted living software systems:
A systematic mapping

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
84994350835&doi=10.1016%2fj.infsof.2016.10.005&
partnerID=40&md5=924f259ce9824d9727b190ab5c
627919

SL
R-

S1
19

2018 [348] Scopus J 9 Giraldo F.D.
España S.
Pastor Ó.
Giraldo W.J.

Considerations about quality in model-
driven engineering: Current state and
challenges

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85006410514&doi=10.1007%2fs11219-016-
9350-
6&partnerID=40&md5=4586f43287e5bbaf7f7aeca58
4938bcf

SL
R-

S1
20

2018 [6] Exploratory
review

J 1 Zouheyr Tamrabet
Toufik Marir
Farid MOKHATI

A Survey on Quality Attributes and
Quality Models for Embedded Software

https://dl.acm.org/doi/abs/10.4018/IJERTCS.201807
0101

SL
R-

S1
21

2018 [349] ACM digital
library

J 8 Daniel Russo
Paolo Ciancarini and
Tommaso Falasconi
Massimo Tomasi

A Meta-Model for Information Systems
Quality: A Mixed Study of the Financial
Sector

https://dl.acm.org/doi/10.1145/3230713

SL
R-

S1
22

2018 [350] IEEE Xplore C 0 R. Wahdiniwaty
E. B. Setiawan
D. A. Wahab

Comparative Analysis of Software Quality
Model In The Selection of Marketplace E-
Commerce

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=8696074

SL
R-

S1
23

2018 [351] IEEE Xplore C 1 D. Gatica
F. Ponce
R. Noël
H. Astudillo

Characterizing Architectural Evaluations
and Identifying Quality Attributes
addressed in Systems-of-Systems: A
Systematic Mapping Study

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=8705229

SL
R-

S1
24

2018 [352] IEEE Xplore C 19 A. J. Abdellatif
B. McCollum
P. McMullan

Serious games: Quality characteristics
evaluation framework and case study

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=8340460

SL
R-

S1
25

2018 [191] IEEE Xplore C 2 O. Gordieiev
V. Kharchenko

IT-oriented software quality models and
evolution of the prevailing characteristics

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=8409162

SL
R-

S1
26 2018 [353] Scopus J 4 Zighed N.

Bounour N.
Seriai A.-D.

Comparative Analysis of Object-Oriented
Software Maintainability Prediction
Models

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85060063384&doi=10.1515%2ffcds-2018-
0018&partnerID=40&md5=4be59f714c130c780d51af
467729c0cd

SL
R-

S1
27

2018 [354] Scopus C 0 Rai M.
Virk K.S.

Software Component Quality Models: A
Survey

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85045842336&doi=10.1007%2f978-981-10-
5903-
2_27&partnerID=40&md5=9480facd0c4cd316df56ef
ea7fb58abc

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

262 | P a g e

SL
R-

S1
28

2018 [355] Web of Science J 20 Nikolic, Vlastimir
Kaljevic, Jelena
Jovic, Srdan
Petkovic, Dalibor
Milovancevic, Milos
Dimitrov, Ljubomir
Dachkinov, Pancho

Survey of quality models of e-learning
systems

https://www.sciencedirect.com/science/article/abs/
pii/S0378437118309300

SL
R-

S1
29 2018 [356] Web of Science C 2 Mossakowska,

Katarzyna
Jarzebowicz,
Aleksander

A Survey Investigating the Influence of
Business Analysis Techniques on
Software Quality Characteristics

https://link.springer.com/chapter/10.1007/978-3-
319-65208-5_10

SL
R-

S1
30

2019 [77] Exploratory
review

C 0 S. Juneja
A. Juneja
R. Anand

Reliability Modeling for Embedded
System Environment compared to
available Software Reliability Growth
Models

https://ieeexplore.ieee.org/document/8776814

SL
R-

S1
31

2019 [357] IEEE Xplore C 12 P. Nistala
K. V. Nori
R. Reddy

Software Quality Models: A Systematic
Mapping Study

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=8812848

SL
R-

S1
32 2019 [358] IEEE Xplore C 3 N. Condori-Fernandez

P. Lago
Towards a Software Sustainability-
Quality Model: Insights from a Multi-
Case Study

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=8877084

SL
R-

S1
33

2019 [359] Scopus J 4 Arcos-Medina G.
Mauricio D.

Aspects of software quality applied to
the process of agile software
development: a systematic literature
review

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85074445827&doi=10.1007%2fs13198-019-
00840-
7&partnerID=40&md5=3a8c86a837f49472a44dc60b
848013e9

SL
R-

S1
34

2019 [193] Scopus J 6 Yan M.
Xia X.
Zhang X.
Xu L.
Yang D.
Li S.

Software quality assessment model: a
systematic mapping study

https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85069895120&doi=10.1007%2fs11432-018-
9608-
3&partnerID=40&md5=a2fbcdb0b67be249834e1965
8827f8c7

SL
R-

S1
35

2019 [205] Web of Science J 6 Gezici, Bahar
Tarhan, Ayca
Chouseinoglou,
Oumout

Internal and external quality in the
evolution of mobile software: An
exploratory study in open-source market

https://www.sciencedirect.com/science/article/abs/
pii/S0950584918301290

SL
R-

S1
36

2019 [94] Manual search C 1 S. Motogna
D. Lupsa
L. Ciuciu

A NLP Approach to Software Quality
Models Evaluation

https://link.springer.com/chapter/10.1007/978-3-
030-11683-5_24

TABLE 46 - MAIN RAW RESULTS FROM THE SYSTEMATIC LITERATURE REVIEW

Id Type of studies Classification criteria
Context:

Industry vs
academic

Domain: medical,
socio -eco

Main Quality focus (CQML):
defects, maturity, general,

functionality
SW domain (object of interest)

SL
R-

S0
1 Survey about models and metrics

for quality assessment
quality characteristics
and metrics

academic not defined reliability software

SL
R-

S0
2

Improvement of neural network
QM

average absolute error
(i.e., predict vs get)

industry &
academic

not defined reliability, fault prediction operating system

SL
R-

S0
3

Survey about models and metrics
for reuse metrics and models

purpose / scope industry &
academic

not defined reuse, maturity, cost, failure
(cost benefit analysis, maturity,
amount of reuse, failure models
analysis, reusability assessment,
reuse library metrics)

software

Annexes

263 | P a g e

SL
R-

S0
4

Investigation on software
evolution & reuse impact on
quality

quality model result:
w/ and w/o reuse

industry &
academic

telecommunication reuse, maintenance telecommunication

SL
R-

S0
5

survey about quality and quality
model

quality characteristics academic not defined quality in general software

SL
R-

S0
6

survey about challenges main description industry information
technology (IT)

quality in general information system

SL
R-

S0
7

creation of new model main description industry &
academic

accounting and
commercial
management

maintenance, cost accounting and commercial
management

SL
R-

S0
8

creation of new model product and process
metrics

industry &
academic

telecommunication reliability, fault prediction telecommunication

SL
R-

S0
9

creation of new model none industry not defined cost, defect software

SL
R-

S1
0

creation of new model Statistical approach
(i.e. construction
method or formula)

industry &
academic

telecommunication reliability, fault prediction telecommunication

SL
R-

S1
1

creation of new model quality characteristics
and attributes

academic university usability, reliability, functionality,
efficiency

website

SL
R-

S1
2

creation of new model Statistical approach
(i.e. construction
method or formula)

academic telecommunication fault prediction telecommunication

SL
R-

S1
3

Exploratory study purpose / scope academic not defined user perception website

SL
R-

S1
4

Survey on quality models role in
business process reengineering

Statistical approach
(i.e. construction
method or formula)

industry &
academic

telecommunication reliability, cost, accuracy, return on
investment

telecommunication

SL
R-

S1
5

Quality model construction and
development methodology

purpose / scope academic not defined safety information system, website

SL
R-

S1
6

Survey on quality from different
point of view

link to maturity and
reliability characteristic

academic not defined reliability, maturity, maintainability software

SL
R-

S1
7

Empirical study of quality models
in OO systems

detailed description,
formalism, statistical /
implicit method, model
evaluation, dependent
& independent
variables, benefits vs
limitations

academic object-oriented
systems

reliability, maintainability, fault
prediction

object-oriented software

SL
R-

S1
8

creation of new model quality characteristics
and sub-characteristics

industry commercial business functionality, usability, efficiency business web portal
development environment

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

264 | P a g e

SL
R-

S1
9

Comparative evaluation quality model result academic telecommunication reliability telecommunication, wireless

SL
R-

S2
0

Improvement of genetic
programming models for QM

Statistical approach
(i.e. construction
method or formula)

academic telecommunication reliability, fault prediction telecommunication

SL
R-

S2
1

creation of new model purpose / scope academic telecommunication certification, process Commercial-Off-The-Shelf
(COTS), telecommunication

SL
R-

S2
2

creation of new model structure, quality
characteristics and
sub-characteristics,
and metrics

industry &
academic

not defined quality in general software

SL
R-

S2
3

creation of new model characteristics and
limitations

academic not defined global quality (maintainability,
usability, cost/benefit, security,
reliability, timeliness, correctness),
local quality

software

SL
R-

S2
4

creation of new model type of model
(hierarchical vs
relational)

academic not defined safety, risk, quality hazard e-commerce

SL
R-

S2
5

comparison of quality models benefits vs limitations,
main characteristics

academic not defined general quality, process software

SL
R-

S2
6

Study of standard quality models description, metrics academic not defined quality standard, reliability software

SL
R-

S2
7

creation of new model quality model result academic not defined complexity, reliability, cost information system

SL
R-

S2
8

Improvement of quality model
metrics

metrics academic not defined usability, cost web system

SL
R-

S2
9

creation of new model Statistical approach
(i.e. construction
method or formula)

industry &
academic

military reliability, fault prediction telecommunication

SL
R-

S3
0

creation of new model characteristics and
limitations

academic government,
aeronautic, space

functionality, reliability, usability,
efficiency, maintainability,
manageability

COTS

SL
R-

S3
1

creation of new model characteristics academic not defined reliability, surface(literal) &
conceptual understandability

requirements

SL
R-

S3
2

Study between some quality
model metrics

metric results academic not defined stability software developed iteratively
/ agile

SL
R-

S3
3

Predictive model evaluation Statistical approach
(i.e. construction
method or formula)
and evaluation result

academic aeronautic, space fault prediction, performance software

SL
R-

S3
4

creation of new model quality characteristics academic not defined maintainability, reliability,
supportability

software architecture, self-
healing system

Annexes

265 | P a g e

SL
R-

S3
5

creation of new model metrics result academic air traffic
management

maintainability software

SL
R-

S3
6

creation of new model description academic not defined flexibility, complexity software

SL
R-

S3
7

creation of new model quality characteristics academic not defined quality in general software

SL
R-

S3
8

creation of new model quality characteristics academic international
web/online course

sharing quality information sharing system,
website

SL
R-

S3
9

creation of new model quality characteristics academic not defined functionality, usability,
maintainability

Free/Libre open source
software

SL
R-

S4
0

Tailoring of quality model scope industry &
academic

application
performance
management

evolution, maintainability,
reliability

software

SL
R-

S4
1

comparison of quality models evolvability sub-
characteristic

industry &
academic

industrial systems evolvability software

SL
R-

S4
2

survey on quality models in
practice

interviewee results industry &
academic

software
development

quality in general software

SL
R-

S4
3

creation of new model characteristics vs
object-oriented
patterns

academic not defined design (expandability, simplicity,
reusability), implementation
(learnability, understandability,
modularity), runtime (generality,
modularity at runtime, scalability,
robustness)

object-oriented software

SL
R-

S4
4

comparison of quality models Purpose, quality focus,
viewpoint, quality
factors, validation
factors, relationships
(quantitative &
qualitative)

academic not defined defect, maturity, effectiveness,
reliability, quality in general

software

SL
R-

S4
5

creation of new model description, type of
models, practice and
impact on quality
goals, tool,
demo/empirical
approach

industry &
academic

not defined correctness, completeness,
consistency, comprehensibility,
confinement, changeability

model-based software
development

SL
R-

S4
6

creation of new model characteristic,
limitations

academic product lines, IT
infrastructure

evolvability software

SL
R-

S4
7

creation of new model perception,
interpretation, survey
to map quality
characteristics / sub-
characteristics with
conceptual quality
characteristics/sub-
characteristics
(semantic, pragmatic,
syntactic quality)

academic naval aeronautical
and astronautical

reliability, conceptual model qualitysoftware

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

266 | P a g e

SL
R-

S4
8

creation of new model limitation against
directive to compute
aggregate indices
(from metrics and
quality characteristics)

industry IT systems quality in general software

SL
R-

S4
9

comparison of quality models statistical comparison
of quality model
application against
same set of software
systems

academic not defined maintainability, correctness open source software

SL
R-

S5
0

comparison of quality models benefits vs limitations
from experimental use,
main characteristics

academic not defined functionality, usability, general
quality

Free/Libre open source
software, web-client

SL
R-

S5
1

Method to customize quality
model

purpose / scope,
description

academic Software Factory
Data
Warehouse

general quality, process software

SL
R-

S5
2

Method to customize quality
model

Scope, purpose,
viewpoint, focus,
context

academic not defined perceived consistency, perceived
appropriateness, perceived
efficiency, completeness,
correctness, efficiency

software

SL
R-

S5
3

comparison of quality models characteristics and
overall weighted sum
based on those
characteristics (weight
set by experts)

academic not defined quality in general software

SL
R-

S5
4

creation of new model Check point and
threshold purpose

industry not defined quality in general Ada software

SL
R-

S5
5

creation of new model Operationalization
limitations between
quality attributes and
measurements

academic not defined quality in general java software, open source

SL
R-

S5
6

creation of new model Description academic not defined quality in general web-based applications

SL
R-

S5
7

Systematic review on quality
attributes and metrics

Against ISO 25010
quality characteristics
and ISO 9126 metrics

academic not defined quality in general software product lines

SL
R-

S5
8

creation of new model purpose, scope,
characteristics

academic not defined internal and external quality,
quality in use

web [2.0] sites

SL
R-

S5
9

creation of new model description, scope,
purpose, limitations
against embedded
systems

industry &
academic

embedded systems quality in general embedded systems software

SL
R-

S6
0

creation of new model Mapping to
International Software
Benchmarking
Standards Group
(ISBSG) data collection
questionnaires

academic software engineering functionality, reliability,
maintainability, satisfaction,
productivity

software

SL
R-

S6
1

Study of benefit to use quality
model

Scope, quality
characteristics

industry &
academic

traffic control system structuredness, traceability,
productivity, maintainability

software

SL
R-

S6
2

Study of architecture patterns
impact on quality attributes

scope academic not defined performance, dependability, costs,
security, usability, quality of use

Service-Oriented Architecture
(SOA), service-based
application

Annexes

267 | P a g e

SL
R-

S6
3

creation of new model description academic Communication
systems

functionality, reliability, efficiency,
usability, portability, hardware
standard

embedded systems software

SL
R-

S6
4

survey on development of
maturity models

description academic not defined process software

SL
R-

S6
5

survey on quality characteristic
importance for quality model

coverage
completeness of
quality characteristics,
sub-characteristics

academic E-type systems
(evolutionary)

quality in general E-type software (evolutionary)

SL
R-

S6
6

comparison of quality models description, quality
characteristics and
structure

academic not defined quality in general software

SL
R-

S6
7

comparison of quality models category (basic,
tailored), challenges
and issues

academic not defined quality in general component based software
development

SL
R-

S6
8

Survey on quality models and
quality attributes

scope, quality
characteristics, level of
evidences

academic embedded systems quality in general embedded systems software

SL
R-

S6
9

Survey on service quality
description (i.e., includes quality
model as one mean of
description)

description, scope,
completeness of
metrics and details,
formalism, association
with assessment
guidelines

academic web-based services quality of services software service, software-
support (i.e., infrastructural)
service

SL
R-

S7
0

comparison of quality models description, quality
characteristics and
structure

academic not defined product quality, process quality software

SL
R-

S7
1

survey on sustainability metrics metrics type, quality
characteristics

academic not defined sustainability green software

SL
R-

S7
2

creation of new model description, limitations industry &
academic

university community activity,
maintainability, reliability, release
activity

open source, web application,
software repository

SL
R-

S7
3

creation of new model impact on metrics academic software
crowdsourcing
platform

efficiency, cost, platform quality
factor, project quality project

crowdsourcing-based software

SL
R-

S7
4

Survey on quality model metrics
normalization impact

relationship with
metrics to build quality
model

industry &
academic

telecom
infrastructure, games,
hydraulic control

quality in general software

SL
R-

S7
5

Survey on quality model for
Legacy Information System
assessment

description,
scope/purpose,
characteristics

academic Legacy Information
Systems (LIS)

quality in general information systems software

SL
R-

S7
6

creation of new model difference, limitations
against a specific
quality model

industry &
academic

IT systems maintainability C# software, IT systems
software

SL
R-

S7
7

comparison of quality models benefits vs limitations,
main characteristics,
quality model origin

academic not defined quality in general open source software

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

268 | P a g e

SL
R-

S7
8

creation of a reuse model purpose, scope,
description

academic not defined quality in general, reuse software

SL
R-

S7
9

classification of program analysis
rules into quality model

scope, origin or use of
previous quality model

industry Industry, Healthcare,
Energy, Infrastructure
and Cities
sectors

internal software quality software code

SL
R-

S8
0

Statistical analysis of metrics
interactions in quality model

purpose, scope,
relationship between
characteristics and
metrics to build quality
model

academic not defined quality in general software

SL
R-

S8
1

comparison of quality models complete description,
presence of quality
characteristics

academic not defined product quality, process quality software

SL
R-

S8
2

Systematic mapping study on
software product quality
evaluation

scope, approach, origin
of previous quality
model

academic not defined product quality, process quality software

SL
R-

S8
3

creation of new model structure, approach,
limitations,
characteristics

academic Information Systems,
Web-based
information systems

quality in general software architecture

SL
R-

S8
4

creation of new model purpose, scope,
description,
characteristics

academic b2c, mobile
commerce
application

quality in general mobile software applications

SL
R-

S8
5

creation of new model purpose, scope,
approach, limitations,
characteristics

academic Scientific computing
infrastructures

reliability distributed software

SL
R-

S8
6

survey on quality models for
websites against ISO 9126 quality
characteristics

quality characteristics
mapping against ISO
9126 quality
characteristics

academic not defined quality in general websites

SL
R-

S8
7

survey on software selection
based on quality model

quality characteristics academic government
organization, IT
systems

system quality, information quality
and service quality.

open source software

SL
R-

S8
8

survey on complexity and
completeness quality model
evolution against ISO 25010
quality characteristics

quality characteristics,
specific metrics relying
on characteristics
presence aggregation

academic not defined quality in general software

SL
R-

S8
9

survey on software product
quality evolution and perspective

description, purpose,
perspective /
viewpoint,
measurement

academic not defined quality in general software

SL
R-

S9
0

Systematic review on quality
models

purpose, structure,
quality model origin,
quality characteristics,
completeness of
quality model
definition

academic not defined quality of services websites, web-portal, services

SL
R-

S9
1

creation of new model description, quality
characteristics

academic not defined usability software systems

SL
R-

S9
2

comparison of quality models description,
limitations, quality
characteristics

academic not defined quality in general software

Annexes

269 | P a g e

SL
R-

S9
3

comparison of quality models purpose, scope,
metrics,
characteristics, quality
dimensions, quality
model origin

academic government quality in use, quality of services websites, web-portal, services

SL
R-

S9
4

comparison of quality models and
consolidation of quality
characteristic definition

description, scope,
characteristics, quality
model type between
basic, tailored and
open source

academic not defined quality in general software

SL
R-

S9
5

Systematic review on quality
characteristics, creation of new
quality model

quality characteristics
for systems of systems,
belonging to ISO 25010

industry &
academic

systems of systems quality in general software

SL
R-

S9
6

comparison of quality models description,
limitations, quality
characteristics

academic not defined quality in general software component

SL
R-

S9
7

creation of new model purpose / scope,
characteristics

academic industry, nuclear
facilities, flight
control system

maintainability software systems

SL
R-

S9
8

creation of new model most well-known
quality model,
maintainability sub-
characteristics

academic web server maintainability open-source, software

SL
R-

S9
9

comparison / evaluation of quality
models

quality characteristics,
specific metrics relying
on characteristics
presence aggregation
for greenness and
reliability
characteristics

academic not defined greenness, reliability software

SL
R-

S1
00

 survey on software product
quality evolution and perspective

description, purpose,
stakeholder,
perspective /
viewpoint,
measurement

academic not defined quality in general software

SL
R-

S1
01

 Analysis of quality model use most well-known
quality model

academic small IT quality in general IT software

SL
R-

S1
02

 Study of model libraries evolution purpose, scope academic not defined syntactic, semantic, pragmatic,
emotional

UML model libraries for
software

SL
R-

S1
03

 creation of new model description, quality
characteristics with
regards to usability

academic not defined usability software

SL
R-

S1
04

creation of new model Quality model
operationalization:
support of tool,
automation, and
reconfiguration

academic Open source project analysis and comparison open source software

SL
R-

S1
05

 creation of new model scope, quality in use
quality characteristics

academic not defined quality in use Free / Libre and Open Source
Software
(FLOSS)

SL
R-

S1
06

 Mapping against maturity process
quality model

process area academic IT systems,
government

process software

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

270 | P a g e

SL
R-

S1
07

 Study of quality models for impact
analysis

Approach (i.e.,
quantification
method), quality
characteristics

academic software product line maturity code cloning in object-oriented
software

SL
R-

S1
08

 Survey on machine learning
quality models

Description, approach
/ modeling method

academic not defined quality prediction, reliability faut-
prediction

software

SL
R-

S1
09

comparison / evaluation of quality
models

quality characteristics,
specific metrics relying
on characteristics
presence aggregation
for greenness and
reliability
characteristics

academic Green IT greenness, reliability IT software, service

SL
R-

S1
10

 Exploratory study of measure
against feature models

description, quality
characteristics related
to maintainability

academic software product line maintainability, variability feature model, model based
designed

SL
R-

S1
11

Systematic literature review on
quality model related to open-
source software

scope, purpose, quality
characteristics
mapping against ISO
25010, approach /
modeling method

academic not defined quality in general open source software (OSS)

SL
R-

S1
12

Systematic mapping study on
metrics and statistical techniques
used for internal quality

brief description (title,
author, year, citation),
purpose, quality
characteristics
mapping against ISO
25010, approach /
modeling method

academic not defined internal quality object-oriented software

SL
R-

S1
13

 Survey on software quality
attributes

description, quality
characteristics

academic not defined quality in general web-based application (WBA)

SL
R-

S1
14

 comparison / evaluation of quality
models

description,
comparison of quality
model results against
real use-case

industry &
academic

sustainment
management systems

maintainability, reliability, security open source software,
commercial software in C#

SL
R-

S1
15

 comparison / evaluation of
software quality

description of two ISO
9126-based
framework, results
against real use-case

academic mobile device, mobile
network

product quality, quality in use,
quality of service

mobile application

SL
R-

S1
16

Systematic mapping of software
product quality assessment
models

most frequent
occurrences of quality
characteristics,
assessment / validation
approach quality
model method, tool

academic not defined quality in general software

SL
R-

S1
17

Systematic mapping of software
quality measurements

Origin model (ISO
9126, ISO 25010,
McCall, combined),
Approach (i.e.,
quantification /
evaluation method),
quality characteristics

academic business of
information and
technology

quality in general software

SL
R-

S1
18

 creation of new model description, purpose,
quality characteristics,

academic ambient assisted
living (AAL) system

quality in general AAL software, embedded
software

Annexes

271 | P a g e

SL
R-

S1
19

survey on quality in model-driven
engineering

quality definition
categories (e.g., quality
model for MDWE,
framework, quality in
model transformation),
author references

academic not defined quality in general model-driven engineering

SL
R-

S1
20

 Survey on quality models and
quality attributes, and creation of
new quality model

description, purpose,
scope, type, quality
characteristic mapping

academic not defined quality in general embedded software

SL
R-

S1
21

 creation of new model description, scope,
quality characteristics

industry &
academic

Information Systems,
financial sector

general quality, process information systems software

SL
R-

S1
22

 Comparison of quality models,
creation of new quality model

description, quality
characteristics,
assessment result
against use case

academic e-commerce quality in general websites, web-portal

SL
R-

S1
23

 creation of new model architectural
evaluation types,
quality characteristics

academic systems of systems quality in general, performance,
robustness

architecture, design

SL
R-

S1
24

 creation of new model description,
limitations, quality
characteristics

academic serious game,
education,
videogames

quality in general programmed serious game

SL
R-

S1
25

creation of new model Occurrence of ISO
25010 quality
characteristic
occurrences in IT
technologies

academic IT, service-based
systems (internet of
things, green IT,
virtual reality,
augmented reality,
artificial intelligence,
cloud computing,
blockchain, web)

 IT software, service

SL
R-

S1
26

 comparison of maintainability
index quality models

description, approach /
techniques method,
metrics, dataset used
in quality model
elaboration

academic not defined maintainability object-oriented software

SL
R-

S1
27

 comparison of quality models most well-known /
cited quality model for
software component,
citation occurrence
total and year-wise

academic not defined quality in general software component,
component model-based
software

SL
R-

S1
28

 survey on quality models of e-
learning systems

quality indicator
frequency, perspective

academic e-learning systems quality in general e-learning software, website

SL
R-

S1
29

Survey on influence of
requirement engineering &
business analysis on quality
characteristics

quality characteristics,
influence of
requirement
engineering & business
analysis on quality
characteristics

academic Requirement
Engineering (RE),
business analysis (BA)

quality in general software

SL
R-

S1
30

creation of new model comparison of results
from MATLAB
modeling of quality
models

academic embedded systems,
systems (aircrafts,
automobile, nuclear
power plants and
various robotic
medical application)

reliability, reliability growth model embedded software, software

SL
R-

S1
31

 Systematic mapping study on
quality model

description, quality
goal, characteristics,
scope / coverage,
meta-model element

industry not defined quality in general, meta-model software

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

272 | P a g e

SL
R-

S1
32

 creation of new model scope, purpose, brief
description

academic software-intensive
systems

sustainability software

SL
R-

S1
33

 Systematic review of software
quality aspects with regards to
agile

description, quality
characteristics / sub-
characteristics, link
with agile software
development

academic not defined quality in general agile software development

SL
R-

S1
34

Systematic mapping of software
product quality assessment
models

most frequent
occurrences of metrics,
quality characteristics,
aggregations and
evaluation method,
tools

academic not defined quality in general software

SL
R-

S1
35

 Study on quality in software
evolution and creation of new
model

description, scope,
quality characteristics
linked to evolution of
quality

academic mobile applications,
open-source market

success, evolution, cohesion,
(in)stability, portability,
understandability

mobile software, open-source
software (OSS), object-oriented
software

SL
R-

S1
36

comparison / evaluation of quality
models

Natural language
processing on quality
characteristics against
ISO 25010 quality
characteristics

academic not defined performance efficiency, reliability,
portability, usability,
maintainability, compatibility,
security

software

TABLE 47 - MAPPING SYSTEMATIC LITERATURE REVIEW STUDIES WITH QUALITY MODELS

Study Id Number of
quality model

Quality model names

SLR-S01 11 - Rubey - Hartwick
- Shooman
- Jelinski - Moranda
- Schick - Wolverton
- Littlewood - Verall
- Musa
- Mohanty - Adamowicz
- Funami - Hastead
- Klobert
- Mc Call (FCM)
- Schneidewind77

SLR-S02 2 - Khoshgoftaar - Pandya - More
- Khoshgoftaar - Lanning - Pandya

SLR-S03 7 - Card - Agresti
- Gaffney - Durek
- Agresti - Evanco
- Process Maturity Framework
- CMM v1.0 (SEI)
- Koltun - Hudson
- SPC Reuse Capability

SLR-S04 8 - Henry - Kafura
- Card - Agresti
- Shepperd
- Henry - Wake
- Zage
- Khoshgoftaar - Lanning - Pandya
- Khoshgoftaar - Lanning
- Khoshgoftaar - Allen - Kalaichelvan - Goel

Annexes

273 | P a g e

SLR-S05 10 Product
 - Mc Call (FCM)
 - Basili (GQM)
 - Evans - Marciniak
 - Gilb
 - ISO 9126
 - Khoshgoftaar - Lanning
 - Dromey
Process
 - Malcolm Baldrige Criteria for Performance Excellence
 - ISO 9001
 - CMM v1.1

SLR-S06 9 Product
 - Boehm78
 - Basili (GQM)
 - Garvin Eight dimension of Quality
 - FURPS
Process
 - ISO 9001
 - CMM v1.1
 - SPICE
Organization
 - Malcolm Baldrige Criteria for Performance Excellence
 - EFQM Excellence

SLR-S07 2 - Wake-Henry
- Granja-Alvarez - BarrancoGarcia Maintenance Cost

SLR-S08 2 - EMERALD Test Targeting
- Khoshgoftaar - Allen - Naik - Jones- Hudepohl

SLR-S09 1 - SDCH

SLR-S10 15 - Henry - Kafura
- Selby - Porter
- Briand - Basili - Thomas
- EMERALD Test Targeting
- Evanco - Agresti
- Khoshgoftaar - Lanning
- Schneidewind95
- Troster - Tian
- Khoshgoftaar - Allen - Kalaichelvan - Goel
- Basili - Briand - Melo (QCM)
- Ebert
- Gokhale - Lyu
- Khoshgoftaar - Allen - Naik - Jones- Hudepohl
- Schneidewind98
- Jones - Hudepohl - Khoshgoftaar - Allen

SLR-S11 5 - ISO 9126
- Dujmovic LSP
- Dujmovic - Bayucan
- WAMMI
- Website QEM

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

274 | P a g e

SLR-S12 22 - Selby - Porter
- Briand - Brasili- Hetmanski
- EMERALD Test Targeting
- Khoshgoftaar - Lanning
- Schneidewind95
- Troster - Tian
- Khoshgoftaar - Allen - Kalaichelvan - Goel
- Basili - Briand - Melo
- Ebert
- Gokhale - Lyu
- Takahashi - Muraoka - Nakamura
- Schneidewind97
- Khoshgoftaar - Allen - Naik - Jones- Hudepohl
- Khoshgoftaar - Allen98
- Ohlsson - Zhao - Helander
- Khoshgoftaar - Allen - Jones- Hudepohl - 99a
- Jones - Hudepohl - Khoshgoftaar - Allen
- Khoshgoftaar - Allen99
- Khoshgoftaar - Allen - Jones- Hudepohl - 99b
- Khoshgoftaar - Allen - Yuan - Jones - Huderpohl
- Khoshgoftaar - Allen - Jones- Hudepohl - 2000
- Khoshgoftaar - Shan - Allen

SLR-S13 10 - Kano
- SERVQUAL
- SERVQUAL91
- USISF - SERVQUAL
- Levi - Conrad
- WebMAC
- Gehrken – Turban
- Von Dran - Zhang - Small
- Zhang et al. Website Quality Model
- Expanded Website Quality Model

SLR-S14 4 - EMERALD Test Targeting
- Khoshgoftaar - Allen- Halstead - Trio - Flass
- Khoshgoftaar - Allen98
- Khoshgoftaar - Allen2000

SLR-S15 10 - Mc Call (FCM)
- Boehm78
- Constructive QUAlity MOdel (COQUAMO)
- SOLE
- ISO 9126
- Perry
- Gillies
- Dromey
- Website QEM
- Quality Model for Object-Oriented Design (QMOOD)
- HASARD model

SLR-S16 8 - Musa
- Schneidewind77
- Schneidewind95
- Schneidewind97
- Schneidewind98
- CMM v1.0
- CMM v1.1
- Khoshgoftaar - Allen - Kalaichelvan - Goel

Annexes

275 | P a g e

SLR-S17 13 - Brito e Abreu - Melo MOOD
- Basili - Briand - Melo (QCM)
- Briand - Wüst - Daly - Porter
- MARS model
- Briand - Wüst - Lounis
- El Emam, - Melo - Machado
- Benlarbi - Melo
- El Emam - Benlarbi - Goel - Rai 01
- El Emam - Benlarbi - Goel - Rai 99
- El Emam - Benlarbi - Goel - Melo - Lounis - Rai
- Glasberg - El Emam - Melo - Madhavji
- Harrison - Samaraweera - Dobie - Lewis
- Tang - Kao - Chen

SLR-S18 2 - ISO 9126
- Business Portal Development Environment (PBDE) quality model

SLR-S19 2 - EMERALD Test Targeting
- Khoshgoftaar - Allen - Jones- Hudepohl - 99a

SLR-S20 8 - EMERALD Test Targeting
- Ohlsson - Zhao - Helander
- Liu - Khoshgoftaar
- Khoshgoftaar - Allen - Deng 2002
- Khoshgoftaar - Cukic - Seliya 2002
- Pizzi - Summers - Pedrycz
- MARS model
- Khoshgoftaar - Seliya - Liu

SLR-S21 8 - CMM v1.0
- ISO 9126
- CMM v1.1
- SPICE
- INSTAC model
- MUSiC
- Modeling & Simulation Application (MSA) certification model
- Certification model

SLR-S22 8 - Boehm73
- Mc Call (FCM or RADC)
- Boehm78
- ISO 9126
- QUES model (RADC)
- Dromey
- MITRE Software Quality Assessment Exercise (SQAE)
- AFOTEC Maintainability
- Enhanced SQAE

SLR-S23 7 - Boehm78
- Gillies
- Dromey
- Garvin Eight dimension of Quality
- Constructive QUAlity MOdel (COQUAMO)
- ISO 9126
- ADEQUATE

SLR-S24 8 - Mc Call (FCM or RADC)
- Boehm78
- ISO 9126
- Perry
- Gillies
- Dromey
- Quality Model for Object-Oriented Design (QMOOD)
- HASARD model

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

276 | P a g e

SLR-S25 8 - Basili (GQM)
- ISO 9001
- ISO 9126
- CMM v1.1
- SPICE
- GQIM - goal-driven model
- Software Quality Model for Small Organizations (SQIMSO)
- Self-diagnosis Herrera - Ramirez model

SLR-S26 7 - Jelinski - Moranda
- Littlewood - Verall
- Goel - Okumoto (NHPP)
- Langberg - Singpurwalla
- Nayak
- ISO 9126
(-ISO 25010)

SLR-S27 4 - Intranet Application Quality Model
- So - Cha - Kwon
- Quah - Thwin
- Stack-based Markov (SBM) Model

SLR-S28 2 - Ramler - Weippl - Winterer - Schwinger -Altmann
- QUINT2

SLR-S29 9 - Shen - Yu - Thebaut -Paulsen
- Khoshgoftaar - Munson
- Henry - Wake
- Khoshgoftaar - Pandya - More
- Khoshgoftaar - Lanning - Pandya
- Khoshgoftaar - Szabo94
- Khoshgoftaar - Allen2000
- Poisson Regression Model Fault

SLR-S30 7 - McCall
- Boehm78
- FURPS
- Dromey
- ISO 9126
- Software quality certification triangle
- Rawashdeh- Matalkah

SLR-S31 4 - SATC model
- Natural Language Software Requirements
- Specification (NLSRS) quality model
- Ormandjieva - Hussain - Kosseim

SLR-S32 4 - Mc Call (FCM or RADC)
- ISO 9126
- Dromey
- Quality Model for Object-Oriented Design (QMOOD)

SLR-S33 6 - Basili - Briand - Melo (QCM)
- Gokhale - Lyu
- Khoshgoftaar - Lanning
- Khoshgoftaar - Ganesan - Allen - Ross - Munikoti - Goel - Nandi
- Khoshgoftaar - Seliya
- Guo - Ma - Cukic - Singh

SLR-S34 7 - ISO 9126
- Dromey
- Bowen - Post - Tsai - Presson - Schmidt
- Bowen - Wigle - Tsai
- SQUID
- Losavio - Chirinos - Perez
- Neti - Muller

Annexes

277 | P a g e

SLR-S35 4 - McCall
- Dromey
- ISO 9126
- Lincke - Lundberg - Löwe

SLR-S36 5 - McCall
- Boehm78
- Perry
- ISO 9126
- 2D Software Quality Model Zhang - Li - Gao

SLR-S37 10 -McCall
- Boehm78
- Basili (GQM)
- SQUID
- Dromey
- Gilb
- FURPS
- ISO 9126
- CUPRIMDSO
- FUPRIMDSO

SLR-S38 1 -Feng - Liu

SLR-S39 5 -Basili (GQM)
- Dromey
- ISO 9126
- Systemic Quality Model
- MOSCA

SLR-S40 12 - Boehm76
- McCall
- CMM v1.0 (SEI)
- CMMi
- CM3 maturity model
- SMmm
- Basili - Briand - Melo (QCM)
- INSTAC model
- Evans - Marciniak
- Rawashdeh- Matalkah
- Lee - Lee
- ISO 25010 (early version)

SLR-S41 7 - McCall
- Boehm78
- Dromey
- FURPS
- ISO 9126
- Systemic Quality Model
- Rawashdeh- Matalkah

SLR-S42 2 - ISO 9001
- ISO 9126

SLR-S43 2 - Quality Model for Object-Oriented Design (QMOOD)
- PQMOD

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

278 | P a g e

SLR-S44 25 - CMMi
- SPICE (ISO / IEC 15504)
- SQUID
- ISO 9126
- Basili - Briand - Melo (QCM)
- GEneric, multilayered and customisable QUAlity MOdel (GEQUAMO)
- COnstructive QUALity MOdel (COQUALMO)
- Hybrid Defect Content and Effectiveness Early Prediction (HyDEEP)
- Orthogonal Defect Classification (ODC)
- Defect Flow Model (DFM)
- Experience-based NFR quality model
- Mills
- Eick - Loader - Long - Votta - Wiel Capture-Recapture
- Eick - Loader - Wiel - Votta Capture-Recapture
- Wiel - Votta Capture-Recapture
- Wohlin - Runeson - Brantestam Capture-Recapture
- Ebrahimi Capture-Recapture
- Briand - Emam - Freimut Capture-Recapture
- Runeson - Wohlin Capture-Recapture
- Petersson - Wohlin Capture-Recapture99
- Petersson - Wohlin Capture-Recapture00
- Thelin - Runeson Capture-Recapture
- Biffl - Grossmann Inspection-Reinspection
- Miller - Macdonald - Ferguson Capture-Recapture
- Padberg Cpature-Recapture

SLR-S45 1 - Mohagheghi - Dehlen -Neple

SLR-S46 6 - ISO 9126
- McCall
- Basili (GQM)
- Prometheus
- FMSQE
- Brcina - Bode -Riebisch evolvability

SLR-S47 2 - ISO 25010
- Conceptual Model Quality

SLR-S48 4 - Boehm78
- ISO 9126
- ISO 25010
- Software Quality Assessment Based on Lifecycle Expectation (SQALE)

SLR-S49 7 - McCall
- ISO 9126
- Basili - Briand - Melo (QCM)
- Thwin - Quah
- van Koten - Gray
- Zhou - Leung MARS model
- Welker - Oman - Atkinson Maintainability index

SLR-S50 7 - Capability Maturity Model Integration (CMMi) v1.1
- OpenSource Maturity Model (OSMM) Cap Gemini
- OpenSource Maturity Model (OSMM) Navica
- Qualification and Selection of Open Source software (QSOS)
- Open Business Readiness Rating (OpenBRR)
- Open Business Quality Rating (Open BQR)
- QualitPso Open Source Maturity Model (OSMM)

Annexes

279 | P a g e

SLR-S51 10 - CMM v1.0 (SEI)
- Capability Maturity Model Integration (CMMi) v1.1
- ISO 9001
- Bootstrap
- SPICE (ISO / IEC 15504)
- Basili (GQM)
- GQIM - goal-driven model
- ISO 9126
- HASARD model
- Golubic quality build-in based quality model

SLR-S52 31 - McCall
- CMMi
- SPICE (ISO / IEC 15504)
- Software QUality In Development (SQUID)
- ISO 9126
- Basili (GQM)
- Basili - Briand - Melo (QCM)
- ADEQUATE
- SOLE
- GEneric, multilayered and customisable QUAlity MOdel (GEQUAMO)
- Hybrid Defect Content and Effectiveness Early Prediction (HyDEEP)
- Orthogonal Defect Classification (ODC)
- Defect Flow Model (DFM)
- Experience-based NFR quality model
- Eick - Loader - Long - Votta - Wiel Capture-Recapture
- Eick - Loader - Wiel - Votta Capture-Recapture
- Wiel - Votta Capture-Recapture
- Wohlin - Runeson - Brantestam Capture-Recapture
- Ebrahimi Capture-Recapture
- Briand - Emam - Freimut Capture-Recapture
- Runeson - Wohlin Capture-Recapture
- Petersson - Wohlin Capture-Recapture99
- Petersson - Wohlin Capture-Recapture00
- Thelin - Runeson Capture-Recapture
- Biffl - Grossmann Inspection-Reinspection
- Miller - Macdonald - Ferguson Capture-Recapture
- Padberg Cpature-Recapture
- Behkamal - Kahani - Akbari
- Original software components quality model (OSCQM)
- Benlarbi - El Emam - Goel
 - Rai- QUAMOCO

SLR-S53 11 - McCall
- Boehm78
- FURPS
- Dromey
- ISO 9126
- Rawashdeh- Matalkah
- Behkamal - Kahani - Akbari
- Software Quality STAR model
- Stefani - Xenos - Stavrinoudis
- Aspect-Oriented Software Quality Model (AOSQUAMO)
- Bertoa - Vallecillo
- Educational Software Quality Hierarchy Triandgle (ESHTri) model

SLR-S54 4 - Boehm78
- McCall
- Software Quality Assessment Based on Lifecycle Expectation (SQALE)
- Software Quality Assessment Based on Lifecycle Expectation (SQALE) ADA

SLR-S55 8 - McCall
- Boehm78
- Dromey
- Software QUality In Development (SQUID)
- ISO 25010

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

280 | P a g e

- Deissenboeck - Wagner - Pizka - Teuchert - Girard maintainability 2D
model
- Winter - Wagner - Deissenboeck usability 2D model
- Lochmann - Heinemann

SLR-S56 10 - McCall
- ISO 9126
- Dromey
- WBA quality model (WBAQM)
- Web Assessment Index (WAI)
- Signore
- Web-site Quality Evaluation Methodology (QEM) model
- 2QCV3Q
- Fuzzy Model for Software Quality Evaluation (FMSQE)
- Web-site Quality Evaluation Method (QEM) framework

SLR-S57 4 - ISO 9126
- ISO 25010
- QUINT2
- Zhang - Jarzabek - Yang

SLR-S58 16 - ISO 9126
- ISO 25010
- Web-site Quality Evaluation Methodology (QEM) model
- 2QCV3Q
- QUINT2
- Signore
- Stefani - Xenos - Stavrinoudis
- Fuzzy Model for Software Quality Evaluation (FMSQE)
- Web-site Quality Evaluation Method (QEM) framework
- Polillo
- Extended Web Assessment Method (EWAM)
- Web Application Quality Evaluation model (WAQE)
- Malak - Sahraoui - Badri - Badri Web quality model
- 2Q2U
- Quality in Use Model for Web Portals (QiUWeP)
- Polillo

Annexes

281 | P a g e

SLR-S59 33 - McCall
- Boehm78
- Dromey
- ISO 9126
- ISO 25010
- CMMi
- SPICE (ISO / IEC 15504)
- SQUID
- Basili - Briand - Melo (QCM)
- GEneric, multilayered and customisable QUAlity MOdel (GEQUAMO)
- Hybrid Defect Content and Effectiveness Early Prediction (HyDEEP)
- Orthogonal Defect Classification (ODC)
- Defect Flow Model (DFM)
- Experience-based NFR quality model
- Eick - Loader - Long - Votta - Wiel Capture-Recapture
- Eick - Loader - Wiel - Votta Capture-Recapture
- Wiel - Votta Capture-Recapture
- Wohlin - Runeson - Brantestam Capture-Recapture
- Ebrahimi Capture-Recapture
- Briand - Emam - Freimut Capture-Recapture
- Runeson - Wohlin Capture-Recapture
- Petersson - Wohlin Capture-Recapture99
- Petersson - Wohlin Capture-Recapture00
- Thelin - Runeson Capture-Recapture
- Biffl - Grossmann Inspection-Reinspection
- Miller - Macdonald - Ferguson Capture-Recapture
- Padberg Cpature-Recapture
- QUAMOCO
- Software Component Quality Model (CQM) v1.0
- Embedded software component quality model (EQM)
- Coleman - Ash - Lowther - Oman Maintainability Index
- Wagner Activity-Based Quality Model (ABQM)
- Embedded Systems software Quality Model (ESQM)

SLR-S60 3 - ISO 9126
- ISO 25010
- ISBSG quality model

SLR-S61 6 - SQUID
- ISO 9126
- ISO 25010
- Wagner Activity-Based Quality Model (ABQM)
- Service-Oriented Architecture (SOA) Design quality model
- Lochmann - Goeb Unifying Model
- QUAMOCO

SLR-S62 2 - ISO 9126
- SCube Quality Reference Model

SLR-S63 7 - Boehm76
- McCall
- ISO 9126
- Perry
- Gillies
- Dromey
- Wan-Jiang - Tian-Bo

SLR-S64 4 - CMM v1.0 (SEI)
- Capability Maturity Model Integration (CMMi) v1.1
- SPICE (ISO / IEC 15504)
- Capability Maturity Model Integration (CMMi) v1.1

SLR-S65 3 - ISO 9126
- Behkamal - Kahani - Akbari
- Portlet Quality Model (PtQM)

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

282 | P a g e

SLR-S66 13 - McCall
- Boehm76, Boehm78
- FURPS
- Dromey
- ISO 9126
- PQMOD
- Software Quality STAR model
- Aspect-Oriented Software Quality Model
(AOSQUAMO)
- SATC model
- Quality Model for Object-Oriented Design (QMOOD)
- REquirements, Aspects and Software Quality (REASQ) model
- Chang - Wu - Lin
- IEEE model for software maintenance

SLR-S67 26 - McCall
- Boehm78
- FURPS
- Dromey
- ISO 9126
- Bertoa - Vallecillo
- Prometheus
- Systemic Quality Model
- GEneric, multilayered and customisable QUAlity MOdel (GEQUAMO)
- Software Quality STAR model
- Rawashdeh- Matalkah
- Original software components quality model (OSCQM)
- Mbusi - Van Waveren
- Sharma - Kumar - Grover
- Behkamal - Kahani - Akbari
- Aspect-Oriented Software Quality Model(AOSQUAMO)
- Embedded software component quality model (EQM)
- Srivastava - Kumar
- Jamwal - Jamwal
- Bawane - Srikrishna
- Software Component Quality Model (CQM) v1.1
- Samsung s/w Component Quality evaluation Model (SCQM)
- Q'Facto 10
- Q'Facto 12
- Upadhyay - Despande - Agrawal Software Component Quality Model
(SCQM)
- AL-Badareen - Selamat - Din - Jabar - Turaev

SLR-S68 10 - McCall
- Boehm76
- ISO 25010
- Purhonen
- Samsung s/w Component Quality evaluation Model (SCQM)
- Embedded software component quality model (EQM)
- Jeong - Kim v1.0
- Jeong - Kim v1.1
- Jeong
- Ahrens - Frey - Pfeiffer - Bertram

Annexes

283 | P a g e

SLR-S69 13 - ISO 9126
- BREIN QoS ontology
- Truong - Samborski - Fahringer
- Ran
- Cappiello - Kritikos - Metzger - Parkin - Pernici - Plebani - Treiber
- Mabrouk - Georgantas - Issarny
- WSQM
- Sabata - Chatterjee - Davis - Sydir - Lawrence
- WSAF-QoS
- QoSOnt
- Web Services Modeling Ontology (WSMO) QoS
- onQoS-QL
- OWL-Q

SLR-S70 9 - McCall
- Boehm78
- Dromey
- FURPS
- ISO 9126
- ISO 25010
- CMM v1.0 (SEI)
- SPICE (ISO / IEC 15504)
- Capability Maturity Model Integration (CMMi) v1.1

SLR-S71 10 - ISO 9126
- ISO 25010
- 25010+S
- Capability Maturity Model Integration (CMMi) v1.1
- SPICE (ISO / IEC 15504)
- QualOSS
- Qualification and Selection of Open Source software (QSOS)
- OpenSource Maturity Model (OSMM) Cap Gemini
- OpenSource Maturity Model (OSMM) Navica
- Open Business Readiness Rating (OpenBRR)

SLR-S72 9 - ISO 9126
- OpenSource Maturity Model (OSMM) Cap Gemini
- Open Business Readiness Rating (OpenBRR)
- Qualification and Selection of Open Source software (QSOS)
- Stefani - Xenos
- Malak - Sahraoui - Badri - Badri Web quality model
- Benlarbi - El Emam - Goel - Rai
- SQO-OSS
- Adewumi - Omoregbe - Misra - Fernandez

SLR-S73 2 - Briand - Wüst - Daly - Porter
- Li - Xiao - Wang - Wang

SLR-S74 5 - McCall
- Basili (GQM)
- ISO 9126
- Fan - Luo - Wu - Fu
- ColumbusQM

SLR-S75 7 -ISO 9126
- ISO 25010
- Behkamal - Kahani - Akbari
- 2Q2U
- 2Q2U v2
- Quality in Use Model for Web Portals (QiUWeP)
- WebQual

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

284 | P a g e

SLR-S76 10 - ISO 9126
- ColumbusQM
- Quality Model for Object-Oriented Design (QMOOD)
- Software Quality Assessment Based on Lifecycle Expectation (SQALE)
- Technical Topic Classification (TTC) quality model
- Muthanna - Kontogiannis - Ponnambalam - Stacey
- SIG maintainability model
- Carvallo - Franch
- LaQuSo software product certification model (LSPCM)
- Hegedűs

SLR-S77 12 - McCall
- Boehm76
- Boehm78
- ISO 9126
- CMM v1.0 (SEI)
- OpenSource Maturity Model (OSMM) Cap Gemini
- OpenSource Maturity Model (OSMM) Navica
- Qualification and Selection of Open Source software (QSOS)
- QualOSS
- QualitPso Open Source Maturity Model (OSMM)
- Open Business Readiness Rating (OpenBRR)
- SQO-OSS

SLR-S78 8 - McCall
- Boehm78
- ISO 9126
- ISO 9001
- SPICE (ISO / IEC 15504)
- CMM v1.0 (SEI)
- Korean Software Process Quality Certification Model
- SERVQUAL

SLR-S79 10 - ISO 9126
- ISO 25010
- FURPS
- SATC model
- Evaluation Method for Internal Software Quality (EMISQ)
- Dynamic Analysis for Internal Software Quality (DAISQ) model
- Venkatasubramanyam, Radhika D and Nayak, Snigdha
- Quality Model for Object-Oriented Design (QMOOD)
- Qualixo model
- Software Quality Assessment Based on Lifecycle Expectation (SQALE)

SLR-S80 4 - ISO 9126
- ISO 25010
- Wagner Activity-Based Quality Model (ABQM)
- Khoshgoftaar - Seliya - Sundaresh

SLR-S81 6 - McCall
- Boehm78
- Dromey
- FURPS
- ISO 9126
- CMM v1.1

Annexes

285 | P a g e

SLR-S82 20 - McCall
- Boehm78
- Dromey
- Basili (GQM)
- ISO 9126
- ISO 25010
- QUAMOCO
- CMM v1.1
- SPICE (ISO / IEC 15504)
- ISO 9001
- Quality Model for Object-Oriented Design (QMOOD)
- Wang - Ceberio - Virani - Garcia - Cummins
- Baliyan - Kumar
- Wagner Activity-Based Quality Model (ABQM)
- Aspect-Oriented Software Quality Model
(AOSQUAMO)
- Chang - Wu - Lin
- Lee - Lee
- Briand - Wüst - Daly - Porter
- Takahashi - Muraoka - Nakamura

SLR-S83 20 - McCall
- Boehm78
- ISO 9126
- ISO 25010
- Dromey
- Quality Model for Object-Oriented Design (QMOOD)
- Service-Oriented Architecture (SOA) quality model
- SCube Quality Reference Model
- Mobile Software Quality Model
- Gillies
- Perry
- Dromey
- FURPS
- Deissenboeck - Wagner - Pizka - Teuchert - Girard maintainability 2D
model
- Wagner Activity-Based Quality Model (ABQM)
- Lochmann - Goeb Unifying Model
- QUAMOCO
- Winter - Wagner - Deissenboeck usability 2D model
- Extended Activity-Based Quality Model (ABQM)
- HASARD model

SLR-S84 10 - McCall
- Boehm78
- ISO 9126
- ISO 25010
- Basili (GQM)
- Mobile Software Quality Model
- Mobile Application Quality Model
- Hussain - Kutar
- Quality in Use Integrated Measurement (QUIM) model
- Yildiz - Bilgen - Tokdemir - Cagiltay - Erturan

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

286 | P a g e

SLR-S85 22 - Ronchieri - Canaparo - Salomoni
- Khoshgoftaar - Allen - Kalaichelvan - Goel
- Khoshgoftaar - Seliya - Liu
- Ohlsson - Zhao - Helander
- El Emam, - Melo - Machado
- Yu - Mishra
- Schneidewind97
- Briand - Brasili- Hetmanski
- Khoshgoftaar - Seliya - 03b
- Kim - Zimmermann - Whitehead Jr - Zeller
- Lincke - Lundberg - Löwe
- Zhou - Leung MARS model
- Fenton - Ohlsson
- Kanmani - Uthariaraj - Sankaranarayanan - Thambidurai
- Khoshgoftaar - Allen - Hudepohl - Aud
- Briand - Wüst - Daly - Porter
- Yuan - Khoshgoftaar - Allen - Ganesan
- Gondra
- Singh - Kannojia
- Malhotra - Jain
- Brito e Abreu - Melo MOOD
- Capability Maturity Model Integration (CMMi) v1.1

SLR-S86 18 - McCall
- Boehm78
- ISO 9126
- ISO 25010
- Signore
- QUINT2
- 2QCV3Q
- Web-site Quality Evaluation Methodology (QEM) model
- Web Q-Model
- Web Application Quality Evaluation model (WAQE)
- Dominic - Jati
- Fuzz-Web model
- Malak - Sahraoui - Badri - Badri Web quality model
- Stefani - Xenos - Stavrinoudis
- Singh - Malhotra - Gupta
- Web-Application (WA) maintainability model
- Oman - Hagemeister maintainability model
- SATC model

SLR-S87 6 - SERVQUAL
- Open Business Quality Rating (Open BQR)
- Qualification and Selection of Open Source software (QSOS)
- QualOSS
- SQO-OSS
- QualiPSo

SLR-S88 10 - McCall
- Boehm78
- Ghezzi - Jazayeri - Mandrioli
- FURPS
- IEEE model for software maintenance
- Dromey
- ISO 9126
- Quality Model for Object-Oriented Design (QMOOD)
- ISO 25010
- SATC model

SLR-S89 6 - Mc Call (FCM or RADC)
- Boehm78
- ISO 9126
- ISO 25010

Annexes

287 | P a g e

- FURPS
- FURPS+

SLR-S90 48 - ISO 9126
- ISO 25010
- SCube Quality Reference Model
- IBM
- Ran
- W3C QoS
- WSAF-QoS
- Avizienis - Laprie - Randell - Landwehr
- WebQ QoS
- SemWebQ
- Looker - Munro - Xu
- QoSOnt
- Web Services Modeling Ontology (WSMO) QoS
- Jiang - Aagesen
- Yeom - Yun - Min
- Tsesmetzis - Roussaki - Papaioannou - Anagnostou
- Garcia - Beatriz
- Truong - Samborski - Fahringer
- Ren - Chen - Chen - Song - Xiao
- Web Service Modeling Ontology (WSMO)
- Web Service Modeling Ontology (WSMO) v1.4
- Yu - Radhakrishna - Pingali - Kolluri
- Kang
- Abramowicz - Hofman - Suryn - Zyskowski
- Artaiam - Senivongse
- onQoS-QL
- BREIN QoS ontology
- Chang - Lee
- Al-Masri - Mahmoud
- Tong - Cao - Zhang - Mou
- WS-QoSOnto
- Comuzzi - Pernici
- Balfagih - Hassan
- Li - Zhou
- Reddy - Maralla - Thirumaran
- Mohanty - Ravi - Patra
- Yin - Yang - Fu - Chen
- Pan - Baik
- Zhang - Song
- Lee - Yeom
- Bocciarelli - D’Ambrogio
- Qiu - Yu
- Debnath - Martellotto - Daniele - Riesco - Montejano
- Moser - Rosenberg - Dustdar
- GESSI
- WSQM
- Phalnikar - Khutade
- Nadanam - Rajmohan

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

288 | P a g e

SLR-S91 12 - Quality in Use Integrated Measurement (QUIM) model
- Abran- Khelifi - Suryn - Seffah
- Alonso-Ríos - Vázquez-García - Mosqueira-Rey - Moret-Bonillo
- Boehm78
- Dix - Finlay - Abowd - Beale
- McCall
- FURPS
- ISO 9126
- Nielsen
- Preece - Benyon - Davies - Keller - Rogers
- Shackel
- Gupta - Ahlawat - Sagar

SLR-S92 16 - McCall
- Boehm78
- ISO 9126
- FURPS
- FURPS+
- CMM v1.0 (SEI)
- Ghezzi
- IEEE model for software maintenance
- Dromey
- SATC model
- Quality Model for Object-Oriented Design (QMOOD)
- Aspect-Oriented Software Quality Model
(AOSQUAMO)
- Sharma - Kumar - Grover
- PQMOD
- ISO 25010

SLR-S93 16 - ISO 9126
- ISO 25010
- e-Government Services (E-GSQ) model
- Communication between Agricultural Businesses and Government
(CABAG)
- SiteQual
- SERVQUAL
- E-S-SQUAL
- E-RecS-SQUAL
- Dagger - Sweeney - Johnson
- eGovQual
- Bhattacharya - Gulla - Gupta
- Chutimaskul - Funilkul - Chongsuphajaisiddhi
- Rababah - Hamtini - Harfoushi - Al-Shboul - Obiedat - Nawafleh
- Website Evaluation Questionnaire (WEQ)
- e-Government website evaluation tool (eGwet)
- Hien

SLR-S94 13 - McCall
- Boehm78
- FURPS
- ISO 9126
- ISO 25010
- Bertoa - Vallecillo
- GEneric, multilayered and customisable QUAlity MOdel (GEQUAMO)
- Software Component Quality Model (CQM) v1.1
- Rawashdeh- Matalkah
- OpenSource Maturity Model (OSMM) Cap Gemini
- Open Business Readiness Rating (OpenBRR)
- SQO-OSS
- QualOSS

Annexes

289 | P a g e

SLR-S95 16 - McCall
- Boehm78
- FURPS
- Dromey
- ISO 9126
- ISO 25010
- Rawashdeh- Matalkah
- Behkamal - Kahani - Akbari
- Software Quality STAR model
- Stefani - Xenos - Stavrinoudis
- Aspect-Oriented Software Quality Model
(AOSQUAMO)
- Bertoa - Vallecillo
- Educational Software Quality Hierarchy Triandgle (ESHTri) model"
- Software QUality In Development (SQUID)
- Bianchi - Santos - Felizardo

SLR-S96 5 - ISO 9126
- ISO 25010
- Software Component Quality Model (CQM) v1.0
- Software Component Quality Model (CQM) v1.1
- Bertoa - Vallecillo

SLR-S97 8 - ISO 9126
- ISO 25010
- ColumbusQM
- Hegedűs
- Software Quality Assessment Based on Lifecycle Expectation (SQALE)
- Software QUALity Enhancement (SQUALE)
- SIG maintainability model
- QUAMOCO

SLR-S98 10 - McCall
- Boehm78
- Dromey
- ISO 9126
- ISO 25010
- Quality Model for Object-Oriented Design (QMOOD)
- SIG maintainability model
- SQO-OSS
- Systemic Quality Model
- Software Quality Model for Maintainability Analysis (SQMMA)

SLR-S99 9 - McCall
- Boehm78
- Ghezzi - Jazayeri - Mandrioli
- FURPS
- IEEE model for software maintenance
- Dromey
- ISO 9126
- Quality Model for Object-Oriented Design (QMOOD)
- ISO 25010

SLR-S100 7 - Mc Call (FCM or RADC)
- Boehm78
- ISO 9126
- ISO 25010
- FURPS
- FURPS+
- Basili (GQM)

SLR-S101 5 - McCall
- Boehm78
- FURPS
- ISO 9126
- Dromey

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

290 | P a g e

SLR-S102 2 - Lindland - Sindre - Solvberg
- Roth - Ganser - Lichter - Rumpe Quality model for Models

SLR-S103 12 - McCall
- Boehm78
- Shackel
- FURPS
- Nielsen
- Software Usability Measurement Inventory (SUMI) quality model
- ISO 9126
- Quality in Use Integrated Measurement (QUIM) model
- Software Engineering Methodology (SEM) quality model
- Preece - Benyon - Davies - Keller - Rogers
- Alonso-Ríos - Vázquez-García - Mosqueira-Rey - Moret-Bonillo
- Kabir - Rehman - Majumdar

SLR-S104 11 - McCall
- Boehm78
- ISO 9126
- OpenSource Maturity Model (OSMM) Cap Gemini
- Open Business Readiness Rating (OpenBRR)
- Qualification and Selection of Open Source software (QSOS)
- QualiPSo
- SQO-OSS
- QualOSS
- Software Quality Assessment Based on Lifecycle Expectation (SQALE)
- OSSMETER Quality model

SLR-S105 4 - ISO 9126
- ISO 25010
- MUSiC
- QUIndicator quality model

SLR-S106 1 - Capability Maturity Model Integration (CMMi) v1.1

SLR-S107 4 - SIG maintainability model
- Coleman - Ash - Lowther - Oman Maintainability Index
- Oman - Hagemeister maintainability model
- Khoshgoftaar - Munson

SLR-S108 21 - Adline - Ramachandran
- Ahmed - Al-Jamimi
- Amasaki - Takagi - Mizuno - Kikuno
- Azar - Vybihal
- Guo - Lyu
- Karunanithi - Whitley - Malaiya
- Khoshgoftaar - Seliya
- Khoshgoftaar - Allen- Halstead - Trio - Flass
- Khoshgoftaar - Ganesan - Allen - Ross - Munikoti - Goel - Nandi
- Khoshgoftaar - Allen - Jones- Hudepohl - 99a
- Khoshgoftaar - Pandya - More
- Khoshgoftaar - Seliya - Sundaresh
- Khoshgoftaar - Shan - Allen
- Mittal - Bhatia - Goswami
- Pizzi - Summers - Pedrycz
- Puri - Singh
- Radliński
- Rashid - Patnaik - Bhattacherjee
- Wagner Activity-Based Quality Model (ABQM)
- Xing - Guo - Lyu
- Yuan - Khoshgoftaar - Allen - Ganesan

Annexes

291 | P a g e

SLR-S109 9 - McCall
- Boehm78
- Ghezzi - Jazayeri - Mandrioli
- FURPS
- IEEE model for software maintenance
- Dromey
- ISO 9126
- Quality Model for Object-Oriented Design (QMOOD)
- ISO 25010

SLR-S110 8 - ISO 25010
- Bagheri - Gasevic
- Duan - Kattepury - Getahun - Elfakiz - Du
- Etxeberria - Sagardui
- Requirements-driven Quality Estimator (ReQuEst)
- Zhang - Jarzabek - Yang
- Zhang - Ye - Lin
- CatalOg of measures for Feature modEl quality Evaluation (COfFEE)

SLR-S111 24 - McCall
- Dromey
- ISO 9126
- ISO 25010
- Adewumi - Omoregbe - Misra - Fernandez
- Capability Maturity Model Integration (CMMi) v1.1
- OpenSource Maturity Model (OSMM) Cap Gemini
- Qualification and Selection of Open Source software (QSOS)
- Open Business Readiness Rating (OpenBRR)
- Sung - Kim - Rhew
- QualOSS
- QualitPso Open Source Maturity Model (OSMM)
- SQO-OSS
- EFFORT
- FLOSS-ITS´quality model
- Software Quality Systemic Model (MOSCA)
- FLOSS-ILS quality model
- Chirila - Juratoni - Tudor - Creţu
- Open-Source Usability Maturity Model (OS-UMM)
- Adewumi - Omoregbe - Misra - Fernandez
- Sudhaman - Thangavel
- Sohn - Lee - Seong - Kim
- Kuwata - Takeda - Miura Open-Source Software Community Maturity
Model
- Sarrab - Rehman

SLR-S112 10 - Basili - Briand - Melo (QCM)
- Briand - Wüst - Daly - Porter
- ISO 25010
- Gyimothy - Ferenc - Siket
- Zhou - Leung MARS model
- Zhou - Leung
- Olague - Etzkorn - Messimer - Delugach
- Pai - Dugan
- Corrêa - Lamb - Carro - Brisolara - Mattos physical properties prediction
model
- Pizzi

SLR-S113 9 - McCall
- Boehm78
- FURPS
- Dromey
- ISO 9126
- ISO 25010
- WBA quality model (WBAQM)

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

292 | P a g e

- AL-Badareen - Selamat - Din - Jabar - Turaev
- Multi-Attribute Quality Model (MAQM)

SLR-S114 8 - ISO 9126
- ISO 25010
- QUAMOCO
- Software Quality Assessment Based on Lifecycle Expectation (SQALE)
- ColumbusQM
- Hegedűs
- Software QUALity Enhancement (SQUALE)
- SIG maintainability model

SLR-S115 6 - ISO 9126
- ISO 9001
- SPICE (ISO / IEC 15504)
- CMM v1.0 (SEI)
- CMM v1.1
- Malcolm Baldrige Criteria for Performance Excellence

SLR-S116 25 - Boehm78
- ISO 9126
- ISO 25010
- QUAMOCO
- CLOUDQUAL
- SAfety Quality modEl (SAQE)
- Structured Code Quality Assessment Method (SCQAM)
- Athanasiou - Nugroho - Visser - Zaidman
- Srivastava - Kumar CK-OO quality model
- Embedded Systems software Quality Model (ESQM)
- ColumbusQM
- Software Quality Assessment Based on Lifecycle Expectation (SQALE)
- PQMOD
- 2D Software Quality Model Zhang - Li - Gao
- Evaluation Method for Internal Software Quality (EMISQ)
- SQO-OSS
- Systemic Quality Model
- Carvallo - Franch
- Quality Model for Object-Oriented Design (QMOOD)
- Method for Intensive Design Assessments (MIDAS)
- SIG maintainability model
- Challa - Paul - Dada - Nerella - Srivastava - Singh
- Oo quality model for web applications (Oqmw)
- Morisio - Stamelos - Tsoukias
- Pedrycz - Peters - Ramanna

Annexes

293 | P a g e

SLR-S117 24 - Boehm76
- McCall
- DRomey
- ISO 9126
- ISO 25010
- question-nAire for Evaluation of QUAlity in TElemedicine systems
(AdEQUATE)
- Sohn - Lee - Seong - Kim
- Sharma - Dubey
- Challa - Paul - Dada - Nerella - Srivastava - Singh
- Lestari - Hendradjaya Learning Management Systems (LMS) quality model
- Academic Information System Quality Instrument (AISQI)
- El-Rayyes - Abu-Zaid SQA model for website
- Communication between Agricultural Businesses and Government
(CABAG)
- 2Q2U v2
- Challa - Paul - Dada - Nerella - Srivastava - Singh
- Behkamal - Kahani - Akbari
- Software Quality Systemic Model (MOSCA)
- Chen - Lin - Wang - Chang
- Ziemba - Papaj - Descours
- ERP Systems Quality Model (ERPSQM)
- Andrian - Hendradjaya - Sunindyo E-Government G2B quality model
- Rochimah - Rahmani – Yuhana
- Ladányi - Tóth - Ferenc - Keresztesi
- Suwawi - Darwiyanto - Rochmani

SLR-S118 10 - ISO 9126
- ISO 25010
- Qualixo model
- Mc Call (FCM or RADC)
- Quality Model for Object-Oriented Design (QMOOD)
- Boehm76
- Software QUALity Enhancement (SQUALE)
- Oman - Hagemeister maintainability model
- Zeephongsekul - Xia - Kumar Software-Reliability Growth Model
- Garcés - Ampatzoglou - Avgeriou - Nakagawa Ambient Assisted Living
(AAL) quality model

SLR-S119 6 - ISO 9126
- ISO 25010
- Basili (GQM)
- Capability Maturity Model Integration (CMMi) v1.1
- Espinilla - Domínguez-Mayo - Escalona - Mejías - Ross - Staples Model-
Driven Web Engineering (MDWE) Quality Model
- Domínguez-Mayo - Escalona - Mejías - Torres

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

294 | P a g e

SLR-S120 24 - McCall
- Boehm78
- ISO 9126
- ISO 25010
- COQUAMO
- Quality Model for Object-Oriented Design (QMOOD)
- Oman - Hagemeister maintainability model
- Samsung s/w Component Quality evaluation Model (SCQM)
- Jeong - Kim v1.0
- QM4MAS
- Evaluation Method for Internal Software Quality (EMISQ)
- Garcés - Ampatzoglou - Avgeriou - Nakagawa Ambient Assisted Living
(AAL) quality model
- Sherman
- Wijnstra
- Guessi - Nakagawa - Oquendo - Maldonado
- Ahrens - Frey - Pfeiffer - Bertram
- Oliveira - Guessi - Feitosa - Manteuffel - Galster - Oquendo - Nakagawa
- Bianchi - Santos - Felizardo
- Jeong - Park - Jeong
- Embedded software component quality model (EQM)
- Purhonen
- Paulitsch - Ruess - Sorea
- Åkerholm - Fredriksson - Sandström - Crnkovic
- Tamrabet - Marir - Mokhati

SLR-S121 13 - Boehm76
- Basili (GQM)
- ISO 9126
- ISO 25010
- Software QUALity Enhancement (SQUALE)
- SPICE (ISO / IEC 15504)
- CMM v1.0 (SEI)
- Capability Maturity Model Integration (CMMi) v1.1
- Trillium
- Software Quality Measurement and Assurance Technology (SQMAT)
- Wagner - Deissenboeck meta-model
- QUAMOCO
- Software Quality, Architecture, Process (SQuAP)

SLR-S122 16 - ISO 9126
- McCall
- Boehm78
- FURPS
- Dromey
- Ghezzi - Jazayeri - Mandrioli
- WBA quality model (WBAQM)
- WebMAC
- WebCheck
- Garcés - Ampatzoglou - Avgeriou - Nakagawa Ambient Assisted Living
(AAL) quality model
- Suradi, Nur Razia Mohd and Kahar, Saliyah and Jamaluddin, Nor Azliana
Akmal
- Wibowo - Erna - Hidayah
- Tabassum - Bhatti - Asghar - Manzoor - Alam Quality model for XP process
& product
- Malik - Nasir - Javed Quality Model for Agile Application Development
- Sarrab - Elbasir - Alnaeli
- Wahdiniwaty - Setiawan - Wahab

SLR-S123 3 - ISO 25010
- Bianchi - Santos - Felizardo
- Gatica - Ponce - Noël - Astudillo

Annexes

295 | P a g e

SLR-S124 4 - Boehm78
- ISO 9126
- Calderón - Ruiz
- Abdellatif - McCollum - McMullan

SLR-S125 2 - ISO 25010
- Gordieiev - Kharchenko

SLR-S126 9 - McCall
- AL-Badareen - Selamat - Din - Jabar - Turaev
- van Koten - Gray
- Zhou - Leung MARS model
- Baqais - Alshayeb - Baig
- Jain - Tarwani - Chug
- Li - Henry
- SMPLearner
- Jindal - Malhotra - Jain

SLR-S127 20 - McCall
- Boehm76
- Boehm78
- Dromey
- FURPS
- FURPS+
- ISO 9126
- ISO 25010
- Software Component Quality Model (CQM) v1.0
- Software Component Quality Model (CQM) v1.1
- Bertoa - Vallecillo
- Rawashdeh- Matalkah
- OpenSource Maturity Model (OSMM) Cap Gemini
- GEneric, multilayered and customisable QUAlity MOdel (GEQUAMO)
- QUAMOCO
- SQO-OSS
- AL-Badareen - Selamat - Din - Jabar - Turaev
- Open Business Readiness Rating (OpenBRR)
- QualOSS
- Method for Intensive Design Assessments (MIDAS)

SLR-S128 9 - ISO 9126
- Abdellatief - Sultan - Jabar - Abdullah
- Web-site Quality Evaluation Methodology (QEM) model
- Dubey - Gulati - Rana
- E-Quality framework
- Selim
- hexagonal elearning assessment model (HELAM)
- Chua - Dyson
- User satisfaction model

SLR-S129 6 - Boehm76
- McCall
- Dromey
- FURPS
- ISO 9126
- ISO 25010

SLR-S130 5 - Goel - Okumoto (NHPP)
- Jelinkski - Moranda
- Littlewood - Verall
- Park - Kim - Shin - Baik
- Juneja - Juneja - Anand

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

296 | P a g e

SLR-S131 21 - McCall
- Boehm76
- ISO 9126
- ISO 25010
- Dromey
- Software QUality In Development (SQUID)
- Systemic Quality Model
- Factor-Strategy Model
- PQMOD
- QUAMOCO
- 2D Software Quality Model Zhang - Li - Gao
- Aspect-Oriented Software Quality Model (AOSQUAMO)
- Q'Facto 12
- Software QUALity Enhancement (SQUALE)
- Lee - Lee
- Technical Topic Classification (TTC) quality model
- Service-Oriented Architecture (SOA) quality model
- MoCQA
- Mobile Software Quality Model
- Lochmann - Goeb Unifying Model
- Component Based Quality Models (CBQM)

SLR-S132 6 - ISO 25010
- CMM v1.0 (SEI)
- Condori-Fernandez - Lago
- Calero - Moraga - Bertoa
- Penzenstadler - Femmer
- Sustainability-quality model

SLR-S133 5 - ISO 9126
- ISO 25010
- Capability Maturity Model Integration (CMMi) v1.1
- Forouzani - Chiam - Forouzani
- Um - Kim - Lee - In

SLR-S134 25 - Boehm78
- ISO 9126
- ISO 25010
- QUAMOCO
- CLOUDQUAL
- SAfety Quality modEl (SAQE)
- Structured Code Quality Assessment Method (SCQAM)
- Athanasiou - Nugroho - Visser - Zaidman
- Srivastava - Kumar CK-OO quality model
- Embedded Systems software Quality Model (ESQM)
- ColumbusQM
- Software Quality Assessment Based on Lifecycle Expectation (SQALE)
- PQMOD
- 2D Software Quality Model Zhang - Li - Gao
- Evaluation Method for Internal Software Quality (EMISQ)
- SQO-OSS
- Systemic Quality Model
- Carvallo - Franch
- Quality Model for Object-Oriented Design (QMOOD)
- Method for Intensive Design Assessments (MIDAS)
- SIG maintainability model
- Challa - Paul - Dada - Nerella - Srivastava - Singh
- Oo quality model for web applications (Oqmw)
- Morisio - Stamelos - Tsoukias
- Pedrycz - Peters - Ramanna

Annexes

297 | P a g e

SLR-S135 7 - McCall
- Boehm78
- ISO 9126
- ISO 25010
- Anwer - Adbellatif - Alshayeb - Anjum
- SATC model
- Gezici - Tarhan - Chouseinoglou

SLR-S136 5 - McCall
- Boehm78
- FURPS
- ISO 9126
- ISO 25010

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

298 | P a g e

Annexes

299 | P a g e

Annex 6. List of the 492 quality models, from 1968 to 2019

TABLE 48 - THE 492 DISTINCT QUALITY MODELS, FROM 1968 TO 2019

Id Year Ref.
Citati

on Authors Name Origin
DAP

21 Formalism Scope
Views

22 Domain URL

Q
M

-0
01

 1968 [33] 96 Raymond J.
Rubey & R.
Dean Hartwick

Rubey -
Hartwick

A Hierarchical Product P & U software program https://dl.acm.org/citation.cfm?id=8106

31

Q
M

-0
02

1968 [34] 1235 Shooman, M.
L.

Shooman

Pr Statistics Product U software program https://trove.nla.gov.au/version/12574
319

Q
M

-0
03

1972 [360] 2 Jelinski, J. &
Moranda, P. B.

Jelinski -
Moranda

Pr Statistics Product U software program https://www.sciencedirect.com/science/

article/pii/B9780122669507500281

Q
M

-0
04

 1972 [361] 136 Schick, G. J. &
Wolverton, R.
W.

Schick -
Wolverton

Pr Statistics Product U software program https://link.springer.com/chapter/10.100

7/978-3-642-99746-4_30

Q
M

-0
05

1972 [362] 198 Mills, H. Mills

Pr Capture-
Recapture

Product M software program https://ci.nii.ac.jp/naid/10007992140/

Q
M

-0
06

1973 [363] 576 Littlewood, B. &
Verall, J. L.

Littlewood -
Verall

Pr Bayesian

Analysis
Product U software program https://www.jstor.org/stable/2346781?s

eq=1

Q
M

-0
07

1973 [150] 1746 Boehm, B. W.,
Brown, J. R.,
Kaspar, H.,
Lipow, M.,
MacLeod, G. J.
& Merritt, M. J.

Boehm73

A Hierarchical Product P software program https://ui.adsabs.harvard.edu/abs/1973t
sei.book.....B/abstract

Q
M

-0
08

1975 [364] 774 Musa, J. D. Musa

Pr Statistics Product U software program https://ieeexplore.ieee.org/document/6
312856

Q
M

-0
09

1975 [365] 60 Funami, Y. &
Halstead, M. H.

Funami -
Hastead

Pr Statistics Product M software program https://docs.lib.purdue.edu/cgi/viewcont

ent.cgi?article=1092&context=cstech

Q
M

-0
10

1976 [366] 6 Mohanty, S. N.
& Adamowicz,
M

Mohanty -
Adamowicz

Pr Statistics Product P software program https://www.oldcomputerbooks.com/pa

ges/books/C811093/jerome-fox-
polytechnic-press-of-the-polytechnic-
institute-of-new-york/proceedings-of-
the-symposium-on-computer-software-
engineering-new-york-1976-microwave-
research

Q
M

-0
11

1976 [42] 995 Boehm, B. W.,
Brown, J. R. &
Lipow, M.

Boehm76 Boehm73 A Hierarchical Product P software program http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.365.8420&rep=rep1
&type=pdf
https://dl.acm.org/doi/10.5555/800253.
807736

Q
M

-0
12

 1977 [367] 90 Klobert, R. K. Klobert

Pr Statistics Product M software program https://dl.acm.org/doi/abs/10.1145/356
778.356783

Q
M

-0
13

 1977 [41] 88 McCall, J.A.,
Richards, P.K. &
Walters, G.F.

Mc Call (FCM
or RADC)

D Hierarchical Product P software product https://pdfs.semanticscholar.org/82a9/1

8fd83f1c0addb890ef313ff892807a10a11.
pdf

Q
M

-0
14

1977 [368] 18 Schneidewind,
N. F.

Schneidewind7
7

Pr Statistics Product M software program https://ieeexplore.ieee.org/abstract/doc

ument/1646445/

Q
M

-0
15

 1978 [128] 1662 Boehm, B. W.,
Brown, J. R.,
Kaspar, H.,
Lipow, M.,

Boehm78 Boehm 1976 A Hierarchical Product P software program https://www.abebooks.fr/978044485105
5/Characteristics-Software-Quality-TRW-
series-0444851054/plp

21 D: Definition, A: Assessment, Pr: Prediction
22 P: Product, U: User, M: Manufacturer

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

300 | P a g e

MacLeod, G. J.
& Merritt, M. J.

Q
M

-0
16

 1979 [76] 2208 Goel, A. L. &
Okumoto, K.

Goel -
Okumoto
(NHPP)

Pr Stochastic Product U software program https://ieeexplore.ieee.org/abstract/doc

ument/5220566

Q
M

-0
17

1981 [369] 1085 Henry, D. &
Kafura, D.

Henry - Kafura

A Statistics Product P large scale system https://ieeexplore.ieee.org/document/1
702877

Q
M

-0
18

 1983 [370] 13 Bowen, T. P.,
Post, J. V., Tsai,
J., Presson, P. E.
& Schmidt, R. L.

Bowen - Post -
Tsai - Presson -
Schmidt

McCall A Hierarchical Product P software for
distributed system

https://apps.dtic.mil/docs/citations/ADA
137956

Q
M

-0
19

1984 [217] 1452 Basili, V. R. &
Weiss, D. M.

Basili (GQM)

A Meta-model Any P software product,
process & project

https://www.cs.umd.edu/~basili/publicat
ions/journals/J23.pdf

Q
M

-0
20

 1984 [58] 5222 N. Kano, N.
Seraku, F.
Takahashi, and
S. Tsuji

Kano

A Meta-model Any U product https://web.archive.org/web/201108131
45926/http://ci.nii.ac.jp/Detail/detail.do
?LOCALID=ART0003570680&lang=en

Q
M

-0
21

 1985 [371] 93 Bowen, T. P.,
Wigle, G. B. &
Tsai, I. T.

Bowen - Wigle
- Tsai

A Hierarchical Product P avionic equipment https://apps.dtic.mil/sti/citations/ADA15

3988

Q
M

-0
22

 1985 [372] 254 Langberg, N. &
Singpurwalla, N.
D.

Langberg -
Singpurwalla

 Jelinski –
Moranda,
Littlewood -
Verall, Goel -
Okumoto

Pr Bayesian
Analysis

Product U Computer software https://epubs.siam.org/doi/abs/10.1137/
0906053

Q
M

-0
23

 1985 [373] 262 Shen, V. Y., Yu,
T. -J., Thebaut,
S.M. & Paulsen,
L. R.

Shen - Yu -
Thebaut -
Paulsen

Pr Regression

analysis
Product M Software program

(compiler, metric
tool, database
system)

https://ieeexplore.ieee.org/abstract/doc
ument/1702015

Q
M

-0
24

1985 [374] 56 Sunazuka,
Toshihiko and
Azuma, Motoei
and Yamagishi,
Noriko

Software
Quality
Measurement
and Assurance
Technology
(SQMAT)

Boehm76,
McCall

A Hierarchical Product M & P software
throughout
software life cycle

https://dl.acm.org/doi/abs/10.5555/319
568.319605

Q
M

-0
25

1986 [375] 25 Nayak, T. K. Nayak

Pr Statistics Product M software https://ieeexplore.ieee.org/document/4
335548

Q
M

-0
26

 1987 [104] 3259 Garvin, D. A. Garvin Eight
dimensions of
Quality

D Hierarchical Product P & U product https://hbr.org/1987/11/competing-on-

the-eight-dimensions-of-quality

Q
M

-0
27

1987 [376] - National
Institute of
Standards and
Technology

Malcolm
Baldrige
Criteria for
Performance
Excellence

A Hierarchical Organizat

ion
M Service quality,

organizational
performance quality

https://www.nist.gov/director/malcolm-
baldrige-national-quality-improvement-
act-1987

Q
M

-0
28

1987 [85] 841 Grady, R. B. &
Caswel, D. L.

FURPS

A Hierarchical Product P & U software &
hardware

https://dl.acm.org/doi/book/10.5555/26
775

Q
M

-0
29

1987 [233] - ISO/TC 176/SC 2
Quality systems

ISO 9001

A Hierarchical Product
&

Process

M Quality systems
design/development
, production,
installation, and
servicing

https://www.iso.org/standard/16533.ht
ml

Q
M

-0
30

1987 [377] 77 Evans, J. &
Marciniak, J.

Evans -
Marciniak

McCall A Hierarchical Product
&

Process

P software https://www.semanticscholar.org/paper/
Software-quality-assurance-and-
management-Evans-
Marciniak/e57e370af035f3ac5f69a4a52d
6062c2a7235907

Q
M

-0
31

1987 [163] 1323 Gilb, T. Gilb

A Hierarchical Product P software https://dl.acm.org/doi/10.5555/59124

Annexes

301 | P a g e

Q
M

-0
32

 1987 [126] 152 Kitchenham, B Constructive
QUAlity MOdel
(COQUAMO)

COCOMO,
McCall,
Boehm78

A Hierarchical Product
&

Process

M & U software https://digital-
library.theiet.org/content/journals/10.10
49/sej.1987.0014

Q
M

-0
33

 1988 [153] 857 Humphrey, W.
S.

Process
Maturity
Framework

A Hierarchical Process M software process

maturity
https://ieeexplore.ieee.org/document/2
014

Q
M

-0
34

1988 [378] 159 Card, D. N. &
Agresti, W. W.

Card - Agresti

A Statistics Product P software design https://www.sciencedirect.com/science/
article/pii/0164121288900210

Q
M

-0
35

1988 [379] 43 Wake, S. &
Henry, S.

Wake-Henry

Pr Statistics Product
&

Process

M software system w/
components

https://ieeexplore.ieee.org/document/1
0191

Q
M

-0
36

1988 [380] 302 Selby, R. W. &
Porter, A. A.

Selby - Porter

Pr Decision
Tree- based

Product M software https://ieeexplore.ieee.org/abstract/doc
ument/9061

Q
M

-0
37

1988 [381] 428 Zeithaml, V. A.,
Berry, L. L. &
Parasuraman, A.

SERVQUAL

A Hierarchical Service U service quality https://books.google.fr/books?hl=en&lr=
&id=Rt96wAigg2oC&oi=fnd&pg=PA140&
dq=+%22SERVQUAL:+A+multiple-
item+scale+for+measuring+consumer+pe
rceptions+of+service+quality%22&ots=pS
w6czBBCT&sig=poPxOYt8CzA6vda_Sc8Ld
ZAWnhg&redir_esc=y#v=onepage&q=%2
2SERVQUAL%3A%20A%20multiple-
item%20scale%20for%20measuring%20c
onsumer%20perceptions%20of%20servic
e%20quality%22&f=false

Q
M

-0
38

1989 [382] 137 Gaffney Jr, J. E.
& Durek, T. A.

Gaffney -
Durek

Pr Statistics Product M reusable software

components
https://www.sciencedirect.com/science/
article/abs/pii/0950584989900050

Q
M

-0
39

1990 [166] 39 Shepperd, M. Shepperd based on GQM A Hierarchical Product M software program https://www.sciencedirect.com/science/
article/abs/pii/095058499090065Y

Q
M

-0
40

 1990 [124] 317 Khoshgoftaar, T.
M. & Munson, J.
C.

Khoshgoftaar -
Munson

Pr Regression

analysis
Product U telecommunication

system software
product

https://ieeexplore.ieee.org/abstract/doc
ument/46879

Q
M

-0
41

1991 [383] 39 Henry, S. &
Wake, S.

Henry - Wake Wake-Henry Pr Statistics Product M software system w/
components

https://onlinelibrary.wiley.com/doi/abs/
10.1002/smr.4360030302

Q
M

-0
42

1991 [384] 50 Koltun, P. &
Hudson, A.

Koltun -
Hudson

A Hierarchical Process M software process w/

reuse maturity
https://scholar.google.com/scholar?q=Ko
ltun%2C%20P.%2C%20Hudson%2C%20A.
%3A%20A%20Reuse%20Maturity%20Mo
del.%20In%3A%20WISR4%204th%20Wor
kshop%20on%20Institutionalizing%20Sof
tware%20Reuse%2C%20Center%20for%2
0Innovative%20Technology%2C%20Rest
on%2C%20Virginia%2C%20USA%20%28N
ovember%201991%29

Q
M

-0
43

 1991 [154] 101 Paulk, M.,
Curtis, B. &
Chrissis, M. B. C.

CMM v1.0
(SEI)

Humprey's
Process
Maturity
Framework

A Hierarchical Process M software process
maturity

https://pdfs.semanticscholar.org/0b81/4
1e3eff5b8bdcc85c59a38546eaa3530164
8.pdf

Q
M

-0
44

 1991 [385] 53 Eriksson, A. &
Törn, A.

SOLE

A Hierarchical Product
&

Process

M & P
& U

Information System https://digital-
library.theiet.org/content/journals/10.10
49/sej.1991.0018

Q
M

-0
45

 1991 [374] - ISO/IEC JTC 1/SC
7 Software and
systems
engineering

ISO 9126

A Hierarchical Product P & U Information System https://www.iso.org/standard/16722.ht
ml

Q
M

-0
46

1991 [387] 7622 Zeithaml, V. A.,
Berry, L. L. &
Parasuraman, A.

SERVQUAL91 SERVQUAL A Hierarchical Service U service quality https://books.google.fr/books?hl=fr&lr=
&id=Rt96wAigg2oC&oi=fnd&pg=PA114&
ots=pTq-
dEuIBN&sig=6hDGxGyajdrN5BYbRera1w
YrTlk&redir_esc=y#v=onepage&q&f=fals
e

Q
M

-0
47

1991 [388] 69 Perry, W. E. Perry

A Hierarchical Project &
Product

M & P
& U

software https://dl.acm.org/doi/book/10.5555/11
0869

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

302 | P a g e

Q
M

-0
48

1991 [389] 1 Dyson, K. A. QUES model
(RADC)

McCall A Hierarchical Product P & U software https://archive.org/details/DTIC_ADA252
976/page/n1/mode/2up

Q
M

-0
49

 1991 [390] 1914 Ghezzi, Carlo
and Jazayeri,
Mehdi and
Mandrioli, Dino

Ghezzi -
Jazayeri -
Mandrioli

A Hierarchical Product M & P software https://scholar.google.com/scholar?hl=e

n&as_sdt=0%2C31&q=allintitle%3A+%22
fundamentals+of+software+engineering
%22&btnG=

Q
M

-0
50

1991 [391] 1375 Shackel, Brian Shackel

A Hierarchical Product U software https://dl.acm.org/doi/10.5555/117829.
117833

Q
M

-0
51

1992 [152] 1076 Grady, R. B. FURPS+ FURPS A Hierarchical Product P & U software &
hardware

https://dl.acm.org/doi/book/10.5555/14
0207

Q
M

-0
52

1992 [392] 119 Agresti, W; W. &
Evanco, W. M.

Agresti -
Evanco

Pr Statistics Product M ADA subsystem

software
https://www.computer.org/csdl/journal/
ts/1992/11/e0988/13rRUx0gerq

Q
M

-0
53

 1992 [393] 99 Khoshgoftaar, T.
M., Pandya, A.
S. & More, H. B.

Khoshgoftaar -
Pandya - More

Pr Neural

Network
Product U large commercial

software
https://ieeexplore.ieee.org/document/2
85855

Q
M

-0
54

 1992 [394] 282 Briand, L. C.,
Basili, V. R. &
Thomas, W. M.

Briand - Basili -
Thomas

Pr Pattern-

recognition
Any M & P

& U
software system https://ieeexplore.ieee.org/abstract/doc

ument/177363

Q
M

-0
55

 1992 [395] 22 Gillies, A. Gillies

A Hierarchical Product M & P
& U

software in
commercial
environments

https://link.springer.com/article/10.1007
/BF01720924

Q
M

-0
56

1992 [54] 972 Chillarege, R.,
Bhandari, I. S.,
Chaar, J. K.,
Halliday, M. J.,
Moebus, D. S.,
Ray, B. K. &
Wong, M.-Y.

Orthogonal
Defect
Classification
(ODC)

A Hierarchical Process M Software

development
process

https://www.computer.org/csdl/journal/
ts/1992/11/e0943/13rRUyYBlih

Q
M

-0
57

1992 [396] 196 Stephen G. Eick;
Clive R. Loader;
M. David Long;
Lawrence G.
Votta;
Scott Vander
Wiel

Eick - Loader -
Long - Votta -
Wiel Capture-
Recapture

Pr Capture-

Recapture
Product M Telecommunication

(AT&T)
https://dl.acm.org/doi/10.1145/143062.
143090

Q
M

-0
58

 1992 [397] 307 Oman, Paul and
Hagemeister,
Jack

Oman -
Hagemeister
maintainability
model

 Pr Hierarchical Product M software systems https://ieeexplore.ieee.org/document/2
42525

Q
M

-0
59

1992 [398] 337 Karunanithi,
Nachimuthu
and Whitley,
Darrell and
Malaiya,
Yashwant K.

Karunanithi -
Whitley -
Malaiya

 Pr Neural
Network

Product M software https://ieeexplore.ieee.org/abstract/doc
ument/143107

Q
M

-0
60

1993 [399] 197 Stephen G. Eick;
Clive R. Loader;
Scott Vander
Wile; Lawrence
G. Votta

Eick - Loader -
Wiel - Votta
Capture-
Recapture

 Pr Capture-
Recapture

Product M Telecommunication
(AT&T)

https://dl.acm.org/doi/pdf/10.1145/143
062.143090

Q
M

-0
61

1993 [400] 94 Zage, W. M. &
Zage, D. M.

Zage

Pr Hierarchical Product M Large scale software
system

https://ieeexplore.ieee.org/document/2
19620

Q
M

-0
62

 1993 [38] 340 Paulk, M.,
Curtis, B.,
Chrissis, M. B. C.
& Weber, C. V.

CMM v1.1 CMM V1.0 A Hierarchical Process M software process
maturity

https://resources.sei.cmu.edu/asset_files
/TechnicalReport/1993_005_001_16211.
pdf

Q
M

-0
63

1993 [401] 60 Davis, T. SPC Reuse
Capability

A Hierarchical Process M software process w/

reuse maturity
https://ieeexplore.ieee.org/document/2
91710

Annexes

303 | P a g e

Q
M

-0
64

1993 [402] 217 Dorling, A. SPICE (ISO /
IEC 15504)

CMM … A Hierarchical Process M software process https://www.sciencedirect.com/science/
article/abs/pii/095058499390011Q

Q
M

-0
65

 1993 [403] 220 Briand, L. C.,
Brasili, V. R. &
Hetmanski, C. J.

Briand - Brasili-
Hetmanski

Pr Optimized

Set
Reduction

Product M software
components (ADA)

https://ieeexplore.ieee.org/document/2
56851

Q
M

-0
66

1993 [399] 107 Stephen G. Eick;
Clive R. Loader;
Scott Vander
Wiel; Lawrence
G. Votta

Wiel - Votta
Capture-
Recapture

Pr Capture-

Recapture
Product M Telecommunication

(AT&T)
https://ieeexplore.ieee.org/abstract/doc
ument/256852

Q
M

-0
67

 1993 [404] 43 IEEE Std 1219-
1993

IEEE model for
software
maintenance

A Hierarchical Product M software

maintenance
https://ieeexplore.ieee.org/document/2
57623

Q
M

-0
68

1993 [405] 6 Bootstrap
project team

Bootstrap CMM v1.0 (SEI),
ISO 9001

A Hierarchical Process M software process
maturity

https://ieeexplore.ieee.org/abstract/doc
ument/210613

Q
M

-0
69

1993 [406] 22257 Nielsen, Jakob Nielsen

D Hierarchical Product U software https://books.google.fr/books?hl=en&lr=
&id=95As2OF67f0C&oi=fnd&pg=PR9&dq
=+%22Usability+engineering%22&ots=3c
zyFqbqXv&sig=meU7r42kDFjZr4LXNALXT
yZBbQw&redir_esc=y#v=onepage&q=%2
2Usability%20engineering%22&f=false

Q
M

-0
70

1993 [407] 549 Preece, Jenny
and Benyon,
David and
Davies, G. and
Keller, L. and
Rogers, Y.

Preece -
Benyon -
Davies - Keller
- Rogers

A Hierarchical Product U software https://dl.acm.org/doi/abs/10.5555/562

852

Q
M

-0
71

1993 [408] 1484 Li, Wei and
Henry, Sallie

Li - Henry

Pr Regression
analysis

Product M object oriented
software

https://www.sciencedirect.com/science/
article/abs/pii/016412129390077B

Q
M

-0
72

 1994 [409] 94 Khoshgoftaar, T.
M., Lanning, D.
L. & Pandya, A.
S.

Khoshgoftaar -
Lanning -
Pandya

Pr Neural

Network
Product M telecommunication

software
https://ieeexplore.ieee.org/document/2
72878

Q
M

-0
73

1994 [410] 73 European
Foundation for
Quality
Management
(EFQM)

EFQM
Excellence

A Hierarchical Organizat

ion
M Service quality,

organizational
performance quality

https://www.researchgate.net/publicatio
n/238193450_European_Foundation_for
_Quality_Management_Business_Excelle
nce_Model

Q
M

-0
74

 1994 [411] 26 Evanco, W. M. &
Agresti W; W.

Evanco -
Agresti

 Pr Statistics Product M software
components from
NASA space flight
center

https://link.springer.com/article/10.1007
/BF00426946

Q
M

-0
75

1994 [412] 1148 Kettinger, W. J.
& Lee, C. C.

USISF -
SERVQUAL

SERVQUAL91 A Hierarchical Service U Information System
service quality

https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1540-5915.1994.tb01868.x

Q
M

-0
76

 1994 [264] 48 Khoshgoftaar, T.
M. & Szabo, R.
M.

Khoshgoftaar -
Szabo94

 Pr Neural
Network

Product M software program
with modules

https://ieeexplore.ieee.org/abstract/doc
ument/336789

Q
M

-0
77

 1994 [413] 130 S. H. Kan; V. R.
Basili; L. N.
Shapiro

CUPRIMDSO A &
Pr

Hierarchical Product P IBM Software https://ieeexplore.ieee.org/abstract/doc
ument/5387351

Q
M

-0
78

1994 [414] 568 Coleman, Don
and Ash, Dan
and Lowther,
Bruce and
Oman, Paul

Coleman - Ash
- Lowther -
Oman
Maintainability
Index

 A Regression
analysis

Product M software https://ieeexplore.ieee.org/abstract/doc
ument/303623

Q
M

-0
79

1994 [415] 1156 Lindland, Odd
Ivar and Sindre,
Guttorm and
Solvberg, Arne

Lindland -
Sindre -
Solvberg

 A Hierarchical Product M conceptual models
(i.e., collection of
specification
statements relevant
to some problem)

https://ieeexplore.ieee.org/abstract/doc
ument/268955

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

304 | P a g e

Q
M

-0
80

 1994 [416] 70 Zeephongsekul,
P and Xia, G and
Kumar, S

Zeephongsekul
- Xia - Kumar
Software-
Reliability
Growth Model

 Pr Stochastic Product M software https://ieeexplore.ieee.org/abstract/doc
ument/326435

Q
M

-0
81

1995 [417] 155 Khoshgoftaar, T.
M. & Lanning, D.
L.

Khoshgoftaar -
Lanning

Khoshgoftaar -
Lanning -
Pandya

Pr Neural
Network

Product M telecommunication
software

https://www.semanticscholar.org/paper/
A-neural-network-approach-for-early-
detection-of-in-Khoshgoftaar-
Lanning/024971ad130b9ab833d4e1983f
50504b91a542c8?citingPapersSort=is-
influential#citing-papers

Q
M

-0
82

1995 [49] 711 Dromey, R. G. Dromey ISO 9126 A Hierarchical Product P & U software https://ieeexplore.ieee.org/document/3
45830

Q
M

-0
83

 1995 [418] 50 Schneidewind,
N. F.

Schneidewind9
5

 A &
Pr

Discriminativ
e power

techniques

Product P & U Space Shuttle flight
software

https://link.springer.com/article/10.1007
/BF02249054

Q
M

-0
84

1995 [419] 51 Troster, J. &
Tian, J.

Troster - Tian Pr Decision
Tree- based

Product U Large-scale legacy
software system

https://link.springer.com/article/10.1007
/BF02249047

Q
M

-0
85

1995 [420] 624 Bevan, N. MUSiC A Hierarchical Product U Quality of use for
software

https://link.springer.com/article/10.1007
/BF00402715

Q
M

-0
86

1995 [421] 65 Claes Wohlin;
Per Runeson
and Johan
Brantestam

Wohlin -
Runeson -
Brantestam
Capture-
Recapture

 Pr Capture-
Recapture

Product M software https://onlinelibrary.wiley.com/doi/abs/
10.1002/stvr.4370050403

Q
M

-0
87

 1995 [422] 10 April, Alain and
Coallier,
François

Trillium ISO 9001,
Malcolm
Baldrige Criteria
for Performance
Excellence

A Hierarchical Product
&

Process

M software
component,
software supplier

https://ieeexplore.ieee.org/abstract/doc
ument/525963

Q
M

-0
88

1996 [423] 161 Hudepohl, J. P.,
Aud, S. J.,
Khoshgoftaar, T.
M., Allen, E. B.
& Mayrand, J.

EMERALD Test
Targeting

 Pr Statistics Product M very large
telecommunication
software

https://ieeexplore.ieee.org/abstract/doc
ument/536459

Q
M

-0
89

 1996 [424] 79 Azuma, M INSTAC model ISO/IEC 9126 A Hierarchical Product P & U Software https://www.sciencedirect.com/science/
article/pii/0950584995010696

Q
M

-0
90

 1996 [425] 251 Khoshgoftaar, T.
M., Allen, E. A.,
Kalaichelvan, K.
S. & Goel, N.

Khoshgoftaar -
Allen -
Kalaichelvan -
Goel

Pr Discriminant

analysis
Product M very large

telecommunication
software

https://ieeexplore.ieee.org/abstract/doc
ument/476287
https://link.springer.com/article/10.1007
%2FBF00125810

Q
M

-0
91

 1996 [221] 2095 Basili, V. R.,
Briand, L. C. &
Melo, W. L.

Basili - Briand -
Melo (QCM)

Pr Logistic

regression
Product M medium-size

information system,
Object-Oriented SW

https://ieeexplore.ieee.org/abstract/doc
ument/544352

Q
M

-0
92

1996 [426] 87 Ebert, C. Ebert

A &
Pr

Fuzzy
classification

Product M & U large
telecommunication

https://www.sciencedirect.com/science/
article/pii/S0957417496000486

Q
M

-0
93

1996 [427] 210 Dujmovic, J. J. Dujmovic LSP

A Hierarchical Product U Complex hardware
& software systems

http://citeseerx.ist.psu.edu/viewdoc/su
mmary?doi=10.1.1.48.4388

Q
M

-0
94

1996 [428] 139 Levi, M. D. &
Conrad, F. G.

Levi - Conrad

A Hierarchical Product U Web sites https://dl.acm.org/doi/abs/10.1145/234
813.234819

Q
M

-0
95

1996 [429] 9 Martin, R. A. &
Shafer, L. H.

MITRE
Software
Quality
Assessment
Exercise
(SQAE)

Boehm, McCall,
ISO 9126

A Hierarchical Product M & P Software http://citeseerx.ist.psu.edu/viewdoc/su
mmary?doi=10.1.1.118.9818

Annexes

305 | P a g e

Q
M

-0
96

 1996 [430] 3 Software
Analysis Team
at Headquarters
(HQ) AFOTEC

AFOTEC
Maintainability

A Hierarchical Product M Software

maintainability in Air
Force

https://archive.org/details/DTIC_ADA324
619/page/n3/mode/2up

Q
M

-0
97

 1996 [431] 312 Park, R. E.
Goethert, W. B.
& Florac, W. A.

GQIM - goal-
driven model

GQM A Meta-model Product M & P
& U

software product https://apps.dtic.mil/docs/citations/ADA
313946

Q
M

-0
98

 1996 [432] 321 Brito e Abreu, F
and Melo,
Walcelio

Brito e Abreu -
Melo MOOD

Pr Regression

analysis
Product M Object-oriented

software and
modules

https://ieeexplore.ieee.org/abstract/doc
ument/492446

Q
M

-0
99

1996 [433] 25 Harrison, R and
Samaraweera,
LG and Dobie,
Mark R and
Lewis, Paul H

Harrison -
Samaraweera -
Dobie - Lewis

Pr Statistics Product M Object-oriented

program and
software, C++
software

https://www.sciencedirect.com/science/
article/abs/pii/0950584995010815

Q
M

-1
00

1997 [267] 64 Granja-Alvarez,
JC & Barranco-
Garcia, MJ

Granja-Alvarez
-
BarrancoGarci
a Maintenance
Cost

COCOMO Pr Statistics Process M software process
maintenance

https://onlinelibrary.wiley.com/doi/abs/
10.1002/%28SICI%291096-
908X%28199705%299%3A3%3C161%3A
%3AAID-SMR148%3E3.0.CO%3B2-8

Q
M

-1
01

 1997 [434] 129 Gokhale, S. S. &
Lyu, M. R.

Gokhale - Lyu

Pr Regression
tree

Product M software for medical
imaging systems

http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.46.122&rep=rep1&ty
pe=pdf

Q
M

-1
02

1997 [435] 38 Takahashi, R.,
Muraoka, Y. &
Nakamura, Y.

Takahashi -
Muraoka -
Nakamura

Selby - Porter Pr Decision
Tree- based

Product M medium-sized piece
of software (85
thousand lines of
source code; 562
samples)

https://ieeexplore.ieee.org/abstract/doc
ument/630869

Q
M

-1
03

 1997 [144] 12 Dujmovic, J. J. &
Bayucan, A.

Dujmovic -
Bayucan

Dujmovic LSP A Hierarchical Product U Windowed
environment
software

http://seas.com/downloadUNReg/sampl
e_eval/SEAS_WE.pdf

Q
M

-1
04

1997 [436] 61 Schneidewind,
N. F.

Schneidewind9
7

Schneidewind95 A &
Pr

Discriminativ
e power

techniques

Product P & U Space Shuttle flight
software

https://ieeexplore.ieee.org/abstract/doc
ument/630888

Q
M

-1
05

 1997 [437] 60 Small, R. V. WebMAC

A Hierarchical Product U Web sites from
motivational
perspective

https://eric.ed.gov/?q=Assessing+the+M
otivational+Quality+of+World+Wide+We
bsites&ff1=subWorld+Wide+Web&id=ED
407930

Q
M

-1
06

1997 [438] 46 Khoshgoftaar, T.
M., Allen, E. B.,
Halstead, R.,
Trio, G. P. &
Flass, R.

Khoshgoftaar -
Allen- Halstead
- Trio - Flass

Pr Logistic

regression
Product M & U Large tactical

military software
https://ieeexplore.ieee.org/abstract/doc
ument/648056

Q
M

-1
07

 1997 [439] 239 Wilson, W. H.,
Rosenberg, L. H.
& Hyatt, L. E.

SATC model McCall, ISO
9126

A Hierarchical Product U software
requirements

https://dl.acm.org/doi/10.1145/253228.
253258

Q
M

-1
08

 1997 [127] 94 Kitchenham, B.,
Linkman, S.,
Pasquini, A. &
Nanni, V.

Software
QUality In
Development
(SQUID)

McCall, ISO
9126

D Meta-model Product P & U Software quality
requirements, but
also any

https://link.springer.com/article/10.1023
/A:1018516103435

Q
M

-1
09

1997 [440] 84 T.M.
Khoshgoftaar; K.
Ganesan; E.B.
Allen; F.D. Ross;
R. Munikoti; N.
Goel; A. Nandi

Khoshgoftaar -
Ganesan -
Allen - Ross -
Munikoti -
Goel - Nandi

Pr Case-based

reasoning
(CBR)

Product M very large
telecommunication
software

https://ieeexplore.ieee.org/abstract/doc
ument/630845

Q
M

-1
10

 1997 [441] 60 N. Ebrahimi Ebrahimi
Capture-
Recapture

Pr Capture-

Recapture
Product M Telecommunication

(AT&T)
https://ieeexplore.ieee.org/abstract/doc
ument/624308

Q
M

-1
11

 1997 [442] 91 Kurt D. Welker,
Paul W. Oman,
Gerald G.
Atkinson

Welker - Oman
- Atkinson
Maintainability
index

Pr Regression

analysis
Product M software, electronic

combat system, ada,
c++ software

https://onlinelibrary.wiley.com/doi/abs/
10.1002/(SICI)1096-
908X(199705)9:3%3C127::AID-
SMR149%3E3.0.CO;2-S

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

306 | P a g e

Q
M

-1
12

1997 [443] 255 Khoshgoftaar,
Taghi M and
Allen, Edward B
and Hudepohl,
John P and Aud,
Stephen J

Khoshgoftaar -
Allen -
Hudepohl -
Aud

Pr Neural

Network
Product M very large

telecommunication
software

https://ieeexplore.ieee.org/abstract/doc
ument/595888

Q
M

-1
13

1997 [444] 233 Sabata, Bikash
and Chatterjee,
Saurav and
Davis, Michael
and Sydir,
Jaroslaw J and
Lawrence,
Thomas F

Sabata -
Chatterjee -
Davis - Sydir -
Lawrence

D Hierarchical Service P & U distributed systems https://ieeexplore.ieee.org/abstract/doc

ument/609931

Q
M

-1
14

 1998 [269] 13 Yokoyama, Y. &
Kodaira, M.

SDCH COCOMO Pr Statistics Product
&

Process

M cost & quality
estimation,
productivity &
quality evaluation

https://ieeexplore.ieee.org/abstract/doc
ument/671607

Q
M

-1
15

1998 [268] 41 Khoshgoftaar, T.
M., Allen, E. B.,
Naik, A., Jones,
W. D. &
Hudepohl, J.

Khoshgoftaar -
Allen - Naik -
Jones-
Hudepohl

Pr Classification

Tree
Product U very large

telecommunication
software

https://ieeexplore.ieee.org/document/7
31598

Q
M

-1
16

 1998 [445] 62 Khoshgoftaar, T.
M. & Allen, E. B.

Khoshgoftaar -
Allen98

Khoshgoftaar -
Allen -
Kalaichelvan -
Goel

Pr Discriminant
analysis

Product M telecommunication
software,
military software

https://link.springer.com/article/10.1023
/A:1009736205722

Q
M

-1
17

 1998 [446] 11 Schneidewind,
N. F.

Schneidewind9
8

A &
Pr

Statistics Product
&

Process

U Space Shuttle flight
software but not
domain specific

https://ieeexplore.ieee.org/abstract/doc
ument/731249

Q
M

-1
18

1998 [447] 143 Kirakowski, J. &
Cierlik, B.

WAMMI

A Hierarchical Product U web sites, including
commercial
websites (use case
in the paper)

https://journals.sagepub.com/doi/abs/1
0.1177/154193129804200405?casa_toke
n=j1lbtG4ceb8AAAAA%3AqwS8Y-
pVxUF4ZuY7KxC1UpoGmcz7_Eg69LjxjVm
ZxHu85F5-fsdfccNhnvU6ea1d-
jtud7UlJgOY&

Q
M

-1
19

 1998 [448] 86 Ohlsson, N.,
Zhao, M. &
Helander, M.

Ohlsson - Zhao
- Helander

Pr Discriminant

coordinates
Product M Telecommunication

software system
https://link.springer.com/article/10.1023
/B:SQJO.0000042059.16470.f0

Q
M

-1
20

1998 [449] 61 L.C. Briand; K.E.
Emam; B.G.
Freimut

Briand - Emam
- Freimut
Capture-
Recapture

Pr Capture-

Recapture
Product M NASA/ GSFC

describing
functional
specifications for
satellite ground
support software

https://ieeexplore.ieee.org/abstract/doc
ument/730766

Q
M

-1
21

 1998 [450] 93 Per Runeson;
Claes Wohlin

Runeson –
Wohlin -
Capture-
Recapture

Pr Capture-

Recapture
Product M software C code https://link.springer.com/article/10.1023

/A:1009728205264

Q
M

-1
22

1998 [451] 7577 Dix, Alan and
Finlay, Janet
and Abowd,
Gregory D and
Beale, Russell

Dix - Finlay -
Abowd - Beale

D Hierarchical Product U software https://books.google.fr/books?hl=en&lr=

&id=IuQxui8GHDcC&oi=fnd&pg=PR14&d
q=+%22Human-
Computer+Interaction%22&ots=I529BQz
QVM&sig=Rll50_irtLUoNJH8cyKAS4cQ3V
M&redir_esc=y#v=onepage&q=%22Hum
an-Computer%20Interaction%22&f=false

Q
M

-1
23

 1998 [452] 12 Pedrycz, W;
Peters, JF;
Ramanna, S

Pedrycz -
Peters -
Ramanna

McCall A Fuzzy logic Product P software https://ieeexplore.ieee.org/abstract/doc
ument/686259

Q
M

-1
24

1998 [453] 37 Veenendaal,
EPWMV

Software
Usability
Measurement
Inventory
(SUMI) quality
model

ISO 9126 A Hierarchical Product U software https://www.semanticscholar.org/paper/
Questionnaire-based-usability-testing-
Veenendaal/03de9324b0130cfb5e5cfd50
c15ab98b89dc9b31

Annexes

307 | P a g e

Q
M

-1
25

 1999 [197] 137 Khoshgoftaar, T.
M., Allen, E. B.,
Jones, W. D. &
Hudepohl, J.

Khoshgoftaar -
Allen - Jones-
Hudepohl -
99a

Khoshgoftaar -
Allen - Naik -
Jones- Hudepohl

Pr Classification
Tree

Product U multiple release of
very large
telecommunication
software

https://ieeexplore.ieee.org/abstract/doc
ument/809316

Q
M

-1
26

 1999 [454] 41 Jones, W. D.,
Hudepohl, J.,
Khoshgoftaar, T.
M. & Allen, E. B.

Jones -
Hudepohl -
Khoshgoftaar -
Allen

Khoshgoftaar -
Allen - Naik -
Jones- Hudepohl

Pr Logistic
regression

Product U very large
telecommunication
software

https://ieeexplore.ieee.org/abstract/doc
ument/756692

Q
M

-1
27

 1999 [455] 144 Khoshgoftaar, T.
M. & Allen, E. B.

Khoshgoftaar -
Allen99

 Pr Logistic
regression

Product M Large tactical
military software
system

https://www.worldscientific.com/doi/ab
s/10.1142/S0218539399000292

Q
M

-1
28

 1999 [198] 121 Olsina, L.,
Godoy, D.,
Lafuente, G. &
Rossi, G.

Web-site QEM ISO 9126 A Hierarchical Product U Academic website &
web-site artifact

https://www.tandfonline.com/doi/abs/1
0.1080/13614569908914709

Q
M

-1
29

 1999 [456] 58 Khoshgoftaar, T.
M., Allen, E. B.,
Jones, W. D. &
Hudepohl, J.

Khoshgoftaar -
Allen - Jones-
Hudepohl -
99b

Khoshgoftaar -
Allen - Jones-
Hudepohl - 99a

Pr Classification
Tree

Product M & U Very large legacy
telecommunication
software system

https://www.worldscientific.com/doi/ab
s/10.1142/S0218194099000309

Q
M

-1
30

1999 [457] 14 Khoshgoftaar, T.
M., Allen, E. B.,
Yuan, X., Jones,
W. D. &
Huderpohl, J. P.

Khoshgoftaar -
Allen - Yuan -
Jones -
Huderpohl

 Pr Classification
Tree

Product M & U very large legacy
telecommunication
software

https://ieeexplore.ieee.org/abstract/doc
ument/792634

Q
M

-1
31

1999 [458] 357 Gehrken D. &
Turban, E.

Gehrken -
Turban

 D Hierarchical Product U Web sites https://ieeexplore.ieee.org/abstract/doc
ument/772943

Q
M

-1
32

 1999 [115] 83 Von Dran, G.M.;
Zhang, P.; Small,
R. V.

Von Dran -
Zhang - Small

Kano D Hierarchical Product U web site from user
perspective

https://aisel.aisnet.org/amcis1999/314/?
utm_source=aisel.aisnet.org%2Famcis19
99%2F314&utm_medium=PDF&utm_ca
mpaign=PDFCoverPages

Q
M

-1
33

 1999 [459] 96 Chulani, S. &
Boehm, B.

COnstructive
QUALity
MOdel
(COQUALMO)

 Pr Statistics Product M Software with 3
modes: organic,
semi-detached &
embedded

http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.52.6144&rep=rep1&t
ype=pdf

Q
M

-1
34

 1999 [460] 46 Voas J. Software
quality
certification
triangle

 D Hierarchical Product M COTS, certification https://ieeexplore.ieee.org/document/7
76944

Q
M

-1
35

 1999 [461] 19 H. Petersson &
C. Wohlin

Petersson -
Wohlin
Capture-
Recapture99

 Pr Capture-
Recapture

Product M software https://ieeexplore.ieee.org/abstract/doc
ument/809317

Q
M

-1
36

 1999 [462] 84 Benlarbi, Saïda
and Melo,
Walcelio L

Benlarbi -
Melo

Pr Regression

analysis
Product M C++ software,

object-oriented
software

https://dl.acm.org/doi/10.1145/302405.
302652

Q
M

-1
37

1999 [463] 70 El Emam, Khaled
and Benlarbi,
Saïda and Goel,
Nishith and Rai,
Shesh

El Emam -
Benlarbi - Goel
- Rai 99

Pr Logistic

regression
Product M Telecommunication

system, C++
software, object-
oriented software

https://citeseerx.ist.psu.edu/viewdoc/su
mmary?doi=10.1.1.17.1923&rank=1&q=
A%20validation%20of%20object-
oriented%20metrics&osm=&ossid=

Q
M

-1
38

1999 [464] 367 Tang, Mei-Huei
and Kao, Ming-
Hung and Chen,
Mei-Hwa

Tang - Kao -
Chen

Pr Statistics Product M object-oriented

systems and
software, industrial
real-time system,
HMI (Human
Machine Interface)
software, user
interface-oriented
program,
communication-
oriented program, a
real time data
logging process

https://ieeexplore.ieee.org/abstract/doc
ument/809745

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

308 | P a g e

Q
M

-1
39

 2000 [465] 46 Khoshgoftaar, T.
M., Allen, E. B.,
Jones, W. D. &
Hudepohl, J.

Khoshgoftaar -
Allen - Jones-
Hudepohl -
2000

Jones -
Hudepohl -
Khoshgoftaar -
Allen

Pr Logistic
regression

Product M & U large legacy
telecommunication
software system

https://link.springer.com/article/10.1023
/A:1018972607783

Q
M

-1
40

 2000 [466] 30 Khoshgoftaar, T.
M., Shan, R. &
Allen, E. B.

Khoshgoftaar -
Shan - Allen

Khoshgoftaar -
Allen - Jones-
Hudepohl - 99b

Pr Classification
Tree

Product M & U very large
telecommunication
software

https://ieeexplore.ieee.org/abstract/doc
ument/885872

Q
M

-1
41

 2000 [467] 109 Zhang, P., Small,
R. V., Von Dran,
G. M. &
Barcellos, S.

Zhang et al.
Website
Quality Model

Von Dran -
Zhang - Small

A Hierarchical Product U web site quality
from user
perspective
(satistfaction/disatif
cation)

https://ieeexplore.ieee.org/abstract/doc
ument/926847

Q
M

-1
42

 2000 [468] 72 Khoshgoftaar, T.
M. & Allen, E. B.

Khoshgoftaar -
Allen2000

Khoshgoftaar -
Allen98

Pr Discriminant
analysis

Product M & U Telecommunication
system software &
military system
software

https://ieeexplore.ieee.org/abstract/doc
ument/877340

Q
M

-1
43

 2000 [469] 10 H. Petersson &
C. Wohlin

Petersson -
Wohlin
Capture-
Recapture00

Pr Capture-

Recapture
Product M software https://www.wohlin.eu/ease00.pdf

Q
M

-1
44

 2000 [470] 19 T Thelin, P
Runeson

Thelin -
Runeson
Capture-
Recapture

Pr Capture-

Recapture
Product M software https://www.sciencedirect.com/science/

article/pii/S0164121299001405

Q
M

-1
45

2000 [471] 889 Briand, Lionel
C.; Wüst,
Jürgen; Daly,
John W.; Porter,
D Victor

Briand - Wüst -
Daly - Porter

Pr Logistic

regression
Product M object-oriented

software
https://www.sciencedirect.com/science/
article/pii/S0164121299001028

Q
M

-1
46

 2000 [472] 4 Barnes, S.;
Vidgen, R

WebQual SERVQUAL A Hierarchical Product U websites https://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.107.5463&rep=rep1
&type=pdf

Q
M

-1
47

2000 [473] 117 Muthanna, S.;
Kontogiannis,
Kostas;
Ponnambalam,
Kumaraswamy;
Stacey, B

Muthanna -
Kontogiannis -
Ponnambalam
- Stacey

Pr Regression

analysis
Product M industrial software

systems
https://ieeexplore.ieee.org/abstract/doc
ument/891476

Q
M

-1
48

2000 [474] 854 Fenton, Norman
E. ; Ohlsson,
Niclas

Fenton -
Ohlsson

Pr Bayesian

Network
Product M industrial software

systems,
commercial
software,
telecommunication
system

https://ieeexplore.ieee.org/abstract/doc
ument/879815

Q
M

-1
49

 2000 [475] 133 Yuan, Xiaohong;
Khoshgoftaar,
Taghi M.; Allen,
Edward B.;
Ganesan, K

Yuan -
Khoshgoftaar -
Allen -
Ganesan

Pr Fuzzy logic Product M very large

telecommunication
software

https://ieeexplore.ieee.org/abstract/doc
ument/888052

Q
M

-1
50

2000 [476] 45 Guo, Ping; Lyu,
Michael R

Guo - Lyu

Pr Statistics Product M software modules https://ieeexplore.ieee.org/abstract/doc
ument/883780

Q
M

-1
51

2000 [477] 113 Benlarbi, Saida;
El Emam,
Khaled; Goel,
Nishith; Rai,
Shesh

Benlarbi - El
Emam - Goel -
Rai

Pr Logistic

regression
Product M Telecommunication

system, C++
software, object-
oriented software

https://ieeexplore.ieee.org/abstract/doc
ument/885858

Q
M

-1
52

2000 [478] 72 Glasberg,
Daniela; El
Emam, Khaled;
Melo, Walcelio;
Madhavji,
Nazim

Glasberg - El
Emam - Melo -
Madhavji

Pr Logistic

regression
Product M Commercial Java

application, object-
oriented software

https://citeseerx.ist.psu.edu/viewdoc/su
mmary?doi=10.1.1.20.4483&rank=1&q=
Validating%20Object-
oriented%20Design%20Metrics%20on%2
0a%20Commercial%20Java%20Applicatio
n&osm=&ossid=

Annexes

309 | P a g e

Q
M

-1
53

 2001 [199] 161 Zhang, P.; Von
Dran, G.

Expanded
Website
Quality Model

Zhang et al.
Website Quality
Model, Kano

D Hierarchical Product U Web sites https://ieeexplore.ieee.org/abstract/doc
ument/927050/

Q
M

-1
54

 2001 [479] 52 Liu, Y.;
Khoshgoftaar, T.
M.

Liu -
Khoshgoftaar

Pr Genetic

Algorithm
(GA)

Product M & U Very large C++
application

https://ieeexplore.ieee.org/abstract/doc
ument/966814

Q
M

-1
55

2001 [480] 150 Balci, O. Modeling &
Simulation
Application
(MSA)
certification
model

A Hierarchical Any M & P Modeling and

simulation
applications

https://dl.acm.org/doi/abs/10.1145/508
366.508369

Q
M

-1
56

 2001 [481] 148 Leung, H. K. N. Intranet
Application
Quality Model

ISO/IEC 9126 A Hierarchical Product U Intranet applications https://www.sciencedirect.com/science/
article/pii/S0378720600000604

Q
M

-1
57

2001 [482] 127 Fabbrini, F.,
Fusani, M.,
Gnesi, S. &
Lami, G.

Natural
Language
Software
Requirements
Specification
(NLSRS) quality
model

A Hierarchical Product U software

requirements
http://fmt.isti.cnr.it/WEBPAPER/P11RESF
Q01.pdf

Q
M

-1
58

2001 [483] 10 F Losavio, L
Chirinos, M
Pérez

Losavio -
Chirinos -
Perez

ISO 9126 A Hierarchical Product U interactive system https://www.researchgate.net/profile/Fr
ancisca_Losavio/publication/249704579_
Attribute-
based_techniques_to_evaluate_architect
ural_styles_Case_study_for_interactive_
systems/links/54ee3b2f0cf2e28308645d
8e/Attribute-based-techniques-to-
evaluate-architectural-styles-Case-study-
for-interactive-systems.pdf

Q
M

-1
59

 2001 [484] 67 M. Kajko-
Mattsson; S.
Forssander; U.
Olsson

CM3 maturity
model

CMM A Hierarchical Process M software process
maturity

https://ieeexplore.ieee.org/abstract/doc
ument/919135

Q
M

-1
60

 2001 [485] 36 S Biffl, W
Grossmann

Biffl -
Grossmann
Inspection-
Reinspection

Pr Capture-

Recapture
Product M software https://ieeexplore.ieee.org/abstract/doc

ument/919089

Q
M

-1
61

2001 [486] 361 Olsina, Luis ;
Lafuente,
Guillermo ;
Rossi, Gustavo

Web-site
Quality
Evaluation
Methodology
(QEM) model

ISO 9126 A Hierarchical Product U web sites https://link.springer.com/chapter/10.100
7/3-540-45144-7_26

Q
M

-1
62

2001 [487] 469 El Emam,
Khaled; Melo,
Walcelio;
Machado,
Javam C

El Emam, -
Melo -
Machado

Pr Logistic

regression
Product M object-oriented

software
https://www.sciencedirect.com/science/
article/pii/S0164121200000868

Q
M

-1
63

2001 [61] 26 Wijnstra, J
Gerben

Wijnstra

D Hierarchical Product P embedded system,
medical product

https://ieeexplore.ieee.org/abstract/doc
ument/927254

Q
M

-1
64

 2001 [488] 227 Briand, Lionel
C.; Wüst,
Jürgen; Lounis,
Hakim

Briand - Wüst -
Lounis

Pr Logistic

regression
Product M object-oriented

systems, object-
oriented software

https://link.springer.com/article/10.1023
/A:1009815306478

Q
M

-1
65

2001 [489] 500 El Emam,
Khaled;
Benlarbi, Saïda;
Goel, Nishith;
Rai, Shesh N.

El Emam -
Benlarbi - Goel
- Rai 01

El Emam -
Benlarbi - Goel -
Rai 99

Pr Logistic
regression

Product M Telecommunication
system, C++
software, object-
oriented software

https://ieeexplore.ieee.org/abstract/doc
ument/935855

Q
M

-1
66

2002 [219] 14 SEI CMMI
Product
Development
Team

Capability
Maturity
Model
Integration
(CMMi) v1.1

CMM A Hierarchical Process M software process
maturity

https://resources.sei.cmu.edu/library/as
set-view.cfm?assetid=6217

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

310 | P a g e

Q
M

-1
67

 2002 [218] 1160 Bansiya, J.;
Davis, C. G.

Quality Model
for Object-
Oriented
Design
(QMOOD)

Dromey, ISO
9126

A Hierarchical Product P Object-oriented
software

https://ieeexplore.ieee.org/abstract/doc
ument/979986

Q
M

-1
68

2002 [274] 17 Mendoza, L. E.,
Grimán, A. C.,
Pérez, M. A. &
Rojas, T.

Business Portal
Development
Environment
(PBDE) quality
model

ISO 9126 A Hierarchical Process U Internet Business
Portal Development
Environment

https://www.tandfonline.com/doi/abs/1
0.1201/1078/43200.19.2.20020228/3514
1.7?journalCode=uism20

Q
M

-1
69

 2002 [490] 131 Khoshgoftaar, T.
M., Allen, E. B.;
Deng, J.

Khoshgoftaar -
Allen - Deng
2002

Khoshgoftaar -
Allen - Jones-
Hudepohl - 2000

Pr Regression
tree

Product M & U very large
telecommunication
system

https://ieeexplore.ieee.org/abstract/doc
ument/1044344

Q
M

-1
70

 2002 [73] 22 Khoshgoftaar, T.
M., Cukic, B.;
Seliya, N.

Khoshgoftaar -
Cukic - Seliya
2002

Pr Analogy-

based
classification

Product M & U Telecommunication
embedded systems

https://www.worldscientific.com/doi/ab
s/10.1142/S0218194002000883

Q
M

-1
71

 2002 [491] 50 Pizzi, N. J.,
Summers, A. R.;
Pedrycz, W.

Pizzi -
Summers -
Pedrycz

Pr Neural

Network
Product M Java software https://ieeexplore.ieee.org/abstract/doc

ument/1007518

Q
M

-1
72

 2002 [492] 348 Briand, L. C.,
Melo, W. L.;
Wust, J.

MARS model

Pr Multivariate
adaptive

regression

Product M & U Midsized Java
software

https://ieeexplore.ieee.org/abstract/doc
ument/1019484

Q
M

-1
73

 2002 [272] 14 Zhu, H., Zhang,
Y., Huo, Q.;
Greenwood, S.

HASARD model

D Meta-model Product U Information
Systems, Web-based
information systems

https://ieeexplore.ieee.org/abstract/doc
ument/1044544

Q
M

-1
74

2002 [493] 51 So, S. S., Cha, S.
D.; Kwon, Y. R.

So - Cha -
Kwon

Pr Fuzzy

classification
Product M software https://www.sciencedirect.com/science/

article/pii/S0165011401001282

Q
M

-1
75

2002 [494] 27 Ramler, R.,
Weippl, E.,
Winterer, M.,
Schwinger, W.;
Altmann, J.

Ramler -
Weippl -
Winterer -
Schwinger -
Altmann

ISO 9126 A Hierarchical Product P Web application &
site

http://www.schwinger.at/PUBLICATIONS
/39_2002_ICWE___A_QualityDrivenAppr
oach_to_Web_Testing.pdf

Q
M

-1
76

2002 [495] 168 Khoshgoftaar, T.
M.; Seliya, N

Khoshgoftaar -
Seliya

Pr Regression

tree
Product M & U telecommunication

system
https://ieeexplore.ieee.org/abstract/doc
ument/1011339

Q
M

-1
77

2002 [496] 21 J Miller; F
Macdonald; J
Ferguson

Miller -
Macdonald -
Ferguson
Capture-
Recapture

Pr Capture-

Recapture
Product M software https://link.springer.com/article/10.1023

/A:1013112826330

Q
M

-1
78

 2002 [497] 16 F Padberg Padberg
Cpature-
Recapture

Pr Capture-

Recapture
Product M NASA, automatic

teller machine
https://dl.acm.org/doi/abs/10.1145/581
339.581350

Q
M

-1
79

2002 [498] 201 M. Bertoa, A.
Vallecillo

Bertoa -
Vallecillo

ISO 9126 A Hierarchical Product P Component based
systems (COTS) &
Component-based
Software
Development
(CBSD)

https://www.researchgate.net/profile/M
anuel_Bertoa/publication/2921285_Qual
ity_Attributes_for_COTS_Components/li
nks/02bfe50d640ce3a7f0000000.pdf

Q
M

-1
80

2002 [499] 34 Albuquerque,
Adriano Bessa
and Belchior,
Arnaldo Dias

Fuzzy Model
for Software
Quality
Evaluation
(FMSQE)

A Hierarchical Product P & U e-commerce

websites
http://archive.thewebconf.org/proceedi
ngs/www2002/poster/155.pdf

Q
M

-1
81

 2002 [500] 159 Schubert, Petra Extended Web
Assessment
Method
(EWAM)

A Hierarchical Product U e-commerce

websites
https://www.tandfonline.com/doi/abs/1
0.1080/10864415.2002.11044262

Q
M

-1
82

 2002 [62] 3 Purhonen, Anu Purhonen

D Hierarchical Product M & P DSP software,
telecommunication
system

https://link.springer.com/chapter/10.100
7/3-540-47833-7_21

Annexes

311 | P a g e

Q
M

-1
83

2002 [501] 40 Mani,
Anbazhagan

IBM

A Hierarchical Service P & U web services,
distributed systems

https://www.ibm.com/developerworks/li
brary/ws-quality/

Q
M

-1
84

2002 [502] 99 El Emam,
Khaled;
Benlarbi, Saïda;
Goel, Nishith;
Melo, Walcelio;
Lounis, Hakim;
Rai, Shesh N

El Emam -
Benlarbi - Goel
- Melo - Lounis
- Rai

Pr Logistic

regression
Product M Telecommunication

system, industrial
C++ system, C++
software,
commercial Java
applications, object-
oriented software

https://ieeexplore.ieee.org/abstract/doc
ument/1000452

Q
M

-1
85

2003 [503] 58 Khoshgoftaar, T.
M.; Seliya, N.;
Liu, Y.

Khoshgoftaar -
Seliya - Liu

Liu -
Khoshgoftaar

Pr Genetic
Algorithm

(GA)

Product M & U Embedded software
systems to
customize wireless
telecommunication
products

https://ieeexplore.ieee.org/abstract/doc
ument/1250214

Q
M

-1
86

2003 [504] 8 Zeineddine, R.;
Mansour, N.

Software
Quality Model
for Small
Organizations
(SQIMSO)

SPICE, CMM,
SPIRE

A Hierarchical Process M Software process for
small organizations

https://link.springer.com/chapter/10.100
7/978-3-540-39737-3_127

Q
M

-1
87

 2003 [505] 30 Herrera, E. M. ;
Ramírez, R. A. T.

Self-diagnosis
Herrera -
Ramirez model

CMM A Hierarchical Process M software process for
medium & small
organizations

https://onlinelibrary.wiley.com/doi/abs/
10.1002/j.1681-4835.2003.tb00100.x

Q
M

-1
88

2003 [506] 119 Quah, T.-S.;
Thwin, M. M. T.

Quah - Thwin

Pr Neural
Network

Product M Object-oriented
software

https://ieeexplore.ieee.org/document/1
235412

Q
M

-1
89

 2003 [507] 23 Ruiz, J., Calero,
C.; Piattini, M.

QUINT2 ISO 9126,
Ramler - Weippl
- Winterer -
Schwinger -
Altmann

A Hierarchical Product P Web application &
site

https://link.springer.com/chapter/10.100
7/3-540-45068-8_69

Q
M

-1
90

2003 [229] 46 Georgiadou, E. GEneric,
multilayered
and
customisable
QUAlity MOdel
(GEQUAMO)

A Hierarchical Product M & P

& U
Software https://link.springer.com/article/10.1023

/A:1025817312035

Q
M

-1
91

 2003 [508] 181 Ortega, M.,
Pérez, M. ;
Rojas, T.

Systemic
Quality Model

Mc Call, ISO
9126, Dromey

A Hierarchical Product P & U Software https://link.springer.com/article/10.1023
/A:1025166710988

Q
M

-1
92

2003 [50] 51 A Trendowicz, T
Punter

Prometheus Basili (GQM) A Hierarchical Product M embedded systems,
J231

https://www.researchgate.net/profile/A
dam_Trendowicz/publication/228598402
_T_Quality_Modeling_for_Software_Pro
duct_Lines/links/0a85e532b096fa5f8e00
0000/T-Quality-Modeling-for-Software-
Product-Lines.pdf

Q
M

-1
93

 2003 [509] 68 Régis P. S.
Simão; Arnaldo
D. Belchior

FMSQE ISO 9126 A Hierarchical Product P & U software
components, COTS,
Component Based
Design (CBD)

https://link.springer.com/chapter/10.100
7/978-3-540-45064-1_9

Q
M

-1
94

2003 [510] 55 Duijnhouwer,
Frans-Willem;
Widdows, Chris

OpenSource
Maturity
Model
(OSMM) Cap
Gemini

ISO 9126 A Hierarchical Product M & P Free/Lbre open
source software

https://scholar.google.com/scholar?q=D
uijnhouwer%2C%20F.-
W.%2C%20Widdows%2C%20C.%3A%20C
apgemini%20Expert%20Letter%20Open
%20Source%20Maturity%20Model%2C%
20Capgemini%20%282003%29

Q
M

-1
95

2003 [511] 22 Stefani, Antonia
; Xenos,
Michalis ;
Stavrinoudis,
Dimitris

Stefani - Xenos
- Stavrinoudis

ISO 9126 A Bayesian
Network

Product P e-commerce
systems (Business to
Consumer (B2C) and
Business-to-Business
(B2B).)

https://ieeexplore.ieee.org/abstract/doc
ument/1227023

Q
M

-1
96

 2003 [512] 7 S Golubic Golubic quality
build-in based
quality model

ISO 9126 A Hierarchical Product M & P
& U

object oriented
software,
continuous quality
verification

https://ieeexplore.ieee.org/abstract/doc
ument/1215871

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

312 | P a g e

Q
M

-1
97

 2003 [513] 76 Mich, Luisa ;
Franch,
Mariangela ;
Gaio, Loris

2QCV3Q A Hierarchical Product M & U web sites, banking,
tourism, academic

https://www.researchgate.net/profile/Lu
isa_Mich/publication/24136748_Evaluati
ng_and_designing_the_quality_of_web_
Sites/links/00b4952c579eb10d8b000000
.pdf

Q
M

-1
98

 2003 [514] 85 Zhang, Hongyu;
Jarzabek, Stan;
Yang, Bo

Zhang -
Jarzabek -
Yang

 Pr Bayesian
Network

Product M & P
& U

product lines,
Computer Aided
Dispatch (CAD)

https://link.springer.com/chapter/10.100
7/3-540-45017-3_45

Q
M

-1
99

 2003 [515] 103 Khoshgoftaar,
Taghi M; Seliya,
Naeem

Khoshgoftaar -
Seliya - 03b

 Pr Case-based
reasoning

(CBR)

Product M large
telecommunications
software system

https://link.springer.com/article/10.1023
/A:1025316301168

Q
M

-2
00

 2003 [516] 644 Abran, Alain;
Khelifi, Adel;
Suryn, Witold;
Seffah, Ahmed

Abran- Khelifi -
Suryn - Seffah

ISO 9126 D Hierarchical Product U software https://link.springer.com/article/10.1023
/A:1025869312943

Q
M

-2
01

2003 [517] 1586 Ran, Shuping Ran A Hierarchical Service P & U web services,
distributed systems

https://dl.acm.org/doi/abs/10.1145/844
357.844360

Q
M

-2
02

2003 [518] 216 Lee, Kangchan;
Jeon, JongHong;
Lee, WonSeok;
Jeong, Seong-
Ho; Park, Sang-
Won

W3C QoS Ran A Hierarchical Service P & U web services,
distributed systems

http://www.w3c.or.kr/kr-
office/TR/2003/ws-qos/

Q
M

-2
03

 2003 [519] 132 Patel, Chintan;
Supekar,
Kaustubh; Lee,
Yugyung

WebQ QoS A Hierarchical Service P & U web services,
distributed systems

https://link.springer.com/chapter/10.100
7/978-3-540-45227-0_80

Q
M

-2
04

2003 [520] 14 Morisio,
Maurizio;
Stamelos,
Ioannis;
Tsoukias, Alexis

Morisio -
Stamelos -
Tsoukias

CMM v1.1 A Hierarchical Product
&

Process

M Software entities
(software products
or processes),
management
information system
(MIS), Commercial
Off The Shelf (COTS)

https://www.worldscientific.com/doi/ab
s/10.1142/S0218194003001433

Q
M

-2
05

 2004 [277] 5 Oh, J., Park, D.,
Lee, B., Lee, J.,
Hong, E. & Wu,
C.

Certification
model

CMM, SPICE,
ISO/IEC 9126

A Meta-model Product
&

Process

M & P
& U

Commercial Off The
Shelf

https://link.springer.com/chapter/10.100
7/978-3-540-24675-6_17

Q
M

-2
06

2004 [521] 311 Lan Guo, Yan
Ma, Bojan
Cukic,
Harshinder
Singh

Guo - Ma -
Cukic - Singh

 Pr Random
forest

Product M Nasa software (data
set from Nasa)

https://ieeexplore.ieee.org/abstract/doc
ument/1383136

Q
M

-2
07

2004 [522] 20 Navica Inc. OpenSource
Maturity
Model
(OSMM)
Navica

ISO 9126 A Hierarchical Product M & P Free/Lbre open
source software

http://www.navicasoft.com/pages/osm
m.htm

Q
M

-2
08

2004 [523] 32 Atos Origin Qualification
and Selection
of Open
Source
software
(QSOS)

 A Hierarchical Product M & P Free/Libre open
source software

http://www.qsos.org/

Q
M

-2
09

 2004 [524] 63 Khosravi,
Khashayar;
Guéhéneuc,
Yann-Gaël

Software
Quality STAR
model

 A Hierarchical Product M & P software object
oriented, design
pattern

https://www.academia.edu/download/3
0799555/041021_Kashayar_Khosravi_Te
chnical_Report.doc.pdf

Q
M

-2
10

2004 [525] 46 Di Lucca,
Giuseppe A.;
Fasolino, Anna
Rita;
Tramontana,
Porfirio;

Web-
Application
(WA)
maintainability
model

Oman -
Hagemeister
maintainability
model

A Hierarchical Product M web-applications https://ieeexplore.ieee.org/abstract/doc
ument/1281430

Annexes

313 | P a g e

Visaggio,
Corrado Aaron

Q
M

-2
11

 2004 [526] 292 Webb, Harold
W.; Webb, Linda
A.

SiteQual SERVQUAL A Hierarchical Product U B2C electronic
commerce websites

https://www.emerald.com/insight/conte
nt/doi/10.1108/17410390410566724/full
/html

Q
M

-2
12

 2004 [527] 808 Maximilien, E
Michael; Singh,
Munindar P

WSAF-QoS Ran, W3C QoS A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/1336749

Q
M

-2
13

2004 [528] 6528 Avizienis,
Algirdas; Laprie,
J-C.; Randell,
Brian;
Landwehr, Carl

Avizienis -
Laprie -
Randell -
Landwehr

 A Hierarchical Product M & P software https://ieeexplore.ieee.org/abstract/doc
ument/1335465

Q
M

-2
14

 2004 [529] 20 Patel, Chintan;
Supekar,
Kaustubh; Lee,
Yugyung

SemWebQ WebQ QoS A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/1314773

Q
M

-2
15

 2004 [530] 17 Looker, Nik;
Munro,
Malcolm; Xu, Jie

Looker -
Munro - Xu

 A Hierarchical Service P web services,
distributed systems

http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.483.5007&rep=rep1
&type=pdf

Q
M

-2
16

 2004 [531] 91 Marinescu,
Radu; Ratiu,
Daniel

Factor-
Strategy
Model

Boehm78,
McCall (FCM)

A Hierarchical Product M software design https://ieeexplore.ieee.org/abstract/doc
ument/1374319

Q
M

-2
17

2004 [64] 18 Åkerholm,
Mikael;
Fredriksson,
Johan;
Sandström,
Kristian;
Crnkovic, Ivica

Åkerholm -
Fredriksson -
Sandström -
Crnkovic

 D Hierarchical Product M & P Component-based
development,
Component Based
Software
Engineering (CBSE),
vehicular embedded
systems
(construction
equipment vehicles,
cars, train, heavy
truck, marine
engines, industrial
robots)

http://www.es.mdh.se/pdf_publications/
645.pdf

Q
M

-2
18

 2004 [532] 227 Chua, Bee Bee;
Dyson, Laurel
Evelyn

Chua - Dyson ISO 9126 A Hierarchical Product M & P
& U

E-learning system,
online learning

https://ascilite.org/conferences/perth04
/procs/pdf/chua.pdf

Q
M

-2
19

2005 [278] 31 Côté, M.-A.,
Suryn, W.,
Laporte, C. Y. ;
Martin, R. A.

Enhanced
SQAE

ISO/IEC 9126,
SQAE

A Hierarchical Product M & P Software https://www.scopus.com/inward/record.
uri?eid=2-s2.0-
17444388547&doi=10.1007%2fs11219-
004-5259-
6&partnerID=40&md5=09ec05c221610b
4c799ab6111def6568

Q
M

-2
20

2005 [533] 109 Doerr, J.,
Kerkow, D.
Koenig, T.,
Olsson, T.;
Suzuki, T.

Experience-
based NFR
quality model

ISO 9126 A Hierarchical Product P & U Embedded software
systems &
information system

https://ieeexplore.ieee.org/abstract/doc
ument/1531057

Q
M

-2
21

 2005 [534] 88 Freimut, B.
Denger, C.;
Ketterer, M.

Defect Flow
Model (DFM)

ODC A Hierarchical Process M Software
development
process

https://ieeexplore.ieee.org/abstract/doc
ument/1509297

Q
M

-2
22

2005 [148] 24 S. Khaddaj; G.
Horgan

ADEQUATE ISO 9126 A Hierarchical Product M & P
& U

software https://www.researchgate.net/profile/G
_Horgan/publication/26408254_A_Propo
sed_Adaptable_Quality_Model_for_Soft
ware_Quality_Assurance/links/55f457a1
08ae7a10cf88ec8e.pdf

Q
M

-2
23

 2005 [224] 231 Alain April, Jane
Huffman Hayes,
Alain Abran,
Reiner Dumke

SMmm CMM, CMMi, A Hierarchical Process M software process
maturity

https://onlinelibrary.wiley.com/doi/abs/
10.1002/smr.311

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

314 | P a g e

Q
M

-2
24

2005 [535] 32 Kilsup Lee; Sung
Jong Lee

Lee - Lee ISO 9126 A Hierarchical Product P software https://ieeexplore.ieee.org/abstract/doc
ument/1434862

Q
M

-2
25

 2005 [536] 288 Mie Mie Thet
Thwin; Tong-
Seng Quah

Thwin - Quah Quah - Thwin Pr Neural
Network

Product M object oriented
software

https://www.sciencedirect.com/science/
article/pii/S0164121204000871

Q
M

-2
26

2005 [537] 13 Wasserman, A.;
Pal, M.; Chan, C.

Open Business
Readiness
Rating
(OpenBRR)

ISO 9126,
OpenSource
Maturity Model
(OSMM) Cap
Gemini,
OpenSource
Maturity Model
(OSMM) Navica

A Hierarchical Product M & P Free/Lbre open
source software

http://www.openbrr.org/wiki/images/d/
da/BRR_whitepaper_2005RFC1.pdf

Q
M

-2
27

 2005 [538] 119 Signore, Oreste Signore A Hierarchical Product U web sites https://ieeexplore.ieee.org/abstract/doc
ument/1517978

Q
M

-2
28

2005 [539] 70 Alvaro,
Alexandre ;
Santana de
Almeida,
Eduardo ;
Romero de
Lemos Meira,
Silvio

Software
Component
Quality Model
(CQM) v1.0

ISO 9126 A Hierarchical Product M & P Component-Based
Software
Engineering (CBSE),
COTS

https://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.93.4703&rep=rep1&t
ype=pdf

Q
M

-2
29

2005 [540] 17 Chen, Chie-Bein;
Lin, Chin-Tsai;
Wang, Chun-
Hsien; Chang,
Che-Wei

Chen - Lin -
Wang - Chang

ISO 9126 A Fuzzy logic Product M & U digital video
recorder software,
component
software

https://www.sciencedirect.com/science/
article/pii/S0950584905000637

Q
M

-2
30

 2005 [541] 3332 Zeithaml, V. A.,
Berry, L. L.;
Parasuraman, A.

E-S-SQUAL SERVQUAL A Hierarchical Service U e-service quality https://journals.sagepub.com/doi/abs/1
0.1177/1094670504271156

Q
M

-2
31

 2005 [541] 1666 Zeithaml, V. A.,
Berry, L. L.;
Parasuraman, A.

E-RecS-SQUAL SERVQUAL A Hierarchical Service U e-service quality https://journals.sagepub.com/doi/abs/1
0.1177/1094670504271156

Q
M

-2
32

2005 [542] 265 Dobson, Glen;
Lock, Russell
and
Sommerville,
Ian

QoSOnt WSAF-QoS A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/1517730

Q
M

-2
33

2005 [543] 162 De Bruijn, J.;
Bussler, C.;
Domingue, J.;
Fensel, D.;
Hepp, M.; Kifer,
M.; König-Ries,
B.; Kopecky, J.;
Lara, R.; Oren,
E.; Polleres, A.;
Scicluna, J.;
Stollberg, M.

Web Service
Modeling
Ontology
(WSMO)

 A Hierarchical Service P & U web services,
distributed systems

https://www.w3.org/Submission/WSMO
/

Q
M

-2
34

2005 [544] 11 Amasaki,
Sousuke; Takagi,
Yasunari;
Mizuno, Osamu;
Kikuno, Tohru

Amasaki -
Takagi -
Mizuno -
Kikuno

 Pr Bayesian
Network

Product M embedded system
and software

https://search.ieice.org/bin/summary.ph
p?id=e88-d_6_1134

Q
M

-2
35

 2005 [545] 154 Xing, Fei; Guo,
Ping; Lyu,
Michael R

Xing - Guo -
Lyu

 Pr Classification Product M medical systems https://ieeexplore.ieee.org/abstract/doc
ument/1544736

Q
M

-2
36

 2005 [546] 8 Janakiram, D.;
Rajasree, MS

Requirements-
driven Quality
Estimator
(ReQuEst)

 A Hierarchical Product M & P software product
line, feature model

https://dl.acm.org/doi/abs/10.1145/103
9174.1039194

Annexes

315 | P a g e

Q
M

-2
37

 2005 [547] 1057 Gyimothy,
Tibor; Ferenc,
Rudolf; Siket,
Istvan

Gyimothy -
Ferenc - Siket

 Pr Logistic
regression

Product M object-oriented
software, web and
email software

https://ieeexplore.ieee.org/abstract/doc
ument/1542070

Q
M

-2
38

 2006 [282] 1 Wang, C. T., Lo,
C. C. ; Jean, T. F.

Stack-based
Markov (SBM)
model

 A Stack-Based
Markov

Product P Software https://www.tandfonline.com/doi/abs/1
0.1080/10170660609509329

Q
M

-2
39

 2006 [125] 1 Khoshgoftaar, R.
M.; Szabo, R. M.

Poisson
Regression
Model Fault

Khoshgoftaar -
Szabo94,
Lambert Zero-
Inflated Poisson

Pr Poisson
regression

Product U large military
telecommunications
software system

https://www.worldscientific.com/doi/10.
1142/9789812707147_0007

Q
M

-2
40

 2006 [201] 146 A. Rawashdeh;
B. Matalkah

Rawashdeh-
Matalkah

ISO 9126 A Hierarchical Product M & P COTS http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.165.8000&rep=rep1
&type=pdf

Q
M

-2
41

2006 [548] 203 C. van Koten;
A.R. Gray

van Koten -
Gray

 Pr Bayesian
Network

Product M object oriented
software

https://www.sciencedirect.com/science/
article/pii/S0950584905000339

Q
M

-2
42

2006 [549] 125 Miranda,
Francisco Javier
; Cortés, Rosa ;
Barriuso,
Christina

Web
Assessment
Index (WAI)

 A Hierarchical Product U electronic banking
websites

http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.67.3154&rep=rep1&t
ype=pdf

Q
M

-2
43

 2006 [550] 63 Carvallo, Juan
Pablo; Franch,
Xavier

Carvallo -
Franch

ISO 9126 A &
Pr

Hierarchical Product M COTS software https://dl.acm.org/doi/abs/10.1145/113
7702.1137706

Q
M

-2
44

2006 [551] 106 Khoshgoftaar,
Taghi M; Seliya,
Naeem;
Sundaresh,
Nandini

Khoshgoftaar -
Seliya -
Sundaresh

 Pr Case-based
reasoning

(CBR)

Product M very large
telecommunication
software

https://link.springer.com/article/10.1007
/s11219-006-7597-z

Q
M

-2
45

2006 [552] 779 Seffah, Ahmed;
Donyaee,
Mohammad;
Kline, Rex B.;
Padda, Harkirat
K

Quality in Use
Integrated
Measurement
(QUIM) model

 A Hierarchical Product U interactive software
systems, traditional
GUIs-style
applications, Web
sites, mobile and
PDA interactive
services

https://link.springer.com/article/10.1007
/s11219-006-7600-8

Q
M

-2
46

2006 [553] 366 Wang, Xia;
Vitvar, Tomas;
Kerrigan, Mick;
Toma, Ioan

Web Services
Modeling
Ontology
(WSMO) QoS

Ran, W3C QoS,
IBM, Web
Service
Modeling
Ontology
(WSMO)

A Hierarchical Service P & U web services,
distributed systems

https://link.springer.com/chapter/10.100
7/11948148_32

Q
M

-2
47

 2006 [554] 19 Jiang, Shanshan;
Aagesen, Finn
Arve

Jiang -
Aagesen

WSAF-QoS A Hierarchical Service P web services,
distributed systems

https://link.springer.com/chapter/10.100
7/11880905_14

Q
M

-2
48

 2006 [555] 47 Yeom, Gwyduk;
Yun, Taewoong;
Min, Dugki

Yeom - Yun -
Min

Ran, IBM A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/1611735

Q
M

-2
49

2006 [556] 71 Tsesmetzis,
Dimitrios T. ;
Roussaki,
Ioanna G. ;
Papaioannou,
Ioannis V. ;
Anagnostou,
Miltiades E

Tsesmetzis -
Roussaki -
Papaioannou -
Anagnostou

W3C QoS, IBM A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/1602261

Q
M

-2
50

2006 [557] 54 Garcia, Diego
Zuquim
Guimarães ; de
Toledo, Maria
Beatriz Felgar

Garcia - Beatriz Ran, WSAF-QoS A Hierarchical Service P web services,
distributed systems

https://dl.acm.org/doi/abs/10.1145/118
6595.1186601

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

316 | P a g e

Q
M

-2
51

 2006 [558] 75 Truong, Hong-
Linh; Samborski,
Robert;
Fahringer,
Thomas

Truong -
Samborski -
Fahringer

Avizienis - Laprie
- Randell -
Landwehr

A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/4031038

Q
M

-2
52

2006 [559] 429 Zhou, Yuming;
Leung, Hareton

Zhou - Leung Pr Logistic
regression

Product M object-oriented
software

https://ieeexplore.ieee.org/abstract/doc
ument/1717471

Q
M

-2
53

 2006 [560] 194 Kritikos,
Kyriakos;
Plexousakis,
Dimitris

OWL-Q D Meta-model Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/4031170

Q
M

-2
54

2006 [561] 34 Mavromoustako
s, Stephanos;
Andreou,
Andreas S

Web
Application
Quality
Evaluation
model (WAQE)

ISO 9126 A Hierarchical Product P & U web sites https://www.inderscienceonline.com/doi
/abs/10.1504/IJWET.2007.011529

Q
M

-2
55

2007 [562] 73 Andreas S.
Andreou;
Marios
Tziakouris

Original
software
components
quality model
(OSCQM)

ISO 9126 A Hierarchical Product P original Component
based systems
(note: this is not
COTS)

https://www.sciencedirect.com/science/
article/pii/S0950584906000437

Q
M

-2
56

 2007 [284] 52 Ormandjieva, O.
S., Hussain, I.;
Kosseim, L.

Ormandjieva -
Hussain -
Kosseim

 A Hierarchical Product U software
requirements

https://dl.acm.org/doi/abs/10.1145/129
5074.1295082

Q
M

-2
57

 2007 [287] 37 Sangeeta Neti;
Hausi A. Muller

Neti - Muller ISO 9126 A Hierarchical Product P self-healing systems https://ieeexplore.ieee.org/abstract/doc
ument/4228606

Q
M

-2
58

2007 [563] 234 Yuming Zhou;
Hareton Leung

Zhou - Leung
MARS model

MARS model Pr Multivariate
adaptive

regression

Product M object oriented
software

https://www.sciencedirect.com/science/
article/pii/S0164121206003372

Q
M

-2
59

 2007 [564] 73 Taibi, Davide ;
Lavazza, Luigi ;
Morasca,
Sandro

Open Business
Quality Rating
(Open BQR)

Open Business
Readiness
Rating
(OpenBRR)

A Hierarchical Product M & P Free/Libre open
source software

https://link.springer.com/chapter/10.100
7/978-0-387-72486-7_14

Q
M

-2
60

 2007 [565] 34 Sibisi, Mbusi;
Van Waveren,
Cornelis Cristo

Mbusi - Van
Waveren

ISO 9126 A Hierarchical Product P Software https://ieeexplore.ieee.org/abstract/doc
ume[284]nt/4401495

Q
M

-2
61

2007 [566] 142 Deissenboeck,
Florian; Wagner,
Stefan; Pizka,
Markus and
Teuchert, Stefan
and Girard, J-F

Deissenboeck -
Wagner - Pizka
- Teuchert -
Girard
maintainability
2D model

Boehm78,
Wagner -
Deissenboeck
meta-model

A Hierarchical Product M embedded systems,
matlab simuling
models

https://ieeexplore.ieee.org/abstract/doc
ument/4362631

Q
M

-2
62

2007 [567] 84 Winter,
Sebastian;
Wagner, Stefan;
Deissenboeck,
Florian

Winter -
Wagner -
Deissenboeck
usability 2D
model

Mc Call (FCM or
RADC), Wagner -
Deissenboeck
meta-model

A Hierarchical Product U software with user
interface

https://link.springer.com/chapter/10.100
7/978-3-540-92698-6_7

Q
M

-2
63

 2007 [568] 386 Heitlager, Ilja;
Kuipers, Tobias;
Visser, Joost

SIG
maintainability
model

ISO 9126 A &
Pr

Hierarchical Product M software https://ieeexplore.ieee.org/abstract/doc
ument/4335232

Q
M

-2
64

2007 [569] 581 Kim, Sunghun;
Zimmermann,
Thomas;
Whitehead Jr, E
James; Zeller,
Andreas

Kim -
Zimmermann -
Whitehead Jr -
Zeller

Pr Statistics Product M open-source

software
https://ieeexplore.ieee.org/abstract/doc
ument/4222610

Q
M

-2
65

2007 [570] 198 Kanmani, S.;
Uthariaraj, V
Rhymend;
Sankaranarayan
an, V.;
Thambidurai, P

Kanmani -
Uthariaraj -
Sankaranaraya
nan -
Thambidurai

Khoshgoftaar -
Allen -
Hudepohl - Aud,
Briand - Wüst -
Daly - Porter,
Yuan -
Khoshgoftaar -
Allen - Ganesan

Pr Neural
Network

Product M Object-oriented
software and
modules

https://www.sciencedirect.com/science/
article/pii/S0950584906001005

Annexes

317 | P a g e

Q
M

-2
66

 2007 [571] 24 Quirchmayr,
Gerald; Funilkul,
Suree;
Chutimaskul,
Wichian

e-Government
Services (E-
GSQ) model

ISO 9126 A Hierarchical Service M e-government
services

https://sit.kmutt.ac.th/wichian/Paper/eG
ovServiceQualityModel.pdf

Q
M

-2
67

2007 [572] 813 Dagger, Tracey
S.; Sweeney,
Jillian C.;
Johnson, Lester
W

Dagger -
Sweeney -
Johnson

SERVQUAL A Hierarchical Service U health e-service
quality

https://journals.sagepub.com/doi/10.11
77/1094670507309594?icid=int.sj-
abstract.similar-articles.3

Q
M

-2
68

2007 [573] 128 Henriksson,
Anders; Yi, Yiori;
Frost, Belinda;
Middleton,
Michael

e-Government
website
evaluation tool
(eGwet)

A Hierarchical Product P e-government

websites
https://www.inderscienceonline.com/doi
/abs/10.1504/EG.2007.013984

Q
M

-2
69

2007 [574] 16 Ren, Kaijun;
Chen, Jinjun;
Chen, Tao;
Song, Junqiang;
Xiao, Nong

Ren - Chen -
Chen - Song -
Xiao

A Hierarchical Service P web services,

distributed systems
https://ieeexplore.ieee.org/abstract/doc
ument/4438599

Q
M

-2
70

2007 [575] 42 De Bruijn, J.;
Bussler, C.;
Domingue, J.;
Fensel, D.;
Hepp, M.; Kifer,
M.; König-Ries,
B.; Kopecky, J.;
Lara, R.; Oren,
E.; Polleres, A.;
Scicluna, J.;
Stollberg, M.

Web Service
Modeling
Ontology
(WSMO) v1.4

Web Service
Modeling
Ontology
(WSMO)

A Hierarchical Service P & U web services,
distributed systems

http://www.wsmo.org/TR/d2/v1.4/D2v1-
4_20070216.pdf

Q
M

-2
71

2007 [576] 34 Yu, Weider D.;
Radhakrishna,
Rachana B.;
Pingali, Sumana;
Kolluri, Vijaya

Yu -
Radhakrishna -
Pingali - Kolluri

A Hierarchical Service P & U web services,

distributed systems
https://journals.sagepub.com/doi/abs/1
0.1177/0037549707079228?

Q
M

-2
72

2007 [577] 13 Kang, YunHee Kang

A Hierarchical Product P web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/4426288

Q
M

-2
73

 2007 [578] 96 Giallonardo,
Ester; Zimeo,
Eugenio

onQoS-QL Ran, WSAF-QoS A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/4273423

Q
M

-2
74

2007 [579] 9 Lee, Youngkon;
Yeom, Gwyduk

Lee - Yeom

A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/4296922

Q
M

-2
75

 2007 [580] 39 Sung, Won Jun;
Kim, Ji Hyeok;
Rhew, Sung Yul

Sung - Kim -
Rhew

ISO 9126 A Hierarchical Product M & P open source
software

https://ieeexplore.ieee.org/abstract/doc
ument/4460693

Q
M

-2
76

 2007 [581] 236 Pai, Ganesh J;
Dugan, Joanne
Bechta

Pai - Dugan

Pr Bayesian
Network

Product M object-oriented
software

https://ieeexplore.ieee.org/abstract/doc
ument/4302779

Q
M

-2
77

 2007 [582] 47 Wagner, Stefan;
Deissenboeck,
Florian

Wagner -
Deissenboeck
meta-model

D Meta-model Product M & P

& U
software https://ieeexplore.ieee.org/abstract/doc

ument/4273468

Q
M

-2
78

 2007 [583] 1278 Selim, Hassan M Selim

A Hierarchical Product U E-learning system,
website

https://www.sciencedirect.com/science/
article/pii/S0360131505001338

Q
M

-2
79

 2008 [202] 263 Rüdiger Lincke,
Jonas Lundberg;
Welf Löwe

Lincke -
Lundberg -
Löwe

ISO 9126 A Hierarchical Product M air traffic
management

https://dl.acm.org/doi/abs/10.1145/139
0630.1390648

Q
M

-2
80

 2008 [288] 7 Li Zhang ; Lin Li ;
Hui Gao

2D Software
Quality Model
Zhang - Li -
Gao

McCall (FCM) A &
Pr

Hierarchical Product M software https://ieeexplore.ieee.org/abstract/doc
ument/5172787

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

318 | P a g e

Q
M

-2
81

 2008 [289] 2 A. A. Hamada;
M. N. Moustafa;
H. I. Shaheen

FUPRIMDSO CUPRIMDSO A &
Pr

Hierarchical Product P software https://ieeexplore.ieee.org/abstract/doc
ument/4773015/

Q
M

-2
82

2008 [290] 1 Xiuzhen Feng,
Yijian Liu

Feng - Liu

A &
Pr

Hierarchical Product U information sharing
software

https://ieeexplore.ieee.org/abstract/doc
ument/4722856

Q
M

-2
83

2008 [291] 9 O. Alfonzo ; K.
Domínguez; L.
Rivas; M. Pérez;
L. Mendoza; M.
Ortega

Software
Quality
Systemic
Model
(MOSCA)

ISO 9126,
Dromey, Basili
(GQM),
Systemic quality
model

A &
Pr

Hierarchical Product M & P
& U

Free/Libre open
source software

https://ieeexplore.ieee.org/abstract/doc
ument/4483214

Q
M

-2
84

 2008 [584] 15 Foutse Khomh;
Yann-Gaël
Guéhéneuc

PQMOD QMOOD,
Dromey

Pr Pattern-
recognition

Product M & P object oriented
system

https://dl.acm.org/doi/abs/10.1145/175
3196.1753199

Q
M

-2
85

2008 [585] 16 Haiguang Fang Educational
Software
Quality
Hierarchy
Triangle
(ESHTri) model

McCall,
Boehm78, ISO
9126

A Hierarchical Product M & P Web-based learning https://ieeexplore.ieee.org/abstract/doc
ument/5163782

Q
M

-2
86

 2008 [586] 101 Chang, Che-Wei;
Wu, Cheng-Ru;
Lin, Hung-Lung

Chang - Wu -
Lin

ISO 9126 A Fuzzy logic Product M & P software https://link.springer.com/article/10.1007
/s11219-007-9035-2

Q
M

-2
87

 2008 [587] 94 Sharma, Arun;
Kumar, Rajesh;
Grover, PS

Sharma -
Kumar -
Grover

ISO 9126 A Hierarchical Product M & P software
components and
component-based
systems (CBS)

https://dl.acm.org/doi/abs/10.1145/144
9603.1449613

Q
M

-2
88

2008 [39] 28 Choi, Yoonjung;
Lee, Sungwook;
Song, Houp;
Park, Jingoo;
Kim, SunHee

Samsung s/w
Component
Quality
evaluation
Model (SCQM)

ISO 9126 A Hierarchical Product P Software
component, COTS
(Commercial Off-
The-Shelf)

https://ieeexplore.ieee.org/abstract/doc
ument/4493757

Q
M

-2
89

2008 [588] 6 ELdesouky, Aly
I.; Arafat,
Hesham;
Ramzey, Hazem

Web-site
Quality
Evaluation
Method (QEM)
framework

Web-site
Quality
Evaluation
Methodology
(QEM) model

A Hierarchical Product U web sites http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.476.4352&rep=rep1
&type=pdf

Q
M

-2
90

2008 [589] 84 Shim, Bingu;
Choue, Siho;
Kim, Suntae;
Park, Sooyong

Service-
Oriented
Architecture
(SOA) Design
quality model

QMOOD A Hierarchical Product M & P Service-Oriented
Architecture (SOA)
system

https://ieeexplore.ieee.org/abstract/doc
ument/4724572

Q
M

-2
91

2008 [590] 1 CITY, CNR, FBK,
INRIA, Lero,
POLIMI, SZTAKI,
TUW, UniDue,
UPM, UStutt,
Tilburg

 SCube Quality
Reference
Model

ISO 9126 A Hierarchical Product P & U service-based
application (SBA)

https://s-cube-
network.eu/results/deliverables/wp-jra-
1.3/Reference_Model_for_SBA.pdf

Q
M

-2
92

2008 [222] 177 Samoladas,
Ioannis;
Gousios,
Georgios;
Spinellis,
Diomidis;
Stamelos,
Ioannis

SQO-OSS Basili (GQM),
ISO 9126

A Hierarchical Product
&

Process

M & P open source
software, open
source community
process

https://link.springer.com/chapter/10.100
7/978-0-387-09684-1_19

Q
M

-2
93

2008 [591] 81 Stefani,
Antonia; Xenos,
Michalis

Stefani - Xenos ISO 9126 A Bayesian
Network

Product P & U e-commerce
systems (Business to
Consumer (B2C) and
Business-to-Business
(B2B).)

https://link.springer.com/article/10.1007
/s11219-007-9032-5#citeas

Q
M

-2
94

2008 [592] 10 Heck, Petra; van
Eekelen, MCJD

LaQuSo
software
product
certification
model (LSPCM)

A &
Pr

Hierarchical Product M software
certification

https://research.tue.nl/en/publications/l
aquso-software-product-certification-
model-lspcm

Annexes

319 | P a g e

Q
M

-2
95

2008 [593] 34 Plösch,
Reinhold;
Gruber, Harald;
Hentschel, A.;
Körner, Ch.
Pomberger,
Gustav; Schiffer,
Stefan; Saft,
Matthias;
Storck, S

Evaluation
Method for
Internal
Software
Quality
(EMISQ)

ISO 9126, SATC
model, FURPS

A Hierarchical Product M & P software https://link.springer.com/article/10.1007
/s11334-007-0039-7

Q
M

-2
96

2008 [594] 11 Laval, Jannik ;
Bergel,
Alexandre ;
Ducasse,
Stéphane

Qualixo model A Hierarchical Product M & P software https://hal.inria.fr/inria-00498482/

Q
M

-2
97

2008 [595] 252 Gondra, Iker Gondra Pr Neural
Network

Product M software, NASA's
metric data program

https://www.sciencedirect.com/science/
article/pii/S0164121207001240

Q
M

-2
98

2008 [596] 13 Micali, F.;
Cimino, S

Web Q-Model A Hierarchical Product M & U websites https://www.semanticscholar.org/paper/
Web-Q-Model%3A-a-new-approach-to-
the-quality-Cimino-
Sperone/041f5490aa7a86c4528b2a4035
8b66ded000223f

Q
M

-2
99

2008 [597] 52 Chutimaskul,
Wichian;
Funilkul, Suree;
Chongsuphajaisi
ddhi, Vithida

Chutimaskul -
Funilkul -
Chongsuphajai
siddhi

ISO 9126 A Hierarchical Service U e-government
services

https://dl.acm.org/doi/abs/10.1145/150
9096.1509117

Q
M

-3
00

2008 [598] 41 Abramowicz,
Witold; Hofman,
Radoslaw;
Suryn, Witold;
Zyskowski,
Dominik

Abramowicz -
Hofman -
Suryn -
Zyskowski

ISO 25010 A Hierarchical Product M & P
& U

web services, IT
solutions

https://www.researchgate.net/profile/W
itold_Suryn/publication/44261676_SQua
RE_based_Web_Services_Quality_Model
/links/0fcfd508ea67fd2f05000000/SQua
RE-based-Web-Services-Quality-
Model.pdf

Q
M

-3
01

 2008 [599] 48 Artaiam, Natee;
Senivongse,
Twittie

Artaiam -
Senivongse

IBM A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/4617464

Q
M

-3
02

2008 [600] 41 Tran, Vuong
Xuan

WS-QoSOnto WSAF-QoS A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/4730492

Q
M

-3
03

2008 [601] 15 Mittal, Harish;
Bhatia, PK.;
Goswami,
Puneet

Mittal - Bhatia
- Goswami

 Pr Fuzzy logic Product M software modules https://www.researchgate.net/profile/H
arish_Mittal/publication/267752698_Sof
tware_Quality_Assessment_Based_on_F
uzzy_Logic_Technique/links/5459b6ac0cf
26d5090ad1098.pdf

Q
M

-3
04

 2008 [602],
[603]

34 Etxeberria,
Leire; Sagardui,
Goiuria

Etxeberria -
Sagardui

 A Hierarchical Product M & P software product
line, feature model,
arcade game maker

https://ieeexplore.ieee.org/abstract/doc
ument/4492407
https://link.springer.com/chapter/10.100
7/978-3-540-68073-4_16

Q
M

-3
05

2008 [604] 5 Raffoul,
Eduardo;
Domínguez,
Kenyer; Pérez,
María;
Mendoza, Luis
E.; Grimán,
Anna C

FLOSS-
ITS´quality
model

Software
Quality Systemic
Model
(MOSCA), ISO
9126, Dromey

A Hierarchical Product P open source
software, open
source community
process, issue
tracking systems
(ITS)

https://www.researchgate.net/profile/A
nna_Griman/publication/228943503_Qu
ality_model_for_the_selection_of_floss-
based_issue_tracking_system/links/0046
351472fc06abba000000/Quality-model-
for-the-selection-of-floss-based-issue-
tracking-system.pdf

Q
M

-3
06

2008 [605] 53 Olague, Hector
M.; Etzkorn,
Letha H.;
Messimer,
Sherri L.;
Delugach, Harry
S

Olague -
Etzkorn -
Messimer -
Delugach

 Pr Logistic
regression

Product M object-oriented
software, iterative
or agile
development

https://onlinelibrary.wiley.com/doi/abs/
10.1002/smr.366

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

320 | P a g e

Q
M

-3
07

2008 [67] 12 Sherman, Trudy Sherman D Hierarchical Product P embedded system https://link.springer.com/chapter/10.100
7/978-1-4020-8741-7_95

Q
M

-3
08

 2008 [66] 11 Paulitsch,
Michael, Ruess,
Harald; Sorea,
Maria

Paulitsch -
Ruess - Sorea

 D Hierarchical Product P avionic embedded
system, ultra-critical
embedded system in
aerospace industry

https://link.springer.com/chapter/10.100
7/978-3-540-88479-8_26

Q
M

-3
09

2009 [606] 18 Kläs, M., Nakao,
H., Elberzhager,
F., Münch, J.

Hybrid Defect
Content and
Effectiveness
Early
Prediction
(HyDEEP)

COQUALMO Pr Statistics Product M Software
requirements
Software

https://link.springer.com/article/10.1007
/s10664-009-9112-1

Q
M

-3
10

 2009 [203] 160 Mohagheghi P.,
Dehlen V.,
Neple T.

Mohagheghi -
Dehlen - Neple

 A Hierarchical Product M model-based
software

https://www.sciencedirect.com/science/
article/pii/S0950584909000457

Q
M

-3
11

 2009 [295] 31 Brcina R., Bode
S., Riebisch M.

Brcina - Bode -
Riebisch
evolvability

ISO 9126, Basili
(GQM)

A Hierarchical Product M software https://ieeexplore.ieee.org/abstract/doc
ument/4839246

Q
M

-3
12

2009 [607] 22 Bergel,
Alexandre ;
Denier, Simon ;
Ducasse,
Stéphane ;
Laval, Jannik ;
Bellingard,
Fabrice ;
Vaillergues,
Philippe ;
Balmas,
Françoise ;
Mordal-Manet,
Karine

Software
QUALity
Enhancement
(SQUALE)

ISO 9126, ISO
25010, Qualixo
model

A Hierarchical Product M & P software https://ieeexplore.ieee.org/abstract/doc
ument/4812772

Q
M

-3
13

2009 [608] 68 Petrinja, Etiel;
Nambakam,
Ranga; Sillitti,
Alberto

QualitPso
Open Source
Maturity
Model
(OSMM)

CMM v1.0 (SEI) A Hierarchical Product M & P Free/Libre open
source software

https://ieeexplore.ieee.org/abstract/doc
ument/5071358

Q
M

-3
14

2009 [609] 263 Behkamal,
Behshid; Kahani,
Mohsen; Akbari,
Mohammad
Kazem

Behkamal -
Kahani - Akbari

ISO 9126 A Hierarchical Product P & U B2B software https://www.sciencedirect.com/science/
article/pii/S0950584908001109

Q
M

-3
15

2009 [610] 42 Kumar,
Avadhesh;
Grover, PS.;
Kumar, Rajesh

Aspect-
Oriented
Software
Quality Model
(AOSQUAMO)

ISO 9126 A Fuzzy logic Product P object oriented and
component based

https://dl.acm.org/doi/abs/10.1145/159
8732.1598736

Q
M

-3
16

2009 [37] 14 Carvalho,
Fernando;
Meira, Silvio

Embedded
software
component
quality model
(EQM)

ISO 9126, ISO
25010

A Hierarchical Product M & P Embedded software
components, COTS

https://ieeexplore.ieee.org/abstract/doc
ument/5090533

Q
M

-3
17

 2009 [611] 28 Srivastava,
Praveen Ranjan;
Kumar, Krishan

Srivastava -
Kumar

McCall, ISO
9126, ISO
25010, CMMi

A Statistics Product P Java software,
software

https://link.springer.com/chapter/10.100
7/978-3-642-00405-6_19

Q
M

-3
18

 2009 [184] 5 Jamwal,
Ranbireshwar
S.; Jamwal,
Deepshikha

Jamwal -
Jamwal

ADEQUATE A Hierarchical Product M & P
& U

very large
information system

http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.469.7953&rep=rep1
&type=pdf

Q
M

-3
19

 2009 [612] 84 Wagner, Stefan Wagner
Activity-Based
Quality Model
(ABQM)

 A &
Pr

Bayesian
Network

Product M & P software https://www.sciencedirect.com/science/
article/pii/S0950584910001175

Annexes

321 | P a g e

Q
M

-3
20

 2009 [613] 6 Moraga, Ma
Ángeles; Calero,
Coral; Garzás,
Javier; Piattini,
Mario

Portlet Quality
Model (PtQM)

ISO 9126 A Hierarchical Product M & P Java portlet, Portlet,
component -based
websites

https://www.sciencedirect.com/science/
article/pii/S0920548908000573

Q
M

-3
21

2009 [614] 44 Soto, Martín;
Ciolkowski,
Marcus

QualOSS ISO 9126,
Capability
Maturity Model
Integration
(CMMi) v1.1,
Open Business
Readiness
Rating
(OpenBRR),
Qualification
and Selection of
Open Source
software (QSOS)

A Hierarchical Product
&

Process

M & P open source
software,
sustainability,
software process,
open source
community

https://ieeexplore.ieee.org/abstract/doc
ument/5314237

Q
M

-3
22

2009 [615] 15 Plösch,
Reinhold;
Gruber, Harald;
Körner,
Christian;
Pomberger,
Gustav; Schiffer,
Stefan

Technical
Topic
Classification
(TTC) quality
model

 D Meta-model Product M & P Java, C#, and C++
software

https://www.academia.edu/download/4
6798845/A_Proposal_for_a_Quality_Mo
del_Based_on_20160626-29291-
16msrfw.pdf

Q
M

-3
23

2009 [616] 84 Hussain, Azham;
Kutar, Maria

Hussain - Kutar Basili (GQM) A Hierarchical Product U Mobile devices,
mobile application
software

https://www.researchgate.net/profile/Az
ham_Hussain/publication/267368031_Us
ability_Metric_Framework_for_Mobile_P
hone_Application/links/54b35d3e0cf231
8f0f9541fd.pdf

Q
M

-3
24

2009 [617] 42 Del Bianco,
Vieri; Lavazza,
Luigi; Morasca,
Sandro; Taibi,
Davide

QualiPSo Basili (GQM),
ISO 9126

A Hierarchical Product M & U open source
software (OSS)

https://link.springer.com/chapter/10.100
7/978-3-642-02032-2_18

Q
M

-3
25

 2009 [618] 116 Papadomichelak
i, Xenia;
Mentzas,
Gregoris

eGovQual A Hierarchical Service U e-government
services

https://link.springer.com/chapter/10.100
7/978-3-642-03516-6_14

Q
M

-3
26

2009 [619] 30 Frutos, Henar
Muñoz;
Kotsiopoulos,
Ioannis;
Gonzalez, Luis
Miguel
Vaquero;
Merino, Luis
Rodero

BREIN QoS
ontology

Ran, W3C QoS,
Web Services
Modeling
Ontology
(WSMO) - QoS,
Ren - Chen -
Chen - Song -
Xiao, Tsesmetzis
- Roussaki -
Papaioannou -
Anagnostou

A Hierarchical Service P & U web services,
distributed systems

https://link.springer.com/chapter/10.100
7/978-3-642-02121-3_42

Q
M

-3
27

 2009 [620] 18 Chang, Heejung;
Lee, Kangsun

Chang - Lee A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/5260426

Q
M

-3
28

 2009 [621] 14 Al-Masri, Eyhab;
Mahmoud,
Qusay H

Al-Masri -
Mahmoud

 A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/5346882

Q
M

-3
29

2009 [622] 11 Hongxia Tong,
Jian Cao,
ShenSheng
Zhang, Yujie
Mou

Tong - Cao -
Zhang - Mou

 A Fuzzy logic Service P web services,
distributed systems

https://www.emerald.com/insight/conte
nt/doi/10.1108/03684920910944236/full
/html

Q
M

-3
30

 2009 [623] 161 Comuzzi,
Marco; Pernici,
Barbara

Comuzzi -
Pernici

Ran, W3C QoS,
IBM, WSQM
(preliminary
version)

A Hierarchical Service P & U web services,
distributed systems

https://dl.acm.org/doi/abs/10.1145/154
1822.1541825

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

322 | P a g e

Q
M

-3
31

 2009 [624] 49 Balfagih, Zain;
Hassan, Mohd
Fadzil

Balfagih -
Hassan

 A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/5077045

Q
M

-3
32

2009 [625] 20 Li, Shuyu; Zhou,
Juan

Li - Zhou A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/5366383

Q
M

-3
33

 2009 [626] 4 Reddy D, Kiran
Kumar; Maralla,
Karthiek;
Thirumaran, M

Reddy -
Maralla -
Thirumaran

 A Hierarchical Service P & U web services,
distributed systems

https://dl.acm.org/doi/abs/10.1145/151
7303.1517317

Q
M

-3
34

 2009 [627] 4 Marchetto,
Alessandro;
others

Oo quality
model for web
applications
(Oqmw)

 A &
Pr

Classification Product M Object-oriented
software, web
applications

http://jase.tku.edu.tw/articles/jase-
200912-12-4-10

Q
M

-3
35

 2009 [628] 679 Ozkan, Sevgi;
Koseler, Refika

Hexagonal
eLearning
Assessment
Model
(HELAM)

 A Hierarchical Product M & P
& U

E-learning system,
B-learning system
(Blended)

https://www.sciencedirect.com/science/
article/pii/S0360131509001584

Q
M

-3
36

2009 [629] 23 Cappiello,
Cinzia; Kritikos,
Kyriakos;
Metzger,
Andreas; Parkin,
Michael; Pernici,
Barbara;
Plebani,
Pierluigi;
Treiber, Martin

Cappiello -
Kritikos -
Metzger -
Parkin - Pernici
- Plebani -
Treiber

 A Hierarchical Service P & U web services,
distributed systems

https://www.econstor.eu/obitstream/10
419/58147/1/716006251.pdf#page=37

Q
M

-3
37

2009 [630] 43 Mabrouk, Nebil
Ben;
Georgantas,
Nikolaos;
Issarny, Valérie

Mabrouk -
Georgantas -
Issarny

WSQM D Meta-model Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/5068817

Q
M

-3
38

2009 [631] 146 Alonso-Ríos,
David; Vázquez-
García, Ana;
Mosqueira-Rey,
Eduardo;
Moret-Bonillo,
Vicente

Alonso-Ríos -
Vázquez-
García -
Mosqueira-Rey
- Moret-
Bonillo

 D Hierarchical Product U software https://www.tandfonline.com/doi/abs/1
0.1080/10447310903025552

Q
M

-3
39

 2010 [296] 3 Qi Yu-dong; Zhu
Ai-hong; Xie
Xiao-fang; Yan
Xiao-bin

Conceptual
Model Quality

ISO 25010 A Hierarchical Product M & U software, model https://ieeexplore.ieee.org/abstract/doc
ument/5622740

Q
M

-3
40

2010 [297] 67 Letouzey, Jean-
Louis ; Coq,
Thierry

Software
Quality
Assessment
Based on
Lifecycle
Expectation
(SQALE)

ISO 9126 A Hierarchical Product M & P ADA software https://ieeexplore.ieee.org/abstract/doc
ument/5617180

Q
M

-3
41

2010 [632] 29 Castillo, Isi;
Losavio,
Francisca;
Matteo,
Alfredo; Bøegh,
Jørgen

REquirements,
Aspects and
Software
Quality
(REASQ) model

ISO 25010, ISO
9126, Dromey

A Meta-model Product M & P Object-oriented
software
development

http://www.jot.fm/issues/issue_2010_07
/article4.pdf

Q
M

-3
42

2010 [103] 18 Bawane,
Neelam;
Srikrishna, CV

Bawane -
Srikrishna

ISO 9126 A Hierarchical Product M & P
& U

software https://www.researchgate.net/profile/Az
ween_Abdullah/publication/47542466_
Maximizing_Lifetime_of_Homogeneous_
Wireless_Sensor_Network_through_Ener
gy_Efficient_Clustering_Method/links/0c
96053194f7e3d16c000000.pdf#page=66

Annexes

323 | P a g e

Q
M

-3
43

2010 [633] 44 Alvaro,
Alexandre ;
Santana de
Almeida,
Eduardo ;
Romero de
Lemos Meira,
Silvio

Software
Component
Quality Model
(CQM) v1.1

ISO 9126, ISO
25010, Software
Component
Quality Model
(CQM) v1.0

A Hierarchical Product M & P Component-Based
Software
Engineering (CBSE),
COTS

https://dl.acm.org/doi/abs/10.1145/166
8862.1668863

Q
M

-3
44

2010 [102] 7 Kalaimagal,
Sivamuni;
Srinivasan,
Rengaramanuja
m

Q'Facto 12 ISO 25010 A Hierarchical Product M & P
& U

Component based
systems (COTS) &
Component-based
Software
Development
(CBSD)

https://dl.acm.org/doi/abs/10.1145/173
4103.1734116

Q
M

-3
45

2010 [634] 7 Kalaimagal,
Sivamuni;
Srinivasan,
Rengaramanuja
m

Q'Facto 10 ISO 9126 A Hierarchical Product M & P
& U

Component based
systems (COTS) &
Component-based
Software
Development
(CBSD)

https://www.researchgate.net/publicatio
n/251065355_Q'_FACTO_10-
A_commercial_off-the-
shelf_component_quality_model_propos
al

Q
M

-3
46

2010 [635] 28 Malak, Ghazwa ;
Sahraoui,
Houari ; Badri,
Linda ; Badri,
Mourad

Malak -
Sahraoui -
Badri - Badri
Web quality
model

Basili (GQM),
ISO 9126

A Bayesian
Network

Product U Web-based
applications

https://dl.acm.org/doi/abs/10.1145/180
6916.1806918

Q
M

-3
47

 2010 [636] 93 Lew, Philip ;
Olsina, Luis ;
Zhang, Li

2Q2U ISO 25010 A Hierarchical Product P & U web-application https://link.springer.com/chapter/10.100
7/978-3-642-13911-6_15

Q
M

-3
48

2010 [637] 42 Herrera, Mayte;
Moraga, Ma
Ángeles;
Caballero,
Ismael; Calero,
Coral

Quality in Use
Model for Web
Portals
(QiUWeP)

ISO 25010 A Hierarchical Product U websites, web-
portal

https://link.springer.com/chapter/10.100
7/978-3-642-16985-4_9

Q
M

-3
49

 2010 [638] 6 Fan, Miao; Luo,
Yi; Wu, Guoshi;
Fu, Xiangling

Fan - Luo - Wu
- Fu

ISO 9126 A &
Pr

Fuzzy logic Product P software https://ieeexplore.ieee.org/abstract/doc
ument/5690372

Q
M

-3
50

2010 [639] 24 Luckey, Markus;
Baumann,
Andrea;
Méndez, Daniel;
Wagner, Stefan

Extended
Activity-Based
Quality Model
(ABQM)

Wagner Activity-
Based Quality
Model (ABQM),
Deissenboeck -
Wagner - Pizka -
Teuchert -
Girard
maintainability
2D model

A Meta-model Product M embedded systems,
Matlab simuling
models

https://dl.acm.org/doi/abs/10.1145/180
9100.1809101

Q
M

-3
51

2010 [640] 97 Mohanty,
Ramakanta;
Ravi, Vadlamani;
Patra, Manas
Ranjan

Mohanty - Ravi
- Patra

 Pr Classification Service M & P web services,
distributed systems

https://www.sciencedirect.com/science/
article/pii/S0957417410001028

Q
M

-3
52

2010 [641] 9 Yin, Baocai;
Yang, Huirong;
Fu, Pengbin;
Chen, Xiaobo

Yin - Yang - Fu
- Chen

ISO 9126,
WSAF-QoS,
Tsesmetzis -
Roussaki -
Papaioannou -
Anagnostou,
WS-QoSOnto

A Hierarchical Service P & U web services,
distributed systems

https://link.springer.com/chapter/10.100
7/978-3-642-15470-6_18

Q
M

-3
53

 2010 [642] 14 Pan, Zhedan;
Baik, Jongmoon

Pan - Baik A Hierarchical Service P & U web services,
distributed systems

https://www.riverpublishers.com/journal
/journal_articles/RP_Journal_1540-
9589_943.pdf

Q
M

-3
54

2010 [643] 33 Zhang, Shu;
Song, Meina

Zhang - Song A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/5440283

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

324 | P a g e

Q
M

-3
55

2010 [644] 13 Corrêa, Ulisses
Brisolara ;
Lamb, Luis ;
Carro, Luigi ;
Brisolara,
Lisane; Mattos,
Júlio

Corrêa - Lamb
- Carro -
Brisolara -
Mattos
physical
properties
prediction
model

 Pr Neural
Network

Product M object-oriented
software, embedded
systems

https://ieeexplore.ieee.org/abstract/doc
ument/5578300

Q
M

-3
56

2010 [645] 16 Domínguez-
Mayo, FJ.;
Escalona, MJ.;
Mejías, M.;
Torres, AH

Domínguez-
Mayo -
Escalona -
Mejías - Torres

ISO 9126 A Hierarchical Product P & U Model-Driven Web
Engineering
(MDWE)

https://ieeexplore.ieee.org/abstract/doc
ument/5507323

Q
M

-3
57

2011 [646] 1 Hwang, Sun
Myung; Im,
Soobin

Korean
Software
Process
Quality
Certification
Model

SPICE (ISO / IEC
15504),
Capability
Maturity Model
Integration
(CMMi) v1.1

A Hierarchical Process M software
certification

https://ieeexplore.ieee.org/abstract/doc
ument/5954295

Q
M

-3
58

2011 [23] - ISO/IEC JTC 1/SC
7 Software and
systems
engineering
technical
committee

ISO/IEC/IEEE
25010

ISO 9126 A Hierarchical Product M & P
& U

software product
and in use

https://www.iso.org/standard/35733.ht
ml

Q
M

-3
59

2011 [300] 6 Coq T., Rosen J.-
P.

Software
Quality
Assessment
Based on
Lifecycle
Expectation
(SQALE) ADA

Software
Quality
Assessment
Based on
Lifecycle
Expectation
(SQALE)

A Hierarchical Product M & P ADA software https://link.springer.com/chapter/10.100
7/978-3-642-21338-0_5

Q
M

-3
60

2011 [647] 17 Upadhyay,
Nitin;
Despande,
Bharat M.;
Agrawal, Vishnu
P

Upadhyay -
Despande -
Agrawal
Software
Component
Quality Model
(SCQM)

ISO 9126 A Hierarchical Product M Component based
systems (COTS) &
Component-based
Software
Development
(CBSD)

https://link.springer.com/chapter/10.100
7%2F978-3-642-17857-3_40

Q
M

-3
61

2011 [648] 18 Anas Bassam
AL-Badareen,
Mohd Hasan
Selamat,
Jamilah Din,
Marzanah A.
Jabar, Sherzod
Turaev

AL-Badareen -
Selamat - Din -
Jabar - Turaev

ISO 9126 A Hierarchical Product U software http://www.universitypress.org.uk/journ
als/ami/20-649.pdf

Q
M

-3
62

 2011 [301] 16 Lochmann,
Klaus;
Heinemann,
Lars

Lochmann -
Heinemann

A Hierarchical Product M & P java software, open

source
https://dl.acm.org/doi/abs/10.1145/198
5374.1985378

Q
M

-3
63

 2011 [302] 44 Nabil D., Mosad
A., Hefny H.A.

WBA quality
model
(WBAQM)

ISO 9126 A Hierarchical Product P & U web-based
application

https://www.sciencedirect.com/science/
article/pii/S1110866511000405

Q
M

-3
64

2011 [187] 37 Polillo, Roberto Polillo ISO 25010 A Hierarchical Product P & U web [2.0] sites https://link.springer.com/chapter/10.100
7/978-3-642-27997-3_25

Q
M

-3
65

2011 [649] 30 Lochmann,
Klaus; Goeb,
Andreas

Lochmann -
Goeb Unifying
Model

ISO 25010,
Wagner Activity-
Based Quality
Model (ABQM),
Service-
Oriented
Architecture
(SOA) Design
quality model

D Meta-model Product P & U software https://dl.acm.org/doi/abs/10.1145/202
4587.2024591

Annexes

325 | P a g e

Q
M

-3
66

2011 [650] 127 Bakota, Tibor;
Hegedűs, Péter;
Körtvélyesi,
Péter; Ferenc,
Rudolf;
Gyimóthy, Tibor

ColumbusQM

A &
Pr

Statistics Product M software https://ieeexplore.ieee.org/abstract/doc
ument/6080791

Q
M

-3
67

2011 [651] 19 Olsina, Luis ;
Lew, Philip ;
Dieser,
Alexander ;
Rivera, Belen

2Q2U v2 2Q2U, ISO
25010

A Hierarchical Product P & U Web application &
site, social web-
applications

https://www.riverpublishers.com/journal
/journal_articles/RP_Journal_1540-
9589_1042.pdf

Q
M

-3
68

2011 [652] 5 Murthy, PVR.;
Kumar,
Saravana;
Sharma, Tushar;
Rao, Kiron

Dynamic
Analysis for
Internal
Software
Quality
(DAISQ) model

ISO 9126 A Hierarchical Product M software
component or
system, C++
software

https://ieeexplore.ieee.org/abstract/doc
ument/6032365

Q
M

-3
69

2011 [649] 30 Goeb, Andreas;
Lochmann,
Klaus

Service-
Oriented
Architecture
(SOA) quality
model

QUAMOCO A Meta-model Product P service oriented
architecture,
distributed system

https://dl.acm.org/doi/abs/10.1145/202
4587.2024593

Q
M

-3
70

2011 [653] 25 Dominic, PDD;
Jati, Handaru

Dominic - Jati

A Fuzzy logic Product M & P air-lines websites https://www.inderscienceonline.com/doi
/abs/10.1504/IJBIR.2011.042451

Q
M

-3
71

2011 [654] 14 Rekik, Rim;
Kallel, Ilhem

Fuzz-Web
model

ISO 9126 A Fuzzy logic Product U institutional
websites

https://ieeexplore.ieee.org/abstract/doc
ument/6088194

Q
M

-3
72

 2011 [655] 13 Singh, Yogesh;
Malhotra,
Ruchika; Gupta,
Poonam

Singh -
Malhotra -
Gupta

Pr Logistic

regression
Product U webpages, websites http://citeseerx.ist.psu.edu/viewdoc/do

wnload?doi=10.1.1.214.223&rep=rep1&t
ype=pdf#page=34

Q
M

-3
73

 2011 [656] 32 Bocciarelli,
Paolo;
D’Ambrogio,
Andrea

Bocciarelli -
D’Ambrogio

Pr Hierarchical Service M & P

& U
web services,
distributed systems

https://link.springer.com/article/10.1007
/s10270-010-0150-3

Q
M

-3
74

2011 [657] 2 Qiu, Junping;
Yu, Fan

Qiu - Yu

D Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/6006212

Q
M

-3
75

2011 [658] 3 Debnath,
Narayan;
Martellotto,
Paola; Daniele,
Marcela; Riesco,
Daniel;
Montejano,
Germán

Debnath -
Martellotto -
Daniele -
Riesco -
Montejano

A Hierarchical Service P & U web services,

distributed systems
https://ieeexplore.ieee.org/abstract/doc
ument/6060134

Q
M

-3
76

2011 [659] 7 Mens, Tom;
Doctors,
Leandro; Habra,
Naji; Vanderose,
Benoit; Kamseu,
Flora

MoCQA

D Meta-model Product M evolving software-
intensive systems

https://ieeexplore.ieee.org/abstract/doc
ument/5741344

Q
M

-
37

7 2011 [660] 59 Azar, Danielle;
Vybihal, Joseph

Azar - Vybihal

Pr Classification Product M object-oriented
software

https://www.sciencedirect.com/science/
article/pii/S0950584910002144

Q
M

-3
78

2011 [661] 9 Łukasz Radliński Radliński ISO 25010 Pr Bayesian
Network

Product M & U Information Systems https://reshistorica.journals.umcs.pl/ai/a
rticle/view/3331

Q
M

-3
79

 2011 [662] 147 Bagheri,
Ebrahim;
Gasevic, Dragan

Bagheri -
Gasevic

A Hierarchical Product M & P software product

line, feature model
https://link.springer.com/article/10.1007
/s11219-010-9127-2

Q
M

-3
80

2011 [663] 113 Müller, Tristan FLOSS-ILS
quality model

A Hierarchical Product M open source

software, open
source community
process, Integrated
Library Systems (ILS)

https://www.emerald.com/insight/conte
nt/doi/10.1108/10650751111106573/full
/html?journalCode=oclc

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

326 | P a g e

Q
M

-3
81

2011 [664] 4 Chirila, Ciprian-
Bogdan;
Juratoni, Dana;
Tudor, Dacian;
Creţu, Vladimir

Chirila -
Juratoni -
Tudor - Creţu

ISO 9126 A Hierarchical Product M open source
software, open
source community
process, static code
analyzers

https://ieeexplore.ieee.org/abstract/doc
ument/5873026

Q
M

-3
82

2011 [665] 58 Challa, Jagat
Sesh; Paul,
Arindam; Dada,
Yogesh; Nerella,
Venkatesh;
Srivastava,
Praveen Ranjan;
Singh, Ajit
Pratap

Challa - Paul -
Dada - Nerella
- Srivastava -
Singh

ISO 9126 A Fuzzy logic Product P software, IT industry https://www.researchgate.net/publicatio
n/228518831_Integrated_Software_Qual
ity_Evaluation_A_Fuzzy_Multi-
Criteria_Approach

Q
M

-3
83

2011 [666] 5 Espinilla, M.;
Domínguez-
Mayo, FJ.;
Escalona, MJ.;
Mejías, M.;
Ross, M.;
Staples, G

Espinilla -
Domínguez-
Mayo -
Escalona -
Mejías - Ross -
Staples

Domínguez-
Mayo - Escalona
- Mejías - Torres

A Hierarchical Product P Model-Driven Web
Engineering
(MDWE)

https://link.springer.com/chapter/10.100
7/978-3-642-25661-5_85

Q
M

-3
84

2011 [667] 73 Abdellatief,
Majdi; Sultan,
Abu Bakar Md.;
Jabar, Marzanah
A.; Abdullah,
Rusli

Abdellatief -
Sultan - Jabar -
Abdullah

ISO 9126 A Hierarchical Product P & U E-learning system,
Learning
Management
System (LMS),
website

https://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.877.3797&rep=rep1
&type=pdf

Q
M

-3
85

 2011 [668] 11 Um, Taehoon;
Kim, Neunghoe;
Lee, Donghyun;
In, Hoh Peter

Um - Kim - Lee
- In

ISO 9126 D Hierarchical Product M & P agile software
development

https://ieeexplore.ieee.org/abstract/doc
ument/5954362

Q
M

-3
86

 2012 [304] 3 L. Cheikhi; A.
Abran; J.
Desharnais

ISBSG quality
model

ISO 9126 A Hierarchical Product P & U software https://ieeexplore.ieee.org/abstract/doc
ument/6389405

Q
M

-3
87

2012 [160] 135 Wagner, Stefan;
Lochmann,
Klaus;
Heinemann,
Lars; Kläs,
Michael;
Trendowicz,
Adam; Plösch,
Reinhold; Seidi,
Andreas; Goeb,
Andreas; Streit,
Jonathan

QUAMOCO ISO 25010 A Hierarchical Product P Java and C#
software

https://ieeexplore.ieee.org/abstract/doc
ument/6227106

Q
M

-3
88

2012 [48] 18 Mayr, Alois;
Plösch,
Reinhold; Kläs,
Michael;
Lampasona,
Constanza; Saft,
Matthias

Embedded
Systems
software
Quality Model
(ESQM)

ISO 25010,
QUAMOCO

A Hierarchical Product P & U embedded systems
software

https://ieeexplore.ieee.org/document/6
405376

Q
M

-3
89

 2012 [307] 5 Wan-Jiang,
HAN; Tian-Bo,
Lu

Wan-Jiang -
Tian-Bo

 A Hierarchical Product M & P communication
system, embedded
system

https://ieeexplore.ieee.org/abstract/doc
ument/6340726

Q
M

-3
90

 2012 [29] 2 Jeong, Hwa
Young; Kim,
Yoon Ho

Jeong - Kim
v1.0

 A Hierarchical Product M & P lightweight
component
software, embedded
system

https://www.scientific.net/AMM.121-
126.4907

Q
M

-3
91

 2012 [46] 21 Jeong, Hwa-
Young; Kim,
Yoon-Ho

Jeong - Kim
v1.1

ISO 9126, Jeong
- Kim v1.0

A Hierarchical Product M & P systems software https://pdfs.semanticscholar.org/7ab2/6
4cb8b7e20beed57d9960d3b5c36d09e85
cc.pdf

Q
M

-3
92

 2012 [669] 39 Franke,
Dominik;
Kowalewski,

Mobile
Software
Quality Model

McCall (FCM),
Boehm78

A Hierarchical Product P mobile devices,
mobile application
software

https://ieeexplore.ieee.org/abstract/doc
ument/6319241

Annexes

327 | P a g e

Stefan; Weise,
Carsten

Q
M

-3
93

2012 [670] 37 Yu, Liguo;
Mishra, Alok

Yu - Mishra A &
Pr

Logistic
regression

Product M & P commercial
software

https://www.tandfonline.com/doi/abs/1
0.1080/16843703.2012.11673302

Q
M

-3
94

 2012 [671] 15 Singh, Brijendra;
Kannojia, Suresh
Prasad

Singh -
Kannojia

 Pr Neural
Network

Product P C, C++ software,
software
components

https://www.scirp.org/html/4-
9301401_19840.htm

Q
M

-3
95

 2012 [672] 115 Malhotra,
Ruchika; Jain,
Ankita

Malhotra - Jain QMOOD, Brito e
Abreu - Melo
MOOD

Pr Regression
analysis

Product M Object-oriented
software and
modules

https://www.koreascience.or.kr/article/J
AKO201222340312043.page

Q
M

-3
96

 2012 [673] 39 Dubey, Sanjay
Kumar; Gulati,
Anubha; Rana,
Ajay

Dubey - Gulati
- Rana

 D Hierarchical Product U software https://www.researchgate.net/publicatio
n/267364055_Integrated_Model_for_Sof
tware_Usability

Q
M

-3
97

 2012 [674] 145 Bhattacharya,
Debjani; Gulla,
Umesh; Gupta,
MP

Bhattacharya -
Gulla - Gupta

 A Hierarchical Service U e-government
services

https://www.emerald.com/insight/conte
nt/doi/10.1108/17410391211224408/full
/html

Q
M

-3
98

2012 [675] 84 Elling, Sanne;
Lentz, Leo; de
Jong, Menno;
Van den Bergh,
Huub

Website
Evaluation
Questionnaire
(WEQ)

 A Hierarchical Product U e-government
websites

https://www.sciencedirect.com/science/
article/pii/S0740624X12000342

Q
M

-3
99

 2012 [676] 46 Moser, Oliver;
Rosenberg,
Florian; Dustdar,
Schahram

Moser -
Rosenberg -
Dustdar

 A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/6231591

Q
M

-4
00

2012 [677] 27 Cabrera, Oscar;
Franch, Xavier

GESSI ISO 9126 A Hierarchical Service M & P
& U

web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/6240444

Q
M

-4
01

 2012 [678] 1 OASIS Web
Services Quality
Model Technical
Committee

WSQM ISO 9126 A Hierarchical Service M & P
& U

web services,
distributed systems

http://docs.oasis-open.org/wsqm/WS-
Quality-Factors/v1.0/cos01/WS-Quality-
Factors-v1.0-cos01.pdf

Q
M

-4
02

 2012 [679] 12 Phalnikar,
Rashmi;
Khutade,
Pradnya A

Phalnikar -
Khutade

 D Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/6409157

Q
M

-4
03

 2012 [680] 27 Nadanam,
Padmapriya;
Rajmohan, R

Nadanam -
Rajmohan

ISO 9126 A Hierarchical Service P & U web services,
distributed systems

https://ieeexplore.ieee.org/abstract/doc
ument/6395991

Q
M

-4
04

2012 [681] 13 Rashid, Ekbal;
Patnaik,
Srikanta;
Bhattacherjee,
Vandana

Rashid -
Patnaik -
Bhattacherjee

 Pr Case-based
reasoning

(CBR)

Product M operating systems https://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.252.9529&rep=rep1
&type=pdf

Q
M

-4
05

2012 [682] 70 Raza, Arif;
Capretz, Luiz
Fernando;
Ahmed, Faheem

Open-Source
Usability
Maturity
Model (OS-
UMM)

 A Hierarchical Product U open source
software, open
source community
process

https://www.sciencedirect.com/science/
article/pii/S0747563212000209

Q
M

-4
06

 2012 [683] 9 El-Rayyes, Emad
Kh; Abu-Zaid,
Ibrahim M

El-Rayyes -
Abu-Zaid SQA
model for
website

 D Hierarchical Product M & P website,
server/client

https://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.301.6461&rep=rep1
&type=pdf

Q
M

-4
07

2012 [68] 31 Guessi, Milena;
Nakagawa, Elisa
Yumi; Oquendo,
Flavio;
Maldonado,
José Carlos

Guessi -
Nakagawa -
Oquendo -
Maldonado

 D Hierarchical Product M & P embedded system,
software
architecture

https://dl.acm.org/doi/abs/10.1145/230
4656.2304661

Q
M

-
40

8 2012 [684] 163 Masoumi,
Davoud;

E-Quality
framework

 A Hierarchical Product M & U E-learning system,
website

https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1365-2729.2011.00440.x

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

328 | P a g e

Lindström,
Berner

Q
M

-4
09

2012 [685] 29 Park, Jinhee;
Kim, Hyeon-
Jeong; Shin, Ju-
Hwan; Baik,
Jongmoon

Park - Kim -
Shin - Baik

Goel - Okumoto
(NHPP)

Pr Stochastic Product M embedded software https://ieeexplore.ieee.org/abstract/doc
ument/6258310

Q
M

-4
10

2013 [51] 10 Ahrens, Dirk;
Frey, Andreas;
Pfeiffer,
Andreas;
Bertram,
Torsten

Ahrens - Frey -
Pfeiffer -
Bertram

ISO 9126 A Hierarchical Product M & P embedded system,
software
architecture,
automotive systems

https://link.springer.com/article/10.1007
/s00450-011-0185-x

Q
M

-4
11

 2013 [47] 1 Jeong, Hwa-
Young

Jeong ISO 9126 D Hierarchical Product M & P embedded system,
embedded software,
software as a service
(SaaS)

https://ieeexplore.ieee.org/abstract/doc
ument/6685411

Q
M

-4
12

 2013 [686] 3 Calero, C.;
Bertoa, MF

 25010+S ISO 25010 A Hierarchical Product M & P
& U

sustainable software
product and
software
engineering

https://ieeexplore.ieee.org/abstract/doc
ument/6606421

Q
M

-4
13

2013 [313] 4 Adewumi,
Adewole; nd
Omoregbe,
Nicholas; Misra,
Sanjay;
Fernandez, Luis

Adewumi -
Omoregbe -
Misra -
Fernandez

SQO-OSS A Hierarchical Product
&

Process

M open source web
applications,
repository software

https://ieeexplore.ieee.org/abstract/doc
ument/6755361

Q
M

-4
14

 2013 [314] 47 Li, Ke; Xiao,
Junchao; Wang,
Yongji; Wang,
Qing

Li - Xiao -
Wang - Wang

A Regression

analysis
Product P software from

crowdsourcing
platform

https://ieeexplore.ieee.org/abstract/doc
ument/6649922

Q
M

-4
15

 2013 [317] 18 Hegedűs, Péter Hegedűs ColumbusQM A &
Pr

Statistics Product M C# software, IT
systems

https://cyber.bibl.u-
szeged.hu/index.php/actcybern/article/vi
ew/3835

Q
M

-4
16

2013 [687] 3 Venkatasubram
anyam, Radhika
D.; Nayak,
Snigdha

Dynamic
Analysis
Technical
Model (DATM)

Dynamic
Analysis for
Internal
Software
Quality (DAISQ)
model

A Hierarchical Product M Software code, c++,
c#, java

http://www.lnse.org/papers/36-
IE0007.pdf

Q
M

-4
17

2013 [688] 9 Wang, Xiaojing;
Ceberio,
Martine; Virani,
Shamsnaz;
Garcia, Angel;
Cummins,
Jeremy

Wang -
Ceberio -
Virani - Garcia
- Cummins

QMOOD A &
Pr

Fuzzy logic Product P software http://www.cs.utep.edu/vladik/2012/tr1
2-48.pdf

Q
M

-4
18

2013 [689] 29 Baliyan, Niyati;
Kumar, Sandeep

Baliyan -
Kumar

A Fuzzy logic Service U software as a service

(SaaS)
https://ieeexplore.ieee.org/abstract/doc
ument/6684439

Q
M

-4
19

2013 [690] 32 Zahra, Sobia;
Khalid, Asra;
Javed, Ali

Mobile
Application
Quality Model

ISO 9126 A Hierarchical Product P mobile devices,
mobile application
software

https://www.researchgate.net/profile/Al
i_Javed2/publication/274048560_An_Effi
cient_and_Effective_New_Generation_O
bjective_Quality_Model_for_Mobile_Ap
plications/links/56a8dc1d08aeea2a2049
7e7e.pdf

Q
M

-4
20

2013 [691] 18 Ulman, M.;
Vostrovský, V.;
Tyrychtr, J.

Communicatio
n between
Agricultural
Businesses and
Government
(CABAG)

ISO 25010 A Hierarchical Service U e-government
services, agricultural
e-government
services

https://ageconsearch.umn.edu/record/1
62303/

Q
M

-4
21

 2013 [692] 14 Rababah,
Osama;
Hamtini, Thair;
Harfoushi,
Osama; Al-

Rababah -
Hamtini -
Harfoushi - Al-
Shboul -

ISO 9126 A Hierarchical Product P e-governement
websites

https://www.scirp.org/journal/paperinfo
rmation.aspx?paperid=38972

Annexes

329 | P a g e

Shboul, Bashar;
Obiedat, Ruba;
Nawafleh,
Sahem

Obiedat -
Nawafleh

Q
M

-4
22

2013 [693] 2 Dixit, DA Component
Based Quality
Models
(CBQM)

D Hierarchical Product M & P

& U
Component based
systems (COTS) &
Component-based
Software
Development
(CBSD)

http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.831.43&rep=rep1&ty
pe=pdf

Q
M

-4
23

 2013 [694] 35 Ahmed, Moataz
A.; Al-Jamimi,
Hamdi A

Ahmed - Al-
Jamimi

Pr Fuzzy logic Product M software https://digital-

library.theiet.org/content/journals/10.10
49/iet-sen.2013.0046

Q
M

-4
24

2013 [695] 7 Duan, Yucong;
Kattepury, Ajay;
Getahun,
Fekade; Elfakiz,
Abdelrahman;
Du, Wencai

Duan -
Kattepury -
Getahun -
Elfakiz - Du

D Meta-model Product M & P software product

line, feature model
https://ieeexplore.ieee.org/abstract/doc
ument/6630310

Q
M

-4
25

2013 [696] 39 Aversano,
Lerina;
Tortorella,
Maria

EFFORT QualiPSo,
Qualification
and Selection of
Open Source
software
(QSOS), Open
Business
Readiness
Rating
(OpenBRR)

A Hierarchical Product M & P open source
software, open
source community
process, ERP
systems

https://www.sciencedirect.com/science/
article/pii/S0950584913000311

Q
M

-4
26

 2013 [697] 26 Pizzi, Nick J Pizzi

Pr Fuzzy
classification

Product M & P software
component,
biomedical data
analysis systems

https://www.sciencedirect.com/science/
article/pii/S0020025513003319

Q
M

-4
27

 2013 [698] 5 Mayr, Alois;
Plösch,
Reinhold; Saft,
Matthias

SAfety Quality
modEl (SAQE)

A Hierarchical Product M & P

& U
object-oriented
software, C/C++
systems

https://ieeexplore.ieee.org/abstract/doc
ument/6619487

Q
M

-4
28

 2013 [699] 22 Srivastava,
Praveen Ranjan;
Kumar, Krishan

Srivastava -
Kumar CK-OO
quality model

A &
Pr

Hierarchical Product M object-oriented
software and design

https://ieeexplore.ieee.org/abstract/doc
ument/6526872

Q
M

-4
29

2013 [700] 29 Samarthyam,
Ganesh;
Suryanarayana,
Girish; Sharma,
Tushar; Gupta,
Shrinath

Method for
Intensive
Design
Assessments
(MIDAS)

QMOOD A Hierarchical Product M & P Object-oriented
software

https://ieeexplore.ieee.org/abstract/doc
ument/6606640

Q
M

-4
30

2013 [69] 14 Oliveira, LBR;
Guessi, M.;
Feitosa, D.;
Manteuffel, C.;
Galster, M.;
Oquendo, F.;
Nakagawa, EY

Oliveira -
Guessi -
Feitosa -
Manteuffel -
Galster -
Oquendo -
Nakagawa

D Hierarchical Product M & P embedded system https://www.rug.nl/research/portal/publ

ications/an-investigation-on-quality-
models-and-quality-attributes-for-
embedded-systems(96345a91-b9e8-
4d91-864a-8db11f17b597).html

Q
M

-4
31

 2013 [312] 36 alero, Coral;
Moraga, M.;
Bertoa, Manuel
F

Calero -
Moraga -
Bertoa

ISO 25010 D Hierarchical Product M & P Sustainable
software, Green IT

https://arxiv.org/abs/1309.1640

Q
M

-4
32

 2013 [701] 149 Penzenstadler,
Birgit; Femmer,
Henning

Penzenstadler
- Femmer

D Hierarchical Product

&
Process

M & P software
engineering

https://dl.acm.org/doi/abs/10.1145/245
1605.2451609

Q
M

-4
33

2013 [702] 5 Alexander Roth,
Andreas Ganser,
Horst Lichter,
Bernhard
Rumpe

Roth - Ganser -
Lichter -
Rumpe Quality
model for
Models

Lindland -
Sindre -
Solvberg

A Hierarchical Product M UML models
libraries for
software

https://arxiv.org/abs/1408.5707

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

330 | P a g e

Q
M

-4
34

 2014 [703] 5 Small, R. V. &
Arnone, M. P.

WEBCHECK WebMAC A Hierarchical Product U Web sites from
motivational
perspective

https://eric.ed.gov/?q=Assessing+the+M
otivational+Quality+of+World+Wide+We
bsites&id=EJ1040844

Q
M

-4
35

2014 [324] 4 Yildiz, Ekrem;
Bilgen, Semih;
Tokdemir, Gul;
Cagiltay, Nergiz
E.; Erturan, Y
Nasuh

Yildiz - Bilgen -
Tokdemir -
Cagiltay -
Erturan

ISO 25010 A Hierarchical Product P mobile devices,
mobile application
software, business
to customer (B2C)
mobile applications

https://link.springer.com/chapter/10.100
7/978-3-319-10359-4_21

Q
M

-4
36

2014 [325] 3 Ronchieri,
Elisabetta ;
Canaparo,
Marco ;
Salomoni,
Davide

Ronchieri -
Canaparo -
Salomoni

 Pr Discriminant
analysis

Product M & P Scientific computing
infrastructures,
distributed software

https://content.iospress.com/articles/jou
rnal-of-integrated-design-and-process-
science/jid140016

Q
M

-4
37

 2014 [329] 33 Gupta, Deepak;
Ahlawat, Anil;
Sagar, Kalpna

Gupta -
Ahlawat -
Sagar

 D Hierarchical Product U software https://ieeexplore.ieee.org/abstract/doc
ument/7019810/

Q
M

-4
38

 2014 [704] 77 Hien, Nguyen
Manh

Hien D Hierarchical Service U e-government
services

https://publications.waset.org/9997019/
a-study-on-evaluation-of-e-government-
service-quality

Q
M

-4
39

2014 [705] 7 Masood, Zafar;
Xuequn, Shang;
Yousaf, Jamal

 Software
Engineering
Methodology
(SEM) quality
model

A Hierarchical Product U software

engineering
http://www.lnse.org/papers/127-
IT3009.pdf

Q
M

-4
40

 2014 [706] 8 Adline, Agasta;
Ramachandran,
M.

Adline -
Ramachandran

Pr Genetic

Algorithm
(GA)

Product M software https://www.ijareeie.com/upload/2014/
apr14-
special/49_ramachandraneaswari.pdf

Q
M

-4
41

2014 [707] 11 Puri, Aditi;
Singh,
Harshpreet

Puri - Singh

Pr Genetic
Algorithm

(GA)

Product M open-source
software systems

https://www.researchgate.net/profile/H
arshpreet_Singh/publication/276197625
_Genetic_Algorithm_Based_Approach_fo
r_Finding_Faulty_Modules_in_Open_Sou
rce_Software_Systems/links/559a30c408
ae99aa62cc8bb3/Genetic-Algorithm-
Based-Approach-for-Finding-Faulty-
Modules-in-Open-Source-Software-
Systems.pdf

Q
M

-4
42

 2014 [708] 36 Zhang,
Guoheng; Ye,
Huilin; Lin,
Yuqing

Zhang - Ye - Lin

Pr Hierarchical Product M & P software product
line, feature model

https://link.springer.com/article/10.1007
/s11219-013-9197-z

Q
M

-4
43

2014 [709] 15 Kuwata,
Yoshitaka;
Takeda,
Kentaro; Miura,
Hiroshi

Kuwata -
Takeda - Miura
Open-Source
Software
Community
Maturity
Model

CMM v1.1 A Hierarchical Product M open source
software, open
source community
process

https://www.sciencedirect.com/science/
article/pii/S1877050914012290

Q
M

-4
44

2014 [327] 60 Sarrab,
Mohamed;
Rehman, Osama
M Hussain

Sarrab -
Rehman

SERVQUAL A Hierarchical Product M & P
& U

open source
software, open
source community
process, open
source network
tools, learning
management
systems.

https://www.sciencedirect.com/science/
article/pii/S0965997813001798

Q
M

-4
45

2014 [710] 120 Zheng,
Xianrong;
Martin, Patrick;
Brohman,
Kathryn; Da Xu,
Li

CLOUDQUAL SERQUAL A Hierarchical Service P & U cloud services https://ieeexplore.ieee.org/abstract/doc
ument/6740846

Annexes

331 | P a g e

Q
M

-4
46

2014 [711] 6 Gupta, Shrinath;
Singh,
Himanshu
Kumar;
Venkatasubram
anyam, Radhika
D.; Uppili,
Umesh

Structured
Code Quality
Assessment
Method
(SCQAM)

A Hierarchical Product M Software for

Industry, Energy,
Healthcare, and
Infrastructure and
Cities sectors

https://dl.acm.org/doi/abs/10.1145/259
7008.2597806

Q
M

-4
47

 2014 [712] 86 Athanasiou,
Dimitrios;
Nugroho, Ariadi;
Visser, Joost;
Zaidman, Andy

Athanasiou -
Nugroho -
Visser -
Zaidman

SIG
maintainability
model, ISO 9126

A Hierarchical Product M & P open source
software, software
code

https://ieeexplore.ieee.org/abstract/doc
ument/6862882

Q
M

-4
48

2014 [713] 12 Indah Le stari,
Bayu
Hendradjaya

Le stari -
Hendradjaya
Learning
Management
Systems (LMS)
quality model

ISO 9126 A Hierarchical Product P Learning
management
systems

https://ieeexplore.ieee.org/abstract/doc
ument/7045251

Q
M

-4
49

2014 [714] 13 Yuhana, Umi
Laili ; Raharjo,
Agus Budi ;
Rochimah, Siti

Academic
Information
System Quality
Instrument
(AISQI)

ISO 9126, ISO
25010, WBA
quality model
(WBAQM)

A Hierarchical Product M & P
& U

Academic web-
application (WBA),
Academic
information system

https://ieeexplore.ieee.org/abstract/doc
ument/7062684

Q
M

-4
50

2014 [715] 14 Ziemba, Ewa ;
Papaj, Tomasz ;
Descours,
Danuta

Ziemba - Papaj
- Descours

ISO 25010 A Hierarchical Product P e-government
portal, website

https://www.researchgate.net/profile/Yo
usef_Forti2/publication/283545930_The
_Adoption_of_e-
Government_in_Arab_Countries_The_Ca
se_of_Libya/links/563e0c1e08ae45b5d2
8c428d/The-Adoption-of-e-Government-
in-Arab-Countries-The-Case-of-
Libya.pdf#page=268

Q
M

-4
51

2014 [716] 3 Alrawashdeh,
Thamer A.;
Muhairat,
Mohammad I.;
Alqatawneh,
Sokyna M

ERP Systems
Quality Model
(ERPSQM)

ISO 9126 A Hierarchical Product P Enterprise Resource
Planning (ERP)
systems

https://ieeexplore.ieee.org/abstract/doc
ument/6822174

Q
M

-4
52

2014 [70] 2 Jeong, Hwa-
Young; Park,
Jong Hyuk;
Jeong, Young-
Sik

Jeong - Park -
Jeong

A Hierarchical Product M & P

& U
secure embedded
system, sensor
network

https://journals.sagepub.com/doi/full/10
.1155/2014/505242

Q
M

-4
53

2014 [717] 7 Malik, M
Usman; Nasir,
Haseeb; Javed,
Ali

Malik - Nasir -
Javed Quality
Model for
Agile
Application
Development

D Hierarchical Product M & P

& U
agile software
development

https://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.428.9146&rep=rep1
&type=pdf

Q
M

-4
54

2014 [718] 10 Baqais,
Abdulrahman
Ahmed Bobakr;
Alshayeb,
Mohammad;
Baig, Zubair A

Baqais -
Alshayeb - Baig

Pr Neural

Network
Product M software, object-

oriented software,
android

https://ro.ecu.edu.au/ecuworkspost2013
/867/

Q
M

-4
55

2015 [333] 10 Chawla,
Mandeep K.;
Chhabra, Indu

Software
Quality Model
for
Maintainability
Analysis
(SQMMA)

ISO 9126, ISO
25010

A Hierarchical Product M software, Java based
open source
software

https://dl.acm.org/doi/abs/10.1145/283
5043.2835062

Q
M

-4
56

2015 [719] 17 Bezerra, Carla
IM.; Andrade,
Rossana MC.;
Monteiro, José
Maria S

CatalOg of
measures for
Feature modEl
quality
Evaluation
(COfFEE)

ISO 25010 A Hierarchical Product M & P software product
line, feature model,
mobile applications

https://link.springer.com/chapter/10.100
7/978-3-319-14130-5_20

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

332 | P a g e

Q
M

-4
57

 2015 [720] 64 Sudhaman,
Parthasarathy;
Thangavel,
Chandrakumar

Sudhaman -
Thangavel

A Data

Envelopment
Analysis

Project &
Product

M open source
software, open
source community
process, ERP
systems

https://www.sciencedirect.com/science/
article/pii/S0263786314001689

Q
M

-4
58

2015 [721] 10 Sohn, H-J.; Lee,
M-G. Seong, B-
M. Kim, J-B

Sohn - Lee -
Seong - Kim

ISO 25010 A Hierarchical Product M & P open source
software, open
source community
process, HMTL5-
based framework

https://scholarworks.bwise.kr/ssu/handl
e/2018.sw.ssu/9706

Q
M

-4
59

2015 [722] 15 Alves, João
Marcus;
Wangenheim,
C.; Lacerda, T.;
Savaris,
Alexandre;
Wangenheim, A

question-nAire
for Evaluation
of QUAlity in
TElemedicine
systems
(AdEQUATE)

ISO 25010 A Hierarchical Product U Telemedicine
systems

https://www.researchgate.net/profile/Al
do_Von_Wangenheim2/publication/287
596231_AdEQUATE_Software_Quality_E
valuation_Model_v10/links/5677c48e08
ae125516ee3ace/AdEQUATE-Software-
Quality-Evaluation-Model-v10.pdf

Q
M

-4
60

2015 [723] 8 Ladányi,
Gergely; Tóth,
Zoltán; Ferenc,
Rudolf;
Keresztesi, Tibor

Ladányi - Tóth
- Ferenc -
Keresztesi

ISO 25010 A Hierarchical Product M IBM mainframe,
RPG programming
language

https://ieeexplore.ieee.org/abstract/doc
ument/7081819

Q
M

-4
61

 2015 [724] 14 Rochimah, Siti;
Rahmani, Hanifa
I.; Yuhana, Umi
Laili

Rochimah -
Rahmani -
Yuhana

ISO 9126 A Hierarchical Product U Academic
information system,
administration
module

https://ieeexplore.ieee.org/abstract/doc
ument/7220007

Q
M

-4
62

2015 [725] 34 Suwawi, Dawam
Dwi Jatmiko;
Darwiyanto,
Eko; Rochmani,
Martiana

Suwawi -
Darwiyanto -
Rochmani

ISO 9126 A Hierarchical Product U academic website,
web-portal, e-
learning

https://ieeexplore.ieee.org/abstract/doc
ument/7231426

Q
M

-4
63

2015 [71] 28 Bianchi, Thiago;
Santos, Daniel
Soares;
Felizardo, Katia
Romero

Bianchi -
Santos -
Felizardo

ISO 25010 D Hierarchical Product M & P embedded system,
system of system

https://ieeexplore.ieee.org/abstract/doc
ument/7179220

Q
M

-4
64

 2015 [726] 168 Calderón,
Alejandro; Ruiz,
Mercedes

Calderón - Ruiz

D Hierarchical Product U Video games,
serious games,
training system

https://www.sciencedirect.com/science/
article/pii/S0360131515300166

Q
M

-4
65

 2015 [727] 15 Zhang, Wei;
Huang, LiGuo;
Ng, Vincent; Ge,
Jidong

SMPLearner

Pr Machine
Learning (ML)

Product M software, code
change history

https://link.springer.com/article/10.1007
/s10515-014-0161-3

Q
M

-4
66

 2015 [728] 5 Jindal, Rajni;
Malhotra,
Ruchika; Jain,
Abha

Jindal -
Malhotra - Jain

Pr Neural

Network
Product M software, 'browser'

application package
of android operating
system

https://ieeexplore.ieee.org/abstract/doc
ument/7359258

Q
M

-4
67

2016 [336] 12 Kabir, Md
Alamgir;
Rehman, Muaan
Ur; Majumdar,
Shariful Islam

Kabir -
Rehman -
Majumdar

McCall,
Boehm78,
Shackel, FURPS,
Nielsen,
Software
Usability
Measurement
Inventory
(SUMI) quality
model, ISO
9126, Quality in
Use Integrated
Measurement
(QUIM) model,
Software
Engineering
Methodology
(SEM) quality
model, Preece -
Benyon - Davies

D Hierarchical Product U Point of Sale (POS)
systems

https://ieeexplore.ieee.org/abstract/doc
ument/7883188

Annexes

333 | P a g e

- Keller - Rogers,
Alonso-Ríos -
Vázquez-García
- Mosqueira-Rey
- Moret-Bonillo

Q
M

-4
68

2016 [337] 3 Di Ruscio,
Davide ;
Kolovos,
Dimitrios S.;
Korkontzelos,
Yannis;
Matragkas,
Nicholas; Vinju,
Jurgen

OSSMETER
Quality model

A Hierarchical Product M Open Source

Software (OSS)
https://ieeexplore.ieee.org/abstract/doc
ument/7814523/

Q
M

-4
69

2016 [338] 4 Qian,
Zhenzheng;
Wan,
Chengcheng;
Chen, Yuting

QUIndicator
quality model

A Classification Product U Free / Libre and

Open Source
Software
(FLOSS)

https://ieeexplore.ieee.org/abstract/doc
ument/7515956

Q
M

-4
70

2016 [56] 45 Garcés, Lina ;
Ampatzoglou,
Apostolos ;
Avgeriou, Paris ;
Nakagawa, Elisa
Yumi

Garcés -
Ampatzoglou -
Avgeriou -
Nakagawa
Ambient
Assisted Living
(AAL) quality
model

ISO 25010 A Hierarchical Product P & U Ambient Assisted
Living (AAL),
embedded system
and software

https://www.sciencedirect.com/science/
article/abs/pii/S0950584916302932

Q
M

-4
71

 2016 [729] 4 Sharma, Chahat;
Dubey, Sanjay
Kumar

Sharma -
Dubey

ISO 25010 A Fuzzy logic Product P object-oriented
system

https://link.springer.com/chapter/10.100
7/978-981-10-0451-3_9

Q
M

-4
72

2016 [730] 9 Andrian, Rian;
Hendradjaya,
Bayu; Sunindyo,
Wikan D

Andrian -
Hendradjaya -
Sunindyo E-
Government
G2B quality
model

ISO 9126 A Hierarchical Product P Enterprise Resource
Planning (ERP)
systems,
Government to
business (G2B)

https://ieeexplore.ieee.org/abstract/doc
ument/7571931

Q
M

-4
73

2016 [731] 6 Marir, Toufik;
Mokhati, Farid;
Bouchlaghem-
Seridi, Hassina;
Acid,
Youghourta;
Bouzid, Maroua

QM4MAS ISO 9126 A Hierarchical Product P Multi-agent systems
(MASs), complex
and distributed
applications

https://www.inderscienceonline.com/doi
/abs/10.1504/IJCAT.2016.080485

Q
M

-4
74

2016 [732] 130 Sarrab,
Mohamed;
Elbasir,
Mahmoud;
Alnaeli, Saleh

Sarrab - Elbasir
- Alnaeli

A Hierarchical Service P & U mobile learning

services, mobile
learning
development

https://www.sciencedirect.com/science/
article/pii/S0747563215301345

Q
M

-4
75

 2016 [733] 14 Jain, Ashu;
Tarwani,
Sandhya; Chug,
Anuradha

Jain - Tarwani -
Chug

Pr Genetic

Algorithm
(GA)

Product M object oriented
software

https://ieeexplore.ieee.org/abstract/doc
ument/7509314

Q
M

-4
76

2016 [734] 1 Forouzani,
Sepehr; Chiam,
Yin Kia;
Forouzani,
Soroush

Forouzani -
Chiam -
Forouzani

ISO 25010,
QMOOD

A Hierarchical Product M & P object oriented
software

https://dl.acm.org/doi/abs/10.1145/303
3288.3033316

Q
M

-4
77

 2017 [735] 3 Kumar, Nimish;
Dadhich, Reena;
Shastri, Aditya

Multi-Attribute
Quality Model
(MAQM)

ISO 9126 A Hierarchical Product M & P
& U

web-based
application (WBA),
object oriented

https://link.springer.com/article/10.1007
/s13198-016-0512-5

Q
M

-4
78

2017 [736] 2 Wibowo, Ripto
Mukti; Erna, P
Adhistya;
Hidayah,
Indriana

Wibowo - Erna
- Hidayah

ISO 9126 A Hierarchical Product U Decision Support
System (DSS) for
recommendation
of outstanding
marketing officer,
Information systems

https://ieeexplore.ieee.org/abstract/doc
ument/8304181

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

334 | P a g e

Q
M

-4
79

2017 [737] 8 Tabassum,
Atika; Bhatti, Dr
S Nazir; Asghar,
A Rida;
Manzoor, Iqra;
Alam, Imtiaz

Tabassum -
Bhatti - Asghar
- Manzoor -
Alam Quality
model for XP
process &
product

ISO 9126, ISO
25010

D Hierarchical Product
&

Process

M & P
& U

agile software
development,
extreme
programming

https://pdfs.semanticscholar.org/df9c/7c
ecf5b9ce9df823a21704e658a21ddabd51
.pdf

Q
M

-4
80

2017 [738] 32 Azainil,
Ramadiani;
Haryaka,
Usfandi; Agus,
Fahrul;
Kridalaksana,
Awang Harsa

User
satisfaction
model

A Structural

Equation
Modeling

(SEM)

Product U E-learning system,
online learning

https://www.sciencedirect.com/science/
article/pii/S1877050917321208

Q
M

-4
81

2017 [739] 9 Anwer, Sajid;
Adbellatif,
Ahmad and
Alshayeb,
Mohammad;
Anjum,
Muhammad
Shakeel

Anwer -
Adbellatif -
Alshayeb -
Anjum

Pr Logistic

regression
Product M object oriented

system and
software, open-
source software

https://ieeexplore.ieee.org/abstract/doc
ument/7918930

Q
M

-4
82

2018 [191] 2 Gordieiev,
Oleksandr and
Kharchenko,
Vyacheslav

Gordieiev -
Kharchenko

ISO 25010 D Hierarchical Product P IT, service-based
systems (internet of
things, green IT,
virtual reality,
augmented reality,
artificial intelligence,
cloud computing,
blockchain, web)

https://ieeexplore.ieee.org/abstract/doc
ument/8409162/

Q
M

-4
83

 2018 [6] 1 Tamrabet,
Zouheyr and
Marir, Toufik;
Mokhati, Farid

Tamrabet -
Marir -
Mokhati

D Hierarchical Product M & P embedded system https://www.igi-global.com/article/a-

survey-on-quality-attributes-and-quality-
models-for-embedded-software/204480

Q
M

-4
84

2018 [349] 10 Russo, Daniel ;
Ciancarini,
Paolo;
Falasconi,
Tommaso;
Tomasi,
Massimo

Software
Quality,
Architecture,
Process
(SQuAP)

ISO 25010 D Meta-model Product
&

Process

M & P
& U

Information
systems, financial
sector

https://dl.acm.org/doi/abs/10.1145/323
0713

Q
M

-4
85

2018 [350] 1 Wahdiniwaty,
Rahma;
Setiawan, Eko
Budi; Wahab,
Deden A

Wahdiniwaty -
Setiawan -
Wahab

McCall,
Boehm78,
Dromey, FURPS,
ISO 9126

A Hierarchical Product U website, web-portal,
e-commerce

https://ieeexplore.ieee.org/abstract/doc
ument/8696074

Q
M

-4
86

2018 [740] 5 Suradi, Nur
Razia Mohd;
Kahar, Saliyah;
Jamaluddin, Nor
Azliana Akmal

Suradi - Kahar -
Jamaluddin

McCall,
Boehm78,
Dromey, FURPS,
ISO 9126

D Hierarchical Product U Higher Education
Institution (HEI),
Academic
application, e-
learning, e-course,
web-portal

https://journal.utem.edu.my/index.php/j
tec/article/view/4440

Q
M

-4
87

2018 [351] 1 Gatica, Diego;
Ponce,
Francisco; Noël,
René; Astudillo,
Hernán

Gatica - Ponce
- Noël -
Astudillo

D Hierarchical Product P systems of systems,

architecture, design
https://ieeexplore.ieee.org/abstract/doc
ument/8705229

Q
M

-4
88

2018 [352] 20 Abdellatif,
Abdelbaset
Jamal ;
McCollum,
Barry ;
McMullan, Paul

Abdellatif -
McCollum -
McMullan

A Hierarchical Product U serious game,

education,
programmed serious
games, video-
games, Robocode

https://ieeexplore.ieee.org/abstract/doc
ument/8340460

Annexes

335 | P a g e

Q
M

-4
89

 2018 [741] 37 Condori-
Fernandez,
Nelly; Lago,
Patricia

Condori-
Fernandez -
Lago

ISO 25010 D Hierarchical Product M & P Software
architecture,
sustainable software

https://www.sciencedirect.com/science/
article/pii/S0164121217302984

Q
M

-4
90

2019 [77] 1 Juneja, Sapna;
Juneja, Abhinav;
Anand, Rohit

Juneja - Juneja
- Anand

Park - Kim - Shin
- Baik

Pr Stochastic Product M embedded software,
embedded systems
and systems that are
mission-critical
including aircrafts,
automobile, nuclear
power plants and
various robotic
medical applications

https://ieeexplore.ieee.org/abstract/doc
ument/8776814

Q
M

-4
91

 2019 [358] 3 Condori-
Fernandez,
Nelly; Lago,
Patricia

Sustainability-
quality model

Condori-
Fernandez -
Lago

D Hierarchical Product M & P software-intensive
systems

https://ieeexplore.ieee.org/abstract/doc
ument/8877084

Q
M

-4
92

2019 [205] 6 Gezici, Bahar;
Tarhan, Ayca;
Chouseinoglou,
Oumout

Gezici - Tarhan
-
Chouseinoglou

ISO 25010 A Hierarchical Product M & P
& U

mobile applications,
mobile software,
open-source
software (OSS),
open-source
market, object-
oriented software

https://www.sciencedirect.com/science/
article/pii/S0950584918301290

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

336 | P a g e

Annexes

337 | P a g e

Annex 7. Project scorecard description

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

338 | P a g e

TABLE 49 - DEFINITIONS OF THE DIFFERENT ELEMENTS OF THE PROJECT SCORECARD

Scorecard Category Name Definition

Project

Name Project name

Current WW’Y
Current workweek and year under the form “ww’yy” (where “ww” and “yy” are
respectively week and year with 2 digits). e.g.: week of 1st January 2019 is 01’19

Target WW’Y
Current sprint or PI target workweek and year under the form “ww’yy” (where
“ww” and “yy” are respectively week and year with 2 digits). e.g.: week of 1st
January 2019 is 01’19

SW GATE
Name of current targeted Software Gate. Possible values: SW_G1, SW_G2,
SW_G2, SW_G3, SW_G4, SW_G5, SW_G6, SW_G7, SW_G8, SW_G9, SW_G10,
SW_G11

SWG Target WW’Y
Current SW Gate target workweek and year under the form “ww’yy” (where
“ww” and “yy” are respectively week and year with 2 digits). e.g.: week of 1st
January 2019 is 01’19

Project Dimensions

Load level Load level of project: GM (Grand Mother), M (Mother), B (Brother) & C (Child)

Feature Nb
Total number of features targeted by the project (including the ones already
completed within the project scope)

Task Nb Total number of tasks, completed or not, within the project scope

Lines of Code Total number of lines of code done within the project scope

Project Indicators

Risk
Current global project risk level done by risk manager, or project manager.
Possible values: low, med, high

Trend
Current global project trend compares to previous week and done by project
manager. Possible values: , , 

Completion
Percentage of completed sprint or PI scope targeted by current target; may be
linked to current project management approach

Scope Creep
Percentage of changes, continuous or uncontrolled growth in a project’s scope
(different from feature creep), at any point after the project begins. This metric
can be achieved using variation metrics

Lead time
Mean time of entire process crossing (e.g., from to requirement specification to
code in use); may depend on project development methodology

Fix response time Mean time to fix defect (cycle time)

Issues out of delay rate
Percentage of issues that are not addressed for more than a certain fixed delay:
15 days

SW Product Quality
Consolidated percentage of SW product quality. This should be computed
(weighted mean if weights are defined) based on proper quality model and all
measured quality characteristics/sub-characteristics

Automation rate Cumulated percentage of spec (SRS, SAD) and code covered by automated tests

Coverage
(1) At ECU level, Coverage reflects if a strategy has been decided or not
(value=100% or 0%).

Annexes

339 | P a g e

Quality
Performance
Indicators

(2) At higher levels, Coverage reflects the ratio of underlying ECUs for which a
strategy has been decided.

(3) At lower levels, Coverage reflects the ratio of applicable and planned Gate
criteria for current SW Gate

Completeness
Ratio of evaluated outcomes (green, orange, red) or criteria with regards to.
expected outcomes or criteria

Consistency
Ratio of non-failing outcomes (green, orange; i.e., good quality level, action in
place or derogation of evaluated criteria) with regards to expected outcomes or
evaluated criteria

Safety &
Regulation
Performance
Indicators

Safety Percentage of Safety related achieved outcomes

Regulation Percentage of Regulation related achieved outcomes

Spec Coverage

SRS Coverage
Percentage of STRComp covered by all Software Requirement Specifications
(SRS)

SAD Coverage Percentage of SRS covered by all Software Architecture Designs (SAD)

SCDD Coverage
Percentage of SAD covered by all Software Component Detailed Design (SCDD)
(Software Unit)

Test Coverage

Percentage of aggregated (i.e., can be either weighted or unweighted mean)
“Percentage of Software Unit covered by Software Unit tests”, “Percentage of
SAD covered by Integration tests” and “Percentage of SRS covered by
Qualification tests”

Traceability Percentage of End to End (SRS to qualification test) traceability

Implementation
Rate SRS Implementation Rate

Percentage of SRS implemented (Model & Code). Once implementation is
completed, SCDR#2 can be done.

Review
Achievement

Verification Reviews
Percentage of Completed Verification reviews (i.e., evaluated with review leader
decision) over Planned Verification Reviews

Confirmation Reviews
Percentage of Completed Confirmation reviews (i.e., evaluated with review
leader decision) over Planned Confirmation Reviews

Joint Review
Achievement

SCDR #AE

Percentage of SCDR (i.e., System Control Design Review) #AE reviews completed
(i.e., evaluated with chairman decision) considering that SCDR number is directly
linked to every approved software change request or package of change request
according ECU development process

SCDR #0

Percentage of SCDR #0 reviews completed (i.e., evaluated with chairman
decision) considering that SCDR number is directly linked to every approved
software change request or package of change request according ECU
development process

SCDR #1

Percentage of SCDR #1 reviews completed (i.e., evaluated with chairman
decision) considering that SCDR number is directly linked to every approved
software change request or package of change request according ECU
development process

SCDR #2

Percentage of SCDR #2 reviews completed (i.e., evaluated with chairman
decision) considering that SCDR number is directly linked to every approved
software change request or package of change request according ECU
development process

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

340 | P a g e

SCDR #3

Percentage of SCDR #3 reviews completed (i.e., evaluated with chairman
decision) considering that SCDR number is directly linked to every approved
software change request or package of change request according ECU
development process

SCDR #4

Percentage of SCDR #4 reviews completed (i.e., evaluated with chairman
decision) considering that SCDR number is directly linked to every approved
software change request or package of change request according ECU
development process

Open Bugs23

[K1/K2]24

Input Requirement
Number of open Input requirement K1 bugs and K2 bugs. These bugs are directly
linked to requirements input (i.e., STRCOmp) coming from system

SRS
Number of open Software Requirements K1 bugs and K2 bugs. These bugs are
directly linked to SRS

SAD
Number of open Software Architecture K1 bugs and K2 bugs. These bugs are
directly linked to SAD

SW Rule Violations
Number of open Software Rule K1 bugs and K2 bugs. These bugs are directly
linked to Software Rule violations detected when applying and executing MXAM
on model or Static Analysis on source code (e.g., with QAC or CodeSonar tools).

SW Issues
Number of open Software K1 bugs and Software K2 bugs not listed in the other
categories (i.e., Software Input Requirement, Software Architecture, Software
Rule Violations and Legal violations)

IP Scan Violations
Number of open IP Scan K1 bugs and K2 bugs. These bugs are directly linked to
IP Scan violations detected when applying and executing IP Plan.

Performance

Processing Unit load
Percentage of current Processing Unit (i.e., CPU, GPU, DSP, NPU) Load when
running processing unit load test scenario. Assessment must be done
accordingly to project target.

Volatile Memory
Footprint

Maximum volatile memory (i.e., RAM, Cache) footprint of the software with
respect to available volatile memory. Assessment must be done accordingly to
project target.

Non-Volatile Memory
Footprint

Maximum non-volatile memory (i.e., ROM, Flash) footprint of the software with
respect to available non-volatile memory. Assessment must be done accordingly
to project target.

Test Rate

[Run/Pass/Reg.]

SW Dev Tool

Run rate: percentage of executed Software Development Tool tests over
planned25 Software Development Tool tests,

Pass rate: percentage of passed Software Development Tool tests over
planned25 Software Development Tool tests,

SW Unit

Run rate: percentage of executed Software Unit tests over planned25 Software
Unit tests,

Pass rate: percentage of passed Software Unit tests over planned25 Software
Unit tests,

Regression rate: percentage of currently failing Software Unit tests, which
previously passed, over Software Unit tests that passed,

SW Component

Run rate: percentage of executed Software Component tests over planned25
Software Component tests,

Pass rate: percentage of passed Software Component tests over planned25
Software Component tests,

23 Open bug.: other than closed and verified bug
24 K1 and K2 represents bug criticality
25 Planned: with regards to current Software Gate scope.

Annexes

341 | P a g e

Regression rate: percentage of currently failing Software Component tests,
which previously passed, over Software Component tests that passed,

SW Integration

Run rate: percentage of executed Software Integration tests over planned25
Software Integration tests,

Pass rate: percentage of passed Software Integration tests over planned25
Software Integration tests,

Regression rate: percentage of currently failing Software Integration tests,
which previously passed, over Software Integration tests that passed,

SW Acceptance

Run rate: percentage of executed Software Acceptance tests over planned25
Software Acceptance tests,

Pass rate: percentage of passed Software Acceptance tests over planned25
Software Acceptance tests,

SW Qualification

Run rate: percentage of executed Software Qualification tests over planned25
Software Qualification tests,

Pass rate: percentage of passed Software Qualification tests over planned25
Software Qualification tests,

Regression rate: percentage of currently failing Software Qualification tests,
which previously passed, over Software Qualification tests that passed,

Code Coverage

Function

Unit: Percentage of functions covered by Software unit test executions. Metrics
which can be obtained thanks to gcov / lcov tool, for example

Component: Percentage of functions covered by Software component test
executions. Metrics which can be obtained thanks to gcov / lcov tool, for
example

Line26

Unit: Percentage of code lines covered by Software unit test executions. Metrics
which can be obtained thanks to gcov / lcov tool, for example

Component: Percentage of code lines covered by Software component test
executions. Metrics which can be obtained thanks to gcov / lcov tool, for
example

Statement

Highly recommended for
ASIL A, B

Unit: Percentage of statements covered by Software unit test executions.

Component: Percentage of statements covered by Software component test
executions.

Branch

Highly recommended for
ASIL B, C, D

Unit: Percentage of branches covered by Software unit test executions.

Component: Percentage of branches covered by Software component test
executions.

MC/DC
(Modified Condition /
Decision Changed)

Highly recommended for
ASIL D

Unit: Percentage of MC/DC covered by Software unit test executions.

Component: Percentage of MC/DC covered by Software component test
executions.

Requirement
Amount

Safety Number of Safety requirement with “Software Impact”

Regulation Number of Regulation requirement with “Software Impact”

Open Bugs23 Safety Number of open Safety related K1 bugs and K2 bugs

26 A line may contain zero (i.e., comment), one or more statements.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

342 | P a g e

[K1/K2]24
Regulation

Number of open Regulation related K1 bugs and K2 bugs. Doesn’t include Safety
related bugs.

Test Rate

[Run/Pass/Reg.]

Safety

Run rate: percentage of executed Safety related software Qualification tests
over planned25 Safety related software Qualification tests,

Pass rate: percentage of passed Safety related software Qualification tests over
planned25 Safety related Software Qualification tests,

Regression rate: percentage of currently failing Safety related software
Qualification tests, which previously passed, over Safety related software
Qualification tests that passed

Regulation

Run rate: percentage of executed Regulation related software Qualification
tests over planned25 Regulation related software Qualification tests,

Pass rate: percentage of passed Regulation related software Qualification tests
over planned25 Regulation related software Qualification tests,

Regression rate: percentage of currently failing Regulation related software
Qualification tests, which previously passed, over Regulation related software
Qualification tests that passed

Annexes

343 | P a g e

Annex 8. ISO/IEC/IEEE 25010 quality models [23]

- Definitions of the system / Software product quality model

o Quality characteristic definitions

Quality Characteristic Definition

Functional Suitability Degree to which a product or system provides functions that meet stated and implied
needs when used under specified conditions.

Performance Efficiency Performance relative to the amount of resources used under stated conditions.

Compatibility Degree to which a product, system or component can exchange information with other
products, systems or components, and/or perform its required functions, while sharing
the same hardware or software environment.

Usability Degree to which a product or system can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use.

Reliability Degree to which a system, product or component performs specified functions under
specified conditions for a specified period of time.

Security Degree to which a product or system protects information and data so that persons or
other products or systems have the degree of data access appropriate to their types and
levels of authorization.

Maintainability Degree of effectiveness and efficiency with which a product or system can be modified by
the intended maintainers.

Portability Degree of effectiveness and efficiency with which a system, product or component can be
transferred from one hardware, software or other operational or usage environment to
another.

o Quality sub-characteristic definitions
 Functional Suitability

Quality Sub-Characteristic Definition

Functional Completeness Degree to which the set of functions covers all the specified tasks and user objectives.

Functional Correctness Degree to which a product or system provides the correct results with the needed
degree of precision.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

344 | P a g e

Quality Sub-Characteristic Definition

Functional Appropriateness Degree to which the functions facilitate the accomplishment of specified tasks and
objectives.

 Performance Efficiency

Quality Sub-Characteristic Definition

Time Behaviour Degree to which the response and processing times and throughput rates of a product or
system, when performing its functions, meet requirements.

Resource Utilization Degree to which the amounts and types of resources used by a product or system, when
performing its functions, meet requirements.

Capacity Degree to which the maximum limits of a product or system parameter meet
requirements.

 Compatibility

Quality Sub-Characteristic Definition

Co-existence Degree to which a product can perform its required functions efficiently while sharing a
common environment and resources with other products, without detrimental impact on
any other product.

Interoperability Degree to which two or more systems, products or components can exchange
information and use the information that has been exchanged.

 Usability

Quality Sub-Characteristic Definition

Appropriateness Recognizability Degree to which users can recognize whether a product or system is appropriate
for their needs.

Learnability Degree to which a product or system can be used by specified users to achieve
specified goals of learning to use the product or system with effectiveness,
efficiency, freedom from risk and satisfaction in a specified context of use.

Operability Degree to which a product or system has attributes that make it easy to operate
and control.

User Error Protection Degree to which a system protects users against making errors.

User Interface Aesthetics Degree to which a user interface enables pleasing and satisfying interaction for the
user.

Accessibility Degree to which a product or system can be used by people with the widest range
of characteristics and capabilities to achieve a specified goal in a specified context
of use.

 Reliability

Quality Sub-Characteristic Definition

Maturity Degree to which a system, product or component meets needs for reliability under
normal operation.

Annexes

345 | P a g e

Quality Sub-Characteristic Definition

Availability Degree to which a product or system can be used by specified users to achieve specified
goals of learning to use the product or system with effectiveness, efficiency, freedom
from risk and satisfaction in a specified context of use.

Fault Tolerance Degree to which a system, product or component operates as intended despite the
presence of hardware or software faults.

Recoverability Degree to which, in the event of an interruption or a failure, a product or system can
recover the data directly affected and re-establish the desired state of the system.

 Security

Quality Sub-Characteristic Definition

Confidentiality Degree to which a product or system ensures that data are accessible only to those
authorized to have access.

Integrity Degree to which a system, product or component prevents unauthorized access to, or
modification of, computer programs or data.

Non-Repudiation Degree to which actions or events can be proven to have taken place, so that the events
or actions cannot be repudiated later.

Accountability Degree to which the actions of an entity can be traced uniquely to the entity.

Authenticity Degree to which the identity of a subject or resource can be proved to be the one
claimed.

 Maintainability

Quality Sub-Characteristic Definition

Modularity Degree to which a system or computer program is composed of discrete components
such that a change to one component has minimal impact on other components.

Reusability Degree to which an asset can be used in more than one system, or in building other
assets.

Analysability Degree of effectiveness and efficiency with which it is possible to assess the impact on a
product or system of an intended change to one or more of its parts, or to diagnose a
product for deficiencies or causes of failures, or to identify parts to be modified.

Modifiability Degree to which a product or system can be effectively and efficiently modified without
introducing defects or degrading existing product quality.

Testability Degree of effectiveness and efficiency with which test criteria can be established for a
system, product or component and tests can be performed to determine whether those
criteria have been met.

 Portability

Quality Sub-Characteristic Definition

Adaptability Degree to which a product or system can effectively and efficiently be adapted for
different or evolving hardware, software or other operational or usage environments.

Installability Degree of effectiveness and efficiency with which a product or system can be successfully
installed and/or uninstalled in a specified environment.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

346 | P a g e

Quality Sub-Characteristic Definition

Replaceability Degree to which a product can replace another specified software product for the same
purpose in the same environment.

- Definitions of the quality in use model

o Quality characteristic definitions

Quality Characteristic Definition

Effectiveness Accuracy and completeness with which users achieve specified goals.

Efficiency Resources expended in relation to the accuracy and completeness with which users
achieve goals.

Satisfaction Degree to which user needs are satisfied when a product or system is used in a specified
context of use.

Freedom from Risk Degree to which a product or system mitigates the potential risk to economic status,
human life, health, or the environment.

Context Coverage Degree to which a product or system can be used with effectiveness, efficiency, freedom
from risk and satisfaction in both specified contexts of use and in contexts beyond those
initially explicitly identified.

o Quality sub-characteristic definitions
 Effectiveness

<no further sub-characteristic>

 Efficiency
<no further sub-characteristic>

 Satisfaction

Quality Sub-Characteristic Definition

Usefulness Degree to which a user is satisfied with their perceived achievement of pragmatic goals,
including the results of use and the consequences of use.

Trust Degree to which a user or other stakeholder has confidence that a product or system will
behave as intended.

Pleasure Degree to which a user obtains pleasure from fulfilling their personal needs.

Comfort Degree to which the user is satisfied with physical comfort.

Annexes

347 | P a g e

 Freedom from Risk

Quality Sub-Characteristic Definition

Economic Risk Mitigation Degree to which a product or system mitigates the potential risk to financial
status, efficient operation, commercial property, reputation or other resources in
the intended contexts of use.

Health and Safety Risk Mitigation Degree to which a product or system mitigates the potential risk to people in the
intended contexts of use.

Environmental Risk Mitigation Degree to which a product or system mitigates the potential risk to property or
the environment in the intended contexts of use degree to which a product or
system mitigates the potential risk to economic status, human life, health, or the
environment.

 Context Coverage

Quality Sub-Characteristic Definition

Context Completeness Degree to which a product or system can be used with effectiveness, efficiency, freedom
from risk and satisfaction in all the specified contexts of use.

Flexibility Degree to which a product or system can be used with effectiveness, efficiency, freedom
from risk and satisfaction in contexts beyond those initially specified in the requirements
degree to which a product or system can be used with effectiveness, efficiency, freedom
from risk and satisfaction in both specified contexts of use and in contexts beyond those
initially explicitly identified.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

348 | P a g e

Annexes

349 | P a g e

Annex 9. Survey used against our real-world use case

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

350 | P a g e

Annexes

351 | P a g e

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

352 | P a g e

Annexes

353 | P a g e

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

354 | P a g e

Annexes

355 | P a g e

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

356 | P a g e

Annexes

357 | P a g e

Annex 10. Survey results

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

358 | P a g e

Annexes

359 | P a g e

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

360 | P a g e

Annexes

361 | P a g e

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

362 | P a g e

Annexes

363 | P a g e

Annex 11. Automotive real-world use case analysis results: importance values,
inclusion / exclusion decisions and weight factors

- Survey analysis results on IVI ECU embedded software quality characteristics and sub-
characteristics

Perspective Characteristics
First

importance
value

Final importance
value

Final
Decision

∑𝐢𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐜𝐞 𝐯𝐚𝐥𝐮𝐞𝐬
Weight
factors

System /
Software

product quality

Functional Suitability 1.75 1.75 Included

9

0.194444
444

Performance Efficiency 1 1 Included
0.111111

111
Compatibility 0.75 0.8125 Excluded

Usability 1.5 1.5 Included
0.166666

667

Reliability 2 2 Included
0.222222

222

Security 0.5
0.93611111

1 Excluded

Maintainability 1.25 1.25 Included
0.138888

889

Portability 1.5 1.5 Included
0.166666

667

Quality in use

Effectiveness 1.25 1.25 Included

4.5

0.277777
778

Efficiency 1.25 1.25 Included
0.277777

778

Satisfaction 2 2 Included
0.444444

444
Freedom From Risk 0.75 0.8125 Excluded

Context Coverage 0.5
0.29166666

7 Excluded

Characteristics Sub-characteristics

Functional
Suitability

Functional Completeness 0.666666667
0.66666666

7
Excluded

3.166666667

Functional Correctness 1.666666667
1.66666666

7
Included

0.526315
789

Functional Appropriateness 1.5 1.5 Included
0.473684

211

Performance
Efficiency

Time-behavior 1.333333333
1.33333333

3
Included

3.666666667

0.363636
364

Resource Utilization 1 1 Included 0.272727
273

Capacity 1.333333333 1.33333333
3

Included 0.363636
364

Compatibility
Co-existence 0 0 Excluded

Excluded characteristic
Interoperability 1 1 Included

Usability

Appropriateness
Recognizability

0 0 Excluded

6

Learnability 0.5 0.5 Excluded

Operability 2 2 Included
0.333333

333

User Error Protection 1.666666667
1.66666666

7
Included

0.277777
778

User Interface Aesthetics 1.333333333
1.33333333

3
Included

0.222222
222

Accessibility 1 1 Included
0.166666

667

Reliability

Maturity 1 1 Included

5

0.2

Availability 1 1 Included 0.2

Fault Tolerance 1.666666667
1.66666666

7
Included

0.333333
333

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

364 | P a g e

Recoverability 1.333333333
1.33333333

3 Included
0.266666

667

Security

Confidentiality 1.666666667
1.66666666

7 Included

Excluded characteristic

Integrity 1 1 Included

Non-Repudiation 0 0 Excluded

Accountability 0.333333333
0.33333333

3 Excluded

Authenticity 1 1 Included

Maintainability

Modularity 1 1 Included

6.333333333

0.157894
737

Reusability 1 1 Included 0.157894
737

Analysability 1.333333333 1.33333333
3

Included 0.210526
316

Modifiability 1 1 Included
0.157894

737

Testability 2 2 Included
0.315789

474

Portability

Adaptability 0.666666667
0.66666666

7 Excluded

2.333333333

Installability 1 1 Included
0.428571

429

Replaceability 1.333333333
1.33333333

3
Included

0.571428
571

Satisfaction

Usefulness 1.333333333
1.33333333

3
Included

2.666666667

0.5

Trust 1.333333333
1.33333333

3
Included 0.5

Pleasure 0.333333333
0.33333333

3
Excluded

Comfort 0.666666667 0.66666666
7

Excluded

Effectiveness Effectiveness 1.25 1.25 Included 1.25 1

Freedom From
Risk

Economic Risk Mitigation 0.5 0.5 Excluded

Excluded characteristic
Health and Safety Risk
Mitigation

1 1 Included

Environmental Risk Mitigation 0 0 Excluded

Efficiency Efficiency 1.25 1.25 Included 1.25 1

Context
Coverage

Context Completeness 0.666666667
0.66666666

7
Excluded

Excluded characteristic
Flexibility 0.666666667 0.66666666

7
Excluded

- Survey analysis results on IVC ECU embedded software quality characteristics and sub-
characteristics

Perspective Characteristics
First

importance
value

Final
importance

value

Final
Decision

∑𝐢𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐜𝐞 𝐯𝐚𝐥𝐮𝐞𝐬
Weight
factors

System /
Software

product quality

Functional Suitability 1.75 1.75 Included

7.048611111

0.248275862

Performance Efficiency 1.25 1.25 Included 0.177339901

Compatibility 1.5 1.5 Included 0.212807882

Usability 0.25 0.659722222 Excluded

Reliability 1.5 1.5 Included 0.212807882

Security 0.5 0.936111111 Excluded

Maintainability 0.25 0.9625 Excluded

Portability 0.75 1.048611111 Included 0.148768473

Quality in use
Effectiveness 1.5 1.5 Included

2.75
0.545454545

Efficiency 0.75 0.75 Excluded

Annexes

365 | P a g e

Satisfaction 1.25 1.25 Included 0.454545455

Freedom From Risk 0.75 0.993055556 Excluded

Context Coverage 0.5 0.166666667 Excluded

Characteristics Sub-characteristics

Functional
Suitability

Functional Completeness 1 1 Included

4.166666667

0.24

Functional Correctness 1.5 1.5 Included 0.36

Functional Appropriateness 1.666666667 1.666666667 Included 0.4

Performance
Efficiency

Time-behavior 1 1 Included

1

1

Resource Utilization 0.333333333 0.333333333 Excluded

Capacity 0 0 Excluded

Compatibility
Co-existence 0.333333333 0.333333333 Excluded

2

Interoperability 2 2 Included 1

Usability

Appropriateness
Recognizability 1 1 Included

Excluded characteristic

Learnability 0.333333333 0.333333333 Excluded

Operability 1 1 Included

User Error Protection 0.333333333 0.333333333 Excluded

User Interface Aesthetics
-

0.666666667
-0.666666667 Excluded

Accessibility 0.333333333 0.333333333 Excluded

Reliability

Maturity 1.666666667 1.666666667 Included

4

0.416666667

Availability 1.333333333 1.333333333 Included 0.333333333

Fault Tolerance 0.666666667 0.666666667 Excluded

Recoverability 1 1 Included 0.25

Security

Confidentiality 1.333333333 1.333333333 Included

Excluded characteristic

Integrity 1.333333333 1.333333333 Included

Non-Repudiation 0 0 Excluded

Accountability 1 1 Included

Authenticity 0.333333333 0.333333333 Excluded

Maintainability

Modularity 1.333333333 1.333333333 Included

Excluded characteristic

Reusability 1.333333333 1.333333333 Included

Analysability 1 1 Included

Modifiability 1 1 Included

Testability 1.333333333 1.333333333 Included

Portability

Adaptability 1.333333333 1.333333333 Included

1.333333333

1

Installability 0.666666667 0.666666667 Excluded

Replaceability 0.333333333 0.333333333 Excluded

Satisfaction

Usefulness 1.333333333 1.333333333 Included

3

0.444444444

Trust 1.666666667 1.666666667 Included 0.555555556

Pleasure
-

0.666666667
-0.666666667 Excluded

Comfort
-

0.666666667
-0.666666667 Excluded

Effectiveness Effectiveness 1.5 1.5 Included 1.5 1

Freedom From
Risk

Economic Risk Mitigation 1 1 Included
Excluded characteristic Health and Safety Risk

Mitigation
1.333333333 1.333333333 Included

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

366 | P a g e

Environmental Risk
Mitigation 0.333333333 0.333333333 Excluded

Efficiency Efficiency 0.75 0.75 Excluded Excluded characteristic

Context
Coverage

Context Completeness 0.333333333 0.333333333 Excluded
Excluded characteristic

Flexibility 0 0 Excluded

- Survey analysis results on ADAS ECU embedded software quality characteristics and sub-
characteristics

Perspective Characteristics
First

importance
value

Final
importance

value

Final
Decision

∑𝐢𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐜𝐞 𝐯𝐚𝐥𝐮𝐞𝐬 Weight
factors

System /
Software

product quality

Functional Suitability 1.75 1.75 Included

7.604166667

0.230136986

Performance Efficiency 1.75 1.75 Included 0.230136986

Compatibility 0.25 0.6875 Excluded

Usability 0.25 1.083333333 Included 0.142465753

Reliability 1 1 Included 0.131506849

Security 0.75 0.998611111 Excluded

Maintainability 1 1 Included 0.131506849

Portability 0.75 1.020833333 Included 0.134246575

Quality in use

Effectiveness 1.25 1.25 Included

4.583333333

0.272727273

Efficiency 1.25 1.25 Included 0.272727273

Satisfaction 0.75 1.083333333 Included 0.236363636

Freedom From Risk 1 1 Included 0.218181818

Context Coverage 0 0.166666667 Excluded

Characteristics Sub-characteristics

Functional
Suitability

Functional Completeness 0.666666667 0.666666667 Excluded

3.166666667

Functional Correctness 1.666666667 1.666666667 Included 0.526315789

Functional Appropriateness 1.5 1.5 Included 0.473684211

Performance
Efficiency

Time-behavior 1.333333333 1.333333333 Included

3.666666667

0.363636364

Resource Utilization 1 1 Included 0.272727273

Capacity 1.333333333 1.333333333 Included 0.363636364

Compatibility
Co-existence 0 0 Excluded

Excluded characteristic
Interoperability 1 1 Included

Usability

Appropriateness
Recognizability 0 0 Excluded

6

Learnability 0.5 0.5 Excluded

Operability 2 2 Included 0.333333333

User Error Protection 1.666666667 1.666666667 Included 0.277777778

User Interface Aesthetics 1.333333333 1.333333333 Included 0.222222222

Accessibility 1 1 Included 0.166666667

Reliability

Maturity 1 1 Included

5

0.2

Availability 1 1 Included 0.2

Fault Tolerance 1.666666667 1.666666667 Included 0.333333333

Recoverability 1.333333333 1.333333333 Included 0.266666667

Security

Confidentiality 1.666666667 1.666666667 Included

Excluded characteristic Integrity 1 1 Included

Non-Repudiation 0 0 Excluded

Annexes

367 | P a g e

Accountability 0.333333333 0.333333333 Excluded

Authenticity 1 1 Included

Maintainability

Modularity 1 1 Included

6.333333333

0.157894737

Reusability 1 1 Included 0.157894737

Analysability 1.333333333 1.333333333 Included 0.210526316

Modifiability 1 1 Included 0.157894737

Testability 2 2 Included 0.315789474

Portability

Adaptability 0.666666667 0.666666667 Excluded

2.333333333

Installability 1 1 Included 0.428571429

Replaceability 1.333333333 1.333333333 Included 0.571428571

Satisfaction

Usefulness 1.333333333 1.333333333 Included

2.666666667

0.5

Trust 1.333333333 1.333333333 Included 0.5

Pleasure 0.333333333 0.333333333 Excluded

Comfort 0.666666667 0.666666667 Excluded

Effectiveness Effectiveness 1.25 1.25 Included 1.25 1

Freedom From
Risk

Economic Risk Mitigation 0.5 0.5 Excluded

1

Health and Safety Risk
Mitigation

1 1 Included 1

Environmental Risk
Mitigation

0 0 Excluded

Efficiency Efficiency 1.25 1.25 Included 1.25 1

Context
Coverage

Context Completeness 0.666666667 0.666666667 Excluded
Excluded characteristic

Flexibility 0.666666667 0.666666667 Excluded

- Survey analysis results on FOTA embedded software quality characteristics and sub-
characteristics

Perspective Characteristics
First

importance
value

Final
importance

value

Final
Decision

∑𝐢𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐜𝐞 𝐯𝐚𝐥𝐮𝐞𝐬 Weight
factors

System /
Software

product quality

Functional Suitability 1.75 1.75 Included

7.604166667

0.230136986

Performance Efficiency 1.75 1.75 Included 0.230136986

Compatibility 0.25 0.6875 Excluded

Usability 0.25 1.083333333 Included 0.142465753

Reliability 1 1 Included 0.131506849

Security 0.75 0.998611111 Excluded

Maintainability 1 1 Included 0.131506849

Portability 0.75 1.020833333 Included 0.134246575

Quality in use

Effectiveness 1.25 1.25 Included

4.583333333

0.272727273

Efficiency 1.25 1.25 Included 0.272727273

Satisfaction 0.75 1.083333333 Included 0.236363636

Freedom From Risk 1 1 Included 0.218181818

Context Coverage 0 0.166666667 Excluded

Characteristics Sub-characteristics

Functional
Suitability

Functional Completeness 0.666666667 0.666666667 Excluded

3.166666667

Functional Correctness 1.666666667 1.666666667 Included 0.526315789

Functional Appropriateness 1.5 1.5 Included 0.473684211

Time-behavior 1.333333333 1.333333333 Included 3.666666667 0.363636364

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

368 | P a g e

Performance
Efficiency

Resource Utilization 1 1 Included 0.272727273

Capacity 1.333333333 1.333333333 Included 0.363636364

Compatibility
Co-existence 0 0 Excluded

Excluded characteristic
Interoperability 1 1 Included

Usability

Appropriateness
Recognizability 0 0 Excluded

6

Learnability 0.5 0.5 Excluded

Operability 2 2 Included 0.333333333

User Error Protection 1.666666667 1.666666667 Included 0.277777778

User Interface Aesthetics 1.333333333 1.333333333 Included 0.222222222

Accessibility 1 1 Included 0.166666667

Reliability

Maturity 1 1 Included

5

0.2

Availability 1 1 Included 0.2

Fault Tolerance 1.666666667 1.666666667 Included 0.333333333

Recoverability 1.333333333 1.333333333 Included 0.266666667

Security

Confidentiality 1.666666667 1.666666667 Included

Excluded characteristic

Integrity 1 1 Included

Non-Repudiation 0 0 Excluded

Accountability 0.333333333 0.333333333 Excluded

Authenticity 1 1 Included

Maintainability

Modularity 1 1 Included

6.333333333

0.157894737

Reusability 1 1 Included 0.157894737

Analysability 1.333333333 1.333333333 Included 0.210526316

Modifiability 1 1 Included 0.157894737

Testability 2 2 Included 0.315789474

Portability

Adaptability 0.666666667 0.666666667 Excluded

2.333333333

Installability 1 1 Included 0.428571429

Replaceability 1.333333333 1.333333333 Included 0.571428571

Satisfaction

Usefulness 1.333333333 1.333333333 Included

2.666666667

0.5

Trust 1.333333333 1.333333333 Included 0.5

Pleasure 0.333333333 0.333333333 Excluded

Comfort 0.666666667 0.666666667 Excluded

Effectiveness Effectiveness 1.25 1.25 Included 1.25 1

Freedom From
Risk

Economic Risk Mitigation 0.5 0.5 Excluded

1

Health and Safety Risk
Mitigation

1 1 Included 1

Environmental Risk
Mitigation

0 0 Excluded

Efficiency Efficiency 1.25 1.25 Included 1.25 1

Context
Coverage

Context Completeness 0.666666667 0.666666667 Excluded
Excluded characteristic

Flexibility 0.666666667 0.666666667 Excluded

Annexes

369 | P a g e

Annex 12. Basic set of measures to enable the real-world use case quality models

The purpose of this basic set of measures is to enable the use operations of the real-world use case quality
models. This set should be reviewed, updated, and completed as needed, especially to integrate the temporal
polymorphism behavior due to the evolution over the development life cycle stages. These measures are
extracted from ISO/IEC 25023 [161] for system / software product quality measures, and from ISO/IEC 25022
[142] for quality in use measures. Further details are available in the standard documentation.

- System / Software product quality perspective

Characteristics Sub-characteristics Metrics Formula Formula details

Functional
Suitability

Functional Completeness Functional coverage 𝑋 = 1 –
𝐴

𝐵

A = Number of functions missing
B = Number of functions specified

Functional Correctness Functional Correctness 𝑋 = 1 –
𝐴

𝐵

A = Number of functions that are incorrect
B = Number of functions considered

Functional Appropriateness

Functional appropriateness of
usage objective 𝑋 = 1 –

𝐴

𝐵

A = Number of functions missing or incorrect
among those that are required for achieving a
specific usage objective
B = Number of functions required for achieving
a specific usage objective

Functional appropriateness of
system 𝑋 = ෍

𝐴௜

𝑛

௡

௜ୀଵ

𝐴௜ = Appropriateness score for usage objective
i, that is, the measured value of Functional
appropriateness of usage objective for 𝑖 -th
specific usage objective
𝑛 = Number of usage objectives

Performance
Efficiency

Time-behavior

Mean response time 𝑋 = ෍
𝐴௜

𝑛

௡

௜ୀଵ

𝐴௜ = Time taken by the system to respond to a
specific user task or system task at 𝑖 -th
measurement
𝑛 = Number of responses measured

Response time adequacy 𝑋 =
𝐴

𝐵

A = Mean response time measured
B = Target response time specified

Mean turnaround time 𝑋 = ෍
(𝐵௜ − 𝐴௜)

𝑛

௡

௜ୀଵ

𝐴௜ = Time of starting a job 𝑖
𝐵௜ = Time of completing the job 𝑖
𝑛 = Number of measurements

Turnaround time adequacy 𝑋 =
𝐴

𝐵

A = Mean turnaround time
B = Target turnaround time specified

Mean throughput 𝑋 = ෍
ቀ

𝐴௜

𝐵௜
ቁ

𝑛

௡

௜ୀଵ

𝐴௜ = Number of jobs completed during the 𝑖 -th
observation time
𝐵௜ = 𝑖 -th observation time period
𝑛 = Number of observations

Resource Utilization

Mean processor utilization 𝑋 = ෍
ቀ

𝐴௜

𝐵௜
ቁ

𝑛

௡

௜ୀଵ

𝐴௜ = Processor time actually used to execute a
given set of tasks in observation 𝑖
𝐵௜ = Operation time to perform the tasks in
observation 𝑖
𝑛 = Number of observations

Mean memory utilization 𝑋 = ෍
ቀ

𝐴௜

𝐵௜
ቁ

𝑛

௡

௜ୀଵ

𝐴௜ = Size of memory actually used to perform a
given set of tasks for 𝑖 -th sample processing
𝐵௜ = Size of memory available to perform the
tasks during 𝑖 -th sample processing
𝑛 = Number of samples processed

Mean I/O devices utilization 𝑋 = ෍
ቀ

𝐴௜

𝐵௜
ቁ

𝑛

௡

௜ୀଵ

𝐴௜ = Duration of I/O device(s) busy time to
perform a given set of tasks for 𝑖 -th
observation
𝐵௜ = Duration of I/O operations to perform the
tasks for 𝑖 -th observation
𝑛 = Number of observations

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

370 | P a g e

Bandwidth utilization 𝑋 =
𝐴

𝐵

A = Bandwidth of actual transmission measured
over time to perform a given set of tasks
B = Bandwidth capacity available to perform a
given set of tasks

Capacity

Transaction processing
capacity 𝑋 =

𝐴

𝐵

A = Number of transactions completed during
observation time
B = Duration of observation

User access capacity 𝑋 = ෍
𝐴௜

𝑛

௡

௜ୀଵ

𝐴௜ = Maximum number of users who can
simultaneously access the system at 𝑖 -th
observation
𝑛 = Number of observations

User access increase adequacy 𝑋 =
𝐴

𝐵

A = Number of users successfully added during
observation time
B = Duration of observation

Compatibility Interoperability

Data formats exchangeability 𝑋 =
𝐴

𝐵

A = Number of data formats exchangeable with
other software or systems
B = Number of data formats specified to be
exchangeable

Data exchange protocol
sufficiency 𝑋 =

𝐴

𝐵

A = Number of data exchange protocols
supported
B = Number of data exchange protocols
specified to be supported

External interface adequacy 𝑋 =
𝐴

𝐵

A = Number of external interfaces that are
functional
B = Number of external interfaces specified

Usability Operability

Operational consistency 𝑋 = 1 –
𝐴

𝐵

A = Number of specific interactive tasks that
are performed inconsistently
B = Number of specific interactive tasks that
need to be consistent

Message clarity 𝑋 =
𝐴

𝐵

A = Number of messages that convey the right
outcome or instructions to the user
B = Number of messages implemented

Functional customizability 𝑋 =
𝐴

𝐵

A = Number of functions and operational
procedures which can be customized for user’s
convenience
B = Number of functions and operational
procedures for which users could benefit from
customization

User interface customizability 𝑋 =
𝐴

𝐵

A = Number of user interface elements that can
be customized
B = Number of user interface elements that
could benefit from customization

Monitoring capability 𝑋 =
𝐴

𝐵

A = Number of functions having state
monitoring capability
B = Number of functions that could benefit
from monitoring capability

Undo capability 𝑋 =
𝐴

𝐵

A = Number of tasks that provide undo
capability or prompt for re-confirmation
B = Number of tasks for which users could
benefit from having re-confirmation or undo
capability

Understandable categorization
of information 𝑋 =

𝐴

𝐵

A = Number of information structures that are
familiar and convenient for the intended users
B = Number of information structures used

Appearance consistency 𝑋 = 1 –
𝐴

𝐵

A = Number of user interfaces with similar
items but with different appearances
B = Number of user interfaces with similar
items

Annexes

371 | P a g e

Input device support 𝑋 =
𝐴

𝐵

A = Number of tasks that can be initiated by all
appropriate input modalities
B = Number of tasks supported by the system

User Error Protection

Avoidance of user operation
error 𝑋 =

𝐴

𝐵

A = Number of user actions and inputs that are
protected from causing any system malfunction
B = Number of user actions and inputs that
could be protected from causing any system
malfunction

User entry error correction 𝑋 =
𝐴

𝐵

A = Number of entry errors for which the
system provides a suggested correct value
B = Number of entry errors detected

User error recoverability 𝑋 =
𝐴

𝐵

A = Number of user errors that are designed
and tested to be recovered by the system
B = Number of user errors which can occur
during operation

User Interface Aesthetics
Appearance aesthetics of user
interfaces 𝑋 =

𝐴

𝐵

A = Number of display interfaces aesthetically
pleasing to the users in appearance
B = Number of display interfaces

Accessibility

Accessibility for users with
disabilities 𝑋 =

𝐴

𝐵

A = Number of functions successfully usable by
the users with a specific disability
B = Number of functions implemented

Supported languages adequacy 𝑋 =
𝐴

𝐵

A = Number of languages actually supported
B = Number of languages needed to be
supported

Reliability

Maturity

Fault correction 𝑋 =
𝐴

𝐵

A = Number of reliability-related faults
corrected in design /coding/testing phase
B = Number of reliability-related faults
detected in design/coding/testing phase

Mean time between failure
(MTBF) 𝑋 =

𝐴

𝐵

A = Operation time
B = Number of system/software failures
actually occurred

Failure rate 𝑋 =
𝐴

𝐵

A = Number of failures detected during
observation time
B = Duration of observation

Test coverage 𝑋 =
𝐴

𝐵

A = Number of system or software capabilities,
operational scenarios or functions that are
actually performed
B = Number of system or software capabilities,
operational scenarios or functions which are
included in their associated test suites

Availability

System availability 𝑋 =
𝐴

𝐵

A = System operation time actually provided
B = System operation time specified in the
operation schedule

Mean down time 𝑋 =
𝐴

𝐵

A = Total down time
B = Number of breakdowns observed

Fault Tolerance

Failure avoidance 𝑋 =
𝐴

𝐵

A = Number of avoided critical and serious
failure occurrences (based on test cases)
B = Number of executed test cases of fault
pattern (almost causing failure) during testing

Redundancy of components 𝑋 =
𝐴

𝐵

A = Number of system components
redundantly installed
B = Number of system components

Mean fault notification time 𝑋 = ෍
ቀ

𝐴௜

𝐵௜
ቁ

𝑛

௡

௜ୀଵ

𝐴௜ = Time at which the fault 𝑖 is reported by the
system
𝐵௜ = Time at which fault 𝑖 is detected
𝑛 = Number of faults detected

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

372 | P a g e

Recoverability

Mean recovery time 𝑋 = ෍
𝐴௜

𝑛

௡

௜ୀଵ

𝐴௜ = Total time to recover the downed software
/ system and re-initiate operation for each
failure 𝑖
𝑛 = Number of failures

Backup data completeness 𝑋 =
𝐴

𝐵

A = Number of data items actually backed up
regularly
B = Number of data items requiring backup for
error recovery

Maintainability

Modularity

Coupling of components 𝑋 =
𝐴

𝐵

A = Number of components which are
implemented with no impact on others
B = Number of specified components which are
required to be independent

Cyclomatic complexity
adequacy 𝑋 = 1 –

𝐴

𝐵

A = Number of software modules which have a
cyclomatic complexity score that exceeds the
specified threshold
B = Number of software modules implemented

Reusability

Reusability of assets 𝑋 =
𝐴

𝐵

A = Number of assets which are designed and
implemented to be reusable
B = Number of assets in a system

Coding rules conformity 𝑋 =
𝐴

𝐵

A = Number of software modules conforming
to coding rules for a specific system
B = Number of software modules implemented

Analysability

System log completeness 𝑋 =
𝐴

𝐵

A = Number of logs that are actually recorded
in the system
B = Number of logs for which audit trails are
required during operation

Diagnosis function
effectiveness 𝑋 =

𝐴

𝐵

A = Number of diagnostic functions useful for
causal analysis
B = Number of diagnostic functions
implemented

Diagnosis function sufficiency 𝑋 =
𝐴

𝐵

A = Number of diagnostic functions
implemented
B = Number of diagnostic functions required

Modifiability

Modification efficiency 𝑋 = ෍
ቀ

𝐴௜

𝐵௜
ቁ

𝑛

௡

௜ୀଵ

𝐴௜ = Total work time spent for making a specific
type of modification 𝑖
𝐵௜ = Expected time for making the specific type
of modification 𝑖
𝑛 = Number of modifications measured

Modification correctness 𝑋 = 1 –
𝐴

𝐵

A = Number of modifications that caused an
incident or failure within a defined period after
being implemented
B = Number of modifications implemented

Modification capability 𝑋 =
𝐴

𝐵

A = Number of items actually modified within a
specified duration
B = Number of items required to be modified
within a specified duration

Testability

Test function completeness 𝑋 =
𝐴

𝐵

A = Number of test functions implemented as
specified
B = Number of test functions required

Autonomous testability 𝑋 =
𝐴

𝐵

A = Number of tests that can be simulated by
stub among the tests which depend on other
systems
B = Number of tests which depend on other
systems

Annexes

373 | P a g e

Test restartability 𝑋 =
𝐴

𝐵

A = Number of cases in which maintainer can
pause and restart executing test run at desired
points to check step by step
B = Number of cases in which executing test
run can be paused

Portability

Adaptability

Hardware environmental
adaptability 𝑋 = 1 –

𝐴

𝐵

A = Number of functions which were not
completed or results which were insufficient to
meet requirements during testing
B = Number of functions which were tested in
different hardware environment

System software
environmental adaptability 𝑋 = 1 –

𝐴

𝐵

A = Number of functions which were not
completed or results which were insufficient to
meet requirements during testing
B = Number of functions which were tested in
different system software environment

Operational environment
adaptability 𝑋 = 1 –

𝐴

𝐵

A = Number of functions which were not
completed or results which were insufficient to
meet requirements during operational testing
with user’s environment
B = Number of functions which were tested in
different operational environment

Installability

nstallation time efficiency 𝑋 = ෍
ቀ

𝐴௜

𝐵௜
ቁ

𝑛

௡

௜ୀଵ

𝐴௜ = Total work time spent for making an
installation 𝑖
𝐵௜ = Expected time for making an installation 𝑖
𝑛 = Number of installations measured

Ease of installation 𝑋 =
𝐴

𝐵

A = Number of cases in which a user succeeds
to customize the installation procedure
B= Number of cases in which a user attempted
to customize the installation procedure for
user’s convenience

Replaceability

Usage similarity 𝑋 =
𝐴

𝐵

A = Number of user functions which can be
performed without any additional learning or
workaround
B = Number of user functions in the replaced
software product

Product quality equivalence 𝑋 =
𝐴

𝐵

A = Number of quality measures of the new
product which are better or equal to the
replaced product
B = Number of quality measures of the
replaced software product that are relevant

Functional inclusiveness 𝑋 =
𝐴

𝐵

A = Number of functions which produce similar
results as before
B = Number of functions which have to be used
in the replaced software product

Data reusability / import
capability 𝑋 =

𝐴

𝐵

A = Number of data which can be used
continuously as before
B = Number of data which are to be used
continuously in the replaced software product

Consequences of fatigue 𝑋 = 1 –
𝐴

𝐵

A = Current performance
B = Initial performance

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

374 | P a g e

- Quality in use perspective

Characteristics Sub-characteristics Metrics Formula Formula details

Satisfaction

Usefulness

Overall satisfaction 𝑋 = ෍ 𝐴௜

௡

௜ୀଵ

𝐴௜ = Response to 𝑖 - th question
𝑛 = Number of questions in questionnaire

Satisfaction with features 𝑋 = ෍ 𝐴௜

௡

௜ୀଵ

𝐴௜= Response to 𝑖 - th question related to a
specific feature
𝑛 = Number of questions in questionnaire

Discretionary usage 𝑋 =
𝐴

𝐵

A = Number of users using a specific function,
application or system
B = Number of potential users who could have
used the specific function, application, or
system

Feature utilization 𝑋 =
𝐴

𝐵

A = Number of users using a particular feature
B = Number of users in an identified set of
users of the system

Proportion of users
complaining 𝑋 =

𝐴

𝐵

A = Number of users complaining
B = Number of users using the system

Proportion of user complaints
about a particular feature 𝑋 =

𝐴

𝐵

A = Number of user complaints for a particular
feature
B = Total number of user complaints about
features

Trust User trust 𝑋 = A
A = Psychometric scale value from a trust
questionnaire

Effectiveness Effectiveness

Tasks completed 𝑋 =
𝐴

𝐵

A = Number of unique tasks completed
B = Total number of unique tasks attempted

Objectives achieved ൝𝑋 = 1 − ෍ 𝐴௜

௡

௜ୀଵ

| 𝑋 ≥ 0 ൡ

𝐴௜ = Proportional value of the 𝑖 -th missing or
incorrect objective in the task output
(maximum value = 1)
𝑛 = Number of missing or incorrect objectives
in the task output

Errors in a task 𝑋 = A
A = Number of errors made by the user during
a task

Tasks with errors 𝑋 =
𝐴

𝐵

A = Number of tasks with errors
B = Total number of tasks

Task error intensity 𝑋 =
𝐴

𝐵

A = Number of users making an error
B = Total number of users performing the task

Freedom From
Risk

Health and Safety Risk
Mitigation

User health reporting
frequency 𝑋 =

𝐴

𝐵

A = Number of users reporting health problems
B = Total number of users

User health and safety
impact 𝑋 = ൬

1

𝑇௕

൰ ෍ ቆ
𝑇௔௜

𝑆௜

ቇ

௡

௜ୀଵ

𝑇௔௜
 = Length of time for which the 𝑖 -th person

is affected
𝑆௜ = Degree of significance of the impact on the
𝑖 -th person
𝑇௕ = Length of time from start of system in
operation
𝑛 = Number of affected people

Safety of people affected by
use of the system 𝑋 =

𝐴

𝐵

A = Number of people put at hazard
B = Total number of people who could be
affected by use of the system

Efficiency Efficiency

Task time 𝑋 = T T = Task time

Time efficiency 𝑋 =
𝐴

𝑇

A = Number of objectives achieved
T = Time

Cost-effectiveness 𝑋 =
𝐴

𝐵

A = Total cost of carrying out the task
B = Number of objectives achieved

Productive time ratio 𝑋 =
𝑇௔

𝑇௕

𝑇௔ = Productive time = time taken to complete
the task - time spent getting help or assistance -
time taken recovering from errors - time taken

Annexes

375 | P a g e

searching ineffectually
𝑇௕ = Task time

Unnecessary actions 𝑋 =
𝐴

𝐵

A = Number of actions actually that were not
necessary to achieve the task
B = Number of actions performed by the user

Consequences of fatigue 𝑋 = 1 –
𝐴

𝐵

A = Current performance
B = Initial performance

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

376 | P a g e

Annexes

377 | P a g e

Annex 13. Details about the eight selected software quality models for the software
quality model genome meta-model construction

- Boehm’s quality model [42] (1976)

This model is composed of

3 high-level qualities
7 intermediate-level qualities
15 primitive quality characteristics

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

378 | P a g e

Terminology Definition
Accessibility Code possesses the characteristic of accessibility to the extent that it facilitates selective use of its parts.

(Examples: variable dimensioned arrays, or not using absolute constants.) Accessibility is necessary for
efficiency, testability, and human engineering.

Accountability Code possesses the characteristic of accountability to the extent that its usage can be measured. This
means that critical segments of code can be instrumented with probes to measure timing, whether
specified branches are exercised, etc. Code used for probes is preferably invoked by conditional assembly
techniques to eliminate the additional instruction words or added execution times when the
measurements are not needed.

Accuracy Code possesses the characteristic of accuracy to the extent that its outputs are sufficiently precise to
satisfy their intended use. Necessary for reliability

Usability (As-is utility) Code possesses the characteristic of usability to the extent that it is reliable, efficient, and human
engineered.

Augmentability Code possesses the characteristic of augmentability to the extent that it can easily accommodate
expansion in component computational functions or data storage requirements. This is a necessary
characteristic for modifiability.

Communicativeness Code possesses the characteristic of communicativeness to the extent that it facilitates the specification
of inputs and provides outputs whose form and content are easy to assimilate and useful.
Communicativeness is necessary for testability and human engineering.

Completeness Code possesses the characteristic of completeness to the extent that all its parts are present, and each
part is fully developed.

Conciseness Code possesses the characteristic of conciseness to the extent that excessive information is not present.

Consistency Code possesses the characteristic of internal consistency to the extent that it contains uniform notation,
terminology, and symbology within itself, and external consistency to the extent that the content is
traceable to the requirements.

Device independence Code possesses the characteristic of device independence to the extent it can be executed on computer
hardware configurations other than its current one. Clearly, this characteristic is a necessary condition for
portability.

Efficiency Code possesses the characteristic of efficiency to the extent that it fulfills its purpose without waste of
resources.

Human engineering Code possesses the characteristic of human engineering to the extent that it fulfills its purpose without
wasting the users’ time and energy or degrading their morale. This characteristic implies accessibility,
robustness, and communicativeness.

Legibility Code possesses the characteristic of legibility to the extent that its function is easily discerned by reading
the code. (Example: complex expressions have mnemonic variable names and parentheses even if
unnecessary.) Legibility is necessary for understandability.

Maintainability Code possesses the characteristic of maintainability to the extent that it facilitates updating to satisfy new
requirements or to correct deficiencies.

Modifiability Code possesses the characteristic of modifiability to the extent that it facilitates the incorporation of
changes, once the nature of the desired change has been determined. Note the higher level of
abstractness of this characteristic as compared with augmentability.

Portability Code possesses the characteristic of portability to the extent that it can be operated easily and well on
computer configurations other than its current one.

Reliability Code possesses the characteristic reliability to the extent that it can be expected to perform its intended
functions satisfactorily

Robustness / Integrity Code possesses the characteristic of robustness to the extent that it can continue to perform despite
some violation of the assumptions in its specification.

Self-containedness Code possesses the characteristic of self-containedness to the extent that it performs all its explicit and
implicit functions within itself. Examples of implicit functions are initialization, input checking, diagnostics,
etc.

Self-descriptiveness Code possesses the characteristic of self-descriptiveness to the extent that it contains enough
information for a reader to determine or verify its objectives, assumptions, constraints, inputs, outputs,
components, and revision status. Commentary and traceability of previous changes by transforming
previous versions of code into non-executable but present (or available by macro calls) code are some of
the ways of providing this characteristic. Self-descriptiveness is necessary for both testability and
understandability.

Structuredness Code possesses the characteristic of structuredness to the extent that it possesses a definite pattern of
organization of its interdependent parts.

Testability Code possesses the characteristic of testability to the extent that it facilitates the establishment of
verification criteria and supports evaluation of its performance.

Understandability Code possesses the characteristic of understandability to the extent that its purpose is clear to the
inspector.

Annexes

379 | P a g e

- McCall’s quality model [41] (1977)

This model is composed of

3 perspectives

11 quality factors

23 quality criteria

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

380 | P a g e

Terminology Definition
Access audit Those attributes of the software that provide for an audit of the access of software and data.

Access control Those attributes of the software that provide for control of the access of software and data.

Accuracy Those attributes of the software that provide the required precision in calculations and outputs.

Communication commonality Those attributes of the software that Interoperability provide the use of standard protocols and
Interface routines.

Communicativeness Those attributes of the software that provide useful inputs and outputs which can be assimilated.

Completeness Those attributes of the software that provide full implementation of the functions required.

Conciseness Those attributes of the software that provide for implementation of a function with a minimum
amount of code.

Consistency Those attributes of the software that provide uniform design and implementation techniques and
notation.

Correctness Extent to which a program satisfies its specifications and fulfills the user's mission objectives.

Data commonality Those attributes of the software that provide the use of standard data representations.

Efficiency The amount of computing resources and code required by a program to perform a function.

Error Tolerance Those attributes of the software that provide continuity of operation under nonnominal conditions.

Execution efficiency Those attributes of the software that provide for minimum processing time.

Expandability Those attributes of the software that provide for expansion of data storage requirements or
computational functions.

Flexibility Effort required to test a program to insure it performs its intended function.

Generality Those attributes of the software that provide breadth to the functions performed.

Instrumentation Those attributes of the software that provide for the measurement of usage or identification of
errors.

Integrity (security) Extent to which access to software or data by unauthorized persons can be controlled.

Interoperability Effort required to couple one system with another.

Machine independence Those attributes of the software that determine its dependency on the hardware system.

Maintainability Effort required to locate and fix an error in an operational program.

Modularity Those attributes of the software that provide a structure of highly independent modules.

Operability Those attributes of the software that determine operation and procedures concerned with the
operation of the software.

Portability Effort required to transfer a program from one hardware configuration and/or software system
environment to another.

Reliability Extent to which a program can be expected to perform its intended function with required
precision.

Reusability Extent to which a program can be used in other applications - related to the packaging and scope of
the functions that programs perform.

Self-Descriptiveness Those attributes of the software that provide explanation of the implementation of a function.

Simplicity Those attributes of the software that provide implementation of functions in the most
understandable manner. (Usually avoidance of practices which increase complexity.)

Software system
independence

Those attributes of the software that determine its dependency on the software environment
(operating systems, utilities, input/output routines, etc.)

Storage efficiency Those attributes of the software that provide for minimum storage requirements during operation.

Testability Effort required to modify an operational program.

Traceability Those attributes of the software that provide a thread from the requirements to the
implementation with respect to the specific development and operational environment.

Training Those attributes of the software that provide transition from current operation or initial
familiarization.

Usability Effort required to learn, operate, prepare input, and interpret output of a program.

Annexes

381 | P a g e

- FURPS quality model [85] (1987)

This model is composed of

5 Components

25 Sub-components

This model uses same terminology than Boehm’s and McCall’s quality models

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

382 | P a g e

- ISO/IEC 9126 quality model [24] (1991)

This model is composed of

2 quality perspectives

10 quality characteristics

31 quality sub-characteristics

Annexes

383 | P a g e

Terminology Definition
Accuracy The capability of the software product to provide the right or agreed results or effects with the

needed degree of precision.

Adaptability The capability of the software product to be adapted for different specified environments without
applying actions or means other than those provided for this purpose for the software considered.

Analyzability The capability of the software product to be diagnosed for deficiencies or causes of failures in the
software, or for the parts to be modified to be identified.

Attractiveness The capability of the software product to be attractive to the user.

Changeability The capability of the software product to enable a specified modification to be implemented.

Co-existence The capability of the software product to co-exist with other independent software in a common
environment sharing common resources.

Effectiveness The capability of the software product to enable users to achieve specified goals with accuracy and
completeness in a specified context of use.

Efficiency The capability of the software product to provide appropriate performance, relative to the amount
of resources used, under stated conditions.

Efficiency compliance The capability of the software product to adhere to standards or conventions relating to efficiency.

Fault tolerance The capability of the software product to maintain a specified level of performance in cases of
software faults or of infringement of its specified interface.

Functionality The capability of the software product to provide functions which meet stated and implied needs
when the software is used under specified conditions.

Functionality compliance The capability of the software product to adhere to standards, conventions or regulations in laws
and similar prescriptions relating to functionality.

Installability The capability of the software product to be installed in a specified environment.

Interoperability The capability of the software product to interact with one or more specified systems.

Learnability The capability of the software product to enable the user to learn its application.

Maintainability The capability of the software product to be modified. Modifications may include corrections,
improvements, or adaptation of the software to changes in environment, and in requirements and
functional specifications.

Maintainability compliance The capability of the software product to adhere to standards or conventions relating to
maintainability.

Maturity The capability of the software product to avoid failure as a result of faults in the software.

Operability The capability of the software product to enable the user to operate and control it.

Portability The capability of the software product to be transferred from one environment to another.

Portability compliance The capability of the software product to adhere to standards or conventions relating to portability.

Productivity The capability of the software product to enable users to expend appropriate amounts of resources
in relation to the effectiveness achieved in a specified context of use.

Recoverability The capability of the software product to re-establish a specified level of performance and recover
the data directly affected in the case of a failure.

Reliability The capability of the software product to maintain a specified level of performance when used
under specified conditions.

Reliability compliance The capability of the software product to adhere to standards, conventions or regulations relating to
reliability.

Replaceability The capability of the software product to be used in place of another specified software product for
the same purpose in the same environment.

Resource utilization The capability of the software product to use appropriate amounts and types of resources when the
software performs its function under stated conditions.

Safety The capability of the software product to achieve acceptable levels of risk of harm to people,
business, software, property, or the environment in a specified context of use.

Satisfaction The capability of the software product to satisfy users in a specified context of use.

Security The capability of the software product to protect information and data so that unauthorized
persons or systems cannot read or modify them, and authorized persons or systems are not denied
access to them.

Stability The capability of the software product to avoid unexpected effects from modifications of the
software.

Suitability The capability of the software product to provide an appropriate set of functions for specified tasks
and user objectives.

Testability The capability of the software product to enable modified software to be validated.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

384 | P a g e

Time behaviour The capability of the software product to provide appropriate response and processing times and
throughput rates when performing its function, under stated conditions.

Understandability The capability of the software product to enable the user to understand whether the software is
suitable, and how it can be used for particular tasks and conditions of use.

Usability The capability of the software product to be understood, learned, used and attractive to the user,
when used under specified conditions.

Usability compliance The capability of the software product to adhere to standards, conventions, style guides or
regulations relating to usability.

Annexes

385 | P a g e

- Alvaro quality model [36] (2010)

This model is composed of

6 quality characteristics

23 quality sub-characteristics

48 attributes

This model uses terminology from ISO/IEC 9126, and ISO/IEC/IEEE 25010

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

386 | P a g e

- Bawane quality model [103] (2010)

This model is composed of

2 quality perspectives

11 quality characteristics

28 quality sub-characteristics

This model uses terminology from ISO/IEC 9126

Annexes

387 | P a g e

- Kalaimagal’s Q'FActo 12 quality model [102] (2010)

This model is composed of

12 quality factors

30 quality criteria

44 quality measures

This model uses terminology from ISO/IEC/IEEE 25010

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

388 | P a g e

- ISO/IEC/IEEE 25010 quality model [23] (2011)

This model is composed of

2 quality perspectives

13 quality characteristics

42 quality sub-characteristics

Annexes

389 | P a g e

Terminology Definition
Accessibility degree to which a product or system can be used by people with the widest range of characteristics

and capabilities to achieve a specified goal in a specified context of use.

Accountability degree to which the actions of an entity can be traced uniquely to the entity.

Adaptability degree to which a product or system can effectively and efficiently be adapted for different or
evolving hardware, software or other operational or usage environments.

Analyzability degree of effectiveness and efficiency with which it is possible to assess the impact on a product or
system of an intended change to one or more of its parts, or to diagnose a product for deficiencies
or causes of failures, or to identify parts to be modified.

Appropriateness
Recognizability

degree to which users can recognize whether a product or system is appropriate for their needs.

Authenticity degree to which the identity of a subject or resource can be proved to be the one claimed.

Availability degree to which a product or system can be used by specified users to achieve specified goals of
learning to use the product or system with effectiveness, efficiency, freedom from risk and
satisfaction in a specified context of use.

Capacity degree to which the maximum limits of a product or system parameter meet requirements.

Co-existence degree to which a product can perform its required functions efficiently while sharing a common
environment and resources with other products, without detrimental impact on any other product.

Comfort degree to which the user is satisfied with physical comfort.

Compatibility degree to which a product, system or component can exchange information with other products,
systems, or components, and/or perform its required functions, while sharing the same hardware or
software environment.

Confidentiality degree to which a product or system ensures that data are accessible only to those authorized to
have access.

Context Completeness degree to which a product or system can be used with effectiveness, efficiency, freedom from risk
and satisfaction in all the specified contexts of use.

Context Coverage degree to which a product or system can be used with effectiveness, efficiency, freedom from risk
and satisfaction in both specified contexts of use and in contexts beyond those initially explicitly
identified.

Economic Risk Mitigation degree to which a product or system mitigates the potential risk to financial status, efficient
operation, commercial property, reputation or other resources in the intended contexts of use.

Effectiveness accuracy and completeness with which users achieve specified goals.

Efficiency resources expended in relation to the accuracy and completeness with which users achieve goals.

Environmental Risk Mitigation degree to which a product or system mitigates the potential risk to property or the environment in
the intended contexts of use degree to which a product or system mitigates the potential risk to
economic status, human life, health, or the environment.

Fault Tolerance degree to which a system, product or component operates as intended despite the presence of
hardware or software faults.

Flexibility degree to which a product or system can be used with effectiveness, efficiency, freedom from risk
and satisfaction in contexts beyond those initially specified in the requirements degree to which a
product or system can be used with effectiveness, efficiency, freedom from risk and satisfaction in
both specified contexts of use and in contexts beyond those initially explicitly identified.

Freedom from Risk degree to which a product or system mitigates the potential risk to economic status, human life,
health, or the environment.

Functional Appropriateness degree to which the functions facilitate the accomplishment of specified tasks and objectives.

Functional Completeness degree to which the set of functions covers all the specified tasks and user objectives.

Functional Correctness degree to which a product or system provides the correct results with the needed degree of
precision.

Functional Suitability degree to which a product or system provides functions that meet stated and implied needs when
used under specified conditions.

Health and Safety Risk
Mitigation

degree to which a product or system mitigates the potential risk to people in the intended contexts
of use.

Installability degree of effectiveness and efficiency with which a product or system can be successfully installed
and/or uninstalled in a specified environment.

Integrity degree to which a system, product or component prevents unauthorized access to, or modification
of, computer programs or data.

Interoperability degree to which two or more systems, products or components can exchange information and use
the information that has been exchanged.

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

390 | P a g e

Learnability degree to which a product or system can be used by specified users to achieve specified goals of
learning to use the product or system with effectiveness, efficiency, freedom from risk and
satisfaction in a specified context of use.

Maintainability degree of effectiveness and efficiency with which a product or system can be modified by the
intended maintainers.

Maturity degree to which a system, product or component meets needs for reliability under normal
operation.

Modifiability degree to which a product or system can be effectively and efficiently modified without introducing
defects or degrading existing product quality.

Modularity degree to which a system or computer program is composed of discrete components such that a
change to one component has minimal impact on other components.

Non-Repudiation degree to which actions or events can be proven to have taken place, so that the events or actions
cannot be repudiated later.

Operability degree to which a product or system has attributes that make it easy to operate and control.

Performance Efficiency performance relative to the amount of resources used under stated conditions.

Pleasure degree to which a user obtains pleasure from fulfilling their personal needs.

Portability degree of effectiveness and efficiency with which a system, product or component can be
transferred from one hardware, software or other operational or usage environment to another.

Reliability degree to which a system, product or component performs specified functions under specified
conditions for a specified period of time.

Replaceability degree to which a product can replace another specified software product for the same purpose in
the same environment.

Resource Utilization degree to which the amounts and types of resources used by a product or system, when performing
its functions, meet requirements.

Reusability degree to which an asset can be used in more than one system, or in building other assets.

Satisfaction degree to which user needs are satisfied when a product or system is used in a specified context of
use.

Security degree to which a product or system protects information and data so that persons or other
products or systems have the degree of data access appropriate to their types and levels of
authorization.

Testability degree of effectiveness and efficiency with which test criteria can be established for a system,
product or component and tests can be performed to determine whether those criteria have been
met.

Time Behaviour degree to which the response and processing times and throughput rates of a product or system,
when performing its functions, meet requirements.

Trust degree to which a user or other stakeholder has confidence that a product or system will behave as
intended.

Usability degree to which a product or system can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified context of use.

Usefulness degree to which a user is satisfied with their perceived achievement of pragmatic goals, including
the results of use and the consequences of use.

User Error Protection degree to which a system protects users against making errors.

User Interface Aesthetics degree to which a user interface enables pleasing and satisfying interaction for the user.

Annexes

391 | P a g e

Annex 14. Variations of quality characteristic genes

These gene and site variations are determined by gathering the quality characteristics and sub-characteristics
from the quality models identified in the first step of the meta-model construction. This regrouping is done based
on lexical and semantic such as in Motogna et al. study [94]. An example around “Portability” gene is shown in
TABLE 29 and TABLE 30. The complete gene and site enumeration with their related possible variations and
corresponding likelihood is given by TABLE 50 and TABLE 51.

In TABLE 50, each gene is present only in one quality model. Thus, their sites contain only one possible variation
in each gene context. Nevertheless, we considered that a gene can be part of another gene even resulting from
several quality models and then seen also as a site. Consequently, that gene can have variations. For instance,
“Changeability” gene is resulting from only one single quality model. However, as a site “Changeability” can be
retrieved in “Maintainability” gene.

TABLE 50 - LIST OF THE 27 SINGLE-QUALITY MODEL GENES WITH THEIR POSSIBLE VARIATIONS

Gene ID Type Quality Characteristic Name
quality characteristic variations: name = probability (calculation detail)

Variation 1 Variation 2 Variation 3 Variation 4

A01 Gene Adaptability Adaptability = 100%

site 1 Mobility Mobility = 100%

site 2 Configuration capacity Configuration capacity = 100%

A02 Gene Changeability Changeability = 50% (3/6) Modifiability = 33.33% (2/6) Ease of Migration =
16.67% (1/6)

site 1 Extensibility Extensibility = 100%

site 2 Customizability Customizability = 100%

site 3 Modularity Modularity = 100%

A03 Gene Context coverage Context coverage = 100%

site 1 context completeness context completeness = 100%

site 2 Flexibility Flexibility = 100%

A04 Gene Controllability Controllability = 100%

site 1 Component execution control Component execution control =

100%

site 2 Component environment

control
Component environment control =
100%

site 3 Component function feature

control
Component function feature
control = 100%

A05 Gene Correctness Correctness = 100%

site 1 Traceability Traceability = 100%

site 2 Consistency Consistency = 100%

site 3 Completeness Completeness = 100%

A06 Gene Freedom from risk Freedom from risk = 100%

site 1 Economic risk mitigation Economic risk mitigation = 100%

site 2 Health and safety risk

Mitigation
Health and safety risk mitigation =
100%

site 3 Environmental risk mitigation Environmental risk mitigation =

100%

A07 Gene Flexibility Flexibility = 100%

site 1 Modularity Modularity = 100%

site 2 Generality Generality = 100%

site 3 Expandability Expandability = 100%

site 4 Self-Descriptiveness Self-Descriptiveness = 100%

A08 Gene General utility General utility = 100%

site 1 Portability Portability = 100%

site 2 Usability (As-is utility) Usability (As-is utility) = 100%

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

392 | P a g e

site 3 Maintainability Maintainability = 100%

A09 Gene Generality Generality = 100%

site 1 Presence of domain

abstraction
Presence of domain abstraction =
100%

site 2 Reuse history Reuse history = 100%

A10 Gene Hardware/Software
Independence

Hardware/Software Independence
= 100%

site 1 Hardware independence Hardware independence = 100%

site 2 Software independence Software independence = 100%

A11 Gene Human engineering Human engineering = 25% (1/4) Human Factors = 25% (1/4) Communicativeness =
25% (1/4)

Accessibility = 25%
(1/4)

site 1 Robustness / Integrity Robustness / Integrity = 100%

site 2 Accessibility Accessibility = 100%

site 3 Communicativeness Communicativeness = 100%

A12 Gene Instalability Instalability = 80% (4/5) Deployability = 20% (1/5)

site 1 Instalability documentation Instalability documentation = 100%

site 2 Instalability complexity Instalability complexity = 100%

A13 Gene Learnability Learnability =71.4% (5/7) Training = 14.3% (1/7) Material of Training =
14.3% (1/7)

site 1 Training Training = 100%

site 2 Presence of demonstration Presence of demonstration = 100%

A14 Gene Maturity Maturity = 100%

site 1 Volatility Volatility = 100%

site 2 Failure removal Failure removal = 100%

A15 Gene Modifiability Changeability = 50% (3/6) Modifiability = 33.33% (2/6) Ease of Migration = 16.67
(1/6)

site 1 Structuredness Structuredness = 100%

site 2 Augmentability Augmentability = 100%

A16 Gene Product operation Product operation = 100%

site 1 Correctness Correctness = 100%

site 2 Reliability Reliability = 100%

site 3 Efficiency Efficiency = 100%

site 4 Integrity (security) Integrity (security) = 100%

site 5 Usability Usability = 100%

A17 Gene Product revision Product revision = 100%

site 1 Maintainability Maintainability = 100%

site 2 Flexibility Flexibility = 100%

site 3 Testability Testability = 100%

A18 Gene Product transition Product transition = 100%

site 1 Portability Portability = 100%

site 2 Reusability Reusability = 100%

site 3 Interoperability Interoperability = 100%

A19 Gene Resource behavior Resource utilization = 66.67% (4/6) Resource behavior = 16.67%
(1/6)

Utilization of resources =
16.67% (1/6)

site 1 Memory utilization Memory utilization = 100%

site 2 Disk utilization Disk utilization = 100%

A20 Gene Safety in use Safety in use = 100%

site 1 Risk of software Risk of software = 100%

site 2 Commercial risk in use Commercial risk in use = 100%

site 3 Risk to the operation in use Risk to the operation in use = 100%

site 4 Risk to the public in use Risk to the public in use = 100%

Annexes

393 | P a g e

A21 Gene Satisfaction Satisfaction = 75% (3/4) Satisfaction in use = 25%
(1/4)

site 1 Usefulness Usefulness = 100%

site 2 Trust Trust = 100%

site 3 Pleasure Pleasure = 100%

site 4 Comfort Comfort = 100%

A22 Gene Self-Contained Self-contained = 100%

site 1 Presence of precondition &

postconditions
Presence of precondition &
postconditions = 100%

site 2 Modularity Modularity = 100%

A23 Gene Suitability Suitability = 75% (3/4) Functional appropriateness
= 25% (1/4)

site 1 Coverage Coverage = 100%

site 2 Completeness Completeness = 100%

site 3 Pre- and Post-conditioned Pre- and Post-conditioned = 100%

site 4 Proofs of Pre- and Post-

conditions
Proofs of Pre- and Post-conditions =
100%

A24 Gene Supportability Supportability = 100%

site 1 Testability Testability = 100%

site 2 Extensibility Extensibility = 100%

site 3 Adaptability Adaptability = 100%

site 4 Maintainability Maintainability = 100%

site 5 Compatibility Compatibility = 100%

site 6 Configurability Configurability = 100%

site 7 Serviceability Serviceability = 100%

site 8 Instability Instability = 100%

site 9 Localizability Localizability = 100%

A25 Gene Test documentation Test documentation = 100%

site 1 Presence of test suites Presence of test suites = 100%

site 2 Proofs of previous tests Proofs of previous tests = 100%

A26 Gene Time behavior Time behavior = 100%

site 1 Response time Response time = 100%

site 2 Latency throughput ("out") Latency throughput ("out") = 100%

site 3 Latency processing capacity

("in")
Latency processing capacity ("in") =
100%

A27 Gene Traceability Traceability = 100%

site 1 Error trace Error trace = 100%

site 2 Performance trace Performance trace = 100%

TABLE 51 - LIST OF THE 16 MULTI-QUALITY MODELS GENES WITH THEIR POSSIBLE VARIATIONS

Gene
ID Type Quality Characteristic Name

quality characteristic variations: name = probability (calculation detail)

Variation 1 Variation 2 Variation 3 Variation 4

B01 Gene Efficiency Efficiency = 75% (6/8) Performance = 12.5% (1/8) Performance efficiency =
12.5% (1/8)

site 1 Time-behavior Time-behavior = 83.33% (5/6) Velocity = 16.67% (1/6)

site 2 Resource utilization Resource utilization = 66.67% (4/6) Resource behavior = 16.67%

(1/6)
Utilization of resources =
16.67% (1/6)

site 3 Storage efficiency Storage efficiency = 50% (1/2) Resource behavior = 50%

(1/2)

site 4 Execution efficiency Execution efficiency = 50% (1/2) Efficiency = 50% (1/2)

site 5 Efficiency Compliance Efficiency Compliance = 50% (1/2) Device efficiency = 50% (1/2)

site 6 Capacity Capacity = 100%

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

394 | P a g e

site 7 Accountability Accountability = 100%

site 8 Accessibility Accessibility = 100%

site 9 Scalability Scalability = 100%

site 10 Availability Availability = 100%

site 11 Time of answers Time of answers = 100%

site 12 Time of recovery Time of recovery = 100%

B02 Gene Fault tolerance Fault tolerance = 50% (1/2) Recoverability = 50% (1/2)

site 1 Mechanism availability Mechanism availability = 50% (1/2) Presence of fault tolerant

mechanism = 50% (1/2)

site 2 Mechanism efficiency Mechanism efficiency = 100%

site 3 Persistence Persistence = 100%

B03 Gene Functionality Functionality = 83.33% (5/6) Functional suitability =
16.67% (1/6)

site 1 Accuracy Accuracy = 60% (3/5) Functional correctness = 20%

(1/5)
Correctness = 20% (1/5)

site 2 Security Security = 100%

site 3 Suitability Suitability = 75% (3/4) Functional appropriateness =

25% (1/4)

site 4 Interoperability Interoperability = 100%

site 5 Compliance Compliance = 0.3333 (1/3) Functionality Compliance =

0.3333 (1/3)
Standardization /
Certification = 0.3333
(1/3)

site 6 Self-contained Self-contained = 100%

site 7 Functional Completeness Functional completeness = 50%

(1/2)
Joint of Characteristics = 50%
(1/2)

site 8 Capacities Capacities = 100%

B04 Gene Interoperability Interoperability = 66.67% (2/3) Compatibility = 16.67% (1/3)

site 1 Data commonality Data commonality = 50% (1/2) Data compatibility = 50%

(1/2)

site 2 Communication commonality Communication commonality = 50%

(1/2)
Interoperability = 50% (1/2)

site 3 Co-existence Co-existence = 50% (1/2) Software compatibility = 50%

(1/2)

site 4 Modularity Modularity = 100%

site 5 Version compatibility Version compatibility = 100%

B05 Gene Maintainability Maintainability = 100%

site 1 Changeability Changeability = 50% (3/6) Modifiability = 33.33% (2/6) Ease of Migration = 16.67

(1/6)

site 2 Testability Testability = 100%

site 3 Analyzability Analyzability = 60% (3/5) Understandability = 20%

(1/5)
Simplicity = 20% (1/5)

site 4 Stability Stability = 100%

site 5 Modularity Modularity = 100%

site 6 Reusability Reusability = 100%

site 7 Consistency Consistency = 100%

site 8 Conciseness Conciseness = 100%

site 9 Self-Descriptiveness Self-Descriptiveness = 100%

site 10 Maintainability Compliance Maintainability Compliance = 100%

B06 Gene Operability Operability = 100%

site 1 Effort to operate Effort to operate = 100%

site 2 Complexity level Complexity level = 100%

site 3 Provided Interfaces Provided Interfaces = 100%

site 4 Required Interfaces Required Interfaces = 100%

site 5 Effort to configure Effort to configure = 100%

B07 Gene Portability Portability = 100%

Annexes

395 | P a g e

site 1 Adaptability Adaptability = 100%

site 2 Replaceability Replaceability = 100%

site 3 Instalability Instalability = 80% (4/5) Deployability = 20% (1/5)

site 4 Conformance Conformance = 50% (1/2) Portability Compliance = 50%

(1/2)

site 5 Modularity Modularity = 50% (1/2) Self-containedness = 50%

(1/2)

site 6 Machine independence Machine independence = 50% (1/2) Device independence = 50%

(1/2)

site 7 Self-Descriptiveness Self-Descriptiveness = 50% (1/2) Portability documentation =

25% (1/2 * 50%)
Portability complexity =
25% (1/2 * 50%)

site 8 Software system

independence
Software system independence =
100%

site 9 Co-existence Co-existence = 100%

site 10 Reusability Reusability = 100%

B08 Gene Product in use Product in use = 50% (2/4) Usability in use = 25% (1/4) Quality in use = 25% (1/4)

site 1 Effectiveness Effectiveness = 75% (3/4) Effectiveness in use = 25%

(1/4)

site 2 Satisfaction Satisfaction = 75% (3/4) Satisfaction in use = 25%

(1/4)

site 3 Productivity Productivity = 66.67% (2/3) Efficiency = 33.33% (1/3)

site 4 Safety Safety = 100%

site 5 Freedom from risk Freedom from risk = 100%

site 6 Context coverage Context coverage = 100%

B09 Gene Reliability Reliability = 100%

site 1 Fault tolerance Fault tolerance = 57.1% (4/7) Error Tolerance = 14.3%

(1/7)
Recovery to failures =
14.3% (1/7)

Robustness / Integrity
= 14.3% (1/7)

site 2 Recoverability Recoverability = 100%

site 3 Maturity Maturity = 100%

site 4 Accuracy Accuracy = 100%

site 5 Consistency Consistency = 100%

site 6 Availability Availability = 50% (1/2) Time among failures = 50%

(1/2)

site 7 Reliability Compliance Reliability Compliance = 50% (1/2) Completeness = 50% (1/2)

site 8 Simplicity Simplicity = 50% (1/2) Self-containedness = 50%

(1/2)

site 9 Frequency and severity of

failures
Frequency and severity = 100%

B10 Gene Reusability Reusability = 100%

site 1 Self-Descriptiveness Self-Descriptiveness = 33.33% (1/3) Simplicity = 33.33% (1/3) Comprehensibility =

33.33% (1/3)

site 2 Generality Generality = 100%

site 3 Modularity Modularity = 100%

site 4 Software independence Software independence = 50% (1/2) Software system

independence = 50% (1/2)

site 5 Hardware independence Hardware independence = 50%

(1/2)
Machine independence =
50% (1/2)

site 6 Coupling Coupling = 100%

site 7 Domain abstraction level Domain abstraction level = 100%

site 8 Architecture compatibility Architecture compatibility = 100%

site 9 Cohesion Cohesion = 100%

site 10 Locability Locability = 100%

site 11 Interoperability Interoperability = 100%

B11 Gene Security Security = 75% (3/4) Integrity (security) = 25%
(1/4)

site 1 Confidentiality Confidentiality = 25% (1/4) Access control = 25% (1/4) Controllability = 25% (1/4) Access Resistance =

25% (1/4)
site 2 Auditability Auditability = 50% (1/2) Access Audit = 50% (1/2)

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

396 | P a g e

site 3 Cipherability Cipherability = 50% (1/2) Data Encryption = 50% (1/2)

site 4 Integrity Integrity = 100%

site 5 Non-repudiation Non-repudiation = 100%

site 6 Accountability Accountability = 100%

site 7 Authenticity Authenticity = 100%

B12 Gene Software product Software product = 66.67% (2/3) System / Software product =
33.33% (1/3)

site 1 Functionality Functionality = 66.67% (2/3) Functional suitability =

33.33% (1/3)

site 2 Usability Usability = 100%

site 3 Reliability Reliability = 100%

site 4 Efficiency Efficiency = 66.67% (2/3) Performance efficiency =

33.33% (1/3)

site 5 Maintainability Maintainability = 100%

site 6 Portability Portability = 100%

site 7 Compatibility Compatibility = 100%

site 8 Security Security = 100%

site 9 Reusability Reusability = 100%

B13 Gene Compliance Compliance = 50% (1/2) Standardization /
Certification = 50% (1/2)

 site 1 Standardization Standardization = 50% (1/2) Presence of standardization
= 50% (1/2)

 site 2 Certification Certification = 50% (1/2) Presence of certification =
50% (1/2)

B14 Gene Testability Testability = 100%

 site 1 Self-descriptiveness Self-descriptiveness = 100%

 site 2 Accountability Accountability = 100%

 site 3 Accessibility Accessibility = 100%

 site 4 Communicativeness Communicativeness = 100%

 site 5 Structuredness Structuredness = 100%

 site 6 Simplicity Simplicity = 100%

 site 7 Modularity Modularity = 100%

 site 8 Instrumentation Instrumentation = 100%

 site 9 Test suite provided Test suite provided = 100%

 site 10 Extensive component test
case

Extensive component test case =
100%

 site 11 Component tests in a specific
environment

Component tests in a specific
environment = 100%

 site 12 Proofs the components tests Proofs the components tests =
100%

 site 13 Test documentation Test documentation = 100%

 site 14 Controllability Controllability = 100%

 site 15 Traceability Traceability = 100%

B15 Gene Understandability understandability = 100%

 site 1 Self-descriptiveness Self-descriptiveness = 50% (1/2) Code Readability = 50% (1/2)

 site 2 Consistency Consistency = 100%

 site 3 Structuredness Structuredness = 100%

 site 4 Conciseness Conciseness = 100%

 site 5 Legibility Legibility = 100%

 site 6 Documentation availability Documentation availability = 100%

 site 7 Documentation readability
and quality

Documentation readability and
quality = 100%

B16 Gene Usability Usability = 87.5% (7/8) Usability (As-is utility) =
12.5% (1/8)

 site 1 Learnability Learnability =71.4% (5/7) Training = 14.3% (1/7) Material of Training =
14.3% (1/7)

Annexes

397 | P a g e

 site 2 Operability Operability = 100%

 site 3 Understandability understandability = 50% (3/6) Appropriateness
recognizability = 16.67%
(1/6)

Helpfulness = 16.67%
(1/6)

Documentation of the
user = 16.67% (1/6)

 site 4 Attractiveness Attractiveness = 50% (2/4) Aesthetic = 25% (1/4) User interface aesthetics
= 25% (1/4)

 site 5 Human engineering Human engineering = 25% (1/4) Human Factors = 25% (1/4) Communicativeness =
25% (1/4)

Accessibility = 25%
(1/4)

 site 6 Reliability Reliability = 50% (1/2) Accessibility = 50% (1/2)

 site 7 Usability compliance Usability compliance = 100%

 site 8 Efficiency Efficiency = 100%

 site 9 Configurability Configurability = 100%

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

398 | P a g e

Synthèse de la Thèse en Français

399 | P a g e

Chapter X. Synthèse de la Thèse en Français
L'objectif de la thèse nous a conduit à définir un cadre théorique pour la supervision et le pilotage des processus
d'ingénierie et de développement de produits par la qualité.

Ce travail a donné lieu à de multiples contributions, partiellement valorisées sous la forme de deux articles
présentés en conférences internationales (cf. Argotti et al. [167], [230]). Sa contribution majeure au corpus des
connaissances scientifique est l’étude exhaustive et approfondie des modèles qualité existants dans la littérature
prérequis incontournable pour aller plus loin dans des propositions conceptuelles et méthodologiques
consolidées.

1. Synthèse Générale
Dans le Chapitre I, nous posons la problématique de recherche de thèse, « Etude des éléments essentiels de la
Qualimétrie appliquée au développement de logiciels embarqués », que nous avons reformulée en « renforcer et
unifier la définition, l'évaluation, le contrôle ou la prédiction de la qualité des logiciels embarqués », au regard de
notre contexte industriel. Nous avons entamé son analyse en identifiant les quatre questions de recherche
suivantes :

Question de recherche 1
La Qualimétrie, en tant que science de la quantification de la qualité, est-
elle la bonne approche et quels sont les éléments essentiels de la qualité et
de la Qualimétrie ?

Question de recherche 2
Considérant l'ensemble des modèles qualité pour le logiciel, comme
identifier et décider quel modèle qualité est le plus approprié pour le logiciel
embarqué ?

Question de recherche 3 Comment opérationnaliser un modèle qualité pour un produit logiciel ?

Question de recherche 4
Peut-on avoir un modèle qualité de référence unique pour les produits
logiciels ?

Nous avons ensuite approfondi cette analyse dans le Chapitre II. Nous avons remarqué que le contexte industriel
automobile, conjointement avec le véhicule en tant que système complexe, le modèle de développement avec
les fournisseurs et les exigences actuelles en matière de normes et de réglementations, augmentent la complexité
globale de notre problématique. Par conséquent, dans ce contexte, il est essentiel de disposer d'une méthode
unifiée, opérationnelle et appropriée pour définir, évaluer, contrôler ou prévoir la qualité des logiciels
embarqués.

Afin de vérifier si une telle solution unifiée, opérationnelle et appropriée pour la qualité des logiciels embarqués
existe déjà, nous avons effectué une analyse documentaire exploratoire sur « la manière dont la modélisation de
la qualité est appliquée aux logiciels embarqués ». Nous avons constaté l'existence d'une myriade de systèmes et
de logiciels embarqués possibles, chacun d'eux ayant ses propres spécificités, caractéristiques de qualité et
éventuellement une diversité de modèles qualité. Il est donc apparu qu'il n'y avait pas encore de solution juste
et unique à notre question.

En conséquence, nous avons affiné ces quatre questions de recherche en 15 sous-questions de recherche, puis
nous avons détaillé notre méthodologie de recherche au Chapitre III. Dans ce chapitre, également, nous avons
expliqué le réalignement de notre méthodologie de recherche en soulignant non seulement les difficultés dans
la sélection d'un modèle qualité approprié pour les logiciels intégrés, mais aussi les conséquences d’une telle
sélection en écartant de nombreuses contributions précieuses.

Ensuite, nous avons abordé ces questions de recherche dans les Chapitres de IV à VIII.

Question de recherche 1
La Qualimétrie, en tant que science de la quantification de la qualité, est-
elle la bonne approche et quels sont les éléments essentiels de la qualité et
de la Qualimétrie ?

Ainsi, dans le Chapitre IV, nous avons exploré l'essence de la qualité (i.e., sous-question de recherche 1a), et la
modélisation de la qualité en particulier dans le domaine des logiciels (i.e., sous-question de recherche 1b). Nous

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

400 | P a g e

avons défini, clarifié ces connaissances et les concepts associés (par exemple, la qualité perçue, les perspectives
de qualité, les dimensions et les caractéristiques de la qualité, le modèle qualité, les mesures, l'échelle), et conclu
cette exploration par la construction de la première chronologie des contributions clefs à la modélisation de la
qualité des logiciels, allant de 1965 avec la première apparition du concept de génie logiciel [32] à 2015 avec
Azgaldov et al. et l'ABC de la Qualimétrie [113]. Ensuite, nous avons cherché la Qualimétrie, reconnaissant que
nous avions une bonne compréhension de la jeune science de la quantification de la qualité, avant de démontrer
que la bonne approche pour nos besoins est la Qualimétrie (i.e., sous-question de recherche 1c).

Au cours de cette enquête, nous avons constaté que la Qualimétrie était souvent mal comprise et nous
commençons donc à contribuer à cette science en la vulgarisant, en résumant ses concepts majeurs sous une vue
synthétique : la « Maison de la Qualimétrie » et ses 6 piliers. Nous avons également remarqué qu'il était possible
d'unifier la diversité et l'évolution temporelle dans la modélisation de la qualité (i.e., sous-question de recherche
1d) en trouvant notre inspiration dans la génétique, et donc en introduisant le concept de polymorphisme (c'est-
à-dire le polymorphisme ad hoc, universel et temporel) dans la modélisation de la qualité. Pour compléter cette
contribution, nous avons proposé et prouvé que l'utilisation d'une formule basée sur la diversité génétique [86]
était plus appropriée pour comparer des modèles qualité ensemble (i.e., sous-question de recherche 2c) que la
distance de Hamming, par exemple, et nous avons proposé un nouveau processus de mesure cadencé avec le
cycle de vie du système et du logiciel pour intégrer le polymorphisme temporel.

Question de recherche 2
Considérant l'ensemble des modèles qualité pour le logiciel, comme
identifier et décider quel modèle qualité est le plus approprié pour le logiciel
embarqué ?

L'objectif du Chapitre V était de plonger en profondeur dans la littérature pour récupérer les modèles qualité des
logiciels existants, puis de déterminer quel modèle qualité pourrait être sélectionné pour répondre à nos besoins
avec les logiciels intégrés (i.e., question de recherche 2). Pour mener à bien cette entreprise, nous avons procédé
à un examen systématique de la littérature, dans le cadre duquel nous avons identifié et analysé 136 documents
d'étude publiés au cours d'une période allant de 1979 à 2019. Le résultat de cette revue, combiné à l'approche
en « boule de neige », telle que décrite par Wohlin [215], [216] et qui consiste à exploiter chaque document
référencé comme source supplémentaire de documents d'étude, a été la récupération de 492 modèles qualité
de logiciels de 1968 à 2019 (i.e., sous-question de recherche 2a). Cette liste de modèles qualité des logiciels est
une contribution unique puisqu'elle représente une collection dix fois supérieure au maximum que nous avons
trouvé dans les articles publiés : Oriol et al [12] ont énuméré 48 modèles qualité liés aux services web. A Noter
que dans Kläs et al [97], les auteurs affirment avoir fourni une classification pour environ 80 modèles qualité,
mais nous n'avons pas réussi à retrouver cette liste de modèles qualité, même dans les articles référencés de
cette étude ou dans la publication des auteurs.

Fort des résultats de la revue systématique de la littérature et parlant de classification, notre contribution
suivante a été de proposer l'utilisation de la cladistique comme méthode de classification pour les modèles
qualité des logiciels (i.e., la sous-question de recherche 2b). Pour cette raison, le schéma de classification a été
constitué de 20 éléments de classification des modèles qualité des logiciels organisés en cinq thèmes (i.e., id,
bibliographique, définition, portée et structure), puis décliné en cladistique des modèles qualité des logiciels :
homologie (i.e., similarité liée à une ascendance commune) et taxons (i.e., entités conceptuelles).

Bien que nous ayons commencé à utiliser un sous-ensemble de ces taxons pour classer ces 492 modèles qualité,
ils ont suffi pour réussir à représenter un paysage de modèles qualité logicielle. Nous avons constaté que ces
modèles ont été conçus principalement pour l'évaluation de la qualité, puis pour la prédiction, ils sont
généralement hiérarchisés, sauf pour la prédiction, où le formalisme statistique ou implicite est mieux adapté,
avec un champ d'application souvent mis sur le produit, et une perspective de qualité également répartie entre
les perspectives du fabricant, de l'utilisateur et du produit. En outre, notre contribution sur le paysage des
modèles qualité des logiciels a rectifié le postulat de Thapar et al. [11] concernant l'évolution des modèles qualité
(c'est-à-dire les modèles qualité de base avant 2000 et les modèles qualité adaptés depuis 2000). En effet, nous
avons montré que cette évolution s'articule autour de trois périodes : jusqu'en 1990, nous avons la période des
modèles qualité de base, de 1990 à 2003, la période de transition, et depuis 2003, nous sommes dans la période
de personnalisation des modèles qualité.

Synthèse de la Thèse en Français

401 | P a g e

Enfin, la conclusion de ce chapitre a confirmé l'inadéquation d'un modèle qualité de référence unique couvrant
tous les cas de produits logiciels (i.e., sous-question de recherche 4a), et a suggéré la sélection, ainsi que la
personnalisation, de la dernière norme de modèle qualité, ISO / IEC / IEEE 25010, pour générer un modèle
approprié pour les logiciels embarqués dans le domaine automobile (i.e., sous-question de recherche 2d)

Question de recherche 3 Comment opérationnaliser un modèle qualité pour un produit logiciel ?

Au Chapitre VI, notre objectif était d'étudier le passage de la théorie du modèle qualité à la pratique, et plus
particulièrement l'opérationnalisation du modèle qualité (i.e., question de recherche 3). Cet aspect opérationnel
est essentiel pour développer et déployer le modèle qualité par rapport à un cas réel d'utilisation de mots, ou
pour réussir à reproduire et à tirer profit des études de modèles qualité.

Ainsi, au cours de notre étude, nous avons identifié une liste de 16 défis ou problèmes distincts qui empêchent
le développement et l'utilisation de modèles qualité des logiciels (i.e., sous-question de recherche 3a), et nous
avons ensuite réussi à associer des solutions pratiques (i.e., des solutions liées à des expériences, des situations
réelles ou des actions qu'il est possible de reproduire, réutiliser ou déployer) à chacun de ces 16 défis (i.e., sous-
question de recherche 3b).

La synthèse consolidée de l'identification et de la résolution de ces problèmes a été réalisée grâce à la proposition
de deux processus complémentaires (i.e., sous-question de recherche 3c) :

- Le processus « en 6 étapes » se concentre sur le développement opérationnel du modèle qualité, avec un
algorithme d'analyse basé sur des enquêtes, les Kappa de Fleiss et de Cohen ; cet algorithme, utilisé pour la
construction du modèle qualité, prend en compte la contrainte, le point de vue des parties prenantes et
permet de déterminer automatiquement les facteurs de pondération des caractéristiques et sous-
caractéristiques qualité.

- Le processus « Thermomètre de la Qualité » se concentre sur l'utilisation opérationnelle du modèle qualité ;
il comprend donc le processus « en 6 étapes », car l'une des premières étapes de l'utilisation du modèle
qualité concerne le développement du modèle qualité.

Les parties innovantes de ces deux contributions au processus sont l'encapsulation transparente des solutions
pratiques et l'utilisation du concept de polymorphisme.

Outre les réflexions et les propositions relatives à la transition de la théorie à la pratique, le Chapitre VII reflète
la mise en pratique de nos conclusions et contributions par rapport à notre cas d'utilisation réel : les logiciels
intégrés pour l'industrie automobile (i.e., la sous-question de recherche 3d).

Nous avons donc décidé de les appliquer à un sous-ensemble de logiciels embarqués pour véhicules (i.e., trois
unités de contrôle électronique - IVI, IVC, ADAS - avec leur propre logiciel embarqué et une fonctionnalité
logicielle embarquée transversale - FOTA). Le résultat a été la création de trois modèles qualité polymorphes
distincts avec leurs facteurs de poids respectifs. Nous avons remarqué dans le résultat l'existence de deux niveaux
d'héritage du modèle qualité polymorphe, et un modèle qualité commun pour ADAS et FOTA. En outre, toutes
les étapes de construction, détaillées dans ce chapitre, peuvent servir de lignes directrices éprouvées pour
effectuer une modélisation de la qualité par rapport à n'importe quel logiciel ou système.

Enfin, ce succès dans le développement opérationnel d'un modèle qualité pour un cas réel d'utilisation de mots
dans le domaine automobile, nous a non seulement permis de répondre aux besoins de l'entreprise, mais a
également démontré le bien-fondé et la pertinence de nos conclusions et contributions.

Question de recherche 4
Peut-on avoir un modèle qualité de référence unique pour les produits
logiciels ?

En tant que chapitre subsidiaire puisque nous avons déjà répondu à la demande de la société, l'objectif du
Chapitre VIII était d'aller plus loin dans l'exploration d'un modèle de référence de la qualité des logiciels. En effet,
le Chapitre V conclut sur l'inadéquation d'un modèle qualité de référence unique couvrant tous les cas de produits
logiciels et, en conséquence, nous avons pu élaborer plutôt un méta-modèle qualité, rassemblant les

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

402 | P a g e

connaissances des modèles qualité existants, qui pourrait être utilisé comme base pour développer un nouveau
modèle qualité.

En continuant avec la génétique, nous avons constaté qu'un certain niveau d'analogie pouvait être atteint entre
les séquences d'ADN et les caractéristiques de qualité et la séquence des sous-caractéristiques. En outre, comme
dans les séquences d'ADN, des variations des caractéristiques de qualité et des sous-caractéristiques peuvent
exister avec un certain niveau de probabilité, ce qui rappelle le concept de polymorphisme. Ainsi, la base de notre
contribution au méta-modèle qualité reposait sur cette analogie qui a également été reprise dans une ontologie
du méta-modèle.

Après la conception détaillée de l'algorithme de construction du méta-modèle (i.e., sous-question de recherche
4b), nous avons sélectionné un ensemble de modèles qualité de logiciels existants pour lancer la création de la
première version du méta-modèle (i.e., sous-question de recherche 4c). Le résultat de cette contribution unique
et finale est le génome de la qualité logicielle composé de 7 chromatides : utilité générale, fonctionnement du
produit, révision du produit, transition du produit, supportabilité, produit en cours d'utilisation et produit logiciel.

Les travaux de recherche et les réalisations de la thèse sont également résumés dans la synthèse globale réalisée
à travers la Figure 103.

2. Perspectives de recherche

Cette étude complète et approfondie sur les modèles qualité des logiciels est le début d'un voyage passionnant
mais trépidant dans le domaine de la Qualimétrie. Les perspectives de recherche qui en résultent éclairent les
premières directions que ce voyage devrait prendre. Elles sont au nombre de trois, à savoir : la valorisation, la
consolidation et l'exploration.

- Perspectives de valorisation : l'intention derrière ces perspectives est non seulement de partager plus
largement nos résultats et contributions de recherche avec la communauté académique et industrielle, mais
aussi d’améliorer notre proposition par le retour d’expérience et la mesure de l’efficacité, ainsi que favoriser
son appropriation et adoption, à travers une stratégie de déploiement en entreprise accompagné par de la
formation et un outillage. Ce type de perspective se situe principalement entre le court et le moyen terme.

Ainsi, une façon de réaliser le partage de l'information est de s'appuyer sur les médias littéraires. Nous avons
prévu de rassembler les résultats et contributions suivants dans plusieurs documents de recherche :

o La revue systématique de la littérature avec un « effet boule de neige » aboutissant à une liste
unique de 492 modèles qualité des logiciels,

o La classification de modèle qualité des logiciels basée sur la cladistique,

o Le paysage du modèle qualité du logiciel et la correction du postulat de Thapar et al,
o De la théorie à l'analyse de la pratique : 16 défis d'opérationnalisation et leurs solutions pratiques,

o Les processus de développement et d'utilisation de modèle qualité, résumant des solutions
pratiques et illustrées par un exemple tiré du secteur automobile,

o Le modèle qualité polymorphe en pratique,

o Le méta-modèle du génome du modèle qualité logicielle, y compris l'algorithme de construction, et
les 7 chromatides du premier résultat du méta-modèle.

En outre, et comme nous l'avons déjà évoqué dans le Chapitre V.5, un outil de portail en ligne doit être créé
pour diffuser le partage de la collection de 492 modèles qualité des logiciels et permettre la collaboration
pour leur utilisation, leur achèvement et leur maintenance. L'objectif est de permettre à la communauté
universitaire et industrielle de collaborer sur cette collection et d'éviter que cette liste ne devienne obsolète
dans les années à venir.

Une autre façon de valoriser les résultats de nos recherches est d'industrialiser, de mettre à l'échelle et de
déployer les contributions de la thèse par rapport à des systèmes de production réels. Cependant, si nous
mesurons la maturité technologique de nos réalisations de thèse en utilisant l'échelle du niveau de
préparation technologique (TRL) [261], nous atteignons actuellement le niveau 4, c'est-à-dire que la
technologie a été validée en laboratoire, tandis que l'industrialisation, la mise à l'échelle et le déploiement

Synthèse de la Thèse en Français

403 | P a g e

signifient un niveau 9. Nous espérons pouvoir utiliser le TRL pour nous guider sur la voie de la préparation
technologique.

Figure 103 - Synthèse générale des travaux de recherche et des réalisations de la thèse

ARGOTTI Yann- Study of Qualimetry essentials applied to embedded software development

404 | P a g e

- Perspectives de consolidation : ce deuxième type de perspectives de recherche nous amène à poursuivre la
consolidation de nos résultats et contributions actuels, tant du point de vue de la recherche que du
développement. Ce type de perspective de recherche s'inscrit au moins à moyen terme. Les paragraphes
suivants décrivent brièvement les principales orientations de la recherche et du développement.

En ce qui concerne la collecte et la classification des modèles qualité, la consolidation signifie que nous
devons créer l'outil et le modèle de données adéquats pour recueillir, stocker et classifier correctement au
moins les 492 modèles qualité trouvés. Ensuite, nous devrions être en mesure d'effectuer une classification
complète basée sur la cladistique et de tirer tous les bénéfices de ces contributions connexes.

Pour le méta-modèle, cette perspective de recherche indique que nous devons d'abord achever la mise en
place d'un outil pour la construction automatique du méta-modèle, et ensuite, intégrer davantage de
modèles qualité dans le méta-modèle au cours de sa construction. L'un des résultats attendus liés à
l'intégration d'un plus grand nombre de modèles qualité dans le métal-modèle est de renforcer la
convergence des caractéristiques et sous-caractéristiques de qualité les plus pertinentes et les plus
importantes. Une autre amélioration du méta-modèle sera l'intégration de mesures.

Au sujet de la perspective de consolidation du développement du modèle qualité, nous visons à utiliser le
méta-modèle comme modèle qualité référencé, à encourager la réutilisation du modèle qualité par le biais
du polymorphisme, et à construire un outil pour automatiser le processus « en 6-étapes » pour le
développement du modèle qualité, y compris la prise en compte des métriques. En parallèle, la modélisation
pratique de la qualité pour un système complexe entier tel qu'un véhicule entier devrait être traitée.

De même, pour consolider l'utilisation du modèle qualité avec le processus « Thermomètre de Qualité »,
l'aspect outillage doit être abordé et devrait couvrir au moins : l'utilisation transparente du modèle qualité
polymorphe, le déploiement opérationnel automatisé et l'exécution des modèles qualité et de leurs
métriques, le tableau de bord en ligne et la carte de pointage avec capacité d'exploration de données pour
permettre la prédiction et la prescription.

- Perspectives d'exploration : les objectifs de ces perspectives de recherche sont d'explorer et d'étudier des
problèmes ouverts liés à la Qualimétrie, au modèle qualité ou à la modélisation. Par conséquent, la base
temporelle correspondante pour ce travail de recherche est à long terme. Un certain nombre de problèmes
ouverts ont déjà été saisis.

Le premier problème concerne l'évaluation, ou la prévision, de la valeur apportée par le développement et
l'utilisation de modèles qualité. C'est une question récurrente qui vient souvent des chefs d'entreprise pour
accepter le coût de l'activité de Qualimetry. Cependant, cette question reste sans réponse malgré les
quelques études de recherche telles que Khoshgoftaar et al. [173] qui ont lancé la construction d'un modèle
coûts-avantages de l'activité de modélisation de la qualité basé sur l'hypothèse de la réutilisation du modèle
qualité sur plusieurs versions de logiciels, Porta [262] avec une enquête sur le modèle d'analyse coûts-
avantages pour l'assurance qualité, ou la qualité intégrale composée de la qualité et de la rentabilité (voir
Chapitre IV).

Un deuxième type de problème concerne la définition formelle et la généralisation de seuils pour évaluer,
contrôler ou prédire objectivement qu'un niveau de qualité d'un produit, par exemple, est bon.
Malheureusement, nous n'avons généralement pas de seuil d'acceptation, de référence ou d'objectif
universel (c'est-à-dire convenu d'un commun accord). Une façon de contourner ce problème consiste à
définir une cible, ou un seuil d'acceptation, sur la base de résultats antérieurs obtenus avec un produit
identique, comme une version précédente du logiciel. Ainsi, on élimine le problème en ne considérant que
les progrès par rapport aux réalisations antérieures. Néanmoins, le problème initial reste intact même s'il y
a peu de tentatives industrielles mineures comme les 15 plages d'acceptation des mesures du code source
du HIS automobile [263].

La troisième catégorie de problèmes ici est la généralisation de la modélisation de la trajectoire de qualité et
de sa vitesse. Un problème parallèle concerne la discontinuité qui peut exister entre le modèle d'évaluation
et le modèle de prédiction avec une portée et une perspective de qualité identiques mais avec des
formalismes de modèle distincts.

Synthèse de la Thèse en Français

405 | P a g e

Enfin, la dernière catégorie de problèmes englobe la modélisation du domaine d'intérêt contemporain de la
qualité et où certaines études de recherche ont été lancées mais n'ont pas encore résolu le problème. Nous
pouvons citer par exemple :

o L'écologie et la durabilité des logiciels,

o Le vieillissement et l’obsolescence des logiciels,
o Les données de qualité pour les systèmes et services logiciels connectés.

