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 Introduction

A gas occupies all the available volume, a liquid keeps its volume but flows to take the shape of the container, a solid does not flow and has its own shape.

Such was the first physics lesson I remember. I was then - years old and I did not immediately questioned the perfectness of this definition against sand, toothpaste, or the yogurt I had for breakfast. Nevertheless, I now find fascinating that the definition of solid is not linked to a specific structure of matter, a 'phase', but to a mechanical property. Many phases of matter are solid, or at least display solid properties under some circumstances: crystals, glasses, gels, among others.

The knowledge we have on each of these phases, what makes it solid or loose its integrity, varies tremendously. Crystal is the cornerstone of the physics of materials, but solidity of arrested systems like glass or gels are still actively researched.

During my PhD thesis, I focused mostly on the statistical physics aspects of fluids, crystals and mostly glass. Since, I have made the link with mechanical measurements. The goal of the present manuscript is to recapitulate in an ordered fashion my journey in the mechanics of arrested systems, mostly gels, but also glasses. What makes them solid? How do they yield, fracture or fluidize? How can we probe efficiently their mechanical properties? What can we learn from mechanical test, either macroscopic or microscopic?

. Mechanical response

.. Simple solid

Let us consider a cubic solid of size L subject to a small shear, that is to say a displacement u x along the x axis proportional to the position along the y axis:

u x (y) = γy, (.)
where γ is the shear strain. By definition solids do not flow, thus for small enough γ the solid will recoil to its original state when the forces acting on it are released. This reversible behaviour is call elasticity. The recoil force F exerted at the top face of the cube can be made intensive by dividing by the area of the face, thus defining the shear stress σ = F/L 2 . The elasticity of the solid is thus expressed in intensive form as σ = Gγ, (.)


where G is the shear modulus, a material property independent of the original shape or dimensions of the solid.

As long as G does not depend on γ, the response is called linear. Prototypical solids have a linear elastic regime at small strain, that can be followed by a nonlinear elastic regime (G depends on γ but the strain is reversible), eventually a plastic regime where part of the strain become irreversible, and finally failure.

In the linear regime, one can probe the shear modulus by applying an oscillatory shear. The stress response is in phase and (Eq. .) now relates the amplitudes of the stress and the strain.

.. Simple liquid

By contrast, a liquid flows. The stress response to a step strain will decay to zero. To maintain a non zero stress, the strain must be increasing relentlessly. Therefore, the relevant quantity is the rate of increase, or shear rate γ = dγ/dt. The response of the liquid is then better described by a viscosity η with σ = η γ.

(.)

As long as η does not depend on γ, the response is linear and the fluid is called Newtonian.

In the linear regime, one can probe the viscosity by applying an oscillatory shear of frequency ω. The complex amplitude of the stress response is then σ = ıωηγ.

(.)

We note that due to the derivative the stress response is in quarter of phase. Furthermore, we can recover the equivalent of (Eq. .) by setting a pure imaginary shear modulus G = ıωη that depends on frequency.

.. Viscoelasticity

We can generalize further (Eq. .) to characterize materials that have a frequency-dependent linear response in between the solid and the liquid.

σ = (G (ω) + ıG (ω))γ, (.)

For a viscoelastic material the shear modulus G is complex. The real part G is called the storage modulus or the elastic modulus, and the imaginary part G is called the loss modulus or the viscous modulus. We can also write G = G * e ıδ , where G * is the amplitude and δ the phase also called the loss angle (no loss for δ = 0, all loss for δ = π/2). In practice, we often consider the loss tangent that quantifies the ratio between solidity and fluidity

tan δ = G G . (.)
This ratio depends on the frequency, or equivalently on the time scale. Some viscoelastic materials are solid on short time scales but liquid on long time scales.

 . Thermodynamics behind solidity

My research focusses on soft solids made by the self assembly of colloidal suspensions or polymers. Their elasticity scale with the typical microstructure size ξ as

G ∼ k B T ξ 3 , (.)
with k B the Boltzmann constant and T the temperature. Although the prefactor may vary by orders of magnitude between systems, (Eq. .) stresses that the origin of the elasticity is mostly entropic.

.. Crystal

A crystal is defined by the long range order of its components. Atoms, molecules, proteins, colloidal particles, fruits at the greengrocers are sitting on a perfect lattice. From a thermodynamic point of view, this arrangement is a deep minimum in the free energy landscape.

Most crystals are stable because of the enthalpy of the chemical bonds or interactions potential between their components. Nevertheless even hard spheres can crystallise for entropic reasons: under a certain available volume, particles have more possibilities to wiggle by staying on a lattice than by moving past each other. In any case, the system will resist external stimulus in order to stay in the minimum in the free energy landscape. The crystal will not flow. Trying to displace a system close to an energy minimum implies a linear recoil force, a stiffness. That is all we need to explain the linear elastic behaviour of a crystal:

F = kx (.)
where F is the recoil (elastic) force, x the displacement from the equilibrium position, and k the stiffness. Plasticity in crystals is explained by the movement of defects and disinclination lines.

.. Glass

At the microscopic level, the ability to flow characteristic of a liquid stems from the possibility for the component of the liquid to rearrange, to move past each other. In molecular liquid, the time needed for two molecules to move past each other is typically in the picosecond range. However, as the temperature decreases or the pressure increases, relaxation times increase. It takes more and more time for the components of the liquid to rearrange. If crystallisation is bypassed and the liquid further cooled down or compressed, relaxation times increase by many orders of magnitude until a point where relaxation does not take place on experimental time scales. The liquid is practically arrested, components do not significantly rearrange, flow  is not possible any more, and thus the system can be considered a solid. Contrary to a crystal, this solid shows no long range positional order and is called a glass.

In a glass, as in a crystal, the individual components are still able to move locally due to thermal motion. They are confined, but still have vibrational degrees of freedom. By contrast even more compressed systems can become jammed. A particle is then in permanent mechanical contact with enough of its neighbours to completely freeze its degrees of freedom. Despite this fundamental difference, glassy and jammed solids display similar mechanical responses, the phenomenological Herschel-Bulkley rheology [-]:

σ = σ Y + K γn , (.)
where σ Y , K and n are material constants. In particular, σ Y is called the yield stress. For stresses below the yield stress, the material behaves as an elastic solid, whereas it flows for larger stresses that overcome local energy barriers and allow particles to move past each other. If the stress is released below the released below σ Y , the material reverts to a solid behaviour. Materials like mayonnaise (concentrated emulsion), shaving cream (foam) or socalled hair 'gel' (concentrated microgel suspension) are typical yield stress fluids.

.. Gel

Contrary to these dense assemblies of particles that interact mostly by repulsive forces, gels are sparse and are held together by attractive interactions. A gel is a soft solid composed of two intertwined phases: a solid network and a liquid solvent. Gels are an ubiquitous state of matter in every-day life, making up most of the foods we eat, the cosmetics we use, concrete, and our own organs. Besides, there is a raising interest in using gels as structural materials, despite ratio of solid component as low as a few percent in mass. For example biocompatible polymer hydrogels, made of % of water, are beginning to display the appropriate mechanical properties to be used as cartilage replacement [, ], except fracture resistance on the  year desired lifetime of an implant.

... Polymer gel

The network of a gel can be made of polymer chains that are cross-linked chemically (most synthetic gels) or physically (agar, gelatin, pectin, cytoskeleton). Contrary to elastomers the polymer network is swelled by a solvent. The mass of polymer can be as low as a percent of the total mass of the material. Therefore there is little friction between chains and the dissipation is low, coming mostly from the solvent [].

The elasticity of a polymer gel is mostly entropic. Long polymer chains resist extension that reduces the number of their available configuration. Enthalpy plays a role when chains or crosslinks break, outside of the elastic regime. For most gels, bonds mainly break at the same strain, and thus the material is brittle, with little dissipation before complete failure of the material. To prevent this, recent efforts have engineered gels so that many sacrifical  bonds break early, dissipating energy without compromising the integrity of the material [, , , ]. Polymer gels with reversible self-assembly mechanisms will be discussed in Chapter .

... Colloidal gel

The network can also be made of colloidal particles bonded by short range attraction: inorganic particles, natural or synthetic latex, globular protein, etc. Such colloidal assemblies are out of equilibrium, as the thermodynamic ground state of the system involves the macroscopic separation between a particle-rich (liquid) and a particle-poor (gas) phase. Despite the thermodynamic driving force towards compactness, the gel persists due to the dynamical arrest of the network, often described as a glass transition [-]. This has led to the popular physical picture that a colloidal gel is formed by dynamical arrest of bicontinuous spinodal decomposition due to glass transition. Indeed, it is not straightforward to distinguish between attractive glasses with short-range attractions and colloidal gels at high volume fractions [].

Contrary to crystals, glasses or polymer gels, the origin of colloidal gel solidity is not straightforward. Chapter  will discuss this issue. Furthermore, the rupture of such heterogeneous, soft materials is still poorly understood, an obvious key aspect of their required mechanical properties. Chapter  will lay out my contribution to this issue.

. Content

In Chapter  I will review the techniques used to characterise the mechanics of soft arrested systems at the local scale, with examples from techniques I contributed to develop. In Chapter  I will focus on the possible paths leading to gel formation and the emergence of solidity in a model colloidal system. Chapter  will study self-assembled polymer gels through mechanical tests in order to extract microscopic quantities. Chapter  will be devoted to the characterisation of casein gels as a model system, which brittle rupture under stress will be demonstrated in Chapter . Chapter  will present an apparatus able to couple D confocal microscopy and mechanical tests at low stress, with the obvious aim of studying fracture nucleation in casein gels. Chapter  will depart from gels and rather study the relaxation in self-propelled colloidal glass.

Finally, in Chapter  I will lay out my future plans: in which direction I will push my running projects and systems, and in which new projects I will invest my energy and the tools I developed.

  Micromechanical techniques

Mechanics is response. One applies a force on a material and measures its movement. Or, once normalised by the size of the sample, one measures the strain response to a stress, or the stress response to a strain.

A classical oscillatory shear stress experiment performed with a rheometer consists in applying a sinusoidal oscillatory stress σ rheo (t) at frequency f and amplitude σ 1 on a soft material to test its strain response γ rheo (t). If the sample is a purely homogeneous viscous fluid, the stress is proportional to the shear rate, i.e. the time-derivative of the strain, σ rheo (t) = η γrheo (t), with η the viscosity of the fluid. In contrast, if the sample is an ideal elastic solid, then the stress amplitude is proportional and in phase with the strain, σ rheo (t) = G 0 γ rheo (t), with G 0 the elastic modulus of the material [-]. Most soft materials, e.g. gels, viscoelastic fluids, suspensions and pastes, fall between these two ideal cases in the linear regime, exhibiting a phase lag between σ rheo (t) and γ rheo (t) that ranges from 0 to π/2 and depends on the oscillation frequency f .

Standard rheological analyses rely upon the basic assumption that the sample behaves homogeneously across the gap of the shear geometry. Yet many materials become spatially heterogeneous under shear and classical rheology, providing only averaged information over the whole sample, fails in capturing such spatial heterogeneities. Examples include shearbanding instabilities, shear localization, fractures within the material and apparent wall slip. Shear banding is observed in viscoelastic fluids such as wormlike micellar solutions [, ] and telechelic polymers [, ]. Within a given range of shear rates, the flow segregates into macroscopic bands with different local viscosities and stacked along the velocity gradient direction. A particular case of shear banding, sometimes referred to as shear localization, is observed close to the yielding transition of viscoelastic solids, such as colloidal gels [-], star polymers [], emulsions [] and foams []. Here only some part of the sample flows while the rest remains solid. Soft solids [, ] and viscoelastic fluids [-] may also display bulk fracture when stressed deep into the nonlinear regime, associated either to irreversible failure in the former case or to self-healing mechanisms in the latter case. Finally, apparent wall slip is observed ubiquitously in complex fluids, especially under smooth boundary conditions [, ]. Characterizing and understanding wall slip at the microscale stand out as experimental and theoretical challenges both in the case of partial wall slip (where the sample is sheared in the bulk with a local shear rate smaller than the global shear rate) [, ] and in the case of total wall slip (where the sample displays a pluglike flow, i.e. solid-body rotation, in the entire gap of the rheometer) [, -]. In all cases above, the global rheological response does not correctly reflect the material properties and a local  investigation is mandatory to assess the actual sample properties.

Furthermore, most materials of interest are heterogeneous below a certain scale. Real deformations and plasticity in crystals already need to be modelled in terms of disinclination, grain boundaries and, in general, defects. Soft materials are characterized by their large microstructure and are heterogeneous on length scales that are much larger than atoms, but small enough to be affected by thermal motion. For such materials, a microscopic picture is necessary to understand global mechanical response. Sometimes, a theoretical knowledge of the microstructure is enough to shed light on the macroscopic mechanical behaviour. Guided by such models, macroscopic measurements might help quantify microscopic quantities (e.g. crosslink density, fractal dimension, bonding energy). However some dramatic mechanical response at the microscale still lack basic understanding and call for microscopic investigations.

In the following, I will first review micomechanical measurement techniques in general, before detailing two examples of specific microscopic investigation techniques that I used or contributed to in order to probe the mechanical response of arrested systems.

. Micromechanical measurement classification

.. Local measurements

By definition, to perform micromechanics, one needs access to strain or stress at microscopic scales.

An ideal stress sensors is mechanically stiff but has a property that dramatically changes upon tiny strains. For instance, piezoelectric elements are widely used as macroscopic force sensors as their electrical charge change with stress, while their strain remains negligible. Unfortunately, collecting the electric charge of microscopic piezoelectric elements dispersed in a material is impractical.

In some materials, stress-induced reconfiguration at the molecular level allow direct, contactless probing of the stress state through photoelasticity [], micro-Raman spectroscopy [] or electron backscatter diffraction []. However, these techniques remain limited to studies in specific material systems due to spectroscopic and geometric constraints. The design of versatile stress nanosensors that could indicate the local stress state by a colour change, is an active field of research [-].

Therefore, most micro-mechanical probes are actually strain sensors: the method detects a relative displacement between objects that is representative of the local strain in the material. For example, the motion of solid tracer particles dispersed in a material can reveal the strain field. This motion can be followed by particle tracking that reconstruct the trajectory of each particle [-], inferred from image correlation [-], space-resolved light diffraction techniques [-], ultrasonic velocimetry [, ] or magnetic resonance imaging []. In particulate systems, the particles themselves can play the role of tracers. More generally, if the microstructure of the system offers a good contrast (optical, ultrasonic, etc.) additional  tracers may be unnecessary. With a good control on the stress applied to the system, and local measurement of the strain, it is thus possible to map spatially the local material properties, as we will see in Section ...

It is also possible to embed tracers within a soft material of known mechanical properties that is in contact with the system, e.g. at the boundaries or included, and will act as a stress sensor. Extracting the strain field in the sensor material, one can retried the the stress applied by the system [-]. However this technique is limited to the boundaries of the sample, or to inclusions that must be sparsely distributed not to modify the mechanical properties of the sample.

For some specific system, nonlinear mechanics can be mapped spatially using specific molecular probes. For instance, Ducrot et al. [] crosslinked an elastomer with chemoluminescent molecules and where thus able to map on centimetre scale the density of irreversible mechanical events occurring at the molecular scale. Merindol et al. [] have designed mechanofluorescent DNA hydrogels where sacrificial bonds fluoresce once broken. Such methods can directly quantify plasticity in the material, e.g. near a crack tip.

.. Micromechanical stimuli

In the previous section, we have reviewed local mechanical measurements done under macroscopic mechanical tests. For instance Refs [, , ] just needed to synchronise a camera with an uniaxial tension machine to observe the optical response of their crafted chemical probes. Most other studies were performed by coupling a rheometer with a microscope, an ultrasound transducer, a synchrotron, a light diffraction setup, etc. Sometimes the probing technique is difficult to couple with a bulky rheometer and a more compact shear cell is used. In addition, the plane-plane geometry of translational shear cells offer homogeneous shear and a less expensive than rheometers. Advantages and drawbacks of both methods will be reviewed in more details in Chapter . Below, we review more local mechanical stimuli.

... Passive microrheology

For soft materials, where thermal motion is important, the easiest stimuli is the thermal motion itself. Indeed, in a Newtonian fluid of viscosity η, the Stokes-Einstein relation links the diffusion coefficient D of a spherical tracer to the tracer radius a and the viscosity:

D = k B T 6πηa (.)
Mason et al. [] have shown that (Eq. .) can be generalizes to viscoelastic fluids and allows the measurement of the complex shear modulus function of frequency G(ω) by simply measuring the mean square displacement function of lag time ∆r 2 (∆t). In the Laplace domain, the generalized Stokes-Einstein relation writes

G(s) = k B T πas ∆r 2 (s) , (.)
 where G(s) and ∆r 2 (s) are the respective unilateral Laplace transforms of G(∆t) and ∆r 2 (∆t).

Then one recovers the frequency dependent modulus by identifying G(ω) = G(s = ıω) [].

In practice various numerical schemes have been proposed to efficiently compute G(ω) from the mean square displacement []. Here we briefly summarize the approach of Mason [].

One considers that the mean square displacement is locally a power law of exponent α(∆t) ≡ d log ∆r 2 (∆t) d log ∆t (.)

Combining (Eq. .) and (Eq. .) for s = ıω one obtains the approximate expression

G(ω) ≈ k B T 3πa exp ı π 2 α(ω -1 ) ∆r 2 (ω -1 ) Γ (1 + α (ω -1 ))
, (.) where Γ designates the Γ -function. In this approximation, the loss angle is directly linked to α:

δ(ω) = π 2 α(∆t = ω -1 ). (.)
Uncertainties A complete analysis of the uncertainties in passive microrheology can be found in Ref []. Briefly, static errors on tracked coordinate affect the magnitude of the complex modulus |G(ω)|, but never its phase δ(ω). In other words, the ratio G /G = tan δ, is robust to static errors. Since we are interested in the transition from liquid to solid, we focus our summary on the errors affecting δ, i.e dynamic errors. According to Savin and Doyle [], they are due to the finite exposure time τ expo . The relative error on the loss angle is then

| (δ)| δ (ω) ≈ ωτ expo 2δ/π (1 + 2δ π )(1 + δ π ) . (.)
When G ≈ G , we also have tan δ ≈ 1 and (Eq. .) reduces to

| (δ)| δ (ω, t) ≈ 8 15 ωτ expo . (.)
Tracking-free microrheology Tracking-free microrheology techniques have been designed on the same physical basis using scattering [] or image correlation [].

Two-particle passive microrheology Mechanical properties measured by passive microrheology depend on the size of the particle and its interaction with the microstructure. A particle larger than the microstructure will measure bulk properties but will be sensitive to heterogeneities in the material. By contrast, a particle smaller than pores in the microstructure



and not attached to it might diffuse more or less freely, characterizing more the viscosity of the solvent and the tortuosity of the pores than the bulk viscoelasticity [, ]. In order to get closer to bulk measurements and mostly insensitive on the size of the particle or its exact interaction with the microstructure, one can measure the relative diffusion between pairs of particles [, ]. The distinct mean-square displacement is defined from the correlated fluctuations of two-particle motions along the line connecting them as ∆r 2 D (r, ∆t) = 2r a ∆ r i (t, ∆t) • u i,j (t) ∆ r j (t, ∆t) • u i,j (t) δ r -R i,j (t)

i j,t , (.) where u i,j and R i,j are respectively the unit direction and the norm of r jr i . ∆ r i (t, ∆t) is the displacement of particle i between t and t + ∆t, and δ is the Dirac function. A generalized Stokes-Einstein relation can again link in Laplace space the modulus to the distinct meansquare displacement:

G(s, r) = k B T πas ∆r 2 D (r, s) . (.)
Due to the factor r/a in (Eq. .), the characteristic size over which the mechanics is probed is no more a but r, the distance between the particles. In practice to increase statistics, (Eq. .) is averaged on a range of distances where ∆r 2 D (r, ∆t) is mostly constant before inversion through (Eq. .).

Advantages and limitations Passive microrheology is a mature technique that allows the measurement of the shear moduli of a viscoelastic material without external stimulus. It enables space-resolves measurements, measurements in small volumes, and sometimes even mechanical measurements as an afterthought when mechanics was not the primary focus of the experiment. The resolution of the measurement position fluctuations limits passive microrheology to material of low elasticity. Typical particle tracking algorithm of wellseparated 1 µm tracers lead to a resolution of 30 nm and thus to a maximum elastic modulus of a few Pascals. The dynamics of smaller tracers followed by Dynamic Wave Spectroscopy might probe elasticities up to a few kPa, but without the robustness of two-particle microrheology []. Finally, passive microrheology is limited to the linear response of the material and is not adapted to study yielding or flow.

... Active microrheology

Active microrheology consists in driving a microscopic probe through the system, either in translation or in rotation. Typically the forces exerted on the system are larger than thermal forces as quantified by a Peclet number Pe. Active microrheology techniques allow to measure the response of the system to this localized stimulus.



For instance, a magnetic field gradient exerts a constant force F on a ferromagnetic particle that in response translates with an average velocity v . The response of the system is encoded in the friction coefficient Γ F (Pe) such that

F = Γ F v . (.)
By contrast, optical tweezers can hold a particle in place in a potential well of stiffness k, and the sample is moved with respect to the trap with a velocity v. Tracking the average deviation δx of the particle position with respect to the center of the trap allows to measure the average force F = k δx . The response of the system is encoded in the friction coefficient Γ v (Pe) such that

F = Γ v v.
(.)

In general the two drag coefficients are different []. The two above examples bear strong analogy to constant stress, respectively constant strain rate, tests in macroscopic rheology. Along the same analogies, oscillatory, start up or relaxation tests are also possible. However, microrheology tests generate stress and strain fields that are localised and thus fundamentally different from macroscopic rheology test that always take as reference the homogeneous stress, homogeneous strain situation. Indeed, the flow field is different from a simple shear flow [, ]. For instance, it involves stretching ahead of the probe, and compression behind it. Active microrheology thus probes other material properties than (non linear) viscosity or viscoelasticity.

Active microrheology has been used to characterize the nonlinear response of complex fluids or soft solids available in minute quantities, or to probe intrinsically heterogeneous systems, as the cytoplasm of living cells. However, due to the 'non viscometric' nature of the localised stress and strain field, the interpretation of the results is often not straightforward. A microscopic understanding of the structural response of the material is often required. Since active microrheology requires the tracking of the probe position, the setup is often coupled to a microscope and thus offers various possibilities of local strain measurement around the probe (see Section ..).

... Passive measure of internal stresses

Active microrheology applies a localised stress on the system to measure its response. Passive microrheology relies on thermal energy to probe the linear rheology of unstressed system. Here, I demonstrate a technique in between that allows to measure the internal stress of a colloidal network relying on thermal energy as a probe.

Let us consider two particles of diameter σ interacting via an attractive potential of range σ + δ and depth E A . In absence of force F acting on the bond, the dissociation rate is

k D (F = 0) = ω 0 exp - E A k B T , (.)



where ω 0 an attempt frequency that depends on the precise shape of the potential [] and on the diffusion constant within the attraction shell of the potential []. Under action of small force F , the rate becomes [] k

D (F ) = k D (F = 0) exp F δ k B T (.)
If we can measure the value of k D in absence of force and its average value in the self-stressing situation, we can obtain the average internal force at all times:

F = k B T δ log k D k D (F = 0) . (.)
To convert the average force into the average internal stress Σ using the area of contact between attraction shells Σ = 2 F /(πσ δ).

. Example: Local moduli from ultrasounds coupled to a rheometer.

To be more specific, I will present an example of local strain measurement coupled to a rotational rheometer in oscillatory mode. Using this technique, we are able to measure the spatially-resolved viscoelastic moduli.

This work is based on the ultrasound velocimetry technique previously developed in the lab of Sebastien Manneville that I will present in Section ... My contribution is contained in Section ...

.. Ultrasound Velocimetry

In order to probe the local displacement field inside the gap of a rheometer, we use highfrequency ultrasonic imaging previously developed in the lab of Sebastien Manneville []. This device relies on a linear array of  piezoelectric transducers with a total active length of 32 mm. The transducer array is immersed in a water tank surrounding a Taylor-Couette device (inner diameter R 1 , outer diameter R 2 , gap e = R 2 -R 1 ) and is set vertically at a distance of about 25 mm from the stator. As sketched in Fig. .(a), short ultrasonic plane pulses with a central frequency of 15 MHz impinge on the stator and propagate across the gap along e y at an angle φ 5°relative to the radial direction e r . These pulses get scattered by tracers within the sample and the backscattered signal is recorded by the transducer array, leading to an "ultrasonic speckle" signal with  measurement lines and typically  points sampled at 160 MHz.

The analysis of ultrasonic data consists in first processing the speckle signal into a beamformed speckle image S (y, z, t), where y is the distance from the transducer and z is the vertical direction (e z points downwards with z = 0 taken at about 10 mm from the top of the Since this is the first occurrence in this manuscript of cross-correlation, let me explain the principle on this D example. As shown on Fig  ., the signals S(y, z = z 0 , t = t 0 ) and S(y, z = z 0 , t = t 1 ) are split into windows of size ∆y. This size should be large enough to include enough meaningful variations of the signal. Here, we chose twice the wavelength of the ultrasound. On the window centred on y, the cross-correlation function of the two signals is defined as C(y, z 0 , t 0 , t 1 , δy) = y =y+∆y/2 y =y-∆y/2 S(y , z = z 0 , t = t 0 )S(y + δy, z = z 0 , t = t 1 ) (.) For a given window (y, z 0 ) and two fixed times (t 0 , t 1 ), the cross-correlation C(δy) function quantifies how well the two signals are matching given a translation δy on the second signal. The δy that maximizes C is a measure of the translation between the two signals. 



In practice C is computed efficiently by a product in Fourier space. The translation can be estimated with an accuracy better than the signal sampling rate, either by a second-order polynomial fit around the maximum (what we do here), or by upsampling the Fourier transforms near the maximum []. The procedure of cross correlation can be extended to signals of any dimension, e.g. images, and is also at the basis of particle image velocimetry.

Coming back to our ultra sonic imaging setup, such displacement measurement from successive plane wave imaging allows one to reach frame rates up , fps [] and is now routinely used in transient elastography techniques for medical diagnosis []. Displacements are measured only in the axis of the transducer array. However, if we assume that the displacement is purely orthoradial, the small angle φ between e y and e r enables to obtain the displacement ∆ loc (r, z, t) = δy (y, z, t)/ sin φ, where we define r = e -(yy 0 ) sin φ as the radial distance across the gap (e r points outward with r = 0 and y = y 0 taken at the rotor, and r = e at the stator).

In water, the wavelength of the ultrasounds we use is λ ≈ 100 µm. This sets the window size around 200 µm. Two windows can overlap by two third and still yield independent displacement information, therefore our radial resolution is approximatively 65 µm. In other words, we can measure the displacement at  independent points in a 2 mm gap, every 250 µm in height.

Personally, I have mainly used this Ultra Sound Velocimetry (USV) technique to characterize the rupture process of a casein gel under steady stress (see Section .), and I contributed to improve it in order to extract local rheological information from oscillatory measurements as detailed below.

.. Local oscillatory rheology from echography

This work was performed under the direction of Sebastien Manneville together with Brice Saint-Michel and Thomas Gibaud and has been published as Here we introduce a technique referred to as Local Oscillatory Rheology from Echography (LORE) which consists in synchronizing the high-frequency ultrasonic imaging (see above) with standard oscillatory stress rheology. This works builds upon previous work in the group of Sebastien Manneville, which were restricted either to steady flows [] or to stroboscopic measurements under large amplitude oscillatory shear [, ]. We show that ultrasonic imaging is particularly well-suited for time-resolved local measurements during oscillatory experiments. Indeed the acquisition frequency of up to , fps is fast enough to capture local displacements ∆ loc under oscillations with frequencies up to 1 kHz and strain amplitudes down to a few percents. It also offers the possibility to probe optically opaque materials. We further demonstrate that LORE provides full access to the local strain γ loc and local  elastic and viscous moduli, G loc and G loc , as well as to the nonlinear local response for arbitrarily large stress amplitudes until fracture or yielding of the soft material occurs. This local insight allows us to shed new light on a regime, referred to as Large Amplitude Oscillatory Shear (LAOS) []. Indeed, when the amplitude σ 1 of the applied oscillatory stress becomes large, the sample exhibits a nonlinear response and the strain γ rheo (t) involves higher harmonic modes. This regime provides richer insights into the sample rheological properties and is closer to actual industrial processing conditions. In spite of much research effort [-], the physical nature of LAOS response still raises lots of open questions [, , ].

This section is organized as follows. In Sec. ... we present how we combined standard rheology and ultrasonic imaging in order to map the local viscoelastic moduli. In Sec. ... we benchmark the LORE technique using a homogeneous Newtonian fluid and a soft elastic solid. We demonstrate that our method successfully resolves the local viscoelastic moduli of the material across the entire -mm gap of a Taylor-Couette cell and matches the rheometer average measurements. We then verify in Sec. ... that LORE provides access to the local values of the elastic modulus in a spatially heterogeneous soft solid. In particular we show that the displacements are confined to the softest region of the material. In Sec. ... we finally examine the influence of slippery boundary conditions on the harmonic content of the local strain response of a soft solid.

... Synchronisation

Rheological measurements We apply an oscillatory shear stress to fluids or soft solids using a commercial stress-imposed rheometer (TA Instruments AR G). Our rheological experiments are performed in a homemade Taylor-Couette cell with smooth, polymethylmethacrylate (PMMA) walls. The inner rotating cylinder (rotor) has a radius R i = 23 mm, a height H = 6 cm. Its upper part is attached to the rheometer and its bottom part is terminated by a cone with an angle of 2°with a truncation of 50 µm. The fixed outer cylinder (stator) has an inner radius R o = 25 mm. The temperature is controlled by a water circulation around the Taylor-Couette cell and fixed to (25.0 ± 0.1) • C for all experiments. The sample is introduced in the radial gap e = 2 mm between the rotor and the stator and submitted to an oscillatory shear stress σ rheo (t) = σ 1 cos(2πf t) with frequency f = 0.1 Hz and amplitude σ 1 [see Fig . .(a)].

Ultrasonic imaging under oscillatory stress To provide ultrasonic contrast, the samples are seeded with density-matched passive tracers (Potters Sphericel® P hollow glass microspheres of median diameter D 50 10 µm and density d = 1.10, or Arkema Orgasol polyamide particles, grade  ES NAT, with D 50 30 µm and density d = 1.03). These tracers are almost density-matched with the suspending medium and their concentration of  to  wt. % is high enough to obtain sufficient ultrasonic scattering yet low enough to prevent multiple scattering and to ensure that they do not affect the sample mechanical properties. Here we set the time interval between two speckle images to 1/(600f ) and the total acquisition time to 4/f . This allows us to resolve the displacement ∆ loc (r, z, t) during four oscillation periods with a spatial resolution along the z-direction of 250 µm and 75 µm in the radial direction r and with a sampling of  images per oscillation period. To increase the signalto-noise ratio, displacement maps are further averaged over  successive cross-correlations, which provides a time resolution of 1/(60f ).

Synchronisation procedure In the present case, synchronization was achieved with a precision of 4 ms by recording the rheological measurements sampled at 250 Hz into an auxiliary file that also stores time stamps. When ultrasonic acquisition is started, the last time stamp in this file, t 0 , is retrieved and used as a reference time for both ultrasonic and rheological data [see Fig. 

... LORE data analysis

By combining ultrasonic imaging and rheology, we reconstruct local rheological quantities such as the strain and the viscoelastic moduli. A first step is to compute the local shear stress within the gap of our Taylor-Couette device. For oscillatory stress experiments, the rheometer applies a raw torque Γ (t) and monitors the raw rotor angular velocity Ω(t). From the momentum conservation equation in cylindrical coordinates we obtain the local stress across the gap [, , ]:

σ rheo (r, t) = Γ (t) -J Ω(t) 2πH(R i + r) 2 . (.)
Equation (.) indicates that the stress varies across the gap due to the curvature of the cylindrical geometry. In our particular conditions, e/R i = 0.087 and the stress decreases by  % from the rotor to the stator. The term J Ω(t) in Eq. (.) is a correction due to the inertia of the rotor. It depends on the momentum of inertia J = 50 µNms 2 of the rotor and on its  acceleration. In the present experiments performed at f = 0.1 Hz, this correction corresponds to at most  % of the stress, which allows us to neglect inertia in Eq. (.). We have also checked that the harmonic modes of Γ (t) are always negligible compared to the fundamental mode so that we can identify σ rheo (r, t) with a pure cosine wave:

σ rheo (r, t) = σ rheo 1 (r) cos(2πf t) , (.)
where the local amplitude

σ rheo 1 (r) = Γ 1 /[2πH(R i + r) 2 ] is deduced from the amplitude Γ 1 of the torque Γ (t).
In a second step, we use the local tangential displacement ∆ loc (r, z, t) inferred from ultrasonic imaging to compute the local strain γ loc (r, t). In the present work, since the samples under scrutiny always remain homogeneous along the vertical direction, we use an average over the z-direction to improve the statistics:

γ loc (r, t) ≡ (R i + r) ∂ r ∆ loc (r, z, t) R i + r z (.)
Homogeneity along the z-direction can be directly checked in Fig. .. We note however that such a z-average is not mandatory and that the LORE technique may also provide information resolved along the vertical direction if necessary. Moreover the strain response of the sample may be nonlinear in contrast to the stress input given by Eq. (.) []. This results in the presence of harmonics in the Fourier series decomposition of the local strain γ loc (r, t) whose Fourier coefficients γ loc k and phase lag φ loc k with respect to σ rheo (r, t) depend on r:

γ loc (r, t) = k γ loc k (r) cos 2kπf t + φ loc k (r) . (.)
Finally, based on the local shear stress σ rheo (r, t) given by Eq. (.) and on the fundamental component of the local strain γ loc (r, t) of amplitude γ loc 1 (r) and phase φ loc 1 (r), we define the local elastic and viscous moduli G loc and G loc respectively as:

G loc (r) = σ rheo 1 (r) γ loc 1 (r) cos(φ loc 1 (r)) , (.) G loc (r) = σ rheo 1 (r) γ loc 1 (r) sin(φ loc 1 (r)) . (.)
These measurements of the local viscoelastic properties of the sample can then be easily compared to their global counterparts, namely the classical elastic and viscous moduli, G rheo  and G rheo , provided by the rheometer and defined by:

G rheo = σ rheo 1 γ rheo 1 cos(φ rheo 1
) , (.)

G rheo = σ rheo 1 γ rheo 1 sin(φ rheo 1 ) , (.)
where σ rheo 1 , γ rheo 1 and φ rheo 1 correspond to the fundamental Fourier component of the global rheological stress σ rheo (t) and strain γ rheo (t) measured by the rheometer:

σ rheo (t) = σ rheo 1 cos(2πf t) , (.) γ rheo (t) = k≥1 γ rheo k cos 2πkf t + φ rheo k . (.)
Note that one crucial feature of the LORE technique lies in the synchronization of ultrasonic imaging and rheological data acquisition, which allows us to determine the phase lags φ loc k (r) and thus get accurate measurements of G loc (r) and G loc (r).

... Sample preparation

In order to benchmark the LORE technique, we focus on four different samples.

Sample  is a mixture of 30% wt. UCON oil (Dow Chemical, -H-,) and 70% wt. deionized water. UCON oil is a polyalkylene glycol lubricant that is fully water soluble and the resulting mixture can be considered as a purely linear, Newtonian fluid [].

Sample  is a protein gel obtained by the slow acidification of a 6% wt. dispersion of sodium caseinate (Firmenich) in deionized water with 6% wt. glucono-δ-lactone (GDL) (Firmenich) that will be studied in more details in Chapter . This gel is known not to present any wall slip in the present Taylor-Couette geometry [, ]. Small oscillations are performed to probe the relative magnitudes of G and G during gelation. Combined rheology and ultrasonic imaging are performed after the gelation and once G and G have reached a steady state. The sample can then be considered as a homogeneous quasi-Hookean soft solid.

Sample  is a two-layer protein gel composed of an outer layer of  mm of a concentrated protein gel (9% wt. sodium caseinate powder acidified with 9% wt. GDL) and an inner layer of  mm of a less concentrated protein gel (5.5% wt. sodium caseinate powder acidified with 5.5% wt. GDL). The outer gel is formed by pouring the yet-to-gel mixture in the rheometer equipped with a rotor of radius R i = 24 mm coated with silicone grease. After gelation of the outer layer, the rotor is carefully  lifted up at a velocity of 30 µm/s. We then install the usual smaller rotor of radius R i = 23 mm and pour the second dispersion that forms the inner gel layer. This process results in a two-layer gel with built-in heterogeneous elastic properties along the radial direction, the part near the rotor being softer than the outer part close to the stator.

Sample  is composed of 2% wt. select Agar (Sigma) in deionized water. After pouring the hot ( 80 • C) mixture in the Taylor-Couette cell, we wait for temperature equilibration and gelation with the same procedure as for Sample . Agar gel can also be considered as a homogeneous quasi-Hookean soft solid but, contrary to Sample , it easily slips at the walls of the Taylor-Couette device. . Therefore, both materials can be easily and correctly characterized by classical rheological measurements. In the following we use those two samples to benchmark the LORE technique. We also take advantage of the z-invariance to average ∆ loc over the  measurement lines along the z-direction and thus significantly improve the statistics. Figure .(a) shows the z-averaged oscillatory displacement ∆ loc (r, t) of Sample  measured with ultrasonic imaging in response to an oscillatory stress σ rheo (t) and confirms that these signals are in phase quadrature whatever the position across the gap. Moreover the fundamental mode ∆ loc 1 (r) of the local displacement decreases linearly from the rotor to the stator showing that the sample deformation is homogeneous throughout the gap. The Fourier decomposition of both the global and local strains ascertain more quantitatively the purely viscous nature of Sample  [Fig. .(b)]. Indeed, the sample responds harmonically to the stress imposed by the rheometer, all Fourier modes for k ≥ 2 are negligible, and both the amplitude γ loc 1 (r) and the phase φ loc 1 (r) = π/2 = φ rheo 1 are constant throughout the gap, except for edge effects near the cell walls.

Finally, the local viscous modulus G loc (r), computed using Eq.(.), is independent of r and matches very well the value provided by the rheometer,

G rheo = 70 mPa [Fig. .(c)],
which corresponds to a fluid of viscosity η = 0.11 Pa s. The fact that γ loc 1 (r) and thus G loc (r) are space-independent clearly points to a laminar flow consistent with the viscometric assumption used to process global rheological data. However, as recalled e.g. in [, ], one should keep in mind that if the stress amplitude is increased above the onset of inertial or 



elastic instabilities, secondary flows complicate the picture and may invalidate rheological measurements, therefore making local measurements such as LORE unavoidable. Also note that the presence of the walls leads to spurious static echoes in the ultrasonic speckle signals, which may be difficult to fully dismiss in the data processing []. This typically leads to underestimating (resp. overestimating) the local displacement close to the rotor (resp. stator) so that, at both walls, the local modulus is generally overestimated. In the data of Fig. ., such artifacts extend over roughly 150 µm from the walls.

Sample , a casein gel (see Section ., is known to behave as a homogeneous quasi-Hookean soft solid up to strains of about unity [] and sticks to the rheometer walls (see Section ..). Figure .(d,e) indeed shows that ∆ loc (r, t) is sinusoidal, proportional to σ rheo (t) and almost in phase with σ rheo (t) in the entire gap, that its amplitude ∆ loc 1 (r) decreases linearly from the rotor to the stator, and that the local strain matches the strain measured by the rheometer. In Fig. .(f), we observe that both local viscoelastic moduli, G loc (r) and G loc (r), are constant in the entire gap and match the global measurements, G rheo = 200 Pa and G rheo = 60 Pa remarkably well. The non-negligible viscous component G explains the presence of a slight phase shift between the stress input and the strain response and justifies the term of quasi-Hookean soft solid. Moreover we note that a small third harmonic (k = 3) is detected consistently both in rheological and in ultrasonic data, which signals a weakly nonlinear response for γ rheo 1 0.26. Here again, the estimates of G loc (r) and G loc (r) suffer from artifacts close to the walls that are inherent to the echography technique.

Overall, we confirm with Sample  and Sample , respectively a purely viscous fluid and a quasi-Hookean soft solid, that LORE gives access to spatially-resolved measurements of the viscoelastic moduli within a 2 mm gap.

... LORE in a spatially heterogeneous soft solid

Sample  is a heterogeneous protein gel made of a soft inner layer surrounded by a much stronger outer layer. does not match the strain measured by the rheometer: the gel is much more deformed near the rotor than it is at the stator. This is consistent with the fact that Sample  is softer near the rotor than near the stator.

In In summary, Fig. . shows that the weakest part of the material, which extends over about half the gap, absorbs most of the deformation. The strain close to the rotor is much larger than the global strain of % and reaches roughly % locally, which lies deep in the nonlinear regime []. Accordingly, the presence of odd Fourier modes up to k = 5 is reported close to the rotor in the ultrasonic data as well as in the global rheological data (Fig. .b). Such nonlinearity is only due to material properties and not to inertia. Indeed, as discussed in Sect. ..., inertia does not significantly affect the harmonic nature of the applied stress: in the case of Fig. .b, the third harmonics of the stress input is about .% of the stress amplitude σ rheo 1 while γ rheo 3 /γ rheo 1 ≈ 3%. It is also important to note that, in the present case of a strongly heterogeneous material, the global viscoelastic measurements G rheo and G rheo (dashed and dash-dotted lines in Fig. .c) are off the true local values G loc (r) and G loc (r) by up to one order of magnitude.

... Detection of wall slip through LORE

As recalled in the introduction, apparent wall slip is a very frequent yet still poorly understood phenomenon which seriously complicates the analysis of standard rheological data. In this section we show that LORE proves very useful to detect wall slip under oscillatory shear in the case of an agar gel (Sample ). Such a soft solid is known not to adhere to the smooth PMMA rotor and stator under shear but rather to form thin lubrication layers at both walls  due to syneresis, i.e. the expulsion of water through the gel matrix [].

From the rheometer point of view, the sample appears as fluidlike: as shown in Fig. .(a), the response γ rheo (t) is in phase-quadrature with respect to σ rheo (t). In stark contrast with this apparent fluidlike behaviour, LORE measurements show that the gel remains fully solid in the bulk [see right panel in Fig. .(a)]: ∆ loc 1 (r) is constant and non-zero within the entire gap, which means that the gel oscillates as a solid body in Taylor-Couette cell. The amplitude of this solid-body motion is half that of the rotor. Such an oscillatory pluglike flow corresponds to a situation of total wall slip, in the sense that all the strain applied by the rheometer is actually located in the lubricating layers at both walls while the local strain in the bulk material is effectively zero.

As a consequence, the Fourier analyses of the strain measured by rheology and by ultrasonic imaging are totally different (Fig. .b). While rheological measurements point to apparent fluidlike behaviour (φ rheo 1 = π/2), LORE provides clear evidence for the complete absence of local deformation in the bulk of the sample. As the sample is not sheared in the bulk, it is not possible to measure the local viscoelastic moduli. In this particular case of total slip, we note the emergence of a third-order Fourier mode with no significant second-order mode (γ rheo 2 /γ rheo 1 2.8 × 10 -3 ). In the past literature, the appearance of even harmonics in LAOS experiments has been attributed to slip phenomena [, , -] while some models have shown that wall slip is not a necessary condition for even harmonics []. The LORE measurements of Fig. . show that total wall slip alone is also not sufficient to produce even harmonics in the rheological response.

... Conclusion

We have described and tested Local Oscillatory Rheology from Echography (LORE), a new technique based upon the synchronization of high-frequency ultrasonic imaging and oscillatory shear rheometry. We have shown that LORE allows one to access the local viscoelastic moduli and the harmonic content of the local displacement response of soft materials under both linear and nonlinear oscillations. The present paper has been devoted to benchmarking LORE first on homogeneous materials, namely a Newtonian fluid and a quasi-Hookean soft solid and then on a spatially heterogeneous gel as well as on a slipping gel. In the first two cases, LORE provides a direct check that, in homogeneous fluids and solids -and as long as linearity prevails (i.e. in the absence of secondary flows in fluids and of nonlinear effects such as fractures or shear bands in soft solids)-, strain is evenly distributed across the sample and local measurements recover the same values as global rheology. In the two latter cases, standard rheological estimations are misleading due to the heterogeneity of the sample or to wall slip. There, LORE yields crucial insights into the local dynamics under an oscillatory shear stress by giving access to spatially-resolved G and G measurements and/or slip velocities at the cell walls.

As far as further applications are concerned, LORE stands to lead to refined insights into the oscillatory response of a wide variety of soft materials with huge industrial importance,  ranging from food systems [, ], such as wheat [], soybean [] or casein [], to "green materials" [] like latex [] or cellulose []. LORE could also help to optimize industrial processes for transiently heterogeneous materials, including hardening concrete [] or kneaded dough [], as well as materials that are intrinsically submitted to a heterogeneous external field that controls their mechanical properties, such as pipe flows, temperature gradients [, ] or oxygen concentration promoting heterogeneous polymerization like in dental resin [].

From a more fundamental point of view, yielding [], strain hardening [] and shear thickening [] are some of the many complex phenomena that could benefit from LORE. For example, during the yielding transition induced by LAOS, local restructuration has been probed using light scattering [], confocal microscopy [] or high-frequency ultrasonic echography [, , ] but these previous works on yielding dynamics have essentially been limited to stroboscopic measurements from one cycle to the other. With LORE, it becomes possible to map the entire spatiotemporal displacements of the material within a single stress oscillation. Close to the yield point, the response of a soft solid to LAOS, which becomes highly nonlinear and heterogeneous, could be characterized on length scales of a few tens of microns. Extending nonlinear analyses, such as Lissajous-Bowditch representations, Fourier decomposition as used in the present work or more advanced projection techniques [] to local measurements is now within reach. Future LORE measurements will therefore help to better understand the intracycle material response and to capture, quantify and predict the rupture of soft solids.

.. Limits

Ultrasound velocimetry approaches, and LORE in particular, are well suited to study heterogeneous materials or heterogeneous deformation fields on scales from centimetres (in z) or millimetres (in r) to tens of micrometre (the resolution in r). Even with the phase information that ultrasonic transducers offer, we cannot push the resolution much more below the wavelength of the ultrasounds.

Ultrasounds cannot observe heterogeneities below 50 µm. At this scale, heterogeneities are mostly insensitive to thermal motion. For instance 50 µm particles are labelled as 'granular' and not colloidal. Most soft matter is structured at smaller scales, at the micron and below, where thermal motion becomes dominant. Ultrasounds can only indirectly observe the effects of thermal motion or thermally activated processes. For instance, in Section . we will see that the growth of fractures can be followed by ultrasounds. But the microscopic plasticity that leads to fracture nucleation remains inaccessible.

That is why in the following I will switch to local rheology techniques based on imaging by optical microscopy. With the following techniques, the resolution goes down by two order of magnitude, opening the door to the study of phenomena where thermodynamics meet mechanics. . Example: Strain field from particle tracking in active microrheology



In this example, we consider a system that consist in a colloidal monolayer through which a spherical intruder is dragged. We are able to track the trajectories of the colloidal particles, and extract the the local strain field around the intruder. This work has been done during the PhD thesis of Natsuda Klongvessa and the internship of Selvamugesh Rajmohan, in collaboration with Cécile Cottin-Bizonne.

.. Experimental set-up

The system will be presented in more detail in Chapter , but is described here briefly. We use gold colloidal particles of diameter 1.6 µm (Bio-Rad #) dispersed in deionized water and put into a well (Falcon #). Due to their high density ρ 11 g cm -3 , particles settle down to the bottom to form a monolayer. We observe their D motion from below with an optical microscope on dark-field mode. Video data are taken at 5 Hz and analysed using Trackpy package [].

In-plane sedimentation is obtained by tilting the whole set-up with a small angle θ ≈ 0.1°. The monolayer of particles is thus under an in-plane gravity g sin θ ≈ 2 × 10 -2 m/s  .

As an intruder we use a ≈ 15 µm bead Sigmund Lindner (#-), dispersed in deionized water and carefully selected. At the begining of the experiment the bead is sucked with a pipette and dropped in the well containing the colloids so that it reaches the bottom well (inplane) above the sediment. The bead will then be dragged at constant force by the in-plane gravity and penetrate the sediment. The position of the bead in the sediment is obtained from a Gaussian-blurred contrast inverted image, so that the hole it make in the sediment appears as a smooth bright blob tracked using Trackpy.



In Fig. . we show the colloid trajectories fort three short intervals of time during the same experiment. At each time frame of our acquisition, we perform a Voronoi tessellation of the plane using both the coordinate of the colloids and the coordinate of the bead. In this way, we can define links between particles without any a priori cutoff distance, while getting rid of unphysical links between particles across the bead. The links involving the bead are then removed. With this, we have a discreet description of our system: particles trajectories and a dynamic graph of links.

.. Discrete rearranging disordered patterns

To translate our discreet description into a continuous description on a regular grid, we use the discrete rearranging disordered patterns (DiRDiP) analysis framework developed by François Graner and Benjamin Dollet [] that I reimplemented  .

We note the link vector between the particles at (x 1 , y 1 ) and (x 2 , y 2 ):

= x 2 -x 1 y 2 -y 1 = X Y . (.)
The outer product of the link vector with itself, is the symmetric link tensor

m = ⊗ = X 2 XY XY Y 2 . (.)
We define the texture matrix M of an ensemble of links as the ensemble average of m. It represent the average state of this ensemble. A possible ensemble would be all the links that have at least an end in a region of space (counting twice the links that have both ends in this region).

To follow the average geometrical change of the texture with time, one can define a tensor

C = N C N tot ⊗ ∆ ∆t N C , (.)
where the ensemble average is taken on the N C links that exist and belong to the ensemble in two consecutive frames, and not the N tot links that belong to the ensemble at the original time. ∆ is the variation of the vector over ∆t. C has the dimension of m 2 /s. To recover an equivalent of the velocity gradient, we have to normalize C by the inverse of the texture M -1 . The equivalents of the strain rate and the rotational rates are respectively given by the symmetric and antisymmetric part:

V = M -1 C + C t M -1 2 , Ω = M -1 C -C t M -1 2 , (.)
 https://doi.org/./zenodo.



where C t denotes the transposition of C. In D Ω reduces to a scalar Ω. Graner et al. [] have shown that in the limit of short time interval ∆t, the tensor V is equal to the total strain rate ˙ tot . Provided that the definition of the links correspond to the physics of the system, i.e. bond breaking and bond formation that are significant in the free energy landscape, we can extract the plastic part of the strain rate using the same formalism. Each link that appears (respectively disappears) in the ensemble during ∆t has a contribution m a (respectively m d ) given by (Eq. .). To follow the average topological change of the texture with time, we define the tensor

T = 1 ∆t ∆N a N tot m a - 1 ∆t ∆N d N tot m d , (.)
where ∆N a and ∆N d are respectively the number of appearing and disappearing links between t and t + ∆t. Since on short time intervals ∆N a , ∆N d N tot , long time average is necessary to obtain good statistics on T. T is symmetric and has the dimension of m 2 /s. To recover the equivalent of a strain rate, we normalize again by the inverse of the texture:

P = - 1 2 M -1 T + TM -1 2 , (.)
where the factor -1/2 is necessary to identify P with ˙ pl , the plastic part of the strain rate.

.. Results

We apply DiRDiP analysis to our system by considering a polar grid centred on the intruder bead and moving with it. Each (grid element ×τ) defines an ensemble of links, where τ is a time interval such that the bead has moved by its own radius. Dynamics is computed between consecutive frames ( fps). Among the quantities provided by DirDiP, we focus of the simplest to analyse, the scalar Ω that represents the vorticity rate of the D flow. Fig. .(a) shows a spatial mapping of the values of Ω on the polar grid. Despite the noise, we immediately notice the antisymmetry with respect to the axis of motion of the bead.

A Stokes flow around a sphere predicts a vorticity in the form

Ω(r, θ) = 3 4 U σ GB r 2 sin θ, (.)
where θ is the angle with respect to the direction of motion, r the distance from the center of the bead, U the velocity of the bead and σ GB its diameter. This indeed predicts a pattern antisymmetric with respect to the direction of motion. More quantitatively, we observe a good agreement to a sine dependence of the vorticity in Again, the data is consistent with the predicted decay in 1/r 2 , but the noise takes over for r > 20 µm, or about σ GB from the surface of the bead.

To sum up, DirDiP analysis allows to recover predictions from a Stokes flow at short distances from the intruder. However, we are pushing the method to its limits. Much more statistics would be needed to reliably identify deviations from the Stokes flow. This cannot be obtained with our experimental setup where a given bead can be dropped only once (little reproducibility) and where the movement of the bead parallel to a density gradient limits time-averaging.

  Gelation paths

This work was based on the PhD thesis of Hideyo Tsurusawa, who performed all the experiments. Analysis and discussions were done in collaboration with John Russo and Hajime Tanaka. Most of the results presented here were published as two articles:

• Hideyo A colloidal gel is composed of colloidal particles bonded together by attractive forces. The thermodynamic ground state of the system involves the macroscopic separation between a particle-rich (liquid) and a particle-poor (gas) phase. Therefore, any transient structure is expected to coarsen until the phase separation is complete. However, in the case of gels, the dense phase forms a network that persists despite the thermodynamic driving force towards compactness. This out-of-equilibrium arrest is often described as a glass transition [-]. This has led to the popular physical picture that a gel is formed by dynamical arrest of bicontinuous spinodal decomposition due to glass transition. The direct link between spontaneous gelation and spinodal decomposition has been carefully confirmed by combining experiments and theories []. This scenario is certainly a large step towards a more complete understanding of colloidal gelation.

However, this picture still leaves some fundamental problems unanswered:

(i) The knowledge of ordinary spinodal decomposition predicts that the minority colloidrich phase should form isolated clusters rather than the observed percolated network [].

(ii) A colloidal gel is sometimes formed by a network made of thin arms, which are too thin to be regarded as glasses. This casts some doubt on the popular scenario of dynamic arrest due to a glass transition. Indeed, the glass transition is defined as a kinetic transition and has no direct link to mechanical stability in a strict sense. Slow dynamics and mechanical stability are conceptually different. In an extreme case, for example, a gel formed by bonds with a short lifetime can be ergodic and in an equilibrium state. Several mechanisms have been proposed to try to rationalize some of these issues. Fluid momentum conservation can play an important role in phase separation of colloidal suspensions, giving to hydrodynamics an active role in network formation of the colloid-rich phase [, ]. There have been some numerical studies on the role of hydrodynamics [, ] and mechanics [, , , -] in colloidal gelation. However, experimental investigations of these problems have been limited to observation of gels already formed [, ] due to the lack of a method to follow the whole kinetic processes with single-particle resolution in both space and time.

In the following, I will present the experimental design that enables the time evolution of a model colloid-polymer system to be observed directly under a confocal microscope from the very early stages and in a quiescent situation without introducing fluid flows (Section .). Using this novel protocol we will study the dynamics of gelation and expose two arrest modes that are not glass transition: reaching mechanical stability through the percolation of isostaticity (Section .) and crystallisation of the network (Section .).

. Design of the semi-permeable cell

In order to track all the particles of a colloidal gel from the D images of a confocal microscope, one needs to match the refractive index of the particles and the solvent. To prevent sedimentation, the density must also be matched. This leaves few possibilities in the composition of the suspension. The most widely used system consist in PMMA particles suspended in a mixture of cis-decalin and bromocyclohexane. The interparticle attraction is provided by depletion from non-adsorbing polymers (polystyrene) [, ].

Various experimental protocols have been proposed to obtain reproducible gel structures from this system. Most of them involved shear [, -] to prepare an initial homogeneous state. This introduces turbulent flows at the beginning of the process, and also does not allow the observation of the initial stages of gelation. This initial perturbation may even alter the selection of the final non-equilibrium arrested state. That is why we wanted to design a protocol that does not involve external flow, and that allows us to observe the entire gelation process, from the beginning to the end with particle-level resolution.

.. Colloidal system

We use a colloidal system that is charge stabilised at long range, has a short range depletion attraction, and is also sterically stabilised causing nearly hard sphere repulsion at contact.

We use micron-size colloidal particles made of poly(methyl methacrylate) copolymerized with 25 kDa methacryloxypropyl terminated poly(dimethyl siloxane) (Gelest) for steric sta- bilisation [], with  % of methacrylic acid to allow electrostatic repulsion, and with (rhodamine isothiocyanate)-aminostyrene for fluorescent labeling [].

Particles are dispersed in a mixture of cis-decalin (Tokyo Kasei) and bromocyclohexane (Sigma-Aldrich) that matches both optical index (to ensure good imaging) and density (to prevent sedimentation) of the colloids []. This mixture of solvents is weakly polar, with a dielectric constant r = 5 ∼ 6. Therefore charge dissociation can take place, e.g. at the surface of the particles, and the resulting electrostatic repulsion is long ranged, with a Debye length κ -1 that reaches several µm []. The Debye length can be shortened if we introduce ionic species in the solvent. For instance, tetrabutylammonium bromide (TBABr, Fluka) at saturated concentration (260 µM) brings down the Debye length to about 50 nm  . Fig.

.(a) sums up the competing interactions than can be tuned in this colloidal system. To induce short-ranged (typically 100 nm) depletion attraction, we use polystyrene as nonadsorbing polymer. Previous works on this popular system were all working at fixed TBABr concentration. In particular, studies of gels were conducted at saturation in salt in order to be in the sticky hard sphere limit []. By contrast, in the absence of salt, the short ranged depletion attraction is masked by the electrostatic repulsion, and at low colloidal volume fraction the particles can form a homogeneous Wigner crystal [].

.. Phase diagram for screened state

Analytical phase diagrams of colloid-polymer mixtures can be obtained in the framework of the generalized free volume theory []. The polymers are considered as an ideal gas, and the colloids as hard spheres. This theory is thus limited to situations with a short Debye length, i.e. saturated in salt.

Free volume theory

Unless indicated otherwise all quantities are dimensionless, with the Kuhn length as the yardstick for all lengths, and kT for the energy. For example the insersion work Πv in in unit of kT , and the radius of gyration R, the depletion thickness δ and the colloid radius a are all in units . We consider a system where two phases of different colloid and polymer concentrations are at equilibrium with each other and with an external reservoir containing only the polymer solution. The chemical potential of the polymer in the system is determined by its volume fraction ϕ in the reservoir. This is also the volume fraction in the free volume V free available to the polymers. However the overall internal volume fraction Φ = N P V coil /V is lower because V free < V . More precisely:

Φ X = α X ϕ, (.)
 During the internship of Adérito Fins Carreira, we have tested tetrabutylammonium hexafluorophosphate (TBAPF  , Alfa Aesar), that has a solubility of 1.2 mM, five times higher than TBABr, reducing the Debye length down to 20 nm. where X is the phase, either gas (G), liquid (L) or solid (S). When the phase is dilute in colloids

V free = V -N C 4π 3 (a + δ) 3 , (.)
with δ the depletion layer thickness and a the colloid radius. Thus we can write in terms of colloid volume fraction φ:

α(φ, δ, a) = 1 -φ 1 + δ a 3 . (.)
In the following we will use a more complete expression for α, valid for all colloid volume fraction and depending only on q = δ/a. See the original paper [].

To construct the phase diagram, we need to know the ratio q = δ/a between the depletion layer thickness δ and the colloid radius a.

For the sake of simplicity, we will consider only the case where the polymer is in dilute regime (ϕ < 1). In this case δ is constant and thus q is constant. q is related to the real size ratio q R = R/a via q ≈ 0.9q 0.9 R . In this semi-open system, the relevant thermodynamic characteristic function is the grand potential Ω(T , V , N C , µ P ) where µ P is the polymer chemical potential. We write Ω = Ω 0 + Ω P where Ω 0 = F 0 is the free energy of the hard sphere system without polymer and Ω P is the polymer contribution. It is convenient to have ω = Ωv/V with v = 4πa 3 /3 the volume of a colloid. Taking into account the solvent, the polymer contribution ω P can be related to the osmotic pressure in the reservoir Π:

ω P = - µ P -∞ αdΠv (.)
Since here α do not depends on µ P we have ω P = -αΠv. We see that Πv is a natural parameter. It is the osmotic work to insert a particle (without the depletion layer) into the polymer solution.



From this and the expression of α, one can derive analytical expressions for the polymer contribution to the chemical potention of the colloids µ P C and to the pressure (pv) P . To compute hard sphere contributions, we need a hard sphere equation of state (EoS), that can be different between the fluid and the solid. In Ref.

[], the fluid is described by Carnahan-Starling EoS [] and the solid by Hall EoS []. We will discuss this choice in Section ...

We know have expressions for µ C (φ, Πv, q) and pv(φ, Πv, q) where q is a constant parameter. We will use these expressions to solve numerically the position of the critical point, coexistence curves and spinodal curves in the (φ, Πv) plane (so called 'reservoir representation') before converting them to the experimental representation (φ, c P ), where c P is the overall polymer mass fraction.

Critical point At the gas-liquid critical point the first and second derivatives of pv with respect to φ are zero. This sets a system of two equations with two unknowns φ cp and Π cp v that we solve numerically.

Spinodal Gas-liquid spinodal lines are calculated from the condition dpv dφ = 0 (.)

If we fix Πv we have a unique curve of pv function of φ. Above Π cp v this curve shows a maximum and a minimum. The decreasing region in between is the unstable spinodal region. We can thus obtain the gas φ G,sp (Πv) and liquid φ L,sp (Πv) branches of the spinodal at any Πv.

Binodal Gas-liquid coexistence lines (binodal) are obtained by considering that the pressure and the chemical potentials of the two species are equal between the two phase. Since the polymer chemical potential depends only on Πv, the coexistence condition at a given Πv > Π cp v reduces to a system of two equations:

pv(Πv, φ G,b ) = pv(Πv, φ L,b ) (.) µ(Πv, φ G,b ) = µ(Πv, φ L,b ), (.)
that we solve numerically for φ G,b and φ L,b  .

Fluid-Solid In the same way, fluid-solid coexistence lines are obtained at a given Πv by equating the pressures and chemical potentials between the two phases. However here the two phases are described by two different hard sphere EoS that are matched in order to recover the well known hard sphere coexistence at Πv = 0.

 The numerical resolution of the binodal is stable only for a rather small subset of initial estimate space. The difficulty here lies in the heuristic to find a valid initial estimate at each πv. for a size ratio q R = 0.1. We can observe that the liquid side of the binodal and spinodal lines obtained from CS EoS reach unphysical high volume fractions (above close packing), making comparisons with experimental compositions impossible. Here, we reach the limit of applicability of the Carnahan-Starling EoS that is accurate for a wide range of volume fraction (0 ≤ φ ≤ 0.56), but lacks a divergence below . Indeed, a divergence of the pressure is expected at the jamming point (random close packing φ J ≈ 0.64). How does this affects the phase diagram?

The position of the critical point, as well as the position of the spinodal line are determined from local derivatives of pv. Thus, they are local properties of the EoS. If the critical volume fraction φ cp determined from Carnahan-Starling EoS is (significantly) below 0.56, then the position of the critical point should be correct. Unfortunately, for qR = 0.1 we have φ cp ≈ 0.56, thus the position of the critical point is not correct, and will become worse at smaller size ratio. However, the position of the gas branch of the spinodal will be correct as long as φ G,sp < 0.56. By contrast, the liquid branch is always wrong, as visible on Fig.

.(a).

Gas-liquid coexistence lines are even more problematic, as they stem from the equilibrium of two phases and are thus non local properties of the EoS. The gas branch will be wrong if the liquid branch lies beyond the applicability of the EoS. However fluid-crystal relies on Hall EoS for its dense branch. Since the coexisting fluid volume fraction is at most 0.495 (the crystallisation point of hard spheres), Carnahan-Starling EoS remains in its applicability domain and is thus always able to describes accurately fluid-crystal coexistence.

In the following, we will have a size ratio of the order of 0.1 or lower. In order to be able to predict the position of the liquid side of the binodal we need an EoS that has a larger applicability range. Adding a divergence at Jamming into CS equation of state is not trivial. Attempts by Lefebre [] and Kolafa [] 
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.. Triggering gelation in situ

Variations on two experimental protocols have been used so far for studying the kinetics of phase separation and gelation:

. Colloidal suspensions saturated with salt and polymer solutions are mixed just before an experiment, and after mixing transferred to a capillary tube as quickly as possible.

. A mixture of colloids, polymers, salt, and solvents, which is already in a final state  Recently, Liu has published another EoS that is even more accurate but that we do not use here [].

 point in the phase diagram and intrinsically unstable, or phase-separated, is vigorously stirred just before an experiment to break pre-existing phase separated structures by shear melting.

However, these protocols have two common serious deficiencies. Firstly the initial state can never been homogeneous perfectly, and so there already exist particle aggregates at t = 0. Secondly, the mixing inevitably involves turbulent flow, which does not decay but remains when the observation is initiated. The gelation process observed by these conventional protocols inevitably suffers from the influence of ill-defined initial static and dynamic conditions, and it has been almost impossible to access the very initial stage of gelation without interference of pre-existing aggregates and/or turbulent flow.

Here, we wanted to prevent immediate aggregation. Therefore, we start with a suspension free of salt, but already containing polymer deplentant. Then, the challenge is to introduce salt in situ, without flow, to trigger gelation.

The sample cell sketched in Fig. .(b) has two layer compartments separated by a membrane filter (Whatman Anodisc ) of pore size of 0.1 µm, permeable only to polymers and the salt ions. The top compartment is 200 µm thick and contains the sample: a mixture of colloids, polymer, and solvent without salt. The bottom layer is a salt-reservoir with a halfopened structure, which allows us to exchange or insert a reservoir solution. The volume ratio of the first and second compartments is approximately :.

In our experiments, the reservoir solution is initially a polymer solution without salt and electrostatic repulsion by the unscreened surface charges inhibited colloidal aggregation. Under microscopy observation, we quickly exchange the reservoir solution to a polymer solution with salt at saturated concentration and seal the half-opened reservoir with cover glass to avoid evaporation of solvent. Salt diffuse into the first layer within a few minutes, typically  minutes, screen the surface charges, and initiate colloidal aggregation. This allows us to observe the process without suffering from harmful turbulent flow.

We collect the data on a Leica SP confocal microscope, using 532 nm laser excitation. The temperature was controlled on both stage and objective lens, allowing a more precise density matching. The scanned volume is at least 82 × 82 × 85 µm 3 . The particle coordinates are tracked in three dimensions (D) with an accuracy of around 0.03σ [].

Figure .(c,d) compare the final structures of two gels prepared at the same state point with the two different protocols: the first one by our salt-injection protocol, and the latter by the conventional approach, where a gel is formed in a capillary and then shear melted at the start of the experiment. Already a visual inspection reveals that the latter is coarser, highlighting that shaking or shear melting protocols [, ] are not equivalent to a quench. Our special quench protocol provides an ideal experimental platform to make a comparison with theory and simulations. However, we note that Brownian Dynamics simulations cannot reproduce our experimental results even with the same quench, because they neglect the solvent mediated hydrodynamic interactions [, ].



.. Time scales: sedimentation and ion diffusion

The ratio of the two solvent to match the density of our particles is first adjusted at 37 • C. Even more precise matching is then obtained by adjusting the temperature. By this method, we realize a density matching ∆ρ of the order of 10 -4 g/l between the density of the colloids and of the solvent, enough to observe the late stage of gelation with little influence of gravity despite our large particle size. The gravitational Peclet number quantifies the balance between sedimentation and diffusion. It is defined as the ratio between the work of gravity over the diameter σ of the particles and the thermal energy k B T , where k B is the Boltzmann constant and T the temperature. Equivalently, we can define the gravitational Peclet number as the ratio between σ and the gravitational length g = k B T /(∆mg), where g is the acceleration of gravity and ∆m = ∆ρ(π/6)σ 3 is the buoyant mass of a particle.

Pe ≡ σ g = π 6 ∆ρ k B T σ 4 . (.)
The gravitational Peclet number strongly depends on the particle size. However, for particles of 2.5 µm our density matching enables Pe < 10 -6 . In a Newtonian solvent of viscosity η, the gravitational Peclet number can also be written as the ratio of two times Pe = 6 τ B τ S , with (.)

τ B = π 2 η k B T σ 3 , (.) τ s = 18η ∆ρσ , (.)
where τ B is the translational Brownian time (time for a particle to diffuse over its diameter) and τ s the sedimentation time (time to fall by its diameter). With our value of Pe, we can consider that an isolated particle will not feel gravity on time scales below 10 5 τ B , that is about 30 h for particles of 2.5 µm.

Given the diffusion constants of Bromide and alkyl cation ( and 2 × 10 -10 m 2 s -1 []), we estimate the characteristic diffusion time of salt from top to bottom of the order of 10 s. Therefore, we reach uniform final salt concentration into the observation cell within only a few Brownian times of the colloids. Indeed we measured a delay of about 1 min between the aggregation at the bottom and at the top of the cell. We define the initiation time of the aggregation process when the maximum of the g(r) jumps from the lattice constant of the Wigner crystal to the hard-core diameter σ . . Phase separation dynamics observed at a single-particle level

.. Materials and methods

In this section, we use on purpose large particles in order to have a longer Brownian time.

From direct confocal measurements [, ] we estimate their diameter to σ = 2.75 µm, which sets Pe ≈ 10 -6 and τ B = 10 s. Therefore, contrary to similar designs used in our group and by others [, , ], here the Brownian time is of the same order of magnitude as the time needed for the ions to diffuse from the membrane across the cell thickness. This relation between the two key timescales enables us to switch instantaneously (physically) from a long-range repulsive to a short-range attractive system without any external solvent flow. This causes uniform gelation starting from the homogeneous state, allowing in situ confocal microscopy observation throughout the process from a well-defined initial time, as shown in Fig. ..

To induce short-ranged depletion attraction, we use 8.4 MDa polystyrene (TOSOH) as nonadsorbing polymer. We estimate the radius of gyration to R = 148 nm, leading to an attraction range of 1.10(6)σ .

Here we stress that after the salt concentration is homogenized, our system can be regarded as a standard model for sticky hard-sphere systems. We confirmed this by comparing the experimental phase diagram with the one obtained with free volume theory for sticky hard spheres (Fig. 

.. Phase separation dynamics

In Fig. ., we show the phase diagram, where we can divide the state points into three regions based on the final state obtained by our protocol: at low polymer concentration (c p < 0.2 mg/g) a sample fully relaxes to a fluid state; at very low colloid volume fraction (φ < 0.05) and high polymer concentration the particles condense into long-lived well separated clusters as observed in []; in the rest of the explored phase space we observe a long-lived space spanning network. In the phase diagram we also plot the spinodal line obtained from free-volume theory calculations [] as the continuous and dotted curves for below and above the polymer overlap concentration respectively. Despite the limitations of the theory, the agreement between the spinodal line and our experiments is rather satisfactory, with the only exception being the region of small colloidal volume fractions and high polymer concentration (see, e.g., Ref.

[]).

... Role of hydrodynamics

To see the role of hydrodynamics in the process of colloidal phase separation, we follow the compaction of clusters made of only three particles in a non-percolating sample. The time-averaged probability distribution of the radius of gyration R g of these triplets shows The result is for a non percolating sample (φ = 4 %, c p = 1 mg/g). (b) Probability of staying elongated for a triplet in a non-percolating sample (φ = 4 %, c p = 1 mg/g, blue) and in corresponding BD simulations. The continuous lines are the respective best exponential fits of characteristic time 27τ B and 5τ B respectively. (c) Evolution of the aspect ratios of clusters of  particles and more in the same sample (dashed lines) and in a percolating sample (φ = 8 %, c p = 1.5 mg/g, continuous lines). (d) Bond angle distribution relative to existing bonds (grey), to a future bond (red) or to a future bond involving an isolated particle (blue) obtained in the percolating sample. Future bonds are shifted to smaller angles, whereas gas adsorption takes place from larger angles. Insets sketch both cases, with present bonds drawn thick and future bonds drawn dotted.



two peaks on both sides of R * g = 0.8σ , see Fig  .a. For R g < R * g the cluster is compact, with a structure close to an equilateral triangle. For R g > R *

g the three particles are aligned and the cluster is elongated. We found that just after the quench triplets have a slightly higher probability of being elongated. Afterwards, they either connect to other clusters or relax to the more stable compact state. To follow this relaxation, we define the probability to stay elongated as

P el (∆t) = P (δ i (t + ∆t)|δ i (t)) t,i , (.)
where δ i (t) = 1 when the triplet i is elongated at time t and δ i (t) = 0 otherwise. Figure .b (blue symbols) shows that the decay of P el (∆t) is exponential with a characteristic time of 27τ B . In the same figure we also plot (red symbols) the same quantity computed from Brownian Dynamics simulations of short-range attractive colloids designed to match the experiments (see below), in which the triplet compaction process is simulated in absence of hydrodynamic interactions. For the simulations we observe a considerably faster exponential decay compared to the experiments, suggesting that the triplet compaction process is indeed slowed down significantly by hydrodynamic interactions.

Simulation methods To simulate the process of triplet compaction in absence of hydrodynamic interactions, we use Langevin dynamic simulations, where the characteristic damping time of the velocities τ D is chosen to be equal to the Brownian time τ B , i.e. the time it takes a colloid to diffuse its diameter. We use a generalised LJ potential (with exponent n = 100 and interaction strength = 8k B T ) chosen to match the second virial coefficient of the Asakura-Osawa potential corresponding to experimental conditions (the ratio of polymer to colloid diameter, q = 0.1 and strength = 8k B T ). Following Ref.

[], the process of matching the second virial coefficient should ensure equivalent dynamical behaviour for all short-range potentials. The elongation probability Eq. (.) is computed by running two hundred independent simulations and measuring the statistics of open and compact configurations of the triplets.

The shape of clusters composed of more than  particles cannot be followed in the same way. Instead, from our experimental date, we compute the principal moments of gyration of individual clusters λ j , ordered such that λ 1 ≥ λ 2 ≥ λ 3 , with use the aspect ratios λ 2 /λ 1 and λ 3 /λ 1 to quantify the departure from sphericity. In Fig. .c, we show the evolution of the average value of these aspect ratios either for a non-percolating sample (dashed line), or before percolation for a percolating one (continuous line). In both cases, we observe that the clusters are originally not compact and become more isotropic over tens of τ B . As can be seen in Fig. . and Fig. ., structural isotropy is recovered only after the fusion of many anisotropic clusters into a branched structure that may or may not be percolating.

These observations can be understood as due to hydrodynamic effects. Indeed in a solvent, particles cannot converge freely to form compact structures [, ]. The compaction is  delayed by the incompressibility of the solvent, which allows only divergence-free transverse flow fields. Furthermore, clusters influenced by hydrodynamic interactions tend to be more elongated, less compact. We can test this hypothesis by measuring at which angle particles meet relative to existing neighbours. If influenced by hydrodynamics, particles should avoid the direction of existing neighbours and come from more open angles. In Fig . .d we show the bond angle distribution for three different sets of bonds: (i) existing bonds, (ii) bonds that will form within the next τ B (future bonds), (iii) future bonds where the newly attached particle is a monomer. As expected, existing bonds (i) are preferentially at a 60°angle, indicating stable packing, with secondary peaks coherent with a mixture of tetrahedral and hexagonal packing. Future bonds (ii) have more acute angles and almost never 180°, since they are mostly due to particles attached to second neighbours, see sketch in Fig. .d. Here hydrodynamics plays no role. By contrast, future bonds (iii) involving isolated particles form at more obtuse angles, with a clear peak around 180°. This confirms that hydrodynamics has a significant influence on particle aggregation and explains why clusters are initially elongated.

Consequently, long-lived elongated clusters have a higher probability to meet via either rotational or translational diffusion than compact spherical clusters. Hydrodynamics explains why in a rather dilute regime we can observe immediate formation of elongated clusters and then their slow, hydrodynamically-assisted aggregation into a percolated structure. We stress that this is a direct consequence of large-size disparity between colloidal particles and solvent molecules, which leads to the physical situation where discrete solid objects are floating in a continuum liquid.

... Spinodal decomposition dynamics

To confirm whether the different samples follow spinodal-decomposition kinetics, we compute the time dependent static structure factor S(q, t). Our experimental data do not have periodic boundary conditions, so we must use a window function to ensure the correct correlation, especially at small q. Here we use the Hanning window, that significantly affects only the values of S(q) at the first lowest five q that we discard in the rest of the analysis. We checked that our results are not affected by other reasonable choices of the window function.

For all gel and cluster samples, we observe the appearance of a low q peak in S(q), see Fig. ., which is characteristic of spinodal decomposition in a system with a conserved order parameter.

The characteristic wave number is defined as q = q min 0 dq q S(q) q min 0 dq S(q) , (. ) where q min is fixed at all times at a value that corresponds to the minimum between the low q peak and the hard sphere peak. The temporal evolution of q is shown on  mg/g), ( %, . mg/g), and (. %,  mg/g), respectively. The thick black curve corresponds to the initial Wigner crystal before salt introduction (ill defined thus not shown in (d)). Thin curves from dark blue to green are spaced by 150 s and display a peak corresponding to the hard sphere diameter as well as a growing peak at low q indicating phase separation. various colloidal volume fractions. The curves for all samples follow a master curve coherent with spinodal decomposition kinetics: At short times q (t) shows a plateau indicating that the low q peak builds up at a constant wave number corresponding to distances of about 2σ . This plateau is characteristic of the early stage spinodal decomposition, which is described by Cahn's linear theory []. At intermediate times, on the other hand, we observe coarsening with q ∼ t -α , with an exponent α which is compatible with both α = 1/3, typical of spinodal decomposition without dynamical asymmetry between the two phases, and α = 1/2, which is often observed in viscoelastic phase separation (see, e.g., Ref.

[]). Due to the narrow range of this power law regime and finite size effects, we cannot conclude definitely on the exponent value. Finally at longer times each sample deviates from the master curve to form a plateau indicating dynamical arrest. The more dilute samples arrest sooner, but reciprocal space information does not allow to identify whether the origin of arrest is different between clusters and percolated networks. This problem can be solved by real-space observation.

Our real-space observations indicate that both the cluster and gel phases are due to viscoelastic spinodal decomposition [, ]: network-type spinodal for the gel (see Fig. 

... Compactness and percolation

To characterize the gelation path in real space, we compute the instantaneous mean number of neighbours NC , or coordination number, that quantifies the compactness of the structure. We also compute the spatial extent of the largest cluster l max that we normalize by the size of the field of view L to obtain a measure of the distance to isotropic percolation of the system. Figure .b shows a system trajectory in the (l max /L, NC ) plane for various colloidal volume fractions φ. All trajectories show a linear increase of both cluster size l max /L and number of neighbours NC at early times. This is followed by the coarsening stage, which happens differently depending on the density. At high φ, coarsening occurs after percolation, which happens within the first few τ B after charge screening by salt. At low φ, percolation never takes place and coarsening results in the compaction of individual clusters, that keeps their overall size l max /L, while increasing the number of neighbours NC , see Fig. [].

In section ., we will explore the precise mechanism of arrest and the emergence of mech- anical rigidity by studying the dynamics within the network of percolating samples.

. Emergence of mechanical stability

Gel elasticity, the fact that gels are solids, is their most fundamental physical property. However some questions regarding the emergence of elasticity have still remained unanswered.

It is well known that the isotropic percolation of a bond network is not sufficient to ensure mechanical stability [, , ]. The stability of gels is ascribed to the formation of locally favored structures, or local energy-minimum configurations [], while the mechanics of the network is being recognized to play a major role in the aging behaviour of gels [, , , ]. Purely geometrical conditions for mechanical stability have also been proposed. Whether a network is rigid can be determined using a pebble game algorithm [], but this method is limited to D systems []. A criteria on the average coordination number has been proposed [] but has been recently invalidated []. Kohl et al. [] have found that in dilute suspensions, a final gel state is obtained only after directed percolation was observed, which differs from isotropic percolation by taking into account the directionality of the clusters. Hsiao et al. [] have found that strain-induced yielding coincide with the loss of rigid clusters. Rigidity was defined using a local Maxwell criterion for isostaticity, that is  neighbours per particle [, ]. However, the relationship between local structures, dynamic arrest, and the emergence of elasticity remains poorly understood even at a fundamental level.

In order to address these problems, we discriminate the various models using our method that allows us to observe the entire gelation process with particle-level resolution. Our results point to the crucial role of isostatic structures, which are clusters of particles that, according to the Maxwell criteria of stability, have a number of neighbours equal to the number of degrees of freedom. We observe that the emergence of solidity coincides with the appearance of a system-spanning cluster of isostatic particles, i.e. with the isotropic percolation of isostatic particles. Both the glass transition and directed percolation are necessary conditions for the emergence of mechanical metastability, but not sufficient conditions. In relation to this, we show that directed percolation and isotropic percolation of isostatic particles happen simultaneously only in dilute systems, while in concentrated systems the two time scales decouple, allowing us to link rigidity with the appearance of the system-spanning cluster of isostatic particles. These findings shed new light on the mechanisms of gel formation and coarsening, and also on the fate of gels.

.. Percolation

In this section we examine the different percolation time-scales, and their relation with the emergence of solidity in the samples. In the following, percolation times are noted by the letter τ, with a subscript that labels either isotropic (it) percolation or directed (d) percolation, The thin orange and thick purple vertical lines show the isotropic percolation times for all particles (τ all it ) and isostatic particles (τ is it ) respectively. The orange dashed vertical line in (D) shows the directed percolation time for all particles (τ all d ). The gray vertical band shows the possible range of mechanical gelation time τ gel .



and a superscript that indicates whether all particles (all) or isostatic particles only (is) are concerned.

Isotropic percolation is related to the appearance of a system-spanning network, and can be determined by looking at the time evolution of the largest connected cluster l max , as plotted in Fig. .(a, b) (orange curves). The isotropic percolation time (τ all it ) is then defined as the moment when l max > 0.95L. We checked that our field of view is large enough not to suffer from finite size effects.

Directed percolation is related to the appearance of a directed path that spans the whole system. A directed path is defined as a path with no loop or turning back, such that every step is in either the positive X, Y, or Z directions. The maximum spatial extent of directed paths l D is plotted in Fig. .(a, b) (orange symbols). We thus define the directed percolation time (τ all d ) as the moment when l D > 0.95L. The concepts of isotropic and directed percolation can also be applied to a subset of particles. In particular, we focus here on isostatic particles, which are particles that have at least six bonded neighbours. For isostatic clusters we plot in Fig. .(a, b) both l max (purple curves) and l D (purple symbols). The isotropic percolation time of isostatic particles is τ is it . Fig . . (a, b) show the time evolution of the clusters in the dilute (φ = 8%) and dense suspensions (φ = 21%) respectively. We observe that directed percolation of all particles and isotropic percolation of isostatic particles occur simultaneously in the dilute regime, τ all d ∼ τ is it . However the two time scales are well separated in the dense regime, τ all d τ is it . This separation of the time scales offers the opportunity to test the role of both type of space spanning microstructures in the mechanical stability of gels.

.. Mechanical stability and percolations

The solid nature of a material is most often defined from linear mechanical response. For colloidal gels, however, mechanical stability cannot be predicted without an understanding of internal stresses []. Here we are able to extract both information from our particlelevel experiments. We use the particles themselves as passive microrheological probes to extract the elastic (G ) and viscous (G ) parts of the shear modulus, see Section .... We also extract the average value of the internal stress Σ from the bond breaking rate, see Section .... Results are shown in Fig. .(e, f) for direct comparisons with the microstructure.

The typical ranges of stresses and moduli we measure extend below 0.1 mPa, well below sensitivity of conventional rheometers. That is why previous microscopic studies on the mechanics of colloidal gels have been restricted to the comparison of the structure before and after a large amplitude shear flow with no simultaneous measure of the stress response [, , ]. From Fig. .(e, f) we see that, as expected, all samples are purely viscous at short times, with a value of G consistent with the viscosity of a hard sphere suspension at their respective volume fractions. Internal stresses are high at short time, reflecting the stretching of the network, which is formed by hydrodynamic interactions in a mechanically frustrated
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.: Temporal change in loss angle. Time evolution of δ(ω, t) for three frequencies, for a dilute (A) (φ = 8 %, c p = 1.5 mg/g) and a dense (B) (φ = 27 %, c p = 1 mg/g) sample. Error bars are estimated from (Eq. .). The thin orange and thick purple vertical lines show the isotropic percolation times for all particles (t perco ) and isostatic particles (t 6 ) respectively. The dashed orange vertical line shows the directed percolation time (t D ). The solid horizontal line marks the criterion tan δ(ω, t) = 1.5. The grey vertical band lies between the time when the above criterion is satisfied by the highest available frequency and the crossing of all three frequencies.

state. The emergence of mechanical stability is captured simultaneously from both the linear viscoelasticity measurements, with the crossing between G and G , and the internal stress, which is accompanied by a sharp drop in Σ.

The crossing between G and G could be ambiguous, since it depends on frequency. That is why the gel point is better defined as the time when G and G both scale as identical power laws of frequency which corresponds to a loss tangent tan δ = G /G independent of frequency []. In (e, f), for three frequencies. As we have seen in Section ..., the uncertainty on δ comes from the finite exposure time. In a laser scanning confocal microscope, the exposure time for each particle is only a fraction of the time needed to acquire a full time step. With our experimental parameters, the volume of a single particle is scanned in τ expo ≈ 0.3 s, thus at our highest frequency ωτ expo ≈ 10 -2 . According to (Eq. .) the relative error on the phase is then about %. This is smaller than the error coming from the definition of gelation point itself. Indeed, depending on the sample, the gelation point can be earlier or later than the crossing point of G and G at the highest available frequency. We consider that the time of mechanical gelation τ gel lies between the time when tan δ fall below . at the highest available frequency and the convergence time of the loss angle across all frequencies. On . This generalizes observations by Kohl et al. [] on the final state of dilute samples.

In dilute samples, the elastic behaviour occurs in the same time scale as directed percolation of all particles. However, isotropic percolation of isostaticity also occurs simultaneously, τ all d ∼ τ is it ∼ τ gel . Therefore we have to look at the dense regime to disentangle the two possible microstructural causes. Indeed in the dense regime the elastic behaviour emerges around τ gel ∼ 45τ B well after directed percolation of all particles taking place at τ all d ∼ 4τ B . Thus, directed percolation is not in general a sufficient condition to obtain mechanical stability. However, we observe systematically that elasticity emerges in the same time scale as isotropic percolation of isostaticity, τ all (e, f)) always occurs at later times and does not seem to play an important role. This allows to lay the main result of this article: the emergence of rigidity is caused by isotropic percolation of isostatic clusters, able to bear stress across the sample. We show below why the isotropic percolation of isostatic particles occurs at the same time as directed percolation in the dilute regime, while being decoupled from it at higher volume fractions.

.. Directed or isostaticity percolations

In Fig. .(a), we compare across all our experiments the time to percolation of isostaticity τ is it (∼ τ gel ) to the time to directed percolation τ all d . We confirm that at high volume fractions, typically φ > 14 %, the two types of percolation phenomena are decoupled, with 2 < τ is it /τ all d < 20 depending on the state point. By contrast, at lower φ, both percolations occur simultaneously, independently of the attraction strength.

The reason for this coincidence can be understood by the specific path to gelation in the dilute regime. We have seen in clusters i and j. The increment of this distance as a function to the time distance to the percolation, averaged over all cluster pairs connected by a floppy bridge, is shown on Fig.

.(b).

The observed shortening is about 0.7σ or % of the initial length. Directed percolation becomes possible only when a percolating path has become straight enough, which implies isostaticity. That is why directed percolation and isostaticity percolation occur simultaneously in the dilute regime. The simultaneity of directed percolation and emergence of rigidity in the dilute regime is thus a coincidence mediated by isotropic percolation of already isostatic clusters, in which the two different types of percolation can take place at the same time. In other words, the emergence of rigidity in gels should not be linked to the universality class of directed percolation. 

... Analysis of isostaticity percolation

We compute the cluster size distribution of all particles at the percolation time, and also the isostatic cluster size distribution at the percolation time of isostaticity. We take into account the finite size of the particles by adding one particle radius to the radius of gyration R g of each cluster. The normalized cluster size is thus

R g σ + 1 2 = 1 σ 1 s s i=1 X i - 1 s s i=1 X i 2 + 1 2 (.)
where s is the cluster size. In that way a one particle cluster has a size of 0.5σ . In that way the fractal range is extended to small clusters. Large clusters that have an extent comparable to the experimental window display a compact (D = 3) fractal dimension. At small cluster sizes we also observe compactness, consistent with the scenario where compaction at small scales proceeds before diffusion-limited percolation.

 
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

This signature of the original compaction remains when isostaticity percolates. However larger isostatic clusters exhibit a fractal dimension more compatible with directed percolation (D = 2.27). This is consistent with the simultaneity of the isotropic percolation of isostaticity and the directed percolation that is observed in dilute samples, see To get more insight on the way directed percolation and isostaticity percolation are related in the dilute case, we take a look at what changes as isostaticity invades the network. We take, as a reference, configuration at the percolation time t perco . For low volume fraction gels, local compaction has already occurred at that time, and we detect hundreds of small isostatic clusters that are embedded in a percolated but non isostatic network. We define X i (t) the position of the center of mass at time t of the set particles that formed isostatic cluster i at t = t perco . We note X ij (t) = X j (t) -X i (t) the Euclidian distance between the centers of mass of i and j, and ∆X ij (t) = X ij (t) -X ij (t perco ) its increment. When taking an ensemble average over all pairs of clusters that are not directly connected or far apart in the network ∆X ij (t) is null. However when considering only pairs of clusters that are less than  bonds away on the network, we can observe a shortening of the distance between them, see Fig. 

.. Stress-induced network breakup

In a dense system, after directional percolation of all particles, the number of nearest neighbours monotonically increases to minimize the energy of the structure (mainly the interfacial energy cost), resulting in the growth of isostatic configurations (see Fig. .B), as discussed above. During this process the mechanical tension internal to the network grows, driving it towards compaction, which can lead to network coarsening accompanying bond breakage (see Fig. .A and B). Unlike in simulations [], we cannot directly measure the local internal stress at this moment, but we can still see its effects through the local stretching measured by the degree of two-fold symmetry q 2 (see the particle colour in Fig. .A). From this, we may say that a bond breakage event is the consequence of stress concentration on a weak bond, leading to local stretching of the bond, and its eventual breakup. In other words, mechanical stress acts against diffusive particle aggregation (or compaction), which is the stress-diffusion coupling characteristic of phase separation in dynamically asymmetric mixtures [, ]. This stress-driven aging is accompanied by mechanical fracture of the percolated network structure by the self-generated mechanical stress. The mechanical sta- bility can be attained only after the formation of a percolated isostatic structure, which is a necessary and sufficient condition for a structure to be mechanically stable. When the percolated isostatic structure can support the internal stress everywhere, the system can attain mechanical stability.

Discussion

In summary, we have observed with particle-level resolution the entire process of gelation from the very beginning to the final arrested state at various state points for the first time.

The early stages are characterized by the universal features of spinodal decomposition, with clusters emerging with a constant wave vector. We show also that hydrodynamic interactions hinder the formation of isolated compact clusters, leading to the formation of a percolated network, and give to the coarsening process a non-universal behaviour. At high volume frac- tions, elongated structures immediately percolate into a thin, mechanically unstable network that undergoes stress-driven rearrangements enabling the formation of locally isostatic structures that finally percolate, see Fig. Isostatic clusters thus already exist at percolation time but are linked by floppy strands that have to compact to induce isostaticity percolation. Microrheological information reveals that the general mechanism responsible for mechanical solidity, which is signaled by the dominance of elastic over viscous modulus, is neither isotropic percolation nor directed percolation, but instead the isotropic percolation of isostatic structures.

The picture of gelation that emerges from our observations is far more rich than previously understood, and suggests that mechanical stability plays a fundamental role in addition to dynamical arrest. The glass transition is kinetically defined as the point above which the relaxation time is slower than the observation time, whereas mechanical stability is acquired with the percolation of isostaticity. Thus, we argue that a key feature of gelation is the arrest by isostaticity percolation of viscoelastic spinodal decomposition. Then, the mechanical stability of a gel is determined by a competition between the yield stress of the isostaticity network and the internal stress towards network shrinking produced by the interface free-energy cost. Since a gel is not in an equilibrium state and the stress can be concentrated in a weak part of the network, perfect mechanical stability may never be attained, resulting in slow aging via either surface diffusion or bond breakage.

An understanding based on the mechanical equilibrium and isostaticity might pave the way to a more operative description of colloidal gels, and allow complex issues to be addressed in terms of mechanics and rheology. For example, in Section . we will see that stress-driven aging plays a fundamental role in the formation of porous crystals. Furthermore, an understanding of how hydrodynamic flows affect the miscroscopic structure of the gel and then how the isostatic network recovers, could shed new light on thixotropy (i.e. a reversible decrease in viscosity) in colloidal gels []. The spontaneous delayed collapse of colloidal gels [, ] could be viewed as the final overcome of the mechanical frustration. Under small stresses also a delayed yielding is observed [, , ]. Despite a sustained attention, the yielding process of colloidal gels still lacks a general consensus. For instance we do not know why some colloidal gels display a yield stress fluid behaviour, that is a reversible yielding and no fracture [, ], whereas others display a brittle solid behaviour with the irreversible opening of fractures as we will see in Chapter . Yielding, with the rapid increase in viscosity and the emergence of elastic behaviour, can originate from multiple physical mechanism. Together with the slowing down of the spontaneous relaxation of the system (as considered in the glassy paradigm of gelation), our work singles out the role of the formation of a network of isostatic particles, highlighting the importance of the jamming transition [, ] as a physical mechanism for the transition from a viscous fluid to an amorphous solid. Understanding colloidal gels as a both non-ergodic and mechanically stabilized state of matter may help solving these issues.

 . Formation of porous crystals via viscoelastic phase separation

In the previous section, we have seen that gels are sculpted by mechanical forces. In particular, their structure evolved through local strand breaking and compaction of the network that release internal stresses. Here, we will show how this stress-driven ageing can lead to a novel crystallization pathway to sponge-like porous crystal structures.

.. Introduction

Crystallization plays a fundamental role in many processes occurring in nature, such as ice formation in atmospheric clouds [, ], and in technological applications that are at the core of the chemical, pharmaceutical, and food industries. Many of the properties of crystals, like the shape, spatial arrangement, polymorph type, and size distribution of the crystallites, depend on the conditions at which the nucleation process took place. Controlling the early stages of crystallization is thus of fundamental importance in order to obtain in a reproducible manner crystals with the desired properties.

Under usual conditions, the nucleation stage involves a very small number of molecules, of the order of - molecules. This has severely limited the possibility to observe the crystallization process directly, and has also posed limits on models based on macroscopic thermodynamic properties. The inability to directly observe the crystallization process is also a limit to our understanding of its kinetic pathway. Classical Nucleation Theory assumes the crystallization processes to occur in one step, where the transition can be described by just one reaction coordinate. An example is the formation of an ordered crystalline nucleus directly from the supersaturated solution. But the possibility of different pathways has recently come to prominence with the discovery of two-step nucleation pathways, where crystallization is proceeded by the formation of dense liquid droplets as an intermediate step [-]. Understanding the process of crystal formation in mixed-phase systems (composed of gas, liquid, and solid phases) is thus of great importance for a variety of systems, from protein solutions to clouds.

Colloidal suspensions offer a system where the crystallization process in a mixed-phase environment can be observed with single-particle resolution, and at the same time scales over which nucleation takes place. In colloids with short-range attractions the liquid-gas transition becomes metastable with respect to crystallization [, ], and can form gels [, , , , ].

Unlike the standard scenario of colloidal gelation through spinodal decompositon arrested by glass transition, it is known that phase separation can also be accomapnied by crystallization [, ], if the process takes place below the melting point of one of the two separating phases []. Indeed the possibility of a different class of gels, which are stabilized by crystallization, was suggested by numerical simulations [-] and observed in experiments [, ]. Such crystallization upon gel formation was also observed for a system of oppositely charged colloids [, ]. For colloidal systems, we can in principle access structural  evolution in real time at a single-particle level; however, there has so far been no confocal microscopy studies on the dynamical process of crystal-gel formation on a microscopic level, which makes the microscopic mechanism of crystal-gel formation elusive.

Here, using the protocol presented in Section ., we show that the system can undergo a novel crystallization pathway that leads to the formation of interconnected crystalline droplets. These droplets originate from crystal seeds that form inside the liquid branches of the spinodal aggregate of network morphology. We show that a necessary condition for the nucleation of crystal seeds is the stress-driven ageing of the network which releases the stresses that build-up during the network formation due to hydrodynamic interactions, allowing for an increase in the number of average neighbours. If the average concentration of particles is high enough, this stress relaxation triggers the nucleation process of crystals. Stress-driven ageing is possible only at low polymer concentration. Indeed, at higher polymer concentration (i.e., under stronger interparticle attraction) we observe that, instead of forming crystal gels, the system undergoes the classical gelation process, in which phase separation is interrupted by vitrification [, , , ]. We then show that the growth of the crystal seeds occurs by three different routes:

. Growth within the dense branches of the gel; . Bergeron process, analogous to ice formation in mixed phase clouds [, ], where ice droplets grow at the expense of the supercooled liquid droplets due to their lower saturated vapour pressure;

. Ostwald ripening.

Differently from the standard crystal-gel scenario, where crystals only nucleate and grow inside the dense branches of the gel, becoming dynamically arrested, we show that the kinetic pathways involving the gas phase (predominantly the Bergeron process, but also Ostwald ripening) play an important role. We reveal that the final crystal-gel network structure has smoother interface than the ordinary gels formed by vitrification because of this novel crystal growth mechanism.

.. Materials and methods

... Samples

Since we are mostly interested on the long term structure evolution of the system, we use smaller particles than in Sections ... and .. The diffusion constant in dilute conditions without polymer allows us to estimate the colloid diameter to (2.30 ± 0.05) µm. The Brownian time is τ B ≈ 2.3 ss. We assess that the size distribution of our particle is Gaussian with a polydispersity below % via direct confocal measurements []. This small polydispersity allows crystallization.



To induce short-ranged depletion attraction, we use polystyrene (TOSOH) as non-adsorbing polymer of molecular weight 3.8 MDa. Experiments are conducted at 27 • C, some 80 • C above the theta temperature in this solvents mixture []. A Flory scaling of the measurements of [] yields a radius of gyration R = (76 ± 5) nm.

The experimental data are taken at two different volume fractions (φ ≈ 0.14 and φ ≈ 0.33) and for different values of the polymer concentration, c p = 0.38, 0.48, 0.57, 1.07 mg/g for φ ≈ 0.33 and c p = 0.82, 1.36 mg/g for φ ≈ 0.14.

The data are collected on an upright Leica SP confocal microscope, using 532 nm laser excitation. The scanning volume is 98 × 98 × 53 µm 3 , which contains ∼ 10 4 colloid particles. Our spatial resolution is 192 nm/px. To be able to follow individual trajectories, we perform a D scan every 10 s (≈ 4τ B ) at early time and every 30 s later.

... Definition of states

The configurations obtained by tracking the position of colloids in the samples are analysed in order to determine whether a colloidal particle is in the crystal, surface, liquid or gas state.

In the following we describe the classification criteria.

Crystal In order to detect crystalline particle we use bond orientational analysis, as described in Ref. []. A (2l + 1) dimensional complex vector (q l ) is defined for each particle i as

q lm (i) = 1 N b (i) N b (i) j=1 Y lm (r ij ), (.)
where we set l = 6, and m is an integer that runs from m = -l to m = l. The functions Y lm are the spherical harmonics and rij is the normalised vector from the center of particle i to the one of particle j. The sum goes over the first N b (i) = 12 neighbours of molecule i. This choice accounts for the first coordination shell of close packed crystals (fcc or hcp). The scalar product between q 6,m of two particles is defined as

q 6 (i) • q 6 (j) = m q 6,m (i)q 6,m (j). (.)
For each pair i and j of neighbouring particles we define a connection if

q 6 (i) |q 6 (i)| • q 6 (j) |q 6 (j)| > 0.7. (.)
A particle is then identified as crystalline if it has at least 7 connected neighbours. The criteria outlined above are commonly used to identify crystalline arrangements in hard sphere systems. Surface, gas and liquid particles Surface, gas and liquid particles are identified from the subset of non-crystalline particles depending on their neighbouring particles. A particle with at least two neighbouring crystal particles is classified as surface. A particle that is neither solid nor surface, and has at least four neighbouring particles is classified as liquid. A particle which is neither solid, surface nor liquid is classified as gas.

Local volume Local volume fraction is obtained by computing the Voronoi diagram of each configuration, which uniquely assigns a volume to each colloidal particle.

... Phase diagram

In Fig. ., we superimpose the state points with a theoretical phase diagram obtained as in Section ...

The volume fraction of a colloidal suspension is notoriously difficult to estimate experimentally []. It depends on the cube of the colloid diameter and is thus extremely sensitive to any error in size determination. Therefore here we determine the volume fraction directly from the phase behaviour and deduce a precise measure of the (effective) colloid diameter from it.



Since some of our samples become partly crystalline, we can match the local volume fraction of the close-packed ( neighbours) crystalline particles with the theoretical equilibrium crystal volume fraction. Furthermore, we want the theoretical spinodal line to correspond to the gel region boundary. Starting from our initial estimates of σ and R we iteratively converge to R = 80 nm, σ = 2.21 µm and a crystal (without defects) at 0.723. Therefore the polymer-colloid size ratio is q R = 2R/σ = 0.072 and the overlap mass fraction of polymer is c * p = 2.25 mg/g.

.. Early times: percolation

As described in Section ., salt injection initiates liquid-gas phase separation of the colloidal suspension. We confirm visually the absence of any harmful flow upon the initiation of phase separation and any drift. All samples share the same early stages of spinodal decomposition. Due to strong dynamical asymmetry between colloids and the solvent [], the colloidal particles start aggregating, eventually forming a percolating network. Thus, a dense network (liquid) coexists with freely diffusing monomers (gas). In Here we do not imply that the formation of the network follows the random gelation universality class, but just that our fractal (or effective) dimension is compatible with it.

.. Intermediate times: stress-driven aging

From initial to intermediate times, before percolation is complete, hydrodynamic interactions play a fundamental role [, , ], see also Section .... Without hydrodynamic interactions, as often assumed in simulations, particles have the tendency to aggregate in compact structures and subsequently form thick network structures. This also limits to relatively high volume fractions the possibility to form arrested gel states. With hydrodynamic interactions, particles first form a transient gel even at very low volume fractions, and the number of nearest neighbours increases only later to minimize the energy of the structure. Thus, hydrodynamic interactions lead to the formation of gels that are very far from equilibrium and under a strong thermodynamic driving force towards more stable compact structures. The resulting transition from open to more compact networks occurs through the breaking of the , p break decreases monotonically until it reaches a stationary state at long times, with n saturating at an average of less than 5 neighbours. For low polymer concentration, panels (c) and (d), p break follows a similar decay at intermediate times, with n less than 5 neighbours, but which is then followed by a second decay to new configuration, where n becomes greater than 5 neighbours. , the initial decay of p break to a network with n < 5 is followed by a secondary decay to a more compact network with n > 6. This means that mechanical stress built up in the first transient network can relax to a more compact network only when bonds are weak enough, i.e. at low polymer concentrations.

It is worth noting that the two-step behaviour of p break and n is not due to crystallization, as this only starts after the network reorganization. For example, the fraction of crystalline particles for all frames in Fig. .(d) is always below 0.3%. The increase in number of bonds after network reorganization is a necessary condition for crystallization, as we will show in the following, while in its absence the network forms low-density arrested states (gels).

 .. Late times: dynamic-arrest vs crystallization

The samples share the same early stages of the phase separation process, but show significantly different behaviours in the later stages. To examine this in more detail, we plot in Fig. .(a) the structure factor for the final stages of the gelation process for all state points. Calculation of the structure factor is done with the Hanning window function, to minimize boundary effects. At low wavenumber q, the structure factor displays fractal scaling compatible with the Guinier law, S(q) ∼ q -D . But a difference in the fractal (or effective) dimension D between the φ ≈ 0.33 and c p = 0.38 mg/g state point and other state points starts to become visible. In fact, while states with high polymer concentration retain the exponent D = 2.5(3), which is the random gel universality class exponent, as we also observed in the early stages of the gelation process, see Fig. .(b), the state point with low polymer concentration (φ ≈ 0.33 and c p = 0.38 mg/g) displays the largest deviation from that exponent. In the figure we also plot the exponent D = 3, which corresponds to volume growth, which we will show in the following analysis to be the correct exponent for this state. The difference is due to the onset of crystallization in the low-polymer concentration sample. This is already evident in the high q behaviour of the structure factors, Fig. .(a), where the diffraction planes appear as sharper peaks for φ ≈ 0.33 and c p = 0.38 mg/g.

To gain additional insight, in Fig. .(b) we plot the late stage (after all samples already underwent gas-liquid phase separation) time evolution of the local volume fraction φ loc (12) of closed packed particles (having  neighbours). Only the state point at φ ≈ 0.33 and c p = 0.38 mg/g shows an increase, up to an asymptotic value that we identify with the composition of the stable crystal phase ≈ 0.72. We plot the asymptotic average volume fraction as a function of the number of neighbours in Fig. .(c). Approaching close packing ( neighbours), we clearly see two families of curves. The state point at φ ≈ 0.33 and c p = 0.38 mg/g reaches close packing at the volume fraction ≈ 0.72. By contrast, all other state points reach close packing at a markedly lower volume fraction, which is indeed close to the volume fraction of the attractive glass state []. These structural analysis provide some evidence that the state point φ ≈ 0.33 and c p = 0.38 mg/g could be following a different arrest mechanism, in which phase separation is arrested by crystallization and not by glassiness. In the reminder of this manuscript we investigate this state more closely, to confirm these early results.

A direct analysis of the colloidal positions at late times confirms that indeed the new structure obtained at φ ≈ 0.33 and c p = 0.38 mg/g has different morphological properties than usual colloidal gels. We directly compare the two structures in From the figure it is immediately clear that the network strands at low polymer concentration are crystalline. The new arrest mechanism thus involve the formation of a crystal-gel network. In order to explain the morphological differences between colloidal gels (networks made of thin strands) and crystal-gels (networks made of thick crystal beads), we now consider the kinetics of formation in our samples. Our detection of crystalline particles (see Section ...) reveals the growth of crystalline regions for the state point φ ≈ 0.33 and c p = 0.38 mg/g, which has the lowest polymer concentration of all state points. This is shown in Fig. . (a), where the red dashed line indicates the average size of the crystallites, while the black line indicates the average number of crystallites as a function of time. The number of crystallites first rapidly increases as nucleation events start occurring inside the liquid network, but eventually starts decreasing as the different crystallites grow and merge with each other.

All other state points show only negligible signs of crystallization. In particular, for state points with φ ≈ 0.33, increasing polymer concentration drastically reduces the amount of crystals. This is in agreement with the idea of enhanced crystallization rates near metastable critical points [, ] and the results of Refs. [-], which speculated two different arrest mechanisms: crystallization at low polymer concentration, and dynamic arrest at high polymer concentrations.

 .. Crystal-growth routes

While nucleation always occurs inside the liquid branches of the phase-separating network, crystal growth can proceed through different growth routes. In the following we will show that the growth mechanism of the crystal is not only due to filling of the spinodal liquid network, as was observed in Refs. [-] for Brownian Dynamics simulations, but also involves the Bergeron process and Ostwald ripening. In Fig. . (b) we show the gyration radius of individual crystalline nuclei for the state point φ ≈ 0.33 and c p = 0.38 mg/g. The results show that the crystal growth follows two different scaling laws: at small crystalline sizes it scales with the fractal (or effective) dimension close to random percolation (D = 2.53), while at large sizes it scales as D = 3, as in compact crystal growth. This demonstrates that, while small crystalline nuclei are nucleated inside the phase-separated liquid branches, once they reach the transverse size of the liquid branch, the growth follows a volume growth with the formation of isotropic crystal droplets. The same scaling law was suggested in the analysis of the structure factors, Fig. .(a), but here it is shown directly by the analysis of the gyration radius.

Next we analyse in detail the crystallization trajectory, distinguishing between the different processes responsible for the crystallization of the phase separated network. From the trajectory, we extract slabs of  particle diameter thickness for configurations at different times, shown in (a). This suggests that the crystal network does not form only by direct freezing of the liquid, but also by other mechanisms which involve the evaporation of the liquid (Bergeron process) and the sublimation of small crystals (Ostwald ripening). In the following we will investigate these different crystallization mechanisms in depth.

In Fig. .(b), we show the fraction of particles in each different phase for the crystallization trajectory at φ ≈ 0.33 and c p = 0.38 mg/g, after the liquid-gas phase separation has occurred. Surface, gas and liquid particles are identified from the subset of non-crystalline particles depending on their neighbouring particles. A particle with at least two neighbouring crystal particles is classified as surface. A particle that is neither solid nor surface, and has at least four neighbouring particles is classified as liquid. A particle which is neither solid, surface nor liquid is classified as gas. The process of crystallization is characterized by a steep decrease in liquid particles, as they transform into small crystalline nuclei inside the liquid domains. This decrease is then accompanied by an increase in the fraction of gas particles: as the first crystals start to reach the gas phase, liquid particles evaporate to the gas phase due to the higher vapour pressure of the liquid phase compared to the crystalline phase. The Probabilities are computed from the history of each single trajectory. A trajectory without liquid evaporation or crystal sublimation is counted as direct crystallization (continuous arrow, %). If a liquid particle evaporates and then de-sublimates it counts in the Bergeron process (dotted arrow, %). If sublimation is followed by de-sublimation it is Ostwald ripening (dashed arrow, %).

Most trajectories proceed via the surface state.



crystalline nuclei are initially composed mostly of surface particles, but as the nuclei grow they becomes more compact and merge together such that the number of surface particles slowly decreases, while bulk crystals keep increasing. After the onset of a steady-state gas population, there are three growth routes for the crystal.

Direct crystallization is the process by which crystals grow by incorporating nearby liquid particles.

In the Bergeron process, liquid droplets first evaporate and the resulting gas phase contributes to the growth of crystalline regions.

Ostwald ripening is instead the process by which small crystallites sublimate, and colloidal particles are transferred to larger nuclei.

Since we have access to individual particle trajectories, we can directly assess the relative importance of these three growth channels. For every time frame, we assign each particle a state between gas, liquid and crystal. In order to minimize short-term fluctuations, the state of each colloidal particle is time averaged for 50τ B . We then measure the fraction of trajectories with different transition histories. The different crystallization routes are depicted in the diagram of Fig. .(c). Direct crystallization accounts for % of particles trajectories in which gas or liquid particles transition to the crystal state without liquid evaporation or crystal de-sublimation. The Bergeron process accounts for % of particle trajectories in which liquid particles transition to the gas state before crystallizing. Ostwald ripening accounts for % of particle trajectories in which crystal particles transition to the gas state before returning to the crystal state. Here we note that the Bergeron and Ostwald ripening processes both take place only when the crystallites are surrounded by the gas phase due to the nonexistence of a liquid-crystal coexistence. Such a gas-crystal coexistence was speculated by Poon and his coworkers on the basis of free-energy argument [, ].

.. Transition probabilities

In Fig. . we plot the transition probabilities between the gas, liquid, crystal and surface states, as defined in the previous Section. Each panel represents the transition probability of a different state: (a) for the liquid state, (b) for the gas state, (c) for the surface state, and (d) for the crystal state. The results indicate that the liquid phase preferentially transforms into the surface state (as a precursor to crystallization), which accounts for the direct crystallization route. A high percentage of liquid transforms also in the gas phase. The gas phase itself transforms back into liquid or into surface particles, a process which is linked to the Bergeron process. These results support the idea that both channels are active crystallization pathways. Direct transformation of either liquid or gas into crystalline states is almost absent, indicating that our surface state indeed captures the precursor particles that attach to nuclei and later crystallize. Surface particles in fact, first transform preferentially into the liquid state, but at later time instead transform more prominently into the crystal state. The transformation of  crystals into the surface state, represents the first step of the Ostwald process, but this channel is limited by the small rate of conversion of surface particles into the gas state.

To sum up, while the direct freezing of the fluid represents the major contribution to the nuclei growth, the kinetic path via the gas phase (gas→crystal), also plays a crucial role, especially in determining the morphology of the porous crystal, as we discussed above. In this context the Bergeron process [, ]plays a considerably more important role than Ostwald ripening and is responsible for the beaded network morphology.

.. Discussion and conclusions

The first stages of gelation always involve spinodal decomposition with the formation of liquid network by viscoelastic gas-liquid phase separation. Depending on the polymer concentration, there are two possible arrest mechanisms. (a) Crystallization: small crystalline nuclei appear inside the liquid network, reach the surface of the liquid branches, and then grow by addition of particles from the gas phase. The final structure is a network of crystal droplets, as confirmed by the fractal dimension of the branches, the volume fraction of the particles within the branches, and bond orientational analysis. (b) Dynamic arrest: particle arrest when the dynamics inside the liquid branch becomes slow, which should happen at the intersection of the glass line with the liquid side of the coexistence curve.

In our system, mechanism (a) is operative around φ ≈ 0.33 and c p = 0.38 mg/g. The physical conditions required for the crystal-gel formation revealed in our study indicates that the extent of the φ-c p region where mechanism (a) is operative can be widened by changing the location of the critical point, which in our system is controlled by the size of the non-adsorbing polymer: moving the critical point to lower polymer concentrations opens the window where bonds can rearrange before the intervening glass transition. So we argue that the region of formation of crystal-gel porous structures is not only easily accessible, but also controllable.

The Bergeron process is also the primary mechanism for the formation of rain drops in clouds [, ]. In clouds there is a mixture of ice crystals and supercooled water. The vapour phase is in coexistence with the liquid phase, but is supersaturated with respect to the ice crystals. This causes the water droplets to evaporate and de-sublimate directly on the ice crystals. Our system can then be regarded as a colloidal analogue for this important process, which, for the first time, we can observe at the single-particle level.

The process of formation of "crystal gels" may be generic to many other systems. The requirements are (i) the presence of gas-liquid phase separation below the melting point of a crystal, (ii) weak or little frustration against crystallization (in our case, the use of monodisperse colloids), (iii) dynamical slowing down in a supercooled liquid state, which is necessary to induce viscoelastic phase separation leading to the formation of a network structure of the minority liquid phase,



(iv) the degree of supercooling is low enough to allow bond-breaking events that avoid the vitrification of the liquid phase. Many monoatomic and single-component molecular systems can satisfy all these conditions in a certain range of the temperature and pressure. This can be seen, for example, by looking at the phase diagram of a Lennard-Jones liquid [], which represents many molecular systems without specific directional interactions. For monoatomic systems such as noble metals, condition (iii) may not be satisfied easily. To access glassy slow dynamics in a liquid phase, we may need a deep quench at a high pressure. However, we note that even without strong dynamic asymmetry due to glassiness, bicontinuous phase separation can take place between 35 -85 volume % of the liquid phase in ordinary gas/liquid phase separation []; and, thus, porous crystalline structures can be formed, although a thin network structure may be difficult to be formed.

Usually, monoatomic systems are very poor glass-formers and thus have not been expected to form gels. However, our mechanism provides a novel kinetic pathway to spontaneously form network or porous structures made of crystals. The fact that crystals outgrow from the liquid network means that well-ordered crystal planes appear on the surface of the porous structure (see Fig. .d), which is crucial for catalytic and sensing applications. So we believe that crystal gels are an important class of heterogeneous non-ergodic states in nature and industrial applications, although they have not attracted much attention so far. For example, nano-porous crystals of noble metals such as Au have special functions associated with ultra-high interfacial area and connectivity of pores, which are relevant to catalytic, optical, sensing, super-capacitor, and filtration applications [-]. Usually such nano-porous materials are formed via at least two steps: for example, phase separation and dealloying of a mixture []. Unlike such a method, our novel mechanism allows us to spontaneously form sponge-like nano-porous crystals in a continuous process, which may have an impact on many applications. We note that laser ablation of metals is a promising method for this purpose []. We also speculate that our scenario could play a role in the formation of crystal networks observed in dynamically asymmetric mixtures, which includes magma [], biominerals [], and foods [].



 Understanding the self-assembly of polyelectrolyte gels from macroscopic measurements [, ]. Their gel formation mechanism often involves reversible-by-nature electrostatic interactions, which can be used for instance to trigger "smart" release of bioactive substances [, ]. Besides, poly(cationic) gels have been reported to combine antimicrobial activity with scaffold properties for the adherence and growth of cells, and are therefore increasingly used in clinical applications [, ]. In this framework, injectability is a key feature, as it provides an easier way to gel delivery in vivo []; thus, reversible shear thinning biocompatible hydrogels are a particularly sought after class of materials [].



Different strategies have been proposed to mediate gel formation from a variety of polyelectrolytes [-]. In most cases these strategies rely on the physical interaction of colloidal nanobjects (nanoparticles, micelles, highly crosslinked polymer networks) resulting in scattering colloidal gels with relatively poor mechanical and diffusion properties. By comparison, gels based on the supramolecular interactions of short polymeric chains constitute a very promising class of materials for practical applications, as they combine the advantages of polymeric materials (processability, solid-like behaviour) and individual molecule solutions (efficient diffusion of solvent molecules, dynamic reorganization, and self-healing properties)[ -]. So far the few reported examples dealing with the formation of such "supramolecular" gels from polycations (anions) have all relied on a similar strategy, i.e. the addition of a molecule or a short polymer bearing multiple anionic (cationic) groups, which induces gel formation by the occurrence of a non-covalent crosslinking network [, ].

In this chapter, we propose a markedly different and more straightforward conceptual approach for the making of supramolecular homopolymer gels, based on electrostatic interactions between the positive charges held by the repeating cationic units (imidazolium) and a terminal anionic group (phosphonate) introduced in the initiation step of the atom transfer radical polymerisation (ATRP). In Section ., we bring conclusive evidence that the single, relatively weak interaction between both entities is sufficient to mediate the formation of a gel in water, while in the absence of this interaction the aqueous polymer solution behaves like a Newtonian fluid of low viscosity.

In Section . we generate a variety of such polyelectrolytes with various cationic moieties and counterion combinations starting from a common polymeric platform. We show that the rheological properties (shear modulus, critical strain) of the final hydrogels can be modulated over three orders of magnitude depending on the cation/anion pair. Our data fit remarkably well within a scaling model involving a supramolecular head-to-tail single file between cross-links, akin to the behaviour of pine-processionary caterpillar. This model allows the quantitative measure of the amount of counterion condensation from standard rheology procedure.

But first, in Section ., I will briefly explain how the macromolecules that constitute the gel are made.

. Synthesis

This section mostly deals with chemical synthesis I did not take part of and that is detailed in Ref. []. Since I am not an organic chemist myself, I tried to write a pedestrian account of the method to give a readership of physicist the necessary elements to understand the following sections. In addition to the organic molecules, I also draw caterpillars that sketch their state. If the reader is an an organic chemist, please pardon me my silly cartoons. I hope they will help the non-chemist reader.

Atom transfer radical polymerization (ATRP) is a polymerization reaction that can prepare
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.: Synthesis of R-PNu + Br -and its intermediates R-POH and R-PBr. The initiator (head of the caterpillar) is drawn in purple, the monomers (body segments) in gray, and the final moieties on each monomer (legs) in orange.

polymer batches with narrow molecular weight distribution. The chain starts with an initiator, a small molecule bearing an halide atom (here Br). In the right conditions, a monomer will react with this halide atom, attach to the initiator where the halide atom was, and bind the halide atom on itself:

In-Br + M ---→ In-M-Br. (.)
This transfer operation can be repeated N 0 times until we get the polymer In-[M] N 0 -Br.

Because of the special role of halide atoms in ATRP, the monomers cannot bear any halide atoms (F, Cl, Br or I), which limits the nature of the repeated unit. In particular, monomers bearing halides are a good platform to graft ionic-liquid groups, thus forming poly-ionic liquids. Cyrille Monnereau and collaborators [] found a way around by using a monomer containing an OH group that could be later replaced by Br, and then by cationinc groups.

Fig. ., displays the steps of the synthesis both with rigorous chemical formulas, and using a comparison with a caterpillar. ATRP is like growing a caterpillar from its head (initiator, purple), adding a body segment (monomer, gray) at a time in a well-controlled manner, such that the number of monomers N 0 is almost identical for all chains in the batch. All caterpillars have the same length. We call the resulting polymer P(OH)-R, because it bears the group R on the initiator (the antennae of the caterpillar) and then bears an OH group on each monomer (P stands for "poly").

Then, we perform post-functionalisation in two steps: first, Br are substituted to the repeated OH groups (efficiency larger than %); then these Br are attacked by a nucleophile group Nu (orange) to quantitatively form the canionic group Nu + with the counterion Br -. This corresponds to grafting legs on each body segment of the caterpillar. We call the resulting polymer P(NuBr)-R.

This platform offers well-controlled polymers that can be customized in various ways:

. We can choose initiators with different R group and, thanks to the control offered by  ATRP, obtain two batches of polymers that have the same length (N 0 = 70) but different terminal group. This feature will be used in Section . with R being either an hydrogen atom H or a phosphonate group PO  -  to observe the influence of the presence of terminal minus charges on the mechanical properties.

. Starting from the same intermediate P(Br)-R we can vary the nucleophile Nu to make the repeated cationic groups more or less easy to dissociate in water. This feature will be used in Section . to study the influence of dissociation on the self assembly of hydrogels.

. The counter ions of P(NuBr)-R can be exchanged for other halides to obtain P(NuF)-R, P(NuCl)-R or P(NuI)-R. This feature will also be used in Section . to study the influence of dissociation on the self assembly of hydrogels.

. Mediating gel formation from structurally controlled poly(electrolytes) through multiple head-to-body electrostatic interactions

Here, we work with two polymers: P(ImBr)-PO  -  and P(ImBr)-H. That differ chemically only by their end group. When mixed with water at a weight concentration between typically % to %, it was noticed that P(ImBr)-PO  -  forms a very homogeneous and optically transparent (non-scattering) gel which does not flow under its own weight whereas P(ImBr)-H seems to behave like pure water (Figure .).

Both polymers where synthesised according the the methodology explained in Section .. Polymerization times were adjusted to get similar polymer chain lengths in both cases (N 0 = 70), which was confirmed by  H NMR and Steric exclusion chromatography (SEC) experiments. Then we use the same nucleophile in both case, methylimidazole (noted Im) to create methylimidazolium bromide moieties along the chain. The only difference is the terminal group, either an ethylphosphonate carrying two minus charges, or a neutral ethyl group. At the end of the synthesis, both polymers could be isolated as white rubbery materials.

In order to characterize the mechanical behaviour of the polymer aqueous solutions, we conducted standard rheometry experiments on a AR  rheometer (TA Instruments) in a cone-plate geometry of radius 40 mm, an angle of 2°and a truncation of 58 µm. We added the right amount of freeze-dried polymer directly on the temperature-controlled plate and mixed with 0.6 ml of deionized water to perfectly fill the gap. To homogenize the sample, we applied a pre-shear at 500 s -1 for 10 s and then left the sample at rest of 1 min. 



at %wt (red squares) and %wt (blue circles) weight concentration and P(ImBr)-H at %wt (brown triangles). The black dashed line is the viscosity of pure water. (b) Shear rate dependence of the shear stress. Continuous lines are best fits by a Herschel-Buckley model with a concentration-dependent yield stress. Note that the measurement range for P(ImBr)-H is smaller than that of P(ImBr)-PO  -  due to the resolution limit of the instrument (for stresses below 1 × 10 -2 Pa). remains several orders of magnitude higher than that of P(ImBr)-H, increases with decreasing shear rate (a behaviour referred to as "shear-thinning") and keeps increasing without showing any sign of a Newtonian plateau at low shear rates. This divergence of the viscosity at vanishingly small shear rates indicates a solid-like behaviour of the sample at rest as typically found in gels. More precisely, Figure .(b) shows the shear stress σ = η γ as a function of the applied shear rate. Contrary to the case of P(ImBr)-H, the shear stress for P(ImBr)-PO  -  tends towards a finite value σ c at low shear rates. This indicates that a critical force (σ c ) is required for the material to flow. This critical value is referred to as the "yield stress" in rheology [] and ascertains the gel-like behaviour of P(ImBr)-PO  -  . The solid lines in the inset are the best fits to the data using a Herschel-Buckley law σ = σ c + A γn and allow one to measure the values of the yield stress. It was found that P(ImBr)-PO  -  is a weak gel, with σ c = 4.7 Pa for a weight concentration of %wt and σ c = 0.4 Pa for %wt.

The gel-like nature of P(ImBr)-PO  -  deduced from steady shear was also confirmed through oscillatory shear rheology using both amplitude sweeps at constant frequency and frequency sweeps within the linear regime. At a fixed angular frequency of 0.1 rad s -1 , P(ImBr)-PO  - A discrepancy still exists between the critical shear stress observed in steady shear and that observed in amplitude sweeps. This could be partly due to the definition chosen for the yield stress and to the different mode of solicitation []. In particular the loss modulus G is seen to increase significantly for stresses amplitudes above (5 ± 1) Pa, which is closer to the yield stress estimated above. In other systems such an increase followed by a maximum of the loss modulus has been attributed to structural rearrangements before the system yields []. In any case Figure . clearly demonstrates the existence of a weak gel whose non-covalent crosslinks are greatly strain/stress-sensitive as similarly observed for filled polymers []. This property can be advantageously used, as it allows processing of the material through simple injection.

ω = 0.1 rad s -1 γ G , G (Pa) 10 -1 10 0 10 1 10 2 G G γ = 0.1 % ω (rad s -1 ) (a) (b)
This striking difference in the behaviour of P(ImBr)-PO  -  and P(ImBr)-H upon solubilization in water has also been demonstrated using D diffusion NMR (DOSY). These measurements (not shown), show that P(ImBr)-PO  -  does not behave like a single, linear noninteracting polymer. Actually for a large fraction of the polymers diffusion is too slow to be detected, as if the chains are associated in much larger structures, i.e. the gel.

Altogether, these results suggest that the presence of this single terminal phosphonic acid at the extremity of each short polymer chain is enough to mediate efficient gel formation. This behaviour can be rationalized on the basis of the following model: owing to a single electrostatic interaction between their terminal phosphonate and lateral imidazolium group,  each polymer chain is involved in a global supramolecular network; this gives rise, above a critical concentration limit, to cohesion forces that "freeze" the system and prevent it from flowing. In other words, polymer forms an hydrogel through the occurrence of a head(anion)-to-body(cations) supramolecular network. This highly dynamic electrostatic network provides the resulting gel with spectacular mechanical and self-healing properties.

The presence, along each polymer chain, of multiple cationic anchoring points for the single anionic end allows dynamic reorganization processes within the gel network. This provides i) stabilization of the gel structure in spite of the relatively weak single electrostatic interaction that connects each polymer chain to its neighbour and ii) avoids the formation of micro-domains, which makes the gel optically transparent. We further assessed the nature of these ionic interactions by complementary experiments: we noticed that variations of pH and/or ionic strength considerably affected the polymer organization; while moderate acidification (HCl, pH=) preserved the gel structure, basification (NaOH, pH=), turned it into a viscous liquid. Besides, upon using physiological serum (NaCl aq, .% wt.), no gel formation was observed and an inhomogeneous solution of low viscosity was obtained. Although further investigations will be required to get more insight on the precise underlying mechanisms, these preliminary experiments strongly suggest that screening of the interacting charges by the excess ions is involved in the gel collapse process. This property might open several perspectives related to the use of similar systems as stimuli responsive materials.

We believe that the concept introduced in this paper constitutes a straightforward alternative for the production of poly(electrolyte) gels, which could find potential use in a broad range of applications related to electrolytic materials and devices. Although illustrated herein in the specific case of electrostatic interaction between complementary anionic and cationic group, we hope that it could be extended to other types of supramolecular interactions, for instance with initiator/monomer combinations involving complementary H-bond donor/acceptor units.

. Ion pairing controls rheological properties of "processionary" polyelectrolyte hydrogels

Contrary to a small electrolyte for which full ion pairs dissociation is generally achieved in water, polyelectrolytes in solution are in general not fully dissociated, with a substantial fraction of the counterions bound to the polymer []. The resulting net charge of the chain governs the physical properties of the polyelectrolytes solution [-], first of all the ability of the polymer to dissolve in a poor solvent. Counterion condensation is the physical bounding or adsorption of counterions near the polymer chain. Factors influencing this process have been known since the 's but are still not fully understood. Hofmeister [] was the first to propose a systematic ranking of ions, based on their propensity to promote the coalescence of egg white. This so-called Hofmeister series has since proved quite universally valid [], including multi-charged polymers such as naturally occurring proteins  or synthetic polyelectrolytes as well as charged colloidal particles [, ] or soft matter interfaces in general []. However, depending on the nature of the polymer (hydrophilic or hydrophobic, anionic or cationic), the Hofmeister series can be direct (in short, well hydrated ions promote condensation) or reverse [, ].

In the present section, we investigate the role of the counterion condensation on the mechanical properties of the hydrogels described in Section .. In Section .. we describe how we take advantage of our postfunctionalization approach to play systematically with the nature (aromatic or not) of the cationic repeating unit and the associated halide counterion (F -/Cl -/Br -/I -) varied along the Hofmeister series. In the second and third parts, we show respectively the qualitative change in gel formability and the quantitative variations of mechanical properties of the aqueous dispersions obtained from these well-characterized polymers. In a fourth part, we rationalize this behaviour by proposing a microscopic model based on the idea that at low dissociation rates, cross-links (defined as a point where three or more polymers meet) are not separated by a single macromolecule but by several (up to hundreds) polymers in a supramolecular chain. We call this behaviour "processionary" in analogy to pine processionary caterpillar (Thaumetopoea pityocampa) behaviour []. In particular, this model enables the quantification of the charge condensation rate from standard rheological measurements. In a fifth part we apply this model to discuss the consequences of a background electrolyte at physiological ionic strength.

.. Synthesis and characterizations

In the following we will use only phosphonate-terminated polymers previously named P(NuBr)-PO  -  . Hereafter, we will therefore drop the terminal group and use the following notation that emphasise the charges of the monomers: P(Nu + Br -).

We synthesise the phosphonate terminated polymer P(Br)-PO  -  , hereafter referred to as P(Br) according the methodology reported in Section .. We obtain a well-controlled linear polymer (M n = 8300 Da from NMR, 5125 Da from GPC with M w /M n = 1.09, with a degree of polymerisation N 0 = 70 (NMR). This polymer serves as a common scaffold from which we derive all studied systems, as shown in Figure .. Nucleophilic addition of Nmethylimidazole or N-methylpyrrolidine to a heated solution of P(Br) in THF affords the corresponding poly(imidazolium) and poly(pyrrolidinium) compounds. In these cases, as an inherent consequence of the structure of the starting material, charge neutrality is provided by bromide counter ions, and the polymer will be referred to as P(Im + Br -) and P(Pyr + Br -), respectively.

From part of the previous batches, we performed anionic metathesis by pouring an aqueous solution of P(Im + Br-) or P(Pyr + Br-) into a saturated aqueous solution of the different sodium halides (NaF, NaCl, NaI) (Figure .). In the cases of P(Im + F -), P(Im + Cl -) , P(Pyr + F -) and P(Pyr + Cl -), we obtain a turbid suspension immediately after addition. After extensive dialysis of the resulting mixture against deionized water and lyophilization we recover in high yields the different P(Im + X-) and P(Pyr + X-) (where X=F, Cl, I). In order to bring evid- ence for the efficiency of the ionic metathesis, we submit the resulting materials to negativemode high-resolution mass spectrometry (HRMS). We unambiguously assess complete displacement of bromide counterions by the full disappearance of the diisotopic mass peak (79/81 Da). We further confirm substitution by iodide by the concomitant apparition of a characteristic monoisotopic peak (126 Da), while fluoride and chloride anions signals, which are below the detection limits of the spectrometer, could not be observed in the corresponding polymers (not shown).

 O O Br O O PO 2- 3 N 0 O O N + N Br - O O PO 2- 3 N 0 O O N + Br - O O PO 2- 3 N 0 O O Nu + X - O O PO 2- 3 N 0 N N THF 85 • C N THF 85 • C NaX
Differential Scanning Calorimetry (DSC) thermograms of all synthesized polymers also reveals marked differences in their properties, that can only be explained by differences in their counterion features. Thus, in the case polyelectrolytes with fluoride and chloride counterion, we observe no exo or endothermic transition below 200 • C (featureless thermograms, not shown). By contrast, we observe a broad endothermic peak when iodide and bromide are used as counterions, see Figure .. Quite remarkably, we found a similar peak temperature (-85 • C) for P(Im + I -) and P(Pyr + I -). When bromide counterions are present, we observe a significant increase of the peak temperature (114 -115 • C) but again, with a similar value between P(Im + Br -) and P(Pyr + Br -) as shown in Figure .. The overall shape and position of the DSC peaks is very reminiscent of previously reported data for various naturally occurring or synthetic poly(electrolytes) [-]. It is generally attributed to desorption of weakly bound water from the polymer network.

This difference in DSC profile can be understood by considering the water-binding ability of the different polymers in this study. Since the peak temperature does not depend on the presence of imidazolium or pyrrolidinium, water-binding is probably due to the only part of the size groups able to accept hydrogen bonds from water: the ester function. Following Zhang and Cremer [], we propose that these bonds can be enhanced if the involved water molecule is polarized by solvating an anion. The polarization, and thus the water-binding ability will decrease along the direct Hofmeister series

F -> Cl -> Br -> I -. (.)
We are able to observe the end of this trend in the shift of peak position between bromide and iodide counterions, whereas in the case of chloride and fluoride, binding is too strong to observe water desorption. This hypothesis is further confirmed below, when looking at the properties of different polymers in aqueous dispersion.

.. Water swelling, counterion condensation and solvent quality

Water-swelling properties turn out to be extremely dependent on the polymer composition. With Br -or I -conterions, both poly(pyrrolidinium) and poly(immidazolium) polymers afford homogeneous and optically transparent gels upon swelling with deionised water. We observe a limited swelling for P(Pyr + Cl -), resulting in a granular, inhomogeneous gel. With  F -counterions, or in the case of P(Im + Cl -), we observe neither swelling nor dissolution. We recover a . % wt suspension as a biphasic mixture of its individual components.

The above dependence of solubility on the nature of the counterions follows the direct Hofmeister series (Eq. .). The strong condensation of F -on the chain decreases the effective positive charge of the polymer and thus reduces solubility. Conversely, bulkier and softer ions like I -are less adsorbed, resulting in more dissociated charges and higher solubility. As a consequence, while dissolution is observed for the four polymers with bromide and iodide counterions, in which ion dissociation takes place to a sufficient extent, the two polymers with fluoride counterions, for which counterion condensation is expected to be strong, cannot be dissolved.

However Hofmeister series alone cannot explain the difference between soluble P(Pyr + Cl -) and insoluble P(Im + Cl -). This constitutes a strong indication that counterions are more strongly condensed near imidazolium than near pyrrolidinium. Indeed, although both cationic in nature, pyrrolidinium and imidazolium ions have markedly different properties. Because of their aromatic ring, imidazolium ions are particularly prone to promote a variety of supramolecular interactions which strongly contribute to their physicochemical properties, such as π + -π or anion-π + . More recently, π + -π + interactions have also been identified as a distinctive driving force for imidazolium dimerization []. Because of strong intercoulombic repulsion, π + -π + interactions are primarily weaker than their π-π counterparts. However it has been established that, in the presence of counterions, the stabilizing effect of π + -π + interaction could reach magnitudes largely exceeding that of the latter []. In particular, dimerization of imidazolium-chloride ion pairs have been the object of recent studies, and it has been shown that the involvement of the negatively charged counterion was essential in maximizing the stabilization of the π + -π + complex by minimizing coulombic repulsion between the imidazolium moieties [, ]. It is likewise well documented that covalent incorporation of interacting groups within a polymer chain strongly favours intramolecular interactions between these groups, by increasing their so-called effective molarity [-]. It is therefore not surprising that both effects participate in making the imidazolium-anion interaction stronger than pyrrolidinium at the detriment of solubility.

Such an insolubility in absence of charge dissociation indicates that the chain is in poor solvent. Locally, the monomers are condensed in collapsed globules to minimize the contacts with water molecules, and solubility on larger scales can only be achieved if the polymer bears enough charges [, ]. To estimate the Θ-temperature, that delimit poor and good solvent behaviour, we held the two fluoride polymers in water at boiling temperature overnight. No dissolution or swelling was observed, implying that Θ > 100 • C.

.. Rheological measurements

We perform rheological studies of the water-swelling materials. Briefly, data are recorded at 25 • C with an AR  rheometer (TA Instruments) in a cone-plate geometry of radius 40 mm, an angle of 2°and a truncation of 58 µm [, ]. We place the sample on the plate, G , G (Pa)
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and then lower the cone to the measuring position, spreading the sample in the process. We remove excess material, so that the sample exactly fills the gap. Due to Weissenberg effect at high shear rate, we apply no preshear before measurement. To minimize water absorption, we cover the geometry with a solvent trap, using light mineral oil as a liquid seal between the rotor and the cap. After one minute of equilibration we perform an oscillatory frequency sweep at small amplitude (strain amplitude γ = 0.1%, see Figure .) and then an oscillatory strain sweep at fixed frequency (f = 1 Hz). For fluoride counterions as well as P(Im + Cl -), the rheological profile is that of pure water which confirms the visual observation. However all other samples behave as shear-thinning yield stress fluids, confirming our previous results with P(Im + Br -) []. As shown in Figure ., soluble samples are solid-like (G G ) at small strain and flow at large strains (G G ) with a steep decrease of the moduli. We confirm solid-like behaviour at low strain for all accessible frequencies (see Supplementary Figure .). We checked that the linear mechanical properties are unchanged by the flow history given a few minutes of rest.

We observe that the mechanical properties at low strain evolve with the factors influencing counter-ion condensation. Imidazolium based gels are much weaker than their pyrrolidinium counterpart. Comparison between P(Im + Br -) and P(Pyr + Br -) is particularly illustrative of this trend, as their G values (13 Pa and 8100 Pa, resp.) differ by almost three orders of magnitude. On the bottom row of Figure . we can compare the rheological responses of poly(pyrrolidinium)-based hydrogels for the three counterions allowing dissolution in water. Gels with bromide and iodide counterions show roughly the same modulus value at vanishing strain for both G and G . By contrast, the gel with chloride counterions is weaker by more than one order of magnitude. In other words, counterion condensation is correlated to softer gel. This trend is confirmed between P(Im + Br -) and P(Im + I -), the former being an order of magnitude softer than the later.

Moderately charged P(Im + I -) and P(Pyr + Cl -) show a plateau in both moduli at low strain corresponding to the linear regime of the material; an overshoot of G and a downward slope of G at intermediate strains corresponding to the onset of plasticity []; and a decrease of both moduli at large strains, steeper for G than for G , indicating shear thinning. The linear regime is either extremely narrow or non existent in heavily charged P(Pyr + Br -) and P(Pyr + I -). By contrast the lightly charged P(Im + Br -) displays a broad plastic regime (tree decades of strain) between the linear regime and the crossing of the moduli. In any case, the end of the linear regime corresponds to a strain much smaller than .

In the following we show that the correlation between softness and counterion condensation can be explained on the basis of a microscopic model of interchain interactions.

.. Processionary model

In Section . we have demonstrated that, due to the opposite charges of the phosphonate head, head-to-body ionic bonds are possible. On the one hand, if at least two foreign heads attach to the same body, we obtain an effective cross-link point. When the probability of such a configuration is non-zero, we obtain a physically cross-linked gel. This is the ideal situation that we described in Section ..

On the other hand, if every chain has a single foreign head attached to its body, every polymer is linked to two others in a single file  . In addition, if we suppose that in order to minimize the inter-chain repulsion between charged cationic groups, heads are preferentially attached to the tail of their neighbour, we obtain a linear chain of effective polymerisation index nN 0 where n is the number of polymers in the supramolecular queue. This behaviour is somewhat evocative of that of the pine processionary caterpillar memorably described by Fabre []: "They proceed in single file, in a continuous row, each touching with its head the rear of the one in front of it. [...] No Greek theoria winding its way to the Eleusinian festivals was ever more orderly. Hence the name of Processionary given to the gnawer of the pine."

We thus have two limiting cases: (i) every chain has at least two heads attached and we have roughly N 0 monomers between cross-link points; (ii) every chain has at the most a single head attached and we have isolated supramolecular chains in the system. The former case  We neglect the possibility of the two charges of the phosphonate head to attach to two separate chains should be observed when a significant number of ion-pairs along the polymer chain are dissociated providing a significant probability for multiple phosphonate heads binding on a single polymer chain. Conversely, the latter case should be observed at low charge dissociation. In between these two limiting cases, we should observe cross-link points separated by processions of nN 0 monomers as sketched in Figure .. As we will discuss in the following, all rheological features of the hydrogels studied here can be rationalised on the basis of this "processionary" model. We base our analysis on three main observables, see Table .: . the value of the shear modulus at small amplitude G (γ → 0), i.e. the elasticity of the undamaged gel network, . the strain amplitude γ 0 corresponding to the end of the linear, regime []

 Nu + X - Nu + X - b ξ T D r s c
. the strain amplitude γ c corresponding to the crossing of the moduli.

By using these three parameters, we show that it is possible, with reasonable assumptions, to estimate microscopic parameters such as the average number of chains between crosslinks n, the number of monomers between dissociated ion pairs A that quantify counterion condensation and the head-to-body bonding energy E c .

... Conformation at rest.

The scaling theory of Dobrynin, Colby and Rubinstein [] describes the structure of a polyelectrolyte chain. In the following, we make the link between this theory and the chemical structure of our polymers. In absence of strain, the structure of a polyelectrolyte chain is organised at various scales, sketched on Figure ..

Kuhn length. The smallest scale is the Kuhn length b containing g K monomers. For a freely joint chain of tetrahedral carbons b ≈ 367 pm which corresponds to  tetrahedral carbons. Since a monomer counts  carbons along the chain g K ≈ 3/2.

Thermal length. At the thermal length ξ T , the attractive potential between monomers is balanced by thermal energy k B T , with k B the Boltzmann constant. This balance of energy can  be written function of the reduced temperature τ = 1 -T /Θ and the number g T of monomers in the thermal blob:

k B T = b ξ T 3 g T g K 2 τk B T (.)
Between b and ξ T we have a persistent random walk ξ T = b(g T /g K ) 1/2 . These conditions yields

ξ T = b/τ, g T = g K /τ 2 (.)
Electrostatic length, weak charging case. Following Khokhlov [] one can further define a third characteristic length D over which the electrostatic energy become dominant over short range attraction or surface energy of the collapsed polymer. D defines the size of the electrostatic blob and we name g e the number of monomers in it. Due to counterion condensation, not all monomers are charged. Counterion condensation is quantified by assuming that there is a charge every A monomers. Therefore there are g e /A charges in the electrostatic blob and the electrostatic energy reads E e = (g e /A) 2 e 2 /(4π D), with e the elementary charge and the dielectric constant of the solvent. If D > ξ T the main opposition to the electrostatic energy can be understood as a surface energy proportional to the number of thermal blobs exposed on the surface E s = k B T (D/ξ T ) 2 . The balance of energies yields:

D ξ T 2 = g e A 2 B D , (.)
where B = e 2 /(4π k B T ) is the Bjerrum length. In water B ≈ 0.7 nm. Since thermal blobs fill the volume of the electrostatic blob, one has D = ξ T (g e /g T ) 1/3 and using Equation (.) we obtain

g e = A 2 ug K τ, D = b A 2 ug 2 K 1/3 , with u = B /b. (.)
Dobrynin, Colby and Rubinstein [] introduced the extension parameter B defined as the ratio between the length of a fully extended chain of g e monomers (g e /g K Kuhn segments) and the actual size of the electrostatic blob:

B = g e g K b D = A 2 ug 2 K 2/3 τ (.)
At constant solvent quality and polymer architecture, B is thus monotonically related to the amount of counterion condensation A. In the following we will use B as our main variable and estimate it from rheological measurements. We conveniently combine Equations (.) and (.) to express g e and D function of B:

g e = B 3 τ 1/2 g K , D = b B τ 1/2 . (.)



Electrostatic length, strong charging case. From Equations (.) and (.) we observe that for B < 1/τ the size of the electrostatic blob should be smaller than the thermal length and the assumptions behind Equation (.) break down. To our knowledge the study of polyelectrolytes in poor solvent by Khokhlov [] and subsequent literature [, ] focused on the weak charging regime and did not treat the small B regime. When B 1/τ, most of the counterions are not condensed and attraction potential between monomers competes directly against the electrostatic repulsion. The size of the electrostatic blob is given by the following balance of energies:

b D 3 g e g K 2 τ = g e A 2 B D (.) yielding, with D = b(g e /g K ) 1/2 , D = b A 2 τ ug 2 K 1/2 , g e = A 2 τ ug K , (.)
In this weak counterion condensation regime, the definition of the extension parameter B yields a different relation with A and both D and g e :

B = g e g K b D = A 2 τ ug 2 K 1/2 , D = bB, g e = B 2 g K (.)
Here we shall describe the crossover between weak and strong counterion condensation regimes by combining Equations (.) and (.) into

D = bB(1 + Bτ) -1/2 , g e = g K B 2 (1 + Bτ) -1/2 , (.)
and we generalize the relation between A and B as

A = u 1/2 g K B τ 1/2 (1 + Bτ) -1/4 . (.)
Screening length. The next length scale is the screening length r scr . Between D and r scr the electrostatic blobs are organised in a linear rod containing g scr monomers. A rod is B times shorter than the fully extended g scr /g K Kuhn segments that it contains such that

r scr = g scr b/(Bg K ). (.)
To obtain r scr we follow [] by considering in a first step the case of a dilute solution where the length L of a single chain of N monomers is shorter than the screening length. Equation (.) becomes L = N b/(Bg K ). Therefore the overlap concentration is c * = N /L 3 =  Bg K /(bL 2 ). In a second step, when the monomer concentration c is larger than c * and in absence of salt, the screening length is

r scr = L c * c 1/2 = Bg K cb 1/2 . (.)
When charge screening is mainly due to the presence of added salt at a concentration c s much larger than the dissociated counterions, electrostatic interactions are screened at the Debye length r scr = ( B c s ) -1/2 ≡ κ -1 . Finally, for arbitrary salt concentration Dobrynin, Colby and Rubinstein [] use the crossover expression,

r scr = Bg K cb 1/2 1 + Bu c s c g K -1/2 . (.)
From Equations (.) and (.) we obtain

g scr = B 3 g 3 K cb 3 1/2 1 + Bu c s c g K -1/2 . (.)
Correlation length. The last length scale is the correlation length ξ. Between r scr and ξ the chain forms a self avoiding walk of persistence length r scr . Above the correlation length the polyelectrolyte chain forms a random walk of correlation blobs containing g = cξ 3 monomers.

... From modulus to procession length.

Let us note N the number of monomers between two cross-links or entanglements. If N > g the "procession" of polymer chains performs a random walk of correlation blobs, each being a self-avoiding walk. If g > N > g scr the procession performs only a self-avoiding walk. In any case, each procession is thus an entropic spring of constant stiffness k B T . The number density of procession is c/N . Therefore, the shear modulus at low strain is given by:

G = c N k B T . (.)
Because of the different weights of the pyrrolidinium and imidazolium moieties and of the different counterions, c is not constant as we chose to conduct our experiments at constant weight fraction w of polymer (generally used to quantify gelation ability of a given gelator). This explains why the respective modulus or critical strains of P(Pyr + I -) (heavier, lower number density) and P(Pyr + Br -) are in reverse order with respect to the Hofmeister series. Taking into account the molecular mass M of each polymer, the Avogadro number N A and knowing the density d of the solvent, we obtain the number n = N /N 0 of chains between cross-link We find that the number n of chains between cross-link point goes from  in P(Pyr + I -) and P(Py + Br -) to  in P(Im + Br -), following the a priori ranking of charge dissociation, see Table .. This larger cross-link ratio is consistent with a higher probability of attaching two or more heads on a highly dissociated body.
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We stress that N in Equation (.) is the total number of monomers between effective cross-links, including possible side chains and loose ends. In that we follow results from the literature of branched polymer gels [] that are more tractable than the original theory from Flory [] and Case [] for randomly cross-linked linear chains with loose end corrections, where every junction between two polymers is a cross-link.

... Limit of the linear regime.

As the material is strained, individual processions are stretched, starting from the larger scales []. As sketched in Figure ., when the correlation blobs are fully stretched, the procession is a linear assembly of electrostatic blobs. Stretching the chain further means exposing more thermal blobs to the solvent, a process that cannot be expressed using the model of a spring of constant stiffness. This condition is thus the limit between the linear and non linear regimes.

For all our samples, the linear regime is narrow γ 0 ≈ 10 -2 1 if existing. It means that the procession is just long enough to start performing the self-avoiding walk. Incidentally, this implies that the procession is too short to perform the random walk. In other words the number N of monomers between cross-links is comparable to g scr . Using Equation (.), this condition translates into

B B 0 3 = 1 + B B s (.)
with B s = c/(uc s g K ) and

B 0 = bc 1/3 N 2/3 g -1 K = (bc/g K ) (k B T /G) 2/3
. Here, we do not have salt per se, however negatively charged phosphonate heads and their counterions play the same role by contributing to screening. We thus have two "salt" charges per chain. Thus c s /c = 2/N 0 and B s = N 0 /(2ug K ) ≈ 12. B 0 is obtained from G (γ → 0) for each sample.

 D D R γ 0 R 0 γ 0 1 (1 + γ 0 )R 0 γ c (1 + γ c )R 0
Analysing Equation (.), we identify two physically relevant limit cases:

• if B B s screening is mainly due to uncondensed counterions and B = B 0 ;

• if B B s screening is mainly due to phosphonate heads and

B = B 3 0 /B s 1/2 > B 0 .
Numerical solutions of Equation (.) are given in Table .. For the same quality of solvent B is monotonically related to the amount of counterion condensation. Since our samples are sorted by increasing B we confirm that they are sorted by decreasing counterion condensation. To be more quantitative, we extract the number A of monomers between dissociated charges from Equation (.). We know that Θ > 100 • C so 0.2 < τ < 1. In the following we will deduce a more precise measure of τ and thus values of A.

... Extension of the electrostatic blobs.

The fully extended self-avoiding walk is a cylinder of length R 0 = N b/(Bg K ), of diameter D, of volume V = R 0 D 2 and of area Σ 0 = R 0 D = (R 0 V ) 1/2 . Extending the cylinder to R = (γ +1)R 0 while keeping the volume V constant thus creates an extra area ∆Σ = (γ + 1) 1/2 -1 Σ 0 that translates into a stretching energy due to the surface tension k B T /ξ 2 T , via Equations (.) and (.):

E stretch k B T = (γ + 1) 1/2 -1 N g K (1 + Bτ) -1/2 τ 2 . (.)
If we consider that the head-to-body bonds break at γ c , the reduced temperature is solution of

(γ c + 1) 1/2 -1 k B T E c N g K 2 τ 4 -Bτ -1 = 0 (.)
 where E c is the energy of the head-to-body bond that consists in two ionic bonds. In water the bonding energy between two ions is typically 5 kJ mol -1 [], thus E c ≈ 2k B T . However the medium surrounding the ionic bond cannot in general be described as pure water. As the chain is in poor solvent, electrostatic blobs have a low water content. Such a low polarity microenvironement is well known to enhance otherwise weak electrostatic interactions in protein folding or engineered self-assembly [].

From Equation (.) we know that D increases with B. We thus expect stronger head-tobody bonds when B is large and the low-polarity environment is extended (D B ). A contrario, the weakest ionic links, closest to their strength in water, should be found in P(Pyr + I -) where B is minimum (D ≈ B ).

Applying Equation (.) to P(Pyr + I -) with E c = 2k B T yields τ ≈ 0.40 ± 0.07, or a Θtemperature around 220 • C. Using this value and Equation (.) we deduce the bonding energy for each composition, as reported in Table .. Indeed, the bonding energy increases with increasing counterion condensation to reach, in the case of P(Im + Br -), % of the carbon-carbon single bond (350 kJ mol -1 or 140k B T ). According to Equation (.), in this extreme case an electrostatic blob contains ≈ 10 3 polymers which embed the head-to-body bonds in a low-polarity environment ≈ 24 times larger than the Bjerrum length. Conversely, for P(Pyr + I -) and P(Pyr + Br -) the size of electrostatic blobs is comparable to B , confirming an aqueous microenvironment. Quantitatively, the bonding energy of an ionic bond being inversely proportional to the relative dielectric constant r , we need to suppose a local r around  (typical of water-insoluble polymers) instead of  for water to recover the large bonding energy of P(Im + Br -).

... Quantitative phase diagram.

Table . also shows the values of A deduced from Equation (.) and the measured value of τ. A varies between 7 for P(Pyr + I -), corresponding to 10 uncondensed counterions per polymer, to 640 for P(Im + Br -) indicating a single dissociated counterion every 9 polymers. We stress that even in this case of very strong counterion condensation an electrostatic blob still contains several (≈ 90) charges ensuring electrostatic repulsion and solubility, Figure .a summarizes the different conformations of a procession as a function of scale and counterion condensation for our experimental c and τ. The most striking feature of this phase diagram is the narrowing of the regime between D and r scr (white region in Fig- ure .a) as counterion condensation increases. As the size of the electrostatic blob crosses the screening length, electrostatic repulsion is no longer able to sustain solubility. This abrupt transition between an uniform gel and a precipitate is what separates our five soluble samples from insoluble P(Pyr + F -), P(Im + Cl -) and P(Im + F -). Our rheological measurements probe the structure of the procession from the Kuhn length to the distance between crosslinks that is approximately r scr (upper limit of the white region in Figure .a). P(Pyr + Cl -) and P(Im + I -) display the typical structure of weakly charged polyelectrolytes in poor solvent. P(Pyr + I -) and P(Pyr + Br -) lie right in the crossover to strongly charged regime. Their correct  description is possible only through Equation (.). Finally P(Im + Br -) is extremely close to the transition to insolubility (within experimental errors) which explains its extreme softness and wide plastic regime.

 ξ r scr D κ -1 ξ T B PPyr + I - PPyr + Br - PPyr + Cl - PIm + I - PIm + Br - (a 
From purely rheological measurements, we have thus obtained microscopic information on the state of the gel: amount of charge condensation, head-to-body bonding energy and size of a procession.

.. Application to physiological ionic strength

To demonstrate the versatility of our model we expose briefly the consequences of having a background electrolyte with ionic strength similar to the physiological one and with the same counterion (e.g. Na + X -). We set the salt concentration c s to 100 mM, implying a background Debye length κ -1 ≈ 13b and B s close to unity. We show the resulting phase diagram in Figure .b. The background electrolyte lowers the horizontal asymptote of r scr , which strongly reduces the white region of the phase diagram. P(Im + I -) and P(Im + Br -) have now lost the possibility to form linear chains, such that their electrostatic blobs are now spacefilling. Therefore these two gels should precipitate at biological ionic strength. By contrast P(Pyr + Br -) and P(Pyr + I -) would still have linear chains between D and r scr and would stay soluble in a robust gel state.

Let us consider the case of P(Pyr + Cl -) whose chloride counterions are interesting from a physiological point of view. If cross-links still occur at the scale of the now shorter screening length, we expect less monomers between cross-links and thus larger shear modulus. Combining Equation (.) and (.) we obtain a modulus of 780 Pa, almost four times larger than P(Pyr + Cl -) in pure water. However P(Pyr + Cl -) would be a limit case, stable for an ionic strength of 100 mM but precipitating at 150 mM which is still in the range of physiological ionic strength. To ensure gel stability, it would thus be necessary to use cationic moeties with even less counterion condensation than pyrrolidinium.

. Conclusion

With this work we demonstrated the versatility of our "head-to-body" electrostatic approach in the fabrication of hydrogels with readily tunable rheological properties. Thus, depending on the nature of the nucleophile used in the post-functionalisation step of the polymer, but also on that of the counterion which can be modified in the course of its purification process, we showed that it is possible to manipulate almost at will the gel formability, the density of physical cross-links and the respective magnitudes of the shear modulus and of the shear stress.

Strongly interacting anions (i.e. small and hard halides, like fluoride) and aromatic cations favour counterion condensation, resulting in too few charges to allow dissolution and gel formation. The hardest gels with the narrowest linear domain are obtained with aliphatic  cationic moiety and counterion at the other end of the Hofmeister series that are less bound to the polymer. This gives rise to minimal counterion condensation, free the peripheral, iterative cations and increase their pairing probability with the terminal anion and thus affords a very high density of cross-links. In between, in the case of aliphatic cations with a counterion in the middle of the Hofmeister series (Cl -) or in the case of aromatic cations and poorly interacting anion, counterion condensation is important and polymers associate in long processions with strong head-to-body bonds. We thus obtain soft gels able to sustain large deformations before flowing. Coincidentally, the mesh size of our gels is always close to the procession persistence length, a regime often encountered in networks of biological semiflexible filaments as collagen or actin [].

To conclude, our procedure yields robust, highly tunable hydrogels from short, linear polymer chains and in the absence of any additive, which could find interesting applications especially in the context of biomaterials. Most importantly, systematic comparisons between the different poly(electrolytes) investigated in this study were used to establish a model linking the microstructure of the gel to ion pair dissociation efficiency on the individual polymer chains. We hope that this model will join the procession toward future works in supramolecular assemblies.



 Casein gels: a model system Casein gels have been studied for decades due to their importance in the dairy industry [-]. Yet, my contribution has been to bring our physical understanding of a type of casein gels to to point where it could be considered a "model system" and a playground for physicists and rheologists. Allan Parker from Firmenich prompted Thibaut Divoux to try using this system to observe irreversible fracture. Thibaut and Sébastien Manneville handed me this task. Christophe Perge contributed to the rheological characterisation during his PhD. Later we collaborated with Mathieu Nespoulous and Thomas Gibaud to deepen our microscopic understanding of this system. Our work has triggered a renewal of interest about casein systems for food scientists. Now as an independent researcher I continue using casein systems that form the basis of the PhD thesis of Akash Singh.

In the following, I will present what I understood about casein gels in general and acid-set sodium caseinate gels in particular (Section .. Then, in Section ., I will present a more specific achievement obtained thanks to our mastery of this system: wrinkling controlled by viscous forces. Chapter  will investigate the rupture of this system under constant stress.

. Sodium caseinate gel obtained by slow acidification

.. Casein in milk

The proteins in the milk of mammals are split into two categories depending on their behaviour at acidic pH. The family of proteins that becomes insoluble at pH . is named "caseins" (from the Latin caseus meaning "cheese"). They are the main protein component of milk gels, e.g. cheese and yogurt. By contrast the proteins that are still soluble at pH . are named whey protein. To aggregate whey proteins, one needs to denature their structure via heating and possibly acidification. This is for instance the process to make ricotta "cheese" (from the Italian meaning "cooked again") that is thus not a cheese by this physical chemistry definition.

Under natural conditions of milk, caseins associate with calcium phosphate nanoagregates to form roughly spherical complex, typically 150 nm is size, called "casein micelles". This term is mostly historical and has little connexion in terms of structure with the usual surfactant micelles [, ]. In terms of biological function, casein micelles enable the milk to contain calcium phosphate in concentrations up to 30 mM well above the saturation of this poorly soluble salt. The micelles are thus the carrier of the minerals for the growing skeleton 



of the infant, in addition of being a source of proteins []. Casein and casein micelles also adsorb on the fat globules in milk, stabilizing them.

Milk as casein micelles suspension is destabilised in two possible ways to become a food gel. Rennet gels (cheese) use an enzyme that will cleave some caseins and make the micelles loose their repulsive interaction. Acid gels (yogurt) are traditionally obtained through microbial action: bacteria consume lactose and produce lactic acid that slowly and homogeneously acidify milk, causing casein aggregation into an homogeneous gel. Depending on the details of the process, the casein gel can retain the whole aqueous phase (desirable for yogurt) or expel part of the whey in a process called synaeresis (desirable for hard cheeses).

.. Sodium caseinate

Extracting casein from milk is a rather easy process, done on industrial scale for decades. At least it is easy if there is no interest in preserving the delicate casein micelle structure. First, milk is skimmed to remove fat globules, and then acidified to make casein precipitate. Caseins precipitates are then washed (removing whey proteins and calcium phosphate), neutralised with NaOH and dried. One then obtains sodium caseinate, a white powder that can be resuspended in water at neutral or basic pH. Since caseins readily adsorb to interfaces, resuspension needs vigorous mixing and time. The casein micelle structure is then completely lost. Depending on the ionic strength, caseinates can either be suspended individually, or in aggregates of average size 11 nm, corresponding to about  proteins [, ].

As for native caseins, the stability of casein dispersions strongly depends on the pH. 

 .. Slow acidification by GDL

When acidified by a strong acid, like HCl, caseins flocculate and do not form a space-spanning gel. To simulate the action of bacteria without its complexity, we use glucono-δ-lactone (GDL) a molecule that slowly hydrolyses into gluconic acid and thus lowers slowly, continuously and homogeneously the pH of the suspension, Figure .a. Higher GDL concentration enhances the kinetic, but also leads to lower pH. For instance a suspension of %w caseinate and %w GDL reaches the isoelectic pH in about  hours and has a final pH of . where casein are still insoluble. By contrast, %w GDL (same caseinate concentration) reaches the isoelectic pH in less than 20 min but has a final pH of . where as much as .%w caseinate could be dissolved. Although the fractal structure of the gel is not modified significantly by the acidification rate [], the coexistence at low pH between a "gas" phase of suspended protein and the solid network is reminiscent of the arrested phase separation model of gel [, ] and might be enabling rearrangements and structural change. Therefore we should consider differently the gels that remain close to the isoelectric pH where gelation is kinetically driven by diffusion limited cluster aggregation [], and the over-acidified gels at lower pH.

We can monitor the GDL-induced gelation of sodium caseinate through time-resolved measurements of the elastic and viscous moduli, respectively G and G , under small amplitude oscillatory shear (γ = 0.1%, f = 1 Hz). In Fig. .b we display the evolution of G for various GDL concentrations. The gelation starts around pH=, above the isoelectic pH, as already discussed in Ref. []. At this point the elastic modulus displays a sudden increase then overshoot and converge towards its steady-state values. Note that the maximum of the overshoot is reached around the isoelectric point. The decrease of the modulus at lower pH is usually attributed to the over-acidification which enhances the repulsive electrostatic interactions between casein particles of net positive charge []. The value of the maximum decreases with increasing GDL content, while the final value of G decreases even more. For instance, for %w GDL the G at long times as lost % of its peak value, whereas for %w GDL the loss is larger than %. Fig. .c shows that as soon as measurable, the loss tangent tan δ = G /G is smaller than one, indicating a solid-like behaviour. Actually the loss tangent decreases with time and with GDL content.

In Fig.

. we show the linear rheology of the same gels at their final pH. The storage modulus follows a power law behaviour function of frequency G ∝ f α . The exponent α decreases with increasing GDL content and over-acidification. At low GDL content, the loss modulus also follows the same power law. G and G both scaling as identical power laws, is the definition of the gel point []. Therefore, we can consider that the structure of the critical gel is preserved for caseinate gels close to the isoelectric pH. This conclusion has been confirmed by a time-resolved rheological study around the gel point [].

However, at higher GDL content, the loss modulus deviates from the power law. As shown in Fig. .(d), the frequency dependence becomes flatter at low frequency but curves up at higher frequencies. This behaviour is reminiscent of soft glassy rheology [, ] and can also be observed in rennet gels of native casein micelles. We saw in Section. .. that GDL initial concentration sets both the final pH and the kinetics of acidification. However, it would be convenient to quickly reach gelation while ensuring that the final pH remains close to the isoelectric point. During the PhD of Akash Singh, we explored two ways of doing this: either by introducing a pH-buffering chemical in the gelforming solution, or by surrounding it with a large volume of a second solution that sets the pH from the outside (a 'pH-stat').

... Buffering

Case of a weak acid/base buffer First, let us recall the basics of pH buffering by a weak acid (AH) and its conjugate base (A -). The dissociation equation in water reads

HA ------A -+ H + , Ka = [H + ][A-] [HA] . (.)
Remembering that pH =log 10 [H + ] and pKa =log 10 Ka, (Eq. .) becomes

pH = pKa + log 10 [A-] [HA] (.)
From (Eq. .), one can deduce that when the pH is close to the pKa, the pH is almost insensitive to dilution (the ratio [A-]/[HA] remains constant) or to the consumption of a small quantity of either the acid or the base form by other reactions (e.g. addition of a small quantity of strong acid). This is is why a (close to) stoichiometric solution of a weak acid and its conjugate base is called a buffer. By contrast, for a pH far from the pKa, the acid form (respectively base form) will be in large minority and its concentration easily further decreased by other reactions, driving up (respectively down) the ratio in (Eq. .). The buffering power does not apply, and the pH becomes very sensitive to other reactions. For instance, the pKa of acetic acid and acetate (noted HAc and Ac -) is pKa Ac = 4.75, which make it a good candidate to stabilise the pH near the isoelectric point of the casein (pI≈ 4.6). However at pH=.=pKa Ac + 2, acetate is the majority species by a factor of a hundred.

We can also consider the situation where a concentration C 0 of HA is put in water. At equilibrium, we have [HA] = C 0 (1y), [A-] = C 0 y, and neglecting the original concentration of H + due to water self-protolysis [H + ] = C 0 y. Putting these values in (Eq. .) we get a second order equation in y that can in general be solved as

[H + ] = Ka 2       -1 + 1 + 4 C 0 Ka       ⇔ pH = pKa -log 10 -1 + √ 1 + 4C 0 /Ka 2 (.)
However, for many cases C 0 Ka, thus the above equation reduces to

[H + ] ≈ C 0 Ka ⇔ pH = 1 2 (pKa -log 10 C 0 ). (.)



Final pH of a GDL solution The case of GDL is more complex, and has been analysed by Sawyer and Bagger [] as a slow hydrolysis into gluconic acid (HGl) followed by a fast equilibration between gluconic acid and gluconate.

GDL

g(1-x) + H 2 O -- k 1 k -----HGl gx(1-y) , K GDL = [HGl] ∞ [GDL] ∞ = k k 1 ≈ 7.7. (.) HGl gx(1-y) ------Gl - gxy + H + gxy , Ka Gl = [H + ] y 1 -y ≈ 10 -3.70 (.)
Since (Eq. .) is fast, at any time, we can apply (Eq. .), replacing C 0 by gx. We thus get

y = Ka Gl 2gx -1 + 1 + 4 gx Ka Gl x Ka Gl /g ≈ Ka Gl gx . (.)
or x ≈ Ka Gl /(gy 2 ). If we are at final equilibrium, we can input this values in (Eq. .) and solve for y

y ∞ ≈ 1 + K GDL K GDL Ka Gl g , (.) x ∞ ≈ K GDL K GDL + 1 ≈ 0.885. (.)
The remarkable lack of dependence of x ∞ on g can also be recovered starting from (Eq. .):

K GDL = x ∞ (1 -y ∞ ) 1 -x ∞ ⇔ x ∞ = K GDL 1 + K GDL -y ∞ y K GDL +1 ≈ K GDL K GDL + 1 . (.)
Since [H + ] = gxy, the final pH is obtained by combining (Eq. .) and (Eq. .):

pH ∞ = 1 2 (pK -log 10 g), K ≡ K GDL K GDL + 1 Ka Gl ≈ 10 -3.75 . (.)
For instance GDL (molar mass M GDL = 178.14 g mol -1 ) at %wt. in water corresponds to a an initial GDL molar concentration of g = 56 × 10 -3 mol l -1 . According to (Eq. .) it would reach a final pH of .. This predicted value is lower than the observed final pH≈ in the presence of %wt. sodium caseinate. Indeed proteins are themselves weak poly(acid/base) that have an influence on the pH.



Weak base equivalent of caseinate Treating analytically the pH response of sodium caseinate would be too complex. Therefore we will consider an equivalent weak mono(base) with pKa Cas = pI. Knowing that the final pH is . for a solution of caseinate %wt., GDL %wt., let us determine the equivalent molar concentration of this equivalent weak base. The fast pH equilibration now contains two coupled chemical equations HGl

gx(1-y) ------Gl - gxy + H + gxy-cz , Ka Gl = [H + ] y 1 -y (.) Cas - c(1-z) + H + gxy-cz ------HCas cz , Ka Cas = [H + ] 1 -z z (.)
Let us assume that both gxy and cz are much larger than 10 -pH . Therefore c/g ≈ xy/z. We can thus solve independently (Eq. .) for y and (Eq. .) for z:

y = 1 1 + 10 pKa Gl -pH (.) z = 1 1 + 10 pH-pI . (.)
The relative equivalent molarity is thus

c g = x ∞ y z = x ∞ 1 + 10 pH-pI 1 + 10 pKa Gl -pH ≈ 0.67. (.)
In other words, the %wt. in caseinate correspond to 0.67g = 40 × 10 -3 mol l -1 of the equivalent weak base. This would set the effective molar mass of this weak base to M eff ≈ 1020 g mol -1 , more than five times larger than M GDL , but much lower than the actual molar mass of sodium caseinate (M cas ≈ 2 × 10 4 g mol -1 []). It means that about  groups per protein are participating in the buffering properties around the isoelectric point. From (Eq. .) we learn that (within reasonable concentrations of GDL and casein) the pH is set by the ratio of the concentrations of the two species. Indeed, we have verified that similar pH are reached for casein concentration from .%wt. to %wt. provided that GDL was introduced in : ratio in mass. Furthermore, for the composition caseinate %wt., GDL %wt. (four times more GDL as before), we measure a final pH of ., that is indeed consistent with a molar ratio c/g = 0.18, a fourth of the previous.

More generally, (Eq. .) and (Eq. .) can be expressed into the following polynomial in [H + ]:

[H + ] 3 + c[H + ] 2 + Ka Gl (c -gx)[H + ] -gxKa Gl Ka Cas = 0, (.)
that can be solved numerically for any c and gx to get the pH.



Kinetics GDL dissociation in water. According to Sawyer and Bagger [], the hydrolysis reaction is the limiting step and its kinetic is of first order. The reaction rate is thus

v = - d[GDL] dt = k[GDL] -k 1 [HGl], (.)
with k 1 = k/K GDL . In (Eq. .), the term in k 1 is either negligible with respect to the term in k, or close to its maximum at equilibrium when v = 0 and k[GDL] ∞ --k  [HGl] ∞ . Therefore a good approximation of (Eq. .)

is v = - d[GDL] dt = k([GDL] -[GDL] ∞ ), (.)
that we can rewrite into

τ dx dt = x ∞ -x, τ ≡ k -1 (.)
solved as

x(t) = x ∞ 1 -e -t/τ . (.)
Sawyer and Bagger [] have measured the temperature dependence of the time constant in the range from 20

• C to 25 • C as τ = τ 0 exp E a RT
, with τ 0 = (39 ± 10) ns and E a = (75 ± 5) kJ mol -1 . (.)

Extrapolating to 18 • C where we did our experiments, we get τ = (13 ± 3) × 10 3 s. If HGl and Gl -are the only pH-active species, we can use (Eq. .) considering that the initial weak acid concentration is gx:

pH = pKa Gl -log 10       -1 + 1 + 4gx/Ka Gl 2       = pKa Gl -log 10           -1 + 1 + 4 gx ∞ Ka Gl 1 -e -t/τ 2           (.)
Here, using (Eq. .) instead of the approximate (Eq. .) is necessary in order to describe short times when x Ka Gl /g is not verified. However (Eq. .) is diverging at t = 0 because (Eq. .) requires [H + ] from water auto-dissociation to be negligible with respect to the initial weak acid concentration. According to (Eq. .) this condition is valid for t > -τ log 1 -(10 -7 )/(gx ∞ ) ≈ 10 ms, that is for all practical cases.

In particular, we can solve (Eq. .) for pH=, and find that in large excess of GDL, casein would start gelling ≈ 3 s after GDL introduction. This is very different from the phenomenology observed at larger casein concentration. Thus, we must take into account the weak base behaviour of casein to predict correctly the kinetics.



Kinetics of acidification of caseinate by GDL can be solved by considering that (Eq. .) is still the limiting step, followed by the rapid equilibration of (Eq. .) and (Eq. .).

Here, we assume that we always have cz 10 -pH . We will also consider that gxy 10 -pH , although this hypothesis is not verified at short times. Therefore we can use both (Eq. .) and (Eq .) and solve (Eq. .) for t:

t(pH) = -τ log 1 - c gx ∞ 1 + 10 pKa Gl -pH 1 + 10 pH-pI . (.)
For pH>pI, the argument of the log is close to , therefore we can approximate to

t(pH) ≈ τ c gx ∞ 1 + 10 pKa Gl -pH 1 + 10 pH-pI . (.)
This form exemplifies that the gelation time, i.e. t(pH = 5), depends almost proportionally to the caseinate to GDL ratio. However, using the value of τ at 18 As above, let us assume that gxy, cz and aw are much larger than 10 -pH , which leads to.

x = cz + aw gy = cz gy 1 + aw cz = c g 1 + 10 pKa Gl -pH 1 + 10 pH-pI 1 + a c
1 + 10 pH-pI 1 + 10 pH-pKa (.)

If we want two solutions containing a concentration c of caseinate, one containing no base (a = 0) and the other containing a concentration a, to reach the same final pH=pH ∞ , we need to introduce amounts of GDL related by

g(a) g(a = 0) = 1 + a c 1 + 10 pH ∞ -pI 1 + 10 pH ∞ -pKa (.)



We can compare the time to gelation with and without the weak base by comparing x(a) and x(a = 0) at the gelation pH>pH ∞ .

x(a) x(a = 0) = g(a = 0) g(a)

1 + a c

1 + 10 pH-pI 1 + 10 pH-pKa (.)

In particular, shortening of the gelation time occurs for

x(a) x(a = 0) < 1 ⇔ [H + ] gel -[H + ] ∞ (Ka -Ka Cas ) < 0 ⇔ pKa < pI. (.)
Therefore, acetate (pKa=.) cannot be used to speed up gelation for the same final pH.

One has to use bases with lower pKa, e.g. formiate (pKa=.) which could half the gelation time when put in  times molar excess to caseinate. For instance, %wt caseinate, .%wt sodium formate and .%wt of GDL should gel in less than 1 h and remain at ph=..

Adding a weak acid to the initial caseinate solution can lower the initial pH and help decoupling the final pH and the gelation time. The fast pH equilibration now contains three coupled chemical equations HGl

gx(1-y) ------Gl - gxy + H + gxy-cz-aw , Ka Gl = [H + ] y 1 -y (.) Cas - c(1-z) + H + gxy-cz-aw ------HCas cz , Ka Cas = [H + ] 1 -z z (.) HCas a(1-w) ------A - aw + H + gxy-cz+aw , Ka = [H + ] w 1 -w (.)
First, we have to ensure that before GDL introduction (x = 0), the pH is reasonably higher than the gelation pH.

pH > pI + 1 ⇔ a c < 1 + 10 Ka-pI-1 1 + 10 . (.)
For acids with pKa close or lower than the pI, the maximum amount of acid is a ≈ c/10. As above, let us assume that gxy, cz and aw are much larger than 10 -pH , which leads to

x = cz -aw gy = cz gy 1 - aw cz = c g 1 + 10 pKa Gl -pH 1 + 10 pH-pI 1 - a c
1 + 10 pH-pI 1 + 10 pKa-pH . (.)

Verifying (Eq. .) ensures that x > 0 in the accessible pH range.



If we want two solutions containing a concentration c of caseinate, one containing no acid (a = 0) and the other containing a concentration a, to reach the same final pH=pH ∞ , we need to introduce amounts of GDL related by

g(a) g(a = 0) = 1 - a c 1 + 10 pH ∞ -pI 1 + 10 pKa-pH ∞ . (.)
We can compare the time to gelation with and without the weak acid by comparing x(a) and x(a = 0) at the gelation pH>pH ∞ .

x(a) x(a = 0) = g(a = 0) g(a) 1 - a c
1 + 10 pH-pI 1 + 10 pKa-pH . (.)

One can show that we always have x(a) < x(a = 0), and thus a shortening of the gelation time.

In particular, with acetic acid at the maximum concentration, the time to gelation decreases by %.

... Diffusion

The second way to control the pH is to use diffusion between two solutions:

Gel forming solution containing at least sodium caseinate and GDL, and eventually a weak acid or a weak base to further control its gelation dynamics;

Surrounding solution containing GDL and a weak base to control its gelation dynamics. Indeed, the pH of the surrounding solution cannot be constant, otherwise gelation would occur immediately and heterogeneously at the contact between the two solutions. That is why the pH of the surrounding solution should decrease with time, reach the gelation pH after the gel-forming solution does, and stabilize at a pH close to the isoelectic point.

Most often, the gel forming solution is optimized for fast gelation and will thus over-acidify the gel at long times. By contrast, the surrounding solution is optimized to obtain a final pH close to the isoelectric point, but with a slower kinetics. By putting them into contact without mixing, we can obtain a fast quench in pH quickly causing gelation, tempered by the equilibration with the surrounding solution to prevent over-acidification.

Let us consider a thin cylindrical slit between two circular plates of radius r c . This can be the plate-plate geometry of a rotational rheometer, or an approximation of the sphere-plane geometry we will discuss in Chapter . Just after mixing of GDL in both solutions, the gelforming solution is introduced into the slit. Then, the surrounding solution is gently poured around. We assume that the slit is thin enough to prevent any turbulent mixing. The volume of the slit is supposed much smaller than the volume of the surrounding solution, so that the pH of the gel is affected by the surrounding, but not the reverse. First, we observe gelation  at the center of the slit, where the pH is controlled by the local dissociation of GDL. Then, as diffusion takes place, the pH becomes dominated by the surrounding solution.

H + ions are responsible for pH and are also the fastest ions to diffuse in water. To ensure the fastest diffusion of the pH, we should ensure that H + are the only diffusing species. Casein should be insoluble and will not diffuse. To prevent their diffusion the weak base and it's conjugate acid should have the same total concentration in both solutions. Unfortunately, to retain control on the kinetics, GDL concentration cannot be homogeneous.

In this situation, the typical time for pH to diffuse across the radius of the plates is 1/(Dr 2 c ), where D is the diffusion constant of the H + ions. For instance, for r c = 6 mm, the characteristic time is 32 min. We should prevent reentrance out from and back into the safe range of >pH>. where caseinate is insoluble. Therefore, we should aim for a gel-forming solution that stays above pH=. for at least 32 min, while the surrounding solution must reach pH= in less than 32 min.

The strong dependence of the characteristic diffusion time on r c prevents the use of pH control by surrounding 'pH-stat' for too large sample.

.. Adhesion

Caseins are surface active and will readily adsorb at hydrophobic interfaces []. Once a gel is formed, this ensures a good adhesion with many solid substrate. In particular, we have found good adhesion on clean glass and plexiglass and relatively poor adhesion on metals. Due to these adhesive characteristics, casein based glues have been documented at least since ancient Egypt [], with a peak in usage in the first half of th century to glue the plywood of early aircraft [], before being largely replaced by cheaper synthetic polymer adhesives. Casein glues are still used to glue labels on bottles and for some niche wood gluing applications [].

However controlling the adhesion of the gel might be desirable. We have found that we could prevent the adsorption of casein on a glass surface by grafting polyacrylamide brushes. First, the glass surface is cleaned and dried before being dipped for 20 min in a solution of .%v -(Trimethoxysilyl)propyl methacrylate and %v acetic acid in anhydrous ethanol. This step grafts on the glass surface a silane group terminated by a methacryalte function from which radical polymerisation can start. The surface is rinsed with water before further use to eliminate unreacted silane.

We then prepare a %v solution of acrylamide in millipore water and degas it in vacuum for 10 min to remove oxygen that inhibits radical polymerisation. Just before dipping the prepared glass surface, we add to the acrylamide solution .%v (35 µl for 100 ml) of N,N,N',N'-Tetramethyl ethylenediamine (TEMED) and .%w (70 mg for 100 ml) of Amonium persulfate (previously dissolved in millipore water). The prepared glass surface should be immersed within 20 s after this mixing. Although most of the polymerisation occurs within the first minutes after dipping, we stored the surfaces in the reaction mixture for at least 12 h before rinsing and use. Conveniently, the silane coating, and thus the brushes, can be removed from the glass by immersion in a basic solution (pH>), e.g. .% NaCl, .% Na  HPO for 1 h at 85 • C. This process completely restores the adhesion of the caseins to the glass surface.

.. Microstructure evolution during gelation

The microstructure of yogurt has been observed with electron microscopy since the s []. Although this technique is well suited to observe structures well below the micron, most setups cannot observe a water-based sample in situ. Gels need to be frozen and the water sublimated in the vacuum before observation. How well theses steps preserve the microstructure is up to interpretations. On Fig. .(a) we show the final state of a caseinate %, GDL % gel observed by cryo SEM. We can observe a fine network which larest pores are around 1 µm and the thinnest strands are less than 100 nm thick. Here, we display a wellpreserved part of the sample, as other parts exhibit fractures. On Fig. .(b) we observe a gel of the same composition, but in environmental conditions. Indeed, in more recent scanning election microscopes, it is possible to observe aqueous samples with a pressure high enough to prevent sublimation. In this situation that is more representative of the pristine gel, we observe a network that seems at least twice larger that in cryo SEM, although the magnification is the same. Pores are larger, and the gel strands, swelled by water are at least 200 nm thick. Finally, Fig. .(c) displays a fluorescent laser scanning confocal image of the same kind of gel. In this kind of optical microscopy, details below the diffration limit (here ≈ 250 nm) are not resolved. However, great advantage of the technique is that the samples can be observed in situ, in depth, and in three dimensions. This allows a dynamical characterisation of the evolution of the (largest) microstructure.

To follow the evolution of the microstructure of the gel, we acquire slices of (2048 px) 2 with pixels of 98 nm on a Zeiss LSM confocal microscope using 532 nm laser excitation. We use a x (oil) lens. Sodium caseinate (Firmenich) is labelled with Dylight  NHS ESTER (Thermo Scientific). Excess dye is removed by centrifugation. For confocal microscopy measurements, we add % of fluorescently labelled caseins to the casein/GDL dispersion while it is fluid. After Hann windowing we perform Fourier transform and radially average the resulting spectrum to obtain I(q), see Fig. .b that is fitted by the following fractal form []:

I(q) = 2χΓ (n) 1 + ((n + 1)ξq) 2 n/2 (.)
where the susceptibility χ is related to the fluorescence contrast between the network and the solvent, the cut-off length ξ corresponds to the largest pore size and n = 2Dd is related to the dimension of images (here D = 2) and the fractal dimension d. Γ is the Gamma function. Equation (.) is a good approximation to the D Fourier transform of a fractal pair correlation function g(r) ∼ 1 + e -r/ξ r d-2 . As shown in Fig .(a) the gel consists in a space-spanning fractal network with a cut-off length scale ξ that corresponds to the maximum pore size []. The fractal model fits the structure at all times but its parameters vary non monotonously during GDL acidification.

As shown in Fig. .(e) χ is closely correlated with the evolution of G in both samples. The maximum in χ, that is the maximum concentration contrast between the casein poor and the casein rich phases, is reached at the isoelectric point due to the solvent expulsion out of the casein network [] like in viscoelastic phase separation []. This corresponds to a tighter packing of the caseins within the network strands, also called micro synaeresis. Such stiffening of the strands explains the observed increase of elasticity. Beyond the isoelectric point  casein aggregates undergo micro-swelling, the packing within the strands loosens which results in weaker, thicker strands, hence the long-term decrease of the elastic modulus. This effect is much larger in over-acidified gels (GDL %, orange curves in Fig. .) than in gels that remain close to the isoelectric pH (GDL %, black curves in Fig.

.).

By contrast, the size of the largest pore, ξ, or the fractal dimension d f , seem to have little correlation with the mechanical properties. Furthermore, the range of measured elastic modulus measured in Fig. ., from  to 1000 Pa, plugged in the simple scaling relation (Eq. .) predicts characteristic lengthscales of a few tens of nanometres, well below the largest pore size ξ, but also below the characteristic thickness of the strands. Therefore we can conclude that the linear mechanical properties of caseinate gels are not determined by their large-scale structures but by the amount of micro-swelling or micro-synaerisis at scales much smaller than the micron. Thomas Gibaud and others are currently investigation these scales by X-ray diffraction and may bring a fresh understanding in the near future, but here we have reached the limit of my expertise.

I the following, we will explore further the mechanical properties of caseinate gels. In Section . we exploit what we have learnt in term of pH dependence to design the wrinkling of film of gel. In Chapter  we focus on the response of caseinate gels under stress up to rupture.

. Hierarchical wrinkling in a confined permeable biogel

This work was serendipitously started with Mathieu Nespoulous, and explored in collaboration with Thomas Gibaud under the supervision of Sébastien Manneville and was published as

• Mathieu Leocmach et al. Hierarchical wrinkling in a confined permeable biogel. Sci. Adv. . (Oct. ), e-e There are many ways and reasons for a film to wrinkle. An elastic film buckles due to excess area with respect to its boundaries and wrinkles when buckling is hindered by a substrate. The selection of the preferred wrinkling wavelength is peculiar to the situation and is related to the mismatch of elastic properties between the surface and the substrate [-]. On the biology side wrinkling-controlled morphogenesis is ubiquitous. Ageing and the loss of elastic fibres makes our skin wrinkle [, ]. Difference in growth rates between the gut tube and its dorsal anchoring is responsible for the vilification of guts [-]. Localised cell death in biofilms focuses mechanical forces and initiates D labyrinth pattern [, ]. On the physics side the last two decades have seen a bloom of methods to obtain wellcontrolled patterns via linear [, , -] or nonlinear wrinkling [-]. Such patterns can be triggered by temperature dilation [], swelling [, ] or the removal of pre-strain [].



Yet, benchmark experiments that explore the possibility of wrinkling in confined porous soft materials immersed in a buoyancy-matched viscous medium are in line, not only from a physics point of view, but also to get fundamental insights into biologically relevant situations. Indeed, stability analysis of a film lying on a thin viscous substrate was performed only recently [] and remains theoretical because, on a free interface, gravity dominates over viscous substrate. In a biological context, however, thin tissues, e.g. epithelimum or endothelium, are naturally confined and immersed in a nearly buoyant medium, e.g. lymph, blood or mucus, a practical situation where a thin viscous substrate would set the wrinkling wavelength []. Moreover, most biological films are porous, and little is known on the interplay between permeability and wrinkling [, ]. The main goal of the present study is therefore threefold: to create a buoyancy-matched material that wrinkles, to unveil the physical origin of the observed patterns and to identify the selection mechanism of the wavelength.

Here, we use over-acidified sodium caseinate gels presented in Section . to produce hierarchical wrinkling as a result of their interplay between their nonmonotonic response to pH and the confinement conditions. While still liquid, the casein dispersion is injected in a homemade optical cell that is then sealed. This cell is designed such that the casein adhesion to both top and bottom walls is turned off (see Section ..) and so that the gel is only anchored to the remaining four vertical sides of the cell. Although no external stimulus is exerted on the system, we observe the spontaneous formation of a wrinkling pattern, as shown in Figure .. This pattern shows unique properties: a primary pattern appears simultaneously throughout the system with a wavelength λ that is much smaller than the cell width L and does not evolve with time. Furthermore, within this primary pattern, secondary and ternary patterns appear in cascade. Using a combination of titration, rheology, light microscopy and confocal microscopy, we demonstrate that the wrinkles at the millimetre scale result from the spontaneous swelling of the casein network at the micron level upon acidification. Finally we show that the wavelength is selected by a purely viscous mechanism combining porous Darcy flow and viscous Poiseuille flow. We systematically checked that this combined model pins down the dynamical origin of the constraints exerted on the gel and nicely predicts the wrinkling wavelength under a wide range of conditions.

.. Dynamics of the wrinkling process

The cell is sketched in Figure .a. It is composed of a slide (RS) and a cover slip (Menzel-Gläser) coated with acrylamide brushes, effectively turning off the casein adhesion (see Section ..). These two glass surfaces are spaced by paraffin film (Parafilm). The optical cell is briefly heated on a hot plate so that the paraffin welds to the slide and the cover slip. Gently applying a pressure on the cover slip while being heated allows us to tune the thickness of the cell from 50 µm to 150 µm. To form a biogel we start from an aqueous dispersion of caseins and glucono-δ-lactone (GDL). While still liquid, this yoghurt-forming suspension is injected into the cell that is sealed using ultraviolet-cured glue (Norland Optical). No external stim- In Figure .b, the dynamics of the pattern formation are followed by light transmission microscopy (Leica DMS). We observe the spontaneous formation of a first pattern that appears with a characteristic wavelength λ L. The D shape and size of this primary pattern are set as soon as the pattern forms and do not evolve in time. However inside the primary pattern a secondary pattern emerges, inside which a ternary forms. At each step of this Russian dolls-like cascade, the wavelength is divided by two.

To gain insight in the D nature of this pattern, we turned to confocal microscopy. We covalently labeled % of caseins with a fluorescent dye (Dylight  NHS ESTER, Thermo Scientific, excess dye removed by centrifugation). We collected the images on a Zeiss LSM confocal microscope using 532 nm laser excitation, using a x (air) lens. Depending on cell thickness, we acquire stacks of  to  images spaced by 6.69 µm (Nyquist sampling). Each confocal slice is (256 px) 2 with pixels of 4.97 µm. At such low resolution details of the gel microstructure are undistinguishable as ξ is smaller than the pixel size for all compositions and the gel appears as a continuous medium.

The D shape of the gel is reconstructed in Around 23 min, the gel forms and simultaneously becomes thinner and more concentrated -the fluorescence signal which is proportional to the casein concentration is brighter compared to the initial situation. This effect is the fingerprint of syneresis: as gelation proceeds, solvent is expelled through both the upper and lower sides of the gel film.

Quantitative analysis come from the detection of the top and bottom surface of the gel phase. We first de-noise each plane by a short-range Gaussian blur (σ = 2 px λ). Then, for each (x, y), we focus on the z-dependent intensity profile I(z). We define the position of the top surface of the gel z top as the point where I(z) first crosses half of its maximum value over the given vertical line. Since this criterion is local, we do not need to correct for background intensity variation. In this way we obtain z top (x, y) with subpixel resolution (±0.1 px = 0.67 µm), and z bottom (x, y) in a symmetrical way. In this way, we measure the volume of the gel phase as 



where the derivatives are computed using first order Gaussian filters of size (σ = 1.6 px λ) []. From these extensive quantities, we can define the relative volume V (t)/V (t = 0) Figure .b, and relative excess surface area A(t)/A(t = 0) -1 Figure .c, with respect to the situation at t = 0 where the casein suspension fills the whole cell with a flat middle surface.

As might be expected from someone who just read Section ., the evolution of the gel volume is non-monotonous. After reaching a minimum around % of its initial value at 23 min, the volume increases. Shortly after, at 36 min, the planar film destabilises and starts to wrinkle in the z-direction creating excess area. This confirms that the instability leading to the primary pattern is due to swelling. Around 38 min, the amplitude of the wrinkles reaches the thickness of the slit. As swelling continues, the gel flattens on both top and bottom walls (44 min) and finally buckles back (53 min) to form the secondary pattern (1 h). When the excess area saturates, the dynamics stop (3 h). We note that at any given point in time the thickness h of the film of gel is spatially homogeneous.

The primary, secondary and tertiary patterns follow the same path: the birth of an instability of wavelength λ of growing amplitude A(t) until saturation to A max , see Figure .a. Throughout the whole process, λ remains constant. This path is dynamic in essence.

We thus need to investigate the velocity of the wrinkles as they develop in the z-direction. In most of our samples it is possible to measure directly the peak-to-peak amplitude A(t) from our confocal measurements. However when the wavelength is too large compared to the field of view, this approach breaks down since we cannot observe both the highest and lowest points of the surface. Even when valid, such a local measurement is rather noisy and we prefer to focus on the measure of the vertical velocity v of the gel that can be averaged over the whole field of view:

v(t) = ∂z ∂t dxdy dxdy . (.)
In Figure .d, we observe that the velocity peaks at different times corresponding to syneresis and to the respective growths of the primary, secondary and tertiary patterns. We associate each growth with a characteristic time

tau = A max /v max , (.)
where A max is the saturation amplitude and v max the maximum velocit measured during buckling. For example, in the present case the τ corresponding to the primary pattern is 123 s. Therefore contrary to observations in, e.g., Ref [], we do not report any coarsening of the patterns. We believe that the wrinkling pattern is stable against coarsening because of the bending rigidity of the gel []. Indeed when the amplitude saturates the gel flattens against the walls which creates sharp edges. To accommodate those sharp edges with finite bending rigidity, the flat part of the gel actually ripples, see Fig. Since this case is not observed it means that in this physical gel, syneresis and swelling processes foster irreversible stress dissipation and structural changes. In the following, we will therefore consider that the shrunk state is stress-free.

. In Figure .e, we assume that nothing hinders the buckling of the gel film. This simple buckling situation leads to a primary pattern composed of a single bump of size L. As the bump amplitude grows larger and saturates on the top and bottom wall, buckling of smaller wavelength may appear, as observed by []. This is also not what we observe since our primary wavelength λ is much smaller that L.

. We are left with the case of Figure .f where a wrinkling pattern emerges spontaneously with a wavelength λ L selected before saturation on the top and bottom walls.

To obtain such an instability, one must balance the bending rigidity of the gel film with a transverse load σ ⊥ that hinders buckling on large wavelengths. The transverse load  could be due to gravity [-], however we confirmed that gravity plays no significant role by successfully repeating the wrinkling pattern in a cell held vertically, i.e. with the weight acting longitudinally rather than transversely.  Furthermore, the transverse load cannot be adhesion [] since the film is not adhering to the top and bottom walls.

The binding of a longitudinal edge to a rigid substrate can induce wrinkles upon compression [, ]. However in that case, the wavelength gets larger away from the bound edge. Since the wavelength of our pattern is uniform throughout the sample we exclude the influence of the side boundaries. Finally as the four side boundaries remain fixed σ ⊥ cannot come from the resistance to uniaxial stretching [].

Therefore at this stage, our observations still raise two unresolved issues which we address in the next sections: (i) what triggers the the spontaneous syneresis and swelling back processes? And (ii) what is the nature of σ ⊥ responsible for the selection of the primary wavelength?

.. How boundary conditions affect synaeresis and swelling

In Section . we have discussed how casein gels respond non monotonically to pH, supposing adhesive boundary condition and thus the absence of macroscopic synaeresis. Briefly, at isoelectric pH caseins have not net charge and are not soluble. Therefore the suspension micro-separates into a casein-rich gel network and a fluid phase almost devoid of casein. The network strands are thin and contain little water. This can be seen as micro-synaeresis or micro-phase separation. At pH below ., caseins regain charges and some solubility. The strands swell at a microscopic level, as the topology of the gel remain unchanged.

Here, we explore how non adhesive boundary conditions affect this scenario. However, we do not want the fully wrinkling phenomenology. Therefore we turn off the adsorption of the caseins only on the top slide, whereas the gel remain attached to the bottom coverslip. In this situation we observe no wrinkling and we can monitor the microstructure evolution. For this, we use the large magnification offered by a x (oil) lens, as in Section .. and monitor a fixed plane at 20 µm from the bottom wall.

In Fig.

. we compare the microstructure evolution in this partially adhesive condition to the fully adhesive boundary condition studied in Section ... In the partially adhesive case, the gel as a whole compresses while forming. Since our focal plane is at a fixed depth, we cannot follow the topology of the same subset of the network. Nevertheless, comparing the two columns of Figure .a, we observe a smaller pore size in the partially adhesive case compared to the fully adhesive case. This is confirmed by Fourier space analysis (as in Section ..). In Fig  .b, the largest pore size of both cases are superimposed early in the  For a typical gel film, the buoyancy after syneresis is estimated from the initial sodium caseinate mass concentration C cas as ∆ρ = C cas e/h = 130 kg m -3 leading to a gravity stress σ G ⊥ ≈ 0.04 Pa. We will see that this is much lower than typical Darcy or Poiseuille stresses σ D ⊥ ≈ σ P ⊥ ≈ 0.15 Pa which confirms that gravity can be neglected. 



gelation process. However in the gel where macroscopic synaeresis is allowed (dashed orange) ξ saturates around 4 µm instead of reaching 7 µm for the fully attached gel (solid black). At longer times and lower pH, the pore size of the two samples superimpose again. We observe similar differences on χ, the concentration contrast between the two phases, displayed on Fig  .c. This show that part of the micro-synaeresis is prevented by the possibility of macroscopic synaeresis. Therefore, the synaeresis and swelling back mechanism is related to charge stabilisation of the casein proteins as function of the pH. In particular, beyond the isoelectric point, the casein are charged and repel each other, leading to a swelling at every scale: proteins are further from each other, the strands become larger and longer and the gel sheet swells. Such a mechanism is only effective to produce wrinkles when adhesion of the caseins to both top and bottom walls is turned off. Consistently with our explanation, the amount of GDL, and thus the final pH reached by the suspension, controls the amount of swelling back. Thus at low GDL concentrations we only observe the primary pattern, at high GDL concentrations we observe the formation of higher order patterns.

.. Wavelength selection mechanism

The determination of the characteristic length λ of a wrinkling pattern is an old problem. Large deformations of thin sheets are governed by Föppl-von Kármán equations [], which are essentially impossible to solve in analytical form. However using scaling and asymptotic arguments one can obtain the dominant wavelength of the wrinkling pattern up to dimensionless prefactors and isolate the physically meaningful ingredients [, ]. An elastic film buckles due to excess area with respect to its boundaries. Wrinkling is a buckling hindered by a substrate: the mismatch of elastic properties between the film and the substrate selects the preferred wrinkling wavelength [, ]. λ is then set by the competition between the flexural modulus of the film B = E/(1ν 2 ) (E Young modulus, ν Poisson ratio) and a transverse load σ ⊥ . For small deflections of amplitude A, λ scales as [, ]:

λ ∼ Ah 3 B σ ⊥ 1/4 . (.)
This framework has been successfully applied to situations where σ ⊥ comes from the resistance of an elastic substrate [, ]. Dealing only with (semi)infinite substrates, Biot generalised the elasticity of both the film and the substrate to viscoelasticity [] or poroelasticity [], leading to time-dependent kinetic wavelength selection. Furthermore, it was shown that equation (.) remains valid even when σ ⊥ comes from the resistance to uniaxial stretching [], from gravity [-], from capillary forces [], from boundaries [, ] or from adhesion []. However, we have excluded these various origins for σ ⊥ in the discussion around Figure .. The only possible explanation left for σ ⊥ involve hydrodynamic stresses due to viscous flow of the solvent, either through the gel porous matrix itself or in the surrounding solvent layers. 

λ D ∼ h 1/2 α 1/4 Υ 1/4 , with Υ = Bτ η . (.)
Υ is a dimensionless viscoelastic factor quantifying the relative stiffness of the film and the solvent at a characteristic time τ.

The opposite limiting case is when an impermeable (α → 0) gel film lies in the middle of the cell (H ≡ H 

λ P ∼ (hH) 1/2 Υ 1/6 (.)
where we recognise the scaling for the wrinkles of an elastic film on a thin (H λ) elastic substrate [] where Υ would be the ratio between the flexural modulus of the film and that of the substrate. Indeed within the lubrication approximation or at low Reynolds numbers one can consider a viscous film as elastic with effective Young modulus 3η/τ [, ].

A more complete derivation of the models can be found in Section .. and yields the following prefactors:

λ D = 2πh 1/2 α 1/4 Υ 12 1/4
(.)

λ P = π(hH) 1/2 2 9 Υ 1/6 (.)
where H is redefined by 1/H 3 = 1/H 3 1 + 1/H 3 2 . The crossover between the two models where λ D = λ P is found for H = H * ≡ 2 2/3 3 1/6 α 1/2 Υ 1/6 .

The characteristic time τ is the hallmark of the kinetic nature of the wavelength selection mechanisms and is present in the expressions of both λ D and λ P .

To sum up, we expect two regimes of viscosity-dominated wrinkling: for H H * , i.e. slow destabilisation of a highly permeable film close to a wall, the main dissipation mechanism being the flow through the porous film; whereas for H H * , i.e. fast wrinkling of a poorly permeable film far from any wall, the flow in the viscous layers dominates and sets the wavelength. 
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.. Experimental tests

Darcy and Poiseuille models yield wavelengths that are of the same order in most of the cases under study. Thus only systematic measurements of the experimental λ together with estimates for all the parameters involved in either model shall allow one to discriminate between them.

In the following we systematically vary . the thickness of the cell, impacting h and the maximal amplitude, . the gel composition and thus both its stiffness and its permeability, . the viscosity of the solvent by adding glycerol, which also impacts the gel stiffness, permeability and τ.

Finally, the only parameter that we have no control upon is the initial altitude H of the gel before wrinkling that varies randomly.

For each experiment we measure independently λ and all the parameters that go into the expressions of λ D , (Eq .) and λ P , (Eq .).

Flexural modulus For every gel composition we monitor the gelation by small amplitude oscillations (strain .%, frequency 1 Hz) and estimate the flexural modulus B from the maximum value of the shear modulus G as B = 2G /(1ν) taking ν = 0.3 for the Poisson ratio, a value typical of a spongy network [].



Permeability measurements To measure the permeability of our gels, we adapt a method from []. First, the gel of interest is formed at the lower extremity of a thin glass tube. The tube is held vertical in a water saturated atmosphere to prevent evaporation until the pH has reached the isoelectric point (≈ 1 h for our most common composition). Then, we dip the tube in a bath of acetic acid/acetate buffer at pH=. The buffer has the same glycerol content as the gel solvent, so that the viscosity is constant throughout the experiment. Alongside the first tube, see Fig. . a, we dip a second identical tube with no gel in it. A webcam (Logitech Webcam Pro ) captures the rise of the liquid in each tube. Since the liquid height in tube  reaches its final value quickly, we measure directly z ∞z(t).

Darcy law through the gel of permeability α and height H reads

dz dt = α η ∆P H (.)
where ∆P = ρg(z ∞z(t)) is the hydrostatic pressure drop through the gel. We use tabulated values of water-glycerol mixtures for the density ρ and viscosity η of the buffer. We can thus write

d(z -z ∞ ) dt = - z -z ∞ τ , with τ = ηH αρg . (.)
By fitting z(t)z ∞ to an exponential, see Fig. .(b-c), we obtain τ and thus α. Note that even with H of the order of a few millimetres high glycerol contents yield τ ≈ 100 h due to both high viscosity and low permeability. Obtaining z ∞ without tube  would be time prohibitive.

Geometry and dynamics

Using confocal microscopy and reconstruction of the gel phase geometry, as in Section .., we obtain the thickness of the cell e and the geometric parameters of the gel at the time just before buckling: h, H 1 , H 2 . The characteristic time τ is obtained from velocity measurement through (Eq. .).

Wavelength Larger scope pictures, obtained either by stitching fluorescent microscopy images (Nikon Eclipse Ti) or by transmitted/reflected light macroscope (Nikon SMZT/Leica DMS) are used to measure the wavelength of the primary pattern.

Secondary patterns Nothing prevents our competing models to describe also the growth of the secondary pattern. Although the wavelength λ 2 of the secondary pattern is fully determined by the primary pattern λ 2 = λ 1 /2, Figure ., the secondary pattern has its own dynamics with its own characteristic time τ 2 τ 1 . Since the saturation of the primary pattern flattens the gel on the top and bottom walls, the secondary blisters always appear in a Darcy situation (H H * ). Therefore, we are able to obtain more data at small H/H * ratios by considering not only the primary patterns but also the secondary ones. In particular, geometric parameters are measured again at the onset of secondary buckling. 

... Results

Despite changing the gel properties and the cell geometry we always observe wrinkling proving the robustness of this approach to form wrinkling patterns. We are in the position to vary H/H from . to  so that we can test the crossover between Darcy and Poiseuille mechanism. In Despite a very good agreement of the scaling, the exact prefactors of all models disagree by a factor .-.. We suggest that this discrepancy comes from the fact that our model is D, i.e. uniaxial compression and deflection, whereas our system is D, i.e. biaxial compression and deflection. Since our system is isotropic in the plane, this does not change the scaling but might account for a dimensional factor. Lines where preparation and properties are left blank correspond to the average of the secondary blisters of the previous line. 'cas', 'GDL' and 'gly' indicate the weight fraction of sodium caseinate, GDL and glycerol respectively. ξ is the pore size at the end of each experiment. h is the thickness of the gel film just before buckling.



 .. Conclusion

To conclude we have taken advantage of the properties of the casein protein to engineer and study the wrinkling of a porous confined biogel. In particular, we have obtained a gel layer that shrink and swell as a result of continuous acidification. Together with carefully controlled adhesion of the gels to the boundaries, this route to form permeable biogels is the key to produce an original cascade of wrinkling patterns. We developed a model that captures the dynamical origin of the constraints exerted on the gel and predicts the wrinkling wavelength: Poiseuille flows of the solvent above and below the gel when the film is far from any wall, Darcy flow of the solvent through the gel when the film is close to a wall. Such a model experiment, because it relies on pH-induced charge stabilisation/destabilisation, should be generalisable to different kinds of proteins. As such it could set a benchmark to explore potential applications in micro-fingerprinting [] or in soft optical devices such as diffraction gratings or Fresnel lenses [], food texturing [, ] and the possibility of wrinkling in confined porous soft materials immersed in a buoyancy-matched viscous medium such as biological tissues [-].

.. Appendix: Mixed Darcy-Poiseuille model

Here, we derive more rigorously the Darcy and Poiseuille models of wrinkling sketched in Section ... We obtain the prefactor for both law, and investigate their crossover.

... General framework for wrinkling

The mechanical equilibrium of a plate of thickness h, Young modulus E and Poisson ratio ν submitted to a compression load σ along x and a transverse load σ ⊥ along z writes

Eh 3 12(1 -ν 2 ) ∂ 4 w ∂x 4 + σ h ∂ 2 w ∂x 2 = σ ⊥ , (.)
where w(x, t) is the deflection of the plate along z []. Since we deal with slow rates of deformation, inertia is neglected. We decompose the deflection in sinusoidal modes w(x, t) = A sin(qx) of wavevector q. Equation (.) then reads

1 12 Bh 3 q 4 -σ hq 2 w = σ ⊥ , (.)
where B = E/(1ν 2 ) is the modulus of the plate. Following [], we consider the case where the compression load σ is increased quasistatically. The observed mode is the one that arises at the lowest possible σ , i.e. the mode minimising σ .

 h H 2 h H 1 w(x, t) gel solvent Q 2 (x, t) Q 2 (x + dx, t) Q 1 (x, t) Q 1 (x + dx, t) p 2 p 1 v Darcy σ ⊥ σ σ x z σ ⊥ Figure 
.: Schematic side view of the slit. A single wavelength is represented but the longitudinal dimension L of the system is much larger than λ. The constant thickness gel film (orange) is surrounded by solvent. The region of interest for mass conservation is highlighted in gray. Arrows are oriented along x or z, defining positive sign.

... Elastic film in an infinite elastic medium

In this framework, we recall here the case of an elastic film lying over an infinite elastic medium [- , ]. The deformation of the substrate of modulus B s gives the transverse load as σ ⊥ = -qB s w, and thus the compression load writes

σ = B h 2 12 q 2 + B s hq . (.)
Minimising σ as a function of q yields hq = (6B s /B) 1/3 [, ] so that the dominant wavelength is

λ = 2πh B 6B s 1/3 . (.)

... Elastic film on a viscous layer

Let us now turn to the case of an elastic, impermeable film on a single viscous layer. As in [] we neglect gravity, although it would be difficult to do so in practice at a free interface.

Assuming the layer thickness H to be much smaller than λ d , we can use the lubrication approximation. Further considering only small deflections, we may neglect the displacement of the plate along x. The flux along x is thus of the Poiseuille form

Q = - H 3 12η ∂p ∂x . (.)
where p(x) is the pressure in the layer of viscosity η. Assuming an exponentially growing amplitude A(t) = A 0 exp(t/τ) and keeping only linear order terms, one gets 12η τ w H 3 q 2 = -σ ⊥ .

(.)

Combining Equations (.) and (.), the compression load writes

σ = 1 12 Bh 2 q 2 + 12 η τ 1 H 3 hq 4 (.)
and is minimised at q P such that

q 6 P = 2 × 12 2 1 h 3 H 3 Υ , (.)
with Υ = Bτ/η the viscoelastic factor. The dominant wavelength for the Poiseuille model is thus

λ P = π √ hH 2 9 Υ 1/6 . (.)
We note that the mode minimising σ is also maximising the growth rate

1 τ = H 3 q 2 12 2 η 12σ -Bh 3 q 4 . (.)
When the elastic film is sandwiched between two viscous layers of respective thickness H 1 and H 2 , the linearity of equation (.) allows us to use an effective substrate of thickness

1 H 3 = 1 H 3 1 + 1 H 3 2 . (.)
This corresponds to the experimental case where the gel film is far from both of the cell walls. Since we have an almost buoyant gel and no more free surface, gravity can indeed be neglected.



... Porous elastic film with no possible Poiseuille flow

Another limiting case is that of a porous elastic film immersed in a viscous medium where longitudinal resistance to flow is infinite. It is the case in our experiments when the film is at contact with one of the walls. The only way to deform the film is to flow some liquid through the film of permeability α. The transverse load derives from the Darcy law:

σ ⊥ = p 1 -p 2 = hη α ∂w ∂t . (.)
Combining equations (.) and (.), the compression load writes

σ = 1 12 Bh 2 q 2 + η τ 1 αq 2 (.)
and is minimised at q D such that

q 4 D = 12 h 2 αΥ . (.)
The dominant wavelength for Darcy model is thus

λ D = 2πh 1/2 α 1/4 Υ 12 1/4 . (.)
Here also the dominant mode maximises the growth rate.

... Porous elastic film between two viscous layers

Finally the most realistic scenario mixes both Poiseuille and Darcy mechanisms, i.e. considers a porous elastic film between two viscous layers of arbitrary thickness. In this case, see Fig. ., the mass conservation Q 1 + Q 2 = 0 over the whole height of the cell yields

H 3 1 p 1 + H 3 2 p 2 = 0. (.)
The mass conservation in the lower viscous layer is the same as equation (.) with an added leak v due to the porosity

∂Q 1 ∂x + ∂w ∂t + v = 0. (.)
v can be expressed by the Darcy law

v = α η p 1 -p 2 h . (.)



Combining equations (.), (.) and (.) we obtain the transverse load

σ ⊥ = p 1 -p 2 = - η τ w H 3 q 2 12 + α h , (.)
Note that we recover equation (.) when α → 0 and equation (.) when H → 0. We can recast this intuition in terms of the dimensionless number H/H * where H * is obtained by equating q P and q D :

H * = 2 2/3 3 1/6 α 1/2 Υ 1/6 . (.)
Analytic minimisation of σ knowing σ ⊥ is possible but cumbersome. Instead we rewrite equation (.) in terms of previously calculated λ P and λ D : 12σ

q 2 D h 2 B = q q D 2 + 1 2 q 2 D q 6 P q 4 + q q D 2 (.) = λ D λ 2 + 1 2 λ 6 P λ 2 D λ 4 + λ D λ 2 (.)
and we minimise this expression numerically.



 Creep and fracture of casein gels under stress at the macroscale In this Section we report on stress-induced fracture in protein gels by means of creep experiments coupled to optical and ultrasonic imaging. Gels formed by slow acidification of a sodium caseinate solution display fractures under large strain [, ], which makes them perfect candidates to quantify the rupture of soft solids.

Acid-set sodium caseinate gels are an example of biogels. Biogels formed through the selfassociation of polysaccharide coils, collagen, actin filaments or attractive globular proteins play a major role in biochemistry and microbiology [, ], biological networks and cell mechanics [, ] as well as in food science []. These biomaterials all behave as elastic solids under small deformations but display remarkable nonlinear behaviour generally featuring stress-or strain-stiffening [, ] and fractures prior to irreversible rupture [, ]. Irreversibility stems from the existence of an external control parameter, e.g. temperature or pH in the case of thermoreversible or acid-induced gels respectively. This makes such biogels fundamentally different from other soft glassy materials such as emulsions, colloidal gels and glasses that can be rejuvenated by shear [-] or transient networks where fractures spontaneously heal [, , ]. So far, huge effort has been devoted to the design of protein gels with specific properties and textures at rest [, ]. However, their mechanical behaviour deep into the nonlinear regime has only been partially addressed [, , ] and several fundamental issues remain unexplored such as the spatially resolved rupture scenario or the physical relevance of the analogy with brittle failure in hard solids.

. The brittle-like failure of a critical gel

We demonstrate that under an external load, casein gels close to the isoelectric pH display brittle-like failure that results from two successive physical processes: (i) a primary creep regime where dissipation is dominated by viscous flow through the gel matrix without any detectable macroscopic strain localization and (ii) the irreversible nucleation and growth of fractures leading to gel failure. Our results are in full agreement with the predictions of some recent fiber-bundle models and hint to universal features of failure common to both soft and hard solids. Gels are prepared by dissolving sodium caseinate powder (Firmenich) at % wt. in deionized water under gentle mixing at 35 • C and 500 rpm. To induce gelation, % wt. glucono-δlactone (GDL) in powder (Firmenich) is dissolved in the solution and its hydrolysis progressively lowers the pH over the course of  hours, see brown curve in Fig. .a. While still liquid, the solution is poured into the gap of a polished Plexiglas concentric cylinder (or Taylor-Couette, TC) shear cell immersed into a temperature-controlled water tank at (25.0 ± 0.1) • C  and .were obtained with an MCR  rheometer (Anton Paar) in a TC cell of height 28 mm and gap 1 mm with an inner rotating cylinder of radius 24 mm. Optical and ultrasonic imaging coupled to rheometry (Figs. . and .) were performed on an AR G rheometer (TA Instruments) in a TC cell of height 60 mm and gap 2 mm with an inner rotating cylinder of radius 23 mm. We checked that the commanded shear stress σ is reached within 20 ms.. We record rheological data during gel formation by a stress-controlled rheometer through small amplitude oscillatory shear at frequency f = 1 Hz, as was shown in Fig. .(b,c). Gelation is complete when the elastic (G ) and viscous (G ) moduli reach a plateau with G G . We then apply to the sample a constant stress σ from time t = 0 and we monitor the subsequent strain response γ(t). We also record images of the gel simultaneously to the rheology (Logitech Webcam Pro ). The local velocity and strain fields can also be imaged in the gradient-vorticity plane (r, z) simultaneously to rheology by a custom-made ultrasonic scanner detailed in Section ... In this case, prior to acidification, the sodium caseinate solution is seeded with acoustic tracers here % wt. polyamide spheres (Orgasol  ES NAT , Arkema, diameter 30 µm, density .) that do not modify the final gel properties. The radial position r is measured from the inner rotating cylinder and the vertical axis z points downwards with the origin about 15 mm from the top of the TC cell. Failure being irreversible, each creep experiment requires to prepare a fresh sample in-situ.

.. Results

Under a constant applied shear stress σ , the global strain γ(t) displays a robust time dependence shown in Fig. .a: γ(t) slowly grows with time up to γ ∼ 1 then accelerates until the gel fails at a well-defined time τ f . These three successive steps are better highlighted in Fig. In Fig.

.b we observe that for each applied σ , the global shear rate first decreases as a power law γ(t) ∼ t -ν with ν = 0.85 ± 0.04. This is strongly reminiscent of the primary creep observed in solids and referred to as Andrade creep [-]. Interestingly, here, the exponent can be inferred from linear viscoelasticity. Indeed as seen in Section .., casein  gels close to isoelectric pH display a power-law rheology, see Fig.

. G (f ) ∼ G (f ) ∼ f α , (.)
with α = 0.15 for this composition. In the linear deformation regime this corresponds to a time dependent compliance [] 

J(t) ≡ γ(t)/σ ∼ t α . (.)
Derivating (Eq. .) with respect to time, we obtain

γ(t) ∼ t α-1 . (.)
Indeed, we recover the observed γ(t) ∼ t -0.85 . Moreover ultrasonic imaging reveals velocity and strain fields averaged over the vertical direction z that linearly decrease with the radial position r within the gap [ We observe the linear relation τ min = (0.56 ± 0.04)τ f over five orders of magnitude. This relation has been similarly reported for metals [], solid composite materials [, ] and fiber-bundle models (FBMs) [, ], is known as the Monkman-Grant relation [], and allows one to "predict" the failure time from the intermediate-time response. Most of the creep experiment 0.1 t/τ f 0.9 takes place in the vicinity of this minimum. 

d dt ∼ γ(t) ∼ (τ f -t) -1 (.)
which indicates that the global shear rate is linked to fracture-induced displacements. Finally, we emphasize that the Andrade-like creep and the crack growth are two physical processes that effectively superimpose to yield the global rheological response. Indeed, as seen from the yellow line in Fig. ., the master curve γ(t)/ dotγ min vs t/τ f is perfectly fitted by:

γ(t) γmin = λ t τ f α-1 + µ 1 -t/τ f , (.)
with only two adjustable parameters λ and µ once α = 0.15 is fixed. The remarkable collapse of the whole data set to such a simple equation allows us to interpret the secondary creep regime as a mere crossover from creep to crack growth.

.. Discussion

Let us now summarize and discuss the most prominent results of this Section. First we have shown that casein gels display a remarkable failure scenario similar to that of brittle solids and characterized by the same three successive creep regimes.

... Primary creep explained by linear viscoelasticity

Here, the power-law exponent of the primary creep [ γ(t) ∼ t -α with α = 0.85 ± 0.04] is fully accounted for by linear viscoelasticity. Such a link between creep and viscoelasticity is shared by other biopolymer gels with power-law rheology [, ] as well as hard-sphere-like colloidal glasses [].

To better understand this link, we performed additional creep and recovery tests within the primary regime, shown in Fig. .. When we apply stress of 100 Pa at time t = 0, an "instantaneous" elastic strain of about % is recorded, followed by the slow Andrade-like creep. After 600 s we observe a strain of ≈ 27% and remove the stress. The strain immediately 



drops by about % and then slowly relaxes over several hours. After , s we observe that the initial strain is almost fully recovered: only a few percents are not (here % out of a total maximum strain of %). Such an irrecoverable strain can be attributed either to viscous flow within the porous structure of the gel or to plastic events i.e. to local rupture of the gel network, and in the most general case to a combination of both.

To investigate this irreversibility, we first reset the strain to zero (i.e. the moving tool is moved back to its initial position, see Fig. .a) and characterize the linear response of the gel by a frequency sweep at a strain amplitude of .% for 450 s. Then, we repeat the creep and recovery test for a total of three times. We observe indistinguishable strain response both during creep (characterized by an exponent of ., see Fig. This strongly suggests that the small irreversibility observed in the recovery from the primary regime mainly stems from viscous dissipation (which accounts for the nonzero viscous modulus G ) due to the solvent flow within the gel fibrous matrix and involves only a minute amount of local damage of the gel network. Protein gels thus appear to experience a kinetically reversible primary creep, i.e. dominated by viscous dissipation rather than by plasticity.

... Fracture growth governs final failure

The logarithmic fracture growth in the tertiary creep regime constitutes our second important result. Such an evolution is also commonly reported in disordered solid materials displaying brittle rupture and interpreted in the framework of Griffith-like models based on global or local energy barriers []. However these approaches all predict exponential scalings for τ f (σ ) while our data are best fitted by the decreasing power law τ f ∼ σ -β with β = 5.45 ± 0.05 [Fig. .a]. This last key result suggests that thermally activated crack growth does not play any prominent role. Rather the power-law scaling is strikingly reminiscent of the Basquin law of fatigue found for a variety of heterogeneous or cellular materials under cyclic deformation [-]. Basquin law has also been recently predicted for creep experiments by FBMs that combine elastic fibers with a local yield strain and take into account damage accumulation [-, ]. Interestingly assuming damage accumulation to be proportional to σ γ directly leads to Basquin law with β = γ and large values of γ, typically larger than  as found here for β, lead to macroscopic cracks due to the simultaneous rupture of a large number of fibers This highlights the relevance of FBMs in the context of creep in protein gels, whose microstructure indeed appears to be formed of strands [, ], but also urges to study FBMs in shear geometries to check whether they would be able to predict fracture growth as observed here.

.. Conclusion

To conclude, the present time-and space-resolved study exemplifies protein gels as model, brittle-like soft solids. Prompted by the remarkable simplicity of Eq. (.) that encompasses Andrade-like creep, the Monkman-Grant relation and finite-time singularity within a single equation, future modelling will undoubtedly focus on the microscopic ingredients needed to predict quantitatively the Monkman-Grant prefactor and the Basquin exponent β. The next experimental step consists in a statistical study of the fluctuations associated to crack nucleation and growth as well as a systematic investigation of other systems in order to check for universality in the irreversible creep rupture of soft solids in general and of biogels such as actin, alginate or agar gels in particular. Such a study is expected to have important implications in understanding the behaviour of biomaterials under extreme stress conditions.

. Factors influencing the failure dynamics

In the previous section, we have exposed the ideal brittle fracture scenario of sodium caseinate gels near the isoelectric point in a single geometry. Now, we will explore the influence of over-acidification and geometry. In doing so we will better understand the crossover between the viscoelastic primary regime and the tertiary regime governed by fracture growth.

.. Failure scenario of over-acidified casein gels

Here, we switch from the 'critical' composition casein %wt., GDL %wt. to gels overacidified by GDL %wt. In Section .., we saw that such over-acidification led to a linear rheology closer to soft-glassy systems: the exponent α of the power-law dependence of G on frequency decreases from 0.15 to 0.04, and the G dependence becomes even flatter. From (Eq. .) that predicts an primary creep scaling as γ ∼ t α-1 , we can expect that the strain rate exponent in the primary creep will be affected and close to -0.96. By contrast, the purely geometric link between fracture growth and tertiary creep regime should leave the latter unaffected by the change in linear rheology.

In Fig.

. we display the creep response of over-acidified gels in terms of γ(t) and γ(t). By contrast to critical gels, all curves do not display the same universal behaviour. The curves are more irregular, especially when the strain begin to curve up, i.e. at the transition between secondary and tertiary creep regimes. Although less straight, the strain rates in the primary regime seem to follow the same power law decrease. Unexpectedly, the decrease of γ(t) in the primary creep is consistent with an exponent of -0.85 as for critical gels, and not consistent to the predicted -0.96. It may mean that the primary creep is determined by the gel structure as it forms near the isoelectric point and is globally unaffected by the subsequent micro-swelling of the network and the apparent softening of the linear rheology. In Fig. ., we attempt to show the secondary regime as we did in Fig. .b for critical gels by scaling the shear rate by its minimum value and the time by the failure time. If some curves follow more or less the general behaviour of the critical gels, the lack of universality of the response is obvious. Some gels show 'false start', with a limited increase of γ after the minimum, followed by a second minimum before the final failure (see the brown circles σ = 20 Pa). Other gels show an irregular plateau between the false start and the final failure (see the red triangles σ = 60 Pa). Finally, others show a single failure (no visible false start) but with a slope that is less steep than the others (see the orange pentagons σ = 120 Pa). Although we pointed to these three experiments by their applied stress, there is no obvious stress dependence to these various behaviours, as experiments with universal behaviour are interleaved between non-universal ones.

In Fig. .b, where we rescale the time by τ min , we observe a good collapse before the minimum, and no collapse afterwards. It means that the mechanism of the primary creep is maintained, albeit with the exponent of the critical gels. The lack of collapse after the minimum is consistent with a degree of randomness in the fracture nucleation process.

We interpret false start as partial healing of the structure. Indeed, the finite solubility of casein at low pH allows reattachment and consolidation of strands. Healing processes are random and may occur over the course of a creep experiment, zero, one or several times. For instance, the experiment at σ = 20 Pa (brown circles) displays a single healing, strong enough to undergo what looks like a second primary creep, followed by a nominal tertiary regime. By contrast the experiment at σ = 120 Pa (orange pentagons) could be interpreted as a multitude of microscopic fractures nucleating and healing such that the macroscopic response looks continuous. However microscopic investigation would be required to confirm these suppositions.

.. Generality of Monkman-Grant relation

In Fig . .(a) we plot the ratio of the time of the minimum of the shear rate by the failure time τ min /τ f for three geometries of Taylor-Couette cell. The Monkman-Grant relation predicts a constant value. This indeed is the case for all three geometries: we observe no dependence in failure time (i.e. in applied stress). However, we notice that the average value might differ depending on the geometry. In particular, the geometry with a taller cell (gray triangles) display a markedly smaller average τ min /τ f than the two others, whereas we cannot detect an influence of the gap thickness (between black circles and red squares). A smaller τ min /τ f implies a longer tertiary creep, that is a longer time between fracture nucleation and the final failure. Indeed, in a taller cell the fractures need to grow vertically for a longer distance before causing total failure, which entice a longer tertiary creep governed by fracture growth. strain rate after τ min = 10 h of creep, the final failure could occur anytime between 4 h to 12 h later.

What is the source of this variability? We saw that both primary and tertiary creep regimes are well described by simple deterministic physicial models: respectively frequencydependent viscoelasticity of the material, and fracture growth in the geometry. What the Monkman-Grant relation suggests is a deterministic crossover time between these two regimes, i.e. fracture nucleation. A contrario, the dispersion of τ min /τ f implies that the crossover is not deterministic. In other words, the randomness comes from fracture nucleation.

.. Fracture nucleation

In our macroscopic experiments, we cannot observe directly fracture nucleation at the microscopic level. Therefore, we resort to proxies : the pattern of the fractures once they have become macroscopic, and τ min .

In Fig. .(a) we show a typical fracture pattern at the bottom of the TC cell. All fractures start slightly higher than the bottom of the TC cell. Indeed, the bottom of the TC inner cylinder is not flat but is a truncated cone. Fracture nucleation occurs at the junction between the cone and the cylinder. In the same way, the fractures at the top nucleate at top of the cyclindrical part, even if the level of the gel is higher. Fracture nucleation at those places specifically is due to the stress concentration near these angular junctions.

After their appearance, fractures grow vertically. However, some of them stop growing, as the two fractures highlighted by a red rectangle in Fig. .(a). Since we do not have a full 360°view of the TC cell from our webcam, it is difficult to relate fracture arrest with specific events on the rheological response. Nevertheless, we can count the number of fractures, growing or not, nucleated at the bottom (or at the top) over a given length and define the pseudo period λ of the fracture nucleation pattern. To that purpose, the webcam image of the cyclinder is flattened using a reference image where a sheet of graph paper is set to the inner surface of the outer cylinder. In Fig  .(b) we show the lack of dependence of λ on the applied stress for both critical and over-acidified gels. We observe a larger wavelength (less fractures) for over-acidified gels. This might be due to their ability to heal. Indeed, some microscopic fractures might have stopped growing before becoming visible macroscopically.

In Fig  .(c) we vary the geometry and show that λ is proportional to the gap λ/e ≈ 1.3 and insensitive to other geometrical parameters. Indeed, once a fracture has nucleated and has reached both inner and outer wall, the stress is released around it. The size of this relaxed zone should be proportional to the size of the fracture, therefore to the gap. Within this zone, no new fracture can nucleate. However, further away the effective stress is higher because the zone of the fracture does not bear stress. The higher effective stress triggers the nucleation of new fractures outside of the relaxed zones, and so on until the whole perimeter is occupied by fractures further away than their relaxed zones. From this model, we deduce that the appearance of the first fracture marks the beginning of the tertiary regime. In the following, we will use τ min as a macroscopic proxy for the time of nucleation.

Using τ min instead of τ f enables the comparison between critical and over-acidified gels despite the large variability in the tertiary regime of the later. In Fig . .(a) we plot τ min function of the applied stress. Both critical (yellow squares) and over-acidified gels (empty squares) follow a Basquin law with an exponent -5.5, albeit with a different prefactor. In . This collapse suggests the importance of a typical time for a fracture to invade the gap, since the quantity 1/(τ min e 3 ) has the dimension of a nucleation rate per unit volume.

Conclusion

In this section, we have explored the onset of failure, the crossover between the viscoelastic behaviour of the material and fracture growth. This crossover is dominated by the physics of fracture nucleation, in particular the nucleation of the first fracture. Although we have a clearer understanding of the factors influencing this nucleation in average, the process remains stochastic. Indeed, in most materials microscopic defects are the seeds of fracture nucleation, with larger seeds implying faster nucleation. Here, the material is intrinsically heterogeneous on scales that are comparable to the scale at which continuous mechanics fails. Therefore, a detailed view of the microstructure and it's evolution under stress is necessary to gain further understanding of the failure of gels.

  Immersed Cantilever Apparatus for

Mechanics and Microscopy In the previous chapter, we had a macroscopic view on the rupture of casein gels. We saw that, contrary to macromolecular gels that are homogeneous at scales well below the failure of linear elasticity, particle (casein, colloids) gels are heterogeneous. Therefore, a microscopic understanding of the microstructure evolution under stress is necessary to understand their rupture.

Towards this goal, we present here a novel cantilever based apparatus to perform translational stress or strain controlled rheology in very soft solids, and obtain simultaneous confocal imaging of the  dimensional microstructure. The stress is measured using eddy based sensors. Both the stress and strain are controlled by applying PID control loops on measured quantities and changing position using a micromanipulator. To get rid of surface tension forces, the sample and cantilever are immersed. This enables stress measurement and control down to 6 mPa. With this apparatus, we can independently apply shear and normal stress, or strain, with same precision. We demonstrate the technical capability of the setup with steady shear strain or stress experiments on a soft protein gel system. The simultaneous confocal imaging offers insight into the macroscopic breaking observed in an increasing shear strain experiment.

. Introduction

Soft solids such as gels, foams, and fiber tissues, have self-assembled microstructure, and their multiscale mechanical responses emerge as wide variety of rheological and fracture  behaviours. To understand these phenomena, three dimensional (D) visualization of microscopic structural changes against mechanical stimulus is desirable. However, since elasticity scales with the typical microstructure size ξ as k B T /ξ 3 , (k B : Boltzmann constant, T : temperature), soft solids with microstructure observable by optical microscopy have usually very small elastic modulus and are too soft to be stressed in a controlled way. In the present paper, we will showcase an apparatus that allows the application or measurement of extremely low stresses on soft materials in both shear and normal direction, while observing the D microstructure by optical (confocal) microscopy.

Coupling a confocal microscope with a commercial or custom rotational rheometer seems to be the most straightforward way to observe in real space the microstruture evolution upon mechanical stimulation. This solution is well adapted to study samples under a steady shear rate [, -], oscillatory shear [] or constant stress [, -]. The cone-plate geometry is often chosen in rotational rheometers in order to achieve homogeneous shear [, , , , ]. However in such geometry the only way to observe the whole thickness of the gap and thus quantify the effect of wall slip is to observe very close to the axis of the (truncated) cone, where the shear is actually not homogeneous [].

Translational shear cells with plate-plate geometry offer homogeneous shear and are better suited to integrate with optical microscopy due to their simpler and less expensive design. Thus, they have been widely used to study yielding transition in soft solids [, , , , -]. However shear cells usually have small plate surface area to achieve a high degree of parallelism, leading to a small and thus difficult to measure net force. Indeed, most translational shear cells lack stress measurement. Only few works [, ] have explored the possibility to have stress measurement and, to our knowledge, stress control is only available in the setup proposed in Ref. []. However this control is less sensitive than in rotational stress-controlled rheometer, restricting its usage to rather large stresses (> 1 Pa). Furthermore, normal stress cannot be controlled and is never measured.

To be observed with confocal microscopy, the microstructure needs to be at least a micrometer large, leading to an extremely soft material. For instance, a colloidal gel made of micron-size particles with 10 µm structural pore size will have moduli of the order of 10 mPa and a yield stress closer to 1 mPa []. Such stresses are too low to be reliably applied by most commercial rheometers, and even less so by shear cells. That is why most rheo-confocal studies on colloidal gels have been performed by controlling the strain or the strain rate, with no measure of the stress response [, , ] . Indeed, the stress response is often extrapolated from quantitative measurements done on similar systems with much smaller building blocks [, ].

Cantilever deflection is another major approach to measure mechanical properties. Since Galileo [], its principle has been used to quantify material properties, from geological [] to atomic scale. It is at the basis of atomic-force microscopy [], surface-force apparatus [, ], and several biosensors []. Combining AFM with confocal microscopy allows local probing of forces and visualization from molecule to cell scale with the advantage of combining the spatial resolution in AFM with the chemical specificity offered by fluor- escence microscopy []. In heterogeneous system it offers possibility of decoupling force response in method such as deep indentation []. However, AFM applies force at a very local level and cannot apply stress homogeneously over the confocal field of view.

The deflection of the cantilever is often measured by the reflection of a laser on its tip []. For centimetric cantilevers in possibly turbid environments, eddy current sensors offer a good trade off between precision and compactness. Compared to capacitive sensors, eddy current sensors offer a larger dynamic range and are unperturbed by changes in medium conductivity. A compression and stretching device based on a decimeter-long cantilever blade for which deflection was measured by an eddy current sensor has successfully quantified the viscosity of cell aggregates [, ], and the surface tension of liquids, biological tissues and yield-stress fluids [ -]. Furthermore, this apparatus has been coupled to observation of the microstructure (although, not in D) [, ]. However, since the sample was here in contact with air, the theoretical sensitivity of 0.1 mPa on bulk stress was never reached as surface tension forces were dominating. Thus, even if the concept of using cantilever as force measurement apparatus is quite old, its usage for shear rheology of yield stress solids combined with confocal microscopy observation, has not been reported, to our best knowledge.

Improving on the principle of the above compression and stretching device, we have developed a novel apparatus that can perform both shear and normal tests while capturing D microstructure by confocal microscopy. This device, named "Immersed Cantilever Apparatus for Mechanics and Microscopy" (ICAMM), is sketched in Fig  .. The setup offers stress and strain measurement, and can apply controlled stress or strain independently in shear and normal direction using PID loops. The sensitivity of this setup is not limited by interfacial forces, and is the same in both directions, which is another advantage over other reported methods. In the paper, we elaborate on our set-up design in Section .. The complication with this setup arises with the selection of the cantilever and chemical composition of the soft system and surrounding buffer. Section . covers the selection of the cantilever and the required calibrations. In Section ., we test this set-up using casein gel, covering the chemical preparation, testing of control loops, and demonstration of controlled shear stress and strain experiment. Finally, we conclude with a summary of the observations and other potential uses for this setup.

. Working Principle

The apparatus design is shown in Sensor readings thus give direct access to the position of the head of the cantilever with respect to its base, that is to say the deflection of the cantilever. The arm is mounted on a micromanipulator (MP, Sutter Instrument) allowing three axis translation with respect to the ground frame via step motor ( steps per µm). Thus, the position of the head with respect to the ground frame (e.g. x head/ground ) is obtained by summing the displacement of the micromanipulator (e.g. x arm/ground ) with the displacement of the head obtained from the sensors (e.g. x head/arm ). Since the bottom of the sample is fixed with respect to the ground frame, the position of the head with respect to the ground frame can be converted to a macroscopic strain field, knowing the geometry.

The deflection of the cantilever can be converted to a force. However, further conversion to a stress field in the volume of the sample is in general made more complicated by the contribution of interfacial forces acting between cantilever, sample and air []. Since we are dealing with gel samples permeated by a solvent, we are able to get rid of surface tension effects by fully immersing the sample (dark blue on Fig. .a), the cantilever and its head into the same solvent (light blue on Fig. .a). Provided a fine tuning of the solutes in this solvent (see Section ..), the gel network can maintain its mechanical properties while immersed. A collateral benefit of the immersion is a buoyancy force acting on the head, that partially counteracts its weights, providing the opportunity to use a softer cantilever without experiencing its plastic bending.

The solvent is contained by a machined PMMA tank (dark gray in Fig. .) that offer some transparency to observe the position of the head from the front or the side. The bottom of the tank (2 mm thick) has a circular (15 mm diameter) hole to allow observation with an inverted optical microscope. This hole is reversibly mounted and sealed (Teflon tape > 0.1 mm thickness) with a glass coverslip (30 mm diameter, 0.17 mm thickness) pressed by an inverted conical stainless steel mount piece attached to the tank by three screws, as shown in The output of each sensors is read and digitized by a DT-SM (Micro-Epsilon) electronics. Digital readings from the sensors (ethernet) and the micromanipulator (serial) are centralized on the host PC by a Python [-] 

. Choice and calibration of the cantilever

The choice of the cantilever is crucial in the current apparatus. In order to obtain the same stiffness in every direction of flexion, we settled to a circular section. This sets the deflection in response to a force F on the head to

δ = 64L 3 3πED 4 F, (.)
where L and D are the length and diameter of the cantilever and E its young modulus. Aside from flexion, a circular cantilever can display torsion that may disturb our measurements. For a force F applied tangentially to the bottom of the head (at a distance b from the axis of the cantilever), the sensors placed at distance s from the axis of the cantilever will measure a displacement due to torsion

δ T = 64 b s L πD 4 1 + ν E F, (.)
where ν is the Poisson ratio of the material. We thus have

δ δ T = 1 3(1+ν) L 2 b s
≈ 500 for L = 20 cm, b = 2 mm, s = 10 mm and ν = 0.3. Therefore, the torsion mode is negligible in our measurements but could be an issue for shorter cantilevers.



We have tried cantilevers in pure copper and stainless steel, however they showed too narrow elastic domain for our purpose. We finally settled to copper-beryllium alloy (Cu  % and Be  %, GoodFellow CU, ν = 0.3 and E = 120 GPa-160 GPa) for its large elastic domain. In the following, we further characterize a cantilever of length L ≈ 20 cm and diameter D = 1.0 mm. All calibrations and experiments have been performed in an air conditioned room at 18 • C.

.. Geometric calibration

On each mounting of the cantilever or the sensors, we perform a geometric calibration so that the reading of the sensors (a, b) is properly converted to the (x, z) coordinate system. The displacement of the cantilever head along the arm (y direction) is negligible since the cantilever length (L = 20 cm) is much larger than typical movement of cantilever head ( 100 µm). We physically block the head against an obstacle normal to x, make the micromanipulator move by a known distance along x and take the sensor readings  times, averaging them to record (a, b). We repeat this procedure every 10 µm up to 200 µm and perform the same along z. A typical set of results is shown in Fig. . as scattered data. The error in this plot depends on the repeatability of our measurement. For the sensors the specified repeatability is < 0.5 µm.

If we assume that the cantilever behaves linearly, then the displacements ∆x head/arm and ∆z head/arm should be given as a linear combination of both ∆a and ∆b. This can be represented by the matrix multiplication:

∆x head/arm ∆z head/arm = M ∆a ∆b , (.)
where M is a (2 × 2) matrix. The four coefficients of M -1 are obtained from a linear least square fit of data shown in Fig. .. We can then inverse the matrix to get M. The geometric coefficients are of order .-., whereas their uncertainties are of the order of 10 -5 . We can thus consider that the relative uncertainty added by the referential change is of order 5 × 10 -4 .

.. Stiffness calibration (k)

Provided the large dynamic range of eddy current sensors (from 80 nm to 800 µm), forces four orders of magnitude larger than the resolution can be reliably applied. Therefore in our case, a scale precise to 0.01 g (Denver Instrument, MXX-) is enough to calibrate the stiffness of the cantilever. We start from a position where the head is just touching the scale plate and tare the scale. Then, we lower down the micro-manipulator by a known height, which gives the deflection of the cantilever, while the force is read from the scale. The linearity of the reading is shown in 130 GPa, which is within the range of the specification. Furthermore, the cantilever stiffness is at least three orders of magnitude lower than the stiffness of the scale -measured independently to 10 kN/m -which validates the calibration method.

.. From force to stress

In order to avoid parallelism issues, the part of the head of the cantilever in contact with the gel is a spherical cap of radius of curvature R 0 = 20 mm, with a base of radius r c = 6 mm. Between the bottom of the head and the cover slip, we thus have a sphere-plane geometry of minimum gap h 0 , with h 0 typically 0.1 mm. Confocal observations will be centered on the vertical axis of the head, with a size of the field of view similar to h 0 R 0 . Therefore, within the field of view, the stress can be considered locally uniform. However, to link the force measured by the cantilever to the stress in the field of view, it is convenient to consider the effective area of a plane-plane geometry of gap h 0 , exerting homogeneously the stress applied at the lowest point of the head, so that

F = A eff σ (r = 0), (.)
where r is the distance from the vertical axis of the head, and A eff the area of this effective plane-plane geometry. Without loss of generality, we consider an elastic medium of shear modulus G and a small translation of the head δx in the shear direction. This leads to a strain distribution γ(r) = δx/h(r), and thus a stress distribution on the head σ (r) = Gγ(r). Integrating and equating the forces both in sphere-plane (h(r) ≈ h 0 + r 2 /(2R 0 )) and in effective plane-plane (h(r) = h 0 )  geometries, we find

A eff ≈ 2πR 0 h 0 ln 1 + r 2 c 2R 0 h 0 (.)
For our geometrical parameters, A eff ≈ 29 mm 2 .

.. Systematic and relative uncertainties

Systematic uncertainties on the stress come from the respective calibrations of M, k and A eff and sum up to about % uncertainties on the absolute magnitude of the stress measurable with the present apparatus. However, relative uncertainties between two measurements done with the same set of calibrations stem linearly from the resolution of the sensors, δa = δb = 80 nm for a static measurement. The resolution in stress is thus δσ = kδa/A eff ≈ 6 mPa. This is similar to catalog specifications of commercial stress-controlled rheometers (e.g. Anton-Paar MCR  with a cone-plate of radius R = 25 mm) and at least an order of magnitude better than published shear-cells [, ]. Furthermore, our apparatus has an equivalent resolution in normal stress, whereas rheometers more often have normal stress resolutions in the range of 1 Pa and shear-cells are to our knowledge not able to measure or to control normal stress. Also, from Eq. (.), we deduce that the stiffness coefficient of the cantilever scales with the diameter and length as k ∝ D 4 L -3 . In principle, we can bring down the precision to order of 1 µPa using thinner and longer cantilever. This can be useful to study the sub-critical stress behaviour in soft colloidal gels.

. Test experiments

.. Sample and surrounding solution

We built on our knowledge of acid-induced casein gels (see Chapters  and ) to use them as test samples. More specifically, we use a combination of buffering (Section ...) and diffusion (Section ...) methods to control the pH. Indeed in ICAMM we are in the perfect environment to use the diffusion method: the gel is immersed in its own solvent (in order to avoid surface tension effects); the gel-forming solution is confined under the head of the cantilever, which prevents mixing; and the head dimension is small enough to allow diffusion of H + ions in a reasonable time. However, we have an additional constraint: the surrounding solution should be slightly lighter than the gel-forming solution, otherwise the latter would not stay at the bottom.

The surrounding solution contains no casein, therefore we need a weak base to slow down the pH drop due to GDL. For this, we use acetate (pK a = 4.75). The dynamics is further tuned by the addition of a small quantity of the conjugate acetic acid. In practice, we prepare the surrounding solution by mixing 0. To prepare the gel-forming solution, we dissolve 1 %wt sodium caseinate (TCI CAS: --) in water at room temperature and mix this solution in 1 : 1 volume ratio with an acetate solution made by mixing 1.528 %wt sodium acetate-trihydrate and 0.320 %v of acetic acid in 9 : 1 ratio. The concentration in acetate is thus similar between the gel-forming and the surrounding solution. The initial pH of the gel-forming solution is .. Before the experimentation and the addition of GDL, we add Rhodamine B dye (Sigma Aldrich CAS: --) so that we have a concentration of 2 µmol in the gel forming solution. Upon addition of 2.5 %wt GDL, the pH of the gel forming solution by itself decreases to . in 20 min and then converges to its equilibrium pH ≈ 3.6, as shown in Fig. .. We choose 1 %wt sodium caseinate instead of the 1 %wt used in previous chapters in order to obtain larger microstructures. It also results in much weaker gels.

To prepare an experiment in ICAMM, we start from an empty tank. The head is pressed onto the bottom coverslip by a physical contact between the sensors and their target. Then, we add GDL simultaneously to both the gel-forming and the surrounding solutions. After 10 s mixing, we immediately pipette 200 µl of the gel-forming solution around the head.



Then we fill the tank with -60 ml of surrounding solution. Part of the filling is done at a controlled flow rate of 60 ml/h, using a syringe pump and a 0.3 mm inner diameter tube ending at the end of the tank close to the head, in order to minimize the mixing with the gel forming solution. Once the perimeter of the head is surrounded, the filling is completed manually with a pipette from the other end of the tank. When the tank is filled, we raise the head by 100 µm and wait 40-45 min for the gelation to take place after which, we put a control loop for 135 min before any test to ensure all chemical species are in equilibrium between the surrounding and the gel. Mixing of the two solutions does occur before gelation, especially at the beginning of the filling of the tank. However, the gel-forming solution is denser and stays in the hollow around the head. Furthermore, the tight confinement by the touching sphere-plane geometry prevents mixing under the head itself. When the head is raised, the composition in the gap far from its edge is the one of the pure gel-forming solution. Indeed, gelation is observed 20 min after mixing as in the pure gel-forming solution. The typical diffusion time between the axis of the head and its edges is r 2 c /(2D H + ) ≈ 32 min for H + ions. Therefore, we consider that one hour after mixing, the pH is set by the pH of the surrounding solution, slowly decreasing between . and ., which is close enough to the isoelectric point of casein to have a stable gel.

We use the same gel-forming and surrounding solutions in the plane-plane geometry (rotor diameter 4.3 cm, gap size 1 mm) of a rheometer (Anton Paar MCR ). The sample is injected in the gap and surrounded with the buffer. The peak value of the elastic modulus measured (1 % strain, 1 Hz) is G = (7.05 ± 0.25) Pa.

.. PID control

Mechanically, ICAMM is neither a stress-controlled or strain-controlled setup. Indeed in most practical cases, the stiffness of the cantilever is close to the equivalent stiffness of the studied sample. For example, a gel with G ≈ 7 Pa in our geometry has an equivalent stiffness of k gel = G A eff /h 0 ≈ 2 N/m, similar to the stiffness of the cantilever. That is why we need to introduce a feedback control on either the position of the head with respect to the ground or the deflection in order to obtain a strain-controlled, respectively stress-controlled, test. As shown in Fig. ., we can set this mode on both axis independently. In the following, we will perform only shear tests in the x direction, maintaining a constant gap thickness with a strain-control on z head/ground .

The PID controller acts by calculating the error e(t), which is the difference between the set point and the process variable, and acting on this e(t) using a proportional (P), integral (I), derivative (D) correction so as to minimize the quantity

P V = K p e(t) + K i t 0 e(t )d(t ) + K d de(t) dt (.)
where K p , K i and K d are the coefficient of the P, I and D control respectively. 



Since the micromanipulator moves in steps of finite size ( = 62.5 nm), a purely proportional controller (K p > 0, K i = K d = 0) cannot correct an error such that |e(t)| < e p , where e p = /(2K p ) is the steady-state error of the proportional controller. This error can be improved by using a larger value of K p or by introducing an integral controller which keeps adding the error over time. Each of these action can lead to overshoot and instability in control loop and hence, a further differential controller can be added, which anticipates the rate of change in e(t) and dampens it. Also, the frequency of our control loop is limited by the frequency of action of micromanipulator which is 10 Hz.

.. Step strain

To test our control loop, we do a step strain experiment and record the stress response from the deflection of the cantilever. As shown in Fig. .(a), we fix a set point at x head/ground = 0 µm for 60 s, and then update the set point to x head/ground = 3 µm. This corresponds to a shear strain of 0.03. The PID (K p = 0.1, K i = K d = 0) controller acts on x head/ground , that is to say the shear stain of the gel.

In We see clearly a progressive stress shift at the transition confirming that the gel is attached and responding to the head motion. The standard deviation of the stress measurement over 5 s is ≈ 10 mPa. This is of the order of our theoretical precision in stress.

.. Shear strain steps and simultaneous confocal acquisition

We can repeat strain steps to test the mechanical behaviour of the gel at larger strains. Here, we start the test 210 min after mixing of GDL. In Fig. .a, we show the strain γ x applied using a proportional controller (K p = 0.1, K i = K d = 0), in which set point for x position increases by steps of 10 µm (8.6 %) strain every 7 min until a shear strain of 172 % (set point not shown). The gap is kept constant at h 0 = (115.0 ± 0.3) µm by a second proportional controller with same constant, leading to normal strain fluctuations δγ y ≈ 0.25% as shown in Fig. .b. After each step, the shear stress shown in Fig. .c displays the same non-linear viscoelastic relaxation as reported in Ref. []. Because of this unsteady value, the error in stress measurement is better estimated at long time when the rate of change is the lowest. Indeed, during the last 10 s of the first step (γ = 8.6 %), the standard deviation of the stress is ≈ 5 mPa, comparable to the theoretical uncertainty predicted in Sec. .., and half of the value measured in Sec. ... We guess than this previously measured larger uncertainty was actually due the drifting mean. By averaging the last 10 s of each step, we obtain the stressstrain dependence (inset of  %, and strain softening at larger strains. Compared to Ref.

[], our gel displays a much larger strain hardening domain, due to the four time lower casein concentration. From the linear regime at strain below  %, we extract an elastic modulus G = (1.986 ± 0.085) Pa.

The error includes the systematic uncertainty (see section ..). Taking into account the G ∝ ω 0.15 scaling of casein gels [] and the low equivalent frequency of our measurements (≈ 1/7 min) the rheometer measurement at 1 Hz (see Section ..) interpolates to ≈ 2.9 Pa. The lower value measured by strain steps can be attributed to the difference in gelation procedures, normal force conditions [, ] and the difference in the rheological procedures. Fig. .d shows that the normal stress is also reliably measured, and follows the shear stress.

As a proof of concept, we performed three dimensional confocal acquisition (Leica SP, 488 nm excitation). Crucially, we use here an objective lens without immersion fluid (Leica HC PL APO 40× NA=. CORR). Previous attempts with oil or water immersed objectives have revealed that the immersion fluid was transmitting enough force from the z-scanning objective to bend the cover slip by a few micrometers and perturb the mechanical measurement. Without optical immersion fluid, there is no signature of the z-scanning cycle on the measurements shown in Fig. .. We calibrated the pixel-to-micron ratio along the z axis using a cell of known thickness (113 µm) filled with the gel-forming solution.

We start each stack at the  th minute of each step. The full 228 × 228 × 139 µm stack is acquired in 120 s and is centered on the axis of the sphere-plane geometry. In this way, we obtain a D stroboscopic view of the microstructure responding to shear. In Fig. ., we show a cut through the acquired volume in the shear (x, z) plane at four different steps: γ = 0%, 51%, 102% and 121%. In Fig. .a, we qualitatively observe that the density in protein is not constant along z: there is an adsorbed layer on both the cover slip at the bottom and on the head at the top. Furthermore a few microns below the head, the density seems to be lower than in the bulk of the gel. Between .c), we think that the fracture does not reach the edge of the head. Indeed, as detailed in Sec. .., further away from the axis of the geometry the gap is larger and the strain and stress are smaller, so that it may not be enough for the fracture to propagate.

From the confocal images, we can obtain the displacement profile in the gel (Fig. .). We use plane by plane D image phase correlation between consecutive stacks [], and accumulate these displacements from  to γ x to obtain a displacement profile ∆x(z) at each step γ x . Since the scanning direction and the shear direction are well aligned, displacements along y are at least two orders of magnitude smaller than along x and are neglected here. The image phase correlation is performed with an upsampling factor of , i.e. to within a tenth of a pixel. Thus the error in ∆x is ≈ 45 nm and the instantaneous absolute uncertainty in shear strain is ≈ 4.5%.



For small strains (see e.g. the yellow curve in Fig. .), we observe that the strain is almost homogeneous in the whole gap, with a linear ∆x(z) for 5 µm ≤ z ≤ 100 µm. However, we notice that close to the coverslip or the head, the slope is steeper for a few microns, indicating harder materials that corresponds to the adsorbed layers. Furthermore, we observe a smaller slope, i.e. a softer layer, below the head for 100 µm ≤ z ≤ 110 µm. This behaviour is conserved until γ x = 104%, with a softening of the already soft layers, probably due to damage accumulation. Finally, at γ x = 121% (pink curve on Fig. .) we observe a complete rupture of the soft layer, where the top layer remains adsorbed on the head. By contrast, the bulk of the gel recoils viscoelastically and also compresses downwards, which widens the fracture and reduces the extent of the linear zone.

This quantitative, space-resolved analysis is a proof of concept, showing that ICAMM can be integrated with confocal microscopy and yield more detailed information than what is capture by the global mechanical response alone.

.. Controlled stress

By controlling the cantilever deflection, ICAMM can also perform step stress experiments and record the strain response. Here, the control on x head/arm is ensured by a proportionalintegral (PI) controller. We use a Ziegler-Nichols method [] to optimize the constants of the controller: K p = 0.45K u , K i = 0.54K u /T u , where K u is the ultimate proportional gain at which the output displays stable oscillations and T u is the time period of these oscillation. Since oscillations of diverging amplitude quickly destroy the gel, requiring a new sample each time, we limited ourselves to a range 0.35 < K u < 0.5 and T u ≈ 40 s. Exploring from these values, we obtain a stable response without overshoot for K p = 0.2 and K i = 0.001.

As shown in Fig. .a, we fix a set point at x head/arm = 0 µm for 300 s with a compliant PI controller (K p = 0.01 and K i = 0.001), and then update the set point to x head/arm = 11.50 µm, that is to say an effective stress σ 0 = 0.79 Pa, with the tighter controller determined above (K p = 0.2 and K i = 0.001). We expect a steady state error of 0.02 Pa, further narrowed by the integral term with a time constant of the order of 20 s.

In 

.. Creep experiment

Finally, we demonstrate that the ICAMM is able to study the long time response to constant shear stress. For the procedure, after mixing GDL, we keep the gel under no control for the initial  min and then apply zero force in both shear and normal direction for the next 



≈ 135 min (K p = 0.01, K i = 0.0005). Then, we estimate the elastic modulus by performing small strain steps of 3% from 0% to 9% in step, 60 s each. A linear fit of the stress response (not shown) gives G = (1.418 ± 0.156) Pa. 210 min after mixing, we change the set point in the x direction to σ = 2.13 Pa, i.e. a deflection of 31.10 µm with K p = 0.2 and K i = 0.001. In the y direction, the gap is kept constant h o = 103.8 µm with K p = 0.1 and K i = 0.001. The actual applied stress is shown in Fig. .a. It converges to its set point in ≈ 10 s.

In Fig. .b, we show the evolution of the strain in log-log scale. We clearly observe at short times (< 10 s) the regime where the response is dominated by the convergence of the feedback loop. At intermediate time scale, the stress is properly applied and can be considered constant. We observe the power-law regime characteristic of the frequency-dependent viscoelastic response of critical casein gels γ ∼ t α with a similar value of the exponent α ≈ 0.15 (see Section .). At later times, we observe the divergence of the strain that indicates nucleation and growth of fractures. Finally, the gel undergoes full rupture.

. Conclusion

We have developed a robust setup to probe the long term mechanical response of soft materials to steady stimuli while having a direct microscopic visualization of the structural change happening inside them. The large dynamic range of the sensors can help explore materials ranging from very soft (10 mPa) to soft (10 Pa). ICAMM can control either stress or strain independently in shear and normal direction.

The drawback of our design is the long ≈ 10 s response time of ICAMM. This makes our apparatus unsuited for steady shear-rate experiments or for oscillatory rheology at high frequencies. The response time could be shortened by using a different actuator with faster electronics. However the inertia of the cantilever and viscous forces acting on the head would set a lower bound for the response time. Potentially, non-ambient temperature control could be achieved, if the implementation is vibration free. However dynamic heating or cooling might prove more difficult as the material used in the ICAMM are prone to thermal dilation.

The most promising aspect of ICAMM is its ability to obtain direct visualization of the microstructure of soft materials under well-controlled steady mechanical stimuli. We have demonstrated the use of plane-by-plane image correlation to obtain the displacement profiles during controlled strain experiment. This could be used to detect shear banding, as many other techniques already do [], but also could provide more local strain field, e.g. by performing image correlation on sub images, or by tracking tracers seeded into the sample [].

In particular, we intend to use ICAMM to understand the microscopic origin for macroscopic rheology behaviour in case of phenomena such as creep and yield in soft solids.

By reducing the radius of curvature of the head, one can reduce the effective area to sizes comparable to the field of view of a microscope. This would bring into view all relevant fracture precursors, enabling the study of fracture nucleation. It should be noted that this reduc- tion in effective area will decrease the precision of stress measurement. However, increasing the length or decreasing the cross-section of the cantilever would provide even higher sensitivities. This would also enable to reliably apply stress to extremely soft gels made of micron-size colloidal particles. In these systems, one could study at single-particle level the diffuse damage that precedes fracture nucleation.



 Dense assemblies of active particles: arrest and response

Introduction

A supercooled liquid is obtained when a system is cooled down, or compressed, beyond its freezing temperature while avoiding crystallization. This metastable state displays slow dynamics but remains ergodic. As the system is further cooled down or compressed, its dynamics slows down by orders of magnitude until the system becomes nonergodic, which means that it can explore only a small part of its potential energy landscape. Therefore, the system is not able to flow or relax anymore. It is an amorphous solid called a glass. Our understanding of this fundamental state of matter has tremendously progressed in the last decades [, ]. Studying the glass transition under nonequilibrium conditions helps us define what are general properties of glassy systems and their emergent behaviours when they are driven outof-equilibrium. This is where the field of active matter, which emerged as a new frontier of science, meets glassy physics. In the past years, the behaviour of assemblies of self-propelled objects stepped up from a mere zoological curiosity to a flourishing field of nonequilibrium physics. Rather dilute assemblies of active particles have been studied extensively by experiments and numerical simulations [, -]. Exploring the full range of densities  including ordered phases has been done in some model systems [-] but dense amorphous systems remain largely unexplored experimentally. Dense assemblies of self-propelled particles sit at the convergence of active matter and glassy physics, and should constitute a test bed for other such systems as for example biological tissues [, ]. However, it is still unclear how self-propulsion would influence the glass transition. Numerical studies have found either activity-induced fluidization [, ] or arrest [, ]. It was found that the influence of activity could not be captured by a single parameter such as effective temperature, but that the persistence time of the propulsion direction played a major role and shifts the position of the glass transition line in nontrivial ways. For example in Ref.

[] glass transition shifts to higher densities with increasing persistence time at low effective temperature, whereas the opposite effect is observed at higher effective temperatures. Besides, Ref. [] demonstrates that the monotonicity of the glass transition shift depends on the microscopic details of the activity. Most of the previous numerical studies approached the glass transition from the ergodic supercooled state. They found that despite a quantitative shift of the glass transition line, the qualitative phenomenology of glassiness remained unchanged []. However, in the present letter, we show experimentally that a different, nontrivial phenomenology emerges beyond the glass transition line in the nonergodic glass state. We study the influence of selfpropulsion on a sediment of Brownian particles, in order to access states on both sides of the nonergodic glass transition. Previous experiments have shown that, in the dilute regime, such active colloids behave like passive colloids with a higher effective temperature []. Indeed from the ergodic side, we observe a monotonic shift of the glass transition line with effective temperature at fixed persistent time. However in the nonergodic side, we find that low activity levels slow down relaxation of the glass state, followed by a fluidization at higher activity levels, an observation that cannot be rationalized from the concept of effective temperature. We explain our results by considering how self-propulsion modifies the cage exploration process. We then discuss how this well-characterized experimental observation fits into the state of our theoretical understanding of active glassy systems.

. Experimental set-up

We make Janus particles starting from gold particles (Bio-Rad #) of diameter 1.6 µm (polydispersity %) that we half coat with 20 nm platinum following the method in Ref. []. After purification and sorting, the Janus particles dispersed in deionized water are put into a well (Falcon #). Due to their high density ρ 11 g cm -3 , particles settle down to the bottom to form a monolayer. We observe their D motion from below on a Leica DMI B microscope equipped by an external dark-field lightning ring and a Basler camera (acA-um). Video data are taken at 5 and 20 Hz and analyzed using Trackpy package [].

Since the colloidal particles are charged and the ionic force of the solvent is low, electrostatic repulsion prevents direct contact between particles. We estimate an effective dia- meter of the particles to σ 0 = 2.2 µm from the position of the first peak of the radial pair correlation function in a dense passive regime. This allows us to define the area fraction as φ = 4 /(πσ 2 0 ) , where is the number density. However σ 0 /2 is larger than the hydrodynamic radius of the particles R H . From the translational diffusion coefficient in dilute conditions, we estimate R H ≈ 0.94 µm, which corresponds to a Brownian translational time τ T = (3πηR 3 H )/(2k B T 0 ) ≈ 0.9 s and a Brownian rotational time τ R = (8πηR 3 H )/(k B T 0 ) ≈ 5 s, where T 0 is the bath temperature.

Self-propulsion is made possible in dilute hydrogen peroxide (H  O  , Merck Millipore, #) solutions by a combination of electrophoresis and diffusiophoresis effects [, ]. The two halves of the catalytic splitting of H  O  occur respectively on each side of the particle, causing self-phoretic effects that drive the particle forward. In dilute regime, the mean square displacement (MSD, see Fig. .) displays ballistic motion at short times and diffusive motion at long times due to rotational diffusion. The rotational diffusion time is practically independent on H  O  concentration, and approximately equal to τ R . By contrast, the propulsion velocity increases monotonically with H  O  concentration, up to 10 µm s -1 at . v/v % concentration. We extract the effective diffusion coefficient, D eff , of this persistent random motion by fitting the long-time scale MSD and show in the inset that it increases monotonically with H  O  concentration.

Due to the large volume of solvent above the monolayer, we find that the effects of activity are stable in time over the course of several hours. In particular, purely diffusive motion could be recovered only several days after the last H  O  introduction. That is why we always wash several times our particles with milliQ water before starting a series of experiments and always increase step by step H  O  concentration from that clean state. At each step, acquisition is started  minutes after H  O  introduction to allow a steady state to be reached. In-plane sedimentation is obtained by tilting the whole set-up with a small angle θ ≈ 0.1°, see the sketch of the set-up in Fig. .(a). The monolayer of particles is thus under an in-plane gravity g sin θ ≈ 2 × 10 -2 m/s  . The sample is mounted on a motorized XY translation stage (SCAN IM x) that we program for systematic observations at different heights of the sediment with positioning repeatability below 1 µm while minimizing in-plane acceleration.

Note that the polydispersity (%) is not enough to prevent local crystallization at high densities []. As a first step, we will exclude crystalline particles from our analysis and consider only altitudes that contains less than % of crystalline particles at any activity. The definition of crystalline particles will be given in Section . where we will examine in more detail the influence of local order.

In the following we will first focus on the densest part of the sediment as we progressively increase activity to characterize its dynamics, effective temperature and density. Then, we will take a broader look at the whole sediment to characterize the system at all densities. In particular, we will characterize dynamics on both sides of the glass transition. Finally, we will focus on individual particles motion of the nonergodic region and discuss how activity affects the relaxation mechanisms.

. Dense active behaviour

Here, we focus on a large region at constant height in the sediment. In the passive case, the packing fraction in this region is φ ≈ 0.75.

The black curve in x is the coordinate in the direction of g sin θ.

(inset) Linear fit of log φ in order to obtain the ratio between the effective temperature and the Brownian temperature, T eff /T 0 . The abscissa is shifted by x 0 , the position where the profile has the maximum slope. The uncertainty is higher for the passive and low activity cases, where the density profile is sharp and the dilute region is very limited.

(b) Calibration of T eff /T 0 versus H  O  concentration.
The error bar comes from the uncertainty on the slope measurement.

plateau is typical of glassy behaviour and indicates that each particle is trapped by its neighbours. At long times, the system exits the plateau hinting that the particles manage to diffuse away from their original positions [].

As we introduce a small amount of H  O  , the plateau gets longer, as shown on curve # in Fig. . (b). This surprisingly indicates that the system is less mobile when each particle is weakly self-propelled. However, when H  O  is further increased, we recover a mobility equivalent to the passive case (curve #). At even higher concentrations, the system has more and more mobility. The plateau becomes shorter (curve #) and finally disappear (curve #) where we can observe an effective diffusion motion at long time scale.

In the inset of Fig. .(b), this nonmonotonic behaviour is quantified at more values of H  O  concentration by the value of MSD at the maximum lag time. Indeed, at concentrations of H  O  lower than ≈ 0.04 % the system is more arrested than in the passive case, but diffusion becomes more effective over ≈ 0.10 %. This non monotonic behaviour is unexpected. In the next section, we will properly characterize control parameters (activity and density) to confirm the existence of the phenomenon.

 . ABP framework

Experimentally, our particles are submitted to both Brownian and active motions, and are well described by the Active Brownian Particle model, where the D persistence time is fixed by D Brownian rotational diffusion and thus practically constant τ P = τ R /2 [], as confirmed in dilute conditions. In a previous work I was not involed in, Ginot et al. [] have shown that the behaviour of the same particles in locally dense clusters can be quantitatively explained without density dependence of the persistence time or alignment interaction between particles. This is why we consider τ P constant throughout the sediment and independent of H  O  concentration.

What is changing with H  O  concentration is the propulsion force F P . We cannot measure directly F P in a dense sediment. However we have access to an effective temperature (T eff ) measured from the dilute limit of the sedimentation profile, as described in []. From the sedimentation experiment on passive colloids [], the competition between diffusive motion and gravity g results in a density profile that has the Boltzmann form at low enough densities: φ(x) ∼ exp[∆mg sin θx/µD 0 ], where ∆m is the buoyant mass, x the coordinate in the direction of gravity, µ = 6πηR H the mobility and D 0 = k B T 0 /µ is the diffusion coefficient. Following Refs [, ], in the case of self-propelled particles D 0 can be replaced by the long time effective diffusion coefficient D eff (φ → 0). Following [, ] we use the case of spherical particles undergoing both Brownian and self-propelled motions in D but with two degrees of rotational freedom:

D eff (φ → 0) = D 0 + 1 6 F P µ 2 τ R . (.)
Equivalently T 0 can be replaced by an effective temperature such that k B T eff ≡ µD eff (φ → 0). This amounts to viewing a dilute active system as "hot colloids" with an effective temperature [].

T eff T 0 = D eff D 0 = 1 + 2 9 F P R H k B T 0 2 . (.)
This equation relates directly the propulsion force anywhere in the sediment to measurements performed in the dilute limit of the density profile. In the following we will use T eff to characterize activity levels throughout the sediment, including the dense regime.

For each H  O  concentration, to characterize the very same experimental conditions, we acquire data at two fixed locations: one near the bottom (dense regime, typically φ > 0.75, see Fig. The particle density rises by about % from the passive to the highest activity and we observe that the inter-particle distance also becomes smaller (inset). Compaction could be due to purely chemical effects caused by the increase of H  O  concentration, or could be a general feature of self-propelled particles confined by an external potential. More probably it is a combination between these two factors, as we observe that a sediment of uncoated gold particles does compact with H  O  concentration but by only %. Such compaction is consistent with the effective attraction some of us observed in the same system at lower densities []. Attractive interactions can significantly alter the glass transition scenario of passive systems in isochoric conditions [] but has no influence if the system is able to adjust its volume (isobaric conditions) []. Here our system is not isochoric but confined by gravity, therefore, if the effect of activity is solely an effective interparticle attraction, we expect a trivial mapping of dynamics onto the purely repulsive passive system. In any case, glassy phenomenology is extremely sensitive to density variations and we have to control for this parameter before reaching to any conclusion. We thus perform another set of experiments where we observe the whole density profile. As shown on At φ = 0.65 ± 0.02 < φ g (T 0 ) (Fig. .a), the shape of the MSD evolves monotonically with T eff /T 0 . The passive case displays a subdiffusive plateau, which level increases with activity until total disappearance at the two highest activities. The increase in plateau height from the passive case to T eff /T 0 = 1.4 and 1.7 indicates wider cages.

At φ = 0.72 ± 0.02, the dynamics of the system shows stark differences. The height of the plateau in the MSD (Fig. .b) does not depend on activity at low levels, hinting at a constant cage size (≈ 0.3σ 0 ). However, the exit of the plateau does depend on activity in a nonmonotonic way. Activity T eff /T 0 = 1.4 exits the plateau later than the passive case. The next activity exits earlier than 1.4 but still later than the passive case. The two last activities show no plateau. We thus recover the nonmonotonic behaviour, even at constant density.

At φ = 0.72 ± 0.02, weak self-propulsion is not enough to enlarge the accessible area. It reveals that each particle faces steep energy barriers. Particles are already as close as they can be. Since their interaction potential is steep at short distances, the extra energy afforded by T eff /T 0 < 2 cannot push the particles significantly closer, which shows on the constant plateau level of MSD. By contrast at φ = 0.65 ± 0.02 the particles are relatively further apart, feeling a softer confinement. Therefore, even weak self-propulsion can push against these barriers and enlarge the accessible area, which shows on the increasing plateau level of MSD.

To characterize the relaxation dynamics, we define a microscopic overlap function w i (t 0 , ∆t) = Θ(a-r i (t 0 +∆t)r i (t 0 ) ) that indicates whether particle i has not moved further than a = 0.3σ 0 between times t 0 and t 0 + ∆t. The value of the threshold distance a corresponds to the height of the plateau of the MSD and thus to the cage size. Here Θ is the Heaviside step function. In each slice, we compute the overlap function [], F(∆t), which tells us the ratio of particles that have not moved:

F(∆t) = 1 N N i=1 w i (t 0 , ∆t) t 0 . (.) In Fig. .(c
) and (d) we show F(∆t) at various activities and at the two same densities. At both densities, the passive case (the black curve) shows two-step relaxation, with almost complete decay of F(∆t) within the experimental time. The plateau at the intermediate ∆t indicates that each particle is trapped by its neighbours. At long times, the system exits the plateau hinting that the particles manage to diffuse away from their original positions. This is a typical glassy behaviour. At high levels of activity (T eff /T 0 = 3.0 and 4.0), the plateau disappears and the system completely relaxes. At φ = 0.65 ± 0.02, the second relaxation step of F(∆t) decreases as T eff increases, showing a monotonic response to activity. By contrast, at φ = 0.72±0.02 the response is nonmonotonic. As we introduce a small amount of activity, the plateau gets longer than the passive case. However, when we increase further the activity, the plateau shortens again (T eff /T 0 = 1.7) and finally disappears at high activity levels (T eff /T 0 = 3.0 and 4.0), resulting in decays faster than the passive case.

We have thus confirmed at a well-controlled constant density the existence of a non monotonic behaviour with T eff of both MSD and overlap function. We call this nonmonotonic behaviour a "back and forth" behaviour. The "back" behaviour is when the system relaxes slower than the passive case, whereas in the "forth" regime the relaxation is enhanced by activity. The "forth" behaviour seems rather straightforward: it happens when a particle has enough propulsion force to push its neighbours and move inside the dense phase. However the "back" behaviour is less intuitive and more intriguing. In the following, we will try to understand in which conditions the mobility of the system does depend nonmonotonically on the activity level.

. Glass transition

In an ergodic system, the relaxation function F(∆t) should depend only on the lag time ∆t, not on the reference time. By contrast, the relaxation of a nonergodic system depends on the waiting time, a phenomenology called ageing. At φ = 0.65±0.02 there is no significant difference between the two waiting times. We thus confirm that at this density the system is ergodic. It is where we found that the relaxation time responses monotonically to activity level. At φ = 0.72 ± 0.02 where we observe the nonmonotonic behaviour, the relaxation function depends on the waiting time. We thus show that the system is nonergodic at this density. It suggests that the nonmonotonic behaviour could appears when crossing the ergodic to nonergodic limit, i.e. the glass transition.

In order to characterize the system across the glass transition, and to characterize the dependence of glass transition on activity, we perform systematic analysis of the dynamics function of density and activity. We divide the sediment into thin slices perpendicular to the gravitational gradient, see Fig. .(b). We set the width of each slice so that every slice contains approximately the same number of particles (1000 ± 100 particles per slice). We can compute all static and dynamic quantities function of the density, parameterized by the altitude x. Crystalline particles are excluded. At high densities, we observe a two-step relaxation typical of glassy dynamics. We note that contrary to systems with a steep repulsive potential, here the height of the plateau depends on density. The plateau completely disappears at the lowest density, and F(∆t) relaxes in a single exponential step indicating nonglassy behaviour. We define the relaxation time τ when half of the particles have already relaxed, i.e., F(τ) = 0.5 (horizontal dashed line). Beyond glass transition collapse is lost and saturation level follows a nonmonotonic trend with activity. Inset: Ideal and operational glass transition volume fractions, φ * and φ g respectively, function of activity.

On Figure .(a) we plot the values of τ in the density-activity plane. We can see that before the glass transition, the relaxation time of the ergodic supercooled liquid decreases with the distance from the glass transition line. However, this trend does not hold in the non-ergodic glass phase. In the phase diagram, we draw two vertical lines corresponding to the two densities in Fig. .. We then follow both lines starting from T eff /T 0 = 1 and illustrate the resulting normalised τ in Fig. .(b). At φ = 0.65 (blue line, triangles), the original passive system is an ergodic supercooled liquid. We observe a monotonic decrease of τ with increasing T eff . By contrast, when starting from a passive state that is non-ergodic at φ = 0.72 (red line, circles), we observe the non-monotonic behaviour that translates the rise and fall of the saturation level of the relaxation time. τ increases at low levels of activity and then decreases after the crossing of the glass transition line to the ergodic phase as the activity increases further. For nonzero activities, the rise of τ is well fitted by the expression

 . Mapping active glassy behaviour to equilibrium

τ(φ, T eff ) τ(T eff ) = exp A (φ * (T eff )/φ) -1 , (.)
where A ≈ 0.19 is independent of activity, whereas τ(T eff ) and φ * (T eff ) are activity-dependent parameters, respectively the relaxation time in the dilute limit and the packing fraction at which the fit diverges, often called the ideal glass transition packing fraction. In Fig. .(b) we observe the collapse of all activities onto (Eq. .). However, this collapse does not hold beyond the glass transition, where τ only depends weakly on φ. We define the operational glass transition density φ g (T eff ), as the packing fraction at which the system becomes nonergodic. The inset of Fig. .(b) shows our estimate of φ g as where the data departs from the master curve for each activity. For T eff /T 0 = 3.0 and 4.0, φ g (T eff ) cannot be defined because the ratio of crystalline particles reaches % without deviation from the master curve. However we observe that the fitted divergence φ * (T eff ) increases monotonically with activity, which is consistent with theoretical expectations for glassy systems with an additional active force at constant persistence time and increasing effective temperature [-].

The collapse of the supercooled regimes in Fig. .(b) indicates that φ * and τ are enough to describe the physics of glass transition below φ g . However, above φ g , in the nonergodic regime, τ/ τ saturates. This saturation value is different at each activity. It suggests that τ(T eff ) and thus an effective temperature is not enough to describe the effects of self-propulsion on the nonergodic glass. Moreover, this saturation value gives a hint of the nonmonotonic behaviour: an order of magnitude jump between the passive case and the first nonzero activity, and then a decrease with increasing activity. We are thus confident that the nonmonotonic phenomenology originates directly from the particle self-propulsion and is neither a pure effect of (attraction induced) compaction nor reducible to an increase in (effective) temperature.

We have cornered the nonmonotonic response to activity beyond ergodicity breaking. Glass is a nonergodic state of matter, but so is a defective crystal or a polycrystal with quenched disorder. In the next section, we examine the role of the local structure and study the dependence on activity of the relaxation in non ergodic ordered states. . Crystalline order

.. Effect of local structure

The polydispersity of the particles and the presence of doublet or triplet aggregations are not sufficient to completely prevent crystal nucleation at high enough density. We quantify the degree of local ordering using the hexatic order parameter []:

ψ 6,i = 1 6 j∈n i exp(6iθ i,j ) (.)
where n i is the set of -nearest neighbours of the particle i and θ i,j is the angle of the vector between particle i and particle j with respect to the reference frame. Particles with |ψ 6,i | > 0.8 are considered crystalline. In Fig. .(a) we show the ratio of crystalline particles function of density. In the passive case, the ratio of crystalline particles raises from % at φ = 0.65 ± 0.02 to % at φ = 0.72 ± 0.02. As the activity increases, the crystalline order decreases monotonically. We verify that due to the strong gravity confinement in our system, a crystal nucleus has the same density as its amorphous surroundings. Therefore each slice has a welldefined φ.

Even when local order and density are decoupled, the presence of local order can have a large influence on the dynamics of glassy systems []. However, here we find little dif- Our initial choice of excluding crystalline particles from our analysis was careful but had little impact. Indeed, we find that our phenomenon of interest, the non monotonic behaviour, seems insensitive to the local structure. In the following, we will analyze the dynamics of fully polycrystalline slices to look for a similar nonmonotonic behaviour.

.. Relaxation of active polycrystal

Here, we explore the microscopic details of the relaxation mechanism in a polycrystalline slice width ≈ 60σ 0 . The packing fraction is approximately uniform with φ = 0.85 ± 0.03. At this high density, the system is highly ordered and % of particles are crystalline, as shown in the map of |ψ 6,i | on We can thus clearly distinguish crystalline domains of consistent orientation separated by sharp grain boundaries where sample impurities concentrates (low |ψ 6,i |). This slice is indeed polycrystalline and not hexatic. As we increase activity, there is no obvious difference between the passive and low activities in terms of ordering. Furthermore, the grain boundaries, pinned by sample impurities, remain stable. The lost of ordering can be noticed only at high enough T eff /T 0 . Here the percentage of crystalline particles drops from % in the passive case to % for T eff /T 0 = 3.0 and to % for T eff /T 0 = 4.0.

Such a polycrystal with pinned grained boundaries is nonergodic. This is a different situation than a previous study by Briand, Schindler and Dauchot [] where alignment interactions between particles can result in an ergodic, ever flowing crystal state. Here, we are not interested in the shift of the phase boundaries [] or on the stability of the crystal lattice at densities lower than close packing [, ]. We focus on the relaxation dynamics in a time is defined is at F = 0.5 (dashed line). The dotted lines at T eff /T 0 = 1.0 and 1.7 are the extrapolation of a stretched exponential fit of F(∆t) to obtain τ. For T eff /T 0 = 1.4, F(∆t) has not exited the plateau and the extrapolation is not applicable.

nonergodic state that append to be polycrystalline. This confirms that such a nonglassy system actually displays the same nonmonotonic phenomenology.

.. Microscopic mechanisms

In order to probe how the system relaxes, we look into the orientation of particle displacement. To compute displacements u i , we focus on the time interval ∆t = 32τ R , which corresponds to F(∆t) exiting from the plateau in the passive case (see Fig. 
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Furthermore, the boundaries between the domains seem sharper at higher activities. We are able to observe shear zones where two zones of opposite orientation slide past each other (rd panel), and vortices where the particles rotate around a relatively immobile center (th panel). The position, shape and size of these rearrangements bear little correlation with the crystalline grains and grain boundaries identified in Fig. ..

Next, we characterize further the spatial correlation of orientation displacement. For each particle i, we count the number of its neighbours j that have moved to the same direction after ∆t:

o i = j Θ u i • u j | u i || u j | -0.5 , (.)
where Θ is the Heaviside step function. . This hints toward relaxation processes where neighbouring particles move together in the same direction. Such collective motions are characteristic of active matter and have been observed from dilute [] to dense crystalline systems [] provided explicit alignment interactions. However here oriented domains are present even in the passive case. This proves that the mechanisms (e.g. dislocation, defect, or grain boundary motion) that makes directed motion emerge from microscopically isotropic motion are already present in the passive polycrystal. Again, no explicit alignment interaction are needed to induce collectively directed behaviour.

To characterize how collective relaxation modes affect the structure of the system, we look for bonds broken over ∆t. A bond between particle i and particle j at time t 0 is defined if (i) particle j is one of the -nearest neighbours of i and vice versa, (ii) the distance r ij is shorter than 1.5σ 0 . A bond is broken between t 0 and t 0 + ∆t if (i) it belongs to the bond network at t 0 , (ii) it does not belong to the bond network at t 0 + ∆t, (iii) both particles i and j are tracked at t 0 + ∆t. The broken bonds are presented by red lines in Fig.

.(b).

There are very few broken bonds during the relaxation except in shear zones (panel ). It means that at high activity particles move in a correlated manner, such that relative positions between neighbours almost do not relax, despite fast relaxation of absolute positions.

.. Correlation lengths

In Fig. .(b) we notice qualitatively that state points with faster relaxation seems to have larger correlated domains. To make this observation quantitative, we measure the characteristic size of these domains. First, we define the domains of the correlated particles (o i ≥ 4) and then we define the graph of all particle bonds such that each particle is bonded to its six nearest neighbours. Next, we take the subgraph of the high o i domains and split it in connected components []. This defines correlated domains. For each correlated domain k, we measure its radius of gyration in the y direction (perpendicular to g sin θ):

k = 1 N k i∈k y 2 i -( i∈k y i ) 2 , (.)
where N k is the number of particles in cluster k. The probability distribution function (PDF) of k of all clusters at all time for various activities are displayed in Fig. .a. For ( k /σ 0 < 5), the distributions at all activities collapse. Compared to the distribution in the passive case, low activities are deprived of large oriented domains, whereas high activities have an excess probability of large oriented domains. Above k /σ 0 ≈ 10 the distributions follow a nonmonotonic behaviour. This is confirmed by the characteristic size of the domains, that we define by a weighted average of k on all clusters at all time:

= t 0 k N k k t 0 k N k . (.)
As shown on Fig. .(b), displays a nonmonotonic evolution with activity consistent with the behaviour of the relaxation time: a drop of a factor  from the passive case to the lowest activity, and then a progressive increase at higher activities. This nonmonotonic response is  not captured by the size ξ of the slow domains (defined in the same way as , except that the % slower particles are considered instead of the particles where o i ≥ 4). ξ is almost constant, with a possible decreasing trend. From Fig. .(c), we can estimate the relaxation time τ by extrapolating F(∆t). We fit the tail of F(∆t) by a stretched exponential A exp(-t/τ α ) β and read τ where the fit crosses the threshold 0.5. This procedure is impossible for T eff /T 0 = 1.4 where F(∆t) does not decay significantly. For all other activities, we can plot τ function of the length . Fig. .c shows that evolves in reverse to what one would expect for a -point correlation length in glassy systems. Larger -point correlation implies longer relaxation in passive glassy systems [], in active supercooled liquids [], and in active crystals with alignement interactions [].

Here, large corresponds to fast relaxation. Indeed, measures the size of domains with correlated orientation of displacement, associated with collective rearrangements, whereas -point correlation measures the size of cooperatively rearranging regions. A large domain moving collectively in the same direction enhances relaxation, whereas a large cooperative region size implies a larger energy barrier and thus longer relaxation. This hints to the existence of relaxation mechanisms specific to self-propelled particles that involve collective directed motion instead of cooperative rearrangements.

The speedup of the dynamics at high activities can be explained by the rise of collective motion. However the delayed exit from the plateau, characteristic of the 'back and forth' phenomenology occurs when collective motion is still negligible. Therefore, as in the nonergodic glass, our results in the polycrystal point to a drop in efficiency of cooperative rearrangements between the passive case and our lowest activities.

. Model: Deadlock by Emergence of Active Directionality

We have thus confirmed that the addition of self-propulsion onto a nonergodic glass or a nonergodic polycrystal actually hinders its relaxation. In the following we explain by a scaling argument how a nonergodic system of weakly active Brownian particles can relax slower than a nonergodic of passive Brownian particles, and why the transition between the two behaviours is so sudden.

In general, there are two relaxation mechanisms in any dense systems: (i) isotropic cooperative motion that involves diffuse broken bonds and (ii) collective directed motion that involves no broken bonds inside the correlated region, but at domain boundaries. We know that a passive glass relaxes only by the first mechanism []. When self-propulsion is introduced, particle motion acquires persistence and the second mechanism is made possible by the particle directed motion. At high enough activities, collective motion is dominating: relative positions relax only at very long times (see the few broken bonds in Fig. .b) but absolute positions relax faster than in the passive case (Fig. .). What is not obvious is the drop of effectiveness of cooperative movement at the very first nonzero activities.

For cooperative rearrangements to occur, an energy barrier of height E needs to be crossed,
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thus the relaxation time is expressed in an Arrhenius form as τ = f -1 exp (-E/k B T eff ). Here, we suppose that in the limit where T eff is close to T 0 the extra energy provided by self-propulsion is not altering significantly the argument of the exponential. However, the attempt frequency f might be altered by the process of space exploration. Below, we replace the many particle problem by the simpler problem of a single particle that explores a cage of size a = 0.3σ 0 . f is then the frequency at which the test particle is coming close to the lowest barrier in the cage. A Brownian particle explores its cage by translational diffusion in a time τ B cage = µa 2 /(4k B T 0 ) ≈ 0.1τ R . Recent simulations of glassy active particles consider only a self-propulsion force, without translational diffusion [-]. The persistent random walk of such a particle can be characterized by the magnitude of this force F P and its persistence time, here τ R /2 [, ]. Since the cage size is shorter than the persistent length, the elementary time of cage exploration is the persistence time, τ P cage = τ R /2. It implies that

τ P cage τ B cage = 8 3 R H a 2 . (.)
This ratio depends only on the softness of the potential and is about 5 in our case. A non-Brownian self-propelled particles explores its cage five times slower than a Brownian particle. Experimentally, our particles are submitted to both translational Brownian motion and propulsion forces. For times shorter than the persistence time, a particle thus undergoes random motion biased in the propulsion direction. This situation is analogous to the sedimentationdiffusion problem [], replacing the weight by the propulsion force. Along the propulsion direction, the particle probability density follows an exponential law of characteristic length λ P ≡ k B T 0 /F P , analogous to a sedimentation length. From (Eq. . The propulsion force dominates the cage exploration for Pe > 1, that occurs above the effective temperature T * eff /T 0 = 1 + (2/9)(R H /0.3σ 0 ) 2 ≈ 1.45, that corresponds to the lowest activity we can achieve experimentally. Therefore, even at our lowest nonzero activity, diffusion is facing an uphill battle to explore the cage in the direction against propulsion. There is thus a practical discontinuity between our passive case, where the cage is explored by translational Brownian motion, and our first active case ruled by the physics of self-propelled particles. Between these two cases, the attempt frequency to cross energy barriers in the glass phase is typically reduced by a factor of 5.

. Discussion and conclusion

To summarize, we have exhibited a dramatic change in the response of dense assemblies of colloids to low levels of self propulsion at the glass transition. We have found experimentally  that the approach to glass transition in an active system can be mapped onto the behaviour of a passive supercooled liquid of soft colloids. Indeed, while the system is ergodic, the relaxation time decreases monotonically with activity, in a way that is completely explained by the increase of effective temperature.

However, we have observed the failure of this mapping beyond the glass transition, characterized by a nonmonotonic response of the relaxation time to an increase of effective temperature. In the nonergodic glassy state, the relaxation time unexpectedly increases in the very first nonzero activity and then decreases at high enough activity for collective motions to kick in. Furthermore we have shown that this phenomenology is not restricted to the amorphous glass, but also observed in polycrystalline regions where grain boundaries are pinned. There, we are able to link the relaxation time to the size of collective motion. We attribute the observed slowdown to a drop in efficiency of cooperative relaxation due to the onset of directed motion and name this phenomenon "Deadlock from the Emergence of Active Directionality" (DEAD). The onmonotonic behaviour is due to DEAD followed by the rise of collective motion at higher activities.

This argument is valid in any nonergodic situation that can be modelled by cage exploration and escape. This is indeed the case of both the glass state and the pinned polycrystalline state that are nonergodic, contrasting to the ergodic liquid. Therefore, we predict that ergodicity breaking is sufficient to preclude mapping to equilibrium of active systems.

The magnitude of the slowdown is larger than the factor of  found by our scaling argument taking into account space exploration of a single particle. This simple one-body model does not predict either the drop in the size of oriented displacements domains. We conjecture that the many-body nature of cooperative motion has to be taken into account to reach quantitative agreement. A reduction in attempt frequency at the single-particle scale may translate non-linearly into a larger relaxation time at the level of the cooperative region. Unfortunately recent extensions of glass theories to active matter rely explicitly on effective single-particle models []. Furthermore, we have to take into account that the number of degrees of freedom per particle jumps from  in the Brownian case, to  in the self-propelled case where orientation become important. In other words, directional motion adds N degrees of orientational freedom that increase even more the complexity of the landscape and slows down relaxation. Our argument on propulsion-induced confinement shows that the switch from isotropic to oriented system is effective at very low activities. Our work calls for theoretical or numerical investigations in the range of activities where Brownian motion and self-propulsion compete, with a focus on nonergodic states.

Later developments Since the publication of our papers, Natsuda Klongvessa performed simulations of D Active Brownian Particles under the supervision of Takeshi Kawasaki in Nagoya. The results are not yet in publishable form and need to be confirmed. However we can already say that the physics of ageing, i.e. activity-enhanced ageing, seems to be important. Indeed, there seems to be a link between the nonmonotonic phenomenology observed  at a given waiting time and enhanced evolution of an active system towards deeper minima in its energy landscape. Although these results seems to contradict the DEAD model, they sill open the door to actively arrested materials that become stable faster thanks to selfpropulsion.

  Projects

. Mechanical properties of active materials

In Chapter  we have focused on the behaviour of active sediment without external perturbation. Our questions came from thermodynamics or out of equilibrium statistical physics. In the future, I will adopt a new point of view on active systems by considering them as materials. My goal is to characterize their mechanical properties and explain how they differ from passive materials.

Previous studies have investigated the rheological properties inside living cells [-] and in dilute bacteria suspensions [, ], revealing anomalous behaviours like enhanced diffusion [], 'swim-thinning' [] or an effective viscosity lower than the viscosity of the solvent []. Seeding colloidal gels with a minority of active particles can decrease their elasticity []. Theory and simulations are only starting to characterize the shear response of active glass [].

In this context, the Janus particle system presented in Chapter  offers a unique opportunity to study the rheological behaviour of dense phases of self propelled particles. However, the geometry of the system, a monolayer, and its limited size (at most a mm 2 ) makes compulsory the use of microrheology. In order to be able to explore large deformations, we have tested various ways of performing active microrheology on that system.

.. Attempts to perform active microrheology

Probably the first idea that came to our mind to drag a probe through a monolayer is optical tweezers, widely used in microrheology [, , ]. Holding a probe particle at the focus of a laser beam while moving the sample around is well adapted to control the position and velocity of the intruder, or in rheological terms the strain and the strain rate. In the right range of trap stiffness, the deviation of the probe from the center of the trap can give access to the force, therefore the stress response. However a stiff and localized trapping is not well adapted to constant force, constant stress, tests []. Furthermore, in preliminary experiments Natsuda Klongvessa and Isaac Theurkauff have found that the focussed laser spot induced activity-dependent attraction between the probe and the metallic Janus particles. This effect makes results obtained with optical tweezers extremely difficult to interpret, and we had to abandon this method. In Section . we have seen the test of a simpler actuation method: gravity. If a single glass bead is dropped above the sediment, the same in-plane gravity that creates the sediment applies a force on the glass bead that then moves in the sediment, see Fig .(a). We were able to study the motion of the glass bead and, using the DiRDiP formalism explained in Section .., characterize the response of the colloidal monolayer, both in the passive case (see Section .) and at various activities. However this method is limited by its lack of reproducibility (a bead can be dropped only once), and by its unsteadiness. Indeed, the bead moves parallel to the density gradient, and thus constantly changes environment. The results of this methods are thus difficult to interpret and have not reached a publishable form yet.

More recently, we have managed to design a much more reproducible setup sketched in Fig  .(b). The intruder is rigidly attached to the lab frame, and the sample is moved around. Designing a microscopic intruder macroscopically attached to the lab frame was a challenge met during the internship of Guillaume Duprez with the help of Aderito Fins Carreira. This setup is very promising, as it allows reproducible translations of arbitrary angle and velocity, which tremendously reduces the noise of DirDiP analysis, but does not allow a measure of the applied force.

.. Magnetic microrheometer

Since the intership of Michaël Dos Santos in , we are working on our method of choice: magnetic microrheology. Inspired by Zell et al. [] we have produced and tested a first prototype made of four coils in a cross surrounding the sample, see Fig. .(b). We were able to tests several kind of microscopic magnetic intruders both in rotation and in translation.

However, this setup has quickly shown several limitations. First, the generated magnetic fields have a low magnitude (> 5 mT), and the field gradients (a few 0.1 T/m at best) are too weak to exert translation forces. Furthermore, the coils could not bear the necessary electric current for more than a minute before heating dangerously. In addition, the D printed 
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plastic that supports the coils creeps under its own weight, jeopardizing the reproducibility. Finally, the crowded geometry of the setup makes difficult the low-angle lightning necessary to observe our reflecting particles in dark field mode that offer the best contrast. That is why since the beginning of the thesis of Adérito Fins-Carreira, Gille Simon and I have designed a new magnetic microrheometer, see Fig . (c-e), that borrows from the latest advances in the domain [, ]. Contrary to the setup of Zell et al. [] the magnetic field lines are conducted by pure iron pieces on their whole path, except at the very center of the setup. Indeed, the iron cores of the coils extend below the sample, leaving only a 5 mm gap for the microscope objective. Guiding the field enables much more intense magnetic field gradient at the center (≈ 10 T/m), and makes it insensitive to metallic pieces in its environment. Therefore the setup support can be rigid. In addition, we designed the coils to limit the heating by a few degrees. Finally, we have designed a transparent piece mounted around the objective to guide light though the crowded setup toward the sample with a low angle, see The magnetic microrheometer is still under construction and cannot be described here in more details. It will allow both translational motion and rotational motion at imposed torque. It has been designed with the self-propelled Janus particle system in mind, but its domain of applicability goes beyond this specific system. Since it can handle any system that can be set on a standard coverslip, I will use it in the future to compare the response of Janus colloids with biological tissues (starting PhD thesis of Guillaume Duprez in collaboration with Hélène Delanoë-Ayari and Cécline Cottin-Bizonne), or the study of the micromechanics of soft materials.

. Micromechanics of gel rupture

.. State of the art

Fracture nucleation in soft solids

We know that the growth of slow cracks is controlled by two length scales: L n the size of the region around a crack tip where large, nonlinear strains occur; and L p the size of the process zone, the region around a crack tip where damage occurs [, ]. Below the size L = max(L n , L p ), typically a few times the mesh size in a colloidal gel, classical linearelastic fracture mechanics (LEFM) fails. Recently, Kim et al. [] have shown in polymer gels that in this regime bond breakage was not localised on a well-defined crack tip. By definition, nascent fractures are smaller than L and cannot be described by LEFM. In rubber, fracture nucleation is often equated with cavitation from a preexisting defect [-]. The phenomenology of rupture of adhesion is closely related to fracture [] as it involves the same cavitation and damage-mediated growth phenomenology [, ]. Furthermore, the  onset of frictional motion is well described by the theory of brittle fracture [].

We do not know what physics rules fracture nucleation in gels. Gels differ from rubbers on two crucial points. First, gel structure is heterogeneous on much larger scales, not completely negligible with respect to L. Second, the presence of an incompressible solvent impedes cavitation and couples crack opening and viscous dissipation []. Thus, it is not clear what a fracture nucleus should be, where it should emerge and in which conditions it will grow.

Subcritical rupture (= slow rupture = time-dependent rupture)

We know that a small load applied during a short time can leave a material seemingly undamaged, however the same load applied longer to the same material can break it []. Since the early s this phenomenon is attributed to thermally activated rupture processes []. Importantly, subcritical rupture is not only associated to viscoplastic materials, the phenomenon is also observed in brittle materials that are purely elastic up to their rupture []. Early models of rupture in brittle materials ignored the fact that rupture is usually a gradual process, involving many elementary rupture events. More recent models consider the nucleation of a single fracture that has to reach a critical size to become unstable. Below the critical size, the growth is slow and thermally activated, with barriers that different models consider either global [, ] or local [-]. However, by focussing on a single crack, all these models neglect the progressive accumulation of diffuse damage before complete macroscopic rupture of a sample [, ]. In practice, they describe well a sample with a notch but are blind to the nucleation of multiple fractures and their competition. In this context the power law dependence of the failure time on the the applied stress found in Chapter  for casein gels is at odd with the exponential scaling predicted by the above models. Our scaling is more reminiscent of the phenomenological Basquin law of fatigue in heterogeneous solids [, , ].

Recent theoretical efforts are based on a family of simplified models called "fibre bundle model" (FBM). These models originally described the rupture of cotton yarns and considered parallel fibres under a common load []. As the weakest fibre breaks, the load is shared by fewer fibres until total rupture of the bundle. Beyond fibres, FBMs are good toy models to take into account the discreetness of matter, either at the level of atomic bonds or at the level of the microstructure for heterogeneous materials like gels. To describe a gel network made of interconnected strands, FBMs were modified to add local coupling between the fibres: only the neighbours of a broken fibre share its load. For instance, a FBM that combine elastic fibers with a local yield strain and take into account damage accumulation in each fibre predicts the Basquin law and opening of fractures [, ]. In this model, the non-linear rheology of the individual fibre sets the response of the bundle. However Jagla [] has shown that the way fibres are locally coupled has a crucial influence on the response of the bundle. Bouzid and Del Gado [] have shown in coarse-grained simulations of gels that network topology governed the non-linear response before damage: changing only connectivity could lead to strain hardening, strain softening or even brittle failure due to qualitatively different stress localisation mechanisms.

We do not know the proper way to describe a priori slow rupture in any given material despite several models proposed over the years []. Dissipation by diffuse damage or crack interaction are still open questions. In the context of FBM, we do not know how to model individual fibres or their coupling to be able to accurately describe gel rupture, i.e. diffuse damage, stress localisation or redistribution, and crack opening.

Rheology of colloidal gels

We know that mechanical properties of colloidal gels depend on shear history [, ] and on heterogeneous distribution of internal stresses []. Colloidal gels with weak reversible interactions, when properly pre-sheared, display a yield stress fluid behaviour, that is a reversible yielding and no fracture [, ]. Sprakel et al. [] have specifically studied delayed yielding under subcritical stress, showing two distinct exponential regime in the dependence of the delay time on the applied stress. In Chapter  we have seen constant subcritical stress experiments on casein gels that display irreversible fracture. These gels are thus soft solids, like polymer gels but unlike presheared colloidal gels. Ultrasound velocimetry measurements with a resolution just above the pore size of the casein network showed little if any plasticity before fracture opening. This scenario is reminiscent of brittle fracture. Recently, Aime et al. [] have demonstrated by spectroscopy the existence of microscopic precursors to macroscopic failure.



We know how to strain colloidal gels suitable for single-particle studies: step strain [, ], start up shear [], constant shear rate [], small and large amplitude oscillatory shear [, ] have been applied in rheometers or shear cells coupled to confocal microscopes. We now that load-bearing structures are lost after yielding [].

We do not know how to reliably measure the stress in such systems. Indeed particle-level studies need large particles which implies extremely soft gels and thus stresses below the resolution of rheometers. Therefore, we do not know how to apply constant stresses. Investigations of subcritical rupture have been limited to particles too small to enable tracking [, ]. Furthermore, start up shear, oscillatory strain or step strain protocols prevent following trajectories during shear. Therefore we do not know what are the processes leading to structural changes under shear, or what are the precursors to failure. Numerical simulations naturally follow trajectories and can impose stress, but sometimes do not agree with experiments in terms of measured structural change or even in terms of predicted global mechanical response []. We do not know why some colloidal gels are brittle and show macroscopic fractures whereas others are ductile. Therefore, we do not know how to design colloidal gel mechanical response.

.. Objectives and methods

I want to clarify the mechanisms behind slow rupture:

• How does diffuse damage proceeds? Are some structures prone to damage (weak points)?

• What is a fracture nucleus? How to distinguish it from a large heterogeneity?

• How does stress localise? What causes the transition from diffuse damage to crack growth? • How does crack opening couple with viscous dissipation in the solvent? • What are the important relaxation and dissipation modes? In the past years, I have invested a lot of efforts in building the experimental tools to allow direct microscopic observation of the process leading to fracture nucleation in gels. The tensiometer based apparatus presented in Chapter  is able to apply global subcritical stress on gels that have microstructure large enough to be observed in real space. During the PhD thesis of Akash Singh, we have observed localised irreversible events and automatize their detection using image correlation techniques, as shown in Fig. .. Accumulating statistics and further analysis should clarify how these events are related to fracture nucleation.

The magnetic microrheometer described in Section .. will enable a different approach, more localized in space and time. Embedding a magnetic intruder in a gel, we will be able to exert a localised stress that will induce localised rupture at a place known in advance. Therefore rather than fishing rare events in a large field of view, we will be able to study at high magnification the minute details of a single breaking event. In particular, we will be able to characterise the dissipation mechanisms at the strand level.



Despite all the groundwork done, the future of this project after the end of Akash Singh's PhD thesis depends on future funding and recruitment. Hopefully the same groundwork will be helpful for the projects presented in the following sections.

. Mechanical characterization of nanostructured vitrimer

Adhesives are typically categorized in two distinct classes: structural adhesives are stiff and tough materials, typically obtained from low viscosity precursors undergoing gelation or crystallization; while pressure sensitive adhesives (PSA) are non-reactive networks of soft and viscoelastic polymers, with adhesion mechanism mainly driven by a high dampening behaviour leading to an effective energy dissipation during crack propagation. [, ] A significant part of the understanding of the latter [, ] was obtained through a mesoscopic description of adhesive properties and their relation to the structuration and viscoelastic properties of these polymers. Three major requisites must be met: . the material should be highly dampening (0.3 < tan δ < 0.5) over a large temperature window as this enables proper energy dissipation within the adhesive layer and slows down crack propagation, . the material should be ideally cross-linked to overcome any creep-related flow, but the elastic modulus should be very low (E < 10 5 Pa) in order to ensure pressure-free deformation of the adhesive to match the surface roughness of the substrates to be bonded, . significant strain hardening is required to increase the strength of the adhesive upon high shear rates thus leading to the formation of fibrillar structures.

The commercial success of PSAs currently grows well beyond stickers and adhesive tapes, progressively replacing fasteners and screws in many products such as electronic devices or automotive body panels. Facile and residue-free on-demand debonding becomes thus of utmost importance to facilitate the disassembly and repair of these products in order to improve their lifetime and sustainability. Although at high temperatures PSA joints are significantly weakened and cohesive failure occurs easily, heating and disassembling simultaneously the glued parts remains a hurdle, notably when fragile electronic devices are concerned and because the cohesive failure leaves residues on the disassembled parts. Irreversible heatdeactivation of adhesion by phase randomization in the material would thus constitute a breakthrough with important applications for sustainable development of bonded products.

PSA adhesives have been extensively formulated into three major classes : water-based latexes , more environmentally-friendly, that result in PSA with properties that are not at the level of the later (in particular because of their heterogeneous crosslinked structure), hot-melts processed at high temperatures. Hot-melts, such as triblock poly(styrene-b-isopreneb-styrene) copolymers including a tackifying resin, involve complex nanostructuration and thus can offer a much better compromise for the requisites of viscoelastic properties: the strain hardening and creep resistance at room temperature is typically controlled by the formation of very regular glassy polystyrene nodules while the low moduli and dampening properties are controlled by diluted entangled polyisoprene chains within the tackifying resin []. The high-performance of these materials is however dramatically reduced at temperatures approaching the glass transition of the rigid domains.

In this context, Damien Montarnal at CP has assembled a consortium (ANR funded) to synthesise and characterise a new generation of environmentally friendly water-based PSAs. The main idea behind this new class of material is to use vitrimer latex particles. Singularly, vitrimers particles can be sintered, forming a continuous polymer network across the interfaces between particles []. Therefore, is is possible to synthesise a library of vitrimer latexes with tunable viscoelastic properties, that can be mixed and sintered in a nanostructured cross-linked material, see Fig. 



My role in this project will be to characterize the mechanical role of the various species in the mix at a microscopic level in order to optimize the macroscopic properties of the adhesive. For that we will selectively label each species of latex with quantum dots with narrow width of emission (synthesised by Benoît Malher at iLM) and observe the sintered mix under a confocal microscope, at rest and under strain or stress.

The challenges in observing nanostructured PSA films come from the vitrimer particle sizes: typically in the 100 nm to 300 nm range, i.e. at the very far end of resolutions typically accessible with optical microscopes. We propose two methods to overcome such limitations. First, mixing a small fraction of labelled vitrimers latex with unlabeled vitrimer latexes, so that the diffraction spots are well separated from each other, allowing a measure of their aspect ratio and orientation. In a second step, we will exploit the narrow emission width offered by quantum dots to mix several species together, so that neighbouring particles are statistically of different types, and thus can be distinguished by colour-filtered multichannel acquisition. Spatial correlation on each colour channel will enable to extract with good statistics the average diffraction spot for each domain, and to reconstruct the spatial mapping of nanostructured vitrimers at the individual particle scale. Time-resolved spatial mapping under shear will enable to measure local deformation with unprecedented resolution. Together with other measurements performed at SIMM in ESPCI (C. Creton, M. Ciccotti), these observations will bring a microscopic understanding to inform mesoscopic description of this class of nanostructured adhesives and optimize their design.

Furthermore, this class of materials offer a great potential for recycling, that is on-demand unbouding of glued pieces during the recycling process of multimaterial goods. Indeed, a prolonged thermal annealing of the sintered adhesive will allow dynamic bond exchange, thus extensive phase interdiffusion that should make the nanostructure evolve towards homogeneity. We predict that even back at room temperature, annealed vitrimer PSA should have significantly higher storage modulus, significantly lower loss modulus. Therefore annealing before disassembly would inhibiting fibril formation, thus reducing the adhesion, making disassembly easier. Successive confocal observation between annealing periods will enable the observation and characterisation of the dynamics of phase randomization.

I am excited to start this fundamental and highly multidisciplinary project that aims at creatively implementing dynamic bonds in soft nanostructured adhesives and developing new methodologies to improve the understanding of these complex materials, optimize their formulation, and propose a new paradigm for sustainable debonding.

. DNA gels

In recent years, DNA has emerged as an ideal polymer to build soft materials. In addition to being mechanically robust, chemically stable and enzymatically replicable, DNA is a sequence-defined polymer that can self-assemble into almost any shape, simply by programming the arrangement of its monomers []. DNA nanostructures can even be in- structed to dynamically adjust their mechanical and morphological traits (shape, elasticity, stiffness...) based on the current state of their environment []. DNA has another desirable property for molecular engineers: it is highly predictable. Given the sequences of some DNA strands, a software can easily predict their thermodynamics: the way the strands interact (binding energies) but also the structure they form at equilibrium (minimum free energy structure). Thanks to this predictability, DNA nanotechnologists now rationally and reliably design nanostructures and out-of-equilibrium dynamics from scratch. Macroscopic DNA materials are assembled by connecting DNA nanostructures together to form an extended D network. For instance Fig .(a) show how a DNA hydrogel is assembled simply by mixing  mutually complementary DNA strands. The strands bind to each other to form a X-shaped motif, and the X motifs bind to each other through sticky ends. DNA hydrogels are attractive for bioengineers: they are biodegradable and biocompatible, highly hydrophilic (> 99% water content), and can easily be interfaced with biomolecules (nucleic acids, proteins, saccharides...). As such, DNA hydrogels have elicited enormous interest in bioengineering, and applications in drug delivery, tissue engineering, bone regeneration, immunostimulation, or even water treatments have been proposed [, ]. Although  DNA gels are certainly more expensive than usual hydrogels like alginate, collagen or PEG, the production of DNA strands is highly scalable with biotechnological tools []. There has been a number of physico-chemical studies regarding DNA gels, but they usually focused on the gel/sol transition, and did not systematically address mechanical quantities (viscoelasticity, rupture, and interfacial tension...) or thermodynamic quantities (specific heat, enthalpy, entropy of gelation..). In consequence the design of DNA gels has remained largely empirical. In addition, only a few groups have attempted to link the design of DNA motifs at the nanoscale to the physical properties of the DNA gels at the macroscale. In a pioneering microrheological study in , Xing et al. [] controlled the elasticity of a DNA gel by tuning the flexibility of its DNA motif. In , Merindol et al. [] designed a DNA motif that fluoresces when subjected to mechanical stress. They installed this mechanochromic sensor inside a DNA gel, and traced the genesis of fractures to the local accumulation of mechanical constraints. In  Sato, Sakamoto and Takinoue [] designed DNA gels that phase separate in programmable ways. They controlled the transition of DNA microgel, as well as their mixing and demixing simply by tuning their constitutive DNA sequences.

Together with Anthony Genot in Tokyo, expert in DNA self assembly, Nicolas Schabanel in ENS Lyon, expert in DNA programming, Hervé Guillou, expert in calorimetry in Grenoble, and Catherine Barentin in iLM, expert in rheology, we have decided to join our efforts in order to bridge the nanoscale design to the macroscale properties of DNA gels. We will systematically investigating how the design of DNA motifs at the nanoscale influences the mechanics and thermodynamics of DNA gels at the micro and macro scales. Thermodynamics of gel assembly and function is encoded in DNA sequence, but it is also closely coupled to mechanical stimulations. Macroscale measurements will help design new pathways for gels to dissipate mechanical energy, to heal from fracture or to reconfigure when stressed. By working simultaneously at nano, micro and macro scales, we will establish a method for the rational design of DNA gels. Compared to the literature on DNA gels, we combine disciplines that are rarely, if ever, combined for studying DNA gels: computer-aided design of DNA nanostructures, microtechnology, rheology and calorimetry.

My motivation in this project is the fascinating opportunities offered by DNA gel as a model system to explore micromechanical issues. When submitting any gel to mechanical stimulus, the elastic regime is mostly entropic, but enthalpy plays a major role near fracture. We have seen in Chapter  how well-controlled polymer chemistry enabled the extraction of these microscopic information from macroscopic mechanical measurements, provided a painstaking modelling. DNA is the ultimate well-controlled polymer, and DNA gels differ from usual polymer gels in that they are highly ordered and precisely self-assembled at the nanoscale by their sequence. DNA gels offer at the same time the entropic softness of soft-matter and the rigorous clockwork of top-down programming. DNA gels are thus the perfect test bed to assess micromechanical models and to elaborate strategies in order to engineer rupture, to dissipate mechanical energy, to heal from fracture or to reconfigure when  stressed.

My role will be to study the mechanics of rupture of DNA gels and put it in relation with thermodynamics. I will perform rheological measurements using ICAMM or the magnetic microrheometer at constant shear stress Fig .(b) to extract the elastic energy, the dissipation and the energy of rupture as in Chapter , but with an additional space resolved view of the rupture process. These measurements will be related to enthalpies and entropies of the assembly and gelation process measured in DSC by Hervé Guillou, see 

  Conclusion

Since my PhD thesis, I got interested in the mechanical properties of arrested soft solids. Viscoelasticity, nonlinear behaviour, fracture resistance, healing properties, reversible yielding, etc. are what make such solids usable in various applications from food, to cartilage replacement, to construction materials, to micromechanical devices. Furthermore, I am fascinated my what we can learn about the physics of matter by probing its mechanical properties: specific interactions, thermodynamics, out-of-equilibrium statistical physics, self-assembly, effect of self-propulsion, etc.

In this manuscript, I have tried to show that solidity was not a given. This reassuring property that we often take as fundamental state of matter is actually a construct emerging from many possible origins (crystallisation, arrest, geometric constraints, self-assembly, etc.). The various microscopic details building toward a unique solid nature determine the way in which each particular system will loose its solidity. In some classes of solids these mechanisms and their mechanical consequences are more or less understood, but many others still offer exciting challenges.

In this manuscript, we have characterized the origin of solidity in model colloidal gels. We have deciphered the self-assembly of short well-controlled polyelectrolytes through macroscopic mechanical measurements. We have established a model protein gel system that has brittle fracture and enables further microscopic investigations into facture nucleation. We have characterized the dynamics of solids made of self-propelled particles that are both nonergodic and intrinsically out of equilibrium, and stated to investigate their mechanical properties.

I also have developed a library of tools for studying the micromechanics of soft solids: either global stimuli coupled to microscopy, or localised perturbations, as well as the analysis tools to characterise and understand the microscopic response of a broad variety of systems. Theses tools lay the groundwork for future projects, either impulsed by me, or that I am excited to bring my expertise to.



Figure

  Figure .: (a) Experimental setup for ultrasound velocimetry measurements. (b) A typical beam-formed speckle image. The dashed lines at y=. and 30.7 mm indicate the limits of the gap.

Figure

  Figure .: D cross-correlation of ultrasonic speckle. (a) Ultrasonic speckle signal at a fixed altitude of z = 14.9 mm for two consecutive pulses. (b,c) Windows of the same signals, respectively closer to the stator and closer to the rotor. (d,e) Crosscorrelation of (b,c). The position of the central peak gives the best shift between the two signals in the window of interest.

  Figure .: Block diagram describing the typical experimental work flow.

  .].

Figure

  Figure .: Visualization of the deformation field using ultrasonic imaging during an oscillatory stress experiment in a Newtonian fluid (Sample ). (a) Stress input σ rheo (t) (blue dashed line) and strain response γ rheo (t) (black line) as recorded by the rheometer. The stress amplitude is σ rheo = 71 mPa and the corresponding fundamental strain amplitude is γ rheo 1 0.99. (b) Spatiotemporal diagram of the local displacement averaged along the z-direction ∆ loc (r, t) as a function of f t and r/e. (c) Snapshots of the local displacement ∆ loc (r, z, t) in the entire gap taken at times corresponding to f t = 1.25, ., ., . and . from left to right and indicated by dashed lines in (b). Each snapshot results from a moving average on  cross-correlations of two successive speckle images separated by / s.

  (r, z, t) is invariant by translation along the z-direction and shows a constant gradient across the gap [see also Fig. .(a)]. Displacement maps recorded in Sample  (not shown) are fully similar to Fig. . except that the strain response is in phase with σ rheo (t) [see also Fig. .(d)]

Figure

  Figure .: Probing a homogeneous Newtonian fluid (Sample , left panel) and a homogeneous quasi-Hookean soft solid (Sample , right panel) with LORE. (a,d) Left: local ultrasonic displacements ∆ loc (r, t) (linear colour scale from brown at the stator to yellow at the rotor) and rotor displacement ∆ rheo (t) = R i Ω (black line) in response to an oscillatory stress σ rheo (t) (blue dashed line) as a function of the normalized time f t. For Sample , σ rheo 1

  Figure .(a) shows the oscillatory deformation ∆ loc (r, t) measured with LORE under an oscillatory stress σ rheo = 119 Pa. In contrast to Fig. .(d), the deformation does not decrease linearly with r/e. As a consequence, as shown in Fig. .(b), the local strain

  Fig. .(c), we confirm that the evolution of the local viscoelastic moduli is consistent with the local composition of the gel. An outer region can be defined for r/e > 0.5 where the local values of G loc (r) fall in the range -4 kPa, in good agreement with the global G rheo = 2.95 kPa value of a single-layer gel made of  % wt. casein and  % wt. GDL measured independently for similar strain amplitudes [blue lines in Fig. .(c)]. For r/e < 0.5, the local elastic modulus progressively decreases in the softer inner region down to G loc (r) 80 Pa at the rotor. For comparison a single-layer gel made of . % wt. casein and . % wt. GDL has an elastic modulus G rheo = 350 Pa.

Figure

  Figure .: Probing a spatially heterogeneous soft solid (Sample ) with LORE for σ rheo = 119 Pa and γ rheo = 0.52. Same legend as in Fig. .. For comparison with local measurements in the two-layer casein gel, blue lines in (c) indicate the elastic moduli G rheo measured independently in two homogeneous casein gels respectively made of  % wt. sodium caseinate and  % wt. GDL (left) and made of . % wt. sodium caseinate and . % wt. GDL (right).

Figure

  Figure .: Probing a soft solid slipping at both walls (Sample ) with LORE for σ rheo = 11.7 Pa and γ rheo = 1.44. Same legend as in Fig. ..

  Figure .: Trajectories of colloidal particles in a D sediment during the creep motion of a glass bead. Trajectory are traced for a duration of 4 s.
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  Figure .: Vorticity measured by DiRDiP analysis on a polar grid. (a) Mapping on the grid. Dashed line shows the reference direction for angles, perpendicular to the direction of motion (arrow). (b) Angular dependence of Ω for different distances r from the glass bead center. From red to yellow colour: 7.6, 11.7, 15.8, 19.9, and 28.1 µm. (d) The r-dependence of Ω/U . Here |Ω(r)| is averaged from four grid elements, the two adjacent to θ = 0 and the two adjacent to θ = π. The solid line shows the exponent -2 predicted by Stokes flow.

(

  iii) A gel often displays superdiffusive behaviour, detected as the compressed exponential decay of a density correlation function, during aging, as observed by time-resolved  spectroscopy techniques [-] and recently simulations [-]. The origin of this phenomenon and its relation to problem ((ii)) are still elusive.

  Figure .: Depletion interaction between two colloidal particles mediated by a non adsorbing polymer (PS). The center of the polymer coil cannot enter within its radius of gyration from solid surfaces. The free volume is shown in gray.

  Figure .: Phase diagram of colloid-polymer mixture from free volume theory for a size ratio q R = 0.1. (a) Reservoir representation using the Carnahan-Starling EoS. (b) Reservoir representation using the Liu EoS. (c) Experimental representation using the Liu EoS. The vertical dotted lines are the random close packing (orange) and close packing (violet).
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  Figure .: System design. (a) Tuning the interactions of the colloidal system. Short range attraction can be obtained by adding a depletant (polystyrene). The range of the electrostatic repulsion can be tuned by screening with ions. (b) Sketch of our semi-permeable cell. The observation cell contains initially colloids, polymer and no salt. (c) Confocal slice of a gel formed in situ by our method (φ = 25.5 %, c p = 1.4 mg/g),  hour after gelation. (d) Idem for a gel at the same state point formed ex situ and immediately pumped into a capillary.
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  Figure .: Snapshots from the entire gelation process reconstructed via particle-tracking of a typical sample close to the cluster-gel line (φ = 7.5 %, c p = 1 mg/g) using the salt-injection protocol. Particles are coloured according to the size of the cluster they belong to, going from blue for monomers to red for the percolated cluster.

  Figure .: Phase diagram with respect to colloid volume fraction φ and polymer concentration c p . Black symbols represent experimental points categorized from their final state obtained in the reservoir cell. The spinodal line (solid curve) is obtained from free volume theory in polymer dilute regime, extended beyond the polymer overlap concentration as a guide for the eye (dotted curve).
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  Figure .: Role of hydrodynamics on colloidal phase separation. (a) Evolution of the population of triplets as a function of their radius of gyration. The result is for a non percolating sample (φ = 4 %, c p = 1 mg/g). (b) Probability of staying elongated for a triplet in a non-percolating sample (φ = 4 %, c p = 1 mg/g, blue) and in corresponding BD simulations. The continuous lines are the respective best exponential fits of characteristic time 27τ B and 5τ B respectively.(c) Evolution of the aspect ratios of clusters of  particles and more in the same sample (dashed lines) and in a percolating sample (φ = 8 %, c p = 1.5 mg/g, continuous lines). (d) Bond angle distribution relative to existing bonds (grey), to a future bond (red) or to a future bond involving an isolated particle (blue) obtained in the percolating sample. Future bonds are shifted to smaller angles, whereas gas adsorption takes place from larger angles. Insets sketch both cases, with present bonds drawn thick and future bonds drawn dotted.

FigFigure

  Figure .: Temporal change of the structure factor. Panels (a-d) are for the four samples shown on Fig. . by decreasing volume fraction: (φ, c p )=( %,  mg/g), ( %, . mg/g), ( %, . mg/g), and (. %,  mg/g), respectively. The thick black curve corresponds to the initial Wigner crystal before salt introduction (ill defined thus not shown in (d)). Thin curves from dark blue to green are spaced by 150 s and display a peak corresponding to the hard sphere diameter as well as a growing peak at low q indicating phase separation.
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  Figure .: Comparison of system evolution. (a) Characteristic wave number. The lines are possible scaling laws for the intermediate coarsening regime. (b) Largest cluster extent (l max /L) and mean coordination number ( NC ). Symbols ♦, , and • correspond to (φ, c p )=(. %,  mg/g), ( %, . mg/g), ( %, . mg/g), and ( %,  mg/g), respectively, as highlighted in Fig. .a.

  Figure .: Cluster phase formation observed by our method. Experimental coordinates are reconstructed and coloured by the number of particles in the cluster (φ = 4.7 %, c p = 1 mg/g).
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  Figure .: Evolution of space-spanning microstructure and mechanical response. (a,c,e) for a dilute (φ = 8 %, c p = 1.5 mg/g) sample and (b,d,f) for a dense (φ = 27 %, c p = 1 mg/g) sample. (a) and (b): Percolation processes. The processes of isotropic and directed percolation of all particles are respectively plotted as thin orange curve and orange symbols. The processes of isotropic and directed percolation of isostatic particles are respectively plotted as thick purple curve and purple symbols. (c) and (d): Bond breaking rates k D . The thick grey curve shows the total breaking rate. The thin blue curve counts only breaking events after which the two particles still have a common neighbour. (e) and (f): Mechanical response. Elastic (G ) and viscous (G ) shear moduli at the highest available frequency (f = 0.1τ -1 B ), obtained by two-particle microrheology, are drawn respectively as filled and open circles. Error bars are obtained following Ref. [, ]. The thick grey curve is the internal stress Σ obtained from k D (see Section ...).The thin orange and thick purple vertical lines show the isotropic percolation times for all particles (τ all it ) and isostatic particles (τ is it ) respectively. The orange dashed vertical line in (D) shows the directed percolation time for all particles (τ all d ). The gray vertical band shows the possible range of mechanical gelation time τ gel .

  Fig. . we shows the evolution of the loss angle δ = arctan(G /G ) in the two same samples as Fig. .

  Fig. .(e, f) and Fig. ., we materialize this range by a vertical grey zone. Despite the uncertainty on the measurement of τ gel , its position with respect to the various  percolation times is unambiguous. The emergence of elasticity occurs well after isotropic percolation time τ all it (see orange vertical lines in Fig. .(e,f))

  ∼ τ gel , as indicated by the thick purple vertical lines falling inside the gray vertical zone in Fig. .(e, f). Directed percolation of isostaticity (purple symbols in Fig. .
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  Figure .: Directed percolation and isostaticity percolation. (a) Ratio of the time of isostaticity percolation τ is it to that of directed percolation τ all d , as a function of colloid volume fraction. Horizontal dashed line shows when both times are equal. (b) Increment of Euclidean distance between two isostatic clusters, averaged over all such pairs initially connected by a non-isostatic network strand. The reference time is the percolation time t perco . (c) Detail of a reconstruction from confocal coordinates around the percolation time in a dilute sample (φ = 8 %, c p = 1.5 mg/g). Isostatic particles are drawn to scale, non-isostatic ones are drawn smaller for clarity. The bond network is displayed in orange. (d) and (e): Same as (c) at later times.

  Figure .: Sketch of the two possible paths to mechanically stable gel. (A) Dilute path. (B) Dense path. Isostatic particles are shown in purple, non isostatic particles in gray.

  Figure .(A) show the resulting cluster size distributions for a dilute gel. At usual percolation time, the central range of cluster sizes exhibit a fractal dimension compatible with diffusion-limited cluster aggregation (D = 1.85).
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  Figure .: Cluster size distributions considering either all particles (orange) or isostatic particles (purple), at their respective isotropic percolation time. The later is vertically shifted by a factor  for clarity. The thin black lines correspond to a fractal dimension of  (compact), dark grey lines to a fractal dimension of . (random percolation), thick light grey lines to a fractal dimension of . (directed percolation), and thick light blue lines correspond to a fractal dimension of . (DLCA). (A) φ = 8 %, c p = 1.5 mg/g. (B) φ = 27 %, c p = 1 mg/g.

  Fig. .(a) of the main text. At higher volume fraction, Fig. .(B) shows that usual percolation is just random (D = 2.53) at all cluster sizes. However when isostaticity percolates the cluster size distribution of isostatic clusters displays a fractal dimension compatible with directed percolation (D = 2.27). Since we know that directed percolation of the whole network took place before isostaticity percolation, see Fig. .(b), this observation is consistent with a simple invasion of the network by isostaticity.

  .(b). It means that, as loose strands are converted to isostaticity, see Fig. .(c-e), these strands shorten and straighten. This change in morphology allows longer directed path and thus promotes directed percolation.

Figure

  Figure .: Breakup of the network by internal stress. (A) Reconstruction from experimental coordinates (φ = 29 %, c p = 0.7 mg/g) of strand rupture event. Particles are drawn to scale and coloured by a measure of two-fold symmetry q 2 [, ] (see Supplementary Materials on its definition) from blue (low) to red (high). We note that q 2 is a measure of the degree of local stretching. (B) Same event from a topological point of view. The red line indicates the shortest on-graph path between the two particles of interest, whose drastic change clearly indicates the breakup event. The meshed surface is a Gaussian coarse-graining of the network pattern.

  .B. At low volume fractions, percolation is delayed, thus initially elongated clusters have the time to compact before eventually connecting into a percolating structure, see Fig. .A.

Figure

  Figure .: Phase behaviour. (a) Empty black triangles are experimental points showing fluid behaviour. The other symbols are the experimental points showing gel behaviour, consistently used in all figures. The dotted lines are the gas-liquid tie lines determined experimentally, with arrow heads indicating measured gas and liquid compositions. Gray areas are theoretical equilibrium fluid and crystal regions. The solid and dashed lines are the metastable gas-liquid binodal and spinodal respectively. (b) Radius of gyration (R g ) as a function of cluster size (s) for all state points at percolation time. The gray line represents the fractal dimension of the random gelation universality class (D = 2.53).

  Fig. .(a), the state points which did not phase separate are indicated with open triangles, while the other symbols indicate samples undergoing phase separation. The black dashed line is the gas spinodal computed from free volume theory and the black continuous line is the binodal line. They are in good agreement with our experimental points (the small discrepancy at small colloidal volume fractions is common in free volume theory) [, ]. The topology of the network is similar to all our samples at the initial stages. This is shown for example in Fig. .(b), where we plot the radius of gyration of colloidal clusters (R g ) as a function of the cluster size (s) at the percolation time (determined as in Section ..). All samples show the same scaling law, R g ∼ s 1/D , which is compatible with the random gelation universality class exponent (D = 2.53) as shown by the gray line in Fig. .(b).

Figure

  Figure .: Stress driven aging. Time evolution of the average coordination of colloidal particles n (black continuous line) and the bond-breaking probability p break (red dashed line) for four gel samples. Symbols relate each sample to its position on the phase diagram in Fig. .. p break is measured as the probability of bond breaking in a time interval of ∆t = 10 s. For high polymer concentration, panels (a) and (b), p break decreases monotonically until it reaches a stationary state at long times, with n saturating at an average of less than 5 neighbours. For low polymer concentration, panels (c) and (d), p break follows a similar decay at intermediate times, with n less than 5 neighbours, but which is then followed by a second decay to new configuration, where n becomes greater than 5 neighbours.

Figure

  Figure .: Structural evolution at late times. (a) Structure factors for the late stages of the gelation process. The gray and black lines represent respectively random gelation and compact fractal dimensions. (b) Late stage of the evolution of the local volume fraction φ loc () around colloidal particles having  nearest neighbours. (c) Local volume fraction φ loc around a colloidal particle, as a function of the number of nearest neighbours of the particle for the state points in the very late stage. The two horizontal straight lines indicate the characteristic volume fractions in attractive systems, crystal (∼ 0.72) and glass (∼ 0.64). Samples are shown with the same colour code as in Fig. .. In particular red circles correspond to the crystallizing sample at φ = 0.33 and c p = 0.38 mg/g.

  Fig. .(a) and (b), where Gaussian filtering is used to depict the network structure as a continuous field  . Fig. .(a) presents the results for high polymer concentration gel, c p = 1.07 mg/g that never undergoes stress-driven ageing; Fig. .(b) presents the results for the low polymer concentration sample, c p = 0.38 mg/g. The comparison shows that the new arrest mechanism produces a  Coarse-grained representation of the network is obtained by applying a Gaussian filter to the position of the particles (of width equal to the inter-particle distance) and plotting the surface which bounds the highest  % values of the field.

FigureFigure

  Figure .: Percolated network structures. (a), (b): the network is represented in a coarsegrained fashion (see Methods). (c), (d): slabs of 4.5 µm thickness and 41 µm width. Particles are drawn to scale and coloured according to their phase. Purple: crystal; dark purple: crystal surface; gray: liquid; orange: gas. (a), (c): a gel obtained from the state point φ ≈ 0.33 and c p = 1.07 mg/g at t = 400 min after sample preparation. (b), (d): a crystal-gel at the same φ but at lower polymer concentration, c p = 0.38 mg/g at t = 468 min after sample preparation. On the top row we can clearly see not only the percolated nature of both networks, but also the difference in the smoothness of the network surface between amorphous and crystal gels. We note that very few liquid particles remain in (d) and the network is almost crystalline.

  Fig. .(a). Particles are coloured according to their phases (gas, liquid, and crystal), see Section .... The figure shows the first nucleation events inside the liquid network (left panel). At the same time liquid regions that have not crystallized start evaporating, and the gas phase contributes to the growth of crystal nuclei (middle panel). Finally the different nuclei coalesce (right panel). Note that the topology of the crystal network found at late times, i.e. t = 5577τ B (middle panel) and t = 12098τ B (right panel) in Fig. .(a), differs significantly from that of the liquid network at early stages, i.e. t = 2055τ B (left panel) in Fig. .

Figure

  Figure .: Crystal gel formation. (a) Reconstructions from confocal coordinates at φ ≈ 0.33 and c p = 0.38 mg/g. The depth of view is 9.0 µm, while the lateral dimension is 41 µm. Particles are drawn to scale and coloured according to their phase. Purple: crystal; dark purple: crystal surface; gray: liquid; orange: gas. (b) Fraction of particles for each phase. Gray vertical lines indicate the times shown in panel a. (c) Sketch of the three routes by which a particle can end up in a crystal state.Probabilities are computed from the history of each single trajectory. A trajectory without liquid evaporation or crystal sublimation is counted as direct crystallization (continuous arrow, %). If a liquid particle evaporates and then de-sublimates it counts in the Bergeron process (dotted arrow, %). If sublimation is followed by de-sublimation it is Ostwald ripening (dashed arrow, %).Most trajectories proceed via the surface state.

Figure

  Figure .: Transition probabilities during the formation of the crystal-gel. (a) Transition probabilities from the liquid state. (b) Transition probabilities from the gas state. (c) Transition probabilities from the surface state. (d) Transition probabilities from the crystal state. In all panels the possible transition states are surface (blue), liquid (black), gas (green) and crystal (red). See the text for the definition of each state.

Figure

  Figure .: Pictures of % weight solutions of P(ImBr)-PO  -  (labeled PIm) and P(ImBr)-H (labeled PIm) in water before (left) and after (right) flipping of the vial.



  at  % wt. shows an elasticity-dominated behaviour (G G ) until a stress amplitude of nearly 20 Pa and a liquid viscosity-dominated behaviour (G G ) above this value, see Figure .(a). At a stress amplitude of 1 Pa, a frequency sweep on P(ImBr)-PO  -  at  %wt shows a behaviour typical of a polymer network or soft glassy system[], with nearly con- 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 0 10 1

Figure

  Figure .: Storage (G ) and loss (G ) moduli during oscillatory shear experiments for P(ImBr)-PO  -  at  %wt. (a) G (full symbols) and G (empty symbols) vs stress amplitude during an amplitude sweep at a fixed angular frequency ω = 0.1 rad s -1 . (b) G and G vs angular frequency ω during a frequency sweep at a fixed strain amplitude of .% (corresponding to a stress amplitude of 1 Pa).

  Figure .: Summary of the polymers derived from a single batch of P(Br).

Figure

  Figure .: DSC measurements of polymer samples showing the presence of an endothermic peak. Curves are shifted vertically by arbitrary amounts for clarity. Vertical lines indicate the peak temperatures at 84 • C for the two iodides in blue and 114 • C for the two bromides in orange.

Figure

  Figure .: Storage modulus G (•) and loss modulus G ( ) measured through oscillatoryshear experiments plotted against the frequency f . The moieties change with rows and the counterions with columns. The fixed strain amplitude is γ = 0.1%.All samples are at . wt%.

Figure

  Figure .: Storage modulus G (•) and loss modulus G ( ) measured through oscillatory shear experiments plotted against the strain amplitude γ. The moieties change with rows and the counterions with columns. The fixed frequency is f = 1 Hz.All samples are at . wt%. The gray area encompasses the plastic regime that lies between the linear regime at very low amplitudes and the fluid-like shearthinning regime at high strain amplitude.

Figure

  Figure .: Processionary model. Sketch of the network in the case of a procession of size n = 3 between cross-links (gray disks) and a persistence length r scr ≈ 6D. Empty circles are not individual monomers but electrostatic blobs of size D. Electrostatic blobs containing an anionic head are shown as black filled circles.

r ξFigure

  Figure .: Conformation of semi-dilute polyelectrolytes at rest at various scales. Length increases from left to right.

Figure

  Figure .: Shearing the gel translates into stretching individual processions. From top to bottom: configuration at rest; full extension of the self avoiding walk; stretching of the electrostatic blobs.

Figure

  Figure .: Conformation of semi-dilute polyelectrolytes at rest at various scales as a function of counterion condensation parameter A. Each vertical line represents a sample. The phase diagrams are given for a reduced temperature τ = 0.46. (a) In pure water. Background screening length κ -1 comes from the PO  -  heads. c is set by P(Im + Br -). (b) With a background electrolyte at c s = 100 mM. c is set by P(Pyr + Cl -). Variations in c values from sample to sample have little impact on the phase boundaries, except near the crossing of r scr and D.

Figure

  Figure .: Titration sodium caseinate dispersions with  molar HCl, and solubility of casein measured by UV absorption, function of pH, from a %w sodium caseinate suspension. On the pictures, the Becher diameter is 55 mm.

Figure

  Figure .: Influence of GDL content on the gelation of %w casein suspensions followed by oscillatory rheology (γ = 0.1%, f = 1 Hz). (a) Evolution of pH from dissolution of GDL at t = 0. (b) Evolution of the elastic modulus. (c) Evolution of the loss tangent.

Figure

  Figure .: Dependence on GDL content of the linear rheology (γ = 0.1%) at the final state (after 17 h) of sodium caseinate gels (cas %). (a) Storage modulus function of frequency. Straight lines are power law fits. (b) Loss modulus function of frequency. Straight lines are power laws with the same exponent as fount in (a). (c) exponent of the power law function of GDL composition. (d) Loss modulus rescaled by its value at 1 Hz.

  Adding a weak base to the initial caseinate solution can help decoupling the final pH and the gelation time. The fast pH equilibration now contains three coupled chemical equations HGl



  

Figure

  Figure .: Final structure of caseinate %, GDL % gels, observed by (a) cryo SEM, (b) environmental SEM and (c) fluorescent confocal micoscopy. Scale bars are 10 µm.

Figure

  Figure .: Microstructure evolution upon acidification. (a) Details of confocal images of caseine % GDL %. Scale bar is 20 µm. (b-c) Time evolution of the intensity spectrum (caseine % GDL %) until 14 minand after 14 min respectively. (d-f) Evolution of the fit parameters of I(q) for GDL % (black) and GDL % (orange). Symbols mark the times shown in (b) and (c).

Figure

  Figure .: Dynamics of pattern formation in a confined film of casein gel (caseinate %w, GDL %w in water). (a) Sketch of the cell where the adhesion on both top and bottom walls is turned off. The cell is sealed and the gel is only anchored to the four sides. Typical dimensions are L > 1 cm, e ≈ 100 µm. (b) Light transmission microscopy. Successive generations of patterns are highlighted in colour to stress the absence of coarsening after formation. The successive wavelengths are λ = 1.5 mm (yellow), λ = 0.75 mm (orange) and λ = 0.32 mm (brown). (c) D reconstruction from fluorescent confocal microscopy which highlights that patterns observed in (b) correspond to wrinkles. The contrast in (b) is not due to thickness inhomogeneities but to altitude gradients as indicated by the yellow vertical lines in (a). Scale bars are 1 mm.

  Figure .c. It reveals that those patterns actually correspond to wrinkles of the casein gel film. Figure .a shows successive side views of the same confocal measurements as in Figure .c. Initially the dispersion is homogeneous and fills the entire slit. The black margins in Figure .a correspond to the glass walls.

Figure

  Figure .: D analysis of the wrinkling process. (a) Confocal (x, z) cuts showing syneresis, swelling, wrinkling and cascade buckling. The scale bar is 100 µm (real size ratio). (b-d) Confocal microscopy measurement of the evolution of the volume of the gel phase relative to cell volume, of the excess area and of the velocity along the zdirection. Crosses correspond to times in (a).

Figure

  Figure .: Evidence for the ripples generated by the junction to flat patches, see []. (a) Position of the bottom surface of the gel obtained by confocal images. (b) one dimensional cut of the region of interest highlighted in (a) using an orange box. Only the first ripple is visible. (c) Schematic view of the interference between ripples.



  Figure .: The wrinkling experiment. (a) Initial configuration where the sealed cell contains a homogeneous protein solution. (b) Around the isoelectric pH, the gel forms and immediately expels solvent leading to (c). If tensile stresses were not released we would observe reversible swelling back leading to (d) a flat swollen gel layer. If tensile stresses are released, swelling back leads either to buckling (e) or to wrinkling (f) depending on whether the bending is free or hindered by a transverse load.

Figure

  Figure .: Boundary condition influence on microstructure evolution of a %w sodium caseinate solution acidified with %w GDL in water. (a) Details of confocal images in fully adhesive conditions (left column) and with no adhesion on top (right column). The scale bar is 10 µm. Arrows indicates the largest pore size. (b-d) Evolution of cut-off length ξ, susceptibility χ and fractal dimension d in full adhesive (black line) and no adhesion on top (orange dashed line) situations. Symbols indicate the times of the images in (a).

Figure

  Figure .: Sketch of the two limit scenarios for the wavelength selection. In both cases the gel film of thickness h is destabilised by the excess area which gives rise to wrinkles of amplitude A(t) and wavelength λ. A single wavelength is represented and the longitudinal dimension L of the system is much larger than λ. The value of λ is set by the interplay between the bending rigidity B and a transverse load σ ⊥ due to a pressure gradient p 2p 1 in the solvent of viscosity η. (a) Darcy scenario: the gel initially sits without sticking to the bottom wall. σ ⊥ is due to the flow of the solvent through the porous gel of permeability α to fill the growing blister. (b) Poiseuille scenario: the gel film of negligible porosity initially lies in the middle of the cell, separated by a distance H from each wall. σ ⊥ is due to the lubrication flow in the top and bottom solvent layers.

  1 = H 2 , see Figure .b). Here destabilisation over a wavelength λ creates a lubrication (H λ) flow in the viscous layers. By symmetry the transverse load across the gel σ ⊥ = p 2p 1 is also the pressure difference over the wavelength. Using a Poiseuille profile for the flow, dA dt ∼ σ ⊥ H 3 ηλ 2 [] and injecting this expression in equation (.) yields the wavelength of the Poiseuille mode as

Figure

  Figure .: Permeability measurements. (a) Schematic representation of the experimental set up. (b-c) Evolution of the height of the interface in tube  relative to the final height in tube . The black line is the best exponential fit Ae -t/τ . (b) Gel is %w casein, %w GDL in water, H = 2.3 mm and τ = 57 min. (c) Same as (b) for a %w glycerol-water mixture, H = 4 mm and τ = 100 h.

Figure

  Figure .: Comparing model predictions λ D , λ P and λ D+P with measured wavelengths λ exp . Dots come from primary pattern, squares from secondary blisters. Lines are the best linear fits through the origin taking into account only the points that should be (a) in Darcy mode H < H * , (b) in Poiseuille mode H > H * (c) all points. Prefactors are ., . and . respectively. The dashed line in (b) is the best affine fit (λ exp = 0.52λ P + 0.33 mm) to all data points.

  Figure .a and .b we have plotted the measured wavelength as a function of the model prediction λ D and λ P respectively. If the predictions are correct we expect λ exp = λ D when H < H * and λ exp = λ P when H > H * . Indeed, both model seems to apply in their domain of validity. The failure of the Poiseuille model is only visible at small wavelengths where an unexplained offset (dashed line in Figure .b) is necessary to fit the data correctly. To go further, we derive a complete model summing up the influence of both Poiseuille and Darcy dissipation, see Section ... The results of this mixed model are displayed in Figure .c and agree with λ exp over the whole H/H * range.

  Characteristics of the samples used for Figure ..



  Mass conservation (on the lower gray area of Fig. .)

Figure

  Figure .: Response to an imposed shear stress σ = 200, 300, 400, 550 and 1000 Pa from right to left of a % wt. casein gel acidified with % wt. GDL. The gap width is 1 mm. (a) Strain response γ(t). Gray dashes show γ = 1. (b) Shear rate response γ(t). The black line shows the power-law behaviour γ(t) ∼ t -0.85 .



  Figure .: Dependence of the failure time τ f . (a) Failure time τ f vs σ . The solid line is the best power-law fit τ f = Aσ -β with β = 5.45 ± 0.05 and A = (4.2 ± 0.1) 10 17 s.Pa β .(b) Time of the minimum shear rate τ min vs τ f . The solid line is τ min = 0.56τ f . The gap width is 1 mm and the height of the TC cell is 28 mm.

  Fig. .(a-b)] with no slippage at the Plexiglas walls [see arrows in Fig. .(a)]. Together with direct visualization [Fig. .(a)], these local measurements demonstrate that during primary creep there is no macroscopic strain localization or fracture, although we cannot rule out rearrangements below the available spatial (≈ 10 µm) and/or temporal (≈ 1 s) resolutions due to limited signalto-noise ratio at very low shear rates [Fig. .(a, left)]. In Fig. .a we show that the failure time τ f sharply decreases as a power law of σ with an exponent β 5.5. τ f further allows us to rescale all the shear rate data γ(t) onto the single master curve of Fig. .(a) by plotting γ/ γmin vs t/τ f , where γmin is the minimum shear rate reached at a time τ min . On this representation, we confirm that the power-law primary creep regime extends to t 0.1τ f . In Fig. .(b) we show the time of the minimum shear rate function of the final time.

Figure

  Figure .: Normalized shear rate responses γ/ γmin corresponding to the data of Fig. . and plotted so as to emphasize the three successive regimes. γmin is the minimum shear rate reached at τ min (see text and Suppl. Fig. ). The yellow line shows the master curve inferred from fitting γ(t) by Eq. (.) with α = 0.15, leading to λ = 0.378 ± 0.002 and µ = 0.187 ± 0.002. (a) Primary creep: γ/ γmin vs t/τ f in logarithmic scales. (b) Secondary creep: γ/ γmin vs t/τ f in linear scales. Gray dashes show the minimum of Eq. (.) reached at τ min = 0.556τ f . (c) Tertiary creep: γ/ γmin vs 1tτ f in logarithmic scales with a reversed horizontal axis.

FigureFigure

  Figure .: (a) Local velocity v(r, z, t) z and (b) local strain field γ loc (r, z, t) z averaged over the vertical direction z at various times during primary creep: t/τ f = 1.9 10 -3 (•), 1.7 10 -2 ( ) and . ( ). Solid lines are linear profiles. The arrows in (a) indicate the velocity of the inner cylinder inferred from the current shear rate. (c) Spatiotemporal diagram of the local velocity v(r, z, t) r averaged over the radial direction r and plotted in linear colour levels as a function of z and t/τ f . (d) Standard deviation δ z v(t) of v(r, z, t) r taken over the vertical direction z (thick black line) together with corresponding standard deviation δ r v(t) computed over the radial direction r on the z-average v(r, z, t) z (thin red line). (e) Fracture length (t) vs (τ ft)/τ f as inferred from direct visualization (•, average over  different fractures, error bars show the standard deviation) and from ultrasonic imaging (•) and normalized by the height H of the TC cell. Gray dots show the visualization data for the longest fracture which leads to the failure of the sample at τ f . Red lines are the best fits (t) = a + b log(1t/τ f ) to the visualization data. Same experiment as in Fig. ..

  .b) and during the recovery (Fig. .c). If significant plastic deformation had occurred during the first loading-unloading cycle, one would have expected the second and third responses to the same cycle to differ significantly, e.g. through larger maximum strains or larger unrecoverable strains. Finally Fig. .d shows that both viscoelastic moduli G and G do not change significantly from one creep and recovery test to another and that their scaling with the frequency remains the same.This indicates that the gel microstructure is mostly undamaged by creep within the primary regime.

  []. More generally FBMs under elongational load predict three successive creep regimes exactly alike Fig. . with similar proportionality between τ min and τ f (Fig. .b) and  finite-time singularity [, , ] (Fig. .c).

Figure

  Figure .: Response to an imposed shear stress σ = 20, 30, 40, 50, 60, 100 and 120 Pa from right to left of a % wt. casein gel over-acidified with % wt. GDL. The gap width is 1 mm. (a) Strain response γ(t). Gray dashes show γ = 1. (b) Shear rate response γ(t). The black lines shows the power-law behaviours γ(t) ∼ t -0.85 and -0.96 respectively.

Figure

  Figure .: Normalised shear rate response γ/ γmin in the secondary regime for % wt. casein gel over-acidified with % wt. GDL. Same data and colour code as in Fig. .. (a) Time scaled by the final yield time, as for critical gels. The yellow curve is (Eq. .) with the same coefficients as in Fig. .. (b) Time scaled by τ min . The yellow curve is scaled by the Monkman-Grant factor τ min /τ f = 0.556.

Figure

  Figure .: Validity of Monkman-Grant relationship between the time of the minimum of strain rate and the time to rupture in critical casein gels (caseinate %wt, GDL %wt). (a) Ratio τ min /τ f function of τ f of the two times actually show a large dispersion in linear scale. Solid line and dashed line corresponds to ratios of . and . respectively. (b) Probability distribution function of τ min /τ f .

Figure

  Figure .: Period of fractures depend only on gap width. (a) Typical fracture pattern for cas % GDL % σ = 350 Pa on the bottom of a couette of outer diameter 25 mm, gap 2 mm, height 60 mm. (b) Dependence on applied stress (same geometry as above) for cas % GDL % (full symbols) or GLD % (empty symbols). (c) Dependence on gap width in various geometries for cas % GDL %. Circles correspond to outer diamter of 25 mm with H ≈ 28 mm (empty) or H ≈ 60 mm (full dark red). Yellow triangle has outer diameter 37 mm, height 45 mm. Red diamond has outer diamter 40 mm, height 48 mm.

Figure

  Figure .: Time of the minimum of strain rate function of imposed stress. (a) comparison between GDL % (yellow squares) and GDL % (empty black squares) in the same geometry (1 mm gap). (b) same data where the stress is normalized by the storage modulus measured at 1 Hz immediately before the start of creep experiment. (c) Comparision between gap size 1 mm (yellow squares), 1.5 mm (orange diamond), 3 mm (brown circles) (d) same data where time is rescaled by the cube of gap size. Solid lines are power law fits with exponent -..

FigureFigure

  Figure .: Design of the ICAMM with (a) a schematic side section view, (b) an angled front view of the actual device and (c) a schematic front section view. The distances a and b measured by the sensors are highlighted by pairs of facing arrows. In the schematics, elements are coloured with respect to their reference frame: orange for the head and the cantilever, red for the sensors and the arm, dark gray for the tank (ground frame). The gel sample is shown in blue, whereas the liquid permeating it and surrounding the head is shown in light blue.

  Fig. .. The gel sample is sandwiched between this coverslip and the head of the cantilever, as sketched in Fig. .a. The whole apparatus can be used either alone for purely mechanical measurements, or mounted on an inverted microscope. As shown in Fig. ., the micromanipulator and the tank are connected to a rigid stainless steel base that can be screwed to a standard XY microscope stage, here the motorized stage of a Leica SP confocal microscope (Fig. .b). The whole apparatus weighs approximately 3 kg. Mounting and unmouting from the stage can be done in a few minutes.

Figure

  Figure .: Diagram of the control loops in the case of a constant shear stress and a constant normal position. For the sake of space, names of reference frames are shortened to their initials (a=arm, h=head, g=ground).

FigureFigure

  Figure .: A typical geometric calibration of the sensor distances from the head (a, b) to the lab frame of reference (x, z) (scattered points). The error in both x and z direction are smaller than the plotted points. A linear fit (line) and matrix inversion gives the value of the calibration matrix M.

Figure

  Figure .: Evolution of pH of the surrounding solution and sample solution when not in contact with each other. The zone of pH where casein aggregation is observed (see Section .) is shown in gray. The horizontal dotted line is the isoelectic pH.

Figure

  Figure .: Step strain response: (a) The desired set-point (in orange) for a step displacement in x of 3 µm and the actual displacement response (blue) with time. The red dashed lines show the steady-state error of the proportional controller ±e p with K p = 0.1. During the entire duration, we keep the strain in z constant. (b) Zoom ±10 s (dotted lines in (a)) before and after the transition in displacement ∆x head/ground . (c) change in deflection ∆x head/arm corresponding to the applied strain and (d) zoomed of ∆x head/arm around the transition time .

  Fig .(b), we see the zoom of Fig .a ±10 s around the update of the set point. The controlled variable x head/ground converges to the set point in 5 s. To speed up the response, we can increase the K p or use a PI controller. Fig .c shows the change in deflection ∆x head/arm , a measure of shear-stress. The deflection ≈ 0.5µm corresponds here to a shear force ≈ 1 µN and hence, σ ≈ 30 mPa. Fig .d is the zoom of Fig .c on same time scale as Fig .b.

Figure

  Figure .: Behaviour at large strain: shear strain setpoint increasing in steps of 10 % every 420 s from 0% to 200% for a constant normal strain setpoint. (a) Measured shear stain. (b) Measured normal strain. The red dotted line indicate the steady-state error of the proportional controller (c) The measured shear stress and in inset the shear stress averaged over the last 10 s of the step as a function of shear strain and (d) normal stress variation with time and in inset the normal stress averaged over the last 10 s of the step vs shear strain. Dotted vertical lines in (a) and (b) mark the times of the pictures in Fig. ..

Figure

  Figure .: Displacement profile in the gap. The displacement in the shear direction (x) is obtained by accumulating the image correlation computed value between two consecutive time frames. The four curves are for macroscopic strains 17%, 52%, 104% and 121%. The dotted line next to the curve with slope value correspond to the best fit for the strain in the bulk of the gel. The horizontal dotted line denotes the coverslip (bottom) and the head (top) position. Vertical dotted lines denote the macroscopic imposed strain value for the four plotted curves. The error in ∆x z estimation is ≈ 45 nm

  Fig .b, we see the zoomed in version of Fig .a to ±25 s around the update of the set point. The controlled variable x head/arm converges to the set point in 10 s and remains stable on much longer times (inset of Fig .d). Fig .c shows the change in position ∆x head/ground , a measure of shear-strain. Fig .d is the zoomed in version of Fig .c on same time scale as Fig .d. We see clearly that the strain evolves in time even after the stress has settled to its set point value.

Figure

  Figure .: Step stress response: (a) The desired set-point (in orange) for a step deflection in x of 11.50 µm and the actual deflection (blue) with time. The red dashed lines show the steady-state error of the proportional controller ±e p . During the entire duration, we keep the strain in z constant. (b) Zoom ±25 s before and after the step in set point, see dotted lines in (a). (c) Change in position ∆x head/ground corresponding to the applied stress and (d) zoomed-in around the transition time. Inset: Stability of the deflection around the set point at later times. .
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  Figure .: (a) Mean square displacement in the dilute regime at various H  O  concentrations increasing from black (without H  O  ), to cyan to magenta, see inset. Dashed lines indicate slopes  (diffusive motion) and  (ballistic motion). Here sample cell is horizontal. Inset: Corresponding effective diffusion coefficient versus H  O  concentration, extracted from the long-time MSD. (b) Particle trajectories during the time interval ∆t = 5 s with [H  O  ] = .% (magenta in (a)).

Figure

  Figure .: (a) Sketch of the experimental set-up to obtain the dense regime. The microscope is tilted together with the sample. (b) Mean square displacement in the dense regime at various H  O  concentrations increasing from black (without H  O  ), to cyan to magenta, see inset. The numbers denote the order of increment of H  O  concentration. To increase readability, intermediate concentrations between # and # are not shown, since their curves are almost identical to #. Dashed line indicates slope  (diffusive motion). Inset: Values of MSD at the longest lag time.
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  Figure .: (a) Density profile, φ(x), at the top of the sediment for various H  O  concentration colour-coded as in Fig. .(b).x is the coordinate in the direction of g sin θ.(inset) Linear fit of log φ in order to obtain the ratio between the effective temperature and the Brownian temperature, T eff /T 0 . The abscissa is shifted by x 0 , the position where the profile has the maximum slope. The uncertainty is higher for the passive and low activity cases, where the density profile is sharp and the dilute region is very limited.(b) Calibration of T eff /T 0 versus H  O  concentration.The error bar comes from the uncertainty on the slope measurement.
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  Figure .: (a) Area density function versus H  O  concentration in the first set of experiments. (inset) Details of experimental images showing the same compaction. (b) Full density profile φ(x) comparing between various activity levels in the second set of experiments. The solid lines illustrate how we match density by moving along altitude x.

Figure

  Figure .: MSD (a,b) and overlap function (c,d) along y direction at two fixed densities, in the ergodic (a,c) and nonergodic (c,d) phase, and various activity levels. Crystalline particles are excluded in the computation in all panels (full symbols). The dashed lines emphasize diffusive motion.
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  Figure .: (a) Overlap function F(∆t) in the passive case at different waiting times t 1 and t 2 such that t 2t 1 = 140τ R , and for the same two densities as in Fig ., that appear respectively ergodic and nonergodic. (b) Experimental image of the sediment showing the slicing to get access to different densities. (c) Overlap function F(∆t) in the passive case and at various densities. The dashed line at . is the threshold where the relaxation time τ is defined.

  Fig. .(a) shows the waiting time dependence of F(∆t) in the passive case for the two densities studied in Fig. ..

Figure

  Figure .: (a) Phase diagram showing the dependence on both density and activity of τ, obtained directly from F(τ) = 0.5 (cross symbols), by extrapolation of F(∆t) (plus symbols). The solid curve is a guide for the eye materializing the glass transition line. Two vertical dashed lines at φ = 0.65 (blue) and φ = 0.72 (red) correspond to the densities in (b). (b) Contrast of activity dependence of τ between both sides of glass transition. For φ = 0.72 (red circles), the first three points are glassy, non-ergodic and we observe a non-monotonic dependence on activity, but not at φ = 0.65 (blue triangles) were all points are ergodic. The horizontal dashed line shows τ in the passive case.

  Fig. .(c) shows F(∆t) at various densities of the passive sediment.
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  Figure .: (a) Density dependence of relaxation time τ at various activity levels. (a) For T eff /T 0 = 1.4, τ is longer than the maximum lag time at densities higher than 0.70. Open triangles are obtained by extrapolation of F(∆t). Transparent areas around curves show uncertainties that come mostly from the uncertainty of area density (±0.02) below φ g or the standard deviation of τ from different sampling above φ g . (b) Collapse of density dependence of relaxation time on (Eq. .) (red curve).Beyond glass transition collapse is lost and saturation level follows a nonmonotonic trend with activity. Inset: Ideal and operational glass transition volume fractions, φ * and φ g respectively, function of activity.
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  Fig. .(a)shows how τ depends on density for various activities. In the passive case (black circles) τ rises steeply with φuntil φ ≈ 0.67. Beyond, we observe a saturation of τ, that contradicts the usual picture of glass transition where the relaxation time should diverge. However, our phenomenology is consistent with what Philippe et al.[] have observed in a large variety of passive systems made of soft particles where saturation of τ indicates ergodicity breaking. Indeed in Fig..(a) that is in this saturated regime that we observed the waiting-time dependence of the relaxation, symptomatic of ageing.For nonzero activities, the rise of τ is well fitted by the expression

Figure

  Figure .: Local crystallinity. (a) Density dependence of N crys /N all , the ratio of the number of crystalline particles to the total number of particles. The horizontal dashed line at N crys /N all = 0.5 is the threshold value where we limit our analysis in order to avoid the crystalline region. This corresponds to φ < 0.75 (the vertical dashed line). (b) Overlap function of at φ = 0.72 ± 0.02 at various densities. The full symbols corresponds to non crystalline particles (same data as in Fig. .(b)). The empty symbols consider only the crystalline particles.
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  Figure .: Maps of hexatic structure parameter (ψ 6,i ) of the passive case at φ = 0.85 ± 0.03: (a) modulus and (b) orientation. Sketches below shows which orientation corresponds to which colour. The white areas are from sample impurities (doublets and triplets) that are not properly detected by our image analysis.

  Fig. .(a). Following Refs [, ], we consider the projection of the phase of ψ 6,i as shown in Fig. .(b).
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  Figure .: Overlap function in a polycrystalline slice. The threshold where the relaxation time is defined is at F = 0.5 (dashed line). The dotted lines at T eff /T 0 = 1.0 and 1.7 are the extrapolation of a stretched exponential fit of F(∆t) to obtain τ. For T eff /T 0 = 1.4, F(∆t) has not exited the plateau and the extrapolation is not applicable.

  Fig. . shows the overlap function, F(∆t), in this slice at various activity levels. Both crystalline and noncrystalline particles are taken into account. At this density, F(∆t) of the passive case and the two lowest activities have not relaxed to the threshold 0.5 within our maximum experimental time. Nevertheless, we can clearly observe the delay in the exit of the plateau. This delay does respond nonmonotonically to activity, in a very similar way to Fig. .(b) or Fig. .(b).

  .). In Fig..(a) we spatially maps the orientation of the displacements at different activity levels. To highlight large displacements, only the % faster particles are coloured according to the orientation of their displacement, while the slower particles are displayed by empty circles. This representation highlights spatial correlations of the orientations. In the fast domains, particles tend to have almost the same direction as their neighbours, and this is true for all activities.

Figure

  Figure .: (a) Orientation of displacement between two frames such that ∆t = 32τ R , at various T eff /T 0 and fixed φ = 0.85 ± 0.03. Orientations are indicated by colours. The slowest half of particles are shown as empty circles. The circle arrow in the last panel highlights the vortex collective motion. The white areas are from sample artifacts and tracking errors. (b) Directional correlation map that displays for each particle i the number o i of its six neighbours that have the same orientation of displacement as i. The red lines represent broken bonds during ∆t.

  Fig. .(b) shows the map of o i for the same snapshot as in Fig. .(a) Although the value of the orientation is lost in this representation, we can clearly observe its spatial correlation. We observe that the fast domains in Fig. .(a) roughly correspond to highly oriented domains in Fig. .(b)
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  Figure .: (a) Probability distribution function (PDF) of k for each domain k at φ = 0.85 ± 0.03 and various T eff /T 0 . (b) Average size of directional correlation domains (red) and slow domains ξ (gray) at various T eff /T 0 . (c) The correlation between the relaxation τ measured from Fig. . and size of correlated domains . The measurement is done at various T eff /T 0 colour-coded as in (a). The vertical dashed line corresponds to T eff /T 0 = 1.4 where the relaxation function F(∆t) has not yet relaxed within our maximum lag time.
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  Figure .: Active microrheology. (a) Glass bead falling into a sediment of Janus particles, either passive (top) or active (bottom) Image width: 100 µm. (b) Microscopic intruder attached to the lab frame, while the sample is moved around by a translation stage itself tilted. The micromanipulator is used to position the intruder initially.



  

Figure

  Figure .: (a) Magnetic microrheometer by []. (b) Our first prototype. (c) D model of the new design. The core of the coils (black) extend below the sample. (d) Bottom view of the realisation of the new design, before coiling around the white parts. The core tips are shaped to allow the approach of the microscope objective. (e) Finite element method simulation of the magnetic field when a single coil is active. Colours from cyan to red indicate the magnitude of the magnetic field. Field lines (thin black lines) are conducted by the iron core of the bottom coil, and loop through the outer octagonal rim made of pure iron and the cores of the two side coils. (f) Light guide adjusted around the objective collecting light from optical fibres for low angle illumination of the sample.

  Fig .(f). Deporting the light generation has the collateral benefit of reducing the heating source around the sample and thus limiting convection flow that were the bane of previous experiments.

  Figure .: Irreversible event in a caseinate gel under constant shear stress in ICAMM. Pictures are details of a 228 × 228 × 120 µm stack shown in the XY plane ≈ 35 µm from the bottom wall. (a) Superposition of the images before (magenta) and after (green) the event. White indicates a good match between the two times. (b) Magnified displacement field superimposed with the image before the event. Obtained by optical flow method. (c) Magnified local strain. (d) Projection on the XY plane of the local vorticity. Clockwise values in red, anticlockwise in blue.
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  Figure .: Left: A sintered mix of vitrimer latex particles with various mechanical properties, each labelled with a different colour. The nanoscale heterogeneities confer good adhesion properties to the material. Right: Prolonged temperature annealing causes homogenisation of the mechanical properties and thus easy debonding.

  ..

Figure

  Figure .: Assembly and rupture of DNA gels. (a) Differential scanning calorimetry measurement of the assembly of DNA gel (low temperature) from X motifs with palindromic sticky ends (intermediate temperature) from mutually complementary single-stranded DNA (high temperature). DSC directly accesses entropy and enthalpy of association of both steps, where integral methods (inset) would not differentiate the two assembly steps. (b) Stress-controlled rheology with microscopy characterize entropy (linear regime) and enthalpy of rupture (nonlinear regime). Fluorescence-based detection of single-stranded DNA enables the resolution of rupture events in space and time. (c) Flow in a constriction gives access to association time, and powers of rupture and reassociation.

  Fig. .(a). With Catherine Barentin, we will also study constriction flow of DNA gels by ultra-fast micro-PIV in order to access the high strain rate, short response time, far from equilibrium response of DNA gels, see Fig .(c).

  

  Tsurusawa et al. Formation of porous crystals via viscoelastic phase separation. Nature Materials . (), pp. - • Hideyo Tsurusawa et al. Direct Link between Mechanical Stability in Gels and Percolation of Isostatic Particles. Science Advances . (May ), eaav

  This work was done during my postdoc in ENS Lyon, in the framework of a collaboration between the chemistry and physics lab of ENS Lyon. Cyrille Monnereau was the principal investigator and the head of the chemistry team.

I interacted closely with Hasan Srour (postdoc) from chemistry, and Nicolas Taberlet and Sébastien Manneville from physics. My role as a chemical physicist was pivotal to make the collaboration work. Indeed, I designed for a large part the investigation that led to Section . below, to the point were my collaborators prompted me to be the co-last author of the second of the corresponding papers:

• Hassan Srour et al. Mediating Gel Formation from Structurally Controlled Poly(Electrolytes) Through Multiple "Head-to-Body" Electrostatic Interactions. Macromol. Rapid Commun. . (Oct. ), pp. - • Hassan Srour et al. Ion pairing controls rheological properties of processionary polyelectrolyte hydrogels. Soft Matter . (Nov. ), pp. - . Introduction Since the pioneering work of Wichterle and Lím [] which established their relevance in a biomedical context, polymer-based hydrogels have never ceased to be a very active field of research [, ]. They have recently experienced a burst of interest among the biomedical community as controlled drug delivery cargoes or scaffolds for wound healing or tissue repair [, ]. Polyelectrolytes are being extensively put to use in this particular context

Table  .

  : Summary of rheological measurements and microscopic values deduced from the model. E c , D and A are obtained by assuming τ = 0.40

	Br	 .  800	830	304	123	24	640
	Im I	 .	 113	113	116	46.8	8.7	140
	Pyr Cl	 .		46.8	58.2	66	26.6	6.2	90
	Pyr Br	 .		1.1	2.6	5.2	2.1	1.0	7.1
	Pyr I	 .		1.0	2.4	5.0	2.0	0.9	6.5

  This work has been performed in collaboration with Christophe Perge, Thibaut Divoux and Sébastien Manneville. Section . remains unpublished, but Section . has been published as • Mathieu Leocmach et al. Creep and fracture of a protein gel under stress. Phys. Rev. Lett. . (July ), p. 

  . by focusing on the global shear rate γ(t). Figures . and . gather the results from local measurements and are discussed below together with each of the successive regimes inferred from global data. In Section . we will discuss how gap width, geometry or other casein and GDL concentrations affect the failure dynamics.

  This work was initiated by discussions with Hélène Delanoë-Ayari, Catherine Barentin and Loren Jørgensen who drew my attention onto an existing apparatus and shared with me ideas for possible improvements. It was the base of the project that got me hired by CNRS. The mechanical design was made in collaboration with the engineer Gilles Simon. Michio Tateno (visiting PhD student from the group of Hajime Tanaka at the University of Tokyo) worked on the first prototype. The final design and the experiments presented below are the result of Akash Singh's PhD thesis, I co-supervised together with Loïc Vanel. It was published as • Akash Singh et al. Immersed Cantilever Apparatus for Mechanics and Microscopy. Measurement Science and Technology (Aug. )

  program that also actuates the micromanipulator. Source code of the program can be found at https://doi.org/./zenodo. . Using PID control loops enables either stress or strain control on each axis, as

			x a/g				+	x a/g	
					deflection				
	micromanipulator	sensor A sensor B	a b	M	setpoint x h/a z h/a	PID +	∆x z h/g position	PID ∆z	micromanipulator
							setpoint		
			z a/g					+	z a/g
									

  ) we get the relevant Peclet number for cage exploration

	Pe ≡	a λ P	=	3 √ 2	0.3σ 0 R H	T eff T 0	-1	1/2	.	(.)
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