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Abstract

Nowadays the control and surveillance of gas and particles emitted into the atmosphere is done
more through optical systems, e.g. multi-spectral cameras, LIDARS, satellites images, etc. Op-
tical instruments allow the measurement of pollutant concentration in the plume. It is believed
that, in the future, optical instruments at high frequency resolution should work with or re-
place the current fixed and punctual monitoring networks. So they could contribute to a major
technological leap in detecting substances in the atmosphere.

In the industrial sector, the use of optical measurements could contribute to:

• A better knowledge of industrial sites.

• Management of the future regulatory controls, made through remote sensing addressed to
measure COV and methane.

• Improvement of physical representability of dispersion models employed for prevention of
major risks.

• An approach validated for critical environmental events.

• Recognition of emission sources.

Current work is focused on the enhancement and interpretation of the results of optical
measurements thanks to the numerical modelling of atmospheric dispersion. In order to make
the most of the new experimental data, characterised by a high sampling frequency and a strong
level of fluctuations, a robust direct simulation approach is required. It has to be able to capture
not only the mean state of turbulent flow and of plume dispersion but also its higher moments,
which better characterise the non-linear and instantaneous behaviour.

The strategy of the present work is based on a gradual increment of complexity. Before
dealing with the atmospheric dispersion and modelling methods to simulate higher moments, we
treat the study of the Atmospheric Boundary Layer (ABL) and its simplest modelling strategy,
such as the RANS model. Working with them, we have been faced with one big source of
uncertainties: the boundary conditions, e.g. inflow profiles, ground roughness and others. The
proper setting of boundary conditions enable to reduce numerical errors and correctly interpreted
the final results. Although decades of studies, this issue is still open due to the extremely
complexity of the ABL. Even the simple case of a Surface Boundary Layer (SBL) in neutral
conditions can present difficulties due to the appropriate application of boundary conditions
and the equilibrium of the coefficients of the turbulence models. Some cases from the literature
are reproduced to understand the problem and apply the solutions suggested. This allowed to
become familiar with cases encountered later on.

Subsequently we pass to investigate the LES approach to model the SBL in neutral condi-
tions together with the dispersion of a passive scalar and the related boundary conditions. The
previous steps contribute to the development of a LES methodology employed to simulate nu-
merically the atmospheric dispersion of a passive scalar. The development of the methodology
has identified some physical and numerical criteria that could condition the validity and the
accuracy of the approach adopted. In fact, the application of the criteria to simulate a wind
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tunnel experiment, conducted in the Laboratoire de Mécanique des Fluides et d’Acoustique of
the École Centrale de Lyon, was useful to validate the LES methodology. The validation turned
out to be more complex than expected because compromises were necessary to violate the fewest
criteria. In this context, our methodology was validated with the appropriate interpretation of
the results.

Finally, all the acquired knowledge is used to simulate a real scenario, i.e. a test case of
the TotalEnergies Anomaly Detection Initiatives (TADI) project, an experiment organised by
TotalEnergies with the participation of different optical instruments manufacturers and devel-
opers. The numerical results are conceived in such way as to be able to interpret and assimilate
the optical measurements. In particular using multi-spectral camera SIMAGAZ.



Résumé

Actuellement le contrôle et la surveillance des émissions de gaz et particules émises dans l’atmosphère
s’effectuent de plus en plus par des systèmes optiques, comme les images des caméras multispec-
trales, LIDARS, satellite, etc. Ces instruments optiques permettent la mesure des polluants
dans le panache. À l’avenir, les instruments optiques à haute résolution de fréquence devraient
fonctionner avec ou remplacer les réseaux de surveillance fixes et ponctuels actuels. Ils pour-
raient donc contribuer à un saut technologique majeur dans la détection de substances dans
l’atmosphère.

Dans le milieu industriel, l’exploitation de mesures optiques pourrait contribuer à :

• Une meilleure connaissance des émissions des sites industriels.

• La mâıtrise des futurs contrôles réglementaires par � remote sensing � comme la mesure
des COV et de méthane.

• Une amélioration de la représentativité des modèles de dispersion utilisés en prévention
des risques majeurs.

• Une approche validée en cas d’évènement environnemental majeur.

• Identification et caractérisation des sources d’émission.

• Éviter les fuites et les catastrophes environnementales.

Le travail actuel port sur la valorisation et l’interprétation des résultats de mesures optiques
grâce à la modélisation numérique de la dispersion atmosphérique. Afin de tirer le meilleur
parti des nouvelles données expérimentales, caractérisées par une fréquence d’échantillonnage
élevée et un niveau élevé de fluctuations, une approche de simulation directe robuste est requise.
L’approche doit pouvoir capter non seulement l’état moyen de l’écoulement turbulent et de dis-
persion du panache mais aussi ses moments supérieurs, qui caractérisent mieux le comportement
non linéaire et instantané.

La stratégie du travail est basée sur une augmentation progressive de la complexité. Avant
d’aborder la dispersion atmosphérique et les méthodes de modélisation pour simuler des moments
plus élevés, nous traitons l’étude de la Couche Limite Atmosphérique (CLA) et sa stratégie
de modélisation la plus simple, comme le modèle RANS. Même le cas simple d’une Couche
Limite de Surface (CLS) dans des conditions neutres peut présenter des difficultés en raison de
l’application appropriée des conditions aux limites et de l’équilibre des coefficients des modèles
de turbulence. Quelques cas de la littérature sont reproduits pour comprendre le problème et
appliquer les solutions proposées. Cela a permis de familiariser avec des cas rencontrés par la
suite.

Par la suite, nous passons à l’étude de l’approche LES pour modéliser la CLS dans des
conditions neutres avec la dispersion d’un scalaire passif et les conditions aux limites associées.
Les étapes précédentes contribuent au développement d’une méthodologie LES utilisée pour
simuler numériquement la dispersion atmosphérique d’un scalaire passif. Le développement de
la méthodologie a permis d’identifier certains critères physiques et numériques qui pourraient
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conditionner la validité et la précision de l’approche adoptée. En fait, l’application des critères
pour simuler une expérience en soufflerie, menée dans le Laboratoire de Mécanique des Fluides
et d’Acoustique de l’École Centrale de Lyon, a été utile pour valider la méthodologie LES. La
validation s’est avérée plus complexe que prévu car des compromis ont été nécessaires pour violer
le moins de critères. Dans ce contexte, notre méthodologie a été validée avec l’interprétation
appropriée des résultats.

Enfin, toutes les connaissances acquises sont utilisées pour simuler un scénario réel, c’est-
à-dire un cas test du projet TotalEnergies Anomaly Detection Initiatives (TADI), une expérience
organisée par TotalEnergies avec la participation de différents fabricants et développeurs d’instruments
optiques. Les résultats numérique sont conçus de manière à pouvoir interpréter et assimiler les
mesures optiques. Notamment à l’aide de la caméra multispectrale SIMAGAZ.
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General Introduction

Problem introduction and solution strategy proposed

Nowadays pollution has become a global concern. Pollution can assume many forms, ranging
from organic compounds and other chemical substances to different types of energy. Therefore
pollution is present in the air we breath, the water we drink, the soil we use to grow our food,
the lit-up skies and even the increasing noise we hear every day. It can contribute to health
problems, a lower quality of life and major disruptions and effects on wildlife and ecosystems.
The severity of a pollutant for human health and ecosystems depends on its chemical nature,
quantity or concentration and persistence. The specific damage generated by different pollutants
is related not only to the environment it is in (i.e. air, water, soil) but also the mix of other
pollutants that are present and the actual exposure (Gee et al., 2013). Some evidences are
highlighted by United-Nations-Environment-Programme (2017): the air quality is a problem
nearly all around the world, water pollution is a major cause of death of children under five
years age, nutrient over-enrichment of land and water is causing shifts in ecosystems and loss
of biodiversity, plastic in the ocean is on the rise and there is no acceptable storage or disposal
option for processing of older-generation nuclear fuel. Pollution is also impacting the way in
which some major Earth system processes, such as the climate, are functioning (Diamond et al.,
2015; Steffen et al., 2015).

Consequently, pollution has a huge economic impact. In 2013, the welfare costs related to air
pollution in the world were estimated at about US$ 5.11 trillion (Bank et al., 2016). Another
tangible example in the private sector concerns the 6 days eruption of Eyjafjallajökull in Iceland
in April 2010. The volcanic ash ejected had generated important disruptions to aerial transport
in most parts of Europe because of closure of airspace. The estimated loss of airlines’ revenue
was about US$ 1.7 billion (Flight disruptions cost airlines $1.7bn, says IATA, BBC News; last
access: January 18th, 2022). Major accidental events, like the meltdown of the Fukushima Dai-
ichi nuclear plant, could cause both economic damage and increased health risks due to residual
radiation. In the previous example, the economic damage from the radiation contamination
is well documented (Yamane et al., 2011a,b). In Fukushima and Miyagi prefectures, it was
remarked that an augmentation of 1µSv/h decreases the land price by 3.39 % on average and
the economic damage due to radiation is approximately US$ 0.53 billion (Tanaka and Managi,
2016). However, research points out that the land price decline is only partially explained by
increased levels of radiation. The population reduction indirectly influence the land price (Shin
et al., 2016). Not only major accidents but also small or moderate emissions (e.g. liquid or gas
leak from pipes or industrial equipments) could cause damage to health and ecosystems or lead
to the loss of huge valuable resources. Achieving harmony with nature also means obtaining a
higher quality of life and better economic results.

Since the Industrial revolution, a new era has arisen, the Anthropocene, in which humans
and our society have become a global geophysical force (Steffen et al., 2007). Hence, it is possible
to consider that human activities push Earth system outside the stable environmental state of
the Holocene, with consequences that are detrimental or even catastrophic for large part of the
world (Rockström et al., 2009). Referring to air pollution, the massive scale of urbanisation, the

http://news.bbc.co.uk/2/hi/business/8634147.stm
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increase of traffic, the industrialisation and the energy consumption are the main causes of the
air quality worsening. Therefore, the achievement of a sustainable development is fundamental
to improve the health of people and of the planet. The United Nation’s 2030 Agenda for
Sustainable Development affirms its commitment to “ensure that all human beings can enjoy
prosperous and fulfilling lives and that economic, social and technological progress occurs in
harmony with nature” (Lee et al., 2016). Moreover, the recent Paris Agreement aims to enhance
the UN Framework Convention on Climate Change, adopted in New York on 9th May 1992, and
to strengthen the global response to the treat of climate change, in the context of sustainable
development and efforts to eradicate poverty (Paris-Agreement, 2015).

As previously illustrated, pollution can affect different areas of our society and at different
scales of the whole planet. The different identified scales could be: planetary scale, continental
scale, regional scale, urban scale, district scale, street scale and indoor scale. A direct conse-
quence is that the stakeholders could vary from world institutions, like United Nations, to local
communities arriving until every person on the planet. In between we also find protagonists who
have been playing a fundamental role in today’s society: industries. To reduce pollution, collab-
oration and coordinated action at international, national and local levels have to be maintained,
in coordination with other environmental, climate and sectoral policies. Holistic solutions are
fundamental.

Focusing on air pollution, in order to save lives and to improve economic well-being, com-
putational models of air pollutant dispersion together with consolidated and new measurement
techniques are being developed to understand, identify and predict the origins and consequences
of these phenomena and accidents. In fact, effective action to reduce air pollution and its im-
pact requires a good understanding of its sources, how pollutants are transported, how chemical
composition changes over time and how pollutants affect humans, ecosystems, climate and sub-
sequently society and economy (EEA, 2020). From a regulatory point of view, countries or
communities have developed an extensive body of legislation which establishes health based
standards and objectives for a number of pollutants present in the air, like those made by Eu-
ropean Union (European-Parliament and Council-EU, 2008). The control of the standards are
conducted by the data collected by fixed and punctual monitoring stations. In this scenario,
numerical models complement the measurements by obtaining dispersion maps over larger and
more detailed areas or by making predictions and scenario studies. Similar standards regulate
the industries’ emissions. Detailed knowledge of the environmental impact is important not only
for regulatory reasons but also for accidents’ prevention and mitigation, e.g. nuclear (Managi
and Guan, 2017), refinery, petrochemical accidents (Balasubramanian and Louvar, 2002) and
others.

Today fixed monitoring stations or networks of micro-sensors are commonly used to measure
concentration of pollutants. These techniques constitute a robust and widely diffused technol-
ogy. Nevertheless, nowadays the control and surveillance of gas and particles emitted into the
atmosphere is done more through optical systems, e.g. hyper-spectral cameras, UV cameras,
LIDARs, satellites images, etc (Dinger et al., 2018). Some of them are illustrated in Figure 2.
Optical instruments allow the measurement of pollutant concentration directly in the plume. It
is believed that, in the future, optical instruments at high frequency resolution should work with
or replace the current monitoring networks. So they could contribute to a major technological
progress in the domain of atmospheric substance detection. The interest on this technology is
related to the TADI project (TotalEnergies Anomaly Detection Initiatives; last access: January
18th, 2022), organised by TotalEnergies with the participation of different optical instruments
manufacturers and developers, which provided us some key data from different types of cameras.

The TADI experiment is not the only experience of this kind. For example, the Camera
Observation and Modelling of 4D Tracer Dispersion in the Atmosphere (COMTESSA; last access
January 18th, 2022) project wants to elevate the theory and simulation of turbulent tracer
dispersion in the atmosphere to a new level of performing completely novel high-resolution 4D

https://www.ep.total.com/en/innovations/research-development/tadi-toward-support-prevention-major-accidents
https://comtessa-turbulence.net/
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measurements. The sulphur dioxide (SO2) was chosen as tracer. In fact, it might be assumed to
be a passive tracer over short transport distances. Moreover, SO2 strongly absorbs radiations
in part of the UV spectrum and may this be detected by, for example, UV-sensitive cameras.
Optical data could be used to improve the modelled concentration field or vice versa a numerical
model may enhance the data interpretation (e.g. Kylling et al. (2020)).

Figure 2: Optical instruments, from left to right: Hyperspectral Camera, multispectral camera
and LIDAR.

In view of this innovation, the development of a direct model for the dispersion of pollutants
capable of capturing instantaneous fluctuations and provide higher momentum statistics is a
must. From the numerical point of view, the impact of computational fluid dynamic (CFD) has
taken advantage of the decrease of computational power cost thanks to the rapid and continuous
development of computer technologies and the algorithmic improvements. In fact, a direct
consequence is that today we can not only count on the continuous progress of new CPUs
but also of GPUs, (Muñoz-Esparza et al., 2020). Numerical simulations of turbulent flows,
which until a few decades ago were confined to research environment, are currently used for the
development and design of engineering tools and devices. It was already true almost 20 years
ago, as remarked by Piomelli and Balaras (2002).

In the field of atmospheric dispersion, the new resources motivate the scientific community
to go further. Despite the uncertainties related to the filter numerical implementation, boundary
conditions, wall treatment and the higher computational cost, today the most convenient CFD
prediction model for simulating atmospheric flows and dispersion is the large-eddy simulation
(LES). Its applications include urban environment and critical applications such as the release
of toxic gas substances (e.g. Fossum et al. (2012); Nakayama and Nagai (2009); Nakayama et al.
(2013)). Although the model based on Reynolds-Averaged Navier-Stokes (RANS) equations is
more commonly used, especially for engineering applications due to a reduced computational
cost, no model of this type can provide accurate results without ad-hoc adjustments of the model
parameters (Wilcox, 2001). The RANS equations are obtained by time- or ensemble-averaging
of the Navier-Stokes equations to generate a set of transport equations for the averaged fields.
It is possible to obtain higher moments statistics through specific equations for those moments.
In fact, RANS equations require a closure model with associated assumptions. The effect of
all the scales of motion needs to be modeled. This approach results counterproductive for the
new challenges. In this regard, it is more convenient to simulate instantaneous field in order to
obtain directly the higher moments statistics. This is the case of direct numerical simulation
(DNS) and large-eddy simulation (LES). The first resolves all the scales of the motion and no
modeling is used. Nevertheless, the computational cost is prohibitive for high Reynolds number
flows, typical of atmospheric flows in engineering field. On the other hand, LES solves a very
wide range of time and length scales, computing the energy-carrying eddies, while it models
the smaller scales of motion. It provides a good compromise between computational cost and
accuracy of the instantaneous fields, making it more attractive for our purposes.

In the context of prevention of minor and major accidents, the current thesis is linked to
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the TADI project, which aims to offer a safety diagnostic application adapted to each situation.
It wants to help operators to make the best decision with confidence and without exposing hu-
man lives and installations thanks to a clear synthesis of multiple information in real time. To
achieve the objectives, a large experimental campaign was organised capable of comparing differ-
ent measurement techniques, from well-known fixed stations to innovative optical and acoustic
technologies.

Current work is focused on the interpretation and enhancement of the results of optical
measurements thanks to the numerical modelling of atmospheric dispersion. In order to make
the most of the new experimental data, characterised by a high sampling frequency and a strong
level of fluctuations, a robust direct simulation approach is required. It has to be able to capture
not only the mean state of turbulent flow and of plume dispersion but also its higher moments,
which better characterise the non-linear and instantaneous behaviour.

Therefore, the aim of the research is to simulate numerically the atmospheric flow and the
dispersion of pollutants over a complex built terrain, mainly in industrial sites. In particular,
our simulations are concentrated in the reproduction of the unsteady behaviour typical of these
phenomena. In fact, air motion in the lower part of the atmosphere is bounded by a solid surface
of varying temperature and roughness. It responds quickly to surface radiation changes, and
the air motion is nearly always turbulent. A pollutant released into this turbulent atmosphere
and surrounded by a complex terrain experiences concentration fluctuations that are significant.
In particular, the fluctuations are of high order of magnitude if the response is non-linear, for
instance when cases of toxicity, flammability and odour detection are concerned (Gant and
Kelsey, 2012), and if non-linear chemical reactions are involved (de Arellano et al., 2004).

The campaign TADI provides us some key data from different types of cameras, e.g. LIDAR,
multi- and hyper-spectral, infrared cameras and others. These data are useful to many appli-
cations such as a better understanding of the strengths and weaknesses of a coupled approach,
which combines optical measurements and numerical models. Furthermore, the use of optical
measurements could contribute to:

• A better knowledge of industrial sites.

• Management of the future regulatory controls, made through remote sensing addressed to
measure COV and methane.

• Improvement of physical representability of dispersion models employed for prevention of
major risks.

• An approach validated for critical environmental events.

• Identification and characterisation of emission sources.

• Avoid leaks and environmental disasters.

The strategy of the present work is based on a gradual increment of complexity. Before
dealing with the atmospheric dispersion and LES modelling, we treat the study of the Atmo-
spheric Boundary Layer (ABL) and its simplest modelling strategy, such as the RANS model.
Working with them, we have been faced with one big source of uncertainties: the boundary con-
ditions, e.g. inflow profiles, ground roughness, etc. The proper setting of boundary conditions
enable to reduce numerical errors and correctly interpret the final results. Although decades
of studies, this issue is still open due to the extreme complexity of the ABL. Later we pass to
investigate LES models and ABL in neutral conditions together with the dispersion of a passive
scalar and the related boundary conditions. The previous steps contribute to the development
of the methodology employed to simulate numerically the atmospheric flow and the dispersion
of pollutants over a complex terrain. The final methodology is validated thanks to wind tunnel
experiments (Nironi et al., 2015). Finally, all the acquired knowledge is used to simulate a real
scenario, i.e. the TADI experiment, and to compare and assimilate the optical measurements.
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Figure 3: TADI site

Work strategy for the development of the simulation methodol-
ogy

As pointed out in the current section, the first step to simulate a dispersion phenomena is to
have a robust direct simulation approach for calculating numerically the atmospheric boundary
layer flow.

Explicitly simulation of the concentration probability density function (p.d.f.) and its higher
moments in real conditions and at very high Reynolds numbers typical of atmospheric flows is
possible through the Lagrangian or Eulerian p.d.f. method (also known as micro-mixing method)
(Leuzzi et al., 2012) or the Large-Eddy Simulation method (Philips et al., 2013; Ardeshiri et al.,
2020). The experience of the LMFA (Laboratoire de Mécanique des Fluides et d’Acoustique)
research group in the CFD field, the accessibility to considerable computational resources and the
curiosity to investigate new horizons have persuade us to adopt the LES method. However, one of
the first technical obstacle was represented by the choose of the CFD code. After a benchmark of
the different codes available and commonly used by the atmospheric community, especially in the
fields of microscale atmospheric flows and wind engineering, we have chosen the OpenFOAM code
because it was planned to carry out large simulations that need to parallelize the calculations
on many supercomputer nodes. In fact, CFD commercial licenses have been evaluated as an
obstacle to our objectives and a drawback that should not be underestimated compared to open-
source codes. On the other hand, OpenFOAM required a deeper understanding and support to
be sought in the open-source community. However, this did not stop us from carrying out the
first case studies using both OpenFOAM and Ansys Fluent.

Before to compute a LES simulation, a RANS simulation was preferable in order to handle
with boundary and initial conditions (section 2.1). In fact the simulation of the ABL for mi-
croscale dispersion problems is still a challenge today. It is important to highlight that a good
equilibrium between the boundary conditions and the conservation equations of turbulence is
fundamental. Moreover, a convenient wall function determines the successful simulation of a
rough wall typical of atmospheric flows, as we will see in practice in section 2.2.

More in-depth work was required to develop a wall model suitable for LES simulations
(section 3.1). In the wall adjacent region, a wall model based on the mean flow is not always
enough because it could be also required to consider its instantaneous part. Moreover, the LES
closure model interacts differently near the wall than in the RANS case. Conversely, as well
as RANS simulations, a constrain for LES wall model is the dimension of the cells adjacent
to the wall in the direction normal to the surface. The idea that finer meshes lead to better
LES simulations could be limited by the previous constrain. In fact, cells that are too small
cannot reproduce the effect of turbulent eddies present in this region of the flow and treated in
a Reynolds-average sense (Piomelli and Balaras, 2002). Furthermore, sometimes the source of
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pollutants are situated close to the wall and have small dimensions. For low-Reynolds number,
the source dimension could be smaller than the wall adjacent cells and it might be a problem
if the required cells dimensions are too different. A good compromise between physical and
numerical constraints determines the success of the simulation. These difficulties together with
the methods to simulate the inlet flow represent the core of the methodology developed to
simulate the atmospheric flow and the dispersion phenomenon. The complete setting of the
validation case is illustrated in section 3.3, while the methodology is presented in section 3.4.
The flow and the concentration field were compared with wind tunnel data (section 3.2) in order
to validate the methodology and understand its limits (section 3.4).

Finally, it was possible to simulate a real scenario (chapter 4). After validation, the focus
was on the available experimental data from the TADI experiment, described in section 4.1. The
identification of a test in neutral atmosphere conditions in the 2019 campaign made it possible
to apply our methodology to simulate the atmospheric dispersion of pollutants over complex ter-
rains, presented in section 4.2. The final verification was conducted using the SIGMA gas camera
images. The latter were compared with the images generated by the numerical methodology
developed. The techniques of comparison and assimilation have the main objective of highlight-
ing the performances of the numerical and experimental methodology and understanding how
to better integrate them, as illustrated in section 4.3.

The points presented in this section will be deepened throughout the entire thesis. The
first part is concluded by the exposition of the physics of the atmospheric dispersion and how
to model it (section 1.1). The simulation tools used to study atmospheric dispersion are also
included in this part (section 1.2). Subsequently, the chapter 2 and chapter 3 are focused on the
development of the RANS and LES methodology including our results and the validation of the
final methodology. The second part includes also the treatment of RANS boundary conditions
for a neutral ABL, taken particular attention to the wall function and inlet profiles. In this
case, the RANS methodology is applied to revisit some cases from the literature and improve
their resolutions (section 2.2). In a similar way, the third chapter investigates the LES boundary
conditions, above all wall models and inlet flow generators (section 3.1). Moreover, it presents
the wind tunnel experiment used to validate the methodology, the computational settings and
the sensitivity studies and results of the validation (section 3.2, section 3.3 and section 3.4).
The chapter 4 part is entirely dedicated to the TADI experiment and the numerical simulation
of it. The comparison and assimilation of optical data is also treated in this part. Finally the
conclusions and perspectives are presented in the final chapter (chapter 4.4).



Chapter 1

State of the Art of Dispersion
Phenomena in the Atmopheric
Boundary Layer

1.1 Physics of dispersion in the atmospheric boundary layer

1.1.1 Introduction to the atmospheric boundary layer

In order to study the atmospheric dispersion, the knowledge of the atmospheric boundary layer
and how to simulate it is fundamental.

According to Stull (2012), the Atmospheric Boundary Layer (ABL) or Planetary Boundary
Layer (PBL) could be defined as the part of the troposphere that is directly influenced by the
presence of the earth’s surface, and responds to surface forcing with a timescale of about one hour
or less. The forcing includes the friction drag, the heat transfer, evaporation and transpiration,
pollution emission and flow modification induced by terrain. The boundary layer thickness is
quite variable in time and space ranging from hundreds of meters to a few kilometres. It is
convenient to precise that this is the case of the ABL over earth’s surface. Differently from the
oceans, the variations in the nature and in the roughness of the earth’s surface (i.e. countryside,
more or less urbanised regions) are many and consequently modify the ABL. Furthermore, the
flow over earth’s surfaces are more sensible to daily cycles due to solar radiation. It is pointed out
that only a small portion of solar radiation (almost 25 %) is directly absorbed by the atmosphere,
while a part of the same order (29 %) is directly reflected, and the main part (almost 48 %) is
transferred and then absorbed by the earth’s surface. The absorption of this solar energy is
the cause of the daily temperature variations of earth’s surfaces, which modify the heat transfer
between the ground and the ABL during the day. On the other hand, in the oceans the thermal
structure of the ABL above it is less variable due to the important thermal capacity of the water
which limits a lot the temperature variation at the ocean’s surface.

The lower part of the atmosphere is commonly divided into several layers with varying degrees
of turbulent mixing and with distinct mechanisms of turbulence production. It is important to
make convenient approximations in order to get simplified relationship between state and process
variables because the forces that dominate the flow in each layer are different. The identification
of the beginning or the end of layers is possible through the profiles of potential temperature,
humidity, wind or trace gas of concentrations and the accuracy is improved thanks to observed
patterns of time variations of these variables on the 24-h cycle. The existence of a vertical
structure is a consequence of the gravity and of the strong influence of ground surface on the
overlying atmosphere through momentum absorption and exchanges of energy and materials.
Nevertheless, if the land cover is inhomogeneous, if the terrain is sloped, or if the flow is disturbed
by synoptic weather events (e.g. cold front passage) or mesoscale phenomena (e.g. land-lake
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breezes), some of the layers could be indistinct (Lee, 2018).
Although the structure of the ABL is not homogeneous in time or in space, for a first

approximation it is common to consider it horizontally uniform (in statistical term) and to
identify main different parts. The ABL is generally divided into 3 parts which are represented
on the Figure 1.1. They are:

• The Ekman layer or outer layer: It is the upper part of the ABL. This layer marks
the transition between the free atmosphere, where the air movements are given by the law
of the geostrophic equilibrium and are only driven by the Coriolis force and an horizontal
pressure gradient, and the lower part of the atmosphere where the wall effects of the ground
or ocean surface begin to be important. Therefore, Ekman layer is the layer where there
is a force balance between pressure gradient force, Coriolis force and turbulent drag.

• Surface Boundary Layer (SBL) or surface layer: Closer to the ground, it is possible
to identify the SBL which is almost 10 % of the ABL and where the flow is not influenced
by the Coriolis force, but it is driven by the friction and the heat transfer at ground. The
similarity theory of Monin-Obukhov is generally applied (Monin and Obukhov, 1954). It
introduce the concept of atmospheric stability to describe the vertical profile of velocity
and temperature.

• Canopy layer or urban canopy layer: It is the layer attached to the ground surface.
The canopy layer extends from the ground to the mean height of buildings or obstacles (i.e.
trees, vegetation, etc). It is characterised by an extremely complex and inhomogeneous
flow due to the amount of obstacles, the variable space between obstacles and their heights.
In fact the interaction between the flow and the obstacles is of fundamental importance
in this region. This is the reason why there is not a universal way to treat the air flow in
this part of the atmosphere.

Figure 1.1: Subdivision of the ABL. From Establishment of an Atmospheric Flow Laboratory
Project; last access: January 18th, 2022.

The flow in the ABL is highly turbulent. A property of this turbulence is that it is decoupled
from the large meteorological variations, which develop over several days. Analysing the spectral
distribution of the kinetic energy of the wind speed, shown in Figure 1.2, it is pointed out that
there exist a separation zone between the meteorological variations and the turbulent fluctuations
(Soberanis and Mérida, 2015). This separation allow to treat or model independently the two
scale ranges. For a time of the order of hours or minutes, it is possible to assume that the

https://bmeafl.com/the-project-proposal/
https://bmeafl.com/the-project-proposal/
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meteorological variations are sufficiently slow to be considered constants and that the turbulent
is fast enough to be parameterized by average operators.

As already mentioned, in the Ekman layer and free atmosphere, the wind flow is defined by
the Coriolis, friction and pressure gradient forces. On the other hand, in the surface layer the
Coriolis force is negligible, while the ground roughness becomes a more important parameter,
influencing both the velocity profile and the angle of incidence of wind at the ground level
according to the isobars. The roughness of the terrain conditions the depth of the ABL (i.e. the
rougher the terrain and the higher the ABL). The parameter z0 describes the roughness of the
terrain (Nikuradse, 1933). It is called aerodynamic roughness length, or just roughness length.
Its meaning will be explained in the subsection 1.1.2.

The forcing, like Earth’s rotation and small or large variations in pressure and temperature,
produces the wind. The latter represents the horizontal and vertical motion of the air in the
atmosphere. The vertical movement of the air is affected by the atmospheric stability. The
magnitude of the horizontal wind is far greater than the vertical movement of air. However,
the influence of atmospheric stability on vertical movement is equally important because it
could determine the behaviour of other physical phenomena such as the dispersion of pollutants.
Stability is simply the resistance of the atmosphere to vertical motion. More precisely, it is the
degree to which vertical motion is enhanced or suppressed in the atmosphere (Lee, 2018).

Atmospheric stability is described according to the effects of the environment on vertical
motion. Each type can exist simultaneously in the atmosphere at different levels. The three
types are:

• Unstable atmosphere, which enhance or encourage the vertical movement of air and is
characterised by:

∂θ̄/∂z < 0

• Stable atmosphere, which suppress or limit vertical motion and is characterised by:

∂θ̄/∂z > 0

• Neutral atmosphere, which neither suppress nor enhance vertical motion and is charac-
terised by:

∂θ̄/∂z = 0

The vertical gradient of the potential temperature ∂θ̄/∂z allows to know the state of the
atmospheric stability. However, in this way, it is not possible to have a quantitative description
of the stability. In fact, the combined effect of wind and thermal stratification can be captured
only thanks to quantitative stability parameters. One such parameters is the Richardson number,
which is the ratio between the thermal and the mechanical turbulent kinetic energy production
terms. However, to deepen this topic, it was preferred to adopt the Monin-Obukhov similarity
theory, as we will see in next subsection.

Based on theoretical considerations, it is possible to assume the boundary layer to have a
depth proportional to u∗/f , where u∗ is the friction velocity derived from the surface friction
stress τw (Eq. (1.1)) and f is the Coriolis parameter equal to 2 Ω sin Φ. In the latter relation, Ω
is the earth’s rotational speed and Φ the latitude. So the ABL height zh, in the case of neutral
stratification is expressed by Eq. (1.2).

τw = ρ u2
∗ (1.1)

zh = C

(
u∗
f

)
(1.2)

where a value of C = 0.25 provides boundary layer heights close to observed daytime heights.
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Figure 1.2: Reproduction of horizontal wind speed spectrum of Van der Hoven (1957) at
Brookhaven National Laboratory. From: Martin-Mart́ınez et al. (2012)

In the particular case of neutral ABL, which flows over a flat terrain, the horizontal mean
velocity increases vertically with decreasing velocity gradient, and the turbulent shear stress
decreases vertically. If only the lower part of the ABL is taken into account, the turbulent shear
stress could be treated as almost constant and equal to the wall shear stress. Alternatively, if
all ABL height is considered, shear stress should be variable along the height and vanish at the
top of ABL (Lee, 2018).

Conform to previous considerations, the present study is focused on modeling the bottom
part of the ABL, also known as surface boundary layer (SBL) or atmospheric surface layer, under
neutral stability conditions. Nevertheless, the effects typical of the higher part of the ABL will
be taken into account (Gryning et al., 2007) through the use of characteristic profiles derived
from experimental observations (Tian et al., 2018), especially in RANS modeling. The applica-
tion of our approach requires the analysis of small scale features like buildings and vegetation.
Therefore, they will be treated in the proper manner.

1.1.2 Similarity theory for the ABL

For many boundary layer situations, the knowledge of the governing physics could be insuffi-
cient to derive laws based on first principles. Nevertheless, boundary layer observations often
show consistent and repeatable characteristics, implying the possibility of developing empirical
relationships for the variables of interest. Similarity theory provides a procedure to organise and
group the variables to get the maximum advantage, and in turn provides guidelines on how to
design experiments to gain more information and how to setup numerical models (Stull, 2012).

The similarity theory is an empirical method that describes the universal relationships be-
tween nondimensional variables thanks to the Buckingham π theorem (Buckingham, 1914). The
most common classes of similarity scaling are Monin-Obukhov similarity, mixed-layer similarity,
local similarity, local free convection and Rossby-number similarity. In the following part of the
current subsection, the Monin-Obukhov similarity theory is presented.

Monin-Obukhov similarity theory

The most widely diffused approach to describe the nondimensional mean flow and mean temper-
ature in the surface layer under non-neutral conditions as a function of the dimensionless height
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parameter, named Obukhov length or Monin-Obukhov length LMO, is the Monin-Obukhov simi-
larity theory, (Monin and Obukhov, 1954). LMO is the result of the combination of the turbulent
vertical fluxes of heat and momentum, as illustrated by Eq. (1.3).

LMO = −(−u′w′) 3
2

κ g
θ0
θ′w′

(1.3)

where u′, w′, θ′ are respectively the horizontal and vertical wind turbulent fluctuations and the
potential temperature fluctuation. θ0 is the mean potential temperature at ground level and κ
is the von Kármán constant, usually equal to 0.4. Turbulent fluxes are hardly measurable, but
they could be estimated thanks to two parameters: the friction velocity u∗ and the turbulent
heat flux q. Different methods exist to determine u∗ and q using net radiation components
and (potential) temperature gradient, which largely differ in the convective and in the stable
boundary layer (Cimorelli et al., 2005). The Monin-Obukhov length could be interpreted as
the height from which the terms of production/dissipation of turbulent kinetic energy due to
convective effects dominates over the terms of production/diffusion of turbulence due to shear.

A.S. Monin and A.M. Obukhov developed their famous similarity theory on the basis of the
following findings (Foken, 2006):

• The essential experimental work at the Geophysical Main Observatory Leningrad, directed
by scientists such as Lajchman, Budyko and others.

• The logarithmic wind profile (Prandtl, 1925).

• The zero-plane displacement (Paeschke, 1937).

• The Obukhov length (Obukhov, 1946).

In the SBL, the turbulent momentum and heat fluxes could be considered constants with
respect to the height. If the wall temperature θ0, the constant momentum flux τ0 = τw and the
constant heat flux q0 are taken into account, it is possible to define the characteristic scales of
velocity, temperature and length:

• Friction velocity:

u∗ =

√
τ0

ρ

• Surface-layer temperature scale or dynamic temperature:

θ∗ = − q0

ρCpu∗

• Monin-Obukhov length:

LMO =
u3
∗

κ(g/θ0)θ∗

Here Cp is the heat capacity at pressure constant. The similarity theory of M-O states
that all the turbulent variables, dimensionless according to their scales, could be expressed as a
universal function of the variable ζ = z/LMO. So the vertical gradients of ū and θ̄ are:

κz

u∗

∂ū

∂z
= φm(ζ) (1.4)

κz

θ∗

∂θ̄

∂z
= φh(ζ) (1.5)
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In the case of a neutral atmosphere (i.e. LMO → ∞), the universal functions are constants
and equal to 1. Nevertheless, in an stable and unstable atmosphere, they are defined thanks to
their empirical relations, as for example (Dyer, 1974):

φm(ζ) =
√
φh(ζ) = (1− 16ζ)−

1
4 if LMO < 0 (unstable) (1.6)

φm(ζ) = φh(ζ) = 1 + 5ζ if LMO > 0 (stable) (1.7)

Consequently, for a neutral boundary layer, an idealised vertical profile of the mean flow is
the logarithmic wind profile derived from the Prandtl’s mixing length theory. The latter affirms
that the horizontal component of mean flow is proportional to the logarithmic of the height, as
shown by Eq. (1.8).

ū(z)

u∗
=

1

κ
ln

(
z

z0

)
(1.8)

Here, the mean velocity ū is normalised by the friction velocity u∗, derived from Eq. (1.1).
Whereas the height z is compared to the roughness length z0, also known as aerodynamic
roughness, and κ is the von Kárman constant. The roughness length z0 allow to characterise
different types of terrain surfaces, as shown by Table 1.1. This type of characterisation is mainly
based on the effect the roughness has on the mean velocity. Neverhteless, Krogstad and Antonia
(1994) argue that it is insuficient. In fact, their experimental results, as well as those from
previous investigations (i.e. Krogstad et al. (1992)), indicate that a roughness characterisation
in terms of turbulence structure would be worth pursuing in the future. The information in
Table 1.1 represents a useful information for simulations but it would be important to carry out
a more precise characterisation of the terrain surface, if possible.

Terrain surface characteristics z0 [m]

Water areas (lakes, open sea) 1× 10−4

Sand surfaces (smooth) 3× 10−4

Snow surfaces (smooth) 1× 10−3

Bare soil (smooth) 5× 10−3

Airport runway areas, mown grass 0.001 ÷ 0.01

Farmland with very few buildings, trees, etc 0.03

Farmland with open appearance 0.05

Farmland with closed appearance 0.10

Many trees and/or bushes 0.20

Shelter belts 0.30

Suburbs 0.50

City 1.00

Table 1.1: Order of magnitude of roughness lengths for different types of terrains (Troen and
Lundtang Petersen, 1989).

As previously illustrated, the Monin-Obukhov similarity theory generalises the mixing length
theory in non-neutral conditions by using “universal functions” of dimensionless height to charac-
terise vertical distributions of mean flow and temperature. In fact, any height z can be provided
with the dimensionless stability parameter z/LMO. The universal functions describe the vertical
profiles of wind and temperature as a function of z/LMO for neutral, stable and unstable cases.
Moreover, thanks to LMO, it is possible to quantify the stability conditions. Table 1.2 presents
the stability classes of Pasquill-Gifford and the respective values of LMO. These values were
estimated from a series of experiments (Hanna et al., 1982).
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Monin-Obukhov similarity theory represents a notable landmark of modern micrometeorol-
ogy, providing a theoretical basis for micrometeorological experiments and measurement tech-
niques (Foken, 2006). Numerous measurements and advanced computational fluid dynamics
datasets have validated the theory. Although it showed some weakness, it still provides the most
solid basis for all fields of atmospheric modeling (Garratt, 1980; Dyer et al., 1982; Högström,
1990; Johansson et al., 2001).

Stability class Monin-Obukhov length [m]

A −2 < LMO < −3

B −4 < LMO < −5

C −12 < LMO < −15

D LMO →∞
E 35 < LMO < 75

F 8 < LMO < 35

Table 1.2: Typical values of the Monin-Obukhov length for each stability class of Pasquill-
Gifford, (Pasquill, 1961; Gifford, 1976).

1.1.3 General flow equations in the context of the ABL

In this section, the generic equations that govern the dynamic of the ABL are presented. In
addition, it is paid particular attention to the surface boundary layer (SBL). These are just the
equations of fluid mechanics with the addition of some specific assumptions for the current cases.
The different phenomena of the atmosphere are related to the energy and material fluxes. The
fluxes are described by the fluid dynamics equations (or Navier-Stokes equations) that conserve
the following physical quantities:

• the mass, expressed through the density ρ

• the momentum, where ρu is the momentum per unit volume and u = (u, v, w) = (ux, uy, uz) =
(u1, u2, u3)

• the energy, E

Moreover, the momentum conservation introduces another unknown, the pressure P . It could
be generally considered as a thermodynamic variable and related to density and temperature by
an equation of state. The ideal gas law is capable to describe the state of gases in the boundary
layer:

P

ρ
= RT (1.9)

where R is the gas constant for dry air (R = 287 J·K−1kg−1) and T is the temperature of the
system. However, for incompressible flows, there is no connection between pressure and density
and a different understanding of pressure is required, as we will see below.

For the purposes of our research, it is needed to add a seventh physical quantity for the study
of the desired pollutant. In fact, the pollutants considered in the thesis could be described by
a passive scalar because they have characteristics similar to the air and/or do not influence the
flow field (e.g. when the pollutant is very diluted in the air). It is important to highlight that
we can add a passive scalar with its respective conservation equation for each pollutant to be
analysed. Finally, an incompressible flow is adopted and the Coriolis force is negligible because
we are interested to study the surface boundary layer (SBL).
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Mass conservation

The continuity or mass conservation equation is expressed in Eq. (1.10).

∂ρ

∂t
+∇ · (ρu) = 0 (1.10)

If V and L are typical velocity and length scales for the boundary layer, then it can be shown
that (dρ/dt)/ρ� ∂uj/∂xj if the following conditions are met (Businger, 1982):

• V � 100 m/s, i.e. ≈ 0.3Cs.

• L � 12 km.

• L � C2
s/g.

• L � Cs/f .

where Cs is the speed of sound and f is the frequency of any pressure waves that may occur.
Since these conditions are generally respected by all turbulent motions smaller than mesoscale,
Eq. (1.10) reduces to:

∇ · u = 0 (1.11)

Therefore, in the current thesis, it is possible to assume that the flow is characterised by
constant-density (i.e. flow in which the density ρ is independent both of x and of t) and that
the velocity field is solenoidal.

Momentum conservation

The principle of momentum conservation is a direct consequence of Newton’s second law of
motion. It relates the fluid particle acceleration Du/Dt to the surface forces and body forces
experienced by the fluid. In general, the surface forces, which are of molecular origin, are
described by the stress tensor τ = τij(x, t) – which is symmetric, i.e. τij = τji. Another surface
force is the pressure gradient ∇P , while a common body force of interest is the gravity g. These
forces cause the acceleration of the fluid as pointed out by the momentum equation:

∂u

∂t
+∇ · (u⊗ u) =

1

ρ
∇ · σ + F (1.12)

where F represent the sum of the volume forces (i.e. gravity, Coriolis force and others) and σ is
the stress tensor, for a Newtonian fluid in an incompressible flow is:

σ = −P I + µ
(
∇u +∇tu

)
= −P I + τ (1.13)

I is the identity tensor, P the pressure, µ the constant coefficient of viscosity and τ the viscous
stress tensor. Recalling that the velocity is solenoidal (i.e. ∂ui/∂xi = 0), it is observed that the
Eq. (1.13) describes the stress as the sum of isotropic (Pδij) and deviatoric contributions.

Exploiting the facts that ρ and µ are constants and the solenoidal field, the expression for
the stress tensor (Eq. (1.13)) could be substituted inside the general momentum equation (Eq.
(1.12)) to obtain the Navier-Stokes equations:

∂uj
∂t

+ ui
∂uj
∂xi

= −1

ρ

∂P

∂xj
+ ν

∂2uj
∂xi∂xi

+ Fj (1.14)

It is possible to define a modified pressure:

p =
P

ρ
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In this way the Navier-Stokes equations are simplified:

∂u

∂t
+∇ · (u⊗ u) = −∇p+ ν∇2u + F (1.15)

where ν is the kinematic viscosity, i.e. µ/ρ.

Energy conservation

The conservation of the total energy of the fluid E is given by the Eq. (1.16).

∂(ρE)

∂t
+∇ · (ρEu) = −∇ · (Pu)−∇ · q +∇ · (τ · u) + ρF · u + ρH (1.16)

Here, the first right-hand term corresponds to the power of the pressure forces and the second
term represent the conductive heat transfer, in which q is the heat flux. The latter is related to
temperature thanks to the Fourier law:

q = −λ∇T

where λ is the thermal conductivity. The third term denotes the dissipation of mechanical energy
by viscous friction. τ is the tensor of viscous stresses. The forth term is related to the power of
volume forces. Finally, H represents the heat sources in the fluid.

Scalar conservation

In order to describe the conservation of a species’ concentration in the atmosphere using an
Eulerian approach, it is considered a scalar transported by an incompressible flow. Moreover,
it is assumed that the dynamic and chemical behaviour of this scalar is passive, i.e. it exactly
follows the movement of fluid particles and does not react with other species. If the passive
scalar is denoted by c, the conservation of this variable is illustrated by:

∂c

∂t
+∇(u c) = ∇ · (Dc ∇c) + Sc (1.17)

where Dc is the molecular diffusivity (or diffusion coefficient) of the passive scalar c and Sc
corresponds to the source term. This equation represents the change of the concentration at a
specified point as the sum of the advective flux, the diffusive flux and the source terms respec-
tively. Gravitational influence could be added as an extra advection component. Nevertheless,
turbulent diffusion is not represented in Eq. (1.17). In the following chapters and respective
sections, dedicated to the RANS (subsection 2.1.1) and LES (subsection 3.1.2) approaches, we
will discuss how this term is considered.

Simplifications and approximations

Under certain conditions the magnitude of some of the terms in the governing equations become
smaller than the other terms and can be neglected. In these cases, the equations become simpler.
In this way, many advances have been possible in atmospheric dynamics.

One simplification is called the shallow motion approximation (Mahrt, 1986). This approxi-
mation is valid if all the following conditions are true:

1. the vertical depth scale of density variations in the boundary layer is much shallower than
the scale depth of the lower atmosphere. This latter scale depth is ρ/(∂ρ/∂z) ≈ 8 km;

2. advection and divergence of mass at a fixed point approximately balance, leaving only slow
or zero variations of density with time; and
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3. the perturbation magnitudes of density, temperature and pressure are much less than their
respective mean values.

A more stringent simplification, called the shallow convection approximation, needs to comply
the conditions above plus:

4. the mean lapse rate (∂T/∂z) can be negative, zero, or even slightly positive. For the
statically stable positive case, (∂T/∂z)� g/R, where g/R = 0.0345 K/m; and

5. the magnitude of the vertical perturbation pressure gradient term must be of the same
order or less than the magnitude of the buoyancy term in the equation of motion.

This latter condition establishes that vertical motion is limited by buoyancy, which is the
origin of the term shallow convection.

We have applied condition (1) and (2) to yield the incompressible form of the continuity
equation. The other conditions will be applied to yield further simplifications. One of them
leads to the Boussinesq approximation. In fact, a prerequisite for the Boussinesq approximation
is that the shallow convection conditions is satisfied. This approximation is useful when stable
and unstable atmospheric conditions are treated. Nevertheless, the current thesis is focused on
the neutral condition. For further details and for a more complete view, please consult Stull
(2012).

1.1.4 Wall-bounded turbulent shear flow

This section brings another point of view regarding the atmospheric boundary layer. In addition,
it treats more extensively the presence of the wall and its concrete and fundamental influence
on the atmospheric flow. The concepts presented in the current subsection have been mainly
taken from Pope (2000d) and Kundu et al. (2012a).

In the case of free turbulent shear flows at sufficiently higher Reynolds number (Re), these
flows are independent of Re and a self-similar approach can be used. The latter implies that the
flow could be defined by a single length-scale. Nevertheless, this simplifications are not valid
when the flow is bounded by a surface. For these flows, the effect of viscosity is important in the
region near the wall, where the turbulent fluctuations decay to zero. Further, the use of a second
fundamental length scale, lν or δν , is required in order to explain the physical phenomena close
to the wall. As observed in Figure 1.3, which represents the surface drag, the effect of viscosity
is also felt at high Re. Differently from free turbulent shear flows, wall-bounded flows are not
independent of Re when Re →∞.

The importance of wall-bounded turbulence is widely recognised in engineering applications
and geophysical phenomena. It plays a fundamental role on regulating advective processes and
on the exchange of mass, momentum and heat at the earth surface. Thus, the literature on this
field is large. For instance, in addition to the already mentioned sources, the works of Kline
et al. (1967) and Adrian (2007) are recommended. They discuss the vorticity structures in
wall-bounded turbulence. Furthermore, the review articles of George (2006) and Marusic et al.
(2010) are also remarked.

Between the wall-bounded turbulent shear flows, we focus on the turbulent boundary-layer
flow that develops from uniform flow over a smooth flat plate. These flows are ruled by the
boundary-layer approximation.

The boundary-layer approximation is based on the Prandtl (1905) hypothesis:

• For small values of viscosity, viscous forces are only important close to the solid boundaries
(within the boundary layer) where no-slip condition needs to be satisfied. Everywhere else,
they can be neglected.

• The thickness of the boundary layer approaches to zero as the viscous becomes smaller.



1.1. PHYSICS OF DISPERSION IN THE ATMOSPHERIC BOUNDARY LAYER 35

105 106 107 108 109

10−3

2× 10−3

5× 10−3

10−2

D
0.5 ρU2L

UL
ν

w
holly

lam
inar

wholly turbulent

Figure 1.3: Measured drag coefficient for a boundary layer over a flat plate. From: Kundu et al.
(2012b)

Therefore, the boundary layer approximation states that, for a sufficiently high Re, the flow
over a surface can be divided into an outer region of inviscid flow unaltered by viscosity (most
of the flow), and a region close to the surface where viscosity is fundamental (the boundary
layer). In this way, the flow is divided into an inviscid portion and the boundary layer. We are
particularly interested in the latter.

The simplest boundary layer (BL) to take into account is that which is formed when a
uniform-velocity non-turbulent stream (u0) flows over a smooth flat plate, as sketched in Fig-
ure 1.4. If compared with other wall-bounded turbulent flows, the main differences are three.
Firstly, the BL develops continuously in the flow direction. It means that the BL thickness δ(x)
increases with x. Then, wall shear stress τw(x) cannot be deduced a priori. Finally, the outer
part of the flow is characterised by intermittency, which alternates turbulent and non-turbulent
motion.

These differences does not influence the behaviour in the inner layer (z/δ < 0.1), which is
the same for all the wall-bounded turbulent flows previously cited.

x

y
z

u0

Figure 1.4: Sketch of a flat-plate boundary layer.

Description of the flow

The coordinate system of the boundary layer flow is illustrated in Figure 1.4. The predominant
direction of the flow is x. The statistics are independent of y direction. As stated above, the
development of the BL implies that statistics depend on x and z coordinates. Therefore, the
spanwise mean velocity is zero. Whereas the velocity components are respectively u, v and w.

The equation of Bernoulli relates the free-stream pressure p0(x) and velocity u0:
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− p0(x) +
1

2
ρ u0(x)2 = constant (1.18)

Thus, the pressure gradient is given by:

− dp0

dx
= ρ u0

du0

dx
(1.19)

Accelerating flow (du0/dx > 0) is related to a negative or favourable pressure gradient. On
the other hand, decelerating flow implies a positive or adverse pressure gradient. The latter is so
called because it could lead to a separation of the BL from the surface. Our attention is focused
on the slightly negative pressure gradient, which is balanced by the shear stress.

The BL thickness δ(x) could be defined as the value of z at which ū(x, z) equals 99 % of the
free-stream velocity u0(x). However, it might be affected by local variations or uncertainties in
the streamwise mean velocity. On the other hand, a more reliable option can be to adopt an
integral measure like the displacement thickness:

δ∗(x) =

∫ ∞
0

(
1− ū

u0

)
dz (1.20)

or the momentum thickness:

θ∗(x) =

∫ ∞
0

ū

u0

(
1− ū

u0

)
dz (1.21)

The momentum equations

Applying the BL equations, the flow develops in the x direction and the axial stress gradients
are small with respect to the cross-stream gradients. The vertical mean momentum equation
becomes:

1

ρ

∂p̄

∂z
+
∂w2

∂z
= 0 (1.22)

If it is integrated, it yields to:

p̄+ ρw2 = p0(x) (1.23)

In the case of w2 null at the wall, the wall pressure pw(x) equals the free-stream pressure
p0(x).

In the BL approximation, the mean-axial momentum equation becomes:

ū
∂ū

∂x
+ w̄

∂ū

∂z
= ν

∂2ū

∂z2
− ∂ uw

∂z
− 1

ρ

dp0

dx

=
1

ρ

∂τ

∂z
+ u0

du0

dx
(1.24)

where τ(x, z) is the total shear stress:

τ(z) = ρ ν
dū

dz
− ρ u′w′ (1.25)

At the wall, the convective terms are zero. It allows the balance between the shear stress
and pressure gradients. In the case in which the pressure gradient is zero:

1

ρ

(
∂τ

∂z

)
z=0

= ν

(
∂2ū

∂z2

)
z=0

= 0 (1.26)
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or non-zero:

1

ρ

(
∂τ

∂z

)
z=0

= ν

(
∂2ū

∂z2

)
z=0

= −1

ρ

dp0

dx
(1.27)

Near-wall shear stress and wall regions

As observed in Eq. (1.25), the total shear stress is the result of the sum of the viscous stress
ρ νdū/dz and the Reynolds stress −ρ u′w′.

τw ≡ ρ ν
(
dū

dz

)
z=0

(1.28)

The profiles of the viscous and Reynolds shear stresses are shown in Figure 1.5. From
the figure, it is important to highlight that the viscous stress dominates at the wall, while
the Reynolds shear stress dominates in the free shear flow. In fact, in the latter region, the
viscous stresses are negligibly small with respect to Reynolds stresses. Moreover, near the wall
the velocity profiles depends on the Reynolds number because the viscosity is an influencing
parameter, in contrast to the free shear flow situation.

Figure 1.5: Profiles of the viscous shear stress and Reynolds shear stress in turbulent channel
flow at two low Reynolds numbers: Re = 56000 (dashed line) and Re = 13750 (solid line). From
DNS data of Kim et al. (1987).

The previous considerations highlight that the viscosity ν and the shear stress τw are funda-
mentals near the wall. Adding the density ρ to these quantities, two viscous scales are defined.
These are the friction velocity:

uτ = u∗ ≡
√
τw
ρ

(1.29)

and the viscous length scale:

δν ≡ ν
(
ρ

τw

)
=

ν

u∗
(1.30)

Furthermore, the Reynolds number based on the viscous scales is identically unity, i.e.
u∗δν/ν = 1. Whereas the friction Reynolds number Reτ is defined as:

Reτ ≡
u∗δ

ν
=

δ

δν
(1.31)

The distance from the wall measured in viscous lengths - or wall units - is denoted by:

z+ ≡ z

δν
=
u∗z

ν
(1.32)
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Note that z+ is similar to a local Reynolds number, so its magnitude can be expected to
determine the relative importance of viscous and turbulent processes.

The subdivision of the stress contributions based on its viscous and turbulent origin allows
to identify two different scaling laws for the wall-bounded turbulent flows. These laws are the
law of the wall and the velocity defect law. The first is applied in the region, where the viscous
effect matters. Furthermore, its length scale is z, i.e. the distance from the wall. It defines the
inner layer region. The second law is valid where the flow becomes independent of the viscous
effect. Whereas, its length scale is δ, i.e. the turbulent layer thickness. This region is commonly
called outer layer. There is a third law, the logarithmic law, which is applied in the region where
the inner and outer layers overlaps. This region is denoted as the logarithmic region. Here, the
form of the mean streamwise velocity profile could be estimated from dimensional analysis.

In the near-wall flow, different regions or layers are defined on the basis of z+. In the viscous
wall region, i.e. z+ < 50, there is a direct effect of molecular viscosity on the shear stress.
Moreover, in the viscous sublayer z+ < 5, the Reynolds shear stress is negligible compared to
viscous stress. On the other hand, in the outer layer, i.e. z+ > 50, the direct effect of viscosity
is negligible. In according with Prandtl hypothesis, as the Re of the flow increases, the fraction
of the boundary layer occupied by the viscous wall region decreases.

The wall regions and layers are summarised in Table 1.3 and Figure 1.6. In the following
part of this section, we pay particular attention to the inner layer and the logarithmic region.
In fact, these layers of the wall region are fundamental to understand the wall functions and
models used to achieve our scopes. For further details, please refer to the previously mentioned
studies.

Region Location Properties

Inner layer z/δ < 0.1 ū determined by u∗ and z+, independent
of u0 and δ.

Viscous wall region z+ < 50 The viscous contribution to the shear stress
is important.

Viscous sublayer z+ < 5 The Reynolds shear stress is negligible
compared with the viscous stress.

Outer layer z+ > 50 Direct effects of viscosity on ū are
negligible.

Overlap region z+ > 50, z/δ < 0.1 Region of overlap between inner and
outer layers (at large Re numbers).

Log-law region z+ > 30, z/δ < 0.3 The log-law is valid.

Buffer layer 5 < z+ < 30 The region between the viscous sublayer and
the log-law region.

Table 1.3: Wall regions and layers and their properties. From: (Pope, 2000c).

Mean velocity profiles

A boundary layer flow is completely defined by ρ, ν, δ and dpw/dx, or equivalently by ρ, ν, δ
and u∗. Consequently, there are two independent nondimensional groups that can be formed
with the latter parameters (e.g. z/δ and Reτ = u∗δ/ν). Therefore, the mean velocity profile
could be expressed as:

ū = u∗ F0

(z
δ
,Reτ

)
(1.33)

where F0 is a universal nondimensional functions that must be determined.
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z+

z/δ

Figure 1.6: Skecth illustrating the various wall regions and layers defined in terms of z+ and
z/δ, for a turbulent channel flow (Reτ = 1× 104 ). From: (Pope, 2000c).

Although this way to determine the mean velocity profile seems natural, it is better to follow
a different approach. Instead of considering ū, the velocity gradient dū/dz is considered, which
is the dynamically important quantity. In fact, the viscous stress and the turbulence production
are both determined by the velocity gradient. Similarly, on dimensional ground, dū/dz depends
on two nondimensional parameters, so that it is possible to write:

dū

dz
=
u∗
z

Φ

(
z

δν
,
z

δ

)
(1.34)

where Φ is a universal nondimensional function. The choice of the parameters to scale z is due
to their importance in the viscous wall region (z+ < 50) and in the outer layer (z+ > 50).
Therefore, δν and δ are respectively the chosen parameters. It yields to the following relation:(

z

δν

)/(
z

δ

)
= Reτ (1.35)

It illustrates that these two parameters contain the same information as z/δ and Reτ .

The law of the wall

Prandtl (1925) postulated that, at high Re number, close to the wall (i.e. z/δ � 1) there is an
inner layer in which the mean velocity profile is determined by the viscous scales, independent
of δ and u0. Mathematically, this implies that the function Φ(z/δν , z/δ) in Eq. (1.34) tends
asymptotically to a function of z/δν only, as z/δ tends to zero. Therefore, Eq. (1.34) becomes:

dū

dz
=
u∗
z

ΦI

(
z

δν

)
, for

z

δ
� 1 (1.36)

where:

ΦI

(
z

δν

)
= lim

z/δ→0
Φ

(
z

δν
,
z

δ

)
(1.37)

Considering z+ ≡ z/δν and u+ defined by:

u+ ≡ ū

u∗
(1.38)

Eq. (1.36) can alternatively be written as:
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du+

dz+
=

1

z+
ΦI(z

+) (1.39)

The integral of Eq. (1.39) is the law of the wall :

u+ = fw(z+) (1.40)

where:

fw(z+) =

∫ z+

0

1

z′
ΦI(z

′)dz′ (1.41)

The important point is not Eq. (1.41), but the fact that u+ depends only on z+ for z/δ � 1.
For Reynolds numbers not too close to transition, there is abundant experimental verification

that the function fw is universal, not only for boundary layer flow, but also for pipe and channel
flows. In fact, the form of the function fw(z+) could be determined for small and large values
of z+.

The viscous sublayer

The no-slip boundary condition, i.e. ūz=0 = 0, implies fw(0) = 0. Whereas, the viscous stress
law at the wall (Eq. (1.28)) imposes the derivative:

f ′w(0) = 1 (1.42)

Thanks to these boundary conditions, the Taylor-series expansion for fw(z+) for small z+ is
derived:

fw(z+) = z+ +O(z+2) (1.43)

This is useful to state that the departures from the linear relation u+ = y+ are negligible in
the viscous sublayer (z+ < 5). Nevertheless, they are significant for z+ > 12.

The logarithmic law

Commonly the inner layer is settled as z/δ < 0.1. If a high Reynolds number is considered, the
outer part of the inner layer would have large z+ values. Therefore, in this case, the influence of
the viscous is reduced. Considering Eq. (1.36), it is observed that ΦI(z/δν) no longer depends
on ν. Therefore, its expression becomes:

ΦI =
1

κ
, for

z

δ
� 1 and z+ � 1 (1.44)

It modifies also the mean velocity gradient expression, that is formulated as:

du+

dz+
=

1

κz+
(1.45)

The latter could be integrated to obtain:

u+ =
1

κ
ln(z+) +B (1.46)

where B is a constant. This is the logarithmic law of the wall due to Von Kármán (1930), or
simply the log law, and κ is the von Kármán constant. According to Pope (2000c), there is some
variation in the constant values of the log-law, but generally they are within 5% of κ = 0.41 and
B = 5.2.

There is a transition region that separate the viscous sublayer (z+ < 5) and the log-law
region (z+ > 30). It is called the buffer layer. Its bounds and graphical position are illustrated
by Table 1.3 and Figure 1.6.
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Rough surface

When the logarithmic law is derived, it is assumed that the flow in the inner layer is determined
by the viscosity. The assumption is valid only for hydrodynamically smooth surfaces. In this
case, the average height of the surface roughness elements is smaller than the thickness of the
viscous sublayer. Contrarily for a hydrodynamically rough surface, the average height of surface
roughness elements is greater than the viscous sublayer. An example, completely on our interest,
is the atmospheric boundary layer where the trees, buildings and other near-ground obstacles
behave as roughness elements. Each roughness element develops a wake and the shear stress
is transmitted to the wall by the resulting drag on the roughness elements. Viscosity becomes
irrelevant when the velocity distribution or the overall drag on the surface are determined. For
this reason, the friction coefficients for a rough pipe and a rough flat surface results constant as
Re →∞ (Nikuradse, 1933).

Close to the rough surface, the velocity distribution is still logarithmic. However, the in-
tercept constant need to be fixed considering that the mean velocity ū(z) is negligible within
the roughness elements. It is possible to assume that the logarithmic-law is applied for z > z0,
where z0 could be interpreted as a parameter representative of the effect of the roughness heights.
Thanks to an approximate evaluation of the constant B in the logarithmic-law of Eq. (1.46), it
is obtained Eq. (1.47).

u+ =
ū(z)

u∗
=

1

κ
ln

(
z

z0

)
(1.47)

Up to this point, we have presented the classical approach related to the study of wall-
bounded turbulence, focused on the inertial sublayer or logarithmic region.

The mean velocity ū follows a logarithmic profile with distance from the wall z, as already
illustrated by Eq. (1.46). In the latter equation, the coefficient B could be considered as a
parameter that depends on the roughness of the surface, and is assumed to be constant for
smooth-wall flows. Many approaches have been developed and used to achieve Eq. (1.46). Be-
tween previous and relevant studies, there are Prandtl (1925), Von Kármán (1930), Millikan
(1939), Rotta (1962) and Townsend (1980). It is possible to observe that sometimes the theoret-
ical arguments could differ. However, the main concept is that logarithmic region is associated
with two main scales: the velocity scale u∗ and any characteristic length scale with z, which is
the distance from the wall. In agreement with this description, Townsend (1980) proposed that
the scaling from the wall can be associated with corresponding attached eddies, whose geometric
lengths scale with z, and with population densities per characteristic eddy height that scale in-
versely with z. The previous author illustrates an important characteristic: the streamwise and
spanwise turbulence intensities follow a logarithmic profile of the form:

u2
+

= B1 −A1 ln
(z
δ

)
(1.48)

where u2
+

= u2/u2
∗ and δ is the boundary layer thickness.

When the logarithmic region extend is estimated, a big obstacle is represented by the fact
that the mean velocity profiles deviate very slowly from Eq. (1.46). In this case, it is difficult to
determine the bounds of the logarithmic region, especially at low Re numbers. A valid remedi-
ation is to use both the mean velocity profile Eq. (1.46) and the streamwise turbulence profile
Eq. (1.48), as suggested by Marusic et al. (2013). The main explanation is that logarithmic
region can be easily determined by using the profile of Eq. (1.48). The studies of Townsend
(1980) are not recent, but today his intuitions and hypothesis can be supported by the data
from experiments with high Re numbers.

With the aim of testing the universality of Eq. (1.46) and Eq. (1.48) at sufficiently high Re
number, Marusic et al. (2013) has used four wind tunnel experimental datasets (e.g. Hultmark
et al. (2012) and Hutchins et al. (2012) are between them). This study estimates that the data
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analysed in the range 3 Re
1/2
τ < z+ < 0.15 Reτ fall within the logarithmic region. The previous

range will be considered as the “Marusic relation” in the current thesis. According to (Marusic
et al., 2013), at low Re numbers, no clear logarithmic region in the mean flow nor the turbulence
intensities exists. Nevertheless, in this case, we could use a graphical method to estimate the
extension of the log-region. This approach will be called “Marusic method” in the next chapters.

According to the previous approach, the extension of the logarithmic region could be different
with respect to the classical approach. The Marusic et al. (2013) results and conclusions need
to be confirmed through further studies, especially at low Re numbers. However, the fact of
having an additional approach can only be beneficial for the analysis we will do in the present
work, as we will see in chapter 3.

1.1.5 Atmospheric dispersion state of the art

The literature on this subject is quite large and many reviews are available, like Leelőssy et al.
(2014, 2018). The aim of this section is to have a solid overview of the atmospheric dispersion
topic in order to face our challenges.

In many industrial, ecological and environmental applications, the dispersion of substances
from a punctual or area source in an atmospheric turbulent flow is a physical phenomena of
fundamental importance. The atmospheric transport allows substances to reach a wide area and
affect a large number of people relatively very fast. For this reason, the numerical prediction of
atmospheric dispersion of any substance is of primary importance. In fact, among the various
substances involved, we can find contaminants that are dangerous for health or result in a long-
term negative effect on our environment. Such episodes could have a huge economic impact, as
illustrated in introduction of the thesis (pag. 19).

Atmospheric transport is widely determined by the wind-driven advection of the plume.
On the other hand, turbulent diffusion provides horizontal and transversal mixing, while other
source or sink terms could play an important role. We could describe the atmospheric dispersion
process thanks to passive-scalar transport equation shown in Eq. (1.17), and reported here again
for clarity:

∂c

∂t
+∇(c · u) = ∇ · (Dc ∇c) + Sc

In the previous equation, c is the instantaneous concentration, u is the wind vector and Dc

is the molecular diffusivity or the diffusion coefficient. The second term in the left-hand side
represents the advection term, while the first term of the right-hand side point out the molecular
diffusion. The term Sc specifies sources and sinks, like emission, chemical reactions, radioactive
decay, dry or wet deposition. The latter term could be calculated through an independent
methodology. The current equation might be treated in an analytic, deterministic or stochastic
way. A direct consequence is the Gaussian (plume), Eulerian (grid) and Lagrangian (particle)
dispersion models, respectively.

The way in which the finite volume of polluted air, or the plume emitted continuously from
a source, are transported and dispersed by the wind vary with the atmospheric conditions. The
relationship between the scales of the turbulent fluctuations and the scale or the polluted cloud,
or of the space domain in which the cloud evolves, determines the characteristic of the process.
It could be convenient, for reasons of clarity, to analyse two extreme situations (Cancelli et al.,
2006):

• The first is that in which the dispersion is due to turbulent motions of a smaller spatial
scale than any other significant length. In fact, the latter could be the linear dimension
of the pollutant cloud, or that of the plume section, or the height from the ground to the
source.
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• The second is that in which the motion of the polluted air is almost exclusively due to
large-scale vortex structures, whose linear dimensions exceeds the other significant lengths.

In the first case, the turbulent dispersion can be treated as if it were a molecular diffusion
of great intensity. The dispersion of the pollutant in the space derives from a succession of
movements of the fluid particles, which are not correlated to each other. The same behaviour
occurs in the diffusion of molecules.

In the second case, the large dimension of the vortex structures that drag the volume of pol-
luted air (and therefore the considerable duration of the correlation time TL, i.e. the Lagrangian
time) makes appropriate a study of the dispersion limited to time intervals t much shorter than
TL. Under an hypothesis of this kind, the process could be considered as quasi-stationary, i.e.
the dispersion of a set of particles that move in space conserving the initial velocity.

As was to be expected, the two extreme situations, described above, are never (or almost
never) present in nature. The turbulent flows are characterised by the presence of a multiplicity
of scales. Moreover, in the boundary layer, there are both larger and smaller scales than the
linear dimension of the cloud of polluted air. However, if the turbulence is homogeneous, it
is possible to demonstrate that the two extreme situations could be considered as borderline
situations of the same dispersion process. In the situation characterised by t/TL → 0, the linear
behaviour is evident. It means that the shape of the plume is conical and the concentration
variability in the plume section depends on the distribution of the velocity fluctuations. On the
other hand, for t/TL → ∞, the dispersion process would acquire diffusive characteristics. In
this case, the plume develops following a parabolic law and the concentration inside it presents
a Gaussian distribution (Taylor, 1921). The Gaussian solution represents the asymptotic model
towards which the plume configuration tends over time. In fact, the sequence of uncorrelated
movements of the fluid particles cancels progressively the velocity field information and the
particles tends to a distribution of the most unstructured form possible.

In the most of the real situation, the two limit condition are not commonly used. In the
case of t < TL, the limit condition is applicable only in the region very close to the source
of emissions, where the phenomena of jet raising, bifurcation and mixing with surrounding
air, make unrealistic both the pattern of the point source and the hypothesis that the vertical
velocity distribution is identical to that of the atmosphere. The opposite limit involves moving
too far downstream from the source. For instance, assuming that a convective boundary layer
is characterised by a TL of the order of tens of minutes and that the mean velocity of the wind
is of the order of 10 m/s, the asymptotic behaviour of the plume could be observed only in a
region located several kilometres away from the sources. The pollution problem becomes less
critical at such a distance. In addition of these difficulties, some others derives from the lack
of homogeneity of the turbulent motion of the boundary layer and from the variability of the
module and direction of the mean velocity.

As we did for weather stability conditions, it is important to classify some typical forms
of the plume. In the situations of low relevance of thermal flows, i.e. in a neutral condition,
the common shape of the plume is shown in Figure 1.7 and is called coning. According to
measurements data, this is the case that better match the previsions of the Gaussian model.
This is the main form that interest our research. For the others, please consult Cancelli et al.
(2006).

In order to explain the phenomenology presented here, we need to introduce the mean scalar
field and the approaches to treat the turbulent dispersion. Moreover, the Gaussian solution
could be taken as a solid conclusion for the state of art. Theses aspects will be covered in the
following part of this subsection. However, some approximations will be better explained in the
next chapters.
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Figure 1.7: Typical form of the plume in the neutral condition of the atmosphere. The shape is
almost coning. From: (Cancelli et al., 2006)

Eulerian approach

One approach to determining the mean scalar field c̄(x, t) is to solve its transport equation:

∂c̄

∂t
+∇ · (ū c̄+ u′c′) = Dc∇2c̄ (1.49)

Considering a model for the scalar flux u′c′, e.g. the turbulent diffusion hypothesis, the
equation results:

∂c̄

∂t
+∇ · (ū c̄) = ∇ · [(Dc +Dt) ∇c̄] (1.50)

where Dc and Dt are respectively the molecular and turbulent diffusivities. It is important to
highlight that Dt could be also expressed as a diffusivity symmetric tensor, denoted as K.

Lagrangian approach

The alternative to the previous approach is the Lagrangian approach, which is an approach to
deal with the turbulent dispersion originated with Taylor (1921) paper. The author argued that
at high Re number the spatial transport of c due to molecular diffusion is negligible compared
to the convection transport by the mean flow and turbulent motions. Therefore, c is conserved
following a fluid particle (Dc/Dt = 0), and consequently the evolution of the mean field c̄ can
be determined from the statistics of the motion of the particles. The relevant statistics will be
considered below.
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Dispersion from a point source

In this section, we consider the development presented by Pope (2000b). It is analysed the
dispersion from a point source in statistically stationary isotropic turbulence. The unit source
is:

c0(x) = δ(x−Y0) (1.51)

where δ is the Dirac delta function. The origin of the source is located in Y0 = 0, and the release
take place at time t0 = 0. The isotropic turbulent velocity field is characterised by zero mean
(ū(x, t) = 0). Further, it is maintained statistically stationary thanks to an artificial forcing.
The root mean square (rms) velocity is u′ so that the Reynolds stresses are uiuj = u′2δij .

Under this conditions, the PDF fX(x; t|0) of the position X+(t, 0) of fluid particles emitted
from the source can determine the mean scalar field c̄(x, t):

c̄(x, t) = fX(x; t|Y0) (1.52)

Consequently, the dispersion can be characterised by the first and second moments of this
PDF, i.e. the mean and the variance of X+(t, 0). The equation for fluid-motion ∂X+/∂t = U+

can be integrated:

X+(t, 0) =

∫ t

0
U+(t′, 0)dt′ (1.53)

The Lagrangian velocity statistics can be used to express the statistics of X+. Thus, the
covariance of the fluid-particle position results:

X+
i (t, 0)X+

j (t, 0) =

∫ t

0

∫ t

0
U+
i (t′, 0)U+

j (t′′, 0) dt′dt′′ (1.54)

Thanks to the characteristics of the turbulence, i.e. stationary and isotropic, the two-time
Lagrangian velocity correlation is:

U+
i (t′, 0)U+

j (t′′, 0) = u′2R(t′ − t′′)δij (1.55)

where R(τ) is the Lagrangian velocity autocorrelation function. Further, the covariance of the
position is written as:

X+
i (t, 0)X+

j (t, 0) = σ2
X(t)δij (1.56)

The latter is characterised by the standard deviation σX(t). From the previous three equa-
tions and using a mathematical manipulation, the following expression is obtained:

σ2
X(t) = 2u′2

∫ t

0
(t− τ)R(τ) dτ (1.57)

Two asymptotic behaviours can be identified:

σX(t) ≈ u′t for t� TL (1.58)

σX(t) ≈
√

2u′2 TLt for t� TL (1.59)

where TL is the Lagrangian time.
For short times (t � TL), associated with a “perfect” autocorrelation of the velocity fluc-

tuations, flow particles follows straight-line motion and the standard deviation σX increases
linearly. On the other hand, for large times (t� TL), σX rises following the square root of the
time. Further, the expression resulting represents the spreading given by the diffusion equation
with the constant turbulent diffusivity:
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Dt = u′2 TL (1.60)

For all times, it is possible to formulate the dispersion in terms of a diffusivity D̂t(t) defined
by:

D̂t(t) ≡
d

dt

(
1

2
σ2
X

)
(1.61)

and using Eq. (1.57), it is obtained:

D̂t(t) = u′2
∫ t

0
R(τ) dτ (1.62)

Finally, it is possible to affirm that the fluid particles disperse from the origin isotropically,
as shown by Eq. (1.56). The behaviour at large (t � TL) and small (t � TL) times was
presented mathematically here, confirming the behaviour presented at the beginning of the
current subsection.

Knowing the behaviour at extremes, the complete turbulence dispersion is estimated by the
Langevin model for the fluid-particle velocity. The model states that the Lagrangian velocity
autocorrelation function has exponential form and it is equal to:

R(τ) = exp

(−|τ |
TL

)
(1.63)

Thanks to this expression of R(τ), Eq. (1.57) can be integrated to obtain:

σX(t)2 = 2u′2 TL[t− TL(1− e−t/TL)] (1.64)

Figure 1.8 illustrates σX(t) achieved through this formulation. The linear and square-root
behaviours at small and large times can be easily observed.

σX
u′TL

t
TL

Figure 1.8: The standard deviation σX of dispersion from a point source thanks to the Langevin
model, i.e. Eq. (1.64). From: (Pope, 2000c)
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Gaussian solution

The conservation equation of the mean concentration Eq. (1.50) using a closure of the first
order is well known. If the mean velocity ū is uniform in the integration domain, it is enough
to choose a moving reference system with the same velocity in order to delete it. Furthermore,
if the molecular diffusivity is neglected, the equation is reduced to the classical form of the heat
equation, i.e. the Fourier equation:

∂c̄

∂t
= Dt∇2c̄ (1.65)

The Eq. (1.65), as well as Eq. (1.50), is linear. Therefore, it is possible to build a complex
configuration superimposing simple solutions. In order to compute the pollution due to several
sources, the contribution of each source is computed and added together. There are a group
of solutions of Eq. (1.50), employed to reproduce the pollution phenomena originating from
sources of various forms, that can be considered as derived from a simple solution of Eq. (1.65),
provided with spherical symmetry:

c̄(r, t) = Mq(4πDtt)
−3/2 exp

( −r2

4Dtt

)
(1.66)

where r is the distance from the center. It is a spatial distribution of Gaussian form, with total
mass Mq initially concentrated in the center of the cloud and diffused radially.

Note that the width of the cloud is literally unlimited at any instant, except in the initial
one, due to the usual artefact of parabolic equations. Nevertheless, if the standard deviation of
the form factor exp(−r2/4Dtt), the usual law of the diffusive processes is found. With regard
to size and speed of spreading:

σr ∝
√
Dtt

vd ∝
√
Dt

t

with the only difference that now we have the turbulent diffusivity Dt instead of the molecular
one Dc.

Numerous models for calculating the dispersion, which are called “Gaussian models”, are
based on a superimposition of this kind. Restoring the mean velocity of the wind, it is possible
to represent the dispersion of a cloud. It is emitted from a punctual source at a certain time.
So it is transported downwind and, in the meantime, it expands and dilutes. Otherwise, if
considering a continuous succession of clouds generated by a fix point S, a Gaussian plume is
obtained. It is useful to compute the concentration of a continuous emission from a punctual
source, or that such can be considered. Finally, distributing the intensity of emissions along a
line orthogonal to the wind, it is possible to have Gaussian models to linear sources.

Here is reported the mathematical expression of the Gaussian plume. If we have a punctual
source S, which emits a pollutant with a mass flow rate Q [kg/s], and x is the downwind
coordinate, with z the vertical coordinate and y the streamwise coordinate. Therefore, the
equation of the Gaussian plume is:

c̄(x, y, z) =
Q

2πσyσzūadv
exp

(
− y2

2σ2
y

)
exp

(
− z2

2σ2
z

)
(1.67)

This equation is a stationary solution of Eq. (1.50), if it is imposed that:

σ2
y = σ2

z = 2Dt
x

ūadv
(1.68)
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and the flow of turbulent nature in the x coordinate is negligible. So Eq. (1.67) thanks to Eq.
(1.68) satisfies the equation:

ū
∂c̄

∂x
= −Dt

(
∂2

∂y2
+

∂2

∂z2

)
c̄ (1.69)

It is not difficult to manipulate Eq. (1.67) in order to take account of the surface reflection
effect. The latter is due to the presence of the ground or of the external boundary of the ABL.
For instance, to calculate the ground effect on concentrations, it is possible to use the virtual
image technique. It adds to the real source a virtual source S′ with the same intensity and
positioned symmetrically with respect to the ground surface. Therefore, at the ground level, the
pollutant flow that crosses the surface due to both the sources is zero for symmetry. Adding
S′, it is simulated the concentration distribution that occurs if the ground completely reflects
the pollutant particles (in this case the deposition is not taken into account). Conventionally,
the presence of S′ is introduced in Eq. (1.67) thanks to a simple superimposition of solutions.
Moving the origin of the vertical axis to the ground and denoting hs the source height, the plume
equation becomes:

c̄(x, y, z) =
Q

2πσyσzūadv
exp

(−y2

2σ2
y

)[
exp

(−(z − hs)2

2σ2
z

)
+ exp

(−(z + hs)
2

2σ2
z

)]
(1.70)

Theoretically, it may be possible to compute the diffusivity coefficient Dt thanks to the
fluctuation field u′ and use the Eq. (1.70) to determine the mean concentrations. Nevertheless,
a more empirical way is preferable when the Gaussian model is used. In fact, the hypothesis
that have allowed to present the Eq. (1.67) as deduced by the mean equation Eq. (1.49), the
only surely correct, are not entirely reliable. For example: the turbulent flow field of the ABL
is not homogeneous. Its characteristics vary rapidly with the height. The turbulent diffusion
hypothesis is correct only asymptotically. The mean of a Lagrangian temporal scale in an
homogeneous field is tricky. Therefore, it is preferable to conserve Eq. (1.67) and Eq. (1.70)
in their form and consider the standard deviation σy and σz as characteristic dimensions of
the straight section of the plume, whose variation with downwind distance must be empirically
determined.

It is evident that the velocity, at which the polluted plume spreads, depends on the dynamical
conditions of the ABL. So the empirical curves of σy and σy needs to be parameterized with
something that allow to identify the condition of the boundary layer. The six stability classes of
Pasquill-Gifford, already presented in subsection 1.1.2, are one of the approaches adapted to the
current purpose. Based on some meteorological observation, the stability class for the analysed
situation is identified. In this way, it is possible to compute the spread of the plume through the
values of σy and σz obtained from the empirical curves of Figure 1.9 and Figure 1.10. Otherwise,
they could be computed through numerical interpolation formulas, that are equivalent to the
curves (Briggs, 1973). Finally, the computation of c̄ is conducted using Eq. (1.70), knowing σy
and σz.

In the current subsection, the basic concepts and models for dealing with the atmospheric
dispersion of a pollutant were presented. In the next section the numerical models will be better
treated, while in the following chapters some hypotheses and approximations mentioned here
will be deepened.
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Figure 1.9: Evolution of the horizontal standard deviation σy as a function of the downwind
distance from the source, (Briggs, 1973).
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Figure 1.10: Evolution of the vertical standard deviation σz as a function of the downwind
distance from the source, (Briggs, 1973).
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1.2 Simulation tools

In order to understand the processes that govern the atmospheric flows and the turbulent disper-
sion of pollutants, it is fundamental to be capable to describe the characteristics of the observed
phenomena. The first and direct approach that allows to collect data is the experimental ob-
servation in situ. It is based on direct measurements of the atmosphere and pollution. Many
techniques have been developed to measure the wind field or more in general the meteorological
variables as well as to measure the concentration of pollutants. This techniques are increasingly
performing (a clear example are the new optical instruments presented and analysed in the cur-
rent thesis) and contribute to build a useful database to study the atmosphere and the pollution.
Nevertheless, the experimental observations in situ are difficult to carry out and are expensive.
Moreover, the measurements allow to have only a discrete representation of the phenomena. In
fact, the experimental data are usually constituted by some measurement points or profiles. In
order to enhance the phenomena description, it could be convenient to have additional methods
of representability or modeling of the physical phenomena of interest. The two main approaches
are the experimentation in wind tunnel and the numerical modeling.

In the current section, we are focused on the latter approach because the understanding of
it is crucial to our research. Consequently, we will present the numerical modeling techniques
to study the atmospheric flow (subsection 1.2.1) and the atmospheric dispersion of pollutants
(subsection 1.2.2 and subsection 1.2.3).

1.2.1 Numerical modeling of the ABL

In the study of the fluid mechanics, the ultimate objective is to obtain a tractable quantitative
theory or model that can be used to calculate the quantities of practical interest to describe
the desired phenomena. Nevertheless, a century of experience has shown that the presence
of turbulence makes the achievement of the objective very difficult due to the non-linearity
of the Navier-Stokes equations. In fact, there are no prospects of a simple analytical theory.
Conversely, the hope lies in the use of ever-increasing power of digital computers to achieve the
objective of calculating the relevant properties of of the fluid mechanics and in particular of the
turbulence.

In this context, the Computational Fluid Dynamics (CFD) has been developed. It is a
science that, with the help of digital computers, generates quantitative predictions of the fluid
flow phenomena based on those conservation laws governing fluid motion. These predictions
normally take place under those conditions defined in terms of the flow geometry, the physical
properties of a fluid, and the boundary and initial conditions of a flow field. However, the most
challenging part is the turbulent flow modeling. So in order to treat this problem, many models
have been developed in the last century and it is possible to distinguish many categories, briefly
summarised below.

The Direct Numerical Simulation (DNS) consists in solving the Navier-Stokes equations,
resolving all the scales of motion, with initial and boundary conditions appropriate to the flow
considered. Each simulation produces a single realisation of the flow. This approach is the
closest to an exact resolution of the flow but it needs a very fine spatial resolution. A direct
consequence is that the computational time could be excessively long and it limits its application
to the flows characterised of a low Reynolds number.

The second model presented is the Large-Eddy simulation (LES). In the LES, the larger
three-dimensional unsteady turbulent motions are directly resolved while the effects of the
smaller scale motions are modelled. The LES models are particularly adapted to the study
of atmospheric flows, for which they were initially developed (Deardorff et al., 1970). In com-
putational expense, LES needs less computational time and resources than DNS.

The common and more diffused approach used to simulate turbulent flows is the Reynolds
Average Navier-Stokes (RANS). In fact, for many application, it is not necessary to compute
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the instantaneous evolution of the variables of interest but it is enough to determine the average
values for a large number of realisations of the flow. For this scope, the equations of the average
variables are used. They are obtained from the instantaneous equations thanks to the Reynolds
decomposition. Nevertheless, the non-linear terms of the instantaneous equations implies the
presence of fluctuations correlation terms in the RANS equations. Consequently, these terms
needs to be modeled. The statistic modeling does not allow to get the details of the turbulence.
However, it is a useful tool to study the mean fields, particularly in the case of flows around
complex geometries. Many researches have used this type of modeling to study the atmospheric
flow around obstacles (Zhang, 2009; Parente et al., 2011b).

In the current thesis, the atmospheric boundary layer and in particular the surface boundary
layer could be simulated and modeled thanks to CFD, and RANS and LES approaches in
accordance with the time and space scales of interest. The CFD applied to atmospheric flows
and the scales of interest will be explained below.

Spatial and temporal orders of magnitude of the ABL

In subsection 1.1.1, it was presented the vertical structure of the atmosphere and of the different
layers which compose it. For the current study, it is important to know the dimensions of the
typical domain for our purposes. This limitation are going to contribute to focus on one part
of the atmosphere, to better understand its mechanism and to identify the necessary hypothesis
to model it. The aim is to develop the rest of this presentation in a targeted and concise way.

If it is desired to study the emissions of pollutants in an industrial site (e.g. TADI experiment
or releases in refineries), most of the emissions are situated near the ground or at the height of
chimneys in the site. In general, the height of the pollution sources could be placed approximately
between the ground and a hundred meters above it.

The thickness of the ABL could be of the order of 1000 m, while the thickness of the SBL
could reach the order of 100 m. It means that the most of the emissions are located in the SBL.
The industrial site and the surroundings could have many square kilometres. Therefore, the
dispersion need to be studied in this region, i.e. a distance of some kilometres. However, at
the state of our research, the studies could be focused on smaller regions of the order of few
hundreds of square meters. In fact, as we will see in chapter 4, the experiment in situ considered
has smaller dimensions than typical industrial site.

It is possible to find in literature some references, for instance Briggs (1973), to estimate
the standard deviations of a passive scalar plume depending to many parameters, like the at-
mospheric stability or the type of ground surface (e.g. urban, rural, etc). It could help to limit
our studies to some orders of magnitude for the dispersion to a certain height.

According to Figure 1.10, the vertical dispersion of a plume is lower to 500 m for a downwind
distance of 1 km regardless of the atmospheric stability. This information allow to fix the domain
height for the numerical studies developed. Generally, domains of few hundred of meters are
adopted. This choice guarantees the characterisation of almost every plume in a complex terrain.
Furthermore, when the atmosphere is unstable, the height which denote the dispersion and the
SBL height increase simultaneously. So this fast study help to highlight and confirm that our
studies could be focused on the analysis of the SBL. The Ekman layer and the free layer are
ignored. So, as already mentioned, it allows not to consider the Coriolis force and the other
layers of the atmosphere.

The time scales of interest are mainly conditioned by the experiment constrains. The new
optical instruments, used to measure the wind and concentration field, are characterised by a
high sampling frequency. The frequencies, that are expected to be reproduced in a real scenario,
range from a few Hz to a few hundreds of Hz. The maximum duration of the experiments can
vary from a few tens of minutes to a maximum of about an hour. However, we are interested in
phenomena lasting a few minutes because it is a fairly large window of time useful to develop
and validate our methodology. The validation cannot be conducted through the comparison of
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instantaneous fields but of the time average fields.

In accordance with the spatial and temporal scales, it is possible to affirm that our atmo-
spheric conditions could be determined by the microscale meteorology and that we are interested
in all phenomena smaller than synoptic scale. Moreover, the obstacles presented in the domain
should be modeled as accurately as possible. Based on the previous considerations, the CFD
simulation represents a valid option to study the atmospheric flow.

CFD applied to the ABL

Nowadays Computational Fluid Dynamics (CFD) is widely used to study a variety of processes
in the lower part of the atmospheric boundary layer (ABL), i.e. the surface boundary layer
(SBL), including pollutant dispersion and deposition, wind-driven rain, building ventilation,
wind turbine wakes effects and others. CFD is important in commercial, operational and research
wind engineering (Blocken et al., 2007; Tian et al., 2018; Baklanov, 2000).

According to Hargreaves and Wright (2007), two aspects of ABL are not reproduced by di-
rect representation in CFD. The first is related to the extension of ABL. It covers a considerable
distance above earth’s surface and relative to building height. CFD could only represents a
smaller finite distance because of hardware limitations and the complexity of including a me-
teorological model. Secondly, small scale features such as vegetation and buildings could not
be included in the computational grid or they are included by making many approximations.
In the case of k-ε turbulence model, the surface roughness (e.g. the effect of small scale fea-
tures) is modelled through a wall function approach which is based on boundary layer theory for
the computational cell immediately adjacent to the wall. Similarly, the Large-Eddy Simulation
(LES) model needs a near-wall modeling. A near-wall resolution of the small features implies a
very high computational cost, unsustainable for many of the present purposes, e.g. simulation
of ABL over complex terrain.

The strategy of the current methodology is based on a gradual increment of complexity. The
study is focused on obtaining a model which match as close as possible experimental data and
catch the physical meaning of the phenomena. For this reason, the Monin-Obukhov similarity
theory is taken into account as well as experimental studies. Moreover the numerical approaches
considered are the RANS and LES models. Both of them need a proper formulation of the near
wall model and a convenient definition of the boundary conditions. Above of all, the inlet profiles
are of fundamental importance because they determine the development of the SBL, as we will
see in chapter 2 and chapter 3.

Related to RANS model, the works of Richards and Hoxey (1993) and Hargreaves and Wright
(2007) represent a depart point of this strategy. The research of Parente et al. (2011b), Vendel
(2011) and Gryning et al. (2007) contributes to increase the complexity step by step. On the
other hand, Tian et al. (2018) presents a comparison of the principal methods actually available
to simulate the ABL through RANS model. Finally, some references for LES could be constituted
by the researches of Xie et al. (2004b), Nakayama and Nagai (2009) and Ardeshiri et al. (2020),
which compare the simulated turbulent flow against the wind-tunnel measurements.

1.2.2 Numerical approach for atmospheric dispersion

For the atmospheric dispersion, the most adequate modeling tool for a specific application mainly
depends on the spatial scale of the dispersion. On the local scale, i.e. in the order of 1 – 10 km,
the assumption of a horizontally homogeneous and stationary wind field is often used and it
largely simplifies the numerical model. Nevertheless, this assumption neglects the mesoscale
atmospheric phenomena that might become an important source of error. On the regional scale,
i.e. in the order of 100 – 1000 km, the spatial and temporal changes in the meteorological con-
dition have to be considered. As the scale increases, that is if a bigger portion of the planet is
considered and no further assumption is taken into account, the limited computational power
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could represent a big issue. In global simulations, the amount of meteorological data and the
large number of particles, grid points or cells often demand a compromise between a sophis-
ticated physical model and a feasible computational request. On the other hand, microscale
simulations, i.e. in the order of 10 – 1000 m, are focused on the detailed solution of the flow and
concentration field around buildings and other obstacles. Although the spatial scale is smaller,
these simulations could have extraordinary hardware requirements comparable to or even larger
than global scale problems. In fact, the computational power required does not simply depend
on the spatial scale but rather on the portion of the energy spectrum (Figure 1.2) to be solved.
Nowadays, computing the entire energy spectrum of the atmospheric flow is impossible. So, it
is always needed to choose a portion of the spectrum to solve, while usually the smaller scales
could be modelled and the bigger scales could be introduced as system forces. In any case, the
microscale simulations are of fundamental importance on our research.

The atmospheric energy spectrum scales are not the only aspect that fix the complexity of
the atmospheric transport process and consequently the accuracy of a modeling approach. More
sophisticated models with large computational cost are required if:

• the dispersion takes place over complex terrain, (Raskob et al., 2010).

• the weather is rapidly changing or is strongly affected by local effects, i.e. urban or coastal
circulation, convective clouds and frontal systems, (Venkatesan et al., 2002).

• the emitted material or source has significant feed-backs on the flow field, i.e. in case of
large fires or dense gases, (Venetsanos et al., 2003).

In order to reach this wide range of complexities and possible assumptions as well as to satisfy
different user needs ranging from basic research to civil defence or risk events, a rich variety of
atmospheric dispersion models have been developed and applied, (Perry, 1992; Mikkelsen et al.,
2003; Soulhac et al., 2011; Marro et al., 2018; Cheng and Liu, 2011).

Research and operational decision support are the two main fields of application for the
atmospheric dispersion models. Research applications frequently concern retrospective events.
Large amount of data is available and coupled to high-performance computing. These kind of
simulations can be repeated and tuned to provide the best possible results. The use of the model
is made as standalone code with specified input and output formats, or through a web interface.
Differently the operational decision support is addressed to emergencies and practices, where a
well-defined operational protocol needs to be performed based on the real-time accessible data,
human resources and infrastructures. Thus, reliability, robustness and fast response are the key
features of an operational model. The software is usually integrated into geographic information
systems (GIS) or into a complex decision support toolboxes, (Bozon and Mohammadi, 2009).

Especially in case of accidental release but not only, a competent multidisciplinary coop-
eration is needed to achieve accurate results and a high quality decision support (Managi and
Guan, 2017). Different levels of model results are available:

• The meteorological situation and forecast.

• The atmospheric concentration and ground deposition maps from several dispersion mod-
els.

• The expected dose rates and health effects at certain receptors.

• The combined effect of atmospheric pollution with other environmental risks and expo-
sures.

• Quantitative information on uncertainties and sensitivities.

Finally, before to treat the different models available, it is important to focus briefly on the
concepts of meteorological data, emissions and validation. The latter are part of the atmospheric
dispersion modeling principles and inputs, and will be presented below.
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Meteorological data

As already seen in subsection 1.1.5, atmospheric transport processes of pollutants are affected by
weather conditions. Consequently, meteorological data are a fundamental input for dispersion
models. The atmospheric transport equation is directly influenced by the weather, i.e. the
wind field, through its convective term. Furthermore, the treatment of the turbulent dispersion
involves again the wind field.

In a simple local scale simulation, meteorological observations from a fixed monitoring station
are used. Nevertheless, the spatial representativity of a single measurement is limited, and the
three-dimensional structure of meteorological parameters can only be described by simple or
sophisticated numerical weather prediction (NWP) models. Atmospheric dispersion models can
be coupled with NWPs. However, the coupling approach could vary between different software
and codes.

On the other hand, in a microscale simulation, NWPs do not have sufficient resolution to
solve the atmospheric flow. In fact, the wind field is strongly influenced by the presence of
obstacles (e.g. buildings, vegetation, etc) and turbulence plays a fundamental role. Therefore,
it is rare to use NWP models. Whereas CFD simulations could be more adapted to simulate
the local weather conditions. In this case, the similarity theory of Monin-Obukhov contributes
to determine the meteorological parameters from experimental observations.

Emissions

After meteorology, another important input for a dispersion model is the emissions data. Disper-
sion models deal with the emission as boundary or initial condition of the simulation. Therefore,
information on the release rates is necessary at each grid point and each time step for each com-
ponent.

In a very simple approach, the assumption that the emission rate is known is adopted. It is
possible to have a direct measurement of the release in the case of a single point source equipped
with local detectors (e.g. it is very common in wind tunnel experiments). Conversely, if the
release rate is unknown, two techniques can be employed to estimate the emission rate: the
bottom-up or top-down. A typical bottom-up emission model constructs an inventory of the
potentially released pollutant. The inventory is the result of a series of physical and chemical
simulations aimed at studying the release process and estimating the amount of the release.

Concentration and deposition observations from monitoring sites are used in the top-down
emission estimation. It is also common by the use of the inversion of atmospheric dispersion
modelling to give an optimal estimation of the source term that might have caused the measured
values (Saunier et al., 2013; Ben Salem et al., 2014; Chai et al., 2015). Inversion modeling has
high uncertainties, especially on the large scale or if location of the source is unknown, because
some chemical and physical processes involved are irreversible in the atmosphere (Haszpra, 2016).
However, if the position of the source is known and the number of accessible observation from
monitoring sites is sufficiently high, an inversion modeling could reconstruct a complex emission
time-line with good accuracy (Katata et al., 2015). It is important to highlight that a top-down
approach and an inversion modeling could give similar results but they are completely different
methods.

In real-life cases, environmental observations have different sampling periods and errors,
there is usually generous information on the emission inventory, and even remote sensing or
mobile measurements may be available in an irregular basis. The integration of this variety of
data can be made thanks to the data assimilation (Jeong et al., 2008). In this scenario, the
simulation starts with a bottom-up (first guess) estimate, and observations are included sequen-
tially to calculate a result that optimally integrates all available information. Data assimilation
is intimately related to inverse modeling, and although it is often used in NWPs, chemical data
assimilation in atmospheric transport models is a subject of active research (Bocquet et al.,
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2015). The data assimilation is a subject of interest in the development of the current thesis, as
we will see in chapter 4.

Validation

The validation of atmospheric dispersion model remains a challenge even today. The validation
procedure requires a comparison between model and measurements. In the best of cases, it
needs a known emission rate and observations form several monitoring points, as well as a direct
source-receptor relationship. It is important that no other sources are present and that there is no
variability on the background concentration. A precise numerical model is essential in the same
way. If the previous conditions are respected, validation would be possible. Nevertheless, the
uncertainties present in the validation process are numerous, making validation a real challenge.

Several aspects can be used to investigate the model performance, for example: the spatial
extent of the plume, arrival time at specific locations, peak concentration values, the amount of
deposited activity, concentration statistics, the integrated concentration (dose) throughout the
pollution period (Mosca et al., 1998), column-integrated concentration (CIC) of an instantaneous
release or similarly the integrated column amount of the trace gas along the line of sight of
the virtual camera (Dinger et al., 2018; Kylling et al., 2020). The performance parameters of
statistical origin allow to compare better and easily numerical and experimental results. On the
other hand, instantaneous parameters need to be interpreted adequately. Furthermore, in most
cases they do not allow to carry out a quantitative but only qualitative validation.

A simple method to validate the atmospheric dispersion models is constituted by the wind
tunnel experimentation. In this way, the emission and the boundary conditions of the test
domain are well defined and the uncertainties are reduced as much as possible. Moreover, the
measurements could be conducted for a long time, controlling that the simulation conditions
remain stationary. Thanks to this approach, high order statistics of the quantities of interest
are computed and compared with the numerical statistics. For the simulation of the dispersion
in neutral atmospheric conditions, there were conducted some wind tunnel experiments of this
kind (e.g. Nironi et al. (2015); Fackrell and Robins (1982)) as well as some validations (e.g. Xie
et al. (2004b); Ardeshiri et al. (2020)).

The validation on a real scenario is more complicate. In fact, it should be borne in mind
that the boundary conditions due to the meteorology of the site in question are not stationary
and indeed vary continuously. This aspect alone is sufficient to greatly complicate the validation
process and limit the use of statistic performance parameters. For this reason in the current
thesis, the validation of the developed methodology is done thanks to the wind tunnel experiment
of Nironi (2013). Whereas, an assimilation approach is used to study the real scenario case. We
expect to be able to extract useful information for the interpretation of physical phenomena and
enhance numerical and experimental approaches.

1.2.3 Numerical models for atmospheric dispersion

In the current subsection, the main numerical models to deal with atmospheric dispersion are
presented.

Gaussian models

The core of the Gaussian models was derived in subsection 1.1.5. In order to remember the
assumptions made to derive these models, they are reported here:

• Stationary phenomena (e.g. wind field, release rate).

• Constant turbulent diffusivity coefficients.
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• Wind uniform and constant, aligned with the x coordinate.

• Perfectly homogeneous and flat terrain.

• Streamwise turbulent diffusivity coefficient negligible compared to the simple transport
contribution due to the wind in the same direction (only for the plume model).

The final mathematical formulation of subsection 1.1.5 for the Gaussian plume model is
expressed by Eq. (1.71).

c̄(x, y, z) =
Q

2πσyσzūadv
exp

(−y2

2σ2
y

)[
exp

(−(z − hs)2

2σ2
z

)
+ exp

(−(z + hs)
2

2σ2
z

)]
(1.71)

Here c̄ is the time-averaged concentration at a given position, Q is the source term, x is the
downwind, y is the crosswind and z is the vertical direction and ūadv is the advective velocity,
i.e. the time-averaged wind speed at the height of the release hs. σy and σz are the standard
deviations and describe respectively the crosswind and vertical mixing of the pollutant. There-
fore, Eq. (1.71) represents a mixing process that results in a Gauss concentration distribution
both in crosswind and vertical directions, centred at the line downwind from the source. The
last term of the equation point out a total reflection from the ground.

Gaussian (plume) models are based on this analytic result that yield good and extremely fast
results on the micro and local scale (≈ 0.01 – 10 km). It has also become the standard of reg-
ulatory modeling for industrial stack releases and several environmental applications (Holmes
and Morawska, 2006; Soulhac et al., 2011). The Gaussian model requires the meteorological
input for a single point and assumes that the meteorology is homogeneous in time and space.
A representative advection velocity need to be estimated in order to apply the Gauss model.
Consequently, observation data from monitoring stations or towers could be employed for ret-
rospective and real-time simulations, while NWP results are used for dispersion forecast. The
computational cost is very low, but meteorological data pre-processing and sophisticated turbu-
lence parameterization could increment the computational cost.

The main potential of Gaussian models is their small input requirements and fast run-time.
The access to gridded meteorological data (NWP or remote sensing) is not required to run this
kind of model. However, their accuracy is limited over the spatial distance of a few tens of
kilometres (maximum between 20 and 30 km). It also loses accuracy in complex conditions (e.g.
orography, wind shear). With only a few parameters, a single plume can be calculated instantly
even on a portable device, making Gaussian models a powerful tool for emergency decisions.
On the other hand, these models are often applied to epidemiology studies, i.e. the local scale
effects of long-term continuous pollution, calculating the sum of single plumes from each hour
through several years (Coudon et al., 2021).

Eulerian models

The Eulerian models aims to resolve mathematically the atmospheric transport equation (Eq.
(1.17)) using adequate boundary and initial conditions in a fixed coordinate frame. From a
mathematical point of view, this model resolves a set of second-order differential equations
(PDEs) with independent variables in space (x, y, z) and time (t). The spatio-temporal evolution
of the concentration of pollutants is obtained by solving the previous equations. Due to the wind
field characteristics and the presence of non-linear terms in the equations, it is not possible to
adopt an analytic resolution of Eq. (1.17). Instead, it is convenient to use numerical methods,
which are principally based on two steps. Firstly, the spatial discretisation transforms the
PDEs into a system of ordinary differential equations (ODEs) depending on a single variable
t. Mainly two discretisation techniques are available: the finite difference method (FDM) and
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the finite volume method (FVM). In particular, the latter converts the volume integrals for
both advection and diffusion terms into surface integrals using the divergence theorem. After
the spatial discretisation, the second step aims to solve the discretised equations as an initial
value problem through powerful integration methods, e.g. explicit or implicit methods. These
methods have pros and cons in terms of stability, convergence and computational time.

The computational resources needed to solve a 3D Eulerian model are often significant,
depending on the spatial and temporal scales to be solved and the models used. In order to
reduce execution time, parallelisation and adaptive gridding are the two most efficient methods.

Parallelisation of dispersion model can be conducted thanks to distributed and parallel sys-
tems, e.g. supercomputer, clusters, grid systems or graphical processing units (GPU) (Molnar Jr
et al., 2010). The parallelisation of a sequential code for the solution of Eq. (1.17) requires the
decomposition of the 3D domain into several smaller sub-domains. It allows to reduce the com-
putational time by boosting the computational capabilities to numerically solve the problem.
Nevertheless, each sub-domain needs to communicate with their neighbours across the borders.
This characteristic limits the benefits of parallelisation. In fact, bigger is the number of sub-
domains, more difficult is the exchange of information. This is the reason why it is worthwhile to
carry out a speed-up test in order to identify the optimal number of subdivisions of the domain.
Going beyond this number of sub-domains should only degrade the computational efficiency
(Axtmann and Rist, 2016).

The second approach to increase computational efficiency is adaptive gridding or adaptive
mesh refinement. In static mesh, the mesh does not change during the simulation. If there are
refinement regions or nested grids, they remains circumscribed and do not vary. Conversely, an
adaptive grid is conceived to adapt this mesh in space and time acting on regions where the model
accuracy is sensible to mesh resolution. For example, it is the case of source and boundaries
of the plume that can vary a lot during the simulation. There exists two main categories of
adaptive gridding techniques: h-refinement and r-refinement. It is not of out interest to go
further into details, for more information please consult: Garcia-Menendez and Odman (2011).

A large number of scientific communities develop and use different types of Eulerian models.
These models differ only in the spatial and temporal scales of interest and respond to the
specific needs of each scientific community. However, at the base they are all similar. Here some
examples:

• The GEOS-Chem model, which is a global 3D dispersion model. It uses assimilated me-
teorological observations from the Goddard Earth Observing System of the NASA Global
Modeling and Assimilation Office. This model is used to simulate various atmospheric
composition problems in a global scale (Bey et al., 2001).

• WRF-Chem, the Weather Research and Forecasting (WRF) model coupled with chemical
transformations occurring in the atmosphere. This model is employed to investigate the
regional-scale air quality problems and could-scale interactions between cloud and chem-
istry (Grell et al., 2005).

• The Computational Multi-scale Air Quality (CMAQ). The model was developed to solve
multiple air quality issues, such as tropospheric ozone, aerosols and acid deposition. CMAQ
is multi-platform model that can be used for either urban or regional scale air quality
modeling (Wang et al., 2009).

Finally, it is important to specify that the computational fluid dynamics (CFD) belongs to
the family of Eulerian models. In the field of atmospheric dispersion, it is focused on microscale
problems, as explained below.
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Computational fluid dynamics (CFD) for atmospheric dispersion

In microscale (less than 1 km) dispersion problems, the flow velocity field is significantly affected
by the interaction between the atmospheric flow and the surface obstacles. A direct consequence
is that concentration field also changes due to this interaction. In this case, the NWPs do not
have sufficient resolution to resolve the phenomena derived from this interaction. On the other
hand, CFD results more adapted to simulate the flow and the concentration field among the
buildings of a urban or industrial site.

The CFD approach is based on the Eulerian model. The CFD main parts are the mesh,
the solver and the turbulence model. The first is related to the spatial discretisation of the
PDEs and the construction of the system of ODEs. Whereas, the numerical methods to solve
the system of ODEs are implemented in the solver. Finally, the turbulence model is used as a
closure for the wind and concentration equations, depending on the CFD approach adopted.

Therefore, the wind and turbulence field as well as the concentration field are numerically
resolved thanks to the Navier-Stokes equations and the atmospheric transport equation (Eq.
(1.17)) on fine mesh or grids, capable to calculate or model the turbulence up to a defined scale.
In CFD, the simplest approach is obtained using RANS model, which decompose instantaneous
field into its time-averaged and fluctuating parts. So it solves time-averaged equations of motion
and considers turbulent fluctuations as eddy viscosity and diffusivity terms. On the other hand,
between the turbulence models used for the closure of RANS equations, one of the most popular
in engineering and atmospheric applications is the k-ε model (Tian et al., 2018). Today a state-
of-the-art solution for turbulence modelling is Large Eddy Simulation (LES), which filters the
large scale (anisotropic) and small scale (isotropic) eddies, and solves the former (Cheng and
Liu, 2011). Its high computational cost has not stopped it from becoming a widely used tool in
the field of atmospheric boundary layer simulations. Moreover, LES method allows to simulate
explicitly the concentration probability density function (PDF) and its higher moments in real
conditions and at very high Reynolds numbers typical of atmospheric flows (Philips et al., 2013;
Ardeshiri et al., 2020).

Nevertheless, it is important to highlight that the appropriate setup of mesh resolution,
boundary conditions and turbulence model of an atmospheric CFD simulation represents a big
challenge (even today) and requires high computational cost. Moreover, when the scale increases,
CFD has shown some weaknesses and a lower reliability. In order to compensate the possible
drawbacks, some research works have presented promising results using WRF and CFD codes
(Tewari et al., 2010).

Among the available CFD software codes, atmospheric simulations are often computed using
ANSYS Fluent (Di Sabatino et al., 2008; Goricsán et al., 2011) and the open-source OpenFOAM
model (Flores et al., 2013).

Lagrangian models

A stochastic approach to solve the atmospheric transport equation (Eq. (1.17)) is used by the
Lagrangian particle dispersion models (LPDMs), already introduced in subsection 1.1.5.

In this method, the molecular diffusion is negligible in the atmospheric transport equation.
So, the concentration c is conserved following a fluid particle (Dc/Dt). From the mathematical
point of view, this model solves a set of first order stochastic ODEs that describe the motion of
many particles. Thus, the release of a polluted source can be simulated by a great number of
particles. The displacement of the particles at each time step of the simulation is governed by a
velocity, which is composed by two terms. The first one is a deterministic term and is related to
the mean velocity of the wind field. Whereas, the second is an stochastic term which represents
the turbulent diffusion. The first term is usually obtained by coupling the Lagrangian model
with NWP model or CFD model. On the other hand, assuming that the stochastic term follows
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a Markov process, the Langevin equation is used to compute it.
As already mentioned, the main output of the Lagrangian model is a set of 3D particles for

each time step. These particles can represent pollutants in liquid, solid or gas phase. They are
fictitious entities to which a certain amount of mass of pollutant is associated. Consequently,
the concentration field is operationally computed as the total sum of the mass of each particle
present in a volume around a computational grid. A fine resolution of the concentration field
is possible through a large number of particles. Further, any modification of the mass along
the trajectory should be implemented numerically in the particles. In this way, it is possible to
reproduce deposition, radioactive decay, chemical reactions and otherSS phenomena.

In addition, there are two particular ways of using the Lagrangian model. The first is
to use a reduced number of particles. It does not allow to compute the concentration field.
Nevertheless, this approach is extremely useful to determine trajectories of the plume very fast.
The stochastic term is neglected in order to consider only the advective term (Povinec et al.,
2013). The second usage is in the inversion problem. It aims to identify and quantify the sources
thanks to backward trajectories (Haszpra, 2016).
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Chapter 2

Reynolds-Averaged Navier-Stokes
Methodology for the Neutral
Boundary Layer

2.1 Overview of a RANS simulation approach for the SBL

In the atmospheric dispersion field, the RANS simulation approach is the most diffused numerical
technique. In the current section, the RANS approach will be presented together with the useful
tools to simulate the SBL. Firstly, the RANS conservation equations are described. Then, the
closure problem together with the turbulent model are presented. Whereas in the last part of
the section, the boundary conditions and the difficulties associated with them are treated.

2.1.1 RANS conservation equations

The Reynolds-Average Navier-Stokes (RANS) equations are ensemble-averaged equations of
motion for fluid flow. It is based on the Reynolds decomposition:

ui(xi, t) = ūi(xi, t) + u′i(xi, t) (2.1)

where ūi(xi, t) is the mean velocity and u′i(xi, t) is the fluctuation.

For a flow of an incompressible Newtonian fluid, the general RANS equations are described
below.

Mean continuity equation

From the incompressible continuity equation (Eq. (1.11)) and thanks to the Reynolds decom-
position (Eq. (2.1)), it is possible to obtain:

∇·u = ∇· (ū + u′) = 0 (2.2)

The mean velocity and the fluctuations are solenoidal. Therefore, the mean continuity equa-
tion is:

∇· ū = 0 (2.3)

and a direct consequence is that:

∇·u′ = 0 (2.4)



62 CHAPTER 2. RANS METHODOLOGY FOR THE NEUTRAL BOUNDARY LAYER

Mean-momentum equation or Reynolds equation

The mean of the momentum equation (Eq. (1.15)) is less simple to obtain due to the nonlinear
convective term. Firstly, it is important to write the substantial derivative in conservative form:

Duj
Dt

=
∂uj
∂t

+
∂

∂xi
(uiuj) (2.5)

and apply the average operator to it:

Duj
Dt

=
∂ūj
∂t

+
∂

∂xi
(uiuj) (2.6)

Substituting the Reynolds decomposition for ui and uj , the nonlinear term becomes:

uiuj = (ūi + u′i)(ūj + u′j) = ūiūj + u′iūj + u′j ūi + u′iu
′
j

= ūiūj + u′iu
′
j

(2.7)

The second term, i.e. the velocity covariance u′iu
′
j , is called the Reynolds stress. Therefore,

from the previous equation and Eq. (2.3), we could obtain:

Duj
Dt

=
∂ūj
∂t

+
∂

∂xi
(ūiūj + u′iu

′
j) =

∂ūj
∂t

+ ūi
∂ūj
∂xi

+
∂

∂xi
(u′iu

′
j) (2.8)

The final result is written thanks to the definition of the mean substantial derivative:

D̄

D̄t
=

∂

∂t
+ ū · ∇ (2.9)

In terms of this derivative, the Eq. (2.8) becomes:

Duj
Dt

=
D̄

D̄t
ūj +

∂

∂xi
u′iu
′
j (2.10)

After this procedure, it results simpler to take the mean of the momentum equation (Eq.
(1.15)) because the other terms are linear in u and p. The result is the mean-momentum or
Reynolds equations reported in Eq. (2.11), where a forcing term Fj has been added in accordance
with section 1.1.3.

D̄

D̄t
ūj = ν∇2ūj −

∂u′iu
′
j

∂xi
− 1

ρ

∂p̄

∂xj
+ Fj (2.11)

The Reynolds equations and the Navier-Stokes equations (Eq. (1.15)) are apparently the
same, except for the Reynolds stresses.

In the same way as pressure p(x, t), the mean pressure field p̄(x, t) satisfies the Poisson
equation. This might be obtained by taking the divergence of the Reynolds equations:

− 1

ρ
∇2p̄ =

∂ui
∂xj

∂uj
∂xi

=
∂ūi
∂xj

∂ūj
∂xi

+
∂2u′iu

′
j

∂xi∂xj
(2.12)

For a stationary flow, Eq. (2.11) becomes:

∂

∂xi
(ūiūj) = ν∇2ūj +

∂ui′uj ′

∂xi
− 1

ρ

∂p̄

∂xj
+ Fj (2.13)

A closure for Reynolds stresses u′u′ is required.
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2.1.2 Reynolds stresses

The Reynolds stresses u′iu
′
j play a fundamental role in the equation for the mean velocity field

ūj . The main difference between the fields uj and ūj is due to the effect of the Reynolds stresses.
The properties of the Reynolds stresses are investigated in more detail below.

Interpretation as stresses

The RANS momentum equation can be rewritten as:

ρ
D̄

D̄t
ūj =

∂

∂xi

[
µ

(
ūi
∂xj

+
ūj
∂xi

)
− ρ u′iu′j − p̄ δij

]
+ Fj (2.14)

This is the general from of a momentum conservation equation in which the term in square
brackets represents the sum of three stresses: the viscous stress, the apparent stress derived
from the fluctuating velocity field, ρ u′iu

′
j , and the isotropic pressure stress p̄ δij . The viscous

stress derives from momentum transfer at the molecular level. The Reynolds stress derives from
momentum transfer by the fluctuating velocity.

Tensor properties

The Reynolds stresses are the components of a second-order tensor, which is symmetric: u′iu
′
j =

u′ju
′
i. The normal stresses are the diagonal components, i.e. u′ 21 = u′1u

′
1, u′ 22 and u′ 23 . Whereas,

the off-diagonal components are the shear stresses, i.e. u′1u
′
2.

Related to the Reynolds stresses, the turbulent kinetic energy k(x, t) is the mean kinetic
energy per unit mass associated with eddies in turbulent flow. It is typically defined to be half
of the trace of the Reynolds stress tensor, as shown in Eq. (2.15).

k ≡ 1

2
u′iu
′
i =

1

2
u′ · u′ (2.15)

In the principal axis of the Reynolds stress tensor, the off-diagonal components are zero, while
the normal stresses are the eigenvalues. Consequently, the Reynolds stress tensor is symmetric
positive semi-definite. In general, the eigenvalues are strictly positive, but in rare cases one or
more of them could be zero.

Anisotropy

The choice of coordinate system could determine the distinction between shear stresses and
normal stresses. An intrinsic distinction can be made between isotropic and anisotropic stresses.
The isotropic stress is 2/3 kδij , and then the deviatoric anisotropic part is:

aij ≡ u′iu′j −
2

3
kδij (2.16)

In terms of anisotropy tensors, the Reynolds stress tensor is:

u′iu
′
j =

2

3
kδij + aij (2.17)

It is only the anisotropic component aij that is effective in transporting momentum:

ρ
∂u′iu

′
j

∂xi
+

∂p̄

∂xj
= ρ

∂aij
∂xi

+
∂

∂xj

(
p̄+

2

3
ρk

)
(2.18)

It shows that the isotropic component can be absorbed in a modified mean pressure.
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Other properties

Other properties are the irrotational motion and the symmetries. The first states that the
Reynolds stresses arising from an irrotational field u(x, t) have absolutely no effect on the mean
velocity field. On the other hand, for some flows, symmetries in the flow geometry determine
properties of the Reynolds stresses. For more details, see Pope (2000c).

Finally, the closure problem will be treated in subsection 2.1.3 to finalise the description of
the properties of the Reynolds stresses.

2.1.3 The closure problem

As previously exposed, there are four independent equations governing the mean velocity flow:
three components of the mean momentum equation Eq. (2.13) and the mean continuity equation
Eq. (2.3) or alternatively the Poisson equation for p̄. However, the number of unknowns is higher
than the number of available equations. In addition to ū and p̄, there are also the Reynolds
stresses.

In such manner the closure problem is manifested. In general, the evolution equations for
a set of statistics contain additional statistics to those in the set considered. Consequently, the
absence of separate information to determine the additional statistics compromises the solution
of the set of equations. This set of equations, characterised by more unknowns than equations,
is known as unclosed. So the Reynolds equations are unclosed. They could be solved only if the
Reynolds stresses are determined in some way.

One way to determine Reynolds stress is to write its transport equation. Nevertheless,
this procedure would need to know higher moments to close the problem, as we will see in
subsection 2.1.4 for the turbulent kinetic energy.

Therefore, the closure problem derived from the Reynolds-averaging of the equations of fluid
motion has lead to the development of approximately models to close systems of RANS equa-
tions. Because of the practical importance of such models for weather forecasting, atmospheric
dispersion and performance prediction for engineering devices, RANS-closure modeling efforts
have existed for more than a century and continue to this day. In the subsection 2.1.5, the
turbulent model is generally treated and a popular model in the atmospheric field is presented.

2.1.4 Turbulent kinetic energy

The exact equation for the turbulent kinetic energy is written in Eq. (2.19).

D̄

D̄t
k ≡ ∂k

∂t
+ ū · ∇k = −∇ ·T′ +Gk − ε (2.19)

The flux T′ is:

T ′i =
1

2
u′iu
′
ju
′
j +

u′ip
′

ρ
− 2νu′jsij (2.20)

where p′ is the fluctuating pressure field (p′ = p− p̄) and sij is the fluctuating rate of strain:

sij = Sij − S̄ij =
1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(2.21)

In the previous equation Sij and S̄ij are respectively the rate of strain and the mean rate
of strain. The term Gk in Eq. (2.19) is the production of turbulent kinetic energy or simply
production and is defined as:

Gk ≡ −u′iu′j
∂ūi
∂xj

(2.22)
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Whereas, ε is the dissipation term and is:

ε ≡ 2 ν sijsij (2.23)

In Eq. (2.19), any term that is completely determined by the known variables is said to be
“in closed form”. This is the case of D̄k/D̄t. Conversely, the remaining terms ∇ ·T′, Gk and ε
are unknown. So they need to be modelled in order to obtain a closed set of model equations.
This is possible through a “closure approximation” that models the unknowns in terms of the
known variables.

2.1.5 Turbulent closure models

The Reynolds stresses appears as the unknowns in the Reynolds equations. The turbulent model
contributes to determine the Reynolds stresses. There exists mainly two families of turbulent
models. The first is based on the turbulent-viscosity hypothesis, while the second directly
models the Reynolds-stress transport equations. We are focused on the first family of models.
In particular, the first order models (e.g. k-ε model) will be treated because they were commonly
used to simulate the SBL flows (Richards and Hoxey, 1993).

The turbulent-viscosity models are based on the turbulent-viscosity hypothesis. The hypoth-
esis can be viewed in two parts:

• The intrinsic assumption that Reynolds-stress anisotropy, aij ≡ u′iu′j− 2
3kδij , is determined

by the mean velocity gradient ∂ūi/∂xj .

• The specific assumption that the relationship between aij and ∂ūi/∂xj is:

u′iu
′
j −

2

3
kδij = −νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(2.24)

or, equivalently,

aij = −2νtS̄ij (2.25)

where S̄ij is the mean rate-of-strain tensor.

Therefore, from the specific hypothesis, it is obtained the expression for the Reynolds stresses:

u′iu
′
j =

2

3
kδij − νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(2.26)

or in simple shear flows, the shear stress is:

u′1u
′
3 = −νt

(
∂ū1

∂x3

)
(2.27)

Given the turbulent viscosity field νt(x, t), Eq. (2.26) provides a convenient closure to
Reynolds equations. In fact, it reduces the number of unknowns from six to one, i.e. νt.
Moreover, it has the same form as the Navier-Stokes equations. Nevertheless, the accuracy of
the hypothesis is poor for many flows.

If the turbulent-viscosity hypothesis is considered as an adequate approximation, the re-
mained work is to determine an approximate specification of the turbulent viscosity νt(x, t).
Commonly, it can be written as the product of a velocity u∗(x, t) and a length l∗(x, t):

νt = u∗l∗ (2.28)
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Figure 2.1: A sketch of an apparatus similar to that used by Uberoi (1956), to study the effect
of axisymmetric mean straining on grid turbulence. From (Pope, 2000c).

In order to specify νt, u
∗ and l∗ are required. In algebraic models, for example in the mixing-

length model, the geometry of the flow helps to specify l∗. In two-equations models, like the k-ε
model, u∗ and l∗ are related to k and ε, for which modelled transport equations are solved.

Therefore, in addition to the previous mentioned models, there are also the one-equation
models. For instance, the Spalart-Allmaras model is a one-equation model developed for aero-
dynamic applications (Spalart and Allmaras, 1994). Whereas, there exist many others two-
equations models. In many of these, k is taken as one of the variables. Nevertheless there are
different choices for the second one. Examples are quantities with dimensions of k L (where L
is a lengthscale) (Rotta, 1951), turbulence frequency ω (Kolmogorov, 1942), ω2 (Saffman, 1970)
and timescale τ (Speziale et al., 1992).

In order to achieve our aims, it was chosen to treat the k-ε model in more detail. In fact,
it is commonly used to simulate the atmospheric flow, as we will see in subsection 2.1.6 and
subsection 2.1.7.

Limits of the turbulent-viscosity model

It is possible to analyse some limits of the turbulent-viscosity models thanks to the wind tunnel
experiment of Uberoi (1956), as highlighted by Pope (2000c). The latter experiment investigates
the effects on turbulence of an axisymmetric contraction and the validity of the turbulent-
viscosity hypothesis along the test section. The sketch of the experiment is shown in Figure 2.1.
Three parts constitute the test section, i.e. two straight sections separated by an axisymmetric
contraction.

The limits of the turbulent-viscosity hypothesis are highlighted in the middle axisymmetric
contraction and in the second straight section. In the first of these two sections, the evolution
of the Reynolds stresses are better reproduced by the rapid-distortion theory (RDT). Whereas
the turbulent-viscosity hypothesis is not appropriate to describe the effects of the contraction.
Secondly, the straight section is expected to show Reynolds-stress anisotropies equal to zero.
Nevertheless, it is not verified because the anisotropies produced in the contraction section
decay slowly. The prior history of the flow explain this behaviour that again is not reproduced
by the previous hypothesis. Therefore, in these cases, the local mean rate of strain does not
govern the Reynolds-stresses anisotropies.

Finally, it is important to remember that there exist other flow for which the hypothesis is
more reasonable. It is the case of simple turbulent shear flows, e.g.: the round jet, mixing layer,
channel flow and boundary layer. The latter is of particular interest for our purposes.
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2.1.6 The k-ε model

The k-ε model is the most widely used complete turbulence model and it is present in most
commercial CFD codes. Moreover, it is very popular in atmospheric dispersion, as already men-
tioned in section 1.2.3. As for all turbulence models, both the concept and details have evolved
over the time. Jones and Launder (1972) are considered as the developers of the “standard k-ε
model”, while Launder and Sharma (1974) had contributed to improve the model constants.
Earlier contributions are cited by Launder and Spalding (1972).

This model is part of the class of two-equations models, in which model transport equations
are solved for two turbulence quantities: the turbulent kinetic energy k and the turbulent
dissipation rate ε. From these two quantities, it is possible to obtain a length-scale L = k3/2/ε,
a time-scale T = k/ε, and a quantity of dimension νt (k2/ε). Consequently, two-equation model
can be complete. In fact, considering Eq. (2.28), we have l∗ ∼ k3/2/ε and u∗ ∼ k1/2.

In addition to turbulence-viscosity hypothesis, the k-ε model considers:

• The model transport equation for k.

D̄k

D̄t
= ∇ ·

(
νt
σk
∇k
)

+Gk − ε (2.29)

where Gk is the turbulent kinetic energy production term and σk is the first coefficient of
the model. In fact, the flux T′ of the exact k equation (Eq. (2.19)) is modelled through a
gradient-diffusion hypothesis and the first term of the right-hand side of the Eq. (2.29) is
obtained, with σk being constant and playing the role of a turbulent Prandtl or Schmidt
number for k.

• The model transport equation for ε.

D̄ε

D̄t
= ∇ ·

(
νt
σε
∇ε
)

+ Cε1
Gk ε

k
− Cε2

ε

k
(2.30)

where σε, Cε1 and Cε2 are the other coefficients. Similarly, σε plays the role of turbulent
dissipation Prandtl number.

• The specification of the turbulent viscosity.

νt = Cµ
k2

ε
(2.31)

where Cµ is the last of the five model coefficients.

While the exact equation for k is used (with the appropriate closure), the exact equation for
ε can be derived but it is not a useful starting point for the ε model equation (Pope, 2000c). In
fact, ε is viewed as the energy-flow rate in the energy cascade. In the model, it is determined
by the large scale motions and independently of the viscosity at high Re number. On the other
hand, the real equation of ε is related to the processes in the dissipative range. The direct
consequence is that the standard model equation for ε is an empirical equation.

The five coefficients of the model are: σk, σε, Cε1, Cε2 and Cµ. Some sets of model coefficient
values are shown in Table 2.1. Whereas, the values of Launder and Sharma (1974) represent
a compromise chosen (with subjective judgement) to give the best performance for a range of
flows. There are some other sets of values adapted for many particular flow, like for decaying
turbulence, round jets or atmospheric flows. Such ad hoc flow-dependent adjustment of the
coefficients represents a limit of the k-ε model. The appropriate coefficients for the atmospheric
flow, studied in this chapter, will be presented in the following subsection.
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2.1.7 The Richards and Hoxey (R&H) approach

After the generic overview of the RANS approach, the current subsection presents a well known
and fundamental approach to model and simulate the turbulent ABL flow under neutral con-
ditions. In fact, many ABL studies using CFD were carried out over the past 30 years, often
assuming neutral equilibrium (Blocken et al., 2007). In this case, the ABL could be considered
as a horizontally homogeneous flow. Practical simulations of ABL flows are often performed
using the RANS approach combining with two-equations turbulence model, being the k-ε model
the most popular. However, difficulties were encountered in wide-ranging literature (Richards
and Hoxey, 1993; Blocken et al., 2007; Parente et al., 2011a; O’Sullivan et al., 2011; Richards
and Norris, 2011).

The studies of Richards and Hoxey (1993) and Hargreaves and Wright (2007) could be
considered as a fundamental reference for the ABL modelling. It represents a clear guideline to
deal with this challenging problem and laid the foundations for more recent and complex models.
For convenience, the modelling approach, resulting from this two studies, will be called “R&H
approach” from here on. We are interested to study the bottom part of the ABL, also known as
surface boundary layer (SBL) or atmospheric surface layer. According to the authors the flow
in this region should normally be modelled as a homogeneous horizontal flow. Thus, velocity
and turbulence profiles associated with the k-ε turbulence model needs to produce horizontally
homogeneous conditions, which implies that the streamwise gradients of all variables should be
zero and it is not trivial. Without considering its generation, a suitable model for the SBL is
based on any flow that is fully aerodynamically rough, horizontally homogeneous and relatively
free from any pressure gradients. For computational modelling, fully aerodynamically rough
flow implies that the shear stress should be determined by Reynolds stresses. Moreover, the
harder characteristic to achieve is the horizontal homogeneity. This condition can exist only in
regions remote from any kind of obstructions and imposes that the streamwise gradient of all
variables are zero. Many numerical works (Yang et al., 2009; Tian et al., 2018) have underlined
that the use of empirical equations for inflow boundary conditions, e.g. power law for velocity or
polynomial fit for experimental turbulence kinetic energy, changes rapidly in the inlet region of
the domain. The flow near the surface tends to accelerate considerably before been retarded by
the influence of obstacles. In order to avoid this problem, it is very important that the velocity
and turbulence profiles at the inlet, the ground shear stress and the turbulence model should be
in equilibrium. Nevertheless, Hargreaves and Wright (2007) have demonstrated that the latter
conditions are not enough to produce a sustainable SBL. In order to reproduce a sustainable
SBL, the computational approach needs further precautions regarding the wall function and the
top boundary condition.

Before describing the R&H approach in more details, a brief presentation of the context in
which it was developed is reported. In fact, it is highlighted that some aspects of the Richards
and Hoxey (1993) work had become a standard among practitioners in computational wind
engineering in the early part of the 21st century. Many users of commercial codes (e.g. Fluent
6.1 (2003) and CFX 5.7 (2004)) used versions of the R&H inlet boundary conditions in CFD
simulations (Parker and Kinnersley, 2004). Other works (Zhang, 2009) have employed even
more complex expressions for the streamwise component of the wind and turbulence quantities
at the inlet. Nevertheless, these profiles decayed in the same way as the less complex models
due to the inability of the chosen turbulence model, boundary conditions and wall functions to
sustain them.

In a blind-test of CFD software in modelling wind loading on the full-scale Silsoe cube,
as prerequisite, participants were asked to demonstrate that they could model a suitable ABL
(Richards et al., 2002). Between the participants, only Richards was able to maintain the
inlet profiles along the domain. The other participants largely used unmodified versions of
two commercial codes: Fluent and CFX. On the other hand, Richards used an open-source
code, which was modified for the purpose. About 20 years have passed since then and several
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changes have been made to all the codes used today for this type of simulation, as we will see
in section 2.2.

Now we can move on to the description of the considered approach. In the k-ε turbulence
model and 2D case for simplicity, the Reynolds stresses are modelled by an effective turbulent
viscosity:

u′w′ = −µt
(
∂ū

∂z
+
∂w̄

∂x

)
(2.32)

where ū and w̄ are the mean streamwise and vertical velocity. Whereas u′ and w′ are the
corresponding velocity fluctuations and µt is related to turbulent kinetic energy (Eq. (2.15)).

Richards and Hoxey (1993) made the following assumptions in order to model an homoge-
neous 2D ABL:

1. The mean vertical velocity is zero.

2. The pressure is constant in both the vertical and streamwise direction. Therefore, there is
not pressure gradient.

3. The shear stress, τw, is constant throughout the boundary layer, i.e.

τw = µt
∂ū

∂z
= ρu2

∗ (2.33)

where µt is the turbulent viscosity, ū is the streamwise component of the wind speed, ρ is
the air density and u∗ is the friction velocity.

4. The turbulent kinetic energy k and the dissipation rate ε satisfy their respective conser-
vation equations, which are reduced to:

∂

∂z

(
µt
σk

∂k

∂z

)
+Gk − ρε = 0 (2.34)

∂

∂z

(
µt
σε

∂ε

∂z

)
+ Cε1Gk

ε

k
− Cε2ρ

ε2

k
= 0 (2.35)

where the production of turbulent kinetic energy (Eq. (2.22)) is given by:

Gk = u′w′
(
∂ū

∂z

)
= µt

(
∂ū

∂z

)2

(2.36)

and the turbulent viscosity µt is :

µt = ρCµ
k2

ε
(2.37)

In order to guarantee the equilibrium of the turbulence model, Richards and Hoxey then
suggest that the above equations can be satisfy by the inlet profiles of Eqs. (2.38)-(2.40). These
profiles are mainly employed in section 2.2 and they are called “R&H profiles”.

ū(z) =
u∗
κ

ln

(
z + z0

z0

)
(2.38)

k =
u2
∗√
Cµ

(2.39)
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ε(z) =
u3
∗

κ(z + z0)
(2.40)

The authors of the articles found that from Eq. (2.38) to Eq. (2.40) satisfy Eq. (2.34)
automatically, but Eq. (2.35) only when:

σε =
κ2

(Cε2 − Cε1)
√
Cµ

(2.41)

So considering κ = 0.4, it is important to choose properly the five k-ε coefficients. The
Table 2.1 illustrates three different set of coefficients. The first one was proposed by Launder
and Sharma (1974) who participated to the formulation and the improvement of this model
in the seventies. These coefficients are considered as standard coefficients, setting as default
values by different CFD codes, like Fluent and OpenFOAM. However, the latter set is not in
agreement with the characteristics of our flow and does not satisfy the condition of Eq. (2.41).
Therefore, Hargreaves and Wright (2007) revisited the study of R&H and introduced a new set
which differs only with regard to the σε value. This procedure aims to balance the current case
through the modification of the coefficients based on standard ones. Nevertheless, Duynkerke
(1988) has still suggested a different set of coefficients in order to reproduce the characteristics
of the atmospheric SBL in neutral conditions. The atmosphere is characterised by a ratio B
between the turbulent kinetic energy and the square of the friction velocity higher than a typical
near wall turbulence, as taken into account by Launder and Sharma. According to Hargreaves
and Wright (2007), the ratio B is 4.17 , while it is almost 5.20 for Duynkerke (1988). This
determines different sets of coefficients.

σk σε Cε1 Cε2 Cµ
Launder and Sharma (1974) 1.0 1.3 1.44 1.92 0.09

Hargreaves and Wright (2007) 1.0 1.11 1.44 1.92 0.09

Duynkerke (1988) 1.0 2.38 1.46 1.83 0.033

Table 2.1: Set of different k-ε coefficients.

The current SBL modelling approach is full of tips that we have tested in section 2.2. So
three different case studies, performed using two CFD codes (i.e. OpenFOAM and Fluent),
complement the current section in order to show operationally the impact of issues mentioned
and of improvements suggested. On the other hand, the next subsection presents the precautions
necessary to treat the boundary conditions. In order to have all the tools to complete this
academic test.

2.1.8 Boundary conditions

In this section, the principal boundary conditions are presented. In fact, it is important to pay
particular attention to the inlet, top and ground boundary conditions for correctly performing
a RANS simulation of the neutral SBL. Moreover, it is also presented the equilibrium between
the turbulence model and the boundary conditions.

Inlet boundary condition

The typical R&H inlet numerical profiles, already presented in the previous subsection 2.1.7, are
shown in the Figure 2.2 for a SBL of 300 m. They follow the Eqs. (2.38)-(2.40). In the current
thesis, these profiles will be adopted because they are enough for our tests of section 2.2.

Nevertheless, it is important to highlight that some other profiles exist because the R&H
profiles present some drawbacks. For instance, a weakness of R&H profiles are the constant
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Figure 2.2: Inlet profiles

value of the shear stress in all SBL height. In fact, experiments demonstrate that shear stress is
a variant along height and decreases vertically (Xie et al., 2004b; Yang et al., 2009). According
to the work of Zhang (2009), an alternative semi-empirical shear stress model is presented:

u′w′(z) = −u2
∗

(
1− z

hg

)2

(2.42)

where hg is the height of the SBL and defined as (Tennekes, 1984):

hg =
u∗
6f

(2.43)

Here, f is the Coriolis parameter (for a typical mid-latitude location: f = 10−4 rad · s−1).
Consequently, the k expressions becomes:

k(z) =
u2
∗√
Cµ

(
1− z

hg

)2

(2.44)

while ū(z) and ε(z) remain the same (Eq. (2.38) and Eq. (2.40)).
The previous k profiles were also employed by the Engineering Science Data Unit (ESDU,

1982) for Computed Wind Engineering studies, as observed in Figure 2.3. In this case the set
of profiles includes Eq. (2.38) and a modified version of the ε profile:

Figure 2.3: ESDU profiles. From: (Tian et al., 2018)
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ε(z) =
u3
∗

κ(z + z0)

(
1− z

hg

)2

(2.45)

Another alternative inlet condition for k is (Yang et al., 2009; Parente et al., 2011a):

k =

√
D1 ln

(
z + z0

z0

)
+D2 (2.46)

where D1 and D2 are two constants that describe the inflow turbulence level, determined via
experimental data fitting. The latter profile for k is obtained as a solution of the turbulent kinetic
energy transport equation, assuming that Cµ is constant and the local equilibrium between
production and dissipation:

ε(z) =
√
Cµk

∂u

∂z
(2.47)

Here Cµ needs to be properly specified in order to ensure the correct level of turbulent kinetic
energy throughout the domain.

In the next section, the case studies will use the R&H and Zhang profiles.

Top boundary condition

Richards and Hoxey (1993) and Hargreaves and Wright (2007) point out the problem of top
boundary condition. At the beginning of the research in this area, the less accurate simulations
had used a symmetry boundary condition that imposes a zero gradient normal to the top patch.
This condition does not guarantee the conservation of ū, k and ε profiles along the domain,
except if the inlet profiles results perpendicular to the top patch. The latter exception could be
physical but it is not found very often. For this reason, the earlier authors have proposed the
use of an imposed shear stress which allows the equilibrium at the top. This condition could be
interpreted also as a fixed gradient obtained from the inlet profiles. Moreover, a fixed velocity
brings to a similar result, as shown by Tian et al. (2018). An alternative solution is related to
the third hypothesis of Richards and Hoxey. Consequently, it is possible to introduce a constant
momentum source in the x and y direction (Vendel et al., 2010). All the previous approaches
are equivalent but could present some limitations. Fixing the top shear stress, gradient or
velocity could modify the flow field, above all, when there are obstacles in the domain. This last
limitation can be alleviated if a suitable height of the domain is considered. The top boundary
needs to be at a suitable distance from the obstacles. In the same way, the third hypothesis of
Richards and Hoxey is not a physical condition because many experiments prove its inaccuracy
(Xie et al., 2004b).

Being aware of the limitations, one of the above approaches can be taken to define the top
boundary condition. We have decided to mainly adopt a fixed gradient for ū and ε because this
approach is already implemented in OpenFOAM.

Wall function

In previous studies, a standard treatment of a rough wall could not be appropriate when we
simulate an SBL because it is quite common to have the value of the first bottom cell outside the
log-law region (subsection 1.1.4) that is recommended to apply the logarithmic law of the wall. If
we use a commercial CFD code, it is important to take into account the possible error due to the
use of a wall function with a standard roughness model and the need of a manual correction, e.g.
through a User Defined Function. Open-source codes, like OpenFOAM, allow to correct directly
the source code of the wall functions, as Richards and Hoxey made. However, with respect
to the standard wall functions used by Hargreaves and Wright (2007), OpenFOAM provides
wall functions based on standard roughness model with good performances also outside of the
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logarithmic regions, as we will see in subsection 2.2.3. Open-source codes could also present the
wall function correction suggested by Hargreaves and Wright (2007).

The latter approaches will be presented in section 2.2, where it will also be highlighted the
evolution of wall function codes with respect to previous versions, presented in the papers cited
so far. Moreover, the treatment of rough surfaces implies the use of wall function adapted
to simulate roughness effects. These kind of wall function are described in section A.1 for
OpenFOAM code.

Equilibrium of k-ε equations

The equilibrium of k-ε equations is fundamental to conserve the inlet profile along the simulation
domain.

Two approaches to obtain the equilibrium of the k-ε equations are presented here. The
first one is based on the Eq. (2.41) and aims to conserve the R&H profiles, as illustrated in
subsection 2.1.7. The second and third set of coefficients of Table 2.1 derived from this approach
and from experiments, which point out that the rate between the turbulent kinetic energy and
the square of the friction velocity is higher for the atmosphere.

The second approach is constituted by the addition of a source term in the ε equation. It is
also used when R&H profiles are employed and yield to the following source term:

Rε =
u∗

z + z0

[
(Cε2 − Cε1)

√
Cµ

κ2
− 1

σε

]
(2.48)

On the other hand, the use of ESDU profiles implies the addition of a second source term in
the k equation:

Rk =
2u3
∗κ√

Cµhgσk

(
1− z

hg

)2 [4z + 3z0

hg
− 1

]
(2.49)

The Rk and Rε of the ESDU model ought to be added as source terms into the k and ε
transport equations, respectively to ascertain the full consistency (Figure 2.3).

In this phase of the research, our goal is to thoroughly understand and easily manipulate
the simplest of academic cases. For this reason, we have focused on the R&H approach and its
profiles.

2.1.9 Mean scalar equation

Up to now, it is possible to affirm that the simple description of the velocity field u(x, t) is
given by its mean field ū(x, t). Similarly, the mean passive scalar filed c(x, t) is used for a basic
description of the passive scalar field c(x, t). The mean passive scalar field was briefly introduced
in subsection 1.1.5 in order to present the state-of-the-art of the atmospheric dispersion. More
details will be presented here.

In order to obtain the equation for c̄(x, t), the Reynolds decomposition is still used:

c(x, t) = c̄(x, t) + c′(x, t) (2.50)

Therefore, the conservation equation for c(x, t) (Eq. (1.17)), without considering the source
term Sc, is written as:

∂c

∂t
+∇(u c) = ∇ · (Dc ∇c) (2.51)

The convective flux u c is the only nonlinear term and its mean is:

u c = (ū + u′)(c̄+ c′) = ū c̄+ u′c′ (2.52)
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The velocity-scalar covariance u′c′ is the turbulent scalar flux. It represents the flux of the
scalar due to the fluctuating velocity field. Consequently, taking the mean of Eq. (2.51), we
obtain (Eq. (1.49)):

∂c̄

∂t
+∇ · (ū c̄+ u′c′) = Dc∇2c̄ (2.53)

or equivalently in terms of the mean substantial derivative:

D̄c̄

D̄t
= ∇ · (Dc∇c̄− u′c′) (2.54)

The scalar fluxes and the Reynolds stresses play an analogous role respectively in the mean-
scalar equation and in the mean-momentum equations. Similarly, they lead to the closure
problem. In fact, knowing ū is not enough, the modeling of u′c′ is needed to solve the Eq.
(2.54) for c̄. The direction and the magnitude of the turbulent transport of the conserved scalar
c are determined by the scalar flux vector. According to the gradient-diffusion hypothesis, this
transport is carried out along the mean scalar gradient and in the direction of −∇c̄. In this way,
according to the hypothesis, there exist a positive scalar Dt(x, t), i.e. the turbulent diffusivity,
that yields to:

u′c′ = −Dt∇c̄ (2.55)

Consequently, Eq. (2.54) becomes:

∂c̄

∂t
+ ū · ∇c̄ = ∇ · [(Dc +Dt) ∇c̄] (2.56)

The effective diffusivity Deff is defined as the sum of the molecular and turbulent diffusivities:

Deff = Dc +Dt(x, t) (2.57)

Finally, the mean passive scalar field could be expressed as:

D̄c̄

D̄t
= ∇ · (Deff∇c̄) (2.58)

The latter equation is the same as the conservation equation for c (Eq. (1.17)) but with ū,
c̄ and Deff in place of u, c and Dc.

From the operational point of view, the turbulent diffusivity is modeled by:

Dt =
νt
Sct

(2.59)

where νt is the turbulent viscosity, derived from the mean velocity field, and Sct is the turbulent
Schmidt number. In fact, the Fickian diffusion approximation based on turbulent diffusivity
remains the most popular and diffused approach so far (Gualtieri et al., 2017).
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2.2 Issues, improvements and comparison of RANS literature
cases

As discussed in the previous chapter, several commercial CFD codes (e.g. CFX, Ansys Fluent,
etc) have been shown unable to maintain standard atmospheric wind speed and turbulence
profiles over a flat terrain with homogeneous roughness using the standard k-ε model and wall
functions (Hargreaves and Wright, 2007). The main cause is the inconsistent formulations of
the boundary conditions with respect to the k-ε model.

In the current section, we test our modeling approach based on the R&H approach to simulate
a 2D neutral SBL using two CFD codes: OpenFOAM and Ansys Fluent. The 2D simulation does
not truly represent 3D turbulence but it serves the purpose of illustrating the problems mentioned
above and economically evaluating possible remedial measures or proving that current codes have
already overcome the difficulties of the past. The approach is compared to 3 study cases from
literature: Segersson (2017) in subsection 2.2.1, Blocken et al. (2007) in subsection 2.2.2 and
Hargreaves and Wright (2007) in subsection 2.2.3. The aim is to show the influence of the
boundary conditions on the development of a horizontal homogeneous atmospheric flow and the
equilibrium due to k-ε coefficients. In particular, the work is focused on the study of:

• the inlet boundary conditions,

• the top boundary conditions,

• the wall function, and

• the interaction of the k-ε coefficients with the boundary conditions.

From this point of view, the whole effort is addressed to understand the state of the art
and the capabilities of the RANS CFD tools today, and become familiar with them. Moreover,
the study of the RANS boundary conditions is also useful to approaching LES simulations and
begin to understand the difficulties to be faced in chapter 3.

For all the following simulations, the CFD codes used are OpenFOAM 5.0 or/and v1812 and
Ansys Fluent 18.2. The 2D RANS equations and the continuity equations are solved using the
control volume method and the closure is obtained thanks to the k-ε model. Pressure-velocity
coupling is treated by the SIMPLE algorithm. Second-order discretisation schemes are used for
the momentum and turbulence transport equations, including the convection and viscous terms.
The kinematic viscosity considered is ν = 1.460× 10−5 m2/s.

2.2.1 Irvine case

The current study case is called “Irvine case”. It takes inspiration from the measurement
campaign of Irvine et al. (1997), where the measurements are made at a forest edge, with
four meteorological masts, carrying three anemometers each. However the numerical analysis
is provided by the tutorial of Segersson (2017), which describes step by step how to simulate a
neutral ABL in an urban environment using a steady state incompressible solver. Although it is
not the simplest numerical case, it remains the most detailed tutorial we faced at the beginning
of the current research. Moreover, this has proved helpful in achieving the objectives of this
section.

In this case study, two CFD codes are employed: OpenFOAM v5 and Ansys Fluent 18.2.
The aim is to analyse the influence of the top boundary condition on maintaining the inlet
profiles along the length of the domain with respect to two families of inlet profiles (i.e. the
R&H profiles and Zhang profiles).

Following the work of Segersson (2017) and Vendel (2011), a 2D domain is taken into ac-
count. The length and height of the domain are respectively 20 km and 300 m. The domain
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is schematically resumed by Figure 2.4. It is sufficiently long to test the profile conservation
capability of all the approaches adopted. Whereas the height is appropriate to describe the
SBL and the presence of obstacles (e.g. industrial buildings), as illustrated in subsection 1.2.1.
Figure 2.4 also illustrate the characteristics of the adopted hexahedral structured mesh. The
total number of cells in the mesh is 400 000 . While no expansion ratio was employed along x
coordinate (i.e. Rx = 1), a ratio of Rz = 2 was employed along z. Hence, in the x coordinate,
the mesh present uniform cell of size ∆x = 4.00 m. On the other hand, in the z coordinate, the
cell adjacent to the wall has a size of 2.59 m and the cell close to the top patch has a size of
5.18 m. As already mentioned, we are doing a 2D simulation so we have a single cell in the y
direction with an arbitrary size of ∆y = 2.00 m.

z0 0.06 m Aerodynamic roughness or roughness length

ūref 6.17 m/s Wind reference velocity

zref 15.00 m Reference height

P0 1.00× 105 Pa Reference pressure

Table 2.2: Neutral SBL characteristics of the Irvine case.

The SBL characteristics are summarised in Table 2.2. The values of the reference velocity
ūref and the roughness length z0 is estimated from statistical wind profiles of the measurement
campaign (Irvine et al., 1997). The statistical profiles are obtained from 3 experiment runs, all
close to neutral conditions. In the same way, the roughness length is estimated to 0.06 m.

The three study cases are summarised together with a schematic list of the boundary condi-
tions on Table 2.3. The inlet boundary conditions are constituted by the R&H profiles for the
case CS1 and CS3, and the Zhang profiles for the case CS2. The top boundary condition varies
between the cases. In fact, CS1 uses a symmetric boundary condition. On the other hand,
case CS2 employs momentum sources, which is a method already implemented by our research
team for Fluent. In addition to momentum sources, the case CS3 uses a fixed gradient for ū
and ε in the top boundary condition. The latter is an approach more adapted for OpenFOAM,
because (as before) it was already implemented in the code. All the cases use the same standard
wall-function for rough surfaces available in OpenFOAM and Fluent, which are respectively
“nutkRoughWallFunction” and “log-of-the wall modified for roughness”. Finally, the
k-ε coefficients are those suggested by Hargreaves and Wright (2007) and reported in Table 2.1.

All figures below show vertical profiles of the mean streamwise velocity, the mean turbulent
kinetic energy (TKE) and the mean dissipation rate of TKE at different distances from the inlet
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Figure 2.4: 2D domain for the Irvine case.
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patch: 1 km, 2 km, 5 km, 10 km and 20 km or outlet profile. Moreover, the analytical profile
is plotted for every involved variable. The case CS1, characterised by a symmetry boundary
condition for the top patch and R&H inlet profiles, allows to find the same inconsistency of some
previous studies (e.g. Mathews (1987)). Both OpenFOAM and Fluent does not conserve the
inlet profiles along the domain. Above of all, the turbulent kinetic energy and the dissipation of
turbulent kinetic energy decrease gradually along the streamwise, see Figure 2.5 and Figure 2.6.

The second comparison, i.e. case CS2, applies a correction to the top boundary condition
using the Fluent code. So the correction is based on a band adjacent to the top patch, which
introduces a momentum source in the x and y direction. This correction approach is not imple-
mented by default in OpenFOAM. Consequently, only the Fluent results are analysed here. In
this case, the Zhang profiles are employed as inlet boundary conditions instead of the R&H pro-
files. This profiles were presented in section 2.1.8. The main problem, as shown by Figure 2.7,
is the no-equilibrium of k-ε equations with respect to the considered inlet profiles. This is the
reason why the turbulent kinetic energy and the dissipation of turbulent kinetic energy profiles
tend to a constant profile as they develop along the domain. In fact, they try to return to an
equilibrium condition which is close to the R&H profiles.

The last case also applies a correction to the top boundary condition. In addition to the
momentum source method used for Fluent, a fixed gradient are used in OpenFOAM simulation.
The gradients are computed from the inlet profiles, which are the R&H profiles. For OpenFOAM,
Figure 2.8 shows a good equilibrium between the k-ε equations and the boundary conditions,
which allows to conserve our profiles along the domain. The OpenFOAM and Fluent results
have similar performance.

The Irvine case study allows to confirm that the symmetric boundary condition at the top of
the domain causes the input profiles not to be conserved along the domain. In fact, it generates
the deceleration of the velocity input profiles and a reduction in turbulence along the domain.
Only a suitable top boundary condition could solve the problem (as explained in section 2.1.8).
Moreover, another consequence of the current study is that the inlet profiles needs to be in
equilibrium with the k-ε equations. Otherwise, the inlet profiles are going to tend towards an
undesirable equilibrium condition.

CS1

Boundary ID Boundary Conditions

inlet R&H profiles

outlet inletOutlet

side1 empty (2D)

side2 empty (2D)

ground wall-function

top symmetry

CS2

Boundary ID Boundary Conditions

inlet Zhang profiles

outlet inletOutlet

side1 empty (2D)

side2 empty (2D)

ground wall-function

top momentum sources

CS3

Boundary ID Boundary Conditions

inlet R&H profiles

outlet inletOutlet

side1 empty (2D)

side2 empty (2D)

ground wall-function

top fixedGradient or momentum sources

Table 2.3: Irvine study cases and the scheme of the related boundary conditions
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Figure 2.5: CS1 case profiles computed using OpenFOAM.
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Figure 2.6: CS1 case profiles computed using Fluent.
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Figure 2.7: CS2 case profiles computed using Fluent.
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Figure 2.8: CS3 case profiles computed using OpenFOAM.
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ū [m/s]

0

50

100

150

200

250

300

z
[m

]

Wind speed

inlet

x = 1000 m

x = 2000 m

x = 5000 m

x = 10000 m

outlet

Analytic Prof

0.0 0.2 0.4 0.6 0.8 1.0

k [m2/s2]

TKE

10−4 10−3 10−2 10−1 100 101

ε [m2/s3]

Dissipation of TKE

Figure 2.9: CS3 case profiles computed using Fluent.
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2.2.2 Blocken case

After the study of the top boundary condition and the comparison between the two CFD codes,
the current study case wants to analyse the influence of the wall-function type on the equilibrium
with the turbulence model using OpenFOAM. For this reason, two important cases of the liter-
ature are taken into consideration. In the current subsection, the Blocken et al. (2007) research
is investigated, while in the following subsection the Hargreaves and Wright (2007) research is
considered.

Here the aim is to simulate the same SBL of the reference case, focusing on the wall-function
performance. In particular, the Figure 2.11 illustrates the expected results if any specific modi-
fication of the wall-function is considered and respecting the set of 4 requirements distilled from
various sources, e.g. CFD literature and CFD software manuals at the time of the Blocken et al.
(2007) article. Therefore we want to demonstrate that our boundary conditions, in particular
the wall-function, allow to generate a horizontally homogeneous atmospheric flow without any
modification to the source codes (already implemented).

The set of requirements, previously cited, are:

1. A sufficiently high mesh resolution in the vertical direction close to the bottom of the
computational domain.

2. A horizontally homogeneous ABL in the downstream and upstream region of the domain.

3. A distance zp from the centre point P of the wall-adjacent cell to the wall (bottom of
domain) that is larger than the physical roughness height Ks of the terrain (zp > Ks).

As already seen, it seems that, although the 4 requirements are respected, the Blocken et al.
(2007) results are not satisfactory. The authors suggest that the main reason is due to the use
of a wall model of the Ks-type family. Today, this family seems to be no more present in the
CFD codes or be capable to perform as well as z0-type family. Conversely, as we will show here,
the z0-type family is diffused and its results have better performance because more adapted to
atmospheric flows. It is not in our interest to delve into the details of the distinction between
z0-type and Ks-type families but, for more details about this family, please consult Blocken
et al. (2007).

The CFD simulation of the SBL flow was performed in a 2D empty computational domain.
The original simulation was conducted with Fluent 6.1.22, while the current study uses Open-
FOAM v1812. The dimensions of the 2D domain are shown in Figure 2.10 and are the same of
the reference case. A structured mesh was used and its characterised are illustrated in the same
figure. In this case, the total number of cell is 46 000 . An aspect ratio of Rz = 15 is present in
the z direction. Therefore, the size of the fist cell adjacent to the wall is ∆zmin = 2.08 m.

The neutral SBL characteristics are pointed out by the Table 2.4. The inlet profiles (i.e.
the R&H profiles) are characterised thanks to z0 = 0.1 m and u∗ = 0.869 m/s. Whereas, the
boundary conditions are resumed schematically in Table 2.5. So, at the bottom of the domain,
a standard OpenFOAM rough wall-function (i.e. nutkRoughWallFunction) is used, with Ks =
1.959 m and with the default roughness constant Cs = 0.50 . Here, Eq. (A.2) is the empirical
equation that governs the relation between z0 and Ks. This wall function is a z0-type wall
function. On the other hand, the original case applies a Ks-type wall function. The latter is

z0 0.1 m Aerodynamic roughness

ūref 18.5 m/s Wind reference velocity

zref 500 m Reference height

u∗ 0.869 m/s Friction velocity

Table 2.4: SBL characteristics.
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Figure 2.10: 2D domain for the Blocken case.

the only wall function available on Ansys Fluent 6.2 and it is more commonly used for flows
over sand-grain roughened surfaces. Following the Richards and Hoxey (1993) indications, the
current article takes particular attention to the top boundary conditions. Therefore, the values
of ū, k and ε are imposed along the top boundary and they are: ū = 18.5 m/s, k = 2.77 m2/s2

and ε = 0.0036 m2/s3. This is done by fixing these constant values in the top layer of cells in
the domain. Differently from this approach of the article, we have chosen to use a fixed gradient
in the top patch of the domain:

∂ū

∂z

∣∣∣∣
z= 500 m

=
u∗
κ

1

z + z0

∣∣∣∣
z= 500 m

= 4.34× 10−3 m/s2 (2.60)

∂ε

∂z

∣∣∣∣
z= 500 m

= − u3
∗
κ

1

(z + z0)2

∣∣∣∣
z= 500 m

= −6.55× 10−6 m/s3 (2.61)

where these expressions were derived from Eq. (2.38) and Eq. (2.40).

These kind of approaches have demonstrated better performance than symmetry or slip wall
boundary condition, as already shown in subsection 2.2.1. It is important to highlight that the
u∗ is slightly different with respect to Blocken et al. (2007) because the value proposed by the
articles was not consistent with the values of the profiles at the top boundary. Nevertheless, the
u∗ proposed here respects the consistency with the profiles analysed.

The results of Blocken et al. (2007) are illustrated in Figure 2.11. The profiles are not
conserved along the domain, though the set of 4 requirements are respected. The main problem
is identified on the type of wall-function implemented on the CFD code. The z0-type is suggested
as the most appropriated, following the study of Richards and Hoxey (1993). Nevertheless, at the

Boundary ID Boundary Conditions

inlet R&H profiles

outlet inletOutlet

side1 empty (2D)

side2 empty (2D)

ground wall-function

top fixedGradient

Table 2.5: Scheme of the boundary conditions for the Blocken case.
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Figure 2.11: Blocken et al. (2007) results

time of the article, many existing CFD codes such type of wall-function are neither implemented
nor the user always implement them easily.

Figure 2.12 shows the results of our approach. The vertical profiles of ū, k and ε are conserved
along the domain. All the cited requirements are respected except the last one. Nevertheless,
the condition zp > Ks only avoids having numerical results, which lack of physical meaning, but
does not affect the performance of the methodology, as observed from the results.

In this way, it is possible to affirm that the z0-type wall-functions are more appropriated
to reproduce horizontal homogeneity of the atmospheric flow. Furthermore, the Ansys Fluent
results of the Irvine case are similar to the OpenFOAM results. It proves that today this kind
of wall-function is more diffused or that today there is not distinction between the two families.
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Figure 2.12: Blocken case simulation computed using OpenFOAM.
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2.2.3 Hargreaves and Wright case

Roughly contemporary with the Blocken et al. (2007) case, the current study case is based on
the research work of Hargreaves and Wright (2007). The latter pointed out that the neutral
ABL can be maintained along an atmospheric domain only with a modified law of the wall and
with a shear stress applied to the top boundary of the domain.

In this case, our work is focused on reproducing the Hargreaves and Wright (2007) results
with OpenFOAM v1812 and evaluates the current validity of the authors’ suggestions. It was
also used the oldest version of OpenFOAM that we managed to get, i.e. OpenFOAM v2.3.1.
The use of the previous version is addressed to compare the results of two different versions of
OpenFOAM. Then, the results of the article of reference is reproduced using the Ansys Fluent
approach of Irvine case (subsection 2.2.1). Finally, the development of a SBL over a surface,
which presents a central smooth region, is shown in order to test our approach with OpenFOAM
v1812.

The first domain used is illustrated in Figure 2.13, as well as the characteristics of the
hexahedral mesh. The length of the domain is sufficiently long to allow any inlet effects to
dissipate and to ensure a developed atmospheric flow. An expansion ratio Rz = 36 was chosen
for the vertical grid. It means that the height of the cell adjacent to the wall is ∆zmin = 1.00 m,
while the height of the the cell adjacent to the top patch is ∆zmax = 36.00 m.

The second domain employed is presented in Figure 2.14. It is possible to identify 3 zones:
an inlet rough zone of 1.5 km, a smooth intermediate zone of 1.0 km and an again a rough outlet
zone of 2.5 km. The mesh characteristics are the same of the first domain. The only difference
is related to the type of wall surfaces at the ground patch.

For both domains, the wind profiles used are taken from the blind-test exercise mentioned
by Richards et al. (2002) and its characteristics are summarised in Table 2.6. Therefore, the
inlet profiles (i.e. the R&H profiles) are characterised thanks to z0 = 0.01 m and u∗ = 0.65 m/s.
The boundary conditions are schematically presented in Table 2.7. In the original article, the
surface roughness is incorporated through a wall-function approach that is based on boundary
layer theory for the computational cell immediately adjacent to the wall. On the other hand,
the wall-function used here is the nutkRoughWallFunction available in OpenFOAM v1812. The
reference article uses a symmetric boundary condition at the top patch, while the current study
employs a fixed gradient in agreement with our approach. The gradients applied are: ∂ū/∂z =
3.18× 10−3 m/s2 and ∂ε/∂z = −2.53× 10−6 m/s3. They are computed thanks to Eq. (2.60)
and Eq. (2.61). The effect of the choice made by the authors of the article is less evident in the
results because it was chosen to show only profiles between 0 and 50 times zref, i.e. 300 m.

z0 0.01 m Aerodynamic roughness

ūref 10.00 m/s Wind reference velocity

zref 6.00 m Reference height

u∗ 0.65 m/s Friction velocity

Table 2.6: Neutral SBL characteristics.

Hargreaves and Wright (2007) affirm that Figure 2.15 represent the typical plot produced
by computational wind engineers when showing that their simulation of the ABL is satisfactory.
The three profiles are simulated by Ansys Fluent 6.1 and are plotted up to a height of 50 zref and
at distances of 2500 m and 4000 m along the streamwise direction. At first sight, the development
of the velocity and dissipation rate profiles seems encouraging. However, the abrupt loss of the
turbulent kinetic energy profile points out the problem. Moreover, a zoom close to the ground
highlight better the inaccuracies in maintaining ū and ε profiles, e.g. the velocity in the cell
next to the ground decreased from 6 m/s to 5 m/s. The article illustrates similar results also
employing CFX 5.7.
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Boundary ID Boundary Conditions

inlet R&H profiles

outlet inletOutlet

side1 empty (2D)

side2 empty (2D)

ground wall-function

top fixedGradient or momentum sources

Table 2.7: Scheme of the boundary conditions for the Blocken case.

Figure 2.16 and Figure 2.17 show the results of our approach. The only difference between
them is the boundary condition used in the ground patch. The first uses the standard rough
wall-function implemented in OpenFOAM : nutkRoughWallFunction. Here the relation between
z0 and Ks is governed by the empirical equation: Eq. (A.2). Whereas the second adopts a
wall-function inspired to the work of Richards and Hoxey (1993) and Hargreaves and Wright
(2007): nutkAtmRoughWallFunction. For this wall-function, z0 is used directly. In both cases,
the profiles are conserved along the domain. This is a sign that a horizontal homogeneous
atmospheric flow has finally developed. Some slight difference is found near the wall due to the
peak of the turbulent kinetic energy. The OpenFOAM v2.3.1, published on December 2014,
present the same results of previous simulations, see Figure 2.18. It demonstrates that the
standard rough wall-function was correctly implemented since 2014. Then, the Figure 2.19
illustrate the same results but testing the Ansys Fluent 18.2. It further proves that today
commercial codes also exhibit good behaviour in generating horizontally homogeneous SBL
flows.

Finally, the evolution of the SBL profiles over a simple complex terrain is presented. The
central surface is smooth. Therefore, in this region, the profiles diverge from the R&H profiles.
Nevertheless, when the flow comes back to the rough region, it return to the desired equilibrium
condition for the rough region. It proves the consistency of our approach.
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Figure 2.13: First 2D domain for the Hargreaves case.
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Figure 2.15: From right to left, plots of ū, turbulent kinetic energy k and turbulent dissipation
rate ε for the Fluent simulation. From: (Hargreaves and Wright, 2007).

5 10 15
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Figure 2.16: Evolution of velocity, turbulent kinetic energy and dissipation of turbulent kinetic energy
profiles along 2D domain of 5 km and with zref of 6 m. Overall setting: Hargreaves and Wright (2007). The
intermediate profiles are at 1 km, 2.5 km and 4 km. The ground wall-function uses a standard roughness
model (nutkRoughWallFunction), available in OpenFOAM v1812.
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Figure 2.17: Evolution of velocity, turbulent kinetic energy and dissipation of turbulent kinetic
energy profiles along 2D domain of 5 km and with zref of 6 m. The ground wall-function uses
the correction suggested by Hargreaves and Wright (2007). In OpenFOAM v1812: nutkAtm-
RoughWallFunction.
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Figure 2.18: Evolution of velocity, turbulent kinetic energy and dissipation of turbulent kinetic
energy profiles along 2D domain of 5 km and with zref of 6 m. Overall setting: Hargreaves and
Wright (2007). The intermediate profiles are at 1 km, 2.5 km and 4 km. The ground wall-function
uses a standard roughness model (nutkRoughWallFunction), available also in OpenFOAM v2.3.1.
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Figure 2.19: Evolution of velocity, turbulent kinetic energy and dissipation of turbulent kinetic
energy profiles along 2D domain of 5 km and with zref of 6 m. The ground wall-function uses
the standard rough wall-function in Ansys Fluent 18.2.
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Figure 2.20: Evolution of velocity, turbulent kinetic energy and dissipation of turbulent kinetic
energy profiles along 2D domain of 5 km with a central smooth region and two rough regions.
OpenFOAM v1812 simulation.
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2.3 Conclusions

The current CFD codes, commercial or open-source, are able to conserve the horizontal homo-
geneity of the SBL along the whole domain. At least since 2014 this capacity is valid and no
ad-hoc modification to the wall-function is needed. It is only required to respect the equilibrium
between the turbulence model and the boundary conditions employed. Whereas, the inlet pro-
files needs to be in equilibrium with the turbulence model. The top boundary condition needs to
help the flow not to decay. Therefore, a top band which imposes the values at the cell adjacent
to the top or a fixed gradient applied to the top patch are two valid alternatives.

Moreover, it seems that nowadays there is not really a distinction between Ks-type and z0-
type wall models. Both of them shows similar performances. It is also important to remember
that the cell-center adjacent to the wall zp could be inferior than Ks. Numerically, this is not a
problem as long as zp is not positioned in the viscous sublayer. The result will not change but
computational resources are wasted by refining unnecessarily. So it is recommended to have zp
in the logarithmic region (subsection 1.1.4).

Finally, the different case studies have allowed to test the OpenFOAM performance and to
accumulate enough knowledge to continue the research using only this open-source code. Most
of the results of this section were brought to the HARMO19 conference, (Mejia Estrada et al.,
2019).



Chapter 3

Development of a Large-Eddy
Simulation Methodology for the
Dispersion in the Neutral Surface
Boundary Layer

3.1 Overview of a LES simulation approach for the dispersion
in the neutral SBL

The simulation of turbulent flows by numerical resolution of Navier-Stokes equations requires the
solution of a wide range of time and length scales, all of which affect the flow field. This is done
precisely with DNS but it is extremely expensive. From the point of view of the computational
cost, LES models are placed between RANS and DNS. Nowadays, LES could be viewed as a
reference method to simulate the atmospheric flow and dispersion, especially when it is desired
to have high-order moments or compare numerical results with optical measurements (e.g. from
multispectral cameras, LIDAR, etc). The latter is the case of our research.

The LES model is based on the separation of turbulent scales in a flow. It introduces an
arbitrary scale and models the smaller scales, while the bigger scales are computed. This consid-
eration is supported by Kolmogorov who establishes that, at sufficiently high Reynolds number,
the statistics of the small scale motions have a universal form for different flows (Kolmogorov,
1941). On the other hand, the large scales are not universal and are flow dependent.

The choice of the arbitrary scale has to primarily satisfy some physical criteria, as we will
see in the next sections. Therefore, LES could benefit from finer meshes as long as it meets the
appropriate criteria dictated by the physics and modelling of the specific flow. In the contrary,
a consistent refinement of RANS mesh may bring no further improvements.

There exist 4 conceptual steps in LES:

1. Decomposition. It is done thanks to filter, which decompose the velocity u(x, t) into
the sum of a filtered component and a residual component. The filtered velocity field
represents the motion of the large eddies.

2. Write the equations to solve. The equation for the evolution of the filtered velocity
field derives from the Navier-Stokes equations.

3. SGS tensor. Modelling of the residual stress tensor or subgrid stress (SGS) tensor, which
arises from the residual motions and make the problem unclosed.

4. Numerical resolution. The model filtered equations are solved numerically for the
filtered velocity field, given an approximation of the large scale motions.
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We consider that two ways of approaching are available. The first consists to deal with
modelling issues (steps 1, 2 and 3) and numerical solution (step 4) through an iterative approach,
following some similar researches on literature and a trial and error method. Differently, the
second approach is based on the development of some physical and modelling criteria that allow
to correctly settle the modelling issues and get a desired numerical solution. Our methodology
embraces the second approach, but some iterations following the first approach were useful to
define the criteria.

Similarly to the RANS overview presented in section 2.1, at first the LES is presented in a
general way and little by little we focus on the useful concepts to simulate a neutral SBL and
the dispersion of a passive scalar. After the concise presentation of the filtering operation (sub-
section 3.1.1), the LES conservation equations are illustrated and discussed in subsection 3.1.2.
Then the closure problem together with the SGS models are treated in section 3.1.2. Subse-
quently, the boundary conditions that require special attention are analysed in subsection 3.1.6
and the rough wall modelling is deepened in subsection 3.1.8. Finally, the filtered transport
equation of the passive scalar is presented together with modelling closure in subsection 3.1.13.

All these concepts are fundamental to develop the LES methodology of the current research.

3.1.1 LES filtering

The concept of scale separation is mathematically accomplished through a scale high-pass filter,
i.e. low-pass filter in frequency, applied to the exact solution (Sagaut, 2006). In this way, the LES
could resolve the filtered velocity field ũ(x, t) with a relative coarse computational mesh with
respect to a DNS resolution. It is convenient to set the filter width as somewhat smaller than the
length lEI , which represents the size of the smallest energy-containing motions. Moreover, lEI
could be considered as the demarcation between the anisotropic large eddies (l > lEI) and the
isotropic small eddies (l < lEI). Thus, it represents the confine between the energy-containing
range (l > lEI) and the inertial subrange, which together with the dissipation range are part of
the universal equilibrium range (l < lEI) (Pope, 2000c).

Consequently, the grid/cell size is conditioned by the constraint according to which the
energy-containing motions need to be resolved. The LES purpose is to reduce the computational
cost by neglecting the smallest scales, which have a universal form (Kolmogorov, 1941) and are
more appropriated to be modelled. In this way, the velocity field is decomposed into a filtered
field ũ and a residual field u′:

ui = ũi + u′i (3.1)

The similarity between the current decomposition and the Reynolds one is evident. Never-
theless, it is important to highlight that ũi is a random field and that in general the Reynolds
average of the filtered residuals are not zero:

u′(x, t) 6= 0

Returning to filtering, the general filtering operation, introduced by Leonard (1975), is math-
ematically represented in physical space as a convolution product. It is illustrated in Eq. (3.2).

ũ(x, t) =

∫∫∫
G(r,x) u(x− r, t) dr (3.2)

Here G is the filter function and the integration is over the entire flow domain. There exists
different kinds of filters. In Table 3.1 are listed some of them.
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Name Filter function Transfer function

General G(r) Ĝ =
∫∞
−∞ e

iκrG(r)dr

Box 1
∆H(1

2∆− |r|) sin( 1
2
κ∆)

1
2
κ∆

Gaussian
(

6
π∆2

) 1
2 exp

(
−6r2

∆2

)
exp

(
−κ2∆2

24

)
Sharp spectral sin(πr∆ )

πr

H(κc − |κ|),
κc ≡ π/∆

Cauchy a
π∆[(r/∆)2+a2]

, a = π
24 exp(−a∆|κ|)

Pao exp
(
−π2/3

24 (∆|κ|)4/3)
)

Table 3.1: Filter functions and transfer functions, (Pope, 2000c)

OpenFOAM filtering

In order to understand the practical filtering operation in OpenFOAM, the main aspects are
presented below. The work of Mukha et al. (2018) is taken as reference.

Firstly, it is important to highlight that the method used to solve the governing equations is
the finite volume method. The latter represents the unknowns at the cell centres. Whereas the
average value of the respective quantities across the volume of the cells are approximated with
second-order accuracy. Therefore, for a cell with volume Vc and center point xp, the cell-centred
velocity value ũ(xp, t) is approximated by:

1

Vc

∫∫∫
Vc

u(r, t)dr (3.3)

It is important to highlight that the latter equation is exactly the right-hand-side of Eq.
(3.2) for the filter kernel G(r,xp) = Hc(r)/Vc, where Hc is the Heaviside function corresponding
to the cell. This reflects the natural relation between the LES filtering and the finite volume
framework. It means that each cell filters directly the unknowns. In this case, it is not possible
to dissociate the filter size from the mesh size.

3.1.2 LES conservation equations

The conservation equations governing the filtered velocity field ũ(x, t) are obtaining by applying
the filtering operation to the Navier-Stokes equations. We consider spatially uniform filters, so
that filtering and differentiation commute. For an unsteady flow of incompressible Newtonian
fluid, the general LES equations are described below.

Mass conservation

The filtered continuity equation is:

(̃
∂ui
∂xi

)
=
∂ũi
∂xi

= 0 (3.4)

From which we obtain the residual part:

∂u′i
∂xi

=
∂

∂xi
(ui − ũi) = 0 (3.5)

Both the filtered field ũ and the residual field u′ are solenoidal.
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Conservation of momentum

The filtered momentum equation is reported in Eq. (3.6).

∂ũj
∂t

+
∂ũiuj
∂xi

= ν
∂2ũj
∂xi∂xi

− 1

ρ

∂p̃

∂xj
(3.6)

Here p̃(x, t) is the filtered pressure field. This equation differs from the Navier-Stokes equa-
tions because the filtered product ũiuj is different than the product of the filtered velocities
ũiũj . The main difference is the residual-stress tensor defined in Eq. (3.7).

τRij ≡ ũiuj − ũiũj (3.7)

The latter is analogous to the Reynolds-stress tensor:

u′iu
′
j = uiuj − uiuj (3.8)

It is important to remark that respectively the stress tensor are −ρ τRij and −ρ u′iu′j . The
residual kinetic energy is:

kr ≡
1

2
τRii (3.9)

where “≡” is the symbol used to define a value. Whereas, the anisotropic residual-stress tensor
is defined by:

τ rij ≡ τRij −
2

3
krδij (3.10)

The isotropic residual stress is included in the modified filtered pressure:

P̃ ≡ p̃+
2

3
ρkr (3.11)

With these definitions, it is possible to rewrite the filtered momentum equation and add a
forcing term Fj (e.g. gravity or other atmospheric force) in accordance with section 1.1.3:

∂ũj
∂t

+ ũi
∂ũj
∂xi

= ν
∂2ũj
∂xi∂xi

−
∂τ rij
∂xi
− 1

ρ

∂P̃

∂xj
+ Fj (3.12)

or:

D̃ũ

D̃t
= ∇· (ν∇ũ− τ r)− 1

ρ
∇P̃ + F (3.13)

As for the RANS case, the divergence of the momentum equation yields a Poisson equation
for the modified pressure P̃ .

In the same way as for Reynolds equations, the filtered equations for ũ (Eq. (3.4) and Eq.
(3.12)) are unclosed. Closure is achieved by modelling the residual (or SGS) stress tensor τ rij .

It is important to highlight that the filtered equations are quite different than the Reynolds
equations. The fields which play an important role, i.e. ũi(xi, t), P̃ (xi, t) and τ rij(xi, t), are three-
dimensional and unsteady, even if the flow is statistically stationary or homogeneous. Also the
stress tensor to be modelled depends on the specification of the type and width of the filter.

With τ rij(x, t) be given by a residual-stress model, Eq. (3.4) and Eq. (3.12) can be solved

to determine ũi(xi, t) and P̃ (xi, t). The filtered velocity field depends on the type of filter and
the filter width ∆. Nevertheless these quantities do not appear directly in the equations, they
appear only indirectly through the model for τ rij(x, t).
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Conservation of energy

Although not used directly in this study but for the sake of completeness, we also present energy
conservation. An important issue is related to the transfer of kinetic energy between the filtered
velocity field and the residual motions. The filtered kinetic energy Ẽ(x, t) is obtained by filtering
the kinetic-energy field E(x, t) = 1

2 u · u. Consequently:

Ẽ =
1

2
ũ·u (3.14)

The filtered kinetic energy could be decomposed:

Ẽ = Ef + kr (3.15)

where the kinetic energy of the filtered velocity field is:

Ef =
1

2
ũ · ũ (3.16)

and the residual kinetic energy is:

kr =
1

2
ũ·u− 1

2
ũ·ũ =

1

2
τRii (3.17)

The conservation equation of Ef is obtained by multiplying Eq. (3.12) by ũj . The result is
shown in Eq. (3.18).

D̃Ef

D̃t
− ∂

∂xi

[
ũj

(
2νS̃ij − τ rij −

P̃

ρ
δij

)]
= −εf − Pr (3.18)

where εf and Pr are respectively:

εf ≡ 2 νS̃ijS̃ij (3.19)

Pr ≡ −τ rij S̃ij (3.20)

The terms of the left-hand side of Eq. (3.18) illustrate transport. Nevertheless, the sink
and source terms of right-hand side are more interesting. The sink term εf represents viscous
dissipation from filtered velocity field. For a high Reynolds number flow with a filter width
much larger than the Kolmogorov scale, this term is small.

The final term is the production of residual kinetic energy Pr. The term is a sink (−Pr)
in the equation for Ef and a source (+Pr) in the equation for kr. Therefore, it represents the
rate of transfer of energy from the filtered motions to the residual motions. Sometimes Pr is
called the SGS dissipation and denoted by εs. Nevertheless, it is not correct because Pr is due
to inviscid, inertial processes, and it can be negative.

At a high Reynolds number and with the filter in the inertial subrange, the filtered velocity
field accounts for nearly all of the kinetic energy. It means:

Ẽ ≈ E
The dominant sink in the equation for Ẽ is Pr, while in the equation for E is the rate of

dissipation of kinetic energy ε. Consequently, under these circumstances, these two quantities
are nearly equal:

Pr ≈ ε
An equivalent view of this result is that, in the equation of mean kinetic energy kr, there is

a close balance between production Pr and dissipation ε, (Lilly, 1967).
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While, in the mean, energy is transferred from the large scales Pr > 0, locally a back-scatter
is possible, i.e. transfer of energy from the residual motions to the filtered velocity field, Pr < 0.

Closure problem and SGS models

A model for the anisotropic residual stress tensor τ rij is needed in order to overcome the closure
problem.

The simplest model is the Smagorinsky subgrid-scale (SGS) model. This model was de-
veloped by Joseph Smagorinsky in the meteorological community in the 1960s, (Smagorinsky,
1963). It represents the basis for several of more advanced models. In this subsection, the latter
model is firstly treated as well as its drawbacks, its behaviour in the inertial subrange and its
implementation in OpenFOAM. Then, the subgrid kinetic energy model is presented. Finally,
the Wall Adapting Local Eddy-Viscosity (WALE) model is illustrated.

3.1.3 Smagorinsky model

The Smagorinsky model can be analysed in two parts:

1. The current subgrid scale model is based on the eddy-viscosity assumption to model the
residual stress tensor or SGS shear stress:

τ rij = −2 νsgs S̃ij

where

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
is the deformation tensor of the resolved field or resolved-scale strain rate tensor. This
model postulates a linear relationship between the SGS shear stress and the resolved-scale
strain rate tensor. The coefficient of proportionality νsgs(x, t) is the eddy-viscosity of the
residual motions or the SGS eddy-viscosity.

2. By analogy to the mixing-length hypothesis the eddy-viscosity is modelled as:

νsgs = l2s S̃ = (Cs∆)2 S̃ (3.21)

where S̃ = (2 S̃ijS̃ij)
1/2 is the characteristic filtered rate of strain and ls is the Smagorinsky

length scale, analogous to the mixing length scale. The latter, thanks to the Smagorinsky
coefficient Cs, is proportional to the filter width ∆. So the eddy-viscosity is assumed to be
proportional to the subgrid characteristic length scale ∆ and to a characteristic turbulent
velocity represented by the local strain rate S̃.

According to the eddy-viscosity model, the rate of energy transfer of the residual motions is:

Pr = −τ rij S̃ij = 2 νsgs S̃ij S̃ij = νsgs S̃2 (3.22)

For the Smagorinsky model (or for any other eddy-viscosity model with νsgs > 0), this
energy transfer is everywhere from the filtered motions to the residual motions. There is no
back-scatter.

Conforming to Lilly (1992), the constant Cs may be computed by assuming that the cut-off
wave-number kc = π/∆ lies within the k−5/3 range and requiring that the ensemble-averaged
subgrid dissipation is identical to ε. An approximated value of the constant is given by:
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Cs =
1

π

(
3CK

2

)−3/4

(3.23)

For a Kolmogorov constant CK ' 1.55, it results Cs ' 0.17.

Smagorinsky drawbacks

The Smagorinsky disadvantages presented here have been reported in the works of Nicoud and
Ducros (1999) and Pope (2000c). It is in our interest to underline the drawbacks which could
affect the purposes of the thesis. Thus, the current analysis is focused on:

• the transfer of energy between subgrid-scales and dissipation region,

• filter being in the dissipation range,

• near wall behaviour, and

• complex geometries.

Firstly, the transfer of energy from the resolved scales to the subgrid ones is governed by the
SGS eddy-viscosity νsgs. The latter is mainly determined by the filtered rate of strain S̃ (i.e.

S̃ = (2 S̃ijS̃ij)
1/2). Nevertheless, the numerical experiment of Wray and Hunt (1989) shows that

the Smagorinsky model is not able to reproduce the dissipation activity when eddies are present
in the flow. The reason is that these regions are dominated by vorticity and not by irrotational
strain. Therefore, a better SGS model needs to consider both S̃ and the rotational rate.

Secondly, if the filter is placed in the far dissipation range (i.e. the filter width is very small),
the Smagorinsky coefficient Cs could adopt a lower or higher value with respect to the inertial
subrange value of Cs ≈ 0.17. The mean rate of transfer of energy to the residual scales need to
be balanced by Cs with respect to the approximation used in the dissipation range. This aspect
point out the poor description of the residual stresses at fine level. Therefore, it is important to
pay attention to the correct setting of Cs when the filter is not situated in the inertial subrange.
The Smagorinsky coefficient cannot be fixed independently from the filter width.

Then, the near wall behaviour of eddy-viscosity represents another limit of the current model.
The SGS viscosity νsgs is not zero as soon as the velocity gradient exists. Whereas, as explained in
subsection 1.1.4, the Reynolds stresses should go to zero. A possible solution to this problem was
proposed by Driest (1956) through an exponential damping function. However, the use of this
function is limited to simple geometries and sometimes requires smaller value for Smagorinsky
constant (Moin and Kim, 1982). Furthermore, another disadvantage of the damping function is
that it produces νsgs = O(z2) and not νsgs = O(z3), as it should be expected.

Finally, it is discussed the necessity to deal with complex geometries without direction of
flow homogeneity and/or unstructured numerical methods. In this case, it does not represent
a limit for the Smagorinsky model. The computation of the eddy-viscosity only involves local
gradients. Thus, models similar to the Smagorinsky one are preferable to our purposes. It is
important to highlight that all models do not present this characteristic. A clear example is
represented by the models in Fourier space which have good filtering performances for simple
geometries but not for complex ones.

Behaviour in the inertial subrange

The Smagorinsky model applied to high-Re turbulence is commonly used setting the filter width
∆ in the inertial subrange (i.e. lDI < ∆ < lEI), as illustrated in subsection 3.1.1. It contributes
to a precise definition of the Smagorinsky coefficient Cs and confirm that length scale ls scales
with ∆. In this case, there exist a balance between the mean transfer of energy to residual
motions Pr and the dissipation ε. It is shown by the relation:



96 CHAPTER 3. LES METHODOLOGY FOR DISPERSION IN THE NEUTRAL SBL

ε = Pr = νsgs S̃2 = l2s S̃3

The development of this expression led Lilly (1967) to formulate the expression of Cs (Eq.
(3.23)) and to suggest Cs ' 0.17. Moreover, νsgs and τ rij can be scaled thanks to ∆. For more
details, consult Pope (2000a).

Implementation in OpenFOAM

The Smagorinsky SGS model is one of the best known models. The following implementation
was deduced through the information from the OpenFOAM v1812 code source and the help of
the OpenFOAM community.

Beginning from the definition of the subgrid scale stress tensor or residual-stress tensor, τRij
or here simply τij .

τij = ũiuj − ũiũj

=
1

3
τkkδij +

(
τij −

1

3
τkkδij

)
=

1

3
τkkδij + τ rij

≈ 1

3
τkk δij − 2 νsgs D̃ij

=
2

3
ksgs δij − 2 νsgs D̃ij

(3.24)

where νsgs is the SGS eddy viscosity and the deviatoric stress D̃ij is defined as:

D̃ij = S̃ij −
1

3
δijS̃kk

To remind, the resolved-scale strain rate tensor S̃ij is:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
and the SGS kinetic energy ksgs (or kr) is:

ksgs =
1

2
τkk =

1

2
(ũkuk − ũkũk)

The subgrid scale stress tensor τij is divided into an isotropic part 1
3τkkδij and an anisotropic

part τij− 1
3τkkδij in Eq. (3.24). The term D̃ij is used because the anisotropic part is a trace-less

tensor.
Therefore, in OpenFOAM the subgrid scale viscosity is computed as:

νsgs = Ck∆
√
ksgs (3.25)

where Ck is a model constant whose default value is 0.094 and ∆ is the cell size that defines the
subgrid length scale.

It remains to evaluate the subgrid scale kinematic energy ksgs. It is computed thanks to the
assumption of the balance between the subgrid scale energy production and dissipation:

S̃ijτij + Cε
k1.5

sgs

∆
= 0

It could be solved as shown below:
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S̃ij

(
2

3
ksgs δij − 2 νsgs D̃ij

)
+ Cε

k1.5
sgs

∆
= 0

S̃ij

(
2

3
ksgs δij − 2 Ck∆

√
ksgs D̃ij

)
+ Cε

k1.5
sgs

∆
= 0

√
ksgs

(
Cε
∆
ksgs +

2

3
S̃ii
√
ksgs − 2 Ck∆ S̃ijD̃ij

)
= 0

a ksgs + b
√
ksgs − c = 0

(3.26)

It results:

ksgs =

(
−b+

√
b2 + 4ac

2a

)2

(3.27)

where: 
a =

Cε
∆

b =
2

3
S̃ii

c = 2 Ck∆ S̃ijD̃ij

(3.28)

In the case of incompressible flow, Eq. (3.28) reduces to:b =
2

3
S̃ii = 0

c = 2 Ck∆ S̃ijD̃ij = Ck∆ |S̃|2
(3.29)

where:

|S̃| =
√

2 S̃ijS̃ij

Substituting in Eq. (3.27), it yields to:

ksgs =
c

a
=
Ck∆

2 |S̃|2
Cε

(3.30)

Finally, it is possible to obtain the final expression of the SGS eddy viscosity in the case of
incompressible flow:

νsgs = Ck

√
Ck
Cε

∆2 |S̃| (3.31)

Comparing it with Eq. (3.21), the following relation for the Smagorinsky constant Cs is
obtained:

C2
s = Ck

√
Ck
Cε

(3.32)

The default values of Ck and Cε in OpenFOAM are respectively 0.094 and 1.048 , which
yields to Cs ' 0.17 in agreement with Lilly (1967).
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3.1.4 Subgrid Kinetic Energy model

This one equation model was developed independently by many authors: Horiuti (1985), Schu-
mann (1975), Yoshizawa (1982) and others. The subgrid viscosity is calculated from the kinetic
energy of the subgrid scales (Sagaut, 2006), as shown in Eq. (3.33).

νsgs(x, t) = Cm∆
√
k2

sgs(x, t) (3.33)

Here k2
sgs (or k2

r) is:

k2
sgs(x, t) =

(
1

2
ũ · u− 1

2
ũ · ũ

)2

and Cm is computed from the relation:

νsgs =

√
2

3

A

πK
3/2
0

∆
√
k2

sgs

The subgrid kinetic energy constitutes another variable in the problem. It is an unknown
and its evolution equation is used to compute it. This equation is obtained from the exact
evolution equation Eq. (2.19), whose unknown terms are modeled following Lilly’s suggestions
(Lilly, 1967), or by re-normalisation method. The various terms are modelled as explain below:

• A gradient hypothesis is used to model the diffusion term. It is stated that the non-linear
term is proportional to the kinetic energy k2

sgs gradient (Kolmogorov-Prandtl relation):

∂

∂xj

(
1

2
ũ′iu
′
ju
′
j +

ũ′ip
′

ρ

)
= C2

∂

∂xj

(
∆
√
k2

sgs

∂k2
sgs

∂xj

)

• The dissipation term is modeled using dimensional analysis, by:

ε =
ν

2

˜∂u′i
∂xj

∂u′i
∂xj

= C1

(k2
sgs)

3/2

∆

The resulting evolution equation is presented in Eq. (3.34).

∂k2
sgs

∂t
+
∂ũjk

2
sgs

∂xj
= −τ rijS̃ij − C1

(k2
sgs)

3/2

∆
+ C2

∂

∂xj

(
∆
√
k2

sgs

∂k2
sgs

∂xj

)
+ νsgs

∂2k2
sgs

∂xj∂xj
(3.34)

The second left term is the advective one, while in the right side the terms are respectively
the production of turbulent kinetic energy by resolved modes Pr (Eq. (3.22)), turbulent dissipa-
tion, turbulent diffusion and viscous dissipation. Thanks to an analytical theory of turbulence,
Yoshizawa (1982) and Horiuti (1985) proposed C1 = 1 and C2 = 0.1.
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3.1.5 WALE model

The Wall Adapting Local Eddy-Viscosity (WALE) model was developed by Nicoud and Ducros
(1999) in order to compensate for the drawbacks of the Smagorinsky model and obtain a model
adapted to treat wall bounded flows and complex geometries.

The generic form of the SGS eddy-viscosity, expressed in Eq. (3.35), can summarise the
previous models presented so far.

νsgs = Cm∆2 OP (xi, t) (3.35)

Here Cm is the constant of the model, ∆ is the subgrid characteristic length scale (i.e. for
us the size of the mesh) and OP is an operator of space and time, homogeneous to a frequency,
and defined from the resolved fields.

The operator OP is defined as the ratio of two operators, i.e. OP 1 and OP 2. This operator
assures two constraints. Firstly, OP is a function of the strain and rotation rates. Secondly, its
value should go to zero at the wall behaving like O(z3) (more details in section A.2). Conse-
quently, the final SGS eddy-viscosity expression proposed by Nicoud and Ducros (1999) is:

νsgs = (Cw∆)2OP 1

OP 2

= (Cw∆)2
(S d

ijS
d
ij)

3/2

(S̃ijS̃ij)5/2 + (S d
ijS

d
ij)

5/4
(3.36)

where Cw is a constant. From a practical point of view, the determination of this constant
is important to correctly set up the model. The authors suggest to assume that the WALE
model gives the same ensemble-average (〈〉) subgrid kinetic energy dissipation as the classical
Smagorinsky model. Therefore, Cw can be expressed as:

C2
w = C2

s

〈
√

2(S̃ijS̃ij)
3
2 〉

〈S̃ijS̃ij OP 1

OP 2
〉

(3.37)

The value of Cw could be estimated numerically employing several fields of homogeneous
isotropic turbulence or other experiments. Nicoud and Ducros (1999) states that a value of
Cw in the range 0.550 ≤ Cw ≤ 0.600 is appropriate for Cs = 0.180 according to six different
turbulent fields obtained from LES simulations. Nevertheless, the authors highlight that more
accurate estimations are possible. In fact, OpenFOAM developers have estimated this value
equal to Cw = 0.325. Moreover, thanks to a trial-and-error approach, it was estimated that a
value of Cw = 0.495 is more appropriated for our simulations.

3.1.6 Overview of the boundary conditions

As already mentioned, the boundary conditions (BCs) represent a challenge in simulating at-
mospheric flows. In fact, the performance of the simulation depends in a consistent way on
the choice of the boundary conditions that best represent the reality at the boundaries of the
computational domain.

We have treated the BCs for the RANS approach in the subsection 2.1.8, while the case
studies of section 2.2 showed us how to deal with them in practice. In the latter approach,
the critical BCs are the inlet, ground and top BCs. Conversely, for the LES, only the inlet
and ground BCs require particular attention. In fact, top BC could be fixed as a slip condition
because the forcing of the flow is commonly imposed through a pressure gradient. This approach
is widely accepted and widespread among the scientific community as the literature can confirm
(Xie et al., 2004b). Following the works of the literature (e.g. Vasaturo et al. (2018)), the lateral
boundary conditions of the domain are usually periodic and this approach is adopted. Instead,
the outlet boundary condition depends on the inlet. If the inlet is periodic, the outlet needs to
be periodic. Nevertheless, when the inlet boundary condition fixes a velocity profile, the outlet
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Figure 3.1: Inlet boundary condition sketch.

boundary condition needs to fix the pressure (usually equal to zero) and guarantees the flow
exit from the domain, avoiding backward flow.

In subsection 3.1.7, the inlet BC will be treated. Whereas the requested inlet BC for the
RANS case is a profile of the mean computed variables (e.g. ūi, k and ε), the LES simulation
needs an instantaneous field profile of the main variables. We can try to understand this concept
thanks to Figure 3.1, which shows the mean and the instantaneous velocity profile respectively
ū(z) and u(z). As a first approximation, one could think of decomposing the instantaneous
velocity at the inlet boundary as the sum of a mean velocity and a kind of fluctuation to be
characterised. As we shall see, this principle will be used by some profile generator methods. On
the other hand, another option is to develop the instantaneous fields from a stationary initial
condition. These two methods present advantages and disadvantages.

Similarly, the wall modelling technique is not the same as for the RANS approach. Although
the logarithmic-law for the mean velocity field remains valid, the LES wall model has to take into
account also the unsteady behaviour of the flow and its effects. In fact, there are not experimental
evidences supporting the application of the logarithmic-law on the instantaneous velocity field.
However, it is possible to empirically adopt this solution. Some models of the scientific literature
apply the logarithmic-law to both the mean and instantaneous velocity fields, while others only
to the latter. The final purpose and the challenge of the wall model is to introduce the roughness
effect directly to the momentum equation through a forcing applied on the mesh cell adjacent
to the wall. The techniques available to treat LES wall modelling are covered exhaustively in
subsection 3.1.8.

Here, the boundary conditions are generically resumed:

• Inlet: Periodic BC or an appropriate wind velocity profile (and its turbulence if necessary),
using a method to generate an instantaneous field.

• Outlet: Periodic BC or fixed pressure, avoiding backward flow.

• Top: Slip BC.

• Lateral: Periodic BC.

• Wall: Wall model imposes a term in the momentum equation to reproduce the effect of a
rough wall.

As already mentioned, the inlet and wall boundary conditions are treated in depth in the
following two sections. Whereas the operational boundary conditions adopted for our LES
simulation are examined in subsection 3.3.4.
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3.1.7 Inlet boundary condition

Hence, in LES case, a time-varying field must be specified at the inlet boundary using an
appropriate inflow generator. The generated unsteady flow should faithfully represent the mean
wind velocity and turbulence characteristics of the flow field target (Tabor and Baba-Ahmadi,
2010; Tamura, 2008; Wu, 2017). According to the work of Tamura (2008), it is possible to
identify two families of inflow methods:

• Precursor-successor methods or called simply precursor methods.

• Synthetic methods.

In order to understand the performance of these methods and make the convenient choice for
our research, the work of Vasaturo et al. (2018) has proved to be relevant. The study compares
the performance of a precursor method to that of two basic but valid synthetic methods, i.e.
the Vortex Method (VM) (Mathey et al., 2006) and the random flow generation (RFG) method
(Smirnov et al., 2001), for the LES simulation of the neutral atmospheric boundary layer in an
empty domain with three different types of rough terrains: rural, suburban and urban.

mapping

cycliccyclic

slip

wall

outletinlet

slip

wall

Figure 3.2: Precursor-successor method.

ũ

c̃ = 0
slip

wall

Figure 3.3: Cyclic-Dispersion Domain (CDD).

A simple and powerful method to obtain inflow data is to simulate a precursor domain (PD)
with periodic or cyclic boundary conditions driven by a forcing term (e.g. a pressure gradient).
When the flow is fully developed, a sampling operation of the velocity field and any other useful
field is realised in a cross-sectional plane. After, the sampling data is stored in a database.
The latter could be employed to provide the inflow BCs for the main simulation domain, i.e.
the successor domain (SD). The method is summarised schematically by Figure 3.2. There are
many variants of this method as highlighted by the works of Lund et al. (1998), Tabor and
Baba-Ahmadi (2010), Yang and Meneveau (2016) and others. A variant used in our research
aims to combine the precursor and successor domain into a single computational domain. For
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convenience, the domain that derives from this method is called “cyclic-dispersion domain”
(CDD) in the current research. As we will observe in more details in section 3.3.1, the flow
field is decoupled by the concentration field in the latter method, as illustrated in Figure 3.3.
The first field is periodic, while the second one is non-periodic. Thanks to a sink term, the
concentration field is reset to zero before it returns to the inlet patch.

According to Vasaturo et al. (2018), synthetic methods can be classified in several groups:

• The group of Fourier methods. This group generates turbulence through a summation of
harmonic functions. Some methods that fall into this group are: the random flow genera-
tion (RFG) method, developed by Smirnov et al. (2001), the discretizing and synthesising
random flow generation (DSRFG) method (Huang et al., 2010) and the consistent dis-
crete random flow generation (CDRFG) method (Aboshosha et al., 2015). It is not in our
interest to further investigate them.

• The digital filter methods represents another group. They are focused on generating
velocity fluctuations from a set of random data employing a digital filter based on a
correlation function. Some examples of this method are present in: Di Mare et al. (2006),
Veloudis et al. (2007), Xie and Castro (2008), Kim et al. (2013) and Okaze and Mochida
(2017).

• Between the remained synthetic methods, there are: the proper orthogonal decomposition
(POD) methods (Tabor and Baba-Ahmadi, 2010) the vortex method (VM) Sergent (2002);
Mathey et al. (2006) and the synthetic eddy method (SEM) (Jarrin et al., 2006). In the
preliminary stage of the thesis, particular attention was dedicated to the latter method
because its divergence-free version (Poletto et al., 2013), i.e. DFSEM, is available in
OpenFOAM v1812 and in the most recent versions. This method is capable to reproduce
inflow turbulence with fixed mean velocity, turbulence length scale and Reynolds stresses.
The inflow turbulence is a result of a sum of synthetic eddies that are convected through
a virtual box that encloses the inlet patch.

The results of the Vasaturo et al. (2018) study shows that the precursor method allows to
preserve better the wind field profiles along the domain as expected from this type of method.
Figure 3.4 and Figure 3.5 illustrate the previous behaviour and in general show the development
of the mean velocity and the turbulent kinetic energy along the domain. The conservation of the
profiles is less evident in the other two synthetic methods, especially as regards the evolution
of the turbulence kinetic energy. It was of our interest to reproduce the results of this work.
However, this intent turned out to be complicated. An exhaustive list of case settings (and a clear

Figure 3.4: Evolution of the mean velocity for rural case (z0 = 0.23 m). From right to left:
Precursor Method (PM), Vortex Method (VM) and Spectral Synthesizer (SS). From: Vasaturo
et al. (2018)
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Figure 3.5: Evolution of the turbulent kinetic energy for rural case (z0 = 0.23 m). From right
to left: Precursor Method (PM), Vortex Method (VM) and Spectral Synthesizer (SS). From:
Vasaturo et al. (2018)

description of the methodology) is not available in the article, not allowing the reproducibility
of the simulation. One of the difficulties is the determination of the constant streamwise driven
force (equivalent to a constant streamwise pressure gradient), which is implemented as a source
term in the x-momentum equation and whose value is not known a priori. In fact, as highlighted
by the authors, in the simulation the source term is determined using a trial-and-error approach
in order to reproduce the theoretical logarithmic mean velocity profile and the friction velocity
for a corresponding roughness length as closely as possible. Moreover, from the previous figures it
is not possible to have information about the upper part of the profiles, which remains unknown.

Although precursor-successor methods accurately preserve the inlet profiles, it is important
to remark that they need more computational resources than the synthetic methods. In fact,
the procedure to arrive until the final simulation is longer and usually implies two domains.
Moreover, it is not possible to specify directly the profiles at the inlet patch. The profiles are
developed respecting the BCs and the applied forcing. Nevertheless, the profiles obtained are
in equilibrium with the governing equations and with the models. This guarantee the accuracy
previously cited. On the other hand, the synthetic methods need less computational resources.
They allow to define specific profiles at the inlet patch, but the profiles could not be in equilibrium
with the governing equations and the different models used. In this case, ensure the equilibrium
is possible but not easy (especially for beginners in this field).

For our research, the Vasaturo et al. (2018) work has led us towards the use of the precursor
method and the synthetic methods similar to the vortex method (in particular DFSEM which
was available in OpenFOAM). Nevertheless, the first was preferred because it was easier to
employ at an intermediate stage of the LES methodology development in our research.

3.1.8 Rough wall model for LES simulations

Together with the generation of the inlet flow, the modelling of the rough wall represents one of
the most important obstacles to correctly simulate the SBL. In the current section, it is treated
the effects of roughness on the SGS model, the experimental observations and the fundamentals
of rough wall modelling. Moreover, the wall models taken into consideration by our methodology
are listed here, while they will be examined in more detail in the following subsections.

There are different ways to approach the terrain roughness typical of the ABL. However,
in LES, three main categories of methods exists to treat the roughness modelling (Rodi et al.,
2013). They are:
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• Explicitly model the roughness elements whose walls are treated as no-slip walls in the
CFD code.

• Another approach consists of applying momentum forcing terms, which is commonly used
to model the effect of vegetation on the flow field.

• The third approach takes into account the ground roughness thanks to the prescription of
shear stresses at the wall.

The first approach might be the best. However it has a computational cost that is often
prohibitive because the roughness elements are small and needs really fine meshes (Piomelli
and Balaras, 2002). The remained approaches are more convenient. Based on the bibliographic
research and on the numerical implementation, we have decided to analyse the third approach
in more details as we will see below.

The bibliographic research over wall models and our current experience in wall modelling
have led to remark that one of the greatest challenges in applying LES to low- and high-Reynolds
number flow over rigid walls is the wall model. Piomelli (1999) identified three main reasons:

1. The growth of the small scales is inhibited by the presence of the wall.

2. The exchange mechanisms between the resolved and subgrid-scale (SGS) are modified.

3. The length scale of the energy-carrying large structures is Reynolds-number dependent
near the wall.

As highlighted by Xie et al. (2004b), the previous physical effects interact with the SGS
modelling. For instance, in the neutral atmospheric boundary layer, the work of Mason and
Thomson (1992) remarks that the departure of the mean velocity profile from the logarithmic
law is caused by the Smagorinsky SGS model. In fact, the latter does not take into account
the fluctuation of the SGS stresses. Stochastic fluctuations characterise the SGS stresses and it
leads to a backscatter of energy from subgrid-scale.

The experimental observations, conducted by (Krogstad et al., 1992; Krogstad and Antonia,
1994), point out two important characteristics concerning the roughness. Firstly, the fact that
roughness elements increases the wall-normal velocity. Secondly, a moderately higher roughness
dependence of the principal Reynolds shear stress (e.g. τxz) is noted. Moreover, the behaviour
of the longitudinal turbulence intensity is the same as that of the smooth wall. Nevertheless,
standard LES models are not able to reproduce these peculiarities identified experimentally.

Moreover, it is well-known that shear flows near solid boundaries contain alternating streak
of high- and low-speed fluid. The streaks are thin and if they are not adequately resolved, the
turbulence energy production at the vicinity of the wall (which is a large fraction of the total
energy production) is under-predicted (Kim and Moin, 1989). Generally, under-prediction of the
turbulence production results in reduction of the Reynolds stress and, thus, the skin friction.
Consequently, some of the overall parameters of the flow will not be predicted correctly.

Nevertheless, the previous difficulties could be overcome, for example through a wall model.
Simulations and experiments suggest that wall-region turbulence and turbulence far from the
wall are relatively loosely coupled. In fact, in the context of rough-wall boundary layer, there
exists the hypothesis labelled “wall similarity hypothesis” or “Reynolds number similarity hy-
pothesis of Townsend” (Townsend, 1980; Flack et al., 2005). It states that, outside the roughness
sublayer (a region influenced by length scales associated with the roughness elements and ex-
tending to about five times the roughness height Ks), turbulence motions are independent of
the wall roughness at sufficient large Reynolds numbers. Chapman and Kuhn (1986) illustrated
that a simulation with an artificial boundary condition imposed at the top of the buffer layer
(almost at z+ = 100) displayed most of the characteristics of the wall layer found in a simulation
in which the entire flow is computed. Thus, accurate prediction of the flow near the wall does
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Figure 3.6: Sketch to illustrate the wall modelling philosophy. (a) Inner layer resolved and (b)
inner layer modeled. Image modified from Piomelli and Balaras (2002).

not require accurate simulation of the outer flow. On the other hand, Piomelli et al. (1987) and
others have shown that, by using relatively crude lower boundary conditions to represent the
effect of the wall region, one can accurately simulate the central part of the flow in a channel.
Consequently, the details of the flow in the wall region need not to be known in order to simu-
late the outer region. According to Ferziger (1993), it is possible to conclude that both regions
can be well-simulated if it is given the correct shear stress and a reasonable approximation of
the fluctuations at the interface between the two regions. So these results suggest that useful
simulations can be done without resolving the entire flow. This is important because (as it
was highlighted at the beginning of the current section) a very fine computational mesh in all
directions is required to resolve the wall region. Therefore, if it can be represented by a model,
a huge computational saving can result.

Deepening the concept expressed in Piomelli et al. (1987), most wall-layer models or simply
wall models consider (explicitly or implicitly) the inner layer in a Reynolds-average sense (Pi-
omelli and Balaras, 2002). According to the previous authors, when a grid or cell is so coarse
that it is capable to enclose a large number of eddies, as illustrated in Figure 3.6, the wall model
could represent only the average effect of the eddies. In this situation, the time scale of the
numerical outer-flow is quite large with respect to the time scale of the near-wall eddies. It
means that, for each time step, many eddies pass through the cells in the wall region. So the
inner layer is assumed to be governed by the RANS equations.

In order to respect the validity of the previous assumption, the grid or cell size must be very
large. The work of (Piomelli and Balaras, 2002) allows to have an estimation of the grid size
in the case of plane channel flow. Moreover, it suggests not using cells that are too fine. For
the channel flow, the estimation proposes to use a grid of the order of 1500 wall units in the
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streamwise direction and 700 in the spanwise direction. On the other hand, two cases with too
small grids are highlighted. The first regards grids that do not respect the previous dimensions
in the streamwise and spanwise direction. Whereas, it is important to include also the case in
which only the grid in the direction perpendicular to the wall is not conform (e.g. z+

p < 50).
It does not allow to resolve the turbulent eddies in this region, resulting in aliasing errors that
degrade the velocity field. These issues contributes to explain why wall models tend to be more
accurate at very high Reynolds numbers (e.g. atmospheric flows) than at low or moderate ones
(e.g. wind tunnel experiments).

Therefore, as a general rule, the first grid or cell adjacent to the wall need to be placed in the
outer layer (z+ > 50) and more precisely in the part of the logarithmic region inside the outer
layer (see Table 1.3 in subsection 1.1.4). The logarithmic region could be estimated following the
classical theory, so between z+ > 30 and z/δ < 0.3 (Pope, 2000c). Otherwise, if the experimental
data are available, both mean velocity profile (Eq. (1.46)) and streamwise turbulent intensities’
profile (Eq. (1.48)) could be used to better determine the logarithmic region, following the
methodology proposed by Marusic et al. (2013) (as explained in section 1.1.4).

For rough walls, one has little choice but to use a model to represent the wall region. A
possible classification of the wall models is based on the type of contribution for modelling the
vicinity of a rough wall. So the two groups are those that (Xie et al., 2004b):

1. Enhance the fluctuating component of the SGS vertical fluxes at the wall surface.

2. Inject backscatter energy into the resolved velocity field.

The first group is simpler and easier to implement and does not increase the computational
cost significantly. Whereas the second is more complex, since some parameters need to be
determined by numerical experiment or otherwise. They are more computationally expensive
and sometimes may give rise to numerical instabilities.

The models investigated in the current research belong to the first group and are briefly
presented here. One of the first models developed is the Deardorff et al. (1970) wall model. It
contained weaknesses that were soon remediated by Schumann (1975). The latter model, with
some modifications, is still widely used. It assumes that the instantaneous velocity at the grid
point nearest a wall is exactly correlated with the shear stress at the wall point directly below
it. Thomas and Williams (1999) developed a synthetic rough wall boundary condition based on
the well-known Schumann (1975) wall model. They consider the instantaneous stress as a linear
combination of the mean and fluctuating components, where the fluctuating part responds less
to the roughness and consequently contributes less to the local shear stress than in the standard
Schumann (1975) wall model. This behaviour is made possible thanks to a damping coefficient
or weighting coefficient β applied to the mean and fluctuating components. Conversely, the
Mason and Callen (1986) rough wall model takes into account only fluctuating components.
In this case, the similarity between the latter model and the model proposed by Thomas and
Williams (1999) is particularly noted. Finally, based on the Thomas and Williams (1999) wall
model, Xie et al. (2004b) develop a family of wall models in which the weighting coefficient β
can be estimated theoretically rather than determined by numerical experiments.

In the next sub-sections, the previous models will be treated in more detail because they
will be used in the current research. Firstly the Schumann one (subsection 3.1.9), then the
Mason and Callen wall model (subsection 3.1.10) and the Thomas and Williams’ rough wall
model (subsection 3.1.11) and finally the family of wall models developed by Xie et al. (2004b)
(subsection 3.1.12).

3.1.9 Schumann wall model

This wall model relies on a linear relation between the wall stress and the velocity component
at the first off-wall grid point or cell. The skin friction is an entry parameter for the model.
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The author has developed a wall model for performing a plane channel flow simulation at
a finite Reynolds number. It is based on the extended turbulent relation (with the density ρ
appropriately simplified):

〈τp,xz〉 = −
(

1

z

∫ z

0

1

νtot(z)
dz

)−1 〈ũx(z)〉
z

where 〈〉 is a statistical average (associated with a time average) and:

νeff =

(
1

z
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1

νtot(z)
dz

)−1

Using dimensional analysis, the effective viscosity can be evaluated using:

νeff =
zp
2

〈τp〉
〈ũx(x, y, zp)〉

The resulting boundary conditions are:

τp,xz(x, y) =

(
ũx(x, y, zp)

〈ũx(x, y, zp)〉

)
〈τp〉

ũz = 0

τp,yz(x, y) =
2

Reτ

(
ũz(x, y, zp)

zp

) (3.38)

where zp is the distance of the first point/center-cell to the wall and Reτ = u∗δ/ν. The first
equation is equivalent to assume that the longitudinal velocity component at position zp is in
phase with the instantaneous wall shear stress. The mean velocity profile can be obtained by the
logarithmic law, and the mean wall shear stress 〈τp〉 is, for a plane channel flow, related to the
driving pressure gradient. This wall model therefore implies that the mean velocity field verifies
the logarithmic law and can be applied almost exclusively to plane channel flows for which the
value of the driving pressure gradient is known a priory. The second condition is related to the
impermeability condition, and the third corresponds to a no-slip condition for the transverse
velocity component ũy. Finally, it is important to highlight that, for the current model and for
the following ones, the shear stress is numerically imposed as an external forcing which interacts
in the momentum equation.

3.1.10 Mason and Callen model

The wall model proposed by Mason and Callen (1986) aims to include the roughness effects.
This model is based on the hypothesis that the logarithmic distribution is verified locally and
instantaneously by the velocity field, (Sagaut, 2006). This is a very strong hypothesis but
its results are suitable as we shall see in section 3.4. Moreover, the model is very simple to
implement due to the fact that it uses directly the filtered velocity field.

The three velocity components are specified at the first computational point or cell adjacent
to the wall by the relations of Eqs. (3.39)-(3.41).

ũx(x, y, zp) = cos θ

(
u∗(x, y)

κ

)
ln

(
1 +

zp
z0

)
(3.39)

ũy(x, y, zp) = sin θ

(
u∗(x, y)

κ

)
ln

(
1 +

zp
z0

)
(3.40)

ũz(x, y, zp) = 0 (3.41)
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where z0 is the roughness thickness of the wall and the angle θ is given by the relation θ =
arctan(ũy(zp)/ũx(zp)). The friction velocity u∗ is computed as a function of the instantaneous
velocity components ũx and ũy thanks to the previous equations. The instantaneous surface
friction vector u∗ is given by:

u2
∗ =

(
κ2

ln2(1 + zp/z0)

)
|u||| u|| (3.42)

where u|| is (ũx(x, y, zp), ũy(x, y, zp), 0).

Consequently, the instantaneous wall shear stresses in the x and y direction are deduced by
the relation Eq. (1.29). The latter could be approximated to τw ≈ u2

∗ and contributes to obtain
the final expression of the wall shear stresses for the current model, as shown by Eq. (3.43) and
Eq. (3.44).

τxz =
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κ2

ln2(1 + zp/z0)

)
(ũ2
x + ũ2

y)
1/2 ũx (3.43)

τyz =

(
κ2

ln2(1 + zp/z0)

)
(ũ2
x + ũ2

y)
1/2 ũy (3.44)

3.1.11 Thomas and Williams model

The current wall model is inspired by the one proposed by Schumann (1975). A linear combi-
nation between the mean and fluctuating components of the filtered velocity field are used by
the current model to estimate the instantaneous stress. As we will see below, the reaction to
the roughness of the fluctuating part is less important. In other words, it can be interpreted as
if the steady flow sees a rough wall, while the unsteady flow sees a less rough wall (Thomas and
Williams, 1999). The wall model is expressed by Eq. (3.45) and Eq. (3.46).

τxz
u2
∗

=
1

Up
[〈ũx〉+ β(ũx − 〈ũx〉)] , 0 < β ≤ 1 (3.45)

τyz
u2
∗

=
1

Up
[〈ũy〉+ β(ũy − 〈ũy〉)] , 0 < β ≤ 1 (3.46)

where 〈 〉 represents averaging over the horizontal plane in the flow field, assumed to be approxi-
mately equivalent to ensemble averaging. Up is the mean streamwise velocity ūx at the first grid
location from the wall as derived from:

ūx =
u∗
κ

ln

(
z + z0

z0

)
Whereas τxz is the instantaneous principal shear stress at the same location. Finally β is a

damping factor ranging from 0 to 1.

The work of Xie et al. (2004b) helps to understand the idea behind the current model.
Considering only τxz for simplicity, the authors affirms that the local shear stress τxz is less
influenced by the fluctuating part (ũx−〈ũx〉) than by the mean part 〈ũx〉. It could be interpreted
by highlighting that the local shear stress is the result of the impact force of the fluid’s movement
to the roughness elements. Thus, a direct consequence is that the mean flow will always make
its contribution felt. However, the contribution of fluctuations is not always completely present
because it may decay before to reach the rough surface. The eddies, which constitute the
fluctuations, would last for a short time. It is shown by the schematic eddies in Figure 3.7.
These behaviours justify the introduction of the damping factor β in Eq. (3.45). Similar
reasoning could be also made for Eq. (3.46).

Averaging Eq. (3.45) over the horizontal plane, we find this wall model obeys the constraint:
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〈τxz〉
u2
∗

=
〈ũx〉
Up

(3.47)

According to Xie et al. (2004b), most wall models obey this constraint (i.e. Schumann, and
Thomas and Williams), though some wall models might not (i.e. Mason and Callen model).
Actually, for this wall model, the damping factor β is fixed to 0.3. The authors of the wall model
found that this value was satisfactory to suit their applications (i.e. simulation of bluff body
flows). Nevertheless, the magnitude of β remains an open problem and the next subsection will
face up to this problem.

U

Figure 3.7: Explanation sketch: the eddies are almost dissipated before reaching the roughness
elements while the mean velocity always exerts its influence.

3.1.12 Xie model

The model developed by Xie et al. (2004b) take inspiration from the previous models. The shear
stress expressions are the same of Eq. (3.45) and Eq. (3.46). The current model is focused on
determining more precisely the damping factor β.

According to the authors, the damping factor can be estimated through the following ex-
pression:

β2 =

(
U2
p

u2
∗

)(
w′ 2

u2
∗

)
[1 + u′w′

2
/ u′ 2 w′ 2] (3.48)

The procedure to arrive until Eq. (3.48) and the explanation of its terms are exposed in the
work of Xie et al. (2004b). Here, the main terms of the previous equation are briefly treated.

Firstly, it is important to remark that u′w′
2
/u′ 2 w′ 2 is almost 0.1 in a neutral SBL. Therefore,

this term could be considered as negligible. Moreover, it is evident that β is a function of w′ 2/u2
∗

and U2
p /u

2
∗. It implies that Up needs to be limited because β can only assume values between

0 and 1. In fact, z+
p must be located in the logarithmic layer, for instance in an intermediate

position of the interval z+ > 30 and z/δ < 0.3, according to the classical theory, or in the

interval 3Re
1/2
τ < z+ < 0.15Reτ for high-Re flows (Marusic et al., 2013). It is possible to

remark that the limitation of Up is fundamental in Eq. (3.47). The ratio w′ 2/u2
∗ can be settled

thanks to experimental measurements. If it is not possible, some similarity relations presented
in literature (e.g. Stull (2012)) can be used for a neutral ABL flow.

Finally, it is highlighted that the friction velocity u∗ does not need to be imposed but it
represents an important result of the wall model, as we will see in section 3.4.
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3.1.13 Passive scalar equation

In order to complete the overview, the conservation equation governing the filtered passive scalar
field c̃(x, t) is presented in the current subsection. Moreover, one of the most common modelling
closure is also treated.

To obtain the equation of c̃(x, t), the filter operator is applied to the conservation equation
of the passive scalar c(x, t) (i.e. Eq. (1.17)). Without considering the source term, it yields to:

∂c̃

∂t
+∇ · (ũ c) = ∇ · (Dc ∇c̃) (3.49)

where Dc is the molecular diffusivity. Moreover, splitting the filtered nonlinear term ũ c into a
resolved and subgrid part, the following equation is obtained:

∂c̃

∂t
+ ũ · ∇c̃ = ∇ · (Dc ∇c̃)−∇ · τRc (3.50)

where the subgrid scalar flux τRc is defined as:

τRc ≡ ũ c− ũ c̃ (3.51)

Closure is achieved by modelling the latter subgrid scalar flux. Similarly to RANS and to
the subgrid momentum flux in LES, the gradient-diffusion hypothesis is used to obtain:

τRc = −Dsgs∇c̃ (3.52)

where Dsgs is the subgrid turbulent diffusivity. Most studies of heat transfer or concentration
dispersion problems (Sykes and Henn, 1992; Meeder and Nieuwstadt, 2000; Xie et al., 2004a)
have applied a SGS eddy-viscosity combined with a subgrid eddy Prandtl number Prsgs or
Schmidt number Scsgs, which are set as constant or calculated dynamically. So, it yields to:

Dsgs =
νsgs

Scsgs
(3.53)

or:

Dsgs =
νsgs

Prsgs
(3.54)

here νsgs is the SGS eddy-viscosity.
Although, this closure is not perfect from a purely theoretical point of view, this approach

is very often used in simulations in the physical space, as previously cited. Further, there is no
universal and well-justified methodology that allow to choose an appropriate value of the subgrid
Prandtl or Schmidt number. The latter appears as an adjustable parameter which can be tuned
in an ad-hoc way to obtain the best fit with the reference data. Values found in literature range
from 0.1 and 1.2 (Xie et al., 2004a; Sagaut, 2006). Nevertheless it is important to highlight that
this approach is not valid in cases where the velocity field is fully resolved. In fact, it yields to
νsgs = 0, while some subgrid scalar fluctuations exist. It is important to place the filter within
the inertial subrange. For further closure approaches please consult Sagaut (2006).

Finally, the current closure yields to:

∂c̃

∂t
+ ũ · ∇c̃ = ∇ · [(Dc +Dsgs)∇c̃] (3.55)

where, similarly to the RANS approach, the effective diffusivity Deff could be used. Conse-
quently:

Deff = Dc +Dsgs (3.56)
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3.2 Nironi experiment and LES methodology inputs

In the previous overview, the knowledge necessary to deal with an LES simulation of an atmo-
spheric boundary layer in neutral conditions has been presented. The current section illustrates
the experimental wind tunnel selected to test and validate our LES methodology.

Many studies have been done to simulate the atmospheric boundary layer (ABL) flow though
the wind tunnel experimental method (e.g. Robins and AG (1979); Fackrell and Robins (1982);
Deardorff and Willis (1984); Yee et al. (1993a,b); Mole and Jones (1994); Robins et al. (2001)).
However, not all of them are suitable for our purposes either because the phenomenon is complex
to simulate or because we do not have a complete set of experimental data. The complexity of
the simulation is due to several causes, among the most important:

• Extremely small sources, which require too high computational resources to be simulated.

• Emissions and measurements situated very close to the ground.

• Measurements conducted too far from the sources.

Therefore, for the current study and validation, the Nironi (2013) (or equivalently Nironi
et al. (2015)) experiment has been chosen. It reproduces a neutrally-stratified boundary layer.
Although it has some limitations, this wind tunnel experiment demonstrates its suitability to
be reproduced numerically without major difficulties. The experimental limitations and the
computational setting will be discussed in the current section and in section 3.3. Furthermore,
we have counted on the direct support of the research team, which was actively involved in the
Nironi’s experiment.

Here, after the presentation of the Nironi (2013) experiment (subsection 3.2.1), the boundary
layer and the concentration field characteristics are analysed respectively in subsection 3.2.2
and subsection 3.2.3. The analysis focuses on how to numerically represent the physics of the
phenomena studied. This will be essential to understand the approach with which the inputs of
the LES methodology could be obtained thanks to experimental data. The latter approach is
also introduced in the current section.

3.2.1 Nironi neutral boundary layer experiment

The Nironi et al. (2015) experiment was focused on the study of the Turbulent Boundary Layer
(TBL) over a rough surface, which reproduces a neutral atmospheric boundary layer, and its role
in the dispersion of pollutants. The experimental campaign was conducted by the Atmosphere
Impact and Risk (AIR) research team in the atmospheric wind tunnel of the Laboratoire de
Mécanique des Fluides et d’Acoustique (LMFA) of the École Centrale de Lyon, France. The
wind tunnel measures 24 m long, 7.2 m wide and 7.4 m high, as highlighted in green in Figure 3.8.
Whereas, the test section (in red in Figure 3.8) is 14.0 m long, 3.8 m wide and 2.0 m high. In
order to control the longitudinal pressure gradients, it is possible to regulate the ceiling slope.
The temperature in the working section is controlled so that its variation is limited in the range
± 0.5 ◦C during 1-day test.

The generation of a neutrally-stratified boundary layer is obtained by combining the effects
of a grid turbulence and a row of spires (Irwin, 1981), located at the beginning of the test
section, and roughness elements on the ground. The upwind turbulence grid is not common
on a boundary layer simulation system, but here it is needed to reduce the inhomogeneities of
the flow in the transversal direction. The spires used are of the Irwin type and measure 0.50 m
in height, laterally spaced by 0.25 m. The roughness is generated by cubes of side h = 0.02 m
distributed throughout the test section. A staggered array was adopted to place the cubes,
covering almost 1.8 % of the tunnel floor surface. A boundary layer depth δ ≈ 0.70 m ÷ 0.80 m
is reproduced with this experimental set-up. An adequate simulation of a fully turbulent flow is
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Figure 3.8: The atmospheric wind tunnel of LMFA, AIR.

guaranteed by a sufficiently high Re = δ U∞/ν ≈ 2.7× 105 (Jiménez, 2004), with a free stream
velocity U∞ = 5.0 m/s and a kinematic viscosity of the air ν.

Regarding the dispersion of pollutants, the tracer used for the experiment is ethane (C2H6)
because it has a density quite close to the air. The experiment studies different elevations and
diameters of the source. For the current validation, it was selected the elevated source at hs =
152 mm from the ground with a diameter of σ0 = 6 mm. The source is made of a metallic
L-shaped tube and it is placed at a distance of 6.0 m (i.e. ≈ 8.57 δ, if δ = 0.70 m) from the
beginning of the test section, where the boundary layer is estimated to be fully developed.
In order to reduce the influence of the vertical tube on the tracer dispersion, the horizontal
side of the tube was approximately 30 times the source diameter. For the experiment data
employed, the spatial-average velocity of the ethane-air mixture 〈us〉 corresponded to that in
the surrounding flow at the source height, a condition called “isokinetic”.

In the original study, the measurements of the experiment was compared to three experi-
mental datasets. The validation of the wind field and above all of the concentration field was
achieved thanks to the Fackrell and Robins (1982) dataset. On the other hand, Raupach et al.
(1991) and Krogstad and Antonia (1994) have contribute to corroborate the meaning of the
velocity higher order statistics and the integral length scales.

The experimental data used to validate our numerical simulations and the whole LES
methodology were acquired thanks to the following instruments and their respective measure-
ment techniques: the hot wire anemometer for the velocity field and the fast flame ionisation
detector for the concentration field.

http://air.ec-lyon.fr/
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Hot wire anemometer

1) 2) 3)
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x

Figure 3.9: Position of available wind profiles: 1) 6 m, 2) 8 m and 3) 10 m

In the wind tunnel, the velocity field was measured thanks to a hot wire anemometer equipped
with an X-wire probe with a velocity-vector acceptance angle of ± 45◦. In this way, longitudinal
and transversal velocity components could be measured simultaneously. The X-wire probe and
the anemometer employed was produced by the Dantec Dynamics. This configuration allowed
to measure many horizontal and vertical profiles. We have had access to vertical profiles at 3
distance from the beginning of the test section: 6 m, 8 m and 10 m (in x/δ coordinate respectively
8.57 , 11.42 and 14.28 with δ = 0.70 m), as shown in Figure 3.9. For each measurement point,
120 s or 300 s time series were sampled with a sampling frequency of 5000 Hz.

Fast flame ionisation detector

The concentration field measurements were performed by a fast flame ionisation detector (FID),
which detect a gas tracer continuously emitted from a point source. As mentioned, the tracer
used was ethane (C2H6) and it was released mixed with air. This gas is not reactive and has
a molar weight of almost 30.07 g ·mol−1, against 28.97 g ·mol−1 for the air. Thus the released
obtained was neutrally buoyant and passive.

The instrument used in this experiment was an HFR400 Fast FID, produced by Cambustion
LTD. The sampling tube was 0.3 m long, while the sampling frequency was 1000 Hz, so that
concentration spectra were calculated with a frequency up to 300 Hz. The profiles available are
horizontal and vertical profiles at 6 distances from the source: 0.25 m, 0.50 m, 1.00 m, 2.00 m,
3.00 m and 4.00 m (for x/δ respectively 0.35 , 0.71 , 1.42 , 2.85 , 4.28 and 5.71 ), see Figure 3.10
and Figure 3.11.

1) 2) 3) 4) 5) 6)

sourcey

x

Figure 3.10: Horizontal profiles of concentration. Six profiles was measured at: 1) 0.25 m, 2)
0.50 m, 3) 1.00 m, 4) 2.00 m, 5) 3.00 m and 6) 4.00 m from the source.
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Figure 3.11: Vertical profiles of concentration. Six profiles was measured at: 1) 0.25 m, 2) 0.50 m,
3) 1.00 m, 4) 2.00 m, 5) 3.00 m and 6) 4.00 m from the source.

3.2.2 Boundary layer characteristics

The general characteristics of the Nironi et al. (2015) experiment, already presented above, are
summarised in Table 3.2. Here we focus on the analysis of the boundary layer characteristics
and the methods for obtaining the values that allow to define numerically the boundary layer.
Finally, we summarise our rigorous methodology to extract the LES inputs from the current
experimental data and similar ones.

U∞ 5.0 m/s Wind reference velocity

δ 0.70 m ÷ 0.80 m BL height (δ99)

ν 1.46× 10−5 m2/s Kinematic viscosity

Re 2.7× 105 Reynolds number

Table 3.2: Characteristics of the experimental boundary layer.

Thanks to a preliminary post-processing, the hot wire anemometer is able to provide us the
following data: the time t [s], the instantaneous flow velocity components u, v and w [m/s] and
the instantaneous shear stresses uw and uv. Thanks to these data, it is possible to compute
some statistics of the flow. The mean could be defined through the following general expression:

s̄ =
1

N

N∑
j=1

sj (3.57)

where N is the number of samples in the time-series. Therefore, the mean velocity ū and the
mean shear stress u′w′ are computed. Higher order statistics could also be computed thanks to
the instantaneous velocity signals.

The characterisation of the neutral atmospheric boundary layer of the Nironi et al. (2015)
experiment could begin from the determination of the boundary layer (BL) height δ and the
friction velocity u∗.

The BL height is figured out from the analysis of the u′w′ profiles, which are shown in
Figure 3.12. It is observed that the boundary layer is not completely homogeneous along the
experimental domain but it slowly continues to evolve. The criterion to establish the BL height is
simply the height at which the mean shear stress u′w′ begins to oscillate around zero. Therefore,
the developed BL has a height of 0.70 m, 0.75 m and 0.80 m respectively at 6.00 m, 8.00 m and
10.00 m from the beginning of the test section. Moreover, as further evidence, the BL height δ
(orange line) was plotted in Figure 3.13. It shows that also ū and u′v′ begins to oscillate around
a constant value beyond this height.

The friction velocity u∗ is the significant velocity scale in the turbulent boundary layer and
depends on the nature of the surface and on the magnitude of the wind. So it is fundamental
to estimate it. Since the surface stress equals the turbulent momentum flux in the air just
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above the surface, u∗ is representative of the turbulent wind fluctuations in the lower part of the
atmosphere (Kaimal and Finnigan, 1994). There are many similar definitions of friction velocity
that were compared by Weber (1999). It was chosen the definition found in Panofsky (1984),
Garratt (1994) and Kaimal and Finnigan (1994). According to it, it is possible to write:

τw = −ρ u′w′ = ρ u2
∗ (3.58)

where τw is the shear stress at wall and ρ the density of the air. This definition assumes that
the horizontal Reynolds stress vector (−ρ u′w′,−ρ u′v′) could be reduced to (−ρ u′w′, 0) when
the u-axis is aligned with the mean wind. In the atmosphere, this assumption is not generally
true (Weber, 1999). However, in the lower part of the boundary layer, the quantity u′v′ is small
compared to u′w′, as shown by Figure 3.13. It is highlighted that, from 0 < z/δ < 0.1, u′w′

changes so slowly that it could be considered effectively constant.

Consequently, the experimental data related to the Reynolds shear stress allows to compute
the friction velocity thanks to Eq. (3.58), i.e. u∗ = (−u′w′) 1

2 . The friction velocity found is
the result of the average of the experimental values of u′w′ over all the data in the interval
0 < z/δ < 0.1. The latter region is delimited by the red line (“Av. region”) in Figure 3.14. This
criterion lead to the friction velocity values that are 0.187 m/s at 6.0 m, 0.183 m/s at 8.0 m and
0.180 m/s at 10.0 m. Figure 3.14 illustrates the nondimensional u′w′/u∗ profiles with respect to
the nondimensional height z/δ. They were calculated thanks to the previously estimated values
of u∗ and δ. The plot probes the good approximation of u∗ and δ, used for the nondimensional
process.

In the lower part of the neutral boundary layer, the vertical profile of the mean velocity
fits a logarithmic law, as predicted by the similarity theory (Tennekes and Lumley, 1972). The
main length scale is z, the distance from the ground. It is needed to account the displacement
effect due to the rough surface. The roughness displace the entire flow upwards. As shown
by Equation 3.59, the logarithmic law is written including aerodynamic roughness z0 and the
displacement height d.

ū(z)

u∗
=

1

κ
ln

(
z + z0 − d

z0

)
(3.59)

where u∗ is the friction velocity, κ the von-Kármán coefficient and z0 the aerodynamic roughness.
The von-Kármán coefficient used in the current work is 0.40.
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Figure 3.12: Reynolds shear stress u′w′ for the three available profiles, which are respectively at
6.00 m, 8.00 m and 10.00 m from the beginning of the test section.
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Figure 3.13: Streamwise mean velocity and Reynolds stress components (u′w′ and u′v′) profiles
at 6.0 m from the beginning of the test section.

As predicted by the theory, and as shown in Figure 3.15, the Eq. (3.59) fits the velocity
profile in a region that slightly exceeds the extent of the inertial region, i.e. z/δ < 0.25 .
Otherwise, this region could be considered representative of the surface boundary layer (SBL).
On the other hand, a good fit of the mean velocity profile along the whole turbulent boundary
layer can be obtained thanks to a power-law of the type of Eq. (3.60).

ū(z)

U∞
=

(
z − d
δ − d

)n
(3.60)

Here, U∞ is the free-stream mean velocity. In order to fit the experimental profile, n and d
are the two values to optimise to best fit the velocity experimental profile, while δ is estimated
as we have seen previously.

In order to compute the other characteristics of the BL, especially z0 and d, the hot wire
experimental data was fitted using the Eq. (3.59) and fixing the experimental friction velocity
u∗. The fitting function, used in the current research, is an optimisation function from the
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Figure 3.14: Nondimensional Reynolds shear stress for the three available profiles, which are
respectively at 6.00 m, 8.00 m and 10.00 m from the beginning of the test section.
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Figure 3.15: Mean velocity profiles at x = 6 m. The left figure (a) shows the Nironi experimental
profile, the power-law profile and the 5 profiles used for the optimisation procedure with the
Method 1. The right figure (b) employs a semi-logarithmic plot to compare the optimal profile
(obtained with 6 points) and the Nironi experimental profile.

Python “scipy” library (i.e. curve fit). Consequently, the variables to be optimised are z0 and
d. This is a method also used by Nironi (2013) and called the “Method 1”. It is important to
estimate the friction velocity before proceeding with optimisation process. The latter process
focused on the lower part of the boundary layer and was conducted using an increasing number
of ū(z)-z experimental pairs. A number of measurement points ranging between 3 and 7 have
been used. For the profile at 6.0 m, the different graphical results are observed in Figure 3.15.
The left-hand figure includes the Nironi experimental profile and the Nironi power-law profile
with the exponential n = 0.2394 . Moreover, the figure on the right shows the best fitting curve
(using 6 points, i.e. at z/δ < 0.1 ) together with the experimental data. The best fitting curve
is obtained with 6 points and the optimal values are z0 = 1.119× 10−4 m and d = 0.0085 m.
Repeating the procedure for the profiles at x = 8.0 m and x = 10.0 m, the following values was
calculated: z0 = 1.111× 10−4 m and d = 0.0094 m for the first profile and z0 = 1.307× 10−4 m
and d = 0.0083 m for the second. The graphical results for the latter profiles are shown in
Figure 3.17 and Figure 3.18.

The boundary layer characteristics of the profile at x = 6.00 m is considered as the reference
for our validation. The reason of this choice is due to the similarity with the values adopted
by Nironi et al. (2015) and the position of the profile. The latter coincides with the position
of the source and its characterisation is also useful to the nondimensional operation applied to
the concentration field, as we will see in the next section (subsection 3.2.3). Therefore, from
this moment on, the subsequent characteristics of the boundary layer will be referred to the
experimental data at 6 m from the beginning of the test section.

Due to the fact that the logarithmic region is difficult to estimate from the mean velocity
profiles, (Marusic et al., 2013), it is preferable to use the profiles of the streamwise turbulence
intensity (Marusic method), as explained in section 1.1.4. We need again an optimisation process
to estimate the A1 and B1 coefficients of Eq. (1.48). The result of the optimisation is A1 = 1.40
and B1 = 1.57 for the u′2 profile. Thanks to this procedure, it is possible to identify the
logarithmic region which roughly extends between 0.040 m and 0.100 m along the z-axis, as
shown by Figure 3.16. Using wall units, the logarithmic region is located approximately in the

interval 512 < z+ < 1280. This interval is also predicted by the range 3Re
1/2
τ < z+ < 0.15Reτ
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Figure 3.16: Streamwise turbulence intensity profile at x = 6 m. The left figure (a) shows the
u′2 profile along the boundary layer. Whereas the right figure (b) illustrates the nondimensional
profile u′2 and highlight the logarithmic region thanks to the “Log fit” curve.
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Figure 3.17: Mean velocity profiles at x = 8 m. The left figure (a) shows the Nironi experimental
profile, the power-law profile and the 5 profiles used for the optimisation procedure with the
Method 1. The right figure (b) employs a semi-logarithmic plot to compare the optimal profile
(obtained with 6 points) and the Nironi experimental profile.

(Marusic relation) found by the work of Marusic et al. (2013) for high-Reynolds number flows.
For our experiment, Reτ ≈ 9000 and the logarithmic region results 284 < z+ < 1350. This
makes us confident in the range found thanks to the experimental data.

Furthermore, the inertial subrange bounds could be estimated from the spectrum of wind
field. Knowing the extension of the inertial subrange is fundamental to choose the mesh reso-
lution for the numerical simulation. In fact, a generic rule states that the LES filter needs to
be placed in the inertial subrange in order to have good performance of the LES model (sub-
section 3.1.1). In our case, the experimental data at the position (6.0, 0.0, 0.150) m, i.e. at the
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Figure 3.18: Mean velocity profiles at x = 10 m. The left figure (a) shows the Nironi experimental
profile, the power-law profile and the 5 profiles used for the optimisation procedure with the
Method 1. The right figure (b) employs a semi-logarithmic plot to compare the optimal profile
(obtained with 6 points) and the Nironi experimental profile.

source position, are used to compute the spectrum of Figure 3.19. The left-hand figure illus-
trates the spectrum E(k) for the fluctuations u′, v′ and w′ together with the −5/3-law curve,
which identify the inertial subrange. The right-hand figure is used to define the bounds of the
inertial subrange. This figure is a compensated spectrum, where E(k) is multiplied by k5/3,
that is useful to identify the interested region. In fact, when the spectrum diverge from the
central horizontal region, it means that the flow is in the energy region at left and in the viscous
subrange at right. The regions are delimited respectively by kc min and kc max. This method
estimates the extension of the inertial subrange between 9 < k < 200 m−1.

Finally, to complete the BL characterisation, it is fundamental to compute also the bulk
velocity Ubulk, defined by the following equation:

Ubulk ≡
1

δ

∫ δ

0
ū(z) dz (3.61)

For the profile at 6.0 m, the bulk velocity is computed from the logarithmic profile with the
optimisation parameters and it is equal to 3.62 m/s. As we will see in the section 3.2.2, this
velocity will be used to force the numerical flow.

The whole characterisation of the experimental boundary layer is summarised in Table 3.3. It
is important to highlight the the methods used to estimate the characteristics of the experimental
boundary layer are not universal. Other methods exist and, unfortunately, some methods could
estimate different values of the same characteristic. As we will see in more details below, this
aspect is a source of uncertainties in the numerical simulation. It makes difficult to compare
numerical and experimental results or even two different numerical simulations of the same
phenomenon. In the current work, attempts have been made to adopt the same methods for
characterising the boundary layer (experimental and numerical). Nevertheless, when it was not
possible, it is remarked and discussed.
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Figure 3.19: Velocity field spectrum for experimental data at x = 6.0 m, y = 0.0 m and z =
0.152 m. Figure (a) shows the spectrum of u′, v′ and w′. Moreover, it illustrates the −5/3 law
and the bounds of the inertial subrange, delimited by kc min and max. Figure (b) compensates
the spectrum and help to delimit the bounds of the inertial subrange.

x = 6 m x = 8 m x = 10 m Description

δ 0.70 m 0.75 m 0.80 m BL height

u∗ 0.187 m/s 0.183 m 0.181 m Friction velocity

z0 1.119× 10−4 m 1.111× 10−4 m 1.307× 10−4 m Aerodynamic roughness

d 8.5 mm 9.4 mm 8.3 mm Displacement height

Log-region 512 < z+ < 1280 501 < z+ < 1252 619 < z+ < 1548 Marusic et al. (2013) crit.

Inertial subrange 9 < k < 200 – – Spectrum crit.

Ubulk 3.62 – – Bulk velocity

Table 3.3: Complete characteristics of the experimental boundary layer at 3 different streamwise
positions.
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Extraction of LES inputs

The LES methodology adopted in this thesis, based on periodic simulations, mainly needs two
parameters that can be derived from the experiments: z0 and Ubulk. This could be considered
as a first conclusion of the BL characterisation.

The first data is the aerodynamic roughness z0. The wall models, treated in subsection 3.1.8,
only need this input value. Moreover, it could be derived from experimental data, as pointed
out in the previous section. We would like to emphasise that frictional velocity u∗ is not an
input but a result of the interaction between the wall model and the forcing of the flow.

Conversely, the precursor domain needs a force to generate and maintain the atmospheric flow
throughout the duration of the simulation. Ultimately, this force is responsible for the pressure
gradient. From the practical point of view, the flow is forced thanks to the meanVelocityForce

OpenFOAM fvOption. According to the OpenFOAM User Guide, this option applies a force
to maintain a user-specified volume-averaged mean velocity Ubulk, e.g. useful for channel flow
cases. Currently it is available only to incompressible flows. Ubulk is expressed in continuous
and discrete form in Eq. (3.62).

Ubulk =

∫ H
0 ū · nx dz∫ H

0 dz
≈
∑

i ūi · nx ∆zi∑
i ∆zi

(3.62)

The force that maintain the volume-average mean velocity is applied through a pressure
gradient, which value is correct at each time step. Therefore the second input is the Ubulk (or
Ubar in OpenFOAM). This is deduced directly from the experimental velocity profile.

Thanks to these two inputs, it is possible to simulate a neutral atmospheric boundary layer.
For our simulations, the inputs used are z0 = 1.119× 10−4 m and Ubulk = 3.68 m/s.

However, the experimental data also provide useful information to determine the size of
the mesh and the dimension of the filter suitable for performing an accurate LES simulation
(subsection 3.4.1). This is the second conclusion of the BL characterisation.

3.2.3 Concentration field characteristics

The concentration field is the result of the passive scalar dispersion throughout the atmospheric
flow developed in the wind tunnel. This section introduces the experimental configuration
and the concentration measures. The main statistics derived from the measured data are also
illustrated. Consequently, it allows to obtain additional inputs and constraints for the LES
simulations. The latter are examined in the final part of this subsection.

After a preliminary post-processing, the FID instrument could provide four data: the time
t [s], the instantaneous concentration in parts per million [ppm], the ethane flow rate [l/h]
and the air flow rate [l/h]. The experimental data was generated by a source located at hs =
152 mm from the ground with a diameter of σ0 = 6 mm. The choice is due to the fact that
this configuration was judged to be more suitable for validating the LES methodology. In fact,
based on a first consideration, the source is not so close to the ground and its diameter is large
enough to be fairly simulated without extremely fine mesh around the source. Moreover, the
experimental source is characterised by a constant emission.

Through an initial post-processing, the concentration is expressed in [kg/m3] and dimension-
less. The constant mass flow rate of the source is a useful data to obtain the nondimensional
instantaneous concentration. In fact, the nondimensional concentration is defined by the rela-
tion:

c∗ ≡ c

∆c
(3.63)

where c is the instantaneous concentration in [kg/m3], ∆c = Q/(U ref δ
2), Q is the mean mass

flow rate of ethane injected at the source [kg/s], U ref could be the free stream velocity or
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another significant velocity. We have chosen the streamwise mean velocity at the source: ūs =
3.4896 m/s. Whereas δ is the boundary layer height, it is equal to 0.70 m for our profiles. The
nondimensional values allow to better compare the numerical and experimental results, which
could have different mean mass flow rates at the source.

Passing to the concentration statistics, the nondimensional mean concentration c∗ is com-
puted thanks to Eq. (3.57). On the other hand, the nondimensional root mean square (r.m.s.)
concentration σ∗c is given by:

σ∗c =

√√√√√
 1

N

N∑
j=1

(c∗j − c̄∗)2

 (3.64)

where, similarly to Eq. (3.57), N is the number of samples in the time-series.
Transversal profiles of the mean concentration downwind the source are reported in Fig-

ure 3.20. Whereas, the vertical profiles are illustrated in Figure 3.21. The vertical profiles were
measured on the plume axis, while the transversal profiles are measured at the source height.

The latter profiles are satisfactory reproduced by a Gaussian distribution ( see Eq. (1.71) ).
In particular, the transversal profiles follow Eq. (3.65), while vertical profiles is reproduced by
Eq. (3.66).

c̄∗(x, y, hs) =
Ūref

Ūadv

δ2

2πσyσz

[
1 + exp

(
−(2hs)

2

2σ2
z

)]
exp

(
− y2

2σ2
y

)
(3.65)

c̄∗(x, 0, z) =
Ūref

Ūadv

δ2

2πσyσz

[
exp

(
−(z + hs)

2

2σ2
z

)
+ exp

(
−(z − hs)2

2σ2
z

)]
(3.66)

Here Ūadv is the advection velocity of the plume, while σy and σz are the plume spread
respectively in y- and z-direction. The previous equations were used to fit the transversal and
vertical mean concentration profiles of the experiment and obtain the plume spreads. The result
of the fitting procedure is shown in Figure 3.24.

The intensity of concentration fluctuations at the source level is defined as:

ic ≡
σc
c

∣∣∣
y=0,z=hs

(3.67)

Observing the plot on the right in Figure 3.24, it is possible to observe that the downwind
development of the intensity of concentration fluctuations decay. This is particularly true for
the source considered (elevated source), for which the effects of source size are larger.

The previous characteristics and observations allow to set the numerical simulation. More-
over, the statistics are useful to compare and validate the LES methodology. They are also
essential to interpreted the results, as we will see in section 3.4.
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Figure 3.20: Horizontal profiles of nondimensional mean concentration at 6 distances downwind.
The profiles are satisfactory fitted by a Gaussian distribution (Gauss Exp. – Eq. (3.65)). Profiles
were measured at the source height hs = 0.152 m.
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Figure 3.21: Vertical profiles of nondimensional mean concentration at 6 distances downwind.
Profiles were measured at the plume axis.
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Figure 3.22: Horizontal profiles of nondimensional concentration standard deviation at 6 dis-
tances downwind. The profiles were measured at the source height hs = 0.152 m.
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Figure 3.23: Vertical profiles of nondimensional concentration standard deviation at 6 distances
downwind. The profiles were measured at the plume axis.
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Figure 3.24: In the left-hand side figure, the experimental plume spreads σy and σz downstream
the source are illustrated, while the figure on the right shows the development of the experimental
intensity of concentration fluctuations ic, defined in Eq. (3.67).

Extraction of LES inputs

In order to set the LES simulation, the characteristics of the source and the emissions are
fundamental. These are the two main pieces of information that we can have with precision
from the dispersion of a passive scalar in a wind tunnel experiment.

In the streamwise direction, the source is situated at 6.00 m (i.e. x/δ = 8.57 ) from the
beginning of the test section. Transversely, it is located at the center of the test section (i.e.
y/δ = 0.00 ). Whereas the source height is 0.152 m (i.e. z/δ = 0.22 ) from the ground. The final
useful information to characterise the source is its diameter, which is σ0 = 0.006 m, i.e. σ0/δ =
8.57× 10−3 .

Information on the release data is usually required at each grid point and each time step
for the numerical simulation. The experimental emission is characterised by a constant mass
flow rate. Therefore, the numerical source could be considered as a cell or a group of cells that
emits constantly over time. So, the mass flow rate is fixed as an arbitrary constant value. It
is important to remember that the nondimensional operation allows to compare concentration
fields having different mass flow rates at the source. Moreover, according to the “isokinetic”
approach (see subsection 3.2.1), the velocity at the source is the velocity of the flow in that cell.
It implies that numerical simulation needs to reproduce a wind velocity at the height of the
source as similar as possible to the experiment.

The main characteristics derived from the dispersion of a passive scalar in the wind tunnel
are summarised in Table 3.4. These characteristics are employed in the numerical setup and
yield to some constrains and limits, as we will see in the next section.

xs 6.00 m Position of the source in x-coordinate

ys 0.00 m Position of the source in y-coordinate

zs 0.152 m Position of the source in z-coordinate

σ0 0.006 m Source diameter

Q 0.001 kg/s Arbitrary mass flow rate

Table 3.4: Characteristics of the experimental configuration for the dispersion phenomenon
useful for setting up the numerical simulation.
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3.3 Computational settings

This section is dedicated to the computational settings with the aim of making the LES method-
ology scientifically reproducible and questionable. The limits of the methods adopted are also
discussed. In this way the criteria on which our methodology is based are explicitly expressed.
Therefore, various concepts already treated will be recalled and, when necessary, those that have
not yet been discussed will be presented.

The following subsections deal with the computational settings in the case of the LES sim-
ulation of the Nironi experiment, presented in the previous subsection. Firstly, the domain
and the precautions to be taken into consideration when making its choice are discussed in
subsection 3.3.1. Then the mesh and its physical and numerical constraints are analysed in sub-
section 3.3.2. The equations and the solvers employed are presented in subsection 3.3.3, while
the boundary conditions are illustrated in subsection 3.3.4. Finally, subsection 3.3.5 is dedicated
to the numerical schemes used in our simulations.

3.3.1 Domains

In the current subsection, the types of domain adopted are listed together with the phenomenon
that could determine their dimensions. Then, the size of the domain is discussed in a general
way. Finally, we focused on the application of the constraints to the Nironi domain. In this way,
we could define the criteria for determining the size of the domain.

Having chosen the precursor-successor method and the cyclic-dispersion method (see subsec-
tion 3.1.7), two domains are mainly employed. They have some similarities but also significant
differences.

The precursor domain (PD) is focused on generating the inlet flow field of the successor
domain. Therefore, its dimensions are principally constrained by the atmospheric flow to be
simulated. In particular, the longitudinal and transversal dimensions need to satisfy the correct
development of the turbulent structures, while the height of the domain is usually settled con-
sidering the height of the obstacles (e.g. buildings) and an appropriate height of the boundary
layer in order to allow the development of the physical phenomena of interest. According to
the previous considerations, it happens very often that the precursor domain has constrains on
longitudinal and transversal dimensions that allow it to be smaller than the successor domain.
This characteristic could be useful to reduce the computational time.

The successor domain (SD) is the domain dedicated to study the atmospheric dispersion
and the influence of obstacles (e.g. buildings, vegetation, etc) on dispersion. Consequently, it is
affected by the precursor domain constrains and more consistently by the obstacles. This domain
could be bigger because the experimental domain or the industrial site have bigger dimensions
and the dispersion phenomena could extend over long distances.

The cyclic-dispersion domain (CDD) has the same geometrical characteristics than the suc-
cessor domain. The differences are mainly due to the boundary conditions applied, as we will
see in subsection 3.3.4.

In order to determine the size of the domain, Sagaut (2006) propose some basic rules for
two classical building blocks of complex flows: the attached equilibrium boundary layer and the
plane mixing layer. We are mainly interested to the first flow, which is presented below.

The main rules for determining the domain size are the following two:

• The first rule is based on the idea that the driving mechanisms, i.e. the events responsible
for the turbulence production and mean profiles instabilities, must be correctly captured
by the simulation to recover reliable results.

• Secondly, the size of the domain must be larger than the correlation length of the fluc-
tuations, in each direction of space. A small domain could produce spurious couplings
between the dynamics of the flow and the boundary conditions.
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A precise domain size for simulations, as well as a value of mesh size or a number of grid
points or cells and their distribution, are not available. These parameters depend on many
others parameters, including numerical methods. The rules and constraints suggested are some
commonly accepted ideas underlying the design of a large number of published works.

Equilibrium Boundary Layer

The boundary layer shows two different scalings, as described below:

• In the inner layer the viscous length δν is important to describe the dynamics (see also
subsection 1.1.4). The inner layer does not play an important role in the determination of
the domain sizes. Nevertheless, it will be very important to the definition of the mesh, as
discussed in subsection 3.3.2.

• In the outer layer, the boundary layer thickness δ is the relevant scale. It contributes to
determine the domain height H. In fact, the latter needs to be approximately equal to δ.
Moreover, the large scales have a correlation length which scales with δ, and are advected
in the streamwise direction at a speed roughly equal to 0.8U∞ (Sagaut, 2006), where U∞
is the free-stream velocity. As already mentioned, the domain sizes have to be larger than
the correlation length of the fluctuations in each direction of space. Consequently the
minimum domain sizes of 3 δ to 5 δ is required in the streamwise direction, while in the
spanwise direction the minimum sizes are between 2 δ and 3 δ. Therefore, privileging the
lower limit, it is possible to affirm that the domain must have streamwise and spanwise
sizes greater than:

L

δ
> 3

W

δ
> 2

and the height is approximately:

H

δ
≈ 1

The defined sizes of the domain are considered as the physical criterion to simulate an
atmospheric flow. This criterion is closely related to the statement that the domain sizes need
to be larger than the correlation length of the fluctuations in each direction of space.

Nironi numerical domain

In the previous part, the physical criteria to determine the domain sizes were presented. Here,
the practical criteria related to the dispersion phenomenon are illustrated. In fact, the dimension
of the domain depends also on the physical phenomenon to be simulated. The two phenomena
of interest are the neutral ABL and the dispersion of the passive scalar.

In order to numerically simulate the phenomena, three domain are available: the precursor
and successor domain (PD and SD) and the cyclic-dispersion domain (CDD), for more details see
subsection 3.1.6. The PD aims to simulate only the atmospheric flow. So it is enough to respect
the minimum dimensions suggested by the physical criterion to have an acceptable domain and
economise on computational power. Considering δ = 0.70 m, the nondimensional longitudinal
L/δ and transversal size W/δ chosen are respectively 3.085 (i.e. L = 2.160 m) and 2.057 (i.e.
W =1.440 m). Whereas the nondimensional height H/δ is equal to 1.028 (i.e. H = 0.720 m).
The height selected respects the height constraint (i.e. H/δ ≈ 1 ), being close to its value. On
the other hand, the SD and CDD aims to simulate not only the atmospheric flow but also the
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dispersion of the passive scalar. In this case, a strong constraint is given by the experimental
concentration field to be simulated. Firstly, the longitudinal extension of the domain depends
on the furthest data from the source. For the Nironi case, the farthest measurement points
are situated at x/δ = 5.715 from the source (see Figure 3.20 and Figure 3.21). Adding a
space of x/δ = 1.485 to separate the source and the furthest measurements from the inlet and
outlet boundaries (especially important for the successor domain which is not periodic), the
longitudinal extension of the domain is L/δ = 7.200 . Moreover, the transversal and vertical
extension of the furthest experimental profiles are respectively y/δ = 1.571 and z/δ = 0.928 .
Consequently, the numerical domains could assume the following dimensions: W/δ = 2.057 and
H/δ = 1.028 .

The criteria illustrated here are schematically summarised by Figure 3.25 and Figure 3.26,
while the chosen dimensions are illustrated in Table 3.5.

0 1 2 3 4 5 6 7 8 9 10

Dispersion physical criterion

Flow physical criterion

L
δ

3.085 – PD

7.200 – SD and CDD

Figure 3.25: Graphic scheme to define the longitudinal dimension of the domain. The green
region represents the region that respects the constraint.

0 1 2 3 4 5 6 7 8 9 10

Dispersion physical criterion

Flow physical criterion

W
δ

2.057 – PD

2.057 – SD and CDD

Figure 3.26: Graphic scheme to define the cross-section dimension of the domain. The green
region represents the region that respects the constraint.

Precursor Domain (PD)

L/δ = 3.085 L = 2.160 m

W/δ = 2.057 W = 1.440 m

H/δ = 1.028 H = 0.720 m

Successor Domain (SD) and
Cyclic-Dispersion Domain (CDD)

L/δ = 7.200 L = 5.040 m

W/δ = 2.057 W = 1.440 m

H/δ = 1.028 H = 0.720 m

Table 3.5: Nondimensional and dimensional sizes of numerical domains for Nironi case.
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OpenFOAM domain

Entering in the more practical area dedicated to the use of the OpenFOAM, the 6 numerical
boundaries presents 3 boundary types. It is pointed out in Table 3.6 and Table 3.7. Cyclic

boundaries needs a neighbour, while patch and wall type not. Further the ground boundary
employs a wall type, specific to solid surfaces. The main difference between the three domains
is due to the inlet and outlet boundaries. We need a whole periodic domain in the PD and CDD
because it is required to develop the turbulent flow. Whereas the SD, which is the domain used
for complex dispersion studies, needs a simple inlet and outlet patch. In fact, it is desired that
the passive scalar and the flow, both perturbed by the obstacles, leave the domain.

Boundary ID Type Additional information

inlet cyclic Neighbour: outlet

outlet cyclic Neighbour: inlet

side1 cyclic Neighbour: side2

side2 cyclic Neighbour: side1

ground wall

top patch

Table 3.6: Precursor Domain and Cyclic-Dispersion Domain boundaries and types.

Boundary ID Type Additional information

inlet patch

outlet patch

side1 cyclic Neighbour: side2

side2 cyclic Neighbour: side1

ground wall

top patch

Table 3.7: Successor Domain boundaries and types.

3.3.2 Meshes

In the current subsection, the criteria to define the mesh are treated. Moreover, the adopted
meshes are listed and the characteristics of the chosen OpenFOAM mesh are presented.

In our LES methodology, the characteristics of the mesh are constrained by the filter size,
the wall model, the passive scalar SGS model and the numerical source characteristics.

Firstly, it is important to remember that the LES filter need to be placed in the inertial
subrange or in the dissipation range to correctly model the small scales and resolve the large
scales. For the wind tunnel experiment, the inertial subrange was estimated in the interval:
9 m−1 < kc < 200 m−1 (subsection 3.2.2), where kc is the cut-off wave-number. It is defined
according to a practical approach as:

kc =
1

∆

where ∆ = (∆x ∆y ∆z)
1/3. This constraint prevents having a filter in the energy-containing

range, but it does not prohibit having a filter in the dissipation range.

In order to apply the wall model correctly, the centre of the first cell adjacent to the wall
must to be situated in the logarithmic region (subsection 3.1.8). According to the classical
theory, the logarithmic region extends between z+ > 30 and z/δ < 0.3 (subsection 1.1.4).
Nevertheless, more recent studies (Marusic et al., 2013) have demonstrated that the logarithmic
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region can be defined more precisely thanks to Reτ or through the analysis of longitudinal
turbulent fluctuations (all the details in section 1.1.4).

The third constraint is related to the SGS model adopted for the passive scalar equation
(subsection 3.1.13). It is a simple model based on the subgrid Schmidt number Scsgs (or equiv-
alently the subgrid Prandtl number), which is a common approach (Xie et al., 2004b; Ardeshiri
et al., 2020). According to Sagaut (2006), in the case of a high cut-off wave-number, i.e. beyond
the inertial subrange, the diffusion term of the filtered governing equation of the passive scalar
(Eq. (3.55)) may present problems. To remind, the latter term is:

∇ · [(Dc +Dsgs)∇c̃]

where Dc and Dsgs are respectively the molecular diffusivity and the subgrid turbulent diffusivity.
The modelling closure adopted to determine Dsgs (subsection 3.1.13) imposes that the LES filter
∆ needs to be placed in the inertial subrange. Otherwise, in cases where the velocity field is
fully resolved (i.e. the filter is in the dissipation range) and the Sc � 1, νsgs goes to zero
and consequently Dsgs = 0. However, the passive scalar spectrum presents a viscous-convective
range at wave-number higher than the dissipation range of the velocity spectrum. So the viscous-
convective range needs to be modelled, but it is not. This is a condition to avoid when using the
current SGS closure model. On the other hand, if the velocity field is not fully resolved and the
Sc� 1, it could happen that the inertial-diffusive range of the passive scalar spectrum is fully
resolved and it would not need a model. However, Dsgs 6= 0 and so it contributes artificially
in the diffusion term of the passive scalar equation. Concentrations may be lower due to an
artificial disturbance of a term that should not be there. Finally, if Sc ≈ 1 (as in our case), it
is important to estimate the part of the passive scalar spectrum that need to be modelled with
a specific SGS model. Therefore, in each of these cases it is important to make a comparison of
the velocity and concentration spectra in order to choose the appropriate SGS model, because
the model based on the Scsgs is not suitable for this case.

The numerical source represents the fourth constraint because the source dimension, the size
of the cells and the number of cells used determine the accuracy of the numerical field and some
expected variations between the statistics of the field. Firstly, the source dimension represents
a considerable problem because it can have very small dimension in wind tunnel experiments.
Therefore, if we want to proceed with the numerical simulation, it is necessary to adopt a larger
numerical source which is suitable for the simulation. Fackrell and Robins (1982) and Nironi
et al. (2015) have investigated the relation between the source size and the behaviour of the
concentration statistics in wind tunnel experiments. A similar behaviour is to be expected
numerically. If the numerical source is not of the same dimension than the experimental one
(e.g. Ardeshiri et al. (2020) simulation), a direct consequence is that the concentration field
statistics depend on the source size. Although the mean field is almost completely unaffected
by the source dimension, the other statistics of higher order show strong source size dependence
(Nironi, 2013). The mean field reports some difference only close to the source. Conversely, the
source size influence extends to a considerable downwind distance for the higher order statistics.
For the standard deviation σ∗c of the concentration field, a strong dependence on the source
size is visible near the source. The standard deviation for the smaller source is characterised
by significantly higher values. The difference between the standard deviation of sources with
different sizes decreases moving downwind and finally vanishes in the far field (Nironi et al.,
2015). Consequently, this constraint suggest that the dimension of the numerical source is the
same of the experimental one. Otherwise, it is important to correctly interpreted the results.

Based on our current understanding, the number of cells used to define the numerical source
and the size of the source cells lack a well-established criterion in works similar to ours (Xie
et al., 2004a; Ardeshiri et al., 2020). So it is in our interest to try to establish a criterion. Firstly,
considering the source as an obstacle and following the tips of CFD user’s guide manuals based
on empirical tests, it can be established that the source discretisation needs at least 10 cells for
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each direction in the two-dimensional space in which the source is defined. If the source is small,
it implies very fine meshes as we will see below.

The combination of the previous physical and numerical constraints allow to define the
criteria for meshes. Therefore, the criteria are based on 5 explicit constraints:

1. The LES filter, i.e. the dimension of the mesh, need to be placed in the inertial subrange
(preferable) or in the dissipation range.

2. The first cell adjacent to the wall must be situated in the logarithmic region.

3. If a Scsgs approach is adopted to close the filtered passive scalar equation, the LES filter
need to be placed in the inertial subrange.

4. If possible, the numerical source dimension needs to be the same dimension as the exper-
imental one. Otherwise, the results must be interpreted based on the literature studies
(e.g. Nironi et al. (2015)).

5. If possible, at least 10 cells should be used to define the numerical source.

For convenience, the 5 constraints are grouped into 4 mesh criteria. The constraints 1) and
2) define respectively the “LES filter” and the “Wall Model” criteria. The “SGS model” is
defined by the constraint 3). Whereas the constraints 4) and 5) define the “Source” criterion.

Applying the mesh criteria to the Nironi experiment and considering an homogeneous mesh,
Figure 3.27 is obtained. It summarises the mesh criteria applied to the Nironi experiment and it
will be useful for objectively evaluating the meshes adopted. In order to compare the constraints,
a cell size in wall unit ∆+ is employed. Therefore, thanks to the analysis of subsection 3.2.2,
the inertial subrange extends between 64 < ∆+ < 1422. Thanks to the LES filter criterion,
the inertial subrange and the dissipation range becomes an acceptable interval which respects
the mesh criterion, i.e. ∆+ < 1422. The Wall Model criterion defines the log-region, which
is constituted of three intervals because we have presented three approaches to determine its
extension (subsection 3.2.2). In the current study, we consider the Marusic relation as the
acceptable interval: 284 < ∆+ < 1350 (i.e. something between the classical theory and the
Marusic method, for details see subsection 1.1.4). The SGS model criterion considers the inertial
subrange as the acceptable interval: 64 < ∆+ < 1422. Finally, the Source criterion establishes
the region of acceptability for the source. The experimental source diameter is Φ = 0.006 m.
Consequently Φ+ = 76.8 and Φ+/10 = 7.68 . The latter value corresponds to 0.6 mm, which is
extremely small. Unfortunately, in this case, the constraints 4) and 5) disagree because Φ+/10
is smaller than the other acceptable intervals. As a result, there is no interval that can satisfy
all criteria.

Consequently, for the Nironi mesh, the acceptable region which almost completely meets
the mesh criteria (i.e. 3 over 5 constraints are respected) is the log-region defined through the
Marusic relation: 284 < ∆+ < 1350. All the meshes found in this region respect the physical
and numerical criteria on which the adopted models are based. Remember that this region of
acceptability is conditioned to the interpretation of results in view of a larger numerical source.

ID ∆+ ∆+
z z+

p

m24 352 308 154

m12 176 154 77

m06 88 77 39

Table 3.8: Cell sizes, cell heights and cell-centre heights adjacent to the wall in wall units.

According to similar works (e.g. Xie et al. (2004b); Ardeshiri et al. (2020)), three meshes have
been chosen and they are resumed in Table 3.9. The meshes are constituted by homogeneous
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Figure 3.27: Mesh criteria.

hexahedral cells. The cells are regular on y- and z-coordinates, while it has a ratio of 1.5 with
respect to the x-coordinate. This choice allows to have a regular mesh on the transverse and
vertical plane, favouring dispersion (Ardeshiri et al., 2020). Conversely, it is possible to have a
coarse mesh in the x-coordinate without disadvantages for the dispersion and allowing to capture
the longitudinal turbulent structures. The nx, ny and nz are the number of cells respectively in
x-, y- and z-coordinate. Therefore, the meshes m24, m12 and m06 have respectively 285 600 ,
2 284 800 and 18 278 400 cells. In order to include these meshes in Figure 3.27, the cell size in
wall unit ∆+ is computed for each mesh. The results are illustrated in Table 3.8 together with
the cell heights z+ and cell-centre heights adjacent to the wall z+

p in wall units.
The choice of the meshes was based on what was adopted by similar cases in the literature,

in which even finer meshes were used, as previously mentioned. In fact, finer meshes are needed
to respect the constraint 4) with an adequate representation of the source. Nevertheless, it
implies the inadequacy of some fundamental models in our methodology (e.g. the wall model
and the passive scalar modelling closure). Therefore, if we want to respect the mesh criteria, only
the mesh m24 is appropriate. For this mesh, the numerical source adopted is bigger than the
experimental one and only one cell is used to define it. These choices do not allow to respect the
source criterion and will lead to the need for a careful interpretation of the results. Meshes m12
and m06 do not match the source criterion and the wall model criterion. So the interpretation
of the results of these meshes needs even more attention. In order to evaluate the behaviour of
the meshes that respect and that do not respect the criteria, these three meshes are analysed in
subsection 3.4.1.

ID nx × ny × nz ∆x ∆y ∆z kc
m24 140× 60× 34 0.036 m 0.024 m 0.024 m 36.40 m−1

m12 280× 120× 68 0.018 m 0.012 m 0.012 m 72.80 m−1

m06 560× 240× 136 0.009 m 0.006 m 0.006 m 145.60 m−1

Table 3.9: Characteristics of the Nironi case meshes.
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OpenFOAM mesh

In OpenFOAM , the mesh was generated using the mesh generation utility, blockMesh. Conse-
quently, the adopted mesh is made up of homogeneous hexahedral cells on the whole domain,
as illustrated by Figure 3.28.

Figure 3.28: Generic mesh for Nironi case.

3.3.3 Equations and solver

The current section is dedicated to describe the solvers and the equations used to compute the
wind field and the concentration field for the LES methodology using OpenFOAM.

The solver used to simulate the wind field, i.e. to solve the Navier-Stokes equations for
the neutral SBL, is pimpleFOAM with some minimal modifications to allow the use of the wall
models treated in subsection 3.1.8. It is the PIMPLE version available in OpenFOAM . This
algorithm is a transient solver for incompressible turbulent flow of Newtonian fluids (Holzmann,
2016). The algorithm of the solver merges two classical solvers: SIMPLE and PISO. SIMPLE
is the acronym for Semi-Implicit Method for Pressure Linked Equations. It allows to couple the
Navier-Stokes equations with an iterative procedure (Patankar, 2018). On the other hand, PISO
is the acronym for Pressure-Implicit with Splitting of Operators and it is an efficient method
to solve the Navier-Stokes equations in unsteady problems (Issa, 1986). Returning to the solver
used here, a convenient way to think about the PIMPLE algorithm is to imagine it as a SIMPLE
algorithm for every time step, where outer correctors are the iterations, and once converged will
move to the next time step until the solution is complete. Better stability is obtained from
PIMPLE over PISO for this reason, especially when dealing with large time steps where the
maximum Courant number may consistently be above 1 or when the nature of the solution is
inherently unstable.

For the LES methodology, it was needed to modify the pimpleFOAM solver to introduce the
effect of the wall model. Therefore, the solver developed was named ABLSolverLIA (i.e. “ABL
Solver for LES In Atmosphere”) and it is used to solve the continuity equation:

∇ · u = 0 (3.68)

and the momentum equation:

∂u

∂t
+ u · ∇u−∇ ·R +∇ ·Rwall = −∇p+ Su (3.69)



134 CHAPTER 3. LES METHODOLOGY FOR DISPERSION IN THE NEUTRAL SBL

where u is the filtered velocity, p is the modified filtered pressure and R is the stress tensor,
which contains the dissipative term and the modelling closure. Rwall is the stress tensor linked
to the wall model and the Su is a momentum source. This expressions are equivalent to Eq.
(3.4) and Eq. (3.13) presented in subsection 3.1.2.

The SGS stress tensor, which is included in the stress tensor R, needs to be modelled to
achieve the closure of the Navier-Stokes equations. The WALE model, described in subsec-
tion 3.1.5, was chosen because its characteristics are more suitable for carrying out a LES
simulation with a rough and with complex geometries (Nicoud and Ducros, 1999).

The wall model wants to influence the tensor R. In fact, it could be expressed as:

∇ · (R + Rwall) (3.70)

Our wall model introduces a shear stress, typical of a rough wall, only in the wall patch. More-
over, it was found that it is important to fix the components parallel to wall of the velocity
u|| in order to apply correctly the wall model. The component perpendicular to the wall is
zero, while the other two components are approximated thanks to the gradients registered
at the upper cells (Han et al., 2016). This effect was introduced by the boundary condition
velocityABLWallFunction. In this way, we arrive to the expression of Rwall:

Rwall =

 0 0 τ13

0 0 τ23

τ13 τ23 0

 =

 0 0 τxz
0 0 τxy
τxz τxy 0

 (3.71)

where the two component of the wall stress tensor are given by the wall model, as observed in
subsection 3.1.10, subsection 3.1.11 and subsection 3.1.12.

Secondly, the solver used to simulate the concentration field is the scalarTransportFOAM.
It is a basic solver which resolves a transport equation for a passive scalar, using a user-specified
velocity field. In our case, the velocity field computed by the ABLSolverLIA is used. The passive
scalar transport equation solved is:

∂c

∂t
+ u · ∇ c = +∇ · (Deff∇c) + Sc (3.72)

where c is the filtered passive scalar, Deff is the effective diffusivity and Sc is the passive scalar
source.

Similarly to Eq. (3.56), the effective diffusivity Deff of the solver is composed by two terms:

Deff = αlν + αtνt

where αl and αt are two coefficients respectively related to the molecular diffusivity and turbulent
diffusivity. In turbulent flows, like in our case, the turbulent diffusivity normally overwhelms
the molecular diffusivity. Therefore, we focused on the estimation of the latter, leaving the
OpenFOAM default value of the first. According to subsection 3.1.13, the turbulent diffusivity
is none other than the SGS diffusivity Dsgs. Consequently:

αt =
1

Scsgs
=

1

Prsgs
(3.73)

After some trials, the SGS Schmidt number Scsgs was estimated equal to 0.25 . In fact, the
modelling closure adopted needs to estimate the appropriate value of Scsgs for our simulation.

Finally, the solver could introduce a source thanks to the term Sc. Therefore, the OpenFOAM
function scalarSemiImplicitSource is used to fix an arbitrary emission mass flow rate (i.e.
0.001 kg/s). Using this function, the passive scalar source is decomposed into a explicit Se and
a linearised implicit contributions:

Sc = Se + Si c (3.74)
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where the coefficient Si needs to be less than or equal to zero. In our case, Se = 0.001 kg/s and
Si = 0.

3.3.4 Boundary and initial conditions

Here we treat the boundary conditions and the initial conditions applied to the precursor,
successor and cyclic-dispersion domain in OpenFOAM.

Table 3.10, Table 3.11 and Table 3.12 show the boundary conditions (BCs) and the initial
conditions (ICs) of the five OpenFOAM input variables of the current simulations, i.e. the wind
velocity u, the modified pressure p, the SGS viscosity nut, the wall model stress tensor Rwall and
the passive scalar c. The two boundary conditions specifically developed for the methodology
are presented here. For an explanation of the standard boundary conditions, it is suggested to
consult the OpenFOAM documentation.

The ground boundary condition employs the velocityABLWallFunction condition (devel-
oped together with the rough wall boundary condition) for u. It fixes to zero the velocity normal
to the wall surface. The specified surface total stress creates the surface drag useful to generate
the velocity profile. However it is required to create an appropriate surface normal velocity gra-
dient at zp,1/2 level so that the SGS model has meaningful gradient to be used in its production
term. It is highlighted that zp is the height of the cell adjacent to the wall and zp,1/2 is zp/2 or
the cell center height (if the cell is an hexahedron). Therefore, we compute the surface normal
gradient at zp level and use the same gradient at zp,1/2 level. It is realised by specifying a surface
parallel velocity that creates a surface normal gradient at zp,1/2 equal to that at zp.

The wall model is responsible of the generation of the surface shear stress at the ground
boundary. In our simulations, the boundary condition related to the Wall Model (WM) (called
MasonCallenNeutral, ThomasWilliamsNeutral or XieElAlNeutral) is applied thanks to the
variable Rwall created only in order to introduce this effect (subsection 3.3.3).

The initial conditions (ICs) of the precursor domain (PD) and of the cyclic-dispersion domain
(CDD) are 0 for all the variable. In fact, any IC between zero and the free-stream condition
could be chosen for all variables. In fact, the flow of the PD is developed from a reasonable IC
thanks to the forcing meanVelocityForce and the boundary conditions applied. At the end,
this combination will develop the desired flow if all the parameters are correctly settled.

Conversely, the ICs of the successor domain (SD) are the flow developed in the precursor
domain (PD) having reached the convergence of the wind field statistics. Indeed, the PD sim-
ulation is stopped only when the main statistics of the flow (i.e. principally mean velocity and
standard deviation of fluctuations) reach a convergence interval which means that the flow is
fully developed.

u p nut Rwall

inlet cyclic cyclic cyclic cyclic
outlet cyclic cyclic cyclic cyclic
side1 cyclic cyclic cyclic cyclic
side2 cyclic cyclic cyclic cyclic

ground velocityABLWallFunction zeroGradient zeroGradient WM
top slip zeroGradient zeroGradient fixedValue
I.C. (0, 0, 0) 0 0 (0, 0, 0, 0, 0, 0)

Table 3.10: Precursor Domain (PD) boundary conditions.
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u p nut Rwall c

inlet timeVaryingMappedFixedValue zeroGradient calculated cyclic fixedValue
outlet inletOutlet fixedValue calculated cyclic inletOutlet
side1 cyclic cyclic cyclic cyclic cyclic
side2 cyclic cyclic cyclic cyclic cyclic

ground velocityABLWallFunction zeroGradient zeroGradient WM zeroGradient
top slip zeroGradient zeroGradient fixedValue zeroGradient
I.C. U (PD) p (PD) nut (PD) Rwall (PD) 0

Table 3.11: Successor Domain (SD) boundary conditions.

u p nut Rwall c

inlet cyclic cyclic cyclic cyclic fixedValue
outlet cyclic cyclic cyclic cyclic inletOutlet
side1 cyclic cyclic cyclic cyclic cyclic
side2 cyclic cyclic cyclic cyclic cyclic

ground velocityABLWallFunction zeroGradient zeroGradient WM zeroGradient
top slip zeroGradient zeroGradient fixedValue zeroGradient
I.C. (0, 0, 0) 0 0 (0, 0, 0, 0, 0, 0) 0

Table 3.12: Cyclic-Dispersion Domain (CDD) boundary conditions.

3.3.5 Numerical schemes

In the current section, the OpenFOAM numerical schemes useful for our simulations are de-
scribed and then the chosen schemes are specified.

From the numerical point of view, the Navier-Stokes equations and the transport of the pas-
sive scalar equation are discretised through a standard Gauss finite volume integration. Gaussian
integration is based on summing values on cell faces, which must be interpolated from cell cen-
tres. For this purpose, a linear interpolation was primarily chosen.

In OpenFOAM, the fvSchemes dictionary in the system directory sets the numerical schemes
for the simulations. Inside this directory, the sub-directory gradSchemes is used to set gradient
terms. The default discretisation scheme that is used for gradient terms is Gauss and the
interpolation scheme is linear. This combination, employed on our simulations, results into
second order scheme.

The sub-directory divSchemes contains divergence terms, i.e. of the form ∇·, excluding
Laplacian terms of the generic form ∇·(Γ∇ ) (here Γ is a generic constant or coefficient). The
current schemes includes both advective flux, e.g. ∇ · (U c), where U provides the advected
flux, and other terms, that are often diffusive in nature, e.g. ∇ · ν(∇U)T . The non-advective
terms generally employ a Gauss linear scheme. In fact this was also our choice. It denotes
a Gauss integration and a linear interpolation, that results into second order and unbounded
behaviour.

The treatment of the advective term is more challenging in CFD and the options are more
diversified. The keyword identifier for the advective terms are usually of the form div(phi,

...), where phi usually denotes the (volumetric) flux of velocity on the cell faces for constant-
density flows and the mass flux for compressible flow, e.g. div(phi, U) is the advective term
of velocity or div(phi, c) is the advective term of the passive scalar. In this case, the schemes
are all based on Gauss integration, using the flux phi and the advected field being interpolated
to the cell faces by one of the selected schemes. Here, we focus on three of them:

• linear: second order, unbounded

• upwind: first-order bounded, typically too inaccurate to be recomended.
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• limitedLinear: linear scheme that limits towards upwind in regions with gradients that
change rapidly. It requires a coefficient, which varies between 0 and 1. The value 1 is
strongest limiting. Conversely, it tends to linear as the coefficient tends to 0.

The advective divergence scheme used for the advective term of velocity is Gauss linear,
i.e. a second order unbounded scheme. Conversely, for the passive scalar transport was used
the Gauss limitedLinear 0.2 scheme, so a second-order unbounded scheme.

Before dealing with the sub-directory laplacianSchemes, it is important to explain the
snGradSchemes sub-directory that contains surface normal gradient terms because they are
required to compute a Laplacian term using Gauss integration. A surface normal gradient is
evaluated at a cell face. It is the component, normal to the face, of the gradient of values at
the centres of 2 cells that the face connects. The basis of the gradient calculation at a face is
to subtract the value at the cell centre on one side of the face from the value in the centre of
the other side and divide by the distance. The calculation is a second order accurate for the
gradient normal to the face, if the vector connecting the cell centres is orthogonal to the face, i.e.
they are at right-angles. The orthogonal scheme makes this. Orthogonality requires a regular
mesh. Nevertheless, our cases could present non-hexahedral cells which does not allow to use
orthogonal scheme. Therefore, to maintain second-order accuracy, an explicit non-orthogonal
correction can be added to the orthogonal component, known as the corrected scheme. It is the
scheme adopted. For the Laplacian term, the Gauss scheme is the only choice of discretisation
and it requires both an interpolation scheme for the diffusion coefficient, i.e. νeff or Deff in our
case, and a surface normal gradient scheme. The selection of these schemes determines a specific
numerical behaviour for our simulations: unbounded, second order and conservative.

Finally the first time derivative (∂/∂t) scheme is specified in the ddtSchemes sub-directory.
There are mainly 4 schemes: Euler, localEuler, CrankNicholson ψ and backward. The
discretisation scheme chosen is the backward scheme, a second order implicit scheme.

3.3.6 Conclusions

In the current section, the computational setting for the LES methodology was defined. Together
with it, a series of physical and numerical criteria have been developed and listed. They allow
us to objectively evaluate our simulation, understanding the possible limits.

Therefore, after the overview of the LES simulation for the dispersion in the neutral SBL,
the presentation and characterisation of the wind tunnel experiment to simulate and the compu-
tational setting based on the developed criteria, the next step is to combine all these concepts to
concretely define the LES methodology. Finally, the methodology will be used to simulate the
Nironi (2013) wind tunnel experiment and carry out the final process of numerical-experimental
comparison and validation. The final section of this chapter, i.e. section 3.4, is focused on this.



138 CHAPTER 3. LES METHODOLOGY FOR DISPERSION IN THE NEUTRAL SBL

3.4 LES methodology, sensitivity study and results

In this part of the thesis, the aim is to simulate the neutral atmospheric boundary layer (ABL)
and the atmospheric dispersion of a passive scalar through an LES approach and validate the
results thanks to a wind tunnel experiment. In the previous sections, it was observed that nu-
merical set-up needs physical and numerical criteria to properly choose the numerical parameters
and to understand the quality and the limits of the choices made. These criteria are well known
by the scientific community but are not always presented explicitly. The lack of explicit criteria
can lead to confusion among researchers (above all between novice ones) who are interested in
this branch. Therefore, the LES methodology developed aims not only to reproduce numerically
the physical phenomena but also to make explicit the main criteria used to parametrise the
numerical model.

The current methodology could be graphically summarised by the diagram presented in
Figure 3.29. Firstly, the input parameters need to be settled thanks to the experimental data
related to the characteristics of the atmospheric flow and of the wall. Then the equations to solve
an incompressible neutral ABL and the transport of a passive scalar are chosen. Consequently,
a SGS model needs to be considered together with the passive scalar SGS model. Moreover, the
roughness wall, typical of atmospheric flows, is not resolved but modelled. In this way, a wall
model needs to be taken into account. Before to launch the simulation, it remains to choose an
adequate mesh and appropriate numerical schemes.

In this process, that will lead to obtain a numerical resolution of the physical problem in
question, it is our intention to emphasise the contribution of the current study to the determina-
tion of the inlet parameters, the implementation of the wall model and the explicit presentation
of the physical criteria that determine the dimension of the domain and the resolution of the
mesh.

Here the main contributions (marked by red in Figure 3.29) are resumed:

1. The determination of the numerical domain is conducted thanks to two types of physical
criteria. The first is related to the flow and was fixed through the Sagaut (2006) sug-
gestions. On the other hand, the second criterion concerns the physical characteristics
of the dispersion plume. Considering and respecting the criteria, the three dimensions
of the domain are fixed (i.e. length L, width W and height H). For more details, see
subsection 3.3.1

2. Considering an homogeneous mesh, the determination of the proper mesh resolution is
not trivial for the physical phenomena under analysis. In this case, four mesh criteria
are involved. The first aims to establish the extension of the inertial subrange and the
dissipation range thanks to the experimental spectrum of the turbulent fluctuations. This
is the region where the LES filter needs to be placed for an adequate resolution of the large
scales. The second criterion is focused on determining the extension of the logarithmic
zone in the inner layer. This zone defines the mesh size acceptable to use a wall model
(WM) based on the wall similarity hypothesis. The extension of the zone could be esti-
mated thanks to classical theoretical considerations or to more recent Marusic et al. (2013)
approach. The third criterion relates the SGS model adopted for filtered passive scalar
equation and its range of validity. In fact, the model based on the subgrid Schmidt number
is valid in the inertial subrange. Finally, the fourth criterion concerns the size of the mesh
suitable for numerically representing the source of the passive scalar. It is important to
consider the real dimension of the source and the appropriate dimension of the cells that
surround it. In order to simulate correctly the passive scalar dispersion near the source,
the cells need to be smaller than the size of the source (at least 10 times smaller). Indeed
it is desired to reproduce the turbulent structures related to small scales, which contribute
to dispersion. The latter criterion penalises the LES methodology when it is applied to
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simulate the dispersion phenomenon in the wind tunnel at low Re number. However, in
a real scenario, the four criteria find can be satisfied by a group of mesh sizes. For more
detail, see subsection 3.3.2.

3. The implementation of the wall model (WM) based on the wall similarity hypothesis was
conducted because no LES rough wall model was available in the version of the CFD
code adopted, i.e. OpenFOAM v1912. It mainly regards the implementation of a wall
shear stress and velocity in the region adjacent to the wall. The effect of the first variable
is introduced in the numerical solver by a variable which is added in the momentum
equations. For more detail, see subsection 3.3.3.

Finally, taking into consideration the validation process, the comparison of the results is
conducted through the spatial and temporal statistics of the velocity field and the temporal
statistics of the concentration fields. Moreover, we want to give some recommendations to
present the results. The velocity field could be shown without any adimensionalisation. In fact,
the numerical simulation can reproduce the wind tunnel experiment at the same scales. The
Reynolds number of the SBL experiments are relatively low and the dimensions of the domain
are reproducible numerically without similarities or other scaling operations. This choice make it
easier to identify any errors resulting from non-compliance with physical and numerical criteria
and to judge the reproducibility of the results. Furthermore, a nondimensional presentation of
the results can mask some important errors and lead to a wrong interpretation of the numerical
simulation. On the other hand, the concentration field needs a convenient adimensionalisation
in order to compare the results and draw physical conclusions. In addition, it could advantage
the identification of errors.

The comparison, the validation, the presentation and the discussion of the results are in-
vestigated in the current section. In subsection 3.4.1, a sensitivity study is conducted in order
to test the physical criteria adopted and support our choices. Firstly, a mesh sensitivity study
is presented. Then, a wall model sensitivity study and an input sensitivity study are reported.
The final part of the chapter is devoted to the comparison and validation of the velocity (subsec-
tion 3.4.2) and concentration (subsection 3.4.3) fields thanks to the Nironi (2013) wind tunnel
experiment and the presentation of the resulting conclusions (section 3.5).
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Figure 3.29: Overview of the LES methodology.
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3.4.1 Sensitivity study

In the current subsection, three sensitivity studies are analysed:

• Mesh sensitivity study.

• Wall model sensitivity study.

• Input parameters sensitivity study.

The aim is to understand the impact of the main contributions of the methodology developed
in the current thesis. Therefore at the beginning of each part, the parameters or characteristics of
the simulation left unchanged and those that have been perturbed or modified will be specified.
The effect of the perturbations on numerical simulations is analysed, while no physical and
numerical interpretation will be dealt with below as this analysis will be reported in the next
subsection.

Moreover, it is important to point out that the statistics of the numerical simulation presented
here are the result of two steps. The first is the flow development step. According to it, the
flow is allowed to develop until a condition in which velocity statistics no longer vary in the
streamwise coordinate. After, we move to the second step, which concerns the sampling of the
statistics. Only at the end, we could have a good quality of the statistics and be sure that the
numerical atmospheric flow is well developed. The numerical results presented in the figures of
this subsection are the result of a time-average ( ) and a spatial-average ( 〈 〉 ). The latter
average is computed along the cross-section of the domain.

Finally, the graphical results are supported by two statistics employed to evaluate the per-
formance of the numerical simulation with respect to the experimental observations. This also
allows to have a quantitative indicator of the errors of the LES methodology parameters when
compared with the experimental data. These statistics are the Mean Relative Error (MRE)
(here expressed in percentages) and the Root Mean Square Error (RMSE). They are computed
thanks to the following expressions:

MRE =
1

Ns

Ns∑
j=1

∣∣∣∣yj − ŷjyj

∣∣∣∣ (3.75)

RMSE =

√√√√ 1

Ns

Ns∑
j=1

(yj − ŷj)2 (3.76)

where y and ŷ are respectively the experimental and numerical statistics in comparison in the
current study, where Ns is the number of samples analysed. For this performance analysis, it
was decided to consider all the experimental points and their respective numerical values in the
interval z < 0.20 m (i.e. z/δ < 0.285). The aim is to consider the lower part of the boundary layer
together with the region where the source is situated (i.e. zh = 0.152 m). As better explained
in the next subsection (subsection 3.4.2), this interval is chosen to compare the profiles because
the experiment develops a neutral SBL only there. In fact, the limited length of the test section
and the inlet conditions do not allow a complete development of desired boundary layer along
the entire height of the domain.
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Mesh sensitivity study

In the current part of the subsection, the mesh sensitivity is analysed. The aim is to study the
influence of mesh size with respect to the whole numerical set-up. It was also desired to choose
one of the analysed meshes to carry out the validation in depth.

In the cases analysed, the wall model used is the ThomasWilliamsNeutral model (Thomas
and Williams, 1999). Whereas, the model inputs are the standard inputs extracted from the
experimental data: Ubulk = 3.68 m/s and z0 = 1.119× 10−4 m. The three meshes studied are:
m24, m12 and m06. The minimum cell dimension of these meshes is respectively 24 mm, 12 mm
and 6 mm. As already mentioned, the ratio between x and z or x and y cell sizes is 1.5 . Moreover,
Table 3.13 resumes the dimensions of the wall adjacent cells in meters and in wall units for the
meshes compared.

The Figure 3.30a and Figure 3.30b shows that finer meshes have a profile 〈ū〉 closer to the
experimental profile. In fact, m06 profile matches better with experiment in the region close to
the wall, while the other numerical profiles move away from the target. This result is supported
by the MRE and RMSE values of Table 3.14a, which point out that m06 mesh has lower errors.
An opposite behaviour is observed in the plot related to 〈u′w′〉. Here, the coarser mesh is closer
to the target in the region adjacent to the wall. According to Table 3.14b, lower errors are
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Figure 3.30: Profile statistics: Mesh sensitivity – Ubulk and z0 reference.
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m24 m12 m06
∆x [m] 0.036 0.018 0.09
∆+

x 460 228 114
∆y [m] 0.024 0.012 0.006
∆+

y 308 144 78

∆z [m] 0.024 0.012 0.006
∆+

z 308 144 78

Table 3.13: Characteristics of the cell adjacent to the wall for the meshes in comparison.

reported by mesh m24. We have chosen to prefer this latter result because the wall model aims
the reproduction of the friction velocity u∗, which is obtained from this profile through a linear
regression. In fact, once the input parameters (i.e. z0 and Ubulk) have been fixed, an specific
value of u∗ is expected. For the Nironi case, the target value of u∗ is 0.187 m/s. The mesh m24
has reported a computational value of the friction velocity of 0.183 m/s. On the other hand,
the meshes m12 and m06 have allowed to obtain respectively 0.176 m/s and 0.171 m/s. Finally,
it is important to specify that the method to compute the friction velocity is bases on a linear
regression of the 〈u′w′〉 profiles. This procedure allow to extrapolate the value of 〈u′w′〉 at the
wall.

Observing Figure 3.30d-Figure 3.30f, the numerical profiles of σ2
u for the different meshes are

centred on the experimental profile, while σ2
v and σ2

w are far from the desired result because the
wall model is not able to reproduce these effects (Thomas and Williams, 1999; Xie et al., 2004b).
Considering the performance statistics (Table 3.14c-Table 3.14e), the σ2

u comparison shows that
the meshes m12 and m06 have better performances w.r.t. m24 mesh. Nevertheless, the lower
errors are registered by the m24 mesh for σ2

v and σ2
w.

The current comparison confirms that a finer mesh could degrade the accuracy of the results.
In fact, the mesh m06 present a profile 〈u′w′〉 and a value of u∗ which are not satisfactory.
Whereas, at the beginning we thought that a finer mesh would guarantee a better result. In
fact, for an LES simulation without wall model, results are expected to improve with mesh
refinement until they are unchanged and no longer affected by mesh refinement. The main
reason of the behaviour observed in the current study is related to the wall model. The three
meshes are characterised by a cell adjacent to the wall which are in the logarithmic region
according to the classical theory (Pope, 2000c). Nevertheless, today we know that it is possible
to estimate better the log-region following the Marusic et al. (2013) relation and method. In
this case, mesh m06 is outside the log-region and could present problems linked to the violation

(a) 〈ū〉

m24 m12 m06

MRE [%] 6.53 4.05 2.71

RMSE [m s−1] 0.2362 0.1634 0.1017

(b) 〈u′w′〉

m24 m12 m06

MRE [%] 4.82 9.78 14.51

RMSE [m2s−2] 0.0021 0.0034 0.0047

(c) σ2
u

m24 m12 m06

MRE [%] 11.52 6.90 6.01

RMSE [m2s−2] 0.0193 0.0137 0.0097

(d) σ2
v

m24 m12 m06

MRE [%] 23.91 32.41 33.93

RMSE [m2s−2] 0.0209 0.0269 0.0276

(e) σ2
w

m24 m12 m06

MRE [%] 20.54 27.88 29.97

RMSE [m2s−2] 0.0107 0.0145 0.0153

Table 3.14: Performance statistics for the mesh sensitivity case. Each sub-table shows the MRE
and RMSE values for each flow field statistics under analysis.
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of the validity criterion of the wall model. Only meshes m24 satisfy completely the criterion (for
more details see subsection 3.3.2). This explains why the m24 mesh has better performance in
the estimation of u∗ and the finer mesh performance degradation. Although the m12 mesh does
not fully respect the previously mentioned criteria but is very close to the boarder of the log-
region defined with the Marusic relation, it will be taken into account in the following sensitivity
studies and in the validation of the concentration field. In fact, a finer mesh would be more
appropriate to dispersion. We need to find a balance between the validity criteria and the more
appropriate mesh for dispersion, which represents our final goal. This choice will be discussed
in more details in the following subsections.

Wall model sensitivity study

Here, the wall model sensitivity is analysed. The three wall models, introduced in subsec-
tion 3.1.8, are compared in order to illustrate their influence on the methodology and choose
the more appropriated wall model.

In the current study, the mesh m12 was chosen and the methodology inputs are: Ubulk =
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Figure 3.31: Profile statistics: Wall model sensitivity – Ubulk (+8 % w.r.t. reference) and z0

reference.
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3.974 m/s (+8 % w.r.t. reference) and z0 = 1.119× 10−4 m. Although, mesh m12 does not fully
respect the mesh criterion, explained in subsection 3.3.2, it is close to the lower limit. However,
as we will see in sensitivity study dedicated to the inputs, the mesh m12 can exhibit similar
performance than mesh m24 thanks to minimal variations on the inputs (i.e. perturbation
of 5 %). Moreover, mesh m12 is preferable to the dispersion of the passive scalar because
smaller flow scales are resolved and the difference between the dimension of the numerical and
experimental sources are less pronounced.

Therefore, the current sensitivity study analyses the following wall models:

• MasonCallenNeutral with the ID “MasCal”.

• ThomasWilliamsNeutral with the ID “ThoWil”.

• XieElAlNeutral with the ID “Xie”.

The profiles of the wind field statistics compared are taken at the same position, i.e. x =
2.52 m (x/δ = 3.6 ), which corresponds to the middle of the domain. Figure 3.31a and Fig-
ure 3.31b show the similar behaviour of the streamwise mean velocity for all the wall models.
This is confirmed by Table 3.15a, which presents similar values of MRE and RMSE for the three
wall models. On the other hand, Figure 3.31c highlights that there are some differences between
the three cases for the Reynolds shear stress 〈u′w′〉. Both MasCal and ThoWil are closer to the
experimental profile in the bottom part of the domain. Xie profile presents a good result but less
accurate. Table 3.15b reflects this behaviour, e.g. the minimum MRE is reported by MasCal
while the worst by Xie. In fact, Xie results move away from the target for 〈u′w′〉 and σ2

u profiles,
see also Figure 3.31d and Table 3.15c. A similar behaviour is reproduced in Figure 3.31e and
Figure 3.31f but, as already mentioned, here the results are also influenced by the limits of the
model. However, only Xie reports MRE values greater than 21 %. Whereas, the lower values of
MRE and RMSE belong to ThoWil wall model.

In general, the performance of the three models are similar because they have a similar
behaviour and are very close to the experimental profiles. For the following analyses and valida-
tion, the wall model ThomasWilliamsNeutral was chosen because, in our opinion, its physically
considerations can be better explained by the theory of log-law and measurements.

(a) 〈ū〉

MasCal ThoWil Xie

MRE [%] 4.30 3.94 5.24

RMSE [m s−1] 0.1371 0.1266 0.1646

(b) 〈u′w′〉

MasCal ThoWil Xie

MRE [%] 4.19 5.79 9.44

RMSE [m2s−2] 0.0018 0.0025 0.0032

(c) σ2
u

MasCal ThoWil Xie

MRE [%] 7.59 6.45 14.62

RMSE [m2s−2] 0.0147 0.0180 0.0266

(d) σ2
v

MasCal ThoWil Xie

MRE [%] 20.08 15.70 23.84

RMSE [m2s−2] 0.0186 0.0148 0.0214

(e) σ2
w

MasCal ThoWil Xie

MRE [%] 18.24 12.93 22.53435

RMSE [m2s−2] 0.0104 0.0078 0.0125

Table 3.15: Performance statistics for the wall model sensitivity case. Each sub-table shows the
MRE and RMSE values for each flow field statistics under analysis.
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Input sensitivity study

In order to study the sensitivity of the LES methodology with respect to its inputs, the Thomas
and Williams (1999) model and the m12 mesh were chosen. The inputs, extracted by the Nironi
et al. (2015) experimental data, are considered as the reference inputs: Ubulk = 3.68 m/s and
z0 = 1.119× 10−4 m.

In this section, our aim is to perturb the reference values of the inputs. In fact, as highlighted
by Table 3.16, the reference values of Ubulk and z0 are perturbed through an intensity propor-
tional to +5 %, +8 % and +10 % of their original values. There is only a particular perturbation
that considered the perturbation of ln(z0) instead of z0. In this case, a perturbation of +10 % is
applied to ln(z0). The perturbations adopted are only positive because the use of the m12 mesh
and the reference inputs tends to underestimate the u∗ value. Therefore, the present study also
focuses on understanding whether it is possible to alleviate the underestimation of the friction
velocity with an appropriate and justified combination of Ubulk and z0 close to the reference
values.

Four perturbed cases are considered, as resumed by Table 3.16. The following parts of this
subsection will present these cases. The perturbed input will be made explicit. Finally, some
useful information will be exposed thanks to this sensitivity study.

ID Ubulk [m/s] z0 [m]
P1 +5 %, +8 % and +10 % w.r.t. ref. Fixed ref. value
P2 +5 %, +8 % and +10 % w.r.t. ref. Fixed +5 % w.r.t. ref.
P3 +5 %, +8 % and +10 % w.r.t. ref. Fixed +10 % w.r.t. ref.
P4 Fixed +5 % w.r.t. ref. +5 %, +8 % +10 % w.r.t. ref. and +10 % of ln(z0) ref.

Table 3.16: Table of perturbations of the input parameters Ubulk and z0.

Perturbation of Ubulk

Firstly, in the case P1, the zref = 1.119× 10−4 m is fixed and Ubulk is perturbed of +5 %, +8 %
and +10 % with respect to Ubulk = 3.68 m/s. Respectively it results in U5 = 3.86 m/s, U8 =
3.97 m/s and U10 = 4.04 m/s.

Observing the bottom part of the domain, Figure 3.32a and Figure 3.32b illustrate that all
the numerical profiles match with the experimental one. A better representation of the lower
part of the profiles is obtained thanks to U8 or, especially, U5 profiles. In fact, they report the
lower values of MRE and RMSE of Table 3.17a. If considering the other figures, U5 achieves a
better compromise between 〈u′w′〉 and 〈ū〉 profiles. In fact, it matches better all the experimental

(a) 〈ū〉

Ref U5-R U8-R U10-R

MRE [%] 4.48 2.47 3.94 5.24

RMSE [m s−1] 0.1825 0.0820 0.1266 0.1594

(b) 〈u′w′〉

Ref U5-R U8-R U10-R

MRE [%] 12.55 3.84 5.79 7.71

RMSE [m2s−2] 0.0043 0.0017 0.0025 0.0030

(c) σ2
u

Ref U5-R U8-R U10-R

MRE [%] 13.90 3.92 8.09 6.34

RMSE [m2s−2] 0.0231 0.0096 0.0163 0.0152

(d) σ2
v

Ref U5-R U8-R U10-R

MRE [%] 34.05 25.83 22.08 20.43

RMSE [m2s−2] 0.0281 0.0222 0.0191 0.0177

(e) σ2
w

Ref U5-R U8-R U10-R

MRE [%] 31.32 21.00 16.70 14.72

RMSE [m2s−2] 0.0161 0.0113 0.0093 0.0082

Table 3.17: Performance statistics for the P1 sensitivity case. Each sub-table shows the MRE
and RMSE values for each flow field statistics under analysis.
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profiles presented between Figure 3.32a and Figure 3.32d. Moreover, the values of MRE and
RMSE reflect the previous statement (Table 3.17a-Table 3.17c). Only the results relative to σ2

v

and σ2
w go against the trend but here the limits of the wall model are the cause of this behaviour.

(a)

1 2 3 4 5
u [m/s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z[
m

]

x = 2.52 m -- m12_Ref
x = 2.52 m -- m12_U5-R
x = 2.52 m -- m12_U8-R
x = 2.52 m -- m12_U10-R
Exp

(b)

1 2 3 4
u [m/s]

10 3

10 2

10 1

z[
m

]

x = 2.52 m -- m12_Ref
x = 2.52 m -- m12_U5-R
x = 2.52 m -- m12_U8-R
x = 2.52 m -- m12_U10-R
Exp

(c)

0.04 0.03 0.02 0.01 0.00
u′w′ [m2/s2]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z[
m

]

x = 2.52 m -- m12_Ref
x = 2.52 m -- m12_U5-R
x = 2.52 m -- m12_U8-R
x = 2.52 m -- m12_U10-R
Exp

(d)

0.0 0.1 0.2 0.3
2
u [m2/s2]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z[
m

]

x = 2.52 m -- m12_Ref
x = 2.52 m -- m12_U5-R
x = 2.52 m -- m12_U8-R
x = 2.52 m -- m12_U10-R
Exp

(e)

0.000 0.025 0.050 0.075 0.100 0.125
2
v [m2/s2]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z[
m

]

x = 2.52 m -- m12_Ref
x = 2.52 m -- m12_U5-R
x = 2.52 m -- m12_U8-R
x = 2.52 m -- m12_U10-R
Exp

(f)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
2
w [m2/s2]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z[
m

]
x = 2.52 m -- m12_Ref
x = 2.52 m -- m12_U5-R
x = 2.52 m -- m12_U8-R
x = 2.52 m -- m12_U10-R
Exp

Figure 3.32: Profile statistics: Ubulk perturbed and z0 fixed.

The case P2 takes into account z0 = 1.174× 10−4 m fixed, i.e. perturbed of +5 % and
identified by z5, and two perturbations of Ubulk: +5 % and +10 % with respect to Ubulk =
3.68 m/s. These two perturbations results into U5 = 3.86 m/s and U10 = 4.04 m/s, while R =
3.68 m/s.

Figure 3.33 shows that the profiles R-z5 does not match the experimental profiles as well
as the perturbed cases. For U5 and U10 perturbations, 〈ū〉 profile is graphically in agreement
with the experimental profile up to a height where the source is located. Nevertheless, the lower
values of MRE and RMSE are reported by the cases R and U5. However, Figure 3.33c and
Figure 3.33d point out that the perturbed profiles are able to better reproduce the trend of the
experimental one for 〈u′w′〉 and σ2

u profiles. The case U5 has minimum values of the performance
statistics, as shown by Table 3.18b and Table 3.18c. Again the results relative to σ2

v and σ2
w

have the same behaviour as in the P1 perturbation case.
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(a) 〈ū〉

R-z5 U5-z5 U10-z5

MRE [%] 4.07 2.28 5.53

RMSE [m s−1] 0.1711 0.0764 0.1664

(b) 〈u′w′〉

R-z5 U5-z5 U10-z5

MRE [%] 12.29 4.06 8.38

RMSE [m2s−2] 0.0041 0.0016 0.0032

(c) σ2
u

R-z5 U5-z5 U10-z5

MRE [%] 16.51 4.83 8.82

RMSE [m2s−2] 0.0263 0.0115 0.0184

(d) σ2
v

R-z5 U5-z5 U10-z5

MRE [%] 33.63 25.19 20.53

RMSE [m2s−2] 0.0278 0.0217 0.0179

(e) σ2
w

R-z5 U5-z5 U10-z5

MRE [%] 32.20 20.33 14.45

RMSE [m2s−2] 0.0165 0.0110 0.0081

Table 3.18: Performance statistics for the P2 sensitivity case. Each sub-table shows the MRE
and RMSE values for each flow field statistics under analysis.
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Figure 3.33: Profile statistics: Ubulk perturbed and z0 = 1.174× 10−4 m fixed.
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Figure 3.34: Profile statistics: Ubulk perturbed and z0 = 1.230× 10−4 m fixed.

(a) 〈ū〉

R-z10 U5-z10 U10-z10

MRE [%] 4.72 2.19 6.00

RMSE [m s−1] 0.1873 0.0729 0.1786

(b) 〈u′w′〉

R-z10 U5-z10 U10-z10

MRE [%] 11.06 4.92 11.33

RMSE [m2s−2] 0.0038 0.0019 0.0040

(c) σ2
u

R-z10 U5-z10 U10-z10

MRE [%] 5.79 10.93 14.93

RMSE [m2s−2] 0.0255 0.0175 0.0263

(d) σ2
v

R-z10 U5-z10 U10-z10

MRE [%] 32.48 25.17 19.55

RMSE [m2s−2] 0.0269 0.0217 0.0172

(e) σ2
w

R-z10 U5-z10 U10-z10

MRE [%] 31.49 19.86 13.60

RMSE [m2s−2] 0.0162 0.0107 0.0076

Table 3.19: Performance statistics for the P3 sensitivity case. Each sub-table shows the MRE
and RMSE values for each flow field statistics under analysis.
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For the third case P3, the aerodynamic roughness is perturbed of +10 % resulting into z0 =
1.230× 10−4 m. The latter is fixed over all the simulations, while Ubulk is perturbed of +5 %
and +10 %. The bulk velocities are respectively U5 = 3.86 m/s and U10 = 4.04 m/s.

The comparison of the statistics tell us that the perturbation R-z10 and U10-z10 underes-
timate or overestimate the experimental statistics, as we could observe from Figure 3.34 and
Table 3.19. Therefore, the perturbation U5-z10 presents better results matching the experi-
mental profiles. Only the profile σ2

u of Figure 3.34d results unsatisfactory with respect to the
cases presented in previous comparisons. This is confirmed by Table 3.19c which shows that
case U5-z10 has better performance statistics.

Considering an overview of all cases in which Ubulk is perturbed, we could consider that all
the cases studied give acceptable results. In confirmation of this, if considering the statistic
MRE of 〈ū〉, 〈u′w′〉 and σ2

u, it is less than 20 %. Some cases could perform better than others
but the difference is minimal.

Perturbation of z0

The final comparison, i.e. case P4, is characterised by the Ubulk = 3.843 m/s fixed (+5%
w.r.t. reference) and the perturbations of +5 %, +10 % with respect to the reference aero-
dynamic roughness zref = 1.119× 10−04 m and +10 % with respect to the ln(zref). The aerody-
namic roughness results into R = zref, z5 = 1.174× 10−4 m, z10 = 1.230× 10−4 m and lz10 =
2.779× 10−4 m. The latter could be seen also as perturbation of +148 % w.r.t. the reference
value zref. Therefore, the latter is a big perturbation.

Figure 3.35a shows that there are not particular difference for the 〈ū〉 between the different
numerical profiles. The performance statistics are similar, as illustrated by Table 3.20a. A
similar behaviour is observed for the other profiles, i.e. observed in Figure 3.35c-Figure 3.35f
and Table 3.20b-Table 3.20e. Only the high perturbed profile point out a completely different
performance.

The previous considerations lead us to affirm that the methodology is insensitive to small
perturbations of z0 while it is only affected by high amplitude perturbations.

(a) 〈ū〉

U5-R U5-z5 U5-z10 U5-lz10

MRE [%] 2.47 2.28 2.19 2.21

RMSE [m s−1] 0.0819 0.0764 0.0729 0.0798

(b) 〈u′w′〉

U5-R U5-z5 U5-z10 U5-lz10

MRE [%] 3.84 4.06 4.92 19.56

RMSE [m2s−2] 0.0016 0.0016 0.0019 0.0064

(c) σ2
u

U5-R U5-z5 U5-z10 U5-lz10

MRE [%] 3.92 4.83 10.93 23.12

RMSE [m2s−2] 0.0096 0.0115 0.0175 0.0383

(d) σ2
v

U5-R U5-z5 U5-z10 U5-lz10

MRE [%] 25.83 25.18 25.17 15.06

RMSE [m2s−2] 0.0222 0.0217 0.0217 0.0132

(e) σ2
w

U5-R U5-z5 U5-z10 U5-lz10

MRE [%] 21.00 20.33 19.86 9.66

RMSE [m2s−2] 0.0113 0.0110 0.0107 0.0052

Table 3.20: Performance statistics for the P4 sensitivity case. Each sub-table shows the MRE
and RMSE values for each flow field statistics under analysis.
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Figure 3.35: Profile statistics: Ubulk = 3.843 m/s fixed and z0 perturbed.

Conclusion

The sensitivity study allows us to conclude that:

• The study of the mesh sensitivity highlights that fine meshes could degrade the results
because they do not respect the criterion according to which the cell adjacent to the wall
must be in the logarithmic zone of the boundary layer. Moreover, it is important to
remember that the physical roughness size is 0.020 m. A cell smaller than the physical
roughness does not have any physical meaning and violates the validity assumptions of
the wall models employed in the current study. This is a problem typical of low-Reynolds
number flows, as in the case of wind tunnels experiments.

Nevertheless, the intermediate mesh (i.e. m12) is chosen to continue the sensitivity stud-
ies and to the final comparison and validation. This choice was made to try to have a
compromise between the performance of the flow field and of the passive scalar field of
the LES simulation. In fact, finer meshes are more suitable for calculating the numerical
simulation of dispersion.
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• The sensitivity with respect to the three wall models analysed shows that all the mod-
els are capable to match the experimental statistics, though some of them shows better
performances and lends better to physical interpretations.

• The perturbation of Ubulk influenced all the statistics analysed in this study. It could
amplify or reduce the effect given by the joint perturbation of z0. Nevertheless, it is
possible to consider that all the profiles match the trend of the experimental profiles. The
only exception regards the statistics that cannot be reproduced due to the limits of the
wall model family considered. This is the case of σ2

v and σ2
w.

• On the other hand, the perturbation of z0 does not significantly influence the profile 〈ū〉,
once the wall model, Ubulk and the type of mesh are fixed. In this case, only the other
statistics are influenced by the perturbation. These statistics present acceptable behaviours
as long as the perturbation is small.

3.4.2 Wind field comparison and validation

Thanks to the sensitivity study, it was possible to choose a single simulation case for validating
the methodology. In fact, the case m12 U5-z5 was selected. The current simulation is slightly
different than the one used for the sensitivity study. The main difference is due to the height of
the numerical domain, which is H = 0.726 m, i.e. 1.028δ m. The mesh m12 is used, while the
Ubulk = 3.84 m/s and z0 = 1.142× 10−4 m are adopted as inputs of the methodology. The latter
inputs are both perturbed of +5 % w.r.t. its reference values, i.e. 3.66 m/s and 1.088× 10−4 m.
Moreover, in this final case, the coefficient Cw of the SGS model, i.e. the WALE model, is modi-
fied. The value used in the sensitivity study was 0.325, which is the default value in OpenFOAM.
Nevertheless, after a trial-and-error approach, here we employ Cw = 0.495 (subsection 3.1.5).
This value helps to improve the lateral and vertical turbulent fluctuation. It means that it
contributes to improve the wall model performance. The changes made on the final case are
only the consequence of a greater familiarity with the methodology and the choice of the best
possible parameters in compliance with the criteria introduced by the LES methodology and
the limits found. The final aim is to have a flow field that allows the dispersion of the passive
scalar in the best condition.

The domain used for the simulation is the cyclic-dispersion domain (CDD) because this
domain could allow to save computational time and resources for dispersion (subsection 3.1.7).
Thanks to preliminary studies on the development of the boundary layer and the convergence of
statistics, the turbulent flow was developed in a simulation of 300 s with a time step of 0.0025 s
and a maximum Courant number of 0.80 . Whereas, the statistics are computed thanks to a
subsequent simulation of 300 s with the same time step. The latter simulation was also used for
the sampling procedure useful to compute the spectra. The computational time and resources
required for the latter simulation are expressed in Table 3.21. Moreover, writing each time step
to disk takes approximately 601 MB. It highlights how important it is to organise the results
analysis procedure in advance. The storage space may not be enough if a large number of
time steps are saved on the disk. This condition is even more critical in the case of complex
simulations.

Physical time CPU Cores Job time

300 s Bi-Intel® Xeon® Intel® Gold 6226R @ 2.90GHz 64 11 h 10 m

Table 3.21: Computation time and resources for 300 s of simulation with 64 cores.

Moving on to the analysis of the results, Figure 3.36 presents the wind field statistics of the
numerical and experimental vertical profiles. The numerical profiles are sampled at different
distances from inlet boundary: x = 6.00× 10−3 m, 1.26 m and 2.52 m (i.e. x/δ = 8.57× 10−3 ,
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1.80 and 3.60 ). The numerical profile statistics are conserved along the domain. The cyclic
boundary condition contributes to the optimal conservation of the profiles, as expected from
precursor or cyclic-dispersion domain in a precursor-successor approach.

The validation of the wind field take place in the bottom part of the boundary layer. In
fact, as already discussed in subsection 3.2.2, the experimental velocity profile fits a logarithmic
profile only in a region that slightly exceeds the extend of the inertial region, i.e. z/δ < 0.285
or z < 0.2 m. This region, also known as surface boundary layer, is highlighted by the piece of
experimental curve denoted as “Nir. Exp. Val.” in Figure 3.36. Furthermore, it is important
to highlight that a comparison between the numerical and experimental profiles on the whole
boundary layer is not possible due to the way in which the experimental boundary layer is
generated (see Figure 3.37). The test section of the wind tunnel has longitudinal limits that
does not properly allow to develop a boundary layer without the support of the Irwin spires at
the beginning of the test section. The latter contribute to accelerate the development of the
boundary layer. Nevertheless, it could not reach the same numerical characteristics. In fact,
the numerical boundary layer develops long enough (thanks to periodic boundary conditions)
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Figure 3.36: Wind field statistics of the final case and comparison with the Nironi (2013) exper-
imental data. The validation of the methodology occurs for z < 0.2 m, i.e. z/δ < 0.285 .



154 CHAPTER 3. LES METHODOLOGY FOR DISPERSION IN THE NEUTRAL SBL

〈ū〉 〈u′w′〉 σ2
u σ2

v σ2
w

MRE 3.32 % 3.70 % 6.31 % 14.91 % 16.48 %

RMSE 0.1074 m s−1 0.0015 m2s−2 0.0154 m2s−2 0.0141 m2s−2 0.0112 m2s−2

Table 3.22: Performance statistics for the final case.

to have a logarithmic streamwise mean velocity profile along the entire height of the domain
(see Figure 3.36a). The experimental profile does not have the same characteristics but the
logarithmic profile is developed in the region close to the wall, as previously cited and as we will
see from the following comparison.

Figure 3.36 shows a good match between the numerical and experimental profiles in the bot-
tom part of the boundary layer. Figure 3.36a and Figure 3.36b illustrate the mean wind profile
〈ū〉. The zoom in the logarithmic region underlines the expected result. Moreover, Figure 3.36c
reports the mean Reynolds shear stress profile 〈u′w′〉, which reproduces the experimental trend
in the validation region and beyond it. This numerical profile allow to compute the friction
velocity u∗, which is a result of the simulation and not an input, through a linear regression
procedure. In the latter procedure, the bottom peak is not considered as it is judged as a nu-
merical effect of the wall model. Consequently, the LES friction velocity is equal to 0.188 m/s,
while the experimental one is 0.187 m/s. This result confirms the good performance of the wall
model.

Then, Figure 3.36d illustrates the streamwise velocity variance σ2
u. The numerical and

experimental profiles have a similar correspondence to that found for the shear stress profiles.
Finally, the Figure 3.36e and Figure 3.36f highlight that the numerical profiles of the spanwise
σ2
v and vertical velocity variance σ2

w tend to underestimate or overestimate the experimental
profiles. The reason is related to the type of wall model adopted. In our case, Thomas and
Williams (1999) wall model is not able to accurately simulate these profiles. Nevertheless, the
Cw parameter adopted here has limited the errors of lateral and vertical turbulent fluctuations.
If not alleviated, this particularity could determine a lower plume spread for the numerical
simulation, as we will discuss in the next section.

The previous results are supported by the performance statistics computed in the lower part
of the boundary layer (i.e. z/δ < 0.285 ). Table 3.22 highlights the good performance of the
simulation for the 〈ū〉, 〈u′w′〉 and σ2

u profiles. Whereas higher errors are reported by σ2
v and σ2

w,
but they are lower than the values registered in the sensitivity cases. The similar simulation in
the sensitivity study, which used Cw = 0.32, has reported MRE values higher than 20 % (see
Table 3.18) against 14.91 % and 16.48 % of the current simulation.
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Figure 3.37: Sketch of the Irwin spire and roughness influence on the development of the exper-
imental boundary layer.
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Spectrum

A sample point was used to record the instantaneous velocity at a precise position and then
compute the numerical spectrum. The position of the sample point is shown in Table 3.23. It
corresponds to the position where the numerical source is located. In this way, the experimental
spectra presented in subsection 3.2.2 could be compared with the current numerical spectra.

Figure 3.38 point out the spectrum E(k) for the fluctuations u′, v′ and w′ together with the
−5/3-law curve, which identifies the inertial subrange. The spectrum of the streamwise fluctu-
ations matches the experimental spectrum until the filter delimited by the cut-off wavenumber
kc = 72.80 m−1. Whereas the v′ and w′ spectrum reproduce their relative spectra less well. This
behaviour is supported by the mean relative error (MRE) derived from the comparison of the
integration of the numerical and experimental curves, shown in Table 3.24. As expected after
the comparison of the flow statistics, MRE[E(k)u] presents a better performance with a value of
11.86 %, while the values of MRE[E(k)v] and MRE[E(k)w] exceed 20 %. Lastly, it is important
to highlight that the numerical spectra respect the −5/3-law as well as the experimental ones.
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Figure 3.38: Velocity field spectrum for the case final comparison. Figure (a), (b) and (c) shows
respectively the spectrum of u′, v′ and w′. They illustrate also the −5/3 law and the cut-off
wavenumber of the LES filter.

xsam 0.747 m

ysam 0.723 m

zsam 0.152 m

Table 3.23: Point sample position, i.e. source position.

MRE[E(k)u] 11.86 %

MRE[E(k)v] 34.66 %

MRE[E(k)w] 22.19 %

Table 3.24: Spectrum errors due to the comparison with experimental data for the three spectra.
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3.4.3 Concentration field comparison and validation

In the current subsection, the numerical and experimental concentration fields are compared with
the aim of validating the LES methodology. Therefore, the statistics of the concentration field,
the spectrum of the concentration fluctuations and the probability density functions (PDFs) are
analysed below.

As mentioned in the previous subsection, the domain used for the simulation is the cyclic-
dispersion domain (CDD). Since the geometry of the experiment is simple being free of obstacles,
this approach saves computational time (subsection 3.1.7). A simulation of 300 s with a time step
of 0.001 s and a Courant number of 0.33 is conducted to compute the statistics and sampling
the instantaneous field to derive the spectrum and the probability density functions (PDFs).
This simulation requires higher computational time than the wind field simulation, as shown in
Table 3.25. The main reason is the smaller time step and the use of more monitoring points which
write each time step to the disk. In fact, writing each time step to disk takes approximately
726 MB, while the data generated for the monitoring points for the whole simulation is 360 MB.

Physical time CPU Cores Job time

300 s Bi-Intel® Xeon® Intel® Gold 6226R @ 2.90GHz 64 34 h 30 m

Table 3.25: Computational time and resources for 300 s of simulation with 64 cores.

Before to present the results, it is useful to recall the difficulties that we have not been able
to overcome. Firstly, as mentioned in subsection 3.3.2, the mesh criteria is not fully respected.
The constraints related to the dimension and the cell sizes of the source have been violated in the
current simulation. The experimental source dimension is σ0,exp = 6 mm, while the numerical
one is is σ0,m12 = 12 mm. For smaller sources, it implies that the high order statistics (e.g. the
standard deviation σ∗c ) will have higher values close to the source. This difference should diminish
moving downwind and finally vanish in the far field. Regarding the size of the source cell, the
current simulation used only one cell to define the source. The related constraint suggests to
use at least 10 cells to define the source. Nevertheless, following the previous constraint means
violating other criteria (e.g. wall model, LES filter and SGS model criteria). Consequently,
choosing to have only one cell implies that the flow at the scale of the source is not resolved and
needs an interpretation.

In addition to previous consideration, the case chosen to simulate the wind field presents
some limits related to the wall model. In fact, numerical σ2

v and σ2
w are not able to reproduce

the experiment in the validation region (i.e. z/δ < 0.285 ), while the other statistics match better
the experimental results. Finally, it is important to consider that the SGS Schmidt number Scsgs

chosen should be adapted to the simulation. An imprecise adaptation could play on the role
that the SGS diffusivity Dsgs has in the far field.

In the following, two statistics of the concentration field are analysed: the mean concentration
and the standard deviation. Then, spectrum of the concentration fluctuations in the far field is
reported. The final part of this subsection is dedicated to the PDFs of the concentration field.

Mean concentration

The crosswind and vertical profiles of the mean concentration c̄ at various downwind distances
are shown in Figure 3.39 and Figure 3.40. The downwind positions of the profiles are 0.25 m,
0.50 m, 1.00 m, 2.00 m, 3.00 m and 4.00 m (i.e. x/δ = 0.357 , 0.714 , 1.428 , 2.857 , 4.285 and
5.714 ). The concentrations are adimensionalised, i.e. c∗ = c (ūs δ

2/Q̄). As already mentioned,
this process facilitates the comparison between numerical and experimental profiles.

Firstly, it is important to observe that the LES profiles are fitted with a Gaussian distribution
of the type of Eq. (3.65) and Eq. (3.66) respectively for the crosswind and vertical profiles. A
similar procedure was conducted for the experimental profiles in subsection 3.2.3. This fitting
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procedure estimates also the plume spread σy and σz. The Gauss distribution could help to
explain the overestimation of the maximum concentration of the c̄∗ profiles. In fact, it is inversely
proportional to σy and σz (see Eq. (3.65) and Eq. (3.66)), which are underestimated.

In the far field, the LES simulation overestimates the experimental mean concentration field.
One of the reasons for this behaviour is due to the trend of the vertical and transversal plume
spreading, as shown by Figure 3.41. Both numerical plume spreads are underestimated in the
far field. In large part, this could be explained by the mismatch between the numerical and
experimental profiles of σ2

v and σ2
w (as observed in Figure 3.36e and Figure 3.36f). In fact, Eq.

(1.64) shows the linear relation between the spreading σxi and the velocity fluctuations σui in
the same direction (subsection 1.1.5). Figure 3.41 shows that the experimental-numerical ratio
of σv and σy are close in the far field. This could confirm that in the cross-section σ2

v is the main
cause of the underestimation of the spread σy. A similar explanation is given for the σz spread.

Finally, in the region close to the source, the vertical and transversal profiles at x = 0.25 m
underestimate the experimental profiles. This was predictable as the numerical source is repre-
sented with a coarse mesh. Nevertheless, up to the profiles at 2.00 m, the LES results reproduce
well the progress of the experiment.
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Figure 3.39: Crosswind profiles of nondimensional mean concentration for the m12 U5-z5 case.
The profiles were measured and sampled at the source height z/δ = 0.217 . The numerical
profiles were fitted with a Gaussian distribution of the type of Eq. (3.65).
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Figure 3.40: Vertical profiles of nondimensional mean concentration for the m12 U5-z5 case.
The profiles were measured and sampled on the plume axis. The numerical profiles were fitted
with a Gaussian distribution of the type of Eq. (3.66).
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Figure 3.41: (a) Plume spread in transversal and vertical directions for LES and experiment.
(b) σy, σz, σv and σw ratio between experiment and LES values.

Standard deviation

Figure 3.42 and Figure 3.43 illustrate the crosswind and vertical profiles of nondimensional
concentration standard deviation σ∗c for the LES case and the experimental case.

Here, one of the main reasons for the mismatch is the different dimension of the source.
The experimental source is smaller than the numerical one. This explains the underestimation
of the numerical transversal and vertical profiles of σ∗c until x = 2.00 m, as observed from the
Figure 3.42 and Figure 3.43. On the other hand, in the far field, the numerical standard deviation
is closer to the experimental one. As already mentioned, a similar behaviour is presented by
Nironi et al. (2015) when two sources of different diameter are compared. Similarly to our case,
one source is double the other. The larger source has greater values of σ∗c than the smaller one
in the region close to the source, while the difference decreases in the far field.
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Figure 3.42: Crosswind profiles of nondimensional concentration standard deviation for the
m12 U5-z5 case. The profiles were measured and sampled at the source height z/δ = 0.217 .
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Figure 3.43: Vertical profiles of nondimensional concentration standard deviation for the
m12 U5-z5 case. The profiles were measured and sampled on the plume axis.

Spectrum

The non dimensional spectrum of the concentration fluctuations, normalised as E∗ = Eδ/σ2
c and

as a funcion of kδ, is shown in Figure 3.44 together with the LES and experimental fluctuations
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signals over 60 s. The position of the sampling point is presented in Table 3.26. Therefore,
the sampling point is located at 4.00 m (i.e. x/δ = 5.714 ) from the source. The LES spectrum
corresponds to the experimental one up to the cut-off wavenumber and the error of the spectrum
is 11.61 %, see Table 3.27. The error is not due to the difference between the spectra at the high
wavenumbers. Conversely, the region is to be found in the most energetic region, i.e. at low
wavenumber values.
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Figure 3.44: Experimental and LES concentration signal (a) and spectrum of concentration
fluctuations (b) on the plume center line for the case m12 U5-z5 and the wind tunnel experiment.
The sampling position is x = 4.00 m (i.e. x/δ = 5.714 ).

xsam 3.747 m i.e. 4.00 m from the source.

ysam 0.723 m i.e. in the middle of the domain.

zsam 0.152 m

Table 3.26: Point sample position for the concentration spectrum.

Err[E(k)c] 11.61 %

Table 3.27: Concentration spectrum error.

Probability density function (PDF)

The experimental and numerical PDFs, computed thanks to sampling points situated on the
plume centre-line and at the source height at various distance from the source, are presented in
Figure 3.45. In this figure, it is possible to observe the LES PDF, the Nironi experimental PDF
and the Gamma distribution (Γ), which best fits the LES PDF.

The concentration PDF could be described by a family of one-parameter distribution with
the following form (Villermaux and Duplat, 2003):

p(χ, a) =
aa

Γ(a)
χa−1 exp(−aχ) (3.77)

where χ = c/c̄ is the normalised concentration. Therefore Eq. (3.77) depends on a single
parameter a, which can be related to the concentration statistics through a = c̄2/σ2

c .

The Gamma distribution is rather efficient in reproducing the shape modifications of the
PDF when the distance from the source increase (Yee and Skvortsov, 2011; Orsi et al., 2021).
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Figure 3.45: Comparison of numerical and experimental PDF plots at different distances from
the source. The ordinate axis expresses a normalised PDF, given by PDF/(N ∆c∗), where ∆c∗

is the amplitude of concentration classes and N is the total number of classes on which the PDF
is calculated. The plots show also the relation between the concentration fluctuation intensity
ic and the concentration PDF for the LES results.
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An exponential-like shape is typical in the near field (ic > 1), while a log-normal distribution
with short tail is common in the intermediate field ic ≈ 1 and a Gaussian-like distribution in
the far field (ic < 1). It is interesting to highlight that this transition is entirely regulated by
the value of the concentration fluctuation intensity ic (Eq. (3.67)).

Therefore, the Gamma distribution is used to fit the numerical PDFs in Figure 3.45. As
expected, numerical PDFs are capable of reproducing the experiment in the far field, particularly
from x/δ = 2.86 (i.e. 2.00 m). At the far field, the behaviour observed in previous analysis is
confirmed by PDF. In fact the numerical mean concentration is overestimated, so the numerical
PDF seems to be translated toward higher values.

On the other hand, the dimension of the numerical source and the size of its cells does
not allow to simulate correctly the concentration field in the region close to the source. At
x/δ = 0.36 (i.e. 0.25 m), the meandering motion of the plume generates a high intermittency
in the experimental case, which is traduced as a high probability to have zero concentrations.
In this case, the intermittency is associated to the irregular alternation of zero and high values
of concentrations registered by the monitoring point. For the numerical case, the intermittency
is reduced because the source is bigger. This could be interpreted as a dispersion process more
developed for the big source with respect to the small one.

Finally, it is important to highlight that the not accurate resolution of the concentration field
close to the source leads to an incorrect shape of the PDF at x/δ = 0.36 and an inappropriate
value of ic. At this distance from the source, the latter value is normally greater than one.

3.5 Conclusions

The current chapter is focused on the development of the LES methodology to simulate the
dispersion of a passive scalar in a neutral surface boundary layer.

The first part is dedicated to introduce the LES approach applied to our objectives (sec-
tion 3.1). A particular attention is dedicated to the SGS modelling, the modelling of a rough
wall and the treatment of the boundary conditions. During the description of these concepts,
some basis for defining the physical and numerical constraints that condition our simulations
have been identified.

The second section (section 3.2) describes the wind tunnel experiment to simulate, i.e. the
Nironi (2013) experiment. The characteristics of the wind and concentration fields of the exper-
iment are essential to define the computational setting of the LES simulation. Moreover, how
the LES methodology inputs can be extracted from the experiment are presented. Subsequently,
section 3.3 is dedicated to make explicit the computational settings. The numerical and phys-
ical constraints identified are converted into the criteria that define our methodology. These
criteria are also fundamental to understand the limits of the methodology and to interpret the
results when it is not possible to respect all the criteria like in our case. The main criteria are
related to the mesh definition. It is relevant because the flow field and the concentration field
present conflicting requirements. For instance, the models employed (in agreement with works
in literature) do not allow to work with fine meshes, which are largely preferable to study the
dispersion phenomena close to small source typical of wind tunnel experiments. Therefore, some
compromises were necessary to reach the final comparison and validation.

The LES methodology is summarised in the section 3.4. Particular attention is dedicated
to the contribution made regarding the definition of the physical and numerical criteria to
define the inputs, the domain and meshes and the wall model. Then sensitivity studies are
conducted to highlight the effects of the criteria and of the methodology inputs. The results
have also evidenced the compromise adopted to choose the case useful for the final comparison
and validation. In this context, we have compared the LES simulation of the Nironi case with
its respective experimental data. The comparison of the wind field yields to acceptable results.
In fact, our methodology is capable to reproduce the experimental wind field in the bottom part
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of the boundary layer (BL). Only the latter region, or a region similar, allows an acceptable
comparison due to the experimental limitations (e.g. the approach adopted to develop the BL).
On the other hand, the comparison of the concentration field presented more difficulties because
the criteria not respected relates the source. These results are also conditioned by the SGS
modelling adopted for the passive scalar transport equation. In fact, these modelling (usually
adopted in previous works) are limited by the dimension of the filter that cannot be situated
in the dissipation region. Similarly, the wall model limits the dimension of the cells adjacent
to the wall, which needs to be placed in the logarithmic region. Consequently, if the source
is positioned close to the ground, the criterion related to the wall model does not favour the
accurate resolution of the source.

Therefore, although the case chosen is considered as a simple case because it represents a
neutral boundary layer flow delimited by a rough wall and the dispersion phenomena is generated
by a punctual source, it is not easy to describe numerically through a LES approach. It is
possible to arrive to a final LES simulation only accepting the violation of some criteria and a
compromise between some opposing conditions that allow to simulate correctly the wind field
and the concentration field. Consequently, although the comparison revealed some issues, it can
be concluded that the LES methodology is validated considering the appropriate interpretations
of the results.

Numerically, some perspectives for improvement concern the use of different SGS models
and wall models more adapted to treat smaller cells. Otherwise, it could be useful to simulate a
LES which resolves the wall and improves the SGS model for the closure of the passive scalar.
On the other hand, experimentally, it could be possible to increase the Re number, for example
by increasing the velocity of the free-stream. Moreover, the choose of a larger source and
further away from the wall could benefit the numerical-experimental comparison and enrich the
experimental configurations studied. A sensitivity study of the dimension of the source and its
position in the domain is beneficial for both numerical and experimental studies. Then, the
development of experimental wind field may be improved to facilitate the comparison in this
simple case. In this context, it is possible to affirm that doing more to improve the quality of
results in this field of basic research can favour much more complex configurations of practical
and industrial interest.

In fact, this study can be seen as a basis for studying more complex problems and geometries.
The criteria defined here need to be adapted to study complex flows, like thermal stratified
flows, or geometries which includes obstacles of different kinds. With this in mind, the LES
methodology is applied to a real case. The test case to analyse is chosen in such a way that
the current methodology can be adapted without adding extra models or criteria. This is the
subject of the next chapter, dedicated to the TADI experiment.
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Chapter 4

TADI: Real Scenario Case

4.1 Experiment description and case selection

Taking into account the numerous industrial risks in the oil and gas sector, safety plays a
fundamental role. For this reason, the capacity to predict accidents is a priority.

Digital prevention represents a very useful tool to achieve safety ambitions. In this context,
TADI project (TotalEnergies Anomaly Detection Initiatives; last access: January 18th, 2022)
constitutes an innovative approach to optimise the management of the risks associated with gas
leak. It combines three aspects, here presented:

• Early fault detection (e.g. equipment failure or gas leak) thanks to new-generation sensors,
i.e. innovative optical or acoustic instruments. The latter contributes to rapidly detect
the gas, quantify its concentration, identify the origin and indicate the gas flow rate. The
sensors should provide real-time 3D visualisation of the hazard area.

• A system allowing real-time acquisition, processing and analysis of mass data. The aim
is to transform the raw monitoring data into pertinent information about the anomaly
identified.

• Data transform to control room operators in the form of diagnostic assessments and rec-
ommendations optimised by artificial intelligence as a decision-support tool.

From 2018, the TADI project has had its base of operation for testing and qualifying inno-
vative technologies for gas leak detection and quantification. The site is part of the Lacq Pilot
Platform (PPL) at the Platform for Experimental Research in Lacq (PERL) in France. The
equipment used in the TADI facility allows to reproduce a wide variety of accident scenarios

Figure 4.1: TADI facility.

https://www.ep.total.com/en/innovations/research-development/tadi-toward-support-prevention-major-accidents
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derived from field experience in controlled conditions (Figure 4.1). This infrastructure is unique
in the world. This is due to its location in an industrial environment subject to EU SEVESO 3
regulations on major accident hazards. Furthermore, it is the only facility able to reproduce a
wide range of gas leak flow rates, from 0.5 g/s to 300 g/s.

This facility has allowed to include new sensor technologies in a qualification program. Until
today, three test programs have already been completed:

• One in June 2018 to test low-cost acoustic technologies for the safety monitoring of instal-
lations.

• Other two in October 2018 and October 2019 to evaluate several optical and acoustic
technologies for remote gas detection-localisation-quantification using various deployment
systems (e.g. ground-based, airborne, robot-mounted, drone, etc.) for emergency situa-
tions and safety surveillance.

The last test program concern our work. In fact, our aim in the current chapter is to apply the
LES methodology in order to simulate a TADI test case and, subsequently, to use it to interpret
and assimilate the measurements taken through optical technologies. It is important to highlight
that the TADI case implies real scales, almost atmospheric neutral conditions, variability in the
wind direction and presence of obstacles. These are the main difficulties to be faced, before to
moving on to the final analysis of the results. The images generated by the optical instruments
are reproduced numerically through the LES simulation and the implementation of a virtual
camera. The numerical images should have the same characteristics of the experimental ones. It
is fundamental to treat the signal and develop a method for the interpretation and assimilation
of the results.

The current section is dedicated to illustrating the TADI experiment, choosing the most
appropriate test case to simulate and describing the optical instrument employed in the case.
Whereas the next section (section 4.2) presents the adaptation of the LES methodology to the
TADI case and the numerical results obtained. Finally, section 4.3 develops an approach to
interpret and assimilate the numerical and experimental results. Moreover, the preliminary
results of this approach are exposed.

4.1.1 Case selection

The case to be simulated and subsequently used for the interpretation and assimilation of the
experimental data needs to be chosen with care. The methodology developed in the previous
chapter does not allow to treat complex experimental configurations, specifically with regard to
atmospheric stability. Therefore, it was decided to identify a simple test case. The latter need to
be mainly characterised by almost neutral atmospheric stability conditions and high pollutant
emissions.

The October 2019 measurement campaign includes 17 tests, carried out over 3 days. Each
test has a duration between 30 min to 60 min. Three species are examined (i.e. methane CH4,
carbon dioxide CO2 and ethane C2H6), emitted from different sources and regions of the TADI
facility. The emissions vary from 0.5 g/s to 123 g/s, while the dimension of the source extends
between 4 mm to 75 mm.

The meteorological conditions were monitored during the entire campaign. For this purpose,
a fixed meteorological station (also known as “METEK sonic anemometer”) and a LIDAR were
present on the site. The fixed monitoring station, situated at 2 m from the ground, allows to
identify the cases which have stability condition almost neutral. Five cases were noted and their
analysis is shown in Figure 4.3. Each plot shows the mean of the inverse of the Monin-Obukhov
length L−1

MO over the whole test and the 15 minutes average. All the cases have acceptable
meteorological conditions. In fact, they are close to the neutral condition: L−1

MO → 0 m−1. The
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case W40-05 was chosen because it presents an almost neutral condition in the last 15 minutes
of the test and because its source has the larger diameter, i.e. 75 mm, and a flow rate of 30 g/s.

Then, considering the whole trend of the L−1
MO of the case W40-05 (see Figure 4.4), it confirms

that the last 15 minutes of the test shows neutral conditions. In particular, within the 15 minutes
interval, an interval of almost 3 minutes is chosen to characterise the atmospheric boundary layer.
The meteorological data obtained through the LIDAR instrument allow to have details of the
wind velocity profile up to a height of 300 m. This allows to compute some characteristics of
the boundary layer and obtain the LES methodology inputs (i.e. z0 and Ubulk). Through an
optimisation method (as done in subsection 3.2.2), it is possible to fit the experimental profile
with the logarithmic law of Eq. (3.59). Figure 4.3 shows a match between the experimental
profile and the logarithmic law up to about 50 m. The inputs of the LES methodology are
reported in Table 4.1. The fixed meteorological station (i.e. the METEK sonic anemometer
capable to measure u′w′) reports a friction velocity u∗ of 0.4829 m/s, while the value derived
from the best fitting is 0.3723 m/s. The latter values was chosen as input of the numerical
simulation together with its aerodynamic roughness z0 and the METEK value is considered
only as a comparison value. In fact, our methodology will simulate a logarithmic wind profile.
The latter profile has also allowed to compute also the bulk velocity up to a height of 50 m and
it is 5.88 m/s. Finally the mean wind direction was estimated thanks to the numerical data and
the generation of the wind rose of Figure 4.5. The mean direction is equal to 331◦ and it is
useful to orientate our numerical domain, as we will see in the next section. In order to better
understand the configuration of the case W40-05, Figure 4.2 shows a vertical view of the TADI
facility. Moreover, it is possible to observe the position of the source and the development of a
possible plume.

The choice of the case W40-05 was also conditioned by the fact that it has 216.4 s of optical
measurements made thanks to the SIMAGAZ multispectral camera. The acquisition frequency
of the available data is of 5 Hz. In the next subsection, this optical measurement and its mea-
surements will be presented.

Figure 4.2: Plume in TADI site
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Figure 4.3: Inverse of the Monin-Obukhov length to identify neutral atmospheric conditions.

Time: 12:48:00 – 12:51:30 u∗ METEK u∗ z0 Ubulk Mean direction
W40-05 0.4829 m/s 0.3723 m/s 0.0372 m/s 5.88 m/s 331◦

Table 4.1: Characteristics of W40-05 case in the time interval of 3 min and 30 s.
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Figure 4.4: Inverse of the Monin-Obukhov length for the test W40-05.
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Figure 4.5: Test case W40-05 data. The left figure shows the LIDAR wind profile averaged over
the 3 minutes and the logarithmic law that best fits it. In the right figure the wind rose obtained
from LIDAR data is illustrated. The legend shows the color related to each wind field velocity
class (expressed in [m/s]) employed by the wind rose.

4.1.2 Optical instrument

The optical instrument chosen to measure the concentration field is the SIMAGAZ camera.
Their technical characteristics are presented here thanks to the information published in Druart
et al. (2021) paper. Moreover, the procedure to generate a Column-Integrated Concentration
(CIC) is introduced together with the data that can be derived from it.

The SIMAGAZ camera is based on the technology of cryogenic optics directly integrated in
a standard Detector Dewar Cooler Assembly (DDCA). SIMAGAZ uses the LYNRED’s state of
the art architecture based on his cooled LW VGA format with a pixel pitch of 15 m and a RM3
cooler. Therefore, the outside view of the camera looks like a standard DDCA. Only the cold
shield has been modified to integrate the optics. The optical part is simple made of a single
array of lenses to produce 4 images of the scene on a single Focal Plane Array (FPA) and an
array of filters to give the multispectral property of the camera, each filter being associated to
a different optical channel. The MCT (Mercury-Cadmium-Telluride) infrared detector module
offers high speed operation with a high sensitivity. Indeed, a Noise Equivalent Temperature
Difference (NETD) has a mean value of 40 mK using band-pass filters with low FWHM and
with an integration time of 5 ms and for a scene at around 20 ◦C. Consequently, the camera
combine the advantages of have the following characteristics:

• Simple: only two major optical components are used.

• Cost effective: a single detector block is employed.

• Compact: the camera has the size of the detection block.

• Sensitive: a cryogenic infrared detector is used.

• High radioactive stability: the optics are at cryogenic temperature, limiting the background
signal.

The main specifications of SIMAGAZ camera are summarised in Table 4.2. SIMAGAZ data
of the W40-05 case is available over 216.4 s with a time step of 0.2 s. Moreover, the camera
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is mounted on a drone. It means that the position of the camera varies along the acquisition
period. Therefore, the position is not precisely known. This adds a further difficulty when
analysing the data and comparing it with the numerical case.

Detector type Multispectral MCT

Image size for a sub-image 320x256 pixels with a pixel pitch of 15 m

Measurement rate Up to 20 Hz

Volume of the core camera 1 L

Weight of the core camera 1.3 kg

Focal length 7 mm

Horizontal field of view 40 ◦

Vertical field of view 32 ◦

Sensitivity of methane leak flow rates < 0.5 g/s

Table 4.2: SIMAGAZ specifications.

Many types of optical technologies exist. In a recent research in the sector, Dinger et al.
(2018) study the turbulent dispersion of artificially released SO2 puffs with UV cameras. The
optical technique of this study helps to understand the procedure employed to generate the
integrated concentration field which composes the SIMAGAZ images. Furthermore, it illustrates
how to get more information and statistics from the images. In fact, it demonstrates that the
turbulent dispersion parameters and emissions could be obtained from the experimental images,
although with limitations.

The measurement of concentration with an hyper-spectral infrared camera is based on the
differential absorption of specific wavelengths of infrared radiation by the the molecules of the
pollutants of interest. Following the Beer–Lambert law, the attenuation of light along an optical
path is proportional to the Column-Integrated Concentration (CIC) Ci,j , defined as:

Ci,j(~m, t) =

∫ smax

0
c(~x, t)ds with s = ~x · ~m (4.1)

where ~x is the coordinates vector. Assuming that the camera is at the origin O, ~m is an
unit vector in the direction of sight corresponding to one pixel and c(~x, t) is the instantaneous
concentration field (see Figure 4.6). By comparing the propagation of absorbed and unabsorbed
wavelength and the differential intensities received on each pixel of a CCD sensor, the camera
provides the integrated concentration Ci,j along each direction of sight. An example of a picture
of the instantaneous field of integrated concentration is represented on Figure 4.7.

O

~m

Figure 4.6: Diagram of the image taken by an optical instrument.

Different aspects of turbulent dispersion could be measured thanks to the CIC images, for
instance: the total signal Stot, the center of mass of the plume in the image plane or the
spreading of the plume. This capacity is accentuated when images from different directions are
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Figure 4.7: Instantaneous CIC field (expressed in kg ·m−2) for the TADI case, obtained through
the SIMAGAZ camera, with a resolution of 320x256 pixels.

available. In this case, it would be ideally possible to reconstruct in 3D the puff or plume under
investigation. Every CIC images contain direct information about the position of the puff or
plume and the spread projected to the image plane. Two discrete coordinate axis i = [1, ..., Ni]
and j = [1, ..., Nj ], which represent the image columns and rows, covers the image plane.

The Dinger et al. (2018) experience employs six UV cameras able to measure the total
signal Stot (i.e. the total mass in the image plane) of the puffs and the absolute dispersion,
constituted by the sum of the variance of the centre of mass distribution and the variance of the
concentration of the puff relative to its centre of mass. The total signal of the puff Stot (also
known, in statistical terms, as the zeroth moment of the CIC PDF) is expressed by Eq. (4.2).

Stot =
∑
i,j

C(i, j) (4.2)

where C(i, j) is the column-integrated concentration (CIC) at pixel (i, j).

The passage from pixel measurements to physical measurement units is summarised here.
A sketch of the field of view of two cameras from above is shown in Figure 4.8. Firstly, it is
important to define the apparent width of a pixel sp(d):

sp(d) = si ·
d

f
(4.3)

where si is the physical width of the pixel on the CCD (Charge-Coupled Device) sensor, d is the
distance of the SO2 puff to the camera and f is the focal length of the camera lens (distance
between the lens and the CCD sensor). The use of two or more cameras help to find the distance
d. In the experiment, the position of the centre of mass (CM) is reconstructed using the image
of 3 cameras in order to reduce the uncertainties. The CM is the point in the global reference
system which minimises the square distance to all lines and allow to find the relative distance
from each camera.



172 CHAPTER 4. TADI: REAL SCENARIO CASE

Figure 4.8: Sketch of the field of view of two cameras from above. Image from: Dinger et al.
(2018).

When the puff’s 3D extension is small with respect to the distance between the puff’s CM
and the camera, it is possible to neglect the puff’s extension and assumes a constant scaling for
the whole region of interest. Using the pixels’ apparent area s2

p to scale the column-integrated
concentration (CIC) images, it relates the image to the global reference system. Therefore the
total mass M of a puff in the global reference system is given by:

M = s2
p(d) Stot (4.4)

This approach is the same that need to be used to find the total mass for the CIC images for
the SIMAGAZ camera. It reflects another of the limits of the available measures, that is, the
fact of not having multiple cameras available at the same time. Consequently, the estimation of
the flow rate of the source is impossible or requires additional assumptions about the position
of the plume according to the camera.

4.2 LES simulation

After the choose of the TADI test case, the current section illustrates concisely the application
of the LES methodology (subsection 4.2.1). Moreover, subsection 4.2.2 presents the numerical
results that help to judge and interpret the performance of the simulation.

4.2.1 Application of the LES methodology

In order to reproduce the TADI test case W40-05, the LES methodology developed in the
previous chapter was used. Although we are aware that a more appropriate methodology is
needed, the available methodology is tested in order to understand its limits face to a real
scenario and design a better methodology in future.

The complexity of the phenomena to simulate yields to a different design of the domain and
the mesh of the TADI case with respect to the wind tunnel case. Conversely, the numerical
setting of the equations and solvers, of the boundary and initial conditions and of the numerical
schemes is the same adopted for the Nironi case. They are considered appropriate to treat the
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problem in a simple way. Consequently, the following part of this subsection is dedicated to
treat the domain and the mesh.

Domain

The criteria to fix the domain dimensions, defined in subsection 3.3.1, are used here. For
simplicity, the boundary layer height is considered equal to 50.4 m. This is the region where
the logarithmic law reproduce better the LIDAR mean velocity profile. Further, the height of
the domain was chosen so as to have a compact domain that allows to accurately simulate the
phenomena close to the source because the optical measurements are concentrated in this area.
In this way, the acceptable longitudinal and lateral dimensions are graphically represented in
Figure 4.9 and Figure 4.10. The flow physical criterion depends on the height of the domain,
while the dispersion physical criterion is chosen so as to respect the same limitations of the first
criterion because the optical measurements are taken close to the source.

Consequently, in order to avoid complications and to save computational resources, the lon-
gitudinal and lateral dimensions of the domain were chosen in the lower limits. The dimensions
of the domain are expressed in Figure 4.11. It also allows to enclose the TADI test section,
which includes obstacles and sources and occupies an area of almost 2400 m2 (i.e. ≈ 60 m x
40 m). The test section is graphically illustrated in Figure 4.12.

0 1 2 3 4 5 6 7 8 9

Dispersion physical criterion

Flow physical criterion

L
δ

3.00 – PD

3.00 – SD

Figure 4.9: Graphic scheme to define the longitudinal dimension of the TADI domain.
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Dispersion physical criterion

Flow physical criterion

W
δ
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2.0 – SD

Figure 4.10: Graphic scheme to define the transverse dimension of the TADI domain.

L = 151.2 m
W = 100.8 m

H = 50.4 m

Figure 4.11: Dimensions of the precursor and successor domain of the TADI case.
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Figure 4.12: TADI test section.

Mesh

The mesh criteria developed in subsection 3.3.2 are used here. As much as possible, the criteria
were applied. Unfortunately, the data to compute the spectrum of the experimental wind field
are not available. Consequently, the inertial subrange was not estimated, limiting our analysis.

According to our LES methodology (subsection 3.3.2), the characteristics of the mesh are
constrained by the LES filter size, the wall model and the numerical source characteristic.

The LES filter needs to be placed in the inertial subrange or, if numerical resources allow
it, in the dissipation range. It is important that it is not placed in the energy-containing range.
Thanks to the experimental spectrum, the inertial subrange was estimated for the Nironi case.
In the current case, it is not possible to estimate it because the available LIDAR data present a
time step of 1 s. The time step is not considered fine enough to be able to calculate the spectrum.
However, a scale analysis is used to try to estimate the range of the boundaries of the inertial
subrange and of the energy-containing range. The length scale LEI defines the lower boundary
of the energy-containing range and it is defined as:

LEI =
1

6
l0 ≈

1

6
κz

where κ is the von Kárman constant. If κ = 0.4 and z = 10 m, the LEI = 0.66 m or in wall
units L+

EI = 16 983 . On the other hand, the scale that marks the boundary between the inertial
subrange and the dissipation range is LDI . It is defined as:

LDI = 60η ≈ 60

(
ν3

ε

) 1
4

= 60

(
ν3κz

u3
∗

) 1
4

where η is the Kolmogorov scale and ε is the dissipation rate. This approximation yields to
LDI = 0.042 m (i.e. L+

DI = 1071 ), for z = 10 m and u∗ = 0.3723 m/s. These scales give us an
idea of the possible scales involved and help us understanding the validity of our methodology.

Moving to the wall model constraint, it is required that the first cell adjacent to the wall must
be situated in the logarithmic region. According to the classical theory, the logarithmic region
extends between z+ > 30 and z/δ < 0.3. Whereas, the “Marusic method” is not applicable
because the appropriate data are not available. Nevertheless, being the Re number equal to
almost 22.2× 10+6 (i.e. a high Re number), the “Marusic relation” is valid. Therefore, the

logarithmic region could be estimated in the interval: 3 Re
1/2
τ < z+ < 0.15 Reτ . In our case,

Reτ = 1.2× 10+6 . So the previous interval extends between 3386 < z+ < 119 158 . These two
estimations of the logarithmic region are illustrated in the Figure 4.13.

The third constraint concerns the SGS model, which is valid in the inertial subrange, e.g.
1071 < ∆+ < 16983. This is the interval in which we are going to work in order to use a
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reasonable amount of resources.
The fourth constraint is related to the numerical source. Although we cannot count with

the direct estimation of the inertial subrange, it is possible to interpret this criterion through-
out comparison between the characteristics of the current source and those of the Nironi case.
For simplicity, it was decided to consider a numerical source which is the double of the source
dimension of the TADI case. It means that ΦLES = 0.15 m, while Φexp = 0.075 m. In this case,
two cells were used to define the source. The experimental source in wall units and the tenth of
its value (i.e. Φ+/10) are illustrated in Figure 4.13. Both are situated in the logarithmic region.
This is not possible for the Nironi case. Moreover, thanks to the previous scale analysis, it is
possible to observe that the source dimension is located in the inertial subrange. Whereas if 10
cells are used to discretise the numerical source in each direction of the plane in which the source
is defined, it is likely that the SGS closure of the passive scalar is not appropriated because the
cells would be in the dissipation range but this needs to be confirmed by measurements. In any
case, thanks to an appropriate computational power, sources of the order of centimetres can be
simulated in real scenarios. Unlike the wind tunnel case, the source criterion does not represent
a major obstacle for real scenario simulations, like TADI case.
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Figure 4.13: TADI mesh criteria.

The precursor-successor approach was used to carry out the simulation. Therefore two
meshes are used. Their characteristics are resumed in Table 4.3 and Table 4.4. The successor
domain presents more refinement levels and, consequently, a finer mesh is used in the zones
where the obstacles and the source are situated. The smallest cell size for the two meshes are
represented in Figure 4.13. The mesh of the precursor domain (PD) is situated in the logarithmic
region defined by the Marusic relation. Therefore, the wall model respects the mesh criterion.
Whereas, the mesh of the successor domain (SD) is in the logarithmic region defined according
to the Classical theory. Nevertheless, this is not a problem because the cells that apply the wall
model have the same dimensions of the SD cell adjacent to the wall, i.e ∆z = 0.30 m. Finally,
thanks to the scale analysis, it is possible to observe that both the meshes are situated in the
inertial subrange.

For the TADI case, the meshes are constituted by a mix of principally homogeneous hexa-
hedral cells and to a lesser extend from other types of cells, e.g. prisms and polyhedral cells.
The latter are used to define the obstacles and buffer regions between two refinement levels. In
the hexahedral regions, the cells are regular on y- and z-coordinates, while it has a ratio of 1.5
with respect to the x-coordinate. The two meshes employed have respectively 3 259 872 and
4 802 632 cells.

Finally, it is possible to affirm that the LES methodology seems to be more easily applicable
to a real case because the larger scales allow compliance with the mesh criteria without the need
for any kind of compromise.
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Levels – ∆z hlvl

Level 0 1.2 m –

Level 1 0.6 m 26.4 m

Level 2 0.3 m 9.0 m

Table 4.3: Precursor domain mesh at the different refinement levels.

Levels – ∆z hlvl or region

Level 0 1.2 m –

Level 1 0.6 m 26.4 m

Level 2 0.3 m 9.0 m

Level 3 0.15 m expansion region

Level 4 0.075 m obstacles and source

Table 4.4: Successor domain mesh at the different refinement levels.

OpenFOAM mesh

The mesh is generated thanks to the OpenFOAM snappyHexMesh tool. An example of the mesh
resulted is shown in Figure 4.14. The obstacles and the source are discretised with the level 4
of mesh refinement, while the level 3 is used as a buffer region between the refinement level 2
and 4.

Figure 4.14: TADI mesh.
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4.2.2 Simulation results

According to the precursor-successor approach, firstly the precursor domain is used to develop
the turbulent flow and generate the statistics that allow to understand the performance of the
simulation. This simulation is similar to Nironi case because there are no obstacles in the domain.
Subsequently, the same domain is used to sample the instantaneous velocity at the inlet surface
in order to generate the inlet conditions of the successor domain. Lastly the successor domain,
which contains the main obstacles of the TADI test section, is used to simulate the dispersion
of a passive scalar and generate results similar to images of optical instruments.

In the precursor domain, a simulation of 10 000 s with a time step of 0.05 and a maximum
Courant number of 0.90 is conducted. The numerical resources used are presented in Table 4.5.

On the other hand, the concentration field is simulated in the latter 300 s with a time step
of 0.001 s. The resources employed are resumed in Table 4.6. The high job time is due to a
higher number of cells, a smaller time step used and writing procedure to save data compactly.
Moreover, writing each time step into the disk takes approximately 1.6 GB. Again this point
out how important it is to organise the results analysis procedure in advance.

As remarked here, these simulations are very expensive in terms of computational power.
Consequently, they were performed thanks to the availability of TotalEnergies supercomputers:
Pecan in Houston, USA and PangeaII in Pau, France.

Physical time CPU Cores Job time

10 000 s Intel® Xeon® E5-2670 @ 2.60GHz 120 20 h

Table 4.5: Computational time and resources for 10 000 s of simulation with 120 cores for the
development of the boundary layer in the precursor domain with a mesh of 3 259 872 cells.

Physical time CPU Cores Job time

300 s Intel® Xeon® E5-2670 @ 2.60GHz 192 1 day 14 h

Table 4.6: Computational time and resources for 300 s of simulation with 196 cores for the
dispersion simulation in the successor domain with a mesh of 4 802 632 cells.
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Wind field

Figure 4.15 shows the statistics of the numerical wind field at different distances from the inlet
boundary in the precursor simulation. The profiles are sampled at the inlet (0.15 m) and at two
distances in the middle of the domain, i.e. 37.80 m and 75.60 m or in nondimensional coordinates
x/δ at 0.756 and 1.512 .

The LES mean velocity 〈ū〉 matches the experimental profile obtained from the LIDAR
instrument, as observed in Figure 4.15a. This is the only comparison made between the numerical
and experimental profiles because the data to compare the other statistics are not available. On
the other hand, it is possible to compare the numerical friction velocity u∗ and the experimental
one. For the LES, it is possible to use a linear regression of the profile 〈u′w′〉 to estimate the
friction velocity (as made for the Nironi case in subsection 3.4.2). Consequently, the LES friction
velocity is 0.3535 m/s. It is close to the experimental value, which is 0.3723 ·

Outside of the experimental comparison, Figure 4.15b, Figure 4.15d and Figure 4.15e high-
light the effect of the mesh refinement levels. The interface between the levels generates some
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Figure 4.15: Wind field statistics of the TADI case. The mean velocity of the wind field is
compared with the TADI experimental data obtained with LIDAR. In this case, the validation
of the methodology occurs for z < 10 m, i.e. z/δ < 0.285 .
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oscillations in the statistic profiles. It would be interesting to analyse better this kind of effects.
The comparison between the experimental and numerical wind fields is acceptable with

respect to the parameters compared. Nevertheless, in a real case, this comparison need to be
improved. For instance, velocity fluctuations data should be better extracted from the raw
LIDAR data.

Concentration field

In order to simulate the concentration field of the TADI case, the position of the numerical source
that generates the concentration field is expressed in Table 4.7. A constant mass flow rate is
applied and it is equal to 0.03 kg/s. While the integrated concentration field for the experimental
case is acquired thanks to the SIMAGAZ instrument, the numerical simulation needs to use a
numerical method to generate a LES image though a virtual camera. The latter needs to
generate a CIC of the instantaneous passive scalar capable to reproduce the experimental results.
Therefore, the virtual camera is placed in a region of the numerical domain where the drone
flies. Its position is pointed out in Table 4.8. Unfortunately this position introduces uncertainties
because in the real case the drone moves but we do not know its exact position. To implement
the virtual camera, the behaviour of the optical instruments was taken into account, as we will
see in the following section.

The instantaneous CIC field image, obtained from the LES simulation, is shown in Fig-
ure 4.16. The next section is focused on the interpretation and assimilation of the numerical
CIC images.
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Figure 4.16: CIC field for the LES simulation with a resolution of 50x40 pixels and expressed
in kg/m2.
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xs 92.175 m

ys 41.475 m

zs 0.592 m

Table 4.7: Source position in the numerical domain.

xd 100.175 m

yd 16.475 m

zd 8.000 m

Table 4.8: Virtual camera position in the numerical domain.

4.3 Data interpretation and assimilation

4.3.1 Methodology for the source emission estimation from optical measure-
ments

In this subsection, we propose a new approach to analyse optical measurements data in order to
estimate the source emission rate. This approach will be evaluated using the LES concentration
field to produce an emulation of images of column integrated concentration and to apply the
methodology to estimate the source release rate. The validation of this approach can allow to
give useful advice to the producers and developers of optical instruments for the estimation of
emissions.

Consider the camera setup illustrated on Figure 4.6. The angle of view of the camera is ∆θ
in the horizontal direction and ∆ϕ in the vertical direction. If the number of pixels is Nθ ×Nϕ,
the corresponding angular resolutions are δθ = ∆θ/Nθ and δϕ = ∆ϕ/Nϕ. One can define the
integrated mass Mi corresponding to the solid angle δθ δϕ by the equation:

mij(t) = δθ δϕ

∫ rmax

0
c (~x(r, ~sij), t) r

2dr (4.5)

If the distance R between the camera and the plume axis is large according to the plume
width (or standard deviation) in the direction of sight of the camera, one can assume that the
non-zero values of concentration in the integral correspond to distances r so that |r − R| � R.
Consequently, the integrated mass corresponding to each image pixel can be related to the
integrated concentration by:

mij(t) = δθ δϕR2

∫ rmax

0
c (~x(r, ~sij), t) dr = δθ δϕR2Ci,j(t) (4.6)

The total mass of pollutant on a vertical cross section, normal to the plume axis, in an
horizontal angular opening of δθ, is:

Mi(t) =

Nϕ∑
j=1

mij(t) (4.7)

Figure 4.17 and Figure 4.18 show the relation between the horizontal profile of the cross-
section integrated mass Mi(t) and the integrated mass mij image.

Figure 4.19 illustrates the horizontal profile of the cross-section integrated mass Mi(t) as
a function of the horizontal angle of view θ, for different times. One can notice the horizontal
translation of the curve due to the advection process. Using this observation, it is possible to
estimate the advection velocity of the plume by a maximisation of the auto-correlation:

R (Mi+δi(t),Mi(t+ δt)) where R (x, y) =
(x− x) (y − y)√
(x− x)2 (y − y)2

(4.8)
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The instantaneous angular velocity of the plume (velocity seen from the camera point of
view) can be calculated from the shift δi that maximises R:

ω(t) =
δi δθ

δt
(4.9)

The crossing duration ttot of the domain is the time needed by the plume to cross the field
of view of the camera. It can be evaluated by the condition:∫ t

t−ttot(t)
ω(t)dt = ∆θ (4.10)

During the crossing duration ttot, the mass of pollutant transported by the atmospheric flow
is approximately the total mass Mtot in the field of view, i.e.:

Mtot(t) =

Nθ∑
i=1

Mi(t) (4.11)

Finally, in a steady state, the mass of pollutant transported per unit of time has to be
balanced by the emission rate of the source:

Qsrc =
Mtot(t)

ttot(t)
(4.12)
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Figure 4.17: Relation between the profile of the cross-section integrated mass Mi(t) and the
integrated mass mij image.
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Figure 4.18: Relation between the profile of the cross-section integrated mass Mi(t) and the
integrated mass mij image at a different time step.
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Figure 4.19: Cross-section integrated mass for different times.
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4.3.2 Evaluation of the methodology

The previous approach has been implemented and the test on the LES concentration field has
been started. Unfortunately we did not have enough time to analyse the performance of the
approach in-depth and be able to present the results in an appropriate way. Nevertheless, we
conducted a first test thanks to the Nironi case. For this case, the reference emission rate value
is: Qexp = 1.00 g/s. Whereas the value estimated is: QLES = 0.94 g/s. Figure 4.20 illustrates
some images used to evaluate the current methodology in an area close to the source. The whole
interval employed is of 2 s, i.e. 80 frames. This preliminary result is encouraging.

Finally, we believe that it can make an important contribution in the treatment of images
generated by optical instruments, not only from a numerical point of view but also by providing
advice for making measurements with a different post-processing techniques.
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Figure 4.20: Images used to estimate the LES emission rate. The time step is 0.025 s.



184 CHAPTER 4. TADI: REAL SCENARIO CASE

4.4 Conclusions

In the current chapter, our LES methodology was applied to a real scenario, i.e. the TADI case.
Although a simple case was chosen, TADI case implies real scales, almost atmospheric neutral
conditions, variability in the wind direction and presence of obstacles. Therefore the adaptation
of the LES methodology was not simple. Nevertheless, for some aspects, it proved to be more
suitable for simulation real cases. In fact, the mesh criterion is easily respected. The wind
and concentration field are simulated but a more accurate experimental-numerical comparison
is necessary.

In order to interpret and assimilate the CIC images generated by the SIMAGAZ camera
during the TADI tests, an LES simulation was used to reproduce the concentration field and a
numerical approach was implemented to generate numerical CIC images and estimate the source
release rate. We believe that this approach can provide encouraging results so its consolidation
and validation are one of the first things to do in the future.



Conclusions and perspectives

Conclusions

The final aim of the thesis is to interpret and assimilate the results of optical measurements of
pollution thanks to the numerical simulation of the atmospheric dispersion. The experimental
data, describing a complex physical process, is characterised by a high sampling frequency and
a strong level of fluctuations. Therefore, a numerical approach capable to capture not only the
mean state of turbulent flow and of plume dispersion but also its higher moments is preferable,
i.e. the Large-Eddy Simulation (LES) approach.

The strategy of the work was based on a gradual increment of physical and numerical diffi-
culties. After the state of the art of the atmospheric flow and dispersion phenomena, a simple
case study was chosen, i.e. the dispersion of the passive scalar in a surface boundary layer
under neutral conditions. This case study was designed in order to develop a progressively
more complex simulation methodology. So firstly a simple turbulence modelling strategy was
adopted such as the Reynolds-Average Navier Stokes (RANS). In this way, it was possible to
face with one big source of uncertainties: the boundary conditions, e.g. inflow profiles, ground
roughness and others. Although decades of studies, the issue derived from the appropriate ap-
plication of the boundary conditions is still open due to the extremely complexity of the ABL.
Moreover, the equilibrium of the turbulence model coefficients adds to difficulties. Some cases
from the literature are reproduced to understand the problem and apply the solutions suggested.
These numerical simulations have allowed to become familiar with this kind of difficulties and
to observe the evolution of the solutions proposed in the literature with respect to the current
CFD codes. An inter-comparison work with different codes and boundary conditions has been
performed and compared with previous published studies. The main result is that the actual
commercial or open-source codes used in engineering allow to simulate the chosen case study
without ad-hoc modifications of the boundary conditions or of the turbulence model coefficients.

Subsequently a more complex turbulence modelling strategy is adopted. It is the Large-
Eddy Simulation (LES). After the presentation of the concepts useful to our purposes, the
same simple case was adopted but here a wind tunnel experiment was coupled in order to
compare and validate the numerical results. For this purpose, it was necessary to develop a
LES methodology which establishes some physical and numerical criteria useful for adopting
an appropriate computational setting and interpreting the results. In fact, it was found that
even if the case is simple, it is not possible to apply all the necessary criteria. In particular the
criteria related to the mesh and to the SGS model for the closure of the passive scalar transport
equation warns us that the numerical configuration, taken from other studies of the literature,
are not the most suitable and can present difficult issues. Therefore, the LES methodology was
validated thanks to the application of some compromises and with the correct interpretation of
the results.

Finally, the acquired knowledge is used to simulate a real scenario, i.e. a test case of the
TotalEnergies Anomaly Detection Initiatives (TADI) project. The LES methodology previously
developed was adapted in the best possible way to a simple real case. It was selected a test
case that reproduces approximately a neutral surface boundary layer. The application of the
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mesh criterion proved to be encouraging. Unlike the case in the wind tunnel, the constraints
linked to the source are more easily respected and without particular compromises thanks to the
larger scales considered. Although the energy and dissipation scales needs to be estimated more
accurately, the scale analysis allows to affirm that the models applied are suitable for the TADI
case. The numerical results of the wind field were compared with the LIDAR velocity profile and
with the friction velocity derived from it. This comparison shows encouraging performance but
a more accurate comparison of the numerical and experimental turbulent statistics is necessary.
Aware of the limits, the numerical results of the concentration field were compared with the
images of the multispectral camera SIMAGAZ. It is not possible to compare each instantaneous
field because the results are unsteady and such a comparison of two different realisations has
no sense. Conversely, the comparison of some characteristics of the column-integrated concen-
trations (CIC) are more interesting. The total mass and the mass flow rate of the source could
be estimated thanks to the CIC images. We wanted to estimate these values but due to time
constraints it was not possible to further develop the method.

Perspectives

The LES methodology developed in the current thesis was firstly applied to simulate a wind
tunnel experiment. The comparison of the numerical and experimental results has allowed
to validate the methodology but with some limitations. In fact, the mesh criterion is not fully
satisfied and some compromises are needed. In order to improve the LES methodology validation,
the following perspectives mus be considered:

• A better choice or development of SGS models and rough wall models.

• A different configuration of the wind tunnel experiment. A different technique to develop
the turbulent boundary layer as well as a high Re number could benefit the validation
and enrich the experimental study. Likewise, a more appropriate positioning of the source
relative to the wall or a larger source size may allow for easier comparison of results.

• If adequate computational resources are available, an accurate simulation of the wall region
would be considered without the use of any wall model.

In the future, it is important to complicate the study case. In this perspectives, the LES
methodology needs to take into account stratification effects as well as a better modelling of
the obstacles. Moreover, the variability of the wind direction is important to treat. Finally, the
dispersion of other types of species need to be considered, e.g. heavy or chemical reactive gases.

The numerical approach developed to treat the Column-Integrated Concentration (CIC) field
has not been properly tested. Therefore, the validation and the optimisation of this technique
need to be completed. The possible practical implications should be taken into account.

Finally, it is important to highlight that the simplicity of the case considered should not
mislead anyone who approaches to solve this type of case study. In fact, the complexity of the
numerical modelling is also present in the determination of the parameters that characterise the
flow and the concentration field. Today a universal approach that allows to determine the flow
characteristics does not exist. For instance, a different method to estimate the friction velocity
could yield to different performance of the LES simulation. In the same way, the numerical
source dimension and discretisation should be determined by more widely diffused criteria. Our
work did not start with the aim of defining these kind of criteria. Nevertheless, we would like to
underline the attempt to define criteria for LES modeling that will hopefully be more explicitly
used by the scientific community.



Appendix A

A.1 Wall function for rough surfaces

According to subsection 1.1.4 and OpenFOAM v1812 source codes, if it is desired to model a
turbulent wall-bounded flow in which the wall roughness effects are considered to be significant, it
is possible include the wall roughness effects through the law-of-the-wall modified for roughness.
In the current section, the practical procedure to obtain a wall function for rough surfaces is
presented.

Experiments in roughened pipes and channels indicate that the mean velocity distribution
near rough walls, when plotted in usual semi-logarithmic scale, has the same slope (1/κ) but
a different intercept (additive constant ∆B in the log-law). Thus, the law-of-the-wall for mean
velocity modified for roughness has the form of Eq. (A.1).

u+ =
1

κ
ln(Ez+)−∆B (A.1)

where:

∆B =
1

κ
ln(fr)

Here, fr is a roughness function that quantifies the shift of the intercept due to roughness
effects. In general, ∆B depends on the type (uniform sand, rivets, threads, ribs, mesh-wire,
etc) and size of the roughness. There is no universal roughness function valid for all types
of roughness. For a sand-grain roughness and similar types of uniform roughness elements,
however, ∆B has been found to be well corrected with the non-dimensional roughness height:

K+
s = ρKs

u∗
µ

= Ks
u∗
ν

where Ks is the physical roughness height. Analysis of experimental data shows that the rough-
ness function is not a single function of K+

s , but takes different forms depending on the K+
s

value (Cebeci and Bradshaw, 1977). Three different regions could be recognised:

• Hydro dynamically smooth:
K+
s < 2.25

∆B = 0

• Transitional
2.25 < K+

s ≤ 90

∆B =
1

κ
ln

[
K+
s − 2.25

87.75
+ CsK

+
s

]
sin[0.4258 ln(K+

s − 0.811)]

where Cs is the roughness constant:

Cs ' 0.5
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• Fully rough
K+
s > 90

∆B =
1

κ
ln(1 + CsK

+
s )

The roughness parameter ∆B(K+
s ) represents a downward shift of the logarithmic velocity

profile. The choose of Ks value depends of the modelling strategy. In the case of a wall with
uniform sand-grain roughness, the height of the sand-grain could be taken and assigned to Ks.
For a non-uniform sand-grain, however, the mean diameter (D50) would be a more meaningful
roughness height. For other types of roughness, an equivalent sand-grain roughness height could
be used for Ks. Franke et al. (2004) illustrates that the relation between the aerodynamic
roughness z0 and the roughness height Ks could be given by:

Ks =
E

Cs
z0 (A.2)

The empirical parameter E is almost 9.793 while the roughness constant Cs could assume
a value between 0 and 1 . A roughness height Ks of zero corresponds to smooth wall. On the
other hand, for the roughness to take effect, Ks must be different from zero.

Choosing a proper roughness constant Cs is mainly imposed by the given roughness. The
default roughness constant (Cs = 0.5) was determined so that, when employed the k-ε model, it
reproduces resistance data of Nikuradse (1933) for pipes roughened with tightly-packed, uniform
sand-grain roughness. It is necessary to adjust the roughness constant when it is wanted to model
departs from uniform sand-grain. For instance, there is some experimental evidence that, for
non uniform sand-grain, ribs, and wire-mesh roughness a higher value (Cs = 0.5 ∼ 1.0) is more
adequate. Unfortunately, a clear guideline for choosing Cs for arbitrary types of roughness does
not exists. The Fluent manual suggests also to make sure that the distance from the wall to the
centroid of the wall-adjacent cell has to be greater than Ks in order to obtain good performances.
It is because having a mesh size such that the wall-adjacent cell is smaller than the roughness
height is not physically meaningful. Nevertheless, as it is illustrated in section 2.2, it is shown
that, for RANS simulations, it is true that conceptually the results of the smaller cells are not
physically meaningful but numerically the results are correct. The wall function used is able to
give good first cell values in order to maintain the inlet profiles that have been developed with
a roughness effect.

Whereas it is not possible to control the code source of Fluent to understand the approach
adopted, OpenFOAM uses an approach based on velocity/shear-stress relation. The approach
is confirmed by the examination of the source codes. So, in OpenFOAM , the shear-stress could
be defined as:

τ = ρ νtotal
∂u

∂z
(A.3)

Assuming τ = τwall, the wall shear-stress τw could be conveniently implemented via an
effective wall viscosity νeff,wall:

τw = ρ νeff,wall
up
zp

(A.4)

where:

νeff,wall = ν + νt

The manipulation of Eq. (A.1) bring to Eq. (A.5), as shown here:

u+ =
1

κ
ln

(
E z+

fr

)
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up
u∗

=
1

κ
ln

(
E z+

fr

)
up ρ u∗
τw

=
1

κ
ln

(
E z+

fr

)

τw =
ρ κu∗ up

ln
(
E z+

fr

) = ρ u2
∗ = const (A.5)

Mixing Eq. (A.4) and Eq. (A.5) we obtain the relation of νt (Eq. (A.6)) implemented in
OpenFOAM in the nutkRoughWallFunction boundary condition.

ρ νeff,wall
up
zp

=
ρ κu∗ up

ln
(
E z+

fr

)

ν + νt =
κ ν z+

ln
(
E z+

fr

)

νt = ν

 κ z+

ln
(
E z+

fr

) − 1

 (A.6)

In the following part of this section, the nutkRoughWallFunction will be presented in math-
ematical terms according the source code of OpenFOAM. The expression of νt implemented in
the current wall function is illustrated in Eq. (A.7).

νt = ν

[
κ z+

ln[ max(E z+, 1 + 1E−04) ]
− 1

]
(A.7)

where:

E =


E if K+

s ≤ 2.25

E
fr

if K+
s > 2.25

(A.8)

and:

fr =


1 + CsK

+
s if K+

s ≥ 90

[
K+
s −2.25
87.75

]sin(0.4258 ln(K+
s )− 0.811)

if K+
s < 90

(A.9)

It is important to remark that the friction velocity u∗ is needed to compute z+. In RANS
cases, the turbulence model allows to compute u∗. For instance, the k-ε model computes the
friction velocity thanks to the following expression:

u∗ = C
1
4
µ k

1
2

where Cµ is a coefficient of the current model and k is the turbulent kinetic energy.
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A.2 WALE model development

The authors of the model (Nicoud and Ducros, 1999) have proposed to define a new operator
OP in Eq. (3.35). The main properties that characterise this new operator are two. Firstly, it
is a function of both the strain and rotation rates and then its value goes to zero at the wall.
Another important property is that the operator should guarantee that νsgs does not change
if the reference frame is translated or rotated. Therefore, an invariant tensor representative
of turbulent activity needs to be chosen. As seen for Smagorinsky model, a good choice for
representing the turbulent fluctuations at the length scale ∆ is the velocity gradient tensor
g̃ij = ∂ũi/∂xj . The latter model employs the second invariant of the symmetric part of this

tensor, i.e. S̃ij . As already treated, this approach presents some drawbacks.
The approach of the developers of the model to obtain a better operator is based on consid-

ering the trace-less symmetric part of the square of the velocity gradient tensor, shown in:

S d
ij =

1

2
(g̃2
ij + g̃2

ji)−
1

3
δij g̃

2
kk (A.10)

where g̃2
ij = g̃ikg̃kj and δij is the Kronecker symbol.

In order to consider the effects of vorticity, it is fundamental to add Ω̃. It is the anti-
symmetric part of g̃ and is defined in Eq. (A.11).

Ω̃ij =
1

2

(
∂ũi
∂xj
− ∂ũj
∂xi

)
(A.11)

The tensor defined by Eq. (A.10) could be reformulated in terms of S̃ and Ω̃ as illustrated
by Eq. (A.12).

S d
ij = S̃ikS̃kj + Ω̃ikΩ̃kj −

1

3
[S̃mnS̃mn − Ω̃mnΩ̃mn] (A.12)

By construction, the trace of S d
ij is zero. Further, its second invariant is still finite and

proportional to S d
ijS

d
ij . Using Eq. (A.12), the Cayley-Hamilton theorem of linear algebra and

assuming incompressibility, an equivalent expression is obtained, as shown by Eq. (A.13).

S d
ijS

d
ij =

1

6
(S2S2 + Ω2Ω2) +

2

3
S2Ω2 + 2 IVSΩ (A.13)

where:

S2 = S̃ijS̃ij , Ω = Ω̃ijΩ̃ij , IVSΩ = S̃ikS̃kjΩ̃jlΩ̃li

The relation of Eq. (A.13) is able to identify turbulence structures with either strain rate,
rotation rate or both. Moreover, pure shear flow implies that the invariant is null. A consequence
is that the laminar to turbulent transition could be reproduced by this model which is another
advantage with respect to the Smagorinsky model.

In the near wall region, i.e. z ' 0, the invariant S d
ijS

d
ij does not behave like O(z3) but like

O(z2). Therefore, it is necessary to adjust the dimension of the operator and guarantee that
it is well conditioned numerically. For this reason, the operator OP is represented by the ratio
OP 1/OP 2, as shown in Eq. (3.36).
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