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par

Bassem BAHOULI
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A mon petit ange ” NAYA TALINE ”



Caractérisations de champs de matrices, potentiels matrices et applications aux

opérateurs traces

Résumé de thèse

Plusieurs auteurs ont utilisé les champs de contraintes pour résoudre l’équation d’équilibre

de la mécanique des milieux continus. Airy (1863) a résolu le cas bidimensionnel, Maxwell

(1870) et Morera (1892) ont étudié le cas tridimensionnel. Les solutions obtenues sont

des cas particuliers de celles de Beltrami (1892). Gurtin a donné un exemple de solutions

ne satisfaisant pas la représentation S = Curl Curl A de Beltrami, ce qui signifie que la

représentation précédente est incomplète. De plus, il a montré que si l’ouvert est régulier,

alors elle est complète dans l’espace des champs réguliers de contraintes auto-équilibrés.

Dans cette thèse intitulée ”Caractérisations de champs de matrices, potentiels matrices et

applications aux opérateurs traces”, on s’intéresse à diverses caractérisations de champs de

vecteurs, de champs de matrices et spécialement au résultat de Gurtin dans le cas où l’ouvert

et les champs de contraintes ne sont pas réguliers.

Cette thèse est décomposée en cinq chapitres. Le premier chapitre expose la problématique

de recherche traitée dans cette thèse. Il présente également l’origine du sujet de recherche.

Dans le deuxième chapitre, on étudie l’opérateur curl et en particulier l’existence de po-

tentiels vecteurs dans différents cadres fonctionnels.

Dans les chapitres 3 et 4, on va montrer quelques versions de la complétude de la représentation

de Beltrami et en déduire des décompositions de Helmholtz pour les champs de matrices.

Le dernier chapitre est consacré à l’étude de l’image de différents opérateurs traces de

fonctions W 2,p(Ω), W 3,p(Ω) lorsque Ω est un ouvert borné de R2 lipschitzien. L’ingrédient

essentiel est donné par la fonction d’Airy ou par la représentation de Beltrami.

Mots clés

Champs de contraintes, représentation de Beltrami, potentiels vecteurs, complétude de Bel-

trami, décomposition de Helmholtz, fonction d’Airy, opérateurs traces.



Thesis abstract

Many authors have used stress fields to solve the equilibrium equation of continuum me-

chanics. Airy (1863) solved the two-dimensional case, Maxwell (1870) and Morera (1892)

solved the three-dimensional case. The above solutions are special cases of those of Beltrami

(1892). Gurtin gave an example of solutions that do not have Beltrami’s S = Curl Curl A

representation. He showed that if the domain Ω is regular, then this representation is complete

in the class of regular stress fields which are self-equilibrated.

My thesis title is ”Characterizations of matrix fields, potential matrices and applications

to trace operators”. In this work, we are interested by showing many characterizations of

vector fields, of matrix fields and especially by generalizing the result of Gurtin in the case

when the open set and the stress fields are not regular.

This thesis consists of five chapters. The first chapter presents the research problem ad-

dressed in this thesis. It also presents the origin of the subject of research.

In the second chapter, we study the operator curl. In particular, the existence of potential

vectors in different functional frameworks.

In Chapters 3 and 4, we will show some versions of Beltrami’s completeness and we deduce

some Helmholtz decomopsitions for symmetric matrix fields.

The last chapter is devoted to the study of the image of different trace operators of functions

W 2,p(Ω), W 3,p(Ω) when Ω is a bounded open of R2 with Lipschitz boundary. The essential

ingredient is given by the Airy’s function or by the Beltrami representation.

Keywords

Stress fields, Beltrami representation, potential vectors, Beltrami’s completeness, Helmholtz

decomposition, Airy’s function, trace operators.
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Notations and preliminaries

We denote by | · | the euclidean norm in RN . For x ∈ Ω and d > 0, we define the ball centred

at x with radius d by B(x, d) = {y ∈ RN , |x− y| < d}. The open set Ω is starlike with respect

to an open ball B(x, d) if, for each y ∈ Ω, the convex hull of the set {y}∪B(x, d) is contained

in Ω. This amounts to saying that it is starlike with respect to each point of this ball: for each

z ∈ Ω and y ∈ B(x, d) the segment [zy] is contained in Ω. With these definitions, we can show

that a bounded, starlike open set with respect to an open ball is Lipschitz. Conversely, any

bounded and conected open set with Lipschitz-continuous boundary is finite union of bounded

and connected open sets, each being starlike with respect to an open ball. We refer here, this

property is stated in [7], [21] and proved in [39]. Also, let Ω contained in R3 be a bounded and

connected open set, we recall that Ω is pseudo-Lipschitz if for any point x on the boundary

∂Ω there exist an integer r(x) equal to 1 or 2 and a strictly positive real number ρ0 such that

for all real numbers ρ with 0 < ρ < ρ0, the intersection of Ω with the ball with center x and

radius ρ, has r(x) connected components, each one being Lipschitz.

Second, we take the following hypothesis. We do not assume that the boundary of Ω is

connected. We denote by Γk the connected components of the boundary Γ, 0 ≤ k ≤ I, where

Γ0 is the boundary of the unbounded connected component of R3\Ω. There exist J connected

open surfaces Σj, 1 ≤ j ≤ J, called ‘cuts’, contained in Ω, such that

(i) each surface Σj is an open part of a smooth manifold Mj,

(ii) the boundary of Σ is contained in Γ for 1 ≤ j ≤ J ,

(iii) the intersection Σi ∩ Σj is empty for i 6= j,

(iv) the open set

Ω◦ = Ω\ ∪Jj=1 Σj

is pseudo-Lipschitz and simply-connected.

For J = 2 with I = 5, see for example Fig. 1.

In the following, the vectors, the matrix fields, the vector functions (or distributions), the

matrix functions (or distributions) and the spaces of vector-valued functions are represented

by bold symbols. For example: D(Ω) := (D(Ω))3, Lp(Ω) := Lp(Ω)3.
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The orientation tensor (εijk) is defined by

εijk =


+1 if {i, j, k} is an even permutation of {1, 2, 3},
−1 if {i, j, k} is an odd permutation of {1, 2, 3},
0 if at least two indices are equal.

In the rest of this section, Latin indices vary in the set {1, 2, 3} and we use the summation

convention with respect to repeated indices.

We use the following vector differential operators throughout the paper: the divergence

operator div : D′(Ω) −→ D′(Ω) is defined by

div v = ∇ · v = ∂ivi for any v = (vi) ∈ D′(Ω).

The vector rotational operator curl : D′(Ω) −→ D′(Ω) is defined by

(curl v)i = (∇× v)i = εijk ∂jvk for any v = (vi) ∈ D′(Ω).

We define the kernel space KT (Ω) (or space of harmonic knots) by

KT (Ω) = {v ∈ L2(Ω), curl v = 0, div v = 0 in Ω, v · n = 0 on ∂Ω}, (0.0.1)
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which is of finite dimension and its dimension depends on the geometric of Ω. Its dimension

is equal to the second Betti number J , which corresponds to the total genus of the boundary

Γ (see for example [12]). We define V(Ω) by

V(Ω) = {v ∈ D(Ω), div v = 0 in Ω},

and the space V m,p(Ω) which represents the closure of V(Ω) in Wm,p(Ω), by

V m,p(Ω) = {v ∈Wm,p
0 (Ω), div v = 0 in Ω},

for m ≥ 1 and by

V 0,p(Ω) = {v ∈ Lp(Ω), div v = 0 in Ω, v · n = 0 on ∂Ω},

for m = 0. We set for m ∈ N

Um,p(Ω) = {v ∈ V m,p(Ω);

∫
Ω

v ·ϕ dx = 0 for all ϕ ∈KT (Ω)}.

We have the following equivalence, for any function v ∈ V m,p(Ω):

∀ ϕ ∈KT (Ω),

∫
Ω

v ·ϕ dx = 0⇐⇒ 〈v · n, 1〉Σj
= 0 for any 1 ≤ j ≤ J.

We use the following matrix operators. The matrix symmetrized gradient operator ∇s :

D′(Ω) −→ D′s(Ω) is defined by

(∇s v)ij =
1

2
(∂ivj + ∂jvi) for any v = (vi) ∈ D′(Ω).

For any matrix field S, we denote by Si the ith line of S. For any vector field v, we define

the components of the vector field Sv by

(Sv)i = Sijvj.

The vector divergence operator Div : D′(Ω) −→ D′(Ω) is defined as follows:

for any S ∈ D′(Ω), (DivS)i = ∂jSij.

11



The matrix vector product is defined as follows:

(v × S)ij = εj`kv`Sik for any v = (vi) and S = (Sij),

which means that the ith column of v × S is the vector product v × (Si)T . Also, we define

S × v by S × v = −v × S.

The matrix rotational operator Curl : D′(Ω) −→ D′(Ω) is defined by

(CurlS)ij = εi`k ∂`Sjk for any S = (Sij) ∈ D′(Ω).

That means that the ith column of CurlS is the curl of the ith line vector of S. Observe that

we have the following relation:

CurlS = (∇× S)T .

It is easy to show that for any matrix field S and any vector field v, the following relation

holds:

((S × v)T × v)T = (ST × v)T × v, (0.0.2)

which implies that if S is symmetric (resp. anti-symmetric), then the matrix (S × v)T × v
and Curl CurlS are also symmetric (resp. anti-symmetric).

. We define the space of rigid displacements by

R(Ω) = {v =: ai(v) ei + bi(v)P i, ai(v) ∈ R3, bi(v) ∈ R3},

where ei is the ith vector of the canonical basis of R3 and P i =: −εijkxkej. The dimension of

R(Ω) is 6 and ∇sv = 0 for any v ∈ R(Ω). A vector field v = rig means that v belongs to

R(Ω).

Spaces of matrix fields are represented by special Roman capitals. Moreover, spaces of

symmetric matrix fields are indexed by the Latin letter s. For example, Ds(Ω) = D(Ω; M 3
sym).

We define Vs(Ω) by

Vs(Ω) = {S ∈ Ds(Ω), DivS = 0 in Ω},

and the kernel space KT,s(Ω) by

KT,s(Ω) = {S ∈ L2
s(Ω), Curl CurlS = 0, DivS = 0 in Ω, S · n = 0 on ∂Ω},

12



which is of finite dimension and its dimension is dependent on the geometrical properties of

Ω. Ciarlet et al in [19] and Geymonat et al in [32] have shown that the dimension of KT,s(Ω)

is equal to 6J . As recalled above, we define the space Um,p
s (Ω), for m ≥ 1 by

Um,p
s (Ω) = {S ∈ Wm,p

0,s (Ω), DivS = 0, 〈S·n, ei〉Σj
= 〈S·n,P i〉Σj

= 0, 1 ≤ i ≤ 3, 1 ≤ j ≤ J},
(0.0.3)

and for m = 0 by

U0,p
s (Ω) = {S ∈ Lps(Ω), DivS = 0, S · n = 0 on ∂Ω, 〈 S · n, ei〉Σj

= 〈S · n,P i〉Σj
= 0}.
(0.0.4)

We also introduce the following space

Gs(Ω) = {S ∈ Ds(Ω), Curl CurlS = 0 in Ω}.

For any matrix field S in L2
s(Ω

◦), we denote by S̃ its extension in L2
s(Ω).

Now, we suppose Ω ⊂ R2. We use the following operators. The scalar rotational

operator curl : D′(Ω)→ D′(Ω) is defined by

curlv =
∂v2

∂x1

− ∂v1

∂x2

for any v ∈ D′(Ω)

The vector rotational operator curl : D′(Ω)→ D′(Ω) is defined by

curlϕ =

 −
∂ϕ

∂x2

∂ϕ

∂x1

 for any ϕ ∈ D′(Ω).

The Hessian matrix operator Hess : D′(Ω)→ Ds(Ω) is defined by

Hessϕ =


∂2ϕ

∂x2
1

∂2ϕ

∂x1∂x2

∂2ϕ

∂x2∂x1

∂2ϕ

∂x2
2

 for any ϕ ∈ D′(Ω).

For any matrix field

S =

(
S11 S12

S21 S22

)
,

13



we define S? by

S? =

(
S22 −S21

−S12 S11

)
.

Observe that (S?)? = S and if S is symmetric, then

DivS? = 0⇔ curlS = 0, (0.0.5)

where curlS is the vector field

(
curlS1

curlS2

)
with Si is the ith line of the matrix S.

We define the functional space Lp0(Ω) by

Lp0(Ω) = {v ∈ Lp(Ω),

∫
Ω

v · r dx = 0, ∀r ∈ R(Ω)}, (0.0.6)

and V1,p
s (Ω) by

V1,p
s (Ω) = {S ∈ W1,p

0,s(Ω), DivS = 0 in Ω}. (0.0.7)

14



Chapter 1

Introduction

The objective of this thesis stem from a desire to start with some new results for vectors

fields and we hopefully move on towards to show its analogues and other characterizations

of symmetric matrix fields.

We have presented the results of this thesis in three papers. The first article: ”On the

curl operator and some characterizations of matrix fields in Lipschitz domains”, is published

in ”Journal of Mathematical Analysis and Applications”. The second article: ”Beltrami’s

completeness and Beltrami’s-type decomposition for Lp-symmetric matrix fields and the third

article: ”Characterization of the trace of W 3,p(Ω) on Lipschitz domaine of R2”, are submitted.
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Bogovskĭı [13] proved the existence of a continuous right inverse of the divergence operator

div : W 1,p
0 (Ω)→ Lp0(Ω) = {f ∈ Lp(Ω),

∫
Ω

f dx = 0}. (1.0.1)

Moreover, he gave an explicit form of the inverse operator in the case when Ω is starlike with

respect to an open ball. A detailled proof of Bogovskĭı’s theorem is given by Borchers et al

[14] and later by Galdi [27]. Amrouche et al [7] have shown that if p = 2, then the surjectivity

result of the operator (1.0.1) is equivalent with the following results:

(a) Classical J. L. Lions lemma:

f ∈ H−1(Ω) and ∇ f ∈H−1(Ω) implies f ∈ L2(Ω).

(b) J. Neças inequality: There exists a constant C such that for any f ∈ L2(Ω)

‖f‖L2(Ω) ≤ C
(
‖f‖H−1(Ω) + ‖∇ f‖H−1(Ω)

)
.

(c) The operator

∇ : L2
0(Ω)→H−1(Ω)

has a closed range.

(d) A coarse version of De Rham’s Theorem: Let h ∈H−1(Ω), there exists a function

p ∈ L2
0(Ω) such that

∇p = h in H−1(Ω),

if and only if

H−1(Ω)〈h, v〉H1
0(Ω) = 0, for all v ∈H1

0(Ω) that satisfy div v = 0 in Ω.

(e) Approximation lemma: Assume that Ω is starlike with respect to an open ball. Then,

there exist a constant C such that given any function ϕ in D0(Ω) = D(Ω)∩L2
0(Ω), there exists

vector fields vn ∈ D(Ω), n ≥ 1, such that

‖vn‖H1(Ω) ≤ C‖ϕ‖L2(Ω)

and

div vn → ϕ in D(Ω).

16



(f) Extension of J. L. Lions lemma:

f ∈ D′(Ω) and ∇ f ∈H−1(Ω) implies f ∈ L2(Ω).

In a recent work, P. Ciarlet et al [20] have shown a matrix version of the previous equivalence

theorem. They proved that the operator

Div : H1
0,s(Ω)→ L2

0(Ω) = {v ∈ L2(Ω),

∫
Ω

v · r dx = 0, ∀r ∈ R(Ω)},

is equivalent with the following results:

(a′) Weak version of J. L. Lions lemma:

v ∈H−1(Ω) and ∇sv ∈ H−1(Ω) implies v ∈ L2(Ω).

(b′) Vector version of Neças inequality: There exists a constant C such that

‖v‖L2(Ω) ≤ C
(
‖v‖H−1(Ω) + ‖∇sv‖H−1(Ω)

)
, ∀v ∈ L2(Ω).

(c′) The operator

∇s : L2
0(Ω)→ H−1

s (Ω)

has a closed range.

(d′) Weak Donati’s compatibility: Let E ∈ H−1(Ω), there exists a vector field v ∈ L2
0(Ω)

such that

∇sv = E in H−1(Ω),

if and only if

H−1(Ω)〈E,M〉H1
0(Ω) = 0, for all M ∈ H1

0,s(Ω) that satisfy DivM = 0 in Ω.

(e′) Approximation property: Assume that the domain Ω is starlike with respect to an open

ball. There exists a constant C such that given any vector field ϕ ∈ D0(Ω) = D(Ω) ∩L2
0(Ω),

there exist matrix fields En ∈ Ds(Ω), n ≥ 1, such that

‖En‖H1(Ω) ≤ C‖ϕ‖L2(Ω),

17



and

DivEn → ϕ in D(Ω).

(f′) Vector version of J. L. Lions lemma:

v ∈ D′(Ω) and ∇sv ∈ H−1
s (Ω) implies v ∈ L2(Ω).

Observe that the results (a′), (b′), (c′), (d′), (e′) and (f′) are the analogues of (a), (b), (c), (d),

(e) and (f) respectively.

Borchers et al [14] proved that for any ψ ∈ D0(Ω), there exists ϕ ∈ D(Ω) such that

divϕ = ψ in Ω and satisfying the estimation

‖ϕ‖W 1,p(Ω) ≤ C‖ψ‖Lp(Ω),

where C depends only on p and Ω. The previous result is more powerfull then result (e) of

the first equivalence theorem. It provides us with simple proof the following usual version of

De Rham’s Theorem: if Ω is any open set of R3, then, for any f ∈ D′(Ω) satisfying

for allϕ ∈ V(Ω), D′(Ω)〈f ,ϕ〉D(Ω) = 0,

where V(Ω) denotes the subspace of vector fields in D(Ω) with divergence free, then there

exists a scalar field χ ∈ D′(Ω) such that f =∇χ in Ω.

Analogues properties exist for matrix fields. In 1890, Donati proved that, if Ω is an open

subset of R3 and E ∈ C2(Ω) is such that∫
Ω

E : M = 0 forall M ∈ Ds(Ω) such that Div M = 0 in Ω, (1.0.2)

then E satisfies the following compatibility equation

Curl CurlE = 0 in Ω. (1.0.3)

A first extension of Donati’s Theorem was given in 1974 by Ting [48] as follows:

Theorem 1.0.1. (Ting’s theorem). Let Ω be a bounded and connected open set of R3 with a

Lipschitz-continuous boundary and E ∈ L2(Ω). If E satisfies (1.0.2), then there exists v in

H1(Ω) such that E =∇sv in Ω.
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Another extension of Donati’s Theorem was given in 1979 by Moreau [41] in the case of

distributions.

Theorem 1.0.2. (Moreau’s theorem). Let Ω be an arbitrary open set of R3 and E ∈ D′(Ω).if

E satisfies (1.0.2), then there exists v in D′(Ω) such that E =∇sv in Ω.

More recently, using different proofs, some variants of Donati’s Theorem have been inde-

pendently obtained by Geymonat and Krasucki [30] for E ∈ W−1,p
s (Ω), E ∈ Lps(Ω) and by

Amrouche et al [6] for E ∈ L2
s(Ω).

Let us observe that Moreau’s theorem is the matrix analog of the usual version of De

Rham’s theorem and Ting’s theorem is the matrix analog of the coarse version, here the

vector differential operators div and ∇ are replaced by Div and ∇s.

Concerning the operator curl, the classical Poincaré’s Lemma asserts that if Ω is an ar-

bitrary simply-connected open set of R3, then for any h ∈ C1(Ω) which satisfies curlh = 0

in Ω, there exists χ ∈ C2(Ω) such that h = ∇χ. This result still true in the case where

h ∈ L2(Ω) and in the case h ∈ H−1(Ω) if Ω is a bounded and connected open set with

Lipschitz-continuous boundary (see [33] and [18]).

A similar property takes place for matrix fields. Saint-Venant’s theorem (1864) announced

that if Ω is an arbitrary simply-connected open set of R3, then for any symmetric matrix in

E = (Eij) with Eij ∈ C2(Ω) which satisfies the compatibility equation (1.0.3), there exists

v ∈ C3(Ω) such that

∇sv = E in Ω. (1.0.4)

In fact, the first rigorous proof of the above result was given by Beltrami in 1886. More

recently, if in addition Ω is a bounded and connected open set with Lipschitz-continuous

boundary, Ciarlet and Ciarlet Jr [18] proved that if E ∈ L2(Ω) satisfies the compatibility

equations (1.0.3), then there exists v ∈ H1(Ω) such that (1.0.4) holds. A similar result, with

E ∈ H−1(Ω) and then v ∈ L2(Ω), was also obtained by Amrouche et al [6].

Let us observe that the above Saint-Venant’s theorem is nothing but only

the matrix analog of Poincaré’s lemma where the vector differential operators

curl and ∇ are replaced by the matrix differential operators Curl Curl and ∇s.

19



From the above exemples, we can see the analogy between the vector fields re-

sults and matrix fields results. In many cases, it suffices to replace the triplet

(div, ∇, curl) by the triplet (Div, ∇s, Curl Curl) to extend fundammental results

from the vector case to the matrix case.

Throughout the rest of manuscript, Ω is a bounded and connected open set of R3 with a

Lipschitz continuous boundary (except when we add more hypothesis on the regularity of Ω),

p is a real number such that 1 < p <∞ and p′ is its conjugate.

In the following, we will present the main results of each chapter. In Chapter 2, we will

present a new version of the above theorem that we will call the rotational version of De

Rham’s Theorem. In the case where the open set Ω is star-shaped with respect to an open

ball, Costabel et al in [21] and Mitrea in [43] have used the properties of pseudodifferential

operators to show that the operator

curl : D(Ω) −→ V(Ω), (1.0.5)

is onto. In Section 2.1, we will give a new proof of this result by using the theory of singular

integrals. Furthermore, we will generalize it in the case where Ω is Lipschitz but not necessarily

star-shaped with respect to an open ball. More precisely, we will show that if

f ∈ V(Ω) satisfies

∫
Ω

f ·ϕ dx = 0, ∀ϕ ∈KT (Ω), (1.0.6)

then there exists ϕ ∈ D(Ω) satisfying curlϕ = f in Ω. Next, we deduce a rotational version

of De Rham’s theorem. The main result of Chapter 2 can be formulated as follows:

Theorem A. (The rotational version of De Rham’s Theorem). i) Let m be a nonneg-

ative integer. For any f ∈ V(Ω) satisfying (1.0.6), there exists ψ ∈ D(Ω) such that

curlψ = f in Ω,

and there exists a constant C such that

‖ψ‖Wm+1,p(Ω) ≤ C)‖f‖Wm,p(Ω).
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ii) Let f ∈ Um,p(Ω), then there exists ψ ∈Wm+1,p
0 (Ω) such that curlψ = f .

iii) Let f ∈ D′(Ω) and satisfies

for all ϕ ∈ G(Ω), D′(Ω)〈f ,ϕ〉D(Ω) = 0,

where G(Ω) = {ϕ ∈ D(Ω), curlϕ = 0 in Ω}. Then, there exists ψ ∈ D′(Ω) such that

curlψ = f in Ω.

Let us observe that Theorem A is a vector potentials result for divergence-free function in

D(Ω) and in D′(Ω). Amrouche et al [3] have shown some results concerning vector potentials

which are associated with a L2-divergence-free function and satisfying some boundary condi-

tions. A generalization for Lp case was given by Amrouche and Seloula [9] . The question

that we have posed: why we do not show the analogues for the symmetric matrix fields ?

In the absence of body forces the stress equations of equilibrium take the form

DivS = 0 in Ω, S = ST , (1.0.7)

the second order symmetric tensor field being the stress in the reference configuration Ω of an

elastic body. The first stress function solution of the equilibrium equation (1.0.7) was presented

by Airy in [1] for the two dimensional case. The generalizations for the three dimensional case

were obtained by Maxwell in [38], Morera in [42] and Beltrami in [11]. The solutions of Morera

and Maxwell are special cases of the Beltrami’s solution defined as follows

S = Curl CurlA for all smooth symmetric second order tensor fields A in Ω. (1.0.8)

Gurtin [35] gave an example of a stress field S satisfying (1.0.7) but which is not given by

(1.0.8). So that this representation is incomplete. However the Beltrami solution is complete

in the class of smooth stress fields S which are self-equilibrated, i.e. for each closed regular

surface C contained in Ω, the resultant force and the moment vanish. In other words, S

satisfies the following condition:∫
C
S · n dσ =

∫
C
P i × (S · n) dσ = 0, for all 1 ≤ i ≤ 3,
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such that P i = −εijkxkej. For more details see [24]. An extension of this result can be

found in [31] and in [32] as follows: let Ω be a bounded and connected open set of R3 with

Lipschitz-continuous boundary and S be a symmetric matrix field in L2
s(Ω) and satisfying the

following conditions:

DivS = 0 in Ω and 〈S · n, ei〉Γk
= 〈S · n, ·P i〉Γk

= 0, 1 ≤ i ≤ 3, 0 ≤ k ≤ I.

Then, there exists a symmetric matrix field A ∈ H2
s(Ω) such that Curl CurlA = S in Ω.

Moreover, P. G Ciarlet et al in [19] stated that if the above symmetric matrix field S satisfies

the following conditions:

S · n = 0 on ∂Ω and 〈S · n, ei〉Σj
= 〈S · n,P i〉Σj

= 0, for all 1 ≤ i ≤ 3, 1 ≤ j ≤ J,

where 〈·, ·〉Σj
denotes the duality pairing between H−

1
2 (Σj)

′ and H
1
2 (Σj), then A ∈ H2

0,s(Ω).

In Chapter 3, we will present a new version of the Beltrami’s completeness, in the case when

the components of the symmetric matrix S are in D(Ω) and we will show the above result

of P.G. Ciarlet et al in a general case, when the components of S are in Wm,p
0 (Ω), with m a

nonnegative integer. Observe that the above versions of Beltrami’s completeness are nothing

but only the analogues of the vector fields results announced in Theorem A and here we state

the main result of Chapter 3.

Theorem B. (Completeness of the Beltrami Solution). i) Let m be a nonnegative

integer and S in Vs(Ω) satisfies∫
Σj

(S · n) · ei dσ =

∫
Σj

(S · n) · P i dσ = 0, for all 1 ≤ i ≤ 3, 1 ≤ j ≤ J.

Then, there exists A ∈ Ds(Ω) such that

Curl CurlA = S in Ω,

and there exists a constant C such that

‖A‖Wm+2,p(Ω) ≤ C‖S‖Wm,p(Ω).
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ii) Let S ∈ Um,p(Ω), then there exists A ∈ Wm+2,p
0 (Ω) such that Curl CurlA = S.

iii) Let S ∈ D′s(Ω) and satisfies

for all E ∈ Gs(Ω), D′(Ω)〈S,E〉D(Ω) = 0,

then, there exists A ∈ D′s(Ω) such that

Curl CurlA = S in Ω.

Let us introduce the following matrix spaces

Hp
s(Div, Ω) = {S ∈ Lps(Ω), DivS ∈ Lp(Ω)},

Hp
s(Curl Curl, Ω) = {S ∈ Lps(Ω), Curl CurlS ∈ Lps(Ω)},

Xp
s(Ω) = Hp

s(Div, Ω) ∩ Hp
s(Curl Curl, Ω),

Yps(Ω) = {S ∈ Xp
s(Ω, DivS ∈W 1,p(Ω)},

which are equipped with the graph norms.

In Section 4.1, we will show that any matrix field S in Hp
s(Div; Ω) has a normal trace Sn

in W− 1
p
,p(Γ) and the following Green’ formula holds

∀v ∈W 1,p′(Ω), 〈Sn,v〉Γ =

∫
Ω

S :∇sv dx+

∫
Ω

DivS · v dx.

The previous characterization of Hp
s(Div; Ω) will allows us to present a tangential extension

of Beltrami’s completeness. We adopt the following notation, if E(Ω) is a Banach space, we

denote by

ET (Ω) = {S ∈ E, Sn = 0 on Γ}.

We will show that if the domain Ω is of class C1,1, then

Xp
T,s(Ω) ↪→ W1,p

s (Ω)

and if Ω is of class C2,1 ,

YpT,s(Ω) ↪→ W2,p
s (Ω).
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By using Peetre-Tartar’s Theorem, we deduce the following first Friedrich’s inequality for

every matrix S in Xp
T,s(Ω):

‖S‖Lp(Ω) ≤ C
(
‖DivS‖Lp(Ω) + ‖Curl CurlS‖Lp(Ω) +

3∑
i=1

J∑
j=1

(|〈Sn, ei〉Σj
|+ |〈Sn,P i〉Σj

|)
)
.(1.0.9)

We finish this section by showing a new tangential extension of Beltrami’s completeness which

generalize the version of Geymonat et al (see [31], [32]) in Lps(Ω). The main result of Section

4.1 is given in the following theorem:

Theorem C. Assume that Ω is of class C1,1. A matrix S ∈ Lps(Ω) satisfies

DivS = 0 in Ω,

〈Sn, ei〉Γk
= 〈Sn,P i〉Γk

= 0, 1 ≤ i ≤ 3 and 0 ≤ k ≤ I,

if and only if there exists a matrix A ∈ Xp
s(Ω) such that

Curl CurlA = S and DivA = 0 in Ω,

An = 0 on Γ,

〈An, ei〉Σj
= 〈An,P i〉Σj

= 0, 1 ≤ i ≤ 3 and 1 ≤ j ≤ J.

Moreover A is unique and we have the estimate

‖A‖W1,p(Ω) ≤ C1‖S‖Lp(Ω).

In addition, if Ω is of class C2,1, then A ∈ W2,p
s (Ω) and we have the estimate

‖A‖W2,p(Ω) ≤ C2‖S‖Lp(Ω).

In Section 4.2, we will show that if Ω is of class C1,1, then any matrix S in Hp
s(Curl Curl, Ω)

has a tangential trace S × n in W−
1
p
,p(Γ). Further, the matrix CurlS (which is not even in

Lp(Ω)) has a tangential trace CurlS × n in W−1− 1
p
,p(Γ) and the following Green’s formula

holds for any E ∈ W2,p′
s (Ω):

〈S × n,CurlE〉Γ + 〈CurlS × n, E〉Γ =

∫
Ω

S : Curl CurlE dx−
∫

Ω

Curl CurlS : E dx.

24



The previous result will allows us to present a normal extension of Beltrami’s completeness.

We adopt the following notation, if E is a Banach space, we denote by

EN(Ω) = {S ∈ E, S × n = 0 and CurlS × n = 0 on Γ}.

We will show that if the domain Ω is of class C1,1, then

Xp
N,s(Ω) ↪→ W1,p

s (Ω)

and if Ω is of class C2,1,

YpN,s(Ω) ↪→ W2,p
s (Ω).

Using again Peetre-Tartar’s theorem, we deduce the following second Friedrich’s inequality

type for every matrix S in Xp
N,s(Ω):

‖S‖Lp(Ω) ≤ C
(
‖DivS‖Lp(Ω) + ‖Curl CurlS‖Lp(Ω) +

3∑
i=1

I∑
k=1

(|〈Sn, ei〉Γk
|+ |〈Sn,P i〉Γk

|)
)
.

(1.0.10)

We finish this section by showing a new normal extension of Beltrami’s completeness:

Theorem D. Assume that Ω is of class C1,1. Then a matrix S in Lps(Ω) satisfies

DivS = 0 in Ω,

Sn = 0 on Γ,

〈Sn, ei〉Σj
= 〈Sn, P i〉Σj

= 0, 1 ≤ i ≤ 3 and 1 ≤ j ≤ J,

if and only if there exists a matrix A ∈ Yps(Ω) such that

Curl CurlA = S in Ω, DivA = 0 in Ω,

A× n = 0 on Γ, CurlA× n = 0 on Γ,

〈Sn, ei〉Γk
= 〈Sn, P i〉Γk

= 0, 1 ≤ i ≤ 3, and 1 ≤ k ≤ I.

Moreover, A is unique and we have the estimate

‖A‖W1,p(Ω) ≤ C1‖S‖Lp(Ω).
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In addition, if Ω is of class C2,1, then A ∈ W2,p
s (Ω) and we have the estimate

‖A‖W2,p(Ω) ≤ C2‖S‖Lp(Ω).

In Section 4.3, we will interest by Beltrami’s-type decomposition which is the matrix analog

of the “well-known” Helmholtz vector decomposition. It describes a symmetric matrix field

as the sum of a compatible part (Curl Curl-free) and an incompatible part (divergence-free)

fields. Magianni et al [36] and Von Goethem [49] have presented a version of the above

decomposition for Lp-symmetric matrix fields. They proved that if Ω is simply-connected and

of class C∞, then for any S ∈ Lps(Ω, there exists an unique vector v in W 1,p(Ω) and an unique

divergence-free matrix field A in Lps(Ω) such that

S =∇sv + Curl CurlA. (1.0.11)

Geymonat et al [32] proved a Hodge decomposition of L2
s(Ω) where Ω is only Lipschitz and

not necessarily simply-connected. They showed that for any matrix field S of L2
s(Ω), there

exists v ∈H1(Ω), E ∈ KT,s(Ω) and M ∈ U0,2
s (Ω) such that

S =∇sv +M +E.

In Theorem 3.1.3, we will show that the operator Curl Curl : H2
0,s(Ω) −→ U0,2

s (Ω) is onto.

Consequently, there exists A ∈ H2
0,s(Ω) such that M = Curl CurlA and the following

decomposition holds

S =∇sv + Curl CurlA+E. (1.0.12)

Observe that the decomposition (1.0.12) has a Kernel part E which is due to the fact that Ω

is not necessarily simply-connected.

The second aim of Chapter 4 is to show three new versions of Beltrami’s-type decomposition

for matrix fields in Lps(Ω) when Ω is not necessarily simply-connected and with boundary of

class C1,1. We introduce the spaces

W1,p
σ,s(Ω) = {S ∈ W1,p

s (Ω), DivS = 0 in Ω},

W2,p
σ,s(Ω) = {S ∈ W2,p

s (Ω), DivS = 0 in Ω}.
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Theorem E. Assume that Ω is of class C1,1.

i) Let S ∈ Lps(Ω), then there exist E ∈ KT,s(Ω), v ∈W 1,p(Ω) and A ∈ W1,p
σ,s(Ω)∩YpN,s(Ω) such

that

S = E +∇sv + Curl CurlA,

where E is unique, v is unique up to an additive rigid displacement, A is unique to an element

of KN,s(Ω) and we have the estimate

‖E‖Lp(Ω) + ‖v‖W 1,p(Ω)/R(Ω) + ‖A‖W1,p(Ω)/KN,s(Ω) ≤ C‖S‖Lp(Ω).

* Moreover, if Ω is of class C2,1, then A ∈ W2,p
σ,s(Ω) ∩ YpN,s(Ω) and we have the estimate

‖E‖Lp(Ω) + ‖v‖W 1,p(Ω)/R(Ω) + ‖A‖W2,p(Ω)/KN,s(Ω) ≤ C‖S‖Lp(Ω).

ii) Let S ∈ Lps(Ω), then there exist E ∈ KT,s(Ω), v ∈W 1,p(Ω) and A ∈ W2,p
0,s(Ω) such that

S = E +∇sv + Curl CurlA,

where E is unique, v is unique up to an additive rigid displacement and we have the

estimate

‖E‖Lp(Ω) + ‖v‖W 1,p(Ω)/R(Ω) + ‖A‖W2,p(Ω) ≤ C‖S‖Lp(Ω).

iii) Let S ∈ Lps(Ω), then there exists v ∈ W 1,p
0 (Ω), E ∈ KN,s(Ω) and A ∈ W1,p

σ,s(Ω) ∩ Xp
T,s(Ω)

such that

S = E +∇sv + Curl CurlA,

where E and v are unique and A is unique to an additive element of KT,s(Ω) and we have the

estimate

‖E‖Lp(Ω) + ‖v‖W 1,p(Ω) + ‖A‖W1,p(Ω)/KT,s(Ω) ≤ C‖S‖Lp(Ω).

* Moreover, if Ω is of class C2,1, then A ∈ W2,p
σ,s(Ω) ∩ Xp

T,s(Ω) and we have the estimate

‖E‖Lp(Ω) + ‖v‖W 1,p(Ω) + ‖A‖W2,p(Ω)/KT,s(Ω) ≤ C‖S‖Lp(Ω).
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Let Ω be a connected and Lipschitz subset of RN whose bounded and orientable boundary

is denoted by Γ. A famous result of E. Gagliardo [26] gives, for m = 1, the characterization

of the range of the restriction γ0(u) = u|Γ to Γ. More precisely, Gagliardo proves that the

operator γ0 is linear and continuous from W 1,p(Ω) into W 1− 1
p
,p(Γ) for 1 ≤ p < ∞ and has a

continuous right inverse for p > 1.

When u ∈ W 2,p(Ω), then
∂u

∂xj
∈ W 1,p(Ω) for j = 1, . . . , N . Therefore the normal derivative

γ1(u) = ∇u · n ∈ Lp(Γ) since n = (n1, · · · , nN) is defined almost everywhere and belongs

to (L∞(Γ))N . J. Nečas [44] proves that γ0(u) ∈ W 1,p(Γ) and that the linear mapping u →
(γ0(u), γ1(u)) is continuous from W 2,p(Ω) into W 1,p(Γ) × Lp(Γ). A natural question is to

characterize the range of the mapping (γ0, γ1). A first answer has been obtained for polygonal-

type domains of R2 by Kondrat’ev and Grisvard (see e.g. [34] for full references) in terms of

compatibility conditions at the corners and then the results have been extended to polyhedral-

type domains (N = 3). These characterizations have been extensively used in order to give

regularity results for different types of boundary-value problems.

For general Lipschitz domains a first characterization of the range of (γ0, γ1) has been

obtained for N = 2 in [29] and if p = 2 and extended in [23] for the general case 1 < p <∞.

This result reads as follows: The range of (γ0, γ1)) is the set of (g0, g1) ∈ W 1,p(Γ)×Lp(Γ) such

that:
∂g0

∂t
t+ g1n ∈W 1− 1

p
,p(Γ). (1.0.13)

Let us mention, also, that the generalization for the case N = 3 and 1 < p <∞ was obtained

by Buffa et al (see [17]).

In fact, a more general characterization of the image of the trace operators in Wm,p(Ω),

where Ω is a domain in RN with Lipschitz boundary, has been obtained for arbitrary m and

N , by Maz’ya, Mitrea and Shaposnikova [40]. These authors used an analytical method based

on Taylor expansions in Besov and weighted Sobolev spaces.

In Chapter 5, first of all, we will give two applications of the result of Geymonat and

Krasucki [29] to solve a boundary value problem for the bi-laplacian equation. The first ap-

plication concerns a regularity result for the solution to a non homogeneous Dirichlet problem

for the homogeneous Bi-Laplacian equation in a lipschitzian domain. This result improve the
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one obtained in [22]. Up to our knowledge it is the first time that this result is stated in

this form. The second application relies on the existence of very weak solution, in Lipschitz

domains, to Dirichlet problem for the Bi-Laplacian equation. It is a first time that one can

obtain very weak solution in Lipshitz domains.

Next, due to a new representation of the Hessian in R3, we characterize the range of the

trace operator in W 3,p(Ω), more precisely, we would like to characterize the range of the

application (γ0, γ1, γ2) defined on W 3,p(Ω) where

γ2 : W 3,p(Ω) → Lp(Ω)

u → γ2(u) = [(∇2 u)n] · n.

Necessary conditions are obtained by Geymonat [28].

Even if this result is a particular case of the obtained in [40], our proof is completely new

and different from their. Our proof relies on potential matrices which are similar to potential

vectors introduced in [9]. We hope that we can extend our proof to Wm,p(Ω) where Ω is a

Lipschitz domain.
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Chapter 2

Some characterizations of the curl

operator

The surjectivity of the operator div : D(Ω) −→ D0(Ω) is an important tool in the

analysis of Stokes equations. This result has been shown by many authors through different

techniques (see [21], [27], [43]) and it provides us with a simple proof for the following usual

version of De Rham’s theorem: let f ∈ D′(Ω) satisfying ∀ϕ ∈ V(Ω), D′(Ω)〈f ,ϕ〉D(Ω) = 0,

then there exists a scalar field p ∈ D′(Ω) such that f = ∇ p in Ω. The main goal of this

chapter is to present some results of vector fields, specially a new extension of the above

theorem that we will call the rotational version of De Rham’s theorem.
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In this chapter, Ω is a bounded and connected open set of R3 with Lipschitz-continuous

boundary.

2.1 Poincaré integral operator

Mitrea [43], Costabel and Macintosch [21] have shown that if Ω is bounded and starlike

with respect to an open ball, then the operator

curl : D(Ω) −→ V(Ω) (2.1.1)

is onto. In this section, we apply the singular integrals theory to give a detailed proof for this

result. Then we generalize it for the case where Ω is a bounded and connected open set of R3

with a Lipschitz-continuous boundary i.e., we prove that the operator

curl : D(Ω) −→ V(Ω) ⊥KT (Ω) (2.1.2)

is onto. Here V(Ω) ⊥KT (Ω) denotes the space of functions v ∈ V(Ω) such that
∫

Ω
v ·ϕ dx =

0 for all ϕ ∈ KT (Ω). This last result is the main key to prove a rotational extension of De

Rham’s theorem.

Lemma 2.1.1. Let θ be a function of D(R3) such that

supp θ ⊂ Ω and

∫
R3

θ(y) dy = 1.

Then, for any f ∈ V(Ω), the vector field Tf defined by

x ∈ Ω, Tf(x) =

∫
Ω

f(y)×
(

(x− y)

∫ ∞
1

(t− 1)t θ(y + t(x− y)) dt

)
dy, (2.1.3)

satisfies

curl Tf = f , Tf ∈ C∞(Ω) (2.1.4)

and there exists a constant Cp(Ω) depending only on p and Ω, such that

‖Tf‖W 1,p(Ω) ≤ Cp(Ω)‖f‖Lp(Ω). (2.1.5)

In particular, if Ω is starlike with respect to an open ball B and supp θ ⊂ B, then

Tf ∈ D(Ω). (2.1.6)
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Proof. Note that T is a Poincaré type operator (see [21]). Let f ∈ V(Ω), we denote by f̃ its

extension by 0 outside of Ω.

Step 1. We start by establishing the two properties of (2.1.4).

We write Tf in the form

x ∈ Ω, Tf(x) =

∫
Ω

f(y)×K(x, y) dy,

where

K(x, y) = (x− y)

∫ ∞
1

(t− 1)t θ(y + t(x− y)) dt.

We observe that

Tf(x) = lim
ε−→0

∫
|x−y|≥ε

f̃(y)×K(x, y) dy,

then

curl (Tf)(x) = ∇x × Tf(x) = lim
ε−→0

∫
|x−y|≥ε

∇x ×
(
f̃(y)×K(x, y)

)
dy

+ lim
ε−→0

∫
|x−y|=ε

(x− y)

|x− y|
×
(
f̃(y)×K(x, y)

)
dσy

:= lim
ε−→0

(Aε +Bε).

According to the formula:

curl (A×B) = ∇× (A×B) = (∇ ·B)A− (∇ ·A)B + (B · ∇)A− (A · ∇)B,

we deduce that

Aε =

∫
|x−y|≥ε

[
(∇x ·K(x, y)) f̃(y)− (f̃(y) · ∇x)K(x, y)

]
dy := A1(ε)−A2(ε).

Using now the following formula:

a× (b× c) = b(a · c)− c(a · b),

we have

Bε =

∫
|x−y|=ε

[(
(x− y)

|x− y|
·K(x, y)

)
f̃(y) −

(
(x− y)

|x− y|
· f̃(y)

)
K(x, y)

]
dσy := B1(ε)−B2(ε).
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Thus, we can write

curl (Tf)(x) = lim
ε−→0

[A1(ε)−A2(ε) +B1(ε)−B2(ε)] .

i) Study of A1(ε). We have

A1(ε) =

∫
|x−y|≥ε

[(∇x ·K1(x, y)) + (∇x ·K2(x, y))] f̃(y) dy, (2.1.7)

where

K1(x, y) = (x− y)

∫ ∞
1

t2θ(y + t(x− y))dt

and

K2(x, y) = −(x− y)

∫ ∞
1

t θ(y + t(x− y))dt. (2.1.8)

We remark that K1(·, ·) is the kernel of the Bogovskîı ’s operator (see [13]), then

∇x ·K1(x, y) = −θ(x). (2.1.9)

It is straightforward to see that

∇x ·K2(x, y) = −3

∫ ∞
1

t θ(y + t(x− y)) dt−
3∑
i=1

(xi − yi)
∫ ∞

1

t2∂iθ(y + t(x− y)) dt

= −
∫ ∞

1

t θ(y + t(x− y)) dt−
∫ ∞

1

∂(t2θ)

∂t
(y + t(x− y)) dt

= θ(x)−
∫ ∞

1

t θ(y + t(x− y)) dt. (2.1.10)

Then, from (2.1.7), (2.1.9) and (2.1.10), we obtain

lim
ε−→0

A1(ε) = −
∫

Ω

f(y)

∫ ∞
1

t θ(y + t(x− y)) dt dy. (2.1.11)

ii) Study of B1(ε). It is easy to prove that

lim
ε−→0

∫
|x−y|=ε

(
(x− y)

|x− y|
·K1(x, y)

)
f̃(y) dσy = f(x).

In (2.1.8), we use the change of variable s = t|x− y| to get

K2(x, y) = −(x− y)

|x− y|

∫ ∞
|x−y|

s θ

(
y + s

(x− y)

|x− y|

)
ds.
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Then ∫
|x−y|=ε

(x− y)

|x− y|
·K2(x, y)f̃(y) dσy

= −
3∑
i=1

∫ ∞
|x−y|=ε

f̃(y)(
xi − yi
|x− y|

)2

∫ ∞
|x−y|

s θ(y + s
(x− y)

|x− y|
) ds dσy.

Using now the change of variables z =
x− y
ε

and s′ = s− ε, we obtain

lim
ε−→0

∫
|x−y|=ε

(x− y)

|x− y|
·K2(x, y)f̃(y)dσy

= − lim
ε−→0

3∑
i=1

ε

∫
|z|=1

f̃(x− εz)z2
i

∫ ∞
0

(s′ + ε) θ(x+ s′z)ds′dσz

= 0.

Consequently,

lim
ε−→0

B1(ε) = f(x). (2.1.12)

iii) Study of A2(ε) +B2(ε). According to the Stokes formula, we obtain

lim
ε−→0

(A2(ε) +B2(ε)) = lim
ε−→0

[∫
|x−y|≥ε

(f̃(y) · ∇x)K(x, y) +

∫
|x−y|=ε

(
(x− y)

|x− y|
· f̃(y)

)
K(x, y)

]

= lim
ε−→0

∫
|x−y|≥ε

[
(f̃(y) · ∇x)K(x, y) +K(x, y) div f̃(y)

+ (f̃(y) · ∇y)K(x, y)
]
dy

= lim
ε−→0

∫
|x−y|≥ε

[
(f̃(y) · ∇x)K(x, y) + (f̃(y) · ∇y)K(x, y)

]
dy.

For any 1 ≤ i, j,≤ 3, we have

∂Kj

∂xi
(x, y) = −∂Kj

∂yi
(x, y) + (xj − yj)

∫ ∞
1

(t− 1)t ∂iθ(y + t(x− y))dt.

Then

lim
ε−→0

(A2(ε)j +B2(ε)j) = lim
ε−→0

∫
|x−y|≥ε

[
f̃(y) ·Lj(x, y)

]
dy, (2.1.13)
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where the ith component of Lj is given by

((Lj(x, y))i = (xj − yj)
∫ ∞

1

(t− 1)t ∂iθ(y + t(x− y)) dt.

iv) Verification of curl Tf = f . From (5.3.1)-(2.1.13), we conclude that for all 1 ≤ j ≤ 3

(curl Tf)j(x) = fj(x)−
∫

Ω

[f(y) ·Lj(x, y)] dy −
∫

Ω

fj(y)

∫ ∞
1

tθ(y + t(x− y)) dt dy

= fj(x) +

∫
Ω

[f(y) ·Hj(x, y)] dy,

with

Hj(x, y) = −Lj(x, y)− ej
∫ ∞

1

tθ(y + t(x− y)) dt

and where ej is the jth vector of the canonical basis of R3. It is easy to verify that

∀x ∈ R3, Hj(x, ·) = gradχj(x, ·),

where

χj(x, y) = (xj − yj)
∫ ∞

1

tθ(y + t(x− y))dt.

Since f ∈ V(Ω), we deduce

(curl Tf)j(x) = fj(x)−
∫

Ω

div f(y)χj(x, y) dy

= fj(x).

v) Verification of Tf ∈ C∞(Ω). In (2.1.3), we use the changes of variables z = x − y and

s = (t− 1)|x− y|, so we obtain

x ∈ Ω, Tf(x) =

∫
R3

f̃(x− z)× z
∫ ∞

0

(
s2

|z|3
+

s

|z|2

)
θ(x+ s

z

|z|
)ds dz. (2.1.14)

Then, for any α ∈ N3, we have

∂αTf(x) =

∫
R3

∂αf̃(x− z)× z
∫ ∞

0

(
s2

|z|3
+

s

|z|2

)
θ(x+ s

z

|z|
)ds dz

+

∫
R3

f̃(x− z)× z
∫ ∞

0

(
s2

|z|3
+

s

|z|2

)
∂αθ(x+ s

z

|z|
)ds dz.
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Since ∂αf and ∂αθ are continuous in Ω, then ∂αTf is continuous and Tf ∈ C∞(Ω).

Step 2. Now, we establish the estimate (2.1.5).

Let f ∈ V(Ω) and 1 ≤ i, j ≤ 3, we have

∂Tf

∂xj
(x) = lim

ε−→0

[∫
|x−y|≥ε

∂

∂xj
(f(y)×K(x, y)) dy +

∫
|x−y|=ε

(f(y)×K(x, y))
xj − yj
|x− y|

dσ

]
= lim

ε−→0

[∫
|x−y|≥ε

(
f(y)× ∂K1

∂xj
(x, y)

)
dy +

∫
|x−y|=ε

(f(y)×K1(x, y))
xj − yj
|x− y|

dσ

]
+ lim

ε−→0

[∫
|x−y|≥ε

(
f(y)× ∂K2

∂xj
(x, y)

)
dy +

∫
|x−y|=ε

(f(y)×K2(x, y))
xj − yj
|x− y|

dσ

]
.

Since we have shown

lim
ε−→0

∫
|x−y|=ε

(f(y)×K2(x, y))
xj − yj
|x− y|

dσ = 0,

then
∂Tf

∂xj
(x) =

∫
Ω

(
f(y)× ∂K1

∂xj
(x, y)

)
dy +

∫
Ω

(
f(y)× ∂K2

∂xj
(x, y)

)
dy

+

(
f(x)×

∫
Ω

(x− y)

(
θ(y)

xj − yj
|x− y|

)
dy

)
:= J1f(x) + J2f(x) + J3f(x).

Also 

(J1f)ij(x) =

∫
Ω

(
εimnfm(y)

∂K1n

∂xj
(x, y)

)
dy

(J2f)ij(x) =

∫
Ω

(
εimnfm(y)

∂K2n

∂xj
(x, y)

)
dy

(J3f)ij(x) = εimnfm(x)

∫
Ω

K1n(x, y)
xj − yj
|x− y|2

dy.

There exists a constant C(Ω) (see page 166 of [27]) such that

∀ϕ ∈ D(Ω), ‖
∫

Ω

ϕ(y)
∂K1n

∂xj
(·, y) dy‖Lp(Ω) ≤ C(Ω)‖ϕ‖Lp(Ω).

Then, there exists a constant C1(Ω) such that

‖J1f‖Lp(Ω) ≤ C1(Ω)‖f‖Lp(Ω). (2.1.15)
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Besides, we have

∀ϕ ∈ D(Ω),

∫
Ω

ϕ(y)
∂K2n

∂xj
(x, y)dy =

1

2

∫
Ω

ϕ(y)Gnj(x, y)dy.

Thus, there exists a constant C2(Ω) such that (see page 165 of [27])

‖J2f‖Lp(Ω) ≤ C2(Ω)‖f‖Lp(Ω). (2.1.16)

For the last estimate, since for each x ∈ Ω

|(J3f)i(x)| ≤
3∑

k=1

|fk(x)|,

we deduce that

‖J3f‖Lp(Ω) ≤ C3(Ω)‖f‖Lp(Ω). (2.1.17)

Finally, from (2.1.15)-(2.1.17), there exists a constant Cp(Ω) such that

‖Tf‖W 1,p(Ω) ≤ Cp(Ω)‖f‖Lp(Ω).

Step 3. Now, we suppose that Ω is starlike with respect to an open ball B and

that supp θ ⊂ B. We will prove the property (2.1.6).

Indeed, in what follows we take

A = {z ∈ Ω; z = λz1 + (1− λ)z2, z1 ∈ suppf , z2 ∈ B, λ ∈ [0, 1]}.

Since Ω is starlike with respect to an open ball B, the compact set A is included in Ω. Fixing

any x ∈ Ω \ A, for any y ∈ suppf and t ≥ 1 we have y + t(x− y) /∈ B. According to (2.1.3),

we deduce that Tf(x) = 0 and suppTf ⊂ A ⊂ Ω. Consequently Tf ∈ D(Ω).

The following corollary generalizes the estimate (2.1.5) in the case where we replace the

Lebesgue space Lp(Ω) by the Sobolev space Wm,p(Ω), for any positive integer m.

Corollary 2.1.2. Let f ∈ V(Ω) and T the operator defined in (2.1.3). Then, for any real

number 1 < p < ∞ and for any integer m ≥ 1, there exists a constant C depending only on

p, m and Ω such that

‖Tf‖Wm+1,p(Ω) ≤ C‖f‖Wm,p(Ω). (2.1.18)
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Proof. All the constants which appear in the inequalities below are noted by a generic letter

C. We consider the case m = 1 and we write the operator T as in (2.1.14). So for any

i, j = 1, · · · , N , we have

∂jTf(x) =

∫
R3

∂jf̃(x− z)× z
∫ ∞

0

(
s2

|z|3
+

s

|z|2

)
θ(x+ s

z

|z|
)ds dz

+

∫
R3

f̃(x− z)×
∫ ∞

0

(
s2

|z|3
+

s

|z|2

)
∂jθ(x+ s

z

|z|
)ds dz

:= h1(x) + h2(x).

Estimate of ‖∂kh1‖Lp(Ω). We observe that h1 = ∂jTf , then Lemma 2.1.1 implies

‖∂kh1‖Lp(Ω) ≤ C‖∂jf‖Lp(Ω) ≤ C‖f‖W 1,p(Ω). (2.1.19)

Estimate of ‖∂kh2‖Lp(Ω). We remark that the function h2 has the same form as the function

Tf with θ replaced by ∂jθ. Note that, we find the estimate of the point without the need of

the property

∫
Ω

θ(x)dx = 1. This means that by the same method, we obtain

‖∂kh2‖Lp(Ω) ≤ C‖f‖Lp(Ω). (2.1.20)

From (2.1.19) and (2.1.20), we deduce the existence of a constant C depending only on m,

p and Ω such that (2.1.18) holds. For m > 1, we proceed by induction and so we apply the

same approach as for the case m = 1.

We have shown that if Ω is a starlike open set with respect to an open ball, then the

rotational operator is onto from D(Ω) into V(Ω). This result can be extended to a bounded

and connected open set of R3 with a Lipschitz-continuous boundary. For that we need the

following lemma (see [10]).

Lemma 2.1.3. Let Ω be a bounded and connected open set of RN with a Lipschitz-continuous

boundary. Then, there exist connected open sets Ωj of RN , j ≥ 1, with the following properties:

i) ∂Ωj is of classe C∞.

ii) Ωj ⊂ Ωj+1 ⊂ Ω for each j ≥ 1, and Ω = ∪∞j=1Ωj.
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Theorem 2.1.4. For any f ∈ V(Ω) ⊥KT (Ω), there exists ψ ∈ D(Ω) such that

curlψ = f in Ω.

Moreover, for any 1 < p < ∞ and for any nonnegative integer m, there exists a constant C

such that

‖ψ‖Wm+1,p(Ω) ≤ C‖f‖Wm,p(Ω). (2.1.21)

Proof. Let f ∈ V(Ω) satisfying the condition (1.0.6). Lemma 2.1.1 and Corollary 2.1.2 imply

that Tf ∈ C∞(Ω), curl (Tf) = f in Ω with the estimate (2.1.21). Thanks to Lemma 2.1.3

there exists an open set Ωj0 which is connected and of class C∞, such that suppf ⊂ Ωj0 ⊂ Ω.

Define the open set Ω′ = Ω \ Ωj0 , which is bounded and connected open set of R3 with a

Lipschitz-continuous boundary. Setting now ψ′ = Tf |Ω′ , it follows from Lemma 2.1.1 that

curlψ′ = 0 in Ω′ and by Corollary 2.1.2 that ψ′ ∈
⋂

1<p<∞,
m∈N

Wm,p(Ω). The compatibility

condition

∫
Ω

f · ϕ dx = 0 for all ϕ ∈ KT (Ω) implies that for any curves γ∗j inside Ω′ and

surrounding Σj, we have

∫
γ∗j

ψ′ · t =

∫
Σj

f ·n = 0. Hence ψ′ has no circulations in Ω′. Then,

there exists χ′ satisfying χ′ ∈
⋂

1<p<∞,
m∈N

Wm,p(Ω), such that grad χ′ = ψ′ in Ω′ (see Corollary 1

page 199 in [46]) and with the estimate

‖χ′‖Wm+2,p(Ω′) ≤ C‖ψ′‖Wm+1,p(Ω′).

Theorem 1.4.3.1 of [34] implies that there exists χ̃ ∈ C∞(R3) such that χ̃|Ω′ = χ′ and

‖χ̃‖Wm+2,p(R3) ≤ C‖χ′‖Wm+2,p(Ω′) ≤ C‖ψ′‖Wm+1,p(Ω′).

Setting now χ = χ̃|Ω and ψ = Tf − grad χ, we have ψ|Ω′ = 0, and then ψ ∈ D(Ω).

Furthermore, it is clear that curlψ = f in Ω and for any 1 < p <∞ and m ∈ N the estimate

(2.1.21) holds.
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2.2 The rotational version of De Rham’s theorem

In this sction, we will use the surjectivity of the rotational operator (2.1.2) to show a

rotational extension of De Rham’s theorem.

Theorem 2.2.1. Let f ∈ D′(Ω) satisfying the following condition:

∀ϕ ∈ G(Ω), D′(Ω)〈f ,ϕ〉D(Ω) = 0. (2.2.1)

Then, there exists ψ ∈ D′(Ω) such that

curlψ = f in Ω.

Remark 2.2.2. The converse is obvious, because for any ψ ∈ D′(Ω) and any ϕ ∈ G(Ω), we

have

D′(Ω)〈curlψ,ϕ〉D(Ω) = D′(Ω)〈ψ, curlϕ〉D(Ω) = 0.

Proof. Acccording to Theorem 2.1.4,

curl : D(Ω)/G(Ω) −→ V(Ω) ⊥KT (Ω)

is one to one and onto. Then, its adjoint

curl : (V(Ω) ⊥KT (Ω))′ −→ D′(Ω) ⊥ G(Ω) (2.2.2)

is also one to one and onto, where D′(Ω) ⊥ G(Ω) = {v ∈ D′(Ω), 〈v, ϕ = 0, ∀ϕ ∈ G(Ω)}.
Let L ∈ (V(Ω) ⊥ KT (Ω))′. As V(Ω) ⊥ KT (Ω) is closed in D(Ω), we can extend L by

L̃ ∈ D′(Ω). Two expressions g ∈ D′(Ω) and h ∈ D′(Ω) of L̃ coincide on V(Ω) ⊥ KT (Ω) if

and only if

∀ϕ ∈ V(Ω) ⊥KT (Ω), D′(Ω)〈g − h,ϕ〉D(Ω) = 0.

Using again Theorem 2.1.4, we have

∀ϕ ∈ V(Ω) ⊥KT (Ω), D′(Ω)〈g − h,ϕ〉D(Ω) = D′(Ω)〈g − h, curlψ〉D(Ω)

= D′(Ω)〈curl(g − h),ψ〉D(Ω)

= 0.
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Which means that

g − h ∈ Ker curl, where curl : D′(Ω) −→ D′(Ω),

and consequently

(V(Ω) ⊥KT (Ω))′ = D′(Ω)/Ker curl. (2.2.3)

Let f ∈ D′(Ω) satisfies (2.2.1). In other words, this means that f ∈ D′(Ω) ⊥ G(Ω). From

(2.2.2) and the characterization (2.2.3), there exists ψ ∈ D′(Ω), such that

curlψ = f in Ω.

2.3 A weak rotational extension of De Rham’s theorem

In this section, we will use Theorem 2.1.4 to show another surjectivity result of the curl

operator. Then, we will use this result to prove a weak rotational extension of De Rham’s

theorem. First, we need the following lemma:

Lemma 2.3.1. Let m be a nonnegative integer. Then, the space V(Ω) ⊥ KT (Ω) is dense in

Um,p(Ω).

Proof. Step 1: we show that the linear mapping R : V(Ω) −→ RJ defined by

(R(v))j =

∫
Σj

v · n dσ, 1 ≤ j ≤ J,

is onto, where J is the dimension of KT (Ω). For that purpos, we proceed by contradiction.

We suppose that R is not onto, which implies that there exists j0 such that 1 ≤ j0 ≤ J and

a family of numbers {λj} 1≤j≤J,
j 6=j0

such that for any v ∈ V(Ω), we have

∫
Σj0

v · n dσ =
J∑

j=1
j 6=j0

λj

∫
Σj

v · n dσ.
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Using the Green’s formula of Lemma 3.10 of [3], then

∫
Σj0

v · n dσ −
J∑

j=1
j 6=j0

λj

∫
Σj

v · n dσ =

∫
Ω

v ·

 ˜grad qTj0 −
J∑

j=1
j 6=j0

λj ˜grad qTj

 dx = 0,

where the vector fields ˜grad qTj are the elements of the basis of KT (Ω) (see [3]). Then, the

usual extension of De Rham’s theorem (see [7]) implies that there exists p ∈ H1(Ω), unique

up to an additive constant, such that

˜grad qTj0 −
J∑

j=1
j 6=j0

λj ˜grad qTj = grad p.

Consequently, p is harmonic and
∂p

∂n
= 0 on ∂Ω. So, p is a constant and then the dimension

of KT (Ω) is less then J , which is a contradiction. We have proved that for any 1 ≤ j ≤ J

there exists ϕj ∈ V(Ω) such that

for all 1 ≤ k ≤ J,

∫
Σk

ϕj · n dσ = δkj. (2.3.1)

Step 2: we show that V(Ω) ⊥ KT (Ω) is dense in Um,p(Ω). Let v ∈ Um,p(Ω) , then there

exists a sequence (vk) ∈ V(Ω) that converges to v in Wm,p(Ω). For any 1 ≤ j ≤ J , let ϕj be

the function in V(Ω) which satisfies (2.3.1). Now, setting

uk = vk −
J∑
j=1

(

∫
Σj

vk · n dσ)ϕj,

the function uk belongs to V(Ω) ⊥KT (Ω). Also the sequence (uk) converges to v inWm,p(Ω),

which is the required result.

Theorem 2.3.2. Let m be a nonnegative integer. For any f ∈ Um,p(Ω), there exists ψ ∈
Wm+1,p

0 (Ω) that satisfies

curlψ = f in Ω,

and there exists a constant C such that

‖ψ‖Wm+1,p(Ω) ≤ C‖f‖Wm,p(Ω). (2.3.2)
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Proof. Let f ∈ Um,p(Ω) and (fn) a sequence in V(Ω) ⊥KT (Ω), such that

fn −→ f in Wm,p(Ω).

Theorem 2.1.4 shows that for any n ∈ N, there exists a vector field ψn ∈ D(Ω) such that

ψn ∈ D(Ω), curlψn = fn and ‖ψn‖Wm+1,p(Ω) ≤ C‖fn‖Wm,p(Ω).

Clearly (ψn) is a Cauchy sequence. Then, there exists an element ψ ∈Wm+1,p
0 (Ω) such that

ψn −→ ψ in Wm+1,p(Ω),

with ψ satisfies (2.3.2).

Remark 2.3.3.

i) Theorem 2.3.2 was proved for Ω bounded and simply-connected open set of R3 with Lipschitz-

continuous boundary, m = 1 and p = 2 by Ciarlet and Ciarlet, Jr (see the proof of Theorem

3.1 in [18]) and for m a nonnegative integer and p = 2 by Amrouche, Ciarlet and Ciarlet, Jr

(see [5]).

ii) For m nonnegative integer and p = 2, as in [5], we can define a vector field ψ0 ∈Hm+1
0 (Ω)

such that curlψ0 = f in Ω and div∆m+1ψ0 = 0 in Ω. For that, it is sufficient to choose

ψ0 = ψ − grad p, where p is the unique solution in Hm+2
0 (Ω) of ∆m+2p = div∆m+1ψ and ψ

given by Theorem 2.3.2.

iii) For Ω bounded and connected open set of R3 with boundary of class Cm+2, Borchers and

Sohr in [14] established the same result that Theorem 2.3.2 with div ∆m+1ψ = 0. Moreover,

for m = 1 and Ω of class C1,1, Amrouche, Bernardi, Dauge and Girault in [3] gave another

proof of the result established by Borchers and Sohr. Furthermore, they proved that the vector

field ψ ∈H1
0(Ω) is unique, provided that

〈∂n(divψ), 1〉Γi
= 0, 1 ≤ i ≤ I,

where Γi are the different connected components of ∂Ω.
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The following weak rotational extension of De Rham’s theorem is a direct consequence of

Theorem 2.3.2. We define the space Gm,p(Ω) by

Gm,p(Ω) = {ϕ ∈Wm,p
0 (Ω), curlϕ = 0 in Ω}.

Theorem 2.3.4. Let m be an integer such that m ≥ 1, f ∈W−m,p′(Ω) and satisfies

∀ϕ ∈ Gm,p(Ω), W−m,p′ (Ω)〈f ,ϕ〉Wm,p
0 (Ω) = 0. (2.3.3)

Then, there exists Ψ ∈W−m+1,p′(Ω), such that

curl Ψ = f in Ω.

Proof. According to Theorem 2.3.2, the operator

curl : Wm,p
0 (Ω)/Gm,p(Ω) −→ Um−1,p(Ω),

is one to one and onto. Then, its adjoint

curl : (Um−1,p(Ω))′ −→W−m,p′(Ω) ⊥ Gm,p(Ω), (2.3.4)

is also one to one and onto. Proceeding as in the proof of Theorem 2.2.1 and using Theorem

2.3.2, it is easy to prove that

(Um−1,p(Ω))′ = W−m+1,p′(Ω)/Ker curl, (2.3.5)

where

curl : W−m+1,p′(Ω) −→W−m,p′(Ω).

Let f ∈ W−m,p′(Ω) satisfying (2.3.3). In other words, f ∈ W−m,p′(Ω) ⊥ Gm,p(Ω). Since

the operator (2.3.4) is an isomorphism, the characterization (2.3.5) implies that there exists

Ψ ∈W−m+1,p′(Ω) such that curl Ψ = f in Ω.
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2.4 A new proof of the general extension of Poincaré’s

Lemma

The classical Poincaré’s lemma asserts that if Ω is a simply-connected open set, then for

any h ∈ C1(Ω) which satisfies curlh = 0 in Ω, there exists χ ∈ C2(Ω) such that h = gradχ.

This lemma is also true in the general case where h ∈ L2(Ω) and Ω is a bounded and simply-

connected open set with a Lipschitz-continuous boundary (see Theorem 2.9 chapter 1 in [33]).

A general extension when h ∈H−1(Ω) was proved by Ciarlet and Ciarlet, Jr (see [18]).

In this section, we study the case where h is a distribution. The first proof of this extension

in the case where Ω is a simply-connected open, based on differential geometry tools, was given

by S. Mardare [37] in 2008 (Schwartz proved this extension for Ω = R3, see Section 3 of [47]).

Here, we give a simpler proof, using the characterization of the dual space V(Ω)′ given in the

proof of Theorem 2.2.1.

Lemma 2.4.1. Let h ∈ D′(Ω). If

curl h = 0 in Ω,

then, there exists p ∈ D′(Ω) such that

h = gradχ in Ω.

Proof. Let L ∈ V(Ω)′. Since V(Ω) is closed in D(Ω), we can extend L by L̃ ∈ D′(Ω). Two

expressions g ∈ D′(Ω) and h ∈ D′(Ω) of L̃ coincide on V(Ω) if and only if

∀ϕ ∈ V(Ω), D′(Ω)〈g − h,ϕ〉D(Ω) = 0.

According to the usual De Rham’s theorem, there exists p ∈ D′(Ω) such that g−h = grad p.

This means that we can define V(Ω)′ as follows:

V(Ω)′ = D′(Ω)/Im (grad) where grad : D′(Ω) −→ D′(Ω). (2.4.1)

It has already been shown that

V(Ω)′ = D′(Ω)/ker curl where curl : D′(Ω) −→ D′(Ω). (2.4.2)
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According to (2.4.1) and (2.4.2), we conclude that

Ker (curl) = Im (grad), (2.4.3)

hence the required result.
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Chapter 3

Beltrami’s completeness for

distributions symmetric matrix fields

In Chapter 2, we have shown that the operator (2.1.2) is onto. Then, we have used

this surjectivity result to prove a rotational extension of De Rham’s theorem. In this chapter,

we will use the same argument to prove some results for symmetric matrix fields, specially

some extensions of the Beltrami completeness for data in Ds(Ω) and for data in D′
s(Ω).
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In this chapter, Ω is a bounded and connected open set of R3 with Lipschitz-continuous

boundary.

3.1 Beltrami’s completeness for symmetric matrix fields

in Ds(Ω)

Theorem 3.1.1. Let m be a nonnegative integer. For any matrix S ∈ Vs(Ω) satisfies∫
Ω

S : M dx = 0 for all M ∈ KT,s(Ω),

there exists A ∈ Ds(Ω) such that

Curl CurlA = S in Ω.

Moreover, there exists a constant C depending only on p, m and Ω such that

‖A‖Wm+2,p(Ω) ≤ C‖S‖Wm,p(Ω). (3.1.1)

Proof. The proof follows the lines of the proof of Theorem 2.2 in [31]. Let S ∈ Vs(Ω) ⊥ KT,s(Ω)

i.e., S ∈ Vs(Ω) and satisfying

∫
Ω

S : M dx = 0 for all M ∈ KT,s(Ω). That means that for any

1 ≤ i ≤ 3 and any 1 ≤ j ≤ J (see [19])

divS = 0 in Ω, (3.1.2)∫
Σj

(S · n) · ei dσ = 0, (3.1.3)∫
Σj

(S · n) · P i dσ = 0. (3.1.4)

Observe that conditions (3.1.2), (3.1.3) are equivalent to: for each 1 ≤ i ≤ 3, Si ∈ V(Ω) ⊥
KT (Ω) where Si is the i-th line of matrix S. Then, Theorem 2.1.4 implies that there exists

some vector field W i in D(Ω) such that curlW i = Si, and satisfying the estimate

‖W i‖Wm+1,p(Ω) ≤ C‖Si‖Wm,p(Ω).
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We define W the matrix field whose lines are the vectors W i. So W satisfies curlW = ST

in Ω and

‖W ‖Wm+1,p(Ω) ≤ C‖S‖Wm,p(Ω).

Now setting B = W T − tr(W )I. The symmetry of S implies that

DivB = 0 in Ω. (3.1.5)

Indeed, for i = 1 for example, we have

divB1 = ∂2W21 − ∂1W22 + ∂3W31 − ∂1W33

= 0.

Moreover,∫
Σj

((CurlW )Tn)·P i dσ =

∫
Σj

((Curl(PW ))Tn)·ei dσ+

∫
Σj

(W Tn)·ei dσ−
∫

Σj

(tr(W )In)·ei.

(3.1.6)

Because PW ∈D(Ω), we get ∫
Σj

(Curl(PW ))Tn) · ei dσ = 0. (3.1.7)

Hence (3.1.4), (3.1.6) and (3.1.7) imply that∫
Σj

(Bn) · ei dσ = 0. (3.1.8)

By using (3.1.5), (3.1.8) and applying again Theorem 2.1.4, there exists a matrix field D in

D(Ω) such that

curlD = BT = W − tr(W )I, (3.1.9)

with

‖D‖Wm+2,p(Ω) ≤ C‖B‖Wm+1,p(Ω ≤ C‖S‖Wm,p(Ω).

Therefore

Curl CurlD = ST − curl(tr(W )I). (3.1.10)
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We also have

Curl CurlDT = (Curl CurlD)T

= S + curl(tr(W )I). (3.1.11)

Define A =
D +DT

2
, then (3.1.10) and (3.1.11) imply

Curl CurlA =
S + ST

2
= S.

Which is the required result.

P.G. Ciarlet et al in [19] stated the range of the operator Curl Curl : H2
0,s(Ω) −→ L2

s(Ω)

is the space U0,2
s (Ω). In the following, We will use the Beltrami’s completeness, which had

been proved in Theorem 3.1.1 to show that the operator Curl Curl : Wm+2,p
0,s (Ω) −→ Um,p

s (Ω)

is onto, where m is a nonnegative integer. Using the same argument of the proof of Lemma

2.3.1, the following result holds:

Lemma 3.1.2. Let m be a nonnegative integer. Then the space Vs(Ω) ⊥ KT,s(Ω) is dense in

Um,p
s (Ω).

Theorem 3.1.3. Let m be a nonnegative integer. For any matrix S in Um,p
s (Ω), there exists

A ∈ Wm+2,p
0,s (Ω) such that

Curl CurlA = S in Ω and ‖A‖Wm+2,p
s (Ω) ≤ C‖S‖Wm,p

s (Ω).

Proof. Let A ∈ Um,p
s (Ω). Since Vs(Ω) ⊥ KT,s(Ω) is dense in Um,p

s (Ω), there exists a sequence

(Sk) of Vs(Ω) ⊥ KT,s(Ω) such that

Sk −→ S in Wm,p
s (Ω) when k −→∞.

From Lemma 3.1.1, for any k ∈ N, there exists Ak ∈ Ds(Ω) such that

Curl CurlAk = Sk with ‖Ak‖Wm+2,p
s (Ω) ≤ C‖Sk‖Wm,p

s (Ω).
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Clearly (Ak) is a Cauchy sequence and there exists A ∈ Wm+2,p
0,s (Ω) such that

Ak −→ A in Wm+2,p
s (Ω).

with

Curl CurlA = S in Ω and ‖A‖Wm+2,p
s (Ω) ≤ C‖S‖Wm,p

s (Ω).

3.2 Beltrami-s completeness for symmetric matrix fields

in D′s(Ω)

In Chapter 2 we have used the surjectivity of the operator (2.1.2) to present te rotational

version of De Rham’s theorem. Here, we will use the extension of Beltrami’s completeness has

been stated in Theorem 3.1.1 to present the symmetric analogous of Theorem 2.3.4 which can

be considered as an extension of Beltrami’s completeness in D′s(Ω).

Theorem 3.2.1. Let E ∈ D′s(Ω) satisfies

D′(Ω)〈S,E〉D(Ω) = 0 for all E ∈ Gs(Ω). (3.2.1)

Then there exists A ∈ D′s(Ω) such that

Curl CurlA = S in Ω.

Remark 3.2.2. The converse is obvious, because for any S ∈ D′s(Ω) and any E ∈ Gs(Ω), we

have

D′(Ω)〈Curl CurlS,E〉D(Ω) = D′(Ω)〈S,Curl CurlE〉D(Ω) = 0.

Proof. According to Theorem 3.1.1,

Curl Curl : Ds(Ω)/Gs(Ω) −→ Vs(Ω) ⊥ KT,s(Ω) (3.2.2)
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is one to one and onto. Then its adjoint

Curl Curl : (Vs(Ω) ⊥ KT,s(Ω))′ −→ D′s(Ω) ⊥ Gs(Ω)

is one to one and onto.

Let L ∈ (Vs(Ω) ⊥ KT,s(Ω))′ and L̃ any extension of L in D′s(Ω). Two expressions S and A

of L̃ coincide on Vs(Ω) ⊥ KT,s(Ω) if and only if,

∀E ∈ Vs(Ω) ⊥ KT,s(Ω), D′(Ω)〈S −A,E〉D(Ω) = 0.

Using again Lemma 3.1.1, we get

∀B ∈ Ds(Ω), D′(Ω)〈S −A,Curl CurlB〉D(Ω) = D′(Ω)〈Curl Curl (S −A),B〉D(Ω) = 0,

which means that S −A ∈ Ker Curl Curl, where

Curl Curl : D′s(Ω) −→ D′s(Ω).

Consequently,

(Vs(Ω) ⊥ KT,s(Ω))′ = D′s(Ω)/Ker Curl Curl. (3.2.3)

Let S ∈ D′s(Ω) satisfies (3.2.1). In other words, that means that S ∈ D′s(Ω) ⊥ Gs(Ω), then the

operator is an isomorphism, d the characterization (3.2.3) implies that there exists A ∈ D′s(Ω)

such that Curl CurlA = S in Ω.

3.3 The general extension of Saint-Venant’s theorem

Podio-Guidugli in [45] have used a Beltrami’s completeness to show the equivalence between

the sufficient conditions of Donati’s and Saint-Venant’s theorems: Let Ω be a smooth bounded

and simply-connected open set of R3, then any symmetric matrix field E = (Eij) with Eij ∈
CN(Ω) (N ≥ 2) satisfies

Curl CurlE = 0 in Ω,

if and only if ∫
Ω

E : M dx = 0 for any M ∈ Vs(Ω).
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Later, Geymonat and Krasucki in [30] have proved the above equivalence when E ∈ L2
s(Ω) and

they have used it together with Ting’s theorem to conclude an extension of Saint-Venant’s

theorem in L2
s(Ω). In the following, we will use the same idea to present an extension of

Saint-Venant’s theorem in D′s(Ω).

Theorem 3.3.1. Let E ∈ D′s(Ω) satisfies

Curl CurlE = 0 in Ω. (3.3.1)

Then there exists v ∈ D′(Ω) such that

∇sv = E in Ω.

Proof. Let E be a symmetric matrix field in D′s(Ω) such that Curl CurlE = 0 in Ω. We

have already shown that for any symmetric matrix field A in Vs(Ω), there exists B ∈ Ds(Ω)

such that Curl CurlB = A. Then, we have

D′(Ω)〈E, A〉D(Ω) = D′(Ω)〈E, Curl CurlB〉D(Ω) = D′(Ω)〈Curl CurlE, B〉D(Ω) = 0.

Thus, Theorem 1.0.2 ( Moreau’s theorem) implies that there exists v ∈ D′(Ω) such that

∇sv = E in Ω, which is the required result.
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Chapter 4

Beltrami’s completeness and

representation for Lps-symmetric

matrix fields

Gurtin [35] has shown the Beltrami’s completeness for smooth matrix fields. He proved

that for any self-equilibrated matrix field S = (Sij) ∈ C1(Ω), there exists symmetric matrix

field A = (Aij) ∈ C3(Ω) such that CurlCurlA = S in Ω when Ω is smooth. In 2006,

Geymonat and Krasucki [31] have shown a new extension of Beltrami’s completeness for

matrix fields in L2
s(Ω) when Ω is only Lipschitz. In this chapter, we will show two extensions

of Beltrami’s completeness for matrix fields in Lp
s(Ω). Then, , we will present some extensions

of Beltrami’s representation, also for matrix fields in Lp
s(Ω). .
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In this chapter, Ω is a bounded and connected open set of R3.

4.1 Tangential Beltrami’s completeness

We know that any vector field v in Hp(div, Ω) has a normal trace v · n in W− 1
p
,p(Γ) (see

[9]). Using the same arguments of proofs of Theorem 2.4 and Theorem 2.5 of [33], then the

following analogous results for matrix fields in Hp
s(Div, Ω) hold:

Proposition 4.1.1. Assume that Ω is Lipschitz.

i) The space Ds(Ω) of restriction to Ω of functions of Ds(R3) is dense in Hp
s(Div,Ω).

ii) The mapping S −→ Sn defined on Ds(Ω) can be extended by continuity to a linear and

continuous mapping, still denoted by the same way, from Hp
s(Div, Ω) into W− 1

p
,p(Γ) and the

following Green’s formula holds:

∀v ∈W 1,p′(Ω), 〈Sn,v〉Γ =

∫
Ω

S :∇sv dx+

∫
Ω

DivS · v dx. (4.1.1)

We denote by Hp
0,s(Div, Ω) the closure of Ds(Ω) in Hp

s(Div, Ω) and Hp
0,s(Curl Curl, Ω)

the closure of Ds(Ω) in Hp
s(Curl Curl, Ω). Here, we give characterizations of the above spaces:

Proposition 4.1.2. Assume that Ω is Lipschitz.

i) If S belongs to Hp
s(Div, Ω) and satisfies

for all v ∈ D(Ω),

∫
Ω

S :∇sv dx+

∫
Ω

DivS · v dx = 0, (4.1.2)

then S ∈ Hp
0,s(Div, Ω).

ii) If S belongs to Hp
s(Curl Curl, Ω) and satisfies

for all Ψ ∈ D(Ω),

∫
Ω

S : Curl Curlψ dx−
∫

Ω

Ψ : Curl CurlS dx = 0, (4.1.3)

then S ∈ Hp
0,s(Curl Curl, Ω).

Proof. i) Let S be an element of Hp
s(Div, Ω) and satisfying the relation (4.1.2). We denote S̃

the extension of S by zero outside Ω. The fact that S satisfies (4.1.2) implies that S̃ belongs

55



to Hp
s(Div, R3), i.e. S̃ ∈ Lps(R

3) and Div S̃ ∈ Lp(R3). Indeed, for all ϕ ∈ D(R3), we have

|D′(R3)〈Div S̃, ϕ〉D(R3)| = |
∫

R3

S̃ :∇sϕ dx| = |
∫

Ω

S :∇sϕ dx|

= |
∫

Ω

DivS ·ϕ dx|

≤ ‖DivS‖Lp(Ω)‖ϕ‖Lp′ (R3)

Step 1. We suppose that Ω is starlike with respect to an open ball centered at the origin. We

make the change of variable

S̃θ(x) = S̃(
x

θ
), θ ∈ ]0, 1[.

The choice of θ ∈ ]0, 1[ implies that S̃θ has a compact support in Ω. It is clear that S̃θ belongs

to Hp
s(Div, R3) and

lim
θ−→1

S̃θ = S̃ in Hp
s(Div, R3).

For ε > 0, let ρε be a mollifiers that vanishes for |x| > ε. We define the matrix field ρε ∗ S̃θ by

(ρε ∗ S̃θ)ij = ρε ∗ (̃Sθ)ij. The choice of ε sufficiently small implies that ρε ∗ S̃θ has a compact

support in Ω, then (ρε ∗ S̃θ)|Ω belongs to Ds(Ω) and

lim
ε−→0

lim
θ−→1

(ρε ∗ S̃θ)|Ω = S in Hp
s(Div, Ω).

Step 2. We suppose that Ω is Lipschitz but not necessarily starlike with respect to an

open ball. We denote {Ωi}I0i=1 the finite set of starlike open sets that recover Ω and let (αi)i

be a partition of unity subordinate to {Ωi}I0i=1. We know that for any 1 ≤ i ≤ I0, there

exists a sequence (Ai
k)k of Ds(Ωi) that converges to αiS in Hp

s(Div, Ωi). For any k ∈ N,

we set Ak =

I0∑
i=1

Ai
k. Observe that this sequence belongs to Ds(Ω) and it converges to S in

Hp
s(Div, Ω), which ends the proof of Point i).

ii) We use the same argument of the proof of Point i).

Remark 4.1.3. Due to Proposition 4.1.2 and Proposition 4.1.1, the space Hp
0,s(Div, Ω) can

be defined by

Hp
0,s(Div, Ω) = {S ∈ Hp

s(Div, Ω), Sn = 0 on Γ}.
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The following lemma was proved in [4] for p = 2. The proof below is very close to that

given in the Hilbertian case.

Lemma 4.1.4. Assume that Ω is of class C1,1 and let S ∈ Hp
0,s(Div, Ω). Then, the restriction

Sn to any Σj belongs to [W
1
p
,p′

00 (Σj)]
′ and the following Green’s formula holds: for all v ∈

W 1,p′(Ω◦),
J∑
j=1

〈Sn, [v]j〉Σj
=

∫
Ω◦
S :∇sv dx+

∫
Ω◦
v ·DivS dx, (4.1.4)

where

W
1
p
,p′

00 (Σj) = {µ ∈W
1
p
,p′(Σj), µ̃ ∈W

1
p
,p′(Mj)}

and µ̃ is the extension of µ by zero outside of Σj.

Proof. Let 1 ≤ j ≤ J , we extend the cut Σj by the cut Σ′j, which allows us to divide Ω on

two parts Ωj and Ω′j such that Ω = Ωj ∪ Ω′j ∪ Σj ∪ Σ′j. Let µ ∈W
1
p
,p′

00 (Σj), we denote ψj the

solution in W 1,p′(Ωj) of the problem

Div∇sψj = 0 in Ωj, ψj = 0 on ∂Ωj\Σj and ψj =
µ

2
on Σj, (4.1.5)

and ψ′j the solution in W 1,p′(Ω′j) of the problem

Div∇sψ
′
j = 0 in Ω′j, ψ′j = 0 on ∂Ω′j\Σj and ψ′j = −µ

2
on Σj. (4.1.6)

We know that there exists a constant Cj depending only on p and Ωj such that

‖ψj‖W 1,p′ (Ωj) ≤ Cj‖µ‖
W

1
p ,p′

00 (Σj)
,

and there exists a constant C ′j depending only on p and Ω′j such that

‖ψj‖W 1,p′ (Ω′j) ≤ Cj‖µ‖
W

1
p ,p′

00 (Σj)
.

We define the vector field wj by

wj =


ψj in Ωj,

ψ′j in Ω′j,

0 on Σ′j.
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Observe that wj satisfies

∀1 ≤ k ≤ J, [wj]Σk
= δjk µ, wj ∈W 1,p′(Ω̊j),

where Ω̊j = Ω\Σj and there exists a constant C depends only on p and Ω such that

‖wj‖W 1,p′ (Ω̊j) ≤ Cj‖µ‖
W

1
p ,p′

00 (Σj)
.

Next, setting ωj = wj|Ω◦ , it satisfies

ωj ∈W 1,p′(Ω◦), [ω]Σk
= δjk µ, 1 ≤ k ≤ J, ωj = 0 on Γ

and ‖ωj‖W 1,p′ (Ω◦) ≤ C‖µ‖
W

1
p ,p′

00 (Σj)
.

Now, let A ∈ Ds(Ω), the Green’s formula gives

〈An, µ〉Σj
=

∫
Ω◦
A :∇sωj dx+

∫
Ω◦
ωj ·DivA dx. (4.1.7)

Moreover, we have

|〈An, µ〉Σj
| ≤ C‖A‖Hp

s(Div,Ω)‖µ‖
W

1
p ,p′

00 (Σj)
.

Then, the linear mapping

Ds(Ω) −→ [W
1
p
,p′

00 (Σj)]
′

A −→ An|Σj

is continuous in Ds(Ω) equipped with the norm of Hp
s(Div, Ω). As Ds(Ω) is dense in Hp

0,s(Div, Ω),

it can be extended to an unique linear and continuous mapping from Hp
0,s(Div, Ω) into

[W
1
p
,p′

00 (Σj)]
′ and by using adequate partition of unity, the Green’s formula (4.1.4) follows

from (4.1.7).

Remark 4.1.5. In the case of p = 2 and Ω is only Lipschitz, the elliptic problems (4.1.5) and

(4.1.6) have solutions in H1(Ω) and then Lemma 4.1.4 still true.

Notation 4.1.1. For any vector v ∈H1(Ω◦), we denote by [v]Σj
the jump of v throught Σj.
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We define the Kernel space KpT,s(Ω) by

KpT,s(Ω) = {S ∈ Xp
T,s(Ω), DivS = 0 and Curl CurlS = 0 in Ω}.

The regularity of the elements of KpT,s(Ω) depends on the regularity of the domain Ω as follows:

Lemma 4.1.6. Let m be a positive integer. Assume that Ω is of class Cm,1. Then, the space

KpT,s(Ω) embedded in the space Wm,p(Ω).

Proof. To simplify the proof, we consider J = 1 and m = 1. Let Σ and Σ′ be two disjoint

cuts. We define ΩΣ = Ω \ Σ and ΩΣ′ = Ω \ Σ′ which are simply-connected open sets and let

S ∈ KpT,s(Ω). As Curl CurlS|ΩΣ
= 0 and Curl CurlS|ΩΣ′

= 0, then Theorem 3.3.1 together

with Theorem 3.1 of [6] imply that there exist v ∈W 1,p(ΩΣ) and v′ ∈W 1,p(ΩΣ′) such that

∇sv = S in ΩΣ and ∇sv
′ = S in ΩΣ′ .

As Div∇sv = 0 in ΩΣ and Div∇sv
′ = 0 in ΩΣ′ , then

v ∈ W2,p
loc(ΩΣ) and v′ ∈ W2,p

loc(ΩΣ′). (4.1.8)

The condition Sn = 0 on Γ and the regularity C1,1 of Γ together with (4.1.8) imply that there

exist two open neighborhoods O and O′ of Σ and Σ′ respectively such that

O ∩ Σ′ = ∅ and O′ ∩ Σ = ∅. (4.1.9)

Since v′ ∈ W2,p(O) and ∇sv
′ = ∇sv in O \ Σ, we deduce that the jump on Σ of the traces

of the matrix ∇sv is equal to zero. As ∇sv ∈ W1,p(O \ Σ), we get ∇sv ∈ W1,p(O) and then

v ∈ W2,p(Ω), which implies that S ∈ W1,p(Ω).

In the following, we will show that KpT,s(Ω) is independent of p. In other words, if p and q

are two real numbers such that 1 < p <∞ and 1 < q <∞, then KpT,s(Ω) = KqT,s(Ω).

Proposition 4.1.7. Assume that Ω is of class C1,1. Then for all p ∈ ]1,∞[, we have

KpT,s(Ω) = K2
T,s(Ω),

which means in particular that each vector field of K2
T,s(Ω) belongs to W1,p(Ω) for any p > 1.
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Proof. Step 1. We show that, for any 1 < p <∞, K2
T,s(Ω) ⊂ KpT,s(Ω).

Lemma 4.1.6 implies that K2
T,s(Ω) embedded in H1(Ω), so the Sobolev embedding implies that

K2
T,s(Ω) ⊂ K6

T,s(Ω). Again, K6
T,s(Ω) embedded in W1,6(Ω), which embedded in L∞(Ω). So

K2
T,s(Ω) ⊂ L∞(Ω) and consequently the required inclusion.

Step 2. We show that, for any 1 < p <∞, KpT,s(Ω) ⊂ K2
T,s(Ω).

Using again Lemma 4.1.6, we know that KpT,s(Ω) embedded in W1,p(Ω). Let p > 6
5
. As

W1,p(Ω) ↪→ L2(Ω), then we have KpT,s(Ω) ⊂ K2
T,s(Ω). Now, if 1 < p ≤ 6

5
, we have W1,p(Ω) ↪→

L
3
2 (Ω). So KpT,s(Ω) ⊂ K

3
2
T,s(Ω) ⊂ K2

T,s(Ω).

Remark 4.1.8. Because the above identity, we will use the notation KT,s(Ω) instead of KpT,s(Ω)

in the rest of the paper.

Notation 4.1.2. For any vector field v ∈ H1(Ω◦), ∇sv belongs to L2
s(Ω

◦) and it can be

extended to L2
s(Ω), we denote it ∇̃sv.

P.G Ciarlet et al [19] have shown that the space KT,s(Ω) is of finite dimension and its

dimension is equal to 6J. Furthermore, they have characterized the basis of KT,s(Ω). They

have shown that KT,s(Ω) is spanned by the matrix fields ∇̃su
j
i and ∇̃sr

j
i , 1 ≤ i ≤ 3, 1 ≤ j ≤ J ,

where uji and rji are the solutions belonging to the space

VΣ
D = {v ∈H1(Ω◦), [v]Σj

=
3∑
i=1

(aji (v)ei + bji (v)P i), 1 ≤ j ≤ J}

of the variational problems

∀v ∈ VΣ
D,

∫
Ω◦
∇su

j
i :∇sv dx = aji (v), (4.1.10)

∀v ∈ VΣ
D,

∫
Ω◦
∇sr

j
i :∇sv dx = bji (v). (4.1.11)

In the following, we will show more properties of the vector fields uji and rji .

Theorem 4.1.9. Assume that Ω is Lipschitz. For 1 ≤ i ≤ 3 and 1 ≤ j ≤ J , the vector field
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uji is the unique solution in H1(Ω◦), up to an additive rigid displacement, of the problem

Div∇s u
j
i = 0 in Ω◦,

(∇s u
j
i )n = 0 on Γ,[

uij
]
k

= rig and
[
(∇s u

j
i )n

]
k

= 0, 1 ≤ k ≤ J,

〈(∇s u
j
i )n, e

`〉Σk
= δi`δjk, 1 ≤ ` ≤ 3 and 1 ≤ k ≤ J,

〈(∇s u
j
i )n, P

`〉Σk
= 0, 1 ≤ ` ≤ 3 and 1 ≤ k ≤ J,

(4.1.12)

and rji is the solution in H1(Ω◦), up to an additive rigid displacement, of the problem

Div∇s r
j
i = 0 in Ω◦,

(∇s r
j
i )n = 0 on Γ,[

rij
]
k

= rig and
[
(∇s r

j
i )n

]
k

= 0, 1 ≤ k ≤ J,

〈(∇s r
j
i )n, e

`〉Σk
= 0, 1 ≤ ` ≤ 3 and 1 ≤ k ≤ J,

〈(∇s r
j
i )n, P

`〉Σk
= δi`δjk, 1 ≤ ` ≤ 3 and 1 ≤ k ≤ J,

(4.1.13)

where the notation rig means ”rigid displacement”.

Proof. We follow the same steps as in the proof of Proposition 3.14 of [3]. Let 1 ≤ i ≤ 3 and

1 ≤ j ≤ J , we will show that the solution uji of (4.1.10) solves the problem (4.1.12). Note

that it suffices to use the same argument to show that the solution rji of (4.1.11) solves the

problem (4.1.13).

Let v ∈ D(Ω), using the variational formulation (4.1.10), we obtain

〈Div (∇̃s u
j
i ), v〉Ω = −

∫
Ω

∇̃s u
j
i :∇s v dx = −

∫
Ω◦
∇s u

j
i :∇s v dx = 0.

Then ∇̃s u
j
i belongs to Hp

s(Div, Ω) and Div (∇̃s u
j
i ) = 0 in Ω. Using Green’s formula with

v in H1
0(Ω), we conclude that the jump of (∇s u

j
i )n across any cut Σk, 1 ≤ k ≤ J is zero.

Also, by applying (4.1.10) with v ∈H1(Ω), we obtain

0 =

∫
Ω◦

(Div∇s u
j
i ) · v dx = −

∫
Ω◦
∇s u

j
i :∇s v dx+ 〈(∇s u

j
i )n, v〉Γ,
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then (∇s u
j
i )n = 0 on Γ, which implies that ∇̃s u

j
i belongs to Hp

0,s(Div, Ω). From Lemma

4.1.4 we deduce that the restriction of (∇s u
j
i )n to any cut Σk belongs to [H

1/2
00 (Σj)]

′. Finally,

to show the two last equalities of (4.1.12), we choose v ∈ VΣ
D. Applying Green’s formula

(4.1.4), we obtain ∑
k

〈(∇su
j
i )n, [v]k〉Σk

=

∫
Ω◦
∇su

j
i :∇ss

j
i dx = aji (v).

In particular, if for any k the jump [v]k is constant, we have∑
k

ak` (v)〈(∇su
j
i )n, e

`〉Σk
= aji (v)

and then for any 1 ≤ ` ≤ 3 and any 1 ≤ k ≤ J,

〈(∇s u
j
i )n, e

`〉Σk
= δi`δjk.

To finish, we deduce the last relation in (4.1.12) by choosing the jump [v]k =
3∑
i=1

bki (v)P i, for

any 1 ≤ k ≤ J.

Now, we introduce our first extension of Beltrami’s completeness for matrix fields in Lps(Ω).

Note that the case p = 2 has been shown by Geymonat and Krasucki in [31] and in [32].

Theorem 4.1.10. Assume that Ω is of class C1,1. A matrix S ∈ Lps(Ω) satisfies

DivS = 0 in Ω, (4.1.14)

〈Sn, ei〉Γk
= 0, 1 ≤ i ≤ 3 and 0 ≤ k ≤ I, (4.1.15)

〈Sn,P i〉Γk
= 0, 1 ≤ i ≤ 3 and 0 ≤ k ≤ I, (4.1.16)

if and only if there exists a matrix A ∈ W2,p
s (Ω) such that

Curl CurlA = S in Ω. (4.1.17)

Moreover, there exists a positive constant C which depends only on p and Ω such that

‖A‖W2,p(Ω) ≤ C‖S‖Lp(Ω). (4.1.18)
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To show Theorem 4.1.10, we need the following vector potential theorem which has been

shown by Amrouche et al in [9]:

Theorem 4.1.11. i) Assume that Ω is of class C1,1. A vector field v ∈ Lp(Ω) satisfies

div v = 0 in Ω, (4.1.19)

〈v · n, 1〉Γk
= 0, 0 ≤ k ≤ I, (4.1.20)

if and only if there exists a vector field ψ ∈W 1,p(Ω) such that

divψ = 0 and curlψ = v in Ω,

and there exists a positive constant C1 which depends only on p and Ω such that

‖ψ‖W 1,p(Ω) ≤ C1‖v‖Lp(Ω). (4.1.21)

ii) If v ∈W 1,p(Ω), then ψ ∈W 2,p(Ω). Furthermore, there exists a positive constant C2 which

depends only on p and Ω such that

‖ψ‖W 2,p(Ω) ≤ C2‖v‖W 1,p(Ω). (4.1.22)

Proof of Theorem 4.1.10. We follow the steps of the proof of Theorem 2.2 in [31]. Let A ∈
W2,p
s (Ω) and S = Curl CurlA. We know that Div Curl CurlA = 0, then (4.1.14) holds.

Now, we show that S satisfies (4.1.15) and (4.1.16). Let χk ∈ C∞(Ω), such that χk equals to

1 in the neighbourhood of Γk and equals to 0 in the neighbourhood of Γk′ if 0 ≤ k′ ≤ I and

k 6= k′. Then, using Proposition 4.1.1, we get

〈Sn, ei〉Γk
= 〈Curl Curl (χkA)n, ei〉Γ =

∫
Ω

Div (Curl Curl (χkA))ei dx = 0,

〈Sn,P i〉Γk
= 〈Curl Curl (χkA)n,P i〉Γ =

∫
Ω

Div (Curl Curl (χkA))P i dx = 0.

Conversely, let S ∈ Hp
s(Div Ω) and satisfies the conditions (4.1.14)-(4.1.16). For 1 ≤ i ≤ 3,

we set Si the ith line of S. The conditions (4.1.14) and (4.1.15) imply that Si satisfies the

compatibility conditions (4.1.19) and (4.1.20) of Theorem 4.1.11. Then, there exists a vector
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field Bi ∈W 1,p(Ω) such that divBi = 0 and curlBi = Si in Ω. We set B the matrix whose

lines are the vector Bi. Then the matrix B satisfies CurlB = ST = S and by applying the

estimate (4.1.21) on the vector lines of B, we obtain

‖B‖W1,p(Ω) ≤ C1‖S‖Lp(Ω). (4.1.23)

Now, we define the matrix C = BT − tr(B) I. Since S is symmetric and CurlB = S,

then DivC = 0 in Ω, which implies that the vector lines (Ci) of C satisfy the compatibility

condition (4.1.19). Moreover, the identity

〈(CurlB)Tn,P i〉Γk
= 〈(Curl(P B)tn, ei〉Γk

+ 〈BTn, ei〉Γk
− 〈(tr(B) I)n, ei〉Γk

together with the condition (4.1.16) imply that for any 1 ≤ i ≤ 3, the vector Ci satisfies the

compatibility condition (4.1.20). Let us apply once again Theorem 4.1.11 on the vector Ci,

then there exists Di ∈ W 2,p(Ω) such that CurlDi = Ci in Ω. The matrix D, whose lines

are the vectors (Di), satisfies

CurlD = CT = B − tr(B)I.

So

Curl CurlD = S −Curl(tr(B)I). (4.1.24)

We have also

Curl CurlDT = S + Curl(tr(B)I). (4.1.25)

Setting A =
D +DT

2
, then (4.1.24) and (4.1.25) imply that

Curl CurlA = S in Ω.

By applying the estimate (4.1.22) on the vector lines of D, we obtain

‖D‖W2,p(Ω) ≤ 2C2‖B‖W1,p(Ω). (4.1.26)

Then (4.1.23) and (4.1.26) imply that the estimate (4.1.18) holds.
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Remark 4.1.12. If p = 2, Theorem 4.1.11 still true when Ω is only Lipschitz, then Theorem

4.1.10 still also true in this case.

Now, we show the continuous embedding of Xp
T,s(Ω) in W1,p(Ω) if the domain Ω is of class

C1,1 and the continuous embedding of YpT,s(Ω) in W2,p(Ω) if the domain Ω is of class C2,1.

Theorem 4.1.13. i) Assume that Ω is of class C1,1. Then, the space Xp
T,s(Ω) is continuously

embedded in W1,p(Ω).

ii) Moreover, if Ω is of class C2,1. Then, the space YpT,s(Ω) is continuously embedded in W2,p(Ω).

Proof. i) Assume that Ω is of class C1,1. Let S ∈ Xp
T,s(Ω) and v ∈ W 2,p(Ω) the solution of

the problem {
Div(∇sv) = DivS in Ω,

(∇sv)n = 0 on Γ,

with the estimate

‖v‖W 2,p(Ω) ≤ C‖DivS‖Lp(Ω), (4.1.27)

where C is a positive constant which depends only on p and Ω. Setting A = S − ∇sv,

we have A ∈ Lps(Ω), DivA = 0 in Ω, Curl CurlA ∈ Lps(Ω) and An = 0 on Γ. The

matrix B = Curl CurlA belongs to Hp
s(Div, Ω) and satisfies the compatibility conditions

(4.1.14)-(4.1.16). Then, Theorem 4.1.10 implies that there exists D ∈ W2,p
s (Ω) such that

Curl CurlD = B in Ω and satisfies the estimate

‖D‖W2,p(Ω) ≤ C‖B‖Lp(Ω). (4.1.28)

Now, let u be the solution of the problem{
Div(∇su) = DivD in Ω,

(∇sv)n = Dn on Γ.

Since Ω is of class C1,1, DivD ∈ Lp(Ω) and Dn ∈ W 1− 1
p
,p(Γ), then u belongs to W 2,p(Ω)

and satisfies the estimate

‖u‖W 2,p(Ω) ≤ C
(
‖DivD‖Lp(Ω) + ‖Dn‖

W
1− 1

p ,p
(Γ)

)
≤ C‖Curl CurlA‖Lp(Ω). (4.1.29)
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Next, the symmetric matrix E = D −∇su belongs to W1,p(Ω) and satisfies Curl CurlE =

Curl CurlA, DivE = 0 in Ω and En = 0 on Γ. Moreover, from (4.1.28) and (4.1.29), we

get

‖E‖W1,p(Ω) ≤ C‖Curl CurlA‖Lp(Ω). (4.1.30)

Finally, the matrix F = A−E belongs to Lps(Ω) and satisfies

Div F = 0, Curl CurlF = 0 in Ω and Fn = 0 on Γ.

Observe that F ∈ KT,s(Ω). Since Ω is of class C1,1, Lemma 4.1.6 implies that F belongs to

W1,p(Ω) and since KT,s(Ω) is of finite dimension, there exists a constant C depending only on

Ω such that

‖F ‖W1,p(Ω) ≤ C‖F ‖Lp(Ω).

Then, we obtain the estimate

‖F ‖W1,p(Ω) ≤ C‖S‖Xp
s(Ω). (4.1.31)

Knowing that S = E + F +∇sv, then S belongs to W1,p(Ω). Furthermore, the estimates

(4.1.27), (4.1.30) and (4.1.31) imply that there exists a constant C1 depending only on p and

Ω such that

‖S‖W1,p(Ω) ≤ C1‖S‖Xp
s(Ω).

ii) The proof of the continuously embedding of YpT,s(Ω) in W2,p
s (Ω) is similar to the previous

one. Let S ∈ YpT,s(Ω). We define v,A,B, D, u, E and F like the proof of Point i). The

fact that Ω is of class C2,1 implies that v ∈W 3,p(Ω). Moreover, since DivD ∈W 1,p(Ω) and

Dn ∈W 2− 1
p
,p(Γ), then u belongs to W 3,p(Ω). So E ∈ W2,p(Ω) and Lemma 4.1.6 imply that

F ∈ W2,p(Ω). Consequently, S ∈ W2,p(Ω). Furthermore, there exists a positive constant C2

which depends only on Ω and p such that

‖S‖W2,p(Ω) ≤ C2‖S‖Yp
s(Ω).

Using Theorem 4.1.13, and the fact that the embedding of W 1,p(Ω) in Lp(Ω) is compact,

then the following result holds true.
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Lemma 4.1.14. Assume that Ω is of class C1,1. We affirm that the embedding of Xp
T,s(Ω) in

Lps(Ω) is compact.

Lemma 4.1.14, together with Peetre-Tartar theorem, allow us to prove the following corol-

lary.

Corollary 4.1.15. Assume that Ω is of class C1,1. On the space Xp
T,s(Ω), the semi-norm

S 7→ ‖DivS‖Lp(Ω) + ‖Curl CurlS‖Lp(Ω) +
3∑
i=1

J∑
j=1

(
|〈Sn, ei〉Σj

|+ |〈Sn,P i〉Σj
|
)

(4.1.32)

is a norm equivalent to the norm ‖ · ‖W1,p(Ω). In particular, we have the following Friedrich’s

inequality type for every matrix S ∈ Xp
T,s(Ω):

‖S‖Lp(Ω) ≤ C(‖DivS‖Lp(Ω) + ‖Curl CurlS‖Lp(Ω) +
3∑
i=1

J∑
j=1

(|〈Sn, ei〉Σj
|+ |〈Sn,P i〉Σj

|)).

(4.1.33)

Moreover, if Ω is of class C2,1, then the semi-norm

S 7→ ‖DivS‖W 1,p(Ω) + ‖Curl CurlS‖Lp(Ω) +
3∑
i=1

J∑
j=1

(
|〈Sn, ei〉Σj

|+ |〈Sn,P i〉Σj
|
)

(4.1.34)

is a norm equivalent on YpT,s(Ω) to the norm ‖ · ‖W2,p(Ω).

Now, we introduce the second extension of Beltrami’s completeness, with tangential bound-

ary conditions.

Theorem 4.1.16. Assume that Ω is of class C1,1. A matrix S ∈ Lps(Ω) satisfies (4.1.14)-

(4.1.16), if and only if there exists a matrix A ∈ Xp
s(Ω) such that

Curl CurlA = S and DivA = 0 in Ω, (4.1.35)

An = 0 on Γ, (4.1.36)

〈An, ei〉Σj
= 〈An,P i〉Σj

= 0, 1 ≤ i ≤ 3, 1 ≤ j ≤ J. (4.1.37)

Moreover, this matrix A is unique and we have the estimate

‖A‖W1,p(Ω) ≤ C1‖S‖Lp(Ω). (4.1.38)
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If Ω is of class C2,1, then A ∈ W2,p
s (Ω) and we have the estimate

‖A‖W2,p(Ω) ≤ C2‖S‖Lp(Ω). (4.1.39)

Proof. i) Assume that A belongs to Xp
s(Ω) and satisfies (4.1.35), from the proof of Theorem

4.1.10, we know that Curl CurlA satisfies (4.1.14)-(4.1.16).

ii) Conversely, let S ∈ Lps( Ω) and satisfies conditions (4.1.14)-(4.1.16). Let us consider the

matrix A0 given by Theorem 4.1.10, and the solution v ∈W 2,p(Ω) of the following problem:{
−Div(∇sv) = DivA0 in Ω,

(∇sv)n = A0n on Γ,

(note that v ∈W 3,p(Ω) when Ω is of class C2,1).

We set

A = A0 +∇sv −
3∑
i=1

J∑
j=1

(
〈(A0 +∇sv)n, ei〉Σj

∇̃su
j
i + 〈(A0 +∇sv)n,P i〉Σj

∇̃sr
j
i

)
.

Since Ω is of class C1,1, then for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ J , the matrix ∇̃su
j
i and ∇̃sr

j
i are in

W1,p(Ω) (respectively in W2,p(Ω) if Ω is of class C2,1); then the matrixA ∈ W1,p(Ω) (respectively

A ∈ W2,p(Ω) if Ω is of class C2,1) and satisfies the conditions (4.1.35)-(4.1.37)). Finally,

Corollary 4.1.15 implies that estimates (4.1.38) and (4.1.39) are true, and the uniqueness of

A is due to the characterization of the kernel space KT,s(Ω).

4.2 Normal Beltrami’s completeness

It is well known that if Ω is a Lipschitz domain, then any vector field v of Hp(curl, Ω)

has a tangential trace v × n in W− 1
p
,p(Γ). Amrouche et al [3] used this characterization

of Hp(curl, Ω) to show potential vector theorems in both cases of Hilbert spaces case (see

Theorem 3.17 of [3] ), and in the Banach spaces case (see Theorem 4.3 of [9]).

In this section, we present some analogous results for symmetric matrix fields. We show

that if the domain Ω is of class C1,1, then any matrix field S of Hp
s(Curl Curl, Ω) has a
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tangential trace S ×n in W−
1
p
,p(Γ); and the matrix field CurlS (which is not even in Lp(Ω))

has a tangential trace CurlS × n in W−1− 1
p
,p(Γ). After that, we focus our attention to show

an extension of Beltrami’s completeness with normal boundary conditions.

Proposition 4.2.1. i) The space Ds(Ω) is dense in Hp
s(Curl Curl,Ω).

ii) If Ω is of class C1,1, then:

a) The linear mapping S −→ S × n defined on Ds(Ω) can be extended by continuity to a

linear and continuous mapping, still denoted in the same way, from Hp
s(Curl Curl, Ω) into

W−
1
p
,p(Γ).

b) The linear mapping S 7→ CurlS × n|Γ can be extended by continuity to a linear and con-

tinuous mapping from Hp
s(Curl Curl, Ω) into W−1− 1

p
,p(Γ) and the following Green’s formula

holds true: for all E ∈ W2,p′
s (Ω),

〈S × n,CurlE〉Γ + 〈CurlS × n, E〉Γ =

∫
Ω

S : Curl CurlE dx−
∫

Ω

Curl CurlS : E dx.

(4.2.1)

Proof. i) Let ` ∈ (Hp
s(Curl Curl, Ω))′ such that 〈`,A〉 = 0 for all A ∈ Ds(Ω). We associate

to ` the matrix L in Hp′
s (Curl Curl, Ω) such that:

for all A ∈ Hp
s(Curl Curl, Ω), 〈`, A〉 =

∫
Ω

L : A dx+

∫
Ω

S : Curl CurlA dx

where

S = Curl CurlL.

Now, we assume that ` vanishes on Ds(Ω). We set L̃ij (resp S̃ij) the extension of Lij (resp

Sij) by zero outside Ω and let A ∈ Ds(R3), so we have∫
R3

L̃ : A dx+

∫
R3

S̃ : Curl CurlA dx = 0.

Thus

−L̃ = Curl Curl S̃ in R3.

Consequently, Proposition 4.1.2 implies that the matrix field S belongs to Hp
0,s(Curl Curl, Ω).

Also, there exists a sequence (Sk) of Ds(Ω) that converges to S in Hp
s(Curl Curl, Ω). So, we
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have

∀A ∈ Hp
s(Curl Curl, Ω), 〈`,A〉 = lim

k−→∞

∫
Ω

(A : Curl CurlSk − Sk : Curl CurlA) dx = 0,

then, the density of Ds(Ω) in Hp
s(Curl Curl, Ω) is true.

ii) a) Now, we assume that Ω is of class C1,1. Let us prove statement a). For all A ∈ D(Ω)

and E ∈ W2,p′(Ω) ∩W1,p′

0 (Ω) the following Green’s formula holds true

〈A× n, CurlE〉
W
− 1

p ,p
(Γ)×W

1
p ,p′

(Γ)
=

∫
Ω

A : Curl CurlE dx−
∫

Ω

Curl CurlA : E dx.

(4.2.2)

Let A be in Ds(Ω) and Let M be in W
1
p
,p′(Γ). Since Ω is of class C1,1, then the matrix

M τ =: (M × n)× n belongs to W
1
p
,p′(Γ) and there exists E ∈ W2,p′(Ω) such that:

E = 0 and
∂E

∂n
= (MT

τ × n)T on Γ,

Furthermore, we have

‖E‖W2,p′ (Ω) ≤ C‖M‖
W

1
p ,p′

(Γ)
,

( see for example the proof of Theorem 5.4 of [9]. ) Moreover, the relation (5.10) of [9] and

(0.0.2) imply that

CurlE = −(
∂E

∂n
× n)T = −((MT

τ × n)T × n)T = −(M τ × n)T × n.

define the vector line (M τ )
i by (M τ )

i = M i − (M i · n)nT . Since M τ n = 0 and A is

symmetric, we can verify that

〈A× n,M τ 〉Γ = −〈A× n, (M τ × n)T × n〉Γ = 〈A× n, CurlE〉Γ.

As

〈A× n,M〉Γ = 〈A× n,M τ 〉Γ,

we get from (4.2.2),

|〈A× n,M〉Γ| = |〈A× n, CurlE〉Γ|
≤ ‖A‖Hp

s(Curl Curl,Ω)‖E‖W2,p′ (Ω)

≤ C1‖A‖Hp
s(Curl Curl,Ω)‖M‖W

1
p , p′

(Γ)
.
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Which means that

‖A× n‖
W
− 1

p ,p
(Γ)
≤ C1‖A‖Hp

s(Curl Curl,Ω). (4.2.3)

Then, the linear mapping

Ds(Ω) −→ W−
1
p
, p(Γ)

A −→ A× n

is continuous on Ds(Ω) equipped with the norm of Hp
s(Curl Curl, Ω). Thanks to point i),

it can be extended to a unique linear and continuous mapping from Hp
s(Curl Curl, Ω) into

W−
1
p
,p(Γ).

b) Let A ∈ Ds(Ω) and M ∈ W1+ 1
p
,p′(Γ). Then, there exists E ∈ W2,p′(Ω) such that E|Γ = M ,

with ‖E‖W2,p′ (Ω) ≤ C‖M‖
W

1+ 1
p ,p′

(Γ)
and we have the following Green’s formula:

〈A×n, CurlE〉Γ + 〈CurlA×n,M〉Γ =

∫
Ω

A : Curl CurlE dx−
∫

Ω

E : Curl CurlA dx.

(4.2.4)

Using the estimate (4.2.3), then

|〈CurlA× n,M〉Γ| = | − 〈A× n, CurlE〉Γ +

∫
Ω

A : Curl CurlE −
∫

Ω

E : Curl CurlA|

≤ (1 + C1)‖A‖Hp
s(Curl Curl,Ω)‖E‖W2,p′ (Ω)

≤ C2‖A‖Hp
s(Curl Curl,Ω)‖M‖W

1+ 1
p ,p′

(Γ)
.

That means that

‖CurlA× n‖
W
−1− 1

p ,p
(Γ)
≤ C2‖A‖Hp

s(Curl Curl,Ω).

Then, the linear mapping

Ds(Ω) −→ W−1− 1
p
,p(Γ)

A −→ CurlA× n

is continuous on Ds(Ω) equipped with the norm of Hp
s(Curl Curl, Ω). Thanks to point i),

it can be extended to a unique linear and continuous mapping from Hp
s(Curl Curl, Ω) into

W−1− 1
p
,p(Γ) and the Green’s formula (4.2.1) holds true.
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Lemma 4.2.2. Let S ∈ Hp
s(Curl Curl, Ω), then the following property

for all E ∈ W2,p′

s (Ω),

∫
Ω

S : Curl CurlE dx−
∫

Ω

E : Curl CurlS dx = 0, (4.2.5)

is equivalent to the property

for all M ∈ W2,p′(Ω),

∫
Ω

S : Curl CurlM dx−
∫

Ω

M : Curl CurlS dx = 0. (4.2.6)

Proof. Let S ∈ Hp
s(Curl Curl, Ω) satisfying (4.2.5). For any M ∈ W2,p′(Ω), we denote M sym

its symmetric part and M skw its antisymmetric part. Recall that Curl CurlM skw is an

antisymmetric matrix. Then,∫
Ω

S : Curl CurlM dx−
∫

Ω

M : Curl CurlS dx

=

∫
Ω

S : Curl Curl (M sym +M skw) dx−
∫

Ω

(M sym +M skw) : Curl CurlS dx

=

∫
Ω

S : Curl CurlM skw dx−
∫

Ω

M skw : Curl CurlS dx

= 0.

Then, (4.2.5) implies (4.2.6) and it is clear that (4.2.6) implies (4.2.5), which ends the proof.

Remark 4.2.3. If Ω is of class C1,1, then Green’s formula (4.2.1) and Lemma 4.2.2 imply that

the condition (4.2.5) is equivalent to

for all M ∈ W2,p′(Ω), 〈S × n,CurlM〉+ 〈CurlS × n,M〉 = 0. (4.2.7)

As we have seen in proof of Proposition 4.2.1, condition (4.2.7) is equivalent to

S × n = 0 and CurlS × n = 0 on Γ. (4.2.8)

Consequently, condition (4.2.5) is equivalent to (4.2.8). Then, Theorem 4.1.2 implies the

following identity

Hp
0,s(Curl Curl, Ω) = {S ∈ Hp

s(Curl Curl, Ω), S × n = 0 and CurlS × n = 0 on Γ}.
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We define the kernel space

KpN,s(Ω) = {S ∈ Lps(Ω) ; DivS = 0 in Ω, Curl CurlS = 0 in Ω, S×n = CurlS×n = 0 on Γ}.

The following theorem characterizes the space K2
N,s(Ω).

Theorem 4.2.4. Assume that Ω is Lipschitz. The dimension of the space K2
N,s(Ω) is 6I. It

is spanned by the matrix ∇sv
k
i and ∇sw

k
i where vki is the solution in H1(Ω) of the problem

−Div (∇sv
k
i ) = 0 in Ω,

vki |Γ0 = 0 and vki |Γ`
= rig, 1 ≤ ` ≤ I,

〈(∇sv
k
i )n, e

j〉Γ`
= δijδk`, 1 ≤ j ≤ 3, and 1 ≤ ` ≤ I,

〈(∇sv
k
i )n, e

j〉Γ0 = −δij,
〈(∇sv

k
i )n, P

j〉Γ`
= 0, 0 ≤ ` ≤ I,

(4.2.9)

and wk
i is the solution in H1(Ω) of the problem

−Div (∇sw
k
i ) = 0 in Ω,

wk
i |Γ0 = 0 and wk

i |Γ`
= rig, 1 ≤ ` ≤ I,

〈(∇sw
k
i )n, P

j〉Γ`
= δijδk`, 1 ≤ j ≤ 3, and 1 ≤ ` ≤ I,

〈(∇sw
k
i )n, P

j〉Γ0 = −δij,
〈(∇sw

k
i )n, e

j〉Γ`
= 0, 0 ≤ ` ≤ I.

(4.2.10)

Moreover, if Ω is of class C1,1, then vki and wk
i belong to H2(Ω) for any 1 < p <∞.

Proof. We consider here only the first problem, which is similar to the second one. Let

VΓ
D = {v ∈H1(Ω), v|Γ0 = 0 and v|Γk

= rig, 1 ≤ k ≤ I}.

For 1 ≤ i ≤ 3 and 1 ≤ k ≤ I, Lax-Milgram lemma implies that the problem:

find vki ∈ VΓ
D such that

∀u ∈ VΓ
D,

∫
Ω

∇sv
k
i :∇su dx = aki (u) (4.2.11)

has unique solution vki ∈ VΓ
D.
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A similar argument to that used in the proof of Theorem 4.1.9 shows that vki satisfies

(4.2.9). Moreover, if Ω is of class C1,1, then vki belongs to H2(Ω). Now, we prove that

E = {∇sv
k
i }i ∪ {∇sw

k
i }i is a basis of K2

N,s(Ω). The elements of E are linearly independent

and belong to K2
N,s(Ω). Let S ∈ K2

N,s(Ω), we set

A = S −
3∑
i=1

(
I∑

k=1

(
〈Sn, ei〉Γk

∇sv
k
i + 〈Sn, P i〉Γk

∇sw
k
i

))
.

It is clear that A satisfies the compatibility conditions of Theorem 4.1.10. Then, there exists

a symmetric matrix field A0 ∈ H2
s(Ω) such that A = Curl CurlA0. Then, we have∫

Ω

A : A dx =

∫
Ω

A : Curl CurlA0 dx =

∫
Ω

A0 : Curl CurlA dx = 0.

Then, A = 0, which is the required result.

H2(Ω) regularity is immediate.

We will show, now, that the vector fields belonging to the kernel spaces KpN,s(Ω) are more

regular and this regularity does not depend on p. For that, we need to establish some auxiliary

results. The first one gives some equivalence properties to inf-sup condition (see [33]).

Theorem 4.2.5. Let X and M be two reflexive Banach space and X ′ and M ′ their dual spaces.

Let a be a continuous bilinear form defined on X ×M , let A ∈ L(X, M ′) and A′ ∈ L(M, X ′)

be the operators defined by

∀v ∈ X, ∀w ∈M, a(v, w) = 〈Av, w〉 = 〈v, A′w〉,

and V = KerA. The following statements are equivalent:

(i) There exists β > 0 such that

inf
w∈M,w 6=0

sup
v∈X, v 6=0

a(v, w)

‖v‖X‖w‖M
≥ β.

(ii) The operator A : X/V −→ M ′ is an isomorphism and 1
β

is the continuity constant of

A−1.

(iii) The operator A′ : M −→ X ′ ⊥ V is an isomorphism and 1
β

is the continuity constant of

(A′)−1.
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The second one gives an inf-sup condition of the Curl Curl operator.

Lemma 4.2.6. Assume that Ω is of class C1,1. Then, the following inf-sup condition holds

true: there exists a constant α > 0, such that

inf
Ψ∈Vp′

T,s(Ω),

Ψ 6=0

sup
E∈Vp

T,s(Ω),

E 6=0

∫
Ω

Curl CurlE : Curl Curl Ψ dx

‖E‖Xp
s(Ω)‖Ψ‖Xp′

s (Ω)

≥ α, (4.2.12)

where

VpT,s(Ω) = {S ∈ Xp
T,s(Ω), DivS = 0 and 〈Sn, ei〉Σj

= 〈Sn, P i〉Σj
= 0}.

Proof. LetA ∈ Lp
′
s (Ω) and v be the solution inW 1,p′

0 (Ω) of the homogeneous Dirichlet problem

Div∇s v = DivA which satisfies the estimate

‖∇s v‖Lp′ (Ω) ≤ C‖A‖Lp′ (Ω). (4.2.13)

We set F = A−∇sv and let E ∈ VpT,s(Ω). Due to Corollary 4.1.15, we obtain

‖E‖Xp
s(Ω) ≤ C‖Curl CurlE‖Lp(Ω) = C sup

A∈Lp′
s (Ω)

A 6=0

|
∫

Ω

Curl CurlE : A dx|

‖A‖Lp′ (Ω)

. (4.2.14)

Now, setting

F̃ = F −

[
3∑
i=1

I∑
k=1

(
〈Fn, ei〉Γk

∇sv
k
i + 〈Fn, P i〉Γk

∇sw
k
i

)]
,

then, F̃ ∈ Lp
′
s (Ω), Div F̃ = 0 in Ω, 〈F̃ n, ei〉Γk

= 〈F̃ n, P i〉Γk
= 0 for any 1 ≤ i ≤ 3 and any

1 ≤ k ≤ I and we have∫
Ω

Curl CurlE : A dx =

∫
Ω

Curl CurlE : F dx =

∫
Ω

Curl CurlE : F̃ dx.

Moreover, we have

‖F̃ ‖Lp′ (Ω) ≤ ‖F ‖Lp′ (Ω) +
3∑
i=1

I∑
k=1

(
|〈Fn, ei〉|‖∇s v

k
i ‖Lp′ (Ω) + |〈Fn, P i〉|‖∇sw

k
i ‖Lp′ (Ω)

)
≤ ‖F ‖Lp′ (Ω) + C‖Fn‖

W
− 1

p′ ,p
′
(Ω)
.
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Since F belongs to Hp
s(Div, Ω) and Div F = 0 in Ω, then

‖F̃ ‖Lp′ (Ω) ≤ ‖F ‖Lp′ (Ω) + C‖Fn‖
W
− 1

p′ ,p
′
(Ω)
≤ C‖F ‖Lp′ (Ω). (4.2.15)

Using (4.2.13) and (4.2.15), we obtain

‖F̃ ‖Lp′ (Ω) ≤ C‖A‖Lp′ (Ω).

From Theorem 4.1.16, there exists Ψ ∈ Vp
′

T,s(Ω) such that F̃ = Curl Curl Ψ, and due to

Corollary 4.1.15, we have

‖Ψ‖Xp′ (Ω) ≤ C‖F̃ ‖Lp′ (Ω).

Finally,

|
∫

Ω

Curl CurlE : A|

‖A‖Lp′ (Ω)

≤ C

|
∫

Ω

Curl CurlE : F̃ |

‖F̃ ‖Lp′ (Ω)

≤ C

|
∫

Ω

Curl CurlE : Curl Curl Ψ|

‖Ψ‖
Xp′
s (Ω)

.

As a matter of fact, (4.2.14) implies that the inf-sup condition (4.2.12) holds true.

Using the inf-sup condition (4.2.12), we solve the following elliptic problem:

Proposition 4.2.7. Assume that Ω is of class C1,1 and let B ∈ Lps(Ω). Then, the elliptic

problem
42E = Curl CurlB and DivE = 0 in Ω,

En = 0, (Curl CurlE −B)× n = (Curl Curl Curl E−CurlB)× n = 0 on Γ,

〈En, ei〉Σj
= 〈En, P i〉Σj

= 0, 1 ≤ i ≤ 3, 1 ≤ j ≤ J.

(4.2.16)

has a unique solution in W1,p
s (Ω) and we have the estimate

‖E‖W1,p(Ω) ≤ C1‖B‖Lp(Ω). (4.2.17)

Moreover, if Ω is of class C2,1, then the solution E belongs to W2,p
s (Ω) and we have the estimate

‖E‖W2,p(Ω) ≤ C2‖B‖Lp(Ω). (4.2.18)
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Proof. Step 1. Existence and uniqueness. Thanks to Lemma 4.2.6 and Theorem 4.2.5,

the following problem: find E ∈ VpT,s(Ω) such that for all Ψ ∈ V p′

T,s(Ω)∫
Ω

Curl CurlE : Curl Curl Ψ dx =

∫
Ω

B : Curl Curl Ψ dx, (4.2.19)

has a unique solution in V p
T,s(Ω). We want to extend (4.2.19) to any test function in Xp

s(Ω).

Given Ψ̃ ∈ Xp
s(Ω), we know that there exists v ∈W 1,p(Ω) solution of the problem{

Div∇sv = Div Ψ̃ in Ω,

(∇sv − Ψ̃)n = 0 on Γ

and satisfying the following estimate

‖∇sv‖Lp(Ω) ≤ C‖Ψ̃‖Lp(Ω).

Setting now

Ψ = Ψ̃−∇sv −
3∑
i=1

J∑
j=1

(
〈(Ψ̃−∇sv)n, ei〉Σj

∇̃su
j
i + 〈(Ψ̃−∇sv)n, P i〉Σj

∇̃sr
j
i

)
,

we note that Ψ ∈ Vp
′

T,s(Ω) and that Curl Curl Ψ = Curl Curl Ψ̃. So, the problem (4.2.19)

becomes: find E ∈ V p
T,s(Ω) such that for all Ψ̃ ∈ Xp′

s (Ω)∫
Ω

Curl CurlE : Curl Curl Ψ̃ dx =

∫
Ω

B : Curl Curl Ψ̃ dx. (4.2.20)

Every solution of (4.2.16) solves (4.2.20). Conversely, let E be the solution of (4.2.20). Let

us apply twice the following relation, which holds for any symmetric matrix S,

4S = −Curl CurlS −∇2(tr(S)) + 2∇s DivS + [4(trS)− div DivS] I. (4.2.21)

We get

42E = Curl Curl (Curl CurlE) in Ω

and then from (4.2.20),

42E = Curl CurlB in Ω.
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As the matrix Curl CurlE − B belongs to Hp
s(Curl Curl, Ω) and using (4.2.20) for all

Ψ ∈ W2,p
s (Ω), we obtain∫

Ω

Curl Curl (Curl CurlE −B) : Ψdx =

∫
Ω

(Curl CurlE −B) : Curl Curl Ψ dx = 0.

(4.2.22)

Remark 4.2.3 implies then that

(Curl CurlE −B)× n = (Curl Curl Curl E−CurlB)× n = 0 on Γ.

Consequently, E solves (4.2.16). Using Remark 4.2 iii) of [9], then there exists C such that

‖E‖Xp
s(Ω) ≤ C‖B‖Lp(Ω). (4.2.23)

Step 2. Regularity. Thanks to Theorem 4.1.13, since Ω is of class C1,1, then E belongs to

W1,p(Ω) and from (4.1.33) and (4.2.23), we have

‖E‖W1,p(Ω) ≤ C‖E‖Xp
s(Ω) ≤ C‖B‖Lp(Ω).

If moreover Ω is of class C2,1, using again Theorem 4.1.13 we find E belonging to W2,p(Ω) and

due to Corollary 4.1.15, we have

‖E‖W2,p(Ω) ≤ C2‖Curl CurlE‖Lp(Ω).

consequently, we obtain the required estimate (4.2.18).

Now, we will use Proposition 4.2.7 to show that for any 1 < p < ∞ the kernel space

KpN,s(Ω) is independent of p.

Proposition 4.2.8. Assume that Ω is of class C1,1. Then, for all p ∈ ]1,∞[, we have

KpN,s(Ω) = K2
N,s(Ω), (4.2.24)

which means, in particular, that each vector field of K2
N,s(Ω) belongs to W1,p

s (Ω) for any p > 1.
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Proof. Step 1. We show that for any 1 < p <∞, K2
N,s(Ω) ⊂ KpN,s(Ω).

Indeed, as for any 1 ≤ i ≤ 3 and 1 ≤ k ≤ I, the vector fields vki and wk
i belong to W2,p(Ω)

for all 1 ≤ p <∞, we obviously have our inclusion.

Step 2. We show that for all 1 < p <∞, KpN,s(Ω) ⊂ K2
N,s(Ω).

Let S be in KpN,s(Ω) and set

A = S −
3∑
i=1

(
I∑

k=1

(
〈Sn, ei〉Γk

∇sv
k
i + 〈Sn, P i〉Γk

∇sw
k
i

))
.

Step 1 implies that A ∈ KpN,s(Ω) besides, it satisfies the conditions (4.1.15) and (4.1.16). From

Lemma 4.2.6 we deduce that A = 0 and hence, we get the required inclusion.

Remark 4.2.9. From now, we will use the notation KN,s(Ω) instead of K2
N,s(Ω) in the rest of

the paper.

Here, we will show the embedding of Xp
N,s(Ω) in W1,p(Ω) if Ω is of class C1,1 and the

embedding of YpN,s(Ω) in W2,p(Ω) if Ω is of class C2,1. First, we recall that any matrix field S

of KT,s(Ω) can be written by S = ∇̃sv with v =
3∑
i=1

J∑
j=1

(
〈Sn, ei〉Σj

uji + 〈Sn, P i〉Σj
rji
)
, and

we show the following lemma:

Lemma 4.2.10. Assume that Ω is Lipschitz. For any 1 ≤ i ≤ 3 and 1 ≤ j ≤ J , there exist

two matrix fields ∇̃st
j
i and ∇̃sz

j
i in KT,s(Ω) such that

[tji ]k = δi`δkj e
` and [zji ]k = δi`δkj p

`, 1 ≤ ` ≤ 3, 1 ≤ k ≤ J.

Proof. To simplify the proof, we consider J = 1. For any matrix field S = ∇̃sv of KT,s(Ω),

we denote [v]Σ =
3∑
i=1

(a1
i (v) ei + b1

i (v)P i). We define the operator

T : KT,s(Ω) −→ R6

∇̃sv 7→ (T (∇̃sv))k =

{
a1
k(v), 1 ≤ k ≤ 3,

b1
k−3(v), 4 ≤ k ≤ 6.
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We will show that the operator T is onto. We use a contradiction, we suppose that T is not

onto, that means that for any ∇̃sv ∈ KT,s(Ω) there exist k′, 1 ≤ k′ ≤ 6 and {λk}1≤k≤6
k 6=k′

such

that

(T (∇̃sv))k′ =
6∑

k=1
k 6=k′

λk(T (∇̃sv))k.

Let us suppose that 1 ≤ k′ ≤ 3, by using formulas (4.1.10) and (4.1.11), we obtain for any

∇̃sv ∈ KT,s(Ω) ∫
Ω◦

(∇su
1
k′ − (

3∑
i=1
i 6=k′

λi∇su
1
i +

3∑
i=1

λi+3∇sr
1
i )) :∇sv dx = 0. (4.2.25)

By choosing v = u1
k′ − (

3∑
i=1
i 6=k′

λiu
1
i +

3∑
i=1

λi+3r
1
i ) and using (4.2.25), we obtain

∇̃su1
k′ =

3∑
i=1
i 6=k′

λi∇̃su1
i +

3∑
i=1

λi+3∇̃sr1
i ,

which is a contradiction with the fact that the matrix fields ∇̃su1
i and ∇̃sr1

i are linearly

independent, this ends the proof.

Theorem 4.2.11. i) Assume that Ω is of class C1,1. Then space Xp
N,s(Ω) is continuously

embedded in W1,p(Ω).

ii) If Ω is of class C2,1, then the space YpN,s(Ω) is continuously embedded in W2,p(Ω).

Proof. i) Let A ∈ Xp
N,s(Ω) and S = Curl CurlA. So, we have DivS = 0 in Ω and for all

ϕ ∈ D(Ω),

W
− 1

p ,p
(Γ)
〈Sn, ϕ〉

W
1
p ,p′

(Γ)
=

∫
Ω

Curl CurlA :∇sϕ dx

=

∫
Ω

A : Curl Curl∇sϕ dx

= 0.
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Then, Sn = 0 on Γ. According to Lemma 4.1.4, the quantities 〈Sn, ei〉Σj
and 〈Sn,P i〉Σj

make sense for any 1 ≤ i ≤ 3 and 1 ≤ j ≤ J and furthermore, from Lemma 4.2.10 we get

〈Sn, ei〉Σj
=

∫
Ω

Curl CurlA : ∇̃st
j
i dx.

As the matrix A belongs to Hp
0,s(Curl Curl, Ω), then there exists a sequence (An) in Ds(Ω)

which converges to A in Hp
s(Curl Curl, Ω). Then,

〈Sn, ei〉Σj
=

∫
Ω

Curl CurlA : ∇̃st
j
i dx = lim

n

∫
Ω

Curl CurlAn : ∇̃st
j
i dx = 0.

By the same, we conclude that

〈Sn,P i〉Σj
= 0

and then, the matrix S belongs to the space U0,p
s (Ω). In Chapter 3, we have shown that the

operator

Curl Curl : W2,p
0,s(Ω) −→ U0,p

s (Ω) (4.2.26)

is onto. Then, there exists B ∈ W2,p
0,s(Ω) such that Curl CurlB = S in Ω and we have the

estimate

‖B‖W2,p(Ω) ≤ C‖Curl CurlA‖Lp(Ω). (4.2.27)

Setting now D = A−B and let us consider the solution v ∈W 2,p(Ω) of the problem{
Div(∇sv) = DivD in Ω,

v = 0 on Γ.

which satisfies the estimate

‖v‖W 2,p(Ω) ≤ C‖DivD‖Lp(Ω) ≤ C(‖DivA‖Lp(Ω) + ‖Curl CurlA‖Lp(Ω)). (4.2.28)

Also, for all M ∈ W2,p′
s (Ω), we have∫

Ω

∇sv : Curl CurlM dx =
W
− 1

p′ ,p
′
(Γ)
〈(Curl CurlM)n, v〉

W
1− 1

p ,p
(Γ)

= 0.

Hence, Remark 4.2.3 implies that

∇sv × n = Curl∇sv × n = 0 on Γ.
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Thus, the matrix E = D−∇sv belongs to KN,s(Ω) ⊂ W1,p(Ω) and consequently A ∈ W1,p(Ω).

Moreover, since all norms are equivalent in finite dimension, we have

‖E‖W1,p(Ω) ≤ C‖E‖Lp(Ω) ≤ C
(
‖A‖Lp(Ω) + ‖DivA‖Lp(Ω) + ‖Curl CurlA‖Lp(Ω)

)
. (4.2.29)

From (4.2.27)-(4.2.29), there exists a constant C1 such that

‖A‖W1,p(Ω) ≤ C1‖A‖Xp(Ω).

ii) Assume that Ω is of class C2,1 and A ∈ YpN,s(Ω). Then v ∈ W 3,p(Ω) and E ∈ W2,p(Ω).

Finally we get A ∈ W2,p(Ω) with the estimate

‖A‖W2,p(Ω) ≤ C2‖A‖Yp
s(Ω).

Using Theorem 4.2.11 and the fact that the embedding of W 1,p(Ω) in Lp(Ω) is compact,

then the following result holds:

Lemma 4.2.12. Assume that Ω is of class C1,1. Then, the embedding of Xp
N,s(Ω) in Lps(Ω) is

compact.

Lemma 4.2.12 together with Peetre-Tartar theorem, allow us to prove the following corol-

lary.

Corollary 4.2.13. Assume that Ω is of class C1,1. On the space Xp
N,s(Ω), the semi-norm

S −→ ‖DivS‖Lp(Ω) + ‖Curl CurlS‖Lp(Ω) +
3∑
i=1

I∑
k=1

(
|〈Sn, ei〉Γk

|+ |〈Sn,P i〉Γk
|
)
, (4.2.30)

is equivalent to the norm ‖ ·‖W1,p(Ω). In particular, we have the following Friedrich’s inequality

type for every matrix S ∈ Xp
N,s(Ω):

‖S‖W1,p(Ω) ≤ C(‖DivS‖Lp(Ω) + ‖Curl CurlS‖Lp(Ω) +
3∑
i=1

I∑
k=1

(|〈Sn, ei〉Γk
|+ |〈Sn,P i〉Γk

|)).

(4.2.31)
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Moreover, if Ω is of class C2,1, then the semi-norm:

S −→ ‖DivS‖W 1,p(Ω)+‖Curl CurlS‖Lp(Ω)+
3∑
i=1

I∑
k=1

(
|〈Sn, ei〉Γk

|+ |〈Sn,P i〉Γk
|
)
, (4.2.32)

is equivalent to the norm ‖ · ‖W2,p(Ω).

Now, we show our third extension of Beltrami’s completeness:

Theorem 4.2.14. Assume that Ω is of class C1,1. Then a matrix S in Lps(Ω) satisfies

DivS = 0 in Ω,

Sn = 0 on Γ, (4.2.33)

〈Sn, ei〉Σj
= 〈Sn, P i〉Σj

= 0, for any 1 ≤ i ≤ 3, ∀ 1 ≤ j ≤ J,

if and only if there exists a matrix A ∈ Yps(Ω) such that

Curl CurlA = S in Ω, DivA = 0 in Ω,

A× n = 0 on Γ, CurlA× n = 0 on Γ, (4.2.34)

〈Sn, ei〉Γk
= 〈Sn, P i〉Γk

= 0, for any 1 ≤ i ≤ 3, ∀ 1 ≤ k ≤ I.

Moreover, this matrix A is unique and satisfies the estimate

‖A‖W1,p(Ω) ≤ C1‖S‖Lp(Ω). (4.2.35)

In addition, if Ω is of class C2,1, then A ∈ W2,p
s (Ω) and we have the estimate

‖A‖W2,p(Ω) ≤ C2‖S‖Lp(Ω). (4.2.36)

Proof. Let A be in Yps(Ω) and satisfies (4.2.34)). The matrix S = Curl CurlA satisfies

(4.2.33) (see proof of Theorem 4.2.11). Conversely, let S be in Hp(Div, Ω) and satisfies

(4.2.33). A0 is the matrix field in W2,p
s (Ω) given by Theorem 4.1.10. Due to Lemma 4.2.6, the

following problem:
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find E ∈ VpT,s(Ω) such that for any Ψ ∈ Vp
′

T,s(Ω),∫
Ω

Curl CurlE : Curl Curl Ψ dx =

∫
Ω

A0 : Curl Curl Ψ dx−
∫

Ω

Ψ : Curl CurlA0 dx,

(4.2.37)

has a unique solution.

We want to extend (4.2.37) to any matrix test in Xp′
s (Ω). For that, let Ψ̃ ∈ Xp′

s (Ω) and v

be the solution of the problem{
Div(∇sv) = Div Ψ̃ in Ω,

(∇sv − Ψ̃)n = 0 on Γ.

We can check that the matrix defined by

Ψ = Ψ̃−∇sv −
3∑
i=1

J∑
j=1

(
〈(Ψ̃−∇sv)n, ei〉Σj

∇̃su
j
i + 〈(Ψ̃−∇sv)n, P i〉Σj

∇̃sr
j
i

)
.

belongs to Vp
′

T,s(Ω). From (4.2.33), we have∫
Ω

∇sv : Curl CurlA0 dx = 〈Sn, v〉 −
∫

Ω

v ·DivS dx = 0,

∫
Ω

∇̃su
j
i : Curl CurlA0 dx =

∫
Ω◦
∇su

j
i : S dx =

I∑
k=1

〈Sn, [uji ]k〉Σk
= 0,

and ∫
Ω

∇̃sr
j
i : Curl CurlA0 dx =

∫
Ω◦
∇sr

j
i : S dx =

I∑
k=1

〈Sn, [rji ]k〉Σk
= 0.

Then, for all Ψ̃ ∈ Xp′
s (Ω), we have∫

Ω

Curl CurlE : Curl Curl Ψ̃ dx =

∫
Ω

A0 : Curl Curl Ψ̃ dx−
∫

Ω

Ψ̃ : Curl CurlA0 dx.

It follows from this relation that the matrix

A = A0 −Curl CurlE −
3∑
i=1

I∑
k=1

(
〈(A0 −Curl CurlE)n, ei〉Γk

∇sv
k
i

+ 〈(A0 −Curl CurlE)n, P i〉Γk
∇sw

k
i

)
,
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satisfies (4.2.34). Hence, A ∈ YpN,s(Ω) ⊂ W1,p
s (Ω) and due to Corollary 4.2.13 the estimate

(4.2.35) holds true. If Ω is of class C2,1, then Theorem 4.2.11 implies that A ∈ W2,p
s (Ω) and

Corollary 4.2.13 implies that the estimate (4.2.36) holds true, also.

The uniqueness of A is due to the characterization of the space KN,s(Ω).

Remark 4.2.15. We can give another proof of Theorem 4.2.14. Indeed, Let S be in Hp
s(Div, Ω)

and satisfies (4.2.33). As the operator (4.2.26) is onto, then there exists B ∈ W2,p
0,s(Ω) such

that Curl CurlB = S in Ω. Setting now v ∈ W 2,p(Ω) the solution of the homogeneous

Dirichlet problem Div∇sv = DivB in Ω. We define the matrix A by

A = B −∇sv −
3∑
i=1

I∑
k=1

[
〈(B −∇sv)n, ei〉Γk

∇sv
k
i + 〈(B −∇sv)n, P i〉Γk

∇sw
k
i

]
.

Note that A belongs to Yps(Ω) and satisfies (4.2.34). Therefore A belongs to W1,p
s (Ω) and

Corollary 4.2.13 implies that the estimate (4.2.35) is valid. Moreover, if Ω is of class C2,1, then

A belongs to W2,p
s (Ω) and Corollary 4.2.13 implies that the estimate (4.2.36) is true.

4.3 Beltrami’s type decomposition

In this section, we will use the previous extensions of Beltrami’s completeness to show three

versions of Beltrami’s type decomposition for matrix fields in Lps(Ω).

Theorem 4.3.1. Assume that Ω is of class C1,1.

i) Let S ∈ Lps(Ω), then there exist v ∈W 1,p(Ω), A ∈ W1,p
σ,s(Ω)∩YpN,s(Ω) and E ∈ KT,s(Ω) such

that

S =∇sv + Curl CurlA+E, (4.3.1)

where v is unique up to an additive rigid displacement, A is unique up to an element of

KN,s(Ω), and E is unique, in addition, we have the estimate

‖v‖W 1,p(Ω)/R(Ω) + ‖A‖W1,p(Ω)/KN,s(Ω) + ‖E‖Lp(Ω) ≤ C‖S‖Lp(Ω). (4.3.2)
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Moreover, if Ω is of class C2,1, thus A ∈ W2,p
σ,s(Ω) ∩ YpN,s(Ω) and we have the estimate

‖A‖W2,p(Ω)/KN,s(Ω) ≤ C‖S‖Lp(Ω). (4.3.3)

ii) Let S ∈ Lps(Ω), thus there exist v ∈W 1,p(Ω) , A ∈ W2,p
0,s(Ω) and E ∈ KT,s(Ω) such that

S =∇sv + Curl CurlA+E, (4.3.4)

where v is unique up to an additive rigid displacement, A is an unique element of W2,p
s (Ω),

E is unique and we have the estimate

‖v‖W 1,p(Ω)/R(Ω) + ‖A‖W2,p(Ω) + ‖E‖Lp(Ω) ≤ C‖S‖Lp(Ω). (4.3.5)

iii) Let S ∈ Lps(Ω), then there exist v ∈ W 1,p
0 (Ω), A ∈ W1,p

σ,s(Ω) ∩ Xp
T,s(Ω) and E ∈ KN,s(Ω)

such that

S =∇sv + Curl CurlA+E, (4.3.6)

where v and E are unique, A is unique to an additive element of KT,s(Ω) and we have the

estimate

‖v‖W 1,p(Ω) + ‖A‖W1,p(Ω)/KT,s(Ω) + ‖E‖Lp(Ω) ≤ C‖S‖Lp(Ω). (4.3.7)

Moreover, if Ω is of class C2,1, then A ∈ W2,p
σ,s(Ω) ∩ Xp

T,s(Ω); and thus we have the estimate

‖A‖W2,p(Ω)/KT,s(Ω) ≤ C‖S‖Lp(Ω). (4.3.8)

Proof. i) Let S ∈ Lps(Ω). We set v the unique solution in W 1,p(Ω)/R(Ω) of the problem{
Div∇sv = DivS in Ω,

(∇sv − S)n = 0 on Γ.

The vector v is unique up to an rigid displacement and we have the estimate

‖v‖W1,p(Ω)/R(Ω) ≤ C‖S‖Lp(Ω).
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Set B = S −∇sv, B satisfies DivB = 0 in Ω and Bn = 0 on Γ. We define the matrix E

by

E =
3∑
i=1

J∑
j=1

〈Bn, ei〉Σj
∇̃sr

j
i + 〈Bn,P i〉Σj

∇̃su
j
i .

Note that the matrix C defined by C = B− E satisfies the compatibility condition (4.2.33),

hence Theorem 4.2.14 implies that there exists A ∈ W1,p
σ,s(Ω) ∩ YpN,s(Ω) such that

C = Curl CurlA and ‖A‖W1,p(Ω) ≤ C‖C‖Lp(Ω).

So

S =∇sv + Curl CurlA+E,

and the estimate (4.3.2) holds true. Moreover, if Ω is of class C2,1, then Theorem 4.2.14 implies

that A ∈ W2,p
σ,s(Ω) ∩ YpN,s(Ω) and satisfies

‖A‖W2,p(Ω) ≤ C‖C‖Lp(Ω).

Consequently, the estimate (4.3.3) is valid.

ii) Let S ∈ Lps(Ω) and C be defined as in the proof of the point i). Note that C ∈ U0,p
s (Ω),

then there exists A ∈ W2,p
0,s(Ω) such that

C = Curl CurlA and ‖A‖W2,p(Ω) ≤ C‖C‖Lp(Ω).

Henceforth

S =∇sv + Curl CurlA+E,

and the estimate (4.3.5) is valid.

iii) Let S ∈ Lps(Ω). Denote by, v the unique solution in W1,p
0 (Ω) of the Dirichlet problem{

Div∇sv = DivS in Ω,

v = 0 on Γ.

Then, B = S −∇sv satisfies DivB = 0.

We set

E =
3∑
i=1

I∑
k=1

〈Bn, ei〉Γk
∇sv

k
i + 〈Bn,P i〉Γk

∇sw
k
i .
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So, the matrix C = B −E satisfies the compatibility conditions (4.1.14)-(4.1.16), then The-

orem (4.1.16) implies that there exists a unique matrix A ∈ W1,p
σ,s(Ω) ∩ YpT,s(Ω)/KT,s(Ω) such

that C = Curl CurlA. Consequently,

S =∇sv + Curl CurlA+E,

and the estimate (4.3.7) is valid. Moreover, if Ω is of class C2,1, then A ∈ W2,p
σ,s(Ω) and the

estimate (4.3.8) is true.

Remark 4.3.2. The decomposition 4.3.4 is still true if p = 2 and Ω is only Lipschitz.

Geymonat et al [32] have shown a Hodge decomposition of L2
s(Ω). Here, we will show a

Hodge decomposition of Lps(Ω) when 1 < p <∞.

Corollary 4.3.3. Assume that Ω is of class C1,1, then the following direct sum is true:

Lps(Ω) = KN,s(Ω)⊕ Hp
1,s(Ω)⊕ Hp

2,s(Ω)⊕ KT,s(Ω)⊕ U0,p
s (Ω), (4.3.9)

where

Hp
1,s(Ω) = {∇sv, v ∈W 1,p

0 (Ω)},

Hp
2,s(Ω) = {∇sv, v ∈W 1,p(Ω), Div∇sv = 0, 〈(∇sv)n, ei〉Γk

= 〈(∇sv)n, P i〉Γk
= 0}.

Proof. Let S ∈ Lps(Ω), then Theorem 4.3.1 implies that S is composed as in (4.3.6). We set

w the solution of the problem Div∇sw = 0 in Ω,

(∇sw)n = (Curl CurlA)n on Γ,

Then, for any 1 ≤ i ≤ 3 and 1 ≤ k ≤ I, we have 〈(∇sw)n, ei〉Γk
= 〈(Curl CurlA)n, ei〉Γk

= 0,

〈(∇sw)n, P i〉Γk
= 〈(Curl CurlA)n, P i〉Γk

= 0.
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So, ∇sw ∈ H2,s(Ω). Setting now, C = Curl CurlA −∇su which belongs to Hp
0,s(Div, Ω).

Therefore,

C =

(
C −

3∑
i=1

J∑
j=1

[
〈Cn, ei〉Σj

∇̃suij + 〈Cn, P i〉Σj
∇̃srij

])

+
3∑
i=1

J∑
j=1

[
〈Cn, ei〉Σj

∇̃suij + 〈Cn, P i〉Σj
∇̃srij

]
= D + F ,

where D is unique in U0,p
s (Ω) and F is unique in KT,s(Ω). Henceforth,

S = E +∇sv +∇sw +D + F ,

which is the required result.

4.4 The bi-Laplacian problem for symmetric matrix with

normal boundary conditions

In section (4.2), we have used the inf-sup condition (4.2.12) to solve the elliptic problem

(4.2.16) in VpT,s(Ω). Here, we will use a similar argument to solve the following bi-Laplacian

problem 
42E +∇sv = B and DivE = 0 in Ω,

E × n = D × n, v = v0 on Γ,

CurlE × n = CurlD × n on Γ,

〈Sn, ei〉Γk
= 〈Sn, P i〉Γk

= 0, 1 ≤ k ≤ I, 1 ≤ i ≤ 3,

(4.4.1)

where E and v are unknowns, B, v0 and D are are given data. This problem represents

a matrix analog of Stokes problem with pressure boundary conditions (see [9]) , where the

Laplacian operator is replaced by the bi-Laplacian ones and the gradient operator is replaced

by the linearised strain tensor.
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Using Corollary 4.2.13 and similar argument as in proof of Lemma 4.2.6, we can establish the

following inf-sup condition:

Lemma 4.4.1. Assume that Ω is of class C1,1. Then, the following inf-sup condition holds

true: there exists a constant β > 0, such that

inf
Ψ∈Vp′

N,s(Ω),

Ψ6=0

sup
E∈Vp

N,s(Ω),

E 6=0

∫
Ω

Curl CurlE : Curl Curl Ψ dx

‖E‖Xp
s(Ω)‖Ψ‖Xp′

s (Ω)

≥ β, (4.4.2)

where

VpN,s(Ω) = {S ∈ Xp
N,s(Ω), DivS = 0 in Ω and {Sn, ei〉Γi

= {Sn, P i〉Γi
= 0}.

The inf-sup condition (4.4.2) allows us to solve the following elliptic problem.

Theorem 4.4.2. Assume that Ω is of class C1,1 and B ∈ (Hp′

0,s(Curl Curl, Ω))′ such that

DivB = 0 in Ω and satisfying the following compatibility condition

∀M ∈ KN,s(Ω), 〈B,M〉
[Hp′

0,s(Curl Curl,Ω)]′×[Hp′
0,s(Curl Curl,Ω)]

= 0. (4.4.3)

Then, the problem
42E = B and DivE = 0 in Ω,

E × n = CurlE × n = 0 on Γ,

〈En, ei〉Γk
= 〈En, P i〉Γk

= 0, 1 ≤ i ≤ 3, 1 ≤ k ≤ I.

(4.4.4)

has a unique solution in W1,p
s (Ω) which satisfies the following estimate

‖E‖W1,p(Ω) ≤ C1‖B‖(Hp′
0,s(Curl Curl,Ω))′

. (4.4.5)

Moreover, if Ω is of class C2,1, then E ∈ W2,p
s (Ω) and

‖E‖W2,p(Ω) ≤ C2‖B‖(Hp′
0,s(Curl Curl,Ω))′

. (4.4.6)
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Remark 4.4.3. Using the same argument has in proof of [15, P roposition 8.14], we can show

that for any matrix S of [Hp′

0,s(Curl Curl, Ω)]′, there exist two matrix A and B of Lps(Ω) such

that

S = A+ Curl CurlB.

Proof. Due to the inf-sup condition of Lemma 4.4.1, the problem:

find E ∈ VpN,s(Ω) such that for all Ψ ∈ Vp
′

N,s(Ω),∫
Ω

Curl CurlE : Curl Curl Ψ dx = 〈B, Ψ〉
[Hp′

0,s(Curl Curl,Ω)]′×[Hp′
0,s(Curl Curl,Ω)]

(4.4.7)

has a unique solution E ∈ VpN,s(Ω) ⊂ W1,p(Ω).

Let Ψ̃ ∈ Xp′

N,s(Ω) and let v be the unique solution in W2,p
s (Ω)∩W1,p

0 (Ω) satisfying Div∇sv =

Div Ψ̃ in Ω. Setting

Ψ = Ψ̃−∇sv −
( 3∑
i=1

I∑
k=1

〈(Ψ̃−∇sv)n, ei〉Γk
∇sv

k
i + 〈(Ψ̃−∇sv)n, P i〉Γk

∇sw
k
i

)
we see that Ψ ∈ Vp

′

N,s(Ω) and using the compatibility condition (4.4.3), the problem (4.4.7)

becomes:

For all Ψ̃ ∈ Xp′

N,s(Ω),∫
Ω

Curl CurlE : Curl Curl Ψ̃ dx = 〈B, Ψ̃〉
[Hp′

0,s(Curl Curl,Ω)]′×[Hp′
0,s(Curl Curl,Ω)]

which is equivalent with the problem (4.4.4). Then, the problem (4.4.4) has unique solution

E ∈ W1,p(Ω). Remark 4.2 iii) of [9] implies that

‖Curl CurlE‖Lp(Ω) ≤ C‖B‖
(Hp′

0,s(Curl Curl,Ω))′
.

The estimate (4.4.5) is a consequence of Corollary 4.2.13. Moreover, if Ω is of class C2,1, then

E belongs to W2,p
s (Ω) and Corollary 4.2.13 implies that the estimate (4.4.6) holds true.

Now, we consider the case of the inhomogeneous boundary conditions.
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Corollary 4.4.4. Assume that Ω is of class C2,1. Let B ∈ [Hp′

0,s(Curl Curl, Ω)]′ such that

DivB = 0 and satisfying the compatibility condition (4.4.3) andD belongs to Hp
s(Curl Curl, Ω)

with (D × n, CurlD × n) ∈ W2− 1
p
,p(Γ)×W1− 1

p
,p(Γ). Then, the following problem

42E = B and DivE = 0 in Ω,

E × n = D × n and CurlE × n = CurlD × n on Γ,

〈En, ei〉Γk
= 〈En, P i〉Γk

= 0, 1 ≤ i ≤ 3, 1 ≤ k ≤ I

(4.4.8)

has a unique solution in W2,p
s (Ω) which satisfies the following estimate

‖E‖W2,p(Ω) ≤ C
(
‖B‖

[Hp′
0,s(Curl Curl,Ω)]′

+ ‖D × n‖
W

2− 1
p ,p

(Γ)
+ ‖CurlD × n‖

W
1− 1

p ,p
(Γ)

)
.

(4.4.9)

Proof. Step 1. We show the existence of a divergence free matrix E0 ∈ W2,p
s (Ω) such that

E0 × n = D × n and CurlE0 × n = CurlD × n .

We define the matrix Dτ = (D × n)× n which belongs to W2− 1
p
,p(Γ). Then, there exists

a divergence free matrix field A1 ∈ W2,p(Ω) such that A1|Γ = Dτ and satisfies the estimate

‖A1‖W2,p(Ω) ≤ C‖Dτ‖
W

2− 1
p ,p

(Γ)
≤ C‖D × n‖

W
2− 1

p ,p
(Γ)
. (4.4.10)

Furthermore, A1 × n = D × n on Γ. Now, we set C = Asym
1 −D, we have for any Ψ ∈

W2,p′
s (Ω) ∩W1,p′

0 (Ω),∫
Γ

(C × n) : Curl Ψ =

∫
Ω

C : Curl Curl Ψ−
∫

Ω

Ψ : Curl CurlC

=

∫
Ω

(A1 −D) : Curl Curl Ψ−
∫

Ω

Ψ : Curl Curl (A1 −D)

= 0.

Then, Remark 4.2.3 implies that

Asym
1 × n = D × n on Γ.

We set CurlCτ = (CurlC × n) × n which belongs to W1− 1
p
,p(Γ). As we have seen in the

proof of Proposition 4.2.1, there exists A2 ∈ W2,p(Ω)∩W1,p
0 (Ω) such that CurlA2 = CurlCτ
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and satisfies the estimate

‖A2‖W2,p(Ω) ≤ C‖CurlCτ‖
W

1− 1
p ,p

(Γ)
≤ C(‖D×n‖

W
2− 1

p ,p
(Γ)

+‖CurlD×n‖
W

1− 1
p ,p

(Γ)
). (4.4.11)

Furthermore, CurlA2 × n = CurlC × n on Γ. Also, for any Ψ ∈ W2,p′
s (Ω), we have∫

Γ

(Curl (Asym
2 −C)× n) : Ψ =

∫
Ω

(Asym
2 −C) : Curl Curl Ψ−

∫
Ω

Ψ : Curl Curl (Asym
2 −C)

=

∫
Ω

(A2 −C) : Curl Curl Ψ−
∫

Ω

Ψ : Curl Curl (A2 −C)

= 0.

Then, Remark 4.2.3 implies that

CurlAsym
2 × n = CurlC × n on Γ.

We define A = Asym
1 − Asym

2 which belongs to W2,p
s (Ω) and satisfies A × n = D × n and

CurlA × n = CurlD × n on Γ. We set v the solution in W 3,p(Ω) ∩W 1,p
0 (Ω) of the

homogeneous Dirichlet problem Div∇sv = DivA in Ω. Finally, we define E0 by

E0 = A−∇sv −
3∑
i=1

I∑
k=1

(
〈(A−∇sv)n, ei〉Γk

∇sv
k
i + 〈(A−∇sv)n,P i〉Γk

∇sw
k
i

)
.

Note that E0 satisfies
E0 ∈ W2,p

s (Ω), DivE0 = 0 in Ω,

E0 × n = D × n and CurlE0 × n = CurlD × n on Γ,

〈E0n, e
i〉Γk

= 〈E0n,P
i〉Γk

= 0, for any 1 ≤ i ≤ 3, 1 ≤ k ≤ I.

Also, from (4.4.10) and (4.4.11), we have

‖E0‖W2,p(Ω) ≤ C(‖D × n‖
W

2− 1
p ,p

(Γ)
+ ‖CurlD × n‖

W
1− 1

p ,p
(Γ)

). (4.4.12)

Step 2. We solve the elliptic problem (4.4.8).

We set F = B −Curl Curl(Curl CurlE0). Note that F belongs to [Hp′

0,s(Curl Curl, Ω)]′

and satisfies the estimate

‖F ‖
[Hp′

0,s(Curl Curl,Ω)]′
≤ C(‖B‖

[Hp′
0,s(Curl Curl,Ω)]′

+ ‖D ×n‖
W

2− 1
p ,p

(Γ)
+ ‖CurlD ×n‖

W
1− 1

p ,p
(Γ)

).

(4.4.13)
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Let E1 be the solution of the homogeneous problem (4.4.4), when the right hand side is equal

to F . Then, E = E0 + E1 is the unique solution in W2,p
s (Ω) of the problem (4.4.8) and we

deduce from (4.4.13) that E satisfies the estimate (4.4.9).

In Section 4.2, we have shown that if Ω is of class C2,1, then the space YpN,s(Ω) is continuously

embedded in W2,p(Ω). This result can be generalized in the case when the homogeneous

boundary conditions are replaced by inhomogeneous ones. We define the space Ym,ps (Ω) by

Ym,ps (Ω) = {S ∈ Lps(Ω), DivS ∈ Wm−1,p
s (Ω), Curl CurlS ∈ Wm−2,p

s (Ω),

S × n ∈ Wm− 1
p
,p(Γ), CurlS × n ∈ Wm−1− 1

p
,p(Γ) on Γ}.

Theorem 4.4.5. Assume that Ω is of class Cm,1, where m is an integer such that m ≥ 2, then

the space Ym,ps (Ω) is continuously embedded in Wm,p
s (Ω).

Proof. i) First of all, we suppose that m = 2. Let S ∈ Y2,p
s (Ω), let E in W2,p

s (Ω) be the

solution of the inhomogeneous problem (4.4.8) when D = F = S and the right hand side B

is equal to 0. Now, we set A = S − E which belongs to YpN,s(Ω). Due to Theorem 4.2.11,

the matrix A belongs to W2,p
s (Ω). Consequently, S belongs to W2,p

s (Ω) and we have

‖S‖W2,p(Ω) ≤ ‖A‖W2,p(Ω) + ‖E‖W2,p(Ω)

≤ C
(
‖A‖Lp(Ω) + ‖DivA‖W 1,p(Ω) + ‖Curl CurlA‖Lp(Ω)

+ ‖S × n‖
W

2− 1
p ,p

(Γ)
+ ‖CurlS × n‖

W
1− 1

p ,p
(Γ)

)
≤ C

(
‖S‖Lp(Ω) + ‖DivS‖W 1,p(Ω) + ‖Curl CurlS‖Lp(Ω)

+ ‖S × n‖
W

2− 1
p ,p

(Γ)
+ ‖CurlS × n‖

W
1− 1

p ,p
(Γ)

)
.

ii) We suppose that m > 3. We introduce the space of vector fields

Y m,p(Ω) = {v ∈ Lp(Ω), div v ∈ Wm−1,p(Ω), curl v ∈Wm−1,p(Ω), v × n ∈Wm− 1
p (Γ)}.

Amrouche et al [9] have shown that if Ω is of class Cm,1, then Y m,p(Ω) is continuously embedded

inWm,p(Ω). Let S ∈ Ym,ps (Ω), we have shown that S belongs to W2,p
s (Ω), then CurlS belongs
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to W1,p(Ω). Consequently, for any 1 ≤ i ≤ 3, the vector field CurlSi belongs to Y m−1,p(Ω),

then CurlS belongs to Wm−1,p(Ω) and we have the estimate

‖CurlS‖Wm−1,p(Ω) ≤ C(‖CurlS‖Lp(Ω) + ‖DivS‖Wm−1,p(Ω)

+ ‖Curl CurlS‖Wm−2(Ω) + ‖CurlS × n‖
W

m−1− 1
p ,p

(Γ)
)

≤ C(‖S‖Lp(Ω) + ‖DivS‖Wm−1,p(Ω) + ‖Curl CurlS‖Wm−2(Ω)

+ ‖S × n‖
W

m− 1
p ,p

(Γ)
+ ‖CurlS × n‖

W
m−1− 1

p ,p
(Γ)

) (4.4.14)

Again, for any 1 ≤ i ≤ 3, the vector Si belongs to Y m,p(Ω), then S belongs to Wm,p
s (Ω) and

we have

‖S‖Wm,p(Ω) ≤ C(‖S‖Lp(Ω) + ‖DivS‖Wm−1,p(Ω) + ‖CurlS‖Wm−1,p(Ω) + ‖S × n‖
W

m− 1
p ,p

(Γ)
).

(4.4.15)

From (4.4.14) and (4.4.15), we conclude

‖S‖Wm,p(Ω) ≤ C‖S‖Ym,p
s (Ω),

which is the required result.

Theorem 4.4.6. Assume that Ω is of class C2,1. Let B, D and v0 such that

B ∈ [Hp
0,s(Curl Curl, Ω)]′, D belongs to Hp

s(Curl Curl, Ω) with (D × n, CurlD × n) ∈
W2− 1

p
,p(Γ)×W1− 1

p
,p(Γ) and v0 ∈W 1− 1

p
,p(Γ) satisfying

∀M ∈ KN,s(Ω), 〈B,M〉Ω −
∫

Γ

v0 · (Mn) ds = 0. (4.4.16)

Then, The problem (4.4.1) has unique solution (E,v) ∈ W2,p
s (Ω) ×W 1,p(Ω) which satisfies

the estimate

‖E‖W2,p(Ω) + ‖v‖W 1,p(Ω) ≤ C
(
‖B‖[Hp

0,s(Curl Curl,Ω)]′ + ‖D × n‖W
2− 1

p ,p
(Γ)

+ ‖CurlD × n‖
W

1− 1
p ,p

(Γ)
+ ‖v0‖

W
1− 1

p ,p
(Γ)

)
Proof. We consider the problem

Div∇sv = DivB in Ω, v = v0 on Γ.
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Since DivB belongs to W−1,p(Ω), it has an unique solution in W 1,p(Ω) and satisfies the

estimate

‖v‖W 1,p(Ω) ≤ C(‖B‖[Hp
0,s(Curl Curl,Ω)]′ + ‖v0‖

W
1− 1

p ,p
(Ω)

).

Note that the matrix F = B −∇sv belongs to [Hp
0,s(Curl Curl,Ω)]′ and satisfies the com-

patibility condition (4.4.3). Then, the problem (4.4.1) becomes
42E = F , DivE = 0 in Ω,

E × n = D × n, CurlE × n = CurlD × n on Γ,

〈En, ei〉Γk
= 〈En, P i〉Γk

, 1 ≤ i ≤ 3,

1 ≤ k ≤ I

(4.4.17)

We have shown that the regularity of the domain Ω implies that the problem (4.4.17) has a

unique solution in W2,p(Ω) with the estimate

‖E‖W2,p(Ω) ≤ C(‖F ‖[Hp
0,s(Curl Curl,Ω)]′ + ‖D × n‖W

2− 1
p ,p

(Γ)
+ ‖CurlD × n‖

W
1− 1

p ,p
(Γ)

),

which ends the proof.
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Chapter 5

Traces Characterizations for Sobolev

Spaces on Lipschitz Domains of R2

In [29], Geymonat et al have used the Airy’s function (which represents the 2-dimensional

case of the Beltrami’s representation) to characterize the range of the trace operator

γ : H2(Ω) −→ H1(Γ)× L2(Γ)

f −→ (f|Γ,
∂ f

∂n
),

(5.0.1)

where Ω is a Lipschitz domain of R2. Duràn et al have used the same argument to generalize

this result in the Sobolev spaces W 2,p(Ω), 1 < p < ∞ . Later, Geymonat et al in [16] have

used a different technic to generalize the above result in the three dimensional case.

In this chapter, we will use another characterization of Lp−symmetric matrix fields to

characterize the range of the operator:

γ : W 3,p(Ω) −→W 1,p(Γ)× Lp(Γ)× Lp(Γ)

f −→ (f|Γ,
∂ f

∂n
,
∂2f

∂n2
),

(5.0.2)

where Ω is Lipschitz domain of R2. .
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5.1 Homogeneous Bi-Laplacian problem

In this section, we will consider the following homogeneous Bi-Laplacian problem:

(PB)


∆2u = 0 in Ω,

u = g0 on Γ,

∂u

∂n
= g1 on Γ.

(5.1.1)

Recall the following result (see [22]).

Theorem 5.1.1. Let Ω be a bounded open subset of RN of class of C0,1, with N ≥ 2 and let

g0 ∈ H1(Γ) and g1 ∈ L2(Γ). (5.1.2)

Then there exists a unique u ∈ H3/2(Ω) solution to Problem (PB) with the estimate

‖u‖H3/2(Ω) ≤ C(‖g0‖H1(Γ) + ‖g1‖L2(Γ)). (5.1.3)

On the other hand, we know that if Ω is a bounded open subset of RN of class of C0,1 and

f ∈ L2(Ω), then there exists a unique solution u ∈ H2
0 (Ω) satisfying ∆2u = f in Ω with the

estimate

‖u‖H2(Ω) ≤ C ‖f‖L2(Ω) . (5.1.4)

We know that if g0 ∈ H1(Γ) and g1 ∈ L2(Γ) verify the condition (1.0.13) with p = 2, then

there exists a function u ∈ H2(Ω) satisfying u = g0 and ∂u
∂n

= g1 on Γ with the estimate

‖u‖H2(Ω) ≤ C

∥∥∥∥∂g0

∂t
t+ g1n

∥∥∥∥
H1/2(Γ)

. (5.1.5)

The question that interests us here is to find such a function u in addition biharmonic in

Ω.

Theorem 5.1.2. Let Ω be a bounded open subset of RN of class C0,1, with N ≥ 2. Let g0

and g1 be satisfy the conditions (5.1.2) and (1.0.13). Then there exists a unique biharmonic

function u ∈ H2(Ω) satisfying u = g0 and ∂u
∂n

= g1 on Γ with the estimate (5.1.5).
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Proof. Let w ∈ H2(Ω) such that w = g0 and ∂w
∂n

= g1 on Γ. We know that there exists a

unique solution z ∈ H2
0 (Ω) satisfying ∆2z = ∆2w in Ω. The required function is given by

u = w − z.

Remark 5.1.3. Let us introduce the following Hilbert space

H
1/2
T (Γ) = {v ∈H1/2(Γ); vτ = 0}.

Clearly

v ∈H1/2
T (Γ)⇐⇒ v = gn with g ∈ L2(Γ) and gn ∈H1/2(Γ)

The above result asserts that for any

g ∈ L2(Γ) such that gn ∈H1/2(Γ)

there exists a function u ∈ H2(Ω) ∩ H1
0 (Ω) such that ∂u

∂n
= g on Γ. Moreover among all

functions satisfying these conditions, there is one that is biharmonic.

We will see now an interested consequence of this result which will allow us to establish the

existence of very weak solutions in domains which are only Lipschitz. Before that, recall that

if Ω is of class C1,1 and g ∈ H−1/2(Γ), then there exists a unique harmonic function u ∈ L2(Ω)

satisfying u = g on Γ. When Ω is not sufficiently regular, there is not possible in general to

define the trace of harmonic function u ∈ L2(Ω) in H−s(Γ) for some s > 0. So, let us introduce

the following Hilbert space:

M(Ω) =
{
v ∈ L2(Ω); ∆v ∈ L2(Ω)

}
.

We denote its norm by

‖v‖M(Ω) = (‖v‖2
L2(Ω) + ‖∆v‖2

L2(Ω))
1/2.

It is easy to prove that D
(
Ω
)

is dense in M(Ω).

As a consequence of this density result and of Theorem 5.1.2, we can prove the following

lemma.
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Lemma 5.1.4. Let Ω be a bounded open set of RN of class C0,1, with N ≥ 2. The linear

mapping v 7−→ (vn)|Γ defined on D(Ω) can be extended to a linear continuous mapping

M(Ω) −→ [H
1/2
T (Γ)]′.

Moreover, we have the Green formula: For all v ∈M(Ω) and ϕ ∈ H2(Ω) ∩H1
0 (Ω),∫

Ω

v∆ϕdx−
∫

Ω

ϕ∆v dx = 〈(vn)Γ,∇ϕ〉. (5.1.6)

Remark 5.1.5. When Ω is of class C1,1, then the linear mapping v 7−→ v|Γ defined on D(Ω)

can be extended to a linear continuous mapping

M(Ω) −→ H−1/2(Γ)

and we have the Green formula: For all v ∈M(Ω) and ϕ ∈ H2(Ω) ∩H1
0 (Ω),∫

Ω

v∆ϕdx−
∫

Ω

ϕ∆v dx = 〈v, ∂ϕ
∂n
〉. (5.1.7)

We now can solve the Laplace equation with singular boundary condition.

Theorem 5.1.6. Let Ω be a bounded open set of RN of class C0,1, with N ≥ 2. For any

g ∈ H−1/2(Γ) such that gn ∈ [H
1/2
T (Γ)]′

there exists a unique function u ∈ L2(Ω) solution to the problem

∆u = 0 in Ω and un = gn on Γ, (5.1.8)

with the estimate

‖u‖L2(Ω) ≤ C‖gn‖
[H

1/2
T (Γ)]′

.

Proof. Thanks to the Green formula (5.1.7), it is easy to verify that u ∈ L2(Ω) is solution to

Problem (5.1.8) is equivalent to the following variational formulation: Find u ∈ L2(Ω) such

that for all ϕ ∈ H2(Ω) ∩H1
0 (Ω),∫

Ω

u∆ϕdx = 〈gn,∇ϕ〉
[H

1/2
T (Γ)]′×H1/2(Γ)

. (5.1.9)
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Indeed, let u ∈ L2(Ω) be a solution to (5.1.8). Then, the Green formula (5.1.7) yields (5.1.9).

Conversely, let u ∈ L2(Ω) be a solution to (5.1.9). Taking ϕ in D(Ω), we obtain ∆u = 0

in Ω and u ∈ M(Ω). Using this last relation and again the Green formula (5.1.7), we deduce

that for all ϕ ∈ H2(Ω) ∩H1
0 (Ω),

〈un,∇ϕ〉
[H

1/2
T (Γ)]′×H1/2(Γ)

= 〈gn,∇ϕ〉
[H

1/2
T (Γ)]′×H1/2

T (Γ)
.

Let µ ∈ H1/2
T (Γ). By Remark 5.1.3, we know that there exits ϕ ∈ H2(Ω) ∩H1

0 (Ω) such that

µ = ∇ϕ on Γ. Thus,

〈un,µ〉
[H

1/2
T (Γ)]′×H1/2

T (Γ)
= 〈un,∇ϕ〉

[H
1/2
T (Γ)]′×H1/2

T (Γ)
= 〈gn,µ〉

[H
1/2
T (Γ)]′×H1/2

T (Γ)
.

and un = gn on Γ.

Let’s then solve Problem (5.1.9). We know that for all F ∈ L2(Ω), there exists a unique

ϕ ∈ H2(Ω) ∩H1
0 (Ω) satisfying −∆ϕ = F in Ω, with the estimate

‖v‖H2(Ω) ≤ C‖F‖L2(Ω).

Using estimate (5.1.4) we get

|〈gn,∇ϕ〉
[H

1/2
T (Γ)]′×H1/2

T (Γ)
| ≤ ‖gn‖

[H
1/2
T (Γ)]′

‖∇ϕ‖H1/2(Γ) ≤ C ‖gn‖
[H

1/2
T (Γ)]′

‖F‖L2(Ω).

In other words, we can say that the linear mapping

T : F 7−→ 〈gn,∇ϕ〉
[H

1/2
T (Γ)]′×H1/2

T (Γ)

is continuous on L2(Ω), and according to the Riesz representation theorem, there exists a

unique u ∈ L2(Ω), such that

∀F ∈ L2(Ω), T (F ) =

∫
Ω

uF,

i.e u is solution of Problem (5.1.9).
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5.2 An Hessian representation for Lp-symmetric matrix

fields

In the rest of this chapter, Ω is a bounded and connected open of R2 with Lipschitz-

continuous boundary. In this section, we will present an new characterization of the Lp-

symmetric by using the Hessian matrix. For that, we need some results, the first one is the

following vector potential theorem which have been presented by Duràn and Muschietti in

[23]:

Lemma 5.2.1. Let 1 < p <∞, v ∈ Lp(Ω) with div v = 0 in Ω and satisfying the compatibility

condition

< v · n, 1 >Γj
= 0 for j = 0, · · · , J.

Then there exists a function ψ ∈ W 1,p(Ω) such that curlψ = v in Ω.

The previous lemma is the key to generalize the Airy’s function theorem in Lp(Ω). In fact

it suffices to follow the same steps of proof of Theorem 2 of [1] to obtain the following result:

Lemma 5.2.2. Given S = (sij)i,j=1,2 ∈ Lps(Ω), then S fulfills the following statements :

DivS = 0 in Ω, (5.2.1)

〈Si · n, 1〉Γj
= 0 for i = 1, 2 and j = 0, · · · , J, (5.2.2)

〈S1 · n, x2〉Γj
= 〈S2 · n, x1〉Γj

for j = 0, · · · , J, (5.2.3)

if and only if there exists an Airy’s function w ∈ W 2,p(Ω) such that

s11 =
∂2w

∂x2
2

, s12 = − ∂2w

∂x1∂x2

and s22 =
∂2w

∂x2
1

. (5.2.4)

We are now in position to give a characterization of Lp-symmetric matrix field as a Hessian

of a scalar field belonging to W 2,p(Ω).
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Theorem 5.2.3. Given S ∈ Lps(Ω), then S fulfills the following statements:

curlSi = 0 in Ω, for i = 1, 2 (5.2.5)

〈St, ei〉Γj
= 0 for i = 1, 2 and j = 0, · · · , J, (5.2.6)

〈St, x〉Γj
= 0 for j = 0, · · · , J, (5.2.7)

if and only if there exists w ∈ W 2,p(Ω) such that

S = Hessw in Ω. (5.2.8)

Proof. i) First, let S = Hessw with w ∈ W 2,p(Ω). It is clear that S belongs to Lps(Ω) and

satisfies (5.2.5). It rest to show that S satisfies the compatibility conditions (5.2.6) and (5.2.7).

Lemma 5.2.2 implies that the following compatibility conditions hold true

〈S?n, ei〉Γj
= 0 for i = 1, 2 and j = 0, · · · , J, (5.2.9)

〈S?1 · n, x2〉Γj
= 〈S?2 · n, x1〉Γj

for j = 0, · · · , J. (5.2.10)

Let us observe the following equalities

S?1 · n = S2 · t and S?2 · n = −S1 · t.

So, we have the relations (5.2.6) and (5.2.7).

ii) Conversely, let S ∈ Lps(Ω) satisfies the compatibility conditions (5.2.5)-(5.2.7). Then, the

matrix S? ∈ Lps(Ω satisfies (5.2.9) and (5.2.10). Moreover, as curlS = 0 in Ω, then divS? = 0

in Ω. Due to Lemma 5.2.2, there exists w ∈ W 2,p(Ω) such that

S? =


∂2w

∂x2
2

− ∂2w

∂x1∂x2

− ∂2w

∂x2∂x1

∂2w

∂x2
1

 .

Consequently,

S = Hessw in Ω.
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5.3 The range of the traces of W 3,p(Ω)

Geymonat [28] proved that if Ω is a Lipschitz domain of R2 and (g0, g1, g2) ∈ W 1,p(Γ) ×
Lp(Γ) × Lp(Γ) belongs to the range of the operator (γ0, γ1, γ2), then it must satisfy the

following conditions

q :=
∂g0

∂t
t+ g1n ∈W 1,p(Γ), (5.3.1)

and

H := [(∇q t) · t] t⊗ t+ [(∇q t) · n] (t⊗ n+ n⊗ t) + g2n⊗ n ∈ W1− 1
p
,p(Γ). (5.3.2)

In this section, we will show that the necessary conditions (5.3.1) and (5.3.2) are sufficient.

First, we will show the following results.

Lemma 5.3.1. The operator

Div : W1,p
0,s(Ω)→ Lp0(Ω), (5.3.3)

is onto. Consequently, for each vector field v ∈ Lp0(Ω), there exists a symmetric matrix field

S in W1,p
0,s(Ω) such that

DivS = v in Ω,

and there exists a constant C depends only on p and Ω such that

‖S‖W1,p(Ω) ≤ C‖v‖Lp(Ω).

Proof. The proof is based on Theorem 3 of [20] and it is composed on three steps.

Step 1. We show a vector version of J. L. Lions lemma. Here, we follow the same steps

of proof of Theorem 3.1 of [6]. Let v ∈ D′(Ω) be such that ∇s v ∈ W−1,p
s (Ω). The identity

∂j(∂kvi) = ∂j(∇sv)ik + ∂k(∇sv)ij − ∂i(∇sv)jk

implies that for any k, i = 1, 2, the distribution ∂kvi has a gradient in W−2,p(Ω). Then

Proposition 2.1 of [8] implies that ∂kvi is in W−1,p(Ω). In other words, ∇ vi belongs to

W−1,p(Ω) for each i = 1, 2. Again Proposition 2.1 of [8] implies that v ∈ Lp(Ω).
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Step 2. We show an extension of Donati’s theorem. Let p′ be the conjugate of p and

S ∈ W−1,p′
s (Ω) be such that

W−1,p′ (Ω)〈S, E〉W1,p
0 (Ω) = 0 for all E ∈ V1,p

0,s(Ω). (5.3.4)

Moreau’s theorem [41] implies that there exists v ∈ D′(Ω) such that ∇sv = S in Ω. By Step

1, we get v ∈ Lp(Ω).

Step 3. We show that the operator (5.3.3) is onto. As consequence of Step 2, we deduce

that the following operator

∇s : Lp
′
(Ω)/R(Ω)→ [V1,p

s (Ω)]◦. (5.3.5)

is an isomorphism. Above the polar set is defiend as follow:

[V1,p
s (Ω)]◦ = {S ∈ W−1,p′

s (Ω) satisfying (5.3.4)}.

So, the dual operator

Div : W1,p
0,s(Ω)/V1,p

s (Ω)→ Lp0(Ω), (5.3.6)

is an isomorphism.

Lemma 5.3.2. Let A ∈ W
1− 1

p
,p

s (Γ) satisfies the compatibility conditions (5.2.6) and (5.2.7) of

Theorem 5.2.3. Then, there exists S ∈ W1,p
s (Ω) such that

curlS = 0 in Ω and S = A on Γ. (5.3.7)

Moreover, there exists a constant C depends only on p and Ω such that

‖S‖W1,p(Ω) ≤ C‖A‖
W

1− 1
p ,p

(Γ)
. (5.3.8)

Proof. Let A be as in the statement of Lemma 5.3.2 and M ∈ W1,p
s (Ω) be such that M |Γ = A

on Γ and satisfies the estimate

‖M‖W 1,p(Ω) ≤ C‖A‖
W

1− 1
p ,p

(Γ)
. (5.3.9)
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Let us observe that

DivM ? =


∂ m22

∂x1

− ∂ m21

∂x2

−∂ m12

∂x1

+
∂ m11

∂x2

 =

 curlM 2

−curl M 1

.
Now, setting v = DivM ?. We search R ∈ W1,p

0,s(Ω) such that divR = v in Ω. By using

(5.2.6), we get ∫
Ω

v · e1 dx =

∫
Ω

(
∂m22

∂x1

− ∂m21

∂x2

) dx =

∫
Γ

M 2 · t dσ = 0.

By the same, we get ∫
Ω

v · e2 dx = −
∫

Γ

M 1 · t dσ = 0.

And by using (5.2.7), we get∫
Ω

v · x⊥ dx = −
∫

Ω

M ? :∇x⊥ dx+

∫
Γ

(M ?n) · x⊥ dσ = −
∫

Γ

(Mt) · x dσ = 0.

The second integral above is equal to zero since M ? is symmetric and also the third on the

boundary by using (5.2.7) Then, Lemma 5.3.1 implies that there exists R ∈ W 1,p
0,s (Ω) such

that divR = divM ? and satisfies the estimate

‖R‖W1,p(Ω) ≤ C‖A‖
W

1− 1
p ,p

(Γ)
. (5.3.10)

The symmetric matrix S = M −R? ∈ W1,p
s (Ω) and satisfies

S|Γ = M |Γ = A with ‖S‖W1,p(Ω) ≤ C‖A‖
W

1− 1
p ,p

(Γ)
.

Observe that DivS? = 0, then curlS = 0. Moreover, (5.3.9) and (5.3.10) implies that the

estimate (5.3.8) holds, which ends the proof.

Lemma 5.3.3. Let g0 ∈ W 1,p(Γ), g1, g2 in Lp(Γ) be such that the vector field q =
∂g0

∂t
t+g1n

be in W 1,p(Γ). Then, the matrix field H defined by

H = [(∇q t) · t] t⊗ t+ [(∇q t) · n] (t⊗ n+ n⊗ t) + g2n⊗ n,

satisfies

〈H t, e1〉Γj
= 〈H t, e2〉Γj

= 〈H t, x〉Γj
= 0, j = 1, · · · , J. (5.3.11)
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Proof. As q ∈ W 1,p(Γ), there exists w ∈ W 2,p(Ω) such that w|Γ = g0,
∂w

∂n
= g1 and q = (∇w)|Γ

(see [1]). By definition of tangential derivatives, we get (∇q) t = ∂tq = (∇2w)t. A simple

calculus gives

(n⊗ n) t = 0, (n⊗ t) t = n, (t⊗ n) t = 0, (t⊗ t ) t = t. (5.3.12)

Then, we get

H t = [(∇q t) · t] [(t⊗ t) t] + [((∇q t) · n] [(t⊗ n+ n⊗ t) t] + g2 [(n⊗ n) t]

= [(∇q t) · t] t+ [(∇q t) · n] n

= (∇q) t =∇2w t.

Finally, Theorem 5.2.3 implies that

〈H t, ei〉Γj
= 〈∇2w t, ei〉Γj

= 0, i = 1, 2, j = 1, · · · , J,

〈H t, x〉Γj
= 〈∇2w t, x〉Γj

= 0, j = 1, · · · , J.

By using the same argument of proof of Corollary 3.7 of [21], the following results holds

true:

Proposition 5.3.4. The following linear operator

∂t : W 1− 1
p
,p(Γ)→ W− 1

p
,p(Γ),

is continuous and

Ker ∂t = R.

We are now in position to characterize the range of the trace operator in W 3,p(Ω).

Theorem 5.3.5. Let g0 ∈ W 1,p(Γ), g1, g2 ∈ Lp(Γ) be given. Then, there exists w ∈ W 3,p(Ω)

such that

w = g0,
∂w

∂n
= g1 and

∂2w

∂n2
= g2 on Γ, (5.3.13)

if and only if g0, g1 and g2 satisfy the conditions (5.3.1) and (5.3.2).
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Proof. i) First, let w ∈ W 3,p(Ω), g0 = w|Γ, g1 =
∂w

∂n
and g2 =

∂2w

∂n2
. By definition of tangential

derivatives, then the vector field q and the matrix field H defined in Lemma 5.3.3 satisfy the

conditions (5.3.1) and (5.3.2):

q = (∇w)|Γ ∈W 1,p(Γ) and H = (∇2w)|Γ ∈ W
1− 1

p
,p

s (Γ).

ii) Conversely, Lemma 5.3.3 implies that H satisfies the compatibility conditions (5.2.6) and

(5.2.7), then Lemma 5.3.2 implies that there exists S ∈ W1,p
s (Ω) such that curlS = 0 in Ω

and S = H on Γ. As the matrix S satisfies the conditions (5.2.5)-(5.2.7), then there exists

w0 ∈ W 2,p(Ω) such that ∇2w0 = S in Ω. Consequently, w0 ∈ W 3,p(Ω) and (∇2w0)|Γ = H . A

simple calculus gives

(n⊗ n)n = n, (n⊗ t)n = 0, (t⊗ n)n = t, (t⊗ t)n = 0.

Then,

(Hn) · n = ((∇2w0)n) · n =
∂2w0

∂n2
= g2 on Γ. (5.3.14)

Also, using (5.3.12), we get

(∇2w0)t = Ht = (∇q) t on Γ.

Hence, Proposition 5.3.4 implies that q = (∇w0)|Γ + c0 where c0 ∈ R2. Let us observe that

the following fonction w1 = w0 + c0 · x satisfies

∂2w1

∂n2
=
∂2w0

∂n2
= g2, q =∇w1 and

∂w1

∂n
= g1.

Moreover,

(∇w1) · t = q · t =∇g0 · t.

Again, Proposition 5.3.4 implies that g0 = (w1)|Γ + c1 where c1 ∈ R. Finally, the function

w = w1 + c1 answers to our question since

w = g0,
∂w

∂n
=
∂w1

∂n
= g1 and

∂2w

∂n2
=
∂2w0

∂n2
= g2

which ends the proof.
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to Poincaré’s theorem and Korn’s inequality in Sobolev spaces with negative exponents.

Anal and Appl. 8, 1-17, (2010).

[6] C. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan: On the characterizations of matrix

fields as linearized strain tensor fields. J. Math. Pures Appl. 86, 116-132, (2006).

[7] C. Amrouche, P.G. Ciarlet, C. Mardare: On a lemma of Jacques-Louis Lions and its

relation to other fundamental results. J. Math. Pures Appl. 104, 207-226, (2015).

[8] C. Amrouche, V. Girault: Decomposition of vector spaces and application to the Stokes

problem in arbitrary dimension. Czeckoslov. Math. J. 44, 109-140, (1994).

109



[9] C. Amrouche, N. Seloula: Lp-theory for vector potentials and Sobolev’s inequalities for

vector fields. Application to the Stokes equations with pressure boundary conditions. Math.

Meth. Appl. Sci. 23, 37-92, (2013).

[10] J.M. Ball, A. Zarnescu: Partial regularity and smooth topology-preserving approxima-

tions of rough domains. Preprint Oxford Center for Nonlinear PDE, Mathematical Institute,

University of Oxford. December 16, 2013; also arXiv:1312.5156.

[11] E. Beltrami: Osservazioni sulla nota precedente. Atti. Accad. Lincei. Rend. 1, 141-142,

(1892).

[12] A. Bendali , J. M. Dominguez, S. Gallic: A variational approach for the vector potential

formulation of the Stokes and the Navier-Stokes problem in three dimensional domains. J.

Math. Anal. Appl. 107 (2), 537-560, (1985).
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de Rham complexes on Lipschitz domains. Math. Z. 265, 297-320, (2010).

[22] B.E.J. Dahlberg, C.E Kenig, G.C. Verchota. The Dirichlet problem for the biharmonic

equation in Lipschitz domain. Annales de l’Inst. Fourier, 36− 3, 109-135, (1986).
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[45] P.P. Podio-Guidugli: The compatibility constraint in linear elasticity. J.J. Elasticity. 59,

393-398, (2000).

[46] L. Schwartz: Cours d’Analyse, Deuxième Partie, Ecole Polytechnique, (1959).
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