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Caractérisations de champs de matrices, potentiels matrices et applications aux

opérateurs traces

Résumé de these

Plusieurs auteurs ont utilisé les champs de contraintes pour résoudre 1’équation d’équilibre
de la mécanique des milieux continus. Airy (1863) a résolu le cas bidimensionnel, Maxwell
(1870) et Morera (1892) ont étudié le cas tridimensionnel. Les solutions obtenues sont
des cas particuliers de celles de Beltrami (1892). Gurtin a donné un exemple de solutions
ne satisfaisant pas la représentation S = Curl Curl A de Beltrami, ce qui signifie que la
représentation précédente est incomplete. De plus, il a montré que si I'ouvert est régulier,

alors elle est complete dans I'espace des champs réguliers de contraintes auto-équilibrés.

Dans cette these intitulée ” Caractérisations de champs de matrices, potentiels matrices et
applications aux opérateurs traces”, on s’intéresse a diverses caractérisations de champs de
vecteurs, de champs de matrices et spécialement au résultat de Gurtin dans le cas ou l'ouvert

et les champs de contraintes ne sont pas réguliers.

Cette these est décomposée en cing chapitres. Le premier chapitre expose la problématique

de recherche traitée dans cette these. Il présente également I'origine du sujet de recherche.

Dans le deuxieme chapitre, on étudie I'opérateur curl et en particulier 'existence de po-

tentiels vecteurs dans différents cadres fonctionnels.

Dans les chapitres 3 et 4, on va montrer quelques versions de la complétude de la représentation

de Beltrami et en déduire des décompositions de Helmholtz pour les champs de matrices.

Le dernier chapitre est consacré a 1’étude de l'image de différents opérateurs traces de
fonctions W2P(Q), W3P(Q) lorsque 2 est un ouvert borné de R? lipschitzien. L’ingrédient
essentiel est donné par la fonction d’Airy ou par la représentation de Beltrami.

Mots clés
Champs de contraintes, représentation de Beltrami, potentiels vecteurs, complétude de Bel-

trami, décomposition de Helmholtz, fonction d’Airy, opérateurs traces.



Thesis abstract

Many authors have used stress fields to solve the equilibrium equation of continuum me-
chanics. Airy (1863) solved the two-dimensional case, Maxwell (1870) and Morera (1892)
solved the three-dimensional case. The above solutions are special cases of those of Beltrami
(1892). Gurtin gave an example of solutions that do not have Beltrami’s S = Curl Curl A
representation. He showed that if the domain €2 is regular, then this representation is complete

in the class of regular stress fields which are self-equilibrated.

My thesis title is ”Characterizations of matrix fields, potential matrices and applications
to trace operators”. In this work, we are interested by showing many characterizations of
vector fields, of matrix fields and especially by generalizing the result of Gurtin in the case

when the open set and the stress fields are not regular.

This thesis consists of five chapters. The first chapter presents the research problem ad-

dressed in this thesis. It also presents the origin of the subject of research.

In the second chapter, we study the operator curl. In particular, the existence of potential

vectors in different functional frameworks.

In Chapters 3 and 4, we will show some versions of Beltrami’s completeness and we deduce

some Helmholtz decomopsitions for symmetric matrix fields.

The last chapter is devoted to the study of the image of different trace operators of functions
W2P(Q), W3P(Q) when  is a bounded open of R? with Lipschitz boundary. The essential
ingredient is given by the Airy’s function or by the Beltrami representation.

Keywords
Stress fields, Beltrami representation, potential vectors, Beltrami’s completeness, Helmholtz

decomposition, Airy’s function, trace operators.
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Notations and preliminaries

We denote by || the euclidean norm in RY. For z € Q and d > 0, we define the ball centred
at x with radius d by B(x,d) = {y € R, |z —y| < d}. The open set  is starlike with respect
to an open ball B(x,d) if, for each y € Q, the convex hull of the set {y} U B(x,d) is contained
in €2. This amounts to saying that it is starlike with respect to each point of this ball: for each
z € Qand y € B(z,d) the segment [zy] is contained in . With these definitions, we can show
that a bounded, starlike open set with respect to an open ball is Lipschitz. Conversely, any
bounded and conected open set with Lipschitz-continuous boundary is finite union of bounded
and connected open sets, each being starlike with respect to an open ball. We refer here, this
property is stated in [7], [21] and proved in [39]. Also, let Q contained in R® be a bounded and
connected open set, we recall that €2 is pseudo-Lipschitz if for any point  on the boundary
0f) there exist an integer r(x) equal to 1 or 2 and a strictly positive real number py such that
for all real numbers p with 0 < p < pg, the intersection of €2 with the ball with center x and
radius p, has r(z) connected components, each one being Lipschitz.

Second, we take the following hypothesis. We do not assume that the boundary of 2 is
connected. We denote by I'y the connected components of the boundary I', 0 < k < I, where
Iy is the boundary of the unbounded connected component of R*\Q. There exist J connected
open surfaces X;, 1 < 7 < J, called ‘cuts’, contained in €2, such that
(i) each surface ¥; is an open part of a smooth manifold M,

(ii) the boundary of ¥ is contained in T" for 1 < j < J,
(iii) the intersection 3; N'Y; is empty for i # j,
(iv) the open set

0° =0\ UL, %

is pseudo-Lipschitz and simply-connected.
For J = 2 with I = 5, see for example Fig. 1.
In the following, the vectors, the matrix fields, the vector functions (or distributions), the
matrix functions (or distributions) and the spaces of vector-valued functions are represented
by bold symbols. For example: D(Q) := (D(R2))3, LP(Q) := LP(Q)3.



Fig. 1

The orientation tensor () is defined by

+1 if{i, 7, k} is an even permutation of {1, 2,3},
gk = § —1 if{i,j, k} is an odd permutation of {1,2, 3},

0 if at least two indices are equal.

In the rest of this section, Latin indices vary in the set {1,2,3} and we use the summation
convention with respect to repeated indices.

We use the following vector differential operators throughout the paper: the divergence

operator div : D'(Q) — D'(Q) is defined by
divo=V-v=0w forany v=(v;)e D).
The vector rotational operator curl : D'(2) — D'(Q) is defined by
(curlw); = (V x v); = ;55 0ju, forany v = (v;) € D'(Q).
We define the kernel space K7(Q2) (or space of harmonic knots) by

K (Q) ={veL*Q), curlv =0, dive =0in Q, v-n = 0 on 09}, (0.0.1)
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which is of finite dimension and its dimension depends on the geometric of {2. Its dimension
is equal to the second Betti number J, which corresponds to the total genus of the boundary
' (see for example [12]). We define V(2) by

V(Q)={veD(), divo=0 in Q},
and the space V""P(§2) which represents the closure of V(§2) in W™?(Q), by
V™P(Q) ={v e W (Q), dive =0 in Q},

for m > 1 and by

VP(Q) ={v € LP(Q), divo =0in Q,v-n=0 on 00},
for m = 0. We set for m € N

Um?(Q) ={v e V"P(Q); /Q v-pdr=0 forall p € Kr(Q)}.
We have the following equivalence, for any function v € V"?(Q):
Ve Kr(Q), /v-cpdx:0<:> (v-n,1)s, =0 for anyl <j<.J

Q

We use the following matrix operators. The matrix symmetrized gradient operator Vi :
D' () — D.() is defined by

(Vs v)ij = %(@vj + 8]'112') for any v = (Uz) S D/(Q)

For any matrix field S, we denote by S* the i*" line of S. For any vector field v, we define

the components of the vector field Sv by
(Sv); = Sijv;.
The vector divergence operator Div : D'(2) — D'(Q) is defined as follows:
for any S eD'(Q2), (DivS);=209;S,;.

11



The matrix vector product is defined as follows:
(v x 8)ij =€jkveSiy forany v =(v;) and S =(9;),

which means that the i column of v x § is the vector product v x (8")7. Also, we define
Sxvby Sxv=-vxS8.
The matrix rotational operator Curl : D'(Q2) — D’(Q2) is defined by

(Curl S)Z] = Eilk 8@Sjk for any S = (SZJ) € D/(Q)

That means that the i*" column of Curl S is the curl of the it" line vector of S. Observe that
we have the following relation:
Curl S = (V x S)".

It is easy to show that for any matrix field S and any vector field v, the following relation
holds:
(8 xv)T xv)T = (8" xv)! x v, (0.0.2)

which implies that if S is symmetric (resp. anti-symmetric), then the matrix (S x v)? x v
and Curl Curl S are also symmetric (resp. anti-symmetric).

. We define the space of rigid displacements by

R(Q) = {v =: a;(v) €' + b;(v) P', a;(v) € R®, bi(v) € R’}

where €’ is the i*" vector of the canonical basis of R* and P’ =: —¢;j,z€’. The dimension of
R(Q2) is 6 and Vv = 0 for any v € R(2). A vector field v = rig means that v belongs to
R(Q).

Spaces of matrix fields are represented by special Roman capitals. Moreover, spaces of
symmetric matrix fields are indexed by the Latin letter s. For example, D4(2) = D(Q2; M ;”ym)
We define V4(Q2) by

Vi(2) ={S € Ds(?), DivS =0 in Q},

and the kernel space Ky 4(§2) by
Krs(Q) = {8 € L2(Q2), Curl Curl § =0, DivS =0in Q, §-n = 0 on 99},

12



which is of finite dimension and its dimension is dependent on the geometrical properties of
. Ciarlet et al in [19] and Geymonat et al in [32] have shown that the dimension of Kz (12)
is equal to 6J. As recalled above, we define the space UT?(Q)), for m > 1 by

U?(Q) = {S e Wg'P(Q2), DivS = 0, (S'n,e’)y, = (Sn, Py, =0, 1<i<3, 1<j<J},
(0.0.3)
and for m = 0 by

U2P(Q) ={S eLt(Q), DivS=0, S-n=0o0n9Q, (S-n,e)s, =(S n,P)s, =0}

(0.0.4)

J

We also introduce the following space
Gs(Q) ={S € D4(?), CurlCurl S =0 in O}.

For any matrix field S in L2(2°), we denote by § its extension in L2(€2).
Now, we suppose 2 C R%2. We use the following operators. The scalar rotational
operator curl : D'(Q) — D'(Q) is defined by

0 0
curlv = 8_91:? — 8_2 for any v e D'(Q)
The vector rotational operator curl : D'(2) — D'(Q) is defined by
_Ov
8@ ,
curl p = for any ¢ € D'(Q).
e
8:161
The Hessian matrix operator Hess : D'(2) — D(2) is defined by
D*p D*p
81’% 8:1015):102
Hess ¢ = for any ¢ € D'(Q).
D*p D*p

019071 o3

S 8
g_ ( 1 P12 ) 7
So1 Sz

13
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we define S* by

S -5
g ( 22 21 ) ‘
—S12 Sn
Observe that (S*)* = S and if S is symmetric, then

DivS*=0 < curl § =0, (0.0.5)

curl S,

where curl S is the vector field < > with S; is the i*" line of the matrix S.

curl S5
We define the functional space L{(2) by

L{(Q) = {v € LP(Q), / v-rdr=0,VreR(Q)}, (0.0.6)
Q
and V1P(Q) by
VIP(Q) = {S € Wy?(Q2), DivS = 0 in Q}. (0.0.7)

14



Chapter 1

Introduction

The objective of this thesis stem from a desire to start with some new results for vectors
fields and we hopefully move on towards to show its analogues and other characterizations
of symmetric matrix fields.

We have presented the results of this thesis in three papers. The first article: ”On the
curl operator and some characterizations of matrix fields in Lipschitz domains”, is published
in " Journal of Mathematical Analysis and Applications”. The second article: ” Beltrami’s
completeness and Beltrami’s-type decomposition for LP-symmetric matrix fields and the third

article: ” Characterization of the trace of 1W3?((2) on Lipschitz domaine of R%”, are submitted.

15



Bogovskii [13] proved the existence of a continuous right inverse of the divergence operator
div: WI(Q) = L2(Q) = {f € (), / fdz =0}, (1.0.1)
Q

Moreover, he gave an explicit form of the inverse operator in the case when € is starlike with
respect to an open ball. A detailled proof of Bogovskii’s theorem is given by Borchers et al
[11] and later by Galdi [27]. Amrouche et al [7] have shown that if p = 2, then the surjectivity
result of the operator (1.0.1) is equivalent with the following results:

(a) Classical J. L. Lions lemma:
feH Q) and V fe H Q) implies f € L*().
(b) J. Negas inequality: There exists a constant C' such that for any f € L?(Q)

£z < C (Iflr-1@) + IV fla@) -

(¢) The operator
VvV LAQ) - H Q)

has a closed range.
(d) A coarse version of De Rham’s Theorem: Let h € H '(1), there exists a function
p € LE(9) such that

Vp=hin H'(Q),

if and only if
1) (P V) Eye) =0, for allv e H{(Q) that satisfy dive = 0 in .

(e) Approximation lemma: Assume that €2 is starlike with respect to an open ball. Then,
there exist a constant C' such that given any function ¢ in Dy(2) = D(Q) N L2(R), there exists
vector fields v,, € D(2), n > 1, such that

[onllz@) < Cllellzz @)

and

dive, — ¢ in D(Q).

16



(f) Extension of J. L. Lions lemma:
feED(Q) and V fe H '(Q)implies fe L*Q).

In a recent work, P. Ciarlet et al [20] have shown a matrix version of the previous equivalence

theorem. They proved that the operator

Div : Hj,(Q) — L§(Q) = {v € L*(Q), /'v ‘rdr=0,Vr € R(Q)},
Q

is equivalent with the following results:

(a’) Weak version of J. L. Lions lemma:
ve H'(Q) and V,v € H Q) implies v € L*(Q).

(b’) Vector version of Necas inequality: There exists a constant C' such that
vllz20) < C (Il a-10) + I Vsvllu-1e)) , Yo € L*(Q).

(¢) The operator
V,: LYQ) — H7HQ)

has a closed range.
(d') Weak Donati’s compatibility: Let E € H}(f2), there exists a vector field v € L3 ()
such that

Vo =Ein H(Q),

if and only if
H-1@) (B, M)piq) =0, for all M € Hj . (Q) that satisfy Div. M =0 in Q.

(¢/) Approximation property: Assume that the domain (2 is starlike with respect to an open
ball. There exists a constant C such that given any vector field ¢ € Dy(Q) = D(Q) N L3(Q),
there exist matrix fields E,, € D4(Q2), n > 1, such that

[ Enllm@ < Cllelrz e,

17



and
DivE, - ¢ in D(Q).

(f') Vector version of J. L. Lions lemma:
veD(Q) and Ve H;YQ) implies v e L*(Q).

Observe that the results (a), (b'), (¢/), (d'), (¢/) and (f') are the analogues of (a), (b), (c), (d),
(e) and (f) respectively.

Borchers et al [11] proved that for any ¢ € Dy(f2), there exists ¢ € D(Q2) such that
div ¢ = ¢ in  and satisfying the estimation

lellwirg < CllYlr @),

where C' depends only on p and Q. The previous result is more powerfull then result (e) of
the first equivalence theorem. It provides us with simple proof the following usual version of

De Rham’s Theorem: if € is any open set of R?, then, for any f € D'(Q) satisfying

for allp € V(Q), ’D’(Q)<.f7 80>D(Q) =0,

where V(2) denotes the subspace of vector fields in D(S2) with divergence free, then there
exists a scalar field y € D'(Q2) such that f =V x in Q.
Analogues properties exist for matrix fields. In 1890, Donati proved that, if € is an open

subset of R* and E € C*(Q) is such that
/QE : M =0 forall M € Dy(2) suchthat Div M =0 in €, (1.0.2)
then F satisfies the following compatibility equation
CurlCurlE=0 in €. (1.0.3)

A first extension of Donati’s Theorem was given in 1974 by Ting [18] as follows:

Theorem 1.0.1. (Ting’s theorem). Let 2 be a bounded and connected open set of R® with a
Lipschitz-continuous boundary and E € L*(Q). If E satisfies (1.0.2), then there exists v in
H'(Q) such that E = Vv in Q.

18



Another extension of Donati’s Theorem was given in 1979 by Moreau [11] in the case of

distributions.

Theorem 1.0.2. (Moreau’s theorem). Let Q be an arbitrary open set of R® and E € D'(Q).if
E satisfies (1.0.2), then there exists v in D'(Q) such that E = Vv in Q.

More recently, using different proofs, some variants of Donati’s Theorem have been inde-
pendently obtained by Geymonat and Krasucki [30] for E € W;1?(Q), E € LP(Q) and by
Amrouche et al [0] for E € L%(Q).

Let us observe that Moreau’s theorem is the matrix analog of the usual version of De
Rham’s theorem and Ting’s theorem is the matrix analog of the coarse version, here the
vector differential operators div and V are replaced by Div and V.

Concerning the operator curl, the classical Poincaré’s Lemma asserts that if (2 is an ar-
bitrary simply-connected open set of R3, then for any h € C'(Q2) which satisfies curlh = 0
in Q, there exists x € C?(2) such that h = V. This result still true in the case where
h € L*(Q) and in the case h € H *(Q) if Q is a bounded and connected open set with
Lipschitz-continuous boundary (see [33] and [18]).

A similar property takes place for matrix fields. Saint-Venant’s theorem (1864) announced
that if Q is an arbitrary simply-connected open set of R?, then for any symmetric matrix in
E = (E;;) with E;; € C*(Q2) which satisfies the compatibility equation (1.0.3), there exists
v € C*(Q) such that

Viw=FE in . (1.0.4)

In fact, the first rigorous proof of the above result was given by Beltrami in 1886. More
recently, if in addition €2 is a bounded and connected open set with Lipschitz-continuous
boundary, Ciarlet and Ciarlet Jr [13] proved that if E € L*(Q) satisfies the compatibility
equations (1.0.3), then there exists v € H*(2) such that (1.0.4) holds. A similar result, with
E € H1(Q) and then v € L*(Q), was also obtained by Amrouche et al [0].

Let us observe that the above Saint-Venant’s theorem is nothing but only
the matrixz analog of Poincaré’s lemma where the vector differential operators

curl and V are replaced by the matrix differential operators Curl Curl and V,.

19



From the above exemples, we can see the analogy between the wvector fields re-
sults and matrix fields results. In many cases, it suffices to replace the triplet
(div, V, curl) by the triplet (Div, V,, Curl Curl) to extend fundammental results
from the vector case to the matrix case.

Throughout the rest of manuscript, € is a bounded and connected open set of R® with a
Lipschitz continuous boundary (except when we add more hypothesis on the regularity of ),
p is a real number such that 1 < p < oo and p’ is its conjugate.

In the following, we will present the main results of each chapter. In Chapter 2, we will
present a new version of the above theorem that we will call the rotational version of De
Rham’s Theorem. In the case where the open set {2 is star-shaped with respect to an open
ball, Costabel et al in [21] and Mitrea in [13] have used the properties of pseudodifferential

operators to show that the operator
curl: D(Q) — V(Q), (1.0.5)

is onto. In Section 2.1, we will give a new proof of this result by using the theory of singular
integrals. Furthermore, we will generalize it in the case where € is Lipschitz but not necessarily

star-shaped with respect to an open ball. More precisely, we will show that if
feV(Q) satisfies / f-eode=0, Ve KrQ), (1.0.6)
Q

then there exists ¢ € D(Q) satisfying curl ¢ = f in Q. Next, we deduce a rotational version

of De Rham’s theorem. The main result of Chapter 2 can be formulated as follows:

Theorem A. (The rotational version of De Rham’s Theorem). i) Let m be a nonneg-

ative integer. For any f € V(Q) satisfying (1.0.6), there exists 1 € D(Q) such that
curly = f in Q,
and there exists a constant C' such that

[ llwmsrr@) < Ol Fllwmr).
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i) Let f € U™P(Q), then there exists 1 € WP (Q) such that curlep = f.
i) Let f € D'(Q) and satisfies

for all o € G(Q), (S, P)pE) =0,
where G(Q) = {p € D(Q), curlp =0 in Q}. Then, there exists 1 € D'(Q) such that
curly = f in Q.

Let us observe that Theorem A is a vector potentials result for divergence-free function in
D(Q2) and in D'(2). Amrouche et al [3] have shown some results concerning vector potentials
which are associated with a L?-divergence-free function and satisfying some boundary condi-
tions. A generalization for L? case was given by Amrouche and Seloula [9] . The question
that we have posed: why we do not show the analogues for the symmetric matrixz fields ¢

In the absence of body forces the stress equations of equilibrium take the form
DivS§=0 in Q S§=5" (1.0.7)

the second order symmetric tensor field being the stress in the reference configuration €2 of an
elastic body. The first stress function solution of the equilibrium equation (1.0.7) was presented
by Airy in [1] for the two dimensional case. The generalizations for the three dimensional case
were obtained by Maxwell in [38], Morera in [12] and Beltrami in [1 1]. The solutions of Morera

and Maxwell are special cases of the Beltrami’s solution defined as follows
S = CurlCurl A forall smooth symmetric second order tensor fields A in €. (1.0.8)

Gurtin [35] gave an example of a stress field S satisfying (1.0.7) but which is not given by
(1.0.8). So that this representation is incomplete. However the Beltrami solution is complete
in the class of smooth stress fields S which are self-equilibrated, i.e. for each closed regular
surface C contained in 2, the resultant force and the moment vanish. In other words, S

satisfies the following condition:

/S.ndo—:/Pix(S.n)dazo,for all 1<i<3,
C C
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such that P’ = —eijkxkej . For more details see [21]. An extension of this result can be
found in [31] and in [32] as follows: let € be a bounded and connected open set of R® with
Lipschitz-continuous boundary and S be a symmetric matrix field in L%(€2) and satisfying the

following conditions:

DivS=0inQ and (S-mn,e)r, = (S -n, -P)r, =

k

Then, there exists a symmetric matrix field A € H?(Q) such that Curl Curl A = S in Q.
Moreover, P. G Ciarlet et al in [19] stated that if the above symmetric matrix field S satisfies

the following conditions:

S-n=0o0n0Qand (S-n,e)s :(S-n,Pi>2j:0,f0r all 1<i<3,1<j5</,

J

where (-,-)s, denotes the duality pairing between H*%(Zj)' and H%(Ej), then A € Hj ,(Q).

In Chapter 3, we will present a new version of the Beltrami’s completeness, in the case when
the components of the symmetric matrix S are in D(£2) and we will show the above result
of P.G. Ciarlet et al in a general case, when the components of S are in W;""(Q2), with m a
nonnegative integer. Observe that the above versions of Beltrami’s completeness are nothing
but only the analogues of the vector fields results announced in Theorem A and here we state

the main result of Chapter 3.

Theorem B. (Completeness of the Beltrami Solution). i) Let m be a nonnegative

integer and S in V() satisfies

/,

J

(S~n)-eido—:/Z (8-n)-P'do=0, forall 1<i<3,1<5<J
Then, there exists A € Dy(§2) such that

CurlCurlA=S in Q,
and there exists a constant C such that
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i) Let S € U™P(Q), then there exists A € Wy>?(Q) such that Curl Curl A = S.
iii) Let S € DL(Q2) and satisfies

for all E € Gy(Q), oS, E)pw) =0,
then, there exists A € D.(2) such that
CurlCurlA=S in Q.

Let us introduce the following matrix spaces
H?(Div, Q) = {S € L2(2), Div S € LP(Q)},
H?(Curl Curl, Q) = {S € L2(Q2), Curl Curl S € L?(Q)},
XP(§2) = H?(Div, Q) N H?(Curl Curl, Q),

YP(Q) = {S € X?(Q, Div S € W'?(Q)},

which are equipped with the graph norms.
In Section 4.1, we will show that any matrix field S in H?(Div; ) has a normal trace Sn

in WP (I') and the following Green’ formula holds
Yo e W (Q), (Sn,v)r = / S:Vvdr + / Div S - vdz.
Q Q

The previous characterization of H?(Div; Q) will allows us to present a tangential extension
of Beltrami’s completeness. We adopt the following notation, if E(£2) is a Banach space, we
denote by

Er(Q)={Se€E Sn=0 on T}

We will show that if the domain  is of class C!, then
XG5 () = WP (Q)

and if Q is of class C*! |

Y s(Q) = WIP(Q).
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By using Peetre-Tartar’s Theorem, we deduce the following first Friedrich’s inequality for

every matrix S in X7, (9):
3 J .
ISy < C(IDiv S|lLro) + |Curl Curl S||iroy + > > (|(Sn, ey, | +[(Sn, P')s [).0.9)
i=1 j=1
We finish this section by showing a new tangential extension of Beltrami’s completeness which

generalize the version of Geymonat et al (see [31], [32]) in L?(€2). The main result of Section

4.1 is given in the following theorem:

Theorem C. Assume that 2 is of class Ct'. A matriz S € LP(Q) satisfies

DivS =0 in €,
(Sn,e)r, = (Sn, Py, =0, 1<i<3 and 0<k<I,

if and only if there exists a matriz A € XP(Q)) such that

CurlCurlA=S and DivA=0 in (),
An=0 on T,
(An,e')s, = (An,P')y, =0, 1<i<3 and 1<j<J

Moreover A is unique and we have the estimate
[Allwir@) < CillS|lLr@)

In addition, if Q is of class C*', then A € W*P(Q) and we have the estimate
[Allwer@) < Col|S|lLr @)

In Section 4.2, we will show that if Q2 is of class C!*!| then any matrix S in H?(Curl Curl, )
has a tangential trace S x n in Wfi’p(f‘). Further, the matrix Curl S (which is not even in

LP(€2)) has a tangential trace Curl S x n in W_l_%’p(f‘) and the following Green’s formula
holds for any E € W' (Q):

(S xn,Curl E)r + (Curl S x n, E)r = / S : Curl Curl E dx — / CurlCurl S : Edzx.
Q Q
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The previous result will allows us to present a normal extension of Beltrami’s completeness.

We adopt the following notation, if E is a Banach space, we denote by
ExQ)={Se€E,Sxn=0 and CurlSxn=0 on I}
We will show that if the domain € is of class C!'!, then
X3 s(Q) = W, P(Q)

and if € is of class C?!,

YR () = WEP(Q).

Using again Peetre-Tartar’s theorem, we deduce the following second Friedrich’s inequality

type for every matrix S in X§ (9):

301
1S]|Lr) < C(|Div S||zr(0) + |Curl Curl S| +ZZ [(Sn, e')r,| + [(Sn, P')r,])).
i=1 k=1
(1.0.10)

We finish this section by showing a new normal extension of Beltrami’s completeness:

Theorem D. Assume that ) is of class C'. Then a matriz S in LP(Q) satisfies

DivS = 0 in €,
Sn = 0 on T,
(Sn, e) = (Sn, Pl) = 0, 1<i<3 and 1<j<J,

if and only if there exists a matriz A € YE(2) such that

CurlCurlA =S8 DivA=0 in €,
Axn=0 on T, CurlAxn=0 on T,
(Sn, e) = (Sn, P’> =0, 1<i<3, and 1<k<I.

Moreover, A is unique and we have the estimate
HA”W“’(Q) < CIHSHLP(Q)-
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In addition, if Q is of class C*', then A € W2P(Q) and we have the estimate
| Allwzr@) < Cof|S|lLe@)-

In Section 4.3, we will interest by Beltrami’s-type decomposition which is the matrix analog
of the “well-known” Helmholtz vector decomposition. It describes a symmetric matrix field
as the sum of a compatible part (Curl Curl-free) and an incompatible part (divergence-free)
fields. Magianni et al [36] and Von Goethem [19] have presented a version of the above
decomposition for LP-symmetric matrix fields. They proved that if €2 is simply-connected and
of class C*, then for any S € L2(€), there exists an unique vector v in W'*(Q2) and an unique

divergence-free matrix field A in L2(2) such that
S = Vv + Curl Curl A. (1.0.11)

Geymonat et al [32] proved a Hodge decomposition of L2(£2) where € is only Lipschitz and
not necessarily simply-connected. They showed that for any matrix field S of L%(Q), there
exists v € H'(Q), E € Ky4(Q) and M € U%2(Q) such that

S=Vw+M+E.

In Theorem 3.1.3, we will show that the operator Curl Curl : H () — U2?(Q) is onto.
Consequently, there exists A € H%,S(Q) such that M = Curl Curl A and the following

decomposition holds
S =V,w+CurlCurl A+ E. (1.0.12)

Observe that the decomposition (1.0.12) has a Kernel part E which is due to the fact that 2
is not necessarily simply-connected.

The second aim of Chapter 4 is to show three new versions of Beltrami’s-type decomposition
for matrix fields in L2(€2) when €2 is not necessarily simply-connected and with boundary of

class Ct'.  We introduce the spaces
W2(Q) = {S e WP(Q), DivS =0 in Q},
W22(Q) = {S e W2#(Q), DivS =0 in Q}.
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Theorem E. Assume that Q is of class C*'.
i) Let S € L2(Q), then there exist E € Kp4(), v € W'P(Q) and A € WEE(Q)NYR (Q) such
that

S=FE+ V,v+ CurlCurl A,

where E is unique, v is unique up to an additive rigid displacement, A is unique to an element
of Ky s(2) and we have the estimate

| E|lr@) + [[vllwir@)re) + TAlwir @) kg @ < ClSILe@)-

* Moreover, if Q is of class C*', then A € W52(Q) N Y}, [(Q) and we have the estimate

1Eller@) + [vllwrr @) re) + 1Awer @)y (@) < ClISIlr@)-

i) Let S € LP(R)), then there exist E € Kr4(Q), v € W'P(Q) and A € Wg:’;(@) such that
S=FE+V,v+ CurlCurl A,

where E is unique, v 1S unique up to an additive rigid displacement and we have the

estimate
| E||r@) + [[vllwrr@)re) + [Allwer@) < OS] @)

iii) Let S € LP(Q), then there exists v € WP (Q), E € Ky4(Q) and A € W22 (Q) N X, (Q)
such that
S =FE+V,+ Curl Curl A4,

where E and v are unique and A is unique to an additive element of Krs(2) and we have the

estimate
1E|[Le@) + 1vllwro@) + [[Allwir@)/kr. @) < ClIS|Le@)-

* Moreover, if Q is of class C*', then A € W2P(Q) N XY, (Q) and we have the estimate

1Ellr@) + lvllwir@) + |Allwer @k @) < ClISlr@)-
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Let Q be a connected and Lipschitz subset of RY whose bounded and orientable boundary
is denoted by I'. A famous result of E. Gagliardo [20] gives, for m = 1, the characterization
of the range of the restriction yo(u) = ur to I More precisely, Gagliardo proves that the
operator 7, is linear and continuous from W?(Q) into Wi (") for 1 < p < oo and has a
continuous right inverse for p > 1.

When u € W?P(Q), then 887“ e WtP(Q) for j = 1,..., N. Therefore the normal derivative
y(u) = Vu-n € LP(I') since n = (ny,--- ,ny) is defined almost everywhere and belongs
to (L=(T'))N. J. Necas [14] proves that vo(u) € W'P(T') and that the linear mapping u —
(vo(w), y1(u)) is continuous from W?2P(Q) into W'P(T') x LP(T'). A natural question is to
characterize the range of the mapping (7o, 71). A first answer has been obtained for polygonal-
type domains of R? by Kondrat’ev and Grisvard (see e.g. [34] for full references) in terms of
compatibility conditions at the corners and then the results have been extended to polyhedral-
type domains (N = 3). These characterizations have been extensively used in order to give
regularity results for different types of boundary-value problems.

For general Lipschitz domains a first characterization of the range of (vy9,71) has been
obtained for N = 2 in [29] and if p = 2 and extended in [23] for the general case 1 < p < 0.
This result reads as follows: The range of (70,71)) is the set of (go, g1) € WP(T') x LP(T') such
that:

990

8_gtt +gm e WrP(D). (1.0.13)

Let us mention, also, that the generalization for the case N = 3 and 1 < p < oo was obtained
by Buffa et al (see [17]).

In fact, a more general characterization of the image of the trace operators in W™?(Q),
where  is a domain in RY with Lipschitz boundary, has been obtained for arbitrary m and
N, by Maz’ya, Mitrea and Shaposnikova [10]. These authors used an analytical method based
on Taylor expansions in Besov and weighted Sobolev spaces.

In Chapter 5, first of all, we will give two applications of the result of Geymonat and
Krasucki [29] to solve a boundary value problem for the bi-laplacian equation. The first ap-
plication concerns a regularity result for the solution to a non homogeneous Dirichlet problem

for the homogeneous Bi-Laplacian equation in a lipschitzian domain. This result improve the
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one obtained in [22]. Up to our knowledge it is the first time that this result is stated in
this form. The second application relies on the existence of very weak solution, in Lipschitz
domains, to Dirichlet problem for the Bi-Laplacian equation. It is a first time that one can
obtain very weak solution in Lipshitz domains.

Next, due to a new representation of the Hessian in R3, we characterize the range of the
trace operator in W3P(Q), more precisely, we would like to characterize the range of the

application (7,71, 72) defined on W3?(Q)) where

Y2 WAP(Q) = LP(Q)
u — yu) = [(Vu)n] - n.

Necessary conditions are obtained by Geymonat [25].

Even if this result is a particular case of the obtained in [10], our proof is completely new
and different from their. Our proof relies on potential matrices which are similar to potential
vectors introduced in [9]. We hope that we can extend our proof to W™P(Q)) where 2 is a

Lipschitz domain.
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Chapter 2

Some characterizations of the curl

operator

The surjectivity of the operator div : D(Q) — Dy(Q2) is an important tool in the

analysis of Stokes equations. This result has been shown by many authors through different

techniques (see [21], [27], [43]) and it provides us with a simple proof for the following usual

version of De Rham’s theorem: let f € D'(Q) satisfying Vo € V(Q), /() (f,¥)p@) =0,
then there exists a scalar field p € D'(Q) such that f =Vp in . The main goal of this

chapter is to present some results of vector fields, specially a new extension of the above

theorem that we will call the rotational version of De Rham’s theorem.
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In this chapter, Q is a bounded and connected open set of R® with Lipschitz-continuous

boundary.

2.1 Poincaré integral operator
Mitrea [13], Costabel and Macintosch [21] have shown that if Q is bounded and starlike
with respect to an open ball, then the operator
curl : D(Q) — V(Q) (2.1.1)

is onto. In this section, we apply the singular integrals theory to give a detailed proof for this
result. Then we generalize it for the case where € is a bounded and connected open set of R3

with a Lipschitz-continuous boundary i.e., we prove that the operator
curl : D(Q) — V(Q) L Kr(Q) (2.1.2)

is onto. Here V() L K1 (Q) denotes the space of functions v € V(Q) such that [, v dz =
0 for all ¢ € K7(Q2). This last result is the main key to prove a rotational extension of De

Rham’s theorem.

Lemma 2.1.1. Let 6 be a function of D(R3) such that
supp® C Q  and /R3 O(y)dy = 1.
Then, for any f € V(Q2), the vector field T f defined by
re, Tf(x /_f ( )/100(t—1)t9(y+t(a:—y))dt> dy, (2.1.3)

satisfies

curl Tf = f, TfeC™() (2.1.4)

and there exists a constant C,(2) depending only on p and Q, such that

|T flwrr) < Co(ONfllr - (2.1.5)

In particular, if Q) is starlike with respect to an open ball B and suppd C B, then
Tf D). (2.1.6)
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Proof. Note that T is a Poincaré type operator (see [21]). Let f € V(Q2), we denote by fits

extension by 0 outside of €.

Step 1. We start by establishing the two properties of (2.1.4).
We write T'f in the form
v €0 T = [ ) x K.,
where .
K(r.9)= (o =9) [ (6= 1t00+ tla ) e
We observe that 1

Tfr) = Jim | Fy) x K(x,y) dy,
then )
curl (Tf)(a) = Va x Tf(@) = Jim [ = Vux (Fw) < K(z.y)) dy
- (r—y) (7
LY R (F) x K(2,y)) do,

= lim (A. + B.).

e—0

According to the formula:
curl AxB)=Vx(AxB)=(V-B)JA-(V-A) B+ (B-V)A—-(A-V)B,

we deduce that

A= (Ve K(2.9) o) = (Fo) - Vo K (2,9)] dy = Ai(e) - As(e).

lz—y|>e

Using now the following formula:
ax(bxe)=bla-c)—c(a-b),

we have

B. - w_m:s[((x_y) Ka)) ) - (17220 7)) Ko do = B1(o) - Bale).

|z — 9
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Thus, we can write
curl (Tf)(x) = lim [44(2) — As(e) + Bi(e) — Bale)).
i) Study of A;(c). We have

Ae) = / T ) + (Ve Kol )] F) (2.1.7)

where .
Ki(e,y) = (¢ —y) / 20y + t(x — y))dt
1
and

Ky(z,y) = —(x—y) /lootﬁ(y—l—t(x—y))dt. (2.1.8)

We remark that K(-,-) is the kernel of the Bogovskii ’s operator (see [13]), then
V. Ki(z,y) = —0(z). (2.1.9)

It is straightforward to see that

3

Vi Ko(z,y) = —3/1wt9(y+t(w—y))dt—2(xi—yi)/lwt23i0(y+t(w—y))dt

i=1

- —/lootG(y+t(x—y))dt— /100 a<§te)(y+t(x —y))dt
= 0(x) —/Ootﬁ(y—i-t(x—y))dt. (2.1.10)
Then, from (2.1.7), (2.1.9) and (2.1.10), we obtain

EthOAl /f / t0(y +t(z —y))dtdy. (2.1.11)

ii) Study of B (¢). It is easy to prove that

im (x—y). x f oy = J(x
| |Hla( K. ,y>) Flw)do, = f(2).

e—0 |x — y|

In (2.1.8), we use the change of variable s = t|z — y| to get

I{Z(:E’y):_(x—y)/°o 89(y+8(fﬁ—y)) is.

|z =yl Jmy |z —y|

33



Then

= |.T—y|

o 3 e ~ Ti — Yivo * s (ZE—y) s do
—= X[ TG [ st s dsds,

S
i=1 |lx—y|=¢ z—y| |'I - y|

/_| i) Ko(z,y) fy) do,

'Z‘ —
Using now the change of variables z = Yand s = s — €, we obtain

€

. (z —y) 5
lim K (z,y) f(y)do
e—0 |z—y|=¢ "T - y‘ ? !

= — lim Za flz— 5z)zf/ (8 +¢)b(x+ s'z)ds'do,
0

i=1 |z|=1

Consequently,
lim Bi(e) = f(x). (2.1.12)

e—0

iii) Study of A,(e) + Bs(e). According to the Stokes formula, we obtain

i)+ Bete) = i [ F) Vot [ (20 ) K]

e—0 |a:—y| .

~ lim [G@yvaK@wﬂJﬂ%wdwﬂw

0 S j—y|>e

+ (F)-V,) K(o.y)| dy

= lim (Fv) - Vo) K(2,) + (F(y) - V) K(2,9)] dy.

e—0 ‘Z‘—y'z&
For any 1 <14, 7, < 3, we have

Talle) = =G 2w+ (a5 =) [ (= D000y + bl — )t

Then
Tim (As(); + Bae);) = lim mmmmW)@, (2.1.13)

0 J)z—y|>e
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where the i** component of L; is given by

(B = (=) [ (6= 1)t 85+ t(o ) .

iv) Verification of curl T'f = f. From (5.3.1)-(2.1.13), we conclude that for all 1 <j <3
eurl Tf),0) = £~ [ 1#0)- Lilw)] du— [ 5 [ 6+ tlo— ) dedy

= fia)+ [ 1£0)- HyGo) dy

with _

Hi(e.g) = ~Life.) —e; [ 0y + 4= y)di
and where e; is the j vector of the canonical basis of R3. It is easy to verify that

Vr € R®, H;(x,-) = grad x;(z, ),
where .
W) = (o= w) [ 16l + ta = ).

Since f € V(Q2), we deduce

(Cul T£),(a) = ;) = [ div £5) xs(o.0) dy

= fi(z).

v) Verification of T'f € C*(2). In (2.1.3), we use the changes of variables z = z — y and
s = (t — 1)|x — y|, so we obtain

52 s

xeQ, Tf(x)= . flz—2) x z/ooo (w + W) 0(x + 8‘—)d8 dz. (2.1.14)

Then, for any o € N3, we have

0T f(x) = . 0 f(x — 2) x z/ooo <% + zi|2> 0(x+si)dsdz

+ f(x—z)xz/oo<i+i>3o‘9(a:+s
0
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Since 0“f and 0“0 are continuous in 2, then 9T f is continuous and T'f € C*(Q).
Step 2. Now, we establish the estimate (2.1.5).
Let f € V(2) and 1 <, j < 3, we have

orf T Ti—Yj
G = g | [ Wax] F0) x Ky [ () x Kl lx_mda]
. [ 8K1 Tj—Yj
= lim _/x_M (f(y) X on, )dy+/|x . XK1($>y>)—|;_de01
) I 0K> Tj—Yj;
e | [ (g5 <x,y>) dy+ [ ) < Kale) o]

Since we have shown

lim | (W)X Kale,y) = ptdo =0,
- Tt = [(sorx Gen ) avs [ (502w iy
b (10 [ (000722 )
— Df(0) + Taf (@) + Taf ),
Also

(Do) = [ (Gl G )

afhe) = [ (smfm<y>8£j“<x,y>) y

—Yj
Faf)ia) = cumbnle) | Ko o) 2y
There exists a constant C'(2) (see page 166 of [27]) such that
8 Oy,
Y € D(Q2 || Sy) dylle@) < CE) el e
Then, there exists a constant C’l(Q) such that
|1 f o) < CLQ)[| fl e )- (2.1.15)
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Besides, we have

Vo € D(Q), /w(y)a;;" (z,y)dy = %/QSO(y)an(x,y)dy-

Q

Thus, there exists a constant Cy(€2) such that (see page 165 of [27])

[J2F[[Le@) < Co(Q) | F[|2r(0)- (2.1.16)

For the last estimate, since for each x € (2

3
[(J3f)i(z)| < Z Ju(z

we deduce that
[ T3 ||l Le) < Ca(Q)| fllLr - (2.1.17)
Finally, from (2.1.15)-(2.1.17), there exists a constant C,(2) such that

1T fllwiv) < G Fllzr@)-

Step 3. Now, we suppose that () is starlike with respect to an open ball B and
that supp 6 C B. We will prove the property (2.1.6).

Indeed, in what follows we take
A={2€Qz=M1+(1 =Nz, 21 € supp f, 20 € B, A € [0,1]}.

Since (2 is starlike with respect to an open ball B, the compact set A is included in 2. Fixing
any x € Q\ A, for any y € supp f and ¢t > 1 we have y + t(x — y) ¢ B. According to (2.1.3),
we deduce that T'f(z) = 0 and suppT'f C A C Q. Consequently T'f € D(1). ]

The following corollary generalizes the estimate (2.1.5) in the case where we replace the

Lebesgue space LP(£2) by the Sobolev space W™P(Q)), for any positive integer m.

Corollary 2.1.2. Let f € V(Q) and T the operator defined in (2.1.3). Then, for any real
number 1 < p < oo and for any integer m > 1, there exists a constant C' depending only on

p, m and 2 such that
|T fllwm+100) < CllFllwmr@)- (2.1.18)
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Proof. All the constants which appear in the inequalities below are noted by a generic letter
C. We consider the case m = 1 and we write the operator T as in (2.1.14). So for any

1,7 =1,---, N, we have

0;Tf(x) = @f(m—z)xz/ﬂ (S——l—i)ﬁ(x—l—si)dsdz

R3 |Z|

~ © [/ s? s z
+ flx—2) x / =+ —= | 0;,0(x + s—)dsdz
R3 0 2|3 2

2]
= hy(z) + ho(x).

Estimate of |0yh|/r). We observe that hy = 0;T f, then Lemma 2.1.1 implies
Ok lry < IO F iy < ClLF lwoge 2.1.19)

Estimate of |0yhsl/r). We remark that the function h, has the same form as the function
T f with 0 replaced by 0,6. Note that, we find the estimate of the point without the need of

the property / O(z)dxr = 1. This means that by the same method, we obtain
Q

|0khllzry < Cllflzr@). (2.1.20)

From (2.1.19) and (2.1.20), we deduce the existence of a constant C' depending only on m,
p and 2 such that (2.1.18) holds. For m > 1, we proceed by induction and so we apply the

same approach as for the case m = 1. O

We have shown that if €2 is a starlike open set with respect to an open ball, then the
rotational operator is onto from D(2) into V(£2). This result can be extended to a bounded
and connected open set of R® with a Lipschitz-continuous boundary. For that we need the

following lemma (see [10]).

Lemma 2.1.3. Let Q be a bounded and connected open set of RN with a Lipschitz-continuous
boundary. Then, there exist connected open sets Q0 of RN, j > 1, with the following properties:
i) 0€Y; is of classe C*°.

i) Q; C Qi1 CQ for each j > 1, and Q = U372, €2
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Theorem 2.1.4. For any f € V(Q) L K1 (), there exists ¢ € D(QQ) such that
curlyy = f in Q.

Moreover, for any 1 < p < oo and for any nonnegative integer m, there exists a constant C

such that
H'lvaWmH’P(Q) < C||f||Wm«P(Q)- (2.1.21)

Proof. Let f € V(Q) satisfying the condition (1.0.6). Lemma 2.1.1 and Corollary 2.1.2 imply
that Tf € C*(Q), curl (T f) = f in Q with the estimate (2.1.21). Thanks to Lemma 2.1.3
there exists an open set §);, which is connected and of class C*°, such that suppf C Q;, C Q.

Define the open set Q' = Q\ Q,,, which is bounded and connected open set of R* with a

Lipschitz-continuous boundary. Setting now ¥’ = T f|q, it follows from Lemma 2.1.1 that
curly’ = 0 in € and by Corollary 2.1.2 that ¥’ € ﬂ W™P(Q). The compatibility

1<p<oo,
meN

condition / f-pdr =0 for all p € K7(Q) implies that for any curves 77 inside (2" and
Q
surrounding >J;, we have / Pt = / f-n = 0. Hence v’ has no circulations in €. Then,
v X

there exists y’ satisfying x’ € ﬂ W™P(Q), such that grad ' = v’ in Q' (see Corollary 1

1<p<oo,
meN

page 199 in [16]) and with the estimate

X wms2p @y < Cllgp" lwrmsre ).

Theorem 1.4.3.1 of [34] implies that there exists X € C*(R?) such that Y| = x’ and

IXlwms2omsy < ClX lwmszn@y < Clle [lwmsran.

Setting now y = Xl|q and ¥ = T f — grad x, we have 9|oy = 0, and then @ € D(Q).
Furthermore, it is clear that curl® = f in Q and for any 1 < p < oo and m € N the estimate
(2.1.21) holds. O
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2.2 The rotational version of De Rham’s theorem

In this sction, we will use the surjectivity of the rotational operator (2.1.2) to show a

rotational extension of De Rham’s theorem.

Theorem 2.2.1. Let f € D'(Q) satisfying the following condition:
Vo € G(Q), plf.e)pe =0. (2.2.1)
Then, there exists 1 € D'(Q) such that
curly = f in Q.

Remark 2.2.2. The converse is obvious, because for any 1 € D'() and any ¢ € G(Q), we

have

poylcurl Y, p)p) = o) (Y, curl p)po) = 0.

Proof. Acccording to Theorem 2.1.4,
curl : D(Q)/G(Q) — V(Q) L K (Q)
is one to one and onto. Then, its adjoint
curl : (V(Q) L K7r(Q)) — D'(Q2) L G(Q) (2.2.2)

is also one to one and onto, where D’(Q) L G(Q2) = {v € D'(RN), (v, p =0, Y € G(N)}.
Let L € (V() L K7r(Q)). As V() L K1(Q) is closed in D(S2), we can extend L by
L € D'(Q). Two expressions g € D'(Q) and h € D'(Q) of L coincide on V(Q) L K (Q) if
and only if
Ve eV(Q) L Kr(Q), pyig—h,¢)pe) =0.

Using again Theorem 2.1.4, we have

Ve eV(Q) L K (Q) D'(Q) (g—h, <p>D(Q) = D(Q) (g — h,curl ¢>D(Q)
= D) <curl(g - h)v ¢>D(Q)
= 0.
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Which means that
g —h € Kercurl, where curl: D'(Q) — D'(Q),
and consequently
(V(Q) L K7(Q)) =D'(Q)/Ker curl. (2.2.3)
Let f € D'(Q) satisfies (2.2.1). In other words, this means that f € D'(Q) L G(92). From

(2.2.2) and the characterization (2.2.3), there exists ¥ € D'(Q), such that

curlyy = f in Q.

2.3 A weak rotational extension of De Rham’s theorem

In this section, we will use Theorem 2.1.4 to show another surjectivity result of the curl
operator. Then, we will use this result to prove a weak rotational extension of De Rham’s

theorem. First, we need the following lemma:

Lemma 2.3.1. Let m be a nonnegative integer. Then, the space V(2) L Kr(§2) is dense in
Um™r(Q).

Proof. Step 1: we show that the linear mapping R : V(2) — R’ defined by

(R(’u))j:/ v-ndo, 1<j<J,
s

j
is onto, where J is the dimension of K1(€2). For that purpos, we proceed by contradiction.

We suppose that R is not onto, which implies that there exists jo such that 1 < j5 < J and
a family of numbers {);}i<;<s such that for any v € V(Q2), we have

J#3o
/g

J
v-nd0:2)\j/ v-ndo.
i=1 5

J#30

Jo
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Using the Green’s formula of Lemma 3.10 of [3], then

J

where the vector fields grad ¢/ are the elements of the basis of K7 (f2) (see [3]). Then, the

J —_ — J
v~nda—Z)\j/E v-nda:/ﬂv- gradquo—Z)\jgradqu dx =0,
i=1 i i=1

J#jo J#30

Jjo

usual extension of De Rham’s theorem (see [7]) implies that there exists p € H'(f2), unique
up to an additive constant, such that

J
grad ¢, — Z Ajgrad ¢f = gradp.

j=1
J#30

0
Consequently, p is harmonic and 8_p = 0 on 0f). So, p is a constant and then the dimension
n

of K7(Q) is less then J, which is a contradiction. We have proved that for any 1 < j < J
there exists ¢, € V() such that

for all 1 <k </, / p;-ndo = Okj- (2.3.1)

Xk

Step 2: we show that V(2) L K7(Q) is dense in U™P(Q2). Let v € U™P(Q) , then there
exists a sequence (v;) € V() that converges to v in W™(Q). For any 1 < j < J, let ¢; be
the function in V() which satisfies (2.3.1). Now, setting

J

Uk:Uk—Z(/ vy - ndo) ¢,

j=1 Y%
the function uy belongs to V() L K7(92). Also the sequence (uy) converges to v in W™P(Q),
which is the required result. O

Theorem 2.3.2. Let m be a nonnegative integer. For any f € U™P(Q), there exists ¢ €
W P(Q) that satisfies
curly = f in

and there exists a constant C' such that
[P]lwmirnq)y < Cllflwmr@)- (2.3.2)
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Proof. Let f € U™P(Q) and (f,,) a sequence in V() L Kz(2), such that
fo—f in WM™P(Q).
Theorem 2.1.4 shows that for any n € N, there exists a vector field v, € D(Q2) such that
o€ D). curlp, = F, and [, lweiise < Ol Flweria,
Clearly (¢4, is a Cauchy sequence. Then, there exists an element ¢ € W§*(Q) such that
Y, — 1 in W(Q),
with 1 satisfies (2.3.2). O

Remark 2.3.3.
i) Theorem 2.3.2 was proved for  bounded and simply-connected open set of R® with Lipschitz-

continuous boundary, m = 1 and p = 2 by Ciarlet and Ciarlet, Jr (see the proof of Theorem

3.1 in [18]) and for m a nonnegative integer and p = 2 by Amrouche, Ciarlet and Ciarlet, Jr
(see [9]).
ii) For m nonnegative integer and p = 2, as in [7], we can define a vector field ¥ € H{'™(Q)

such that curl ¢y = f in Q and divA™ apy = 0 in Q. For that, it is sufficient to choose
o = ¢ — grad p, where p is the unique solution in Hj""(Q) of A™?p = divA™ ) and 1
given by Theorem 2.3.2.

iii) For 2 bounded and connected open set of R® with boundary of class C™*2, Borchers and
Sohr in [14] established the same result that Theorem 2.3.2 with div A™'4) = 0. Moreover,
for m = 1 and Q of class C''', Amrouche, Bernardi, Dauge and Girault in [3] gave another
proof of the result established by Borchers and Sohr. Furthermore, they proved that the vector
field 4 € H{(Q) is unique, provided that

(On(divap), 1)p, =0, 1 <i <1,

where I'; are the different connected components of 2.
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The following weak rotational extension of De Rham’s theorem is a direct consequence of
Theorem 2.3.2. We define the space G™P(2) by

GgmP(Q) ={p e Wi (Q), curlp =0 in Q}.

Theorem 2.3.4. Let m be an integer such that m > 1, f € W_m’p/(Q) and satisfies
Vo € G™P(Q),  yyomat o) (s @)wimria) = 0. (2.3.3)
Then, there exists @ € W"(Q) such that
curl = f in Q.
Proof. According to Theorem 2.3.2, the operator
curl : W§P(Q)/G™P(Q) — U™ P(Q),

is one to one and onto. Then, its adjoint

curl : (U™ P(Q)) — W7 (Q) L g™P(Q), (2.3.4)

is also one to one and onto. Proceeding as in the proof of Theorem 2.2.1 and using Theorem

2.3.2, it is easy to prove that
(U™ P(Q)) = W™ (Q) /Ker curl, (2.3.5)

where

curl : WP (Q) — WP (Q).

Let f € W™ (Q) satisfying (2.3.3). In other words, f € W™ (Q) L ¢™P(Q). Since
the operator (2.3.4) is an isomorphism, the characterization (2.3.5) implies that there exists
U ¢ W () such that curl & = f in Q. O
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2.4 A new proof of the general extension of Poincaré’s

Lemma

The classical Poincaré’s lemma asserts that if €2 is a simply-connected open set, then for
any h € C1(Q) which satisfies curl h = 0 in , there exists x € C*(€2) such that h = grady.
This lemma is also true in the general case where h € L*(£2) and (2 is a bounded and simply-
connected open set with a Lipschitz-continuous boundary (see Theorem 2.9 chapter 1 in [33]).
A general extension when h € H*(Q) was proved by Ciarlet and Ciarlet, Jr (see [15]).

In this section, we study the case where h is a distribution. The first proof of this extension
in the case where 2 is a simply-connected open, based on differential geometry tools, was given
by S. Mardare [37] in 2008 (Schwartz proved this extension for Q = R3, see Section 3 of [17]).
Here, we give a simpler proof, using the characterization of the dual space V(2)" given in the

proof of Theorem 2.2.1.

Lemma 2.4.1. Let h € D'(Q). If

curl h=0 in £,
then, there exists p € D'(2) such that

h=grady in (.

Proof. Let L € V(). Since V(Q) is closed in D(2), we can extend L by L € D'(€2). Two
expressions g € D'(Q) and h € D'(2) of L coincide on V() if and only if

Ve e V(Q), poyig—h,@)pe) =0.

According to the usual De Rham’s theorem, there exists p € D’'(Q2) such that g — h = grad p.

This means that we can define V() as follows:
V(Q)' =D'(Q)/Im (grad) where grad:D'(Q) — D'(Q). (2.4.1)
It has already been shown that
V(Q)' =D'(Q)/ker curl where curl: D'(Q) — D'(Q). (2.4.2)
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According to (2.4.1) and (2.4.2), we conclude that
Ker (curl) = Im (grad), (2.4.3)

hence the required result. O
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Chapter 3

Beltrami’s completeness for

distributions symmetric matrix fields

In Chapter 2, we have shown that the operator (2.1.2) is onto. Then, we have used
this surjectivity result to prove a rotational extension of De Rham’s theorem. In this chapter,
we will use the same argument to prove some results for symmetric matrix fields, specially

some extensions of the Beltrami completeness for data in D;(2) and for data in D/(f2).
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In this chapter, Q is a bounded and connected open set of R® with Lipschitz-continuous

boundary.

3.1 Beltrami’s completeness for symmetric matrix fields
in Dy(Q)
Theorem 3.1.1. Let m be a nonnegative integer. For any matriz S € V() satisfies
/QS :Mdx =0 for all M € Kpy(2),

there exists A € Dy(S2) such that

CurlCurlA=S5 in Q.
Moreover, there exists a constant C' depending only on p, m and §2 such that

| Allwm2r@) < ClIS s (3.1.1)

Proof. The proof follows the lines of the proof of Theorem 2.2 in [31]. Let S € V4(2) L Ky 4(£2)

ie., S € V,(Q) and satisfying / S : Mdx =0 for all M € Ky 4(€2). That means that for any
Q

1 <i<3andany1l<j<.J(see[l9])

divS§=0 in Q, (3.1.2)
/ (S-mn)-e'do=0, (3.1.3)
¥j
/ (§-n)-P'do=0. (3.1.4)
%

i
Observe that conditions (3.1.2), (3.1.3) are equivalent to: for each 1 <i < 3, §* € V(Q) L
K1 (Q) where S' is the i-th line of matrix S. Then, Theorem 2.1.4 implies that there exists
some vector field W' in D(Q) such that curl W' = S’  and satisfying the estimate

W [l sy < ClIS [wm ).
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We define W the matrix field whose lines are the vectors W', So W satisfies curl W = ST
in ) and
||VVHW"‘“’P(Q) < CHSHWW(Q)-

Now setting B = W' — tr(W)I. The symmetry of S implies that
DivB =0 in . (3.1.5)

Indeed, for 7 = 1 for example, we have

div B' = 0,Wy — 01 Way + 05 Wy — 0 Wis
= 0.

Moreover,

J

(Curl W) P do — / (Curl(PW))"n)-¢ do+ / (WTn)-el do— / (te(W)In)-e'

4 2 X X
(3.1.6)
Because PW € D(f2), we get
/ (Curl(PW))'n)-e'do = 0. (3.1.7)
Ej

Hence (3.1.4), (3.1.6) and (3.1.7) imply that

/ (Bn)-e'do = 0. (3.1.8)
s

i
By using (3.1.5), (3.1.8) and applying again Theorem 2.1.4, there exists a matrix field D in
D(2) such that
curl D = B = W — tr(W)]I, (3.1.9)
with
| Dl[wn+2p@) < CllBllwnsip@ < C|[Sllwme -

Therefore

Curl Curl D = ™ — curl(tr(W)I). (3.1.10)
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We also have

Curl Curl D¥ = (Curl Curl D)”

= S+ curl(tr(W)I). (3.1.11)
D+ D" :
Define A = — then (3.1.10) and (3.1.11) imply
T
Curl Curl A = st _ .
Which is the required result. O

P.G. Ciarlet et al in [19] stated the range of the operator Curl Curl : Hj ((©) — L3(Q)
is the space U%2(€2). In the following, We will use the Beltrami’s completeness, which had
been proved in Theorem 3.1.1 to show that the operator Curl Curl : Wg?:Q’p(Q) — UmPr(Q)
is onto, where m is a nonnegative integer. Using the same argument of the proof of Lemma

2.3.1, the following result holds:

Lemma 3.1.2. Let m be a nonnegative integer. Then the space V4(2) L Kp(£2) is dense in
umr(Q).

Theorem 3.1.3. Let m be a nonnegative integer. For any matriz S in UTP(Q), there exists

Ace ng:Q’p(Q) such that
CurlCurlA=S in Q and |[Alyn+2eq) < C|S|wrr ).

Proof. Let A € UTP(Q2). Since V4(2) L Kr4(€2) is dense in UT"P(€2), there exists a sequence
(Sk) of Vs(Q) L Krs(€2) such that

Sy — S in WI'P(Q) when k— oo.
From Lemma 3.1.1, for any k € N, there exists Ay € D4(£2) such that

Curl Curl Ay = S, with || Allym+2s ) < ClSkllwr -
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Clearly (Ay) is a Cauchy sequence and there exists A € W{fﬁ’p (Q) such that
A, — A i WEER(Q),

with
CurlCurlA=S in Q and |A]

W;rL+2,P(Q) S CH SHWTI)(Q) :

3.2 Beltrami-s completeness for symmetric matrix fields
in D/ (Q)

In Chapter 2 we have used the surjectivity of the operator (2.1.2) to present te rotational
version of De Rham’s theorem. Here, we will use the extension of Beltrami’s completeness has
been stated in Theorem 3.1.1 to present the symmetric analogous of Theorem 2.3.4 which can

be considered as an extension of Beltrami’s completeness in D’(€2).

Theorem 3.2.1. Let E € D(Q2) satisfies
@) (S, E)po) =0 for all E € G,(Q). (3.2.1)
Then there exists A € DL(§2) such that
CurlCurlA=S in Q.

Remark 3.2.2. The converse is obvious, because for any S € D’(Q2) and any E € G4(Q2), we

have
o {(CurlCurl S, E)pq) = p/o)(S, Curl Curl E)pq) = 0.

Proof. According to Theorem 3.1.1,

Curl Curl : D,(Q)/G,4(Q) — V,(Q) L Kp,(Q) (3.2.2)
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is one to one and onto. Then its adjoint
Curl Curl : (V4(Q) L Ky4(Q)) — DL(Q) L G4(Q)

is one to one and onto.
Let L € (V4(Q) L K4(€2)) and L any extension of L in D)(2). Two expressions S and A
of L coincide on V,(Q) L Kr,s(€2) if and only if,

VE € V,(Q) L Kps(2), o) (S — A, E)p) = 0.
Using again Lemma 3.1.1, we get
VB € D,(2), pr)(S — A,Curl Curl B)pgy = pro)(Curl Curl (S — A), B)p) =0,
which means that S — A € Ker Curl Curl, where
Curl Curl : D[(Q2) — D.(Q).

Consequently,
V() L Ky () = D.(Q2)/Ker Curl Curl. (3.2.3)
Let S € D(£2) satisfies (3.2.1). In other words, that means that S € D(£2) L G4(€2), then the

operator is an isomorphism, d the characterization (3.2.3) implies that there exists A € D’(Q2)
such that CurlCurlA =S5 in €. O

3.3 The general extension of Saint-Venant’s theorem

Podio-Guidugli in [15] have used a Beltrami’s completeness to show the equivalence between
the sufficient conditions of Donati’s and Saint-Venant’s theorems: Let €2 be a smooth bounded
and simply-connected open set of R?, then any symmetric matrix field E = (E;;) with E;; €
CN(Q) (N > 2) satisfies

Curl Curl E =0 in ),

if and only if
/E:de:O for any M € V().
Q
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Later, Geymonat and Krasucki in [30] have proved the above equivalence when E € L%(Q) and
they have used it together with Ting’s theorem to conclude an extension of Saint-Venant’s
theorem in L%(Q). In the following, we will use the same idea to present an extension of

Saint-Venant’s theorem in D/(£2).

Theorem 3.3.1. Let E € D(Q) satisfies
CurlCurl E=0 n (. (3.3.1)
Then there exists v € D'(Q)) such that
Vsov=FE in (.

Proof. Let E be a symmetric matrix field in D/(€2) such that Curl Curl E = 0 in Q. We
have already shown that for any symmetric matrix field A in V4(2), there exists B € D4(12)
such that Curl Curl B = A. Then, we have

D’(Q)<E7 A>D(Q) = D/(Q) <E, Curl Curl B>D(Q) = D/(Q)<CU_I‘1 Curl E, B>D(Q) = 0.

Thus, Theorem 1.0.2 ( Moreau’s theorem) implies that there exists v € D'(Q2) such that
Vv = E in (), which is the required result. O
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Chapter 4

Beltrami’s completeness and
representation for LY-symmetric

matrix fields

Gurtin [35] has shown the Beltrami’s completeness for smooth matrix fields. He proved
that for any self-equilibrated matrix field S = (S;;) € C*(Q), there exists symmetric matrix
field A = (4;;) € C3(Q2) such that CurlCurl A = S in Q when Q is smooth. In 2006,
Geymonat and Krasucki [31] have shown a new extension of Beltrami’s completeness for
matrix fields in L2(Q2) when Q is only Lipschitz. In this chapter, we will show two extensions
of Beltrami’'s completeness for matrix fields in L2(2). Then, , we will present some extensions

of Beltrami's representation, also for matrix fields in L2(Q)).
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In this chapter, Q is a bounded and connected open set of R.

4.1 Tangential Beltrami’s completeness

We know that any vector field v in H?(div, §2) has a normal trace v - n in W*%’p(lﬂ) (see
[9]). Using the same arguments of proofs of Theorem 2.4 and Theorem 2.5 of [33], then the

following analogous results for matrix fields in H?(Div, Q) hold:

Proposition 4.1.1. Assume that €2 is Lipschitz.
i) The space D4(Q) of restriction to Q of functions of Dg(R?) is dense in H?(Div, ).

ii) The mapping S — Sn defined on Ds()) can be extended by continuity to a linear and
continuous mapping, still denoted by the same way, from H2(Div, Q) into W_%’p(l“) and the

following Green’s formula holds:
Yo e WY (Q), (Sn,v)r = / S:Vvdr + / Div S - vdz. (4.1.1)
Q Q

We denote by H ,(Div, Q) the closure of Dy(2) in HZ(Div, Q) and Hf ,(Curl Curl, Q)

the closure of D(€2) in H?(Curl Curl, ?). Here, we give characterizations of the above spaces:

Proposition 4.1.2. Assume that € is Lipschitz.
i) If S belongs to HE(Div, Q) and satisfies

for allv € D(Q), /

S:Vowdr + / Div S - v dx =0, (4.1.2)
Q Q

then S € Hf ,(Div, ).
ii) If S belongs to H2(Curl Curl, Q) and satisfies

for all ¥ € D(Q), / S : Curl Curl ¢ dx — / ¥ : Curl Curl Sdz =0, (4.1.3)
Q 0

then S € Hf ,(Curl Curl, Q).

Proof. i) Let 8 be an element of H?(Div, ) and satisfying the relation (4.1.2). We denote S
the extension of S by zero outside 2. The fact that S satisfies (4.1.2) implies that S belongs
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to H?(Div, R%), i.e. S € L?(R?) and Div § € L?(R?). Indeed, for all ¢ € D(R?), we have
| (re)(Div S, @)prs)| = ’/3§ : Vpda| = |/S : Vi dr|
R Q
= ]/DivS-godx\
Q

< |Div S|lze@ el 1 gs)

Step 1. We suppose that € is starlike with respect to an open ball centered at the origin. We

make the change of variable

So(z) = S‘(%), 6 €10, 1[.

The choice of § €0, 1] implies that Sy has a compact support in €2. It is clear that Sy belongs
to H?(Div, R?) and
Jim Sy =S in H?(Div, R%).
For ¢ > 0, let p. be a mollifiers that vanishes for |x| > . We define the matrix field p. * Sy by
(pe * gg)ij = P *ZS@)M. The choice of ¢ sufficiently small implies that p. * Sy has a compact
support in , then (p. * §Q)|Q belongs to D(€2) and
lim lim (p. * Sp)o =S in  HE(Div, Q).

e—00—1

Step 2. We suppose that €2 is Lipschitz but not necessarily starlike with respect to an

open ball. We denote {Q;}2, the finite set of starlike open sets that recover Q and let (;);

be a partition of unity subordinate to {€;}°,. We know that for any 1 < i < I, there

exists a sequence (A}), of Dy(€;) that converges to ;8 in H?(Div, ;). For any k& € N,
I

0
we set Ay = ZA}C Observe that this sequence belongs to Ds(2) and it converges to S in
i=1
H?(Div, 2), which ends the proof of Point i).

ii) We use the same argument of the proof of Point 1). O

Remark 4.1.3. Due to Proposition 4.1.2 and Proposition 4.1.1, the space Hf  (Div, ) can
be defined by
H ,(Div, Q) = {S € H?(Div, ), Sn =0 onT}.
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The following lemma was proved in [1] for p = 2. The proof below is very close to that

given in the Hilbertian case.

Lemma 4.1.4. Assume that Q is of class C' and let 8 € Hf ,(Div, Q). Then, the restriction

/

Sn to any X; belongs to [Wg(;p (3,)] and the following Green’s formula holds: for all v €
Wl,p'(Qo),

o o

S (Sm. ]}, = /

j=1

S:Vowdr + / v - Div S dz, (4.1.4)

where
1.7
P l7 / ~ l, /
Wi (5)) ={p e Wr" (%)), p€ W»?(M;)}
and p is the extension of p by zero outside of ;.

Proof. Let 1 < j < J, we extend the cut X; by the cut 3%, which allows us to divide 2 on

/

1
two parts §); and @ such that Q = Q; UQ, UX; UYL Let p € Wé’o’p (¥;), we denote 1, the
solution in W' (Q;) of the problem

DivV,h, =0inQ;, %, =0o0ndQ\%; and 1, = g on s, (4.1.5)
and 4} the solution in Wl’p/(Q;») of the problem
Div V) = 0in ), ¢ =00ondQ\%; and ¢ =L on 3, (4.1.6)

We know that there exists a constant C; depending only on p and €2; such that

. ’ < C 1 ./
¥slhwm) < Collel
and there exists a constant C?} depending only on p and 2 such that

. ! ’ < C 1 / .
H¢3HW1,17 (Q]) — j”l’l’HWéI,Om (Ej)

We define the vector field w; by

P, in

_ / : /
wj - ¢] m Qj)
0 on Z;.
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Observe that w; satisfies
V1 < k < J, [wJ]Ek = 0jk M, w; € Wl,p'(g‘ij),
where Qj = Q\X; and there exists a constant C' depends only on p and 2 such that

ijHWLp/(ﬁj) S Cj”l"l’HWO%O,p/(Ej)

Next, setting w; = w;|qe, it satisfies

w; € WH(Q), Wy, =djm, 1<k<J w;=0 on T

and  ||wj|lwir g < Cllpll 1,
1wy ey < Cl ngo’ -

Now, let A € D4(€2), the Green’s formula gives
(An, u)s, = | A:V,w;dr —|—/ w; - Div Adx. (4.1.7)

QO

o

Moreover, we have

(An, wys,| < C|A]

HE(Div, Q) ||HHW0%O,p' =)

Then, the linear mapping o
D,(2) — Wiy (%))
A — Anly,
is continuous in D,(£2) equipped with the norm of H?(Div, €2). As D,(12) is dense in Hf ,(Div, ©),
it can be extended to an unique linear and continuous mapping from Hg,(Div, ) into

[W&;p (X;)]" and by using adequate partition of unity, the Green’s formula (4.1.4) follows
from (4.1.7). O

Remark 4.1.5. In the case of p = 2 and  is only Lipschitz, the elliptic problems (4.1.5) and
(4.1.6) have solutions in H'(Q) and then Lemma 4.1.4 still true.

Notation 4.1.1. For any vector v € H'(Q°), we denote by [v]s,;, the jump of v throught ;.
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We define the Kernel space K7 (©2) by
K7.:(Q) ={S € X;.,(Q), DivS =0 and CurlCurlS =0 in Q}.
The regularity of the elements of K%S(Q) depends on the regularity of the domain €2 as follows:

Lemma 4.1.6. Let m be a positive integer. Assume that Q2 is of class C™'. Then, the space
K7.4(Q2) embedded in the space W™P(Q).

Proof. To simplify the proof, we consider J = 1 and m = 1. Let ¥ and ¥’ be two disjoint
cuts. We define Qg = Q\ ¥ and Qy = Q \ ¥’ which are simply-connected open sets and let
S € K;,(Q2). As Curl Curl S|o,, = 0 and Curl Curl S|, = 0, then Theorem 3.3.1 together
with Theorem 3.1 of [6] imply that there exist v € W'?(Qy) and v' € W*(Qy) such that

Viw=8 in Oy and Vo' =8 in Q.
As DivV,v =0 in Qy and Div Vv’ = 0 in Qy/, then
v eW(Qy) and v € WP (Qg). (4.1.8)

loc loc

The condition Sm = 0 on I' and the regularity C! of T' together with (4.1.8) imply that there
exist two open neighborhoods O and O’ of ¥ and ¥’ respectively such that

oNY' =0 and O'NXI=0. (4.1.9)

Since v’ € W?P(0) and V,v' = Vv in O\ 3, we deduce that the jump on ¥ of the traces
of the matrix Vv is equal to zero. As Vv € WHP(O\ ©), we get Vv € WHP(O) and then
v € W?P(Q), which implies that S € W'P(Q). O

In the following, we will show that K7, (€2) is independent of p. In other words, if p and ¢
are two real numbers such that 1 < p < oo and 1 < ¢ < oo, then K7, (©2) = K7, (©2).

Proposition 4.1.7. Assume that ) is of class C't. Then for all p € |1, 00[, we have
K. (Q) = K7..(9),
which means in particular that each vector field of K7 [(Q) belongs to WHP(Q) for any p > 1.
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Proof. Step 1. We show that, for any 1 < p < oo, K7 () C K7, (©).
Lemma 4.1.6 implies that K7,  (€2) embedded in H'(©2), so the Sobolev embedding implies that
K7.(Q) C K§,(€). Again, K7, () embedded in W"(Q2), which embedded in L>(€2). So
K%,(Q) € L=(Q) and consequently the required inclusion.

Step 2. We show that, for any 1 <p < oo, K7 ,(Q) C K7, (Q).

Using again Lemma 4.1.6, we know that Kf (€2) embedded in W'?(Q). Let p > 2. As
WP(Q) — L*(2), then we have K7 (Q) C K7 ,(€). Now, if 1 < p < &, we have W'?(Q) —
L3(). So Kb,,(Q) C K2,() C K2.,(€2). O

Remark 4.1.8. Because the above identity, we will use the notation Kz 4(€2) instead of KZ. ,(€2)
in the rest of the paper.

Notation 4.1.2. For any vector field v € H'(Q°), Vv belongs to L2(Q°) and it can be
extended to L2(Q), we denote it V,v.

P.G Ciarlet et al [19] have shown that the space Kr4(£2) is of finite dimension and its
dimension is equal to 6J. Furthermore, they have characterized the basis of Ky 4(€2). They

have shown that Ky 4(2) is spanned by the matrix fields Vsuf and Vs’r'{, 1<i1<3,1<5<J,

where 'u,g and rz are the solutions belonging to the space

Vi ={ve H'(Q), [ly, = Y _(al(v)e' +b](v)P), 1<j<J}

i=1
of the variational problems
Vv € Vg, V! : Vodr =al(v), (4.1.10)
QO
Yo € VI, V! Vudr =b(v). (4.1.11)
QO

In the following, we will show more properties of the vector fields uf and r{ .

Theorem 4.1.9. Assume that € is Lipschitz. For 1 < i <3 and 1 < j < J, the vector field
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u’

2 18 the unique solution in HI(QO), up to an additive rigid displacement, of the problem

(DiVVsugzﬂ in Q°,
(Viul)n=0 on T,

} =rig and [(V, uf)n}k =0,1<k< (4.1.12)

(Vs u)n ey, = ik, 1<0<3 and 1<k</J,
(

(Veul)n, Py, =0, 1<(<3 and 1<k<J

\
and 1"{ is the solution in H'(Q°), up to an additive rigid displacement, of the problem
4 .

DivV,rl =0 iin Q°,
(Vir)n=0 on T,

ri] =rig and [(V,r))n] =0,1<k</J, (4.1.13)

(Ver)m, el)y, =0, 1<0<3 and 1<k</,
| (Vsr])m, POy, = 0ubj, 1<0<3 and 1<k<J,
where the notation rtg means "rigid displacement”.

Proof. We follow the same steps as in the proof of Proposition 3.14 of [3]. Let 1 <14 < 3 and
1 < j < J, we will show that the solution w/ of (4.1.10) solves the problem (4.1.12). Note
that it suffices to use the same argument to show that the solution r/ of (4.1.11) solves the
problem (4.1.13).

Let v € D(QQ), using the variational formulation (4.1.10), we obtain

<Div(vsug’),U>Q:—/Vsug':vsvdx:— V.u! : V,vdr =0.
Q Qe

—_— —_—

Then V, u! belongs to H?(Div, Q) and Div (V,u!) = 0 in Q. Using Green’s formula with
v in H}(Q), we conclude that the jump of (V,yu!)n across any cut Xy, 1 < k < J is zero.
Also, by applying (4.1.10) with v € H'(f2), we obtain

O:/ (DivV,u!) -vder=— | V,u!:V,vde+ (Veul)n, v)r,
[} QO
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then (V,u!)n = 0 on T, which implies that V, u? belongs to Hp o (Div, Q). From Lemma
4.1.4 we deduce that the restriction of (V,u) n to any cut X, belongs to [H(l)éZ(Ej)]/. Finally,
to show the two last equalities of (4.1.12), we choose v € V5. Applying Green’s formula
(4.1.4), we obtain

S ((Veaud)n, o]y, = | Vel : Vis] de = al(v).

2 §2°

In particular, if for any & the jump [v], is constant, we have
> af(v){(V.ul)n, €)s, = al(v)
k
and then for any 1 </ <3 and any 1 <k < J,

(Viul)n, e)s, = i
3 .
To finish, we deduce the last relation in (4.1.12) by choosing the jump [v], = Z b¥ (v) P, for
i=1
any 1 < k < J. ]
Now, we introduce our first extension of Beltrami’s completeness for matrix fields in L?(€2).

Note that the case p = 2 has been shown by Geymonat and Krasucki in [31] and in [32].

Theorem 4.1.10. Assume that Q is of class C''. A matriz S € L2(Q)) satisfies

DivS=0 in Q, (4.1.14)
(Sn,e’)p, =0, 1<i<3 and 0<k<I, (4.1.15)
(Sn, P, =0,1<i<3 and 0<k<I, (4.1.16)

if and only if there exists a matriz A € W*P(Q) such that
CurlCurlA=S in Q. (4.1.17)
Moreover, there exists a positive constant C' which depends only on p and S such that
[Allwer@) < ClIS|ILe(e)- (4.1.18)
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To show Theorem 4.1.10, we need the following vector potential theorem which has been

shown by Amrouche et al in [9]:

Theorem 4.1.11. i) Assume that Q is of class C'. A wvector field v € LP(Q) satisfies

divo=0 in 9, (4.1.19)
(v-n,ir, =0, 0<k<I, (4.1.20)

if and only if there exists a vector field p € W'P(Q) such that
divyp =0 and curlyy =v in Q,
and there exists a positive constant Cy which depends only on p and 2 such that

|Y]lwrr@) < Cillv|lLr @) (4.1.21)

i) If v € WHP(Q), then 4 € W*P(Q). Furthermore, there exists a positive constant Cy which
depends only on p and Q) such that

H"vaWz?P(Q) < CQHUHWLP(Q)- (4.1.22)

Proof of Theorem 4.1.10. We follow the steps of the proof of Theorem 2.2 in [31]. Let A €
W2P(Q) and S = Curl Curl A. We know that Div Curl Curl A = 0, then (4.1.14) holds.
Now, we show that S satisfies (4.1.15) and (4.1.16). Let x; € C>(Q), such that y, equals to
1 in the neighbourhood of I'y and equals to 0 in the neighbourhood of I'y, if 0 < & < [ and
k # k'. Then, using Proposition 4.1.1, we get

(Sn, e, = (Curl Curl (y,A)n, e')r = / Div (Curl Curl (y,A))e’ dz = 0,
Q

(Sn, P')r, = (Curl Curl (y,A)n, Py = / Div (Curl Curl (y;A))P" dr = 0.
Q

Conversely, let S € H2(Div 2) and satisfies the conditions (4.1.14)-(4.1.16). For 1 <1 < 3,
we set S’ the i line of S. The conditions (4.1.14) and (4.1.15) imply that S' satisfies the
compatibility conditions (4.1.19) and (4.1.20) of Theorem 4.1.11. Then, there exists a vector
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field B' € W'P(Q) such that div B' = 0 and curl B* = S’ in Q2. We set B the matrix whose
lines are the vector B’. Then the matrix B satisfies Curl B = 87 = § and by applying the

estimate (4.1.21) on the vector lines of B, we obtain
| Bllwrr) < C1l|S||Lr)- (4.1.23)

Now, we define the matrix C = B” — tr(B)I. Since S is symmetric and Curl B = S,
then Div C = 0 in 2, which implies that the vector lines (C") of C satisfy the compatibility
condition (4.1.19). Moreover, the identity

{(Curl B)'n, P")r, = ((Curl(P B)'n,e')r, + (B"n,e')r, — ((tr(B) I)n,e')r,

together with the condition (4.1.16) imply that for any 1 < i < 3, the vector C" satisfies the
compatibility condition (4.1.20). Let us apply once again Theorem 4.1.11 on the vector C",
then there exists D' € W*P(Q) such that Curl D' = C’ in Q. The matrix D, whose lines

are the vectors (D"), satisfies

Curl D = C" = B — tr(B)I.

So
Curl Curl D = S — Curl(tr(B)I). (4.1.24)
We have also
Curl Curl D” = S + Curl(tr(B)I). (4.1.25)
D+ D"
Setting A = +T, then (4.1.24) and (4.1.25) imply that

CurlCurlA=S in Q.
By applying the estimate (4.1.22) on the vector lines of D, we obtain
[ Dl[wzee) < 20| Blwieo)- (4.1.26)

Then (4.1.23) and (4.1.26) imply that the estimate (4.1.18) holds. O
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Remark 4.1.12. If p = 2, Theorem 4.1.11 still true when € is only Lipschitz, then Theorem

4.1.10 still also true in this case.

Now, we show the continuous embedding of X7, (Q2) in W'?(§) if the domain € is of class

CH! and the continuous embedding of Y%, () in W>P(Q) if the domain €2 is of class C*'.

Theorem 4.1.13. i) Assume that Q is of class Ct'. Then, the space X7 4(Q) is continuously
embedded in WHP(§2).
it) Moreover, if Q is of class C*'. Then, the space Y1, (Q) is continuously embedded in W»P(€2).

Proof. i) Assume that Q is of class C*'. Let § € X (Q) and v € W*P(Q) the solution of
the problem

Div(Vszw) = DivS in
(Vszv)n = 0 on T,

with the estimate

[v[lw2r) < C||Div S|Lr ), (4.1.27)

where C' is a positive constant which depends only on p and 2. Setting A = S — Vv,
we have A € L2(Q2), DivA = 0 in , CurlCurl A € L?(Q2) and An = 0 on I'". The
matrix B = Curl Curl A belongs to H?(Div, ) and satisfies the compatibility conditions
(4.1.14)-(4.1.16). Then, Theorem 4.1.10 implies that there exists D € W2P(Q) such that
Curl Curl D = B in () and satisfies the estimate

| D[wzr) < C||BllLr()- (4.1.28)

Now, let u be the solution of the problem

Div(Vsu) = DivD in Q,
(Vszv)n = Dn on T.

Since Q is of class CV!, Div D € LP(Q) and Dn € W' »?(T'), then u belongs to W22(0Q)

and satisfies the estimate
[ ————e (HDivDHLp(Q) v HDnHWl_%,p(F)) < C||Curl Curl Aoy, (4.1.29)
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Next, the symmetric matrix E = D — Vu belongs to W'?(Q) and satisfies Curl Curl E =
CurlCurl A, DivE =0 in 2 and En = 0 on I'. Moreover, from (4.1.28) and (4.1.29), we
get

|E|jwisq) < C||Curl Curl A||isq). (4.1.30)

Finally, the matrix F' = A — E belongs to L?(€2) and satisfies
DivF =0, CurlCurlF=0 inQQ and Fn=0 onl.

Observe that F' € Kr (). Since Q is of class C', Lemma 4.1.6 implies that F' belongs to
WHP(Q) and since Kz 4(€2) is of finite dimension, there exists a constant C' depending only on
(2 such that

[ lwrr () < CJlFlLr)-

Then, we obtain the estimate

[Fllwir) < C[|S

X2()- (4.1.31)
Knowing that S = E + F + V,v, then S belongs to W"?(2). Furthermore, the estimates
(4.1.27), (4.1.30) and (4.1.31) imply that there exists a constant C; depending only on p and
Q2 such that

1S]lwiz@) < CillS

X2(Q)-

ii) The proof of the continuously embedding of Y%, /() in WZP(Q) is similar to the previous
one. Let S € Y (). We define v, A, B, D, u, E and F like the proof of Point i). The
fact that ) is of class C>! implies that v € W*P?(Q). Moreover, since Div D € W'*(Q) and
Dn € WQi%’p(F), then u belongs to W??(Q). So E € W*?(Q) and Lemma 4.1.6 imply that
F € W??(Q)). Consequently, S € W??(Q)). Furthermore, there exists a positive constant C
which depends only on € and p such that

|S]lwzr )y < Col|Sllve o)
L]

Using Theorem 4.1.13, and the fact that the embedding of W?(2) in L?(Q) is compact,
then the following result holds true.
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Lemma 4.1.14. Assume that Q is of class Ct'. We affirm that the embedding of X1, ,(Q) in
L2(Q2) is compact.

Lemma 4.1.14, together with Peetre-Tartar theorem, allow us to prove the following corol-

lary.

Corollary 4.1.15. Assume that §) is of class Ct'*. On the space X’%’S(Q), the semi-norm

3 J
S — | Div S| + [|[Curl Curl S|y + Y > (I(Sn,€')s| + [(Sn, P)y,|)  (4.1.32)

i=1 j=1
is a norm equivalent to the norm | - |\wirq). In particular, we have the following Friedrich’s

inequality type for every matrix S € X%S(Q):

3 J
I1S[lLe(@) < C(IDiv S| Lo + [|Curl Curl Sy + Y > ([(Sn,€')s | + [(Sn, P')s)|)).

i=1 j=1
(4.1.33)
Moreover, if Q is of class C**, then the semi-norm
3 J
S — |[Div S|lwiro) + |Curl Curl S||iroy + > Y (|(Sn, ey, | +[(Sn, Py |) (4.1.34)
i=1 j=1
is a norm equivalent on Y7 () to the norm || - |lw2r(o)-

Now, we introduce the second extension of Beltrami’s completeness, with tangential bound-

ary conditions.

Theorem 4.1.16. Assume that Q is of class CY'. A matriz S € LP(Q) satisfies (4.1.14)-
(4.1.16), if and only if there ezists a matriz A € X2(§2) such that

CurlCurlA=S and DivA=0 in (, (4.1.35)
An=0 on T, (4.1.36)
(An,el)y, = (An, Py, =0, 1<i<3, 1<j<. (4.1.37)

Moreover, this matriz A is unique and we have the estimate
[Allwir@) < CillS|Lr()- (4.1.38)
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If Q is of class C*!, then A € W*P(Q)) and we have the estimate
| Allwzr @) < Co|S|lLe@)- (4.1.39)

Proof. i) Assume that A belongs to X2(€2) and satisfies (4.1.35), from the proof of Theorem
4.1.10, we know that Curl Curl A satisfies (4.1.14)-(4.1.16).

ii) Conversely, let S € L?(€2) and satisfies conditions (4.1.14)-(4.1.16). Let us consider the
matrix Ay given by Theorem 4.1.10, and the solution v € W??(Q) of the following problem:

—Div(Vw) =DivA4, in
(Vsv)n=Am on T,

(note that v € W??(Q) when € is of class C>').
We set

3 J —— —
A=A+ Vv — Z Z (((AO + Vu)n, ei>ng3uf + ((Ag + V,u)n, Pi>ngSrg) :

i=1 j=1

—~——  —~—

Since Q is of class C1, then for all 1 <7 < 3 and 1 < j < J, the matrix V,u! and V77 are in
WHP(Q) (respectively in WP(Q) if  is of class C*'); then the matrix A € WHP(Q2) (respectively
A € W*P(Q) if Q is of class C*!) and satisfies the conditions (4.1.35)-(4.1.37)). Finally,
Corollary 4.1.15 implies that estimates (4.1.38) and (4.1.39) are true, and the uniqueness of
A is due to the characterization of the kernel space Kz 5(€2). O

4.2 Normal Beltrami’s completeness

It is well known that if € is a Lipschitz domain, then any vector field v of H”(curl, Q)
has a tangential trace v X m in W (I'). Amrouche et al [3] used this characterization
of HP(curl, ) to show potential vector theorems in both cases of Hilbert spaces case (see
Theorem 3.17 of [3] ), and in the Banach spaces case (see Theorem 4.3 of [9]).

In this section, we present some analogous results for symmetric matrix fields. We show

that if the domain € is of class C!!, then any matrix field S of H?(Curl Curl, ) has a
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tangential trace S x n in e (T"); and the matrix field Curl S (which is not even in L?((2))
has a tangential trace Curl S x n in W_l_%’p(F). After that, we focus our attention to show

an extension of Beltrami’s completeness with normal boundary conditions.

Proposition 4.2.1. i) The space D,(Q) is dense in H?(Curl Curl, ).
i) If Q is of class CY, then:
a) The linear mapping S — S x n defined on Ds(Q2) can be extended by continuity to a

linear and continuous mapping, still denoted in the same way, from HZ(Curl Curl, Q) into
W (T).

b) The linear mapping S — Curl § x nyr can be extended by continuity to a linear and con-
tinuous mapping from HY(Curl Curl, Q) into W_l_%’p(F) and the following Green’s formula
holds true: for all E € W>?'(()),

(S xn,Curl E)r + (Curl S x n, E)r = /

S : CurlCurl E dzx — / CurlCurl S : E dz.
Q

! (4.2.1)

Proof. i) Let £ € (H?(Curl Curl, Q))’ such that (£, A) = 0 for all A € D,(Q). We associate
to £ the matrix L in H?' (Curl Curl, Q) such that:

for all A € H?(Curl Curl, Q), (£, A) = /

L: Adx—i—/S : Curl Curl A dzx
Q

Q

where

S = Curl Curl L.

Now, we assume that £ vanishes on D,(Q2). We set LNU (resp SNZ]) the extension of L;; (resp

S,j) by zero outside Q and let A € D4(R?), so we have
/ L:Adr+ | S§:CurlCurl Adz =0.
R3 R3

Thus
_L=CurlCurlS in R3

Consequently, Proposition 4.1.2 implies that the matrix field S belongs to Hf ,(Curl Curl, Q).
Also, there exists a sequence (Sj) of Ds(€2) that converges to S in H?(Curl Curl, ©2). So, we
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have

VA € H(Curl Curl, Q), (¢, A) = lim [ (A:CurlCurlS; — S;: Curl Curl A)dz =0,

k—o0 [¢)

then, the density of Ds(€2) in H2(Curl Curl, ) is true.
ii) a) Now, we assume that (2 is of class C''!. Let us prove statement a). For all A € D(Q)
and E € W2¥' (Q) NW;” '(€2) the following Green’s formula holds true

(Axn,Curl E) ., 1 :/A: CurlCurlde—/CurlCurlA: E dx.
W 7 (T)xWp’" (T) Q Q
(4.2.2)
Let A be in D,(Q) and Let M be in W%’p/(F). Since 2 is of class C'') then the matrix
M, =: (M x n) x n belongs to W%’p/(F) and there exists E € W2? (Q) such that:
OFE
E=0 and — =(M* xn)" onTl,
on

Furthermore, we have

HEHWQ,P/(Q) < CHMHW;

(1)’
( see for example the proof of Theorem 5.4 of [9]. ) Moreover, the relation (5.10) of [9] and
(0.0.2) imply that

OFE

Curl E = —(% xn)l = (ML xn)" xn)l' = —(M, xn)" xn.

define the vector line (M,)" by (M,)’ = M' — (M'-n)n”. Since M,n = 0 and A is
symmetric, we can verify that
(Axn, M)r = —(Axn,(M, xn)" xn)p = (A xn, Curl E)r.
As
<A X n, M>F = <A X n, MT>F,

we get from (4.2.2),

[{A x n, M)rp| (A x n, Curl E)r|

||A| HE (Curl Curl, 2) HEHW27P,(Q)
Ci[|A

IA A

HZ (Curl Curl, 2) HMHW%,p/(F) .
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Which means that

A x n”w‘%v”(r) < Cil|Allnz(cur cur, ) (4.2.3)

Then, the linear mapping
D.(Q) — W »P(T)
A — Axn

is continuous on D,(2) equipped with the norm of H?(Curl Curl, ). Thanks to point i),
it can be extended to a unique linear and continuous mapping from H?(Curl Curl, Q) into
W ? (D).

b) Let A € D,(Q) and M € WH%”’/(F). Then, there exists E € W?? (Q) such that E|p = M,

with [ Bl o) < CHMHWH%,p’(m and we have the following Green’s formula:

(Axn, Curl E)r + (Curl A xn, M)r = / A : Curl Curl E dx — / E : Curl Curl Adx.
Q Q

(4.2.4)
Using the estimate (4.2.3), then
[(CurlA xn, M)r| = |— (A xn, Curl E)r + / A : CurlCurl E — / E : CurlCurl A
Q 0
< 1+ C)A[mzcurt curo) 1Bl w2 )
< Col|Allecunt Curl,Q)HMHW1+%,p’

T
That means that

|Curl A x nHW,l,%,p(F) < Oo| Allnz(curt cur, ) -

Then, the linear mapping
D,(Q) — W™ '=57(T)
A— CurlAxn

is continuous on D4(f2) equipped with the norm of H?(Curl Curl, ). Thanks to point i),
it can be extended to a unique linear and continuous mapping from H?(Curl Curl, Q) into
W_l_%’p(f‘) and the Green’s formula (4.2.1) holds true. O
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Lemma 4.2.2. Let S € H?(Curl Curl, Q), then the following property

for all E € W' (), /

S : CurlCurl Edz — / E :CurlCurl Sdz =0, (4.2.5)
Q Q

15 equivalent to the property

for all M € W27 (Q), /

S : Curl Curl M dz — / M : CurlCurl Sdx =0. (4.2.6)
Q Q

Proof. Let S8 € H?(Curl Curl, Q) satisfying (4.2.5). For any M € W>?(Q), we denote M*¥™
its symmetric part and M** its antisymmetric part. Recall that Curl Curl M**" is an

antisymmetric matrix. Then,

/S : Curl Curl M dz — / M : Curl Curl S dx
Q Q

= / S : Curl Curl (M*™ + M**) dx — / (M*™ + M**) . Curl Curl S dz
Q Q

= / S : Curl Curl M**" dz — / M** . Curl Curl S dz
Q Q

=0.

Then, (4.2.5) implies (4.2.6) and it is clear that (4.2.6) implies (4.2.5), which ends the proof.
[

Remark 4.2.3. If Q is of class C'!| then Green’s formula (4.2.1) and Lemma 4.2.2 imply that

the condition (4.2.5) is equivalent to
for all M € W>? (), (8 x n,Curl M) + (Curl S x n, M) = 0. (4.2.7)
As we have seen in proof of Proposition 4.2.1, condition (4.2.7) is equivalent to
Sxn=0 and CurlSxn=0 on TI. (4.2.8)

Consequently, condition (4.2.5) is equivalent to (4.2.8). Then, Theorem 4.1.2 implies the
following identity

Hp (Curl Curl, Q) = {S € HY(Curl Curl, ©2), S xn =0 and Curl S xn =0 on T}

72



We define the kernel space
KYo() ={S € L(Q); DivS =0in Q, CurlCurl § =0 in Q, Sxn = Curl Sxn =0onT}.
The following theorem characterizes the space K3, ().

Theorem 4.2.4. Assume that ) is Lipschitz. The dimension of the space K?V,S(Q) 1s 61. It
is spanned by the matriz V,vF and V w* where v¥ is the solution in H*(Q) of the problem

;

-Div(VoF) =0 in Q,
V¥, =0 and vf|p, =rig, 1<(<1I,
(Vsvf)ym, e, = 6ijoke, 1<j<3, and 1<(<I, (4.2.9)
(Vo) n, €)r, = =iy,
(Vof)n, P)p, =0, 0<0<1,

\

and w¥ is the solution in H' () of the problem

”

-Div(Vawf) =0 in Q,
whr, =0 and wllp, =rig, 1<0<1,
(Vawf)n, Py, =66k, 1<j<3, and 1<(<I, (4.2.10)
(Vswf)n, P)p, = —0ij,
(Vawf)n, &), =0, 0<0<1

\

Moreover, if Q0 is of class C'', then v* and w¥ belong to H*(Q) for any 1 < p < oo.

Proof. We consider here only the first problem, which is similar to the second one. Let
VL ={ve H(Q), v[r, =0 and v, =rig, 1 <k <I}.

For 1 <:<3and 1<k <, Lax-Milgram lemma implies that the problem:
find v¥ € YV such that

Vu € Vp, / Vol Vade = af(u) (4.2.11)
0

. . k 1"
has unique solution v; € Vy,.
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A similar argument to that used in the proof of Theorem 4.1.9 shows that v¥

(4.2.9). Moreover, if Q is of class C*', then v¥ belongs to H?*(Q). Now, we prove that
E = {Vw}; U{V,w}}; is a basis of K3 (). The elements of E are linearly independent

and belong to K% ,(Q). Let § € K3 ,(©2), we set

satisfies

A=8-— Z <Z ((Sn, €)r, Vvl + (Sn, Pi)pkvswf)> :

i=1 \k=1
It is clear that A satisfies the compatibility conditions of Theorem 4.1.10. Then, there exists
a symmetric matrix field Ay € H?(Q) such that A = Curl Curl A,. Then, we have

/A:Adx:/A:CurlCurledw:/AO:CurlCurlAd:U:O.
Q Q Q

Then, A = 0, which is the required result.
H?(Q) regularity is immediate. O

We will show, now, that the vector fields belonging to the kernel spaces K?v,s(Q) are more
regular and this regularity does not depend on p. For that, we need to establish some auxiliary

results. The first one gives some equivalence properties to inf-sup condition (see [33]).

Theorem 4.2.5. Let X and M be two reflexive Banach space and X' and M’ their dual spaces.
Let a be a continuous bilinear form defined on X x M, let A € L(X, M) and A" € L(M, X')

be the operators defined by
Voe X, Vwe M, a(v,w)=(Av, w) = (v, A'w),

and V = Ker A. The following statements are equivalent:

(1) There exists f > 0 such that

. a(v, w)
inf sup T
weM, w0 pex w0 ||[V]| x [|w]|p

(ii) The operator A : XV — M’ is an isomorphism and % is the continuity constant of
AL

(i1i) The operator A’ : M — X' 1LV is an isomorphism and % is the continuity constant of
(4~
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The second one gives an inf-sup condition of the Curl Curl operator.

Lemma 4.2.6. Assume that Q is of class CYt. Then, the following inf-sup condition holds

true: there exists a constant o > 0, such that

/ Curl Curl F : Curl Curl ¥ dx
Q

inf sup > (4.2.12)
wev? (), BeVh (), | P() H‘I’ng’(g)
w0 E+0

where
VI Q) ={SeX],(Q),DivS=0 and (Sn,e')s, =(Sn, P')y, =0}

Proof. Let A € L? () and v be the solution in W2?' (2) of the homogeneous Dirichlet problem
Div Vv = Div A which satisfies the estimate

IV s vl @) < CllAlL () (4.2.13)
Weset F' = A~ Vv and let E € V7, (©2). Due to Corollary 4.1.15, we obtain

|/Curl Curl E : Adz|
AL

| E|[xz) < C||Curl Curl E|rq)=C sup

Ael? ()
A£0

(4.2.14)

Now, setting

[ZZ ((Fn, €)r, Vi + (Fn, P')r V'w)],

then, F € LY (Q), DivF =0 in Q, (Fn, e')p, = (Fn, Py, =0 for any 1 <i < 3 and any
1 <k <1 and we have

/ CurlCurl E : Adx = / CurlCurl £ : Fdx = / Curl Curl E : F dz.
Q Q Q

Moreover, we have

3 I
IFllurey < 1Flluo + DD (IR, )1V 0}y + [(Fn, PV w0k
1 k=1
< F / CF / .
< Pl +CIFRl 50

=
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Since F' belongs to H2(Div, ) and Div F' = 0 in €, then
1l < I F Nl + ClEnl -3 o) < ClF Nl @) (4.2.15)
Using (4.2.13) and (4.2.15), we obtain
IF @) < CllAlL -

From Theorem 4.1.16, there exists ¥ € V’}/’S(Q) such that F = Curl Curl ¥, and due to
Corollary 4.1.15, we have
||‘I’||XP’(Q) < CHFHLP'(Q)'

Finally,
]/ CurlCurl E : A] |/ Curl Curl E : F| |/ Curl Curl E : Curl Curl ¥|
Q Q < -J2
1Al (o) 1l (o [ e
As a matter of fact, (4.2.14) implies that the inf-sup condition (4.2.12) holds true. [

Using the inf-sup condition (4.2.12), we solve the following elliptic problem:

Proposition 4.2.7. Assume that Q is of class C1'' and let B € LP(Q)). Then, the elliptic

problem

A’E =CurlCurlB and DivE =0 in €,
En =0, (CurlCurlE — B)xn = (CurlCurlCurlE —CurlB)xn=0 on T,

(En, e')s, = (En, P')y, =0, 1<i<3, 1<j<J
(4.2.16)
has a unique solution in WLP(Q2) and we have the estimate
| E|lwiri) < Cil|Bl|Le @) (4.2.17)

Moreover, if Q) is of class C*', then the solution E belongs to W*P(Q2) and we have the estimate
| E|lwer) < Cal Bl|Lr(q)- (4.2.18)
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Proof. Step 1. Existence and uniqueness. Thanks to Lemma 4.2.6 and Theorem 4.2.5,
the following problem: find E € V7, (€2) such that for all ¥ € V%S(Q)

/ Curl Curl E : Curl Curl ¥ dz = / B : Curl Curl ¥ dz, (4.2.19)
Q Q

has a unique solution in V7 (Q2). We want to extend (4.2.19) to any test function in X2(2).
Given W € XP(€2), we know that there exists v € W'?(€) solution of the problem

DivV,aw = Div¥ in Q,
(Vao—®)n = 0 on I

and satisfying the following estimate
IVsvllie@) < Cl YL@

Setting now
~ 5. ~ —— ~ L~
U=v-V,ov-— Z Z (((\Il — V)n, €y, Vou! + (¥ - V,o)n, P’>2jstr§> :
i=1 j=1

we note that ¥ € V’}:S(Q) and that Curl Curl ¥ = Curl Curl ®. So, the problem (4.2.19)
becomes: find E € V7, (Q) such that for all T e X7'(Q)

/ Curl Curl E : Curl Curl ¥ dz = / B : Curl Curl ¥ dz. (4.2.20)
Q 0

Every solution of (4.2.16) solves (4.2.20). Conversely, let E be the solution of (4.2.20). Let

us apply twice the following relation, which holds for any symmetric matrix S,
A S = —Curl Curl § — V3(tr(8)) + 2V, Div S + [A(tr §) — divDiv S]I.  (4.2.21)

We get
A’E = Curl Curl (Curl Curl E) in Q

and then from (4.2.20),
A*E =CurlCurl B in Q.
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As the matrix Curl Curl E — B belongs to H2(Curl Curl, ) and using (4.2.20) for all
¥ € W2P(()), we obtain

/ Curl Curl (Curl Curl E — B) : ¥dz = /(Curl Curl E — B) : Curl Curl ¥ dz = 0.
Q Q

(4.2.22)
Remark 4.2.3 implies then that

(CurlCurl E — B) x n = (Curl Curl CurlE — Curl B) xn =0 on I.
Consequently, E solves (4.2.16). Using Remark 4.2 iii) of [9], then there exists C' such that

1B

Xg(Q) S CHBHLP(Q) (4223)

Step 2. Regularity. Thanks to Theorem 4.1.13, since  is of class C''!, then E belongs to
WP(Q) and from (4.1.33) and (4.2.23), we have

1E|wir@) < CE

xt) < C|| Bl -

If moreover € is of class C*!, using again Theorem 4.1.13 we find E belonging to W*?(Q2) and
due to Corollary 4.1.15, we have

HEHWQ’p(Q) S CQHCUI'I Curl EHLP(Q)-

consequently, we obtain the required estimate (4.2.18). O

Now, we will use Proposition 4.2.7 to show that for any 1 < p < oo the kernel space

KY.+(§2) is independent of p.
Proposition 4.2.8. Assume that ) is of class C'. Then, for all p € |1, 00[, we have
Ko (2) = K, (), (4.2.24)

which means, in particular, that each vector field of K?V’S(Q) belongs to WP(Q2) for any p > 1.
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Proof. Step 1. We show that for any 1 < p < oo, K?V’S(Q) C K 4(©).

Indeed, as for any 1 < i < 3 and 1 < k < I, the vector fields v¥ and w? belong to W*?(£2)
for all 1 < p < 00, we obviously have our inclusion.
Step 2. We show that for all 1 < p < oo, K} (Q) C K5 ().

Let S be in Ky (©2) and set

A=8-— Z <Z ((Sn, €)r, Vvl + (Sn, Pi)pkvswf)> :

i=1 k=1

Step 1 implies that A € K% () besides, it satisfies the conditions (4.1.15) and (4.1.16). From

Lemma 4.2.6 we deduce that A = 0 and hence, we get the required inclusion. O

Remark 4.2.9. From now, we will use the notation Ky ,(€) instead of K3 [(€2) in the rest of

the paper.

Here, we will show the embedding of Xf () in W'?(Q) if Q is of class C'' and the

embedding of Y}, () in W??(Q) if Q is of class C*'. First, we recall that any matrix field S
3 J

oF Krs{§2) can be written by & = V.o with v = Z ((Sn, €')s,u! + (Sn, P')s,r!), and

i=1 j=1
we show the following lemma:

Lemma 4.2.10. Assume that 2 is Lipschitz. For any 1 <1 <3 and 1 < j < J, there ezist
two matriz fields V) and V.27 in Ky 4(Q) such that

[tﬂk = (Sig(skj eﬁ and [Zj]k = 5i£5kj pé’ 1 S l S 3, 1 S k S J.

1

Proof. To simplify the proof, we consider J = 1. For any matrix field S = 6\5;) of Kr.5(€2),
3

we denote [v]y = Z(a}(v) e’ + bj (v) P"). We define the operator

i=1

TZKT73<Q) — RS
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We will show that the operator T is onto. We use a contradiction, we suppose that T' is not
onto, that means that for any 6\5/1) € Krs(€) there exist £/, 1 < k' < 6 and {)\k}lgkglﬁ such
that i
Z (T
i
Let us suppose that 1 < &k’ < 3, by using formulas (4.1.10) and (4.1.11), we obtain for any
6;;) € Kr5(2)

z;ék:'

3 3
By choosing v = u;, — (Z Nl + Z Air3r;) and using (4.2.25), we obtain

i=1 =1
ik

—_——

3 3 —_
1 _ 1 1
Uy, = E Vu; + E Airs3Vr;,

i=1

ik

i=1
which is a contradiction with the fact that the matrix fields Viu! and Vgr! are linearly
independent, this ends the proof. O

Theorem 4.2.11. i) Assume that Q is of class C'. Then space X} () is continuously
embedded in WHP(Q).
i) If Q0 is of class C*', then the space Y} [(2) is continuously embedded in W*P(Q2).

Proof. i) Let A € X (©2) and § = Curl Curl A. So, we have Div.§S = 0 in 2 and for all
¢ € D(Q),

(Sn, (‘O>W%””(r) = /QCurl Curl A: V,pdx

W‘%’p(r)
= / A : Curl Curl V,pdx
Q

= 0.



Then, Sn = 0 on I'. According to Lemma 4.1.4, the quantities (Sn, )y, and (Sn,Pi>2j

make sense for any 1 <7 <3 and 1 < j < J and furthermore, from Lemma 4.2.10 we get

(Sn,e')s, = / CurlCurl A : V.t dx.
Q

As the matrix A belongs to Hf ,(Curl Curl, Q), then there exists a sequence (A,,) in D,(Q)
which converges to A in H2(Curl Curl, €2). Then,

(Sn,e')s = / Curl Curl A : V,t/ dz = lim / Curl Curl A, : V. t! dz = 0.
Q noJa

J

By the same, we conclude that
<Sn, Pi>2]. =

and then, the matrix S belongs to the space U%?(€Q). In Chapter 3, we have shown that the

operator

Curl Curl : Wgﬁ(Q) — U22(Q)) (4.2.26)

is onto. Then, there exists B € Wgﬁ(Q) such that Curl Curl B = § in () and we have the
estimate

HB”W2,p(Q) < CHCurl CurlAHLp(Q). (4_2_27)

Setting now D = A — B and let us consider the solution v € W*?(Q) of the problem

Div(Vw) =DivD in Q,
v=0 on T.
which satisfies the estimate
H’UHW2,p(Q) < CHDiV DHLP(Q) < C(HDIV AHLP(Q) + HCurl Curl A”LP(Q)) (4228)
Also, for all M € W>?'(Q), we have

1, {((CurlCurlM)n,v) , 1, =0.

75D

w (D) w PP

/ Vv : Curl Curl M dz =

Q

Hence, Remark 4.2.3 implies that
Viawxn=CurlV,ooxn=0 on TI.

81



Thus, the matrix E = D — Vv belongs to Ky ¢(Q) € W'?(Q) and consequently A € W'*(Q).

Moreover, since all norms are equivalent in finite dimension, we have

1E||wir) < ClE|r@) < C (||Allr@) + |Div Al rr@) + ||[Curl Curl Af|eq)) . (4.2.29)
From (4.2.27)-(4.2.29), there exists a constant C such that
[Allwrr @) < Cil|Allxr @)

ii) Assume that © is of class C*! and A € Y} (©). Then v € W*?(Q) and E € W*?(0Q).
Finally we get A € W*P(Q) with the estimate

| Allwer ) < Cof

]

Using Theorem 4.2.11 and the fact that the embedding of W?(Q) in LP(2) is compact,
then the following result holds:

Lemma 4.2.12. Assume that Q is of class C"'. Then, the embedding of X%, (Q) in LE(Q) is

compact.

Lemma 4.2.12 together with Peetre-Tartar theorem, allow us to prove the following corol-

lary.

Corollary 4.2.13. Assume that §) is of class C1'*. On the space X‘?\r,s(Q% the semi-norm

3 I
S — ||Div S| o) + [|Curl Curl S|l + > Y (I(Sn, )|+ [(Sn, P')r,|), (4.2.30)

i=1 k=1
is equivalent to the norm || -|\wirq)- In particular, we have the following Friedrich’s inequality

type for every matrix S € XI;\,’S(Q):

3 I
ISllwi»() < C(IDiv S||zr(@) + [|Curl Curl S|l + Y Y _(|(Sn. €)r,| + [(Sn, P')r,])).
i=1 k=1

(4.2.31)
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Moreover, if Q is of class C*', then the semi-norm:

3 I
S — |Div S|+ Curl Curl S|lupey+> > ([(Sn, €)r, | + [(Sn, Py, [) . (4.2.32)

i=1 k=1

is equivalent to the norm || - |lw2r(q)-
Now, we show our third extension of Beltrami’s completeness:

Theorem 4.2.14. Assume that Q is of class CY'. Then a matriz S in LE(Q) satisfies

DivS = 0 in Q,
Sn = 0 on T, (4.2.33)
(Sn, e')s, =(Sn, P')y, = 0, forany 1<i<3,V1<j</

if and only if there exists a matriz A € Y2(2) such that

CurlCurl A =S 1in QQ, DivA=0 @n QQ,
Axn=0 on T, CurlAxn=0 on T, (4.2.34)
(Sn, e) = (Sn, P’> =0, forany 1<i<3, V1<Ek<I.

Moreover, this matriz A is unique and satisfies the estimate

| Allwrr) < C1l| S| Lr@)- (4.2.35)
In addition, if Q is of class C*', then A € W*P(Q) and we have the estimate

| Allwzr) < Col| S| Lr@)- (4.2.36)

Proof. Let A be in Y?(2) and satisfies (4.2.34)). The matrix § = Curl Curl A satisfies
(4.2.33) (see proof of Theorem 4.2.11). Conversely, let S be in HP(Div, Q) and satisfies
(4.2.33). Ay is the matrix field in W*?(Q2) given by Theorem 4.1.10. Due to Lemma 4.2.6, the

following problem:
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find E € V4, () such that for any ¥ € V%, (),

/ Curl Curl E : Curl Curl ¥ dz = / Ap: Curl Curl ¥ dx — / W : Curl Curl A dz,
Q Q Q
(4.2.37)

has a unique solution.
We want to extend (4.2.37) to any matrix test in X?'(€2). For that, let ¥ € X?'(Q) and v
be the solution of the problem

Div(Vw) =Div¥ in Q,
(Vav—¥)n=0 on T.

We can check that the matrix defined by

3 J e~ —
P=T-Vo-) Y (<(€13 — Vo)n, €')s, Vol + (¥ — Vo)n, Pi>2jvsrg> .

i=1 j=1

belongs to V’:’F/,S(Q). From (4.2.33), we have

/st:CurlCurledx:<Sn, ’U>—/’U~DiVSd£L‘:O,
Q Q

1

/ Vsug : Curl Curl Ay dx = Vsug :Sdr = Z(Sn, [uf]k>gk =0,
Q Q° k=1
and
— ' I ’
/ V.l CurlCurl Agdr = | Vrl:Sde=> (Sn, [r]li)s, =0.
Q Qe k=1

Then, for all ¥ € X?'(2), we have
/ Curl Curl E : Curl Curl ¥ dz = / Ag : Curl Curl U dy — / ¥ : Curl Curl Agdx.
Q Q Q

It follows from this relation that the matrix

3 I
A = Ay—CurlCurl E — Z Z (((Ag — Curl Curl E) n, €')r, V v}
i=1 k=1

+ {((Ao— CurlCurl E)n, P')r, V,wk),
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satisfies (4.2.34). Hence, A € Y () C WP(Q) and due to Corollary 4.2.13 the estimate
(4.2.35) holds true. If © is of class C*!, then Theorem 4.2.11 implies that A € W*P(Q2) and
Corollary 4.2.13 implies that the estimate (4.2.36) holds true, also.

The uniqueness of A is due to the characterization of the space Ky 4(€2). [

Remark 4.2.15. We can give another proof of Theorem 4.2.14. Indeed, Let S be in H?(Div, ()
and satisfies (4.2.33). As the operator (4.2.26) is onto, then there exists B € W(Q):’S’(Q) such
that Curl Curl B = S in €. Setting now v € W?P(Q) the solution of the homogeneous
Dirichlet problem Div V v = Div B in 2. We define the matrix A by

A=B-— V’U—ZZ (B - V)n, e)r, Vol + (B - V)n, P, V.

=1 k=1

Note that A belongs to Y2(Q) and satisfies (4.2.34). Therefore A belongs to W!?(Q2) and
Corollary 4.2.13 implies that the estimate (4.2.35) is valid. Moreover, if Q is of class C*!, then
A belongs to W2?(Q)) and Corollary 4.2.13 implies that the estimate (4.2.36) is true.

4.3 Beltrami’s type decomposition

In this section, we will use the previous extensions of Beltrami’s completeness to show three

versions of Beltrami’s type decomposition for matrix fields in L2(£2).

Theorem 4.3.1. Assume that §) is of class C'*.
i) Let S € L2(Q), then there exist v € W'P(Q), A € Wh2(Q) NYY(Q) and E € Ky 4(Q) such
that

S=V,w+CurlCurl A+ E, (4.3.1)

where v is unique up to an additive rigid displacement, A is unique up to an element of

Kns(2), and E is unique, in addition, we have the estimate

lollwo@)/re) + [ Allwie@ iy + 1 Elle@) < Cll Sl (4.3.2)
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Moreover, if 0 is of class C*', thus A € W22(Q) N Y, [(Q) and we have the estimate

[ Allwzr@)/ky. @) < ClIS|lLr@)- (4.3.3)

i) Let 8 € LP(Q), thus there exist v € W'P(Q) , A € ngs’(Q) and E € Kr4(2) such that
S =V,v+CurlCurl A + E, (4.3.4)

where v is unique up to an additive rigid displacement, A is an unique element of W*P(Q),

E is unique and we have the estimate
[vllwrr@) r@) + [[Allwzr @) + | Bl @) < CllS|Le@)- (4.3.5)

iii) Let S € LP(Q), then there exist v € WP(Q), A € WEE(Q) N XE () and E € Ky ()
such that
S =V, w+CurlCurl A + E, (4.3.6)

where v and E are unique, A is unique to an additive element of Ky 4(2) and we have the
estimate

[vllwrr@) + |Allwer@)/kr @ + 1Bl @ < ClIS|o)- (4.3.7)
Moreover, if Q is of class C*', then A € WZE(Q2) N X7 (Q); and thus we have the estimate
| Allwer @)k @) < CllS]Le)- (4.3.8)
Proof. i) Let S € L2(€2). We set v the unique solution in W'?(Q)/R(Q) of the problem

DivV,2w =Div § in Q,
(Vszv—S)n=0on T.

The vector v is unique up to an rigid displacement and we have the estimate

[vlwir)/r@) < ClISLr @)
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Set B =8 — V,v, B satisfies Div B =0 in {2 and Bn = 0 on I'. We define the matrix E
by

—_ —_—

J
E:ZZBne )5, Vsr! + (Bn, P')s V ul.

i=1 j=1
Note that the matrix C defined by C = B — E satisfies the compatibility condition (4.2.33),
hence Theorem 4.2.14 implies that there exists A € Wy2(2) N Y} ((Q2) such that

C =CurlCurlA and [Alwir@) < COlC|w@)
So
S=Vw+ CurlCurl A + E,
and the estimate (4.3.2) holds true. Moreover, if € is of class C>!, then Theorem 4.2.14 implies
that A € W22(Q) N YR () and satisfies

HAHW“(Q) < ClIC||r(e-

Consequently, the estimate (4.3.3) is valid.
ii) Let S € L?(Q2) and C be defined as in the proof of the point i). Note that C € U%?(Q),
then there exists A € ng; (2) such that

C =CurlCurl A and [Alwzr@) < ClC|lw@)
Henceforth
S=V,o+ CurlCurl A+ FE,

and the estimate (4.3.5) is valid.
iit) Let S € L?(Q). Denote by, v the unique solution in Wy”(Q) of the Dirichlet problem

DivV,2o=DivS in QQ,
v=0 on I.
Then, B = S — Vv satisfies Div B = 0.

We set .
E = ZZ (Bn,€')r, V! + (Bn, P')r, Vwh.

i=1 k=1
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So, the matrix C = B — FE satisfies the compatibility conditions (4.1.14)-(4.1.16), then The-
orem (4.1.16) implies that there exists a unique matrix A € W22(Q) N Y% () /Ky 4(€2) such
that C = Curl Curl A. Consequently,

S=V,o+ CurlCurl A+ F,

and the estimate (4.3.7) is valid. Moreover, if Q is of class C*', then A € W22(Q) and the
estimate (4.3.8) is true. O

Remark 4.3.2. The decomposition 4.53.4 is still true if p =2 and €1 is only Lipschitz.

Geymonat et al [32] have shown a Hodge decomposition of L2(2). Here, we will show a

Hodge decomposition of L?(€2) when 1 < p < oo.
Corollary 4.3.3. Assume that Q is of class C1', then the following direct sum is true:
L2(Q) = Kns(2) & HY () & HE ,(Q) @ Ko (Q) @ UJP(Q), (4.3.9)
where
HY (Q) = {V.v, v e Wi ()},
HS ,(Q) = {V, v e WP(Q), DivV,w =0, (V)n, e)r, = (Vv)n, P)r, =0}

Proof. Let S € L?(Q2), then Theorem 4.3.1 implies that S is composed as in (4.3.6). We set

w the solution of the problem
DivV,2w = 0 in Q,
(Vsw)n = (CurlCurlA)n on T
Then, for any 1 <7 <3 and 1 < k < I, we have
(Vsw)n, €)r, = ((Curl Curl A)n, €')r, =0,
(Vsw)n, P, = ((Curl Curl A)n, P')r, =0.
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So, V,w € Hy (). Setting now, C = Curl Curl A — V,u which belongs to Hf ,(Div, Q).
Therefore,

3 J e~ —
SN[ e ¥ + o 27
=1 j=1

%

»>

— D+F,

.

Cn, e') gVu + (Cn, P1>2Vr]

Q
I
I Mm /?

where D is unique in U%?(Q) and F is unique in Ky (). Henceforth,
S=E+Vawu+Vaw+D+F,

which is the required result. O

4.4 The bi-Laplacian problem for symmetric matrix with

normal boundary conditions

In section (4.2), we have used the inf-sup condition (4.2.12) to solve the elliptic problem
(4.2.16) in Vi, (). Here, we will use a similar argument to solve the following bi-Laplacian

problem

( AX’E4+V.w=B and DivE=0 in 9
Exn=Dxn, v=vy on I,
CurlExn=CurlD xn on T,

| (Sm, e)r, = (Sn, P, =0, 1<k<I, 1<i<3,

(4.4.1)

where E and v are unknowns, B, vy and D are are given data. This problem represents
a matrix analog of Stokes problem with pressure boundary conditions (see [9]) , where the
Laplacian operator is replaced by the bi-Laplacian ones and the gradient operator is replaced

by the linearised strain tensor.
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Using Corollary 4.2.13 and similar argument as in proof of Lemma 4.2.6, we can establish the

following inf-sup condition:

Lemma 4.4.1. Assume that 2 is of class C'. Then, the following inf-sup condition holds

true: there exists a constant 3 > 0, such that

/ Curl Curl E : Curl Curl ¥ dx
Q

inf  sup > 8, (4.4.2)
\IIEV;;’\;S(Q),EEV%J(QL ”E Xg(Q)H‘IIHXg/(Q)
v£0 E#0

where
VR (Q)={SeX{ (), DivS=0 in Q and {Sn,e')r, ={Sn, P')r, =0}.
The inf-sup condition (4.4.2) allows us to solve the following elliptic problem.

Theorem 4.4.2. Assume that Q0 is of class CY'' and B € (Hg:S(Curl Curl, Q)) such that
Div B =0 in Q and satisfying the following compatibility condition

VM € Kyi(), (B, M) =0. (4.4.3)

[Hg:s (Curl Curl, Q)]' x [ngs (Curl Curl, 2)]
Then, the problem

AN*E=B and DivE=0 inQQ,
Exn=CurlExn=0 onl, (4.4.4)
(En, €')r, = (En, P)r, =0, 1<i<3, 1<k<I.

has a unique solution in \WLP(Q2) which satisfies the following estimate

HEHWLP(Q) S C’1||BH(ngS(CurlCurl,Q))" (445>
Moreover, if Q is of class C*', then E € W*P(Q) and
||E||W2'p(9) S C2||BH(H€;(CUI‘1CHI‘1, Q)" (446)
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Remark 4.4.3. Using the same argument has in proof of [15, Proposition 8.14], we can show
that for any matrix S of [Hg:s(Curl Curl, Q)]’, there exist two matrix A and B of L?(€2) such
that

S = A + Curl Curl B.

Proof. Due to the inf-sup condition of Lemma 4.4.1, the problem:
find E € V% () such that for all ¥ € V% (%),

/ CurlCurl E : Curl Curl ¥ dz = (B, ¥) (4.4.7)
Q

[HY,(Curl Curl, Q)] x[H , (Curl Curl, Q)]

has a unique solution E € V} (Q) C W'P(Q).
Let O € XZ;\/LS(Q) and let v be the unique solution in WP (Q)NW;* () satisfying Div Vv =
Div ¥ in €. Setting

I
U=W-V,uv- (Z Z((‘if —V.)n, e, Vol + (T - V,o)n, Pi)kaS'wf>
i=1 k=1

we see that ¥ € V%S(Q) and using the compatibility condition (4.4.3), the problem (4.4.7)

becomes:

For all ¥ € X5 (%),

/QCurl Curl E : Curl Curl ¥ dz = (B, ‘Ij>[Hg:S(Curl Gurl, )] x HE'(Curl Curl, 2)]

which is equivalent with the problem (4.4.4). Then, the problem (4.4.4) has unique solution
E € WHP(Q). Remark 4.2 iii) of [9] implies that
|Curl Curl E||») < C’||B||(Hp/5(

0.s(Curl Curl, Q))"

The estimate (4.4.5) is a consequence of Corollary 4.2.13. Moreover, if € is of class C*!, then
E belongs to W2?(Q)) and Corollary 4.2.13 implies that the estimate (4.4.6) holds true. [

Now, we consider the case of the inhomogeneous boundary conditions.
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Corollary 4.4.4. Assume that Q is of class C*'. Let B € [Hg:S(Curl Curl, Q)] such that
Div B = 0 and satisfying the compatibility condition (4.4.3) and D belongs to H?(Curl Curl, Q)
with (D x n, Curl D x n) € WQ_%“D(F) X Wl_%’p(F). Then, the following problem

AN’E=B and DivE=0 inQ,
Exn=Dxn and CurlExn=CurlDxn onT, (4.4.8)
(En, e')p, = (En, P')p, =0, 1<i<3, 1<k<I

has a unique solution in W*P(Q) which satisfies the following estimate

1Bz < C (1Bl cumtcuntoy = 1P X 1l + [CUrlD x|y, ).
(4.4.9)

Proof. Step 1. We show the existence of a divergence free matrix Ey, € W*P(Q2) such that
Eoxn=Dxnand Curl Eg xn =CurlD xn .

We define the matrix D, = (D x n) x n which belongs to Wzﬁ’p(f‘). Then, there exists
a divergence free matrix field A; € W*?(Q2) such that Ay = D and satisfies the estimate

1A Llwzr@) < CID7 og0 ) < CID X 1oy, (4.4.10)

"(r PPy

Furthermore, A; x n = D x n on I'. Now, we set C = A" — D, we have for any ¥ €
W27 (€2) 0 W™ (92),

/(an):Curl‘If = /C:CurlCurl\Il—/\I!:CurlCurlC
r Q Q
= /(A1 — D) : CurlCurl & — / ¥ : Curl Curl (A; — D)
Q Q

= 0.

Then, Remark 4.2.3 implies that
A" xn=Dxn on T.

We set Curl C, = (CurlC' x n) x n which belongs to Wl_%’p(F). As we have seen in the
proof of Proposition 4.2.1, there exists Ay € W»P(€2) "Wy”(Q) such that Curl A, = Curl C,
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and satisfies the estimate

[Aslwer@) < CICULCy iy, < CUDXRY oy, +ICU Dy, ). (4410)

)
Furthermore, Curl A; x n = Curl C x n on I'. Also, for any ¥ € W>?'(Q), we have

/F(C“” (47— C) xm): ¥ = /Q<A§ym ~ C) : Curl Curl ¥ — /Q ¥ : Curl Curl (4" - C)
= /(Az —C): CurlCurl ¥ — / ¥ : Curl Curl (4, — C)
Q Q

= 0.

Then, Remark 4.2.3 implies that
Curl A" xn=CurlC xn on T.

We define A = A" — AY™ which belongs to W2?P(Q)) and satisfies A x n = D x n and
CurlA x n = Curl D x n on I'. We set v the solution in W*?(Q) N W*(Q) of the
homogeneous Dirichlet problem Div V v = Div A in Q. Finally, we define E, by

=A-— V”_ZZ (A—V)n,e)r, Vol + ((A—Vw)n, P, Vawl).

=1 k=1
Note that F, satisfies

E, e W*?(Q), DivE;=0 in Q,
Eioxn=Dxn and CurlEgxn=CurlD xn on T,
(Eon, €')r, = (Egn, P')p, =0, for any 1<i<3, 1<k<I.

Also, from (4.4.10) and (4.4.11), we have

|Bollwzsay < CUD x mll ooy, + [Curl D xmll oy, ). (4.4.12)

P

)
Step 2. We solve the elliptic problem (4.4.8).
We set F' = B — Curl Curl(Curl Curl E;). Note that F' belongs to [Hg:s(Curl Curl, Q)]

and satisfies the estimate

1F , <O D xnll g, + Curl D xnl s, ).

(4.4.13)

s(Curl Curl, Q)] HB H [Hp (Curl Curl, Q)]
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Let E; be the solution of the homogeneous problem (4.4.4), when the right hand side is equal
to F. Then, E = E, + E; is the unique solution in W2?(Q) of the problem (4.4.8) and we
deduce from (4.4.13) that E satisfies the estimate (4.4.9). O

In Section 4.2, we have shown that if Q is of class C*!, then the space Y}, ,(€2) is continuously
embedded in W?P(Q). This result can be generalized in the case when the homogeneous

boundary conditions are replaced by inhomogeneous ones. We define the space Y77 (Q2) by

Y™P(Q) = {S € L2(Q), Div.S € W= 1r(Q), Curl Curl S € W"22(Q),
S xneW' »PT), Curl S xneW""5”T) on T}

Theorem 4.4.5. Assume that §) is of class C™*, where m is an integer such that m > 2, then

the space YTP(Q) is continuously embedded in WP (S).

Proof. i) First of all, we suppose that m = 2. Let S € Y27(Q), let E in W?P(Q)) be the
solution of the inhomogeneous problem (4.4.8) when D = F = S and the right hand side B
is equal to 0. Now, we set A = S — E which belongs to Y} (©2). Due to Theorem 4.2.11,
the matrix A belongs to W2?(Q2). Consequently, S belongs to W2?(Q)) and we have

ISllwzri) < [lAllwzr) + | Ellwer o)

< C(lAllr@) + [Div Allyyis o) + [|[Curl Curl ALy,

_l_

IS o3, + [ Curl S n||W1_%7p(F)>

IN

C (IISlle(@ + [Div S[lwi(q) + | Curl Curl S|y (o)

+ 118 % nll o g, + [Curl S x n\|w1_%7p(r)) .
ii) We suppose that m > 3. We introduce the space of vector fields
Y™ (Q) = {v € LP(Q), dive € W 2(Q), curlv € W™ 2(Q), v x n € W 5(I)}.

Amrouche et al [9] have shown that if 2 is of class C™!, then Y™"(Q) is continuously embedded

in W™P(Q). Let S € Y™P(Q), we have shown that S belongs to W*?(Q), then Curl S belongs
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to WHP(Q). Consequently, for any 1 < i < 3, the vector field Curl §’ belongs to Y™ (1),
then Curl S belongs to W™17(Q) and we have the estimate

chrl SHWm—l,p(Q) C(chrl SHLP(Q) + HDiV S”Wm—l,p(Q)

<
+ [|Curl Curl S||wm-2(q) + [[Curl S x n“wm”*%@(r))
< C(HSHLP(Q) + ||D1V SHW""*LP(Q) + ||CUI‘1 Curl S||Wm72(Q)

) (4.4.14)

+

I8 % 2l o+ 1 CUTTS x|y

Again, for any 1 < i < 3, the vector S’ belongs to Y"*(Q), then S belongs to W™?(Q) and

we have
1S 1lwrer(ey < CUIS o) + DIV Sllwm-1n(q) + |Curl Sliwn-soi@) + 1S X 2|t )-
(4.4.15)
From (4.4.14) and (4.4.15), we conclude
1S]lwmr @) < CllS|lvrrq),
which is the required result. O

Theorem 4.4.6. Assume that Q is of class C*'. Let B, D and v, such that
B € [Hy,(Curl Curl, Q)]', D belongs to H2(Curl Curl, Q) with (D x n, Curl D x n) €
W2*%’p(f‘) X Wlfi’p(l“) and vy € Wlﬁ’p(f‘) satisfying

VM € Ky(Q), (B, M)q — / vy - (Mn)ds = 0. (4.4.16)

Then, The problem (4.4.1) has unique solution (E,v) € W2P(Q) x WP(Q) which satisfies

the estimate

|B o) + [olwisey < C (1Bl ou curnay + 1D x nll oy

+ lcurlD xnl oy, ool )
Proof. We consider the problem
DivV,2w=DivB in 2, v =v on I
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Since Div B belongs to W ™'?(Q), it has an unique solution in W'*(Q) and satisfies the

estimate
).

Note that the matrix F' = B — Vv belongs to [Hf ,(Curl Curl,2)]" and satisfies the com-
patibility condition (4.4.3). Then, the problem (4.4.1) becomes

||v||W1’p(Q) < C1(||B||[HgvS(CurlCurl,Q)]’ + ||’UO||W1_%’p(Q)

;

AN*E=F, DivE=0 in Q,
Exn=Dxn, CurlExn=CurlDxn on T,
(En, €')r, = (En, P')p,, 1<i<3,

1<k<I

(4.4.17)

\

We have shown that the regularity of the domain €2 implies that the problem (4.4.17) has a

unique solution in W*P(Q) with the estimate

B lwesir < COIF g cumcuwnrany + 1D < 7l oy, + ICurl D xnll oy, ),

@)

which ends the proof. O
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Chapter 5

Traces Characterizations for Sobolev

Spaces on Lipschitz Domains of R?

In [29], Geymonat et al have used the Airy’s function (which represents the 2-dimensional
case of the Beltrami’s representation) to characterize the range of the trace operator
v: H?*(Q) — HYT) x L?(I)
f N 5f) (5.0.1)
|T on’’
where Q) is a Lipschitz domain of R2. Duran et al have used the same argument to generalize
this result in the Sobolev spaces W??(Q2), 1 < p < o . Later, Geymonat et al in [16] have
used a different technic to generalize the above result in the three dimensional case.
In this chapter, we will use another characterization of LP?—symmetric matrix fields to
characterize the range of the operator:
v W3P(Q) — WHP(T) x LP(T') x LP(T)
H —_— —_—
f (f\F? ana 8’",2)’

where Q is Lipschitz domain of R?. .

97



5.1 Homogeneous Bi-Laplacian problem
In this section, we will consider the following homogeneous Bi-Laplacian problem:

A’u =0 in Q,

(Pg) qu = go onT, (5.1.1)
g—z = g1 on I.

Recall the following result (see [22]).

Theorem 5.1.1. Let Q be a bounded open subset of RN of class of C', with N > 2 and let
go € HY(T') and g, € L*(T). (5.1.2)
Then there exists a unique u € H3/%(Q) solution to Problem (Pg) with the estimate

||u||H3/2(Q) < C<||90||H1(r) + ||91||L2(F))- (5.1.3)

On the other hand, we know that if ) is a bounded open subset of RV of class of C%! and
[ € L*(9), then there exists a unique solution v € HZ(Q) satisfying A%u = f in  with the

estimate
||U||H2(Q) <C ||f||L2(Q)- (5.1.4)
We know that if go € H'(T') and g, € L*(T") verify the condition (1.0.13) with p = 2, then
there exists a function u € H%(Q) satisfying u = gy and g_:i = ¢; on ' with the estimate
[ul ey < O‘ %t‘i‘glnH . (5.1.5)
H'Y2(T)

The question that interests us here is to find such a function v in addition biharmonic in
Q.

Theorem 5.1.2. Let Q be a bounded open subset of RN of class C*', with N > 2. Let gq
and g1 be satisfy the conditions (5.1.2) and (1.0.13). Then there exists a unique biharmonic
function v € H?(Q) satisfying u = go and % = g1 on I with the estimate (5.1.5).

98



Proof. Let w € H*(Q) such that w = gy and % = g¢; on I'. We know that there exists a
unique solution z € HZ(Q) satisfying A%z = A%w in Q. The required function is given by

u=w— 2. .
Remark 5.1.3. Let us introduce the following Hilbert space
HIT/Q(F) = {ve H'*(); v, = 0}.
Clearly
v E HlT/z(F) < wv=gn with ge L*I') and gnec HI/Q(F)

The above result asserts that for any
g€ L*I') suchthat gne HY*()

there exists a function u € H*(Q) N HY(Y) such that 3 = g on T. Moreover among all

functions satisfying these conditions, there is one that is biharmonic.

We will see now an interested consequence of this result which will allow us to establish the
existence of very weak solutions in domains which are only Lipschitz. Before that, recall that
if 2 is of class C*' and g € H~Y/2(T"), then there exists a unique harmonic function u € L?(Q)
satisfying u = g on I'. When 2 is not sufficiently regular, there is not possible in general to
define the trace of harmonic function v € L*(Q) in H~*(T) for some s > 0. So, let us introduce

the following Hilbert space:
M(Q) ={veL*Q); AveL*(Q)}.

We denote its norm by

lollary = (loll72) + 1A0[172()" .

It is easy to prove that D(Q) is dense in M (Q).
As a consequence of this density result and of Theorem 5.1.2, we can prove the following

lemma.
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Lemma 5.1.4. Let Q be a bounded open set of RN of class C*', with N > 2. The linear

mapping v — (vn)|r defined on D()) can be extended to a linear continuous mapping
M($) — [H* (D))
Moreover, we have the Green formula: For allv € M(Q2) and ¢ € H*(Q) N H}(Q),
/QvAgo dx — /Q eAvdr = ((vn)r, V). (5.1.6)

Remark 5.1.5. When Q is of class Ct', then the linear mapping v — v|r defined on D(2)

can be extended to a linear continuous mapping
M(Q) — H (T
and we have the Green formula: For all v € M(Q2) and p € H*(Q) N HY(Q),
/QvAgo dx —/ngAv dx = (v, g—;’;) (5.1.7)

We now can solve the Laplace equation with singular boundary condition.

Theorem 5.1.6. Let Q be a bounded open set of RN of class C%', with N > 2. For any
g€ H V2T suchthat gne [HY*(D))
there exists a unique function u € L*(Q) solution to the problem
Au=0 nQ and un=gn onl, (5.1.8)

with the estimate

lullzz@) < Cllgnll gy -

Proof. Thanks to the Green formula (5.1.7), it is easy to verify that u € L?(2) is solution to
Problem (5.1.8) is equivalent to the following variational formulation: Find u € L?(Q) such
that for all ¢ € H*(Q) N HY(Q),

/QuAgo dr = (gn, V¢>[H1T/2(F)],XH1/2(F) . (5.1.9)
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Indeed, let u € L*(2) be a solution to (5.1.8). Then, the Green formula (5.1.7) yields (5.1.9).

Conversely, let u € L*(Q) be a solution to (5.1.9). Taking ¢ in D(f2), we obtain Au = 0
in 2 and uw € M(£2). Using this last relation and again the Green formula (5.1.7), we deduce
that for all p € H*(Q) N HL(Q),

um, VOl a2y = (9™ VO o)

Let o € HY?(T). By Remark 5.1.3, we know that there exits ¢ € H2(Q2) N HE(Q) such that
pu =V onI'. Thus,

wm ) sy = (0 VD ey = 97 By

and un =gnon .
Let’s then solve Problem (5.1.9). We know that for all F' € L?*(f2), there exists a unique
© € H*(Q) N H}(Q) satisfying —Ap = F in Q, with the estimate

[0l 52i) < CllF |20
Using estimate (5.1.4) we get
|<gn7 V(‘D>[H1T/2(P)}’><H%F/2(F)’ < Hgn”[H%F/Q(F)]/HVSDHHUZ(F) < C HgnH[HlT/Q(F)]/”FHLQ(Q)'
In other words, we can say that the linear mapping
T:F+— (gn, V¢>[H1T/2(F)],XH;/2(F)

is continuous on L?(Q), and according to the Riesz representation theorem, there exists a

unique u € L*(2), such that
VE € L*(Q), T(F) :/uF,
Q

i.e u is solution of Problem (5.1.9).
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5.2 An Hessian representation for L’-symmetric matrix

fields

In the rest of this chapter, Q is a bounded and connected open of R? with Lipschitz-
continuous boundary. In this section, we will present an new characterization of the LP-
symmetric by using the Hessian matrix. For that, we need some results, the first one is the

following vector potential theorem which have been presented by Duran and Muschietti in
[23]:

Lemma 5.2.1. Let 1 < p < oo, v € LP(Q) with divv = 0 in Q and satisfying the compatibility
condition

<v-n,1>p=0 for j=0,---,J

Then there exists a function ¢» € WIP(Q) such that curly = v in Q.

The previous lemma is the key to generalize the Airy’s function theorem in LP(2). In fact

it suffices to follow the same steps of proof of Theorem 2 of [1] to obtain the following result:

Lemma 5.2.2. Given S = (s;5)i j=12 € L2(Q2), then S fulfills the following statements :

DivS=0 inQ, (5.2.1)
(Si'n, )r,=0 for i=1,2 and j=0,---,/J (5.2.2)
<Sl n, $2>rj = <Sz N, 1’1>Fj fO’I“ ] = 0, Tt ,J, (523)

if and only if there exists an Airy’s function w € WP(Q) such that

0w 0w p 0w
S11 — ——5 S12 — — an S99 = —5 .
dxd’ 021024 ox?

(5.2.4)

We are now in position to give a characterization of LP-symmetric matrix field as a Hessian

of a scalar field belonging to W?2?(Q).
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Theorem 5.2.3. Given S € LE(Q), then S fulfills the following statements:

curl S; =0 inQ, for i=1,2 (5.2.5)
(St, ey, =0 for i=1,2 and j=0,---,J, (5.2.6)
(St,x)r, =0 for j=0,---,J (5.2.7)

if and only if there exists w € W*P(Q) such that
S =Hessw in . (5.2.8)

Proof. i) First, let S = Hessw with w € W*P(Q). Tt is clear that S belongs to LZ(2) and
satisfies (5.2.5). It rest to show that S satisfies the compatibility conditions (5.2.6) and (5.2.7).
Lemma 5.2.2 implies that the following compatibility conditions hold true

(S*n,e'yr, =0 for i=1,2 and j=0,---,J (5.2.9)

(81 m,x0)r, = (S5 -n,z1)r, for j=0,---,J (5.2.10)

i
Let us observe the following equalities
ST -mn=S8-t and S; - n=-5-t

So, we have the relations (5.2.6) and (5.2.7).

ii) Conversely, let S € L?(2) satisfies the compatibility conditions (5.2.5)-(5.2.7). Then, the
matrix §* € L2(Q satisfies (5.2.9) and (5.2.10). Moreover, as curl § = 0 in €2, then div S* = 0
in Q. Due to Lemma 5.2.2, there exists w € W??(Q) such that

0*w B 0*w
o _ 03 0x101
0*w 0*w

 Owy0m, 0x?

Consequently,
S =Hessw in (.
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5.3 The range of the traces of W?37(())

Geymonat [28] proved that if  is a Lipschitz domain of R? and (go, g1, go) € W'?(T) x
LP(T") x LP(T") belongs to the range of the operator (7o, 71, 72), then it must satisfy the
following conditions

o 990

qi= 5 t+gmne WP (1), (5.3.1)

and
H:=[(Vqt)-t]t® t+[(Vgt) - n](ton+not)+pnone W 37(T).  (53.2)

In this section, we will show that the necessary conditions (5.3.1) and (5.3.2) are sufficient.

First, we will show the following results.

Lemma 5.3.1. The operator
Div : Wg(Q) — L§(9), (5.3.3)

is onto. Consequently, for each vector field v € L{(Y), there exists a symmetric matriz field
S in W(l)f;(Q) such that
DivS=v inQ,

and there exists a constant C' depends only on p and €2 such that
[Slwre@) < Cllvllzr@)-

Proof. The proof is based on Theorem 3 of [20] and it is composed on three steps.

Step 1. We show a vector version of J. L. Lions lemma. Here, we follow the same steps
of proof of Theorem 3.1 of [(]. Let v € D'(2) be such that Vv € W;P(Q). The identity

8j(8kvi) = @-(st)ik + 8k(st)ij — ai(st)jk

implies that for any k,i = 1,2, the distribution djv; has a gradient in W2?(Q2). Then
Proposition 2.1 of [¢] implies that Oyv; is in W~1P(Q). In other words, V v; belongs to
W 12(Q) for each i = 1,2. Again Proposition 2.1 of [¢] implies that v € L”(Q).
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Step 2. We show an extension of Donati’s theorem. Let p’ be the conjugate of p and

S € W71 (Q) be such that
w-iw (@) (S, E)wirgy =0 forall E € Vo (9). (5.3.4)

Moreau’s theorem [11] implies that there exists v € D'(Q) such that Vo = S in Q. By Step
1, we get v € LP(Q2).
Step 3. We show that the operator (5.3.3) is onto. As consequence of Step 2, we deduce
that the following operator

V,: LY (Q)/R(Q) — [VIP(Q)]°. (5.3.5)
is an isomorphism. Above the polar set is defiend as follow:

VIP(Q)]° = {8 € W;1P(Q)  satisfying (5.3.4)}.

So, the dual operator

Div : Wg(Q)/VEP(Q) — LE(Q), (5.3.6)

is an isomorphism. O

1

Lemma 5.3.2. Let A € Wiig’p(F) satisfies the compatibility conditions (5.2.6) and (5.2.7) of
Theorem 5.2.5. Then, there exists S € WP(Q) such that

curlS=0 in Q and S=A onl. (5.3.7)

Moreover, there exists a constant C depends only on p and € such that

[S][wre@) < CHAle_%,p(F)- (5.3.8)

Proof. Let A be as in the statement of Lemma 5.3.2 and M € W?(Q) be such that Mr = A

on I' and satisfies the estimate

||M||W1’P(Q) < C||A||W1_%,p (5.3.9)

()’
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Let us observe that

aMQQ 8 mo1

. O0xq 0xs curl M,
Div M* = —
_am12 n omi —curl M,
8I1 8x2

Now, setting v = Div M*. We search R € W(l):’;(Q) such that div R = v in Q. By using

(5.2.6), we get
/v~eldx:/(am22 - am?l)dx:/Mg-tdazo.
QO Q aZEl 8x2 r

By the same, we get
/v-ede:—/Ml-td(j:O.
Q r

And by using (5.2.7), we get

/v-de:B:—/M* :V:chij/(M*n)-aclda:—/(Mt)-acda:O
Q Q r

r

The second integral above is equal to zero since M™* is symmetric and also the third on the
boundary by using (5.2.7) Then, Lemma 5.3.1 implies that there exists R € Wolf(Q) such
that div R = div M™ and satisfies the estimate

1Rllwire) < ClLAN -2 - (5.3.10)
The symmetric matrix S = M — R* € W!?(Q) and satisfies

S|F = M|F =A with ||S||W1,p(Q) S OHAHWI_%J)(F)'
Observe that Div §* = 0, then curl S = 0. Moreover, (5.3.9) and (5.3.10) implies that the

estimate (5.3.8) holds, which ends the proof. O
Lemma 5.3.3. Let go € WYP(T), g1, go in LP(T') be such that the vector field q = %t—i—gln
be in WHP(T'). Then, the matriz field H defined by
H =[Vqt) - tjt@ t+[(Vgt) n](te@n+n®t)+gpnen,
satisfies
(Ht, e')yr, = (Ht, ), = (Ht, x)r, =0, j=1,---,.J. (5.3.11)



Proof. As g € W'P(I'), there exists w € W*?(Q) such that w;r = go, g—z =g and g = (Vw)r

(see [1]). By definition of tangential derivatives, we get (Vq)t = 0;,q = (V>w)t. A simple

calculus gives
(mMen)t=0, (Nnt)t=n, ten)t=0, (txt)t=t. (5.3.12)
Then, we get
Ht = [(Vqt)-t][tot)t] +[(Vet) n][(t@n+n@t)t] + g [(n@n)E]
= [(Vqt) -t t+[(Vqt)-n]n
= (Vq)t=Viuwt.
Finally, Theorem 5.2.3 implies that
(Ht, ')y, =(Viwt, '), =0, i=1,2, j=1,---,J,
(Ht, z)r, = (V2wt, x)r, =0, j=1,---,J.
O

By using the same argument of proof of Corollary 3.7 of [21], the following results holds

true:
Proposition 5.3.4. The following linear operator
0y : W» (D) — W»?(D),

1s continuous and

Ker 9, = R.
We are now in position to characterize the range of the trace operator in W3?(Q).

Theorem 5.3.5. Let go € WHP(T), g1, go € LP(T') be given. Then, there exists w € W3P(Q)

such that 5 52
w w
W= o 5o =01 and —— =g, onl, (5.3.13)

n
if and only if go, g1 and gs satisfy the conditions (5.3.1) and (5.3.2).
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0 0?

Proof. i) First, let w € W*?(Q), go = wyr, g1 = 8_w and gy = a—u; By definition of tangential
n n

derivatives, then the vector field ¢ and the matrix field H defined in Lemma 5.3.3 satisfy the

conditions (5.3.1) and (5.3.2):
1
q=(Vw)p € WT) and H = (VZw)p € W, **(I).

ii) Conversely, Lemma 5.3.3 implies that H satisfies the compatibility conditions (5.2.6) and
(5.2.7), then Lemma 5.3.2 implies that there exists S € W:P(Q) such that curl S = 0 in Q
and S = H on I'. As the matrix S satisfies the conditions (5.2.5)-(5.2.7), then there exists
wy € W?P(Q) such that V2w, = S in 2. Consequently, wy € W3?(Q) and (V?wo)r = H. A

simple calculus gives
mMen)n=n, (N®t)n=0, ten)n=t, (txt)n=020.
Then,

(32w0

(Hn) -n = ((Vwo)n) -n = Tt

=gy onl. (5.3.14)

Also, using (5.3.12), we get
(V2wo)t = Ht = (Vq)t on T,

Hence, Proposition 5.3.4 implies that ¢ = (Vwy)r + ¢o where ¢g € R%. Let us observe that

the following fonction w; = wy + ¢g - « satisfies

62w1 8211)0 8w1
g2~ omp 9r 1= Ve and Hn=ar

Moreover,

Again, Proposition 5.3.4 implies that go = (w:1)r + ¢1 where ¢; € R. Finally, the function

w = wj + ¢; answers to our question since

do_ow_ 0w dw
on om0 MY 52T g2 T

which ends the proof. O

w = Yo,
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