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Abstract

Recently, with the development of deep Convolutional Neural Networks (CNNs) and

large-scale datasets, face recognition (FR) has made remarkable progress. However,

recognizing faces in large poses and under heavy occlusion remains a vital challenge

due to the unbalanced training data. Thanks to Generative Adversarial Neural

networks (GANs), synthesizing photorealistic multi-view faces and unveiling heavily

occluded face images becomes feasible, which significantly facilitates FR and has a

wide range of applications in entertainment and art fields. This thesis provides an

in-depth study of GAN-based face image synthesis and its application to FR.

The current facial image synthesizing methods have featured two main research

lines, i.e., 2D-based and 3D reconstruction-based. Our works cover both of them.

For 2D-based face pose editing, current methods primarily focus on modeling the

identity preserving ability but are less able to preserve the image style properly,

which refers to the color, brightness, saturation, etc. This thesis proposes a novel

two-stage approach to solve the style in-consistency problem, where face pose ma-

nipulation is cast into pixel sampling and face inpainting. With pixels sampled

directly from the input image, the face editing result faithfully keeps the identity

and the image style.

For traditional 3D face reconstruction, due to the linear and low-dimensional na-

ture of the 3D Morphable Model (3DMM), the reconstructed textures hardly capture

high-frequency details, resulting in blurred textures that are far from satisfactory.

Some recent 3D face reconstruction methods have also leveraged adversarial train-

ing to improve the texture quality. However, these methods either rely on scarce,

non-public 3D face data or complex and costly optimization approach. This thesis

proposes a high-fidelity texture generation method, which predicts the global tex-

ture of the 3D face from a single input face image. The training is based on the

pseudo ground truth blended by the 3DMM and input face textures. Multiple par-

tial UV map discriminators are leveraged to handle the imperfect artifacts in the

pseudo ground truth.



In terms of face de-occlusion, we propose a Segmentation-Reconstruction-Guided

face de-occlusion GAN, consisting of three parts, a 3DMM parameter regression

module Nθ, a face segmentation module NS , and an image generation module NG.

With the texture prior provided by Nθ and the occluded parts indicated by NS , NG

can faithfully recover the missing textures. The proposed method outperforms the

state-of-the-art methods quantitatively and qualitatively.

Keywords: face pose editing, 3D face reconstruction, facial image de-occlusion.
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Résumé

Récemment, avec le développement des "Convolutional Neural Networks"(CNNs)

et des ensembles de données à grande échelle, la reconnaissance des visages (RF)

a fait des progrès remarquables. Cependant, la reconnaissance de visages dans de

grandes poses et sous forte occlusion reste un défi vital en raison du déséquilibre des

données d’entraînement. Grâce aux "Generative Adversarial Networks" (GANs), il

est possible de synthétiser des visages multi-vues photoréalistes et de dévoiler les

images de visages fortement occlus, ce qui facilite considérablement la RF et offre un

large éventail d’applications dans les domaines du divertissement et de l’art. Cette

thèse fournit une étude approfondie de la synthèse d’images de visages basée sur les

GAN et de son application à la RF.

Les méthodes actuelles de synthèse d’images faciales présentent deux axes de

recherche principaux, à savoir les méthodes basées sur la 2D et celles basées sur la

reconstruction 3D. Nos travaux couvrent les deux. Pour l’édition de la pose du visage

en 2D, les méthodes actuelles se concentrent principalement sur la modélisation

de la capacité de préservation de l’identité mais sont moins capables de préserver

correctement le style de l’image, qui fait référence à la couleur, la luminosité, la

saturation, etc. Cette thèse propose une nouvelle approche en deux étapes pour

résoudre le problème d’incohérence de style, où la manipulation de la pose du visage

est divisée en échantillonnage de pixels et en peinture du visage. Avec des pixels

échantillonnés directement à partir de l’image d’entrée, le résultat de l’édition du

visage conserve fidèlement l’identité et le style de l’image.

Pour la reconstruction traditionnelle de visages en 3D, en raison de la nature

linéaire et basse dimensionnelle du modèle morphable 3D (3DMM), les textures re-

construites capturent à peine les détails à haute fréquence, ce qui donne des textures

floues qui sont loin d’être satisfaisantes. Certaines méthodes récentes de reconstruc-

tion de visages en 3D ont également exploité l’entraînement contradictoire pour

améliorer la qualité de la texture. Cependant, ces méthodes s’appuient soit sur des

données de visage 3D rares et non publiques, soit sur une approche d’optimisation



complexe et coûteuse. Cette thèse propose une méthode de génération de texture

haute-fidélité, qui prédit la texture globale du visage 3D à partir d’une seule im-

age de visage en entrée. L’apprentissage est basé sur la pseudo vérité de terrain

mélangée par le 3DMM et les textures du visage d’entrée. De multiples discrimina-

teurs de cartes UV partielles sont utilisés pour gérer les artefacts imparfaits de la

pseudo-vérité terrain.

En termes de désocclusion de visage, nous proposons un GAN de désocclusion

de visage basé sur sengmentation et reconstruction, composé de trois parties, un

module de régression des paramètres 3DMM Nθ, un module de segmentation des

occlusions NS , et un module de génération d’images NG. Avec la texture préalable

fournie par Nθ et les parties occluses indiquées par NS , NG peut récupérer fidèle-

ment les textures manquantes. La méthode proposée surpasse quantitativement et

qualitativement les méthodes de l’état de l’art.

Mots clés: synthèse de pose de visage, reconstruction de visage tridimensionnelle,

dé-occlusion d’images faciales.
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Chapter 1

Introduction

With the advent of deep Convolutional Neural Networks (CNNs) [6] and the con-

struction of large-scale databases, computer vision has made tremendous progress in

recent years. Various computer vision-related applications have profoundly affected

our lives, among which the most widely used is the ubiquitous face recognition (FR)

system. As we all know, for CNN-based FR, the performance of a model is mainly

influenced by two factors: one is the algorithm, and the other is the data: On the

algorithm side, a series of models and metrics have been proposed, making the cur-

rent FR models smaller, faster and more accurate; on the data side, researchers

and companies have built face datasets in the millions or even tens of millions of

volumes. However, it is not enough to increase face data in terms of quantity, as the

uneven distribution and lack of diversity in the dataset lead to a decrease in accuracy

under some extreme conditions, e.g., recognizing faces across large poses and under

heavy occlusions. To address these issues, researchers typically use methods such

as constructing more balanced and diverse datasets, augmenting training data with

geometric transformations/randomly synthesized occlusions, and designing more ef-

ficient loss functions and network structures that decouple poses/occlusions from

facial features.

Recently, the development of face image synthesizing provides new solutions

to such problems. For example, the technique can be used in both the training

and testing phases in large-pose face recognition. In the training phase, one can

synthesize face images with extreme poses to make the model robust to the view

angle; In the testing phase, the profile images can be transformed into frontal and

then recognized. In addition, since the human face is the main organ for recog-

nizing people, expressing/understanding emotions, and communicating in our daily
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lives, synthetic photo-realistic face images have broad application scenarios, includ-

ing media and entertainment industries, art, etc. However, psychological [7, 8] and

anatomical [9, 10, 11] studies have demonstrated that humans have a special per-

ceptual mechanism for faces and that minor imperfections in face images can attract

human attention and even bring about huge differences in perception, making face

image synthesizing a challenging task.

This thesis focuses on high-fidelity face image synthesizing and its application

to FR. Specifically, we cover three sub-domains, 1. face pose editing, 2. texture

generation for 3D face reconstruction, 3. face image de-occlusion.

1.1 Face Pose Editing

Face pose editing aims to change the view angle of an input face image while keep-

ing its original identity unchanged. Research in this area can be divided into three

categories: traditional 3D reconstruction-based methods, GAN-based 2D image gen-

eration methods, and the combination of both.

1.1.1 3D Reconstruction-based Methods

Before the widespread use of deep learning, the dominant approaches have focused

on 3D reconstruction-based methods. [1] uses 68 facial landmarks to aligns an

average 3D face model with the input face image. The face image is then projected

onto the aligned model and rotated to present the frontal view. Figure 1.1 shows

its process. The method has two obvious weaknesses: firstly, it is unreliable to

fit all face images with an average face model, regardless of the expression and

the identity, and secondly, it cannot handle the self-occluded textures, resulting in

significant artifacts in the frontalized face images. [12] also employs an average 3D

face to perform face frontalization. They propose a soft-symmetry strategy to fill

the invisible part of the profile image with pixels from its visible symmetric region.

Despite the visual improvements, this method still fails to produce photo-realistic

face images. A more commonly used 3D face model, in addition to the average 3D

face above, is the 3D Morphable Model (3DMM) [13]. It has been widely used in

2
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Figure 1.1: Overview of 3D pose normalization of [1]

3D face-related researches since its appearance. The model is a vector basis of the

shape and texture learned from a set of 3D face scans. One can get the weights of

those vectors, as well as the lighting conditions, by optimizing reconstruction losses

of the 2D face images [14]. With the reconstructed 3D face, face images at any

target pose can be obtained by 3D geometrical transformation and 2D projection.

Nevertheless, the 3DMM is constructed by a small number of face scans under

well-controlled conditions, limiting its diversity to identity, race, age, gender, etc.

Besides, due to the linear and low-dimensional nature of the model, it can hardly

capture high-frequency details. In summary, the traditional 3D reconstruction-based

methods mainly face the following difficulties:

• The shape is not accurate enough.

• The synthesized textures are not photo-realistic, either sampled from the input

image or reconstructed from the texture model.

• The optimization process is complex and costly.

1.1.2 GAN-based Methods

Thanks to the breakthroughs of Generative Adversarial Networks (GANs) [15], nu-

merous GAN-based face pose editing approaches have been proposed [16, 17, 18, 19],

significantly improving the visual realism of the synthesized images. Typically, these

methods contain an encoder and a decoder and follow an adversarial training strat-

3
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egy. DR-GAN [16] encodes face images to the feature space, then feeds it to the

decoder together with a one-hot pose label. The generator will generate the face

image with the indicated pose. A multi-task discriminator is employed to supervise

both the identity preservation ability and the pose editing ability of the generator.

However, without the supervison of pixel-level loss, DR-GAN’s reults are of low

quality. TP-GAN [17] introduces a dual-path generator that focuses on local and

global transformations, respectively, to frontalize the input face images. CAPG-

GAN [18] proposes a couple-agent discriminator to distinguish generated pairs from

ground-truth pairs, one agent for pose manipulation and the other for identity con-

sistency; the introduction of 2D landmark heat maps as pose representation makes

pose editing more flexible than DR-GAN or TP-GAN. FNM [19] makes the follow-

ing improvements comparing to TP-GAN: 1. replacing the local path generator by

multiple local and global discriminators, 2. applying pixel-wise loss only on frontal

inputs (since their corresponding outputs should remain as they are), avoiding the

need for paired training data. Most of the above methods are trained on controlled

datasets, such as Multi-PIE [20], and focus on the identity preserving ability during

pose synthesis, leading to stylistic inconsistencies between the output and the input.

1.1.3 3D Reconstruction & GAN-based Methods

It is natural to think of incorporating the 3D prior in GAN-based methods. FF-

GAN [21] made the first attempt. Besides the traditional encoder-decoder structure,

it trains a 3DMM regression model which regresses the 3D coefficients of the input

face, providing additional information for the generation. However, it is unclear how

much this implicit provision of 3D information helps the generation, and the quality

of the generated images is low. In comparison, 3D-PIM [22] explicitly leverages

the 3D shape to guide the face frontalization. It is actually a combination of the

traditional 3D face reconstruction-based method and TP-GAN. The 3D module

generates texture-deficient frontalized faces, while TP-GAN serves to refine them to

be photo-realistic. The explicit 3D rotation allows the 3D-PIM to converge faster

and requires less training data than pure 2D GAN-based approaches. HF-PIM [23]

predicts a UV texture map and a sampling map from the input image. The former

4
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is a flattened global facial texture, while the latter stores the coordinates of pixels

in the UV map, establishing the correlation between the pixels in the target image

and the pixels in the UV map. Although it claims that it does not employ 3DMM

to present shape or texture information, its method is equivalent to 3DMM because

the ground truth of its sampling map derives from the 3DMM reconstruction results.

Most data-driven face pose editing methods rely on paired training data, which is

relatively scarce compared to ordinary face datasets. [5] solves the problem by

introducing a rotate and render strategy: Given a face Rda at pose Pa, they rotate

and render it to an arbitrary pose Pb to get Rdb (Notice that this step is similar

to [1]), the artifacts in Rdb don’t matter; then, they rotate and render Rdb back

to Pa to get Rda′ . Comparing to Rda, the missing textures in Rda′ are due to the

self-occlusion from Pb to Pa, which is equivalent to convert a real face image from

Pb to Pa. So they only need to train the generator to reconstruct Rda from Rda′ . In

general, all GAN-related methods in this section and the previous section perform

better than traditional 3D reconstruction-based methods, but they suffer from more

or less the following problems:

• The lack of sufficient paired training data[17, 18, 23, 21].

• Style inconsistency between the input and output [17, 18, 16, 19].

• Texture inconsistency between outputs of different view angles [18, 5].

1.2 Texture Generation for 3D Face Reconstruction

3D face reconstruction has two main goals, shape and texture. Recently, significant

advances have been made in single image-based 3D face reconstruction. However,

most of the previous works focus on predicting accurate and fine-grained 3D shapes,

relatively little work has focused on generating high-fidelity face textures. The

existing 3D face texture generation techniques can be divided into three categories:

Texture model-based 3DMM has become an essential foundation for 3D re-

construction since its advent. Earlier approaches regress the 3DMM parameters by

solving a non-linear optimization problem [24, 25], which is often slow and costly.

5
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With the development of Convolutional Neural Networks, recent studies tend to

predict the parameters using learning-based methods [26, 27, 3]. Nevertheless, as

discussed in section 1.1.1, due to the linear, low-dimensional nature of the model,

textures generated by the 3DMMmodel cannot capture fine details of the face image.

Image generation-based GANs provide a powerful tool for generating pho-

torealistic images. Some recent 3D face reconstruction methods have leveraged

GAN-based methods to improve the quality of the generated textures [28, 4, 29].

However, those approaches are highly dependent on large 3D face databases. [28]

is trained on a synthetic 3D face database [30], leading to artifacts and blurring

generation. The training of [4, 29] is based on a large UV map dataset, which is

not publicly available.

GAN optimization-based The traditional yet most powerful GANs are

trained to synthesize images from noise vectors [31, 32, 33]. To leverage the power of

a pre-trained GAN, a series of works are established on inverting the image back to

a GAN’s latent space using optimization-based approaches [34, 35, 36, 37]. Similar

methods are used to generate the UV map of a face image [38, 39]. First, they train

a generator that converts noise vectors into UV maps. Then they directly optimize

the latent code to minimize the reconstruction error between the input face image

and the image rendered by the generated UV map. Instead of training a UV map

generator, [40] first rotates the input image in 3D and optimizes the latent code

of the pre-trained StyleGAN to fill in the missing textures, then stitches textures

of different view angles by alpha blending to form the final UV map. By far, the

optimization-based methods can yield the most realistic face UV maps. Neverthe-

less, they are usually complex and time-consuming, e.g., GANFIT [38] takes 30

seconds to generate the UV map of an input face, while OSTeC [40] takes up to 5

minutes.

In summary, among the current texture generation methods for 3D face recon-

struction, those based on texture models cannot yield high-fidelity results due to

the model’s simplicity; those based on image generation rely heavily on large train-

ing dataset; those based on optimization are time-consuming and require a high

computational cost.
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1.3 Face Image De-occlusion

The study of face images is a popular area in computer vision with vast appli-

cation scenarios. In the past decade, deep learning has boosted many impressive

face-related techniques, such as face recognition, expression recognition, 3D face

reconstruction, and facial landmark detection. However, faces obtained in uncon-

strained environments are often occluded by various objects, e.g., masks, glasses,

hands, scarfs, etc., leading to the degraded performance of the techniques above.

Therefore, faithfully recovering face images from occlusions is an important research

direction.

Before widely used deep learning-based methods, the dominant approaches were

based on matching and copying patches from known regions to the invisible regions.

A representative one is PatchMatch [41], which recursively searches the nearest

neighbor textures to fill in the holes. Such copy-and-paste-based methods work

well in recovering simple low-frequency textures and obtaining smooth images; how-

ever, they cannot recover high-level textures with complex structures, for example,

missing nose/mouth in occluded face images.

SSDA [42] proposes a deep auto-encoder to remove specific noises and occlusions

in the image, pioneered the use of deep neural networks for denoising and inpainting

images. Its impressive performance led to the prosperity of deep learning-based

image inpainting methods. Inspired by the GAN-based image generation method,

Context Encoder [43] introduces adversarial training to image inpainting for the

first time. Since then, the combination of auto-encoder and discriminator has been

adopted as the basic model structure for image inpainting tasks. To make the

model concentrate more on the missing parts [44, 45] leverage two discriminators:

the global discriminator takes the whole image as input, while the local discriminator

takes only the small region around the missing part. However, such a design is only

suitable for a single rectangular(or even square) hole and cannot be applied to images

with irregular and arbitrarily distributed holes. To properly handle free-form masks,

[46] propose a Partial Convolutional Layer, comprising a masked and re-normalized

convolution operation followed by a mask-update step. Precisely, they fuse mask

7
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information into the forward path, and each convolution operation considers only the

features corresponding to the visible positions. [47] pointed out that each neuron’s

receptive field expands with the forward propagation, making the corresponding

mask inaccurate. Furthermore, it is not reasonable to “hard-gate” features in all

channels equally. Therefore, they propose a gated convolution module, which learns

a soft mask for the features in different layers. Due to the ineffectiveness of CNNs

in modeling long-term correlations between distant textures and the hole regions,

the inpainting results often have boundary artifacts and look unreal. [45] propose

a Contextual Attention module, which utilizes the image features as a convolution

kernel, forcing the distant textures interact with each other.

The common problem of the above methods is that they all require manually

masking out the occlusions when applied to the face de-occlusion task. ByeGlass-

GAN [48] jointly trains an eyeglass-face segmentation decoder, which shares the

same encoder with the face decoder. The implicit segmentation hints extracted by

the encoder, rather than the manual mask, guide the face decoder to remove the eye-

glasses. [49] propose a semi-supervised face de-occlusion method. Benefiting from

an elaborated forward process, the model automatically learns to predict occlusions

without ground truth. [50] use the 3D face reconstruction results as priors and feed

them into the generator along with the occluded faces. Since the 3D reconstruction

results are occlusion-free, implicitly provide the occlusion information, their model

directly de-occludes the face image without relying on the segmentation task. [51]

proposed a two-stage GAN, where the first GAN aims to reconstruct the occlusion

part solely, and the second GAN takes the result of the first GAN as a hint making

the input image occlusion-free. Although the above methods do not require manual

labeling, they all need synthetic occluded face images for training. Thus the type

and amount of synthetic occlusions are crucial.

In summary, there are two factors that determine the effect of face de-occlusion,

one is how to detect the occlusions’ position and the other is how to generate realistic

faces. Existing algorithms either require manually labeled occlusion regions or a

large amount of simulated data for training, and the variety of occlusions are often

too limited, resulting in poor generalization ability.

8
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1.4 Contributions

The contributions of this thesis are listed as follows:

• In terms of face pose editing, we propose a novel "Pixel Attention Sampling"

module, casting the problem into pixel sampling and image in-painting, ex-

plicitly preserving more style information of the input image and reducing the

reliance on paired training data.

• For 3D face texture generation, a novel weakly supervised learning strategy is

proposed, bypassing the need for scarce 3D data and the costly optimization

approach.

• A segmentation-reconstruction-guided facial image de-occlusion framework is

proposed, which aggregates face segmentation, 3D face reconstruction, and

face generation. The method outperforms the SOTAs qualitatively and quan-

titatively.

1.5 Outline

The rest of this thesis is organized as follows:

• Chapter 2 — Literature Review

We review all related work in this chapter, including the fundamentals of

GANs and the techniques we use in our research.

• Chapter 3 — Pixel Sampling for Style Preserving Face Pose Editing

This chapter focuses on preserving the style information while performing

pose editing of 2D facial images. A novel two-stage face pose editing method

is proposed, a Pixel Attention Sampling module is designed.

• Chapter 4 — Texture Generation for 3D Face Reconstruction

This chapter introduces a weakly-supervised texture generation method for

3D face reconstruction. A large pseudo texture dataset is generated based on

9
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Poisson Blending. A multi-head sampler module is designed to 1) extract the

in-complete UV map from face images, 2) mask out the occlusions.

• Chapter 5 — Facial Image De-occlusion GAN

This chapter proposes a segmentation-reconstruction-guided facial image de-

occlusion method. A novel occluded face image dataset is proposed, with both

the ground truth occlusion and the synthesized occlusion. An occlusion robust

face reconstruction module and a face segmentation module are effectively

trained based on the dataset. A novel facial de-occlusion module which can

handle arbitrary occlusions is proposed.

• Chapter 6 — Conclusions and Future Work

The work of this paper is summarized, and the next step of work is proposed.

10
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Literature Review

This thesis focuses on synthesizing photo-realistic face images, where the most cru-

cial factor determining the generation quality is the model’s design. Therefore, this

chapter first introduces several representative generative models, including Varia-

tional AutoEncoder(VAE) [52], Generative Adversarial Networks(GANs) [15]. And

then focus on several essential modifications to the traditional GANs, including

Wasserstein GAN (WGAN), Wasserstein GAN with gradient penalty (WGAN-GP),

spectrally normalized GAN (SN-GAN), Self-Attention GAN (SAGAN), followed by

the evaluation metrics of the generation quality, i.e., Fréchet Inception Distance

(FID), Inception Score(IS). Finally, we summarize the chapter.

2.1 Generative models

Machine learning models can be roughly classified into two categories: the dis-

criminative model and the generative model. Given a set of data X and their

corresponding labels Y , the discriminative model captures the probability of Y con-

ditioned by X, P (Y |X); the generative model captures the joint distribution of X

and Y , P (X,Y ).

As shown in Figure 2, the discriminative model predicts data categories by learn-

ing the boundary between categories, whereas the generative model generates data

indistinguishable from the real data by modeling the data distribution. Generative

models tackle a more difficult task than discriminative models since they have to

consider all aspects of the data in the real world. In contrast, the discriminative

models only need to concentrate on the differences between classes. For example,

it is much more challenging to train a model to generate photo-realistic cat/dog
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(a) Discriminative (b) Generative

Figure 2.1: Difference between the discriminative models and the generative model

images than training a model to distinguish between cat and dog images.

Typical discriminative models include logistic regression, support vector machine

(SVM), decision trees, and most deep neural networks. Typical generative models

include Naive Bayes classifiers, Gaussian Mixture Model(GMM), latent Dirichlet al-

location (LDA), Variational Autoencoders (VAE), and Generative Adversarial Net-

work (GAN). Next, we will introduce two representative deep learning-based models,

VAE and GAN, in detail.

2.1.1 Variational Autoencoder

Variational Autoencoder (VAE) [52] combines the deep neural networks methods

with statistical learning to approximate the real data distribution by simple distri-

butions. Like the traditional autoencoder [53, 54], it is composed of an encoder,

which encodes the data into the latent space, and a decoder, aiming to reconstruct

the input from the latent code. The difference is that VAE maps the inputs to distri-

butions (regularized by a predefined simple distribution, e.g., standard multivariate

normal distribution) rather than isolated points, and the decoder’s inputs are sam-

pled from the encoded distributions, Figure 2.2 illustrates the difference between

the two models. Therefore, the VAE’s hidden space has the following properties:

1. Continuity, two similar codes will decode to similar data; 2. Completeness, any

code in the hidden space can be mapped to the data space. Mathematically, the

12
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Encoder Decoder

(a)

Encoder Decoder

(b)

Figure 2.2: Difference between the AE (a) and the VAE (b)

VAE aims to maximize the likelihood shown in Equation 2.1,

p(xi) =

∫
p(xi|z; θ)p(z)dz, (2.1)

where xi is sampled from the real data, z is the latent code sampled from a known

distribution p(z), and θ represents the parameter of the decoder. However, the

maximization of Equation 2.1 is intractable. Therefore, VAE seeks to maximize

the Evidence Lower Bound (ELBO) of logp(xi), which is its core idea. The en-

coder aims to approximate the posterior distribution of p(z|xi), denoted as qφ(z|xi),

where φ is its parameter. Thus, the Kullback-Leibler (KL) divergence between two

distributions is given by,

DKL(qφ(z|xi)‖p(z|xi)) = −
∫
qφ(z|xi)log

(
p(z|xi)
qφ(z|xi)

)
dz > 0, (2.2)

By Bayes’ rule and rules of logarithms, Equation 2.2 is further derived as,

−
∫
qφ(z|xi)log

(
p(z|xi)
qφ(z|xi)

)
dz > 0,

−
∫
qφ(z|xi)log

(
pθ(xi|z)p(z)
qφ(z|xi)p(xi)

)
dz > 0

−
∫
qφ(z|xi)log

p(z)

qφ(z|xi)
dz −

∫
qφ(z|xi)logpθ(xi|z)dz+

∫
qφ(z|xi)logp(xi)dz > 0

DKL(qφ(z|xi)‖p(z))− Ez∼qφ(z|xi)[logpθ(xi|z)] + logp(xi) > 0

logp(xi) > Ez∼qφ(z|xi)[logpθ(xi|z)]−DKL(qφ(z|xi)‖p(z)),
(2.3)

The right hand side of Equation 2.3 is the optimization objective of VAE, i.e., the

ELBO of the log-likelihood. It has two terms, the first term measures the likelihood
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of the reconstructed data, and the second term regularizes the posterior distribution

by the predefined distribution. The implication of the first term is as follows: we

first encode xi to a specific latent distribution qφ(z|xi), then we sample z from this

distribution ∼ qφ(z|xi), next we decode z back to a new distribution in data space,

the likelihood of xi under this distribution is denoted as Pθ(xi|z), the higher the

Pθ(xi|z), the better the reconstruction ability of the model. Thus, the first term of

the ELBO serves as the reconstruction error like the traditional autoencoder. More

specifically, suppose pθ(xi|z) = N (fθ(z), σ
2I), where xi ∈ Rk,

pθ(xi|z) =
1√

(2π)kσk
exp

(
−‖x− fθ(z)‖

2

2σ2

)
(2.4)

the first term drives as:

Ex∼qφ(z|xi)[logpθ(xi|z)] = − 1

2σ2
Ex∼qφ(z|xi)[‖x− fθ(z)‖

2] + C, (2.5)

where C is a constant. Maximizing the first term of Equation 2.3 is equivalent to

minimizing ‖x− fθ(z)‖2. Although pθ(xi|z) is not necessarily normally distributed,

this does not change the fact that the first term represents the reconstruction ability

of the model. In practice, we can use L1 loss, L2 loss, or cross-entropy loss to guide

the training.

All that remains is to derive the closed-form of the second term of Equation 2.3,

DKL(qφ(z|xi)‖p(z)). p(z) is predefined as N (0, I) to facilitate computation and to

allow good properties of the hidden space (complete, continuous, easy to sample).

qφ(z|xi) is also restricted to be a normal distribution N (µ,Σ), where µ, Σ are

outputs of the encoder, and Σ is diagonal. We deduce the KL divergence of two

multivariate normal distributions below.

By definition, the distribution function of a multivariate normal distribution is

as,

N(x;µ,Σ) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2.6)

where µ is its mean and Σ is its covariance matrix.
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The KL divergence between two distributions p(x) and q(x) is given by,

DKL(p(x)||q(x)) =

∫
p(x) · log

(
p(x)

q(x)

)
dx

=

∫
p(x) (logp(x)− logq(x)) dx

= Ex∼p[logp(x)− logq(x)].

(2.7)

Let p(x) = N (x;µ1,Σ1), q(x) = N (x;µ2,Σ2), we get,

logp(x)− logq(x)

=log

(
1√

(2π)k|Σ1|
exp

(
−1

2
(x− µ1)TΣ−1

1 (x− µ1)

))
−

log

(
1√

(2π)k|Σ2|
exp

(
−1

2
(x− µ2)TΣ−1

2 (x− µ2)

))

=
1

2
log
|Σ2|
|Σ1|

+
1

2

[
(x− µ2)TΣ−1

2 (x− µ2)− (x− µ1)TΣ−1
1 (x− µ1)

]
.

(2.8)

Thus,

DKL(p(x)||q(x)) = Ex∼p[logp(x)− logq(x)]

=Ex∼p
[

1

2
log
|Σ2|
|Σ1|

+
1

2

[
(x− µ2)TΣ−1

2 (x− µ2)− (x− µ1)TΣ−1
1 (x− µ1)

]]
=

1

2

(
log
|Σ2|
|Σ1|

+ Ex∼p
[
(x− µ2)TΣ−1

2 (x− µ2)
]
−

Ex∼p
[
(x− µ1)TΣ−1

1 (x− µ1)
] )

(2.9)

For Ex∼p
[
(x− µ1)TΣ−1

1 (x− µ1)
]
, we apply the trace trick1,

Ex∼p
[
(x− µ1)TΣ−1

1 (x− µ1)
]

=Ex∼p
[
tr
(
(x− µ1)TΣ−1

1 (x− µ1)
)]

=Ex∼p
[
tr
(
(x− µ1)(x− µ1)TΣ−1

1

)]
,

(2.10)

1s = vTWv = tr(vTWv) = tr(vvTW )
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the linearity of the trace operator further gives,

Ex∼p
[
tr
(
(x− µ1)(x− µ1)TΣ−1

1

)]
=tr

(
Ex∼p

[
(x− µ1)(x− µ1)T

]
Σ−1

1

)
=tr

(
Σ1Σ−1

1

)
=tr(Id).

(2.11)

For Ex∼p
[
(x− µ2)TΣ−1

2 (x− µ2)
]
, we need to introduce µ1 to facilitate the

derivation, since x ∼ p = N (x;µ1,Σ1),

Ex∼p
[
(x− µ2)TΣ−1

2 (x− µ2)
]

=Ex∼p
[
((x− µ1) + (µ1 − µ2))T Σ−1

2 ((x− µ1) + (µ1 − µ2))
]

=Ex∼p
[
(x− µ1)TΣ−1

2 (x− µ1) + (x− µ1)TΣ−1
2 (µ1 − µ2)+

(µ1 − µ2)TΣ−1
2 (x− µ1) + (µ1 − µ2)TΣ−1

2 (µ1 − µ2)
]

(2.12)

where µ1 − µ2 is a fixed vector, thus the expectation of the second and the third

term above is zero. We apply the trace trick again for the first term and get,

Ex∼p
[
(x− µ2)TΣ−1

2 (x− µ2)
]

=tr(Σ1Σ−1
2 ) + (µ1 − µ2)Σ−1

2 (µ1 − µ2).
(2.13)

Taking Equation 2.11, Equation 2.13 into Equation 2.9 gives,

DKL(p(x)‖q(x))

=
1

2

(
log
|Σ2|
|Σ1|

+ tr(Σ1Σ−2 1) + (µ1 − µ2)TΣ−1
2 (µ1 − µ2)− tr(Id)

)
.

(2.14)

Recall that qφ(z|xi) ∼ N (µ,Σ), where Σ is diagonal,

Σ =


σ2

1 0 0 · · · 0

0 σ2
2 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · σ2
k


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and q(z) ∼ N (0, I), thus,

DKL(qφ(z|xi)‖p(z)) =
1

2

k∑
j=1

(−logσ2
i + σ2

i − 1 + µ2
i ). (2.15)

The ELBO in Equation 2.3 is therefore given by,

logp(xi) > Ez∼qφ(z|xi)[logpθ(xi|z)]−
1

2

k∑
j=1

(−logσ2
i + σ2

i − 1 + µ2
i ), (2.16)

where σ2
i is the i-th element on the diagonal of matrix Σ, and µi is the i-th element

of the mean µ.

Maximizing the ELBO is equivalent to minimize the following loss function,

L(xi) = −Ez∼qφ(z|xi)[logpθ(xi|z)] +
1

2

k∑
j=1

(σ2
i + µ2

i − logσ2
i − 1). (2.17)

As discussed before, Ez∼qφ(z|xi)[logpθ(xi|z)] measures the reconstruction ability,

thus could be replaced by typical reconstruction losses, e.g., L1 loss,

L(xi) = ‖x̂i − xi‖1 +
C

2

k∑
j=1

(σ2
i + µ2

i − logσ2
i − 1), (2.18)

where x̂i denotes the reconstruction result corresponding to xi and C is a hyper-

parameter that balances the regularization and the reconstruction errors.

As mentioned before, the input z to the decoder follows the distributionN (µ,Σ),

where µ and Σ are the outputs of the encoder. However, when we train the model,

sampling directly from the above distribution causes the back-propagation gradient

to be blocked, making it impossible for the encoder parameters to be updated, so

the reparameterization trick is used here. We sample a random variable ε from

N (0, I), and transform it to have the mean µ and covariance matrix Σ,

z = Σ · ε+ µ. (2.19)

In summary, the training algorithm of the VAE is as follows:
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Algorithm 1 Training algorithm of VAE
Input: training dataset {xi}; Encoder qφ and decoder pθ; Regularization weight C
Output: trained parameters φ and θ
1: for number of training iterations do
2: Sample minibatch of m samples xB = {x1, ..., xm} from the training data.
3: Encode the minibatch:

µB,ΣB = qφ(xB)
4: Sample noise for the minibatch:

εB ∼ N (0, I)
5: Reparameterize the noise:

zB = ΣB · εB + µB
6: Reconstruct the minibatch from the reparameterized parameters:

x̂B = pθ(zB)
7: Compute the loss:

L(xB) = ‖xB − x̂B‖1 + C
∑k

j=1(Σ2
Bj + µ2

Bj − log(Σ2
Bj)− 1)

8: Update the parameters φ and θ by the gradients of the loss:
θk+1 := θk +∇θL(xB)
φk+1 := φk +∇φL(xB)

9: end for

(a) (b)

Figure 2.3: 2D encoding of MNIST by VE (a) and VAE (b)

Figure 2.3 visualizes the 2D encoding of MNIST [55] by AE and VAE. We can ob-

serve that the coding of VAE is more compact than that of AE, and the distribution

is close to the normal distribution.

2.1.2 Generative Adaversarial Networks

The idea of Generative Adversarial Networks (GAN) [15] originates from the zero-

sum game in game theory. As shown in Figure 2.4, it consists of two parts, a
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Generator Discriminator Real
Fake?

Figure 2.4: Structure of GAN

generative network (generator, G) and a discriminative network (discriminator, D).

Similar to the decoder of the VAE, the generator maps random hidden variable

z ∼ N (0, I) to the data space to generate fake data x̂. The discriminator is a binary

classifier predicting whether its input is real.

Mathematically, D and G are trained in an adversarial paradigm with the fol-

lowing value function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log (1−D(G(z)))], (2.20)

where pdata(x) and pz(z) represent the real data distribution and the random noise

distribution, respectively.

The discriminator has two kinds of inputs, the real data x ∼ pdata(x) and the

fake data G(z) generated by the generator from the noise z ∼ pz(z). It is trained

by the Cross-Entropy loss:

LD = − 1

m

m∑
i=1

[logD(xi) + log (1−D(G(zi)))] , (2.21)

where m denotes the batch size.

The generator takes the noise z ∼ pz(z) as input and generates the fake data

G(z), which is expected to trick the discriminator. Thus, its loss function is as,

LG =
1

m

m∑
i=1

log (1−D(G(zi))) . (2.22)

However, the generated data is very unrealistic at the beginning of the training,

such that the discriminator can easily identify them correctly. Therefore, D(G(zi))
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tends to be zero. The derivative of Equation 2.22 with respect to the generator

parameters θG is as:

dLG(zi)

dθG
= − 1

1−D(G(zi))
· dD(G(zi))

dG(zi)
· dG(zi)

dθG
. (2.23)

On the right side of the above equation, the first term tends to 1, while the second

term tends to 0 (because D(G(zi)) is roughly a constant function whose derivative

is 0), causing the overall derivative to tend to 0. Therefore, in practice we usually

use the following modified version of the generator loss:

LG = − 1

m

m∑
i=1

log(D(G(zi))), (2.24)

whose derivative with respect to θG is as:

dLG(zi)

dθG
= − 1

D(G(zi))
· dD(G(zi))

dG(zi)
· dG(zi)

dθG
. (2.25)

The above equation is similar to Equation 2.24, except for the first term, which

tends to infinity rather than 1. Thus the derivative calculated by Equation 2.25 is

much bigger than that of Equation 2.24. The training of GAN follows Algorithm 2:

Algorithm 2 Training algorithm of GAN
Input: training dataset {xi}; G and D; D update step k per G update
Output: Parameters of G and D: θG and θD
1: for number of training iterations do
2: for k steps do
3: Sample minibatch of m samples {x1, ..., xm} from real data pdata(x).
4: Sample minibatch of m noise samples {z1, ..., zm} from noise prior pz(z).
5: Update the discriminator parameters:

θk+1
D := θkD +∇θD 1

m

m∑
i=1

[logD(xi) + log (1−D(G(zi)))]

6: end for
7: Sample minibatch of m noise samples {z1, ..., zm} from noise prior pz(z).
8: Update the generator parameters:

θk+1
G := θkG +∇θG 1

m

m∑
i=1

log(D(G(zi)))

9: end for
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2.2 Modification of GANs

2.2.1 Problems of the traditional GAN

GANs have faced two main problems since their appearance: 1. training instabil-

ity, which requires careful balancing of the generator and the discriminator during

training; and 2. mode collapse, which leads to a lack of diversity in the generated

samples. In this section, we describe it in detail.

As discussed previously, the discriminator (D) minimizes

LD = −Ex∼Pr [logD(x)]− Ex∼Pg [log(1−D(x))], (2.26)

where Pr is the real data distribution, and Pg is the generated data distribution.

The generator (G) minimizes either

LG = Ex∼Pg [log(1−D(x))] (2.27)

or

LG = Ex∼Pg [−logD(x)]. (2.28)

However, they both have flaws.

• Equation 2.27 suffers from the vanishing gradients problem: the better the

discriminator is trained, the more severe the gradient vanishing.

• Equation 2.28 is equivalent to an unreasonable distance metric, resulting in

unstable gradient and mode collapse.

We will prove them separately in the following.

By letting the derivative of Equation 2.26 with respect to D(x) be zero, the

optimal discriminator is derived as:

D∗(x) =
Pr(x)

Pr(x) + Pg(x)
. (2.29)
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Figure 2.5: Example of two probability distributions that do not overlap.

To facilitate the derivation, we add a generator-independent term to Equa-

tion 2.27 (thus not changing the optimization objective): Ex∼Pr [log(D(x))], and

substitute the discriminator with the optimal one in Equation 2.29.

LG = Ex∼Pg [log(1−D(x))] + Ex∼Pr [logD(x)]

= Ex∼Pg

[
log

Pg(x)
1
2 [Pr(x) + Pg(x)]

]
+ Ex∼Pr

[
log

Pr(x)
1
2 [Pr(x) + Pg(x)]

]
− 2log2

= KL(Pg‖
1

2
(Pr + Pg)) +KL(Pr‖

1

2
(Pr + Pg))− 2log2

(2.30)

According to the definition of the JS divergence, we have

LG = 2JSD(Pr‖Pg)− 2log2. (2.31)

Therefore, minimizing the generator loss of Equation 2.27 is equivalent to minimizing

the JS divergence of Pr and Pg, which could be discretized as,

JSD(Pr(x)‖Pg(x)) =
1

2

∑
Pr(x)log

2Pr(x)

Pr(x) + Pg(x)
+

1

2

∑
Pg(x)log

2Pg(x)

Pr(x) + Pg(x)

=
1

2

(∑
Pr(x)log

(
Pr(x)

Pr(x) + Pg(x)

)
+
∑

Pg(x)log

(
Pg(x)

Pr(x) + Pg(x)

))
+ log2.

(2.32)

Pr and Pg barely overlap at the beginning of training(as shown in Figure 2.52,

Pr/(Pr + Pg) → 1, Pg/(Pr + Pg) → 1 ), which makes Equation 2.32 converge to

a constant log2 under the optimal discriminator, further resulting in the vanishing
2Figure take from https://blog.csdn.net/Invokar/article/details/88917214
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gradients of the generator. Thus, when we use Equation 2.27 as the generator loss,

it is crucial to balance the training of the generator and the discriminator to avoid

the vanishing gradients problem and update the generator efficiently.

Next, we concentrate on the second type of generator loss shown in Equa-

tion 2.28. We start by representing KL(Pg‖Pr) using the optimal discriminator

of Equation 2.29,

KL(Pg‖Pr) = Ex∼Pg
[
log

Pg(x)

Pr(x)

]
= Ex∼Pg

[
log

Pg(x)/(Pr(x) + Pg(x))

Pr(x)/(Pr(x) + Pg(x))

]
= Ex∼Pg

[
log

1−D∗(x)

D∗(x)

]
= Ex∼Pg log[1−D∗(x)]− Ex∼Pg logD∗(x).

(2.33)

Based on Equation 2.30 and Equation 2.31, we have

Ex∼Pg [log(1−D∗(x))] + Ex∼Pr [logD∗(x)] = 2JSD(Pr‖Pg)− 2log2. (2.34)

Combining Equation 2.34 with Equation 2.33 yields

Ex∼Pg [−logD∗(x)] = KL(Pg‖Pr)− Ex∼Pg log[1−D∗(x)]

= KL(Pg‖Pr)− 2JSD(Pr‖Pg) + Ex∼Pr [logD∗(x)] + 2log2,
(2.35)

where the last two terms are independent to the generator. Thus the second type

of generator loss is equivalent to KL(Pg‖Pr)− 2JSD(Pr‖Pg).

The above transformation reveals that the optimization objective defined by

Equation 2.28 contains two mutually exclusive terms: the KL(Pg‖Pr) and the

−2JSD(Pr‖Pg). The former aims to reduce the distance between Pg and Pr, but

the latter increases this distance, resulting in gradient instability during training.

Whats more, KL(Pg‖Pr) =
∫
PglogPg/Prdx is not symmetric:

• If Pr(x)→ 1 and Pg(x)→ 0, x tends to be real instance that cannot be gen-

erated by the generator. This case contributes very little to the loss function.
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Figure 2.6: Illustration of the EMD. The different color blocks on the left are trans-
ported to the position on the right of the same color.

• If Pr(x) → 0 and Pg(x) → 1, x tends to be fake. The corresponding KL

divergence will be ∞.

This asymmetry criterion causes the generator to prefer to produce limited kinds of

"safe" samples, resulting in insufficient generating diversity, i.e., mode collapse.

2.2.2 Wasserstein GAN

Wasserstein GAN [56] successfully addresses the problems described in the previous

section. Instead of the JS/KL divergence used above, it leverages the 1-Wasserstein

distance (Earth-Mover distance, EMD)

W[Pr, Pg] = inf
γ∈Π(Pr,Pg)

∫∫
γ(x, y)‖x− y‖dxdy

= inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖x− y‖]
(2.36)

where Π(Pr, Pg) denotes the set of all joint distributions γ(x, y) whose marginals

are respectively Pr and Pg, i.e.,∫
γ(x, y)dy = Pr(x),

∫
γ(x, y)dx = Pg(y). (2.37)

Intuitively, if we consider Pr and Pg as two piles of earth, Π(Pr, Pg) is a set of

transport plans that transform Pr into Pg, the EMD is the minimum “cost” corre-

sponding to the optimal transportion. Figure 2.63 illustrates how a pile of earth can

be transported into another shape and position, with the transport plan represented

by different colors.
3Figure taken from https://vincentherrmann.github.io/blog/wasserstein/
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Figure 2.7: Two 2D distributions that do not overlap.

Wasserstein distance is superior to the KL/JS divergences in that it quantifies the

distance of two distributions that do not overlap at all. Take two 2D distributions

in Figure 2.7 as an example: P1 and P2 are one-dimensional distributions with

the same shape, placed at different locations along the y-axis of the 3D space at a

distance of θ . Obviously,

KL(P1‖P2) =


+∞, if θ 6= 0

0, otherwise
(2.38)

JSD(P1‖P2) =


log2, if θ 6= 0

0, otherwise
(2.39)

W(P1, P2) = inf
γ∈Π(P1,P2)

E(x,y)∼γ [‖x− y‖] = θ. (2.40)

The JS/KL divergences are not continuous, taking either the maximum or minimum

value. In comparison, the Wasserstein distance is smooth and correctly measures

the distance between the two distributions. If we were to optimize θ using gradient

descent, the first two could not provide an effective gradient at all, but the Wasser-

stein distance could. While training GAN to map low-dimensional noise vectors to
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the high-dimensional image space, the generated distribution has a high probability

of not overlapping with the real distribution, thus making the KL/JS divergences

ineffective optimization targets.

The infimum in the definition of the Wasserstein distance (Equation 2.36) is

highly intractable, making it difficult to serve as a loss function. Thanks to the

Kantorovich-Rubinstein duality [57], it has the following equivalent form:

W(Pr, Pg) =
1

K
sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pg [f(x)], (2.41)

where ‖f‖L ≤ K denotes the space of K-Lipschitz continuous functions f : X → R.

Given two metric spaces (X, dx) and (Y, dY ), where dx denotes the metric on the

set X and dY is the metric on the set Y , a function f : X → Y is called Lipschitz

continuous if there exists K ∈ R,K ≤ 0 such that ∀x1, x2 ∈ X,

dY (f(x1), f(x2)) ≤ Kdx(x1, x2), (2.42)

K is called the Lipschitz constant of the function f . Simply, if f : R→ R, the above

requirement is equivalent to restricting the absolute value of the derivative of f not

exceeding K.

Equation 2.41 searches function ‖f‖L ≤ K that maximizes Ex∼Pr [f(x)] −

Ex∼Pg [f(x)]. If we use w to parametrize a family of functions {fw}w∈W that are all

K-Lipschitz for some K, the optimization problem is converted to

KW(Pr, Pg) = max
w∈W

Ex∼Pr [fw(x)]− Ex∼Pg [fw(x)]. (2.43)

In practice, fw(x) could be approximated by a neural network due to its powerful

fitting capabilities. In order for the neural network to be Lipschitz continuous,

[56] simply clamps the network’s parameters to a fixed range W = [−c, c], i.e.

[−0.01, 0.01] in the paper, after each gradient update. In this case, ∂fw
∂x will not

exceed a certain value, the Lipshcitz continuity condition is satisfied.Thus we can
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approximate the Wasserstein distance by maximizing

L = Ex∼Pr [fw(x)]− Ex∼Pg [fw(x)], (2.44)

where fw is the neural network paramatrized by w ∈ [−c, c]. The Lipschitz constant

K is omitted as it is positive and only affects the magnitude of the gradient without

changing its direction.

Equation 2.44 is exactly the objective function of the discriminator. It is easy to

observe that its goal is to train the discriminator to maximize the distinction between

the real and the generated distribution. In traditional GANs, the discriminator

outputs a real number between [0, 1], indicating the probability that a sample is real.

In comparison, the discriminator of the Wasserstein GAN (WGAN) approximates

the Wasserstein distance of two distributions, which is not limited to [0, 1] anymore.

Thus the last layer of the W-GAN is no longer the Sigmoid layer.

The generator maps a noise vector z ∼ pz to the data space G(z) ∼ Pg. And

its goal is to minimize approximated Wasserstein distance between the generated

distribution Pg and the real distribution Pr. The overall objective function of W-

GAN is as

min
θ

max
w

Ex∼Pr [D(x;w)]− Ez∼pz [D(G(z; θ);w)], (2.45)

where w and θ are the discriminator and generator parameters, respectively.

By replacing the KL/JS divergences with Wasserstein distance, WGAN has the

following achievements:

• It solves the problem of instability of adversarial training, and one no longer

needs to carefully balance the training process of the generator and the dis-

criminator.

• It solves the problem of mode collapse and generates images with a high degree

of diversity.

• The Wasserstein distance could be used as a criterion indicating the training

process; the smaller the value, the better the GAN is trained.
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The training process of WGAN is described in Algorithm 3.

Algorithm 3 Training algorithm of WGAN. α = 5e−5, c = 0.01, ncritic = 5.
Require: α, the learning rate; c, the clipping parameter; m, the batch size;

ncritic, the number of iterations of the discriminator per generator iteration.
Require: Initial parameters of D and G: w0, θ0.
1: while θ has not converged do
2: for t = 1, ..., ncritic do
3: Sample a batch of real data {x(i)}mi=1 ∼ Pr.
4: Sample a batch of latent variables {z(i)}mi=1 ∼ p(z).
5: gw ← ∇w[ 1

m

∑m
i=1 fw(x(i))− 1

m

∑m
i=1 fw(gθ(z

(i)))]
6: w ← w + α · RMSProp(w, gw)
7: w ← clip(w,−c, c)
8: end for
9: Sample a batch of latent variables {z(i)} ∼ p(z).

10: gθ ← −∇θ 1
m

∑m
i=1 fw(gθ(z

(i)))
11: θ ← θ − α · RMSProp(θ, gθ)
12: end while

Despite the success of WGAN, weight clipping in not a good way to ensure the

Lipschitz continuity of the discriminator. It suffers from two main problems:

• The hyper-parameter of the weight clipping should be carefully tuned. Due

to the cumulative effect across multiple model layers, a too large or too small

clipping parameter will lead to exploding or vanishing gradients problem, re-

spectively. As shown in Figure 2.84 on the left.

• As shown in the top right of Figure 2.8, weight clipping pushes the weights

towards the extremes of the clipping interval, largely restricting the neural

network’s power.

According to the properties of the Lipschitz continuous functions, if D : X → R

is K-Lipschitz continuous, we have,

‖∇xD(x)‖p ≤ K. (2.46)

Given p = 2 and K = 1, we can say that the L2 norm of the gradient of a 1-

Lipschitz continuous function does not exceed 1. Therefore WGAN-GP [58] imposes
4Figure taken from [58]
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Figure 2.8: Comparison of weight clipping and gradient penalty.

a novel gradient penalty term in the discriminator loss to penalize the gradients with

oversized norms. The new discriminator loss is as

L = −Ex∼Pr [D(x)] + Ex∼Pg [D(x)] + λEx̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2], (2.47)

where Px̂ is the distribution of the entire sample space. Due to the curse of di-

mensionality, it is challenging to estimate the expectation over the high-dimensional

sample space. Therefore, the proposed method samples data by randomly interpo-

lating the real and generated pairs,

xr ∼ Pr,xg ∼ Pg, ε ∼ Uniform[0, 1],

x̂ = εxr + (1− ε)xg.
(2.48)

The left side of Figure 2.8 shows that the gradients of the WGAN-GP remain

stable as the training progresses and do not vanish or explode, as is the case with

WGAN. The right side of Figure 2.8 shows that the weights learned by WGAN-GP

are more diverse, unlike WGAN, where the weights are stacked at the extremes of

the clipping interval. The training of WGAN-GP is described in Algorithm 4.
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Algorithm 4 WGAN with gradient penalty. λ = 10, ncritic = 5, α = 1e−4, β1 = 0,
β2 = 0.9.
Require: λ, gradient penalty coefficient; m, the batch size; α, β1, β2, Adam hy-
perparameters; ncritic, the number of iterations of the discriminator per generator
iteration;
Require: Initial parameters of D and G: w0, θ0.
1: while θ has not converged do
2: for t = 1, ..., ncritic do
3: for i = 1, ...,m do
4: Sample x ∼ Pr, latent variable z ∼ p(z), a random number ε ∼ U [0, 1].
5: x̃← Gθ(z)
6: x̂← εx+ (1− ε)x̃
7: L(i) ← Dw(x̃)−Dw(x) + λ(‖∇x̂Dw(x̂)‖2 − 1)2

8: end for
9: w ← Adam(∇w 1

m

∑m
i=1 L

(i), w, α, β1, β2)
10: end for
11: Sample a batch of latent variables {z(i)} ∼ p(z).
12: gθ ← −∇θ 1

m

∑m
i=1 fw(gθ(z

(i)))
13: θ ← Adam(∇θ 1

m

∑m
i=1−Dw(Gθ(z)), θ, α, β1, β2)

14: end while

2.2.3 Spectral Normalization

As discussed in the previous section, the Lipschitz continuity is a favorable prop-

erty that allows the discriminator to bypass the unreasonable probability-based loss

functions, i.e., KL divergence or JS divergence. Besides, the Lipschitz continuity

restricts the upper bound of the gradient norm, thus making the training more

stable. To ensure Lipschitz continuity of the discriminator, WGAN uses weight

clipping, while WGAN-GP imposes a gradient penalty term in the discriminator

loss. For the same purpose, spectrally normalized GAN (SN-GAN) [59] applies the

spectral normalization to the weights of the layers in the discriminator, making the

discriminator 1-Lipschitz. We present it in detail in this section.

Unlike WGAN-GP, which restricts the overall discriminator gradient, SN-GAN

focuses on the weights of each layer and makes the whole network Lipschitz contin-

uous by normalizing the weights corresponding to each layer.

In the case of discriminators D : I → R, where I denotes the data space. If D
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is K-Lipschitz continuous, then ∀x, y,∈ I,

‖D(x)−D(y)‖ ≤ K‖x− y‖, (2.49)

where ‖ · ‖ denotes the L2 norm. Since the linear and convolutional layers are essen-

tially matrix multiplication, we first study the Lipschitz continuity of the matrix.

If a linear function is K-Lipschitz at the origin, then it is K-Lipschitz everywhere.

As matrix transformations are linear, a matrix A : Rn → Rm is K-Lipschitz if and

only if

‖Ax‖ ≤ K‖x‖, ∀x ∈ Rn. (2.50)

This is equivalent to

〈Ax,Ax〉 ≤ K2〈x, x〉,∀x ∈ I, (2.51)

further equivalent to

〈(ATA−K2)x, x〉 ≤ 0,∀x ∈ I. (2.52)

As ATA is positive semidefinite, all of its eigenvalues are nonnegative. The or-

thonormal basis constructed by its eigenvectors is denoted as {ν1, ν2, ..., νn}, cor-

respondingly, the eigenvalues are denoted as λ1, λ2, ..., λn. Thus, ∀x ∈ I could be

decomposed as

x = x1 · ν1 + x2 · ν2 + ...+ xnνn. (2.53)

Substituting the decomposed x back to Equation 2.52 yields

〈(ATA−K2)x, x〉 = 〈(ATA−K2)

n∑
i=1

xivi,

n∑
j=1

xjvj〉

=
n∑
i=1

n∑
j=1

xixj〈(ATA−K2)vi, vj〉

=
n∑
i=1

(λi −K2)x2
i ≤ 0.

(2.54)

Since λi is nonnegative, to make Equation 2.54 hold for ∀x ∈ Rn , we must have

K2 ≥ max(λi). Suppose λ1 is the largest eigenvalue of ATA, we get K ≥
√
λ1,

where
√
λ1 is also called the spectral norm of A. Thus, the matrix A : Rn → Rm
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is K-Lipschitz and the minimum of K is
√
λ1. To make A further 1-Lipschitz, it

suffices to divide
√
λ1 over all elements of A.

For composite function f ◦g, we have ‖f ◦g‖L ≤ ‖f‖L‖g‖L. A multi-layer neural

network is exactly the composition of matrix multiplication and nonlinear activation

functions. The commonly used activation functions, e.g., ReLU, LeakyReLU, Sig-

moid, are all 1-Lipschitz and do not affect the overall Lipschitz norm of the model.

Thus, to make the discriminator 1-Lipschitz, we only need to ensure the convolu-

tion/linear layers to be 1-Lipschitz, which can be done by dividing the weights by

their spectral norms. The remaining task is to efficiently calculate the spectral norm

of the weight in the convolution/linear layer.

SN-GAN uses power iteration to estimate the spectral norm of a matrix (layer).

Suppose A is a full rank matrix of n × n. Its eigenvalues are λ1, λ2, ..., λn (in

descending order), and the corresponding normalized eigenvectors are ν1, ν2, ..., νn.

∀x ∈ Rn, x 6= ~0, we have x = x1 · ν1 + x2 · ν2 + ...+ xn · νn, thus

Ax = A(x1 · ν1 + x2 · ν2 + ...+ xn · νn)

= x1(Aν1) + x2(Aν2) + ...+ xn(Aνn)

= x1(λ1ν1) + x2(λ2ν2) + ...+ xn(λnνn).

(2.55)

We iterate k times of Equation 2.55 and get

Akx = x1(λk1ν1) + x2(λk2ν2) + ...+ xn(λknνn)

= λk1

[
x1ν1 + x2

(
λ2

λ1

)k
ν2 + ...+ xn

(
λn
λ1

)k
νn

] (2.56)

Given λ1 > λ2 > ... > λn (the case where two eigenvalues are equal is not considered

as it is too rare for randomly initialized weights), we have

lim
k→+∞

(
λi
λ1

)k
= 0, for i > 1. (2.57)

Thus

lim
k→+∞

Akx = λk1x1ν1. (2.58)
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where x1 and λ1 are scalars and ν1 is a vector. That is, ∀x ∈ Rn, x 6= ~0, after

multiplying sufficient times of A, we get the scaled dominant eigenvector of A. Due

to the high dimensionality of W , computing W TW explicitly is computationally

intensive. The power iteration in the paper is formulated as

ṽ :=
W T ũ

‖W T ũ‖2
(2.59a)

ũ :=
Wṽ

‖Wṽ‖2
(2.59b)

where ũ is initialized by a random vector. Substituting Equation 2.59b into Equa-

tion 2.59a yields a fractional expression with a numerator of W TWṽ. The nor-

malization operation in each step ensures ṽ to be a unit vector while making the

algorithm numerically stable.

Lastly, we left multiply both sides of Equation 2.59b by ũT ,

ũT ũ =
ũW ṽ

‖Wṽ‖2

1 =
ũTWṽ√

ṽT (W TWṽ)

1 =
ũTWṽ

λ1ṽT ṽ

1 =
ũTWṽ√
λ1

(2.60)

Thus, the spectral norm is √
λ1 = ũTWṽ. (2.61)

Combining Equation 2.59a, Equation 2.59b and Equation 2.61 can efficiently ap-

proximate the spectral norm corresponding to each convolution/linear layer.

The learning rate is relatively low compared to the weight W . Thus W does

not change much in each update and can be considered constant from the power

iteration part. Consequently, we can combine the power iteration and the weight

update during training, that is, after each weight update, update ũ and ṽ as well as

applying the spectral normalization (divice W by
√
λ1).

Compared to other methods, SN-GAN exhibits better generation performance
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as well as better robustness to different training settings. In addition, the spec-

tral normalization is computationally efficient and easy to be integrated into other

methods, thus widely used in GAN-based applications, including SA-GAN [60], Big-

GANs [33], StyleGAN [32], etc. Due to its excellent properties, we integrate this

module into all GAN-related models in the subsequent chapters.

2.2.4 Self-Attention GAN

Due to the limited kernel size of the convolution layer, each convolution operation

can only cover a small area around a pixel and cannot capture the long-term de-

pendencies of different image regions. Traditional convolutional neural networks

leverage stacked convolution and pooling layers to mitigate this problem. However,

such an approach is neither straightforward nor efficient, and there is no guarantee

that feature dependencies are well captured after passing through stacked layers.

However, such an approach is neither straightforward nor efficient, and there is no

guarantee that feature dependencies are well captured after passing through stacked

layers. Specifically for the image generation task, traditional network structures have

difficulty learning structural patterns that occur consistently in certain classes (e.g.,

dogs have well-defined independent four legs that can neither be more nor less).

Contextual Attention [43] reshapes the image features to a convolutional kernel

to force the distant textures to interact with each other. However, the method is de-

signed only for image completion and has little follow-up work. Self-Attention GAN

(SAGAN) successfully applies the self-attention mechanism [61] to image generation,

pioneered the self-attention-based generation methods [62, 63]. The self-attention

mechanism is also widely used in natural language processing [64], but this is beyond

the scope of this thesis. We focus on SAGAN with the overall structure shown in

Figure 2.95.

Suppose the input feature to the Self-Attention (SA) layer is as x ∈ RB×C×H×W ,

where B is the batch size, C is the number of channels, and H ×W are the height

and width of the feature map. To simplify the notation, we assume B = 1 and omit

this term in the equations, i.e. x ∈ RC×H×W .
5Figure taken from[60]
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Figure 2.9: Illustration of the Self-Attention layer. ⊗ denotes matrix multiplication.

The convolution is essentially the matrix multiplication. Thus the feature x

could be reshaped as C × N , and the convolution operation is formulated as Wx

where W represents the kernel’s weight.

The attention map β is a normalized weight sizedN×N for each feature location,

βj,i =
exp(sij)∑N
i=1 exp(sij)

, where s = f(x)Tg(x), (2.62)

βj,i indicates the influence of the features on the ith location to the jth location.

f(x),g(x) ∈ RN×C are two convolution operations calculated by f(x) = Wfx,

g(x) = Wgx, where Wf and Wg are the matrixed 1 × 1 sized kernels’ weights,

respectively. The input feature itself is also mapped to a new feature by a 1 × 1

convolution with channels unchanged,

h(x) = Whx. (2.63)

Based on the output of the Equation 2.62 and Equation 2.63, the output of the SA

layer is as

o = γh(x)β + x, (2.64)

where γ is also a learned parameter, and is initialized by 0. The intuition behind

this design is to allow the attention map to gradually exerts its influence as the

training progresses.
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2.3 Evaluation Metrics of GAN

2.3.1 Inception Score

To evaluate the performance of a generative model, we need to focus on two aspects:

1) whether the generated images are photorealistic and 2) whether the generated

images are diverse (Some generative models can only simulate the distribution of a

subset of the training data, which are caught in the so-called mode collapse).

Inception Score (IS) [65] considers these two aspects in the following way:

• Reality: Feed generated image x to the Inception V3 Network pre-trained on

the ImageNet dataset. The model will output a 1000-dimensional vector with

each dimension representing the probability of x being to one class. Intuitively,

a realistic image should have a high probability on one class and low probability

on others. Formally, the entropy of p(y|x) should be low.

• Diversity: If the generation is sufficiently diverse, the generated distribu-

tion should be even across all categories. Assuming that we generate 10 000

images, then ideally, ten images should be generated in each of the 1000 cate-

gories. Formally, the marginal distribution of the generated images across all

categories p(y) should be high.

A good generator should have a sharp p(y|x) and a smooth p(y), thus the KL

divergence of the two distributions should be high. Therefore, the IS is formulated

as

IS(G) = exp
(
Ex∼pgDKL(p(y|x)‖p(y)

)
, (2.65)

where p(y) is approximated by the empirical distribution p̂(y),

p̂(y) =
1

N

N∑
i=1

p(y|x(i)), (2.66)

where N is the number of synthesized image. And the KL divergence is approxi-

mated by

DKL(p(y|x)‖p(y)) =
1

N

N∑
i=N

p(y|x(i))log
p(y|x(i))

p̂(y)
. (2.67)
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We take the log of Equation 2.65 and make a simple derivation:

log(IS(G)) = Ex∼pgDKL(p(y|x)‖p(y))

=
∑
x

pg(x)
∑
i

p(y = i|x)log
p(y = i|x)

p(y = i)

=
∑
x∼pg ,y

p(x, y)log
p(x, y)

p(y)p(x)

=
∑
x∼pg ,y

p(x, y)log
p(x, y)

p(x)
−
∑
y

logp(y)
∑
x

p(x, y)

=
∑
x∼pg ,y

p(x, y)logp(y|x)−
∑
y

p(y)logp(y)

= Ex∼pgp(y|x)logp(y|x)−
∑
y

p(y)logp(y)

(2.68)

The effectiveness of IS lies in its ability to recover good estimates of 1) p(y), the

marginal class distribution across the generated images, and of 2) p(y|x), the con-

ditional class distribution for generated images x.

However, when the GAN is trained on datasets different from the ImageNet,

estimating the above two distributions is problematic. [66] calculated the marginal

distribution of CIFAR-10 [67] using Equation 2.66, and find that the top 10 pre-

dicted classes are obscured and not relevant to their true categories, which means

that p̂(y) is not a good estimation to p(y). As Equation 2.68 shows, the IS uses

Ex∼pgp(y|x)logp(y|x) to measure the generation quality, [66] thus calculated this

term for CIFAR-10 images, images of random pixels, and images in the test set

of ImageNet, and the results are 4.664 bits, 6.512 bits, and 1.97 bits, respectively,

meaning that CIFAR-10 images are closer to random pixels than to images of Ima-

geNet under this metric, which is not reasonable.

The root cause of the above problem is that IS only considers the generated

images and ignores the real data in its formula, i.e., IS cannot reflect the distance

between the real and the synthesized data. The basis for IS to judge the reality of the

data is from the training set of Inception V3: ImageNet. Thus, in the "worldview"

of Inception V3, any image that does not look like ImageNet is not real.

In conclusion, the Inception Sore is not a good measure of the GANs’ perfor-
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mance. Most GAN-related literature has now abandoned this metric in favor of the

more reasonable FID score [68].

2.3.2 FID score

The Fréchet Inception Distance (FID) was proposed by [69] which is originally used

to measure the distance between two multivariate normal distributions. [68] use it

to measure the distance between the generated and the real image distributions.

As is known, pre-trained neural networks can extract the high-level information

of an image, which reflects the essence of the image to some extent. Therefore, [68]

calculates the FID based on the features extracted by the pre-trained Inception V3

network. The FID is formulated as

FID(pg, pr) = ‖µr − µg‖2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2), (2.69)

where µ_, Σ_ denote the mean and covariance matrix of the features extracted from

the real and synthetic data.

FID only uses Inception V3 as a feature extractor, thus does not rely on an

image’s predicted class probability distribution. It has the following advantages

over IS:

• The training set of the generated model can be different from the training set

of Inception V3.

• The calculation involves both the generated data and the real data, which is

more reasonable than IS. It can be understood that IS measures the generation

quality by comparing the generated data with the ImageNet data. In contrast,

FID compares the generated data with the training data and is, therefore, more

reasonable.

2.4 Summary

This chapter mainly focuses on the theoretical underpinnings of the various tech-

niques applied later in the thesis.
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Section 2.1 describes two representative research directions in generative models,

namely, variational autoencoders and the GANs. The former is based on variational

inference with a beautiful mathematical form, and the latter leverages adversarial

training, which lacks mathematical rigor but can generate surprisingly good results.

Traditional GANs are difficult to train and are very sensitive to training parameters

and model structure.

Section 2.2 presents several improvements to the traditional GANs. First, we

analyze the problems of the JS/KL divergence-based losses. Then we introduce

the Wasserstein Distance-guided GAN: WGAN and WGAN-GP. Next, we present

the spectral normalization technique, which ensures the Lipschitz continuity of the

model. And finally, we introduce the self-attention mechanism, which facilitates the

model to capture the long-term dependencies of distant image regions.

Section 2.3 first introduces the Inception Score (IS), a widely used evaluation

metric in the early days of GAN. We analyze the limitations of IS and then lead to

the FID score, the current standard evaluation criterion.
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Chapter 3

Pixel Sampling for Style

Preserving Face Pose Editing

3.1 Introduction

Face pose editing aims to change the pose of an input face image while keeping its

original identity unchanged. It has many potential applications, e.g., face recogni-

tion, movie industry and entertainment. The current state-of-the-art has featured

two main research lines in this field, i.e., 3D reconstruction-based, and simple 2D

based.

For 3D reconstruction-based approaches, face pose editing is achieved by either

mapping the 2D face images to 3D face models with fixed or regressed parame-

ters [70, 71, 21] or directly regressing the UV map [4, 72] of the input face. The

advantage of such models is that pose control is not demanding. With the recon-

structed 3D face, face images at any target pose can be obtained by 3D geometrical

transformation and 2D projection. However, regressing either the parameters of

predefined 3D models or the UV map requires large amounts of high-quality train-

ing data. Moreover, due to the restriction of the predefined model and the missing

texture of extreme poses, fine details of the images are ignored. As a result, the

faces generated by these approaches are generally not photo-realistic enough and

require further refinements[73].

Thanks to the development of Generative Adversarial Networks (GAN) [15], a

number of GAN based 2D approaches to face pose editing have been proposed in

recent years. GAN has achieved great success in face image inpainting and facial

attribute editing [74, 75, 76, 77, 78]. However, the existing methods are generally
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only capable of editing the subtle attributes or local regions of the image, whereas

the global structure remains almost unchanged. Regarding face pose manipulation,

when changing the view angle from side to front, not only the local texture but also

the global shape of the face image dramatically changes. Despite these difficulties,

there still exist significant efforts tackling this problem [16, 17, 18, 79, 19]. Most

of the methods are implemented by an encoder-decoder structured network, with a

bottleneck layer in the middle, where the faces are first encoded into a low dimen-

sional feature vector, and then decoded into the image space conditioned by the pose

information, e.g., CR-GAN [79], DR-GAN [16]. However, there exists an intrinsic

trade-off between the image style conserving capability and the identity preserving

ability in the compact deep feature space, i.e., it is hard to model the expertise

of both the face identity and other image properties, such as lightning condition,

saturation, background color, etc.

To highlight the aforementioned dilemma that commonly incurs in current 2D

based methods, we remove the face classification branch of DR-GAN [16] (with the

latent feature dimensionality of 320) and train the model only with the adversarial

loss and the reconstruction loss. In this case, an adversarial auto-encoder (AE) is

achieved, where the reconstruction loss aims to efficiently preserve the style of the

input image, and the adversarial loss enforces the generated images photo-realistic.

Figure 3.1 illustrates the input images (the first row) and the results obtained by the

adversarial auto-encoder (second row) and DR-GAN (third row), respectively. As

can be seen, the auto-encoder properly preserves the style of the input image, but

it fails maintaining the identities. The reconstructed faces by DR-GAN successfully

catch the identity characteristics of the input images, whereas the output ones are

distorted and present obvious artifacts. If it is even painful for the model to faithfully

rebuild the given input face in terms of both style and the identity without any pose

manipulation, how can we further expect it to preserve them after changing the

pose?

To fight the trade-off incurred by the low-dimensional restriction in the feature

space, we seek solutions from the high-dimensional embeddings. But to make the

condition label not ignored by the decoder, the encoding dimension should not be
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Figure 3.1: Illustration of the trade-off between identity preserving and style pre-
serving.

simply increased. The classical structure of U-Net [80], which adds skip-connections

between symmetric layers of the encoder and the decoder, is able to prevent the

problem of over-compression by concatenating features from the shallow layers in

the reconstruction path. Therefore, we add skip-connections to the DR structure

and retrain the model. The last row of Figure 3.1 shows the corresponding re-

construction results, where both the identity and the style of the input face is well

preserved. High-dimensional embedding is indeed promising in image synthesis,

however, structures like U-Net convey too much low-level details, making it much

more challenging to edit the face pose than on the low-dimension features, especially

for the extreme shape changes. Therefore, how to enable face pose editing in the

high dimensional feature space is the main problem to be solved.

To tackle the challenge above, we present a novel two-stage method and a module

named “Pixel Attention Sampling” (PAS) in this chapter. Inspired by the fact that

face images of different view angles also share a large number of similar pixels as

highlighted by the optical illusion of face images [81, 82] in Figure 3.2(a), we believe

that these pixels are significant to construct the texture of a face image in the target

view through sampling. Specifically, given a target pose, this PAS module selects

pixels from the input image and slightly change their relative locations in a learning

manner to match the target pose (similarly to a non-linear image warping). Thus
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the recovered face editing result possesses the target pose and shares the original

texture simultaneously, faithfully keeping the identity information and image style

unchanged. Due to the lack of texture in invisible regions, the results of PAS would

possibly contain noises and holes, then the main task can be cast as image inpainting,

which has been extensively studied. We feed the intermediate pose-edited face image

into the aforementioned U-Net, so that the noises can be filtered out and holes filled.

By incorporating the module of PAS, the low-level details preserved by the U-Net

are no longer burdensome for the task of pose editing, instead, they become useful

information for generating the visually compelling face images.

(a) (b)

Figure 3.2: (a) Example of front/profile optical illusion. Indicating that face images
in different view angles still share pixel-level similarities. (b) The ambiguity of
representing 3D face pose by 2D landmarks. The two faces above have almost the
same landmark distribution, but are in different poses..

Further, by introducing the 3D landmarks rather than 2D ones to represent the

head pose more precisely, we achieve a better flexibility of pose manipulation. On the

contrary, the traditional methods like DR-GAN and CR-GAN merely manipulate

face images in several discrete yaw angles, and TP-GAN [17] can only frontalize face

images. Although CAPG-GAN [18] uses 2D landmarks to guide the generation, it

cannot generate faces in arbitrary poses as it claims, since using 2D landmarks to

represent 3D angles can bring ambiguity as Figure 3.2(b) shows. Besides, the 3D

landmarks tends to provide richer shape-related information, further facilitating the

synthesis of face images.

In summary, our main contributions are as follows:

• A novel two-stage face pose editing method is proposed, which casts the task of

face pose manipulation as face inpainting, thereby enabling it fully utilize the
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fine details of the given input image by exploiting high-dimensional embedding.

• A new “Pixel Attention Sampling” module is designed, which effectively re-

solves the conflict between the identity and style preserving.

• The 3D facial landmarks is introduced to represent face poses for the first

time, resulting in more flexible pose editing than using the discrete one-hot

pose label or ambiguous 2D facial landmarks.

• The proposed method demonstrates competitive performance in comparison

with the current state-of-the-art, both qualitatively and quantitatively.

3.2 Related Work

3.2.1 Generative Adversarial Network (GAN)

Traditional GAN is composed of a generator and a discriminator. The training

follows an adversarial paradigm. To overcome the problems of unstable gradient and

mode collapse, Wasserstein GAN (WGAN) [56] proposes the earth move distance as

metric in the discriminator’s loss function. To enforce the Lipschitz constraint of the

discriminator, SN-GAN [59] applies spectral normalization to the weight parameters.

Due to its simplicity and promising effect, most of the recent GAN based algorithms

make use of this technique, including SA-GAN [60], BigGANs [33], StyleGAN [32],

etc. In our method, SN-GAN is also adopted in the structure.

3.2.2 Image-to-Image Translation

The combination of auto-encoder with discriminator has achieved impressive results

in image-to-image translation [78, 83, 84, 76]. In multi-domain image translation

tasks, the domain information is provided either to the bottleneck layer of the auto-

encoder [84, 85, 16], or to the entry of the encoder/generator [78, 76, 18], by simply

concatenating the domain label with the features or input images. Conditional

batch normalization [86] and conditional instance normalization (CIN) [87] provide

another way of introducing the conditional label in addition to concatenation, via
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predicting the affine parameters of the normalized feature map (either by batch

normalization or by instance normalization) from the input label. Here, the CIN

technique is exploited in our decoder to avoid the operation of duplicating the label.

In multi-domain image translation, the discriminator is used to not only estimate

the image quality, but also control the target domain of the generated image. Our

approach borrows the idea of projection discriminator [88], which introduces the

reality score and the inner product of the embedded label with the features of the

input data.

3.2.3 Face Pose Manipulation

The existing methods can be roughly divided into two categories: 3D reconstruction

based, and simple 2D based.

For the 3D based models, DA-GAN [71] uses a predefined 3D face model to

produce the synthesized faces with arbitrary poses, and the dual agents serve to

keep the identity information stable and improve the realism, Feng et al. [72] train a

model to regress the UV map from a single 2D image directly, which records the 3D

shape information. Tran et al. [89] proposes a framework to learn a nonlinear 3DMM

model from a large set of unconstrained face images. FF-GAN [21] incorporates

3DMM [13] into the GAN based structure, where the 3DMM coefficients provide

the low-frequency information, while the input image injects high-frequency local

information.

For 2D based models, DR-GAN [16] learns a disentangled representation of

face identity with the supervision of an auxiliary face classifier of the discrimina-

tor. TP-GAN [17] employs a two-pathway architecture to preserve both global

and local texture information separately, and generates the frontalized face images.

With the guidance of 2D facial landmarks, CAPG-GAN [18] is able to generate

faces of arbitrary poses, where the couple-agent discriminator distinguishes the gen-

erated face/landmark pairs and profile/front pairs from ground-truth pairs, such

design enables the algorithm generate face images of target poses while keeping the

identity unchanged. CR-GAN [79] trains the generator to produce face images di-

rectly from the noises, together with the training of pose manipulation, maintaining
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the completeness of the learned embedding space. FNM [19] employs unsupervised

training and synthesizes normalized face images of Multi-PIE [20] style. Most of

the above methods only focus on modeling the identity preserving ability, whereas

they generally ignore the image style preserving ability, such as color, facial expres-

sion, lightning, etc. Although it is claimed that the synthesized frontal face images

improve the face verification accuracy, the generated face images are visually far

from the input images, thus greatly limits their further usage scenarios other than

face recognition.[90] frontalizes the face image by predicting the pixel displacement.

However, it’s hard to extend to the arbitrary face pose editing problem due to the

time consuming SIFT feature extraction.

3.3 Method

The goal of our method is to keep not only the identity but also the image style

during face pose manipulation. We first define several notations: (I, J) denotes

paired face images in the training set, where I is the source image, and J is the

target one. The 3D facial landmarks are denoted as ldmkI and ldmkJ , which could

be detected by an off-the-shelf 2D\3D facial landmark detector [2]. Itf represents

the input image after similarity transformation. To guide the training, the landmark

based segmentation maps of Itf and J are also required, which we denote as Iseg_tf

and Jseg. These notations are visualized in Figure 3.3.

Our approach is composed of three major steps: preprocessing, pixel attention

sampling, and image inpainting. They are described in detail subsequently.

3.3.1 Preprocessing

Given the fact that human faces are roughly left-right symmetrical, thus a face at

an arbitrary pose always has at least one side fully exposed to the camera. This

preprocessing step aims to align the fully exposed side of face I to that of a target

face J .

The inputs of this step are the input face image I, its 3D facial landmarks ldmkI ,

and the landmarks ldmkJ of the image J at a target pose. We first find the fully ex-
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(a) I (b) ldmkI (c) Itf (d) Iseg_tf

(e) J (f) ldmkJ (g) blend (h) Jseg

Figure 3.3: (a) and (e) are the source image and the target one, respectively, where
the corresponding landmarks and the bounding boxes of their bigger side are shown
to illustrate our aligning strategy. (b) and (f) are the 3D facial landmarks detected
by [2]. (c) shows the aligned image Itf . (g) is the alpha blend of Itf and J ,
illustrating that the target image shares pixel-level similarities with the source image.
(d) and (h) are the segmentation maps of Itf and J transformed from their 2D facial
landmarks.

posed side by calculating the bounding box region of the projected facial landmarks,

as illustrated in Figure 3.3(a) and Figure 3.3(e). Then, the least square regression

on the corresponding landmarks is applied to calculate the transformation matrix,

based on which the aligned image Itf could be obtained, as shown in Figure 3.3(c).

From Figure 3.3(g), we observe that Itf and J indeed share pixel-level similarities.

Finally, with the 2D facial landmarks of I and the transformation matrix obtained

above, we obtain the 2D facial landmarks of Itf , as well as the landmark based seg-

mentation map Iseg_tf . Besides, to guide the training process of the PAS module,

the segmentation map of the target image Jseg is also prepared at this stage.

3.3.2 Pixel Attention Sampling

The previous preprocessing step delivers the input face image with the larger side

aligned to the target pose. Despite the fact that the transformed input face image

Itf and the face at the target pose J share many similarities in terms of texture,

there still exist great gaps between them, from the global shape to the finer details of

textures. Therefore, our goal at this stage is to preserve and fine-tune their similar
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Figure 3.4: Structure of the proposed Pixel Attention Sampling (PAS) module.

face regions while eliminating the major differences. This is achieved by a novel pixel

sampling based module, which we call Pixel Attention Sampling module (PAS),

since the process of sampling mainly “focuses" on bridging the gaps. Figure 3.4

depicts the corresponding diagram.

Specifically, given the transformed image Itf and the target pose ldmkJ , PAS

generates a two-channel coordinate sampling map of the same size as Itf . The

first channel holds the abscissa while the second one for the ordinate. Each pixel

location of the map is registered a coordinate, indicating which input pixel of Itf that

location will sample from. Note, the original pixel indices are converted into decimal

coordinates ranging from -1 to 1, for the purpose of gradient backpropagation, and

the final sampling is achieved by interpolating the adjacent pixels. Our sampling

map is similar to the one used in the spatial transformer network[91]. The difference

lies in that the one in [91] is determined by a 2D affine transform matrix, with

only six parameters, whereas our sampling map is directly predicted by the neural

network, resulting in height × width × 2 parameters in total. The PAS module is

composed of two parts i.e., the image embedder and the sampler. The embedder

consists of stacked convolution layers, conditional instance normalization [87] layers

(CIN), and self-attention [60] layers (SA). The CIN layers incorporates the 3D facial

landmarks of the target pose to guide the embedding, and the SA layers enable

the embedder focus more on the global structure of the face.The embedder finally
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outputs a 512-dimensional feature vector, which is further fed into the sampler to

generate the sampling maps. The sampler is composed of fully connected layers

and ReLU layers. After applying the obtained sampling map to the transformed

input face image Itf and its corresponding segmentation map Iseg_tf , we could

obtain the intermediate face image at the target pose, denoted as Ĵfake, and its

corresponding fake segmentation map, denoted as Jseg_fake. In order to maintain

the reconstruction ability of the module, the original image I and its corresponding

3D landmarks ldmkI are also fed into the PAS module and the reconstructed output

Îrecon is achieved.

The training process of the PAS is guided by the following losses:

Pixel-wise loss between Ĵfake and J , Îrecon and I, which is commonly used in

the image-to-image translation algorithms. It can be formulated as:

Lpix = L1(Ĵfake, J) + 0.1 · L1(Îrecon, I) (3.1)

where

L1(I, J) =
1

WHC

W,H,C∑
x,y,c=1

|I(x, y, c)− J(x, y, c)| (3.2)

Since it does not take much effort to learn an identity mapping, we set the weight

of the reconstruction loss to 0.1, which makes the PAS module concentrate much

more on the pose manipulation task.

Segmentation loss between Jseg_fake and Jseg. Based on the assumption

that if the sampled image Ĵfake is close to the target image J , the segmentation

map Jseg_fake should be close to the target segmentation map Jseg as well. We

therefore introduce a segmentation-related loss so as to push Ĵfake close to J . To

facilitate the training converge, the segmentation loss is used as a complement to the

aforementioned pixel-wise loss Lpix. Here, we make use of the Dice loss[92], which

has been widely exploited in image segmentation tasks, and it can be formulated as:

Lseg =
N∑
c=1

1−
2
∑
x,y
Jcseg(x, y) · Jcseg_fake(x, y)∑

x,y
Jcseg(x, y) +

∑
x,y
Jcseg_fake(x, y)

(3.3)
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where c represents the different classes of facial attributes. Since each pixel location

(x, y) of the segmentation map is represented by a c-dimensional one-hot vector, the

fraction in Equation 3.3 is thus a simple intersection over union. The benefit of the

adopted loss function is that it is independent to the amount of pixels of different

classes.

Perceptual loss[93] between Ĵfake and J . Perceptual loss is significant to

preserve the identity information and high-level semantic features of the face images.

We follow the work of [94] and employ the pre-trained VGG-Face [95] network to

extract the features:

Lper = V GGloss(Ĵfake, J) (3.4)

with

V GGloss(I, J) =
∑
i

|V GGFace(I)i − V GGFace(J)i| (3.5)

where i is the layer index of the pre-trained model and i ∈ {3,8,15,22,29}, which are

the last convolutional layer of each feature map scale.

Total variation loss. Total variation [96] loss has been widely used in GAN

based algorithms for its powerful ability of reducing the noises and smoothing the

generated results. In our PAS module, there inevitably exist obvious noises, since the

resultant face image is pixel-wise sampled from the transformed input face image.

Therefore, the TV loss is incorporated:

Ltv = TV (Ĵfake) + TV (Îrecon) (3.6)

where

TV (I) =

W−1,H,C∑
x,y,c=1

|I(x+ 1, y, c)− I(x, y, c)|2

+

W,H−1,C∑
x,y,c=1

|I(x, y + 1, c)− I(x, y, c)|2
(3.7)

The overall training loss of the PAS module is a sum of the above losses:

Lsampler = Lpix + Lseg + Lper + Ltv (3.8)

51



Chapter 3. Pixel Sampling for Style Preserving Face Pose Editing

Figure 3.5: The result of PAS. The first row shows the guiding face images at target
poses, the first image in the second row is the input face image, and the remaining
images are synthesized faces based on the landmarks of the guiding face images. We
can see that the pixels are sampled and adjusted to the target pose. The noises and
holes will be removed or filled at the next image inpainting stage.

Thanks to the PAS module, we achieve a face image whose facial attributes

have been aligned to the target pose location, with the original identity and style

characteristics well preserved. It should be noted that, as the sampling is accom-

plished by interpolating adjacent pixels, it only modifies the location of the pixels

within a small area around them, the PAS module is thus not able to sample for

instance the left eye from the right one or the opposite. As a result, the sampled face

images possibly contain artifacts, holes and noises, as illustrated in Figure 3.5. In

order to further improve the generated image quality, image inpainting is introduced

subsequently.

3.3.3 Image Inpainting

The image inpainting stage is to restore the holes and remove the noises and artifacts

on the intermediate faces generated by PAS, and finally generate photo-realistic

face images. To accomplish this goal, we introduce a Conditional Adversarial Auto-

Encoder, where the discriminator is implemented by a projection discriminator [88],

and the auto-encoder is based on the U-Net structure [80]. We also make use of

CIN layer to merge the information provided by 3D facial landmarks, the identity

features, and the image features, thereby making the generated face image in desired

pose and shape. More precisely, the inputs of the encoder are the images generated

by PAS together with their target poses, i.e., Ĵfake with ldmkJ for the task of pose

manipulation, and Îrecon with ldmkI for the task of reconstruction. To well preserve

the face identity, the decoder is conditioned by the high level feature extracted by
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the pre-trained LightCNN [97] model, where the parameters of the fully connected

layer is fine-tuned during training. The outputs of the auto-encoder are denoted as

Jfake and Irecon, whose ground truths are J and I, respectively. To further improve

the model’s generalization ability, unpaired face images could also be exploited to

supplement the training set. This is achieved by feeding the network with the

partially occluded face images Socc and their 3D landmarks, and expect the network

to output Srecon restoring the original S. For the discriminator, we feed all the

generated images, including Jfake, Irecon and Srecon, as fake samples, while their

corresponding ground truth as the genuine ones, with disreal and disfake as output,

respectively.

The loss function of the inpainting network is composed of four parts:

Pixel-wise loss, formulated as:

Lpix = L1(Jfake, J) + λ · L1(Irecon, I) + L1(Srecon, S) (3.9)

where L1 is defined in equation 3.2.

Perceptual loss to capture the semantic similarity:

Lper = V GGloss(Jfake, J) + V GGloss(Srecon, S) (3.10)

where V GGloss is defined in equation 3.5. We do not include (Irecon, I) here, because

compared to image reconstruction task, image inpainting and pose manipulation are

more likely to lose the identity consistency.

Identity loss to maintain the identity-related characteristics stable. We use the

pre-trained LightCNN [97] to extract the identity feature of the synthesized image

and the target image, and minimize the L1 loss of them:

Lid =
1

N

N∑
i=1

|F (Jfake)i − F (J)i| (3.11)

Adversarial loss to guarantee the generated image quality:

Ladv = −disfake (3.12)
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Besides, we also incorporate the total variation loss to reduce the spike artifacts.

The overall training loss of the generator of the image inpainting network is a sum

of the aforementioned losses:

Lgen = Lpix + Lper + Lid + Ltv + Ladv (3.13)

Following the work of [98], the discriminator loss is defined as:

Ldis = max(1− disreal, 0) + max(1 + disfake, 0) (3.14)

3.4 Experiments

Given an input face image, the proposed method aims to manipulate its pose while

keeping the identity unchanged along with its style. Correspondingly, we evalu-

ate it in two aspects: the style-conserving skill and the identity-preserving ability

during face pose editing. In this section, we present the training details first, then

the qualitative analysis for face style conserving, followed by the quantitative re-

sults for identity preserving. Ablation studies are also carried out to highlight the

effectiveness of the proposed PAS module.

3.4.1 Training details

The training is based on four databases: Multi-PIE [20], 300W-LP [30], CAS-PEAL-

R1 [99], and CelebA [100]. Multi-PIE has four sessions with face images under

13 poses and 20 illuminations. We follow Setting 1 of TP-GAN [17] and train the

proposed algorithm on the first 150 subjects of session 1, then test on the remained 99

subjects. 300W-LP contains large-pose face images synthesized from 300W [101].

After manually filtering out the low-quality images, we have 40,159 images from

2,815 subjects in total. CAS-PEAL-R1 contains 1,040 subjects. For each subject,

gray-scale images across 21 different poses are included. CelebA is a large-scale

face attributes dataset with more than 200K celebrity images in it.

During the training process, we use the occluded face images as input, and
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Figure 3.6: The final result of our approach. The first row shows the guidance
images. The input images are in the first column, and the simple reconstructed
images are in the second column. The rest images are the pose editing results based
on the landmarks of the exemplars.

train the U-Net based generator to restore the original face images. This operation

improves the generalization ability of the network, and make the generated images

photo-realistic. All of the training images are cropped to 128×128 pixels. The

learning rate is set to 1e−4, and the Adam [102] optimizer is utilized with betas of

[0.9, 0.999]. We first pre-train the generator and the discriminator on CelebA for

20000 iterations, making it a fundamental image inpainting model, which facilitates

the subsequent training procedure. Then, we train the proposed PAS model and the

image inpainting model jointly for 110000 iterations in total. Observing that the

CAS-PEAL-R1 dataset consists of gray-scale images, which degenerates the color

saturation of the generated images, we thus exclud the data of CAS-PEAL-R1 for

the last 10000 iterations.

3.4.2 Style-conserving validation

Multi-PIE images under different poses are used as the guiding images, the pose of

faces from CelebA are edited accordingly. As shown in Figure 3.6, the synthesized

face images comply with the guiding faces in term of pose. They are visually photo-

realistic and both the identities and the styles are well preserved, clearly validating
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(a) (b) (c)

Figure 3.7: (a) From top to bottom shows the input images, results of CR-GAN,
DR-GAN, FNM and our method. (b) From left to right are the input images and
the generated images with both yaw angles and pitch angles changed. (c) From left
to right are the input images, half-face aligned images, frontalized images w/o PAS
module, results of the proposed algorithm, and the ground-truth images.

the effectiveness of the proposed method. A further qualitative comparison of our

method and CR-GAN [79], DR-GAN [16] and FNM [19] are demonstrated in Fig-

ure 3.7(a). As can be seen, our results are more visually convincing and the styles

are closer to the input images compared to DR-GAN, and the identities are better

preserved than CR-GAN. As for FNM, the generated image style is more similar to

the training set, where the lighting and expressions are normalized, and the color

has been changed, by contrast, our results better preserve those characteristics of

the input face images. Moreover, the proposed approach changes the face poses in

three degrees of freedom, resulting in more flexible pose editing results than merely

controlling the yaw angles as previous methods. Figure 3.7(b) shows the results of

editing both pitch and yaw angles of input face images (leftmost).

Quantitative evaluations are further performed. We calculate the FID score of

the above models, on the frontalized large pose face images from CelebA, the results

are shown in Table 3.1, indicating that the proposed method generates face images

with styles closer to the input face images.

Table 3.1: FID score of frontalized face images (lower is better)
CR-GAN DR-GAN FNM ours

204 122 150 105
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Table 3.2: Rank-1 recognition rates (%) across views under Setting 1.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

HPN [103] 29.82 47.57 61.24 72.77 78.26 84.23
c-CNN [104] 47.26 60.7 74.4 89 94.1 97.0
TP-GAN [17] 64.0 84.1 92.9 98.6 99.9 99.8
PIM [105] 75.0 91.2 97.7 98.3 99.4 99.9

CAPG-GAN [18] 77.1 87.4 93.7 98.3 99.4 99.9
FNM [19] 55.8 81.3 93.7 98.2 99.5 99.9

Light CNN [97] 2.6 10.5 32.7 71.2 95.1 99.8
Ours 45.5 78.7 90.0 99.6 99.9 100

3.4.3 Identity-preserving ability evaluation

There are 249 subjects in Session 1 of Multi-PIE. Following the Setting 1 of TP-

GAN, we use the first 150 subjects for training, and the remaining 99 subjects for

testing. The identity preserving ability is evaluated by Rank-1 recognition rate.

The face with frontal view and normal illumination in the testing set compose the

gallery, and the rest non-frontal images are used as probe.

The evaluation is conducted based on the features extracted by the pre-trained

Light-CNN model. We directly extract the features of the probe images as baseline.

For the proposed method, we first frontalize the probe face images, based on which

their face representations are extracted. As can be seen from Table 3.2, the pro-

posed method achieves similar or even better Rank-1 recognition rate in comparison

with the baseline and state-of-the-art algorithms when the rotation angle is smaller

than 60◦. For larger rotation angles (≥ 60◦), the proposed algorithm drastically

outperforms the baseline, whereas it does not perform as well as the SOTA algo-

rithms. There exist two possible reasons: 1) The face images of extreme poses share

relatively less pixels with the face images of front view, thus the pixels sampled by

the PAS module are not sufficient enough for the following inpainting stage, and

2) most of the SOTA algorithms normalize the face images into a consistent style,

where the information irrelevant to identity is filtered out, in contrast, our method

preserves relatively more style information.
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3.4.4 Ablation Study

To highlight the effectiveness of the PAS module, the ablation study is conducted

by removing it and training the U-Net based conditional adversarial auto-encoder

directly. For the sake of fair comparison, we apply the same preprocessing pipeline

(i.e., align the larger side of the input image to match the target pose) and train the

model with the same number of iterations. Figure 3.7(c) shows the results. As can

be seen, the synthesized images without PAS are blurred. More specifically, in the

second row and the fourth row, the mouths are not well aligned, and the unexpected

edges of the aligned input images are not well removed. The results indicate that it

is indeed difficult for the single U-Net based model to change the original patterns

of the input image thus results in undesired artifacts.

3.5 Conclusion

In this work, we first carefully analyze the trade-off between the style-preserving

ability and the identity-preserving ability of the existing 2D based pose manipulation

methods. Based on the observation that face images in different poses share a large

number of pixels, we propose a novel pose editing method and a sophisticatedly

designed PAS module. The method selectively samples pixels from the input face

and adjust their relative locations with the PAS module, so that the recovered

face editing result match the target pose and faithfully keeps the original identity

and style information unchanged. In this way, we convert the pose manipulation

problem to a image inpainting problem, and further make the best of the finer

details in the original face images to obtain convincing pose editing results. We

also utilize 3D facial landmarks to represent the face pose, which is more precise

and flexible comparing to the one-hot labels and the 2D facial landmarks adopted

in previous studies. Extensive experiments validate that the proposed pose editing

approach preserves the style information of the input images better than the existing

methods.
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Chapter 4

Texture Generation for 3D Face

Reconstruction

4.1 Introduction

3D face reconstruction is an important yet challenging domain in computer vision,

aiming to faithfully restore the shape and texture of a face from one or more face

images. It has a wide range of applications, such as face recognition, face editing,

face animation, and other artistic and entertainment fields. Recently, there has been

a surge of interest in single-image based 3D face reconstruction [3, 106, 107, 26, 27,

3, 72, 108, 28]. While most previous work has been devoted to predicting more

accurate and detailed 3D shapes, not much work has focused on generating photo-

realistic face textures. However, studies [109, 12] have shown that the texture plays

a more significant role than that of the shape in face recognition tasks. Thus we

can never ignore the importance of the texture in 3D face reconstruction.

Existing 3D face texture generation methods can be broadly classified into three

categories: texture model-based, image generation-based, and GAN optimization-

based.

Texture model-based Since the 3D Morphable Model (3DMM) [13] was pro-

posed, it has been widely used in 3D face reconstruction. The model is a vector

basis of the shape and texture learned from a set of 3D face scans. Earlier ap-

proaches regress the 3DMM parameters by solving a non-linear optimization prob-

lem [24, 26, 25], which is often slow and costly. With the development of Con-

volutional Neural Networks, recent studies tend to predict the parameters using

learning-based methods [26, 27, 3]. However, the 3DMM is constructed by a small
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Figure 4.1: Results of the proposed method. The left column shows the input
images. Images on the right are synthesized using the predicted UV-map.

number of face scans under well-controlled conditions, limiting its diversity to iden-

tity, race, age, gender, etc. Besides, due to the linear and low-dimensional nature of

the model, it can hardly capture high-frequency details, resulting in blurred textures

that are far from satisfactory.

Image generation-based Generative Adversarial Network (GAN) [15] pro-

vides a powerful tool for generating photorealistic images. Since its appear-

ance, numerous image generation methods with stunning results have been pro-

posed. Thanks to various large databases and the highly structured geometry of

the human face, 2D face image generation is one of the most prosperous areas

[74, 75, 76, 77, 78, 32, 31]. Influenced by this trend, some recent 3D face recon-

struction methods have also leveraged adversarial training to improve the texture

quality [28, 4, 29]. However, such an image generation approach is highly depen-

dent on a large 3D face database. [28] is trained on a synthesized 3D face database

[30], where originally self-occluded textures are obtained by simple interpolation of
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visible parts, resulting in imperfect generation. [4, 29] are trained on a large UV

map dataset, which is not publicly available.

GAN optimization-based The traditional yet most powerful GANs are

trained to synthesize images from noise vectors [31, 32, 33]. To leverage the power of

a pre-trained GAN, a series of works are established on inverting the image back to

a GAN’s latent space using optimization-based approaches [34, 35, 36, 37]. Similar

methods are used to generate the UV map of a face image [38, 39]. First, they train

a generator that converts noise vectors into UV maps. Then they directly optimize

the latent code to minimize the reconstruction error between the input face image

and the image rendered by the generated UV map. Instead of training a UV map

generator, [40] first rotates the input image in 3D and optimizes the latent code

of the pre-trained StyleGAN to fill in the missing textures, then stitches textures

of different view angles by alpha blending to form the final UV map. By far, the

optimization-based methods can yield the most realistic face UV maps. Neverthe-

less, they are usually complex and time-consuming, e.g., GANFIT [38] takes 30

seconds to generate the UV map of an input face, while OSTeC [40] takes up to 5

minutes.

Besides generating a global face texture, we note that a series of pure 2D image

generation methods can also synthesize face images of different view angles [16,

5, 18]. However, the generation consistency is poor due to the absence of global

consistency constraints and a priori knowledge of the 3D shape.

In summary, among the current texture generation methods for 3D face recon-

struction, those based on texture models cannot yield high-fidelity results due to

the model’s simplicity; those based on image generation rely heavily on large train-

ing dataset; those based on optimization are time-consuming and require a high

computational cost.

To this end, we propose a novel image-to-image translation model that converts

the input face image into its corresponding UV map. The proposed method is image

generation-based, therefore much faster than optimization-based methods. We use

the pseudo UV map for training, bypassing the dependency on the real UV map

dataset. Thanks to multiple partial UV discriminators, we can use cropped parts
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of incomplete UV maps (acquired using the data pre-processing method provided

in [4]) for training to improve the generation quality. Our contributions are as

follows:

• A novel image generation-based UV map prediction framework is proposed.

The generated results are comparable to the optimization-based method but

much faster.

• With the proposed UV sampler module, the visible face textures can be di-

rectly mapped to the UV space, forming an incomplete UV map. No 3D

information (shape, occlusion) is required during the inference stage. There-

fore our model can be stitched seamlessly with any 3D shape reconstruction

models.

• The training is doesn’t rely on the real UV map dataset, and the design of

multiple discriminators can compensate well for the imperfect ground truth.

• The proposed method outperforms the state-of-the-art methods, both quali-

tatively and quantitatively.

4.2 Related Work

3D shape reconstruction From earlier optimization-based methods to CNN

prediction-based methods, acquiring accurate 3D face shape becomes easier and

faster, bringing powerful tools and significant opportunities for face-related tasks.

Our training process relies on 3D shape reconstruction of a given face, where numer-

ous 3D shape fitting methods are applicable. In this paper, we adopt an off-the-shelf

model [3] as our shape re-constructor, which is the current SOTA 3DMM-based

method. The model will predict its corresponding pose and 3DMM shape/texture

parameters with a single face image as input.

UV map generation There exist mainly two texture representation methods

for 3D models, vertex-based and UV map-based. The vertex-based representation

is very intuitive, where each vertex has a color, and the interpolation of those col-

ors generates the texture of the 3D surface. However, such representation flattens
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the texture into a linear vector, destroys the spatial relationship of texture patches,

thus prevents it from leveraging powerful CNN-based methods. The UV map-based

representation unwraps the 3D texture into a 2D space. Briefly, each 3D vertex’s

color is mapped to its corresponding location of a 2D image, and adjacent vertices

are mapped to adjacent regions so that the positional relationships between ver-

tices are well preserved. [4] first sample the color of visible 3D vertices from the

input face image, then map them to UV space to get the incomplete UV map, in

which the generative model will further complete the missing parts. However, their

method is highly dependent on the precise 3D shape and ground truth UV maps.

In contrast, our method does not need the UV map data for training or 3D shape

for inference. [28] propose a non-linear 3DMM, where the predicted texture takes

the UV map-based representation. Nevertheless, their UV map generator’s input is

a low-dimensional encoding of the input image, resulting in an loss of detail of the

predicted UV map. In addition, their model is trained on linear 3DMM synthesized

images [30], where artifacts caused by self-occlusion appear frequently. Unlike [28],

our model is trained on real face images, and the coding keeps a large dimension

across the forward path, making the generated UV map photorealistic.

Differentiable renderer To obtain the gradient of the loss function and thus

train the network, a differentiable renderer is widely used in 3D face-related algo-

rithms [26, 27, 28, 3]. Briefly, a renderer is composed of a rasterizer and a shader.

The rasterizer applies depth-buffering to select the mesh triangles corresponding to

each pixel, and the shader computes the pixel colors as follows:

c̄ = w0c0 + w1c1 + w2c2 (4.1)

where ci is the color of the ith vertex of the mesh triangle the pixel resides in, wi is the

barycentric coordinate of the pixel in the triangle. During backward propagation,

the gradients are passed from each pixel to the vertices:

dL

dci
=

dL

dc̄

dc̄

dci
=

dL

dc̄
wi (4.2)
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where L is the loss function. Since ci is sampled from the output of the texture

generator, i.e., the UV map, the gradients could be further backpropagated. In our

project, we adopt the off-the-shelf differentiable renderer of PyTorch3D [110].

Pixel attention sampling To get the UV map of visible parts, UV-GAN [4]

first fits a 3DMM to the input image, then use the vertices’ projected 2D coordi-

nates to sample their corresponding colors, and the incomplete UV map is further

generated. However, their method relies on accurate 3D shape fitting and facial

landmark detection. Furthermore, such a method does not have a mechanism to

deal with face occlusions(hands, hair, eyeglasses, etc.). Inspired by [111], we apply

a pixel attention sampling (PAS) module to sample the incomplete UV map from

the input image directly. Thanks to this module, the inference process is free from

3D shape or facial landmarks. Besides, different from [111], where input images

require landmark-based pre-alignment due to the arbitrary target poses. The target

output, i.e., the UV map, is highly structured, so neither spatial transformation to

the input image nor the target pose condition is demanded.

4.3 Proposed Method

The goal of our method is to predict the face UV map from a single face image. As

illustrated in Figure 4.3, the proposed model consists of two parts: a UV attention

sampling module (UV sampler) and a UV map inpainting module (UV generator).

During the inference process, the UV sampler will sample the pixels from the input

image to generate an incomplete UV map, and then the UV generator will further

complete the semi-finished UV map. We describe the details of each component as

follows.

4.3.1 UV Attention Sampling

The UV map is a two-dimensional representation of the global texture of a 3D

object. Due to self-occlusion, it is an ill-posed problem to get the UV map from

a single image. This section studies how to generate an incomplete UV map that

contains only visible textures of the input face image. As a comparison, we recall
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Figure 4.2: The traditional method for incomplete UV map generation. Which is
used for generating the target output of the UV sampler.

the traditional method, which consists of four steps: (1) Get the 3D face shape

based on the input image. (2) Determine the visible vertices using depth-buffer-

based methods. (3) Project these visible vertices onto the image plane and index

their colors according to their coordinates. (4) Render the UV map with the colors

and the pre-defined UV-coordinates corresponding to each visible vertex. Figure 4.3

illustrates the above steps. Obviously, such a method is tedious and relies on an

accurate 3D shape fitting. Since the UV map contains only the texture information

of a 3D surface, is it really necessary to fit the exact 3D shape before getting the

UV map? We do not think so. In fact, the only purpose of the 3D shape is to

establish a one-to-one relationship between the pixel in the 2D face image and the

pixel in the UV map, so why not learn such a mapping relationship in a data-driven

manner? To achieve such a goal, we designed the UV sampler, a CNN-based model

that maps the face image’s pixels directly to the UV map.

The model has three parts, i.e., the feature extractor, the segmentation head,

and the sampler head. Similar to most generative models, the feature extractor is

composed of stacked residual blocks [112]. Spectral normalization [59] is applied to

each convolution layer to stabilize the training. With this module, 2D feature maps

of different scales and a 512-dimensional vector are extracted from the input image.

The 2D feature maps are fed into the FPN structured [113] segmentation head and
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Figure 4.3: Overview of our approach. (1) Given an input face image, the UV
sampler predicts its face mask m and sampling map Satt, based on which samples an
incomplete UV map UVspl (2) The UV generator will further complete the sampled
UV map and output the UVpred. (3) With an off-the-shelf 3DMM regressor, we
predict the shape and texture of the input face image, which is used for getting the
ground truth of the UVspl: UVgt and the pseudo ground truth of the UVpred: UVbl.
(4) The predicted UV map is used to render face images of different poses: IR0 and
IR1 , which are further fed into a face discriminator. (5) UVpred is cropped to the
side part ÛV sd and center part ÛV ctr, fed into their corresponding discriminators.

output an attention mask m. Besides, the 1D feature vector is fed into the sampler

head, a stack of fully connected layers interspersed with ReLU activations. The

sampler head’s output is reshaped as Satt ∈ RB×256×256×2, which is the attention

sampling map, where B is the batch size, 256 is the height/width of the UV map,

and the last two channels hold the normalized abscissa and ordinate of the pixel

in the input image to sample. Based on Satt and m, differentiable sampling [91] is

applied to the masked input image I, and an incomplete UV map ÛV spl is finally

obtained.

To train the model, we use the above-mentioned traditional method to generate

the ground truth (incomplete) UV map, UVgt. One issue to note is that the 3D shape

fitting is not completely accurate. The projected 3D vertices sometimes could lie on

the background part of the face image, resulting in wrong vertices’ colors and further
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wrong UVgt. Moreover, since the surface normal of the face edge is almost parallel to

the image plane, numerous projected vertices are piled up in the narrow edge region,

aggravating the UV map’s inaccuracy. The occlusions such as eye glasses and hairs

also cause the wrong UV texture. To mitigate this problem, we first generate a

binary mask for the face region based on a pre-trained face segmentation model,

then erode the mask’s edge to ensure that the region inside of which must be the

face, the generation of UVgt only takes into account the vertices that fall inside the

mask. Although this would result in a loss of texture near the edge, it is worth

sacrificing the unimportant edges to ensure the accuracy of UVgt.

The training is guided by the following loss function:

Lspl = ‖ÛV spl − UVgt‖1 + ‖Satt − Sgt‖1+

Lseg(m,mgt) + λTV (ÛV spl)
(4.3)

where Satt and m are the outputs of the UV sampler, ÛV spl is the sampled UV map

based on them. Sgt is the ground truth sampling map, which is obtained by mapping

the normalized x,y coordinates of the visible 3D vertices into the UV space, i.e., UV

position map [72]. Lseg(m,mgt) is the binary cross-entropy loss of the predicted face

mask.

Lseg = −[mgtlogm+ (1−mgt)log(1−m)] (4.4)

TV (ÛV spl) is the total variation loss [96] of the predicted UV map, which is

powerful in smoothing the noises of the generated UV map.

TV (ÛV spl) =

W−1,H,C∑
x,y,c=1

∣∣∣ÛV spl(x+ 1, y, c)− ÛV spl(x, y, c)
∣∣∣2 +

W,H−1,C∑
x,y,c=1

∣∣∣ÛV spl(x, y + 1, c)− ÛV spl(x, y, c)
∣∣∣2

(4.5)

Thanks to the UV sampler, an incomplete UV map could be sampled directly

from the input image, bypassing a series of complex and expensive steps of tradi-

tional methods, including 3D shape fitting, visible vertices determination, UV map

rendering, etc.
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4.3.2 UV Map Inpainting

With the UV sampler described above, we can sample an incomplete UV map from

a face image. The next task is to fill the missing parts with textures consistent with

the sampled parts. This is an image inpainting problem, which has been extensively

studied. However, most image inpainting methods are trained on paired images,

meaning the ground truth image is uniquely determined. In contrast, in our case,

the ground truth is not available. This section studies how to train a UV map

inpainting model without the supervision of the ground truth. Briefly, our approach

is to generate a pseudo ground truth UV map to assist the training. Then, we

work with multiple discriminators to make the generated images as photorealistic

as possible.

4.3.2.1 Pseudo UV Map Generation

Generating the pseudo UV map consists of three steps: 1) incomplete ground truth

UV map generation, 2) 3DMM texture fitting, 3) seamless image blending. The

first step has been described in detail in the previous section. For the second step,

we use directly the BFM [114] texture parameter predicted by [3]. The UV map

representation of the reconstructed BFM texture is denoted as UVbfm. Obviously,

due to the linear, low-dimensional nature of the BFM model, UVbfm is far from

reality, as can be seen in Figure 4.4(d). Therefore, we move to the third step:

seamless image blending.

The UVgt obtained in the first step can faithfully restore the input image( (face

edge excluded)), but it is incomplete due to self-occlusion. While the UVbfm ob-

tained in the second step is complete, but it is only a rough approximation in the

3DMM solution space. Thanks to Poisson image editing [115], we can seamlessly

blend the two results by solving the following Poisson equation with Dirichlet bound-

ary conditions:

∆f = div v over Ω, with f |∂Ω = f∗|∂Ω (4.6)

where in our case, Ω denotes the domain of real textures in UVgt, f is the texture

to be modified in the UVbfm, v is the gradient of the texture in UVgt, f∗ denote the
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.4: (a) The input image. (b) UVgt. (c) The face reconstructed from UVbfm.
(d) UVbfm. (e) The face reconstructed from UVbl. (f) UVbl. (g) The face in (e)
under different view angle. (h) The texture marked in blue is used to fill the missing
texture in its symmetric area (marked in red).

texture of UVbfm outside the Ω. We also leverage the texture of the visible region

to fill its missing symmetric region. That is, we do two times Poisson Blending, the

first time blends the UVgt to the UVbfm, the second time blends the flipped UVgt

to its symmetric missing parts, as illustrated in Figure 4.4(h). The final blending

result is denoted as UVbl, as in Figure 4.4(f), both Figure 4.4(e) and Figure 4.4(g)

are generated from it, which is far more photorealistic than the BFM reconstruction

result in Figure 4.4(c).

4.3.2.2 Multiple discriminators

The training of the UV generator follows an adversarial paradigm; therefore, a large

amount of data from the target domain is essential. However, the pseudo UV map

Ubl generated above is not very reliable. Its quality depends on the accuracy of

UVbfm, the texture area of UVgt, and the accuracy of the 3D shape. We only use

the pseudo UV map to calculate the reconstruction loss, which is a rough guide

to the generator’s output. Although the complete UV map data is not available,

we might as well collect a bunch of partial UV maps using the traditional method,
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i.e., for UV maps generated from frontal face images, the central region, denoted as

UVctr, is accurate, and for UV maps generated from profile face images, the visible

half side, UVsd is precise. Note that the partial UV maps collected in this way are

not paired with UVpred, so they are only used for adversarial loss, thus indirectly

force the UVpred lying in the real domain.

We design two partial UV map discriminators, one for the half side, the other

for the center region. Together with the masked face discriminator, the system has

three discriminators in total, as shown in Figure 4.3. The training is guided by the

following losses.

Adversarial loss Given an output of the UV sampler, UVspl, the generator will

predict a global UV map, UVpred. Three UV patches can be cropped from UVpred,

namely ÛV ctr, ÛV left, ÛV right. Due to UV map’s symmetry, the latter two can

be put together and denoted as ÛV sd. With the UVpred and the 3D shape/pose

parameters predicted by the model of [3], a reconstructed face image IR0 could be

rendered. By changing the pose parameter, we can get a face image in a different

view angle, denoted as IR1 . So far, we have three types of fake data: ÛV sd, ÛV ctr,

and IR0,1, each of which corresponds to real data represented as UVsd, UVctr, and

Im, where Im is the input face image with occlusions/background masked.

The adversarial loss is thus formulated as:

Ladv = Ex[logD(x)] + Ex̂[log(1−D(x̂))] (4.7)

where
(x, x̂,D) ∈ {(UVctr, ÛV ctr, Dctr),

(UVsd, ÛV sd, Dsd)

({Im, IR0,1} �mgt, Dface)}

Reconstruction loss The reconstruction loss consists of two terms, the UV

reconstruction loss and the face reconstruction loss.

Lrec = ‖UVpred − UVbl‖1 + ‖IR0 �mgt − Im‖1 (4.8)
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Symmetry loss Since the UV map of the face is left-right symmetrical, we

design the symmetry loss to help the model learn this property.

Lsym = ‖UVpred − FlipLR(UVpred)‖1 (4.9)

Identity loss Since the pose is arbitrary, the ground truth of IR1 is not available.

Thus we use the pre-trained FaceNet [116] to extract the identity feature of IR1 and

Im, and minimize their L1 distance.

Lid = ‖F(IR1 )−F(Im)‖1 (4.10)

TV loss TV loss of Equation 4.5 is also applied to UVpred. The total loss

function is as follows:

L = Lrec + λ1Ladv + λ2Lsym + λ3Lid + λ4TV (4.11)

4.4 Experiments

The proposed method can faithfully convert the input face image to its correspond-

ing UV map. To demonstrate the conversion ability, we qualitatively compare the

3D reconstruction results with the current state-of-the-art methods, both 2D-based

and 3D-based. A quantitative evaluation is also presented.

4.4.1 Implementation details

Our training is based on two datasets:, CelebA-HQ [31], and FFHQ [32]. Face images

are pre-aligned with landmarks detected by [2]. The input image size is 256× 256,

and the predicted UV map is the same size as the input. As for the ground-truth

face mask, we first train a stand-alone face segmentation model, using the attribute

mask of the CelebA-HQ and our manually labeled occlusions (eyeglasses, hands,

etc.). Then we use this model to detect the face masks of the training data, and

use them as the ground truth. We set the learning rate to 1e−4 and use Adam[102]

optimizer with betas of [0.5, 0.999], the batch size is set to 6. We first pre-train the
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Figure 4.5: Frontalization results comparing with 2D-based face pose editing meth-
ods. Zoom-in for a better view.

UV sampler until it outputs an incomplete UV map that can perfectly reconstruct

the input image, which takes about 100K steps. Then we train the UV generator for

150K steps with the UV sampler’s weights fixed. The training of the whole model

takes about 100 hours on two Titan X Pascal graphics cards. Since most of the face

images in the training sets are frontal, making the model not robust to the large

view angles, to solve this problem, one trick we adopt is to rotate and render the

input faces with their corresponding shapes and pseudo UV maps, then train the

model to reconstruct the original face images.

4.4.2 Qualitative results

We use the predicted UV maps to render 3D shapes. By changing the pose param-

eters, images of different view angles are generated. For the qualitative evaluation,

as a usual convention, we take the same inputs as others and paste the generated re-

sults after them. Figure 4.5 compares our frontalization results with 2D-based face

pose editing methods, including TP-GAN [117], CAPG-GAN [18], HF-PIM [23],

FNM [19] and Zhouel al.[5]. As shown in Figure 4.5, TP-GAN doesn’t convert the

pose well, and the third face image it generates is obviously left-skewed. Further-

more, the images generated by TP-GAN, CAPG-GAN, and FNM have large color
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Figure 4.6: Qualitative comparison with other state-of-the art 3D reconstruction
methods.

deviations with the input images due to the influence of Multi-PIE [20] data in

the training set. Besides our method, only HF-PIM and Zhou et al. maintain a

consistent texture style with the input image. However, due to the lack of a pri-

ori knowledge of the 3D shape, HF-PIM cannot preserve the face shape well while

editing the face pose. In addition, the second image generated by it preserves the

finger on the mouth corner, showing that it cannot handle the face occlusions well.

Our method achieves similar performance to the current state-of-the-art, Zhou et

al., we both use an off-the-shelf shape regressor. However, their method is based

on face image generation, which means that we need to re-infer the missing texture

each time we change the view angle. Another limitation of face image generation-

based method is that the training settings greatly limit their pose editing freedom.

The method of Zhou et al. cannot well generate face images of a large yaw angles;

TP-GAN, FNM, and HF-PIM can only generate face images in frontal view.

A further qualitative comparison of our method and two representative 3D

reconstruction-based methods are demonstrated in Figure 4.6. The method pro-

posed by Deng et al. [3] is based on 3DMM parameter regression, and GANFIT [38]

is based on latent-code optimization of a pre-trained GAN model. As can be seen,

73



Chapter 4. Texture Generation for 3D Face Reconstruction

our results are more visually pleasant: large amounts of details are well preserved,

including freckles, wrinkles, and expressions. Due to the model’s low-dimensional

nature, it’s difficult for 3DMM-based methods to restore the input image’s details

faithfully. As can be seen in the 3rd-row of Figure 4.6, freckles and wrinkles are

not well reconstructed. The results of GANFIT do contain richer details, but the

resulting textures’ styles are very homogeneous and differ considerably from their

corresponding input images. We believe this is due to the lack of diversity in their

training data, as the face UV map datasets are not easily accessible.

4.4.3 Quantitative results

Training Data Method ACC(%) AUC(%)
CASIA(baseline) Zhou et al. 98.77 99.90
CASIA+rot Zhou et al. 98.95 99.91
CASIA(baseline) UV-GAN 99.02 -
CASIA+augUV UV-GAN 99.22 -
CASIA(baseline) ours 98.75 99.88
CASIA+augUV ours 98.98 99.90

Table 4.1: Comparison of the face augmentation ability with UV-GAN [4] and [5]

Data augmentation As in many previous works, we use our proposed method

to synthesize face images for face data augmentation and evaluate the performance

of the model trained on the augmented dataset to demonstrate the merits of our

approach. The experiment is based on the CASIA [118] dataset. Due to the low

resolution of the images in CASIA, we retrained a model with an input/output

resolution of 128 × 128. Moreover, we remove the segmentation head in the UV

sampler to increase the diversity of the augmented images. For each image with

less than 30◦ yaw angle, we randomly increase its yaw angle from 15◦ to 60◦ and

get a synthesized images. Our basic training settings are the same as [5], with

ResNet18 [112] for the backbone and ArcFace [119] for the loss function. Results

are shown in Table 4.1. Since UV-GAN [4] uses ResNet27 as its backbone, which is

deeper than ours and [5], it is not surprising that it achieves the highest accuracy.

Although we take the same settings as Zhou et al., we achieve a slightly lower

baseline due to numerous differences in training details (learning rate, batch size,
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optimizer, etc.). However, by training on the augmented dataset, our model exceeds

their accuracy, and our AUC closes the gap with them, demonstrating the efficiency

of our data augmentation ability.

Reconstruction Recognition
Method L1 SSIM Recon Front

Deng et al. 0.064 0.698 0.554 0.501
Zhou et al. 0.069 0.613 0.780 0.675

Ours 0.021 0.913 0.862 0.684

Table 4.2: Pixel-wise reconstruction and the identity-preserving ability on
AFLW2000-3D, non-facial areas of all images are masked out for fair comparison.

Face reconstruction We evaluate the proposed method in two aspects: the

pixel-wise reconstruction ability and the identity-preserving ability. As most previ-

ous works are not open-sourced, we only compare with Deng et al. [3] and Zhou et

al. [5], SOTA methods based on 3DMM and 2D face image generation, respectively.

We conduct the experiments on the AFLW2000-3D [30], which contains 2000 face

images with ground truth shape parameters.

For the reconstruction ability evaluation, we calculate the L1 loss and the struc-

tural similarity [120] of the reconstructed face images. As can be seen from Table 4.2,

our method outperforms others in both these metrics.

As for the identity-preserving ability, the evaluation is conducted by features

extracted by the pre-trained LightCNN-29 v2 [97] model. We calculate the co-

sine similarity of the features corresponding to the input images and the recon-

structed/frontalized images. Results are shown in the two rightmost columns of

Table 4.2. An interesting thing to notice is that, although Zhou et al. is inferior

to the 3DMM-based model in terms of reconstruction loss, they are more capable

of preserving the face identity. However, our proposed method achieves the best

performance in both aspects.

4.5 Ablation Study

UV sampler Due to the inaccurate 3D shape, textures in the edge areas of the

incomplete UV maps are not reliable, especially when the face has a large yaw an-
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gle. As shown in Figure 4.7, the incomplete UV map generated by the UV sampler

discards the inaccurate parts, forcing the subsequent UV generator to work on op-

timizing this region. The incomplete UV map generated by the traditional method,

on the other hand, has preserved the inaccurate edges, causing the subsequent UV

generator to lack the urge to optimize the edge area. In consequence, the generated

UV map is blurred and full of noise.

Input

UV
sampler

w/ UV
sampler

Traditional

w/o UV
sampler

Figure 4.7: Ablation study of the UV sampler. The UV sampler not only makes the
first stage independent of the 3D shape, but also helps to generate more accurate
textures in the second stage.

Partial UV discriminators The partial UV discriminators are designed to

mitigate the problem of lack of ground truth UV map. If we use the face discrimi-

nator solely, only the reconstructed face images are guaranteed to be photo-realistic.

However, the textures corresponding to the input face image’s occluded parts will

still suffer from blurring and artifacts. The 4th and 5th row of Figure 4.8 shows the

problems caused by the absence of partial discriminators.

Segmentation head During pixel sampling, the segmentation head of the UV

sampler could mask out all face occlusions (glasses, hands, scarf, etc.) to avoid the

occlusions appear in the predicted UV map. Figure 4.9 illustrates its effect.
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Input

w/ partial

w/ partial

w/o partial

w/o partial

Figure 4.8: Ablation study of partial discriminators.

Input

w/ seg

w/ seg

w/o seg

w/o seg

Figure 4.9: Ablation study of the segmentation head.

4.6 Application

An obvious application of our method is the profiling and frontalization of face

images.
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Figure 4.10: Face profiling results
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Figure 4.11: Face frontalization results

4.7 Conclusion

This work proposes a novel 2-stage image-to-image translation model that can con-

vert the input face image into its corresponding UV map. In the first stage, with79
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the proposed UV sampler, pixels in the input face images are selectively sampled

and adjusted to form an incomplete UV map, which contains all the visible textures

of the face. With the help of this module, the inference stage no longer requires the

intervention of 3D shapes. In the second stage, the incomplete UV map is further

completed by a UV generator. The training is conducted on purely pseudo UV

maps, thus weakly-supervised. With the help of two carefully designed partial UV

discriminators, we can generate photo-realistic face textures without the supervision

of the complete UV map. Qualitative and quantitative experiments validate the re-

construction ability and the identity-preserving ability of the proposed method.
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Facial Image De-occlusion GAN

5.1 Introduction

Thanks to deep Convolutional Neural Networks (CNNs), massive training data,

and the widespread use of cameras, face-related techniques have successfully found

many applications in our daily life, covering the fields of entertainment, media, art,

security, etc. However, face images in the wild may be occluded by various ob-

jects, which leads to loss of information and undesirable noise, further resulting in

degraded performance of algorithms for face analysis. To address this issue, re-

searchers typically combine methods such as augmenting training data with synthe-

sized occlusions [121, 122], designing more sophisticated metrics and network struc-

tures [123, 124, 125, 126], exploiting elaborated training strategies [127, 128, 129].

Despite their effectiveness, most of them are task-specific and cannot be migrated

to other face-related tasks. A relatively more general solution is to de-occlude the

face image before passing it to the downstream tasks.

Before the widespread use of deep learning-based methods, the dominant ap-

proaches were based on matching and copying visible patches to the missing parts.

A representative one is PatchMatch [41], which recursively searches the nearest

neighbor textures to fill in the holes. Such copy-and-past-based methods work well

in recovering simple low-frequency textures and obtain smooth results; however,

they cannot recover high-level textures with complex structures, e.g., eyes, nose,

mouth. [130, 131, 132, 133] leveraged Principal Component Analysis (PCA) to

recover high-level semantic face textures. Nevertheless, such methods are based on

the assumption that face images are in a linear space. Even for images acquired

under constrained conditions, the results are blurry and far from satisfactory. As
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Figure 5.1: Results of the proposed method. The first row and the third row are
input images, the second row and the last row shows the de-occlusion results. Zoom
in for a better view.

pointed out by [134], the deep autoencoder is a non-linear generalization of the

PCA. Therefore, it is reasonable to replace the PCA part of the above methods

with an autoencoder. SSDA [42] proposed a deep sparse autoencoder to remove

Gaussian noises and superimposed text from images, pioneered the use of deep neu-

ral networks in this area. Influenced by the great success of Generative Adversarial

Networks (GAN) [15] in image generation, Context Encoder [43] introduced adver-

sarial training to image inpainting for the first time. Its impressive performance

led to the prosperity of GAN-based image inpainting methods. Since then, the

combination of autoencoder and discriminator has been adopted as the basic model

structure for image inpainting tasks [44, 45, 46, 47]. Despite the remarkable progress

so far achieved, current methods mainly focus on filling the holes with visually plau-

sible textures and neglect the detection of imperfectness. When applied to the face

de-occlusion task, images must be accompanied by manually labeled masks. One

strategy to address this problem is to train the model to detect the occlusions au-

82



Chapter 5. Facial Image De-occlusion GAN

tomatically. Due to the lack of well-labeled paired training data, existing methods

mainly train on the synthetic occluded face images [135, 49, 51, 50, 48, 136]. Unfor-

tunately, these methods either generate low-resolution results or only tackle specific

occlusion types. We attribute this to the limited variety of synthetic occlusions.

Real occlusions have different shapes, textures, and blurred boundaries, making it

infeasible for synthesis-based methods to cover all possibilities of occlusion. In ad-

dition, collecting completely occlusion-free face images as ground truth is not easy

because the forehead part of the face is often occluded by bangs, which is perhaps

why none of the existing methods consider hair as a source of occlusion.

Given the limitations of existing methods, this paper explores how to enable

neural networks to remove arbitrary kinds of face occlusions. Our main contributions

are summarized as follows:

• We propose a novel face de-occlusion framework robust to all types of occlu-

sions, regardless of their shapes and textures.

• We build a large occlusion dataset with extensive manually labeled occlusions

from real face images.

• The proposed method outperforms the state-of-the-art baselines quantitatively

and qualitatively.

5.2 Related Work

5.2.1 Mask-Dependent Face Inpainting

Image inpainting aims to recover the missing textures of the input image. Recently,

the autoencoder-GAN-based models have achieved impressive results. Benefiting

from such structure, Context Encoder [43] successfully predicts the 64× 64 missing

part of 128 × 128 images. To make the model further concentrate on the missing

parts, [45, 44] leverage two discriminators: a global discriminator, which takes

the whole image as input, and a local discriminator, which only takes the small

region around the missing part. However, such a design is only suitable for a single

rectangular(or even square) hole and cannot be applied to images with irregular and
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arbitrarily distributed holes. To properly handle free-form masks, [46] proposed a

Partial Convolutional Layer, comprising a masked and re-normalized convolution

operation followed by a mask-update step. [47] proposed a Gated Convolution

module, which learns a soft mask for the features in different layers. However,

due to the ineffectiveness of CNNs in modeling long-range correlations between

distant textures and the hole regions, the inpainting results often have boundary

artifacts and look unreal. [45] proposed a Contextual Attention module, which

utilizes the image features as a convolution kernel, forcing the distant textures to

interact with each other; this could be simply achieved by attention. [60] proposed

a Self Attention module, which allows long-range dependency modeling of features;

since then the attention mechanism has been widely applied in image generation

tasks [62, 137, 63, 138]. To make the generated image faithfully recover the facial

topology, [139] leverages facial landmarks as a shape prior. [138] proposed a

two-path probabilistic framework to generate pluralistic inpainting results. The

common problem of the above methods is that they cannot detect the occluded parts

automatically and rely on manually specified masks, limiting their usage scenarios.

5.2.2 Mask Free Face De-occlusion

Some methods are devoted to getting rid of masks’ dependence and making the face

de-occlusion process fully automated. They are typically trained on face pairs with

synthesized occlusions. [135] proposed an LSTM-Autoencoder to gradually sub-

stitute the occlusions with facial textures. Benefiting from an elaborated forward

pass, [49] proposed a semi-supervised face de-occlusion method, which is trained to

predict the occlusion mask without the supervision of ground-truth. [51] proposed

a two-stage GAN, where the first GAN aims to reconstruct the occlusion part solely,

and the second GAN takes the result of the first GAN as a hint making the input

image occlusion-free. Due to the limited variety of occlusions in the training set,

the above methods can only generate images in 128×128 resolution with noticeable

artifacts, restricting their application to face recognition. Given the complexity of

occlusion types, a relatively simple task would be to deal with only specific occlu-

sion: [48, 136] for eyeglasses and [140] for masks. Besides being limited by the
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occlusion variety, as they lack face topology information, the results are often far

from satisfactory, especially on large-angled face images.

5.2.3 3D-Guided Face De-occlusion

The work closest to ours is FD3D [50], where we both use 3D Morphable Model [13]

(3DMM)-based reconstruction results as guidance. FD3D feeds the synthetic oc-

cluded face and the 3D reconstructed one to an adversarial auto-encoder and ex-

pects the output to be occlusion-free. Our method surpasses theirs in the following

aspects: 1) They inpaint directly on the occluded face despite the challenge of con-

verting various occlusion textures to face textures; in contrast, our method explicitly

removes occlusions with predicted masks before inpainting, bypassing the distur-

bance of the occlusion textures. 2) FD3D entirely relies on supervised learning,

which requires occlusion-free images to serve as the ground truth, while our method

can be trained on initially occluded images. 3) They synthesize images with fixed

occlusions, namely, cup, glasses, hand, mask, and scarf, which have 99 variations

in total; by detecting the face mask instead of innumerable types of occlusions, our

method can handle all types of occlusion.

5.3 Proposed Method

5.3.1 Overview

Figure 5.2 illustrates the overview of our method. Given that covering all possible

occlusions is impossible, we consider the opposite direction. We employ a face

segmentation module NS to predict the face mask Mf , which is much easier than

predicting the mask of all kinds of occlusions. Then, we use the 3D reconstruction

module NR to predict the prior 3DMM-based texture and the corresponding mask

for the whole face, denoted as Im and Mm, respectively. The mask of the occlusions

Mo can then be calculated as:

Mo = Mm −Mm �Mf , (5.1)
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Segmentation module
Reconstruction module
Inpainting module
Input image
Face region
Noised face

Reconstructed face
Poisson blending of       & 
Face mask
Reconstruction mask
Occlusion mask
Final result

Figure 5.2: Overview of the proposed method, which does not include the discrimi-
nator part for space limitation

where � denotes element-wise product. For face inpainting, we replace the occluded

part of the input image I with Gaussian noise to obtain In, which minimizes the

disturbance of the occlusion textures. In, Im, and Mo are concatenated and fed

into the inpainting module NG, and the output Î is expected to be occlusion-free.

The following terms supervise the inpainting: 1) the background region Ibg, 2) the

non-occluded face region If , 3) the Poisson blending result of If and Im, denoted

as Ip.

The overall framework contains three modules, NS , NR, and NG, for face seg-

mentation, 3D reconstruction, and image inpainting. We present the implementation

details of each module separately in the following.

5.3.2 Face Segmentation

Extracting face regions from occluded face images is a simple, valuable, but never se-

riously addressed problem. As a result, the recent 3D face reconstruction method [3]

requires this functionality still needs to resort to a Naive Bayesian classifier. We

present our solution to the problem in this section.

Data Preparation. We build our training data based on CelebAMask-

HQ [141], which has 30,000 high-resolution face images, each with a segmentation
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ResNet18

(a)

(b)

Figure 5.3: (a) Data augmentation method. If : face image, Mf : face mask of If ,
Io: occlusion, Mo: occlusion mask, I: occluded image, Mgt: face mask of I. (b)
Structure of the segmentation model NS , M̂ : predicted face mask.

mask of facial attributes. Basically, given a segmentation mask of a face image,

we can easily get the face region by gathering the labels of eyes, nose, lips, mouth,

and skin. Unfortunately, the segmentation mask in the dataset does not consider

the occlusions, e.g., hands, accessories, microphones, which are all misclassified as

skin. In addition, the segmentation masks in the dataset do not distinguish between

sunglasses and spectacles; however, in our task, we should not discard the skin and

eyes under the transparent lenses of the spectacles. To solve the above problems, we

manually picked out the occluded face images with incorrect segmentation masks

and labeled more than 1700 occlusions from them. We also collected about 300

occlusions from Google to get a more balanced occlusion type (e.g., masks, scarfs).

In addition, we collected more than 800 texture patches covering every type we

can think of, which will substitute for the original occlusion textures during train-

ing to produce more occlusion variations. Those occlusions are utilized for data

augmentation, as illustrated in Figure 5.3 (a) and the following equation.

Mgt = Mf � (1−Mo),

I = If � (1−Mo) + Io �Mo.
(5.2)
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Model Structure. NS follows the classical U-Net structure [80], with

ResNet18 [112] as encoder, while the decoder is a stack of convolutional blocks

corresponding to each stage of the encoder. Each decoder block takes features from

its previous block and its symmetric encoder stage through skip-connection. Since

the target mask is binary, a single channel output for the decoder suffices.

Losses. The training is guided by the Dice loss [92] and the Binary Cross-

Entropy loss (BCE):

Ldice = 1− 2
∑
M̂ �Mgt∑

M̂ +
∑
Mgt

, (5.3)

Lbce = − 1

WH

∑(
Mgt � logM̂+

(1−Mgt)� log(1− M̂)
)
,

(5.4)

where W and H represent the width and height of the mask, respectively. Further,

we apply the “online hard example mining" (OHEM) [142] strategy to the BCE

loss to make the training focus on hard examples, thus achieving more effective and

efficient training.

The proposed segmentation module achieves a precision of 0.981 and an IoU score

of 0.954 on the validation dataset, which is acceptable considering the inaccurate

edge region of the ground truth. By random checking the results, we surprisingly

find that the predicted face region is often more accurate than the ground truth.

We use this module to extract the face regions of the images in CelebA-HQ and

FFHQ, which greatly facilitates the training of the other two modules, i.e., the

reconstruction module NR and the inpainting module NG.

5.3.3 3D Face Reconstruction

The reconstruction module is adapted from [3], the state-of-the-art 3D reconstruc-

tion method with a ResNet50 [112] as its backbone. Given a face image, it predicts a

vector c ∈ R239, containing 6 translation and rotation parameters; 144 shape and 80

texture coefficients of the 3DMM; and nine illumination coefficients of the Spherical

Harmonics [143, 144] model. With vector c, the face is reconstructed and further

rendered to the image through a differentiable renderer.
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ResNet50
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nd
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Figure 5.4: Overview of the 3D reconstruction module. I: original image, Io: oc-
cluded image, ĉ: predicted 3D parameters, Î: reconstructed face, Mm: mask of Î,
Mf : face mask of I, If : I �Mf

Although [3] performs well on occlusion-free faces and even demonstrates certain

robustness to small occlusions, it still cannot handle severe occlusions, e.g., sun-

glasses and masks. As shown in the second row of Figure 5.5, sunglasses make the

reconstructed face have dark circles. In the third column, they even change the color

of the reconstructed skin. Therefore, in our usage scenario, i.e., face de-occlusion,

it is necessary to retrain an occlusion-robust 3D face reconstruction module. Now

we present, as shown Figure 5.4, our training strategy.

Training data. The training is based on CelebA-HQ and FFHQ. Firstly, we

use the pre-trained model of [3] to predict the reconstruction parameters of the

training data, denoted as cgt. Then, we filter out all the images with sunglasses

since their corresponding cgt risk to be inaccurate. Next, we leverage the face

segmentation module NS to detect the face masks of the training data, denoted as

Mf , for calculating the face-related losses. At last, as with the previous section, we

randomly superimpose heavy occlusions to I during training to get occluded input

images for NR.

Losses. Since we already have cgt, the most straightforward option is to use it

as supervision; the loss is as:

Lcoef =
1

N
‖ĉ− cgt‖1, (5.5)
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Figure 5.5: The first row shows the input images; the second row and the last row
are reconstructed faces by [3] and ours, respectively.

where ĉ is the predicted coefficient, and N is its dimension.

Training solely with Equation 5.5 will result in inaccurate and non-discriminative

results. Since it equally optimizes all the coefficients. However, different parts of

ĉ obviously have different impacts on the reconstruction result, e.g., the poses play

a more critical role than the illumination coefficients. Therefore, we also leverage

the pixel-wise and the perceptual [93] losses to reduce the discrepancy between the

reconstructed face Î and the real face If :

Lpix =
1∑
M
‖Î �M − If �M‖2, (5.6)

Lid = 1−
F(Î)T · F(If )

‖F(Î)‖ · ‖F(I)‖
, (5.7)

where M is the overlap of the original face mask Mf and the reconstruction mask

Mm; F(·) denotes the feature embedding function of a pre-trained face recognition

model, and we use Arcface [119] here. We only extract the feature of If , rather than

the entire image I, to avoid the noises introduced by the non-facial patterns.

To accelerate the training, we also use the landmark loss. Thanks to cgt, we

have ground truth 3D facial landmarks q, thus eliminating the need for a 2D facial
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landmark detector as required in other methods. The loss is calculated as :

Lldmk =
1

npt

npt∑
i=1

ωn‖q̂i − qi‖2, (5.8)

where npt denotes the number of landmarks, q̂i denotes the predicted 3D coordinates

of the i-th facial landmark. The weights ωn are set to 20 for the nose and inner

mouth points and 1 for others.

As cgt provides sufficient regularity, we discard the complex regularization terms

in [3]. The overall loss is the weighted sum of the above losses:

L = Lcoef + λpixLpix + λidLid + λldmkLldmk, (5.9)

where λpix = 1.92, λid = 0.2, λldmk = 1.6e−3.

Figure 5.5 compares our results with those of [3], demonstrating the effective-

ness of the proposed training strategy in improving the occlusion-robustness of the

model. A quantitative comparison is also performed: we use [3] and our model

to reconstruct 1000 face images with synthetic occlusions, the Lpix of our model is

0.153, which is much less than 0.177 of [3].

5.3.4 Face Inpainting

With the NS and NR described above, we get the following information of an oc-

cluded face image: face mask Mf , face If , reconstructed face Im, reconstructed face

mask Mm. Based on Mf and Mm, Equation 5.1 further calculates the occlusion

mask Mo. The goal of this section is to restore the missing textures indicated by

Mo.

The generator NG is constructed from stacked gated residual blocks [47] and

follows the classical encoder-decoder structure; a self-attention [60] module is applied

to the bottleneck features. As shown in Figure 5.6, the input is composed of three

parts: the occlusion mask Mo, the face image with noised occlusion In, and the

reconstructed face Im. The output Î is the de-occluded image. A VGG [145] shaped

discriminator is further employed to increase the photorealism to Î.
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real fake?

Figure 5.6: Overview of the inpainting module.

We randomly superimpose occlusions to the training data and train NG to re-

cover the missing textures. One issue to note is that the input image itself always

contains occlusions, such as bangs, and we do not have ground truth for these parts.

So we use Poisson Blending [115] to seamlessly merge If and Im and get Ip, which

provides weak supervision for the inpainting task. The training is guided by the

following losses:

Pixel-wise face loss.

Lpix =
1∑
M
‖Î �M − If �M‖1, (5.10)

where M = Mm �Mf , limiting the loss to be calculated on the face region solely.

This loss serves for recovering textures occluded by the synthetic occlusion and

cannot recover the initially occluded textures.

SSIM loss. We use Ip to guide the generation of initially occluded textures.

Although the Poisson blending result is visually pleasing, it changes the color of

If , so we cannot simply apply L1 or L2 loss. Instead, we leverage the Structural

Similarity loss (SSIM) [146], emphasizing the structural level discrepancy:

Lsm =
−1∑
M̄m

SSIM(Î � M̄m, Ip � M̄m), (5.11)

where SSIM stands for the similarity mapping function; M̄m is the eroded Mm,

eliminating the edge effects in the similarity map. To further mitigate the impact

of inaccurate color of Ip and make the loss focus on the missing textures, we apply
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the OHEM again as in Equation 5.4.

Background loss. Areas other than the face should remain unchanged:

Lbg =
1∑
Mbg
‖Î �Mbg − I �Mbg‖, (5.12)

whereMbg denotes the background mask, calculated by 1−Mm. We also erodeMbg

to alleviate the edge effects.

Identity loss. The generated image should have the same identity as the origi-

nal image, so we also leverage Equation 5.7 to add feature level identity constraints.

TV loss. To penalize the noises in Î, we adopt the total variation loss [96].

Ltv =
1

WHC
‖∇xÎ‖2 + ‖∇y Î‖2, (5.13)

where W , H, C are the width, height, and the number of channels, respectively,

∇_ calculates the image gradient along a direction.

Adversarial loss. To further make Î photorealistic, we employ the adversarial

loss:

Ladv = −EÎ [log(D(Î))], (5.14)

where D(·) denotes the output of the discriminator, which is the term to be maxi-

mized by the generator.

The global objective function of the generator can be summarized as follows:

L =λpixLpix + λsmLsm + λbgLbg+

λidLid + λtvLtv + λadvLadv,
(5.15)

where the weights are empirically set to λpix = 10, λsm = 5, λbg = 5, λid = 0.2,

λtv = 0.1, λadv = 0.01.

Discriminator loss. We use the BCE loss to train the discriminator, aiming

to distinguish Î from real images:

Ladv = EI [log(D(I))] + EÎ [log(1−D(Î))], (5.16)
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where I is the real image with less occlusion, selected from CelebA-HQ and FFHQ

according to the overlap rate of its corresponding Mm and Mf .

5.4 Experiments

The proposed method can effectively remove the occlusions from face images. To

demonstrate the power of our model, we qualitatively compare our results with

state-of-the-art methods, including those for face de-occlusion and for image in-

painting. Quantitative experiments are conducted in two aspects as well, namely

reconstruction ability and identity recovery ability.

5.4.1 Implementation Details

We follow an incremental training strategy: 1) We train the segmentation module

NS . 2) we train the reconstruction module NR based on NS . 3) We train the

inpainting module NG based on the result of the first two. The training is performed

on two public datasets, CelebAMask-HQ [141] and FFHQ [31], and our manually

labeled/collected occlusions and textures. All the images are aligned with facial

landmarks detected by [2] and cropped to 256× 256.

The training of NS consists of two rounds: In the first round, we train on 300,000

images of CelebAMask-HQ with our manually labeled occlusions to obtain a coarse

model. In the second round, we apply the coarse model to both CelebAMask-HQ

and FFHQ [32], select 500 hard examples from the results, relabel and add them to

the occlusion dataset to retrain a more accurate model. Each round is trained for

30 epochs with a batch size of 16 and a learning rate of 1e−4. The training takes

about two hours on two Nvidia GTX 1080 GPUs. The 3D reconstruction module

and the face inpainting modules are trained on 100,000 images of CelebAMask-HQ

and FFHQ, with an initial learning rate of 1e−4. For the reconstruction module

NR, we train 50 epochs with a batch size of 16, and for the inpainting module NG,

we train 80 epochs with a batch size of 4. The learning rates of both modules are

dropped halfway through the training with ratios of 0.2 and 0.1, respectively. All

three modules are optimized using Adam [102] with a weight decay of 0. Betas are
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Input PConv DeepFill-v2 PICNet LaFIn FD3D ours

Figure 5.7: De-occlusion results compared with state-of-the-art methods. Input
images are aligned and cropped according to the rules of each method, and we
re-paste the outputs back to facilitate comparison.

set to [0.9, 0.999] for NS and NR, [0.5, 0.999] for NG. It takes about 80 hours to

train NR and 40 hours to train NG on two Titan X Pascal GPUs.

5.4.2 Qualitative Results

The method closest to ours is FD3D [50]; we both leverage 3D face reconstruction

for face de-occlusion. Unfortunately, they do not release their code, so we use im-

ages from their paper to conduct the qualitative evaluation. Figure 5.7 compares

our method with FD3D and several other publicly available image inpainting meth-

ods, including DeepFill-v2 [47], PConv [46], PICNet [147], and LaFIn [139]. The

FD3D results are taken from their paper, while the rest are generated from their

official implementations with models pre-trained on face images. We provide those

inpainting methods with manually labeled occlusion masks for a fair comparison.
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One issue to note is that when FD3D compares with other methods in their paper,

the images are not pre-aligned according to the rules of the corresponding method,

resulting in questionable inferior results.

As shown in Figure 5.7, our method generally outperforms FD3D and other im-

age inpainting methods, especially on face images with large yaw angles. We argue

that the image inpainting methods are purely based on statistical learning, thus

highly dependent on the training data distribution. When a few face images with

large yaw angles occur, these methods record dramatic performance degradation.

Although FD3D does not require a manual mask for the de-occlusion, they appar-

ently can only handle limited types of occlusions: the bangs in the third row and the

hat in the fourth row are not identified as occlusions. In addition, FD3D produces

low-quality face images with blurred boundaries and unreal textures, as evidenced

in the images from the second to the last row. We believe this is due to the following

reasons: 1) they do not explicitly detect the occlusions and mask them out, causing

the generator to only cope with the occlusions it has ever seen while failing to de-

occlude arbitrary occlusions; 2) they use a very coarse 3D reconstruction method,

which cannot provide correct and effective face prior to the generator.

5.4.3 Quantitative Results

This section evaluates the proposed method in two aspects: the reconstruction abil-

ity and the identity recovery ability. We synthesize 1000 sunglasses-occluded face

images and use DeepFill-v2, PICNet, LaFIn, and our method to recover the initial

images. Since the image inpainting methods only synthesize the missing region, the

reconstruction ability is evaluated only in that region, with the following metrics: L1

loss, SSIM [146] score, and PSNR score. The identity recovery ability is evaluated

by the cosine similarity of the features extracted by the pre-trained ArcFace [119].

Results are reported in Table 5.1.

As can be seen, our method outperforms the state-of-the-art image inpainting

methods across all listed metrics. It performs particularly well in recovering the

identity, much exceeding its comparators. We attribute this mainly to the occlusion-

robust face reconstruction module.
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Method L1↓ SSIM ↑ PSNR↑ ID↑
LaFIn 0.067 0.607 27.944 0.639
PICNet 0.0654 0.604 28.137 0.615
DeepFill 0.065 0.604 28.105 0.659
w/o SSIM 0.065 0.619 28.491 0.665
Ours 0.062 0.623 28.902 0.690

Table 5.1: Comparison of the proposed method with state-of-the-art image inpaint-
ing methods.

Input

w/o
SSIM

w/
SSIM

Input

w/o
SSIM

w/
SSIM

Figure 5.8: Ablation study of the SSIM loss.

5.4.4 Ablation Study

The three modules in our framework are interdependent, making it impossible to

remove one for ablation study. Instead, we mainly focus on the SSIM loss of the

inpainting module, as the reconstruction and identity losses are conventional prac-
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Figure 5.9: Limitation of the proposed method.

tices.

As Table 4.2 shows, without the SSIM loss, the model degrades in all aspects

of metrics (nevertheless, benefiting from the 3D prior, it still outperforms others).

Moreover, the initially occluded textures are now only supervised by the adversarial

loss; thus, the results are not guaranteed to be occlusion-free. As shown in Fig-

ure 5.8, the shadows on the occlusion edges are difficult to eliminate with mere

adversarial loss.

5.4.5 Discussion

Limitation.The proposed method focuses on removing the occlusions within the

3D reconstructed face mask. For occlusions spanning the face and the background,

it can only rigidly remove the parts above the face without producing a smooth

transition, creating an unrealistic scene where the face seems to hover above the

occlusions, as Figure 5.9 shows. We have tried to create a gap between the face area

and the background through mask erosion, and the gap is solely supervised by the

adversarial loss during training. This trick alleviates the boundary effect to some

extent but still cannot cope with large-sized occlusions.

Social impacts. Our method helps pre-process face images to avoid the nega-

tive impact of occlusions such as hair, glasses, hands, etc., on downstream tasks (e.g.,

fine-grained 3D face reconstruction, face recognition). Despite the benefits it brings,

it also risks violating human privacy. To quantify this risk, we further conduct ex-

periments to analyze the identity recovery ability across different types of occlusions.
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Figure 5.10: Identity recovery ability for different types of occlusion.

Figure 5.10 shows that the proposed method performs well on sunglasses-occluded

faces; the performance decreases for the mask-type occlusion; and when combin-

ing the mask with sunglasses, the method can no longer recover the face identity.

The above observation proves that the method is controllable for privacy violations.

People’s identities can be safely protected when they simultaneously wear sunglasses

and masks.

5.5 Additional results

Figure 5.11 are the de-occlusion results of the initially occluded images in the

FFHQ [32] dataset.

5.6 Conclusion

This work proposes a segmentation-3D reconstruction-guided facial image de-

occlusion method that automatically removes all types of occlusions. We first an-

alyze the limitations of current face de-occlusion methods: they either require a

manually labeled mask or can only handle a limited number of occlusion types,

which mainly stems from the vast diversity of possible occlusions. Our key inno-

vation is bypassing the segmentation of infinite occlusions and instead segmenting

the face regions, which is much easier. We manually labeled a large face occlusion
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Figure 5.11: De-occlusion results.

dataset, based on which we trained a face segmentation moduleNS and an occlusion-

robust 3D reconstruction module NG. Given an occluded face image, NS and NG
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work collaboratively to mask the occlusions and provide beneficial priors to guide

the subsequent face inpainting module. Qualitative and quantitative evaluations

demonstrate the superiority of the proposed method.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

We focused on GAN-based face image generation and its application to face recog-

nition. Specifically, we proposed several novel methods for 1) face pose editing of

2D facial images, 2) texture generation for 3D face reconstruction, 3) facial image

de-occlusion. The methods employed 2D and 3D-based techniques in computer vi-

sion and computer graphics, including image generation, segmentation, and 3D face

reconstruction.

Chapter 3 first analyzed the problem of the existing encoder-decoder-based face-

pose editing methods: they primarily focus on modeling the identity preservation

ability during pose synthesis but are less able to preserve the image style properly,

which refers to the color, brightness, saturation, etc., resulting in a style discrepancy

between the output image and the input image. Then, it proposed a two-stage

framework that converts the problem into pixel-sampling and image inpainting. In

the first stage, the pixel attention sampling module directly samples pixels from the

input image, thus explicitly preserving more style information. In the second stage,

the missing textures are further completed, and the noises are removed. Thanks to

the pixel sampling module and the high-dimensional embedding in the inpainting

module, the image style is well preserved during face pose editing.

Although pure 2D-based methods could generate face images of different view

angles, the generation consistency is poor due to the lack of global consistency

constraints and prior knowledge of the 3D shape. Chapter 4 solved the problem

by generating high-fidelity global facial textures for 3D face reconstruction. The

proposed method also benefited from a pixel-sampling module similar to Chapter3
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and exploited a two-stage framework. In the first stage, the sampling module directly

predicts an incomplete global face texture (UV map) from the input image without

relying on 3D shapes as traditional methods. In the second stage, the incomplete

UV map is completed by a texture generator supervised by the pseudo UV map

and multiple partial UV discriminators, bypassing the need for scarce UV datasets

and the costly optimization approach. The generated textures are of high-fidelity

and could be used for data augmentation in face recognition tasks to improve the

robustness of the model to view angles.

In addition to the view angle, another factor that harms face recognition accu-

racy is the occlusion. Chapter 5 tackled this problem by proposing a facial image

de-occlusion framework. We trained a practical face mask prediction module and

an occlusion-robust face reconstruction module, with extensive manually labeled

occlusions from real images. Any occlusions could be masked out by collaboratively

exploiting the two modules, despite their shapes and textures. The inpainting mod-

ule takes the occlusion masks and the 3D reconstruction results as prior and gen-

erates plausible non-occluded face images. The proposed method far exceeds the

state-of-the-arts qualitatively and quantitatively.

Our work advanced incrementally. In the beginning, we only worked with pure

2D images, without incorporating 3D shape information. Chapter 4 focused only on

the texture for 3D face reconstruction; the shape part still relied on an off-the-shelf

model. While chapter 5 trained all texture and shape modules from scratch. Our

work has spanned from 2D to 3D, from low resolution to high resolution, from a

single model to a combination of multiple models, from following the state-of-the-art

methods to significantly exceeding them.

6.2 Future Work

The 3D reconstruction method used in this work is based on the 3D Morphable

Model [13], a low-dimensional linear model that cannot capture high-frequency de-

tails of shapes and textures. Chapter 4 solved the problem of unreal textures by

training a texture generator; however, generating fine-grained 3D face shapes still
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remains unsolved. There are two categories of research addressing this problem:

one is to construct larger 3D face datasets as training data, which are costly and in-

volve privacy and legal issues; the other is to follow a analysis-by-synthesis training

strategy: the model render the reconstructed 3D face into image space and uses the

reconstruction loss to guide the generation of fine-grained shapes. However, such a

method could be corrupted by the occlusions (e.g., bangs, eyeglasses) in the input

face image. In the future, we plan to use the method of chapter 5 to de-occlude

the face image before applying the above method, thus eliminating the negative

influences of the occlusions.
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