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A B S T R A C T  

 In recent years, Metal Additive Manufacturing has seen a tremendous paradigm shift from 

prototyping to batch production and moving forward to serial production due to its ability to 

produce complex parts easily. Also, metal AM provides a high degree of freedom in design 

flexibility and functionalities. It is recommended to enhance the commercial machines with 

quality assurance instruments to achieve the full potential of metal AM.  Nowadays, machine 

suppliers focus on improving quality assurance and providing more insights into the process 

space with in-situ machine controls. It led to improved part quality, reliability, and repeatability 

per consumer’s confidence-building measures. However, the full potential of the quality 

control instrumentation cannot be released if the captured in-situ data is not treated in a 

meaningful way and correlated with different process steps. It is vital to correlate the in-situ 

signal to process characteristics such as anomalies to monitor and increase the overall quality 

of the final part. 

This thesis presented a methodology to detect and identify the process anomalies in the Laser-

Powder Bed Fusion (L-PBF) process using the commercial in-situ instrumentation. First, it is 

essential to find the best-suited parameters to study the correlation between the process space, 

including the process parameters (laser power, scanning speed, feedstock material, etc.) and 

process outcome (melt pool signals). Initially, an investigation based on the microstructural and 

mechanical aspects of AlSi7Mg0.6 alloy is carried out, and the best-fit scanning strategy is 

identified for further study.  

Different types of in-situ instrumentation such as infrared cameras and photodiode-based 

commercial systems are studied to understand the laser-powder interaction better. Camera-

based co-axial EOSTATE Optical Tomography supplied by EOS GmbH is exploited, and a 

case study based on data analytics techniques is proposed to identify the potential drift layers.  

Similarly, machine learning-based methodology is proposed to extract critical features at a 

global and local scale for photodiode-based Melt Pool Monitoring in-situ module supplied by 

SLM Solutions GmbH. As we know, the laser-powder interaction is dependent not only on 

process parameters but also on the powder bed spread. However, powder bed spread quality 

can be influenced by feedstock characteristics such as humidity, granularity, .etc. Therefore, it 

is vital to correlate the metal pool signal to powder spread health to understand better. To do 

so, the critical characteristics of the powder bed spread are identified using Layer Control 

System and computer vision algorithms. The proposed methodology successfully identifies 
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powder bed spread anomalies and their influence on the melt pool signal. Also, a case study is 

presented to investigate the efficiency and robustness of the proposed methodology.  

Additionally, to provide the experimental data for the constitutive-based modeling approach 

(Work Package 1), the thermomechanical response of the L-PBF processed Inconel 718 alloy 

is investigated. The influence of deformation conditions, i.e., temperatures and strain rates, are 

studied using hot torsion tests. It is noticed that the deformation conditions strongly influence 

the microstructural refinement influenced by dynamic recrystallisation and recovery. Also, the 

material's initial state, such as production state (in our case, the L-PBF process), plays a critical 

role.  The L-PBF processed Inconel 718 samples showed a deformation activation energy of 

353 KJ/mol. The samples deformed at 1000 ̊C showed the highest elongation %, which can be 

attributed to the dynamic behavior of the material.  

Lastly, the feasibility study of the advanced manufacturing combining L-PBF and Laser melt 

deposition (LMD) processes is presented for Inconel 718. The microstructural and fracture 

evolution of the samples is studied using the in-situ tensile tests. Alongside, the performance of 

the interface between two technologies is investigated. 
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C O N T E X T  O F  T H E  S T U D Y  A N D  O B J E C T I V E  

G E N E R A L  I N T R O D U C T I O N  

 

 

European Network for Alloys Behaviour Law Enhancement (ENABLE) is an H2020 

MARIE SKŁODOWSKA-CURIE ACTIONS ITN project, divided into 3 WP, each WP 

comprising 3 Thesis (ESR). The ENABLE project's main objective is to understand 

better complex Multiscale Multiphysics phenomena in materials involving 

manufacturing processes (Machining, Friction Stir Welding, Additive Manufacturing) 

using sophisticated experimental equipment and modeling tools (Figure 1). The findings 

of ENABLE can be used to create specifically tailored material microstructures to 

understand material properties and residual stress states to improve the components’ 

performance. These advances will lead to the development of new tools, service life, 

improved tools, etc., and will reduce production time and thereby production costs. 

  

Work Package 1: WP1 (Material properties) includes all metallurgical aspects (hardening, 

grain size, precipitation, phase transformation, etc.). This section aims to study the 

Figure 1: Objective summary of ENABLE project. 
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microstructural evolution of selected alloys during extreme solicitations. The aim is to provide 

local material behavior laws for selected alloys coupled with models for microstructure 

evolution. WP1 includes ESR1, ESR2, and ESR3. 

Work Package 2: WP2 (Numerical modeling) aims to develop a new finite element (based on 

the theory of strain gradients) enabling thermo-mechanical and microstructural coupling. This 

multiscale modeling will then be optimized for high power computing and implemented in 

digital simulation software for new generation processes. WP2 includes ESR4, ESR5, and 

ESR6. 

Work Package 3: WP3 (Industrial processes: FSW, AM, Machining) aims to provide solutions 

to the complex behavior of the materials undergoing manufacturing processes such as 

machining, friction stir welding, and additive manufacturing. WP 3 is dedicated to identifying 

and measuring physical quantities such as temperature and kinetic fields for standard test cases 

and understanding and improving the processes. WP3 includes ESR7, ESR8, and ESR9, which 

is the topic of this manuscript. 

AM has enormous applications, and the market is growing day by day. The need for robust 

supply chain and enhanced quality assurance is required. Rapid growth in the development of 

new alloys specifically for AM process has also pressed the question of quality assurance like 

never before. Understanding the laser-material interaction is also essential as new material is 

being developed for the AM process.  

L-PBF involves complex interactions between the laser and metal powders, and additive 

manufacturing processes involve coupled physical phenomena of thermal (with phase changes 

related to the melting phenomena of metal powders and the solidification of the liquid metal), 

metallurgical (diffusion phenomena), mechanical (presence of residual stresses due to 

temperature gradients during the process) and hydrodynamic (convection in the melting bath). 

From a metallurgical point of view, the L-PBF process involves rapid melting-solidification 

kinetics of small-sized (<1 mm) melt zones, leading to very specific microstructures. Finally, 

the improved quality assurance and process reliability with the current commercial systems can 

only be possible with a better understanding of these systems and the development of models 

to control the quality inline. 
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The main objective of the thesis is to study the phenomena induced by laser/powder 

interactions, on the one hand from in situ instrumentations allowing a real-time observation and 

on the other hand from more classical post-mortem characterization tests. All the experimental 

results are used to develop models for detecting defects and to feed the models of behavior laws 

developed by the other ESR of the project (Figure 2). Experimental studies have been carried 

out on the equipment available with the various partners of this work. Instrumented SLM 

machines and experimental test benches have been used to reproduce fusion kinetics observed 

in additive manufacturing on powder beds. The reference alloy of the study is AlSi7Mg0.6, but 

we have also developed some works based on Inconel 718 and steel. 

The tasks performed at the partner's corner are summarized as follows: 

• SIRRIS, Belgium: To set-up test cases and validate the methodology for photodiode-

based monitoring systems installed on SLM 280HL. Also, to investigate the mechanical 

testing and residual stress measurements to select optimized processing parameters. 

• University of Bordeaux, France: Study the evolution of the metallurgical phenomena 

concerning the varying process parameters, experimental analysis of thermomechanical 

behavior, and validation of the results based on the literature study. 

• IPC, France: Study and development of models for optical-based monitoring 

equipment installed on EOS M290 machine. 

• Lortek, Spain: Manufacturing of SLM samples for the studies concerning Inconel 718. 

Methodology

Tools

Objective
Study of the phenomena induced 

by Laser-powder interaction 
during Additive Manufacturing 

(AM)

To develop machine 
learning based models 
on the data obtained 

by laser-powder 
interaction

Photodiode based melt 
pool monitoring (MPM) 

system

Optical sensor based 
monitoring system 

(Optical Tomography)

To develop 
constitutive 

material behaviour 
law for AM parts

Experimental study of 
thermo mechanical 
deformation of AM 

processed Inconel 718

Figure 2: Main objective of the thesis. 
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• Tecnalia, Spain: Feasibility study of the future perspective involving advanced 

manufacturing of the Inconel 718. 

For our study, we exploited the commercially available in-situ monitoring modules (MPM, 

LCS, OT) from EOS GmbH and SLM Solutions, respectively. The working principle of the in-

situ sensing modules is discussed in the respective chapters. 

The outline of the thesis can be divided into below parts and also summarized in Figure 3: 

The first chapter presents a detailed literature review study showing the conclusive evidence 

of this study's need. Also, in the literature review, we try to give a basic understanding of the 

L-PBF process and its process space, including the solidification behavior for Al alloys and 

Inconel 718 Alloys used in our study. Moreover, the terminology related to machine learning 

and in-situ monitoring devices is also presented. 

The second chapter provides the base for the investigations on the next steps related to the 

laser-material interaction. Choosing a set of process parameters used in further experiments is 

crucial for data acquisition systems. Therefore, this chapter chooses the best-fit process 

parameters for AlSi7Mg0.6 (primary alloy for our study) and investigates the microstructural 

and mechanical behavior with different scanning strategies and parameters. 

The third chapter focuses on the camera-based in-situ monitoring module called “EOSTATE 

Optical Tomography” supplied by EOS GmbH. We utilized a semi-supervised learning method 

to explore how to identify the drift layers in the printed parts. 

The fourth chapter explores the sensitivity analysis and advances of the photodiode-based in-

situ monitoring module supplied by SLM solutions. Firstly, we have used a supervised learning 

method to identify the layers with probable drifts called the global approach. Then, the exact 

location of the highest potential areas of the drift within the layers is identified using LSTM 

models. This approach is termed the local approach. 

The fifth chapter is focused on another monitoring system called “Layer Control System 

(LCS)” provided by SLM solutions. The LCS system focuses on monitoring the key 

characteristics of the powder bed spreadability. Locally spatial variation in powder bed can 

significantly influence the laser-material interaction. In the end, we presented a case study to 

interlink the MPM data and LCS data to enhance quality assurance.  

The sixth chapter is vital for developing the constitutive material behavior law for AM parts. 

As mentioned earlier, the thesis is an integral part of the project ENABLE, so it is imperative 
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to share and communicate the results among different partners. Therefore, we have investigated 

the thermomechanical deformation of the L-PBF processed Inconel 718 parts using hot torsion 

tests to fulfil the requirement. The experimental results will provide a basis for developing 

relevant material behavior models. The choice of the Inconel 718 is made based on the Project 

ENABLE requirements and to collaborate with other WPs. 

In the appendix, we have presented a short overview of the future perspective of AM 

technology. A feasibility study on the development of parts combining two AM processes, i.e., 

L-PBF and LMD, is carried out.  

Finally, the thesis conclusion highlights the key finds and presents the future possibilities. Also, 

the research findings in context of the L-PBF process and their contribution to industrial and 

academic work are discussed. 
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Figure 3: Outline of the thesis. 
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C H A P T E R  1 

Literature Review 

 

1.1. General Introduction: Additive Manufacturing 

1.1.1. Processes 

According to the ASTM F42 committee, AM process is defined as “the process of joining 

materials to make objects from 3D model data, usually layer upon layer, as opposed to 

“Additive Manufacturing (AM), or colloquially known as “3-
Dimensional Printing,” is the general term for the 

manufacturing process that enables complex 3D parts to be 
created by adding material where needed rather than 
subtracting material where it is not. Usually, this is 

achieved in a layer-by-layer manner in which each layer 
further consists of line tracks deposited or solidified 
adjacent to each other.  This complex 1D to 2D to 3D 

approach opens up the field for much more complicated 
designs. It introduces physical and metallurgical 

phenomena specific to this manufacturing process, as will 
be made clear further on.  Laser-Powder Bed Fusion (L-PBF) 

or Selective Laser Melting (SLM) is one such AM process 
studied throughout the research.  The comparison of the L-
PBF process with other AM processes and its particularities 
for completing this project are highlighted and discussed in 

this Introduction section. Also, the advantages and 
disadvantages and the current applicability and future 

outlook of the process are discussed, which will clarify the 
need for the research conducted in this project. To conclude, 
the aim of this research is explained, and the methodology 

followed to achieve the stipulated goals. 

” 
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subtractive manufacturing methods” [1]. It is widely accepted definitions of the processes 

formerly described as ‘Rapid Prototyping’ or ‘Rapid Tooling’ [2]. It gained attraction with the 

invention of stereolithography by Chuck Hull in 1986 [3]. Stereolithography was initially 

intended to fabricate polymer-based prototypes at pace, which led to the early name of “Rapid 

Prototyping or Rapid Tooling.” Over the years, the technological progress in the technique led 

to the development of new processes which allowed the fabrication of metal and ceramics parts. 

Nowadays, state-of-the-art parts fabricated using AM processes are being used in various niche 

industries such as aerospace, biomedical and automotive. The acceptance of AM parts in these 

critical industries provide evidence of the economic viability of the AM processes. All AM 

processes work on the primary working principle of fabricating 3D structure by adding layers 

of raw material on top of each other, in contrast to traditional manufacturing techniques such 

as subtractive and molding. However, all AM processes differ based on feedstock, deposition 

technique, and consolidation mechanism. The International Organization Standardization (ISO) 

has categorized the AM processes into 7 classes as listed in Table 1 based on all these mentioned 

factors [4]. The table summarizes the feedstock type, deposition mechanism, and qualitative 

comparison of cost, printing speed, resolution, and performance. 

Table 1: Categories of the AM processes and their capabilities. 

Category 
Name 

Material Material 
Form 

Working Mechanism Cost Speed Resolution Perform
ace 

Material 
Extrusion 

Polymer Wire Warm extrusion of 
polymer 
wire fed through a 
heated 
nozzle. 

+++ 0 - - 

Material 
Jetting 

Polymer Liquid Material is deposited in 
droplet form through 
heated 
nozzle 

0 - + - 

Binding 
Jetting 

Sand 
Metal 
Ceramic 

Powder Binder in droplet form 
deposited on the 
powder bed, 
followed by debinding, 
sintering and infiltration 

- + - - 

Powder Bed 
Fusion 

Polymer 
Metal 

Powder Energy source fully melts 
powder particles in the 
top layer 
of powder bed 

--- -- +++ - 

Directed 
Energy 
Deposition 

Metal Powder 
Wire 

Powder or wire is fed 
into the 
energy source mounted 
on a 
robotic arm 
 

- ++ 0 ++ 
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Vat 
Polymerisati
on 

Polymer Liquid UV light polymerizes a 
liquid 
prepolymer layer by 
layer 

+ 0 ++ + 

Sheet 
Lamination 

Paper 
Metal 

Sheet Sheet cutouts are 
stacked 
and bonded 

++ - --- -- 

 

Material Extrusion: Polymer wire is used as feedstock material fed through a preheated nozzle 

that moves in the X, Y, and Z direction. In other configurations, the nozzle is kept stationary in 

the Z direction, whereas the base plate on which the part is being fabricated moves in the Z 

direction. The heating of the polymer lowers its viscosity which enables smooth deposition of 

continuous tracks. Most desktop 3D printers work based on the material extrusion principle. 

 

Material Jetting: In material jetting, the feedstock material is also fed through a preheated 

nozzle, but the output from the nozzle exists as liquid droplets rather than as a semi-viscous 

material. The process is similar to 2D inkjet printing, and the liquid droplets are deposited on a 

base plate and then on top of each other. The solidification of the droplets is fast enough to 

fabricate 3D parts. With this technique, fabrication of multiple material single components is 

relatively easy. Material jetting is one of the less used categories with commercial machines 

and applications still to be announced. Stable liquid droplets need to be obtained at workable 

temperatures. Therefore, wax is the go-to material for this technique. 

Binder Jetting: uses the nozzle to deposit droplets of binder material onto the powder bed.  The 

sole purpose of the binder material is to bind the powder particles together effectively. The 

fragile “Green Part” is obtained by repeatedly depositing the powder layer and binding it 

together.  The “Green Part” is left into the powder bed for some time, allowing it to gain 

strength. Before post-processing steps such as sintering, melt infiltration, the green part is 

dusted very carefully so that there is no loose powder left attached to the green part. 

Further, the binder is first burned away, and the powder is sintered together. Often, the sintered 

part is melt infiltrated to achieve full densification. Compared to other techniques, binder jetting 

produced parts have average mechanical properties. The most significant advantage of this 

technique is that the fabrication of large parts is possible as it does not use high temperatures 

for processing.  

Powder-Bed Fusion: In the powder-bed fusion process, a heat source is focussed onto a metal 

or polymer powder bed resulting in the fully melting of material powder particles. The Laser or 
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Electron beam can be used as the heat source or energy source. The powder is spread onto a 

powder bed using a recoater, either a roller, rake, or scraper. Rapid heating and cooling of the 

powder particles result in the incorporation of residual stresses in the built part, limiting the size 

of the produced parts. A powder bed can act as a support for the layers to be deposited on top. 

Still, support structures are often needed for better heat conduction, part anchoring, and 

avoiding failure due to overheating. The Selective Laser Melting (SLM) or Laser Powder Bed 

Fusion (L-PBF) and Electron Beam Melting (EBM) are the two categories of the powder-bed 

fusion process. The ability to produce fully dense parts makes this process most suitable for 

comprehensive applications in structural or functional applications.  

Directed Energy Deposition: DED process is similar to the powder-bed fusion process, but 

powder material is either coaxially sprayed into the energy beam, or material wire is fed into 

the melt pool created by the beam, which is placed on a robotic arm allowing free movement in 

different directions. The melt pool created by the DED process is larger compared to the melt 

pool obtained from the powder bed fusion process. Therefore, the geometrical deviation is 

higher in the DED process.  Laser Net Shaping (LENS), also referred to as Laser Cladding (LC) 

or Laser Melt Deposition (LMD), are prominent processes in this category.  

Vat Polymerization: also referred to as Stereolithography, uses a liquid bath of prepolymer to 

fabricate parts. The prepolymer bath is selectively illuminated utilizing the UV light allowing 

the polymerization, which results in solidification. The parts are attached to the base plate, 

which gradually lowers into the prepolymer bath as the process proceeds. A thin liquid 

prepolymer layer is illuminated from below in the bottom-up configuration, and the base plate 

is gradually pulled upwards out of the liquid.  

Sheet Lamination: As the name suggests, sheet lamination uses a sheet of material that is first 

cut to the right shape and stacked or laminated on top of other cut-outs. The sheets are bonded 

together using ultrasonic vibrations or glue. This technique is not often used and only 

marginally considered AM process. 

1.1.2. Applications 

Although AM is considered an advanced manufacturing technology, it cannot replace other 

manufacturing technologies. The additional cost incurred by the AM parts is compensated by 

exploiting the advantages offered by AM compared to other technologies. The four main 

advantages of the AM are listed below. 
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• In AM, the costs of producing the same part 100 times are the same as producing 100 

different parts. It is called “Mass customization,” which is particularly important in the 

medical sector. As every patient's body is different and unique, AM can produce 

complex customized implants with enhanced durability and better comfort level for the 

patient. 

• Secondly, the topological optimization of the traditional components is another major 

advantage offered by AM. As in AM, the material is added rather than removed, the 

part designs can be optimized to have the same functionality with less material.  Based 

on certain boundary conditions and load cases, existing parts can be redesigned with the 

help of sophisticated software to minimize the weight. Topological optimization is vital 

for aerospace applications. For example, 1kg of weight reduction translates to $80,000 

in savings in one year of the normal operation of an airplane. 

• Topological optimization can often be combined with improved performance as well. 

Currently, the parts are designed while considering the limitations of conventional 

production techniques in mind. Other optimal designs for a particular application may 

be possible but may not be possible to produce with traditional techniques. For example, 

in the case of conformal cooling, cooling channels can be placed in the vicinity of the 

cooling zone, while the heat exchanger surface can be maximized. 

• Also, AM is regarded as a fast manufacturing technique. Ironically, the actual 

manufacturing process is relatively slow, but the process chain leading up to the 

production is fully digital. Therefore, for the fabrication of new design, it is a matter of 

days before a 3D file is printed, as opposed to weeks if molds need to be prepared. 

Moreover, preparing molds for individual parts is expensive, while in AM, the digital 

design can quickly be adjusted. 

AM has other additional advantages, such as a +90 % material usage rate, compared to buy-to-

fly ratios as low as 5 % for some aerospace parts.  Moreover, it allows the manufacturing of 

complex parts of high melting point materials such as tungsten or tantalum or other hard 

materials that are difficult to the tool. 

1.1.3. Challenges 

Despite all the advantages mentioned earlier, several challenges are associated with AM that 

need to be overcome. One of the major drawbacks is that the actual production of parts is very 

slow, with printing jobs lasting as much as one week or longer. Its reputation as a “fast 

production process” comes from the time gained in pre-processing. Improving the build rates 

will further lower down the cost of AM. 
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Other active topics of research in metal AM are: 

1. Quality Assurance: AM is the main candidate for producing parts in critical 

applications. Therefore, the safety and quality assurance of AM parts is vital. However, 

poor process control and lack of repeatability is still major concern to enhance the 

overall confidence in AM parts. Therefore, every part needs to be checked further, 

which adds additional time and cost to the whole process. If the part quality could be 

guaranteed during the process itself could save both time and money. 

2. Higher cooling rates during printing can create metastable phases (undesirable phases 

which can be detrimental to other properties) or unique microstructures for which the 

mechanical behavior is not yet wholly documented. The response of the AM parts is 

different when subjected to well-established heat treatment profiles. 

3. Another major drawback of a higher cooling rate is the evolution of residual stresses in 

the AM parts. If the stresses exceed the yield strength of the material, it can permanently 

deform the part during printing. Also, it can induce cracks in the final part which are 

detrimental to mechanical properties.  

4. Process parameter optimization for new material is still a very challenging task. Non-

optimized process parameters can lead to porosity in the final part, which can influence 

the overall performance of the part. The influence of the porosities on the dynamic 

properties is not well understood yet. 

5. Material Range: The processability of limited metallic alloys by metal AM limits its 

applicability in many fields.  

1.2. L-PBF Process 
Laser powder bed fusion (L-PBF), also known as selective laser melting (SLM) and Direct melt 

laser sintering (DMLS), is an additive manufacturing process in which laser source (thermal 

energy) selectively fuses regions of powder-bed in a layer by layer fashion [5]. The schematic 

of L-PBF is shown in Figure 4a [5]. The complex thermo-mechanical process in a melt pool 

occurs locally due to laser-material interaction [6]. The schematic of the laser-material 

interaction region is shown in Figure 4b [7]. The non-uniformity of temperature distribution in 

the melt pool (center of melt pool is at a higher temperature) develops surface tension gradient, 

which leads to the thermo-capillary motion of the liquid, i.e., the liquid from the center of the 

melt pool is transported to the edges (colder region). When the laser source moves away from 

the molten pool, a negative surface tension gradient develops in the melt pool, which generates 

a shallow and well-distributed liquid mass. Similarly, the segregated melt at melt pool edges 
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will acquire sufficient surface energy, which flows back to the hotter region and completes the 

convection loop [8]. Rapid solidification with cooling rates of 106 K/s of melt pool allows inter-

layer bonding [9].  

 

 

The support structures must anchor parts and their features to the build plate for metallic alloys. 

It is necessary because the thermal gradients in the building part are high, which can lead to 

thermal stresses and warping if the anchors are not used. The thick build plate serves as the heat 

sink and prevents the parts from warping while printing. The preheating of the build plate, 

which depends on the material manufactured, is done to minimize thermal stresses in part. The 

dimensional accuracy and ability to print good surface finish products and fine feature details 

are advantages of the L-PBF process. 

1.2.1. Defects 

As discussed, the L-PBF process is a complex thermomechanical process affected by many 

controllable process parameters such as laser power, scan speed, hatch distance, powder 

material, and powder morphology. These parameters can strongly influence the laser-material 

interaction, influencing the thermophysical mechanism, resulting in various physical 

phenomena such as material evaporation, microstructural evolution, melt pool instabilities, and 

thermal stresses. Thus, the formation of various defects during the process is inevitable. Here, 

we review the formation mechanism of the most prevalent defects, such as porosities, lack of 

(a) (b) 

Figure 4:(a) Schematic diagram of L-PBF process [5], (b) Laser-melt interaction region [7]. 
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fusion, balling, and cracking defects that can be detrimental to the mechanical properties of the 

final part. 

Porosities 

Spherical and non-spherical porosities, which are usually smaller in size (100 µm), are the most 

common defects in the L-PBF process, which significantly influence the fatigue properties of 

the part [10]. The leading cause for the formation of gas porosities (generally spherical, as 

shown in Figure 5a) [10] is the entrapping of gas in the melt pool due to rapid solidification. 

The rapid solidification of the melt pool does not allow dissolved gas to come out on the surface. 

As we know, at high temperatures, the gas dissolves in the melt pool very easily. Moreover, 

enrichment of gas in the liquid melt can be due to various factors such as low packing density 

of powder bed, gas inclusion during gas atomization of powders, and evaporation due to high 

laser power. Dissociation of oxide films, adsorbed gas, and moisture on the powder material 

also results in gas formation [11]. For example, Gong et al. [12] showed the presence of gas 

porosities due to the entrapping of gas bubbles, which originated due to the vaporization of the 

low melting material in the alloys. The gas bubbles could not escape to the surface due to rapid 

solidification.  

Another type of porosity called “keyhole porosity” is due to excessive energy input, which leads 

to temperatures beyond the boiling point of the material, which causes evaporation of the 

material and forms a plasma. The laser beam penetrates the powder bed deep through the vapor 

(a) (b) (c) 

(d) (e) 

Figure 5: Micrographs of defects observed in L-PBF such as (a) gas porosities [10], (b) key hole porosity [12], (c) lack of fusion 
defect [10], (d) balling [22], and (e) thermal crack [30]. Reused under Creative Commons Attribution License. 
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voids, which creates a large melt pool. High energy density can occur at lower scan speeds, 

where the longer exposure time initiates boiling, which unstabilizes the melt pool and induces 

small metallics balls. The intense recoil pressure creates denudation along the scan track and, 

together with Marangoni convection (thermocapillary convection), forms a melt pool 

depression into the powder layers. The breakdown of the melt pool sidewalls during 

solidification leads to entrapped irregular porosities in the printed layer (as shown in Figure 5b 

[12]). 

Still, there is a lack of universal consensus among researchers on the evolution mechanism of 

keyhole porosities [12]. For example, according to reference [13], the keyhole porosities occur 

when the Marangoni effect outweighs the buoyancy. Similarly, Svenungsson et al. [14] stated 

that vortices, high fluid speed, and recirculation in the melt pool lead to keyhole phenomena. It 

is challenging to observe this defect experimentally and requires a sophisticated setup to 

observe it inline. For instance, Cunningham et al. [15] used ultrahigh-speed X-ray imaging to 

capture keyhole evolution in titanium alloy while printing. They have explained the evolution 

of the keyhole porosity, which is as follows: As the laser turned on, the powder began to melt, 

and a solid–liquid interface is formed. Once the melt pool temperature reached near the boiling 

point of the material, localized vaporization led to recoil pressure and formed a depression. Due 

to recoil pressure, the melt pushed up and out of depression, which developed instability in the 

melt pool. Soon after, the shallow vapor depression transitioned to deep, conical depression. 

Then, deep vapor depression rapidly penetrated the melt pool, and displacement of the melted 

liquid from the center of the melt pool occurred. The displacement in the liquid introduced the 

liquid-vapor interface fluctuations and changed the melt pool shape from quasi-semicircular to 

a bimodal shape to form keyhole porosity. 

Lack of Fusion 

Another common defect observed in L-PBF is the lack of fusion defect (LOF), which occurs 

due to incomplete fusion of two adjacent layers (as shown in Figure 5c [10]). It can happen due 

to (i) insufficient energy input leading to incomplete melting of the powder layer, (ii) 

insufficient material due to shrinkage during solidification, and (iii) poor bonding between 

layers due to oxidation, which influences the wetting angle between layers [16], [17]. The L-

PBF process selectively melts the powder line by line and layer by layer, and the LOF defects 

are usually present between the layers or between the scan vectors. Sometimes, the uneven 

powder layer spreading in consecutive layers also leads to incomplete powder melting, resulting 

in a LOF defect in the final part. Clijsters et al. and Read et al. [18], [19] showed that the rapid 
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formation of an oxide layer on the solidified layer of AlSi10Mg leads to poor wettability 

between layers, which results in poor wettability in a LOF defect. 

Balling 

Another common defect in the L-PBF process is called “balling,” which disrupts interlayer 

bonding, poor surface quality, and porosity in the final part [19]. It occurs mainly at high scan 

speeds, which leads to an elongated melt pool that breaks into small beads (10 µm) to reduce 

the surface tension due to Rayleigh instability. Due to low input energy, partially melted powder 

leads to limited melt formation and produces coarser-sized beads (500 µm). The oxide layer or 

moisture on the powder surface can also disrupt the melt pool surface tension, resulting in 

balling. These impurities reverse the capillary motion at the melt pool surface, and a positive 

surface tension gradient forces the melt pool to flow inwards to the center, which develops 

unfavorable wetting conditions and leads to spheroidization. Remelting/double exposure or 

deoxidizing agents can significantly reduce the balling phenomena [20], [21]. Li et al. [22] 

presented the SEM images of the balling phenomena for stainless steel w.r.t different scanning 

speeds in the L-PBF process (as shown in Figure 5d). Other authors, for example [21], [23], 

reported the balling phenomenon in L-PBF for different materials. 

Residual Stresses and Cracks 

The residual stresses are the stresses that remain in part after fabrication; these stresses are 

significantly detrimental to the mechanical strength of the final part. Due to rapid heating and 

cooling cycles, a higher thermal gradient develops residual stresses in part and results in 

delamination, part distortion, and warping [24], [25]. The temperature gradient mechanism 

(TGM) and the rapid solidification mechanism are responsible for the evolution of residual 

stresses. During TGM, the pre-solidified layer underneath the melted layers is heated up very 

rapidly upon laser exposure, which tries to expand but is restricted by the cold solidified 

material. This restriction in thermal expansion develops compressive residual stresses at the 

regional heat-affected zone (see Figure 6a) [26]. The melted zone cools rapidly during the 

solidification mechanism, and shrinkage is again restricted by the underlying layer, developing 

tensile residual stresses in the upper layer (Figure 6c). Therefore, during printing, the cyclic 

heating, and cooling phases result in larger tensile residual stresses in the top surface layers and 

residual compression stress at the bottom of the printed part (Figure 6b and Figure 6d) [26]. 

When the tensile residual stresses cross the material's ultimate tensile strength at a given time 

and temperature, it leads to cracking in part [27]. As reported [28], the crack initiation and 

propagation start on the as-built surface as it is adhered to the partially melted material and 
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leads to interlayer delamination, also called interlayer cracking. Materials like nickel-based 

alloys, copper, and stainless steel are highly susceptible to cracking due to their low thermal 

conductivity [29]. The pre-heating of the build plate is often applied to reduce the effect of the 

residual stresses in the final part. 

Part Distortions 

Another critical aspect of residual stresses on the overall quality of the part health is “part 

distortion.” If the thermally induced local residual stresses exceed the material's yield stress, it 

can lead to part distortion in the middle of the process. Part distortion can also damage the 

recoater permanently. Kruth et al. [30] reported the warping in the SLMed parts due to high 

thermal fluctuations experienced by the material in a short time interval. After removing the 

finished part from the base plate and support structures, the relaxation in the residual stresses 

leads to macroscopic distortion in the final part (as shown in Figure 5e). Mugwagwa et al. [31] 

studied the influence of process parameters such as laser power, scanning speed, scanning 

strategies on the evolution of residual stresses, and part distortion experimentally and with finite 

element modeling. Sometimes, the warping of the parts can lead to the failure of the bolts of 

the build plate as well. Mishurova et al. [32] studied the influence of support structures on part 

distortion using the X-ray diffraction method. The stress redistribution occurs for the samples 

with support structures after removal from the base plate, whereas only simple stress relaxation 

(a) (b) 

(c) (d) 

Figure 6: (a) Temperature gradient mechanism during laser heating, (b) representation of the evolution of thermal stress 
and strains in the irradiated zone (c) Evolution of stresses during solidification phase, (d) representation of the evolution 
of residual stresses and strain in the irradiated zone [26]. Reused under Creative Commons Attribution License. 
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is observed for parts without support structures. They have concluded that the support structures 

decrease the amount of residual stresses in part. 

This section does not discuss other defects or anomalies such as surface defects, material 

contamination, and geometrical inaccuracy. However, interested readers can refer to references 

[33]–[35]. 

1.2.2. Process Space  

L-PBF process involves many critical parameters that can influence the quality of the final part 

and lead to the defects as mentioned above if not optimized. Sharratt et al. [36] categorized the 

influencing parameters into three categories, which are (i) process defects, (ii) equipment-

induced defects, (iii) design defects. Equipment defects are basically due to aberration in the 

machine's equipment, such as f-theta lens aberration, improper calibration, wear of recoating 

blade, etc. Due to significant technological advancements, most commercial machines are well-

calibrated and standardized to minimize such defects. Design defects are due to improper design 

optimization as per AM standards, such as lack of support structures, overhang angle, and bad 

orientation. These defects can be minimized by using commercial software such as 

AdditiveLab, Simufact, Virfac, etc., which helps find the best support structure placement based 

on the thermomechanical simulations. 

A lot of time and money is consumed to find best-fit process parameters such as laser power, 

scan speed, hatch distance, layer thickness, etc., to reduce the third type of defect called 

“process defects.” All the above parameters can be combined in the empirical formula of 

’Energy density (E (J/mm3))’ given by Equation 1, where 𝑃 (𝑊), 𝑣 (𝑚𝑚/𝑠), ℎ (𝑚𝑚), and 

𝑡 (𝑚𝑚) represent laser power, scan speed, hatch distance, and layer thickness, respectively. 

𝐸 =
𝑃

𝑣 ∗ ℎ ∗ 𝑡
 

Equation 1 

Each parameter in Equation 1 affects the final quality of the part. For example, at lower scan 

speed and high laser power, the energy density is higher, and its attributes to porosity defects 

are due to gas entrapment. Thijs et al. [37] stated that high energy input in Ti6Al4V powders 

leads to a large melt pool size, which causes denudation. Thus, insufficient material is available 

to fuse the adjacent scan vector, leading to bigger pores in part. The higher residual stresses are 

also reported for low scan speed and higher laser power [29]. 
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Similarly, at low laser power and higher scan speed, a lack of fusion defects is more pronounced 

due to a lack of energy input to fully melt the powder layer [12], [17], [38]. Sun et al. [39] 

showed the relationship between the part density and input energy density for Al0.5CoCrFeNi 

High Entropy Alloys (Figure 7). It can be observed that the highest porosity is reported for 

lower energy density. Therefore, it is crucial to optimize the process parameters to attain the 

maximum dense parts. 

It is important to note that the scanning strategy also impacts the overall quality of the part. 

Although it has not been considered in the energy density equation, the scanning strategy 

directly influences the heat balance of the part. For example, Aboulkhair et al. [40] showed the 

relation between the scan speed and different scan strategies, as shown in Figure 8. The different 

strategies used are: “2X” is similar to “X” but each layer is scanned twice, “X&Y 2HS” means 

that each layer is scanned twice, having each scan pass perpendicular to the one before and with 

different hatch spacings for each scan, “pre-sinter” means to first scan the layer with half the 

power followed by a second scan with full power, “overlap” strategy indicates where each layer 

is scanned twice with the second scan melting the overlap between each two adjacent melt 

pools, and “alternating” strategy indicates scanning each layer in a direction rotated by 90° to 

its precursor. As can be concluded from Figure 8, the pre-sinter scanning strategy and scanning 

speed of 500 mm/s report a high density of AlSi10Mg parts. 
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Figure 7: Relative density as a function of energy density [39]. Reused under Creative Commons Attribution 
License. 
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Figure 8: Effect of scanning strategies and scan speed on the porosity % of AlSi10Mg parts [40]. Reused under Creative 
Commons Attribution License. 



Chapter 1 

 

- 21 - 
 

1.2.3. Melt Pool Signatures 

Laser–material interaction in L-PBF is a complex thermophysical phenomenon occurring in a 

short time interval. The process parameters and geometrical factors significantly influence the 

shape and size of the melt pool. Therefore, melt pool signatures provide essential information 

about the quality of the part. A different range of electromagnetic spectrum emanates from the 

melt pool, which serves as the input variable for in situ sensing devices. The types of 

electromagnetic radiations observed from the melt pool are shown in Figure 9. As we know, 

scattering, absorption, and diffraction of laser light are common phenomena that occur. Hence, 

the backscattering of the laser light is a common phenomenon that occurs in L-PBF. Therefore, 

it is vital to eliminate the backscattering of the laser light in the in-situ sensing module by 

installing correct mirrors. Thermal emissions from the melt pool occur at the wavelengths that 

correspond to the melt temperature. High laser energy can lead to melt evaporation and 

ionization of the gas, resulting in a plasma plume above the melt pool. The electromagnetic 

radiation from the plasma can also add noise to the captured signatures [41], [42]. Sometimes, 

the plasma also hinders the laser beam, which results in low input energy to the powder bed. 

Thermal radiation ranges from 900 to 2300 nm, is captured to monitor the process and link it 

to the melt pool's temperature field. Plasma radiations, which are in the range of visible 

wavelengths (400–600 nm), are eliminated [43]. These melt pool signatures are captured using 

in situ sensing sensors, discussed in the next section. 

Laser (1064 nm) 

Temperature radiation 

(Visible-Infrared) 

Backscattered Laser (1064 nm) 

Plasma radiation (400-600 

nm) 

Figure 9: Illustration of types of emitting radiation from melt pool. 
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1.3. In-Situ Monitoring in L-PBF 
Quality assurance is essential in full-scale manufacturing, where reproducible part qualities are 

significant. Therefore, the technological advancements of the commercial machines allowed 

the possibility of in-situ monitoring of the L-PBF process.  In-situ monitoring setups, including 

various sensors, offer more comprehensive process monitoring and quality assurance. Real-

time monitoring is a key to creating an economically viable process chain.  For example, In-

situ sensing enables the customers to significantly reduce the downstream costs (non-

destructive testing using computed tomography) by rejecting the potentially defective parts 

early. 

Therefore, commercial suppliers of L-PBF systems are now equipped with inbuilt in-situ 

sensing modules. The layout of the monitoring system, detection range, and sensor types 

differentiate commercial supplier monitoring systems. There is no common consensus on the 

detection range of the melt pool emissions among different suppliers. The reason to choose a 

specific detection range is protected under the confidentiality clause by the supplier. Therefore, 

each module has its disadvantages and advantages. For example, the EOSTATE Optical 

Tomography (OT) module detects every layer's light emitted from the melt pool. The 

EOSTATE Exposure analysis tool provided by EOS GmbH uses a statistical algorithm to detect 

so-called “hotspots” and “cold spots,” which are the regions of high and low intensity compared 

to the rest of the layer. 

Similarly, Melt Pool Monitoring (MPM) provided by SLM solutions captures the melt pool 

emissions in the near-infrared region using two photodiodes with different spectral ranges. 

Then, captured thermal emissions can be studied in the software module supplied by SLM 

solutions in a layer-by-layer fashion. The Layer Control System (LCS), also supplied by SLM 

solutions, uses the visible range camera to monitor the quality of the powder bed spread. After 

the powder bed spreading, an automatic algorithm processes the captured image in real-time 

and automatically activates the recoating operation in case of inhomogeneous powder spread. 

Renishaw supplied the InfiAM module composed of MeltView, which captures the in-situ data 

in a wide spectral range, and LaserView to monitor the part build and laser power. It provides 

the captured data in 2D and 3D view as the build progresses. It shall be noted that the author’s 

aim is not to comment on the capabilities of the available commercial systems as the authors 

have not personally used all these systems. 
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1.3.1. In Situ Sensing Devices 

As discussed in the last section, capturing the melt pool signatures is essential to monitor the 

process. Therefore, this section reviews the working principle of the most used devices or 

sensors for in situ sensing of melt pool signatures in the L-PBF process. Generally, two entities 

related to the melting pool are measured, i.e., melt pool morphology (shape and size) and 

temperature. There are two types of sensors available for temperature measurements, i.e., 

photon detectors, also called non-contact sensors, and thermal detectors, referred to as contact 

detectors. As shown in Figure 10, the thermal detector response is constant with the wavelength 

(radiations emanating from the melt pool), whereas the wavelength of the light greatly 

influenced the photon detector response. The link of the photon detector's output to the melt 

pool temperature will be discussed next. Besides monitoring the melt pool signatures, other 

process signatures such as powder bed spreading and part geometry are also studied using 

different sensor techniques, such as ultrasonic, line profiling, optical coherence tomography, 

etc., as reported in references [44]. 

1.3.1.1. Non-Contact Temperature Measurement Devices 

Most studies involve monitoring the temperature field or electromagnetic radiations from the 

melt pool in a co-axial/on-axis and off-axis manner. The melt pool signatures capture the most 

invaluable information, such as the temperature profile of the melt pool and the morphology of 

the melt pool that directly influences the quality of the part [45], [46]. Electromagnetic 

emissions are associated with the melt pool and plasma plume [37]. Therefore, to capture 

electromagnetic signatures, mostly non-contact measurement sensors are used. Broadly, these 

sensors can be classified as spatially integrated, i.e., photodiodes and pyrometers; spatially 

resolved, i.e., cameras; spectrally resolved, i.e., spectrometers [43]. Regardless of the sensors, 
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Figure 10: Wavelength response of detectors. 
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the essential requirement for AM applications is the ability of the sensor to capture the rapid 

melt pool dynamics. Below, we discuss the working mechanism of the two most common 

photodevices used in the L-PBF process. 

 Photodiodes 

Spatially integrated, single-channel detectors such as photodiodes are semiconductor devices 

that convert light (radiation) into electric current. The basic principle of the photodiode or 

photodetector is that when photons of sufficient energy (radiation) hit the device's active area, 

it generates an electron-hole pair, which changes the effective resistance or conductance of the 

detector. A bias voltage is applied to collect the charge carriers, and the signal (photocurrent) 

is measured across a load resistor RL, as shown in Figure 11. The photocurrent is directly 

proportional to the intensity of the photons hitting the device's active area. The intensity of 

photons is directly linked to the melt pool temperature. Photodiodes have the advantages and 

disadvantages of reducing the signal to a single data point, i.e., photovoltage corresponding to 

the amount of light hitting the photodiode. Reducing the signal to a single point relates to data 

shrinkage, making it easier to post-process. Low cost, high sensitivity, and high sampling rates 

(typically ~50 kHz) make them suitable for in situ sensing of the L-PBF process. The detection 

range of these devices is limited to over a range of the spectrum; for example, germanium (Ge) 

and InGaAs-based photodiodes are used for visible to infrared light detection. In contrast, 

silicon-based photodiodes are used for the UV and visible spectrum [47], [48]. 

Digital Cameras 

The digital cameras, also called spatially resolved sensors, are an array of photodiodes where 

each photodiode is labeled as a pixel. The different types of photodiodes with their detection 

wavelength range are given in Figure 12. Each pixel detects the photon coming from the melt 

pool and converts it into photocurrent. Afterward, signal processing is done to extract a picture 

Figure 11: Schematic of working principle of PIN photodiode [47]. 
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corresponding to the melt pool's temperature fields. Based on the detection range of the devices, 

it can be classified either as a regular digital camera with a detection range in the visible 

spectrum or a thermal camera, which has a detection range in the infrared spectrum. Thermal 

cameras are preferred for monitoring melt pool signatures with a detection range of over 700 

nm. The digital cameras can be classified into two categories based on the signal processing 

method, i.e., charge-coupled device (CCD) and complementary metal-oxide-semiconductor 

(CMOS). In a CCD camera, all the pixel information is processed by a single circuit, whereas, 

in a CMOS camera, each pixel has its processing circuit. Therefore, the CMOS cameras have 

better signal processing speed, but the capture area is limited than a CCD camera. The main 

disadvantage of using cameras for in situ sensing of the L-PBF process is the speed of the 

process, which requires a high frame rate camera that results in an enormous size of data that 

are difficult to post-process [49], [50]. 

1.3.1.2. Contact Temperature Measurement Devices 

Another category of the devices or sensors used for monitoring the temperature fields in the L-

PBF process is direct contact-based measurement devices such as thermocouples. The 

thermocouple is an electric device that produces a temperature-dependent voltage due to the 

thermoelectric effect. The working principle of the thermocouple is based on the Peltier effect. 

The thermocouple consists of two electric conductors joined together to form two junctions. If 

0.1 1 10 100 

Wavelength (m) 

Figure 12: Wavelength sensitivity of common detectors [49]. 
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junctions are attached to the surface at different temperatures, an electromotive force (EMF) is 

generated due to the temperature gradient between the two junctions of the circuit; then, total 

EMF can be calculated based on the temperature of the junctions and the properties of the 

electric conductors used. A measurement point is connected to one of the junctions in the 

circuit, also called a hot junction. Another body of known temperature is connected to the other 

junction, also called a cold junction or a reference junction. A voltmeter measures voltage or 

current generated due to the temperature gradient between the two junctions. This voltage or 

current is then converted into the temperature. Thermocouples can be used to monitor the 

overall heat flow of the part while printing. However, one limitation of the thermocouple is that 

it requires physical contact to measure the temperature, which is difficult in the L-PBF process 

and often requires extra preparation such as drilling holes or slots. Some researchers have 

monitored the L-PBF process using thermocouples, found in the reference article [48]. 

1.3.2. Temperature Correlation 

One of the key advantages of photodiodes and digital cameras is monitoring the melt pool 

temperature fields or process signatures without physical contact with the target surface. It 

provides the freedom to monitor the processes like AM, in which it is challenging to access the 

target surface. Another advantage of these sensors is detecting high temperatures such as 2000 

°C. Although these sensors provide great flexibility and easy detectability, calibration of these 

sensors properly is a vital issue. The main principle of the sensors is to generate a photocurrent 

or photovoltage based on the emitted radiation from the melt pool. Therefore, it requires much 

understanding of the process and complex thermophysical phenomena occurring in that short 

time interval. Usually, the melt pool is compared with the black body phenomenon to compute 

the actual temperature. However, the melt pool does not behave as an ideal black body rather 

than a real body in reality. In addition, the emissivity of the material concerning different 

temperatures is not known. Therefore, a better understanding of black body phenomena is 

inevitable. Here, we present an insight into black body radiation and its correlation with the 

melt pool physics in L-PBF. 

All bodies above absolute zero (0 K) emit thermal radiation due to the thermal vibrations of 

atomic particles. The quantity of the power emitted is expressed by the radiative intensity. The 

total energy is distributed across the electromagnetic spectrum. The emission intensity and 

shape of the distribution are dependent on the temperature. Conversely, the body's temperature 

can be calculated by its emitted energy's quantity and spectral distribution across the spectrum. 
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Firstly, a black body is a physical body that absorbs all the incident electromagnetic radiation 

and emits electromagnetic radiation called black body radiation. The radiation emitted by the 

black body is dependent on the temperature alone, not on body shape and composition. For an 

ideal black body at a specific temperature (𝑇), spectral radiance (𝐵) is given by Planck’s law 

(Equation 2), where ℎ is Planck’s constant; c is the speed of light; 𝑘𝐵 is the Boltzmann constant. 

𝐵 =
2ℎ𝑐2

𝜆5
(exp (

ℎ𝑐

𝑘𝐵𝜆𝑇
) − 1)

−1

 

Equation 2 

Figure 13 shows the spectral radiance of ideal black body radiation at different temperatures. It 

can be seen that the radiant intensity increases with increasing temperature at all wavelengths 

and for all temperatures. For any given temperature, the radiant intensity reaches a maximum 

at a specific wavelength, and there are two wavelengths where the radiant intensity is equal for 

intensities less than the maximum or peak intensity. The wavelength at maximum radiant 

intensity decreases with increased temperature (Wien’s displacement law) [47]. 

Nevertheless, real surfaces do not emit radiations like an idealized black body. The fraction of 

the emitted radiation from the real body is relative to a black body, known as spectral emissivity. 

However, spectral emissivity is temperature and wavelength-dependent. Therefore, it is 

challenging to obtain the spectral emissivity of every material for each temperature and 

wavelength. Therefore, the direct application of Planck’s law for temperature correlation cannot 

be used. Instead, to overcome this challenge, there are three possibilities which are as follows: 
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Figure 13: Spectral radiance of an ideal black body at different temperatures [47]. 



Chapter 1 

 

- 28 - 
 

• For a single measurement, assume the emissivity and calculate the temperature (spectral 

method). 

• Make two measurements at different wavelengths, assume a relationship between the 

emissivities at each wavelength, and calculate a single temperature (ratio method). 

Make multiple measurements at different wavelengths, assume some functional form of the 

emissivity, and find the best fit for the temperature and emissivity (multispectral method). 

Primarily, the ratio method is used to calculate the actual temperature. In the ratio method, the 

two intensity measurements (𝐼1 and 𝐼2) at two different wavelengths λ1 and λ2, are calculated. 

The ratio of intensities 𝐼1 and 𝐼2 are taken to calculate the temperature as given by Equation 3. 

𝐼1
𝐼2
=
𝐴1𝜖1𝜆2

5

𝐴2𝜖2𝜆1
5 exp (

ℎ𝑐

𝑘𝐵𝑇
(
1

𝜆2
−
1

𝜆1
)) 

Equation 3 

The difference between the two wavelengths (λ1 and λ2) chosen is very small so that it is 

assumed that the emissivities (ϵ1 and ϵ2) are equal. The calibration curve can be calculated once 

the constants A1 and A2 are known, which relates the intensity ratio to the object's temperature 

irrespective of the emissivity. Therefore, the choice of the two wavelengths is very critical. 

Because too close wavelengths can lead to low signal and noise ratio from the sensors, i.e., the 

noise will dominate the measurement. If too distinct wavelengths are chosen, the assumption 

of equal emissivities will no longer be valid. Most engineering materials have a melting point 

above 1000 K and vaporization temperature around 3000 K. Therefore, most monitoring 

devices have detection ranges in the visible-near infrared region. Typically, for calibration of 

the sensors and to find the values of the constants A1 and A2, the tungsten halogen light source 

with known spectral radiance is used. The halogen lamp is placed inside the build chamber, and 

the spectral radiance measured by the sensors is then compared with the radiance obtained by 

the calibrated spectrometer. Then, the A1 and A2 values are computed [47]. 

Moylan et al. [51] also used a multispectral method to calculate the imaged temperature from 

captured infrared images using a hyperspectral camera in the L-PBF process. The imaged 

temperature can be calculated by using this method. It shall be noted that the imaged 

temperature is different from the true temperature, as the true temperature is highly dependent 

on the emissivity of the material, which is subjected to the temperature. 
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1.3.3. In-situ monitoring Systems Configuration Layout 

In this section, we exploit the configuration layouts for mounting the sensing devices in the 

SLM machine. The two layouts, i.e., co-axial/on-axis and Off-axis layout, are commonly used 

based on the configuration.  

1.3.3.1. On-axis or Co-axial Layout 

In a co-axial or on-axis configuration layout, the sensing devices such as photodiodes, thermal 

cameras are placed in the same optical path of laser and follow the laser movement locally. 

Kruth et al. at KU Leuven developed a co-axial monitoring system consisting of a photodiode 

and a high-speed NIR CMOS camera licensed by Concept Laser [52]. The schematic diagram 

of the monitoring system is shown in Figure 14. As it can be observed that the radiations from 

the build chamber follow the same optical path of the laser and are reflected in the sensing unit 

using a partially reflective mirror. The partially reflective mirror passes the wavelengths in the 

range of 780-950 nm. The backscattered laser is not reflected in the sensing unit. Then the 

radiation is split and captured by the two sensors, which are sensitive to the wavelength range 

of 400- 1000 nm placed in the sensing unit. The radiation is integrated into one value stored as 

the melt pol intensity. The CMOS camera has a resolution of 1280 x 1024 pixels and a sampling 

rate of 10 kHz, which can capture the shape and size of the melt pool spatially and temporally 

[52]. 

 

 

 

 

 

Scanner 

Laser Head Sensor 1 

Sensor 2 

Powder Bed 

Mirror Beam Splitter 

Figure 14: Schematic layout for on-axis monitoring. 
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1.3.3.2. Off-axis layout 

In the Off-axis layout, the sensing devices such as cameras, photodiodes have a stationary field 

of view of the whole build plate (see Figure 15). Unlike Co-axial or on-axis layouts, the sensing 

devices do not follow the laser optical path but capture the radiations from the whole build 

plate. The off-axis layout is common in an electron beam melting (EBM) system where a co-

axial setup is impossible. Apart from the melt pool signature monitoring devices, off-axis 

cameras can also capture the powder bed image after each recoating step. It should be noted 

that in the off-axis layout, the sensing devices are mounted either on the front door or top of the 

build chamber; therefore, angle correction is a necessary and unavoidable step. 

1.4. Machine Learning in L-PBF 

1.4.1. Problem Description 

In the L-PBF process, the quality of the final part and the reliability of the whole process are 

highly dependent on various process parameters, as discussed earlier. The above-discussed 

process parameters incorporate inconsistency in the part quality, which is difficult to monitor. 

The inconsistency during the process can be effectively controlled and monitored using in situ-

monitoring systems. However, there are numerous problems associated with monitoring 

systems, which hinder the full exploitation of these systems. Firstly, the data size, real-time 

processing, and data storage are significant challenges. For example, consider a laser printing a 

part with geometrical tolerances of ±100 µm with a scanning speed of 100 mm/s. The sensors 

will have a data collection rate of ~10 kHz, i.e., one data point for every 10 µm to achieve a 

spatial resolution of 10 µm. Most researchers have reported a sampling rate of 50 kHz and used 

more than two sensing devices, such as a digital camera, photodiode, or combination of both. 

Therefore, if a single data value is stored in a binary fashion, it occupies 32 bits. With a 50 kHz 

data sampling rate and five sensing devices, the data will be stored at 1 Mb/s. Therefore, if the 

machine runs for three days, it will generate at least 233 GB of data. The post-processability of 

Figure 15: Off-axis layout of the sensors. 
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this dataset and storage is difficult [53]. Secondly, linking the obtained in situ sensing data to 

the quality of the product is a significant challenge. The research community has been 

integrating ML methods into AM in recent years. 

1.4.2. Introduction to ML 

Machine learning (ML) is a subset of Artificial Intelligence (AI) that can learn and improve in 

an automated fashion from experience without being explicitly programmed. The process of 

learning starts with data observation and data pattern recognition to allow algorithms to learn 

automatically and adjust actions accordingly. The main aim of ML is to learn and improve from 

data without human intervention. The ML algorithms are used in AM for design and process 

optimization, in situ monitoring, inspection and validation, and cost estimation. The data used 

for training the ML algorithms decide the effectiveness of the ML approach. In other words, 

the ML algorithms are as good as the training dataset [54]. 

ML algorithms can be broadly classified into supervised, unsupervised, and reinforcement 

learning.  

Supervised Learning 

In supervised machine learning, the algorithm is trained with a labeled dataset. The labeled 

dataset is the dataset in which the output is known for the input variables. Therefore, the model 

is trained to infer the functional relationship between input and output variables. Supervised 

learning can be used for regression and classification problems. For instance, classifying the 

part quality as “good” and “bad” is a classification problem, whereas predicting the porosity 

level or mechanical properties is regression.  

Unsupervised Learning 

The output labels are not known for the input training dataset in unsupervised learning. The 

algorithm separates the training dataset into different clusters based on the relationship among 

input data. Unsupervised learning is helpful in clustering problems such as detecting anomalous 

conditions.  



Chapter 1 

 

- 32 - 
 

Reinforcement Learning 

The third ML category, called reinforcement learning (RL), is learning by interacting with an 

environment. The RL algorithm learns from the consequences of its actions, and it selects its 

actions based on its experience and new choices, which is trial and error learning. The RL 

algorithm receives a numerical reward that encodes the success of an action’s outcome. The RL 

algorithm selects actions that maximize the accumulated reward over time. Applications of the 

RL algorithm are game theory and self-driving cars. The list of various ML algorithms is shown 

in Figure 16 [55].  

 

Semi-Supervised Learning 

Another type of ML algorithm called “semi-supervised learning” combines unsupervised and 

supervised learning. Semi-supervised learning combines the small or limited amount of the 

labeled dataset with a large amount of the unlabeled dataset during training the algorithm [56]. 

This type of learning is beneficial in AM applications, where obtaining the labeled dataset is 

challenging. The decision to use a type of ML approach is based on the available dataset, and 
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Figure 16: List of Machine Learning algorithms. 



Chapter 1 

 

- 33 - 
 

specific output is preferred. The use of the abovementioned ML approaches for monitoring the 

L-PBF process is discussed in the following sections. 

1.5. In Situ Data Processing Using ML 
This section presents the post-processing of the in-situ monitoring data using the ML approach 

classes. This section focuses on in situ defects related to melt pool signatures and the powder 

layer spread. The use of the ML approach in other domains such as geometric control, cost 

estimation, process optimization, etc., is not covered in this literature review. 

1.5.1. Supervised Learning Approach 

Supervised learning is one of the most commonly used ML approaches for detecting defects in 

the L-PBF process. The first step in supervised learning is to prepare a labeled training dataset. 

Labeling the in-situ data is the most challenging and error-prone task, affecting the overall 

accuracy of the supervised ML model. Therefore, labeling the in-situ data, such as IR images, 

photodiode signals, pyrometer signals, can be done via making a statistical comparison between 

in situ data and CT images, which captures the ground truth labels. The same can be used for 

labeling the different clusters obtained by unsupervised learning. Gobert et al. and Petrich et al. 

[57], [58] used a 36.3-megapixel digital single-lens reflex (DSLR) CCD camera (Nikon D800E) 

mounted inside the build chamber of EOS M280 (L-PBF system) to detect discontinuity defects 

such as overheating, pores and unmolten powder. The ground truth bales are extracted by 

comparing the post-CT scan data with captured in situ images. The labeled dataset is then used 

to train supervised ML approaches such as support vector machine (SVM) and neural network 

(NN). Imani et al. [59] used ML techniques like SVM, K-NN, and NN to find the process 

parameters such as hatch distance, laser power, and scanning speed likely to produce more 

porous parts. The link between process parameters and the pores' location, size, and frequency 

is studied. Aminzadeh et al. [60] used an 8.8-megapixel USB Digital Camera with high focus 

lenses to capture the post-printed images of every layer in L-PBF. They used Bayesian inference 

to detect the porosity and quality of the final part. Based on visual inspection, the training 

dataset is labeled “defective” and “non-defective” based on visual inspection. The frequency-

domain features are extracted, and a trained Bayesian classifier is used to predict the quality of 

the part. Zhang et al. [61] used a high-speed camera to capture process images such as melt 

pool, plume, and spatters. These images are used to train SVM classifiers and CNN to detect 

the process anomalies. The CNN model showed a higher accuracy of 92.7 % compared to the 

SVM classifier, which showed an accuracy of 90.1 %. 
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Baumgartl et al. [62] used a convolutional neural network (CNN) to detect defects from 

thermographic images. CNN showed an average accuracy of 96.80 %. The thermographic 

images are captured using an infrared camera, placed above the build chamber with an angle of 

60o to the build plate. Delamination and spatter defects are successfully identified and cross-

validated with the CT scan. However, the model does not identify other defects, such as balling, 

lack of fusion, and keyhole. 

Scime et al. [63] used a one-megapixel Photron FASTCAM Mini AX200 high-speed camera in 

the visible range to capture melt pool images. The machine learning technique, called Scale 

Invariant Feature Transforms (SIFT), extracted features from the captured melt pool signatures. 

The bag-of-words (or Keypoints) are used to obtain a scale-agnostic description of melt pool 

morphology. The melt pool morphology represents the shape of the melt pool, spatter, and 

vapor plume. With the ML approach, the author classified the individual melt pool 

morphologies into four categories: desirable, balling, under-melting, and keyhole porosities. A 

supervised classification ML technique called support vector machine (SVM) is used to train 

and test the model. The percentage of the melt pool morphologies linked to process parameters 

such as laser power and scan speed is obtained. 

In another study, Scime et al. [64] used a computer vision algorithm to predict the percentage 

of defects present in part based on the powder bed images. Scime et al. extracted the images' 

regions and classified such as anomaly-free, recoater hopping, recoater streaking, debris, 

superelevation, part failure, and incomplete spreading. These categories are used as the 

fingerprints for the computer vision algorithm. A percentage of the particular defect in the 

respective layer is classified. The approach did not use melt pool signatures and instead used 

powder bed spreading as their prominent signature. Repossini et al. [65] used a high-speed 

camera to capture spatter images and used them as an indicator for process stability. They have 

developed a supervised learning logistic regression model to classify different energy density 

conditions to various quality states using spatters as a descriptor. 

Some researchers also studied the acoustic signals to detect the defects in the L-PBF process 

using a supervised learning ML approach. For example, Ye et al. [66] used deep belief networks 

(DBN) to analyze the acoustic signals to detect defects such as balling, keyhole, and cracking. 

Shevchik et al. [67] used Bragg grating acoustic sensors to capture the acoustic signals during 

melting, solidification, and spattering processes. The time-domain captured signal is 

transformed into the frequency domain using the wavelet transformation technique. Spectral 
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CNN is used to identify the particular defect signals. The presented sCNN model showed an 

accuracy of 83–89 %. 

1.5.2. Unsupervised Learning Approach 

The use of unsupervised machine learning is limited in the field of the L-PBF process. However, 

unsupervised can be useful when obtaining the labeled training dataset is not possible. Another 

advantage of using unsupervised learning compared to supervised learning is that it does not 

require human interaction to the label training dataset. Grasso et al. [68] demonstrated the use 

of the T-mode Principal Component Analysis (PCA) for image data obtained by an 

OlympusTM I-speed 3 camera mounted outside the build chamber at an angle of 40° w.r.t build 

plate to define a spatial statistical descriptor and to detect local over-heating phenomena along 

the scan path by analyzing the intensity profile of each pixel. These local hotspots correspond 

to the regions where slow cooling occurred due to variation in heat flux; it can be observed at 

sharp corners and overhang structures. K-means clustering learning is applied to the spatially 

distributed PCA descriptors to detect a defect in an automated fashion. Although an iterative 

updating of the k-means clustering based on the new dataset allowed to detect defects in 

complex shapes, the approach depends on the comparisons between data collected at different 

layers or on the signal from successful builds of the same geometry, which limits the design its 

applicability to other situations. Grasso et al. [69] used an off-axis IR camera to monitor the 

plume of zinc material to design a data-driven and automated approach for process monitoring. 

The region of interest (ROI), the plume, is extracted from the IR images. A multivariate control-

charting method is proposed to monitor the ROI features, i.e., mean intensity and area of the 

plume, to detect the deviation from the stable plume patterns. However, in this work, the author 

did not consider the morphology of the melt pool. 

1.5.3. Semi-Supervised Learning 

Okaro et al. [70] proposed another perspective of the ML approach for data treatment and 

predicted the quality of the parts based on their mechanical property as a descriptor. Key 

features are extracted from the photodiode signals, and a semi-supervised classification 

algorithm called “Gaussian Mixture Model-Expectation Maximization (GMM-EM)” is applied 

to classify the samples as “faulty” and “acceptable” based on the ultimate tensile strength of the 

tensile bars. This approach showed the possibility for automatic certification of the L-PBF parts 

based on their mechanical properties. However, the method of Okaro et al. does not illustrate 

any possibility of detecting defects in the parts, which is the cause of inferior mechanical 

properties. 
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Yuan et al. [71] used a high-speed 1 kHz video camera, with its focal point moving along with 

the laser spot, to acquire in situ video data to monitor scan track width and continuity. Image 

processing algorithms label a small amount of data using structured light measurements. The 

labeled in situ videos are used to train a semi-supervised CNN model based on the temporal 

ensemble method, with a small amount of labeled data and a large amount of unlabeled data. 

Yuan et al. showed that the semi-supervised CNN approach performs better than the supervised 

CNN approach. They also studied the average measuring time for 100 videos, 1.4 ms, and 

concluded that the trained CNN approach is adequately fast to monitor in real-time. The 

summary of the discussed literature is presented in Table 2. 

Table 2: List of literature on the processing of L-PBF in-situ data using machine learning approaches. 

Reference Data type Monitoring Quantity ML technique 

Supervised Learning Approach 

Gobert et al. [58] 

and Petrich et al. 

[57] 

Images of post-printing Defects such as 

overheating, pores, and 

unmolten powder 

SVM, NN 

Imani et al. [59] process parameters such as 

hatch distance, laser power, 

and scanning speed 

Porosity level K-NN, SVM, NN 

Aminzadeh et al. 

[60] 

Images of post-printing Porosity Bayesian inference 

Zhang et al. [61] Melt pool, spatters, and 

Plume images 

Process anomalies SVM and CNN 

Baumgartl et al. 

[62] 

Thermographic images Delamination and spatter 

defects 

CNN 

Scime et al. [63] Melt pool images Types of melt pool shapes SIFT, SVM 

Scime et al. [64] Powder bed images Powder bed defects Computer vision 

Ye et al. [66] Acoustic signals Defects such as balling, 

keyhole, and cracking 

 

DBN 

Shevchik et al. 

[67] 

Acoustic signals Defect signals sCNN 

Unsupervised Learning Approach 

Grasso et al. [68] Images Overheating defect T-Mode PCA, K-

means 

Semi-supervised Learning Approach 

Okaro et al. [70] Photodiode signal Defective parts based on 

tensile strength 

GMM-EM 

Yuan et al. [71] Video Scan track width and 

continuity 

Semi-supervised 

CNN 

 

The final aim of in situ monitoring is to improve the overall reliability of the process via a 

feedback control loop.  This will significantly reduce the material waste and time needed to 

qualify for quality assurance.  Yao et al. [72] developed a closed-loop feedback control system 
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for real-time monitoring of the L-PBF process. Firstly, the defect level of each printed layer is 

calculated based on irregular and non-homogeneous patterns using multifractal analysis. 

Secondly, the composite index is decided for each porosity level based on Hotelling T2statistics 

from the multifractal spectrum. Finally, the stochastic dynamics of the layer to layer defect 

conditions are modeled as a Markov process to determine an optimal control policy. 

1.5.4. Challenges 

Although there are tremendous possibilities of the ML approach in the AM industry, a few 

limitations or problems are associated with the AM methods that can have a deterministic effect 

on ML outcomes.  

• Size of data: ML approaches are data-driven methods that require a sufficient amount 

of data to make accurate predictions. The amount of training data needed increases 

exponentially with a number of input variables. However, in some applications such as 

AM, data acquisition and labeling the training data is extremely difficult and expensive. 

For example, obtaining a large amount of data for particular defects such as keyhole and 

lack of fusion in the L-PBF process is challenging. Thus, using neural networks that 

require a copious amount of data for defect detection can be challenging.  

• Lack of knowledge for feature extraction: Selecting good features that can capture 

the distinction in the dataset is most vital. Sometimes, it is very tricky to identify and 

extract these features. For example, it is challenging to identify the features that 

distinguish an unstable melt pool signal from a stable melt pool signal in photodiode 

data.  

• Lack of labeled data: As discussed earlier, the supervised learning ML approach 

requires a labeled dataset for training. Therefore, a better understanding of the acquired 

data is needed to label it. However, sometimes it is challenging to label the data 

accurately and effectively. For example, in the case of melt pool in situ monitoring data, 

it is very tricky to identify the “acceptable” melt pool profile from the “unacceptable” 

melt pool profile. There are high chances of human error and misclassification. It can 

affect the accuracy of the whole model. 

• Machine learning training problems: Overfitting and underfitting are the most 

common problems in machine learning models. Overfitting occurs when the model tries 

to fit every data point precisely in the training dataset. It makes the model vulnerable to 

noise and outliers. Usually, overfitting is most likely with non-parametric and non-linear 

models that are more flexible while learning a target function. For example, the Decision 
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tree (DT) is a nonparametric algorithm that is very flexible and subjected to overfitting 

training data. The overfitting problem can be eliminated by running a tree after it has 

learned to remove some of the detail it has picked up. Underfitting occurs when the 

model cannot extract a reasonable relationship among training data points. An underfit 

model will perform poorly on training data and will not be able to generalize to new 

data. Drop-out and regularization techniques can be used to overcome underfitting and 

overfitting problems [73], [74]. 

1.6. Materials 
This section has discussed the metallurgical aspects of the Al and Inconel 718 alloys. These 

two alloys are primarily used in our study. 

1.6.1. Al Alloys 

1.6.1.1. Background  

The word Aluminum was first used in 1807, later changed to Almunium by the international 

union of pure and applied chemistry (IUPAC) [75]. However, the American chemical society 

changed it back to Aluminum in 1925. Aluminum or Al is the most commonly used material 

compared to other non-ferrous metals. Annually, 24 million tons of Al is used worldwide, out 

of which 18 million is extracted directly from the ore, whereas the rest is recycled from the 

scarp. Al has a high oxygen affinity, which means it is easily oxidized to form Alumina or 

another oxide form [75]. Al makes 8 % of total metallic materials in the earth’s crust, making 

it the second most abundant material, followed by Iron, Mg, Zn [75], [76]. From a chemistry 

point of view, Al is the third group element with an atomic number of 13 and an atomic weight 

of 26.98. Al has a face-centered cubic crystal structure with coordination of 12 and a packing 

factor of 0.74 [75], [77]. Al has a melting temperature of 660 °C, boiling temperature of 2520 

°C, and specific heat for temperatures from 0 °C to 100 °C is 917 J.kg-1. K-1 [77]. Al is available 

in various sizes and shapes such as powder, flakes, sheets, plates [78]. 

1.6.1.2. Physical Metallurgy of Aluminium and its Alloys  

Al is mostly used in its alloy form as pure Al shows the lowest strength of its alloys [79]. The 

applications of pure Al are mostly in electrical appliances as a conductor cable. The alloying 

elements such as Mg, Si, and Cu are substituted to strengthen the pure Al. Ti and Cr are used 

as grain refinements, Mn and Sb enhance corrosion resistance properties, Ni is used to enhance 

thermal strength, and Co, Bi, and Fe are used to improve machineability [77], [79]. Si improves 

the castability of the Al alloys by increasing the fluidity and reducing the solidification 

shrinkage [80]. The Al-Si phase diagram shows that the eutectic reaction occurs at 12.6 wt. % 
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Si and at temperature of 577 °C (Figure 17) [76], [77]. The Al-Si alloys are difficult to machine 

due to hard phase Si [77]. The addition of Mg to the Al-Si alloy leads to the formation of Mg2Si 

precipitates, enhancing the strength and making the alloy heat-treatable [77], [80]. Also, Mg is 

the most desirable strengthening element due to its high solubility [77]. Si and Mg are two main 

alloying elements for Al as their atomic structures are similar to that of Al. Although their 

crystal is different, Al has FCC crystal structure, Si has diamond-type cubic, and Mg has a 

hexagonal close-packed crystal structure. T6 precipitate hardening or tempering is 

recommended heat treatment profile for the Al-Si alloys. The steps involved in the heat 

treatment are as follows: Solution heat treatment (SHT) followed by quenching and ageing. The 

nucleation of precipitates occurs at the Guinier-Preston zones [75]. 

1.6.1.3. Solidification of Al-Si 

The material's final microstructure strongly relies on the type of solidification. As in the L-PBF 

process, the melt pool moves at a speed of around 1m/s, undergoing a rapid solidification which 

develops a fine structure.  

Scheil solidifications and equilibrium conditions are applied to predict the solidification 

temperature range of the Al-Si eutectic alloy. The main difference between the two models is 

that infinite diffusivity of solid state diffusion is considered, whereas, in scheil solidification, 

solid-state diffusion is neglected (Table 3). Thermodynamic simulation software such as 

thermocalc can calculate the mass fractions and solidification temperature range for different 

phases. 

Figure 17: The phase diagram of Al-Si [76]. 
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Table 3: Equations for analytical models. 

 

The typical solidification map for alloy systems is shown in Figure 18a [82]. During 

solidification, the interface morphology (i.e., planar, dendritic, or cellular) is decided by the 

thermal gradient (G, unit: °C/m) and growth rate (R, unit: m/s). Figure 18b shows the possibility 

of dendritic morphology suppression at a high solidification rate could be the reason behind the 

absence of dendritic structure in AM parts [83]. Figure 18c shows directional solidification's 

primary and secondary arm spacing [84].  

 

Model Lever or Equilibrium rule Scheil rule[81] 

Solid diffusion complete no 

Liquid diffusion complete complete 

Equation 
𝐶𝑠 =

𝑘𝐶0
(1 − 𝑓𝑠) + 𝑘𝑓𝑠

 
𝐶𝑆 = 𝑘𝐶0(1 − 𝑓𝑠)

𝑘−1 

Figure 18: (a) Solidification map, showing the effect of temperature gradient and growth rate [82], (b) 
Suppression of dendrites during high solidification rates [83], and (c) schematic of primary dendrite arm spacing 
(PDAS), and secondary dendrite arm spacing (SDAS) [84]. 

(a) (b) 

(c) 
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The relationship between the dendritic arm spacing and cooling rate is expressed as (Equation 

4) 

𝜆1 = 𝑎�̇�
−𝑛 

Equation 4 

where 𝜆₁ is primary dendrite arm spacing or cell size, Ṫ is the local cooling rate, and 𝑎 and 𝑛 

are proportional constants. 

The value of 𝑛 is 0.32 to 0.38 for cellular morphology and 0.21 for dendritic microstructure 

[85]. Similarly, the value of 𝑛 is 0.33 for secondary arm spacing. In the L-PBF process, the 

solidification rate is associated with the laser scan speed. A high solidification rate leads to 

higher cooling rates, leading to cellular microstructures for near eutectic Al-Si alloys in the L-

PBF process where solidification rates are more significant than 0.2 m/s [86]. 

1.6.1.4. Al Alloys Processed by L-PBF Process 

Al alloys are difficult to be processed by the L-PBF process due to their high reflectivity, high 

thermal conductivity, and low laser absorptivity in the wavelength range of 1.06 μm [87]. 

Therefore, the AM of Al alloys is primarily restricted to cast alloys, i.e., AlSi10Mg and AlSi12, 

a hypoeutectic and eutectic alloy, respectively.  Other wrought alloys such as Al6061 and 

Al7075 gained attraction due to their use in aerospace applications, but unfortunately, they are 

very difficult to process by L-PBF due to their non-weldability.  High affinity to oxygen at 

room temperature and elevated temperatures also makes Al alloys difficult to be processed by 

L-PBF. The room temperature oxidation creates a thin Al2O3 oxide layer on the Al alloy 

powder. This oxide layer could develop cracks and binding issues while printing using the L-

PBF process. Moreover, complications can arise due to the vaporization of low-melting 

Figure 19: (a) Microstructure of melt pool, and (b) its corresponding eutectic cells. 

(a) (b) 

10 µm  1 µm  
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materials such as Mg and Zn in significant quantities in Al7075 alloys while processing using 

EBM [88].  

However, most commonly AM processed Al alloys, i.e., AlSi10Mg and AlSi12Mg, show a 

similar microstructure consisting of Al cells towards the center of the melt pool, along with fine 

Al+Si eutectic in between as depicted in Figure 19. The most common porosity in AM 

processed AL alloys is hydrogen or gas porosity. Hydrogen is highly soluble in the melt, but 

the solubility decreases rapidly during solidification leading to small spherical porosities in the 

melt pool. Low power pre-scan can be applied to remove the moisture from the powder layer 

to minimize the number of gas porosities [13]. But the fine homogeneously dispersed Si in Al 

matrix in L-PBF parts shows excellent mechanical properties compared to casted alloys. The 

as-built alloys showed a hardness values of 125 to 135 HV, comparable to those of die-casted 

and aged material 130-135 HV [89], [90]. However, the hardness value significantly rose to 

150 HV when aged between 120 °C and 170 °C, causing the formation of small Si precipitates 

into Al cells from the supersaturate Al matrix.  Also, the L-PBF processed AlSi10Mg alloys 

showed good ductility in the range of 3.5-5.5 % compared to cast and aged AlSI10Mg reported 

in the range of 3.5-5 % [90]. Moreover, fatigue can also be improved by tailoring the scanning 

orientation, preheating temperatures, and porosities [91]. 

1.6.2. Inconel 718 Alloy 

Due to its superior mechanical properties and low cost, Inconel 718 (IN 718) has always been 

the material of interest for many applications, like aerospace, gas turbine, liquid-fuelled rockets, 

cryogenic tankage, and the space shuttle.   

Inconel 718 belongs to the family of a nickel-base superalloy, which was developed by the 

International Nickel Company of Delaware and New York in 1959 [92].  Superalloys refer to 

high-temperature materials that can withstand extremely high temperatures and loads and retain 

excellent mechanical and corrosion-resistant properties [93]. The development of the Inconel 

718 alloy in 1962 was a massive success as it shows good weldability, manufacturability, and 

high strength. Especially its ability to be resistant to strain-age cracking. Aerospace giants such 

as Pratt & Whitney are the first to use Inconel 718 components for gas turbines and rocket 

engines [92]. Nowadays, over 50 % of superalloys components of commercial engines are made 

of Inconel 718 alloy. Besides the aerospace industry, Inconel 718 alloy is heavily used in the 

power industry, including internal parts in nuclear reactor plants [94], [95].   
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1.6.2.1. Compositional Element in Inconel 718 

Inconel 718, also known as UNS identifier N07718, corresponds to the chemical composition 

mentioned in the table. The main principle element is Ni that forms austenitic matrix phase γ. 

A combination of various alloying elements mentioned in the table is added to the γ matrix to 

achieve desirable properties [96].  Each element has its purpose; for example, Fe, Co, Cr, Ru, 

Mo, W, and Rh act as matrix stabilizers due to their similar atomic radii to Ni. Whereas elements 

Al, Ti, and Nb, which has larger atomic radii (Al has smaller radii than some stabilizers), 

promotes the formation of strengthening precipitates γ′ and γ′′. 

Similarly, the Ir, Re, Ru, Pt, W, Rh, and Mo elements improve the creep resistance due to their 

low interdiffusion coefficients, and Cr makes the alloys corrosion resistant. Co promotes the 

increase in the solubility temperature of 𝛾′, increasing the maximum service temperature of the 

Inconel 718 alloy. The specific effects of the alloying elements are summarized in Table 4 [96]. 

Interestingly, all the listed alloying elements do not behave positively, and instead, many might 

form topologically closed-packed phases. Due to their brittle nature, these phases can hold the 

strengthening elements to act as crack initiation sites [97]. Therefore, the microstructure and 

properties of nickel-based superalloys are correlated to the chemical composition and the 

interdependence of alloying elements and processing [96]. So, it is vital to tailor the processing 

route from melting to casting and heat treatments to obtain the alloying elements in desirable 

form. 

Table 4: Inconel 718 alloy composition and the effect of the alloying elements [96]. 

Element Value Effect 

Ni 50-55 FCC matrix stabilisation 

Fe Bal.  

Cr 17-21 Solid-solution strengthening, enhanced hot 
corrosion resistance 

Mo 2.80-3.30 Solid-solution strengthening 

Nb+Ta 4.75-5.50 γ′′, NbC carbide, TaC carbide, and delta-Ni3Nb 
precipitation 

Ti 0.65-1.15 γ′ precipitation 

Al 0.20-0.8 γ′ precipitation, retarded formation of Ni3Ti 

Co 0-1.0 Higher solvus temperature of γ′ 

P 0-0.015 Improved carbide precipitation 

B 0-0.006 Improved ductility and creep strength 

C 0.08 MC formation 

 

Moreover, Inconel 718 shows a nominal density of 8.19 g/cc, the specific heat of 435 J/(kg*°C, 

the thermal conductivity of 11 W/(m*K)), and elastic modulus of 200 GPa.  
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1.6.2.2. Phases in Inconel 718 

Inconel 718 primarily consists of 𝛾-phase (matrix of Ni) and alloying elements in solid solution, 

making secondary phases. As Inconel 718 is a precipitate-strengthened superalloy, the phases 

listed in Table 5 are essential in determining the Inconel 718 properties. Out of these, 𝛾′′ is the 

primary strengthening phase whose formation is strongly dependent on the Nb concentration 

[98]. Nb segregates in the inter-dendritic regions during solidification, forming Nb-rich regions. 

In the absence of proper homogenization, these regions can lead to the formation of Laves 

phases which can be detrimental to the mechanical properties of Inconel 718. 

Table 5: Phases in Inconel 718 and its composition [98]. 

Phase Crystal Structure Formula 

γ FCC N/A 

γ′ FCC, Ordered L12 Ni3(Al,Ti) 

γ′′ BCT, Ordered D022 Ni3Nb 

𝛿 Orthorhombic, Ordered D0a, 
Ordered Cu3Ti 

Ni3Nb 

MC Cubic, B1 NbC 

Laves Hexagonal, C14 Fe2Nb 
Fe2Ti 
Fe2Mo 

σ Tetragonal FeCr 
FeCrMo 
CrFeMoNi 
CrCo 
CrNiMo 

 

γ′ and γ′′ 

Both γ′ and γ′′ are coherently present in the γ matrix of Inconel 718. The typical picture of γ′′ 

can be observed in the TEM picture, as shown in Figure 20 [99]. Alloys with Al + Ni/Nb ratio 

> 0.8 nucleate γ′ first, whereas alloys with Al + Ni/Nb ratio > 0.7 nucleate γ′′ first. The results 

of the atom probe indicate the formation of Nb clusters before Al/Ti, which leads to the 

conclusion that 𝛾′′ nucleates first in some alloys. The formation of 𝛾′′ and NbC at the grain 

boundaries is greatly influenced by the segregation behavior of Nb [100], [101]. It is also 

observed that high-density small cubes are precipitated during the first stage of formation of 

𝛾′′, whereas in the second stage, more ellipsoidal discs are precipitated [102]. Volumetric 

fraction measurements using the electrochemical extraction method showed that the ratio of 

𝛾′′/𝛾 is 3.0 [103]. As listed in the Table 5, γ′′ has a D022 crystal structure whereas γ′ phase has 

an L12 crystal structure. The lattice parameter 𝑎 of D022 is equal to that of L12, but the lattice 

parameter 𝑐 is roughly twice that of L12; that’s why phase is termed as γ′′. The lattice mismatch 
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between coherent γ′/γ and γ′′/γ interfaces, intrinsic strengths of γ′′ & γ′, and anti-phase boundary 

energy in ordered γ′′ & γ′ phases are the main reason behind the strengthening of γ matrix [96]. 

 

Delta 

The γ′′ phase is metastable. Therefore, It can convert to a thermodynamically more stable δ 

phase with a plate or needle-like morphology depending on temperature and time, as shown in 

Figure 21. The formation of 𝛿-phase may follow several pathways, dependent on temperature 

and time (Figure 21). At low temperatures, i.e., <700 °C the cellular shaped 𝛿- phase is 

precipitated at the grain boundaries [104], at 750-800 °C, transformation 𝛾 ′′ → 𝛿 + 𝛾 ′ occurs, 

which gives 𝛾 ′ in addition to cellular 𝛿-phase precipitation [102], And at high temperatures 

(~960 °C), there is direct precipitation of 𝛿-phase from the supersaturated matrix [105]. The 𝛿 

phase is incoherent with the γ matrix, which can be detrimental to the strength of Inconel 718 

if present in large quantities. As the 𝛿 phase precipitation occurs at the expense of the Nb, which 

is associated with loss of γ′′ phase could decrease the overall strength of the Inconel 718 alloy 

[96], [106]. The material condition and temperature are essential factors deciding the 

morphology and quantity of precipitated 𝛿 phase. Precipitation of 𝛿 phase is believed to be a 

result of the excessive coherent mismatch between γ′′ and γ matrix that can be retarded by 

increasing the Al/Ti ratio or Al+Ti content in Inconel 718 alloy [107]. Higher Al+Ti content or 

Al/Ti ratio can reduce the size of γ′′ phase, which results in reducing the lattice mismatch 

between γ ′′ and γ matrix, thus directly reducing the formation of δ phase. However, sometimes, 

the δ phase has favorable effects on the mechanical and microstructural properties.  For 

Figure 20: Dark field TEM image of γ′′ precipitates [99]. 
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example, over 4 % of the δ phase is present at the grain boundaries, which can inhibit the grain 

growth during the heat treatment and working conditions that can favorably influence the 

strength of Inconel 718 [96], [108]. Also, the globular grain boundary δ phase is helpful in 

retarding the intergranular crack propagation, which is beneficial for creep and stress rupture 

properties [109], [110], [111]. 

Laves Phase 

Another phase called Laves phase is a topologically close packaged phase resulting from the 

segregation of Nb, Si, and Mo during solidification due to the rejection from the dendrites into 

inter-dendrites regions (Figure 21d). The laves phase is undesirable as it is brittle intermetallic, 

which can be detrimental to the mechanical properties [98], [112]. Chang et al. [113] reported 

that apart from segregation of Nb, high content of Fe and Cr is highly desirable for the formation 

of laves phase.  Generally, the chemical composition of the laves phase is (Ni, Fe, Cr)2(Nb, 

Mo, Ti), but it can differ during solidification. Also, laves phase is responsible for the depletion 

Figure 21: Delta phase formation in Inconel 718 by (a) cellular precipitation at <700 oC, (b) cellular precipitation 

and transformation from 𝛾 ′′ at 750-800 C, (c) direct precipitation from the γ′ matrix at 960 oC, and (d) laves 

phase. 

(a) 

(c) 

(b) 

(d) 
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of the Nb matrix and γ′′ phase (principle strengthening phase). Schirra et al. [114] reported the 

effect of laves phase on the mechanical properties of cast-Hot isostatic pressing (HIP) Inconel 

718 and wrought Inconel 718 alloy. In wrought Inconel 718, the laves phase is presented at the 

grain boundaries as a continuous network that can act as a preferred crack propagation site 

during fatigue. Also, it leads to poor tensile properties and toughness at room temperature. In 

cast-HIP, precipitation of laves phase occurs as irregular aggregates, leading to poor tensile 

properties at room temperature and poor stress rupture at higher temperatures. Also, the laves 

phase sites act as crack initiation sites reducing the crack growth resistance property in Low 

cycle fatigue. Apart from that, the laves phase precipitation can also affect the good weldability 

of the Inconel 718. During the heating cycles of welding, the low melting point laves phases 

presented at the grain boundaries can be liquified, resulting in hot cracking under thermal 

stresses [115], [116]. 

Carbides 

The high content of Nb promotes the formation of the Nb-rich MC-type carbide phase in 

Inconel 718. Ti is also present in this type of carbide, resulting in the lattice parameters between 

NbC and TiC phase [117]. But the NbC is more predominant, and primary MC carbide is 

denoted as (Nb, Ti)C in Inconel 718. The discrete blocky-shaped primary MC carbide is 

distributed non-uniformly through the grains and at the grain boundaries [117], [118]. 

Intergranular MC carbide contributes little to the strength of the matrix compared to γ′′ 

precipitation but can contribute to impeding the movement of dislocations. Grain boundary MC 

carbide promotes the fracture transition from trans granular to intergranular at room temperature 

[117]. Under plastic deformation, the stress will be concentrated at the carbide and matrix 

interface resulting in a microcrack to relax the localized stresses. The microcracks can easily 

add up and lead to intergranular fracture if the MC carbides are closely distributed along the 

grain boundary. It is expected that discretely distributed GB MC carbide enhances the rupture 

life by impeding the grain growth at elevated temperatures.  The size, distribution, precrack, 

oxidation and test conditions decide the effect of MC carbide on the mechanical properties. For 

example, Mitchell et al. [119] reported that TiN acts as a heterogeneous nucleation site that can 

substantially manipulate the distribution of precipitation of MC carbide. 

1.6.2.3. Solidification  

The resulting microstructure of the final alloy is strongly dependent on the conditions of the 

solidification from liquid to solid. There are three types of solidifications possible, i.e., 

dendritic, cellular, or planar, out of which dendritic solidification is most common [84].  The 



Chapter 1 

 

- 48 - 
 

type of solidification route is dependent on the solid-liquid interface velocity (R), thermal 

gradient (G), and other boundary conditions of the melt pool. Inconel 718 shows a dendritic 

solidification route during casting and welding [120]. However, the spacing among dendrites 

will vary depending on solidification kinetics. Typically there are two types of dendrite arm 

spacing, i.e., primary dendrite arm spacing (PDAS) and secondary dendrite arm spacing 

(SDAS). PDAS represents the spacing between the primary cores of the dendrites, whereas the 

SDAS represents the spacing between the branches of cores.  As the solidification starts, the 

alloying elements such as Nb, Ti, and Mo segregate into the inter-dendritic regions. These 

segregated regions lead to localized phase formation into the inter-dendritic regions. A cooling 

rate equal to G*R and the quantity G/R are essential factors in predicting the stability of the 

planar solidification front [121]. The cooling rate strongly influences diffusion, solidification 

type, and partition coefficient [122]. For example, as the cooling rate increases, the 

solidification route changes from the dendritic to cellular and further into diffusionless. Cooling 

rates from 0.25 to 20,000 °C/s have been studied, and it is noticed that during rapid 

solidification, the inter-dendritic regions contain less Nb element; hence no laves phase. 

Whereas slower solidification promotes more segregation, increasing in laves phase. The 

diffusion rate and partition coefficient increase with the cooling rate increase, as confirmed with 

increased lattice defects during higher cooling rates [122]. During rapid solidification, the 

nucleation sites are of diffusion less in nature which results in cell like solidification. At cooling 

rates < 500 °C/s, enhanced Nb and C segregation into inter-dendritic regions leads to the 

precipitation of laves phase and NbC as shown in Figure 22a [123]. 

Figure 22: (a) Solidification path [123], and (b) its constituents [124]. 

(a) 
(b) 
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Figure 22b shows that Nb segregation during solidification can form a pseudo phase diagram 

to predict the laves phase precipitation. Phases that evolve during solidification are termed 

primary phases whereas those that evolve during solid state heating and cooling are called 

secondary phases. The carbide size increases with decreased cooling rates as the relationship is 

developed for the remelt ingots at limited cooling rates. While during rapid solidification of 

Inconel 718, carbides are reported to be precipitated between the dendritic arms [124]. Process 

modification can affect the dimensions of microsegregtion and grain size, improving the 

mechanical properties. For example, nitrogen contamination can form TiN which acts as a 

nucleation site for NbC that affects the precipitation kinetics [119]. 

Additionally, the G and R can also determine the nature of grain structure based on columnar 

to equiaxed transition (CET). The diagram shown in Figure 23 [125] depicts the CET for 

Inconel 718. It can be noticed that the equiaxed grains are favored as G increases and R 

decreases, whereas columnar grains are favored when G increases and R decreases. However, 

the CET is not studied for the solidification rates above 104 °C/s in Inconel 718. 

1.5.2.4. Inconel 718 AM 

The microstructural and mechanical properties of additively manufactured Inconel 718 can 

differ depending on the processing history. For example, different processing parameters such 

as scanning strategy and part geometry can lead to different microstructures in the same AM 

process. The high cooling rates during AM processing limit the precipitation by limiting the 

diffusion time and distance. For example, single-phase microstructure is observed for L-PBF 

processed Inconel 625, whereas vertical rows of γ′′ precipitates are observed for EBM processed 

Figure 23: Solidification map for Inconel 718 [125]. 
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IN625 [126]. Similarly, many authors have reported the presence of γ′′ phase in as-built Inconel 

718 [127]–[129] along with additional phases such as (Ni, Cr, Fe)2(Nb, Mo, Ti), Laves phase 

at the grain boundaries [128]–[130], and carbides [128], [130]. In LMD processed Inconel 718, 

the presence of carbides, 𝛿 precipitates and laves phases are higher incase of high speed and 

high power compared to samples processed at lower speed and lower power [130]. Therefore, 

the post-heat treatment of Inconel 718 shall be customized based on its processing history.  

Table 6 summarizes the ASTM F305 recommended heat treatment profiles for L-PBF 

processed Inconel 718.  It is found that γ′ precipitates are formed during conventional two-step 

heat treatment, further strengthening the material [127]–[129], [131]. 

Table 6: ASTM F3055 recommended heat treatment for AM Inconel 718. 

Stress relief Hot isostatic pressing Solution+Ageing 

1065±15 C for 85~105 min 
with parts attached to the 
build plate. 

1120~1185 C at > 100 MPa in an 
inert atmosphere for 240±60 
min, followed by furnace cool to 
≤425 C. 

AMS 2774 
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C H A P T E R  2 

Process Optimization for AlSi7Mg0.6 

 

 

2.1. Theory and History 
As presented in the literature review (Chapter 1), the L-PBF process is of great interest to 

manufacturing due to its capability and adaptability to fabricate a new complex part. But one 

of the most significant disadvantages of the L-PBF process is that it takes a lot of time and 

experiments to find best-fit process parameters for new material. In the L-PBF process, many 

parameters such as laser power, scanning speed, hatch distance, layer thickness, and scanning 

strategy can strongly influence the final part properties. Therefore, optimizing and exploring 

the influence of each parameter is of vital importance in achieving desired microstructural and 

mechanical properties [132], [133]. Scanning strategy representing the spatial motion of the 

input energy (laser or electron beam) can influence the thermal gradient in a layer, affecting the 

overall part quality [134]. Several critical defects such as residual stresses, lack of fusion, and 

balling can be tailored by adapting suitable scanning strategies [135].  Various parameters such 

as scan vector length, scanning pattern, and scan vector rotation need to be optimized to achieve 

desired part properties. The different scanning patterns are as follows: 

1.  Uni-directional scanning: It is a scanning pattern in which the energy source scans 

the surface as single adjacent scan vectors moving in the same direction.  

2. Bi-directional scanning: It is also referred to as “zig-zag scan,” It is principally similar 

to uni-directional. The only difference is that adjacent scan vectors are in opposite 

directions.  

It is important to find the best-fit parameter prior the investigations of the laser-

material interaction. In this Chapter, we have presented the effect of different scanning 

strategies parameters on the evolution of the microstructural (grain morphology, 

crystallographic texture, and phases) and mechanical properties (tensile tests, hardness 

and porosity). Also, we have investigations the cooling rate evolution in the individual 

melt pool along with the effect of residual stresses.  

“ 
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3. Chessboard scanning: The scan area is divided into small square cells similar to the 

chessboard, and the energy source scans individual cells. The length, rotation, and 

scanning direction of the individual cells can be varied. The size of the scan vectors is 

comparatively smaller than the above-discussed strategies. This helps to optimize the 

residual stresses in the final part. 

4. Stripes scanning: It is similar to uni-directional or bi-directional strategies. The only 

difference is that the scan area is divided into small stripes with smaller individual scan 

vectors. The rotation between consecutive layers can be applied too. Also, it is the most 

common scanning strategy in the L-PBF process. 

The above-presented scanning strategies significantly affect the thermal gradient, cooling rate, 

and heat flow of the individual layers, resulting in a change in crystallographic texture, grain 

size, solidification cell size, and grain aspect ratio for the building part [27], [136], [137]. 

Generally, higher cooling rates and a lower ratio of a thermal gradient to solidification rate lead 

to lower texture strength due to columnar to equiaxed transition (CET) [136], [138]. 

Apart from microstructural changes, the scanning strategies also partly influence the residual 

stresses' evolution, which can be detrimental if not optimized. Dunbar et al. [139] reported that 

the residual stresses are reduced by applying rotation between consecutive layers. Cheng et al. 

showed that the residual stresses are higher in the longitudinal direction (along the scan vector 

direction) compared to the transverse direction [140], [141]. Also, the longitudinal stresses 

increase with an increase in the scan vector length, so it can be concluded that the long scan 

vectors can lead to distortion in part [142]. Kruth et al. [30] and Mercelis et al. [24] reported 

that the island's size in chessboard strategy does not affect the residual stresses. Contrary to 

that, Lu et al. [133] observed that island size of 2*2 mm2 has the lowest residual stresses 

followed by 5*5 mm2, 7*7 mm2, and 3*3 mm2 for SLMed Inconel 718 alloy. So, it can be 

concluded that the evolution of residual stresses in chessboard strategy is not well understood. 

Al-Si alloys are excellent materials for casting and are historically used for sand casting. It 

shows good corrosion resistance, good weldability, and mechanical properties. In the L-PBF 

process, AlSi10Mg and AlSi12Mg are the most commonly used material and extensively 

studied by researchers. But recently, AlSi7Mg0.6 also being used as a potential candidate for 

the L-PBF process [143]. Recently, a study has been reported on investigations of the best-fit 

parameters to obtain fully dense parts [144]. Other authors have identified the links between 

the distribution of Si particles in SLM samples and the mechanical properties [145]. But not 
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many studies are available on investigating the effect of scanning strategies on the 

microstructure, residual stresses, and mechanical properties of AlSi7Mg0.6, which is the aim 

of this chapter. 

2.2. Experimental Setup 

2.2.1. Material 

The AlSi7Mg0.6 powder with composition summarized in Table 7 is used for this study; 

supplied from SLM Solutions had a spherical morphology with a particle size distribution of 

20 – 63 µm and an average diameter of 41.88 µm. The powder is kept in air-tight containers, 

and humidity is checked before printing. The powder's apparent density is 1.53 g/cm3. 

 

2.2.2. Machine and Process Parameters 

The commercial SLM 280HL (SLM Solutions Group AG, Lübeck, Germany) is equipped with 

700 W twin continuous wave (CW) ytterbium fiber lasers with an emitting wavelength of 1070 

nm spot diameter of 115 μm is used for printing. The build envelope volume is 280*280*365 

mm3, and the build chamber is maintained in the Ar gas environment with an oxygen level 

below 0.1 %. The Aluminium base plate is preheated to 150 °C before printing to reduce thermal 

stresses in part [89]. The chessboard and stripes scanning strategies are used with varying 

stripes and chessboard island sizes. The rotation between two consecutive layers also changes 

between 0° to 90°. The process parameters and the sample's nomenclature are tabulated in Table 

8 and Table 9, respectively. 

Table 8: Process parameters used in this study. 

Varied Parameter Values 

Power (W) 350 

Scanning speed (mm/s) 1650 

Hatch distance (mm) 0.13 

Layer thickness (mm) 0.03 

Scanning strategy Stripes, Chessboard 

Rotation in layers for Stripes(o) 45, 67, 90 

Rotation in layers for Chessboard(o) 0, 45, and 90 

Table 7:  Elemental composition of as received AlSi7Mg0.6 powder (All the values are given in wt. %). 

Element Al Cu Fe Mg Mn Si Ti Zn Others 

Minimum [wt %] Balance - - 0.45 - 6.50 - - - 

Actual [wt %] Balance <0.01 0.08 0.55 <0.01 6.90 0.07 0.01 <0.03 

Maximum [wt 

%] 

Balance 0.05 0.19 0.70 0.10 7.50 0.25 0.07 0.03 
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Stripes Size/Island Size (mm) 5, 10/ 2*2, 3*3, 5*5, 
10*10 

 

Table 9: Nomenclature of the samples used in this study. 

S.No. Scanning 
Strategy 

Size 
(mm) 

Rotation (°) Sample ID 

1 Stripes     5      67  S_5_67 

2 Stripes           10     67 S_10_67 

3 Stripes       10    90  S_10_90 

4 Stripes     10    45  S_10_45 

5 Chessboard     2*2  No C_2*2_no 

6 Chessboard       3*3       No  C_3*3_no 

7 Chessboard      5*5    No C_5*5_no 

8 Chessboard        
          

10*10   No C_10*10_no 

9 Chessboard  5*5   45  C_5*5_45  

10 Chessboard  10*10     90  C_10*10_90 

 

The 0°, 45°, 67°, and 90° alternating strategy procedure involves turning the orientation of each 

over-building layer by 0° (Figure 24b), 45° (Figure 24d), 67° (Figure 24a), and 90° (Figure 24c) 

respectively.   

2.2.3. Test Samples 

Three different geometrical types of AlSi7Mg0.6 test samples are printed for this study:  

• For microstructural and density measurements: cubes with dimensions 10*10*10 mm3;  

Figure 24: Schematic of the scanning strategies (a) stripes with rotation of 67°, (b) chessboards with (0°) no 
rotation, (c) chessboards with 90° rotation, and (d) chessboards with 45° rotation. 

(a) (b) 

(c) (d) 
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• For hardness measurements: cubes with dimensions 15*10*10 mm3; 

• For tensile and residual stress measurements: cylinder with a diameter of 16 mm and 

length of 55 mm printed in X-Y plane;  

 

2.3. Experimental Investigations 

2.3.1. Porosity  

Porosity measurements are conducted based on the archimedes principle [146]. It is the most 

often used method for quickly analyzing the porosity of printed parts.  An average of 3 samples 

is used to conclude the average porosity level. 

2.3.2. Hardness  

Vickers hardness tests are conducted according to B EN ISO 6507-1:2005 standard [147] using 

a load of 5 kg. An average of 5 indentations is taken along the X-Z plane (building direction) 

of each sample's 15*10*10 mm3 block cross-section. 

2.3.3. Tensile Tests  

The tensile samples are machined from the cylinders of diameter 16 mm and length 55 mm 

printed horizontally (X-Y plane). Tensile tests are performed per the ASTM- E8/E8M-13a 

standard [148]. Tensile tests are performed at a 0.5 mm/min crosshead displacement rate using 

an Instron 5567B723 with clip-on extensometers based on BS EN ISO6892-1 standard.  The 

yield stress is calculated at the 0.2 strain of the stress-strain curve. 

2.3.4. Micrographic Examination and SEM  

The microstructure of the SLMed samples is observed by using Scanning Electron Microscope 

(Carl Zeiss NTS GmbH, Germany). Also, crystallographic orientations investigations are 

carried out by the electron backscatter diffraction (EBSD) technique. All the samples are mirror 

polished before microstructural investigations. For SEM observations, samples are chemically 

etched with Keller's solution (95 mL H2O, 2.5 mL HNO3, 1.5 mL HCl, and 1.0 mL HF) for 10 

s. Whereas, for EBSD observations (secondary electron imaging mode), the polished samples 

are electrochemically polished at 20 V for 10s with a Bruker solution. EBSD analysis is carried 

out on a cross-section of 200*200 μm2 and at a step size of 1.5 μm in the X-Z plane, i.e., building 

direction. The samples directions are marked as building direction (BD), transverse direction 

(TD), and scanning direction (SD). 
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2.3.5. Cooling Rate 

During solidification, the cooling rate is essential for developing the final microstructure. 

Therefore, finding the cooling rate variation in each scanning direction is interesting. It is a 

challenging and complex task to measure the cooling rates experimentally. Usually, analytical 

solutions are implemented to predict the cooling rates, such as the Rosenthal equation. 

 

Rosenthal equation [149] is used to estimate the thermal history for the melt pool (Equation 5): 

𝑇 = 𝑇0 +
𝑄

2𝛱𝑘
exp [

−𝑉(𝜉 + 𝑅)

2𝛼
] 

Equation 5 

Where, 𝑇: local temperature, 𝑇0: plate temperature, 𝑄: heat input, 𝑅: radial distance from the 

laser source (given by r = (ξ2 + Y2 + Z2) ½, i.e.,  ξ, Y and Z directions are illustrated in Figure 

25), 𝑉: beam scanning speed, α: thermal diffusivity (given by 𝑘/𝜌𝐶, where 𝜌 and 𝐶 are the 

density and specific heat of the workpiece, respectively) 

Although the Rosenthal equation gives the 3-dimensional thermal distribution in the semi-

infinite plate for the melt pool case, it has limitations. For example, it only considers conduction 

and neglects the heat of fusion. Also, it considers only temperature-independent properties and 

does not consider the remelting phenomenon occurring in L-PBF [149]. The Rosenthal equation 

cannot estimate the temperature inside the melt pool as the convection currents decrease the 

temperature gradient, which is not considered in the analytical equations. Rosenthal equations 

are suitable for calculating melt pool profiles in the conduction zone, i.e., outside the melt pool. 

But the analytical equations cannot be used to describe thermal histories fully. Still, they can 

Figure 25: Schematic for rosenthal equation. 
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be used to estimate the average surface cooling rate between the solidus and liquidus at the end 

of the melt pool long the scanning direction (Y=Z=0) [150]. 

�̇� = 2𝛱𝑘(𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠 − 𝑇0)(𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠 − 𝑇0)
𝑉

𝑄
 

Equation 6 

where Ṫ is the cooling rate, 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠 and 𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠 are the liquidus and solidus temperatures, and 

𝑇0 is the plate temperature. 

But for our study, we have calculated the cooling rates within the melt pool using Equation 7  

(cell) as the analytical solution only works outside the melt pool. 

2.3.6. Cell Size Measurements 

SEM images of the X-Z cross-section are used to calculate the cell size, also known as the 

dendritic arm spacing, directly related to the cooling rate. The relationship between the cell size 

and cooling rate is expressed by Equation 7. Cell size is measured into the met pool for each 

scanning condition. Apart from the narrow heat-affected zone, the cells appeared uniform 

through the melt pool (therefore, reheating effect from multiple passes is neglected) and can 

easily be measured using ImageJ. For each sample, an average of 100 cell measurements from 

10 melt pools is used to evaluate the cell size variation in the melt pool. 

The relationship between the dendritic arm spacing and cooling rate is expressed as (Equation 

7) [151] 

𝜆1 = 𝑎�̇�
−𝑛 

Equation 7 

where λ₁ is primary dendrite arm spacing or cell size, Ṫ is the local cooling rate, and a = 43.2 

[150] and n are proportional constants. 

The value of n is 0.32 to 0.38 for cellular morphology and 0.21 for dendritic microstructure 

[85]. Similarly, the value of n is 0.33 for secondary arm spacing. In the L-PBF process, the 

solidification rate is associated with the laser scan speed. A high solidification rate leads to 

higher cooling rates, leading to cellular microstructures for near eutectic Al-Si alloys in the L-

PBF process where solidification rates are more significant than 0.2 m/s [86]. 

2.3.7. Residual Stress Measurements by X-ray Diffraction Technique 

The residual stress measurements are conducted using the non-destructive X-ray diffraction 

technique, which involves measuring the diffraction angle of rays returning to the detector. The 
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diffraction angle is directly related to the distance between atoms of material as the interatomic 

distance between two atoms reduces compressive residual stresses develops and vice versa for 

tensile stresses. The residual stresses are calculated using the “sin2ψ” technique described in 

the DIN EN 15305:2009 standard, which involves monitoring the change in diffraction angles 

due to variation in the incident beam angles. The measurements are performed on the as-built 

surface and at 2 mm depth of the samples using the Xstress 3000 G2R instrument. A collimator 

of size 3 mm and a Cr tube as an x-ray generation source are used. 

2.4. Results and Discussion 

2.4.1. Porosities and Mechanical properties 

It can be seen from Figure 26a that the samples with stripes (S_5_67, S_10_67, S_10_45, 

S_10_90) have the lowest porosity levels ranging from 0.83 to 0.99 %, whereas the chessboard 

strategy contributes higher porosity ranging from 0.91 to 2.35 %. But there is no significant 

effect of stripes size and rotation angles on porosity level observed in the case of stripes. 

Whereas the rotation angle has an effect on porosity level in chessboard strategy. For example, 

chessboard samples without rotation i.e. C_5*5_no, C_10*10_no has porosity levels 1.48 % 

and 1.42 % where chessboard samples with rotation i.e. C_5*5_45, C_10*10_90 has porosity 

levels of 0.91 % and 0.94 %. Similarly, the chessboard island with smaller island sizes is more 

porous than large ones. For instance, C_2*2_no, C_3*3_no has porosity levels of 2.35 %, 2.03 

% in comparison with samples C_5*5_no, C_10*10_no has porosity levels of 1.48 %, 1.42 %. 

The higher porosity level in chessboard samples is linked to the lack of fusion porosity at the 

junction of the islands, as shown in Figure 27. This phenomenon can be explained as: When 

the laser hits the powder bed, it creates a denudation zone along the scan vector. At some places 
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Figure 26: Effect of scanning strategies on (a) porosity (b) vicker’s hardness. 
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near the edges of the islands, there may be the case that there is not enough powder for island 

bonding leading to porosity at the junction. 

As smaller island sizes, samples have a higher number of islands than large island sizes, leading 

to higher porosity. Figure 26b shows that scanning strategies have no considerable effect on the 

Vickers hardness of the samples. The slight variation between stripes and chessboard strategies 

could be due to measurement errors or the variation of indentation location on the samples for 

Vickers hardness. But there is no significant change observed for rotation angle in Stripes and 

similarly, no pattern observed for chessboard strategies. Chessboard samples generally reported 

lower hardness values than stripes due to higher porosity levels in these samples, but no 

conclusive trend could be observed. Ali et al. [152] reported similar findings for  SLMed 

Ti6AL4V samples. 

 It can be seen from Figure 28 that the scanning strategy does not affect the yield strength of 

SLM AlSi7Mg0.6 samples considerably, and the slight variation can be attributed to the 

stochastic nature of the process. The elongation % shows a clear transition from stripes and 

chessboard strategies. The stripes have an elongation of 13 % for stripe size 10 regardless of 

rotation, with a maximum of 17 % for stripe size 5. In contrast, the chessboard strategy without 

Figure 27: Optical micrograph of C_10*10_90 sample in (a) building direction, (b) transverse direction, (c) SEM image of 
LOF defect observed at the junction of the island, and (d) sample orientation. 
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rotation shows the lowest elongation of 0.45 %, similar to the porosity trend. The elongation 

increases with the chessboard strategy with rotation until 10%, which is lower than the stripe 

strategy obtained. It also suggests that the rotation between layers improves the elongation %, 

but there is no visible trend for stripes and island size variation. Similarly, the chessboard 

strategy without rotation has the lowest tensile strength, but no visual effect of the scanning 

strategy with rotation could be observed.  

Interestingly, most of the samples (except for samples with chessboard strategies without 

rotation) have a better yield strength and elongation % than as-cast Al-Si, which has a yield 

strength of 120-140 MPa and elongation of 1-2 % [153], [154].  

2.4.2. Microstructural Investigations 

2.4.2.1. Phase Morphology 

AlSi7Mg0.6 is a hypoeutectic alloy that primarily shows α-Al matrix surrounded by fibrous Si-

rich phase as shown in Figure 29 when processed by the L-PBF process. A similar 

microstructure has been reported for AlSi7Mg processed by the L-PBF process [155]. Apart 

from the fibrous network, Si particles are also dispersed inside the matrix, which may be 

precipitated from the supersaturated α-Al matrix afterward due to heat dissipation during part 

fabrication. The Si content in the α-Al matrix is higher than the eutectic composition under 

equilibrium conditions. Due to rapid cooling, the non-equilibrium solidification conditions lead 

to a supersaturated α-Al matrix or pseudo eutectic composition. Indeed, the high cooling rate 
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Figure 28. Effect of the scanning strategies on yield strength, ductility, tensile strength. 
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in the L-PBF process develops a large undercooling at the solidification front, which doesn't 

provide enough time for Si precipitation [156]. Therefore, high content of Si is retained in the 

cellular or columnar α-Al matrix and leaving residual Si at the grain boundaries. Also, Dinda 

et al. [157] reported that Si content in the Al matrix increases with solidification velocity. 

 

2.4.2.2. Optical Micrographs 

The complex pattern of the scan tracks can arise due to different scanning parameters. For 

example, the woven-like melt pools result from applied scanning rotation between the 

consecutive layers, as shown in Figure 30a.  The scan tracks are also not continuous in the 

cross-section due to variation in the melt pool dimensions especially melt pool depth. The 

optical micrograph of etched as-built samples shows contrast at the edges of the scan tracks. 

Figure 30: Optical micrograph of as-built C_5*5_45 (a) transverse, (b) building direction. (SD: Scanning direction, TD: 
Transverse direction, BD: Building direction) 
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Figure 29: An example of the phase morphology in AlSi7Mg0.6 
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This contrast arises because the cell size is of the order of the wavelength of the visible light. 

Also, the melt pool boundary is visible (See Figure 30b).   

2.4.2.3. Melt Pool Evolution 

The unique microstructure in the melt pool is due to the variation of cooling rate and thermal 

gradient across the melt pool. Epitaxial growth of the α-Al phase along the thermal gradient is 

evident in Figure 31: the melt pool shows elongated dendritic morphology in the longitudinal 

or building direction and cellular morphology in the transverse cross-section. Grain formation 

during solidification depends on the G/R parameter, where G is temperature gradient and R 

cooling rate. Thus, depending on the evolution of G/R, different morphologies, planar, cellular, 

columnar, can be obtained. When the laser melts the powder and the previous layers, many 

small grains nucleate at the melt pool's border due to the high value of G [158], [159]. These 

newly nucleated grains competitively grow into columnar or cellular grains due to higher G/R 

value. Crystallographic texture results indicate that these grains have a specific orientation, i.e., 

< 100 > along with the scanning direction. Some of the grains remain equiaxed at the border of 

the melt pool. There is also a possibility of forming equiaxed grains at the top of the melt pool 

due to columnar to equiaxed transition (CET). CET can be observed during the laser treatment 

Figure 31: SEM micrographs of S_10_67 sample in (a, b) building direction and (c, d) transverse direction. 
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when the nucleation of large equiaxed grains occurs in the constitutionally undercooled liquid 

in front of the dendritic columnar front, as reported by [160]. However, the CET equiaxed grains 

at the top of the melt pool are not visible as the subsequent remelting passes destroy them.  

Three distinct regions are highlighted in the melt pool micrographs, (a) a fine grains region, (b) 

a coarser grains region, and (c) a heat-affected zone (HAZ). The different regions of the grains 

are related to undercooling variation due to the Gaussian distribution of laser energy: the laser 

energy is higher at the center of the melt pool and lowers at the edges, and then G is higher at 

the center of the melt pool and lower at the edges of the melt pool.  The factor G*R determines 

the fineness of the grains. Therefore G*R is higher at the center of the melt pool leading to fine 

cellular or columnar microstructure. On the contrary, a lower value of G*R leads to coarser 

microstructure at the edges of the melt pool [158], [161]. The transition from fine to coarse 

microstructure is visible in Figure 32.  Another possible reason for coarser microstructure could 

be the formation of a semi-solid-state during the melting of successive passes. A semi-solid 

state or mushy zone can be generated when the temperatures are between the liquidus and 

solidus [162]. As reported by previous studies, the obtained semi-solid state can lead to coarser 

microstructure [163], [164].  

Heat affected zone is another distinct region along the melt pool boundary. It can be 

characterized by a discontinuous silicon phase, which may be due to the increasing rate of 

silicon [158], [161]. When the laser melts the next layer, the temperature is lower than the 

solidus in the previous layer and acts as the heat treatment for the beneath layer creating a HAZ.  

Due to high scanning speeds and high cooling rates, the time for the HAZ to maintain that 

temperature is too less. Therefore, we only observed a small strip of HAZ with randomly 

dispersed Si cells. The temperature in the HAZ allows the precipitation of Si particles from the 

Figure 32: SEM images of the melt pool for sample showing the three distinct regions i.e. fine (1), 
coarse (2) and HAZ (3) regions. 
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supersaturated α-Al matrix, which is formed due to higher cooling rates. As Si particles form 

and grow, the Si network finally disappears [161], [165]. 

 2.4.2.4. Cell Size and Cooling Rates 

The cell size variation inside the melt pool regions is measured using the ImageJ software from 

SEM images. Figure 33 presents the variation inside a melt pool obtained with the presented 

strategy: it is observed that the cell size varies concerning the location within the melt pool. The 

cooling rate based on the cell size is calculated using Equation 7. For example, it is found that 

there is a higher cooling rate of 1.8*106 K/s at the top of the melt pool where the cell size is 

smaller and a lower cooling rate of 1.3*105 K/s in the coarser region (Figure 33b). Also, the 

cell size and cooling are calculated for different scanning parameters (Figure 34): it is noticed 

that there is no significant influence of scan strategy and its parameters, such as scan vector 

length and rotation, on the cooling rates and cell sizes.  

The cooling rate and cell size predominate the power and scan, as Farshidianfar et al. [166] 

reported for the direct deposition process. 
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2.4.2.5. Grain Morphology 

Figure 35 shows the grain morphology of the SLMed AlSi7Mg0.6 alloy samples obtained by 

EBSD analysis. It can be observed that the microstructure is mainly composed of elongated 

grains, which are parallel to the building direction. Because of the growth of elongated grains 

towards the center of the melt pool and the existence of small equiaxed grains, some of the melt 

pool boundaries could be distinguished. In the vicinity of the melt pool boundary, small 

equiaxed grains appear. Grains are measured using a boundary misorientation angle definition 

of 2°. The crystallites of size less or equal to two map pixels are ignored to reduce noise in the 

data.  

There is no significant observable difference in mean grain size for different scanning strategies 

as shown in Error! Reference source not found.. The average grain size for the samples 

S_5_67, S_10_90, S_10_45, S_10_67, C_3*3_no, C_2*2_no, C_10*10_no, C_5*5_no, 

Figure 34: (a) Cell spacing and (b) calculated cooling rates. In X-axis, the numbers denote the location within the melt pool 
i.e. 1: Top edge, 2: Centre, 3: Bottom edge, 4: Coarse region of the melt pool. Also marked in Figure 33. 
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C_10*10_90, and C_5*5_45 is 12.88 µm , 10.46 µm, 13.39 µm, 13.81 µm, 12.02 µm, 12.36 
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SD 
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BD 
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Figure 35: IPF images showing the grain morphology for samples (a) S_5_67, (b) S_10_90, (c) S_10_45, (d)S_10_67, (e) C_3*3_no, (f) 
C_2*2_no, (g) C_10*10_no, (h) C_5*5_no, (i) C_10*10_90, and (j) C_5*5_45. 
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µm, 12.38 µm, 12.41 µm, 13.71 µm, and 10.21 µm, respectively. 

2.4.2.6. Grain Misorientation Angle  

The grain boundary misorientation angles are also considered for different scanning strategies. 

The misorientation values higher than 15° are regarded as the high angle grain boundaries 

(HAGBs), and those lower than 15° are termed as lower angle grain boundaries (LAGBs). The 

fraction of LAGBs is higher than the HAGBs in the samples (Figure 37). The boundary 

misorientation distribution has no significant difference between the samples. A high density 

of LAGBs is present in the columnar α-Al grains, as also observed by Takata et al. [165]. A 

fine substructure within the α-Al grains is responsible for the high-density LAGBs. 

2.4.2.7. Crystallographic Texture 

a. Texture Index 

Each grain has preferred orientations that grow much faster than other orientations during the 

solidification. This preferred growth during the solidification of the melt pool leads to 

crystallographic texture in the printed part. For example, <100> fiber texture parallel to the 

scanning direction is expected because the melt pool is elongated in the scanning direction, and 

solidification starts along that direction.  But the crystallographic orientation can be controlled 

and modified according to the processing parameters such as scanning direction, laser power, 

scanning speed, and layer rotation angle [166]. For instance, Liu et al. [138] reported the effect 

of laser power on the crystallographic texture evolution in AlSi10Mg alloys. Similarly, Thijs et 

al. [158] reported that the strong fiber texture in AlSi10Mg alloy changes to weak cubic texture 

by rotating each layer 90° from the previous.  This research studied the effect of scanning 

strategy, rotation angle, and scan vector length on crystallographic texture evolution.  
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Only a few studies investigated the crystallographic texture in Al Alloys. Usually, the 

crystallographic textures do not contribute much to overall anisotropy in the material, which is 

an attribute related to the orientation of parts.  

Since the Al has FCC crystal structure, columnar grains usually prefer <100> texture [166], 

[167]. Texture can be categorized into two, i.e., Micro-texture and Macro-texture. The macro-

texture can be measured by X-rays, neutrons, electron diffraction techniques. Whereas the 

micro-texture can be studied using the scanning electron microscopy-based electron backscatter 

diffraction technique (SEM-EBSD).  

The overall texture index (𝑇𝐼) is given by the texture index, which is expressed as  

𝑇𝐼 = ∫ (f(𝑔))2 ⅆ𝑔
𝐸𝑢𝑙𝑒𝑟𝑠𝑝𝑎𝑐𝑒

 

Equation 8 

Where 𝑓 denotes the orientation distribution function of the Euler space coordinates 𝑔 [168], 

the texture index (𝑇𝐼) defines the volume fraction of the crystals having a particular orientation 

compared to others. If 𝑇𝐼 = 0, there is no crystal having this specific orientation. If 𝑇𝐼 = 1, then 

it denotes one crystal for each possible orientation, also termed as “random distribution.” If 

𝑇𝐼>1, for example,  𝑇𝐼 =3, then it defines the number of crystals with a particular orientation 3 

times the utterly random distribution. 𝑇𝐼 values are read in terms of “multiples of random 

orientation (MRD),” higher the 𝑇𝐼 value, the more textured the material is. From Figure 38 

(calculated on the obtained EBSD data), it can be observed that for chessboard strategy, 𝑇𝐼 
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Figure 37: Texture index of the samples. 
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increases with an increase in the island sizes until 5 mm and then drops for an island of size 10 

mm. However, comparing samples C_5*5_no and C_5*5_45, it can be noted that the TI 

decreases significantly from 5.3 (no rotation) to 1.3 (application of 45° rotation between 

consecutive layers). In the case of stripes, we observed that 𝑇𝐼 is close to 1 for a stripe length 

of 10 mm for all rotation angles, while 𝑇𝐼 is close to 4 when the stripe length is reduced to half.  

Mackenzie plot represents the misorientation distribution for a cubic sample with a random 

texture. Suppose at any misorientation angle the frequency of the actual distribution is higher 

than the corresponding frequency in the Mackenzie distribution. In that case, it means that the 

material has texture in one of the preferred orientations. It can be seen in Figure 39 that all the 

samples show the actual frequency distribution higher than the Mackenzie distribution, 

especially for misorientation angles < 35°. So, it can be concluded that all the samples have a 

preferred orientation.  

b. Inverse Pole Figure Intensity 

Pole figure intensity is a measure of how dissimilar the crystals are when compared to random 

orientation distribution. Although the calculation is different from 𝑇𝐼, the pole intensity 

measures crystallographic anisotropy or texture in the material by using SEM-EBSD. 

Figure 38: Mackenzie plot comparison. 
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Effect of Scan Vector Length 

C_2*2_no, C_3*3_no, C_5*5_no, and C_10*10_no samples scanned with varying scan vector 

lengths, and the scanning angle is kept constant for each layer. It is noticed that a strong <100> 

along the scanning direction is observed, and weaker <110> texture along building texture arise, 

//SD //TD //BD 

(a)  

//TD //SD //BD 

(c)  

(b)  

//BD //SD 
//TD 

//TD //SD //BD 

(d)  
Figure 39: Intensity pole figures for samples (a) C_2*2_no, (b) C_3*3_no, (c) C_5*5_no, and (d) C_10*10_no. 
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as shown in Figure 40 (except for Figure 40c).  The pole figure intensity increases as the scan 

vector length increases for <100> direction parallel to the scanning direction.  

In samples S_5_67 and S_10_67, the scan vector length changes from 5 mm to 10 mm while 

the rotation angle in consecutive layers is kept constant at 67°. Like chessboard strategy, there 

is strong <100> along the scanning direction. Still, the overall texture intensity is lesser for 

bigger scan vectors than chessboard cases, as shown in Figure 41.  

Effect of Rotation Angle 

Samples S_10_45, S_10_67, and S_10_90 are printed with the same scanning vector length, 

but the rotation angle between the layers is changed to 45°, 67°, and 90°, respectively. All the 

samples show <100> texture along the scanning direction, but a significant texture pattern is 

also observed for building direction, as shown in Figure 42.  
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(b)  

Figure 40: Intensity pole figures for samples (a) S_5_67 and (b) S_10_67. 
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Samples C_5*5_no and C_10*10_no are compared with samples C_5*5_45 and C_10*10_90 

(Figure 43) to investigate the rotation effect in chessboard strategy. As observed earlier, there 

is <100> texture parallel to the scanning direction for all the samples. But the pole intensity 

decreases from 4.66 to 1.59 when the C_5*5_no rotated by 45° (C_5*5_45). Also, the texture 

//SD //BD //TD 

(b)  

//SD //TD //BD 

(a)  

Figure 42: Intensity pole figures for samples (a) C_5*5_45, and (b) C_10*10_90. 
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Figure 41: Intensity pole figures for samples (a) S_10_45, and (b) S_10_90. 
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<101> parallel to building direction for non-rotated samples decreases, and texture <100> starts 

to arise for building direction. The same can be seen for the sample C_10*10_no, where the 

pole intensity decreases by applying a rotation of 90° between layers. Also, the <100> texture 

orientation parallel to building direction starts to arise.  So, it can be concluded that applying 

rotation between layers can decrease the texture intensity in the material. In other words, it 

lowers the intensity of crystallographic anisotropy in the material. 

Overall, Stripes (except S_5_67 and C_5*5_45) show the lower texture intensity in <100> 

direction parallel to scanning direction compared to chessboard strategy, which is also 

confirmed by the texture index discussed in the previous section. 

2.4.3. Fractography 

In the fracture micrographs, it is noticed that the effect of scan vector length and rotation is not 

significantly visible (Figure 44). However, there is a clear difference in the fracture behavior in 

stripes and chessboard scanning strategy.  Figure 45 shows the micrographs of the fracture 

surfaces of the tensile samples for stripes and chessboard strategies. In chessboard strategy, the 

samples fail like a brittle fracture linked to the presence of elongated porosity at the island 

junction, as shown in Figure 45b.  

 

Figure 43: SEM micrographs of fracture surface for (a) S_10_90, (b) S_10_67, (c) C_10*10_no, and (d) 
C_10*10_90. 

(a) (b) 

(c) (d) 

1 mm  1 mm  

1 mm  1 mm  
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In stripes, the fracture looks like a ductile fracture. In Figure 45a, the micro-voids or 

microporosity on the edge of the samples could be the crack initiation site. It is noticed that the 

tearing occurs along the melt pool boundaries. The evidence of fracture due to Si particles at 

the center of the grains is not found. 

2.4.4. Residual Stresses 

Residual stresses are internal stresses that remain in part after completing the manufacturing 

process. The type and nature of the residual stresses are subjected to the entire manufacturing 

route used to produce that part. The uncontrolled relaxation of the residual stresses can 

negatively affect the manufactured part. The residual stresses can act as additional stress when 

subjected to service conditions. This can have a severe impact on the lifetime of the part. 

Sometimes, the residual stresses are beneficial and desired. For example, the compressive 

residual stresses at the part's surface can increase resistance to fatigue or corrosion under stress. 

Tensile residual stresses are penalizing and correspond to areas at risk of premature failure. The 

samples used for the study of residual stresses are cylinders with a diameter of 16 mm and 

length of 55 mm (attached from the manufacturing plate).  

the residual stresses are measured at the surface and 2 mm depth for three locations: at two 

edges (start: represents where the printing started and end: represents where the scanning vector 

ends) and in the center of the bar (Figure 46a)  

Figure 44: Fracture surface for samples (a) S_10_67, and (b) C_10*10_no at different magnifications. 

(a) 

(b) 

1 mm  100 µm  20 µm  

1 mm  
200 µm  100 µm  
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The measurement directions are circumferential direction (0°) and axial direction (90°) (Figure 

46b)  

It is important to note that the measurement uncertainty is estimated at ±7 % in case of a 95 % 

confidence interval. 

2.4.4.1. At Surface 

The residual stress at the surface in the circumferential direction of all the samples are very low 

tensile or low compressive stresses, as shown in Figure 47. In contrast, we could observe very 

high tensile stresses in the axial direction (Figure 47). Similarly, the stresses are very high in 

the center of the part for both directions for all the samples. Typically, the start edge has higher 

stresses than the end edge except for C_3*3_no and C_10*10_90 for transverse direction 

(Figure 48a); in contrast, the same could not be observed for longitudinal direction (Figure 48b). 

However, the difference in the start and end edges is not very significant compared to the center 

(a) 

 

(b) 

 
Figure 45: (a) Location of the measurement points i.e. Start, Centre, and End (marked in red circles), (b) schematic of the 
measurement directions based on laser scan track. 
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Figure 46:  Change in residual stresses based on the location of the measurement points at the surface of 
the parts. 



Chapter 2 

 

- 76 - 
 

region. Based on the above results, we can confirm that the residual stresses are higher in the 

longitudinal direction at the part's surface, which is also the direction of laser printing (Figure 

46b). Therefore, there are higher stresses along the melt pool length axis than the width axis.  

No significant effect of scanning strategies could be observed in residual stresses.  

2.4.4.2. At 2 mm Depth 

Similar to results at the surface, the residual stresses are higher in the longitudinal direction 

than in the transverse direction (Figure 49). However, the stresses are higher at 2 mm depth 

than the stresses at the surface. It is essential to notice no significant variation in the stresses at 

the edges and center of the part for both directions (except S_10_45).  
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Figure 48: Change in residual stresses based on the location of the measurement points at the 2 
mm depth of the parts. 
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2.5. Conclusions 
The scanning strategy plays a pivotal role in influencing the final part's overall mechanical and 

microstructural properties. The findings of this study can be summarized as follows: 

1. The stripes have higher densification than chessboard strategy due to the present lack 

of fusion porosity at the junction of the islands. Also, the stripes with rotation exhibit 

good mechanical properties such as tensile strength and hardness.  

2. Microstructurally, both equiaxed and columnar grains are observed, which is linked to 

a higher value of G at the melt boundary. The same microstructure has been reported 

for AlSi10Mg alloys as well. Three distinct regions within the melt pool are 

investigated, i.e., fine, coarse, and HAZ zone. A Si-rich phase existed as a fibrous 

structure in a pseudo eutectic structure. 

3. Cooling rates are estimated using the cell size within the melt pool, and it can be 

concluded that the cooling rates vary within the melt pool due to rapid cooling. The 

center or top of the melt pool has the highest cooling rates, and it decreases gradually at 

the end edge of the melt pool. However, no significant distinction is observed w.r.t. 

different scanning parameters. 

4. The EBSD analysis shows that the grains are preferentially ordered in <100> crystal 

direction parallel to scanning direction as reported in the literature. But the Texture 

Index varies with varying the scan vector length. In the chessboard case, TI increases 

with an increase in island size until 5 mm. Also, rotation angle has a significant effect 

on lowering the overall TI of the material. Overall, the stripes have lower TI compared 

to the chessboard strategy. 

5. The fracture surface of the samples is investigated using SEM analysis. It is observed 

that the chessboard samples show a brittle-like fracture which can also be confirmed 

with the elongation % obtained during mechanical properties. The brittle fracture is 

linked to the porosities that act as fracture initiation sites. In comparison, stripes showed 

typical ductile fracture behavior. The micro-voids or microporosity on the edge of the 

samples could be the crack initiation site. It is noticed that the tearing occurs along the 

melt pool boundaries. The evidence of fracture due to Si particles at the center of the 

grains is not found. 

6. Finally, the residual stresses at the surface and 2 mm depth are studied along the 

scanning direction, i.e., longitudinal and transverse direction. For all the samples, the 

residual stresses are higher in the longitudinal direction compared to the transverse 
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direction. The highest stresses are observed at the center of the samples compared to the 

two edges. The higher residual stresses are observed for 2 mm depth. But no significant 

pattern is observed w.r.t. to scan vector length and rotation. 

Remarks: AlSi7Mg0.6 will be used as a basis for the studies in chapters 4 and 5. On the 

other hand, for technical and administrative reasons, we will use AlSi10Mg in chapter 3, an 

alloy which has a very similar metallurgical behaviour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

 

- 79 - 
 

C H A P T E R  3 

Optical Tomography In-Situ Monitoring 

Module 

 

3.1. Definitions 

• Hot spot: The local areas with high light intensity than the rest of the layer. These 

hotspots areas indicate the highest probability of defect occurring in the final part. 

• Drift: The drift layer indicates the presence of the hotspots in a particular layer. If the 

local hotspots are present in the layer, the whole layer is termed the “Drift layer.” 

• No-Drift: In contrast to the “Drift layer,” the non-existing hot spots in a particular layer, 

termed the “No-drift layer.” 

• Feature: In machine learning, a feature is a measurable property that can be quantified 

and recorded. Features are extracted from the input data to simplify the classification 

task. In our application, the mean and median are the feature extracted from each layer’s 

image.  

• Feature matrix: A n×m dimensional matrix, where n is the number of data, and m is 

the number of features. In other words, a feature matrix contains n number of 1×m 

dimensional feature row vectors. 

In this chapter, we have focussed on the treatment of the data obtained using the 

EOSTATE Optical Tomography monitoring system. A balanced dataset is obtained 

with the help of computed tomography of the certified part (Stainless Steel CX 

cylindrical samples), through which a feature matrix is prepared, and the layers of the 

part are classified either having “Drift” or “No-drift”. The model is trained with the 

feature matrix and tested on benchmark parts (Maraging Steel) and on an industrial 

part (knuckle, automotive part) manufactured in AlSi10Mg. The proposed semi-

supervised approach shows promising results for presented case studies. Thus, the 

semi-supervised machine learning approach, if adopted, could prove to be a cost-

effective and fast approach to post-process the in-situ monitoring data with much ease. 

“ 
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• Balanced dataset: A dataset having an equal number of layers for each label (“drift” 

and “no-drift”). 

3.2. Theory 
The field of machine learning is concerned with how to construct computer programs that 

automatically improve with experience. This section will define the machine learning 

algorithms utilized in this work through mathematical modeling. 

3.2.1. K-Means Clustering 

K-means clustering or Lloyd’s algorithm [169] is one of the literature's most widely studied 

unsupervised machine learning algorithms. It is an iterative partitional clustering algorithm that 

divides n data/feature samples into K disjoint clusters that minimize the squared error criterion, 

and each cluster is characterized through a centroid. It is important to note that the initial 

centroid seeds play an important role in K - means clustering algorithm, as different initial 

centroids can provide different results [170]. We have utilized the K-means++ algorithm [171] 

to choose initial centroid seeds that achieve faster convergence to a lower sum-of-squares point-

to-cluster-centroid distance than Lloyd’s algorithm but offer no optimality guarantees. The 

parameter K (i.e., number of clusters) is apriori selected, which in our case is 2.  

Let us define a 𝑛 ×𝑚 dimensional dataset/feature matrix 𝐷 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇 with 𝑛 samples, 

and the set of K centroids be 𝐶 = [𝑐1, 𝑐2, … , 𝑐𝐾]
𝑇, where x and c are necessarily represented 

points on an m-dimensional plane. The steps used to implement the K-means++ algorithm are 

as follows: 

1. Select an observation 𝑥𝑎 uniformly at random from the dataset/feature matrix, 𝐷. The 

chosen observation is the first centroid denoted as 𝑐1. 

2. Denoting the distance from an ith data point 𝑥𝑖 to jth centroid 𝑐𝑗 as ⅆ(𝑥𝑖 , 𝑐𝑗). Now we 

compute distances from each observation to 𝑐1, i.e., ⅆ(𝑥𝑖, 𝑐𝑖).  

3. Now we choose the next centroid 𝑐2 with a probability of  
𝑑(𝑥𝑡,𝑐1)

2

∑ 𝑑(𝑥𝑗,𝑐1)
2𝑛

𝑗=1   
 . This step 

implies that if the data point 𝑥𝑡 is near to centroid 𝑐1the likelihood of 𝑥𝑡 to become 

centroid 𝑐2would be negligible. 

4. We now repeat step 3 until all initial K centroids get assigned, i.e., 𝑐3, … , 𝑐𝐾. 

5. Now for each 𝑙 ∈ {1,2, … , 𝐾}, set the cluster ∁𝑙 to be the set of data/feature points in 𝐷 

that are closer to ∁𝑙 then they are to ∁𝑝, ∀𝑙 ≠  𝑝. 

6. Now for each 𝑙 ∈ {1,2, … , 𝐾}, update the centroid 𝑐𝑙 to be the center of mass of all data 
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points in ∁𝑙, i.e., 𝑐𝑙 = 
1

|∁𝑙|
 ∑ 𝑥𝑖{𝑥𝑖∈∁𝑙}

. This process is equivalent to calculating a mean, 

hence K-means clustering. 

7. Now iteratively repeat steps 5 and 6 until cluster assignments do not change. 

In K-means clustering, the distance metric d plays an important role, and in the literature, 

various distance metric has been suggested, e.g., Euclidean, correlation, cosine, and city block 

distance. We have experimented with various distance metrics to find the most suitable one for 

our application in our work. 

3.2.2. K-Nearest Neighbour Classifier 

The k-nearest neighbor (k-NN) is a supervised learning classification algorithm, one of the most 

studied classifiers in the literature, and even with a simplistic formulation, it has a performance 

at par the most complex classifier available [172]. The k-NN learning algorithm requires labeled 

training data and a predefined value of the number of nearest neighbors parameter k, which the 

classifier uses to find k-nearest neighbors to a query data (unclassified data), based on a distance 

metric. The k-nearest neighbors can have different classes, and the algorithm predicts the class 

of the query data as the majority class of nearest neighbors. Let 𝑇 = (𝑥𝑖′ , 𝐿𝑖′) ∀ 𝑖
′ = 1, 2,⋯ ,𝑁 

denote the training set, with 𝑁 samples and 𝑥𝑖′ ∈ 𝑅
𝑚 is a 𝑚-dimensional training feature vector 

have a known class label  𝐿𝑖′ . 

A query data, 𝑥𝑖′
′  be an 𝑚-dimensional vector of data or features, to which a label 𝐿𝑖′

′  will be 

assigned. Now let 𝑇′ = (𝑥𝑖′
𝑘 , 𝐿𝑖′

𝑘 ) for 𝑖′ = 1,2, … , 𝑘, denotes the set of k-nearest neighbors based 

on a distance metric and based on the majority class of  𝑇′, ⅆ𝑖′
′  will be assigned a label, i.e.,  

𝐿𝑖′
′ = arg𝑚𝑎𝑥𝐿∑ 𝛿

𝐿, 𝐿
𝑖′
𝑘

(𝑥
𝑖′
𝑘 ,𝐿

𝑖′
𝑘 )∈𝑇′

, 

Equation 9 

where 𝛿
𝐿,𝐿

𝑖′
𝑘  is a Kronecker delta function. 

3.2.3. Distance Metrics 

As both supervised (k-NN) and unsupervised (K-means) learning algorithms rely on a distance 

metric, we mathematically define them in this section. For any two points 𝑥𝑖′ 
′ & 𝑥𝑖′

𝑘  in an m-

dimensional space, the Euclidean distance can be defined as, 

ⅆ(𝑥𝑖′
′ , 𝑥𝑖′

𝑘) = √((𝑥𝑖′
′ − 𝑥𝑖′

𝑘)(𝑥𝑖′
′ − 𝑥𝑖′

𝑘)
𝑇
) 

Equation 10 
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City Block distance as 

ⅆ(𝑥𝑖′
′ , 𝑥𝑖′

𝑘) = ∑|𝑥𝑖′
′ [𝑛] − 𝑥𝑖′

𝑘 [𝑛]|

m

𝑛=1

, 

Equation 11 

Cosine distance as 

ⅆ(𝑥𝑖′
′ , 𝑥𝑖′

𝑘) =

(

 1 −
𝑥𝑖′
′  𝑥𝑖′

𝑘𝑇

√(𝑥𝑖′
′ 𝑥𝑖′

′𝑇)( 𝑥𝑖′
𝑘  𝑥𝑖′

𝑘𝑇))

 , 

Equation 12 

,and Correlation distance as 

 

ⅆ(𝑥𝑖′
′ , 𝑥𝑖′

𝑘) =

(

 1 −
(𝑥𝑖′
′ −   𝑥𝑖′

′ ) (𝑥𝑖′
𝑘 −   𝑥𝑖′

𝑘)𝑇

√(𝑥𝑖′
′ −   𝑥𝑖′

′ ) (𝑥𝑖′
′ −   𝑥𝑖′

′ )𝑇√  (𝑥𝑖′
𝑘 −   𝑥𝑖′

𝑘)(𝑥𝑖′
𝑘 −   𝑥𝑖′

𝑘)𝑇
)

 , 

Equation 13 

 

where 𝑥𝑖′
′ =

1

𝑚
∑ 𝑥𝑖′

′𝑚

𝑛=1
[𝑛] and 𝑥𝑖′

𝑘 =
1

𝑚
∑  𝑥𝑖′

𝑘 [𝑛]
𝑚

𝑛=1 . 

3.3. Materials and Methods 

3.3.1. In-Situ Monitoring Module: EOSTATE OT 

For our study, we used the EOSTATE melt pool monitoring module installed on EOS M290, 

for which the schematic diagram is shown in Figure 50. The optical tomography (OT) 

comprises an off-axis scientific Complementary metal-oxide-semiconductor (sCMOS) camera 

with a spectral detection range in the near-infrared region (NIR). Usually, the radiation from 

the build chamber consists of three components, i.e., backscattered laser (1064 nm), plasma 

radiations due to evaporation and ionization of gases (400-600 nm), and thermal emissions, 

which range from visible (380-780 nm) to near-infrared (~1400 nm) spectrum [41]. Since the 

part quality mainly depends on the thermal emissions from the melt pool, other wavelength 

radiations are eliminated by installing a bandpass filter (the type of bandpass filter cannot be 

relieved due to the machine provider confidentiality clause) in front of the camera. The OT 
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system has a camera resolution of 2560 x 2160 pixels, allowing a spatial resolution of 125 

µm/pixel across the entire build platform. The OT system has a frame rate of 10 frames per 

second. At the end of every scanned layer, all the images are superimposed, and a holistic 

picture for the whole layer is saved in a 16 bit TIFF single image. The final image of the 

particular layer represents the process map that can be correlated with the emitted light intensity 

by the process. Due to the non-centralizing position of the camera, the geometric correction is 

applied to the images via software.  

3.3.2. Materials and Methods 

In our study, a total of 18 Stainless Steel CX cylindrical samples with a diameter of 10 mm and 

a height of 15 mm are printed on EOS M290. The input volumetric energy density is varied 

over a range to prepare a dataset of certified samples that would be used further for training and 

verification of the model. The deliberately varied process parameters induce drift during the 

process, resulting in varied porosity levels. The optimized printing process parameters are 

summarized in Table 10. The laser power and scan speed varied ± 30 % from the optimized 

processed parameters tabulated in Table 10. Also, the layer thickness is varied to 30, 60, and 

90 µm. It is worth noting that the possibility of having drift due to bad powder layer spreading 

is not considered for this study. Computed tomography is performed on printed samples for 

analysis using an X-ray inspection system to determine pores with a 180 kV microfocus tube 

 

Laser 

Dichoric mirror 

sCMOS Camera 

Scanner EOSTATE Exposure OT 

Build Plate 

Figure 49: Schematic diagram of the EOSTATE exposure module. 
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and an area detector with a voxel size of 19 or 22.5 microns to prepare a labeled dataset training. 

The smallest evaluated pore has a volume of 5 voxels. 

For testing the supervised learning classifier, two case studies are chosen, which are: an 

automotive part called “Knuckle” and a benchmark part called “Overhang structure” (Figure 

51). The automotive part called “knuckle” is printed with AlSi10Mg, and the benchmark part 

is printed with Maraging steel. The “knuckle” and “overhang part” are chosen as a case study 

because the location of the overheating failure in these parts is detectable via visual inspection. 

The EOS analysis tool can detect cold and hotspots, treated as areas with the highest probability 

of finding a defect in the final part. EOSTATE Exposure OT analysis tool is used to cross-

validate results obtained from the supervised learning approach for the presented case studies. 

Table 10: Process parameters for the printing. 

Material Power (W) Scanning speed 

(mm/s) 

Hatch distance (µm) Layer thickness (µm) Energy density 

(J/mm3) 

Stainless Steel CX 260 1000 100 30 80 

 

 

3.3.3. Image Analysis 

Clijsters et al. [18] used a co-axial setup (CMOS camera and photodiode in NIR range) to 

capture the melt pool signatures such as melt pool area and intensity to monitor the quality of 

the SLMed parts. Clijsters et al. prepared a dataset based on the melt pool area and intensity for 

(a) (b) 

125 mm 125 mm 

Figure 50: The CAD design of (a) An automotive steering knuckle (3d printed within the framework of the European project Maestro 
[36]), the length of this part is approximately 500 mm, only a section was 3D printed, (b) benchmark used to determine the critical 
overhanging angle in additive manufacturing processes. 



Chapter 3 

 

- 85 - 
 

different scan vectors such as fill and contour scans. It is presented that the heat transfer depends 

mainly on the environment of the melt pool: the heat flux is higher when the metal pool is 

surrounded by printed material than when it is surrounded by powder. A confidence interval is 

defined for each of these classes (fill scan and contour scan), and errors are detected based on 

the defined confidence interval. The proposed method is studied for small cube structures. 

However, our study also noticed that such a confidence window based on mean and standard 

deviation could not be defined for complex and real case parts. To prove this, the mean and 

variance of each layer for the complex part called “Knuckle” (refer to Figure 51a for part 

geometry) are plotted in Figure 52. It can be observed that the mean and standard deviation are 

dependent on the printed area of each layer and change with the shape of the complex part. 

Therefore, the global threshold limit based on the mean and standard deviation cannot be 

applied for the complex geometries, and thus the ML is a suitable approach for post-processing 

of in-situ data. For training our ML classifier, selecting suitable features from the given dataset 

is required. 

Preprocessing the OT images is necessary before feature extraction and further ML processing. 

As the OT image captures the whole build plate, the specific part region is cropped. The removal 

of the background from the cropped part images is performed based on a suitably selected 

intensity threshold. A preliminary statistical analysis performed on individual image layers 

shows that the mean and the median of the corresponding images increase significantly due to 

hotspots in the thermal images compared to the cases of absence (Figure 53). Localized hotspots 

in the layer are due to local variation in the melt pool shape and size. The localized variation in 

melt pool signatures can be influenced by the localized variation in powder bed spreading or 
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Figure 51: (a) Mean, and (b) variance per layer for the case study part “Knuckle”. 
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process parameters. The more hotspots there are in the images, the highest probability of drift. 

For example, Zenzinger et al. [41] demonstrated the link between the hotspots in OT images to 

the defect in the µCT scan of the layer. Recently, Mohr et al. [38] also studied the OT images 

to detect a defect in the final part and compared the OT images with the µCT images. It is also 

verified that the hotspots in the OT images link to defect in the final part. 

For example, Figure 53a represents the layer image without any hotspots, verified with CT 

image (Figure 53b) and, another image with hotspots (marked by red circles) is shown in Figure 

53c. The corresponding CT image with the porosity (marked by red circles) is also shown in 

Figure 53d. On comparing the histogram of images in both scenarios, the image's histogram, 

which represents a probable drift layer (layer with hotspots is termed as drift layer), shows a 

right shift compared to the image of the layer with no possible drift (layer without hotspots). 

The right shift in the histograms is due to hotspots, which leads to a higher mean in the layer 

than no drift layer (see Figure 53e). 
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Figure 52: Example picture of (a) OT image without hotspots, (b) CT image of corresponding layer (a) without hotspots, (c) OT image 
with hotspots, (d) CT image of corresponding layer (c) with hotspots, and (e) histogram comparison between (a) and (c). 
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Figure 53: Flowchart for extraction of features from the OT pictures. 
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As the relative value of the mean and median of the image pixels can describe the degree of 

right/left shiftiness of the histogram, based on these observations, we decided on the mean and 

median being the features of choice for training and testing the classifier. The flowchart of the 

feature extraction procedure is shown in Figure 54. 

3.4. Semi-Supervised Learning Approach 

3.4.1. Initial Data Labeling and Suitable Distance Metric Selection Through 𝐾-means 

Clustering Algorithm 

Another essential aspect of ML algorithms like 𝐾-means and 𝑘-NN is the distance metric. As 

discussed previously in Section 3.2.3, there are many distance metrics already proposed in the 

literature, but for a particular application, only a few will suit. This section discusses the initial 

labelling of sample layers as “drift” or “no-drift” and chooses the suitable distance metric for 

our application based on the experimentation done on the certified dataset.  

Due to the complex nature of the DMLS process, obtaining the labeled dataset in an automated 

fashion is a challenging task. Therefore initially, a labeled dataset of 40 layers (20 layers of 

each label, i.e., “drift” and “no-drift”) from a set of 14 Stainless Steel CX cylindrical samples 

are prepared manually. The categorization of specific layers as “drift” and “no-drift” is based 

on the visual comparison between of particular OT image with the corresponding CT image 

(see Figure 53). However, the resolution difference between OT and CT images hinders a visual 

comparison of all the images. Thus, it is impossible to label and prepare a large dataset 

manually. Therefore, in this case, the unsupervised algorithm 𝐾-means clustering come to the 

rescue and is used to automate the task of labeling. As seen in comparison with CT data, it can 

be concluded that a higher number of OT hotspots results in a higher probability of having a 

real defect in that layer. Based on this hypothesis, a dataset of another 200 unlabelled layers is 

prepared such that it comprises an approximately equal number of “drift” and “no-drift” labels. 

Nevertheless, it shall be noted that it does not mean that every image with an OT indication will 

lead to a real defect in the printed layer due to the repetitive nature of printing of the DMLS 

process, as the existing defect in the previously printed layer may be resolved in the following 

printing scan. 

Next, the 40 labeled and 200 unlabelled layers are mixed up to perform a cluster analysis. We 

extract 𝑚 = 2 features (mean and median) of each layer image, and a total of 𝑛 = 240  feature 

vectors are formed, resulting in a feature matrix 𝐷 of dimension 240 × 2. The clustering 

parameter 𝐾 = 2 (as the data has to be divided into two clusters) and maximum iterations to 

1000 are set. The clustering process is repeated 5 times using new initial cluster centroid 
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positions/seeds. The final clustering solution will have the lowest sum of points to centroid 

distance (ref. Section 3.2.1). The accuracy of 𝐾-means algorithm cluster assignments is cross-

validated with the initially labeled 40 labeled samples utilizing multiple distance metrics, and 

the Correlation distance metric shows the maximum validation accuracy. The high validation 

accuracy also indicates that selecting mean and median as features is sufficient to differentiate 

between “drift” and “no-drift” conditions. The cluster assignment using different distance 

metrics on the expanded dataset is shown in Figure 55. The validation accuracies of the different 

distance metrics are listed in Table 11. Based on the highest percentage accuracy achieved 

through the 𝐾-means method, we choose the correlation distance as the suitable distance metric 

for our application and finalize the resultant labels for training further a supervised learning-

based classifier, i.e., 𝑘-NN classifier. 

Table 11: Performance of the different distance metrics on certified data. 

  

 

 

 

 

 

 

 

 

S. No. Distance Algorithm Accuracy (%) 

1. Cosine 85.00 

2. Squared Euclidean 82.50 

3. City Block 85.00 

4. Correlation 100.00 
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3.4.2. Number of Nearest Neighbor Parameter Selection for 𝑘-NN Classifier 

After identifying the suitable distance metric, the next important step is to prepare a balanced 

training dataset (dataset with an equal number of each label) to train a 𝑘-NN classifier (a 

supervised machine learning algorithm). It is imperative to prepare a balanced dataset to avoid 

the biasing problem. Therefore, 100 data points for each label (total 200) are chosen randomly 

from the dataset of 240, which resulted from the 𝐾-means clustering. Although we prepared a 

balanced dataset for training, one can apply methods like “Class confidence weighting” in case 

only an imbalanced dataset is available [173], [174]. The training dataset is divided into a 70:30 

ratio for preparing the training and validation dataset. To find the best value for the number of 

nearest neighbors, i.e., 𝑘, the accuracy of the trained 𝑘-NN classifier with varying 𝑘 is tested 

on the validation set, which is also shown in Figure 56. The accuracy vs. 𝑘 graph plot suggests 

that a value of 𝑘 ∈ (9, 23), can be chosen for the maximum classification accuracy. As choosing 
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Figure 54: Clustering using (a) correlation, (b) cosine, (c) city block, and (d) squared Euclidean distance metrices. 
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a large value of 𝑘 results in the increase of computational complexity of 𝑘-NN classifier, we 

choose the minimum indicative value 𝑘 = 9.  

 

3.5. Results and Discussions 

3.5.1. Testing on Certified Data 

In the experimental section, the stainless steel CX cylindrical samples are printed with different 

process parameters such as layer thickness, power, scanning speed, and hatch distance to 

generate a certified dataset for training the algorithm. The certification of the samples is done 

through a CT scan. A total of four certified cylindrical samples with CT porosities of 0.0033 

%, 0.0054 %, 4.3967 %, and 0.1436 % are chosen for testing the trained k-NN classifier. It 

should be noted that the data of the four chosen cylinders are not used to train the classifier. 

The semi-supervised model predicted 20.82 %, 1.9543 %, 1.1363 %, and 0.4862 % layers as 

“drift” for the sample with CT scan porosities of 4.3967 %, 0.1436 %, 0.0054 %, and 0.0033 

%, respectively. The k-NN classifier-based test results indicate that the sample with CT scan 

porosity of 4.3967 % has the highest number of layers with hotspots due to non-optimized 

processing parameters. As the dataset size is limited, further comments on an analogy between 

porosity and drift detected (particularly at lower porosity levels) are out of the scope of this 

work. 
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Figure 55: Accuracy versus k plot for the k-NN classifier. 
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3.5.2. Case Study 1: Benchmark Part 

We now apply our trained k-NN classifier on the data obtained through real complex parts, and 

for that, we choose benchmark parts that are often used for material development in the industry. 

Out of different benchmark parts, “Overhang” is one of the critical parts shown in Figure 57a, 

which aims to find the critical overhang angle for a particular material that can be printed 

without the support structures. As we know, above a critical overhang angle, the support 

structures are used as an anchor to prevent the failure of the part. Therefore, it is vital to know 

the overhang angle to optimize process parameters for new material development in the DMLS 

process. The surety of the failure of the part at a particular overhang angle makes this part a 

suitable candidate for our case study. The location of the failure of this part is known and can 

be used as a ground truth label. The OT images of the part are exported and pre-processed as 

described in the previous sections and the feature matrix is prepared. As mentioned in the 

previous section, the k-NN classifier is already trained with labeled data of the certified part, 

and the predicted labels are shown in Figure 57b. The location of the layers labeled as “drift” 

is shown in Figure 57c; the poor thermal conductivity due to a large overhang angle has led to 

the overheating drift in the layers numbered from 1535 to 1564. This hypothesis is validated by 

the EOSTATE Exposure analysis tool, which shows the presence of hotspots in the “drift” 

labeled layers. Thus, the labels predicted by the ML model correlate with the results from the 

analysis tool as well.  
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Figure 56: (a) CAD geometry, (b) Labels predicted by the k-NN model, and (c) printed part geometry with drift layers (in bright color) . 
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3.5.3. Case Study 2: Industrial Case Automotive Steering “Knuckle.” 

We chose an automotive part called “Knuckle for another case study.” Figure 58a contains the 

scatter plot of resultant predicted labels, and the last few layers of the part are classified as 

“drift” layers. This classification correlates with the visual inspection of the part quality as well. 

As shown in Figure 58b, the topmost layers from layer number 7682 until 7764 of the part failed 

due to overheating. The failure of these layers is due to the lack of heat dissipation. This part is 

a good example of the need for design optimization in AM, as poor support structures lead to 

part failure. It is also be verified by the EOSTATE Exposure analysis tool that the overheating 

leads to hotspots in the captured images.  

Another optimized design knuckle is printed with optimized support structures for better heat 

dissipation. Figure 59a represents the predicted labels, and it shows that only 8 layers are 
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Figure 57: (a) Labels predicted by the k-NN model, and (b) printed part geometry with overheated region. 
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Figure 58: (a) Labels predicted by the k-NN model, (b) part geometry with drift layers (in bright color), and (c) location of the 
hot spot (marked in white color) in the drift layer. 
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classified as “drift” layers due to the presence of hotspots in the layers numbered from 6150 to 

6158. This hypothesis is cross-validated with the EOSTATE Exposure analysis tool, as shown 

in Figure 59c, which shows the hotspot's location in layer number 6150. It shall be noted that 

the hotspot continues to be present at the exact location for the subsequent 8 layers (from layer 

number 6150 to 6158), which is also predicted by the proposed K-NN approach. The 

automotive part called “Knuckle” shown in Figure 59b is printed within the framework of the 

European Union project titled “MAESTRO.”  

The initial tests utilizing the proposed semi-supervised ML model are performed for three parts 

printed with different process parameters and different materials (Benchmark part- Maraging 

Steel, Knuckle- AlSi10Mg). Therefore, it can be concluded that the proposed algorithm and 

feature extraction are independent of the process parameters and material of the printed part.  

It is also to be noted that the OT is not sensitive to all kinds of defects during the printing 

process. As the DMLS process is very complex in terms of printing, hundreds of factors could 

affect the quality of the final part. For example, Galy et al. listed all the different parameters 

that can influence the quality of the Al alloy parts during printing [175]. Therefore, it is 

challenging to monitor all the possible factors with optical tomography, and certification for 

quality assurance requires expensive techniques like a CT scan. However, the CT scan is a 

costly technique, and part size limitation makes it more challenging to use it for every part 

certification. Therefore, the proposed model based on ML can be used to select suitable parts 

for the other expensive post-processing techniques. 

3.6. Conclusions 

In-situ monitoring of the DMLS process can significantly improve the reliability of the whole 

process for quality assurance of the product. But there are a few issues with the monitoring 

systems which need to be solved for fast and easy anomaly detection. Firstly, processing the 

enormous amount of unlabelled data obtained from these monitoring systems is a huge 

challenge. Secondly, it is very laborious to detect the drift in the final part of the in-situ 

monitored data. Therefore, using ML algorithms to treat in-situ monitoring data has merit. This 

study continues the research going into data treatment in additive manufacturing.  

The key contributions of this work are summarized as follows: 

• An unsupervised 𝐾-means clustering algorithm is used to label the unlabelled data with 

the help of a small set of labeled data and helps in choosing the most suitable distance 
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matric. The accuracy of the algorithm is verified using the computed tomography-based 

certified data.   

• The labeled dataset is utilized for training the 𝑘-NN classifier. The optimum value of a 

number of nearest neighbors 𝑘 is judged based on accuracy vs. 𝑘 plot. 

• The semi-supervised approach successfully classifies the layers into either “drift” or 

“no-drift” for presented case studies and the cross-validated through the EOSTATE 

Exposure OT analysis tool. 

Semi-supervised machine learning shows that machine learning in additive manufacturing can 

be a robust method to improve the post-processability of the in-situ data. Therefore, it is 

essential to study the robustness of the proposed methodology for other in-situ monitoring 

devices such as photodiode-based. The coupling with data from other sensors, such as 

photodiodes, is studied in Chapter 4. 
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C H A P T E R  4 

Melt Pool Monitoring 

 

4.1. In-Situ Monitoring MPM Set-Up 
The co-axial melt pool monitoring (MPM) system installed on the commercial machine SLM 

280HL is used to collect thermal emissions from the melt pool formed due to laser-powder 

interaction. The melt pool systems are co-axial systems, which means it is in the laser path's 

alignment and collects the real-time emissions from the laser path at an acquisition frequency 

of 100 kHz. The MPM module consists of two photodiodes with different sensitive areas. The 

spectral range of the photodiodes cannot be revealed due to confidentiality issues. However, 

both photodiodes capture the thermal emission in the near-infrared region. The schematic 

diagram of the MPM system is shown in Figure 60. Only the emissions traveling perpendicular 

to the build platform are considered. The thermal radiations follow the same path as the laser 

and are directed into the MPM module with a semi-transparent mirror, which does not allow 

laser wavelength to pass. The signal is split into two different spectral ranges and captured by 

the two photodiodes. The received signal is forwarded to associated ADCs (Analog to digital 

convertor) and provided in an FPGA (field-programmable gate array) by the individual 

photodiodes. The captured thermal emissions from photodiodes 1 and 2 are stored along with 

the x/y-coordinates (16-bit). The values are stored parallel with the laser on/off signal from 

FPGA to PC every 10 µs. All the data is stored for every layer in a data file, accessed as 2D 

representation in MPM software provided by SLM Solutions [176]. The new file is created 

automatically for each layer after the complete exposure. For this work, no additional 

modifications are made to the installed hardware. 

This chapter discusses another commercial photodiode-based in-situ monitoring 

module, i.e., Melt Pool Monitoring (MPM), provided by SLM Solutions. MPM 

captures the melt pool emissions generated from laser-material interaction, which 

helps monitor the melt pool's quality. 

This study is the initial step to discuss the possibilities of post-processing the 

photodiode data and improving product confidence interval regarding product health. 

“ 
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4.2. Sensitivity Analysis of MPM 

4.2.1. Volumetric Energy Density Sensitivity Analysis  

The sensitivity of the MPM system for the volume energy density is studied. The AlSi7Mg0.6 

cylindrical specimens with the sandwich structure are printed, where the bottom and upper part 

of the cylinder is printed with the optimized process parameters presented in Table 12 (marked 

in bold italics). The chemical composition and powder morphological data are discussed in 

section 2.2.1. In contrast, the middle part's varied volumetric energy density is expressed by 

Equation 1. The geometry of the samples and corresponding VED values for the middle region 

is shown in Figure 61. Also, it shows the mean thermal counts for every layer, and it can be 

observed that photodiode 2 is sensitive to change in volume energy density in the samples, 

which ranges from 40-73 J/mm3. 

It should be noted that the same behavior is also observed for photodiode 1. The first 50 layers 

that account for a higher signal represent the support structure of the part. Therefore, removing 

support structure data from the data preparation before processing. The layers from 300 to 580 

indicate the input volumetric energy region variation. Sample 3 has the lowest energy density 

of 40.48 J/mm3, contributing lower mean thermal emissions, whereas sample 7 has the highest 

volume energy density of 73.26 J/mm3, which shows higher mean thermal emissions. So, it can 

be concluded that the MPM system signal is proportional to input volumetric energy density. 

Figure 59: Schematic of Melt pool monitoring system, and Layer control system installed on SLM 280HL. 



Chapter 4 

 

- 97 - 
 

 

4.2.2. Down-Skin Sensitivity Analysis 

Overhang samples are printed to study the sensitivity of the MPM system for down-skin, as 

shown at the bottom of Figure 62a and Figure 62b. It is observed that the photodiode signal 

shows a gradual increase in the thermal emissions as the laser exposure moves from the printed 

part to the overhang part (Figure 62). This is in conjunction with the theory that the powder has 

lower thermal conductivity than the consolidated part. Voids in loose powder make it an inferior 

heat conductor to the printed part. Thus, the consolidated part acts as a major heat sink in the 

SLM process. Therefore, when the region above the powder is exposed, the melt pool thermal 

emissions are higher compared to the melt pool region on the printed part. The same 

phenomenon could also occur during a lack of fusion defects. As sometimes, due to bad powder 

spreading, there is non-uniformity in the powder bed, and some regions are not covered with 

the powder uniformly for a few layers. 
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Figure 60: The mean thermal emissions recorded by MPM systems for the induced drift detection in the specimens shown in 
right corner of graphs (dark red color: drift area, red area: optimized processed parameters). 
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Figure 61: Scan vector wise MPM signal for down-skin layer for (a) cylindrical sample, (b) cuboid sample. 
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Nevertheless, in the successive passes of recoating, the regions with a lack of powder are 

uniformly covered. Then the laser prints a thicker layer than other areas with uniform powder 

spreading. This phenomenon can lead to a lack of fusion defects as laser energy is not enough 

to melt the powder layer fully.  So, it can be concluded that the MPM systems are also sensitive 

to the lack of fusion defects. 

4.2.3. Varying Hatch distance 

The effect of standardized volume energy by varying hatch distance on the MPM system is 

detected and evaluated. The three hatch distances chosen are 0.13, 0.26, and 0.52 mm. The 

evolution of the MPM signal for the first five layers is shown in Figure 63. For the first layer, 

the mean of thermal counts is relatively higher for both ADC1 and ADC2, whereas after the 

3rd layer, the thermal counts seem more constant. Higher values for the first layer are due to 

local conditions for heat conductivity. Based on volume energy, the highest values of the first 
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Figure 62: MPM signal for different hatch distances (a) 0.13 mm, (b) 0.26 mm, (c) 0.52 mm, (d) Overall comparison of hatch 
distances. 
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layer vary with hatch distance, as shown in Figure 63. The highest value for ADC1 and ADC2 

is observed for hatch distance 0.26 mm. 

4.3. Data analytics for MPM Data: Global Scale 
It is noticed that the semi-supervised method combining K-means clustering and K-NN 

classifier (Chapter 3) used for EOSTATE OT does not work effectively for the MPM data. The 

main reason is that the nature of Photodiode based data is different compared to OT images 

data. Secondly, K-NN classifier is best for easily identifiable clustering problems whereas in 

MPM dataset the clusters are comparatively complex in nature. Therefore, the need for more 

sophisticated classifier is necessary. For MPM dataset we, preferred to use SVM as it assigns 

clusters based on hyperplane than distance metrics. 

4.3.1. Theory 

The supervised learning approaches work for classification and regression problems, whereas 

unsupervised approaches work for clustering problems. The main difference between both 

approaches depends on the type of data required as input for training. In supervised, one has to 

provide a labeled dataset in which each data point belongs to a specific class as categorized by 

the label associated with it. In contrast, unsupervised learning is used when we do not have the 

labels for the dataset or, in other words, when we do not have ground-truth knowledge about 

the dataset. It is challenging and expensive for the AM process to obtain a ground truth dataset 

for training. Therefore, a small dataset is prepared for training the algorithm. This study uses a 

supervised learning model called “Support vector machine” (SVM), which works sufficiently 

well for small datasets. 

SVM is a classification algorithm that divides the dataset into multiple classes. In this study, 

the in-situ data is treated as a binary classification problem, i.e., only two types (“drift” and 
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Figure 63: Schematic of the hyperplane that maximally separates the support vectors corresponding to each 
of the two classes. 
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“no-drift”) are identified, so the SVM classifier perfectly fits this case. During training the SVM 

classifier, the decision function amounts to identifying a suitable reproducible hyperplane that 

maximizes the distance (also called “margin”) between the support vectors of both class labels 

(Figure 64). SVM classifier can work for both linear and non-linear classification problems. 

Further, the linear SVM problems vary depending on the number of selected features. For 

example, in two feature dimensions, the hyperplane corresponds to a line, whereas in the case 

of three features, the hyperplane is a two-dimensional plane. Regardless of the SVM’s 

complexity (i.e., dimensionality), classification problems are often linear, which means that 

hyperplane used is a straight line, not a curved line. If the features selected for the SVM 

classifier are linearly separable, we can draw a straight hyperplane to separate the two labels of 

the class of interest. Usually, there are two types of margins: hard margins and soft margins. 

We restrict the classifier from making errors while training with a hard margin. Although the 

hard margin is computationally less expensive, the linear separability of the features is not 

always easy. Therefore, allowing the classifier to misclassify allows a more significant margin 

to obtain greater generalizability to new data. This misclassification can be obtained by the so-

called “Soft margin,” which relies on the variable ξ. The values of ξ lie in the range 0 ≤ ξ ≤ 1. 

In turn, the non-zero values of ξ can allow classification error when outliers in the training data 

lead to the hyperplane making mistakes, i.e., misclassification (Figure 65 [177]). This hard 

margin is a particular case of soft margin when the slack variable (ξ) is zero. A soft-margin 

constant denoted by C is introduced to incur a penalty on ξ. The parameter C helps to choose 

the trade-off between the tanning errors and complexity and reduces the chances of overfitting, 

which means fine-tuning the classifier for maximum accuracy in the training dataset. The 

decision boundary of a non-linear classifier depends on the data in a non-linear way. The kernel 

Figure 64: (a) hard margin on linearly separable dataset where no training errors are allowed. (b) the soft margin 
where two training errors are permitted to make data non-linearly separable. 
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method transforms the support vectors into a high-dimensional space in these cases. A detailed 

explanation for SVM can be studied in the literature [178]. 

Typically, there are three stages in the SVM classifier: (a) feature selection and preparing 

feature dataset, (b) training the classifier and testing, and (c) checking the accuracy of the 

classifier. All three stages for our case are discussed in the following sections. 

4.3.2. Process Parameters and Part Geometry 

A balanced dataset comprising an equal number of drift and no-drift layers is necessary to 

prepare a training dataset for the SVM classifier model. An artificially drift is introduced in the 

samples to obtain the balanced dataset. Therefore, the unique geometrical specimens are printed 

shown in Figure 66. The process parameters tabulated in Table 12 are varied to obtain varied 

volumetric energy density in the range of 40-73 J/mm3 for each shown geometry. The overhang 

samples (Figure 66a and 66b) with an overhang of 8 mm are printed without any support 

structure and stripes rotation of 67° for the overhang layer. No down-skin parameters are used 

for the overhang layer. For lack of fusion samples (Figure 66d), an internal cuboid type groove 

with dimensions 10*8*0.09 mm3 is printed. The thickness of the groove is set to 0.09 mm, i.e., 

three times the layer thickness of 30 microns. The printed parts are cut along the build direction 

(z-direction), and 3 microns are polished for microscopic analysis. The optical microscope sup-

plied by Leica systems is used for analyzing the porosity.  

Table 12: Process parameters. 

Varied Parameter Values 

Power (W) 300, 350, and 400 

Scanning speed (mm/s) 1200, 1400, 1650, and 1900 

Hatch distance (mm) 0.13, 0.26, and 0.52 

Layer thickness (mm) 0.03 

Scanning strategy Stripes 

Rotation in layers (o) 67 

(a) (b) (c) (d) 

10 mm 
2 mm 

10 mm 

10 mm 

10 mm 

10 mm 
2 mm 

(10 x 8 x 0.09) mm3 

15 mm 

10 mm 

10 mm 

Figure 65: Sketch of the specimens (a) cubic overhang (size 10*10 *10 mm3), (b) cylindrical overhang (diameter: 10 mm and height 10 mm), 
(c) specimen with inner groove, and (d) Benchmark part (125*125*775 mm3). 
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4.3.3. Definitions 

• Drift: Non-uniformity in the melt pool signatures results in the “hotspots,” which are 

the areas where the signal's intensity is higher than the rest of the layer. These hotspots 

indicate drift and the areas of highest probability to generate real defects. Recently, 

Mohr et al. linked hotspots in the MPM layer to the final porosity in part using computed 

tomography [179]. Therefore, in our study, the whole layer is termed “Drift” if a hotspot 

is confirmed via the MPM visualization tool. 

• No-Drift: The layer with no significant hotspots is termed a no-drift layer. 

• Labeled Data: The layer for which the labels such as “drift” and “no-drift” are known.  

• Unlabeled Data: The layer for which the labels, i.e., “drift” and “no-drift,” are 

unknown. 

• Balanced Dataset: The dataset contains an equal number of data points for each label. 

4.3.4. Training Data Preparation 

Recently, the Machine learning approach has gained much attention in AM due to its 

capabilities to resolve the issue of big data and easy post-processability of the in-situ monitoring 

data. To perform supervised machine learning, the need for labeled data is vital. However, it is 

challenging to obtain ground truth-certified data for the AM parts as the drift in the process can 

be linked to many parameters [180]. Usually, expensive techniques such as computed 

tomography of the part are used to get a labeled dataset, commonly referred to as a certified 

dataset. This study created an artificially drift (overheating and lack of fusion) in the parts with 

special geometrical features and varying process parameters. The careful selection of the layers 

from the build parts (81 parts) and labeling it as ‘Drift’ and ‘No-drift’ is performed by analyzing 

the layers in the MPM software provided by the SLM solutions and statistical analysis. It is 

noticed that the hotspots layers show a right shift in the histogram compared to the layers 

without any hotspots. This relation led us to decide the mean and median for every layer's 

features. A balanced labeled dataset of 600 data points, which comprises an equal number of 

drift and no drift layers so that the biasing of the SVM model can be avoided, is prepared. 

Before preparation, the SVM classifier has to be optimized for best-fit parameters, as discussed 

in the next section.  

4.3.5. Bayesian Optimization and Training of SVM Classifier 

The best-fitting parameters are to be selected for the SVM classifier to increase the success rate 

of the classifier. A Bayesian optimization algorithm is used to find the best-suited 

hyperparameters for the model. A hyperparameter is an internal parameter of an algorithm that 
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needs to be optimized. For example, in our case (SVM model), the box constraint, kernel 

function, and kernel-scale are the hyperparameters. These parameters can significantly 

influence the performance of the algorithm. Thus, optimization of the hyperparameters is 

advisable. However, optimization is difficult and time-consuming. Therefore, Bayesian 

optimization is well suited for classification and regression algorithms in machine learning. The 

Bayesian optimization algorithm minimizes the objective function 𝑓(𝑥) for x in a bounded 

domain. The 𝑓(𝑥)  can be stochastic or deterministic, which means it can return different results 

for the same point x. The overall working principle of Bayesian optimization can be found 

elsewhere [181], [182]. 

Table 13: The performance and accuracy % of the different hyperparameters. 

Linear SVM 94.2 % 

Quadratic SVM 93.8 % 

Cubic SVM 78.7 % 

Fine Gaussian SVM 95.5 % 

Medium Gaussian SVM 93.5 % 

Coarse Gaussian SVM 91.0 % 

 

The cross-validation of the optimized SVM classifier is performed on the training dataset. The 

whole dataset is partitioned into 70 % and 30 % sub-datasets to cross-validate and check the 

performance of different hyperparameters of the SVM model. The performance and accuracy 

% of the different hyperparameters are tabulated in Table 13. It can be seen that the fine 

gaussian SVM has the highest accuracy with a cross-validation success rate of 95.5 %. So, a 

fine gaussian hyperparameter to train our SVM classifier is used for our dataset.  

Figure 66: (a) The un-clustered training dataset, and (b) labels predicted by the trained fine gaussian SVM 
classifier model. 
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Finally, the SVM classifier is trained on the whole dataset, as shown in Figure 67a, and 

predicted labels are shown in Figure 67b. Further, testing of the SVM classifier is performed 

using the different datasets (which are not used during training), as discussed in the results 

section. 

4.3.6. Results and Discussions 

The Receiver Operating Characteristic- Area under the curve (ROC -AUC) is analyzed to check 

the classification performance at different thresholds. ROC represents the threshold probability 

of the classifier, and AUC indicates the separability of the classifier, i.e., how well the classifier 

can distinguish between different classes. The higher the AUC, the better is the model 

separability. ROC curve is plotted between TPR (True positive rate) vs. FPR (False positive 

rate). The ROC curve is plotted for the model, as shown in Figure 68. The threshold probability 

is 95.5 % (marked by an asterisk (*)), and the AUC for the model is 98.53 %. In other words, 

the proposed model is 98.53 % capable of allocating each data point with the correct label. 

Overheating Drift 

The trained SVM classifier is tested for the overheating samples. The feature dataset (mean and 

median) is prepared for two different overhang samples (Figure 69a and 69b), which failed due 

AUC: 98.53 % 
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Figure 67: ROC-AUC curve for the trained SVM classifier on 
600 training data. 
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Figure 68: SVM model predicted labels for (a) cubic overhang specimen, and (b) cylindrical specimen. 
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to the overheating of the layers. The specific samples are used for the case study as the location 

of the overheating drift is known and can visually be verified. The prepared feature dataset is 

passed to a trained SVM classifier, and labels are predicted, as shown in Figure 69. For the 

cubic over-hang sample, the layer numbers from 305 to 379 are labeled as “drift,” which can 

be visually verified (printed part is shown in the top left corner of Figure 69a). The failure of 

the particular layers is due to poor heat transfer due to the absence of the support structure for 

the overhang part. Similarly, the labels are predicted for the cylindrical overhang part (Figure 

69b) and are in conjunction with the visual inspection of the part. 

Lack of Fusion Drift 

Lack of fusion is the most common defect in the SLMed parts, which results in internal porosity 

in the final part. The detection of internal porosity is a challenging task and often requires 

expensive techniques such as computed tomography. We prepared samples that will lead to 

internal porosity in the final part, and the location of the porosity is known to check the trained 

SVM classifier for lack of fusion defect. The feature matric (mean and median) for the lack of 

fusion part, as shown in Figure 66c, is prepared and passed to the trained SVM classifier. The 

SVM classifier predicts the labels for each layer, as shown in Figure 70a. The three layers 

numbered 150, 151, and 152 are predicted as “drift,” which corresponds to the sample's location 

of porosity. The optical micrograph also verifies the same, as shown in Figure 70b. Therefore, 

it can be concluded that the trained classifier works well for the presented case studies. 

However, it shall be noted that the model's effectiveness for other types of drifts shall be studied 

in the future. 
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Figure 69: (a) Predicted labels for the lack of fusion defect, (b) optical micrograph of the defect. 
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Case Study: Benchmark Part 

The two linear SVM classifiers for Photodiode 1 and Photodiode 2, respectively, are trained on 

the certified training dataset, as discussed in section 4.3.5. The mean and median of each layer 

are treated as the input features for the trained SVM classifiers. The SVM classifiers predicted 

the two class labels, i.e., “Drift” and “No-Drift,” for each layer for the respective photodiode, 

as shown in Figure 71 (a,b). The layers numbered 2436, 2412, 2498, 2541, 2542, 2552, 2560, 

2561, 2562, 2563, 2571, 2572, and 2573 are marked as drift layers for photodiode 2, whereas 

only two layers, i.e., 2541 and 2561, are marked as drift layers for photodiode 1.  These 

predicted last layers lead to failure of the part, as shown in Figure 71c. As presented in the 

previous section 4.1, the spectral detection range of both photodiodes is different. Therefore, it 

can be concluded that based on the type of material, one photodiode is more sensitive compared 

to another for specific materials, i.e., low and high melting materials.   

As, we have seen in the above example, the sensitivity and data distribution are different for 

two ADCs. Also, it effects the overall efficiency of the SVM classifier, leading to detection of 

lesser drift layers for ADC1 than ADC2. Thus, the need for alternative method to detect drift 
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Figure 70: SVM classifier predicted labels for benchmark part for (a) photodiode 1, (b) photodiode 2, and (c) printed benchmark 
part. 
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layers at global scale effectively is must. We have presented a statistical based method in section 

4.6 to find the drift layers at global scale, which can be better alternative to SVM classifier 

limitations. 

4.4. Data Analytics: Local Scale 
This section discusses the possibility of indicating the exact location of the probable drifts 

within the layers. As discussed in the last section, with the help of a supervised learning model 

such as SVM, potential drift layers are identified. Still, identifying the exact location is crucial 

to monitor the process more efficiently. For this, we have used the LSTM autoencoders (LSTM-

AE).  

4.4.1. Materials and Parts 

Gas-atomized Ti6Al4V spherical powder with a particle size of 20-63 μm and mass density of 

4.43 g/cm³ is used on the SLM 280HL machine. The test samples are manufactured as a 

combination of two cubes where the bottom cube with a size 15*15*10 mm3 is manufactured 

with optimized parameters (also highlighted in Table 14). In contrast, the top cube with 

15*15*10 mm3 is manufactured with varied VED based on laser power and scanning speed. As 

Zhou et al. [183] showed that the different power and scanning velocity combinations can create 

different zones with varying porosities. Figure 72 shows the 5 different zones based on the laser 

power and scanning velocity where zone 1 is low laser power—low scanning speed area, zone 

2 is low laser power—high scanning speed area, zone 3: high laser power—high scanning speed 

area, zone 4: high laser power—low scanning speed area, zone V: suitable parameter area. The 

varying parameters are listed in Table 14.  

Table 14: Process parameters used for Ti6Al4V samples (Optimized parameters are marked in bold). 

Parameter Value 

Laser power (W) 150, 225, 300, 375 

Scanning speed (mm/s) 800, 1000, 1200, 1400 

Layer thickness (mm) 0.03 

Hatch distance (mm) 0.12 

Scanning strategy Stripes with 10 mm and 67° rotation in 
consecutive layers 
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The specimen is scanned using a lab-based system at PLACAMAT (UMS 3626, Pessac, 

France). The facility used is a GE VTomex-s with a xs-180-nf transmission source, a diamond 

target, and the scan parameters are: 90kV 200µA with no filter. The 1800 projections for a 360° 

rotation are recorded using a binning factor of 1 and an exposure time of 1 second (total 

scanning time of two hours). The final voxel size is 9 µm. Tomographic reconstructions are 

performed using phoenix-datos-x software with default parameters. The visualization, the 

primary image treatments, and the 3D structural measurements are performed using ImageJ 

software. In this study, we chose one sample for CT scan based on the visual inspection and the 

sample which showed the highest visible variability in the quality. 

4.4.2. Pre-Processing of the Data 

This section discusses the methodology used to pre-process and prepare the MPM dataset for 

training the LSTM-AE. For pre-processing, the characteristics of the principal component 

analysis are used. 

Principal Component Analysis (PCA) 

Principal component analysis (PCA), a dimensionality reduction method, is used for pre-

processing the raw MPM data. Consider an (𝑚, 𝑛) data matrix 𝑋 where 𝑚 is the number of melt 

pool points, and 𝑛 is the number of parameters (ADC1 and ADC2 in the present case).  

Based on the sample mean and covariance, 𝑋 is scaled to zero mean and unit variance to 

eliminate the effect of magnitude difference of the 2 parameters, i.e., ADC1 and ADC2. 

PCA finds a set of linearly uncorrelated variables, i.e., called “principal components (PCs),” to 

represent the original information provided. The transformation for the input data matrix 𝑋 can 

Figure 71: Process window for SLM Ti-6Al-4V powder [183]. 
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be expressed as: 𝑇 = 𝑋𝑃, where T represents a (m,n) matrix which denotes the scores of the 

data matrix 𝑋, and 𝑃 is a (n,n) matrix which expresses the loading matrix, also called 

coefficients which represents the basis vectors of the transformation.  So, the PC score 𝑡𝑖, where 

𝑖 represent the number of columns of the T matrix (1 ≤ 𝑖 ≤ 𝑚), can be regarded as the principal 

component representation for a given set of original variables. The PCA tries to find the 

transformation in such a way that the principal component 𝑡𝑖 have the highest variance. The 

variance of PCs is nothing but the eigenvalues 𝜆𝑖  of the covariance matrix of the input data 

matrix 𝑋. Coefficients vector 𝑝𝑖 therefore represents the eigenvector [184].  

By default, the PCA function in MATLAB uses the singular value decomposition algorithm.  

Hotelling’s T-Squared Statics 

Hotelling’s T2 statics is a statistical measure of the multivariate distance of each observation 

from the center of the whole dataset. In other words, it is the sum of squares of the standardized 

scores, i.e., Mahalanobis distances [185].  The hotelling’s T2 statics or Mahalanobis distance 

can be expressed as: 

T2 = (𝑡𝑖 − μ)Σ
−1(𝑡𝑖 − μ)

′ 

Equation 14 

Where 𝑡𝑖  μ and Σ is is the PC score, mean, and covariance of the matrix T, respectively. The 

obtained hotelling’s T2 statics is then multiplied by the PC coefficient. 

To give an example, Figure 73 shows the raw signal and pre-processed signal using PCA and 

hotelling’s T2 statics for ADC2 as discussed above.  
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Figure 72: Example of (a) raw, and (b) pre-processed ADC2 signal for layer 31. 
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4.4.3. Removal of Outliers. 

After pre-processing, it is vital to remove the outliers in the signal, if any. Therefore, we used 

MATLAB built in-function called “Hampel Filter” to identify and remove the outliers. The 

function computes the median of a moving window that contains the sample and its six 

neighbors, three on each side. For each sample, standard deviation (𝜎𝑖) along the median 

window is calculated using the median absolute deviation. If the sample differs more than 3σ, 

it is replaced by the median. 

Mathematically it can be expressed as: 

• Consider a sequence of samples as 𝑥1, 𝑥2, 𝑥3…𝑥𝑛 and a sliding window of length 𝑘 

• Then median 𝑚𝑖 will be: 𝑚𝑒ⅆ𝑖𝑎𝑛(𝑥𝑖−𝑘, 𝑥𝑖−𝑘+1, 𝑥𝑖−𝑘+2, 𝑥𝑖 , 𝑥𝑖+𝑘−2, 𝑥𝑖+𝑘−1, 𝑥𝑖+𝑘)  and 

standard deviation be: 𝜎𝑖 = 𝐾𝑚eⅆ𝑖𝑎𝑛(|𝑥𝑖−𝑘 −𝑚𝑖|, … |𝑥𝑖+𝑘 −𝑚𝑖|) where 𝐾= 1.4826.  

𝜎𝑖

𝐾
 is called median absolute deviation (MAD).  

• And if the sample 𝑥𝑖 is such that |𝑥𝑖+𝑘 −𝑚𝑖| > 3𝜎𝑖 it will be treated as an outlier and 

will be replaced with 𝑚𝑖. 

4.4.4. Data Selection for Model Training 

For MPM systems in general, it is easy to collect a considerable amount of data than to 

accurately know their ground truth labels. Correctly labeling the MPM data is susceptible to 

process ambiguity as little is known about the extent or size of the drift.  Moreover, process 

drifts are rare events, and having prior knowledge about the drift's size, shape, and extent is a 

complicated task. Therefore, the attention has been shifted from anomalous behavior to normal 

behavior of the melt pool, for which a large amount of data is present. The motivation behind 

the study is that identifying or training the model for normal behavior of the melt pool will help 

detect the anomalies or drifts that have not been observed before. 
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Therefore, the results from CT scans and the MPM viewer are considered to confirm this. Only 

the layers which don’t have variability and absence of any possible porosity are considered. 

The obtained layers are then passed to the LSTM autoencoder (LSTM-AE).  In our study, we 

have used multiple layers based on CT and visual inspection. For example, layer number 31 is 

used as one of the training layers, with a standard deviation of 1202 and 1447 thermal counts 

for ADC1 and ADC2, respectively. The CT scan for layer 31 is shown in Figure 74. 

4.4.5. Architecture of LSTM 

We used LSTM autoencoders (LSTM-AE) architecture to detect the MPM data's drifts. The 

pre-processed matrix ((M*N), M= no. of data points, N= Photodiodes) is passed as the input to 

LSTM-AE, which is trained over the melt pool signals via gradient descent to minimize the 

reconstruction error between the original signal and the reconstructed signal.  The autoencoders 

consist of two parts, i.e., encoder and decoder. The encoder maps an input vector or matrix 𝑋 

to a low-dimensional hidden representation ℎ or compressed input representation. Whereas the 

decoder correspondingly generates an estimation 𝑋’ of the input matrix or vector 𝑋 

(reconstruction of the input from the core constituents preserved during compressing). The 

rationale behind the LSTM-AE architecture is that the model is trained for a typical MPM 

dataset, and drift is detected based on the resulting reconstruction error.  

The encoder and decoder units of the autoencoder are based on the LSTM units. LSTM is one 

of the types of recurrent neural networks (RNN) that can integrate the temporal data into the 

model in a hidden vector and use it as a memory for past information. The schematic of LSTM-

AE is shown in Figure 75. 

 

Figure 73: CT scan corresponding to layer 31 (approximately) and its raw data for ADC2 is shown 
in Figure 73. 
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Encoder: The input data is given by 𝑋 = (𝑥(1), 𝑥(2)…𝑥(𝑁)), where 𝑥(𝑖) =

(𝑥1
(𝑖), 𝑥2

(𝑖)…𝑥𝑇
(𝑖)). This means that for each 𝑖 (1 ≤ 𝑖 ≤ 𝑁), there is a d-dimensional time-series 

sequence with 𝑇 timesteps each. In our MPM, d equals 2 (photodiode 1 and 2). We use RNN 

to process the pre-processed MPM data sequence and extract the sequential information as 

𝐶𝑡
′ = 𝑅𝑒𝑙𝑢(𝑊𝑐𝑥𝑡 + 𝑅𝑐ℎ𝑡−1 + 𝐵𝑐) 

Equation 15 

Where 𝐶𝑡
′: memory state, 𝑥𝑡: input vector, ℎ𝑡−1: output vector from the last step and 𝑊𝑐, 𝑅𝑐, 𝐵𝑐 

are input, recurrent, and bias weights. ReLU is used as a non-linear activation function.  

The input sequence is passed to the encoder part of the LSTM network that encodes it and 

updates the hidden state. The final output of the encoder is mathematically given by: 

ℎ𝑡 = 𝜎𝜙
𝑒(𝑥𝑡, ℎ𝑡−1) 

Equation 16 

Where ℎ𝑡 = output of ith LSTM encoder. 

Decoder: The characteristics obtained from mapping the MPM signal to lower-dimensional 

embeddings from the last encoder steps are used by the decoder to reconstruct the original 

signal. In other words, the output of the previous encoder is the input for the decoder network, 

which can be expressed as: 

Figure 74: Schematic of LSTM-AE. 
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ℎ𝑡
′ = 𝜎𝜑

𝑑(ℎ𝑡, ℎ𝑡−1
′ );  𝑥𝑡

′ = 𝜎(ℎ𝑡
′) 

Equation 17 

Where 𝜑 represents a set of decoder parameters and  𝑥𝑡
′ is the reconstructed input. 

Mean absolute error (MAE) is used to calculate the reconstruction error, which is given as: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑥𝑖 − 𝑥|

𝑛

𝑖=1

 

Equation 18 

The MAE must update the encoder and decoder parameters and calculate the anomaly score.  

During training, the focus of the LSTM-AE is to learn the expected behavior of the MPM data, 

not the drifts. So, during prediction, a slight deviation from the MPM data's normal behavior 

will increase reconstruction error, i.e., MAE value. Therefore, monitoring the MAE value 

increase would help identify the probable drift area within the layers. 

Table 15 shows the LSTM-AE architecture used in this work. The first couple of the LSTM 

network layers are the compressed representation of the input data, i.e., encoder, and the final 

output layer gives input reconstruction. 

Table 15: LSTM-AE architecture used in this study. 

Layer (type) Output Shape Parameter 

input_1 (Input Layer) (None, 1, 2) 0 

lstm_1 (LSTM) (None, 1, 16) 1216 

lstm_2 (LSTM) (None, 4) 336 

Repeat_vector_1 (None, 1, 4) 0 

lstm_3 (LSTM) (None, 1, 4) 144 

lstm_4 (LSTM) (None, 1, 16) 1344 

time_distributed_1 (None, 1, 2) 34 

 

We then instantiate the model and compile it using Adam as our neural network optimizer and 

mean absolute error for calculating our loss function. 
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4.4.6. Training and Validation 

The pre-processed MPM data is normalized to zero mean and unit variance. The selected, 

trained data is divided into the following sets: Training, validation, and test sets in a ratio of 

70:20:10.  

The weights of the LSTM-AE are updated via stochastic gradient descent, and an Adam 

optimizer is used to speed up the training process. The training is performed for 20 epochs. A 

training and validation loss of 0.0071 and 0.0069 is achieved, respectively.  

Loss Distribution 

By plotting the distribution of the calculated loss in the training set, we can determine a suitable 

threshold value for identifying an anomaly. This can ensure that this threshold is set above the 

“noise level” so that false positive are not triggered. 

Based on the above loss distribution as shown in Figure 76 for our case, we set a loss threshold 

value of 0.065 for flagging an anomaly. Then we calculate the reconstruction loss in the training 

and test sets to determine when the sensor value drifts from the expected behavior. 

After training, the validation set is passed to the trained model to get the reconstruction error 

(RE). The obtained RE is used to calculate the parameters of a normalized distribution (𝜇𝛴) 

using maximum likelihood estimation (MLE). Finally, the anomaly score for a datapoint 𝑥𝑡
(𝑖)

 

can be computed using 𝜇 and 𝛴 as follows: 

𝑎𝑖 = (𝑒𝑖 − 𝜇𝑡)
𝑇𝛴𝑡

−1(𝑒𝑖 − 𝜇𝑡) 

Equation 19 

Where 𝑎𝑖: anomaly score, 𝑒𝑖: reconstruction error, 𝜇𝑡: mean, and 𝛴𝑡: variance for time series 𝑡 

in data matrix 𝑋, respectively. 
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An anomaly score threshold is also calculated using the validation set. If the new sequence has 

a greater anomaly score, it will be regarded as drift or anomaly; if less, it will be considered a 

normal signal. 

4.4.7. Case Study 

The above-discussed methodology of pre-processing the data using the multivariate statistics 

method and then training it using the LSTM-AE to predict the drifts points in the respective 

layers is studied and verified using a tomography sample study. The CT scan cross-section of 

the observed sample is depicted in Figure 77 along with the printed sample. It can be seen 

clearly that there are three different regions in the sample: the bottom region with big visible 

porosities, a stable and less porosity region, and the region with geometrical distortions. So, this 

variability presents a good case study to show the validity of the proposed methodology. The 

proposed model successfully identified the so-called “Hotspots” or high probable drift regions. 

The number of predicted anomaly points per layer is plotted in Figure 78. Similar to CT results 

and printed part, the obtained results also depicted the three distinct regions where the last layers 

comprise many hotspot points, which correlates with the geometric distortion region in the 

printed part. 
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Figure 75: Loss distribution obtained during training. 
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Further investigations of the drift layers show that for the geometrically distorted region, i.e., 

region 3, the MPM viewer images mark the hotspot's presence, which can also be verified with 

the CT scan that shows the presence of porosity. And the exact location of this hotspot is 

(a) (b) 

(c) (d) 

(e) 

Figure 76: CT scan projections in (a) X-Y plane, (b) Y-Z plane, (c) X-Z plane, (d) Isometric, and (e) as-printed sample. 
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Figure 77: Anomalies predicted by proposed model Vs layer number. 
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identified by our proposed method. Figure 79 shows the MPM values, CT scan image, and 

suggested model results for layer 575.  

 

Interestingly, the geometrical distortion is strongly influenced by the change in powder bed 

spreadability, which is discussed in section 4.3. 

The proposed methodology can help extract the key characteristics from the MPM data and plot 

the overall part health at a global and local scale. This methodology can help reduce the 

enormous size of the data without compromising the critical aspects related to the printed part. 

For example, Figure 80 shows the 3D picture of the anticipated hotspots in each layer. It shall 

be noted that the 3 distinct regions are identifiable, as shown in Figure 80a. 

(a) (b) (c) 

Porosity 

Hotspots Predicted Hotspots 

Figure 78: (a) CT scan, (b) hotspots shown by MPM viewer and (c) hotspot predicted by the proposed model for layer 575. 

Figure 79: (a) X-Z projection (Hot spots are depicted by black points) and (b) isometric 3D projection (hotspots 
are marked by dark yellow) of the hotspots predicted from the proposed methodology (Figures are not subject 
to scale). 
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4.5. Conclusions 
The robustness of the proposed methodology is that it is trained for the normal behavior of the 

MPM data, and it is defined for specific process parameters and materials. As we have seen in 

the sensitivity analysis of the MPM, the MPM module is significantly influenced by the 

volumetric energy density and material. Therefore, based on the author's experience, it can be 

concluded that a more robust and fast method is required to be trained for specific process 

parameters and material. The proposed method provides that option. The steps that need to be 

followed to train the model for new material or process parameters are shown in Figure 81. 

Although the significant drawback associated with the proposed method is that obtaining the 

ground truth dataset for training is complex and prone to human errors, it is advisable to use the 

MPM viewer and statistical analysis to select the layers free from anomalies or anomalies drifts. 

The next step is to find the root cause of the melt pool anomalies, i.e., “Hotspots.” Therefore, it 

is essential to monitor the L-PBF process at another step, i.e., the Powder bed spread step. Thus 

we have discussed using computer vision algorithms to monitor and check the quality of powder 

bed spread using LCS system as presented in Chapter 5. Also, the link between the powder bed 

spread and melt pool emissions is established. 

4.6. Statistical Approach: Global Scale 
One of the biggest disadvantages of ML-based approaches is that it requires a labeled dataset 

for training, and obtaining labels for MPM data can be a time-consuming and challenging task. 

• PCA

• T-2 Hotelling
Statistics

Pre-processing

• MPM viewer

• Statistical 
Analysis

Training Data
• LSTM-AE

• Threshold 

Training

Figure 80: Schematic diagram of the proposed methodology. 
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Therefore, the statistical approach can be helpful to have a quick overlook of the global health 

of the part. Here, we discussed one of the statistical approaches called “Average True Range 

(ATR).”  J. Welles Wilder formally develops it to monitor the volatility in the trade and 

commodities. The measure of volatility can indicate the melt pool stability within the layer. It 

can be expressed as: 

𝑇𝑅 = max(ℎ𝑖𝑔ℎ, 𝑐𝑙𝑜𝑠𝑒𝑝𝑟𝑒𝑣) − min(𝑙𝑜𝑤, 𝑐𝑙𝑜𝑠𝑒𝑝𝑟𝑒𝑣) 

Equation 20 

Where TR: True range, high, low, and 𝑐𝑙𝑜𝑠𝑒𝑝𝑟𝑒𝑣 are the highest, lowest, and last closing values 

in a given interval period. At any time, t, ATR can be calculated as: 

𝐴𝑇𝑅𝑡 =
𝐴𝑇𝑅𝑡−1 × (𝑛 − 1) + 𝑇𝑅𝑡

𝑛
 

Equation 21 

Where n is the number of sample periods (in our case, n=14), ATR values are calculated on the 

preprocesses data as elucidated in section.  

Example 1: Figure 82 shows the variance of the ATR for the benchmark part (See Figure 71c). 

It can be observed that the volatility of the melt pool is higher for the last layers due to 

overheating. The two single peaks could be outliers. 

Example 2: Similarly, for the overhang sample, it can be seen in Figure 83 that the volatility is 

higher for the last overheated layer.  

Figure 81: Volatility plot (ATR) for the benchmark part shown in Figure 71c. 
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Although the results are similar to the ML-based method, the statistical analysis is fast, and no 

labeled dataset is required. This method provides an alternative to ML-based models. 

Example 3: Similarly, for the Ti6Al4V part, it can be seen in Figure 84a that the volatility is 

higher for the last overheated layer (also marked in Figure 84b). The visual inspection of the 

part also agrees with the calculated volatility graph. It can be concluded that the higher volatility 

in the last layers is related to the presence of so-called “Hotspots.” The exact location of the 

hotspots will be identified in the following sections. A CT scan of the part is also obtained to 

obtain a better qualitative comparison. The obtained results are in conjunction with the CT scan 

and as-built part quality (Figure 77).  
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Figure 82: Volatility plot (ATR) for the overhang part. 

Figure 83: (a) Volatility variance, and corresponding (b) as-built Ti6Al4V part. 
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Drift layers 
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The statistical analysis is fast, and no labeled dataset is required. This method provides an 

alternative to ML-based models to rapidly check the printed part's overall quality. 
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C H A P T E R  5 

Layer Control System (LCS) 

 

5.1. LCS Setup 
The layer control system (LCS) installed on SLM 280HL includes a visible range camera that 

captures each layer's images for pre and post-exposure. The chamber is illuminated with LEDs 

from the build chamber's sidewalls to maintain uniformity of light distribution on the overall 

build plate. The camera is placed outside on top of build chamber at a specific angle of 65o 

w.r.t normal direction of the build plate, as shown in Figure 60. The machine supplier performs 

the geometric correction of the captured images for the installed equipment. The camera 

captures a JPEG image of 1500*1460 px2 size covering an area of 280*280 mm2 of the build 

plate and neighboring region outside of the build plate that needed to be cropped before 

processing. The camera has a pixel size of 4.4 μm and a lens focal length of 9 mm. 

The SLM machine also allows the powder layers to be controlled before and after the 

laser exposure. Chapter 5 is focused on this monitoring control system called “Layer 

Control System (LCS)” and its operation using by CNN and computer vision models 

In this chapter, we exploit the Layer control monitoring system (LCS) supplied by 

SLM solutions. The LCS system is designed to capture the powder spread quality and 

indicate the uniformity in the powder bed. Although it is not directly related to the 

laser-material interaction, it captures the powder-bed's significantly essential 

characteristics, which eventually influences the laser-material interaction phenomena. 

For example, any local variation associated with the powder bed can influence the 

material-laser interaction environment, changing the melt pool morphology and 

affecting the melt pool emissions.  

In the end, we tried to interlink MPM and LCS data to better understating the SLM 

process and its influence on the part quality. 

“ 
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5.2. Terminology 

• OK: The “OK” label is used for the block (image patch), free from other considered 

anomalies such as Recoater Streaking, Uneven Powder Spread, Part Hopping, and Part 

Overheating.  

• Uneven Powder Spread: The “Un-even Powder Spread” indicates the areas with non-

uniformity in powder spread. Non-uniformity during powder spreading leads to a step-

like feature in the powder bed spread, as shown in Figure 91c.  Such anomaly can be 

caused due to recoater silicon lip failure, lack of powder in the recoater hob, and 

blockage in the powder delivery system. 

• Part Overheating or Local Overheating: The “Part-Overheating or Local Overheating” 

is the part area that is distorted due to poor heat conductivity. The poor heat flow 

phenomenon is linked to the lack of proper support structures, connected to the bulk and 

powder material [186]. Based on simulations, Yang et al. reported that the overhanging 

surfaces are prone to overheating [187]. This anomaly is considered only for the post-

exposure images. 

• Part-Hopping: The part area above the powder spread and not fully covered by the 

powder spread is termed “Part-Hopping.” This anomaly is considered only for the pre-

exposure images. In the context of this study, the part hopping serves as cross-validation 

criteria for the anomaly “part-overheating” in the post-exposure images. 

• Recoater Streaking: Recoater streaking is the horizontal lines observed in the powder 

bed images due to distortion of the soft silicone lip of the recoater. It is detected in post 

pre and post-exposure images. 

5.3. Types of Machine Learning Models  
Image classification using deep learning or machine learning algorithms has various levels of 

granularity through which algorithms learn to understand the images better. In computer vision 

(CV), there are limitations associated with each granularity level from fine to coarse. The 

different level of granularity levels can be defined as: 

Image classification: It is a fundamental building block in CV, where algorithms give a discrete 

label to an image, assuming that there is only a single object in the image. The method presented 

in section 5.4 (using CNN) is an example. The main limitation of image classification is that it 

cannot detect multiple objects in the image. 
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Classification with localization: It is similar to image classification; the only difference is that 

it tries to localize the object in the image using a bounding box that can be identified or marked 

with numerical parameters. 

Object detection: It is an extension of the image classification with localization. Here, object 

detection is not constrained to only one object but can classify and localize multiple objects in 

a single image. 

Semantic segmentation: In semantic segmentation, classification and localization of an object 

on a pixel level. Each pixel of an image is associated with a class, and prediction is done for 

every pixel. Unlike previous methods, the output is not just the labels or bounding box but a 

high-resolution image classified by each pixel.  

The graphical representation of the above-said methods is depicted in Figure 85. We have 

exploited the possibility of image classification and semantic segmentation for our study.  

5.4. Approach 1: Image processing using CNN models 

5.4.1. Theory 

Convolutional Neural Network (CNN) Architecture 

The convolutional neural networks are neural networks that use convolutional mathematical 

operations instead of general matrix multiplication. The input layer is a 150*150 grayscale 

image extracted from the pre-processed pre and post-exposure images, respectively. The input 

layer is then represented by a 2D pixels table when each box contains a number representative 

Figure 84: Types of computer vision models for image classification (Medium.com). 
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of the grayscale. A CNN network usually consists of an input layer, output layer, and multiple 

hidden layers. A hidden layer results from a convolution operation based on a multiplication 

operation between the numbers of 2D tables. There are four types of layers for a convolutional 

neural network: the convolution layer, the pooling layer, the ReLU correction layer, and the 

fully connected layer. The combination of these different layers and operations of the “batch 

normalization layer” is called block, as depicted in Figure 86. The detailed descriptions of the 

hidden layers are discussed in the following sections. 

Convolutional Layer 

The purpose of the convolution layer is to identify the presence of a set of features in the input 

images. To do this, we perform filtering by convolution: the filter matrix slides over the whole 

input volume, and the dot product between filter matrix and input volume is calculated for every 

spatial position [188] (Figure 87).  The Mathematical expression of convolutional operation is 

as follows: 

                       𝑓𝑙
𝑘(𝑝, 𝑞) =∑ ∑ 𝑖𝐶(𝑥, 𝑦)𝑥,𝑦

𝐶
⋅ 𝑒𝑙
𝑘(𝑢, 𝑣) 

Equation 22 

where, 𝑖𝐶(𝑥, 𝑦) represents an element of the input image tensor (𝐼𝐶), which is element-wise 

multiplied by  𝑒𝑙
𝑘(𝑢, 𝑣) index of kth kernel of lth layer. The output feature matrix of the kth 

convolutional operation is expressed by:  

Figure 85: Schematic of the proposed convolutional neural network used in this study. 
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                         𝐹𝑙
𝑘 = [𝑓𝑙

𝑘(1,1),… 𝑓𝑙
𝑘(𝑃, 𝑄), … , 𝑓𝑙

𝑘(𝑃, 𝑄)] 

Equation 23 

                                                           

Furthermore, the convolutional operation can be categorized into different types based on 

padding, the direction of convolutions, size, and type of filters [189].  

Batch Normalization 

The method of a batch normalization layer is used to refocus the values obtained for the 

convolution matrix and thus improve the CNN in terms of speed, stability, and reliability. It’s 

based on reducing internal covariate shifts. The batch normalization unifies the distribution of 

feature map values by setting the distribution feature map values to zero mean and unit variance 

[190]. 

          𝑁𝑙
𝑘 =

𝐹𝑙
𝑘−𝜇𝐵

√𝜎𝐵
2+𝜖

 

Equation 24                                                                

𝑁𝑙
𝑘 is normalized feature-map, 𝐹𝑙

𝑘 is input feature-map, 𝜇𝐵 is the mean, and 𝜎 is the variance 

of the feature-map for the respective mini-batch. The parameter 𝜖 is added to avoid division by 

zero and adds numerical stability to the function.  

Pooling Layer 

In summary, pooling is a method of reducing the size of an image while preserving the most 

important information it contains. The feature motifs resulting from the convolutional 

operation's output can occur at different image locations, but the approximate position of feature 

motifs is stored. Pooling operation, also called “down-sampling,” sums up similar information 

𝑖𝐶(𝑥, 𝑦) 

𝑒𝑙
𝑘(𝑢, 𝑣) 

𝑓𝑙
𝑘(𝑝, 𝑞) 

Figure 86: Example of calculation of a convolution layer. 
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in the neighborhood of the receptive fields and the outputs the dominant response within the 

local regions, which can be represented mathematically by [191]: 

                                        𝑍𝑙
𝑘 = 𝑔𝑝(𝐹𝑙

𝑘) 

Equation 25                                                                      

Where, 𝑍𝑙
𝑘 represents the pooled feature-map for lth layer and kth input feature-map 𝐹𝑙

𝑘, 𝑔𝑝(. ) 

is the function which defines the pooling operation. Pooling operation helps extract a 

combination of invariant features to slight distortions and translational shifts. The feature map 

is reduced and converted into an invariant feature set. Still, it also helps increase the 

generalization by reducing overfitting and regulating the network's complexity. The various 

types of pooling formulations such as max, min, average, L2, overlapping, spatial, .etc can be 

used in the CNN network based on the application [192], [193].   

In our CNN model, we have used the max-pooling layer by applying a max filter to non-

overlapping subregions of the initial representation. The decision to use the max-pooling layer 

is based on training results obtained via the trial and error method. To give an example, let us 

assume we have a 4*4 matrix representing our initial input, and a 2*2 filter will run over our 

input. An example is illustrated in Figure 88: for each region defined by the filter, we will take 

the max of that region and create a new output matrix where each element is the max of a region 

in the original input.  

 

Activation Function 

The activation function is a non-linear transformation function over the input signal, which 

serves as the decision function and helps learn the patterns.  The activation function is vital in 

Figure 87: Example of a Max pooling operation. 
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CNN as, without activation function, CNN behaves as the linear model that cannot handle 

complicated tasks [192]. The activation function can be defined as: 

                                       𝑇𝑙
𝑘 = 𝑔𝑎(𝐹𝑙

𝑘) 

Equation 26                                                            

where, 𝐹𝑙
𝑘  is an output from the convolution operation, 𝑔𝑎 is a non-linear function that returns 

𝑇𝑙
𝑘 a transformed out for lth layer. Different activation functions such as ReLU, SWISH, 

Sigmoid, tanh, maxout can be used based on the specific problem. In our model, we have used 

the ReLU activation function, which is defined as: 

                     𝑓(𝑥) = {
𝑥, i𝑓 𝑥 ≥ 0
0, i𝑓 𝑥 < 0

 

Equation 27 

The result of a ReLU layer is the same size as the input, with all negative values simply 

eliminated. ReLU activation is the most used function due to its ability to resolve the 

optimization problem based on the gradient. Moreover, the ReLU function is computationally 

inexpensive as it only involves thresholding the activation matrix. Unlike the sigmoid and tanh 

function, which are computationally expensive [194]–[196]. 

Fully Connected Layer 

We always had 2D tables as input and 2D tables as an output in previous operations. The fully 

connected layer is always the last layer of a CNN. This type of layer receives a vector of size n 

as input and produces a new vector of the same size as output: each vector element indicates 

the probability of the input image belonging to a class.  Unlike other layers such as the 

convolutional layer, the fully connected layer is a 1-Dimensional vector with all the previous 

layer's activations. As the convolutional layer identifies features with the help of various filters, 

the fully connected layer combines these features. To do this, it applies weights over the input 

obtained in the feature analysis to predict accurate labels. The convolutional neural network 

learns the weight values in the same way as it learns the filters of the convolution layer: during 

the training phase. It gives a prediction that is close to the desired output. The fully connected 

layer in our model has inputs from the previous non-linear ReLU function and provides a single 

result passed to the softmax layer.  

The SoftMax function, also known as “softargmax” or “Multi-class logistic regression,” is a 

function that converts a vector of 𝑘 real values to a vector of 𝐾 real values that sums up to 1. 

The input vector can have any value, but the softmax function converts 0 to 1. The output values 
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can then be interpreted as probabilities [197]. Finally, the CNN architecture of our model is 

summarized in Figure 89. 

 

5.4.2. Image Processing 

The captured raw images (1500*1460 px2) possess difficulties such as in-homogeneity in light 

intensity. Therefore, they cannot be used directly for CNN operations. As the camera and 

environment conditions remain unchanged for all the captured images, the same homogeneity 

correction factor can be used for all images. For light intensity homogenization, we have used 

the in-built functions of MATLAB called “imcomplement” and “imreducehaze” [198], [199]. 

For our studies, we have used the maximum haze value of 1, which removes the maximum haze 

from the image.  Firstly, the captured raw image is converted to a grayscale image to reduce the 

operation's complexity and our CNN model's requirement. The grayscale image is 

Figure 88: Block diagram proposed CNN architecture used in this study. 
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complemented, which inverts the pixel values.  In other words, the black is converted into white 

and vice-versa. Then the “imreducehaze” function is used on the complemented image: 

𝐼(𝑥) = 𝐽(𝑥)𝑇(𝑥) + 𝐿(1 − 𝑇(𝑥)) 

Equation 28 

𝐼(𝑥): Observed Intensity; 𝐽(𝑥): Scene Radiation, 𝐿(𝑥): Atmospheric Light, and 𝑇(𝑥): 

Transmission map of the light reaching the camera. Dezhaing operation estimates the Scene 

radiation 𝐽(𝑥)  by estimating the 𝑇(𝑥), and 𝐿(𝑥), which is given by: 

                                                     𝐽(𝑥) = (𝐼(𝑥) − 𝐴)/(max (𝑇(𝑥), 𝑇(0) + 𝐴) 

Equation 29                         

The dehazing function involves steps as follows: 

1. Firstly, the atmospheric light (𝐿(𝑥)) is estimated using a dark channel. 

2. Secondly, the transmission map (𝑇(𝑥)) is evaluated. 

3. Refinement of the estimated transmission map (𝑇(𝑥)). 

4. Restoration of the image. 

5. Lastly, perform contrast enhancement on the restored image. 

Figure 90 shows an example of a raw image and image after preprocessing operation. It can be 

observed that even after the preprocessing operation, the light intensity is not entirely 

homogenized at the edges. Therefore, we do not consider the edges for CNN operation and start 

the algorithm only for an area of 1000*1000 px2 as marked in the red rectangle box. The 

dimensions of the region of interest are selected intuitively; most of the time, parts are built at 

the build plate's center. Intentionally, cropping of the image is avoided to minimize the border 

effect and prevent operation padding, significantly affecting border patches results. Considering 

the borders, selecting the blocks with the same center will not be possible as the sizes vary 

enormously. Secondly, the light intensity at the borders may also affect the accuracy of the 

overall model. 
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5.4.3. Anomalies Description 

For Pre-Exposure Images 

Our study has considered four cases: the CNN network's detection features, which serve as the 

so-called “labels” shown in Figure 91. Pre-exposure images can have critical information 

regarding the overall quality of the powder bed spreading. It shall be noted that the labels' 

selection is based on the visual inspection of the images, and only the most common human 

visually verified powder bed spread anomalies are considered, as presented in the following. 

“Recoater-Streaking” is the most common anomaly that occurs due to damage to the silicone 

lip due to part-hopping (Figure 91b). Another critical anomaly called “incomplete spreading” 

or “Uneven Powder Spreading” can also be captured by pre-exposure images (Figure 91c). It 

shall be noted that the pre-exposure image captures not only the powder spreading quality for 

a particular layer but also captures the information regarding the quality of printing in the 

preceding step. “Part-hopping” is an anomaly mainly influenced by the printing quality in the 

previous step (Figure 91a). The fourth category (Figure 91d and 6e), called “OK,” represents 

the areas free from the above-discussed anomalies. Figure 91d is the “OK” image for the case 

Area considered for CNN 

operation  

 (a)   (b)  

Figure 89: An Example of (a) captured raw image, and (b) pre-processed image. 

 (a)   (b)   (c)   (d)   (e)  

Figure 90: An example of anomalies extracted from pre-exposure images (a)Part-Hopping, (b) Recoater streaking, (c) 
Uneven powder spreading, (d) OK powder layer, and (e) OK part layer. 
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where there is no printed area underneath. In contrast, Figure 91e represents the printed part 

covered with the powder layer. 

Post-Exposure Images 

Post-exposure images can serve as verification and contain vital information about the part and 

powder's quality. Our study has considered the same cases as pre-exposure images for our 

labels.  Instead of “Part hopping,” we have labeled it as the areas likely to undergo overheating 

phenomenon, which leads to hopping in the next recoating step due to internal residual stresses. 

The labels are summarized in Figure 92. For training the CNN models, a dataset of 500 images 

for each label is prepared for pre-and post-exposure images. We have considered the most 

common anomalies, which does not mean these are the only anomalies that occur during the 

process. Other anomalies such as spatter ejection and burn-out areas are not considered due to 

the lack of artificial reproducibility of these anomalies for the CNN models' training. 

5.4.4. Scale Variant of Anomalies in Pre and Post-Exposure Cases 

The scale of the detection area dramatically influences the detection of any particular anomaly. 

For example, if we consider a scale of 20*20 px2 (Case 1- red box in Figure 93) for uneven 

powder spread, it may not be detectable similarly if we consider 150*150 px2 (Case 2 - green 

box in Figure 93) for “Part-Hopping” we may end up incorporating other anomalies such as 

“Recoater-streaking.” Moreover, not all anomalies have the same spatial detection scale. 

Therefore, it is of great importance to choose the correct spatial scale of the described anomalies 

such as “Part-Hopping,” overheating, recoater-streaking, and uneven powder spread. Therefore, 

in our study, we have chosen three different scales for the above-described anomalies based on 

the trial-error method. Scale 1, i.e., 20* 20 px2 block, is set for “Part-Hopping” and overheating, 

as this anomaly should be captured with as small as possible scale. The 20* 20 px2 scale is a 

good compromise between the computational time and the proposed CNN model's accuracy. 

Scale 2, i.e., 75*75 px2, is chosen for “Recoater-Streaking,” whereas scale 3, i.e., 150*150 px2, 

is set for uneven powder spread. It is also noted that all three scale blocks are extracted from 

 (a)   (b)   (c)   (d)   (e)  

Figure 91: An example of anomalies extracted from post-exposure images (a)Part-overheating, (b) Recoater streaking, (c) Uneven 
powder spreading, (d) OK powder layer, and (e) OK part layer. 
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the same center, and also the scale 1 blocks are non-overlapping, whereas scale 2 and scale 3 

are overlapping blocks that stride with a step of the smallest block size. 

 

 

5.4.5. Training and Testing of Models 

Training CNN models 

The CNN training aims to find the optimal kernels for the given case. In our CNN model, we 

have used the standard loss function for regression predictions and cross-entropy loss, which is 

shown as 𝐻(𝑝, 𝑞) = −∑ 𝑞(𝑥) log 𝑝(𝑥) 𝑥 where 𝑝(𝑥) is the classification function from softmax 

operation corresponding to the input image used for classification operation whereas 𝑞(𝑥) is 

the ground-truth label of that image. The minimization of loss function during training is the 

optimal criterion for selecting optimal kernels. 

During training, kernel weights are recursively updated by using the training images. The 

prediction error gradient decides the updating of the weights for each layer backpropagated for 

that layer. It shows the direction of weight adjustment, which allows a steep decrease in 

prediction error. We have utilized the sgdm optimizer for our CNN model with an initial 

learning rate of 10-3 for regression, batch size of 20, and max training epoch number of 100. L2 

regularization is applied to all the weights for suppressing over-fitting. The regularization 

coefficient is set as 10-3. The best-fit settings for both CNN models, i.e., CNN 1 and CNN 2, 

are the same, showing the highest training accuracy for pre- and post-exposure images. The 

reported training accuracy of CNN 1 and the CNN 2 models is 93.16 % and 96.20 % for pre 

and post-exposure images. 

Case 1 
Case 2 

Figure 92: An example of scale variance of different types of anomalies is shown. Red box 
represents the scale 1 of size 20*20 px2 whereas the scale 3 represented by green box which has 
size of 150*150 px2. 
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Testing of CNN Model 

Labeling Test Images 

Several conditions shall be imposed on the pre and post labeled data to minimize the probability 

of mislabeling, and the conditions are different for both pre and post-exposure images. As 

mentioned earlier, we extract three different scales (20*20 px2, 75*75 px2, 150*150 px2) blocks 

from the same center, leading to having three various labels for the same center. Therefore, it 

is necessary to take specific conditions for each block. The conditions for pre-exposure test 

images are as follows (Figure 94): 

• Firstly, scale 1, i.e., 20*20 px2 block, will be extracted and passed through the trained 

CNN 1 model. If the scale 1 block overlaps with the part area and is labeled “Part-

Hopping,” the program will skip the training operation for scales 2 and 3 for that specific 

center and proceed to another center.  

• If the label is not “Part-Hopping,” the center will not save the predicted label for scale 

1 for that center and will decide based on scales 2 and 3, which is decided by the decision 

matrix shown in Table 16. The reason for this particular condition is that when the “Part-

Hopping” occurs, other anomalies cannot happen at the same center. However, when 

there is no “Part-Hopping,” then there could be “Recoater-Streaking,” “Uneven Powder 

Spreading,” and “OK” part labels.  

The conditions for post-exposure test images are as follows (Figure 95): 

• After the exposure step, there is no powder in the part area. Therefore, it is impossible 

to have defects such as uneven powder spread and “Recoater-Streaking” in that area. 

Thus, the scale 1 block, i.e., 20*20 px2, will first pass to a precondition to check whether 

the block overlaps or intersects with the part are or not. If not, the scale 1 labels will not 

Figure 93: Flow chart for labeling the pre-exposure test images. 
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be predicted for that center as it is not in the part area. If yes, the possible labels can be 

“Part-Overheating” or “Part OK.” If the predicted label is other than “Part-Overheating” 

and “Part OK,” the label will be marked as mislabeling. 

• If the scale 1 block does not intersect with the part area, then there can be labels related 

to powder anomalies, i.e., “Recoater-Streaking,” “Uneven Powder Spreading,” or 

“OK.” Therefore, for that specific center, the labels will be predicted for scales 2 and 3, 

i.e., 75*75 px2 and 150*150 px2. The final decision will be based on the decision matrix 

shown in Table 16, like the pre-exposure procedure.  

Scale 2 Labels 
(75*75 px2) 

Scale 3 Labels 
(150*150 px2) 

Final 
Decision 

Uneven Uneven Uneven 

Part Hopping/Overheating Uneven Uneven 

Uneven Streaking Mislabel 

Uneven Part Hopping/Overheating Uneven 

OK OK OK 

Part Hopping/Overheating OK OK 

Uneven OK OK 

Part Hopping/Overheating Part Hopping/Overheating Mislabel 

Part Hopping/Overheating Streaking Streaking 

OK Part Hopping/Overheating OK 

OK Streaking Mislabel 

OK Uneven Uneven 

Streaking Part Hopping/Overheating Streaking 

Streaking Streaking Streaking 

Streaking Uneven Mislabel 

Streaking OK Streaking 
Table 16: The decision matrix for scale 2 and scale 3 labels. 

Figure 94: Flow chart for labeling the post-exposure test images. 
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Confusion Matrices 

The training dataset is divided into three subcategories, i.e., training set, validation set, and test 

set with 60:20:20 ratios. The training process aims to fit the ML model into the training dataset. 

The training process's performance is evaluated by the validation set, which, in return, can be 

used to find the best-fitted design parameters to obtain the highest validation accuracy. 

However, it is essential to note that the model may overfit or underfit the validation set and 

training set. Therefore, the ML model's actual performance is attributed to the testing dataset, 

and the confusion matrix evaluates the algorithm. The confusion matrix compares the ground 

truth labels with the predicted labels. In other words, the false positive and false negative 

attributes of the ML model are indicated by the confusion matrix representation. 

The confusion matrices for both cases, i.e., pre and post-exposure images, are shown in Figure 

96, where the output class represents the ground-truth label. The target class denotes the 

predicted label. It is noticeable that the “Uneven powder spread” and “OK” labels are the most 

complex labels to predict for the trained CNN 1 model and are often confused among each 

other. Similarly, CNN 2, which predicts labels for post-exposure images, is often confused in 

predicting “Uneven powder spread” and “OK” labels. This inaccurate prediction of labels is 

due to the uneven spreading anomaly, which has a signature similar to a good powder bed. 

5.4.6. Case study 

Our study performed the analysis on a so-called “Benchmark Part,” used as a benchmark tool 

in material development in AM. Finding the best fit process parameters is time-consuming and 

costly, based on trial and error methods. Therefore, specific designs are used as a benchmark 

 (a)   (b)  

Figure 95: Confidence matrices for trained CNN models for (a) pre-exposure images, and (b) post-exposure images. 
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tool to find the best process parameters such as critical overhang angle, process settings (Laser 

Power, Hatch distance, Layer Thickness), border thickness, etc. Knowledge of this angle is 

essential to position the supports correctly. Indeed, as we know, the critical overhang angle for 

Al alloys is 300, so we can conclude that the benchmark part is prone to failure at some point 

due to the absence of supports [200]. 

Another important reason to choose this model as our case study is that the part's failure could 

be confirmed via visual inspection without costly computed tomography techniques. It is then 

used to test the accuracy of our trained CNN model and SVM classifier. Validation of other 

defects such as porosities requires, on the other hand, expensive techniques such as computed 

tomography. 

A total of 2582 images of the benchmark part are analyzed by our trained two CNN models for 

pre-exposure and post-exposure images, respectively. The percentage of the predicted 

anomalies in a specific layer is calculated and plotted along with the building height to monitor 

the building part's overall quality. Figure 97a shows the anomalies percentage for the pre-

exposure images.  It can be observed that in the last layers of the build, there is a peak for all 

the anomalies (“Part-Hopping,” “Recoater-Streaking,” and “Uneven Powder Spreading”). The 

“Part-Hopping” anomaly percentage gradually increases from layer 2400, whereas the 

recoating streaking and uneven powder spread anomalies occur after layers 2543 and 2556. The 

theory can explain that the part hopping destroys the soft silicone lip used for the recoating. 

When the silicone lip's quality worsens, the recoater lines, also called “Recoater-Streaking,” 

start to occur on the powder bed.  The center of the scale variant blocks (20*20 px2, 75*75 px2, 

150*150 px2) used as the proposed CNN 1 model input is saved to locate the particular predicted 

anomalies in the location of the specific layer. For example, the layer's raw image numbered 

2579, and the location of predicted anomalies for that layer is depicted in Figure 97b.  
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Our study used the post-exposure analysis as the cross-validation for the pre-exposure analysis 

results and made a confident decision regarding the quality of a particular layer. The anomalies 

such as recoating streaking, uneven powder spread can be present in both cases, i.e., pre and 

post-exposure at the same location except for the printed area. “Part-Overheating” anomaly in 

the post-exposure step due to lack of supports can also lead to “Part-Hopping” anomaly in the 

pre-exposure step for the subsequent succeeding layers. Both the cases (pre and post-exposure) 

 (a)  

 (b)  

Raw Image Location of predicted 

anomalies 

Layer Number 

(%
)/

1
0

0
 

Figure 96: (a) The percentage of pre-exposure anomalies predicted by the CNN model along the build height, (b) An pre-exposure image example 
showing the exact location of predicted anomalies (Red: “Uneven Powder Spreading”, Green: “Part-Hopping”, and Blue: “Recoater streaking.” 
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serve as the two different process steps and are interlinked, and it is crucial to use both images 

for cross-validation and monitor the build quality.  The percentage of the predicted anomalies 

concerning build height for post-exposure images is plotted in Figure 98a. Like the pre-

exposure analysis step, the CNN 2 model predicted the highest percentage of all anomalies in 

the last layers. Similar to “Part-Hopping,” the “Part-Overheating” anomaly starts to occur 

gradually from layer numbered 2121. The location of the individual predicted anomalies for 

 (a)  

 (b)  

Raw Image Location of predicted anomalies 

Layer Number 

(%
)/

1
0

0
 

Figure 97: (a) The percentage of anomalies predicted by the CNN model along the build height, (b) A post-exposure image example 
showing the exact location of predicted anomalies (Red: “Uneven Powder Spreading”, Green: “Part-Overheating”, and Blue: “Recoater-
Streaking”) for layer 2580. 
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layer number 2580 is shown in Figure 98b. The “Part-Hopping” anomaly in pre-exposure 

images starts to gradually increase from layer numbered 2400 (marked with a black arrow in 

Figure 97a), whereas the “Part-Overheating” anomaly starts to appear from layer numbered 

2121 (marked with a black arrow in Figure 98a) in post-exposure images.  Therefore, it can be 

concluded that the “Part-Overheating” anomaly first reaches a limit before it starts to impact 

the recoating step. The given layer thickness is not enough to fully cover the overheating 

anomaly, and it starts to appear in the pre-exposure step as a “Part-Hopping” anomaly. 

It is also observed that the mislabel percentage also increases for the last layers in both cases. 

As shown in the confusion matrix (Figure 96), the proposed CNN models have high confusion 

probability for “OK” and “Uneven Powder Spread” labels for both cases. As the “Uneven 

Powder Spread” anomaly occurs only in the last layers, the mislabel percentage increases in the 

previous layers. 

5.4.7. Limitations of CNN models 

CNN models are compelling when it comes to the Image classification problem. We have also 

seen that the CNN models can successfully help predict the powder bed anomalies. But there is 

a possibility of misclassification associated with it. Also, there are a few limitations associated 

with the CNN models, which are as follows: 

1. The CNN models are developed for the image classification problem, associating the 

whole image to a particular class. But for powder bed images, it may be the case that 

the whole image is a combination of other anomalies or features. For example, the 

Overheating anomaly is only present in the small section of the image. The rest of it is 

a normal powder bed. Therefore, it is critical to achieving localization; otherwise, the 

whole image is treated as an anomaly which is not the case in reality. 

2. Input image size is another limitation associated with the CNN model. As the CNN 

models can accept only a particular image size, it hinders the ability to predict scale 

variant anomalies. If trained for multiple input sizes, training and testing costs are 

increased, making the prediction slow compared to the single CNN model.  

We exploited the semantic segmentation models for pre-exposure powder bed images discussed 

in the next section to overcome the above-said limitations. 
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5.5. Approach 2: Image processing using Semantic Segmentation 

5.5.1. Semantic Segmentation Using UNet 

UNet is first developed by Ronneberger et al. [201] in 2015 for semantic segmentation of 

biomedical images. Unlike standard CNN, where down-sampling of the convolutional layer 

ends as dense fully connected layer (D-FC) to predict one outclass label. UNET architecture 

has two paths. The first part, called “encoder,” consists of a traditional stack of convolutional 

and max-pooling layers where the image information is contracted and stored. In the second 

path (also called decoder), the output from the encoder is expanded using transposed 

convolutions to give a segmentation mask. The skip connections in the encoder and decoder 

allow recovery of the spatial information lost during max-pooling operation [202].  

5.5.2. Residual Networks 

Many researchers have argued that deeper neural networks are more potent while extracting the 

information [203]. The ability to compose the hierarchically shallower feature representation to 

more profound representation makes the deeper networks more robust. For example, in face 

recognition, pixels make edges, and edges mark the corners representing facial features such as 

nose, mouth, eyes, and chin. Finally, these facial features help to define the different faces 

[204]. However, deep CNNs are challenging due to vanishing gradients problems in the forward 

and backward feed process. The residual neural network is developed to overcome this problem, 

shortcut connections parallel to the traditional convolutional layers (Figure 99). 

Mathematically, the residual block output can be defined as 𝑦 = 𝐹(𝑥) + 𝑥. The shortcut 𝑥 acts 

as highways through which the gradient can easily flow back, resulting in faster and easy 

training. The ResNet authors proposed a newer model version by adding additional direct 

Figure 98:The schematic representation of (a) standard CNN block, and (b) residual block. 
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identity connections [205]. Apart from ResNet, stochastic depth can tackle gradient vanishing, 

which randomly drops the whole layer. The dropout enables fast training, but the depth of the 

model is much smaller than the original. Therefore, for our study, we have used ResNet34 

architecture. 

5.5.3. Combination of ResNet and UNET 

As discussed, ResNet is a robust CNN architecture for feature extraction in object recognition. 

Therefore, we have used the combination of ResNet34 and UNet for our study. The ResNet34 

blocks are used as the encoder or down-sampling path instead of standard CNN architecture 

(see Figure 100 [206]). Also, the skip connections at the end of every block are used for up-

scaling or decoder paths. An input stack of size 128*128 px2 and corresponding labels for 

powder recoating images is used. No data augmentation techniques are used in this study. 

 

5.5.4. Training Dataset 

For this study, Pre-exposure or post-recoating images captured from LCS are used. The working 

principle of the LCS is discussed in section 5.1. Anomalies like recoater streaking, uneven 

powder spreading, and part hopping due to local overheating are labeled (Figure 101a). The 

pre-exposure images from the benchmark part (see Figure 82 top-right) showing anomalies 

Figure 99: Graphical representation of Res34-UNet used in this study [207]. 
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such as part-hopping, recoater streaking, and uneven powder spreading are used for training the 

proposed model. The training data is obtained from the benchmark part printed in AlSi7Mg0.6 

[208] for a particular case. It is important to note that the powder bed spread anomalies are not 

affected by the material's choice. A set of 20 layers is used for training. But before training, 

labeling each pixel and generating a corresponding mask is necessary. The labeling and 

generation of a mask are done using available online tools such as “apeer” from Zeiss. An 

example of labeling and mask is shown in Figure 101. 

 

After labeling, the images and masks are cropped in 128*128 px2 blocks and saved as an image 

stack for further model training. Unlike CNN models, no additional image processing 

techniques are used.  

The whole dataset is divided into training, testing, and validation data in a ratio of 70:20:10.  

5.5.5. Model Training 

The proposed model is trained and evaluated using Keras with TensorFlow backend on a python 

environment. In the model, all the convolutional operations are followed by batch normalization 

and ReLU function activation function. However, the final convolutional layer is followed by 

the softmax activation function, i.e., used for multi-class classification. The down-sampling 

path is initialized from the pre-trained weights of ImageNet [207]. Therefore, the final fully 

connected layer is removed to employ the pre-trained weights. The intermediate outputs of the 

Overheating 

Streaking 

Uneven powder 

spread 

Figure 100: (a) Raw pre-exposure image with types of anomalies (marked by arrows), and (b) corresponding labeled 
image. 
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down-sampling are connected to the up-sampling path. The up-sampling path is initialized with 

random weights. 

The initial learning rate (LR) is set to 0.0001, and stochastic gradient descent (SGD) is used for 

the optimization step. A batch size of 8 and softmax activation function is set for training on 

NVIDIA GTX 1080 GPU with 8 GB onboard memory, Intel(R) Xeon(R) CPU E5-2683 v3 

@2.00GHz. Precision (P), recall (R), F1 score, and Intersection over union (IOU) score are 

calculated to evaluate the quantitative performance of the proposed model for pre-exposure 

powder bed images. F1 score can be expressed as: 

𝐹1 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
 

Equation 30 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑎𝑛ⅆ  𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 31 

Where TP, FP, and FN are true positive, false positive, and false negative, respectively.  

P is a measure of the proportion of the matched pixels in the predicted results, and R is the 

percentage of matched pixels in the ground truth label. IOU measures the similarity between 

the ground truth and prediction. Mathematically it can be defined as: 

𝐽(𝐺𝑟,𝑃𝑟) =
|𝑃𝑟⋂𝐺𝑟|

|𝑃𝑟| + |𝐺𝑟| − |𝑃𝑟⋂𝐺𝑟|
 

Equation 32 

Where 𝐺𝑟: true region, and 𝑃𝑟: predicted region 

IOU and F1 scores are standard metrics for semantic segmentation tasks. IOU is separately 

measured for each anomaly class from the ground truth. Then an average is calculated from 

each anomaly IOU [208], [209].  

Loss Functions 

The compound loss (L) combining dice loss (𝐿𝑑𝑖𝑐𝑒) and focal loss (𝐿𝑓𝑜𝑐𝑎𝑙) is used for ResNet-

UNet proposed model and can be expressed as: 

𝐿 = 𝐿𝑑𝑖𝑐𝑒 + 𝐿𝑓𝑜𝑐𝑎𝑙 

Equation 33 
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Recently, it has been reported that the combination of different losses improves the semantic 

segmentation where the class imbalance exists [210].  Dice loss calculates the overlap between 

the ground truth and prediction and can be expressed as [211]: 

𝐿𝑑𝑖𝑐𝑒 = 1 −
2∑ 𝑝𝑙(𝑥)𝑔𝑙(𝑥)𝑥∈𝛺

∑ 𝑝𝑙
2(𝑥)

𝑥∈𝛺
+∑ 𝑔𝑙

2(𝑥)
𝑥∈𝛺

 

Equation 34 

The focal loss is used to counter the label imbalance that arises due to background and 

foreground in image classification during training. The focal loss is extracted from the cross-

entropy loss, and a focussing parameter 𝛾 helps to increase the importance of correcting 

misclassified examples. Weighting factor 𝛼 ∈ [0, 1] gives preference to the foreground or 

difficult to segment labels compared to background or easy to segment labels. It can be 

expressed as [212]: 

𝐿𝑓𝑜𝑐𝑎𝑙 = −∑ (𝛼(1 − 𝑝𝑙(𝑥))
𝛾
𝑔𝑙(𝑥)𝑙𝑜𝑔𝑝𝑙(𝑥)

𝑥∈𝛺
+ (1 − 𝛼)𝑝1

𝛾
(𝑥)(1 − 𝑔𝑙(𝑥))log (1

− 𝑝𝑙(𝑥)) 

Equation 35 

Where 𝑔𝑙(𝑥): label vector, 𝑝𝑙(𝑥): predicted label vector 

For our case, we have used 𝛼 = [0.10 0.25 0.30 0.35] and 𝛾 = 2 based on the trial and error 

method and no. of epochs set to 50. 

5.5.6. Case Study 

Case Study Dataset 

To evaluate the performance of the proposed model, we considered the dataset of Ti6Al4V print 

job as presented in section 4.4. As mentioned earlier, we observed anomalies in the MPM 

dataset and predicted the probable area of the drifts. Therefore, it will be interesting to use pre-

exposure images to further compare and analyze powder bed quality. The most common 

anomalies such as recoater streaking, uneven powder spread, and part hopping are considered. 

The raw images are used for the case study, as no modification whatsoever applied to the 

images. It is assumed that the lighting conditions remain the same for the training benchmark 

part and case study case. The only difference is related to material, where the benchmark part 

is printed in AlSi7Mg0.6 and the case study part in Ti6Al4V. It is also assumed the anomalies 

related to powder bed spreading are independent of the material. A total of 627 images are used, 

and the anomalies percentage is calculated as follows: 
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% = (
𝐴𝑝𝑖𝑥𝑒𝑙

𝑇𝑝𝑖𝑥𝑒𝑙
) × 100 

Equation 36 

Where, 𝐴𝑝𝑖𝑥𝑒𝑙 is the total number of pixels marked as a particular anomaly, 𝑇𝑝𝑖𝑥𝑒𝑙: a total 

number of pixels for the whole image. 

Classification and Evaluation 

The ResNet-UNet model achieved 84.61 %, 87.51 % of IOU and F1 score during training, and 

73.29 %, 77.28 % of IOU and F1 score for the validation set. A compound loss of 0.399 and 

0.572 is reported for training and validation, respectively. The corresponding anomaly % is 

calculated and plotted as shown in Figure 102. The part hopping anomaly occurs from layer 

number 473, followed by recoater streaking and uneven powder spread anomaly. The results 

are per the previous results using the CNN model. However, the localization of the anomalies 

is more realistic. In our opinion, the overall accuracy of the proposed model can be improved 

with an extensive training dataset. Due to a lack of training dataset, the model shows 

discrepancies in identifying uneven powder spread, as shown in Figure 103. Uneven lighting 

conditions can attribute to such discrepancies. 

Figure 101: Graphs showing predicted anomaly % for (a) Overheating, (b) Recoater streaking, and (c)Uneven powder spread. 

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 100 200 300 400 500 600

U
n

ev
en

 P
o

w
d

er
 S

p
re

ad
 (

%
)

Layer Number

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600

O
ve

rh
ea

ti
n

g 
(%

)

Layer Number

-0.5

0

0.5

1

1.5

2

2.5

0 200 400 600

R
ec

o
at

er
 S

tr
ea

ki
n

g 
(%

)

Layer Number

(a) (b) 

(c) 



Chapter 5 

 

- 147 - 
 

 

5.6. Relation between MPM and LCS 
L-PBF process is a complex manufacturing process in monitoring, as many parameters can 

influence powder-laser interaction. Starting from powder health (humidity, secondary particle 

contamination, powder morphology) to powder-bed spread. Therefore, it is vital to monitor the 

process at different steps and study its influence on the final quality. In this study, we tried to 

study and elucidate the effect of powder-bed quality on the melt pool signal captured by MPM.  

Part hopping 

Streaking 

Uneven powder 

spread 

Part hopping 

Streaking 

Uneven powder 

spread 

Figure 102: Example of Res-UNet anomalies prediction for layer number 577 (a) raw pre-exposure image, and (b) 
corresponding predicted labels. 

(a) (b) 
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Example 1: Benchmark Part 

We have used the MPM viewer installed on the SLM 280HL system to verify the hotspots' 

presence in the predicted “Drift” layers. The screenshot of the MPM viewer for layer number 

2561 (which is predicted “Drift” by both SVM classifiers also circled in red in Figure 71a and 

69b in Chapter 4) is shown in Figure 104. It can be observed that there are regions (marked in 

red) that have higher thermal emissions compared to the rest of the layer for both photodiodes. 

These hotspots are the highest probable regions of producing defects in final parts. It is also 

noticeable that the hotspot regions in photodiode 1 (Figure 104a) are not evident as like for 

photodiode 2 (Figure 104b), which is because the photodiode 2 spectral range is more sensitive 

to AlSi7Mg0.6 (low melting material). 

 (a)   (b)  

 (c)   (d)  

Hot-Spots 

Hot-Spots 

Post-Exposure layer 2561 Recoating Layer 2560 

Figure 103: Screenshot from MPM viewer showing presence of hotspots in layer 2561 for (a) Photodiode 1 
with higher thermal emission values, and (b) Photodiode 2, (c) the pre-exposure powder spread image, and 
(d) post-exposure image. 
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The building part layers predicted as drift layers for both photodiodes indicate a link between 

the powder spread and printed part quality. For example, in this particular layer, the pre-

exposure image suggests the region of part-hopping because the powder is not uniformly spread 

over the whole part (marked by the green block in Figure 104c). As a result, the region not 

covered by the powder leads to overheating, i.e., predicted by the CNN model as marked by 

green boxes in Figure 104d. It shall be noted that the additional 4 rectangular bars are also 

printed along with the benchmark part, which is also visible in Figure 104c, and 100d. These 

rectangular bars are printed for internal studies and are not included in this study. Therefore, 

monitoring each process step is vital and linking the different steps to improve quality 

assurance. The confidence interval based on the various monitoring steps can separate good and 

bad parts from a batch of parts (in serial production case). It can be decided to use other non-

destructive techniques for good parts for quality assessment. It will save time and money by 

initially marginalizing the bad parts from the good parts. 
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Example 2: Ti6Al4V Cubes 

Similarly, as presented in Chapter 4, the Hotspot % increases from layer 537 for the Ti6Al4V 

case study (Figure 78). We observed similar behavior in powder bed anomalies, as shown in 

Figure 102, where the part hopping and streaking anomalies become significantly visible after 

layer number 500. We have compared the melt pool intensity hotspot to powder bed image 

anomalies for layer 559, as shown in Figure 105. We can observe the presence of high melt 

pool intensities for ADC 1 and ADC 2. Similarly, uneven powder spreading is observed for the 

sample (Figure 105). Therefore, it can be concluded that the non-uniformity in powder bed 

spread can lead to variation in the melt pool environment confirming higher thermal counts 

compared to normal conditions. Also, the uneven powder spreading can be linked to the part 

distortion due to overheating, as identified by the melt pool signals. The part hopping leads to 

Overheating 

Streaking 

Uneven powder 

spread 

Figure 104: Screenshot from MPM viewer showing presence of hotspots in layer 559 for (a) Photodiode 1 with higher thermal 
emission values, and (b) Photodiode 2, (c) the pre-exposure powder spread image, and (d) corresponding predicted labels. 



Chapter 5 

 

- 151 - 
 

recoater silicone lip damage, streaking susbsequently uneven powder bed spreading. Recoater 

streaking could also be identified along the part (Figure 105). 

5.7. Conclusions 
The SLM machine also allows the powder layers to be controlled before and after the laser 

exposure. Chapter 5 is focused on this monitoring control system called “Layer Control System 

(LCS)” and its operation using by CNN and computer vision models. 

Following are the conclusions that can be inferred from the LCS monitoring using image 

segmentation: 

• LCS monitoring comprises two critical steps of the L-PBF process, i.e., pre-exposure 

and post-exposure. The pre-exposure steps capture the characteristics of the power bed 

spread over the part and the rest of the layer. Whereas the post-exposure also captures 

the aspects related to the printed part.  

• It is also to be noted that the powder bed spread quality can be influenced by the part 

design, feedstock properties, and process anomalies. However, the anomalies occurring 

during the powder bed spread strongly influence the laser-material interaction, i.e., melt 

pool emissions. 

• Various computer vision algorithms such as image classification (CNN method) and 

semantic segmentation (UNet) can detect and monitor the powder bed spread anomalies. 

However, for LCS images, semantic segmentation is a powerful tool compared to image 

classification due to its ability to classify each pixel to specific abnormalities spatially. 

• We also observed that the powder bed anomalies follow a hierarchy. The part 

overheating or part hopping (due to part design) occurs first, followed by recoater 

streaking and uneven powder spread. However, it shall be noted that this hierarchy is 

only subjected to SLM machines as their recoater is composed of soft silicone lip. In 

contrast, other machines may have hard recoater, leading to different types of anomalies 

(out of scope of this thesis).  

• Lastly, to enhance the quality assurance of the L-PBF process, it is essential to correlate 

the different processing steps to improve the confidence level in the final part. For 

example, we successfully presented that the anomalies in MPM data are directly linked 

and influenced by the irregularities occurring in the powder bed spread data, i.e., LCS 

data. Similarly, it is vital to interlink the other process steps to effectively enhance the 

reliability and quality assurance of the whole process. 
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C H A P T E R  6 

Thermomechanical deformation of SLMed 

Inconel 718 

 

6.1. Theory and Background 
Nickel-based superalloy “Inconel 718” is the most widely used material for producing critical 

parts of gas turbine engines, extrusion dies, and aerospace components through the 

thermomechanical processing route [213], [214]. Inconel 718 exhibits excellent corrosion 

resistance, high strength, and good weldability. The high strength of the Inconel 718 is 

predominantly due to the formation of ordered gamma double prime (Ni3Nb) precipitates [215]. 

However, the control of the microstructure is of paramount interest to obtain superior 

performance. Therefore, the deformation parameters are controlled and studied at each 

Our study of the phenomena induced by laser/powder interactions had a double 

objective: (i) to exploit the in-situ measurement systems available on the industrial 

devices of the different partners of the project; (ii) to characterise the behaviour of the 

materials during their elaboration by the processes studied within the framework of the 

ENABLE project with the aim of being able to feed representative behaviour laws of 

the processes. The last chapter of the thesis is devoted to the study of Inconel 718 

produced by SLM 

This chapter is dedicated to provide the experimental data for the constitutive-based 

modeling approach (Work Package 1), the thermomechanical response of the L-PBF 

processed Inconel 718 alloy is investigated. The influence of deformation conditions, 

i.e., temperatures and strain rates, are studied using hot torsion tests. It is noticed that 

the deformation conditions strongly influence the microstructural refinement 

influenced by dynamic recrystallisation and recovery. Also, the material's initial state, 

such as production state (in our case, the L-PBF process), plays a critical role.  The L-

PBF processed Inconel 718 samples showed a deformation activation energy of 353 

KJ/mol-1. The samples deformed at 1000 ̊C showed the highest elongation %, which 

can be attributed to the dynamic behavior of the material. 

“ 
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thermomechanical processing step. The thermomechanical behavior of a material is strongly 

influenced by the testing parameters such as strain, strain rate, and temperature. In the literature, 

many studies have been focused on studying the deformation behavior of Inconel 718 using hot 

compression or gleeble tests. However, the hot compression tests are suitable for studying the 

material behavior at low strain rates [216]. In comparison, the hot torsion tests can simulate the 

large deformations of the materials [217].  

Thermomechanical processing routes are used to alter the microstructural properties of the 

metal and alloys. However, the metals and alloys exhibit complex thermomechanical responses, 

i.e., work hardening (WH), dynamic recovery (DRV), dynamic recrystallization (DRX), 

depending upon deformation parameters [218], [219]. DRX and DRV are competitive 

restoration mechanisms in metals and alloys during hot deformation. However, the Inconel 718 

is a low stacking fault energy material; therefore, DRX is a predominant mechanism that 

controls the microstructure evolution during thermomechanical processing. Many published 

studies discuss the DRX behavior concerning hot working conditions in Inconel 718. Generally, 

there are two types of DRX mechanisms: Continuous dynamic recrystallization (CDRX) and 

Discontinuous dynamic recrystallization (DDRX) reported in the literature for Inconel 718 

[220], [221].  DDRX mechanism is mainly characterized by the nucleation and growth of the 

nuclei from the bulging of the grain boundary. In contrast, CDRX is characterized by 

continuous rotation of the dislocation cell boundaries into sub-grain boundaries, leading to high 

angle grain boundaries [222]–[224]. Lin et al. [225] reported that DDRX plays a dominant role 

during the nucleation stage of the DRX mechanism in Inconel 718. However, Wang et al. [226] 

reported that decreasing the deformation temperature promotes the CDRX mechanism. 

Similarly, Zhang et al. [227] concluded that the DDRX and CDRX mechanisms co-occur in 

Inconel 718 superalloys during hot working conditions. Therefore, it can be supposed that there 

is no clear consensus on the type of DRX mechanism during the hot deformation of Inconel 

718. 

The good weldability of Inconel 718 due to the low content of Al and Ti makes it a suitable 

candidate for the L-PBF process [228]. The interest in studying the thermomechanical response 

of the SLMed Inconel 718 is of great importance due to its design optimization and complexity-

free manufacturing. In literature, many studies discuss the flow behavior of cast and wrought 

Inconel 718 at high-temperature deformation [219], [226], [229]–[231]. However, a crucial 

understanding of the flow behavior of the SLMed Inconel 718 at high temperatures is required. 

Therefore, we present a study on the hot deformation of additive manufactured Inconel 718 
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using hot torsion tests which will be complementary to the more classical hot compression tests. 

This study meets several objectives: (i) increase the knowledge of the hot behavior of additive 

manufactured Inconel 718, (ii) make comparisons with the behavior of the same material 

manufactured with other processes and (iii) obtain data to feed the models of behavior laws 

developed in the other work packages of the ENABLE project. 

The present study investigates the thermomechanical deformation of SLMed Inconel 718 at 

strain rates of 0.01, 0.1, and 0.1 s-1 over a temperature of 800, 1000, and 1100 °C. The 

understanding between the flow stress behavior and dynamic restoration process is presented. 

 

6.2. Experimental  

6.2.1. Material and Methods 

The chemical composition of the as-received gas atomized Inconel 718 alloy (supplied by 

carpenter additive, UK) powder with a particle size distribution of 45-106 μm is listed in Table 

17. Cylindrical-shaped specimens of diameter 16 mm and height 55 mm are printed in the 

vertical direction, where the long axis is parallel to the building direction. The samples are 

fabricated using commercial machine RenAM 500Q (Renishaw, Germany), i.e., equipped with 

4 continuous Yb- fiber lasers achieving a maximum power of 500 W and a laser spot diameter 

of 85 µm. The processing parameters used for printing are tabulated in Table 18.  

 
Table 17: Chemical composition of Inconel 718 powder. 

 
 
Table 18: Process parameters used for this study. 

Parameter Value 

Laser power (W) 212.5 

Scanning speed (mm/s) 850 
Hatch distance (mm) 0.09 
Layer thickness (mm) 0.06 
Scanning strategy 10 mm stripes with rotation of 67° in 

consecutive layers 
 
 

 Ni  Cr Fe Nb+Ta Mo Ti  Al 
Powder 
for SLM 

50-55  17-21 Bal. 4.75-5.5 2.8-3.3 0.75-
1.15 

0.30-
0.70 
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The printed samples are heat-treated at 850 °C for 2 h in an Ar gas atmosphere followed by air 

cooling. The heating cycle is depicted in Figure 106a.  The heat-treated samples are machined 

to torsion test samples with a gauge diameter (2R) of 7.5 mm and gauge length (L) of 18 mm, 

as shown in Figure 106b. 

 

6.2.2. Torsion Tests 

The thermomechanical influence on heat-treated SLMed samples (Figure 106b) is studied 

experimentally using hot torsion tests (in-house designed by CEIT IK4, Spain). The test 

conditions are summarized in Table 19. Before testing, the samples are held for 10 min to reach 

temperature equilibrium. After tests, the samples are water quenched to reach room 

temperature. The temperature is monitored on one side of the sample using a K-type 

thermocouple.  

Table 19: Hot torsion test conditions. 

Parameter Value 

Temperature (°C) 800, 1000, 1100 

Strain rate (s-1) 0.01, 0.1, 1 

Heating rate (°C/s) 1 

 

Torque (𝛤) and the number of revolutions (𝑁) are measured which later converted to von 

Mises stress (𝜎) and strain (𝜀) using the following equations [232]: 

𝜎 =
3.3√3𝛤

2𝛱𝑅3
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Figure 105: (a) Heat treatment profile, (b) As built sample and heat-treated machined test sample. 
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𝜀 =
2𝛱𝑅𝑁

√3𝐿
 

Equation 37 

Where 𝑅 and 𝐿 are the gauge radius and length of the specimen.  

6.2.3. Microstructural Observations 

The deformed specimens are precision-cut along the cylindrical radial axis from the center of 

the samples. The sectioned samples are mounted in conductive resin for metallographic 

preparations. The mounted samples are ground to 2400 grit using SiC papers, and distilled water 

is used as the coolant. The samples are polished to 1 μm using Diamant solution and finally 

polished with colloidal silica. The samples are chemically etched using the kalling reagent for 

5 min for optical microscopy. For EBSD/SEM observations, the samples are electropolished 

using a solution of 10 g oxalic acid and 100 ml distilled water for a duration of 12-15 s at 6 V. 

EBSD analysis is performed on an XY plane at the edge of the samples.  

EBSD analysis is done using a Zeiss scanning electron microscope equipped with an EBSD 

detector provided by Oxford instruments operating at 30 kV. A 200*200 μm area is scanned 

with a step size of 1 μm and analyzed using OIM software. Before analysis, the obtained EBSD 

data is cleaned up using a single iteration of grain dilation with a grain tolerance angle of 5° 

and minimum grain size of 2 pixels. The grain boundaries with a misorientation angle of 2-15 

are considered as low angle grain boundaries (LAGBs), whereas high angle grain boundaries 

(HAGBs) are those with misorientation greater than 15. It also is noted that some of the 

interpretation of the results contains cropped magnified EBSD images for better visibility. But 

all the statistical information is reserved.  

6.3. Results 

6.3.1. Analysis of Stress-Strain Curves 

The deformed samples and corresponding flow stress-strain curves of the Inconel 718 torsional 

samples are shown in Figure 107. The flow stress curves show the material strain resistance 

level and the intensity of the softening for given conditions. The samples deformed at higher 

temperatures (i.e., 1000 and 1100 °C) and different stain rates showed typical dynamic 

recrystallization (DRX) stress-strain curves [233]–[235]. A strong flow stress peak is followed 

by a constant stress level, i.e., steady-state level.  

In samples deformed at 800 °C, no steady-state is observed, but a substantial softening after the 

peak stress is evident. Also, the samples at 800 °C show a brittle fracture and almost negligible 
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ductility with a maximum strain of only 0.6.  Therefore, for further analysis, we have not 

considered the samples deformed at 800 °C.  

 The peak stress (𝜎𝑝) is extremely sensitive to the deformation temperature and strain rate, i.e., 

it decreases with an increase in the temperature and increases with an increase in the normal 

strain rate in Ni-based superalloys [236]–[239].  It is worth mentioning that the peak strain, 

which corresponds to the peak stress, decreases with a decrease in strain rate. 

After attaining the peak stress, softening is followed, attributed to the dynamic recrystallization 

or recovery phenomena [240]. However, in Ni-based superalloys, dynamic recrystallization is 

predominant [241]. Large amounts of dislocations are generated during initial hot deformation, 

i.e., controlled by work hardening and dynamic recovery. With continued deformation, the 

(a) 

(b) 

Figure 106: (a) Deformed samples, (b) Stress-strain curves for the deformed samples. 
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accumulated dislocations exceed a critical dislocation density point, after which new grain 

nucleates and grows, resulting in refined microstructure [242], [243].  

Moreover, serrations in the stress-strain curves for all the samples could be observed. Although 

the magnitude of serrations changes. The serrations in flow stress curves result from the 

successive multiple cycles of dynamic recrystallization. When the critical dislocation density 

(𝜌𝑐) is attained, the nucleation of new grains starts. If the 𝜌𝑐 of the next DRX cycle is attained 

before completing the last DRX cycle, a single broad peak flow stress-strain curve is obtained. 

However, if the two DRX cycles do not overlap and the occurrence of DRX cycles follows one 

another, the serrations are observed in the flow behavior curves. Each serration denotes the 

individual DRX cycle involving an increase of work hardening rate followed by the generation 

of new grains [244]. 

 

6.3.2. Critical Stress and Strain 

Critical parameters usually initiate dynamic recrystallization (DRX) during hot deformation, 

mainly critical strain (𝜀𝑐) and critical stress (𝜎𝑐). Therefore, it is essential to determine these 

critical entities, which are strongly influenced by the thermomechanical deformation conditions 

such as strain rate and temperature. However, finding of exact values of critical conditions is 

very difficult. 

In literature, several methods to predict the critical strain and stress based on computational or 

experimental approaches are reported [245]–[250]. For example, Cram et al. [251] found the 

critical conditions for the nucleation of the DDRX using a physical-based model by coupling 

polyphase and grain growth models. Although the model results showed good agreement with 

the experimental values, it is not advised to be used for low alloy metal materials due to its 

difficulty in predicting material physical parameters. As, Inconel 718 is not as low alloy 

material , we have used Poliak and Jones [248] method to calculate the critical strain based on 

stress-strain curves. For example, experimental data -for temperature 1000 °C and strain rate 

0.1 is used to show the proposed methodology, as illustrated in Figure 108. Firstly, raw data 

smoothing is performed using high-order polynomial curve fitting. To calculate the critical 

strain, which is an onset of the dynamic recrystallization, work hardening rate (𝜃 =
𝜕𝜎

𝜕𝜀
), i.e., is 

calculated and plotted as a function of stress until the peak stress. The plastic region of the 

stress-strain curve consists of three stages, i.e., work hardening, softening, and steady-state. 

Stage 1 is the work hardening state in which the dislocation density increases linearly and flow 

stress increases rapidly with increased strain. Stage 2 is softening, when the dislocation density 
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exceeds the critical threshold and DRX onsets. The new recrystallized grains reduced the 

material's dislocation density, directly related to the decrease in the work hardening (i.e., the 

work hardening rate decreases much faster) and flow stress. Critical strain is defined at the start 

of stage 2. The final stage is the steady state in which a balance between work hardening and 

dynamic softening is reached. 

Figure 107: (a) Smoothened stress-strain curve for sample deformed at temperature of 1000 °C and strain rate of 0.1 s-1, (b) indication of 

critical stress and critical strain on the flow curve, (c) plot of  𝜃 vs 𝜎, and (d) plot of  
𝜕𝜃

𝜕𝜎
 vs 𝜎. 

(a) (b) 

(c) 
(d) 
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The minima of derivative work hardening rate and flow stress are obtained in Figure 108 to 

precisely calculate the critical points. The critical stress is identified as the corresponding strain 

associated with the minima. The critical strain is marked in the stress-strain curve, as shown in 

Figure 108. Similarly, the critical strain is calculated for all curves and used further to calculate 

activation energy and the Zener-Holloman parameter.  The critical strain increases with an 

increase in strain rate and decreases with an increase in temperature. Also, the critical strain is 

linearly dependent on the peak strain and shows a relationship of Critical strain = 0.6*Peak 

strain on average (Figure 109). 

 

6.3.3. Zener-Holloman Parameter and Activation Energy 

Thermomechanical deformation of metallic alloys is a thermal activation process. Therefore, 

the metal atoms need to overcome an energy barrier during deformation. In other words, this 

energy barrier could be considered a difficulty level of the material for hot deformation, which 

can be calculated from the stress-strain curves obtained by thermomechanical tests.   

Sellars and Tegart [252] proposed constitutive equations to show the relationship between the 

Zener-Holloman parameter (Z), flow stress, strain rate, and deformation temperature. In our 

study, we used the hyperbolic sine function to calculate the activation energy of deformation 

(Q).  

𝐴 sin ℎ(𝛼𝜎𝑝)
𝑛
= 𝜀̇ exp (

𝑄

𝑅𝑇
) = 𝑍 

Equation 38 

 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.12 0.14 0.16 0.18 0.2 0.22

St
ra

in
_C

ri
ti

ca
l

Strain_peak

Figure 108: Relationship between peak strain and critical strain. 
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Where, A, 𝛼,  𝑛 are material constant. R is the universal gas constant (8.31 J mol-1 K-1), T is 

absolute temperature, and 𝜀̇ is strain rate. 𝛼 is considered as the adjusted stress multiplier and 

expressed as  

𝛼 =
𝛽

𝑛′
 

Equation 39 

Parameters 𝛽, 𝑛′, and 𝑛 can be obtained from the slopes of the plots of ln �̇� vs 𝜎𝑝, ln �̇� vs. ln𝜎𝑝, 

ln �̇� vs. lnsinh (α𝜎𝑝), respectively. 𝛽  = 0.0297 and 𝑛′ = 5.292 is calculated from the average of 

the slopes of the plot ln 𝜀 ̇ vs 𝜎𝑝, ln𝜀 ̇ vs. ln𝜎𝑝, respectively, as shown in Figure 110. Based on 

the equation, 𝛼 is calculated as 0.0056. 𝑛 found to be 3.920 by taking the average slope of ln(ϵ˙)- 

ln(sinh(α*𝜎𝑝) as shown in the Figure 110.  Constant A i.e. A = 6.02787E+13 can be calculated 

from the intercept of (lnZ- ln(sinh(α*𝜎𝑝)) plot as shown in Figure 110.  
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Q, i.e., 379.62 KJ/mol is calculated based on the hyperbolic sine law curve fitting to the peak 

stress given by the equation. 

𝑄 = 𝑅 {
𝜕 ln �̇�

𝜕 ln sinh(𝛼𝜎𝑝𝑘)
}
𝑇

 {
𝜕 ln sinh(𝛼𝜎𝑝𝑘)

𝜕(
1

𝑇
)

}
�̇�

 

Equation 40 

The obtained value of Q agrees with the reported values in the literature for Hot compression 

tests of Inconel 718 alloy [253], [254]. 

6.3.4. Microstructural Investigations 

6.3.4.1. Optical Micrographs 

The heat-treated Inconel 718 samples exhibit distinct microstructure with a clear indication of 

melt pools and scan vectors, as shown in Figure 111. From the micrographs, it can be noticed 

that columnar grains are grains in the build direction which is the direction of the heat flow. 

Higher magnification of the optical images perpendicular to the build direction and the build 

Figure 110: Heat treated samples perpendicular to build direction (a,b), and along build direction (c,d). 
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direction show dendritic/cellular segregation patterns. As shown in Figure 111, the dendritic 

growth is spanned across several layers, which implies dendrites' epitaxial growth.  

The dendritic/cellular segregation patterns on higher magnification are observed in the Inconel 

718 samples as depicted in Figures 111b and 107d, where the image is taken along the build 

direction and perpendicular to the building direction, respectively. The dendritic growth spans 

several scan layers, as shown in Figure 111d, indicating the epitaxial growth of grains and 

dendrites from one layer to the next. 
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6.3.4.2. Grain Morphology 

Figure 112 shows the Inverse pole figures of the samples deformed at different temperatures 

and strain rates, along with the undeformed sample (Figure 112a). The undeformed sample has 

an average grain size of 29 μm. Deformation temperature significantly influences the size of 

the recrystallized grains. At higher temperatures, the recrystallized grains grow more quickly 

and become coarser, owning the effects of thermally activated phenomena such as dislocation 

Figure 111: IPF maps for samples (a) Heat treated undeformed, (b) 1000 °C-0.01s-1, (c) 1000 °C-0.1s-1, (d) 1000 °C-1s-1, (e) 1100 °C-

0.01s-1, (f) 1100 °C-0.1s-1, and (g) 1100 °C-1s-1. 
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mobility and diffusion is accelerated as reported in [255]. This may be why samples deformed 

at 1100 °C shows bigger size than those deformed at 1000 °C (Figure 113). 

Strain rate also plays an essential role in grain size evolution, and it is often reported that the 

grain size decreases as the strain rate increases. But the evolution is subjected to the strain at 

which the grains are observed. However, in our case, the samples are studied after the breakage. 

So, it is not possible to confer a clear relation with strain rates. Although, we observed that the 

samples with higher strain or elongation show smaller grain sizes, whereas the samples which 

showed lower elongation have larger grain sizes. It may be because the samples with high 

elongation undergo recrystallization entirely, whereas samples that show lower elongation have 

un-recrystallized grains. It can also be conferred from the stress-strain curves where the 

serrations in the sample deformed at 1000 °C show continuous cycles of work hardening and 

recrystallization. This can be the reason for the high variation in the grain sizes for samples 

1100-0.01, 1100-0.1, and 1100-1 (Figure 113), which shows low elongation, as shown in Figure 

107b. Also, the DRX grain size remains constant once during deformation; therefore, this could 

be the possible reason for low variation in the grain sizes for samples deformed at 1000 °C, 

which indicated that most of the grains are recrystallized.  
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6.3.4.3. Misorientation Angle Evolution 

The nucleation of recrystallized grains is dominated by the generation and annihilation of the 

dislocations. Therefore, a change in the substructure's misorientation angle can be observed. To 

better understand the microstructural evolution, the misorientation angle distribution for 

LAGBS and HAGBs is plotted in Figure 114. In the case of the undeformed sample (HT), 

LAGBs (<15°) have an area fraction of 47 %, while the area fraction of the misorientation angle 

of 60° is only 0.08%. Therefore, it can be concluded that there is a negligible number of twins 

present before deformation. While the area fraction of  LAGBs decreases with an increase in 

the strain rates as observed for temperatures 1000 and 1100 °C. The increase in the 

recrystallization degree may induce a decrease in the substructure. In addition, the average 

misorientation angles at strain rates of 0.01,0.1,1 and temperatures of 1000 and 1100 °C are 24, 

27, 28, 22, 24, and 26, respectively. The effect of temperature on the average misorientation 

angle distribution is not much distinct. Interestingly, in deformed samples, the area fraction of 

the misorientation angle of 60° is significantly higher due to the generation of twin boundaries 

during deformation. Twin boundary evolution will be discussed in the following sections. 

 

6.3.4.4. Twining Evolution 

The evolution of annealing twins during DRX is commonly observed in low stacking faults 

materials such as Ni-based superalloys. The annealing twins help reduce the grain boundary 

energy. Therefore, the DRX mechanism progresses while promoting annealing twinning [225]. 

During the grain boundary motion, new annealing twins can be formed, which will further 
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enhance the nucleation rate of the DRX process. The dislocation density and misorientations at 

the interface of the newly formed grain and deformed grains reduce significantly. Thus, the 

driving force is lowered, which inhibits the further growth of the recrystallized grains. 

Knowingly, the presence of twins at the interface changes the misorientation and provides 

additional boundary energy for simulating the grain boundary motion resulting in some degree 

of grain growth [256][26]. 

The literature reports that the number of Σ3 boundaries (annealing twins) is proportional to the 

grain boundary migration velocity and distance moved by the grain boundaries [257]–[260]. In 

the last section, we observed a clear peak at an angle corresponding to the twin boundary (60°) 

(see Figure 114). It implies that twining plays a significant role in the deformation behavior in 

our study as well. Usually, twins can be classified as incoherent and coherent twins. It is 

believed that the coherent twin is the straight lines, whereas incoherent twins are curves. Also, 

twins are favorable sites for DRX nucleation due to their high stored energy [261].  In this 

study, annealing twins are characterized by a misorientation angle of 60° about the axis with a 

tolerance angle of 8.66° described by Brandon’s criterion [262], regardless of their coherent 

versus incoherent character. 

The area fraction of the twin 60° <111>  is shown in Figure 115. Initially, there is a negligible 

amount of twins in the initial undeformed sample. The number of twins gradually increases as 

the deformation temperature and strain rate increase.   

 

To quantify the annealing twinning, we have calculated the twin boundary per grain and twin 

density. Twin boundary per grain indicated the twin fraction inside an individual grain and 

can be expressed as [226]. 
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𝑁𝐺 =
𝑁2 − 𝑁1
𝑁1

 

Equation 41 

Where N2: total grains including the twin boundaries, N1: number of grains ignoring twin 

boundaries. 

Twin density is considered a number of twin boundaries intercept per unit length and 

mathematically expressed as [263]. 

𝑁L =
𝐿𝑇𝐵2

S𝜋
 

Equation 42 

𝐿𝑇𝐵 represents twin boundary length, and S is the corresponding area. 

The twin boundary per grain increases with an increase in strain rate; also, it is highest for the 

samples deformed at 1100 °C. It is consistent with the grain size. Smaller the grain size, the 

smaller the twin boundary per grain. Therefore, it can be implied that the smaller grains are free 

from twins, which can also be observed in Figure 116. Also, these samples show the highest 

elongation, and serrations in the flow curves indicate continuous DRX cycles. Therefore, as the 

DRX progresses, most boundaries lose their twin character [264]. However, the twin density 

decreases with increased strain rate and temperature. The twin density is inversely proportional 

to the square of the corresponding grain size, as explained in [265]. 

6.3.4.5. Twin Boundary Interactions 

The information regarding the structure of the HAGBs is less known than LAGBs. Some of the 

HABGs can be regarded as special boundaries. For example, the coherent twin boundaries, also 
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known as low Σ boundaries (annealing twin boundaries, Σ3), have a relatively regular structure 

and confer special interfacial properties. While the high Σ values, commonly bigger than Σ27, 

are regarded as general or random boundaries. Therefore, it is interesting to know the interaction 

behavior of low Σ boundaries. 

The interaction between primary twins (Σ3) and high order twins (Σ9, Σ27) characterized by 

the Brandon rule is studied. The CSL model states that the misorientations must be conserved 

at the triple points to complete the entire circuit.  This conservation can be given by “the sigma 

combination rule,” i.e. 

𝛴𝑎 ⋅ 𝛴𝑏 =  𝑚 ⋅ 𝛴𝑐2 

Equation 43 

, where Σa, Σb, and Σc are the Σ values of the three boundaries that meet at the triple junction. 

The scalar quantity m can be any common divisor of Σa and Σb. 

For example, when the two Σ3 twins meet at a triple junction, it yields to the Σ9 boundary as 

shown in Figure 117b (marked by white circle). Similarly, when a Σ3 and Σ9 boundary meets 

at the triple junction, it generates either Σ3 boundary or Σ27 boundary, also shown in Figure 

117b (encircled in red). If the number of twins is higher in grain, it can form high order twins 

by interaction at triple points. The energy and dislocation density at triple points is higher than 

Figure 116: (a) Grain boundary character distribution, (b) Interaction between annealing twins in a grain for sample deformed at 1100 C and 
stain rate 0.1 s-1 (Black lines: Σ3 boundaries, Blue lines: Σ9, Brown line: Σ27). 
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the neighboring grain boundaries. Therefore, triple pints can also be a nucleating site for DRX 

[266], [267]. 

 

Most of the twins are observed in the large grains, and small grains are twin-free. Similar 

observations have been reported in previous studies as well [268]. It is also noted that the 

annealing twins typically form inside the recrystallized grains behind the migrating grain 

boundary. Azarbarmas et al. [268] reported the nucleation of DRX grains through the formation 

of annealing twins and step-wise explained the process for the sample deformed at 1100 °C and 

strain rate 0.1 s-1. The serrated grain boundaries are first formed, followed by the bulging 

phenomenon. Then the twins start to form behind the bulged grains. Similar observations are 

also reported in our study (Figure 118). It implies that the annealing twinning plays a critical 

role in the nucleation and growth of new recrystallized grains.  

6.3.4.6. Grain Orientation Spread 

Different methodologies are reported to distinguish DRX grains and deformed grains. For 

example, Mandal et al. used grain size to determine the DRX grains from deformed grains 

(a) (b) (c) 

(f) (e) (d) 

Figure 117: Twin boundaries marked in blue presented for samples. The arrows indicated the evolution of twins behind 
the moving grain boundary. 
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[269]. However, this criterion can only be used when there is a clear difference between DRX 

grains and deformed grains [40]. Other methods are based on the EBSD image quality (IQ) and 

calculation of grain orientation spread from the EBSD map. The image quality (IQ) method 

assumes that the IQ of the recrystallized grain is higher than the deformed grains. But the IQ 

can be affected by the quality of the polished sample as well. Therefore, it is not advisable to 

use IQ for portioning the DRX grains from the deformed grains. GOS value represents the 

average difference of the misorientation angles to the grain mean orientation. GOS can be 

mathematically expressed as [270]  

𝐺𝑂𝑆 =
1

𝑁
∑{min {𝑐𝑜𝑠−1 (

𝑡𝑟𝑎𝑐𝑒(𝑔𝑎𝑣𝑒[ℎ𝑖𝑔
𝐴] − 1)

2
)}}

𝑁

𝐴=1

 

Equation 44 

Where A: Ath measurement point in a grain consisting N points; 𝑔𝑎𝑣𝑒: average orientation of the 

grain; 𝑔𝐴: orientation measured at the Ath position in a grain; ℎ𝑖: appropriate symmetry element 

resulting in minimum misorientation angle between the Ath measurement and the average 

orientation. 

GOS of the DRX or strain-free grains is <2° and for deformed grains >2° [227]. Figure 119 

shows the area fraction of the two distinct regions, i.e., DRX grains or Undeformed grains (GOS 

<2°) and deformed grains (GOS: 5°-10°).  The area fraction of the recrystallized grains 

increases with the strain rate for both temperatures. A slight discrepancy for the 1000-0.1 

sample could be arisen due to the variation linked to the sample location of the EBSD 
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Figure 118: Area fraction of the DRX/undeformed grains and deformed grains based on GOS. 



Chapter 6 

 

- 172 - 
 

measurement.  Also, it could be observed that the 1100 °C samples have the highest number of 

deformed grains compared to 1000 °C. The possible reason for this could be that the samples 

fracture or break even before the complete recrystallization is achieved due to thermal 

softening. This can also be proved based on the stress-strain curves that samples at temperature 

1100 °C show less strain than samples at 1000 °C.    

6.3.5. Recrystallization Mechanism 

In metals, especially in low or medium stacking flow energy materials such as Nickel, copper 

and austenitic iron, the recovery process is slow, leading to dynamic recrystallization if the 

critical deformation condition is met. In simple terms, new grains nucleate at the old grain 

boundaries, but as the material continues to deform, the dislocation density of the new grains 

increases, which inhibits further grain growth. Another factor that could cease the growth of 

the newly recrystallized grains is the nucleation of other grains at the migrating boundaries. If 

the clear distinction between stages of nucleation and growth is visible, this is called 

discontinuous dynamic recrystallization (DDRX) or, generally, DRX [271]–[275]. Another 

mechanism that leads to the formation of HAGBs during thermomechanical deformation is 

continuous dynamic recrystallization (CDRX). In DDRX, grain boundary bulging is a prelude 

to the new grain growth. The development of subgrain boundaries near the pre-existing HAGBs 

provides the driving force for bulging. New grains nucleate at the boundaries of the growing 

grains, leading to the thickening of the grains observed. If there is a significant difference 

between the newly recrystallized grain size and initial grain size, the so-called “necklace” 

structure could be observed. The mean grain size of the recrystallized grains does not change 

as the recrystallization proceeds. 

Figure 119: Optical micrographs of etched samples deformed at 1100 °C and strain rate, (a) 0.01 s-1, (b) 0.1 s-1. 
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Contrary to DDRX, in CDRX, the new grains transform subgrain boundaries into HAGBs. The 

mechanisms by which the subgrain rotation occurs are not yet evident. Still, it is usually found 

in the materials in which the dislocation motion is inhibited either by lack of slip systems or 

solute drags such as High stacking fault materials (Magnesium, Aluminium alloys) [276]. 

Unlike DDRX, the nucleation and growth stages are not distinguishable.  

Grain boundary bulging could be seen in the Optical micrograph shown for sample 1100 °C-

0.01 s-1 as shown in Figure 120. Therefore, it can be implied that the DDRX is the primary 

recrystallization mechanism in Inconel 718, as reported in the literature [268]. The cumulative 

misorientations along the HAGBs and from grain interior to the grain boundary are examined 

in Figure 121 and 122. As can be seen, in none of the samples, the misorientation exceeds the 

8°. As for CDRX, a misorientation angle between 10-15° is required for the nucleation and 

growth of new grain [277].  Also, the fraction of LAGBs is not significantly higher in deformed 

samples. The LAGBs fraction for the samples deformed at temperatures of 1000 and 1100 °C 

Figure 120: Grains indicating the lines in the grains for cumulative misorientation presented in Figure 122. 
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and at strain rates of 0.01, 0.1, and 1 s-1 are 0.123, 0.103, 0.096 and 0.158, 0.029, 0.086, 
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respectively. 

Although the cumulative misorientations along the grain boundaries and within the grain do not 

provide concrete evidence of CDRX, we found recrystallized grains inside the grains for the 

samples deformed at 1100 °C, as shown in Figure 123. No such grain formation is observed for 

deformation temperature of 1000 °C, and the number of such recrystallized grains is minimal 

for 1100 °C samples. The reason could be that some of the sub-grain boundaries may have 

formed in the initial grains at the early stage of deformation in a localized way. As the 

deformation progresses, the sub-grain boundaries rotate through constant dislocations 

absorption and finally transform into HAGBs. Therefore, it can be implied that the CDRX could 

happen at a deformation temperature of 1100 °C in a very localized way. Similar findings are 

also reported by Wang et al. [226].   
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Figure 121: Cumulative misorientation for the lines indicated in Figure 121 (a, b) Line A1 &A2, (c, d) Line B1 & B2, (e, f) Line 
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This concludes that the DDRX is predominantly the primary DRX mechanism and annealing 

twinning, but CDRX could also be observed. A further study on the evolution of grains during 

the CDRX mechanism is highly needed.    

 

6.4. Conclusions 
Our study of the phenomena induced by laser/powder interactions had a double objective: (i) to 

exploit the in-situ measurement systems available on the industrial devices of the different 

partners of the project; (ii) to characterise the behaviour of the materials during their elaboration 

by the processes studied within the framework of the ENABLE project with the aim of being 

able to feed representative behaviour laws of the processes. The last chapter of the thesis is 

devoted to the study of Inconel 718 produced by SLM. 

The following can be concluded from the above discussed results: 

• The flow stress curves obtained for SLMed Inconel 718 samples under hot deformation 

tests shows that the grain refinement through DRX mechanism is predominant. The 

presence of serrations confirmed this phenomenon. 

• Samples deformed at 1000 °C shows higher elongation compared to the samples 

deformed at 1100 °C. It can be concluded that the higher softening at elevated 

temperature of 1100 °C led to the early failure of the samples than 1000 °C samples. 

• The calculated Q, i.e., 379.62 KJ/mol for SLMed Inconel 718 samples agrees with the 

reported values in the literature for Hot compression tests. 

Figure 122: Evolution of inner grains for samples deformed at 1100 C and strain rates of (a) 0.01 s-1, (b) 0.1 s-1, and (c) 1s-1. 
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• We have also observed that the DRX mechanism progresses with the evolution of the 

annealing twins. The same is also reported in the literature that commonly, in low 

stacking fault energy materials the DRX phenomena is followed by the evolution of the 

annealing twins which helps to reduce the grain boundary energy. The same can also be 

verified by the misorientation angle which clearly marks that increase in the % of 

annealing twins during thermo-mechanical deformation. 

• Alongside, the interaction among the primary twins (Σ3) and high order twins (Σ9, Σ27) 

is characterized by the Brandon rule. However, it is noticed the fraction of high order 

twins (Σ9, Σ27) is limited. 

• The characterization of the DRX mechanism into DDRX and CDRX is also 

investigated. First, the presence of the neckless structure and grain boundary bulging is 

observed.  Therefore, it can be conferred that the DDRX is the predominate mechanism 

in the SLMed Inconel 718. However, the presence of recrystallized grains inside the 

primary grains for samples deformed at 1100 °C is also observed which marks the 

indication of CDRX mechanism. But the frequency of these types of grains is limited 

and further investigation is needed. 
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C O N C L U S I O N S  

 

Influence of scanning strategies for AlSi7Mg0.6 

• The stripes have higher densification than chessboard strategy due to the present lack 

of fusion porosity at the junction of the islands. Also, the stripes with rotation exhibit 

good mechanical properties such as tensile strength and hardness.  

• Microstructurally, both equiaxed and columnar grains are observed, which is linked to 

a higher value of G at the melt boundary. The same microstructure has been reported 

for AlSi10Mg alloys as well. Three distinct regions within the melt pool are 

investigated, i.e., fine, coarse, and HAZ zone. A Si-rich phase existed as a fibrous 

structure in a pseudo eutectic structure. 

• Cooling rates are estimated using the cell size within the melt pool, and it can be 

concluded that the cooling rates vary within the melt pool due to rapid cooling. The 

center or top of the melt pool has the highest cooling rates, and it decreases gradually at 

the end edge of the melt pool. However, no significant distinction is observed w.r.t. 

different scanning parameters. 

• Finally, the residual stresses at the surface and 2 mm depth are studied along the 

scanning direction, i.e., longitudinal and transverse direction. For all the samples, the 

residual stresses are higher in the longitudinal direction compared to the transverse 

direction. The higher stresses are observed at the center of the samples compared to the 

two edges. The higher residual stresses are observed for 2 mm depth. But no significant 

pattern is observed w.r.t. to scan vector length and rotation. 

Melt Pool Monitoring 

• The sensitivity analysis of the MPM revealed that the melt pool emissions are 

proportionally dependent on the input volumetric energy density especially scanning 

This section concludes the key findings reposted in this thesis. The conclusion is 

summarized chapter wise. Along with the findings, the industrial benefits of the 

proposed methodology are also proposed and discussed.  

“ 
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speed and laser power. The effect of the hatch distance is not very significant in the case 

of MPM sensitivity. 

• The detectability of ADC1 and ADC2 also varies as the detection range of both 

photodiodes is different. It is noticed that ADC2 captures the melt pool anomalies more 

significantly than ADC1. 

• Using of ML techniques such as SVM, showed a possibility to detect the anomalies in 

the parts. However, the ML techniques require a good set of labelled datasets for training 

which is often expensive and laborious task. Therefore, need for more two steps data 

processing is required combining statistical and ML techniques. 

• We showed that the statistical approach combining PCA, T2 Hotelling’s statistics and 

average true range is much robust method to detect the most volatile layers with in a 

part at global scale (layer level). 

• We used a ML model called LSTM-AE to detect the exact location of the defects or 

anomalies mainly hotspots at local scale (melt pool level). However, the global level is 

robust to check the overall quality of the part very quickly and local scale approach is 

relatively computationally expensive and should be used in conjunction with the global 

scale. 

• The MPM system provided by SLM solutions is a robust tool to qualitatively monitor 

the final part's quality. Still, the quantitative comparison of the melt pool signals to CT 

scan is tricky and complicated. The reason could be that the MPM captures the signal 

coaxially, which allows it to follow the melt pool in real-time along with the laser. Still, 

most anomalies, such as porosities, tend to form during the solidification. Therefore, it 

is hard to make a quantitative comparison for porosity detection. 

• Determination of the spatial resolution of the MPM data is also a challenging task as the 

detection spot of the photodiode is smaller than the laser spot diameter. The exact 

number cannot be revealed due to the confidentiality clause. 

Layer Control System 

• The layer control system captures two different process steps, i.e., pre-exposure and 

post-exposure. It is noticed that LCS can capture the powder-bed spread anomalies such 

as part over-heating, part hopping, uneven powder spread, recoater streaking, and 

debris. The quality of the powder-bed spread should be studied in link with the MPM 

signal. 
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• The hierarchy of the powder bed anomalies is also clearly observed. Firstly, part 

overheating and part hopping start to occur, followed by the recoater streaking and 

uneven powder spread. This hierarchy can help mitigate the anomalies and part failure.  

• We proposed two different computer vision algorithms such as CNN and Res-Unet to 

detect the above discussed anomalies. However, the Res-Unet outperforms the CNN 

approach in terms of anomalies localization. Also, the problem of scale variancy of 

defects can also be overcome by the use of semantic segmentation approach. 

Optical Tomography 

• EOSTATE OT supplied from EOS GmbH is a camera-based co-axial in-situ monitoring 

system that successfully captures the melt pool emissions, i.e., directly linked to material 

health. The final image of individual layers compresses the many images obtained along 

with the laser movement. Therefore, it should be kept in mind that a loss of information 

occurs during image compression. However, the OT captures the key variabilities and, 

if used with machine learning approaches, can help improve the quality assurance of the 

final part. 

 

Thermomechanical Deformation of Inconel 718 

• Torsion tests performed at elevated temperatures of 800, 1000, and 1100 °C with strain 

rates of 0.01, 0.1, and 1 s-1 provides an experimental basis for the development of the 

constitutive behaviour law for the SLMed Inconel 718 alloys. 

• The obtained activation energy results are in conjunction with the reported results for 

hot compression tests. The presence of the serrations in the obtained curves confirms 

the onset of the DRX mechanism. Also, the increase in the % of the annealing twins 

concludes that the annealing twining is also predominate alongside the DRX. 

• The so called “Necklace” structure and grain boundary bulging is observed for the 

SLMed samples which confirms the DDX is dominant by the DDRX mechanism. 

Industry Benefits 

The completed work in this thesis can be helpful for the industries in several ways, which 

are as follows: 

• The size of the in-situ monitoring data is enormous, making it difficult to process and 

store for a more extended period. Therefore, the proposed methodology can extract the 
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leading key performance indicators (KPIs) from the in-situ data and prepare a quality 

chart based on the global and local scale of the part. 

• The inter-dependability of the various process steps can also be helpful to mitigate the 

anomalies and identify the root cause for the melt pool instabilities. No such studies 

have been reported as per the author’s findings. 
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F U T U R E  O U T L O O K  

 
• Defects specific melt pool signals: It is pertinent to study and explore the melt pool 

signals for various defects such as lack of fusion, keyhole, and overheating. The local 

powder characteristics can significantly lead to multiple defects, and it is essential to 

classify the melt pool signals based on defects variability.  

• The link between powder bed and melt pool signal: Our study shows that the melt pool 

variability is linked to the powder-bed spread characteristics. Therefore, further analysis 

is required related to the temporal occurrence of powder-bed spread and melt pool 

signal.  

• Process steps interlinking: It is vital to develop and interlink the effect of variability of 

the input parameters on the output results. For example, the humidification of initial 

feedstock material can strongly influence powder flowability and spreadability, directly 

affecting melt pool morphology and thermal emissions. Also, the dissociation of oxide 

layers during the layer can result in the release of hydrogen and oxygen gas in the 

environment which eventually can affect the final part properties.  

• Closed Feedback Control Loop: The ultimate aim of using data analytics techniques 

and in-situ monitoring instrumentation is to develop an intelligent L-PBF process that 

monitors and controls the process based on the quality of each layer. The proposed 

methodology can be used for real monitoring and decision making, as shown in Figure 

124. It can allow the user to stop manufacturing if the critical characteristics of 

anomalies are prevalent in respective layers. It can significantly save powder, energy, 

and other resources. Also, it will be a step forward to a sustainable L-PBF process. 

As discussed, L-PBF process monitoring is still in its infancy stage. There is lot scope 

in terms of enhancing the quality assurance and relatability of the overall process using 

in-situ monitoring hardware and data analytics techniques. Here we present, some of 

the possible future perspective related to L-PBF process monitoring using data 

analytics techniques.  
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• AI-based model: Developing an AI-based model on overall monitoring of the L-PBF 

process autonomously will fully realize the data analytics and instrumentation 

capabilities.  The AI-based models are developed based on the input characteristics 

(powder size distribution, powder morphology, humidity, flowability), process 

characteristics (inert gas flow, powder spreadability, oxygen monitoring), in-situ 

process characteristics (melt pool emissions, powder-bed spread, laser power 

monitoring, strain monitoring, geometrical precision monitoring for individual layers), 

design characteristics (support structures suitability, design constraints such as 

overhang) and part characteristics (mechanical properties, geometric accuracy, part 

density) will provide an ultimate guide for quality assurance of the final part and it will 

enhance the consumer’s confidence-building measures. 

• Development of an open instrumented bench: The commercial in-situ monitoring 

systems are very closed and act as “Black-Box” that makes them difficult to study in 

greater details. Therefore, the understanding of the laser-material interaction behaviour 

Figure 123: Feedback control loop for L-PBF process. 
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and its characteristics can be exploited with the development of an open instrumented 

bench.  The know-how and results obtained on these open systems can be homogenized 

with the commercial systems to improve and check the overall quality of the part in L-

PBF process. 

• Constitutive material behavior law: Other than process monitoring, it is also vital to 

develop AM part-specific constitutive material behavior law models and should be 

calibrated with experimental data. Chapter 6 focuses on providing the experimental data 

for the thermomechanical behavior of the L-PBF processed parts. The same has to be 

realized for different alloys.  

• Advanced Manufacturing: Different AM processes discussed in the literature review 

possess limitations and advantages. Therefore, it is essential to bring different 

techniques to achieve the full potential of the AM. We presented a feasibility study using 

the L-PBF process and the LMD process together. Similarly, further investigations on 

the interface compatibility of the different techniques are required.  
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A P P E N D I X  

A.1. Experimental Set-Up 

A.1.1. Material  
Inconel 718 (chemical composition tabulated in Table 1) powder was used as filler for LMD 

printing on SLMed Inconel 718 samples which also acts as a substrate. The Inconel 718 powder 

with a particle size distribution between 45-150 μm is supplied by Flame Spray Technologies 

(FST, Duiven, the Netherlands).  Similarly, for SLMed samples, the gas atomized Inconel 718 

powder with particle size distribution 45-106 μm is supplied by the carpenter additive (UK).  

The chemical composition of the SLMed Inconel 718 powder is also summarized in the Table 

1. The powder is kept in an airtight container before printing to avoid humidification.  

 
 

A.1.2. Machine 

Selective Laser Melting (SLM) 

SLM samples are fabricated using RenAM 500Q from Renishaw, Germany. The machine is 

equipped with 4 continuous Yb- fiber lasers achieving a maximum power of 500 W and a laser 

spot diameter of 85 µm.  Also, it has a building platform size of 250*250*300 mm. Before 

printing, the building plate is preheated to a temperature of 170 C, and an oxygen level of 200 

ppm is achieved. Argon is used as an inert gas. The printing parameters are summarized in the 

Table 2. 

 

Power (W) Scanning 
Speed 
(mm/s) 

Hatch 
Distance 
(mm) 

Layer 
thickness 
(mm) 

Scanning 
Strategy 

Rotation 

212.5 850 0.09 0.06 10 mm Stripes  67 
 
 

Laser Melt Deposition (LMD) 
 

LMD printing is performed in an IBARMIA ZVH45/1600 Add+Process hybrid machine 

(Figure 1). This multiprocess machine combines the DED technology with 5-axis milling and 

turning (horizontal and vertical) capability. This machine is equipped with a Precitec YC52 

 Ni Cr Fe Nb+Ta Mo Ti  Al 
Powder 
for LMD 

52.8 18.5 18 4.8 3.5 0.75 0.3 

Powder 
for SLM 

50-55 17-21 Bal. 4.75-5.5 2.8-3.3 0.75-1.15 0.30-0.70 

Table 1: Composition of Inconel 718 alloy powder used for LMD and SLM printing. 

Table 2: Process parameters used for SLM printing. 
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cladding head with a collimating and focusing optics of 125 mm and 250 mm, respectively, a 

Sulzer Metco TWIN-10-C Powder Feeder, and a Yb-Fiber Rofin FL030 Laser generator of 3 

kW with a continuous wavelength of 1.07 μm. For the nozzle, a 4-stream coaxial discrete nozzle 

from Precitec is used. The SLMed samples are held tight using cylindrical fixtures, as shown 

in the Figure 1. 

 
 

A.1.3. Specimen Geometry 
 

To study the feasibility of advanced manufacturing using LMD and SLM AM processes. 

Firstly, cylindrical Inconel 718 samples with a diameter of 16 mm and length 55 mm are 

fabricated using the SLM process. The SLMed samples are then used as a substrate for further 

LMD printing of Inconel 718 samples. Cylinders with the same geometry as SLM is fabricated 

using LMD on SLMed samples. The Figure 2 shows the schematic and actual samples 

combining SLM and LMD printing. 

 

LMD Head 

Powder tubes 

Nozzle 

SLMed Sample and Fixture 

SLM part 

LMD part 

Figure 1: (a) Experimental setup used for LMD printing, (b) LMD printed parts. 

(a) (b) 
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A.1.4. Process Parameters 
 

Single clad tracks of 60 mm are printed and analysed to find the best parameters for obtaining 

defect-free desirable morphology of the tracks for LMD printing. The process parameters used 

for optimization are tabulated in the Table 3.  

 

A.1.5. Analysis 
An average of four cross-sections perpendicular to the laser scanning direction is selected for 

optimization. The clad tracks' first and last 10 mm are avoided due to instabilities subjected to 

start and stop conditions. The cross-sections are analyzed for porosity, clad morphology, i.e., 

height (h), width (w), area (A), dilution depth (p), and dilution area (Da), as shown in Figure 3. 

Process Parameter Level 

Laser Power (W) 900, 650, 400 

Feed rate (mm/min) 700, 500, 300 

Powder mass flow (g/min) 8, 6, 4 

Type of coaxial nozzle 4-stream Discrete 

Figure 2. Schematic for the printed samples and actual samples. 

of LMD printing. 

Table 3: Process parameters used for SLM printing. 

Figure 3. Optical micrograph of clad and schematic of clad characteristics. 
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The samples are mirror polished and chemically etched using Kallings 2 etchant. The cross-

section is measured using the Motic SMZ-143 microscopy (Motic, Hong Kong, China) and 

Clemex Captiva®software (Clemex, Longueuil, QC, Canada). 

A.2. Results 
 

A.2.1. Process parameter optimization 
 

The average four values of the cross-sections of all the clads are used to study the single clad 

characteristics (w, h, A, p). Each process parameter (i.e., Laser Power, Feed rate, and Mass flow 

rate) affects the clad characteristics. Therefore, studying the correlation between the process 

parameter and clad characteristics is crucial. Based on the process optimization results, we used 

principal component analysis (PCA) to study the correlation, as shown in the figure 4. Here 

values >0 show the positive correlation, and values <0 represent the negative correlation among 

the variables. The intensity of the color concerns the scale. For example, it can be noticed that 

the clad height is positively related to powder mass flow rate and strongly negatively associated 

with the feed rate. It is important to note that the Area_AR represents the aspect ratio of the 

clad area, which is Width/Depth, whereas the Dilution_AR represents the dilution area aspect 

area which is Width/Dilution Depth. 

 

The same can be verified from the plots of experimental values, as shown in Figure 5. The 

figure shows the clad height, width, and aspect ratio (Area_AR) concerning Laser Power, 

Figure 4. PCA correlation matrix between process parameters and clad characteristics. 
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Feed rate, and Mass flow rate. It could be noticed that Laser power had no significant effect 

on the height, although the width increased at higher laser power. As expected, height and 

width decreased as the feed rate increased.  

The optimal conditions for LMD printing are selected as follows: 

1. Firstly, the dilution depth should be higher than the clad height, as it will ensure deeper 

penetration of the beneath layer to create defect-free and proper adhesion.  

2. Secondly, the aspect ratio should be between 3-5, ensuring good overlap between the 

tracks as reported in the previous study [1,2]. 

3. Thirdly, a mass flow rate of 6.7 g/min is chosen intuitively as a slower mass flow rate 

leads to longer printing time, whereas a higher mass flow rate could lead to more thick 

tracks. 

Therefore, in our study, we choose laser power of 650 W, Feed rate of 500 (mm/min), and mass 

flow rate of 6.7 g/min. 

 

 

 

Figure 5. Plots of clad width, height, and area aspect ratio with respect to process parameters: laser power, feed 

rate and mass flow rate. [Note: Please zoom for better clarity] 
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A.2.2. Layer height optimization 
 

LMD process is not as stable as other AM processes such as SLM or EBM. Therefore, it is 

essential to calculate the correct layer height; otherwise, there are high chances of creating 

porosities between tracks. Therefore, to optimize the layer height theoretically, models already 

reported in the literature [3]. We have used a simple second-order parabola model that uses the 

single track's clad characteristics as inputs to find the height and width for future overlap clad 

tracks. The model showed a high level of accuracy, as reported in [1-3]. The overall 

methodology and equations are discussed [3].  

We calculated the height and width for the first 20 tracks using an overlap of 45 %, as shown 

in the Figure 5. As can be seen, for the first 4 tracks, the height and width are not stable (related 

to the LMD process itself). Therefore, the height and width of the 5th track are used while 

printing.  
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Figure 5. Clad height (left) and width (right) for an overlap of 45 % predicted by second order 

parabola model.  
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R É S U M É  

 

Ces dernières années, la fabrication additive métallique a connu un énorme changement de paradigme, passant du 

prototypage à la production en série en raison de sa capacité à pouvoir produire des pièces complexes. De plus, la 

fabrication additive métallique offre des degrés de liberté supplémentaires en termes de flexibilité et de 

fonctionnalités de conception. De nos jours, les fournisseurs de machines cherchent à améliorer les performances 

des machines commerciales en les instrumentant afin de réaliser des mesures in-situ en temps réel. Cette 

surveillance permettra d'améliorer la qualité, la fiabilité et la répétabilité des pièces. L’enjeu est de pouvoir traiter 

les données capturées in situ et de les corréler avec les différentes étapes du processus. 

Cette thèse présente une méthodologie pour détecter et identifier les anomalies pendant la fabrication d’une pièce 

par le procédé de fusion laser-lit de poudre (L-PBF) en utilisant les instrumentations commerciales in situ. Dans 

un premier temps, une étude approfondie basée sur les aspects microstructuraux et mécaniques de l'alliage 

AlSi7Mg0.6 est réalisée, et la stratégie de balayage la mieux adaptée est identifiée. Cette étude a servi de base 

pour réaliser des corrélations entre les interactions laser/matériaux et le résultat du processus (signaux du bain de 

fusion). 

Différents types d'instrumentation in situ tels que les caméras infrarouges et les systèmes commerciaux à base de 

photodiodes sont étudiés pour mieux comprendre l'interaction laser-poudre. La tomographie optique EOSTATE 

coaxiale basée sur une caméra fournie par EOS GmbH est exploitée, et une étude de cas basée sur des techniques 

d'analyse de données est proposée pour identifier les couches de dérive potentielles. De même, une méthodologie 

basée sur l'apprentissage automatique est développée pour extraire les caractéristiques critiques aux échelles 

globale et locale pour le module in situ de surveillance du bain de fusion de SLM Solutions GmbH basé sur des 

photodiodes. Comme nous le savons, l'interaction laser-poudre dépend non seulement des paramètres du procédé 

mais également de l'étalement du lit de poudre. Les caractéristiques critiques du lit de poudre sont ainsi identifiées 

à l'aide du système de contrôle des couches et d'algorithmes de vision par ordinateur et une méthodologie est 

proposée pour identifier les anomalies d'étalement du lit de poudre et leur influence sur le signal du bain de fusion. 

Une étude de cas est présentée pour étudier l'efficacité et la robustesse de la méthodologie proposée. 

 
Mots-clés : L-PBF, apprentissage automatique, surveillance du bain de fusion, assurance qualité, surveillance in situ 

 

Abstract 

 

In recent years, metal additive manufacturing has undergone a huge paradigm shift from prototyping to mass 

production due to its ability to produce complex parts. In addition, metal additive manufacturing offers additional 

degrees of freedom in terms of flexibility and design functionality. Today, machine suppliers are looking to 

improve the performance of commercial machines by instrumenting them to perform real-time in-situ 

measurements. This monitoring will improve the quality, reliability and repeatability of parts. The challenge is to 

be able to process the data captured in-situ and correlate it with the different stages of the process. 

This thesis presents a methodology to detect and identify anomalies during the manufacturing of a part by the 

laser-powder bed fusion (L-PBF) process using commercial in situ instrumentation. First, an in-depth study based 

on the microstructural and mechanical aspects of the AlSi7Mg0.6 alloy is performed, and the most suitable 

scanning strategy is identified. This study was used as a basis to perform correlations between laser/material 

interactions and the process outcome (melt pool signals). 

Different types of in-situ instrumentation such as infrared cameras and commercial photodiode-based systems are 

studied to better understand the laser-powder interaction. EOSTATE coaxial optical tomography based on a 

camera provided by EOS GmbH is exploited, and a case study based on data analysis techniques is proposed to 

identify potential drift layers. Similarly, a machine learning-based methodology is developed to extract critical 

features at global and local scales for SLM Solutions GmbH's in situ photodiode-based melt monitoring module. 

As we know, the laser-powder interaction depends not only on the process parameters but also on the spread of 

the powder bed. Critical characteristics of the powder bed are thus identified with the help of the layer control 

system and computer vision algorithms and a methodology is proposed to identify powder bed spreading anomalies 

and their influence on the melt signal. A case study is presented to investigate the effectiveness and robustness of 

the proposed methodology. 

 
Keywords: L-PBF, machine learning, melt pool monitoring, quality assurance, in-situ monitoring 


