Introduction

Today, automatic data processing algorithms are ubiquitous. The need for data processing is constantly increasing due to the growth of global data in volume and artificial intelligence offers new methods to exploit these data. Artificial neural networks are brain-inspired algorithms at the core of artificial intelligence. These algorithms beat records in many domains, like natural language processing, gaming, or image classification. However, if artificial neural networks are inspired from the architecture of biological neural networks, today they are mainly run on traditional computers, where processing is spatially separated from memory, and which are not adapted to the many parallel multiplications nor to the large number of parameters of these algorithms. To reduce the energy consumption of these algorithms, neuromorphic computing aims to build circuits with devices emulating neurons and synapses placed as close as possible to each other to reduce the energy losses caused by data transfer.

In this thesis, we study how to use spintronic nano-devices in hardware neural networks. Spintronics, a field of electronics where information is encoded both in the charge and in the spin of electrons, is a very performant technology for data storage, and can therefore provide the massive amounts of non-volatile memory needed for neuromorphic computing. The first challenge for building hardware neural networks with spintronics is to find efficient ways to mimic the key functionalities of synapses and neurons with spintronic devices. The second challenge is to connect these devices densely together on a chip. The crossbar arrays designed for memristive devices can indeed not be used as such for spintronic devices due to their small changes of resistance compared to other resistive switching devices. In this thesis, we harness the ability of spintronic devices to emit and receive microwave signals to build a new breed of hardware neural network that communicates through microwave-encoded signals.

This work combines experimental physics, theoretical and numerical modeling, machine learning and electrical engineering. In chapter I, we introduce the background of artificial intelligence, we show how artificial neural networks operate, their link with biological neural networks, and we present examples of specific neural networks important for this thesis. In chapter II, we give an overview of the field of neuromorphic computing, present its different challenges, and compare different existing technologies for hardware neural networks: Complementary Metal Oxide Semiconductor (CMOS), memristors, optics and photonics, and spintronics. In chapter III, we introduce spintronics. We explain the physics behind magnetic tunnel junctions, the flagship device of spintronics, and we will show we can use these components as radio-frequency emitters (spintronic oscillators) or receivers (spintronic resonators). In chapter IV, we will focus on artificial neurons. We prove experimentally that we can use a spintronic oscillator as an artificial neuron. We used the frequency of an external microwave signal to encode the input data, and we showed that we can use either the phase, the frequency, and the amplitude of a spintronic oscillator as neuron output, which opens the path to implement multiple connection schemes between these devices in a network. In chapter V, we focus on synaptic connections. We present a new method to connect artificial neurons with microwaveencoded outputs to spintronic resonators emulating artificial synapses. With our method, the connectivity does not only rely on spatial configurations with electrical wiring but is also encoded in the frequency domain. We study different aspects of these special synaptic operations through numerical modelling, we demonstrate its validity experimentally, and we solve a handwritten digit pictures task by simulating a layer of these spintronic synapses. In chapter VI, we show how to make a deep neural network (a network with multiple layers of neurons) using spintronic oscillators emulating neurons and spintronic resonators emulating synapses. We focus on particularly efficient types of networks for signal processing and image recognition called convolutional neural network. These networks have a deep structure allowing the extraction of several levels of features. We present a compact architecture to achieve the implementation of convolutional neural networks with spintronic radio-frequency devices fully in parallel, and we show through simulations that such a network can perform as handwritten digit pictures recognition as well as a software neural network.

Finally, we will present the main conclusions of both experimental and simulation results of this thesis, and we will discuss perspectives for future hardware spintronic neural network implementations.

Chapter I: Artificial Intelligence 

Artificial Intelligence 1.Introduction

Artificial neural networks which are designed to handle cognitive tasks (i.e., tasks involving perception, memory, language, decision-making, sensorimotor abilities, etc.), are the algorithms at the core of artificial intelligence. The brain processes cognitive tasks quickly and efficiently. On the contrary, before neural networks, cognitive tasks were difficult to solve with computers because it is difficult to engineer programs that make abstract representations of raw data (e.g., images, recording, texts) to process them. The success of artificial intelligence lies in the architectures of artificial neural networks (which as we will see, are inspired from the brain), and in the development of machine learning, that give the ability to artificial neural networks to learn automatically from experience using data [START_REF] Lecun | Deep Learning[END_REF].

We will first see the bio-inspired operation of artificial neural networks and how they transform raw input data (e.g., the width and length of petals and sepals in Figure 1)

into a new interpretable representation (e.g., the correct flower's name Figure 1). We will see how neural networks can learn from data to solve a problem and we will study the machine learning algorithm we used on this thesis: backpropagation of errors, an algorithm at the core of deep learning. We will then discuss the architecture of different types of artificial neural networks relevant to this thesis: the perceptron, which is the building block of artificial neural networks; convolutional neural networks, whose deep structure allows the extraction of several levels of features; and recurrent neural networks, which possess intrinsic memory for sequence processing.

Operation

Figure 1: Example of inference with an artificial neural network: classification of iris flower species. Neurons are represented by circles and synapses by arrows. Four parameters (the width and length of iris flowers petals and sepals) are injected as inputs of an artificial neural network. Depending on the input, the neural network classifies the flower either as "setosa", "versicolor", or "virginica".

Operation of Artificial Neural Networks

Artificial neural networks take raw data as inputs (in the example of Figure 1, the petal/sepal width and length) and transform them into meaningful outputs (in the example of Figure 1, the iris type). To make these transformations, artificial neural networks perform series of nonlinear transformations as intermediate steps (e.g., the two central layers in the example of Figure 1) to extract different features from data. A network is made of multiple nonlinear nodes called neurons, connected by synapses (see Figure 1). Inspired from the hierarchical architecture of the brain [2,[START_REF] Cichy | Deep Neural Networks as Scientific Models[END_REF], networks that are designed to solve complex problems are often arranged in multiple layers of neurons (see Figure 1) in which case they are called deep neural networks.

In artificial neural networks, we use the simplest mathematical abstraction of biological neural networks. Artificial neurons add up the signal from many other neurons (see Figure 2(a)). They operate a weighted sum of other neurons signals that we call "Multiply-And-Accumulate operation" (MAC) (see Figure 2(a)). The weights are defined by artificial synapses, and each coefficient is called a synaptic weight. Correctly adjusting the synaptic weights, which is called learning, allows neural networks to select the most relevant information and suppress the irrelevant ones. After the summation, neurons operate a nonlinear transformation. Different functions can be used for these transformations. For instance, the Rectified Linear Unit (ReLU) function has output signal only above an input threshold (see Figure 2(b)). We will see later in this thesis (chapter III and VI) how some spintronic devices can exhibit a similar behavior. The action of an artificial neuron can be described as

𝑧 𝑗 = 𝑦 𝑗 = ∑ (𝑤 𝑗𝑖 𝑥 𝑖 ) 𝑁 𝑖=1 + 𝑏 𝑗 𝑓 𝑁𝐿 (𝑧 𝑗 ) (1.1) (1.2)
with 𝑧 𝑗 the results of the MAC operations, 𝑁 the number of neurons connected to the neuron 𝑗, 𝑥 𝑖 and 𝑤 𝑗𝑖 respectively the neurons signals and the synaptic weights, 𝑦 𝑗 the neurons outputs, 𝑓 𝑁𝐿 a nonlinear function, 𝑏 𝑗 is a bias linked to each output neuron. The neurons in gray transmit their signal, which are electrical spikes, through their axon to the neuron in blue. The neuron in blue receives signals though its dendrites. Connections between two neurons (highlighted by red circles in the figure) are synapses. Synapses mitigate the information between two neurons. (d) A biological neuron integrates input electrical spikes from other neurons and thus raises its membrane potential. When the membrane potential of the neuron reaches a threshold, the neuron emits a spike that discharges its potential. Since the neuron does not emit any signal under a threshold, its response function is nonlinear. This is a LIF neuron (see section 1.2)

Biological models of neural networks

Artificial neural networks are inspired from biology. One of the simplest models for a biological neuron is the Leaky Integrate-And-Fire model (LIF) [4]. Each LIF neuron has an internal state which is its membrane voltage potential and the neuronal dynamics is driven by the combination of the summation, firing and leakage: the neuron integrates the electrical signal from other neurons (see Figure 2(c)) and thus increases its membrane potential (summation), it emits an electrical spike when the membrane potential of the neuron reaches a threshold (firing, see Figure 2(d)) and the membrane potential is continuously decreasing in the absence of inputs (leakage) [5]. When a neuron emits a spike, its membrane potential is reset. Synapses modulate the signal transmitted between two neurons.

Spiking neural networks (SNN) is a type of neural networks using biological models like the Leaky Integrate-And-Fire neuron [6,[START_REF] Neftci | Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neural Networks[END_REF]. The networks are time-dependent and asynchronous (because all neurons do not fire simultaneously). Spiking neural networks can be used as simulation of brain activity in the field of computational neuroscience [START_REF] Brette | Simulation of Networks of Spiking Neurons: A Review of Tools and Strategies[END_REF], or to solve event-based tasks [START_REF] Amir | A Low Power, Fully Event-Based Gesture Recognition System[END_REF][START_REF] Stewart | Online Few-Shot Gesture Learning on a Neuromorphic Processor[END_REF]. As we will see through different examples in the next chapter, they are also appealing in the field of neuromorphic computing: a chip implementing spiking neural network can be energy-efficient because it consumes energy only during spike events, which are sparse in time [START_REF] Merolla | A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface[END_REF]. 1.3. Training neural network: how to adjust synaptic weights to select relevant information?

Adjusting the synaptic weights to improve the performance of a neural network is called training. A well-trained neural network is able to generalize feature extraction to new data and is robust to variability in the data. To train a neural network to solve a task, artificial neural networks learn using data. In some cases, the learning can be unsupervised, meaning that the data does not need to be labeled by human experience (e.g., clustering [START_REF] Loyola-González | An Explainable Artificial Intelligence Model for Clustering Numerical Databases[END_REF], prediction [START_REF] Fournier | Financial Time Series Forecasting -A Deep Learning Approach[END_REF], auto-encoding [START_REF] Hinton | Autoencoders, Minimum Description Length and Helmholtz Free Energy[END_REF], image generation [START_REF] Stewart | Online Few-Shot Gesture Learning on a Neuromorphic Processor[END_REF]), but in this thesis, we will focus on supervised machine learning which is the most powerful classification method today. This type of learning requires a training dataset where each sample is labeled with the target output of the network: for example, the name of the flower in Figure 1. At each training iteration, the training algorithm compares the output of the network with the label and uses this comparison to improve the network (by adjusting the synaptic weights). Once the network has been trained, we can test it using a test dataset, which contains different samples than the training dataset and that were not presented to the network previously. By showing that the network can classify novel examples, we prove that the network has learned features that are not only specific to the examples it was trained on but are general to the task it is meant to solve.

The most powerful training algorithm in terms of accuracy is called backpropagation of errors [START_REF] Lecun | Deep Learning[END_REF] (see Figure 3). For this algorithm the distance between the output of the network and the target is quantified by an error function. Backpropagation computes the gradient of the cost function with respect to the synaptic weights of the network in order to update them. The gradient of the cost function with respect to the synaptic weights quantifies how much each synaptic weight influences the result of the network. To compute the gradient of the error function with respect to each synaptic weight in a multi-layer neural network, the algorithm uses the chain rule of derivatives.

The algorithm first computes the gradient of the error function with respect to the synaptic weights of the last layer 𝐿 (this gradient depends on the choice of the error Then, the gradient of the error with respect to the synaptic weights of the last layer is computed, and the chain rule of derivatives is used to compute all the gradients of the network: the error is "backpropagated" through the network. Finally, the synaptic weights are updated using the negative of the gradient to minimize the error. Figures extracted from [START_REF] Lecun | Deep Learning[END_REF].

When all the gradients are computed, synaptic weights are updated through the relation

𝑤 ← 𝑤 -𝜂 𝜕𝐸 𝜕𝑤 , (1.3) 
with 𝜂 a hyperparameter called learning rate. Usually, for each training iteration, instead of computing the gradients with respect to the entire training dataset, we proceed with one batch of example (batches can have a size of one) at the time and each time we compute the gradients only for this batch and we update the weights according to these gradients: this is called stochastic gradient descent [START_REF] Lecun | Deep Learning[END_REF]. The algorithm updates the synaptic weights for the average gradient over the examples of one batch, the performance of the network is then improved by a little amount, another batch is presented, and the procedure is repeated until the error of the network stops decreasing (algorithm convergence).

Examples of artificial neural networks

We will show some neural network architectures which are linked to the different results of this thesis.

1.4.1. From perceptrons to multi-layer networks

Here we introduce simple feedforward networks, which means that during inference, the information is conducted only in one direction, from the data to the results.

The Perceptron of Frank Rosenblatt (1957) is known as the first machine learning algorithm (see Figure 4(a)) [START_REF] Rosenblatt | The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain[END_REF]. It is equivalent to a vector of inputs connected by synapses to a single neuron. It was designed for binary classification: the nonlinear function of the neuron is a threshold function, the output of the neuron is

𝑦 = { 1 0 𝑖𝑓 𝑒𝑙𝑠𝑒. ∑ 𝑤 𝑖 𝑥 𝑖 𝑁 𝑖=1 + 𝑏 > 0 (1.4)
It is known that perceptrons can only classify inputs that are linearly separable [START_REF] Yanling | Analysis and Study of Perceptron to Solve XOR Problem[END_REF]. We show examples of linearly separable and non-linearly separable data in Figure 4(d-e). For multiclass classification problems, we can use a similar network but with multiple output neurons, each of them connected to all the input neurons (see Figure 4(b)). As discussed before, the neuron outputs are often presented as a vector of probabilities: each output is the probability for the presented example to belong to one of the different classes. To express the output as probabilities, the most common method is to use a softmax function instead of a threshold for the output neurons. With the softmax function, the neurons outputs are

𝑦 𝑗 = 𝑒 𝑧 𝑗 ∑ 𝑒 𝑧 𝑗 𝑀 𝑗=1 (1.5)
where 𝑧 𝑗 are the results of the MAC operation for each neuron, and 𝑀 is the number of outputs, which corresponds to the number of classes. We will study hardware implementations of perceptrons with one or multiple neuron outputs in chapter V.

To solve tasks with data that are not linearly separable (see Figure 4(d)), and require multiple feature extraction, we use networks with multiple layers of neurons. A neural network with at least one hidden layer, which means a layer of neurons that is neither the input data nor the network output, is called a deep neural network. The neurons of the hidden layers must operate nonlinear transformation to separate data which are not linearly separable. We call "fully-connected" a layer where each neuron is connected to all the neurons of the next layer. A network of multiple fully-connected layers one after the other is called a multi-layer perceptron (see Figure 4(c)). We will study a hardware implementation of a multi-layer perceptron in chapter VI. In the next subsection we will see another type of deep neural networks, called convolution neural network. In convolutional neural networks, filters are learned automatically. (d) Schematic of a convolutional neural network. The input image is first processed by a sequence of convolutional layers that extract different features and pooling layers that select the information. Then, a sequence of fully-connected layers and a softmax classify the input image. Figure extracted from [START_REF] Tabian | A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures[END_REF]. (e) Schematic illustrating how convolutional layers process images: deeper convolutional layers extract more abstract features. Pictures extracted from [START_REF] Lee | Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks[END_REF].

Convolutional Neural Networks

The success of deep learning is linked to the development of convolutional neural networks [START_REF] Yann Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF]. These networks extract multiple features in inputs data to classify them.

Convolutional neural networks are state-of-the-art in signal processing [START_REF] Lecun | Convolutional Networks for Images, Speech, and Time-Series[END_REF] and in particular in image recognition [START_REF] Taigman | DeepFace: Closing the Gap to Human-Level Performance in Face Verification[END_REF], and they are at the core of artificial intelligence applications like generative adversarial networks [START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF]. One of the difficulties of image recognition is that two images with the same subject can be significantly different (e.g., the same persons with two completely different backgrounds) and, conversely, be quite similar with two different subjects (e.g., two different persons with the exact same background). To answer this issue, convolutional neural networks have a particular architecture that allows them to locally detect very specific features in the input data and makes them robust to noise and variations such as rotations, translations, and local distortions. Before convolutional neural networks, filters were already used in signal processing [START_REF] Canny | A Computational Approach to Edge Detection[END_REF][START_REF] Huang | A Fast Two-Dimensional Median Filtering Algorithm[END_REF][START_REF] Haddad | A Class of Fast Gaussian Binomial Filters for Speech and Image Processing[END_REF]. In convolutional neural networks, filters are not mathematical functions chosen by an engineer, they are learned though experience by the network and can therefore be used for many problems.

Convolutional neural networks are made of different layers of convolutions (see Figure 5(d)). Each convolutional layer has multiple filters made of synaptic weights convolved with the input data. Once the filters have been trained successfully, each of them extracts a different feature. The level of abstraction of the extracted features increases with the depth of the convolutional layer (see Figure 5 (e)). One operation of convolution corresponds to one filter sliding over the input image (see Figure 5(b-c)), and at each position applying a multiply-and-accumulate operation to the corresponding image subset. Then the outputs, also called feature maps, store the result of the corresponding multiply-and-accumulate matrix operations (the sum of the elements of an element-wise matrix multiplication between the filter and a subset of the input image).

To preserve spatial information, each convolutional filter is usually much smaller than the input (e.g., a filter of 3x3 pixels versus an input image of 512x512 pixels): convolutions are then sparse layers (each neuron is not connected to all the neurons of another layer) and are suited to extract local features (see Figure 5 Between convolutional layers, the feature maps are subsampled through "pooling"

operations. For instance, maxpool is a special filter that slides through the feature maps, and locally selects pixels with the higher value. This type of operation ensures the selection of relevant information and increases the resilience to noise.

In chapter VI, we will study a hardware implementation of convolutional neural networks. We mostly consider convolutional neural networks for image recognition, that require 2D convolutions because images are 2D pixel matrices (2D convolutions are also used to analyze spectrograms [START_REF] Badshah | Speech Emotion Recognition from Spectrograms with Deep Convolutional Neural Network[END_REF]). Nevertheless, it is important to note that all the concepts studied in the thesis can also be applied to 1D convolutions (see Figure 5(b)), which are used for temporal signals and sequences [START_REF] Dai | A CNN with Hybrid Convolution Scale for EEG Motor Imagery Classification[END_REF], and 3D convolutions, which are used for video or volumetric images [START_REF] Ji | 3D Convolutional Neural Networks for Human Action Recognition[END_REF][START_REF] Karpathy | Large-Scale Video Classification with Convolutional Neural Networks[END_REF]. The inputs are transmitted to a reservoir of neurons through fixed synaptic weights (these weights cannot be tuned). The neurons in the reservoir have complex dynamics and recurrent connections that project the input into a high dimensional space. The output of the reservoir is connected through tunable synaptic connections to the output of the network.

Recurrent Neural Networks and Reservoir Computers

Recurrent neural networks are very effective for sequence processing [START_REF] Li | Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN[END_REF][START_REF] Yu | A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures[END_REF].

Unlike feedforward neural networks, in recurrent layers, neurons are not only affected by the signal of neurons in the previous layer, but also by their own states and the states of other neurons at previous times (see Figure 6(a)). These recurrences create a memory that allows recurrent neural networks to process information with temporal dynamics.

For example, a recurrent neural network will not process a video frame by frame, but will rather examine each frame with the context given by all previous frames of the video.

Recurrent neural networks can not only be used to process inputs that are sequences, but also to process sequentially other types of inputs. For instance, it is possible to train a recurrent neural network to steer its attention around different parts of an image sequentially [START_REF] Mnih | Recurrent Models of Visual Attention[END_REF][START_REF] Ba | Multiple Object Recognition with Visual Attention[END_REF]. Long-term short-term memory networks, which are the state-ofthe-art form of recurrent networks, have explicit memory cells that can learn and forget information and influence the perception of inputs. These type of networks can deal with very large sequences [START_REF] Yu | A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures[END_REF].

Reservoir computers are a subtype of recurrent neural networks [START_REF] Jaeger | The" Echo State" Approach to Analysing and Training Recurrent Neural Networks-with an Erratum Note[END_REF][START_REF] Maass | Real-Time Computing without Stable States: A New Framework for Neural Computation Based on Perturbations[END_REF]. These networks rely on a reservoir of neurons that make nonlinear transformations and are connected by complex recurrent connections (see Figure 6(b)). We will study a hardware implementation of reservoir computing in chapter IV. The reservoir of neurons projects the inputs into a high dimensional space where they are easily separable with linear algebra (see Figure 4(d-e)). The recurrent connections of the reservoir induce a memory in the networks, which make them fitted to process sequences. The advantages of these networks are that we can use the complex dynamics of physical systems to implement hardware reservoir computing, and they learn to solve problems without tuning the synaptic connections between the input and the reservoir, and without tuning the connections inside the reservoir, which facilitates training of hardware reservoir computers. Reservoir computers are trained by tuning only the connections between the neurons of the reservoir and the output, which reduces a lot the computation cost.

Conclusion

In this chapter, we have seen the fundamentals of artificial neural networks.

Artificial neural networks are performant algorithms when it comes to solve cognitive There are many different types of artificial neural networks, designed to solve different tasks. We have presented some famous types of artificial neural networks related to the different works of this thesis. In perceptrons, one or multiple neurons receive weighted sums of inputs, and apply a nonlinear transformation. By itself, a perceptron can only classify linearly separable data, but multiple layers of perceptrons can solve more complex tasks: the perceptron is a key building-block of deep neural networks.

Convolutional neural networks use many convolutional filters, and each of them is taught to extract a different feature. Convolutional neural networks are performant for signal processing and image classification because of their sparse and local synaptic connections, their shared weights, their pooling operations that select the information and the use of many layers to extract deep features. Recurrent neural networks are a type of artificial neural networks that is especially adapted to process sequences. In these networks, the state of each neuron not only depends on the presented input, but also on the inputs presented previously. A subtype of recurrent neural networks is called reservoir computing. These networks are made of a reservoir of neurons with complex connectivity.

They can be implemented by leveraging the complex dynamics of a physical systems.

Moreover, they are easy to train since they only require tuning the synaptic connections between the reservoir and the output of the network.

Even though artificial neural networks are very simple abstractions of biological neural networks, they already outperform humans in various domains: machine learning beats records in image classification [START_REF] Szegedy | Going Deeper with Convolutions[END_REF], clustering [START_REF] Cichy | Deep Neural Networks as Scientific Models[END_REF], speech recognition [START_REF] Shillingford | Large-Scale Visual Speech Recognition[END_REF], natural language processing [START_REF] Devlin | BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding[END_REF], forecasting [START_REF] Fournier | Financial Time Series Forecasting -A Deep Learning Approach[END_REF], gaming [START_REF] Silver | Mastering the Game of Go without Human Knowledge[END_REF][START_REF] Vinyals | Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning[END_REF] , and open the path to various novel applications, like image generation [START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF], or proteins structure prediction [START_REF] Jumper | Highly Accurate Protein Structure Prediction with AlphaFold[END_REF].

In the next chapter, we will discuss neuromorphic computing hardware implementations of artificial neural networks.

Chapter II: Neuromorphic Computing Contents

Neuromorphic Computing

In the last chapter, we have seen algorithms called artificial neural networks. In many ways, these networks mimic some concepts of neurology: they have a hierarchical architecture of interconnected neurons and synapses (see Figure 2(a-b), Figure 4), they learn from experience, they can have memory, etc. However, we only presented bioinspiration in the software part of computers. In this chapter, we will see that to improve artificial intelligence and reduce energy consumption, brain-inspiration must also be applied to the hardware part.

Introduction

5 to 15 % of the energy in the word is already used for data transmission or processing [START_REF]News and part of the G. E. Network[END_REF]. The development of powerful artificial neural networks is entangled with the proliferation of data, which is exponential [START_REF]News and part of the G. E. Network[END_REF]. Moreover, the energy consumption of these networks increases as they require more and more parameters to solve harder tasks: the biggest artificial neural networks already feature more than 100 billion neurons and synapses [START_REF] Brown | Language Models Are Few-Shot Learners[END_REF], and as an example, the human brain contains approximatively 100 billion neurons and in average 10,000 synaptic connections per neuron (hence 10 15 synapses in total). To mitigate the global energy footprint of data-processing, and to enhance the autonomy of embedded systems using artificial intelligence (e.g., autonomous vehicles, drones, connected sensors…), hardware dedicated to artificial neural networks needs drastic improvements. One lead to reduce the energy consumption of artificial intelligence is to take inspiration from the brain, which consumes orders of magnitude less than computers for similar tasks. This efficiency difference can be explained by the separation between memory and processing units in the traditional Von-Neumann computer architecture: the processing and memory units are spatially separated and the information flow between the two is relatively slow and power hungry [START_REF] Christensen | Roadmap on Neuromorphic Computing and Engineering[END_REF].

Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs) are two systems that are made of multiple processing cores with dedicated memory. Because they have multiple cells containing both processing and memory, these systems allow to compute multiple operations in parallel [START_REF] Li | Optimizing Memory Efficiency for Deep Convolutional Neural Networks on GPUs[END_REF], and are thus commonly used for artificial intelligence. However, GPUs and TPUs only partially solve the Von-Neumann bottleneck (separation of memory and processing units): if we compare the operation power of a GPU with the operation power of the brain [START_REF] Marković | [END_REF], training a state-of-the-art natural language processing model like BERT [START_REF] Devlin | BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding[END_REF][START_REF] Strubell | Energy and Policy Considerations for Modern Deep Learning Research[END_REF][START_REF] Ai | BERT Meets GPUs[END_REF]] on 64 T V100 GPUs consumes around 12 kW, while the human brain operates approximatively with a consummation of 20 W [START_REF] Attwell | An Energy Budget for Signaling in the Grey Matter of the Brain[END_REF] (TPUs consume between 30 and 80 times less power than datacenter GPUs [START_REF] Jouppi | In-Datacenter Performance Analysis of a Tensor Processing Unit[END_REF]).

To reduce the power consumption of artificial neural networks, the processing units must be fully integrated with the memory units to minimize data transfer over long distances, as in the brain neurons are embedded in synaptic connections. Neuromorphic computing is a research field that investigates materials and devices that mimic synaptic or neuronal functionality, circuits that implement neural networks, and learning algorithms to train hardware neural networks [START_REF] Christensen | Roadmap on Neuromorphic Computing and Engineering[END_REF]. In this thesis, we will study systems where each synapse and each artificial neuron is emulated by a physical component.

Challenges in Neuromorphic Computing

Neuromorphic computing faces multiple challenges. To integrate hundreds of millions of neurons and synapses in a 1 cm² chip, each component emulating a neuron or a synapse must be nanoscopic [START_REF] Hasler | Finding a Roadmap to Achieve Large Neuromorphic Hardware Systems[END_REF]. We will see that there are different ways to implement artificial neurons, knowing that they should integrate at least the summation of multiple inputs and a nonlinear transformation (see section 1.2). To enrich the processing capabilities, it is also possible to use artificial neurons with more complex dynamics; biological neurons have oscillations, synchronization, slow transient dynamics, stochasticity [START_REF] Porte | A Complete, Parallel and Autonomous Photonic Neural Network in a Semiconductor Multimode Laser[END_REF][START_REF] Hamerly | Large-Scale Optical Neural Networks Based on Photoelectric Multiplication[END_REF][START_REF] Yang | On-Chip CMOS-Compatible Optical Signal Processor[END_REF][START_REF] Feldmann | All-Optical Spiking Neurosynaptic Networks with Self-Learning Capabilities[END_REF][START_REF] Ríos | In-Memory Computing on a Photonic Platform[END_REF]. These devices must also have endurance and be power efficient to mitigate the global consumption of the system.

Circuits implementing neural networks must integrate a very large density of connections (in fully connected layers, each neuron is usually connected to at least hundreds or thousands of other neurons through synapses), which is not trivial to realize with traditional electronics. Routing the information from one layer of neurons to the next with a high density of synaptic connections is one of the biggest challenges in neuromorphic computing [START_REF] Hasler | Finding a Roadmap to Achieve Large Neuromorphic Hardware Systems[END_REF].

In artificial neural networks, synaptic weights are usually tuned with a precision above 8 bits [START_REF] Gupta | Deep Learning with Limited Numerical Precision[END_REF]. Hence, a wide span of research investigates how to make programmable physical devices with multiple states to emulate synapses [START_REF] Christensen | Roadmap on Neuromorphic Computing and Engineering[END_REF][START_REF] Li | Review of Memristor Devices in Neuromorphic Computing: Materials Sciences and Device Challenges[END_REF][START_REF] Zhu | A Comprehensive Review on Emerging Artificial Neuromorphic Devices[END_REF]. We will see that regarding the training of synaptic weights, there are three different types of neuromorphic systems: some can achieve online learning, which means that they have an internal learning rule that updates their synaptic weights during learning, some require offline learning, which means that the synapses are reconfigurable but the optimization of their synaptic weights must be done on a separated computer, and some have fixed synaptic weights and are thus unable to learn. 

Mixed digital/analog CMOS circuits for neuromorphic computing

There is a wide field of research on CMOS circuits to mimic the electrical activity of biological neurons and synapses [START_REF] Indiveri | A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses with Spike-Timing Dependent Plasticity[END_REF][START_REF] Mead | Adaptive Retina[END_REF][START_REF] Mead | Neuromorphic Electronic Systems[END_REF][START_REF] Culurciello | A Biomorphic Digital Image 201 Sensor[END_REF][START_REF] Arthur | Learning in Silicon: Timing Is Everything[END_REF][START_REF] Indiveri | Neuromorphic Silicon Neuron Circuits[END_REF][START_REF] Thakur | Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain[END_REF]. These studies have led to the creation of various CMOS circuits building blocks to make neural networks. These circuits do not just implement simple neural models of artificial neural networks like summation, nonlinear function and synaptic weights, they implement a deeper imitation of brain activity:

neurons implement integration over time, spike emission, refractory period, spiking frequency and spike threshold adaptation [START_REF] Indiveri | Neuromorphic Silicon Neuron Circuits[END_REF], and synapses implement long and short term plasticity, spike-timing dependent plasticity [START_REF] Indiveri | A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses with Spike-Timing Dependent Plasticity[END_REF][START_REF] Bi | Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type[END_REF], etc [START_REF] Indiveri | Neuromorphic Silicon Neuron Circuits[END_REF]. These circuits are particularly interesting for neural system modeling. The main disadvantage is that each circuit requires many components and thus has a large area footprint (e.g., in Figure 7(a)).

Other research aims to perform neuromorphic computing through the synchronization of coupled CMOS oscillators [START_REF] Nikonov | Coupled-Oscillator Associative Memory Array Operation for Pattern Recognition[END_REF][START_REF] Nikonov | Convolution Inference via Synchronization of a Coupled CMOS Oscillator Array[END_REF].

Large scale digital CMOS neuromorphic chips

CMOS neuromorphic chips have optimized architectures designed for artificial neural networks [START_REF] Thakur | Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain[END_REF]. They are usually made of many cores, each core having multiple artificial neurons close to memory units emulating synapses. We present major large scale CMOS digital chips. Each of these three systems implement Leaky Integrate-And-Fire spiking neural models for the neurons.

SpiNNaker is a research chip designed to model large biological neural networks in the context of the Human Brain Project [START_REF] Thakur | Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain[END_REF]. The neurons can be emulated using different models, and the synapses can be programmable using different learning rules.

Each processing chip has 18 processor cores with 64 kB of memory close to the processors to reduce energy consumption due to data transfer. Each chip has 16,000 digital neurons and consumes 1 W. SpiNNaker was mostly designed for its scalability: it has an optimized communication system to assemble multiple chips. The Manchester University made an assembly of 56 thousand processing nodes that can simulate in real time one billion neurons.

The TrueNorth chip is an IBM demonstration of low power consumption computing using a neuromorphic architecture to circumvents the Von Neumann bottleneck [START_REF] Merolla | A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface[END_REF]. It has 4096 cores of 256 neurons each with 256 synaptic connections, for a total of 1 million neurons, 256 million synapses, using 5.4 billion transistors. The TrueNorth chip is entirely digital and must be trained offline. Its power efficiency (72 mW for one chip) comes from the optimization of the architecture (processing close to memory units, see Figure 7(b)). The energy cost per MAC operation is 26 pJ [START_REF] Merolla | A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface[END_REF]. Convolutional neural networks can be implemented with TrueNorth chips to classify around one thousand images per second and using between 25 and 275 mW [START_REF] Esser | Convolutional Networks for Fast, Energy-Efficient Neuromorphic Computing[END_REF]. However, this implementation used trinary synaptic weights (-1,0,+1). It can also be used as spiking neural network for event-based tasks [START_REF] Amir | A Low Power, Fully Event-Based Gesture Recognition System[END_REF].

Intel's Loihi chip of is a low power neuromorphic chip that can be used both for research or embedded systems [START_REF] Thakur | Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain[END_REF]. is made of 128 cores, 136.000 neurons and 136 million synapses using 2 billion transistors. It is capable of inference and online learning and is highly reconfigurable. It consumes three order of magnitude less power than CPUs to solve a LASSO (Least Absolute Shrinkage and Selection Operator)

optimization problem [START_REF] Davies | Loihi: A Neuromorphic Manycore Processor with On-Chip Learning[END_REF]. It has been proven that it can learn online to solve an event-based task [START_REF] Stewart | Online Few-Shot Gesture Learning on a Neuromorphic Processor[END_REF].

One of the main advantages of CMOS compared to other technology is its maturity. CMOS chips benefit from the most state-of-the-art fabrication processes: for instance, Intel is producing the Loihi 2 chip with a 4 nm lithographic process [START_REF] Orchard | Efficient Neuromorphic Signal Processing with Loihi 2[END_REF]. The principal limitation digital CMOS circuits is that circuits implementing neurons require many components (e.g., a TrueNorth chip has 5.4 billion transistors for only 1 million neurons [START_REF] Merolla | A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface[END_REF]). The same digitalization problem applies to synapses: there are either low precision synapses with binary or trinary states (e.g., TrueNorth [START_REF] Merolla | A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface[END_REF]), or synapses with multiple memory bits that require multiple devices.

Memristors

In the previous subsection, we presented CMOS circuits for neuromorphic computing. Here, we will present neuromorphic systems where synaptic connections between layers of neurons are made with single analog components called memristors.

What is a memristor?

A memristor is an electrical device that can switch between different states associated with different values of resistance [START_REF] Strukov | The Missing Memristor Found[END_REF]. Memristors (the word comes from memory and resistor) store information into their resistance. For instance, a memristor can be switched between a high resistance state that encode a "0" and a low resistance state that encode a "1". For neuromorphic computing, memristors usually do not only have a binary state but multiple possible states of resistance to encode multiple values of synaptic weights. The state of a memristor is changed by "write" currents that are often delivered in the form of a succession of current pulses. For instance, we see in Figure 8(c) a memristor with different resistances curves depending on the amplitudes of the write pulses in the sequence. A very large field of research investigates memristive materials, also called resistive-switching materials. The two most studied classes of memristors are filamentary memristors [START_REF] Yang | Observation of Conducting 202 Filament Growth in Nanoscale Resistive Memories[END_REF] and phase change memories (PCM) [START_REF]News and part of the G. E. Network[END_REF]. For filamentary memristors, the switching mechanism occurs with the creation or the removal of a conducting filament at the nanoscale into the device (see Figure 8(a)) [START_REF] Yang | Observation of Conducting 202 Filament Growth in Nanoscale Resistive Memories[END_REF][START_REF] Sun | Understanding Memristive Switching via in Situ Characterization and Device Modeling[END_REF]. Phase-change materials are a type of memristors where the resistance changes with the crystalline phase of the device material, e.g., a switch between a crystalline (conductive) and an amorphous phase (with higher resistivity) [START_REF] Sun | Understanding Memristive Switching via in Situ Characterization and Device Modeling[END_REF] (see Figure 8 (b)). If filamentary and PCM memristors are the two main classes of memristors, different kinds of memristors are also promising, like ferroelectric memristors [START_REF] Chanthbouala | A Ferroelectric Memristor[END_REF], spintronic memristors [START_REF] Sharad | Spin-Based Neuron Model With Domain-Wall Magnets as Synapse[END_REF][START_REF] Lequeux | A Magnetic Synapse: Multilevel Spin-Torque Memristor with Perpendicular Anisotropy[END_REF][START_REF] Zhang | Spin-Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing[END_REF], polymeric memristors [START_REF] Chen | Polymer Memristor for Information Storage and Neuromorphic Applications[END_REF] and others. Challenges in material research for memristors are the limitation of resistance drifts through time, access to multiple and symmetric resistance states during the set and reset process, linear conductance changes, low variability of programming between devices, and a high repeatability and endurance through programming cycles [START_REF] Zhang | Brain-Inspired Computing with Memristors: Challenges in Devices[END_REF]. Memristor crossbar arrays are a way to connect two neural layers with artificial synapses emulated by memristors. In memristor crossbar arrays, the outputs of neurons are encoded in voltages, and the outputs of a synaptic layer are currents. There is a metallic line for each input neuron voltage and for each output neuron, and a memristor is placed at each crosspoint between input and output line (see Figure 9). Using Ohm's law and Kirchoff's law, the current of each output line is

Memristor crossbar arrays

𝐼 𝑗 = ∑ 𝑉 𝑖 𝑅 𝑗𝑖 𝑖 (2.1)
with 𝑉 𝑖 the voltages of input neurons and 𝑅 𝑗𝑖 the memristor resistances. Memristor crossbar arrays hence implement a Multiply-And-Accumulate (MAC) operation (see Eq. of each diode. In practice, to implement either positive or negative weights, two memristors for each synapse are required. Each input neuron is sent as +𝑉 𝑖 through the first memristor and as -𝑉 𝑖 for the second, the output neuron receives the sum of the two resulting currents [START_REF] Bayat | Implementation of Multilayer Perceptron Network with Highly Uniform Passive Memristive Crossbar Circuits[END_REF].

There are already various demonstrations of neural networks implementations with memristor crossbar arrays [START_REF] Li | Analogue Signal and Image Processing with Large Memristor Crossbars[END_REF][START_REF] Ambrogio | Equivalent-Accuracy Accelerated Neural-Network Training Using Analogue Memory[END_REF][START_REF] Cai | A Fully Integrated Reprogrammable Memristor-CMOS System for Efficient Multiply-Accumulate Operations[END_REF][START_REF] Yao | Fully Hardware-Implemented Memristor Convolutional Neural Network[END_REF][START_REF] Ishii | On-Chip Trainable 1.4M 6T2R PCM Synaptic Array with 1.6K Stochastic LIF Neurons for Spiking RBM[END_REF] with a precision comparable to software neural networks [START_REF] Ambrogio | Equivalent-Accuracy Accelerated Neural-Network Training Using Analogue Memory[END_REF], for different applications such as spiking neural networks [START_REF] Ishii | On-Chip Trainable 1.4M 6T2R PCM Synaptic Array with 1.6K Stochastic LIF Neurons for Spiking RBM[END_REF], reservoir computing [START_REF] Zhu | Memristor Networks for Real-Time Neural Activity Analysis[END_REF], or convolutional neural networks in which convolutions are performed sequentially [START_REF] Li | Analogue Signal and Image Processing with Large Memristor Crossbars[END_REF][START_REF] Yao | Fully Hardware-Implemented Memristor Convolutional Neural Network[END_REF]. Memristor crossbar arrays are energy efficient because processing is really embedded into memory units. For instance, S. Ambrogio et al estimate 280 times more power efficiency with memristor crossbar arrays than GPUs for image classification [START_REF] Indiveri | Neuromorphic Silicon Neuron Circuits[END_REF]. Memristors can usually store multiple states and are elementary electrical components that can be very compact and thus integrated with a high density: for instance, S. Pi et al demonstrated 2 nm wide memristors (with binary operation) [START_REF] Pi | Memristor Crossbar 203 Arrays with 6-Nm Half-Pitch and 2-Nm Critical Dimension[END_REF]. P.

Narayanan et al demonstrated MAC operations on 14 nm memristors [START_REF] Narayanan | Fully On-Chip MAC at 14nm Enabled by Accurate Row-Wise Programming of PCM-Based Weights and Parallel Vector-Transport in Duration-Format[END_REF]. Moreover, memristor crossbar arrays can be used both in forward mode for inference, and in backward mode to tune the memristor conductances to train the network.

However, write currents that are sent to tune memristor conductances are confronted to the "sneak-path problem" [START_REF] Cassuto | Sneak-Path Constraints in Memristor Crossbar Arrays[END_REF][START_REF] Kannan | Sneak-Path Testing of Crossbar-Based Nonvolatile Random Access Memories[END_REF]: write currents not only pass through the desired memristor but also through other ones, hence making precise programming difficult. This problem can be solved by adding a CMOS transistor combined to each memristor as selector to switch between read and write modes and thus ensure individual access of each memristor [START_REF] Li | Analogue Signal and Image Processing with Large Memristor Crossbars[END_REF][START_REF] Yao | Fully Hardware-Implemented Memristor Convolutional Neural Network[END_REF]. To avoid sneak-path currents in read process (inference), memristors are usually designed with very high resistances [START_REF] Xia | Memristive Crossbar Arrays for Brain-Inspired Computing[END_REF]. These high resistances however limit the scalability of memristor crossbar arrays: for a given voltage, very large arrays leads to extremely small output currents, hence reducing the precision because of small signal over noise ratio [START_REF] Zhang | Brain-Inspired Computing with Memristors: Challenges in Devices[END_REF] with a data rate of 1 Gbyte/s and with 10 mJ of energy consumption per digit [START_REF] Brunner | Parallel Photonic Information Processing at Gigabyte per Second Data Rates Using Transient States[END_REF].

Another approach to make reservoir computing with optics is to use a complex media to scatter the input light beam (see Figure 10 (c)) [START_REF] Wetzstein | Inference in Artificial Intelligence with Deep Optics and Photonics[END_REF][START_REF] Dong | Scaling Up Echo-State Networks With Multiple Light Scattering[END_REF][START_REF] Dong | Optical Reservoir Computing Using Multiple Light Scattering for Chaotic Systems Prediction[END_REF][START_REF] Brossollet | LightOn Optical Processing Unit : Scaling-up AI and HPC with a Non von Neumann Co-Processor[END_REF]. Indeed, the propagation of light through a complex diffusive media leads to the multiplication of the input by a random matrix of very high dimension [START_REF] Liutkus | Imaging With Nature: Compressive Imaging Using a Multiply Scattering Medium[END_REF]. The weights of this matrix are then the synaptic weights between the input and the reservoir: the complex media projects the inputs into a space where they are linearly separable. The complexity of such reservoir is not in the time domain but in the spatial domain. This technique can be used to perform projections with a matrix with above 10 12 synaptic weights without additional energy cost to the input optical signal [START_REF] Brossollet | LightOn Optical Processing Unit : Scaling-up AI and HPC with a Non von Neumann Co-Processor[END_REF]. 

Multiply-And-Accumulate with Optics and Photonics

There are different ways to apply synaptic weights for multiply-and-accumulate operations with optically encoded inputs [START_REF] Nahmias | Photonic Multiply-Accumulate Operations for Neural Networks[END_REF]. One approach consists in using optical devices like DMDs (digital micromirror devices) to apply synaptic weights [START_REF] Porte | A Complete, Parallel and Autonomous Photonic Neural Network in a Semiconductor Multimode Laser[END_REF]. A DMD is an array of rotating micromirrors. Depending on the position of each mirror, the light can be reflected to the detector or away, hence implementing "on" and "off" states, hence implementing synaptic weights with ease of programming but with binary weights [START_REF] Porte | A Complete, Parallel and Autonomous Photonic Neural Network in a Semiconductor Multimode Laser[END_REF].

This technique was used to reproduce a XOR function.

Another approach consists in using light sources to encode the input, and other light sources to encode the synaptic weights. A beam splitter can combine the optical signals from the input and the synapses, and a photoelectric multiplier multiplies the input and synaptic weights and detects the resulting MAC operation [START_REF] Hamerly | Large-Scale Optical Neural Networks Based on Photoelectric Multiplication[END_REF]. Synaptic weights are then controlled precisely, but they are volatile.

Finally, yet another approach consists in using photonic devices like ring resonators [START_REF] Yang | On-Chip CMOS-Compatible Optical Signal Processor[END_REF][START_REF] Feldmann | All-Optical Spiking Neurosynaptic Networks with Self-Learning Capabilities[END_REF] or PCMs (phase-change memories) [START_REF] Ríos | In-Memory Computing on a Photonic Platform[END_REF][START_REF] Feldmann | Parallel Convolutional Processing Using an Integrated Photonic Tensor Core[END_REF] [START_REF] Feldmann | Parallel Convolutional Processing Using an Integrated Photonic Tensor Core[END_REF]. According to reference [START_REF] Yang | Observation of Conducting 202 Filament Growth in Nanoscale Resistive Memories[END_REF], the minimum area needed to achieve a synaptic multiplication with an optical PCM is 30x30 µm². The inputs are then weighted by the transmission coefficients of the PCMs (extracted from [START_REF] Feldmann | Parallel Convolutional Processing Using an Integrated Photonic Tensor Core[END_REF]). (b) Measured spectrum of a frequency comb (Si3N4) (extracted from [START_REF] Feldmann | Parallel Convolutional Processing Using an Integrated Photonic Tensor Core[END_REF]).

Spintronics

Spintronics devices are made of magnetic materials and can use both the electrical charge and the spin of electrons to manipulate data. Spintronics history, physics and applications will be detailed in chapter III. Spintronic devices can exhibit various regimes emulating brain functionalities (see Figure 12(a-d)). Biological neurons have oscillations, synchronization, slow transient dynamics, stochasticity [5,[START_REF] Hopfield | What Is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration[END_REF][START_REF] Harrison | Stochastic Models of Neuronal Dynamics[END_REF][START_REF] Buzsáki | Neuronal Oscillations in Cortical Networks[END_REF][START_REF] Uhlhaas | Neural Synchrony in Cortical Networks: History, Concept and Current Status[END_REF].

Spintronic oscillators can show transient dynamics [START_REF] Zhou | Oscillatory Transient Regime in the Forced Dynamics of a Nonlinear Auto Oscillator[END_REF][START_REF] Torrejon | Neuromorphic Computing with Nanoscale Spintronic Oscillators[END_REF][START_REF] Tsunegi | Physical Reservoir Computing Based on Spin Torque Oscillator with Forced Synchronization[END_REF] and synchronization [START_REF] Kaka | Mutual Phase-Locking of Microwave Spin Torque Nano-Oscillators[END_REF][START_REF] Grollier | Synchronization of Spin-Transfer Oscillators Driven by Stimulated Microwave Currents[END_REF][START_REF] Georges | Coupling Efficiency for Phase Locking of a Spin Transfer Nano-Oscillator to a Microwave Current[END_REF][START_REF] Romera | Vowel Recognition with Four Coupled Spin-Torque Nano-Oscillators[END_REF][START_REF] Csaba | Coupled Oscillators for Computing: A Review and Perspective[END_REF]. When governed by thermal fluctuations, these devices are stochastic [START_REF] Vincent | Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive Synapse for Neuromorphic Systems[END_REF][START_REF] Locatelli | Spintronic Devices as Key Elements for Energy-Efficient Neuroinspired Architectures[END_REF][START_REF] Venkatesan | Spintastic: Spin-Based Stochastic Logic for Energy-Efficient Computing[END_REF][START_REF] Vodenicarevic | Low-Energy Truly Random Number Generation with Superparamagnetic Tunnel Junctions for Unconventional Computing[END_REF][START_REF] Mizrahi | Neural-like Computing with Populations of Superparamagnetic Basis Functions[END_REF][START_REF] Cai | Voltage-Controlled Spintronic Stochastic Neuron Based on a Magnetic Tunnel Junction[END_REF][START_REF] Daniels | Energy-Efficient Stochastic Computing with Superparamagnetic Tunnel Junctions[END_REF][START_REF] Debashis | Hardware Implementation of Bayesian Network Building Blocks with Stochastic Spintronic Devices[END_REF].

With particular geometric configurations, spintronic devices can generate spikes [START_REF] Khymyn | Antiferromagnetic THz-Frequency Josephson-like Oscillator Driven by Spin Current[END_REF][START_REF] Khymyn | Ultra-Fast Artificial Neuron: Generation of Picosecond-Duration Spikes in a Current-Driven Antiferromagnetic Auto-Oscillator[END_REF][START_REF] Sulymenko | Ultra-Fast Logic Devices Using Artificial "Neurons" Based on Antiferromagnetic Pulse Generators[END_REF][START_REF] Marković | Easy-Plane Spin Hall Nano-Oscillators as Spiking Neurons for Neuromorphic Computing[END_REF]. Using magnetic textures, spintronic devices can also have multiple resistance states and be used as memristors to emulate synapses [START_REF] Lequeux | A Magnetic Synapse: Multilevel Spin-Torque Memristor with Perpendicular Anisotropy[END_REF][START_REF] Zhang | Spin-Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing[END_REF][START_REF] Chanthbouala | Vertical-Current-Induced Domain-Wall Motion in MgO-Based Magnetic Tunnel Junctions with Low Current Densities[END_REF]. In conclusion, spintronics is a toolbox for neuromorphic computing because it combines memory and multiple functionalities [START_REF] Grollier | Neuromorphic Spintronics[END_REF]. In this subsection, we will see examples of neuromorphic computing implementations with spintronic devices.

Figure 12: (a) Oscillation voltage of a spintronic oscillator (extracted from [START_REF] Torrejon | Neuromorphic Computing with Nanoscale Spintronic Oscillators[END_REF]). (b) Spike emission of an anti-ferromagnetic junction (extracted from [START_REF] Khymyn | Ultra-Fast Artificial Neuron: Generation of Picosecond-Duration Spikes in a Current-Driven Antiferromagnetic Auto-Oscillator[END_REF]). (c) Stochastic resistance switch of a superparamagnetic tunnel junction [START_REF] Jang | Magnetic Field Sensing Scheme Using CoFeB∕MgO∕CoFeB Tunneling Junction with Superparamagnetic CoFeB Layer[END_REF] (extracted from [START_REF] Mizrahi | Neural-like Computing with Populations of Superparamagnetic Basis Functions[END_REF]) (d) Curves of resistance of a spintronic memristor corresponding to different magnetic domain configurations (extracted from [START_REF] Zhang | Spin-Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing[END_REF]).

2.3.4.1. Spintronics neurons J. Torrejon et al have demonstrated spoken digits recognition using reservoir computing and a single spintronic oscillator [START_REF] Torrejon | Neuromorphic Computing with Nanoscale Spintronic Oscillators[END_REF] (see section 3.5) for information on spintronic oscillators). The oscillator emulated 400 neurons using time-multiplexing: the oscillator periodically played the role of the different neurons of the reservoir. Because of the relaxation time of the oscillator (see Figure 13(b)), the state of each neuron depended on the state of the oscillator at previous times, thus creating the memory in the reservoir needed to process time-dependent inputs. The authors managed to perform spoken digit recognition with an accuracy of 99.6 %, which is as good as software. This demonstration proved that the dynamics of spintronic nano-devices can be used to perform neuromorphic computing.

Figure 13: (a) Schematics of how a single spintronic oscillator classify spoken digits through reservoir computing. Pre-and post-processing include time-multiplexing technique [START_REF] Riou | Neuromorphic Computing through Time-Multiplexing with a Spin-Torque Nano-Oscillator[END_REF] (extracted from [START_REF] Grollier | Neuromorphic Spintronics[END_REF]). (b) A pre-processed spoken digit is encoded into the input voltage of the spintronic oscillator. 𝑉 𝑖𝑛 sequentially encodes the input of the different neurons of the reservoir. The amplitude of oscillation voltage 𝑉 𝑜𝑠𝑐 sequentially encodes the output of the different neurons of the reservoir (extracted from [START_REF] Torrejon | Neuromorphic Computing with Nanoscale Spintronic Oscillators[END_REF]).

There are many other demonstrations of reservoir computing using single spintronic oscillators [START_REF] Tsunegi | Physical Reservoir Computing Based on Spin Torque Oscillator with Forced Synchronization[END_REF][START_REF] Riou | Brain-Inspired Computing Leveraging the Transient Non-Linear Dynamics of Magnetic Nano-Oscillators[END_REF][START_REF] Riou | Temporal Pattern Recognition with Delayed-Feedback Spin-Torque Nano-Oscillators[END_REF], magnetic textures [START_REF] Pinna | Reservoir Computing with Random Skyrmion Textures[END_REF] and spin-waves [START_REF] Papp | Nanoscale Neural Network Using Non-Linear Spin-Wave Interference[END_REF] used to project the input into high dimension. There are also demonstrations of other neuromorphic computing schemes using coupled spintronic oscillators, thus having synaptic connections [START_REF] Romera | Vowel Recognition with Four Coupled Spin-Torque Nano-Oscillators[END_REF][START_REF] Talatchian | Designing Large Arrays of Interacting Spin-Torque Nano-Oscillators for Microwave Information Processing[END_REF][START_REF] Zahedinejad | Two-Dimensional Mutually Synchronized Spin Hall Nano-Oscillator Arrays for Neuromorphic Computing[END_REF][START_REF] Romera | Binding Events through the Mutual Synchronization of Spintronic Nano-Neurons[END_REF], spintronic rectifiers implementing activation functions [START_REF] Cai | Sparse Neuromorphic Computing Based on Spin-Torque Diodes[END_REF], or stochastic spintronic devices, harnessing thermal fluctuations for lowpower computation [START_REF] Mizrahi | Neural-like Computing with Populations of Superparamagnetic Basis Functions[END_REF][START_REF] Daniels | Energy-Efficient Stochastic Computing with Superparamagnetic Tunnel Junctions[END_REF].

Spintronics synapses

Spin-Transfer Torque Random Access Memories (STT-MRAMs) [START_REF] Hosomi | A Novel Nonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-Ram[END_REF] are nonvolatile memories that are already industrialized and compatible with CMOS technology.

An advantage of these spintronic synapses is their high endurance through programming cycles compared to PCM or filamentary memristors [START_REF] Jung | A Crossbar Array of Magnetoresistive Memory Devices for In-Memory Computing[END_REF] (10 9 cycles for PCMs versus >10 15 cycles for STT-MRAMs [START_REF] Zahoor | Resistive Random Access Memory (RRAM): An Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (Mlc) Storage, Modeling, and Applications[END_REF]): switching of spintronic memories only involves magnetization dynamics, it does not involve high current density atoms/ions displacement like for most memristors. Spintronic synapses resistance and switching mechanism is also well understood [START_REF] Zhang | Compact Modeling of Perpendicular-Anisotropy CoFeB/MgO Magnetic Tunnel Junctions[END_REF] and easier to model than for most memristors [START_REF] Sun | Understanding Memristive Switching via in Situ Characterization and Device Modeling[END_REF]. It is however usually difficult to use synaptic spintronic devices in a crossbar array to emulate synapses because of their relatively low resistance (usually <10 kΩ) and their low OFF/ON ratio (ratio between high and low resistance states ≤10) that can cause sneak-paths [START_REF] Jung | A Crossbar Array of Magnetoresistive Memory Devices for In-Memory Computing[END_REF]. To overcome these problems, S. Jung et al have used the summation of resistances instead of summation of currents traditionally used for memristor crossbar arrays to perform neuromorphic computing using a crossbar array of magnetic tunnel junction-based memories (see section 3.3 for information on magnetic tunnel junctions) [START_REF] Ríos | In-Memory Computing on a Photonic Platform[END_REF]. However, this realization only allows binary input-neurons and also has binary synapses.

A wide field of research aims to make multi-state synapses. For spintronic memristors, it is possible to control the resistance of the device by controlling magnetic domains in the device [START_REF] Sharad | Spin-Based Neuron Model With Domain-Wall Magnets as Synapse[END_REF][START_REF] Lequeux | A Magnetic Synapse: Multilevel Spin-Torque Memristor with Perpendicular Anisotropy[END_REF][START_REF] Zhang | Spin-Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing[END_REF]. There are also research showing that is possible to have a memristive control the dynamical properties of spintronic oscillators (resonance frequency, oscillation frequency) [START_REF] Xu | A Quantum Material Spintronic Resonator[END_REF][START_REF] Zahedinejad | Memristive Control of Mutual Spin Hall Nano-Oscillator Synchronization for Neuromorphic Computing[END_REF][START_REF] Muralidhar | Optothermal Control of Spin Hall Nano-Oscillators[END_REF]. Coupled spintronic oscillators can also perform multiplications [START_REF] Mazza | Computing with Injection-Locked Spintronic Diodes[END_REF].

Conclusion

Due to the separation of processing and memory units in traditional ( CMOS neuromorphic chips are very mature technology as they can already be built with industrial processes. In these chips, processing units are close to memory units to reduce energy consumption. However, CMOS circuits implementing complex functions usually require many components and thus have a large area footprint. Multiple dies of the same neuromorphic chip can be stacked to increase the computing possibilities, but these systems are then rather bulky and the energy of data transfer increases again.

Memristor are resistors in which we can store the value of a synaptic weight into the value of resistance in a non-volatile way. Unlike CMOS synapses, they can have many states and they work with analog electronics. Memristor crossbar arrays are systems that can implement multiply-and-accumulate operations with memristors using Kirchhoff's law: the crossbar inputs are voltages, the synaptic weights are the conductances associated to the memristors, and the output currents are weighted sums between the input voltages and the conductances. This method is simple and allows to implement synapses with nanoscopic devices. The size of the crossbar array is mostly limited by the huge resistance of the chains of synapses.

Optics and photonics offer interesting platforms for neuromorphic computing.

Because of optical signal high frequencies, information can be processed with a very high bandwidth (1-10 GHz [START_REF] Brunner | Parallel Photonic Information Processing at Gigabyte per Second Data Rates Using Transient States[END_REF][START_REF] Feldmann | Parallel Convolutional Processing Using an Integrated Photonic Tensor Core[END_REF]). Moreover, light can be separated into multiple wavelengths to process information in parallel. Multiply-and-accumulate operations can be made with inputs encoded in optical signals and synaptic weights encoded into transmission or reflection coefficients of optic or photonic elements. However, these optical synapses are usually rather large (≫ 1 µm²).

Spintronic devices, which are compatible with CMOS technology, have a wide span of functionalities that can be leveraged to mimic biological behaviors to perform neuromorphic computing. Spintronic devices can be used as artificial neurons leveraging complex dynamics to implement different computing schemes, and not only as nonlinear functions. Spintronic synapses can be binary or multi-state and are non-volatile. The inconvenience of these synapses is their low resistance and their low OFF/ON ratio (ratio between the high and the low resistance state). Nonetheless, spintronic synapses have a very high endurance through programming cycles (>10 15 ) and their switching mechanism is repeatable and is easier to model than for resistive-switching material devices.

Many different technologies are being investigated for the hardware implementation of neural networks, each of which has characteristics that make it suitable for overcoming one or more of the challenges set by neuromorphic computing.

Most neuromorphic implementations are either limited by the number of components they integrate, by their energy consumption or by the functionality they offer. Nowadays, it is still difficult to implement neural networks with parallel computing (all the operations of a neural layer made in a single step), and with a small on-chip area and energy footprint. Spintronic nano-devices can offer processing, memory, and complex functionalities. However, to this day and to our knowledge, there are no demonstration of deep neural networks with spintronic neurons and synapses. In this thesis we will study how to assemble many spintronic nano-devices emulating neurons and synapses to build a dense, and energy efficient artificial neural network.

Chapter III: Radio-Frequency Spintronic Devices 

Radio-Frequency Spintronic Devices

Introduction

We will see along this thesis how we used radio-frequency spintronic devices to emulate synapses and neurons. This chapter aims at presenting these RF devices, while giving a general overview of spintronic technology and a background of the physics of spintronic microwave emitters and receivers.

We will first make an introduction on spintronic devices, from the early development to radio-frequency applications. We will discuss different aspects of spintronic technology: how spintronic devices have been used for data storage, what are their different functionalities, and finally what are the most promising applications for microwave spintronic devices such as oscillators and resonators. Then, we will detail two physical effects which are the cornerstones of spintronic devices: magnetoresistance, which allows reading the state of spintronic devices, and spin-torques, which allow manipulating the magnetization and thus transmitting information to these devices. We will then explain in detail the operation of magnetic tunnel junction-based spintronic oscillators and resonators. We will see how spintronic oscillators generate microwaves when they are supplied by a DC current and how they can be synchronized to microwave signals. These features are important in the results of chapter IV where we use a spintronic oscillator as artificial neuron. We will explain how spintronic resonators can convert microwave signals to direct voltage and thus how they can be the used as frequency-selective rectifiers. This feature is important in the results of chapter V and VI where we use spintronic resonators as artificial synapses. In the last section of this chapter, we will compare magnetic tunnel junction-based spintronic oscillators and resonators with other spintronic devices that could fulfill the role of radio-frequency spintronic neurons or synapses.

Spintronics: from binary memory to RF applications

The discovery of giant magnetoresistance by A. Fert and P. Grünberg in 1998 [START_REF] Baibich | Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices[END_REF][START_REF] Binasch | Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange[END_REF] led the way to new magnetic memory applications. Giant magnetoresistance allows changes of resistance ~ 1 -10 % between parallel and anti-parallel states in junctions of two ferromagnetic layers, called spin-valves. Later, this ratio was improved above 100 % using tunnel transport by inserting an insulator (MgO) instead of a normal metal between the two ferromagnetic layers: this is what we call magnetic tunnel junctions (MTJ) [START_REF] Julliere | Tunneling between Ferromagnetic Films[END_REF][START_REF] Parkin | Giant Tunnelling Magnetoresistance at Room Temperature with MgO (100) Tunnel Barriers[END_REF]. The ability to manipulate the magnetization of a ferromagnetic layer using electrical current [START_REF] Marković | Easy-Plane Spin Hall Nano-Oscillators as Spiking Neurons for Neuromorphic Computing[END_REF][START_REF] Chanthbouala | Vertical-Current-Induced Domain-Wall Motion in MgO-Based Magnetic Tunnel Junctions with Low Current Densities[END_REF][START_REF] Grollier | Neuromorphic Spintronics[END_REF][START_REF] Jang | Magnetic Field Sensing Scheme Using CoFeB∕MgO∕CoFeB Tunneling Junction with Superparamagnetic CoFeB Layer[END_REF][START_REF] Riou | Neuromorphic Computing through Time-Multiplexing with a Spin-Torque Nano-Oscillator[END_REF][START_REF] Riou | Brain-Inspired Computing Leveraging the Transient Non-Linear Dynamics of Magnetic Nano-Oscillators[END_REF][START_REF] Riou | Temporal Pattern Recognition with Delayed-Feedback Spin-Torque Nano-Oscillators[END_REF] led to the discovery of Spin-Transfer Torque Random Access Memory (STT-MRAM) [START_REF] Hosomi | A Novel Nonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-Ram[END_REF]. These memories are based on magnetic tunnel junctions where a ferromagnetic layer with a pinned magnetization (the pinning is often made using a synthetic anti-ferromagnet) serves as reference, and a bit of information is stored into the magnetization of a ferromagnetic layer controlled by current (we call this layer "free magnetization layer"). Due to their fast and low power switching and to their endurance, STT-MRAM [START_REF] Hosomi | A Novel Nonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-Ram[END_REF] are already commercialized as a replacement for Static Random Access Memories (SRAMs) in embedded cache memories [START_REF] Dieny | Opportunities and Challenges for Spintronics in the Microelectronics Industry[END_REF].

Spintronics is not only powerful for binary memory: it is also possible to use electrical currents to create dynamical oscillations of magnetization in spintronic devices in order to use them as radio-frequency (RF) emitters or detectors. The RF emission and detection capabilities of these devices both rely on spin-torques induced by currents to generate large magnetization precession, and magnetoresistance to convert these magnetization precessions into electrical signals [START_REF] Locatelli | Spin-Torque Building Blocks[END_REF], as it is schematized in Figure 14.

Depending on the combination of these two effects, with direct or alternating currents, spintronic devices can be used as RF emitters or detectors. Spintronic RF emitters and detectors are CMOS-compatible nanodevices, they can be densely integrated and can operate at zero field [START_REF] Locatelli | Spin-Torque Building Blocks[END_REF][START_REF] Skowroński | Zero-Field Spin Torque Oscillator Based on Magnetic Tunnel Junctions with a Tilted CoFeB Free Layer[END_REF][START_REF] Yamamoto | Zero-Field Spin Torque Oscillation in Co2(Fe, Mn)Si with a Point Contact Geometry[END_REF]. Their size is between 20 nm and 1 µm [START_REF] Dieny | Opportunities and Challenges for Spintronics in the Microelectronics Industry[END_REF][START_REF] Sidi El | Size-Dependent Enhancement of Passive Microwave Rectification in Magnetic Tunnel Junctions with Perpendicular Magnetic Anisotropy[END_REF], their frequency range between 50 MHz and above 50 GHz [START_REF] Bonetti | Spin Torque Oscillator Frequency versus Magnetic Field Angle: The Prospect of Operation beyond 65 GHz[END_REF][START_REF] Kiselev | Microwave Oscillations of a Nanomagnet Driven by a Spin-Polarized Current[END_REF], and there are even perspectives of THz generation with anti-ferromagnetic materials [START_REF] Walowski | Perspective: Ultrafast Magnetism and THz Spintronics[END_REF][START_REF] Seifert | Efficient Metallic Spintronic Emitters of Ultrabroadband Terahertz Radiation[END_REF]. 

Tunnel Magnetoresistance

The effect of tunnel magnetoresistance is the dependence of the resistance of the junction on the relative orientation of the magnetizations of the two ferromagnetic layers in a magnetic tunnel junction. This effect is based on the tunneling of electrons from one ferromagnetic layer to the other one. In ferromagnetic media, the exchange interaction promotes the alignment of the electron spin with the magnetization. If a magnetic layer has a uniform magnetization 𝑀 ⃗⃗ = 𝑀 0 𝑒 𝑧 , electrons spins will be the electron spins will be predominantly pointing toward -𝑒 𝑧 . Thus, there are two different densities of states at the Fermi level, which leads to a division of the energy band between spin up and spin down electrons (see Figure 15).

This model gives the intuition to see that the conductance in parallel and antiparallel configurations are different, which leads to an effect of magnetoresistance.

According to Jullière [START_REF] Julliere | Tunneling between Ferromagnetic Films[END_REF], the tunnel magnetoresistance ratio is

𝑇𝑀𝑅 = 𝑅 𝐴𝑃 -𝑅 𝑃 𝑅 𝑃 = 𝐺 𝑃 -𝐺 𝐴𝑃 𝐺 𝐴𝑃 = 2𝑃 1 𝑃 2 1 -𝑃 1 𝑃 2 (3.1)
with 𝐺 𝑃 (𝐺 𝐴𝑃 ) the conductance of the parallel (anti-parallel) configuration and 𝑅 𝑃 (𝑅 𝐴𝑃 ) its resistance, 𝑃1 and 𝑃2 are the effective spin-polarizations of the ferromagnetic electrodes

𝑃 𝑖 = 𝐷 𝑖 ↑ (𝐸 𝐹 )-𝐷 𝑖 ↓ (𝐸 𝐹 ) 𝐷 𝑖 ↑ (𝐸 𝐹 )+𝐷 𝑖 ↓ (𝐸 𝐹 ) , 𝑖=1,2 (3.2) 
with 𝐷 𝑖 ↑ (𝐸 𝐹 ) and 𝐷 𝑖 ↓ (𝐸 𝐹 ) respectively the densities of state for spin up and spin down electrons in the layer 𝑖 at Fermi level. In this type of junctions, the resistance in the anti-parallel configuration is often higher than the resistance in parallel state. The tunnel magnetoresistance ratio exceeds 100 % with MgO insulating barriers [START_REF] Parkin | Giant Tunnelling Magnetoresistance at Room Temperature with MgO (100) Tunnel Barriers[END_REF]. Since the conductances of the parallel and anti-parallel configurations are different, if a small current passes through the junction, a variation of magnetization of one of the ferromagnetic layers will induce a variation of voltage between the two electrodes. The voltage across the junction is thus a sensor of magnetization angle. In the next section we will discuss how it is possible to rotate the magnetization of a ferromagnetic layer.

Magnetization dynamics

The precessional motion of a magnetic layer is described by the Landau-Lifshitz-Gilbert-Slonczewski equation [170 -172]. We can decompose this equation in three types of contributions acting on the magnetization: the field torques, the damping torque, and the anti-damping torques. Without external excitation, the dynamics of magnetization are dictated by the effective field and the damping torque. With electrical currents, the magnetization is also influenced by field-like and damping-like torques [START_REF] Slonczewski | Current-Driven Excitation of Magnetic Multilayers[END_REF][START_REF] Ralph | Spin Transfer Torques[END_REF].

Figure 16: Schematic of magnetization precession under the different torques.

The damping torque

The damping torque is a phenomenological term [171] that is opposed to magnetization motion in magnetic materials, as kinetic friction terms are opposed to the speed of an object in classical mechanics. In rotation, the damping torque points toward the axis of rotation of magnetization (see Figure 16). Therefore, it tends to reduce the oscillation amplitude. Each magnetic material has a magnetic damping constant 𝛼, that characterizes the decay rate of a precessing magnetization to its resting point 𝑡 𝑑𝑒𝑐𝑎𝑦 = 1 𝛼𝑓 𝑟𝑒𝑠 , with 𝑓 𝑟𝑒𝑠 the resonance frequency of the magnetic layer.

Field torque and field-like torques

The magnetization of a magnetic material rotates around its effective magnetic field (see Figure 16) with the Larmor torque -𝛾 𝑚 𝑀 ⃗⃗ × 𝐻 𝑒𝑓𝑓 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (with 𝛾 𝑚 the gyromagnetic ratio, CGS units), and the frequency 𝑓 𝑟𝑒𝑠 of this precession increases with the amplitude of the field. Currents can contribute to torques collinear to this precessional torque, we thus call them field-likes torques [START_REF] Ralph | Spin Transfer Torques[END_REF]. In spintronics, field-like torques can have various origins, but for the work achieved in this thesis the main contributions are the Oersted field generated by electrical currents, and components out of the plane (𝑀 ⃗⃗ , 𝐻 ⃗ ⃗ 𝑒𝑓𝑓 ) of spintransfer torque [START_REF] Slonczewski | Current-Driven Excitation of Magnetic Multilayers[END_REF][START_REF] Ralph | Spin Transfer Torques[END_REF][START_REF] Slonczewski | Excitation of Spin Waves by an Electric Current[END_REF][START_REF] Berger | Emission of Spin Waves by a Magnetic Multilayer Traversed by a Current[END_REF] (see next subsection) induced by interfacial effects [START_REF] Sankey | Measurement of the Spin-Transfer-Torque Vector in Magnetic Tunnel Junctions[END_REF][START_REF] Wang | Time-Resolved Measurement of Spin-Transfer-Driven Ferromagnetic Resonance and Spin Torque in Magnetic Tunnel Junctions[END_REF].

Field-like torques produced by DC currents can simply be considered as an additional contribution of the effective field 𝐻 ⃗ ⃗ 𝑒𝑓𝑓 . In this thesis the field-like torques produced by alternating currents will play a more important role, and will be responsible for important dynamical effects [START_REF] Lebrun | Mutual Synchronization of Spin Torque Nano-Oscillators through a Long-Range and Tunable Electrical Coupling Scheme[END_REF]: synchronization of spintronic oscillator to external signals (chapter IV) and spintronic resonance (chapter V and VI).

Damping-like torque

Figure 17: Electrons spins have an average polarization 𝑝 𝑝𝑖𝑛𝑛𝑒𝑑 in the pinned ferromagnetic layer. When they tunnel through the free ferromagnetic layer, the polarized electrons align with the magnetization 𝑀 ⃗⃗ . In reaction, the magnetization undergoes a torque 𝜏 𝑆𝑇𝑇 (Spin-Transfer Torque) (adapted from [START_REF] Locatelli | Spin-Torque Building Blocks[END_REF]).

When an electrical current runs through a magnetic tunnel junction, electrons gain an average spin-polarization in the pinned magnetic layer. After tunneling though the barrier, the electrons run through the free magnetic layer, and their spin-polarization is scattered. Because of momentum conservation, scattered electrons transfer their spin to the local magnetization. This magnetic momentum transfer induce a torque acting on the magnetization that tends to align it with the polarization of electrons 𝑝 𝑝𝑖𝑛𝑛𝑒𝑑 (see Figure 17). It is called the spin-transfer torque [START_REF] Slonczewski | Current-Driven Excitation of Magnetic Multilayers[END_REF][START_REF] Ralph | Spin Transfer Torques[END_REF][START_REF] Slonczewski | Excitation of Spin Waves by an Electric Current[END_REF]. The component in the plane (𝑀 ⃗⃗ , 𝐻 ⃗ ⃗ 𝑒𝑓𝑓 )

of the spin-transfer torque is collinear to the magnetic damping: we call it the dampinglike torque.

Depending on the polarization of the pinned layer and the sign of the DC current, the damping-like torque can either contribute to damping, or be opposed to it (antidamping), like the vector 𝜏 𝐷𝐿 in Figure 16. When such an anti-damping is strong enough to compensate the magnetic damping, the magnetic layer undergoes sustained autooscillations [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF]. With an alternating current, damping-like torques contribute to spintronic resonance in phase quadrature with field-like torques [START_REF] Wang | Time-Resolved Measurement of Spin-Transfer-Driven Ferromagnetic Resonance and Spin Torque in Magnetic Tunnel Junctions[END_REF].

Universal auto-oscillator model

In [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF] A. Slavin and V. Tiberkevich described spintronic oscillators with a universal model of auto-oscillator. These type of oscillators have three key elements: a resonant element that determine the resonance frequency of the oscillator, a dissipative term, and an active element that compensates the energy losses and makes auto-oscillations possible [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF]. The model of auto-oscillator is:

𝑑𝑐 𝑑𝑡 + 𝑖𝜔 𝑟𝑒𝑠 (|𝑐 2 |)𝑐 + Γ + (|𝑐 2 |)𝑐 -Γ -(|𝑐 2 |)𝑐 = 𝜌 𝑟𝑓 𝑒 -𝑖𝜔 𝑟𝑓 𝑡+𝜓 𝑟𝑓 (3.3)
where 𝑐 is the complex normalized amplitude of the magnetization (the oscillation amplitude is maximal when |𝑐| = 1). This equation is analog to the Landau-Lifshitz-Gilbert-Slonczewski equation: where 𝐹 𝑟𝑓 = |𝜌 𝑟𝑓 | is the real amplitude of the driving oscillating force and 𝜓 𝑟𝑓 = 𝑎𝑟𝑔(𝜌 𝑟𝑓 ) its initial phase.

Nonlinearities

The resonance frequency and the torque amplitudes generally depend on the amplitude of oscillation. As in [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF], we can expend these quantities in first order Taylor series on the normalized power 𝑝:

𝜔 𝑟𝑒𝑠 (𝑝) = 𝜔 𝑟𝑒𝑠 (0)(1 + 𝑁𝑝) Γ + (𝑝) = 𝛼𝜔 𝑟𝑒𝑠 (0)(1 + 𝑄𝑝) Γ -(𝑝) = 𝜎𝐼 𝐷𝐶 (1 -𝑝) . (3.6) (3.7) (3.8) 
where 𝑁 and 𝑄 are respectively the nonlinear frequency shift coefficient and the nonlinear damping parameter, 𝜎 is the spin transfer efficiency and 𝐼 𝐷𝐶 the DC current. We note that the 𝑝 dependency in Eq. 3.8 cannot be neglected since it is necessary for the convergence of the evolution of the oscillation amplitude given by Eq. 3.4. In some cases, with small nonlinear parameters 𝑁 (𝑄) and/or small oscillation amplitudes, the 𝑝 dependencies in Eq. 3.6 (Eq. 3.7) can be neglected. Because of the nonlinear frequency shift coefficient 𝑁, it is possible to tune the frequency of spintronic oscillators with the amplitude of a DC current since, as we will see in section 3.5.1, the amplitude of oscillation √𝑝 increases with the input DC current 𝐼 𝐷𝐶 : the frequency tunability is

𝑑𝜔 𝑟𝑒𝑠 (𝑝) 𝑑𝐼 𝐷𝐶 = 𝜔 𝑟𝑒𝑠 (0)𝑁 𝑑𝑝 𝑑𝐼 𝐷𝐶 (3.9)
3.5. Spintronic oscillators for radio-frequency emission

Microwave generation

A spintronic oscillator converts a DC current into a RF voltage. Through spin-transfer torque, a DC current in a spintronic device can make its magnetization oscillate.

Through magnetoresistance, magnetization oscillations translate to an oscillating voltage across the device, which makes spintronic oscillators microwave emitters (see Figure 18).

To sustain oscillations, the magnetic damping must be fully compensated by the currentinduced damping-like torque. Spintronic oscillators therefore emit microwaves only above a threshold current [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF] 𝐼 𝑡ℎ = Γ + (𝑝 = 0) 𝜎 .

(3.10)

The threshold current density 𝐽 𝑡ℎ of spintronic oscillators is typically around 10 11 A/m².

Projections show that size reduction could decrease the threshold current density down to 10 10 A/m² by reducing the diameters of magnetic tunnel junctions to ~20 nm [START_REF] Chao | Scaling Effect of Spin-Torque Nano-Oscillators[END_REF].

This could lead to threshold currents of spintronic oscillators reduced to tens of µA. When spintronic oscillators have sustained oscillations, their normalized magnetization power evolves as

𝑝 = { 𝐼 𝑑𝑐 𝐼 𝑡ℎ ⁄ -1 𝐼 𝑑𝑐 𝐼 𝑡ℎ ⁄ + Q 𝑖𝑓 𝐼 𝑑𝑐 > 𝐼 𝑡ℎ 0 𝑒𝑙𝑠𝑒, (3.11) 
with 𝑝 the square of the oscillation amplitude [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF]. 

Mutual synchronization

Synchronization between two oscillators means that they have a constant phase difference. One of the most interesting feature of spintronic oscillators is their ability to synchronize with each other's [START_REF] Kaka | Mutual Phase-Locking of Microwave Spin Torque Nano-Oscillators[END_REF][START_REF] Kuramoto | Self-Entrainment of a Population of Coupled Non-Linear Oscillators[END_REF]. These mutual synchronizations can be achieved by different couplings: dipolar field [START_REF] Belanovsky | Phase Locking Dynamics of Dipolarly Coupled Vortex-Based Spin Transfer Oscillators[END_REF][START_REF] Araujo | Controlling the Synchronization Properties of Two Dipolarly Coupled Vortex Based Spin-Torque Nano-Oscillators by the Intermediate of a Third One[END_REF], microwave electrical signal emissions [START_REF] Grollier | Synchronization of Spin-Transfer Oscillators Driven by Stimulated Microwave Currents[END_REF], spin-waves [START_REF] Kaka | Mutual Phase-Locking of Microwave Spin Torque Nano-Oscillators[END_REF][START_REF] Zahedinejad | Two-Dimensional Mutually Synchronized Spin Hall Nano-Oscillator Arrays for Neuromorphic Computing[END_REF]. Synchronization is mostly studied to improve the quality factor of spintronic oscillators: synchronized oscillators have higher spectral purity [START_REF] Tsunegi | High Emission Power and Q Factor in Spin Torque Vortex Oscillator Consisting of FeB Free Layer[END_REF][START_REF] Locatelli | Noise-Enhanced Synchronization of Stochastic Magnetic Oscillators[END_REF][START_REF] Grimaldi | Response to Noise of a Vortex Based Spin Transfer Nano-Oscillator[END_REF] (see Figure 20(b)) and higher emission power than the sum of individual powers [START_REF] Kaka | Mutual Phase-Locking of Microwave Spin Torque Nano-Oscillators[END_REF][START_REF] Zahedinejad | Two-Dimensional Mutually Synchronized Spin Hall Nano-Oscillator Arrays for Neuromorphic Computing[END_REF]. Synchronization in oscillator networks is also actively studied [START_REF] Nikonov | Coupled-Oscillator Associative Memory Array Operation for Pattern Recognition[END_REF][START_REF] Zahedinejad | Two-Dimensional Mutually Synchronized Spin Hall Nano-Oscillator Arrays for Neuromorphic Computing[END_REF][START_REF] Romera | Vowel Recognition with Four Coupled Spin-Torque Nano-Oscillators[END_REF][START_REF] Talatchian | Designing Large Arrays of Interacting Spin-Torque Nano-Oscillators for Microwave Information Processing[END_REF][START_REF] Romera | Binding Events through the Mutual Synchronization of Spintronic Nano-Neurons[END_REF] to mimic brain associative memory [START_REF] Hoppensteadt | Oscillatory Neurocomputers with Dynamic Connectivity[END_REF][START_REF] Hoppensteadt | Pattern Recognition via Synchronization in Phase-Locked Loop Neural Networks[END_REF] for pattern clustering, classification or reconstruction. Synchronization to an external source means that the considered oscillator has a constant phase difference with the external source. Spintronic oscillators can synchronize to an external source if the frequency of the injected tone 𝑓 𝑟𝑓 is close enough to the generation frequency of the oscillator 𝑓 𝑟𝑒𝑠 (𝑝) = 𝑓 𝑟𝑒𝑠 (0)(1 + 𝑁𝑝) [START_REF] Rippard | Injection Locking and Phase Control of Spin Transfer Nano-Oscillators[END_REF]. The external signal acts as a force on the phase of the oscillator as in Eqs. 3.4 and 3.5. This force pushes the phase either forward if the oscillator is delayed or backward if the oscillator is advanced with respect to the phase of the external signal. There is then an equilibrium position which minimizes the interaction between the external source and the oscillator:

Synchronization to an external source

the phase of the oscillator is locked to the phase of the source, which implies that the phase difference remains constant in time and does not depend on the initial phase of the oscillator. Theory [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF] predicts that the phase difference depends on the detuning 𝛥𝜔 = 𝜔 𝑟𝑓 -𝜔 𝑟𝑒𝑠 (0) as

𝛥𝛷 = sin -1 ( 𝛥𝜔 𝛥 𝑠𝑦𝑛𝑐 ), (3.12) 
with 𝛥 𝑠𝑦𝑛𝑐 is the maximum frequency mismatch between oscillator and source allowing the synchronization, that we will simply call synchronization range:

𝛥 𝑠𝑦𝑛𝑐 = 𝐹 𝑒 √𝑝 (3.13)
We notice that the synchronization range increases with the input signal torque amplitude 𝐹 𝑒 and decreases with the oscillator amplitude √𝑝.

When the frequency of the external signal is close to the oscillator frequency but outside of the synchronization range, the oscillator is not synchronized but its frequency is modulated and pulled toward the frequency of the external signal (see Figure 20(a)):

we call this phenomenon frequency-pulling, and the evolution of the resulting forced frequency is

𝜔 𝑓𝑜𝑟𝑐𝑒𝑑 = 𝜔 𝑟𝑓 + 𝑠𝑖𝑔𝑛(-𝛥𝜔)√𝛥𝜔 2 -𝛥 𝑠𝑦𝑛𝑐 2 . ( 3.14) 
The descriptions above are valid for an external signal close to the frequency of an oscillator, but it is important to note that synchronization also occurs at fractional numbers of an oscillator frequency [START_REF] Urazhdin | Fractional Synchronization of Spin-Torque Nano-Oscillators[END_REF]. In chapter IV, we will use the synchronization of a spintronic oscillator to an external microwave source.

Applications

Spintronic oscillators emit RF powers up to 10 µW [START_REF] Tsunegi | High Emission Power and Q Factor in Spin Torque Vortex Oscillator Consisting of FeB Free Layer[END_REF]. They are particularly interesting for applications because of their tunability [START_REF] Manfrini | Agility of Vortex-Based Nanocontact Spin Torque Oscillators[END_REF]: their emission frequency can be tuned with a factor of about 100 % with input currents and more with magnetic fields (see Figure 19(b)). Since they also have a short response time, typically 1 ns [START_REF] Kanao | Transient Magnetization Dynamics of Spin-Torque Oscillator and Magnetic Dot Coupled by Magnetic Dipolar Interaction: Reading of Magnetization Direction Using Magnetic Resonance[END_REF],

these oscillators are promising for various applications such as microwave communications using amplitude-shift keying [START_REF] Choi | Spin Nano-Oscillator-Based Wireless Communication[END_REF], phase-shift keying [START_REF] Zeng | Robust Phase Shift Keying Modulation Method for Spin Torque Nano-Oscillator[END_REF] or frequency-shift keying [START_REF] Manfrini | Frequency Shift Keying in Vortex-Based Spin Torque Oscillators[END_REF][START_REF] Ruiz-Calaforra | Frequency Shift Keying by Current Modulation in a MTJ-Based STNO with High Data Rate[END_REF], ultra-fast spectrum analyzer [START_REF] Louis | Ultra-Fast Wide Band Spectrum Analyzer Based on a Rapidly Tuned Spin-Torque Nano-Oscillator[END_REF][START_REF] Litvinenko | Ultrafast Sweep-Tuned Spectrum Analyzer with Temporal Resolution Based on a Spin-Torque Nano-Oscillator[END_REF], magnetic sensors for precise magnetic measurements [START_REF] Krivorotov | Time-Domain Measurements of Nanomagnet Dynamics Driven by Spin-Transfer Torques[END_REF][START_REF] Garcia | Spin-Torque Dynamics for Noise Reduction in Vortex-Based Sensors[END_REF] or data transfer [START_REF] Mizushima | High-Data-Transfer-Rate Read Heads Composed of Spin-Torque Oscillators[END_REF].

3.6. Spintronic resonators for radio-frequency detection 3.6.1. Spin-diode effect The spin-diode effect converts an RF current injected into a spintronic resonator into a DC voltage [START_REF] Tulapurkar | Spin-Torque Diode Effect in Magnetic Tunnel Junctions[END_REF][START_REF] Fang | Giant Spin-Torque Diode Sensitivity in the Absence of Bias Magnetic Field[END_REF][START_REF] Miwa | Highly Sensitive Nanoscale Spin-Torque Diode[END_REF]. An RF current injected into a spintronic resonator can make its magnetization resonate if the frequency is relatively close to the resonance frequency of the resonator. The magnetoresistance converts the magnetization resonance into oscillations of resistance at the frequency of the input RF current. The product between the resistance oscillating with a frequency 𝑓 𝑟𝑓 and an alternating current with 67 the same frequency 𝑓 𝑟𝑓 leads to a continuous component in the voltage: the spin-diode rectification voltage of a spintronic resonator (see Figure 21). The spin-diode voltage of a spintronic resonator submitted to an RF power 𝑃 𝑟𝑓 with angular frequency 𝜔 𝑟𝑓 is:

𝑣 𝑆𝐷 = 𝑃 𝑟𝑓 [𝜉 𝐴 𝜔 𝑟𝑓 -𝜔 𝑟𝑒𝑠 𝛤 𝑟𝑒𝑠 2 + (𝜔 𝑟𝑓 -𝜔 𝑟𝑒𝑠 ) 2 + 𝜉 𝑆 𝛤 𝑟𝑒𝑠 𝛤 𝑟𝑒𝑠 2 + (𝜔 𝑟𝑓 -𝜔 𝑟𝑒𝑠 ) 2 ] β (3.15)
where 𝜔 𝑟𝑒𝑠 is the angular frequency of resonance, 𝛤 𝑟𝑒𝑠 = 𝛤 + is the resonance linewidth (see Eq. 3.7), and 𝛽 is a scaling factor that depends on several characteristics of the resonator, like its geometry, its magnetoresistance, the torque efficiency. 𝜉 𝑆 and 𝜉 𝐴 are respectively the relative contributions of the frequency-symmetric Lorentzian part and of the frequency-anti-symmetric Anti-Lorentzian part of the spin-diode voltage, which are respectively linked to the damping-like and field-like torques. The derivation of Eq. 3.15 is detailed in the Appendix A.

3.6.2. Influence of the field-like torque and the damping-like torque In Eq. 3.15, the symmetric part of the voltage results from a damping-like torque acting on the magnetization, and the anti-symmetric part results from a field-like torque [START_REF] Wang | Sensitivity of Spin-Torque Diodes for Frequency-Tunable Resonant Microwave Detection[END_REF][START_REF] Liu | Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect[END_REF]. Figure 22 shows different simulations of spin-diode. In Figure 22(a)

we see that the symmetric Lorentzian voltage is always of the same sign and in Figure 22(b) that the anti-symmetric Lorentzian can be both negative and positive. Since we will use spintronic resonators as artificial synapses in chapter V and VI, we will need the voltage of rectification to be positive or negative depending on the required value of synaptic weight. Hence, we will favor the field-like torque contribution to make the voltage versus frequency shape anti-symmetric. The spin-diode voltage emerging from the two contributions in equal amplitudes, field-like and damping like is plotted Figure 22 (c). It is possible to tune the ratio of efficiency between the damping-like torque and the field-like torque by changing the orientation of the magnetic field [START_REF] Wang | Bias and Angular Dependence of Spin-Transfer Torque in Magnetic Tunnel Junctions[END_REF]. In the experimental part of chapter V, we tuned the angle of the magnetic field to obtain antisymmetric voltages, and in the models of chapter V and VI, we deliberately considered only the anti-symmetric part for the sake of clarity and simplicity. [START_REF] Fang | Giant Spin-Torque Diode Sensitivity in the Absence of Bias Magnetic Field[END_REF]. These spintronic diodes can then compete with Schottky diodes. If the spin-diode effect is used to probe magnetic materials with the technique of spin-torque ferromagnetic resonance [START_REF] Kubota | Quantitative Measurement of Voltage Dependence of Spin-Transfer Torque in MgO-Based Magnetic Tunnel Junctions[END_REF][START_REF] Sankey | Measurement of the Spin-Transfer-Torque Vector in Magnetic Tunnel Junctions[END_REF], these devices are also promising for radio-frequency communication, as frequency demodulator [START_REF] Finocchio | Perspectives on Spintronic Diodes[END_REF], or as broadband detectors for signal detection or energy harvesting [START_REF] Miwa | Highly Sensitive Nanoscale Spin-Torque Diode[END_REF][START_REF] Menshawy | Spin Transfer Driven Resonant Expulsion of a Magnetic Vortex Core for Efficient Rf Detector[END_REF][START_REF] Fang | Experimental Demonstration of Spintronic Broadband Microwave Detectors and Their Capability for Powering Nanodevices[END_REF][START_REF] Bendjeddou | Radio Receivers Based on Spin-Torque Diodes as Energy Detectors[END_REF].

Other types of radio-frequency spintronic devices

In the experiments of this thesis, we used exclusively oscillators made of magnetic tunnel junctions with a magnetic vortex for the top layer [START_REF] Dussaux | Large Microwave Generation from Current-Driven Magnetic Vortex Oscillators in Magnetic Tunnel Junctions[END_REF] (see Figure 19(a)). The choice of this type of samples was motivated by the extensive expertise of the Joint Unit of Physic CNRS/Thales in vortex oscillators, by their large power (~1-10 µW) [START_REF] Tsunegi | High Emission Power and Q Factor in Spin Torque Vortex Oscillator Consisting of FeB Free Layer[END_REF] and relatively low frequency (~100-1000 MHz) that makes them easy to measure. However, we do not claim that they are the best candidate for very dense networks, as they have relatively large dimensions (~200-500 nm) and large threshold currents (several mA).

For dense networks, the lateral dimension of these devices should be reduced to tens of nm, in which case the top magnetic layer do no longer stabilize as a vortex, but as a uniform perpendicular magnetization, as it was done by A. Sidi El Valli et al [START_REF] Sidi El | Size-Dependent Enhancement of Passive Microwave Rectification in Magnetic Tunnel Junctions with Perpendicular Magnetic Anisotropy[END_REF] with samples of 20 nm of diameter.

Moreover, various types of spintronic oscillators that are not made of magnetic junctions (MTJ) are actively studied. Spin-valves [START_REF] Dieny | Magnetotransport Properties of Magnetically Soft Spin-valve Structures (Invited)[END_REF], composed of two ferromagnetic layers separated by a non-magnetic metal and exhibiting giant magnetoresistance (GMR), have the advantage to be less resistive than MTJs because they do not require tunnel transport. However, spin-valves have changes of resistance of only ~1-10 % (at room temperature) versus ~100-1000 % for MTJs. Simple ferromagnetic strip-lines feature anisotropic magnetoresistance (AMR) [START_REF] Mcguire | Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys[END_REF], which is the dependence of resistance on the orientation of the magnetization, giving rise to resistance changes of the order of 1 %.

Nano-constrictions and nano-contacts [START_REF] Demidov | Nanoconstriction-Based Spin-Hall Nano-Oscillator[END_REF][START_REF] Houshang | Spin-Wave-Beam Driven Synchronization of Nanocontact Spin-Torque Oscillators[END_REF] concentrate currents in small area in order to lower threshold current density. In these configurations, oscillators can be coupled through spin-waves [START_REF] Kaka | Mutual Phase-Locking of Microwave Spin Torque Nano-Oscillators[END_REF][START_REF] Demidov | Nanoconstriction-Based Spin-Hall Nano-Oscillator[END_REF][START_REF] Houshang | Spin-Wave-Beam Driven Synchronization of Nanocontact Spin-Torque Oscillators[END_REF], which do not dissipate heat like electrical coupling. Finally, magnetization dynamics can also be controlled by spin-orbit torques (SOT) instead of spin-transfer torques (STT). Spin-orbit torque is the charge-to-spin conversion at the interface of a material with strong spin-orbit interaction (often heavy metals) [START_REF] Demidov | Spin-Orbit-Torque Magnonics[END_REF]. This torque can be induced in a magnetic material with a pure spincurrent, which removes the need for the electric current to flow directly into the junction.

The most common oscillators based on this type of torque are spin-hall nano oscillators (SHNO) [START_REF] Demidov | Nanoconstriction-Based Spin-Hall Nano-Oscillator[END_REF].

Conclusion

In this chapter, we have introduced radio-frequency spintronic devices by starting from the existing and possible spintronics applications, then by explaining the phenomena allowing to generate or to rectify microwave signals with spintronic devices.

Spintronic devices can use magnetization states to store data and spin polarized currents can be used to read and to write magnetization states. These devices can also be used as RF emitters or detectors and are thus very promising for RF communications.

We focused on magnetic tunnel junctions to explain spintronic physical phenomena because it is the type of devices we used for experimental results. Using tunnel magnetoresistance, the magnetization state of these junctions is readable through This functionality can be used for radio-frequency detection or energy harvesting.

Finally, we have compared the RF spintronic devices we used for this thesis, which are vortex magnetic tunnel junctions, with other spintronic devices. First, the area of each device should be reduced from hundreds to tens of nm to integrate a large number of spintronic oscillators and resonators in a network. Secondly, other physical phenomenon can be used to emit or to rectify microwave signals with spintronics. There are ways to detect signals different than tunnel magnetoresistance, like for giant magnetoresistance, anisotropic magnetoresistance, spin-pumping, inverse spin-hall effect. There are also ways to inject a signal into a spintronic device different from spin-transfer torques and

Oersted fields: magnetization dynamics can for instance be created with spin-orbit torques. In conclusion, spintronics offers various perspective to improve the capacity of emission and detection of nano-devices.

Radio-frequency spintronic nano-neurons 4.1. Introduction

In 2017, J. Torrejon et al [START_REF] Torrejon | Neuromorphic Computing with Nanoscale Spintronic Oscillators[END_REF] have shown that nonlinearity and transient dynamics of spintronic nano-oscillators can be leveraged for neuromorphic computing.

Using the framework of reservoir computing, they succeeded in sine and square pattern classification task and performed spoken digits recognition with an accuracy of 99.6 %.

In this experiment, they encoded the input data into the modulations of a voltage applied to the oscillator, and they read the reservoir output from the amplitude of the voltage oscillation of the oscillator (see Figure 23(a)). Since the output signal of spintronic oscillators are microwaves, using microwave signals to encode input data could lead to new neuromorphic computing frameworks where the output of an oscillator is fed to another oscillator. In this chapter, instead of using modulation of input voltage to encode the input information, we encoded it into the frequency of an external signal (see Figure 23(b)). In our experiments, the microwave signal generated by the spintronic oscillator was either modulated or synchronized to the external signal. To read the output of the oscillator, we used either the amplitude, the phase, or the frequency of its oscillations. We have shown that each of these three oscillation variables has a nonlinear relation with the frequency of the input signal, and we have used each of them as artificial neuron output.

In this chapter, we will first describe the sample and the experimental set-up. We explain how we use a field-line generating an Oersted field in the sample to manipulate the magnetization of its free ferromagnetic layer. We show the evolution of the amplitude, the frequency, and, for the first time the phase of a spintronic oscillator when the frequency of an external signal is swept. We observe effects of frequency-pulling, and then synchronization when the frequency of the external signal is close enough to the generation frequency of the oscillator. Then, we present our neuromorphic computing demonstration on a sine and square waves classification task. We show how to preprocess the input information and how to encode it into frequencies before sending it to the oscillator. We show how we retrieve the processed information from the oscillator and how we use it to classify sine and square waves. Finally, we show our classification results using the three different oscillation variables and discuss the influence of the encoding frequencies choice on the classification results. The main results of this chapter were published in reference [START_REF] Marković | Reservoir Computing with the Frequency, Phase, and Amplitude of Spin-Torque Nano-Oscillators[END_REF]. 

Input signal injection and output signal measurement

We use an Arbitrary Waveform Generator (AWG) to generate the input microwave signal and an oscilloscope to measure the output signal of the oscillator (see Figure 24).

The signal is injected to the oscillator through a field-line 350 nm above the oscillator rather than in the oscillator itself in order to facilitate the extraction of the oscillator response from the overall measured signal. The signal in the field-line creates an external RF torque on the oscillator magnetization through the RF Oersted field it generates. The signal in the field-line also induces a microwave current in the oscillator due to inducto-capacitive coupling. To produce a RF torque strong enough to synchronize the oscillator, we use amplitudes of ≈ 350 mV of the injected signal, which generates microwave currents of ≈ 30 mV in the oscillator, such that the total voltage detected by the oscilloscope is dominated by a residual capacitive microwave tone rather than the oscillator voltage, which has an amplitude of ~5 mV. We compensate for this residual tone by adding the output voltage in a power combiner to an exactly opposed microwave signal waveform (subtraction signal in Figure 24) delayed by the time 𝑡 0 that it takes the input signal to travel through the lines and that we calibrate prior to the measurement.

To test the efficiency of our subtraction method, we inject both the input and the subtraction signals in the oscillator at rest (𝐼 𝑑𝑐 = 0 mA) and we measure the oscillator with the oscilloscope. In Figure 25 we see that the residual RF signal (yellow line) is very small compared to the amplitude of the signal of the oscillator, which is ~5 mV.

Nonlinear transformations between input microwave frequency and oscillator frequency, phase, and amplitude

In this section, we study the signal emitted by the oscillator when we modulate its magnetization oscillation with an external source and discuss how to use the transformations between the frequency of the input microwave source and the oscillation variables (the frequency, the phase, and the amplitude) to emulate a neuron. We send 5 µs long signals with different frequencies in a 20 MHz range within the natural frequency of the oscillator. From the oscillator voltage response recorded by the oscilloscope, we apply the Hilbert transform [START_REF] Picinbono | On Instantaneous Amplitude and Phase of Signals[END_REF][START_REF] Bianchini | Direct Experimental Measurement of Phase-Amplitude Coupling in Spin Torque Oscillators[END_REF] to extract frequency, amplitude and phase, that we average over the entire 5 µs waveform. The oscillator frequency, phase, and amplitude as a function of the frequency of the injected microwave signal are shown in Figure 26(ac). As the injection signal frequency approaches the natural oscillator frequency, the oscillator frequency first gets pulled towards the injected signal and then becomes identical to it in the synchronization range. Noise is reduced in all three variables in the synchronization range. Due to the subtraction of the residual microwave signal performed using a power combiner, the detected amplitude of the oscillator voltage is divided by two.

This results in low signal-to-noise ratio even in the synchronization range, which explains large error bars in Figure 26(c). The synchronization range, highlighted in yellow in Figure 26, is experimentally determined from the standard deviation of the phase that strongly decreases in this range and is found to be 7 MHz. As expected, the measured frequency of the oscillator is equal to the injected frequency in the synchronization range (see Figure 26(a)). We found that the phase difference between the oscillator and the input signal roughly follows the arcsine dependence on the input frequency predicted by theory [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF] (see Figure 26(b)).

We have seen in section 1.4.1 that tasks that are not linearly separable require neurons that operate nonlinear transformations. It was already demonstrated in the framework of reservoir computing that an oscillator can achieve good performance if it transforms the input signal in a nonlinear manner [START_REF] Appeltant | Information Processing Using a Single Dynamical Node as Complex System[END_REF]100,[START_REF] Torrejon | Neuromorphic Computing with Nanoscale Spintronic Oscillators[END_REF][START_REF] Araujo | Role of Non-Linear Data Processing on Speech Recognition Task in the Framework of Reservoir Computing[END_REF][START_REF] Larger | High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification[END_REF]. In the pulling regime (green in Figure 26), the oscillator frequency, phase and amplitude are all highly nonlinear. The oscillator frequency is linear over the entire synchronization range, whereas the phase difference and the oscillator amplitude are nonlinear at the edges (see To demonstrate the computing capabilities of a spintronic oscillator modulated by an external microwave signal, we use a dataset of sine and square waves. 100 periods of sine and square waves of 8 discrete time steps each are randomly generated (see Figure 28(a) for example). The first half of the dataset is used to train the network and the second half to test it. The goal of the task is to classify each input time step as either a sine or a square.

Here the complexity of the task lies in the fact that the input cannot be separated linearly: in Figure 28(a) we see that it is impossible to draw a line that separates all the sine inputs from the square inputs. Since this is a nonlinearly separable task, inputs must be projected in a high dimension space to be separated (see Figure 4(d-e)) [START_REF] Appeltant | Information Processing Using a Single Dynamical Node as Complex System[END_REF]. This projection in high dimension requires the nonlinear activation functions of the reservoir.

The nonlinearly separable task is then a good benchmark to prove that we can use spintronic oscillators as neurons for neuromorphic computing. In traditional reservoir computers (see section 1.4.3), inputs are multiplied by fixed weights, neurons of the reservoir operate nonlinear transformations, and tunable weights multiply the neuron responses to obtain the network outputs. Because we use a single oscillator to make an entire reservoir network, we need the oscillator to play the role of different neurons sequentially. To achieve this, we use a technique called timemultiplexing. We use the response of the oscillator at different times as outputs of different virtual neurons of the reservoir: the state of the oscillator at time 𝑡 𝑖 is the output of the virtual neuron 𝑖 of the reservoir. In this context, the inputs of the neurons of the reservoir need to be sent sequentially: for each sine or square wave input, we first multiply the input value by a weight 𝑤 The pre-processing method is schematized in Figure 28. We used a reservoir of 25 virtual neurons, which is similar to other works using time-multiplexed reservoirs [START_REF] Riou | Neuromorphic Computing through Time-Multiplexing with a Spin-Torque Nano-Oscillator[END_REF]. We therefore first multiply each input by 25 synaptic weights from a random binary matrix of -1 and +1 (for clarity in Figure 28(b) we used only 6 synaptic weights instead of 25). Then, we encode each pre-processed input into a waveform of 150 ns. Each waveform has a frequency that depends on the value of the corresponding pre-processed input. We fix the window of frequencies encoding the pre-processed inputs such that sine and square waves always take values in a range of 4 MHz and 6 MHz respectively. In Figure 29 we will see that the result of classification depends on the frequency on which this window is centered. Finally, we send each input as a 150 ns waveform with the corresponding frequency (see Figure 28(b)).

Time-multiplexing in reservoir computing

Training and outputs calculation

The output of the neural network for each input is the multiplication between the outputs of the reservoir, which are the neuron states and the output synaptic weights 𝑊 𝑖 𝑜𝑢𝑡 (see Figure 27(a)):

𝑦 = ∑ 𝑊 𝑖 𝑜𝑢𝑡 𝑓 𝑁𝐿 (𝑥 𝑖 ) 25 𝑖=1 (4.1) 
with y the output, 𝑓 𝑁𝐿 (𝑥 𝑖 ), the state of the neuron 𝑖, that can be either the phase, the frequency, or the amplitude of the oscillator, and 𝑥 𝑖 the frequency of its input waveform.

The weight matrix is calculated on a computer in order to match the target 𝑦 ̃=0 or 1 respectively for sines or squares. For a target vector 𝑌 ̃ containing targets 𝑦 ̃ for all the training examples, the weight matrix is calculated as

𝑊 𝑜𝑢𝑡 = 𝑌 ̃𝐹 † (4.2)
where 𝐹 † is the Moore-Penrose pseudo-inverse of the matrix 𝐹 containing outputs 𝑓 𝑁𝐿 (𝑥 𝑖 ), of all neurons and for all training examples [START_REF] Appeltant | Information Processing Using a Single Dynamical Node as Complex System[END_REF]. Weights assignment is then done in a single shot.

Classification results

To classify the sine and square waves from the outputs of the network, we used a threshold: we consider that the network classifies an input as part of a sine wave when the output is inferior to 0.5, and a square wave when it is superior to 0.5. We repeat the entire classification experiment for multiple frequency windows centered on frequencies The frequency window used to encode the inputs impacts the classification accuracy because it changes the noise level of the oscillator and its nonlinear dependence on the input frequency. Noise is minimized in the middle of the synchronization range but the output in this regime is a linear function of the input as can be seen in Figure 26.

Without the nonlinearity, the inputs are not projected in a high dimensional space and the network cannot classify them: the success rate for the frequency windows inside the synchronization range is close to 50 % for all the three output variables, which for this task, corresponds to random choice. The linear regime is larger for frequency than for amplitude and phase, which is reflected in the bad performance for a larger number of center frequencies in the middle of the synchronization range. When the encoding frequency window is completely outside of the synchronization range, the classification is not accurate because of the high noise level.

We find the best performance for a center frequency on the edge of the synchronization range, with some of the frequencies used for encoding laying in the highly nonlinear frequency pulling regime. The best recognition rates are obtained when neuron outputs are decoded from the phase of the oscillations (99.75 %, Figure 29(b)) as the phase is both more nonlinear than the frequency (best recognition rate of 99.5 %, Figure 29(a)) and less noisy then the amplitude (best recognition rate of 99 %, Figure 29(c)). In addition, higher recognition rates are obtained on the left-hand side of the synchronization range compared to the right-hand side due to lower frequency and amplitude noise on this side (see Figure 26(a) and (c)) as well as higher phase nonlinearity (see Figure 26(b)).

In our dataset, we used sine and square patterns with different amplitudes, which means that classifying them did not require memory of past inputs. When we tried to classify sine and square wave patterns with identical input values that can only be recognized only by keeping memory of past inputs, the network performance was lower (82 % recognition rate at maximum). This lack of memory of past inputs results from the very short relaxation time of our oscillator with our method of data encoding. Indeed, we used relatively large signal amplitude in order to synchronize the oscillator and drive its dynamics, and when an oscillator is synchronized to an external radio-frequency signal, its magnetization relaxation time decreases with the signal amplitude [START_REF] Rippard | Time Required to Injection-Lock Spin Torque Nanoscale Oscillators[END_REF]. The relaxation time was then smaller than 4 ns. In the future, it will be interesting to study the network intrinsic memory as a function of drive amplitude and oscillator noise. In addition, an external memory can be added to the system by using a time-delayed feedback loop and re-injecting the signal emitted by the oscillator together with the input data [START_REF] Appeltant | Information Processing Using a Single Dynamical Node as Complex System[END_REF]100,[START_REF] Riou | Temporal Pattern Recognition with Delayed-Feedback Spin-Torque Nano-Oscillators[END_REF][START_REF] Larger | High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification[END_REF].

Figure 29: Success rates obtained when decoding from frequency, phase, and amplitude of the oscillator, as a function of the center of the frequency range chosen for encoding the input data. The frequency range used for encoding is indicated by a blue double arrow for two measurement points. Yellow and green shaded areas designate respectively the synchronization range and the frequency pulling range.

Conclusion

In this chapter, we have used reservoir computing and a single spintronic oscillator modulated by an external microwave signal to classify sine and square wave patterns. To classify sine and square wave patterns, we have developed a method to encode data into the frequency of microwave signals. This technique is important, because it simulates the situation where a spintronic oscillator receives microwave signals of other spintronic oscillators as inputs. We have developed an experimental set-up to make time-resolved measurements of the dependence of the amplitude, the frequency, and for the first time, the phase of a spintronic oscillator on the frequency of an external signal injected into a spintronic oscillator. Amplitude, frequency, and phase have nonlinear dependencies with the frequency of the input signal: it means that each of these three variables can be used as neuron outputs. Nonlinearity is a key factor in artificial neural networks: in reservoir computers, artificial neurons need nonlinearity to project non-linearly separable inputs in a dimension space where they are separable. The phase of the spintronic oscillator can lock to the phase of the external signal: we used this effect of synchronization to improve signal over noise ratio which is another important feature for classification accuracy.

We performed classification using either the amplitude, the frequency, or the phase of the oscillator, and using multiple range of frequencies to encode the input in order to test our method with different oscillation regimes. Our results of pattern classification show that with our method, we can maximize classification accuracy when we leverage the nonlinearity of spintronic oscillators and the effect of synchronization to an external microwave signal. We achieved at best 99.75 % of classification accuracy.

Our network does not classify time-dependent inputs because it lacks memory: the method we used to inject inputs through frequency modulation leads to too short oscillator transient dynamics. To increase the memory in the network, we could use delayed-feedback signal as it was done in [START_REF] Riou | Temporal Pattern Recognition with Delayed-Feedback Spin-Torque Nano-Oscillators[END_REF], or, since transient times decrease

proportionally to the injected amplitude [START_REF] Rippard | Time Required to Injection-Lock Spin Torque Nanoscale Oscillators[END_REF], we could have reduced the injected signal amplitude. However, reducing the input amplitude also reduces the synchronization range.

Working with synchronized neurons has the advantage of decreasing the frequency and phase noise, which will be of particular importance when scaling down the size of spintronic oscillators. We used a single oscillator to emulate multiple neurons through The interest of using Radio-Frequency resonators to make MAC operations is plural. First, since MAC is the most fundamental and the most important building block in artificial neural networks [START_REF] Lecun | Deep Learning[END_REF], one needs efficient ways to realize this operation in a network where artificial neurons are spintronic oscillators, which are microwave signal emitters. We will see that using chains of spintronic resonators as rectifiers, RF signals Here, we will show that spintronic resonators can be used as nano-synapses for RF inputs. Inputs are encoded into the microwave power of the RF signals. Spintronic resonators rectify, and weight RF signals through the spin-diode effect [START_REF] Tulapurkar | Spin-Torque Diode Effect in Magnetic Tunnel Junctions[END_REF][START_REF] Fang | Giant Spin-Torque Diode Sensitivity in the Absence of Bias Magnetic Field[END_REF][START_REF] Wang | Bias and Angular Dependence of Spin-Transfer Torque in Magnetic Tunnel Junctions[END_REF] (see section 3.6.1). We will see how we can encode synaptic weights into the resonance frequency of the resonators, and how these synaptic weights can be both positive and negative, unlike most neuromorphic synapses (see section 2.3).

To operate a MAC operation, we need that each synapse has an output proportional to its input, we need that the total output is a linear combination between the inputs and the synaptic weights, and we need to be able to control the different synaptic weights individually. Since spintronic resonators were not used as artificial synapses before, there are several issues that need to be explored to confirm that the MAC operation with resonators fills all these requirements. As most real devices, spintronic resonators are nonlinear. We need to explore these nonlinear effects to verify that they do not degrade the proportionality between the input and the output of a synapse. The different RF signals must have spaced frequencies to ensure that they are not rectified evenly, and thus to avoid that all the inputs are multiplied by the same synaptic weights. To understand by how much they should be spaced, we must first model the superposition of multiple RF signals in a single resonator. Finally, we must demonstrate that we can train a network made of spintronic resonators by tuning their resonance frequency to solve a task.

We will first introduce the concept of MAC operation with chains of spintronic resonators and microwave encoded information, then we will show our experimental results with a chain of two resonators and two microwave signal generators, then we will explain an analytical model to simulate the resonators considering nonlinearities and superposition of multiple RF signals. We will test the MAC operation with this analytical model, and we will use it to simulate a single fully-connected layer (also known as perceptron), and we will train it to classify handwritten digits. The main results of this chapter are published in [START_REF] Leroux | Radio-Frequency Multiply-and-Accumulate Operations with Spintronic Synapses[END_REF] and [START_REF] Leroux | Hardware Realization of the Multiply and Accumulate Operation on Radio-Frequency Signals with Magnetic Tunnel Junctions[END_REF]. We now turn to show how the synaptic weights 𝑊 𝑗𝑖 are linked to the physics of the spin-diode effect, and how to control these weights with the resonance frequency of spintronic resonators. 

General concept: multiplication and summation of RF signals

Link between synaptic weight and resonance frequency

As we have seen in section 3.6.1 (and demonstrated in the Appendix A), we can write the spin-diode voltage of a spintronic resonator 𝑘 of a chain 𝑗 with an input microwave signal of power 𝑃 𝑖 as In Eq. 5.2, the function 𝐺 only depends on the frequency mismatch ∆𝑓 𝑘𝑗𝑖 . We see in Figure 33 that for a fixed frequency mismatch, the rectified power evolves linearly with the input microwave power. We see that it is possible to tune the slope of the voltage versus power curve by tuning the resonance frequency of the resonators. Hence it is possible to encode the synaptic weight of spintronic resonators in their resonance frequency. We will discuss in section 5.2.3 how to tune these resonance frequencies. 

𝑣 𝑘𝑗𝑖 = 𝑃 𝑖 𝐺(∆𝑓 𝑘𝑗𝑖 ) = 𝑃 𝑖 𝑟𝑓 𝜔 𝑖 𝑟𝑓 -𝜔 𝑘𝑗 𝑟𝑒𝑠 𝛤 𝑘𝑗 𝑟𝑒𝑠 2 +(𝜔 𝑖 𝑟𝑓 -𝜔 𝑘𝑗 𝑟𝑒𝑠 ) 2 𝛽. ( 5 

Total voltage of a chain of spintronic resonators

Since each resonator receives simultaneously the 𝑁 RF input signals, we must discuss about how these resonators rectify these different signals. We will show in section 5.4.2 that the resulting rectified voltage is the sum of the DC voltages they generate when they receive each RF signal individually. The voltage of each resonator is then 

𝑉 𝑘𝑗 = ∑ 𝑣 𝑘𝑗𝑖 𝑁-1 𝑖=0 = ∑ 𝑃 𝑖 𝑟𝑓 𝐺(∆𝑓 𝑘𝑗𝑖 ) 𝑁-1 𝑖=0 . ( 5 
𝑈 𝑗 = ∑ ∑ 𝑣 𝑘𝑗𝑖 (-1) 𝑘 𝑁-1 𝑖=0 𝑁-1 𝑘=0 = ∑ ∑ 𝑃 𝑖 𝑟𝑓 𝐺(∆𝑓 𝑘𝑗𝑖 )(-1) 𝑘 𝑁-1 𝑖=0 𝑁-1 𝑘=0 (5.4)
where the factor (-1) 𝑘 accounts for the head-to-tail wiring. The effect of this (-1) 𝑘 is illustrated Figure 34. This naturally leads to synaptic weights equal to

𝑊 𝑗𝑖 = ∑ 𝐺(∆𝑓 𝑘𝑗𝑖 )(-1) 𝑘 𝑁-1 𝑘=0
.

(5.5) Spintronic resonators are frequency selective. As can be seen in Eq. 5.2, the rectification voltage drops to zero when 𝜔 𝑖 𝑟𝑓 tends toward infinity and to a small offset (2𝛼 times the amplitude of the maximum voltage) when 𝜔 𝑖 𝑟𝑓 tends toward 0. In order to operate resonators successfully in a neural network, we should choose the resonance frequency of each resonator to match the frequency of one of the input signals, so that this resonator features a greater rectification effect on this matching signal. For instance, in 

Storing the synaptic weight of spintronic resonators in their resonance frequency

To tune synaptic weights associated to spintronic resonators, we must change their resonance frequencies. To our knowledge, there are three principal different classes of methods to do it, here we will list them from the least to the most promising for very largescale implementations.

Tuning synaptic weights through external magnetic field

If we place a field-line above a spintronic resonator, it is possible to run a current though the field-line to induce an Oersted field in the resonant layer of the spintronic resonator. Since in ferromagnetic resonance, resonance frequencies depend on the ratio between saturation magnetization and magnetic field [START_REF] Kittel | On the Theory of Ferromagnetic Resonance Absorption[END_REF], it is possible to tune individually each spintronic resonator with direct currents in the field-line above them.

This proposition has the advantage that tuning synaptic weights is very precise: there are as many states of resonance frequencies as possible direct current intensities running through field-lines.

However, this method is volatile: when direct currents are turned off in field-lines, the state of spintronic resonators are forgotten, hence they do not really play the role of synaptic memories and keeping continuously currents through field-lines is too costly in energy. Moreover, this method has scalability issues: when we want to put tens of thousands of spintronic resonators with less than 1 µm space between them, the different fields will probably interfere. Even if this method is not sustainable in real applications, it is still useful in laboratory context for proof-of-concept realization, and this is the method we used in the experiments of section 5.3.

Tuning synaptic weights through binary magnetization switch

It is possible to switch resonance frequencies between two values in a non-volatile way. To do so, it is either possible to switch the magnetization of a ferromagnetic layer close to the resonant layer to reverse the applied stray field on the magnetization, and thus change resonance conditions, or to directly change the state of magnetization of the resonant layer. In the case of uniform resonant layer, the magnetization can be fully reversed [START_REF] Rivkin | Switching Spin Valves Using Rf Currents[END_REF]. In the case of magnetic vortex, the chirality and/or the polarity of the vortex can be reversed [START_REF] Jenkins | Controlling the Chirality and Polarity of Vortices in Magnetic Tunnel Junctions[END_REF]. These magnetization reversals can occur through spintransfer torque [START_REF] Grollier | Spin-Polarized Current Induced Switching in Co/Cu/Co Pillars[END_REF][START_REF] Albert | Quantitative Study of Magnetization Reversal by Spin-Polarized Current in Magnetic Multilayer Nanopillars[END_REF][START_REF] Zhang | Mechanisms of Spin-Polarized Current-Driven 213 Magnetization Switching[END_REF][START_REF] Bertotti | Magnetization Switching and Microwave Oscillations in Nanomagnets Driven by Spin-Polarized Currents[END_REF][START_REF] Caputo | Vortex Polarity Switching by a Spin-Polarized Current[END_REF][START_REF] Diao | Spin-Transfer Torque Switching in Magnetic Tunnel Junctions and Spin-Transfer Torque Random Access Memory[END_REF][START_REF] Kubota | Magnetization Switching by Spin-Polarized Current in Low-Resistance Magnetic Tunnel Junction with MgO [001[END_REF][START_REF] Grimaldi | Single-Shot Dynamics of Spin-Orbit Torque and Spin Transfer Torque Switching in Three-Terminal Magnetic Tunnel Junctions[END_REF], spin-orbit torque [START_REF] Grimaldi | Single-Shot Dynamics of Spin-Orbit Torque and Spin Transfer Torque Switching in Three-Terminal Magnetic Tunnel Junctions[END_REF][START_REF] Fukami | A Spin-Orbit Torque Switching Scheme with Collinear Magnetic Easy Axis and Current Configuration[END_REF][START_REF] Lau | Spin-Orbit Torque Switching without an External Field Using Interlayer Exchange Coupling[END_REF][START_REF] Kurenkov | Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin-Orbit Torque Switching[END_REF][START_REF] Lee | Spin-Orbit Torque Switching of Perpendicular Magnetization in Ferromagnetic Trilayers[END_REF][START_REF] Jhuria | Spin-Orbit Torque Switching of a Ferromagnet with Picosecond Electrical Pulses[END_REF][START_REF] Garello | Ultrafast Magnetization Switching by Spin-Orbit Torques[END_REF][START_REF] Wang | Spintronic Computingin-Memory Architecture Based on Voltage-Controlled Spin-Orbit Torque Devices for Binary Neural Networks[END_REF], a strong external magnetic field, a magnetic pulse [START_REF] Gaididei | Controllable Switching of Vortex Chirality in Magnetic Nanodisks by a Field Pulse[END_REF][START_REF] Antos | Simulations of the Dynamic Switching of Vortex Chirality in Magnetic Nanodisks by a Uniform Field Pulse[END_REF][START_REF] Uhlíř | Dynamic Switching of the Spin Circulation in Tapered Magnetic Nanodisks[END_REF][START_REF] Martins | Non-Volatile Artificial Synapse Based on a Vortex Nano-Oscillator[END_REF], a microwave pulse [START_REF] Cui | Resonant Spin-Transfer-Driven Switching of Magnetic Devices Assisted by Microwave Current Pulses[END_REF][START_REF] Van Waeyenberge | Magnetic Vortex Core Reversal by Excitation with Short Bursts of an Alternating Field[END_REF][START_REF] Xiao | Dynamics of Vortex Core Switching in Ferromagnetic Nanodisks[END_REF][START_REF] Pigeau | Optimal Control of Vortex-Core Polarity by Resonant Microwave Pulses[END_REF][START_REF] Weigand | Vortex Core Switching by Coherent Excitation with Single In-Plane Magnetic Field Pulses[END_REF][START_REF] Hertel | Ultrafast Nanomagnetic Toggle Switching of Vortex Cores[END_REF], rotating fields [START_REF] Curcic | Polarization Selective Magnetic Vortex Dynamics and Core Reversal in Rotating Magnetic Fields[END_REF][START_REF] Kammerer | Magnetic Vortex Core Reversal by Excitation of Spin Waves[END_REF] and the reversal can also be assisted by electric field or current along the plane [START_REF] Yamada | Electrical Switching of the Vortex Core in a Magnetic Disk[END_REF][START_REF] Wang | Electric-Field-Assisted Switching in Magnetic Tunnel Junctions[END_REF][START_REF] Kim | Electric-Current-Driven Vortex-Core Reversal in Soft Magnetic Nanodots[END_REF][START_REF] Liu | Current-Induced Magnetic Vortex Core Switching in a Permalloy Nanodisk[END_REF][START_REF] Nakano | Real-Time Observation of Electrical Vortex Core Switching[END_REF], or resonant excitation with a low power RF signal [START_REF] Rivkin | Switching Spin Valves Using Rf Currents[END_REF][START_REF] Jenkins | Controlling the Chirality and Polarity of Vortices in Magnetic Tunnel Junctions[END_REF].

The main advantage of this method is the wide knowledge both in research and in industry of directly storing information in the magnetization of ferromagnetic layers; the main success of spintronics is the use of magnetic devices as binary memories, efficient both for write and read processes, with a high repeatability. The drawback is that artificial neural networks usually have high precision synaptic weights. However, recent works show that binary neural networks achieve state-of-the-art accuracies at inference after offline learning, and more and more works investigate the possibility to train them on chip [START_REF] Courbariaux | BinaryConnect: Training Deep Neural Networks with Binary Weights during Propagations[END_REF][START_REF] Hubara | Binarized Neural Networks[END_REF][START_REF] Bocquet | In-Memory and Error-Immune Differential RRAM Implementation of Binarized Deep Neural Networks[END_REF][START_REF] Laborieux | Synaptic Metaplasticity in Binarized Neural Networks[END_REF][START_REF] Laydevant | Training Dynamical Binary Neural Networks with Equilibrium Propagation[END_REF].

Tuning synaptic weights of hybrids memristor/spintronic resonators devices

It is possible to build structures where the state of a memristor influences the magnetic resonance properties of a spintronic resonator. In [START_REF] Zahedinejad | Memristive Control of Mutual Spin Hall Nano-Oscillator Synchronization for Neuromorphic Computing[END_REF], the resistance variations of a SiNx memristive layer modulates an electric field in a ferromagnetic layer and thus influences the perpendicular magnetic anisotropy of this layer. The dynamical response of the ferromagnetic layer magnetization changes with the perpendicular magnetic anisotropy. In [START_REF] Xu | A Quantum Material Spintronic Resonator[END_REF], Jun-Wen Xu at al managed to obtain different resonance conditions by changing the state of a phase change V2O3 memristor and thus influencing the properties of the adjacent Ni film due to interfacial effects. Having a memristive control of the resonance frequency is more promising than binary switch or magnetic field control in the sense that it offers nonvolatile control of synaptic weights and multiple states.

Experimental realization with two spintronic resonators and two RF signal generators

In this section we measure spin-diodes with RF signal generators, we tune their resonance frequency and check that they act as artificial synapses. We perform a MAC operation with a chain of two resonators, and we test this MAC operation on a 2D linear classification problem. For these experiments, the sample we use are vortex-based magnetic tunnel junctions.

Single spintronic resonator measurements

Experimental set-up

The magnetic tunnel junctions we used for this work have been designed by our collaborators of the International Iberian Nanotechnology Institute (INL) of Braga, Portugal. They are nano-pillars made of a 2.6 nm thick CoFeB reference magnetic layer pinned by a synthetic anti-ferromagnetic structure, a 2 nm thick MgO insulating barrier with a resistance-area product RA = 8 .μm 2 , and a free magnetic layer made of 2.0 nm Co40Fe40B20/ 0.5 nm Ta / 7 nm NiFe, where the CoFeB layer serves to ensure good crystallization and is fully coupled to the NiFe layer such that they can be considered as a single ferromagnetic layer. The magnetization of the free layer is in a vortex state. For the experiments of this section, the diameter of the nano-pillar is 250 nm. The junction is isolated from the field line placed above it.

We use a radio-frequency signal generator to inject a RF current in the sample and induce magnetization resonance. We use a bias-tee to separate the RF and the DC component of the circuit and the voltage of the DC component of the junction resulting from the spin diode effect is measured with a nano-voltmeter. We sketch this circuit in Figure 35. The sample is placed in a 5000 Oe perpendicular magnetic field by means of an electro-magnet.

Figure 35: Schematic of a magnetic tunnel junction performing a multiplication operation on an RF power 𝑃 𝑟𝑓 . The synaptic weight is controlled through the resonance frequency 𝑓 𝑟𝑒𝑠 by application of a local magnetic field via direct current injection in a field-line placed above the device.

Spin-diode experiment

As we have seen in section 3.6.1, spintronic resonators rectify RF currents through the spin-diode effect. In Figure 36, we plot the voltage rectified by the junction through the spin-diode effect versus the frequency of the microwave source for different input powers. We also fit these measurements with the equation of rectification through spindiode (Eq. 3.15). The correspondence between the experiment and fits show that the spintronic resonators match the theoretical model developed by A. Slavin and V. Tiberkevich [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF], which proves that we can use this model for large-scale simulations of networks with spintronic resonators. 

Tuning the resonance frequency

As explained in section 5.2.3.1, we run a DC current through the field-line placed above the junction to generate a local Oersted field aligned with the easy axis of the free magnetic layer, as in Figure 35. This in-plane field controls the position of the magnetic vortex in the plane of the free magnetic layer (without any external force, the vortex should be at the center of the disk). The potential well in which the vortex core oscillates is thus deformed, which leads to a change in its resonance frequency. The Oersted field generated in the free magnetic layer by these field-lines are relatively small, around 1

Oe/mA1 . However, the effect on the resonance frequency is quite large; we believe it is because the free magnetic layer is not uniform, and that the magnetic vortex is pushed toward magnetic grains, hence deforming substantially the potential well even with small vortex displacements [START_REF] Dussaux | Large Microwave Generation from Current-Driven Magnetic Vortex Oscillators in Magnetic Tunnel Junctions[END_REF].

In Figure 37(a) we observe the shift of the resonance frequency of the magnetic tunnel junction when we change the current in the field-line. To check that such magnetic tunnel junctions can emulate synapses, we fix the input frequency 𝑓 𝑟𝑓 at 346 MHz 

Tuning the resonance frequencies individually

To make a multiply-and-accumulate operation with different combinations of synaptic weights, we must check that we are able to control individually the state of each of the resonators in the chain. Doing various spin-diode spectra with different amplitude MTJ 1(2) when we inject a large current in the field-line of MTJ 2(1). This co-dependence does not alter the results of a MAC operation: even though the synaptic weights depend on both currents, they remain two independent parameters.

By plotting the voltage across the chain at fixed input frequencies 𝑓 1 𝑟𝑓 = 174 MHz and 𝑓 2 𝑟𝑓 = 540 MHz respectively (dashed lines in Figure 39(a) and (b) respectively) versus the input power, for different DC tuning currents, we see in Figure 39(c-d) that both MTJs perform the expected synaptic multiplication. The output of the synapse, which is the measured voltage (dots) can be described by a linear model (dashed lines), where the synaptic weights W1 and W2 (slopes of the fits) are color coded and depend on the tuning currents 𝐼 1 and 𝐼 2 . We observe in Figure 39(c-d) that each weight can be tuned into numerous different states. Since we know that each resonator can emulate a synapse

individually, now we have to check that we can use them simultaneously with two different input microwave signals.

Experimental Multiply-And-Accumulate operation results

The two inputs of our MAC operations are the microwave powers 𝑃 1 𝑟𝑓 and 𝑃 2 𝑟𝑓 of the two RF signals. We sum these signals with a power combiner and inject the resulting signal into the chain of resonators. Each input signal matches the resonance frequency of one of the resonators, as schematized in Figure 40(a). The goal of a MAC operation test is to measure the output for different combinations of inputs and synaptic weights. For different combinations of input powers and currents into the field-lines, we measure the voltage of the chain of resonators. We used values of 𝑃 1 𝑟𝑓 and 𝑃 2 𝑟𝑓 between 2 and 12 µW with a step of 2 µW, and we used values of 𝐼 1 and 𝐼 2 between 0 and 10 mA with a step of 2 mA, resulting in 6 2 × 6 2 = 1296 different combinations.

In order to compare this experimentally realized MAC operation to an ideal one, we use for this reference MAC operation a model where the voltage is a perfect linear combination of the input powers and the weights:

𝑉 𝑀𝐴𝐶 𝑖𝑑𝑒𝑎𝑙 = 𝑃 1 × 𝑊 1 𝑡ℎ𝑒𝑜 + 𝑃 2 × 𝑊 2 𝑡ℎ𝑒𝑜 , (5.6) 
where 𝑊 1 𝑡ℎ𝑒𝑜 and 𝑊 2 𝑡ℎ𝑒𝑜 are weights that are extracted for each combination of 𝐼 1 and 𝐼 2 from the slope of linear fits of single RF signal characterization, corresponding to Figure 39(c-d). In Figure 40(b), wee plot the experimental MAC operation voltages (blue dots) versus the computed ideal MAC operation, and we plot the 𝑦 = 𝑥 curve of the ideal MAC operation (black line). We compute that the root means square error between the experimental MAC and the ideal one is 0.41 µV over all data points, and that the slope of a linear fit of the experimental MAC versus the ideal one is 0.99.

Now that we know that we can operate a MAC operation with this chain of two resonators, in the next section we will evaluate the quality of this operation on a RF classification task, and we will compare it to a noisy simulated MAC. 

Testing the RF MAC operation with 2D classification

We test the MAC operation with a binary classification task where the output is a linear combination of two synaptic weights and two inputs, as depicted in Figure 41 ), while the horizontal axis is the root mean square error of the measured voltage compared to the ideal MAC voltage (this root mean square error is comparable to the one of section 5.3.2.3, but regarding solely one weight configuration). We see that there is a correlation between classification accuracy and error on the MAC operation, which means that the MAC precision increases the classification accuracy, but there is still a large spread in classification accuracy for each average MAC error. We can explain this spread by the fact that the classification does not depend only on the precision of the MAC itself, but also on the boundary conditions: the accuracy depends on the error of classification near the boundary between the two classes, hence it depends on the situation where the MAC operation is the less precise. We have seen section 5.4.1 that the MAC operation precision decreases with the amplitude of the microwave input powers, hence we deduce that the classification decreases when the boundary between the two classes is close to high input powers. The average accuracy over all classification tasks (weight configurations) of our MAC operation is 93.9 %.

In order to have a better understanding of the accuracy of these classifications, we perform the same classifications with a simulated MAC operation similar to the one of Eq. 5.6. For each classification, we simulate a theoretical MAC operation with weights corresponding to the (𝐼 1 , 𝐼 2 ) configuration (the weights are obtained from characterization fits, as in section 5.3.2.3), and we add a Gaussian noise: each output from this constructed MAC is sampled from a distribution where the mean is equal to the corresponding output of the ideal MAC and the standard deviation is equal to the root mean square error of the experimental MAC of this weights. Each output is the averaged over 100 trials. The red crosses correspond to the classification results for the simulated noisy MAC. The average accuracy for all the weight configurations is 93.6 %, which is similar to the average classification accuracy of the experimental MAC operation. Moreover, we see a good correlation between the accuracy of the experimental MAC (black dots) and the noisy simulated one (red cross). We can conclude that the errors of the experimental MAC mostly result from noise, which is expected in real devices, and that our technique do not suffer from systematic errors. It is possible to improve the signal over noise ratio by improving the quality of the free ferromagnetic layer or by reducing the RF input power range [START_REF] Prokopenko | Noise Properties of a Resonance-Type Spin-Torque Microwave Detector[END_REF]. In the future, experimental implementations of larger neural networks with spintronic resonators can help to see the effect of noise on real-world applications. Each red cross corresponds to the accuracy of the simulated noisy MAC for a given weight configuration (same as the black circles). Each red cross accuracy is computed over all (𝑃 1 𝑟𝑓 , 𝑃 2 𝑟𝑓 ) inputs and averaged over 100 random trials for each input.

Simulation of a single layer neural network made of spintronic resonators

The goal of this section is to present a model to simulate spintronic resonators receiving multiple RF signals integrating realistic constrains, and to simulate a perceptron (a single layer of synapses) made of chains of these resonators to solve a neuromorphic task.

Multiply-And-Accumulate operation with chains of spintronic resonators incorporating their nonlinearities

The goal of this section is to quantify the accuracy of spintronic resonator-based MAC operation compared to an ideal one. To do that we show the effect of nonlinear behaviors on realistic spintronic resonators, and we simulate a MAC operation including nonlinearities to compare it with a perfect one.

Dependence of the synaptic weights with the input microwave powers

Oscillation dynamics of realistic spintronic oscillators evolve nonlinearly with the oscillation amplitude. We can express the resonance frequency and the resonance linewidth with a first order Taylor development in the normalized oscillation power 𝑝, which is the square of the normalized oscillation amplitude [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF]:

𝑓 𝑟𝑒𝑠 (𝑝) = 𝑓 𝑟𝑒𝑠 (0)(1 + 𝑁𝑝) 𝛤 𝑟𝑒𝑠 (𝑝) = 2𝜋𝛼𝑓 𝑟𝑒𝑠 (0)(1 + 𝑄𝑝) .
(

where N and Q are respectively the nonlinear frequency shift coefficient and nonlinear damping parameter. In the Appendix A, we explain how 𝑝 can be expressed as:

𝑝 = 𝑃 𝑟𝑓 𝛤 𝑟𝑒𝑠 (𝑝) 2 + (𝜔 𝑅𝐹 -𝜔 𝑟𝑒𝑠 (𝑝)) 2 𝛾 2 , (5.9) 
which is consistent with [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF], where 𝛾 = 2 × 10 8 Hz.W -1/2 .rad is a conversion factor between the amplitude of the RF signal and the amplitude of the torque acting on the resonator magnetization. Its value was chosen to match experimental data. At this stage we can identify a potential problem: in Eq. 5.2 we define the spin-diode voltage rectified for each resonator and for each input signal as the multiplication of the input microwave power 𝑃 𝑖 𝑟𝑓 and a coefficient 𝐺(∆𝑓 𝑘𝑗𝑖 ) that is a synaptic coefficient that we can tune with the resonance frequency. However, we see that the resonance frequency and the linewidth both depend on the normalized oscillation power (Eq. 5.7 and 5.8), and that the normalized oscillation power depends itself on the input microwave power (Eq. 5.9). It means that, in real devices, the dependence of 𝑣 𝑘𝑗𝑖 with the input power is not perfectly linear, as 𝜔 𝑘𝑗 𝑟𝑒𝑠 and 𝛤 𝑘𝑗 𝑟𝑒𝑠 both depend on 𝑃 𝑖 𝑟𝑓 . In other words, the weights 𝑊 𝑗𝑖 depend on the inputs, which does not correspond to the usual mathematical description of neural networks. Synaptic weights are analogous to memories: they should not change with the inputs. When this weight nonlinearity is too important, the operation will no longer be a weighted sum. We can rewrite Eq. 5.2 as In Figure 42(a) we plot a spin-diode voltage versus frequency of the RF signal for different nonlinear damping parameters 𝑄 and in Figure 42(b) for different nonlinear frequency shift parameters 𝑁. We chose a microwave power of 50 µW which is relatively high to accentuate the nonlinear effects. We notice that the effect of the nonlinear damping parameter 𝑄 is to increase the linewidth and to decrease the amplitude of rectification. This is expected because, as explained in [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF], the linewidth 𝛤 𝑟𝑒𝑠 (𝑝) is the effective damping-torque acting on the magnetization (see Eq 5.8). The more the magnetization oscillations are damped, the less a spintronic resonator rectifies incoming signals (see Eq. 5.9). The effect of the nonlinear frequency shift parameter 𝑁 on the rectified spin-diode-voltage is more complex. We see in Figure 42(b) that the spin-diode curves are shifted toward higher frequencies when 𝑁 increases. This first effect is expected because the nonlinear effect associated with 𝑁 is the resonance frequency shift. However, we also notice that with 𝑁, the spin-diode curves are skewed. This is due to the asymmetric nature of the effective frequency mismatch ∆𝑓(𝑝) = 𝑓 𝑟𝑓 -𝑓 𝑟𝑒𝑠 (0)(1 + 𝑁𝑝): when we change the RF signal frequency, the normalized oscillation power also changes, which in return leads to a change of resonance frequency. In Figure 43 we plot the spin-diode voltage versus the nonlinear parameters 𝑁 and 𝑄, to compare these curves with the voltages without nonlinearities, for different microwave frequencies. We observe qualitatively that the effect of nonlinear behavior is smaller when microwave frequencies are far away from the resonance frequency, which is expected since the nonlinear behavior in first order are proportional to the normalized oscillation power, which increases when the RF signal is in resonance with the spintronic resonator. We see in Figure 43(a) that the effect of the nonlinear damping parameter is almost absent when 𝑄 < 1. We see clearly in Figure 43(b) that the effect of the nonlinear frequency shift coefficient leads to a greater difference between realistic resonators and ideal one without nonlinearities. The difference is considerable when 𝑁 > 1.

𝑣 𝑘𝑗𝑖 = 𝑃 𝑖 𝑟𝑓 𝜔 𝑖 𝑟𝑓 -𝜔 𝑘𝑗 𝑟𝑒𝑠 (0)(1+𝑁𝑝) (𝜔 𝑘𝑗 𝑟𝑒𝑠 (0)(1+𝑄𝑝))
We can see through literature search that the orders of magnitude are 1 for the nonlinear damping parameter 𝑄, and 0.1 for the nonlinear frequency shift coefficient 𝑁 [START_REF] Romera | Vowel Recognition with Four Coupled Spin-Torque Nano-Oscillators[END_REF][START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF][START_REF] Jiang | Reduced Spin Torque Nano-Oscillator Linewidth Using He + Irradiation[END_REF][START_REF] Divinskiy | Controlled Nonlinear Magnetic Damping in Spin-Hall Nano-Devices[END_REF][START_REF] Marković | Detection of the Microwave Emission from a Spin-Torque Oscillator by a Spin Diode[END_REF]. Even though the value of the latter can vary strongly with the orientation of an applied external magnetic field or the magnetic anisotropy of the layer in magnetic resonance, research show that it is possible to reduce these nonlinear parameters through structure modification with ion irradiation [START_REF] Jiang | Reduced Spin Torque Nano-Oscillator Linewidth Using He + Irradiation[END_REF][START_REF] Fassbender | Tailoring Magnetism by Light-Ion Irradiation[END_REF], or shape anisotropy engineering [START_REF] Divinskiy | Controlled Nonlinear Magnetic Damping in Spin-Hall Nano-Devices[END_REF]. In all simulations of this chapter, except when specified, spintronic resonators are simulated with 𝑄 = 1 and 𝑁 = 0.1.

To quantify properly the difference between a realistic resonator with 𝑄 = 1 and 𝑁 = 0.1 and an idealistic one depending on the microwave power, in Figure 44 Even though the voltage of a spintronic resonator differs from an idealistic one with when nonlinear effects are too high, we will confirm that we can efficiently operate a MAC operation under specific conditions.

Comparison of a realistic Multiply-And-Accumulate operation with an idealistic one through simulations

To estimate the cost of nonlinearities in the case of a MAC operation with a chain of spintronic resonators, we simulate a chain of four realistic resonators, and we compare the results with the voltages obtained with a chain of a chain of four ideal resonators without nonlinearities, implementing a perfect multiply-and-accumulate operation. This result gives us the performance of the nonlinear MAC operation. We then need to define a reference, an ideal MAC operation to evaluate the results. For this purpose, for every point, we compute the normalized oscillation powers of the four spintronic resonators with Eq. 5.9, and store the maximum for each resonator and for each RF signal: 𝑝 𝑘𝑖 𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑟𝑒𝑎𝑙𝑀𝐴𝐶 (𝑝 𝑘𝑖 ). These maximum oscillation power values serve as a reference to simulate a MAC operation with a chain of four ideal linear spintronic resonators whose resonance frequency and linewidth does not depend on the input RF power. This approach gives the following linear reference model for the MAC operation: In Figure 46 we plot the voltage of the nonlinear MAC simulations as a function of the voltage of the linear MAC. We see that the scatter plot thus created is aligned with the y=x curve with a root-mean-square deviation of 0.58 µV. This result shows that the MAC implemented by a chain of spintronic resonators is comparable to a linear MAC when the nonlinear coefficients N and Q are inferior or equal to respectively 0.1 and 1 and, thus, that spintronic resonators can be used as artificial synapses for neural networks. 𝜓 𝑖 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 -𝜔 𝑖 𝑟𝑓 𝑡). This model is based on the postulate that the total magnetization vector is the sum of the magnetizations vector of the resonator receiving individually each RF signal. Here each normalized oscillation powers 𝑝′ is calculated using Eq. 5.9 for a spintronic resonator receiving a single RF signal with microwave power 𝑃 𝑖 𝑟𝑓 , frequency 𝑓 𝑖 𝑟𝑓 , and initial phase 𝜓 𝑖 𝑟𝑓 . We considered that the resonator in resonance oscillates at the frequency of the RF signal it receives 𝑓 𝑖 𝑟𝑓 . The phases 𝜓 𝑖 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 result from the transient dynamics that occurs during the relaxation period (period until the magnetization is periodic), they are determined by fitting the dynamical simulation results to the analytical model.

𝑈 𝑙𝑖𝑛𝑒𝑎𝑟 = ∑ ∑ 𝑃 𝑖 𝑟𝑓 𝜔 𝑖 𝑅𝐹 -𝜔 𝑘 𝑟𝑒𝑠 (0)(1 + 𝑁𝑝 𝑘𝑖 𝑚𝑎𝑥 ) 𝛤 𝑘 𝑟𝑒𝑠 (0) 2 (1 + 𝑄𝑝 𝑘𝑖 𝑚𝑎𝑥 ) 2 + (𝜔 𝑖 𝑅𝐹 -𝜔 𝑘 𝑟𝑒𝑠 (0)(1 + 𝑁𝑝 𝑘𝑖 𝑚𝑎𝑥 )) 2 𝛽 𝑁-1 𝑖=0 𝑁-1 𝑘=0 . ( 5 
In Figure 49 This study also demonstrates that each synaptic weight does not only depend on the resonance frequency of one resonator, but on the resonance frequencies of all the resonators of a chain (see Eq. 5.5). In section 5.4.4.1 we will see how to space the frequencies of the input RF signals and how to space the resonance frequencies of the resonators of a chain to avoid that all the inputs are multiplied by the same synaptic weights. The scatter dots are the voltages of the ODE simulations plotted against the voltages of the calculations with theoretical model. The simulations are averaged over 20 repetitions, each with a random initialization for the RF signal phases. The red solid line corresponds to the voltages of the simulations realized with the theoretical model plotted against themselves. The root-mean-square deviation between the scatter dots and the red solid line is 1.72 µV and the correlation is 99.94 %

Spintronic resonators-based neural network with superposition of RF signals and nonlinear behaviors

In this section we train a simulated single-layer neural network called perceptron using the developed models for the spintronic resonators, and benchmark its accuracy to classify handwritten digits against device non-idealities, including their limited frequency selectivity and non-linearities.

The dataset: "digits"

We choose a standard task of image classification, for which the goal is to recognize handwritten digits from 0 to 9. We first consider a dataset called "Digits" [276] comprising 1797 images of 8 x 8 = 64 pixels. This dataset is rather small compared to most benchmark datasets, which is useful in our case because simulations that include both superposition of RF signals in chains of spintronic resonators and nonlinear behaviors are very costly in computation.

In machine learning, to teach a neural network to classify images or other objects, with 𝒩(𝑓 𝑖 𝑟𝑓 , 𝜎) a sample from the normal distribution of center 𝑓 𝑖 𝑟𝑓 and standard deviation 𝜎.

Learning to classify digits with nonlinear devices

Figure 52: Organigram of a learning algorithm allowing to efficiently teach a neural network made of nonlinear spintronic resonators by tuning their resonance frequencies.

To train the network to classify these handwritten digit images we use PyTorch, a software that has an auto-differentiation algorithm that allows to implement backpropagation, which is the most commonly used algorithm for neural network training [START_REF] Lecun | Deep Learning[END_REF][START_REF] Hecht-Nielsen | III.3 -Theory of the Backpropagation Neural Network**Based on "Nonindent[END_REF]. This supervised algorithm propagates the gradient of a loss function across a neural network so that for each iteration, the weight updates 𝑊 ← 𝑊 -𝜂 𝜕𝐿 𝜕𝑊 reduce the loss 𝐿, which quantifies the error between the predictions of the network and the targets, i.e., the classification labels assigned to each input. 𝜂 is a learning rate coefficient, that we initialize empirically at 𝜂 = 2 × 10 -7 . We use the optimizer Adam [START_REF] Kingma | A Method for Stochastic Optimization[END_REF].

The loss is calculated simulating the voltages 𝑈 𝑗 of the 10 synaptic chains and applying the Cross Entropy Loss Function [START_REF] Murphy | Machine Learning: A Probabilistic Perspective[END_REF] 𝐿(𝑦, 𝑈) = -∑ 𝑦 𝑗 𝑙𝑛 ( 𝑒𝑥𝑝(𝑈 𝑗 )

∑ 𝑒𝑥𝑝(𝑈 𝑗 ) The loss for each picture of the batch is computed and averaged. We then compute the gradient of the loss with respect to the 64 x 10 weights. To find the updates for the resonance frequencies, using the full nonlinear equations leads to an inefficient backpropagation algorithm because of the dependencies between the synaptic weights and the inputs.

However, as the weight changes provoked by backpropagation are by construction small, it is possible to compute them using linearized equations. Therefore, instead of using the model with nonlinear resonators, we use the model with linear resonators defined by Eq. 5.11, initialized with the same parameters as the model with nonlinear resonators. To define the reference 𝑝 𝑚𝑎𝑥 , we compute the maximum of magnetization oscillation power for each resonator at initialization for a maximum input (white image, i.e., all the pixels values are one). Then we update the resonance frequencies of the linear model resonators using the weights gradient with respect to the resonance frequencies:

𝑓 𝑟𝑒𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 ← 𝑓 𝑟𝑒𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 𝜕𝐿 𝜕𝑓 𝑟𝑒𝑠 𝑙𝑖𝑛𝑒𝑎𝑟
(5.17 The learning algorithm is schematized in Figure 52.

Results of learning and inference with nonlinearities

To complete the training procedure, we perform 30 epochs, meaning that we present the entire dataset (training on tree quarters and testing on one quarter) 30 times, and we repeat the entire procedure 10 times to gather statistics. To compute the success rate, i.e., the proportion of images in the dataset that the network is able to classify, we take the class that corresponds to the chain index 𝑗 whose output is maximum, and we compare it with the target class of the dataset. The purple line in Figure 53 shows the mean success rate as a function of the epoch number, and the mean deviation in purple shade. The mean success rate at the end of training reaches 99.0 % both for the test and the training sets. Looking at the standard deviation in purple shade we see that the result is reproducible: if the result is stochastic for the first epochs, the outcome always converges. We performed exactly the same simulations but including the symmetric part for the spin-diode effect with a ratio of 0.5: it means that in Eq. In order to study more accurately these effects on training and classification, we used the dataset MNIST (Mixed National institute of Standards and Technology) [START_REF] Yann Lecun | MNIST Handwritten Digit Database[END_REF],

whose 28 x 28 = 784 pixels images are larger than the images of the "digits" dataset. The MNIST dataset is one of the most used dataset to benchmark neuromorphic systems [START_REF] Davies | Benchmarks for Progress in Neuromorphic Computing[END_REF]. It has 70 000 pictures: 60 000 images in the training set and 10000 images in the test set. However, due to the larger number of pixels and images, we did not implement nonlinearities in the simulations of spintronic resonators for this section because it was too computationally expensive.

Choice of frequencies

We have to space the frequencies of the RF signals and space the resonance frequencies of the resonators as much as possible. The resonance frequencies should be arranged in a manner that the whole frequency range is not too wide (spintronic resonators and oscillators can cover a finite frequency range between few tens of MHz and few tens of GHz [START_REF] Bonetti | Spin Torque Oscillator Frequency versus Magnetic Field Angle: The Prospect of Operation beyond 65 GHz[END_REF][START_REF] Dussaux | Field Dependence of Spin-Transfer-Induced Vortex Dynamics in the Nonlinear Regime[END_REF][START_REF] Divinskiy | Controlled Nonlinear Magnetic Damping in Spin-Hall Nano-Devices[END_REF]) but with resonance curves overlapping each other as little as possible. We have to consider that for a specific type of spintronic resonators, the higher the frequency is, the wider is the linewidth of resonance (see Eq. 5.8: 𝛤 𝑟𝑒𝑠 = 2𝜋𝛼𝑓 𝑟𝑒𝑠 ). Since the linewidth of the resonators increase with their resonance frequencies them such that the separation between two consecutive frequencies 𝑓 𝑖+1 and 𝑓 𝑖+1 also increase with the frequency. We arrange frequencies such as 𝑓 𝑖+1 -𝑓 𝑖 = 𝜇(𝑓 𝑖+1 -𝑓 𝑖 ), with 𝜇 a parameter that we call the spacing coefficient. This leads to the relation

𝑓 𝑖 = 𝑓 0 ( 1 + 𝜇 1 -𝜇 ) 𝑖 (5.19) 
To get an impression of how much RF signals are rectified by different spintronic resonators if we arrange the frequencies with Eq. 5.19, in Figure 54 we plot the voltages rectified by three spin-diodes whose resonance frequencies follow Eq. 5.19 with a spacing coefficient equal to the magnetic damping (𝜇 = 𝛼 = 0.01). We can then compute the optimum spacing coefficient 𝜇:

𝜇 = ( 𝑓 𝑚𝑎𝑥 𝑓 𝑚𝑖𝑛 ⁄ ) 1 𝑁-1 -1 ( 𝑓 𝑚𝑎𝑥 𝑓 𝑚𝑖𝑛 ⁄ ) 1 𝑁-1 + 1 (5.20) 
In the case of "MNIST" N=784, hence 𝜇 =0.0038 with 𝑓 𝑚𝑖𝑛 = 50 MHz and 𝑓 𝑚𝑎𝑥 = 20 GHz.

It is important to notice that in Eq. 5.20 the coefficient of separation does not depend directly on the frequency of the resonators but on the ratio between the highest frequency and the lowest one.

Microwave frequencies follow Eq. 5.19 with 𝜇 =0.0038, and resonance frequencies are initialized following Eq. 5.15 with mean 𝑓 𝑖 𝑟𝑓 and standard deviation 𝜎 = 𝑓 𝑖 𝑟𝑓 0.001 √784 .

Results of learning and interference on the MNIST dataset

We simply apply the auto-differentiation algorithm of PyTorch to update the resonance frequencies. We chose a learning rate 𝜂 = 5.10 -6 and batches of 500 pictures for each training iteration. First, to see the effect of spacing of frequencies on the classification accuracy, we train a neural network of tens chains of 784 spintronic resonators with different frequency ranges. We keep 𝑓 𝑚𝑖𝑛 = 50 MHz and we choose different values of 𝑓 𝑚𝑎𝑥 : 100 MHz, 500 MHz, 1 GHz, 5 GHz, 10 GHz, and 20 GHz. The magnetic damping is 𝛼 = 0.01.

In Figure 55(a) we plot the success rate of the networks with different frequency ranges trained over 30 epochs. The results are averaged over 10 repetitions. We see that the accuracy of classification decreases with 𝑓 𝑚𝑎𝑥 , which confirms that RF signal frequencies cannot be too close to each other. To understand more thoroughly the cause of the accuracy drop, in Figure 55(c-e) we plot the synaptic weights of spintronic networks with different frequency ranges. In Figure 55(c) we see that with a wide frequency range, when the maximum frequency is 𝑓 𝑚𝑎𝑥 = 20 GHz, there are no apparent correlations between the synaptic weights of two input neurons, which is a situation similar to that of a software neural network (see Figure 55(b)). When the frequency range is smaller, with 𝑓 𝑚𝑎𝑥 = 500 MHz, we can notice a continuity between the synaptic weights of two consecutive neurons with close frequencies (see Figure 55(d)). Finally, when the frequency range is even smaller, with 𝑓 𝑚𝑎𝑥 = 100 MHz, we see that the difference between the synaptic weights of two consecutive input neurons is always very small (see Figure 55(e)). This means that if the frequency spacing of the RF signals is too small compared to the linewidths of the resonators, the effects of the rectifications across the spintronic resonators chains will be very similar for several RF signals, implying that several synaptic weights will be very close. This effect of dependencies of synaptic weights does not only depend on the frequency spacing of the input RF signal, but also on the spintronic resonators linewidths.

For a fixed frequency arrangement, the resonators are more likely to rectify equally multiple RF signals if their resonance curves cover a wider range of frequencies. The linewidths of spintronic resonators are proportional to their magnetic damping (see Eq.5.8: 𝛤 𝑟𝑒𝑠 = 2𝜋𝑓 𝑟𝑒𝑠 ). On the other hand, higher magnetic damping helps to stabilize the orbit of magnetic oscillations faster and would lead to higher computational speed for hardware realization of spintronic resonators neural network. In Figure 56 we plot the success rate on the "MNIST" dataset with a layer of these spintronic resonators for different magnetic damping after 20 epochs. The results are averaged over 10 repetitions. For the results on the test set (60 000 images), the maximum recognition rate is 92.40 % for a magnetic damping of 𝛼 = 0.0188. For this magnetic damping value, the linewidth is comparable to the separation coefficient 𝜇 =0.0038: the frequencies of the RF signals are not so close compared to the resonators linewidth, hence the inputs can have different synaptic weights. In comparison, we solved the MNIST dataset with a software neural network of the same architecture and achieve at best 92.27 % of recognition. We see that the accuracy of the resonator neural network decreases strongly for 𝛼 > 0.1. It is because the magnetic damping is far greater than the separation coefficient, hence the different resonance curves are much wider that the spacing between RF signal frequencies, which means that the network cannot distinguish between two RF input signals.

To discuss the relation between this magnetic damping and the computational speed, we have to consider that each iteration is limited by the speed of the slowest spintronic resonator, which in this case is 50 MHz. To estimate the relaxation time of this spintronic resonator, we use an Ordinary Differential Equation solver as we did in section 5.4.2 to solve the system of Eqs. 5.12 and 5.13. We fit the horizontal component of the magnetization dynamics to an exponential decay model:

𝑚 𝑥 𝑑𝑒𝑐𝑎𝑦 (𝑡) = √𝑝 𝑟𝑒𝑠 (𝑡) (1 -𝑒 -𝑡 𝜏 ⁄ ) cos(𝜑 𝑟𝑒𝑠 (𝑡)). (5.21) 
Using this technique, we extract that the relaxation time τ is equal to 194 ns when α = 0.01 (Permalloy) and τ is equal to 20 ns when α = 0.1, which sets the limit speed for the computation. Figure 57 we plot examples of dynamical simulations of the magnetization and fits corresponding to the decay model. 

Conclusion

In this chapter, we have shown that chains of spintronic resonators can operate multiply-and-accumulate operations and emulate synapses while weighting microwave encoded input information.

We first proved experimentally how a spintronic resonator multiplies the power of a RF signal by a synaptic weight when it rectifies it through the spin-diode effect, and we have shown that this synaptic weight can be tuned continuously, with both positive and negative values, by tuning the resonance frequency of the spintronic resonator. We used a chain of two spintronic resonators to operate a MAC operation on two RF signals. This MAC operation had a standard deviation of 0.41 µV and a slope of 0.99 with respect to an ideal MAC operation. We also benchmarked our MAC operation with 2D classification task and obtained an average success rate of 93.9 %. We compared our classification results to the results of a simulated noisy MAC operation and conclude that our RF MAC operation does not suffer from systematic errors. In the future, the accuracy can be improved by decreasing the range of microwave powers used as input, or by improving the quality of the magnetic materials during fabrication.

To study RF spintronic MAC operations on a larger scale, we simulated chains of spintronic resonators. Using analytical simulations, we have shown that the MAC operation stays accurate even by including the nonlinearity of spintronic resonators with low input power and with nonlinear parameters of spintronic resonators close to the values measured in real devices. We have shown through dynamical simulations that the effects of several RF signals in spintronic resonators add up linearly. This result is important to model how spintronic resonators rectifies simultaneously multiple RF signals. We conclude that our MAC operation is still accurate even if spintronic resonators rectify multiple RF signals, and thus that each synaptic weight depends on the resonance frequencies of multiple spintronic resonators in a chain.

To show that we can train spintronic resonators to solve a task, we simulated a perceptron (a neural network with only one layer of synapses) made of chains of spintronic resonators. We first simulated a network of tens chains of 64 spintronic resonators and proved that the network could recognize 8 × 8 pixels handwritten digit images with an accuracy as good as a comparable software neural network, even if we included the nonlinearities of spintronic resonators in our simulation. Then, we studied the minimum frequency spacing between the RF signals so that each input can be differentiated. To that end, we simulated a larger network of ten chains of 784 resonators to solve the "MNIST" dataset of 28 × 28 pixels handwritten digit images. We computed the optimum spacing between the frequencies of the RF signals for a given frequency range to maximize the differentiation of inputs. By simulating single layer spintronic networks with different frequency ranges and different spintronic resonator linewidths, we have studied how frequency spacing frequencies affects the differentiability of inputs, and thus affect the classification accuracy. These results are valuable for future spintronic neural network implementations using RF signals and frequency-multiplexing. We achieved at best 92.40 % of classification accuracy on MNIST with our simulated network, which is similar to an equivalent software neural network.

We used vortex-based magnetic tunnel junctions as spintronic resonators to demonstrate experimentally our radio-frequency multiply-and-accumulate operation.

However, there are a lot of different devices capable of spin-diode rectification. It is crucial to determine which device is the more energetically favorable for MAC operation to scale to very large chains of spintronic resonators. Magnetic tunnel junctions are highly resistive and have high microwave signal reflectivity. Hence, they might dissipate a lot of power when we send microwave signals to many junctions in series. It might be favorable to use less resistive devices as spin-valves [START_REF] Dieny | Magnetotransport Properties of Magnetically Soft Spin-valve Structures (Invited)[END_REF], or to use systems that do not require to inject RF signals directly in the devices: as an example, these signals can be conducted by field-lines electrically separated from the devices (as we propose in the implementation of section 6.2 in the next chapter), or they can be injected in heavy metal lines to inject spin-currents through Spin-Hall Effect [START_REF] Liu | Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect[END_REF]. Moreover, resonance frequencies of vortex based magnetic tunnel junction are most often between 100 MHz and 1 GHz. For large neural networks, we need a class of devices having resonance frequencies between tens of MHz and tens of GHz. It is possible to make spintronic resonators of different native resonance frequencies by making them with different diameters, or by making them with

Scaling to Deep Neural Networks

In chapter IV, we have studied how spintronic oscillators can emulate neurons. In chapter V, we have proven that spintronic resonators can emulate synapses and we can encode synaptic weights into their resonance frequencies. However, to solve complex tasks, data must travel through multiple layers of neurons extracting different information. In this chapter, we will study how to make deep neural networks with spintronic oscillators emitting microwaves and spintronic resonators receiving microwaves. We will first study a multi-layer perceptron to prove that neurons-tosynapses and synapses-to-neurons connections are possible, and then we will present new methods for feature extraction with radio-frequency spintronic convolutions.

6.1. Multi-Layer Perceptron with spintronic oscillators as neurons and spintronic resonators as synapses

Introduction

To show how to transfer information between different neural layers of spintronic devices, we focus our study on a multi-layer perceptron. There is a strong effort at making efficient synaptic connections using crossbar of memories in the field of neuromorphic computing, but neurons and connections between two layers of synapses often requires complex circuitry. If there are demonstrations of synapses-to-neurons connections using memristors both for neurons and synapses [START_REF] Wang | Capacitive Neural Network with Neuro-Transistors[END_REF][START_REF] Duan | Spiking Neurons with Spatiotemporal Dynamics and Gain Modulation for Monolithically Integrated Memristive Neural Networks[END_REF][START_REF] Wang | Fully Memristive Neural Networks for Pattern Classification with Unsupervised Learning[END_REF], to this day there are no demonstrations of neurons-to-synapses demonstrations. Using nano-devices to emulate both neurons and synapses and transfer the information through multiple layers in a network can be beneficial for large neural network integration with limited area footprint.

Moreover, using spintronic oscillators and resonators, the same materials could be used for neurons and synapses which can facilitate fabrication.

We show how information can cascade through multiple layers in a network with RF-to-DC conversion and DC-to-RF conversion, we estimate the energy consumption of such architecture, and we show through simulations that a multi-layer perceptron made of spintronic oscillators and spintronic resonators can classify handwritten digit pictures of the "MNIST" dataset. In this chapter, we use spintronic oscillators as artificial neurons. We use the input DC current of an oscillator as neuron input, and the power of the RF signal they emit as neuron output. The relation between DC current and output RF power is nonlinear [START_REF] Torrejon | Neuromorphic Computing with Nanoscale Spintronic Oscillators[END_REF][START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF][START_REF] Costa | High Power and Low Critical Current Density Spin Transfer Torque Nano-Oscillators Using MgO Barriers with Intermediate Thickness[END_REF], as it should be for artificial neurons. Each spintronic oscillator needs to emit at a different frequency. The RF signals are then summed and must be amplified by a CMOS RF amplifier. As in chapter V, the signals are equally distributed into multiple chains of spintronic resonators, and spintronic resonators apply weights on the RF signals by rectifying them through the spin-diode effect. Each synaptic weight can be tuned by tuning the resonance frequencies of resonators. The DC voltages rectified by the chains of spintronic resonators are the output of the synaptic layer. Then, using CMOS amplifiers that convert the DC voltages into DC currents, each resonators chain output can be used to supply a spintronic oscillator in the next neural layer. We can then cascade the information between different layers of neurons with an architecture alternating between RF and DC signals. This architecture is illustrated in Figure 58(a).

Transmitting the information between different neural layers

Most spintronic oscillators have a frequency dependence with input direct current [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF][START_REF] Dussaux | Field Dependence of Spin-Transfer-Induced Vortex Dynamics in the Nonlinear Regime[END_REF][START_REF] Zeng | Ultralow-Current-Density and Bias-Field-Free Spin-Transfer Nano-Oscillator[END_REF]. We want to avoid this effect because, as we see in Eq. 5.2, the weights also depend on microwave frequencies, and we cannot allow the weights to depend on the input values. To avoid these frequency shifts, oscillators with compensated magnetic anisotropy can be used [START_REF] Jiang | Reduced Spin Torque Nano-Oscillator Linewidth Using He + Irradiation[END_REF][START_REF] Jiang | Reduced Spin Torque Nano-Oscillator Linewidth Using He + Irradiation[END_REF].

Energy and speed estimations

In this architecture, the external energy supply comes through the RF and DC amplifiers. In the Appendix B, we have made calculations to predict the energy consumption of such architecture. We considered amplifiers without any losses. Since there is no energy conversion in RF amplifiers, the power needed at the input of the chains of spintronic resonators is equal to the power we need to supply the RF amplifiers. We considered the physical parameters of spintronic oscillators and resonators as if they were magnetic tunnel junction pillars with diameters of 20 nm. We considered that the frequency of the slowest oscillator was 1 GHz, which sets the limit for processing speed: the minimum latency is then the relaxation time 𝑇 = 1 𝛼𝑓 𝑟𝑓 = 1 0.01×10 9 =100 ns for each operation (if the magnetic damping is 𝛼 = 0.01), with all the devices working in parallel.

With our analysis, we conclude that in ideal conditions, the energy needed to supply the RF amplifiers for one neural layer for one operation is ~10 fJ per spintronic resonator . We choose a nonlinear damping coefficient Q = 2 according to experimental works [START_REF] Romera | Vowel Recognition with Four Coupled Spin-Torque Nano-Oscillators[END_REF][START_REF] Jiang | Reduced Spin Torque Nano-Oscillator Linewidth Using He + Irradiation[END_REF][START_REF] Marković | Detection of the Microwave Emission from a Spin-Torque Oscillator by a Spin Diode[END_REF]. We clamp each DC current input to 4𝐼 𝑡ℎ because in practice, these nano-devices can be damaged above a particular current [START_REF] Costa | High Power and Low Critical Current Density Spin Transfer Torque Nano-Oscillators Using MgO Barriers with Intermediate Thickness[END_REF].

As detailed in the Appendix B, we can model the voltage rectified through spindiode of a spintronic resonator receiving the RF signal of a spintronic oscillator by

𝑉 𝑆𝐷 = 𝑃 𝑟𝑓 2𝛤 𝑟𝑒𝑠 (𝜔 𝑟𝑓 -𝜔 𝑟𝑒𝑠 ) 𝛤 𝑟𝑒𝑠 2 +(𝜔 𝑟𝑓 -𝜔 𝑟𝑒𝑠 )
nonlinearities to model the spintronic resonators because it is too computationally expensive. For the same reason, we had to consider that each resonator rectifies only the RF signal with closest frequency in order to simplify simulation processing. We have seen in chapter V that classification of digits can be made efficiently even with more realistic simulations where resonators are nonlinear and rectify simultaneously multiple RF signals. The synaptic weights associated to each resonator are then

𝑊 = 2𝛤 𝑟𝑒𝑠 (𝜔 𝑟𝑓 -𝜔 𝑟𝑒𝑠 )
𝛤 𝑟𝑒𝑠 2 + (𝜔 𝑟𝑓 -𝜔 𝑟𝑒𝑠 ) 2 . (6.2)

In our simulations we introduce an amplification factor for each synaptic layer.

Amplification factors are set as trainable parameters and are trained through backpropagation. Adjusting these parameters during training balances the fact that spintronic resonators can only be tuned within a finite range of synaptic weights.

Results

To train the network, we use 60,000 images for training and 10,000 for testing. At each training iteration, a batch of 500 images is presented to the network, the output of the network is computed with the softmax layer, and the cost function is the Cross-Entropy Loss [START_REF] Murphy | Machine Learning: A Probabilistic Perspective[END_REF]. We use the backpropagation algorithm [START_REF] Lecun | Deep Learning[END_REF] and Adam optimizer [START_REF] Kingma | A Method for Stochastic Optimization[END_REF] of the software PyTorch to train the network, with a learning rate of 0.0005. We obtain 96.70% of accuracy averaged on ten trials on the testing set with our simulated RF spintronic multi-layer perceptron. In comparison, the accuracy of an equivalent software neural network is 98.15 %. To understand this difference of accuracy, we train a network with simulated spintronic oscillators as neurons and simple software synapses and obtain 97.90% of accuracy on the testing set. We believe that the optimization of hyperparameters is easier for training a network with simple software synaptic weights than with synaptic weights defined by spintronic resonators and Eq. 6.1.

To prove that inference with spintronic resonators is as accurate as with software synaptic weights, we use the synaptic weights trained with the network with simulated RF spintronic neurons and simple software synapses and use them to tune the resonance frequencies of the simulated spintronic resonators. Using Eq.6.2, we compute the resonance frequencies in function of the pre-trained synaptic weights 𝑊:

𝑓 𝑟𝑒𝑠 = 𝑓 𝑟𝑓 1 1 + 𝛼 𝑊 𝐾 𝑆𝐷 -√ 𝐾 𝑆𝐷 2 -𝑊 2 . (6.3)
Using this method of pre-training, we achieve an accuracy of 97.92 % with network of RF spintronic neurons and synapses. These results are plotted in Figure 59. The slight difference of accuracy with the software neural network (98.15 %) might be explained by the difference of nonlinear transformation between the ReLU that we used for the software network, and Eq. 3.11 that we used to simulate the spintronic oscillators: the function of Eq. 3.11 is a bounded function whereas ReLU is not. However, this conclusion is still uncertain; in the future, the hyperparameters of this network can be tuned to improve the results.

Summary

Using chains of spintronic resonators as artificial synapses rectifying RF signals into DC voltages, and nano-oscillators as nonlinear activation functions converting direct currents to RF signals, our system can make both neurons-to-synapses and synapses-toneurons connections and thus cascades information between different neural layers, giving the possibility to implement multiple neural layers in a single neuromorphic core.

We have proven through simulations that a multi-layer perceptron with 300 spintronic oscillators emulating neurons can solve the MNIST dataset with an accuracy of 97.92% using simplified equations in backpropagation to tune the resonance frequencies of spintronic resonators. We estimate that with spintronic oscillators of 1 GHz we could process images with a rate of 100 ns. We have estimated the energy consumption of a multi-layer perceptron with spintronic oscillators and spintronic resonators based on the power consumption of the RF and DC amplifiers required for signal amplification between layers of neurons and layers of synapses. Our calculations (Appendix B) show that the minimum required energy for one operation is ~10 fJ per spintronic resonator plus ~130 fJ per spintronic oscillator, which makes this approach competitive to existing neuromorphic realizations [START_REF] Merolla | A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface[END_REF][START_REF] Ishii | On-Chip Trainable 1.4M 6T2R PCM Synaptic Array with 1.6K Stochastic LIF Neurons for Spiking RBM[END_REF][START_REF] Hung | A Four-Megabit Compute-in-Memory Macro with Eight-Bit Precision Based on CMOS and Resistive Random-Access Memory for AI Edge Devices[END_REF][START_REF] Feldmann | Parallel Convolutional Processing Using an Integrated Photonic Tensor Core[END_REF] and orders of magnitude less energy-expensive than GPUs [285].

Convolutional Neural Network with spintronic nano-devices

In the previous section, we have shown how to build a multi-layer neural network with spintronic oscillators and resonators. Now, we will focus on the special case of convolutional neural networks.

Introduction

In convolutional neural networks, multiply-and-accumulate operations with fixed synaptic weights (filters) are applied to consecutive subsets of the input. This process is often performed sequentially, as the filter is sled over neighboring inputs, as illustrated in Figure 60(a). In addition, the convolution operation has to process several input channels, and different filters need to be applied in order to compute different output features. The whole process has therefore a strong sequential character that requires storing intermediate computation steps in memory, which, for convolutions, has a prohibitive cost in terms of energy consumption, speed, and area. Finding ways to eliminate this sequential nature and implement convolutional neural networks in a fullyparallel manner, so that they can process their inputs in a single step, is therefore of great interest. Research have been conducted to unfold each convolutional layer into a sparse matrix of synaptic weights and map it to a crossbar array of memories to process convolutions fully in parallel [START_REF] Esser | Convolutional Networks for Fast, Energy-Efficient Neuromorphic Computing[END_REF][START_REF] Yakopcic | Memristor Crossbar Deep Network Implementation Based on a Convolutional Neural Network[END_REF][287][START_REF] Gopalakrishnan | HFNet: A CNN Architecture Co-Designed for Neuromorphic Hardware With a Crossbar Array of Synapses[END_REF]. However, due to the small resistance and small OFF/ON ratio of spintronic devices, these parallel convolutions can be costly in energy [START_REF] Jung | A Crossbar Array of Magnetoresistive Memory Devices for In-Memory Computing[END_REF] and suffer from sneak-path currents causing crosstalk [START_REF] Xia | Memristive Crossbar Arrays for Brain-Inspired Computing[END_REF][START_REF] Cassuto | Sneak-Path Constraints in Memristor Crossbar Arrays[END_REF][START_REF] Kannan | Sneak-Path Testing of Crossbar-Based Nonvolatile Random Access Memories[END_REF][START_REF] Cassuto | Information-Theoretic Sneak-Path Mitigation in Memristor Crossbar Arrays[END_REF][START_REF] Joshi | Sneak Path Characterization in Memristor Crossbar Circuits[END_REF] when implemented with spintronics memories.

In chapter V, we have seen how chains of spintronic resonators can operate multiply-and-accumulate (MAC) operations on microwave-encoded inputs. In contrast with memristor crossbar arrays, there are no sneak-path currents in this implementation because the artificial synapses output are voltages and not currents, and the chains of synapses are parallel to each other's: the output of one resonator cannot transfer to the resonators of another chain. Here, we show that we can use multiple parallel chains of spintronic resonators to operate the multiple MAC operations required in a convolution fully in parallel.

We show how chains of spintronic resonators can implement convolutions on different sets of input RF signals presented sequentially as in Figure 60(a). Then we show that it is possible to achieve these convolutions in a single step, with different chains implementing different multiply-and-accumulate operations, thus enabling ultrafast computation. We present how the resonators can be spatially arranged as a matrix of weights of an unfolded convolution and propose a spatial arrangement that does not suffer from the sparsity specific to this type of matrices [287,[START_REF] Lin | Three-Dimensional Memristor Circuits as Complex Neural Networks[END_REF]. We explain how this architecture can operate convolutions to extract different features in parallel. We also show that it is possible to train simultaneously all the spintronic resonators implementing the same filter coefficient by tuning them all at once. Finally, we simulate a full convolutional neural network made of RF spintronic nano-devices and demonstrate an accuracy of 99.11 % on the Mixed National Institute of Standards and Technology (MNIST) handwritten digits dataset, the same accuracy obtained for a software network with an equivalent architecture. This chapter is based on reference [START_REF] Leroux | Convolutional Neural Networks with Radio-Frequency Spintronic Nano-Devices[END_REF].

Radio-Frequency multiplications for spintronic convolutions

In convolutional layers, each filter (which is often much smaller than the input image) slides over the input image, and at each position applies a multiply-andaccumulate operation to the corresponding image subset (see Figure 60(a)). Then the outputs, also called feature maps, store the result of the corresponding multiply-andaccumulate matrix operations (the sum of the elements of an element-wise matrix multiplication between the filter and a subset of the input image). In this subsection, we show how to perform these different multiply-and-accumulate operations sequentially using RF encoded inputs and a single chain of spintronic resonators for each filter. A parallelized architecture is presented in the next subsection. In chapter V and in section 6.1, the RF signals were sent to the spintronic resonators though electrical contacts. Here, each RF signal is injected through an individual field-line [START_REF] Garcia | Spin-Torque Dynamics for Noise Reduction in Vortex-Based Sensors[END_REF] to one of the spintronic resonators of the chain. Each resonator This method is straightforward, but it has the defect of being sequential. Doing these operations one after the other is costly in memory because it requires to store all the elements of the output feature map between two convolutional layers, and it slows down computing since it requires approximatively as many steps as there are pixels in its input images, versus a single one for parallel convolutions [START_REF] Qin | Recent Progress on Memristive Convolutional Neural Networks for Edge Intelligence[END_REF]. In the next section we describe how to operate RF convolutions fully in parallel. and other architectures that unfold each convolutional layer into a matrix of synaptic weights and map it to a crossbar array often suffer from a waste of space [287,[START_REF] Lin | Three-Dimensional Memristor Circuits as Complex Neural Networks[END_REF].

However, a more compact architecture is possible. In the architecture presented in Figure We have to tune the resonance frequencies of the resonators to change the synaptic weights they implement in order to train the network. In Figure 62(a-b), all resonators implementing the same filter coefficient are represented with the same color.

In the crossbar of Figure 62(a) all the resonators that encode the same synaptic weights are aligned in a diagonal, while all the resonators that encode the same synaptic weights are aligned in a column in the crossbar of Figure 62(b). Since they are aligned in both configurations, we can tune simultaneously the resonators coding for the same synaptic weight with a single write-line. Write-lines provide an electrical control of synaptic weights either by changing the state of memristors placed above each spintronic resonator as it was done in [START_REF] Zahedinejad | Memristive Control of Mutual Spin Hall Nano-Oscillator Synchronization for Neuromorphic Computing[END_REF] or in [START_REF] Xu | A Quantum Material Spintronic Resonator[END_REF], or by switching the magnetization of spintronic resonators between two states [START_REF] Rivkin | Switching Spin Valves Using Rf Currents[END_REF][START_REF] Jenkins | Controlling the Chirality and Polarity of Vortices in Magnetic Tunnel Junctions[END_REF][START_REF] Martins | Non-Volatile Artificial Synapse Based on a Vortex Nano-Oscillator[END_REF][START_REF] Cui | Resonant Spin-Transfer-Driven Switching of Magnetic Devices Assisted by Microwave Current Pulses[END_REF][START_REF] Wang | Electric-Field-Assisted Switching in Magnetic Tunnel Junctions[END_REF][START_REF] Sushruth | Electrical Measurement of Magnetic-Field-Impeded Polarity Switching of a Ferromagnetic Vortex Core[END_REF] such as in binary neural networks [START_REF] Courbariaux | BinaryConnect: Training Deep Neural Networks with Binary Weights during Propagations[END_REF][START_REF] Hubara | Binarized Neural Networks[END_REF][START_REF] Bocquet | In-Memory and Error-Immune Differential RRAM Implementation of Binarized Deep Neural Networks[END_REF][START_REF] Laborieux | Synaptic Metaplasticity in Binarized Neural Networks[END_REF][START_REF] Laydevant | Training Dynamical Binary Neural Networks with Equilibrium Propagation[END_REF]. Independently of the control method, a physical implementation of a network with the proposed architecture can be trained with a number of field-lines that does not scale with the number of devices, but only with the number of synaptic weights per filter.

Convolutional layers with multiple filters

In the previous subsections we presented convolutions with single channel In this section, we simulate a network with spintronic oscillators as neurons and spintronic resonators as synapses based on the proposed convolutional architecture. The goal is to prove that chains of resonators can calculate convolutional operations with high accuracy, that it is possible to tune the convolutional filter coefficients by tuning the resonance frequencies, and to demonstrate the capacity of spintronic oscillators to implement activation functions in such networks.

The network architecture

We benchmark our network on the standard MNIST dataset. It consists of 28 X 28 pixel images of handwritten digits. The topology of our network is shown in Figure 64(a); 32 filters of 5 × 5 with stride 1 and padding 1 for the first convolutional layer, a max-pooling of size 2 × 2 and stride 2, a layer of spintronic oscillators as activation functions, 64 filters of 5 × 5 with stride 1 and padding 1 for the second convolutional layer, a second max pooling of size 2 × 2 and stride 2, a second layer of spintronic oscillators as activation functions, a fully connected layer of size 1600 × 10, and a softmax layer in the end.

Physical models

As in section 6.1.4, we used Eq. 3.11 to simulate the spintronic oscillators and Eq.

6.1 to simulate the spintronic resonators and we did not consider any nonlinearities to simulate the spintronic resonators.

In contrast with the implementation of chapter V, here spacing the frequencies of the input RF signals only depends on the linewidth of emission of the spintronic oscillators (as discussed in section 6.2.2). The larger neural layer of the considered network is made of 5408 spintronic oscillators. S. We plot in Figure 64(b) the learning curve of the network. We see that at the end of the training, our spintronic network (red solid line) classifies handwritten digits with 99.11 % accuracy, as good as the 99.16 % accuracy we found with a software convolutional neural network with the same architecture (solid blue line). The difference in accuracy is smaller than the standard deviation, represented in shaded area in Figure 64(b). In addition, the classification results are higher than with a Multi-Layer-Perceptron [START_REF] Yann Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF],

which indicates that the advantages of convolution are preserved with our RF spintronic network. These results show the feasibility of convolutions with RF signals and spintronic resonators. If we consider that the energy consumption per spintronic component is the same for the convolutional architecture presented in this section as for the multi-layer perceptron architecture presented in section 6.1, knowing that our convolutional architecture has ~6 × 10 6 spintronic resonators and 7,792 spintronic oscillators we estimate that the energy consumption for inference on the MNIST test dataset:

(6 × 10 6 × 10 fJ + 7,792 × 130 fJ) × 10,000 = 610 µJ. In the future, more accurate energy estimation would require calculating the sensitivity of spintronic resonators when RF signals are injected through field lines over the resonators instead of directly into chains of spintronic resonators as in section 6.1.

Summary

We have shown how we can use chains of resonators to rectify multiple RF signals to make convolutions. We described the concept through a sequential convolution with a single chain of resonators, and then we showed how it can be extended to operate convolutions in parallel with a crossbar of multiple chains. This parallelization provides a considerable processing time reduction: a sequential convolution requires approximatively as many steps as there are pixels in its input images, versus a single one for parallel convolutions. We have shown that a rearrangement of the crossbar can lead to a more compact architecture by overcoming the problem of blank spaces usually associated to unfolded convolutional layers. The area of the proposed crossbar scales with 𝑁 ℎ 𝑁 𝑤 × 𝑘 2 while the area a typical crossbar of memories implementing a 2D unfolded convolution usually scales in (𝑁 ℎ 𝑁 𝑤 ) 2 . This is advantageous in term of area footprint since the size of a convolutional filter 𝑘 2 is often much smaller than the size of the input image 𝑁 ℎ 𝑁 𝑤 .

We have highlighted that with the two different proposed architectures, a single write-line can tune simultaneously many resonators to adjust their synaptic weights. The number of resonators adjustable by the same write-line is equal to the number of positions the filters take in the convolution. This can reduce the complexity and time required to train such hardware neuromorphic architecture.

Since a crossbar of RF signals and spintronic resonators does not suffer from sneak-path currents, we believe that a physical fully-parallel implementation of convolutions with a large number of spintronic resonators chains is possible, and that the size of this crossbar is only limited by the minimum spacing of frequencies of the RF input signals, that depends on the spintronic oscillators linewidths.

We have demonstrated the performance of such network on the MNIST dataset though physical simulations of these RF spintronic devices and obtained 99.11 % accuracy. This work shows that convolutions can be performed efficiently and in parallel with RF spintronic devices.

Conclusion

In this chapter, we have shown that radio-frequency spintronic network can scale to deep neural networks. Using RF-to-DC and DC-to-RF conversions, we have shown how to make a multi-layer perceptron, thus proving that information can propagate through multiple layers of RF spintronic neurons and synapses. Our calculations show that the proposed architecture is scalable, can save orders of magnitude compared to GPUs, and can compete with other technologies in term of energy consumption. In the particular case of convolutional neural networks, which are the most performant networks for image processing, we have presented a compact architecture allowing to perform convolutions in parallel. Parallelism is important to limit computing latency and is hence crucial for modern embedded applications such as autonomous driving. For both multi-layer perceptron and convolutions, we used spintronic oscillators and resonators to emulate neurons and synapses respectively. These two types of devices are similar and thus require the same materials and are both compatible with CMOS technology. Moreover, these components can be downscaled to 20 nm: our architecture can then contain a very large number of devices on a small surface. Devices density is critical in a neural network, both to reduce power dissipation due to long transmission lines and to allow parallelism

In conclusion, this work opens new avenues to spintronic neuromorphic networks with very dense device integration to implement deep neural networks able to perform complex tasks. spintronic neurons. To perform multiply-and-accumulate operations, we have leveraged the effect of spin-diode, which allows chains of spintronic resonators to rectify the power of radio-frequency signals into DC voltages. The synaptic weights associated to this operation can be tuned with the resonance frequency of spintronic resonators. We conducted the first experimental demonstration of a RF MAC operation with two microwave signal generators and a chain of two spintronic resonators wired in series. We proved that there is a good correlation between the RF MAC operation and a perfect one, and we performed linear classification of inputs on a 2D plane using our MAC operation with an average accuracy of 93.9 %. Our analysis show that classification errors are essentially due to MAC operation inaccuracies. In future implementations, MAC operation accuracy can be augmented by improving the quality of magnetic materials in fabrication. To study the concept of RF MAC operation with spintronic resonators at a larger scale, we used simulations. A realistic model of spintronic resonators must integrate their nonlinear behaviors. We have shown that despite these nonlinearities, a single layer of chains of spintronic resonators can solve the "digits" benchmark dataset with the same accuracy as a software network. Through theoretical models and numerical simulations, we have shown that each radio-frequency signal is rectified by multiple spintronic resonators of each chain. Each synaptic weight then depends on the resonance frequency of multiple resonators. Using the "MNIST" dataset as benchmark, we have studied the minimum frequency spacing for the input RF signals to ensure that each input is independent. We have also demonstrated a trade-off between computational speed and frequency independence as we vary the magnetic damping of the spintronic resonators.

We achieved at best 92.40 % of classification accuracy on the "MNIST" dataset with a simulated single layer network of chains of spintronic resonators and RF signals, which is comparable to the accuracy of an equivalent software neural network. Since we identify each input in the frequency of a microwave signal, and that we use frequency dependent artificial synapses, this work leads the way toward very dense connections between layers of neurons with simplified wiring.

In chapter VI, we have studied through theory and simulations the implementation of deep neural networks with spintronic oscillators and resonators. We have presented how information can be conducted between different neural layers with DC-to-RF conversion with spintronic oscillators neurons and RF-to-DC conversion with spintronic resonators synapses. Such a circuit could implement a multi-layer neural network with neurons and synapses emulated by nano-devices and simple CMOS amplifiers between layers. We have trained a simulated multi-layer perceptron of RF spintronic devices to solve the MNIST dataset with an accuracy of 97.92 % with simplified equations for spintronic resonators during training. Training synaptic weights with simple equations is important to reduce the computing energy cost and latency for on-chip learning. We gave an estimate of the energy consumption in ideal conditions of such architecture per operations: ~14 fJ per spintronic resonator (synapse) plus ~130 fJ per spintronic oscillator (neuron). Future implementations will rely on spintronic device improvements and RF engineering to ensure RF signal propagation throughout the spintronic resonators chains. Then, we focused on a particular type of deep neural network: convolutional neural networks. These networks, which are extremely performant for signal and image processing, have a very particular architecture with sparse and redundant synaptic connections. Taking advantage of the special architecture of convolutional layers, we show how to arrange chains of spintronic resonators in a compact crossbar to perform all the MAC operations required for convolutional operations in a single step. The crossbar we proposed has an area scaling with the size of the input data instead of the square of it, as it is the case for most crossbar of memories implementing convolutional layers in a single step. We also show that we could theoretically tune multiple spintronic resonators with a common write-line since multiple resonators implement the same weight. We simulated numerically a full convolutional neural network with spintronic oscillators implementing neurons and spintronic resonators implementing synapses, and we have shown that this network can classify images of the MNIST dataset with an accuracy of 99.11 %, as well as software neural networks. This achievement is a new step toward competitive spintronic-based neural networks.

In chapter V and VI, we used the most efficient algorithm to train the RF spintronic neural networks: the backpropagation algorithm used in software. In on-chip implementations, training through backpropagation is computationally expensive and requires another circuit to compute the gradients. Furthermore, backpropagation is known to be strongly impacted device variability that is likely to be strong in RF spintronic

In the case of a passive resonator, the motion of the magnetization is fully driven by the external oscillating force. Then the effective frequency of the resonator -𝑑𝜑 𝑑𝑡 must coincide with the frequency of the external signal 𝜔 𝑟𝑓 , and we know that the phase difference between the signal and the resonator is constant: we can state that 𝑑Φ 𝑑𝑡 = 0. We can then write:

Φ = sin -1 ( ∆𝜔√𝑝 𝐹 𝑟𝑓 ). (A.3)
Since the oscillating signal is harmonic and has a constant amplitude, we can safely assume than the resonator is in a steady state, which implies that it has a constant oscillation and that 𝑑𝑝 𝑑𝑡 = 0. Knowing that cos(sin -1 (𝑥)) = √1 -𝑥 2 , we can deduct from Eqs. A.1 and A.3 that

𝑝 = 𝐹 𝑟𝑓 2 Γ + 2 +∆𝜔 2 . (A.4)
We can already notice in this equation than the normalized oscillation power 𝑝 has a

Lorentzian shape with the angular frequency, with an amplitude varying with 𝐹 𝑟𝑓 2 and a linewidth Γ + . Now, to derive the voltage the spin-diode voltage, we need to consider the mix between the oscillation of resistance due to the oscillation and magnetization, and the oscillating current:

𝑉 𝑆𝐷 = 𝑅 𝑟𝑓 (𝑡)𝐼 𝑖𝑛𝑑 𝑟𝑓 (𝑡) (A.5)
where 𝑅 𝑟𝑓 (𝑡) is the oscillating component of the resonator's resistance and 𝐼 𝑖𝑛𝑑 𝑟𝑓 (𝑡) is the alternating current in the resonator induced by an external RF signal. We assume that the conversion between the input RF signal and induced current 𝐼 𝑖𝑛𝑑 𝑟𝑓 (𝑡) in the sample, and the conversion between the input RF signal and torque are both linear effects, so that the current in the resonator is proportional to the amplitude of the oscillating force:

𝐼 𝑟𝑓 (𝑡) = 𝐹 𝑟𝑓 𝜎 𝑡𝑜𝑟𝑞𝑢𝑒 cos(𝜓 𝑟𝑓 -𝜔 𝑟𝑓 𝑡 + 𝜖), (A.6)
where 𝜎 𝑡𝑜𝑟𝑞𝑢𝑒 is the efficiency of the torque acting on the magnetization and 𝜖 comes from the fact that the torque is not necessarily in phase with the induced current: 𝜖 = 0 for a damping-like torque and 𝜖 = 𝜋 2 for a field-like torque. The oscillating component of the resonator's resistance is proportional to its magnetoresistance and in phase with the magnetization oscillation, and proportional to its amplitude. We have:

𝑅 𝑟𝑓 (𝑡) = ∆𝑅𝛽 𝑠 √𝑝 cos(𝜑), (A.7)

with 𝛽 𝑠 < 1 a shape factor, that account for the fact that even when the magnetization oscillation is maximal (𝑝 = 1), the amplitude of resistance oscillation is still smaller than the full magnetoresistance [START_REF] Grimaldi | Response to Noise of a Vortex Based Spin Transfer Nano-Oscillator[END_REF]. For instance, in the case of vortex magnetic tunnel junction, even if the vortex is at the edge of the disc, the magnetization of the free layer is not uniform. Hence, the magnetic tunnel junction does not go through parallel nor antiparallel state. Using Eqs. A. The second cosine of Eq. A.8 is a fast term, it has a high frequency and averages over time.

Hence, we keep only the first cosine term. At this stage, one must differentiate the case of a damping-like torque and the case of a field-like torque. For a damping-like torque, since 𝜖 = 0, we have:

𝑉 𝐷𝐿 𝑆𝐷 = √𝑝𝐹 𝐷𝐿 𝑟𝑓 cos(Φ) ∆𝑅𝛽 𝑠 2𝜎 𝐷𝐿 , (A.9)
where 𝐹 𝐷𝐿 𝑟𝑓 is the amplitude of the force acting on the magnetization induced by field-like torque. Then using Eqs. A. 

B1.Estimation of the spin-diode sensitivity

In this section, we will compute an estimation of the spin-diode sensitivity, the amount of voltage rectified by a spintronic resonator for a given RF power. For the sake of clarity and simplicity, as discussed in section 3.6.2, we consider only the antisymmetric part of the spin-diode voltage, computed in the Appendix A1 (neglecting the nonlinearities):

𝑉 𝑟𝑒𝑠 = 𝐹 𝐹𝐿 𝑟𝑓 2 ∆𝜔 Γ + 2 + ∆𝜔 2 ∆𝑅𝛽 𝑠 2𝜎 𝐹𝐿 . (B.1)
The force 𝐹 𝐹𝐿 𝑟𝑓 is proportional to the input current 𝐼 𝑟𝑒𝑠 𝑟𝑓 [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF]:

𝐹 𝐹𝐿 𝑟𝑓 = 𝐼 𝑟𝑒𝑠 𝑟𝑓 𝜎 𝐹𝐿 , (B.2)
the efficiency of the field-like torque 𝜎 𝐹𝐿 is proportional to the efficiency of the spintransfer torque 𝜎 𝑆𝑇𝑇 :

𝜎 𝐹𝐿 = 𝜎 𝑆𝑇𝑇 tan 𝛾 𝑝 2√2 , (B.3)
with 𝛾 𝑝 the polarization angle (angle between the magnetization of pinned layer and the magnetization of free layer at equilibrium) [START_REF] Slavin | Nonlinear Self-Phase-Locking Effect in an Array of Current-Driven Magnetic Nanocontacts[END_REF], and the spin-transfer torque efficiency is

𝜎 𝑆𝑇𝑇 = 𝛤 + 𝐼 𝑡ℎ , (B.4)
with 𝐼 𝑡ℎ the threshold DC current to make the diode magnetization auto-oscillate.

The spin-diode voltage can then be written as B3.Rectification of the RF signal of a spintronic oscillator by a spintronic resonator in a RF spintronic multi-layer perceptron

𝑉 𝑟𝑒𝑠 = 𝑅𝐼 𝑟𝑒𝑠 𝑟𝑓 2 2∆𝜔𝛤 + Γ + 2 +∆𝜔 2
Here, we will compute how much voltage is rectified by one resonator of one chain rectifying one of the input spintronic oscillator RF signal, in an array of 𝑁 oscillators sending their signals to 𝑀 chains of 𝑁 spintronic resonators (as in Figure 65). The power emitted by the oscillator is amplified by a RF amplifier with a factor 𝐺 𝑟𝑓 . The output RF power of the RF amplifier is then 𝑃 𝑜𝑠𝑐 𝑟𝑓 𝐺 𝑟𝑓 . The output RF current of the RF amplifier is then 𝐼 𝑎𝑚𝑝 𝑟𝑓 = √ 𝑃 𝑜𝑠𝑐 𝑟𝑓 𝐺 𝑟𝑓 𝑅 𝑙𝑜𝑎𝑑

, with 𝑅 𝑙𝑜𝑎𝑑 the load resistance of the array of spintronic resonators.

If we consider that all the spintronic resonators of the chain have the same resistance 𝑅, We conclude that the power needed to supply the chains of spintronic resonators is ~100 nW × 𝑀 × 𝑁, which means an average of 100 nW per synapse in the layer. If the lowest RF signal frequency in the layer is 1 GHz, we need to wait at least the relaxation time 𝑇 = 1 Γ + = 1 𝛼𝑓 𝑟𝑓 = 1 0.01×10 9 =100 ns for each operation (if the magnetic damping is 𝛼 = 0.01). We can then operate with a rate of 0.01 GHz (with all the devices of the layer operating in parallel), and the minimum needed energy per synapse is 𝐸 𝑠𝑦𝑛𝑎𝑝𝑠𝑒 ~10 fJ.

Similarly, we consider that the DC amplifier that supply the spintronic oscillators in DC currents have an ideal conversion factor: the power needed to supply the DC amplifiers is equal to the power of the DC current passing through each oscillator. As in section B2, we Title : Artificial neural networks with radio-frequency spintronic nano-devices Keywords : spintronics, neuromorphism, artificial intelligence, spin-transfer torque oscillators, deep neural networks, radio-frequency signals Abstract : Nowadays, Artificial Intelligence beats records at solving many cognitive problems. Due to their Von Neumann architecture, today's computers are not well suited for Artificial Intelligence algorithms and thus consume an extensive amount of power. To reduce this energy consumption, it is possible to take inspiration from the brain: Neuromorphic Computing chips merge memory and computing through circuits made of artificial neurons and synapses arranged in hierarchical a network. However, implementing artificial neural networks on electronic micro-chips is challenging because of the very high synaptic connectivity density required: each neuron needs to be connected to thousands of other neurons, which leads to a complex wiring. To overcome these limitations, an alternative is to use radio-frequency signals to propagate the information in the network. In such network, it is possible to use artificial neurons with radio-frequency-encoded signals, and artificial synapses that select the input signal they transmit based on their frequency, thus improving information routing for high density networks. Spintronic devices are very appealing for radio-frequency signal communication because of their low power consumption, their wide range of frequency, their nanoscopic size, and their compatibility with existing industrial technologies. Here, we show that we can combine spintronic radio-frequency emitters emulating neurons and spintronic radiofrequency receivers emulating synapses to build neuromorphic networks. In the brain, neurons can be seen as oscillators with complex dynamics.

We demonstrate experimentally that we can use the rich dynamics of spintronic radio-frequency emitters to emulate a neuron and process radio-frequency-encoded information in order to classify patterns in a sequence. In artificial neural networks, the role of synapses is to weight the information, and to transmit it from one neuron to another. We prove experimentally that chains of spintronic radio-frequency receivers can operate weighted sums on multiple radiofrequency-encoded. To prove the validity of the operation at larger scale, we make an analytical and numerical study of this operation including devices non-idealities. To solve complex tasks, artificial neural networks require many layers of neurons (deep neural networks). We show that a deep neural network can be achieved with spintronic radio-frequency emitters as neurons and spintronic radio-frequency receivers as synapses. For convolutional neural networks, which have a specific architecture making them efficient for image processing, we present an innovative architecture to perform all the many required operations in a highly parallel manner. Finally, we train a simulated radio-frequency spintronic network to classify handwritten digit pictures with a state-of-the-art accuracy. These results open new horizons toward on-chip radiofrequency signal processing with Artificial Intelligence, and very dense deep neural networks where information is propagated through radio-frequency signals.
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Figure 2 :

 2 Figure 2: (a) A neuron in the formalism of artificial neural networks. The input signals coming from previous neurons are weighted by artificial synapses. The neuron sums the inputs weighted by synaptic weights (multiply-and-accumulate operation), and then operates a nonlinear transformation (see Eqs. 1.1 an 1.2). A wide choice of nonlinear functions is possible. (b) Example of one famous nonlinear function in the field of machine learning and in particular in machine vision: the rectified linear unit function (ReLU) is a function that integrates a threshold, like biological neurons. (c) Schematic of five biological neurons. The neurons in gray transmit their signal, which are electrical spikes, through their axon to the neuron in blue. The neuron in blue receives signals though its dendrites. Connections between two neurons (highlighted by red circles in the figure) are synapses. Synapses mitigate the information between two neurons.(d) Abiological neuron integrates input electrical spikes from other neurons and thus raises its membrane potential. When the membrane potential of the neuron reaches a threshold, the neuron emits a spike that discharges its potential. Since the neuron does not emit any signal under a threshold, its response function is nonlinear. This is a LIF neuron (see section1.2) 

  . Then, the algorithm uses this gradient to compute the gradient of the previous layer 𝐿 -1, which then itself serves to compute the gradient of layer 𝐿 -2, etc.

Figure 3 :

 3 Figure 3: (a) Inference with a feedforward artificial neural network. The information is transmitted from the input to different layers of neurons and the network estimates a result. Each neuron operates a weighted sum with multiple synaptic weights and previous inputs, and a nonlinear transformation. (b) Neural network training with backpropagation of error. The estimated results are first compared to the targets (e.g., labels of a training dataset) with an error function.Then, the gradient of the error with respect to the synaptic weights of the last layer is computed, and the chain rule of derivatives is used to compute all the gradients of the network: the error is "backpropagated" through the network. Finally, the synaptic weights are updated using the negative of the gradient to minimize the error. Figures extracted from[START_REF] Lecun | Deep Learning[END_REF].

Figure 4 :

 4 Figure 4: (a) Perceptron. The blue neuron makes a weighted sum of the inputs and a threshold is used to output either a "0" or a "1". (b) Perceptron with multiple outputs.Each neuron has its own synaptic weights. The output is generally generated as a vector of probabilities using a softmax function (see Eq. 1.5). (c) Multi-layer perceptron. Layers of neurons that are not the inputs nor the outputs are called hidden layers. (d) Not linearly separable inputs: it is impossible to draw a straight line that separates the yellow spheres from the red stars. (e) Linearly separable inputs: it is possible to draw a plane that separates the yellow spheres from the red stars. (c) and (d) extracted from[START_REF] Appeltant | Information Processing Using a Single Dynamical Node as Complex System[END_REF] 

Figure 5 :

 5 Figure 5: (a-b) Comparison between (a) a fully-connected layer and (b) a convolutional layer. In (b), each output neuron is only connected to three input neurons, synaptic connections are sparse. Identical synapses are represented with arrows of the same color and width. The pattern of synaptic connection is repeated. One pattern of synaptic connections is called a convolutional filter and is sled over the input. (c) Example of convolutional operation on a picture with vertical (horizontal) edges detection filter 1(2).In convolutional neural networks, filters are learned automatically. (d) Schematic of a convolutional neural network. The input image is first processed by a sequence of convolutional layers that extract different features and pooling layers that select the information. Then, a sequence of fully-connected layers and a softmax classify the input image. Figure extracted from[START_REF] Tabian | A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures[END_REF]. (e) Schematic illustrating how convolutional layers process images: deeper convolutional layers extract more abstract features. Pictures extracted from[START_REF] Lee | Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks[END_REF].

  (c)). The convolution operation can be written as: 𝑧 ℎ,𝑤,𝑚 = ∑ ∑ ∑ 𝑊 𝑖,𝑗,𝑐,𝑚 𝑥 𝑖+ℎ,𝑗+𝑤,𝑊 are the filter coefficients, 𝑥 the input pixel values, 𝑏 are the biases, 𝑚 is the feature map index, ℎ and 𝑤 are the height and width positions of the pixel in the feature map, 𝑖 and 𝑗 are the vertical and horizontal coordinates of the pixel in the filter, and 𝑐 is the input channel index. Each channel corresponds to one of the feature maps of the previous channel. For colored images, inputs are made of three channels: red, green, and blue pixel values.

Figure 6 :

 6 Figure 6: (a) Example of a recurrent neural network. The input of the network is a sequence of characters. For each character in the sequence, the network predicts the next character. The input of each neuron depends not only on the signals of the neurons of the previous layers, but also on the state of the neuron at past moments. (b) Schematic of a reservoir computer.The inputs are transmitted to a reservoir of neurons through fixed synaptic weights (these weights cannot be tuned). The neurons in the reservoir have complex dynamics and recurrent connections that project the input into a high dimensional space. The output of the reservoir is connected through tunable synaptic connections to the output of the network.

  tasks. Their operation is inspired from the brain: they are made of multiple layers of artificial neurons connected by artificial synapses. Artificial neurons sum the signals of other neurons and apply nonlinear transformations. Each artificial synapse applies a weight to a connection between two neurons. The input of each neuron is then a weighted sum, called multiply-and-accumulate operation, between the outputs of other neurons and synaptic weights. Tuning synaptic weights in order to improve the performance of a neural network is called training. It teaches a neural network to discriminate important information from the irrelevant one. Artificial neural networks are trained automatically using data. In supervised leaning, the network learns from a training dataset with labelled examples. There are different possible algorithms to train a neural network. One of them, called backpropagation of errors, computes a cost function that measures the performance of the network, and uses the chain rule of derivative to compute the gradients of this cost function with respect to each synaptic weight in the network in order to tune these synaptic weights.

Figure 7 :

 7 Figure 7: (a) Electrical diagram of a CMOS spiking neuron (extracted from[START_REF] Indiveri | A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses with Spike-Timing Dependent Plasticity[END_REF]) (b) The TrueNorth neuromorphic chip, a system emulating 1 million neurons (extracted from[START_REF] Merolla | A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface[END_REF]).

Figure 8 :

 8 Figure 8: (a) Schematics showing memristive switching by filament formation (extracted from [71]). (b) Example of Phase-Change Material. Tunnel Electron Microscopy of a Ge-Sb-Te film in crystalline and amorphous phase (extracted from [72]). (c) Dependence of a ferroelectric memristor resistance measured at 𝑉 read = 100 mV after the application of 20 ns voltage pulses (𝑉 𝑤𝑟𝑖𝑡𝑒 ) of different amplitudes. The different curves correspond to different consecutive measurements, with varying maximum (positive or negative) 𝑉 𝑤𝑟𝑖𝑡𝑒 (extracted from [73]).

Figure 9 :

 9 Figure 9: Schematic of a memristor crossbar array. Memristors are schematized by blue pillars. Each of them has a different resistance 𝑅 𝑗𝑖 . The inputs of the synaptic layer are the voltages of the artificial neurons of the previous layer 𝑉 𝑖 , and the outputs are the currents 𝐼 𝑗 (adapted from [81]).

1. 1 )

 1 where the synaptic weights are implemented by the conductance 1 𝑅 𝑗𝑖

Figure 10 :

 10 Figure 10: (a) Schematic representation of reservoir computing using the transient states generated by a single nonlinear element (NL) subject to delayed feedback. The 𝑁 transient states 𝑥 𝑚 (𝑡) emulate 𝑁 neurons and are delayed between one another by a time 𝛩. 𝑢(𝑡) is the input and 𝑦 𝑘 (𝑡) is the output value of index 𝑘 (extracted from [101]) (b) Reservoir computing with optical signal and a delayed feedback-loop. The inputs are temporally encoded into an arbitrary waveform generator (AWG) that modulates the optical signal through a Mach-Zehnder modulator (M-Z). The signal is re-injected through the delay line and the feedback photodiode. The different neurons of the reservoir are encoded through time in the optical signal. The output of the reservoir is read through another photodiode (extracted from[100]) (c) Schematic of an experimental set-up to perform reservoir computing with complex diffusive media. The inputs are spatially encoded by a digital micromirror device (DMD). The inputs are multiplied by a large matrix of synaptic weights when the light is scattered by the complex diffusive medium (extracted from[START_REF] Dong | Scaling Up Echo-State Networks With Multiple Light Scattering[END_REF]).

Figure 11 :

 11 Figure 11: Schematics of an optical Multiply-And-Accumulate operation with wavelength division multiplexing. A laser (CW), a frequency comb generator (Si3N4), and a demultiplexer (DEMUX) produce signals of different wavelengths 𝜆 𝑖 . The different components of the input vector are encoded into the different signals using variable optical attenuators (VOAs). Some signals are grouped together using a multiplexer (MUX) and sent to the optical MAC operation unit. In the MAC unit, each 𝑎 𝑗𝑖 is a phasechange memory (PCM) with a different optical transmission coefficient. Directional couplers transmit the input signals from horizontal waveguides to vertical waveguides through the PCMs. The inputs are then weighted by the transmission coefficients of the PCMs (extracted from[START_REF] Feldmann | Parallel Convolutional Processing Using an Integrated Photonic Tensor Core[END_REF]). (b) Measured spectrum of a frequency comb (Si3N4) (extracted from[START_REF] Feldmann | Parallel Convolutional Processing Using an Integrated Photonic Tensor Core[END_REF]).
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Figure 14 :

 14 Figure 14: working principle of spintronic devices: currents flowing through the device create spin-torques inducing magnetization dynamics. The generated dynamical states are readable through the magnetoresistance effect (figure extracted from [162]).

Figure 15 :

 15 Figure 15: (a) Density of states of spin down and spin up electrons in the parallel magnetization configuration with a bias 𝑉 applied between the two electrodes. The majority band is spin down for both electrodes. (b) Density of states of spin down and spin up electrons in the anti-parallel configuration with a bias 𝑉 applied between the two electrodes. The majority band is spin down for the first electrode and spin up for the second electrode.

𝑎𝑟𝑔

  dynamics, 𝑖𝜔 𝑟𝑒𝑠 (|𝑐 2 |)𝑐 is the resonant term corresponding to Larmor precession with 𝜔 𝑟𝑒𝑠 is the resonance angular frequency of the oscillator, Γ + (|𝑐 2 |)𝑐 is the dissipative term with Γ + corresponding to damping torque, -Γ -(|𝑐 2 |)𝑐 is the active element with Γ -the damping-like torque, or in this case the negative damping, and 𝜌 𝑟𝑓 𝑒 -𝑖𝜔 𝑟𝑓 𝑡+𝜓 𝑟𝑓 is an oscillating exterior driving force (it can result from damping-like or field-like torques) with respectively 𝜌 𝑟𝑓 , 𝜔 𝑟𝑓 and 𝜓 𝑟𝑓 its complex amplitude, angular frequency, and initial phase.3.4.4.1. Polar coordinatesThis equation can be rewritten by projection on real polar coordinates, the equations of the dynamics of the normalized real power 𝑝 = |𝑐 2 | and the phase 𝜑 = Γ + -Γ -)𝑝 + 2𝐹 𝑟𝑓 √𝑝 cos(𝜔 𝑟𝑓 𝑡 + 𝜑 -𝜓 𝑟𝑓 )

Figure 18 :

 18 Figure 18: Schematics of MTJ spintronic oscillators operation: the magnetic tunnel junction is supplied by a DC current that makes its magnetization oscillate. Because of tunnel magnetoresistance, the magnetization oscillations are converted to resistance oscillations. DC current and RF resistance result in a RF voltage.

Figure 19 :

 19 Figure 19: (a) Magnetic vortex in rotation (micromagnetic simulations). Colors represent the local magnetization in-plane direction. Figure extracted from [181]. The rotation of the vortex is influenced by the field-like torque (FFLT) and the damping-like torque, also called Slonczewski torque (FST).Figure extracted from [182]. (b) Power spectral density of a spintronic oscillator versus emission frequency for different input DC current. Figure extracted from [183].

Figure 20 :

 20 Figure 20: Synchronization of a spintronic oscillator to an external microwave signal. (a) Frequency of the oscillator minus the frequency of the oscillator without external signal, versus the frequency of the external signal. (b) Linewidth of the oscillator versus the frequency of the external signal. Figure adapted from[START_REF] Hamadeh | Perfect and Robust Phase-Locking of a Spin Transfer Vortex Nano-Oscillator to an External Microwave Source[END_REF].

Figure 21 :

 21 Figure 21: Schematics of MTJ spintronic resonators operation: the magnetic tunnel junction receives a RF current. Its magnetization resonates with the input RF current.Because of tunnel magnetoresistance, the magnetization resonance is converted to resistance oscillations with the same frequency as the input RF current. The mix between oscillating current and oscillating resistance of same frequency gives rise to a voltage with a non-zero DC component: a spintronic resonator rectifies the input RF current into a DC voltage.

Figure 22 :

 22 Figure 22: Analytical calculation of the rectified voltage by spin-diode of a spintronic resonator of resonance frequency 200 MHz with an input RF signal of 10 µW. The horizontal axis is the RF signal frequency. (a) With symmetric-only contribution (b) with anti-symmetric-only symmetric contribution (c) with both symmetric and antisymmetric contributions with equal amplitudes.

  electrical measurements. Manipulating the field-like torque and the damping-like torque, we can manipulate the magnetization of free layer of magnetic tunnel junctions and thus use various functionalities. Because spintronic devices only use magnetization dynamics to operate, they are easy to model and do not require heating or ions/atoms displacements which can be destructive the device. Spintronic oscillators can convert DC current into RF signals. Do to their nanoscopic size and their small energy footprint, spintronic oscillators are competitive candidates for radio-frequency communications. Spintronic oscillators can be synchronized to an external microwave signal through a unidirectional coupling, or mutually between oscillators. Synchronization can be leveraged to realize new unconventional computing scheme, or to increase the power and the spectral purity of microwave emissions. Spintronic resonators can rectify microwave signals in a passive mode, which mean that they can detect signals without supplying them with DC signal.

Figure 23 :

 23 Figure 23: (a) Schematic of prior works on neuromorphic computing with spin-torque nano-oscillators [118,140-142,223]. The input information of the oscillator emulating a neuron is encoded into the amplitude of the electrical voltage supplied to the oscillator. The output information is read from the amplitude of the emitted oscillating signal. (b) In this work, the input data is encoded in microwaves. The input information is encoded into the frequency of oscillating signals. We show that the output information can be read from different state variables of the oscillator: the amplitude, the frequency, and the phase.

Figure 24 :

 24 Figure24: Schematic of the measurement set-up. The spin-torque nano-oscillator is composed of two magnetic layers of fixed magnetization 𝑀 (gray) and free magnetization 𝑚 (blue), separated by a thin insulating layer. At an external magnetic field of 𝐻 = 2000 Oe, a direct current 𝐼 𝑑𝑐 = 5 mA is injected in order to induce magnetization precessions. The microwave signal encoding the input data in its frequency (blue) is injected into a strip line above the oscillator, thus generating a microwave magnetic field interacting with the free layer. The microwave voltage 𝑉(𝑡) emitted by the oscillator is added to a microwave signal (subtraction waveform, in red) that compensates for the residual input signal and then is measured with an oscilloscope.

Figure 25 :

 25 Figure 25: Oscilloscope measurements of the electrical signal induced in the spin-torque nano-oscillator by inducto-capacitance effect with the field-lines (blue triangles), subtraction delayed signal injected in the oscillator to cancel the inducto-capacitive signal (red squares) and measurement of the subtraction of the two signals. These measurements were done with the oscillator at rest (𝐼 𝑑𝑐 = 0 mA).

Figure 26 (

 26 Figure 26(b) and (c)). Since the frequency, amplitude and phase are all nonlinear functions of input frequency, we can use the oscillator as an artificial neuron whose output is one of these oscillation variables. Since measuring simultaneously many spintronic

Figure 26 :

 26 Figure 26: (a) Frequency 𝑓 𝑜𝑠𝑐 , (b) Phase ∆𝛷 𝜋 ⁄ , and (c) Amplitude |𝑉| of the oscillator as a function of the frequency 𝑓 𝑟𝑓 of the injected microwave signal. The phase is determined with respect to that of the input waveform. Measurement uncertainties, determined on 5 µs time intervals on which the mean is calculated, are shown in lighter color shaded area. Yellow and green shaded areas designate respectively the synchronization range and the frequency pulling range.

Figure 27 (

 27 Figure 27 (a) Schematic of reservoir computer. Each input (left hand-side) is multiplied by multiple fixed weights 𝑤 𝑖 𝑖𝑛 that are randomly chosen and fixed. The neurons of the reservoir apply nonlinear transformations. The network outputs are multiplications between the neuron outputs and the synaptic weights 𝑤 𝑖 𝑜𝑢𝑡 . (b) Reservoir computing with a time-multiplexing and a single oscillator playing the role of different neurons one at the time. The vector elements resulting from the multiplication of each input by the weights vector 𝑤 𝑖𝑛 are arranged in a temporal sequence and fed to the oscillator. The color of the elements of this input sequence 𝑥(𝑡) corresponds to the different synaptic weights 𝑤 𝑖 𝑖𝑛 . At each time step, the oscillator response corresponds to the output of a different neuron. (Figure adapted from [141]).

1 𝑖𝑛

 1 Figure 28: (a) The input data is a sequence of random sine and square waves of equal periods and different amplitudes discretized in 8 points. (b) Pre-processed data corresponding to half a sine wave followed by half a square one. In this example, the mask maps the problem to six virtual neurons. The y-axis corresponds to one example of encoding frequencies. (c) Sketch of the input voltage corresponding to four neuron entries for a sine wave. Different input values are represented in different colors. The waveform amplitudes are encoded in the frequencies of the microwave voltage that is then injected into the field-line for 150 ns for each data point.

between 225

 225 MHz and 241 MHz and we calculate the success rate for each of these experiments. The success rate is the percentage of inputs classified correctly in the test dataset. Recognition rates obtained when decoding neuron outputs from frequency, phase and amplitude are shown in Figure 29 as a function of the center frequency of the sliding window.

  time. Since we used frequency encoded input information as neuron inputs, this work leads the way toward networks where we trade the sequential reservoir of neurons we implemented for a network of multiple coupled spintronic oscillators where the output microwave signal of each oscillator is the input of another oscillator, and where the synaptic recurrent connections of the reservoir are implemented by the coupling between the oscillators[START_REF] Nikonov | Coupled-Oscillator Associative Memory Array Operation for Pattern Recognition[END_REF][START_REF] Nikonov | Convolution Inference via Synchronization of a Coupled CMOS Oscillator Array[END_REF][START_REF] Romera | Vowel Recognition with Four Coupled Spin-Torque Nano-Oscillators[END_REF][START_REF] Zahedinejad | Two-Dimensional Mutually Synchronized Spin Hall Nano-Oscillator Arrays for Neuromorphic Computing[END_REF].5. Radio-Frequency Multiply-And-Accumulate Operations5.1. IntroductionIn the previous chapter, we study how to use spintronic oscillators as artificial neurons. In this chapter, we will focus on synaptic connections with radio-frequency spintronic devices: we will introduce and develop the concept of Multiply-And-Accumulate (MAC) operations on microwave encoded inputs, using chains of spintronic resonators as rectifiers. To reproduce a MAC operation in a neuromorphic framework, one needs to use artificial synapses to weight each input signal, and to sum different postsynaptic signals for each neural input.

  with different frequencies are multiplied by different synaptic weights, and thus are addressed to specific artificial synapses without one-to-one physical connections between inputs and artificial synapses. Hence, we can reduce the spatial complexity of connections to make a compact implementation of MAC operations. Secondly, directly applying MAC operations on microwave encoded inputs could open the path for new applications: it offers the possibility to classify RF signals directly without digitalization[START_REF] O'shea | Over-the-Air Deep Learning Based Radio Signal Classification[END_REF]. To our knowledge, this is the first demonstration of artificial synapses with tunable weight that perform MAC operations on microwave encoded signals.

Figure 30 :

 30 Figure 30: (a) Multiply-and-accumulate operation: neural signals P1, P2, P3, and P4 are multiplied by different synaptic weights Wji and summed. (b) Multiply-and-accumulate operation with different radio-frequency signals sent simultaneously in a chain of resonators: each resonator rectifies mostly one of the input signals, hence multiplying it by a weight. The voltage of the chain is the sum of all its resonator voltages.

Figure 30 (

 30 Figure 30 (a) represents a MAC operation with 𝑁 = 4 inputs. As depicted in this figure, it is a weighted sum where each weight corresponds to a synaptic connection. In the framework of this chapter, the 𝑁 input values are encoded into the microwave powers 𝑃 𝑖 𝑟𝑓 of the 𝑁 input RF signals of index 𝑖, as it is represented in Figure 30 (b). To address the different RF signals to the different resonators, we use frequency-multiplexing so that each input RF signal matches one resonator, hence each input signal has a different frequency 𝑓 𝑖 𝑟𝑓 . These 𝑁 RF signals are summed and sent into a chain composed of an equal number 𝑁 of spintronic resonators, indexed by 𝑘, wired in series. To combine and to distribute microwave signals, it is possible to build low-power dissipation and micrometer-scale RF combiner, as in [65]. The spintronic resonators rectify the input RF signals, and, in ideal conditions, their rectification voltage is proportional to the

Figure 31 :

 31 Figure 31: (a) Multiply-and-accumulate operation with two output neurons. (b) Multiplyand-accumulate operation with different radio-frequency signals sent simultaneously in two chains of resonators: each resonator rectifies mostly one of the input signals, hence multiplying it by a weight. Voltages across chains are the sum of all their resonator voltages.

. 2 )

 2 ∆𝑓 𝑘𝑗𝑖 = 𝑓 𝑖 𝑟𝑓 -𝑓 𝑘𝑗 𝑟𝑒𝑠 is the frequency mismatch. In the simulations of this chapter, we chose a factor 𝛽 = 6 × 10 7 rad.C -1 . This value of β allows us to have sensitivity factor (input RF power to output DC voltage conversion) close to the one we obtain in the experimental demonstrations of section 5.3. It is important to notice that the voltage 𝑣 𝑘𝑗𝑖 and the frequency mismatch ∆𝑓 𝑘𝑗𝑖 have each three indices. This comes from the fact that each resonator 𝑘 of the chain 𝑗 rectifies different RF input signals due to the frequency selectivity limitations of spintronic resonators. In Figure 32 we indeed see that when multiple resonators have resonance frequencies close to each other, and when each resonator receives a RF signal with an input frequency matching its resonance frequency, each RF signal is in the rectification range of multiple resonators, and each resonator rectifies multiple signals. The voltage 𝑣 𝑘𝑗𝑖 is the contribution of the spin-diode voltage of a resonator resulting from only one specific RF input signal of index 𝑖.

Figure 32 :

 32 Figure 32: Analytical calculation of the rectified voltage through spin-diode of three spintronic resonators of resonance frequencies 200, 210 and 220 MHz (red, magenta, and blue curves) with an input RF signal of 10 µW. The horizontal axis is the input RF signal frequency. Vertical dashed lines mark RF signals with frequencies 200, 210, and 220 MHz. We clearly see that each RF signal is in the rectification range of multiple resonators.

Figure 33 :

 33 Figure 33: (a) Analytical calculation of the rectified voltage by spin-diode of a spintronic resonator of resonance frequency 200 MHz with an input RF signal with ten microwave power amplitudes linearly spaced between 10 and 50 µW. The horizontal axis is the RF signal frequency. (b) Simulations of the rectified voltage by spin-diode of a spintronic resonator with five different resonance frequencies, with a RF signal of 200 MHz. The horizontal axis is the RF signal power. Circles represent the simulated voltage, and lines represent linear fits.
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 3 Here the voltages 𝑣 𝑘𝑗𝑖 are summed over the indices 𝑖 because the voltage of each resonator results from the 𝑁 RF inputs of indices 𝑖.In this work, the resonators of the same chain are wired in a head-to-tail configuration, as depicted in Figure31(b), to cancel the voltage offsets at low frequency ( 𝜔 𝑖 𝑟𝑓 → 0 in Eq. 5.2) which are highlighted by Figure 34(a).

Figure 34 :

 34 Figure 34: Analytical calculation of the rectified voltage by spin-diode of chain of ten spintronic resonators of resonance frequencies linearly spaced between 200 and 240 MHz with an input RF signal of 50 µW. (a) Spintronic resonators are not wired head-totails. (b) Spintronic resonators are wired head-to-tails.

Figure 31 (

 31 Figure 31(b), the resonator with resonance frequency 𝑓 12 𝑟𝑒𝑠 receives the four RF signals but rectifies most effectively the signal with frequency 𝑓 2 𝑟𝑓 . When using the synaptic chain in this configuration, each synaptic weight can be approximated, leading to a simplified expression of Eq. 5.5: 𝑊 𝑗𝑖 = 𝐺(∆𝑓 𝑖𝑗𝑖 )(-1) 𝑖 . This simplified equation highlights that it is possible to tune each synaptic weight 𝑊 𝑗𝑖 by tuning the resonance frequency of the resonator indexed by 𝑘 = 𝑖.

Figure 36 :

 36 Figure 36: Voltage rectifier by the magnetic tunnel junction versus the frequency of the input RF signal, for various input powers. The dots indicate the measurement points, and the dashed lines represent fits using Eq. 3.15. A vertical dashed line indicates the resonance frequency of the magnetic tunnel junction.

(

  Figure 37(b), we observe that the measured voltage (dots) shows a linear dependence (dashed lines) on the power 𝑃 𝑟𝑓 with a slope tunable with the DC current into the fieldline, which means tunable with the resonance frequency.

Figure 37 :

 37 Figure 37: (a) Rectified DC voltage generated by the magnetic tunnel junction versus the frequency of the input RF signal, for an input power of 2 µW and for various DC currents applied in the field-line. The vertical dashed line marks the frequency 346 MHz. (b) Rectified DC voltage versus the input power for an input frequency of 346 MHz and for various DC currents applied in the field-line. These measurements were taken with a 6250 Oe perpendicular magnetic field applied to the device.

Figure 38 :

 38 Figure 38: (a) Schematic of the chain of two magnetic tunnel junctions subjected to an RF signal. (b) Rectified DC voltage generated by the chain of two magnetic tunnel junctions versus the input frequency, for an input power of 12 µW. The yellow and green zones qualitatively indicate the frequency windows of MTJ 1 and MTJ 2 respectively. This measurement was taken with a 3500 Oe perpendicular magnetic field applied to the devices.

Figure 40 :

 40 Figure 40: (a) Schematic of the MAC setup. (b) Measured rectified voltage (blue dots) and ideal MAC voltage (black line) versus the ideal MAC voltage. Each dot corresponds to a (𝑃 1 𝑟𝑓 , 𝑃 2 𝑟𝑓 , 𝑊 1 , 𝑊 2 ) configuration. All measurements were taken with a 3500 Oe perpendicular magnetic field applied to the devices.

  (a). The two inputs are the microwave powers 𝑃 1 𝑟𝑓 and 𝑃 2 𝑟𝑓 of the RF signals at frequencies 𝑓 1 𝑟𝑓 and 𝑓 2 𝑟𝑓 . If the result of the MAC operation, which is the voltage of the chain of two resonators, is positive, we classify the inputs (𝑃 1 𝑟𝑓 , 𝑃 2 𝑟𝑓 ) as "class 1" (blue squares in Figure 41(a-b)), while if the voltage is negative we classify inputs as "class 0" (red dots in Figure 41(a-b)). Having a network without nonlinearities and two synaptic weights is equivalent to performing a linear classification in a 2D plane. Hence each combination of weights corresponds to a boundary in the 2D plane of axis (𝑃 1 𝑟𝑓 , 𝑃 2 𝑟𝑓 ), and therefore to a different classification task. We want to determine the extent to which our experimental MAC operation matches a perfect 2D linear classification. We first evaluate the accuracy for one classification task, defined by a single combination of weights. In Figure 41(b) we see the classification results for the task matching to the weight configuration 𝑊 1 = -0.50 V/W and 𝑊 2 = 0.23 V/W, for which the MAC operation is achieved by applying 0 mA in both field-lines. In Figure 41(b), the dashed line is the boundary between the two classes expected from a perfect MAC operation with this weight configuration. The assigned classes are labeled by the blue squares and red dots. For this classification task, the experimental accuracy obtainedi.e., the proportion of correctly classified (𝑃 1 𝑟𝑓 , 𝑃 2 𝑟𝑓 ) inputs -is 100 %. Then, we compute the accuracy of the MAC operation for the classifications corresponding to all the 36 weights combinations obtained by the different combinations of currents in the two field-lines. In Figure 41(c), each black dot corresponds to the MAC operation results for one classification task (defined by one weight configuration). The vertical axis is the accuracy, which is the proportion of correctly classified inputs pair (𝑃 1 𝑟𝑓 , 𝑃 2 𝑟𝑓

Figure 41 :

 41 Figure 41: (a) Schematic of the performed 2D classification. A MAC operation with two weights is applied to inputs (𝑃 1 𝑟𝑓 , 𝑃 2 𝑟𝑓 ). A threshold is applied to the resulting voltage: values above 0 are classified as "class 1" (blue squares) and values below zero as "class 0" (red circles). (b) Classification results for all (𝑃 1 𝑟𝑓 , 𝑃 2 𝑟𝑓 ) inputs for one weight configuration: the dashed line represents the expected boundary between the classes 0 and 1, while the blue squares and red circles represent the class of each input as determined by the experimental voltage value. (c) Classification accuracy versus the error of the ideal MAC voltage. Each black circle corresponds to the accuracy of the experimental MAC for a given weight configuration (i.e., a target classification boundary).Each red cross corresponds to the accuracy of the simulated noisy MAC for a given weight configuration (same as the black circles). Each red cross accuracy is computed over all (𝑃 1 𝑟𝑓 , 𝑃 2 𝑟𝑓 ) inputs and averaged over 100 random trials for each input.

2 +Figure 42 :

 242 Figure 42: Analytical calculation of the rectified voltage by spin-diode of a spintronic resonator of resonance frequency of 200 MHz with an input RF microwave power of 50 µW. (a) parameter 𝑁 = 0.1 and parameter 𝑄 swept from 0 to 100. (b) parameter 𝑄 = 1 and parameter 𝑁 swept from 0 to 2.
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 411243 Figure 43: Analytical calculation of the rectified voltage by spin-diode of a spintronic resonator of resonance frequency of 200 MHz with an input RF microwave power of 50 µW. (a) Voltage plotted versus the non-linear damping parameter 𝑄 in log10 scale for different microwave frequencies between 198 and 202 MHz. Dashed lines represent reference simulations without nonlinearities (𝑁 = 𝑄 = 0), solid lines represent simulations for 𝑄 ≠ 0 and 𝑁 = 0. (b) Voltage plotted versus the non-linear frequency shift parameter 𝑁 in log10 scale for different microwave frequencies between 198 and 202 MHz. Dashed lines represent reference simulations without nonlinearities (𝑁 = 𝑄 = 0), solid lines represent simulations for 𝑁 ≠ 0 and 𝑄 = 0. (c) Voltage (horizontal axis) plotted versus the microwave frequency (vertical axis) for 𝑄 = 1 and 𝑁 = 0.1. Each frequency marked by a dashed line corresponds to a microwave frequency of plots (a) and (b).

  , we plot the voltage difference between the two different types of resonators, in a case of strong resonance (𝑓 𝑟𝑒𝑠 (0) = 200 MHz and 𝑓 𝑟𝑓 = 200 MHz) to maximize nonlinear effects.

Figure 44 :

 44 Figure 44: Analytical calculation of the relative voltage difference between a realistic resonator (nonlinear parameters 𝑄 = 1 and 𝑁 = 0.1) and an idealistic one (nonlinear parameters 𝑄 = 𝑁 = 0) with 𝑓 𝑟𝑒𝑠 (0) = 200 MHz and different microwave frequencies between 198 and 202 MHz.

Figure 45 :

 45 Figure 45: Analytical calculation of the spin-diode voltage of a chain of four spintronic resonators wired head-to-tail with resonance frequencies 𝑓 𝑟𝑒𝑠 = 200 MHz, 204.0 MHz, 208.2 MHz, and 212.4 MHz, versus the frequency of a radio-frequency signal of power 50 µW.

. 11 )

 11 Using for each diode and for each RF signal a single value of the normalized oscillation power makes the model linear. The choice of the maximum values 𝑝 𝑘𝑖 𝑚𝑎𝑥 maximizes the values of 𝑁𝑝 and 𝑄𝑝. Hence the linear model captures as much as possible the nonlinear effects to match the realistic model. We repeat the same set of 6561 different calculations that were done with the realistic model (same sweeps of power for the four RF signals and same sweeps of resonance frequencies for each resonator), but this time with the linear model described by Eq. 5.11. We can then compare the realistic model including nonlinearities to a model where the synaptic weights do not depend at all on the input of the synaptic layer.

Figure 46 :

 46 Figure 46: Spin-diode voltages for a chain of four spintronic resonators wired head-totail with resonance frequencies 𝑓 𝑟𝑒𝑠 = 200 MHz, 204.0 MHz, 208.2 MHz and 212.4 MHz with four different radio-frequency signals for 6561 different combinations of microwave powers for the radio-frequency signals (5 µW, 10 µW, and 15 µW) and different resonance frequencies for the resonators. The scatter dots are the voltages of the calculations with nonlinear resonators plotted against the voltages of the calculations with ideal linear resonators. The red solid line corresponds to the calculated voltages with ideal linear resonators plotted against themselves. The root-mean-square deviation between the scatter dots and the red solid line is 0.58 µV and the correlation is 99.98 %.

Figure 47 : 123 Figure 48 :

 4712348 Figure 47: Spin-diode voltages for a chain of four spintronic resonators wired head-to-tail with resonance frequencies 𝑓 𝑟𝑒𝑠 = 200 MHz, 204.0 MHz, 208.2 MHz, and 212.4 MHz with four different radio-frequency signals for 6561 different combinations of microwave powers for the radio-frequency signals and different resonance frequencies for the resonators. The scatter dots are the voltages of the calculations with nonlinear resonators plotted against the voltages of the calculations with ideal linear resonators. The red solid line corresponds to the calculated voltages with ideal linear resonators plotted against themselves. (a) Microwave frequencies are 5 µW, 10 µW, and 15 µW, 𝑁 = 𝑂. 1 and 𝑄 = 10. The root-mean-square deviation is 1.11 µV and the correlation is 99.97 %. (b) Microwave frequencies are 5 µW, 10 µW, and 15 µW, 𝑁 = 1 and 𝑄 = 1. The root-mean-square deviation is 3.26 µV and the correlation is 99.64 %. (c) Microwave frequencies are 50 µW, 100 µW, and 150 µW, 𝑁 = 𝑂. 1 and 𝑄 = 1. The root-mean-square deviation is 31.48 µV and the correlation is 99.66 %. (d) Microwave frequencies are 0.5 mW, 1 mW, and 1.5 mW, 𝑁 = 𝑂. 1 and 𝑄 = 1. The root-mean-square deviation is 1529.51 µV and the correlation is 86.42 %.

  (a) we see that after this relaxation period, the magnetization dynamics of a spintronic resonator with multiple RF signals corresponds perfectly to our model. Then the resistance oscillations mixed with the RF signals gives assumption. We also repeated all the simulations of the section 5.4.1.2 with the ODE method. In Figure49 (d) we compare the voltage of a chain of four resonators simulated with the ODE method and the voltage of the same chain simulated using the analytical model. The voltages are averaged over 20 repetitions of simulations, each time the initial RF signal phases are initialized randomly. The results show that the two models are correlated at 99.94 %. These simulations show that it is valid to consider that the effects of multiple input RF signals simply sum at the resonator level. They validate the use of the analytical model in neural network simulations.

Figure 49 :

 49 Figure 49: (a) Horizontal component of a spintronic resonator magnetization with 4 different radio-frequency signals simulated with an Ordinary Differential Equation solver. (b) Theoretical model m′ 𝑥 (𝑡) = ∑ √𝑝′𝑐𝑜𝑠(𝜓 𝑖 𝑅𝐹 + 𝜓 𝑖 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 -𝜔 𝑖 𝑟𝑓 𝑡) 𝑁 𝑖 . (c) ODE simulations (blue solid line) and theoretical model (black dashed line). (d) Simulation of four different radio-frequency signals sent in a chain of four different spintronic resonators for 6561 different combinations of microwave powers for the radio-frequency signals (5 µW, 10 µW, and 15 µW) and different resonance frequencies for the resonators.The scatter dots are the voltages of the ODE simulations plotted against the voltages of the calculations with theoretical model. The simulations are averaged over 20 repetitions, each with a random initialization for the RF signal phases. The red solid line corresponds to the voltages of the simulations realized with the theoretical model plotted against themselves. The root-mean-square deviation between the scatter dots and the red solid line is 1.72 µV and the correlation is 99.94 %

1 𝑓Figure 50 :

 150 Figure 50: (a) Perceptron architecture to solve the digits dataset. From left to right: 8x8 pixels input images, 64 x 1 flattened input layer, synaptic layer connecting the input with the 10 outputs, comparison of the outputs with the targets. (b) Equivalent radio-frequency spintronic resonators-based neural network architecture. From left to right: 8x8 pixels input images, 64 x 1 flattened input layer, each input is encoded in the microwave power of a radio-frequency signal with a different frequency. The 64 signals are summed and sent to 10 chains of 64 resonators wired in series head-to-tail. Each resonator rectifies its matching frequency signal, thus applying a synaptic weight to it. The output voltages are compared to the targets.

Figure 51 :

 51 Figure 51: Analytical calculation of the spin-diode voltage of a chain of 64 spintronic resonators wired head-to-tail versus the frequency of a RF signal of power 10 µW.

16 )

 16 At each iteration, we encode one image of the training set into 64 RF signals. Then we use Eqs. 5.4 and 5.10 with resonator nonlinearities to compute the network output.

  ) using the inference made with the nonlinear resonators 𝑈 𝑗 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 :

  3.15 𝜉 𝑆 𝜉 𝐴 ⁄ = 0.5. For this configuration we achieve 98.8 % of success rate. We perform classification on the same task with a classical software neural network trained with backpropagation on an equivalent architecture (64 inputs fully connected by synapses to the 10 outputs). The success rate of the software neural network (blue line Figure 53) is equivalent to the classification with the resonator network. This result shows that it is possible to train a network made of chains of spintronic resonators by tuning their resonance frequency to classify microwave encoded signals. The training algorithm we developed could also be used to train an experimentally constructed spintronic resonators-based neural network.

Figure 53 :

 53 Figure 53: Percentage of successful classifications versus number of epochs. Black (purple) color is for the results on the training (test) set for the resonator neural network and green (blue) color is for the train (test) set for the equivalent regular software neural network. The lines (dashed lines for the software neural network) represent the mean success rates and the shade the standard deviations. The success rate reaches 99.0 % both for the software neural network and for the resonator-based neural network for the test set, 99.7 % for the software network for the train set and 99.6 % for the resonator network.

Figure 54 :

 54 Figure 54: Analytical calculation of the rectified voltage through spin-diode of three spintronic resonators of resonance frequencies 𝑓 1 𝑟𝑒𝑠 = 200.00 MHz, 𝑓 2 𝑟𝑒𝑠 = 204.04 MHz, and 𝑓 3 𝑟𝑒𝑠 = 208.16 MHz (red, magenta, and blue curves). This frequency arrangement follows Eq. 5.19 with a spacing coefficient 𝜇 = 𝛼 = 0.01. The input RF signal has a power of 10 µW. The horizontal axis is the input RF signal frequency. Vertical dashed lines mark RF signals with frequencies 200.00, 204.04, and 208.16 MHz.

Figure 55 :

 55 Figure 55: (a) Percentage of successful classifications of a single layer resonators network on the "MNIST" dataset with the 𝑓 𝑚𝑖𝑛 = 50 MHz and 𝑓 𝑚𝑎𝑥 =100 MHz, 500 MHz, 1 GHz, 5 GHz, 10 GHz, and 20 GHz, as a function of the highest RF signal frequency 𝑓 𝑚𝑎𝑥 . In blue (red) are plotted the results for the testing (training) set. The results are averaged over 10 repetitions and the error bar corresponds to the root-mean-square deviation. (b-e) Synaptic weights for 60 different input neurons (horizontal axis) and four different output neurons (different colors) for: (b) a software single layer network, (c) a single layer resonators network with 𝑓 𝑚𝑎𝑥 =20 GHz, (d) a single layer resonators network with 𝑓 𝑚𝑎𝑥 =500 MHz, (e) a single layer resonators network with 𝑓 𝑚𝑎𝑥 =100 MHz.

Figure 56 :

 56 Figure 56: Percentage of successful classifications of a single layer resonators network on the "MNIST" dataset versus the magnetic damping of the material used for the spintronic resonators (log10 scale). In blue (red) are plotted the results for the testing (training) set. The results are averaged over 10 repetitions and the error bar corresponds to the rootmean-square deviation.

Figure 57 :

 57 Figure 57: Temporal evolution of the horizontal component of the magnetization of a spintronic resonators of resonance frequency of 50 MHz and with a RF signal inducing a torque of frequency 50 MHz and amplitude 𝐹 𝑟𝑓 = 0.05 × 2𝜋 rad.MHz on the magnetization. Dynamics computed through ordinary differential equation solver. Blue lines correspond to the horizontal component of the magnetization, and red lines correspond to an exponential decay fit corresponding to the model: 𝐷(𝑡) = √𝑝 𝑚𝑎𝑥 (1 -𝑒 -𝑡 𝜏 ⁄ ), with 𝑝 𝑚𝑎𝑥 the normalized magnetization oscillation power in the stationary regime (after relaxation) and τ a decay time that is fitted. (a) α=0.01 and τ=317 ns. (b) α=0.03 and τ=106 ns. (c) α=0.05 and τ=64 ns. (d) α=0.07 and τ=45 ns.

Figure 58 :

 58 Figure 58: (a) Schematics of a multi-layer perceptron operated with spintronic oscillators and spintronic resonators. Each spintronic oscillator (spintronic resonator) is represented by a color highlighting its emission frequency (resonance frequency). DC currents are used as input of spintronic oscillators and the power of the RF signals they emit as neuron outputs. The signals of the different oscillators are summed and amplified with a CMOS amplifier. The summed signal is equally distributed to the different chains of spintronic resonators. The spintronic resonators rectify input signals through spindiode effect. The DC voltages of the chains are then converted to DC currents and amplified ("amp DC"). The amplified output current serves as input for the next layer of spintronic oscillators, thus allowing the transfer of information between consecutive layers. (b) Equivalent neural network.

plus

  photonic computing core. In reference [285], the energy cost of inference on the MNIST test dataset on a Tegra K1 NVIDIA GPU is 35 J (with a classification accuracy of 97.5 %). The architecture we simulated has 784 × 300 + 300 × 10 = 238,200 spintronic resonators and 784 + 300 = 1,084 spintronic oscillators. Since the MNIST test dataset contains 10,000 examples, we can estimate the total energy consumption of our architecture: (238,200 × 10 fJ + 1,084 × 130 fJ) × 10,000 = 25 µJ.

Figure 59 :

 59 Figure59: Accuracy of image recognition measured in percentage of successful classification on the "MNIST" testing dataset, versus the number of epochs (the number of times we present the training dataset to the network to train it) for a multi-layer perceptron with one hidden layer of 300 neurons. The blue squares correspond to a software network. The red circles correspond to a network with simulated RF spintronic neurons and synapses. The magenta diamonds correspond to a network with simulated RF spintronic neurons and software synapses. The black triangles correspond to a network with simulated RF spintronic neurons and synapses pre-trained using a model with software synapses. All simulations are averaged on ten trials.

Figure 60 :

 60 Figure 60: (a) Example of a 2D convolution with an input image of size 5×5 and a filter of size 3×3. Each element of the output feature map is the sum of the element-wise matrix multiplication (multiply-and-accumulate operation) between a subset of the input image and the weights of the kernel. The colors of the input image pixels indicate to which RF input signal they correspond in (b). (b) Schematic of the corresponding sequential convolution with RF signals and a chain of spintronic resonators. At each step the microwave powers of the input signals correspond to a mapping of a subset of the input image. The RF signals are injected to resonators through field-lines, represented by yellow stripes. Spintronic resonators are represented with colors corresponding to their matching weights, themselves represented in (a). At each step, the output voltage is a multiply-and-accumulate operation between the input microwave powers and the weights encoded into the resonance frequencies of the resonators.

Figure 60 (

 60 Figure 60(b) shows a chain of spintronic resonators performing multiply-andaccumulate operations of a convolution. First, the intensity values of the input image

  has a resonance frequency close to the frequency of its input RF signal. The spintronic resonators still rectify the input signals through spin-diode effect, but in contrast with the previous studies of this thesis, the magnetization resonance is not lead by spin-induced torques, but by the alternating Oersted field generated by the field-lines. RF currents passing through the resonators are induced by the field-lines through capacitive or inductive effects. In contrast with the implementations of chapter V, here if we use different RF signal frequencies, each resonator is only rectifying one signal because its dynamics is mostly driven by the Oersted field generated by its field-line. Then, the frequency spacing required for inference is not constrained by the linewidths of spintronic resonators, it is only constrained by the linewidth of RF emission of the spintronic oscillators.Like in chapter V, the voltage of such chain of resonators is a MAC operation between the input microwave powers and synaptic weights that are encoded in the resonance frequencies of the resonators. The difference between the input RF frequency and the resonance frequency of the resonators implements the weights of the convolutional filter. Since in a convolution, each multiply-and-accumulate operation requires the same set of weights, these resonance frequencies are left unchanged between the different steps. Then, at each step of the convolution, the voltage of the chain encodes a different element of the output feature map.
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 23112 Figure 61(a). The resonators of the second column correspond to the coefficients 𝑤 1,0 , 𝑤 1,1 , 𝑤 1,2 , 𝑤 2,0 , 𝑤 2,1 , and 𝑤 2,2 of the filter, as it is represented in the right-hand side of Figure61(a), etc. The resonance frequencies of resonators in a row all match the corresponding input RF signal they need to rectify, but are not identical as they encode different synaptic weights: as the filter is sled, the same input gets multiplied by a different weight (see Figure60(a) and Figure 61(a)). In Figure 61(b) each spintronic resonator is represented with a color that corresponds to one of the synaptic weights, which themselves are represented in Figure 61(a).
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 6162 Figure 61: (a) Example of a 2D convolution with an image of size 3×3, a padding of 1 and a filter of size 3×3. Padding of 1 means that the image is padded at its outer edge with 1 layer of zeros. Each element of the output feature map is the sum of the element-wise matrix multiplication (multiply-and-accumulate operation) between a subset of the input image and the weights of the filter. (b) Schematic of the corresponding parallel convolution with RF signals and multiple chains of spintronic resonators. RF input signal powers are mapped to the image pixels. The RF signals are injected to resonators through field-lines, represented by yellow stripes. Spintronic resonators are represented with colors corresponding their matching weights, themselves represented in (a). Resonators encoding the same weights are aligned in diagonal. The voltage of each chain is a multiplyand-accumulate operation between a subset of the input microwave powers and synaptic weights encoded in the resonators resonance frequencies.

  Figure62(a) scales in (𝑁 ℎ 𝑁 𝑤 )2 , which is much larger because the size of the input image is often much larger than the size of the convolutional filter.

  Figure 63(a). Similarly, multiple channels can be convolved with multiple filters with the compact architecture described in Figure 62(b).

Figure 63 :

 63 Figure 63: (a) Schematic of a parallel convolution with RF signals and chains of spintronic resonators implementing the synaptic weights similar to Figure 61(b) but with different channels and features. First (second) input channel pixels are mapped to a first (second) set of RF signals represented in red (in blue). Chains of spintronic resonators corresponding to the outputs of the second feature map are parallel to the first set of chains corresponding to the outputs of the first feature map. (b) Diagram of a deep convolutional network with multiple channels and features with spintronic oscillators to emulate neurons and resonators to emulate synapses. Direct signal electrical connections are represented by black arrows while field-lines carrying RF signals are represented by yellow arrows.

Figure 65 :

 65 Figure 65: Schematics of a multi-layer perceptron operated with spintronic oscillators and spintronic resonators. DC currents are used as input of spintronic oscillators and the power of the RF signals they emit as neuron outputs. The signals of the different oscillators are summed and amplified with a CMOS amplifier. The sum of the input signals is equally distributed to the different chains of spintronic resonators. The spintronic resonators rectify input signals through spin-diode effect. The DC voltages of the chains are then converted to DC currents and amplified.

  and since there are 𝑁 resonators in series in each chain and 𝑀 chains in parallel, the load resistance is 𝑅 𝑙𝑜𝑎𝑑 = 𝑁 𝑀 𝑅. The output RF current of the RF amplifier is then is sent to all the 𝑀 chains, the current passing through the resonator is Eq.B.6, the voltage of a spintronic resonator rectifying the RF signal of a spintronic resonator is𝑉 𝑟𝑒𝑠 = 𝑃 𝑟𝑒𝑠 𝑟𝑓 𝑊𝐾 𝑆𝐷 = 𝑅𝐼 𝑟𝑒𝑠 𝑟𝑓 2 𝑊𝐾 𝑆𝐷 = 𝑃 𝑜𝑠𝑐 𝑟𝑓 𝑊𝐾 𝑆𝐷 𝐺 𝑟𝑓 𝑁𝑀 . (B.14)B4.Computing the energy consumptions of the amplifiersWe know how much voltage spintronic resonators rectify when they receive RF signals in an array of 𝑀 chains of 𝑁 resonators. The voltage of each chain of resonators is converted to a DC current and amplified. The amplified DC current is supplying the next layer of spintronic oscillators (see Figure65). To make an accurate DC amplification, the voltage of each chain should be way above the noise level. The power we thus need to supply through the amplifiers is constrained by the minimum voltage rectified by a chain of resonators that can be sensed by the DC amplifier. We choose a ceil voltage for the chains 𝑈 𝑐ℎ𝑎𝑖𝑛 𝑐𝑒𝑖𝑙 = 1 mV, that corresponds to the voltage of a chain when all the input spintronic oscillators function at their maximum operating power, and when all the pseudo-synaptic weights 𝑊 are equal to +1. Since the voltage of each chain is the sum of the voltages of each resonator in the chain, the ceil voltage corresponds to B.15 and 𝑈 𝑐ℎ𝑎𝑖𝑛 𝑐𝑒𝑖𝑙 = 1 mV, we know by which factor 𝐺 𝑟𝑓 we need to amplify each RF signal. If we consider an ideal RF amplifier, the energy needed to supply the RF amplifier is equal to the energy of the emitted RF signals. Since there are 𝑁 spintronic oscillators, there are 𝑁 RF signals, and the power needed to supply the RF amplifier is

  Aujourd'hui, les algorithmes de traitement automatique des données sont omniprésents. Le besoin de traitement des données est en constante augmentation en raison de la croissance du volume des données mondiales et l'intelligence artificielle offre de nouvelles méthodes pour exploiter ces données. Les réseaux de neurones artificiels sont des algorithmes inspirés du cerveau, au coeur de l'intelligence artificielle. Ces algorithmes battent des records dans de nombreux domaines, comme le traitement du langage naturel, les jeux ou la classification des images. Cependant, si les réseaux de neurones artificiels sont inspirés de l'architecture des réseaux de neurones biologiques, ils sont aujourd'hui principalement exécutés sur des ordinateurs traditionnels où le traitement est séparé spatialement de la mémoire, et qui ne sont pas adaptés aux nombreuses multiplications parallèles ni au grand nombre de paramètres de ces algorithmes. Pour réduire la consommation énergétique de ces algorithmes, l'informatique neuromorphique vise à construire des circuits avec des dispositifs émulant des neurones et des synapses placés le plus près possible les uns des autres afin de réduire les pertes d'énergie causées par le transfert de données.Dans cette thèse, nous étudions comment utiliser des nanodispositifs spintroniques dans des réseaux neuronaux matériels. La spintronique, un domaine de l'électronique où l'information est codée à la fois dans la charge et dans le spin des électrons, est une technologie très performante pour le stockage de données et peut donc fournir les quantités massives de mémoire non volatile nécessaires au calcul neuromorphique. Le premier défi à relever pour construire des réseaux neuronaux matériels à l'aide de la spintronique est de trouver des moyens efficaces d'imiter les principales fonctionnalités des synapses et des neurones. Le deuxième défi consiste à connecter ces dispositifs de manière dense sur une puce. En effet, il est à ce jour encore très compliqué d'utiliser la spintronique pour construire des réseaux de neurones profonds avec une large densité de connexion Dans cette thèse, nous exploitons la capacité des dispositifs spintroniques à émettre et recevoir des signaux hyperfréquences pour construire un nouveau type de réseau neuronal matériel qui communique par le biais de signaux codés en hyperfréquences. Ce travail combine la physique expérimentale, la modélisation théorique et numérique, l'apprentissage automatique et l'électronique. Dans le chapitre I, nous introduisons les bases de l'intelligence artificielle, nous montrons comment les réseaux neuronaux artificiels fonctionnent, leurs liens avec les réseaux neuronaux biologiques et nous présentons des exemples de réseaux neuronaux spécifiques importants pour cette thèse. Dans le chapitre II, nous donnons un aperçu du domaine de l'informatique neuromorphique, nous présentons ses différents défis et nous comparons les différentes technologies existantes pour les réseaux neuronaux matériels : CMOS (Complementary Metal Oxide Semiconductor), les memristors, l'optique et la photonique, et la spintronique. Dans le chapitre III, nous présentons la spintronique. Nous expliquons la physique des jonctions tunnel magnétiques, le dispositif phare de la spintronique et nous montrons que nous pouvons utiliser ces composants comme émetteurs de radiofréquences (oscillateurs spintroniques) ou comme récepteurs (résonateurs spintroniques). D2.Résultats D.2.1. Chapitre IV : Nano-neurones spintroniques radiofréquences Dans ce chapitre, nous avons utilisé le calcul par réservoir (un réseau avec un réservoir de neurones connectés dynamiquement où seuls les connections synaptiques entre le réservoir et la sortie du réseau sont entraînés) et un oscillateur spintronique unique modulé par un signal hyperfréquence externe pour classer des motifs d'ondes sinusoïdales et carrées. Nous avons développé une méthode pour coder les données dans la fréquence des signaux micro-ondes. Cette technique est importante, car elle simule la situation où un oscillateur spintronique reçoit en entrée les signaux microondes d'autres oscillateurs spintronique. Nous avons développé un dispositif expérimental permettant d'effectuer des mesures résolues dans le temps de la dépendance de l'amplitude, de la fréquence et pour la première fois, de la phase d'un oscillateur spintronique par rapport à la fréquence d'un signal externe injecté dans un oscillateur spintronique. L'amplitude, la fréquence et la phase ont des dépendances non linéaires avec la fréquence du signal d'entrée. La non-linéarité est un facteur clé dans les réseaux neuronaux artificiels : elle sert à projeter des entrées non linéairement séparables dans un espace de dimension où elles sont séparables. La phase de l'oscillateur spintronique peut se verrouiller sur la phase du signal externe : nous avons utilisé cet effet de synchronisation pour améliorer le rapport signal sur bruit, qui est une autre caractéristique importante pour la précision de la classification. Nous avons effectué la classification en utilisant soit l'amplitude, soit la fréquence, soit la phase de l'oscillateur et en utilisant plusieurs gammes de fréquences pour coder l'entrée afin de tester notre méthode avec différents régimes d'oscillation. Nos résultats de classification de motifs montrent qu'avec notre méthode, nous pouvons maximiser la précision de la classification lorsque nous tirons parti de la nonlinéarité des oscillateurs spintroniques et de l'effet de la synchronisation avec un signal micro-ondes externe. Nous avons obtenu au mieux 99,75 % de précision de classification. Car nous avons utilisé des informations d'entrée codées en fréquence comme entrées de neurones, ce travail ouvre la voie à des réseaux où à la place d'utiliser séquentiellement un même oscillateur, on utilise de multiples oscillateurs spintroniques couplés avec le signal micro-onde de sortie de chaque oscillateur en entrée d'un autre oscillateur, et avec les connexions synaptiques récurrentes du réservoir faites par le couplage entre les oscillateurs. D.2.2. Chapitre V : Opérations synaptiques radiofréquences Dans ce chapitre, nous avons montré que des chaînes de résonateurs spintroniques peuvent effectuer des opérations de multiplication et d'accumulation (MAC) et émuler des synapses tout en pondérant les informations d'entrée codées en micro-ondes. Nous avons d'abord prouvé expérimentalement comment un résonateur spintronique multiplie la puissance d'un signal RF par un poids synaptique lorsqu'il le redresse par effet de diode de spin et nous avons montré que ce poids synaptique peut être modifié en continu avec des valeurs positives et négatives en accordant la fréquence de résonance du résonateur spintronique. Nous avons utilisé une chaîne de deux résonateurs spintroniques pour réaliser une opération MAC sur deux signaux RF. Cette opération MAC avait une déviation standard de 0,41 µV et une pente de 0,99 par rapport à une opération MAC idéale. Dans le futur, la précision peut être améliorée en diminuant la gamme des puissances micro-ondes utilisées en entrée ou en améliorant la qualité des matériaux magnétiques pendant la fabrication. Pour étudier les opérations MAC spintroniques RF à plus grande échelle, nous avons simulé des chaînes de résonateurs spintroniques. En utilisant des simulations analytiques, nous avons montré que l'opération MAC reste précise même en incluant la non-linéarité des résonateurs spintroniques avec une faible puissance d'entrée et avec des paramètres de non-linéarité des résonateurs spintroniques proches des valeurs mesurées dans des dispositifs réels. Nous avons montré par des simulations dynamiques que les effets de plusieurs signaux RF dans les résonateurs spintroniques s'additionnent linéairement. Ce résultat est important pour modéliser comment les résonateurs spintroniques rectifient simultanément plusieurs signaux RF. Nous concluons que notre opération MAC est précise même si les résonateurs spintroniques rectifient plusieurs signaux RF et donc que chaque poids synaptique dépend des fréquences de résonance de plusieurs résonateurs spintroniques dans une chaîne. Pour montrer que nous pouvons entraîner les résonateurs spintroniques à résoudre une tâche, nous avons simulé un perceptron (un réseau neuronal avec une unique couche de synapses) composé de chaînes de résonateurs spintroniques. Nous avons d'abord simulé un réseau de dix chaînes de 64 résonateurs spintroniques et prouvé que le réseau pouvait reconnaître des images de chiffres manuscrits de 8 × 8 pixels avec une précision aussi bonne qu'un réseau neuronal traditionnel comparable, même en tenant compte des non-linéarités des résonateurs spintroniques dans notre simulation. Ensuite, nous avons étudié l'espacement minimal des fréquences entre les signaux RF pour que chaque entrée puisse être différenciée. Nous avons donc simulé un plus grand réseau composé de dix chaînes de 784 résonateurs pour résoudre le jeu de données "MNIST" composé d'images de chiffres manuscrits de 28 × 28 pixels. Nous avons calculé l'espacement optimal entre les fréquences des signaux RF pour une gamme de fréquences donnée afin de maximiser la différenciation des entrées. En simulant des réseaux spintroniques à couche unique avec différentes gammes de fréquences et différentes largeurs de lignes de résonateurs spintroniques, nous avons étudié comment l'espacement des fréquences affecte la séparabilité des entrées et donc la précision de la classification. Ces résultats sont importants pour les futures implémentations de réseaux neuronaux spintroniques utilisant des signaux RF et un multiplexage en fréquence. Nous avons obtenu 92,40 % de précision de classification sur MNIST avec notre réseau simulé, ce qui est similaire à un réseau neuronal traditionnel équivalent. D.2.3. Chapitre VI : Réseaux de neurones profonds avec des nanodispositifs spintroniques radiofréquences Dans la première partie de ce chapitre, nous avons prouvé la possibilité de mise à l'échelle des réseaux spintroniques RF profonds. En utilisant des conversions RF-DC et DC-RF, nous avons montré comment réaliser un perceptron multicouche, prouvant ainsi que l'information peut se propager à travers plusieurs couches de neurones et de synapses spintroniques RF. Nos calculs montrent que l'architecture proposée consommerait ~10 fJ par synapse et ~130 fJ par neurone, gagnant ainsi plusieurs ordres de grandeur par rapport aux GPU (Graphical Processing Units) et qu'elle peut rivaliser avec d'autres technologies en termes de consommation d'énergie. Dans la seconde partie de ce chapitre, nous avons montré comment arranger des dispositifs spintroniques RF pour créer des réseaux de neurones convolutifs, qui sont les réseaux profonds les plus performants pour le traitement d'images. Nous avons tiré parti de la redondance et de la sparsité des couches de synapses convolutives pour proposer une architecture compacte permettant d'effectuer les convolutions en parallèle, permettant ainsi de réduire considérablement la latence liée à ces opérations. Nous avons aussi proposé une solution pour ajuster de multiples résonateurs spintroniques simultanément dans le cas des convolutions. De plus, nous avons simulé un réseau convolutif entier avec des oscillateurs spintroniques pour les neurones et des résonateurs spintroniques et obtenu des résultats à l'état de l'art (99,11 %) pour la tâche de classification d'images "MNIST". D3.Conclusion et perspectives Pour réaliser un réseau neuronal spintronique très dense, il est possible de réduire la taille des dispositifs radiofréquence spintronique en dessous de 20 nm, ce qui est proche de la taille réelle des mémoires magnétiques à couple à transfert de spin (STT-MRAM) commerciales. Cela permettrait de construire des puces compactes et peu coûteuses en énergie pour l'Intelligence Artificielle. Toutefois, des recherches doivent encore être menées pour fabriquer des oscillateurs et des résonateurs spintroniques de cette taille avec un rapport signal/bruit raisonnable. Notre implémentation diffère de la plupart des implémentations neuromorphiques car les données sont encodées par des signaux micro-ondes. À l'avenir, cet aspect pourrait être utilisé pour réaliser la classification des signaux radiofréquence : avec les dispositifs spintroniques RF, il est possible de traiter directement les signaux RF après détection sans numérisation, ce qui supprime la nécessité d'un système de décodage de signaux RF et est donc très prometteur pour les systèmes embarqués. Notre travail pourrait avoir un impact sur plusieurs applications telles que la médecine, la détection de gestes, les applications radar ou la détection et l'identification de drones. Nous avons présenté des réseaux neuronaux avec des dispositifs spintroniques à radiofréquence constitués des mêmes matériaux pour émuler à la fois les neurones et les synapses, intégrant une forte densité de connexions synaptiques grâce au multiplexage en fréquence et capables de transmettre des informations à travers plusieurs couches neuronales pour résoudre des tâches complexes. En utilisant des nanodispositifs à faible puissance et des signaux micro-ondes pour propager l'information, nos résultats ouvrent de nouveaux horizons vers des réseaux neuronaux matériels à haute densité et à faible consommation d'énergie. Titre : Réseaux de neurones artificiels avec des nano-dispositifs spintroniques RF Mots clés : spintronique, neuromorphisme, intelligence artificielle, oscillateurs à transfer de spin, deep neural networks, signaux radio-fréquences Résumé : Aujourd'hui, l'intelligence artificielle bat des records dans la résolution de nombreux problèmes cognitifs. En raison de leur architecture Von Neumann, les ordinateurs actuels ne sont pas adaptés aux algorithmes d'intelligence artificielle et consomment beaucoup d'énergie. Pour réduire cette consommation d'énergie, il est possible de s'inspirer du cerveau : dans les puces neuromorphique, la mémoire et calcul se joignent dans des circuits constitués de neurones artificiels et de synapses disposés en réseau hiérarchique. Cependant, la mise en oeuvre de réseaux de neurones artificiels sur des puces électroniques est difficile en raison de la très haute densité de connectivité synaptique requise : chaque neurone doit être connecté à des milliers d'autres neurones, ce qui conduit à des problèmes de connectivité. Pour surmonter ces limitations, une alternative consiste à utiliser des signaux radiofréquences pour propager l'information dans le réseau. Dans un tel réseau, il est possible d'utiliser des neurones artificiels avec des sortis codés en radiofréquence, et des synapses artificielles qui sélectionnent le signal d'entrée qu'elles transmettent en fonction de leur fréquence, améliorant ainsi le routage de l'information pour créer des réseaux à haute densité. Les dispositifs spintroniques sont très intéressants pour la communication de signaux radiofréquence en raison de leur faible consommation d'énergie, de leur large gamme de fréquences, de leur taille nanoscopique et de leur compatibilité avec les technologies industrielles existantes. Nous montrons ici que nous pouvons combiner des émetteurs radiofréquences spintroniques émulant des neurones et des récepteurs radiofréquences spintroniques émulant des synapses pour construire des réseaux neuromorphiques. Dans le cerveau, les neurones peuvent être considérés comme des oscillateurs à dynamique complexe.Nous démontrons expérimentalement que nous pouvons utiliser la dynamique des émetteurs radiofréquences spintroniques pour émuler un neurone et traiter des informations codées en radiofréquences afin de classer des motifs séquentiels. Dans les réseaux de neurones artificiels, le rôle des synapses est de pondérer l'information, et de la transmettre d'un neurone à l'autre. Nous prouvons expérimentalement qu'une chaîne de récepteurs radiofréquence spintroniques peut effectuer une somme pondérée sur plusieurs signaux radiofréquence. Pour prouver la validité de l'opération à plus grande échelle, nous faisons une étude analytique et numérique de cette opération comprenant les non-idéalités des dispositifs spintroniques. Pour résoudre des tâches complexes, les réseaux neuronaux artificiels nécessitent de nombreuses couches de neurones (réseaux neuronaux profonds). Nous montrons qu'un réseau neuronal profond peut être réalisé avec des émetteurs radiofréquences spintroniques comme neurones et des récepteurs de radiofréquences spintroniques comme synapses. Pour les réseaux de neurones convolutifs, dont l'architecture spécifique les rend efficaces pour le traitement d'images, nous présentons une architecture innovante permettant d'effectuer toutes les multiples opérations requises de manière hautement parallèle. Enfin, nous entraînons un réseau spintronique radiofréquence simulé pour classifier des images de chiffres manuscrits avec une précision de pointe. Ces résultats ouvrent de nouveaux horizons vers le traitement des signaux radiofréquence sur puce avec l'intelligence artificielle, et les réseaux neuronaux profonds très denses où l'information est propagée par les signaux radiofréquences.

  

  

  

  

  

  

  

  

  

  

  

  

  Tsunegi et al have shown that it is possible to make a spintronic oscillator with a quality factor of 𝑓 𝑟𝑓 the frequency of the oscillator and ∆𝑓 𝑟𝑓 its linewidth. If we use the Eq. 5.19 to choose the frequencies of the spintronic oscillators with a spacing coefficient of 𝜇 =

	𝑓 𝑟𝑓 ∆𝑓 𝑟𝑓 = 6400 [187], with
	1 6400 , we can
	arrange 5408 frequencies between 1 GHz and 5.4 GHz with spacings equivalent to the
	linewidths of the different oscillators. In conclusion, it is possible to arrange the

frequencies of the oscillators in a reasonable range while avoiding interferences. For this reason, and since we use field-lines to transmit RF signals, we considered that each 6.2.4.4. Results

  5, A.6 and A.7, we compute 𝑉 𝑆𝐷 = [cos(𝜔 𝑟𝑓 𝑡 + 𝜑 -𝜓 𝑟𝑓 -𝜖) + cos(-𝜔 𝑟𝑓 𝑡 + 𝜑 + 𝜓 𝑟𝑓 + 𝜖)] √ 𝑝𝐹 𝑟𝑓 ∆𝑅𝛽 𝑠

	2𝜎 𝑡𝑜𝑟𝑞𝑢𝑒	. (A.8)

  We can consider that the shape factor 𝛽 𝑠 can be optimized to ~1. The threshold current density can be reduced to 𝐽 𝑡ℎ = 10 10 A/m² with 20 nm diameter junctions[START_REF] Chao | Scaling Effect of Spin-Torque Nano-Oscillators[END_REF]. Hence, with 20 nm diameter junctions, the threshold current 𝐼 𝑡ℎ can be reduced to ~10 µA. The resistance/area product of a magnetic tunnel junction is usually constant with its lateral dimension. We can choose a 𝑅𝐴 ratio 𝑅𝐴 = 10 -12 Ω.m², as seen in the literature[START_REF] Costa | High Power and Low Critical Current Density Spin Transfer Torque Nano-Oscillators Using MgO Barriers with Intermediate Thickness[END_REF]. With an area of 𝐴 = 𝜋𝑟 2 = 𝜋 × (20 × 10 -9 ) 2 m², a threshold current density of 𝐽 𝑡ℎ = 10 10 A/m² and

	breakdown voltage of a spintronic oscillator is often around	𝐼 𝑑𝑐 𝐼 𝑡ℎ	= 5 [283], we choose a
	1 8√2 0.088~0.1. The spin-diode sensitivity of the resonators in optimal conditions can then be = estimated as 𝐾 𝑆𝐷 = 10 4 µV/µW. (B.10) current to threshold ratio 𝐼 𝑑𝑐 𝐼 𝑡ℎ = 4. ∆𝑅 𝑅 𝛽 𝑠 ~1:
	B. Fang et al already demonstrated experimentally a spin-diode sensitivity of 10 3 𝑃 𝑜𝑠𝑐 𝑟𝑓 = 𝑝 ( 𝐼 𝑑𝑐 𝐼 𝑡ℎ ) 2 𝑅𝐼 𝑡ℎ 2 ( 𝑅 𝛽 𝑠 ) ∆𝑅 2
	µV/µW [207].	=	4 -1 4 + 2	4 2 𝑅A 2 𝐽 𝑡ℎ	2 (	∆𝑅 𝑅	2 𝛽 𝑠 )	(B.12)
	= 8 × 10 -12 × 𝜋 × 4 × 10 -16 × 10 20 W B2.Power of a spintronic oscillator = 32𝜋 × 10 -8 W
		~1 µW.				
						∆𝑅 𝑅	1 𝐼 𝑡ℎ	tan 𝛾 𝑝 8√2	𝛽 𝑠 ,	(B.5)
	or also as							
			𝑉 𝑟𝑒𝑠 = 𝑃 𝑟𝑒𝑠 𝑟𝑓 𝑊𝐾 𝑆𝐷 , with	(B.6)
	𝑃 𝑟𝑒𝑠 𝑟𝑓 𝑊 = = 𝐾 𝑆𝐷 = 𝑟𝑓 is the RF electrical power passing through the resonator. The factor 𝑊 = 𝑅𝐼 𝑟𝑒𝑠 𝑟𝑓 2 2∆𝜔𝛤 + Γ + 2 + ∆𝜔 2 ∆𝑅 𝑅 1 𝐼 𝑡ℎ tan 𝛾 𝑝 8√2 𝛽 𝑠 . (B.7) (B.8) (B.9) Here, 𝑃 𝑟𝑒𝑠 𝑃 𝑜𝑠𝑐 𝑟𝑓 𝑟𝑓 2 𝑉 𝑜𝑠𝑐 = 𝑅 = 𝑝 ( 𝐼 𝑑𝑐 𝐼 𝑡ℎ ) 2 𝑅𝐼 𝑡ℎ 2 ( 𝑅 𝛽 𝑠 ) , ∆𝑅 2 𝑅 = 2 (√𝑝∆𝑅𝐼 𝑑𝑐 𝛽 𝑠 ) (B.11)
	2∆𝜔𝛤 + 2 +∆𝜔 2 is dimensionless and lies between -1 and +1. Since it is the only tunable parameter with 𝑝 the normalized magnetization oscillation power of the oscillator, and 𝐼 𝑑𝑐 its DC Γ + during training, we call 𝑊 a pseudo-synaptic weight. current. As we have seen in section 3.5.1, the normalized magnetization oscillation power ∆𝑅 𝑅 is the tunnel magnetoresistance ratio of the resonator, often ~1 [160]. The tunnel magnetoresistance of magnetic tunnel evolves as 𝑝 = { 𝐼 𝑑𝑐 𝐼 𝑡ℎ ⁄ -1 𝐼 𝑑𝑐 𝐼 𝑡ℎ ⁄ +Q 𝑖𝑓 𝐼 𝑑𝑐 > 𝐼 𝑡ℎ .
	junctions usually varies with voltage bias. Here, for the purpose of calculus simplification, 0 𝑒𝑙𝑠𝑒,
	we will consider constant tunnel magnetoresistance values. We see that the spin-diode We compute the maximum power emitted by this spintronic oscillator. Since the

sensitivity depends on the polarization angle. If 𝛾 𝑝 = 𝜋/4, then tan 𝛾 𝑝 = 1. Now, we compute the emitted RF power of a spintronic oscillator and make an estimation of the DC power needed to supply an oscillator in current. We consider that the spintronic oscillator has exactly the same physical parameters (area 𝐴, resistance 𝑅, tunnel magnetoresistance ∆𝑅 𝑅 , threshold current 𝐼 𝑡ℎ , and shape factor 𝛽 𝑠 ) The RF power emitted by a spintronic oscillator is

The field-lines calibration measurements were realized by collaborators at INL, Braga. They determined the in-plane magnetic field generated by such a field-line by comparing its effect on the magnetoresistance with the effect of the in-plane field generated by a calibrated electromagnet.

𝐾 𝑆𝐷 ,(6.1) With 𝑃 𝑟𝑓 the RF power received by the resonator, 𝜔 𝑟𝑓 and 𝜔 𝑟𝑒𝑠 the angular emission frequency of the oscillator and angular resonance frequency of the resonator, 𝛤 𝑟𝑒𝑠 its linewidth, 𝐾 𝑆𝐷 a factor that we call the spin-diode sensitivity. We did not consider any
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A1. Derivation of the voltage rectified through spin-diode without nonlinearities: ........ A2. Derivation of the voltage rectified through spin-diode with nonlinearities: .............. We see that the control of the two resonance frequencies is co-dependent: for instance, while changing the current in the field-line of MTJ 2, we observe a slight change of resonance frequency in MTJ 1. We noticed that this co-dependence was due to leakage currents through our sample-holder, which induces a small current in the field-line of To go further, we repeat these simulations with different parameters to see in which context a spintronic resonator-based MAC could fail. Comparing Figure 47(a) and Figure 47(b) we see that, as predicted in section 5.4.1.1.2, an increase of the nonlinear frequency shift coefficient 𝑁 causes stronger divergences between the model with nonlinearities and the ideal one. With Figure 47 (c) and Figure 47 (d), we see also that the divergences increase strongly when we increase the microwave powers, leading to a complete lack of correlation when they are of the order of 1 mW. In the case of microwave power increase, correlation is a better metric than root-mean-square deviation because the mean error increases with the overall voltage (in absolute value) of the chain, itself increasing with microwave power. The conclusion of this study is that we need resonators with nonlinear frequency shift parameter 𝑁 inferior to 1 and microwave powers inferior to 100 µW. We use these results as a guide for physical implementations with real devices. different levels of irradiation [START_REF] Jiang | Reduced Spin Torque Nano-Oscillator Linewidth Using He + Irradiation[END_REF]. It is also possible to engineer the spintronic resonators with different materials to change their magnetic damping: it can be reduced to 10 -4 in metallic ferromagnetic materials [START_REF] Schoen | Ultra-Low Magnetic Damping of a Metallic Ferromagnet[END_REF], in order to integrate more resonators into a range of frequencies. We used continuous currents in field-lines to tune resonance frequencies in our experimental demonstration, which is not a scalable method. However, there are different ways to tune the state of these spintronic resonators in a non-volatile way [START_REF] Xu | A Quantum Material Spintronic Resonator[END_REF][START_REF] Zahedinejad | Memristive Control of Mutual Spin Hall Nano-Oscillator Synchronization for Neuromorphic Computing[END_REF].

In this chapter we introduced a new paradigm allowing to make synaptic operations in a very compact fashion. We leverage frequency-multiplexing to route information without one-to-one wiring from inputs to synapses, thus reducing physical connections complexity. Since we used radio-frequency receivers as synapses, our method can be used to classify radio-frequency signals without digitization. As we will see in the next chapter, these chains of resonators can also be used to connect different layers of artificial neurons in microwave-based networks.

resonator in the network rectifies only one RF signal to simulate the convolutional neural network.

We consider that the fully-connected layer is implemented with chains of spintronic resonators as it was done in chapter V and section 6.1. Max-pooling layers and the softmax layer are assumed to be implemented by more classical circuits.

Training

To train the network, we used batches of 20 images and a learning rate of 10 -4 . Synaptic weights depend both on the frequency of the input and the resonance frequency of the resonators. The input frequency is kept fixed, and the trained parameter is the resonance frequency of the resonators. An additional constraint arises in the case of parallel convolutions due to weight sharing. Indeed, resonators corresponding to the same filter coefficient have to implement the same synaptic weight even if they receive input signals different frequencies. In order to ensure that this is the case, our training algorithm updates the resonance frequency of each resonator with a function that depends both on the frequency it receives, and a trainable parameter 𝜁 𝑖,𝑗,𝑐,𝑚 learned through backpropagation that corresponds to its filter coefficient: 𝑓 𝑖,𝑗,𝑐,ℎ,𝑤,𝑚 𝑟𝑒𝑠 ← 𝑓 ℎ+𝑖,𝑤+𝑗,𝑐 𝑟𝑓 (1 -𝜁 𝑖,𝑗,𝑐,𝑚 ). (6.5) This expression indicates that when multiple spintronic resonators are tuned simultaneously with a single write-line in a hardware implementation, the resonance frequency update of each resonator should scale with its input signal frequency. In the Appendix C, we demonstrate that using this expression, chains of resonators voltages correspond to convolution outputs, described by Eq. 6.4. For the fully-connected layer, we simply set the resonance frequencies as trainable parameters learned through backpropagation, as it was done in section 5.4.

As in section 6.1.4, we introduce amplification factors for each synaptic layer set as trainable parameters and trained through backpropagation to balance the fact that spintronic resonators can only be tuned within a finite range of synaptic weights.

Summary and perspectives

In this thesis, we have proposed a new breed of hardware neural network harnessing magnetization dynamics for the implementation of neurons and synapses, and microwave signals for the communications between these nano-devices. We have experimentally demonstrated the functionality of synapses and neurons, as well as the key operation of neural networks: the multiply and accumulate operation. We have developed analytical models that closely match those experiments, and used them to simulate large scale neural networks numerically, such as fully connected and convolution networks. We showed in this way that our RF spintronics networks infer with orders of magnitude less energy than current processors, and achieve state-of-the-art high accuracy on image benchmark tasks. We recapitulate below in more details the main results of the thesis.

In chapter IV, we investigated spintronic oscillator as RF emitting neurons, and demonstrated reservoir computing with this device. We have developed an experimental set-up that allows encoding the input information of the oscillator into the frequency of an external microwave signal, and decoding the output information into either the frequency, the amplitude, or the phase of oscillation of the spintronic oscillator. Since spintronic oscillators are radio-frequency signal emitters, being able to encode inputs and outputs of spintronic oscillators in radio-frequency signals is important to build a network of coupled spintronic oscillators. We used a single spintronic oscillator to emulate sequentially 25 neurons to classify sine and square wave patterns. Our results of pattern classification show that with our experimental method, we benefit both from nonlinearity, which is crucial to emulate a neuron, and from the effect of synchronization to an external microwave signal, which improves signal over noise ratio. We achieved up to 99.75 % classification accuracy. In the future, it would be possible to trade the sequentiality of the reservoir of neurons we implemented for a reservoir with multiple spintronic oscillators where the output microwave signal of each oscillator is the input of another oscillator, and where the synaptic recurrent connections of the reservoir are implemented by the coupling between the oscillators.

In chapter V, we developed radio-frequency spintronic synapses compatible with neural networks as in any hardware neural network made of nanodevices. Alternative training algorithms with local learning rules where the update of a synapse is determined from the state of the neuron it connects, like Equilibrium Propagation [START_REF] Laydevant | Training Dynamical Binary Neural Networks with Equilibrium Propagation[END_REF][START_REF] Scellier | Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation[END_REF][START_REF] Laborieux | Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing Its Gradient Estimator Bias[END_REF][START_REF] Martin | EqSpike: Spike-Driven Equilibrium Propagation for Neuromorphic Implementations[END_REF] are particularly interesting to train physical neural networks, because they extract the gradients from the physical, variable, network directly, unlike backpropagation.

To make very dense neural spintronic neural network, it is possible to reduce the size of spintronic radio-frequency devices below 20 nm, which is close to the actual size of commercial spin-transfer torque magnetic memories (STT-MRAM). However, research still has to be conducted to make spintronic oscillators and resonators of this size with a reasonable signal over noise ratio. In neuromorphic engineering, several other leads are being explored to reduce the area and energy footprint of hardware neural networks, and some of them are compatible with the development of RF spintronic nanodevices neural networks. For instance, pruning of neural networks to use less components [START_REF] Blalock | What Is the State of Neural Network Pruning?[END_REF][START_REF] Hacene | Quantized Guided Pruning for Efficient Hardware Implementations of Deep Neural Networks[END_REF], using low precision synapses [START_REF] Laydevant | Training Dynamical Binary Neural Networks with Equilibrium Propagation[END_REF][START_REF] Prokopenko | Noise Properties of a Resonance-Type Spin-Torque Microwave Detector[END_REF][START_REF] Jiang | Reduced Spin Torque Nano-Oscillator Linewidth Using He + Irradiation[END_REF][START_REF] Divinskiy | Controlled Nonlinear Magnetic Damping in Spin-Hall Nano-Devices[END_REF][START_REF] Marković | Detection of the Microwave Emission from a Spin-Torque Oscillator by a Spin Diode[END_REF], building 3D circuits to increase the computing density [START_REF] Lin | Three-Dimensional Memristor Circuits as Complex Neural Networks[END_REF][START_REF] Fischer | Launching a New Dimension with 3D Magnetic Nanostructures[END_REF][START_REF] Li | Three-Dimensional Crossbar Arrays of Self-Rectifying Si/SiO2/Si Memristors[END_REF].

Our implementation differs from most neuromorphic implementations by encoding data in microwave signals. In the future, this aspect could be used to achieve radio-frequency signal classification: with RF spintronic devices, it is possible to directly process RF signals directly after sensing without digitization, which removes the need for a microwave decoder system [START_REF] O'shea | Over-the-Air Deep Learning Based Radio Signal Classification[END_REF] and is thus very powerful for embedded systems. Our work could impact several applications such as medicine [START_REF] Yoon | Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning[END_REF][START_REF] Dai | Post-Processing Radio-Frequency Signal Based on Deep Learning Method for Ultrasonic Microbubble Imaging[END_REF][START_REF] Besler | Real-Time Radiofrequency Ablation Lesion Depth Estimation Using Multi-Frequency Impedance With a Deep Neural Network and Tree-Based Ensembles[END_REF] , RF fingerprinting [START_REF] Merchant | Deep Learning for RF Device Fingerprinting in Cognitive Communication Networks[END_REF], gesture sensing [START_REF] Lien | Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar[END_REF], radar applications [START_REF] Kim | Application of Machine Learning to Antenna Design and Radar Signal Processing: A Review[END_REF], or aerial vehicle detection and identification [START_REF] Fang | Giant Spin-Torque Diode Sensitivity in the Absence of Bias Magnetic Field[END_REF].

We have presented neural networks with radio-frequency spintronic devices made of similar materials to emulate both neurons and synapses, integrating a high synaptic connections density using frequency-multiplexing, and capable to transmit information through multiple neural layers to solve complex tasks. Appendix A: Spin-diode

In this appendix, we derive the equations of voltages rectified through spin-diode that are used in this document, and which are used for numerical simulations. The calculus is developed from the universal auto-oscillator theory model described in the paper of A. Slavin and V. Tiberkevich [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF], which describe the magnetization dynamics of a spintronic oscillator with Eq.3.3.

A1. Derivation of the voltage rectified through spin-diode without nonlinearities:

We start from the derivation of the magnetization dynamics done in [START_REF] Slavin | Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current[END_REF] to the case of a spintronic resonator. A spintronic oscillator in resonance mode is like a passive oscillator, which means that it is not driven by an anti-damping torque: in the equation of the magnetization dynamics, Γ -= 0. In this part, to simplify the calculus we make the assumption that the driving force is very small, and thus that we can neglect any dependences of the magnetic damping and of the resonance frequency on the oscillation normalized power 𝑝 = |𝑐 2 |, which means that the angular resonance frequency 𝜔 𝑟𝑒𝑠 (𝑝) = 𝑐𝑜𝑛𝑠𝑡 and the damping term Γ + (𝑝) = 𝑐𝑜𝑛𝑠𝑡. To describe the magnetization dynamics of such a resonator, we recall the equation of magnetization precession in polar coordinates:

where 𝐹 𝑟𝑓 = |𝜌 𝑟𝑓 | is the real amplitude of the driving oscillating force and 𝜓 𝑟𝑓 = 𝑎𝑟𝑔(𝜌 𝑟𝑓 ) its phase. Then, one needs to introduce a slow oscillating phase which is the instantaneous difference between the phase of the external driving force and the phase of the resonator: Φ = 𝜔 𝑟𝑓 𝑡 + 𝜑 -𝜓 𝑟𝑓 . We can then rewrite Eq. A.2 as the equation of the phase difference dynamics:

sin(Φ), with ∆𝜔 = 𝜔 𝑟𝑓 -𝜔 𝑟𝑒𝑠 the angular frequency mismatch.

In the case of a field-like torque, since 𝜖 = 𝜋 2

, we have: We know that the damping-like torque is linked to the frequency-symmetric component and that the field-like torque is linked to the anti-symmetric one [START_REF] Wang | Sensitivity of Spin-Torque Diodes for Frequency-Tunable Resonant Microwave Detection[END_REF][START_REF] Liu | Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect[END_REF]. Hence by defining the relation between the microwave power induced in a resonator 𝑃 𝑟𝑓 and 𝐹 𝑟𝑓 for both damping-like torque and field-like torque: A2.Derivation of the voltage rectified through spin-diode with nonlinearities:

In this part we consider that the external forces acting on the magnetization are small enough so that its normalized oscillation power 𝑝 is such that we can use a first order development on the angular resonance frequency and the damping torque:

with 𝜔 0 𝑟𝑒𝑠 = 𝜔 𝑟𝑒𝑠 (0) and Γ + = Γ 𝑟𝑒𝑠 (0). These two equations describe the first order nonlinear behavior for a spintronic resonator, which respectively 𝑁 and 𝑄 the nonlinear parameters of the angular frequency and the damping torque. Then using Eqs. A.1 and A.2 with the nonlinearities and applying the same approach as in section A2, we find a new expression of the normalized oscillation power:

In comparison with Eq. A.4, this new equation is non-trivial because it is a third order polynomial equation in 𝑝. In numerical simulations including spin-diode nonlinearities in this thesis, we always used the Matlab equation solver to compute values of 𝑝, excepted for the neural network simulations of section 5.4.3, where we use Python and the general analytical solution for a third order polynomial.

Appendix B: Estimation of the energy consumption of a RF spintronic multi-layer perceptron

In Appendix B, we compute the energy consumption of a multi-layer perceptron when the input neurons of each layer are spintronic oscillators, and the synapses are emulated by spintronic resonators in chains (see Figure 65). We give an estimation of the maximum spin-diode sensitivity for magnetic tunnel junction spintronic resonators, and the RF power emitted by a magnetic tunnel junction spintronic oscillator. We compute the RF current passing through each chain of spintronic resonators when there are 𝑀 chains of 𝑁 resonators. In our multi-layer perceptron, the power is supplied through the DC and RF amplifiers. Then, we compute how much power we need to supply to these amplifiers, and we estimate the energy consumption of the circuit. (B.17)

Again, we consider that we operate with a rate of 0.01 GHz. The energy consumption per spintronic oscillator is 𝐸 𝑛𝑒𝑢𝑟𝑜𝑛 ~130 fJ.

Appendix C: Convolution specific multiplyand-accumulate operations with chains of spintronic resonators

Here, we demonstrate that with the correct choice of resonance frequencies, the voltages of our chains of spintronic resonators are convolution outputs like Eq. 6.4. In a convolutional framework, using Eq. 6.