
HAL Id: tel-03744182
https://theses.hal.science/tel-03744182

Submitted on 2 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient protocols for testing proximity to algebraic
codes

Sarah Bordage

To cite this version:
Sarah Bordage. Efficient protocols for testing proximity to algebraic codes. Information Theory
[cs.IT]. Institut Polytechnique de Paris, 2022. English. �NNT : 2022IPPAX042�. �tel-03744182�

https://theses.hal.science/tel-03744182
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

X
04

2

Efficient Protocols for Testing Proximity
to Algebraic Codes

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 16 juin 2022, par

SARAH BORDAGE

Composition du Jury :

Grégoire Lecerf
Directeur de recherche, CNRS (LIX) Président

Pierrick Gaudry
Directeur de recherche, CNRS (LORIA) Rapporteur

Swastik Kopparty
Associate Professor, University of Toronto Rapporteur

Eli Ben-Sasson
StarkWare Industries Examinateur

Eleonora Guerrini
Maı̂tresse de conférences, Université de Montpellier (LIRMM) Examinatrice

Adeline Roux-Langlois
Chargée de recherche, CNRS (IRISA) Examinatrice

Gilles Zémor
Professeur, Université de Bordeaux (IMB) Examinateur

Daniel Augot
Directeur de recherche, Inria Saclay Directeur de thèse

Remerciements

« Merci », en voilà un mot souvent galvaudé. Il y a les « mercis » un peu creux, et puis il y a les autres.
Ceux qui n’ont pas besoin d’être accompagnés d’un long discours pour délivrer toute la gratitude que
l’on peut ressentir. Il me semble important de souligner que ceux qui suivent sont du deuxième type.

Mes premiers remerciements sont destinés à mon directeur de thèse, Daniel Augot, qui m’a guidée
durant quatre ans, d’abord lors de mon stage de fin d’études, ensuite en thèse. Merci Daniel pour ta
confiance, ton implication, tes conseils, ta disponibilité, et ta bienveillance. Je n’aurais évidemment
pas commencé cette thèse sans toi, mais surtout, je n’aurais pu lamener à terme sans tout ton soutien.

Je tiens à remercier très sincèrement Grégoire Lecerf, Pierrick Gaudry, Swastik Kopparty, Eli Ben-
Sasson, Eleonora Guerrini, Adeline Roux-Langlois et Gilles Zémor, qui m’ont fait l’honneur de com-
poser mon jury de soutenance. Merci pour votre temps et pour l’intérêt que vous avez porté à ces
travaux. Je remercie également Pierrick et Swastik d’avoir accepté la tâche supplémentaire d’être
rapporteurs : vos lectures attentives, remarques et suggestions ont assurément permis d’améliorer
la qualité de ce manuscrit. Merci également à Grégoire d’avoir accepté de présider ce jury, ainsi que
pour sa relecture minutieuse.

I would like to thank Eli Ben-Sasson for its enthusiastic and highlighting answers to my (naive) ques-
tions. I am also very grateful to Alessandro Chiesa for many insightful discussions, and for offering me
a postdoctoral position in a wonderful place.

Merci aussi à Louis Goubin et Jean-Guillaume Dumas, qui formèrent mon comité de suivi avec intérêt
et gentillesse.

Je remercie également les personnes avec qui j’ai eu le plaisir de co-écrire des articles : Daniel Augot,
Julien Lavauzelle, Mathieu Lhotel, Jade Nardi et Hugues Randriam. Une mention spéciale pour Jade,
à qui je suis infiniment redevable, et sans qui le dernier chapitre de cette thèse n’existerait pas. Entre
mille autres choses, merci d’avoir toujours répondu présente, même à des heures indues.

Merci également aux assistantes de recherche, Evelyne, Jessica, Agustina et Lyza, dont je tiens à
souligner la réactivité et le travail remarquable. Par ailleurs, merci beaucoup Jessica pour ton aide
lors de mes déboires administratifs avec l’X. Agustina, merci pour ta bonne humeur qui n’a jamais
manqué d’égayer une journée, je garde un joyeux souvenir de tous nos échanges.

Je remercie chaleureusement tous les membres passés et présents de l’équipe Grace, qui ont chacun
nourrit de convivialité la bonne ambiance de travail dans l’équipe. Je souhaite adresser un remer-
ciement particulier à Françoise Levy-dit-Vehel, Daniel Augot, Alain Couvreur, Ben Smith et François
Morain, membres permanents lors de mon arrivée. Votre sympathie et vos qualités scientifiques
m’ont grandement motivée à rester faire une thèse dans l’équipe. Merci également à Matthieu Ram-
baud, qui a co-encadré ma première expérience dans le milieu de la recherche avec un enthousiasme
débordant. Je salue également Clémence, une autre personne très enthousiaste, que j’ai eue plaisir

ii

à encadrer lors de son stage. J’ai une pensée amicale pour toutes celles et ceux qui font ou firent
partie des « jeunes » de Grace, et leur souhaite une belle réussite dans leurs projets.

Il y a des personnes avec qui j’ai noué des liens dont la portée dépasse largement le cadre profes-
sionnel. Isa, Julien, Mathilde, Jade, Ilaria, Elena, c’était une chance incroyable de pouvoir travailler
avec des amis. Vous avez peu idée combien les moments et les discussions que l’on a partagés sont
précieux. Simplement, merci pour tout, vraiment.

J’ai également une profonde gratitude envers celles et ceux pour qui mes travaux paraissent sans
doute les plus abscons, mais dont le soutien indéfectible et les encouragements m’ont permis de
débuter, persévérer, puis achever ce doctorat (alors que, souvent, je les en tenais éloignés). Aussi
diverses soient elles, j’espère que toutes ces personnes sauront se reconnaître. Merci à vous.

Mes derniers mots seront destinés à Marie. Merci, merci d’avoir partagé et supporté mes joies, doutes
et frustrations au quotidien : ce combat, c’était aussi le nôtre.

Contents

Introduction 1

Chapter 1 Background material 9
1.1 Notations and conventions used throughout the manuscript 9
1.2 Proof systems and cryptographic arguments . 11

1.2.1 Nondeterministic languages . 11
1.2.2 Probabilistic oracle machines . 12
1.2.3 Probabilistically checkable proofs . 12
1.2.4 Interactive oracle proofs . 13
1.2.5 Interactive oracle proofs of proximity . 15
1.2.6 Succinct non-interactive arguments from IOPs 16

1.3 Error-correcting codes . 17
1.3.1 Basic notions of coding theory . 17
1.3.2 Locally testable codes . 20

1.4 Some preliminary technical lemmas . 21
1.4.1 Zeroes of polynomials over finite fields . 21
1.4.2 Distance preservation and random linear combinations 22

Chapter 2 Reed-Solomon proximity testing and application to computational integrity 25
2.1 Reed-Solomon proximity testing in the IOP model 25

2.1.1 Some background on Reed-Solomon proximity testing 25
2.1.2 Outline of the FRI protocol . 27
2.1.3 Decomposition of univariate polynomials 29
2.1.4 Algebraic setting for polynomial codes . 30
2.1.5 The FRI protocol: description and analysis 31

2.2 An IOP-based SNARG using Reed-Solomon proximity testing 37
2.2.1 Algebraic Intermediate Representation . 38
2.2.2 A simple IOP for the AIR language . 39

Chapter 3 Constructing IOPs of Proximity from distance-preserving folding operators 45
3.1 Generic interactive oracle proof of proximity based on folding operators 45

3.1.1 Folding operators . 45
3.1.2 Generic IOPP construction . 46

3.2 Distance and correlated agreements with biased sample spaces 52
3.2.1 The case of multilinear combinations . 52
3.2.2 The case of low-degree parametrized curves 59

Chapter 4 Proximity testing for multivariate polynomial codes 61
4.1 Related work . 62
4.2 Preliminaries about multivariate polynomials . 64

4.2.1 Low-degree extensions . 64
4.2.2 Multivariate polynomial decomposition . 66

iv Contents

4.3 A first attempt to construct IOPP for tensor products of Reed-Solomon codes 67
4.3.1 Sequence of codes with length divided by 2m 68
4.3.2 Folding operators locally computable from 2m queries 68
4.3.3 IOPP for tensor product of RS codes . 70

4.4 IOPP for tensor product of RS codes by folding with respect to each variable 71
4.4.1 Sequence of codes with length divided by 2 73
4.4.2 Partial folding operators . 73
4.4.3 Improved IOPP for tensor product of RS codes 75

4.5 Short Reed-Muller codes . 78
4.5.1 Sequence of codes . 78
4.5.2 Folding operators . 78
4.5.3 IOPP for short Reed-Muller codes . 81

Chapter 5 Proximity testing for algebraic geometry codes 85
5.1 Introduction . 85

5.1.1 Motivations . 85
5.1.2 Summary of the results . 86
5.1.3 Overview of our approach . 89
5.1.4 Related work . 92

5.2 Algebraic geometry codes . 93
5.2.1 Basic notions on algebraic curves over finite fields 93
5.2.2 Definition of algebraic geometry codes . 95
5.2.3 Additional material . 96

5.3 Foldable AG codes . 97
5.3.1 Sequence of curves . 97
5.3.2 Definitions of foldable AG codes and balancing functions 98
5.3.3 Reed-Solomon codes as foldable AG codes 100
5.3.4 Kani’s theorem . 101

5.4 IOP of Proximity for foldable AG codes . 102
5.4.1 Definition of folding operators and properties 102
5.4.2 Foldable AG codes admit efficient IOPP . 107

5.5 A family of foldable AG codes on Kummer curves 109
5.5.1 Preliminaries . 109
5.5.2 Decomposition of Riemman-Roch spaces for Kummer extensions 110
5.5.3 Foldable AG codes on Kummer curves and their parameters 111

5.6 A family of foldable AG codes along the Hermitian tower 112
5.6.1 Preliminaries . 112
5.6.2 Decomposition of Riemann-Roch spaces and balancing functions 114
5.6.3 Foldable AG codes along the Hermitian tower 116

5.7 Proximity tests for AG codes on Kummer curves and Hermitian towers 121
5.7.1 How to iterate the folding to reach a code of dimension 1 121
5.7.2 Properties of the AG-IOPP with Kummer curves 121
5.7.3 Properties of the AG-IOPP with towers of Hermitian curves 123

Contents v

Conclusion 125

Bibliography 127

Appendix Résumé long en français 141

vi Contents

Introduction

In this thesis, we propose efficient protocols for solving the problem of testing proximity to alge-
braic linear codes. Such constructions can be viewed as solutions to the so-called low-degree testing
problem, and variants thereof.

Our design approach is driven by one main motivation: the construction of concretely efficient
proof systems for secure delegation of computation (also known as verifiable computing), and zero-
knowledge proofs. Loosely speaking, proofs of computational integrity are short proofs that enable
a verifier to probabilistically check the correct execution of a program, without having to run the
computation again. For practical concerns, such proofs should not only be short, but also easy to
generate and fast to verify. Besides, a zero-knowledge proof asserts that some statement is valid,
without disclosing any meaningful information on the reasons why such a statement holds. Com-
bining those two striking concepts leads to proofs of computational integrity that are extremely fast
to verify and preserves the confidentiality of some sensitive inputs of the computation.

After several breakthroughs and tremendous progress, constructions that only a few years ago
were barely seen as theoretical proofs of concept have finally led to genuine solutions for real-world
applications and industrial deployments (proving once again that, after a few decades, fascinating
but purely theoretical concepts may eventually find an interested audience in society).

There are several approaches for constructing succinct non-interactive arguments for verifying
generic computations, with different tradeoffs in performance and security assumptions. Regarding
long-term security, systems with no trusted setup and post-quantum security are the most desirable.
For such systems, designing highly-efficient proximity tests for linear codes is crucial for practical
implementations.

General context

Proof systems. In computational complexity theory, a computational problem is a task that can
be solved by a computer. A computational problem can be thought as a collection of instances, each
instance admitting a (possibly empty) set of solutions. A problem instance is the input of some
computational problem, while the problem is the abstract question to be solved. Computational
complexity theory classifies computational problems according to the amount of resources used to
solve them (such as time, space or communication).

A proof system is a protocol in which an untrusted prover intends to convince a verifier with
limited resources that a given statement (namely, an instance of a computational problem) is true
by providing a supporting proof. Examples of such statements are “the boolean circuit C has an
assignment of its inputs that makes the output true”, “the boolean formula ϕ is satisfiable”, or “the
graph G admits a 3-coloring”.

For instance, the NP class captures the set of theorems whose validity can be verified with full
confidence in polynomial-time once a proof is provided (such a proof is often called a certificate
or a witness). Closely related to the conjecture P ‰ NP, it is generally thought that the solutions
of problems are more difficult to find than to verify. An NP proof system has two natural basic
requirements: any valid statement admits a valid proof that convinces a verifier, whereas there does
not exist convincing proof for incorrect statements. The former requirement is called completeness,

2

while the latter is named soundness. The NP class imposes restrictions on the time needed to verify
a proof (and no limitation on the time needed to generate it).

Interactive Proofs (IPs). Interactive proof systems [GMR85, Bab85] leverages the use of inter-
action and randomness for proving theorems. In this model, an all-powerful prover interacts over
several rounds with a polynomial-time verifier which is allowed to use randomness. The interaction
between the prover and the verifier is analogous to an “oral interview”: a verifier gains trust about
the honesty of the prover if the latter is able to provide convincing answers to randomly chosen
questions. Compared to the class NP, the soundness requirement of an interactive proof system is
relaxed to allow a probabilistic verifier to reject instances that are not in the language with high
probability. The fundamental result IP = PSPACE [LFKN90, Sha92] indicates that the use of in-
teraction and randomness enable to efficiently verify solutions of larger class of problems, compared
to the NP class. It is indeed commonly believed that coNP ‰ NP, and thus NP Ĺ PSPACE since
coNP Ď PSPACE.

When the verifier is allowed to send any kind of message and, in particular, may use private
randomness, then the interactive proof system is private-coin. On the contrary, if the verifier’s coin
tosses are also known to the prover, the interactive proof system is said to be public-coin (or Arthur-
Merlin type [Bab85]). Goldwasser and Sipser [GS86] showed that all languages with private-coin
interactive proofs also have public-coin counterpart. The benefit of public-coin interactive protocols
is that they can often be compiled into non-interactive proofs in the random oracle model, by using
the Fiat-Shamir transformation [FS86].

Zero-knowledge proofs (ZKPs). Going back to the influential work of [GMR85], interactive proof
systems were initially formalized with the motivation of introducing the puzzling possibility of prov-
ing a theorem without communicating any knowledge. Goldwasser, Micali, and Rackoff showed the
existence of zero-knowledge proofs, which are proofs that do not reveal any information except the
veracity of the prover’s claim. A bit more formally, an interactive proof system is zero-knowledge if
there exists an efficient probabilistic algorithm which, given as input the statement to be proved,
outputs a transcript (of a simulated interaction) which is indistinguishable from the one produced
by an actual interaction with a prover who knows the secret information.

Proof of knowledge. The soundness property can be strengthened by the concept of knowledge
soundness, which yields to a proof of knowledge. Roughly speaking, a proof is a proof of knowledge
if, for any prover that convinces a verifier that there exists a satisfying witness w for an instance x, it
can be deduced than the prover actually knows such a witness. Specifically, a proof system (P , V)

for an NP relationR is a proof of knowledge with knowledge error ε, if there exists a polynomial-time
algorithm E , called extractor, such that for every w and every prover ĂP:

Pr
[
(x,w) P R | wÐ E ĂP(x)

]
ě Pr[xĂP , V y(x) = 1]´ ε,

where the notation E ĂP means that E gets black-box access to the algorithm ĂP with the ability to
rewind ĂP , and xĂP , V y represents the output of V after interacting with ĂP .

Probabilistically Checkable Proofs (PCPs). For some statement x and some proof π, we now
consider a verifier which is bounded in the number r of coins tosses and the number of inspected bits

3

q of the proof π. Roughly speaking, a probabilistically checkable proof (PCP) is a special encoding of
a nondeterministic witness w, which is robust in the sense that if there is even a very small fraction
of error in the witness w, then errors will be spread throughout the proof π. Therefore, “proofs”
of false statements that are encoded in this special format are guaranteed to have so many errors
that it is possible to randomly read only a tiny portion of the proof π to assess its validity. Notice
that, while error-correcting codes are widely known for their use in error detection and correction in
data transmission over noisy communication channels, they can also encode computations in order
to enable efficient program checking. The celebrated PCP theorem [AS92, ALM+98] gives another
characterization of the NP class by saying that NP = PCP[log n, 1], i.e. all languages in NP can
be decided with polynomial-size probabilistically checkable proofs, where the verifier tosses at most
a logarithmic number of coins and queries a constant number of bits of the proof. The value of this
constant is essentialy determined by the error probability the verifier is willing to tolerate. Since the
verifier does not read the proof π in its entirety, such a proof π is called an oracle proof, and the
verifier is said to have oracle access (i.e. query access) to it.

Succinct non-interactive arguments from PCPs. When the soundness of the proof system is only
required to hold against computationally bounded (e.g. polynomial-time) prover, one gets compu-
tational soundness. Such a relaxation of soundness yields to argument systems [BCC88], instead of
proof systems. In 1992, Kilian [Kil92] constructed a four-message interactive argument system for
NP, based on collision-resistant hash functions and PCPs. The idea is to first require the prover
to succinctly commit to a probabilistically checkable proof, and then to have the verifier requesting
a partial opening of the commitment, at some randomly chosen location. The commitment needs
to be short (whereas a probabilistically checkable proof is typically larger than the witness size),
computationally binding (otherwise the prover could adaptively craft his answers to the verifier’s
queries), and must support local openings (again with low communication complexity). Based on
collision-resistant hash functions, such a commitment can be implemented with Merkle trees. The
commitment string is thus the root of the Merkle tree associated to the PCP, and a local opening of
the commitment consists in providing a Merkle path, which has size logarithmic in the committed
PCP length. Kilian’s compiler enables succinct interactive argument for NP, in the sense that the
communication complexity is polylogarithmic in the witness size. Specifically, the communication
complexity and the verifier’s running time of Kilian’s protocol are bounded by poly(κ, |x|, log T),
where κ is a security parameter, x is an instance of a NP language and T the time needed for the
standard NP verification of a witness. Recently, [CMSZ21] showed that Kilian’s protocol is post-
quantum secure in the standard model, and thus yields to post-quantum succinct argument from
any falsifiable assumption.

By combining Kilian’s compiler with the Fiat-Shamir transformation [FS86], Micali [Mic95]
showed how to construct succinct non-interactive arguments for NP in the random oracle model.
Micali named such non-interactive arguments “Computationally sound proofs” but nowadays, the
acronym SNARG (for “succinct non-interactive argument” [GW11]) is commonly used instead. The
idea is to let the prover define the verifier’s random challenges as the output of a cryptographic hash
function applied to the instance and the commitment of the prover’s message, considering that such
functions are good enough approximation of random functions. Subsequent works showed that the
transformation preserves both zero-knowledge and knowledge soundness [IMS12, MX13, Val08].

4

Nevertheless, the performance of PCP-based succinct arguments is constrained by the tremendous
amount of computation needed to generate the PCP. Indeed, the complexity of the proof generation
algorithm of known PCP constructions remains a massive bottleneck for practical implementations.

In parallel to PCP-based argument systems, the inefficiency of PCPs motivated the development
of quite different techniques based on pairing-based cryptography in order to achieve concretely ef-
ficient SNARGs (both very short and very cheap to verify) [IKO07, Gro10, GGPR13, Lip13, BCI+13,
PHGR13, BCG+13, Gro16] and deployed systems [Zca]. However, such constructions require a
trusted setup, meaning that the initial parameters of the argument systems must be generated in
a trusted way, since they contain secret randomness whose revelation would allow to forge convinc-
ing proofs of false statements. For real-world deployments, the realization of such a trusted setup
implies a costly and logistically challenging “multiparty computation ceremony” [BCG+15].

The Interactive Oracle Proof model: a model designed for efficiency. Onemotivation for design-
ing probabilistic proof systems with low communication complexity, fast generation and sublinear
verification is the application to verifiable computation. Since the seminal works of Kilian [Kil92]
and Micali [Mic95], a lot of efforts have been put into making PCPs efficient enough to obtain practi-
cal sublinear non-interactive arguments for delegating computation. In search of reducing the work
required to generate such proofs, as well as the communication complexity of succinct arguments
based on them, [BCS16, RRR16] introduced interactive oracle proof systems (IOPs), which general-
ize both PCPs, IPs and interactive PCPs [KR08]. An IOP can be viewed as a multi-round PCP where,
in each round, the verifier sends some message and the prover answers with an oracle proof.

Extending the work of [Kil92, Mic00, Val08] and the Fiat-Shamir paradigm, Ben-Sasson, Chiesa
and Spooner showed how to compile a public-coin interactive oracle proof of knowledge into a
succinct non-interactive argument of knowledge (so-called SNARK) in the random oracle model
[BCS16]. Chiesa, Manohar and Spooner showed that a SNARK constructed from an IOP with round-
by-round soundness are unconditionally secure in the quantum random oracle model [CMS19].

Since the introduction of the IOP model, numerous works developed IOP constructions with effi-
ciency parameters that outperform the best known PCP constructions [BCG+17, BBHR18a, BBHR19,
KPV19, BCR+19, BCG+19, RR20, BCG20, BCL20, ZXZS20, RR21]. For instance, [BCG+17] con-
structed a linear-size constant-query IOP for circuit satisfiability, while it remains a fundamental
open problem to build PCP for this problem with proof length linear in the witness size and con-
stant query. The benefits of IOP-based SNARKs in comparison with SNARKs relying on the discrete-
logarithm problem or pairing-based cryptography are three-fold: they can have a transparent setup
(i.e. only public randomness is used), avoid cryptographic assumptions that are known to be broken
by quantum attacks, and they can operate over fields that have smaller size and faster arithmetic
(elliptic curve cryptography typically require 256-bit size field for 128 bits of security).

From a practical perspective, the IOP model enables the design of proof systems that are efficient
enough to be deployed in the real world for concrete applications [BBHR19, Sta21a]. Yet, the prover
running time remains a major bottleneck in IOP-based succinct arguments. A recent line of works
focuses on constructing IOPs with linear-time prover [BCG20, BCL20, GLS+21, RR21]. Designing
practical and specific tools for those constructions in order to replace some generic components that
are theoretical in nature (such as the Mie’s PCP of Proximity for nondeterministic language [Mie09])
would probably enable to construct concretely efficient SNARKs from IOPs with linear prover running
time.

5

Arithmetization: from computational problems to low-degree testing

Most PCP and IOP constructions share the same design principles. Roughly speaking, the prover
provides an encoding of the computation, using some error-correcting code. Such a code is chosen so
that there exists a proximity test for it, namely a way for a verifier to check that an alleged codeword
indeed belongs to the code (this can be done by using locally testable codes, or by asking the prover
to provide an auxiliary proof of proximity). Additionally, the PCP or IOP allows some probabilistic
verification of the fact that the computation encoded by the prover is a correct computation.

In the context of proof systems, the generic term of arithmetization [LFKN90] refers to a class
of algebraic techniques that enable to reduce a computational problem to an algebraic one. Such
an algebraic problem typically involves a system of polynomial equations where polynomials are
defined over some finite field, and have degree significantly smaller than the field size (so-called
low-degree polynomials). In other words, an instance-witness pair (x,w) belongs to a given binary
relation R if and only if certain polynomial identities hold. The validity of such identities are then
probabilistically verified using various techniques, for instance by checking that a certain polynomial
vanishes on a given subset, or testing whether the sum of its evaluations on a given domain is equal to
zero. The latter problem is solved by the renowned (multivariate) “sumcheck protocol” of [LFKN90],
or a univariate variant of it [BCR+19].

Arithmetization techniques for constructing proof systems emerged from the study of interac-
tive proofs [Bab85, GMR85] and have been enhanced and fruitfully applied to other broad fami-
lies of proof systems, including multi-prover interactive proofs [BGKW88, BFL90], probabilistically
checkable proofs [BFLS91, AS92, ALM+98], interactive oracle proofs [RRR16, BCS16] and zero-
knowledge proof systems [GMR85]. Arithmetization techniques generally involve algebraic linear
codes (but not always [BCG20, BCL20]), such as polynomial codes (for instance Reed-Solomon codes
and Reed-Muller codes) or generalization of them (the so-called algebraic geometry codes).

Many constructions of PCPs, including the ones used to prove the PCP theorem [AS92, ALM+98],
rely on multivariate polynomials, and thus implies the following problem known asmultivariate low-
degree testing. Given a proximity parameter δ P (0, 1), a degree bound d (typically much smaller
than q) and oracle access to a function f : Fm

q Ñ Fq, determine with a few queries whether f is
a polynomial function of degree less than d, or δ-far in relative Hamming distance from being low-
degree. Such low-degree tests correspond to proximity tests for codes corresponding to evaluations of
multivariate polynomials of bounded degree. Low-degree tests have been the subject of a substantial
body of research during the past four decades, which was initially motivated by their relations with
constructions of probabilistic proof systems.

More generally, at the end of arithmetization, an instance x of a computational problem (such
as circuit satisfiability) is mapped to one or several algebraic codes C1, C2, . . . , Cn, together with a
set of constraints that are to be satisfied. Loosely speaking, arithmetization ensures that there exists
a witness w that satisfies the instance x if and only if there exit some codewords of C1, C2, . . . , Cn

that satisfy the set of constraints. In particular, if x is not a satifiable instance, then any sequence
of words w1, w2, . . . , wn such that wi is sufficiently close to Ci for i P t1, 2, . . . , nu will fail to satisfy
the prescribed constraints. Therefore, the verification procedure typically consists in testing whether
words sent by the prover are in close proximity to the given algebraic linear codes, and to randomly
check that they satisfy the prescribed constraints.

As a result, the proximity problem for algebraic linear codes plays a central role in constructions
of PCP (and IOP) systems. For an error-correcting code C, such a problem can be roughly formulated

6

as follows: “Given a code C Ă ΣD and oracle access to a function f : D Ñ Σ, the goal is to determine
whether f P C and f is far from any codeword of C.”

Reed-Solomon proximity testing. In [BBHR18a], the authors mentioned that a significant bottle-
neck of PCP-based proof systems regarding proof generation and communication complexity stems
from the inefficiency of the solutions to the multivariate low-degree testing problem. Ben-Sasson
and Sudan [BS08] considered for the first time univariate polynomials instead of multivariate ones,
which leads to the breakthrough result of PCP construction with quasilinear proof length and con-
stant query complexity [BS08, Din07]. This result gives the constant-query PCP of shortest length
known to date. More recently, efficient transparent and zero-knowledge non-interactive arguments
have been designed from interactive variants of PCPs, by successfully relying on Reed-Solomon (RS)
codes [AHIV17, BBHR19, BCR+19, BCG+19, KPV19, COS20, ZXZS20]. Those succinct arguments
crucially require an efficient proximity test for Reed-Solomon codes.

Building upon [PS94, BS08], Ben-Sasson, Bentov, Horesh and Riabzev [BBHR18a] constructed
a prover-efficient IOP of Proximity (IOPP) for testing proximity to Reed-Solomon codes evaluated
over well-chosen evaluation points and named it FRI protocol (this IOPP was further improved in
[BKS18, BGKS20, BCI+20]). The FRI protocol admits linear prover time, logarithmic verifier time
and logarithmic query complexity. This protocol is sub-optimal for some parameters but highly-
efficient in practice, which makes it a crucial component of systems deployed in the real-world
[BBHR19, Sta, Sta21b]. Indeed, short IOPPs with constant-query for Reed-Solomon codes do ex-
ist [BCG+17, RR20], but such proximity tests are theoretical in nature.

At the cost of a larger query complexity (i.e. logarithmic), the FRI protocol is ingeniously simple
to implement. The tasks of the prover and the verifier consist only in computing univariate poly-
nomial interpolations of small degree (e.g. 2 or 4) and performing cryptographic hashing. On the
downside, known proximity tests for Reed-Solomon codes require the field to be larger than the
block length of the code, and to admit additive or multiplicative subgroups of large smooth order1

[BS08, BBHR18a].

Main contributions

In this thesis, we study the problem of testing proximity to several families of error-correcting codes.
We give practical and concretely efficient solutions to solve a proximity testing problem for a code
C, i.e. distinguishing between the case where an input word, given as an oracle, belongs to C and
the one where it is far from every codeword of C.

We propose solutions to this problem in the Interactive Oracle Proof model [BCS16], which has
demonstrated to be particularly promising for the design of proof systems in the past few years. Our
constructions are based on the FRI protocol for Reed-Solomon proximity testing [BBHR18a]. Inspired
from [BBHR18a], we formulate and analyze an abstract framework for constructing efficient IOPs of
Proximity for linear codes. This approach allows us to provide efficient protocols for linear algebraic
codes that are relevant for constructing efficient proof systems: linear codes that are defined from
evaluations of bounded degree multivariate polynomials on product sets and rational functions on

1At the time of writing, authors of [BCKL21] advertise for a proximity test for Reed-Solomon codes over any finite field,
which may mitigate this issue in the future. Besides, the cited work provides an elegant FFT-like algorithm running in
time O(n log n) over any finite field, but implemented code and concrete performance are not yet provided.

7

algebraic curves. Although we do not propose any implementation for our protocols, we confidently
state that our proximity tests perform very well in practice. Their design is indeed very similar in
nature to the highly-efficient FRI protocol, and only require univariate polynomial interpolations
with very small degrees.

Proximity tests for multivariate polynomial codes

This contribution is a joint work with Daniel Augot and Jade Nardi.

Multivariate low-degree tests fall into two flavours, depending on whether one requires a bound
on the total degree or the degree in each variable. In the former case, the low-degree test can be
viewed as a proximity test for Reed-Muller codes. In the latter case, it corresponds to a proximity
test to a tensor product of Reed-Solomon codes. While multivariate low degree tests have been
extensively studied due to their role in the constructions of proof systems, they have not been the
subject of any specific construction in the interactive oracle proof model.

We develop interactive oracle proofs of proximity (IOPP) for tensor products of Reed-Solomon
codes and for Reed-Muller codes with efficiency parameters that compared well with those of the
IOPP for Reed-Solomon codes of [BBHR18a]. Counted in field operations, we construct IOPP with
linear prover running time and logarithmic verification time (with respect to the block length of the
code).

More specifically, the treatment of the total degree case requires some technical precautions,
which result in a small loss in efficiency compared to the univariate case. For the interesting regime
where the number of indeterminates m is assumed to be a small constant independent of the block
length, the efficiency loss is minor. In contrast, for tensor product of Reed-Solomon codes of block
length N, we construct an IOPP with strictly linear-size prover and proof length, and strictly log-
arithmic query and verifier complexities even when m is not a constant. Most notably, the actual
constants involved in the complexities of our IOPP are the same as for the univariate case (solved by
the FRI protocol [BBHR18a]).

Proximity tests for algebraic geometry codes

This work is the result of an initial joint work with Jade Nardi, and a subsequent collaboration with
Matthieu Lhotel and Hugues Randriambololona.

An algebraic geometry (AG) code is a vector space formed by evaluations on a set of rational
points of an algebraic variety P Ă X of functions in the Riemann-Roch space LX (D).

We initiate the study of proximity testing to Algebraic Geometry (AG) codes. An AG code C =

C(X ,P , D) is a vector space associated to evaluations on P of functions in the Riemann-Roch space
LX (D). A couple of works [BKK+13, BCG+17] constructed proof systems based on tensor product
of AG codes with constant-size alphabet [GS95]. In [BKK+13, BCG+17], proximity testing is made
possible thanks to the local properties of tensor products of codes. Prior to our work, there was no
efficient proximity tests for plain AG codes.

We construct an Interactive Oracle Proof of Proximity (IOPP) for some families of AG codes by
generalizing the IOPP for Reed-Solomon codes of [BBHR18a]. We identify sufficient conditions for
designing efficient IOPP systems for AG codes.

8

Our approach relies on a neat decomposition of the Riemann-Roch space of any invariant divisor
under a group action on a curve into several explicit Riemann-Roch spaces on the quotient curve.
Along the way, we provide a framework in which a proximity test to C can be reduced to one to a
shorter code C1. Iterating this process thoroughly, we end up with a membership test to a code with
significantly smaller length.

In addition to proposing the first proximity test targeting AG codes, we achieve parameters
that also compete well with the FRI protocol. Specifically, we study AG codes on Kummer curves
and curves in the Hermitian tower. Notably, the latter families of AG codes can be defined over
polylogarithmic-size alphabet and require less algebraic constraints on the underlying finite field,
compared to Reed-Solomon codes. We specialize our generic AG-IOPP construction to these two
specific subfamilies of AG codes, reaching a linear prover running time and logarithmic verification
on Kummer curves, and quasilinear prover time with polylogarithmic verification for the Hermitian
tower.

Organization of the manuscript

Figure 1: Outline of the thesis

Chapter 1

Background material

1.1 Notations and conventions used throughout the manuscript

Finite fields. Every field considered in this manuscript is finite. We denote by F a finite field and
by Fq the finite field of size q. The algebraic closure of a finite field F is denoted by sF.

We say that L is a subgroup in F if it is either a subgroup of (F z t0u ,ˆ) or (F,+). We use the
notation Fˆq for group of invertible elements of Fq. The multiplicative subgroup generated by an
element g P Fˆq will be denoted by xgy.

Intervals. A (real) interval is denoted with square brackets when endpoints are included. A paren-
thesis replaces a square bracket when a endpoint is excluded. For two integers a, b with a ă b, we
use the notation Ja, bK for the set of integers ta, a + 1, . . . , bu. For an integer n ą 1, we use the
shorthand notation [n] to refer to J1, nK.

Tuples and sets. The indicator function of a set S is denoted by 1S. For two finite sets A, B, we
use the power set notation BA for the set of maps with domain A and range B. Given an alphabet
Σ, we denote the set of all finite strings over Σ by Σ˚, and by Σn the set of strings of length n. We
identify Σn with Σ[n], by viewing u P Σn as the evaluation tuple of the function f : t1, 2, . . . , nu Ñ Σ
such that u = (u1, . . . , un) = (f (i))iP[n].

The set of integers is denoted by Z, and the set of non-negative integers by N. Tuples are written
in bold lower-case letters. For x = (x1, . . . , xm) P Fm

q and u = (u1, . . . , um) P Nm, the notation
xu represents the product xu – xu1

1 ¨ ¨ ¨ x
um
m . The Hamming weight of a vector x P Σn is denoted by

wH(x).

Polynomials over finite fields. For indeterminates X1, . . . , Xm, we use a bold capital letter X as
a shorthand for X = (X1, . . . , Xm) when the number of indeterminates is clear from context. Ac-
cordingly, we denote by Fq[X] the ring of m-variate polynomials Fq[X1, . . . , Xm]. For a multivariate
polynomial P P Fq[X], we denote by deg P the total degree of P, and degXi

P the degree of P with
respect to the indeterminate Xi. We say that P has individual degree bounded by d if its degree in
each variable Xi is less than d.

We denote by Fq[X]ăk the set of univariate polynomials with coefficients in Fq and degree less
than k.

Evaluations of polynomials. Given a function f : D Ñ Fq evaluated over some finite domain
D Ď Fq, we will denote by a “hatted” letter the interpolant polynomial of f , i.e. pf P Fq[X] is the
polynomial of minimal degree such that for all x P D, pf (x) = f (x). Similarly, for a multivariate
function f : D1 ˆ D2 ˆ ¨ ¨ ¨ ˆ Dm Ñ F, we use an hatted letter pf to denote a polynomial pf P F[X]

10 Chapter 1. Background material

such that, for all x P D1 ˆ D2 ˆ ¨ ¨ ¨ ˆ Dm, f (x) = pf (x). For a set D Ă Fq and a polynomial
P P Fq[X] of degree deg P ă |D|, we slightly abuse notations and denote by P|D : D Ñ Fq the
restriction to domain D of the polynomial function corresponding to P P Fq[X].

Languages and relations. A languageL is a set of stringsL Ď Σ˚ over some alphabet Σ. Examples
of such alphabets are Σ = t0, 1u, or Σ = F for some finite field F. A binary relation R is a subset of
a cartesian product X ˆW , where X ,W Ď Σ˚ for some alphabet Σ. Usually, elements x P X are
called instances and elements of w P W are called witnesses. For a relation R, we assume that the
size of w is bounded by some (computable) function of the size of x. The language associated to a
binary relation R is

L(R) – tx P X | Dw, (x,w) P Ru .

For x P X , we denote by R|x the (possibly empty) set of witnesses corresponding to x, i.e.

R|x – tw PW | (x,w) P Ru .

Probabilities. For a finite set S, we denote by PrxPS[E(x)] the probability that the random event
E(x) occurs when x is sampled uniformly at random from S. The expectation of a random variable
X is denoted by E[X]. When we write x $

ÐÝ S, we mean that x is sampled uniformly at random from
S.

Distances and agreements. We denote by ∆Σ : Σn ˆ Σn Ñ [0, 1] the relative Hamming distance
over Σ, i.e. the ratio of coordinates on which they differ. The subscript will be omitted when the
alphabet Σ is clear from context.

For some δ P [0, 1] and some u, u1 P Σn, we say that u is δ-far from u1 when ∆(u, u1) ą δ.
Otherwise, we say that u is δ-close to u1. For a set S Ď Σn and u P Σn, we define ∆(u, S) as the
minimum over s P S of the distances ∆(u, s). If S is empty, we use the convention that any string is
at relative distance 1 of S. We say that u is δ-far from S if ∆(u, S) ą δ. Otherwise, we say that u is
δ-close to S.

The relative agreement between u, u1 P Σn, denoted by agree(u, u1), is equal to agree(u, u1) =
1´ ∆(u, u1). It is the ratio of coordinates on which u and u1 coincide. We can extend this notion to
any set S, by setting agree(u, S) = 1´ ∆(u, S).

Asymptotic notations. Let f , g : N Ñ R+ be two functions. We write f (n) = O(g(n)) is
there is a constant c such that, for every sufficiently large n, we have f (n) ď cg(n). We say that
f (n) = o(g(n)) if for every ε ą 0 and every sufficiently large n, f (n) ď εg(n). If g(n) = O(f (n)),
we write f (n) = Ω(g(n)). If both f (n) = O(g(n)) and f (n) = Ω(g(n)) hold, then we write
f (n) = Θ(g(n)).

The notation f (n) = Oc(g(n)) means that c is treated as a constant independent of n. We write
f (n) = rO(g(n)) if f (n) = O (g(n) logc g(n)) for some constant c ą 0.

We write f (n) = poly(n) if f (n) = nO(1), and f (n) = polylog(n) if f (n) = O(logc n) for
some constant c ą 0.

Logarithms. We denote by logb the logarithm to base b. By default, we write log without subscript
to refer to the logarithm to base 2.

1.2. Proof systems and cryptographic arguments 11

1.2 Proof systems and cryptographic arguments

For an introduction to standard notions of computational complexity theory, we refer to [AB09,
Gol08]. We also refer the reader to [Tha22] for a recent survey of constructions of proof systems
and succinct arguments.

1.2.1 Nondeterministic languages

The NP class can be related to the familiar notion of a mathematical proof. The intuition is that a
proof can be very hard to find but much easier to verify. An NP verifier is an algorithm receiving the
statement of a theorem and a purported proof. The completeness and soundness requirements come
naturally: any valid statement can be proved, whereas a false theorem does not admit a correct proof.
Originally, the NP class was defined as the set of languages that can be decided by a nondeterministic
polynomial-time Turing machine, namely a machine making a non-deterministic choice (a “guess”)
about which state to transition to. We adopt an equivalent definition, which highlights the fact that
the complexity class NP captures the set of problems whose solutions can be verified in polynomial-
time.

Definition 1.1 (NP class). A language L is in NP if there exists a polynomial-time deterministic
algorithm V such that the following conditions hold.

Completeness: For every instance x P L, there exists a witness w of poly(|x|)-size such that the
verifier V accepts, i.e. V (x,w) = 1.

Soundness: For every instance x R L and every string w̃ of poly(|x|)-size, the verifier V rejects,
i.e. V (x, w̃) = 0.

The foregoing definition can be generalized to verifier running in time O(T(n)).

Definition 1.2. A language L is in the complexity class NTIME(T(n)) if there exists a deterministic
algorithm V running in time O(T(n)) such that the following conditions hold.

Completeness: For every instance x P L of size n, there exists a witness w of size O(T(n)) such that
the verifier V accepts, i.e. V (x,w) = 1.

Soundness: For every instance x R L and every string w̃ of size O(T(n)), the verifier V rejects,
i.e. V (x, w̃) = 0.

In particular, the space complexity of the verifier cannot exceed O(T(n)). The complexity classes
NP and NEXP can be defined in terms of NTIME as follows:

NP =
ď

kPN

NTIME(nk) and NEXP =
ď

kPN

NTIME(2nk
).

Let V be an algorithm deciding a nondeterministic language L P NTIME(T(n)). Then there is
a relation RV induced by L, which is RV – t(x,w) | V (x,w) = 1u. The algorithm V is generally
assumed to be known and fixed, and we simply say that R = RV is the relation induced by L.

12 Chapter 1. Background material

1.2.2 Probabilistic oracle machines

We recall that a probabilistic (Turing) machine is an “extension” of a Turing machine, where the
machine “chooses” its next move uniformly at random among a finite set of possible states. We
always assume that a (Turing) machine outputs either “1” (for “accept”) or “0” (for “reject”).

Without loss of generality, one can view such a machine as tossing unbiased coins. The output of
a probabilistic machine M on input x is a random variable defined over the probability space of all
possible coin tosses of M (the internal randomness of M). The probability that M outputs b P t0, 1u
on input x is denoted by

Pr [M(x) = b] .

Equivalently, one can view a probabilistic machine as a deterministic machine which receives an
auxiliary random input r, in addition to its ordinary input x. In that case, the probability that M
outputs b P t0, 1u on input x and randomness r is denoted by

Pr
r
[M(x; r) = b] .

A probabilistic oracle machine is a probabilistic machine that has access to a black-box, known as
oracle. In this thesis, we consider oracle functions, namely oracles that computes a certain function:
an oracle function f : D Ñ Σ is an oracle receiving some query x P D and responds with f (x). We
recall that any string u P Σ` of length ` P N can be viewed as a function u : [`]Ñ Σ.

Let V be a probabilistic oracle machine. We denote by V f (x) the output of V on input x and
with oracle access to an oracle function f . The probability that V outputs b P t0, 1u is denoted by

Pr
[
V f (x) = b

]
,

where the probability is taken over the internal randomness of V . If the queries of a probabilistic
oracle machine V are only determined by its explicit input and its internal randomness, we say that
V is non-adaptive. In particular, queries are independent of the previous oracle answers.

1.2.3 Probabilistically checkable proofs

We recall the definition of a probabilistically checkable proof system (PCP) [BFLS91, AS92, ALM+98]
for a language L.

Definition 1.3 (Probabilistically Checkable Proof (PCP)). Let L Ď Σ˚ be a language and q, r : N Ñ

N. A probabilistically checkable proof system (PCP) for L consists of a probabilistic (non-adaptive)
polynomial-time oracle machine V (called PCP verifier) satisfying:

Efficiency: On input x P Σn and given oracle access to a proof string π of length at most 2k(n)q(n), V
uses at most k(n) random coins and makes at most q(n) non-adaptive queries to π.

Perfect completeness: For every x P L, there exists a proof π such that V accepts with probability 1
over its internal randomness, i.e.

Pr [V π(x) = 1] = 1.

Soundness: For every x R L and every proof rπ, V accepts with probability bounded by 1
2 over its

internal randomness, i.e.
Pr
[
V rπ(x) = 1

]
ď

1
2

.

1.2. Proof systems and cryptographic arguments 13

A language L is in the complexity class PCP [r(n), q(n)] if there is a PCP verifier V for L that uses
O(r(n)) random coins and makes O(q(n)) queries.

In contrast to an NP verifier, a PCP verifier is allowed to use randomness, but is restricted to exam-
ine a small portion of the purported proof. Compared to Definition 1.1, the soundness requirement is
relaxed, in the sense that the verifier is only expected to reject instances that are not in the language
with some probability. Loosely speaking, a probabilistic checkable proof π for an instance x P L is
a robust encoding of a nondeterministic witness w for x that allows a PCP verifier to randomly read
a small fraction of symbols of π, and decide with high probability whether the proof is valid or not.
Such probabilistically checkable proof π is at least as long as a witness w, but is not explicitly given
as input to the PCP verifier.

Notice that we have
PCP[r(n), q(n)] Ď NTIME(2O(r(n))q(n)),

since any nondeterministic machine can guess a correct proof in time 2O(r(n))q(n) and determin-
istically verify it by running a PCP verifier for all 2O(r(n)) possible choices of random coin tosses.
Therefore,

PCP(log n, 1) Ď NTIME(2O(log n)) = NP.

The celebrated PCP theorem states that the reverse inclusion also holds.

Theorem 1.4 ([AS92, ALM+98]). NP = PCP[log n, 1].

A PCP can be strengthened with the notion of proximity. A PCP of Proximity (also known as
assignment tester) [DR04, BGH+04] for a binary relation R consists in probabilistic verifier having
oracle access to both a purported witness w for some instance x, and an oracle proof π.

Definition 1.5 (PCP of Proximity (PCPP)). A PCP of Proximity for a binary relation R with proxim-
ity parameter δ : N Ñ [0, 1] and soundness error ε : N Ñ [0, 1] is a probabilistic (non-adaptive)
polynomial-time machine V satisfying the following two conditions (where probabilities are taken over
the internal randomness of V).

Completeness: For every (x,w) P R, there exists an oracle proof π P Σ˚ such that V always accepts
when given as input x and oracle access to (w, π), i.e.

Pr [V w,π(x) = 1] = 1.

Soundness: For every pair (x,w) such that ∆(w,R|x) ą δ(n) and every proof rπ P Σ˚, the verifier V

accepts when given as input x and oracle access to (w, rπ) with probability at most ε(n), i.e.

Pr
[
V w,rπ(x) = 1

]
ď ε(n).

1.2.4 Interactive oracle proofs

Interactive oracle proof systems (IOPs) [BCS16, RRR16] are information-theoretic proof systems gen-
eralizing interactive proof systems (IPs) [GMR85], probabilistically checkable proof systems (PCPs)
[BFLS91, AS92, ALM+98] and interactive probabilistically checkable proof systems (IPCPs) [KR08].

14 Chapter 1. Background material

Definition 1.6 (Interactive Oracle Proof (IOP)). Let P and V be two probabilistic algorithms where
P has unbounded running time and V is a probabilistic (non-adaptive) polynomial time machine. We
say that (P , V) is a r-round (public-coin) interactive oracle proof system (IOP) for a binary relation
R with soundness error ε : N Ñ [0, 1] if the following properties are satisfied (where probabilities are
taken over the internal randomness of V).

Interaction phase: The prover P and the verifier V receive as input an instance x, and the prover is
additionally given some string w. The prover P and V interact over r round as follows. At each
round, the verifier sends a message mi chosen uniformly at random, and the prover answers with
an oracle message πi to the verifier.

Query phase: At the end of the interaction, the verifier queries the oracle π1, . . . , πr sent by the prover.
Query locations are generated using public randomness. The verifier outputs either “1” for “accept”
or “0” for “reject”. We denote by xP , V y the random variable representing the decision of the
verifier after interacting with a prover P .

Perfect completeness: If (x,w) P R, then Pr [xP(x,w), V (x)y = 1] = 1.

Soundness: If x R L(R), then for any unbounded malicious prover ĂP , Pr
[
xĂP , V (x)y = 1

]
ď ε(n),

where n denotes the size of x.

Efficiency measures. Beyond soundness error, we are interested in the following efficiency mea-
sures:

– the alphabet a(n) of the IOP, i.e. the alphabet of the prover’s messages;
– the round complexity r(n), namely the number of rounds of interaction;
– the proof length l(n), which is the sum of the sizes of the messages sent by the prover, counted
in number of symbols of the alphabet ;

– the query complexity q(n), namely the total number of queries made by the verifier to the
prover’s messages;

– the prover complexity tp(n), which is the time spent by the prover P to generate all its mes-
sages;

– the verifier complexity tv(n), which is the running time of the verifier to output a decision,
when queries and query-answers are given as inputs.

The IOP alphabet will often be a finite field F. In that case, and unless specified otherwise, we
state complexities counted in field operations, assuming that each field operation has a constant cost.

On the isolation of interactive and query phases. As mentioned in [BCR+19], the verifier V of
a public-coin IOP system (P , V) can be thought as a couple of algorithms (Vi, Vq) where:

– Vi outputs messages m1, . . . , mr sampled uniformly at random (during the interaction phase);
– Vq is a probabilistic oracle machine which outputs the decision of V (during the query phase).

Each of the algorithm Vi and Vq receives as auxiliary input the necessary randomness. Then the
verifier V accepts with soundness error ε ď ε i + εq, where ε i and εq satisfy

Pr
ri

[
Pr
rq

[
V π1,...,πr

q (x, m1, . . . , mr; rq) = 1 ě εq

]ˇˇ
ˇ

ˇ

ˇ

(m1, . . . , mr)Ð Vi(x; ri)

(π1, . . . , πr)Ð ĂP(m1, . . . , mr)

]
ď ε i.

1.2. Proof systems and cryptographic arguments 15

for all x R L(R) and malicious prover ĂP . By repeating α times the (non-interactive) query phase of
an IOP system (P , V)with fresh randomness, one can get an IOPwith soundness error ε i + εα

q, query
complexity αq and verifier complexity αtv. Proof length, round complexity and prover complexity
are unchanged.

Remark 1.7. A PCP can be seen as an 1-round IOP where the verifier sends an empty message and the
prover answers with a probabilistically checkable proof π. Since it is not per se a round of interaction,
we may also view a PCP as a “half-round IOP”. An r-round interactive proof (IP) can also be seen a
r-round IOP, where the verifier queries each location of the prover’s messages.

1.2.5 Interactive oracle proofs of proximity

The notion of IOP of Proximity is the natural extension of the one of PCP of Proximity.

Definition 1.8 (IOP of Proximity (IOPP)). An r-round IOP of Proximity (IOPP) system for a binary
relation R with soundness error ε : N Ñ [0, 1] and proximity parameter δ : N Ñ [0, 1] is a pair of
probabilistic algorithms (P , V) such that:

Completeness For every (x,w) P R, (P(x,w), V w(x)) is a r-round IOP with accepting probability 1.

Soundness For every (x,w) such that ∆(w,R|x) ą δ(n) and every unbounded prover ĂP , (ĂP , V w(x))

is a r-round IOP with accepting probability at most ε(n), where n denotes the size of x.

Compared to an IOP system (Definition 1.6), efficiency measures are defined similarly, except that
queries to both the prover’s messages and to the oracle w are taken into account.

IOP of Proximity for error-correcting codes. An IOP of Proximity for a family of codes C is an
IOPP for a relation R which consists of pairs (x,w) where x is the description of a code C in C, and
w is a purported codeword of C. In particular, both the prover and the verifier receive as input the
description of a code C (viewed as a subset of functions with some domain D and range Σ), and the
prover tries to convince the verifier that some function f : D Ñ Σ, given as an oracle to the verifier,
is a codeword of C.

Proximity oblivious IOPPs. Note that Definition 1.8 requires that the verifier rejects any witness
w that is δ-far fromR|x with probability at least 1´ ε. In particular, the verifier V implicitly receives
the proximity parameter as auxiliary input, and its behavior is adapted accordingly (e.g. the query
complexity may depend on δ). In most cases, an IOPP protocol can be decomposed into a basic
protocol that does not use the proximity parameter, but is repeated several times1. As such, the
proximity parameter only determines the number of times the basic test is repeated. Therefore, we
also define “proximity oblivious” IOP of Proximity, where the proximity parameter is not given as
input, but the soundness error is a function of the distance of w from R|x.

1Such a phenomenon more generally applies to property testers, namely sublinear-time probabilistic algorithms for
deciding whether a given object (such as a graph) presents a given property or is far from the set of objects that have this
property. In order to initiate a systematic study of property testers that can be decomposed into basic tests, Goldreich and
Ron introduced the term proximity oblivious testers [GR11]. More details can be found in [Gol17, Section 1.3.3].

16 Chapter 1. Background material

Definition 1.9 (IOPP, alternative definition). An r-round IOP of Proximity (IOPP) system for a binary
relation R with soundness error ε : Nˆ [0, 1] Ñ [0, 1] is a pair of probabilistic algorithms (P , V)

such that:

Completeness For every (x,w) P R, (P(x,w), V w(x)) is a r-round IOP with accepting probability 1.

Soundness For every (x,w) such that δ – ∆(w,R|x) ą 0 and every unbounded prover ĂP , (ĂP , V w(x))

is a r-round IOP with accepting probability at most ε(n, δ), where n denotes the size of x.

1.2.6 Succinct non-interactive arguments from IOPs

From information-theoretic proof systems to cryptographic arguments. Probabilistically check-
able proofs and interactive oracle proofs are information-theoretic proof systems, in the sense that
no assumption is made on the computational resources of an adversarial prover. However, there
are still assumptions that are made on the prover. For instance, for PCPs and IOPs, it is assumed
that once a prover gives oracle access to some message to the verifier, the future answers to the
verifier’s queries are entirely determined and indeed correspond to the information that, in a way,
the prover has committed to. This idealized behavior of the IOP prover is enforced in practice using
some cryptographic primitives, in particular cryptographic commitments. By using cryptography,
soundness holds against computationally bounded prover, which gives a so-called argument system.
Informally, an argument system for a non-deterministic language L is succinct if its communication
complexity is polylogarithmic in the sizes of the instance and the witness. By relying on PCP theorem
[AS92, ALM+98], Kilian and Micali [Kil92, Mic95] showed the existence of non-interactive succinct
arguments for NP in the random oracle model.

The BCS transformation. Ben-Sasson, Chiesa and Spooner [BCS16] showed that a public-coin
IOP (P , V) can be transformed into a non-interactive argument, with unconditional security in
the random oracle model. The BCS transformation [BCS16] is a generalization of the Fiat-Shamir
paradigm [FS86] and of the constructions of Kilian [Kil92], Micali [Mic00] and Valiant [Val08].
We merely sketch the BCS transformation, and refers the reader to [BCS16] for details and formal
proofs.

The BCS transformation can be thought in terms of two distinct components. The first step is to
compile a public-coin IOP system into an interactive argument. Each oracle sent by the prover P is
realized with a cryptographic commitment scheme that allows partial openings. Such commitments
schemes are based on hash trees (also known as Merkle trees) and collision-resistant hash functions.
This way, an interactive argument (P 1, V 1) can be derived from an interactive oracle proof system
as follows:

– Whenever the prover P sends an oracle message πi to the verifier V , the prover P 1 sends
a commitment ci (a hash digest representing the root of the Merkle tree) of the message πi
instead.

– After all oracles have been committed, the verifier V of the IOP system queries them at ran-
domly chosen locations. When the V queries a given location j of a prover’s message πi, the
prover P 1 opens the corresponding commitment ci at the relevant location, by providing a
Merkle path asserting that the value πi(j) was indeed committed under commitment ci (a
sequence of hash digests of length logarithmic in the length of πi).

1.3. Error-correcting codes 17

The second component consists in removing the interaction from (P 1, V 1), in the spirit of the
Fiat-Shamir paradigm [FS86] for interactive proof systems. The random messages of the verifier V 1

are simulated by the prover P 1 on its own: at each round, a random oracle is called on the partial
transcript of the protocol generated up to this round, and the output of the random oracle replaces
the corresponding verifier’s random message.

Remark 1.10. We recall that random oracles are used in formal security proofs requiring strong ran-
domness assumptions on the output of the hash function as idealized replacements for cryptographic
hash functions. While actual cryptographic hash functions are not random functions, random oracles
are indeed instantiated by cryptographic hash functions in practice. Gentry and Wichs demonstrated in
[GW11] that the security of succinct non-interactive arguments cannot be proved under standard simple
cryptographic assumptions (so-called falsifiable assumptions) via black-box reductions.

This finally leads to a non-interactive argument in the random oracle model. Let us briefly discuss
communication complexity. Suppose that (P , V) is an IOP system with alphabet Σ, query complex-
ity q and length l (counted in field elements). Assuming that a random oracle outputs κ bits, the
size (in bits) of the succinct non-interactive argument derived from the IOP (P , V) using the BCS
transformation is

O (q log |Σ|+ κq log l) .

The transformation from [BCS16] preserves knowledge soundness, meaning that an IOP of knowl-
edge gives a non-interactive argument of knowledge in the random oracle model.

1.3 Error-correcting codes

We recall some elementary notions and notations related to error-correcting codes. More details can
be found in [MS77].

1.3.1 Basic notions of coding theory

Codes. An error-correcting code (or simply a code) C is a non-empty set of functions f : D Ñ Σ,
where D and Σ are finite sets referred to the domain and the alphabet of C, respectively. A function
f P ΣD which belongs to C is called a codeword of C. The message length of C is k – log

|Σ| |C|, its
block length (or length for short) is n – |D|, and its (minimum) distance is

d – min
f , f 1PC
f‰ f 1

ˇ

ˇ

x P D | f (x) ‰ f 1(x)
(ˇ

ˇ .

The rate ρ(C) of a code C is the proportion of non-redundant information in a codeword, namely
ρ(C) – k

n . The relative distance of C is ∆ (C) – d
n .

Remark 1.11. In coding theory, a code is often defined as a non-empty subset of Σn. The functional
representation is particularly convenient for us, since applications presented in this manuscript rely on
evaluation codes whose domain D is endowed with a specific algebraic structure.

18 Chapter 1. Background material

Linear codes. An important subclass of codes are linear codes. The alphabet of a linear code is a
finite field, say Fq. A code C Ă FD

q is linear if C is an Fq-linear subspace of FD
q (such a code is also

called a q-ary code). Given a linear code C Ă FD
q , its message length is also its dimension as an Fq-

linear space, and its minimum distance is the minimum Hamming weight of its non-zero codewords.
We say that a code C is a [n, k, d]q-code if it is a linear code over Fq with length n, dimension k and
minimum distance d.

Let C be an Fq-linear code of block length n and dimension k. A generator matrix for C is a kˆ n
matrix with coefficients in Fq whose rows form a basis of C. The dual code CK of C is the linear
space composed by all elements that are orthogonal to the codewords of C. A parity check matrix
for C is a generator matrix of its dual code CK.

Let L be a vector space over Fq consisting of functions defined over some superset of a domain
D, and taking values in Fq. An evaluation map with respect to D is an Fq-linear map

evD : LÑ FD
q

w ÞÑ w|D,

where w|D : D Ñ Fq is the restriction of the function w to the domain D. In this thesis, we will
only be interested in linear codes that are defined as the image of an injective evaluation map. Thus,
for any codeword f of a code C – evD(L), there will be a unique element of w P L such that
evD(w) = f . Such element w is called the message associated to f .

Families of codes. A family of codes is an infinite collection C = tCiuiPN where Ci is a [ni, ki, di]qi -
code with ni+1 ą ni. The rate ρ(C) and the (relative) distance ∆ (C) of an infinite family C are

ρ(C) – inf
i

ki

ni
and ∆ (C) – inf

i

di

ni
.

We say that C has constant rate and constant (relative) distance if ρ(C) ą 0 and ∆ (C) ą 0. Code
families over a fixed alphabet are family of codes where qi = q for all i and some fixed q. A fam-
ily of codes with constant rate, constant relative distance and constant alphabet size is said to be
asymptotically good.

Product codes. There are several ways of combining two linear codes to obtain a new one (see
e.g. [MS77]). One of them consists in taking the tensor product of the parity check matrices of two
linear codes, hence is known as the tensor product of two codes.

Definition 1.12 (Tensor product of codes). Given two linear codes C1 Ď F
n1
q and C2 Ď F

n2
q , the tensor

product code of C1 and C2, denoted C1 b C2, consists of matrices M whose each row belongs to C2 and
each column belongs to C1. Given an integer m ě 1 and a code C Ď Fn

q , we denote by Cbm the m-wise
tensor product of C, where Cbm is inductively defined by

Cb1 – C and Cbm – Cbm´1 b C for m ą 1.

We will sometimes simply say "product codes" as a shorthand for "tensor product of codes". Pa-
rameters of such codes are well-known (details can be found in [Mei13]). Given a [n1, k1, d1]q-code
C1 and a [n2, k2, d2]q-code C2, the code C1 b C2 is a [n1n2, k1k2, d1d2]q-code. Similarly, if C is a
[n, k, d]q-code, then Cbm is a [nm, km, dm]q-code.

1.3. Error-correcting codes 19

Polynomial codes. A concrete approach to construct linear codes is to consider evaluations of
bounded degree polynomial functions. Given a linear space of polynomials L Ă Fq[X1, . . . , Xm] and
a domain D Ă Fm

q , let us consider the code C Ă FD
q defined as the image of the evaluation map

evD : LÑ FD
q satisfying, for all P P L,

evD(P) : D Ñ Fq

x ÞÑ P(x).

We call such a code C a polynomial code. Assuming that evD is an injective map, the dimension
of the code C = evD(L) is the dimension of L as Fq-vector space. Special families of polynomial
codes are often given a name, as it the case for the well-known Reed-Solomon codes [RS60]. We
will sometime write “RS code” as a shorthand for “Reed-Solomon code”.

Definition 1.13 (Reed-Solomon code). Given L Ď Fq and k ď |L|, we denote by RS
[
Fq, L, k

]
the

Reed-Solomon (RS) code over alphabet Fq defined by

RS
[
Fq, L, k

]
–

!

f P FL
q | DP P Fq[X]ăk s.t. @x P L, f (x) = P(x)

)

.

The code RS
[
Fq, L, k

]
is a [n, k, d]q-code, where n – |L| and d = n´ k + 1. The minimum dis-

tance of a Reed-Solomon code can be obtained by recalling that a univariate polynomial of degree
less than k has at most k´ 1 roots. Thus, the RS

[
Fq, L, k

]
has rate ρ = k

|L| and relative minimum
distance λ = 1´ k´1

|L| .

Next, we define two families ofmultivariate polynomial codes. The first one consists of evaluations
of polynomial of degree bounded in each variable.

Definition 1.14 (Tensor product of Reed-Solomon code). Given L1, L2, . . . , Lm Ă Fq and positive
integers m, k1, k2, . . . , km such that ki ď |L| for all i P J1, mK, the tensor product of Reed-Solomon codes

RS
[
Fq, L1, k1

]
b RS

[
Fq, L2, k2

]
b ¨ ¨ ¨ b RS

[
Fq, Lm, km

]
is the linear space
!

f P FLm

q | DP P Fq[X], degXi
P ă ki, i P J1, mK , such that @x P L1 ˆ L2 ˆ ¨ ¨ ¨ ˆ Lm, f (x) = P(x)

)

.

In particular, a m-wise tensor product code RS
[
Fq, L, k

]bm has length |L|m, dimension km, rate(
k
|L|

)m
and relative distance

(
1´ k´1

|L|

)m
.

Reed-Muller codes consist of evaluation of multivariate polynomials with coefficients in Fq of
bounded total degree. The classical definition of (generalized) Reed-Muller codes involves evaluations
over the whole finite field. We introduce here codes whose support is Lm Ď Fm

q , where L may be
much smaller than Fq. This is an easy generalization, and we call these codes short Reed-Muller codes.

Definition 1.15 (Short Reed-Muller code). A short Reed-Muller code with support Lm Ď Fm
q is

defined as follows

SRM
[
Fq, L, m, k

]
–

!

f P FLm

q | DP P Fq[X], deg P ă k s.t. @x P Lm, f (x) = P(x)
)

.

20 Chapter 1. Background material

If k ď |L|, the evaluation map from the space of multivariate polynomials of total degree less
than k to the space of functions FLm

q is injective, thus the dimension of SRM
[
Fq, L, m, k

]
is (m+k´1

m).
A bound on the minimum distance of SRM

[
Fq, L, m, k

]
follows from Lemma 1.19, which states

that any non-zero multivariate polynomial P P Fq[X] of total degree less than q cannot vanish in
more than deg P

|L| fraction of Lm. The code SRM
[
Fq, L, m, k

]
has length |Lm|, rate (m+k´1

m) |L|´m and
relative distance at least 1´ k´1

|L| .

Remark 1.16. The setting where the support Lm Ă Fm
q with |L| !

ˇ

ˇFq
ˇ

ˇ is not commonly encountered
in coding theory. We introduce the non-standard term short Reed-Muller codes to emphasize this fact.
Notice that, strictly speaking, short Reed-Muller codes correspond to punctured codes, and not shortened
codes.

Algebraic geometry codes. A part of the present study is dedicated to algebraic geometry (AG)
codes [Gop77]. Algebraic geometry codes are a strict generalization of Reed-Solomon codes, but
can be defined over much smaller (even constant-size) alphabets. They are notorious for achieving
bounds that are better than those known from probabilistic constructions of codes [TVZ82]. Alge-
braic geometry codes correspond to evaluations of functions of a Riemann-Roch space on a suitable
set of points on an algebraic variety. A formal definition of those codes require an introduction of
several notions associated to algebraic geometry and the theory of algebraic function fields. Since
we will not deal with AG codes before Chapter 5, we defer their definition to Section 5.2.

1.3.2 Locally testable codes

Locally testable codes (LTCs) are codes admitting a sublinear algorithm for the task of testing mem-
bership of the code. Informally, a LTC has a local tester (a probabilistic oracle machine) that makes
a small number of queries to an oracle function that represents a purported codeword f of a code C,
and rejects with high probability if f is far from any codeword of C. Constructions of locally testable
codes are closely related to those of probabilistically checkable proofs (for more detail on this, we
refer the reader to [Gol17, Chapter 13]).

We give a definition of a locally testable code from [Vid15] which is tailored for linear codes.

Definition 1.17 (Locally testable codes). Let C Ă FD be a linear code, q P N and ε P (0, 1]. For a
subset Q Ă D, we denote by

C|Q =

f|Q | f P C
(

.

Let VC be a probabilistic (non-adaptive) polynomial time machine which is given oracle access to a
purported codeword f P ΣD. Suppose that VC generates a query set Q Ď D of size q and query f on
Q (the restriction of f to Q is called the local view of VC). Then, VC accepts if and only if f|Q P C|Q.
For some integer q ď |D| and ε P (0, 1], we say that VC is a (q, ε)-local tester for C if the two following
conditions are satisfied.

Completeness: For every f P C, V f
C accepts with probability 1.

Soundness: For any function f R C, V f
C accepts with probability at most 1´ ε ¨ ∆(f , D).

A q-query locally testable code (LTC) is a code C which admits a (q, ε)-local tester for some ε P (0, 1].

1.4. Some preliminary technical lemmas 21

While Definition 1.17 allows tester that are not “local” in the sense that q can be as large as the
block length n – |D|, the (q, ε)-local testers that are of interest are obviously those whose query
complexity and running time are sublinear in n.

The local testability of a code can be strengthened by the notion of robustness. Loosely speaking,
robustness means that, for any word that is far from the code, the local view of a local tester is
expected to be far from the set of accepting local views.

Definition 1.18 (Robustness). We say that a q-query locally testable code C Ă FD is α-robust for some
α P [0, 1] if, for any function f R C, we have

E
[
∆(f|Q, C|Q)

]
ě α ¨ ∆(f , C),

where the expectation is taken over the collection of subsets Q Ď D of size q.

1.4 Some preliminary technical lemmas

1.4.1 Zeroes of polynomials over finite fields

Polynomial identity lemma. The following lemma is commonly referred to as the Schwartz-Zippel
lemma. It is also known as DeMillo-Lipton-Schwartz–Zippel lemma2 [DL78, Zip79, Sch80]. A stan-
dard proof is by induction on the number of variables. Alternatively, a direct proof was given by
Moshkovitz [Mos10].

Lemma 1.19. Let Fq be a finite field, S Ă Fq, and P P Fq[X] a non-zero polynomial of (total) degree
at most d. Then

Pr
zPSm

[P(z) = 0] ď
d
|S|

.

We give two immediate consequences of Lemma 1.19.

Corollary 1.20. If P P Fq[X] has degree at most d and

Pr
zPSm

[P(z) = 0] ą
d
|S|

,

then P is the zero polynomial. Moreover, if P, Q P Fq[X] are polynomial of degree at most d and

Pr
zPSm

[P(z) = Q(z)] ą
d
|S|

,

then the polynomials P and Q are equal. Namely, two distinct polynomials of degree at most d agree on
at most d

|S| -fraction of points in Sm.

2As pointed out in [AJMR19, Section 3.1], assigning the right credits for this basic yet fundamental result is a somewhat
tricky task.

22 Chapter 1. Background material

Polynomials vanishing on cartesian products. We now give a technical lemma about multivariate
polynomials vanishing on product sets. It is a key ingredient of Alon’s combinatorial Nullstellensatz
[Alo99].

Lemma 1.21. Let P P Fq[X] be a polynomial of degree d in each variable. Let H1, . . . , Hm Ă Fq and,
for each i P J1, mK, consider Zi P Fq[X] the unique monic polynomial of degree |Hi| that vanishes on
Hi, i.e.

Zi(X) –
ź

hPHi

(X´ h).

Then, the two following statements are equivalent.

i) For all x P H1 ˆ H2 ˆ ¨ ¨ ¨ ˆ Hm, P(x) = 0;
ii) There exist m polynomials Q1, . . . , Qm P Fq[X] of individual degree at most d such that

P(X) =
m
ÿ

i=1

Qi(X)Zi(Xi).

Proof. See [BS08, Lemma 4.11].

The result also holds with tighter degree bounds on the polynomials Q1, . . . , Qm, but the stated
bounds will suffice for our purposes.

1.4.2 Distance preservation and random linear combinations

We state some preliminaries results about distance of random linear combination to linear subspaces.
These results have applications to efficient constructions of proof systems, and in particular to inter-
active proximity tests. In such a context, a prover knows a tuple of functions (u1, . . . , ul) P

(
FD)l

and claims that the functions u1, . . . , ul are all closed to a given code V Ă FD. On the other side,
the verifier can query those functions at some desired locations. Instead of running a proximity test
on each function, the verifier randomly samples r1, . . . , rl P F and the prover and the verifier run a
proximity test to check whether u –

ř

riui is itself close to the code V.

Lemma 1.22 ([RVW13, AHIV17]). Let δ P [0, 1], u1, . . . , ul P Fn
q and V Ă Fn

q be a linear subspace.
If ∆(uj, V) ą δ for some j P J1, lK, then

Pr
z1,...,zlPFq

[
∆

(
l
ÿ

i=1

ziui, V

)
ă

δ

2

]
ď

1
q

.

Proof. Assume ∆(uj, V) ą δ. For z1, . . . , zj´1, zj+1, . . . , zl P Fq, we set y –

l
ÿ

i=0
i‰j

ziui. By way of

contradiction, assume there are two distinct elements zj, z1j P Fq such that ∆(zjuj + y, V), ∆(z1juj +

y, V) ă δ/2. Then, by the triangle inequality, ∆((zj ´ z1j)uj, V) ď δ/2 + δ/2. This contradicts
the fact that ∆(uj, V) ą δ. Thus, conditioned on any choice of y, there is at most one zj such that
∆(zjuj + y, V) ă δ

2 .

1.4. Some preliminary technical lemmas 23

Lemma 1.22 holds for any values δ, but incurs a factor 2 loss in the proximity parameter δ. As
a corollary of the following result, one can prove that the same kind of statement holds with only a
small additive loss in the proximity parameter, but bounded values of δ.

Lemma 1.23 ([BGKS20, Lemma 2]). Let C Ă FD
q be a linear code of distance λ = ∆(C). Let ε, δ ą 0

such that ε ă 1/3 and δ ă 1´ (1´ λ + ε)1/3. For any functions u0, u1 P FD
q satisfying

Pr
zPFq

[∆(u0 + zu1, C) ă δ´ ε] ě
2

ε2q
, (1.1)

there exist T Ă D and v0, v1 P C, such that

– |T| ě (1´ δ) |D|,
– for each i P t0, 1u, ui|T = vi|T.

Consequently, we have ∆(u0, C), ∆(u1, C) ď δ and, for all z P Fq, ∆(u0 + zu1, v0 + zv1) ď δ.

In words, Lemma 1.23 states that if there are enough values of z such that the linear combination
u0 + zu1 of two functions u0, u1 P FD

q is close to a code C, then there exists a large subset of
coordinates T Ă D such that u0|T and u1|T are codewords of the punctured code

C|T –

f|T : T Ñ F; f P C
(

.

Corollary 1.24. Let C, ε, δ satify the assumptions of Lemma 1.23, and let u1, . . . , ul P Fn
q . If there

exists j P J1, lK such that ∆(uj, C) ą δ, then

Pr
z1,...,zlPFq

[
∆

(
l
ÿ

i=1

ziui, C

)
ă δ´ ε

]
ă

2
ε2q

.

Proof. Assume ∆(uj, V) ą δ. Fix z1, . . . , zj´1, zj+1, . . . , zl P Fq and set u –

l
ÿ

i=0
i‰j

ziui. By the contra-

positive of Lemma 1.23, we have
ˇ

ˇ

zj P Fq; ∆
(
u + zjuj, C

)
ă δ

(
ˇ

ˇ ă 2/ε2.

We deduce that
ˇ

ˇ

ˇ

ˇ

ˇ

#

(z1, . . . , zl) P Fl
q; ∆

(
l
ÿ

i=1

ziui, C

)
ă δ

+ˇ

ˇ

ˇ

ˇ

ˇ

ă
2
ε2 ql´1.

24 Chapter 1. Background material

Chapter 2

Reed-Solomon proximity testing and
application to computational integrity

Given a code RS
[
Fq, L, k

]
, the Reed-Solomon proximity problem consists in (probabilistically) dis-

tinguishing between the cases where a purported codeword f belongs to RS
[
Fq, L, k

]
and f is far

from RS
[
Fq, L, k

]
. A PCPP (resp. IOPP) for Reed-Solomon codes is a PCPP (resp. IOPP) for the

relation
RRS –

 (
(Fq, L, k), f

)
| L Ď Fq, k P N z t0u , k ă |L| , f P RS

[
Fq, L, k

](
.

(See Definition 1.5 and Definition 1.9 for definitions of PCP of Proximity and IOP of Proximity).
In the first section of this chapter, we discuss solutions to the Reed-Solomon proximity problem.

We briefly discuss existing solutions in terms of local testers and PCP of Proximity, then describe in
more details the IOP of Proximity for Reed-Solomon codes proposed by Ben-Sasson, Bentov, Horesh
and Riabzev [BBHR18a]. In the second section, we illustrate the role of the Reed-Solomon proximity
problem in verifiable computing, by providing a simplified exposition of an IOP with logarithmic
verification from [BBHR19], which relies on the IOPP for Reed-Solomon codes of [BBHR18a].

2.1 Reed-Solomon proximity testing in the IOP model

2.1.1 Some background on Reed-Solomon proximity testing

A simple and “optimal” test. Let us first discuss which query complexity can be expected when
a verifier has only oracle access to a purported codeword f of RS

[
Fq, L, k

]
, without any additional

information. Then testing proximity to the code RS
[
Fq, L, k

]
requires the verifier to read at least

k + 1 entries of f . Indeed, there is always a polynomial of degree less than k which agrees with
k values of f . The following simple test shows that k + 1 queries are not only necessary, but also
sufficient.

Construction 2.1 (Direct test).
Input: An oracle function f P FL, expected to belong to a RS code RS

[
Fq, L, k

]
.

1. Let I Ă L be an arbitrary set of k elements. Compute the polynomial P(X) of degree less than k
interpolating the set of points t(x, f (x))uxPI;

2. Sample uniformly at random α
$
ÐÝ L and query f for the value f (α);

3. Output accept if and only if P(α) = f (α).

Lemma 2.2. If f is a codeword of RS
[
Fq, L, k

]
, the test presented in Construction 2.1 always accepts.

If f is δ-far from RS
[
Fq, L, k

]
, the test accepts with probability at most 1´ δ.

26 Chapter 2. Reed-Solomon proximity testing and application to computational integrity

Proof. It is easy to see that the test always accepts when f P RS
[
Fq, L, k

]
. Now assume that

∆(f ,RS
[
Fq, L, k

]
) ą δ. Then the probability over r that P(r) ‰ f (r) is equal to ∆(P|L, f). We

conclude the proof by noticing that the distance between P|L P RS
[
Fq, L, k

]
and f is itself greater

than δ.

Remark 2.3. Note that there are some values of δ P [0, 1] for which it is not relevant to ask whether a
function f is δ-close to a given Reed-Solomon code. Indeed, it can be deduced from Lagrange interpolation
that any function f P FL

q is at distance at most 1´ ρ of a Reed-Solomon code of rate ρ. The maximum
error distance

max
!

∆(f , C) | f P FL
q

)

is called the (relative) covering radius of the code.

The test presented in Construction 2.1 is optimal in the sense that it makes as few queries as
necessary. However, recall that the interesting regime for applications to proof systems is when
k = Θ(|L|). In that case, a Θ(k)-query test is not satisfactory.

Reed-Solomon proximity testing in the PCPPmodel. In 2008, Ben-Sasson and Sudan constructed
a PCP of Proximity for Reed-Solomon codes [BS08] with polylogarithmic query complexity, based on
the bivariate low-degree test of Polishchuk and Spielman [PS94]. Several works have built on those
of [BS08], resulting in PCPPs for Reed-Solomon codes with quasilinear-size proofs and constant
query complexity [BS08, Din07], quasilinear time prover [BCGT13] and polylogarithmic verifier
[BGH+04, Mie09].

Informally, the PCPP of [BS08] uses a technique called proof composition ([AS92, BGH+04,
DR04]) to reduce a given proximity testing problem to a similar but significantly smaller problem. We
briefly describe the PCPP of Ben-Sasson and Sudan. The idea is to test whether a function f : L Ñ Fq

is close to a Reed-Solomon code of dimension k by testing whether a function g is close to a tensor
product of two Reed-Solomon codes of dimension k1 «

?
k, i.e. the space of evaluations of bivariate

polynomials of degree less than k1 in each variable. The following lemma shows how to define a
bivariate polynomial which “captures the information” of a univariate one.

Lemma 2.4 ([BS08, Proposition 6.3]). Given any pair of polynomials P(X), q(X), there exists a
unique bivariate polynomial Q(X, Y) with degX Q ă deg P and degY Q ď tdeg P/ deg qu such
that P(X) = Q(X, q(X)).

Typically, the polynomial q(X) in Lemma 2.4 is a well-chosen polynomial of degree deg q «
?

k.
Given a bivariate function g evaluated over a product set D1 ˆ D2, D1, D2 Ă Fq, a bivariate low-
degree test is (for the sake of this informal discussion) a randomized procedure testing the proximity
of g to a product code RS

[
Fq, D1, k1

]
bRS

[
Fq, D2, k2

]
, where k1, k2 «

?
k. A bivariate low-degree

test was proposed by Polishchuk and Spielman [PS94]. It consists in checking whether the restriction
of the bivariate function g to a randomly sampled row or column is itself close to the evaluation of
a univariate polynomial of degree less than k1. The soundness of the bivariate test of [PS94] relies
on the following result.

Lemma 2.5 ([PS94]). There exists a universal constant c0 ě 1 such that the following holds. Given
D1, D2 Ă Fq and integers k1 ă

|D1|
4 , k2 ă

|D2|
8 , consider

C1 – RS
[
Fq, D1, k1

]
and C2 – RS

[
Fq, D2, k2

]
.

2.1. Reed-Solomon proximity testing in the IOP model 27

For every function g : D1 ˆD2 Ñ Fq, we have

∆(g, C1 b C2) ď c0

[
∆
(

g, C1 bFD2
q

)
+ ∆

(
g, FD1

q b C2

)]
.

To summarize, a univariate low-degree test for degree k can be reduced to a bivariate low-degree
test with degree bound k1 «

?
k in each variable, and such bivariate test is itself a reduction to

a univariate low-degree test, but with degree bound k1. By recursing Θ(log log k) times (using
proof composition for PCPPs [AS92, BGH+04, DR04]), the initial proximity problem for a Reed-
Solomon code of dimension k is eventually reduced to a problem for a Reed-Solomon code of constant
dimension.

The resulting PCP of Proximity for Reed-Solomon codes [BS08] of length n has quasilinear proof
length and polylogarithmic query complexity. In the rest of the section, we will see how a verifier can
test proximity to a Reed-Solomon code RS

[
Fq, L, k

]
with O(log k) query complexity by interacting

with a prover. Thus, this is an exponential improvement over the situation where no additional
information is available to the verifier.

Remark 2.6. A limitation of [BS08] is that each reduction consisting in reducing the size of the RS
proximity testing problem causes a multiplicative factor loss to the distance parameter δ. Due to this
multiplicative loss, at most Θ(log log n) recursive reductions could be applied (this underlying the choice
of setting k1 «

?
k in the foregoing discussion). In [BCG+17], a natural IOPP version of the PCPP for

Reed-Solomon codes of [BS08, Din07] is proposed, leading to O(n)-size proofs, same soundness as
[BS08] and constant query complexity. Prover complexity is Θ(n ¨ polylog(n)) due to the aforemen-
tioned limitation on the number of recursions.

In contrast, the IOPP for Reed-Solomon code constructed in [BBHR18a] has a strictly logarith-
mic number of rounds and a strictly linear-time prover. This is partially explained from the fact that
[BBHR18a] managed to maintain the distance parameter over the rounds of interaction, in the sense
that in [BBHR18a], the distance parameter is only impacted by an additive term. In [BBHR18a, Sec-
tion 2.2], the authors explained that the multiplicative soundness loss appearing in [BS08] is avoided
by unbanlancing the degree in each variable of the bivariate polynomial obtained from Lemma 2.4, e.g.
by setting deg q = 2 instead of deg q «

?
k in the aforementioned lemma.

2.1.2 Outline of the FRI protocol

Let R be a positive integer and ρ P (0, 1) such that ρ = 2´R. The FRI protocol is an IOPP for Reed-
Solomon codes RS

[
Fq, L0, k0 = ρ |L0|

]
where L0 is a coset of a subgroup in (Fˆq ,ˆ) or (Fq,+) of

size a power of 2. The name FRI stands for “Fast Reed-Solomon IOPP” and recalls its similarity to
the Fast Fourier Transform (FFT).

The FRI protocol operates over O(log(k0)) rounds, where each round reduces the problem of
proximity to a code RS

[
Fq, L, k

]
to the one of testing proximity to a code RS

[
Fq, L1, k

2

]
evaluated

over domain of half the size, i.e. |L1| = |L|
2 . For the protocol to work, we assume that k is divisible

by 2. We give some intuition on the design of the FRI protocol for the case where Fq is a prime field
of odd characteristic.

The ideas of the FRI protocol in a nutshell. First, the FRI protocol relies on a decomposition of
univariate polynomials. Given f P FL

q , consider pf P Fq[X] its interpolant polynomial (i.e. pf (x) =

28 Chapter 2. Reed-Solomon proximity testing and application to computational integrity

f (x) for all x P L and deg pf ă |L|). There exist pg0, pg1 P Fq[Y] such that

deg pg0 ď

[

deg pf
2

_

, deg pg1 ď

[

deg pf ´ 1
2

_

and
pf (x) = pg0

(
x2)+ x ¨ pg1

(
x2) . (2.1)

This well-known decomposition into even and odd coefficients (respectively, pg0 and pg1) is also used
in the 2-radix FFT algorithm. Let us denote by g0 and g1 the evaluations of pg0(Y) and pg1(Y) on L1,
respectively.

Second, the evaluation domains are chosen to be compatible with this decomposition. Thus,
consider L a union of cosets of the subgroup t1,´1u Ă Fˆq (in particular, L is stable under negation)
and set L1 –

x2 | x P L
(

. Since k is an even integer, in the case where f P RS
[
Fq, L, k

]
, we thus

have g0, g1 P RS
[
Fq, L1, k/2

]
.

Finally, a proximity test forRS
[
Fq, L, k

]
can be reduced to a single proximity test forRS

[
Fq, L1, k/2

]
by forming a linear combination of g0 and g1. Specifically, define for any z P Fq a folding operator
Fold [¨, z] as follows:

Fold [¨, z] : FL
q Ñ FL1

q

f ÞÑ Fold [f , z] – g0 + zg1.

The value z P Fq will be randomly chosen by the verifier during the interactive phase of the IOPP. In
the completeness case, and by linearity of the code RS

[
Fq, L1, k/2

]
, the folded function Fold [f , z]

of f P RS
[
Fq, L, k

]
with respect to z is a codeword Fold [f , z] P RS

[
Fq, L1, k/2

]
.

The key properties of the folding operators. Taking a random linear combination of g0 and g1

not only enables to reduce a low-degree test to a single low-degree test with smaller degree bound,
but also ensures that the relative distance of Fold [f , z] to the code RS

[
Fq, L1, k/2

]
is roughly the

same as the distance of f to RS
[
Fq, L, k

]
. To prove such a distance-preserving statement, one can

rely on Lemma 1.23.
Another crucial property of the folding operator is that, for any f P FL and y P L1, the values

g0(y) and g1(y) can be computed from two values of f . To see this, let us consider the two distinct
square roots x,´x P L of y. Then g0(y) and g1(y) can be computed by solving the system of two
independent equations

#

f (x) = g0(y) + xg1(y)

f (´x) = g0(y)´ xg1(y)
.

In summary, the folding operators are defined such that they satisfy the following three proper-
ties:

i) Completeness: For any random challenge z P Fq, the folding operator Fold [¨, z] maps code-
words of RS

[
Fq, L, k

]
onto codewords of RS

[
Fq, L1, k/2

]
.

ii) Local computability: For any function f P FL
q , z P Fq and y P L1, the evaluation of Fold [f , z]

at y can be computed by making exactly 2 queries to f .

2.1. Reed-Solomon proximity testing in the IOP model 29

iii) Distance preservation: Except with small probability over z, if

∆(f ,RS
[
Fq, L, k

]
) ě δ,

then
∆
(
Fold [f , z] ,RS

[
Fq, L1, k/2

])
ě (1´ o(1))δ.

Remark 2.7. These three properties were first formulated in [BKS18] to describe the FRI protocol, but
the term “algebraic hash function” was used in place of “folding operator”. Our preference for the term
“folding operator” is motivated by the fact that the definition of the folding operator does not need to be
algebraic1. In Chapter 3, we will show that one can construct an IOPP for a linear code whenever the
code is endowed with folding operators with the three desired properties.

Reduction to a constant-size problem from recursion. The protocol then goes as follows: the
verifier sends a random challenge z P Fq and the prover answers with an oracle function f 1 : L1 Ñ
Fq, which is expected to be equal to Fold [f , z] : L1 Ñ Fq. The possibility of determining any value
of Fold [f , z] at a point y P L1 with exactly two values of f suggests a natural consistency test at each
round: the consistency between f and f 1 can be checked at a random location with only two queries
to f and one query to f 1.

At the next round, f 1 becomes the function to be “folded”, and the process is repeated for r
rounds. Each round halves the size of the proximity problem, eventually leading to a function fr

evaluated over a constant-size evaluation domain. This recursive process induces a sequence of
Reed-Solomon codes of strictly decreasing length. The code rate remains unchanged. The final test
consists in testing that fr belongs to the last RS code.

The structure of the evaluation domain of the first code RS
[
Fq, L0, k0

]
must be chosen to allow

iterated reductions over a logarithmic number of rounds. Therefore, L0 is defined as a subgroup of
Fq whose order is divisible by a large power of 2. Besides, k0 is also assumed to be a large power of
2, so that halving the degree bound at each round always gives an even integer.

We provide some technical lemmas and definitions to define folding operators for Reed-Solomon
codes, then formally describe the FRI protocol in Section 2.1.5.

2.1.3 Decomposition of univariate polynomials

Lemma 2.8 (Univariate decomposition). Let R be an integral domain, and let q P R[X] be a monic
polynomial of degree l. For every f P R[X], the following two statements hold.

1. There exists a unique sequence of polynomials (fi(X))
0ďiď

Y

deg f
l

] of degrees less than l such that

f (X) =

tdeg f /lu
ÿ

i=0

fi(X)q(X)i.

2. There exists a unique sequence of polynomials (gj(X))0ďjăl of degrees at most tdeg f /lu such
that

f (X) =
l´1
ÿ

j=0

X jgj(q(X)).

1For instance, [BCG20] proposed a proximity test based on a folding operation for tensor product of codes, where the
only assumption on the base code is its Fq-linearity. A notation similar to ours is used there.

30 Chapter 2. Reed-Solomon proximity testing and application to computational integrity

Example 2.9. When q(X) = X2, we get the decomposition of a polynomial f P Fq[X] into two
polynomials g0, g1 P Fq[X] which correspond to the even and odd coefficients of f , respectively.

Proof of Lemma 2.8. We begin with the proof of the first item. As in [BS08, Proposition 6.3], we
consider the Euclidean division of f (X) by (Y ´ q(X)) in the polynomial ring R[Y][X], i.e. with
respect to the X variable. Polynomial division by a monic polynomial over an integral domain shares
the same properties as polynomial division over a field. There exists a unique pair of polynomials
A, B P R[X][Y] such that

f (X) = (Y´ q(X))A(X, Y) + B(X, Y),

degX B ă deg q and degY B ď tdeg f /lu. Writing B(X, Y) =
řtdeg f /lu

i=0 fi(X)Yi with deg fi ă

deg q, and evaluating the above identity at Y = q(X), gives the required decomposition. Its
uniqueness follows from the one of the remainder B in the Euclidean division, as any other decom-
position

řtdeg f /lu
i=0 f 1i (X)q(X)i with the same degree bounds would induce a different remainder

řtdeg f /lu
i=0 f 1i (X)Yi ‰ B. This concludes the proof of the first item.
The second item is proved using the decomposition of the first item. For i P J0, tdeg f /luK, we

can write fi(X) –
řl´1

j=0 ai,jX j. Now, for j P J0, l ´ 1K, define gj(X) –
řtdeg f /lu

i=0 ai,jXi. We get

f (X) =

tdeg f /lu
ÿ

i=0

l´1
ÿ

j=0

ai,jX j

 q(X)i =
l´1
ÿ

j=0

X j

tdeg f /lu
ÿ

i=0

ai,jq(X)i

 =
l´1
ÿ

j=0

X jgj(q(X)).

The uniqueness of the sequence of polynomials (gj)j follows from the uniqueness of (fi)i.

2.1.4 Algebraic setting for polynomial codes

In this section, we provide common definitions and notations for two different settings allowing
proof of proximity for polynomial codes. These two settings were introduced for the PCPP for Reed-
Solomon codes [BS08], are used in the IOPP protocol of [BBHR18a] and will also play a role in our
IOPPs for multivariate polynomial codes in Chapter 4.

Case 2.1 (Multiplicative subgroups).
In this case, we assume that Fq has odd characteristic and admits a large multiplicative subgroup
L0 of order 2n. In particular, prime fields Fp such that p´ 1 is divisible by a large power of 2 are
abundant (see [BS08, Section 7.7]).

For any integer r, we define a sequence of evaluation domains (Li)0ďiďr as: Li+1 – qi(Li) where
qi(X) = X2. Let Ai Ă Li be a multiplicative subgroup of Li of order deg qi, i.e. Ai – tx | q(x) = 1u.
Then each multiplicative coset of Ai is mapped to a single element of Li+1 by the map x ÞÑ qi(x).
We have that |Li+1| =

1
2 |Li| =

1
2i |L0|.

Case 2.2 (Additive subgroups).
In this case, we assume Fq has characteristic two admitting an additive subgroup of size 2n for some
positive integer n.

For any integer r, we define a sequence of evaluation domains (Li)0ďiďr recursively as follows.
For i = 0, we consider L0 Ă Fq an additive coset of a subgroup of order 2n of (Fq,+) and A0 Ă L0

2.1. Reed-Solomon proximity testing in the IOP model 31

a coset of a F2-affine subspace of dimension 1. Then, for i P J1, rK, we define Li – qi´1(Li´1),
where qi´1(X) –

ś

aPAi´1
(X´ a) and Ai´1 Ă Li´1 is a coset of a F2-affine subspace of dimension

dim Ai´1 = 1.
Note that qi(X) is a so-called affine subspace polynomial, and in particular a linearized polynomial

(see e.g., [LN97, Chapter 3.4] for details and properties). It has the form X2 + αX + β for α, β P Fq,
and each additive coset of Ai is mapped to a single element of Li+1 by the map x ÞÑ qi(x). Moreover,
dim Li+1 = dim Li ´ dim Ai = dim Li ´ 1. As for the Case 2.2, we that |Li+1| =

1
2 |Li| =

1
2i |L0|.

Remark 2.10. In [BBHR18a], the protocol is parameterized by a so-called localization parameter η.
We focus on the case η = 1 in this manuscript. In that paper, the degree of the maps qi and the size of
the set Ai defined above are set to be equal to 2η. Moreover, instead of taking L0 of size 2n as we do, it is
assumed that |L0| = 22η . Accordingly, the size of the sets Li+1 is the one of Li divided by 2η. The main
properties of the FRI protocol in [BBHR18a, Theorem 1.3] are given for η = 2.

The construction of [BBHR18a] can be generalized to subgroup L0 of order cn (for some constant c)
by defining qi P Fq[X] of degree deg qi = c (see [BBHR18a, Remark 1.4]).

2.1.5 The FRI protocol: description and analysis

We have now provided sufficient groundwork for implementing the ideas described in Section 2.1.2.
Let k0 = 2r for some integer r, and define ki+1 = ki/2 for i P J0, r´ 1K. In the rest of the section,

we assume that we have a sequence (Li)0ďiďr defined as per Section 2.1.4, depending on whether
we are in Case 2.1 or Case 2.2.

Folding operators. We start by defining folding operators for Reed-Solomon codes and present
their properties. Fix some i P J0, r´ 1K and consider qi as defined in Section 2.1.4.

Definition 2.11. Let Li Ă Fq and qi P Fq[X] as above. Let f : Li Ñ Fq be an arbitrary function.
Denote pf the interpolating polynomial of f : Li Ñ Fq. Let g0 and g1 be the evaluations on Li+1 of the
polynomials pg0 and pg1 obtained by applying Lemma 2.8 to pf P Fq[X].

For any z P Fq, we define the folding of f as the function Fold [f , z] : Li+1 Ñ Fq such that for all
y P Li+1,

Fold [f , z] (y) = g0(y) + zg1(y).

Lemma 2.12. Using notations of Definition 2.11 and Section 2.1.4, the folding operators defined in
Definition 2.11 satisfy the following properties.

1. If f P RS
[
Fq, Li, ki

]
, then for any z P Fq, we have Fold [f , z] P RS

[
Fq, Li+1, ki+1

]
.

2. For any z P Fq, y P Li+1, the function Fold [f , z] can be evaluated at y by querying f on the roots
of the polynomial qi(X)´ y.

Proof. The first item holds by Definition 2.11. For the second item, consider y P Li+1. Denote
Sy Ă Li the set Sy – q´1

i (tyu). Since qi(X)´ y has two distinct roots, Sy has size 2. Let us consider
Pf ,y P Fq[X] the polynomial of degree less than 2 such that, for all x P Sy, Pf ,y(x) = f (x). We
have that the two polynomials Pf ,y(X) and pg0(y) + Xpg0(y) are equal in Fq[X], since they have
both degree less than 2 and agree on two distinct values. Recalling Definition 2.11 we have, for
all z P Fq, Pf ,y(z) = Fold [f , z] (y). In particular, the value Fold [f , z] (y) can be computed by
interpolating the set of points

(x, f (x)) | x P Sy
(

of size two.

32 Chapter 2. Reed-Solomon proximity testing and application to computational integrity

The folding operators defined in Definition 2.11 preserves distance to the code. In order to prove
such a property, we state a technical result from [BCI+20]. Proof of Theorem 2.13 uses tools from
algebraic geometry and the theory of algebraic function fields. It is proved by running a classical list-
decoding algorithm (the Guruswami-Sudan decoder [GS99]) on Reed-Solomon codes whose base
field is a rational function field. Note that the following result is specific to Reed-Solomon codes: in
contrast to Lemma 1.23, it does not hold for any linear code V.

Theorem 2.13 (Correlated agreement over lines [BCI+20]). Let V – RS
[
Fq, L, k

]
be a RS code of

rate ρ. Let u0, u1 : L Ñ Fq. Let δ, ε ą 0 satisfy ε ď
?

ρ
20 and δ ď γ(ε, ρ) – 1´

?
ρ´ ε, and suppose

Pr
zPFq

[∆ (u0 + zu1, V) ď δ] ą
k2

(2ε)7q
.

Then u0, u1 are simultaneously δ-close to V, i.e. Dv0, v1 P V and T P L such that:

– |T| ě (1´ δ) |L|,
– u0|T = v0|T,
– u1|T = v1|T.

From Theorem 2.13, we can prove the following proposition.

Proposition 2.14. Let ρ be the rate of the code RS code RS
[
Fq, Li+1, ki+1

]
. Let ε, δ ą 0 such that

ε ă
?

ρ
20 and δ ă 1´

?
ρ´ ε. For any function f : Li Ñ Fq satisfying ∆(f ,RS

[
Fq, Li, ki

]
) ą δ, we

have

Pr
zPFq

[
∆(Fold [f , z] ,RS

[
Fq, Li+1, ki+1

]
ď δ
]
ď

ki+1
2

(2ε)7q
.

Proof. Write Fold [f , z] = u0 + zu1 and consider the set

A –

z P Fq | ∆(u0 + zu1,RS
[
Fq, Li+1, ki+1

]
) ď δ

(

.

We want to show that |A| ď ki+1
2

(2ε)7 . By way of contradiction, assume that |A| ą ki+1
2

(2ε)7 . Thus, by
Theorem 2.13, there are v0, v1 P RS

[
Fq, Li+1, ki+1

]
such that the set

T – ty P Li+1 | u0(y) = v0(y) and u1(y) = v1(y)u

has size |T| ě (1´ δ) |Li+1|. Let pv0, pv1 P Fq[X]ăki+1 be the polynomials of degree less than ki+1

associated to the codewords v0, v1, respectively. We have

deg (pv0(qi(X)) + X pv1(qi(X))) ď 2 ¨ (ki+1 ´ 1) + 1

ă ki.

We deduce that the function v : Li Ñ Fq defined by v(x) = v0(qi(x)) + xv1(qi(x)) for all x P Li
is a codeword of RS

[
Fq, Li, ki

]
. For every y P T, consider x, x1 P Li the two distinct roots of the

polynomial qi(X)´ y. We have

v(x) = v0(qi(x)) + xv1(qi(x))

= u0(qi(x)) + xu1(qi(x))

= f (x),

2.1. Reed-Solomon proximity testing in the IOP model 33

and similarly, v(x1) = f (x1). Therefore

tx P Li | qi(x) P Tu Ď tx P Li | v(x) = f (x)u .

We deduce that

|tx P Li | v(x) = f (x)u| ě |tx P Li | qi(x) P Tu|

ě 2(1´ δ) |Li+1|

ě (1´ δ) |Li| .

Finally, we get that ∆(f , v) ď δ and ∆(f ,RS
[
Fq, Li, ki

]
) ď δ, which is a contradition.

Construction 2.15 (FRI protocol [BBHR18a]).
Input: A function f0 : L0 Ñ Fq (given explicitly to the prover, and as oracle input to the verifier),
expected to belong to a RS code RS

[
Fq, L0, k0

]
.

COMMITphase:
1. For i from 0 to r´ 2:

(a) Verifier V sends an element zi
$
ÐÝ Fq;

(b) Prover P gives oracle access to fi+1 : Li+1 Ñ Fq, supposedly equal to Fold [fi, zi].
2. Prover P sends a constant β P Fq.

QUERY phase:
1. Interpret fr as the constant function equal to β on Lr.
2. Repeat s times:

(a) Sample y0 P L0 uniformly at random;
(b) For i from 0 to r´ 1:

i. Define yi+1 P Li+1 as yi+1 = qi(yi);
ii. Query fi on the roots of the polynomial qi(X)´ yi+1 to compute Fold [fi, zi] (yi+1);
iii. Query fi+1(yi+1);
iv. If fi+1(yi+1) ‰ Fold [fi, zi] (yi+1), outputs reject (Round consistency check);

3. Outputs acccept

Soundnesss analysis in outline. Let us give some intuition about the soundness of the FRI pro-
tocol. Assume that f0 is δ-far from RS

[
Fq, L0, k0

]
. If a prover ĂP compute its oracle message as

prescribed by the protocol, namely by sending

fi+1 = Fold [fi, zi]

at each round i P J0, r´ 1K, then each oracle function fi+1 is also δ-far from RS
[
Fq, Li+1, ki+1

]
(with

high probability). In particular, assuming that the folding operation has preserved the distance to
the code at each round, the last function

fr = Fold [fr´1, zr´1]

is at distance at least δ from the last code RS
[
Fq, Lr, kr

]
. In this case, one can prove that the verifier

V accepts with probability at most 1´ δ.

34 Chapter 2. Reed-Solomon proximity testing and application to computational integrity

As a result, a malicious prover ĂP can be tempted to cheat at some round before the last one, by
sending a function

fi+1 ‰ Fold [fi, zi] .

Essentially, a verifier can be deceived in two ways:

– the verifier V may randomly sample a “bad” challenge, namely for some round i P J0, r´ 1K, V
picks an element zi P Fq such that the distance of the functionFold [fi, zi] toRS

[
Fq, Li+1, ki+1

]
is significantly smaller than the distance of fi to RS

[
Fq, Li, ki

]
;

– or the malicious prover ĂP sends an oracle function fi+1 ‰ Fold [fi, zi] whose distance to
RS
[
Fq, Li+1, ki+1

]
is significantly smaller than the distance of fi to RS

[
Fq, Li, ki

]
.

By Proposition 2.14 and a union bound, the probability that the event described in the first item
happens is bounded from above by

errcommit = r ¨
k2

(2ε)7q
.

Regarding the second item, the basic idea is that the more the function fi+1 sent by ĂP dif-
fers from Fold [fi, zi], the higher the probability that the round consistency check fails. Soundness
analysis consists in proving that whenever a prover tries to “correct errors” and sends an oracle func-
tion fi+1 which is closer to the code RS

[
Fq, Li+1, ki+1

]
(compared to the distance of Fold [fi, zi] to

RS
[
Fq, Li+1, ki+1

]
), this is foiled by an increased probability of failing the round consistency test.

Recall that the verifier rejects if, for some i P J0, r´ 1K, the verifier inspects a location y P Li+1 such
that

fi+1(y) ‰ Fold [fi, zi] (y).

The main and most intricate part of the soundness analysis consists in estimating the probability that
at least one round consistency test fails (assuming that the event of the first item has not occurred
during the COMMIT phase). It turns out that, assuming that no bad challenge has been sent (which
happens with probability at least 1 ´ errcommit), the probability that the verifier accepts during a
single repetition of the QUERY phase is at most errquery = 1´ δ.

The first analysis was given by [BBHR18a] and relied on [PS94, BS08]. Soundness of the FRI protocol
was further improved over several subsequent works [BKS18, BGKS20, BCI+20]. The complete
and formal soundness analysis of the FRI protocol is indeed technically involved. Since we will
provide a soundness analysis for a more generic setting in Chapter 3, we only state below the result
from [BCI+20, Section 8], which is a consequence of Theorem 2.13 (which is also a result from
[BCI+20]). Alternatively, the following theorem can be proved by replacing [BKS18, Corollary 7.3]
with Proposition 2.14 in the proof of [BKS18, Theorem 7.2].

Theorem 2.16 ([BCI+20]). Let ρ denote the rate of RS
[
Fq, L, k

]
. Let δ, ε ą 0 satisfy ε ď

?
ρ

20 and
δ ď γ(ε, ρ) – 1´

?
ρ´ ε. For any function f which is δ-far from RS

[
Fq, L, k

]
and unbounded prover

ĂP , the verifier VRS accepts after α repetitions of the QUERY phase with probability at most

errcommit + (errquery)
α,

where
errcommit =

k2

(2ε)7q
log k and errquery = (1´ δ).

2.1. Reed-Solomon proximity testing in the IOP model 35

The main properties of the FRI protocol are stated below. Constants appearing in Theorem 2.17
are different than [BBHR18a] for the reasons mentioned in Remark 2.10.

Theorem 2.17 (Properties of FRI). Assume RS
[
Fq, L, k

]
is a RS code where k is a power of 2 and L is a

coset of either a multiplicative or an additive subgroup defined as per Section 2.1.4. Construction 2.15 is
a public-coin IOPP (PRS, VRS) satisfying perfect completeness and soundness as stated in Theorem 2.16.
Moreover, the IOPP system (PRS, VRS) has the following properties:

– rounds complexity r = log k,
– proof length l ă n,
– query complexity q = 2α log k + 1,
– prover complexity tp ă 8n,
– verifier complexity tv ă 8α log k,

Proof of Theorem 2.17. The completeness follows from the fact that, if f0 is a codeword, then Defini-
tion 2.11 directly implies that every honestly computed function fi is a codeword of RS

[
Fq, Li, ki

]
.

Since ki+1 = ki/2, the dimension kr of the last RS code RS
[
Fq, Lr, kr

]
is 1. Every round consistency

test passes and fr is a constant function equal to β. Thus, the verifier always accepts.
For the rest of the proof, we adapt the one of [BBHR18a] to the presented setting. By construction,

the IOPP has r = log k rounds. Let us denote by ni the length of the code RS
[
Fq, Li, ki

]
for i P J0, rK.

The proof length is sum of the ni ’s for i P J1, rK. Since ni+1 = ni/2, the sum of the first terms of a
geometric sequence gives the claimed proof length.

During the QUERY phase, the verifier makes 2 queries to each function f0, . . . , fr´1. The verifier
also queries the element β sent during the last round of the COMMIT phase. This gives the claimed
query complexity.

Given y P q(L) and Sy – q´1(tyu), we compute the cost c of evaluating Fold [f , z] at y. Recall
that Fold [f , z] (y) can be computed by interpolating the set of points t(x, f (x)) | qi(x) = yu and
evaluating the obtained polynomial at z (see proof of Lemma 2.12).

Let us consider x, x1 the roots of the polynomial qi(X)´ y. We have

Fold [f , z] (y) = Pf ,y(z) =
1

x´ x1
(f (x)(z´ x)´ f (x1)(z´ x1)) .

Therefore, computing Fold [f , z] (y) takes at most 8 field operations.
At each round, the prover performs 8ni computations. Summing over r rounds, we get the

claimed prover complexity. During one round of the QUERY phase, the verifier evaluates Fold [f , z]
at a single point, therefore the verifier complexity for a repetition parameter α is 8αr ď 8αm log k.

How to choose the repetition parameter. Assuming that errcommit ă 1 in Theorem 2.17, repeating
the COMMIT phase enough times allows to get errcommit ă 2´κ for any security parameter κ. By
letting δ – 1´

?
ρ´ ε in Theorem 2.17, a repetition parameter α in the QUERY phase such that

α ą ´
κ

log
(?

ρ + ε
)

yields
errquery

α = (1´ δ)α ă 2´κ,

Note that the number of repetitions of the QUERY phase decreases with the code rate.

36 Chapter 2. Reed-Solomon proximity testing and application to computational integrity

Additional considerations on parameters. In practice, the size of the finite field can be chosen as
a function of a security parameter κ, typically

ˇ

ˇFq
ˇ

ˇ ą 2κ. In that case, the domain size |L| is generally
several orders of magnitude smaller than

ˇ

ˇFq
ˇ

ˇ. However, it is also possible to reach soundness error
less than 2´κ even for fields of size much smaller than 2κ, by repeating the interactive phase (the
so-called COMMIT phase) of the protocol.

The domain size |L| is a lower bound on the prover running time of the FRI protocol. Thus, the
prover runtime benefits from a larger code rate ρ. On the other hand, in order to reduce the number
of repetitions of the QUERY phase and thus reduce the total query complexity, it is desirable to lower
the code rate ρ (or, equivalently, consider Reed-Solomon codes with a higher minimum distance).
As mentioned before, reducing query complexity also reduces the size of succinct non-interactive
arguments obtained from interactive oracle proofs.

In summary, the choice of the code rate ρ gives a trade-off between prover time and size of
non-interactive arguments based on the FRI protocol.

On improving the soundness of the FRI protocol. Observe that, for the soundness error to be
non trivial in Theorem 2.16, the size of the field must be quadratic in the blocklength of the code.
Soundness analyses for field of linear size appeared in [BBHR18a, BKS18, BGKS20], but the bound
γ(ε, ρ) on the proximity parameter δ in soundness of Theorem 2.17 was strictly smaller, for any rate.
In practice, the larger is the bound on δ, the smaller can be set the repetition parameter α to reach
soundness error less than 2´κ, for some security parameter κ. Since the total query complexity is the
dominant factor in the size of non-interactive argument based on IOPs (see Section 1.2.6), lowering
the repetition parameter α is of significant importance for practical implementations.

The authors of [BBHR18a] proposed a conjecture stating that the soundness error given in Theo-
rem 2.17 holds for δ as large as« 1´ ρ, rather than« 1´

?
ρ (see [BBHR18a, BCI+20]). Assuming

γ(ε, ρ) « 1´ ρ instead of γ(ε, ρ) « 1´
?

ρ in Theorem 2.17 enables to roughly halve the number of
repetitions α of the QUERY phase when targeting soundness error less than 2´κ. Accordingly, query
complexity and verifier complexity are also divided by approximately 2.

Determining the optimal value of γ(ε, ρ) in Theorem 2.13 and the minimum number of elements
z P Fq such that such a statement holds remains an open problem with intriguing relation to coding
theory. Besides, considering its relation with the soundness error of the FRI protocol, it has also
significant consequences in the concrete efficiency of the FRI protocol in practice. We finally note
that practical implementations of the FRI protocol rely on this conjecture [BBHR19, BCR+19].

Remark 2.18. There are IOPs of Proximity with constant-query complexity (instead of logarithmic query
complexity) that also solve the Reed-Solomon proximity problem [BCG+17, RR20], but at the cost of
inefficient prover and verifier algorithms. In constrast, the prover and the verifier of the FRI protocol are
highly efficient (see Theorem 2.17), which is crucial for real-world applications and explains why the
FRI protocol is the solution that is implemented and used in practice [BBHR19, Sta].

2.2. An IOP-based SNARG using Reed-Solomon proximity testing 37

2.2 An IOP-based SNARG using Reed-Solomon proximity testing

The goal of this section is to illustrate how computational integrity statements can be reduced to RS
proximity testing.

Recall that NTIME(T(n)) is the set of languages that have membership proofs (i.e. nondeter-
ministic witness) verifiable in time O(T(n)) by a deterministic machine M (Definition 1.2). Given
a purported instance x of a language L P NTIME(T(n)), a SNARG is a o(T(n))-size proof show-
ing that there exists w such that M(x,w) = 1. Ideally, the size and verification time of a SNARG
are much smaller than the naive solution where the prover sends w and the verifier runs M(x,w).
However, note that sublinear verification (without preprocessing of the instance) is possible only if
the instance admits a succinct representation, namely much smaller than T(n).

The “Stark” construction is a SNARG introduced in [BBHR18b] which relies on Reed-Solomon
proximity testing. For a language L P NTIME(T(n)), a Stark proof with soundness error 2´κ has
size O(κ2 log2 T(n)), can be generated in time O(κ2T(n) log2 T(n)) and verified in time rO(n) +
O(κ2 log2 T(n)). The name of the construction stands for Scalable Transparent ARgument of Knowl-
edge, emphasizing that a Stark proof is a succinct non-interactive argument of knowledge, with
transparent setup, fast proving time and fast verification (hence “scalable”).

While the construction of [BBHR19] is valid for any languages in NP and NEXP, its interest is
best understood when having in mind the computational integrity languageLCI (see e.g. [BBHR18b,
Definition 3.1]), which is NEXP-complete and consists of tuples (P, x, y, T) such that the program P
on input x reaches result y in at most T computational steps. Indeed, the Stark proof system achieve
polylogarithmic verification for uniform computations represented by a sequential program P and a
time bound T, where T is typically much greater than the description of P. Note that, for instance, if
the program P represents the execution of a generic n-gate arithmetic circuit, then |P| , T = Ω(n).
Thus in that case, checking a Stark proof would be no faster than naive verification.

The Stark construction is designed for a specific NEXP-complete language which facilitates the
construction of the proof system, called Algebraic Intermediate Representation (AIR). Informally, in-
stances of the AIR language consist in a set of polynomial constraints specifying the transition func-
tion of a RAM program. An AIR instance belong to the AIR language if there exists an “execution
trace of the program” (the nondeterministic witness) that satisfies the prescribed constraints. There-
fore, a Stark prover shows that there exists a satisfying witness for a given AIR instance (a prover
actually shows that he knows such a witness, but we will not address this property in our discussion).
As for any proof system, it is assumed that the conversion from a computational integrity statement
of the form “a given program P outputs y on input x within T steps” to an equivalent instance of the
AIR language has been done beforehand.

Arithmetization reduces instances of the AIR language to instances of the Reed-Solomon prox-
imity testing problem. The FRI protocol discussed in Section 2.1.5 is used as a solution of the latter
problem, and the efficiency parameters of the Stark construction crucially rely on it.

The running time of the prover is dominated by the time of encoding Reed-Solomon codewords
over evaluation domains of size Θ(T). Therefore, the field is chosen such that RS encodings can be
performed with O(T log T) field operations, using FFT or additive FFT [LANHC16]. It is also the
setting required for the FRI protocol to work (see Section 2.1.4).

Once an IOP for the AIR language is constructed, it is compiled into a SNARG with unconditional
security in the quantum random oracle model [CMS19] using the BCS transformation [BCS16].

38 Chapter 2. Reed-Solomon proximity testing and application to computational integrity

Since the construction of SNARGs is not the main topic of this thesis, we will only present a
simplified version of the IOP protocol of [BBHR19]. A complete description of the protocol can be
found in [BBHR18b], and a variant is presented [Sta21a, Section 5.3]. Our presentation is adapted
from those two references. We start by defining the AIR language for space-bounded computations,
then we construct an IOP protocol for it.

2.2.1 Algebraic Intermediate Representation

Following terminology introduced in [BBHR18b], we are interested in computations presented in a
form called algebraic intermediate representation (AIR). We focus on computations that are abstractly
executed over a machine whose full state can be captured by a fixed number w of field elements
(a treatment of general sequential computations can be found in [BBHR18b]). The program for
which we want to verify the correct execution is assumed to be executed over an algebraic machine,
meaning a machine which naturally operates over finite field elements.

Informally, an AIR instance specifies a computation by defining a finite set C of “constraint poly-
nomials” in Fq[Y1, . . . , Yw, Y11, . . . , Y1w], as well as a set of boundary constraints B Ă J1, wKˆ J0, TKˆ
Fq. An execution trace is a (T + 1)ˆw matrix of field elements. One can think of the w columns of
this matrix as the contents of w registers p1, . . . , pw over time, while rows correspond to the succes-
sive machine states. Roughly speaking, an AIR instance will be satisfied by p1, . . . , pw P FT+1 if the
following conditions are satisfied:

i. each pair of consecutive states (y, y1) P Fw
q ˆFw

q is a valid transition, i.e. (y, y1) is a common
zero of the polynomials in C;

ii. for each boundary constraints (i, t, α) P B, where i P J1, wK is a register index, t P J0, TK a
timestamp and α P Fq, pi(t) = α.

For the sake of this presentation, we focus on the case where Fq is a prime field of size
ˇ

ˇFq
ˇ

ˇ =

Ω(T). In this setting, the range J0, TK is identified with a multiplicative subgroup H = xgy Ď Fq

such that |H| = T + 1. Accordingly, an AIR assignment will be composed of w functions in FH
q ,

instead of w vectors in FT+1. Note that H has a succinct representation, due to its algebraic struc-
ture: O(log

ˇ

ˇFq
ˇ

ˇ) bits are enough, while a generic set would be represented with O(T log
ˇ

ˇFq
ˇ

ˇ) bits.
Another crucial fact is that the vanishing polynomial of H is ZH(X) = XT+1 ´ 1. Consequently, it
can be evaluated by the verifier at any single point in O(log T) field operations using exponentiation
by squaring.

Definition 2.19 (AIR instance). An algebraic intermediate representation (AIR) instance is a tuple
xAIR = (Fq, g, w, T, dC , s, C,B) where:

– Fq is a finite field;
– w, h, d, s are integers indicating the following sizes:

– w is the number of columns in the trace,
– T is a time bound,
– d is the maximal degree of a constraint,
– s is the size of the set of constraints;

– g is a generator of multiplicative subgroup H Ă Fˆq of order T + 1 (H is called the trace domain);
– C = tQ1, . . . , Qsu is a finite set of constraint polynomials, where Qi P Fq[Y1, . . . , Yw, Y11, . . . , Y1w]
is a polynomial of total degree at most dC ,

2.2. An IOP-based SNARG using Reed-Solomon proximity testing 39

– B Ă J1, wKˆ J0, TKˆFq is a finite set of boundary constraints.

Definition 2.20 (AIR assignment). An AIR assignment is a tuple p = (p1, . . . , pw)where pi : H Ñ Fq.

Definition 2.21 (Composition polynomial). Given an AIR constraint polynomial Q P C of an AIR
instance xAIR = (Fq, g, w, T, d, s, C,B) and P = (P1, . . . , Pw) a tuple of polynomials in Fq[X], the
composition polynomial of Q and P is the univariate polynomial denoted Q ˝ P and defined as

(Q ˝ P)(X) – Q(P1(X), . . . , Pw(X), P1(gX), . . . , Pw(gX)) P Fq[X].

Definition 2.22 (AIR satisfiability). Given an AIR assignment p = (p1, . . . , pw), we associate a tuple
P = (P1, . . . , Pw) of polynomials in Fq[X] where Pi is the polynomial of degree less than |H| such that
Pi(gt) = pi(gt) for all t P J0, |H| ´ 1K.

An AIR assignment p is said to satisfy an AIR instance xAIR if and only if the two following conditions
hold:

1. for every (i, t, α) P B, Pi(gt) = α.
2. for every Qi P C, the composition polynomial Qi ˝ P vanishes on H z

gT
(

.

We say that xAIR is satisfiable if there exists an AIR assigment p that satisfies it.

Definition 2.23. The AIR language LAIR is the set of satisfiable AIR instances.

2.2.2 A simple IOP for the AIR language

We now present an IOP protocol enabling a prover P to prove that there exists an AIR assignment
p satisfying a given instance xAIR.

The main idea is to reduce the problem of testing whether a univariate polynomial vanishes on
a given subset to a univariate low-degree test. Observe that for an AIR assignement which satisfies
Item 2 of Definition 2.22, the polynomial

śT´1
t=0 (X ´ gt) = ZH(X)

X´gT divides (Qi ˝ P)(X) for every
constraint polynomial in C. This means that the rational function

(Qi ˝ P)(X)
śT´1

t=0 (X´ gt)

is in fact a univariate polynomial of degree less than d(|H| ´ 1) ´ |H|+ 2. The satisfaction of a
boundary constraints will also be translated in term of divisibility of univariate polynomials.

Construction 2.24 (IOP for LAIR).
Let (PRS, VRS) be an IOPP system for the relation RRS with soundness error errLDT : [0, 1]Ñ [0, 1].
Inputs: Prover P and Verifier V receive as inputs an AIR instance xAIR = (Fq, g, w, T, d, s, C,B).
Prover P is given an AIR assigment p P

(
FH

q

)w
.

Additionally, they are both given an RS evaluation domain L Ă Fq such that L X H = H and
|L| ą max t|H| , d(|H| ´ 1)´ |H|+ 2u and a parameter δ P (0, 1) such that

δ ă min
"

1
2

(
1´

|H|
|L|

)
,

1
2w + 1

(
1´

d(|H| ´ 1) + 2
|L|

)*
.

Common definitions: For every i P J1, wK such that there exists a tuple (i, t, α) P B, define:

40 Chapter 2. Reed-Solomon proximity testing and application to computational integrity

– Bi P Fq[X] the polynomial of minimal degree such that Bi(gt) = α for all (i, t, α) P B;
– Zi P Fq[X] the polynomial vanishing on the locations where the boundary constraints must be
satisfied, namely

Zi(X) –
ź

t : (i,t,α)PB
(X´ gt)

of degree deg Zi = |tt : (i, t, α) P Bu|.

Moreover, denote ZH P Fq[X] the vanishing polynomial of H.
Protocol:

1. Execution trace oracles: For each i P J1, wK,

(a) Prover P interpolates the polynomial Pi P Fq[X]ă|H| such that Pi(gt) = pi(gt) for all
t P J0, |H| ´ 1K.

(b) Prover P gives oracle access to fi : L Ñ Fq, where fi is the evaluation of Pi on L.

2. Boundary oracles: Prover P gives oracle access to w functions h1, . . . , hw : L Ñ Fq, where hi is
the evaluation on L of the rational function

Pi(X)´ Bi(X)

Zi(X)
. (2.2)

3. Constraint oracles: Prover P gives oracle access to s functions g1, . . . , gs : L Ñ Fq, where gi is
the evaluation on L of the rational function

X´ gT

ZH(X)
(Qi ˝ P)(X). (2.3)

4. Consistency checks: Verifier V samples α P L and check the following equations by querying
f1, . . . , fw, h1, . . . , hw, g1, . . . , gs for the needed values:

(a) for all i P J1, wK, Zi(α)hi(α)
?
= fi(α)´ Bi(α);

(b) for all j P J1, sK, ZH(α)gj(α)
?
= (α´ gT)Qj(f1(α), . . . , fw(α), f1(gα), . . . , fw(gα)).

5. RS proximity tests: Run (PRS, VRS) for the following proximity tests:

(a) For each i P J1, wK, check δ-proximity of fi to RS
[
Fq, L, |H|

]
;

(b) For each i P J1, wK, check δ-proximity of hi to RS
[
Fq, L, |H| ´ deg Zi

]
;

(c) For each j P J1, sK, check δ-proximity of gj to RS
[
Fq, L, d(|H| ´ 1)´ |H|+ 2

]
.

6. Decision: Verifier V accepts if and only if (i) all consistency checks pass at Step 4 and (ii) for
every proximity test performed at Step 5, VRS accepts.

Proposition 2.25. Construction 2.24 is an IOP for LAIR which satisfies the following properties.

Completeness: If xAIR is satisfied by p, then the verifier V always accepts after interacting with the
prover P .

Soundness: If xAIR R LAIR, then for any prover strategy ĂP , the verifier V accepts with probability at
most

max
"

errLDT(δ),
|H|
|L|

+ 2δ,
d(|H| ´ 1) + 2

|L|
+ (2w + 1)δ

*

,

where δ is part of the inputs of Construction 2.24.

2.2. An IOP-based SNARG using Reed-Solomon proximity testing 41

Observe that δ is set in Construction 2.24 so that |H|
|L| + 2δ and d(|H|´1)+2

|L| +(2w+ 1)δ are smaller
than 1 .

Proof. Suppose that p is a satisfying AIR assignment for xAIR. Then Pi(gt) = Bi(gt) for all (i, t, α) P

B, and thus the rational function (2.2) is in fact a polynomial of degree less than |H| ´ deg Zi.
Moreover, the expression (2.3) is also a polynomial, with degree less than d(|H| ´ 1) ´ |H| + 2.
Therefore, the prover can make all the consistency checks and proximity tests pass, and the verifier
V accepts by completeness of (PRS, VRS). This proves completeness.

Regarding soundness, we proceed by contraposition. Let us assume that the verifier accepts with
probability greater than

max
"

errLDT(δ),
|H|
|L|

+ 2δ,
d(|H| ´ 1) + 2

|L|
+ (2w + 1)δ

*

.

We will show that xAIR P LAIR by constructing a satisfying assignment for xAIR.
First, since the verifier accepts with probability greater than errLDT(δ), we have:

i. for all i P J1, wK, ∆
(

fi,RS
[
Fq, L, |H|

])
, ∆
(
hi,RS

[
Fq, L, |H| ´ deg Zi

])
ď δ and,

ii. for all j P J1, sK, ∆
(

gj,RS
[
Fq, L, d(|H| ´ 1)´ |H|+ 2

])
ď δ.

Therefore, we can consider c f ,i P RS
[
Fq, L, |H|

]
(resp. ch,i P RS

[
Fq, L, |H| ´ deg Zi

]
) such that

∆(c f ,i, fi) ď δ (resp. ∆(ch,i, hi) ď δ) for each i P J1, wK. Similarly, for each j P J1, sK, let

cg,j P RS
[
Fq, L, d(|H| ´ 1)´ |H|+ 2

]
be such that ∆(cg,j, gj) ď δ.

Observe that, for the verifier to accept, all consistency tests at Step 4 must succeed. Therefore,
for every i P J1, wK, we have

Pr
αPL

[Zi(α)hi(α) = fi(α)´ Bi(α)] ą
|H|
|L|

+ 2δ.

Let us fix i P J1, wK. We also have

Pr
αPL

[Zi(α)hi(α) = fi(α)´ Bi(α)] ď Pr
αPL

[Zi(α)hi(α) = fi(α)´ Bi(α) | fi(α) = c f ,i(α)^ hi(α) = ch,i(α)]

+ Pr
αPL

[fi(α) ‰ c f ,i(α)] + Pr
αPL

[hi(α) ‰ ch,i(α)].

Combining the two inequalities above and recalling the definitions of c f ,i and ch,i, we get

Pr
αPL

[Zi(α)hi(α) = fi(α)´ Bi(α) | fi(α) = c f ,i(α)^ hi(α) = ch,i(α)] ą
|H|
|L|

. (2.4)

Let us consider the polynomials xc f ,i P F[X]ă|H| and xch,i P F[X]ă|H|´deg Zi
whose evaluations on L

agree with the codewords c f ,i and ch,i, respectively. From (2.4), we get

Pr
αPL

[
Zi(α)xch,i(α)´ xc f ,i(α) + Bi(α) = 0

]
ą
|H|
|L|

.

Since deg
(
Zi(X)xch,i(X)´ xc f ,i(X) + Bi(X)

)
ă |H|, we deduce from Corollary 1.20 that

Zi(X)xch,i(X) = xc f ,i(X)´ Bi(X),

42 Chapter 2. Reed-Solomon proximity testing and application to computational integrity

and thus Zi(X) divides xc f ,i(X)´ Bi(X). Therefore, for all (i, t, α) P B, xc f ,i(gt) = Bi(gt) = α.
Let us denote by p11, . . . , p1w the evaluations on H of the polynomials xc f ,1, . . . , yc f ,w, respectively.

Then p1 = (p11, . . . , p1w) satisfies Item 1 of Definition 2.22. To show that p1 is a satisfying assigment
for xAIR, it remains to prove that p1 also satisfies Item 2 of Definition 2.22. We proceed similarly.

For j P J1, sK, let us denote Ej(α) the event

Ej(α) : “ZH(α)gj(α) = (α´ gT)Qj(f1(α), . . . , fw(α), f1(gα), . . . , fw(gα))”.

For all j P J1, sK, we have both

Pr
αPL

[
Ej(α)

]
ą

d(|H| ´ 1) + 2
|L|

+ (2w + 1)δ

and

Pr
αPL

[Ej(α)] ď Pr
αPL

[Ej(α) | gj(α) = cg,j(α)^
(
@i P J1, wK , fi(α) = c f ,i(α)^ fi(gα) = c f ,i(gα)

)
]

+ Pr
αPL

[gj(α) ‰ cg,j(α)] +
w
ÿ

i=1

Pr
αPL

[fi(α) ‰ c f ,i(α)] +
w
ÿ

i=1

Pr
αPL

[fi(gα) ‰ c f ,i(gα)].

For j P J1, sK , consider xcg,j P F[X] the polynomial of degree less than d(|H| ´ 1)´ |H|+ 2 which
agrees with cg,j on L. We deduce that

Pr
αPL

[
ZH(α)xcg,j(α)´ (α´ gT)Qj(xc f ,1(α), . . . , yc f ,w(α), xc f ,1(gα), . . . , yc f ,w(gα)) = 0

]
ą

d(|H| ´ 1) + 2
|L|

.

Since the polynomial

ZH(X)xcg,j(X)´ (X´ gT)Qj(xc f ,1(X), . . . , yc f ,w(X), xc f ,1(gX), . . . , yc f ,w(gX))

has degree less than d(|H| ´ 1) + 2, it implies that ZH(X)
X´gT divides the polynomial

Qj(xc f ,1(X), . . . , yc f ,w(X), xc f ,1(gX), . . . , yc f ,w(gX)).

Therefore, Qj(xc f ,1(X), . . . , yc f ,w(X), xc f ,1(gX), . . . , yc f ,w(gX)) vanishes on H z

gT
(

.
We conclude that p1 satisfies Item 2 of Definition 2.22, and thus p1 is a satisfying assignment for

xAIR.

Differences with [BBHR19]. Let us briefly discuss the differences between Construction 2.24 and
the IOP protocol of [BBHR19]. In the actual Stark construction, multiple invocations of the RS-IOPP
(PRS, VRS) are “batched” into a single one, by testing a random linear combination of the prover’s
oracles instead of testing them individually. (In [BBHR19, Appendix D], the subprotocol allowing to
do this batched verification is called the algebraic linking IOP (ALI) protocol). Introduced in [RVW13]
in the context of interactive proofs of proximity, this technique adds an additional round of interaction
where the verifier sends randomly sampled coefficients to form the linear combination. Proximity
tests are expensive subroutines, and this aggregation technique allows to reduce prover and verifier
running times. The soundness of this randomized transformation relies on distance preservation
lemmas for random linear combinations (Section 1.4.2).

2.2. An IOP-based SNARG using Reed-Solomon proximity testing 43

On the technical side, the reduction from multiple instances of the RS proximity problem to a
single one requires to take care of the variations between the different prescribed degree bounds.
This is done using a standard technique (introduced in [BS08]), which consists in multiplying each
oracle by a monomial of well-chosen monomial before forming the random linear combination.

The very same technique enables to adjust any prescribed degree bound to a larger one. Indeed,
one of the requirements for using the FRI protocol as a subroutine is that the dimension of the
considered Reed-Solomon code is an integral power of two, the other one being that L is a coset of
a multiplicative or additive subgroup (see Section 2.1.5).

Moreover, the soundness of the Stark proof system is better than the one stated in Proposi-
tion 2.25 and subsequent work further improved the rejection probability of the verifier by sampling
outside the domain L (see [BGKS20, Section 5] or [Sta21a, Section 5.3]).

It is worth noting that the construction of [BBHR19] does not require the field to grow with the
security parameter. For instance, the first implementation of Stark worked over the field F264 while
being able to reach soundness error 2´κ for any security parameter κ, by repeating only some parts
of the protocol (see [BBHR18b] for more details). Moreover, the Stark construction can operate over
a prime field or a binary field, as long as the field admit a large enough additive or multiplicative
subgroup of smooth order (in particular larger than the execution time of the computation to be
verified).

Finally, Construction 2.24 is not zero-knowledge. The Stark construction [BBHR19] can be made
zero-knowledge against query-bounded honest verifier by slightly slackening the degree constraints
on f1, . . . , fw, which has minimal impact on the efficiency parameters.

44 Chapter 2. Reed-Solomon proximity testing and application to computational integrity

Chapter 3

Constructing IOPs of Proximity from
distance-preserving folding operators

3.1 Generic interactive oracle proof of proximity based on folding op-
erators

From the FRI protocol (Section 2.1.5) from [BBHR18a], we derive a methodology to construct prox-
imity tests for codes in the IOP model from distance-preserving folding operators. From the study of
the FRI protocol, this abstraction is quite straightforward to obtain.

Let F be some finite field. Let us consider an F-linear code C Ă ΣD, where Σ is an F-linear
space not necessarily equal to F, and D is some evaluation domain.

3.1.1 Folding operators

In this section, we assume that one has defined a finite sequence of codes (Ci)0ďiďr for some integer
r, where C0 – C and each code Ci Ă ΣDi . We will assume that the evaluations domains (Di)0ďiďr
satisfy the following. For each i P J0, r´ 1K, assume there exist an integer li and a map πi : Di Ñ

Di+1 such that πi is li-to-1 from Di to πi(Di) = Di+1. In particular, |Di+1| =
|Di|

li
. For any y P Di+1,

we will denote Sy – π´1
i (tyu) the set of the li preimages of y by the function πi.

Moreover, suppose that for each i P J0, r´ 1K, one can define a family of folding operators
Fold [¨, z] : ΣDi Ñ ΣDi+1 parameterized by z P Ft for some positive integer t. These operators
are designed to “compress” functions evaluated over Di into functions over Di+1 and feature nice
properties with respect to the codes Ci and Ci+1.

Definition 3.1 (Folding operator). A folding operator for the code Ci is a map Fold [¨, ¨] : ΣDi ˆFt Ñ

ΣDi+1 satisfying the following properties.

1. (Completeness) For any z P Ft, Fold [Ci, z] Ď Ci+1.
2. (Locality) For any function f : Di Ñ Σ, z P Ft and y P Di+1, one can compute Fold [f , z] (y)

by making li queries to the function f .

To ensure soundness of the IOPP based on folding, we will also require that a folding operator
preserves the relative distance. Namely, if a function f : Di Ñ Σ is far from the code Ci, we expect
the folding of the function f to be far from the code Ci+1 with high probability over z P Ft. We
formulate this distance preservation property in terms of relative weighted agreements.

Definition 3.2 (Weighted agreement). For any weight function ϕ : D Ñ [0, 1], we define the ϕ-
agreement of u, v P ΣD, denoted agreeϕ(u, v), as follows:

agreeϕ(u, v) –
1
|D|

ÿ

xPD
u(x)=v(x)

ϕ(x).

46 Chapter 3. Constructing IOPs of Proximity from distance-preserving folding operators

Moreover, given C Ă ΣD and u P ΣD, we define the ϕ-agreement of u with C, denoted agreeϕ(u, C),
as

agreeϕ(u, C) – max
vPC

agreeϕ(u, v).

Observe that, if a weight function ϕ : D Ñ [0, 1] is constant equal to 1, then agreeϕ is the
standard notion of relative agreement, i.e. for any u, v P ΣD and any subset S P ΣD, we have

agreeϕ(u, v) =
1
|D|

|tx P D | u(x) = v(x)u| = 1´ ∆(u, v),

and
agreeϕ(u, S) = 1´ ∆(u, S).

Consequently, we have the following fact:

Fact 3.3. For any weight function ϕ : D Ñ [0, 1], any u, v P ΣD and any S Ă ΣD, we have

agreeϕ(u, v) ď 1´ ∆(u, v) and agreeϕ(u, S) ď 1´ ∆(u, S).

Definition 3.4 (Distance preservation). Let us consider a function γ : (0, 1)ˆ [0, 1]Ñ [0, 1] which is
strictly increasing with respect to the second variable. Let i P J0, r´ 1K, and denote by λi+1 the minimum
relative distance of Ci+1. We say that a folding operator Fold [¨, ¨] satisfies distance preservation if, for
any weight functions ϕi : Di Ñ [0, 1] and ϕi+1 : Di+1 Ñ [0, 1] satisfying

@y P Di+1, ϕi+1(y) ě
1
li

ÿ

xPπ´1
i (tyu)

ϕi(x), (3.1)

any ε P (0, 1), any δ P (0, γ(ε, λi+1)) and any function f : Di Ñ Σ of ϕi-agreement

agreeϕi
(f , Ci) ă 1´ δ,

we have
Pr

zPFt

[
agreeϕi+1

(Fold [f , z] , Ci+1) ą 1´ δ + ε
]
ă η,

for some η P (0, 1).

The reason why we consider weighted agreements instead of the standard relative Hamming dis-
tance is that it will facilitate tracking inconsistencies between the oracles actually sent by a malicious
prover and the expected prover’s messages (prescribed by the protocol) during soundness analysis.
The weight functions ϕi, ϕi+1 are left undefined in Definition 3.4 since weights will be assigned to
elements of the supports Di, Di+1 depending on a prover’s strategy.

3.1.2 Generic IOPP construction

Nowwe describe a generic way of constructing a public-coin IOPP to test proximity to a code C Ď ΣD

using folding operators.
Taking C0 = C and D0 = D, we consider a sequence of codes (Ci)0ďiďr with a family of folding

operators defined as per Section 3.1.1. As in the FRI protocol [BBHR18a], our protocol is divided
into two phases. The interactive phase is referred to as COMMIT phase, while the non-interactive
one is named QUERY phase.

3.1. Generic interactive oracle proof of proximity based on folding operators 47

The COMMIT phase is an interaction over r rounds between a prover P and a verifier V . At
each round i, the verifier samples a random element zi P Ft. The prover answers with an oracle
function fi+1 : Di Ñ Σ, expected to be equal to Fold [fi, zi].

During the QUERY phase, the task of the verifier V is to check that each pair of oracle functions
(fi, fi+1) is consistent. The standard idea is to test whether the equality

fi+1(yi+1) = Fold [fi, zi] (yi+1) (3.2)

holds at a random point yi+1 P Di+1. Thanks to the local property of the folding operator, the verifier
V can perform such a test by querying li entries of fi and one entry of fi+1. As in [BBHR18a], we
call this step of verification a round consistency test. More specifically, the verifier begins by sampling
uniformly at random y0 P D0 and once this is done, all the locations of the round consistency tests
below the current query test are determined. Indeed, for each i, V defines yi+1 – πi(yi) to be the
point where Equation (3.2) is checked. Through this process, and as in the FRI protocol, the round
consistency tests are correlated in order to improve soundness. Such a query test can be seen as a
global consistency test. As a final test, the verifier checks that fr P Cr and rejects if it is not the case.

Construction 3.5 (IOPP (P , V) for a code C based on folding operators).
The prover P and verifier V agree on representations of the codes of a given sequence (Ci)0ďiďr, where
C0 – C and each code Ci admits a family of folding operators. The COMMIT phase is an interaction
over r rounds, whereas the QUERY phase involves only the verifier.

Inputs: The prover receives as explicit input a function f = f0 : D0 Ñ Σ, expected to be a codeword of
C0. The verifier has oracle access to it.

COMMITphase:
1. For each round i from 0 to r´ 1 :

(a) Verifier V sends zi
$
ÐÝ Ft;

(b) Prover P gives oracle access to fi+1 : Di+1 Ñ Σ such that fi+1 = Fold [fi, zi].

QUERY phase:
1. Repeat α times the following query test:

(a) Sample y0 P D0 uniformly at random;
(b) For i = 0 to r´ 1:

i. Define yi+1 P Di+1 as yi+1 = πi(yi);
ii. Query li entries of fi to compute Fold [fi, zi] (yi+1);
iii. Query fi+1(yi+1);
iv. If fi+1(yi+1) ‰ Fold [fi, zi] (yi+1), outputs reject (Round consistency check) ;

2. Outputs acccept if and only if fr P Cr (Final test).

On the global consistency check. Suppose that the verifier V checks whether Equation (3.2)
holds at a location yi+1 sampled uniformly in Di+1 at each round. Denoting pi the fraction of round
consistency checks that pass when testing consistency between fi and fi+1, the verifier would accepts
with probability

śr´1
i=0 pi. This could be compensated by increasing the number of random tests, and

thus query complexity. For IOPPs with non-constant number of rounds, this would imply a non-
constant multiplicative loss in query complexity.

48 Chapter 3. Constructing IOPs of Proximity from distance-preserving folding operators

Soundness analysis shows that, a global consistency check has soundness error at most
śr´1

i=0 pi
and, depending on the strategy of the prover, this probability can actually be strictly smaller. Let us
illustrate this on a simple example.

Example 3.6. Suppose that there are r = 2 rounds and |D0| = 8, |D1| = 4, |D2| = 2. Now, suppose
that the prover sent oracles f1, f2 such that s P D1, s1 P D2 are the only two values for which f1 is
not consistent with f0 and f2 is not consistent with f1, respectively. Moreover, assume π1(s) ‰ s1.

Assume that the verifier runs a global consistency test as prescribed. There is only one global
consistency check over four that passes, which is the one avoiding the locations s P D1 and s1 P D2.
Then the verifier accepts with probability 1

4 .
Now suppose that, for i P J0, 1K, the verifier checks whether Equation (3.2) holds at a location

yi+1 sampled uniformly at random in Di+1. When testing consistency between f0 and f1, the verifier
accepts with probability 3

4 , since there is only one location of D1 that fails the test for this round.
Similarly, when testing consistency between f1 and f2, the verifier accepts with probability 1

2 . As-
suming that the two round consistency checks are independent, the verifier accepts with probability
3
8 ą

1
4 .

Remark 3.7. Depending on the evaluation codes considered, it may be convenient to adapt the final
round as follows in order to avoid the cost of a membership test to Cr. During the last round of the
COMMIT phase, instead of sending a codeword fr P Cr, an honest P may “unencodes” fr, meaning he
retrieves a word wr from the messages space of Cr whose encoding leads to fr P Cr. Prover P sends kr

message symbols to represent wr, where kr refers to the message length of the code Cr. In that case, the
verifier no longer needs to run a membership test to the code Cr during the QUERY phase. The verifier
V can re-encode wr, interpreting fr to be the the encoding of wr. This variant of the protocol is the one
presented in the FRI protocol [BBHR18a] for Reed-Solomon codes (in that case, wr is the coefficients of
a polynomial of bounded degree).

Notice that in some cases, e.g. in Construction 2.15, the verifier does not need to encode wr. Indeed,
in the last round of Construction 2.15, the function fr is expected to be the evaluation of a constant
polynomial function.

Theorem 3.8. Let (Ci)0ďiďr be a sequence of codes such that there exists a family of folding operators
for each code Ci satisfying Definitions 3.1 and 3.4. The r-rounds IOPP system (P , V) for the code
C = C0 of Construction 3.5 is public-coin and fulfills the following properties:

Perfect completeness: If f P C and if the oracles f1, . . . fr are computed by an honest prover P , then
V outputs accept with probability 1.

Soundness: Assume f : D Ñ Σ is δ-far from C. For any ε P (0, 1) and any unbounded prover P˚,
the verifier V outputs accept after α repetitions of the QUERY phase with probability at most

rη + (1´min(δ, γ(ε, λ)) + rε)α,

where λ denotes the smallest relative minimum distance of the codes Ci, i P J0, rK and γ(¨, ¨) is
the function defined in Definition 3.4.

Proof. (Perfect completeness) Assume that f0 P C0. An honest prover who follows the prescription of
the COMMIT phase will make the round consistency tests pass with probability 1 for all rounds i.
By completeness of the folding operator for every round i, we have fr P Cr. Therefore, the final test
also passes. Thus, the verifier always accepts.

3.1. Generic interactive oracle proof of proximity based on folding operators 49

(Soundness) Our analysis relies on techniques of proofs from [BGKS20]. We perform our analysis
for α = 1 repetition of the query test. We observe that the soundness error for α ą 1 directly follows
from this case. Let (fi)1ďiďr be the output of the COMMIT phase and (yi)1ďiďr be the query points
selected for the QUERY phase. The verifier accepts if both

1. for all i P J0, r´ 1K, fi+1(yi+1) = Fold [fi, zi] (yi+1),
2. fr P Cr.

Observe that if fr R Cr, the verifier rejects with probability 1, therefore we continue the analysis
assuming fr P Cr. Since the soundness analysis is quite technical, we divide it into several steps to
improve readability.

Step 1 – Coloring the graph induced by prover’s oracles. Set G the (r + 1)-layered graph with
vertex set D0 \ D1 \ ¨ ¨ ¨ \ Dr. The edges of G consist in the couples (yi, yi+1) P Di ˆ Di+1

such that πi(yi) = yi+1. For any edge of G, the vertex yi+1 is called the parent of yi. Vertices
sharing the same parent are said to be siblings. For any vertex within the last layer yr P Dr, we
denote by G|yr the subgraph of G corresponding to the complete tree with root yr. Therefore
the trees G|yr are disjoint.

A query test starts by selecting a leaf y0 P D0, which belongs to a unique tree G|yr for a certain
yr P Dr. The verifier queries one set of siblings at each layer i P J0, r´ 1K of G|yr , whose union
forms a subset of vertices of G that we call the path from y0 to yr. Note that a path to yr does
not include yr.

We now color the vertices of G (except those in the last layer) according to their success in
passing the round consistency test. For i P J0, r´ 1K, a vertex yi P Di is colored green if

fi+1(πi(yi)) = Fold [fi, zi] (πi(yi))

and colored red otherwise. Notice siblings have the same color. The verifier outputs accept if
and only if every vertex along the queried path from y0 to yr is green.

Step 2 – Defining the function of weights. Define ψ0 : D0 Ñ [0, 1] such that ψ0(x) = 1 if x P D0

is green and ψ0(x) = 0 otherwise. For all i P [1, r´ 1], define function

ψi : Di Ñ [0, 1]

such that ψi(x) is equal to the fraction of leaves x0 P D0 for which the path from x0 to x P Di
contains only green vertices.

Step 3 – Rejection probability in terms of weighted agreement. By construction, the probability
errquery that the verifier accepts during the QUERY phase is given by

errquery =
1
|Dr|

ÿ

xPDr

ψr(x).

For i P J0, r´ 1K, let us set
agree fi

– agreeψi
(fi, Ci), (3.3)

where the ψ-agreement agreeψ is defined in Definition 3.2. Since fr P Cr, observe that

errquery = agree fr . (3.4)

50 Chapter 3. Constructing IOPs of Proximity from distance-preserving folding operators

Step 4 – Relating agreement of fi with the one of the folding of fi´1. For i P J0, r´ 1K, we de-
fine Ei+1 Ď Di+1 to be the set of coordinates where fi+1 differs from Fold [fi, zi], i.e.

Ei+1 –

y P Di+1 | @x P Sy, x is red
(

.

Let us fix i P J0, r´ 1K. We aim to show that

agreeψi+1
(Fold [fi, zi] , Ci+1) ě agreeψi+1

(fi+1, Ci+1).

Let v P Ci+1 such that

agreeψi+1
(fi+1, v) = agreeψi+1

(fi+1, Ci+1)

(breaking ties arbitrarily). Since for any y P Ei+1, ψi+1(y) = 0, we can write

agreeψi+1
(Fold [fi, zi] , v) =

1
|Di+1|

ÿ

yPDi+1zEi+1
Fold[fi ,zi](y)=v(y)

ψi+1(y)

and
agreeψi+1

(fi+1, v) =
1

|Di+1|

ÿ

yPDi+1zEi+1
fi+1(y)=v(y)

ψi+1(y).

But Fold [fi, zi] and fi+1 coincide on the set Di+1zEi+1, hence

agreeψi+1
(Fold [fi, zi] , v) = agreeψi+1

(fi+1, v).

Moreover, we have

agreeψi+1
(Fold [fi, zi] , Ci+1) ě agreeψi+1

(Fold [fi, zi] , v)

by definition of the ψi+1-agreement. Thus,

agreeψi+1
(Fold [fi, zi] , Ci+1) ě agreeψi+1

(fi+1, Ci+1). (3.5)

Step 5 – Controlling the weighted agreement after folding. Let ε P (0, 1) and

δi ă min(1´ agree fi
, γ(ε, λi)).

Observe that

ψi+1(y) =

$

’

&

’

%

0 if y P Ei+1,
1
li

ÿ

xPSy

ψi(x) if y P Di+1zEi+1.

Thus, the functions ψi satisfy (3.1):

@y P Di+1, ψi+1(y) ě
1
li

ÿ

xPSy

ψi(x).

3.1. Generic interactive oracle proof of proximity based on folding operators 51

Since the folding operators satisfy distance preservation (Definition 3.4), we have for all i P
J0, r´ 1K

Pr
ziPFt

[
agreeψi+1

(Fold [fi, zi] , Ci+1) ą 1´ δi + ε
]
ď η,

which yields

Pr
ziPFt

[
agreeψi+1

(Fold [fi, zi] , Ci+1) ą max
(
agree fi

, 1´ γ(ε, λi)
)
+ ε
]
ď η,

where agree fi
is the notation introduced in (3.3).

Step 6 – Controlling the weighted agreement of fr by the one of f0. Let λ = mini(λi). As the
function γ(ε, ¨) is strictly increasing, we have

Pr
ziPFt

[
agreeψi+1

(Fold [fi, zi] , Ci+1) ą max
(
agree fi

, 1´ γ(ε, λ)
)
+ ε
]
ď η.

Recalling (3.5), we deduce that

Pr
ziPFt

[
agree fi+1

ą max
(
agree fi

, 1´ γ(ε, λ)
)
+ ε
]
ď η.

By a union bound, the event that for all i P J0, r´ 1K,

agree fi+1
ď max

(
agree fi

, 1´ γ(ε, λ)
)
+ ε

occurs with probability at least 1´ rη. If this event occurs, then

agree fr ď max
(
agree f0

, 1´ γ(ε, λ)
)
+ rε.

Therefore

Pr
z0,...,zr´1PFt

[
agree fr ď max

(
agree f0

, 1´ γ(ε, λ)
)
+ rε

]
ě 1´ rη.

Final step – Putting everything together. Recalling Fact 3.3, we have

agree f0
ď 1´ ∆(f0, C0) ă 1´ δ.

Set errcommit – rη. We deduce that with probability at least 1´ errcommit over the randomness
of the verifier during the COMMIT phase, the verifier accepts with probability at most

errquery = agree fr ď max(agree f0
, 1´ γ(ε, λ)) + rε

ă 1´min(δ, γ(ε, λ)) + rε.

Remark 3.9. The same proof holds for the variant of the protocol described in Remark 3.7, which results
in no change in Theorem 3.8.

52 Chapter 3. Constructing IOPs of Proximity from distance-preserving folding operators

3.2 Distance and correlated agreements with biased sample spaces

In Section 1.4.2, results about distance and correlated agreements of random linear combinations to
linear codes were presented. We recall that these results essentially assert that, given a linear code
V Ă FD

q and a collection of functions u0, . . . , ul´1 P FD
q such that at least one ui is δ-far from V, a

linear combination u =
řl´1

i=0 riui is also approximately δ-far from V (with high probability over the
random choices of r0, . . . , rl´1).

In the context of proof systems and interactive proximity tests, the coefficients r0, . . . , rl´1 are
each sampled uniformly in Fq by the verifier. Derandomization techniques can reduce randomness
complexity without significantly affecting the soundness error.

A popular choice to reduce randomness complexity (which is used for instance in [BFLS91]) is
to sample a single random field element z P Fq and set

(r0, r1, . . . , rl´1) – (1, z, z2, . . . , zl´1).

More generally, one can reduce the size of the sampling space by setting r0, r1, . . . , rl´1 as the output
of some small-biased generator G over a finite field1 Fq. We adopt a definition from [BCL20].

Definition 3.10. Let G : Fk
q Ñ Fl

q be a function. The function G is ε-biased if

max
vPFl

qzt0u
Pr

zPFk
q

[xv, G(z)y = 0] ď ε,

where x¨, ¨y denotes the inner product over Fl
q. We define the arithmetic complexity of G as the cost of

evaluating G at a point z P Fk
q.

This section is dedicated to the study of correlated agreements for two simple examples of small-
biased generators. They will suffice for the applications to proximity tests for linear codes presented
in this manuscript. Relating the bias of the generator with the average distance to linear spaces
of linear combinations whose coefficients are output of different classes of small-biased generators
remains an intriguing problem.

3.2.1 The case of multilinear combinations

Suppose l = 2m for some integer m. Let G : Fm
q Ñ Fl

q be defined by G(z) = (ze)ePt0,1um for every
z P Fm

q . By applying Lemma 1.19 to a non-zero m-variate polynomial of degree at most m, we get
that, for every v P Fl

q z t0u,

Pr
zPFm

q
[xv, G(z)y = 0] ď

m
q

.

Thus G is log l
q -biased, with arithmetic complexity O(l). This small-biased generator G is used in

[BCL20] and will also be used in our IOPP for multivariate polynomial codes in Chapter 4.

1Since the influential paper by Naor and Naor [NN90], small-biased generators outputting bits have been the most
studied. An overview of the numerous applications of small-biased generators in computer science can be found in [Gol08,
Section 8.5.2]).

3.2. Distance and correlated agreements with biased sample spaces 53

For u = (ue)ePt0,1um P

(
FD

q

)2m

, and z P Fm
q , we consider the set Hu of linear combinations of

components of u with coefficients G(z) P
(
Fq
)2m

for some z P Fm
q , i.e.

Hu –

$

&

%

ÿ

ePt0,1um

zeue | z P Fm
q

,

.

-

.

Given a linear code V Ă FD
q , the distance of an element u1 randomly sampled from Hu compared

to the maximum distance to V of a member ue of u is given by the following result.

Proposition 3.11. Let m be a positive integer. Let V Ă FD
q be a linear code of relative distance λ =

∆(V). Let ε, δ ą 0 such that ε ă 1/3 and

δ ă 1´ (1´ λ + ε)1/3. (3.6)

Let u = (ue)ePt0,1um such that there exists e P t0, 1um for which ∆(ue, V) ą δ + ε. Then

Pr
zPFm

q

∆

 ÿ

ePt0,1um

zeue, V

 ă δ

 ă 2m
ε2q

.

Proposition 3.11 is the contrapositive of the following proposition, which is in turn based on a
result from [BGKS20] (stated in Lemma 1.23). Proposition 3.12 states that if a small number of
elements of Su are δ-close to V, then there is a large subset T of coordinates such that the functions
ue|T, e P t0, 1um are codewords of the punctured code V|T. The agreement set T being shared by all
the functions ue, this property is called a correlated agreement in [BCI+20].

Proposition 3.12. Let m be a positive integer. Let V Ă FD
q be a linear code of relative distance λ =

∆(V). Let ε, δ ą 0 such that ε ă 1/3 and

δ ă 1´ (1´ λ + ε)1/3. (3.7)

Let u = (ue)ePt0,1um such that

Pr
zPFm

q

∆

 ÿ

ePt0,1um

zeue, V

 ă δ

 ě 2m
ε2q

. (3.8)

Then there exist T Ă D and a family v = (ve)ePt0,1um P V2m such that

– |T| ě (1´ δ´mε) |D|,
– for each e P t0, 1um, ue|T = ve|T.

Proof. We proceed by induction on the number of variables m. The case m = 1 is dealt with in
[BGKS20, Lemma 2] (restated in Lemma 1.23). Let us assume that the proposition is true for m´ 1
and prove that it also holds for m. For z P Fm

q , we write z = (z1, zm), with z1 P Fm´1
q and zm P Fq.

Similarly, for e P t0, 1um, we write e = (a, em), with a P t0, 1um´1 and em P t0, 1u. Equation (3.8)
gives

Pr
zmPFq

 Pr
z1PFm´1

q

∆

 ÿ

aPt0,1um´1

z1a
(

u(a,0) + zmu(a,1)

)
, V

 ă δ

 ě 2(m´ 1)
ε2q

 ě 2
ε2q

.

54 Chapter 3. Constructing IOPs of Proximity from distance-preserving folding operators

For any z P Fq, we write ua,z = u(a,0) + zu(a,1). Let A be the set

A =

$

&

%

z P Fq; Pr
z1PFm´1

q

∆

 ÿ

aPt0,1um´1

z1aua,z, V

 ă δ

 ě 2(m´ 1)
ε2q

,

.

-

.

By assumption, |A| ě 2/ε2. Moreover the inductive hypothesis implies that for each z P A, there
exist Tz Ă D and va,z P V such that

|Tz| ě (1´ δ´ (m´ 1)ε) |D| and ua,z|Tz
= va,z|Tz

for all a P t0, 1um´1 .

We are now in a position where we can mimic the proof of [BGKS20].
Let us prove there exists a large subset A1 Ă A such that for all a P t0, 1um´1 and for all z P A1,

va,z depends linearly on z, i.e. there exists some v(a,0), v(a,1) P V such that va,z = v(a,0) + zv(a,1).
For z0, z1, z2, picked uniformly and independently in A and y picked uniformly from D, we have

E
z0,z1,z2

[
|Tz0 X Tz1 X Tz2 |

|D|

]
= E

y,z0,z1,z2

[
1yPTz0XTz1XTz2

]
= E

y

[
E
z

[
1yPTz

]3
]

ě E
y,z

[
1yPTz

]3

ě (1´ δ)3

ě 1´ λ + ε.

From this, one obtains:
Pr

z0,z1,z2
[|Tz0 X Tz1 X Tz2 | ě (1´ λ) |D|] ě ε.

The probability of z0, z1, z2 being all distinct is at least 1´ 3
|A| , which is greater than 1´ ε

2 since
|A| ě 2

ε2 ą
6
ε . Thus, we get

Pr
z0,z1,z2

[z0, z1, z2 are all distinct and |Tz0 X Tz1 X Tz2 | ě (1´ λ) |D|] ě ε/2.

Consequently, there are distinct z1 and z2 such that

Pr
z0
[|Tz0 X Tz1 X Tz2 | ě (1´ λ) |D|] ě ε/2.

Fix z0 P Fq such that |Tz0 X Tz1 X Tz2 | ě (1´ λ) |D| and set S – Tz0 X Tz1 X Tz2 . For each a P
t0, 1um´1, the vectors

(z0, ua,z0) , (z1, ua,z1) , (z2, ua,z2)

are collinear. Then their restrictions to S,
(

zi, ua,zi |S

)
, which coincide with

(
zi, va,zi |S

)
by definition

of S, are also collinear. Since |S| ě (1´ λ) |D| and λ is the minimum distance of V, we can linearly
map the vectors va,zi |S to elements va,zi of the code V, which preserves collinearity. Therefore, the
vectors va,zi (z = z0, z1, z2) all belong to a same line

!

v(a,0) + zv(a,1); z P Fq

)

Ă FD
q ,

3.2. Distance and correlated agreements with biased sample spaces 55

where v(a,0), v(a,1) P V. Set A1 =
!

z P A | va,z = v(ẽ,0) + zv(a,1)

)

. Then we have |A1| ě ε
2 |A| ě

1
ε .

Now consider the set

T =
!

x P D|@a P t0, 1um´1 , u(a,0)(x) = v(a,0)(x) and u(a,1)(x) = v(a,1)(x)
)

.

For any x P DzT, there exists at most one element z P Fq such that, for all a P t0, 1um´1,

u(a,0)(x) + zu(a,1)(x) = v(ẽ,0)(x) + zv(a,1)(x).

For any z P A1, for any a P t0, 1um´1, we have

1´
|Tz|

|D|
ě ∆(ua,z, va,z).

We thus also have

1´
|Tz|

|D|
ě E

zPA1
[∆(ua,z, va,z)]

ě
|DzT|
|D|

(
1´

1
|A1|

)
ě

(
1´

|T|
|D|

)
(1´ ε)

ě 1´
|T|
|D|

´ ε

Using |Tz| ě (1´ δ´ (m´ 1)ε) |D|, and rearranging, we get |T| ě (1´ δ´mε) |D|.

As suggested in Section 3.1, applications to proximity tests may require a variant of Proposi-
tion 3.12 stated in terms of weighted agreements.

Proposition 3.13. Let m be a positive integer. Let V Ă FD
q be a linear code of distance λ = ∆(V). Let

ε, δ ą 0 such that ε ă 1/3 and
δ ă 1´ (1´ λ + ε)1/3.

For any weight function ϕ : D Ñ [0, 1] and any u = (ue)ePt0,1um satisfying

Pr
zPFm

q

agreeϕ

 ÿ

ePt0,1um

zeue, V

 ą 1´ δ

 ě 2m
ε2q

, (3.9)

there exist T Ă D and a family v = (ve)ePt0,1um P V2m such that

–
ř

xPT ϕ(x) ě (1´ δ´mε) |D|,
– for each e P t0, 1um, ue|T = ve|T.

Before proving Proposition 3.13, we first state a variant of Lemma 1.23 due to [BGKS20]. The
proof of Lemma 3.14 is relatively straigthforward, based on the original proof of [BGKS20, Lemma 3.2].

56 Chapter 3. Constructing IOPs of Proximity from distance-preserving folding operators

Lemma 3.14 ([BGKS20, Lemma 2] – weighted agreement version). Let V Ă FD
q be a linear code of

distance λ = ∆(V). Let ε, δ ą 0 such that ε ă 1/3 and

δ ă 1´ (1´ λ + ε)1/3.

For any weight function ϕ : D Ñ [0, 1] and any functions u0, u1 P FD
q satisfying

Pr
zPFq

[
agreeϕ(u0 + zu1, V) ą 1´ δ

]
ě

2
ε2q

, (3.10)

there exist T Ă D and v0, v1 P V, such that

–
ř

xPT ϕ(x) ě (1´ δ´ ε) |D|,
– for each i P t0, 1u, ui|T = vi|T.

Proof. By Fact 3.3, the set
!

z P Fq | agreeϕ(u0 + zu1, V) ą 1´ δ
)

is contained in the set
A –

z P Fq | ∆(u0 + zu1, V) ă δ
(

of size |A| ě 2
ε2 (by assumption). Now, the proof follows the one of [BGKS20, Lemma 2].

For each z P Fq, denote uz = u0 + zu1 and let vz P V be a codeword such that

∆(uz, V) = ∆(uz, vz).

Let Tz – tx P D | uz(x) = vz(x)u be the agreement set of uz and vz. For z0, z1, z2, picked uniformly
and independently in A and y picked uniformly from D, we have

E
z0,z1,z2

[
|Tz0 X Tz1 X Tz2 |

|D|

]
= E

y,z0,z1,z2
[1yPTz0XTz1XTz2

]

= E
y
[E

z
[1yPTz]

3]

ě E
y,z
[1yPTz]

3

ě (1´ δ)3

ą 1´ λ + ε.

From this, one obtains
Pr

z0,z1,z2
[|Tz0 X Tz1 X Tz2 | ą (1´ λ) |D|] ě ε.

The probability of z0, z1, z2 being all distinct is at least 1´ 3
|A| , which is greater than 1´ ε

2 since
|A| ą 6

ε . Thus, we get

Pr
z0,z1,z2

[z0, z1, z2 are all distinct and |Tz0 X Tz1 X Tz2 | ě (1´ λ) |D|] ě ε/2.

Consequently, there are distinct z1 and z2 such that

Pr
z0
[|Tz0 X Tz1 X Tz2 | ě (1´ λ) |D|] ě ε/2.

3.2. Distance and correlated agreements with biased sample spaces 57

Fix a z0 such that
|Tz0 X Tz1 X Tz2 | ě (1´ λ) |D| ,

and let S = Tz0 X Tz1 X Tz2 . We have that uz0 , uz1 , uz2 all lie on the line

l –

u0 + zu1 : z P Fq
(

Ă FD
q .

As a consequence, when restricted to S, we have that uz0 |S, uz1 |S, uz2 |S all lie on the line

l|S =

u0|S + zu1|S : z P Fq
(

Ă FS
q .

By definition of S, Tz0 , Tz1 and Tz2 , we also have that vz0 |S, vz1 |S, vz2 |S lie on the line l|S. Since
|S| ě (1´λ) |D| and λ is the minimum distance of V, we can linearly reencode vz0 |S, vz1 |S, vz2 |S into
vz0 , vz1 , vz2 , and we observe that vz0 , vz1 and vz2 all lie on a same line. Thus, there are v0, v1 P FD

q
such that this line is defined by

v0 + zv1; z P Fq
(

Ă FD
q .

There are ε
2 -fraction of the z0 P A such that vz0 belongs to this line. Note that for such z0,

vz0 = v0 + z0v1.

Let A1 Ă A be the set of elements z’s such that vz (the word closest to uz) can be written

vz = v0 + zv1.

Then, we have |A1| ě ε
2 |A| ě

1
ε and for all z P A1,

agreeϕ(u0 + zu1, v0 + zv1) ą 1´ δ.

Therefore,

1´ δ ă
1
|A1|

ÿ

zPA1
agreeϕ(uz, vz)

ă
1

|A1| |D|

ÿ

zPA1

ÿ

xPD

(
ϕ(x) ¨ 1uz(x)=vz(x)

)
ă

1
|D|

ÿ

xPD

ϕ(x) ¨

(
1
|A1|

ÿ

zPA1
1uz(x)=vz(x)

)
.

Let us consider
T – tx P D | u0(x) = v0(x) and u1(x) = v1(x)u .

Given x P DzT, there is at most one element z P Fq such that

u0(x) + zu1(x) = v0(x) + zv1(x).

Thus, we conclude that

1´ δ ă
1
|D|

ÿ

xPT

ϕ(x) +
1
|D|

ÿ

xPDzT

ϕ(x)
1
|A1|

ă
1
|D|

ÿ

xPT

ϕ(x) + ε.

58 Chapter 3. Constructing IOPs of Proximity from distance-preserving folding operators

Proof of Proposition 3.13. As for Proposition 3.12, we proceed by induction on m. The case m = 1 is
treated by Lemma 3.14. Let us assume that the statement is true for m´ 1. Recalling Fact 3.3, we
have

$

&

%

z P Fm
q | agreeϕ

 ÿ

ePt0,1um

zeue, V

 ą 1´ δ

,

.

-

Ď

$

&

%

z P Fm
q | ∆

 ÿ

ePt0,1um

peue, V

 ă δ

,

.

-

.

It follows from (3.9) that the largest set has size at least 2m
ε2 qm´1. Then, the proof follows the proof

of Proposition 3.12, until we get a set A1 Ă A of size at least 1/ε and v(a,0), v(a,1) P V such that for
all a P t0, 1um´1, for all z P A1,

va,z = v(a,0) + zv(a,1).

Let T be the set

T –

!

x P D| for all a P t0, 1um´1 , u(a,0)(x) = v(a,0)(x) and u(a,1)(x) = v(a,1)(x)
)

.

For all a P t0, 1um´1, for all z P A1,

∆
(

u(a,0) + zu(a,1), v(a,0) + zv(a,1)

)
ă δ + (m´ 1)ε.

Denoting
ua,z – u(a,0) + zu(a,1) and va,z – v(a,0) + zv(a,1),

we get
agreeϕ(ua,z, va,z) ą 1´ δ´ (m´ 1)ε.

Averaging, we have:

1´ δ´ (m´ 1)ε ă
1
|A1|

ÿ

zPA1
agreeϕ(ua,z, va,z)

ă
1

|A1| |D|

ÿ

zPA1

ÿ

xPD

(
ϕ(x) ¨ 1ua,z(x)=va,z(x)

)
ă

1
|D|

ÿ

xPD

ϕ(x) ¨

(
1
|A1|

ÿ

zPA1
1ua,z(x)=va,z(x)

)
.

For x P DzT, there is at most one element z P Fq such that

u(a,0)(x) + zu(a,1)(x) = v(a,0)(x) + zv(a,1)(x).

Thus, we get

1´ δ´ (m´ 1)ε ă
1
|D|

ÿ

xPT

ϕ(x) +
1
|D|

ÿ

xPDzT

ϕ(x)
1
|A1|

ă
1
|D|

ÿ

xPT

ϕ(x) + ε.

Rearranging, we have
ř

xPT ϕ(x) ą (1´ δ´mε) |D|.

3.2. Distance and correlated agreements with biased sample spaces 59

3.2.2 The case of low-degree parametrized curves

We conclude this section with a small-biased generator commonly used in constructions of proof
systems (e.g. [BFLS91]) Let us consider G : Fq Ñ Fl

q defined, for every z P Fq, by

G(z) = (1, z, z2, . . . , zl´1).

For every v P Fl
q z t0u, the polynomial

řl´1
i=0 viXi P Fq[X] has at most l ´ 1 roots. Thus

Pr
zPFq

[xv, G(z)y = 0] ď
l ´ 1
ˇ

ˇFq
ˇ

ˇ

,

i.e. G is l´1
q -biased. The state-of-the-art result regarding correlated agreements for generic linear

code C and low-degree parametrized curve is due to [BKS18].

Notation 1. For ε P (0, 1), denote Jε : [0, 1]Ñ [0, 1] the function

Jε : x ÞÑ 1´
b

1´ x(1´ ε).

Moreover, we denote by Jl
ε the function Jl

ε – Jε ˝ Jε ˝ ¨ ¨ ¨ ˝ Jε
looooooomooooooon

l times

.

Theorem 3.15 ([BKS18, Theorem 4.5]). Let V Ă FD
q be a linear code of relative distance λ = ∆(V).

Let ε, δ ą 0 such that and δ ă Jl
ε(λ). Let u0, . . . , ul´1 P FD

q satisfying

Pr
zPFq

[
∆

(
l´1
ÿ

i=0

ziui, V

)
ă δ

]
ě

l ´ 1
|Fq|

(
2
ε

)l+1

. (3.11)

Then, there exist T Ă D , and v0, . . . , vl´1 P V such that:

– |T| ě (1´ δ´ ε)|D|
– for each i P J0, l ´ 1K, ui|T = vi|T.

For our applications, we will need a variant of [BKS18, Theorem 4.5] in terms of weighted agree-
ments. It can be proved by adapting of the proof of [BKS18, Theorem 4.5], and we only highlight
the changes to be made.

Proposition 3.16. Let ϕ P [0, 1]D be a weight function and ε, δ ą 0 such that and δ ă Jl
ε(λ). Let

u0, . . . , ul´1 P FD
q such that

Pr
zPFq

[
agreeϕ

(
l´1
ÿ

i=0

ziui, V

)
ą 1´ δ

]
ě

l ´ 1
|Fq|

(
2
ε

)l+1

, (3.12)

then there exists T Ă D , and v0, . . . , vl´1 P V such that:

–
ř

xPT ϕ(x) ě (1´ δ´ ε)|D|
– for each i P J0, l ´ 1K, ui|T = vi|T.

60 Chapter 3. Constructing IOPs of Proximity from distance-preserving folding operators

Proof. We only need to prove that the codewords v0, . . . , vl´1 P V exhibited in Theorem 3.15 satisfy
the first item of Proposition 3.16. For z P Fq and (v0, . . . , vl´1) P V l, let us set

vz –

l´1
ÿ

i=0

zivi.

Rewriting the proof of [BKS18, Theorem 4.5] with

A =
!

z P Fq | agreeϕ (uz, V) ą 1´ δ
)

provides v0, . . . , vl´1 P V and a set

C –

!

z P Fq | agreeϕ (uz, vz) ą 1´ δ
)

Ă A

with cardinality |C| ą l´1
ε . Let us consider the set

T – tx P D | ui|T = vi|T for all i P J0, l ´ 1Ku.

We have:

1´ δ ă
1
|C|

ÿ

zPC

agreeϕ (uz, vz)

=
1

|C| ¨ |D|

ÿ

zPC

ÿ

xPD

ϕ(x)1uz(x)=vz(x)

=
1
|D|

ÿ

xPD

ϕ(x)
1
|C|

ÿ

zPC

1uz(x)=vz(x).

Notice that if there exists i P J0, l ´ 1K such that ui which does not coincide with vi, the number of
z P Fq such that uz(x) = vz(x) is at most l ´ 1. Then

1´ δ ď
1
|D|

ÿ

xPT

ϕ(x) +
1
|D|

ÿ

xPCzT

ϕ(x)
l ´ 1
|C|

ď
1
|D|

ÿ

xPT

ϕ(x) + ε,

which gives the first item of the proposition.

Chapter 4

Proximity testing for multivariate
polynomial codes

The focus of this chapter is to tackle the low-degree testing problem for an oracle function f :
Lm Ñ Fq and a degree d ă |L| in the IOP model. Depending on whether d is a bound on the
total degree bound or the individual degrees, this problem can be solved by constructing an IOPP for
Reed-Muller codes or tensor product of Reed-Solomon codes. Note that the interesting regime for
applications to constructions of proof systems is when m is considered to be a constant, since in that
case, multivariate polynomial codes can have constant rate and constant distance when |L| grows.

Our IOPPs for multivariate polynomial codes are generalizations of the FRI protocol to the mul-
tivariate case. As for the FRI protocol (Section 2.1.5), we focus on codes whose alphabet Fq admits
either multiplicative or additive subgroups of large 2-smooth order. According to Section 3.1.2,
constructing such IOPPs boils down to defining distance-preserving folding operators on a suitable
sequence of codes.

While multivariate polynomial codes are locally testable, local testers have query complexity
which is linear in d. We construct IOPPs for some families of products of Reed-Solomon codes and
Reed-Muller codes with linear prover running time and proof length, and logarithmic verification
and query complexity (recall that we count in field operations and give complexities with respect to
the length of the code). Since our constructions are explicit, all efficiency measures of the two IOPPs
are explicitly presented. These parameters match the IOPP for Reed-Solomon codes of [BBHR18a],
from which they are inspired.

On testing proximity to products of codes. Tensor codes are robust locally testable codes [BS06,
Vid15, CMS17]. One possible approach to construct IOPP for tensor codes is to rely on a random
axis-parallel test. Suppose C Ă Fn is a linear code and m ě 3. A natural local test to check proximity
of a function f to the tensor code Cbm is to sample b P [n], j P [m], query the purported word f on
the plane

Pb,j –

(x1, . . . , xm) | xj = b and, for i ‰ j, xi P [n]
(

,

then check whether the restriction of f to Pb,j is a codeword of Cbm´1. This gives a local test with
query complexity sublinear in the length of Cbm. Viderman [Vid15], building on the work of [BS06],
showed that for m ě 3, the local test mentioned above for Cbm is also ∆(C)m

12 -robust, where ∆ (C)
is the relative minimum distance of C. Combining the robust local tester of [BS06, Vid15] with
[Mie09]’s PCPP, [BCG+17] proposed a 1-round IOPP for tensor codes Cbm with non-trivial query
complexity for m ě 3. However, this approach gives a rather poor soundness error, namely smaller
than 1 ´ ∆(C)O(m)

poly(m)
δ. Our aim is to construct proximity tests with, in particular, a better trade-off

between query complexity and soundness error, and a folding approach allows us to achieve it.

62 Chapter 4. Proximity testing for multivariate polynomial codes

For starters, let us briefly describe a natural “folding approach” for tensor product codes that
would not allow to achieve logarithmic verification. Let C Ă F

[n]
q be an arbitrary linear code, and

suppose that we want to test proximity of a function f : [n]m Ñ Fq to the tensor code Cbm.
Considering the sequence of codes (Ci)0ďiăm where Ci – Cbm´i, there is a simple family of folding
operators for each code Ci.

Given a function f : [n]m´i Ñ Fq and z P Fn
q , define Fold [f , z] : [n]m´i´1 Ñ Fq by setting, for

all x P [n]m´i´1,
Fold [f , z] (x) =

ÿ

jP[n]

zj f (j, x).

Such folding operators satisfy Definition 3.1. Indeed, by definition of tensor product of codes and
linearity, we have that f P Cbm´i implies that for any z P Fn

q , Fold [f , z] P Cbm´i´1. Moreover,
for any z, Fold [f , z] (x) can be computed by making n queries to f . The queried locations corre-
spond to the preimages of x by the map πi : [n]m´i Ñ [n]m´i´1 which sends (x1, . . . , xm´i) onto
(x2, . . . , xm´i). By arguing that such folding operators also satisfy Definition 3.4 (for instance, by
relying on Corollary 1.24), then an IOPP could be obtained from the framework presented in Sec-
tion 3.1.2.

However, such an approach would lead to a (m´ 1)-round IOPP for Cbm, with proof lengthă nm

(from a geometric sum), query complexity mn, prover complexity O(nm) and verifier complexity
O(mn) + O(n2) (the first term correponds to the round consistency checks, while the second term
is the cost of a membership test for C). In particular, verification time would be sublinear but super-
logarithmic in nm for m ą 3.

In the specific case where C is a Reed-Solomon code, we will show that one can achieve exponen-
tial savings regarding verification. We can indeed construct an IOPP with O(m log n) queries and
soundness error approximately 1´ δ (for suitable parameters) for any values of m. Verifier will also
be strictly logarithmic in the length of the tensor code.

4.1 Related work

Tensor product of Reed-Solomon codes (individual degree tests). Low-degree tests for bounded
individual degree appear in numerous constructions of probabilistic proof systems [BFL90, BFLS91,
PS94, FHS94, ALM+98, RS97, FGL+96, BS08] and play a central role in constructing short PCPs
[PS94, BS08, Mie09]. The common idea of such tests is to rely on the following characterization. A
function f : Fm

q Ñ Fq is a m-variate polynomial function of individual degrees at most d if and only
if, for any k-dimensional axis-parallel affine subspace S of Fm

q , the restriction of f to S is a k-variate
polynomial of individual degree d.

Ben-Sasson and Sudan [BS08] constructed a PCPP for the tensor product of RS codes by relying
on their PCPP for Reed-Solomon codes. The PCPP to test a function f : Lm Ñ F is composed by a
PCPP for Reed-Solomon codes (RS-PCPP) for each restrictions of f to an axis-parallel line. Therefore,
the prover needs to compute m |L|m´1 RS-PCPP, which yields prover complexity and proof length
less than m|L|m log1.5

|L|. Both verifier complexity and query complexity are polylogarithmic in |L|.
Our IOPP for the tensor of RS codes outperforms on all these parameters.

In the IOP model, there is no IOPP specifically tailored for tensor product of Reed-Solomon codes.
Ron-Zewi and Rothblum [RR20] proposed an IOPP for any language computable in determinis-

tic polynomial time and bounded space. In particular, their result gives an IOPP with linear proof

4.1. Related work 63

Scheme Prover Verifier Query Length Rounds
[BS08, BCGT13] O(mnm log1.5n) polylog(n) polylog(n) O(mnm log1.5n) 0.5

[BCG+17]˚ o(nm) poly(m + log n) O(1) o(nm) 1
[RR20] poly(nm) (nm)ε O(1) ă nm O(1)
[BCG20] O(mnm log n) O(nm log n) O(nm) O(nm) m
This work ă 8nm ă 8 log nm ă log nm ă nm ă log nm

˚: restricted to m ě 3 and proximity parameter δ smaller than half the minimum distance of the
tensor code.

Figure 4.1: Partial comparison of proofs of proximity for tensor product of RS codes of length nm.
Soundness is omitted since it is difficult to provide and compare uniformly.

length and constant query complexity for Reed-Muller codes and tensor product of Reed-Solomon
codes. However, the construction proposed by [RR20] has polynomial prover complexity and sub-
linear verifier complexity and relies on the generic PCP of Proximity for nondeterministic languages
of [Mie09], which is commonly believed to be impractical. In contrast, we propose IOP of Proxim-
ity for multivariate polynomial codes with a linear-time prover and logarithmic-time verifier. The
algorithms of the prover and the verifier have not only better asymptotic complexities, but are also
straightforward to implement in practice. Indeed, the tasks of our prover and verifier are nothing
more than univariate polynomial interpolations (from a fixed constant number of evaluation points).

Although not specifically designed for multivariate polynomial codes, there are a couple of IOPP
constructions for m-wise tensor product of a generic linear code C. Indeed, axis-parallel tests enable
local testability of repeated tensor products of any linear codes [BS06, Vid15, CMS17]. Ben-Sasson
et al. [BCG+17] suggested a 1-round IOPP system for tensor product codes Cbm, where C is an
arbitrary linear code and m ě 3. Through interactive proof composition, Ben-Sasson et al. combine
the robust local tester of [BS06, Vid15, CMS17] for tensor product codes with the Mie’s PCP of
Proximity for non-deterministic languages [Mie09]. The IOPP system constructed there has sublinear
proof length and constant query complexity, which is significantly better than our protocol. However,
for fixed m ą 3, the verifier in [BCG+17] runs in time which is polylogarithmic in the length n of
the base code C, whereas our verifier decision complexity is strictly logarithmic in n. Besides, and as
opposed as our work, the IOPP system of [BCG+17] requires the proximity parameter to be smaller
than half the minimum distance of the tensor code. Our construction is arguably much simpler to
implement, as we do not rely on an heavy PCPP for NTIME, like Mie’s one [Mie09].

Recently, Bootle, Chiesa and Groth [BCG20] showed how to construct a m-rounds IOPP for ten-
sor codes Cbm, where C is an arbitrary linear code of length n and dimension k. Their construction
also relies on a folding operation (inspired by the FRI protocol of [BBHR19]) but takes a different
approach than ours due to their need to work with linear-time encodable codes. In particular, per-
forming the folding operation defined in [BCG20] requires to run an encoding algorithm for the
m-wise tensor code Cbm. When considering C a Reed-Solomon code, best known encoding algo-
rithms run in time at least quasi-linear in n. In contrast, our IOPP does not rely on any encoding
procedure of neither the tensor code, nor the base code.

Reed-Muller codes (total degree tests). A substantial body of research studies low total degree
test [GLR+91, RS92, RS96, RS97, AS03, BSVW03, MR08] with evaluations over the entire domain
Fm

q . For this setting, considering restrictions of f to affine subspaces of fixed dimension is quite

64 Chapter 4. Proximity testing for multivariate polynomial codes

natural. Indeed, if f : Fm
q Ñ Fq has total degree at most d then all its restrictions to u-dimensional

affine subspaces are u-variate polynomials of degree at most d. Note that since those affine subspace
are not “parallel to the axis”, local testers for Reed-Muller codes can have a better soundness error
than the axis-parallel tests for tensor product of codes.

For example, the “line-versus-point” test of Rubinfeld and Sudan [RS96] consists in checking
the restriction of the function f to a randomly chosen line in Fm

q . Analyses [RS96, AS03, ALM+98]
showed that if the test accepts a function f with probability δ, then f agrees with a degree-d poly-
nomial on » δ fraction of points. The verifier queries O(d3) field elements to achieve constant
soundness error. The original low-degree test of [RS96] can be reformulated in terms of a PCPP if
we consider that an auxiliary oracle is given in addition to f . Such oracle proof is supposed to contain
the restrictions of f to every line, represented as the d + 1 coefficients of a univariate polynomial.
Then, the number of queries of the PCPP is only two, but symbols of the oracle proof belong to a
large alphabet Fd

q . Similarly, restrictions to affine subspaces of higher dimensions have also been
considered, such as the plane-versus-plane test [RS97, MR08] and cube-versus-cube test [BDN17].
The number of field elements needed to be queried is at least linear in d.

Most results apply to polynomials over fields that are larger than the degree bound d. The lo-
cal testability of Reed-Muller codes when the degree is larger than the field size has been studied
in [AKK+03, AKK+05, JPRZ04, KR04]. Aformentioned results show that generalized Reed-Muller
codes are locally testable, and query complexity increases as the size of the field decreases.

Note however all the above constructions do not apply to the setting we consider where the
function f has domain Lm where L is strictly contained in Fq. Indeed, in such case, the notion of
affine subspace does not exist.

By working in the IOPP model, we are able to construct a low-degree test for total degree with
strictly linear oracle proof length, which can be generated in linear time and admit logarithmic query
complexity and verification time (when the number of variable is considered to be constant). As for
the individual degree case, we use a folding approach instead of checking restrictions of the function
being tested. As mentioned above, previous works require the verifier to make a number of queries
which is at least linear in d. Moreover, the size of the oracle proof [RS92] is polynomial in qm.
In order to further reduce the proof size, constructions using a smaller subset of lines have been
investigated [GS02, BSVW03, MR08]. However, such constructions do not achieve a strictly linear
oracle proof length, but only proofs of almost linear size. Needlessly to say that proof length is a
lower bound on prover running time.

4.2 Preliminaries about multivariate polynomials

4.2.1 Low-degree extensions

To benefit from the algebraic structure of an evaluation code C Ă FD
q , it is classical to recover a

polynomial which coincides with f on D for any f P C. We choose such a polynomial to have low
degree with respect to the size of the domain D, when D is a cartesian product.

Proposition 4.1 (Low-degree extension ([BFLS91])). Let H1, . . . , Hm Ď Fq and let f : H1 ˆ ¨ ¨ ¨ ˆ

Hm Ñ Fq be a function. Then there exists a unique polynomial pf in m variables over Fq such that :

1. pf has degree degXi
pf ă |Hi| in its i-th variable,

4.2. Preliminaries about multivariate polynomials 65

2. pf agrees with f on H1 ˆ ¨ ¨ ¨ ˆ Hm.

The polynomial pf is referred to as the low-degree extension of the function f (with respect to Fq and
H1, . . . , Hm).

Proof. For H Ă Fq and h P H, denote LH,h(X) –
ś

kPHzthu
X´k
h´k the Lagrange polynomial. The

existence follows from the observation that the polynomial defined by
ÿ

hPH1ˆ¨¨¨ˆHm

f (h)
m
ź

j=1

LHj,hj(Xj)

has degree less than
ˇ

ˇHj
ˇ

ˇ in each variable and agrees with f on H1 ˆ ¨ ¨ ¨ ˆ Hm. An easy induction
on m leads to uniqueness.

The arithmetic complexity of solving the interpolation problem of computing the coefficients of
the low-degree extension of a function f : H1 ˆ ¨ ¨ ¨ ˆ Hm Ñ Fq appears in [Pan94] for general
subsets H1, . . . , Hm Ă Fq. In our work, we will be specifically interested in the cost of interpolating
and evaluating low-degree extensions of a function defined on a grid of size 2m.

Definition 4.2. A multilinear polynomial is a multivariate polynomial whose degree in each variable
is at most one.

Lemma 4.3 (Multilinear interpolation ([Pan94])). Let H1, . . . , Hm Ă Fq of size 2 and let f : H1 ˆ

¨ ¨ ¨ ˆ Hm Ñ Fq be a function. The low-degree extension of f is a multilinear polynomial pf P Fq[X].
The number of operations required to interpolate pf is at most 5m2m´1 arithmetic operations.

Lemma 4.4 (Single-point evaluation of multilinear extension). Let H1, . . . , Hm Ă Fq of size 2 and
let f : H1 ˆ ¨ ¨ ¨ ˆ Hm Ñ Fq be a function. The low-degree extension of f is a multilinear polynomial
pf P Fq[X] and, given p P Fm

q , evaluating pf at p can be done in less than 4(2m + m) arithmetic
operations.

Proof. For any h = (h1, . . . , hm) P H1 ˆ ¨ ¨ ¨ ˆ Hm, define Lh(X) –
śm

j=1 LHj,hj(Xj). For any
p = (p1, . . . , pm) P Fm

q , we have

pf (p) =
ÿ

hPH1ˆ¨¨¨ˆHm

f (h)Lh(p). (4.1)

As suggested by [VSBW13] regarding multilinear extensions over the boolean hypercube, we
observe that (Lh(p))hPH1ˆ¨¨¨ˆHm can be computed in linear time and linear space using dynamic
programming.

Notice that for all k P J1, mK,
k
ź

j=1

LHj,hj(pj) = LHk ,hk(pk)
k´1
ź

j=1

LHj,hj(pj)

and deg LHk ,hk = 1. Given a table of values containing
śk´1

j=1 LHj,hj(pj) for all (h1, . . . , hk´1) P H1ˆ

¨ ¨ ¨ ˆHk´1, one can get the values
śk

j=1 LHj,hj(pj) for all (h1, . . . , hk) P H1ˆ ¨ ¨ ¨ ˆHk by computing
the couple of values

(
LHk ,hk(pk)

)
hkPHk

using 2 additions and 2 divisions, andmultiplying both of them
by all the 2k´1 precomputed values. In sum, this step requires 2k + 4 operations. Thus, computing
Lh(p) for all h P H1 ˆ ¨ ¨ ¨ ˆ Hm takes

řm
j=1
(
2j + 4

)
ă 2 ¨ 2m + 4m arithmetic operations. Finally,

given the table of values of f and (Lh(p))hPH1ˆ¨¨¨ˆHm , computing the right-hand side of (4.1) takes
2m multiplications and (2m ´ 1) additions.

66 Chapter 4. Proximity testing for multivariate polynomial codes

4.2.2 Multivariate polynomial decomposition

In order to construct folding operators for multivariate polynomial codes, we give some suitable
decomposition of polynomials.

Lemma 4.5. Let R be an integral domain, and let q P R[X] be a monic univariate polynomial of degree
l. For every f P R[X] there exists a unique sequence (fu)uPU of polynomials in R[X] such that

f (X) =
ÿ

u=(u1,...,um)PU

fu(X1, . . . , Xm)q(X1)
u1 ¨ ¨ ¨ q(Xm)

um , (4.2)

where
U =

r
0,
Y

degX1
f /l

]z
ˆ ¨ ¨ ¨ ˆ

r
0,
Y

degXm
f /l

]z

and degXi
fu(X) ă l for each i P J1, mK and u P U.

Proof. The proof is done by induction on the number m of indeterminates, the case m = 1 being
established in Lemma 2.8. Suppose the result holds for m´ 1 indeterminates and consider f (X) as
a polynomial in R[X1][X2, . . . , Xm]. Since R[X1] is an integral domain, we can apply the induction
hypothesis, and there exists a unique sequence

(fu1(X1, X2, . . . , Xm))u1PU1 P R[X1][X2, . . . , Xm]

such that

f (X1, X2, . . . , Xm) =
ÿ

(u2,...,um)PU1
fu2,...,um(X1, X2, . . . , Xm)q(X2)

u2 ¨ ¨ ¨ q(Xm)
um

where
U 1 =

r
0,
Y

degX2
f /l

]z
ˆ ¨ ¨ ¨ ˆ

r
0,
Y

degXm
f /l

]z

and, for each i P J2, mK:
degXi

fu2,...,um(X1, X2, . . . , Xm) ă l.

Writing
fu2,...,um =

ÿ

0ďu2,...,umăl

gu2,...,um(X1)Xu2
2 ¨ ¨ ¨X

um
m

and applying Lemma 2.8 to each polynomial gu2,...,um P R[X1], we obtain a unique sequence

(gu1,u2,...,um(X1))0ďu1ď
Y

degX1
f /l

]

of polynomials in R[X1] such that

gu2,...,um(X1) =

Y

degX1
f /l

]

ÿ

u1=0

gu1,u2,...,um(X1)q(X1)
u1

and deg gu1,u2,...,um(X1) ă l. This gives

fu2,...,um =
ÿ

0ďu2,...,umăl

Y

degX1
f /l

]

ÿ

u1=0

gu1,u2,...,um(X1)Xu2
2 ¨ ¨ ¨X

um
m q(X1)

u1 ,

which leads to the expected decomposition after collecting terms.

4.3. A first attempt to construct IOPP for tensor products of Reed-Solomon codes 67

Proposition 4.6 (Multivariate decomposition). Let R be an integral domain, and let q P R[X] be a
monic univariate polynomial of degree l. For every f P R[X] there exists a unique sequence (ge)ePJ0,l´1Km

of polynomials in R[X] such that

f (X) =
ÿ

ePJ0,l´1Km

Xege (q(X1), . . . , q(Xm)) , (4.3)

and

– for all e P J0, l ´ 1Km and j P J1, mK, degXj
ge ď

Z

degXj
f

l

^

,

– for all e P J0, l ´ 1Km, deg ge ď
Y

deg f´wH(e)
l

]

.

Proof. We use the notations of Lemma 4.5. For each u P U, writing each polynomial fu as

fu(X) =
ÿ

ePJ0,l´1Km

au,eXe,

Equation (4.2) becomes

f (X) =
ÿ

uPU

ÿ

ePJ0,l´1Km

au,eXeq(X1)
u1 ¨ ¨ ¨ q(Xm)

um ,

=
ÿ

ePJ0,l´1Km

Xe
ÿ

uPU

au,eq(X1)
u1 ¨ ¨ ¨ q(Xm)

um .

For each e P J0, l ´ 1Km, define

ge(X) –
ÿ

uPU

au,eXu.

We thus get the decomposition of Equation (4.3). The bounds for individual degrees of each ge

comes from the definition of U. Moreover, we have

deg f = max
e
tdeg(Xege(q(X1), . . . , q(Xm)))u ,

thus deg f ě wH(e) + l deg ge.
The uniqueness of the sequence of polynomials (ge)e follows from the one of the sequence of

polynomials (fu)u.

4.3 A first attempt to construct IOPP for tensor products of Reed-Solomon
codes

Based on the decomposition given in Proposition 4.6, we present a first construction for tensor prod-
uct codes, then we will show how efficiency parameters can be improved by increasing the number
of rounds and defining the folding operators differently.

68 Chapter 4. Proximity testing for multivariate polynomial codes

4.3.1 Sequence of codes with length divided by 2m

Let k be a power of two and set r = log k. As for Reed-Solomon codes, we work in the two settings
presented in Section 2.1.4. Depending on whether we are in Case 2.1 or Case 2.2, consider L Ă Fq

of size |L| ą k which is either a cyclic group of order a power of two, or an additive subgroup of Fq.
We will use the notations introduced in Section 2.1.4 and will consider L0 = L, L1, . . . , Lr as defined
there.

Set k0 – k. For 0 ă i ď r, define ki+1 –
ki
2 . In particular, for all i, we have ki ă |Li|. In the

sequel, we consider a sequence of tensor products of RS codes (RSm
i)0ďiďr, where RSm

i is a shorthand
notation for RS

[
Fq, Li, ki

]bm, regardless we are in Case 2.1 or Case 2.2.
Notice that, for all i P [0, r], we have ki ă |Li|. Moreover, each code RSm

i has same rate R –(
k
|L|

)m
. We denote λi the relative distance of the code RSm

i , i.e. λi =
(

1´ ki´1
|Li|

)m
. We have that

mini λi ě
(

1´ k
|L|

)m
.

4.3.2 Folding operators locally computable from 2m queries

For each code RSm
i , 0 ď i ă r, we define a family of folding operators satisfying the distance

preservation property. They will enable us to iteratively reduce the problem of proximity testing to
a code RSm

i to a problem of size 2m times smaller, namely proximity testing to RSm
i+1.

Definition 4.7 (Folding operators). Let i P [0, r´ 1]. Let f : Lm
i Ñ Fq be an arbitrary function and let

pf be its low-degree extension. Let (pge)ePt0,1um be the 2m m-variate polynomials provided by Proposition
4.6 applied to pf . We consider their evaluations on Lm

i+1, respectively denoted by ge. For any z P Fm
q , we

define the folding of f Fold [f , z] as the following function:

Fold [f , z] : Lm
i+1 Ñ Fq

y ÞÑ
ÿ

ePt0,1um

zege(y).

First, we show that this defines a folding operator for the code RSm
i as per Definition 3.1.

Lemma 4.8 (Completeness). For any z P Fm
q , if f P RSm

i , then Fold [f , z] P RSm
i+1.

Proof. Proposition 4.6 shows that, for all e P t0, 1um and all j P [1, m], degXj
pge ď

Y

ki´1
2

]

, which is
strictly less than ki+1 since ki is even.

Lemma 4.9 (Locality). Let f : Lm
i Ñ Fq be an arbitrary function and let z P Fm

q . The value of
Fold [f , z] at any y P Lm

i+1 can be computed with exactly 2m queries to f .

Proof. Take y = (y1, . . . , ym) P Lm
i+1. For each j P J1, mK, define Syj Ă Li the coset of Ai (defined in

Section 2.1.4) such that qi(Syj) = yj (i.e. Syj is the set of roots of the polynomial qi(X)´ yj). Set

Sy –

m
ź

j=1

Syj

and consider Pf ,y P Fq[X] the unique low-degree extension of f|Sy .

4.3. A first attempt to construct IOPP for tensor products of Reed-Solomon codes 69

Our goal is to show that for all z P Fm
q , we have

Pf ,y(z) = Fold [f , z] (y),

since it shall imply that the value of Fold [f , z] (y) can be computed by interpolating the set of points

(x, f (x)), x P Sy
(

of size 2m. By Lemma 4.5, one can write

pf (X) =
ÿ

uPU

pfu(X)qi(X1)
u1 ¨ ¨ ¨ qi(Xm)

um

with for all u P U and j P [1, m], degXj
pfu ă 2. Since the polynomial pf (X) and Pf ,y(X) agree on

Sy, we get that
pf (X) = Pf ,y(X) mod (qi(X1)´ y1, . . . , qi(Xm)´ ym)

(this follows for instance from Lemma 1.21). By definition of the low-degree extension, we have
degXj

Pf ,y ă 2 for all j P J1, mK, thus

Pf ,y(X) =
ÿ

uPU

pfu(X)yu.

For each u P U, write each polynomial pfu P Fq[X] as

pfu(X) =
ÿ

ePt0,1um

au,eXe.

Proof and result of Proposition 4.6 shows that each polynomial pge P Fq[X] which appears in Defini-
tion 4.7 is equal to

ř

uPU au,eXu. Therefore, for all y P Lm
i+1, we have

Pf ,y(X) =
ÿ

ePt0,1um

Xe
pge(y).

Finally, for all z P Fm
q and y P Lm

i+1, the evaluation of Fold [f , z] at y can be obtained by evaluating
Pf ,y at z.

Let us now show that Definition 4.7 satisfies distance preservation (Definition 3.4).

Proposition 4.10 (Distance preservation). Let fi : Lm
i Ñ Fq be an arbitrary function. Let ε P

(
0, 1

3

)
and δ ă 1´ (1´ λi+1 + ε)

1
3 , where λi+1 denotes the relative distance of RSm

i+1. Let ϕi : Lm
i Ñ [0, 1]

and ϕi+1 : Lm
i+1 Ñ [0, 1] be weight functions such that

@y P Lm
i+1, ϕi+1(y) ď

1
2m

ÿ

xPSy

ϕi(x).

If f : Lm
i Ñ Fq has weighted agreement agreeϕi

(f ,RSm
i) ă 1´ δ, then

Pr
zPFm

q

[
agreeϕi+1

(Fold [f , z] ,RSm
i+1) ą 1´ δ + mε

]
ă

2m
ε2q

.

70 Chapter 4. Proximity testing for multivariate polynomial codes

Proof. We proceed by contraposition and we assume

Pr
zPFm

q

[
agreeϕi+1

(Fold [f , z] ,RSm
i+1) ą 1´ δ + mε

]
ě

2m
ε2q

.

Applying Proposition 3.13 on Fold [f , z] =
ř

ePt0,1um zege, we get that there exist T Ă Lm
i+1 and

(ve)ePt0,1um , ve P RS
m
i+1, satisfying

–
ÿ

yPT

ϕi+1(y) ě (1´ δ)
ˇ

ˇLm
i+1

ˇ

ˇ,

– for all e P t0, 1um, ge|T = ve|T.

For each e P t0, 1um, let us consider pve P Fq[X] the polynomial of individual degrees less than ki+1

associated with the codeword ve P RS
m
i+1. Let R be the polynomial defined by

R(X) –
ÿ

ePt0,1um

Xe
pve(qi(X1), . . . , qi(Xm))

and v be the evaluation of R on Lm
i .

Since ki+1 ď ki/2, we have degXj
R ď 1 + 2 ¨ (ki+1 ´ 1) ă ki, hence v P RSm

i . For all y P T and
x P Sy, i.e. π(x) = y, v(x) =

ř

ePt0,1um xeve(π(x)) and

f (x) =
ÿ

ePt0,1um

xe
pge(y) =

ÿ

ePt0,1um

xege(y) =
ÿ

ePt0,1um

xeve(y) = v(x). (4.4)

Thus v agrees with f on ST –
Ů

yPT
Sy. Since v P RSm

i , we have

agreeϕi
(f ,RSm

i) ě
1

ˇ

ˇLm
i

ˇ

ˇ

ÿ

xPST

ϕi(x) =
1

ˇ

ˇLm
i

ˇ

ˇ

ÿ

yPT

ÿ

xPSy

ϕi(x) ě
1

ˇ

ˇLm
i+1

ˇ

ˇ

ÿ

yPT

ϕi+1(y).

Eventually, we conclude that agreeϕi
(f ,RSm

i) ě 1´ δ by definition of T. This contradicts the
hypothesis on f .

4.3.3 IOPP for tensor product of RS codes

Given a sequence of codes (RSm
i)0ďiďr as defined in Section 4.3.1 and a family of folding operators

for each code RSm
i (see Section 4.3.2), the generic construction described in Section 3.1.2 leads to

a public-coin IOPP (PRSm , VRSm) for the code RSm
0 .

Notice that the last function fr is supposed to be constant. Therefore, we use the variant of the
protocol described in Remark 3.7. Specifically, instead of sending fr during the COMMIT phase, the
prover PRSm sends a single field element β P Fq. The verifier VRSm does not run a membership test
to Cr but checks the equation β = Fold [fr´1, zr´1] (yr).

The properties of the resulting IOPP system (PRSm , VRSm) are displayed in the following theorem.

Theorem 4.11. Let k, m be positive integers such that k ą 1 is a power of two. Let L Ă Fˆq as described
in Section 2.1.4 such that k ă |L|. Then, the generic construction of Section 3.1.2 leads to public-coin
IOPP system (PRSm , VRSm) for the tensor product code RS

[
Fq, L, k

]bm of blocklength nm satisfying:

4.4. IOPP for tensor product of RS codes by folding with respect to each variable 71

Completeness: If f P RS
[
Fq, L, k

]bm and if the oracles f1, . . . fr are computed by an honest prover
PRSm , then VRSm outputs accept with probability 1.

Soundness: Assume that f : Lm Ñ Fq is δ-far from RS
[
Fq, L, k

]bm. Define λ –

(
1´ k

|L|

)m
and,

for any ε P
(
0, 1

3

)
, set γ(λ, ε) – 1´ (1´ λ + ε)1/3. Then, for any unbounded prover P˚, the

verifier VRSm outputs accept after α repetitions of the QUERY phase with probability at most

2m log k
ε2q

+ (1´min(δ, γ(ε, λ)) + εm log k)α.

Moreover, (PRSm , VRSm) has the following properties:
– round complexity r = log k,
– proof length l ă nm

2m´1 ,
– query complexity q = α2m log k + 1,
– prover complexity tp ă 4(m + 2)nm,
– verifier complexity tv ă 4α(2m + m) log k.

Proof. We apply the construction of the public-coin IOPP system presented in Section 3.1.2 with
the family of folding operators defined in Section 4.3.2. Completeness and soundness follow from
Theorem 3.8, recalling that the minimum distances of the codes RSm

0 , . . . ,RSm
r´1 are all greater than(

1´ k
|L|

)m
. The number of round is r = log k ă log |L| by definition. For a single repetition of the

query test, VRSm queries each oracle fi, i P J0, r´ 1K, at 2m locations. The verifier retrieves β a single
time, which yields the claimed query complexity.

The total proof length is
r
ÿ

i=1

|Lm
i | =

r
ÿ

i=1

nm

2mi ă
nm

2m ´ 1
.

We examine prover complexity. Let f : Lm
i Ñ Fq and z P Fm

q . For each y P Lm
i+1, the prover evaluates

the low-degree extension Pf ,y(X) of f|Sy at z, where Sy = π´1
i (tyu). It follows from Lemma 4.4

that the number of operations to evaluate Fold [f , z] on Lm
i+1 is 4(2m + m)

ˇ

ˇLm
i+1

ˇ

ˇ. We deduce that
the cost of honestly generating PRSm ’s messages is

r
ÿ

i=1

4(2m + m)
ˇ

ˇLm
i+1

ˇ

ˇ ă 4(2m + m)
nm

2m ´ 1
ď 4(m + 2)nm.

We also deduce from Lemma 4.4 that the verifier complexity is less than α
řr

i=1 4(2m + m).

4.4 IOPP for tensor product of RS codes by folding with respect to each
variable

The construction presented in this section essentially consists in applying the FRI protocol to each
variable. We use the possibilty of folding with respect to a single indeterminate, instead of folding
along all the indeterminates at once. We call this partial folding.

Let us first present the idea for the case where m = 2 and L is a multiplicative subgroup of a
field of odd characteristic. Given a function f : L2 Ñ Fq, and pf (X1, X2) its associated low-degree

72 Chapter 4. Proximity testing for multivariate polynomial codes

extension, we can decompose it as
pf1(X1, X2) = pg0(X2

1 , X2) + X1pg1(X2
1 , X2).

For a P F, the notation FoldX1 [f , a] : q(L)ˆ L Ñ Fq will refer to the function whose low-degree
extension is the polynomial

pg0(X1, X2) + zpg1(X1, X2).

As for the univariate case (Section 2.1.5), for any y P q(L) and a P Fq, one can computeFoldX1 [f , a](y)
from exactly two entries of f . Such a folding operator FoldX1 [¨, ¨] will allow us to reduce a problem
of proximity to a code RS

[
Fq, L, k

]b2 to a similar but smaller problem, which is associated to the
code

RS
[
Fq, q(L), k/2

]
b RS

[
Fq, L, k

]
.

Remark 4.12. We can also write
pf (X1, X2) = ph0(X1, X2

2) + X2
ph1(X1, X2

2),

and given b P Fq, we can define FoldX2 [f , b] : L1 ˆ q(L2) Ñ Fq whose low-degree extension is
ph0(X1, X2)+ bph1(X1, X2). A simple calculation shows that partial folding admits a “commutative prop-
erty”, namely for f : L1 ˆ L2 Ñ Fq, and z = (a, b) P F2, we have

Fold [f , z] = FoldX2 [FoldX1 [f , a], b] = FoldX1 [FoldX2 [f , b], a]. (4.5)

Let us now assume that we want to construct an IOPP for a m-wise tensor product of Reed-
Solomon code RS

[
Fq, L0, k0

]bm. The idea of the construction is to start by folding with respect to the
first variable, until a sufficiently small degree with respect to X1 is reached. We use s = log k0 rounds
of interaction to reduce the problem of proximity for RS

[
Fq, L0, k0

]bm to a problem of proximity for

RS
[
Fq, Ls, ks

]
b RS

[
Fq, L0, k0

]b(m´1) .

Then, we repeat the process with respect to the second variable, using s = log k0 rounds of in-
teractions to reduce the proximity problem for RS

[
Fq, Ls, ks

]
bRS

[
Fq, L0, k0

]b(m´1) to a proximity
problem for RS

[
Fq, Ls, ks

]b2
b RS

[
Fq, L0, k0

]b(m´2).
By repeating this process for the remaining indeterminates, namely after a total number of rounds

r – m log k0, we are left with a trivial proximity problem for the code

RS
[
Fq, Ls, ks

]bm .

Compared to Section 4.3, this approach yields an IOPP for tensor product of Reed-Solomon codes
that has the exact same efficiency parameters than the FRI protocol, which deals with the univariate
case. In particular, even when considering that the number of variables m is not constant, we achieve
strictly linear prover time and strictly logarithmic verification time.

In order not to overload notations, we present our IOPP construction for a m-wise tensor product
of Reed-Solomon codes. One can readily verify that the construction we are going to present can
be generalized to the case where the initial proximity testing problem is concerned with a tensor
product of distinct Reed-Solomon codes, namely

RS
[
Fq, L(1), k(1)

]
b RS

[
Fq, L(2), k(2)

]
b ¨ ¨ ¨ b RS

[
Fq, L(m), k(m)

]
with different degree bounds

(
k(j))

1ďjďm and supports
(

L(j))
0ďjďm.

4.4. IOPP for tensor product of RS codes by folding with respect to each variable 73

4.4.1 Sequence of codes with length divided by 2

Once again, we assume that L0, . . . , Lr Ă Fq satisfy Case 2.1 or Case 2.2 of Section 2.1.4. Let k be a
power of two and set s – log k. As in Section 4.3.1, we set L0 – L and k0 – k. For any i P J0, s´ 1K,
Li+1 = qi(Li), where qi is defined in Section 2.1.4, and ki+1 –

ki
2 . Letting r – ms, we define a

sequence of r + 1 codes C0, C1, . . . , Cr as follows. The first code C0 is C0 – RS
[
Fq, L0, k0

]bm. For
j P J1, mK and i P J0, s´ 1K, the code C(j´1)s+i is

C(j´1)s+i – RS
[
Fq, Ls, ks

]bj´1
b RS

[
Fq, Li, ki

]
b RS

[
Fq, L0, k0

]bm´j ,

where we use the convention that, for any Fq-linear space V, Vb0 = Fq and Vb1 = V (we have
Fq bV = V bFq = V).

4.4.2 Partial folding operators

Let us fix j P J1, mK and i P J0, s´ 1K for this subsection. We want to define a folding operator with
respect to the j-th variable. Once again, we assume deg qi = 2 to simplify the exposition. One can
readily verify that the arguments presented here can be carried over to the case deg qi ě 2.

For z P Fq, we construct a folding operator

Foldj [¨, z] : FLj´1
s ˆLiˆLm´j

0 ˆF Ñ FLj´1
s ˆLi+1ˆLm´j

0

that will allow us to reduce the problem of proximity to the code C(j´1)s+i to a problem of half the
size.

For X = (X1, X2, . . . , Xm), we denote by X
sj the tuple obtained by removing the j-th entry of

X, i.e. X
sj = (X1, . . . , Xj´1, Xj+1, . . . , Xm). Accordingly, we use the notation Fq[Xsj] to refer to

the polynomial ring Fq[X1, . . . , Xj´1, Xj+1, . . . , Xm]. The following corollary is a straightforward
generalization of Lemma 2.8.

Corollary 4.13. Given a polynomial pf P Fq[Xsj][Xj] and a monic polynomial q P Fq[X] of degree 2,
there are two polynomials pg0, pg1 P Fq[Xsj][Xj] such that

pf (X
sj)(Xj) = pg0(X

sj)(qi(Xj)) + Xj pg1(X
sj)(qi(Xj)), (4.6)

and, for all j1 P J1, mK,

degXj1
pg0, degXj1

pg1 ď

$

&

%

degXj1
pf

2 if j1 = j

degXj1
pf otherwise.

Definition 4.14. Given qi(X) defined in Section 2.1.4, we define πj,i : Fm
q Ñ Fm

q as the function

πj,i : (x1, . . . , xm) ÞÑ (x1, . . . , xj´1, qi(xj), xj+1, . . . , xm).

Definition 4.15 (Folding with respect to the j-th variable). Let f : Lj´1
s ˆ Li ˆ Lm´j

0 Ñ Fq be an
arbitrary function and pf P Fq[X] its low-degree extension. Let g0, g1 be the evaluations on Lj´1

s ˆ

Li+1 ˆ Lm´j
0 of the polynomials pg0, pg1 P Fq[X] given by Corollary 4.13, respectively. For z P Fq, we

define the j-th partial folding of f as the function

Foldj [f , z] : Lj´1
s ˆ Li+1 ˆ Lm´j

0 Ñ Fq

defined by Foldj [f , z] – g0 + zg1.

74 Chapter 4. Proximity testing for multivariate polynomial codes

An immediate consequence of Definition 4.15 is the following lemma.

Lemma 4.16 (Completeness). For any z P Fq, if f P C(j´1)s+i, then Foldj [f , z] P C(j´1)s+i+1.

Lemma 4.17 (Local computability). Let f : Lj´1
s ˆ Li ˆ Lm´j

0 Ñ Fq be an arbitrary function and
let z P Fq. For any y P Lj´1

s ˆ Li+1 ˆ Lm´j
0 , the value Foldj [f , z](y) can be computed with exactly 2

entries of f .

Proof. Let y P Lj´1
s ˆ Li+1 ˆ Lm´j

0 . Denote Sy Ă Lj´1
s ˆ Li ˆ Lm´j

0 the set

Sy – π´1
j,i (tyu).

Since qi(X) has two distinct roots, the set Sy has 2 elements. Let us consider Pf ,y P Fq[X] the
polynomial of degree less than 2 such that, for all x P Sy,

Pf ,y(xj) = f (x).

We have that the polynomial equation

Pf ,y(X) = pg0(ysj)(yj) + Xpg0(ysj)(yj)

holds, since both polynomials have degree less than 2 and agree on two distinct values. Recalling
Definition 4.15 we have, for all z P Fq,

Pf ,y(z) = Foldj [f , z](y).

In particular, the value Foldj [f , z](y) can be computed by interpolating the set of points

(xj, f (x)) | x P Sy
(

of size two.

Proposition 4.18 (Distance preservation). Let f : Lj´1
s ˆ Li ˆ Lm´j

0 Ñ Fq be an arbitrary function.
Let ε P

(
0, 1

3

)
and δ ă 1 ´ (1 ´ ∆(C(j´1)s+i+1) + ε)

1
3 . Let ϕi : Lj´1

s ˆ Li ˆ Lm´j
0 Ñ [0, 1] and

ϕi+1 : Lj´1
s ˆ Li+1 ˆ Lm´j

0 Ñ [0, 1] be weight functions such that

@y P Lj´1
s ˆ Li+1 ˆ Lm´j

0 , ϕi+1(y) ď
1
2

ÿ

xPSy

ϕi(x).

If f : Lj´1
s ˆ Li ˆ Lm´j

0 Ñ Fq has weighted agreement agreeϕi
(f , C(j´1)s+i) ă 1´ δ, then

Pr
zPFq

[
agreeϕi+1

(Foldj [f , z], C(j´1)s+i+1) ą 1´ δ + ε
]
ă

2
ε2q

.

Proof. We proceed by contraposition and we assume

Pr
zPFq

[
agreeϕi+1

(Foldj [f , z], C(j´1)s+i+1) ą 1´ δ + ε
]
ě

2
ε2q

.

Applying Lemma 3.14 on Foldj [f , z] = g0 + zg1, we get that there exist T Ă Lj´1
s ˆ Li+1 ˆ Lm´j

0
and v0, v1 P C(j´1)s+i+1, satisfying

4.4. IOPP for tensor product of RS codes by folding with respect to each variable 75

–
ÿ

yPT

ϕi+1(y) ě (1´ δ)
ˇ

ˇ

ˇ
Lj´1

s ˆ Li+1 ˆ Lm´j
0

ˇ

ˇ

ˇ
,

– g0|T = v0|T and g1|T = v1|T.

Let us consider pv0, pv1 P Fq[X] the polynomial associated to the codewords v0, v1 P C(j´1)s+i+1
respectively. We have:

degXj1
pv0, degXj1

pv1

$

&

%

ă ks, for 1 ď j1 ă j,
ă ki, for j1 = j,
ă k0, for j ă j1 ď m.

Let R P Fq[Xsj][Xj] be the polynomial

R(X
sj)(Xj) – pv0(X

sj)(qi(Xj)) + Xjv1(X
sj)(qi(Xj)).

Consider v the evaluation on Lj´1
s ˆ Li ˆ Lm´j

0 of R(X) viewed as a polynomial in Fq[X]. Since
ki+1 ď ki/2, we have degXj

R ď 1 + 2 ¨ (ki+1 ´ 1) ă ki, and thus v P C(j´1)s+i.
For all y P T and x P π´1

j,i (tyu), we have

f (x) = pg0(πj,i(x)) + xj pg1(πj,i(x))

= g0(πj,i(x)) + xjg1(πj,i(x))

= v0(πj,i(x)) + xjv1(πj,i(x))

= v(x).

Thus v agrees with f on ST –
Ů

yPT
Sy. Since v P C(j´1)s+i, we have

agreeϕi
(f , C(j´1)s+i) ě

1
ˇ

ˇ

ˇ
Lj´1

s ˆ Li ˆ Lm´j
0

ˇ

ˇ

ˇ

ÿ

xPST

ϕi(x)

=
1

ˇ

ˇ

ˇ
Lj´1

s ˆ Li ˆ Lm´j
0

ˇ

ˇ

ˇ

ÿ

yPT

ÿ

xPSy

ϕi(x)

ě
1

ˇ

ˇ

ˇ
Lj´1

s ˆ Li+1 ˆ Lm´j
0

ˇ

ˇ

ˇ

ÿ

yPT

ϕi+1(y).

Eventually, we conclude that agreeϕi
(f , C(j´1)s+i) ě 1´ δ by definition of T. This contradicts

the hypothesis on f .

4.4.3 Improved IOPP for tensor product of RS codes

Given a sequence of codes (Ci)0ďiďr as defined in Section 4.4.1 and a family of folding operators for
each code Ci as in Section 4.4.2, Construction 3.5 leads to a public-coin IOPP (PRSm , VRSm) for the
code C0.

With our choices of parameters, the last function fr is again supposed to be constant. Once again,
we use the variant of the protocol described in Remark 3.7. For the last round of the COMMIT phase,
the prover PRSm sends a single field element β P Fq and the verifier checks that

β = Foldj [fr´1, zr´1](yr).

This leads to the following theorem.

76 Chapter 4. Proximity testing for multivariate polynomial codes

Theorem 4.19. Let k, m be positive integers such that k ą 1 is a power of two. Let L Ă Fˆq be a set of size
|L| ą k defined as per Section 2.1.4. Construction 3.5 with the folding operators defined as per Defintion
4.15 leads to public-coin IOPP system (PRSm , VRSm) for the tensor product code RS

[
Fq, L, k

]bm of
blocklength nm satisfying:

Completeness: If f P RS
[
Fq, L, k

]bm and if the oracles f1, . . . fr are computed by an honest prover
PRSm , then VRSm outputs accept with probability 1.

Soundness: Assume that f : Lm Ñ Fq is δ-far from RS
[
Fq, L, k

]bm. Define λ –

(
1´ k

|L|

)m
and,

for any ε P
(
0, 1

3

)
, set γ(λ, ε) – 1´ (1´ λ + ε)1/3. Then, for any unbounded prover P˚, the

verifier VRSm outputs accept after α repetitions of the QUERY phase with probability at most

2m log k
ε2q

+ (1´min(δ, γ(ε, λ)) + εm log k)α.

Moreover, (PRSm , VRSm) has the following properties:
– rounds complexity r = log km,
– proof length l ă nm,
– query complexity q = 2α log km + 1,
– prover complexity tp ă 8nm,
– verifier complexity tv ă 8α log km.

Proof. Completeness and soundness follows from Theorem 3.8 by observing that the relative dis-
tances of the codes C0, . . . , Cr are greater than

(
1´ k

|L|

)m
.

By construction, the IOPP has r = log(km) rounds. During the QUERY phase, the verifier makes
2 queries to each function f0, . . . , fr´1. The verifier also queries the element β sent during the last
round of the COMMIT phase. This gives the claimed query complexity.

Let us denote by ni the length of the code Ci for i P J0, rK. The proof length is sum of the ni ’s for
i P J1, rK. Since ni+1 = ni/2, the sum of the first terms of a geometric sequence gives the claimed
proof length.

For fixed j P J1, mK , i P J0, s´ 1K and y P Lj´1
s ˆ qi(Li)ˆ Lm´j

0 , we compute the number c of
field operations to perform in order to get the value Foldj [f , z](y). Recall that Foldj [f , z](y) can
be computed by interpolating the set of points

!

(xj, f (y
sj)(xj)) | qi(xj) = yj

)

and evaluating the
obtained polynomial at z.

We consider xj, x1j the two distinct roots of the polynomial qi(X)´ yj. For

x – (y1, . . . , yj´1, xj, yj+1, . . . , ym) and x1 – (y1, . . . , yj´1, x1j, yj+1, . . . , ym),

we have
Foldj [f , z](y) = Pf ,y(z) =

1
xj ´ x1j

(
f (x)(z´ xj)´ f (x1)(z´ x1j)

)
.

In this case, computing Foldj [f , z](y) takes at most 8 field operations.
At each round, the prover performs 8ni computations. Summing over r rounds, we get the

claimed prover complexity. During one round of the QUERY phase, the verifier evaluates Foldj [f , z]
at a single point, therefore the verifier complexity for a repetition parameter s is 8αr ď 8αm log k.

4.4. IOPP for tensor product of RS codes by folding with respect to each variable 77

Remark 4.20. In the case where the polynomial qi has degree larger than 2, one can compute the cost
of evaluating the folding of a function at a single point by looking at the number of operations needed to
interpolate and evaluate at a single point a polynomial of degree less than deg qi (e.g. using Lagrange
interpolation formula).

Comparison with the univariate case. In Figure 4.2, we present the parameters of the FRI pro-
tocol for RS codes and our IOPP for tensor product of RS codes side by side, for one repetition of
the QUERY phase. The parameters for the FRI protocol are taken from Theorem 2.17. We consider
codes of blocklength N and dimension K and a single repetition of the QUERY phase.

Scheme Prover Verifier Query Length Rounds
RS IOPP [BBHR18a] ă 8N ă 8 log K 2 log K + 1 ă N log K

RSbm IOPP (Thm. 4.11) ă (2m + 4)N ă 4
(

2m

m + 1
)

log K 2m

m log K ă N
2m´1

log K
m

RSbm IOPP (Thm. 4.19) ă 8N ă 8 log K 2 log K + 1 ă N log K

Figure 4.2: Comparison between the IOPP for a RS code of [BBHR18a] and our IOPPs for a tensor
product of RS code. We compare codes with length N and dimension K.

For a single repetition of the QUERY phase, we observe the same efficiency parameters for the
univariate case and the multivariate case. However, in order to reach arbitrary constant soundness
error, the QUERY phase of the IOPP is repeated. This process increases query complexity and verifier
running time by a multiplicative factor independent of of the code length.

Soundness of the FRI protocol [BBHR18a] has been analyzed in [BBHR18a, BKS18, BGKS20,
BCI+20]. For a Reed-Solomon code RS

[
Fq, L, K

]
with relative distance λ = 1´ K´1

|L| and alphabet
size linear in the code length |L|, the soundness is given by [BGKS20]. In that case, for any proximity
parameter δ such that

δ ă 1´ (1´ λ + ε)1/3 , (4.7)

a function f P FL
q that is δ-far from RS

[
Fq, L, K

]
is falsely accepted after α repetitions of the QUERY

phase with probability at most

2 log K
ε2
ˇ

ˇFq
ˇ

ˇ

+ (1´ δ + ε log K)α. (4.8)

Remark 4.21. Authors of [BGKS20] also showed that the bound in Equation 4.7 is tight for RS codes
that are evaluated over the entire field, and when this field has characteristic two. Subsequently,
[BCI+20] improved soundness of the FRI protocol for quadratic-size fields using symbolic list-decoding
algorithms for RS codes.

When considering a tensor product code RS
[
Fq, L, k

]bm with dimension K = km, the IOPP for
tensor products of RS codes requires a larger repetition parameter α in order to achieve the same
targeted soundness error as for a RS code RS

[
Fq, L, K

]
. Indeed, Theorem 4.19 shows that the upper

bound on soundness error in Equation 4.8 holds for proximity parameter δ ă 1´ (1´ λ + ε)1/3,
where λ is the distance of the tensored code RS

[
Fq, L, k

]bm, i.e. λ =
(

1´ k´1
|L|

)m
.

78 Chapter 4. Proximity testing for multivariate polynomial codes

4.5 Short Reed-Muller codes

Our IOPP for Short Reed-Muller codes resembles the construction presented in Section 4.3, since the
approach of folding according to each variable (Section 4.4) cannot be reproduced.

4.5.1 Sequence of codes

Similarly to Section 4.3.1, we will consider two families of short Reed-Muller codes, depending on
whether Case 2.1 or Case 2.2 holds (Section 2.1.4). Let k be a power of two, k ă |L| and set
r = log2 k. We consider L0 = L, L1, . . . , Lr as constructed in Section 2.1.4.

Set k0 – k. For 0 ă i ď r, define ki+1 –
ki
2 . In particular, for all i, we have ki ă |Li|. Let us

denote by SRMi the short Reed-Muller code SRM
[
Fq, Li, m, ki

]
.

Starting from the code SRM0 = SRM
[
Fq, L, m, k

]
, this defines a sequence of Reed-Muller codes

(SRMi)0ďiďr. For each i, the relative distance λi of SRMi is at least 1´ ki´1
|Li|

, hence mini λi ě 1´ k
|L| .

4.5.2 Folding operators

Let (SRMi)0ďiďr be a sequence of short Reed-Muller codes defined as described in Section 4.5.1
(regardless we are in Case 2.1 or Case 2.2). For each i P J0, r´ 1K, we define a family of folding
operators which will enables us to iteratively reduce the problem of proximity testing to a code SRMi
to a problem of size 2m times smaller, namely proximity testing to SRMi+1.

Note that the sequences of evaluation domains (Lm
i)i and degree bounds (ki)i are defined exactly

the same way as in the tensor product case. However, if we design folding operators for Reed-
Muller codes by following the same construction than in Definition 4.7, then the distance preservation
property does not hold anymore. For this reason, some balancing functions1 are involved in the
definition of folding operators for Reed-Muller codes (and will also appear in the context of algebraic-
geometry codes in Chapter 5)

Definition 4.22 (Balancing functions). Let i P J0, r´ 1K. For any e P t0, 1um, we call a balancing
function any map he : Lm

i+1 Ñ Fq which corresponds to the evaluation of a m-variate multilinear
monic monomial phe of total degree exactly

Y

wH(e)
2

]

. We call (he)ePt0,1um a balancing tuple for the code
SRMi+1.

Definition 4.23 (Folding operator). Let i P [0, r´ 1]. Let (he)ePt0,1um be a balancing tuple for SRMi+1

and let f : Lm
i Ñ Fq be an arbitrary function. Given (pge)ePt0,1um the 2m m-variate polynomials of the

decomposition of Proposition 4.6, denote ge the evaluation on Lm
i+1 of pge. For any (z, z1) P

(
Fm

q

)2
, we

define the folding of f as the function Fold [f , (z, z1)] : Lm
i+1 Ñ Fq such that

Fold [f , (z, z1)] (y) =
ÿ

ePt0,1um

zege(y) +
ÿ

ePt0,1um

e‰0

z1ehe(y)ge(y). (4.9)

Lemmas 4.24 and 4.25 show that this defines a folding operator for SRMi as per Definition 3.1.

1The introduction of those balancing functions is similar to a technique introduced in [BS08], which is commonly used
in the construction of proof systems to handle combinations of polynomials with distinct degree bounds.

4.5. Short Reed-Muller codes 79

Lemma 4.24 (Completeness). Let (z, z1) P
(

Fm
q

)2
, and f : Lm

i Ñ Fq P SRMi, then Fold [f , (z, z1)] :
Lm

i+1 Ñ Fq belongs to SRMi+1.

Proof. Proof relies on Proposition 4.6. If f P SRMi, then the polynomial pf (X) associated to f has
total degree at most ki ´ 1. Therefore, for any e P t0, 1um, deg pge ď

Y

ki´1´wH(e)
2

]

. Since ki is

even, we have both deg pge ă ki+1 and deg
(
phepge

)
ď

Y

wH(e)
2

]

+
Y

ki´1´wH(e)
2

]

ă ki+1. This means
Fold [f , (z, z1)] : Lm

i+1 Ñ Fq corresponds to the evaluation of a polynomial in Fq[X] of total degree
less than ki+1.

Lemma 4.25 (Locality). Let f : Lm
i Ñ Fq be an arbitrary function and let (z, z1) P

(
Fm

q

)2
. Given

y P Lm
i+1, the value Fold [f , (z, z1)] (y) can be computed with exactly 2m queries to f .

Proof. The proof follows from the one of Lemma 4.9. For any y P Lm
i+1, the vector (ge(y))ePt0,1um

corresponds to the vector of coefficients of the low-degree extension of the function f|Sy , where

Sy – tx P Lm
i | y = (qi(x1), . . . , qi(xm))u

and qi is the polynomial defined in Section 2.1.4.

Let us now show that the folding operator of Definition 4.23 satisfies distance preservation (Def-
inition 3.4).

Proposition 4.26 (Distance preservation). Denote λi+1 the minimum relative distance of SRMi+1. Let
f : Lm

i Ñ Fq be an arbitrary function. Let ε P
(
0, 2

3

)
and

δ ă min
(

1´ (1´ λi+1 + ε)
1
3 ,

1
2
(λi+1 + m

ε

2
)

)
. (4.10)

Let ϕi : Lm
i Ñ [0, 1] and ϕi+1 : Lm

i+1 Ñ [0, 1] be weight functions such that

@y P Lm
i+1, ϕi+1(y) ď

1
2m

ÿ

xPSy

ϕi(x).

If f : Lm
i Ñ Fq has weighted agreement agreeϕi

(f ,SRMi) ă 1´ δ, then

Pr
z,z1PFm

q

[
agreeϕi+1

(Fold [f , (z, z1)] , SRMi+1) ą 1´ δ + mε
]
ă

16m
ε2q

.

Proof. Let f : Lm
i Ñ Fq be such that agreeϕi

(f , SRMi) ă 1´ δ, and (pge)ePt0,1um the 2m m-variate
polynomials appearing in the decomposition of pf in Proposition 4.6. For any z P Fm

q , denote uz

the function uz =
ř

ePt0,1um zege, and for any e P t0, 1um
z t0u, define ue = hege. One can rewrite

Fold [f , (z, z1)] as follows:
Fold [f , (z, z1)] = uz +

ÿ

ePt0,1um

e‰0

z1eue.

We proceed by contraposition, assuming that

Pr
z,z1PFm

q

[
agreeϕi+1

(Fold [f , (z, z1)] ,SRMi+1) ą 1´ δ + mε
]
ě

16m
ε2q

,

80 Chapter 4. Proximity testing for multivariate polynomial codes

or, in other words,

Pr
zPFm

q

[
Pr

z1PFm
q

[
agreeϕi+1

(Fold [f , (z, z1)] ,SRMi+1) ą 1´ δ + mε
]
ě

8m
ε2q

]
ě

8m
ε2q

.

Let

A –

#

z P Fm
q | Pr

z1PFm
q

[
agreeϕi+1

(Fold [f , (z, z1)] , SRMi+1) ą 1´ δ + mε
]
ě

8m
ε2q

+

.

Proposition 3.13 implies that, for any z P A, there exist Tz Ă Lm
i+1 and (wz,e)ePt0,1um with

wz,e P SRMi+1 such that

–
ÿ

yPTz

ϕi+1(y) ě (1´ δ + m
ε

2
)
ˇ

ˇLm
i+1

ˇ

ˇ,

– wz,0|Tz
= uz|Tz ,

– for each e P t0, 1um
z t0u, wz,e|Tz

= ue|Tz .

Thus, for all z P A,

agreeϕi+1

 ÿ

ePt0,1um

zege,SRMi+1

 ě 1
ˇ

ˇLm
i+1

ˇ

ˇ

ÿ

yPTz

ϕi+1(y) ě 1´ δ + m
ε

2
.

Since |A| ą 2m
ε2 qm´1, we have

Pr
zPFm

q

agreeϕi+1

 ÿ

ePt0,1um

zege,SRMi+1

 ą 1´ δ + m
ε

2

 ě 8m
ε2q

.

Again, by Proposition 3.13, we obtain T Ă Lm
i+1 and (ve)ePt0,1um with ve P SRMi+1 such that

–
ÿ

yPT

ϕi+1(y) ě (1´ δ)
ˇ

ˇLm
i+1

ˇ

ˇ,

– for each e P t0, 1um, ve|T = ge|T.

Fix z P A. For any e P t0, 1um, e ‰ 0, we have

wz,e|TzXT = ue|TzXT = (hege)|TzXT = (heve)|TzXT.

Besides, recalling (4.10), the intersection of Tz and T satisfies

|Tz X T| = |Tz|+ |T| ´ |Tz Y T|

ě
ÿ

yPTz

ϕi+1(y) +
ÿ

yPT

ϕi+1(y)´
ˇ

ˇLm
i+1

ˇ

ˇ

ě

(
1´ 2δ + m

ε

2

)
ˇ

ˇLm
i+1

ˇ

ˇ ,

ě (1´ λi+1)
ˇ

ˇLm
i+1

ˇ

ˇ .

Since λi+1 is the minimum relative distance of SRMi+1, we deduce that wz,e = heve for every
e P t0, 1um

z t0u.

4.5. Short Reed-Muller codes 81

For any e P t0, 1um, consider polynomials pve, pwe,z P Fq[X] of total degrees at most ki+1, such
that for all x P Lm

i+1, pve(x) = ve(x) and pwe,z(x) = we,z(x). Hence, for all x P Lm
i+1,

pwe,z(x) = pve(x)phe(x),

which means that
pwe,z ´ pvephe = 0 mod (Zi+1(X1), . . . , Zi+1(Xm)) , (4.11)

where Zi+1(X) =
ś

aPLi+1
(X ´ a) has degree |Li+1|. Since ki+1 ă |Li+1|, we have that for any j,

degXj
pve ď |Li+1| ´ 2. Moreover, degXi

phe ď 1, thus the above equality is true without the modulo:

pwe,z ´ pvephe = 0. (4.12)

Therefore, deg pve ă ki+1 ´

Y

wH(e)
2

]

. For all e P t0, 1um, we have

deg Xe
pve(qi(X1) . . . , qi(Xm)) ď wH(e) + 2

(
ki+1 ´ 1´

wH(e)
2

)
ă ki,

hence the polynomial R P Fq[X] defined by

R(X) –
ÿ

ePt0,1um

Xe
pve(qi(X1) . . . , qi(Xm))

has total degree deg R ă ki. Thus the evaluation of R on Lm
i is a codeword v P SRMi. For any y P T

and x P Sy, we have
f (x) =

ÿ

ePt0,1um

xege(y) =
ÿ

ePt0,1um

xeve(y) = v(x).

Hence, v agrees with the function f on the set ST :=
Ů

yPT Sy. Since v P SRMi, we have

agreeϕi
(f ,SRMi) ě

1
ˇ

ˇLm
i

ˇ

ˇ

ÿ

xPST

ϕi(x) =
1

ˇ

ˇLm
i

ˇ

ˇ

ÿ

yPT

ÿ

xPSy

ϕi(x) ě
1

ˇ

ˇLm
i+1

ˇ

ˇ

ÿ

yPT

ϕi+1(y).

Eventually, we conclude that agreeϕi
(f ,SRMi) ě 1´ δ by definition of T, which is a contradiction.

Remark 4.27. Note that for Reed-Muller codes whose degree bound is larger than |L|, we would not be
able to deduce (4.12) from (4.11). Nonetheless, for applications to proof systems, the evaluation map is
typically injective, i.e. k ď |L|.

4.5.3 IOPP for short Reed-Muller codes

Given a sequence of codes (SRMi)0ďiďr as defined in Section 4.5.1 and a family of folding operators
for each code SRMi (see Section 4.5.2), the generic construction described proposed in Section 3.1.2
leads to a public-coin IOPP (PRM, VRM) for the code SRM0. As in Section 4.3, the last function fr

is supposed to be constant. Therefore, we use the variant of the protocol described in Remark 3.7.
Specifically, instead of sending fr during the COMMIT phase, the prover PRM sends a single field
element β P Fq. The verifier VRM does not run a membership test to Cr but checks the equation
β = Fold [fr´1, zr´1] (yr). The properties of the resulting IOPP system (PRM, PRM) are displayed
in the following theorem.

82 Chapter 4. Proximity testing for multivariate polynomial codes

Theorem 4.28. Let k, m be positive integers. Assume k is a power of two. Let L Ă Fˆq as described
in Section 2.1.4 such that |L| ą k. Then Construction 3.5 with the folding operators defined as per
Section 4.5.2 yields a public-coin IOPP system (PRM, VRM) for testing proximity of a function f :
Lm Ñ Fq to the Short Reed-Muller code SRM

[
Fq, L, m, k

]
satisfying

Completeness: If f P SRM
[
Fq, L, m, k

]
and if the oracles f1, . . . fr are computed by an honest prover,

then VRM outputs accept with probability 1.

Soundness: Assume that f : Lm Ñ Fq is δ-far from SRM
[
Fq, L, m, k

]
. Denote λ = 1´ k

|L| . For
any ε P

(
0, 2

3

)
, set γ(ε, λ) – min

(
1´ (1´ λ + ε)1/3, 1

2 (λ + m ε
2)
)
. Then, for any unbounded

prover P˚, the verifier VRM outputs accept after α repetitions of the QUERY phase with proba-
bility at most

16m log k
ε2q

+ (1´min(δ, γ(ε, λ)) + εm log k)α.

Moreover, (PRM, VRM) has the following properties:
– rounds complexity r ă log k,
– proof length l ă nm

2m´1 ,
– query complexity q = α2m log k + 1,
– prover complexity tp ă

(11
2 m + 14

)
nm,

– verifier complexity tv ă α2m (11
4 m + 7

)
log k.

Proof. We apply the construction of the public-coin IOPP system presented in Section 3.1.2 with
the family of folding operators defined in Section 4.5.2. Completeness and soundness follow from
Theorem 3.8. The number of rounds is r = log k ă log |L|. Query complexity and proof length are
the same as in Theorem 4.11. For soundness, recall that mini λi ě 1´ k

|L| where λi is the relative
distance of SRMi.

Let f : Lm
i Ñ Fq be an arbitrary function and let (z, z1) P

(
Fm

q

)2
. We analyze prover complexity

by first computing the cost of evaluating Fold [f , (z, z1)] on Lm
i+1. The prover PRM can compute the

vectors (ze)ePt0,1um and
(
z1e
)

ePt0,1um in less than 2 ¨ 2m multiplications. Given y P Lm
i+1, we look at

the cost of computing Fold [f , (z, z1)] (y) (see Equation (4.9)). Recalling Definition 4.22, computing
the values phe(y) for all e P t0, 1um takes at most m2m´2 operations. As shown in proof of Lemma 4.9,
the vector (ge(y)) corresponds to the coefficients of the multilinear low-degree extension of f|Sy . By
Lemma 4.3, this interpolation can be performed with 5m2m´1 arithmetic operations. Prover then
computes the first sum of Equation (4.9) using 2m multiplications and 2m ´ 1 additions. Similarly,
the second sum can be computed in less than 3 ¨ 2m arithmetic operations.

Overall, for any function f : Lm
i Ñ Fq and z, z1 P Fm

q , the prover can evaluate Fold [f , (z, z1)] :
Lm

i+1 Ñ Fq in less than

2 ¨ 2m + 5 ¨ 2m
(

1 +
11
20

m
)
ˇ

ˇLm
i+1

ˇ

ˇ ď 2m
(

11
4

m + 7
)
ˇ

ˇLm
i+1

ˇ

ˇ

arithmetic operations. We deduce that the cost of honestly generating PRSm ’s messages is

r´1
ÿ

i=0

2m
(

11
4

m + 7
)
ˇ

ˇLm
i+1

ˇ

ˇ ă 2m
(

11
4

m + 7
)

nm

2m ´ 1
ď

(
11
2

m + 14
)

nm.

4.5. Short Reed-Muller codes 83

From the discussion about prover complexity, we also get that the number of operations made by
VRM for a single consistency test is less than 2 ¨ 2m + 5 ¨ 2m (1 + 11

20 m
)
. Thus, verifier complexity is

less than αr2m (11
4 m + 7

)
.

Comparisons with the univariate case. When we compared the FRI protocol with our IOPP for
the tensor product of RS codes in Section 4.3.3, we argued that soundness is affected by the worse
relative distance of tensor codes. In constrast, a short Reed-Muller code SRM

[
Fq, L, k, m

]
has rel-

ative distance which is at least the one of a Reed-Solomon code RS
[
Fq, L, k

]
. However, soundness

of our IOPP for Reed-Muller code is worse than soundness of the FRI protocol for linear-size field
[BGKS20] due to the more complex expression of the folding operators.

In Figure 4.3, we present the parameters of the FRI protocol for RS codes and our IOPP for Reed-
Muller codes side by side for codes of blocklength N and a single repetition of theQUERY phase. The
use of balancing functions in Definition 4.23 and the fact that the partial folding approach cannot
be carried over induce some extra costs compared to the IOPP for product codes.

Scheme Prover Verifier Query Length Rounds
RS IOPP [BBHR18a] ă 6N ă 42 log N ă 2 log N ă N/3 ă log N

RM IOPP ă
(11

2 m + 14
)

N 2m (11
4 + 7

m

)
log N ă 2m

m log N ă N
2m´1 ă

log N
m

Figure 4.3: Comparison between the IOPP for a RS code of [BBHR18a] and our IOPPs for tensor of
RS codes and RM codes. Blocklength of the codes is denoted by N and m is the number of variables
of the multivariate codes.

84 Chapter 4. Proximity testing for multivariate polynomial codes

Chapter 5

Proximity testing for algebraic geometry
codes

5.1 Introduction

5.1.1 Motivations

Algebraic Geometry (AG) codes [Gop77], as evaluations of a set of functions at some designated
rational points on a given curve, extend the notion of Reed-Solomon codes. AG codes inherit many
of the interesting properties of RS codes while overcoming their main drawback of RS codes, namely
requiring an alphabet larger than their length. Therefore, replacing RS codes with AG codes is not
only natural but has also led to improvements in the past. Examples of applications of AG codes
include public key cryptography, distributed storage, secret sharing and multi-party computation.
A key feature for a family of codes to be suitable for arithmetization is a multiplication property
[Mei13], namely the component-wise multiplication of two codewords results in codewords in a
code whose minimum distance is still good. It should be noted that recent work constructed proof
systems based on codes that do not have this feature [RR20, BCG20, BCL20]. The multiplication
property actually emulates multiplication of low-degree polynomials. Algebraic geometry codes not
only feature this multiplication property but may also have arbitrary large length given a fixed finite
field F (unlike RS codes), with excellent parameters [TVZ82].

Limitations of Reed-Solomon codes. We identify two limitations of using RS codes in IOPs.
As mentioned earlier, RS codes are the simplest case of AG codes, but possess an inherent lim-

itation: the alphabet size must be larger than the block length of the code. Therefore, practical
IOP-based succinct arguments are designed over large fields.

The second limitation is related to the algebraic structure of the field. RS-IOPPs [BS08, BBHR18a]
require the set D Ă F of evaluation points to have a special structure. Concretely, the field must con-
tain a subgroup of large smooth order, typically a power of 2 which is larger than the size of the non-
deterministic computation to be verified. Depending on the applications of succinct non-interactive
arguments, a base field might already be imposed. This is for instance the case for standard digital
signature schemes. For computations whose size exceeds the order of the largest smooth subgroup
of the field, RS-IOPPs known to date can no longer be used.

We observe that lowering the size of field elements may not shorten the length of IOP-based
succinct non-interactive arguments [BCS16], since the alphabet size is a low-order term in commu-
nication complexity. There are, however, other reasonable motivations to replace RS codes with AG
ones. We explain below how AG codes could circumvent the limitations of RS codes.

86 Chapter 5. Proximity testing for algebraic geometry codes

Why can AG codes be useful? First, working over smaller fields lowers the cost of field opera-
tions1. For concrete efficiency, complexity measures such as prover time and verifier time are closely
examined. Reducing significantly the size of the alphabet would have a direct impact on the binary
cost of arithmetic operations. Smaller fields could enhance efficiency of proof systems since arithme-
tization of general circuits would be more efficient. Moreover, on the prover side, the bit complexity
of encoding codewords might be smaller.

A popular belief is that encoding with AG codes is an heavy task. It is surely true in general, but
there are explicit families of AG codes for which there are quasilinear time encoding algorithms. We
discuss more about encoding in Section 5.1.2. On another note, putting forward applications of AG
codes can motivates the study of fast coding algorithms for AG codes, in particular in the computer
algebra community.

One may be concerned by the overhead of reducing the alphabet size when targeting a soundness
error less than 2´κ. Notice that it is possible to sample enough bits of randomness from an extension
field when needed, or to repeat only some parts of the protocol (see [Sta21a, BBHR18b]). For
instance, soundness error of our IOPP is bounded from below by |F|´1. Reaching the targeting
soundness requires to repeat the interactive phase of the IOPP s times, inducing a factor s » κ

log|F|
multiplicative overhead for the prover. A rough estimation of bit complexities does not show evidence
of a significant overhead. Overall, a proof system supporting small fields might be more efficient:
any part of the protocol which does not contribute to the soundness error could benefit from cheaper
field operations.

In addition, AG codes offers more flexibility on the choice of the field. For computations of size
n, we propose AG codes for which the field is not required to admit an n-th root of unity (unlike RS-
IOPP on a prime field). Specifically, for AG codes over Kummer curves, the base field needs only to
have a N-th root of unity, where N divides n. For AG codes over curves in a Hermitian tower (which
admits a polylogarithmic-size alphabet), our IOPP does not involve any assumption on the alphabet,
except that it must be a degree-2 extension of a field Fq, where q is any prime power.

Finally, the question of whether there exist concretely efficient IOPPs for AG codes is motivated
by both a theoretical and practical perspective.

5.1.2 Summary of the results

We first give an overview of the contributions of this chapter:

– The first one is to give a clear criterion for constructing IOPPs with linear proof length and sub-
linear query complexity for AG codes. Our hope with this result is to open up new possibilities
for designing efficient probabilistic proof systems based on constant rate AG codes.

– The second contribution is a concrete instantiation for AG codes defined over Kummer-type
curves. This IOPP has strictly linear prover time and strictly logarithmic verification (counted
in field operations). Thus, we give a strict generalization of the FRI protocol for codes of length
n over alphabet of size roughly n2/3.

1Consider the application of checking the correct execution of a size n computation. Then an RS-based IOP for this
problem will work over a field of size Ω(n). This means that a single addition of two field elements will cost Ω(log n)
operations. If the IOP is instead based on a code with polylogarithmic-size alphabet, the cost of a single addition is only
Ω(log(polylog(n)).

5.1. Introduction 87

– The third one is a concrete instantiation for AG codes defined over a tower of Hermitian curves.
Considering recursive towers enables to construct an IOPP for AG codes with polylogarithmic-
size alphabet. For those codes, we give an IOPP with quasilinear prover time and polylogarith-
mic verification (counted in field operations).

We recall that complexities are given in field elements and field operations, where the field is the
alphabet of the considered code. Asymptotic complexities are relative to the length of the code.

Efficiency of our two AG-IOPP instantiations leverages the fact that proximity testing for these
families of AG codes can be reduced to a proximity test for a small RS code.

(1) Generic criterion for constructing AG-IOPPs. Let X0 be a curve defined over a finite field F,
D0 a divisor on the curve X0 and P0 Ă X (F). This defines an AG code C0 = C(X0,P0, D0). We
construct a sequence of curves

X0 X1 X2 ¨ ¨ ¨ Xr,
π0 π1 π2 πr´1

so that Xi+1 arises as the quotient of the curve Xi by some automorphism subgroup Γi under the
quotient map πi.

Using these consecutive projectionmaps, we construct a sequence of AG codes Ci – C(Xi,Pi, Di)

of decreasing length to turn the proximity test of the function f (0) = f to C0 into a membership test
of a function f (r) in Cr. We show that such a procedure is possible if a large (with respect to the
length of the code C0) solvable group G acts on the initial curve X0, and under some hypotheses on
the divisor D0 overviewed in Section 5.1.3 and detailed in Section 5.3. An AG code fulfilling all the
required conditions is called foldable.

Assuming that an AG code C(X0,P0, D0) of blocklength n is foldable, we show that there is
an O(log n)-rounds IOPP for it, with linear proof length, sublinear query complexity and constant
soundness (see Theorem 5.26).

In general, we observe that the larger is the group G acting on X0 compared to n, the smaller
are the query complexity and the verifier decision complexity of the protocol.

However, we notice that the hypothesis on the size of G is not a necessary condition for construct-
ing an IOPP with sublinear verification. For instance, if the curve Xr is isomorphic to the projective
line P1, we can continue to recurse in order to reduce even more the size of the proximity testing
problem. We propose two interesting families of AG codes for which it is the case.

(2) Concrete IOPP for AG codes on Kummer curves. When X is a Kummer curve defined by
YN = f (X), we show how to choose P and D to make the AG code C = C(X ,P , D) foldable.
We benefit from the action of the group Z/NZ on X that yields a quotient curve X/(Z/NZ)

isomorphic to the projective line. This enables us to define a sequence of codes (Ci)0ďiďr such that
C0 = C and the code Cr is a Reed-Solomon code of dimension (deg D)/N + 1.

Theorem 5.1 (Informal, see Theorem 5.52). Let C = C(X ,P , D) Ă FP be a foldable AG code defined
over a Kummer curve X of equation X : YN = f (X) such that deg f = N` ´ 1 for some integer
` ą 0 and N is a smooth integer, coprime with |F|. Assume F contains a primitive N-th root of
unity. The block length n – |P | is a multiple of N and satisfies n ă `N2 |F|

1/2. Let f : P Ñ F

be a purported codeword. For every proximity parameter δ P (0, 1) and soundness ε P (0, 1), there

88 Chapter 5. Proximity testing for algebraic geometry codes

exists a public-coin IOPP system (P , V) for C with perfect completeness and the following properties:
– rounds complexity r(n) ă log n,
– proof length l(n) = O(n),
– query complexity q(n) = O(log n),
– prover complexity tp(n) = O(n),
– verifier complexity tv(n) = O(log n).

It is worth noting that the Hermitian curve defined over Fq2 by Yq+1 = Xq + X satisfies the
hypotheses of the previous theorem. It is well known to bemaximal, i.e. it has the maximum number
of rational points with respect to its geometry. We recall that Hermitian codes over alphabet Σ support
block length up to |Σ|3/2, which is greater by a factor n1/3 than Reed-Solomon codes.

(3) Concrete IOPP for AG codes on towers of Hermitian curves. We recall that a tower of curves
consists of an infinite sequence of curves

X0 Ð X1 Ð . . . Ð Xn Ð . . .

such that the number of rational points of the nth curve tends to infinity as n tends to infinity. Towers
of curves play a prominent role in the history of AG codes as they define codes with outstanding length
and correction capacity [TVZ82, BBGS14].

The Hermitian tower (Definition 5.8) is an example of the widely studied Artin-Scheier extensions
[Lac92, Sti09]. In this case, the curve Xi arises as the quotient of the curve Xi+1 modulo the action
of a group of order q of the finite field Fq2 , the first curve X0 being isomorphic to the projective P1.
Therefore, one can test proximity to an AG-code from one of the curves Xn by going down along the
tower and then testing proximity to a RS code, whose degree can be expressed explicitly in terms of
the initial AG code.

Beyond supporting polylogarithmic-size alphabet, AG codes over the Hermitian tower happen to
be more naturally “foldable”. In particular, no additional assumptions on the alphabet are required.

We write polylog(n) for functions that are in O
(

logk(n)
)
for some k.

Theorem 5.2 (Informal, see Theorem 5.55). Let C = C(X ,P , D) Ă FP be a foldable AG code over
an alphabet F of size |F| = Ω(logk(n)) for some constant k. We denote n = |P |. Let f : P Ñ F be a
purported codeword. For every proximity parameter δ P (0, 1) and soundness ε P (0, 1), there exists a
public-coin IOPP system (P , V) for C with perfect completeness and the following properties:

– rounds complexity r(n) ă log n,
– proof length l(n) = O(n),
– query complexity q(n) = polylog(n),
– prover complexity tp(n) = rO(n),
– verifier complexity tv(n) = polylog(n).

More on the practicality of AG codes. When constructing a proximity test for a code, it is assumed
that the purported codeword is given as input to the prover. Thus, the prover complexity is computed
thereof. While we heavily rely on the group of automorphisms of the curve for proving the existence
of an efficient IOPP for “foldable” AG codes, we emphasize that the work of the prover and the verifier
during the protocol is essentially to perform some univariate polynomial interpolation tasks, with

5.1. Introduction 89

very small degree. In particular, neither the prover nor the verifier of the IOPP system need to run
an encoding algorithm for AG codes.

However, keeping applications to code-based IOP constructions in mind, the running time of the
IOP prover is bounded from below by the time needed to encode codewords during arithmetization.
Fast encoding algorithms for AG codes is not the most widely studied computational task, and is
often a concern when suggesting constructions based on AG codes2.

This is a reason why we focus our study on families of AG codes that are particularly likely to lead
to practical implementations, as we argue next. Specifically, our study includes the two following
subfamilies of one-point AG codes over small alphabets with constant rate and distance.

– The first family includes one-point AG codes over Kummer-type curves, and in particular the
notorious Hermitian curve. [BRS20] proposed an encoding algorithm with quasilinear com-
plexity rO(n). Roughly speaking, [BRS20]method consists in translating the encoding task into
a bivariate polynomial multipoint-evaluation problem. Assuming that the evaluation points are
well-structured, they view a bivariate polynomial in F[X, Y] as a polynomial in F[X][Y] in or-
der to evaluate it thanks to two univariate multipoint evaluations. It is the same idea than the
one for computing m-dimensional FFT from m (univariate) FFTs.

– The second family of one-point AG codes arises from curves on the Hermitian tower and has an
alphabet size polylogarithmic in the block length of the code. It is likely that those codes could
also be encoded in quasilinear time, by iteratively applying the encoding method proposed by
[BRS20].

We also point out that bases for Riemann-Roch spaces related to theses codes are explicitly
known.

5.1.3 Overview of our approach

We now present a brief overview of our techniques to generalize the FRI protocol to the AG context.
Familiarity with the general ideas used in the FRI protocol is beneficial in following the incoming
discussions (see Section 2.1.2).

Group actions and Riemann-Roch spaces. The FRI protocol relies on a decomposition of univari-
ate polynomials of the form

f (x) = g0(π(x)) + xg1(π(x)), (5.1)

where π is somemonic polynomial of degree 2 and g0, g1 are polynomials of degree atmost (deg f)/2.
Our generalization of the FRI protocol for RS codes RS [F,P , k] to the AG setting comes from the

following observation. One can view the splitting of a polynomial f P F[X] into an even and an odd
parts as coming from the action of a multiplicative group isomorphic to Z/2Z on the evaluation set
P . This observation is also true when the evaluation domain P is an additive subgroup of F.

Let X be a curve defined over a finite field F and C = C(X ,P , D) be an AG code. As soon as a
group Γ of order p acts on the curve X , its action naturally extends on the functions on X . Let us

2In general, the asymptotic cost of the task of encoding an arbitrary linear code of length n is O(n2) (using a generator
matrix for the code).

90 Chapter 5. Proximity testing for algebraic geometry codes

denote by π the canonical projection π : X Ñ X/Γ. In order to mimic the decomposition (5.1), we
wish to write a function of LX (D) as

f =

p´1
ÿ

j=0

µj f j ˝ π with f j P LX/Γ(Ej), (‹)

for some function µ on the curve X and some divisors Ej on the quotient curve that are explicitly
expressed in terms of the divisor D. Now assume that no point of P is fixed by Γ and P 1 = π(P).
Polynomial interpolation enables the determination of f j(P) for any point P P P 1 with exactly p
values of f , namely on the set π´1(tPu). This means that the decomposition (‹) can be written for
any function in FP , not only for elements of LX (D).

Finding a decomposition (‹). In the case where Γ = xγy is a cyclic group whose order is coprime
with the characteristic, such a decomposition is guaranteed to exist. Indeed, in this case, a result of
Kani [Kan86] states that there exists a function µ on X satisfying (‹) such that γ ¨ µ = ζµ where
ζ is a primitive root of unity of order |Γ|. Moreover, each divisor Ej, j P J0, p´ 1K , can be explicitly
written in terms of the divisor D and the function µ.

We may also be able to exhibit such a decomposition without invoking Kani’s theorem when Γ is
not a cyclic group, just by knowing a basis of LX (D). This is exactly the strategy we use to design
an IOPP for AG codes along the Hermitian tower.

On the existence of distance-preserving folding operators. Our goal is to define a family of
folding operators (Fold [¨, z])zPF from FP to FP 1 and a code C1 = C(X/Γ,P 1, D1) such that

Fold [¨, z] (C) Ď C1.

A natural idea is to define the folding operators as a random linear combination of the functions f j’s
coming from the decomposition (‹) of f P FP . Alternatively, we can reduce verifier randomness
using standard derandomization techniques, setting for instance

Fold [f , z] =
p´1
ÿ

j=0

zj f j

for any z P F. With this definition, the code C1 has to be associated to a divisor D1 on X/Γ such that
each Riemann-Roch space LX/Γ(Ej) can be embedded into LX/Γ(D1). This would indeed define a
family of folding operators for the code C1 as per Definition 3.1, namely a codeword of C would
be mapped to a codeword of C1 and the evaluation of Fold [f , z] would satisfy local computability.
However, distance preservation of the folding operators would not be guaranteed, as we discuss next.

The best scenario is when the divisor D yields a decomposition of LX (D) as p “copies” of the
same Riemann-Roch space, as it is the case with Reed-Solomon codes of dimension a power of 2.
Unfortunately, to the best of our knowledge, it is unlikely that all divisors Ej involved in the decom-
position (‹) of f are the same (or even linearly equivalent) if X is not the projective line. We are then
facing an issue analogous to the one encountered for Short Reed-Muller codes in Section 4.5.

Similarly to the Reed-Muller case, we wish to define some balancing functions νj such that, for
every f j P C1, if the product νj f j also lies in C1, then the function f j belongs to the desired Riemann-
Roch space LX/Γ(Ej). Defining such a balancing function νj is tantamount to specify its pole order

5.1. Introduction 91

at the points supporting the divisor D1. The existence of all the functions νj thus depends on the
Weierstrass semigroup of these points (see Section 5.2.3 for a definition) and does not hold for any
divisor D1.

If such functions exist for a divisor D1, we will say that D1 is compatible with D. Finding a
convenient divisor D1 compatible with a given divisor D is definitely the trickiest part in defining the
folding operators properly. This contrasts with the case of polynomial codes, where we are always
able to define balancing functions as evaluations of a monomials of appropriate degree.

Once we have a divisor D1 that is D-compatible, we shall embed additional terms in the folding
operators to account for the balancing functions. We modestly increase the randomness used by the
verifier and define distance-preserving folding operators (Definitions 3.1 and 3.4) as follows. For
(z1, z2) P F2, we set

Fold [f , (z1, z2)] =

p´1
ÿ

j=0

zj
1 f j +

p´1
ÿ

j=0

zj+1
2 νj f j.

Preserving non trivial soundness of the IOPP. The soundness of Theorem 3.8 depends on the
relative minimum distance of the codes of the sequence used in the IOPP. Therefore, distance preser-
vation of the folding operators is not enough to ensure a non trivial soundness of the IOPP protocol
when the folding operation is iterated over several rounds. Ideally, we would like the rates of the
codes C and C1 to be roughly equal to prevent the relative minimum distance from dropping. In
other words, we need LX/Γ(D1) to be not too large with respect to the components LX/Γ(Ej).

A natural idea would be to choose D1 as the divisor Ej with the largest Riemann-Roch space.
However, balancing functions only exist for some well-chosen divisors D1, whose degree can be
significantly larger than the degree of the divisor Ej in (‹). Therefore, the divisors D and D1 have to
be carefully chosen to also prevent the minimum distance from collapsing.

Defining a sequence of “foldable” AG codes. In view of the above-mentioned points, it seems
possible to build an IOPP only for specific families of AG codes. We develop a framework where this
is achievable and show that interesting code families fit into it.

With the goal of iterating the folding process in mind, we assume that the base curve X0 is
endowed with a suitable acting group G that we decompose into smaller groups Γ0, Γ1, . . . , Γr´1 to
fragment its action and create intermediary quotients

X0 X1 X2 ¨ ¨ ¨ Xr,
π0 π1 π2 πr´1

where the morphism πi : Xi Ñ Xi+1 is the quotient map by Γi. If G is a solvable group, then (by
definition) there is a suitable finite sequence Γ0, Γ1, . . . , Γr´1 that allows to define those intermediary
quotients.

In Section 5.3, we will say that a code C = C(X ,P , D) is a foldable AG code if we are able to
construct a sequence of AG codes (Ci)0ďiďr where each code Ci – C(Xi,Pi, Di) supports a family
of randomized folding operators Fold [¨, z] : FPi Ñ FPi+1 satisfying Definitions 3.1 and 3.4.

To ensure that the last code Cr has sufficiently small length and to obtain an IOPP with sublinear
query complexity, we ask for the size of G to be greater than |P |e for a certain e P (0, 1). We point
out that this requirement allows us to give a generic setting which guarantees the existence of an
IOPP with sublinear verification time. However, depending on X , the requirement on the size of G

92 Chapter 5. Proximity testing for algebraic geometry codes

may be not necessary. In fact, in our concrete instantiations of foldable AG codes (Sections 5.5 and
5.6), we manage to obtain logarithmic verification without requiring this condition on |G|.

5.1.4 Related work

We discuss works related to AG-based proximity testing. We emphasize that the motivation behind
existing works was only theoretical. In particular, the PCP techniques used are too complex to be
implemented for verifying meaningful computations.

In 2013, [BKK+13] constructed a PCP with linear proof length and sublinear query complexity
for boolean circuit satisfiability by relying on AG codes. More precisely, for any ε ą 0 and instances of
size n, their PCP has length 2O(1/ε)n and query complexity nε. When aiming at optimal proof length
and query complexity as small as possible, this result remains the state-of-the-art PCP construction.
By using AG codes, the authors of [BKK+13] reduced the field size to a constant, which avoids a
logarithmic blowup in proof bit-length (occuring e.g. in [BS08] when using univariate polynomials
of degree m to encode binary strings of length m). In [BKK+13], the authors pointed out that they
are not able to apply proof composition [AS92] to reduce the query complexity of their PCP because
decision complexity of the PCP verifier is too large (polynomial in the query complexity).

Improving on [BKK+13], [BCG+17] proposed an IOP for boolean circuit satisfiability with linear
proof length and constant query complexity. The IOP of [BCG+17] invoked the sumcheck proto-
col [LFKN90] on a O(1)-wise tensor product of AG codes (recall that the 2-wise tensor product
operation squares the rate and the relative distance). Then, they use Mie’s PCP of Proximity for non-
deterministic languages [Mie09] to test proximity to the tensored code. Both constructions benefit
from the use of AG codes to get constant size alphabet and linear proof bit-lengths.

A recent work of [RR20] constructed an IOPP for any deterministic language which can be de-
cided in time poly(n) and space no(1). In particular, [RR20, Corollary 3.6] can be applied to test
proximity to AG codes. This IOPP outperforms our construction on some parameters: it has con-
stant round and query complexities, and proof length is slightly less than n. However, it is unlikely
that [RR20]’s IOPP leads to a concrete implementation, which is a motivation for our work. Indeed,
prover running time is polynomial, and the inner IOPP used for achieving constant query complexity
via proof composition is the heavy PCPP of [Mie09]. Mie’s PCPP is a theoretical and complex tool
used to achieve constant query (e.g in [BCG+17, BCG+19, BCL20]), but it is seen as impractical3.

By contrast, we exhibit two explicit families of AG codes for which we are able to construct a
proximity test with linear prover running time and logarithmic verification (for the first one) and
quasilinear prover time with polylogarithmic verification (for the second one). The main point how-
ever, is that our construction is undoubtedly much simpler to implement: the most complex task of
the prover and the verifier is simply to perform univariate interpolations (with very small degrees).
The technical difficulties are in analyzing the conditions allowing the construction, but the protocol
itself is very similar to the FRI protocol. IOPP inspired by the FRI protocol have the inherent barrier
of logarithmic query complexity. However, in practice, it is still the most efficient proximity test for
Reed-Solomon codes known to date.

3Proposing an alternative to [Mie09] which does not involve heavy PCP machinery would allow to narrow the gap
between the best constructions known in theory and the most efficient ones used in practice.

5.2. Algebraic geometry codes 93

5.2 Algebraic geometry codes

Algebraic-geometry codes are defined by evaluations of rational functions of bounded “order” on a
set of points on a “nice” algebraic curve. In this section, we gather the notions and properties that
will allow us to define them.

Note that this section serves more as a reminder of basic notions and notations than as a precise
introduction to the area. We refer to [Mor91, TVN07, Ful08, Sti09] for exact definitions, proofs and
further details on algebraic geometry and algebraic function fields.

We denote by F a finite field and by sF a fixed algebraic closure of F.

5.2.1 Basic notions on algebraic curves over finite fields

Given a field F, we denote by Pn(F) (or simply Pn) the projective n-space over F, that is the quotient

set Pn(F) –

(
Fn+1z t0u

)
ä∼, where a ∼ b ðñ Dλ P F z t0u , a = λb. The equivalence class

of (x1, . . . , xn+1) will be denoted by [x1 : ¨ ¨ ¨ : xn+1] P Pn(F). As usual, we say that an element
[x1 : ¨ ¨ ¨ : xn+1] P Pn(F) is a point with projective coordinates x1, . . . , xn+1.

Affine points of the n-dimensional affine space An(F) can be embedded into Pn(F) via the map
i : An(F) ãÑ Pn(F) defined by i(x1, . . . , xn) = [x1 : ¨ ¨ ¨ : xn : 1]. We call point at infinity an
element in the complement of the image of i, namely a point such that xn+1 = 0.

Moreover, we refer to the set P1(F) = t[x : 1] | x P Fu Y t[1 : 0]u as the projective line over F.

Function fields and dimension of varieties. Recall that a polynomial f P F[X] is homoge-
neous if its monomials have exactly the same degree. The zero locus of a homogeneous poly-
nomial being well-defined, we can consider the following object. A set V Ă Pn(sF) is a projec-
tive algebraic set if there exists a set of homogeneous polynomials S Ď sF[X1, . . . , Xn+1] such that
V =

P P Pn(sF) | @ f P S, f (P) = 0
(

. We denote by I(V) the ideal of a projective algebraic set V ,
namely the ideal generated by the homogeneous polynomials f P sF[X] such that, for all P P V ,
f (P) = 0. An algebraic set V is irreducible in F if it cannot be written as the union of two proper
algebraic subsets in F. If V is irreducible in sF, we say that V is absolutely irreducible.

A projective variety V is an irreducible projective algebraic set. Thus, the ideal of a nonempty
projective variety is a prime ideal. For our applications, we shall consider projective varieties V Ď
Pn(sF) defined over F (we may write V/F for short). We define them as projective varieties whose
ideal I(V) is generated by homogeneous polynomials with coefficients in F.

Let V be a nonempty projective variety defined over F. Its coordinate ring F[V] – F[X]ä I(V)
is an integral domain. In order to define rational functions on V , we consider the function field of V ,
defined as

F(V) –
"

U
V
P Frac (F[V]) | U, V are homogeneous polynomials with deg U = deg V

*

.

Let P P V , f P F(V). A function f P F(V) is defined at P P V (or regular at P) if there is
U
V P F(V) such that f = U

V and V(P) ‰ 0. In that case, the value of f at P is well-defined and equals
U(P)/V(P). The set of functions in F(V) that are defined at P forms a local ring, denoted OP(V).
Therefore OP(V) has a unique maximal ideal, which is MP(V) – t f P OP(V) | f (P) = 0u .

94 Chapter 5. Proximity testing for algebraic geometry codes

The function field of a projective variety V is a finitely generated extension of F. The number of
independent rational functions on a variety V enables to define the dimension of V . Specifically, the
dimension of a projective variety V over F is the transcendence degree of F(V) over F.

Projective curves. We will consider AG codes defined over a projective curve X/F, i.e. a projective
variety of dimension one. We denote by X (F) the set of F-rational points of X , namely points of X
that are in Pn(F).

Let X be a projective curve with homogeneous ideal I(X) = x f1, . . . , fry. We say that a point P
of X is singular if the rank of the Jacobian matrix of the first-order partial derivatives of f1, . . . , fr

at P is strictly less than n´ 1, and non-singular otherwise.4 The projective curve X/F is said to be
smooth (or non-singular) if every point of X is a non-singular point.

Let X be a smooth, projective, absolutely irreducible curve defined over F. Assuming that X is
plane (i.e. contained in P2(sF)), it can be defined by a polynomial f (X, Y) P F[X, Y] irreducible
in sF[X, Y]. The affine part of X is the set of points P P sF2 such that f (P) = 0. The entire curve
X can be retrieved by considering the zeroes in P2(sF) of the polynomial f ˚ P F[X, Y, Z] obtained
by homogenization of f P F[X, Y]. Since the affine part of such plane projective curves suffices to
describe them entirely, we may define them by simply giving the corresponding affine equation. We
call degree of such a plane curve X the degree of f (which is obviously the same as the degree of
f ˚).

Example 5.3 (Hermitian curve). Suppose F = Fq2 . The Hermitian curveH/Fq2 is the curve defined
as the zero set of the polynomial YqZ +YZq ´Xq+1. The curve H is a nonsingular projective plane
curve of degree d = q + 1. The q3 + 1 rational points of the Hermitian curves are

H(Fq2) =
!

(x : y : 1) P P2(Fq2) | xq+1 = yq + y
)

Y t[0 : 1 : 0]u .

Valuations. Let X be a projective curve and P a non-singular point of X . The local ring

OP = t f P F(X) | f is defined at Pu

is a discrete valuation ring of F(X). In particular, the unique maximal ideal MP of OP is principal.
A function t such that MP = tOP is called a local parameter for P. Writing MP = tOP, any non-zero
element f P F(X) has a unique representation f = tnu, where n P Z, u P OP

ˆ and OP
ˆ is the set

of units of OP. Then, we can define a discrete valuation at P as a function vP : F(X) Ñ ZY t8u

as follows: for any non-zero f P F(X), f = tnu, we set vP(f) – n. By convention, we define
vP(0) = 8. We say that vP(f) is the valuation of f P F(X) at P. A point P is said to be a zero of
f if vP(f) ą 0, and a pole of f if vP(f) ă 0. Any non-zero function of F(X) has a finite number of
zeros and poles.

Divisors. Let X/F be a curve. A divisor D on X is a formal sum of points D –
ř

PPX nPP,
with coefficients nP P Z which are all zero, except for a finite number of them. The support of D,
denoted supp(D), is the finite set of points P such that nP is non zero. For our applications, we will
consider only divisors supported by F-rational points. The degree of a rational divisor D =

ř

nPP

4Since P P Pn, the entries B fi
Bxj

(P) of the Jacobian matrix are not well-defined. However, multiplying the coordinates

of P by a scalar λ will multiply B fi
Bxj

(P) by λdeg fi´1, and row transformations does not affect the rank of the matrix.

5.2. Algebraic geometry codes 95

is deg D –
ř

nP. We say that a divisor D is effective if nP ě 0 for every point P. We denote by
Div(X) the set of divisors on X . It is endowed with a partial order relation ď such that D ď D1 if
D1 ´D is effective.

Let ϕ : X Ñ X 1 be a map between two algebraic curves X and X 1. For f P F(X 1), we denote
by ϕ˚ the map ϕ˚ : F(X 1)Ñ F(X) defined by ϕ˚ f – f ˝ ϕ, and refer to it as the pull-back map
induced by ϕ. Given a divisor D =

ř

P nPP on X , the push-forward of D, denoted π˚(D), is the
divisor on X 1 defined by π˚(D) –

ř

P nP ϕ(P).
An element f of the function field F – F(X) of the curve X defines a principal divisor

divX (f) –
ÿ

PPX
vP(f)P,

where vP is the valuation of f at P. The subscript X will be omitted when the context is clear.
We denote by div0 (f) (respectively div8 (f)) the positive (respectively negative) part of the

principal divisor div(f), i.e.

div0(f) –
ÿ

PPX
vP(f)ą0

vP(f)P and div8(f) –
ÿ

PPX
vP(f)ă0

vP(f)P,

so that div(f) = div0 (f)´ div8 (f). The divisors div0 (f) and div8 (f) correspond to the loci of
zeroes and poles of f , respectively.

Two divisors D1, D2 P Div(X) are linearly equivalent if there is a non-zero function f P F(X)

such that D1 = D2 + div(f).

Riemann-Roch spaces. The Riemann-Roch space of a divisor D P Div(X) is the finite-dimensional
vector space over F defined by

LX (D) – t f P F(X) | div(f) + D ě 0u Y t0u.

In particular, a function f P LX (D) has no pole outside of supp(D).
The subscript specifying the curve X will be omitted when it is clear from the context. Recall

that we have LX (D) Ď LX (D1) whenever D ď D1.

Theorem 5.4 (Riemann’s inequality). Let X be a smooth projective and absolutely irreducible curve
over F. There exists a non-negative integer g such that for any divisor D on X , we have

dim LX (D) ě deg D´ g + 1.

The smallest integer g satisfying this property is called the genus of X , and is denoted by g(X).

Theorem 5.5 (Riemann-Roch Theorem). Let X be a curve of genus g and D P Div(X). If deg D ą

2g´ 2, then dim LX (D) = deg D + 1´ g.

5.2.2 Definition of algebraic geometry codes

Definition 5.6 (Algebraic-geometry codes). Let X be an algebraic curve, D P Div(X) and P Ă

X (F) of size n – |P | such that supp(D)X P = H. We define the Algebraic Geometry (AG) code
C(X ,P , D) as

C(X ,P , D) –

f|P : P Ñ F | f P LX (D)
(

.

96 Chapter 5. Proximity testing for algebraic geometry codes

Assuming that deg D ă n in Definition 5.6, the evaluation map ev : LX (D) Ñ FP such that
C – C(X ,P , D) is the image of LX (D) by ev is injective. In this case, the dimension of C is
the dimension of LX (D) and C has minimum distance at least n´ deg D. Moreover, if deg D ě

2g(X)´ 1, the dimension of C is given by the Riemann-Roch theorem (Theorem 5.5).
The divisor D will always be chosen so that the map ev is injective. To simplify notations, ele-

ments of C will be identified with functions in the Riemann-Roch space LX (D).
We say that the C is a one-point AG code if the support of D consists in a single point.

Lemma 5.7 (AG codes over the projective line). Let L = tx1, . . . , xnu Ă F. SetP = t(xi : 1); xi P Lu Ă
P1 and P8 = [1 : 0]. Then the code C(P1,P , (k´ 1)P8) is the Reed-Solomon code RS [F, L, k].

Proof. The rational functions with a pole of order less than k at infinity are polynomials of degree
less than k. The Riemann-Roch space L((k´ 1)P8) is the space of rational functions with a pole of
order ă k at infinity, which is exactly the space of polynomials of degree less than k.

5.2.3 Additional material

We conclude this section with some additional preliminaries useful to present the results of this
chapter.

Solvable groups. A finite group G is said to be solvable if there exists a sequence of subgroups of
G

G = G0 Ź G1 Ź ¨ ¨ ¨ Ź Gr = 1,

such that Gi+1 is a normal subgroup of Gi and each factor group Gi/Gi+1 is an abelian group for
i P J0, r´ 1K. Such a sequence is called a normal series. If G is solvable, its cardinality equals the
product of the sizes of the factor groups.

We recall that such a normal series is a composition series if Gi/Gi+1 is simple. If G is a finite
group, we have that G is solvable if and only if G has a composition series whose factor groups are
cyclic groups of prime order.

Automorphisms, group action and quotient curves. Let X be an algebraic curve. A group Γ is
said to act on the curve X if Γ is a subgroup of the automorphism group Aut(X) of X . The quotient
curve X/Γ is the curve obtained by identifying points of X that lie in the same Γ-orbit.

The stabilizer of a point P P X is the subgroup

ΓP = tγ P Γ | γ ¨ P = Pu Ă Γ.

A divisor D =
ř

P nPP P Div(X) is said to be Γ-invariant is nP = nγ¨P for all P P X and γ P Γ.
The action of Γ on X gives a projection π : X Ñ X/Γ onto the quotient curve X/Γ. A point

Q P X/Γ is called a ramification point if the number of preimages of Q by π is not equal to |Γ|.
Equivalently, Q is a ramification point if one of its preimages has a non trivial stabilizer.

Hermitian tower. A tower of curves over F is an infinite sequence of curves (Xn)ně0 and surjective
maps πn : Xn+1 � Xn such that g(Xn) Ñ 8 as n Ñ 8. Both the curves Xn and the maps πn are
defined over F. For our applications, we will be particularly interested in recursive towers defined
as follows. Let f (X, Y) P F[X, Y] be an absolutely irreducible polynomial, namely irreducible over
sF. A tower F is recursively defined by f (X, Y) if:

5.3. Foldable AG codes 97

– The first curve X0 is the projective line P1 with affine coordinate X1.
– The second curve X1 is the nonsingular projective model for the affine plane curve defined by

f (X1, X2) = 0.
– The n-th curveXn is the nonsingular projective model for the affine curve given by f (X1, X2) =

f (X2, X3) = ¨ ¨ ¨ = f (Xn´1, Xn) = 0.

Specifically, we will consider towers of Hermitian curves.

Definition 5.8 (Hermitian tower). The Hermitian tower is the tower of curves F defined over F = Fq2

by the recursive equation
f (X, Y) = Yq + Y´ Xq+1.

The curve Xi of the Hermitian tower F = (Xi)iě0 over Fq2 has qi+2 + 1 Fq2-rational points.

Weierstrass gaps. Let X be a curve of genus g ą 1 and P a F-rational point on X . TheWeierstrass
semigroup H(P) of P is the set

H(P) – tn P N | D f P F(X) with div8(f) = nPu .

A (Weierstrass) gap for P is an integer in NzH(P), while any element of H(P) is called a nongap for
P.

We have that an integer n P N is a nongap for P if and only if there exists a function with a pole
of order n at P and no other poles. If n1 and n2 are nongaps for P, then n1 + n2 is also a nongap for
P. We also have that n is a gap for P if and only if dim L(nP) = dim L((n´ 1)P).

The number of gaps of a rational point is given by the genus g of the curve. Moreover, a gap n is
always strictly smaller than 2g. This property will be used to construct an IOPP for AG codes along
the Hermitian tower in Section 5.6. More formally, we have the following theorem.

Theorem 5.9 (Weierstrass Gap Theorem). Suppose that X has genus g ą 0 and P P X is a rational
point. Then NzH(P) =

i1, . . . , ig
(

with 1 = i1 ă i2 ă ¨ ¨ ¨ ă ig ď 2g´ 1.

Proof. [Sti09, Theorem 1.6.8].

5.3 Foldable AG codes

In this section, we display a workable setting for the construction of an IOPP system (P , V) to test
whether a given function f : P Ñ F is close to the evaluation of a function in a given Riemann-Roch
space. As the idea is to iteratively reduce the problem of testing proximity to C(X ,P , D) to testing
proximity to a smaller AG code, we introduce a sequence of suitable AG codes of decreasing length.

5.3.1 Sequence of curves

Fix a curve X defined over F, a finite solvable group G Ď Aut(X) and a normal series of sG –

(G0,G1, . . . ,Gr) of G such that

G = G0 Ź G1 Ź ¨ ¨ ¨ Ź Gr = 1, (5.2)

and Gi/Gi+1 is abelian.

98 Chapter 5. Proximity testing for algebraic geometry codes

For i P J0, r´ 1K, we denote by Γi the (abelian) factor group Γi – Gi/Gi+1 and by pi the order
of Γi. We have that the cardinality of G equals

|G| =
r´1
ź

i=0

|Γi| .

The group Γ0 acts on X0 – X , as factor group of G. We thus define the quotient curve
X1 – X0/Γ0. The group Γ1 acts trivially on the orbits under Γ0. Repeating the process for ev-
ery i P J0, r´ 1K defines a sequence of curves recursively as follows:

X0 := X and Xi+1 – Xi/Γi.

We set Fi – F(Xi) and we denote by πi : Xi Ñ Xi+1 the canonical projection modulo the action of
Γi. Even if the sequence of curves (5.3) depends on the derived series (5.2) of G, the last curve Xr

is always isomorphic to the quotient X/G:

X0 X1 ¨ ¨ ¨ Xi Xi+1 ¨ ¨ ¨ Xr.

Γ0

π0

Γ1

π1 πi

Γi

πi+1

Γi+1

πr´1 (5.3)

Definition 5.10. A sequence of curves constructed as above will be called a (X , sG)-sequence.

5.3.2 Definitions of foldable AG codes and balancing functions

Let (Xi)0ďiďr be a (X , sG)-sequence. For any i P J0, r´ 1K, the factor group Γi which acts on the
curve Xi is abelian of order pi. For each i P J0, rK, we aim to define an AG code Ci Ă FPi associated
to a divisor Di P Div(Xi) with an evaluation set Pi. The rest of this subsection is dedicated to the
choice of the sets Pi and the divisors Di.

Evaluation points. From a set P0 Ă X (F), we want to recursively define a sequence of sets of
points (Pi)1ďiďr so that Pi Ă Xi(F) and Pi+1 = πi(Pi). For our protocol, we need for each
i P J0, r´ 1K that every point in Pi+1 admits exactly pi preimages under πi. Since the last curve Xr

is isomorphic to the quotient X/G, it is necessary and sufficient that the first set P0 Ă X0 is a union
of G-orbits of size |G|, i.e. that G acts freely on P0.

Divisors. Fix a divisor D0 P Div(X0) that is globally Γ0-invariant. This way, the support of D0

does not meet the set P0. For the sake of simplicity, we will assume that D0 is in fact supported by
Γ0-fixed points.

Notation 2. For a divisor D =
ř

nPP P Div(X) and a positive integer n, we denote by
X 1

n D
\

P Div(X)

the divisor defined by
Z

1
n

D
^

:=
ÿ

YnP

n

]

P.

Definition 5.11. Let i P J0, r´ 1K. Fix a divisor Di P Div(Xi) and a function µi P Fi . We say that µi
partitions LXi(Di) (with respect to the action of Γi) if

LXi(Di) =
pi´1
à

j=0
µ

j
iπ
˚
i LXi+1(Ei,j) (5.4)

5.3. Foldable AG codes 99

with
Ei,j –

Z

1
pi

πi˚(Di + j divXi(µi))

^

P Div(Xi+1) for j P J0, pi ´ 1K . (5.5)

For our applications, we wish to be able to define a sequence of divisors (Di) that have the
following properties:

– the divisor Di is supported by Γi-invariant points;
– for each divisor Di, its associated Riemann-Roch admits a nice decomposition like (5.4);
– at each step, a divisor Di+1 needs to be “compatible” with Di and the decomposition of LXi(Di)

in the sense of Definition 5.12 below.

Definition 5.12 (Compatible divisors and balancing functions). Let i P J0, r´ 1K. Fix a divisor
Di P Div(Xi) and a function µi P Fi such that µi partitions LXi(Di). A divisor Di+1 P Div(Xi+1) is
said to be compatible with (Di, µi) if both assertions hold.

1. for every j P J0, pi ´ 1K, Ei,j ď Di+1,
2. for every j P J0, pi ´ 1K, there exists a function νi+i,j P F(Xi+1) such that

div8
(
νi+i,j

)
= Di+1 ´ Ei,j. (5.6)

The functions νi+i,j are called balancing functions.

In Definition 5.12, the first item implies that L(Ei,j) Ď L(Di+1). The second one means that for
every f j P L(Ei,j), the function νi+1,j f j lies in L(Di+1).

We have now described all the key components to formally define the notion of foldable AG codes.

Definition 5.13 (Foldable AG codes). Let C = C(X ,P , D) be an AG-code. This code is said to be
foldable if the following conditions are satisfied.

1. There exists a finite solvable group G P Aut(X) that acts freely on P : a composition series of G
(5.2) provides a (X , sG)-sequence of curves (Xi);

2. There exists e P (0, 1) such that |G| ą |P |e;
3. There exist some sequences (µi) P Fi and (Di) P Div(Xi) such that D0 = D and for every

i P J0, r´ 1K, all the following properties hold:

(a) the divisors Di are supported by Γi-fixed points,
(b) the function µi partitions LXi(Di) (Definition 5.11),
(c) the function µi maps distinct points in the same Γi-orbit to distinct values: for every γi P Γi

and P P Pi, we have µi(P) = µi(γi(P)) if and only if γi is the identity map.
(d) Di+1 is (Di, µi)-compatible (Definition 5.12).

Remark 5.14. The second requirement given in Definition 5.12 is definitely compelling and requires
some geometric knowledge about the curves Xi. Indeed, on a general curve, not every effective divisor is
the poles locus of a function, and characterizing which effective divisors arise this way is at the heart of
the Weierstrass gaps theory. Nonetheless, the existence of the balancing functions νi+1,j happens to be
the main ingredient in Lemma 5.25, which takes a prominent role in the design of our IOPP.

To prevent the relative minimum distance of the code Ci+1 from collapsing and thence ensure a
good soundness of the protocol designed in Section 5.4, one may be tempted to take Di+1 as one of
the divisors Ei,j (5.5) that appear in the decomposition (5.4) of LXi(D). However the Weierstrass gaps

100 Chapter 5. Proximity testing for algebraic geometry codes

theory indicates that balancing functions exist only when choosing a (Di, µi)-compatible divisor Di+1

whose degree may be unexpectedly substantial. Therefore, to broaden the spectrum of foldable codes, we
do not make this additional hypothesis.

Condition 3c in Definition 5.13 is necessary for the completeness of our protocol. This condition
is always fulfilled when the divisors Di have degree sufficiently large, as proven in the following
lemma.

Lemma 5.15. Let us assume that a function µi P Fi partitions LXi(Di) with respect to the action of Γi
for some divisor Di P Div(Xi). Let us denote by gi the genus of the curve Xi. If deg(Di) ě 2gi + 1,
then µi takes different values at points lying in the same orbit under Γi.

Proof. Let us assume by contradiction that there exists two distinct points P and Q on Xi such that
πi(P) = π(Q) and µi(P) = µi(Q). By Definition 5.11, every function f P L(Di) can be written
f =

ř

µ
j
i f j ˝ πi for some functions f j on the quotient curve Xi+1. Then, for every f P L(Di), we

have f (P) = f (Q). In particular, this means that a function of L(Di) vanishes at P if and only if its
vanishes also at Q. Therefore, the Riemann-Roch spaces L(Di ´ P) and L(Di ´ P´Q) are equal,
which contracticts the Riemann-Roch theorem, since deg(Di ´ P´Q) ě 2gi ´ 1.

5.3.3 Reed-Solomon codes as foldable AG codes

Recall that RS codes are AG codes on the projective line (Lemma 5.7). In this case, the decomposition
(5.4) is nothing but the splitting of a polynomial into an even part and an odd part, which plays a
crucial role in the FRI protocol when the characteristic is not 2.

To make both points of views coincide, let us consider the involution γ : [X0 : X1] ÞÑ [´X0 : X1].
It generates a group isomorphic to Z/2Z and the quotient of P1 by this group is obtained as the
image by π : [X0 : X1] ÞÑ [X2

0 : X2
1].

The divisor D – dP8 is invariant under γ. Let us choose µ as the function x = X0
X1
. We have

div(x) = P0´P8 with P0 = [0 : 1] and P8 = [1 : 0]. Noticing that π˚(P8) = P8 and π˚(P0) = P0,
we get

Z

1
2

π˚(D + (x))
^

=

Z

1
2
((d´ 1)P8 + P0)

^

=

Z

d´ 1
2

^

P8,

and the Riemman-Roch space LP1(dP8) is split into two parts:

LP1(dP8) = π˚LP1

(Z
d
2

^

P8

)
+ xπ˚LP1

(Z
d´ 1

2

^

P8

)
.

We recover the decomposition of a polynomial of degree d into even and odd parts of respective
degrees

Y

d
2

]

and
Y

d´1
2

]

.

Remark 5.16. The function µ is not unique: any odd polynomial of x would make a suitable choice for
µ.

Now, let us remark that the RS code

V –

!

f P FP ; deg f ď d
)

= C(P1,P , dP8)

is a foldable AG code, for any P Ă F of size |P | = 2r for a certain integer r and any degree bound
d. We shall then retrieve the construction of the RS proximity test of [BBHR18a].

5.3. Foldable AG codes 101

Firstly, the finite solvable Z/2rZ of size |P | acts on P1 via [X0 : X1] ÞÑ [X0, ξX1], where ξ is a
primitive 2r-th root unity. It clearly fulfils the two first items of Definition 5.13. When considering
its composition series

Z/2rZ Ź Z/2r´1Z Ź ¨ ¨ ¨ Ź 1 (5.7)

and the action of the corresponding factor group Γ = xγy » Z/2Z, we obtain a trivial sequence of
curves (Xi)whereXi = P1 for all i P J0, rK. Next, consider the sequence (µi)with µi = µ = x –

X1
X0
,

then γµ = ´µ. Set d0 – d, and for any i P J0, r´ 1K, di+1 –

Y

di
2

]

. Note that there exists r1 ă r such

that dr1 , . . . , dr are all equal to 0. Setting Di =
Y

di
2

]

P8, we have Γi-invariant divisors fulfilling the
compatibility condition given in Definition 5.12, by letting νi+1,j to be the constant function equal
to 1 if

Y

di
2

]

=
Y

di´1
2

]

, and νi+1,j = x otherwise.

5.3.4 Kani’s theorem

The first requirement tomake a sequence of codes foldable is the splitting of the Riemann-Roch spaces
as in (5.4), which mimics the decomposition in odd and even parts of univariate polynomials. Under
some additional hypotheses, a decomposition like (5.4) always exists. Let us detail this framework.

LetX be a smooth irreducible curve over a field F and let Γ be a cyclic group of order m generated
by an element γ. Assume that m and the characteristic of F are coprime and consider ζ P sF a
primitive mth root of unity, lying in some algebraic closure sF of F.

Set Y := X/Γ and π : X Ñ Y be the canonical projection morphism.
Fix a Γ-invariant divisor D P Div(X). We want to exhibit a relation between the Riemann-Roch

space LX (D) and some Riemann-Roch spaces on Y . The group Γ acts on the vector space LX (D)

via γ ¨ f = f ˝ γ. By representation theory,

LX (D) =
m´1
à

j=0
LX (D)j,

where LX (D)j – tg P LX (D) | γ ¨ g = ζ jgu.
One of the key ingredients of this section is a theorem due to Kani [Kan86], which we reformulate

here in the case where Γ is cyclic.

Theorem 5.17 ([Kan86]). Assume that Γ = xγy is cyclic of order m, coprime with |F|. The two
following statements hold.

1. There exists a function µ P sF(X) such that γ ¨ µ = ζµ.
2. For any Γ-invariant divisor D P Div(X), when considering the Riemann-Roch spaces over the

algebraic closure sF, we have

LX (D)j b sF » µjπ˚
(

LY

(Z
1
m

π˚ (D + j div(µ))
^)
b sF

)
. (5.8)

Remark 5.18. A function µi provided by Theorem 5.17 satisfies Definition 5.11. We will see in Sec-
tion 5.6 that such a decomposition may exist without the hypotheses of Theorem 5.17, for example if
the characteristic of F divides |G|.

102 Chapter 5. Proximity testing for algebraic geometry codes

Remark 5.19. If the function µ is defined over the base field F then the decomposition (5.8) is valid
when considering F-vector spaces:

LX (D)j » µjπ˚
(

LY

(Z
1
m

π˚ (D + j div(µ))
^))

.

In practical instantiations, we are always able to choose µ defined over F, even when ζ does not belong
to F. Thus, such a decomposition holds even if there is no mth primitive root in the base field F. However,
as the evaluation set P is formed of orbits of size |G|, our applications will require this primitive root to
belong to F, as it is the case for Kummer curves (see Section 5.5).

To handle the divisors appearing in the decomposition above, we need to get a better grasp on
the zeroes and the poles of the function µ, including the ramification points of π according to the
following lemma.

Lemma 5.20. Assume that Γ = xγy is a cyclic group of order m. Let P be a point of X whose stabilizer
ΓP is non trivial. Then P P supp(µ).

Proof. By hypothesis, there exists j P J1, m´ 1K such that γj P ΓP. Then

(γj ¨ µ)(P) = ζ jµ(P) by definition of µ in Th. 5.17,

= µ(P) because γj P ΓP.

Since ζ j ‰ 1, the point P is either a pole or a zero of µ.

5.4 IOP of Proximity for foldable AG codes

Now that we have determined the needed properties of an AG code to be foldable, we construct
folding operators (Definition 3.1 and Definition 3.4) for them. This yields an IOPP for foldable AG
codes, using Construction 3.5.

5.4.1 Definition of folding operators and properties

Let C0 = C(X0,P0, D0) be a code satisfying Definition 5.13. We consider its associated (X ,G)-
sequence of curves (Xi) and its sequence of divisors (Di).

To test proximity of a function f (0) : P0 Ñ F to C0, we aim to inductively reduce the problem to
a smaller one, consisting of testing proximity to the code Ci = C(Xi,Pi, Di). Broadly speaking, our
goal is to define from any function f (i) : Pi Ñ F a function f (i+1) : Pi+1 Ñ F such that the relative
distance ∆(f (i+1), Ci+1) is roughly equal to ∆(f (i), Ci).

Fix i P J0, r´ 1K and let f : Pi Ñ F be an arbitrary function.

Notation 3 (Interpolation polynomial). For each P P Pi+1, let us denote SP – π´1
i (tPu) the set of

pi distinct preimages of P. Recall that the function µi satisfies Item ?? of Definition 5.13 and consider

I f ,P(X) –

pi´1
ÿ

j=0

X jaj,P (5.9)

5.4. IOP of Proximity for foldable AG codes 103

the univariate polynomial over F of degree less than pi which interpolates the set of points
!

(µi(pP), f (pP)); pP P SP

)

.

Specifically, for all pP P SP, we have
I f ,P(µi(pP)) = f (pP).

Then for every j P J0, pi ´ 1K, we define the function

f j :
"

Pi+1 Ñ F,
P ÞÑ aj,P.

(5.10)

Given f : Pi Ñ F, the idea is to define pi functions f j : Pi+1 Ñ F, where |Pi+1| =
|Pi|
pi

such that
f corresponds to the evaluation of a function in L(Di) if and only if each f j coincides with a function
in L(Ei,j) Ă L(Di+1). Instead of testing for each j P J0, pi ´ 1K whether f j P Ci+1, we reduce those
pi claims to a single one, by taking a random linear combination of the f j’s, which we referred to
as a folding of f . By linearity of the codes, such a combination of the f j’s belongs to Ci+1 whenever
f P Ci (see Proposition 5.23 below). However, for soundness analysis, one needs to ensure that no f j
corresponds to a function lying in L(Di+1)zL(Ei,j). Some safeguards are embedded into the folding
operation by introducing the balancing functions νi+1,j from Definition 5.12 in the second term of
the sum in (5.11).

Definition 5.21 (Folding operator). For any z = (z1, z2) P F2, we define the folding of f to be the
function Fold [f , z] : Pi+1 Ñ F such that

Fold [f , z] –
pi´1
ÿ

j=0

zj
1 f j +

pi´1
ÿ

j=0

zj+1
2 νi+1,j f j (5.11)

where the functions f j are defined in Equation (5.10) and the functions νi+j,j in Definition 5.12.

Our aim is to prove that the folding operators satisfy three key properties: local computability,
completeness, and distance preservation. This will enable us to invoke Theorem 3.8 for the com-
pleteness and soundness of our AG-IOPP.

Given the pi points ((µi(pP), f (pP)))
pPPSP

, one can determine the coefficients (aj,P)0ďjăp of I f ,P
defined in (5.9) by polynomial interpolation. Recalling that for each P P Pi+1, we have f j(P) = aj,P,
we get the following lemma. This lemma will allow to obtain fast prover time and verifier decision
complexity.

Lemma 5.22 (Locality). Let z P F2. For each P P Pi+1, the value of Fold [f , z] (P) can be computed
with exactly pi queries to f , namely at the points π´1

i (tPu).

Proposition 5.23 (Completeness). Let z P F2. If f P Ci, then Fold [f , z] P Ci+1.

Proof. Write z = (z1, z2). If f P Ci, it coincides with a function of L(Di). By definition of the divisors
Ei,j and Theorem 5.17, there exist some functions rf j P L(Ei,j) such that

f =

pi´1
ÿ

j=0

µ
j
i
rf j ˝ πi.

104 Chapter 5. Proximity testing for algebraic geometry codes

Let P P Pi+1, for any pP P SP,

Fold
[

f , (µi(pP), 0)
]
(P) = I f ,P(µi(pP)) = f (pP) =

pi´1
ÿ

j=0

µi(pP)j
rf j(P).

Moreover, for any P P Pi+1, polynomials I f ,P(X) and Fold [f , (X, 0)] (P) P F[X] are of degree

less than pi and agree on
!

µi(pP); pP P SP

)

of size pi, therefore they are equal. In particular,

Fold
[

f , (µi(pP), 0)
]
(P) =

pi´1
ÿ

j=0

µi(pP)j f j(P).

Thus, for all P P Pi+1,
pi´1
ÿ

j=0

µi(pP)j(rf j(P)´ f j(P)) = 0

and the polynomial
pi´1
ÿ

j=0

X j(rf j(P)´ f j(P))

of degree less than pi is zero on at least
ˇ

ˇ

ˇ

!

µi(pP); P P Pi+1

)ˇ

ˇ

ˇ
= pi points. Hence, for every j P J0, pi ´ 1K,

the function f j defined in Equation (5.10) coincides with rf j and

Fold [f , z] –
pi´1
ÿ

j=0

zj
1
rf j +

pi´1
ÿ

j=0

zj+1
2 νi+1,j

rf j

where rf j P L(Ei,j) Ď L(Di+1) and νi+1,j f j P L(Di+1), by definition of the divisors Ei,j, Di+1 and
the functions νi+1,j (see Definition 5.12). Thus each term of Fold [f , z] lies in the vector space Ci+1,
which concludes the proof.

We now discuss the effect of the folding operation on a function which is far from the code.
Roughly speaking, we want to show that, if f is δ-far from Ci, then the folding Fold [f , z] of f is
almost δ-far from Ci+1 with high probability over z P F2.

Proposition 5.24. Fix i P J0, r´ 1K. For any weight function ϕi : Pi Ñ [0, 1], define ϕi+1 : Pi+1 Ñ [0, 1]
by

@P P Pi+1, ϕi+1(P) –
1
pi

ÿ

pPPSP

ϕi(pP).

Let λi be the minimal relative distance of Ci. Fix ε P (0, 1[and δ ă min
(

Jpi
ε (λi), 1

2

(
λi +

ε
2

))
. For any

function f : Pi Ñ F such that agreeϕi
(f , Ci) ă 1´ δ, we have

Pr
zPF2

[
agreeϕi+1

(Fold [f , z] , Ci+1) ą 1´ δ + ε
]
ď

1
|F|

(
pi +

4
ε
´ 1
)(

4
ε

)pi

.

Proving Proposition 5.24 requires the lemma stated next. We prove Proposition 5.24, then prove
Lemma 5.25.

5.4. IOP of Proximity for foldable AG codes 105

Lemma 5.25. Let i P J0, r´ 1K, Di P Div(Xi) and µi P F(Xi) satisfying (5.11). Consider a divisor
Di+1 P Div(Xi+1) that is (Di, µi)-compatible in the sense of Definition 5.12.

Fix j P J0, pi ´ 1K. Then a function g P F(Xi+1) belongs to L(Ei,j) if and only if both functions g
and gνi+1,j belong to L(Di+1).

Proof of Proposition 5.24. Let f : Pi Ñ F be an arbitrary function. According to Equation (5.10),
there exist pi function f j : Pi+1 Ñ F such that for any z = (z1, z2) P F2,

Fold [f , z] =
pi´1
ÿ

j=0

zj
1 f j +

pi´1
ÿ

j=0

zj+1
2 νi+1,j f j.

Rewrite Fold [f , z] as a polynomial function in z2, i.e. Fold [f , z] = fz1 + z2 f 10 + z2
2 f 11 + ¨ ¨ ¨+ zpi

2 f 1pi´1

where we set fz1 –
řpi´1

j=0 zj
1 f j and f 1j – νi+1,j f j. Finally, set

K0 –
pi ´ 1
|F|

(
4
ε

)pi

and K1 –
pi

|F|

(
4
ε

)pi+1

.

Let us prove the corollary by contrapositive: assume that

Pr
zPF2

[
agreeϕi+1

(Fold [f , z] , Ci+1) ą 1´ δ + ε
]
ą K0 + K1.

Thus we have

Pr
z1PF

[
Pr

z2PF

[
agreeϕi+1

(Fold [f , z] , Ci+1) ą 1´ δ + ε
]
ą K0

]
ą K1.

Fix z1 P F such that

Pr
z2PF

[
agreeϕi+1

(Fold [f , z] , Ci+1) ą 1´ δ + ε
]
ą K0.

By Proposition 3.16, there exist vz1 , v11, . . . , v1pi´1 P Ci+1 and T 1 Ă P such that

–
ř

PPT 1 θ(P) ě (1´ δ + ε
2) |Pi+1|,

– vz1 |T 1 = fz1 |T 1 ,
– for each j P J1, pi ´ 1K, v1j|T 1 = f 1j |T 1 .

In particular,

agreeϕi+1
(fz1 , Ci+1) ě agreeϕi+1

(fz1 , vz1) =
1

|Pi+1|

ÿ

PPT 1
θ(P) ě 1´ δ +

ε

2
.

It means that

Pr
z1PF

[
agreeϕi+1

(fz1 , Ci+1) ě 1´ δ +
ε

2

]
ě Pr

z1PF

[
Pr

z2PF

[
agreeϕi+1

(Fold [f , z] , Ci+1) ą 1´ δ + ε
]
ą K0

]
ą K1.

The polynomial form of fz1 in z1 enables us to reapply Proposition 3.16: there exist v0, v1, . . . , vpi´1 P Ci+1

and T Ă P such that

106 Chapter 5. Proximity testing for algebraic geometry codes

–
ř

PPT θ(P) ě (1´ δ) |Pi+1|,
– for each j P J0, pi ´ 1K, vj|T = f j|T .

On T 1 X T , we thus have

v1j|T 1XT = f 1j |T 1XT = (νi+1,j f j)|T 1XT = (νi+1,jvj)|T 1XT .

The cardinality of T 1 X T satisfies

|T 1 X T | = |T 1|+ |T | ´ |T 1 Y T | ě
ÿ

PPT 1
θ(P) +

ÿ

PPT
θ(P)´ |Pi+1| ě (1´ 2δ +

ε

2
)|Pi+1|.

The assumption on δ ensures that 2δ´ ε
2 ă λi+1 where λi+1 is the minimal distance of Ci+1. Hence,

for every j P J0, pi ´ 1K, the evaluations of v1j and νi+1,jvj on Pi+1 are equal. They are codewords
of Ci+1, thus this implies that both functions vj and νi+1,jvj belong to L(Di+1). By Lemma 5.25, we
get that the function vj lies in L(Ei,j).

Now let us define v : Pi Ñ F by

@Q P Pi, v(Q) –

pi´1
ÿ

j=0

µ
j
i(Q)vj ˝ πi(Q).

By definition of the divisors Ei,j (5.5), the function v belong to L(Di). Now let us prove that it agrees
with f on ST –

Ů

PPT SP. For any P P T and pP P SP, we have

f (pP) = I f ,P(µi(pP)) =
pi´1
ÿ

j=0

µi(pP)j f j(P) by definition of I f ,P,

=

pi´1
ÿ

j=0

µi(pP)jvj ˝ πi(pP) since f j|T = vj|T and P = πi(pP),

= v(pP).

As a result, since v P Ci, we can conclude that

agreeϕi
(f , Ci) ě agreeϕi

(f , v) ě
1
|Pi|

ÿ

PPT

ÿ

pPPSP

η(pP) =
1

|Pi+1|

ÿ

PPT
θ(P) ě 1´ δ.

Proof of Lemma 5.25. Assume that g P L(Ei,j). Then the second and third items of Definition 5.12
ensure that g and gνi+1,j lie in L(Di+1).

Conversely, assume that g and gνi+1,j belong to L(Di+1) and write Di+1 =
ř

nPP. The hy-
potheses on g imply that g P L(Di+1)X L(Di+1 ´ (νi+1,j)). By [MP93, Lemma 2.6], the function g
belongs to L(D1i+1), where the divisor D1i+1 is defined by

D1i+1 –
ÿ

P

n1PP where n1P – min(nP, nP + vP(νi+1,j)).

Then D1i+1 = Di+1 ´ div8
(
νi+1,j

)
= Ei,j by the third item of Definition 5.12.

5.4. IOP of Proximity for foldable AG codes 107

5.4.2 Foldable AG codes admit efficient IOPP

Let C0 = C(X0,P0, D0) be a foldable AG code over an alphabetF. Given a family of folding operators
defined as per Definition 5.21, Construction 3.5 yields an IOPP for C0, which is abstracted from the
FRI protocol of [BBHR18a]. We informally describe the IOPP system (P , V) for testing proximity
of a function f (0) : P0 Ñ F to C0, then give its properties. A formal description will be provided in
Section 5.7 for instantiations with concrete AG codes.

As in the FRI protocol, the IOPP is divided in two phases, referred to as COMMIT and QUERY.
Before any interaction, P and V agree on:

– a (X , sG)-sequence of curves (Xi)0ďiďr of length r.
– a sequence of codes (Ci)0ďiďr where for each i P t0, . . . , ru, Ci = (Xi,Pi, Di) and Xi,Pi and

Di are defined as per Section 5.3,
– a sequence of functions (µi)0ďiăr P F(Xi) satisfying Definition 5.11,
– a sequence of balancing functions (νi+1)0ďiăr of pi-tuples of functions in F(Xi+1) such that

νi+1 = (νi+1,j)0ăjăpi and νi+1,j satisfies (5.6).

We recall that the choice of a sequence (Xi)0ďiďr induces a sequence of projections πi : Xi Ñ Xi+1.

– The COMMIT phase is an interaction over r rounds between P and V . For each round i P
J0, r´ 1K, the verifier samples a random challenge z(i) P F2. As an answer, the prover gives
oracle access to function f (i+1) : Pi+1 Ñ F, which is expected to be equal to Fold

[
f (i), z(i)

]
.

To compute the values of f (i+1) on Pi+1, an honest prover P exploits the fact that the folding
of f (i) is locally computable (Lemma 5.22). Namely, for each P P Pi+1, P computes the
coefficients (aj,P)0ďjăp of I f (i),P P F[X] from f (i)

|SP
, evaluates νi+1,j at P, and set

Fold
[

f (i), z(i)
]
(P) –

pi´1
ÿ

j=0

(
z(i)1

)j
aj,P +

pi´1
ÿ

j=0

(
z(i)2

)j+1
νi+1,j(P)aj,P.

– During the QUERY phase, one of the two tasks of the verifier V is to check that each pair
of successive oracle functions (f (i), f (i+1)) is consistent. A standard idea is to check that the
equality

f (i+1) = Fold
[

f (i), z(i)
]

(5.12)

holds at a random point in Pi+1. By leveraging the local property of the folding operator, such
a test requires only pi queries to f (i) and 1 query to f (i+1). As in [BBHR18a], we call this step
of verification a round consistency test. The verifier begins by sampling at random Q0 P P0 and
once this is done, all the locations of the round consistency tests run inside the current query
test are determined. More specifically, for each round i, V defines Qi+1 – πi(Qi) to be the
random point where Equation (5.12) is checked. Through this process, the round consistency
tests are correlated to improve soundness. Such a query test can be seen as a global consistency
test, similar to the one of the FRI protocol. For the final test, V reads f (r) : Pr Ñ F in its
entirety to test if f (r) P Cr.

Theorem 5.26. Let C0 = C(X0,P0, D0) be a foldable AG code of length n – |P0|. By definition, C0

admits a solvable group G P Aut(X0) such that |G| ą ne for a certain e P (0, 1) and induces a sequence
of codes (Ci). Denote pmax the largest order of the factor groups of the sequence sG, λ – mini ∆(Ci)

and γ – min
(

Jpmax
ε (λ), 1

2 (λ + ε
2)
)
. There is an IOPP system (P , V) for C0 satisfying:

108 Chapter 5. Proximity testing for algebraic geometry codes

Perfect completeness: If f (0) P C0 and f (1), . . . , f (r) are honestly generated by the prover, the verifier
outputs accept with probability 1.

Soundness: Assume f (0) is δ-far from C0 and let ε P (0, 1). With probability at least 1´ errcommit
over the randomness of the verifier during the COMMIT phase, where

errcommit ď
log n
|F|

(
pmax +

4
ε
´ 1
)(

4
ε

)pmax

and for any oracles f (1), . . . , f (r) adaptively chosen by a possibly dishonest prover P˚, the prob-
ability that the verifier V outputs accept after a single query test is at most

errquery(δ) ď (1´min(δ, γ) + ε log n).

Overall, for any prover P˚, the soundness error err(δ) after t repetitions of the QUERY phase
satisfies

err(δ) ď errcommit +
(
errquery(δ)

)t

ă
log n
|F|

(
pmax +

4
ε
´ 1
)(

4
ε

)pmax

+ (1´min(δ, γ) + ε log n)t.

Moreover, the IOPP system is public-coin, has round complexity r(n) ă log n, proof length l(n) ă n
and query complexity q(n) ă tpmax log n + n1´e.

Proof. Lemma 5.22, Proposition 5.23 and Proposition 5.24 satisfy the conditions of Definition 3.1
and Definition 3.4. Completeness and soundness are given by Theorem 3.8. Let us prove the rest of
the theorem.

(Round complexity) We have that
r´1
ź

i=0

pi =
n
nr

, where nr = |Pr| = n
|G| ă n1´e. For every i P

J0, r´ 1K, 2 ď pi ď pmax. Therefore r(n) ď log2 n´ log2 nr ă log2 n.

(Query complexity) Notice that for i P J0, r´ 2K, f (i+1)(Qi+1) is reused for the next round consis-
tency test. Hence, q(n) = t

(
řr´1

i=0 pi

)
+ n1´e ď trpmax + n1´e.

(Proof length) The total proof length l(n) is the sum of the lengths of all the oracles provided by
P during the COMMIT phase, counted in field elements. Denoting ti+1 –

śi
j=0 pj, we notice that

|Pi+1| =
|Pi|
pi

= |P0|
ti+1

. Thus, we have

l(n) =
r
ÿ

i=1

|Pi| =
r
ÿ

i=1

|P0|

ti
ď n

r
ÿ

i=1

1
2i ă n.

5.5. A family of foldable AG codes on Kummer curves 109

5.5 A family of foldable AG codes on Kummer curves

5.5.1 Preliminaries

Let us consider a Kummer curve over a finite field F defined by an equation of the form

X : YN = f (X) =
m
ź

`=1

(X´ α`) (5.13)

where f is a degree-m separable polynomial of F[X], gcd(N, m) = 1 and α` P F for all ` P J1, mK.
Let us denote by P` the point (α`, 0) and P8 the unique point of X lying on the line at infinity.

Sequence of curves. Assume that gcd(N, |F|) = 1. The group Z/NZ acts onX via the morphism
(x, y) ÞÑ (x, ζy) where ζ is a primitive Nth root of unity. We assume that ζ belongs to F.

The cyclic group Z/NZ is solvable: writing the prime decomposition of N =
śr´1

i=0 pi gives the
following sequence of subgroups

Z/NZ Ź Z/N1Z Ź Z/N2Z Ź ¨ ¨ ¨ Ź Z/Nr´1Z Ź 1, (5.14)

where

Ni –

r´1
ź

j=i

pj. (5.15)

The i-th factor group Γi is isomorphic to the cyclic group of prime order Z/piZ. It is spanned by
γi : (x, y) ÞÑ (x, ζiy) where ζi is a primitive pth

i root of unity.
Set X0 – X . By Section 5.3.1, the composition series (5.14) gives a sequence of curves (Xi) in

which the ith curve is defined by
Xi : YNi = f (X) (5.16)

and has genus

gi =
(Ni ´ 1)(m´ 1)

2
.

The last curve Xr has genus 0 and is isomorphic to the projective line P1. These successive quotients
provide a sequence of projections πi : Xi Ñ Xi+1 defined by πi(x, y) = (x, ypi):

X0 . . . Xi Xi+1 . . . Xr » P1.

γ0

π0 πi

γi

πi+1

γi+1

πr´1

Example 5.27. The Hermitian curve defined over Fq2 by

X0 : Yq+1 = Xq + X (5.17)

is a well-studied particular case of Kummer type curve. In this case, every curve in a (X , sG)-sequence
is maximal over Fq2 , i.e.

ˇ

ˇ

ˇ
Xi(Fq2)

ˇ

ˇ

ˇ
= q2 + 1 + 2giq [Lac87, Proposition 6].

110 Chapter 5. Proximity testing for algebraic geometry codes

Stabilized points. Let us denote Pi
8 the unique point at infinity on the curve Xi. One can easily

check that

Pi
8 :=

"

(1 : 0 : 0) if N ą m
(0 : 1 : 0) otherwise.

The points of X0 whose stabilizer under Z/NZ is non trivial are in fact fixed by Z/NZ and
consist precisely in P1, . . . , Pm and Pi

8.

5.5.2 Decomposition of Riemman-Roch spaces for Kummer extensions

The theory of Kummer extensions provides us a decomposition like (5.4) at each level, with µi = y
for every i P J0, r´ 1K.

Theorem 5.28 ([Mah04, Theorem 2.2]). Let Di P Div(Xi) that is Γi-invariant. Then

LXi(Di) =
pi´1
à

j=0
LXi+1

(Z
1
pi
(πi)˚(Di + j divXi(y))

^)
.

An example of a sequence of y-compatible divisors. In order to exhibit a sequence of divisors
(Di) such that Di+1 is (Di, y)-compatible for every i ě 0, we need to handle the divisor associated
to y and some other elementary functions on each curve Xi, described for instance in [MQS15].

Lemma 5.29 ([MQS15]). On Xi for every i P J0, r´ 1K, we have

1. divXi(x´ α`) = Ni(P` ´ Pi
8),

2. divXi(y) = P1 + ¨ ¨ ¨+ Pm ´mPi
8.

We now give sufficient conditions on the curve X0 and the first divisor D0 to get a sequence of
compatible divisors.

Lemma 5.30. Set D0 =
m
ÿ

`=1

a0,`P` + b0P0
8 P Div(X0). Assume that m ” ´1 mod N and that the

integers a0,1, . . . , a0,m, b0 are all divisible by N. For every i P J0, r´ 1K, set Di+1 = Di
pi
. Then, the divisor

Di+1 is (Di, y)-compatible.

Proof. For i P J1, rK, let us set ai,` =
ai´1,`
pi´1

and bi =
bi´1
pi´1

such that

Di =
m
ÿ

`=1

ai,`P` + biPi
8.

Fix i P J0, r´ 1K. The divisor Di is supported only by Γi-fixed points. For any j P J0, pi ´ 1K, we have

Ei,j –

Z

1
pi

πi˚(Di + j divXi(y))
^

=
m
ÿ

`=1

Z

ai,` + j
pi

^

P` +
Z

bi ´ jm
pi

^

Pi+1
8 .

Since Ni divides N, we have m ” ´1 mod Ni. Write m = κiNi ´ 1 with κi ě 1. The hypothesis on
the integers a0,1, . . . , a0,m, b0 entails

Z

ai,` + j
pi

^

= ai+1,` +

Z

j
pi

^

= ai+1,`

Z

bi ´ jm
pi

^

= bi+1 ´
jκiNi

pi
+

Z

j
pi

^

= bi+1 ´ jκiNi+1.

5.5. A family of foldable AG codes on Kummer curves 111

Then
Ei,j = Di+1 ´ jκiNi+1Pi+1

8 .

In particular, Di+1 = Ei,0 and Ei,j ď Di+1. Any νi+1,j – (x´ α)κi j with α P tα1, . . . , αmu gives the
last condition on Di+1 for it to be (Di, y)-compatible by Definition 5.12, i.e. Di+1 ´ Ei,j = div8

(
νi+1,j

)
.

5.5.3 Foldable AG codes on Kummer curves and their parameters

We have gathered all the components to exhibit a foldable code on a family of Kummer curves.

Proposition 5.31. Let X0 be a Kummer curve defined by (5.13) with m ” ´1 mod N. Take an
evaluation set

P0 Ď X0(F)ztP1, . . . , Pm, P0
8u

formed by Z/NZ-orbits and D0 P Div(X0) satisfying hypothesis of Lemma 5.30. If N ą ne for some
e P (0, 1), then the AG code C = C(X0,P0, D0) is foldable.

The length of foldable codes over a Kummer curve as defined in (5.13) over Fq is bounded from
above by q + 1 + (N ´ 1)(κN ´ 2)

?q´ κN, using Hasse-Weil bound, write m = κN ´ 1.

Remark 5.32. 1. We assumed that primitive Nth root ζ was an element of the base field F (Sec-
tion 5.5.1) to ensure that the set P0 is not empty.

2. The condition on the coefficients of D0 (Lemma 5.30) can be loosen while the previous statement
still holds. If a0,1, . . . , a0,m, b0 are divisible by

śr´2
i=0 pi and not necessarily by pr´1, we choose

ar,` =

R

ar´1,`

pr´1

V

and br =

Z

br´1

pr´1

^

for the coefficients of Dr. The last curve Xr being isomorphic to P1, the existence of balancing
functions is trivial, if the first requirement of Definition 5.12 holds.

Explicit basis of the Riemman-Roch spaces. AG codes from the Kummer curve X associated to
divisors as defined in Lemma 5.30 have been studied by Hu and Yang [HY18]. They provide a basis
of the Riemman-Roch spaces in a combinatorial form.

Theorem 5.33 ([HY18, Theorem 5]). Let j, j2, . . . , jm be integers. We define

Ej, j2,...,jm – yj
m
ź

`=2

(x´ α`)
j` .

Consider D =
řm

`=1 a`P` + bP8. Set

Ωa1,...,am,b –

"

(j, j2, . . . , jm) | j + a1 ě 0, j` =
R

´j´ a`
N

V

for ` = 2, . . . , m

and mj + N(j2 + ¨ ¨ ¨+ jm) ď b
*

.

Then the elements Ej, j2,...,jm for (j, j2, . . . , jm) P Ωa1,...,am,b form a basis of LX (D).

112 Chapter 5. Proximity testing for algebraic geometry codes

Parameters. To estimate the parameters of the code by using the Riemnann-Roch theorem, we
shall rely on the following result. Recall that ni = |Pi|.

Lemma 5.34. Let g0 by the genus of X0. Assume that 2(g0 ´ 1) ă deg(D0) (resp. deg(D0) ă n0).
Then for every i P J0, rK, 2(gi ´ 1) ă deg(Di) (resp. deg(Di) ă ni).

Proof. It is enough to notice that for every i P J0, r´ 1K,

deg Di+1 =
deg Di

pi
, ni+1 =

ni

pi
, and gi+1 ď

gi

pi
.

In other words, if the degree of the first divisor is such that we can estimate the parameters of
C0 thanks to Riemann-Roch Theorem, then we handle the parameters of all the sequence of codes.

Proposition 5.35. If deg(D0) ă n0, then for every i P J0, rK, the code Ci has length ni and minimum
relative distance ∆(Ci) = 1´ deg D0

n0
. In particular, the RS code Cr has length n0

N , dimension deg D0
N + 1

and relative minimum distance 1´ deg D0
n0

.
Moreover, if 2(g0 ´ 1) ă deg(D0), for every i P J0, rK, the code Ci has dimension deg Di ´ gi + 1.

Proof. The length of Ci is ni by construction and its dimension is given by the Riemann-Roch theorem.
So let us prove the statement concerning the relative minimum distance.

First notice that ni = pini+1 and deg(Di) = pi deg(Di+1) so 1´ deg Di
ni

= 1´ deg D0
n0

. For i = r,
the code Cr is a Reed-Solomon code of degree 0 ď deg(Dr) ă nr by Lemma 5.34 and has the
expected relative minimum distance.

Now assume that ∆(Ci+1) equals 1´ deg D0
n0

and let us prove that so does ∆(Ci). On the one hand,
the divisor Di+1 corresponds to Ei,0. Thus, for every f P Ci+1, f ˝ πi P Ci. In addition, the weight
of f ˝ πi in Ci is pi times the weight of f in Ci+1. Since ni = pini+1, we have ∆(Ci) ď ∆(Ci+1). On
the other hand, as deg(Ci) ă ni, we have ∆(Ci) ě 1´ deg Di

ni
, which concludes the proof.

5.6 A family of foldable AG codes along the Hermitian tower

5.6.1 Preliminaries

Sequence of curves. We now consider curves along the Hermitian tower F = (Xi)iě0 (Defini-
tion 5.8). We have an infinite sequence of curves (Xi)iě0 as follows.

. . . Xi Xi´1 . . . X0 » P1.
πi+1

γi

πi

γi´1

πi´1 π1

Remark 5.36. In the context of recursive towers, it is standard to index the curves the other way round
compared to the notations used in Section 5.3. In that case, our goal will be to design an IOP of Proximity
for an initial AG code over a given curve Ximax in the tower F , by “folding it” to reach a code over
X0 » P1. We will define a sequence of AG codes “by descending the tower”, namely over the curves
Ximax ,Ximax´1, . . . ,X0.

5.6. A family of foldable AG codes along the Hermitian tower 113

For i = 1, X1 is the Hermitian curve over Fq2 . One can view the curve Xi embedded in an
(i + 1)-dimensional affine space with variables (x0, x1, . . . , xi) defined by the equations

Xq
i + Xi = Xq+1

i´1 for i ě 1. (5.18)

Let us denote Fi – Fq2(Xi) and gi := g(Xi) the genus of the curve Xi. An explicit formula was
given by Pellikaan, Shen and Wee [PSW91, Proposition 4]. We have g0 = 0 and for i ě 1,

gi =
1
2

[
(q2 ´ 1)

(
(q + 1)i ´ qi

)
+ 1´ qi

]
=

1
2
¨

(
i
ÿ

k=1

qi+1 ¨

(
1 +

1
q

)k´1

+ 1´ (1 + q)i

)
.

(5.19)
For every i ě 0, the number of Fq2–rational places in Fi is given by

ˇ

ˇ

ˇ
Xi(Fq2)

ˇ

ˇ

ˇ
= qi+2 + 1.

This tower is a tower of Artin-Schreier extensions, which have been extensively studied (see for
example [Sti09, Section 3.7]). Let us recall some classical results that will be useful to design foldable
AG codes along this tower.

Automorphisms and projection maps. The set A –

!

α P Fq2 | αq + α = 0
)

is a subgroup of
order q of the additive group of Fq2 . Assuming that Fq is an extension of degree k of the prime field
Fp, p = char Fq, A is isomorphic to (Z/pZ)k. For any i, let us consider

Γi – tγi,α : (x1, . . . , xi) ÞÑ (x1, . . . , xi´1, xi + α) | α P Au .

We have that Γi is a subgroup of Aut(Xi) of order q and Γi » (Z/pZ)k. Moreover, Xi/Γi = Xi´1.
The quotient map πi : Xi Ñ Xi´1 consists in the projection onto the first i coordinates. For every
i ě 0, we set Πi to be the composition of the first i quotient maps, i.e.

Πi – πi ˝ πi´1 ˝ ¨ ¨ ¨ ˝ π0.

Behaviour of the point of infinity. In what follows, let us denote by P(0)
8 the unique pole of the

function x0 in F0, which corresponds to the point at infinity on the projective line X0 = P1.

Lemma 5.37 ([Sti09, Proposition 3.7.8]). Let i ě 1. The place P(0)
8 is totally ramified in Fi, which

means that the preimage Π´1
i

(!
P(0)
8

))
consists in a unique place, denoted by P(i)

8 P Xi. Moreover,

P(0)
8 is the unique place that is ramified in the tower F .

The peculiar behaviour of the points P(i)
8 in the tower encourages us to define a sequence of codes

associated with divisors Di P Div(Xi) of the form

Di – diP
(i)
8 for i ě 1.

Let us focus on the principal divisors divXi(xj) (0 ď j ď i) and their valuation at the point P(i)
8 .

Their properties follow from the study of the basic function field F = Fq2(x, y) which is nothing
but the Hermitian function field. It is a special case of Artin-Schreier extension of Fq2(x) and is
well-known that we have

divX1(y) = P(0) ´ P(0)
8 .

114 Chapter 5. Proximity testing for algebraic geometry codes

Remark 5.38. The role of the variables x and y is reversed compared to the Kummer model of the
Hermitian curve, studied in the previous section.

Since each extension Fi/Fi´1 corresponds to the same Artin-Schreier extension, and that P(0)
8 is

fully ramified in Fi/F0, we can deduce the form of the divisor divXi(xi), given in the next lemma. The
valuation of the function xj P Fi´1 at P(i´1)

8 follows from the extension degrees [Fi´1 : Fj] = qi´1´j.

Lemma 5.39. The following two assertions hold.

1. For i ě 1, we have
divXi(xi) = (q + 1)i

(
P(i) ´ P(i)

8

)
,

where P(i) is the unique common zero of the functions x0, ..., xi;
2. Let i ě 1. Then for 0 ď j ď i´ 1, the valuation of the function xj P Fi´1 is given by

v
P(i´1)
8

(xj) = ´qi´1´j(q + 1)j.

Basis of the Riemann-Roch spaces associated to the divisor diP
(i)
8 . For a given i ě 0, P(i)

8 is
the unique pole of the functions x0, ..., xi, which gives an explicit basis of the Riemman-Roch space
associated to a multiple of P(i)

8 .

Lemma 5.40. For all i ď 1 and m ď 1, the Riemann-Roch LFi(mP(i)
8) is formed by linear combinations

of functions in the following set:
$

&

%

xa0
0 ¨ ¨ ¨ x

ai
i | 0 ď a0 , 0 ď aj ď q´ 1 and

i
ÿ

j=0

ajqi´j(q + 1)j ď m

,

.

-

.

5.6.2 Decomposition of Riemann-Roch spaces and balancing functions

Let us fix i ě 0. We aim to define a sequence of AG codes on the tower of curves (Xi)iě0 defined by

C(Xi,Pi, Di) where Pi Ď Xi(Fq2)ztP(i)
8 u and Di = diP

(i)
8 .

In order to obtain a sequence of foldable codes, we need to describe the Riemann-Roch spaces on
a certain step from Riemann-Roch spaces on lower curves. Since we consider the action of a group of
order q, Kani’s theorem does not apply. However, we can find a decomposition by hand. We deduce
such a decomposition from the explicit basis of the Riemman-Roch space given in Lemma 5.40.

Proposition 5.41. Let i ě 0. Set Di = diP
(i)
8 for some integer di. Then

LXi(Di) =
q´1
à

j=0
xj

iπ
˚
i
(

LXi´1(Ei,j)
)

with
Ei,j –

Z

1
q

πi˚ (Di ´ j ¨ divXi(xi))

^

for 0 ď j ď q´ 1.

In other words, the function xi P Fi partitions the divisor Di in the sense of Definition 5.11.

5.6. A family of foldable AG codes along the Hermitian tower 115

Proof. By Lemma 5.40, LXi(Di) is formed by linear combinations of xa0
0 ¨ ¨ ¨ x

ai
i with non negative

exponents such that 0 ď aj ď q´ 1 for j ‰ 1 and
i
ř

j=0
ajqi´j(q + 1)j ď di. As aj runs in t0, . . . , q´ 1u,

the proof is concluded by noticing that the function xa0
0 ¨ ¨ ¨ x

ai´1
i´1 P Fi lies in LXi(Di ´ j ¨ divXi(xi))

which means that xa0
0 ¨ ¨ ¨ x

ai´1
i´1 P Fi´1 belongs to LXi´1(Ei,j).

To make Di´1 compatible with (Di, xi) (Definition 5.12), we need the existence of q balancing
functions νi´1,j P Fi´1 (for every 0 ď j ď q´ 1) such that

Di´1 ´ Ei,j = (νi´1,j)8. (5.20)

In our setup, we have

Ei,j =

Z

di ´ j(q + 1)i

q

^

P(i´1)
8 .

Thus, we need to “balance” the divisors

Di´1 ´ Ei,j =

(
di´1 ´

Z

di ´ j(q + 1)i

q

^)
P(i´1)
8 .

We are led to study the Weierstrass semigroup of P(i´1)
8 , denoted by H

(
P(i´1)
8

)
. The generators

of this semigroup can be found using Lemma 5.39. In fact, P(i´1)
8 is the unique common pole of the

functions x0, ..., xi´1 P Fi´1 and we know their exact valuation. Thus we have

H
(

P(i´1)
8

)
=

A

qi´1´k(q + 1)k , 0 ď k ď i´ 1
E

N
.

Remark 5.42. In the spirit of the FRI protocol, one could be tempted to choose Di´1 as Ei,0. Such a
choice would be valid in the sense of Definition 5.12 if and only for every 0 ď j ď q´ 1

Z

di

q

^

´

Z

di ´ j(q + 1)i

q

^

P H
(

P(i´1)
8

)
.

Unfortunately, when i increases, this condition is never satisfied.

To ensure that deg(Di´1´ Ei,j) is never a Weierstrass gap for P(i´1)
8 , we increase the degree di´1

of Di´1.

Theorem 5.43. Let i ě 1. Set Di = diP
(i)
8 for some integer di and Di´1 = di´1P(i´1)

8 where

di´1 –

Z

di

q

^

+ 2gi´1. (5.21)

Then Di´1 is compatible with (Di, xi) (Definition 5.12).

Proof. By Theorem 5.9, we know that

max
(

NzH
(

P(i´1)
8

))
ď 2gi´1 ´ 1.

Then for every 0 ď j ď q´ 1, the difference

mi,j := deg(Di´1 ´ Ei,j) =

(Z
di

q

^

´

Z

di ´ j(q + 1)i

q

^

+ 2gi´1

)
(5.22)

always belongs to the Weierstrass semigroup H
(

P(i´1)
8

)
.

116 Chapter 5. Proximity testing for algebraic geometry codes

About the balancing functions. Since we know a N-basis of the Weierstrass semigroup at P(i´1)
8 ,

we are able to explicit the form of the functions νi´1,j. In particular, they can be chosen as product of
powers of the functions x0, ..., xi´1. More precisely, if ai,j := (ai,j(0), ..., ai,j(i´ 1)) P Ni are integers
such that

mi,j =
i´1
ÿ

k=0

ai,j(k) ¨ qi´1´k(q + 1)k, (5.23)

then mi,j P H
(

P(i´1)
8

)
. The corresponding choice for the balancing function is then given by

νi´1,j =
i´1
ź

k=0

x
ai,j(k)
k .

Note that finding a vector ai,j P Ni satisfying (5.23) leads to the study of the diophantine equation

mi,j =
i´1
ÿ

k=0

ak ¨ qi´1´k(q + 1)k

with i unknowns ak P N, for which we know there exists at least a solution (and we only need one).

5.6.3 Foldable AG codes along the Hermitian tower

We denote by imax the level in the tower (Xi)iě0, such that Ximax is the curve on which the code we
want to test proximity is defined.

Proposition 5.44. Fix an integer imax. Set P0 Ď P1(Fq2)ztP0
8u and define Pimax as the preimage of

P0 under the morphism Πimax . Fix an integer dimax . Then the code C(Ximax ,Pimax , dimax P(i)
8) is foldable.

Proof. We recall that the sequence of curves is indexed decreasingly here, contrary to Section 5.3.
By definition of the Hermitian tower, there exists a solvable group G acting on Ximax that admits
a normal series for which each factor group is isomorphic to the additive abelian group of Fq. The
action of G on Pimax is free, by definition of Pimax . The cardinality of Pimax is equal to |P0| qimax , hence
|G| ą |Pimax |

e for some e P (0, 1). The third condition of Definition 5.13 follows from Theorem 5.43,
noticing that for every i ě 0, the function xi maps different points in the same Γi-orbit onto different
values.

To control the dimension of foldable codes, we will focus on those of the form

C – C
(
Ximax ,Ximax(Fq2)z

!

P(imax)
8

)

, (2α + 1)gimax)P(imax)
8

)
(5.24)

for some α ą 1/2. In this case, we have nimax = qimax+2. We can determine a sufficient condition
over imax and α to get a family of codes with constant rate and polylogarithmic-size alphabet.

To estimate the parameters of the foldable codes we define along the Hermitian tower, we need
to handle the genera of the curves in this tower.

5.6. A family of foldable AG codes along the Hermitian tower 117

Proposition 5.45. For i ě 1, we have

gi ď
qi+1

2

i
ÿ

k=1

(
i
k

)
1

qk´1 ď
iqi+1

2

i
ÿ

k=1

(
i
q

)k´1

ď
i
2

qi+1 +
i(i´ 1)

2
qi,

the last inequality holding only if 2(i´ 1) ă q.

Proof. Starting from the second formula of (5.19), we can write

gi =
1
2
¨

(
qi+1

i
ÿ

k=1

(
1 +

1
q

)k´1

+ 1´ (1 + q)i

)
ď

qi+1

2
¨ q ¨ ((1+ 1/q)i´1) =

qi+1

2
¨

i
ÿ

k=1

(
i
k

)
1

qk´1 ,

using that the term outside the geometric sum is non positive. Note that if k ě 2, then we can bound
the binomials coefficients as follows(

i
k

)
=

i(i´ 1) ¨ ¨ ¨ (i´ k + 1)
k(k´ 1) ¨ ¨ ¨ 2

ď
i(i´ 1)k´1

2
,

as the denominator is greater than 2 and the factors i´ 1, i´ 2, ..., i´ k + 1 are all lesser than i´ 1.
Factoring and using this upperbound over the binomials coefficients, we get

gi ď
qi+1

2
¨

(
i +

i
2

i
ÿ

k=2

(
i´ 1

q

)k´1
)

=
iqi+1

2

(
1 +

1
2
¨

(
i´ 1

q

)
¨

i
ÿ

k=2

(
i´ 1

q

)k´2
)

.

Assuming that 2(i ´ 1) ă q, we can bound the sum
i
ř

k=2

(
i´ 1

q

)k´2

by 2, which concludes the

proof.

Lemma 5.46. Fix ε P (0, 1) and set i = qε. Then

gi

qi+2 „
qÑ8

1
2q1´ε

.

Proof. From the first formula of (5.19), we get

2gimax

qimax+2 =

(
1´

1
q2

)[(
1 +

1
q

)qε

´ 1

]
+

1
qimax+2 ´

1
q2

Let us examine the asymptotic behaviour of
(

1 + 1
q

)qε

when q goes to infinity. Set h = q´1.

(
1 +

1
q

)qε

= exp
(

h1´ε ¨
log(1 + h)

h

)
= exp

(
h1´ε

(
1´

h
2
+ o(h)

))
= 1 + h1´ε + o(h1´ε)

Therefore, we have (
1 +

1
q

)qε

´ 1 „
1

q1´ε
.

118 Chapter 5. Proximity testing for algebraic geometry codes

Lemma 5.47. Let R P (0, 1). Fix ε P (0, 1). Set imax – qε and α – Rq1´ε. The ratio of the dimension
of the code C defined in (5.24) by its block length goes to R when q tends to infinity. Moreover, if
2(qε ´ 1) ă q, the relative minimum distance of C is bounded from below by 1´ R

(
1 + 1

q

)
.

Proof. If α ą 1
2 , the dimension of the code is equal to (2α + 1)gimax ´ gimax + 1 = 2Rq1´εgimax + 1

by the Riemann-Roch Theorem. As R is fixed and q goes to infinity, we can assume that α ą 1/2 to
compute the rate as

lim
qÑ8

2Rq1´εgimax

qimax+2

for imax = qε. Lemma 5.46 clearly implies that this limit is equal to R.
Regarding the relative minimum distance, we use the Goppa bound: if (2α + 1)gimax ă qimax+2,

then the relative minimum distance of C satisfies ∆(C) ě 1´ (2α+1)gimax
qimax+2 . By Proposition 5.45, we

have
gimax

qimax+2 ď
imax

2q

(
1 +

imax

q

)
,

which gives the expected lowerbound for our choice of α and imax.

Given a foldable code as in Proposition 5.44, our AG-IOPP (Section 5.4) involves a sequence of
codes (Ci) where each code Ci is as follows:

Ci – C(Ximax´i,Pimax´i, Dimax´i) where Pi´1 = πi(Pi) and Di = diP
(i)
8

with the integers di defined recursively by

di´1 –

Z

di

q

^

+ 2g(Xi´1).

Unlike the Kummer case, we have to increase the degree of the divisor by twice the genus of the
curve at each step to make sure the compatibility hypotheses of Definition 5.12 are valid. This has a
counterpart: the dimension of the codes Ci decreases much slowly than their block length. A foldable
code in the sense of Definition 5.13 may induce a sequence of codes in which the last code Cimax is
trivial. In this case, the protocol would no longer be sound. We thus need to control the dimension
of the code Cimax .

Bounding the rate of the underlying Reed-Solomon code. We aim to bound the dimension of
the code Reed-Solomon code Cimax . Let us compute the degree dimax of the divisor Dimax on P1.

Lemma 5.48. For 1 ď j ď imax, we have

dimax´j ď

Z

dimax

qj

^

+

j
ÿ

k=1

Z

2gimax´k

qj´k

^

+ (j´ 1).

Proof. It follows from the definition of the degrees di given in (5.21) and by induction on j.

Using Lemma 5.48 which bounds the genera gi for i ď imax, we can get an upperbound on d0.

5.6. A family of foldable AG codes along the Hermitian tower 119

Corollary 5.49. Let us assume that 2(imax´ 1) ă q. The degree d0 of the divisor D0 on P1 is bounded
from above by

d0 ď

Z

dimax

qimax

^

+ (imax ´ 1)
(

1 +
imax

6
¨ (3q´ 4 + 2imax)

)
.

Proof. By Lemma 5.48, we have the following bound over d0:

d0 ď

Z

dimax

qimax

^

+
imax´1
ÿ

i=0

Z

2gi

qi

^

+ imax ´ 1.

It is thus enough to estimate the sum
imax´1
ř

k=0

Z

2gk

qk

^

. By Proposition 5.45,

imax´1
ÿ

k=0

Z

2gk

qk

^

ď

imax´1
ÿ

k=0

(kq + k(k´ 1))

= (q´ 1) ¨
imax(imax ´ 1)

2
+

imax(imax ´ 1)(2imax ´ 1)
6

=
imax(imax ´ 1)

2
¨

(
q´

4
3
+

2imax

3

)
,

which gives the expected result.

Depending on the length of the code Cimax , we can determine a sufficient condition on imax that
ensures that the code C0 is not trivial. Let us denote by n0 the size of P0. It satisfies n0 ď q2. The

rate of C0 is equal to
d0 + 1

n0
. Also we have nimax := |Pimax | = qimax n0.

Corollary 5.50. Let us fix ρ P (0, 1). If
Z

dimax

qimax

^

+ (imax ´ 1)
(

1 +
imax

6
¨ (3q´ 4 + 2imax)

)
+ 1 ă ρn0,

then the rate of the code C0 is less than ρ.

Foldable codes with constant rate which are endowed with an IOPP with designed soundness.
Let us consider a foldable code of the form

C = C0 = C
(
Ximax ,Ximax(Fq2)z

!

P(imax)
8

)

, (2α + 1)gimax)P(imax)
8

)
(5.24)

for some α ą 1/2, as in Section 5.6.3. The evaluation set Pimax is the whole set of rational points of
Ximax minus the point of at infinity P(imax)

8 , i.e. nimax = qimax+2.

Proposition 5.51. Let us fix ρ P (0, 1). The rate of the RS code Cimax below C0 is less than ρ if

2i3
max + 3i2

max(2α + q´ 1) + imax(6α(q´ 1) + 7)´ 6ρq2 ă 0.

120 Chapter 5. Proximity testing for algebraic geometry codes

Proof. For large enough value of q, we can assume that 2imax ´ 1 ă q. Using Proposition 5.45, we
get an upper bound for dimax:

dimax ď (2α + 1)
imax

2
qimax(q + (imax ´ 1)).

From Corollary 5.50, a sufficient condition for the underlying RS code to have a rate less than ρ is

(2α + 1)
imax

2
(q + (imax ´ 1)) + (imax ´ 1)

(
1 +

imax

6
(3q´ 4 + 2imax)

)
+ 1 ă ρq2.

Multiplying the inequality by 6, expanding and simplifying gives the condition.

Now assume that imax = qε for ε P (0, 1). In the constant rate regime described in Lemma 5.47,
we have αimax = Rq. The condition above becomes

2i3
max + 3i2

max(q´ 1) + imax(6Rq + 7) ă 6q2
(

ρ´ R
(

1´
1
q

))
.

If R
(

1´ 1
q

)
ă ρ, the right handside is positive. Let us give a rough estimation of the largest ε

such that imax = qε satisfies this inequality. The left handside being equivalent to 3q1+2ε, we have

ε »
1
2
(1 + logq

(
ρ´ R

(
1´

1
q

))
.

Table 5.1 displays some examples of level imax and initial rate R of foldable codes for which the
AG-IOPP reduce the proximity test to testing RS codes of rate ρ. In terms of the soundness of the
protocol, it means that λ as defined in Theorem 5.26 is greater than 1´ ρ.

q imax n R 1´ ρ ą

24 3 220
1/8 1/3

25 5 235

24 4 224

1/16

1/3

25 3 225 3/4

5 235 1/2

26

4 236 3/4

5 242 2/3

7 254 1/2

24 3 220 1/32 1/2

Table 5.1: Examples of parameters of foldable codes of rate R along the Hermitian tower. Alphabet
is F2

q and block length is n. The last column gives a bound on the minimal distance of the RS code.

5.7. Proximity tests for AG codes on Kummer curves and Hermitian towers 121

5.7 Proximity tests for AG codes on Kummer curves and Hermitian
towers

When we instantiate the AG-IOPP proposed in Section 5.4.2 for the setting of Kummer curves (Sec-
tion 5.5) and curves in the Hermitian tower (Section 5.6), we end up with a membership test to
a RS code. An RS code is itself a foldable AG code (see Section 5.3.3). In order to lower verifier
complexity, we can extend the AG-IOPP by replacing the final test by an IOPP for RS code. The main
properties of such an enhanced AG-IOPP is examined in this section.

5.7.1 How to iterate the folding to reach a code of dimension 1

We consider a sequence of foldable AG codes (Ci)0ďiďs as provided by Section 5.5 (Kummer curves)
or Section 5.6 (tower of Hermitian curves). The code Cs = C(P1,Ps, Ds) corresponds to a Reed-
Solomon code RS [F,Ps, d] = t f : Ps Ñ F; deg f ď du, where the degree bound depends on the
parameters of the code C0. Taking this into consideration, we want to iterate the folding operation
until we get a RS code of dimension 1, as it is done in the FRI protocol [BBHR18a].

As in Example 5.3.3, we set d0 = d and define di+1 =
Y

di
2

]

for any integer i. Set s1 the smallest
integer such that ds1 = 0. Then, we consider the sequence of Reed-Solomon codes (Cs+i)1ďiďs1

obtained from applying the construction described in Section 5.3 to the initial code Cs. Letting
r = s + s1, we iteratively reduce the proximity test to the code C0 to a membership test to the code
Cr, which is a Reed-Solomon code of dimension 1. If f (0) P C0, then f (r) is expected to be a constant
function, and this can be tested in a trivial way. We can leverage the fact that Cr is a Reed-Solomon
code to extend the protocol described in Section 5.4.2. From Construction 3.5, we obtain a r-rounds
IOPP system (P , V) for C0.

5.7.2 Properties of the AG-IOPP with Kummer curves

Assume C0 = C(X0,P0, D0) is a foldable AG code of blocklength n0 = |P0| on a Kummer curve X0

(cf. Proposition 5.31). This means that X0 is defined by an equation YN = f (X), where f P F[X]

is a separable degree-m polynomial, m ” ´1 mod N, N is coprime with |F|, |P0| = αN for some
integer α, and deg D0 ă αN. Assume α is a power of 2 and N is a η-smooth integer for a small fixed
parameter η P N.

Proposition 5.35 states that the relative minimum distances of the codes Ci are all equal to
∆(C0) = 1´ deg D0

αN . Therefore, the ordering on the integers involved in the prime decomposition
śs´1

i=0 pi of N does not impact the parameters of the protocol. Moreover, the code Cs = C(Xs,Ps, Ds)

corresponds to a RS code

Cs = RS

[
F,Ps,

deg D0

N

]
=

"

f : Ps Ñ F; deg f ď
deg D0

N

*

of blocklength |Ps| = α, which is itself a foldable AG code (see Example 5.3.3).

Theorem 5.52 (Kummer case). Let C = (X0,P0, D0) be a foldable AG code on a Kummer curve
satisfying the hypotheses of Proposition 5.31 with N a η-smooth integer. Denote n = |P0|. There is an
IOPP (P , V) for C with perfect completeness and soundness as stated in Theorem 5.26. Moreover, for
t repetitions of the QUERY phase, we have:

122 Chapter 5. Proximity testing for algebraic geometry codes

– rounds complexity r(n) ă log n,
– proof length l(n) ă n,
– query complexity q(n) ď tη log2 n + 1,
– prover complexity tp(n) = Oη(n),
– verifier complexity tv(n) = Oη(t log n).

Proof. Noticing that the round complexity is now r(n) = s + s1, straightforward calculations show
that the bounds on query complexity and proof length computed in the proof of Theorem 5.26 still
hold (assuming that we apply the variant of Construction 3.5 described in Remark 3.7). We estimate
prover complexity and verifier complexity below.

(Prover complexity) Fix a round index i ă r´ 1. The balancing functions νi+1,j : Pi+1 Ñ F can be
precomputed since they do not depend on f (i), z(i) (see Remark 5.53). To simplify notation, denote
f = f (i). For any z = (z1, z2) P F2, computing the successive powers (zj

1, zj
2)0ďjăpi takes 2(pi ´ 2)

multiplications. For each P P Pi+1, an honest prover must compute the coefficients (aj,P)0ďj,ăP of
the polynomial I f ,P(X) of degree deg I f ,P ă pi from the interpolation set

!

(µi(pP), f (pP)) | pP P SP

)

of size pi. Notice that µi = y, so computing µi(pP) for pP P SP is done for free. Univariate interpola-
tion for a polynomial of degree ă pi can be done in O(p2

i) by Lagrange interpolation. Overall, one
can honestly evaluate Fold [f , z] : Pi+1 Ñ F with |Pi+1|O(p2

i) operations in F. We showed previ-
ously that

řr´1
i=1 |Pi| ă n, thus when summing over r´ 1 rounds, we get that the cost of (honestly)

generating the oracles f (1), . . . , f (r´1) is Oη(n).

(Verifier decision complexity) Verifier complexity is inferred from the previous discussion about prover
complexity. For each round, the verifier computes the successive powers of z1 and z2, interpo-
lates I f ,P for a point P P Pi+1 in O(p2

i) operations, then computes Fold [f , z] (P) in a number
of operations which is independent of n. Hence, verifier complexity for repetition parameter t is
tv(n) = Oη(t log(n)).

Remark 5.53. We give the cost of precomputing the evaluation tables of the balancing functions. Letting
νi+1,j be as defined in proof of Lemma 5.30, the sequence of functions (νi+1,j)0ăjăpi can be evaluated at
the same point P P Pi+1 in time O(log m+ pi) using exponentiation by squaring. Thus, the evaluations
of νi+1,1, . . . νi+1,pi´1 on Pi+1 are obtained with O((log m + pi) |Pi+1|) operations.

We give an example of an AG code over a Kummer curve where pmax = 2.

Example 5.54. On Fq2 with q = 261 ´ 1 (9th Mersenne prime), we consider the curve

X0 : YN = X3 + X

where N = 2r with r = 16. It is maximal [TT14] of genus g = N ´ 1. We consider the code C0

associated to D0 = 217P0
8 on an evaluation set P0 Ă X0(Fq2) of size n = 220. Its dimension equals

dim C0 = 216 + 2 and its relative minimum distance λ is bounded from below by 1´ 2´3. Take
ε = 2´6.55. By Theorem 5.26,

errcommit ď
log(n)
ˇ

ˇ

ˇ
Fq2

ˇ

ˇ

ˇ

(
1 +

4
ε

)(
4
ε

)2

« 24.33+6+3¨6.55´121 ď 2´91

5.7. Proximity tests for AG codes on Kummer curves and Hermitian towers 123

errquery(δ) ď (1´ δ + ε log(n))

where 1´ δ = (1´ λ + ε)
1
3 ď 0, 51384. Hence

errquery(δ) ď 0, 51384 +
20

26.55 « 0, 72728.

By running the QUERY phase with repetition parameter t ě 199, we get (errquery)t ď 2´91 and
err(δ) ď 2´90. The last code Cr is a small Reed-Solomon code of length nr = 24 and dimension 2.
The total number of rounds of the IOPP is thus r + 1.

5.7.3 Properties of the AG-IOPP with towers of Hermitian curves

For foldable AG codes, we rely again on the discussion of Section 5.7.1. This yields the following
theorem.

Theorem 5.55. Let C = (X ,P , D) be a foldable AG code with alphabet F = Fq2 on a tower of
Hermitian curves satisfying the hypotheses of Proposition 5.44. Letting e be the index of the curve X
in the Hermitian tower (Xi)iě0, the length n = |P | of C is at most qe+2. There is an IOPP (P , V)

with perfect completeness, and soundness as stated in Theorem 5.26. Moreover, for t repetitions of the
QUERY phase, we have:

– rounds complexity r(n) ă log n,
– proof length l(n) ă n,
– query complexity q(n) ď tq log n + 1,
– prover complexity tp(n) = O(n ¨MF(q) log(q)),
– verifier complexity tv(n) = O(t log n ¨MF(q) log(q)).

Proof. The proof follows from proof of Theorem 5.52, replacing η by q. Prover and verifier complex-
ities are computed from the cost of computing the coefficients of a univariate polynomial of degree
less than q from its evaluation on points forming an arithmetic progression in Fq2 . This interpolation
task can be done in MF(q) log q + O(MF(q)) base field operations [BS05], where MF(d) denotes
the cost of multiplying two degree-d univariate polynomials over F.

124 Chapter 5. Proximity testing for algebraic geometry codes

Conclusion

Many constructions of succinct non-interactive arguments (SNARG) rely on univariate polynomi-
als for arithmetization. This is due to appealing properties of Reed-Solomon codes: they can have
constant rate and constant distance, admit quasilinear-time encoding algorithms and feature a multi-
plication property that facilitates arithmetization (a component wise product of Reed-Solomon code-
words is a codeword of a Reed-Solomon code). While some families of multivariate polynomial codes
and algebraic geometry codes present the same features, Reed-Solomon codes have been favored in
part because of the existence of a very efficient proximity test for them [BBHR18a] and the lack of
equivalent solutions for other families of algebraic codes. Building upon the work of [BBHR18a],
this thesis provides proximity tests for multivariate polynomial codes in Chapter 4 and algebraic ge-
ometry codes Chapter 5, with efficiency parameters that are similar (or equal) to the FRI protocol
for Reed-Solomon proximity testing. Thus, this study covers most important basic algebraic codes.

A prospect of improvement is the soundness error of our proximity tests, which is closely related
to “worst-case to average-case reductions for the distance to a code” [BKS18]. Obtaining tight results
about the distance to any linear space of an element randomly sampled from an affine space is an
important open problem which is also involved in distributed storage and cryptographic protocols
(examples can be found in [BCI+20]). In Section 3.2.1, we gave a result about distance preservation
for linear combinations whose coefficients are obtained as the output of a basic small-bias generator
which may be of independent interest. As mentioned there, relating the bias of the generator with
the average distance to linear spaces of linear combinations whose coefficients are output of some
small-biased generators remains an intriguing problem, with applications to succinct non-interactive
arguments [BCL20].

In [BCI+20], the authors made notable improvements for the specific case where the aforemen-
tioned linear space is a Reed-Solomon code. Their analysis relies on algebraic decoding algorithms
for Reed-Solomon codes whose alphabet is a rational function field.

For starters, applying the same techniques for multivariate codes would require a global decoding
algorithm of multivariate codes that could be extended to the field of rational functions, that we are
not aware of. It remains an open question whether an analysis of algebraic decoding algorithms of
multivariate codes over the field of rational functions is possible.

Regarding algebraic geometry codes, the proof techniques of [BCI+20] could most certainly be
used (algebraic decoding algorithms for algebraic geometry codes are very similar to their analogues
for Reed-Solomon codes), but this would yield results that are relevant only for codes over quadratic
size field, which is not the interesting context for algebraic geometry codes.

Another way to improve soundness error is to slightly modify the proximity tests themselves. For
instance, [BGKS20] proposed a variant of the FRI protocol (named “DEEP-FRI”) which relates the
list size and radius of the list decoding of the code with the soundness error. Before the work of
[BCI+20], the DEEP-FRI protocol induced shorter non-interactive arguments than the FRI protocol.
In [BGKS20], the authors left for future work the generalization of their techniques to multivariate
codes and algebraic geometry codes. Now that a FRI-like IOPP exists for algebraic geometry codes,
the possibility of generalizing the DEEP-FRI protocol to AG codes seems quite plausible, and is left for
future work. Regarding tensor product of Reed-Solomon codes, early work that we have conducted
indicates that a DEEP-FRI-like variant would reduce the total query complexity for constant sound-

ness, at the cost of a logarithmic overhead in proof length (e.g. by relying on the work of [GGR09]
about list decoding of tensor products).

In Chapter 3, we formulated a generic abstract framework for constructing efficient interactive
oracle proofs of proximity for linear codes, based on the design principles introduced in the FRI pro-
tocol. The analysis of this framework has the main benefit of not relying on the underlying algebraic
properties of the considered codes, and can conceivably be applied to non-algebraic constructions of
codes. Indeed, a recent line of research avoids the use of polynomial codes in IOP constructions and
consider tensor product of linear-time encodable codes [BCG20, BCL20, RR20, RR21, GLS+21]. In
particular, [BCG20, BCL20] constructed an IOPP for tensor products of any linear codes, based on
a folding operation and inspired from [BBHR18a]. Let us point out that the generic construction
proposed in Chapter 3 immediately yields an IOP of Proximity for a tensor product of linear codes
C1 b C2 b ¨ ¨ ¨ b Cm when each component code admits a family of distance-preserving folding op-
erators.

Finally, this study focuses on the proximity testing part of IOP constructions, letting aside arith-
metization techniques. Thus, this leaves open the question of whether our proximity tests can be used
to construct practical succinct non-interactive arguments. Proposing concretely efficient IOPPs for
codes beyond Reed-Solomon codes might open up a range of different arithmetization techniques for
designing explicit constructions of proof systems, with the potential of improving concrete efficiency.

In that direction, we can think of several appealing features of our results. First, FFTs properties
enable more efficient encoding of codewords of tensor product of Reed-Solomon codes, compared
to a single Reed-Solomon code of the same block length. Since the task of the IOP prover during
arithmetization is mainly to encode messages, this may concretely improve the prover running time.
Besides, enabling proximity testing for Reed-Muller codes with support Lm where |L| is much smaller
than the field size may give more flexibility in the design of proof systems. As for algebraic geometry
codes, the possibility of significantly reduce the field size may overall improve the bit complexities
of proof systems based on AG codes (compared to Reed-Solomon-based ones), by speeding up field
operations. Finally, our IOPP for algebraic geometry codes along the Hermitian tower does not make
any assumption on the base field Fq, except that q should be a square. In particular, the field is not
required to admit subgroup of large smooth order (which is a requirement of IOPPs for polynomial
codes). Such a flexibility is particularly interesting for applications which operate over a predefined
finite field.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009. (Cited on page 11.)

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight Sublinear Arguments Without a Trusted Setup. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, pages 2087–2104. ACM, 2017. (Cited
on pages 6 and 22.)

[AJMR19] Vikraman Arvind, Pushkar S. Joglekar, ParthaMukhopadhyay, and S. Raja. Randomized
Polynomial-Time Identity Testing for Noncommutative Circuits. Theory of Computing,
15(7):1–36, 2019. (Cited on page 21.)

[AKK+03] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing
Low-Degree Polynomials over GF(2). In Sanjeev Arora, Klaus Jansen, José D. P. Rolim,
and Amit Sahai, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion: Algorithms and Techniques, volume 2764 of Lecture Notes in Computer Science,
pages 188–199. Springer, 2003. (Cited on page 64.)

[AKK+05] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Test-
ing Reed-Muller codes. IEEE Trans. Inf. Theory, 51(11):4032–4039, 2005. (Cited on
page 64.)

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof Verification and the Hardness of Approximation Problems. J. ACM, 45(3):501–
555, 1998. extended version of FOCS’92. (Cited on pages 3, 5, 12, 13, 16, 62 and 64.)

[Alo99] Noga Alon. Combinatorial Nullstellensatz. Combinatorics, Probability and Computing,
8(1–2), 1999. (Cited on page 22.)

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs; A New Characteriza-
tion of NP. In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh,
Pennsylvania, USA, 24-27 October 1992, pages 2–13. IEEE Computer Society, 1992.
(Cited on pages 3, 5, 12, 13, 16, 26, 27 and 92.)

[AS03] Sanjeev Arora and Madhu Sudan. Improved Low-Degree Testing and its Applications.
Combinatorica, 23(3):365–426, 2003. (Cited on pages 63 and 64.)

[Bab85] László Babai. Trading Group Theory for Randomness. In Robert Sedgewick, editor,
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985,
Providence, Rhode Island, USA, pages 421–429. ACM, 1985. (Cited on pages 2 and 5.)

[BBGS14] Alp Bassa, Peter Beelen, Arnaldo Garcia, and Henning Stichtenoth. An Improvement of
the Gilbert–Varshamov Bound Over Nonprime Fields. IEEE Transactions on Information
Theory, 60(7):3859–3861, 2014. (Cited on page 88.)

128 Bibliography

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon
Interactive Oracle Proofs of Proximity. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
pages 14:1–14:17, 2018. (Cited on pages 4, 6, 7, 25, 27, 30, 31, 33, 34, 35, 36, 45,
46, 47, 48, 61, 77, 83, 85, 100, 107, 121, 125, 126, 141 and 142.)

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent,
and post-quantum secure computational integrity. IACR Cryptol. ePrint Arch., 2018:46,
2018. (Cited on pages 37, 38, 43 and 86.)

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable Zero Knowl-
edge with No Trusted Setup. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III, volume 11694
of Lecture Notes in Computer Science, pages 701–732. Springer, 2019. (Cited on pages 4,
6, 25, 36, 37, 38, 42, 43 and 63.)

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum Disclosure Proofs of
Knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988. (Cited on page 3.)

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying Program Executions Succinctly and in Zero knowledge. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part
II, volume 8043 of Lecture Notes in Computer Science, pages 90–108. Springer, 2013.
(Cited on page 4.)

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza.
Secure Sampling of Public Parameters for Succinct Zero Knowledge Proofs. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015,
pages 287–304. IEEE Computer Society, 2015. (Cited on page 4.)

[BCG+17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Interactive Oracle Proofs with Constant Rate and Query Complexity. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, pages 40:1–40:15, 2017. (Cited on pages 4, 6, 7, 27, 36,
61, 63, 92 and 142.)

[BCG+19] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and
Nicholas Spooner. Linear-Size Constant-Query IOPs for Delegating Computation. In
Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part II,
volume 11892 of Lecture Notes in Computer Science, pages 494–521. Springer, 2019.
(Cited on pages 4, 6 and 92.)

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-Time Arguments with
Sublinear Verification from Tensor Codes. In Rafael Pass and Krzysztof Pietrzak, editors,
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA,

Bibliography 129

November 16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in Computer
Science, pages 19–46. Springer, 2020. (Cited on pages 4, 5, 29, 63, 85 and 126.)

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the Concrete
Efficiency of Probabilistically-Checkable Proofs. In Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing, STOC ’13, page 585–594, New York, NY, USA,
2013. Association for Computing Machinery. (Cited on pages 26 and 63.)

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Suc-
cinct Non-interactive Arguments via Linear Interactive Proofs. In Amit Sahai, editor,
Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo,
Japan, March 3-6, 2013. Proceedings, volume 7785 of Lecture Notes in Computer Sci-
ence, pages 315–333. Springer, 2013. (Cited on page 4.)

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Prox-
imity Gaps for Reed-Solomon Codes. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 900–
909. IEEE, 2020. (Cited on pages 6, 32, 34, 36, 53, 77 and 125.)

[BCKL21] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic Curve Fast
Fourier Transform (ECFFT) Part I: Fast Polynomial algorithms over all finite fields. Elec-
tron. Colloquium Comput. Complex., page 103, 2021. (Cited on page 6.)

[BCL20] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-Knowledge Succinct Arguments
with a Linear-Time Prover. IACR Cryptol. ePrint Arch., page 1527, 2020. (Cited on
pages 4, 5, 52, 85, 92, 125 and 126.)

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P.Ward. Aurora: Transparent Succinct Arguments for R1CS. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, volume 11476 of Lecture
Notes in Computer Science, pages 103–128. Springer, 2019. (Cited on pages 4, 5, 6, 14
and 36.)

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs.
In Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016. (Cited on
pages 4, 5, 6, 13, 16, 17, 37, 85 and 141.)

[BDN17] Amey Bhangale, Irit Dinur, and Inbal Livni Navon. Cube vs. Cube Low Degree Test.
In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs,
pages 40:1–40:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. (Cited on
page 64.)

[BFL90] László Babai, Lance Fortnow, and Carsten Lund. Non-Deterministic Exponential Time
Has Two-Prover Interactive Protocols. In 31st Annual Symposium on Foundations of

130 Bibliography

Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 16–
25. IEEE Computer Society, 1990. (Cited on pages 5 and 62.)

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking Compu-
tations in Polylogarithmic Time. In Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31, 1991.
(Cited on pages 5, 12, 13, 52, 59, 62 and 64.)

[BGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of Proximity, shorter PCPs and applications to coding. In László Babai,
editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago,
IL, USA, June 13-16, 2004, pages 1–10. ACM, 2004. (Cited on pages 13, 26 and 27.)

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sam-
pling Outside the Box Improves Soundness. In 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, pages
5:1–5:32, 2020. (Cited on pages 6, 23, 34, 36, 43, 49, 53, 54, 55, 56, 77, 83 and 125.)

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-Prover In-
teractive Proofs: How to Remove Intractability Assumptions. In Janos Simon, editor,
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 113–131. ACM, 1988. (Cited on page 5.)

[BKK+13] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth.
Constant Rate PCPs for Circuit-SAT with Sublinear Query Complexity. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 320–329. IEEE Computer Society, 2013. (Cited on pages 7,
92 and 142.)

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-Case to Average Case
Reductions for the Distance to a Code. In 33rd Computational Complexity Conference,
CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 24:1–24:23, 2018. (Cited on
pages 6, 29, 34, 36, 59, 60, 77 and 125.)

[BRS20] Peter Beelen, Johan Rosenkilde, and Grigory Solomatov. Fast Encoding of AG Codes
over Cab Curves, 2020. (Cited on page 89.)

[BS05] Alin Bostan and Eric Schost. Polynomial evaluation and interpolation on special sets of
points. Journal of Complexity, 21(4):420–446, 2005. (Cited on page 123.)

[BS06] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Struct. Algorithms, 28(4):387–402, 2006. (Cited on pages 61 and 63.)

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with Polylog Query Complexity. SIAM J.
Comput., 38(2):551–607, 2008. (Cited on pages 6, 22, 26, 27, 30, 34, 43, 62, 63, 78,
85 and 92.)

Bibliography 131

[BSVW03] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-Efficient
Low Degree Tests and Short PCPs via Epsilon-Biased Sets. In Proceedings of the Thirty-
Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, page 612–621, New
York, NY, USA, 2003. Association for ComputingMachinery. (Cited on pages 63 and 64.)

[CMS17] Alessandro Chiesa, Peter Manohar, and Igor Shinkar. On Axis-Parallel Tests for Tensor
Product Codes. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S.
Vempala, editors, Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,
USA, volume 81 of LIPIcs, pages 39:1–39:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. (Cited on pages 61 and 63.)

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct Arguments in the
Quantum Random Oracle Model. In Dennis Hofheinz and Alon Rosen, editors, The-
ory of Cryptography - 17th International Conference, TCC 2019, Nuremberg, Germany,
December 1-5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes in Computer
Science, pages 1–29. Springer, 2019. (Cited on pages 4 and 37.)

[CMSZ21] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-Quantum
Succinct Arguments. Electron. Colloquium Comput. Complex., page 38, 2021. (Cited on
page 3.)

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and Trans-
parent Recursive Proofs from Holography. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14,
2020, Proceedings, Part I, volume 12105 of Lecture Notes in Computer Science, pages
769–793. Springer, 2020. (Cited on page 6.)

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. (Cited on
pages 6, 26 and 27.)

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193–195, 1978. (Cited on page 21.)

[DR04] Irit Dinur and Omer Reingold. Assignment Testers: Towards a Combinatorial Proof
of the PCP-Theorem. In 45th Symposium on Foundations of Computer Science (FOCS
2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 155–164. IEEE Computer
Society, 2004. (Cited on pages 13, 26 and 27.)

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. In-
teractive Proofs and the Hardness of Approximating Cliques. J. ACM, 43(2):268–292,
1996. (Cited on page 62.)

[FHS94] Katalin Friedl, Zsolt Hátsági, and Alexander Shen. Low-Degree Tests. In Proceedings of
the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’94, page 57–64,
USA, 1994. Society for Industrial and Applied Mathematics. (Cited on page 62.)

132 Bibliography

[FS86] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identifica-
tion and Signature Problems. In Andrew M. Odlyzko, editor, Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture
Notes in Computer Science, pages 186–194. Springer, 1986. (Cited on pages 2, 3, 16
and 17.)

[Ful08] William Fulton. Algebraic Curves: An Introduction to Algebraic Geometry. Electronic
edition, 2008. (Cited on page 93.)

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic Span
Programs and Succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages
626–645. Springer, 2013. (Cited on page 4.)

[GGR09] Parikshit Gopalan, Venkatesan Guruswami, and Prasad Raghavendra. List decoding
tensor products and interleaved codes. In Michael Mitzenmacher, editor, Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 13–22. ACM, 2009. (Cited on page 126.)

[GLR+91] Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigder-
son. Self-Testing/Correcting for Polynomials and for Approximate Functions. In Cris
Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM Sym-
posium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages
32–42. ACM, 1991. (Cited on page 63.)

[GLS+21] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S. Wahby.
Brakedown: Linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint
Archive, Report 2021/1043, 2021. https://ia.cr/2021/1043. (Cited on pages 4
and 126.)

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of In-
teractive Proof-Systems (Extended Abstract). In Robert Sedgewick, editor, Proceedings
of the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA, pages 291–304. ACM, 1985. (Cited on pages 2, 5 and 13.)

[Gol08] Oded Goldreich. Computational complexity: A conceptual perspective. Cambridge Uni-
versity Press, first edition, 2008. (Cited on pages 11 and 52.)

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
(Cited on pages 15 and 20.)

[Gop77] Valerii Denisovich Goppa. Codes associated with divisors. Problemy Peredachi Informat-
sii, 13(1):33–39, 1977. (Cited on pages 20 and 85.)

[GR11] Oded Goldreich and Dana Ron. On Proximity-Oblivious Testing. SIAM Journal on
Computing, 40(2):534–566, 2011. (Cited on page 15.)

https://ia.cr/2021/1043

Bibliography 133

[Gro10] Jens Groth. Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In
Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information Security, Sin-
gapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer
Science, pages 321–340. Springer, 2010. (Cited on page 4.)

[Gro16] Jens Groth. On the Size of Pairing-Based Non-interactive Arguments. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th
Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture
Notes in Computer Science, pages 305–326. Springer, 2016. (Cited on page 4.)

[GS86] Shafi Goldwasser and Michael Sipser. Private Coins versus Public Coins in Interactive
Proof Systems. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Sympo-
sium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 59–68.
ACM, 1986. (Cited on page 2.)

[GS95] Arnaldo Garcia and Henning Stichtenoth. A tower of Artin-Schreier extensions of func-
tion fields attaining the Drinfeld-Vladut bound. Inventiones Mathematicae, 121(1):211–
222, 1995. (Cited on pages 7 and 142.)

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and
algebraic-geometry codes. IEEE Trans. Inf. Theory, 45(6):1757–1767, 1999. (Cited on
page 32.)

[GS02] Oded Goldreich and Madhu Sudan. Locally Testable Codes and PCPs of Almost-Linear
Length. In 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19
November 2002, Vancouver, BC, Canada, Proceedings, pages 13–22. IEEE Computer So-
ciety, 2002. (Cited on page 64.)

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings
of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011, pages 99–108. ACM, 2011. (Cited on pages 3 and 17.)

[HY18] Chuangqiang Hu and Shudi Yang. Multi-point codes over Kummer extensions. Designs,
Codes and Cryptography, 86:211–230, 2018. (Cited on page 111.)

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient Arguments without Short
PCPs. In 22nd Annual IEEE Conference on Computational Complexity (CCC 2007), 13-16
June 2007, San Diego, California, USA, pages 278–291. IEEE Computer Society, 2007.
(Cited on page 4.)

[IMS12] Yuval Ishai, MohammadMahmoody, and Amit Sahai. On efficient zero-knowledge pcps.
In Ronald Cramer, editor, Theory of Cryptography - 9th Theory of Cryptography Confer-
ence, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, volume 7194
of Lecture Notes in Computer Science, pages 151–168. Springer, 2012. (Cited on page 3.)

134 Bibliography

[JPRZ04] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing Low-
Degree Polynomials over Prime Fields. In 45th Symposium on Foundations of Computer
Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 423–432.
IEEE Computer Society, 2004. (Cited on page 64.)

[Kan86] Ernst Kani. The Galois-module structure of the space of holomorphic differentials of a
curve. Journal für die reine und angewandte Mathematik, 367:187–206, 1986. (Cited
on pages 90 and 101.)

[Kil92] Joe Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended Ab-
stract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992,
Victoria, British Columbia, Canada, pages 723–732. ACM, 1992. (Cited on pages 3, 4
and 16.)

[KPV19] Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transparent
SNARKs from List Polynomial Commitment IOPs. Cryptology ePrint Archive, Report
2019/1400, 2019. https://ia.cr/2019/1400. (Cited on pages 4 and 6.)

[KR04] Tali Kaufman and Dana Ron. Testing Polynomials over General Fields. In 45th Sym-
posium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome,
Italy, Proceedings, pages 413–422. IEEE Computer Society, 2004. (Cited on page 64.)

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, MagnúsM. Halldórsson, Anna Ingólfsdóttir, and IgorWalukiewicz,
editors, Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics,
and Theory of Programming & Track C: Security and Cryptography Foundations, volume
5126 of Lecture Notes in Computer Science, pages 536–547. Springer, 2008. (Cited on
pages 4 and 13.)

[Lac87] Gilles Lachaud. Sommes d’Eisenstein et nombre de points de certaines courbes al-
gébriques sur les corps finis. C. R. Acad. Sci. Paris, 305, 01 1987. (Cited on page 109.)

[Lac92] Gilles Lachaud. Artin-Schreier curves, exponential sums, and coding theory. Theoretical
Computer Science, 94(2):295–310, 1992. (Cited on page 88.)

[LANHC16] Sian-Jheng Lin, Tareq Y. Al-Naffouri, Yunghsiang S. Han, and Wei-Ho Chung. Novel
Polynomial Basis With Fast Fourier Transform and Its Application to Reed–Solomon
Erasure Codes. IEEE Transactions on Information Theory, 62(11):6284–6299, 2016.
(Cited on page 37.)

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic Methods
for Interactive Proof Systems. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 2–10. IEEE Com-
puter Society, 1990. (Cited on pages 2, 5 and 92.)

[Lip13] Helger Lipmaa. Succinct Non-Interactive Zero Knowledge Arguments from Span Pro-
grams and linear error-correcting codes. In Kazue Sako and Palash Sarkar, editors,

https://ia.cr/2019/1400

Bibliography 135

Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory
and Application of Cryptology and Information Security, Bengaluru, India, December 1-
5, 2013, Proceedings, Part I, volume 8269 of Lecture Notes in Computer Science, pages
41–60. Springer, 2013. (Cited on page 4.)

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, 1997.
(Cited on page 31.)

[Mah04] Hiren Maharaj. Code Construction on Fiber Products of Kummer Covers. Information
Theory, IEEE Transactions on, 50:2169 – 2173, 10 2004. (Cited on page 110.)

[Mei13] Or Meir. IP = PSPACE Using Error-Correcting Codes. SIAM J. Comput., 42(1):380–403,
2013. (Cited on pages 18 and 85.)

[Mic95] Silvio Micali. Computationally-Sound Proofs. In Johann A. Makowsky and Elena V.
Ravve, editors, Proceedings of the Annual European Summer Meeting of the Association
of Symbolic Logic, Logic Colloquium 1995, Haifa, Israel, August 9-18, 1995, volume 11
of Lecture Notes in Logic, pages 214–268. Springer, 1995. (Cited on pages 3, 4 and 16.)

[Mic00] Silvio Micali. Computationally Sound Proofs. SIAM J. Comput., 30(4):1253–1298,
2000. (Cited on pages 4 and 16.)

[Mie09] Thilo Mie. Short PCPPs Verifiable in Polylogarithmic Time with O(1) Queries. Annals
of Mathematics and Artificial Intelligence, 56(3–4):313–338, August 2009. (Cited on
pages 4, 26, 61, 62, 63 and 92.)

[Mor91] Carlos Moreno. Algebraic Curves over Finite Fields. Cambridge Tracts in Mathematics.
Cambridge University Press, 1991. (Cited on page 93.)

[Mos10] Dana Moshkovitz. An Alternative Proof of The Schwartz-Zippel Lemma. Electron. Col-
loquium Comput. Complex., page 96, 2010. (Cited on page 21.)

[MP93] Carlos Munuera and Ruud Pellikaan. Equality of geometric Goppa codes and equiva-
lence of divisors. Journal of Pure and Applied Algebra, 90(3):229 – 252, 1993. (Cited
on page 106.)

[MQS15] Ariane M. Masuda, Luciane Quoos, and Alonso Sepúlveda. One- and Two-Point Codes
over Kummer Extensions. arXiv e-prints, page arXiv:1510.06425, October 2015. (Cited
on page 110.)

[MR08] Dana Moshkovitz and Ran Raz. Sub-Constant Error Low Degree Test of Almost-Linear
Size. SIAM J. Comput., 38(1):140–180, 2008. (Cited on pages 63 and 64.)

[MS77] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-correcting Codes.
Mathematical Library. North-Holland Publishing Company, 1977. (Cited on pages 17
and 18.)

[MX13] MohammadMahmoody and David Xiao. Languages with efficient zero-knowledge pcps
are in SZK. In Amit Sahai, editor, Theory of Cryptography - 10th Theory of Cryptography
Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, volume 7785 of
Lecture Notes in Computer Science, pages 297–314. Springer, 2013. (Cited on page 3.)

136 Bibliography

[NN90] Joseph Naor and Moni Naor. Small-bias Probability Spaces: Efficient Constructions and
Applications. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 213–223.
ACM, 1990. (Cited on page 52.)

[Pan94] Victor Y. Pan. Simple Multivariate Polynomial Multiplication. J. Symb. Comput.,
18(3):183–186, 1994. (Cited on page 65.)

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, andMariana Raykova. Pinocchio: Nearly Practi-
cal Verifiable Computation. In 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pages 238–252. IEEE Computer Society, 2013.
(Cited on page 4.)

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 194–203. ACM, 1994. (Cited on pages 6, 26, 34 and 62.)

[PSW91] Ruud Pellikaan, Ba-zhong Shen, and Gerhard J. M. van Wee. Which linear codes are
algebraic-geometric? IEEE Transactions on Information Theory, 37(3):583–602, 1991.
(Cited on page 113.)

[RR20] Noga Ron-Zewi and Ron D. Rothblum. Local Proofs Approaching the Witness Length
[Extended Abstract]. In 61st IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 846–857. IEEE,
2020. (Cited on pages 4, 6, 36, 62, 63, 85, 92 and 126.)

[RR21] Noga Ron-Zewi and Ron Rothblum. Proving as Fast as Computing: Succinct Argu-
ments with Constant Prover overhead. Electron. Colloquium Comput. Complex., page
180, 2021. https://eccc.weizmann.ac.il/report/2021/180. (Cited on pages 4
and 126.)

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Daniel Wichs and Yishay Mansour, editors, Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 49–62. ACM, 2016. (Cited on
pages 4, 5, 13 and 141.)

[RS60] Irving S. Reed and Gustave Solomon. Polynomial Codes Over Certain Finite Fields. Jour-
nal of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960. (Cited
on page 19.)

[RS92] Ronitt Rubinfeld and Madhu Sudan. Self-Testing Polynomial Functions Efficiently and
Over Rational Domains. In Greg N. Frederickson, editor, Proceedings of the Third Annual
ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 27-29 January 1992, Orlando,
Florida, USA, pages 23–32. ACM/SIAM, 1992. (Cited on pages 63 and 64.)

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust Characterizations of Polynomials with
Applications to Program Testing. SIAM J. Comput., 25(2):252–271, 1996. (Cited on
pages 63 and 64.)

https://eccc.weizmann.ac.il/report/2021/180

Bibliography 137

[RS97] Ran Raz and Shmuel Safra. A Sub-Constant Error-Probability Low-Degree Test, and
a Sub-Constant Error-Probability PCP Characterization of NP. In Frank Thomson
Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 475–484.
ACM, 1997. (Cited on pages 62, 63 and 64.)

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 793–802. ACM, 2013. (Cited on pages 22 and 42.)

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identi-
ties. J. ACM, 27(4):701–717, 1980. (Cited on page 21.)

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992. (Cited on page 2.)

[Sta] StarkDEX. https://www.starkdex.io/. (Cited on pages 6 and 36.)

[Sta21a] StarkWare. ethSTARK Documentation. Cryptology ePrint Archive, Report 2021/582,
2021. https://ia.cr/2021/582. (Cited on pages 4, 38, 43 and 86.)

[Sta21b] StarkWare. ethSTARK Documentation. IACR Cryptol. ePrint Arch., page 582, 2021.
(Cited on page 6.)

[Sti09] Henning Stichtenoth. Algebraic Function Fields and Codes. Graduate Texts in Mathe-
matics. Springer, second edition, 2009. (Cited on pages 88, 93, 97 and 113.)

[Tha22] Justin Thaler. Proofs, Arguments, and Zero-Knowledge. 2022. Available at
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf, cited ver-
sion is dated 31 March, 2022. (Cited on page 11.)

[TT14] Saeed Tafazolian and Fernando Torres. On the curve yn = xm + x over finite fields.
Journal of Number Theory, 145:51–66, 2014. (Cited on page 122.)

[TVN07] Michael Tsfasman, Serge Vladut, and Dmitry Nogin. Algebraic Geometric Codes: Basic
Notions. American Mathematical Society, USA, 2007. (Cited on page 93.)

[TVZ82] M. A. Tsfasman, S. G. Vlăduţ, and Th. Zink. Modular curves, Shimura curves, and
Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr., 109:21–28, 1982.
(Cited on pages 20, 85 and 88.)

[Val08] Paul Valiant. Incrementally Verifiable Computation or Proofs of Knowledge Imply
time/space efficiency. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory of
Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008, volume 4948
of Lecture Notes in Computer Science, pages 1–18. Springer, 2008. (Cited on pages 3, 4
and 16.)

[Vid15] Michael Viderman. A combination of testability and decodability by tensor products.
Random Struct. Algorithms, 46(3):572–598, 2015. (Cited on pages 20, 61 and 63.)

https://www.starkdex.io/
https://ia.cr/2021/582
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf

138 Bibliography

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A Hybrid
Architecture for Interactive Verifiable Computation. In 2013 IEEE Symposium on Secu-
rity and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 223–237. IEEE
Computer Society, 2013. (Cited on page 65.)

[Zca] Zcash. https://z.cash. (Cited on page 4.)

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng,
editor, Symbolic and Algebraic Computation, EUROSAM ’79, An International Symposiu-
mon Symbolic and Algebraic Computation, Marseille, France, June 1979, Proceedings,
volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer, 1979. (Cited
on page 21.)

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent Polyno-
mial Delegation and Its Applications to Zero Knowledge Proof. In 2020 IEEE Symposium
on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages 859–
876. IEEE, 2020. (Cited on pages 4 and 6.)

https://z.cash

Appendices

Résumé long en français

Dans cette thèse, nous proposons des protocoles efficaces pour résoudre le problème consistant
à tester la proximité à un code correcteur d’erreurs linéaire. Il s’agit de construire une procédure
de vérification dont le temps d’exécution est sous-linéaire en la longueur du code, qui accepte en
présence d’un mot de code, et rejette avec grande probabilité si le mot est suffisamment éloigné de
tout mot de code.

Cette étude est motivée par les applications aux constructions de preuves d’intégrité de calcul et
aux preuves à divulgation nulle de connaissance (en anglais zero-knowledge proofs). Il existe plusieurs
approches pour la construction d’arguments succincts non-interactifs permettant la vérification de
des calculs génériques, offrant différents compromis en termes de performances et d’hypothèses de
sécurité. En ce qui concerne la sécurité à long terme, les systèmes dont les paramètres publics n’ont
pas besoin d’être générés par une autorité de confiance et dont la sécurité résiste à l’ordinateur
quantique sont les plus souhaitables. Pour ces constructions, la conception de tests de proximité très
efficaces pour les codes linéaires est un enjeu important.

Nous proposons des solutions à ce problème dans le modèle des preuves interactives par oracle
(en anglais Interactive Oracle Proof, abrégé IOP) [RRR16, BCS16]. Depuis son introduction, le modèle
IOP s’est révélé particulièrement prometteur pour la conception de preuves d’intégrité de calcul.
Dans ce modèle, un prouveur et un vérifieur échangent des messages de façon interactive, avec
la spécificité que le vérifieur a accès par oracle aux messages envoyés par le prouveur. Un test de
proximité dans le modèle IOP correspond à la notion d’Interactive Oracle Proof of Proximity (IOPP).

Nos travaux sont inspirés par le « protocole FRI », un protocole IOPP permettant de tester la prox-
imité à des codes de Reed-Solomon [BBHR18a]. Nous commençons par formaliser une construction
générique de test de proximité, qui est inspirée par le protocole FRI et dont l’analyse est basée sur
les propriétés d’« opérateurs de repliement » (folding operators). Ensuite, nous instancions cette con-
struction générique pour des familles de codes multivariés et des familles de codes géométriques
bien choisies, en définissant de « bons » opérateurs de repliement pour les codes considérés.

Le protocole FRI est un sous-protocole utilisé dans des schémas de preuves déployés dans des
applications industrielles. Nos protocoles seraient aussi simples à implémenter que le protocole FRI.
En effet, tout comme dans le protocole FRI, les tâches algorithmiques du prouveur et du vérifieur de
nos constructions se résument à des interpolations de polynômes de degrés très petits par rapport à
la longueur du code.

Tests de proximité pour les codes polynomiaux multivariés

Ce travail est le fruit d’une collaboration avec Daniel Augot et Jade Nardi.

Les tests de proximité pour les codes polynomiaux multivariés se divisent en deux catégories:
selon que l’on borne le degré total ou le degré en chaque variable. Dans le premier cas, le test de bas
degré peut être vu comme un test de proximité pour les codes de Reed-Muller. Dans le second cas,
il correspond à un test de proximité pour un produit tensoriel de codes de Reed-Solomon. Alors que
les tests de bas degré multivariés ont été largement étudiés en raison de leur rôle central dans les
constructions algébriques de preuves vérifiables de manière probabiliste (en anglais probabilistically
checkable proofs), ils n’ont fait l’objet d’aucune étude spécialisée dans le modèle IOP.

142

Nous développons des IOPPs pour les produits tensoriels des codes de Reed-Solomon et pour les
codes de Reed-Muller et les analysons à l’aide de bornes de complexité explicites. Pour les codes
produits de Reed-Solomon de longueur N, nous construisons un IOPP où la longueur de la preuve et
le temps d’exécution du prouveur sont strictement linéaire en N (en nombre d’opérations arithmé-
tiques). De plus, le nombre de requêtes et le temps de calcul du vérifieur sont strictement logarith-
miques en N. Il s’avère que pour les codes produits de Reed-Solomon, les complexités de notre IOPP
sont les mêmes que pour le cas univarié (résolu par le protocole FRI [BBHR18a]). La probabilité
d’erreur du protocole est cependant impactée par la distance minimale du code, qui est moins favor-
able dans le cas multivarié. Le cas du degré total, qui correspond aux codes de Reed-Muller, nécessite
quelques précautions techniques. Cela se traduit par une légère perte d’efficacité par rapport au cas
univarié et au cas des produits de Reed-Solomon.

Tests de proximité pour les codes de géométrie algébrique

Ce travail est le résultat d’un travail initial en collaboration avec Jade Nardi, puis d’une collaboration
ultérieure avec Matthieu Lhotel et Hugues Randriambololona.

Nous initions l’étude des tests de proximité pour les codes géométriques. Un code géométrique
C = C(X ,P , D) est un espace vectoriel associé aux évaluations sur P de fonctions dans l’espace de
Riemann-Roch LX (D). Quelques travaux [BKK+13, BCG+17] ont construit des systèmes de preuve
probabilistes utilisant des produits de codes AG dont l’alphabet est de taille constante [GS95]. Dans
[BKK+13, BCG+17], le test de proximité est rendu possible grâce aux propriétés locales des produits
tensoriels de codes. Avant ce travail, il n’existait pas de tests de proximité spécifiques aux codes
géométriques.

Nous identifions des conditions suffisantes sur un code géométrique C pour construire un IOPP
pour C. Notre approche repose sur une décomposition soignée de l’espace de Riemann-Roch de tout
diviseur sur la courbe invariant sous une action de groupe en plusieurs espaces de Riemann-Roch
explicites sur la courbe quotient. En plus de proposer le premier test de proximité destiné spéci-
fiquement aux codes géométriques, nous obtenons des paramètres similaires au protocole FRI. Plus
précisément, nous étudions les codes géométriques sur les courbes de Kummer et les courbes ap-
paraissant dans la tour Hermitienne. Ces dernières permettent de considérer des familles de codes
géométriques définies sur un alphabet de taille polylogarithmique en la longueur du code. Par rap-
port aux codes polynomiaux, nos tests de proximité nécessitent moins de contraintes algébriques sur
le corps fini sous-jacent.

143

Titre: Protocoles efficaces pour tester la proximité à des codes algébriques

Mots clés: Preuves vérifiables de manière probabiliste, preuves interactives, tests de bas degré, tests de
proximité, codes correcteurs d’erreurs, géométrie algébrique

Résumé: Les preuves vérifiables de manière prob-
abiliste (PCP, de l’anglais probabilistically checkable
proofs), les preuves interactives (IP, pour interactive
proofs) ou encore les preuves à divulgation nulle de
connaissance (zero-knowledge proofs) ont la particu-
larité d’admettre une vérification probabilististe. Ces
systèmes de preuves probabilistes interviennent dans
les constructions de schémas de calcul vérifiable, des
protocoles cryptographiques permettant de vérifier
très rapidement qu’un long calcul a été correctement
effectué. En 2016, un nouveau modèle de preuve
a été introduit par Ben-Sasson, Chiesa et Spooner:
celui des preuves interactives par oracle (IOP, pour
interactive oracle proofs). Ce modèle généralise à
la fois les PCPs et les IPs et a suscité beaucoup
d’intérêt depuis son introduction. Le modèle IOP a
mené à d’intéressants résultats théoriques sur les
arguments non-interactifs succincts et transparents
ainsi qu’à des déploiements industriels.
Un problème récurrent dans les constructions de
systèmes de preuves probabilistes est celui de
tester efficacement la proximité à un code correcteur
d’erreurs. Le but est de déterminer si un certain
mot appartient à un code linéaire donné, ou bien s’il
est éloigné de tout mot de ce code. Les tests de

proximité à des codes polynomiaux peuvent être in-
terprétés comme des tests de bas degré. Par exem-
ple, un important sous-protocole utilisé dans de nom-
breuses constructions pratiques est un IOP of Prox-
imity pour les codes de Reed-Solomon (Ben-Sasson
et al., ICALP 2018).
Dans cette thèse, nous proposons dans le modèle
IOP des protocoles permettant de vérifier la proximité
à des codes correcteur d’erreurs. En nous inspirant
du test de proximité pour les codes de Reed-Solomon
de Ben-Sasson et al., nous commençons par for-
muler un cadre abstrait et générique pour constru-
ire des IOPs of Proximity pour des codes linéaires,
et en analysons formellement les propriétés. Nous
appliquons ensuite cette méthodologie à différentes
familles de codes généralisant les codes de Reed-
Solomon. Il s’agit d’une part de codes définis à par-
tir d’évaluations de polynômes multivariés et, d’autre
part, de codes de géométrie algrébrique définis sur
des courbes. Nos protocoles permettent de tester la
proximité à des codes présentant des propriétés at-
trayantes par rapport aux codes de Reed-Solomon
(telles que des alphabets de petite taille), tout en
ayant une efficacité similaire à la construction de Ben-
Sasson et al.

Title: Efficient Protocols for Testing Proximity to Algebraic Codes

Keywords: Interactive proof systems, probabilistic proof systems, low degree tests, proximity testing, error-
correcting codes, algebraic geometry

Abstract: Probabilistic proof systems, such as prob-
abilistically checkable proofs, interactive proofs, and
zero-knowledge proofs, feature the common charac-
teristic of having a probabilistic verification procedure.
Notably, such proof systems are at the heart of cryp-
tographic protocols that enable polylogarithmic-time
verification of very long computations. Generalizing
both PCPs and IPs, the Interactive Oracle Proof (IOP)
model has been introduced in 2016 by Ben-Sasson,
Chiesa and Spooner. The IOP model has attracted
a lot of interest since its introduction, leading to both
interesting theoretical results related to efficient trans-
parent succinct non-interactive arguments and indus-
trial deployments.
A recurrent problem in constructions of probabilistic
proof systems is that of testing proximity to an error-
correcting code. The goal is to determine whether a
certain word belongs to a given linear code, or if it is
far from any codeword of that code. Proximity tests for
polynomial codes are often called low degree tests. A

notable building-block of several IOP-based construc-
tions is a concretely efficient IOP of Proximity for test-
ing proximity to Reed-Solomon codes (Ben-Sasson et
al., ICALP 2018).
In this thesis, we propose protocols in the IOP
model for verifying proximity to error-correcting codes.
Based on the proximity test for Reed-Solomon codes
designed by Ben-Sasson et al., we formulate and an-
alyze an abstract and generic framework to construct
IOPs of Proximity for linear codes. We then apply this
methodology to different families of codes that gener-
alize Reed-Solomon codes. These are, on the one
hand, codes defined from evaluations of multivariate
polynomials and, on the other hand, algebraic geome-
try codes defined on curves. Our protocols have sim-
ilar efficiency parameters compared to the construc-
tion of Ben-Sasson et al., and allow efficient proximity
testing for families of codes with attractive properties
compared to Reed-Solomon codes (such as small al-
phabet sizes).

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Background material
	Notations and conventions used throughout the manuscript
	Proof systems and cryptographic arguments
	Nondeterministic languages
	Probabilistic oracle machines
	Probabilistically checkable proofs
	Interactive oracle proofs
	Interactive oracle proofs of proximity
	Succinct non-interactive arguments from IOPs

	Error-correcting codes
	Basic notions of coding theory
	Locally testable codes

	Some preliminary technical lemmas
	Zeroes of polynomials over finite fields
	Distance preservation and random linear combinations

	Reed-Solomon proximity testing and application to computational integrity
	Reed-Solomon proximity testing in the IOP model
	Some background on Reed-Solomon proximity testing
	Outline of the FRI protocol
	Decomposition of univariate polynomials
	Algebraic setting for polynomial codes
	The FRI protocol: description and analysis

	An IOP-based SNARG using Reed-Solomon proximity testing
	Algebraic Intermediate Representation
	A simple IOP for the AIR language

	Constructing IOPs of Proximity from distance-preserving folding operators
	Generic interactive oracle proof of proximity based on folding operators
	Folding operators
	Generic IOPP construction

	Distance and correlated agreements with biased sample spaces
	The case of multilinear combinations
	The case of low-degree parametrized curves

	Proximity testing for multivariate polynomial codes
	Related work
	Preliminaries about multivariate polynomials
	Low-degree extensions
	Multivariate polynomial decomposition

	A first attempt to construct IOPP for tensor products of Reed-Solomon codes
	Sequence of codes with length divided by 2m
	Folding operators locally computable from 2m queries
	IOPP for tensor product of RS codes

	IOPP for tensor product of RS codes by folding with respect to each variable
	Sequence of codes with length divided by 2
	Partial folding operators
	Improved IOPP for tensor product of RS codes

	Short Reed-Muller codes
	Sequence of codes
	Folding operators
	IOPP for short Reed-Muller codes

	Proximity testing for algebraic geometry codes
	Introduction
	Motivations
	Summary of the results
	Overview of our approach
	Related work

	Algebraic geometry codes
	Basic notions on algebraic curves over finite fields
	Definition of algebraic geometry codes
	Additional material

	Foldable AG codes
	Sequence of curves
	Definitions of foldable AG codes and balancing functions
	Reed-Solomon codes as foldable AG codes
	Kani's theorem

	IOP of Proximity for foldable AG codes
	Definition of folding operators and properties
	Foldable AG codes admit efficient IOPP

	A family of foldable AG codes on Kummer curves
	Preliminaries
	Decomposition of Riemman-Roch spaces for Kummer extensions
	Foldable AG codes on Kummer curves and their parameters

	A family of foldable AG codes along the Hermitian tower
	Preliminaries
	Decomposition of Riemann-Roch spaces and balancing functions
	Foldable AG codes along the Hermitian tower

	Proximity tests for AG codes on Kummer curves and Hermitian towers
	How to iterate the folding to reach a code of dimension 1
	Properties of the AG-IOPP with Kummer curves
	Properties of the AG-IOPP with towers of Hermitian curves

	Conclusion
	Bibliography
	Appendix Résumé long en français

