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Discipline : Sciences Economiques

Présentée et soutenue publiquement par

Esther Regnier

le 20 Juin 2014

————–

Interactions between aquaculture and fisheries, and the

viability approach to risk management in harvested ecosystems

————–
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Introduction

The world of fisheries is complex, dynamic and contested. At the core of fishery management

lie technical challenges but also fundamental socioeconomic issues such as valuation and

ownership. So far, as for other natural resources, fisheries resources have been largely over

exploited and alarms from the scientific community on rapidly declining stocks and species

disappearance have been repeatedly published. In what follows, I first strive to explain the

repeated failures to manage fisheries in a sustainable way. In this perspective, I overview

existing management instruments and the weaknesses of fisheries governance.

Next, I raise the main challenges faced by the aquaculture industry to take over on capture

fisheries, as a sustainable source of food security. This leads us to an introduction to the two

first chapters of this dissertation, which focuses on the economic and ecological impacts of

the expansion of aquaculture, and its implications for the capture fishery sector.

Finally, I expose the complexity of managing harvested ecosystems under uncertainty,

in practice. Thus, I present the third chapter of this dissertation which puts forward a

theoretical management framework grounded in viability theory to deals with risk, ecosystem

dynamics and conflicting sustainability objectives. In particular, I examine the different

analytical possibilities provided by this framework to handle uncertain dynamics.

The challenges to the sustainable management of fish-

eries

Foremost thing, what is a fishery? The United Nations Food and Agricultural Organization

(FAO) defines a fishery as the “people involved, species or type of fish, area of water or

15



seabed, method of fishing, class of boats, purpose of the activities or a combination of the

foregoing features”. This definition allows for a large variety of bio-economic systems where

a harvesting infrastructure targets specific fish species.

The FAO centralizes worldwide catch figures through collaboration with national govern-

ments and fish stock status estimations provided by the scientific community. So far, there

is an ongoing evidence of overfishing, despite the numerous management measures imple-

mented worldwide. The FAO’s latest publication on the state of world fisheries (FAO [20])

reports that in 2009, about 57.4% of world marine fish stocks are estimated as fully exploited

while 29.9% are overexploited. These figures are based on stocks of assessed species, which

account for 20% of global catch. Several studies have attempted to appraise the status of the

remaining stocks through innovative methodologies and tend to report even more alarming

conclusions (Costello et al. [14]).

In all events, an increasing trend in the percentage of overexploited, depleted and re-

covering stocks is observed since the mid-1970s. In the same way, since the early 1990s,

landings are marked by a small decline, but seems to have stabilized lately. In 2006 world

marine landings were worth 80.2 million tons against 78.9 million tons in 2011. This late

stabilisation can be explain by the fact that (1) the composition of landings has changed

— fishermen turn to other resources as targeted species become scarce — (2) technological

progress allows to reach out new fishing grounds (i.e. deeper and further from coasts).

Many factors can explain unsuccessful attempts to manage fisheries sustainably. A fishery

is common-pool resource. That is, a non-excludable and rival good. As public economics

made the evidence, common property resources produce negative externalities. Precisely,

rivalry for the resource. Even though they might be concerned about the long term sus-

tainability of the resource, fishermen are trapped in a race to catch their share of the fish

stock before someone else does. This phenomenon is the so called tragedy of the commons

described by Hardin [27]: “Each man is locked into a system that compels him to increase

his herd without limit, in a world that is limited”.

According to Clark [11] exhaustion of a species can also be explain by the fact that in

some cases it is economically optimal. Considering fisheries resource as natural capital assets,

when the rate of return of a common risk class of assets is greater than the expected return

16



of a fish stock, it is more profitable to exhaust the resource and invest revenues rather than

to harvest at growth rate.

Nowadays, the world population growth, and most of all, the increase in standards of

living in developing countries, result in a growing demand for animal protein (Hall et al.

[25]). To keep pace with such demand, wild fisheries are subject to an increasing pressure.

For these reasons, alike for other renewable resources, fisheries resources require to be

regulated to insure a sustainable exploitation. A sustainable use of natural resources is

defined by as an exploitation that “meets the needs of the present without compromising the

ability of future generations to meet their own needs” (WCED [58]).

Existing management options

At date, two types of instruments to manage fisheries stand out: regulatory or legal measures

and incentive-based instruments. Regulatory measures, usually advocated by biologists, are

technical measures, also called command-and-control tools. Among them are restrictions on

fishing gear, areas, seasons or on time at sea, minimum legal fish size, harvesting quotas,

limitations on fleet capacity or limited access through licensing. These types of instruments

tend to confer less freedom to fishermen, as they do not leave them the possibility to select

the less costly way of meeting policy goals. The most prevalent regulatory instrument is the

quota or total allowable catch (TAC) tool which sets upper limits for the total amount of a

fish species that can be landed from particular areas.

Incentive-based instruments tackle the ownership and valuation issues inherent to fish-

eries resources, either through right-based approaches or by influencing pricing mechanisms

through taxes/subsidies. Right-based approaches fix the property right problem by allocating

fishing quotas/efforts, or by assigning fishermen exclusive use of an area. When transferabil-

ity of rights is admitted right-based systems rely on market mechanisms as well.

As an example, individual transferable quotas (ITQs) systems gives a fisher, vessels and/or

producers an exclusive right to catch a specified portion of the Total Allowable Catch (TAC)

set on an individual stock. The TAC is set by a regulatory agency and then divided into

units that can be bought, sold or leased among participants in the fishery.

ITQs systems or variants, are increasingly employed fisheries management systems. In
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2008, approximately 10% of the marine harvest was managed by ITQs (Chu [10]). That year,

148 major fisheries around the world were identified as having adopted some variant of this

approach (Costello et al. [13]). ITQs systems are reckoned to end the “race for fish”, improve

fleet efficiency, reduce over-exploitation and increase ex-vessel prices (Chu [10], Grafton [24],

McCay [37], Shotton [49]). Through individual guarantees on harvest quantities, ITQs allow

fishermen to spread catches over the fishing seasons in a way that minimize operational

costs. It also allows them to conduct safer fishing strategies (Hilborn et al. [29]). As a result,

the relaxation of fishing competition improves the quality of catches and increases prices.

The tradable feature of ITQs is intended to make quotas flow to the hands of those that

most value them i.e. those which generate highest profits. Theoretically, a decrease in fleet

capacity occurs as economic rationality leads least efficient vessels to sell out their quotas to

the more efficient and withdraw from the fishery. Concerning conservation objectives, the

exclusiveness nature of ITQs coupled to the fact that individual quotas constitute assets,

which value lies on the ecological viability of the stock perceived by the market, are assumed

to ensure the respect of TAC. What is more, the ITQs approach tends to establish the

collection of fees for funding management costs and scientific research on users of the resource

rather than on taxpayers (Grafton [24], Hilborn et al. [29]). Cost-recovery can improve

economic efficiency and conservation of the resource, in the sense that those who pay or are

payed for management services influence the choice of expenditures and performance of a

fishery (Sutinen and Johnston [51]).

However, it is well-established that without an effective monitoring and enforcement sys-

tem, ITQs do not prevent fishermen from bycatch or high grading (Beddington et al. [7], Os-

trom [42]). This observation runs counter the argument that owning a quota gives incentives

to enhance their asset value. Cheating behaviours aiming at maximizing present rents can

be explained when the use of the fishing right presents limited duration or when they are

leased. Right-based management strategies actually embody a trade-off between the more

sustainable harvesting practice induced by permanent rights and greater social equity allowed

by time limited fishing rights.

Indeed, ITQs management strategies are much criticized because they present political
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challenges. The initial allocation mechanisms of access rights is a highly controversial stake 1.

By granting private property rights a wealth transfer takes place, which creates distributional

conflicts in certain cases (Anderson [4], Grafton [24], Péreau et al. [44], Turris [55]). In

addition, the tradable feature of ITQs can cause concentration of rights leading to monopoly

configurations. Since running facilities for landings in several harbors is costly, the abandon

of harbors by the industrials that concentrates fishing rights has been observed in Iceland

(Report IGF-CGAAER, 2012). This raises the question of whether the total catch share

per shareholder should be capped. What is more, the requirement of citizens to exercise

sovereignty on national resources makes undesirable the holding of large shares of TAC by

foreigners. Thus, some ITQs management schemes impose a limitation on foreign quota

holding.

What is more, these policy instruments are not explicitly designed to manage the ecosys-

tem effects of fishing (Gibbs [23]). Regulatory instruments often supplement incentive-based

management systems as these approaches are not always fully effective in preventing ecolog-

ical impacts of fishing.

Besides management instruments, an adaptive process in designing management schemes

is of importance. Ostrom [42] insists on the fact that “successful institutional arrangements

may emerge only by working with the users of a common-pool resource over time to develop

a system that is well matched to the ecological system as well as to the practices, norms and

long-term economic welfare of the participants”. She highly fosters experience and adap-

tation in opposition to “one-size-fits all” solutions and recommends the implication of all

stakeholder in the design process of management schemes, including industrials. Decentral-

ized management is a mean of diversifying management rules and increasing compliance with

regulations.

Regarding ITQ programmes, an efficient set of institutions rather developed in well func-

tioning democracies is required. ITQs are not politically feasible or rational for several

developing economies. Robinson et al. [45] claims “the focus ought to be trying to under-

stand what improvements are possible, given the political forces at work in Africa”. Beyond

institutional quality, the author has identified two other prerequisite for ITQs systems to take

1Commonly, the initial allocation of TAC shares is carried in proportion to vessels historical fishing records.
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place. ITQs systems have emerged in countries where fishing represents a larger proportion

of GDP than it is typical. Cases of successful reform seem to be driven by the government

rather than by the industry.

Self-management or self-governance refers to fisheries management situations where gov-

ernance decisions are taken by fishery participants themselves (Townsend et al. [54]). Ac-

cording to Uchida et al. [56], three conditions are required to transform resources into club

goods: “First, fishing ground boundaries need to be defined in accordance to the ecology of

the targeted fish so that only members have exclusive use rights to the fish. Second, group

membership needs to be well-defined and controlled. Finally, and most importantly [. . . ], the

groups need to be ‘privileged’; that is, forming a group needs to bring higher present value of

benefits to each member than nonmembers and the status quo”. The authors put forwards

that self-management alternatives are said to have advantages over command-and-control in

parts of the world where the government’s capacity is weak in enforcement and monitoring,

or where it lacks institutional capacity to implement a market-based tool.

The role of governance

The governance of fisheries has important responsibilities in the failure to implement sustain-

able fisheries management schemes. Taking the case of the European Union (EU)’s Common

Fisheries Policy (CFP), the commission provides subsidies to fuel purchase, modernize fleets

or sustain fisheries that are not cost-efficient. Instead, these pubic funds could be used to

mitigate overcapacity or invested in research to enhance the sustainability of fisheries. Such

types of transfers to fisheries support environmentally harmful fishing methods such as deep-

sea trawling. By scraping the seabed up to 2000 meters, trawl nets destroy valuable habitats

and catch species displaying low growth and reproductive rates. Indeed, the more tough life

conditions in deep waters produce more vulnerable ecosystems.

In the case of France, Bloom 2, a non-profit organization, denounced the consequent

waste of public money that this activity represents. Less than ten vessels are involved in

deep-sea trawling in France, and turn out unprofitable despite the subsidies they perceive.

In 2013, the European Commission proposed to vote a ban on deep-sea trawling. However,

2Bloom: http://www.bloomassociation.org/
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the amendment was rejected. France was the most hostile country to the prohibition of

bottom trawling. The compromise adopted aims at freezing the currently trawled areas (not

fishing beyond), and better defining acceptable trawling zones within this space. Following

the strong public mobilisation generated by Bloom activism, in particular on social networks,

several restaurants in Paris engaged in withdrawing deep water species from their menus

(hoki, cutlass fish and blue ling). This initiative illustrates the strong role that consumers

can play in modifying environmentally damaging production habits.

The legal measures used by the CFP to regulate harvesting within its jurisdiction include:

TACs, gear regulations, closed seasons, closed areas, minimum allowable sizes for individual

species and structural measures that controls fleet capacity.

The International Council for the Exploration of the Seas (ICES) produces scientific

advice for the European Commission. The commission then forms a proposal in light of

this evidence and discussions with various relevant departments and committees, including

the scientists. Proposals are then sent to the Council of Ministers, made up of national

ministers from member states, which has the final authority to negotiate and formulate

fishery regulations.

In facts, it is well documented that TACs are frequently set higher than the levels recom-

mended by scientists (Karagiannakos [32]). According to OCEAN2012 3, in the last years,

the catch limits agreed were on average 46% higher than scientific advice. In addition legal

measures are generally much less severe than advised by scientists. Daw and Gray [17] ex-

plain the failure to translate scientific discovery into practical policies comes, among other

things, from deficiencies of the political system. Electoral politics of fishery ministries lack

of incentive to comply with scientific catch recommendations as measures involved are often

likely to cause hardship and unemployment. The EU’s CFP has failed to reduce overcapacity,

which create political pressure to set quotas higher enough to keep all vessels working. Fur-

thermore, pay-offs from conservation measures are uncertain and may not occur before the

end of the ministry’s term. Such unpopular measures are generally left aside when planning

to run the next elections. Besides, Hoffmann and Quaas [30] demonstrate theoretically that

inefficiently high TAC levels are a consequence of the uncertainty about future majorities and

3OCEAN2012: http://ocean2012.eu/pages/3-the-issue
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decision making in the council. According the authors, more sustainable fishery management

requires binding long term commitments instead of annual votes.

The failure to convert scientific recommendations into practice also originates in the

poor enforcement of regulations. Discarding at sea, illegal landings and the mis-allocation of

catches to fishing grounds contribute to outpace exploitation rates recommended by scientists.

A new CFP is effective since January 2014. It focuses, inter alia, on banning discards. All

fish caught and not covered by individual quotas should be landed and counted against

the species’ quotas. An overall by-catch quota could be established on a fishery base, as

a reserve. To ensure full reporting of fishing activities, vessels need to be equipped with

electronic tracking technologies. Funding for such monitoring devices is scheduled.

Illegal, unreported and unregulated fishing (IUU) seriously undermines the attempts to

exploit fisheries in a sustainable way. Illegal fishing refers to activities conducted in the

exclusive economic zone (EEZ) of a coastal State by national and foreign vessels, without

permission, or in violation of its laws and regulations. This is often the case where moni-

toring capacity lacks or is weak. As in international waters, where vessels flying the flag of

member states to a regional agreement, practice illegal fishing in violation of international

law or of management measures set by regional fisheries management organizations (RF-

MOs). Unreported fishing refers to fishing activities which have not been reported, or have

been misreported, to the relevant national authority or RFMO. Unregulated fishing refers to

fishing activities conducted in areas where there is no applicable conservation or management

measures, or activities conducted by vessels without nationality, or by those flying the flag

of a State that is not party to the relevant RFMO, in a manner that is not consistent with

or contravenes the conservation and management measures of that organization.

Beyond the fact that IUU fishing dilutes the effect of conservation management and

policy measures, it undermines labour standards, harms markets for legally harvested fish,

encourages corruption and reduces prospects for food security, economic growth and stability,

especially in developing coastal nations (UNODC [57]). In 2009, illegal fishing was estimated

to cause losses to the legal economy in the range of 10 to 23 billion USD annually (Agnew

et al. [1]).

Species of fish that are in short of supply and are of high value particularly constitute
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strong economic incentives for IUU fishing. Overall, the profitability of practices such as

fiscal dumping also gives incentive to bypass law. There are several reasons to the lack of

monitoring and control of fishing activities. It is costly and in several countries, specially

the developing ones, capacity lacks or it is not a priority. Too little penalties also fuel

IUU fishing as revenues generated by fishermen exceed costs while the contrary holds for

regulatory authorities. Penalties paid within the European community averaged between 1.0

and 2.5 percent of the value of IUU landings (OECD [41]). Furthermore, the heterogeneity

in governance systems, capacity and political will makes it difficult for States to collaborate

effectively in combating IUU fishing. It is hard to know exactly how much IUU fishing is

taking place. We do know that, for some important fisheries, IUU fishing accounts for a large

percentage of total catches.

Expensive, easily transported seafood products have become one of the currencies traded

in broader illegal commodity transactions involving drugs, arms and human trafficking (HTSF

[31]). In this context, INTERPOL is taking a transnational approach to share information

and monitoring capacity. In a first stage, by developing a data base interface. Exchanging

information among nations is one of the most challenging issues to combat IUU fishing ac-

tivities. The project also aims at approaching IUU fishing activity from a crime perspective,

as it results in tax evasion. Joint intervention in other related areas such as money laun-

dering, drug trafficking or people smuggling could contribute to provide more interests in

cooperating (Leroy [36]).

Bluefin tuna is the example of an endangered fish species which illegal catches feed fore-

casts of commercial extinction. Bluefin tuna counts among world’s most lucrative commercial

fisheries. Each year, the International Commission for the Conservation of Atlantic Tunas

(ICCAT) sets an overall fishing quota for the eastern Atlantic and Mediterranean popula-

tions of bluefin tuna. In 2009, the adjusted quota set by ICCAT was 21,780 tons4, while its

own scientists advised no more than 10,000 tons. Official trade records indicate the total

amount of bluefin tuna traded in 2009 and 2010 was 70,646 tons. This is a combined overage

of 35,306 tons (Bregazzi [8]). When including black market, conservationists suspect the

4The 2010 quota was worth 13,306 tons. It was the first time that the quota was within the range of

scientific advice.
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actual catch is 60,000 tons per year. The ICCAT affirmed in 2009 that Atlantic bluefin tuna

stocks have declined dramatically over the last 40 years, by 72% in the Eastern Atlantic, and

by 82% in the Western Atlantic. If current fishing levels continue, ICCAT scientists have

determined that the population has less than a 24% chance of rebuilding by the 2022 target

set by ICCAT members.

The case of bluefine tuna illustrates our current inability to coordinate and adopt appro-

priate measures in a situation where a resource is endangered. The bluefine tuna belongs to

the class of large predator species. Its status of threatened species comes in line with the

gradual transformation of food webs that fishing is inducing worldwide. As exposed by Pauly

et al. [43], landings are transiting from long-lived, high trophic level, piscivorous bottom fish

towards more short-lived, low trophic level invertebrates and planktivorous pelagic fish.

Aquaculture: a source of food security?

The issues faced by the aquaculture industry

Since the 1970s, global demand for fish has kept increasing, particularly in the developing

countries where population and income growth constitute the main drivers of the recent rise in

world fish consumption (Delgado et al. [19]). While output from capture fisheries stagnates,

total production of fish continues to rise due to aquaculture. Aquaculture is the farming of

freshwater and saltwater organisms such as fish, mollusks, crustaceans and aquatic plants.

In 2010, world aquaculture reached 60 million tons (excluding aquatic plants and non-food

products) contributing up to 47% of world food fish production against 9% in 1980. An

important share of world aquaculture production is located in Asia, which output reached

89% by volume in 2010 (FAO [20]).

According to the FAO forecasts’ “to maintain the current level of per-capita consumption,

by 2030 the world will require at least another 23 million tonnes of aquatic animal food -

which aquaculture will have to provide”. World demand for fish is outpacing the ability of the

world fisheries to supply it. The aquaculture industry is expected to eclipse the production of

wild fish, providing food security to many developing countries, for which fisheries resources

are a vital source of food.
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However there are concerns that the expansion and intensification of this sector, coupled

with its ecological and social impacts, jeopardize the sustainability of aquaculture. The

practice of intensive farming of finfish and shellfish is characterized by inputs of high quality

resources and energy. Even though the aquaculture industry still has an important growth

potential, it increasingly faces problems of scarcity of space and feed.

A significant part of the aquaculture expansion is expected to occur in coastal areas,

where it directly affects resource systems already experiencing large pressure from human

activities. There is a risk that the anticipated benefits from aquaculture come at the expense

of increased pressure on coastal ecosystem services, thus compromising the food security of

coastal communities and reducing biodiversity.

Moreover, open-water aquaculture is a polluting industry, that releases effluents into the

wild. Farmed fish feed is loaded in nitrogen. The pollution may come from a variety of

sources, including feeding and medical treatment. Nitrogen contributes to daily amounts

of protein, helping to promote optimal fish growth and health. However, fish dejections

loaded in nitrogen are released in rivers and coastal areas, polluting natural environments.

Besides, cultures are subject to parasites, in particular to sea lice which is known for being

much harmful to farmed fish. Green Warriors5, an environmental organisation, reported that

Norwegian salmonids farms make use of diflubenzuron, a highly toxic chemical, to eliminate

sea lice from cultures, though this product is banned from use in the European market. The

use of such pesticide is detrimental to ecosystems.

Regarding fish feed, the aquaculture industry essentially relies on fish meal and fish oil.

Fish meals corresponds to fish flour made from low value species while fish oil is usually

derived from the tissues of these same organisms. The dependency of the aquaculture industry

on the availability of fish meal and fish oil raises concerns among environmental groups about

potentially negative effects on wild fish stocks (Natale et al. [38], Naylor et al. [39]). As the

supply of these inputs is limited, this dependency also has implications for the future growth

of the aquaculture industry (Shamshak and Anderson [48]).

In 2008 fed-aquaculture corresponds to 60% of world farmed aquatic animal production.

In fact, because animal protein support faster growth in farmed species, the industry tends to

5Green Warriors: http://www.nmf.no
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administer compound feeds6 to herbivorous species, besides the carnivorous and omnivorous

ones7. Among the different animal husbandry industries, aquaculture is the largest user of

fish meal (63%) and fish oil (81%).

The expansion of the aquaculture sector urges to find substitutes to these inputs so as to

sustain its growth rate. Especially, as tighter quotas and additional controls on unregulated

fishing are expected to decrease the supply of compound feeds. So far, the aquaculture sector

has succeeded in maintaining a high growth rate (6.3% in recent years), despite the stagnant

supply of compound feeds, due to a more cost-effective inclusion of fish meal and fish oil in

fish diets, and to the decrease in demand for other use. Yet, it is reckon that for certain

species, the intake of specific fatty acids is required to conserve the dietary properties of the

fish. The well known FIFO ratio (fish in-fish out), gives the number of tons of wild fish

necessary to produce one ton of farmed fish (including fish oil and fish meal requirements).

The FIFO ratio varies quite a lot between surveys. Tacon and Metian (2008) gives an overall

FIFO ratio of 0.7 in 2006, which means on average 0.7 kg of wild fish were required to produce

1 kg of flesh. This ratio includes all bred species: crustaceans, carnivorous, omnivorous and

herbivorous. At the carnivorous species-group level, the study reports a salmon FIFO ratio

of 4.9. Naylor et al. [40] supports the figures conveyed by Tacon and Metian [53]. On the

other hand, IFFO8
finds an overall ratio of 0.66 using the same data base, which is fairly

close. However, the FIFO salmon ratio is quite lower, with a 2.2 value. Both studies attest

of substantial decrease in FIFO ratio since the 90’s. Nonetheless, IFFO ratios reflect greater

achievements in terms of feed efficiencies. Plant nutrients can be source of proteins, but not

that necessary to conserve flesh quality. To fill the gap, research is focusing on the culture

of microbial ingredients to product proteins. At date, such feed alternative has not proved

sufficiently cost-effective.

The small oily fish used to produce aquaculture feeds generally belong to low trophic levels

6Compound feeds used by the aquaculture sector are pellets made of fish meal and/or fish oil, and fertil-

izers.
7FAO [20] reports that just 8 species or species groups account for 62.2% of the total compound feed used:

grass carp, common carp, Nile tilapia, Indian major carps, whiteleg shrimp, crucian carp, Atlantic salmon,

and pangasiid catfishes.
8International Fishmeal and Fish Oil Organisation: http://www.iffo.net
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(essentially sardine and anchovy). The fisheries serving this purpose are called reduction

fisheries. According to Smith et al. [50], fishing low trophic level species has widespread

effects on marine ecosystems. Despite the fact that the removal of these species may impair

food webs, thereby, reducing the abundance of predators higher in the food chain, they also

represent a source of animal protein for direct human consumption, especially in developing

countries (Tacon and Marc [52]). Thus, although aquaculture contributes to food fish supply

and to people’s livelihood in certain areas, it may affect food security through these two

channels, in others.

An analysis of the impacts of aquaculture production on food fish

supply and demand

The two first chapters of this dissertation address the interactions between the aquaculture

and the capture fishery sectors, and analyze the implications of the expansion of this food

fish production process in several respects. Especially, on supply and demand of fish food,

on fish price, wild stocks and consumer welfare. The aim is to give insights on the long term

perspectives of both food fish production sectors, and on the potential evolutions in the fish

market structure that are likely to occur.

The aquaculture and capture fishery sectors interact in two respects: at the biological

and market level. Biological interactions stem from the dependence of aquaculture on wild

fish stocks for the feeding of breed species. The withdraw of small oily fish — prey species

— can affect the abundance of predator species that are targeted by the capture fishery

sector for direct human consumption. This is a possibility but not necessarily the case that

the ecosystem effect of reduction fisheries affect other fisheries. On the other hand, market

interactions refer to the price dynamics induced by the presence of farmed and wild fish

products on stalls. The competition between farmed and wild fish depends on consumer

preferences for both types of products.
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Chapter 1

The first chapter of this dissertation is co-authored with Katheline Schubert and untitled

Is aquaculture really an option? It introduces a theoretical framework to investigate the

impact of the introduction of aquaculture on fish consumption, welfare and on the wild fish

stocks, taking into account its dependence on wild feed fish and consumer preferences. The

framework retained to investigate these issues is that of a competitive aquaculture sector and

open access fisheries. The model consists of the demand side and three sectors: an edible

fish fishery, a reduction fishery and an aquaculture sector producing farmed fish.

A biological interaction takes place between the feed fish, harvested to grow farmed fish,

and the wild edible fish, which feeds on this same reduction stock. This ecosystem effect of

fishing is described by a Lotka-Volterra model, while the harvesting technology is modeled

by the classical Schaefer [47] production function. Regarding the aquaculture production

technology, the conversion rate of feed fish is given. Feed fish is the only variable input

considered, with a decreasing marginal productivity. Consumers may choose to consume wild

or farmed fish, which are strong substitutes. The model is solved in a partial equilibrium

framework i.e. income is exogenous.

A few papers have investigated the market interactions between aquaculture and capture

fisheries. Anderson [2] supposes that the wild and the farmed species are the same, and

consequently have the same market price. He shows that in the case of a fishery in open access

exploited beyond the maximum sustainable yield, the entry of competitive aquaculturists

increases total fish supply, thereby, reducing consumer prices and increasing natural fish

stock. Indeed, profit loss mechanically reduces fishing effort. Ye and Beddington [59] assume

both goods are imperfect substitutes with positive cross-price elasticities. Similarly, the

authors find positive consumer benefits of aquaculture via increased fish supply and reduced

prices. Yet, the imperfect substitutability between farmed and wild products limits the extent

to which aquaculture production impacts the capture fishery activity.

Our study comes closer to Hannesson [26], which calls for a simple modelling of both,

market and biological interactions. Two consumption goods are available: a farmed and

wild edible fish, which are perfect substitutes. As in our setting, the biological interaction

is embodied in a prey-predator dynamics between the harvested wild edible fish stock and
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the feed fish stock, harvested by the aquaculture sector to grow farmed fish. Unlike us, the

model does not account for the demand side. Relying on numerical simulations, the author

finds that in open access, the total food fish production is slightly higher than without

aquaculture. However, this increase in supply is carried at the expense of the wild edible

fish stock, which is severely diminished compared to the situation without aquaculture. The

author concludes feed fishing should walk by global optimization, which takes into account

the biological interaction between both production process. This outcome is driven by key

assumptions regarding the relative cost-effectiveness of both fish production sectors, with

a special emphasize on the efficiency in converting feed fish into edible flesh in the wild

compared to the performance of the aquaculture sector.

Our long run results regarding the impact of aquaculture entry are conditional on the

degree of dependence of the wild edible species on the feed fish stock and on income level.

When this interaction is moderate and under a maximum income level, the model admits

a stable interior steady state. The introduction of aquaculture is beneficial to consumers

and its consequences are conform to what is found in the literature, in absence of biological

interactions (Anderson [2], Ye and Beddington [59]). By increasing global fish supply, aqua-

culture decreases the price of the wild product, thus, fishing effort decreases allowing the

edible stock to recover despite the fact that aquaculture exploits the prey species as a pro-

duction input. In fact, there even exists a range of income levels for which the introduction

of aquaculture prevents the wild edible species of collapsing. On the other hand, the feed fish

stock is always lower as one can expect. Otherwise, it is not obvious analytically whether

total wild fish consumption increases in all events, yet, this low interactions scenario benefits

to consumers whose utility is always increased.

In the case where biological interactions are high, aquaculture leads to a decline in the feed

fish stock and the wild edible fish stock, a decrease in wild edible fish supply and an increase in

its price. Indeed, when assuming a strong dependence of the predator species on the feed fish

population, aquaculture threatens the edible species by altering its food web. For stronger

biological interactions, the harvesting of the predator species by the edible fishery reduces

the competition for the feed fish stock, allowing the aquaculture to pursue its activity at

higher levels of expenditure on food fish. Yet, for high levels of income, aquaculture actually
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provokes the collapse of the wild edible fishery though it would have remained alone. The

competition between the predator species and the aquaculture sector for feed fish becomes

too high as food fish demand rises. The net effect of farming on total fish consumption

and welfare is ambiguous. We show through numerical simulations that the introduction of

aquaculture may decrease utility. Such result can be explained by the fact that the fisheries

are supposed to be in open access, meaning that the exploitation of resources is economically

inefficient. In this situation, the introduction of aquaculture adds an extra inefficiency which

may lead to a decreased utility, in spite of the fact that more consumption options are offered

to consumers.

Besides, we further investigate the influence of consumer preferences on these outcomes

by introducing additional assumption on their consumption behaviour. We endogeneize con-

sumer preferences, assuming that they are carnivorous species-biased. We chose to focus on a

demand arising from rather wealthiest populations. The wild fish is a high value carnivorous

species. The taste of consumers for the farmed fish depends on its diet: the more carniv-

orous the species is, the more consumers like it. On the other hand, the more carnivorous

the farmed species is, the more inefficient and costly is its breeding, in the sense that the

production of 1 kg of flesh requires more than 1 kg of wild feed fish. It turns out that as the

efficiency of the aquaculture sector improves, consumers tend to dislike the farmed fish. The

improvement in the aquaculture conversion ratio of feed into flesh can be interpreted as a

shift towards the breeding of less carnivorous species. At given species, it can also be viewed

as efficiency improvements of feeding formulas, resulting in a modification of flesh properties

that consumers penalize. In any event, as both product types become less substitutable, con-

sumer transfer part of their demand on the wild edible species. Thus, the beneficial impact

of aquaculture on the wild edible stock and consumer welfare is mitigated.

According to the OECD a potential answer to the limited supply of feed would be to

split the salmon market for instance into a cheap market fed with reduced fish oil and an

expensive one fed with real fish oil. Differentiating supply through two lines of quality could

better match consumers willingness to pay for food fish and better ensure the prosperity of

the industry. Another option to enhance the sustainability of aquaculture would be to direct

consumer preferences towards less carnivorous species by means of marketing strategies or
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educative campaigns.

Chapter 2

The second chapter of this dissertation is co-authored with Basak Bayramoglu and untitled

Competition between farmed and wild fish: the French sea bass and sea bream markets. It

consists in an empirical analysis of the behavior of consumers towards farmed and wild

fish products. The objective is to sort out to what extent both product types are treated as

substitutes in facts. Evidence on the intensity of market competition between the aquaculture

and capture fishery production processes gives insights on the extent to which the supply

of farmed fish is likely to affect food fish price dynamics. This outcome depends on how

consumers perceive wild versus farmed products, but also on the relative cost, competitiveness

and production quantities of each sector.

Substitutability between wild and farmed fish is of importance as it is likely to condition

the evolution and guidance of each sector. If the farmed fish product has a lower market

value relatively to its wild counterpart, the fish market may prove segmented with respect

to this product attribute. As emphasized in chapter 1 and in the theoretical literature (Ye

and Beddington [59]), when both types of goods are imperfect substitutes, the extent the

increase in food fish supply diminishes wild fish prices and alleviate pressure on wild edible

stocks is lower. The fishery sector then benefits from a price premium and occupy the higher

segment of the fish market. Yet, without proper management of the resource, the wild fish

supply may become scarce, and the fishery’s rent dissipated. On the other hand, if both

product types are perfect substitutes, the market share and economic viability of each sector

will depend on their relative cost-effectiveness in producing food fish.

Anderson [3] argues that the prevailing difference between aquaculture and traditional

fisheries lies in the degree of control on production parameters. The aquaculture production

technique decides of fish feed, seeds quality, light, temperature, water quality and also the

production timing and space. This level of control over the production process is perceived

as a strength, since it allows to determine the color, size, texture, fat content or other

parameters of the delivered product, in accordance with consumers preferences (Asche et al.

[6]). What is more, the reliability and consistency of aquaculture supply all year long has an
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addictive effect on consumers (Knapp et al. [33]). On the other hand, as emphasized in §,

the increasing awareness of consumers that aquaculture is a polluting industry tends to be

reflected in prices. As an example, France is the first importer of Norwegian farmed salmon.

Yet, French consumers recently turned away from their favorite fish since the release of several

scientific studies on the presence of pollutants in the fish flesh. Sales fell by more than 25%

between November and April 2013 (Lemaire [35]). In Norway, near Bergen, the subject is

also at stake. In addition, consumers tend to be cautious about farmed fish feeding and

the potential consequences of changes in species’ natural diet. Thereby, consumer’s behavior

towards farmed fish is likely to direct research efforts and management choices adopted by

the aquaculture sector to foster the industry’s market insertion.

In this study, we test for market interactions between farmed and wild products in France,

focusing on the case of sea bass and sea bream species, respectively. Our empirical approach

relies on the Law of One price (LOP) and on the concept of cointegration which consists in

testing for price parity between products, wild versus farmed fish prices in our case. In a

competitive sector, the duration of a constant relative price relation between goods shows

that the matching of supply and demand has reached a stable long-term balance. Since the

structure of production costs between the aquaculture and capture fishery industry are quite

different, we posit that the existence of a long run relationship between both fish products

stems from the arbitrage behavior of consumers between goods, rather than from supply

factors.

The cointegration approach to market delineation has been extensively used in the lit-

erature to analyze market integration between different fish species, geographic area, or to

test whether consumer distinguish between fish products origin, form, or production process.

Many studies concern salmon, in particular, Asche et al. [5] undertake cointegration test for

market delineation and also estimate a dynamic system of demand equations on a same data

set concerning fresh, frozen salmon and crustacean in the EU market. Authors find that both

approaches provide compatible and complementary results.

This cointegration approach is convenient as only price series are required. Our data set

consists of domestic (monthly) price series, provided by Kantar WorldPanel9, for the sea bass

9Kantar WorldPanel: www.kantarworldpanel.com.
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and sea bream species, purchased by households from 2007 to 2012 in France.

The importance of the sea bass and sea bream markets at European level, makes these

species study subjects of interest. In Europe, sea bass and sea bream taken together represent

the largest production of farmed species, after Atlantic salmon (FEAP [21]). Aquaculture

is in fact the main production method of these two species. France is the third intra-EU

importer of farmed fish, while the extent of domestic catches enables national consumption

of wild and farmed fish to be sustained for both species. Indeed, France undertakes 60%

of world sea bass capture and 32% of the world sea bream captures As detailed further on,

in recent years, about 50% of French consumption of sea bass was farmed while that of sea

bream was around 70%.

Little empirical analysis on sea bass and sea bream has been conducted in the litera-

ture (Asche et al. [6]), despite of the considerable trade flow they generate in the EU.

What emerges from our analysis is that the degree of market interaction between wild and

farmed fish differs from one species to another. While wild and farmed sea bream markets

are found to be partially substitutes, wild and farmed sea bass markets appear disconnected.

For both species, wild fish is always more expensive than farmed fish. Furthermore, based

on the observation that wild sea bass is more expensive than wild sea bream, and displays a

greater price differential with its farmed counterpart than does sea bream, we conclude that

consumers may be sensitive to the seafood production process when it comes to higher-value

species. In the case of sea bass, this attribute overrides the species type attribute.

On the other hand, below a certain price level, when testing for price parity between

fish products differing by several attributes (species, form and production process), price

closeness seems to be the main criteria intervening in consumers’ arbitrage. More economi-

cally constrained consumers, or those less willing to pay for fresh fish appear less sensitive to

product attributes. These outcomes suggest farmed fish may better succeed in lower-value

segments of the fish market.

The price competitiveness of farmed sea bass and sea bream supply in the French fish

market has much to do with the fact that supply is essentially imported from countries with

lower labor costs. Because the French labor force displays other advantages — high technical

skills — the farming of sea bass and sea bream has developed into less intensive and more
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costly farming techniques. This quality industry image cancels the price penalty incurred by

aquaculture and should support an insertion into top-end fish market segments.

The aquaculture sector faces a quality/quantity trade-off in its development strategy

which must be sorted out according to local comparative advantages (space availability,

labor force characteristics etc.). Foremost, it is important to identify whether and where a

potential demand for a supply strategy exists, and if so, of what scale. Thus, the importance

of the substitutability issue between wild and farmed fish, which is likely to differ according

to species types, regional consumption habits or wealth.

The complexity of fisheries management in practice

Defining ecosystem sustainable yields under uncertainty

Practically, the sustainable management of fisheries is a complex task. First of all, the

purpose of sustainability implies dealing with conflicting objectives. Management decisions

must balance the risk of resource collapse due to excessive exploitation versus the risk of

forgone economic benefits if the harvests are lower than necessary.

In the same way, the level of participation in a fishing sector must be balanced against

the economic profitability of the sector. Else, open access to a resource mechanically leads

to the bionomic equilibrium (Clark [11]), where fishing has reduced the fish stock to a level

such that catch rates barely cover fishing costs.

According to Cochrane [12], sustainability objectives encompass economic profitability,

ecological viability and overall stability of the bioeconomic system. When one of the ecolog-

ical, economic or social objectives is not met, fisheries face an unsustainable situation.

Secondly, fisheries management schemes must take into account the complexity of ecosys-

tem dynamics. Roughly, a species’ dynamics can be described by its mortality, recruitment

and catch rate at each point in time. However, targeted species belong to integrated biolog-

ical systems, with numerous linkages between inherent species. The fishing of a particular

species and the subsequent bycatch affects the community structure by diminishing its abun-

dance relatively to interacting species. In fisheries science, bycatch refers to species caught

by a fishery intended to target another species, as well as reproductively-immature juveniles
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of the target species. Applying the following definition of bycatch — catch that is either

unused or unmanaged — to global marine fisheries data gives a bycatch rate representing

40.4% of global marine catches (Davies et al. [16]).

Hence, to be sustainable, management strategies must account for biological and technical

interactions (i.e. bycath) between species. There is a growing demand for moving from single

species management schemes to an ecosystem approach of fisheries management (Garcia et al.

[22]). It is reckon that single species approach can be misleading for the determination of

long term yields and ecosystems’ health. The World Summit on Sustainable Development

(Johannesburg, 2002) encouraged the application of an ecosystem approach by 2010.

However, the ecosystem approach of fisheries faces many issues, ranging from the high

cost of the science required (developing data collection, analytical tools, and models) to the

practical difficulties of changing the governance system and processes (Cury et al. [15], Sains-

bury et al. [46]). Indeed, the dynamics of ecosystems are complex and poorly understood.

Besides, fisheries modeling requires estimations of stock status and of total withdrawal from

stocks. Such information remains imprecise and error prone. Quantifying resources is an

issue in fishery management, rooted in the fact that, in contrast to other living species or

natural resources, fish stocks and fish are not easily observable.

Thirdly, uncertainty inherent to fisheries is recognized to play an important role in the

failure of management regimes. As mentioned, it can concern stock status, the structure

or dynamics of ecosystems. Otherwise, uncertain climatic hazards or technical progress are

likely to affect fisheries productivity. Some claim that fishing decreases the resilience of fish

populations, rendering them more vulnerable to environmental change (Lauck et al. [34]),

and that not accounting for uncertainty can lead to excessive harvest of a resource (Hilborn

and Walters [28]).

The standard criteria to address dynamic issues under uncertainty in economics is the

discounted expected utility. In fishery economics, optimality is obtained by maximizing the

expected value of the sum of discounted revenue from harvesting. Meanwhile, the discounted

expected utility framework is controversial. Its application to intergenerational environmental

issues raises equity concerns with regards to the standard of living of future generations.

Furthermore, this approach is rarely used in practice of environmental management.
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In practice, fisheries management strategies are evaluated in a multicriteria framework

with no clear axiomatic foundations. The key scientific concept used to provide regulatory

recommendations in practical decision making literature is a “management procedure” (MP).

This concept was developed by the International Whaling Commission in the late 1980’s. MPs

are defined by Butterworth and Punt [9] as a set of rules which describes recommendations

for management actions.

The Management strategy evaluation (MSE) is a method elaborated for comparing man-

agement procedures, which takes into account uncertainty, conflicting objectives and time

horizon. As detailed in Sainsbury et al. [46], the MSE approach consists in defining an oper-

ational set of management objectives, and evaluating the performance of various alternative

MPs with respect to the specified objectives, taking into account uncertainty in the modelling

processes. The method consists in testing a particular MP in a great number of simulations

over a given time period, each simulation representing a plausible “state of nature” (sce-

nario), and in computing statistics over the simulation results to summarize the performance

of the particular MP.

The weakness of this method is that it is not able to prescribe an optimal bioeconomic

strategy. That is, once the performance statistics are computed for each MP, comparison

of the likely distance of corresponding management actions to the conflicting management

objectives requires making a trade-off choice. This approach thus provides a clear description

of the consequences of management procedures but with no common currency between the

different objectives and risks to sum up the results and rank the alternative management

procedures. Hence, decision bodies in charge of examining management actions are left with

several indicators providing information on risk and benefits of alternative options, but lack

of a measure embracing a plurality of criteria.

The viability approach is an alternative theoretical management framework to address dy-

namic control problems under constraints, and that can deal with uncertainty. In its stochas-

tic version, it provides a common value to assess and rank alternative management options.

In this respect, this approach can be viewed as a scientific tool to support multi-criteria de-

cision making. The following section introduces the analytical possibilities provided by this

method, and its relevance for addressing fisheries management issues under uncertainty.
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The viability approach to risk management in harvested ecosystems

The stochastic viability theory (De Lara and Doyen [18]) aims at analysing if there exists

states for which dynamics of a system, under uncertainty, and constraints describing given

objectives, are compatible. It allows identifying control strategies such that the set of con-

straints is respected with maximal probability at each date over a given time span. This

probability is called maximal viability probability and constitutes our common value to as-

sess management actions. The higher it is, the lower is the risk of violating constraints.

Constraints often come in the form of binding thresholds, supposed to maintain the

existence and good health of the system. They are generally set constant over time, implying

that all generations are subject to the same constraints. The (stochastic) viability approach

is a positive rather than normative approach. It does not fall under the rational of welfare

maximization. The approach concentrates on describing the window of opportunities with

respect to policy goals. That is, all the evolutions of a dynamical system consistent with

specified objectives. In fact, in the stochastic approach, optimization focuses on the likeliness

of satisfying all constraints at all date.

The robust viability approach (De Lara and Doyen [18]) is an extreme case of the stochas-

tic one. It seeks all the evolutions of a dynamical system that satisfy, at all times, given

objectives, despite of uncertainty. This means that constraints must be satisfied at each date

with probability of one. This handling of uncertainty contrasts with the stochastic approach,

which admits low levels of constraints violation.

Adapting the viability framework to bioeconomic systems allows to seek consistency be-

tween fisheries dynamics under uncertainty, and conflicting economic and conservation objec-

tives. As in the economics or marine science literature, state variables generally correspond

to biomasses and controls to harvesting efforts, while uncertainty can take various forms

depending on its source. It is worthwhile noting that while in the stochastic version of the

viability approach, the set of scenarios is equipped with a probability distribution, the robust

framework does not require any probabilistic assumptions, as failure or success with respect

to scenarios are the only options.

Besides, given that wildlife populations often display wide fluctuations in an unpredictable

way, fisheries management goals and schemes should be updated regularly, in accordance to
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the new data on stock assessments. Hence, in the frame of short time horizons, considering

constant economic or ecological objectives appears reasonable.

The third chapter of this dissertation is co-authored with Michel De Lara and untitled

Managing harvested ecosystems under uncertainty: the viability approach. This chapter ex-

plores how the viability analysis deals with uncertainty in its stochastic and robust approach,

and the sensitivity of fisheries management implications to the way uncertainty is accounted

for. We carry this analysis in the situation where little information on biological dynamics is

available, preventing to identify a probability density of uncertainty scenarios. Indeed, when

dealing with uncertainty here, we do not address how to specify the probability distribution

of uncertainty scenarios, neither which regulatory instrument is most suited, given the nature

of uncertainty. Our question of interest is what is the risk minimizing management approach

that provides the best compromise among conflicting objectives.

We proceed to a numerical application of the stochastic and robust viability analysis to

the anchovy-hake couple in the Peruvian upwelling ecosystem. In fact, the peruvian anchovy

stock is the world’s largest fishery resource, with annual landings of 5 to 10 million tons. It

generates up to one-third of the world’s fish meal supply. On the other hand, hake is targeted

for direct human consumption. Both species are related by a prey-predator relationship.

Thus, this application enables to put forward the management challenges involved by the

biological interactions between the aquaculture and capture fishery sectors, in practice.

The anchovy-hake couple in the Peruvian upwelling ecosystem is described by a discrete-

time two-species dynamical model, where states are biomasses, and where two controls act as

harvesting efforts of each species. Uncertainties take the form of environmental disturbances

affecting each species growth factors, and are assumed to take their values in a given set.

Time sequences of uncertainties are called scenarios. These disturbances may account for

environmental randomness or a misspecification of population dynamics. Constraints are

imposed for each species: a minimum safe biomass level, usually identified by biologists, and

a minimum required harvesting level assumed to ensure economic needs.

In a first stage we apply the stochastic viability approach to exhibit the trade-offs be-

tween various levels of production requirements on each species, respectively. Starting from

an initial biomass couple, we provide the maximum probability of satisfying various levels
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of minimal catch thresholds at each date over a time span, given fixed minimal biomass

thresholds.

The data that is available on the Peruvian hake-anchovy upwelling ecosystem is provided

by El Instituto del Mar del Perú (IMARPE). Biomass time series are limited to ten points

per species. Thereby, the two probability distributions of uncertainties that we assume in

our application are arbitrary. In addition, we also consider different uncertainty sets. The

idea is to appraise the sensitivity of our results to these hypotheses.

We find that, for a same uncertainty set, the weight affected to uncertainties considerably

changes the set of policy objectives that can be envisaged with a high probability. This

outcome demonstrates the fickleness of management recommendations to assumptions on the

distribution of uncertainty scenarios. Due to the poor information available on the ecosystem

dynamics, the soundness of the hypotheses on the distribution of uncertainties that can be

derived is poor. In this case, we consider the uniform distribution as more cautious, because

it puts all empirical uncertainties on the same footing.

On the other hand, we observe an important gap between objectives that can be envis-

aged when admitting a low level of risk and when strictly avoiding risk taking. Low risk

taking reveals an important and sustainable harvesting potential of the Peruvian anchovy-

hake fishery, relatively to what is targeted in practice. In this case study, suppressing risk

unwarrantably reduce the leeway of the decision maker with respect to pursued policy goals.

What is more, we stress the operational scope of the stochastic viability framework. The

maximum production levels that can be guaranteed with a high probability over a time span

can provide support in defining sustainable harvesting quota levels and strategies for each

species. Such regulatory measures would account for ecosystem dynamics, uncertainty and

ensure the ecological viability of the system.

In a second stage, we conduct a robust viability analysis of this same ecosystem model

under risk and constraints, focusing on the concept of robust viability kernel. That is, the set

of initial biomasses for which there exists at least one effort strategy such that all constraints

are satisfied at all times, whatever the uncertainty scenario. The robust viable kernel is

an insightful mean to display the impact of uncertainty on the possibility of a sustainable

management. Wherever a fishery stands, the set of robust states enables to predict whether
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economic and ecological objectives can be guaranteed over a time span, despite of uncertainty.

Reducing uncertainties to zero amounts to dressing the problem as deterministic. We

proceed to a comparison of deterministic and robust viable kernels to shade light on the

distance between the outcomes of these two extreme approaches: ignoring uncertainty vs.

hedge against any risk. We do not advocate the robust viability approach as a suitable

decision tool for fishery management, since it involves economic costs for society, that are

not justified when no catastrophic or irreversible events are expected, or when their likeliness

is low. Our aim is to emphasize the impact of accounting for uncertainty on management

possibilities that arise from a same methodology.

We find that accounting for uncertainty sensibly shrinks the deterministic viability kernel

(without uncertainties). In addition, we have been able to shed light on the uncertainties

that really matter for a precautionary approach, and that they correspond to extreme cases.

Assessing which uncertainties truly impact the robust viability kernel can help the decision-

maker to focus on those uncertainties that are relevant for sustainable management.

We show that not only the absolute value of extreme uncertainties delimit the set of

robust viable states, but also the possible arbitrary evolutions of scenarios, switching from

one extreme to another between time periods. We label such scenarios worst-case scenarios.

However, because the distance between extreme uncertainties can always be amplified, the

notion of worst-case is contingent on the level of caution that one chooses to adopt.

Lastly, we examine effort strategies arising from the robust framework.

This chapter is an opportunity to emphasize the different types of analysis and the wide

range of information that can be derived from the viability framework to support decision

making in the sustainable management of fisheries.
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Chapter 1

Is aquaculture really an option?

1.1 Introduction

While breeding of terrestrial animals was implemented about 8 000 years ago and substituted

to hunting quite rapidly, it took us a very long time to repeat the experience with fish.

Aquaculture exists in many parts of the world since the Middle Ages but did not replace

fishing until now. However, the increasing needs in food fish make things change rapidly.

The world population growth and the increase in standards of living in developing coun-

tries result in a growing demand for animal protein. To keep pace with such demand, wild

fisheries are subject to high pressure. According to FAO (2012), in 2009, about 57.4% of

world marine fish stocks are estimated as fully exploited and 29.9% as overexploited. An in-

creasing trend in the percentage of overexploited, depleted and recovering stocks is observed

since the mid-1970s. In the same way, since the early 1990s, overall landings are marked by a

small decline. Many agree that the maximum capture fishery potential from world’s oceans

has been reached.

In the last three decades aquaculture has been the fastest growing food industry, with an

annual average growth rate of 8.8% (FAO, 2012). Focusing on fish production for human con-

sumption, aquaculture has nearly doubled this quantity in recent years. This sector managed

to provide 47% of world food fish production in 2010 (FAO 2012). In fact, aquaculture is

increasingly viewed as a source of food security. According to the FAO’s projections, in order

to maintain the current level of per capita consumption of fish protein, global aquaculture
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production will need to increase by 60% by 2050.

However, the production methods of aquaculture do present certain limitations in terms of

environmental sustainability. Aquaculture essential inputs are: land, water, labor, feed and

fingerlings. The degree of use of these inputs depends on the characteristics of the production

process (whether it is extensive, semi-intensive or intensive), and on the species bred. In any

event, inland and costal farms cause the destruction of natural habitats and erode biodiver-

sity. In addition, the release of untreated water, food and faeces damages wild ecosystems,

in particular through pathogene invasions. The use of fertilizers in fish diets produces wastes

loaded in nitrogen, phosphorus and other substances inducing eutrophication1. Regarding

fingerlings, they are mainly sourced from the wild rather than derived from hatcheries, oc-

casioning disastrous effects on natural populations (Naylor et al., 2000, FAO, 2012). Finally,

aquaculture depends on wild fish stocks for feeding carnivorous and omnivorous species.

Fish meal and fish oil, which are key ingredients in aquaculture feed, are made from small

oily fish belonging to low trophic levels2 (LTL) for about 80% and wastes from processed fish

for 20% (Fishmeal Information Network, 2011). Fisheries specialised in catches of prey fish,

also termed forage fish, are called reduction fisheries.

The demand for fish meal and fish oil participates to the fishing pressure drilled on wild

stocks. It consumes 19.4% of global marine landings (FAO, 2012). At date, reduction fisheries

are described as fully exploited or over-exploited (Grainger and Garcia, 1996; Alder et al.,

2008). What is more, Smith et al. (2011) emphasize widespread effects of fishing LTL species

on marine ecosystems. The study puts forward the trade-off between protecting biodiversity

versus contributing to food security, through direct human consumption of LTL species and by

providing feed to the agribusiness. The authors support the conclusion that lower exploitation

rates of LTL species are required to mitigate ecosystem impacts of reduction fisheries.

Aquaculture is the world’s largest user of fish meal and fish oil: in 2009 it consumed 53%

of fish meal and 81% of fish oil world production (IFFO, 2011). The sector has succeeded

in maintaining a high growth rate in spite of non-increasing landings of feed fish, thanks

1Eutrophication corresponds to a great increase of phytoplankton, due to the abnormal presence of ar-

tificial or natural substances in waters, resulting in the depletion of oxygen in the water, which induces

reductions in specific fish and other animal populations.
2Among the species intended to fish meal production there are anchovy, jack mackerel and sardines.
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to important progress in terms of rationalization of fish meal inputs (Asche and Bjorndal,

2011; Shamshak and Anderson, 2008). However, a large increase in aquaculture production

is expected, making essential further efficiency improvements in the formulation of fish diets.

Especially as reduction fisheries are increasingly targeted for more profitable purposes such

as pharmaceutical uses.

Several studies ask about the degree of substitutability between fish meal and plant-based

food. Soya meal emerges as a great candidate. It possesses most of the characteristics allowing

high flesh quality. However, Kristofersson and Anderson (2006) demonstrate empirically

that since the late 90s both types of protein have become poor substitutes, breaking with

the strong historical price relationship displayed until then. According to Shamshak and

Anderson (2008), beyond some degree of replacement of fish meal by plant-based food, some

farmed species are subject to declines in health, growth rate and omega 3 levels due to

the lower protein quality and content. The aquaculture industry has recently undertaken

the production of a genetically modified salmon species (AquaAdvantage), which growth is

enhanced despite very low protein intake. The counterpart of such innovation is that the

nutritive properties of the flesh are not conserved. Single cell proteins or zooplankton are

considered as potential substitutes to fish meal proteins. Yet, their production costs remain

too high to be used in significant amounts in aquaculture feed (Olsen and Hasan, 2012).

At date, there does not seem to exist a protein source displaying required properties and

profitable at the same time.

Our aim in this chapter is to analyze the impact of the introduction of aquaculture on

fish consumption, welfare and on the wild fish stocks, taking into account its dependence on

wild feed fish and consumer preferences. The framework retained to investigate these issues

is that of a competitive aquaculture sector and open access fisheries.

Motivations for this latter hypothesis are the following. Although the general trend is

to tighten regulations, resource management schemes are far from being implemented or

efficient worldwide. Furthermore, referring to Costello et al (2012), it appears that countries

with several unassessed fisheries, which likely goes along with poor management schemes,

have often expanded aquaculture3. The depletion of fishery resources and the subsequent

3Personal remark of Christopher Costello to the authors.
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loss in food production potential may have fostered the development of other fish production

techniques. In any event, this observation further supports our assumption that farming

co-exists with open access fisheries. Overall, it is necessary to analyze mechanisms at work

in absence of intervention, especially in order to properly direct management initiatives.

Our model is highly stylized. It consists of the demand side and three sectors: an edible

fish fishery, a reduction fishery and an aquaculture sector producing farmed fish.

The characteristics of the technologies at stake for fishing and farming, as well as two types

of interactions, namely biological interactions and economic interactions on the marketplace,

are essential.

First, consumers can obtain fish by two means: fish can be either fished or farmed. One

important question is the relative efficiency of these two technologies in producing edible fish.

Another important point is of course the relative cost of the two production methods.

Secondly, we account for biological interactions between fish stocks to reflect the ecosystem

effects of fishing. While the aquaculture sector harvests feed fish to grow farmed fish, the

wild edible fish feeds on this same stock. Thus, we investigate how critical is the removal of

feed fish for the biomass of the wild edible species and for its supply.

Thirdly, market interactions between wild edible fish and farmed fish arise. Consumers

may choose to consume wild or farmed fish, which are strong substitutes, depending on the

prices of the two types of edible fish and their preferences.

We derive steady state outcomes from our model as well as the pattern of the trajectories

of fish prices, consumption and stock levels to appraise the dynamics resulting of these

interactions. Overall, what emerges from our analysis is that when biological interactions are

moderate, that is when the wild edible species displays a low degree of food dependence on

the feed fish stock, aquaculture increases welfare via a higher total fish supply, and alleviates

the pressure on the edible stock, which increases in spite of the fact that the prey species is

less abundant. Otherwise, when biological interactions are strong, the harvest of the prey

species for the aquaculture industry results in a lower stock and supply of edible fish, and a

higher wild fish price. The introduction of the aquaculture food production may even result

in lower global fish supply and utility.

In addition, we explore the consequences of an improvement of aquaculture productivity
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in the case where biological interactions are absent, and show that when the wild species are

heavily exploited, this improvement is beneficial.

As we suspect that such an improvement is at least partly achieved by farming less

carnivorous species, we finally endogeneize consumer preferences by assuming that they are

carnivorous species-biased. Precisely, we study an extension of the model where preferences

vary according to the characteristics of the farmed fish, which we link to the productivity

of aquaculture technology. Our assumption is the following. On the one hand, the more

carnivorous the farmed species is, the more inefficient is its breeding, in the sense that the

production of 1kg of flesh requires a lot more than 1kg of wild feed fish. On the other hand, the

taste of consumers for the farmed fish depends on its diet: the more carnivorous the farmed

species is, the more consumers like it4, or the more substitutable to the wild edible fish they

perceive it is. It turns out that the improvement of the productivity of aquaculture has a

negative side effect: aquaculture farms fish that consumers like less, or find less substitutable

to wild fish. We conjecture that in these circumstances there may exist a utility-maximizing

farmed species.

A few papers have investigated the market interactions between aquaculture and capture

fisheries. Anderson (1985) supposes that the wild and the farmed species are the same, and

consequently have the same market price. He shows that in the case of a fishery in open access

exploited beyond the maximum sustainable yield, the entry of competitive aquaculturists

increases total fish supply, thereby, reducing consumer price and increasing natural fish stock.

Indeed, profit loss mechanically reduces fishing effort. Ye and Beddington (1996) assume

both goods are imperfect substitutes with positive cross-price elasticities. Similarly, the

authors find positive consumer benefits of aquaculture via increased fish supply and reduced

prices. Yet, the imperfect substitutability between farmed and wild products limits the

extent to which aquaculture production impacts the capture fishery activity. Hannesson

(2002) considers both market and biological interactions. Like Anderson (1985), he assumes

that the edible fish and the farmed fish are the same species. This species feeds on a prey

in the wild, which is also the input of the aquaculture activity. The argument of the paper

4Worldwide, carnivorous species such as grouper, cod-fish, halibut, sole etc. display higher economic

values that omnivorous ones (FranceAgriMer, 2012; Alaska Departement of Fish &Game, 2010).
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revolves around the comparison between the costs of fishing and farming on the one hand,

and the efficiency of the transformation of one unit of feed fish into edible fish in the wild

and within the aquaculture technology on the other hand. The author relies on numerical

simulations. In open access, total food fish production is found to be slightly higher than

without aquaculture, but the wild edible fish stock severely drops relatively to the situation

absent aquaculture.

Hannesson (2002) is probably the paper that comes closest to ours. Yet, in Hannesson

(2002) the farmed and wild edible fish are the same, and have the same price, i.e. are perfect

substitutes. One of our main contributions is that we account for the demand side. This

allows us to analyze how preferences for wild versus farmed fish intervene in price and market

equilibria. Our theoretical setting also allows us to examine the consequences of different

degrees of biological interactions on these equilibria.

The remaining of the chapter is as follows. Section 2 presents the demand side features.

Section 3 describes the two-species biological model we consider. Section 4 derives the short

run dynamics and the long run state of the edible fishery in open access, in absence of aqua-

culture. This constitutes our baseline situation for appraising the impact of the aquaculture

activity. In Section 5 we introduce aquaculture and proceed to the coupling of the different

sectors. We analyze the resulting steady state, its stability, and compare it to that of the

baseline situation. We also examine the consequences of an improvement of aquaculture’s

efficiency. We finally endogeneize consumer tastes in Section 6. Section 7 concludes.

1.2 The demand side

Consumers purchase two types of goods: wild fish and farmed fish. The utility function of

the representative consumer at each date t is given by:

U(Y1t, Y2t) =
�
(1− α)Y

1− 1

σ
1t + αY

1− 1

σ
2t

� 1

1−
1
σ , σ > 1, α ∈ ]0, 1[ (1.1)

with Y1 the wild fish and Y2 the farmed one.

It is reasonable to assume that the two fish products are strong substitutes. Hence, the

elasticity of substitution, σ, is greater than 1.
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The budget constraint of the representative consumer is:

P1tY1t + P2tY2t = I (1.2)

where I represents total expenditures on fish consumption, exogenous and supposed to be

stationary, and P1t and P2t are respectively the market price of wild and farmed fish.

When maximizing the utility function with respect to the budget constraint we obtain

the following demand functions for the two types of fish:

Y d
1t =

I

P1t

�
1 +

�
α

1−α

�σ �P1t

P2t

�σ−1
� (1.3)

Y d
2t =

I

P2t

�
1 +

�
1−α
α

�σ �P2t

P1t

�σ−1
� (1.4)

As it is well known when preferences are represented by a CES utility function, the

response of Y d
1 (resp. Y d

2 ) to a variation of P2 (resp. P1) depends on the value of the

elasticity of substitution. Here, the two goods are strongly substitutable (σ > 1). Therefore

Y d
1 (resp. Y d

2 ) is increasing in P2 (resp. P1).

1.3 Biological interactions

Now, we introduce the possibility of biological interactions between the two wild species.

This is only a possibility, and not necessarily the general rule: it may be the case that no

biological interactions exist, because both fish stocks belong to totally different geographical

areas. Indeed, the Peruvian anchovies constitute the world largest fishery, landings reaching

10% of global fish catches in peak years. It is the most important input in the fish meal and

oil industry. By relying on this industry, salmon farming in Norway or pangasius farming

in Vietnam do increase pressure on fish resources worldwide but do not impact reduction

fisheries at the local level.

Our assumption is that when biological interactions exist between the two wild species,

they are of the predator-prey type. Species 1 a high-value species harvested for human

consumption — the predator —- while species 3 is a low-value non-edible pelagic species —

the prey.
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We characterize biological interaction by specific functional forms to be able to derive ana-

lytical results. The Lotka-Volterra model is commonly used to describe interspecies dynamics

in the literature (Sivert and Smith, 1977; Hannesson, 1983, 2002; Hofbauer and Sigmund,

1998). A two-species, non-linear density dependent version of the Lotka-Volterra model is

considered:

F1(X1t, X3t) = a1X1t − b1X
2
1t + d1X1tX3t (1.5)

F3(X1t, X3t) = a3X3t − b3X
2
3t − d3X1tX3t (1.6)

where X1 and X3 stand for the stock of species 1 and 3. Parameters d1 and d3 define the

ecological interdependence between the two species, of the predator-prey type: d1 ≥ 0, d3 ≥ 0.

Parameters b1 ≥ 0, b3 ≥ 0 traduce the fact that the maintenance needs of the biomass grow

faster than the ability to acquire food as the biomass increases (Hannesson, 1983). The rate

of growth of each species in absence of the other is given by a1 ≥ 0, a3 > 0. If a1 > 0, species

1 can survive without species 3. If a1 = 0, species 3 is necessary to the survival of species 1.

Without any human intervention, the system composed of the two fish populations evolves

according to:

Ẋ1t = F1(X1t, X3t) (1.7)

Ẋ3t = F3(X1t, X3t) (1.8)

It immediately appears that there exists four steady states satisfying Ẋ1t = Ẋ3t = 0 :

1. a steady state where both populations disappear: �X1 = �X3 = 0;

2. a steady state where population 1 goes extinct but not population 3: �X1 = 0, �X3 =

a3/b3;

3. a steady state where it is the contrary: �X1 = a1/b1, �X3 = 0;

4. an interior steady state where both populations coexist:

�X1 =
b3

b1b3 + d1d3

�
a1 +

a3d1
b3

�

�X3 = −
d3

b1b3 + d1d3

�
a1 −

a3b1
d3

�
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The condition of existence of this steady state is:

a1
b1

<
a3
d3

(1.9)

Notice that it is always satisfied if a1 = 0; that is, if species 1 cannot survive without

species 3.

We show in Appendix B.1 that when parameters satisfy condition (1.9) , the stable steady

state that prevails in the long run is steady state 4, where both fish populations coexist;

when it is not satisfied, the stable steady state is steady state 3, where the prey population

is extinct. In the remaining of the chapter we make the assumption that absent any human

intervention the equilibrium that prevails is the one where both fish populations coexist.

Therefore, condition (1.9) is supposed to be satisfied.

1.4 The baseline situation: capture fishery alone

We first study the biological and economic features of the capture fishery in absence of

aquaculture. This will be useful to appraise the impact of aquaculture activity. In this

baseline situation, utility is linear in the quantity of wild fish consumed, and the demand

function reduces to:

Y d
1t =

I

P1t

(1.10)

The dynamics of the capture fishery reads:

Ẋ1t = F1(X1t, X3t)− Y1t (1.11)

Y1t = q1E1tX1t (1.12)

and the evolution of the feed stock is given by equation (1.8). The production function of the

fishery is the classical Schaefer (1957) production function, where q1 > 0 is the catchability

coefficient of the species and E1 the effort devoted to fishing.

Fishermen profit is given by:

π1t = P1tY1t − cE1t (1.13)

where c stands for the unit cost of effort.
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We make the assumption that the wild resource is in open access. Consequently, fishermen

enter the sector until dissipation of the rent (Gordon 1954):

Ė1t = βπ1t = β(q1P1tX1t − c)E1t, β > 0 (1.14)

We add to the previous dynamic system the equilibrium of the wild fish market at each

date Y1t = Y d
1 (P1t), where Y d

1 (P1t) is given by (1.10). Eliminating P1 and Y1 yields the

following three-dimensional dynamic system in X1t, X3t and E1t :





Ẋ1t = F1(X1t, X3t)− q1E1tX1t

Ẋ3t = F3(X1t, X3t)

Ė1t = β (I − cE1t)

(1.15)

It immediately appears that there exists four steady states satisfying Ẋ1t = Ẋ3t = Ė1t =

0 :

1. a steady state where both populations disappear: X∗

1 = X∗

3 = 0, E∗

1 = 0;

2. a steady state where population 1 goes extinct but not population 3: X∗

1 = 0, X∗

3 =

a3/b3, E
∗

1 = 0;

3. a steady state where it is the contrary: X∗

1 = 1
b1

�
a1 −

q1I
c

�
, X∗

3 = 0, E∗

1 = I
c
; the

condition of existence of this steady state is I < ca1/q1. Notice that this situation

cannot characterize the long term of this economy under condition (1.9). Indeed, as

this condition ensures that both species coexist when there is no human intervention,

fishing of the predator (species 1), cannot worsen the long term stock of the prey

(species 3).

4. an interior steady state where both populations coexist:

X∗

1 =
b3

b1b3 + d1d3

�
a1 +

a3d1
b3

−
q1I

c

�
(1.16)

X∗

3 = −
d3

b1b3 + d1d3

�
a1 −

a3b1
d3

−
q1I

c

�
(1.17)

E∗

1 =
I

c
(1.18)
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The conditions of existence of this steady state in the case of predator-prey interactions

(d1, d3 > 0) are: q1I
c

< a1 +
a3d1
b3

and q1I
c

> a1 −
a3b1
d3

. Under condition (1.9), the second

one is always satisfied, while the first one may be binding.

Therefore, condition

I < Iw(d1) :=
c

q1

�
a1 +

a3d1
b3

�
(1.19)

gives the maximum revenue that consumers can spend on fish without inducing the extinc-

tion of the edible species. This revenue Iw is an increasing function of d1, the parameter

characterizing the strength of the predator effect. The higher is d1, the higher is the surplus

growth of species 1 subsequent to a unit intake of species 3. Hence, the more edible fish can

be caught.

Notice that at the interior steady state X∗

1 < �X1 and X∗

3 > �X3 : fishing of population 1

alleviates the predator effect on population 3.

We show in Appendix B.2 that under condition (1.19), the steady state that prevails is the

interior steady state where both wild fish populations coexist in the long run. It is globally

stable: for any initial value of the effort below a certain level5, the dynamic paths followed

by the stock and effort converge to the steady state, which is a stable node or a stable focus,

depending on the parameters. When condition (1.19) is not satisfied, i.e. when the revenue

consumers spend on fish is too high, the wild edible species collapses and the steady state

that prevails is steady state 2.

1.5 Introducing aquaculture

We now introduce the aquaculture sector, which exploits the stock of pelagic fish as an input,

and study the long run outcomes derived from the coupling of the demand side and all three

productive sectors. We also identify the nature of the equilibrium of this system. Next, we

compare these steady state outcomes to that of the baseline situation. Lastly, we look at the

5Suppose that the initial effort is E10 ≥ 1/q1. Then, according to the specification of the catch function,

the initial catch is Y10 ≥ X10 : the entire stock is harvested at once, extinction occurs immediately. Hence

the initial effort must be E10 < 1/q1.
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influence of the efficiency of the aquaculture technology on the long run status of both wild

fish stocks and welfare.

1.5.1 The aquaculture sector and feed fishery

Farmers purchase fish meal and fish oil in the form of compounded feed, which are pellets

providing nutrients and different supplements to farmed fish. These pellets are produced by

a specialized industry. Here, we consider for simplicity that farmers buy feed fish directly

to the reduction fishery. It is actually their unique variable input in this model. Other

inputs, mainly capital and labor, are supposed to be fixed and normalized to 1. Feed fish is

harvested from the prey stock, X3, distinct from the predator fish stock exploited for human

consumption X1. Feed fish harvesting takes place in open access. Its price is set by the

equalization of fishermen supply and the demand from aquaculture. Regarding farmers, they

are in competition on the farmed fish market. They decide at each date of the feed quantity

that maximizes their profit.

The production function of the representative farmer reads:

Y2 = kY3
γ (1.20)

with Y2 the farmed fish production, Y3 the input of feed fish, γ ∈]0, 1[ the share of feeds in

the production technology of farmed fish. It is set below one to account for the decreasing

marginal productivity of feed fish. The parameter k > 0 is the efficiency of the aquaculture

sector in converting feed fish into farmed fish flesh. It may be interpreted either as the

diet of the farmed species or as technical progress. In the first case, a high k means that the

aquaculture sector has chosen to farm a rather omnivorous fish species, which does not require

too much feed fish to grow. In the second case, a high k implies that a given species can be

grown with relatively few feed, more exactly, low animal protein intake. In the remaining

of the document we comment our results on the basis of the first interpretation of k — k

reflects a specific species diet — in order to ease understanding.

Notice that k may be related to the well known FIFO (fish in-fish out) ratio, which gives

the number of tons of wild fish necessary to produce one ton of farmed fish (including fish

oil and fish meal requirements). The FIFO ratio varies quite a lot between surveys. Tacon
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and Metian (2008) reports an overall FIFO ratio of 0.7. This ratio includes all bred species:

crustaceans, carnivorous, omnivorous and herbivorous. At the carnivorous species-group

level, the study reports a salmon FIFO ratio of 4.9. Naylor et al. (2009) finds fairly close

figures to those conveyed in Tacon and Metian (2008). On the other hand, IFFO (2012) finds

an overall FIFO ratio of 0.3 and a salmon FIFO ratio of 1.4. In any event, both studies attest

of substantial decrease in FIFO ratio since the 90’s.

Maximizing their profit, π2t = P2tY2t − P3tY3t, farmers buy feed to produce farmed fish

up to the point where the gain provided to the farming industry by a marginal increase in

feed input is equal to its cost (i.e. P3t). Given our specification of the production function

of aquaculture (1.20), this yields:
P3tY3t

P2tY2t

= γ. (1.21)

Since the feed fishery is also in open access, fishermen enter the sector until dissipation of

the rent, and we have the equivalent of equation (1.14). The unit cost of fishing c is supposed

to be the same in the two fishing sectors, as well as the speed of adjustment β.

The fact that revenues from the aquaculture activity are directly proportional to the

revenues of the feed industry (equation (1.21)) allows us to aggregate the aquaculture sector

and the feed sector and to write the dynamic system representing the supply of farmed fish

as: 



Ẋ3t = F3(X1t, X3t)−
�

Y s
2t

k

� 1

γ

Ė3t = β (γP2tY
s
2t − cE3t)

Y s
2t = k (q3E3tX3t)

γ

(1.22)

This dynamic system represents the evolutions of the feed fish stock and the effort devoted

to fishing the feed species as functions of the price of farmed fish and the aquaculture’s

technology characteristics only. It can be directly compared to the corresponding system for

wild fish: 



Ẋ1t = F1(X1t, X3t)− Y s
1t

Ė1t = β (P1tY
s
1t − cE1t)

Y s
1t = q1E1tX1t

(1.23)

where the evolutions of the edible fish stock and the effort depend on the price of wild fish

only.
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Interactions between the two systems will come from the demands for wild and farmed

fish, depending on both prices, and the market equilibria, as we are going to show.

1.5.2 The coupling

We now suppose that at a given date, let’s say t = 0, where the wild edible fishery is at

the steady state, the aquaculture activity is introduced. The initial effort is supposed to

satisfy: E30 < 1/q3, so that the entire feed fish stock is not harvested at once. Hence at

t = 0 wild fishing and aquaculture coexist. In what follows we study the evolution of these

two activities over time and the long run equilibria to which the system may converge. A

priori, these equilibria may be of four types: one interior equilibrium where wild fishing and

aquaculture still coexist, an equilibrium where aquaculture has disappeared, an equilibrium

where the wild edible fishery has collapsed, and lastly an equilibrium where both fisheries

and aquaculture have collapsed. But according to the specification of the utility function

(1.1), when one of the arguments Y1 or Y2 tends to zero, its marginal utility becomes infinite.

Market forces are not going to allow this situation to happen, which implies that the only

relevant long term equilibria will be the interior one (coexistence of both fisheries) and the

one where both fisheries collapse simultaneously.

Starting from systems (1.23) and (1.22), we introduce demands for both types of fish and

the equilibria of the two fish markets. Define

At =
1

1 +
�
1−α
α

�σ �P2t

P1t

�σ−1 (1.24)

From (1.3) and (1.4), the two demand functions can be written as:

P1tY
d
1t = (1− At)I (1.25)

P2tY
d
2t = AtI (1.26)

Hence At ∈ [0, 1] represents the share of consumer expenditures allocated to buying farmed

fish, and 1−At the share allocated to buying wild fish. At characterizes the market interac-

tions between the fish populations, stemming from consumer preferences, as opposed to the

biological interactions studied above. When At = 0, consumers consume only wild fish. On
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the contrary, when At = 1, only farmed fish is consumed. According to the remark we made

above about the consequences of the specification of the utility function, we are going to focus

on the case where both wild fish populations exist at the steady state, and determine the

conditions allowing this co-existence as well as the dynamic properties of this equilibrium.

Hence we suppose that At ∈ ]0, 1[ ∀t.

The equilibria on the fish markets read:

P1tq1E1tX1t = (1− At)I (1.27)

P2tk (q3E3tX3t)
γ = AtI (1.28)

The ratio of equations (1.28) and (1.27) yields:

At

1− At

=
P2t

P1t

k (q3E3tX3t)
γ

q1E1tX1t

Replacing the price ratio by its expression as a function of A given by (1.24) allows us to

obtain:
At

1− At

=
α

1− α

�
k (q3E3tX3t)

γ

q1E1tX1t

�σ−1

σ

(1.29)

The final dynamic system describes the evolutions of the two wild fish stocks and the two

efforts exerted. It is obtained by putting together systems (1.22) and (1.23), and using (1.25)

and (1.26) to eliminate P1tY1t and P2tY2t:





Ẋ1t = F1(X1t, X3t)− q1E1tX1t

Ė1t = β [(1− At)I − cE1t]

Ẋ3t = F3(X1t, X3t)− q3E3tX3t

Ė3t = β [γAtI − cE3t]

(1.30)

where At is given by (1.29).

The interior steady state associated to this system is characterized by the following equa-

tions, giving the two stationary stocks and efforts as functions of A, which is itself a function
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of these same variables:

�X1 =
b3

b1b3 + d1d3

�
x1 + y1 �A

�
with x1 = a1 +

a3d1
b3

−
q1I

c
and y1 =

�
q1 −

d1
b3
γq3

�
I

c

(1.31)

�E1 =
I

c
(1− �A) (1.32)

�X3 = −
d3

b1b3 + d1d3

�
x3 + y3 �A

�
with x3 = a1 −

a3b1
d3

−
q1I

c
and y3 =

�
q1 +

b1
d3

γq3

�
I

c

(1.33)

�E3 = γ
I

c
�A (1.34)

�A
1− �A

=
α

1− α



k
�
q3 �E3

�X3

�γ

q1 �E1
�X1




σ−1

σ

(1.35)

Proposition 1 contains our results concerning the study of the interior steady state. Fig-

ure 1.1 provides a simple representation of these results.

Proposition 1 (i) A sufficient condition of existence of an interior steady state where wild

fishing and aquaculture coexist is:

I < I := c

�
a1
q1

+
a3
γq3

�
(1.36)

Under condition (1.36), the interior steady state is unique.

(ii) Absent biological interactions (d1 = d3 = 0), the unique interior steady state, when it

exists, is globally stable; this remains true when biological interactions are moderate (sufficient

conditions for stability are: d1 ≤ b3
q1
q3
, d3 ≤ b1

γ
). Besides, whatever the level of biological

interactions, if the revenue spent on fish I is sufficiently small, the unique steady state is

globally stable.

(iii) If I ≥ I, when d1 ≤ d1 := b3
q1
γq3

, there is no interior steady state; but when d1 > d1

there may exist up to 2 interior steady states.

Proof. See Appendices A and B.3. ✷
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Figure 1.1: Existence, uniqueness and stability of an interior steady state (shaded zone:

instability)

Absent biological interactions, the interior steady state, provided that it exists i.e. that

condition (1.36) is satisfied, is unique and globally stable. As one would expect, the threshold

I is an increasing function of the unit cost of effort and the intrinsic growth rate of each

species, and a decreasing function of the catchability coefficient of both fisheries. It also

depends on γ, the elasticity of farmed fish production to feed input. The higher γ, the lower

I, highlighting the fact that the dependence of aquaculture on feed fish must be mitigated

for fish production to cope with population growth and increasing demand. Notice that

I does not depend on k, the parameter characterizing the productivity of the aquaculture

technology. When the revenues spent on fish consumption tend towards the threshold I both

wild fish stocks tend to 0. When I reaches the threshold, we assist to the simultaneous

collapse of the edible wild fish stock and the feed one. The relevant steady state is then

�X1 = �X3 = 0.

When biological interactions are moderate these results still hold. But stronger biolog-
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ical interactions coupled to a relatively high revenue spent on fish consumption (although

smaller than I) may provoke instability (see the shaded area in Figure 1.1). Then the system

converges to the steady state where both populations collapse.

For high biological interactions, namely when the parameter d1 characterizing the predator

effect is above the threshold d1, the revenue that the system can bear is increased above I and

there may exist two, one or no steady states. More precisely, there exist two steady states for

I < I(d1) and no steady state for I > I(d1), I = I(d1) being the limit case (see Figure 1.1).

We were unable to compute analytically the value of I(d1), nor to obtain analytical results

for the stability of the steady state(s), so we resort to numerical simulations.

We use the values proposed in Hannesson (2002) for biological parameters, while economic

and technological parameters are chosen such that steady state outcomes sketch the state

of world resources, market prices and quantities, in relative values. The parameter k is set

such that aquaculture is very inefficient, meaning that the farmed species is a high value

carnivorous species with a high FIFO. The parameter γ gives feed costs equal to 50% of the

aquaculture production value. Such value is likely, though belonging to the upper range values

of γ reported by Asche and Bjorndal (2011) for the salmon industry. Parameter α, which

weights farmed fish in preferences, is set to 0.4, implying that consumers weight wild fish

more than farmed fish. This assumption is grounded on the following argument. First, there

exists large empirical evidence that for a given species the price of the wild product is higher

than the price of the farmed one (FranceAgriMer, 2012). Furthermore, aquaculture does

not actually have the capacity to produce all species existing in the wild. At date, the food

fish supply of capture fisheries is much more diversified, which is something consumers value

(Quaas and Requate, 2013). Lastly, Nielsen et al. (2007) establishes that wild products are

perceived to be healthier6. Table 1.1 gives our reference calibration, where we set d1 = 0.005

and I = 11.

We make the assumption that the ratio d3/d1 remains the one of the reference calibration

6When it comes to farmed salmon, for which market integration has been extensively studied, facts and

literature support the idea that consumers are indifferent between wild or farmed products. Going even

further, Knapp et al. (2007) argues that for a same salmon species, consumers tend to prefer the farmed

product for its consistent quality, the reliability of its supply and its more appealing aspect. But farmed

salmon is an exception, which experienced a rather unique market story.
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Table 1.1: Calibration

a1 b1 d1 q1 a3 b3 d3 q3 σ c γ k β α

0.01 0.05 0.02 0.01 0.09 0.01 0.05 0.04 2 2 0.5 0.04 0.05 0.4

above when d1 varies (i.e. d3/d1 = 2.5), and compute numerically the region where the steady

state is unstable by making I and d1 vary (see Figure 1.1).

The simulations also allow us to see that in the region where there exist two steady states,

either both are unstable or one of them is unstable and the other stable; in this last case,

the stable steady state is the one corresponding to the smaller �A.

1.5.3 Comparison with the baseline situation

Intuition would lead us to think that the introduction of aquaculture is always beneficial

for consumers, whatever their preferences and the efficiency of the aquaculture technology,

because more options are offered to them. We are going to show that this is not the case in

our model. Such a result can be explained by the fact that both fisheries are in open access,

which leads fishermen to take inefficient decisions. Moreover, intuition does not have much

to offer about the effects of the introduction of aquaculture on biological populations, on fish

price, on the quantities consumed or on the effort devoted to fishing in presence of biological

interactions. The following proposition compares the steady state outcomes obtained in the

baseline situation where both fish populations coexist (equations (1.16) to (1.18)) to those

obtained when the wild edible fishery and aquaculture coexist (equations (1.31)-(1.35)).

Proposition 2 Introducing aquaculture leads in the long run to:

(i) a smaller total effort devoted to fishing;

(ii) a higher stock of edible wild fish and a lower price iff d1 < d1, and vice versa, and a

lower feed fish stock in all events;
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(iii) an ambiguous effect on wild fish consumption when d1 < d1, a decrease of wild fish

consumption when d1 > d1, and an ambiguous effect on total fish consumption in all events;

(iv) a higher utility when d1 ≤ d1, but a possibly negative effect on utility when d1 > d1.

Proof. See Appendix C. ✷

Table 1.2: Comparison with the baseline

Moderate biological interactions: d1 < d1 Strong biological interactions: d1 > d1

�E1 + �E3 < E∗

1
�E1 + �E3 < E∗

1

�X1 > X∗

1
�X1 < X∗

1

�P1 < P ∗

1
�P1 > P ∗

1

�Y1





> Y ∗

1 = 0 when Iw(d1) < I < I

� Y ∗

1 otherwise

�Y1 < Y ∗

1

�U > U∗ �U � U∗

Proposition 2, which results are summarized in Table 1.2, calls for the following comments.

The total effective long run level of fishing effort is of course �E1+ �E3.We show in Appendix

C that there also exists a virtual total level of effort I/c, constant, which must be splitted into

an effective effort �E1 devoted to catch the edible wild species, and a virtual effort �E3/γ > �E3

devoted not only to catch the feed species but also to transform it into edible farmed fish.

Total effective fishing effort is smaller with aquaculture than without, whatever the initial

state of the edible wild fish stock.
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When the predator effect is moderate (d1 < d1), the long run consequences of the in-

troduction of aquaculture are conform to what is expected, and to the results found in the

literature (Anderson, 1985; Ye and Beddington, 1996). That is, the effects of market inter-

actions dominate the effects of biological interactions. The introduction of aquaculture does

alleviate the pressure on the wild edible fish stock, in the sense that this stock is higher in the

long run with aquaculture than without. It may also lead to a higher total fish consumption,

which is not surprising and, less intuitively, to a higher wild fish consumption. In particular,

when Iw(d1) < I < I (see Figure 1.1), the introduction of aquaculture prevents the collapse

of the wild fishery. Finally, the introduction of aquaculture is always beneficial to consumers,

whatever their preferences and the efficiency of the aquaculture technology. When biological

interactions are moderate, aquaculture is really an option to increase food security.

When the predator effect is strong (d1 > d1) the results are quite different. In this case, the

effects of biological interactions dominate those of market interactions. Aquaculture worsens

the pressure on the wild edible fish stock and leads to a decrease of total wild fish stocks in

the long run. Indeed, as the introduction of aquaculture reduces the stock of feed fish in the

long run, less food is left for the predatory species which growth rate decreases. Then, even

if species 1 is less harvested, its long run stock decreases because of the shortage of its prey.

For the same reason, the introduction of aquaculture, requiring the exploitation of low value

fisheries that were not exploited before, has ambiguous effects on total fish consumption and

utility. In particular, when I < I < Iw(d1) (see Figure 1.1), introducing aquaculture may

lead to a decrease in welfare, and even to the instability of the system and the collapse of

both fish stocks, which would have survived absent aquaculture.

We illustrate the previous results in the case of a strong predatory effect by numerical

simulations, performed with the value of parameters in Table 1.1, except that d1 = 0.02 > d1.

Figure 1.2 shows the catch of edible fish, the total catch and utility as functions of the revenue

I.

1.5.4 Improving the efficiency of aquaculture

The efficiency of the aquaculture technology is traduced by parameter k > 0, which inter-

venes in the production function of the aquaculture sector, as it conveys the sector efficiency
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Wild edible catch Total catch Consumer utility

Figure 1.2: Introducing aquaculture may reduce the long run wild edible fish catch, total

catch and welfare (dashed curves: absent aquaculture; plain curves: with aquaculture)

in transforming low-value feed fish into high-value edible fish (see (1.20)). As explained ex-

plained earlier, k may be interpreted as the farmed species diet. When k is high the quantity

of feed fish required to produce farmed fish is low. This implies that the species farmed is

rather omnivorous or herbivorous. Conversely, when k is low the farmed species is a car-

nivorous one. According to this interpretation, the species of the farmed fish varies with

k.

We study the influence of k on the steady state variables, when the wild fishery and

aquaculture coexist. To do so, we perform a comparative statics exercise using system (1.31)–

(1.35), in the neighborhood of the interior steady state. As mentioned earlier, the hypothesis

of biological interactions between edible and feed fish stocks is not always effective. Here, we

only consider the case where biological interactions are absent (which we can extend to the

case where they are moderate), in order to focus on the role of technology.

Proposition 3 Absent biological interactions,

(i) Long term stocks, efforts and prices in the edible fish sector and the feed fish sector

evolve in opposite directions according to k. As for catches, their evolution depends on the

initial state of the fisheries (heavily exploited or not).

(ii) When the wild fish stocks are heavily exploited in the initial steady state, the edible

fish stock and catch rise with k at the expense of the feed fish stock and catch, while the effort

and the price decrease in the first sector and increase in the second one. The production

of farmed fish increases, and its price decreases. As the consumptions of the two edible fish
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increase, consumer utility increases as well.

Proof. See Appendix D1. ✷

The first part of the proposition states that a technological shock in the aquaculture sector

will have opposite effects on the two wild fisheries, as far as stocks, efforts and prices are

concerned. Intuitively, we could expect that as the aquaculture sector becomes more efficient,

the production of farmed fish would increase, its price decrease, and that a substitution

effect would induce a decrease of the demand for wild fish, as farmed and wild fish are

strong substitutes. But wild fisheries are in open access, and thus not managed on a profit-

maximizing basis. Moreover, these fisheries may be heavily exploited, in the sense that stocks

are under half their carrying capacity. So the previous intuition, valid for standard man-made

goods, may prove very wrong in our case. In fact, we cannot even be sure that farmed fish

production will increase and wild fish production decrease in response to a technological

shock to aquaculture efficiency.

In the second part of the proposition, we consider an initial steady state where both

stocks are heavily exploited, in the sense that they are . This assumption is convenient since

it allows us to obtain clear analytical results. It is also quite relevant, given the state of

world fisheries. In this case, the improvement of the aquaculture efficiency is favourable to

the edible fishery at the expense of the feed fishery. Effort decrease in the edible fishery

while it increases in the feed fishery. Indeed, fishing feed fish becomes more attractive, as

a same quantity may be transformed into more farmed fish. Production increases in the

edible fishery due to the smaller effort exerted by fishermen in a situation of initial biological

inefficiency. Aquaculture’s production also increases, in spite of the decrease of the catch of

feed fish, because of the improvement of the aquaculture efficiency. Utility increases as well.

1.6 Extension: Endogenous consumer tastes

We now endogeneize consumer tastes. We consider that the wild fish product is a highly

valued carnivorous species, while the farmed fish can be of any type between a carnivorous

species analogous to the wild one to an omnivorous species. Our assumption is that consumer
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preferences depend on this attribute. A change in k may affect either the weight of the farmed

species in the utility function, or the elasticity of substitution between wild and farmed fish,

or both.

In equation (1.1), α is the weight of farmed fish in preferences, and σ is the elasticity

of substitution between the wild and the farmed species. We suppose that either α or σ

may be a function of k. In the first case, α(k) ∈ ]0, 0.5] , meaning that consumers never

weight farmed fish more than wild fish, and α�(k) < 0, meaning that among farmed species

consumers prefer the carnivorous ones. In the second case, we suppose that the lower k

the higher σ, meaning that consumers perceive as highly substitutable wild and farmed fish

having the same carnivorous diet, but that as the properties of the flesh differs, wild and

farmed fish become less substitutable.

The following proposition sums up the consequences of these assumptions.

Proposition 4 Absent biological interactions, and when consumer preferences depend on k,

the effects of an improvement in aquaculture efficiency stated in Proposition 3 are completely

reversed, if the weight affected to farmed fish or the elasticity of substitution between wild and

farmed fish becomes sufficiently low as the farmed fish becomes less carnivorous.

Proof. See Appendix D2. ✷

Absent any effect of k on consumer preferences, the weight affected by consumers to each

product –wild and farmed– in utility is invariant, and the elasticity of substitution between

wild and farmed fish as well. The effect of k is simply a productivity effect: the higher

k, the more efficient the aquaculture technology. Now, when consumer preferences depend

on k (through the weight α or the elasticity of substitution σ), a preference effect adds to

the productivity effect: increasing k means not only having a more efficient aquaculture

technology but also breeding fish that consumers like less, or that are less substitutable to

wild fish. As k increases, the preference effect may progressively dominate the productivity

effect. Thereby, when the farmed species is very carnivorous and the wild fish stocks are

heavily exploited, increasing k i.e. choosing to breed a less carnivorous species benefits

to the edible fish stock, at the expense of the other stock. Indeed, increasing the substitute
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availability releases pressure on the wild edible fish stock. But increasing k too much reverses

the process.

As a consequence, our conjecture is that there exists a utility-maximizing farmed species

type. Consumers being sensitive to the properties of the flesh consumed, it is no use for the

aquaculture sector of producing a less carnivorous species, else consumers will be trapped

between a highly valued wild product, whose consumption is limited, and a cheap farmed

fish they dislike.

We verify numerically that this situation may actually happen, in the case where the

weight affected to the farmed fish in the utility function depends on k. We use the following

specification:

α(k) =
0.5αmin

αmin + (0.5− αmin)k
, 0 < αmin < 0.5 (1.37)

with αmin the minimum weight affected to the farmed fish. Numerical simulations are per-

formed with the same parameters as in Table 1.1, except that d1 = d3 = 0 and αmin < 0.05.

Figure 1.3 shows the two wild fish stocks and utility as functions of k.

Edible fish stock Feed fish stock Consumer utility

Figure 1.3: Long run effects of an improvement of aquaculture’s efficiency, absent biolog-

ical interactions (dashed curves: productivity effect alone; plain curves: productivity and

preference effects)

1.7 Conclusion

Many hopes are placed on aquaculture. This production technology is expected to bring more

food security by increasing or at least maintaining the current per capita level of fish protein
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given population growth, and to alleviate fishing pressure on wild edible fish stocks. This

article analyzes the impact of aquaculture on wild fish stocks and on consumer welfare. By

means of a two-species Lotka-Volterra model for biological interactions and a simple modeling

of the aquaculture technology, we provide some answers to these issues. We find that under

the condition of coexistence of aquaculture and the edible fishery, which relates to income,

the coupling of all three sectors yields a unique steady state. Nonetheless, while in absence

of biological interactions the equilibrium is always stable, it is not necessarily the case when

introducing species interdependencies. Indeed, stability is conditional on the intensity of

biological interactions and on the income level.

Actually, most of our results regarding the impact of aquaculture entry are conditional

on the degree of dependence of the wild edible species on the feed fish stock. When this

interaction is moderate, by increasing global fish supply, aquaculture decreases the price of

the wild product, thus, fishing effort decreases allowing the edible stock to recover despite

the fact that aquaculture exploits the prey species as a production input. In fact, there even

exists a range of income levels for which the introduction of aquaculture prevents the wild

edible species of collapsing. On the other hand, the feed fish stock is always lower as one

can expect. Otherwise, it is not obvious analytically whether total wild fish consumption

increases in all event, yet, this low interactions scenario benefits to consumers whose utility

is always increased.

In the case where biological interactions are high, aquaculture leads to a decline in the

feed fish stock and the wild edible fish stock, a decrease in wild edible fish supply and an

increase in its price. Indeed, when assuming a strong dependence of the predator species on

the feed fish population, aquaculture threatens the edible species by altering its food web.

We find that for high levels of income, aquaculture actually provokes the collapse of the

wild edible fishery though it would have remain alone. The net effect of farming on total

fish consumption and welfare is ambiguous. We show through numerical simulations that

the introduction of aquaculture may decrease utility. Such result can be explained by the

fact that the fisheries are supposed to be in open access, meaning that the exploitation of

resources is economically inefficient. In this situation, the introduction of aquaculture adds

an extra inefficiency which may lead to a decreased utility, in spite of the fact that more
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consumption options are offered to consumers.

Aquaculture is often criticized on the basis that it is a very inefficient production process.

FIFO ratios remain high, even if they have dramatically decreased over the last 15 years, and

it seems desirable to lower them further to produce more from a limited input. We study the

effects of efficiency gains in the aquaculture sector, and show that when wild fish stocks are

initially heavily exploited, they lead to an increase in the production of wild and farmed fish

and, consequently, to an increase in utility. Nevertheless, IFFO believes that aquaculture can

continue to decrease its use of fish oil but that there are physiological limits preventing from

going below a certain limit depending on the species. According to the OECD a potential

answer to the limited supply of feed would be to split the salmon market for instance into a

cheap market fed with reduced fish oil and an expensive one fed with real Omega 3 fish oil.

Differentiating supply through two lines of quality could better match consumers willingness

to pay for food fish and better ensure the prosperity of the industry. Another option to

enhance the sustainability of aquaculture would be to direct consumer preferences towards

less carnivorous species by means of marketing strategies or educative campaigns.

Lastly, we emphasize the influence of consumer preferences. Following empirical evidence,

we suppose that preferences are carnivorous species-biased, and we link this characteristics

of preferences to the efficiency of aquaculture: the more efficient aquaculture is, the less

carnivorous is farmed fish and the less consumers like it, or the less substituable to wild fish

it is. This leads to a trade-off in the choice of the farmed species, and we suspect that there

will exist a farmed species diet that maximizes utility. Indeed, it realizes the optimal balance

between quantity available and expected flesh properties.

Beyond the limited supply of feed, other factors are expected to slow aquaculture growth

such as land scarcity, stricter regulations or consumer awareness of the sector ecological

impacts. Consumer concern for environment or health may affect their behaviour towards

farmed products. More evidence on how consumers perceive farmed fish could shade light on

the perspectives of food fish production processes.
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l’aquaculture−Données statistiques 2011.

[12] Gantmacher, F.R. 1959. The Theory of Matrices. Chelsea Publishing Company, New

York.

74



[13] Grainger, R. J. R. and Garcia, S. M. 1996. Chronicles of marine fishery landings: Trend

analysis and fisheries potential. FAO Fisheries Technical Paper nÂ°359.
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Appendix A

A.1 Proof of Proposition 1, (i) and (iii)

Plugging the expressions of stationary stocks and efforts given by (1.31)–(1.34) into (1.35)

yields:

q1 (γq3)
−γ

k
�

α
1−α

� σ
σ−1

�
I

c

�1−γ
�

�A
1− �A

� 1

σ−1

�A b3
b1b3 + d1d3

�
x1 + y1 �A

�
=

�
− �A d3

b1b3 + d1d3

�
x3 + y3 �A

��γ

(A.1)

Figures A.1 and A.2 portray the two members of this equation, in the different cases that

may occur, depending on the value of the parameters. The left-hand side member is denoted

f( �A) and the right-hand side member g( �A).

Since d3 > 0, x3 < 0 and y3 > 0 (see (1.31) and (1.33)), the condition of existence of

g( �A) is x3 + y3 �A ≤ 0 i.e. �A ≤ −x3

y3
. g( �A) is then a positive inverted U-shaped function, with

g(0) = g
�
−x3

y3

�
= 0, and, since γ < 1 and −d3x3 > 0, g�(0) = +∞.

As for the f(.) function, we have

f �( �A) = q1 (γq3)
−γ

k
�

α
1−α

� σ
σ−1

�
I

c

�1−γ
�

�A
1− �A

� 1

σ−1

b3
b1b3 + d1d3

�
1

σ − 1

1

1− �A

�
x1 + y1 �A

�
+ x1 + 2y1 �A

�

hence

lim
�A→0

f �( �A) = 0+ if x1 > 0, 0− if x1 < 0

lim
�A→1

f �( �A) = +∞ if x1 + y1 > 0, −∞ if x1 + y1 < 0
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case 1 case 3, −x1

y1
< −x3

y3

case 3, −x1

y1
> −x3

y3
case 2

Figure A.1: Existence and uniqueness of an interior solution when d1 < d1

• Case 1. When x1 > 0 and x1+ y1 > 0, f( �A) is a positive function, increasing from 0 to

+∞ when �A increases from 0 to 1. The solution to equation f( �A) = g( �A) exists and is

unique.

• Case 2. When x1 < 0 and x1+y1 < 0, f( �A) is a negative function, decreasing from 0 to

−∞ when �A increases from 0 to 1. There exists no solution to equation f( �A) = g( �A).

• Case 3. When x1 < 0 and x1 + y1 > 0, which requires y1 > 0, f( �A) is first decreasing
and then increasing, has two roots 0 and −x1

y1
> 0, and tends to +∞ when �A tends to 1.

In this case, the solution to equation f( �A) = g( �A) exists and is unique iff −x1

y1
≤ −x3

y3
,

and there is no solution if −x1

y1
> −x3

y3
. Notice that when −x1

y1
� −x3

y3
, �A � −x3

y3
and

�X1, �X3 → 0.

• Case 4. When x1 > 0 and x1 + y1 < 0, which requires y1 < 0, f( �A) is first increasing
and then decreasing, has two roots 0 and −x1

y1
> 0, and tends to −∞ when �A tends to

1. In this case, there may exist two, one or no solution to equation f( �A) = g( �A). When
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case 1 case 4, −x1

y1
< −x3

y3
case 4, −x1

y1
> −x3

y3
, I < I

case 4, −x1

y1
> −x3

y3
, I = I case 4, −x1

y1
> −x3

y3
, I > I case 2

Figure A.2: Existence and uniqueness of an interior solution when d1 > d1

−x1

y1
> −x3

y3
the solution is unique. When −x1

y1
� −x3

y3
there are 2 solutions, a strictly

positive one ( �X1, �X3 > 0) and a second one characterized by �X1, �X3 → 0.

We have

x1 = a1 +
a3d1
b3

− q1
I

c

x1 + y1 = a1 +
a3d1
b3

−
d1
b3
γq3

I

c

x1

y1
−

x3

y3
=

b1b3 + d1d3
b3d3y1y3

q1γq3
I

c

�
a1
q1

+
a3
γq3

−
I

c

�

Notice that x1

y1
− x3

y3
has the same sign as 1

y1

�
a1
q1

+ a3
γq3

− I
c

�
.

Define d1 = b3
q1
γq3

. Simple computations based on the previous observations allow us to

obtain the results summarized below and portrayed on Figure A.6:
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✲ I
c

✲ I
c

x1 > 0
x1 + y1 > 0

case 1

x1 > 0
x1 + y1 < 0

case 4 case 4

x1 < 0
x1 + y1 < 0

case 2

x1 > 0
x1 + y1 > 0

case 1

x1 < 0
x1 + y1 > 0

case 3 case 3

x1 < 0
x1 + y1 < 0

case 2

d1
d1

1
q1

�
a1 +

a3d1
b3

�
a1
q1

+ a3
γq3

1
q1

�
a1 +

a3d1
b3

�

1
q1

�
a1 +

a3d1
b3

�
a1
q1

+ a3
γq3

d1
d1

1
q1

�
a1 +

a3d1
b3

�

Case d1 < d1

Case d1 > d1

✲

✻

case 1
unique interior solution

case 1
unique interior solution

case 3
unique interior solution

case 3

no interior solution

case 4
unique interior solution

case 4
2, 1 or no interior solution

case 2

no interior solution

case 2

no interior solution

I
c

d1

1
q1

�
a1 + a3

d1
b3

�

1
γq3

b3
d1

�
a1 + a3

d1
b3

�

a1
q1

+ a3
γq3

a3
γq3

a1
q1

d̄1 = b3
q1
γq3

Figure A.6: Interior solutions

This proves points (i) and (iii) of Proposition 1.
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A.2 Stability

A.2.1 No fishing

The linearization of the dynamic system (1.7)–(1.8) around a steady state yields the following

Jacobian matrix:

�J =


 a1 − 2b1 �X1 + d1 �X3 d1 �X1

−d3 �X3 a3 − 2b3 �X3 − d3 �X1




It immediately appears that steady states 1 and 2 are unstable: the eigenvalues evaluated at

these steady states are respectively a1 > 0, a3 > 0 and a1 +
a3d1
b3

> 0, −a3 < 0. As for steady

state 3, the eigenvalues are −a1 < 0, a3 −
a1d3
b1

. Hence steady state 3 is asymptotically stable

iff a3 −
a1d3
b1

< 0 ⇐⇒ a1
b1

> a3
d3
. Notice that this condition is the opposite of condition (1.9) of

existence of steady state 4. Finally, for steady state 4 we have:

det �J = b1b3 + d1d3 > 0

tr �J = −b1 − b3 < 0

Therefore the two roots of the characteristic equation are either real and negative or complex

with a negative real part, depending on the sign of the discriminant, that reads: (b1 − b3)
2 −

4d1d3. Steady state 4 is a stable node in the first case, a stable focus in the second one.

Notice that the first case occurs when biological interactions are mild (d1d3 small), and vice

versa.

A.2.2 Capture fishery alone

The Jacobian matrix of the dynamic system (1.15) linearized around a steady state is:

J∗ =




∂F1(X1,X3)
∂X1

���
X∗

1
,X∗

3

− q1E
∗

1 −q1X
∗

1
∂F1(X1,X3)

∂X3

���
X∗

1
,X∗

3

0 −βc 0

∂F3(X1,X3)
∂X1

���
X∗

1
,X∗

3

0 ∂F3(X1,X3)
∂X3

���
X∗

1
,X∗

3




=




a1 − 2b1X
∗

1 + d1X
∗

3 − q1E
∗

1 −q1X
∗

1 d1X
∗

1

0 −βc 0

−d3X
∗

3 0 a3 − 2b3X
∗

3 − d3X
∗

1
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As it is the case without human intervention, steady states 1 and 2, characterized by

the extinction of both wild species or the extinction of species 1, the predatory edible wild

fish, are unstable: the eigenvalues evaluated at these steady states are respectively −βc < 0,

a1 > 0, a3 > 0 (steady state 1 is globally unstable) and −βc < 0, a1 +
a3d1
b3

> 0, −a3 < 0

(steady state 2 is a saddle point). As for steady state 3, characterized by the extinction of

species 3, the eigenvalues are −βc < 0, −a1 + q1
I
c
< 0, a3 −

d3
b1

�
a1 − q1

I
c

�
> 0 according

to condition (1.9). Hence steady state 3 is also unstable. Finally, for steady state 4 the

characteristic equation reads:

(−βc− λ)
�
λ2 + (b1X

∗

1 + b3X
∗

3

�
λ+ (b1b3 + d1d3)X

∗

1X
∗

3 ) = 0

It admits 3 roots: −βc < 0 and are 2 other roots, either real and negative or complex with a

negative real part, depending on the sign of the discriminant, that reads: (b1X
∗

1 − b3X
∗

3 )
2 −

4d1d3X
∗

1X
∗

3 . Hence steady state 4 is asymptotically stable, and is a stable node in the first

case, a stable focus in the second one.

A.2.3 Capture fishery and aquaculture: proof of Proposition 1,

(ii)

The linearization of the dynamic system (1.30) in the neighborhood of the steady state yields

the following Jacobian matrix:

J =




∂F1(X1,X3)
∂X1

���
�X1, �X3

− q1 �E1 −q1 �X1
∂F1(X1,X3)

∂X3

���
�X1, �X3

0

a21 a22 − βc −a23 −a24
∂F3(X1,X3)

∂X1

���
�X1, �X3

0 ∂F3(X1,X3)
∂X3

���
�X1, �X3

− q3 �E3 −q3 �X3

−a21 −a22 a23 a24 − βc




with 



a21 = βI σ−1
σ

�A(1− �A)
�X1

a22 = βI σ−1
σ

�A(1− �A)
�E1

= βcσ−1
σ

�A
a23 = βI σ−1

σ
γ

�A(1− �A)
�X3

a24 = βI σ−1
σ
γ

�A(1− �A)
�E3

= βcσ−1
σ
(1− �A)
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and

∂F1(X1, X3)

∂X1

����
�X1, �X3

− q1 �E1 =
∂F1(X1, X3)

∂X1

����
�X1, �X3

−
F1( �X1, �X3)

�X1

= −b1 �X1

∂F1(X1, X3)

∂X3

����
�X1, �X3

= d1 �X1

∂F3(X1, X3)

∂X1

����
�X1, �X3

= −d3 �X3

∂F3(X1, X3)

∂X3

����
�X1, �X3

− q3 �E3 =
∂F3(X1, X3)

∂X3

����
�X1, �X3

−
F3( �X1, �X3)

�X3

= −b3 �X3

Tedious computations show that the characteristic polynomial reads:

P (λ) = (βc+ λ)Q(λ)

with

Q(λ) = µ3λ
3 + µ2λ

2 + µ1λ+ µ0

and




µ3 = 1

µ2 =
βc
σ
+ b1 �X1 + b3 �X3

µ1 =
βc
σ

�
b1 �X1 + b3 �X3

�
+ (b1b3 + d1d3) �X1

�X3 +
σ−1
σ
βI �A(1− �A) (q1 + γq3)

µ0 =
βc
σ
(b1b3 + d1d3) �X1

�X3 +
σ−1
σ
βI �A(1− �A)

�
b1γq3 �X1 + b3q1 �X3 + d3γq1 �X1 − d1q3 �X3

�

P (λ) admits one negative real root equal to −βc, plus the 3 roots of Q(λ). We apply

the Routh-Hurwitz criterion to Q(λ). Clearly, µ3 > 0, µ2 > 0 and µ1 > 0. The sign of µ0 is

ambiguous. Besides, the sign of µ2µ1 − µ3µ0 is also ambiguous:

µ2µ1 − µ3µ0 =

�
βc

σ
+ b1 �X1 + b3 �X3

��
βc

σ

�
b1 �X1 + b3 �X3

�
+ (b1b3 + d1d3) �X1

�X3 +
σ − 1

σ
βI �A(1− �A) (q1 + γ

−
βc

σ
(b1b3 + d1d3) �X1

�X3 −
σ − 1

σ
βI �A(1− �A)

�
b1γq3 �X1 + b3q1 �X3 + d3γq1 �X1 − d1q3 �X3

�

=
�
b1 �X1 + b3 �X3

���
βc

σ

�2

+
βc

σ

�
b1 �X1 + b3 �X3

�
+ (b1b3 + d1d3) �X1

�X3

�

+
σ − 1

σ
βI �A(1− �A)

�
βc

σ
(q1 + γq3) + q1 (b1 − γd3) �X1 + q3(d1 + γb3) �X3

�

Nevertheless, we can obtain the following results.
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• Absent biological interactions (d1 = d3 = 0) we have µ0 > 0 and µ2µ1 − µ3µ0 > 0. In

this case, the linearized dynamic system is stable (see Gantmacher, 1959). This remains

true as long as biological interactions are not too strong. More precisely, a sufficient

condition for µ0 > 0 is d1 ≤ b3
q1
q3
, and a sufficient condition for µ2µ1 − µ3µ0 > 0 is

d3 ≤
b1
γ
.

• When the revenue spent on fish I tends to 0, �X1 → �X1, �X3 → �X3, µ0 →
βc
σ
(b1b3 + d1d3) �X1

�X3 >

0 and µ2µ1−µ3µ0 →
�
b1 �X1 + b3 �X3

� ��
βc
σ

�2
+ βc

σ

�
b1 �X1 + b3 �X3

�
+ (b1b3 + d1d3) �X1

�X3

�
>

0 and the system is stable.

A.3 Proof of Proposition 2

(i) Eliminating �A between equations (1.32) and (1.34) yields a relationship between the two

long run effort levels:

�E1 +
�E3

γ
=

I

c

Remember that absent aquaculture the optimal level of effort in the capture fishery is E∗

1 =

I/c. Then obviously �E1 + �E3 < E∗

1 .

(ii) Now, comparing �X1 (equation (1.31)) to the stock of the baseline case without aqua-

culture X∗

1 (equation (1.16)), we get:

�X1 = X∗

1 +
b3

b1b3 + d1d3
y1 �A

Hence

�X1 > X∗

1 ⇐⇒ y1 > 0 ⇐⇒ d1 < d1 = b3
q1
γq3

The steady state expressions of the wild edible fish price are P ∗

1 = c/(q1X
∗

1 ) and �P1 =

c/(q1 �X1), hence the result. Concerning the wild feed fish stock, comparing �X3 (equation

(1.33)) and X∗

3 (equation (1.17)) yields:

�X3 = X∗

3 −
d3

b1b3 + d1d3
y3 �A < X∗

3 since d3 > 0 and y3 > 0

(iii) When aquaculture lowers the wild edible fish stock (d1 > d1), as �E1 < E∗

1 , the supply

of wild edible fish is necessarily lower: �Y1 < Y ∗

1 . It may even be the case that the introduction
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of aquaculture causes the collapse of the wild fish stock in the long run: when I < I < Iw(d1)

and no interior steady state exists or there exist two unstable interior steady state, the wild

fishery alone would have been sustainable.

Now, when aquaculture leads to an increased wild edible stock (d1 < d1), its impact

on wild fish supply is ambiguous, except in the particular case where the introduction of

aquaculture prevents the edible fish stock from collapsing, that is when Iw(d1) < I < I.

Likewise, when aquaculture increases wild fish supply, it obviously increases also total fish

supply, whereas when aquaculture decreases wild fish supply the net effect of aquaculture on

total fish supply is ambiguous.

(iv) Turning to the comparison of utilities, we obtain:

�
U(�Y1, �Y2)

U(Y ∗

1 , 0)

�1− 1

σ

=

�
�Y1

Y ∗

1

�1− 1

σ


1 +

α(k)

1− α(k)

�
�Y2

�Y1

�1− 1

σ




=

�
�Y1

Y ∗

1

�1− 1

σ
1

1− �A
=

�
�E1

�X1

E∗

1X
∗

1

�1− 1

σ
1

1− �A
=

�
�X1

X∗

1

�1− 1

σ �
1− �A

�
−

1

σ

U(�Y1, �Y2) > U(Y ∗

1 , 0) ⇐⇒

�
�X1

X∗

1

�1− 1

σ

>
�
1− �A

� 1

σ

⇐⇒
�X1

X∗

1

>
�
1− �A

� 1

σ−1

This condition is always satisfied when �X1 ≥ X∗

1 i.e. when d1 ≤ d1, which is a sufficient

condition for aquaculture to increase welfare. We exhibit numerically a case where the

introduction of aquaculture leads to a decrease of utility.

A.4 Proof of Propositions 3 and 4

A.4.1 Proof of Proposition 3

From system (1.31)–(1.34) (with d1 = d3 = 0) we get for stocks and efforts:

d �X1 =
q1
b1

I
c
d �A, d �E1 = − I

c
d �A

d �X3 = −γq3
b3

I
c
d �A, d �E3 = γ I

c
d �A

Hence d �X1 and d �X3 are always of opposite signs, as well as d �E1 and d �E3.
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As for catches and prices, we obtain:

d�Y1

�Y1

= d �E1

�E1

+ d �X1

�X1

=
�

a1/b1
�X1

− 2
�

d �A

1− �A
, d �P1

�P1

= − d �A

1− �A
− d�Y1

�Y1

=
�
1− a1/b1

�X1

�
d �A

1− �A

d�Y3

�Y3

= d �E3

�E3

+ d �X3

�X3

=
�
2− a3/b3

�X3

�
d �A
�A
, d �P3

�P3

= d �A
�A
− d�Y3

�Y3

=
�

a3/b3
�X3

− 1
�

d �A
�A

d�Y2

�Y2

= dk
k
+ γ d�Y3

�Y3

, d �P2

�P2

= d �A
�A
− d�Y2

�Y2

Absent biological interactions, a1/b1 (resp. a3/b3) is the carrying capacity of species 1

(resp. species 3). We thus have 1− a1/b1
�X1

< 0 and a3/b3
�X3

− 1 > 0 : d �P1 and d �P3 are always of

opposite signs. For catches, things depend on the initial value of the stock with respect to

half its carrying capacity. This proves (i).

We have expressed so far how our variables evolve according to a variation of �A, the
market interaction variable. We must now determine how �A itself evolves according to a

variation of k, the efficiency of aquaculture.

Equation (1.35) defining �A can be also written as:

�A
1− �A

=
α

1− α

�
�Y2

�Y1

�σ−1

σ

Totally differentiating this equation, we obtain:

d �A
�A
�
1− �A

� =
σ − 1

σ

�
d�Y2

�Y2

−
d�Y1

�Y1

�

from which we deduce:
d�Y2

�Y2

=
d �A

�A
�
1− �A

� +
σ

σ − 1

d�Y1

�Y1

As we have shown above that for �X1 ≤
a1/b1

2
, d�Y1 and d �A have the same sign, this equation

shows that it is also the case for d�Y2.

Finally, we can deduce from this equation, by replacing d�Y1 and d�Y2 d �A by their expression

as a function of d �A, that:
�

1

1− �A
−

σ − 1

σ

�
γ

�
2−

a3/b3
�X3

�
+

�A
1− �A

�
2−

a1/b1
�X1

���
d �A
�A

=
σ − 1

σ

dk

k

For �X1 ≤
a1/b1

2
and �X3 ≤

a3/b3
2

, the term between brackets on the left-hand side of this
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equation is unambiguously positive. Then d �A/dk > 0. It immediately follows that:

d �X1

dk
> 0, d �E1

dk
< 0, d �X3

dk
< 0, d �E3

dk
> 0

d�Y1

dk
> 0, d �P1

dk
< 0, d�Y3

dk
< 0, d �P3

dk
> 0

d�Y2

dk
> 0, d �P2

dk
< 0

This proves (ii).

A.4.2 Proof of Proposition 4

When preferences depend on k, either through the weight α of farmed fish in utility or through

the elasticity of substitution σ between wild and farmed fish, the previous equation becomes:

�
1

1− �A
−

σ − 1

σ

�
γ

�
2−

a3/b3
�X3

�
+

�A
1− �A

�
2−

a1/b1
�X1

���
d �A
�A

=

�
1−

1

σ(k)

�
1−

kσ�(k)

σ(k)

�
+

kα�(k)

α(k)(1− α(k

As α�(k) < 0 and σ�(k) < 0, it may be the case that the right-hand side of the above

equation is negative. More precisely, there may exist a threshold for the parameter k above

which d �A/dk changes sign.
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Chapter 2

Competition between farmed and wild

fish: the French sea bass and sea

bream markets

2.1 Introduction

Worldwide, an important share of marine fish stocks are under threat. Worm et al. (2009)

report that 63% of assessed fish stocks worldwide require rebuilding. FAO (2012) reports

that about 57.4% of world marine fish stocks are estimated as fully exploited and 29.9% as

overexploited. While marine fish production is marked by a small decline since the early

1990s, aquaculture has been the fastest growing food industry since the early 1980s, with an

annual average growth of 8.8% (FAO, 2012). In 2010, aquaculture provided nearly 50% of

global seafood1 production. “With the increasing contribution from aquaculture to seafood

supply the interactions between fisheries and aquaculture are expected to become even more

important and therefore deserve exhaustive investigations from socio-economic and biological

perspectives”” (Natale et al., 2013, p.205). These interactions are especially important at

the food market where the competition between wild and farmed fish species affects fish

1To be understood as finfish and shellfish production.
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price dynamics.2 The international trade in fish products also plays a significant role in

the evolution of fish prices, given that fish and fishery products are among the most traded

food commodities worldwide (World Trade Organization, WTO3). Among agricultural, food,

animal and fish products, fish has been one of the fastest growing category between 1990 and

2000, namely an increase of 52% in trade value (Anderson, 2003). These observations led

us to investigate whether the expansion of the global supply of farmed fish has affected the

price of certain wild species consumed in France.

The information on market interactions of farmed and wild fish give insights on the extent

to which farmed fish prices are likely to affect wild fish prices. These outcomes depend on how

consumers perceive wild versus farmed products, but also on the relative cost competitiveness

and production quantities of each sector. For instance, farmed fish species regarded as low-

value products relatively to their wild counterpart might lead to segmented markets, where

wild products occupy the high-value segment. This option entails a maintained pressure on

wild edible resources. On the other hand, if a farmed fish is at least as much valued than

its wild counterpart, the prosperity of the capture fishery sector will rely on its relative price

competitiveness.

At the same time, the valuation of farmed fish is likely to influence the technological

evolution of the aquaculture sector and affect the manner in which wild fish resources are

managed. Indeed, the aquaculture sector strives to find solutions to the limited availability

fish meal and fish oil4, which are required inputs to sustain the flesh properties of several

farmed species. At date, it does not seem to exist a protein source displaying required

properties and profitable at the same time. However, consumers depreciating the modification

of fish diet and the subsequent change in flesh nutritive quality, gives incentives to the

aquaculture industry to work out a suitable substitute to natural fish populations. The

2The interactions between fisheries and aquaculture also exist at the biological level as marine fisheries

provide inputs to aquaculture production, that is fish meal and fish oil. The study of this type of interactions

is out of the scope of our study.
3http://www.wto.org/english/res e/reser e/ersd201003 e.htm.
4Fish meal and fish oil are made from small oily fish belonging to low trophic levels. Farmers purchase

fish meal and fish oil in the form of compounded feed, which are pellets providing nutrients and different

supplements to farmed fish.
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aquaculture supply may also split into two branch: a high quality fish supply fed, with fish

meal and fish oil, and a lower one, relying on cheaper and nutritionally poorer feed. Besides,

if the willingness of consumers to pay for quality farmed fish is high, the management of

fisheries resources used for feed, and that of species biologically depending on them, might

be enhanced or revised worldwide. Lastly, the public response to farming practices and their

environmental impact may also orientate the development of this production sector.

In short, the substitutability between farmed and wild fish is likely play a role in the future

development of the structure of fish markets and on the production technologies of seafood.

It this respect, more evidence on how consumers perceive fish from aquaculture is required,

as facts and literature are not unanimous about the behavior of consumers regarding wild

versus farmed products. Since the aquaculture takes place in confined area (ponds, pen nets,

cages, raceways, ranching, recirculating systems, etc.), this production technology displays

a high degree of control over the attributes of the grown fish. Consumer preferences may

determine exact specification for color, size, texture, fat content or other parameters making

the delivered product more convenient (Asche et al., 2001). Along the same lines, Knapp

et al. (2007) argue that farming has changed the timing of the supply which is no longer

necessarily seasonal and that the increased availability of farmed salmon has lead to increased

demand. Sustainability concerns may represent another reason for a shift of preference from

wild fish to farmed fish. On the other hand, wild products are perceived as healthier, at times,

more tasty, and aquaculture raises environmental concerns which provide some competitive

advantages to wild products (Natale et al., 2013).

A consumer perception study conducted in 2007 by the firm Via Aqua (for the French

interprofessional office of marine and aquaculture products (Ofimer) and the French inter-

professional comity of aquaculture products (Cipa)) joins some of these conclusions. While

5% of consumers favor farmed products, 50% are rather in favor of wild products, and 45%

report they are indifferent. Positive aspects of farmed products mentioned by respondents

are resource preservation, products freshness, availability and aspect. By contrast, consumers

are rather sceptical regarding the healthiness of feeds, the species well-being and genuineness

(FranceAgriMer, 2011).

Our aim is to examine if the production process of fish is a significant attribute in con-
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sumers fish consumption choice, compared to the species type or other product attributes. If

consumers operate a vertical differentiation between farmed and wild products, we question

what is the ranking. To do so, we test for market integration between farmed and wild

products in France, focusing on the case of sea bass and sea bream species, respectively.

Market integration is an indicator that explains how much different markets are related to

each other. Our empirical approach relies on the Law of One price (LOP) and the concept of

cointegration which consists in testing for price parity between wild and farmed fish products.

Our data set consists of domestic (monthly) price series, provided by Kantar WorldPanel5,

for a number of fish species consumed by households from 2007 to 2012 in France.

The importance of the sea bass and sea bream markets at European level, makes these

species study subjects of interest. In Europe, sea bass and sea bream taken together represent

the largest production of farmed species, after Atlantic salmon (FEAP, 2012). Aquaculture

is in fact the main production method of these two species. The EU provides two thirds

of their world aquaculture production, respectively, followed by Egypt in the case of farmed

sea bass, and by Turkey in the case of sea bream. For these two species, intra-EU trade is

substantial, Greece being the major exporter of sea bass towards Italy, the United Kingdom

and France, and of sea bream towards Italy, Portugal and France. Except for sea bream

imports from Turkey, trade between the EU and third countries remains limited.

Eventhough most sea bass comes from aquaculture, capture fisheries account for more

than 10 % of the total sea bass production worldwide. The EU has a major role in that it

provides 83% of the world captures of sea bass — France undertaking 60% of this capture —

and 32% of the world captures of sea bream — France and Spain together undertaking 74%

of this capture (EC, Maritime Affairs and Fisheries, 2012).

France is of particular interest to analyse market interactions between farmed and wild

sea bass and sea bream products, respectively. As mentioned above, for both species, it is the

third intra-EU importer of farmed fish, while the extent of domestic catches enables national

consumption of wild and farmed fish to be sustained for both species. As detailed further

on, in recent years, about 50% of French consumption of sea bass was farmed while that of

sea bream was around 70%.

5Kantar WorldPanel: www.kantarworldpanel.com.
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Market interactions between fisheries and aquaculture have been investigated from a the-

oretical and empirical point of view. The findings of this research indicate that the effects of

aquaculture development on fish stock and welfare depend on the degree of substitution be-

tween wild and farmed species. Anderson (1985) shows that given a fishery under open access

and exploited beyond the maximum sustainable yield, the entry of aquaculture increases total

fish supply, and thus, reduces pressure on the wild fish stock through a lower fish consumer

price. Similarly, Ye and Beddington (1996) find positive social benefits of aquaculture entry,

but to a lesser extent when considering wild and farmed fish as imperfect substitutes with

positive cross-price elasticities. Valderrama and Anderson (2010) show how a limited-entry

fishery regulation successfully enables rents extraction relatively to open access, but then the

decrease in fish price resulting from the increased supply of farmed products dissipates these

rents.

There is a considerable amount of fish-specific and country-specific studies that question

which fish attributes influences consumers’ choice. Many concern salmon, and often use

the cointegration concept to analyze market integration between different species, different

geographic area, or to test whether consumer distinguish between fish products origin, form,

or production process (Gordon et al., 1993; Asche et al., 1999; Clayton and Gordon, 1999;

Asche, 2000; Jaffry et al). Focusing on the production process attribute, several studies

report a highly integrated market for wild and farmed salmon products (Asche et al., 2001;

Asche et al., 2005; Knapp et al., 2007). Regarding salmon origin, Asche and Sebulonsen,

(1998) find that that it does not seem to influence consumers choices to any extent in the

in France and the UK salmon markets. Regarding product from, Asche et al. (1997) use

an almost ideal demand system to estimate the demand for fresh Atlantic salmon, frozen

Atlantic salmon and frozen Pacific salmon in the European Union. All goods are found to

be substitutes, indicating one market for all three product forms.

Other studies focus on white fish6 markets. Nielsen (2005) finds evidence of a partially-

integrated European white fish market and a perfectly spatially integrated cod market. The

6White fishes are demersal fish with fins. Unlike oily fish, white fish contains oils only in their liver, rather

than in their gut, and can therefore be gutted as soon as they are caught, on board the ship. White fish have

dry and white flesh.
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empirical results provided by Asche et al. (2002) also confirm the existence of an integrated

EU white fish market. The existence of an integrated market was also demonstrated for some

other fish species (Nielsen et al., 2007; Norman-Lopez, 2009). Salmon does not in general

compete, however, with big volume whitefish species. The evidence on market integration

seems to indicate that “farmed species competes mainly with the same wild species (and

other species in the same segment), but not with other species”(Asche et al., 2001, p.311).

As concerns sea bass and sea bream, very little empirical analysis has been conducted

in the literature (Asche et al., 2001), despite of the considerable trade flow they generate in

the EU. To the best of our knowledge, there are only two studies which investigate market

integration between wild and farmed sea bass and sea bream, respectively. Asche and Steen

(1998) find that sea bass and sea bream “may compete with portion trout and several white

fish species” within the EU” (Asche et al., 2001, p. 311). Brigante and Lem (2001) found

no evidence of price link between farmed and wild species of sea bass and sea bream in the

Italian market. Unlike them, we find that in France, a partial market integration exists

between fresh whole wild and farmed sea bream, while this is not the case fresh for whole

sea bass.

The present chapter contributes to the literature on the measure of market interactions

between wild and farmed products on the sea bass and sea bream markets, respectively. We

examine the market interactions between wild and farmed products on the sea bass and sea

bream French markets, respectively. We also question how farmed and wild fish interact

across these species. Finally, we check whether the form of the product (whole versus cut)

influences on the outcomes of the market integration analysis. We carry out our empirical

analysis by means of a bivariate cointegration framework. We also conduct the test of LOP

for these fish species. The market integration of farmed and wild products should give insights

on the extent to which farmed product prices are likely to affect wild product prices, and in

turn, marine stock status of concerned wild species and fishermen activity. These outcomes

depend on how consumers perceive wild versus farmed products, but also on the relative cost

competitiveness and production quantities of each sector.

The remaining of the chapter is organized as follows. In the following section, we describe

the main characteristics of the French sea bass and sea bream markets. Section 3 presents
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the data set and descriptive statistics. Section 4 exposes our econometric methodology.

Section 5 provides the estimation results. Section 6 discuses the outcomes of our empirical

analysis. Finally, section 6 offers concluding remarks on the potential competition between

fresh farmed and wild products in the sea bass and sea bream French markets.

2.2 The sea bass and sea bream French markets

Sea bass is a demersal white fish which essentially originates from Eastern Atlantic, Mediter-

ranean Sea, and Black Sea in European markets. France, UK, Italy, Turkey and Egypt have

significant sea bass fisheries. Sea bream is also a demersal white fish found in the Atlantic

and Mediterranean, but commercial harvests are small.

Table 2.1 and 2.2 infers from trade flows, the yearly French consumption of sea bass

and sea bream, in volume, between 2008 and 2011. The figures displayed account for all

type/from of fish product (frozen, canned, filleted, whole, ect.) and all varieties of sea bass

and sea bream species. Over this time period, the average total French consumption of sea

bass is worth 10,157.6 tons against 13,017 tons for sea bream. It appears that French catches

of sea bass represented about 50.5% of national consumption, against 36.4% for sea bream.

In France aquaculture production is not expected to increase due to land ownership and

legal issues restricting availability of sites. Both species are increasingly supplied by aqua-

culture operations, mostly in the Mediterranean Sea. The rapid expansion of the production

of these species in the early 1990’s is driven by the rise of aquaculture in Turkey and Greece.

Juveniles are produced on an increasingly large scale in hatcheries, and availability is no

longer a constraint on the industry.

Although France is a much smaller market for bass and bream than Spain and Italy, as

domestic production is limited, any consumption rise has to be covered by imports (FAO

Globefish, 2009).

Within the fresh finfish household consumption — excluding the catering sector — in

2011, sea bass is the 7th most consumed species in value (63,547 ke7) and the 6th in volume

7Value of total household purchases of sea bass in France in 2011
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(4,563 tons8), while sea bream is 9th in value (51,145 ke) and 7th in volume (4,534 tons), the

two leading species in value and volume being salmon and cod. These latest figures combine

wild and farmed fish consumption.

Sea bass (in tons) 2008 2009 2010 2011

Wild production 3279 5566 6129 5535

Farmed production 4163 2877 2337 2452

Imports 4525.3 4906.5 5507.1 5626.2

Exports -3869.7 -2974.3 -2831.1 -2597.5

Consumption 8097.6 10375.2 11142 11015.7

Data source: Eurostat.

Table 2.1: French national consumption of sea bass in tons

Sea bream (in tons) 2008 2009 2010 2011

Wild production 2795 5285 5725 5126

Farmed production 1182 1278 1239 1412

Imports 8340.2 9474.5 9055.4 8461.9

Exports -1784 -1973.6 -1925.8 -1622.2

Consumption 10533.2 14063.9 14093.6 13377.7

Data source: Eurostat.

Table 2.2: French national consumption of sea bream in tons

According to these figures and to FranceAgriMer (2011), about9 50% of French consump-

tion of sea bass is farmed while that of sea bream is around 70%. There actually exists

several varieties of sea bass and sea bream species. The scientific name of the only farmed

sea bass species is Dicentrarchus labrax, while that for the main farmed sea bream species

is Sparus aurata. Otherwise, figures for wild production in Table 2.1 and 2.2 account for all

other harvested varieties labeled as sea bass or sea bream in the fish market.

8Volume of total household purchases of sea bass in France in 2011
9It was not possible to obtain the share of wild and farmed fish within the national imports and export

figures of each species, though we presume they essentially consist of farmed fish.
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2.3 The data set

Our data set is provided by Kantar WorldPanel10. It reports the aggregated monthly home

consumption of fresh fish by a sample of French households, so as aggregated prices. The time

series data cover the period January 2007 to September 2012 (69 points). The appointment

fresh products includes products sold in large retailers, supermarkets, fishmongers, market-

places and groceries. We do not study other product forms (i.e. transformed products,

frozen or canned fish consumption) as Kantar WorldPanel cannot provide the distinction

farmed/wild for these product types.

Fresh products constitute 33.3% of household seafood expenditures (FranceAgriMer, 2011).

Since farmed fish are mostly sold in fresh products forms (EC, Maritime Affairs and Fish-

eries, 2012), this data set represents a good base for investigating market integration between

farmed and wild fish species. Moreover, commercial catches of sea bass and sea bream, which

are the focus species of our study, are mainly sold fresh as well.

For both species, sea bass and sea bream, we have information on fish-specific quantity

consumed (in kg), fish-specific price (euros/kg), production mode (farmed/wild) and form

(whole/cut).

To be more specific, the scientific names of the sea bass and sea bream varieties in-

cluded in our study are given below, so as their main capture zones (source: FishBase). The

sea bass species type we address are Dicentrarchus labrax (Eastern Atlantic, Mediterranean

and Black Sea) and Anarhichas lupus (Northeast Atlantic, Northwest Atlantic, Baltic Sea

and Northwestern Mediterranean). Sea bream price series concern: Sparus aurata (North-

east Atlantic, northern Mediterranean and Black Sea), Spondyliosoma cantharus(Eastern

Atlantic, Mediterranean and the Black Sea), Pagellus bogaraveo (Eastern Atlantic and West-

ern Mediterranean), Coryphaena hippurus (Atlantic, Indian and Pacific), Sebastes mentella

(Western and Eastern Atlantic), Sebastes marinus (Western and Eastern Atlantic) and

Lithognathus mormyrus (Eastern Atlantic, Mediterranean, Western Indian Ocean). Price

figures are aggregate within each species, to form a unique sea bass and sea bream price time

series.

10Kantar WorldPanel: www.kantarworldpanel.com.
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The French household sample surveyed by Kantar WorldPanel is weekly queried and com-

prises 20,000 households assumed to be representative of the French population (according

to demographic criteria defined by INSEE). Within the sample, the yearly replacement ratio

of respondent is worth 25%. About 12,000 of the surveyed households declare purchases of

products without bar codes; that is, fresh fish products. It is this data subset on which our

study focuses. Notice that only species for which at least 2% of households are buyers are

considered as significant and transmitted by Kantar WorldPanel. Kantar surveys are based

on voluntary declarations of households. Therefore, Kantar WorldPanel is not exhaustive in

measuring aquatic products purchases by all French households. All fish and fish products

taken together, this panel is estimated to relate 80% of the total French seafood consumption

(FranceAgriMer, 2011).

The data set relates that on average, over the period January 2007 to September 2012,

32.6% of fresh sea bass and 42% of fresh sea bream consumed by households in France is

farmed. Between 2007 and 2012, we observe a shift in farmed sea bass consumption share

from 27.13% to 36.5%, while for sea bream this share has remained steady around 40%. Since

available time series concern household consumption of fresh sea bass and sea bream, it is

normal that these figures do not match with those of total national consumption i.e. 50%

for farmed sea bass and 70% for farmed sea bream. Yet, the difference is not negligible.

Furthermore, as Kantar WorldPanel data set is established on the basis of households con-

sumption recollection, for 20% of the fresh sea bass consumption reported, the distinction

farmed/wild is unfilled against 30% for fresh sea bream. This does not represent, however, a

limit to our empirical analysis as the methodology we apply requires only price information

on the seafood products to test for market integration.

Table 2.3 reports detailed consumption statistics for Kantar WorldPanel sample of house-

holds in France.

We focus our analysis on the whole product form, rather than on the cut one, as our

data set relates that 70.3% for fresh sea bass and 83.5% for fresh sea bream. These figures

corroborate the 2004 report for the European Commission (Roth and Ukendt, 2004) on sea

bass and sea bream markets which states that both species are almost universally sold as

whole fish. We choose to compare products of identical form to ensure that the outcome of
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Sea bass Sea bream

framed wild farmed wild

whole 1012.6 1609.3 1410.7 1731.7

(%) (83.2) (64.1) (89.7) (79)

cut 204.6 900.7 161.3 458.4

(%) (16.8) (35.9) (10.3) ()

Total 1217.2 2510 1572 2190.1

(%) (100) (100) (100) (21)

Quantities in tons.

Data source: Kantar WorldPanel.

Table 2.3: Mean yearly consumption of fresh sea bass and sea bream of Kantar WorldPanel

sample of households in France: January 2007–September 2012

integration tests are not biased by this product attribute.

2.3.1 Descriptive statistics

Table 2.4 gives the average price of fresh sea bass and sea bream, by product form and

production process, consumed between January 2007 and September 2012 by the French

households included in our data set. To conduct a market delineation approach, price series

have been deflated using the monthly consumer price index for food of the OECD (base

year 2005). The overall price of sea bass is 12.55e/kg and 9.93e/kg for sea bream over

our observation period. Hence, sea bass is a higher-valued species relatively to sea bream.

Cut products are always more expensive as the price is increased by the cost of labor. An

additional explanation is that the price per kg of whole fish is discounted by the weight of

wastes (fishbone, skin, etc.).

Besides, wild products always display a higher economic value. Focusing on whole product

form, the mean prices of wild sea bass is statistically higher than that of farmed sea bass,

at the 5% level. The same holds for sea bream. In the case of sea bass, the price difference

between wild and farmed products reaches 54% against 24% for sea bream. Both mean

equality tests are reported in Appendix B.1, in Table B.1 and B.2. We also plotted the
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Sea bass Sea bream

farmed wild farmed wild

whole 9.28 14.24 8.29 10.3

(0.13) (0.18) (0.12) (0.15)

cut 13.18 14.29 11.26 13.9

(0.33) (0.22) (0.31) (0.19)

average 10.6 14.26 8.59 11.02

Prices in e/kg. Standard errors are shown in parentheses.

Data source: Kantar WorldPanel.

Table 2.4: Mean price of fresh sea bass and sea bream in France, Kantar WorldPanel house-

hold purchases: January 2007–September 2012

pairwise price series for which we test for market integration, in Figures B.1, B.2 and B.3.

In fact, except for salmon, who experienced a rather unique market story, empirical ev-

idence is in favour of higher prices for wild rather than farmed products, at given species

(FranceAgriMer, 2012). There are several explanations to the uncommon price dynamics of

farmed/wild salmon. It is the aquaculture species produced at the largest scale worldwide.

The strong market development of farmed salmon was made possible, inter alia, by a preexist-

ing demand in several countries. Indeed, salmon was part of the consumption habits of many

countries, specially wealthy ones. Thereafter, economies of scales realized in its production

enabled to make it economically accessible to a larger population share. Lastly, the large

fillets it delivers allows for salmon product differentiation and innovation, thus, enlarging the

whole of consumers reached by this species. At date, the fact that at a given salmon species,

farmed products may be more expensive than wild ones, reflects the argument by Knapp et

al. (2007), that consumers get use to and favor a reliable and abundant supply, among other

positive aspects of farmed products.

Regarding sea bass and sea bream, both species are less convenient it that their smaller

fillets make marketing innovation less obvious. However, as mentioned earlier, both species

supply coming to market have much increased in recent years. What is surprising, though, is

that market prices are reflecting this large increase in supply very differently. Sea bream prices
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have been falling drastically whereas sea bass prices have been quite stable (FAO, Globefish,

2009). Thus, some producers suffers from considerably reduced margins. According to FAO,

over time, markets will certainly be able to absorb larger production volumes, but more

stable equilibrium prices require more product innovation and the development of additional

markets in the long run.

2.4 The theoretical framework

The empirical evidence that different species of fish are imperfect substitutes is interpreted

in Quaas and Requate, (2013), as consumers having “ preferences for diversity”. This means

that the utility of agents increase with the number of varieties consumed. The authors thus

model stronger preferences for variety by a lower elasticity of substitution between different

fish species.

This demand behaviour is found under monopolistic competition, where the horizon-

tal/vertical differentiation of commodities provides market power to producing firms i.e. a

firm may increase its price, all other prices kept constant, without loosing entire demand

(Chamberlin, 1933; Robinson, 1933; Dixit-Stiglitz, 1977).

We question here how the production process attribute of fish — wild versus farmed —

is received by consumers. As capture fisheries have long existed in absence of aquaculture,

wild and farmed fish cannot be complementary goods. Yet, are they substitutes? If yes, are

they imperfect or perfect substitutes ? If imperfect, what type of differentiation does the

aquaculture and fisheries production technologies produce? Does not exists a natural ranking

of consumer preferences between farmed and wild fish ?

Regarding price figures in 2.3.1, and more generally, there exists empirical evidence that

for a given species the price of the wild product is higher than the price of the farmed

one (FranceAgriMer, 2012). This observation rather suggests that the production process

produces a vertical differentiation. That is, that at equal price, consumers unanimously

prefer the same product. The mention farmed/wild would result in a quality distinction, at

the benefit of wild products.

In any event, product differentiation results in consumers with a limited willingness to
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substitute one for another. Microeconomic theory predicts that at the long-run equilibria, if

a commodity price is kept constant, the introduction of a substitute leads either to the entry

of new clients, or previous ones proceed to a re-allocation of their expenditure. Consequently,

in the presence of competition, albeit unperfect, the price of the initial commodity should be

decreased to maintain ist market share. If wild and farmed products are substitutes, capture

fisheries will loose market share at constant price. Evidence on the market interactions

between aquaculture and capture fisheries can help to improve the management of these

sectors, i.e. enhance their economic viability and seafood supply.

To examine whether farmed and wild fish are substitutes, and to what extent, we apply

the concept of cointegration as a market delineation method and test for the (relative) Law

of One Price. The rationale for our empirical approach and the motivation for adopting it is

exposed in the following section.

2.5 Empirical methodology

Stigler (1969) defines the market for a good as “the area within which the price of a good

tends to uniformity, allowance being made for transportation costs”. When the Law of One

Price (LOP) holds, that is, when there exists no arbitrage opportunities between identical

goods, markets are said to be perfectly integrated. If the price of identical goods differ by

more than transportation costs in the long run, it is a sign of inefficient markets.

The literature has provided a number of contributions which apply the LOP test to assess

whether prices significantly differ between distant areas or when crossing an international

border. For instance, Chen and Knez (1995) develop two notions of integrated markets

in the finance literature. First, perfectly integrated markets are consistent with the LOP:

portfolios with similar payoffs should be assigned similar prices. Second, markets cannot be

integrated if there are cross-market arbitrage opportunities. Broda and Weinstein (2008)

compare the price of a vast number a product sharing a common barcode system between

Canada and the USA. One of their main finding is that, using micro level data reveals much

smaller deviation in the LOP, in response to borders and distance, than does aggregate data,

as in Engel and Rogers (1996). Hence, the degree of market segmentation across the border
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appears similar to that within borders.

When price are in logarithms, Broad and Weinstein (2008) refer to the relative LOP,

by opposition to the absolute LOP defined by Stigler (1969). In this release, the LOP tests

whether a shift in one good’s price results in the same percentage variation of that of another,

whereby the relative price is constant. Under the condition that variables are stationary, the

relative LOP can be tested by running a simple OLS regression:

ln(P1t) = B + Aln(P2t) + εt, (2.1)

where pit is the price of good i = 1, 2, at time t. The coefficient A corresponds to a price

elasticity between both goods, and B is a constant term. If A = 0, then no relationship

exists between these two goods. If A = 1, then the relative LOP holds. In the reminder of

the document, the acronym LOP will refer to this relative definition.

However, time series displaying stochastic evolutions may be incidentally correlated, lead-

ing to significant coefficients though prices of goods under scrutiny are not related. This phe-

nomenon produces what is commonly called a spurious regression. Here below, we present

different stationarity tests of time-series.

2.5.1 The integration order of a time series

Several tests exist to identify the order of integration of a time series, including the Aug-

mented Dickey-Fuller (ADF) unit root test11 and the Kwiatkowski-Phillips-Schmidt-Shin

(KPSS) test12, which we rely on in this study. The inferences from the KPSS test are com-

plementary to those derived from the Dickey-Fuller distribution.

Consider two price variables, p1t and p2t, where lower caption letters refer to natural

logarithms. The underlying model to the Augmented Dickey-Fuller test is:

∆pt = φ1pt−1 −

l�

i=2

φi∆pt−i+1 + εt (2.2)

where a constant term c, and/or a time trend intercept t can be added to improve the

explanatory power of the specification.

11The appropriate critical values applying to the Augmented Dickey-Fuller test are tabulated in Engle and

Yoo (1987) and McKinnon (1991).
12Critical values for the KPSS test are taken from Kwiatkowski et al. (1992).
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The null hypothesis is H0: |φ1| = 0. If it is accepted for one of these three models, the

process is non-stationary. The parameter φ1 is estimated applying the OLS method. The

lagged terms
l�

i=2

∆φipt−i+1 aim at controlling for autocorrelation in the error term. To identify

the order of integration of a time series, it must be differentiated as much as necessary for

the null hypothesis to be accepted.13

The KPSS test is a Lagrange multiplier test of the null hypothesis of trend or level

stationarity of the series. The LM statistic must be larger than the critical value for the null

hypothesis to be rejected.14

2.5.2 The concept of cointegration as a market delineation ap-

proach

In the event that variables are non-stationary, a cointegration analysis must be used to

investigate the relationship between time-series. The concept of cointegration enables to

identify whether a stable long run relationship exists between prices, revealing the existence

of a price parity condition. In which case, we can infer that markets display a level of

integration.

Market integration refers to prices among different locations or related goods following

similar patterns over a long period of time. Here, the concept of market is broader than

a place where homogenous goods are traded. In a competitive market, the duration of a

constant relative price relation shows that the matching of supply and demand have reached

a stable long-term balance in examined subsectors. In which case, agents arbitrage between

goods should resolve the short run price disparities. If a shock with lasting price effects

occurs, such as a change in consumer preferences or in production costs of one sector, than

one will detect a break in the cointegration relation. In this context, the evidence of a price

parity condition between goods may reflects a degree of substitutability between them. It

can also stem from a supply factor that has a spillover effect on several markets.

Our aim is to test for market integration between farmed and wild fish at the food market.

13The appropriate critical values to apply for the Augmented Dickey-Fuller test are those tabulated by

Engle and Yoo (1987) or by McKinnon (1991).
14Critical values for the KPSS test are taken from Kwiatkowski, Phillips, Schmidt, and Shin (1992).
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Since the structure of production costs between the aquaculture and capture fishery industry

are quite different, we posit that the market integration between both fish products would

stem from the demand behavior of consumers.

The notion of market integration can apply to any type of related markets and all levels

of market interdependencies may be observed. As an example, in financial literature, Chen

and Knez (1995) develop two notion of integrated market. Perfectly integrated markets are

consistent with the LOP, i.e. portfolios with similar payoffs should be assigned close prices.

Second, markets cannot be integrated if there are cross-market arbitrage opportunities.

The more usual method to assess the market relationship between different products is

to estimate a demand equation or a system of demand equations and measure cross-price

elasticities. However, its implementation is often limited by the unavailability of detailed

income data, and quantities of all consumption forms of a commodity, required to define the

structure of the demand system.

The cointegration approach to market delineation is convenient in the sense that only

price series are required. The drawback is that this method relates less precise information

on the relationship between markets. It may reveal whether two goods display constant

relative price in the long run, but not the degree of substitutability between them. However,

Asche et al. (1997) undertake cointegration test for market delineation and an estimation of

a dynamic system of demand equation on the same data set, and find both approach provide

compatible and complementary results.

In fisheries, appropriate quantity data are usually lacking (Asche et al., 2001). This is

why the literature has much used the information on price differentials between products to

analyze market interactions between seafood goods. As mentioned in Section 2.3, since we

do not dispose of reliable information on quantities nor on household attributes either, we

adopt the cointegration approach to analyze market interactions between wild and farmed

fish.

In the two-variables case, cointegrated time series display the same order of integra-

tion. Consider two price variables, p1t and p2t, where lower caption letters refer to natural

logarithms. Consider variables p1t and p2t, which are I(d) processes, with d the number of

differentiation to operate for the variables to be stationary. Then, p1t and p2t are cointegrated
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iff their linear combination:

zt = p1t − βp2t (2.3)

is I(d − b), with d ≥ b ≥ 0. An order of integration of zt inferior to that of the time series,

means that the variables p1t and p2t display a common stationary dynamic. Their movements

may diverge in the short run, but their long run relation is stable. The residual zt measures

the equilibrium error.15

Assuming p1t and p2t are I(1), then the vector pt =


p1t

p2t


 is said to be cointegrated if

there exists a unique nonzero (2× 1) vector β, such that:

zt = β�pt → I(0), (2.4)

with β� = [1,−β] the cointegration vector.

In this bivariate context, testing for the LOP comes down to controlling whether the

coefficients of the cointegration vector sum to zero, that is β� = [1,−1]. This may be carried

out using a likelihood-ratio test16 of restrictions on parameters in β. While cointegration

allows to identify market boundaries, the LOP specifies market inter-dependencies (Nielsen,

2005). If a pairwise cointegration test reveals a common stationary trend and the test for

the LOP is validated, then the goods relative price is constant and markets are perfectly

integrated. When a pairwise cointegration test reveals a common stationary trend, but the

test for the LOP is rejected, then markets are partially-integrated. Lastly, if no common

stationary trend is found, goods do not belong to the same market.

15Stigler (1969) provides several potential reasons to short-run price deviations, among which, variations in

the relative quality of goods or stochastic shocks to supply/demand. Stochastic shocks are generally limited

in size and time by the intertemporal substitution behavior of sellers and buyers if goods belong to the same

market.
16A likelihood-ratio test is used to compare the fit of two models, one of which is nested within the other.

It is a general method of testing model assumptions.
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2.5.3 The Error Correction Model representation

The Granger representation theorem (1981) has proven that non-stationary time series may

be modeled by an Error Correction Model (ECM):

∆p1t = αẑt−1 +
�

i

δ2i∆p2t−i −
�

j

δ1j∆p1t−j + εt (2.5)

where εt is a white noise, α is called the adjustment parameter, and subscripts i and j

stand for time lags. The parameter α is estimated over the lagged residual of the linear

combination between p1t and p2t: ẑt−1 = p1t−1− β̂p2t−1. It must be significative and negative

to ensure that the system returns toward the long run equilibrium. Hence, ECM enables to

combine short-run variation around the equilibrium via the differentiated variables, and long

run evolution conveyed by variables in level through ẑt−1 (Lardic and Mignon, 2002).

2.5.4 The Johansen multivariate cointegration test

The concept of cointegration can be generalized to n variables, as long as they are I(d)

processes, with d > 0. As in the bivariate case, the existence of cointegration vectors requires

that the linear combination of the n variables is I(d− b):

zt = p1t − β2p2t − · · ·− βnpnt (2.6)

though all variables must not display necessarily the same degree of integration d for n > 2.

The multivariate case is more complex than the bivariate case due to the possible existence

of several cointegration combinations.

The ECM representation impart a dependent-explanatory relation between studied vari-

ables, though they may be endogenously defined. Therefore, Johansen (1988) developed a

multivariate approach of cointegration based on the maximum likelihood estimator to iden-

tify the number of cointegration relations between n variables simultaneously studied. This

approach appeals to a vector autoregressive (VAR) system in ECM form (Bourbonnais, 2009):

Consider a VAR(l) model in matrix form:

pt = A0 + A1pt−1 + A2pt−2 + · · ·+ Alpt−l + εt (2.7)
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with:

pt: vector of dimension (n× 1),

A0: a vector of dimension (n× 1),

Ai: a matrix of dimension (n× n), with i = 1, . . . , l.

This model can be reformulated in first-differences as follows:

∆pt = A0 + B1∆pt−1 + B2∆pt−2 + · · ·+ Bl−1∆pt−l+1 + πpt−1 + εt (2.8)

where the residual series εt ∼ i.i.d and they are normally distributed with mean 0, and matrix

Bi are functions of matrix Ai and π =
� l�
i=1

Ai−I
�
. The matrix π can be written as π = αβ�,

where α is the vector of adjustment parameters and β is a vector containing the coefficients

of the long run relation between variables. Also, similarly to the ECM representation, notice

that β�pt−1 = zt−1, thus πpt−1 writes αzt−1.

Each independent linear combination in π corresponds to a cointegration vector. Thus, if

the rank of matrix π is comprised between 1 and n, then there exists r cointegration relations.

A rank of π equal to n implies that all variables are I(0), a rank equal to 0 implies that none

of the linear combinations between time series are stationary. Johansen (1995) proposes two

types of tests to identify the rank of π : the trace test and the maximal eigenvalue test. Both

tests work by successively excluding hypothesis on the value of r. At first, the null hypothesis

H0 : r = 0 is tested against H0 : r > 0. If H0 is rejected, the same alternative hypothesis is

tested for r + 1, and so on until H0 is accepted.17

To conduct a bivariate cointegration test between prices of wild and farmed fish, here

follows an explicit expression of the VECM we estimate:

∆p1t = a10 + b11∆p1t−1 + b12∆p2t−1 + · · ·+ b12l∆p2t−l + α1(p1t−1 − βp2t−1) + ε1t

∆p2t = a20 + b21∆p1t−1 + b22∆p2t−1 + · · ·+ b22l∆p2t−l + α2(p1t−1 − βp2t−1) + ε2t . (2.9)

2.5.5 The weak exogeneity test

The weak exogeneity test tackles the hypothesis that a variable has influenced the long-run

stochastic path of the other variable of the system, but is not been influenced by them. It

17Critical values for these tests can be found in Johansen and Juselius (1990).
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tests whether the price of one good p1t, conditions that of the another, p2t, or vice versa.

In our case study, the interest is to identify if a cointegration relation is lead by one of the

commodities under scrutiny.

The weak exogeneity test relates to the vector of adjustment parameters, α, of a VECM.

It consists in testing the null hypothesis H0 : α = 0. Recall that these parameters ensure the

return of the system variables towards the long run equilibrium. They weight the cointegra-

tion relation in each equation of the model. If H0 is accepted for one of the model equations,

the associated dependent variable is said to be weakly exogenous.

2.6 Empirical results

2.6.1 Unit root tests

As mentioned, the first step in tackling market integration between goods is to examine

whether price series are non-stationary in level. Table 2.5 reports results of the ADF test

for the price series of interest to our analysis. In each case, the test statistic figuring in

column one is obtained after selecting the most appropriate specification among the three

models underlying the ADF test, including lags number. For all price series, test statistics

are greater than the critical values reported in the second column, implying that their exists

a unit root, i.e. the null hypothesis of non-stationarity is not rejected at the 5% level. In

the third column, we note that for all price series in first-differences, the null hypothesis is

rejected at the 5% level.
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Table 2.5: ADF tests for unit roots in price series of fish

Prices in log Test stat. Critical Test stat. Critical

level value ( 5%) first-diff. value ( 5%)

Whole farmed sea bass 0.185 -1.950 -6.046* -1.950

Whole wild sea bass -2.786 -3.492 -4.171* -1.950

Whole farmed sea bream -2.691 -2.917 -5.855* -1.950

Whole wild sea bream -0.270 -1.950 -5.125* -1.950

Cut wild sea bass 0.186 -1.950 -5.678* -1.950

Cut wild sea bream -2.649 -2.918 -9.017* -1.950

*Statistically significant at the 5% level.

Table 2.6 reports the results of the KPSS test. For almost all price series, the null

hypothesis of stationarity in trend is rejected at the 5% level. For whole farmed sea bream

and cut wild sea bream, it is rejected at the 10% level. However, both tests tend to converge.

Evidence of non-stationarity in level and stationarity in first-difference allows us to conduct

cointegration tests over these variables.

Table 2.6: KPSS tests of stationarity over price series of fish

Prices in log Test stat. Test stat.

level first-diff.

Whole farmed sea bass 0.207* .067

Whole wild sea bass 0.164* .036

Whole farmed sea bream 0.24* .056

Whole wild sea bream 0.143** .023

Cut wild sea bass 0.179* .044

Cut wild sea bream 0.123** .037

Note: *Statistically significant at the 5% level.

**Statistically significant at the 10% level.

Critical value at the 5% level: 0.146.

Critical value at the 10% level: 0.119.
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2.6.2 Competition between wild and farmed fish within the sea

bream and sea bass markets

The results of pairwise cointegration tests between whole wild and farmed sea bass, and whole

wild and farmed sea bream, respectively, are displayed in Table 2.7. Robustness checks for

both VECM are reported in Appendix B.2. The first two columns provide the value of the

trace and maximum-eigenvalue statistics for testing the null hypothesis of no cointegration

vector, while columns three and four report these statistics for the null hypothesis of one

cointegration vector. We rely on the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC) to select the number of lags in explanatory varibales.

Table 2.7: Within species bivariate Johansen tests between wild and farmed fish

Null hypotheses LOP test

Rank=0 Rank=1

Prices in log (Whole fish) Trace Max-eigen. Trace Max-eigen. LR p-value

statistic statistic statistic statistic

Sea bass: farmed/wild 33.608 19.779** 13.829 13.883

Critical value at the 1% level (24.60) (20.20) ( 12.97) ( 12.97)

Sea bream: farmed/wild 21.345 21.345 6.996* 6.996* 4.59 0.0322

Critical value at the 5% level (19.96) (15.67) (9.42) (9.24)

Note: *Statistically significant at the 5% level. **Statistically significant at the 1% level.

In the case of sea bass, the trace test does not accept the null hypothesis of one cointe-

gration between price series, while the maximum-eigenvalue test accepts the null hypothesis

of no cointegration vector at the 1% level. This results indicates the absence of a long term

price parity condition between wild and farmed sea bass. In order words, markets for these

two fish products are not integrated.

We proceed to the Gregory-Hansen residual-based test (1996) for cointegration in the

presence of a regime shift, between the prices series of wild and farmed sea bass, to control

wether the cointegration relation between both prices is marked by a break. Yet, we find no

evidence of cointegration neither. We conclude that both goods are not treated as substitutes
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by consumers, though we do not rule out the possibility that characteristics of the supply

side might actually account for this outcome.

Regarding sea bream, both the trace and maximum-eigenvalue tests accept the null hy-

pothesis of one cointegration vector at the 5% level. Hence, whole wild and farmed sea bream

display a long run price parity condition. This result implies that the production process is

not determinant in the purchase decisions of this species. Nevertheless, in the last column

we report results for the LOP test and find that it does not hold. The null hypothesis im-

posing restrictions, H0 : [βwild, βfarmed] = [1,−1], on the long-run parameters is rejected at

the 5% level. This means that wild and farmed sea bream markets are partially integrated

(i.e. goods are imperfect substitutes).

Table 2.8 reports the estimate of the long-run relation between wild and farmed sea bream,

normalized with respect to the price of wild sea bream.

Table 2.8: Sea bream model: the estimated cointegration vector

Coefficient

βwild 1

βfarmed -0.232

constant -1.834

Testing for weak exogeneity of the wild and farmed sea bream

Table 2.9 reports the estimates of adjustment coefficients for the VECM between farmed

and wild sea bream. The adjustment parameter labeled αwild (resp. αfarmed) intervenes in

the equation where the dependent variable is wild sea bream (resp. farmed sea bream). We

observe that αwild is significant at the 5% level while not αfarmed. These outcomes imply that

the price of farmed sea bream is weakly exogenous. In other words, farmed sea bream is the

price leading production sector in the French whole fresh sea bream market.
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Table 2.9: Sea bream model: adjustment parameters statistical significance

Coefficient Std. Err. p-value

αwild -3.79 * 0.211 0.000

αfarmed -0.81 0.169 0.417

*Statistically significant at the 5% level.

2.6.3 Competition between wild and farmed fish across different

species

Table 2.10 reports pairwise cointegration tests between wild and farmed fish across different

species. Precisely, we test for cointegration and the LOP between farmed sea bass and wild

sea bream, as well as between farmed sea bream and wild sea bass. The idea is to appraise

how farmed sea bass and se bream interact with some wild white fish of different species in

the French fresh fish market. The third and fourth columns report the trace and maximum-

Table 2.10: Cross species bivariate Johansen tests between farmed and wild fish

Null hypotheses LOP test

Rank=0 Rank=1

Prices in log (Whole fish) Trace Max-eigen. Trace Max-eigen. LR p-value

statistic statistic statistic statistic

Farmed sea bream/Wild sea bass 76.428 57.213 19.215 19.215

Farmed sea bass/Wild sea bream 35.69 26.573 9.118* 9.118* 0.03 0.8580

Critical value at the 5% level (19.96) (15.67) (9.42) (9.24)

Note: *Statistically significant at the 5% level.

eigenvalue statistics for the null hypothesis of one cointegration vector. Not surprisingly, as

farmed sea bass price is not cointegrated with its wild counterpart, farmed sea bream, is not

treated as a substitute for wild sea bass neither, specially as sea bass is a higher value species

18.

18We also apply the Gregory-Hansen test (1996) for cointegration with regime shifts between the prices

series of farmed sea bream and wild sea bass, but we find no evidence of cointegration neither.
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On the other hand, our test results indicate that farmed sea bass and wild sea bream

do compete in the French fresh fish market. Both tests, the trace and maximum-eigenvalue

tests, accept the null hypothesis of one cointegration vector at the 5% level. Furthermore,

the LOP holds between these two fish.

Table 2.11 reports the estimate of the long-run relation between wild sea bream and

farmed sea bass, normalized with respect to the price of wild sea bream. As it appears,

βfarmed bass is quasi equal to 1, thus the satisfaction of the LOP.

Table 2.11: Farmed sea bass versus wild sea bream: the estimated cointegration vector

Coefficient

βwild bream 1

βfarmed bass -1.064

constant 0.033

2.6.4 Assessing the effect of product form on market integration

Finally, we proceed to additional bivariate Johansen tests in order to assess to what extent

does the form of products affect consumers’ behavior. Indeed, intuition tells us that those

purchasing whole products have an economic constraint more binding than their time con-

straint, contrary to those purchasing cut fish. Or, that they may be more familiar with

seafood products. Thus, they may not be reluctant to proceed to the cutting exercise them-

selves.

The two first line in Table 2.12 report the same two within species cointegration tests as

in Table 2.7, but with whole wild sea bass (resp. bream) prices replaced by cut wild bass

(resp. bream). Fresh cut wild and whole farmed sea bass prices are not cointegrated. The

null hypothesis of one cointegration vector is not accepted by the maximum-eigenvalue and

trace test, at the 5% level. The product form does not affect the outcome of the cointegration

test between wild and farmed sea bass in Table 2.7.

Alongside, we also find that the maximum-eigenvalue and trace statistics for the bivariate

Johansen test between cut wild sea bream and whole farmed sea bream do not valid the null

hypothesis of one cointegration vector at the 5% level. This result deviates from that between

114



whole wild sea bream and whole farmed sea bream in Table 2.10. The third cointegration

test concerns cut wild bream and whole farmed bass. The null hypothesis of no cointegration

vector is significative at the 5% level according to the trace test while the maximum-eigenvalue

test does not accept the null hypothesis of one cointegration vector. This finding also contrast

with the results of the bivariate Johansen test between both fish in their whole form in

Table 2.1019.

Hence, the cut form of fish apparently has an impact on the outcomes of our market

delineation analysis.

Table 2.12: Bivariate Johansen test between fish of different form

Null hypotheses

Rank=0 Rank=1

Prices in log Trace Max-eigen. Trace Max-eigen.

statistic statistic statistic statistic

Whole wild bass/cut wild bass 65.85 33.75 32.1 32.1

Whole farmed bream/cut wild bream 67.9 20.68 47.22 20.68

Whole farmed bass/cut wild bream 15.17* 11.66 3.5 3.5

Note: *Statistically significant at the 5% level.

2.7 Discussion

Table 2.13 summarizes the results of our market delineation analysis of sea bass and sea

bream species in France.

19We find no evidence of cointegration vector between the price of cut wild sea bass and whole farmed sea

bream. We do not report this bivariate Johansen test because the outcome abounds the same conclusions

than the other tests in Table 2.12 .
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Table 2.13: Market integration outcomes

Whole farmed sea bream Whole farmed sea bass

Whole wild sea bass not integrated not integrated

Whole wild sea bream partially-integrated perfectly-intergated

Cut wild sea bass not integrated

Cut wild sea bream not integrated not integrated

The way in which we interpret the outcomes of these bivariate Johansen tests is the

following. The existence of a cointegration relation between the price series of a wild and

farmed fish testifies to a certain degree of substitutability between them. Indeed, since

the structure of production costs of the aquaculture and capture fishery industry are quite

different, we find it reasonable to assume that market integration between both fish products

stems from the demand behaviour of consumers rather than from spillover effects of common

supply factors.

In the case of sea bass and sea bream farming, feed, juveniles and labour account for

around 70% of production costs20, of which about 35% for fish feed (Roth, and Ukendt,

2004). Feed cost is mostly affected by factors such as growth in import demand and soybean

price (FAO, Globefish, 2013). In the case of fisheries, capital investment and operation costs

rather constitutes the main costs. The latter can be divided in labour costs, running costs21

and vessel costs. In France, 80-90% of sea bass and sea bream catches come from trawling.

Running costs represent about 30% of demersal fish trawlers’ total costs (FAO, 2005).

In the absence of cointegration between two price series, we do not rule out the possibility

that demand for each product interact. We consider that characteristics of the supply side

may account for this outcome.

Precisely, in a competitive market, if consumers consider wild and farmed fish of a same

20Fuel and energy consumption represents about 1% of total costs in Greece against 6% in France. Typically,

this expense is for running seawater pumps, oxygenation and other machinery, vehicles, boats and refrigeration

plant.
21Running costs are principally composed of fuel, lubricants, cost of selling fish, harbour dues, cost of ice,

food and supplies for the crew.

116



species as perfect substitutes, then both product prices should equalize (allowance being

made for transportation costs), else the less competitive sector will be ousted. If prices do

not equalize, this can mean that both commodities are imperfect substitutes, which does

not preclude the possibility of a price parity condition. If no price parity condition is found:

either the farmed and wild fish are not be substitutes at all, or the markets of wild and

farmed sea bass may not be efficient.

Asche et al. (2001) argue that the relative market share of each type of product is of

importance in prices adjustment mechanisms. That is, the availability of each product must

be widespread to make consumer arbitrage possible between both product types.

Lastly, data deficiencies can also be the cause of no cointegration between times series.

The fresh whole sea bream market

We find that the whole farmed and wild sea bream markets are partially integrated, and that

their price relationship is lead by farmed sea bream (Table 2.7).

Content of the differences in the structure of costs faced by the aquaculture and capture

fishery industry, we conclude that these products display a certain degree of substitutability.

Partially integrated markets means that whole wild and farmed sea bream are imperfect

substitutes. The wild fish benefits from a price premium (survey average price: 10.3e/kg

against 8.29e/kg), indicating a relatively higher willingness to pay for this product. However,

the fact that whole farmed sea bream is price leader suggests that whole wild sea bream may

incur a downward price pressure. This influence of farmed sea bream supply on the price

dynamics of its wild counterpart, is in line with what microeconomic theory predicts (see 2.4),

regarding the introduction of a substitute in a given market. Whether consumer perception

of farmed products evolves positively or negatively will determine the price competitiveness

required from the fishery sector, and in turn, its economic viability. The positive consequence

of a downward pressure on wild sea bream price is that it may reduce fishing pressure on

sea bream stocks, allowing supply to increase. It may also push fisheries to proceed to an

economic rationalisation of the industry. In these respects, and as it is generally the case,

market competition benefits to the consumer.

Yet, fishermen rarely target a single species. A lower profitability of sea bream due to
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harsh price competition from the aquaculture sector may lead fishermen to report fishing

pressure on other fish species within their bundle of catches. If aquaculture production

may alleviate pressure on a given wild species, it is not possible to qualify and quantify the

net effect of farming on ecosystems’sustainability owing to the numerous linkages between

inherent species.

The fresh whole sea bass market

Our empirical results in Table 2.7 indicate that wild and farmed sea bass markets are not

integrated. Markets for fresh sea bass and sea bream differ in that: (1) wild sea bass is

a higher valued species than wild sea bream on average; (2) the price differential is more

important between wild and farmed sea bass, than between wild and farmed sea bream; (3)

the market shares of wild versus farmed fish is better balanced in the case of sea bream.

It is not obvious whether the absence of cointegration between farmed and wild sea bass

relates to consumers’ sensitivity to the fish production process when it comes to higher-value

species, or to supply features which may prevent market interactions between both fish. Here

bellow, we consider several scenarios to explain this result.

Considering the latter explanation, we saw in the data section 2.3, that the average share

of farmed sea bass, within French households consumption, between 2007 and 2012, is 31.3%

(all forms of product included). Supposing our quantity figures are fully faithful, we posit that

this share is reasonable enough to consider that market interaction between fresh farmed and

wild sea bass is effective. Yet, the share of farmed fish in household consumption of whole sea

bass evolves increasingly over our survey period, meaning that the balance between farmed

and wild sea bass has improved recently. The monthly price series covering January 2007

to September 2012 might be to short to reveal market integration between these two fish

products. What is more, the supply of farmed and wild sea bream, which price series are

cointegrated, is more balanced (i.e. 40.5% of fresh sea bream consumed by households in

France is farmed over our observation period).

In the event where market inefficiencies, such as a lake of trade-off opportunities at finer

regional scale, accounts for the absence of market integration between wild and farmed sea

bass, the high price difference between whole wild and farmed sea bass likely reflects, inter
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alia, the higher production costs of the capture fishery sector compared to the aquaculture

ones. This makes sense content of the lower labor costs faced by Greece to produce the

imported farmed sea bass, relatively to those faced by the French fishery sector.

On the other hand, supposing the supply of fresh whole farmed and wild sea bass are

efficient, the absence of market integration between both fish means that the production

process attribute prevails on the species type attribute, in consumers purchasing decision.

Actually, the production process attribute produces a separation in the whole French sea bass

market, with the wild fish occupying the high-value segment. Indeed, the important price

differential between wild and farmed fish, either in the case of sea bass or sea bream, can reflect

the negative perception of aquaculture practices by consumers relatively to fisheries. This

distinction in the willingness to pay for wild fish relatively to famed fish should theoretically

be repeated in the case of other species. It can also relate to the more scare supply of wild

fish. In this sense, the fish supply from aquaculture can be seen as a necessary complement

to fisheries supply i.e. a lower quality but more abundant fish product, that compensates for

the shortfall of the production of fisheries.

In any case, from our empirical analysis, the higher-value attributed sea bass compared to

sea bream (survey average price, including all fish form and production process: 12.55e/kg

against 9.93e/kg) does not produce the same price relation between wild and farmed fish, for

each of these species (i.e. no market integration versus partial-market integration). Because

our data set and methodology do not able to derive price elasticities, we cannot reliably cast

wild sea bass in the terms of microeconomic typology of goods (normal versus luxury good).

Nonetheless, this result difference can be explained in that consumers purchasing lower value

fish are less regarding about flesh properties. If this is the case, the outcomes of our analysis

are in line with Natale et al. (2013) who argue that interactions between wild and farmed

products are likely to become more common, particularly in lower price aquaculture segments,

as the production of newer aquaculture species expand to a level capable of conditioning the

market.
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Cross species market integration

We teste how farmed sea bass and sea bream interact with wild sea bream and sea bass,

respectively, in Table 2.10. These two species are white fish species and have a similar flesh

appearance. Sea bass meat is pinkish when raw and cooks up opaque white. Sea bream

meat is also rosy-colored when raw and turns white when cooked (seafood handbook). Also,

both fish have the same average size. As we are considering whole products, this attribute

matters. The average sea bass length is worth 50 cm; the average sea bream length is worth

30-45 cm22 (FishBase).

Not surprisingly, our empirical results in Table 2.10 infer that fresh whole farmed sea

bream and wild sea bass price series are not cointegrated. These two fish display even

higher price differences than whole wild and farmed sea bass. The price differential is not

an impediment to substitutability as quantity versus quality trade-off can be carried. Yet,

as it is not the case between wild and farmed sea bass in Table 2.7; it is even less likely

between wild bass and farmed bream who differ by the specie type attribute in addition to

the production process attribute.

Alongside, whole farmed sea bass and wild sea bream do compete in the French fresh

whole fish market. Precisely, we find that the markets for these two products are perfectly

integrated. As this result stem for the test for the relative LOP, it means that goods are

close substitutes; not perfect substitutes. This result is quite surprising as wild and farmed

whole sea bream markets are found to be only partially-integrated. However, referring to

Table 2.4, over our survey period the average price of whole wild sea bream (10.3 e/kg) is

closer to that of whole farmed sea bass (9.28 e/kg) than to that of whole farmed sea bream

(8.29 e/kg). According to this cross species result, the argument that seems to prevail in

consumers arbitrage is the price they are willing to pay to consume fresh fish rather than

the production process or the species type when it comes to the lower-value fresh fish market

segment.

Notice that perfectly integrated markets for whole farmed sea bass and wild sea bream

rather runs against the hypothesis that the farmed sea bass market presents inefficiencies, as

discussed previously.

22Notice that these figures correspond to the wild fish length; the only we dispose of.
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The product form attribute

Lastly, in Table 2.12, we control wether the fish form (cut/whole) is a determinant product

attribute in consumption decision. As when considering both fish in their whole form (Ta-

ble 2.7), we find that the market for cut wild and whole farmed sea bass is not integrated.

This finding is not surprising given that the price differential between cut wild sea bass and

whole farmed sea bass is slightly greater than that between both fish in their whole form

(average wild price exceed: 54% against 53%).

In contrast, market for cut wild bream and whole framed bream are not found to be

integrated, so as that of cut wild bream and whole framed bass, although both pairwise

cointegration tests yield opposite result when considering fish in their whole form in Table 2.7

and Table 2.10. Here again, the price differential between cut wild sea bream and whole

farmed sea bream is greater than that between both fish in their whole from (average wild

price exceed: 67.7% against 24.3%). Same remarque for cut wild bream and whole framed

bass (average wild price exceed: 49.8% against 11%).

Thereby, the product from attribute alters market integration outcomes, at least for the

species considered in our analysis, in their fresh form. The price premium and the gain in

preparation time entailed to the cut fish form apparently overrides other products attributes.

Besides, we have pointed out in the case of whole sea bream, that the production pro-

cess attribute does not constitute an impediment to substitutability between fish, although

imperfect substitutes. In the case of whole wild sea bream and whole farmed bass, neither

the species type, nor the production process seem to be a binding criteria to substitutability

between these fish products. These cointegration relationships have in common that they

concern fish in a same price range, below 10 e/kg on average.

Hence, the expenditure involved appears as a overriding decision criterion when purchas-

ing fish in lower value market segments of the French fresh white fish market.

2.8 Conclusion

In this study, we teste for price parity between farmed and wild fish, within the sea bass

and sea bream French fresh fish markets. We conduct our empirical analysis applying a

121



bivariate cointegration framework over fish price series. Price series are monthly and concern

the period 2007–2012.

What emerges from our analysis is that market interactions between wild and farmed fish

of a same form and species, differ from one species to another. Whole wild and farmed sea

bream markets are found to be partially integrated while whole wild and farmed sea bass

markets are not integrated. Based on the observation that wild sea bass is more expensive

than wild sea bream, and displays a greater price differential with its farmed counterpart

than does sea bream, we conclude that consumers may be sensitive to the seafood production

process when it comes to higher-value species. In the case of sea bass, the production process

attribute overrides the species type attribute in consumers purchasing decision.

On the other hand, when testing for price parity between fish products belonging to a

lower price range, price closeness seems to be the main surrogate endpoint, at least within the

French fresh withe fish market. This suggests that farmed fish is more likely to incorporate

lower-value segments of the fish market.

Either in the case of bass or bream, wild fish displays a higher price. This price premium

reflects either that French fisheries production is too scare, more costly than farmed fish

imports from Greece and other commercial partners, or/and that the aquaculture industry

may bear the brunt of a negative image. In particular, consumers tend to be cautious about

farmed fish feeding and the potential consequences of changes in species’ natural diet.

In France, farmed production of sea bass and sea bream strives to meet a sustainability

and quality image, which has enabled the industry to develop export despite the tough

competition (FNSEA, 2006). Yet supply is low due to space regulatory constraints, the feed

supply issue and high labor costs, hindering production competitiveness. The expansion of

the aquaculture industry is obviously subjected to a trade-off between quantity and quality.

The need to enhance food security versus consumers’ requirements in terms of sustainability

and food nutritive quality portends a split of the aquaculture supply into branches of different

standing.
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Appendix B

B.1 Pairwise price comparisons

Variable Mean Std. Err. Std. Dev. [95% Conf. Interval]

Wild sea bass 14.24 0.18 1.51 [13.87; 14.60]

Farmed sea bass 9.28 0.13 1.10 [9.03; 9.54]

diff 4.96 0.23 1.88 [4.51; 5.42]

H1: mean(diff) < 0 t = 21.92 Pr(T < t) = 1.0000

Number of observations: 69.

Student test degrees of freedom: 68.

Table B.1: Mean-comparison test: wild versus farmed sea bass

Variable Mean Std. Err. Std. Dev. [95% Conf. Interval]

Wild sea bream 10.30 0.15 1.28 [9.99 ; 10.61]

Farmed sea bream 8.29 0.12 0.97 [8.06 ; 8.52]

diff 2.01 0.15 1.28 [1.70; 2.32]

H1: mean(diff) < 0 t = 12.9902 Pr(T < t) = 1.0000

Number of observations: 69.

Student test degrees of freedom: 68.

Table B.2: Mean-comparison test: wild versus farmed sea bream
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(a) bass (b) bream

Figure B.1: Prices of whole sea bass and sea bream in logarithms: within species comparison

(2007-2012)

(a) farmed bass vs. wild bream (b) farmed bream vs. wild bass

Figure B.2: Prices of whole sea bass and sea bream in logarithms: between species comparison

(2007-2012)
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(a) whole farmed vs. wild cut bass (b) whole farmed vs. wild cut bream

(c) whole farmed bream vs. cut wild bass

Figure B.3: Prices of sea bass and sea bream in logarithms: between fish form comparison

(2007-2012)

Prices are displayed in logarithms. Farmed and wild sea bream prices seem relatively cor-

related over the time period, specially since 2010 (around month 36 in Figure B.1). This

is less the case for farmed and wild sea bass, especially since 2009 (around month 24 Fig-

ure B.2). Figure B.2(a) suggests that farmed sea bass and wild sea bream have a common

price trend, while it is hard to conclude regarding farmed sea bream and wild sea bass prices

131



(Figure B.2(b)). Figure B.3 concerns pairwise price comparison between products of different

form.

B.2 Robustness checks

We report below robustness checks for the two VECMs models of particular interest in this

analysis. That is, the wild/farmed sea bass and sea bream VECMs depicted in Table 2.7.

We carry-out the Lagrange-multiplier (LM) test which controls for autocorrelation in the

residuals of a VECM. It is based on the Chi-square test statistic. The null hypothesis is that

there is no autocorrelation in the residuals for any of the lag orders tested. It appears from

Table B.3 and Table B.4 that in both cases the null hypothesis is accepted at the 5% level

for all tested lag orders.

Table B.3: Lagrange-multiplier test: wild/farmed sea bream VECM

lag χ2
a Prob

1 6.8125* 0.14613

2 11.5575* 0.02096

3 5.6003* 0.23105

4 4.7071 * 0.31869

Note: *Statistically significant at the 5% level.

a Test statistic of degrees of freedom 4.

Table B.4: Lagrange-multiplier test: wild/farmed sea bass VECM

lag χ2
a Prob

1 5.7705* 0.21695

2 6.8071* 0.14644

3 2.9689* 0.56304

4 6.3802* 0.17250

Note: *Statistically significant at the 5% level.

aTest statistic of degrees of freedom 4.
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In addition, we report in Table B.5 and B.6 the Jarque-Bera test statistic for each equation

and all equations jointly of our two VECMs, which are computed against the null hypothesis

that disturbances are normally distributed. The Jarque-Bera statistic tests skewness and

kurtosis jointly. In both tables, the single equations and overall Jarque-Bera statistics do not

reject the null hypothesis of normality at the 5% level.

These outcomes further support our VECM specifications as the multivariate approach to

cointegration developed by Johansen (1995) is based on the maximum likelihood estimator

which assumes that errors are independently and normally distributed.

Table B.5: Jarque−Bera test: wild/farmed sea bream VECM

Dependent Var. χ2 Prob

Whole wild sea bream 0.838*a 0.65764

Whole farmed sea bream 0.362*a 0.83451

All equations 1.200 *b 0.87810

Note: *Statistically significant at the 5% level.

a Test statistic of degrees of freedom 2.

b Test statistic of degrees of freedom 4.

Table B.6: Jarque−Bera test: wild/farmed sea bass VECM

Dependent Var. χ2 Prob

Whole wild sea bass 7.070*a 0.02916

Whole farmed sea bass 1.913*a 0.38418

All equations 8.983*b 0.06152

Note: *Statistically significant at the 5% level.

aTest statistic of degrees of freedom 2.

b Test statistic of degrees of freedom 4.

Lastly, we check whether the eigenvalue stability condition holds. This condition provides

indicators of whether the number of cointegrating equations is misspecified or whether the
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cointegrating equations, which are assumed to be stationary, are not stationary. It uses the

coefficient estimates from the previously fitted VECM to back out estimates of the coefficients

of the corresponding VAR and then compute the eigenvalues of the companion matrix. Roots

strictly inferior to 1 calls for stability of the specification, though there is no distribution

theory to measure how far a root should be from 1. The roots for the wild/farmed sea bream

and sea bass VECMs are reported in Table B.7 and B.8 plotted in Figure B.4. The modulus

of each eigenvalue is strictly less than 1; graphically all the eigenvalues lie inside the unit

circles. These outcomes show evidence that the cointegration equations are stationary.

Table B.7: Eigenvalue stability condition: wild/farmed sea bream VECM

Eigenvalues Modulus

1 1

-.57861 .57861

.251345 .251345

.03782637 .037826

Note: The VECM specification

imposes a unit modulus.

Table B.8: Eigenvalue stability condition: wild/farmed sea bass VECM

Eigenvalue Modulus

1 1

-.5154871 .515487

.3401161 .340116

-.08615876 .086159

Note: The VECM specification

imposes a unit modulus.
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Figure B.4: Dispersion of the eigenvalues: wild/farmed sea bream & sea bass VECMs

(a) sea bream (b) sea bass

135



Chapter 3

Managing harvested ecosystems under

uncertainty: the viability approach

3.1 A review of different approaches to risk manage-

ment in fisheries

There is a growing demand for moving from single species management schemes to an ecosys-

tem approach of fisheries management (Garcia et al. [31]). The World Summit on Sustainable

Development (Johannesburg, 2002) encouraged the adoption of an ecosystem approach by

2010. The ecosystem approach of fisheries faces many issues, ranging from the high cost of

the science required (developing data collection, analytical tools, and models) to the practical

difficulties of changing the governance system and processes (Cury et al. [19], Sainsbury et al.

[56]).

Moreover, uncertainty inherent to fisheries leads to risk in decision making (Hilborn et al.

[34]), and is recognized to play an important role in the failure of management regimes.

Fisheries modeling requires estimations of stock status, total withdrawal from stock and a

comprehension of ecosystems’ response to harvesting. Because fish stocks and fish are not

easily observable, in contrast to other living species, such information remains imprecise and

error prone. Indeed, fisheries data exhibit such large year-to-year fluctuations which Ludwig

and Walters [40] consider for a large part as measurement errors. Furthermore, the structure
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and dynamics of ecosystems are often poorly known. At last, uncertain climatic hazards,

technical progress or other factors inherent to wildlife are likely to affect fisheries productivity

in an unpredictable way. Some claim that fishing decreases the resilience of fish populations,

rendering them more vulnerable to environmental change (Lauck et al. [38]) and that not

accounting for uncertainty can lead to excessive harvest of a resource (Hilborn and Walters

[33]).

In this section, we review different existing approaches to the sustainable management

of fisheries under uncertainty. More precisely, in each case, we review how the approach

addresses policy goals in a dynamic setting with uncertainty. That is, whether the approach

fits into a normative or positive aim, and the degree of precaution which is adopted with

respect to risk. We start with the economic field. Next, we overview how decision making

is undertaken in practice. Lastly, we propose the viability approach as a suitable theoretical

framework to design management strategies of harvested ecosystems under uncertainty as it

deals jointly with i) ecosystem dynamics, ii) conflicting issues of production and preservation

and iii) dynamics uncertainties.

3.1.1 The economics approach

In economics, the standard criterion to address intertemporal allocation issues of consumption

under uncertainty is the discounted utility (DU). According to the utilitarianism theory,

the morally right action is to maximize the happiness of the greatest number, even if it

is at the expense of some individual (Bentham [9]). Society’s overall welfare is obtained

by summing the utilities of each individual, and generation, in an intertemporal framework.

This conception of social welfare has been criticized for being unequitable because it overlooks

distributional concerns, in the sense that, any additional unit of utility has the same value,

regardless of the initial endowment of the recipient.

The introduction of a discount rate on future generations’ utility level in the welfare max-

imizing programme is also controversial. The discount rate stands for the societal preference

for present. The higher it is, the less society cares for the future generations’ welfare. Hence,

it gives primacy to the present generation on the use of the productive capacity, at the ex-

pense of future ones. Chichilnisky [15] submits that “an appropriate discounting of future
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utilities need not be the dictatorship of the present”. Chichilnisky [14] also raises that utility

is not appropriate for comparison between populations or generation as preferences may dif-

fer. However, economists justify the discounted utility criterion by the fact that it imputes

to society a capital accumulation rate that individuals are willing to undertake. Otherwise,

the specification of intertemporal utility functions generally includes a parameter for relative

risk aversion, which is difficultly disentangle from the intertemporal elasticity of substitu-

tion. A high risk aversion tends to soften the influence of the discount factor by smoothing

consumption between periods: a consumer decides to save more immediately given his low

expected returns on what he saves.

Environmental degradation and resources depletion have raised concern for the state of

nature and subsequent production potential bequeath to future generations. The exploitation

of exhaustible resources is a key issue in the the debate of intergenerational equity. The

bequeaths depends on the willingness of current generations to sacrifice current consumption

for achieving environmental objectives to the benefit of future generations. Only those who

reside in the present may decide, as conveyed by the discounted utility criterion. On the other

hand, several thinkers view access to a minimal standard of living as a right that should be

guaranteed to all generations. Rawls theory of justice goes further; he assumes that each

person should have equal rights regardless of the underlying growth and welfare implications.

Considering the global warming stake, the challenge is roughly to define how much emis-

sion reduction should the present generation achieve to limit future damages, while the

damage function and the abatement-cost function are uncertain. Within this trade-off, the

value of the discount factor is one of the core element on which Stern [62] and Nordhaus

[50] disagree. Nordhaus sets the discount rate1 to be consistent with observable economic

outcomes like the real return on capital. His argument is pragmatic: if economic data in-

dicates that people have a strong preference for the present, policy propositions must be

designed in adequacy for action to take place. In this respect, the efficient policy strategy is

to concentrate abatement efforts in the future to diminish costs. Stern has a more normative

approach: all generations have the same importance and should benefit from the maximum

level of consumption possible at their time. The discount parameter he chooses is quasi null.

1His calibration of the discount rate is based on the Ramsey equation.
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Consequently, the optimizing policy will more equitably share depollution efforts between

generations.

In this line, at the other extreme of the discounted utility, is the max-min criterion. It

is fed into the debate on intergenerational equity by Rawls [54], who attacks the utilitarian

approach to social choice. It assumes welfare is maximized only when the utility of those

society members that have the least is improved. Going further, Solow [60] argues that inter-

generational equity reports to identifying what each generation can demand of its ancestors

and should leave to its descent. The max-min criterion is well suited in this respect. It ad-

vocates a constant utility between generations2. Furthermore, it satisfies the Hartwick’s rule

definition of sustainability3. This investment rule states that if a resource is finite, earlier

generations should off-set extractions by reinvesting resource rents into reproducible capital,

thus keeping the value of net investments equal to zero. Thereby, the standard of living of

society does not decline in the future. However, the max-min criterion is criticized for passing

over the utility of generations that are not the poorest. Moreover, their is no concern for

growth (Long and Martinet [39]).

Alternative normative approaches for ranking social options have been developed, lying

in between the DU and the max-min criteria. Chichilnisky [13] proposes a welfare function

that weights the discounted sum of utilities, and a second term, the utility withdrawn by

the limiting generation in an infinite time horizon. Alvarez-Cuadrado and Long [1] propose

a weighted sum of the discounted sum of utilities and the utility of the generation that is

worst-off over time. This last criteria is labeled the “Mixed Bentham-Rawls” criterion. Both

initiatives tend to preserve a minimum utility level to each generation, which is endogenously

defined through the different weights affected to them. Long and Martinet [39] develop an

indicator called “Rights and Welfare Indicator”. It combines a welfare index, based on the

discounted sum of utilities, and an index of rights to minimum needs, which are endogenously

defined. In contrast, Martinet [42] focuses on the set of minimal rights that can be guaranteed

to all generations, without considering welfare. There are no possible trade-offs between

2Though, the initial capita stock must be sufficiently high not to perpetuate poverty.
3Provided that the economy is not distorted and, as raised by Solow [60], that the natural resource and

produced capital goods/inputs display a degree of substituability.

139



generations. The aim is to highlight the trade-offs embodied in the different objectives

pursued and determine sustainable thresholds.

Fisheries resources economics

Fisheries resources are classified as renewable resources although commercial depletion may

occur. This situation corresponds to the case where a stock is so low that it is unprofitable

to fish for it. In fisheries economics, optimality is generally obtained by maximizing the

expected discounted sum of net revenues from the harvest of a resource under uncertainty.

In this field, the discounted expected utility criterion, classically applied in economic theory,

is not consistently retained. In fact, as exposed in §3.1.2, the expected discounted utility

criterion is not a reference criterion in the practice of fisheries management neither.

Fisheries resources are described by dynamical models resting upon biological foundations.

Using a logistic framework to describe population dynamics, the Schaefer [57] model is one

of the first model to illuminate the connections among fishing, stock dynamics, and various

potential long-run equilibria. The work of Schaefer [57] gave birth to the key notion of

maximum sustainable yield (MSY) 4 (Gordon [32]). Today, this notion is criticized for several

reasons, in particular because it promotes a single-species management approach.

Since then, fisheries dynamic models attempt to capture the ecosystem dimension of

the exploited system rather than the single demographic structure of the exploited stock,

although this is already a challenging exercise. Of course, various degrees of simplifications

are introduced on the basis of biologists work to reduce complexity of the analysis.

Thus, the standard fishery management problem comes down to maximizing the expected

discounted net sum of fishing revenues with respect to harvesting effort, given a fishery

dynamic model, and may be subject to different sources of uncertainty. The production

structure can be fixed, or not, depending on the fishery management issue that is analyzed

(i.e. the optimal investment in fleet capacity, the optimal harvesting time, the minimization

of monitoring costs, etc.).

Under uncertainty, if the distribution of random variables is assumed to be fully known,

4The largest yield that can be taken from a species’ stock over an indefinite period, without decreasing

the population size.
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such a setting is solved by means of a stochastic dynamic programming equation, where state

variables generally correspond to biomasses, and controls to harvesting efforts. Optimality

is reached when the value function has converged to a stable outcome. The optimal control

policy is then directly expressed as a function of the current state variables (Miranda and

Fackler [48]).

However, the application of optimal control theory to fisheries management suffers from

some criticisms. The economic rationale of discounting future resource rents leads an optimal

fish stock to depend on the discount factor, the distribution of uncertainty and different

economic/biological parameters of the problem. The higher is the discount factor the closer

will be the stationary stock from zero. Clark et al. [18] allege that, in some cases, the

exhaustion of a species can be economically optimal. Casting fisheries resources into market

assets, the authors explain that “the social rate of discount is to be seen as reflecting the

opportunity cost of investing in the resources”. Thereby, when the rate of return of a common

class of assets is greater than the expected return of the fish stock at stake, it is more profitable

to exhaust the resource and invest subsequent revenues rather than to harvest it at growth

rate. This approach to fishery management is clearly anti-egalitarian if the rents from resource

exhaustion are not invested into reproducible and substitutable productive capacity.

Furthermore, though maximizing a criteria has the advantage to always5 propose an

answer to the problem, it stresses a unique decision rule or control policy. No alternative/sub-

optimal policies are explored. Though, the transition towards the optimal states dictated by

the decision rule may cause economic hardship, which a society is not willing undertake.

Risk management in fisheries economics

A part of fisheries economics literature tackles the consequences of biological uncertainty on

the optimal control policy, the optimal regulatory setting or instrument, assuming that the

probability density of uncertain variables are known, i.i.d. process. Most often, the regulator

is assumed to set policy instruments before uncertainty is realized, within an exercise period.

These random variables convey different sources of uncertainty, ranging from imperfect infor-

5Given that some general conditions on the ingredients/functions of the optimization programme are

satisfied (C. P. Simon [11]).
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mation regarding the size of fish stocks, uncertain population dynamics or stock-recruitment

relationships, to environmental stochasticity.

Let us overview the findings of a some of these studies. Mirman and Spulber [49] analyzes

how markets deal with the presence of stochastic biological growth to allocate renewable

resources over time. A competitive allocation of property rights achieves the optimal expected

rents level, given endogenous prices and a complete set of contingent futures markets. The

open access property arrangement with constant price is also examined. It this setting, it

is shown that the average harvesting decisions, based on current stock levels may be very

misleading since a stock which may survive “on average” may be extinct in a finite number

of years with probability one.

Anderson [2] questions how uncertainty affects the choice of instrument in a dynamic

optimization setting. A stochastic model of a dynamic fishery is used to compare the relative

performance of a tax on landings and a harvesting quota in this paper. He finds that the

instrument that performs most efficiently depends on the specific fishery being regulated. Ad-

dressing the same question, Weitzman [64] considers a stochastic stock-recruitment relation,

and shows that the first-best solution can be reached only by a tax system. The dilemma

between price and quantity controls under uncertainty has actually been much discussed in

different fields of the economic literature (Anderson and Young [3], Dasgupta and Stiglitz

[20], Fishelson and Flatters [30], Spence [61], Weitzman [63]).

Because managing fisheries is a interdisciplinary topic, part of the literature that addresses

the impact of risk on the exploitation of renewable resources actually straddles biosciences

and economics issues. As an example, (Reed [55]) shows a constant-escapement feedback

policy is optimal in maximizing expected discounted net revenue from an animal resource

whose dynamics are described by a stochastic stock-recruitment model, provided that unit

harvesting costs satisfy certain conditions.

Based on a logistic growth curve, Benddington and May [6], Doubleday [25], Sissenwine

[58] argue that for a given level of environmental randomness, population numbers and yield

exhibit greater fluctuations as harvesting effort increases, specially as the point of maximum

sustainable yield (MSY) is approached or exceeded. May et al. [46] investigates whether

this evidence holds for other growth curves, focusing density-independent noise. The authors
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find that this result remains broadly true for other recruitment models, and concludes that

important trade-offs need to be considered between the high levels of fluctuation and unpre-

dictability generated by the quest of highest yield on the one hand, and on the other the

lower variance and greater stability accompanying lower yields.

Mendelssohn [47] compares the outcomes derived from two extreme policy strategies for

stochastic harvesting models. One approach is to maximize the long-run expected returns,

given the density probability of environmental randomness. The other is to identify the

decision rule that minimizes the probability for the natural population to violate a minimum

threshold size. The rent optimizing strategy gives a higher total expected discounted harvest

but the risk minimizing strategy performs better in reducing the risk of being in the low

population size. The authors show that, for many problems, the risk minimizing strategy

either does not exist, or else it is an “extreme” policy that is equally undesirable.

One may object that this conclusion depends on the likeliness of highly adverse events.

Overall, this study nicely illustrates the core dilemma faced by management authorities: how

to set quotas on a randomly varying population such as to avoid severe depletion of the stock

level when it has been overestimated, but also, so as not to undermine catches below what

could have been caught safely in case of underestimation? Depending on the reliability of

available information, should policy instruments adapt to the average risk, the extreme one?

These questions constitute a common challenge in the economics field.

Indeed, let us recall that the studies presented above rest upon the assumption that the

probability density of stochastic variables is fully known. Hence, the questions that arise are

how are the models of these random processes defined? What strategy should be adopted

when too little information on biological dynamics is available?

A frequent method for specifying the probability distribution of uncertainty scenarios

in marine science is the Bayesian approach (Clark [16], Clark and Kirkwood [17], Ludwig

and Walters [41], Punt and Hilborn [52]). This method is advocated by the FAO for stock

assessment in fisheries (Punt and Hilborn [53]). The Bayesian approach consists in building

a prior density distribution on the basis of historical estimates, as well as, through inferences

from other species, and updating this prior with current data to define a posterior.
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3.1.2 The operational approach

In practice, management or effort strategies are evaluated in “multicriteria” frameworks with

no clear axiomatic foundations. The key scientific concept used to provide regulatory mecha-

nisms recommendations in practical decision making literature is a “management procedure”

(MP). This concept was developed by the International Whaling Commission (IWC) in the

late 1980’s. MPs are defined by Butterworth and Punt [10] as a set of rules which describes

recommendations for management actions. For instance, a constant harvest rate rule is a

management strategy. It has already been experimented on the Alaskan Pacific halibut, and

on other fisheries. A MP is analogous to a control policy or decision rule in the economics

literature. Ideally, to select a MP, performance of different MPs should be evaluated and

ranked with respect to each decision criteria. In case of interactions between two species a

“joint management procedures” is developed.

In spite of many criticisms (Larkin [37]), the maximum sustainable yield (MSY) is a

management benchmark which has been, and is still, extensively targeted by management

authorities, among other criteria. The IWC classifies as sustained management stocks, those

for which the management strategy harvests 90% of the estimated MSY if the biomass exceeds

the corresponding MSY stock level (MSYL). The quota is reduced by a additional 10% for

every 1% that the stock falls below the MSYL.

The Management strategy evaluation (MSE) is a method elaborated for comparing man-

agement procedures, which takes into account uncertainty, conflicting objectives and time

horizon. As detailed in Sainsbury et al. [56], the MSE approach consists in defining an oper-

ational set of management objectives, and evaluating the performance of various alternative

MPs with respect to the specified objectives, taking into account uncertainty in the modelling

processes. The method consists in testing a particular MP in a great number of simulations

over a given time period, each simulation representing a plausible “state of nature” (scenario),

and in computing statistics over the simulation results to summarize the performance of the

particular MP. Generally, this is done by ways of mathematical expectations or of weighted

summations of the different scenarios postulated.

The weakness of this method is that it is not able to prescribe an optimal bioeconomic

strategy. That is, once the performance statistics are computed for each MP, comparison
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of the likely distance of corresponding management actions to the conflicting management

objectives requires to make a trade-off choice. This approach thus provides a clear description

of the consequences of management procedures but with no common currency between the

different objectives and risks to sum up the results and rank the alternative management

procedures. To complement the analysis, one can plot MPs in a two dimensional space (each

quantifying an objective), and draw a trade-off curve like do Oliveira and Butterworth [51],

but the decision method remains visual. Consequently, the decision maker is left with a

multi-criteria decision problem and is free to apply his own weighting and risk preferences to

alternative objectives.

3.1.3 The viability approach

The stochastic viability theory (De Lara and Doyen [21]) aims at analysing if there exists

states for which dynamics of a system, under uncertainty, and constraints describing given ob-

jectives, are compatible. These constraints are supposed to maintain the existence and good

health of the system. We set forward the stochastic viability approach to address fishery

management issues as it accounts for risk, several criteria — here conflicting sustainabil-

ity objectives — and provides a common value to assess and rank alternative management

procedures. In this respect, this approach can be viewed as a scientific tool to support

multi-criteria decision making. Indeed, decision bodies in charge of examining management

actions are generally faced with several indicators providing information on risk and benefits

of alternative options, but lack of a measure embracing a plurality of criteria.

Basically, the stochastic viability framework consists of a control dynamic model subject

to uncertainties, under constraints. Scenarios are sequences of uncertainties over the planning

horizon. The set of scenarios is equipped with a probability distribution. The stochastic

viability approach allows to identify control strategies — also called feedbacks6 — such that

a set of constraints, representing various objectives, is respected with maximal probability.

This probability is called maximal viability probability and constitutes our common value to

assess management actions. The higher it is, the lower is the risk of violating constraints.

6A feedback strategy is a rule mapping states towards controls. It corresponds to the decision rule in the

economists’ dialect, or to the management strategy in the operational approach.
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Technically, control strategies are closed loop control systems: the control is dependent on

the state. They can be computed by means of a stochastic dynamic programming equation

under proper assumptions.

The theory concentrates on initial states as follows. Starting from a so-called stochastic

viable state, it seeks a control strategy guaranteeing constraints for all dates of a time span,

whatever the uncertainty scenario, with a maximal probability. The set of stochastic viable

states is called the stochastic viability kernel. Several strategies may achieve the same vi-

ability probability level for a given initial state. The concept of stochastic viability kernel

is convenient as it allows to delineate the bundle of initial states attached to any level of

guarantee with respect to constraints. Thus, it conveys a great deal of information on the

feasibility of pursued objectives. It also shades light on the set of states to be avoided. Fur-

thermore, it is possible to observe the sensitivity of the stochastic viable states with respect

to constraints, by varying their level.

Adapting this framework to bioeconomic systems allows to seek consistency between a

fisheries dynamics and conflicting economic and conservation objectives. As in the economics

or marine science literature, state variables generally correspond to biomasses and controls

to harvesting efforts, while uncertainty can take various forms depending on its source.

A set of binding thresholds describes the sustainability of the system. The respect of

these thresholds ensures that ecosystems are likely to persist as source of goods and services.

Obviously, the (stochastic) viability approach does not fit into the economic rational of

maximizing the resource rent. It is positive rather than normative. Actually, it is closer to

what is undertaken in practice (see §3.1.2). Because it is backed on safety thresholds, the

viability approach is particularly suited to the management of fisheries, which is increasingly

governed by biological reference points constituting bottom line for stock depletion (Smith

et al. [59]). Economic thresholds are commonly assumed to be provided by policymakers

rather than derived from a fishery production structure. However, it is certainly possible to

introduce such modelling component in the viability theoretical framework.

What is more, thresholds are generally set constant over time, implying that all genera-

tions are subject to the same constraints. This formalization of the problem is in line with the

egalitarian vision of resource exploitation advocated by Rawls [54], Solow [60]. In fact, Doyen
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et al. [28] demonstrate that the viability framework allows to characterize the maximin path

as a particular viable trajectory. Going further, the authors explain that “whenever the

solution of a given optimization problem can be formulated in terms of a viability kernel,

the solution inherits the properties of the kernel”. This result follows from the fact that the

viability approach aims at describing all the evolutions of a dynamical system, that satisfy,

at every times, given objectives, with a maximum probability in the stochastic setting. It

permits to explore alternative management options, which offers flexibility to the decision

maker.

As exposed in §3.1.2, part of the economists would object that addressing management

goals without accounting for society’s time preference will result in unadapted policy rec-

ommendations i.e. which imposes sacrifices in terms of welfare, to individuals that are not

willing to bear them. Nonetheless, given that wildlife populations often display wide fluctu-

ations in an unpredictable way, fisheries management goals and schemes should be updated

regularly, in accordance to the new data on stock assessments. Hence, if the time frame of

a management exercise does not exceed a couple of years, keeping sustainability constraints

unchanged appears sensible in view of the lifetime of one generation.

In the absence of uncertainty, problems of dynamic control under constraints can be ad-

dressed applying the viability theory (Aubin [4]). An essential feature of the deterministic

viability theory is that all constraints must be satisfied at all date. The deterministic via-

bility theory does not allow for trade-off between objectives or generations which guarantees

intergenerational equity when constraints are static.

Several studies have applied the deterministic viable control method to the management of

natural resources (Martinet and Doyen [43]) and, in particular, to fisheries management (Béné

et al. [8], Chapel et al. [12], De Lara et al. [23], Eisenack et al. [29], Martinet and Doyen

[43], Martinet et al. [44, 45]) . Béné et al. [8] illustrate the application of such tool to a fish-

ery, in a deterministic framework, and determine irreversible over exploitation configuration

of the renewable resource. Martinet and Doyen [43] exhibit the sustainable technological

configurations and policy options required to obtain a perennial production−consumption

system based on the use of an exhaustible natural resource with the viability approach. De

Lara et al. [23] also uses the viability control approach to define under which condition a
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management strategy based on spawning stock biomass is sustainable. These studies show

that, in deterministic cases, the viability approach seeks for a path belonging to acceptable

corridors.

It is true that the maximization of a criterion results in smoother responses with respect to

stocks and controls, than the binary sorting produced by minimal thresholds. Yet, boundaries

are generally set on states and controls values as well, in the formulation of an optimization

problem. Moreover, the stochastic viability theory allows to soften the deterministic approach

by accepting constraint violations in few scenarios, and evaluates the probability of those

that satisfy the requirements at all time. Thanks to the common value provided by this

method —the viability probability— modifying threshold levels enables to evaluate trade-offs

between objectives in their own units, given an initial state. As an example, it is possible to

analyze how the maximum viability probability varies with respect to the different objectives

a policymaker considers. Supposing a two-species setting, requiring a high yield over both

species will result in a low viability probability, whereas a low catch thresholds should lead to

a higher viability probability. Likewise, at a given viability probability level, setting a high

minimal yield for one species will require lowering or increasing the harvest threshold of the

other species, depending on the relationship linking them.

Studies applying the stochastic viable framework are less numerous (De Lara and Martinet

[22], Doyen et al. [27, 28]). De Lara and Martinet [22] applies the stochastic viability approach

to deal with a management issue in which two species exhibit technical interaction. In the Bay

of Biscay Nephrops, trawlers fishery targets nephrops and gets juvenile hakes as a bycatch.

As a result catched hakes will never become neither biologically mature nor economically

available for the Hake fishery. Using the stochastic viability approach, the authors of this

article succeed in defining an optimal management rule which addresses conflicting objectives

and accounts for risk and resource dynamics.

The robust viability approach (De Lara and Doyen [21]) is an extreme case of the stochas-

tic one. It seeks all the evolutions of a dynamical system that satisfy, at all times, given

objectives, despite of uncertainty. This means constraints must be guaranteed with probabil-

ity of one. Applied to the context of fisheries resources, species production and preservation

requirements should be guaranteed whatever the scenarios of uncertainties affecting the dy-
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namics. In contrast to the stochastic framework, the robust framework does not require to

assign probabilistic assumptions to uncertainty scenarios, as failure or success with respect

to scenarios are the only options. Thus, as in the deterministic approach, the robust viability

theory allows no trade-offs between pursued objectives or time periods: all constraints must

be satisfied for all times, whatever the uncertainties.

Applying such processing of uncertainty in the management of fisheries — a complete

elimination of risk — may lead to pointless economic losses for society if the probability of

catastrophic events is low. Yet, it can be adapted in common situations where very little

information is available on the distribution of uncertainty. When a prior distribution cannot

be derived as no historical biomass time series are available, the robust approach can be

viewed as convenient.

Very few studies have undertaken a robust approach to these issues (Béné and Doyen [7]).

In what follows, we apply the stochastic viability theory to a discrete-time two-species

dynamical model. Uncertainties take the form of environmental disturbances affecting each

species growth factors, and are assumed to take their values in a given set. These disturbances

may account for environmental randomness or a misspecification of population dynamics.

Constraints are imposed for each species: a minimum safe biomass level, usually identified

by biologists, and a minimum required harvesting level assumed to ensure economic needs.

Our aim is to explore the consistency of various production levels with fixed preservation

objectives and fisheries dynamics subject to uncertainty. In this perspective, we proceed

to a numerical application of the stochastic viability approach to the Peruvian anchovy-

hake upwelling ecosystem between 1971 and 1981, which dynamics is subject to uncertainty.

Starting from an initial biomass couple, we provide the maximum viability probability of

satisfying various levels of minimal catch thresholds, given fixed minimal biomass thresholds.

After exposing our assumptions on the uncertainty sets and on the probability distribution

of uncertainty scenarios (we consider different uncertainty sets and probability densities to

appraise the sensitivity of our results to these hypothesis), we exhibit the trade-offs between

various levels of production requirements of each species, respectively.

The data that is available on the the Peruvian hake-anchovy upwelling ecosystem is

provided by El Instituto del Mar del PerÃº (IMARPE). Biomass time series are limited to
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ten points per species. Thereby, it is not possible to accurately specify stochastic processes

that affect this ecosystem. Thus, the probability distribution of uncertainties that we assume

in our application is arbitrary. Our stochastic viability analysis of the harvested Peruvian

anchovy-hake upwelling ecosystem is undertaken to illustrate how this approach deals with

ecosystem management issues.

Content of the few data with which we must deal, we conduct, in a second stage, a

robust viability analysis of this same ecosystem model under risk and constraints, focusing

on the concept of robust viability kernel. That is, the set of initial biomasses for which

their exists at least one effort strategy such that all constraints are satisfied at all times,

whatever the uncertainty scenario. Thus, starting from a robust viable biomass couple, it is

possible to drive the system on a sustainable path along which catches and biomasses stand

above production and biological minimums, despite uncertainties. Reducing uncertainties

to zero amounts to dressing the problem as deterministic. We proceed to a comparison of

deterministic and robust viable kernels to shade light on the distance between the outcomes

of these two extreme approaches: ignoring uncertainty vs. hedge against any risk.

We do not advocate the robust viability approach as a suitable decision tool for fishery

management, since it involves economic costs for society, that are not justified when no

catastrophic or irreversible events are expected, or when their likeliness is low. Our aim is to

emphasize the impact of accounting for uncertainty on management possibilities that arise

from a same methodology. It is also an opportunity to emphasize the different analysis and

the wide range of information that can be derived from the viability framework to support

decision making in the sustainable management of fisheries.

3.2 The stochastic viability approach

In this section, we first present a class of generic harvested nonlinear ecosystem models with

uncertainty and the associated stainability constraints. Next, we expose how the stochastic

viability theory provides the maximum viability probability of satisfying a set of constraints,

given a dynamic system under uncertainty. We define the concept of ecosystem viable yields

under risk. At last, we proceed to a numerical application of the stochastic viability analysis
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to the Peruvian anchovy–hake fisheries between 1971 and 1981. Within this application,

we illustrate the trade-offs between the different management objectives pursued. We also

emphasize the influence of the assumption on the probability distribution of uncertainties,

on the likeliness of achieving policy goals.

3.2.1 A generic ecosystem model with uncertainty and the associ-

ated sustainability constraints

To avoid technical difficulties and ease conceptual understanding, we consider a discrete-time

dynamic model, with two species, each targeted by a specific fleet.7 Each species is described

by its biomass: the two-dimensional state vector (y, z) represents the biomass of both species.

The two-dimensional control vector (vy, vz) comprises the harvesting effort for each species,

respectively, each lying in [0, 1]. Two terms εy and εz correspond to uncertainties affecting

each species, respectively. The discrete-time control dynamical system we consider is given

by 



y(t+ 1) = y(t)Ry

�
y(t), z(t), εy(t)

��
1− vy(t)

�
,

z(t+ 1) = z(t)Rz

�
y(t), z(t), εz(t)

��
1− vz(t)

�
,

(3.1)

where t stands for time (typically, periods are years), and ranges from the initial time t0 to

the time horizon T . The two functions Ry : R3 → R and Rz : R3 → R represent biological

growth factors, and are supposed to be continuous.

The property that the growth factor Ry(y, z, εy) of species y depends on the other species

biomass z (and vice versa) captures ecosystem features of species interactions. Furthermore,

these interactions are complicated by uncertainties εy and εz. After two periods, εy(t) in-

directly impacts z(t + 2) through y(t + 1), so that both disturbances affect both species.

According to the nature of the interaction between y and z, uncertainties affecting one of the

species will constitute lagged positive or negative externalities for the other species. Catches

are given by vyyRy

�
y, z, εy

�
and vzzRz

�
y, z, εz

�
(measured in biomass).

This model is generic in that no explicit or analytic assumptions are made on how the

growth factors Ry and Rz indeed depend upon both biomasses (y, z) and upon the uncer-

tainties
�
εy, εz

�
, except continuity.

7This approach can be easily extended to more than two species in interaction.
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Uncertainties (εy(t), εz(t)) in (3.1) are assumed to take their values in a known two-

dimensional set:

(εy(t), εz(t)) ∈ S(t) ⊂ R
2. (3.2)

An uncertainty scenario is defined as a sequence of length T − t0 of uncertainty couples:

�
εy(·), εz(·)

�
= ((εy(t0), εz(t0)), . . . , (εy(T − 1), εz(T − 1))) ∈

T−1�

t=t0

S(t). (3.3)

Now, we propose to define sustainability as the ability to respect preservation and pro-

duction minimal levels for all times, building upon the original approach of Béné et al. [8].

For this purpose, we consider:

• on the one hand, minimal biomass levels y� ≥ 0, z� ≥ 0, one for each species,

• on the other hand, minimal catch levels Y � ≥ 0, Z� ≥ 0, one for each species.

One will have noticed that our economic constraints — minimal catch levels — do not

account for the production costs faced by each fishery, nor for the ex-vessel price of the

targeted species. The fisheries’ productive structure and a demand model could be developed

to complete our theoretical framework. Yet, our analysis fits into the scenario where a

policymaker knows what are the required production levels that meet social and economic

needs of the community he heads, and comes to us in order to identify the feasibility of these

management objectives.

3.2.2 Viable scenarios

The set of scenarios is denoted by

Ω =
T−1�

t=t0

S(t) . (3.4)

We suppose that Ω is equipped with a probability distribution P such that (εy(t), εz(t)) are

independently distributed w.r.t. time t. This restrictive assumption is a key ingredient to

obtain a dynamic programming equation with state
�
y, z

�
in §3.2.3.

An effort strategy γ is a sequence of mappings from biomasses towards efforts as follows

γ = {γt}t=t0,...,T−1, with γt : R
2 → [0, 1]2 . (3.5)
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Given
�
y0, z0

�
, an effort strategy γ as in (3.5) and the dynamic model (3.1) jointly produce

state paths by the initial state
�
y(t0), z(t0)

�
=

�
y0, z0

�
and the closed-loop dynamics





y(t+ 1) = y(t)Ry

�
y(t), z(t), εy(t)

��
1− γt(y(t), z(t))

�
,

z(t+ 1) = z(t)Rz

�
y(t), z(t), εz(t)

��
1− γt(y(t), z(t))

�
,

(3.6)

and control paths by

(vy(t), vz(t)) = γt(y(t), z(t)) t = t0, . . . , T − 1 . (3.7)

Notice that, as in (3.7), controls (vy(t), vz(t)) are determined by constantly adapting to the

state (y(t), z(t)) of the system, itself affected by uncertainties (εy(t− 1), εz(t− 1)).

We denote Ωγ,t0,(y0,z0) the subset of scenarios
�
εy(·), εz(·)

�
associated to

�
y(t0), z(t0)

�
=

�
y0, z0

�
, for which

• preservation (minimal biomass levels): ∀t = t0, . . . , T ,

y(t) ≥ y� , z(t) ≥ z� , (3.8)

• and production requirements (minimal catch levels): ∀t = t0, . . . , T − 1 ,

vy(t)y(t)Ry

�
y(t), z(t), εy(t)

�
≥ Y � , vz(t)z(t)Rz

�
y(t), z(t), εz(t)

�
≥ Z� , (3.9)

hold true, and where
�
y(t), z(t)

�
and

�
vy(t), vz(t)

�
are given by (3.6) and (3.7). Hence,

Ωγ,t0,(y0,z0) is the set of viable scenarios with respect to γ. That is, scenarios for which the

biomasses and efforts trajectories defined by strategy γ are consistent with targeted ecological

and economic goals.

3.2.3 Viability probability and ecosystem viable yields under risk

Given an initial state (y0, z0), initial time t0 and horizon T , the viability probability is

P[Ωγ,t0,(y0,z0)], where P is the probability attached to the set Ω of scenarios in (3.4). It

reflects the level of guarantee provided by the strategy γ over the specified objectives (3.8)–

(3.9). The maximal viability probability is the supremum— sup
γ

P[Ωγ,t0,(y0,z0)] — over all effort

strategies γ. This quantity measures the best that can be achieved in terms of probability
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to guarantee preservation and production objectives (3.8) and (3.9). There may exist several

strategies able of achieving the maximal viability probability w.r.t. targeted objectives over

the time horizon T .

Until now, objectives (3.8) and (3.9) have been treated as equally important. In what

follows, we let production thresholds Y � and Z� in (3.9) vary and observe how the maximum

viability probability evolves w.r.t. Y � and Z�, while treating preservation objectives y� and

z� in (3.8) as a binding reference. We do so for different assumptions on the probability

distribution attached to the set Ω of scenarios in (3.4)

Freezing conservation rather than economic constraints is justified as follows: violating a

minimal catch threshold in period t may cause hardship to fishermen in that period, whereas

violating a minimal biomass threshold in period t can have longer term consequences on

both types of objectives, as biological thresholds generally correspond to the biomass below

which recruitment becomes substantially reduced (Beddington et al. [5]). The “overfished”

stock may take several periods to recover, and catches will remain undermined alongside.

Nonetheless, on an experimental basis, we also report the outcome of a trade-off analysis

between preservation and production objectives.

Starting from a biomass couple (y0, z0), with y0 > y�, z0 > z�, we depict the maxi-

mum viability probability of satisfying various levels of catch thresholds Y � and Z�, at given

biomass minimal safety levels y�, z�. In this respect, the maximum viability probability

sup
γ

P[Ωγ,t0,(y0,z0)] can be expressed as a function of minimal catch levels Y � and Z�, that we

denote φ(Y �, Z�). Notice that the strategies γ that maximize the viability probability will

most likely differ according to the catch thresholds at stake.

Ecosystem viable yields under risk at confidence level β, are the species minimal catch

levels — here couples (Y �, Z�) — that can be guaranteed with a probability at least equal to

β: φ(Y �, Z�) ≥ β. By accepting a low degree of constraint violation, the stochastic viability

approach allows for trade-offs between production constraints, and between time periods.

In § 3.2.2, we assumed that (εy(t), εz(t))t=t0,...,T−1 are independently distributed over

time, under a probability distribution P. Therefore, effort strategies maximizing the via-

bility probability can be computed by means of a dynamic programming equation with state
�
y, z

�
(De Lara and Doyen [21], Doyen and De Lara [26]), associated to dynamics (3.1) preser-
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vation (3.8) and production (3.9) minimal thresholds. Because we investigate several levels

of catch thresholds, and because the number of constraint dimensions we consider is high (i.e.

two per species), resolution requires a powerful computational tool. To carry the numerical

resolution, we discretized over state, control variables and catch thresholds (see §C.1).

3.2.4 Application to the anchovy–hake Couple in the Peruvian

Upwelling Ecosystem (1971–1981)

We now apply the above stochastic viability framework to an analysis of the Peruvian

anchovy–hake fisheries between 1971 and 1981. For this, we extend the model in De Lara

et al. [24] to the stochastic case. We first develop our assumptions on the uncertainty set

S(t) in (3.2) and on the probability distribution P that equips the set Ω of scenarios in (3.4).

We then display how the maximum viability probability φ(Y �, Z�) defined in § 3.2.3 varies

with respect to a range of hake-anchovy minimum catch thresholds.

3.2.5 Lotka-Volterra dynamical model with uncertainties

The Peruvian anchovy-hake system is modeled as a prey-predator system, where the anchovy

growth rate is decreasing in the hake population. We describe this interaction by the following

discrete-time Lotka-Volterra dynamical system

y(t+ 1) = y(t)

Ry

�
y(t),z(t),εy(t)

�
� �� �
�
εy(t) +R−

R

κ
y(t)− αz(t)

� �
1− vy(t)

�

z(t+ 1) = z(t)
�
εz(t) + L+ βy(t)

�
� �� �

Rz

�
y(t),z(t),εz(t)

�

�
1− vz(t)

�
,

(3.10)

where R > 1, 0 < L < 1, α > 0, β > 0 and κ = R
R−1

K, with K > 0 the carrying capacity

for the prey. The variable y stands for anchovy biomass and z for hake biomass. The

model (3.10) is a decision model the purpose of which is not to provide detailed biological

“knowledge” about the Peruvian upwelling ecosystem, but rather to capture the essential

features of the system in what concerns decision making.

Managing prey-predator interactions complicates the achievement of sustainability objec-

tives as an “ever increasing biomass” of one species does not reflect an ecological improve-
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ment with respect to the ecosystem. That is, beyond the trade-off entailed by production and

preservation objectives, prey-predator interactions introduce a trade-off between fish stocks

levels in the sense that the enhancement of a biomass necessarily takes place at the expense

of the other.

The five parameters of the deterministic version of the Lotka-Volterra model (that is,

with εy(t) = 0 and εz(t) = 0 in the dynamical system (3.10)) have been estimated in De

Lara et al. [24], based on 11 yearly estimations of the Peruvian anchovy-hake biomasses and

catches over the time period 1971–1981. Their values are given in Table 3.1.

Parameters Estimates

R 2.25 year−1

L 0.945 year−1

κ 67113 103 tons

K 37285 103 tons

α 1.220 10−6 tons−1

β 4.845 10−8 tons−1

Table 3.1: Parameters of the Lotka-Volterra model (3.10)

El Instituto del Mar del PerÃº (IMARPE) has a precise knowledge of the local fishermen

catch requirements and the biological dynamics of the Peruvian anchovy–hake ecosystem.

We follow the thresholds recommended by IMARPE in IMARPE [35, 36] for the 1971–1981

time period:

• minimal biomasses: y� = 7, 000 ktons and z� = 200 ktons in (3.8),

• minimal catches: Y � = 2, 000 ktons and Z� = 5, ktons in (3.9).

3.2.6 Uncertainty sets and probability distributions of uncertainty

scenarios

Here below, we specify the uncertainty sets S(t) in (3.2), in which the uncertainties εy(t)

and εz(t) in (3.10) take their values. For the sake of simplicity, we consider finite, stationary
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uncertainty sets S = S(t), though this feature is not required for a dynamic programming

equation to hold true. We compute the maximum viability probability of satisfying a range

of anchovy–hake minimal yields, given safety biomass levels, and two different uncertainty

sets S. First, we form an uncertainty set SE with empirical values. Second, we refine this

set.

We equip the two retained sets S with two arbitrary probability distributions to appraise

the sensitivity of our results to the assumption on the stochastic process inherent to the

Peruvian anchovy–hake ecosystem. First, we test for the uniform distribution, and the set

Ω of scenarios with the product probability, hence uniform too. The second probability

distribution we consider accounts for the density of empirical uncertainties in SE.

Empirical uncertainties set and a refinement

Figure 3.1 depicts the estimated biomasses of Peruvian anchovy and hake over the years

1971–1981 and the simulated biomasses with the deterministic version of the Lotka-Volterra

model (that is, with εy(t) = 0 and εz(t) = 0 in the dynamical system (3.10)), given the

harvesting efforts estimated over years 1971–1981 8.

The time period 1971–1981 is denoted by t = t0, . . . , T , with t0 = 0, and T = 10.

Let (ȳ(t), z̄(t))t=t0,...,T and (v̄y(t), v̄z(t))t=t0,...,T−1 denote the estimated biomass and effort

trajectories. We set ε̄y(t) and ε̄z(t) implicitly defined by




ȳ(t+ 1) = ȳ(t)
�
ε̄y(t) +R− R

κ
ȳ(t)− αz̄(t)

��
1− v̄y(t)

�

z̄(t+ 1) = z̄(t)
�
ε̄z(t) + L+ βȳ(t)

��
1− v̄z(t)

�
,

(3.11)

so that (3.10) is satisfied. Figure 3.2 displays the points {(ε̄y(t), ε̄z(t))|t = t0, . . . , T − 1},

(there are 10 points as 1971 observations are used as starting points for simulating biomasses).

We denote ε̄min
y = mint ε̄y(t) = −0.25, ε̄max

y = maxt ε̄y(t) = 1.54, ε̄min
z = mint ε̄z(t) = −0.38

and ε̄max
z = maxt ε̄z(t) = 0.088.

8Precisely, the biomass couple estimated in 1971 constitutes our starting state for simulating species

biomasses. We plug this initial estimate of the anchovy–hake biomass couple and the 1971 catch values of

each species in the deterministic version of the Lotka-Volterra model described in (3.10). This allows us to

simulate the value of both biomasses in the following period. We renew this operation for each date until

1981, except that the current biomass couple we plug in the model is henceforth, the simulated one, while

still considering the estimated catch couple of the current date.
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(c) Anchovy (d) Hake

Figure 3.1: Estimated and simulated biomasses over 1971–1981

We choose to base our analysis on the two following uncertainty sets:

• The empirical uncertainties set

SE = {(ε̄y(t), ε̄z(t))|t = t0, . . . , T − 1} ∪ {(0, 0)}, (3.12)

which is made of the ten empirical uncertainty couples (see diamonds in Figure 3.2)

and the uncertainty couple (εy, εz) = (0, 0) (corresponding to the deterministic case).

• The refined empirical uncertainties set, SER, made of 900 uncertainty couples produced

by a 30×30 grid over the surface [ε̄min
y , ε̄max

y ]× [ε̄min
z , ε̄max

z ], including all the uncertainty

couples of SE (see the grid in Figure 3.3).
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Figure 3.2: Empirical uncertainties (ε̄y(t), ε̄z(t))t=t0,...,T−1 characterized in (3.11)

Figure 3.3: Uncertainty sets SE (diamonds) and SER (grid)

The two probability distributions of uncertainties in S we test for are:

• We equip SE and SER with the uniform distribution law, denoted Pu.

• We equip SE with a distribution Pdd (Figure 3.4), emulating the density of uncertainty

couples in SE:

Pdd = [0.005, 0.02, 0.02, 0.02, 0.23125, 0.005, 0.005, 0.23125, 0.23125, 0.23125].
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Figure 3.4: Density dependent probability distribution Pdd of uncertainties in SE

Both assumptions are arbitrary and considered for experimental purpose.

3.2.7 Maximum viability probability of satisfying production and

preservation requirements in the Peruvian anchovy–hake fish-

ery

We report how the maximum viability probability of satisfying a range of anchovy-hake

minimal yields varies, for different uncertainty sets S in (3.2) and different probability distri-

butions attached to set Ω of scenarios in (3.4). This allows us to observe how a change in the

production requirement of one species affects that of the other species, at a given confidence

level β. In complement, we report the maximum viability probabilities w.r.t. variations

in one species’ preservation constraint and the other species’ production constraint, all else

being equal.

These numerical analyzes are intended to shed light on the trade-offs between management

objectives involved by the anchovy–hake fisheries in the Peruvian Upwelling ecosystem. The

aim is also to examine how assumptions on uncertainty influences our outcomes. Note that,

for all results displayed in this section, the time horizon chosen for simulations is T=10.
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Ecosystem viable yields under risk with the uniform distribution of uncertainties

Figure 3.5 displays the maximum viability probability as functions of the minimal catch levels,

φE(Y
�, Z�) and φER(Y

�, Z�), obtained given uncertainty sets SE and SER, both equipped

with the uniform distribution, Pu. Alongside, minimal biomass thresholds are kept constant,

and set equal to IMARPE’s recommendations for the anchovy–hake couple in the Peruvian

upwelling ecosystem: y� = 7, 000 kt and z� = 200 kt (see §3.2.5).

We consider 15 equidistant hake minimal catch thresholds, Z�, ranging from 2 to 250 kt,

against 15 equidistant anchovy minimal catch thresholds, Y �, ranging from 1,000 to 10,000

kt. For each minimal yield couple, (Y �, Z�), the maximum viability probability is computed

given the initial biomass couple estimated in 1971, namely (y0, z0) =(11,019 kt, 347 kt). This

initial state of the fishery complies with IMPARPE’s conservation requirements.

According to Figure 3.5, wether the dynamic system is exposed to Card(ΩE) = (11)10 or

Card(ΩER) = (900)10 scenarios, the maximum viability probability of guaranteeing various

catch couples, (Y �, Z�), at given minimal biomass levels, (y�, z�), is sensibly the same. As we

assume that scenarios are equipped with a uniform probability distribution, the smaller is

the set of scenarios tested, the higher is the probability attached to a single scenario, and vise

versa. This breakdown of the weight attached to each scenario seems to make the maximum

probability of satisfying targeted objectives little sensitive to the number of disturbances

included in SE and SER.

The maximum viability probability varies quite smoothly w.r.t. minimal yield require-

ments. The lower are the minimal catch thresholds, the higher it is. Indeed, poor objectives

are easy to hold. One could have thought that the higher is the minimal yield requirement

of hake, Z�, the higher can be the anchovy requirement, Y �, due to the decrease in predator

population. Yet, this intuition does not work as high hake yields go along with a high stock

level.

The couple of ecosystem viable yields for which both catch requirement are the highest

at the 90% level is worth (Y �, Z�) = (4214 kt, 108 kt). For any minimal yield couple within

this set, there exists an effort strategy such that it can be harvested with 90% chance at each

date over a period of length T = 10. Recall that the minimal catch thresholds recommended

by IMARPE for the anchovy–hake couple in the Peruvian upwelling ecosystem are worth

161



Y � = 2, 000 ktons and Z� = 5 ktons in (3.9). Thereby, on the basis of our assumptions on the

set of uncertainties and their probability distribution, IMARPE’s production requirements

appear modest.

However, in facts, IMARPE’s minimal biomass threshold for anchovy was violated early

as 1972. Thus, well before 1981, IMARPE’s anchovy minimal catch threshold could no

longer be satisfied. This observation reinforces the need to implement caps on catches and to

monitoring them. Ideally, the quota regulatory tool should lead to the full exploitation of the

production potential of a resource. At the least, quotas can provide benchmarks that help

prevent the violation of biological reference points, essential to the survival of a bioeconomic

system.
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(a) SE

(b) SER

Figure 3.5: Maximal viability probability w.r.t. various minimal catch levels of anchovy and

hake, and uncertainty sets SE and SER equipped with the uniform probability distribution

Pu

The iso-curves in 3.6 are obtained by operating a transversal cut in Figure 3.5(a). They

depict the trade-off between both species catch entailed by the prey-predator relationship:
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the increase in a species minimal yield can only take place at the expense of the other

species’ minimal catch threshold. Starting from 90% level in Figure 3.6(a), the maximum

viability probability decreases by 10% steps quite evenly w.r.t. minimal catch thresholds.

In Figure 3.6(b), the decline in minimal catches, between the 90% and 99% level, is in

proportion more substantial. What is most surprising is the drop in minimal production

requirements between the 99% and the 100% level of guarantee. The production goals that

can be contemplated considerably changes when admitting a 1% risk or not at all.

Given this outcome, the decision maker has much interest to take at least a 1% risk.

Indeed, it is a low risk taking which provides him with much flexibility regarding the minimum

production goals that he can target. Supposing our assumptions on uncertainty are sound,

avoid taking any risk would probability inflict unnecessary economic losses to society.

(a) 0.3 ≤ φ(Y �, Z�) ≤ 1 (b) 0.9 ≤ φ(Y �, Z�) ≤ 1

Figure 3.6: Iso-probability curves w.r.t. SE, equipped with the uniform probability distribu-

tion

Ecosystem viable yields under risk with a density dependent distribution of un-

certainties

Figure 3.7 displays the maximum viability probability, φE(Y
�, Z�) as a function of minimal

catch levels, obtained with the uncertainty set SE, equipped with the density dependent
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probability distribution, Pdd. The maximal viability probability is computed for the same

initial state and range of minimal hake and anchovy catch thresholds as in Figure 3.5. Here

again, minimal biomass thresholds are kept equal to IMARPE’s biological recommendations.

The highest ecosystem viable yield couple at the 90% level is worth (Y �, Z�) = (6,820

kt, 131 kt). In comparison with Figure 3.5 the distribution Pdd of uncertainties supports

greater risk-taking. Supposing the regulator knows that (y0, z0) =(11,019 kt, 347 kt) and

sets the total allowable catch of each species in accordance with the highest catch couple that

can be guaranteed at the 90% level, than harvesting effort would increase compared to the

exploitation rates supported by the uniform distribution, Pu. To fit into a more operational

approach, for each acceptable initial biomass couple, we could seek for the maximum catch

requirement that can be guaranteed with a high probability over horizon T . Such mapping

would provide support to define harvesting quota levels for each species, that secure minimal

biomass levels. In fact, on this basis, a constant harvesting strategy could be recommended,

where at each date, each species’ quota level is equal to the highest ecosystem viable yield

couple that can be guaranteed at the chosen confidence level β.

165



Figure 3.7: Maximal viability probability w.r.t. various minimal catch levels of anchovy and

hake, the uncertainty set SE and probability distributions Pdd

To resume, this second assumption on the probability distribution of uncertainties sub-

stantially changes the room for risk-taking in our case study. Content of the information

available, we favor the uniform distribution because it puts all empirical uncertainties on the

same footing. Assigning less weight to relatively more outlying empirical uncertainties over

10 points does not fall within a precautionary approach.

Trade-off analysis between production and preservation requirements

Figure 3.8 displays the maximum viability probability, φE(y
�, Z�) as a function of anchovy

minimal biomasses and hake minimal yields, obtained for the uncertainty set SE, equipped

with the uniform probability distribution, Pu. We test for anchovy minimal biomasses within

the range y� ∈[3,000 kt; 10,000 kt], and hake minimal yields within the range Z� ∈[0 kt;

250 kt]. On the other hand, the hake minimal biomass, z�, and anchovy minimal yield, Y �,

thresholds are kept equal to IMARPE’s recommendations.

The outcome of this trade-off analysis is quite surprising. It seems that whatever the

166



conservation objective set on the anchovy stock, y�, (beyond 3000 kt), the maximum viability

probability only varies w.r.t. Z�. As can be expected, φE(y
�, Z�) is decreasing in Z�. The

explanation to this absence of trade-off is that the anchovy minimal yield Y � =2,000 kt

must be satisfied at all times, while, given the set of uncertainty scenarios retained, there

apparently always exists an effort strategy that satisfies, at all times, the range of anchovy

minimal biomass threshold we consider, if this catch constraint is too. If it was not the case,

the associated maximum viability probability would be zero.

Figure 3.8: Maximal viability probability w.r.t. minimal biomass levels of anchovy and

minimal catch levels of hake, the uncertainty set SE and the uniform probability distribution

3.3 The robust viability approach

In this section we present the robust viability theory, focusing on the concept of robust

viability kernel. We then derive the robust viability kernel numerically, in the case of the

anchovy–hake Peruvian fisheries under uncertainty, and compare it to that obtained in the

deterministic case.

Drawing on the concept of kernel, in contrast to the analysis carried in section 3.2, initial
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states now vary, whereas the set constraints and scenarios are fixed. Wherever a fishery

stands, the robust viability kernel enables to predict whether economic and conservation

objectives can be satisfied, at all times, over a time span. By delineating the set of admissible

biomasses, the robust viability kernel also shades light on the set of states to be avoided,

which information may be of relevance for the regulator.

The deterministic and robust viability approach meet in that both do not allow for trad-

offs between objectives or time periods. The definition of the deterministic and robust via-

bility kernel given below builds upon the same generic ecosystem model under uncertainty

in (3.1), and the same approach to sustainability constraints, introduced in §3.2.1.

As exposed earlier, we do not advocate the robust viability approach as a fully suitable

decision tool for fishery management, since resulting harvesting strategies may impose eco-

nomic losses to society, which are not necessarily justified when the ecological risk is not

devastating or irreversible. Indeed, recall from Figure 3.6, that the minimal yields guaran-

teed with a probability one are relatively much lower than when admitting little risk. Our

aim is to display the management possibilities that the viability theory allows for in two

extreme cases:

• no uncertainty,

• full uncertainty.

It is a manner of emphasizing to what extent does accounting for risk modifies management

recommendations.

3.3.1 The robust viability kernel

The robust viability kernel ViabR(t0) (De Lara and Doyen [21]) is the set of initial states

(y(t0), z(t0)) for which there exists a control strategy γ as in (3.5), such that, for any un-

certainty scenario (εy(·), εz(·)) ∈
�T−1

t=t0
S(t) in (3.4), the state path {(y(t), z(t))}t=t0,...,T as

in (3.6), and control path {(vy(t), vz(t))}t=t0,...,T−1 as in (3.7), satisfy:

• preservation (minimal biomass levels), ∀t = t0, . . . , T,

y(t) ≥ y� , z(t) ≥ z� ,
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• production requirements (minimal catch levels), ∀t = t0, . . . , T − 1,

vy(t)y(t)Ry

�
y(t), z(t), εy(t)

�
≥ Y � , vz(t)z(t)Rz

�
y(t), z(t), εz(t)

�
≥ Z�.

States belonging to the robust viability kernel are also named robust viable states. Charac-

terizing robust viable states makes it possible to test whether or not minimal biomass and

catch levels can be guaranteed for all times of a time horizon, despite of uncertainty. Here,

guaranteed means that biomasses and catches never fall below the minimal thresholds as in

the inequalities (3.8) and (3.9).

The robust viability kernel can be computed numerically by means of a dynamic pro-

gramming equation associated with dynamics (3.1), state constraints (3.8) and control

constraints (3.9) (see §C.3 in Appendix and De Lara and Doyen [21]).

3.3.2 The deterministic viability kernel

The deterministic version of the framework exposed in §3.3.1 corresponds to the case where

the uncertainties (εy(t), εz(t)) = (0, 0) for all t = t0, . . . , T − 1, that is, the uncertainty sets

in (3.2) are reduced to the singleton S(t) = {(0, 0)}. In that case, the robust viability kernel

coincides with the so-called viability kernel Viab(t0) (Aubin [4]), defined in §C.2 in Appendix.

The following Proposition 5 gives an analytical expression of the deterministic viability

kernel under conditions on the guaranteed levels in (3.8) and (3.9). The proof, adapted

from De Lara et al. [24], is given in §C.2 in Appendix.

Proposition 5 If the minimal biomass thresholds y�, z� and catch thresholds Y �, Z� are such

that

y�Ry

�
y�, z�, 0

�
− y� ≥ Y � and z�Rz

�
y�, z�, 0

�
− z� ≥ Z� , (3.13)

for T ≥ t0 + 2, the deterministic viability kernel is given by

Viab(t0) =
�

(y, z) ∈ R
2
+ | y ≥ y�, z ≥ z�, yRy

�
y, z, 0

�
− y� ≥ Y �, zRz

�
y, z, 0

�
− z� ≥ Z�

�
.

(3.14)
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The interpretation of conditions (3.13) is as follows. A the point (y�, z�) of minimum

biomass thresholds, the surplus y�Ry

�
y�, z�, 0

�
− y� ≥ Y � and z�Rz

�
y�, z�, 0

�
− z� ≥ Z� are

at least equal to the minimum catch thresholds Y � and Z�, respectively. Notice that the

expression (3.14) does not depend on the horizon T (where T ≥ t0 + 2): for any initial

state in the deterministic viability kernel Viab(t0), there exists a strategy such that the

constraints (3.8) and (3.9) are satisfied for all times from t0 to infinity.

3.3.3 Application to the anchovy-hake Couple in the Peruvian Up-

welling Ecosystem (1971–1981)

Here again, we apply the robust viability analysis to the Peruvian anchovy–hake fisheries.

We consider the same two-species prey-predator dynamical model, and preservation and

production requirements supported by IMPARE, as in §3.2.5.

We compute the robust viability kernel numerically, testing different assumptions on the

uncertainty sets S(t) in (3.2), to appraise the sensitivity of the size and content of the robust

viability kernel with respect to the set of uncertainty scenarios.

3.3.4 Choice of uncertainty sets

We now specify the uncertainty sets S(t) in (3.2), in which the uncertainties εy(t) and εz(t)

in (3.10) take their values. Here again, we choose to focus on stationary uncertainty sets

S = S(t).

First, we consider the same uncertainty sets, SE and SER in §3.2.6, derived from the

empirical uncertainties’ value. Then, we identify and only consider extreme uncertainties

in §3.3.4, producing worst-case scenarios. In §3.3.5, we will explain these choices in light of

the corresponding robust viability kernels.

Uncertainty sets reduced to extreme values

Through numerical simulations, we found that the set of robust viable states is sensitive to

few extreme points of the uncertainty set SER. This is why we consider the following two

uncertainty sets, SM and SH .
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• The uncertainty set SM is composed of two extreme uncertainty couples taken from the

set SER:

SM = {(ε̄min
y , ε̄min

z ), (ε̄min
y , ε̄max

z )} ⊂ SER . (3.15)

• The uncertainty set SH is obtained by increasing the values in SM increased by 20%:

SH = 1.2 ∗ SM . (3.16)

The uncertainty couple (ε̄min
y , ε̄min

z ) corresponds to low growth factor for both species,

whereas (ε̄min
y , ε̄max

z ) affects negatively the prey growth and positively the predator growth.

3.3.5 Discussion on the viability kernels

Now, we present the robust viability kernels computed on the basis of the following ingre-

dients: the dynamical model of harvested ecosystem in the Peruvian upwelling and sustain-

ability constraints in §3.2.5, the various uncertainty sets (including the deterministic case)

laid out in §3.3.4, a time horizon of uncertainty scenarios T = 10. In §3.3.5, we compare

the viability kernels: the deterministic, the robust resulting from the uncertainty set SE and

that obtained from the uncertainty set SER. In §3.3.5, we turn to the uncertainty sets built

upon “extreme uncertainties” and we scrutinize how these sets impact the robust viability

kernels.

Deterministic viability kernel, robust viability kernel and empirical uncertainties

Figure 3.9 displays the deterministic viability kernel and the robust viability kernels asso-

ciated with dynamics (3.10), constraints (3.8) and (3.9), and with the uncertainty sets SE

and SER, respectively. The horizontal and vertical lines represent the minimal biomass safety

levels y� and z�. In §C.3 in Appendix, we detail how the robust viability kernels are computed

numerically, with the scientific software Scicoslab.
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Figure 3.9: Deterministic and robust viability kernels for the uncertainty sets SE and SER

The deterministic viability kernel

Replacing the growth rates Ry and Rz in (3.14) by their expressions (3.10) yields the expres-

sion of the deterministic viability kernel:

Viab(t0) =
�

(y, z) | y ≥ y�, z ≥ z�, y
�
R− R

κ
y − αz

�
− y� ≥ Y �, z

�
L+ βy

�
− z� ≥ Z�

�

=
�

(y, z) | y ≥ y�, 1
α
[R− R

κ
y − y�+Y �

y
] ≥ z ≥ max{ z�+Z�

L+βy
, z�}

�
. (3.17)

The humped shape of the upper frontier of the deterministic viability kernel in Figure 3.9

stems from the logistic dynamics of the anchovy stock. Indeed, from the expression of Viab(t0)

in (3.17), we deduce that the upper frontier is characterized by

1

α
[R−

R

κ
y −

y� + Y �

y
] = z ⇔ y

�
R−

R

κ
y − αz

�
= Y � + y� ⇔ yRy(y, z, 0) = Y � + y� .

Hence, before a tipping anchovy biomass level y(z) = κ(R−αz)
2R

, the species’ growth rate

Ry(y, z, 0) increases with y, whereas it decreases for y beyond y(z). In other words, for the

hake population — the predator (z) — to reach high biomass levels the growth rate of the

anchovy population — the prey (y) — must be sufficiently high. Thus the increasing slope
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of the frontier of the deterministic viability kernel, until y(z) = κ(R−αz)
2R

. Conversely, for the

anchovy biomass to reach high levels, the hake biomass must be relatively low. Thus, the

declining slope of the frontier of the deterministic viability kernel as the biomass y approaches

K.

We conducted a sensitivity analysis of the deterministic viability kernel to the value of the

Lotka-Volterra model parameters in §3.2.5. We find that a ±10% variation in any parameter

slightly changes the size of the deterministic viability kernel, but not its overall shape, as

long as the condition on minimal thresholds set in Proposition 5 is satisfied. Even in absence

of harvesting, (Y �, Z�) = (0, 0), the shape remains the same.

When the condition in Proposition 5 is violated, the deterministic viability kernel ap-

pears to be empty. This actually makes sense: in absence of harvesting, equation (3.13) in

Proposition 5 gives:

Ry

�
y�, z�, 0

�
− 1 ≥ 0 and Rz

�
y�, z�, 0

�
− 1 ≥ 0. (3.18)

On the other hand, setting harvesting efforts equal to zero in the dynamics in (3.10), writ-

ing (3.10) in the form of two differential equations, and setting them greater or equal to zero

gives the same expressions in (3.18). Rewritten them yields:

y ≥
(1− L)

β
and z ≤

1

α
[R−

R

κ
y − 1]. (3.19)

Thus, (3.13) imposes no more than that at the point (y�, z�) the growth rates of each species,

respectively, is positive. As long as minimal biomass thresholds, (y�, z�), satisfy inequalities

in (3.19), the anchovy-hake ecosystem in the Peruvian Upwelling, as it is modeled, admits a

non-empty viability kernel. The condition (3.19) corresponds to the condition of co-existence

of both species in absence of harvesting. In presence of harvesting it becomes (3.17). Indeed,

the viability kernel is delineates by the range of biomass couples for which the growth rate

of each species is positive or null given minimal catch requirements.

Gap between the deterministic kernel and the robust ones

In Figure 3.9, we observe an important gap between the deterministic kernel and the robust

ones. A share of the states identified as viable by the deterministic approach is in fact
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excluded when uncertainty is taken into account. Indeed, there exists no effort strategy

capable of guaranteeing preservation and production minima for biomass couples standing

outside the robust kernels, given the chosen scenarios sets and time horizon. Furthermore,

we cannot tell whether the effort strategies advocated by the deterministic approach for an

initial biomass couple belonging to the robust kernels guarantee sustainability objectives over

time in presence of uncertainty.

Figure 3.10 displays the deterministic viability kernel Viab(t0), the robust viability ker-

nel ViabR
E(t0) and stochastic viability kernels of confidence level 30%, 50%, 70% and 90%

obtained for the uncertainty set SE equipped with the uniform probability distribution Pu.

These stochastic viable states are the set of initial states (y(t0), z(t0)) for which there exists a

control strategy γ as in (3.5), such that, for any uncertainty scenario (εy(·), εz(·)) ∈
�T−1

t=t0
S(t)

in (3.4), the state path {(y(t), z(t))}t=t0,...,T as in (3.6), and control path {(vy(t), vz(t))}t=t0,...,T−1

as in (3.7), satisfy constraints (3.8) and (3.9) with a probability at least equal to β and T = 10.

As one can observe, the lower is the confidence level the wider is the stochastic via-

bility kernel. Indeed, as a higher level of constraint violations is accepted, more biomass

endowments are likely to comply with the lower level of expectation regarding sustainability

constraints. The interest for plotting stochastic viable sets is it that it tells us that the

determinist viability kernel comes close to the stochastic viability kernel of confidence level

70%. However, it is not possible to state whether, starting from a point in this set, the

harvesting path advocated by the deterministic viability approach would guarantee targeted

sustainability constraints with a minimum probability of 70%, since controls are computed

regardless of disturbances.

Sensitivity of the robust viability kernel to uncertainty sets and to the time

horizon

Since {(0, 0)} ⊂ SE ⊂ SER, where the uncertainty sets SE and SER are given in §3.2.6, we

expect the corresponding robust and deterministic viability kernels to satisfy

ViabR
ER(t0) ⊂ ViabR

E(t0) ⊂ Viab(t0) . (3.20)
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Figure 3.10: Deterministic, stochastic and robust viability kernels for the uncertainty set SE

We indeed observe strict inclusions in Figure 3.9. This confirms our initial guess that, by

exposing the ecosystem dynamics to a denser set of scenarios SER instead of SE, fewer initial

states should be likely to allow for an effort strategy guaranteeing all sustainability constraints

at all times.

Besides, we look at the influence of uncertainties εy and εz in SER, separately, on the set

of robust viable states. When drawing only εy in SER, (i.e. {εz(t) = 0|t = t0, . . . , T − 1}),

the robust kernel is smaller then the deterministic one but greater than ViabR
ER(t0). When

reversing, {εy(t) = 0|t = t0, . . . , T −1}, we obtain the deterministic kernel. The disturbances

affecting the hake population alone, εz, have no influence on the set of viable states. This

last outcome is surprising, especially as the dynamics resulting from the joint action of

both disturbances narrows the set of robust viable states beyond that obtained when only

accounting for εy. In fact, this empirical observation meets the findings drawn in §3.3.5

and reveals that the disturbance directly affecting the anchovy growth factor has critical

implications on the ecosystem dynamics.

Lastly, we examine the sensitivity of the robust viability kernel ViabR
ER(t0), to the length
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of the time horizon. It appears that as soon as T ≥ 7, the set of robust viable states is stable

and homogenous (time independent).

Robust viability kernel and extreme uncertainties

Figure 3.11 displays the deterministic viability kernel (3.17) once again, and the two robust

viability kernels associated with dynamics (3.10), constraints (3.8) and (3.9), and with the

uncertainty sets SM and SH , respectively, as defined in §3.3.4.

Extreme uncertainties

Since SM ⊂ SER, we know that:

ViabR
ER(t0) ⊂ ViabR

M(t0). (3.21)

However, in practice the inclusion is not strict: our numerical results show that the robust

viability kernels ViabR
M(t0) and ViabR

ER(t0) are equal. More precisely, whatever the set of

uncertainty couples we add to SM , with values in the rectangle [ε̄min
y , ε̄max

y ] × [ε̄min
z , ε̄max

z ],

the resulting robust viability kernel is the same. On the other hand, when we eliminate one

of the two uncertainty couples in SM in (3.15), we observe that the robust viability kernel

increases.

The fact that the couple (ε̄min
y , ε̄max

z ) produces worse adverse ecological and economic

consequences is quite intuitive, whereas it is less obvious for the couple (ε̄min
y , ε̄min

z ), given

the nonlinear relationships linking both species.

Expended extreme uncertainties

Now, we consider the uncertainty set SM in (3.15) and the corresponding viability kernel

ViabR
M(t0). By numerical simulations, we explore the sensitivity of ViabR

M(t0) to changes in

extreme uncertainties values.

• When, we increase ε̄max
z , all other things kept equal in SM , we observe that the viability

kernel is enlarged.
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• When, we increase (in absolute value) ε̄min
y and ε̄min

z simultaneously, all other things

kept equal in SM , the viability kernel is empty beyond a 25% increase of these two

extreme uncertainties.

• When we increase all uncertainties in SM by more than 20% (a 20% increase corresponds

to SH), the robust viability kernel is empty.

Thus, the viability kernel displays contrasted patterns when submitted to different increases

in extreme uncertainty values. A possible explanation comes from (3.4), which reflects an

“independence” assumption of uncertainties w.r.t time. Due to this assumption, scenarios can

display arbitrary evolutions, switching from one extreme to another between time periods.

Such scenarios deserve the label of worst-case scenarios as they narrow the possibility of

guaranteeing ecological and economic objectives at all times. Hence, amplifying the distance

between our extreme uncertainties shrinks the robust viability kernel.

The questions that rises is to what extent should the distance between decisive uncertain-

ties be increased? As just mentioned, beyond a 20% increase of the uncertainties in SM , the

robust viability kernel is empty. Thereby, the worst case scenario clearly belongs to the set of

scenarios derived from SM . Nonetheless, it is not of interest as such disastrous forecast does

not permit any management options, while we have no idea of its likeliness. In this context,

the notion of worst case is contingent on the level of caution that one chooses to adopt, and

applies to uncertainty scenarios rather than to the value of uncertainties, taken individually.

Retrospective analysis of the Peruvian anchovy-hake fisheries trajectories be-

tween 1971 and 1981

In Figure 3.11, the circles indicate the biomass observations of the anchovy-hake couple over

1971–1981. Only one circle, marked by a cross, stands within the robust viability kernel

ViabR
M(t0), corresponding to the initial biomass couple estimated in 1971 9. Starting from

that date, there theoretically existed a harvest strategy providing, for the next 10 years, at

least the sustainable yields Y � =2,000 ktons and Z� =5 ktons, and guaranteeing biomasses

over the preservation thresholds y� =7,000 ktons, z� =2,000 ktons, whatever the uncertainties

9Notice that it is the biomass couple taken as our initial value in the stochastic viability analysis in §3.2.7.
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Figure 3.11: Comparing the deterministic and robust viable kernels for uncertainty sets SM

and SH

stemming from SH , or more exactly from the rectangle [ε̄min
y , ε̄max

y ]× [ε̄min
z , ε̄max

z ]. In reality,

the catches of year 1971 were very high, and the biomass trajectories were well below the

biological minimal levels for 14 years.

3.3.6 Robust harvesting strategies

In this last section, we examine the effort strategies produced by the robust approach. As ex-

posed in §3.2.2, an effort strategy γ is a sequence of mappings from biomasses towards efforts,

producing state paths {(y(t), z(t))}t=t0,...,T as in (3.6), and control path {(vy(t), vz(t))}t=t0,...,T−1

as in (3.7), given an initial state
�
y(t0), z(t0)

�
=

�
y0, z0

�
.

In our robust numerical application, successful effort strategies satisfy dynamics (3.10),

preservation and production objectives (3.8) and (3.9). Figure 3.12 displays the robust effort

strategy apparent in period t = 0, with S = SE: harvesting effort of each species (vy, vz) are

plotted as a function of species biomass levels (y, z). In Figure 3.12(a), one sees emerging

the humped shape of the anchovy logistic growth function. Harvesting effort adapts to the
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surplus growth of the species. What is more, fishing effort rises with the hake biomass, z,

and is decreasing in the level of the anchovy biomass, y. Indeed, the lower is the anchovy

stock, the higher must be fishing effort to meet the minimal yield requirement (3.9). Also, the

higher is the hake stock, the stronger is the rivalry for the anchovy resource, and so the higher

is anchovy harvesting effort. Nonetheless, as the anchovy stock is important, the deviation

in harvesting effort required to adjust to stock variations remains low: vy ∈ [0.1, 0.24].

Figure 3.12(a) displays a harvesting pattern which is less obvious to interpret. In a sym-

metrical manner, the hake harvesting effort is decreasing in the species stock level. Logically,

hake harvesting effort also varies inversely to the size of the anchovy biomass: when the

anchovy species is abundant, hake harvesting effort decreases and vice versa. Thus anchovy

and hake harvesting effort tend to vary in the same direction. Yet, the range in which the

hake effort varies is much wider: vy ∈ [0.02, 0.72]. At some point, it is remains sustainable

to harvest more than half of the species biomass. This stems from the fact that minimal

production and conservation requirements are low.
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(a) Anchovy harvesting effort:vy

(b) Hake harvesting effort:vz

Figure 3.12: A robust effort strategy (vy, vz) = γt(y, z) for t = 0, ecosystem dynamics in (3.10)

and uncertainty set SE

As an indiction, Figure 3.13 delineates the set of biomass couples
�
y0, z0

�
within the

robust viability kernel ViabR
E(t0), for which there exists a constant robust effort strategy

(in yellow). The robust effort couple is the same — (vy, vz) = γt(y(t), z(t) — for all times
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t = t0, . . . , T − 1, with T = 10. The orange area corresponds to the set of initial biomass

couples
�
y0, z0

�
, for which there exists a robust effort strategy where the robust effort couple

takes only two values over T − 1 (the first one holds until t = 7, the second until t = 0). For

all the remain biomass couples in ViabR
E(t0), the robust effort strategy shifts of effort couple

twice, no more (the first value holds until t = 7, the second until t = 5 and the third one

until t = 0).

Figure 3.13: Possible robust effort strategies w.r.t. biomass couples in ViabR
E(t0)

3.4 Conclusion

This work is a theoretical and practical contribution to ecosystem sustainable management

under uncertainty. We proceed to a stochastic and robust viability analysis of the anchovy-

hake couple in the Peruvian upwelling ecosystem.

The stochastic approach permits us to test the sensitivity of the trade-offs between policy

objectives to assumptions on the set of uncertainties affecting the ecosystem dynamics, and

their probability distribution. Uniformly distributed, the composition of the uncertainty
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set, within a finite space, is not of great influence. We observe an important gap between

objectives that can be envisaged when admitting a low level of risk and when strictly avoiding

risk taking. Low risk taking reveals a wide production potential of this fishery, that can

achieved in accordance with minimum stock requirement levels.

On the other hand, we show that, for a same uncertainty set, the weight affected to uncer-

tainties considerably changes the set of policy objectives that can be envisaged with a high

level of guarantee. This outcome puts forward flimsiness of management recommendations

under uncertainty, when few biological data is available.

Nonetheless, in the event where available stock estimates allow to identify the stochastic

process underlying an ecosystem, the stochastic viability framework appears as an operational

framework to support the identification quota levels and harvesting strategies consistent with

preservation and production objectives, with a high confidence level.

The robust analysis focuses on the concept of kernel and aims at illustrating the distance

between the management possibilities advocated by the viability theory in two extreme cases:

no uncertainty versus full hedge against risk. The robust viable kernel is an insightful mean to

display the impact of uncertainty on the possibility of a sustainable management. Wherever

a fishery stands, the set of robust states enables to predict whether economic and ecological

objectives can be guaranteed over a time span, despite of uncertainty.

For the anchovy-hake couple in the Peruvian upwelling ecosystem, we have shown to what

extent taking into account uncertainty affects the conclusions drawn from the deterministic

case. By making allowance for uncertainties in the ecosystem dynamics, effort strategies

guaranteeing all sustainability constraints at all times exist for fewer initial states than in

the deterministic case.

In addition, we have been able to shed light on the uncertainties that really matter for

a precautionary approach. Indeed, by computing several robust viable kernels, we have

realized that only few important uncertainties matter, and that they correspond to extreme

cases. Assessing which uncertainties truly impact the robust viability kernel can help the

decision-maker to focus on those uncertainties that are relevant for sustainable management.

What is more, we have shown that not only the absolute value of extreme uncertainties

matters, but also the possible arbitrary evolutions of scenarios, switching from one extreme
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to another between time periods. We la We label such scenarios worst-case scenarios, as

they delimit the set of robust viable states. However, because the distance between extreme

uncertainties can always be amplified, the notion of worst-case is contingent on the level of

caution that one chooses to adopt.

In rather common situations where very little is known about uncertainties, the robust

framework contents itself of poor assumptions on sets rather than possibly unjustified prob-

abilistic ones. However, we have seen that the robust viability kernel can be empty and

that the robust approach imposes unjustified economic losses to society when risk is not

catastrophic or irreversible.
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Appendix C

C.1 Numerical computation of maximal viability prob-

abilities

The dynamic programming equation adapted from De Lara and Doyen [21] and Doyen and

De Lara [26] associated to dynamics (3.1) preservation (3.8) and production (3.9) minimal

thresholds is given by




VT (y, z) = 1A(y, z),

Vt(y, z) = 1A(y, z) max
(vy ,vz)∈[0,1]2

E(εy ,εz)

�
1B(y,z,εy ,εz)(vy, vz)Vt+1(G(y, z, vy, vz, εy, εz))

�
,

(C.1)

where (εy(t), εz(t))t=t0,...,T−1 are i.i.d. with a uniform marginal distribution on S in (3.2). The

function G denotes the dynamics (3.1)

G(y, z, vy, vz, εy, εz) =





yRy

�
y, z, εy

��
1− vy

�
,

zRz

�
y, z, εz

��
1− vz

�
,

the set A stands for the subset of biomasses satisfying conservation objectives

A = {(y, z) | y ≥ y� , z ≥ z�} = [y�,+∞[×[z�,+∞[ ,

and the set B stands for the subset of efforts satisfying minimal production requirements

B(y, z, εy, εz) = {(vy, vz) | vyyRy(y, z, εy) ≥ Y �, vzzRz(y, z, εz) ≥ Z�} .

The notation 1A(y, z) is the indicator function of the set A: it takes the value 1 when

(y, z) ∈ A and 0 else. The same holds for 1B(y,z,εy ,εz)(vy, vz).
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Because we investigate several levels of catch thresholds, Y � and Z�, the resolution re-

quires a powerful computational tool since we have to solve the dynamic programming equa-

tion (C.1) for each couple
�
Y �, Z�

�
. We proceed by discretizing over state and control vari-

ables and catch thresholds. The numerical application in §3.2.4 was performed with the

scientific software Scicoslab.

C.2 The deterministic viability kernel

The deterministic viability kernel, Viab(t0), associated with the following dynamics (C.2),

and constraints (C.3) and (C.4), for t = t0, . . . , T , is the set of viable states defined as

follows. A couple (y0, z0) of initial biomasses is said to be a viable state if there exist a

trajectory of harvesting efforts (controls)
�
vy(t), vz(t)

�
∈ [0, 1], t = t0, . . . , T − 1, such that

the state path {
�
y(t), z(t)

�
}t=t0,...,T , and control path {

�
vy(t), vz(t)

�
}t=t0,...,T−1, solution of1





y(t+ 1) = y(t)Ry

�
y(t), z(t)

��
1− vy(t)

�
,

z(t+ 1) = z(t)Rz

�
y(t), z(t)

��
1− vz(t)

�
,

(C.2)

starting from
�
y(t0), z(t0)

�
= (y0, z0) satisfy the following goals:

• preservation (minimal biomass levels): for all t = t0, . . . , T

y(t) ≥ y� , z(t) ≥ z� , (C.3)

• and production requirements (minimal catch levels): for all t = t0, . . . , T − 1

vy(t)y(t)Ry

�
y(t), z(t)

�
≥ Y � , vz(t)z(t)Rz

�
y(t), z(t)

�
≥ Z� , (C.4)

We now turn to the proof of Proposition 5 in §3.3.2.

Proof. Consider y� ≥ 0, z� ≥ 0, Y � ≥ 0, Z� ≥ 0. We set

V0 =
�
(y, z) ∈ R

2
+

���y ≥ y�, z ≥ z�
�

1Equation (C.2) is (3.1) with the uncertainty couple (εy, εz) = (0, 0) (corresponding to the deterministic

case). Notice that the growth rates Ry and Rz do not include uncertainty variables, as was the case in §3.2.1.
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and we define a sequence (Vk)k∈N inductively by

Vk+1 = { (y, z) ∈ Vk | ∃(vy, vz) ∈ [0, 1] such that yvyRy(y, z) ≥ Y �, zvzRz(y, z) ≥ Z�,

and y� = yRy(y, z)(1− vy), z� = zRz(y, z)(1− vz),

are such that (y�, z�) ∈ Vk

�
.

For k = 0, we obtain

V1 =




(y, z)

���������

y ≥ y�, z ≥ z� and, for some (vy, vz) ∈ [0, 1],

vyyRy(y, z) ≥ Y �, vzzRz(y, z) ≥ Z�,

yRy(y, z)(1− vy) ≥ y�, zRz(y, z)(1− vz) ≥ z�





=




(y, z)

���������

y ≥ y�, z ≥ z� for which there exist (vy, vz) such that

Y �

yRy(y,z)
≤ vy ≤

yRy(y,z)−y�

yRy(y,z)
and 0 ≤ vy ≤ 1,

Z�

zRz(y,z)
≤ vz ≤

zRz(y,z)−z�

zRz(y,z)
and 0 ≤ vz ≤ 1





=




(y, z)

���������

y ≥ y�, z ≥ z�,

sup{0, Y �

yRy(y,z)
} ≤ inf{1, 1− y�

yRy(y,z)
}

sup{0, Z�

zRz(y,z)
} ≤ inf{1, 1− z�

zRz(y,z)
}





=

�
(y, z)

�����y ≥ y�, z ≥ z�,
Y �

yRy(y, z)
≤

yRy(y, z)− y�

yRy(y, z)
,

Z�

zRz(y, z)
≤

zRz(y, z)− z�

zRz(y, z)

�

=
�
(y, z)

���y ≥ y�, z ≥ z�, Y � ≤ yRy(y, z)− y�, Z� ≤ zRz(y, z)− z�
�

.

Then, for k = 1, we obtain

V2 =





(y, z)

������������

y ≥ y�, z ≥ z� and, for some (vy, vz) ∈ [0, 1],

vyyRy(y, z) ≥ Y �, vzzRz(y, z) ≥ Z�

and such that (y�, z�) ∈ V1

where y� = yRy(y, z)(1− vy), z� = zRz(y, z)(1− vz)





=





(y, z)

������������

y ≥ y�, z ≥ z� and, for some (vy, vz) ∈ [0, 1],

vyyRy(y, z) ≥ Y �, vzzRz(y, z) ≥ Z�, y� ≥ y�, z� ≥ z�,

Y � ≤ y�Ry(y
�, z�)− y�, Z� ≤ z�Rz(y

�, z�)− z�

where y� = yRy(y, z)(1− vy), z� = zRz(y, z)(1− vz)





.

We now make use of the property (see De Lara et al. [24]) that, when the decreasing sequence

(Vk)k∈N is stationary, its limit is the viability kernel Viab(t0). Hence, it suffices to show that

V1 ⊂ V2 to obtain that Viab(t0) = V1.

192



Let (y, z) ∈ V1. We have that

y ≥ y�, z ≥ z� and yRy(y, z)− y� ≥ Y �, zRz(y, z)− z� ≥ Z� .

Let us set v̂y =
yRy(y,z)−y�

yRy(y,z)
, which has the property that y� = yRy(y, z)(1 − v̂y) = y�. We prove

that v̂y ∈ [0, 1]. Indeed, on the one hand, we have that v̂y ≤ 1 since 1 − v̂y = y�/yRy(y, z), where

y� ≥ 0. On the other hand, since by assumption yRy(y, z) − y� ≥ Y � ≥ 0, we deduce that v̂y ≥ 0.

The same holds true for v̂z and z� = zRz(y, z)(1− v̂z) = z�. By (3.13), we deduce that

y�Ry(y
�, z�)− y� = y�Ry(y

�, z�)− y� ≥ Y � and z�Rz(y
�, z�)− z� = z�Rz(y

�, z�)− z� ≥ Z� .

The inclusion V1 ⊂ V2 follows, hence Viab(t0) = V1, and (3.14) holds true. ✷

The viable controls attached to a given viable state (y, z) ∈ Viab(t0) are the admissible

controls (vy, vz) such that the image by the dynamics (C.2) is in Viab(t0).

Corollary 6 Suppose that the assumptions of Proposition 5 are satisfied. The set of viable

controls associated with the state (y, z) is



(vy, vz) ∈ [0, 1]2

������

yRy(y,z)−y�

yRy(y,z)
≥ vy ≥

Y �

yRy(y,z)
, zRz(y,z)−z�

zRz(y,z)
≥ vz ≥

Z�

zRz(y,z)
,

y�Ry(y
�, z�)− y� ≥ Y �, z�Rz(y

�, z�)− z� ≥ Z�



 ,

where y� = yRy(y, z)(1− vy), z� = zRz(y, z)(1− vz).

C.3 Numerical computation of robust viability kernels

We first sketch how to establish a dynamic programming equation associated with dynam-

ics (3.1), and preservation (3.8) and production (3.9) minimal thresholds. Then, we depict a

numerical discretization scheme to solve this equation numerically.
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C.3.1 Dynamic programming equation

The dynamic programming equation associated with dynamics (3.1), and preservation (3.8)

and production (3.9) minimal thresholds is given by2

VT (y, z) = 1A(y, z),

Vt(y, z) = 1A(y, z)max(vy ,vz)∈[0,1]2 min(εy ,εz)∈S(t)

�
1B(y,z,εy ,εz)(vy, vz)Vt+1

�
G(y, z, vy, vz, εy, εz)

��
,

(C.5)

for all t = t0, . . . , T − 1, where the continuous function G denotes the dynamics (3.1)

G(y, z, vy, vz, εy, εz) =





yRy

�
y, z, εy

��
1− vy

�
,

zRz

�
y, z, εz

��
1− vz

�
,

(C.6)

where A stands for the subset of biomass satisfying conservation objectives (3.8)

A = {(y, z) | y ≥ y� , z ≥ z�} = [y�,+∞[×[z�,+∞[ , (C.7)

and where B(y, z, εy, εz) stands for the subset of catches satisfying minimal production re-

quirements (3.9)

B(y, z, εy, εz) = {(vy, vz) ∈ [0, 1]2 | vyyRy(y, z, εy) ≥ Y �, vzzRz(y, z, εz) ≥ Z�} . (C.8)

The notation 1A(y, z) is the indicator function of the set A: it takes the value 1 when

(y, z) ∈ A and 0 else. The same holds for 1B(y,z,εy ,εz)(vy, vz).

It turns out that, for all t = t0, . . . , T , the robust viability value function Vt is the indicator

function 1
ViabR(t) of the robust viability kernel ViabR(t) (see De Lara and Doyen [21]). The

sketch of the proof is as follows, by backward induction.

By (C.5), we have that VT = 1A = 1
ViabR(T ). Now, assume that Vt+1 = 1

ViabR(t+1). When

the operation min(εy ,εz)∈S(t) is performed in (C.5), the result is 1 if, and only if, for all uncer-

tainties (εy, εz) ∈ S(t), we have both 1B(y,z,εy ,εz)(vy, vz) = 1 and 1
ViabR(t)

�
G(y, z, vy, vz, εy, εz)

�
=

1, that is, both efforts (vy, vz) satisfy minimal production requirements (3.9) and the images

G(y, z, vy, vz, εy, εz) by the dynamics G belong to the viability kernel ViabR(t). Then, the

operation max(vy ,vz)∈[0,1]2 yields 1 if, and only if, there is at least one control (vy, vz) — in-

deed achieved by continuity of the dynamics G in (C.6) — such that (3.9) is satisfied and

2What follows is a simple extension of the results in De Lara and Doyen [21] and Doyen and De Lara [26].
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G(y, z, vy, vz, εy, εz) ∈ ViabR(t). The term 1A(y, z) = 1 if, and only if, the conservation ob-

jectives (3.8) are satisfied. To end, we obtain that Vt(y, z) = 1 if, and only if, there exists

at least one control (vy, vz) such that the conservation objectives (3.8) and the production

requirements (3.9) are satisfied, and that the images G(y, z, vy, vz, εy, εz) by the dynamics G

belong to the viability kernel ViabR(t) for all uncertainties (εy, εz) ∈ S(t). By a simple ex-

tension of the results in De Lara and Doyen [21] and Doyen and De Lara [26], we have just

characterized ViabR(t).

C.3.2 Numerical resolution of the dynamic programming equation

Now, we expose how we proceed to find the robust viability kernel numerically thanks to the

dynamic programming equation (C.5).

We discretize biomass, harvesting effort and uncertainty values. A top loop for time

steps embraces two nested loops for state variables y and z, respectively. Next, loops over

uncertainties nested in loops over harvesting efforts allow us to obtain the set of images

associated with a biomass couple (some of these steps are actually done through matrix

computing). Images for target constraints that are not satisfied are set equal to zero. We

then project these images on the value function grid of the previous period, through linear

interpolation. At given efforts, we retain the minimum value obtained over all uncertainty

couples. Then, we retain the highest value produced by an effort couple among all tested.

It is this value that is multiplied with the value function of the current time period, at the

location of the biomass couple at stake. The robust viability kernel is defined by the set of

grid points where the value function is equal to 1. This implies that biomass couples for

which, at a date t, all images do not fall between four 1 in the interpolation are excluded

from the robust viability kernel (in the sense that we provide robustness with respect to grid

approximation).
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Chapter 4

Conclusion

This dissertation addresses the consequences of the biological and market interactions be-

tween two production processes of food fish: the aquaculture and capture fishery sectors.

It focuses on the consequences of these interactions from an economic, ecologic and food

security point of view.

Biological interactions between both sectors stem from the fact that aquaculture relies on

natural populations for the feeding of 46.1% of its total global production (including aquatic

plants). The fish stocks targeted to feed farmed fish constitute preys for species that are part

of the same food web, which in turn, may be targeted for direct human consumption. The

multi-sector dynamic model developed in Chapter 1 emphasizes how critical these interactions

may be to the sustainability of each sector. It is shown that when these biological interactions

are high, aquaculture leads to a decline in the feed fish stock and the wild edible fish stock, a

decrease in wild edible fish supply and an increase in its price. What is more, for high levels

of income, aquaculture provokes the collapse of the wild edible fishery though it would have

remained alone.

These results are derived assuming fisheries operate in open access, non-cooperatively,

although an efficient exploitation of resources would call for a global optimization framework.

Indeed, the aquaculture and capture fishery sectors produce negative externalities and call

for public intervention to regulate their activity in order to remain viable economically and

ecologically. In this respect, the following investigation that should be undertaken on the basis

of the theoretical framework of Chapter 1, is to seek the condition on regulatory instruments
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(tax, quota) to control harvesting effort, that achieve the joint optimization of both sectors’

surplus, in a sustainable way.

While this research prospect should provide qualitative insights on how to set management

instruments, Chapter 3 applies an operational methodology — the viability approach — to

define harvesting effort strategies in consistency with economic and conservation objectives,

and ecosystem dynamics under uncertainty. In particular, a numerical application of the

viability analysis to the anchovy-hake couple in the peruvian upwelling system is carried.

Both species are related by a prey-predator relationship.

This application is a concert example of biological interaction between the aquaculture

and capture fishery industries since the peruvian anchovy stock generates an important share

of world supply of farmed fish feed, while hake is targeted for direct human consumption.

The study enables to quantify the trade-offs between minimal production and preservation

thresholds entailed by the prey-predator relationship linking both species. In particular, this

chapter investigates how to control harvesting effort according to a precautionary approach

with respect to uncertainties affecting the ecosystem dynamics, without inflicting too high

economic costs to society.

In terms of further research perspective, it would be interesting to observe how our re-

sults are affected by constraining variations in the level harvesting effort from one period to

another. Indeed, in facts, a fleet might not be able to considerably modify its harvesting

capacity in a short time span. Thus, imposing smooth variation in controls appears as a

more realistic assumption.

Another interesting extension to this work would be to replace minimal catch requirements

on both species by a modelling of the aquaculture and capture fishery production structure,

so as to define catch requirements endogenously. This formalization would permit to explore

the influence of the efficiency of the aquaculture technology, the price of feed fish or fuel

on catch requirements, and the likeliness of satisfying them content of the prey-predator

dynamics relating both targeted species.

Besides biological interactions, the aquaculture and capture fishery production come to

interact at the market level. Indeed, the introduction of farmed fish on stalls can affect food

fish price dynamics, and in turn, the supply of both sectors so as the pressure that applies
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to wild stocks. The extent to which farmed fish affects fish food price dynamics depends on

the degree of substituability between wild and farmed fish.

The theoretical model established in Chapter 1 accounts for the demand side and assumes

farmed and wild product are substitutes. An analytical examination of the influence of the

degree of substituability between both fish products on steady state outcomes shows that

consumer preferences may reverse them. In fact, a high degree of substitutions always seems

to be beneficial from an ecological and welfare point of view. Indeed, if there where no

competition between wild and farmed fish products, this would allow fishermen to earn

short-term rents. However, these rents may not be sustained if investment in overcapacity

and the associated fishing pressure are not limited. Indeed, if a fishery is in open access, the

absence of consumption adjustment to a rising price notifying a scarce resource may threaten

its sustainability, thus weakening the ecosystem to which it belongs. Quaas and Requate

[1] demonstrate that the inelastic demand behaviors resulting from consumers preference for

food fish diversity is likely to cause sequential collapse of fish stocks under open-access fishery.

However, even if aquaculture production may alleviate pressure on a given wild species,

it is not possible to qualify and quantify the net effect of farming on ecosystems’ sustain-

ability owing to the numerous linkages between inherent species. Indeed, to ensure economic

viability, fishermen rarely target a single species. Thus, a lower profitability of a species due

to harsh price competition from the aquaculture sector may bring fishermen to report fishing

pressure on other fish species within their bundle of catches, threatening the health of the

ecosystem.

Chapter 2 addresses market competition between farmed and wild fish empirically, within

the French sea bass and sea bream markets. It is found that market interactions between

wild and farmed fish differ from one species to another. In fact, econometric studies investi-

gating consumer behaviour towards farmed and wild fish products are not unanimous on this

question. This outcome highlights the need to carry additional studies on different species

and within other market places to better understand the factors critical to the integration of

aquaculture production.

The behavior of consumers towards farmed products is conditioned by their perception of

the aquaculture industry but also by local demand factors such as consumption habits and
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income. According to our study it also appears that consumers may be more sensitive to

the seafood production process when it comes to higher-value species. On the other hand,

consumers willing to spend a limited budget on food fish seems to pass over the production

process attribute.

Consumers awareness that intensive aquaculture techniques causes environmental pollu-

tion or distrust regarding the health implications of change in species natural diet calls for an

industry applying environmentally friendly technics in one case, and relying on forage fish to

feed dependent farmed species in the other. Reliable and transparent certifications for these

production features, conferring supply a price premium, should provide incentives to develop

quality aquaculture subsectors.

Nonetheless, an ecologically sustainable aquaculture requires more costly production tech-

nics, while the exhaustibility of marine resource is a limit to fed aquaculture production. Food

security and economically constrained populations require a large scale food fish production

which cannot be based on natural populations to fill the supply gap of the fishery industry.

Thus, it is likely that the fish food market becomes increasingly segmented, with respect to

wild versus farmed fish, but also that the aquaculture supply splits into a high value and low

value segment.

The aquaculture industry requires intensive research to develop cost-effective substitutes

to forage fish, so as to maintain its growth rate and the nutritional intakes of farmed fish.

In addition, there is a need for stronger supervision of its environmental impacts to prove

sustainable and compatible with other resource users. As exposed, fed aquaculture implies

biological interactions with capture fisheries, but the waste loads it releases into the wild

in certain areas also has consequences on the activity of various economic sectors relying

on costal and fresh water resources such as small scale artisanal fishermen or anglers. It

seems obvious that the sustainability and efficiency of the aquaculture and capture fishery

sectors involves an integrated approach to fish market and to fisheries resources manage-

ment. A global analysis of fisheries dependent sectors will enhance the socioeconomic benefit

withdrawn by society from this natural resource.
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