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Abstract
The first part of this thesis aims at introducing new models of random graphs that account for the
temporal evolution of networks. More precisely, we focus on growth models where at each instant a
new node is added to the existing graph. We attribute to this new entrant properties that characterize its
connectivity to the rest of the network and these properties depend only on the previously introduced
node. Our random graph models are thus governed by a latent Markovian dynamic characterizing the
sequence of nodes in the graph. We are particularly interested in the Stochastic Block Model and in
Random Geometric Graphs for which we propose algorithms to estimate the unknown parameters or
functions defining the model. We then show how these estimates allow us to solve link prediction or
collaborative filtering problems in networks.
The theoretical analysis of the above-mentioned algorithms requires advanced probabilistic tools. In
particular, one of our proof is relying on a concentration inequality for U-statistics in a dependent frame-
work. Few papers have addressed this thorny question and existing works consider sets of assumptions
that do not meet our needs. Therefore, the second part of this manuscript will be devoted to the proof of
a concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. In Chap-
ter 5, we exploit this concentration result for U-statistics to make new contributions to three very active
areas of Statistics and Machine Learning.
Still motivated by link prediction problems in graphs, we study post-selection inference procedures
in the framework of logistic regression with L1 penalty. We prove a central limit theorem under the
distribution conditional on the selection event and derive asymptotically valid testing procedures and
confidence intervals.

Keywords: Random Graphs, Markov chains, Non-parametric Estimation, Concentration of measure,
Integral Operators, Post-selection Inference, Online Learning.

Résumé
La première partie de cette thèse vise à introduire de nouveaux modèles de graphes aléatoires rendant
compte de l’évolution temporelle des réseaux. Plus précisément, nous nous concentrons sur des mo-
dèles de croissance où à chaque instant un nouveau noeud s’ajoute au graphe existant. Nous attribuons
à ce nouvel entrant des propriétés qui caractérisent son pouvoir de connectivité au reste du réseau et
celles-ci dépendent uniquement du noeud précédemment introduit. Nos modèles de graphes aléatoires
sont donc régis par une dynamique markovienne latente caractérisant la séquence de noeuds du graphe.
Nous nous intéresserons particulièrement au Stochastic Block Model et aux Graphes Aléatoires Géomé-
triques pour lesquels nous proposons des algorithmes permettant d’estimer les paramètres du modèle.
Nous montrons ensuite comment ce travail d’estimation nous permet de résoudre des problèmes de
prédiction de lien ou de filtrage collaboratif dans les graphes.
L’étude théorique des algorithmes précédemment décrits mobilisent des résultats probabilistes pous-
sés. Nous avons notamment dû recourir à une inégalité de concentration pour les U-statistiques dans
un cadre dépendant. Peu nombreux sont les travaux ayant abordé cette épineuse question et l’existant
considère des jeux d’hypothèses ne répondant pas à nos besoins. Aussi, la deuxième partie de ce ma-
nuscrit sera consacrée à la preuve d’une inégalité de concentration pour les U-statistiques d’ordre deux
pour des chaînes de Markov uniformément ergodique. Dans le Chapitre 5, nous exploitons notre résul-
tat de concentration pour les U-statistiques pour apporter de nouvelles contributions à trois domaines
très actifs des Statistiques et du Machine Learning.
Toujours motivés par des problèmes de prédictions liens dans les graphes, nous nous intéressons dans
un dernier chapitre aux procédures d’inférence post-sélection dans le cadre de la régression logistique
avec pénalité L1. Nous prouvons un théorème central limite sous la distribution conditionnelle à l’évé-
nement de sélection et nous en déduisons des procédures de test et des intervalles de confiance asymp-
totiquement valides.

Mots-clés : Graphes aléatoires, Chaines de Markov, Estimation non-paramétrique, Concentration de
la mesure, Opérateurs intégraux, Inférence post-sélection, Apprentissage séquentiel.
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Notations
N∗ Set of positive natural integersN \ {0}.
[n] Set of integers {1, . . . , n}.
|A| Cardinality of any finite set A.

Ac Complement of any set A.

δi,j For any integers i, j, the Kronecker symbol δi,j is equal to 1 if i = j and is equal to 0
otherwise.

1n The all-ones vector of size n.

SN The set of permutations of [N ].

x ∨ y Maximum between reals x and y.

x ∧ y Minimum between reals x and y.

⌈x⌉ The smallest integer larger than x.

⌊x⌋ The largest integer less than x.

an = O(bn)
or
bn = Ω(an)

Given two sequences (an)n∈N and (bn)n∈N of real numbers such that for some N ∈ N,
bn ̸= 0 for all n ≥ N , we write an = O(bn) or bn = Ω(an) if the sequence (an/bn)n≥N is
bounded and we write an = o(bn) or bn = ω(an) if an/bn →

n→+∞
0.

Sd−1 For any integer d ≥ 2, the Euclidean Sphere of dimension d is given by Sd−1 = {x ∈
Rd | ∥x∥2 = 1}.

ℓ2 The Hilbert space of all square summable sequences.

Lp(π) For any measure π on some measurable space (E,Σ) and for any p ∈ [1,∞), we denote
by Lp(π) the space of measurable functions h : E → R for which the p-th power of the
absolute value is π-integrable, where functions which agree π-almost everywhere are
identified. L∞(π) is the space of measurable functions h : E → R bounded π-almost
everywhere.

B(R) The Borel algebra on R.

∥x∥p For any p ≥ 1, the ℓp norm of any vector x ∈ Rn is defined by ∥x∥p = (
∑n
i=1 x

p
i )

1/p

while ∥x∥∞ = maxi∈[n] |xi|.
⟨x, y⟩ The Euclidean inner product on Rd is denoted by ⟨·, ·⟩ : (x, y) 7→ ⟨x, y⟩ =

∑d
i=1 xiyi.

M⊤, Mi,:

and M:,i

Matrices are denoted in standard font capital letters (M ). The transpose of a matrix is
M⊤. The i-th row and column of a matrix M are denoted with Mi,: and M:,i, respec-
tively. Mi,j corresponds to the entry of M at row i and column j.

∥M∥ The operator norm of a matrix M ∈ Rn×d is defined by ∥M∥ = supx∈Sd−1 ∥Mx∥2.

∥M∥F The Frobenius norm of a matrix M ∈ Rn×d is defined by ∥M∥F =(∑
i∈[n]

∑
j∈[d]M

2
i,j

)1/2
.

Tr(M) The trace of a matrix M ∈ Rn×n, i.e. Tr(M) =
∑n
i=1Mi,i.

⊙ Denotes the Hadamard product namely for any A,B ∈ Rd×p, A ⊙ B :=
(Ai,jBi,j)i∈[d],j∈[p].

λ(M) For any matrix M ∈ Rn×n, λ(M) denotes the set of eigenvalues of M .

δ2(x, y) Given two sequences x, y of reals–completing finite sequences by zeros–such that∑
i x

2
i + y2i <∞, we define the ℓ2 rearrangement distance δ2(x, y) as

δ22(x, y) := inf
σ∈S

∑
i

(xi − yσ(i))2 ,

where S is the set of permutations with finite support. This distance is useful to com-
pare two spectra.



Notations xii

Idd The diagonal identity matrix of size d× d.

B(α, β) For any α, β > 0, B(α, β) will denote the beta distribution with α and β.

N (µ,Σ) For any µ ∈ Rd and any pseudo-definite matrix Σ ∈ Rd×d, N (µ,Σ) denotes the multi-
variate normal distribution with mean µ and covariance matrix Σ.

Ber(p) For any p ∈ [0, 1], Ber(p) denotes the Bernoulli distribution with parameter p.∥∥∥dχdπ∥∥∥
π,p

Considering two measures π, χ on some measurable space (E,Σ) such that χ is
absolutely continuous with respect to π. For p ∈ [1,∞], the p-th moment of
the density of χ with respect to π - denoted dχ

dπ - is defined by
∥∥∥dχdπ∥∥∥

π,p
:=

[∫ ∣∣∣dχdπ ∣∣∣p dπ]1/p if p <∞,

ess sup
∣∣∣dχdπ ∣∣∣ if p =∞.

(d)
= Denotes the equality in distribution sense.
(d)→ Denotes the weak convergence.

∥ω∥TV For any probability measure ω on some measurable space (E,Σ), ∥ω∥TV :=
supA∈Σ |ω(A)| is the total variation norm of ω.

Xn = OP(an) Given a sequence of real valued random variables (Xn)n∈N and a sequence of positive
reals (an)n∈N, the notation Xn = OP(an) means that (Xn/an)n∈N converges to zero in
probability as n→∞.

N (H, η) For any η > 0, N (H, η) is the L∞ η-covering number of the setH.

σ(Xi, i ∈ I) Given I ⊂ N and random variables (Xi)i∈I , we denote by σ(Xi, i ∈ I) the σ-algebra
generated by the random variables Xi, i ∈ I .

"w.h.p." A sequence of events (An)n∈N is said to hold with high probability (we will use the
abbreviation "w.h.p."), if P(An) converges to 1 when n→∞.

Abbreviations
SDP Semi Definite Programming

SNR Signal to Noise Ratio

SBM Stochastic Block Model

MSBM Markov Stochastic Block Model

HAC Hierarchical Agglomerative Clustering

HEiC Harmonic Eigen Cluster

SCCHEi Size Constrained Clustering for Harmonic Eigenvalues

RGG Random Geometric Graph

MRGG Markov Random Geometric Graph

PSI Post-Selection Inference

SLR Sparse Logistic Regression

SEI-SLR Selection Event Identification for Sparse Logistic Regression

GLM Generalized Linear Model

GLL Generalized Linear Lasso

MCMC Monte Carlo Markov Chain

MLE Maximum Likelihood Estimator

CLT Central Limit Theorem

SA Simulated Annealing

IRLS Iteratively Reweighted Least Squares

KKT Karush Kuhn Tucker
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1. Modèles de croissance dans les graphes aléatoires

1.1 Modélisation de réseaux par des graphes aléatoires

Graphes aléatoires. Les graphes sont aujourd’hui largement utilisés pour modéliser des systèmes
complexes dans les applications réelles. Comme il s’agit d’objets de grande dimension, il est nécessaire
de supposer une certaine structure sur les données pour pouvoir extraire efficacement des informations
sur le système étudié. À cette fin, un grand nombre de modèles de graphes aléatoires ont déjà été in-
troduits. Le plus simple est le modèle d’Erdös-Renyi G(n, p) dans lequel chaque arête entre des paires
de n nœuds est présente dans le graphe avec probabilité p ∈ (0, 1). On peut également mentionner
le scale-free network model de [Barabási, 2009] ou les small-world networks de [Watts and Strogatz, 1998].
Nous renvoyons à [Channarond, 2015] pour une introduction aux modèles de graphes aléatoires les
plus célèbres. En pratique, il existe souvent des variables pertinentes expliquant l’hétérogénéité des ob-
servations. La plupart du temps, ces variables explicatives sont inconnues et portent une information
précieuse sur le système étudié. Dans un tel contexte, les modèles à espace latent sont des outils bien
adaptés pour représenter les données (voir Smith et al. [2019]). Parmi les modèles à espace latent les
plus étudiés, on trouve ceux construits à partir de communautés cachées où chaque nœud est supposé
appartenir à un (ou plusieurs) groupe(s) tandis que les probabilités de connexion entre deux nœuds
du graphe dépendent de leur appartenance respective. Le célèbre Stochastic Block Model (SBM) a fait
l’objet d’une attention particulière ces dernières années. Nous renvoyons à Abbe [2017] pour une excel-
lente introduction à ce modèle et aux questions statistiques et algorithmiques en jeu. Dans les modèles
d’espace latent mentionnés précédemment, la géométrie intrinsèque du problème n’est pas prise en
compte. Cependant, la structure spatiale sous-jacente des graphes est essentielle puisque la géométrie
affecte considérablement la topologie de ces derniers (voir Barthélemy [2011] et Smith et al. [2019]). Afin
de répondre à ce besoin de modélisation, des graphes aléatoires avec des structures latentes continues
plus complexes que celles des SBMs ont été étudiés, comme les Random Geometric Graphs (RGGs).

Les modèles de graphon : les cas particuliers des SBMs et des RGGs. Les modèles du SBM et du
RGG sont des cas particuliers de modèle de graphon [voir Lovász, 2012]. Dans un modèle de graphon,
nous considérons un espace latent X et une fonction symétrique W : X × X → [0, 1]. Pour construire
un graphe simple et non orienté de taille n à partir du modèle graphon associé à W , il faut d’abord
échantillonner les positions latentes (Xi)i∈[n] dans Xn. Deux sommets i, j ∈ [n] avec i ̸= j sont alors
connectés avec probabilité W (Xi, Xj).
Les modèles du SBM et du RGG diffèrent essentiellement par leur structure topologique. C’est la rai-
son pour laquelle ils sont utilisés en pratique pour modéliser des phénomènes physiques de natures
différentes. En prenant l’exemple des réseaux sociaux, nous pouvons considérer en première approxi-
mation [comme expliqué dans Péché and Perchet, 2020] qu’une connexion entre deux utilisateurs peut
se produire pour deux raisons principales : (i) soit ces derniers sont des amis d’enfance (ce qui signi-
fie que les utilisateurs sont endogènement similaires avec des représentations géométriques latentes
proches) ou (ii) ils partagent les mêmes opinions politiques (ce qui signifie que les utilisateurs sont
exogènement similaires et appartiennent à une même communauté). Ces deux modèles sont donc in-
téressants pour les applications modernes et ont suscité un intérêt grandissant au cours des dernières
décennies. Outre cette dimension applicative, les modèles du SBM et du RGG sont par eux-mêmes des
objets d’étude particulièrement riches sur le plan mathématique.

Prédictions temporelles. Les réseaux réels évoluent au cours du temps et nous pouvons citer l’exemple
de la propagation de maladies [cf. Barthélemy, 2011, Section 5.6.3]. Afin de tendre vers une modélisa-
tion plus fidèle de toute la complexité des données réelles, de nombreux chercheurs ont développé des
nouveaux modèles de graphes aléatoires rendant compte de la dimension évolutive des réseaux. La
plupart d’entre eux étendent les modèles à espace latent et considère un graphe de taille fixe où les
arêtes et/ou les représentations latentes peuvent changer au cours du temps [cf. Lei and Rinaldo, 2015,
Matias and Miele, 2015, 2017, Xie and Rogers, 2016, Xie et al., 2015, Xu and Hero, 2014]. Dans cette thèse,
nous adoptons un tout autre point de vue. Motivés par les problèmes de prédiction de liens dans les
graphes, nous nous concentrons sur les modèles de croissance, à savoir des modèles de graphes aléatoires
dans lesquels à chaque pas de temps, un nouveau nœud rejoint le réseau existant et se connecte aux
autres sommets du graphe selon une règle probabiliste qui doit être spécifiée. Au cours de la dernière
décennie, les modèles de croissance pour les graphes aléatoires avec une structure spatiale latente ont
suscité un intérêt accru. On peut citer Jordan and Wade [2015], Papadopoulos et al. [2012] et Zuev et al.
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[2015] où des variantes géométriques du modèle d’attachement préférentiel sont introduites avec un
nouveau nœud entrant dans le graphe à chaque pas de temps.
Dans ce qui suit, nous proposons des modèles de croissance basés sur le SBM et sur le RGG où les attri-
buts latents des nœuds sont échantillonnés en utilisant une dynamique markovienne. Nous montrons
que ces nouveaux modèles sont pertinents pour résoudre des problèmes de prédiction de liens où il
s’agit d’estimer la probabilité de connexion entre les nœuds déjà présents dans le graphe et les futurs
arrivants.

1.2 Un modèle de croissance pour le SBM (Chapitre 2)

Présentation du Stochastic Block Model. Le SBM est un terrain de jeu parfait pour étudier l’existence
de phénomènes de transition de phase et de gaps informationnels/computationnels. Dans le SBM, nous
cherchons à obtenir des informations sur les communautés latentes cachées à partir de l’observation
de la matrice d’adjacence du graphe. Différents critères statistiques peuvent être étudiés dans les SBM,
telles que l’exact recovery (où l’on vise à estimer correctement l’ensemble de la partition des noeuds de
graphe avec grande probabilité) ou le weak recovery aussi appelé problème de détection (où l’algorithme
doit fournir avec grande probabilité une partition des noeuds positivement corrélée à la partition ca-
chée). Un grand nombre de méthodes sont aujourd’hui connues pour aborder ces différents problèmes.
On peut citer par exemple les méthodes probabilistes basées sur l’algorithme EM, la programmation
semi-définie, ou encore les méthodes spectrales. Même si le SBM a été largement étudié, ce modèle
mobilise encore une large communauté de chercheurs qui s’adonnent à la résolution de questions théo-
riques encore ouvertes ou tentent d’étendre le modèle pour permettre une description plus riche des
réseaux. Dans ce qui suit, nous mettons en lumière certains de ces enjeux clés.

✓ Le régime parcimonieux. Lorsque le degré moyen des nœuds du graphe est constant (i.e., ne dé-
pend pas de n), les SBMs ne sont pas connexes avec grande probabilité et il n’est pas possible
de résoudre le problème d’exact recovery. Dans ce cas, l’objectif est de trouver un algorithme qui
résout le problème de détection. La plupart des méthodes utilisées pour résoudre le problème
exact recovery - telles que les méthodes spectrales sur les matrices laplaciennes du graphe - ne per-
mettent pas de résoudre le problème de détection dans le régime parcimonieux. Dans Krzakala
et al. [2013], les auteurs ont introduit une nouvelle représentation matricielle du graphe appelée
la matrice non-backtracking B et ont affirmé qu’une méthode spectrale sur B pourrait résoudre le
problème de détection dans le régime parcimonieux. Cette réhabilitation des méthodes spectrales
via l’opérateur non-backtracking a été rigoureusement prouvée par Bordenave et al. [2018] pour
le SBM symétrique avec deux communautés. La conjecture générale pour un nombre arbitraire
de communautés symétriques ou asymétriques a été résolue plus tard dans Abbe and Sandon
[2015b] en s’appuyant sur une matrice non-backtracking d’ordre supérieur et une implémentation
de type message passing.

✓ L’hétérogénéité des degrés. Une autre limite principale des méthodes spectrales pour les applications
réelles est lorsque les degrés du réseaux sont hétérogènes. En travaillant avec le degree correlated
SBM, Dall’Amico and Couillet [2019] ont prouvé que la matrice Bethe-Hessian peut être utilisée
pour résoudre le problème de détection de communautés dans les graphes parcimonieux à degrés
inhomogènes.

✓ Partial recovery bounds. En interpolant entre les critères d’exact et de weak recovery, l’un des prin-
cipaux défis des SBMs est de comprendre le lien inhérent entre un rapport signal/bruit (SNR)
approprié et l’erreur de classification, à savoir l’erreur d’alignement entre la partition des noeuds
du graphe renvoyée par l’algorithme et la partition cachée. Dans Giraud and Verzelen [2019], les
auteurs ont proposé un algorithme de programmation semi-définie positive (SDP) pour estimer
les communautés et ont prouvé que l’erreur de classification décroit exponentiellement vite vers 0
pour un SNR bien choisi.

La discussion précédente s’est concentrée sur des graphes statiques. Cependant, dans de nombreuses
applications, nous avons accès à plusieurs versions d’un même graphe qui évolue au cours du temps.
C’est le cas des réseaux représentant la proximité physique d’agents mobiles ou l’évolution biologique
et chimique des membres d’un groupe et nous renvoyons à Holme [2015] pour une revue de la littéra-
ture à ce sujet. Afin d’extraire des informations temporelles sur le système d’intérêt, plusieurs travaux
ont étendu le SBM pour modéliser la structure dynamique des réseaux étudiés. Dans Matias and Miele
[2015], une variante du SBM est considérée où l’évolution temporelle est modélisée par une chaîne de
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Markov cachée discrète sur les communautés des nœuds et où les probabilités de connexion évoluent
également dans le temps. Inspiré par les travaux de Karrer and Newman [2011], Lei and Rinaldo [2015]
étudie le degree correlated SBM où le degré des nœuds peut varier au sein d’une même communauté.
Nous pouvons également mentionner Keriven and Vaiter [2022] ou Dall’Amico et al. [2020].
Les travaux mentionnés ci-dessus considèrent principalement des SBMs où les communautés des nœuds
ou les présences/absences d’arêtes peuvent évoluer dans le temps, mais rares sont les articles qui s’in-
téressent à des modèles de croissance pour les SBMs. Dans cette thèse, nous cherchons à combler ce
manque.

Le Markov Stochastic Block Model. Dans le chapitre 2, nous introduisons le MSBM (Markov SBM) :
une extension du SBM où les communautés des noeuds sont alouées via une dynamique markovienne.
Notre objectif est de fournir des méthodes efficaces et fiables pour résoudre

• les problèmes de prédiction de liens où nous cherchons à calculer la probabilité de connexion
entre les nœuds du graphe et un futur entrant,

• ou les tâches de filtrage collaboratif où nous voulons déduire la communauté cachée d’un nœud
si nous n’avons qu’une information partielle sur la façon dont ce nœud est connecté au reste du
graphe.

Dans le MSBM, nous considérons qu’à chaque pas de temps i, un nouveau nœud entre dans le réseau
avec une communauté latente Ci ∈ [K] (pour un entier positif fixe K) qui est échantillonnée à partir de
la distribution de probabilité PCi,· où P ∈ [0, 1]K×K est la matrice de transition de la chaîne de Markov
récurrente positive (Ci)i∈[n]. Une fois la communauté de chaque nœud attribuée, une arête est créée
entre les nœuds i et j avec probabilité QCi,Cj où Q ∈ [0, 1]K×K est la matrice de connectivité. Dans
ce modèle, nous pouvons utiliser les méthodes standards développées pour le SBM pour estimer les
communautés cachées des nœuds à partir de l’observation de la matrice d’adjacence du graphe. A partir
des communautés estimées, nous pouvons fournir des estimations des paramètres du modèle P et Q.
Afin de résoudre les problèmes de prédiction de liens ou de filtrage collaboratif, une approche naturelle
consiste à s’appuyer sur une approche plug-in en utilisant les estimateurs précédemment introduits de
P , Q et (Ci)i∈[n]. Néanmoins, nous montrons dans le chapitre 2 que cette procédure plug-in est très
peu robuste car elle est très sensible aux erreurs de clustering faites par l’algorithme utilisé. Dans le
chapitre 2, nous proposons une méthodologie générale pour résoudre les tâches de prédiction de liens
et de filtrage collaboratif dans le MSBM qui s’adapte aux erreurs locales de clustering et qui s’avère
beaucoup plus fiable pour les applications pratiques. Nos contributions sont les suivantes.

• Méthodes générales pour une prédiction temporelle fiable dans les MSBMs.
i) En établissant un lien entre les MSBMs et les modèles de Markov cachés, nous proposons d’esti-
mer ce que l’on appelle les probabilités d’émission qui correspondent pour tout c, ĉ ∈ [K] à la proba-
bilité pour un certain nœud appartenant à la communauté c ∈ [K] d’être assigné à la communauté
ĉ par l’algorithme de clustering. Ces quantités nous permettent de concevoir des méthodes fiables
de prédiction de liens et de filtrage collaboratif qui peuvent tenir compte des erreurs locales dans
les estimations des communautés cachées.
ii) Nous montrons également comment les probabilités d’émission apprises peuvent être utilisées
pour effectuer une sélection de modèle, i.e. pour estimer le nombre inconnu de communautés la-
tentes K.
Nous soulignons que les méthodes proposées peuvent être utilisées pour n’importe quel algo-
rithme de clustering. Afin de mener des expériences numériques et de fournir des garanties théo-
riques, nous utilisons dans le chapitre 2 l’algorithme de programmation semi-définie (SDP) intro-
duit par Giraud and Verzelen [2019].

• Garanties théoriques.
iii) Nous identifions un rapport signal sur bruit pertinent dans notre cadre d’étude et nous prou-
vons que la partition des nœuds obtenue par l’algorithme SDP conduit à une erreur de classifica-
tion qui décroît exponentiellement vite par rapport à ce signal sur bruit.
iv) Nous donnons des estimateurs des paramètres du MSBM dont nous prouvons la consistance.

• Aspects numériques.
v) A notre connaissance, nous sommes les premiers à fournir une implémentation de la méthode
SDP de Giraud and Verzelen [2019]. Une partie importante de ce travail a consisté à coder une
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étape d’approximation technique issue de Charikar et al. [2002].
vi) Nous fournissons des résultats numériques de nos méthodes sur des données simulées et
réelles.

Ce travail sur les MSBMs présenté dans le chapitre 2 correspond à l’article suivant.

Duchemin [2022] Quentin Duchemin. Reliable Time Prediction in the Markov Stochas-
tic Block Model. preprint, March 2022. URL https://hal.archives-ouvertes.fr/
hal-02536727

1.3 Un modèle de croissance pour le RGG (Chapitre 3)

Présentation des Random Geometric Graphs. Le modèle RGG a été introduit pour la première fois
par Gilbert [1961] pour modéliser les communications entre stations radio. Le modèle original de Gilbert
était défini comme suit : choisir des points dans R2 selon un processus ponctuel de Poisson d’intensité
1 et connecter deux points si leur distance est inférieure à un certain paramètre r > 0. Le modèle RGG
a été étendu à d’autres espaces latents tels que l’hypercube [0, 1]d, la sphère euclidienne ou aux groupes
de Lie compacts Méliot [2019]. Une importante littérature a été consacrée à l’étude des propriétés des
RGGs en faible dimension Penrose [2003], Dall and Christensen [2002], Bollobás [2001]. Les RGGs ont
trouvé des applications dans un très grand nombre de domaines comme les réseaux sans fil Haenggi
et al. [2009] ou les algorithmes de bavadarge Wang and Lin [2014].

Pour citer Bollobás [2001], "Un des principaux objectifs de la théorie des graphes aléatoires est de déterminer
quand une propriété donnée est susceptible d’apparaître." Dans cette direction, plusieurs travaux ont tenté
d’identifier la structure des réseaux par une procédure de test, voir par exemple Ghoshdastidar et al.
[2020]. En ce qui concerne les RGGs, la plupart des résultats ont été établis en petite dimension d ≤ 3
[cf. Barthélemy, 2011, Penrose, 2003]. Cependant, l’omniprésence des problèmes statistiques impliquant
des données de grande dimension a motivé la communauté à étudier les propriétés des RGGs dans le
cas où d → ∞. Le problème qui consiste à déterminer si un graphe peut être réalisé comme un graphe
géométrique apparaît comme naturel et important, mais nous savons aujourd’hui qu’il est NP-difficile
Breu and Kirkpatrick [1998]. Une question reliée et plus abordable est celle qui consiste à savoir si un
RGG donné porte encore de l’information spatiale lorsque d → ∞ ou si la géométrie est perdue en
haute dimension. Ce problème, connu sous le nom de détection de géométrie, vise à tester si un graphe
a été échantillonné à partir d’une distribution Erdös-Renyi ou celle d’un RGG. Cette question a sus-
cité beaucoup d’intérêt au cours des dernières années et nous pouvons mentionner en particulier les
contributions importantes de Brennan et al. [2020], Bubeck et al. [2016], Liu et al. [2021]. Les preuves
présentées dans ces articles font appel à des résultats avancés issus des probabilités, des statistiques, du
transport optimal, de la combinatoire ou de la théorie de l’information, plaçant les RGGs à l’intersection
d’un large éventail de communautés de recherche. Nous pouvons mentionner en particulier que dans
le régime dense, la transition de phase pour le problème de détection de géométrie se produit au régime
auquel les matrices de Wishart deviennent indiscernables des GOE (Gaussian Orthogonal Ensemble) pour
la distance de variation totale. Cette question a été étudiée dans des contextes plus généraux comme
dans Bubeck and Ganguly [2015] ou Bourguin et al. [2021]. Au cours de mon doctorat, j’ai écrit un ar-
ticle de synthèse (qui ne sera pas discuté avec plus de détails dans ce manuscrit) sur les nombreuses
questions mathématiques captivantes liées aux RGGs et à leurs extensions.

Duchemin and De Castro [2022] Quentin Duchemin and Yohann De Castro. The Ran-
dom Geometric Graph: Recent developments and perspectives. 2022. URL https://hal.
archives-ouvertes.fr/hal-03622277

Estimation non-paramétrique dans les RGGs. Toujours dans le modèle du RGG, De Castro et al.
[2019] aborde une toute autre question et considère un problème d’estimation non-paramétrique dans
les RGGs. Leur travail contribue à la question plus large de l’estimation dans les modèles de gra-
phon. Dans Tang et al. [2013], les auteurs prouvent que des méthodes spectrales peuvent permettrer
d’estimer la matrice formée par le graphon évalué aux positions latentes à une transformation ortho-
gonale près, en supposant que le graphon est un noyau défini positif. En quittant l’univers discret

https://hal.archives-ouvertes.fr/hal-02536727
https://hal.archives-ouvertes.fr/hal-02536727
https://hal.archives-ouvertes.fr/hal-03622277
https://hal.archives-ouvertes.fr/hal-03622277
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et en s’attaquant à l’objet continu sous-jacent, des algorithmes ont été conçus pour estimer les gra-
phons eux-mêmes, comme dans Klopp et al. [2017] qui fournissent des vitesses de convergence op-
timale pour le SBM. Contrairement aux travaux précédents, l’article De Castro et al. [2019] fournit
une approche non-paramétrique pour estimer le graphon caractérisant un RGG sur la sphère eucli-
dienne Sd−1, sans faire l’hypothèse que le noyau est défini-positif. Dans leur modèle, les auteurs consi-
dèrent n points X1, X2, . . . , Xn échantillonnés uniformément et indépendamment sur Sd−1 et une arête
est créée entre les nœuds i et j (où i, j ∈ [n], i ̸= j) avec probabilité p(⟨Xi, Xj⟩), où la fonction incon-
nue p : [−1, 1] → [0, 1] est appelée la fonction enveloppe. Ce RGG est un modèle de graphon avec un
noyau symétrique W donné par W (x, y) = p(⟨x, y⟩). On peut associer au graphon W un opérateur
intégral TW . L’opérateur TW est de Hilbert-Schmidt et il possède un nombre dénombrable de valeurs
propres bornées λ(TW ) avec zéro comme seul point d’accumulation. Les fonctions propres (ϕk)k≥0

de TW ont la propriété remarquable de ne pas dépendre de p (cf. Dai and Xu [2013] Lemma 1.2.3) : elles
sont données par les harmoniques sphériques réelles. On peut montrer que la décomposition spectrale
suivante est vérifiée

p(t) =
∑
l≥0

p∗l ϕk(t) ,

où λ(TW ) = {p∗0, p∗1, . . . , p∗1, . . . , p∗l , . . . , p∗l , . . . }, i.e. chaque valeur propre p∗l a une multiplicité connue
dl. Cette décomposition montre qu’une estimation par une approche plug-in de la fonction enveloppe p
est possible si l’on est capable d’estimer les valeurs propres de l’opérateur TW . Dans De Castro et al.
[2019], les auteurs prouvent que sous une certaine condition de régularité sur la fonction enveloppe, le
spectre de la matrice d’adjacence du graphe (correctement normalisé) converge vers λ(TW ) au sens de
la métrique δ2 définie pour toutes suites de réels x et y de carré sommable par

δ22(x, y) := inf
σ∈S

∑
i

(xi − yσ(i))2 ,

où S est l’ensemble des permutations deN.
Cette approche présente deux inconvénients majeurs : (i) Premièrement, l’algorithme proposé pour
estimer la fonction enveloppe a une complexité qui croît de façon exponentielle avec le niveau de ré-
solution choisi R. (ii) Enfin, les auteurs travaillent avec la condition restrictive d’un échantillonnage
indépendant des positions latentes.

Le Markov Random Geometric Graph. Dans notre article

Duchemin and De Castro [2022] Quentin Duchemin and Yohann De Castro. Markov random
geometric graph, MRGG: A growth model for temporal dynamic networks. Electron. J. Stat., 16
(1):671–699, 2022. doi: 10.1214/21-ejs1969. URL https://doi.org/10.1214/21-ejs1969

nous cherchons à résoudre les deux problèmes précédents en introduisant le Markov RGG (MRGG) : un
modèle de croissance pour les RGGs sur Sd−1 où les positions latentes sont échantillonnées en utilisant
une dynamique markovienne. Plus précisément, la distribution du nouveau point latent Xi est donnée
par P (Xi−1, ·) où P est le noyau de transition de la chaine de Markov (Xi)i≥1 qui doit être estimé. Nous
considérons un schéma d’échantillonnage markovien isotrope, ce qui signifie qu’à partir d’une position
latente Xi, le point latent suivant est défini par

Xi = ri ×Xi−1 +
√

1− r2i × Yi,

où

• Yi ∈ Sd−1 est un vecteur unitaire échantillonné uniformément dans l’espace orthogonal à Xi−1,

• ri ∈ [−1, 1] quantifie la distance entre Xi−1 et Xi. ri est distribué selon la densité de probabilité
fL : [−1, 1]→ [0, 1], appelée la fonction latitude.

En travaillant avec ce modèle, nos contributions présentées dans le chapitre 3 sont les suivantes. (i)
Nous présentons un algorithme s’exécutant en temps polynomial basé sur un clustering hiérarchique
pour estimer la fonction enveloppe p. Nous fournissons des garanties théoriques pour notre algorithme
lorsque le niveau de résolution optimal est connu. (ii) Nous proposons une procédure de sélection de

https://doi.org/10.1214/21-ejs1969
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modèle basée sur l’heuristique de pente pour estimer un niveau de résolution réalisant un compro-
mis biais/variance pertinent. (iii) Nous prouvons qu’il est possible d’estimer de façon consistante la
matrice de Gram des positions latentes G∗ = n−1

(
⟨Xi, Xj⟩)i,j∈[n] en norme Frobénius. (iv) Ce der-

nier résultat théorique motive l’approximation de la fonction latitude fL en utilisant une estimateur
par noyau à partir des approximations obtenues des distances latentes consécutives

(
ri
)
i∈{2,...,n} =(

⟨Xi−1, Xi⟩
)
i∈{2,...,n}. (v) Nous prouvons que la connaissance des distances latentes est suffisante pour

résoudre le problème de prédiction de liens. Ainsi, en se basant sur les estimateurs mentionnés ci-dessus
de la fonction enveloppe p, de la fonction latitude fL et des distances latentes G∗, nous proposons une
méthode pour estimer la probabilité de connexion entre les nœuds déjà présents dans le graphe et le
nouvel arrivant. (vi) Nous fournissons une procédure de test pour déterminer si le graphe donné cache
une dynamique markovienne latente non triviale ou si les noeuds ont été échantillonnés indépendam-
ment et uniformément sur Sd−1. (vii) Enfin, nous présentons les résultats de simulations numériques
détaillées qui montrent les performances de nos méthodes.

•

L’analyse théorique des algorithmes utilisés pour réaliser des tâches d’estimation dans des modèles
de graphes aléatoires dynamiques nécessite des outils probabilistes sophistiqués. Le modèle MRGG
n’échappe pas à cette règle et la preuve d’un résultat essentiel du chapitre 3 a requis l’utilisation d’une
inégalité de concentration pour une U-statistique dans un cadre dépendant. Les quelques articles exis-
tants dans la littérature qui abordaient ce problème difficile considéraient des hypothèses qui ne corres-
pondaient pas à notre cadre. Cela nous a conduit à établir un nouveau résultat de concentration pour
les U-statistiques d’une chaîne de Markov.

2. Outils probabilistes pour des variables aléatoires dépendantes
et applications

2.1 Inégalité de concentration pour des U-statistiques dans un cadre dépendant
(Chapitre 4)

Dans cette section, nous présentons un résultat de concentration pour des U-statistiques construites
avec des variables aléatoires dépendantes. Ces travaux sont détaillés dans le chapitre 4 ainsi que dans
l’article suivant.

Duchemin et al. [2022b] Quentin Duchemin, Yohann De Castro, and Claire Lacour. Concen-
tration inequality for U-statistics of order two for uniformly ergodic Markov chains. Bernoulli,
2022b. URL https://hal.archives-ouvertes.fr/hal-03014763

Contexte et état de l’art. La concentration de la mesure est devenue omniprésente dans les commu-
nautés des Statistiques et du Machine Learning. En plus des graphes aléatoires (cf. Chapitres 2 et 3),
on peut mentionner des applications de la concentration pour la sélection de modèles (voir Massart
[2007] et Lerasle et al. [2016]), la théorie de l’apprentissage statistique (voir Clémençon et al. [2020]) ou
l’apprentissage séquentiel (voir Wang et al. [2012]). Une contribution importante dans ce domaine est
celle relative aux U-statistiques. Une U-statistique d’ordre m est une somme de la forme∑

1≤i1<···<im≤n

hi1,...,im(Xi1 , . . . , Xim),

où X1, . . . , Xn sont des variables aléatoires prenant des valeurs dans un espace mesurable (E,Σ) et
où hi1,...,im sont des fonctions mesurables de m variables hi1,...,im : Em → R.
Une inégalité exponentielle fondatrice pour les U-statistiques a été prouvée par Arcones and Giné [1993]
à l’aide d’une approche de chaos. Leur résultat est valable pour des noyaux bornés et canoniques (ou
dégénérés), ce qui signifie que pour tout i1, . . . , im ∈ [n] := {1, . . . , n} avec i1 < · · · < im et pout
tout x1, . . . , xm ∈ E,∥∥hi1,...,im∥∥∞ <∞ et ∀j ∈ [1, n] , EXj

[
hi1,...,im(x1, . . . , xj−1, Xj , xj+1, . . . , xm)

]
= 0 .

https://hal.archives-ouvertes.fr/hal-03014763
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Arcones et Giné ont prouvé que dans le cas dégénéré, les vitesses de convergence pour les U-statistiques
sont de l’ordre de nm/2. En s’appuyant sur des inégalités de moment de type Rosenthal, Giné et al.
[2000] ont amélioré le résultat de Arcones and Giné [1993] en fournissant les quatre régimes optimaux
de la queue de distribution, à savoir sous-gaussien, sous-exponentiel, et sous-Weibull d’ordres 2/3 et
1/2. Lorsque les noyaux ne sont pas bornés, certains résultats peuvent être étendus à condition que les
variables aléatoires hi1,...,im(Xi1 , . . . , Xim) aient des queues de distribution suffisamment légères [voir
pour exemple Eichelsbacher and Schmock, 2003, Théorème 3.26]
Tous les résultats mentionnés ci-dessus considèrent que les variables aléatoires (Xi)i≥1 sont indépen-
dantes. Le comportement asymptotique des U-statistiques pour des variables aléatoires dépendantes a
déjà été étudié par plusieurs articles [voir par exemple Bertail and Clémençon, 2011, Eichelsbacher and
Schmock, 2001]. Toujours dans un cadre dépendant, les principaux travaux fournissant une inégalité de
concentration pour les U-statistiques sont Borisov and Volodko [2015], Han [2018] et Shen et al. [2020].
Tous ces articles considèrent un noyau fixe (à savoir h ≡ hi1,...,im pour tout i1, . . . , im) défini sur Rd

avec de fortes conditions de régularité. Pour la première fois, nous considérons dans cette thèse des
fonctions dépendantes du temps, ce qui rend l’analyse théorique plus difficile puisque la méthode de
splitting standard peut se révéler inutilisable (cf. section 4.2.5).

Hypothèses.
Nous considérons une chaîne de Markov (Xi)i≥1 avec un noyau de transition P : E × E → R prenant
des valeurs dans un espace mesurable (E,Σ), et nous introduisons des fonctions mesurables hi,j : E2 →
R. Notre objectif est d’étudier les propriétés de concentration de la U-statistique d’ordre deux

Ustat(n) =
∑

1≤i<j≤n

(hi,j(Xi, Xj)− E [hi,j(Xi, Xj)]) .

Nous travaillons sous les hypothèses suivantes.

1. Ergodicité uniforme : La chaîne de Markov (Xi)i≥1 est uniformément ergodique avec une mesure
invariante π.

2. Noyau de transition borné : Il existe δM > 0 et une mesure de probabilité ν telle que

∀x ∈ E, ∀A ∈ Σ, P (x,A) ≤ δMν(A).

3. Noyaux π-canoniques et bornés : Pour tout i, j ∈ [n], hi,j : E × E → R est mesurable, borné et
π-canonique, c’est-à-dire

∀x, y ∈ E, Eπ[hi,j(X,x)] = Eπ[hi,j(X, y)] = Eπ[hi,j(x,X)] = Eπ[hi,j(y,X)].

Cette espérance commune est notée Eπ[hi,j ].

4. Hypothèse technique : Au moins une des conditions suivantes est satisfaite

(i) Pour tout i, j ∈ [n], hi,j ≡ h1,j , i.e. le noyau hi,j ne dépend pas de i.

(ii) La distribution initiale de la chaîne est absolument continue par rapport à π et sa densité a un
moment d’ordre p fini pour un certain p ∈ (1,∞].

Dans le chapitre 4, nous donnons des exemples de chaînes de Markov classiques vérifiant ces hypo-
thèses.

Résultats. Pour la première fois, nous fournissons dans cette thèse une inégalité de concentration pour
les U-statistiques d’ordre deux dans un cadre dépendant avec des noyaux qui peuvent dépendre des
indices de la somme et qui ne sont pas supposés symétriques ou réguliers.
Nous prouvons dans un premier temps un résultat de concentration de type Hoeffding qui vaut sans
aucune condition (ou sous une faible condition) sur la distribution initiale de la chaîne. En suppo-
sant que la chaîne de Markov (Xi)i≥1 est stationnaire (ce qui signifie que X1 est distribué selon π),
nous prouvons une inégalité de concentration de type Bernstein qui conduit à une meilleure vitesse
de convergence si les termes de variances sont petits. Nos principaux résultats sont résumés dans le
Théorème 1.
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Notre inégalité de concentration fait intervenir des quantités Bn et Cn qui peuvent être interprétées
comme des écart-types et nous renvoyons au chapitre 4 pour leurs définitions précises. Afin de lire
directement les termes dominants de notre inégalité de concentration à partir du Théorème 1, nous
insistons sur le faut qu’il est toujours possible de borner grossièrement Bn et Cn comme suit

Bn ≤
√
nA and Cn ≤ nA où A := 2max

i,j
∥hi,j∥∞.

Theorem 1
On considère que les hypothèses 1 à 4 sont satisfaites. Il existe alors des constantes β, κ > 0 telles que
pour tout u > 0, on a avec probabilité au moins 1− βe−u log n,

Ustat(n) ≤ κ log(n)
( [
Cn +A log(n)

√
n
]√

u+
[
A+Bn

√
n
]
u+

[
2A
√
n
]
u3/2 +A

[
u2 + αn

] )
,

où αn =

{
log(n) si la chaîne (Xi)i≥1 est stationnaire

n sinon
.

Si l’hypothèse 4.(i) est vérifiée, le terme Cn peut être retiré de l’inégalité précédente.

Dans le chapitre 4, nous motivons l’utilisation de noyaux dépendant des indices de la somme en pré-
sentant deux exemples spécifiques empruntés aux domaines de la recherche d’information et des tests
d’homogénéité. En considérant un cas particulier, nous montrons que notre inégalité de type Bernstein
(obtenue lorsque αn = log(n) dans le Théorème 1) peut conduire à des vitesses de convergence signifi-
cativement plus rapides.

Dans les trois sections suivantes, nous décrivons trois applications importantes du Théorème 1 en Sta-
tistiques et en Machine Learning. Ces contributions sont présentées dans le chapitre 5 et dans l’article
suivant.

Duchemin et al. [2022a] Quentin Duchemin, Yohann De Castro, and Claire Lacour. Three rates
of convergence or separation via U-statistics in a dependent framework. JMLR, 2022a. URL
https://hal.archives-ouvertes.fr/hal-03603516

2.2 Estimation du spectre d’opérateurs intégraux signés via des algorithmes
MCMC (Chapitre 5 Sec.5.3)

Contexte. Dans la théorie de l’apprentissage (comme par exemple pour l’Analyse en Composantes
Principales), l’estimation des valeurs propres et/ou des vecteurs propres de matrices dépendantes des
données est essentielle. Il apparaît que ces matrices peuvent souvent être interprétées comme les ver-
sions empiriques d’objets continus tels que les opérateurs intégraux. Comme souligné dans Rosasco
et al. [2010], l’analyse théorique des algorithmes d’apprentissage mentionnés ci-dessus nécessite de
quantifier la différence entre la structure propre des opérateurs empiriques et de leurs analogues conti-
nus. Dans cette thèse, nous étudions la convergence de la suite de spectres de matrices à noyau vers
le spectre d’un opérateur intégral. Un travail fondateur dans ce domaine est celui de Adamczak and
Bednorz [2015a] et, pour autant que nous le sachions, tous les résultats existants font l’hypothèse que
le noyau est de type positif (i.e., donne un opérateur intégral avec des valeurs propres positives). Pour
la première fois, nous prouvons un résultat non asymptotique de convergence des spectres pour les
noyaux qui ne sont pas de type positif. Nous prouvons également que les algorithmes de Metropolis-
Hastings indépendants sont des schémas d’échantillonnage valides pour appliquer notre résultat.

Résultat. Nous considérons une chaîne de Markov (Xn)n≥1 sur E satisfaisant les hypothèses 1 et 2
avec comme distribution de probabilité invariante π, et un certain noyau h : E ×E → R satisfaisant les
hypothèses suivantes.

h : E ×E → R est une fonction bornée et symétrique de carré intégrable par rapport à la mesure π ⊗ π. De
plus, il existe des fonctions continues ϕr : E → R, r ∈ I (où I = N ou I = 1, . . . , N ) qui forment une base

https://hal.archives-ouvertes.fr/hal-03603516
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orthonormée de L2(π) et une suite de nombres réels (λr)r∈I ∈ ℓ2 telles que l’on a ponctuellement

h(x, y) =
∑
r∈I

λrϕr(x)ϕr(y),

avec supr∈I ∥ϕr∥2∞ <∞ et supx∈E
∑
r∈I |λr|ϕr(x)2 <∞.

On peut associer à h le noyau d’un opérateur linéaire H défini par

Hf(x) :=

∫
E

h(x, y)f(y)dπ(y).

Il s’agit d’un opérateur de Hilbert-Schmidt sur L2(π) et il possède donc un spectre réel constitué d’une
suite de valeurs propres de carré sommable. Nous désignons les valeurs propres de H par λ(H) :=
(λ1, λ2, . . . ). Pour un certain n ∈ N∗, on considère Hn := 1

n (h(Xi, Xj))1≤i,j≤n ayant pour valeurs
propres λ(Hn).
Dans la section 5.3, nous prouvons que le spectre de Hn converge vers le spectre de l’opérateur inté-
gral H lorsque n → ∞. Plus précisément, il existe des constantes C,D telles que pour n suffisamment
grand, on a avec probabilité au moins 1−D/

√
n,.

δ2(λ(H), λ(Hn))
2 ≤ C log n√

n
+ 8

∑
i>⌈n1/4⌉,i∈I

λ2i . (1)

Signalons que le schéma de preuve de ce résultat généralise une approche déjà exploitée dans le cha-
pitre 3.

Application. Considérons à présent un certain noyau h et une mesure de probabilité π satisfaisant
les hypothèses précédentes. Notre objectif est de calculer les valeurs propres de l’opérateur intégral
H associé à h. En pratique, π n’admet souvent pas d’expression sous forme close, une situation qui
se présente typiquement dans un contexte bayésien où π est une certaine distribution a posteriori. Une
approche standard pour résoudre ce problème consiste à s’appuyer sur des méthodes MCMC. Dans
la section 5.3, nous adoptons cette stratégie et nous considérons le cas spécifique où E est un sous-
ensemble borné de Rk équipé de tribu borélienne B(E). Nous considérons une densité de probabilité q
sur E, appelée densité de proposition. Nous supposons que la mesure π sur E admet une densité fπ
par rapport à la mesure de Lebesgue λLeb sur E et que les conditions suivantes sont satisfaites

∀y ∈ E, fπ(y), q(y) > 0 et
q(y)

fπ(y)
> β pour un certain β > 0 .

Dans ce contexte, nous prouvons dans la section 5.3 qu’une chaîne de Markov (Xi)i≥1 obtenue à partir
d’un algorithme de Metropolis-Hastings indépendant avec une loi de proposition qλLeb satisfait les
hypothèses 1 et 2. Nous déduisons que l’on peut estimer les valeurs propres de H en calculant celles de
Hn, et l’équation (1.1) quantifie la distance entre les deux spectres.

2.3 Bornes de généralisation pour l’apprentissage séquentiel avec fonction de
perte bivariée (Chapitre 5 Sec.5.4)

Contexte. En Machine Learning, les algorithmes batch accumulent les données sur une période et
n’entraînent les modèles qu’une fois le processus d’acquisition des données terminé. L’apprentissage
de type batch présente certaines limites, notamment lorsque i) les données arrivent au cours du temps
(par exemple, les cours de la bourse) et que nous devons nous adapter rapidement aux changements,
ou ii) pour les problèmes d’apprentissage à grande échelle où traiter d’un seul bloc l’ensemble des
données peut se réveler trop coûteux d’un point de vue computationnel. Les algorithmes séquentiels
ont été conçus pour résoudre efficacement les problèmes d’apprentissage dans de telles situations : ils
traitent les données à la volée et tentent d’améliorer le modèle appris au fil du temps en fonction des
nouvelles observations. Une façon d’analyser la performance des algorithmes d’apprentissage séquen-
tiels est de considérer la notion de regret qui compare les pertes induites par les décisions prises par
l’algorithme au cours du temps et la perte qui aurait été subie en prenant une décision optimale. Au



Résume de la thèse 11

cours de la dernière décennie, les chercheurs ne se sont pas seulement intéressés à la notion de regret
mais ont examiné les algorithmes séquentiels sous un angle différent en se demandant quelles seraient
leurs performances sur de futures données. Cette question n’a de sens que si l’on suppose que la suite
d’observations provient d’un certain processus stochastique. Comme exprimé dans Agarwal and Duchi
[2012], "si la suite d’exemples est générée par un processus stochastique, l’algorithme d’apprentissage séquentiel
peut-il fournir un bon prédicteur pour les échantillons futurs issus du même processus?"
Les performances de généralisation des algorithmes séquentiels avec des fonctions de perte univariées
ont déjà été largement étudiées pour des observations aussi bien i.i.d. que dépendantes. En ce qui
concerne les problèmes d’apprentissage séquentiels avec une fonction de perte bivariée, des bornes de
généralisation ont été obtenues pour des données i.i.d. mais peu de travaux considèrent le cas d’obser-
vations dépendantes. Cette thèse fournit l’un des premiers résultats dans ce cadre difficile. La Figure 2
positionne précisément notre travail dans la littérature.

Algorithmes
Batch

Algorithmes
séquentiels

Fonctions
de perte

univariées

Fonctions de
perte bivariées

Bornes de
regret

Bornes de
Généralisation

Données
i.i.d.

Données
dépendantes

Conditions
de mélange

Hypothèse
markovienne

FIGURE 2 : Positionnement de nos contributions dans la littérature existante pour l’analyse des algo-
rithmes séquentiels.

Résultats. Inspirés par le problème de ranking, nous considérons une fonction f : E → R qui définit
l’ordre des objets dans E. Nous cherchons à trouver une approximation pertinente de l’ordre des élé-
ments de E en sélectionnant une fonction h (appelée fonction hypothèse) dans un espaceH en se basant
sur l’observation de la suite aléatoire (Xi, f(Xi))1≤i≤n où (Xi)i≥1 est une chaîne de Markov réversible
satisfaisant les hypothèses 1 et 2. Pour mesurer la performance d’une hypothèse donnée h : E×E → R,
nous utilisons une fonction de perte bivariée de la forme ℓ(h,X,U). Typiquement, on peut utiliser la
fonction de perte nommée misranking loss et définie par

ℓ(h, x, u) = 1{(f(x)−f(u))h(x,u)<0},

qui vaut 1 si les exemples sont classés dans le mauvais ordre et 0 sinon. Le but du problème d’appren-
tissage est de trouver une hypothèse h qui minimise l’espérance du misranking risk.

R(h) := E(X,X′)∼π⊗π
[
ℓ(h,X,X ′)

]
.

Dans le contexte de l’apprentissage séquentiel, à chaque pas de temps t l’algorithme choisit une certaine
hypothèse ht ∈ H en observant uniquement la suite (Xi, f(Xi))i≤t jusqu’au temps t. Nous travaillons
avec les hypothèses suivantes.

• (H, ∥ · ∥∞) est compact et satisfait

logN (H, η) = O(η−θ) ,

où N (H, η) est le L∞-covering number deH et où θ > 0.

• La fonction de perte ℓ : H× E → [0, 1] est telle que

ℓ(h, x1, x2) = ϕ(f(x1)− f(x2), h(x1, x2)),

où ϕ : R×R→ [0, 1] est Lipschitz par rapport à la seconde coordonnée.

Nos contributions présentées dans la section 5.4 sont les suivantes :

1. Nous introduisons un nouveau risque empirique, désigné par Mn := Mn(h1, . . . , hn−1−bn). Ce
dernier dépend de la quantité clé bn qui peut être interprétée comme un facteur d’oubli. bn est de
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l’ordre de log n et sa définition implique une constante qui rend compte des propriétés de mélange
de la chaîne de Markov.

2. Nous donnons des bornes d’erreur non asymptotiques entreMn et le vrai risque moyen associé
à la suite d’hypothèses (ht)t∈[n] générée par l’algorithme séquentiel considéré. Plus précisément,
notant cn = ⌊cn⌋ pour un certain c ∈ (0, 1), nous montrons que∣∣∣∣∣ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn

∣∣∣∣∣ = OP
[
log(n) log(log n)

n
1

2+θ

]
.

3. Nous convertissons une borne de regret d’un algorithme séquentiel donné en un contrôle de l’ex-
cès de risque. Ce type de résultat est connu dans la littérature sous le nom de "conversion online-
to-batch". Plus précisément, en considérant un algorithme qui atteint une borne de regret Rn c’est-
à-dire générant une suite d’hypothèses (ht)t∈[n] telle que

Mn ≤ inf
h∈H

{
Mn(h, . . . , h)

}
+Rn,

nous montrons que le risque moyen de l’ensemble des hypothèses (ht)t∈[n] satisfait à

1

n− cn

n−1∑
t=cn

R(ht−bn)−min
h∈H
R(h) = OP

[
log(n) log(log n)

n
1

2+θ

+Rn

]
.

4. Nous donnons une procédure de sélection d’hypothèse ĥ parmi l’ensemble {ht, t ∈ [n]} réalisant
ce risque moyen.

2.4 Test d’adéquation adaptatif pour la densité de la mesure invariante d’une
chaine de Markov (Chapitre 5 Sec.5.5)

Contexte. Plusieurs travaux ont déjà proposé des tests d’adéquation pour la densité de la distribution
invariante d’une suite de variables aléatoires dépendantes et nous pouvons citer par exemple Bai [2003],
Chwialkowski et al. [2016], Li and Tkacz [2001]. Dans tous les articles mentionnés ci-dessus, certaines
propriétés asymptotiques de la statistique de test sont décrites mais aucune analyse non-asymptotique
des méthodes n’est menée. Pour autant que nous le sachions, nous fournissons pour la première fois
une condition non asymptotique sur les classes d’alternatives garantissant que le test statistique atteint
une puissance préscrite dans un cadre dépendant.

Résultat. Nous considérons une chaîne de Markov X1, . . . , Xn avec une distribution invariante π ad-
mettant une densité f par rapport à la mesure de Lebesgue sur R et satisfaisant les hypothèses 1 et
2. On considère f0 une densité donnée dans L2(λLeb), α ∈]0, 1[, et nous supposons que f appartient
à L2(λLeb). Sous ces hypothèses, nous construisons un test de niveau α pour l’hypothèse nulle ”f = f0”
contre l’alternative ”f ̸= f0” à partir de l’observation (X1, . . . , Xn). Le test est basé sur l’estimation
de ∥f − f0∥22 qui s’écrit encore comme ∥f∥22 + ∥f0∥22 − 2⟨f, f0⟩. ⟨f, f0⟩ est généralement estimé par une
approche empirique

∑n
i=1 f0(Xi)/n et la pierre angulaire de notre approche consiste à estimer ∥f∥22.

Nous nous appuyons sur les travaux de Fromont and Laurent [2006] et nous introduisons un en-
semble {Sm,m ∈ M} de sous-espaces vectoriels de L2(λLeb). Dans la section 5.5, nous considérons
trois collections différentes de sous-espaces vectoriels {Sm,m ∈ M}, à savoir les fonctions constantes
par morceaux, les ondelettes et les polynômes trigonométriques. Pour tout m dansM, nous considé-
rons {pl, l ∈ Lm} une base orthonormée de Sm. Notant ΠSm

la projection orthogonale sur Sm, nous
considérons l’estimateur de |ΠSm(f)∥22 donné par

θ̂m =
1

n(n− 1)

∑
l∈Lm

n∑
i̸=j=1

pl(Xi)pl(Xj).
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La distance ∥f − f0∥22 peut alors être estimée par

T̂m = θ̂m + ∥f0∥22 −
2

n

n∑
i=1

f0(Xi),

pour tout m dans M. En notant tm(u) le quantile d’ordre (1 − uα) de la loi de T̂m sous l’hypothèse
nulle ”f = f0” et en considérant

uα = sup
u∈]0,1[

Pf0

(
sup
m∈M

(T̂m − tm(u)) > 0

)
≤ α,

nous introduisons la statistique de test Tα définie par

Tα = sup
m∈M

(T̂m − tm(uα)).

Le test consiste à rejeter l’hypothèse nulle si Tα est positif. Cette approche peut être interprétée comme
une procédure de tests multiples. En effet, pour chaque m dansM, on construit un test de niveau uα
pour l’hypothèse nulle ”f = f0” en rejetant cette hypothèse si T̂m est plus grand que son quantile
d’ordre (1−uα) sous ”f = f0”. On obtient donc une collection de tests et on décide de rejeter l’hypothèse
nulle si pour au moins un test de la collection l’hypothèse ”f = f0” est rejetée.
Dans la section 5.5, nous fournissons une borne supérieure sur la vitesse de séparation pour des classes
spécifiques d’alternatives qui incluent certains espaces de Besov. Rappelons que la vitesse de séparation
associée à une classe d’alternatives B et à un certain γ ∈ (0, 1) est définie comme le plus petit réel ρ > 0
tel que pour tout f1 ∈ B avec ∥f0 − f1∥2 > ρ, la puissance du test pour l’alternative ”f = f1” est
supérieure à 1−γ. Dans la section 5.5, nous prouvons que la vitesse de séparation de notre méthode est
majorée par (

log(n) log log n

n

) s
2s+1

,

où le paramètre s > 0 quantifie la régularité des densités appartenant à la classe d’alternatives consi-
dérée. Nous comparons ce résultat à la vitesse minimax connue pour un test adaptatif dans le cadre
de données i.i.d. qui est de l’ordre de (

√
log log n/n)2s/(4s+1) (voir Ingster [1993]). À la fin de la sec-

tion 5.5, nous présentons également les résultats de simulations comparant notre approche au test de
Kolmogorov-Smirnov et au test du χ2 pour différentes chaînes de Markov.

•

Nous revenons maintenant à l’une des motivations initiales de cette thèse : le problème de prédiction
de liens dans les graphes aléatoires. Dans les chapitres 2 et 3, nous avons abordé cette question dans
des modèles de graphon où les noeuds rejoignent le graphe au cours du temps avec une représentation
latente dépendant du dernier entrant. Nous supposerons dans la section suivante que les représenta-
tions des nœuds Xi ∈ Rd sont observées et que le graphon appartient à une classe paramétrique de
grande dimension basée sur la régression logistique. De nombreux problèmes en Machine Learning se
place dans le cadre de la grande dimension qui rend souvent la tâche d’estimation mal posée. Pour
faire face à ce problème, une approche classique consiste à i) supposer une certaine structure sur le
signal cible (typiquement une hypothèse de parcimonie), ii) effectuer une étape de sélection de modèle
et iii) estimer ensuite le signal d’intérêt en utilisant le modèle sélectionné. Puisque les données ont été
exploitées pour sélectionner le modèle, l’utilisation des méthodes standard d’inférence peut conduire
à des propriétés statistiques indésirables. L’inférence post-sélection (PSI) vise à résoudre ce problème
en prenant en compte l’événement de sélection pour fournir des procédures d’inférence valides. Dans
le chapitre 6, nous poussons plus loin l’état actuel des connaissances sur les méthodes de PSI dans
les modèles linéaires généralisés en nous concentrant tout particulièrement sur la régression logistique
parcimonieuse.
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3. Inférence sélective pour le régression logistique parcimonieuse
(Chapitre 6)

Motivations. Toujours motivés par les problèmes de prédiction de liens dans les graphes aléatoires,
nous considérons maintenant un cadre où pour chaque nœud i ∈ [n] d’un graphe simple et non dirigé
de taille n, nous observons un vecteur de caractéristiques Xi ∈ Rd. Étant donné les observations Xi,
Xj sur les nœuds i et j du réseau, nous considérons que les nœuds i et j sont connectés avec une
probabilitéW (Xi, Xj) pour une certaine fonction symétriqueW : Rd×Rd → [0, 1]. Inspiré par le travail
de Berthet and Baldin [2020], nous considérons que le graphon W appartient à une classe de grande
dimension basée sur la régression logistique. Notant σ : x 7→ (1+exp(−x))−1 la fonction sigmoïde, nous
supposons qu’il existe une certaine matrice Θ∗ ∈ Rd×d tel que W (Xi, Xj) = σ(X⊤

i Θ
∗Xj). Notre objectif

est d’estimer la matrice inconnue Θ∗ à partir de l’observation de la matrice d’adjacence du graphe A, et
des variables explicatives connues X := [X1 . . . Xn] ∈ Rd×n, et de mener des procédures d’inférence
(i.e. construire des tests d’hypothèse ou des intervalles de confiance). Nous faisons l’hypothèse que Θ∗

est parcimonieux, ce qui signifie que seul un petit sous-ensemble des d covariables observées influence
effectivement la connexion entre deux nœuds du graphe. Dans cette situation, l’approche classique
adoptée par les statisticiens consiste à suivre un protocole en trois étapes.

• Sélection de modèle : Sur la base des données observées, le statisticien sélectionne un sous-ensemble
d’entrées actives dans la matrice Θ. Une approche standard consiste à calculer l’estimateur du
maximum de vraisemblance avec une pénalité ℓ1

Θ̂λ ∈ arg min
Θ∈Rd×d

{
− logPΘ(A |X) + λ∥Θ∥1

}
, (2)

qui peut être réécrite comme une régression logistique classique. En effet, en notant vec(B) ∈ Rp2

la forme vectorisée d’une matrice B ∈ Rp×p, on a

X⊤
j Θ

∗Xi = Tr(XiX
⊤
j Θ

∗) = ⟨vec(XiX
⊤
j ), vec(Θ

∗)⟩.

Ainsi, en adoptant des notations évidentes, le problème d’optimisation (2) est équivalent à

ϑ̂λ ∈ arg min
ϑ∈Rd2

{
− logPϑ(Y |X) + λ∥ϑ∥1

}
,

où Y = vec(A), X = [vec(X1X
⊤
1 ) vec(X1X

⊤
2 ) . . . vec(XnX

⊤
n )] ∈ Rd

2×n2

et où ϑ̂λ = vec(Θ̂λ).
Nous définissons alors l’ensemble des entrées actives par M := M̂(Y ) := {i | ϑ̂λi ̸= 0}.

• Estimation : Le statisticien calcule l’estimateur du maximum de vraisemblance (MLE) en utilisant
uniquement les variables dans M

θ̂ ∈ argmin
θ∈R|M|

{
− logPϑ(θ)(Y |X)

}
,

où pour tout θ ∈ R|M |, ϑ(θ) ∈ Rd2 est tel que ϑ−M (θ) = 0 et ϑM (θ) = θ.

• Inférence : Le statisticien effectue des tests d’hypothèse et fournit des intervalles de confiance.

Inférence Post-Sélection (PSI). L’étape de sélection de modèle nécessite le choix de l’hyperpara-
mètre λ, ce qui est effectué en pratique en utilisant les données. Dans ce contexte, l’application de mé-
thodes d’inférence standard sans tenir compte de l’utilisation des données pour sélectionner le modèle
conduit généralement à des propriétés statistiques indésirables (cf. Pötscher [1991]). L’inférence post-
sélection vise à résoudre ce problème. Il s’agit de construire des procédures d’inférence en considérant
que le vecteur d’observations Y est distribué selon la loi Pϑ∗(Ỹ |X, {Ỹ ∈ EM}). Dans cette distribution
conditionnelle, EM := {Ỹ |M = M̂(Ỹ )} est appelé l’événement de sélection et correspond à l’ensemble
de tous les graphes aléatoires ayant pour matrice d’adjacence vectorisée A (telle que vec(A) = Ỹ ) qui
auraient conduit au même ensemble de variables actives que le graphe avec matrice d’adjacence B telle
que vec(B) = Y . La PSI dans le contexte de la régression linéaire a connu un intérêt grandissant ces
dernières années, en particulier grâce à l’importante contribution de Lee et al. [2016]. Dans ce dernier
article, les auteurs prouvent que dans le modèle linéaire avec un bruit gaussien, la distribution de la
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variable de réponse conditionnellement à l’événement de sélection est un mélange de gaussiennes mul-
tivariées tronquées. Ce résultat est une conséquence du lemme dit polyhédral et permet de fournir des
procédures exactes de PSI. Des méthodes de PSI en dehors du modèle linéaire avec bruit gaussien ont
été étudiées récemment et on peut citer par exemple Fithian et al. [2014], Taylor and Tibshirani [2018],
Tian and Taylor [2017], Tian et al. [2018], Tibshirani et al. [2018]. Malgré l’omniprésence du modèle de
la régression logistique dans les applications, il reste l’un des cadres où les méthodes de PSI existantes
pour les modèles linéaires généralisés (GLMs) sont soit inadaptées [cf. Fithian et al., 2014, Section 6.3],
soit manquent de garanties théoriques [cf. Taylor and Tibshirani, 2018].

Contributions. Dans le chapitre 6, (i) nous donnons une nouvelle formulation de l’événement de
sélection dans les GLMs mettant en lumière le difféomorphisme essentiel Ψ qui porte l’information
géométrique du problème, (ii) nous fournissons une nouvelle perspective sur l’inférence post-sélection
dans les GLMs à travers l’approche de MLE conditionnel dont Ψ est un ingrédient clé, (iii) nous intro-
duisons des conditions suffisantes dans les GLMs pour obtenir des procédures de PSI asymptotique-
ment valides basées sur l’approche de MLE conditionnel. Par la suite, nous nous concentrons sur le cas
spécifique de la régression logistique : (iv) Nous prouvons - sous certaines hypothèses - que les condi-
tions suffisantes de (iii) sont satisfaites pour le modèle logistique. (v) Cela nous permet de donner des
procédures de PSI asymptotiquement valides pour la régression logistique et nous appuyons nos ré-
sultats théoriques par des simulations. (vi) Enfin, nous présentons une comparaison approfondie entre
notre travail et l’heuristique de Taylor and Tibshirani [2018] qui est actuellement considérée comme la
meilleure à utiliser dans le contexte de la régression logistique parcimonieuse [cf. Fithian et al., 2014,
Section 6.3].
Ce travail sur les méthodes d’inférence post-sélection dans le GLMs est présenté dans le chapitre 6 et
correspond à l’article suivant.

Duchemin and De Castro [2022] Quentin Duchemin and Yohann De Castro. A new proce-
dure for Selective Inference with the Generalized Linear Lasso. 2022. URL https://hal.
archives-ouvertes.fr/hal-03622196

https://hal.archives-ouvertes.fr/hal-03622196
https://hal.archives-ouvertes.fr/hal-03622196
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1.1 Growth models for random graphs

1.1.1 Networks modeling through random graph

Random graph modeling. Graphs are nowadays widely used in applications to model real world
complex systems. Since they are high dimensional objects, one needs to assume some structure on the
data of interest to be able to efficiently extract information on the studied system. To this purpose, a
large number of models of random graphs have been already introduced. The most simple one is the
Erdös-Renyi model G(n, p) in which each edge between pairs of n nodes is present in the graph with
some probability p ∈ (0, 1). One can also mention the scale-free network model of Barabasi and Albert
[Barabási, 2009] or the small-world networks of Watts and Strogatz [Watts and Strogatz, 1998]. We refer
to Channarond [2015] for an introduction to the most famous random graph models. On real world
problems, it appears that there often exist some relevant variables accounting for the heterogeneity
of the observations. Most of the time, these explanatory variables are unknown and carry a precious
information on the studied system. To deal with such cases, latent space models for network data
emerged (see Smith et al. [2019]). Ones of the most studied latent models are the community based random
graphs where each node is assumed to belong to one (or multiple) community while the connection
probabilities between two nodes in the graph depend on their respective membership. The well-known
Stochastic Block Model (SBM) has received increasing attention in the recent years and we refer to Abbe
[2017] for a nice introduction to this model and the statistical and algorithmic questions at stake. In the
previous mentioned latent space models the intrinsic geometry of the problem is not taken into account.
However, it is known that the underlying spatial structure of network is an important property since
geometry drastically affects the topology of networks (see Barthélemy [2011] and Smith et al. [2019]).
To deal with embedded complex systems, spatial random graph models have been studied such as the
Random Geometric Graph (RGG).

Graphon models: the particular examples of SBMs and RGGs. Both the SBM and the RGG can be
understood as specific examples of graphon models [cf. Lovász, 2012]. In a graphon model, we consider
some latent space X and a symmetric kernel function W : X × X → [0, 1]. To build a non-oriented and
simple graph of size n from the graphon model associated to W , one first needs to sample latent posi-
tions (Xi)i∈[n] ∈ Xn. Two vertices i, j ∈ [n] with i ̸= j are then connected with probability W (Xi, Xj).
SBMs and RGGs are distinguished by their different topological structure. This is the reason why they
are used in practice to model physical phenomena of different natures. Taking the example of social
networks, we can consider as a first approximation [as explained in Péché and Perchet, 2020] that a
connection between two users can occur for two main reasons: (i) either they are childhood friends
(meaning that users are endogenously similar with close geometric latent representations) or (ii) they
share the same political views (meaning that users are exogenously similar and belong to the same
community). Hence both models are of interest for modern applications and have received an increas-
ing interest in the past decades. SBMs and RGGs are also of independent interest for the interesting
mathematical questions they raise.

Time prediction. In practice, real-world networks are evolving through time and we can mention
the example of spread of diseases [cf. Barthélemy, 2011, Section 5.6.3]. To bridge the gap between
random graph models and the complexity of real data, stochastic models for network evolution have
been extensively studied in the recent years. Most of them rely on the latent space approach where the
size of the graph is fixed and edges and/or latent representations can change along time [cf. Lei and
Rinaldo, 2015, Matias and Miele, 2015, 2017, Xie and Rogers, 2016, Xie et al., 2015, Xu and Hero, 2014].
In this thesis, we adopt a different perspective. Motivated by link prediction problems, we will focus
on growth models, namely random graph models in which a node is added at each new time step in the
network and is connected to other vertices in the graph according to some probabilistic rule that needs
to be specified. In the last decade, growth models for random graphs with a spatial structure have
gained an increased interest. One can mention Jordan and Wade [2015], Papadopoulos et al. [2012] and
Zuev et al. [2015] where geometric variants of the preferential attachment model are introduced with
one new node entering the graph at each time step.
In the following, we propose growth models based on the SBM and on the RGG where the latent node
attributes are sampled using a Markovian dynamic and we solve link prediction tasks by estimating the
probability of connection with nodes already present in the graph and future comers.
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1.1.2 A growth model for SBMs (Chapter 2)

Brief presentation of the Stochastic Block Model. The SBM is a perfect playground to study the
existence of phase transition phenomena and information-theoretic/computational thresholds. In the
SBM, we observe the adjacency matrix of the graph and we aim at obtaining information on the hidden
latent communities. Different recovery requirements can be studied in the SBMs such as exact recov-
ery (where one aims at recovering correctly the entire partition with high probability) or weak recovery
(where the algorithm should provide with high probability a positively correlated partition). A large
span of methods have been developed to solve these problems supported with theoretical guarantees.
One can mention two-round algorithms via graph-splitting, semi-definite programming, or linearized
belief propagation just to name of few. Nevertheless, with its original formulation, the SBM copes with
several issues regarding their practical usage for applications.

✓ The sparse regime. When the average degree of nodes in the graph is constant (i.e., do not depend
on n), SBMs are not connected with high probability and exact recovery cannot be achieved. In
this case, the goal is to find an algorithm that solves the so-called weak recovery (or detection)
problem, meaning that it divides the graph’s vertices into two sets such that vertices from two
different communities have different probabilities of being assigned to one of the sets. Most of
methods used to solve the exact recovery problem - such spectral methods on Laplacian matrices
of the graph - fail to solve detection in the sparse regime. In Krzakala et al. [2013], the authors
introduced a new graph representation matrix named the non-backtracking matrixB and claimed
that a spectral method on B could solve detection in the sparse regime. This spectral redemption
through the non-backtracking operator was rigorously proved by Bordenave et al. [2018] for the
symmetric SBM with two communities. The general conjecture for arbitrary many symmetric or
asymmetric communities is settled later in Abbe and Sandon [2015b] relying on a higher-order
nonbacktracking operator and a message passing implementation.

✓ The degree heterogeneity. Another main limit of spectral methods for real application is when
the studied network present degree heterogeneity. Working with the degree correlated SBM,
Dall’Amico and Couillet [2019] proved that the Bethe Hessian matrix can be used to solve com-
munity detection in sparse graphs with inhomogeneous degrees.

✓ Partial recovery bounds. Interpolating between the exact and weak recovery requirements, one
main challenge in SBMs is to understand the inherent connection between an appropriate signal
to noise ratio (SNR) and the agreement, namely the proportion of correct alignment between the
community allocation found by the algorithm and the ground truth labels. In Giraud and Verzelen
[2019], the authors proposed a Semi-Definite Program (SDP) algorithm followed by a rounding
step to estimate communities in a graph and proved that the agreement goes exponentially fast
to 1.

The previous discussion was focused on static graph. However, in many applications, one has access
to multiple snapshots of the same graph that evolves along time. This is the case of networks repre-
senting physical proximity of mobile agents or biological and chemical evolution of group members
and we refer to Holme [2015] for a review. In order to extract temporal information on the system of
interest, several works have extended the SBM to model the dynamic structure of the studied networks.
In Matias and Miele [2015], a variant of the SBM is considered where the temporal evolution is modeled
through a discrete hidden Markov chain on the nodes membership and where the connection probabili-
ties also evolve through time. Following the work of Karrer and Newman [2011], Lei and Rinaldo [2015]
study the Degree Corrected SBM where the degree of the nodes can vary within the same community.
We can also mention Keriven and Vaiter [2022] or Dall’Amico et al. [2020].
The above mentioned works are mainly considering SBMs where membership of nodes or edges can
evolve with time, but only few papers are interested in growth model for SBMs (meaning that the size
of the graph increases along time) and we aim at filling this gap.

The Markov Stochastic Block Model. In Chapter 2, we introduce the Markov SBM (MSBM): an exten-
sion of the Stochastic Block Model where communities of the nodes are assigned through a Markovian
dynamic. We want to provide efficient and reliable methods to solve

• link prediction problems where we aim at computing the probability of connection between nodes
in the graph and some future entrant,
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• or collaborative filtering tasks where we want to infer the hidden community of some node if we
have only partial information on how this node connects to the rest of the graph.

In the MSBM, we consider that at each time step i, a new node is entering the network with a latent com-
munity Ci ∈ [K] (for some fixed positive integer K) that is sampled from the probability distribution
PCi,· where P ∈ [0, 1]K×K is the transition matrix of the positive recurrent Markov chain (Ci)i∈[n]. Once
the community of each node is assigned, we draw an edge between the nodes i and j with probability
QCi,Cj where Q ∈ [0, 1]K×K is the connectivity matrix. In this model, one can use standard methods to
recover the hidden communities of the nodes from the observed adjacency matrix of the graph and thus
provide estimates of the model parameters P and Q. In order to solve link prediction problems or col-
laborative filtering tasks, a natural approach is to rely on plug-in methods using the above mentioned
estimates of P ,Q and (Ci)i∈[n]. Nevertheless, we show in Chapter 2 that this plug-in procedure can lead
to large estimation errors because it is highly sensitive to clustering errors made by the algorithm. In
Chapter 2, we propose a general methodology to solve link prediction and collaborative filtering tasks
in the MSBM that is adaptive to local clustering errors and that is shown to be much more reliable for
applications. Our contributions are the following.

• General methods for reliable time prediction in MSBMs.
i) Establishing a connection between MSBMs and Hidden Markov Models, we propose to learn
the so-called emission probabilities that correspond for any c, ĉ ∈ [K] to the probability for some
node with community c ∈ [K] to be assigned to community ĉ by the clustering algorithm con-
sidered. These quantities allow us to design reliable link prediction and collaborative filtering
methods that can account for local errors in the estimates of the hidden communities.
ii) We also show how the learned emission probabilities can be used for model selection, i.e. to
estimate the unknown number of latent communities K.
Let us stress that these methods can be used with any clustering algorithm. In order to conduct
numerical experiments and to provide some theoretical guarantees, we work in Chapter 2 with
the recent Semi-Definite Programming (SDP) algorithm from Giraud and Verzelen [2019].

• Theoretical guarantees.
iii) We identify a relevant signal-to-noise ratio (SNR) in our framework and we prove that the
partition of nodes obtained from the SDP algorithm leads to a misclassifaction error that decays
exponentially fast with respect to this SNR.
iv) We give estimates of the parameters of the MSBMs that are proved to be consistent.

• Numerical aspects.
v) As far as we know, we are the first to provide an implementation of the SDP method from
Giraud and Verzelen [2019]. This work has required to code a tricky rounding step from Charikar
et al. [2002].
vi) We provide extensive numerical results of our methods on both simulated and real data.

This work on MSBMs presented in Chapter 2 can also be found in the following paper.

Duchemin [2022] Quentin Duchemin. Reliable Time Prediction in the Markov Stochas-
tic Block Model. preprint, March 2022. URL https://hal.archives-ouvertes.fr/
hal-02536727

1.1.3 A growth model for RGGs (Chapter 3)

Brief presentation of Random Geometric Graphs. The RGG model was first introduced by Gilbert
[1961] to model the communications between radio stations. Gilbert’s original model was defined as
follows: pick points in R2 according to a Poisson Point Process of intensity one and join two if their
distance is less than some parameter r > 0. The Random Geometric Graph model was extended to other
latent spaces such as the hypercube [0, 1]d, the Euclidean sphere or compact Lie group Méliot [2019].
A large body of literature has been devoted to studying the properties of low-dimensional Random
Geometric Graphs Penrose [2003], Dall and Christensen [2002], Bollobás [2001]. RGGs have found
applications in a very large span of fields. One can mention wireless networks Haenggi et al. [2009],
gossip algorithms Wang and Lin [2014], spread of a virus Preciado and Jadbabaie [2009], protein-protein
interactions Higham et al. [2008a]. The ubiquity of this random graph model to faithfully represent real
world networks has motivated a great interest for its theoretical study.

https://hal.archives-ouvertes.fr/hal-02536727
https://hal.archives-ouvertes.fr/hal-02536727
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To quote Bollobás [2001], "One of the main aims of the theory of random graphs is to determine when a given
property is likely to appear." In this direction, several works tried to identify structure in networks through
testing procedure, see for example Ghoshdastidar et al. [2020]. Regarding RGGs, most of the results
have been established in the low dimensional regime d ≤ 3 [cf. Barthélemy, 2011, Penrose, 2003]. How-
ever, applications of RGGs to cluster analysis and the interest in the statistics of high-dimensional data
sets have motivated the community to investigate the properties of RGGs in the case where d → ∞. If
the ambitious problem of recognizing if a graph can be realized as a geometric graph is known to be
NP-hard Breu and Kirkpatrick [1998], one can take a step back and wonder if a given RGG still carries
some spatial information as d → ∞ or if geometry is lost in high-dimensions, a problem known as
geometry detection. More precisely, this problem consists in testing if a given graph has been sampled
from a Erdös-Renyi random graph or from the RGG model. This question has gained a lot of interest in
the past years and we can mention in particular the important contributions from Brennan et al. [2020],
Bubeck et al. [2016], Liu et al. [2021]. The proof presented in these papers make use of advanced results
from probability, statistics, optimal transport, combinatorics or information theory, placing RGGs at the
intersection of a large span of research communities. We can mention in particular that in the dense
regime, the phase transition for geometry detection occurs at the regime at which Wishart matrices be-
comes indistinguishable from GOEs (Gaussian Orthogonal Ensemble) in total variation distance. This
question has been investigated in more general settings such as in Bubeck and Ganguly [2015] or Bour-
guin et al. [2021]. During this thesis, I wrote a survey paper (that will not be discussed further in this
manuscript) on the interesting mathematical questions related to RGGs and their extensions.

Duchemin and De Castro [2022] Quentin Duchemin and Yohann De Castro. The Ran-
dom Geometric Graph: Recent developments and perspectives. 2022. URL https://hal.
archives-ouvertes.fr/hal-03622277

Non-parametric estimation in RGGs. In another line of work, De Castro et al. [2019] tackles a non-
parametric estimation task in RGGs. Their work contributes to the broader issue of estimation in
graphon models. In Tang et al. [2013], the authors prove that spectral methods can recover the ma-
trix formed by graphon evaluated at latent points up to an orthogonal transformation, assuming that
graphon is a positive definite kernel (PSD). Going further, algorithms have been designed to esti-
mate graphons, as in Klopp et al. [2017] which provide sharp rates for the SBM. Contrary to the
previous works, the paper De Castro et al. [2019] provides a non-parametric algorithm to estimate
RGGs on the Euclidean sphere Sd−1, without PSD assumption. In their model, they consider n points
X1, X2, . . . , Xn sampled uniformly and independently on Sd−1 and an edge is set between nodes i and
j (where i, j ∈ [n], i ̸= j) with independent probability p(⟨Xi, Xj⟩), where the unknown function
p : [−1, 1] → [0, 1] is called the envelope function. This RGG is a graphon model with a symmetric
kernel W given by W (x, y) = p(⟨x, y⟩). They show that one can associate to the graphon W an in-
tegral operator TW . The operator TW is Hilbert-Schmidt and it has a countable number of bounded
eigenvalues λ(TW ) with zero as only accumulation point. The eigenfunctions (ϕk)k≥0 of TW have the
remarkable property that they do not depend on p (cf. Dai and Xu [2013] Lemma 1.2.3): they are given
by the real Spherical Harmonics. One can show that the following spectral decomposition holds

p(t) =
∑
l≥0

p∗l ϕk(t) ,

where λ(TW ) = {p∗0, p∗1, . . . , p∗1, . . . , p∗l , . . . , p∗l , . . . }meaning that each eigenvalue p∗l has a known multi-
plicity dl. This decomposition shows that a plug-in estimation of the envelope function p can be used if
we are able to estimate the eigenvalues of the operator TW . In De Castro et al. [2019], the authors prove
that under some regularity condition on the envelope function, the spectrum of the adjacency matrix
of the graph (correctly normalized) converges towards λ(TW ) with respect to the δ2 metric defined for
any square-summable sequences of reals x and y by

δ22(x, y) := inf
σ∈S

∑
i

(xi − yσ(i))2 ,

where S is the set of permutations of natural numbers.
This approach has two major drawbacks: (i) First the algorithm proposed to estimate the envelope
function proposed has a complexity that grows exponentially with the chosen resolution level R. (ii)

https://hal.archives-ouvertes.fr/hal-03622277
https://hal.archives-ouvertes.fr/hal-03622277
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Secondly, they work with the restrictive condition of independent sampling of the latent positions.

The Markov Random Geometric Graph. In our work

Duchemin and De Castro [2022] Quentin Duchemin and Yohann De Castro. Markov random
geometric graph, MRGG: A growth model for temporal dynamic networks. Electron. J. Stat., 16
(1):671–699, 2022. doi: 10.1214/21-ejs1969. URL https://doi.org/10.1214/21-ejs1969

we make a first step to address both issues by introducing the Markov RGG (MRGG): a growth model
for RGG on Sd−1 where latent positions are sampled using a Markovian dynamic. More precisely, the
distribution of the new latent point Xi is given by P (Xi−1, ·) where P is a Markov kernel that needs
to be estimated. We consider an isotropic Markov sampling scheme meaning that from a current latent
position Xi, the next latent point is defined by

Xi = ri ×Xi−1 +
√

1− r2i × Yi,

where

• Yi ∈ Sd−1 is a unit vector sampled uniformly, orthogonal to Xi−1,

• ri ∈ [−1, 1] encodes the distance between Xi−1 and Xi. ri is sampled from a distribution fL :
[−1, 1]→ [0, 1], called the latitude function.

Working with this model, our contributions presented in Chapter 3 are the following. (i) We present
a polynomial time algorithm based on an ad hoc Hierarchical Clustering Algorithm to estimate the en-
velope function p and we provide theoretical guarantees for the correctness of our approach when the
optimal resolution level is known. (ii) We propose a model selection procedure based on the slope
heuristic to estimate a resolution level achieving a relevant bias/variance tradeoff. (iii) We prove
that we can estimate consistently the Gram matrix of the latent positions G∗ = n−1

(
⟨Xi, Xj⟩)i,j∈[n]

in Frobenius norm. (iv) The latter theoretical result motivates the estimation of the latitude func-
tion fL using a kernel density estimator from the approximations obtained of the consecutive latent
distances

(
ri
)
i∈{2,...,n} =

(
⟨Xi−1, Xi⟩

)
i∈{2,...,n}. (v) We prove that the knowledge of the latent distances

are enough to solve link prediction tasks. Hence, based on the above mentioned estimate of the enve-
lope function p, the latitude function fL and the latent distances G∗, we propose a method to estimate
the probability of connection between nodes already present in the graph and the newcomer. (vi) We
provide a testing procedure to determine if the given graph hides some latent non-trivial Markovian
dynamic or if the nodes have been sampled independently and uniformly on Sd−1. (vii) Last but not
least, we provide extensive numerical simulations supporting the correctness of our methods.

•

The theoretical analysis of algorithms used to achieve estimation tasks in dynamic random graph mod-
els require powerful probabilistic tools. The MRGG model is no exception to this rule and our proof
scheme in Chapter 3 put us in front of the necessity to use a concentration inequality for a U-statistic in
a dependent framework. The few existing articles in the literature that addressed this difficult problem
considered assumptions that did not fit our framework. This led us to establish a new concentration
result for U-statistics for Markov chains.

1.2 Probabilistic tools with dependent random variables and ap-
plications

1.2.1 Concentration inequality for U-statistics in a dependent framework (Chap-
ter 4)

In this section, we present a new result for the concentration of U-statistics in a dependent framework.
These contributions are fully described in Chapter 4 or in the following paper.

https://doi.org/10.1214/21-ejs1969
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Duchemin et al. [2022b] Quentin Duchemin, Yohann De Castro, and Claire Lacour. Concen-
tration inequality for U-statistics of order two for uniformly ergodic Markov chains. Bernoulli,
2022b. URL https://hal.archives-ouvertes.fr/hal-03014763

Context and previous works. Concentration of measure has become ubiquitous in the Statistics and
Machine Learning communities. Additionally to random graphs (cf. Chapters 2 and 3), we can mention
applications of concentration for model selection (see Massart [2007] and Lerasle et al. [2016]), statistical
learning (see Clémençon et al. [2020]) or online learning (see Wang et al. [2012]). Important contribu-
tions in this field are those concerning U-statistics. A U-statistic of order m is a sum of the form∑

1≤i1<···<im≤n

hi1,...,im(Xi1 , . . . , Xim),

where X1, . . . , Xn are random variables taking values in a measurable space (E,Σ) and where hi1,...,im
are measurable functions of m variables hi1,...,im : Em → R.
One important exponential inequality for U-statistics was provided by Arcones and Giné [1993] using
a Rademacher chaos approach. Their result holds for bounded and canonical (or degenerate) kernels,
namely satisfying for all i1, . . . , im ∈ [n] := {1, . . . , n}with i1 < · · · < im and for all x1, . . . , xm ∈ E,∥∥hi1,...,im∥∥∞ <∞ and ∀j ∈ [1, n] , EXj

[
hi1,...,im(x1, . . . , xj−1, Xj , xj+1, . . . , xm)

]
= 0 .

They proved that in the degenerate case, the convergence rates for U statistics are expected to be nm/2.
Relying on precise moment inequalities of Rosenthal type, Giné et al. [2000] improved the result from Ar-
cones and Giné [1993] by providing the optimal four regimes of the tail, namely Gaussian, exponential,
Weibull of orders 2/3 and 1/2. When the kernels are unbounded, it was shown that some results can
be extended provided that the random variables hi1,...,im(Xi1 , . . . , Xim) have sufficiently light tails [see
for example Eichelsbacher and Schmock, 2003, Theorem 3.26]
All the above mentioned results consider that the random variables (Xi)i≥1 are independent. The
asymptotic behaviour of U-statistics in a dependent setup has already been investigated by several pa-
pers [see for example Bertail and Clémençon, 2011, Eichelsbacher and Schmock, 2001]. The main works
providing concentration inequality for U-statistics with dependent random variables are Borisov and
Volodko [2015], Han [2018] and Shen et al. [2020]. All these papers consider a fixed kernel (namely
h ≡ hi1,...,im for all i1, . . . , im) defined on Rd with strong regularity conditions. For the first time, we
consider in this thesis time dependent kernel functions which makes the theoretical analysis more chal-
lenging since the standard splitting method can be unworkable (cf. Section 4.2.5).

Assumptions.
We consider a Markov chain (Xi)i≥1 with a transition kernel P : E × E → R taking values in a mea-
surable space (E,Σ), and we introduce measurable functions hi,j : E2 → R. Our goal is to study the
concentration properties of the U-statistic

Ustat(n) =
∑

1≤i<j≤n

(hi,j(Xi, Xj)− E [hi,j(Xi, Xj)]) .

We work with the following set of assumptions.

1. Uniform ergodicity: The Markov chain (Xi)i≥1 is assumed to be uniformly ergodic with stationary
measure π.

2. Bounded transition kernel: There exist some δM > 0 and a probability measure ν such that

∀x ∈ E, ∀A ∈ Σ, P (x,A) ≤ δMν(A).

3. π-canonical and bounded kernels: For all i, j ∈ [n], hi,j : E × E → R is mesurable, bounded
and π-canonical, namely

∀x, y ∈ E, Eπ[hi,j(X,x)] = Eπ[hi,j(X, y)] = Eπ[hi,j(x,X)] = Eπ[hi,j(y,X)].

https://hal.archives-ouvertes.fr/hal-03014763
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This commom expectation is denoted Eπ[hi,j ].

4. Technical assumption: At least one of the following conditions holds

(i) For all i, j ∈ [n], hi,j ≡ h1,j , i.e. the kernel hi,j does not depend on i.

(ii) The initial distribution of the chain is absolutely continuous with respect to π and its density has a
finite p-th moment for some p ∈ (1,∞].

In Chapter 4, we provide several important examples of Markov chains satisfying our set of assump-
tions.

Main results. For the first time, we provide in this thesis a concentration inequality for U-statistics of
order two in a dependent framework with kernels that may depend on the indexes of the sum and that
are not assumed to be symmetric or smooth.
First, we prove a Hoeffding-type concentration result which holds without any condition (or under
a mild condition) on the initial distribution of the chain. Assuming that the Markov chain (Xi)i≥1 is
stationary (which means thatX1 is distributed according to π), we prove a Bernstein-type concentration
inequality which leads to a better convergence speed. Our main results are summarized in Theorem 2.
Our concentration inequality involves quantities Bn and Cn that can be interpreted as standard devia-
tion terms and we refer to Chapter 4 for their precise definitions. In order to read directly the dominant
terms in our concentration inequality from Theorem 2, let us highlight that one can always bound
coarsely Bn and Cn as follows

Bn ≤
√
nA and Cn ≤ nA where A := 2max

i,j
∥hi,j∥∞.

Theorem 2
We consider that the Assumptions 1 to 4 are satisfied. Then there exist two constants β, κ > 0 such that
for any u > 0, it holds with probability at least 1− βe−u log n,

Ustat(n) ≤ κ log(n)
( [
Cn +A log(n)

√
n
]√

u+
[
A+Bn

√
n
]
u+

[
2A
√
n
]
u3/2 +A

[
u2 + αn

] )
,

where αn =

{
log(n) if the chain (Xi)i≥1 is stationary

n otherwise
.

If Assumption 4.(i) holds, one can remove Cn in the previous inequality.

In Chapter 4, we motivate the use of index-dependent kernels presenting two specific examples bor-
rowed from the fields of information retrieval and of homogeneity tests. Considering a particular case,
we show that our Bernstein inequality (obtained when αn = log(n) in Theorem 2) can lead to signifi-
cantly smaller convergence rates.

In the three following sections, we describe three important applications to Statistics and Machine
Learning of Theorem 2. These contributions are presented in Chapter 5 and in the following paper.

Duchemin et al. [2022a] Quentin Duchemin, Yohann De Castro, and Claire Lacour. Three rates
of convergence or separation via U-statistics in a dependent framework. JMLR, 2022a. URL
https://hal.archives-ouvertes.fr/hal-03603516

1.2.2 Estimation of spectra of signed integral operator with MCMC algorithm
(Chapter 5 Sec.5.3)

Context. In learning theory such as in Principal Component Analysis (PCA) or some manifold meth-
ods [cf. Rosasco et al., 2010], estimating the eigenvalues and/or the eigenvectors of data-dependent
matrices is essential. It appears that these matrices can often be interpreted as the empirical versions
of continuous objects such as integral operators. As highlighted in Rosasco et al. [2010], the theoretical
analysis of the above mentioned learning algorithms requires to quantify the difference between the

https://hal.archives-ouvertes.fr/hal-03603516


Chapter 1. Introduction 24

eigen-structure of the empirical operators and their continuous counterparts. In this thesis, we study
the convergence of sequence of spectra of kernel matrices towards the spectrum of some integral oper-
ator. Previous important works may include Adamczak and Bednorz [2015a] and, as far as we know,
they all assume that the kernel is of positive-type (i.e., giving an integral operator with non-negative
eigenvalues). For the first time, we prove a non-asymptotic result of convergence of spectra for kernels
that are not of positive-type. We further prove that independent Hastings algorithms are valid sampling
schemes to apply our result.

Result. We consider a Markov chain (Xn)n≥1 on E satisfying Assumptions 1 and 2 with stationary
distribution π, and some kernel h : E × E → R satisfying the following assumptions.

h : E×E → R is a bounded and symmetric function square integrable with respect to π⊗π. Moreover there
exist continuous functions ϕr : E → R, r ∈ I (where I = N or I = 1, . . . , N ) that form an orthonormal
basis of L2(π) and a sequence of real numbers (λr)r∈I ∈ ℓ2 such that it holds pointwise

h(x, y) =
∑
r∈I

λrϕr(x)ϕr(y),

with supr∈I ∥ϕr∥2∞ <∞ and supx∈E
∑
r∈I |λr|ϕr(x)2 <∞.

We can associate to h the kernel of a linear operator H defined by

Hf(x) :=

∫
E

h(x, y)f(y)dπ(y).

This is a Hilbert-Schmidt operator on L2(π) and thus it has a real spectrum consisting of a square
summable sequence of eigenvalues and we denote the eigenvalues of H by λ(H) := (λ1, λ2, . . . ). For
some n ∈ N∗, we consider Hn := 1

n (h(Xi, Xj))1≤i,j≤n with eigenvalues λ(Hn).
In Section 5.3, we prove that the spectrum of Hn converge towards the spectrum of the integral opera-
tor H as n → ∞. More precisely, there exist constants C,D such that for n large enough it holds with
probability at least 1−D/

√
n,

δ2(λ(H), λ(Hn))
2 ≤ C log n√

n
+ 8

∑
i>⌈n1/4⌉,i∈I

λ2i . (1.1)

Let us point out that the proof scheme of this result generalizes an approach already exploited in Chap-
ter 3.

Application. We are now given some kernel h and a probability measure π satisfying the previous
assumptions. We aim at computing the eigenvalues of the integral operator H associated to h. π often
does not admit a closed-form expression, a situation that typically arises in a Bayesian context where π
is some posterior distribution. A standard way to cope with this issue is to rely on MCMC methods. In
Section 5.3, we adopt this approach and we consider the specific case whereE is a bounded subset ofRk

equipped with the Borel σ-algebra B(E). We consider a probability density q on E, called the proposal
distribution. We assume that the measure π on E admits a density fπ with respect to the Lebesgue
measure λLeb on E and that it holds

∀y ∈ E, fπ(y), q(y) > 0 and
q(y)

fπ(y)
> β for some β > 0 .

In this context, we prove in Section 5.3 that a Markov chain (Xi)i≥1 obtained from an independent
Hastings algorithm with proposal distribution qλLeb satisfies Assumptions 1 and 2. We deduce that
one can estimate the eigenvalues of H by computing the ones of Hn and Eq.(1.1) quantifies the distance
between both spectra.
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1.2.3 Generalization bounds for online learning with pairwise loss function (Chap-
ter 5 Sec.5.4)

Context. In Machine Learning, batch algorithms accumulate data over a period of time and only train
the models once the data acquisition process is completed. Batch learning has some limitations espe-
cially when we receive data as a continuous flow (e.g., stock prices) and we need to adapt to changes
rapidly, or for large scale learning problems where their computational cost can be prohibitive. Online
algorithms have been designed to efficiently solve learning problems in such situations: they deal with
data coming on fly and try to improve the learned model along time based on the new observations.
One way to analyze the performance of online learning algorithms is to consider the notion of regret
which compares the difference between the payoff obtained by the learning algorithm and the payoff
that would have been obtained by taking the optimal decision at each time step. In the last decade,
researchers were not only interested in the notion of regret but looked at online learning algorithms
through a different lens by wondering how they could generalize on future data. This question only
makes sense if we assume that the sequence of examples comes from some stochastic process. As asked
in Agarwal and Duchi [2012], "if the sequence of examples are generated by a stochastic process, can the online
learning algorithm output a good predictor for future samples from the same process?"
The generalization performance of online learning algorithms with univariate loss functions has been
so far well studied with both i.i.d. or dependent observations. Working with pairwise loss functions,
generalization bounds have been obtained with i.i.d. data but this thesis provides one of the first result
for the case of dependent observations. Figure 1.2 depicts the framework that we consider in Section 5.4.

Batch
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Online
Algorithms

Univariate
Loss Functions

Pairwise Loss
Functions

Regret Bounds

Generalization
Bounds
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Dependent
Data

Mixing
Conditions

Markovian
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Figure 1.2: Positioning our contributions in the existing literature for the analysis of online algorithms.

Results. Inspired by the ranking problem, we consider a function f : E → R which defines the
ordering of the objects in E. We aim at finding a relevant approximation of the ordering of the objects
in E by selecting a function h (called a hypothesis function) in a spaceH based on the observation of the
random sequence (Xi, f(Xi))1≤i≤n where (Xi)i≥1 is a reversible Markov chain satisfying Assumptions
1 and 2. To measure the performance of a given hypothesis h : E × E → R, we use a pairwise loss
function of the form ℓ(h,X,U). Typically, one could use the misranking loss defined by

ℓ(h, x, u) = 1{(f(x)−f(u))h(x,u)<0},

which is 1 if the examples are ranked in the wrong order and 0 otherwise. The goal of the learning
problem is to find a hypothesis h which minimizes the expected misranking risk

R(h) := E(X,X′)∼π⊗π
[
ℓ(h,X,X ′)

]
.

In the context of online learning, at each time step t the algorithm chooses some hypothesis ht ∈ H based
on the sequence of observations (Xi, f(Xi))i≤t up to time t. We work with the following assumptions.

• (H, ∥ · ∥∞) is compact and satisfies

logN (H, η) = O(η−θ) ,

where N (H, η) is the L∞-covering number ofH and where θ > 0.

• The loss function ℓ : H× E → [0, 1] is such that

ℓ(h, x1, x2) = ϕ(f(x1)− f(x2), h(x1, x2)),

where ϕ : R× → [0, 1] is Lipschitz with respect to its second coordinate.
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Our contributions presented in Section 5.4 are the following:

1. We introduce a new average paired empirical risk, denoted byMn :=Mn(h1, . . . , hn−1−bn), that can
be computed in practice. It depends on the key quantity bn that can be interpreted as a forget-
ting factor. bn scales with log n and its definition involves a constant accounting for the mixing
properties of the chain.

2. We give non-asymptotic error bounds between Mn and the true average risk, namely denot-
ing cn = ⌊cn⌋ for some c ∈ (0, 1),∣∣∣∣∣ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn

∣∣∣∣∣ = OP
[
log(n) log(log n)

n
1

2+θ

]
.

3. We convert a regret bound of an online learner into a control of the excess risk. More precisely,
considering an online learner that achieves a regret bound Rn i.e. such that

Mn ≤ inf
h∈H

{
Mn(h, . . . , h)

}
+Rn,

we show that the average risk of the ensemble of hypotheses (ht)t≥1 satisfies

1

n− cn

n−1∑
t=cn

R(ht−bn)−min
h∈H
R(h) = OP

[
log(n) log(log n)

n
1

2+θ

+Rn

]
.

4. We build a hypothesis selection procedure that outputs some ĥ ∈ {ht, t ∈ [n]} achieving this
average risk.

1.2.4 Adaptive goodness-of-fit tests in a density model (Chapter 5 Sec.5.5)

Context. Several works have already proposed goodness-of-fit tests for the density of the stationary
distribution of a sequence of dependent random variables and we can mention for example Bai [2003],
Chwialkowski et al. [2016], Li and Tkacz [2001]. In all the above mentioned papers, asymptotic prop-
erties of the test statistic are derived but no non-asymptotic analysis of the methods is conducted. As
far as we know, we provide for the first time a non-asymptotic condition on the classes of alternatives
ensuring that the statistical test reaches a prescribed power working in a dependent framework.

Result. We consider a Markov chain X1, . . . , Xn with stationary distribution π with density f with
respect to the Lebesgue measure on R satisfying Assumptions 1 and 2. Let f0 be some given density
in L2(λLeb) and let α be in ]0, 1[. Assuming that f belongs to L2(λLeb), we construct a level α test of
the null hypothesis ”f = f0” against the alternative ”f ̸= f0” from the observation (X1, . . . , Xn). The
test is based on the estimation of ∥f − f0∥22 that is ∥f∥22 + ∥f0∥22 − 2⟨f, f0⟩. ⟨f, f0⟩ is usually estimated
by the empirical estimator

∑n
i=1 f0(Xi)/n and the cornerstone of our approach is to find a way to esti-

mate ∥f∥22. We follow the work of Fromont and Laurent [2006] and we introduce a set {Sm,m ∈ M}
of linear subspaces of L2(λLeb). In Section 5.5, we consider three different collections of linear sub-
spaces {Sm,m ∈ M}, namely constant piecewise functions, scaling functions and trigonometric poly-
nomials. For all m inM, let {pl, l ∈ Lm} be some orthonormal basis of Sm. The variable

θ̂m =
1

n(n− 1)

∑
l∈Lm

n∑
i ̸=j=1

pl(Xi)pl(Xj)

estimates ∥ΠSm
(f)∥22 where ΠSm

denotes the orthogonal projection onto Sm. Then ∥f − f0∥22 can be
approximated by

T̂m = θ̂m + ∥f0∥22 −
2

n

n∑
i=1

f0(Xi),

for any m inM. Denoting by tm(u) the (1− u) quantile of the law of T̂m under the hypothesis ”f = f0”
and considering
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uα = sup
u∈]0,1[

Pf0

(
sup
m∈M

(T̂m − tm(u)) > 0

)
≤ α,

we introduce the test statistic Tα defined by

Tα = sup
m∈M

(T̂m − tm(uα)).

The test consists in rejecting the null hypothesis if Tα is positive. This approach can be read as a multiple
testing procedure. Indeed, for each m inM, we construct a level uα test of the null hypothesis ”f = f0”

by rejecting this hypothesis if T̂m is larger than its (1− uα) quantile under the hypothesis ”f = f0”. We
thus obtain a collection of tests and we decide to reject the null hypothesis if for some of the tests of the
collection this hypothesis is rejected.
In Section 5.5, we provide an upper-bound on the so-called separation rate for specific classes of alter-
natives that include some Besov bodies. Let us recall that the separation rate associated with a class
of alternatives B and γ ∈ (0, 1) is defined as the smallest real ρ > 0 such that for any f1 ∈ B with
∥f0 − f1∥2 > ρ, the power of our test for the alternative ”f = f1” is larger than 1− γ. In Section 5.5, we
prove that the separation rate is upper-bounded by(

log(n) log log n

n

) s
2s+1

,

where the parameter s > 0 quantifies the regularity of the densities belonging to our class of alter-
natives. Note that in the i.i.d. setting, the adaptive minimax rate of testing is known to be of or-
der (

√
log log n/n)2s/(4s+1) (see Ingster [1993]). At the end of Section 5.5, we provide numerical experi-

ments comparing our approach with the Kolmogorov-Smirnov test and the χ2-test for several different
Markov chains.

•

We now come back to one of the main initial motivation of this PhD thesis: the problem of link predic-
tion in random graphs. In Chapters 2 and 3, we proposed to tackle this question in graphon models
where nodes join the graph along time with a latent representation depending on the last entrant. We
will assume in the next section that latent representations of nodes Xi ∈ Rd are observed and that
the graphon belongs to some high-dimensional parametric class based on logistic regression. Such
high-dimensional setting arises in a large number of Machine Learning problems and often makes the
estimation task ill-posed. To cope with this issue, the analyst assumes some structure on the problem
(typically some sparsity assumption), performs a model selection step and then estimates the parameter
of interest using the selected model. Since data was used to select the model, using the standard ma-
chinery for inference can lead to undesirable statistical properties. Post-selection inference (PSI) aims
at addressing this problem by taking into account the selection event to provide valid inference pro-
cedures. In Chapter 6, we push further the current state of knowledge for PSI methods in generalized
linear models with a specific focus on the sparse logistic regression.

1.3 Selective inference in the sparse logistic regression (Chapter 6)

Motivation. Still motivated by link prediction problems in random graphs, we consider now a frame-
work where for each node i ∈ [n] of a simple and undirected graph of size n, we are given side in-
formation, a vector of observations Xi ∈ Rd. Given observations Xi, Xj about nodes i and j of the
network, we assume that nodes i and j are connected with probability W (Xi, Xj) for some symmet-
ric map W : Rd × Rd → [0, 1]. Inspired by the work from Berthet and Baldin [2020], we consider
that the graphon W belongs to some high-dimensional class based on logistic regression. Denoting by
σ : x 7→ (1 + exp(−x))−1 the sigmoid function, we consider that there exists some Θ∗ ∈ Rd×d such that
W (Xi, Xj) = σ(X⊤

i Θ
∗Xj). Our goal is to estimate the unknown matrix Θ∗ based on the observation of

the adjacency matrix of the graph A, and on the known explanatory variablesX := [X1 . . . Xn] ∈ Rd×n
and to conduct inference procedures (through hypothesis tests or confidence intervals). We have the
prior that Θ∗ is sparse, meaning that only a small subset of the observed d covariates drive that connec-
tion between two nodes in the graph. In this situation, the classical approach adopted by statisticians
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consist to follow a three-stage protocol.

• Model selection: Based on the observed data, the statistician selects a subset of active entries in Θ.
One standard approach is to compute the ℓ1-penalized maximium likelihood estimator

Θ̂λ ∈ arg min
Θ∈Rd×d

{
− logPΘ(A |X) + λ∥Θ∥1

}
, (1.2)

which can be written as a classical logistic regression. Indeed, by writing vec(B) ∈ Rp2 the vec-
torized form of a matrix B ∈ Rp×p, we have that

X⊤
j Θ

∗Xi = Tr(XiX
⊤
j Θ

∗) = ⟨vec(XiX
⊤
j ), vec(Θ

∗)⟩.

Hence, using obvious notations, Eq.(1.2) is equivalent to

ϑ̂λ ∈ arg min
ϑ∈Rd2

{
− logPϑ(Y |X) + λ∥ϑ∥1

}
,

where Y = vec(A),X = [vec(X1X
⊤
1 ) vec(X1X

⊤
2 ) . . . vec(XnX

⊤
n )] ∈ Rd

2×n2

and where ϑ̂λ =

vec(Θ̂λ). Then, we define the set of the active entries as M := M̂(Y ) := {i | ϑ̂λi ̸= 0}.

• Estimation: The statistician computes the Maximum Likelihood Estimator (MLE) using only the
variables in M

θ̂ ∈ argmin
θ∈R|M|

{
− logPϑ(θ)(Y |X)

}
,

where for any θ ∈ R|M |, ϑ(θ) ∈ Rd2 is such that ϑ−M (θ) = 0 and ϑM (θ) = θ.

• Inference: The statistician conducts hypothesis tests or provides confidence intervals.

Post-selection inference (PSI). The model selection step requires the choice of the hyperparame-
ter λ which is performed in practice by using the data. In this context, applying standard inference
methods without taking into account we used the data to select the model will generally leads to
undesirable frequency properties (cf. Pötscher [1991]). Post-selection inference aims at solving this
problem. The method consists in producing inference procedure considering that the vector of obser-
vations Y is distributed according to Pϑ∗(Ỹ |X, {Ỹ ∈ EM}). In the former conditional distribution,
EM := {Ỹ |M = M̂(Ỹ )} is called the selection event and corresponds to the set of all random graphs
with vectorized adjacency matrix A given by Ỹ that would have led to the same set of active variables
than the graph with adjacency matrix B with vec(B) = Y . PSI in the context of linear regression has
known an increasing interest in the result years, in particular thanks to the important breakthrough
made by Lee et al. [2016]. In the former paper, the authors prove that in the linear model with gaus-
sian noise, the distribution of the response variable conditional on the selection event is a mixture of
truncated multivariate Gaussians. This result is a consequence of the so-called polyhedral lemma and
allows to provide exact PSI procedures in this context. Methods for PSI outside of the linear model
with gaussianity have been investigated recently and one can mention Fithian et al. [2014], Taylor and
Tibshirani [2018], Tian and Taylor [2017], Tian et al. [2018], Tibshirani et al. [2018] just to name a few.
Despite the ubiquity of the logistic regression model in applications, it remains one of the setting where
existing PSI methods for generalized linear models (GLMs) are either unsuited [cf. Fithian et al., 2014,
Section 6.3] or lack theoretical guarantees [cf. Taylor and Tibshirani, 2018].

Contributions. In Chapter 6, (i) we provide a new formulation of the selection event in GLMs shed-
ding light on the essential diffeomorphism Ψ that carries the geometric information of the problem,
(ii) we provide a new perspective on post-selection inference in GLMs through the conditional MLE
approach of which Ψ is a key ingredient, (iii) we introduce sufficient conditions in GLMs to obtain
asymptotically valid PSI procedures based on the conditional MLE approach. Thereafter, we focus on
the specific case of logistic regression: (iv) we prove - under some assumptions - that the sufficient con-
ditions from (iii) are satisfied for the logistic model. (v) This allows us to give asymptotically valid PSI
procedures for logistic regression and we support are theoretical results with simulations. (vi) Finally,
we present an extensive comparison between our work and the heuristic from Taylor and Tibshirani
[2018] which is currently considered as the best to use in the context of the sparse logistic regression [cf.
Fithian et al., 2014, Section 6.3].
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This work on PSI in GLMs is presented in Chapter 6 and corresponds to the following paper.

Duchemin and De Castro [2022] Quentin Duchemin and Yohann De Castro. A new proce-
dure for Selective Inference with the Generalized Linear Lasso. 2022. URL https://hal.
archives-ouvertes.fr/hal-03622196

https://hal.archives-ouvertes.fr/hal-03622196
https://hal.archives-ouvertes.fr/hal-03622196


Chapter 2

Reliable Temporal Prediction in the Markov
Stochastic Block Model

Chapter Abstract

In this chapter, we introduce the Markov Stochastic Block Model: an extension of SBMs where com-
munities of the nodes are assigned through a Markovian dynamic. We show how MSBMs can be used
to detect dependence structure in growing graphs and we provide methods to solve the so-called link
prediction and collaborative filtering problems. We make our approaches robust with respect to the
outputs of the clustering algorithm and we propose a model selection procedure. Our methods can be
applied regardless of the algorithm used to recover communities in the network. In this paper, we use a
recent Semi-Definite Programming (SDP) method to infer the hidden communities and we provide the-
oretical guarantees. In particular, we identify the relevant signal-to-noise ratio (SNR) in our framework
and we prove that the misclassification error decays exponentially fast with respect to this SNR.
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2.1 Introduction

2.1.1 Context

Large random graphs have been very popular in the last decade since they are powerful tools to model
complex phenomena like interactions on social networks Yang et al. [2011] or the spread of a disease
Ahmad and Xu [2017]. In practical cases, detecting communities of well connected nodes in a graph
is a major issue, motivating the study of the Stochastic Block Model (SBM). In this model, each node
belongs to a particular community and edges are sampled independently according to a probability
depending of the communities of the nodes. Aiming at progressively bridging the gap between models
and reality, time evolving SBMs have been recently introduced. In Matias and Miele [2015], a Stochas-
tic Block Temporal Model is considered where the temporal evolution is modeled through a discrete
hidden Markov chain on the nodes membership and where the connection probabilities also evolve
through time. In Pensky and Zhang [2017], connection probabilities between nodes are functions of
time, considering a maximum number of nodes that can switch their communities between two con-
secutive time steps. Following the work of Karrer and Newman [2011], Lei and Rinaldo [2015] study
the Degree Corrected Stochastic Block Model where the degree of the nodes can vary within the same
community. They show that for the relatively sparse case (i.e. when the maximum expected node de-
gree is of order log(n) or higher), the proportion of misclassified nodes tends to 0 with a probability
that goes to 1 when the number of nodes n increases using spectral clustering. This result inspired the
recent paper Keriven and Vaiter [2022] which considers a Dynamic Stochastic Block Model where the
communities can change with time. They provide direct connection between the density of the graph
and its smoothness (which measures how much the graph changes with time). Several other dynamic
variants of the SBM have been proposed so far like in Xu [2014] where the presence of an edge at the
time step t + 1 directly depends on its presence or absence at time t. The above mentioned works are
mainly considering SBMs where membership of nodes or edges can evolve with time, but only few pa-
pers are interested in growth model for SBMs (meaning that the size of the graph increases along time)
and we aim at filling this gap.

2.1.2 Standard SBM and tools for community detection

Different recovery requirements have been studied in the SBM. Exact recovery defines the ability to
recover the true partition of the nodes as the size of graph tends to +∞ while weak recovery aims at
asymptotically recovering correctly a fixed and a non trivial fraction of the partition of the nodes. The
survey Abbe [2017] gathers the state of the art methods to solve the community detection problem in
the SBM which includes in particular belief propagation algorithms Abbe and Sandon [2016] or spectral
methods Chin et al. [2015]. Neural networks Shchur and Günnemann [2019], Bayesian approaches Yang
et al. [2011] or Maximum Likelihood estimation Celisse et al. [2012] have also been proposed to address
the community detection problem. Another powerful and popular tool is Semi-Definite Programming
(SDP) which is known to have interesting robustness features Perry and Wein [2017], Fei and Chen
[2018]. Recently, Giraud and Verzelen [2019] proposed a SDP method to address community detection
by solving a relaxed version of K-means. They get partial recovery bound with a misclassification
error that decays exponentially fast with the signal-to-noise ratio. In our paper, we use their method to
recover communities in MSBMs. Therefore, we present succinctly their approach in Section 2.8.

2.1.3 Time prediction in SBMs

Time prediction in random graphs. Networks are nice structures to achieve prediction tasks. One
of them is link prediction which consists in finding missing links or in inferring the interactions be-
tween nodes in the future. Such questions have gained a lot of interest in the recent years leading to
both practical Armengol et al. [2015] and theoretical Berthet and Baldin [2020] works. Link prediction
in community-based random graph models have already been studied such as in Biswas and Biswas
[2016], but they do not consider temporal evolution in their model. Taking into account temporal as-
pects for link prediction as in Dunlavy et al. [2011], Bu et al. [2019] is a very active research direction of
great interest for applications. Another line of work is interested in reaching a better understanding of
the reliability of the link prediction methods typically when we work with noisy observations Guimerà
and Sales-Pardo [2009], Feng et al. [2012]. In our work, we follow both directions proposing reliable
methods to solve link prediction tasks for networks with an underlying temporal dynamic.
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Motivations. While previous works mainly consider a fixed number of nodes with an evolving graph
where communities or connection probabilities can evolve, the MSBM is a growth model where a new
node enters the graph at each time step and its community is drawn from a distribution depending only
on the community of its predecessor. Our model could find interesting applications as in the study of
bird migrations (see Section 2.6.3) where animals have regular seasonal movement between breeding
and wintering grounds. Another possible application of our model is for recommendation systems.
Suppose that we have access to the online purchases of some customers. We know for each of them
the date and the product ID of each of their purchases. In Section 2.9.3, we explain how our model can
be used to address the following tasks. i) cluster the product IDs by category ii) learn the purchasing
behavior of each customer iii) use this information to suggest relevant new products to each customer.

2.1.4 Contributions and Outline

Contributions. We show that the MSBM gives a convenient framework to extract reliable time in-
formation from the graph using any reasonable clustering algorithm. We propose a hypothesis test to
distinguish between classical SBMs and MSBMs and we address link prediction and collaborative filter-
ing problems. We show that the standard plug-in method is highly sensitive to clustering errors. This is
the reason why we propose a reliable approach that takes into account potential errors in the estimated
communities. To do so, we learn – using the Baum Welch algorithm – the probability that the clustering
algorithm predicts community l for a node belonging to community k for any k, l ∈ [K]. Based on these
quantities, we also propose a model selection procedure. In our simulations, we use the method from
Giraud and Verzelen [2019] to recover communities and as far as we know, we are the first to provide an
implementation of their algorithm. From a theoretical point of view, we show that the misclassification
error decays exponentially fast with respect to the signal-to-noise ratio (SNR) and we provide regimes
where we can estimate consistently the parameters of our model.

Outline. In Section 2.2, we formally define SBMs and we introduce MSBMs. Furthermore, we estab-
lish a partial recovery bound and we show that we can consistently estimate the parameters of our
model. Then come our three main contributions in Sections 2.3, 2.4 and 2.5 where we show how the
MSBM can be used to study growing networks: we present in particular procedures to solve link predic-
tion tasks or collaborative filtering problems. We give heuristics to be robust to potential local clustering
errors of the algorithm. Section 2.6 is dedicated to numerical experiments where we propose a method
to infer the unknown number of clusters and where we apply our methods on real data.
In the last three sections of this chapter, we provide additional material and proofs.

2.2 Model and Estimation procedures

2.2.1 Presentation of the MSBM

An undirected graph G is defined by a set of nodes V and a set of edges E ⊂ V × V . For an undirected
graph with n nodes, we define the adjacency matrix of this graph X ∈ {0, 1}n×n such that for all
i, j ∈ [n],

Xi,j =

{
1 if {i, j} ∈ E
0 otherwise.

Stochastic Block Model. Let us consider K ≥ 2 communities and a set of n nodes V = [n]. The com-
munities (ci)i∈[n] ∈ Kn are assigned independently to each node according to a probability distribution
ν ∈ [0, 1]K ,

∑
k∈[K] νk = 1. Stated otherwise, the community ci of node i ∈ [n] is randomly sampled

from the distribution ν. Considering the symmetric connectivity matrix Q ∈ [0, 1]K×K , the adjacency
matrix of the graph X ∈ {0, 1}n×n related to the assignment of the communities (ci)i∈[n] is defined by

Xi,j ∼ Ber(Qci,cj ),

where Ber(p) indicates a Bernoulli random variable with parameter p ∈ [0, 1]. In the standard SBM, X
is observed while the latent variables (ci)i∈[n] are unknown.
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For a parameter αn ∈ (0, 1) varying with the number of nodes n, we will be focused on connectivity
matrix of the form

Q := αnQ0,

where Q0 ∈ [0, 1]K×K is a matrix independent of n. As highlighted for example in Abbe and Sandon
[2015a], the rate of αn as n→∞ is a key property to study random graphs sampled from SBMs. Typical
regimes are αn ∼ 1 (dense regime), αn ∼ log(n)

n (relatively sparse regime) and αn ∼ 1
n (sparse regime).

Markovian assignment of communities in the SBM. We introduce in this paper the Markov Stochas-
tic Block Model (MSBM) which assigns a community to each node using a Markovian dynamic. We
start by ordering the n nodes in V and without loss of generality, we consider the increasing order
of the integers 1, 2, . . . , n. For all i ∈ [n], we denote Ci ∈ [K] the random variable representing the
community of the node i and we consider that they satistify the following assumption.

Assumption A1. (Ci)i∈[n] is a positive recurrent Markov chain on the finite space [K] with stationary
measure π, with transition matrix P ∈ RK×K and initial distribution π. K is independent of n.

We assign communities as follows:

C1 ∼ π
For i = 1 . . . (n− 1) Do

Ci+1 ∼ PCi,:

EndFor.

Once the community of each node is assigned, we draw an edge between the nodes i and j with prob-
ability QCi,Cj

Xi,j ∼ Ber(QCi,Cj ) with Q := αnQ0.

Here, Q0 ∈ [0, 1]K×K is independent of n and αn ∈ (0, 1) is varying with n. Figure 2.1 presents a
graphical representation of our model. We observe the adjacency matrix X but the latent variables
(Ci)i∈[n] are unknown.

C1 C2 C3 C4
. . . Ci

. . . Cn

X2,1 X3,1 X3,2 X4,1 X4,2 X4.3 (Xi,j)1≤j≤i−1 (Xn,j)1≤j≤n−1

Figure 2.1: Graphical model presenting the SBM with Markovian assignment of the communities.

The following quantities will be crucial in the definition of the signal-to-noise ratio (SNR)

L := ∥Q0∥∞, πm := min
c∈[K]

π(c), D2 := min
l ̸=k
∥(Q0):,k − (Q0):,l∥22.

Identifiability. Let us recall that identifiability means that the distribution over all output sequences
uniquely determines the model parameters, up to a permutation of its hidden states (see for exam-
ple Weiss and Nadler [2015]). We consider the following additional assumption.

Assumption A2. D2 = minl ̸=k ∥(Q0):,k − (Q0):,l∥22 > 0.

If Assumptions A1 and A2 hold and if αn log(n) ≤ 1/L, Theorems 2.5, 2.4 and 2.3 in Section 2.2.3 prove
that we are able to get consistent estimation of the parameters P , π and Q of our model when

αn = Ω

(
log(n)

n

)
.

Stated otherwise, Assumptions A1, A2 and αn log(n) ≤ 1/L are sufficient conditions for learnability
when the average degree of the nodes is of order log(n) or higher. Learnability is defined as the possi-
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bility to estimate consistently the model parameters. Note that learnability implies identifiability. We
refer for example to Weiss and Nadler [2015] for further details. Note that the former paper suggests
that the condition D2 may not be necessary for identifiability since in classical Hidden Markov Models,
the additional temporal structure allows for identifiability even, say, when some states have exactly the
same output distributions.

Error measure. Given two partitions Ĝ = (Ĝ1, . . . , ĜK) and G = (G1, . . . , GK) of [n] into K non-void
groups, we define the proportion of non-matching points

err(Ĝ,G) = min
σ∈SK

1

2n

K∑
k=1

∣∣∣Ĝk ∆ Gσ(k)

∣∣∣ ,
where A ∆ B = (A \B) ∪ (B \A) represents the symmetric difference between the two sets A and
B, |A| is the cardinality of the set A and SK represents the set of permutations on {1, . . . ,K}. When
Ĝ is a partition estimating G, we refer to err(Ĝ,G) as the misclassification proportion (or error) of the
clustering.

2.2.2 Partial recovery bound for the MSBM

Using the clustering algorithm from Giraud and Verzelen [2019] to infer the hidden communities, we
provide a partial recovery bound in the Stochastic Block Model when the communities are assigned
through a Markovian dynamic. In the following, (Ĉi)1≤i≤n and (Ĝk)k∈[K] denote respectively the esti-
mators of (Ci)1≤i≤n and (Gk)k∈[K] provided by the Algorithm 1 from Giraud and Verzelen [2019] which
is described in Section 2.8.
We define the signal-to-noise ratio as

S2 :=
nαnπmD

2

L
,

reminding that πm = minc∈[K] π(c), ∥Q0∥∞ ≤ L andD2 = minl ̸=k ∥(Q0):,k−(Q0):,l∥22. The SNR should
be understood as the ratio between i) the signal α2

nnπmD
2, which is an asymptotic lower bound on the

minimal distance between two distinct centers ∆2 defined as

∆2 := min
k ̸=j

∑
l

|Gl|(Qk,l −Qj,l)2 = α2
n

∑
l

|Gl|((Q0)k,l − (Q0)j,l)
2,

and ii) the noise αnL. We shed light on the fact that this quantity matches asymptotically the SNR from
[Giraud and Verzelen, 2019, Theorem 2] (cf. Section 2.8 for details) when π is the uniform distribution
over [K] and when the communities are assigned independently to each node according to the prob-
ability distribution π. Moreover, πm can be related to standard quantities that measure how fast the
chain converges to its stationary distribution π. Proposition 2.1 states a direct connection between πm
and the mixing time of the chain.

Proposition 2.1. [cf. Levin, 2017, Theorem 12.3]
In the following, we denote ∥ · ∥TV the total variation norm. Let P be the transition matrix of a reversible,

irreducible Markov chain with finite state space E and stationary measure π such that πm := minx∈E π(x) > 0.
For any 0 < ϵ < 1, let

tmix(ϵ) := min{t > 0 : sup
x
∥P t(x, ·)− π∥TV ≤ ϵ},

be the mixing time of the chain. Then it holds

tmix(ϵ) ≤ log((ϵπm)−1)/(1− λ+),

where 1− λ+ is the right L2-spectral gap of the chain from Definition A.12.

The smaller πm, the slower the convergence of the chain towards π and the smaller the SNR. Similarly
to Theorem 2.17, we prove with Theorem 2.2 that the misclassification error decays exponentially fast
with respect to the SNR S2.
In Theorem 2.2, the constants a and b only depend on the parameters π, P and Q0 while the constant b
also depends on the number of communities K. Those constants are made explicit in Lemma 2.12 (cf.
Section 2.7).
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Theorem 2.2. Assume that αn log(n) ≤ 1/L. Then there exist three constants a, b, c > 0 such that for any n
satisfying

nαn > a,

it holds with probability at least 1− b/n2,

err(Ĝ,G) ≤ e−cS
2

.

In particular, it holds with probability at least 1− b/n2,

− log
(
err(Ĝ,G)

)
= Ω(nαn).

Remark: Sparsity and theoretical guarantees. Theorem 2.2 states that in the relatively sparse regime
(i.e. when αn ∼ log(n)/n), we achieve a polynomial decay of the misclassification error with order
πmD

2/L. The greater the quantity πmD2/L is, the faster the misclassification error decays. In particular,
for n large enough it holds with high probability err(Ĝ,G) < 1/(2n) which gives Ĝ = G.
The condition on the sparsity parameter αn indicates that Theorem 2.2 can still be informative in the
sparse regime (i.e. when αn ∼ 1/n). Typically if limn→∞ αnn > A for some A > a, then Theorem 2.2
ensures that for n large enough it holds with high probability, err(Ĝ,G) ≤ e−cAπmD

2/L.

2.2.3 Consistent estimation of the parameters

Note that Theorem 2.2 is a straightforward consequence of the work of Giraud and Verzelen [2019]. Our
methods from Sections 2.3, 2.4 and 2.5 could easily be applied using your favorite clustering algorithm
and we have decided to use this recent SDP method for our simulations. In this section, we give estima-
tors π̂, P̂ and Q̂ of the parameters of our model, namely π, P and Q. We prove that there are consistent
for the infinity norm when the average degree is of order log n or higher.
In Theorems 2.3, 2.4 and 2.5 the constants a and b′ only depend on the parameters π, P and Q0 while
the constant b also depends on the number of communities K. Lemmas 2.14, 2.15 and 2.16 provide
respectively a more complete version of Theorems 2.3, 2.4 and 2.5 by giving explicitly these constants.
In Theorems 2.3, 2.4 and 2.5, the condition on the sparsity parameter αn indicates that we get consistent
estimation respectively of the transition matrix, the stationary measure and the connectivity matrix in
the relatively sparse regime (i.e. when αn ∼ log(n)/n) for n large enough when lim

n→∞
nαn/ log(n) > a.

2.2.3.1 The connectivity matrix

In the relatively sparse setting (i.e. when αn ∼ log(n)/n), Theorem 2.2 ensures that for n large enough
it holds with high probability err(Ĝ,G) < 1/n which implies that the partition of the nodes is correctly
recovered. In this case, a natural estimator for Qk,l (for k, l ∈ [K]2) consists in computing the ratio
between the number of edges between nodes with communities k and l and the maximum number of
edges between nodes with communities k and l. For any k, l ∈ [K]2,

Q̂k,l :=


1

|Ĝk| × |Ĝl|

∑
i∈Ĝk

∑
j∈Ĝl

Xi,j if k ̸= l

1

|Ĝk| × (|Ĝk| − 1)

∑
i,j∈Ĝk

Xi,j if k = l
.

One can remark that each entry of our estimator Q̂ is a sum of identically distributed and independent
Bernoulli random variables (i.e. it is a Binomial random variable). In Section 2.7.2, we prove Theo-
rem 2.3 which ensures the consistency of our estimate of the connectivity matrix.

Theorem 2.3. Let us consider γ > 0. Assume that αn log(n) ≤ 1/L. Then there exist three constants a, b, b′ > 0
such that for any n satisfying

nαn
log(n)

≥ a and n >

(
γ + 1

πm

)2

,
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it holds with probability at least 1− b(1/n2 ∨ exp(−b′γ2)),

∥Q̂−Q∥∞ ≤
γ√
n
.

2.2.3.2 The stationary distribution of the Markov chain

Thanks to the ergodic theorem, we know that the average number of visits in each state of the chain
converges toward the stationary probability of the chain at this particular state. Stated otherwise, for
all community k ∈ [K], the average number of nodes with community k in the graph converges toward
π(k) as n tends to +∞. Therefore we propose to estimate the stationary measure of the chain (Ci)i≥1

with π̂ defined by

∀k ∈ [K], π̂k :=
1

n

n∑
i=1

1Ĉi=k
.

Theorem 2.4 ensures the consistency of our estimate π̂. Its proof can be found in Section 2.7.3.

Theorem 2.4. Let us consider γ > 0.
Assume that αn log(n) ≤ 1/L. Then there exist three constants a, b, b′ > 0 such that for any n satisfying

nαn
log(n)

≥ a,

it holds with probability at least 1− b(1/n2 ∨ exp(−b′γ2)),

∥π̂ − π∥∞ ≤
γ√
n
.

2.2.3.3 The transition matrix of the Markov chain

We define (Yi)i≥1 a Markov Chain on [K]2 by setting Yi = (Ci, Ci+1). We define naturally the sequence(
Ŷi

)
i≥1

by Ŷi = (Ĉi, Ĉi+1). The transition kernel of the Markov Chain (Yi)i≥1 is P(k,l),(k′,l′) = 1l=k′Pl,l′

and its stationary measure is given by µ such that ∀k, l, µ(k, l) = π(k)Pk,l. We propose to estimate each
entry of the transition matrix P of the Markov chain (Ci)i≥1 with

∀k, l ∈ [K]2, P̂k,l :=
n

n− 1

∑n−1
i=1 1Ŷi=(k,l)∑n
i=1 1Ĉi=k

.

Theorem 2.5. Let us consider γ > 5K
2π2

m
. Assume that αn log(n) ≤ 1/L. Then there exist three constants

a, b, b′ > 0 such that for any n satisfying

nαn
log(n)

≥ a and nαn ≥
a

γ2
,

it holds with probability at least 1− b
[
1/n2 ∨ exp

(
−b′(γ − 5K

2π2
m
)2
)]
,

∥P̂ − P∥∞ ≤
γ√
n
.

Remark. To prove this theorem, we consider the Markov chain (Yi)i≥1 built considering two consecu-
tive states of the Markov chain (Ci)i≥1. Stated otherwise, the state number i of the Markov chain used
is formed by the couple of the communities of the nodes number i and number i+ 1.

Notation. In the following sections, P̂ will denote the probability measure under which the Markov
chain (Ci)i≥1 has transition matrix P̂ and Xi,j ∼ Ber(Q̂Ci,Cj

) for all i, j ∈ [n], i ̸= j.
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2.3 Markovian dynamic testing

We illustrate our model on a toy example with K = 4 communities, with the transition matrix P and
the connectivity matrix Q defined by

P =


0.1 0.3 0.5 0.1

0.45 0.15 0.2 0.2

0.15 0.3 0.1 0.45

0.25 0.3 0.1 0.35

 and Q =


0.22 0.48 0.29 0.44

0.48 0.61 0.18 0.15

0.29 0.18 0.08 0.87

0.44 0.15 0.87 0.27

 . (2.1)

All the experiments presented in our paper can be reproduced using the Python notebooks provided
on this repository1.

As a first application of our model, we propose a hypothesis test to statistically distinguish between
an independent assignment of the communities with the distribution π and a Markovian assignment
with a non-trivial dependence structure. More precisely, we consider the null H0 : communities are
independently assigned with distribution π where π denotes the stationary distribution of the transition
matrix P from (2.1). Our test is based on estimate P̂ of the transition matrix. The null can be rephrased

as H0 : P = P 0 where P 0 :=


π
...

π

. One can use any black-box goodness-of-fit test comparing P̂ to P 0.

Figure 2.2 shows the power of this hypothesis test with level 5% (Type I error) and using the χ2-test
described by [Bickenbach et al., 2001, Section 2.4]. Rejection region is calibrated (i.e., threshold of the
χ2-test) by Monte Carlo simulations under the null. It allows us to control Type I error as depicted by
dotted blue line. We run our algorithm to estimate the transition matrix from which we compute the
χ2-test statistic namely

Sn :=
∑

1≤k,l≤K

|Ĝk|

(
P̂k,l − πl

)2
πl

with |Ĝk| =
n∑
i=1

1Ĉi=k
.

Sn is known to be asymptotically distributed as a χ2 random variable withK(K−1) degrees of freedom.

Figure 2.2: Power of our hypothesis test with level 5%. We choose alternative given by the matrices
defined in (2.1). We see that for graphs of size larger than 100, the rejection rate is almost 1 under the
alternative (Type II error is almost zero), the test is very powerful.

1https://github.com/quentin-duchemin/inference-markovian-SBM

https://github.com/quentin-duchemin/inference-markovian-SBM
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2.4 Link prediction

2.4.1 The plug-in approach

We propose to show the usefulness of our model solving a link prediction problem taking into account
the underlying time dynamic, which cannot be done with classical SBMs (iid framework). Link predic-
tion consists in forecasting how future nodes will connect to the rest of the graph. Considering a graph
of size n sampled from MSBM, link prediction can be achieved using a forward step on our Markovian
dynamic, giving the posterior probability of Definition 2.6.

Definition 2.6. (Posterior probability function)
Let us consider a graph X of n + 1 nodes generated from the model described in Section 2.2.1. We
consider c1:n a sequence of communities for the n first nodes. Then the posterior probability function η
is defined by

∀i ∈ [n], ηi(c1:n) = P (Xi,n+1 = 1 | C1:n = c1:n) .

We consider a classifier g (see Definition 2.7) and an algorithm that, given some communities c1:n,
estimates Xi,n+1 by putting an edge between nodes i and n+ 1 if gi(c1:n) is 1.

Definition 2.7. A classifier is a function which associates to any sequence of communities c1:n binary
variables (gi(c1:n))i∈[n] ∈ {0, 1}n.

The risk of this algorithm is as in binary classification,

R(g, c1:n) :=
1

n

n∑
i=1

P (gi(C1:n) ̸= Xi,n+1 | C1:n = c1:n) (2.2)

=
1

n

n∑
i=1

(1− ηi(c1:n))1gi(c1:n)=1 + ηi(c1:n)1gi(c1:n)=0,

Pushing further this analogy, we can define the classification error of some classifier g by L(g) =
E [R(g,C1:n)]. Proposition 2.9 shows that the Bayes estimator - introduced in Definition 2.8 - is op-
timal for the risk defined in (2.2).

Definition 2.8. (Bayes estimator)
We keep the notations of Definition 2.6. The Bayes estimator g∗ of (Xi,n+1)1≤i≤n is defined by

∀i ∈ [n], g∗i (c1:n) =

{
1 if ηi(c1:n) ≥ 1

2

0 otherwise.

Proposition 2.9. (Optimality of the Bayes classifier for the riskR)
We keep the notations of Definitions 2.6 and 2.8. For any classifier g, it holds for any i ∈ [n],

P (gi(C1:n) ̸= Xi,n+1 | C1:n = c1:n)− P (g∗i (C1:n) ̸= Xi,n+1 | C1:n = c1:n)

= 2

∣∣∣∣ηi(c1:n)− 1

2

∣∣∣∣× E{1gi(C1:n )̸=g∗i (C1:n) | C1:n = c1:n
}
,

which immediately implies that

R(g, c1:n) ≥ R(g∗, c1:n) and therefore L(g) ≥ L(g∗).

A natural question arises: Can we approximate the Bayes classifier given the observation of the adja-
cency matrix X ∈ Rn×n? A reasonable candidate is the MSBM classifier introduced in Definition 2.10.

Definition 2.10. (The MSBM classifier) For any n and any i ∈ [n], we define

η̂i(Ĉ1:n) =
∑
k∈[K]

Q̂Ĉi,k
P̂Ĉn,k

, (2.3)

where Q̂ and P̂ denote respectively the estimate of the connections matrix and the transition matrix
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with our method (see Section 2.2.3). The MSBM classifier is defined by

∀i ∈ [n], gMSBM
i (Ĉ1:n) =

{
1 if η̂i(Ĉ1:n) ≥ 1

2

0 otherwise.

Proposition 2.11 shows that the MSBM classifier is consistent, meaning that given a training set, the
probability of correct classification approaches - as the size of the training set increases - the best prob-
ability theoretically possible if the population distributions were fully known.

Proposition 2.11. (Consistency of the MSBM classifier) Let us consider γ > 5K
2π2

m
. Assume that αn log(n) ≤

1/L. Then there exist three constants a, b, b′ > 0 such that for any n satisfying

nαn
log(n)

≥ a, nαn ≥
a

γ2
and n >

(
γ + 1

πm

)2

, (2.4)

it holds with probability at least 1− b
[
1/n ∨ n exp

(
−b′(γ − 5K

2π2
m
)2
)]
,

∀i ∈ [n], |ηi(C1:n)− η̂i(C1:n)| ≤
γ√
n
(αnKL+ 1) . (2.5)

Using Theorem 2.2, we deduce that for n large enough, (2.5) holds replacing η̂i(C1:n) by η̂i(Ĉ1:n).

Remark. Let us point out that obtaining a non-trivial result from Proposition 2.11 may require to choose
γ as function of n. Typically, choosing γ = n1/4, we obtain that for n large enough, it holds with
probability at least 1− b/n,

∀i ∈ [n], |ηi(C1:n)− η̂i(C1:n)| ≤ n−1/4 (αnKL+ 1) .

Figure 2.3 illustrates Proposition 2.11 on graphs with 180 nodes sampled from the MSBM.

Figure 2.3: We consider K = 4 communities and we sample a random graph of size n =
180 from the MSBM using matrices defined in (2.1). We plot the averaged link probabilities
|Gc|−1

∑
i∈Gc

∑
k∈[K] Q̂c,kP̂Cn−1,k for all c ∈ [K] with Gc = {i ∈ [n− 1] | Ci = c}.

2.4.2 Reliable link prediction

One can notice that despite the nice theoretical property of the MSBM classifier from Definition 2.10,
the practical results of such approach can be discussed. Indeed, we only use the two estimates Ĉi and
Ĉn to build η̂i(Ĉ1:n) without taking advantage of the complete sequence of recovered communities.
To cope with this issue, we propose to learn the probability that a node i belonging to community
k ∈ [K] is assigned to a cluster l ∈ [K] by the algorithm. These quantities are the emission probabilities
of a Hidden Markov Model (HMM) with hidden states the true assignment of the nodes while the
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observations are the communities estimated by the algorithm, namely

∀k, l ∈ [K], Ok,l := P(Ĉ1 = l|C1 = k).

The Baum-Welch algorithm allows us to estimate the emission probabilities by performing (i) a forward
procedure that learns the probability of seeing the observations ĉ1:i ∈ [K]i and being in state k at time
i, namely

αk(i) = P(Ĉ1:i = ĉ1:i, Ci = k),

and (ii) a backward procedure that learns the probability of the ending partial sequence ĉj+1:n given
being at state l at time j, namely

βl(j) = P(Ĉj+1:n = ĉj+1:n|Cj = l).

Using this approach and recalling the notation P̂ introduced at the end of Section 2.2.3, we can compute

ζ̂
(i,j)
k,l (ĉ1:n) = P̂(Ci = k,Cj = l|Ĉ1:n = ĉ1:n)

which estimates

ζ
(i,j)
k,l (ĉ1:n) := P(Ci = k,Cj = l|Ĉ1:n = ĉ1:n) ∝ αk(i)χ(i,j)

k,l βl(j),

where

χ
(i,j)
k,l := P(Cj = l, Ĉi+1:j = ĉi+1:j |Ci = k)

=
∑

ci+1,...,cj−1

Pk,ci+1

(
Oci+1,ĉi+1

+ Pci+1,ci+2
(Oci+2,ĉi+2

+ · · ·+ Pcj−1,lOl,ĉj )

)
.

We can then build the Reliable MSBM (RMSBM) classifier by considering

η̂Ri (ĉ1:n) =
∑

k,ci,cn∈[K]

ζ̂(i,n)ci,cn(ĉ1:n)Q̂ci,kP̂cn,k,

and then replacing η̂i by η̂Ri in the definition of the MSBM classifier. Note that this approach is a heuristic
because of the local optimum reached by the EM algorithm and also because of the dependence of the
emission probabilities in our model. Figure 2.4 shows that this method leads to a reliable estimation of
the posterior probabilities. The RMSBM classifier gives smaller L1 errors on the posterior probabilities.
The difference is significant when the clustering algorithm fails to recover the complete partition of the
nodes which leads to bad estimates for the plug-in approach.

Figure 2.4: We plot the sorted L1 errors between η̂i(Ĉ1:n) (resp. η̂Ri (Ĉ1:n)) and ηi(Ĉ1:n). Our reliable
estimation of the posterior probabilities allows to get a significantly smaller variance compared to the
plug-in approach.
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Note that using the Baum-Welch algorithm, we recover the emission probabilities Ok,l for all k, l ∈ [K]
and Figure 2.5 shows that they can be used to extract relevant information on the clustering algorithm.

Figure 2.5: We work with a graph of size 120 and with matrices defined by (2.1). We plot the
learned emission probabilities Ok,l, k, l ∈ [K]. The ergodic theorem ensures that the first clus-
ter is (asymptotically) the smaller. Indeed, the stationary measure of P from (2.1) is approximately
[0.14 , 0.22 , 0.38 , 0.26]. We observe that the errors made by the algorithm consist in assigning nodes
from community 2, 3 or 4 to cluster 1. This means that the clustering algorithm from Giraud and Verze-
len [2019] tends to overestimate the size of small clusters.

2.4.3 The Baum-Welch algorithm

In the previous section, we have presented a reliable approach to solve link prediction or a collabora-
tive filtering problem when we fully observe the graph at time n and when we want to perform some
temporal prediction involving future nodes. We propose to consider a more general framework con-
sidering that we fully observe the graph at time n + δ (δ ∈ N∗) but we consider that edges involving
nodes between time T (with T < n) and time n are not reliable. Note that the simpler framework ad-
dressed in the paper is simply recovered by taking n = T +1. Hence, we want only to take into account
the edges involving pairs of nodes in {1, . . . , T, n, . . . n + δ}. We denote ET,n,δ this set of edges. We
describe the Baum-Welch algorithm in this framework. Running the clustering algorithm on the graph
G = ({1, . . . , T, n, . . . n+ δ}, ET,n,δ), we find a sequence of estimates for the communities Ĉ1:T , Ĉn:n+δ .
In the following, we will consider by abuse of notations that for any j ≥ T + 1, the sequence Ĉ1:j

represents the sequence
(
Ĉi, i ∈ [j]\{T + 1, . . . , n− 1}

)
.

The Baum-Welch algorithm consists in a forward and a backward procedure followed by an update
step that we describe below. In the following, θ = (P̃ , O, µ) will denote the HMM with transition kernel
P̃ for the Markov chain (Ci)i≥1 with initial distribution µ and with matrix of emission probabilities O.
Denoting 1K = (1, 1, . . . , 1)⊤ ∈ RK , θ = (P̃ , O, µ) is initialized as follows

P̃ =
1

K
1K1⊤

K ,

µ = 1⊤
K ,

O = (1− ϵ)IdK +
ϵ

K − 1

(
1K1⊤

K − IdK
)
,

where ϵ ∈ (0, 1) (typically ϵ = 10−2).

• Forward procedure

Let us recall that we have denoted αk(i) = P
(
Ĉ1:i = ĉ1:i, Ci = k | θ

)
the probability of seeing the
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observations ĉ1, . . . ĉi and being in state k at time i. This is found recursively with

∀k ∈ [K], αk(1) =µkOk,ĉ1

∀k ∈ [K], ∀i ∈ [n], αk(i) =


∑
l∈[K] αl(T )

(
P̃ i−T

)
l,k

if T < i ≤ n

Ok,ĉi
∑
l∈[K] αl(i− 1)P̃l,k otherwise.

• Backward procedure

Let us recall that we have denoted βk(i) = P
(
Ĉi+1:n+δ = ĉi+1:n+δ | Ci = k, θ

)
the probability of

the ending partial sequence ĉi+1:n+δ given starting in state k at time i. This is found recursively
with

∀k ∈ [K], βk(n) =1

∀k ∈ [K], ∀i ∈ [n], βk(i) =


∑
l∈[K] βl(n− 1)

(
P̃n−1−i

)
k,l

if T ≤ i ≤ n− 2∑
l∈[K] βl(i+ 1)P̃k,lOl,ĉi+1

otherwise.

• Update step

We can first update the temporary variables γ and ξ defined below. The probability of being in
state k at time i given the observed sequence Ĉ1:n+δ = ĉ1:n+δ and the parameters θ is denoted
γk(i) with

∀k ∈ [K], ∀i ∈ [n], γk(i) = P(Ci = k|Ĉ1:n+δ = ĉ1:n+δ, θ) =
αk(i)βk(i)∑
l∈[K] αl(i)βl(i)

.

The probability of being in state k and l at times i and i + 1 respectively given the observed
sequence Ĉ1:n+δ and parameters θ is denote ξk,l(i) with for all k, l ∈ [K] and for all i ∈ [n],

ξk,l(i) = P(Ci = k,Ci+1 = l | Ĉ1:n+δ = ĉ1:n+δ, θ) =
P(Ci = k,Ci+1 = l, Ĉ1:n+δ = ĉ1:n+δ | θ)

P(Ĉ1:n+δ = ĉ1:n+δ | θ)
.

Hence,

ξk,l(i) =
αk(i)P̃k,lβl(i+ 1)∑

c,b∈[K] αc(i)P̃c,bβb(i+ 1)
if T ≤ i ≤ n− 2

ξk,l(i) =
αk(i)P̃k,lβl(i+ 1)Ol,ĉi+1∑

c,b∈[K] αc(i)P̃c,bβb(i+ 1)Ob,ĉi+1

otherwise.

The parameters of the hidden Markov model θ can now be updated.

∀k ∈ [K], µk = γk(1)

∀k, l ∈ [K], P̃k,l =

∑n−1
i=1 ξk,l(i)∑n−1
i=1 γk(i)

∀k, l ∈ [K], Ok,l =

∑n
i=1 1ĉi=lγk(i)∑n

i=1 γk(i)
.

2.5 Collaborative filtering

2.5.1 Reliable collaborative filtering

Let us now dig into another prediction question, namely collaborative filtering. Solving a collaborative
filtering task consists in inferring the community of one node of the graph if we have only partial
information on how this node connects to the rest of the graph. More precisely, we observe fully the
graph at time m and for some n > m, we observe how the node n is connected (or not) to a subset of
nodes E ⊂ [m], i.e. we have access to (Xi,n)i∈E . Our goal is then to predict the community of node n:



Chapter 2. Reliable Temporal Prediction in the MSBM 43

Cn. We propose to use the maximum a posteriori (MAP) estimator to tackle this problem. The optimal
MAP selects

Ĉn ∈ argmax
k∈[K]

P (Cn = k | (Xi,n)i∈E ,C1:m) ,

while given a sequence of estimated communities ĉ1:m, the plug-in MAP selects

ĈPIn ∈ argmax
k∈[K]

P̂ (Cn = k | (Xi,n)i∈E ,C1:m = ĉ1:m) ,

and the Reliable MAP chooses

ĈRn ∈ argmax
k∈[K]

P̂
(
Cn = k | (Xi,n)i∈E , Ĉ1:m = ĉ1:m

)
.

Denoting E = {i1, . . . , iS}with 1 ≤ i1 < · · · < iS ≤ m, ĈRn can be computed noticing that

argmax
k∈[K]

P̂
(
Cn = k | (Xi,n)i∈E , Ĉ1:m = ĉ1:m

)
= argmax

k∈[K]

P̂
(
(Xi,n)i∈E , Ĉ1:m = ĉ1:m | Cn = k

)
× P̂ (Cn = k) ,

with

P̂
(
(Xi,n)i∈E , Ĉ1:m = ĉ1:m | Cn = k

)
=

∑
ci1 ,...,ciS∈[K]

αci1 (i1)

S−1∏
j=1

(
l̂ij ,n(cij , k)χ̂

(ij ,ij+1)
cij ,cij+1

)
βciS (iS)l̂iS ,n(ciS , k),

where l̂i,n(c, k) = Q̂
Xi,n

c,k (1 − Q̂c,k)1−Xi,n and P̂ (Cn = k) =
(
µP̂n

)
k
. In the last equality, µ is the ini-

tial distribution of the Markov chain (Xi)i≥1 which is learned by the Baum-Welch algorithm (see Sec-
tion 2.4.3). Figure 2.6 compares on a numerical experiment the plug-in MAP and the Reliable MAP. The
plug-in MAP gives reasonable results but its misclassification rate is always lower bounded by the one
of the Reliable MAP.

Figure 2.6: We consider a random graph drawn from the MSBM using the matrices given in (2.1). We
fully observe the graph until time m = 100 and we observe how the node n = 120 is connected to the
nodes in E where E is equal to {m}, {m− 1,m}, . . . or {m− 25, . . . ,m}. For those different choices of E ,
we plot the average error on the clustering of the node n using the optimal MAP, the plug-in MAP or
the Reliable MAP.
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2.5.2 Theoretical justifications

In this section, we simply derive the formula to compute the different estimates of the community
of node n in the collaborative filtering problem tackled in the previous section. In the following, the
symbol ∝ will be used in the sense that the considered quantities are equal up to a constant that does
not depend on the community Cn = k of the node n.

• The optimal MAP selects Ĉn ∈ argmax
k∈[K]

P (Cn = k | (Xi,n)i∈E ,C1:m) with

P (Cn = k | (Xi,n)i∈E ,C1:m) ∝ P (Cn = k, (Xi,n)i∈E | C1:m)

= P ((Xi,n)i∈E | Cn = k,C1:m)× P (Cn = k | C1:m)

=
∏
i∈E

Q
Xi,n

Ci,k
(1−QCi,k)

Xi,n ×
(
Pn−m

)
Cm,k

.

• The plug-in MAP selects ĈPIn ∈ argmax
k∈[K]

P̂ (Cn = k | (Xi,n)i∈E ,C1:m = ĉ1:m) with

P̂ (Cn = k | (Xi,n)i∈E ,C1:m = ĉ1:m)

∝ P̂ (Cn = k, (Xi,n)i∈E | C1:m = ĉ1:m)

= P̂ ((Xi,n)i∈E | Cn = k,C1:m = ĉ1:m)× P̂ (Cn = k | C1:m = ĉ1:m)

=
∏
i∈E

Q̂
Xi,n

ĉi,k
(1− Q̂ĉi,k)Xi,n ×

(
P̂n−m

)
ĉm,k

.

• The Reliable MAP selects ĈRn ∈ argmax
k∈[K]

P̂
(
Cn = k | (Xi,n)i∈E , Ĉ1:m = ĉ1:m

)
with

P̂
(
Cn = k | (Xi,n)i∈E , Ĉ1:m = ĉ1:m

)
∝ P̂

(
Cn = k, (Xi,n)i∈E , Ĉ1:m = ĉ1:m

)
= P̂

(
(Xi,n)i∈E , Ĉ1:m = ĉ1:m | Cn = k

)
× P̂ (Cn = k) .

We have easily P̂ (Cn = k) =
∑
l∈[K] µl

(
P̂n
)
l,k

. Moreover,

P̂
(
(Xi,n)i∈E , Ĉ1:m = ĉ1:m | Cn = k

)
= P̂

(
(Xij ,n)j∈[S], Ĉ1:m = ĉ1:m | Cn = k

)
=

∑
ci1∈[K]

αci1 (i1)Q̂
Xi1,n

ci1 ,k
(1− Q̂ci1 ,k)

Xi1,n

× P̂
(
(Xij ,n)j∈{2,...,S}, Ĉi1+1:m = ĉi1+1:m | Ci1 = ci1 , Cn = k

)
=

∑
ci1 ,ci2∈[K]

αci1 (i1)l̂i1,n(ci1 , k) P̂
(
Ĉi1+1:i2 = ĉi1+1:i2 , Ci2 = ci2 | Ci1 = ci1

)
︸ ︷︷ ︸

=χ̂
(i1,i2)
ci1

,ci2

l̂i2,n(ci2 , k)

× P̂
(
(Xij ,n)j∈{3,...,S}, Ĉi2+1:m | Ci2 = ci2 , Cn = k

)
= . . .

=
∑

ci1 ,...,ciS∈[K]

αci1 (i1)

S−1∏
j=1

(
l̂ij ,n(cij , k)χ̂

(ij ,ij+1)
cij ,cij+1

)
βciS (iS)l̂iS ,n(ciS , k),
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where we have denoted ∀i, j, ∀k, l ∈ [K],

χ̂
(i,j)
k,l = P̂

(
Cj = l, Ĉi+1:j = ĉi+1:j | Ci = k

)
=

∑
ci+1,...,cj−1

P̂k,ci+1

(
Oci+1,ĉi+1

+ P̂ci+1,ci+2
(Oci+2,ĉi+2

+ · · ·+ P̂cj−1,lOl,ĉj )

)
,

and ∀i, ∀c, k ∈ [K], l̂i,n(c, k) = Q̂
Xi,n

c,k (1− Q̂c,k)1−Xi,n .

2.6 Implementation and Experiments

2.6.1 Performance and implementation

The clustering algorithm used is a SDP method and, as a consequence, its time complexity scales with
n3, while the complexity of the Baum-Welch algorithm is of order K2n. From here, computing η̂i(ĉ1:n)
for all i ∈ [n] requires K3n2 operations using dynamic programming (see Sec.3.b of the notebook ex-
periments.ipynb). Regarding the collaborative filtering task, using again dynamic programming the Re-
liable MAP estimator from Section 2.5.1 has a time complexity of order K4n2 (see method collabora-
tive_filtering_robustMAP in the file markovianSBM/BaumWelch.py).

2.6.2 Inferring the number of communities

In this section, we propose a heuristic based on the learned emission probabilities from the Baum-Welch
algorithm to estimate the number of communities K of our model. The proposed approach consists in
running the Baum-Welch algorithm for a finite list of possible number of clusters {Kmin, . . . ,Kmax} =
K ⊂ N∗. For each K ∈ K, we denote O(K) the matrix of emission probabilities learned by the algorithm
when we consider that the number of communities is K. For any K ∈ K, we define

M (K) := max
k,l∈[K],k ̸=l

{
O

(K)
l,k +O

(K)
k,l

}
.

For any K ∈ K and any k, l ∈ [K], k ̸= l, O(K)
l,k + O

(K)
k,l represents the probability that the clustering

algorithm predicts community k or l if the true cluster is the other one.

• WhenK is less than or equal to the true number of clusters, M (K) stays small as soon as the graph
is large enough and as the clustering algorithm used is efficient.

• When K becomes greater then the true number of clusters, M (K) is larger compared to the pre-
vious case because at least one true cluster will be arbitrarily split in two different groups by the
clustering algorithm.

Based on this remark, we propose to estimate the number of communities by choosing the value K ∈ K
leading to the larger positive jump of the function K 7→M (K) namely

K̂ ∈ argmax
K∈{Kmin,...,Kmax−1}

{
M (K+1) −M (K)

}
.

First we test our method with a graph of size n = 110 and with K = 4 communities using the transition
kernel P and the connectivity matrix Q defined by (2.1). Figure 2.7 shows that our approach allows to
estimate the correct number of communities K = 4.
We also test our procedure on a real network corresponding to American football games between Divi-
sion IA colleges during regular season Fall 2000. Two teams are connected if they played against each
other. The nodes have values that indicate which conferences the corresponding team belongs to. We
worked with 6 different conferences 2. Figure 2.8 shows that our procedure infers the correct number
of communities.

2namely Atlantic Coast, Big East, Big Ten, Big Twelve, Conference USA, Mid-American.
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Figure 2.7: K 7→M (K+1) −M (K) working with the connectivity matrix Q from (2.1).

(a) Graph. (b) K 7→M (K+1) −M (K)

Figure 2.8: We test our model selection method on the football network from the Networkx python pack-
age.

2.6.3 Application on real data

Migratory animals are essential components of the ecosystems that support all life on Earth. By acting
as pollinators and seed distributors they contribute to ecosystem structure and function. They pro-
vide food for other animals and regulate the number of species in ecosystems. Migratory animals are
potentially very effective indicators of environmental changes that affect us all.
In Kölzsch et al. [2018], the authors proposed a periodic Markov model on a spatial migration network
to formally describe the process of animal migration on the population level. They built their dataset
using the Movebank data repository (see Kruckenberg et al. [2018]) that provides historic of animal
movements. We propose to test our approach on this dataset. The data is publicly available here3 and
our experiments can be reproduced with the notebook experiments.ipynb.

Description of the dataset. The dataset presents the locations of several white-fronted gooses with
timestamps. The animals have been tracked from 2006 to 2010. Each location can be associated with a
class using classes defined from Argos User’s Manual 2011. We refer to Kölzsch et al. [2018] for details.
We focus on one specific white-fronted goose and we keep the list of its chronological locations between
2006 and 2010 for four location classes. Nodes correspond to the entries of the previous sequence of
locations of the animal while communities are the classes associated to each location. In our network,
we connect two nodes if the distance between the corresponding precise locations (given with latitude
and longitude coordinates) is smaller than some specified threshold.

https://www.datarepository.movebank.org/handle/10255/move.747
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Results. With Figure 2.9.(a), we show that the model selection method of Section 2.6.2 allows to re-
trieve the correct number of clusters on our dataset. In order to evaluate the performance of our reliable
link prediction method, we compute the transition matrix P and the connection matrix Q associated
with our network. More precisely, we define ∀k, l ∈ [K],

Qk,l :=


1

|Gk| × |Gl|
∑
i∈Gk

∑
j∈Gl

Xi,j if k ̸= l

1

|Gk| × (|Gk| − 1)

∑
i,j∈Gk

Xi,j if k = l
and Pk,l :=

n

n− 1

∑n−1
i=1 1(Ci,Ci+1)=(k,l)∑n

i=1 1Ci=k
,

where X is the adjacency matrix, Ci is the community of node i ∈ [n] and Gk is the set of nodes
with label k ∈ [K]. We use these matrices to compute the posterior probabilities

(
ηi(Ĉ1:n)

)
i∈[n]

(see

Definition 2.6) and we can compare them with the estimations given by the plug-in approach and the
reliable approach from Section 2.4. Figure 2.9.(b) shows that the reliable approach allows to significantly
improve the estimate of the posterior probabilities.

(a) K 7→M (K+1) −M (K).

(b) L1 errors between η̂i(Ĉ1:n) (resp. η̂R
i (Ĉ1:n)) and

ηi(Ĉ1:n).

Figure 2.9: We test our model on the bird migrations dataset from Kölzsch et al. [2018].

Comments. On simulated data with a small number of clusters, when n gets larger, the clustering
algorithm will recover (almost) perfectly the true partition. In that case, it is clear that the reliable
version cannot improve drastically the plug in method since this latter (almost) coincides with the
Bayes estimator. However, real datasets never fit a particular model and recovering the true partition
is really unlikely even for very large graphs. In such cases, our method is of great interest to provide
reliable estimations for link prediction despite clustering errors.

3https://www.datarepository.movebank.org/handle/10255/move.747
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2.7 Proofs

2.7.1 Proof of Theorem 2.2

Lemma 2.12 provides a more complete version of Theorem 2.2 by giving explicitly the constants.

Lemma 2.12. Let us consider the three positive constants c, c′ and c′′ involved in Theorem 2.17.

Assume that αn log(n) ≤ 1/L and that nαn > max

(
4Lc′′

π2
mD

2
,

2

Lπm

)
. Then it holds

P

(
err(Ĝ,G) > exp

(
−c

′S2

2

))
≤ c

n2
+ 2K exp

(
− nπ2

m

2A1 + 4A2πm

)
,

where S2 = nαnπmD
2

L and where A1 and A2 are constants that only depend on the Markov chain (Ci)i≥1 with

A1 :=
1 + (λ+ ∨ 0)

1− (λ+ ∨ 0)
and A2 :=

1

3
1λ+≤0 +

5

1− λ+
1λ+>0. Here 1 − λ+ is the right L2 spectral gap of the

Markov chain (Ci)i≥1 (see Definition A.12 in Section A.3).

Remarks.

• The fact that πm > 0 is a direct consequence of the positive recurrent property of the Markov
chain.

• The second term in the right hand side of the inequality from Lemma 2.12 comes from the concen-
tration of the average number of visits of the Markov chain towards the stationary distribution
of the chain. The first term in this inequality corresponds to the bound from Theorem 2.17 when
communities have been assigned.
Recalling that ∥Q∥∞ is upper bounded by αnL, the condition αn log(n) ≤ 1/L enforces the signal
to noise ratio defined by Giraud and Verzelen s2 := ∆2/(αnL) (see Theorem 2.17) to be larger than
∆2 × log(n). Another way to interpret this condition is to say that it enforces the expected degree
of all nodes of the graph to be smaller than n/ log(n).

• In order to get some intuition on the conditions on n in the previous theorem, keep in mind that
asymptotically, the size of the smallest community in the graph will be n× πm.

– The condition n >
4Lc′′

αnπ2
mD

2
can be read as (n× πm)αnD

2/L > 4c′′

πm
= 4c′′ × n

nπm
. Asymptot-

ically, (n × πm)αnD
2/L provides a lower bound on the signal-to-noise ratio defined in The-

orem 2.17. This shows that the condition n >
4Lc′′

αnπ2
mD

2
is related to the constraint s2 ≳ n/m

of Theorem 2.17.

– The condition n >
2

αnLπm
can be read as 1

n×πm
< αnL/2. This shows that the condition

n >
2

αnLπm
is related to the constraint 1/m < αnL from Theorem 2.17.

The proof of Lemma 2.12 is based on the following Lemma which is proved at the end of this subsection.

Lemma 2.13. We consider c, c′ and c′′ the three numerical constants involved in Theorem 2.17.

Let us consider 0 < t < πm. Assume that αnL ≤ 1/ log(n). Then for any ϵ > 0 and n large enough such that:

n× (πm − t) ≥



L log(1/ϵ)
c′αnD2 (i)(
c′′nL
αnD2

)1/2
(ii)

1/(αnL) (iii)

it holds

P
(
err(Ĝ,G) > ϵ

)
≤ c

n2
+ 2K exp

(
− nt2

2(A1/4 +A2t)

)
,
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where A1 and A2 are constants defined in Theorem 2.2.

Note that the only constraint on ϵ is given by the condition (i) which is equivalent to

ϵ ≥ exp

(
−c

′D2nαn(πm − t)
L

)
.

In order to get the tighter result possible, we want to choose ϵ = exp
(
− c

′D2nαn(πm−t)
L

)
which leads to

t = πm −
L log(1/ϵ)

c′D2nαn
.

The condition t > 0 is then equivalent to

πm >
L log(1/ϵ)

c′D2nαn
⇔ exp(−πmnαnc′D2/L) < ϵ.

The condition (ii) is equivalent to

n(πm − t) =
L log(1/ϵ)

c′αnD2
≥
(
c′′nL

αnD2

)1/2

⇔ exp

(
−c′
√
D2c′′nαn

L

)
≥ ϵ.

The condition (iii) is equivalent to

n(πm − t) =
L log(1/ϵ)

c′αnD2
≥ (1/αnL)⇔ exp

(
−c

′D2

L2

)
≥ ϵ.

One can easily prove that for nαn > max
(

4Lc′′

π2
mD

2 ,
2

Lπm

)
, ϵ := exp

(
−πmnαnc

′D2

2L

)
satisfies the three

conditions above. This gives Lemma 2.12 from Lemma 2.13.

Proof of Lemma 2.13. Using Theorem 1.2 from Jiang et al. [2018], we get that

∀c ∈ [K], ∀t > 0, P

(∣∣∣∣∣ 1n
n∑
i=1

1Ci=c − π(c)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2(A1σ2
c +A2t)

)
(2.6)

where A1 =
1 + (λ+ ∨ 0)

1− (λ+ ∨ 0)
, A2 =

1

3
1λ+≤0 +

5

1− λ+
1λ+>0 and σ2

c = π(c)(1− π(c)).

We deduce that for all t > 0,

P

(⋃
c

{∣∣∣∣∣ 1n
n∑
i=1

1Ci=c − π(c)

∣∣∣∣∣ ≥ t
})
≤ 2K exp

(
− nt2

2(A1σ2 +A2t)

)
,

where σ2 := max
c

σ2
c (≤ 1/4). We define Ωc :=

⋃
c

{∣∣ 1
n

∑n
i=1 1Ci=c − π(c)

∣∣ ≥ t} and we recall πm =

min
c
π(c) and D2 = min

j ̸=k

∑
l((Q0)k,l − (Q0)j,l)

2.

Suppose that 0 < t < πm and that n is large enough to satisfy (i), (ii) and (iii). Then it holds

P
(

err(Ĝ,G) > ϵ
)

= P
(
{err(Ĝ,G) > ϵ} ∩ Ω

)
+ P

(
{err(Ĝ,G) > ϵ} ∩ Ωc

)
≤ P

(
{err(Ĝ,G) > ϵ} ∩ Ω

)
+ 2K exp

(
− nt2

2(A1σ2 +A2t)

)
= P

(
err(Ĝ,G) > ϵ | Ω

)
× P (Ω) + 2K exp

(
− nt2

2(A1σ2 +A2t)

)
. (2.7)

We denote by M the random variable that gives the size of the smallest cluster: M := mink∈[K] mk.
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Condition (i) is equivalent to

ϵ ≥ exp

(
−c′nαn(πm − t)D

2

L

)
.

Since on the event Ω we have n(πm − t) ≤M , we get that on Ω it holds

ϵ ≥ exp

(
−c′MαnD

2

L

)
≥ exp

(
−c′s2

)
, (2.8)

where s2 = ∆2/(αnL) with ∆2 = min
k ̸=j

∆2
k,j and ∆2

k,j =
∑
lml(Qk,l − Qj,l)2. The last inequality comes

from the fact that ∆2 ≥Mα2
nD

2. Using (2.7) we get that

P
(

err(Ĝ,G) > ϵ
)
≤ P

(
err(Ĝ,G) > ϵ | Ω

)
+ 2K exp

(
− nt2

2(A1σ2 +A2t)

)
≤ P

(
err(Ĝ,G) > e−c

′s2 | Ω
)
+ 2K exp

(
− nt2

2(A1σ2 +A2t)

)
.

We note that on Ω :

• Condition (ii) gives

M2 ≥ c′′nL

αnD2
⇔ MαnD

2

L
≥ c′′n/M,

which implies that s2 = ∆2

αnL
≥ c′′n/M since ∆2 ≥Mα2

nD
2.

• Condition (iii) gives
1

M
≤ αnL.

Applying Theorem 2.17 from Verzelen and Giraud, we get that

P
(

err(Ĝ,G) > e−c
′s2 |Ω

)
≤ c

n2
.

Finally we obtain using Eq.(2.8) that

P
(

err(Ĝ,G) > ϵ
)
≤ c

n2
+ 2K exp

(
− nt2

2(A1σ2 +A2t)

)
.

2.7.2 Proof of Theorem 2.3

We start by proving Lemma 2.14 which enriches the statement of Theorem 2.3 by giving explicitly the
constants.

Lemma 2.14. We consider c, c′ and c′′ the three numerical constants involved in Theorem 2.17.

Assume that αn log(n) ≤ 1
L and that nαn > max

(
4Lc′′

π2
mD

2
,

2

Lπm
,
2L log(n)

πmc′D2

)
. Then for all 0 < t < πm− 1

n ,

it holds

P
(
∥Q̂−Q∥∞ > t

)
≤ K(K + 1) exp

(
− (nπm − nt− 1)2t2

1
2 + 2

3 t

)
+

c

n2
+ 2K exp

(
− nt2

2(A1/4 +A2t)

)
.

Proof of Lemma 2.14.

• Preliminary 1
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Using the standard Bernstein’s inequality for independent random variables, we get that for all
k, l ∈ [K]2 with k ̸= l, and for all t > 0, it holds

P

∣∣∣∣∣∣ 1

|Gk| × |Gl|
∑
i∈Gk

∑
j∈Gl

Xi,j −Qk,l

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− |Gk| × |Gl|t2

2(Qk,l(1−Qk,l) + t/3)

)

and for all k ∈ [K], t > 0, it holds

P

∣∣∣∣∣∣ 1

|Gk| × (|Gk| − 1)

∑
i,j∈Gk i̸=j

Xi,j −Qk,k

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− |Gk| × (|Gk| − 1)t2

2(Qk,k(1−Qk,k) + t/3)

)
.

• Preliminary 2

We define the event N :=
{

err(Ĝ,G) < exp
(
−πmnαnc

′D2

2L

)}
. Note that on N , the partition of the

clusters is correctly recovered thanks to the condition nαn >
2L log(n)
πmc′D2 .

• Preliminary 3

Using Theorem 1.2 from Jiang et al. [2018], we get that

∀c ∈ [K], ∀t > 0, P

(∣∣∣∣∣ 1n
n∑
i=1

1Ci=c − π(c)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2(A1/4 +A2t)

)
.

We deduce that for all t > 0,

P

(⋃
c

{∣∣∣∣∣ 1n
n∑
i=1

1Ci=c − π(c)

∣∣∣∣∣ ≥ t
})
≤ 2K exp

(
− nt2

2(A1/4 +A2t)

)
.

We define Ωc :=
⋃
c∈[K]

{∣∣ 1
n

∑n
i=1 1Ci=c − π(c)

∣∣ ≥ t}.

Considering 0 < t < πm − 1
n , we have

P
(
∥Q̂−Q∥∞ > t

)
≤ P

 ⋃
k,l∈[K]2, k≤l

{|Q̂k,l −Qk,l| > t} | Ω

+ P(Ωc)

≤ P

 ⋃
k,l∈[K]2, k≤l

{|Q̂k,l −Qk,l| > t} | N,Ω

+ P(N c | Ω) + P(Ωc)

and using preliminary 3,

≤ P

 ⋃
k,l∈[K]2, k≤l

{|Q̂k,l −Qk,l| > t} | N,Ω

+ P(N c | Ω)

+ 2K exp

(
− nt2

2(A1/4 +A2t)

)

≤ P

 ⋃
k,l∈[K]2, k≤l

{|Q̂k,l −Qk,l| > t} | N,Ω

+
c

n2
+ 2K exp

(
− nt2

2(A1/4 +A2t)

)
where we used that P(N c | Ω) ≤ c

n2
(shown in the proof of Theorem 2.2),
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≤ 2
∑

1≤k≤l≤K

exp

(
−n(π(k)− t)× (nπ(l)− nt− 1)t2

2(Qk,l(1−Qk,l) + t/3)

)
+

c

n2
+

2K exp

(
− nt2

2(A1/4 +A2t)

)
,

where the last inequality is a direct consequence of the three preliminaries.

Proof of Theorem 2.3. Let us consider γ > 0 and let us define t = γ√
n

. Considering that

nαn
log(n)

≥ a with a :=
4Lc′′

c′π2
mD

2
∨ 2L

c′πmD2
∨ 2

Lπm
,

we ensure that nαn satisfies the conditions of Lemma 2.14.
Now let us look into the condition t = γ√

n
< πm− 1

n of Lemma 2.14. We will ask t to satisfy the stronger
condition

t =
γ√
n
<
πm
2
− 1

n
⇔ 0 <

πm
2
n− γ

√
n− 1. (2.9)

Studying the polynomial function f : x 7→ πm

2 x
2 − γx− 1, one can find that the zeros of f are

x1 :=
γ −

√
γ2 + 2πm
πm

and x2 :=
γ +

√
γ2 + 2πm
πm

≤ 2γ +
√
2πm

πm
.

We deduce that considering that

n > 4

(
γ + 1

πm

)2

, (2.10)

which implies that
√
n > 2γ+

√
2πm

πm
, we guarantee that γ/

√
n < πm−1/n. Applying Lemma 2.14, we get

that with probability at least

1−

[
(K2 +K) exp

(
−(nπm − γ

√
n− 1)2 γ

2

n
1
2 + 2

3
γ√
n

)
+

c

n2
+ 2K exp

(
−γ2

2(A1/4 +A2
γ√
n
)

)]
,

it holds ∥Q̂−Q∥∞ ≤ γ/
√
n.

Thanks to Eqs.(2.10) and (2.9), we have (nπm − γ
√
n − 1)2 = n2(πm − γ/

√
n − 1/n)2 ≥ n2π2

m/4 and
γ/
√
n ≤ πm/2. We deduce that defining

b := c+ (2K(K + 1)) and b′ :=
1

2(A1/4 +A2πm)
∧ π2

m

2 + 4
3πm

,

it holds with probability at least 1− b(1/n2 ∨ exp(−b′γ2))

∥Q̂−Q∥∞ ≤
γ√
n
.

2.7.3 Proof of Theorem 2.4

Lemma 2.15 provides a more complete version of Theorem 2.4 by giving explicitly the constants.

Lemma 2.15. We consider c, c′ and c′′ the three numerical constants involved in Theorem 2.17.

Assume that αn log(n) ≤ 1/L and that nαn > max

(
4Lc′′

π2
mD

2
,

2

Lπm
,
2L log(n)

πmc′D2

)
. Then for all t > 0, it holds

P (∥π̂ − π∥∞ > t) ≤ 2K exp

(
− nt2

2(A1/4 +A2t)

)
+

c

n2
+ 2K exp

(
− nπ2

m

2A1 + 4A2πm

)
.
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Proof of Lemma 2.15. Using Theorem 1.2 from Jiang et al. [2018], we get that

∀c ∈ [K], ∀t > 0, P

(∣∣∣∣∣ 1n
n∑
i=1

1Ci=c − π(c)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2(A1σ2
c +A2t)

)

where A1 =
1 + (λ+ ∨ 0)

1− (λ+ ∨ 0)
, A2 =

1

3
1λ+≤0 +

5

1− λ+
1λ+>0 and σ2

c = π(c)(1− π(c)) ≤ 1/4.

We define the event N :=
{

err(Ĝ,G) < exp
(
−πmnαnc

′D2

2L

)}
. Note that on N , the partition of the clus-

ters is correctly recovered thanks to the condition nαn >
2L log(n)
πmc′D2 . Then,

P

 ⋃
k∈[K]

{|π̂(k)− π(k)| > t}


≤ P

 ⋃
k∈[K]

{|π̂(k)− π(k)| > t} | N

+ P(N c)

= P

 ⋃
k∈[K]

{| 1
n

n∑
i=1

1Ci=k − π(k)| > t} | N

+ P(N c)

≤ 2K exp

(
− nt2

2(A1/4 +A2t)

)
+

c

n2
+ 2K exp

(
− nπ2

m

2A1 + 4A2πm

)
,

where we apply Lemma 2.12 in the last inequality.

2.7.4 Proof of Theorem 2.5

We will prove a more accurate result with Lemma 2.16.

Lemma 2.16. Let us consider γ > 5K
2π2

m
.

Assume that αn log(n) ≤ 1/L, that nαn > max

(
4Lc′′

π2
mD

2
,

4

Lπm
,
2L log(n)

πmc′D2

)
and that

√
n > 2

πm
(1 +

π2
mγ/5). Then it holds

P

(
∥P̂ − P∥∞ ≥

γ√
n

)

≤ 2K2 exp

−
(
π2
mγ
5K −

1
2

)2
2(B1/4 +B2

π2
mγ

5K
√
n
)

+
c

n2
+ 2K exp

(
− nπ2

m

8A1σ2 + 4A2πm

)
,

whereB1 andB2 depend only on the Markov chain and are defined byB1 :=
1 + (ξ+ ∨ 0)

1− (ξ+ ∨ 0)
andB2 :=

1

3
1ξ+≤0+

5

1− ξ+
1ξ+>0. Here 1−ξ+ is the rightL2 spectral gap of the Markov chain (Yi)i≥1 (see Definition A.12 in Section

A.3).

Remarks.

• The first term in the right hand side of the inequality in Lemma 2.16 is due to the concentration
of the average number of visits of the chain (Yi)i≥1 (defined in Section 2.2.3.3 of this chapter)
towards its stationary distribution. The two last terms of the inequality correspond to the bound
guaranteeing the recovery of the true partitions with a direct application of Theorem 2.2.

• The condition nαn >
2L log(n)
πmc′D2 ensures that exp

(
−πmnαnc

′D2

2L

)
< 1

n . Theorem 2.2 will then guar-
antee that we recover perfectly the partition of the communities.
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• Expecting the accuracy γ/
√
n, the condition

√
n > 2

πm
(1 + π2

mγ/5) ensures that the Markov chain
(Ci)i≥1 has visited enough each state k ∈ [K] to guarantee the convergence of the average number
of visits toward the stationary distribution.

Proof of Lemma 2.16.
I. Concentration of the average number of visits for (Yi)i≥1.

We recall that (Yi)i≥1 is a Markov Chain on [K]2 defined by : Yi = (Ci, Ci+1).
Then using again Theorem 1.2 from Jiang et al. [2018], we get that ∀t > 0, ∀k, l ∈ [K]2,

P

(∣∣∣∣∣ 1

n− 1

n−1∑
i=1

1Yi=(k,l) − π(k)Pk,l

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2(B1/4 +B2t)

)
,

II. First step toward the Theorem.

We define the event N :=
{

err(Ĝ,G) < exp
(
−πmnαnc

′D2

2L

)}
. Note that on N , the partition of the clus-

ters is correctly recovered thanks to the condition nαn >
2L log(n)
πmc′D2 . Let γ > 5K

2π2
m

and let us define

r =
ζ√
n

with ζ =
π2
mγ

5K
− 1

2
> 0,

and Γ =
⋂
k,l

{∣∣∣∣∣ 1

n− 1

n−1∑
i=1

1Yi=(k,l) − π(k)Pk,l

∣∣∣∣∣ < r

}
.

Then,

P

⋃
k,l

{∣∣∣P̂k,l − Pk,l∣∣∣ ≥ γ√
n

}
≤ P

⋃
k,l

{∣∣∣P̂k,l − Pk,l∣∣∣ ≥ γ√
n

}
|N,Γ


︸ ︷︷ ︸

(∗)

P(N)P(Γ|N) + P(Γc) + P(N c).

Note that the condition
√
n > 2

πm
(1 + π2

mγ/5) of Lemma 2.16 implies that

√
n >

2

πm
(1 +Kζ). (2.11)

III. We prove that (∗) is zero.

In this third step of the proof, we are going to show that conditionally on the event N ∩ Γ, the infinite
norm between our estimate of the transition matrix P̂ and P is smaller than γ/

√
n.

1 We split (∗) in two terms.

P

⋃
k,l

{∣∣∣P̂k,l − Pk,l∣∣∣ ≥ γ√
n

}
|N,Γ


= P

⋃
k,l

{∣∣∣∣∣P̂k,l −
∑n−1
i=1 1Yi=(k,l)

(n− 1)π(k)
+

∑n−1
i=1 1Yi=(k,l)

(n− 1)π(k)
− Pk,l

∣∣∣∣∣ ≥ γ√
n

}
|N,Γ



2 We show that on Γ:

∣∣∣∣∣ 1n
n∑
i=1

1Ci=k − π(k)

∣∣∣∣∣ ≤ 1

n
+ Kr. Here we show that a concentration of the

average number of visits for (Yi)i≥1 gives for free a concentration result of the average number of visits
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for (Ci)i≥1.

Note that on the event Γ :

• 1

n

n∑
i=1

1Ci=k =
1

n

K∑
l=1

n−1∑
i=1

1Ci=k,Ci+1=l

=
n− 1

n

K∑
l=1

1

n− 1

n−1∑
i=1

1Ci=k,Ci+1=l

≥ n− 1

n

K∑
l=1

(π(k)Pk,l − r)

=
n− 1

n
(π(k)−Kr).

Hence
1

n

n∑
i=1

1Ci=k − π(k) ≥ −
π(k)

n
− n− 1

n
Kr ≥ −

(
1

n
+Kr

)
.

• 1

n

n∑
i=1

1Ci=k ≤
1

n

K∑
l=1

n−1∑
i=1

1Ci=k,Ci+1=l +
1

n

=
n− 1

n

K∑
l=1

1

n− 1

n−1∑
i=1

1Ci=k,Ci+1=l +
1

n

≤ n− 1

n

K∑
l=1

(π(k)Pk,l + r) +
1

n

≤ π(k) +Kr +
1

n
.

Hence
1

n

n∑
i=1

1Ci=k − π(k) ≤
1

n
+Kr.

We deduce then that on Γ,

∣∣∣∣∣ 1n
n∑
i=1

1Ci=k − π(k)

∣∣∣∣∣ ≤ 1

n
+Kr.

3 We show that the first term from 1 is zero. In the following, we show that the definition of ζ
with the condition

√
n > 2

πm
(1 + π2

mγ/5) implies that the first term in 1 is zero.

P

(∣∣∣∣∣P̂k,l − 1

n− 1

∑n−1
i=1 1Yi=(k,l)

π(k)

∣∣∣∣∣ ≥ γ

2
√
n
| N,Γ

)

= P

(
1

n− 1

n−1∑
i=1

1Yi=(k,l)

∣∣∣∣ n∑n
i=1 1Ci=k

− 1

π(k)

∣∣∣∣ ≥ γ

2
√
n
| N,Γ

)

≤ P

(
(r + π(k)Pk,l)

∣∣∣∣ n∑n
i=1 1Ci=k

− 1

π(k)

∣∣∣∣ ≥ γ

2
√
n
| N,Γ

)
(by definition of Γ)

= P

(∣∣∣∣nπ(k)−∑n
i=1 1Ci=k

π(k)
∑n
i=1 1Ci=k

∣∣∣∣ ≥ 1

2r + 2π(k)Pk,l
· γ√

n
| N,Γ

)
and using 2 ,

≤ P

( 1
n +Kr

π(k)(π(k)− 1
n −Kr)

≥ 1

2r + 2π(k)Pk,l
· γ√

n
| N,Γ

)
≤ P

( 1
n +Kr

πm(πm − 1
n −Kr)

≥ 1

2r + 2
· γ√

n
| N,Γ

)
and since r =

ζ√
n
,



Chapter 2. Reliable Temporal Prediction in the MSBM 56

= P

(
1
n +K ζ√

n

πm(πm − 1
n −K

ζ√
n
)
≥ 1

2 ζ√
n
+ 2
· γ√

n
| N,Γ

)

= P

(
( 1n +K ζ√

n
)(2ζ + 2

√
n)

πm(πm − 1
n −K

ζ√
n
)
≥ γ | N,Γ

)

≤ P

(
( 1n +K ζ√

n
)(2ζ + 2

√
n)

πm(πm − 1√
n
(1 +Kζ))

≥ γ | N,Γ

)
. (2.12)

Since from (2.11),
√
n ≥ 2

πm
(1 +Kζ), we have

πm
2
≤ πm −

1√
n
(1 +Kζ),

which leads to

P

(
( 1n +K ζ√

n
)(2ζ + 2

√
n)

πm(πm − 1√
n
(1 +Kζ))

≥ γ | N,Γ

)
≤ P

(
2( 1√

n
+Kζ)( ζ√

n
+ 1)

π2
m/2

≥ γ | N,Γ

)
.

Moreover, since from (2.11) and the fact that πm ∈ (0, 1),
√
n ≥ 2

πm
(1 +Kζ) > 2Kζ, it holds

ζ√
n
<

1

2K
<

1

4
.

Coming back to (2.12), we finally get

P

(∣∣∣∣∣P̂k,l − 1

n− 1

∑n−1
i=1 1Yi=(k,l)

π(k)

∣∣∣∣∣ ≥ γ

2
√
n
| N,Γ

)

≤ P

(
2( 1√

n
+Kζ)( ζ√

n
+ 1)

π2
m/2

≥ γ | N,Γ

)

≤ P

(
5( 1√

n
+Kζ)

π2
m

≥ γ | N,Γ

)
= 0.

The last equality is due to the definition of ζ. Indeed,

ζ =
γπ2

m

5K
− 1

2
<
γπ2

m

5K
− 1

K
√
n

leading to
5( 1√

n
+Kζ)

π2
m

< γ.

4 We show that the second term from 1 is zero.

P

(∣∣∣∣∣ 1

n− 1

∑n−1
i=1 1Yi=(k,l)

π(k)
− Pk,l

∣∣∣∣∣ ≥ γ

2
√
n
| N,Γ

)

= P

(∣∣∣∣∣ 1

n− 1

n−1∑
i=1

1Yi=(k,l) − π(k)Pk,l

∣∣∣∣∣ ≥ π(k) γ

2
√
n
| N,Γ

)

≤ P

(∣∣∣∣∣ 1

n− 1

n−1∑
i=1

1Yi=(k,l) − π(k)Pk,l

∣∣∣∣∣ ≥ πm γ

2
√
n
| N,Γ

)
= 0,
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where the last equality comes from the definition of r = ζ/
√
n and the definition of Γ because

ζ =
π2
mγ

5K
− 1

2
<
π2
mγ

5K
≤ πmγ

2
.

IV. Conclusion.

P

⋃
k,l

{∣∣∣P̂k,l − Pk,l∣∣∣ ≥ γ√
n

}
≤ P

⋃
k,l

{∣∣∣P̂k,l − Pk,l∣∣∣ ≥ γ√
n

}
| N,Γ

P(N)P(Γ | N) + P(Γc) + P(N c)

= P(Γc) + P(N c)

≤ 2K2 exp

(
− nr2

2(B1/4 +B2r)

)
+

c

n2
+ 2K exp

(
− nπ2

m

8A1σ2 + 4A2πm

)

≤ 2K2 exp

−
(
π2
mγ
5K −

1
2

)2
2(B1/4 +B2

π2
mγ

5K − 1
2√

n
)

+
c

n2
+ 2K exp

(
− nπ2

m

8A1σ2 + 4A2πm

)
,

where we apply Lemma 2.12 in the last inequality.

2.7.5 Proof of Proposition 2.11

Let us consider γ > 5K
2π2

m
. We assume that the conditions (2.4) of Proposition 2.11 are satisfied and we

deduce from Theorems 2.5 and 2.3 that there exists three constants a, b, b′ > 0 such that with probability
at least 1− 1

2b
[
1/n2 ∨ exp

(
−b′(γ − 5K

2π2
m
)2
)]
, it holds

∥P̂ − P∥∞ ∨ ∥Q̂−Q∥∞ ≤
γ√
n
.

For any i ∈ [n] we have

|ηi(C1:n)− η̂i(C1:n)|

=

∣∣∣∣∣∣
∑
k∈[K]

PCi,kQCi,k −
∑
k∈[K]

P̂Ci,kQ̂Ci,k

∣∣∣∣∣∣
≤
∑
k∈[K]

∣∣∣PCi,kQCi,k − P̂Ci,kQCi,k + P̂Ci,kQCi,k − P̂Ci,kQ̂Ci,k

∣∣∣
≤
∑
k∈[K]

∣∣∣PCi,k − P̂Ci,k

∣∣∣× |QCi,k|+
∑
k∈[K]

∣∣∣QCi,k − Q̂Ci,k

∣∣∣× ∣∣∣P̂Ci,k

∣∣∣
≤ ∥P̂ − P∥∞

∑
k∈[K]

QCi,k + ∥Q− Q̂∥∞
∑
k∈[K]

P̂Ci,k

≤ ∥P̂ − P∥∞KαnL+ ∥Q− Q̂∥∞,

where we used that ∥Q∥∞ = αn∥Q0∥∞ ≤ αnL and the fact that P̂ is a stochastic matrix.

We deduce that for any i ∈ [n], it holds with probability at least 1− b
[
1/n2 ∨ exp

(
−b′(γ − 5K

2π2
m
)2
)]
,

|ηi(C1:n)− η̂i(C1:n)| ≤
γ√
n
(αnKL+ 1) .

Using a union bound concludes the proof.
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2.8 Partial recovery bound for SBMs with a SDP method

Partial recovery bound in SBMs with fixed assignment of the communities. In Giraud and Verze-
len [2019], the authors introduce a relaxed version of the K-means algorithms on the columns of the
adjacency matrix. One specificity of their algorithm is the fact that they are working with the square of
the adjacency matrix. This choice allows them to tackle problems outside of the assortative setting and
with a wide set of possible connectivity matrices Q contrary to previous works.
Theorem 2.17 presents the result of Verzelen and Giraud in the SBM framework with a connectivity
matrix Q = αnQ0.

Theorem 2.17. [cf. Giraud and Verzelen, 2019, Theorem 2]
Assume that ∥Q0∥∞ ≤ L. The size of the community k ∈ [K] will be denoted mk. The size of the smallest
community will be denoted m. We define the signal-to-noise ratio s2 = ∆2/(αnL), where ∆2 = min

k ̸=j
∆2
k,j with

∆2
k,j =

∑
lml(Qk,l −Qj,l)2 = α2

n

∑
lml((Q0)k,l − (Q0)j,l)

2.

Then, there exist three positive constants c, c′, c′′, such that for any 1/m ≤ αnL ≤ 1/ log(n),

1

m
≤ β ≤ β(αnL) :=

K3

n
e4nαnL

and
s2 ≥ c′′n/m,

with probability at least 1− c/n2,
err(Ĝ,G) ≤ e−c

′s2 .

In particular, since

s2 =
αnmink ̸=j

∑
l∈[K] ml((Q0)k,l − (Q0)j,l)

2

L
≥ αnmD

2

L
,

we get that with probability at least 1− c/n2,

− log
(
err(Ĝ,G)

)
= Ω(mαn).

Presentation of the SDP-based clustering algorithm. In this Section, we present how we estimate the
partition of the nodes Ĝ when communities are assigned using a Markovian dynamic. Our main result
Theorem 2.2 shows that we are able to achieve

− log err(Ĝ,G) = Ω(nαn).

Stated otherwise, we get a misclassification error that decays exponentially fast with respect to nαn. We
recover the convergence rate recently proved in Giraud and Verzelen [2019] in the standard SBM4 when
the size of the smallest cluster scales linearly with n like in our case. To reach this result, we use the
SDP algorithm proposed by Giraud and Verzelen in Giraud and Verzelen [2019]. In the following, we
expose how the method works.
Suppose the community of each node in the graph has been assigned. In all this subsection, all the
communities are considered fixed. We denote X the adjacency matrix of the graph and we refer to
Theorem 2.17 for the definition of (mk)k and m. Giraud and Verzelen [2019] are interested in solving
optimization problem similar to the following

max
B∈C′

⟨X,B⟩ with (2.13)

C′ := {B : PSD, Bk,l ≥ 0, |B|1 =
∑
k

m2
k},

where PSD means that B is positive semidefinite and where | · |1 is the element-wise l1 norm, namely
the sum of the absolute values of all entries of a given matrix.

4See Theorem 2.17.
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We remind that, dealing with two communities, when the values of the probability matrix Q are a
constant p on the diagonal and another constant q off the diagonal with p > q, we are in the assortative
case. In the assortative setting, optimization problems like (2.13) have been widely used to recover
communities, see Chen and Xu [2016], Guédon and Vershynin [2014], Perry and Wein [2017], Hajek et al.
[2016], Fei and Chen [2018]. Those SDP programs are trying to maximize the probability of connection
between nodes belonging to the same community. Therefore, they cannot be used directly to solve
community detection outside of the assortative framework.
Peng and Wei [2007] showed that any partition G of [n] can be uniquely represented by a n × n matrix
B∗ ∈ Rn×n defined by ∀i, j ∈ [n],

B∗
i,j =


1

mk
if i and j belong to community k

0 otherwise.

The set of such matrices B∗ that can be built from a particular partition of [n] in K groups is defined by

S = {B ∈ Rn×n : B⊤ = B, B2 = B, Tr(B) = K,

B1 = 1, B ≥ 0},

where 1 ∈ Rn is the n-dimensional vector with all entries equal to one and where B ≥ 0 means that all
entries of B are nonnegative. Peng and Wei [2007] proved that solving the K-means problem

Crit(G) =
K∑
k=1

∑
i∈Gk

∥∥∥∥∥X:,i −
1

|Gk|
∑
j∈Gk

X:,j

∥∥∥∥∥
2

,

is equivalent to
max
B∈S

⟨XX⊤, B⟩. (2.14)

Writing B∗ an optimal solution of (2.14), an optimal solution for the K-means problem is obtained by
gathering indices i, j ∈ [n] such that B∗

i,j ̸= 0. The set S is not convex and the authors of Giraud and
Verzelen [2019] propose the following relaxation of problem (2.14)

B̂ ∈ argmax
B∈Cβ

⟨XX⊤, B⟩with (2.15)

Cβ := {B ∈ Rn×n : symmetric, Tr(B) = K,

B1 = 1, 0 ≤ B ≤ β},

where K/n ≤ β ≤ 1. The constraint B ≤ β allows to deal with sparse graphs. Indeed, when αn =
o(log(n)/n), solving (2.15) without this constraint will produce unbalanced partition.
At this step, we cannot ensure that B̂ belongs to S and a final refinement is necessary to end up with
a clustering of the nodes of the graph. This final rounding step is achieved by running a K-medoid
algorithm on the rows of B̂. Given a partition {G1, . . . , Gk} of the n nodes of the graph into K com-
munities, we define the related membership matrix A ∈ Rn×K where Ai,k = 1i∈Gk

. Working on the
rows of B̂, a K-medoid algorithm tries to find efficiently a pair (Â, M̂) with Â ∈ AK , M̂ ∈ RK×n,
Rows(M̂) ⊂ Rows(B̂) satisfying for some ρ > 0

|ÂM̂ − B̂|1 ≤ ρ min
A∈AK ,Rows(M)⊂Rows(B̂)

|AM − B̂|1, (2.16)

where AK is the set of all possible membership matrices and Rows(B̂) the set of all rows of B̂. The K-
medoids algorithm proposed in Charikar et al. [2002] gives in polynomial time a pair (Â, M̂) satisfying
the inequality (2.16) with ρ = 7. From Â we are able to define the final partition of the nodes of the
graph by setting

∀k ∈ [K], Ĝk = {i ∈ [n] : Âi,k = 1}.

Remark.
As highlighted in Giraud and Verzelen [2019], the parameter β can not be computed sinceL is unknown.
Verzelen and Giraud propose to set β to value β̂ = K3

n e
2ndX ∧ 1, where dX denotes the density of the
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graph. We end up with the Algorithm 1 to estimate the communities in the SBM.

Algorithm 1 Algorithm to estimate the partition of the nodes of the graph.
Data: Adjacency matrix X of a graph G = (V,E), Number of communities K.

1: Compute the density of the graph dX = 2|E|
n(n−1) and set β̂ = K3

n e
2ndX ∧ 1.

2: Find B̂ ∈ argmax
B∈Cβ̂

⟨XX⊤, B⟩ (using for example the interior-point method).

3: Run the K-medoids algorithm from Charikar et al. [2002] on the rows of B̂. Note Â ∈ {0, 1}n×K the
membership matrix obtained.

4: Define ∀k ∈ [K], Ĝk = {i ∈ [n] : Âi,k = 1} and ∀i ∈ [n], Ĉi = k where k ∈ [K] is such that
Âi,k = 1.

2.9 Additional Experiments

2.9.1 Experiments with 2 communities

We test our algorithm on a toy example with K = 2 communities, αn = 1 and with the following
matrices:

P =

[
0.2 0.8

0.6 0.4

]
and Q0 =

[
0.8 0.2

0.1 0.3

]
. (2.17)

The Figure 2.10 shows the evolution of the infinity norm of the difference between the true transition
matrix P and our estimate P̂ when the size of the graph is increasing. Those numerical results are
consistent with Theorem 2.5: we recover the parametric convergence rate with our estimator of the
transition matrix.

Figure 2.10: We plot the log of the infinity norm of the difference between the true transition matrix P
and our estimate P̂ according to the log of the number of nodes in the graph. For each point, the bar
represents the standard deviation of the infinity norm error computed over thirty randomly generated
graphs with the same number of nodes and using the matrices P and Q defined by (2.17).

With Figure 2.11, we shed light on the influence of the average degree of the nodes on the performance
of our algorithm. We propose to compute the precision and the recall of the binary classification prob-
lem that we study when K = 2 defining

Q = α×Q0,

where Q0 is defined in (2.17) and α varies between 0.1 and 1 on a log scale. We remind that in a binary
classification problem, the precision is the ratio between the number of examples labeled 1 that belong
to class 1 and the number of examples labeled 1. The recall is the ratio between the number of examples
labeled 1 that belong to class 1 and the number of examples that belong to class 1. In our context, those
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definitions read as

precision =

∑n
i=1 1{Ĉi = 1, Ci = 1}∑n

i=1 1{Ĉi = 1}
and recall =

∑n
i=1 1{Ĉi = 1, Ci = 1}∑n

i=1 1{Ci = 1}
.

Figure 2.11: We plot the recall and the precision of the output of our algorithm with a graph sampled
from SBM with a Markovian assignment of the communities using n = 100 nodes, a transition matrix P
defined in (2.17) and a connectivity matrix Q = αQ0 where Q0 is defined in (2.17) and α varies on a log
scale between 0.1 and 1. We show the recall and the precision with respect to the log10 of the sparsity
parameter α.

2.9.2 Experiments with 5 communities

We test our algorithm on a toy example with K = 5 communities, with the transition matrix P and the
connectivity matrix Q defined by

P =



0.1 0.3 0.5 0.01 0.09

0.55 0.15 0.1 0.05 0.15

0.15 0.3 0.1 0.2 0.25

0.15 0.05 0.1 0.5 0.2

0.2 0.3 0.1 0.05 0.35


and Q =



0.6 0.1 0.15 0.1 0.2

0.2 0.5 0.35 0.1 0.4

0.4 0.15 0.6 0.25 0.05

0.4 0.1 0.1 0.2 0.55

0.3 0.35 0.2 0.1 0.7


. (2.18)

Sampling random graphs from SBM with Markovian assignment of the communities using the matrices
(2.18), we see with Figure 2.12 that communities 3 and 4 have small sizes compared to the other clusters.
For a graph sampled with a size equal to 40, Figure 2.12.a shows us that the SDP algorithm defined in
Algorithm 1 is able to capture relevant information about the clustering of the nodes in communities
1, 2 and 5. However, we see that using a number of nodes equal to 40 is not enough to distinguish
nodes belonging to community 3 or 4. Figure 2.12.b proves that increasing the size of the graph (with
n = 160) allows to solve this issue. One can easily guess that running a K-medoid algorithm on the
rows of the matrix B̂ plotted in Figure 2.12.b will lead to an accurate clustering of the nodes of the
graph. Figure 2.13 shows that the log of the misclassification error decreases linearly with the size of the
graph.

2.9.3 Other potential application on real data: The example of recommendation
system

In this section, we give more details on another possible application of our model for recommendation
system as mentioned in the introduction. Let us remind the framework of our example. We suppose
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(a) n = 40. (b) n = 160.

Figure 2.12: We consider K = 5 communities and we order the nodes of the graph such that the true
partition of the nodes is given by G1 = {1, . . . ,m1}, G2 = {m1+1, . . . ,m1+m2}, . . . , G5 = {

∑4
j=1mj +

1, . . . , n}. We generate random graphs from SBM with Markovian assignment of the communities using
the transition matrix P and the connectivity matrix Q defined by 2.18. We plot the matrix B∗ solution
of Eq.(2.13) and its approximation B̂ obtained by solving the SDP of Eq.(2.15). Thanks to the node
ordering, the matrix B∗ has a block diagonal structure where each entry of one block is equal to the
inverse of the size of the associated cluster. Figure (a) allows us to compare the matrices B∗ and B̂
when the number of nodes in the graph is equal to 40 while Figure (b) deals with a graph of size 160.

Figure 2.13: We consider K = 5 communities and we sample random graph from SBM with Markovian
assignment of the communities using matrices defined in 2.18. We estimate the partition of the nodes
of the graph using Algorithm 1. We plot the log of the misclassification error as a function of the size of
the graphs sampled.

that we have access to the online purchases of different customers. For each of them, we know the
dates and the product IDs of each of their purchases. Our goal is threefold: i) learn the category of
product sold by each url ii) learn the purchasing behavior of each customer iii) use this information
to suggest relevant new products to each customer. For each customer U , we have a network where
nodes are product IDs (ordered by timestamp of purchase). We connect two products i and j if the
ratio Wi,j/

√
wi × wj is larger than some threshold τ ∈ (0, 1), where Wi,j is the number of clients in the

dataset who bought both the products i and j, and wi is the number of clients who bought the product
i. We can proceed as follows.

1. Running our algorithm, we can infer the number of different categories of products bought by U
using our heuristic from Section 2.6.2.

2. Then, we can learn both the category of each product and the transition matrix P̂ which gives the
purchasing behavior of U .

3. To recommend a new product to the client U , one can use the purchasing behaviour of the client
V who shares the largest number of common purchased products with U .
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Let us finally mention that the connection probabilities learned from client V for categories unseen
so far by U could be used as an initialization of a stochastic bandit algorithm for recommendation of
products for U .



Chapter 3

Markov Random Geometric Graphs: A
growth model for temporal dynamic net-
work

Chapter Abstract

In this chapter, we introduce the Markov Random Geometric Graphs: an extension of RGGs on the Eu-
clidean Sphere where latent positions are sampled using an isotropic Markovian dynamic. We provide
efficient algorithm to achieve non-parametric estimation of the connection function and of the Markov
transition kernel in this model with theoretical guarantees. We stress the utility of this model by solving
link prediction tasks. At the end of Section 3.8, we provide with Figure 3.15 a synthetic presentation of
the estimation methods of this chapter.
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3.1 Introduction

In Random Geometric Graphs (RGG), nodes are sampled independently in latent space Rd. Two nodes
are connected if their distance is smaller than a threshold. A thorough probabilistic study of RGGs
can be found in Penrose [2003]. RGGs have been widely studied recently due to their ability to pro-
vide a powerful modeling tool for networks with spatial structure. We can mention applications in
bioinformatics Higham et al. [2008b] or analysis of social media Hoff et al. [2002]. One main feature
is to uncover hidden representation of nodes using latent space and to model interactions by relative
positions between latent points.
Furthermore, nodes interactions may evolve with time. In some applications, this evolution is given
by the arrival of new nodes as in online collection growth Lo et al. [2017], online social network
growth Backstrom et al. [2006], Jin et al. [2001], or outbreak modeling Ugander et al. [2012] for in-
stance. The network is growing as more nodes are entering. Other time evolution modelings have been
studied, we refer to Rossetti and Cazabet [2018] for a review.
A natural extension of RGG consists in accounting this time evolution. In Díaz et al. [2008], the ex-
pected length of connectivity and dis-connectivity periods of the Dynamic Random Geometric Graph
is studied: each node choose at random an angle in [0, 2π) and make a constant step size move in that
direction. In Schott and Staples [2010], a random walk model for RGG on the hypercube is studied
where at each time step a vertex is either appended or deleted from the graph. Their model falls into
the class of Geometric Markovian Random Graphs that are generally defined in Clementi et al. [2009].
As far as we know, there is no extension of RGG to growth model for temporal dynamic networks.
For the first time, we consider a Markovian dynamic on the latent space where the new latent point is
drawn with respect to the latest latent point and some Markov kernel to be estimated.

Estimation of graphon in RGGs: the Euclidean sphere case Random graphs with latent space can be
defined using a graphon, cf. Lovász [2012]. A graphon is a kernel function that defines edge distribution.
In Tang et al. [2013], Tang and al. prove that spectral method can recover the matrix formed by graphon
evaluated at latent points up to an orthogonal transformation, assuming that graphon is a positive defi-
nite kernel (PSD). Going further, algorithms have been designed to estimate graphons, as in Klopp et al.
[2017] which provide sharp rates for the Stochastic Block Model (SBM). Recently, the paper De Castro
et al. [2019] provides a non-parametric algorithm to estimate RGGs on Euclidean spheres, without PSD
assumption.
We present here RGG on Euclidean sphere. Given n pointsX1, X2, . . . , Xn on the Euclidean sphere Sd−1,
we set an edge between nodes i and j (where i, j ∈ [n], i ̸= j) with independent probability p(⟨Xi, Xj⟩).
The unknown function p : [−1, 1] → [0, 1] is called the envelope function. This RGG is a graphon model
with a symmetric kernel W given by W (x, y) = p(⟨x, y⟩). Once the latent points are given, indepen-
dently draw the random undirected adjacency matrix A by

Ai,j ∼ Ber(p(⟨Xi, Xj⟩)) , i < j

with Bernoulli r.v. drawn independently (set zero on the diagonal and complete by symmetry), and set

Tn :=
1

n
(p(⟨Xi, Xj⟩))i,j∈[n] and T̂n :=

1

n
A, (3.1)

We do not observe the latent points and we have to estimate the envelope p from A only. A standard
strategy is to remark that T̂n is a random perturbation of Tn and to dig into Tn to uncover p.
One important feature of this model is that the interactions between nodes is depicted by a simple
object: the envelope function p. The envelope summarises how individuals connect each others given
their latent positions. Standard examples Bubeck et al. [2016] are given by pτ (t) = 1{t≥τ} where one
connects two points as soon as their geodesic distance is below some threshold. The non-parametric
estimation of p is given by De Castro et al. [2019] where the authors assume that latent points Xi are
independently and uniformly distributed on the sphere, which will not be the case in this work.

A new growth model: the latent Markovian dynamic Consider RGGs where latent points are sam-
pled with Markovian jumps, the Graphical Model under consideration can be found in Figure 3.1.
Namely, we sample n points X1, X2, . . . , Xn on the Euclidean sphere Sd−1 using a Markovian dynamic.
We start by sampling randomly X1 on Sd−1. Then, for any i ∈ {2, . . . , n}, we sample
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Figure 3.1: Graphical model of the MRGG model: Markovian dynamics on Euclidean sphere where we
jump from Xk onto Xk+1. The Yk encodes direction of jump while rk encodes its distance, see (3.1).

(a) Envelope function (b) Latitude function

Figure 3.2: Non-parametric estimation of envelope and latitude functions using algorithms of Sec-
tions 3.3 and 3.4. We built a graph of 1500 nodes sampled on the sphere S2 and using envelope p(1)

and latitude f (1)L (dot orange curves) defined in Section 3.6 by Eq.(3.12). The estimated envelope is
thresholded to get a function in [0, 1] and the estimated latitude function is normalized with integral 1
(plain blue lines).

• a unit vector Yi ∈ Sd−1 uniformly, orthogonal to Xi−1.

• a real ri ∈ [−1, 1] encoding the distance between Xi−1 and Xi, see (3.2). ri is sampled from a
distribution fL : [−1, 1]→ [0, 1], called the latitude function.

then Xi is defined by

Xi = ri ×Xi−1 +
√

1− r2i × Yi .

This dynamic can be pictured as follows. Consider that Xi−1 is the north pole, then chose uniformly
a direction (i.e., a longitude) and, in a independent manner, randomly move along the latitudes (the
longitude being fixed by the previous step). The geodesic distance γi drawn on the latitudes satisfies

γi = arccos(ri) , (3.2)

where random variable ri = ⟨Xi, Xi−1⟩ has density fL(ri). The resulting model will be referred to as
the Markov Random Geometric Graph (MRGG) and is described with Figure 3.1.

Temporal Dynamic Networks: MRGG estimation strategy. Seldom growth models exist for tempo-
ral dynamic network modeling, see Rossetti and Cazabet [2018] for a review. In our model, we add one
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node at a time making a Markovian jump from the previous latent position. It results in

the observation of (Ai,j)1≤j≤i−1 at time T = i ,

as pictured in Figure 3.1. Namely, we observe how a new node connects to the previous ones. For
such dynamic, we aim at estimating the model, namely envelope p and respectively latitude fL. These
functions capture in a simple function on Ω = [−1, 1] the range of interaction of nodes (represented by
p) and respectively the dynamic of the jumps in latent space (represented by fL), where, in abscissa Ω,
values r = ⟨Xi, Xj⟩ near 1 corresponds to close point Xi ≃ Xj while values close to −1 corresponds to
antipodal points Xi ≃ −Xj . These functions may be non-parametric.
From snapshots of the graph at different time steps, can we recover envelope and latitude functions? We prove
that it is possible under mild conditions on the Markovian dynamic of the latent points and our ap-
proach is summed up with Figure 3.3.

Fundamental result

Spectral convergence of T̂n under

Markovian dynamic, see Section 3.3.1

⇓

Guarantee for the recovery of: Algorithm

(a) envelope p, see (3.7) ↔ SCCHEi

(b) latent distances ri, see (3.11) ↔ HEiC Araya and De Castro [2019]

Figure 3.3: Presentation of our method to recover the envelope and the latitude functions.

Define λ(Tn) := (λ1, . . . , λn) and resp. λ(T̂n) := (λ̂1, . . . , λ̂n) the spectrum of Tn and resp. T̂n, see (3.1).
Building clusters from λ(T̂n), Algorithm 2 (SCCHEi) estimates the spectrum of envelope p while Algo-
rithm 4 Araya and De Castro [2019] (HEiC, cf. Section 3.4.3) extracts d eigenvectors of T̂n to uncover the
Gram matrix of the latent positions. Both can then be used to estimate the unknown functions of our
model (cf. Figure 3.2).

Previous works. The latent space approach to model dynamics of network has already been studied
in a large span of recent works. Most of them focus on block models with dynamic generalizations
covering discrete dynamic evolution via hidden Markov models (cf. Matias and Miele [2017]) or con-
tinuous time analysis via extended Kalman filter (cf. Xu and Hero [2014]). Yang and Koeppl [2018] and
Durante and Dunson [2014] use a Gamma Markov process allowing to model evolving mixed mem-
bership in graphs using respectively the Bernoulli Poisson link function and the logistic function to
generate edges from the latent space representation. While the above mentioned papers consider com-
munity based random graphs with fixed size where edges and communities change through time, we
focus on growing RGGs on Euclidean sphere where new nodes are added along time.
Non-parametric estimation of RGGs on Sd−1 has been investigated in De Castro et al. [2019] with i.i.d.
latent points. Estimation of latent point relative distances with HEiC Algorithm has been introduced
in Araya and De Castro [2019] under i.i.d. latent points assumption. Phase transitions on the detection
of geometry in RGGs (against Erdös Rényi alternatives) has been investigated in Bubeck et al. [2016].
For the first time, we introduce latitude function and non-parametric estimations of envelope and lati-
tude using new results on kernel matrices concentration with dependent variables.

Outline. Section 3.2 presents important tools from Harmonic Analysis for this chapter. Sections 3.3
and 3.4 present the estimation method with new theoretical results under Markovian dynamic. These
new results are random matrices operator norm control and resp. U-statistics control under Markovian
dynamic, presented in Section 3.10.3 and resp. Section 3.10.2. The envelope adaptive estimate is built
from a size constrained clustering (Algorithm 2) tuned by slope heuristic Eq.(3.8), and the latitude
function estimate (cf. Section 3.4.1) is derived from estimates of latent distances ri. Our method can
handle random graphs with logarithmic growth node degree (i.e., new comer at time T = n connects
to O(log n) previous nodes), referred to as relatively sparse models, see Section 3.5. Sections 3.6 and 3.7
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investigate synthetic data experiments. We propose heuristics to solve link prediction problems and
to test for a Markovian dynamic. In Section 3.8, we dig deeper into the analysis of our methods by
studying their behaviour under model mispecification or under slow mixing conditions. We present
final remarks and future research directions. At the end of Section 3.8, we provide with Figure 3.15 a
synthetic presentation of the estimation methods of this chapter.
The remaining two sections of this chapter are dedicated to proofs of our main results.

Notations. Consider a dimension d ≥ 3. Denote by ∥ · ∥2 (resp. ⟨·, ·⟩) the Euclidean norm (resp.
inner product) on Rd. Consider the d-dimensional sphere Sd−1 := {x ∈ Rd : ∥x∥2 = 1} and denote
by π the uniform probability measure on Sd−1. For any matrix M = (mi,j)i,j ∈ RD1×D2 , we define
∥M∥2F :=

∑D1

i=1

∑D2

j=1 |mi,j |2 and the operator norm of M as ∥M∥ := supx∈SD2−1 ∥Mx∥2. For two real
valued sequences (un)n∈N and (vn)n∈N, denote un =

n→∞
O(vn) if there exist k1 > 0 and n0 ∈ N such

that ∀n > n0, |un| ≤ k1|vn|. For any x, y ∈ R, x ∧ y := min(x, y) and x ∨ y := max(x, y). Given two
sequences x, y of reals–completing finite sequences by zeros–such that

∑
i x

2
i + y2i < ∞, we define the

ℓ2 rearrangement distance δ2(x, y) as

δ22(x, y) := inf
σ∈S

∑
i

(xi − yσ(i))2 ,

where S is the set of permutations with finite support. This pseudo-distance is useful to compare two
spectra.

3.2 Tools from Harmonic Analysis

3.2.1 Spectral decomposition of the kernel

One can associate with W (x, y) = p(⟨x, y⟩) the integral operator

TW : L2(Sd−1)→ L2(Sd−1),

such that for any g ∈ L2(Sd−1),

∀x ∈ Sd−1, (TW g)(x) =

∫
Sd−1

g(y)p(⟨x, y⟩)π(dy),

where π is the uniform probability measure on Sd−1. The operator TW is Hilbert-Schmidt and it has a
countable number of bounded eigenvalues λ∗k with zero as only accumulation point. The eigenfunctions
of TW have the remarkable property that they do not depend on p (cf. Dai and Xu [2013] Lemma 1.2.3):
they are given by the real Spherical Harmonics. We denoteHl the space of real Spherical Harmonics of
degree l with dimension dl and with orthonormal basis (Yl,j)j∈[dl] where

dl := dim(Hl) =


1 if l = 0

d if l = 1(
l+d−1
l

)
−
(
l+d−3
l−2

)
otherwise.

We end up with the following spectral decomposition

p(⟨x, y⟩) =
∑
l≥0

p∗l
∑

1≤j≤dl

Yl,j(x)Yl,j(y) =
∑
k≥0

p∗kckG
β
k(⟨x, y⟩) , (3.3)

where λ(TW ) = {p∗0, p∗1, . . . , p∗1, . . . , p∗l , . . . , p∗l , . . . } meaning that each eigenvalue p∗l has multiplicity
dl; and Gβk is the Gegenbauer polynomial of degree k with parameter β := d−2

2 and ck := 2k+d−2
d−2 (cf.

Section 3.2). Since p is bounded, one has p ∈ L2((−1, 1), wβ) where the weight function wβ is defined
by wβ(t) := (1− t2)β− 1

2 and

L2((−1, 1), wβ) :=
{
g : [−1, 1]→ R

∣∣ ∥g∥22 :=

∫ 1

−1

|g(t)|2wβ(t)dt < +∞
}
.
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p can be decomposed as p ≡
∑
k≥0 p

∗
kckG

β
k and the Gegenbauer polynomials Gβk are an orthogonal

basis of L2((−1, 1), wβ). The eigenvalues (p∗k)k≥0 of the envelope function can be computed numerically
through the formula

∀l ≥ 0, p∗l =

(
clbd
dl

)∫ 1

−1

p(t)Gβl (t)wβ(t)dt,

where bd :=
Γ( d

2 )

Γ( 1
2 )Γ(

d
2−

1
2 )

with Γ the Gamma function. Hence, it is possible to recover the envelope
function p thanks to the identity

p =
∑
l≥0

√
dlp

∗
l

Gβl
∥Gβl ∥L2([−1,1],wβ)

=
∑
l≥0

p∗l clG
β
l . (3.4)

3.2.2 Finite rank approximation of the kernel

We define for all R ∈ N, R̃ :=
∑R
l=0 dl. We introduce for any resolution level R ∈ N the truncated

graphon WR which is obtained from W by keeping only the R̃ first eigenvalues, that is

∀x, y ∈ Sd−1, WR(x, y) :=

R∑
k=0

p∗k

dk∑
l=1

Yk,l(x)Yk,l(y).

Note that WR is the best L2-approximation of rank R of the kernel W . Similarly, we denote for all
t ∈ [0, 1], pR(t) =

∑R
k=0 p

∗
kckG

β
k(t).

We will need in our proof the following result which states that fixing one variable and integrating with
respect to the other one with the uniform probability measure on Sd−1 gives ∥W −WR∥22.

Lemma 3.1. For any x ∈ Sd−1,

EX∼π[(W −WR)
2(x,X)] = ∥W −WR∥22,

where π is the uniform measure on the Sd−1.

Proof of Lemma 3.1.

EX∼π[(W −WR)
2(x,X)]

=

∫
y

(W −WR)
2(x, y)π(dy)

=

∫
y

(∑
r>R

p∗r

dr∑
l=1

Yr,l(x)Yr,l(y)

)2

π(dy)

=

∫
y

∑
r1,r2>R

p∗r1p
∗
r2

dr1∑
l1=1

dr2∑
l2=1

Yr1,l1(x)Yr1,l1(y)Yr2,l2(x)Yr2,l2(y)π(dy)

=
∑

r1,r2>R

p∗r1p
∗
r2

dr1∑
l1=1

dr2∑
l2=1

Yr1,l1(x)Yr2,l2(x)

∫
y

Yr1,l1(y)Yr2,l2(y)π(dy).

Since
∫
y
Yr,l(y)Yr′,l′π(dy) is 1 if r = r′ and l = l′ and 0 otherwise, we have that

EX∼π[(W −WR)
2(x,X)] =

∑
r>R

(p∗r)
2
dr∑
l=1

Yr,l(x)
2

=
∑
r>R

(p∗r)
2dr (using [Dai and Xu, 2013, Eq.(1.2.9)])

= ∥W −WR∥22.
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3.2.3 Weighted Sobolev space

The space Zswβ
((−1, 1)) with regularity s > 0 is defined as the set of functions g =

∑
k≥0 g

∗
kckG

β
k ∈

L2((−1, 1), wβ) such that

∥g∥∗Zs
wβ

((−1,1)) :=

[ ∞∑
l=0

dl|g∗l |2 (1 + (l(l + 2β))s)

]1/2
<∞.

3.3 Nonparametric estimation of the envelope function

3.3.1 Integral operator spectrum estimation with dependent variables

One key result is a new control of U-statistics with latent Markov variables that we prove with full
details in Chapter 4. In this Chapter, we provide a short presentation is this result in Section 3.10.2. We
consider a set of hypotheses on the Markov chain (Xi)i≥1 ensuring that our concentration inequality
for U-statistic from Chapter 4 holds. Namely, we work under the following assumption.
Assumption A The latitude function fL is such that ∥fL∥∞ <∞ and makes the chain (Xi)i≥1 uniformly
ergodic.
Under Assumption A, we prove in Section 3.9 that the unique stationary distribution of the Markov
chain (Xi)i≥1 is the uniform probability measure on Sd−1 denoted π. Theorem 3.2 is a theoretical guar-
antee for a random matrix approximation of the spectrum of integral operator with dependent latent
variables. Theorem 3.20 in Section 3.10.3 gives explicitly the constants hidden in the big O below which
depend on the absolute spectral gap of the Markov chain (Xi)i≥1 (cf. Definition A.10).

Theorem 3.2. We consider that Assumption A holds and we assume the envelope p has regularity s > 0. Then,
it holds

E
[
δ22(λ(TW ), λ(Tn))

]
= O

([
n

log2(n)

]− 2s
2s+d−1

)
.

Using this preliminary result and the near optimal error bound for the operator norm of random matrices from Ban-
deira and van Handel [2016] we obtain

E
[
δ22(λ(TW ), λRopt(T̂n))

]
= O

([
n

log2(n)

]− 2s
2s+d−1

)
,

with λRopt(T̂n) = (λ̂1, . . . , λ̂R̃opt
, 0, 0, . . . ) and Ropt = ⌊

(
n/ log2(n)

) 1
2s+d−1 ⌋. λ̂1, . . . , λ̂n are the eigenvalues

of T̂n sorted in decreasing order of magnitude.

Remark. In Theorem 3.2 and Theorem 3.8, note that we recover, up to a log factor, the minimax rate
of non-parametric estimation of s-regular functions on a space of (Riemannian) dimension d − 1. Even
with i.i.d. latent variables, it is still an open question to know if this rate is the minimax rate of non-
parametric estimation of RGGs.
Eq.(3.3) shows that one could use an approximation of (p∗k)k≥1 to estimate the envelope p and Theo-
rem 3.2 states we can recover (p∗k)k≥1 up to a permutation. In most cases, the problem of finding such a
permutation is NP-hard and we introduce in the next section an efficient algorithm to fix this issue.

3.3.2 Size Constrained Clustering Algorithm

Note the spectrum of TW is given by (p∗l )l≥0 where p∗l has multiplicity dl. In order to recover envelope
p, we build clusters from eigenvalues of T̂n while respecting the dimension dl of each eigen-space of
TW . In De Castro et al. [2019], an algorithm is proposed testing all permutations of {0, . . . , R} for a
given maximal resolution R. To bypass the high computational cost of such approach, we propose
an efficient method based on the tree built from Hierarchical Agglomerative Clustering (HAC). In the
following, for any ν1, . . . , νn ∈ R, we denote by HAC({ν1, , . . . , νn}, dc) the tree built by a HAC on
the real values ν1, . . . , νn using the complete linkage function dc defined by ∀A,B ⊂ R, dc(A,B) =
maxa∈Amaxb∈B ∥a− b∥2. Algorithm 2 describes our approach.
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Algorithm 2 Size Constrained Clustering for Harmonic Eigenvalues (SCCHEi).

Data: Resolution R, matrix T̂n = 1
n
A, dimensions (dk)Rk=0.

1: Let λ̂1, . . . , λ̂n be the eigenvalues of T̂n sorted in decreasing order of magnitude.
2: Set P := {λ̂1, . . . , λ̂R̃} and dims = [d0, d1, . . . , dR].
3: while All eigenvalues in P are not clustered do
4: tree← HAC(nonclustered eigenvalues in P , dc)
5: for d ∈ dims do
6: Search for a cluster of size d in tree as close as possible to the root.
7: if such a cluster Cd exists then Update(dims, tree, Cd, d).
8: end for
9: for d ∈ dims do

10: Search for the group C in tree with a size larger than d and as close as possible to d.
11: if such a group exists then Update(dims, tree, C, d) else Go to line 3.
12: end for
13: end while
Return: Cd0 , . . . , CdR , {λ̂R̃+1, . . . , λ̂n}

Algorithm 3 Update(dims, tree, C, d).
1: Save the subset Cd consisting of the d eigenvalues in C with the largest absolute values.
2: Delete from tree all occurrences to eigenvalues in Cd and delete d from dims.

Given some resolution level R ∈ N, our estimator p̂R of the envelope function p is obtained from the
clustering of the eigenvalues obtained by the SCCHEi algorithm as follows

p̂R : t 7→
R∑
k=0

p̂kckG
β
k(t) where ∀k ∈ {0, . . . , R}, p̂k :=

1

dk

∑
λ∈Cdk

λ. (3.5)

3.3.3 Theoretical guarantees

Let us recall that for any resolution level R ≥ 0,

λ(TWR
) = (λ∗1, . . . , λ

∗
R̃
, 0, 0, . . . ) and λR(T̂n) = (λ̂1, . . . , λ̂R̃, 0, 0, . . . )

where λ̂1, . . . , λ̂n are the eigenvalues of T̂n sorted in decreasing order of magnitude. We order the
eigenvalues λ̂1, . . . , λ̂R̃ and in the following we consider that λR(T̂n)1 ≥ · · · ≥ λR(T̂n)R̃.

Theorem 3.3. Let us consider some resolution level R ∈ N. We keep the assumptions of Theorem 1. We recall
that we consider λR(T̂n)1 ≥ · · · ≥ λR(T̂n)R̃.
Then for n large enough, the clusters Cd0 , . . . , CdR obtained from the SCCHEi algorithm satisfy

δ22(λ(TWR
), λR(T̂n)) =

R∑
k=0

∑
λ̂∈Cdk

(λ̂− p∗k)2.

Proof of Theorem 3.3. Let us denote

∆G = min
0≤k ̸=l≤R, p∗k ̸=p

∗
l

|p∗k − p∗l | ∧ min
0≤k≤R, p∗k ̸=0

|p∗k| > 0.

For any g ∈ (0, ∆
G

4 ), the proof of Theorem 3.2 (cf. Section 3.10.3) ensures that for n large enough it holds

δ22(λ(TWR
), λR(T̂n)) ≤ g2. (3.6)

Let us recall that

δ22(λ(TWR
), λR(T̂n)) = inf

σ∈S

∑
i≥1

(
λ(TWR

)σ(i) − λR(T̂n)i
)2
.
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The proof of Theorem 3.3 relies on the following two Lemmas. The proofs of these Lemmas are post-
poned to Section 3.10.1.

Lemma 3.4. We keep the assumptions of Theorem 3.3. Then, for n large enough for Eq.(3.6) to hold, one can
choose a permutation σ∗ such that

• σ∗({1, . . . , R̃}) = {1, . . . , R̃}.

• δ22(λ(TWR
), λR(T̂n)) =

∑R̃
i=1(λ(TWR

)σ∗(i) − λR(T̂n)i)2.

Moreover, the function f∗ given by

f∗ : {1, . . . , R̃} → {p∗k, 0 ≤ k ≤ R}
i 7→ λ(TWR

)σ∗(i),

is non-increasing.

Lemma 3.5. We keep the assumptions and notations of Lemma 3.4. A clustering
(
Ĉdk
)
0≤k≤R

at depth R in the

tree of the HAC algorithm applied to P := {λR(T̂n)1, . . . , λR(T̂n)R̃} is said to be of type (S) if it satisfies:

Ĉd0 ⊂{λR(T̂n)i | 1 ≤ i ≤ R̃, f∗(i) = p∗0}, |Ĉd0 | = d0,

Ĉd1 ⊂{λR(T̂n)i | 1 ≤ i ≤ R̃, f∗(i) = p∗1}, |Ĉd1 | = d1,

. . .

ĈdR ⊂{λR(T̂n)i | 1 ≤ i ≤ R̃, f∗(i) = p∗R}, |ĈdR | = dR.

Then the HAC algorithm with complete linkage applied toP reaches (after R̃−R−1 iterations) a state
(
Ĉdk
)
0≤k≤R

of type (S). As a consequence, the SCCHEi algorithm returns the clusters Cd0 = Ĉd0 , . . . , CdR = ĈdR .

Theorem 3.3 directly follows from the conclusion of Lemma 3.5 since we get that

R∑
k=0

∑
λ̂∈Cdk

(λ̂− p∗k)2 =

R̃∑
i=1

(λR(T̂n)i − f∗(i))2 =

R̃∑
i=1

(λR(T̂n)i − λ(TWR
)σ∗(i))

2

= δ22(λ(TWR
), λR(T̂n)),

where the first equality comes from the conclusion of Lemma 3.5, the second one comes from the defi-
nition of f∗ from Lemma 3.4 and the last one comes from the choice of σ∗ from Lemma 3.4.

Theorem 3.3 ensures that under appropriate conditions, the SCCHEi leads to a clustering of the eigen-
values of the adjacency matrix that achieves the δ2 distance between λ(TWR

) and λR(T̂n). Nevertheless,
this is not a sufficient condition to ensure that the L2 error between the true envelope function and
our plug-in estimator (cf. Eq.(3.5)) goes to 0 has n → +∞. This is due to identifiability issues coming
from the δ2 metric. This was already mentioned in [De Castro et al., 2019, Section 3.6], where the au-
thors present the following example. Consider the case d = 3, which implies β = 1/2, dk = 2k + 1,
ck = 2k + 1. For µ > 0, let

pa =
1

2
c0G

β
0 + µc1G

β
1 + 0× c2Gβ2 + 0× c3Gβ3 + µc4G

β
4

pb =
1

2
c0G

β
0 + 0× c1Gβ1 + µc2G

β
2 + µc3G

β
3 + 0× c4Gβ4

Then the associated spectrum are

λ∗a = (1/2, µ, µ, µ︸ ︷︷ ︸
3

, 0, 0, 0, 0, 0︸ ︷︷ ︸
5

, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
7

, µ, µ, µ, µ, µ, µ, µ, µ, µ︸ ︷︷ ︸
9

)

λ∗b = (1/2, 0, 0, 0︸ ︷︷ ︸
3

, µ, µ, µ, µ, µ︸ ︷︷ ︸
5

, µ, µ, µ, µ, µ, µ, µ︸ ︷︷ ︸
7

, 0, 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
9

)
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which are indistinguishable in δ2 metric, although ∥pa − pb∥2 = µ
√
24.

Nevertheless, we can obtain a theoretical guarantee on the L2 error between the true envelope function
and our plug-in estimate using Theorem 3.3 if we consider additional conditions on the eigenvalues
(p∗k)k≥0.

Theorem 3.6. Assume that the envelope function p is polynomial of degree D ∈ N, i.e., p∗k = 0 for any k > D
and p∗D ̸= 0. Assume also that all nonzeros p∗k for k ∈ {0, . . . , D} are distinct and that R ≥ D. Then for n large
enough it holds with probability at least 1− n−8,

∥p̂R − p∥22 ≤ c
R̃

n
ln(n),

where c > 0 is a universal numerical constant.

Remarks.

• The question of whether the problem of estimating p is NP-hard was still completely open. The-
orem 3.6 brings a first partial answer to this question by showing that p can be estimated in
polynomial time in the case where p is a polynomial with all non-zero eigenvalues distinct.

• The proof of Theorem 3.6 is strictly analogous to the one of [De Castro et al., 2019, Proposition
9]. In a nutshell, considering that the envelope function p is a polynomial with all non-zeros
eigenvalues p∗k distinct ensures that (since R ≥ D)

δ22(λ(TWR
), λR(T̂n)) = δ22(λ(TW ), λR(T̂n)),

which coincides with the L2 norm of the difference between p and its estimate

p̂opt,R :=

R∑
k=0

p̂opt,kckG
β
k with p̂opt,k :=

1

dk

∑
i∈(σ∗)−1([k̃+1,k̃+1])

λR(T̂n)i,

where σ∗ is a permutation as defined in Lemma 3.4. Since we proved that for n large enough, the
clusters returned by the SCCHEi algorithm correspond to an allocation given by f∗, we deduce
that the L2 norm between p and our plug-in estimate p̂R is equal to the δ2 distance between
spectra. The result then comes directly using Theorem 3.2.

3.3.4 Adaptation: Slope heuristic as model selection of Resolution

A data-driven choice of model size R can be done by slope heuristic, see Arlot [2019] for a nice review.
One main idea of slope heuristic is to penalize the empirical risk by κpen(R̃) and to calibrate κ > 0. If
the sequence (pen(R̃))R̃ is equivalent to the sequence of variances of the population risk of empirical
risk minimizer (ERM) as model size R̃ grows, then, penalizing the empirical risk (as done in Eq.(3.8)),
one may ultimately uncover an empirical version of the U -shaped curve of the population risk. Hence,
minimizing it, one builds a model size R̂ that balances between bias (under-fitting regime) and variance
(over-fitting regime). First, note that empirical risk is given by the intra-class variance below.

Definition 3.7. For any output (Cd0 , . . . , CdR ,Λ) of the Algorithm SCCHEi, the thresholded intra-class
variance is defined by

IR :=
1

n

 R∑
k=0

∑
λ∈Cdk

λ− 1

dk

∑
λ′∈Cdk

λ′

2

+
∑
λ∈Λ

λ2

 ,
and the estimations (p̂k)k≥0 of the eigenvalues (p∗k)k≥0 is given by

∀k ∈ N, p̂k =

{
1
dk

∑
λ∈Cdk

λ if k ∈ {0, . . . , R̂}
0 otherwise.

(3.7)

Second, as underlined in the proof of Theorem 3.2 (see Theorem 3.20 in Section 3.10.3), the estimator’s
variance of our estimator scales linearly in R̃.
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Hence, we apply Algorithm SCCHEi forR varying from 0 toRmax (withRmax := max{R ≥ 0 : R̃ ≤ n})
to compute the thresholded intra-class variance IR (see Definition 3.7) and given some κ > 0, we select

R(κ) ∈ argmin
R∈{0,...,Rmax}

{
IR + κ

R̃

n

}
. (3.8)

The hyper-parameter κ controlling the bias-variance trade-off is set to 2κ0 where κ0 is the value of
κ > 0 leading to the “largest jump” of the function κ 7→ R(κ). Once R̂ := R(2κ0) has been computed, we
approximate the envelope function p using Eq.(3.7) (see Eq.(3.4) for the closed form). We denote this
estimator p̂ and with the notations of Eq.(3.5) it holds p̂ = p̂R̂.
We propose a detailed analysis of the slope heuristic on simulated data using d = 3, the envelope func-
tion p(1) and the latitude function f (1)L presented in Eq.(3.12). We recall thatR(κ) represents the optimal
value of R to minimize the bias-variance decomposition defined by Eq.(3.8) for a given hyperparame-
ter κ. Figure 3.4 shows the evolution of R̃(κ) with respect to κ which is sampled on a logscale. R̃(κ)
is the dimension of the space of Spherical Harmonics with degree at most R(κ). Our slope heuristic
consists in choosing the value κ0 leading to the larger jump of the function κ 7→ R̃(κ). In our case, Fig-
ure 3.4 shows that κ0 = 10−3.9. As described in Section 3.3.2, the resolution level R̂ selected to cluster
the eigenvalues of the matrix T̂n is given by R(2κ0).

Figure 3.4: We sample the parameter κ on
a logscale between 10−5 and 10−1 and we
compute the corresponding R(κ) defined in
Eq.(3.8). We plot the values of R̃(κ) with re-
spect to κ. The larger jump allows us to define
κ0.

These results can be reproduced using the notebook Experiments1.

3.4 Nonparametric estimation of the latitude function

3.4.1 Our approach to estimate the latitude function in a nutshell

In Theorem 3.8 (see below), we show that we are able to estimate consistently the pairwise distances
encoded by the Gram matrix G∗ where

G∗ :=
1

n
(⟨Xi, Xj⟩)i,j∈[n] .

Taking the diagonal just above the main diagonal (referred to as superdiagonal) of Ĝ - an estimate of the
matrix G to be specified - we get estimates of the i.i.d. random variables (⟨Xi, Xi−1⟩)2≤i≤n = (ri)2≤i≤n
sampled from fL. Using (r̂i)2≤i≤n the superdiagonal of nĜ, we can build a kernel density estimator of
the latitude function fL. In the following, we describe the algorithm used to build our estimator Ĝ with
theoretical guarantees.

3.4.2 Spectral gap condition and Gram matrix estimation

The Gegenbauer polynomial of degree one is defined by Gβ1 (t) = 2βt, ∀t ∈ [−1, 1]. As a consequence,
using the addition theorem (cf. [Dai and Xu, 2013, Lem.1.2.3 and Thm.1.2.6]), the Gram matrix G∗ is

1https://github.com/quentin-duchemin/Markovian-random-geometric-graph

https://github.com/quentin-duchemin/Markovian-random-geometric-graph
https://github.com/quentin-duchemin/Markovian-random-geometric-graph
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related to the Gegenbauer polynomial of degree one. More precisely, for any i, j ∈ [n] it holds

G∗
i,j =

1

2βn
Gβ1 (⟨Xi, Xj⟩) =

1

nd

d∑
k=1

Y1,k(Xi)Y1,k(Xj). (3.9)

Denoting for all k ∈ [d] v∗k := 1√
n
(Y1,k(X1), . . . , Y1,k(Xn)) ∈ Rn, and V ∗ = (v∗1 , . . . , v

∗
d) ∈ Rn×d, Eq.(3.9)

becomes
G∗ :=

1

d
V ∗(V ∗)⊤.

We will prove that for n large enough there exists a matrix V̂ ∈ Rn×d where each column is an eigenvec-
tor of T̂n, such that Ĝ := 1

d V̂ V̂
⊤ approximates G∗ well, in the sense that the Frobenius norm ∥G∗− Ĝ∥F

converges to 0. To choose the d eigenvectors of the matrix T̂n that we will use to build the matrix V̂ , we
need the following spectral gap condition

∆∗ := min
k∈N, k ̸=1

|p∗1 − p∗k| > 0. (3.10)

This condition will allow us to apply Davis-Kahan type inequalities.
Now, thanks to Theorem 3.2, we know that the spectrum of the matrix T̂n converges towards the spec-
trum of the integral operator TW . Then, based on Eq.(3.9), one can naturally think that extracting the
d eigenvectors of the matrix T̂n related with the eigenvalues that converge towards p∗1, we can approx-
imate the Gram matrix G∗ of the latent positions. Theorem 3.8 proves that the latter intuition is true
with high probability under the spectral gap condition (3.10). The algorithm HEiC Araya and De Cas-
tro [2019] (presented in Section 3.4.3) aims at identifying the above mentioned d eigenvectors of the
matrix T̂n to build our estimate of the Gram matrix G∗.

Theorem 3.8. We consider that Assumption A holds, we assume ∆∗ > 0, and we assume that graphon W has
regularity s > 0. We denote V̂ ∈ Rn×d the d eigenvectors of the matrix T̂n associated with the eigenvalues
returned by the algorithm HEiC and we define Ĝ := 1

d V̂ V̂
⊤. Then for n large enough and for some constant

D > 0, it holds with probability at least 1− 5/n2,

∥G∗ − Ĝ∥F ≤ D
(

n

log2(n)

) −s
2s+d−1

. (3.11)

Based on Theorem 3.8, we propose a kernel density approach to estimate the latitude function fL based
on the super-diagonal of the matrix Ĝ, namely

(
r̂i := nĜi−1,i

)
i∈{2,...,n}

. In the following, we denote f̂L

this estimator.

3.4.3 Harmonic EigenCluster(HEiC)

The HEiC algorithm was first introduced by Araya and De Castro [2019] and allows us to extract d
eigenvectors from the matrix T̂n to compute our estimate Ĝ of the Gram matrix G∗. Let us first define
for a given set of indices i1, . . . , id ∈ [n]

Gap1(T̂n; i1, . . . , id) := min
i/∈{i1,...,id}

max
j∈{i1,...,id}

|λ̂i − λ̂j |.

The HEiC procedure is presented in the following algorithm.

3.5 Relatively Sparse Regime

Although we deal so far with the so-called dense regime (i.e. when the expected number of neighbors of
each node scales linearly with n), our results may be generalized to the relatively sparse model connecting
nodes i and j with probability W (Xi, Xj) = ζnp(⟨Xi, Xj⟩) where ζn ∈ (0, 1] satisfies
lim inf

n
ζnn/ log n ≥ Z for some universal constant Z > 0.

In the relatively sparse model, one can show following the proof of Theorem 3.2 that the resolution
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Algorithm 4 Harmonic EigenCluster(HEiC) algorithm.
Data: Adjacency matrix A. Dimension d.

1: (λ̂sort1 , . . . , λ̂sortn )← eigenvalues of T̂n sorted in decreasing order.
2: Λ1 ← {λ̂sort1 , . . . , λ̂sortd }.
3: Initialize i = 2 and gap= Gap1(T̂n; 1, 2, . . . , d).
4: while i ≤ n− d+ 1 do
5: if Gap1(T̂n; i, i+ 1, . . . , i+ d− 1) > gap then
6: Λ1 ← {λ̂sorti , . . . , λ̂sorti+d−1}
7: end if
8: i = i+ 1
9: end while

Return: Λ1, gap.

should be chosen as R̂ =
(

nζn
1+ζn log2 n

) 1
2s+d−1

. Specifying that λ∗ = (p∗0, p
∗
1, . . . , p

∗
1, p

∗
2, . . . ) and T̂n = A/n,

Theorem 3.2 becomes for a graphon with regularity s > 0

E

[
δ22

(
λ∗,

λ(T̂n)

ζn

)]
= O

((
nζn

1 + ζn log
2 n

) −2s
2s+d−1

)
.

Figure 3.5 illustrates the estimation of the latitude and the envelope functions in some relatively sparse
regimes.

Figure 3.5: Results of our algorithms for graph of size 2000 with functions p(1) and f (1)L of Eq.(3.12) and
sparsity parameter ζn = logk n/n, k ∈ {2, 3, 4}.

3.6 Experiments

In the following, we test our methods using different envelope and latitude functions. Note that a
common choice of connection functions in RGGs are the Rayleigh fading activation functions which take
the form

Rζ,η,r(ρ) = exp [−ζρη] , ζ > 0, η > 0.

Any Rayleigh functionRζ,η corresponds to the following envelope function

pζ,η : t 7→ Rζ,η(2(1− t)),

so that it holds
∀x, y ∈ Sd−1, pζ,η(⟨x, y⟩) = Rζ,η(∥x− y∥2).

Let us also denote for any α, β > 0 g(·;α, β) the density of the beta distribution B(α, β) with parameters
(α, β). In this paper, we will study the numerical results of our methods considering the following
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envelope and latitude functions

p(1) : x 7→ 1x≥0, p(2) ≡ p0.5,1

f
(1)
L : r 7→

{
1
2g(1− r; 2, 2) if r ≥ 0
1
2g(1 + r; 2, 2) otherwise

, f
(2)
L : r 7→ 1

2
g

(
1− r
2

; 1, 3

)

and p(3) ≡ p0.25,3

f
(3)
L : r 7→ 1

2
g

(
1− r
2

; 2, 2

)
. (3.12)

Note that considering the latitude function f (2)L (resp. f (3)L ) is equivalent to consider that one fourth of
the Euclidean distance between consecutive latent positions is distributed as Z ∼ B(1, 3) (resp. Z ∼
B(2, 2)). With Figures 3.6, 3.7 and 3.8, we present the results of our experiments for the three different
settings described in Eq.(3.12). In each case, we work with a latent dimension d = 4 and we show:

1. the estimates of the envelope and latitude functions obtained with our adaptive procedure work-
ing the graph of 1500 nodes (see Figures (a) and (b)).

2. the corresponding clustering obtained by the SCCHEi algorithm for the resolution level R deter-
mined by the slope heuristic (see Figures (c)).

Blue crosses represent the R̃ eigenvalues of T̂n with the largest magnitude, which are used to
form clusters corresponding to the R + 1-first spherical harmonic spaces. The red plus are the
estimated eigenvalues (p̂k)0≤k≤R (plotted with multiplicity) defined from the clustering given
by our algorithm SCCHEi (see Eq. (3.7)). Those results show that SCCHEi achieves a relevant
clustering of the eigenvalues of T̂n which allows us to recover the envelope function.

3. the errors between the estimated functions and the true ones in δ2 metric and in L2 norm for
different size of graphs (see Figures (d) and (e)). We notice that a significant decrease of the δ2
distance between spectra does not necessarily means that the L2 norm between the estimated and
the true envelope functions shrinks seriously. We refer in particular to Figures 3.6 and 3.8. The
identifiability issue highlighted in Section 3.3.3 is one of the possible explanations of this phe-
nomenon. Nevertheless, these experiments show that both the δ2 and L2 errors on our estimate of
the envelope or the latitude functions are decreasing as the size of the graph is getting larger. Let
us also recall that Theorem 3.6 ensures that the L2 error on our estimate of the envelope function
goes to zero as n grows when p has a finite number of non zeros eigenvalues that are all distinct.
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(a) Envelope function (b) Latitude function

(c) Eigenvalues envelope (d) δ2 errors

(e) L2 errors

Figure 3.6: Results for d = 4, the envelope p(1) and the latitude f (1)L of Eq.(3.12).
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(a) Envelope function (b) Latitude function

(c) Eigenvalues envelope (d) δ2 errors

(e) L2 errors

Figure 3.7: Results for d = 4, the envelope p(2) and the latitude f (2)L of Eq.(3.12).
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(a) Envelope function (b) Latitude function

(c) Eigenvalues envelope (d) δ2 errors

(e) L2 errors

Figure 3.8: Results for d = 4, the envelope p(3) and the latitude f (3)L of Eq.(3.12).
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3.7 Applications

In this section, we apply the MRGG model to link prediction and hypothesis testing in order to demon-
strate the usefulness of our approach as well as the estimation procedure.

3.7.1 Markovian Dynamic Testing

As a first application of our model, we propose a hypothesis test to statistically distinguish between an
independent sampling the latent positions and a Markovian dynamic. The null is then set to H0 : nodes
are independent and uniformly distributed on the sphere (i.e., no Markovian dynamic). Our test is based on
estimate f̂L of latitude and thus the null can be rephrased as H0 : fL = f0L where f0L is the latitude of
uniform law, dynamic is then i.i.d. dynamic.

Figure 3.9: Hypothesis testing.

Figure 3.9 shows the power of a hypothesis
test with level 5% (Type I error). One can
use any black-box goodness-of-fit test comparing
f̂L to f0L, and we choose χ2-test discretizing
(−1, 1) in 70 regular intervals. Rejection region
is calibrated (i.e., threshold of the χ2-test here)
by Monte Carlo simulations under the null. It al-
lows us to control Type I error as depicted by
dotted blue line. We choose alternative given
by Heaviside envelope p(1) and latitude f (1)L
of Eq.(3.12). We run our algorithm to esti-
mate latitude from which we sample a batch
to compute the χ2-test statistic. We see that for
graphs of size larger than 1, 000, the rejection
rate is almost 1 under the alternative (Type II
error is almost zero), the test is very powerful.

3.7.2 Link Prediction

Suppose that we observe a graph with n nodes. Link prediction is the task that consists in estimating
the probability of connection between a given node of the graph and the upcoming node.

3.7.2.1 Bayes Link Prediction

We propose to show the usefulness of our model solving a link prediction problem. Let us recall that
we do not estimate the latent positions but only the pairwise distances (embedding task is not necessary
for our purpose). Denoting by projX⊥

n
(·) the orthogonal projection onto the orthogonal complement of

Span(Xn), the decomposition of ⟨Xi, Xn+1⟩ defined by

⟨Xi, Xn⟩⟨Xn, Xn+1⟩

+
√
1− ⟨Xn, Xn+1⟩2

√
1− ⟨Xi, Xn⟩2⟨

projX⊥
n
(Xi)

∥projX⊥
n
(Xi)∥2

, Yn+1⟩, (3.13)

shows that latent distances are enough for link prediction. Indeed, it can be achieved using a forward
step on our Markovian dynamic, giving the posterior probability (cf. Definition 3.9) ηi(D1:n) defined by∫

[−1,1]2

p
(
⟨Xi, Xn⟩r +

√
1− r2

√
1− ⟨Xi, Xn⟩2u

)
fL(r)w d−3

2
(u)

Γ( d−1
2

)

Γ( d−2
2

)
√
π
drdu, (3.14)

where w d−3
2
(u) := (1− u2) d−3

2 − 1
2 and where Γ : a ∈]0,+∞[7→

∫ +∞
0

ta−1e−tdt.

Definition 3.9. (Posterior probability function)
The posterior probability function η is defined for any latent pairwise distances D1:n = (⟨Xi, Xj⟩)1≤i,j≤n ∈
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[−1, 1]n×n by
∀i ∈ [n], ηi(D1:n) = P (Ai,n+1 = 1 | D1:n) ,

whereAi,n+1 ∼ Ber (p(⟨Xi, Xn+1⟩)) is a random variable that equals 1 if there is an edge between nodes
i and n+ 1, and is zero otherwise.

We consider a classifier g (cf. Definition 3.10) and an algorithm that, given some latent pairwise dis-
tances D1:n, estimates Ai,n+1 by putting an edge between nodes Xi and Xn+1 if gi(D1:n) is 1.

Definition 3.10. A classifier is a function which associates to any pairwise distances D1:n = (⟨Xi, Xj⟩)1≤i,j≤n,
a label (gi(D1:n))i∈[n] ∈ {0, 1}n.

The risk of this algorithm is as in binary classification,

R(g,D1:n) :=
1

n

n∑
i=1

P (gi(D1:n) ̸= Ai,n+1 | D1:n)

=
1

n

n∑
i=1

{
(1− ηi(D1:n))1gi(D1:n)=1 + ηi(D1:n)1gi(D1:n)=0

}
, (3.15)

where we used the independence between Ai,n+1 and gi(D1:n) conditionally on κ(D1:n). Pushing fur-
ther this analogy, we can define the classification error of some classifier g by L(g) = E [R(g,D1:n)].
Proposition 3.12 shows that the Bayes estimator - introduced in Definition 3.11 - is optimal for the risk
defined in Eq.(3.15).

Definition 3.11. (Bayes estimator)
We keep the notations of Definition 3.9. The Bayes estimator g∗ of (Ai,n+1)1≤i≤n is defined by

∀i ∈ [n], g∗i (D1:n) =

{
1 if ηi(D1:n) ≥ 1

2

0 otherwise.

Proposition 3.12. (Optimality of the Bayes classifier for the riskR)
We keep the notations of Definitions 3.9 and 3.11. For any classifier g, it holds for all i ∈ [n],

P (gi(D1:n) ̸= Ai,n+1 | D1:n)− P (g∗i (D1:n) ̸= Ai,n+1 | D1:n)

= 2

∣∣∣∣ηi(D1:n)−
1

2

∣∣∣∣× E{1gi(D1:n )̸=g∗i (D1:n) | D1:n

}
,

which immediately implies that

R(g,D1:n) ≥ R(g∗,D1:n) and therefore L(g) ≥ L(g∗).

3.7.2.2 Heuristic for Link Prediction

One natural method to approximate the Bayes classifier from the previous section is to use the plug-in
approach. This leads to the MRGG classifier introduced in Definition 3.13.

Definition 3.13. (The MRGG classifier)
For any n and any i ∈ [n], we define η̂i(D1:n) as∫

p̂
(
r̂i,nr +

√
1− r2

√
1− r̂2i,nu

)
f̂L(r)w d−3

2
(u)

Γ( d−1
2

)

Γ( d−2
2

)
√
π
drdu, (3.16)

where p̂ and f̂L denote respectively the estimate of the envelope function and the latitude function with
our method and where r̂ := nĜ. The MRGG classifier is defined by

∀i ∈ [n], gMRGG
i (D1:n) =

{
1 if η̂i(D1:n) ≥ 1

2

0 otherwise.

To illustrate our approach we work with a graph of 1500 nodes with d = 4, and we consider the envelope
and latitude functions defined in Eq.(3.12). The plots on the left column of Figure 3.10 show that we are
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(a) Envelope p(1), Latitude f
(1)
L (b) Envelope p(1), Latitude f

(1)
L

(c) Envelope p(2), Latitude f
(2)
L (d) Envelope p(2), Latitude f

(2)
L

(e) Envelope p(3), Latitude f
(3)
L (f) Envelope p(3), Latitude f

(3)
L

Figure 3.10: ← On the left: Link predictions between the future node Xn+1 and the 10 first nodes
X1, . . . , X10.→On the right: Comparison between the risk (defined in Eq.(3.15)) of the MRGG classifier,
the random classifier and the risk of the optimal Bayes classifier.
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able to recover the probabilities of connection of the nodes already present in the graph with the coming
node Xn+1. Using the decomposition of ⟨Xi, Xn+1⟩ given by Eq.(3.13), orange crosses are computed
using Eq.(3.14). Green plus are computed similarly replacing p and fL by their estimations p̂ and f̂L
following Eq.(3.16). Blue stars are computed using Eq.(3.14) by replacing fL by wβ

∥wβ∥1
(with β = d−2

2 )
which implicitly supposes that the points are sampled uniformly on the sphere.
With the plots on the left column of Figure 3.10, we compare the risk of the random classifier - whose
guess gi(D1:n) is a Bernoulli random variable with parameter given by the ratio of edges compared to
complete graph - with the risk of the MRGG classifier (cf. Definition 3.13). These figures show that
for a small number of nodes, the risk estimate provided by the MRGG classifier can be significantly
far from the one of the Bayes classifier. However, when the number of nodes is getting larger, the
MRGG classifier gives similar results compared to the optimal Bayes classifier. This risk estimate can
be significantly smaller than the one of the random classifier (see for example the plots corresponding
to the envelope p(2) and the latitude f (2)L ).

3.8 Discussion

In this section, we want to push the investigation of the performance of our estimation methods as
far as possible. In Section 3.8.1 we study the robustness of our methods under model mispecification
before inspecting the influence of the mixing time of the Markov chain (Xi)i≥1 on the estimation error
in Section 3.8.2.
On a more theoretical side, we show that replacing the use of the complete linkage by the Ward distance
in the SCCHEi algorithm, Theorem 3.3 might not be true anymore. We conclude with some remarks
and by highlighting future research directions.

3.8.1 Robustness to model mispecification

We consider a mixture model for the sampling scheme of the latent position. We fix some ϵ ∈ (0, 1) and
we draw X1 randomly on the sphere. Then at time step i ≥ 2, the point Xi is sampled as follows:

• with probability 1 − ϵ, Xi is drawn following the Markovian dynamic described in Section 3.1
(based on Xi−1).

• with probability ϵ, Xi is drawn uniformly on the sphere.

Figure 3.11 and Figure 3.12 show the numerical results obtained under this mispecified model. We
consider the hypothesis testing question presented in Section 3.7.1 with the same settings namely d = 3

and the envelope and latitude functions p(1) and f (1)L of Eq.(3.12). We can see that when ϵ = 0, the power
of our test is 1 and we always reject the null hypothesis (uniform sampling of the latent positions) under
the alternative. On the contrary, when ϵ = 1, the points are sampled uniformly on the sphere and we
obtain a power of the order of the level of our test (i.e. 5%) as expected. The larger the sample size n is,
the greater ϵ can be chosen while keeping a large power. In the case where n = 1500, one can afford to
sample 75% of latent positions uniformly (and the rest using our Markovian sampling scheme) while
keeping a power equal to 1. Figure 3.12 shows that the larger ϵ is, the closer the estimated latitude
function is to wβ

∥wβ∥1
≡ 1

2 (since d = 3) which corresponds to the density of a one-dimensional marginal
of a uniform random point on Sd−1.

3.8.2 Influence of mixing time on estimation error

In order to assert that the dependence of the latent variables has an influence on the estimation of
the unknown functions of our model, we would require a minimax bound. The derivation of such
minimax result is still an open problem, even in the independent setting (cf. De Castro et al. [2019]).
Nevertheless, by making explicit the constants involved in concentration inequalities, we can show that
the mixing time of the latent Markovian dynamic affects our bound on the δ2 error between spectra. For
any r∗ ∈ (−1, 1), let us consider the following latitude function

fr
∗

L (r) :=
1

I(r∗)
(1− r2)

d−3
2 1r∈(r∗,1), I(r∗) :=

∫ 1

r∗
(1− r2)

d−3
2 dr.
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(a) n = 200 (b) n = 500 (c) n = 1500

Figure 3.11: Studying the robustness of our method under model mispecification. We study the evolution of
power for Markovian Dynamic Testing when the mixture parameter ϵ ranges (0, 1). We conduct this analysis for
different values of n.

(a) ϵ = 0.1 (b) ϵ = 0.5 (c) ϵ = 0.7

Figure 3.12: Studying the robustness of the estimation of the latitude function under model mispecification. We
plot our kernel density estimator of the latitude function for n = 1500, d = 3 and for ϵ ∈ {0.1, 0.5, 0.7}. We use the
envelope p(1) and latitude function f

(1)
L defined in Eq.(3.12).

Note that the Markov transition kernel P of the chain (Xi)i≥1 using this latitude function is the one that
starting from a point x ∈ Sd−1 samples uniformly a point in the set {z ∈ Sd−1 | ∥x− z∥22 ≤ 2(1− r∗)}. In
particular, when r∗ = −1, we recover the uniform distribution on the sphere. It is clear that the closer
r∗ to one, the larger the mixing time of the chain. One can show that for any r∗ ∈ (−1, 1), the chain is
uniformly ergodic by proving that there exist an integer m ≥ 1, a constant δm > 0 and a probability
measure ν such that

∀x ∈ Sd−1, ∀A ∈ Σ, Pm(x,A) ≥ δmν(A) (cf. Definition A.8). (3.17)

Eq.(3.17) holds by considering for example ν = π the uniform distribution on the sphere. It is straight-
forward to show that the smallest integer m(r∗) ≥ 1 satisfying Eq.(3.17) is larger than 2

1−r∗ .2 Taking a
closer look at the constants involved in the concentration inequality from Theorem 4.3 (cf. Chapter 4),
we get that

E
[
δ22(λ(TW ), λ(Tn)) ∨ δ22(λ(TW ), λRopt(T̂n))

]
< C

[
n

log2(n)

]− 2s
2s+d−1

,

where C > m(r∗)2τ(r∗)2∥fr∗L ∥∞ and τ(r∗) ≥ 1 is the Orlicz norm of some regeneration time. Since for
any 0 < r∗ < 1,

I(r∗) =

∫ 1

r∗
(1− r2)

d−3
2 dr =

∫ 1−r∗

0

e
d−3
2 ln(1−(r+r∗)2)dr

= (1− (r∗)2)
d−3
2

∫ 1−r∗

0

e
d−3
2 {ln(1−(r+r∗)2)−ln(1−(r∗)2)}dr

≤ (1− (r∗)2)
d−3
2

∫ 1−r∗

0

e
− d−3

2

{
2rr∗+r2

1−(r∗)2

}
dr

2Indeed, the latitude function fr∗
L allows to make a jump at each time step of size at most 1 − r∗. Since the length of the

shortest arc on Sd−1 joining the north pole to the south pole is 2, the result follows.
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≤ (1− (r∗)2)
d−3
2

∫ 1−r∗

0

e−
d−3
2 {2rr∗+r2}dr

≤ (1− (r∗)2)
d−3
2

∫ 1

0

e−
d−3
2 {2rr∗}dr

≤ (1− (r∗)2)
d−3
2

(
1 ∧ 1

r∗(d− 3)

)
,

we get that ∥fr∗L ∥∞ ≥ 1
I(r∗) (1− (r∗)2)

d−3
2 ≥ r∗(d− 3). Finally we obtain

C >
2r∗

1− r∗
(d− 3),

where r∗ 7→ 2r∗

1−r∗ (d − 3) is increasing in r∗ and diverges to +∞ when r∗ → 1−. Hence, the closer r∗ is
to one, the slower the chain is mixing, and the poorer is our bound.
Figure 3.13 presents the result of the simulations using the latitude function fr

∗

L and the envelope func-
tion p : t 7→ 1t≥0. We compute the L2 error between the true and the estimated envelope functions
(respectively the true and the estimated latitude functions). When r∗ is getting closer to 1, the chain is
mixing slowly and we need to increase the sample size if we want to prevent the L2 errors from blowing
up. Graphs have been generated with a latent dimension d = 3 and by sampling the latent positions
using our isotropic sampling procedure with latitude function fr

∗

L .

(a) n = 200 (b) n = 1500

Figure 3.13: Studying the influence of the mixing time of the chain on the L2 errors between (i) the envelope
function and its estimate (using our adaptive procedure), and (ii) the latitude function and its estimate obtained
with a kernel estimator.

3.8.3 Choice of the clustering algorithm for the SCCHEi

The SCCHEi algorithm relies on the clustering of the eigenvalues of the adjacency matrix provided by
the HAC with complete linkage. In this section, we motivate the use of the HAC algorithm with com-
plete linkage by showing that the theoretical results from Section 3.3.3 could be much more involved to
establish by using another clustering procedure. Indeed, if one would consider for example the HAC
with the Ward distance, the theoretical result obtained for the correctness of the SCCHEi algorithm (cf.
Theorems 3.3 and 3.6) is likely to be no longer true (even if the sample size n is chosen arbitrarily large).
Let us show this on a simple example.

We fix a resolution level R = 2 and we consider some ∆G > 0. We set p∗0 = 4∆G, p∗1 = 3∆G, p∗2 = 2∆G,
and p∗k = 0 for all k ≥ 3. Let us consider some g ∈ (0,∆G/4) that can be taken arbitrarily small. Let us
denote λR(T̂n) = (λ̂1, . . . , λ̂R̃, 0, 0 . . . ) and assume that it holds λ̂1 = p∗0, λ̂2 = · · · = λ̂d+1 = p∗1 (we recall
that d1 = d), λ̂d+2 = · · · = λ̂d+1+⌊d2/2⌋ = p∗2 + g and λ̂d+2+⌊d2/2⌋ = · · · = λ̂1+d+d2 = p∗2 − g. To simplify
the presentation, we will assume in the following that d2 = (d+1)d

2 − 1 is even (which holds for example
if d = 2k for any k ≥ 1 odd). Figure 3.14 gives a visualization of this example.
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×

p∗2

×

p∗1

×

p∗0

λ̂i, d+ 2 ≤ i ≤ d+ 1 + d2
2

λ̂i, d+ 1 + d2
2 ≤ i ≤ d+ 1 + d2 λ̂i, 2 ≤ i ≤ d+ 1

λ̂1

g

Figure 3.14: Visualization of the eigenvalues of the envelope function of our example.

Applying the HAC algorithm (with the Ward distance) to the eigenvalues (λ̂1, . . . , λ̂R̃), it is obvious that
the state reached after R̃− 4 = 1 + d+ d2 − 4 iterations in the HAC procedure will be

Ĝ0 :={λ̂1}

Ĝ1 :={λ̂i | 2 ≤ i ≤ d}

Ĝ2 :={λ̂i | d+ 2 ≤ i ≤ d+ 1 + d2/2}

Ĝ3 :={λ̂i | d+ 2 + d2/2 ≤ i ≤ 1 + d+ d2}

Hence, in order to understand which clusters will be merged at the next step of the HAC algorithm, we
compute the Ward distance between the different clusters.
Let us recall that for two finite and non-empty sets S, S′ ⊂ R with respective cardinality |S| and |S′|,
the Ward distance between S and S′ is given by

dW (S, S′) :=
|S| × |S′|
|S|+ |S′|

 1

|S|
∑
xs∈S

xs −
1

|S′|
∑
x′
s∈S′

x′s

2

.

Ward distances between clusters

Ĝ1 Ĝ2 Ĝ3

Ĝ0 d
d+1 (∆

G)2 d2
d2+2 (2∆

G − g)2 d2
d2+2 (2∆

G + g)2

Ĝ1 d×d2
2d+d2

(∆G − g)2 d×d2
2d+d2

(∆G + g)2

Ĝ2 d2 × g2

We deduce that all Ward distances between pair of clusters are scaling at least linearly with d except
the Ward distances between Ĝ0 and the other three clusters Ĝ1, Ĝ2 and Ĝ3. Indeed, for any i ∈ {1, 2, 3},
dW (Ĝ0, Ĝi) remains bounded independently of the latent dimension d. Hence, for any g ∈ (0,∆G/4)
which can be chosen arbitrarily small, one can take d large enough to ensure that

max
{
dW (Ĝ0, Ĝi) , i ∈ {1, 2, 3}

}
< dW (Ĝ2, Ĝ3). (3.18)

We deduce that for any g ∈ (0,∆G/4), we can choose d large enough to ensure that Eq.(3.18) holds and
thus the clusters merged between depths 4 and 3 from the root of the HAC’s tree will not be Ĝ2 and Ĝ3.
This means that the state obtained at depth 3 from the root is not of type (S) (in the sense defined in
Lemma 3.5).
If this is not a sufficient condition to state that the SCCHEi will fail to recover the correct clusters, this
example shows that the use of Ward distance can lead to some unexpected clustering of the eigenvalues.
Our example proves that using the HAC algorithm with the Ward distance, the result of Lemma 3.5 does
not hold anymore. Namely, regardless of how large the sample size is chosen, there are situations (in
particular for a large latent dimension) where the states of type (S) (cf. Lemma 3.5) are never reached
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in the HAC tree with the Ward distance. Hence obtaining a theoretical guarantee for the clustering
provided by the SCCHEi in this framework may be impossible or at least much more involved.

3.8.4 Concluding remarks

3.8.4.1 Estimation of the latent dimension

The proposed methods implicitly assume that the latent dimension d is known. Araya and De Castro
[2019] proved that the latent dimension d can be easily recovered in practice for n large enough pro-
vided that the spectral gap condition (3.10) holds. In the following, we briefly describe their approach.
Given some matrix T̂n as input and some set of candidates D for the dimension d (typically D =
{2, 3, . . . , dmax}), apply the Algorithm HEiC (cf. Algorithm 3 in Section 3.4.3) for any dc ∈ D and store
the returned value gap := gap(dc). Let us recall that gap(dc) corresponds to the largest gap between
a bulk of dc eigenvalues of T̂n and the rest of the spectrum (see the definition of Gap1 in Section 3.4.3
for details). Once we have computed the different gaps, we pick the candidate dc that led to the largest
one. Given the guarantees provided by Proposition 3.24, the previously described procedure will find
the correct dimension, with high probability (on the event E with the notations of Proposition 3.24), if
the true dimension of the latent space is in the candidate set D.

3.8.4.2 Future research directions

Our work encourages the development of growth model in random graphs and in particular the deriva-
tion of similar results in MRGGs with other latent spaces. It would be also desirable to extend our meth-
ods to the case where we consider more complex Markovian sampling of the latent positions, typically
one that is not isotropic. Our work leaves open the question of getting a theoretical guarantee for the
estimation of the latitude function. If we proved (with Theorem 3.8) that we can consistently estimate
the Gram matrix of the latent positions in Frobenius norm, this is not sufficient to ensure that our kernel
density estimator is consistent since we cannot ensure that 1

n−1

√∑n
i=2(ri − r̂i)2 tends to 0 as n goes to

+∞. Deriving a theoretical result regarding the estimation of the latitude function seems challenging
and we believe that it would require significantly different proof techniques.
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Adjacency matrix observed: T̂n = 1
nA

Latent positions unknown: (Xi)i≥1

Spectral decomposition of T̂n

Gives a clustering of λ(T̂n) in Rmax + 1
groups with sizes d0, . . . , dRmax

Finds the bulk of d eigenval-
ues of T̂n the most separated
from the rest of the spectrum

Cd0 , . . . , CdRmax

Eigenvalues in Cdk are the empiri-
cal counterparts of the eigenvalue p∗k

d eigenvectors of T̂n: V̂ ∈ Rn×d

They are the empirical counterparts of
eigenfunctions of TW for the eigenvalue p∗1

p̂∗k = 1
dk

∑
λ∈Cdk

λ estimate of p∗kĜ = 1
d V̂ V̂

⊤ estimate of G∗ (cf. Sec.3.4)

Choice of the bandwidth Choice of the resolution level R̂ (cf. Sec.3.3.4)
Adaptation with the Slope Heuristic

f̂L: Kernel density estimate from
(
nĜi,i+1

)
i p̂R̂ =

∑R̂
k=0 p̂

∗
kckG

β
k

Link prediction (cf. Sec.3.7)

HEiC Algorithm (cf. Sec.3.4.3) SCCHEi Algorithm (cf. Sec.3.3.2)

Output of the Algorithm Output of the Algorithm

Estimation of the latent distances Estimation of the eigenvalues of TW

Model Selection Model Selection

Estimation of the latitude function fL Estimation of the envelope function p

Figure 3.15: Synthetic presentation of the different estimation procedures.
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3.9 Properties of the Markov chain

In the following, we denote λLeb ≡ λLeb,d the Lebesgue measure on Sd−1 and λLeb,d−1 the Lebesgue
measure on Sd−2. Using [Dai and Xu, 2013, Section 1.1], it holds bd :=

∫
x∈Sd−1 λLeb,d(dx) =

2πd/2

Γ(d/2) . Let P
be the Markov operator of the Markov chain (Xi)i≥1. By abuse of notation, we will also denote P (x, ·)
the density of the measure P (x, dz) with respect to λLeb(dz). For any x, z ∈ Sd−1, we denote Rzx ∈ Rd×d
a rotation matrix sending x to z (i.e. Rzxx = z) and keeping Span(x, z)⊥ fixed. In the following, we
denote ed := (0, 0, . . . , 0, 1) ∈ Rd.

3.9.1 Invariant distribution and reversibility for the Markov chain

Reversibility of the Markov chain (Xi)i≥1.

Lemma 3.14. For all x, z ∈ Sd−1, P (x, z) = P (z, x) = P (ed, R
ed
z x).

Proof of Lemma 3.14. Using our model described in Section 3.3, we get X2 = rX1 +
√
1− r2Y where

conditionally on X1, Y is uniformly sampled on S(X1) := {q ∈ Sd−1 : ⟨q,X1⟩ = 0}, and where r has
density fL on [−1, 1]. Let us consider a Gaussian vector W ∼ N (0, Id). Using the Cochran’s theorem
and Lemma 3.15, we know that conditionally on X1, the random variable W−⟨W,X1⟩X1

∥W−⟨W,X1⟩X1∥2
is distributed

uniformly on S(X1).

Lemma 3.15. Let W ∼ N (0, Id). Then, W
∥W∥2

is distributed uniformly on the sphere Sd−1.

In the following, we denote
(d)
= the equality in distribution sense. We have conditionally on X1

RedX1

W − ⟨W,X1⟩X1

∥W − ⟨W,X1⟩X1∥2
=

Ŵ − ⟨Ŵ , ed⟩ed
∥Ŵ − ⟨Ŵ , ed⟩ed∥2

,

where Ŵ = RedX1
W ∼ N (0, Id). Using Cochran’s theorem, we know that Ŵ − ⟨Ŵ , ed⟩ed is a centered

normal vector with covariance matrix the orthographic projection matrix onto the space Span(ed)
⊥,

leading to

Ŵ − ⟨Ŵ , ed⟩ed
(d)
=

[
Y

0

]
,

where Y ∼ N (0, Id−1). Using Lemma 3.15, we conclude that conditionally on X1, the random vari-
able W−⟨W,X1⟩X1

∥W−⟨W,X1⟩X1∥2
is distributed uniformly on S(X1) (because the distribution of Y is invariant by

rotation).

We deduce that

X2
(d)
= rX1 +

√
1− r2 W − ⟨W,X1⟩X1

∥W − ⟨W,X1⟩X1∥2
(d)
= rX1 +

√
1− r2

RX1

X2
W ′ − ⟨RX1

X2
W ′, X1⟩X1

∥RX1

X2
W ′ − ⟨RX1

X2
W ′, X1⟩X1∥2

,

where W ′ := RX2

X1
W . Note that W ′ ∈ Rd is also a standard centered Gaussian vector because this

distribution is invariant by rotation. Since ⟨RX1

X2
W ′, X1⟩ = ⟨W ′, X2⟩ and ∥RX1

X2
q∥2 = ∥q∥2, ∀q ∈ Sd−1,

we deduce that

X2 − rX1
(d)
= RX1

X2

[√
1− r2 W ′ − ⟨W ′, X2⟩X2

∥W ′ − ⟨W ′, X2⟩X2∥2

]
. (3.19)

RX2

X1
is the rotation that sends X1 to X2 keeping the other dimensions fixed. Let us denote a1 := X1,

a2 := X2−rX1

∥X2−rX1∥2
and complete the linearly independent family (a1, a2) in an orthonormal basis of Rd
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given by a := (a1, a2, . . . , ad). Then, the matrix of RX2

X1
in the basis a is

r −
√
1− r2 0⊤d−2√

1− r2 r 0⊤d−2

0d−2 0d−2 Id−2

 .
We deduce that (

RX1

X2

)−1

(X2 − rX1) = RX2

X1
(X2 − rX1)

= ∥X2 − rX1∥2RX2

X1

(
X2 − rX1

∥X2 − rX1∥2

)
= ∥X2 − rX1∥2RX2

X1
a2

= ∥X2 − rX1∥2
[
−
√

1− r2a1 + ra2

]
= −

√
1− r2∥X2 − rX1∥2X1 + rX2 − r2X1

= −(1− r2)X1 + rX2 − r2X1

= −X1 + rX2.

Going back to Eq.(3.19), we deduce that

X1
(d)
= rX2 +

√
1− r2 W̃ − ⟨W̃ ,X2⟩X2

∥W̃ − ⟨W̃ ,X2⟩X2∥2
, (3.20)

where W̃ = −W ′ is also a standard centered Gaussian vector in Rd. Thus, we proved the first equality
of Lemma 3.14. Based on Eq.(3.20) we have,

RedX2
X1

(d)
= rRedX2

X2 +
√
1− r2

RedX2
W̃ − ⟨W̃ ,X2⟩RedX2

X2

∥W̃ − ⟨W̃ ,X2⟩X2∥2

= red +
√

1− r2
RedX2

W̃ − ⟨RedX2
W̃ , ed⟩ed

∥RedX2
W̃ − ⟨RedX2

W̃ , ed⟩ed∥2
,

which proves that P (ed, Redx2
x1) = P (x2, x1) for any x1, x1 ∈ Sd−1 because RedX2

W̃ is again a standard
centered Gaussian vector in Rd.

Stationary distribution of the Markov chain.

Proposition 3.16. The uniform distribution on the sphere Sd−1 is a stationary distribution of the Markov chain
(Xi)i≥1.

Proof of Proposition 3.16. Let us consider z ∈ Sd−1. We have using Lemma 3.14,∫
x∈Sd−1

P (x, z)λLeb(dx) =

∫
x∈Sd−1

P (z, x)λLeb(dx) = 1,

which proves that the uniform distribution on the sphere is a stationary distribution of the Markov
chain.

3.9.2 Ergodicity of the Markov chain

Our results hold under the condition that the Markov chain (Xi)i≥1 is uniformly ergodic (cf. Assump-
tion A). In this section, we provide a sufficient condition on the latitude function fL for uniform ergod-
icity to hold.

Lemma 3.17. We consider that fL is bounded away from zero. Then, the Markov chain (Xi)i≥1 is π-irreducible
and aperiodic.
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Lemma 3.18. We consider that fL is bounded away from zero. Then the Markov chain (Xi)i≥1 is uniformly
ergodic.

Proof of Lemmas 3.17 and 3.18. Considering for π the uniform distribution on Sd−1, we get that for any
x ∈ Sd−1 and any A ⊂ Sd−1 with π(A) > 0,

P (x,A)

=

∫
z∈A

P (x, z)
λLeb,d(dz)

bd

=

∫
z∈A

P (ed, R
ed
x z)

λLeb,d(dz)

bd
(Using Lemma 3.14)

=

∫
z∈Red

x A

P (ed, z)
λLeb,d(dz)

bd

(Using the change of variable z 7→ Redx z with Redx A = {Redx a : a ∈ A})

=

∫
r∈[−1,1]

∫
ξ∈Sd−2

fL(r)1(ξ⊤
√
1−r2,r)⊤∈Red

x Adr
λLeb,d−1(dξ)

bd−1bd

≥ inf
s∈[−1,1]

fL(s)

∫
r∈[−1,1]

∫
ξ∈Sd−2

1(ξ⊤
√
1−r2,r)⊤∈Red

x Adr
λLeb,d−1(dξ)

bd−1bd

≥ inf
s∈[−1,1]

fL(s)

∫
r∈[−1,1]

∫
ξ∈Sd−2

1(ξ⊤
√
1−r2,r)⊤∈Red

x A

(
1− r2

) d−3
2
drλLeb,d−1(dξ)

bd−1bd

=
1

bd−1
inf

s∈[−1,1]
fL(s)π(R

ed
x A) =

1

bd−1
inf

s∈[−1,1]
fL(s)π(A),

since π is invariant by rotation and fL is bounded away from zero. We also used that
∫ 1

−1
(1−r2) d−3

2 dr =
bd
bd−1

. This result means that the whole space Sd−1 is a small set. Hence, the Markov chain is uniformly
ergodic (cf. [Meyn and Tweedie, 1993, Theorem 16.0.2]) and thus aperiodic and π-irreducible.

3.9.3 Computation of the absolute spectral gap of the Markov chain

Thanks to Proposition A.11 (in Appendix A), we know that if fL is such that (Xi)i≥1 is uniformly
ergodic, the Markov chain has an absolute spectral gap (cf. Definition A.10). In the following, we show
that this absolute spectral gap is equal to 1.

Keeping notations of Appendix A, let us consider h ∈ L2
0(π) such that ∥h∥π = 1. Then

∥Ph∥2π =

∫
x∈Sd−1

(∫
y∈Sd−1

P (x, dy)h(y)

)2

π(dx)

=

∫
x∈Sd−1

(∫
y∈Sd−1

P (x, y)h(y)π(dy)

)2

π(dx)

=

∫
x∈Sd−1

(∫
y∈Sd−1

P (ed, R
ed
y x)h(y)π(dy)

)2

π(dx) (Using Lemma 3.14)

=

∫
x∈Sd−1

(∫
y∈Sd−1

P (ed, x)h(y)π(dy)

)2

π(dx)

(Using the rotational invariance of π)

=

∫
x∈Sd−1

P (ed, x)
2

(∫
y∈Sd−1

h(y)π(dy)

)2

π(dx)

= 0,

where the last equality comes from h ∈ L2
0(π). Hence, the Markov chain (Xi)i≥1 has 1 for absolute

spectral gap.
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3.10 Proofs

3.10.1 Proofs of the two key lemmas for Theorem 3.3

In the proofs of Lemma 3.4 and Lemma 3.5 provided in this section, we keep the notations and the as-
sumptions used in the proof of Theorem 3.3. To ease the reading of this section, we recall here important
notations.
We denoted

∆G = min
0≤k ̸=l≤R, p∗k ̸=p

∗
l

|p∗k − p∗l | ∧ min
0≤k≤R, p∗k ̸=0

|p∗k| > 0.

For any g ∈ (0, ∆
G

4 ), the proof of Theorem 3.2 (cf. Section 3.10.3) ensures that for n large enough it holds

δ22(λ(TWR
), λR(T̂n)) ≤ g2. (3.21)

Let us finally recall (cf. Section 3.1) that

δ22(λ(TWR
), λR(T̂n)) = inf

σ∈S

∑
i≥1

(
(λ(TWR

)σ(i) − λR(T̂n)i
)2
. (3.22)

3.10.1.1 Proof of Lemma 3.4

We denote σ∗ a permutation achieving the minimum in Eq.(3.22).
• First we show that we can choose σ∗ such that σ∗({1, . . . , R̃}) = {1, . . . , R̃}. We recall that

λ(TWR
) =

d0=1︷︸︸︷
p∗0 ,

d1=d︷ ︸︸ ︷
p∗1, . . . , p

∗
1, . . . ,

dR︷ ︸︸ ︷
p∗R, . . . , p

∗
R︸ ︷︷ ︸

R̃

, 0, 0, . . .

 ,

and λR(T̂n) =

λR(T̂n)1, . . . , λR(T̂n)R̃︸ ︷︷ ︸
R̃

, 0, 0, . . .

 ,

with λR(T̂n)1 ≥ · · · ≥ λR(T̂n)R̃.
⇝ If p∗k ̸= 0 for all 0 ≤ k ≤ R, then it is clear that σ∗({1, . . . , R̃}) = {1, . . . , R̃}. Otherwise, there would
exist some i ∈ {1, . . . , R̃} such that σ∗(j) ̸= i for all j ∈ {1, . . . , R̃}. Hence, we would obtain that
δ22(λ(TWR

), λR(T̂n)) ≥ |λ(TWR
)i|2 ≥ (∆G)2, which would contradict Eq.(3.21).

⇝ If p∗k = 0 for all 0 ≤ k ≤ R, it is clear that we can take σ∗ = Id.
⇝ Otherwise, let us denote Null the list of all indexes i ∈ {1, . . . , R̃} such that λ(TWR

)i = 0. It holds
that N0 = |Null| =

∑
0≤k≤R s.t. p∗k=0 dk. We also denote NoNull the complement of Null in {1, . . . , R̃}

(i.e. the list of indexes in {1, . . . , R̃} that are not in Null).
For any 1 ≤ i ≤ R̃ such that λ(TWR

)i ̸= 0, it must exist some j ∈ {1, . . . , R̃} such that σ∗(j) = i.
Otherwise, we would have

δ22(λ(TWR
), λR(T̂n)) ≥ |λ(TWR

)i|2 ≥ (∆G)2,

which would contradict Eq.(3.21). Hence, we get that

(σ∗)−1(NoNull) ⊂ {1, . . . , R̃}.

We deduce that for any i ∈ {1, . . . , R̃}\(σ∗)−1(NoNull), λ(TWR
)σ∗(i) = 0. Hence, we can define

σ∗ such that this permutation sends the N0 indexes in {1, . . . , R̃}\(σ∗)−1(NoNull) to the N0 indexes
in Null. Such σ∗ still achieves the minimum in Eq.(3.22). In the following, we thus consider that
σ∗({1, . . . , R̃}) = {1, . . . , R̃}.
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• Let us recall that the function f∗ is defined by

f∗ : {1, . . . , R̃} → {p∗k, 0 ≤ k ≤ R}
i 7→ λ(TWR

)σ∗(i).

Note that for any 1 ≤ i ≤ R̃, σ∗(i) ≤ R̃ thanks to the previous paragraph. We denote p∗(0) ≥ · · · ≥ p∗(R)

the ordered sequence of p∗0, . . . , p∗R and d(k) is the multiplicity of the eigenvalue p∗(k) of the operator TW .
We show that f∗ is such that f∗(1) = · · · = f∗(d(0)) = p∗(0), f

∗(d(0) + 1) = · · · = f∗(d(0) + d(1)) = p∗(1),
f∗(d(0) + d(1) + 1) = · · · = f∗(d(0) + d(1) + d(2)) = p∗(2), . . . . This is equivalent to say that the function

f∗ is non-increasing. If this was not true, it would mean that there exist 1 ≤ j < i ≤ R̃ such that
f∗(j) < f∗(i). Since λR(T̂n)j ≥ λR(T̂n)i (because j < i), we would get that

∆G < f∗(i)− f∗(j)

= f∗(i)− λR(T̂n)i︸ ︷︷ ︸
≤g

+λR(T̂n)i − λR(T̂n)j︸ ︷︷ ︸
≤0

+λR(T̂n)j − f∗(j)︸ ︷︷ ︸
≤g

i.e. ∆G ≤ 2g.

Since we chose g such that ∆G > 4g, this previous inequality is absurd. This concludes the proof.

3.10.1.2 Proof of Lemma 3.5

We prove our result by induction. In the following, we say that an intermediate state of the HAC
algorithm is valid if it is still possible to reach state (S) in the next iterations of the algorithm. Stated
otherwise, a state is valid if it does not exist 1 ≤ i ̸= j ≤ R̃ such that f∗(i) ̸= f∗(j) with λR(T̂n)i and
λR(T̂n)j in the same cluster. It is obvious that the initial state of the HAC algorithm is valid since all
eigenvalues are alone in their respective clusters.
Suppose now that we are at iteration 2 ≤ t ≤ R̃ − R − 2 of the HAC algorithm and that our procedure
is valid until step t. We are sure that we did not reach a state of type (S) before step t because only
the state at depth R from the root of the HAC’s tree contains exactly R + 1 clusters. For any cluster S
formed at step t by the HAC algorithm, we denote by abuse of notation f∗(S) := f∗(i) for any i such
that λR(T̂n)i ∈ S (which is licit since step t is valid). By contradiction, assume that the algorithm does
not make a valid merging at step t+ 1. This means that the two merged clusters Sa and Sb at step t+ 1
are such that f∗(Sa) ̸= f∗(Sb). Since at step t we did not reach a state of type (S), this means that there
are two clusters Si and Sj with i ̸= j such that f∗(Si) = f∗(Sj).
For any λR(T̂n)i ∈ Si and λR(T̂n)j ∈ Sj ,

|λR(T̂n)i − λR(T̂n)j | ≤ |λR(T̂n)i − f∗(Si)|+ |f∗(Si)− λR(T̂n)j |︸ ︷︷ ︸
=|f∗(Sj)−λR(T̂n)j |

≤ 2g,

and for any λR(T̂n)a ∈ Sa and λR(T̂n)b ∈ Sb,

|λR(T̂n)a − λR(T̂n)b|

≥ −|λR(T̂n)a − f∗(Sa)|+ |f∗(Sa)− λR(T̂n)b|

≥ |f∗(Sa)− f∗(Sb)| − |λR(T̂n)a − f∗(Sa)| − |λR(T̂n)b − f∗(Sb)|
≥ ∆G − 2g.

Since we chose ∆G > 4g, we get
dc(Sa, Sb) > dc(Si, Sj).

This is a contradiction since at step t, the HAC algorithm merges the two clusters with the smallest
complete linkage distance. Hence, the algorithm performs a valid merging at step t+ 1.
We proved that a state of type (S) is reached by the HAC algorithm with complete linkage at iteration
R̃ − R − 1. Since d ≥ 3, it holds d0 < d1 < d2 < . . . and since the SCCHEi starts by selecting the
cluster of size d0 in the tree as close as possible to the root, we get Cd0 = Ĉd0 . Continuing the process of
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the "for loop" in the SCCHEi algorithm, the SCCHEi algorithm then selects the cluster of size d1 in the
remaining tree (where we removed all eigenvalues in Ĉd0 in the tree of the HAC). Hence, the SCCHEi
algorithm sets Cd1 = Ĉd1 . Following this procedure, it is straightforward to see that the SCCHEi returns
the partition Cd0 = Ĉd0 , . . . , CdR = ĈdR .

3.10.2 Concentration inequality for U-statistics with Markov chains

In this section, we present briefly the main result from Chapter 4 of this thesis: a concentration inequal-
ity for a U-statistic of the Markov chain (Xi)i≥1. This concentration inequality is a key result to prove
Theorem 3.2. In the first subsection, we remind the assumptions made on the Markovian dynamic,
namely Assumption A.

3.10.2.1 Assumptions and notations for the Markov chain

Let us recall that Assumption A states that the latitude function fL is such that ∥fL∥∞ <∞ and makes
the chain (Xi)i≥1 uniformly ergodic. Assumption A guarantees in particular that there exists δM > 0
such that

∀x ∈ Sd−1,∀A ∈ B(Sd−1), P (x,A) ≤ δMν(A),

for some probability measure ν (e.g. the uniform measure on the sphere π).
In Section 3.9.2, we provide a sufficient condition on the latitude function fL ensuring the uniform er-
godicity of the chain with associated constants L > 0 and 0 < ρ < 1 (cf. Definition A.8). In Section 3.9.3,
we explain why Assumption A ensures that the Markov chain (Xi)i≥1 has an absolute spectral gap (cf.
Definition A.10) and we show that this absolute spectral gap is equal to 1.

3.10.2.2 Concentration inequality of U-statistic for Markov chain

One key result to prove Theorem 3.2 is the concentration of the following U-statistic

Ustat(n) =
1

n2

∑
1≤i<j≤n

[
(W −WR)

2(Xi, Xj)− ∥W −WR∥22
]
.

Note that ∥W −WR∥22 corresponds to the expectation of the kernel (W −WR)
2(·, ·) under the uniform

distribution on Sd−1 which is known to be the unique stationary distribution π of the Markov chain
(Xi)i≥1 (cf. Section 3.9). More precisely, for any x ∈ Sd−1, it holds

∥W −WR∥22 = EX∼π[(W −WR)
2(x,X)] = E(X,X′)∼π⊗π[(W −WR)

2(X,X ′)],

see Lemma 3.1 for a proof. Applying Theorem 4.3 from Chapter 4 in a our framework leads to the
following result.

Lemma 3.19. Let us consider γ ∈ (0, 1) satisfying log(e log(n)/γ) ≤ n. Then it holds with probability at least
1− γ,

Ustat(n) ≤M
∥p− pR∥2∞ log n

n
log(e log(n)/γ),

where M > 0 only depends on constants related to the Markov chain (Xi)i≥1.

3.10.3 Proof of Theorem 3.2

The proof of Theorem 3.2 mainly lies in the following result which is proved in Section 3.10.3.1. Cou-
pling the convergence of the spectrum of the matrix of probability Tn with a concentration result on the
spectral norm of random matrices with independent entries (cf. Bandeira and van Handel [2016]), we
show the convergence in metric δ2 of the spectrum of T̂n towards the spectrum of the integral operator
TW .

Theorem 3.20. Let us consider γ ∈ (0, 1) satisfying log(e log(n)/γ) ≤ n/(13R̃). Then it holds with probability
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at least 1− γ,

δ2 (λ(TW ), λ(Tn))

≤ 2∥p− pR∥2 + 8

√
R̃

n
ln(e/γ) +M∥p− pR∥∞

√
log n

n
(log(e log(n)/γ))

1/2
,

where M > 0 only depends on constants related to the Markov chain (Xi)i≥1 (cf. Lemma 3.19).

First part of the proof for Theorem 3.2 We start by establishing the convergence rate for δ2 (λ(TW ), λ(Tn)) .

We keep notations of Theorem 3.20. Let us consider γ ∈ (0, 1) satisfying log(e log(n)/γ) ≤ (n/(13R̃)),
and assume that p ∈ Zswβ

((−1, 1)) with s > 0.
Let us define the event

Ω(γ) :=

{
δ2 (λ(TW ), λ(Tn)) ≤ 2∥p− pR∥2 + 8

√
R̃

n
ln(e/γ)

+M∥p− pR∥∞

√
log n

n
(log(e log(n)/γ))

1/2

}
.

Using Theorem 3.20, it holds P (Ω(γ)) ≥ 1− γ. Remarking further that

δ2 (λ(TW ), λ(Tn)) ≤ δ2 (λ(TW ), 0) + δ2 (0, λ(Tn)) ≤ ∥p∥2 +
√
n ≤
√
2 +
√
n,

we have

E[δ22(λ(TW ), λ(Tn))]

= E[δ22(λ(TW ), λ(Tn))1Ω(γ)] + (1 +
√
2)2nP(Ω(γ)c)

≤ c∥p− pR∥22 + c
R̃

n
log(e/γ) + c∥p− pR∥2∞

log n

n
log(e log(n)/γ)

+ (1 +
√
2)2nγ,

where c > 0 is a constant that does not depend on R, d nor n. Since for some constant C(p, s, d) > 0
(depending only on p, s and d)

∥p− pR∥22 =
∑
k>R

(p∗k)
2dk

(1 + k(k + 2β))s

(1 + k(k + 2β))s
≤ C(p, s, d)R−2s, (3.23)

and since
R̃ = O(Rd−1), (3.24)

we have choosing γ = 1/n2

E[δ22(λ(TW ), λ(Tn))] ≤ D′
[
R−2s +Rd−1 log(n)

n
+ ∥p− pR∥2∞

log2(n)

n

]
, (3.25)

whereD′ > 0 is a constant independent of n andR. Let us show that choosingR = ⌊
(
n/ log2(n)

) 1
2s+d−1 ⌋

concludes the proof. Since ∥Gβk∥∞ = Gβk(1) = dk/ck, we get that

∥pR∥∞ ≤
R∑
k=0

|p∗k|ckG
β
k(1) =

R∑
k=0

|p∗k|dk ≤
√
R̃∥pR∥2,

and using Eq.(3.30), we deduce that

∥p− pR∥∞ ≤ ∥p∥∞ + ∥pR∥∞ ≤ 1 +
√
2R̃. (3.26)
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Hence, Eq.(3.25) becomes

E[δ22(λ(TW ), λ(Tn))] ≤ D′′
[
R−2s +Rd−1 log(n)

n
+ R̃

log2(n)

n

]
,

where D′′ is a constant that does not depend on n nor R. Choosing R = ⌊
(
n/ log2(n)

) 1
2s+d−1 ⌋ and using

Eq.(3.24) we get

E[δ22(λ(TW ), λ(Tn))]

≤ D′′

[(
n

log2(n)

) −2s
2s+d−1

+ 2

(
n

log2(n)

) d−1
2s+d−1 log2(n)

n

]

≤ 3D′′
(

n

log2(n)

) −2s
2s+d−1

.

Second part of the proof for Theorem 3.2 Let us recall that in the statement of Theorem 3.2, λRopt(T̂n)

is the sequence of the R̃opt first eigenvalues (sorted in decreasing absolute values) of the matrix T̂n
where Ropt is the value of the parameter R leading to the optimal bias-variance trade off, namely

λRopt(T̂n) = (λ̂1, . . . , λ̂R̃opt
, 0, 0, . . . ).

From the computations of the first part of the proof, we know that Ropt = ⌊
(
n/ log2(n)

) 1
2s+d−1 ⌋. That

corresponds to the situation where we choose optimally R and it is in practice possible to approximate
this best model dimension using e.g. the slope heuristic. Therefore, δ2

(
λ(TW ), λRopt(T̂n)

)
is the quan-

tity of interest since it represents the distance between the eigenvalues used to built our estimates (p̂k)k
and the true spectrum of the envelope function p. Since R̃ = O

(
Rd−1

)
for all integer R ≥ 0, we have

R̃opt = O
(
(n/ log2(n))

d−1
2s+d−1

)
. We deduce that for n large enough 2R̃opt ≤ n and using [De Castro

et al., 2019, Proposition 15] we obtain

δ2

(
λRopt(T̂n), λ(TWRopt

)
)

≤ δ2

(
λ(Tn), λ(TWRopt

)
)
+

√
2R̃opt∥T̂n − Tn∥

≤ δ2 (λ(Tn), λ(TW )) + δ2

(
λ(TW ), λ(TWRopt

)
)
+

√
2R̃opt∥T̂n − Tn∥, (3.27)

where λ(TWRopt
) = (λ∗1, . . . , λ

∗
R̃opt

, 0, 0, . . . ). Let us consider γ ∈ (0, 1). Using Theorem 3.20, we know
that with probability at least 1− γ it holds for n large enough

δ2 (λ(Tn), λ(TW )) ≤ 2∥p− pRopt∥2 + 8

√
R̃opt
n

ln(e/γ)

+M∥p− pRopt
∥∞

√
log n

n
(log(e log(n)/γ))

1/2
.

Using Eq.(3.23), Eq.(3.26) and the fact that R̃ = O(Rd−1), it holds with probability at least 1− 1/n2,

δ22 (λ(Tn), λ(TW )) ≤ c
[
R−2s
opt +Rd−1

opt

log n

n
+MRd−1

opt

log2 n

n

]
≤ (M ′)2(n/ log2 n)

−2s
2s+d−1 ,
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where c > 0 is a numerical constant and M ′ > 0 depends on constants related to the Markov chain
(Xi)i≥1 (see Theorem 3.20 for details). Moreover,

δ22

(
λ(TW ), λ(TWRopt

)
)
= ∥p− pRopt

∥22

≤ C(p, s, d)R−2s
opt = O

(
(n/ log2 n)

−2s
2s+d−1

)
, (3.28)

where we used Eq.(3.23). Finally, using the concentration of spectral norm for random matrices with
independent entries from Bandeira and van Handel [2016], there exists a universal constant C0 > 0
such that conditionally on (Xi)i≥1, it holds with probability at least 1− 1/n2,

∥Tn − T̂n∥ ≤
3√
2n

+ C0

√
log(n3)

n
.

Using again R̃ = O(Rd−1), this implies that for n large enough, it holds conditionally on (Xi)i≥1 with
probability at least 1− 1/n2, √

2R̃opt∥Tn − T̂n∥ ≤ D(n/ log2 n)
−s

2s+d−1 ,

where D > 0 is a numerical constant. From Eq.(3.27), we deduce that P(Ω) ≥ 1− 2/n2 where the event
Ω is defined by

Ω =

{
δ22

(
λRopt(T̂n), λ(TWRopt

)
)
≤
(
C(p, s, d)1/2 +D +M ′

)2
(n/ log2 n)

−2s
2s+d−1

}
.

Remarking finally that

δ2

(
λRopt(T̂n), λ(TWRopt

)
)
≤ δ2

(
λ(TWRopt

), 0
)
+ δ2

(
0, λ(T̂n)

)
≤ ∥p∥2 +

√
n ≤
√
2 +
√
n,

we obtain

E
[
δ22

(
λRopt(T̂n), λ(TWRopt

)
)]

≤ E
[
δ22

(
λRopt(T̂n), λ(TWRopt

)
)
| Ω
]
+ P(Ωc)(

√
2 +
√
n)2

≤
(
C(p, s, d)1/2 +D +M ′

)2
(n/ log2 n)

−2s
2s+d−1 + 2

(
√
2 +
√
n)2

n2

= O
(
(n/ log2 n)

−2s
2s+d−1

)
. (3.29)

Using the triangle inequality, Eq.(3.28) and Eq.(3.29) lead to

E
[
δ22

(
λRopt(T̂n), λ(TW )

)]
≤ 3E

[
δ22

(
λRopt(T̂n), λ(TWRopt

)
)]

+ 3δ22

(
λ(TWRopt

), λ(TW )
)

= O
(
(n/ log2 n)

−2s
2s+d−1

)
,

which concludes the proof of Theorem 3.2.

3.10.3.1 Proof of Theorem 3.20

We follow the same sketch of proof as in De Castro et al. [2019]. Let R ≥ 1 and define,

Φk,l =
1√
n
[Yk,l(X1), . . . , Yk,l(Xn)] ∈ Rn,

ER,n =
(
⟨Φk,l,Φk′,l′⟩ − δ(k,l),(k′,l′)

)
(k,k′)∈[R], l∈{1,...,dk}, l′∈{1...,dk′} ∈ R

R̃×R̃,
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XR,n = [Φ0,1,Φ1,1,Φ1,2, . . . ,ΦR,dR ] ∈ Rn×R̃,

AR,n =
(
X⊤
R,nXR,n

)1/2
with A2

R,n = IdR̃ + ER,n,

KR = Diag(λ1(TW ), . . . , λR̃(TW )),

TR,n =

R∑
k=0

p∗k

dk∑
l=1

Φk,l(Φk,l)
⊤ = XR,nKRX

⊤
R,n ∈ Rn×n

T̃R,n = ((1− δi,j)TR,n)i,j∈[n] ∈ Rn×n,

T ∗
R,n = AR,nKRA

⊤
R,n ∈ RR̃×R̃,

WR(x, y) =

R∑
k=0

p∗k

dk∑
l=1

Yk,l(x)Yk,l(y).

It holds

δ2(λ(TW ), λ(TWR
)) =

(∑
k>R

dk(p
∗
k)

2

)1/2

.

We point out the equality between spectra of the operator TWR
and the matrix KR. Using the SVD

decomposition of XR,n, one can also easily prove that λ(TR,n) = λ(T ∗
R,n). We deduce that

δ2 (λ(TWR
), λ(TR,n)) = δ2

(
λ(KR), λ(T

∗
R,n)

)
≤ ∥T ∗

R,n −KR∥F
= ∥AR,nKRAR,n −KR∥F ,

with the Hoffman-Wielandt inequality. Using equation (4.8) at (Koltchinskii and Giné [2000] p.127)
gives

δ2 (λ(TWR
), λ(TR,n)) ≤

√
2∥KR∥F ∥ER,n∥ =

√
2∥WR∥2∥ER,n∥.

Using again the Hoffman-Wielandt inequality we get

δ2(λ(TR,n), λ(T̃R,n)) ≤ ∥T̃R,n − TR,n∥F =

[
1

n2

n∑
i=1

WR(Xi, Xi)
2

]1/2
,

and

δ2

(
λ(T̃R,n), λ(Tn)

)
≤ ∥T̃R,n − Tn∥F =

 1

n2

∑
i ̸=j

(W −WR)
2(Xi, Xj)

1/2

.

Now, we invoke Lemmas 3.19, 3.21 and 3.22 to conclude the proof. The proofs of these last two lemmas
are provided in Section 3.10.3.2 and Section 3.10.3.3 respectively.

Lemma 3.21. Let us consider γ > 0 and assume that 13R̃ ln(e/γ) ≤ n. Then it holds with probability at least
1− γ

∥ER,n∥ ≤ 4

√
R̃

n
ln(2/γ).

Lemma 3.22. Let R ≥ 1. We have

1

n2

n∑
i=1

WR(Xi, Xi)
2 =

1

n

(
R∑
k=0

p∗kdk

)2

.
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For any γ ∈ (0, 1) with log(e log(n)/γ) ≤ (n/(13R̃)), it holds with probability at least 1− γ,

δ2 (λ(TW ), λ(Tn))

≤ δ2 (λ(TW ), λ(TWR
)) + δ2 (λ(TWR

), λ(TR,n)) + δ2

(
λ(TR,n), λ(T̃R,n)

)
+ δ2

(
λ(T̃R,n), λ(Tn)

)
≤ 4

√
R̃

n
ln(2/γ) +

√
2

(
R∑
k=0

dk(p
∗
k)

2

)1/2

+
1√
n

∣∣∣∣∣
R∑
k=0

p∗kdk

∣∣∣∣∣+ 2∥p− pR∥2

+M∥p− pR∥∞

√
log n

n
(log(e log(n)/γ))

1/2
,

where M > 0 depends only on constants related to the Markov chain (Xi)i≥1. Now remark that∣∣∣∣∣
R∑
k=0

p∗kdk

∣∣∣∣∣ ≤
(

R∑
k=0

dk

)1/2( R∑
k=0

dk(p
∗
k)

2

)1/2

=
√
R̃∥pR∥2,

and that
∥pR∥22 ≤ ∥p∥22 ≤ 2, (3.30)

because pR is the orthogonal projection of p, and |p| ≤ 1. We deduce that

δ2 (λ(TW ), λ(Tn))

≤ 2∥p− pR∥2 + 4

√
R̃

n
ln(2/γ) +

√
2R̃

n

+M∥p− pR∥∞

√
log n

n
(log(e log(n)/γ))

1/2

≤ 2∥p− pR∥2 + 8

√
R̃

n
ln(e/γ)

+M∥p− pR∥∞

√
log n

n
(log(e log(n)/γ))

1/2
.

3.10.3.2 Proof of Lemma 3.21

Observe that nER,n =
∑n
i=1

(
ZiZ

⊤
i − IdR̃

)
where for all i ∈ [n], Zi ∈ RR̃ is defined by

Zi := Z(Xi) :=
(
Y0,1(Xi), Y1,1(Xi), Y1,2(Xi), . . . , Y1,d1(Xi), . . . ,

YR,1(Xi), . . . , YR,dR(Xi)
)
.

By definition of the spectral norm for a Hermitian matrix,

∥ 1
n

n∑
i=1

ZiZ
⊤
i − IdR̃∥ = max

x, ∥x∥2=1

∣∣∣∣∣x⊤
(
1

n

n∑
i=1

ZiZ
⊤
i

)
x− 1

∣∣∣∣∣ .
We use a covering set argument based on the following Lemma.

Lemma 3.23. (cf. [Gilles, 1989, Lemma 4.10])
Let us consider an integer D ≥ 2. For any ϵ0 > 0, there exists a set Q ⊂ SD−1 of cardinality at most (1+2/ϵ0)

D

such that
∀α ∈ SD−1, ∃q ∈ Q, ∥α− q∥2 ≤ ϵ0.

We consider Q the set given by Lemma 3.23 with D = d and ϵ0 ∈ (0, 1/2). Let us define x0 ∈ Sd−1 such
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that |x⊤0 ER,nx0| = ∥ER,n∥ and q0 ∈ Q such that ∥x0 − q0∥2 ≤ ϵ0. Then,

|x⊤0 ER,nx0| − |q⊤0 ER,nq0| ≤ |x⊤0 ER,nx0 − q⊤0 ER,nq0| (by triangle inequality)

= |x⊤0 ER,n(x0 − q0)− (q0 − x0)⊤ER,nq0|
≤ ∥x0∥2∥ER,n∥∥x0 − q0∥2 + ∥q0 − x0∥2∥ER,n∥∥q0∥2
≤ 2ϵ0∥ER,n∥.

which leads to
|x⊤0 ER,nx0| = ∥ER,n∥ ≤ |q⊤0 ER,nq0|+ 2ϵ0∥ER,n∥.

Hence,

∥ER,n∥ ≤
1

1− 2ϵ0
max
q∈Q
|q⊤ER,nq|.

We introduce for any q ∈ Q the function

Fq : x = (x1, . . . , xn) 7→
1

n

n∑
i=1

q⊤
(
ZiZ

⊤
i − 1

)
q :=

1

n

n∑
i=1

fq(xi),

where fq(x) = q⊤
(
Z(x)Z(x)⊤ − 1

)
q.

Let us consider t > 0. We want to apply Bernstein’s inequality for Markov chains from [Jiang et al.,
2018, Theorem 1.1]. In the following, we denote Eπ[·] the expectation with respect to the measure π.
We remark that Eπ[fq(X)] = 0 and that ∥fq∥∞ ≤ R̃ − 1. For all m ∈ [R̃], we denote ϕm = Yr,l with
r ∈ {0, . . . , R} and l ∈ [dr] such that m = l +

∑r
i=0 di − 1. Then, for any x ∈ Sd−1, and for all k, l ∈ [R̃],(

(Z(x)⊤Z(x))2
)
k,l

=
∑R̃
m=1 ϕl(x)ϕm(x)2ϕk(x) = R̃ϕl(x)ϕk(x) = R̃

(
Z(x)Z(x)⊤

)
k,l

where we used [Dai
and Xu, 2013, Eq.(1.2.9)]. We deduce that

Eπ[fq(X)2] = Eπ[q
⊤Z(X)Z(X)⊤qq⊤Z(x)Z(x)⊤q]− 2Eπ[q

⊤Z(X)Z(X)⊤q] + 1

= Eπ[q
⊤ (Z(X)Z(X)⊤)2︸ ︷︷ ︸

=R̃·Z(X)Z(X)⊤

q]− 2q⊤Eπ[Z(X)Z(X)⊤]︸ ︷︷ ︸
=Id

q + 1

= R̃ · q⊤Eπ[Z(X)Z(X)⊤]q − 1

= R̃− 1.

Using that the Markov chain (Xi)i≥1 has an absolute spectral gap equals to 1 (cf. Section 3.9.3), we get
from [Jiang et al., 2018, Eq. (1.6)] that

P (|Fq(X)| ≥ t) = P
(
|q⊤ER,nq| ≥ t

)
≤ 2 exp

(
−nt2

4(R̃− 1) + 10(R̃− 1)t

)
,

which leads to

P

(
max
q∈Q
|q⊤ER,nq| ≥ t

)
≤ P

⋃
q∈Q
|q⊤ER,nq| ≥ t


≤ 2 exp

(
−nt2/(R̃− 1)

4 + 10t

)
(1 + 2/ϵ0)

R̃
.

Choosing ϵ0 = 2
(
exp

(
nt2/2

(R̃−1)R̃(4+10t)

)
− 1
)−1

in order to satisfy (1 + 2/ϵ0)
R̃ = exp(nt2(R̃ − 1)−1(4 +

10t)−1/2), we get

P

(
max
q∈Q
|q⊤ER,nq| ≥ t

)
≤ 2 exp

(
−nt2

(R̃− 1)(8 + 20t)

)
.
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We deduce that if 25
2 ln(2/α)R̃ ≤ n, it holds with probability at least 1− α,

max
q∈Q
|q⊤ER,nq| ≤ 16

√
R̃

n
ln(2/α).

Assuming that 200 ln(7)R̃3 ln(2/α) ≤ n3 in order to have 1/(1 − 2ϵ0) ≤ 4, it holds with probability at
least 1− α

∥ER,n∥ ≤
1

1− 2ϵ0
max
q∈Q
|q⊤ER,nq| ≤ 4

√
R̃

n
ln(2/α).

3.10.3.3 Proof of Lemma 3.22

Reminding that for all x ∈ Sd−1 and for all k ≥ 0,
∑dk
l=1 Yk,l(x)

2 = dk (cf. Corollary 1.2.7 from Dai and
Xu [2013]), we get

1

n2

n∑
i=1

WR(Xi, Xi)
2 =

1

n2

n∑
i=1

(
R∑
k=0

p∗k

dk∑
l=1

Yk,l(Xi)
2

)2

=
1

n2

n∑
i=1

(
R∑
k=0

p∗kdk

)2

=
1

n

(
R∑
k=0

p∗kdk

)2

.

3.10.4 Proof of Theorem 3.8

Proposition 3.24 is the counterpart of Proposition 1 in Araya and De Castro [2019] in our dependent
framework. This result is the cornerstone of Theorem 3.8 and is proved in Section 3.10.4.1.

Proposition 3.24. We assume that ∆∗ > 0. Let us consider γ > 0 and define the event

E :=

{
δ2(λ(Tn), λ(TW )) ∨ 2

9
2

√
d

∆∗ ∥Tn − T̂n∥ ≤
∆∗

4

}
.

Then for n large enough,
P(E) ≥ 1− γ/2.

Moreover, on the event E , there exists one and only one set Λ1, consisting of d eigenvalues of T̂n, whose diameter is
smaller that ∆∗/2 and whose distance to the rest of the spectrum of T̂n is at least ∆∗/2. Furthermore, on the event
E , the algorithm HEiC returns the matrix Ĝ = 1

d V̂ V̂
⊤, where V̂ has by columns the eigenvectors corresponding

to the eigenvalues in Λ1.

In the following, we work on the event E . Let us consider γ ∈ (0, 1).

We choose R = (n/ log2 n)
1

2s+d−1 . Reminding that WR is the rank R approximation of W , the Gram
matrix associated with the kernel WR is

TR,n =

R∑
k=0

p∗k

dk∑
l=1

Φk,l(Φk,l)
⊤ = XR,nKRX

⊤
R,n ∈ Rn×n

where

Φk,l =
1√
n
[Yk,l(X1), . . . , Yk,l(Xn)] ∈ Rn,

XR,n = [Φ0,1,Φ1,1,Φ1,2, . . . ,ΦR,dR ] ∈ Rn×R̃ and
KR = Diag(λ1(TW ), . . . , λR̃(TW )).
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Let us denote now Ṽ (resp. ṼR) the orthonormal matrix formed by the eigenvectors of the matrix Tn
(resp. TR,n). We have the following eigenvalue decompositions

Tn = Ṽ ΛṼ ⊤ and TR,n = ṼRΛRṼ
⊤
R ,

where Λ = Diag(λ1, . . . , λn) are the eigenvalues of the matrix Tn and where
ΛR = (p∗0, p

∗
1, . . . , p

∗
1, . . . , p

∗
R, . . . , p

∗
R, 0, . . . , 0) ∈ Rn where each p∗k has multiplicity dk. Then, we note by

V ∈ Rn×d (resp. VR) the matrix formed by the columns 1, . . . , d of the matrix Ṽ (resp. ṼR). The ma-
trix V ∗ ∈ Rn×d is the orthonormal matrix with i−th column 1√

n
(Y1,1(Xi), . . . , Y1,d(Xi)). The matrices

G∗, G,GR and G∗
proj are defined as follows

G∗ :=
1

c1
V ∗(V ∗)⊤, G :=

1

c1
V V ⊤

GR :=
1

c1
VRV

⊤
R , G∗

proj := V ∗((V ∗)⊤V ∗)−1(V ∗)⊤.

G∗
proj is the projection matrix for the columns span of the matrix V ∗. Using the triangle inequality we

have
∥G∗ −G∥F ≤ ∥G∗ −G∗

proj∥F + ∥G∗
proj −GR∥F + ∥GR −G∥F .

Step 1: Bounding ∥G − GR∥F . Since the columns of the matrices V and VR correspond respectively
to the eigenvectors of the matrices Tn and TR,n, applying the Davis Kahan sinus Theta Theorem (cf.
Theorem 3.26) gives that there exists O ∈ Rd×d such that

∥V O − VR∥F ≤
23/2∥Tn − TR,n∥F

∆
,

where ∆ := mink∈{0,2,3,...,R} |p∗1 − p∗k| ≥ ∆∗ = mink∈N, k ̸=1 |p∗1 − p∗k|. Using Lemma 3.25 and c1 = d
d−2 ,

we get that

∥G−GR∥F =
d− 2

d
∥V O(V O)⊤ − VRV ⊤

R ∥F ≤ 2∥V O − VR∥F .

Hence, using the proof of Theorem 3.2, we get that with probability at least 1− 1/n2,

∥G−GR∥F ≤ 2∥V O − VR∥F ≤
C

∆∗

(
n

log2 n

)− s
2s+d−1

,

where C > 0 is a constant.

Step 2: Bounding ∥G∗ −G∗
proj∥F . To bound ∥G∗ −G∗

proj∥F , we apply first Lemma 3.27 with B = V ∗.
This leads to

∥G∗ −G∗
proj∥F ≤ ∥Idd − (V ∗)⊤V ∗∥F ≤

√
d∥Idd − (V ∗)⊤V ∗∥.

Using a proof rigorously analogous to the proof of Lemma 3.21, it holds with probability at least 1 − γ
and for n large enough,

∥Idd − (V ∗)⊤V ∗∥ ≤ 4

√
d log(e/γ)

n
.

We get by choosing γ = 1/n2 that it holds with probability at least 1− 1/n2,

∥Idd − (V ∗)⊤V ∗∥ ≤ C ′

√
d log(n)

n
,

where C ′ > 0 is a universal constant.

Step 3: Bounding ∥G∗
proj − GR∥F . We proceed exactly like in Araya and De Castro [2019] but we

provide here the proof for completeness. Since G∗
proj and GR are projectors we have, using for exam-

ple [Bhatia, 1996, p.202],
∥G∗

proj −GR∥F = 2∥G∗
projG

⊥
R∥F . (3.31)
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We use Theorem 3.28 with E = G∗
proj , F = G⊥

R, B = TR,n and A = TR,n +H where

H = X̃R,nKRX̃
⊤
R,n −XR,nKRXR,n,

where the columns of the matrix X̃R,n are obtained using a Gram-Schmidt orthonormalization process
on the columns of XR,n. Hence there exists a matrix L such that X̃R,n = XR,n(L

−1)⊤. This matrix L is
such that a Cholesky decomposition of X⊤

R,nXR,n reads as LL⊤.
A and B are symmetric matrices thus we can apply Theorem 3.28. On the event E , we can take S1 =

(λ1 − ∆∗

8 , λ1 +
∆∗

8 ) and S2 = R\(λ1 − 7∆∗

8 , λ1 +
7∆∗

8 ). By Theorem 3.28 we get

∥G∗
projG

⊥
R∥F ≤

∥A−B∥F
∆∗ =

∥H∥F
∆∗ . (3.32)

We only need to bound ∥H∥F .

∥H∥F ≤ ∥L−⊤KRL
−1 −KR∥F ∥X⊤

R,nXR,n∥
≤ ∥KR∥F ∥L−1L−⊤ − IdR̃∥∥X

⊤
R,nXR,n∥, (3.33)

where the last inequality comes from Lemma 3.29. From the previous remarks on the matrix L, we
directly get

∥L−1L−⊤ − IdR̃∥ = ∥
(
X⊤
R,nXR,n

)−1 − IdR̃∥.

Using the notations of the proof of Theorem 3.20 which is provided in Section 3.10.3.1, we get

∥L−1L−⊤ − IdR̃∥∥X
⊤
R,nXR,n∥ = ∥X⊤

R,nXR,n − IdR̃∥ = ∥ER,n∥.

Noticing further that ∥KR∥2F ≤
∑
k≥0(p

∗
k)

2dk = ∥p∥22 ≤ 2 (because |p| ≤ 1), Eq.(3.33) becomes

∥H∥F ≤
√
2∥ER,n∥. (3.34)

Using Lemma 3.21, it holds with probability at least 1− γ and for n large enough,

∥ER,n∥ ≤ 4

√
R̃

n
ln(2/γ). (3.35)

Since R̃ = O
(
Rd−1

)
and R = O

((
n/ log2 n

) 1
2s+d−1

)
, we obtain using Eqs.(3.31), (3.32), (3.34) and (3.35)

that with probability at least 1− 1/n2 it holds

∥G∗
proj −GR∥F = 2∥G∗

projG
⊥
R∥F ≤

Cd
∆∗

(
n

log2(n)

) −s
2s+d−1

,

where Cd > 0 is a constant that may depend on d and on constants related to the Markov chain (Xi)i≥1.

Conclusion. We proved that on the event E , it holds with probability at least 1− 3/n2,

∥G∗ −G∥F ≤ D1

(
n

log2(n)

) −s
2s+d−1

,

whereD1 > 0 is a constant that depends on ∆∗, d and on constants related to the Markov chain (Xi)i≥1.
Moreover, Eq.(3.39) from the proof of Proposition 3.24 gives that on the event E , we have

∥G− Ĝ∥F =
d− 2

d
∥V V ⊤ − V̂ V̂ ⊤∥F ≤

2
9
2

√
d∥Tn − T̂n∥
3∆∗ .

Using the concentration result from Bandeira and van Handel [2016] on spectral norm of centered ran-
dom matrix with independent entries we get that there exists some constant D2 > 0 such that with
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probability at least 1− 1/n2 it holds

∥G− Ĝ∥F ≤ D2

√
log n

n
.

Using again Proposition 3.24, we know that for n large enough, P(E) ≥ 1− 1/n2. We conclude that for
n large enough, it holds with probability at least 1− 5/n2,

∥G∗ − Ĝ∥F ≤ D3

(
n

log2(n)

) −s
2s+d−1

,

for some constant D3 > 0 that depends on ∆∗, d and on constants related to the Markov chain (Xi)i≥1

(see Theorem 3.20 for details).

3.10.4.1 Proof of Proposition 3.24

First part of the proof Let us consider γ > 0.

Using the concentration of spectral norm for random matrices with independent entries from Bandeira
and van Handel [2016], there exists a universal constant C0 such that

P

(
∥Tn − T̂n∥ ≤

3
√
2D0

n
+ C0

√
log n/γ

n

)
≤ γ,

where denoting Y = Tn − T̂n, we define D0 := max1≤i≤n
∑n
j=1 Yi,j (1− Yi,j) . We deduce that for n

large enough, it holds with probability at least 1− γ/4,

∥Tn − T̂n∥ ≤
(∆∗)2

2
13
2

√
d
. (3.36)

Using now Theorem 3.2, it holds with probability at least 1− γ/4 for n large enough

δ2 (λ(Tn), λ(TW )) ≤ C
(
log2 n

n

) s
2s+d−1

≤ ∆∗

8
. (3.37)

Putting together Eq.(3.36) and Eq.(3.37), we deduce that for n large enough,

P (E) ≥ 1− γ/2.

Second part of the proof In the following, we work on the event E . Since ∆∗ > 0 by assumption, we
get that p∗1 = λ∗1 = · · · = λ∗d is the only eigenvalue of TW with multiplicity d. Indeed, all eigenvalue p∗k
with k > d has multiplicity dk > d and p∗0 has multiplicity 1. Moreover, from Eq.(3.37), we have that
there exists a unique set of d eigenvalues of Tn, denoted λi1 , λi2 , . . . , λid , such that they are at a distance
least 3∆∗/4 away from the other eigenvalues, i.e.

∆ := min
ν1∈λ(Tn)\{λi1 ,λi2 ,...,λid

}
max

ν2∈{λi1
,λi2

,...,λid
}
|ν1 − ν2| ≥

3∆∗

4
. (3.38)

Let us form the matrix V ∈ Rn×d where the k-th column is the eigenvector of Tn associated with the
eigenvalue λik . We denote further G := V V ⊤/d. Let V̂ ∈ Rn×d be the matrix with columns corre-
sponding to the eigenvectors associated to eigenvalues λ̂i1 , λ̂i2 , . . . , λ̂id of T̂n and Ĝ := V̂ V̂ ⊤/d. Using
Theorem 3.26 there exists some orthonormal matrix O ∈ Rd×d such that

∥V O − V̂ ∥F ≤
2

3
2 min{

√
d∥Tn − T̂n∥, ∥Tn − T̂n∥F }

∆
.
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Denoting λsorti1
≥ λsorti2

≥ · · · ≥ λsortid
(resp. λ̂sorti1

≥ λ̂sorti2
≥ · · · ≥ λ̂sortid

) the sorted version of the
eigenvalues λi1 , λi2 , . . . , λid (resp. λ̂i1 , λ̂i2 , . . . , λ̂id ), we have[

d∑
k=1

(
λsortik

− λ̂sortik

)2]1/2
≤ ∥V V ⊤ − V̂ V̂ ⊤∥F (Hoffman-Wielandt inequality [Bhatia, 1996, Thm VI.4.1])

≤ 2∥V O − V̂ ∥F (using Lemma 3.25)

≤ 2
5
2 min{

√
d∥Tn − T̂n∥, ∥Tn − T̂n∥F }

∆

≤ 2
9
2 min{

√
d∥Tn − T̂n∥, ∥Tn − T̂n∥F }

3∆∗ (using Eq.(3.38)) (3.39)

≤ ∆∗/8. (using Eq.(3.36))

Using the triangle inequality, we get that

∆̂ := min
ν1∈λ(T̂n)\{λ̂i1

,λ̂i2
,...,λ̂id

}
max

ν2∈{λ̂i1
,λ̂i2

,...,λ̂id
}
|ν1 − ν2| ≥

∆∗

2
. (3.40)

We proved that on the event E , the eigenvalues in Λ1 := {λ̂i1 , . . . , λ̂id} are at distance at least ∆∗/2 from
the other eigenvalues of T̂n (cf. Eq.(3.40)) and are at distance at most ∆∗/8 of the eigenvalues λi1 , . . . , λid
of Tn. We could have done this analysis for different eigenvalues. Let us consider some k ≥ 0. Eq.(3.37)
shows that on the event E , there exists a set of dk eigenvalues of Tn which concentrate around p∗k and
such that it has diameter at most ∆∗/4. Weyl’s inequality (cf. [Bhatia, 1996, p.63]) proves that there exist
dk eigenvalues of T̂n that are at distance at most ∆∗/4 from p∗k. If we consider now a subset L ̸= Λ1 of
d eigenvalues of T̂n, then the previous analysis shows that there exists some eigenvalue λ̂ of T̂n which
is not in L and that is at distance at most ∆∗/4 from one eigenvalue in L. Using Eq.(3.38), we deduce
that Algorithm (HEiC) returns Ĝ = V̂ V̂ ⊤/d where the columns of V̂ correspond to the eigenvectors of
T̂n associated to the eigenvalues in Λ1.

3.10.4.2 Useful results

Lemma 3.25. Let A,B be two matrices in Rn×d then

∥AA⊤ −BB⊤∥F ≤ (∥A∥+ ∥B∥)∥A−B∥F .

If A⊤A = B⊤B = Id then
∥AA⊤ −BB⊤∥F ≤ 2∥A−B∥F .

Proof of Lemma 3.25.

∥AA⊤ −BB⊤∥F = ∥(A−B)A⊤ +B(A⊤ −B⊤)∥F
≤ ∥A(A−B)⊤∥F + ∥(B −A)B⊤∥F
≤ ∥(A⊗ Idn)vec(A−B)∥2 + ∥(Idd ⊗B)vec(A−B)⊤∥2
≤ (∥A⊗ Idn∥+ ∥Idd ⊗B∥) ∥A−B∥F
= (∥A∥+ ∥B∥)∥A−B∥F ,

where vec(·) represents the vectorization of a matrix that is its transformation into a column vector and
⊗ is the notation for the Kronecker product between two matrices.

Theorem 3.26. (Davis-Kahan Theorem, cf. [Yu et al., 2014]) Let Σ and Σ̂ be two symmetricRn×n matrices with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n respectively. For 1 ≤ r ≤ s ≤ n fixed, we assume
that min{λr−1 − λr, λs − λs+1} > 0 where λ0 := ∞ and λn+1 = −∞. Let d = s − r + 1 and V and V̂ two
matrices inRn×d with columns (vr, vr+1, . . . , vs) and (v̂r, v̂r+1, . . . , v̂s) respectively, such that Σvj = λjvj and
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Σ̂v̂j = λj v̂j . Then there exists an orthogonal matrix Ô in Rd×d such that

∥V̂ Ô − V ∥F ≤
23/2 min{

√
d∥Σ− Σ̂∥, ∥Σ− Σ̂∥F }

min{λr−1 − λr, λs − λs+1}
.

Lemma 3.27. Let B be a n× d matrix with full column rank. Then we have

∥BB⊤ −B(B⊤B)−1B⊤∥F = ∥Idd −B⊤B∥F .

Proof of Lemma 3.27. Using the cyclic property of the trace, we have

∥BB⊤ −B(B⊤B)−1B⊤∥2F
= ∥B

(
Idd − (B⊤B)−1

)
B⊤∥2F

= Tr
(
B
(
Idd − (B⊤B)−1

)
B⊤B

(
Idd − (B⊤B)−1

)
B⊤)

= Tr
(
B⊤B

(
Idd − (B⊤B)−1

)
B⊤B

(
Idd − (B⊤B)−1

))
= Tr

((
B⊤B − Idd

) (
B⊤B − Idd

))
= ∥Idd −B⊤B∥2F .

Theorem 3.28. (cf. [Bhatia, 1996, ThmVII.3.4]) Let A and B be two normal operators and S1 and S2 two sets
separated by a strip of size δ. Let E be the orthogonal projection matrix of the eigenspaces of A with eigenvalues
inside S1 and F be the orthogonal projection matrix of the eigenspaces of B with eigenvalues inside S2. Then

∥EF∥F ≤
1

δ
∥E(A−B)F∥F ≤

1

δ
∥A−B∥F .

Lemma 3.29. (Ostrowski’s inequality) Let A ∈ Rn×n be a Hermitian matrix and S ∈ Rd×n be a general matrix
then

∥SAS⊤ −A∥F ≤ ∥A∥F × ∥S⊤S − Idn∥.

3.10.5 Proof of Proposition 3.12

Notice that for any i ∈ [n],

P (gi(D1:n) ̸= Ai,n+1) = E
[
1gi(D1:n )̸=Ai,n+1

]
= EE

[
1gi(D1:n )̸=Ai,n+1

| D1:n

]
,

and that

E
[
1gi(D1:n )̸=Ai,n+1

| D1:n

]
= E

[
1gi(D1:n)=11Ai,n+1=0 | D1:n

]
+ E

[
1gi(D1:n)=01Ai,n+1=1 | D1:n

]
= ηi(D1:n)1gi(D1:n)=0 + (1− ηi(D1:n))1gi(D1:n)=1,

which leads to

P (gi(D1:n) ̸= Ai,n+1) = E
[
ηi(D1:n)1gi(D1:n)=0 + (1− ηi(D1:n))1gi(D1:n)=1

]
.

By definition of the Bayes classifier g∗, we have for any i ∈ [n],

P (g∗i (D1:n) ̸= Ai,n+1)

= E
[
ηi(D1:n)1ηi(D1:n)<

1
2
+ (1− ηi(D1:n))1ηi(D1:n)≥ 1

2

]
= E

[
min {ηi(D1:n), 1− ηi(D1:n)}

(
1ηi(D1:n)≥ 1

2
+ 1ηi(D1:n)<

1
2

)]
= E [min {ηi(D1:n), 1− ηi(D1:n)}]
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Given another classifier g, we have for any i ∈ [n],

P (gi(D1:n) ̸= Ai,n+1)− P (g∗i (D1:n) ̸= Ai,n+1)

= E

[
ηi(D1:n)1gi(D1:n)=0 + (1− ηi(D1:n))1gi(D1:n)=1

−
(
ηi(D1:n)1g∗i (D1:n)=0 + (1− ηi(D1:n))1g∗i (D1:n)=1

) ]
= E

[
ηi(D1:n)

(
1gi(D1:n)=0 − 1g∗i (D1:n)=0

)
+ (1− ηi(D1:n))

(
1gi(D1:n)=1 − 1g∗i (D1:n)=1

) ]
= E

[
(2ηi(D1:n)− 1)

(
1g∗i (D1:n)=1 − 1gi(D1:n)=1

)]
,

where we used that g(D1:n) takes only the values 0 and 1, so that

1gi(D1:n)=0 − 1g∗i (D1:n)=0 =
(
1g∗i (D1:n)=1 − 1gi(D1:n)=1

)
.

Since

1g∗i (D1:n)=1 − 1gi(D1:n)=1 =


1 if g∗i (D1:n) = 1 and gi(D1:n) = 0

0 if g∗i (D1:n) = gi(D1:n)

−1 if g∗i (D1:n) = 0 and gi(D1:n) = 1

= 1g∗i (D1:n )̸=gi(D1:n) sgn(ηi(D1:n)− 1/2),

we deduce that

P (gi(D1:n) ̸= Ai,n+1)− P (g∗i (D1:n) ̸= Ai,n+1)

= 2E

[∣∣∣∣ηi(D1:n)−
1

2

∣∣∣∣× 1gi(D1:n) ̸=g∗i (D1:n)

]
,

which concludes the proof.
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Concentration inequality for U-statistics

Chapter Abstract

In this chapter, we prove a new concentration inequality for U-statistics of order two for uniformly er-
godic Markov chains. Contrary to previous works, we consider general state space and index-dependent
kernel functions that are not assumed to be symmetric or smooth. We provide examples of Markov
chains satisfying our conditions and we stress the importance for learning theory to work with index-
dependent kernels. We give first an Hoeffding-type bound that holds without any condition on the
initial distribution of the chain and we provide a Bernstein-type concentration result when the chain is
stationary.
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4.1 Introduction

Concentration of measure has been intensely studied during the last decades since it finds application
in large span of topics such as model selection (see Massart [2007] and Lerasle et al. [2016]), statistical
learning (see Clémençon et al. [2020]), online learning (see Wang et al. [2012]) or random graphs (see
Chapter 3). Important contributions in this field are those concerning U-statistics. A U-statistic of
order m is a sum of the form ∑

1≤i1<···<im≤n

hi1,...,im(Xi1 , . . . , Xim),

whereX1, . . . , Xn are independent random variables taking values in a measurable space (E,Σ) (withE
Polish) and with respective lawsPi and where hi1,...,im are measurable functions ofm variables hi1,...,im :
Em → R.
One important exponential inequality for U-statistics was provided by Arcones and Giné [1993] using
a Rademacher chaos approach. Their result holds for bounded and canonical (or degenerate) kernels,
namely satisfying for all i1, . . . , im ∈ [n] := {1, . . . , n}with i1 < · · · < im and for all x1, . . . , xm ∈ E,∥∥hi1,...,im∥∥∞ <∞ and ∀j ∈ [1, n] , EXj

[
hi1,...,im(x1, . . . , xj−1, Xj , xj+1, . . . , xm)

]
= 0 .

They proved that in the degenerate case, the convergence rates for U-statistics are expected to be nm/2.
Relying on precise moment inequalities of Giné et al. [2000] improved the result from Arcones and
Giné [1993] by providing the optimal four regimes of the tail, namely Gaussian, exponential, Weibull
of orders 2/3 and 1/2. In the specific case of order 2 U-statistics, Houdré and Reynaud-Bouret [2003]
recovered the result from Giné et al. [2000] by replacing the moment estimates by martingales type in-
equalities, giving as a by-product explicit constants. When the kernels are unbounded, it was shown
that some results can be extended provided that the random variables hi1,...,im(Xi1 , . . . , Xim) have suf-
ficiently light tails. One can mention [Eichelsbacher and Schmock, 2003, Theorem 3.26] where an expo-
nential inequality for U-statistics with a single Banach-space valued, unbounded and canonical kernel
is proved. Their approach is based on a decoupling argument originally obtained by de la Peña and
Montgomery-Smith [1995] and the tail behavior of the summands is controlled by assuming that the
kernel satisfies the so-called weak Cramér condition. It is now well-known that with heavy-tailed dis-
tribution for hi1,...,im(Xi1 , . . . , Xim) we cannot expect to get exponential inequalities anymore. Never-
theless working with kernels that have finite p-th moment for some p ∈ (1, 2], Joly and Lugosi in Joly
and Lugosi [2016] construct an estimator of the mean of the U-process using the median-of-means tech-
nique that performs as well as the classical U-statistic with bounded kernels.

All the above mentioned results consider that the random variables (Xi)i≥1 are independent. This con-
dition can be prohibitive for practical applications since modelization of real phenomena often involves
some dependence structure. The simplest and the most widely used tool to incorporate such depen-
dence is Markov chain. One can give the example of Reinforcement Learning (see Sutton and Barto
[2018]) or Biology (see Suchard et al. [2001]). Recent works provide extensions of the classical concen-
tration results to the Markovian settings as Adamczak [2008], Clémençon et al. [2020], Fan et al. [2021],
Jiang et al. [2018], Paulin [2015]. The asymptotic behaviour of U-statistics in the Markovian setup has
already been investigated by several papers. We refer to Bertail and Clémençon [2011] where the au-
thors proved a Strong Law of Large Numbers and a Central Limit Theorem proved for U-statistics of
order 2 using the renewal approach based on the splitting technique. One can also mention Eichelsbacher
and Schmock [2001] regarding large deviation principles. However, there are only few results for the
non-asymptotic behaviour of tails of U-statistics in a dependent framework. The first results were pro-
vided in Borisov and Volodko [2015] and Han [2018] where exponential inequalities for U-statistics of
order m ≥ 2 of time series under mixing conditions are proved. Those works were improved by Shen
et al. [2020] where a Hoeffding-type inequality for V and U-statistics is provided under conditions on
the time dependent process that are easier to check in practice. In Section 4.3.3.3, we describe in details
the result of Shen et al. [2020] and the differences with our work. Let us point out that all the above men-
tioned works regarding non-asymptotic tail bound for U-statistics in a dependent framework consider
a fixed kernel, namely h ≡ hi1,...,im for all i1, . . . , im. Our work is the first to consider time dependent
kernel functions which makes the theoretical analysis more challenging since the standard splitting
method can be unworkable (cf. Section 4.2.5). In Section 4.3.3.4 and 4.3.3.5, we stress the importance
of working with index-dependent kernels for practical applications and show on specific examples that
one can reach significantly faster convergence rates with this approach.
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For the first time, we provide in this thesis a Bernstein-type concentration inequality for U-statistics of
order 2 in a dependent framework with kernels that may depend on the indexes of the sum and that
are not assumed to be symmetric or smooth. We work on a general state space with bounded kernels
that are π-canonical. This latter notion was first introduced in Fort et al. [2012] who proved a variance
inequality for U-statistics of ergodic Markov chains. Our Bernstein bound holds for stationary chains
but we provide a Hoeffding-type inequality without any assumption on the initial distribution of the
Markov chain.

4.1.1 Outline

In Section 4.2, we present and comment the assumptions under which our main results hold. In Sec-
tion 4.3.1, we define and comment the key quantities involved in our results and we present our ex-
ponential inequalities with Theorems 4.3 and 4.4 in Section 4.3.2. Section 4.3.3 is dedicated to discus-
sions where we give examples of Markov chains satisfying our assumptions and where we compare
our results with the independent case. The proofs of both Theorems are presented in Section 4.4. In
Section 4.5, we provide the proofs of some technical lemmas.

4.2 Assumptions and Notations

We consider a Markov chain (Xi)i≥1 with transition kernel P : E×E → R taking values in a measurable
space (E,Σ), and we introduce bounded functions hi,j : E2 → R. In this section, we describe the
different assumptions on the Markov chain (Xi)i≥1 and on the functions hi,j that we will consider in
Theorems 4.3 and 4.4 presented in the next section.

4.2.1 Uniform ergodicity

Assumption 1. The Markov chain (Xi)i≥1 is ψ-irreducible for some maximal irreducibility measure ψ on Σ
(see [Meyn and Tweedie, 1993, Section 4.2]). Moreover, there exist an integer m ≥ 1, δm > 0 and some
probability measure µ such that

∀x ∈ E, ∀A ∈ Σ, δmµ(A) ≤ Pm(x,A).

We denote by π the unique stationary distribution of the Markov chain (Xi)i≥1.

For the reader familiar with the theory of Markov chains, Assumption 1 states that the whole space E
is a small set which is equivalent to the uniform ergodicity of the Markov chain (Xi)i≥1 (see [Meyn and
Tweedie, 1993, Theorem 16.0.2]), namely there exist constants 0 < ρ < 1 and L > 0 such that

∥Pn(x, ·)− π∥TV ≤ Lρn, ∀n ≥ 0, π−a.e x ∈ E,

where π is the unique stationary distribution of the chain (Xi)i≥1 and where for any measure ω on (E,Σ),
∥ω∥TV := supA∈Σ |ω(A)| is the total variation norm of ω. From [Ferré et al., 2012, section 2.3]), we also
know that the Markov chain (Xi)i≥1 admits an absolute spectral gap 1 − λ > 0 with λ ∈ [0, 1) (thanks
to uniform ergodicity). We refer to A.3 or to [Fan et al., 2021, Section 3.1] for a reminder on the spectral
gap of Markov chains.

4.2.2 Upper-bounded Markov kernel

Assumption 2 can be read as a reverse Doeblin’s condition and allows us to achieve a change of measure
in expectations in our proof to work with i.i.d. random variables with distribution ν. As a result,
Assumption 2 is the cornerstone of our approach since it allows to decouple the U-statistic in the proof.

Assumption 2. There exist δM > 0 and some probability measure ν such that

∀x ∈ E, ∀A ∈ Σ, P (x,A) ≤ δMν(A).

Assumption 2 has already been used in the literature (see [Lindsten et al., 2015, Section 4.2]) and was
introduced in Del Moral and Guionnet [1999]. This condition can typically require the state space to be
compact as highlighted in Lindsten et al. [2015].
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Let us describe another situation where Assumption 2 holds. Consider that (E, ∥ · ∥) is a normed space
and that for all x ∈ E, P (x, dy) has density p(x, ·) with respect to some measure η on (E,Σ). We further
assume that there exists an integrable function u : E → R+ such that ∀x, y ∈ E, p(x, y) ≤ u(y).
Then considering for ν the probability measure with density u/∥u∥1 with respect to η and δM = ∥u∥1,
Assumption 2 holds.

4.2.3 Exponential integrability of the regeneration time

We introduce some additional notations which will be useful to apply Talagrand concentration re-
sult from Samson [2000]. Note that this section is inspired from Adamczak [2008] and [Meyn and
Tweedie, 1993, Theorem 17.3.1]. We assume that Assumption 1 is satisfied and we extend the Markov
chain (Xi)i≥1 to a new (so called split) chain (X̃n, Rn) ∈ E × {0, 1} (see [Meyn and Tweedie, 1993,
Section 5.1] for a reminder on the splitting technique), satisfying the following properties.

• (X̃n)n is again a Markov chain with transition kernel P with the same initial distribution as (Xn)n.
We recall that π is the stationary distribution on the E.

• if we define T1 = inf{n > 0 : Rnm = 1},

Ti+1 = inf{n > 0 : R(T1+···+Ti+n)m = 1},

then T1, T2, . . . are well defined and independent. Moreover T2, T3, . . . are i.i.d.

• if we define Si = T1 + · · ·+ Ti, then the “blocks”

Y0 = (X̃1, . . . , X̃mT1+m−1), and Yi = (X̃m(Si+1), . . . , X̃m(Si+1+1)−1), i > 0,

form a one-dependent sequence (i.e. for all i, σ((Yj)j<i) and σ((Yj)j>i) are independent). More-
over, the sequence Y1, Y2, . . . is stationary and if m = 1 the variables Y0, Y1, . . . are independent.
In consequence, for any measurable space (S,B) and measurable functions f : S → R, the vari-
ables

Zi = Zi(f) =

m(Si+1+1)−1∑
j=m(Si+1)

f(X̃j), i ≥ 1,

constitute a one-dependent sequence (an i.i.d. sequence ifm = 1). Additionally, if f is π-integrable
(recall that π is the unique stationary measure for the chain), then

E[Zi] = δ−1
m m

∫
fdπ.

• the distribution of T1 depends only on π, P , δm, µ, whereas the law of T2 only on P , δm and µ.

Remark. Let us highlight that (X̃n)n is a Markov chain with transition kernel P and same initial dis-
tribution as (Xn)n. Hence for our purposes of estimating the tail probabilities, we will identify (Xn)n
and (X̃n)n.
To derive a concentration inequality, we use the exponential integrability of the regeneration times
which is ensured if the chain is uniformly ergodic as stated by Proposition 4.2. A proof can be found in
Section 4.5.6.

Definition 4.1. For α > 0, define the function ψα : R+ → R+ with the formula ψα(x) = exp(xα) − 1.
Then for a random variable X , the α-Orlicz norm is given by

∥X∥ψα = inf {γ > 0 : E[ψα(|X|/γ)] ≤ 1} .

Proposition 4.2. If Assumption 1 holds, then

∥T1∥ψ1
<∞ and ∥T2∥ψ1

<∞, (4.1)

where ∥ · ∥ψ1
is the 1-Orlicz norm introduced in Definition 4.1. We denote τ := max(∥T1∥ψ1

, ∥T2∥ψ1
).
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4.2.4 π-canonical and bounded kernels

With Assumption 3, we introduce the notion of π-canonical kernel which is the counterpart of the canon-
ical property from Giné and Nickl [2016].

Assumption 3. Let us denote B(R) the Borel algebra on R. For all i, j ∈ [n], we assume that hi,j : (E2,Σ ⊗
Σ)→ (R,B(R)) is measurable and is π-canonical, namely

∀x, y ∈ E, Eπ[hi,j(X,x)] = Eπ[hi,j(X, y)] = Eπ[hi,j(x,X)] = Eπ[hi,j(y,X)].

This common expectation will be denoted by Eπ[hi,j ]. Moreover, we assume that for all i, j ∈ [n], ∥hi,j∥∞ <∞.

Remarks.
• A large span of kernels are π-canonical. This is the case of translation-invariant kernels which have
been widely studied in the Machine Learning community. Another example of π-canonical kernel is
a rotation invariant kernel when E = Sd−1 := {x ∈ Rd : ∥x∥2 = 1} with π also rotation invariant
(see De Castro et al. [2019] or Duchemin and De Castro [2022]).

• The notion of π-canonical kernels is the counterpart of canonical kernels in the i.i.d. framework (see
for example Houdré and Reynaud-Bouret [2003]). Note that we are not the first to introduce the notion
of π-canonical kernels working with Markov chains. In Fort et al. [2012], the authors provide a variance
inequality for U-statistics whose underlying sequence of random variables is an ergodic Markov Chain.
Their results holds for π-canonical kernels as stated with [Fort et al., 2012, Assumption A2].

• Note that if the kernels hi,j are not π-canonical, the U-statistic decomposes into a linear term and
a π-canonical U-statistic. This is called the Hoeffding decomposition (see [Giné and Nickl, 2016, p.176])
and takes the following form∑

i ̸=j

(
hi,j(Xi, Xj)− E(X,Y )∼π⊗π[hi,j(X,Y )]

)
=
∑
i ̸=j

h̃i,j(Xi, Xj)− Eπ
[
h̃i,j

]
+
∑
i̸=j

(
EX∼π [hi,j(X,Xj)]− E(X,Y )∼π⊗π [hi,j(X,Y )]

)
+
∑
i̸=j

(
EX∼π [hi,j(Xi, X)]− E(X,Y )∼π⊗π [hi,j(X,Y )]

)
,

where for all j, the kernel h̃i,j is π-canonical with

∀x, y ∈ E, h̃i,j(x, y) = hi,j(x, y)− EX∼π [hi,j(x,X)]− EX∼π [hi,j(X, y)] .

4.2.5 Additional technical assumption

In the case where the kernels hi,j depend on both i and j, we need Assumption 4.(ii) to prove Theo-
rem 4.3. Assumption 4.(ii) is a mild condition on the initial distribution of the Markov chain that is
used when we apply Bernstein’s inequality for Markov chains from Proposition 4.19.

Assumption 4. At least one of the following conditions holds.
(i) For all i, j ∈ [n], hi,j ≡ h1,j , i.e. the kernel function hi,j does not depend on i.
(ii) The initial distribution of the Markov chain (Xi)i≥1, denoted χ, is absolutely continuous with respect to the
stationary measure π and its density dχ

dπ has finite p-moment for some p ∈ (1,∞], i.e

∞ >

∥∥∥∥dχdπ
∥∥∥∥
π,p

:=


[∫ ∣∣∣dχdπ ∣∣∣p dπ]1/p if p <∞,

ess sup
∣∣∣dχdπ ∣∣∣ if p =∞.

In the following, we will denote q = p
p−1 ∈ [1,∞) (with q = 1 if p = +∞) which satisfies 1

p +
1
q = 1.

Assumption 4 is needed at one specific step of our proof where we need to bound with high probability

n∑
j=2

E
[∣∣ j−1∑
i=1

pi,j(Xi, X
′
j)
∣∣k], with ∀i, j, ∀x, y ∈ E, pi,j(x, y) := hi,j(x, y)− Eπ[hi,j ],
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and where (X ′
j)j≥1 are i.i.d. random variables with distribution ν from Assumption 2. In the case where

Assumption 4.(i) holds, we can use for any fixed j ∈ {2, . . . , n} the splitting method to decompose
the sum

∑j−1
i=1 pi,j(Xi, X

′
j) in different blocks whose lengths are given by the regeneration times of

the split chain. Thanks to Assumption 4.(i), those blocks are independent and we can use standard
concentration tools for sums of independent random variables. This approach is valid for any initial
distribution of the chain. However, if Assumption 4.(i) is not satisfied, the blocks used to decompose∑j−1
i=1 pi,j(Xi, X

′
j) are not independent and the splitting method can no longer be used. To bypass this

issue, we need a Bernstein-type concentration inequality for additive functionals of Markov chains with
time-dependent functions (see Proposition A.17 in Section 4.5.3). Proposition 4.19 is a straightforward
corollary of [Jiang et al., 2018, Theorem 1] and requires Assumption 4.(ii) to be satisfied. We refer to
Section 4.4.2 and in particular to Section 4.4.2.1 for further details.

4.3 Main results

4.3.1 Preliminary comments

Under the assumptions presented in Section 4.2, Theorem 4.3 and 4.4 provided in Section 4.3.2 give
exponential inequalities for the U-statistic

Ustat(n) =
∑

1≤i<j≤n

(hi,j(Xi, Xj)− E [hi,j(Xi, Xj)]) .

Theorem 4.3 provides an Hoeffding-type concentration result that holds without any (or mild) condition
on the initial distribution of the chain. By assuming that the chain (Xi)i≥1 is stationary (meaning that
X1 is distributed according to π), Theorem 4.4 gives a Bernstein-type concentration inequality and leads
to a better convergence rate compared to Theorem 4.3.
The proof of our main results relies on a martingale technique conducted by induction at depth tn :=

⌊r log n⌋ with r > 2 (log(1/ρ))
−1 (see the remark following Assumption 1 for the definition of ρ). With

the notations of Section 4.2, our concentration inequalities involve the following quantities

A :=2max
i,j
∥hi,j∥∞, C2

n :=

n∑
j=2

j−1∑
i=1

E
[
EX′∼ν [p

2
i,j(Xi, X

′)]
]
, (4.2)

B2
n :=max

[
max

0≤k≤tn
max
i

sup
x

n∑
j=i+1

EX′∼ν
(
EX∼Pk(X′,·) pi,j(x,X)

)2
,

max
0≤k≤tn

max
j

sup
y

j−1∑
i=1

EX̃∼π

(
EX∼Pk(y,·)pi,j(X̃,X)

)2 ]
, (4.3)

with the convention that P 0(y, ·) is the Dirac measure at point y ∈ E. In the following, we will refer
to those terms as tail weights for reasons that will become obvious after reading Section 4.3.2. Let us
comment those terms.

• Understanding of the origin of Bn. Bn involves supremums over k ranging from 0 to tn. The
terms in the supremum corresponding to some specific value of k arise in our proof at the k-th step
of our induction procedure (and will be denoted Bk in Section 4.4, so that Bn = sup0≤k≤tn Bk).

• Bounding Bn with uniform ergodicity. The uniform ergodicity of the Markov chain ensured by
Assumption 1 can allow to bound the tail weight Bn since for all x, y ∈ E and for all k ≥ 0,∣∣EX∼Pk(y,·)pi,j(x,X)

∣∣ ≤ sup
z
|hi,j(x, z)| × ∥P k(y, ·)− π∥TV.

• The case where ν = π and the independent setting
In the specific case where ν = π (which includes the independent setting), we get that

C2
n =

∑
i<j

E
{
VarX̃∼π

[
hi,j(Xi, X̃)|Xi

]}
,
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and using Jensen inequality that

B2
n ≤ max

[
sup
x,i

n∑
j=i+1

VarX̃∼π[hi,j(x, X̃)] , sup
y,j

j−1∑
i=1

VarX̃∼π[hi,j(X̃, y)]
]
.

Hence, C2
n and B2

n can be understood as variance terms that would tend to be larger as ν moves
away from π. Let us point out that in the independent setting, all terms for k ranging from 1 to
tn in the definition of B2

n vanish but the term corresponding to k = 0 does not since P 0(y, ·) is
the Dirac measure at y. We provide a detailed comparison of our results with known exponential
inequalities in the independent setting in Section 4.3.3.2.

• Bounding Bn and Cn: A way to read immediately the convergence rates in our main results
Using coarse bounds, one immediately gets that Bn ≤ A

√
n and Cn ≤ An. We prompt the

reader to keep in mind these bounds in order to directly see the rate of convergence and the
dominant terms in the inequalities from Section 4.3.2. These bounds can be significantly improved
for particular cases as done in the example presented in Section 4.3.3.5.

4.3.2 Exponential inequalities

We now state our first result Theorem 4.3 whose proof can be found in Section 4.4.1.1.

Theorem 4.3. Let n ≥ 2. We suppose Assumptions 1, 2 and 3 described in Section 4.2. There exist two
constants β, κ > 0 such that for any u > 0,

a) if Assumption 4.(i) is satisfied, it holds with probability at least 1− βe−u log(n),

Ustat(n) ≤ κ log(n)
( [
A log(n)

√
n
]√

u+
[
A+Bn

√
n
]
u+

[
2A
√
n
]
u3/2 +A

[
u2 + n

] )
,

b) if Assumption 4.(ii) is satisfied, it holds with probability at least 1− βe−u log(n),

Ustat(n) ≤ κ log(n)
( [

Cn +A log(n)
√
n
]√

u+
[
A+Bn

√
n
]
u+

[
2A
√
n
]
u3/2 +A

[
u2 + n

] )
.

Note that the kernels hi,j do not need to be symmetric and that we do not consider any assumption on
the initial measure of the Markov chain (Xi)i≥1 if the kernels hi,j do not depend on i (see Assumption 4).
By bounding coarsely Bn and Cn in Theorem 4.3 (respectively by

√
nA and nA), we get that there exist

constants β, κ > 0 such that for any u ≥ 1, it holds with probability at least 1− βe−u log n,

2

n(n− 1)
Ustat(n) ≤ κmax

i,j
∥hi,j∥∞ log n

{
u

n
+
[u
n

]2}
. (4.4)

In particular it holds
2

n(n− 1)
Ustat(n) = OP

(
log(n) log log n

n

)
,

where OP denotes stochastic boundedness. Up to a log(n) log log n multiplicative term, we uncover the
optimal rate of Hoeffding’s inequality for canonical U-statistics of order 2, see Joly and Lugosi [2016].
Taking a close look at the proof of Theorem 4.3 (and more specifically at Section 4.4.3), one can remark
that the same results hold if the U-statistic is centered with the expectations Eπ[hi,j ], namely for∑

1≤i<j≤n

(hi,j(Xi, Xj)− Eπ[hi,j ]) .

It is well-known that one can expect a better convergence rate when variance terms are small with a
Bernstein bound. The main limitation in Theorem 4.3 that prevents us from taking advantage of small
variances is the term at the extreme right on the concentration inequality of Theorem 4.3, namelyAn log n.
Working with the additional assumption that the Markov chain (Xi)i≥1 is stationary – meaning that the
initial distribution of the chain is the stationary distribution π – we are able to prove a Bernstein-type
concentration inequality as stated with Theorem 4.4. The proof of Theorem 4.4 is provided in Sec-
tion 4.4.1.2. Stationarity is only used to bound the remaining terms that were not already considered in
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the tn steps of our induction procedure (see Section 4.3.1 for the definition of tn). We refer to the proof
of Proposition 4.6.b) in Section 4.4.3 for details.

Theorem 4.4. We suppose Assumptions 1, 2 and 3 described in Section 4.2. We further assume that the Markov
chain (Xi)i≥1 is stationary. Then there exist two constants β, κ > 0 such that for any u > 0, it holds with
probability at least 1− βe−u log n,

Ustat(n) ≤ κ log(n)
( [
Cn +A log(n)

√
n
]√

u+
[
A+Bn

√
n
]
u+

[
2A
√
n
]
u3/2 +A

[
u2 + logn

] )
.

In case where Assumption 4.(i) holds, one can remove Cn in the previous inequality.

4.3.3 Discussion

4.3.3.1 Examples of Markov chains satisfying the Assumptions

Example 1: Finite state space. For Markov chains with finite state space, Assumption 2 holds trivially.
Hence, in such framework the result of Theorem 4.3 holds for any uniformly ergodic Markov chain. In
particular, this is true for any aperiodic and irreducible Markov chains using [Behrends, 2000, Lemma
7.3.(ii)].

Example 2: AR(1) process. Let us consider the process (Xn)n∈N on Rk defined by

X0 ∈ Rk and for all n ∈ N, Xn+1 = H(Xn) + Zn,

where (Zn)n∈N are i.i.d random variables in Rk and H : Rk → Rk is an application. Such a process
is called an auto-regressive process of order 1, noted AR(1). Assuming that the distribution of Z1 has
density fZ with respect to the Lebesgue measure on Rk (denoted λLeb), it is well-known that mild
regularity conditions on H and fZ ensure that the Markov chain (Xi)i≥1 is uniformly ergodic. These
conditions require in particular that both fZ and H are continuously differentiable with H bounded.
We refer to Doukhan and Ghindès [1980] for the full statement.
We denote BH := B(0, ∥H∥∞) the euclidean ball in Rk with radius ∥H∥∞ centered at 0. Assuming
that y 7→ sup{z∈BH}fZ(y − z) is integrable on Rk with respect to λLeb, we get that Assumption 2 holds
(see the remark following Assumption 2). The previous condition on fZ is for example satisfied for
Gaussian distributions. We deduce that Theorems 4.3 and 4.4 can be applied in such settings that are
typically found in nonlinear filtering problem (see [Del Moral and Guionnet, 1999, Section 4]).

Example 3: Arch process. Let us consider E = R. The ARCH model is

Xn+1 = H(Xn) +G(Xn)Zn+1,

where H and G are continuous functions, and (Zn)n are i.i.d. centered normal random variables with
variance σ2 > 0. Assuming that infx |G(x)| ≥ a > 0, we know that the Markov chain (Xn)n is irre-
ducible and aperiodic (see [Ango Nze, 1998, Lemma 1]). Assuming further that ∥H∥∞ ≤ b < ∞ and
that ∥G∥∞ ≤ c, we can show that Assumptions 1 and 2 hold. Let us first remark that the transition
kernel P of the Markov chain (Xn)n is such that for any x ∈ R, P (x, dy) has density p(x, ·) with respect
to the Lebesgue measure with

p(x, y) =
(
2πσ2

)−1
exp

(
− (y −H(x))2

2σ2G(x)2

)
.
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Defining for any y ∈ R,

gm(y) :=
1

2πσ2
×


exp

(
− (y−B)2

2σ2a2

)
if y < −b

exp
(
− 2B2

σ2a2

)
if |y| ≤ b

exp
(
− (y+B)2

2σ2a2

)
if y > b

and gM (y) :=
(
2πσ2

)−1 ×


exp

(
− (y+b)2

2σ2c2

)
if y < −b

1 if |y| ≤ b
exp

(
− (y−b)2

2σ2c2

)
if y > b

,

it holds gm(y) ≤ p(x, y) ≤ gM (y) for any x, y ∈ R. We deduce that considering δm = ∥gm∥1, δM = ∥gM∥1
and µ (resp. ν) with density gm/∥gm∥1 (resp. gM/∥gM∥1) with respect to the Lebesgue measure on R,
Assumptions 1 and 2 hold.

4.3.3.2 The independent setting

In the case where the random variables (Xi)i≥1 are independent, the tail weights involved in our expo-
nential inequality take the following form

C2
n =

n∑
j=2

j−1∑
i=1

E
[
pi,j(Xi, Xj)

2
]

and B2
n = max

sup
i,x

n∑
j=i+1

E
[
p2i,j(x,Xj)

]
, sup
j,y

j−1∑
i=1

E
[
p2i,j(Xi, y)

] ,
(4.5)

where we remind that all terms for k ∈ {1, . . . , tn} in the definition of B2
n in Eq.(4.3) vanish and it only

remains the contribution of terms for k = 0. In the independent setting, [Houdré and Reynaud-Bouret,
2003, Theorem 1] proved that for any u > 0, it holds with probability at least 1− 3e−u,

Ustat(n) ≤ Cn
√
u+ (Dn + Fn)u+Bnu

3/2 +Au2,

where A, Bn and Cn coincide with the tail weights of our work (see Eq.(4.5)). Let us comment the tail
weights involved in the different regimes of the tail behaviour.

• Sub-Gaussian. In Theorem 4.4, we recover the term Cn from Houdré and Reynaud-Bouret [2003]
and we suffer an additional A

√
n log n term.

• Sub-Exponential. Dn and Fn come from duality arguments in the proof of Houdré and Reynaud-
Bouret [2003]. We do not recover the counterpart of these terms in Theorem 4.4 since working with
dependent variables bring additional technical difficulties and the use for example of a decoupling
argument. Dn + Fn is replaced by A+Bn

√
n in our result.

• Sub-Weibull with parameter 2/3. While Houdré and Reynaud-Bouret [2003] find the quantity Bn
for the term u3/2, the counterpart in Theorem 4.4 is the worst case scenario since it always holds
Bn ≤ A

√
n.

• Sub-Weibull with parameter 1/2. We obtain the same behaviour for the sub-Weibull (with param-
eter 1/2) regime of the tail behaviour.

Let us also mention that Theorem 4.4 has an additive term A log2 n (that will not be dominant for stan-
dard choice of u). This term can be understood as a proof artefact and arises when we bound the re-
maining terms in the U-statistic that were not considered in our induction procedure. We finally point
out that our result involves additive log n factors (both in the tail bound and in the probability).

4.3.3.3 Connections with the literature

In this section, we describe the concentration inequality obtained in Shen et al. [2020] for U-statistics in a
dependent framework and we explain the differences with our work. We consider an integer n ∈ N\{0}
and a geometrically α-mixing sequence (Xi)i∈[n] (see [Shen et al., 2020, Section 2]) with coefficient

α(i) ≤ γ1 exp(−γ2i), for all i ≥ 1,
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where γ1, γ2 are two positive absolute constants. We consider a kernel h : Rd × Rd → R degenerate,
symmetric, continuous, integrable and satisfying for some q ≥ 1,

∫
R2d |Fh(u)|∥u∥q2du < ∞, where

Fh denotes the Fourier-transform of h. Then Eq.(2.4) from Shen et al. [2020] states that there exists a
constant c > 0 such that for any u > 0, it holds with probability at least 1− 6e−u

2

n(n− 1)
Ustat(n) ≤ 4c∥Fh∥L1

{
A1/2
n

u

n
+ c log4(n)

[u
n

]2}
, (4.6)

where A1/2
n = 4

(
64γ

1/3
1

1−exp(−γ2/3) +
log4(n)
n

)
and Ustat(n) =

∑
1≤i<j≤n (h(Xi, Xj)− Eπ[h]).

Shen et al. [2020] has the merit of working with geometrically α-mixing stationary sequences which
includes in particular geometrically (and hence uniformly) ergodic Markov chains (see [Jones, 2004,
p.6]). For the sake of simplicity, we presented the result of Shen et al. [2020] for U-statistics of order 2, but
their result holds for U-statistics of arbitrary order m ≥ 2. Nevertheless, they only consider state spaces
like Rd with d ≥ 1 and they work with a unique kernel h (i.e. hi1,...,im = h for any i1, . . . , im) which is
assumed to be symmetric continuous, integrable and that satisfies some smoothness assumption. On
the contrary, we consider general state spaces and we allow different kernels hi,j that are not assumed
to be symmetric or smooth. In addition, Theorem 4.4 is a Bernstein-type exponential inequality where
we can benefit from small variance terms, which is not the case for Shen et al. [2020]. We provide a
specific example in Section 4.3.3.5. Table 4.1 summarizes the main differences beteen our results and
the one from Shen et al. [2020].

Shen et al. [2020] Our work

State space Rd General

Bernstein bound? No Yes
Hoeffding bound

requires stationarity? Yes No

Order Arbitrary m m = 2

Dependence structure Mixing condition Uniform ergodicity

Assumptions on kernels Unique, symmetric, smooth Bounded

Table 4.1: Comparison between our concentration inequality and the existing literature.

4.3.3.4 Motivations for the study of time dependent kernels

In this section, we want to stress the importance of working with weighted U-statistics for practical
applications. In the following, we detail two specific examples borrowed from the fields of informa-
tion retrieval and of homogeneity tests. Note that one could find other applications such as in genetic
association (cf. Wei et al. [2016]) or for independence tests (cf. Shieh et al. [1994]).

Average-Precision Correlation. When we search the Internet, the browser computes a numeric score
on how well each object in the database matches the query, and rank the objects according to this value.
In order to evaluate the quality of this browser, a standard approach in the field of information retrieval
consists in comparing the ranking provided by the web search engine and the ranking obtained from
human labels (cf. Han and Qian [2018]). One way to measure how well both rankings are aligned is to
report the correlation between them. One of the most commonly used rank correlation statistic is the
Kendall’s τ . Considering a dataset of size n ∈ N ordered according to the human labels and denotingXi

the rank the browser gives to the i-th element, the Kendall’s τ is defined by

τKen :=
2

n(n− 1)

∑
i ̸=j

{
1Xi>Xj1i>j + 1Xi<Xj1i<j

}
− 1.

Since only the top ranking objects are shown to the user, it would be legitimate to penalize heavier
errors made on items having high rankings. The Kendall’s τ does not make such distinctions and new
correlation measurements have been popularized to address this issue. One of them is the so-called
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Average-Precision Correlation (cf. Yilmaz et al. [2008]) which is defined by

τAP :=
2

n− 1

n∑
j=2

∑j−1
i=1 1Xi<Xj

j − 1
− 1.

Note that τAP is a U-statistic where the kernels hi,j(x, y) :=
1x<y

j−1 depend on j. Let us point out that hi,j
do not depend on i so that Assumption 4.(i) holds.

Accounting for confounding covariates. U-statistics are powerful tools to compare the distributions
of random variables across two groups (say with labels 0 and 1) from samplesX1, . . . , Xn andXn+1, . . . , Xn+m.
The typical example is the Wilcoxon Rank Sum Test (WRST) based on the following U-statistic

n∑
i=1

m∑
j=1

h(Xi, Xn+j) where h(x, y) :=
1

2
1x<y +

1

2
1x≤y.

The WRST relies on the following idea: if the data is pooled and then ranked, the average rank of ob-
servations from each group should be the same. For any i ∈ [n + m], let Gi be the random variable
valued in {0, 1} allocating the i-th individual to one of the two groups. Note that the observed alloca-
tion (gi)i∈[n+m] is given by gi = 0 if and only if i ≤ n. When group membership is not assigned through
randomization, there may be confounding covariates Z (assumed to be observed) that can cause a spu-
rious association between outcome and group membership. In that case, we wish rather to test the null
hypothesis P(X ≤ t |G = 0, Z = z) = P(X ≤ t |Z = z). In Satten et al. [2018], the authors developed
such a test by working with the following adjusted U-statistics involving index-dependent kernels( ∑

i : gi=0

w(zi, gi)
∑

j : gj=1

w(zj , gj)
)−1 ∑

i : gi=0

∑
j : gj=1

h(Xi, Xj)w(zi, gi)w(zj , gj),

where the weights w(zi, gi) = (P(G = gi |Z = zi))
−1 can be estimated with a logistic regression.

4.3.3.5 Time dependent kernels and convergence rate

In this section, we consider a stationary Markov chain (Xi)i≥1 satisfying Assumptions 1, 2 and 3. We
study the case where there exist reals (ai,j)i,j∈N such that for all i, j ∈ N, hi,j = ai,jh for some π-
canonical kernel h : E2 → R. For simplicity, we consider that Eπh = 0 leading to pi,j = hi,j . Let us
consider the specific example where ai,j = |j − i|−1 for i ̸= j. In such setting, the coefficients ai,j ’s are
weighting each summand in the U-statistic: the larger |j − i|, the smaller is the contribution of the term
indexed by (i, j) in the sum. As a result, interpreting indexes as time steps, the ai,j ’s can be understood
as forgetting factors. Since

B2
n ≤ A2 max

{
max
i

n∑
j=i+1

|j − i|−2 , max
j

j−1∑
i=1

|j − i|−2
}
≤ A2

n∑
j=2

|j − 1|−2 ≤ A2π
2

6
,

and C2
n ≤ A2

n∑
j=2

j−1∑
i=1

|j − i|−2 ≤ A2
n∑
s=1

s

s2
≤ A2

(
1 +

∫ n

1

1

x
dx
)
≤ A2(1 + log n),

Theorem 4.4 ensures that there exist constants β, κ > 0 such that for any u ≥ 1 it holds with probability
at least 1− βe−u log n,

2

n(n− 1)
Ustat(n) ≤ κA log n

(
log(n)

√
u

n3/2
+
[u
n

]3/2
+
[u
n

]2)
.

In particular, with probability at least 1 − β logn
n we have 2

n(n−1)Ustat(n) ≤ 3κA log5/2 n
n3/2 . This conver-

gence rate improves significantly the one obtained from an Hoeffding-type concentration inequality
like Eq.(4.4) that would lead to Ustat(n) ≤ 2κA log3/2 n

n with probability at least 1− β logn
n .
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4.4 Proofs

4.4.1 Proofs of Theorems 4.3 and 4.4

Our proof is inspired from Houdré and Reynaud-Bouret [2003] where a Bernstein-type inequality is
shown for U-statistics of order 2 in the independent setting (note that the proof can also be found in
[Giné and Nickl, 2016, Section 3.4.3]). Their proof relies on the canonical property of the kernel functions
which endowed the U-statistic with a martingale structure. We want to use a similar argument and we
decompose Ustat(n) to recover the martingale property for each term (except for the last one). Consider-
ing for any l ≥ 1 the σ-algebra Gl = σ(X1, . . . , Xl), the notation El refers to the conditional expectation
with respect to Gl. Then we decompose Ustat(n) as follows,

Ustat(n) =M
(tn)
stat (n) +R

(tn)
stat (n), (4.7)

with M
(tn)
stat (n) =

tn∑
k=1

∑
i<j

(Ej−k+1[hi,j(Xi, Xj)]− Ej−k[hi,j(Xi, Xj)]) ,

R
(tn)
stat (n) =

∑
i<j

(Ej−tn [hi,j(Xi, Xj)]− E [hi,j(Xi, Xj)]) ,

and where tn is an integer that scales logarithmically with n. We recall that tn := ⌊r log n⌋ with r >

2 (log(1/ρ))
−1 where ρ ∈ (0, 1) is a constant characterizing the uniform ergodicity of the Markov chain

(see Assumption 1). By convention, we assume here that for all k < 1, Ek[·] := E[·]. Hence the first term
that we will consider is given by

Un =
∑

1≤i<j≤n

h
(0)
i,j (Xi, Xj−1, Xj),

where for all x, y, z ∈ E, h(0)i,j (x, y, z) = hi,j(x, z)−
∫
w
hi,j(x,w)P (y, dw).

We provide a detailed proof of a concentration result for Un by taking advantage of its martingale
structure. Reasoning by induction, we show that the tn − 1 following terms involved in the decom-
position (4.7) of Ustat(n) can be handled using a similar approach. Since the last term R

(tn)
stat (n) of the

decomposition (4.7) has not a martingale property, another argument is required. We deal withR(tn)
stat (n)

exploiting the uniform ergodicity of the Markov chain (Xi)i≥1 which is guaranteed by Assumption 1
(see [Roberts and Rosenthal, 2004, Theorem 8]).
The cornerstones of our approach are the following two propositions whose proofs are postponed to
Section 4.4.2 and Section 4.4.3 respectively.

Proposition 4.5. Let n ≥ 2. We keep the notations of Sections 4.2 and 4.3.1. We suppose Assumptions 1, 2
and 3 described in Section 4.2. There exist two constants β, κ > 0 such that for any u > 0,

a) if Assumption 4.(i) is satisfied, it holds with probability at least 1− βe−u log(n),

M
(tn)
stat (n) ≤ κ log(n)

( [
A
√
n log n

]√
u+

[
A+Bn

√
n
]
u+

[
2A
√
n
]
u3/2 +Au2

)
.

b) if Assumption 4.(ii) is satisfied, it holds with probability at least 1− βe−u log(n),

M
(tn)
stat (n) ≤ κ log(n)

( [
Cn +A

√
n log n

]√
u+

[
A+Bn

√
n
]
u+

[
2A
√
n
]
u3/2 +Au2

)
.

Proposition 4.6. Let n ≥ 2. We keep the notations of Sections 4.2 and 4.3.1. We suppose Assumptions 1, 2
and 3. Then

a) R(tn)
stat (n) ≤ A (2L+ ntn) .

b) if the Markov chain (Xi)i≥1 is stationary, R(tn)
stat (n) ≤ 2LA

(
1 + tn + t2n

)
.

4.4.1.1 Proof of Theorem 4.3

We suppose Assumptions 1, 2, 3 and 4.(i) (respectively 4.(ii)). From the decomposition (4.7) cou-
pled with Proposition 4.5.a) (respectively Proposition 4.5.b)) and Proposition 4.6.a), the result of Theo-
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rem 4.3.a) (respectively Theorem 4.3.b)) is straightforward.

4.4.1.2 Proof of Theorem 4.4

We suppose Assumptions 1, 2 and 3. We assume in addition that the Markov chain is stationary which
implies in particular that Assumption 4.(ii) holds. From the decomposition (4.7) coupled with Propo-
sition 4.5.b) and Proposition 4.6.b), the result of Theorem 4.4 is straightforward. Note that in case As-
sumption 4.(i) holds, the quantity Cn (involved in the sub-Gaussian regime of the tail) can be removed
from the inequality by simply using Proposition 4.5.a) rather than Proposition 4.5.b).

4.4.2 Proof of Proposition 4.5

Let us recall that Proposition 4.5 requires either a mild condition on the initial distribution of the Markov
chain or the fact that the kernels hi,j do not depend on i (see Assumption 4). One only needs to consider
different Bernstein concentration inequalities for sums of functions of Markov chains to go from one re-
sult to the other. In this section, we give the proof of Proposition 4.5 in the case where Assumption 4.(i)
holds. We specify the part of the proof that should be changed to get the result when hi,j may depend
on both i and j and when Assumption 4.(ii) holds. We make this easily identifiable using the symbol
�.

4.4.2.1 Concentration of the first term of the decomposition of the U-statistic

Martingale structure of the U-statistic. Defining Yj =
∑j−1
i=1 h

(0)
i,j (Xi, Xj−1, Xj), Un can be written

as Un =
∑n
j=2 Yj . Since

Ej−1[Yj ] = E[Yj | X1, . . . , Xj−1] = 0,

we know that (Uk)k≥2 is a martingale relative to the σ-algebras Gl, l ≥ 2. This martingale can be
extended to n = 0 and n = 1 by taking U0 = U1 = 0, G0 = {∅, E}, G1 = σ(X1). We will use the
martingale structure of (Un)n through the following Lemma.

Lemma 4.7. (cf. [Giné and Nickl, 2016, Lemma 3.4.6])
Let (Um, Gm),m ∈ N, be a martingale with respect to a filtration Gm such that U0 = U1 = 0. For each m ≥ 1
and k ≥ 2, define the angle brackets Akm = Akm(U) of the martingale U by

Akm =

m∑
i=1

Ei−1[(Ui − Ui−1)
k]

(and note Ak1 = 0 for all k). Suppose that for α > 0 and all i ≥ 1, E[eα|Ui−Ui−1|] <∞. Then(
ϵm := eαUm−

∑
k≥2 α

kAk
m/k!, Gm

)
, m ∈ N,

is a supermartingale. In particular, E[ϵm] ≤ E[ϵ1] = 1, so that, if Akm ≤ wkm for constants wkm ≥ 0 ; then

E[eαUm ] ≤ e
∑

k≥2 α
kwk

m/k!.

We will also use the following convexity result several times.

Lemma 4.8. [Giné and Nickl, 2016, page 179] For all θ1, θ2, ϵ ≥ 0, and for all integer k ≥ 1,

(θ1 + θ2)
k ≤ (1 + ϵ)k−1θk1 + (1 + ϵ−1)k−1θk2 .
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For all k ≥ 2 and n ≥ 1, we have using Assumption 3:

Akn =

n∑
j=2

Ej−1

[
j−1∑
i=1

h
(0)
i,j (Xi, Xj−1, Xj)

]k
≤ V kn :=

n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

h
(0)
i,j (Xi, Xj−1, Xj)

∣∣∣∣∣
k

=

n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

(
hi,j(Xi, Xj)− EX̃∼π[hi,j(Xi, X̃)] + EX̃∼π[hi,j(Xi, X̃)]− Ej−1[hi,j(Xi, Xj)]

)∣∣∣∣∣
k

=

n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

(pi,j(Xi, Xj) +mi,j(Xi, Xj−1))

∣∣∣∣∣
k

,

where pi,j(x, z) = hi,j(x, z)− Eπ[hi,j ] and mi,j(x, y) = Eπ[hi,j ]−
∫
z

hi,j(x, z)P (y, dz).

Using Lemma 4.8 with ϵ = 1/2, we deduce that

V kn ≤
n∑
j=2

Ej−1

(∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, Xj)

∣∣∣∣∣+
∣∣∣∣∣
j−1∑
i=1

mi,j(Xi, Xj−1)

∣∣∣∣∣
)k

≤
(
3

2

)k−1 n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, Xj)

∣∣∣∣∣
k

+ 3k−1
n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

mi,j(Xi, Xj−1)

∣∣∣∣∣
k

.

Let us remark that

n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

mi,j(Xi, Xj−1)

∣∣∣∣∣
k

=

n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

(
EX̃∼π[hi,j(Xi, X̃)]− Ej−1[hi,j(Xi, Xj)]

) ∣∣∣∣∣
k

=

n∑
j=2

∣∣∣∣∣
j−1∑
i=1

(
EX̃∼π[hi,j(Xi, X̃)]− Ej−1[hi,j(Xi, Xj)]

) ∣∣∣∣∣
k

=

n∑
j=2

∣∣∣∣∣Ej−1

[
j−1∑
i=1

(
EX̃∼π[hi,j(Xi, X̃)]− hi,j(Xi, Xj)

)]∣∣∣∣∣
k

≤
n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

(
EX̃∼π[hi,j(Xi, X̃)]− hi,j(Xi, Xj)

) ∣∣∣∣∣
k

,

where the last inequality comes from Jensen’s inequality. We obtain the following upper-bound for V kn ,

V kn ≤ 2× 3k−1
n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, Xj)

∣∣∣∣∣
k

≤ 2× 3k−1δM

n∑
j=2

EX′
j

∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, X
′
j)

∣∣∣∣∣
k

,

where the random variables (X ′
j)j are i.i.d. with distribution ν (see Assumption 2). EX′

j
denotes the

expectation on the random variable X ′
j .

Lemma 4.9. (cf. [Giné and Nickl, 2016, Ex.1 Section 3.4]) Let Zj be independent random variables with respec-
tive probability laws Pj . Let k > 1, and consider functions f1, . . . , fN where for all j ∈ [N ], fj ∈ Lk(Pj). Then
the duality of Lp spaces and the independence of the variables Zj imply that N∑

j=1

E
[
|fj(Zj)|k

]1/k

= sup∑N
j=1 E|ξj(Zj)|k/(k−1)=1

N∑
j=1

E [fj(Zj)ξj(Zj)] ,

where the sup runs over ξj ∈ Lk/(k−1)(Pj).
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Then by the duality result of Lemma 4.9,

(
V kn
)1/k ≤

2δM × 3k−1
n∑
j=2

EX′
j

∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, X
′
j)

∣∣∣∣∣
k
1/k

≤ (2δM )
1/k

sup
ξ∈Lk

n∑
j=2

j−1∑
i=1

EX′
j

[
pi,j(Xi, X

′
j)ξj(X

′
j)

]

where Lk =

{
ξ = (ξ2, . . . , ξn) s.t. ∀2 ≤ j ≤ n, ξj ∈ Lk/(k−1)(ν) with

n∑
j=2

E|ξj(X ′
j)|k/(k−1) = 1

}
.

= (2δM )
1/k

sup
ξ∈Lk

n−1∑
i=1

n∑
j=i+1

EX′
j

[
pi,j(Xi, X

′
j)ξj(X

′
j)

]

Let us denote by F the subset of the set F(E,R) of all measurable functions from (E,Σ) to (R,B(R))
that are bounded by A. We set S := E × Fn−1. For all i ∈ [n], we define Wi by

Wi :=
(
Xi, 0, . . . , 0︸ ︷︷ ︸

(i−1) times

, pi,i+1(Xi, ·), pi,i+2(Xi, ·), . . . , pi,n(Xi, ·)
)
∈ S.

Hence for all i ∈ [n], Wi is σ(Xi)-measurable. We define for any ξ = (ξ2, . . . , ξn) ∈
∏n
i=2 L

k/(k−1)(ν) the
function

∀w = (x, p2, . . . , pn) ∈ S, fξ(w) =

n∑
j=2

∫
pj(y)ξj(y)dν(y).

Then setting F = {fξ :
∑n
j=2E|ξj(X ′

j)|k/(k−1) = 1}, we have

(V kn )
1/k ≤ (2δM )1/k sup

fξ∈F

n−1∑
i=1

fξ(Wi).

By the separability of the Lp spaces of finite measures, F can be replaced by a countable subset F0.
To upper-bound the tail probabilities of Un, we will bound the variable V kn on sets of large probability
using Talagrand’s inequality. Then we will use Lemma 4.7 on these sets by means of optional stopping.

Application of Talagrand’s inequality for Markov chains. The proof of Lemma 4.10 is provided in
Section 4.5.1 and relies mainly of the Talagrand’s inequality from [Samson, 2000, Theorem 3].

Lemma 4.10. Let us denote

Z = sup
fξ∈F

n−1∑
i=1

fξ(Wi), σ2
k = E

[
n−1∑
i=1

sup
fξ∈F

fξ(Wi)
2

]
and bk = sup

w∈S
sup
fξ∈F

|fξ(w)|.

Then it holds for any t > 0,

P (Z > E[Z] + t) ≤ exp

(
− 1

8∥Γ∥2
min

(
t2

4σ2
k

,
t

bk

))
,

where Γ is a n× n matrix defined in Section 4.5.1 which satisfies ∥Γ∥ ≤ 2L
1−ρ .

Using Lemma 4.10, we deduce that for any t > 0,

P
(
(V kn )

1/k ≥ (2δM )1/kE[Z] + (2δM )1/kt
)
≤ exp

(
− 1

8∥Γ∥2
min

(
t2

4σ2
k

,
t

bk

))
,

which implies that for any x ≥ 0,

P
(
(V kn )

1/k ≥ (2δM )1/kE[Z] + (2δM )1/k2σk
√
x+ (2δM )1/kbkx

)
≤ exp

(
− x

8∥Γ∥2

)
.
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Using the change of variable x = k8∥Γ∥2u with u ≥ 0 in the previous inequality leads to

P

( ∞⋃
k=2

(V kn )
1/k ≥ (2δM )1/kE[Z] + (2δM )1/kσk3∥Γ∥

√
ku+ (2δM )1/kk8∥Γ∥2bku

)
≤ 1.62e−u,

because

1 ∧
∞∑
k=2

exp (−ku) ≤ 1 ∧ 1

eu(eu − 1)
=

(
eu ∧ 1

eu − 1

)
e−u ≤ 1 +

√
5

2
e−u ≤ 1.62e−u.

Using Lemma 4.8 twice and using Holder inequality to bound bk and σ2
k, we obtain (4.9) from Lemma 4.11.

The proof of Lemma 4.11 is postponed to Section 4.5.2.

Lemma 4.11. For any u > 0, we denote

wkn := ((1 + ϵ)k−12δM (E[Z])
k
+ 2δM (1 + ϵ−1)2k−2

(
8∥Γ∥2

)k
(nA2)Ak−2(ku)k

+ (1 + ϵ)k−1(1 + ϵ−1)k−12δM (3∥Γ∥)kB2
0A

k−2(nku)k/2,

with B2
0 := max

[
max
i

∥∥ n∑
j=i+1

EX∼ν
[
p2i,j(·, X)

] ∥∥
∞, max

j

∥∥ j−1∑
i=1

EX∼π[p
2
i,j(X, ·)]

∥∥
∞

]
≤ B2

n, (4.8)

where the dependence in u of wkn is leaved implicit. Then it holds

P
(
V kn ≤ wkn ∀k ≥ 2

)
≥ 1− 1.62e−u. (4.9)

Bounding (E[Z])k.

�

The way we bound (E[Z])k is the only part of the proof that needs to be modified to get the
concentration result when Assumption 4.(i) or Assumption 4.(ii) holds. This is where we
can use different Bernstein concentration inequalities according to whether the splitting
method is applicable or not (see Section 4.2.5 for details). Here we present the approach
when hi,j ≡ h1,j , ∀i, j (i.e. when Assumption 4.(i) is satisfied). We refer to Section 4.5.3
for the details regarding the way we bound (EZ)k when Assumption 4.(ii) holds.

Using Jensen inequality and Lemma 4.9, we obtain

(E[Z])k ≤ E[Zk] = E


 sup
ξ∈Lk

n−1∑
i=1

n∑
j=i+1

EX′
j
[pi,j(Xi, X

′
j)ξj(X

′
j)]

k


= E

 n∑
j=2

EX′
j

∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, X
′
j)

∣∣∣∣∣
k
 =

n∑
j=2

E

∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, X
′
j)

∣∣∣∣∣
k
 ,

where we recall that EX′
j

denotes the expectation on the random variable X ′
j . One can remark that

conditionally to X ′
j , the quantity

∑j−1
i=1 pi,j(Xi, X

′
j) is a sum of function of the Markov chain (Xi)i≥1.

Hence to control this term, we apply a Bernstein inequality for Markov chains.
Let us consider some j ∈ [n] and some x ∈ E. Using the notations of Section 4.2.3, we define

∀l ∈ {0, . . . , n}, Zjl (x) =

m(Sl+1+1)−1∑
i=m(Sl+1)

pi,j(Xi, x).

By convention, we set pi,j ≡ 0 for any i ≥ j. Let us consider Nj = sup{i ∈ N : mSi+1 +m− 1 ≤ j − 1}.
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Then using twice Lemma 4.8, we have

∣∣ j−1∑
i=1

pi,j(Xi, x)
∣∣k =

∣∣ Nj∑
l=0

Zjl (x) +

j−1∑
i=m(SNj

+1)

pi,j(Xi, x)
∣∣k (4.10)

≤
(
3

2

)k−1 ∣∣ Nj∑
l=1

Zjl (x)
∣∣k + 3k−1

∣∣ j−1∑
i=m(SNj

+1)

pi,j(Xi, x)
∣∣k

≤
(
9

4

)k−1 ∣∣ ⌊Nj/2⌋∑
l=0

Zj2l(x)
∣∣k + (9

2

)k−1 ∣∣ ⌊(Nj−1)/2⌋∑
l=0

Zj2l+1(x)
∣∣k + 3k−1

∣∣ j−1∑
i=m(SNj

+1)

pi,j(Xi, x)
∣∣k. (4.11)

We have |
∑j−1
i=m(SNj

+1) pi,j(Xi, x)| ≤ AmTNj+1. So using the definition of the Orlicz norm and the fact
that the random variables (Ti)i≥2 are i.i.d., it holds for any t ≥ 0,

P

∣∣∣∣∣∣
j−1∑

i=m(SNj
+1)

pi,j(Xi, x)

∣∣∣∣∣∣ ≥ t
 ≤ P(TNj+1 ≥

t

Am
) ≤ P(max(T1, T2) ≥

t

Am
)

≤ P(T1 ≥
t

Am
) + P(T2 ≥

t

Am
) ≤ 4 exp(− t

Amτ
).

Hence, using that for an exponential random variable G with parameter 1, E[Gp] = p! ∀p ≥ 0,

E


∣∣∣∣∣∣

j−1∑
i=m(SNj

+1)

pi,j(Xi, x)

∣∣∣∣∣∣
k
 = 4

∫ +∞

0

P


∣∣∣∣∣∣

j−1∑
i=m(SNj

+1)

pi,j(Xi, x)

∣∣∣∣∣∣
k

≥ t

 dt

≤ 4

∫ +∞

0

exp(− t1/k

Amτ
) ≤ 4(Amτ)k

∫ +∞

0

exp(−v)kvk−1dv = 4(Amτ)kk!,

The random variable Zj2l(x) is σ(Xm(S2l+1), . . . , Xm(S2l+1+1)−1)-measurable. Let us insist that this holds
because we consider that hi,j ≡ h1,j , ∀i, j which implies that pi,j ≡ p1,j , ∀i, j. Hence for any x ∈
E, the random variables (Zj2l(x))l are independent (see Section 4.2.3). Moreover, one has that for
any l, E[Zj2l(x)] = 0. This is due to [Meyn and Tweedie, 1993, Eq.(17.23) Theorem 17.3.1] together
with Assumption 3 which gives that ∀x′ ∈ E, EX∼π[pi,j(X,x

′)] = 0. Let us finally notice that for
any x ∈ E and any l ≥ 0, |Zj2l(x)| ≤ AmT2l+1, so ∥Zj2l(x)∥ψ1 ≤ Ammax(∥T1∥ψ1 , ∥T2∥ψ1) ≤ Amτ . First,
we use Lemma 4.12 to obtain that

E

∣∣∣∣∣∣
⌊Nj/2⌋∑
l=0

Zj2l(x)

∣∣∣∣∣∣
k

≤ E max
0≤s≤n−1

∣∣∣∣∣
s∑
l=0

Zj2l(x)

∣∣∣∣∣
k

≤ 2× 4kE

∣∣∣∣∣
n−1∑
l=0

Zj2l(x)

∣∣∣∣∣
k

,

where for the last inequality we gathered (4.13) with the left hand side of (4.12) from Lemma 4.12.

Lemma 4.12. (cf. [de la Pena and Giné, 2000, Lemma 1.2.6])
Let us consider some separable Banach space B endowed with the norm ∥ · ∥. Let Xi, i ≤ n, be independent

centeredB-valued random variables with norms Lp for some p ≥ 1 and let ϵi be independent Rademacher random
variables independent of the variables Xi. Then

2−pE

∥∥∥∥∥
n∑
i=1

ϵiXi

∥∥∥∥∥
p

≤ E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≤ 2pE

∥∥∥∥∥
n∑
i=1

ϵiXi

∥∥∥∥∥
p

, (4.12)

and Emax
k≤n

∥∥∥∥∥
k∑
i=1

Xi

∥∥∥∥∥
p

≤ 2p+1E

∥∥∥∥∥
n∑
i=1

ϵiXi

∥∥∥∥∥
p

(4.13)

Similarly, the random variables (Zj2l+1(x))l are independent and satisfy for any l, E[Zj2l+1(x)] = 0. With
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an analogous approach, we get that

E

∣∣∣∣∣∣
⌊(Nj−1)/2⌋∑

l=0

Zj2l+1(x)

∣∣∣∣∣∣
k

≤ E max
0≤s≤n−1

∣∣∣∣∣
s∑
l=0

Zj2l+1(x)

∣∣∣∣∣
k

≤ 2× 4kE

∣∣∣∣∣
n−1∑
l=0

Zj2l+1(x)

∣∣∣∣∣
k

.

Let us denote for any j ∈ [n], E|X′
j

the conditional expectation with respect to the σ-algebra σ(X ′
j).

Coming back to (4.11), we proved that

E|X′
j

∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, X
′
j)

∣∣∣∣∣
k

≤
(
9

4

)k−1

E|X′
j

∣∣∣∣∣∣
⌊Nj/2⌋∑
l=0

Zj2l(X
′
j)

∣∣∣∣∣∣
k

+

(
9

2

)k−1

E|X′
j

∣∣∣∣∣∣
⌊(Nj−1)/2⌋∑

l=0

Zj2l+1(X
′
j)

∣∣∣∣∣∣
k

+ 3k−1E|X′
j

∣∣∣∣∣∣
j−1∑

i=m(SNj
+1)

pi,j(Xi, X
′
j)

∣∣∣∣∣∣
k

≤ 2× 9kE|X′
j

∣∣∣∣∣
n−1∑
l=0

Zj2l+1(X
′
j)

∣∣∣∣∣
k

+ 2× 18kE|X′
j

∣∣∣∣∣
n−1∑
l=0

Zj2l(X
′
j)

∣∣∣∣∣
k

+ 4(3Amτ)kk!. (4.14)

It remains to bound the two expectations in (4.14). The two latter expectations will be controlled sim-
ilarly and we give the details for the first one. We use the following Bernstein’s inequality with the
sequence of random variables (Zj2l+1(x))l.

Lemma 4.13. (Bernstein’s ψ1 inequality, [Van Der Vaart and Wellner, 2013, Lemma 2.2.11] and the subsequent
remark).
If Y1, . . . , Yn are independent random variables such that EYi = 0 and ∥Yi∥ψ1 ≤ τ , then for every t > 0,

P

(∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− 1

K
min

(
t2

nτ2
,
t

τ

))
,

for some universal constant K > 0 (K = 8 fits).

We obtain

P

(∣∣∣∣∣
n−1∑
l=0

Zj2l+1(x)

∣∣∣∣∣ > t

)
≤ 2 exp

(
− 1

K
min

(
t2

nA2m2τ2
,

t

Amτ

))
.

We deduce that for any x ∈ E, any j ∈ [n] and any t ≥ 0,

E

∣∣∣∣∣
n−1∑
l=0

Zj2l+1(x)

∣∣∣∣∣
k
 =

∫ ∞

0

P

∣∣∣∣∣
n−1∑
l=0

Zj2l+1(x)

∣∣∣∣∣
k

> t

 dt = 2

∫ ∞

0

exp

(
− 1

K
min

(
t2/k

nA2m2τ2
,
t1/k

Amτ

))
dt.

Let us remark that t2/k

A2m2nτ2 ≤ t1/k

Amτ ⇔ t ≤ (nAτm)k. Hence for any j ∈ [n],

E

∣∣∣∣∣
n−1∑
l=0

Zj2l+1(X
′
j)

∣∣∣∣∣
k


≤ 2

∫ (nAτm)k

0

exp

(
− t2/k

KnA2m2τ2

)
dt+ 2

∫ ∞

0

exp

(
− t1/k

KAmτ

)
dt.

≤ 2

∫ n/K

0

exp (−v) k
2
vk/2−1

(√
Kn1/2Aτm

)k
dv + 2

∫ ∞

0

exp (−v) kvk−1(KAmτ)kdv.

≤ 2

∫ n/K

0

exp (−v) k
2
vk/2−1

(√
Kn1/2Aτm

)k
dv + 2k × (k − 1)!(KAmτ)k

≤ k
(√

Kn1/2Aτm
)k ∫ n/K

0

exp (−v) vk/2−1dv + 2k!(KAmτ)k,

where we used again that if G is an exponential random variable with parameter 1, then for any p ∈
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N, E[Gp] = p!. Since for any real l ≥ 1,∫ n
K

0

e−vvl−1dv =

+∞∑
r=0

(−1)r

r!

∫ n
K

0

vr+l−1dv =

+∞∑
r=0

(−1)r

r!

1

r + l

( n
K

)r+l
≤
( n
K

)l +∞∑
r=0

(−1)r

r!

1

l

( n
K

)r
≤

( nK )l

l
e−

n
K ,

we get that

k
(√

Kn1/2Aτm
)k ∫ n

K

0

exp (−v) vk/2−1dv ≤ 2
(√

Kn1/2Aτm
)k
e−n/K

( n
K

)k/2
= 2 (nAτm)

k
e−n/K .

Hence we proved that for some universal constant K > 1,

E

∣∣∣∣∣
n−1∑
l=0

Zj2l+1(x)

∣∣∣∣∣
k
 ≤ 2 (nAτm)

k
e−n/K + 2k!(KAmτ)k ≤ 4k!(KAmτ)k,

since for all k ≥ 2, e−n/K(n/K)k/(k!) ≤ 1. Using a similar approach, one can show the same bound for
the second expectation in (4.14). We proved that for some universal constant K > 1,

(E[Z])k ≤
n∑
j=2

E

E|X′
j

∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, X
′
j)

∣∣∣∣∣
k


≤ 2× 9k
n∑
j=2

E

E|X′
j

∣∣∣∣∣
n−1∑
l=0

Zj2l+1(X
′
j)

∣∣∣∣∣
k
+ 2× 18k

n∑
j=2

E

E|X′
j

∣∣∣∣∣
n−1∑
l=0

Zj2l(X
′
j)

∣∣∣∣∣
k
+ 4

n∑
j=2

(3Amτ)kk!

≤ 2n× 18k × 4k!(KAmτ)k + 4n(3Amτ)kk! = 16n× k!(KAmτ)k, (4.15)

where in the last inequality, we still call K the universal constant defined by 18K.

Upper-bounding Un using the martingale structure. Let

T + 1 := inf{l ∈ N : V kl ≥ wkn for some k ≥ 2}.

Then, the event {T ≤ l} depends only on X1, . . . , Xl for all l ≥ 1. Hence, T is a stopping time for the
filtration (Gl)l where Gl = σ((Xi)i∈[l]) and we deduce that UTl := Ul∧T for l = 0, . . . , n is a martingale
with respect to (Gl)l with UT0 = U0 = 0 and UT1 = U1 = 0. We remark that UTj − UTj−1 = Uj − Uj−1

if T ≥ j and zero otherwise, and that {T ≥ j} is Gj−1 measurable. Then, the angle brackets of this
martingale admit the following bound:

Akn(U
T ) =

n∑
j=2

Ej−1[(U
T
j − UTj−1)

k]

≤
n∑
j=2

Ej−1|Uj − Uj−1|k1T≥j =

n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

h(0)(Xi, Xj−1, Xj)

∣∣∣∣∣
k

1T≥j

=

n−1∑
j=2

V kj 1T=j + V kn 1T≥n ≤ wkn

n−1∑
j=2

1T=j + 1T≥n

 ≤ wkn,
since, by definition of T , V kj ≤ wkn for all k on {T ≥ j}. Hence, Lemma 4.7 applied to the martingale UTn
implies

EeαU
T
n ≤ exp

∑
k≥2

αk

k!
wkn

 .
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Also, since V kn is nondecreasing in n for each k, inequality (4.9) implies that

P(T < n) ≤ P
(
V kn ≥ wkn for some k ≥ 2

)
≤ 1.62e−u.

Thus we deduce that for all s ≥ 0,

P(Un ≥ s) ≤ P(UTn ≥ s, T ≥ n) + P(T < n) ≤ e−αs exp

∑
k≥2

αk

k!
wkn

+ 1.62e−u. (4.16)

The final step of the proof consists in simplifying exp
(∑

k≥2
αk

k! w
k
n

)
.

∑
k≥2

αk

k!
wkn = 2δM

∑
k≥2

αk

k!
(1 + ϵ)k−1(E[Z])k + 2δM

∑
k≥2

αk

k!
(2 + ϵ+ ϵ−1)k−1 (3∥Γ∥)kB2

0A
k−2(nku)k/2

+ 2δM
∑
k≥2

αk

k!
(1 + ϵ−1)2k−2

(
8∥Γ∥2

)k
(nA2)Ak−2(ku)k =: a1 + a2 + a3. (4.17)

Using the bound Eq.(4.15) obtained on (EZ)
k, Lemma 4.14 bounds the three sums a1, a2 and a3.

Lemma 4.14. exp
(∑

k≥2
αk

k! w
k
n

)
≤ exp

(
α2W 2

1−αc

)
where

W = 6
√
δM (1 + ϵ)1/2n1/2KAτm

+
√

2δM (2 + ϵ+ ϵ−1)1/23∥Γ∥B0

√
nu+

√
2δMA(1 + ϵ−1)8∥Γ∥2

√
neu,

and c = max

[
(1 + ϵ)KAτm , (2 + ϵ+ ϵ−1) (3∥Γ∥)A(nu)1/2 , (1 + ϵ−1)2

(
8∥Γ∥2

)
Aeu

]
.

Using the result from Lemma 4.14 in (4.16) and taking s = 2W
√
u+ cu and α =

√
u/(W + c

√
u) in this

inequality yields
P
(
Un ≥ 2W

√
u+ cu

)
≤ e−u + 1.62e−u ≤ (1 + e)e−u.

By taking ϵ = 1/2, we deduce that for any u ≥ 0, it holds with probability at least 1− (1 + e)e−u∑
i<j

h
(0)
j (Xi, Xj−1, Xj) ≤ 12

√
δMKAτm

√
nu+ 18

√
δM∥Γ∥B0

√
nu+ 100

√
δM∥Γ∥2A

√
neu3/2

+ 3KAτmu+ 27A∥Γ∥
√
nu3/2 + 72A∥Γ∥2eu2,

Denoting κ := max
(
12
√
δMKτm , 18

√
δM∥Γ∥, 100

√
δM∥Γ∥2e, 3Kτm, 72∥Γ∥2e

)
, we have with proba-

bility at least 1− (1 + e)e−u∑
i<j

h
(0)
j (Xi, Xj−1, Xj) ≤ κ

(
A
√
n
√
u+ (A+B0

√
n)u+ 2A

√
nu3/2 +Au2

)
.

4.4.2.2 Reasoning by descending induction with a logarithmic depth

As previously explained, we apply a proof similar to the one of the previous subsection on the tn :=

⌊r log n⌋ terms in the sum M
(tn)
stat (n) (see (4.7)), with r > 2 (log(1/ρ))

−1. Let us give the key elements to
justify such approach by considering the second term of the sum M

(tn)
stat (n), namely∑

i<j

(Ej−1 [hi,j(Xi, Xj)]− Ej−2 [hi,j(Xi, Xj)]) (4.18)

=

n−2∑
i=1

n∑
j=i+2

h
(1)
i,j (Xi, Xj−2, Xj−1)︸ ︷︷ ︸
=:U

(1)
n−1

+

n−1∑
i=1

{Ei [hi,i+1(Xi, Xi+1)]− Ei−1 [hi,i+1(Xi, Xi+1)]}︸ ︷︷ ︸
=:(∗)
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where h(1)i,j (x, y, z) =
∫
w
hi,j(x,w)P (z, dw) −

∫
w
hi,j(x,w)P

2(y, dw). Using McDiarmid’s inequality for
Markov chain (see [Paulin, 2015, Corollary 2.10 and Remark 2.11]), we obtain Lemma 4.15.

Lemma 4.15. Let us consider l ∈ {1, . . . , tn}. For any u > 0, it holds with probability at least 1− 2e−u,∣∣∣∣∣∣
n−1∑
i=1

(i+l)∧n∑
j=i+1

(Ej−l [hi,j(Xi, Xj)]− Ej−l−1 [hi,j(Xi, Xj)])

∣∣∣∣∣∣ ≤ 3Atn
√
tmixnu,

where tmix is the mixing time of the Markov chain and is given by

tmix := min

{
t ≥ 0 : sup

x
∥P t(x, ·)− π∥TV <

1

4

}
.

Lemma 4.15 allows to bound (∗) in (4.18) (by choosing l = 1). Now we aim at proving a concentration
result for the term

U
(1)
n−1 =

n−1∑
j=2

j−1∑
i=1

h
(1)
i,j (Xi, Xj−1, Xj),

using an approach similar to the one of the previous subsection.

• Martingale structure

Denoting Y (1)
j =

∑j−1
i=1 h

(1)
i,j (Xi, Xj−1, Xj), we have U (1)

n−1 =
∑n−1
j=2 Y

(1)
j which shows that (U (1)

n )n

is a martingale with respect to the σ-algebras (Gl)l. Indeed, we have Ej−1[Y
(1)
j ] = 0.

• Talagrand’s inequality To upper-bound (V kn )n, we split it as previously namely

V kn :=

n−1∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

h
(1)
i,j (Xi, Xj−1, Xj)

∣∣∣∣∣
k

=

n−1∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

(
I
(1)
i,j (Xi, Xj)− Ej−1[I

(1)
i,j (Xi, Xj)]

)∣∣∣∣∣
k

,

where I(1)i,j (x, z) =
∫
w
hi,j(x,w)P (z, dw). Using as previously Lemma 4.8 with ϵ = 1/2, we get

V kn =

n−1∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

(
I
(1)
i,j (Xi, Xj)− EX̃∼π[I

(1)
i,j (Xi, X̃)]

+ EX̃∼π[I
(1)
i,j (Xi, X̃)]− Ej−1[I

(1)
i,j (Xi, Xj)]

)∣∣∣∣∣
k

≤ (3/2)k−1
n−1∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

(
I
(1)
i,j (Xi, Xj)− EX̃∼π[I

(1)
i,j (Xi, X̃)]

) ∣∣∣∣∣
k

+ 3k−1
n−1∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

(
EX̃∼π[I

(1)
i,j (Xi, X̃)]− Ej−1[I

(1)
i,j (Xi, Xj)]

) ∣∣∣∣∣
k

.

Again, basic computations and Jensen’s inequality lead to

n−1∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

(
EX̃∼π[I

(1)
i,j (Xi, X̃)]− Ej−1[I

(1)
i,j (Xi, Xj)]

) ∣∣∣∣∣
k

=

n−1∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

p
(1)
i,j (Xi, Xj)

∣∣∣∣∣
k

,

where p(1)i,j (x, z) := I
(1)
i,j (x, z) − EX̃∼π[I

(1)
i,j (x, X̃)]. Hence, using Assumption 1 and Lemma 4.12
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exactly like in the previous section, we get (for (X ′
j)j i.i.d. with distribution ν)

V kn = 2× 3k−1
n−1∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

p
(1)
i,j (Xi, Xj)

∣∣∣∣∣
k

≤ 2× 3k−1δM

n−1∑
j=2

EX′
j

∣∣∣∣∣
j−1∑
i=1

p
(1)
i,j (Xi, X

′
j)

∣∣∣∣∣
k

.

Then, one can use the same duality trick to show that the V kn can be controlled using the supre-
mum of a sum of functions of the Markov chain (Xi)i≥1 using [Samson, 2000, Theorem 3].

• Bounding exp(wknα
k/k!)

The terms a2 and a3 (see Eq.(4.17)) can be bounded in a similar way. For the term a1, we only
need to show that p(1)i,j satisfies EXi∼π|p

(1)
i,j (Xi, z)] = 0, ∀z ∈ E in order to apply as previously a

Bernstein’s type inequality.

EXi∼π|p
(1)
i,j (Xi, z)] =

∫
xi

dπ(xi)

∫
w

hi,j(xi, w)P (z, dw)− EX∼πEX̃∼π[I
(1)
i,j (X, X̃)]

= Eπ[hi,j ]− Eπ[hi,j ] (Using Assumption 3)
= 0.

• Conclusion of the proof
Let us consider the quantities A1 and B1 defined as the counterparts of A and B0 (see (4.8)) by
replacing the functions (pi,j)i,j by

(
p
(1)
i,j

)
i,j

. One can easily see that A1 = A. Let us give details

about B1.

For any x ∈ E,

EX′∼ν

[
(p

(1)
i,j )

2(x,X ′)
]
=

∫
z

(
I
(1)
i,j (x, z)− EX̃∼π[I

(1)
i,j (x, X̃)]

)2
dν(z)

=

∫
z


∫
w

hi,j(x,w)P (z, dw)−
∫
w

hi,j(x,w)

∫
a

P (a, dw)dπ(a)︸ ︷︷ ︸
=dπ(w)


2

dν(z)

= EX′∼ν
[
EX∼P (X′,·)hi,j(x,X)− Eπ[hi,j ]

]2
,

and for any y ∈ E,

EX̃∼π

[
(p

(1)
i,j )

2(X̃, y)
]
=

∫
x

(
I
(1)
i,j (x, y)− EX̃∼π[I

(1)
i,j (x, X̃)]

)2
dπ(x)

=

∫
x


∫
w

hi,j(x,w)P (y, dw)−
∫
w

hi,j(x,w)

∫
a

P (a, dw)dπ(a)︸ ︷︷ ︸
=dπ(w)


2

dπ(x)

= EX̃∼π

[
EX∼P (y,·)hi,j(X̃,X)− Eπ[hi,j ]

]2
.

Hence we get that

B2
1 := max

max
i

∥∥∥∥∥∥
n∑

j=i+1

EX∼ν

[
(p

(1)
i,j )

2(·, X)
]∥∥∥∥∥∥

∞

, max
j

∥∥∥∥∥
j−1∑
i=1

EX∼π[(p
(1)
i,j )

2(X, ·)]

∥∥∥∥∥
∞

 ≤ B2
n, (4.19)



Chapter 4. Concentration inequality for U-statistics 131

where we recall that

B2
n = max

[
sup

0≤k≤tn
max
i

sup
x

n∑
j=i+1

EX′∼ν
[
EX∼Pk(X′,·)hi,j(x,X)− Eπ[hi,j ]

]2
,

sup
0≤k≤tn

max
j

sup
y

j−1∑
i=1

EX̃∼π

[
EX∼Pk(y,·)hi,j(X̃,X)− Eπ[hi,j ]

]2 ]
.

This allows us to get a concentration inequality similar to the one of the previous subsection,
namely for any u > 0, it holds with probability at least 1− (1 + e)e−u,

n−2∑
i=1

n−1∑
j=i+1

h
(1)
i,j (Xi, Xj−1, Xj) ≤ κ

(
A
√
n
√
u+ (A+Bn

√
n)u+ 2A

√
nu3/2 +Au2

)
Going back to (4.18) and using Lemma 4.15, we get that for any u > 0, it holds with probability at
least 1− (1 + e+ 2)e−u,∑

i<j

(Ej−1 [hi,j(Xi, Xj)]− Ej−2 [hi,j(Xi, Xj)])

≤ κ
(
A
√
n
√
u+ (A+Bn

√
n)u+ 2A

√
nu3/2 +Au2

)
+ 3Atn

√
tmixnu (4.20)

One can do the same analysis for the tn first terms in the decomposition (4.7). Still denoting κ the
constant κ+ 3

√
tmix, we get that for any u > 0 it holds with probability at least 1− (3 + e)e−utn,

M
(tn)
stat (n) ≤ κtn

(
Atn
√
n
√
u+ (A+Bn

√
n)u+ 2A

√
nu3/2 +Au2

)
.

4.4.3 Proof of Proposition 4.6

In the following, we assume that tn ≤ n, otherwise R(tn)
stat (n) is an empty sum. Using our convention

which states that for all k < 1, Ek[·] := E[·], we need to control

∣∣∣R(tn)
stat (n)

∣∣∣ =
∣∣∣∣∣∣
∑
i<j

(Ej−tn [hi,j(Xi, Xj)]− E [hi,j(Xi, Xj)])

∣∣∣∣∣∣ ≤ (1) + (2), (4.21)

with denoting Hi,j = Ej−tn [hi,j(Xi, Xj)]− E [hi,j(Xi, Xj)] ,

(1) :=

∣∣∣∣∣∣
n−tn∑
i=1

n∑
j=i+tn

Hi,j

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=tn+1

j−tn∑
i=1

Hi,j

∣∣∣∣∣∣
and (2) :=

∣∣∣∣∣∣
n−1∑
i=1

(i+tn−1)∧n∑
j=i+1

Hi,j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n∑
j=2

j−1∑
i=(j−tn+1)∨1

Hi,j

∣∣∣∣∣∣ .
We start by bounding the term (1) regardless of the initial distribution of the chain. We will bound in
different ways the term (2) depending on whether the Markov chain is stationary or not. Let us first
bound the term (1) splitting it into two terms,

(1) =

∣∣∣∣∣∣
n∑

j=tn+1

j−tn∑
i=1

Ej−tn [hi,j(Xi, Xj)]− E [hi,j(Xi, Xj)]

∣∣∣∣∣∣ ≤ (1a) + (1b).
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Using Assumption 3, it holds Eπ[hi,j ] = EX̃∼π[hi,j(Xi, X̃)] =
∫
x
hi,j(Xi, x)dπ(x). Hence we get that

(1a) :=

∣∣∣∣∣∣
n∑

j=tn+1

j−tn∑
i=1

Ej−tn [hi,j(Xi, Xj)]− Eπ[hi,j ]

∣∣∣∣∣∣
≤

n∑
j=tn+1

∣∣∣∣∣
∫
xj

j−tn∑
i=1

hi,j(Xi, xj)
(
P tn(Xj−tn , dxj)− dπ(xj)

)∣∣∣∣∣
≤

n∑
j=tn+1

sup
xj

∣∣∣∣∣
j−tn∑
i=1

hi,j(Xi, xj)

∣∣∣∣∣ supz ∥P tn(z, ·)− π∥TV

≤
n∑

j=tn+1

sup
xj

∣∣∣∣∣
j−tn∑
i=1

hi,j(Xi, xj)

∣∣∣∣∣Lρtn ≤
n∑

j=tn+1

sup
xj

∣∣∣∣∣
j−tn∑
i=1

hi,j(Xi, xj)

∣∣∣∣∣L 1

n2
≤ LA,

where in the penultimate inequality we used that ρtn ≤ ρr log(n) = nr log(ρ) ≤ n−2 . Indeed 2+r log(ρ) <
0 because we choose r such that r > 2(log(1/ρ))−1.

Using again Assumption 3, it holds Eπ[hi,j ] =
∫
xi
χP i(dxi)

∫
x
hi,j(xi, x)dπ(x) where χ is the initial

distribution of the Markov chain (Xi)i≥1. We get that

(1b) :=

∣∣∣∣∣∣
n∑

j=tn+1

j−tn∑
i=1

Eπ[hi,j ]− E [hi,j(Xi, Xj)]

∣∣∣∣∣∣
≤

n∑
j=tn+1

j−tn∑
i=1

∣∣∣∣∣
∫
xi

∫
xj

hi,j(xi, xj)χP
i(dxi)

(
P j−i(xi, dxj)− dπ(xj)

)∣∣∣∣∣
≤

n∑
j=tn+1

j−tn∑
i=1

∥hi,j∥∞
∫
xi

χP i(dxi)︸ ︷︷ ︸
=1

sup
z

∫
xj

∣∣P j−i(z, dxj)− dπ(xj)∣∣

≤
n∑

j=tn+1

j−tn∑
i=1

∥hi,j∥∞Lρj−i ≤
n∑

j=tn+1

j−tn∑
i=1

∥hi,j∥∞Lρtn ≤ LA,

where in the penultimate inequality we used that ρtn ≤ ρr log(n) = nr log(ρ) ≤ n−2 .

4.4.3.1 Bounding (2) without stationarity

Without assuming that the Markov chain is stationary, we bound coarsely (2) as follows

(2) =

∣∣∣∣∣∣
n∑
j=2

j−1∑
i=(j−tn+1)∨1

Ej−tn [hi,j(Xi, Xj)]− E [hi,j(Xi, Xj)]

∣∣∣∣∣∣ ≤ Antn.
This concludes the proof of Proposition 4.6.a) since we obtain, R(tn)

stat (n) ≤ A (2L+ ntn) .
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4.4.3.2 Bounding (2) with stationarity

Considering now that the chain is stationary, we split (2) into three different contributions.

(2) =

∣∣∣∣∣∣
n∑
j=2

j−1∑
i=(j−tn+1)∨1

Ej−tn [hi,j(Xi, Xj)]− E [hi,j(Xi, Xj)]

∣∣∣∣∣∣ ≤ (2a) + (2b) + (2c),

with (2a) :=

∣∣∣∣∣∣
n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

Ej−tn [hi,j(Xi, Xj)]− Eπ [hi,j ]

∣∣∣∣∣∣ ,
(2b) :=

∣∣∣∣∣∣
n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

Eπ [hi,j ]− E [hi,j(Xi, Xj)]

∣∣∣∣∣∣ ,
and (2c) :=

∣∣∣∣∣∣
n∑
j=2

j−1∑
i=(j−⌊ tn

2 ⌋+1)∨1

Ej−tn [hi,j(Xi, Xj)]− E [hi,j(Xi, Xj)]]

∣∣∣∣∣∣ .
� The only place where we use the stationarity of the chain is to bound the terms (2b) and (2c) by
writing that E[hi,j(Xi, Xj)] =

∫
xi

∫
xj
dπ(xi)P

j−i(xi, dxj). Both are bounded using similar ideas, that is
why we show here how to deal with (2b) and we postpone the proof of Lemma 4.16 to Section 4.5.5.

Lemma 4.16. It holds (2a) ≤ LAtn and (2c) ≤ 2LAt2n.

We show now how we deal with the term (2b).

(2b) :=

∣∣∣∣∣∣
n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

Eπ [hi,j ]− E [hi,j(Xi, Xj)]

∣∣∣∣∣∣
≤

n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

∣∣∣∣∣
∫
xi

∫
xj

hi,j(xi, xj)dπ(xi)
(
dπ(xj)− P j−i(xi, dxj)

)∣∣∣∣∣
≤

n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

∥hi,j∥∞
∫
xi

dπ(xi)︸ ︷︷ ︸
=1

sup
y

∫
xj

∣∣dπ(xj)− P j−i(y, dxj)∣∣︸ ︷︷ ︸
=supy ∥P j−i(y,·)−π∥TV

≤
n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

∥hi,j∥∞Lρj−i ≤
n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

∥hi,j∥∞Lρtn/2 ≤ LAtn,

where we used that ρtn/2 ≤ ρr log(n)/2 = nr log(ρ)/2 ≤ n−1 . Indeed 1+r log(ρ)/2 < 0 because we choose r
such that r > 2(log(1/ρ))−1. Coming back to Eq.(4.21), we deduce that R(tn)

stat (n) ≤ AL
(
2 + 2tn + 2t2n

)
which concludes the proof of Proposition 4.6.

4.5 Proofs of technical Lemmas

4.5.1 Proof of Lemma 4.10

In the section, we show that in the proof of Proposition 4.5, we can use the concentration inequality for
the supremum of an empirical process of [Samson, 2000, Theorem 3].
Let us consider the sequence of random variables W = (W1, . . . ,Wn) on the probability space (Ω,A,P)
taking values in the measurable space S = E × Fn−1 where F is the subset of the set F(E,R) of all
measurable functions from (E,Σ) to (R,B(R)) that are bounded by A. Note that

{0F(E,R)} ∪ {pi,j(x, ·) : x ∈ E, i, j ∈ [n]} ⊂ F.

We define P :=
{
D ∈ P(F ) : ∀i ∈ [n− 1],∀j ∈ {i+ 1, . . . , n}, f−1

i,j (D) ∈ Σ
}

where P(F ) is the power-
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set of F and where ∀i ∈ [n− 1], ∀j ∈ {i+ 1, . . . , n},

fi,j : (E,Σ)→ (F,P(F )) x 7→ pi,j(x, ·).

Then we have the following straightforward result.
Lemma 4.17. P is a σ-algebra on F .
In the following, we endow the space F with the σ-algebra P and we consider on S the product σ-
algebra given by S := σ ({C ×D2 × · · · ×Dn : C ∈ Σ, Dj ∈ P ∀j ∈ {2, . . . , n}}) .
For all i ∈ [n], we define Wi by

Wi :=
(
Xi, 0, . . . , 0︸ ︷︷ ︸

(i−1) times

, pi,i+1(Xi, ·), pi,i+2(Xi, ·), . . . , pi,n(Xi, ·)
)
.

Hence for all i ∈ [n], Wi is σ(Xi)-measurable. Let us consider for any i ∈ [n− 1],

Φi : (E,Σ)→ (S,S) such that ∀x ∈ E, Φi(x) =
(
x, 0F , . . . , 0F︸ ︷︷ ︸

(i−1) times

, pi,i+1(x, ·), . . . , pi,n(x, ·)
)
.

Then, one can directly see that for all i ∈ [n − 1], Wi = Φi(Xi) and by construction of P and S, Φi is
measurable. Indeed, each coordinate of Φi is measurable by construction of P and this ensures that Φi
is measurable thanks to the following Lemma.
Lemma 4.18. (cf. [Aliprantis and Border, 2006, Lemma 4.49]) Let (X,Σ), (X1,Σ1) and (X2,Σ2) be measurable
spaces, and let f1 : X → X1 and f2 : X → X2. Define f : X → X1 ×X2 by f(x) = (f1(x), f2(x)). Then
f : (X,Σ) → (X1 ×X2,Σ1 ⊗ Σ2) is measurable if and only if the two functions f1 : (X,Σ) → (X1,Σ1) and
f2 : (X,Σ)→ (X2,Σ2) are both measurable.

Then it holds for any i ∈ {2, . . . , n− 1} and any G ∈ S,

P (Wi ∈ G |Wi−1) = P (Φi(Xi) ∈ G |Wi−1) = P (Φi(Xi) ∈ G | Xi−1)

= P
(
Xi ∈ Φ−1

i (G) | Xi−1

)
= P

(
Xi−1,Φ

−1
i (G)

)
= [(Φi)#P (Xi−1, ·)] (G) , (4.22)

where (Φi)#P (Xi−1, ·) denotes the pushforward measure of the measure P (Xi−1, ·) by the measurable
map Φi. We deduce that Wi is non-homogeneous Markov chain. Moreover, (4.22) proves that the
transition kernel of the Markov chain (Wk)k from state i − 1 to state i is given by K(i−1,i) where for
all (x, p2, . . . , pn) ∈ S and for all G ∈ S,

K(i−1,i)((x, p2, . . . , pn), G) = [(Φi)#P (x, ·)] (G) .

One can easily generalize this notation. Let us consider some i, j ∈ [n] with i < j and let us denote
by K(i,j) the transition kernel of the Markov chain (Wk)k from state i to state j. Then for all x ∈ E, for
all p2, . . . , pn ∈ F and for all G ∈ S,

K(i,j)((x, p2, . . . , pn) , G) =
[
(Φj)#P

j−i(x, ·)
]
(G) ,

We introduce the mixing matrix Γ = (γi,j)1≤i,j≤n−1 where coefficients are defined by

γi,j := sup
wi∈S

sup
zi∈S
∥L(Wj |Wi = wi)− L(Wj |Wi = zi)∥TV.

For any w ∈ S = E × Fn−1, we denote by w(1) the first coordinate of the vector w. Hence, w(1) is an
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element of E. Then

γi,j = sup
wi∈S

sup
zi∈S

sup
G∈S

∣∣∣[(Φj)#P j−i(w(1)
i , ·)

]
(G)−

[
(Φj)#P

j−i(z
(1)
i , ·)

]
(G)
∣∣∣

= sup
wi∈S

sup
zi∈S

sup
G∈S

∣∣∣P j−i (w(1)
i ,Φ−1

j (G)
)
− P j−i

(
z
(1)
i ,Φ−1

j (G)
)∣∣∣

≤ sup
wi∈S

sup
zi∈S

sup
C∈Σ

∣∣∣P j−i (w(1)
i , C

)
− P j−i

(
z
(1)
i , C

)∣∣∣
= sup
xi∈E

sup
x′
i∈E

sup
C∈Σ

∣∣P j−i (xi, C)− P j−i (x′i, C)∣∣
= sup
xi∈E

sup
x′
i∈E
∥P j−i(xi, ·)− π(·) + π(·)− P j−i(x′i, ·)∥TV

≤ sup
xi∈E

∥P j−i(xi, ·)− π(·)∥TV + sup
x′
i∈E
∥P j−i(x′i, ·)− π(·)∥TV ≤ 2Lρj−i,

where in the first inequality we used that Φj : (E,Σ) → (S,S) is measurable and in the last inequality
we used the uniform ergodicity of the Markov chain (Xi)i≥1. We deduce that

∥Γ∥ ≤ 2L

∥∥∥∥∥Id +

n−1∑
l=1

ρlNl

∥∥∥∥∥ , Nl =
(
n
(l)
i,j

)
1≤i,j≤n−1

with n(l)i,j =

{
1 if j − i = l

0 otherwise.
.

Note that Nl is a nilpotent matrix of order l. Since for each 1 ≤ l ≤ n− 1, ∥Nl∥ ≤ 1, it follows from the
triangular inequality that

∥Γ∥ ≤ 2L

n−1∑
l=0

ρl ≤ 2L

1− ρ
.

To conclude the proof and get the concentration result stated in Lemma 4.10, one only needs to ap-
ply [Samson, 2000, Theorem 3] with the class of functions F and with the Markov chain (Wk)k. Let us
recall that F is defined by F = {fξ :

∑n
j=2E|ξj(X ′

j)|k/(k−1) = 1} where for any ξ = (ξ2, . . . , ξn) ∈∏n
i=2 L

k/(k−1)(ν),

∀w = (x, p2, . . . , pn) ∈ E × Fn−1, fξ(w) =

n∑
j=2

∫
pj(y)ξj(y)dν(y).

4.5.2 Proof of Lemma 4.11

Bounding bk. Using Hölder’s inequality we have,

bk = sup
w∈S

sup
fξ∈F

|fξ(w)| = sup
(p2,...,pn)∈Fn−1

sup
ξ∈Lk

n∑
j=2

E[pj(X
′
j)ξj(X

′
j)]

≤ sup
(p2,...,pn)∈Fn−1

sup∑n
j=2 E|ξj(X′

j)|k/(k−1)=1

n∑
j=2

(
E
∣∣pj(X ′

j)
∣∣k)1/k (E ∣∣ξj(X ′

j)
∣∣k/(k−1)

)(k−1)/k

≤ sup
(p2,...,pn)∈Fn−1

sup∑n
j=2 E|ξj(X′

j)|k/(k−1)=1

 n∑
j=2

E
∣∣pj(X ′

j)
∣∣k1/k n∑

j=2

E
∣∣ξj(X ′

j)
∣∣k/(k−1)

(k−1)/k

≤ sup
(p2,...,pn)∈Fn−1

 n∑
j=2

E
∣∣pj(X ′

j)
∣∣k1/k

≤ ((nA2)Ak−2)1/k,

where A := 2maxi,j ∥hi,j∥∞ which satisfies maxi,j ∥pi,j∥∞ ≤ A. Here, we used that F is the set of
measurable functions from (E,Σ) to (R,B(R)) bounded by A.
Bounding the variance.
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σ2
k = E

[
n−1∑
i=1

sup
fξ∈F

fξ(Wi)
2

]
=

n−1∑
i=1

E

 sup
ξ∈Lk

 n∑
j=i+1

EX′
j

[
pi,j(Xi, X

′
j)ξj(X

′
j)
]2


=

n−1∑
i=1

E


 sup
ξ∈Lk

∣∣∣∣∣∣
n∑

j=i+1

EX′
j

[
pi,j(Xi, X

′
j)ξj(X

′
j)
]∣∣∣∣∣∣
2
 ≤ n (B2

0A
k−2
)2/k

,

where the last inequality comes from the following (where we use twice Holder’s inequality),

sup
ξ∈Lk

∣∣∣∣∣∣
n∑

j=i+1

EX′
j

[
pi,j(Xi, X

′
j)ξj(X

′
j)
]∣∣∣∣∣∣

≤ sup
ξ∈Lk

n∑
j=i+1

(
EX′

j

∣∣pi,j(Xi, X
′
j)
∣∣k)1/k (E ∣∣ξj(X ′

j)
∣∣k/(k−1)

)(k−1)/k

≤ sup∑n
j=2 E|ξj(X′

j)|k/(k−1)=1

 n∑
j=i+1

EX′
j

∣∣pi,j(Xi, X
′
j)
∣∣k1/k n∑

j=i+1

EX′
j

∣∣ξj(X ′
j)
∣∣k/(k−1)

(k−1)/k

≤

 n∑
j=i+1

EX′
j

∣∣pi,j(Xi, X
′
j)
∣∣k1/k

≤
(
B2

0A
k−2
)1/k

, where B0 is defined in (4.8).

Using Lemma 4.8 twice and the bounds obtained on bk and σ2
k gives for u > 0,[

(2δM )1/kE[Z] + (2δM )1/kσk3∥Γ∥
√
ku+ (2δM )1/kk8∥Γ∥2bku

]k
≤

[
(2δM )1/kE[Z] + (2δM )1/k3∥Γ∥(B2

0A
k−2)1/k

√
nku+ (2δM )1/k8∥Γ∥2((nA2)Ak−2)1/kku

]k

≤ (1 + ϵ)k−12δM (E[Z])
k
+ (1 + ϵ−1)k−1

[
(2δM )1/k8∥Γ∥2((nA2)Ak−2)1/kku

+ (2δM )1/k3∥Γ∥(B2
0A

k−2)1/k
√
nku

]k
≤ (1 + ϵ)k−12δM (E[Z])

k
+ 2δM (1 + ϵ−1)2k−2

(
8∥Γ∥2

)k
(nA2)Ak−2(ku)k

+ (1 + ϵ)k−1(1 + ϵ−1)k−12δM (3∥Γ∥)kB2
0A

k−2(nku)k/2.

4.5.3 Bounding (E[Z])k under Assumption 4.(ii)

In this section, we only provide the part of the proof of Proposition 4.5 that needs to be modified to get
the result when the kernels hi,j depend on both i and j and when Assumption 4.(ii) holds. Keeping the
notations of the proof of Proposition 4.5, we only want to bound (E[Z])k (and thus a1) using a different
concentration result that can allow to deal with kernel functions hi,j that might depend on i. We will
use Proposition 4.19 which is proved in the Appendix A.5.2.

Proposition 4.19. (cf. Proposition A.17) Suppose that the sequence (Xi)i≥1 is a Markov chain satisfying As-
sumptions 1 and 4.(ii) with stationary distribution π and with an absolute spectral gap 1−λ > 0. Let us consider
some n ∈ N∗ and bounded real valued functions (fi)1≤i≤n such that for any i ∈ {1, . . . , n},

∫
fi(x)dπ(x) = 0

and ∥fi∥∞ ≤ c for some c > 0. Let σ2 =
∑n
i=1

∫
f2i (x)dπ(x)/n. Then for any 0 ≤ t < (1− λ)/(5cq),

Eχ

[
et

∑n
i=1 fi(Xi)

]
≤
∥∥∥∥dχdπ

∥∥∥∥
π,p

exp

(
nσ2

qc2
(etqc − tqc− 1) +

nσ2λqt2

1− λ− 5cqt

)
, (4.23)
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where q is the constant introduced in Assumption 4.(ii). Moreover for any u ≥ 0 it holds

P

(
1

n

n∑
i=1

fi(Xi) >
2quA1c

n
+

√
2quA2σ2

n

)
≤
∥∥∥∥dχdπ

∥∥∥∥
π,p

e−u.

where A2 := 1+λ
1−λ and A1 := 1

31λ=0 +
5

1−λ1λ>0.

Note that Proposition 4.19 is an extension of the Bernstein inequality from [Jiang et al., 2018, Theorem
1] where the authors only consider stationary chains. Following the approach used in [Fan et al., 2021,
Theorem 2.3], we show in Section A.5.2 that we can extend their result to obtain Proposition 4.19 by
working under the milder assumption Assumption 4.(ii). Let us recall that

(E[Z])k ≤ E[Zk] (Using Jensen’s inequality)

= E

( sup
fξ∈F

n−1∑
i=1

fξ(Xi)

)k = E


 sup
fξ∈F

n−1∑
i=1

n∑
j=i+1

Ej−1[pi,j(Xi, X
′
j)ξj(X

′
j)]

k


= E

 n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, X
′
j)

∣∣∣∣∣
k
 (using Lemma 4.9)

= E

 n∑
j=2

E|X′

∣∣∣∣∣
j−1∑
i=1

pi,j(Xi, X
′
j)

∣∣∣∣∣
k
 .

Thus we have

a1 =
2δM
1 + ϵ

E

n∑
j=2

(
E|X′

[
eα(1+ϵ)K|C(j)|

]
− α(1 + ϵ)KE|X′

[
|C(j)|

]
− 1

)
,

where C(j) =
∑j−1
i=1 pi,j(Xi, X

′
j) and where the notation E|X′ refers to the expectation conditionally to

the σ-algebra σ(X ′
2, . . . , X

′
n).

Now we use a symmetrization trick: since ex − x− 1 ≥ 0 for all x and since ea|x| + e−a|x| = eax + e−ax,
adding E|X′ [exp

(
−α(1 + ϵ)K|C(j)|

)
] + α(1 + ϵ)KE|X′ [|C(j)|]− 1 to a1 gives

a1 ≤
2δM
1 + ϵ

E

n∑
j=2

(
E|X′ [eα(1+ϵ)KC

(j)

]− 1 + E|X′ [e−α(1+ϵ)KC
(j)

]− 1

)
. (4.24)

Let us consider some j ∈ {2, . . . , n}. Conditionally on σ(X ′
2, . . . , X

′
n), C(j) is a sum of bounded func-

tions (by A) depending on the Markov chain. We denote

vj(X
′
j) =

j−1∑
i=1

EXi∼π[p
2
i,j(Xi, X

′
j)|X ′

j ] ≤ B2
0

and V =
∑n
j=2Ev

k
j (X

′
j) ≤ C2

nB
2(k−1)
0 (with C2

n =
∑n
j=2

∑j−1
i=1 E[p

2
i,j(Xi, X

′
j)]).

Remark that

EXi∼π[pi,j(Xi, X
′
j)|X ′

j ] = EXi∼π

[
hi,j(Xi, X

′
j)− EX̃∼π[hi,j(Xi, X̃)] | X ′

j

]
=

∫
x′

(∫
xi

(hi,j(xi, X
′
j)− hi,j(xi, x̃))dπ(xi)

)
dπ(x̃) = 0,

where the last equality comes from Assumption 3. We use the Bernstein inequality for Markov chain
(see Proposition 4.19). Notice from Taylor expansion that (1 − p/3)(ep − p − 1) ≤ p2/2 for all p ≥ 0.
Applying (4.23) with t = α(1+ ϵ)K and c = A, we get that for α < [(1+ ϵ)K

√
q(A
√
q/3+B0

√
3/2)]−1∧
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[(1− λ)−1/2(1 + ϵ)K
√
q
(
5A
√
q(1− λ)−1/2 +

√
3λB0

)
]−1,

E|X′ [eα(1+ϵ)K|C(j)|] ≤ 2

∥∥∥∥dχdπ
∥∥∥∥
π,p

× E|X′

[
exp

(
α2(1 + ϵ)2K2qvj(X

′
j)

2− 2Aqα(1 + ϵ)K/3
+
vj(X

′
j)λα

2(1 + ϵ)2K2q

1− λ− 5α(1 + ϵ)KAq

)]
.

Consideringα < [(1+ϵ)K
√
q(A
√
q/3+B0

√
3/2)]−1∧ [(1−λ)−1/2(1+ϵ)K

√
q
(
5A
√
q(1− λ)−1/2 +

√
3λB0

)
]−1, ϵ <

1 and using (4.24), this leads to

a1

2
∥∥∥dχdπ∥∥∥

π,p

≤ 2δM
1 + ϵ

n∑
j=2

E

[
exp

(
α2(1 + ϵ)2K2qvj(X

′
j)

2− 2Aqα(1 + ϵ)K/3
+
vj(X

′
j)λα

2(1 + ϵ)2K2q

1− λ− 5α(1 + ϵ)KAq

)
− 1

]

=
2δM
1 + ϵ

n∑
j=2

∞∑
k=1

1

k!

(
α2(1 + ϵ)2K2qvj(X

′
j)

2− 2Aqα(1 + ϵ)K/3
+
vj(X

′
j)λα

2(1 + ϵ)2K2q

1− λ− 5α(1 + ϵ)KAq

)k

=
2δM
1 + ϵ

n∑
j=2

∞∑
k=1

1

k!

(
3

2

)k−1
(
α2(1 + ϵ)2K2qvj(X

′
j)

2− 2Aqα(1 + ϵ)K/3

)k

+
2δM
1 + ϵ

n∑
j=2

∞∑
k=1

1

k!
3k−1

(
vj(X

′
j)λα

2(1 + ϵ)2K2q

1− λ− 5α(1 + ϵ)KAq

)k
(using Lemma 4.8)

≤ δM
3(1 + ϵ)

∞∑
k=1

3kα2k(1 + ϵ)2kK2kqkV

(4− 4Aqα(1 + ϵ)K/3)k
+

2δM
3(1 + ϵ)

∞∑
k=1

3kV λkα2k(1 + ϵ)2kK2kqk

(1− λ− 5α(1 + ϵ)KAq)
k

≤ δM
3(1 + ϵ)

∞∑
k=1

3kα2k(1 + ϵ)2kK2kqkC2
nB

2(k−1)
0

(2− 2Aqα(1 + ϵ)K/3)k
+

2δM
3(1 + ϵ)

∞∑
k=1

3kC2
nB

2(k−1)
0 λkα2k(1 + ϵ)2kK2kqk

(1− λ− 5α(1 + ϵ)KAq)
k

=
(1 + ϵ)C2

nα
2K2δMq

2− 2Aqα(1 + ϵ)K/3− 3α2(1 + ϵ)2K2B2
0q

+
2δMC

2
nλα

2(1 + ϵ)K2q

1− λ− 5α(1 + ϵ)KAq − 3B2
0λα

2(1 + ϵ)2K2q

=
(1 + ϵ)C2

nα
2K2δMq/2

1−Aqα(1 + ϵ)K/3− 3α2(1 + ϵ)2K2B2
0q/2

+
2δMC

2
nλα

2(1 + ϵ)K2q(1− λ)−1

1− 5(1− λ)−1α(1 + ϵ)KAq − 3B2
0λ(1− λ)−1α2(1 + ϵ)2K2q

≤ (1 + ϵ)C2
nα

2K2δMq/2

1− α(1 + ϵ)K
√
q(A
√
q/3 +B0

√
3/2)

+
2δMC

2
nλα

2(1 + ϵ)K2q(1− λ)−1

1− α(1− λ)−1/2(1 + ϵ)K
√
q
(
5A
√
q(1− λ)−1/2 +

√
3λB0

) .
From this bound on a1, one can follow the steps of the proof of Proposition 4.5 to conclude.

4.5.4 Proof of Lemma 4.14

Bounding a3. Using the inequality k! ≥ (k/e)k, we have,

a3 ≤ 2δM
∑
k≥2

αk(1 + ϵ−1)2k−2
(
8∥Γ∥2

)k
(nA2)Ak−2(eu)k

= 2δMα
2
[√
nA(1 + ϵ−1)8∥Γ∥2eu

]2∑
k≥2

αk−2(1 + ϵ−1)2(k−2)
(
8∥Γ∥2

)k−2
Ak−2(eu)k−2

=
2δMα

2
[√
nA(1 + ϵ−1)8∥Γ∥2eu

]2
1− α(1 + ϵ−1)2 (8∥Γ∥2)Aeu

, for α < ((1 + ϵ−1)2
(
8∥Γ∥2

)
Aeu)−1 .

Bounding a2. We use the inequality k! ≥ kk/2 because (k/e)k > kk/2 for k ≥ e2 and for k smaller, the
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inequality follows by direct verification. Hence,

a2 ≤ 2δM
∑
k≥2

αk(2 + ϵ+ ϵ−1)k−1 (3∥Γ∥)kB2
0A

k−2(nu)k/2

= 2δM (2 + ϵ+ ϵ−1)α2
[
3∥Γ∥B0

√
nu
]2∑
k≥2

αk−2(2 + ϵ+ ϵ−1)k−2 (3∥Γ∥)k−2
Ak−2(nu)(k−2)/2

=
2δM (2 + ϵ+ ϵ−1)α2 [3∥Γ∥B0

√
nu]

2

1− α(2 + ϵ+ ϵ−1) (3∥Γ∥)A(nu)1/2
, for α < ((2 + ϵ+ ϵ−1) (3∥Γ∥)A(nu)1/2)−1.

Bounding a1. Using the bound previously obtained for (E[Z])k we get,

a1 = 2δM
∑
k≥2

αk

k!
(1 + ϵ)k−1(E[Z])k ≤ 32δMn

∑
k≥2

αk(1 + ϵ)k−1(KAmτ)k

≤ 32δMnα
2(1 + ϵ)[KAmτ ]2

∑
k≥2

αk−2(1 + ϵ)k−2(KAmτ)k−2

≤ 32δMnα
2(1 + ϵ)[KAmτ ]2

1− α(1 + ϵ)KAmτ
, for 0 < α < ((1 + ϵ)KAmτ)−1.

4.5.5 Proof of Lemma 4.16

Using Assumption 3, we have that Eπ[hi,j ] =
∫
xi
P i−j+tn(Xj−tn , dxi)

∫
xj
hi,j(xi, xj)dπ(xj). Hence we

get,

(2a) :=

∣∣∣∣∣∣
n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

Ej−tn [hi,j(Xi, Xj)]− Eπ [hi,j ]

∣∣∣∣∣∣
≤

n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

∣∣∣∣∣
∫
xi

∫
xj

hi,j(xi, xj)P
i−j+tn(Xj−tn , dxi)

(
P j−i(xi, dxj)− dπ(xj)

)∣∣∣∣∣
≤

n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

∥hi,j∥∞
∫
xi

P i−j+tn(Xj−tn , dxi)︸ ︷︷ ︸
=1

sup
y

∫
xj

∣∣P j−i(y, dxj)− dπ(xj)∣∣︸ ︷︷ ︸
=supy ∥P j−i(y,·)−π∥TV

≤
n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

∥hi,j∥∞Lρj−i ≤
n∑
j=2

j−⌊ tn
2 ⌋∑

i=(j−tn+1)∨1

∥hi,j∥∞Lρtn/2 ≤ LAtn,

where we used that ρtn/2 ≤ ρr log(n)/2 = nr log(ρ)/2 ≤ n−1 . Indeed 1 + r log(ρ)/2 < 0 because we
choose r such that r > 2(log(1/ρ))−1. With an analogous approach, we bound the term (2c) as follows.

(2c) :=

∣∣∣∣∣∣
n∑
j=2

j−1∑
i=(j−⌊ tn

2 ⌋+1)∨1

Ej−tn [hi,j(Xi, Xj)]− E [hi,j(Xi, Xj)]]

∣∣∣∣∣∣
≤

n∑
j=2

j−1∑
i=(j−⌊ tn

2 ⌋+1)∨1

∣∣∣∣∣
∫
xj

∫
xi

P j−i(xi, dxj)hi,j(xi, xj)
(
P i−j+tn(Xj−tn , dxi)− dπ(xi)

)∣∣∣∣∣
≤

n∑
j=2

j−1∑
i=(j−⌊ tn

2 ⌋+1)∨1

∥hi,j∥∞ sup
z
∥P i−j+tn(z, ·)− π∥TV

≤
n∑

j=⌊ tn
2 ⌋

j−1∑
i=(j−⌊ tn

2 ⌋+1)

∥hi,j∥∞Lρi−j+tn +

⌊ tn
2 ⌋∑
j=2

j−1∑
i=(j−⌊ tn

2 ⌋+1)∨1

∥hi,j∥∞Lρi−j+tn
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≤
n∑

j=⌊ tn
2 ⌋

j−1∑
i=(j−⌊ tn

2 ⌋+1)

∥hi,j∥∞Lρtn/2 + t2n∥hi,j∥∞L ≤ LA
(
t2n + ntnρ

tn/2
)
≤ 2LAt2n,

where we used that ρtn/2 ≤ ρr log(n)/2 = nr log(ρ)/2 ≤ n−1 .

4.5.6 Proof of Proposition 4.2

Since the split chain has the same distribution as the original Markov chain, we get that (X̃i)i is ψ-
irreducible for some measureψ and uniformly ergodic. From [Meyn and Tweedie, 1993, Theorem 16.0.2],
Assumption 1 ensures that for every measurable set A ⊂ E × {0, 1} such that ψ(A) > 0, there exists
some κA > 1 such that

sup
x
E[κτAA |X̃1 = x] <∞,

where τA := inf{n ≥ 1 : X̃n ∈ A} is the first hitting time of the set A. Let us recall that T1 and T2 are
defined as hitting times of the atom of the split chain E × {1} which is accessible (i.e. the atom has a
positive ψ-measure). Hence, there exist C > 0 and κ > 1 such that,

sup
x
E[κτE×{1} |X̃1 = x] = sup

x
E[exp(τE×{1} log(κ))|X̃1 = x] ≤ C.

Considering k ≥ 1 such that C1/k ≤ 2, a straight forward application of Jensen inequality gives
that max(∥T1∥ψ1 , ∥T2∥ψ1) ≤ k/ log(κ).
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Three rates of convergence or sepa-
ration via U-statistics in a dependent
framework

Chapter Abstract

In this chapter, we rely on the progress we made in Chapter 4 regarding measure concentration in a
Markovian framework to push further the current state of knowledge in active areas of research in
Probability, Statistics and Machine Learning.
As a first result, we provide for the first time a MCMC procedure to estimate the spectra of signed
integral operators in Section 5.3 with theoretical guarantees. In Section 5.4, we give an online-to-batch
conversion result for online learning with pairwise loss functions in a Markovian framework. Finally,
Section 5.5 contains a multiple testing procedure based on the L2 distance to test that the density f of
the stationary distribution of an observed Markov chain equals some prescribed density f0.
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5.1 Introduction

5.1.1 Context and Contributions

Our new results - that we referred to as applications for brevity - push further the current state of
knowledge in three different active areas of research in Probability, Statistics and Machine Learning.
Although the recent progress in concentration inequality for U-statistics with dependent random vari-
ables is a key element in our proofs, our contributions are not a direct consequence of it. In this section,
we briefly introduce the different research areas in which our work is embedded and present our main
contributions.

• Estimation of spectra of signed integral operator with MCMC algorithms (Section 5.3)
We study the convergence of sequence of spectra of kernel matrices towards the spectrum of
some integral operator. Previous important works may include Adamczak and Bednorz [2015a]
and, as far as we know, they all assume that the kernel is of positive-type (i.e., giving an integral
operator with non-negative eigenvalues). For the first time, we prove a non-asymptotic result of
convergence of spectra for kernels that are not of positive-type. We further prove that independent
Hastings algorithms are valid sampling schemes to apply our result.
In Section 5.3.2, we propose a detailed comparison between our result and the one from Adamczak
and Bednorz [2015a]. We explain why working with integral operators of positive-type allows
Adamczak and Berdnorz to make use of a powerful decoupling technique. Thanks to this elegant
argument, they are back to prove a concentration inequality for a sum of Banach space valued
random variables where the i-th summand depends only on the i-th visited state of the Markov
chain. By considering signed integral operators, the approach of the former paper cannot be
adapted. As a result, our proof relies on completely different arguments which are highlighted in
Section 5.3.2.

• Online learning with pairwise loss functions (Section 5.4)
In Machine Learning, several important problems involve a pairwise loss function, i.e. a loss
function which depends on a pair of examples. One typical example is the problem of metric
learning [cf. Jin et al., 2009] where one aims to learn a metric so that instances with the same labels
are close while ones with different labels are far away from each other. Other pairwise learning
tasks include preference learning Xing et al. [2002], ranking Agarwal and Duchi [2012], gradient
learning Meir and Zhang [2003] and AUC maximization Zhao et al. [2011]. Batch learning algo-
rithms with pairwise loss functions have been extensively studied and their generalization prop-
erties have been well established. However, batch algorithms have some limitations especially
when data becomes available in a sequential order or for large scale learning problems where
their computational cost can be prohibitive. Online algorithms have been designed to efficiently
solve learning problems in such situations: they deal with data coming on fly and try to improve
the learned model along time based on the new observations. The performance of online learning
algorithms is typically analyzed through the notion of regret which compares the payoff obtained
by the algorithm along time with the one that would have been obtained by taking the optimal
decision at each time step [cf. Bubeck and Cesa-Bianchi, 2012]. The regret quantifies the num-
ber of mistakes made by the algorithm without requiring assumptions on the way the training
sequence is generated. When the sequence of observations is the realization of some stochastic
process, one can analyze online algorithms through a different lens by wondering how they gen-
eralize on future examples. More precisely, we would like to convert a regret bound of an online
learner into a control of the excess risk. In the online learning research community, these types of
results are called online-to-batch conversion and we refer to [Hoi et al., 2021, Section 3.7] for a com-
prehensive introduction to this topic. Online-to-batch conversion results for online learning with
univariate or pairwise loss functions working with i.i.d. samples have been considered for quite
a while in both Machine Learning and Statistics literature [cf. Chen and Lei, 2018, Guo et al., 2017,
Wang et al., 2012, Ying and Zhou, 2017]. For dependent data sequences, generalization bounds
for online algorithms have also been proved in the last decades with univariate loss functions [cf.
Agarwal and Duchi, 2012]. However, theoretical guarantees for the generalization performance of
online algorithms with pairwise loss functions with non i.i.d. data have been so far understudied.
Our work is one of the first to bring results regarding this problem. In Section 5.4.1.4, we establish
clear connections with the existing literature.



Chapter 5. Three rates of convergence or separation via U-statistics in a dependent framework 143

Batch
Algorithms

Online
Algorithms

Univariate
Loss Functions

Pairwise Loss
Functions

Regret Bounds

Generalization
Bounds

i.i.d. Data

Dependent
Data

Mixing
Conditions

Markovian
Assumption

Figure 5.1: Positioning our contribution in the existing literature for the analysis of online algorithms.

The structure of our proof relies mainly on the work from Wang et al. [2012] where the observa-
tions were assumed to be i.i.d. Nevertheless, working with a Markovian dynamic brings extra
technicalities that we handle using properties of uniformly ergodic Markov chains, concentration
inequalities for U-statistics (of order one and two) of dependent random variables and reversibil-
ity of Markov chains by considering the time-reversed sequence. Using the marker �, we shed
light in Section B on the specific parts of the proof where the arguments used in the i.i.d. frame-
work fail, requiring a specific theoretical work handling a sequence of dependent observations.

• Adaptive goodness-of-fit tests in a density model (Section 5.5)
Several works have already proposed goodness-of-fit tests for the density of the stationary dis-
tribution of a sequence of dependent random variables. In Li and Tkacz [2001], a test based on
an L2-type distance between the nonparametrically estimated conditional density and its model-
based parametric counterpart is proposed. In Bai [2003] a Kolmogorov-type test is considered.
Chwialkowski et al. [2016] derive a test procedure for τ -mixing sequences using Stein discrepancy
computed in a reproducing kernel Hilbert space. In all the above mentioned papers, asymptotic
properties of the test statistic are derived but no non-asymptotic analysis of the methods is con-
ducted. As far as we know, we are the first to provide a non-asymptotic condition on the classes of
alternatives ensuring that the statistical test reaches a prescribed power working in a dependent
framework.

5.1.2 Outline

In Section 5.2, we introduce useful notations for this section and we present the concentration inequality
for U-statistics from Chapter 4 that is an important argument of our proofs. The next three sections are
dedicated to our main results. We start by providing a convergence result for the estimation of spectra
of integral operators with MCMC algorithms (see Section 5.3). We show that independent Hastings
algorithms satisfy under mild conditions the assumptions of Section 5.2.2 and we illustrate our result
with the estimation of the spectra of some Mercer kernels. For the second application of our concen-
tration inequality, we investigate the generalization performance of online algorithms with pairwise
loss functions in a Markovian framework (see Section 5.4). We motivate the study of such problems
and we provide an online-to-batch conversion result. In a third and final application, we propose a
goodness-of-fit test for the density of the stationary measure of a Markov chain (see Section 5.5). We
give an explicit condition on the set of alternatives to ensure that the statistical test proposed reaches a
prescribed power. The proofs related to the three applications are given in Section 5.6, Section 5.7 and
Sections 5.8 respectively.

5.2 Notations and Preliminaries

5.2.1 Notations

Let us consider an arbitrary measurable space (F,F). For any measure ω on (F,F), the total variation
norm of ω is defined by ∥ω∥TV := supA∈F |ω(A)|. The space of square summable functions on F with
respect to the measure ω is

L2(ω) := {f : F → Rmeasurable |
∫
F

f(x)2dω(x) <∞}.

Note that when F = R and ω is the Lebesgue on R, we will denote L2(ω) = L2(R). Endowed with
the inner product (f, g) ∈ L2(ω) × L2(ω) 7→ ⟨f, g⟩ :=

∫
F
f(x)g(x)dω(x), L2(ω) is a Hilbert space and
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we denote by ∥ · ∥2 the norm induced by ⟨·, ·⟩. For any function h : F → R, we define the supremum
norm of h by ∥h∥∞ := supx∈F |h(x)|. We further denote N∗ := N\{0} and B(R) the Borel algebra on
R. For any x ∈ R+, we denote by ⌊x⌋ (resp. ⌈x⌉) the largest integer that is less than or equal to x
(resp. the smallest integer greater than or equal to x). For any x, y ∈ R, we set x ∨ y := max(x, y) and
x ∧ y := min(x, y). For any integers i, j, the Kronecker symbol δi,j is equal to 1 if i = j and is equal to 0
otherwise.

5.2.2 Concentration inequality for U-statistics of uniformly ergodic Markov
chains

In this section, we propose a brief reminder of the concentration inequality from Chapter 4 for U-
statistics of uniformly ergodic discrete time Markov chains that will be an essential tool in our proofs.
Let us mention that we do not work with the concentration inequality from Shen et al. [2020] since it
only holds for stationary chains if the kernel h is π-canonical (see Assumption 3). Stationarity may be
seen as a really strong assumption which would make our main results from Section 5.3 of little inter-
est since MCMC methods are used when we are not able to directly sample from the distribution π.
Regarding Sections 5.4 and 5.5, the concentration inequality for U-statistics used in the proofs of our
results needs to hold for any initial distribution of the chain.

Let (E,Σ) be a measurable space. We consider a Markov chain (Xi)i≥1 on (E,Σ) with transition kernel
P : E × E → [0, 1] and with a unique stationary distribution π. We consider some measurable function
h : (E × E,Σ⊗ Σ)→ (R,B(R)) and we are interested in the following U-statistic

Ustat(n) :=
∑

1≤i ̸=j≤n

(
h(Xi, Xj)− E(X,Y )∼π⊗π[h(X,Y )]

)
.

We will work under the following set of assumptions.

Assumption 1. The Markov chain (Xi)i≥1 is ψ-irreducible for some maximal irreducibility measure ψ on Σ [cf.
Meyn and Tweedie, 1993, Section 4.2]. Moreover, there exist some natural number m and a constant δm > 0
such that

∀x ∈ E, ∀A ∈ Σ, δmµ(A) ≤ Pm(x,A). (5.1)

for some probability measure µ.

A Markov chain satisfying Assumption 1 is called uniformly ergodic and admits a unique stationary
distribution denoted by π. Assumption 1 also implies that the regeneration times associated to the
split chain are exponentially integrable, meaning that their Orlicz norm with respect to the function
ψ1(x) = exp(x) − 1 are bounded by some constant τ > 0. We refer to Section 4.2.3 in Chapter 4 for
details.

Assumption 2 can be read as a reverse Doeblin’s condition and is used in Chapter 4 as a decoupling
tool. Let us recall that we give in Chapter 4 several natural examples for which this condition holds.

Assumption 2. There exist δM > 0 and some probability measure ν such that

∀x ∈ E, ∀A ∈ Σ, P (x,A) ≤ δMν(A).

The last assumption introduces the notion of π-canonical kernel, which is the counterpart in the Marko-
vian setting of the canonical (or degenerate) property of the independent framework.

Assumption 3. Denoting by π the stationary distribution of the Markov chain (Xi)i≥1, we assume that h :
(E × E,Σ⊗ Σ)→ (R,B(R)) is measurable, bounded and is π-canonical, namely

∀x, y ∈ E, Eπ[h(X,x)] = Eπ[h(X, y)] = Eπ[h(x,X)] = Eπ[h(y,X)].

This common expectation will be denoted by Eπ[h].

Let us mention that several important kernels are π-canonical. This is the case of translation-invariant
kernels which have been widely studied in the Machine Learning community [cf. Lerasle et al., 2016].
Another example of π-canonical kernel is a rotation invariant kernel when E = Sd−1 := {x ∈ Rd :
∥x∥2 = 1}with π also rotation invariant (see Chapter 3). Note also that if the kernel h is not π-canonical,
the U-statistic decomposes into a linear term and a π-canonical U-statistic. This is called the Hoeffding



Chapter 5. Three rates of convergence or separation via U-statistics in a dependent framework 145

decomposition [cf. Giné and Nickl, 2016, p.176] and takes the following form∑
i ̸=j

(
h(Xi, Xj)− E(X,Y )∼π⊗π[h(X,Y )]

)
=
∑
i ̸=j

(
h̃(Xi, Xj)− Eπ

[
h̃(X, ·)

] )
+
∑
i ̸=j

(
EX∼π [h(X,Xj)]− E(X,Y )∼π⊗π [h(X,Y )]

)
+
∑
i ̸=j

(
EX∼π [h(Xi, X)]− E(X,Y )∼π⊗π [h(X,Y )]

)
,

where the kernel h̃ is π-canonical with

∀x, y ∈ E, h̃(x, y) = h(x, y)− EX∼π [h(x,X)]− EX∼π [h(X, y)] .

We will use this method several times in our proofs (for example in Eq.(5.19)).
We are now ready to remind one of the main result from Chapter 4 that is one key theoretical tool to
derive our three contributions presented in the next sections.

Theorem 5.1. Suppose that Assumptions 1, 2 and 3 are satisfied. Then there exist constants β, κ > 0 (depending
on the Markov chain (Xi)i≥1) such that for any u ≥ 1 and any n ≥ 2, with probability at least 1− βe−u log n,

2

n(n− 1)
Ustat(n) ≤ κ∥h∥∞ log n

{
u

n
+
(u
n

)2}
.

5.3 Estimation of spectra of signed integral operator with MCMC
algorithms

5.3.1 MCMC estimation of spectra of signed integral operators

Let us consider a Markov chain (Xn)n≥1 onE satisfying the assumptions of Theorem 5.1 with stationary
distribution π, and some symmetric kernel h : E × E → R such that h ∈ L2(π ⊗ π). We can associate
to h the kernel of a linear operator H defined by

Hf(x) :=

∫
E

h(x, y)f(y)dπ(y). (5.2)

This is a Hilbert-Schmidt operator on L2(π) and thus it has a real spectrum consisting of a square
summable sequence of eigenvalues [cf. Conway, 2019, p.267]. In the following, we will denote the
eigenvalues of H by λ(H) := (λ1, λ2, . . . ). For some n ∈ N∗, we consider

H̃n :=
1

n
(h(Xi, Xj))1≤i,j≤n and Hn :=

1

n
((1− δi,j)h(Xi, Xj))1≤i,j≤n , (5.3)

with respective eigenvalues λ(H̃n) and λ(Hn). Following [Koltchinskii and Giné, 2000, Section 2], we
introduce in Definition 5.2 the rearrangement distance δ2 which measures closeness of spectra.

Definition 5.2. Given two sequences x, y of reals – completing finite sequences by zeros – such that∑
i

x2i + y2i <∞ ,

we define the ℓ2 rearrangement distance δ2(x, y) as

δ22(x, y) := inf
σ∈S

∑
i

(xi − yσ(i))2 ,

where S is the set of permutations of natural numbers. δ2 is a pseudometric on ℓ2, where ℓ2 is the
Hilbert space of all square summable sequences.

Theorem 5.3 gives conditions ensuring that both the spectrum of Hn and the one of H̃n converge to-
wards the spectrum of the integral operator H as n → ∞. Theorem 5.3 holds under Assumption 5 that
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we discuss in details in Section 5.3.2. The proof of Theorem 5.3 is postponed to Section 5.6.

Assumption 5. h : E × E → R is a bounded and symmetric function. Moreover there exist continuous
functions ϕr : E → R, r ∈ I (where I = N or I = 1, . . . , N ) that form an orthonormal basis of L2(π) and a
sequence of real numbers (λr)r∈I ∈ ℓ2 such that we have pointwise

h(x, y) =
∑
r∈I

λrϕr(x)ϕr(y),

with Υ := sup
r∈I
∥ϕr∥2∞ <∞ and S := supx∈E

∑
r∈I |λr|ϕr(x)2 <∞.

We further denote Λ := sup
r∈I
|λr|.

Theorem 5.3. Let (Xi)i≥1 be a Markov chain on E satisfying Assumptions 1 and 2 described in Section 5.2.2
with stationary distribution π. Suppose that Assumption 5 is satisfied. Then for any t > 0,

P

1

4
δ2(λ(H), λ(Hn))

2 ≥ S2(1 + κ) log n

n
+ 2

∑
i>⌈n1/4⌉,i∈I

λ2i + t


≤ 32

√
n exp

(
−Cmin

(
nt2,
√
nt
))

+ β log(n) exp

(
− n

log n
min

(
Bt, (Bt)1/2

))
.

where for some universal constant K > 0, we have B = (KκS)
−1, C =

(
K1/2mτ(S + ΛΥ)

)−2
. κ > 0

and β > 0 are the constants from Theorem 5.1 and depend on the Markov chain. We refer to Assumption 1 and
the following remark for the definitions of the constants m and τ .

Remark. The same bound holds for δ2(λ(H), λ(H̃n))
2.

5.3.2 Comparison with the existing literature

Known result for positive kernels. In Adamczak and Bednorz [2015a], the authors studied the con-
vergence properties of MCMC methods to estimate the spectrum of integral operators with bounded
positive kernels (i.e., such that H has non-negative eigenvalues). They show a sub-exponential tail be-
havior for the δ2 distance between the spectrum of H and the one of the random matrix Hn. Their
result has the merit to hold for geometrically ergodic Markov chains, but they work with the restrictive
assumption that the eigenvalues of H are non-negative.
Hence, working with stronger conditions on the Markov chain (Xi)i≥1, Theorem 5.3 proves a new con-
centration inequality for the δ2 distance between λ(H) and λ(Hn) that holds for arbitrary signs of the
eigenvalues of H. Note that the set of operators handled by Theorem 5.3 is not a superset of the ones
handled by [Adamczak and Bednorz, 2015a, Theorem 2.2]. The difference lies in the fact that we ask the
family of functions (ϕr)r∈I to be uniformly bounded (cf. Assumption 5). Let us mention that the set of
assumptions considered in Adamczak and Bednorz [2015a] implies that S < ∞. In the following, we
comment our extra assumption Υ <∞with more details.

1. The basis functions (ϕr)r∈I are continuous and Assumption 2 typically holds for a compact space
E. Hence, by considering that E is compact and that the sequence (λr)r∈I has finite support (i.e.
I = [N ] for some natural number N ), it holds Υ <∞.

2. Asking for Υ <∞ is only useful to apply a concentration inequality for Markov chains at one spe-
cific step of our proof (cf. Eq.(5.16)). Hence this assumption might be weakened by applying other
exponential tail control for empirical processes of Markov chains. Nevertheless we point out that
Theorem 5.3 holds for uniformly ergodic Markov chains which is equivalent to the standard drift
condition where the drift function V is bounded [cf. Meyn and Tweedie, 1993, Chap.16]. Hence,
the assumptions needed for the exponential inequality from [Adamczak and Bednorz, 2015b, The-
orem 1.1] or the one from [Durmus et al., 2021, Theorem 5] imply that Υ <∞. Hence, weakening
the condition Υ < ∞ seems challenging but we believe that it might be done in some specific
settings using for instance the work from [Ciolek and Bertail, 2019, Section 3.2].

Proof structures. In the following, we describe the proof structure of [Adamczak and Bednorz, 2015a,
Theorem 2.2], allowing the reader to understand why their approach can only handle positive kernel.
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Considering f : E → L2(π) defined by

∀x ∈ E, f(x) :=
∑
r∈I

√
λiϕr(x)ϕr,

it holds
EX∼π [f(X)⊗ f(X)] = H,

where ⊗ denotes the tensor product and where the expectation on the left-hand side is the Bochner
integral in the Hilbert space of Hilbert–Schmidt operators. The empirical counterpart of the operator H
can thus be written as the sum of independent random rank one operators and is given by

Kn :=
1

n

n∑
i=1

f(Xi)⊗ f(Xi),

i.e. for any u ∈ L2(π),Knu := 1
n

∑n
i=1⟨f(Xi), u⟩f(Xi).

Kn can be written as AnA⊤
n where An : Rn → L2(π) is defined by Anei = n−1/2f(Xi) for all i ≥ 1

(e1, . . . , en being the standard basis inRn). It is straightforward to show that ∀i, j ∈ [n], ⟨A⊤
nAnei , ej⟩ =

1
nh(Xi, Xj) so that H̃n = A⊤

nAn. Hence, λ(H̃n) = λ(Kn), which leads to

δ2

(
λ(H), λ(H̃n)

)
= δ2 (λ(H), λ(Kn))

≤ ∥ 1
n

n∑
i=1

f(Xi)⊗ f(Xi)− E[f(X)⊗ f(X)]∥2, (5.4)

where the last inequality follows from the infinite-dimensional version of the Hoffman–Wielandt in-
equality proved by Bhatia and Elsner [1994]. The right hand side of Eq.(5.4) shows that we are back to
deal with a sum of Banach space valued functions of the Markov chain (Xi)i≥1. After using the stan-
dard splitting technique [cf. Meyn and Tweedie, 1993, Section 5.1], the proof is concluded by applying
Bernstein-type inequality for sums of independent Banach space valued random variables. Assum-
ing that the eigenvalues (λr)r∈I are non-negative should thus be understood as a sufficient condition
for decoupling in the sense that the i-th summand in the right hand side of Eq.(5.4) only depends on
Xi. As a consequence, by considering signed integral operators, we cannot adapt the proof proposed
by Adamczak and Bednorz [2015a] and we followed a completely different approach to prove Theo-
rem 5.3.
Let us now outline the principal steps of the proof of Theorem 5.3. For any natural numberR, we denote
HR the integral operator with kernel function hR at resolution R, namely

hR(x, y) :=
∑

r∈I,r≤R

λrϕr(x)ϕr(y), HRf(x) :=

∫
E

hR(x, y)f(y)dπ(y).

We define H̃R
n and HR

n analogously by using the kernel hR in Eq.(5.3). Using the triangle inequality, we
split the distance δ2(λ(H), λ(Hn)) into four terms.

1. δ2(λ(H), λ(HR)) is a bias term induced by working at resolution R.

2. A non-trivial preliminary work allows to prove that δ2(λ(HR), λ(H̃R
n )) can be written as an empir-

ical process of the Markov chain (Xi)i≥1 whose tail can be controlled by applying concentration
inequalities for sums of functions of uniformly ergodic Markov chains (this is where we use the
assumption that Υ is finite).

3. Since the matrices HR
n and H̃R

n only differ at diagonal elements, δ2(λ(H̃R
n ), λ(H

R
n )) can be coarsely

bounded by n−1/2∥hR∥∞.

4. Applying the Hoffman-Wielandt inequality, one can notice that δ2(λ(HR
n ), λ(Hn)) can be upper-

bounded by a U-statistic of order two of the Markov chain (Xi)i≥1. We control the tail behaviour
of this U-statistic by applying Theorem 5.1.

The proof is then concluded by choosing the resolution level R so that R2 = ⌈
√
n⌉.
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5.3.3 Admissible sampling schemes: Independent Hastings algorithm

One can use the previous result to estimate the spectrum of the integral operator H using MCMC
methods. To do so, we need to make sure that the Markov chain used for the MCMC method satisfies
the conditions of Theorem 5.1. It is for example well known that Metropolis random walks on R are
not uniformly ergodic [cf. Meyn and Tweedie, 1993]. In the following, we show that an independent
Hastings algorithm can be used on bounded state space to generate a uniformly ergodic chain with the
desired stationary distribution.

5.3.3.1 Independent Hastings algorithm on bounded state space.

Let E ⊂ Rk be a bounded subset of Rk equipped with the Borel σ-algebra B(E). Denoting λLeb the
Lebesgue measure on E, we consider a measure π on E - which is only known up to a factor - with
density fπ with respect to λLeb, and a probability density q with respect to λLeb, satisfying fπ(y), q(y) >
0 for all y ∈ E. In the independent Hastings algorithm, a candidate transition generated according to
the law qλLeb is then accepted with probability α(x, y) given by

α(x, y) = min

(
1,
fπ(y)q(x)

fπ(x)q(y)

)
.

With an approach similar to Theorem 2.1 from Mengersen and Tweedie [1996], Proposition 5.4 shows
that under some conditions on the densities fπ and q, the independent Hastings algorithm satisfies the
Assumptions 1 and 2.

Proposition 5.4. Let us assume that sup
x∈E

q(x) <∞ and that there exists β > 0 such that

q(y)

fπ(y)
> β, ∀y ∈ E.

Then, the independent Hastings algorithm satisfies the Assumptions 1 and 2.

Proof of Proposition 5.4. We denote by P the transition kernel of the Markov chain generated with the in-
dependent Hastings algorithm. For any x ∈ E, the density with respect to λLeb of the absolutely contin-
uous part ofP (x, dy) is p(x, ·) = q(·)α(x, ·), while the singular part is given by 1x(·)

(∫
z∈E q(z)α(x, z)dλLeb(z)

)
.

For fixed x ∈ E, we have either α(x, y) = 1 in which case p(x, y) = q(y) ≥ βfπ(y), or else

p(x, y) = q(y)
fπ(y)q(x)

fπ(x)q(y)
= q(x)

fπ(y)

fπ(x)
≥ βfπ(y).

We deduce that for any x ∈ E, it holds

P (x,A) ≥ β
∫
y∈A

fπ(y)dλLeb(y),

which proves that the chain is uniformly ergodic (cf. Eq.(5.1)). Hence Assumption 1 is satisfied. As-
sumption 2 trivially holds since E is bounded and supy∈E q(y) <∞.

From Proposition 5.4 and Theorem 5.3, we deduce that one can use a MCMC approach to estimate the
spectrum of a signed integral operator H (that satisfies Assumption 5) as defined in Eq.(5.2) where E is
a bounded subset of Rk. More precisely, if the density fπ of Eq.(5.2) is known up to a factor and if there
exists some probability density q with respect to λLeb satisfying the assumptions of Proposition 5.4, the
Independent Hastings algorithm provides a Markov chain that satisfies Assumptions 1 and 2. Hence
the non-asymptotic bound from Theorem 5.3 holds. We put this methodology into action in the new
section by estimating the spectrum of some Mercer kernels on the d-dimensional sphere.

5.3.4 Estimation of the spectrum of Mercer kernels

In this example, we illustrate Theorem 5.3 by computing the eigenvalues of an integral operator natu-
rally associated with a Mercer kernel using a MCMC algorithm. A function h : E × E → R is called a
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Mercer kernel if E is a compact metric space and h : E×E → R is a continuous symmetric and positive
definite function. It is well known that if h is a Mercer kernel, then the integral operator Lh associated
with h is a compact and bounded linear operator, self-adjoint and semi-definite positive. The spectral
theorem implies that if h is a Mercer kernel, then there is a complete orthonormal system (ϕ1, ϕ2, . . . ) of
eigenvectors of Lh. The eigenvalues (λ1, λ2, . . . ) are real and non-negative. The Mercer Theorem [see
e.g. Christmann and Steinwart, 2008, Theorem 4.49] shows that the eigen-structure of Lh can be used to
get a representation of the Mercer kernel h as a sum of a convergent sequence of product functions for
the uniform norm. In this context, Theorem 5.3 allows to derive the convergence rate in the δ2 metric of
the estimated spectrum towards the one of the integral operator H as presented in Proposition 5.5.

Proposition 5.5. We keep the notations and the assumptions of Theorem 5.3. We assume further that there exists
s > 0, a (Sobolev) regularity parameter, such that for some constant C(s) > 0,

∀R > 1,
∑
i>R

λ2i ≤ C(s)R−2s.

Then it holds

δ2(λ(H), λ(Hn))
2 =

 OP
(√

logn
n

)
if s ≥ 1

OP
(

1
ns/2

)
if s ∈ (0, 1)

.

Proof of Proposition 5.5. Proposition 5.5 directly follows from Theorem 5.3 by choosing t =
√

logn
n .

To illustrate our purpose, we consider the d-dimensional sphere Sd−1 = {x ∈ Rd : ∥x∥2 = 1}. We
consider a positive definite kernel on Sd−1 defined by ∀x, y ∈ Sd−1, h(x, y) = ψ(x⊤y) where ψ :
[−1, 1] → R is continuous. From the Funk-Hecke Theorem [see e.g. Müller, 2012, p.30], we know that
the eigenvalues of the Mercer kernel h are

λk = λLeb(S
d−2)

∫ 1

−1

ψ(t)Pk(d; t)
(
1− t2

) d−3
2 dt, (5.5)

where λLeb(Sd−2) is the surface area of Sd−2 and Pk(d; t) is the Legendre polynomial of degree k in
dimension d. For any k ∈ N, the multiplicity of the eigenvalue λk is the dimension of the space of
spherical harmonics of degree k. To build the Markov chain (Xi)i≥1, we start by sampling randomlyX1

on Sd−1. Then, for any i ∈ {2, . . . , n}, we sample

• a unit vector Yi ∈ Sd−1 uniformly, orthogonal to Xi−1,

• a real ri ∈ [−1, 1] encoding the distance between Xi−1 and Xi. ri is sampled from a distribu-
tion fL : [−1, 1]→ [0, 1].

then Xi is defined by

Xi = ri ×Xi−1 +
√
1− r2i × Yi .

By assuming that minr∈[−1,1] fL(r) > 0 and ∥fL∥∞ < ∞, Assumptions 1 and 2 hold and the stationary
distribution of the chain (Xi)i≥1 is the Haar measure on Sd−1 (cf. Chapter 3).
In Figure 5.2, we plot the non-zero eigenvalues using functionψ : t 7→ (1+t)2 and taking fL proportional
to r 7→ f(5,1)(

r+2
4 ) where f(5,1) is the pdf of the Beta distribution with parameter (5, 1). We plot both the

true eigenvalues and the ones computed using a MCMC approach.
Figure 5.2: Consider function ψ : t 7→ (1 + t)2,
d = 2 and n = 1000. The true eigenvalues can be
computed using (5.5), but in this case, we know
the exact values of the three non-zero eigenval-
ues namely λ0 = 3π, λ1 = 2π and λ2 = π/2. Their
respective multiplicities are 1, 2 and 2. The esti-
mated eigenvalues are the eigenvalues of the ma-
trix Hn = 1

n

(
(1− δi,j)ψ(X⊤

i Xj)
)
1≤i,j≤n where

the n points X1, X2, . . . , Xn are sampled on the
Euclidean sphere Sd−1 using a Markovian dy-
namic.
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5.3.5 Some perspectives

In this section, we shed light on some research fields where our results may find an echo. More precisely,
we broaden our horizons to show the practical importance for many learning algorithms to estimate the
eigenvalues and/or the eigenvectors of data-dependent matrices. This is for example the case for Prin-
cipal Component Analysis (PCA) or some manifold methods [cf. Rosasco et al., 2010]. It appears that
these matrices can often be interpreted as the empirical versions of continuous objects such as integral
operators. As highlighted in Rosasco et al. [2010], the theoretical analysis of the above mentioned learn-
ing algorithms requires to quantify the difference between the eigen-structure of the empirical operators
and their continuous counterparts. In the following, we focus on two examples: the estimation of the
entire spectrum of a Markov operator and the generalization performance of neural networks

Estimation of the entire spectrum of a Markov operator. In Chakraborty and Khare [2019], the au-
thors recognize that the literature to estimate the entire spectrum of a Markov operator is rather sparse.
They provide in their paper several important practical applications of the estimation of the whole spec-
trum of a Markov operator, such as the computation of the expected chi-square distance between the
stationary distribution π = fdν (for some measure ν) of a Markov chain (Xi)i≥1 and the distribution
of Xm. More precisely, denoting by Pm(·, ·) the m-step transition density of the Markov chain, the
chi-square distance to stationarity after m steps, starting at state x is defined as

χ2
x(m) :=

∫
|Pm(x, x′)− f(x′)|2

f(x′)
dν(x′).

If the integral operator associated to the kernel functionP is assumed to be Hilbert-Schmidt, then χ2
x(m) =∑

i≥1 λ
2m
i ϕi(x)

2 where (ϕi)i≥1 is an orthonormal basis of L2(π) [cf. Diaconis et al., 2008]. The average
or expected chi-square distance to stationarity after m steps is therefore

∑
i≥1 λ

2m
i .

The authors of Chakraborty and Khare [2019] adapt the MCMC algorithm from Adamczak and Bednorz
[2015a] to estimate the entire spectrum of a Markov kernel operator that arises in Data Augmentation
methods.

The spectral bias of neural networks. Integral operators and their eigenstructures appeared to be
essential objects for the theoretical analysis of neural networks (NNs). It is now well-known that
over-parametrized neural network have good generalization performance on important learning prob-
lems [cf. Zhang et al., 2021]. This fact has been so far explained by noticing empirically that NNs are
biased towards learning less complex functions: a phenomenon known as the spectral bias [cf. Rahaman
et al., 2019]. In Su and Yang [2019], the authors prove that the training process of NNs can be decom-
posed along different directions defined by the eigenfunctions of some integral operator where each
direction has its own convergence rate and the rate is determined by the corresponding eigenvalue.

5.4 Online Learning with Pairwise Loss Functions

5.4.1 Brief introduction to online learning and motivations

5.4.1.1 Presentation of the traditional online learning setting

Online learning is an active field of research in Machine Learning in which data becomes available in a
sequential order and is used to update the best predictor for future data at each step. This method aims
at learning some function f : E → Y where E is the space of inputs and Y is the space of outputs. At
each time step t, we observe a new example (xt, yt) ∈ E×Y . Traditionally, the random variables (xt, yt)
are supposed i.i.d. with common joint probability distribution (x, y) 7→ p(x, y) on E×Y . In this setting,
the loss function is given as ℓ : Y × Y → R, such that ℓ(f(x), y) measures the difference between the
predicted value f(x) and true value y. The goal is to select at each time step t a function ht : E → Y in a
fixed set H based on the observed examples until time t (namely (xi, yi)1≤i≤t) such that ht has “small”
riskR defined by

R(h) = E(X,Y )∼p
[
ℓ(h(X), Y )

]
,

where h is any measurable mapping from E to Y .
Online learning is used when data is coming on the fly and we do not want to wait for the acquisition of
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the complete dataset to take a decision. In such cases, online learning algorithms allow to dynamically
adapt to new patterns in the data.

5.4.1.2 Online learning with pairwise loss functions

In some cases, the framework provided in the previous paragraph is not appropriated to solve the task
at stake. Consider the example of ranking problems. The state space is E and there exists a function f :
E → R which assigns to each state x ∈ E a label f(x) ∈ R. f naturally defines a partial order on E. At
each time step t, we observe an example xt ∈ E together with its label f(xt) and we suppose that the
random variables (xt)t are i.i.d. with common distribution p. Our goal is to learn the partial order of
the items in E induced by the function f . More precisely, we consider a space H ⊂ {h : E × E → R},
called the set of hypotheses. An ideal hypothesis h ∈ H would satisfy

∀x, u ∈ E, f(x) ≥ f(u)⇔ (h(x, u) ≥ 0 and h(u, x) ≤ 0) .

We consider a loss function ℓ : H× E × E → R such that ℓ(h, x, u) measures the ranking error induced
by h and a typical choice is the 0-1 loss

ℓ(h, x, u) = 1{(f(x)−f(u))h(x,u)<0}.

U-statistics naturally arise in such settings as for example in Clémençon et al. [2008] where Clémençon
and al. study the consistency of the empirical risk minimizer of ranking problems using the theory of
U-processes in an i.i.d. framework.

Example: Bipartite ranking problems
We describe the concrete problem of bipartite ranking. We consider that we have as input a training set of exam-
ples. Each example is described by some feature vector and is associated with a binary label. Typically one can
consider that we have access to health data of an individual along time. We know at each time step her/his health
status xt and her/his label which is 0 if the individual is healthy and 1 if she/he is sick. In the bipartite ranking
problem, we want to learn a scorer which maps any feature vector describing the health status of the individual
to a real number such that sick states have a higher score than healthy ones. Following the health status of individ-
uals is time-consuming and we cannot afford to wait for the end of the data acquisition process to understand the
relationship between the feature vector describing the health status of the individual and her/his sickness. In such
settings where data is coming on the fly, online algorithms are common tools that allow to learn a scorer function
along time. At each time step the scorer function is updated based on the new measurement provided.

5.4.1.3 Generalization bounds for online learning

The performance of online learning algorithms is often analyzed with the notion of regret which com-
pares the payoff obtained by the algorithm along time with the one that would have been obtained by
taking the optimal decision at each time step [cf. Bubeck and Cesa-Bianchi, 2012, Hoi et al., 2021]. It
is natural to wonder if stronger theoretical guarantees can be obtained when some probabilistic struc-
ture underlies the sequence of examples, or loss functions, presented to the online algorithm. As asked
in Agarwal and Duchi [2012], "if the sequence of examples are generated by a stochastic process, can the online
learning algorithm output a good predictor for future samples from the same process?" In other words, we want
to study the generalization ability of some online learner that generates a sequence of hypothesis (ht)t≥1

by bounding with high probability the excess risk defined as

1

n

n∑
t=1

R(ht)−min
h∈H
R(h).

Generalization bounds for online learning with pairwise loss functions working with i.i.d. samples
have been considered for quite a while in both Machine Learning and Statistics literature [cf. Chen and
Lei, 2018, Guo et al., 2017, Kar et al., 2013, Ying and Zhou, 2017]. For dependent data sequences, gen-
eralization bounds for online algorithms have also been proved in the last decades with univariate loss
functions [cf. Agarwal and Duchi, 2012, Xu et al., 2014, Zhang, 2005]. However, theoretical guarantees
for the generalization performance of online algorithms with pairwise loss functions with non i.i.d. data
have been so far understudied. A quick and incomplete review of the literature is presented in Table 5.1.
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Univariate loss function Pairwise loss function

i.i.d. data Hoi et al., Section 3.7 and
references therein

Chen and Lei, Guo et al., Kar
et al., Ying and Zhou

Dependent data Agarwal and Duchi, Xu et al.,
Zhang Our work

Table 5.1: Overview of the literature providing generalization bounds for online learning algorithms.

5.4.1.4 Generalization bounds for pairwise online learning with dependent data

Connection with the existing literature. As far as we know, the few papers that investigate the gener-
alization performance of pairwise online learning algorithms with non i.i.d. data have studied specific
algorithms and/or specific learning tasks [cf. Qin et al., 2021, Zeng et al., 2021]. In Zeng et al. [2021],
the authors analyze online pairwise support vector machine while the work Qin et al. [2021] is focused
on online regularized pairwise learning algorithm with least squares loss function. One possible reason
explaining this gap in the literature is that "for pairwise learning [where] pairs of training examples are not
i.i.d., [...] standard techniques can not be directly applied." [cf. Zeng et al., 2021].
With the upcoming application, we are the first - as far as we know - to provide a generalization bounds
for online algorithms with pairwise loss functions and Markov chain samples that hold for an arbitrary
online learner, covering a large span of settings.

Online learning with a Markovian dynamic. The theoretical analysis of Machine Learning algo-
rithms with an underlying Markovian distribution of the data has become a very active field of re-
search. The first papers to study online learning with samples drawn from non-identical distributions
were Smale and Zhou [2009] and Steinwart et al. [2009] where online learning for least square regres-
sion and off-line support vector machines are investigated. In Zou et al. [2009], the generalization
performance of the empirical risk minimization algorithm is studied with uniformly ergodic Markov
chain samples. Hence the analysis of online algorithms with dependent samples is recent and several
works make the assumption that the sequence is a uniformly ergodic Markov chain. We motivate the
Markovian assumption on the example of the previous paragraph.

Example (continued): Interest in online algorithms with Markovian dynamic
The health status of the individual at time n+ 1 is not independent from the past and a simple way to model this
time evolution would be to consider that it only depends on the last measured health status namely the feature
vector xn. This is a Markovian assumption on the sequence of observed health status of the individual.

We have explained why pairwise loss functions capture ranking problems and naturally arise in several
Machine Learning problems such as metric learning or bipartite ranking (see Clémençon et al. [2008]).
We have shown the interest to provide a generalization bounds for online learning with pairwise loss
functions with a Markovian assumption on the distribution of the sequence of examples and this is the
goal of the next section.

5.4.2 Online-to-batch conversion for pairwise loss functions with Markov chains

We consider a reversible Markov chain (Xi)i≥1 with state space E satisfying Assumption 1 with sta-
tionary distribution π. Using [Meyn and Tweedie, 1993, Theorem 16.0.2], we deduce that there exist
constants 0 < ρ < 1 and L > 0 such that

∥Pn(x, ·)− π∥TV ≤ Lρn, ∀n ≥ 0, π−a.e x ∈ E. (5.6)

We assume that we have a function f : E → R which defines the ordering of the objects in E. We aim
at finding a relevant approximation of the ordering of the objects in E by selecting a function h (called
a hypothesis function) in a space H based on the observation of the random sequence (Xi, f(Xi))1≤i≤n.
To measure the performance of a given hypothesis h : E × E → R, we use a pairwise loss function of
the form ℓ(h,X,U). Typically, one could use the misranking loss defined by

ℓ(h, x, u) = 1{(f(x)−f(u))h(x,u)<0},
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which is 1 if the examples are ranked in the wrong order and 0 otherwise. The goal of the learning
problem is to find a hypothesis h which minimizes the expected misranking risk

R(h) := E(X,X′)∼π⊗π
[
ℓ(h,X,X ′)

]
.

We show that the investigation of the generalization performance of online algorithms with pairwise
loss functions provided by Wang et al. [2012] can be extended to a Markovian framework. Our contri-
bution is two fold.

• Firstly, we prove that with high probability, the average risk of the sequence of hypotheses gener-
ated by an arbitrary online learner is bounded by some easily computable statistic.

• This first technical result is then used to show how we can extract a low risk hypothesis from
a given sequence of hypotheses selected by an online learner. This is an online-to-batch conver-
sion for pairwise loss functions with a Markovian assumption on the distribution of the observed
states.

Given a sequence of hypotheses (hi)1≤i≤n ∈ Hn generated by any online algorithm, we define the
average paired empirical risk Mn(h1, . . . , hn−1−bn) (see Eq.(5.7)) averaging the paired empirical risks Mt

(see Eq.(5.8)) of hypotheses ht−bn when paired with Xt as follows

Mn(h1, . . . , hn−1−bn) :=
1

n− cn

n−1∑
t=cn

Mt, (5.7)

and Mt :=
1

t− bn

t−bn∑
i=1

ℓ(ht−bn , Xt, Xi), (5.8)

where
cn = ⌈c× n⌉ for some c ∈ (0, 1) and bn = ⌊q log(n)⌋, (5.9)

for an arbitrarily chosen q > 1
log(1/ρ) where ρ is a constant related to the uniform ergodicity of the

Markov chain, see Eq.(5.6). In the following, we will simply denoteMn(h1, . . . , hn−1−bn) byMn when
the sequence of considered hypotheses is clear from the context.
Mt is the paired empirical risk of hypothesis ht−bn with Xt. It measures the performance of the hypoth-
esis ht−bn on the example Xt when paired with examples seen before time t − bn. Mn is the mean
value of a proportion 1 − c of these paired empirical risks. Hence the parameter c ∈ (0, 1) controls the
proportion of hypotheses ht−bn whose paired empirical risk Mt does not appear in the average paired
empirical risk valueMn. The parameter bn controls the time gaps between elements of pairs (Xt, Xi)
appearing in Eq.(5.8) in such way that their joint law is close to the product law π ⊗ π (mixing of the
chain is met). The use of the burning parameter bn is the main difference with the work Wang et al.
[2012] when definingMn and Mt in Eq.(5.7) and Eq.(5.8). From a pragmatic point of view,

• we discard the first hypotheses that are not reliable, namely we do not consider hypothesis hi
for i ≤ cn − bn. These first hypotheses are considered as not reliable since the online learner
selected them based on a too small number of observed examples.

• since ht−bn is learned from X1, . . . , Xt−bn , we test the performance of ht−bn on Xt (and not on
someXi with t−bn+1 ≤ i < t ) to ensure that the distribution ofXt conditionally on σ(X1, . . . , Xt−bn)
is approximately the stationary distribution of the chain π (see Assumption 1 and Equation (5.6)).
Stated otherwise, this ensures that sufficient mixing has occurred.

Note that we assume n large enough to ensure that cn − bn ≥ 1. For any η > 0, we denote N (H, η)
the L∞ η-covering number for the hypothesis classH (see Definition 5.6).

Definition 5.6. [cf. Wainwright, 2019, Chapter 5.1] Let us consider some η > 0. A L∞ η-cover of a
set H is a set {g1, . . . , gN} ⊂ H such that for any h ∈ H, there exists some i ∈ {1, . . . , N} such that
∥gi − h∥∞ ≤ η. The L∞ η-covering number N (H, η) is the cardinality of the smallest L∞ η-cover of the
setH.

Theorem 5.7 bounds the average risk of the sequence of hypotheses in terms of its empirical counter-
partMn and is proved in Section 5.7.1.
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Theorem 5.7. Assume that the Markov chain (Xi)i≥1 is reversible and satisfies Assumption 1. Assume the
hypothesis space (H, ∥ · ∥∞) is compact. Let h0, h1, . . . , hn ∈ H be the ensemble of hypotheses generated by an
arbitrary online algorithm working with a pairwise loss function ℓ such that,

ℓ(h, x1, x2) = ϕ(f(x1)− f(x2), h(x1, x2)),

where ϕ : R×R→ [0, 1] is a Lipschitz function w.r.t. the second variable with a finite Lipschitz constant Lip(ϕ).
Let ξ > 0 be an arbitrary positive number and let us consider q = ξ+1

log(1/ρ) for the definition of bn (see Eq.(5.9)).
Then for all c > 0 and for all ϵ > 0 such that ϵ =

n→∞
o
(
nξ
)
, we have for sufficiently large n

P

(∣∣∣ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn
∣∣∣ ≥ ϵ)

≤ 2

[
32N

(
H, ϵ

8Lip(ϕ)

)
+ 1

]
bn exp

(
− (cn − bn)C(m, τ)ϵ2

16b2n

)
,

where C(m, τ)−1 = 7 × 103 ×m2τ2. We refer to Assumption 1 and the following remark for the definitions of
the constants m and τ that depend on the Markov chain (Xi)i≥1.

Theorem 5.7 shows that average paired empirical riskMn (see Eq.(5.7)) is close to average risk given
by

1

n− cn

n−1∑
t=cn

R(ht−bn) .

Quantitative errors bounds can be given assuming that the L∞-metric entropy (l.h.s of the next equa-
tion) satisfies

logN (H, η) = O(η−θ) , (5.10)

where θ > 0 is an exponent, depending on the dimension of state space E and the regularity of hy-
potheses of H, that can be computed in some situations (Lipschitz function, higher order smoothness
classes, see [Wainwright, 2019, Chapter 5.1] for instance). Theorem 5.9 made this statement rigorous (cf.
Eq.(5.11)).
As previously mentioned, online learning algorithms are often studied through the lens of regret. The
definition of a regret bound in our context is provided in Definition 5.8.

Definition 5.8. An online learning algorithm will be said to have a regret bound Rn if it presents an
ensemble h1, . . . , hn−1 such that

Mn ≤ min
h∈H

{
Mn(h, . . . , h)

}
+Rn.

In the literature of learning theory Cucker and Zhou [2007], we are often interested in the averaged
excess generalization error

1

n− cn

n−1∑
t=cn

R(ht−bn)−R(h∗),

where h∗ is the population risk minimizer and is given by h∗ ∈ argmin
h∈H

R(h). As a consequence,

most of works focused on online-to-batch conversion are interested in the overall convergence rate of
the excess generalization error for online learners that achieve a given regret bound. Examples can be
found with [Guo et al., 2017, Corollary 4] or with [Kar et al., 2013, Theorem 5] where both papers work
with pairwise loss functions with i.i.d. observations. In Theorem 5.9 (cf. Eq.(5.12)) we provide the
overall rate for the averaged excess generalization error for an online learning satisfying a given regret
bound. Theorem 5.9 is proved in Section 5.7.2 and should be understood as an extension of the above
mentioned results from Kar et al. [2013] and Guo et al. [2017].

Theorem 5.9. We keep the notations and assumptions of Theorem 5.7. Assume further thatH satisfies Eq.(5.10).
Then it holds ∣∣∣∣∣ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn

∣∣∣∣∣ = OP
[
log(n) log(log n)

n
1

2+θ

]
. (5.11)



Chapter 5. Three rates of convergence or separation via U-statistics in a dependent framework 155

Moreover, if the online learner has a regret bound Rn (cf. Definition 5.8), it holds

1

n− cn

n−1∑
t=cn

R(ht−bn)−R(h∗) = OP

[
log(n) log(log n)

n
1

2+θ

+Rn

]
. (5.12)

5.4.3 Batch hypothesis selection

Theorems 5.7 and 5.9 are results on the performance of online learning algorithms. We will use these
results to study the generalization performance of such online algorithms in the batch setting (see The-
orem 5.10). Hence we are now interested in selecting a good hypothesis from the ensemble of hypotheses
generated by the online learner namely that has a small empirical risk.
We measure the risk for ht−bn on the last n − t examples of the sequence X1, . . . , Xn, and penalize
each ht−bn based on the number of examples on which it is evaluated. More precisely, let us define the
empirical risk of hypothesis ht−bn on {Xt+1, . . . , Xn} as

R̂(ht−bn , t+ 1) :=

(
n− t
2

)−1 n∑
k>i,i≥t+1

ℓ(ht−bn , Xi, Xk).

For a confidence parameter γ ∈ (0, 1) that will be specified in Theorem 5.10, the hypothesis ĥ is chosen
to minimize the following penalized empirical risk,

ĥ = ht̂−bn and t̂ ∈ arg min
cn≤t≤n−1

(
R̂(ht−bn , t+ 1) + cγ(n− t)

)
, (5.13)

where

cγ(x) =

√
C(m, τ)−1

x
log

64(n− cn)(n− cn + 1)

γ
,

with C(m, τ)−1 = 7× 103 ×m2τ2.
Theorem 5.10 proves that the model selection mechanism previously described select a hypothesis ĥ
from the hypotheses of an arbitrary online learner whose risk is bounded relative toMn. The proof of
Theorem 5.10 is postponed to Section 5.7.3.

Theorem 5.10. Assume that the Markov chain (Xi)i≥1 is reversible and satisfies Assumptions 1 and 2. Let h0, . . . , hn
be the set of hypotheses generated by an arbitrary online algorithmAworking with a pairwise loss ℓwhich satisfies
the conditions given in Theorem 5.7. Let ξ > 0 be an arbitrary positive number and let us consider q = ξ+1

log(1/ρ)

for the definition of bn (see Eq.(5.9)). For all ϵ > 0 such that ϵ =
n→∞

o
(
nξ
)
, if the hypothesis is selected via

Eq.(5.13) with the confidence γ chosen as

γ = 64(n− cn + 1) exp
(
−(n− cn)ϵ2C(m, τ)/128

)
,

then, when n is sufficiently large, we have

P
(
R(ĥ) ≥Mn + ϵ

)
≤ 32

[
N
(
H, ϵ

16Lip(ϕ)

)
+ 1

]
exp

(
− (cn − bn)C(m, τ)ϵ2

(16bn)2
+ 2 log n

)
.

Analogously to the previous section, we can derive from Theorem 5.10 a bound for the excess risk of
the selected hypothesis ĥ.

Corollary 5.11. We keep the notations and assumptions of Theorem 5.10. Assume further that H satisfies
Eq.(5.10). Then it holds

R(ĥ)−Mn = OP

[
log2 n

n
1

2+θ

]
.

Moreover, if the online learner has a regret bound Rn (cf. Definition 5.8), it holds

R(ĥ)−R(h∗) = OP

[
log2 n

n
1

2+θ

+Rn

]
.
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5.5 Adaptive goodness-of-fit tests in a density model

5.5.1 Goodness-of-fit tests and review of the literature

In its original formulation, the goodness-of-fit test aims at determining if a given distribution q matches
some unknown distribution p from samples (Xi)i≥1 drawn independently from p. Classical approaches
to solve the goodness-of-fit problem use the empirical process theory. Most of the popular tests such as
the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling statistics are based on the empir-
ical distribution function of the samples. Other traditional approaches may require space partitioning
or closed-form integrals Baringhaus and Henze [1988], Beirlant et al. [2008]. In Rudzkis and Bakshaev
[2013], a non-parametric method is proposed with a test based on a kernel density estimator. In the last
decade, a lot of effort has been put into finding more efficient goodness-of-fit tests. The motivation was
mainly coming from graphical models where the distributions are known up to a normalization factor
that is often computationally intractable. To address this problem, several tests have been proposed
based on Reproducing Kernel Hilbert Space (RKHS) embedding. A large span of them use classes
of Stein transformed RKHS functions [Gorham and Mackey, 2017, Liu et al., 2016]. For example in
Chwialkowski et al. [2016], a goodness-of-fit test is proposed for both i.i.d or non i.i.d samples. The test
statistic uses the squared Stein discrepancy, which is naturally estimated by a V-statistic. One draw-
back of such approach is that the theoretical results provided are only asymptotic. This paper is part
of a large list of works that proposed a goodness-of-fit test and where the use of U-statistics naturally
emerge [cf. Butucea et al., 2007, Fan, 1997, Fan and Ullah, 1999, Fernández and Gretton, 2019, Fromont
and Laurent, 2006, Liu et al., 2016]. To conduct a non-asymptotic analysis of the goodness-of-fit tests
proposed for non i.i.d samples, a concentration result for U-statistics with dependent random variables
is much needed.

5.5.2 Goodness-of-fit test for the density of the stationary measure of a Markov
chain

In this section, we provide a goodness-of-fit test for Markov chains whose stationary distribution has
density with respect to the Lebesgue measure λLeb on R. Our work is inspired from Fromont and Lau-
rent [2006] where Fromont and Laurent tackled the goodness-of-fit test with i.i.d samples. Conducting
a non-asymptotic theoretical study of our test, we are able to identify the classes of alternatives over
which our method has a prescribed power.
Let X1, . . . , Xn be a Markov chain with stationary distribution π with density f with respect to the
Lebesgue measure on R. Let f0 be some given density in L2(R) and let α be in ]0, 1[. Assuming
that f belongs to L2(R), we construct a level α test of the null hypothesis ”f = f0” against the al-
ternative ”f ̸= f0” from the observation (X1, . . . , Xn). The test is based on the estimation of ∥f − f0∥22
that is ∥f∥22 + ∥f0∥22 − 2⟨f, f0⟩. ⟨f, f0⟩ is usually estimated by the empirical estimator

∑n
i=1 f0(Xi)/n

and the cornerstone of our approach is to find a way to estimate ∥f∥22. We follow the work of Fromont
and Laurent [2006] and we introduce a set {Sm,m ∈ M} of linear subspaces of L2(R). For all m inM,
let {pl, l ∈ Lm} be some orthonormal basis of Sm. The variable

θ̂m =
1

n(n− 1)

∑
l∈Lm

n∑
i ̸=j=1

pl(Xi)pl(Xj)

estimates ∥ΠSm(f)∥22 where ΠSm denotes the orthogonal projection onto Sm. Then ∥f − f0∥22 can be
approximated by

T̂m = θ̂m + ∥f0∥22 −
2

n

n∑
i=1

f0(Xi),

for any m inM. Denoting by tm(u) the (1− u) quantile of the law of T̂m under the hypothesis ”f = f0”
and considering

uα = sup
u∈]0,1[

Pf0

(
sup
m∈M

(T̂m − tm(u)) > 0

)
≤ α,
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we introduce the test statistic Tα defined by

Tα = sup
m∈M

(T̂m − tm(uα)). (5.14)

The test consists in rejecting the null hypothesis if Tα is positive. This approach can be read as a multiple
testing procedure. Indeed, for each m inM, we construct a level uα test of the null hypothesis ”f = f0”

by rejecting this hypothesis if T̂m is larger than its (1− uα) quantile under the hypothesis ”f = f0”. We
thus obtain a collection of tests and we decide to reject the null hypothesis if for some of the tests of the
collection this hypothesis is rejected.
Now we define the different collection of linear subspaces {Sm,m ∈ M} that we will use in the fol-
lowing. We will focus on constant piecewise functions, scaling functions and, in the case of compactly
supported densities, trigonometric polynomials.

• For all D in N∗ and k ∈ Z, let
ID,k =

√
D1[k/D,(k+1)/D[.

For all D ∈ N∗, we define S(1,D) as the space generated by the functions {ID,k, k ∈ Z} and

θ̂(1,D) =
1

n(n− 1)

∑
k∈Z

n∑
i ̸=j=1

ID,k(Xi)ID,k(Xj).

• Let us consider a pair of compactly supported orthonormal wavelets (ϕ, ψ) such that for all J ∈
N, {ϕJ,k = 2J/2ϕ(2J · −k), k ∈ Z} ∪ {ψj,k = 2j/2ψ(2j · −k), j ∈ N, j ≥ J, k ∈ Z} is an orthonormal
basis of L2(R). For all J ∈ N and D = 2J , we define S(2,D) as the space generated by the scaling
functions {ϕJ,k, k ∈ Z} and

θ̂(2,D) =
1

n(n− 1)

∑
k∈Z

n∑
i ̸=j=1

ϕJ,k(Xi)ϕJ,k(Xj).

• Let us consider the Fourier basis of L2([0, 1]) given by

g0(x) = 1[0,1](x),

g2p−1(x) =
√
2 cos(2πpx)1[0,1](x) ∀p ≥ 1,

g2p(x) =
√
2 sin(2πpx)1[0,1](x) ∀p ≥ 1.

For all D ∈ N∗, we define S(3,D) as the space generated by the functions {gl, l = 0, . . . , D} and

θ̂(3,D) =
1

n(n− 1)

D∑
l=0

n∑
i̸=j=1

gl(Xi)gl(Xj).

We denote D1 = D3 = N∗ and D2 = {2J , J ∈ N}. For l in {1, 2, 3}, D in Dl, ΠS(l,D)
denotes the

orthogonal projection onto S(l,D) in L2(R). For all l in {1, 2, 3}, we take Dl ⊂ Dl with ∪l∈{1,2,3}Dl ̸= ∅
and D3 = ∅ if the Xi’s are not included in [0, 1].
Let M = {(l,D), l ∈ {1, 2, 3}, D ∈ Dl} . Theorem 5.12 describes classes of alternatives over which the
corresponding test has a prescribed power. We work under the additional Assumption 4.(ii). We refer
to Section 5.8.1 for the proof of Theorem 5.12.
Assumption 4.(ii) (cf. Section 4.2.5 in Chapter 4)
The initial distribution of the Markov chain (Xi)i≥1, denoted χ, is absolutely continuous with respect to the
stationary measure π and its density, denoted by dχ

dπ , has finite p-moment for some p ∈ (1,∞], i.e

∞ >

∥∥∥∥dχdπ
∥∥∥∥
π,p

:=


[∫ ∣∣∣dχdπ ∣∣∣p dπ]1/p if p <∞,

ess sup
∣∣∣dχdπ ∣∣∣ if p =∞.

In the following, we will denote q = p
p−1 ∈ [1,∞) (with q = 1 if p = +∞) which satisfies 1

p +
1
q = 1.
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Theorem 5.12. LetX1, . . . , Xn a Markov chain onR satisfying the Assumptions 1, 2 and 4.(ii) with stationary
measure π. We assume that π has density f with respect the Lebesgue measure on R and let f0 be some given
density. Let Tα be the test statistic defined by Eq.(5.14). Assume that f0 and f belong to L∞(R) (the space of
essentially bounded measurable functions on R) and that there exist p1, p2 ∈ (1,+∞] such that

Cχ :=

∥∥∥∥ 1f dχ

dλLeb

∥∥∥∥
fλLeb,p1

∨
∥∥∥∥ 1

f0

dχ

dλLeb

∥∥∥∥
f0λLeb,p2

<∞,

where we used the notations of Assumption 4.(ii). We fix some γ in ]0, 1[. For any ϵ ∈]0, 2[, there exist some
positive constants C1, C2, C3 such that, setting for all m = (l,D) inM,

Vm(γ) = C1∥f∥∞
log(3Cχ/γ)

ϵn
+ C2 (∥f∥∞ log(D + 1) + ∥f0∥∞)

log(3Cχ/γ)

n

+ C3 (∥f∥∞ + 1)DR

(
n, log

{
3β log n

γ

})
,

with

R(n, u) = log n

{
u

n
+
(u
n

)2}
,

if f satisfies
∥f − f0∥22 > (1 + ϵ) inf

m∈M

{
∥f −ΠSm(f)∥22 + tm(uα) + Vm(γ)

}
, (5.15)

then
Pf (Tα ≤ 0) ≤ γ.

In order to make the condition (5.15) more explicit and to study its sharpness, we define the uniform
separation rate which provides for any γ ∈ (0, 1) the smallest distance between the set of null hypothe-
ses and the set of alternatives to ensure that the power of our statistic test with level α is at least 1− γ.

Definition 5.13. Given γ ∈]0, 1[ and a class of functions B ⊂ L2(R), we define the uniform separation
rate ρ(Φα,B, γ) of a level α test Φα of the null hypothesis ”f ∈ F” over the class B as the smallest
number ρ such that the test guarantees a power at least equal to (1 − γ) for all alternatives f ∈ B at a
distance ρ from F . Stated otherwise, denoting by d2(f,F) the L2-distance between f and F and by Pf
the distribution of the observation (X1, . . . , Xn),

ρ(Φα,B, γ) = inf {ρ > 0,∀f ∈ B, d2(f,F) ≥ ρ =⇒ Pf (Φα rejects) ≥ 1− γ} .

In the following, we derive on explicit upper bound on the uniform separation rates of the test proposed
above over several classes of alternatives. For s > 0, P > 0,M > 0 and l ∈ {1, 2, 3}, we introduce

B(l)s (P,M) =
{
f ∈ L2(R) | ∀D ∈ Dl, ∥f −ΠS(l,D)

(f)∥22 ≤ P 2D−2s, ∥f∥∞ ≤M
}
.

These sets of functions include some Hölder balls or Besov bodies with smoothness s, as highlighted in
Fromont and Laurent [2006, Section 2.3]. Corollary 5.14 gives an upper bound for the uniform separa-
tion rate of our testing procedure over the classes B(l)s (P,M) and is proved in Section 5.8.3.

Corollary 5.14. Let Tα be the test statistic defined by (5.14). Assume that for l ∈ {1, 2, 3}, Dl is {2J , 0 ≤ J ≤
log2

(
n/(log(n) log log n)2

)
} or ∅. For all s > 0, M > 0, P > 0 and l ∈ {1, 2, 3} such that Dl ̸= ∅, there

exists some positive constant C = C(s, α, γ,M, ∥f0∥∞) such that the uniform separation rate of the test 1Tα>0

over B(l)s (P,M) satisfies for n large enough

ρ
(
1Tα>0,B(l)s (P,M), γ

)
≤ C ′P

1
2s+1

(
log(n) log log n

n

) s
2s+1

.

Remark. In Corollary 5.14, the condition n large enough corresponds to(
log(n)

log log n

n

)1/2

≤ P ≤ ns

(log(n) log log n)2s+1/2
.

For the problem of testing the null hypothesis ”f = 1[0,1]” against the alternative f = 1[0,1] + g
with g ̸= 0 and g ∈ Bs(P ) where Bs(P ) is a class of smooth functions (like some Hölder, Sobolev
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or Besov ball in L2([0, 1])) with unknown smoothness parameter s, Ingster [1993] established in the
case where the random variables (Xi)i≥1 are i.i.d. that the adaptive minimax rate of testing is of or-
der (

√
log log n/n)2s/(4s+1). From Corollary 5.14, we see that our procedure leads to a rate which is close

(at least for sufficiently large smoothness parameter s) to the one derived by Ingster in the i.i.d. frame-
work since the upper bound on the uniform separation rate from Corollary 5.14 can be read (up to a log
factor) as ([log log n]/n)

2s
4s+2 .

5.5.3 Simulations

We propose to test our method on three practical examples. The code is available at https://github.
com/quentin-duchemin/goodness-of-fit-MC. In all our simulations, we use Markov chains of
length n = 100. We choose different alternatives to test our method and we use i.i.d. samples from
these distributions. We chose a level α = 5% for all our experiments. All tests are conducted as follows.

1. We start by the estimation of the (1 − u) quantiles tm(u) of the variables T̂m = θ̂m + ∥f0∥22 −
2
n

∑n
i=1 f0(Xi) under the hypothesis ”f = f0” for u varying on a regular grid of ]0, α[. We sam-

ple 5, 000 sequences of length n = 100 with i.i.d. random variables with distribution f0. We end
up with an estimation t̂m(u) of tm(u) for any u in the grid and any m ∈M.

2. Then, we estimate the value of uα. We sample again 5, 000 sequences of length n = 100 with i.i.d.
random variables with distribution f0. We use them to estimate the probabilitiesPf0(supm∈M(T̂m−
t̂m(u)) > 0) for any u in the grid and we keep the larger value of u such that the corresponding
probability is still larger than α. The selected value of the grid is called uα. Thanks to the first step,
we have the estimates t̂m(uα) of tm(uα) for any m ∈M.

3. Finally, we sample 5, 000 Markov chains with length n = 100 with stationary distribution f .
For each sequence, we can compute T̂m. Dividing by 5, 000 the number of sequences for which
supm∈M(T̂m − t̂m(uα)) > 0, we get an estimation of the power of the test.

To define comparison points, we compare the power of our test with the classical Kolmogorov-Smirnov
test (KS test) and the Chi-squared test (χ2 test). The rejection region associated with a test of level 5%
is set by sampling under the null for both the KS test and the χ2 test. With Figure 5.3, we provide a
visualization of the density of the stationary distribution of the Markov chain and of the density of the
alternative that gives the smaller power on our experiments.

5.5.3.1 Example 1: AR(1) process

Let us consider some θ ∈ (0, 1). Then, we define the AR(1) process (Xi)i≥1 starting from X1 = 0 with
for any n ≥ 1,

Xn+1 = θXn + ξn+1,

where (ξn)n are i.i.d. random variables with distribution N (0, τ2) with τ > 0. From Example 1 from
Section 4.3.3.1, we know that Assumptions 1 and 2 hold. The stationary measure π of the Markov
chain (Xi)i≥1 is N

(
0, τ2

1−θ2

)
, i.e. π has density f with respect to the Lebesgue measure on Rwith

∀y ∈ R, f(y) =

√
1− θ2√
2πτ2

exp

(
− (1− θ2)y2

2τ2

)
.

We focus on the following alternatives

fµ,σ2(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
.

Table 5.2 shows the estimated powers for our test, the KS test and the χ2 test.

5.5.3.2 Example 2: Markov chain generated from independent Metropolis Hasting algorithm

Let us consider the probability measure π with density f with respect to the Lebesgue measure on [−3, 3]
where

∀x ∈ [−3, 3], f(x) =
1

Z
e−x

2

(3 + sin(5x) + sin(2x)) ,

https://github.com/quentin-duchemin/goodness-of-fit-MC
https://github.com/quentin-duchemin/goodness-of-fit-MC
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(µ, σ2) Our test χ2 test KS test ∥f − fµ,σ2∥2
(2, 1.5) 0.99 0.85 0.98 0.39
(0, 1) 0.97 0.9 0.8 0.2

(−0.2, 1.2) 0.86 0.63 0.84 0.17
(0, 1.2) 0.81 0.64 0.82 0.16
(0, 2) 0.1 0.03 0.29 0.06

Table 5.2: Estimated powers of the tests for Markov chains with size n = 100. We worked with
τ = 1, θ = 0.8 and M = {(1, i) : i ∈ {1, . . . , 10}} . Hence, the stationary distribution of the chain is
approximately N (0, 2.8). For the χ2 test, we work on the interval [−5, 5] that we split into 20 regular
parts.

with Z a normalization constant such that
∫ 3

−3
f(x)dx = 1. To construct a Markov chain with station-

ary measure π, we use an independent Metropolis-Hasting algorithm with proposal density q(x) ∝
exp(−x2/6). Using Proposition 5.4, we get that the above built Markov chain (Xi)i≥1 satisfies Assump-
tions 1 and 2. We focus on the following alternatives

gµ,σ2(x) =
1

Z(µ, σ2)
exp

(
− (x− µ)2

2σ2

)
1[−3,3](x),

where Z(µ, σ2) is a normalization constant such that
∫
gµ,σ2(x)dx = 1. Table 5.3 shows the estimated

powers for our test, the KS test and the χ2 test.

(µ, σ2) Our test χ2 test KS test ∥f − gµ,σ2∥2
(0, 1) 0.96 0.91 0.9 0.29

(0, 0.72) 0.95 0.84 0.93 0.23
(0.3, 0.72) 0.92 0.87 0.93 0.19

Table 5.3: Estimated powers of the tests for Markov chains with size n = 100. We used M =
{(1, i) : i ∈ {1, . . . , 10}} . For the χ2 test, we work on the interval [−3, 3] that we split into 20 regu-
lar parts.

5.5.3.3 Example 3: ARCH process

Let us consider some θ ∈ (−1, 1). We are interested in the simple threshold auto-regressive model (Xn)n≥1

defined by X1 = 0 and for any n ≥ 1,

Xn+1 = θ|Xn|+ (1− θ2)1/2ξn+1,

where the random variables (ξn)n≥2 are i.i.d. with standard Gaussian distribution. From Example 3
from Section 4.3.3.1, we know that Assumptions 1 and 2 hold. The transition kernel of the Markov
chain (Xi)i≥1 is

∀x, y ∈ R, P (x, dy) =
1√
2π

exp

(
− (y − θ|x|)2

2(1− θ2)

)
dy.

The stationary distribution π of the Markov chain has density f with respect to the Lebesgue measure
on Rwith

∀y ∈ R, f(y) =
1√
2π

exp

(
−y

2

2

)
Φ

(
θy

(1− θ2)1/2

)
,

where Φ is the standard normal cumulative distribution function. We focus on the following alterna-
tives

fµ,σ2(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
.

Table 5.4 shows the estimated powers for our test, the KS test and the χ2 test.
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(µ, σ2) Our test χ2 test KS test ∥f − fµ,σ2∥2
(0, 1) 0.98 0.85 0.95 0.3

(1, 0.82) 0.95 0.79 0.88 0.22
(0.5, 1) 0.3 0.07 0.5 0.14

(0.6, 0.82) 0.35 0.16 0.4 0.036

Table 5.4: Estimated powers of the tests for Markov chains with size n = 100. We used θ = 0.8 andM =
{(1, i) : i ∈ {1, . . . , 10}} . For the χ2 test, we work on the interval [−20, 20] that we split into 20 regular
parts.

(a) Example 1 (b) Example 2

(c) Example 3

Figure 5.3: In solid line, we plot the density of the stationary measure of the Markov chain for the three
examples of our simulations. In dotted line, we plot the density of the alternative that gives the smaller
power on our experiments.

5.5.3.4 Comments on our numerical experiments

Our experiments show that the χ2 goodness-of-fit test give in general the smaller power compared to
our method and to the KS test. The χ2 test is better suited to deal with discrete probability distributions
and it seems to suffer to small power in our continuous setting. Note that using the χ2 test with con-
tinuous densities on R require to specify some hyperparameters (such as a compact interval and the
number of bins to discretize it). In practice, the test results can change drastically by modifying these
hyperparameters, making the test unreliable. Our experiments also show that when the L2 norm be-
tween the true density f and the alternative one f0 is large enough, our method reaches higher power
compared to the two other procedures considered. Nevertheless, our approach seems less powerful
compared to the KS test when the L2 norm ∥f − f0∥2 is getting smaller. This is not surprising since
our testing procedure is based on the L2 norm while the KS test relies on the sup norm between cu-
mulative distribution functions (CDFs). We conduct an final experiment to better stress this distinction
between our procedure and the KS test. We consider the notations and the framework of the example
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from Section 5.5.3.1 with the following alternatives

f (L,δ)(x) =


f
0, τ2

1−θ2
(x) if |x| ≥ δ

f
0, τ2

1−θ2
(x)− L if − δ < x ≤ 0

f
0, τ2

1−θ2
(x) + L if 0 < x < δ

,

where L, δ > 0 are chosen so that f (L,δ)(x) ≥ 0 for any x ∈ R. We work with τ = 1, θ = 0.8 andM =
{(1, i) : i ∈ {1, . . . , 10}} . Figure 5.4 shows the alternatives considered. The sup norm between the
CDFs of f and f (L,δ) is equal to Lδ while the squared L2 norm between f and f (L,δ) is 2L2δ3/3. Hence,
we expect that powers will increase for both tests when L and/or δ are increasing. Moreover, we expect
the power of our method to be more sensitive to the parameters L and δ. Those intuitions are confirmed
with the numerical experiments presented in Table 5.5.

Figure 5.4: Alternative considered.

(L, δ) 0.25 0.5 0.75 1

0.05
0.06 0.12 0.2 0.21
0.1 0.15 0.2 0.22

0.05
0.16 0.33 0.36 0.4
0.23 0.26 0.33 0.37

0.1
0.33 0.66 0.8 0.83
0.26 0.35 0.46 0.48

0.15
0.82 0.87 0.9 0.95
0.35 0.45 0.55 0.67

0.2
0.9 0.93 0.95 0.98

0.46 0.54 0.72 0.87

Table 5.5: Estimated powers of the tests for Markov chains
with size n = 100. Gray cells are the powers of our method
while blank cells are the ones obtained with the KS test.

5.6 Proofs for Section 5.3

Let us explain in a nutshell the structure of our proof. For any natural number R, we denote HR the
integral operator with kernel function hR at resolution R, namely

hR(x, y) :=
∑

r∈I,r≤R

λrϕr(x)ϕr(y), HRf(x) :=

∫
E

hR(x, y)f(y)dπ(y).

We define H̃R
n and HR

n analogously by using the kernel hR in Eq.(5.3). Using the triangle inequality, we
split the distance δ2(λ(H), λ(Hn)) into four terms.

1. δ2(λ(H), λ(HR)) is a bias term induced by working at resolution R.

2. A non-trivial preliminary work allows to prove that δ2(λ(HR), λ(H̃R
n )) can be written as an empir-

ical process of the Markov chain (Xi)i≥1 whose tail can be controlled by applying concentration
inequalities for sums of functions of uniformly ergodic Markov chains (this is where we use the
assumption that Υ is finite). We refer to Eq.(5.16).

3. Since the matrices HR
n and H̃R

n only differ at diagonal elements, δ2(λ(H̃R
n ), λ(H

R
n )) can be coarsely

bounded by n−1/2∥hR∥∞ (cf. Eq.(5.17)).

4. Applying the Hoffman-Wielandt inequality, one can notice that δ2(λ(HR
n ), λ(Hn)) can be upper-

bounded by a U-statistic of order two of the Markov chain (Xi)i≥1 (cf. Eq.(5.18)). We control the
tail behaviour of this U-statistic by applying Theorem 5.1.

The proof is then concluded by choosing the resolution level R so that R2 = ⌈
√
n⌉.
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5.6.1 Deviation inequality for the spectrum of signed integral operators

As shown in Section 5.6.2, Theorem 5.3 is a direct consequence of the concentration result provided by
Theorem 5.15.

Theorem 5.15. We keep notations of Section 5.3. Assume that (Xn)n≥1 is a Markov chain on E satisfying
Assumptions 1 and 2 described in Section 5.2.2 with stationary distribution π. Let us consider some symmetric
kernel h : E × E → R, square integrable with respect to π ⊗ π. Let us consider some R ∈ N∗. We assume that
there exist continuous functions ϕr : E → R, r ∈ I (where I = N or I = 1, . . . , N ) that form an orthonormal
basis of L2(π) such that it holds pointwise

h(x, y) =
∑
r∈I

λrϕr(x)ϕr(y),

with
ΛR := sup

r∈I, r≤R
|λr| and ΥR := sup

r∈I, r≤R
∥ϕr∥2∞.

We also define hR(x, y) =
∑
r∈I, r≤R λrϕr(x)ϕr(y) and we assume that ∥hR∥∞, ∥h− hR∥∞ <∞. Then there

exists a universal constant K > 0 such that for any t > 0, it holds

P

1

4
δ2(λ(H), λ(Hn))

2 ≥
(
∥hR∥2∞ + κ∥h− hR∥2∞

) log n
n

+ 2
∑

i>R,i∈I
λ2i + t


≤ 16 exp

(
−n t2

Km2τ2∥h− hR∥2∞

)
+ β log(n) exp

(
− n

16 log n

{[
t

c

]
∧
[
t

c

]1/2})

+ 16R2 exp

(
− nt

Km2τ2R2Λ2
RΥ

2
R

)
.

where c = κ∥h− hR∥∞ with κ > 0 depending on δM , τ, L,m and ρ. β depends only on ρ.

Proof of Theorem 5.15. For any integer R ≥ 1, we denote

Xn,R :=
1√
n
(ϕr(Xi))1≤i≤n, 1≤r≤R ∈ R

n×R

An,R :=
(
X⊤
n,RXn,R

)1/2 ∈ RR×R

KR := Diag(λ1, . . . , λR)

H̃R
n := Xn,RKRX

⊤
n,R

HR
n :=

(
(1− δi,j)

(
H̃R
n

)
i,j

)
1≤i,j≤n

.

We remark that A2
n,R = IR + ER,n where (ER,n)r,s = (1/n)

∑n
i=1 (ϕr(Xi)ϕs(Xi)− δr,s) for all r, s ∈ [R].

Denoting λ(HR) = (λ1, . . . , λR), we have

δ2(λ(H), λ(Hn))
2 ≤ 4

[
δ2(λ(H), λ(HR))2 + δ2(λ(H

R), λ(H̃R
n ))

2

+ δ2(λ(H̃
R
n ), λ(H

R
n ))

2 + δ2(λ(H
R
n ), λ(Hn))

2
]
.

Bounding δ2
(
λ(HR), λ(H̃R

n )
)2.

Let us consider some ϵ > 0.

Using a singular value decomposition of Xn,R, one can show that λ(Xn,RKRX
⊤
n,R) = λ(An,RKRAn,R)

which leads to

δ2

(
λ(HR), λ(H̃R

n )
)
= δ2

(
λ(KR), λ(Xn,RKRX

⊤
n,R)

)
= δ2 (λ(KR), λ(An,RKRAn,R))

≤ ∥KR −An,RKRAn,R∥F ,
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Using Equation (4.8) from Koltchinskii and Giné [2000, page 127], we get

δ2

(
λ(HR), λ(H̃R

n )
)2
≤ 2∥KRER,n∥2F = 2

∑
1≤r,s≤R

λ2s

(
1

n

n∑
i=1

ϕr(Xi)ϕs(Xi)− δr,s

)2

. (5.16)

Hence,

P

(
δ2

(
λ(HR), λ(H̃R

n )
)2
≥ t
)

≤
∑

1≤s,r≤R

P

(
√
2|λs|

∣∣∣∣∣ 1n
n∑
i=1

ϕr(Xi)ϕs(Xi)− δr,s

∣∣∣∣∣ ≥ √t/R
)

≤
∑

1≤s,r≤R,λs ̸=0

P

(∣∣∣∣∣ 1n
n∑
i=1

ϕr(Xi)ϕs(Xi)− δr,s

∣∣∣∣∣ ≥ √t/(√2R|λs|)
)

≤
∑

1≤s,r≤R,λs ̸=0

16 exp

(
−
(
Km2τ2

)−1 nt

R2|λs|2Υ4
R

)

= 16R2 exp

(
−
(
Km2τ2

)−1 nt

R2Λ2
RΥ

4
R

)
,

where the last inequality follows from Proposition A.14 and where K > 0 is a universal constant.
Bounding δ2(λ(H̃R

n ), λ(H
R
n ))

2.

δ2(λ(H̃
R
n ), λ(H

R
n ))

2 ≤ ∥H̃R
n −HR

n ∥2F =
1

n2

(
n∑
i=1

h2R(Xi, Xi)

)
≤ ∥hR∥

2
∞

n
(5.17)

Bounding δ2(λ(HR
n ), λ(Hn))

2.

δ2(λ(H
R
n ), λ(Hn))

2 ≤ ∥H̃R
n − H̃n∥2F =

1

n2

 ∑
1≤i,j≤n, i ̸=j

(h− hR)(Xi, Xj)
2

 . (5.18)

Let us consider,

∀x, y ∈ E, mR(x, y) := (h− hR)2(x, y)− sR(x)− sR(y)− Eπ⊗π[(h− hR)2(X,Y )],

where sR(x) = Eπ[(h−hR)2(x,X)]−Eπ⊗π[(h−hR)2(X,Y )]. One can check that for any x ∈ E,Eπ[mR(x,X)] =
Eπ[mR(X,x)] = 0. Hence, mR is π-canonical.

1

n(n− 1)

 ∑
1≤i,j≤n, i ̸=j

(h− hR)(Xi, Xj)
2


=

1

n(n− 1)

∑
1≤i,j≤n, i ̸=j

mR(Xi, Xj) +
2

n

n∑
i=1

sR(Xi) + Eπ⊗π[(h− hR)2(X,Y )]. (5.19)

Using Theorem 5.1, we get that there exist two constants β, κ > 0 such that for any u ≥ 1, it holds with
probability at least 1− βe−u log(n),

1

n(n− 1)

∑
1≤i,j≤n, i ̸=j

mR(Xi, Xj) ≤ κ∥h− hR∥∞ log n

{
u

n
∨
(u
n

)2}
.
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Let us now consider some t > 0 such that

κ∥h− hR∥∞ log n

{
u

n
∨
(u
n

)2}
≤ t. (5.20)

The condition (5.20) is equivalent to

u ≤ n

{
t

κ∥h− hR∥∞ log n
∧
(

t

κ∥h− hR∥∞ log n

)1/2
}
,

which is satisfied in particular if t and u are such that

u =
n

log n

{[
t

c

]
∧
[
t

c

]1/2}
,

where c = κ∥h − hR∥∞. One can finally notice that for this choice of u, the condition u ≥ 1 holds in
particular for n large enough in order to have n/ log n ≥ κ∥h− hR∥∞t−1.
We deduce from this analysis that for any t > 0, we have for n large enough to satisfy n/ log n ≥
κ∥h− hR∥∞t−1,

P

 1

n(n− 1)

∑
1≤i,j≤n, i ̸=j

mR(Xi, Xj) ≥ t

 ≤ β log(n) exp(− n

log n

{[
t

c

]
∧
[
t

c

]1/2})
.

Using the Hoeffding inequality from Proposition A.14, we get that for some universal constant K > 0,

P

(
2

n

∣∣∣∣∣
n∑
i=1

sR(Xi)

∣∣∣∣∣ ≥ t
)
≤ 16 exp

(
−n t2

Km2τ2∥h− hR∥2∞

)
.

We deduce that for some universal constant K > 0 it holds

P

 1

n2

 ∑
1≤i,j≤n, i ̸=j

(h− hR)(Xi, Xj)
2

− Eπ⊗π [(h− hR)2] ≥ t


≤ 16 exp

(
−n t2

Km2τ2∥h− hR∥2∞

)
+ β log(n) exp

(
− n

4 log n

{[
t

c

]
∧
[
t

c

]1/2})
.

Since Eπ⊗π
[
(h− hR)2(X,Y )

]
=
∑
i>R,i∈I λ

2
i , we deduce that

P

δ2(λ(HR
n ), λ(Hn))

2 −
∑

i>R,i∈I
λ2i ≥ t


≤ 16 exp

(
−n t2

Km2τ2∥h− hR∥2∞

)
+ β log(n) exp

(
− n

4 log n

{[
t

c

]
∧
[
t

c

]1/2})
.

Hence we proved that for any u > 0 such that n/ log n ≥ κ∥h− hR∥∞u−1,

P

1

4
δ2(λ(H), λ(Hn))

2 ≥ ∥hR∥
2
∞

n
+ 2

∑
i>R,i∈I

λ2i + u


≤ 16 exp

(
−n u2

Km2τ2∥h− hR∥2∞

)
+ β log(n) exp

(
− n

16 log n

{[u
c

]
∧
[u
c

]1/2})
+ 16R2 exp

(
− nu

Km2τ2R2Λ2
RΥ

2
R

)
.
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Considering t > 0 and applying the previous inequality with u = t+ κ∥h−hR∥∞ logn
n , we get

P

1

4
δ2(λ(H), λ(Hn))

2 ≥
(
∥hR∥2∞ + κ∥h− hR∥2∞

) log n
n

+ 2
∑

i>R,i∈I
λ2i + t


≤ 16 exp

(
−n t2

Km2τ2∥h− hR∥2∞

)
+ β log(n) exp

(
− n

16 log n

{[
t

c

]
∧
[
t

c

]1/2})

+ 16R2 exp

(
− nt

Km2τ2R2Λ2
RΥ

2
R

)
.

This concludes the proof of Theorem 5.15.

5.6.2 Proof of Theorem 5.3.

We consider any R ∈ N∗. We remark that for any x, y ∈ E,

|hR(x, y)| =

∣∣∣∣∣
R∑
r=1

λrϕr(x)ϕr(y)

∣∣∣∣∣
≤

(
R∑
r=1

|λr|ϕr(x)2
)1/2

×

(
R∑
r=1

|λr|ϕr(y)2
)1/2

(using Cauchy-Schwarz inequality)

≤ S,

which proves that ∥hR∥∞ ≤ S. Similar computations lead to ∥h− hR∥∞ ≤ S.
Using Theorem 5.15 we get for any t > 0,

P

1

4
δ2(λ(H), λ(Hn))

2 ≥ S2(1 + κ) log n

n
+ 2

∑
i>R,i∈I

λ2i + t


≤ 16 exp

(
−n t2

Km2τ2S2

)
+ β log(n) exp

(
− n

16 log n

{[
t

κS

]
∧
[
t

κS

]1/2})

+ 16R2 exp

(
− nt

Km2τ2R2Λ2Υ2

)
,

where Λ := sup
r≥1
|λr| <∞. Choosing R2 = ⌈

√
n⌉, we get

P

1

4
δ2(λ(H), λ(Hn))

2 ≥ S2(1 + κ) log n

n
+ 2

∑
i>⌈n1/4⌉,i∈I

λ2i + t


≤ 32

√
n exp

(
−Cmin

(
nt2,
√
nt
))

+ β log(n) exp

(
− n

log n
min

(
Bt, (Bt)1/2

))
,

where B = (KκS)
−1 and C = K−1

(
m2τ2(S + ΛΥ)

)−2.

5.7 Proofs for Section 5.4

In this section, for any k ≥ 0 we denote Ek the conditional expectation with respect to the σ-algebra
σ(X1, . . . , Xk).
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5.7.1 Proof of Theorem 5.7

By definition ofMn, we want to bound

P

(
1

n− cn

n−1∑
t=cn

R(ht−bn)−
1

n− cn

n−1∑
t=cn

Mt ≥ ϵ

)
,

which takes the form

P

(
1

n− cn

n−1∑
t=cn

[R(ht−bn)− Et−bn [Mt]]−
1

n− cn

n−1∑
t=cn

[Mt − Et−bn [Mt]] ≥ ϵ

)

≤ P

(
1

n− cn

n−1∑
t=cn

[R(ht−bn)− Et−bn [Mt]] ≥ ϵ/2

)
+ P

(
1

n− cn

n−1∑
t=cn

[Et−bn [Mt]−Mt] ≥ ϵ/2

)
.

(5.21)

5.7.1.1 Step 1: Martingale difference

We first deal with the second term of Eq.(5.21). Note that we can write

n−1∑
t=cn

[Et−bn [Mt]−Mt] =

n−1∑
t=cn

bn∑
k=1

[Et−k[Mt]− Et−k+1[Mt]] =

bn∑
k=1

n−1∑
t=cn

[Et−k[Mt]− Et−k+1[Mt]] .

Let us consider some k ∈ {1, . . . , bn}, then we have that V (k)
t = (Et−k[Mt] − Et−k+1[Mt])/(n − cn) is

a martingale difference sequence, i.e. Et−k[V
(k)
t ] = 0. Since the loss function is bounded in [0, 1], we

have |V (k)
t | ≤ 2/(n − cn), t = 1, . . . , n. Therefore by the Hoeffding-Azuma inequality,

∑
t V

(k)
t can be

bounded such that

P

(
1

n− cn

n−1∑
t=cn

[Et−k[Mt]− Et−k+1[Mt]] ≥
ϵ

2bn

)
≤ exp

(
− (1− c)nϵ2

8b2n

)
.

We deduce that

P

(
1

n− cn

n−1∑
t=cn

[Et−bn [Mt]−Mt] ≥ ϵ/2

)
≤ bn exp

(
− (1− c)nϵ2

8b2n

)
. (5.22)

5.7.1.2 Step 2: Symmetrization by a ghost sample

In this step we bound the first term in Eq.(5.21). Let us start by introducing a ghost sample {ξj}1≤j≤n,
where the random variables ξj are i.i.d with distribution π. Recall the definition of Mt and define M̃t as

Mt =
1

t− bn

t−bn∑
i=1

ℓ(ht−bn , Xt, Xi), M̃t =
1

t− bn

t−bn∑
i=1

ℓ(ht−bn , Xt, ξi).

The difference between M̃t and Mt is that Mt is the sum of the loss incurred by ht−bn on the current
instance Xt and all the previous examples Xj , j = 1, . . . , t − bn on which ht−bn is trained, while M̃t is
the loss incurred by the same hypothesis ht−bn on the current instance Xt and an independent set of
examples ξj , j = 1, . . . , t− bn.
First remark that we have

1

n− cn

n−1∑
t=cn

[R(ht−bn)− Et−bn [Mt]]

=
1

n− cn

n−1∑
t=cn

[
R(ht−bn)− Et−bn [M̃t]

]
+

1

n− cn

n−1∑
t=cn

[
Et−bn [M̃t]− Et−bn [Mt]

]
. (5.23)
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�
The first term of Eq.(5.23) is handled in Wang et al. [2012] by relying heavily on the as-
sumption that samples are i.i.d [see Wang et al., 2012, Claim 1]. Hence, the approach of
Wang and al. cannot be adapted in our framework. To overcome this difficulty, we use the
uniform ergodicity of the Markov chain. This is where the use of the burning parameter
bn is essential.

Since ℓ is in [0, 1], the first term can be bounded directly using the uniform ergodicity of the Markov
chain (Xi)i as follows

1

n− cn

n−1∑
t=cn

[
R(ht−bn)− Et−bn [M̃t]

]
=

1

n− cn

n−1∑
t=cn

∫
x∈E

(
dπ(x)EX∼π[ℓ(ht−bn , x,X)]− P bn(Xt−bn , dx)EX∼π[ℓ(ht−bn , x,X)]

)
=

1

n− cn

n−1∑
t=cn

∫
x∈E

EX∼π[ℓ(ht−bn , x,X)]
(
dπ(x)− P bn(Xt−bn , dx)

)
≤ 1

n− cn

n−1∑
t=cn

∫
x∈E

∣∣dπ(x)− P bn(Xt−bn , dx)
∣∣

≤ Lρbn ,

where we used Eq.(5.6). It remains to control

1

n− cn

n−1∑
t=cn

[
Et−bn [M̃t]− Et−bn [Mt]

]
,

and we follow an approach similar to Wang et al. [2012]. Let us remind that Mt and M̃t depend on the
hypothesis ht−bn and let us define Lt(ht−bn) =

[
Et−bn [M̃t]− Et−bn [Mt]

]
. We have

P

(
1

n− cn

n−1∑
t=cn

Lt(ht−bn) ≥ ϵ

)
≤P

(
sup

ĥcn−bn ,...,ĥn−1−bn

1

n− cn

n−1∑
t=cn

Lt(ĥt−bn) ≥ ϵ

)

≤
n−1∑
t=cn

P

(
sup
ĥ∈H

Lt(ĥ) ≥ ϵ

)
. (5.24)

To bound the right hand side of Eq.(5.24) we give first the following Lemma.

Lemma 5.16. Given any function f ∈ H and any t ≥ cn,

∀ϵ > 0, P (Lt(f) ≥ ϵ) ≤ 16 exp
(
−(t− bn)C(m, τ)ϵ2

)
.

�

In the i.i.d. framework, the counterpart of Lemma 5.16 follows from a straightforward
application of McDiarmid’s inequality [see Wang et al., 2012, Lemma 5]. In our work,
we consider uniformly ergodic Markov chains and the proof of Lemma 5.16 requires ex-
tra work. We apply a concentration inequality for Markov chains (see Proposition A.14)
which needs to hold for any initial distribution. We apply Proposition A.14 by considering
the time-reversed sequence and this is where we use the reversibility of the chain.

Proof of Lemma 5.16. Note that

Lt(f) = Et−bn [M̃t]− Et−bn [Mt]

=
1

t− bn

t−bn∑
i=1

(Et−bn [ℓ(f,Xt, ξi)]− Et−bn [ℓ(f,Xt, Xi)])

=
1

t− bn

t−bn∑
i=1

Eξ∼π
[
EXt∼P bn (Xt−bn ,·){ℓ(f,Xt, ξ)}

]
− EXt∼P bn (Xt−bn ,·){ℓ(f,Xt, Xi)}.
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Hence, denoting m(f,Xt−bn , x) = EXt∼P bn (Xt−bn ,·){ℓ(f,Xt, x)} , we get

Lt(f) ≤
1

t− bn

t−bn∑
i=1

{Eξ∼π [m(f,Xt−bn , ξ)]−m(f,Xt−bn , Xi)} .

By the reversibility of the chain (Xi)i≥1, we know that the sequence (Xt−bn , Xt−bn−1, . . . , X1) condi-
tionally on Xt−bn is a Markov chain with stationary distribution π. Applying Proposition A.14, we get
that

P (Lt(f) ≥ ϵ | Xt−bn)

≤ P

(
1

t− bn

t−bn∑
i=1

{Eξi∼π [m(f,Xt−bn , ξi)]−m(f,Xt−bn , Xi)} ≥ ϵ | Xt−bn

)
≤ 16 exp

(
−(t− bn)C(m, τ)ϵ2

)
,

for some constant C(m, τ) > 0 depending only on m and τ . Then we deduce that

P (Lt(f) ≥ ϵ) = E
[
E
{
1Lt(f)≥ϵ | Xt−bn

}]
= E [P {Lt(f) ≥ ϵ | Xt−bn}]
≤ 16 exp

(
−(t− bn)C(m, τ)ϵ2

)
,

which concludes the proof of Lemma 5.16.

The following two Lemmas are key elements to prove Lemma 5.19. Their proofs are strictly analogous
to the proofs of Lemmas 6, 7 and 8 from Wang et al. [2012].

Lemma 5.17. [cf. Wang et al., 2012, Lemma 6] For any two functions h1, h2 ∈ H, the following equation holds

|Lt(h1)− Lt(h2)| ≤ 2Lip(ϕ)∥h1 − h2∥∞.

Lemma 5.18. LetH = S1 ∪ · · · ∪ Sl and ϵ > 0. Then

P

(
sup
h∈H

Lt(h) ≥ ϵ
)
≤

l∑
j=1

P

(
sup
h∈Sj

Lt(h) ≥ ϵ

)
.

Lemma 5.19. [cf. Wang et al., 2012, Lemma 6] For any cn ≤ t ≤ n, it holds

P

(
sup
h∈H

Lt(h) ≥ ϵ
)
≤ 16N

(
H, ϵ

4Lip(ϕ)

)
exp

(
− (t− bn)C(m, τ)ϵ2

4

)
.

Combining Lemma 5.19 and Eq.(5.24), we have

P

(
1

n− cn

n−1∑
t=cn

Lt(ht−bn) ≥ ϵ

)
≤ 16N

(
H, ϵ

4Lip(ϕ)

)
n exp

(
− (cn − bn)C(m, τ)ϵ2

4

)
.

We deduce that

P

(
1

n− cn

n−1∑
t=cn

[R(ht−bn)− Et−bn [Mt]] ≥ ϵ/2

)

≤ P

(
Lρbn +

1

n− cn

n−1∑
t=cn

[
Et−bn [M̃t]− Et−bn [Mt]

]
≥ ϵ/2

)

≤ 16N
(
H, ϵ

8Lip(ϕ)

)
n exp

(
−
(cn − bn)C(m, τ)

(
ϵ/2− Lρbn

)2
4

)
.
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5.7.1.3 Step 3: Conclusion of the proof

� By considering dependent random variables, we needed the introduction of the burn-
ing parameter bn (see Eq.(5.23)). This situation brings extra technicalities to conclude the
proof.

From the previous inequality and (5.22), we get

P

(
1

n− cn

n−1∑
t=cn

R(ht−bn)−
1

n− cn

n−1∑
t=cn

Mt ≥ ϵ

)

≤ bn exp

(
− (1− c)nϵ2

8b2n

)
+ 16N

(
H, ϵ

8Lip(ϕ)

)
n exp

(
−
(cn − bn)C(m, τ)

(
ϵ/2− Lρbn

)2
4

)
.

Note that (cn − bn)ϵρbn =
n→∞

o
(
nϵnq log(ρ)

)
=

n→∞
o
(
n1+ξ+q log(ρ)

)
because by assumption ϵ =

n→∞
o
(
nξ
)
.

However, by choice of q we have

1 + ξ + q log(ρ) = 1 + ξ +
1 + ξ

log(1/ρ)
log(ρ) = 0,

and we finally get that (cn − bn)ϵρbn =
n→∞

o (1). We deduce that for n large enough it holds

exp

(
−
(cn − bn)C(m, τ)

(
ϵ/2− Lρbn

)2
4

)
≤ 2 exp

(
− (cn − bn)C(m, τ)ϵ2

16

)
.

Then, noticing that

exp

(
− (1− c)nϵ2

8b2n

)
=

n→∞
O
(
exp

(
− (cn − bn)C(m, τ)ϵ2

16b2n

))
,

we finally get for n large enough

P

(
1

n− cn

n−1∑
t=cn

R(ht−bn)−
1

n− cn

n−1∑
t=cn

Mt ≥ ϵ

)

≤
[
32N

(
H, ϵ

8Lip(ϕ)

)
+ 1

]
bn exp

(
− (cn − bn)C(m, τ)ϵ2

16b2n

)
.

5.7.2 Proof of Theorem 5.9

Theorem 5.7 shows that

P

(∣∣∣∣∣ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn

∣∣∣∣∣ ≥ ϵ
)

≤
[
32N

(
H, ϵ

8Lip(ϕ)

)
+ 1

]
bn exp

(
− (cn − bn)C(m, τ)ϵ2

16b2n

)
, (5.25)

and the assumption on the space H gives that for some θ > 0, it holds for any η > 0, logN (H, η)
= O(η−θ). By taking ϵ = log(n) log(logn)

n
1

2+θ
it is straightforward to prove that the logarithm of the right

hand side of Eq.(5.25) goes to−∞ as n→ +∞. This concludes the proof of the first part of Theorem 5.9.
Since the result from Theorem 5.7 trivially holds when considering h1 = · · · = hn−1 = h∗, the previous
computations show that for any δ > 0 there exists some N ∈ N such that for any n ≥ N it holds with
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probability at least 1− δ,∣∣∣∣∣ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn

∣∣∣∣∣ ∨ |Mn(h∗, . . . , h∗)−Mn| ≤ log(n) log(log n)

n
1

2+θ

.

Hence, by considering that the online learner has a regret bound Rn (cf. Definition 5.8), we get that for
any δ > 0 there exists some N ∈ N such that for any n ≥ N it holds with probability at least 1− δ,

1

n− cn

n−1∑
t=cn

R(ht−bn)−R(h∗)

≤ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn +Mn −Mn(h∗, . . . , h∗) +Mn(h∗, . . . , h∗)−R(h∗)

≤ 2
log(n) log(log n)

n
1

2+θ

+Mn − inf
h∈H
Mn(h, . . . , h) ≤ 2

log(n) log(log n)

n
1

2+θ

+Rn,

which concludes the proof of Theorem 5.9.

5.7.3 Proof of Theorem 5.10

�

The proof of Theorem 5.10 has two main steps. First, we show that R(ĥ) is
close to min

cn≤t≤n−1
R(ht−bn) + 2cγ(n − t) with high probability. Then we show that

min
cn≤t≤n−1

R(ht−bn) + 2cγ(n − t) is close to Mn with high probability. The second step

is similar to the proof of Wang et al. [2012]. For the first step, we need a concentration in-
equality for U-statistics of order two for uniformly ergodic Markov chains. This is where
we use the Hoeffding decomposition and Theorem 5.1 (see Section 5.2.2).

Let us recall that for any 1 ≤ t ≤ n− 2, R̂(ht−bn , t+1) =
(
n−t
2

)−1∑n
k>i,i≥t+1 ℓ(ht−bn , Xi, Xk). We define

ℓ(h, x) := Eπ[ℓ(h,X, x)]−R(h), and ℓ̃(h, x, y) = ℓ(h, x, y)− ℓ(h, x)− ℓ(h, y)−R(h).

Then for any t ∈ {bn + 1, . . . , n− 2}we have the following decomposition

R̂(ht−bn , t+ 1)−R(ht−bn) =
(
n− t
2

)−1 n∑
k>i,i≥t+1

ℓ̃(ht−bn , Xi, Xk) +
2

n− t

n∑
i=t+1

ℓ(ht−bn , Xi). (5.26)

One can check that for any x ∈ E, Eπ
[
ℓ̃(h,X, x)

]
= Eπ

[
ℓ̃(h, x,X)

]
= 0. Moreover, for any hypoth-

esis h ∈ H, ∥ℓ̃(h, ·, ·)∥∞ ≤ 4 (because the loss function ℓ takes its value in [0, 1]). Hence, for any fixed
hypothesis h ∈ H, the kernel ℓ̃(h, ·, ·) satisfies Assumption 3. Applying Theorem 5.1, we know that
there exist constants β, κ > 0 such that for any t ∈ {bn + 1, . . . , n − 2} and for any γ ∈ (0, 1), it holds
with probability at least 1− γ,∣∣∣∣∣∣

(
n− t
2

)−1 n∑
k>i,i≥t+1

ℓ̃(ht−bn , Xi, Xk)

∣∣∣∣∣∣ ≤ κ log(n− t− 1)

n− t− 1
log((β ∨ e1) log(n− t+ 1)/γ)2.

Note that we used that for u = log
(
(β ∨ e1) log(n− t+ 1)/γ

)
≥ 1 it holds

log n

{
u

n
∨
(u
n

)2}
≤ log n

n
u2.

Using Proposition A.14, we also have that for any t ∈ {bn + 1, . . . , n− 2} and any ϵ > 0 ,

P

(∣∣∣∣∣ 2

n− t

n∑
i=t+1

ℓ(ht−bn , Xi)

∣∣∣∣∣ > ϵ

)
≤ 32 exp

(
−C(m, τ)(n− t)ϵ2

)
,
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where C(m, τ) = (Km2τ2)−1 > 0 for some universal constant K (one can check from the proof of
Proposition A.14 that K = 7× 103 fits). We get that for any t ∈ {bn + 1, . . . , n− 2} and any γ ∈ (0, 1), it
holds with probability at least 1− γ,∣∣∣∣∣ 2

n− t

n∑
i=t+1

ℓ(ht−bn , Xi)

∣∣∣∣∣ ≤ log(32/γ)1/2C(m, τ)−1/2

√
n− t

.

We deduce that for any t ∈ {bn + 1, . . . , n − 2} and any fixed γ ∈ (0, 1), it holds with probability at
least 1− γ, ∣∣∣R̂(ht−bn , t+ 1)−R(ht−bn)

∣∣∣ ≤ C(m, τ)−1/2

√
log(64/γ)

n− t
,

i.e.
P
(∣∣∣R̂(ht−bn , t+ 1)−R(ht−bn)

∣∣∣ ≥ cγ(n− t)) ≤ γ

(n− cn)(n− cn + 1)
. (5.27)

Based on the selection procedure of the hypothesis ĥ defined in Eq.(5.13), the concentration result
Eq.(5.27) allows us to show that R(ĥ) is close to min

cn≤t≤n−1
R(ht−bn) + 2cγ(n − t) with high probabil-

ity. This is stated by Lemma 5.20 which is proved in Section 5.7.4.

Lemma 5.20. Let h0, . . . , hn−1 be the set of hypotheses generated by an arbitrary online algorithm A working
with a pairwise loss ℓ which satisfies the conditions given in Theorem 5.7. Then for any γ ∈ (0, 1), we have

P

(
R(ĥ) > min

cn≤t<n−1
(R(ht−bn) + 2cγ(n− t))

)
≤ γ.

To conclude the proof, we need to show that min
cn≤t≤n−1

R(ht−bn) + 2cγ(n− t) is close toMn.

First we remark that

min
cn≤t≤n−1

R(ht−bn) + 2cγ(n− t)

= min
cn≤t≤n−1

min
t≤i≤n−1

R(hi−bn) + 2cγ(n− i)

≤ min
cn≤t≤n−1

1

n− t

n−1∑
i=t

(R(hi−bn) + 2cγ(n− i))

≤ min
cn≤t≤n−1

(
1

n− t

n−1∑
i=t

R(hi−bn) +
2

n− t

n−1∑
i=t

√
C(m, τ)−1

n− i
log

64(n− cn)(n− cn + 1)

γ

)

≤ min
cn≤t≤n−1

(
1

n− t

n−1∑
i=t

R(hi−bn) +
2

n− t

n−1∑
i=t

√
2C(m, τ)−1

n− i
log

64(n− cn + 1)

γ

)

≤ min
cn≤t≤n−1

(
1

n− t

n−1∑
i=t

R(hi−bn) + 4

√
2C(m, τ)−1

n− t
log

64(n− cn + 1)

γ

)
,

where the last inequality holds because
∑n−t
i=1

√
1/i ≤ 2

√
n− t. Indeed, x 7→ 1/

√
x is a decreasing and

continuous function and a classical serie/integral approach leads to

n−t∑
i=1

√
1/i ≤ 1 +

∫ n−t

1

1√
x
dx = 1 +

[
2
√
x
]n−t
1
≤ 2
√
n− t.

We defineMn
t := 1

n−t
∑n−1
m=tMm. From Theorem 5.7, one can see that for each t = cn, . . . , n− 1,

P

(
1

n− t

n−1∑
i=t

R(hi−bn) ≥Mn
t + ϵ

)
≤
[
32N

(
H, ϵ

8Lip(ϕ)

)
+ 1

]
bn exp

(
− (t− bn)C(m, τ)ϵ2

16b2n

)
.
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Let us set

Kt =Mn
t + 4

√
2C(m, τ)−1

n− t
log

64(n− cn + 1)

γ
+ ϵ.

Using the fact that if min(a1, a2) ≤ min(b1, b2) then either a1 ≤ b1 or a2 ≤ b2, we can write

P

(
min

cn≤t≤n−1
R(ht−bn) + 2cγ(n− t) ≥ min

cn≤t≤n−1
Kt

)

≤ P

(
min

cn≤t≤n−1

(
1

n− t

n−1∑
i=t

R(hi−bn) + 4

√
2C(m, τ)−1

n− t
log

64(n− cn + 1)

γ

)
≥ min
cn≤t≤n−1

Kt

)

≤
n−1∑
t=cn

P

(
1

n− t

n−1∑
i=t

R(hi−bn) + 4

√
2C(m, τ)−1

n− t
log

64(n− cn + 1)

γ
≥ Kt

)

=

n−1∑
t=cn

P

(
1

n− t

n−1∑
i=t

R(hi−bn) ≥Mn
t + ϵ

)

≤ (n− cn)
[
32N

(
H, ϵ

8Lip(ϕ)

)
+ 1

]
bn exp

(
− (cn − bn)C(m, τ)ϵ2

16b2n

)
≤

[
32N

(
H, ϵ

8Lip(ϕ)

)
+ 1

]
exp

(
− (cn − bn)C(m, τ)ϵ2

16b2n
+ 2 log n

)
.

Using Lemma 5.20, we get

P

(
R(ĥ) ≥ min

cn≤t≤n−1
Mn

t + 4

√
2C(m, τ)−1

n− t
log

64(n− cn + 1)

γ
+ ϵ

)

≤ γ +

[
32N

(
H, ϵ

8Lip(ϕ)

)
+ 1

]
exp

(
− (cn − bn)C(m, τ)ϵ2

16b2n
+ 2 log n

)
,

which gives in particular

P

(
R(ĥ) ≥Mn + 4

√
2C(m, τ)−1

n− cn
log

64(n− cn + 1)

γ
+ ϵ

)

≤ γ +

[
32N

(
H, ϵ

8Lip(ϕ)

)
+ 1

]
exp

(
− (cn − bn)C(m, τ)ϵ2

16b2n
+ 2 log n

)
.

We substitute ϵ with ϵ/2 and we choose γ such that 4
√

2C(m,τ)−1

n−cn log 64(n−cn+1)
γ = ϵ/2 with n large

enough to ensure that γ < 1. We have for any c > 0,

P

(
R(ĥ) ≥Mn + 4

√
2C(m, τ)−1

n− cn
log

64(n− cn + 1)

γ
+
ϵ

2

)

≤ 64(n− cn + 1) exp

(
− (n− cn)C(m, τ)ϵ2

128

)
+

[
32N

(
H, ϵ

16Lip(ϕ)

)
+ 1

]
×

exp

(
− (cn − bn)C(m, τ)ϵ2

(16bn)2
+ 2 log n

)
≤ 32

[
N
(
H, ϵ

16Lip(ϕ)

)
+ 1

]
exp

(
− (cn − bn)C(m, τ)ϵ2

(16bn)2
+ 2 log n

)
,

where these inequalities hold for n large enough.
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5.7.4 Proof of Lemma 5.20

Let
T ∗ := arg min

cn≤t<n−1
(R(ht−bn) + 2cγ(n− t)),

and h∗ = hT∗−bn is the corresponding hypothesis that minimizes the penalized true risk and let R̂∗ =

R̂(h∗, T ∗ + 1) to be the penalized empirical risk of hT∗−bn . Set, for brevity

R̂t−bn = R̂(ht−bn , t+ 1),

and let
T̂ := arg min

cn≤t<n−1
(R̂t−bn + cγ(n− t)),

where ĥ coincides with hT̂−bn . Using this notation and since

R̂T̂−bn + cγ(n− T̂ ) ≤ R̂∗ + cγ(n− T ∗),

holds with certainty, we have

P
(
R(ĥ) > R(h∗) + E

)
= P

(
R(ĥ) > R(h∗) + E , R̂T̂−bn + cγ(n− T̂ ) ≤ R̂∗ + cγ(n− T ∗)

)
≤ P

 ⋃
cn≤t≤n−1

{
R(ht−bn) > R(h∗) + E , R̂t−bn + cγ(n− t) ≤ R̂∗ + cγ(n− T ∗)

}
≤

n−1∑
t=cn

P
(
R(ht−bn) > R(h∗) + E , R̂t−bn + cγ(n− t) ≤ R̂∗ + cγ(n− T ∗)

)
,

where E is a positive-valued random variable to be specified. Now we remark that if

R̂t−bn + cγ(n− t) ≤ R̂∗ + cγ(n− T ∗), (5.28)

holds, then at least one of the following three conditions must hold

(i) R̂t−bn ≤ R(ht−bn)− cγ(n− t)
(ii) R̂∗ > R(h∗) + cγ(n− T ∗)

(iii) R(ht−bn)−R(h∗) ≤ 2cγ(n− T ∗).

Stated otherwise, if Eq.(5.28) holds for some t ∈ {cn, . . . , n− 1} then

• either t = T ∗ and (iii) holds trivially.

• or t ̸= T ∗ which can occur because

– R̂t−bn underestimatesR(ht−bn) and (i) holds.

– R̂∗ overestimatesR(h∗) and (ii) holds.

– n is too small to statistically distinguishR(ht−bn) andR(h∗), and (iii) holds.

Therefore, for any fixed t, we have

P
(
R(ht−bn) > R(h∗) + E , R̂t−bn + cγ(n− t) ≤ R̂∗ + cγ(n− T ∗)

)
≤ P

(
R̂t−bn ≤ R(ht−bn)− cγ(n− t)

)
+ P

(
R̂∗ > R(h∗) + cγ(n− T ∗)

)
+ P (R(ht−bn)−R(h∗) ≤ 2cγ(n− T ∗) , R(ht−bn) > R(h∗) + E) .
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By choosing E = 2cγ(n− T ∗), the last term in the previous inequality is zero and we can write

P
(
R(ĥ) > R(h∗) + 2cγ(n− T ∗)

)
≤

n−1∑
t=cn

P
(
R̂t−bn ≤ R(ht−bn)− cγ(n− t)

)
+ (n− cn)P

(
R̂∗ > R(h∗) + cγ(n− T ∗)

)
≤ (n− cn)γ

(n− cn)(n− cn + 1)
+ (n− cn)

{
n−1∑
t=cn

P
(
R̂t−bn > R(ht−bn) + cγ(n− t)

)}
(using (5.27))

≤ γ

n− cn + 1
+ (n− cn)2

γ

(n− cn)(n− cn + 1)
(using Eq.(5.27))

≤ γ

n− cn + 1
+ (n− cn)

γ

n− cn + 1
= γ.

5.7.5 Proof of Corollary 5.11

The proof of Corollary 5.11 is analogous to the proof of Theorem 5.9 by applying Theorem 5.10 (instead
of Theorem 5.7) and by choosing ϵ = log2 n

n
1

2+θ
.

5.8 Proofs for Section 5.5

5.8.1 Proof of Theorem 5.12

In the following, Pg will denote the distribution of the Markov chain if the stationary distribution of the
chain is assumed to have a density g with respect to the Lebesgue measure onR. We consider q = q1∨q2
where q1, q2 ∈ [1,∞) are such that 1

p1
+ 1

q1
= 1 and 1

p2
+ 1

q2
= 1.

The main tool of the proof is the Hoeffding (also called canonical) decomposition of the U-statistic θ̂m.
We introduce the processes Un and Pn defined by

Un(h) =
1

n(n− 1)

n∑
i̸=j=1

h(Xi, Xj), Pn(h) =
1

n

n∑
i=1

h(Xi).

We also define P (h) = ⟨h, f⟩. By setting, for all m ∈M,

Hm(x, y) =
∑
l∈Lm

(pl(x)− al)(pl(y)− al),

with al = ⟨f, pl⟩, we obtain the decomposition

θ̂m = Un(Hm) + (Pn − P )(2ΠSm(f)) + ∥ΠSm(f)∥22.

Let us consider β in ]0, 1[. Since

Pf (Tα ≤ 0) = Pf

(
sup
m∈M

(θ̂m + ∥f0∥22 −
2

n

n∑
i=1

f0(Xi)− tm(uα)) ≤ 0

)
,

we have

Pf (Tα ≤ 0) ≤ inf
m∈M

Pf

(
θ̂m + ∥f0∥22 −

2

n

n∑
i=1

f0(Xi)− tm(uα) ≤ 0

)
.
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Since ∥f −ΠSm
(f)∥22 = ∥f∥22 − ∥ΠSm

(f)∥22, it holds

θ̂m + ∥f0∥22 −
2

n

n∑
i=1

f0(Xi)

= Un(Hm) + (Pn − P )(2ΠSm
(f))− ∥f −ΠSm

(f)∥22 + ∥f∥22 + ∥f0∥22 − 2Pn(f0)

= Un(Hm) + (Pn − P )(2ΠSm(f))− ∥f −ΠSm(f)∥22 + ∥f − f0∥22 + 2P (f0)− 2Pn(f0),

which leads to

Pf (Tα ≤ 0) ≤ inf
m∈M

Pf

(
Un(Hm) + (Pn − P )(2ΠSm

(f)− 2f) + (Pn − P )(2f − 2f0) + ∥f − f0∥22

≤ ∥f −ΠSm(f)∥22 + tm(uα)

)
. (5.29)

We then need to control Un(Hm), (Pn − P )(2ΠSm
(f)− 2f), (Pn − P )(2f − 2f0) for every m ∈M.

Control of Un(Hm).
Hm is π-canonical and a direct application of Theorem 5.1 leads to the following Lemma (the proof of
Lemma 5.21 is postponed to Section 5.8.2).

Lemma 5.21. Let us assume that the stationary distribution of the Markov chain (Xi)i≥1 has density f with re-
spect to the Lebesgue measure onR. For allm = (l,D) with l ∈ {1, 2, 3} andD ∈ Dl, introduce {pl, l ∈ Lm} de-
fined as in page 157 and Zm = 1

n(n−1)

∑n
i ̸=j=1Hm(Xi, Xj), withHm(x, y) =

∑
l∈Lm

(pl(x)−⟨f, pl⟩)(pl(y)−
⟨f, pl⟩). There exist some constants C, β > 0 (both depending on the Markov chain (Xi)i≥1 while C also depends
on ϕ) such that, for all l ∈ {1, 2, 3}, D ∈ Dl and u ≥ 1, it holds with probability at least 1− βe−u log n,

|Z(l,D)| ≤ C (∥f∥∞ + 1)DR(n, u),

where R(n, u) = log n
{
u
n +

(
u
n

)2}
.

We deduce that there exist C, β > 0 such that for any γ ∈ (0, 1∧ (e−13β log n)) and any m = (l,D) ∈M,

Pf

(
Un(Hm) ≤ −C (∥f∥∞ + 1)DR

(
n, log

{
3β log n

γ

}))
≤ γ/3. (5.30)

From Eq.(5.29) and Eq.(5.30) we get that

Pf (Tα ≤ 0) ≤ γ

3
+ inf
m∈M

Pf

(
(Pn − P )(2ΠSm

(f)− 2f) + (Pn − P )(2f − 2f0) + ∥f − f0∥22

≤ ∥f −ΠSm
(f)∥22 + tm(uα) + C (∥f∥∞ + 1)DR

(
n, log

{
3β log n

γ

}))
. (5.31)

Control of (Pn − P )(2ΠSm
(f)− 2f).

It is easy to check that there exists some constant C ′ > 0 such that for all l in {1, 2}, D in Dl,∣∣2ΠS(l,D)
(f)(Xi)− 2f(Xi)

∣∣ ≤ C ′∥f∥∞.

Indeed,

• when l = 1, for any k ∈ Z,

⟨
√
D1[k/D,(k+1)/D[, f⟩ =

∫ √
D1[k/D,(k+1)/D[(x)f(x)dx ≤ D−1/2∥f∥∞.
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Hence,

sup
x
|ΠS(1,D)

(f)(x)| ≤ sup
x

∑
k∈Z

∣∣∣⟨√D1[k/D,(k+1)/D[, f⟩
∣∣∣√D1[k/D,(k+1)/D[(x)

≤ D−1/2∥f∥∞ sup
x

∑
k∈Z

√
D1[k/D,(k+1)/D[(x) = ∥f∥∞.

• when l = 2, D = 2J for some J ∈ N and we have for any k ∈ Z,

⟨ϕJ,k, f⟩ =
∫

2J/2ϕ(2Jx− k)f(x)dx ≤ ∥f∥∞
∫

2J/2|ϕ(2Jx)|dx ≤ 2−J/2∥f∥∞∥ϕ∥1.

Hence,

sup
x
|ΠS(2,D)

(f)(x)| ≤ sup
x

∑
k∈Z

|⟨ϕJ,k, f⟩| × |ϕJ,k(x)|

≤ 2−J/2∥f∥∞∥ϕ∥1 sup
x

∑
k∈Z

|2J/2ϕ(2Jx− k)| ≤ c∥f∥∞∥ϕ∥1,

where c > 0 is a constant depending only on ϕ since ϕ is bounded and compactly supported.
Stated otherwise, there is only a finite number of integers k ∈ Z (which is independent of x and J)
such that for any x ∈ R and any J ∈ Z, 2Jx− k falls into the support of ϕ.

Moreover, it is proved in DeVore and Lorentz [1993, Page 269], that one can take C ′ such that for all D
in D3,

|2ΠS(3,D)
(f)(Xi)− 2f(Xi)| ≤ C ′∥f∥∞ log(D + 1).

Since
EX∼π (2ΠSm(f)(X)− 2f(X))

2 ≤ 4∥f∥∞∥ΠSm(f)− f∥22,

we can deduce using Proposition A.17 (see Section A.5.2) that for all m = (l,D) ∈M,

Pf

(
(Pn − P )(2ΠSm(f)− 2f) < −2C ′ log(3Cχ/γ)qA1∥f∥∞ log(D + 1)

n

− 2

√
2 log(3Cχ/γ)qA2∥f∥∞

n
∥ΠSm(f)− f∥2

)
≤ γ

3
.

Considering some ϵ ∈]0, 2[, we use the inequality ∀a, b ∈ R, 2ab ≤ 4a2/ϵ+ ϵb2/4 and we obtain that for
any m = (l,D) ∈M,

Pf

(
(Pn − P )(2ΠSm(f)− 2f) +

ϵ

4
∥ΠSm(f)− f∥22 < −

2C ′ log(3Cχ/γ)qA1∥f∥∞ log(D + 1)

n

− 8 log(3Cχ/γ)qA2∥f∥∞
ϵn

)
≤ γ

3
. (5.32)

The control of (Pn − P )(2f − 2f0) is computed in the same way and we get

Pf

(
(Pn − P )(2f − 2f0) +

ϵ

4
∥f − f0∥22 < −

4 log(3Cχ/γ)qA1(∥f∥∞ + ∥f0∥∞)

n

− 8 log(3Cχ/γ)qA2∥f∥∞
ϵn

)
≤ γ

3
. (5.33)

Finally, we deduce from Eq.(5.31), Eq.(5.32) and Eq.(5.33) that if there exists some m = (l,D) inM such
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that (
1− ϵ

4

)
∥f − f0∥22 >

(
1 +

ϵ

4

)
∥f −ΠSm

(f)∥22 +
8 log(3Cχ/γ)qA2∥f∥∞

ϵn

+
4 log(3Cχ/γ)qA1(∥f∥∞ + ∥f0∥∞)

n

+
8 log(3Cχ/γ)qA2∥f∥∞

ϵn
+

2C ′ log(3Cχ/γ)qA1∥f∥∞ log(D + 1)

n

+ tm(uα) + C (∥f∥∞ + 1)DR

(
n, log

{
3β log n

γ

})
,

i.e. such that (
1− ϵ

4

)
∥f − f0∥22 >

(
1 +

ϵ

4

)
∥f −ΠSm(f)∥22 +

16 log(3Cχ/γ)qA2∥f∥∞
ϵn

+ 4 (∥f∥∞(C ′ log(D + 1) + 1) + ∥f0∥∞)
log(3Cχ/γ)qA1

n

+ tm(uα) + C (∥f∥∞ + 1)DR

(
n, log

{
3β log n

γ

})
,

then Pf (Tα ≤ 0) ≤ γ.
To conclude the proof of Theorem 5.12, it suffices to notice that for any ϵ ∈]0, 2[, choosing η > 0 such
that 1 + η =

1+ ϵ
4

1− ϵ
4

leads to ϵ = 4η
2+η . One can immediately check that the condition ϵ ∈]0, 2[ is equivalent

to η ∈]0, 2[. Noticing further that 1
ϵ = 2+η

4η < 2+2
4η = 1

η , we deduce that for any η ∈]0, 2[, if

∥f − f0∥22 > (1 + η)

{
∥f −ΠSm

(f)∥22 +
16 log(3Cχ/γ)qA2∥f∥∞

ηn

+ 4 (∥f∥∞(C ′ log(D + 1) + 1) + ∥f0∥∞)
log(3Cχ/γ)qA1

n

+ tm(uα) + C (∥f∥∞ + 1)DR

(
n, log

{
3β log n

γ

})}
,

then Pf (Tα ≤ 0) ≤ γ.

5.8.2 Proof of Lemma 5.21

Lemma 5.21 will follow from Theorem 5.1 if we can show that the function Hm is bounded. Let us
denote m = (l,D) for some l ∈ {1, 2, 3} and D ∈ Dl. Let us first remark that the Bessel’s inequality
states that ∑

k∈Lm

|⟨pk, f⟩|2 ≤ ∥f∥22 =

∫
f(x)f(x)dx ≤ ∥f∥∞, (5.34)

since
∫
f(x)dx = 1 and f(x) ≥ 0, ∀x.

• If l = 1, then we notice that for any k ∈ Z,

|⟨
√
D1]k/D,(k+1)/D[, f⟩| =

∣∣∣∣∫ √D1]k/D,(k+1)/D[(x)f(x)dx

∣∣∣∣
≤ ∥f∥∞

√
D

∫
1]k/D,(k+1)/D[(x)dx

≤ D−1/2∥f∥∞.
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Then for any x, y ∈ R it holds

|Hm(x, y)| ≤
∑
k∈Lm

|pk(x)pk(y)|+
∑
k∈Lm

|pk(x)⟨pk, f⟩|+
∑
k∈Lm

|pk(y)⟨pk, f⟩|+
∑
k∈Lm

|⟨pk, f⟩|2

≤
∑
k∈Z

D1]k/D,(k+1)/D[(x)1]k/D,(k+1)/D[(y)

+ 2 sup
z

∑
k∈Z

√
D|1]k/D,(k+1)/D[(z)| × |⟨

√
D1]k/D,(k+1)/D[, f⟩|+

∑
k∈Lm

|⟨pk, f⟩|2

≤ D + 2∥f∥∞ + ∥f∥∞,

where in the last inequality we used Eq.(5.34).
• If l = 2 then D = 2J for some J ∈ N and we have for any k ∈ Z,

⟨ϕJ,k, f⟩ =
∫

2J/2ϕ(2Jx− k)f(x)dx ≤ ∥f∥∞
∫

2J/2|ϕ(2Jx)|dx ≤ 2−J/2∥f∥∞∥ϕ∥1.

We get that for any x, y ∈ R,

|Hm(x, y)| ≤
∑
k∈Lm

|pk(x)pk(y)|+
∑
k∈Lm

|pk(x)⟨pk, f⟩|+
∑
k∈Lm

|pk(y)⟨pk, f⟩|+
∑
k∈Lm

|⟨pk, f⟩|2

≤
∑
k∈Z

2Jϕ(2Jx− k)ϕ(2Jy − k) + 2 sup
z

∑
k∈Z

2−J/2∥f∥∞∥ϕ∥12J/2|ϕ(2J/2z − k)|

+
∑
k∈Lm

|⟨pk, f⟩|2

≤ c2J + c′∥ϕ∥1∥f∥∞ + ∥f∥∞
= cD + c′∥ϕ∥1∥f∥∞ + ∥f∥∞,

for some constants c, c′ > 0. In the last inequality we used Eq.(5.34) and the fact ϕ is bounded and
compactly supported. Indeed, this implies that there is only a finite number of integers k ∈ Z (which is
independent of x and J) such that for any x ∈ R and any J ∈ Z, 2Jx− k falls into the support of ϕ.
• If l = 3 then we easily get for any x, y ∈ [0, 1],

|Hm(x, y)| ≤
∑
k∈Lm

|pk(x)pk(y)|+
∑
k∈Lm

|pk(x)⟨pk, f⟩|+
∑
k∈Lm

|pk(y)⟨pk, f⟩|+
∑
k∈Lm

|⟨pk, f⟩|2

≤ 2D + 4D∥f∥∞ + ∥f∥∞.

We deduce that in any case, Hm is bounded by c(1 + ∥f∥∞)D for some constant c > 0 (depending only
on ϕ) which concludes the proof of Lemma 5.21.

5.8.3 Proof of Corollary 5.14

Step 1: We start by providing an upper bound on tm(uα) with Lemma 5.22.

Lemma 5.22. There exists a constant C(α) > 0 such that for any m = (l,D) ∈M it holds,

tm(uα) ≤Wm(α),

where

Wm(α) = C(α) (∥f0∥∞ + 1)

[
DR (n, log log n) +

log log n

n

]
.

Proof of Lemma 5.22. Let us recall that tm(u) denotes the (1− u) quantile of the distribution of T̂m under
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the null hypothesis. One can easily see that |M| ≤ 3(1 + log2 n). So, setting αn = α/(3(1 + log2 n)),

Pf0( sup
m∈M

(T̂m − tm(αn)) > 0) ≤
∑
m∈M

Pf0(T̂m − tm(αn) > 0)

≤
∑
m∈M

α/(3(1 + log2 n))

≤ α.

By definition of uα, this implies that αn ≤ uα and for all m ∈M,

tm(uα) ≤ tm(αn).

Hence it suffices to upper bound tm(αn). Let m = (l,D) ∈M. We use the same notation as in the proof
of Theorem 5.12 to obtain that

T̂m = Un(Hm) + (Pn − P )(2ΠSm(f))− 2Pn(f0) + ∥f0∥22 + ∥ΠSm(f)∥22.

Under the null hypothesis, this reads as

T̂m = Un(Hm) + (Pn − P )(2ΠSm
(f0)− 2f0)− ∥f0∥22 + ∥ΠSm

(f0)∥22
= Un(Hm) + (Pn − P )(2ΠSm

(f0)− 2f0)− ∥f0 −ΠSm
(f0)∥22.

We control Un(Hm) and (Pn − P )(2ΠSm(f0)− 2f0) exactly like in the proof of Theorem 5.12.
From Lemma 5.21, there exist C, β > 0 such that for any m = (l,D) ∈M, it holds

Pf0

(
Un(Hm) ≤ C (∥f0∥∞ + 1)DR

(
n, log

{
2β log n

αn

}))
≤ αn/2. (5.35)

Moreover, since
|2ΠS(l,D)

(f0)(Xi)− 2f0(Xi)| ≤ C ′∥f0∥∞ log(D + 1),

and
EX∼π (2ΠSm

(f0)(X)− 2f0(X))
2 ≤ 4∥f0∥∞∥ΠSm

(f0)− f0∥22,

we get using Proposition A.17 (see Section A.5.2) that for all m = (l,D) ∈M,

Pf0

(
(Pn − P )(2ΠSm

(f0)− 2f0) >
2C ′ log(2Cχ/αn)qA1∥f0∥∞ log(D + 1)

n

+ 2

√
2 log(2Cχ/αn)qA2∥f0∥∞

n
∥ΠSm

(f0)− f0∥2

)
≤ αn

2
.

Using the inequality ∀a, b ∈ R, 2ab ≤ a2 + b2, and the fact that for n ≥ 16, log(D+ 1) ≤ log(n2 + 1), we
obtain that there exists C ′′ > 0 such that

Pf0

(
(Pn − P )(2ΠSm(f0)− 2f0)− ∥ΠSm(f0)− f0∥22 >

C ′′∥f0∥∞ log(2Cχ/αn) log(n)

n

)
≤ αn

2
.

We deduce that it holds

Pf0

(
T̂m > C (∥f0∥∞ + 1)DR

(
n, log

{
2β log n

αn

})
+
C ′′∥f0∥∞ log(2Cχ/αn) log(n)

n

)
≤ αn.

Noticing that there exists some constant c(α) > 0 such that

log

{
2β log n

αn

}
∨ log(2Cχ/αn) ≤ c(α) log log n,
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we deduce by definition of tm(αn) that for some c(α) > 0,

tm(αn) ≤ c(α)C (∥f0∥∞ + 1)DR (n, log log n) + c(α)
C ′′∥f0∥∞ log log n

n
.

Step 2: Proof of Corollary 5.14.
Let us fix γ ∈]0, 1[ and l ∈ {1, 2, 3}. From Theorem 5.12 and Lemma 5.22, we deduce that if f satisfies

∥f − f0∥22 > (1 + ϵ) inf
D∈Dl

∥f −ΠS(l,D)
(f)∥22 +W(l,D)(α) + V (l,D)(γ),

then
Pf (Tα ≤ 0) ≤ γ.

It is thus a matter of giving an upper bound for

inf
D∈Dl

{
∥f −ΠS(l,D)

(f)∥22 +W(l,D)(α) + V(l,D)(γ)
}
,

when f belongs to some specified classes of functions. Recall that

B(l)s (P,M) = {f ∈ L2(R) | ∀D ∈ Dl, ∥f −ΠS(l,D)
(f)∥22 ≤ P 2D−2s, ∥f∥∞ ≤M}.

We now assume that f belongs to B(l)s (P,M). Since ∥f−ΠS(l,D)
(f)∥22 ≤ P 2D−2s, we only need an upper

bound for

inf
D∈Dl

{
P 2D−2s + C(α) (∥f0∥∞ + 1)

[
DR (n, log log n) +

log log n

n

]
+ C1∥f∥∞

log(3Cχ/γ)

ϵn

+ C2 (∥f∥∞ log(D + 1) + ∥f0∥∞)
log(3Cχ/γ)

n
+ C3 (∥f∥∞ + 1)DR

(
n, log

{
3β log n

γ

})}
.

Using that f belongs to B(l)s (P,M) and the fact that

R (n, log log n) ∨R
(
n, log

{
3β log n

γ

})
≲ log(n)

log log n

n
,

where ≲ states that the inequality holds up to some multiplicative constant independent of n, D and P ,
we deduce that we want to upper bound

inf
D∈Dl

{
P 2D−2s +D log(n)

log log n

n
+

log log n

n
+

log(D + 1)

n

}
.

Since log(D + 1) ≤ D for all D ∈ Dl, we only need to focus on

inf
D∈Dl

{
P 2D−2s +D log(n)

log log n

n

}
.

Let us point out that P 2D−2s < D log(n) log logn
n if and only if D >

(
P 4n2

log2(n)(log logn)2

) 1
4s+2

. Hence we
define D∗ by

log2(D∗) := ⌊log2

((
P 4n2

log2(n)(log log n)2

) 1
4s+2

)
⌋+ 1.

We consider three cases.

• IfD∗ < 1, then P 2D−2s < D log(n) log logn
n for anyD ∈ Dl and by choosingD0 = 1 to upper bound
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the infimum we get

inf
D∈Dl

{
∥f −ΠS(l,D)

(f)∥22 +W(l,D)(α) + V(l,D)(γ)
}
≤ log(n)

log log n

n
.

• If D∗ > 2⌊log2(n/(log(n) log logn)2)⌋, then P 2D−2s > D log(n) log logn
n for any D ∈ Dl and by choos-

ing D0 = 2log2(⌊n/(log(n) log logn)2)⌋) to upper bound the infimum we get

inf
D∈Dl

{
∥f −ΠS(l,D)

(f)∥22 +W(l,D)(α) + V(l,D)(γ)
}
≲ 2P 2D−2s

0

≤ 22s+1P 2

(
(log(n) log log n)2

n

)2s

.

• Otherwise D∗ belongs to Dl and we upper bound the infimum by choosing D0 = D∗ and we get

inf
D∈Dl

{
∥f −ΠS(l,D)

(f)∥22 +W(l,D)(α) + V(l,D)(γ)
}
≲ 4P

2
2s+1

(
log(n) log log n

n

) 2s
2s+1

.

The proof of Corollary 5.14 ends with simple computations that we provide below for the sake of com-
pleteness. Since

log(n)
log log n

n
≤ P

2
2s+1

(
log(n) log log n

n

) 2s
2s+1

⇔
(
log(n)

log log n

n

)1/2

≤ P.

and since

P 2

(
(log(n) log log n)2

n

)2s

≤ P
2

2s+1

(
log(n) log log n

n

) 2s
2s+1

⇔ P

(
(log(n) log log n)2

n

)s
≤ P

1
2s+1

(
log(n) log log n

n

) s
2s+1

⇔ P 2s

(
(log(n) log log n)2

n

)s(2s+1)

≤
(
log(n) log log n

n

)s
⇔ P

(
(log(n) log log n)2

n

)s+1/2

≤
(
log(n) log log n

n

)1/2

⇔ P ≤ ns

(log(n) log log n)2s+1/2
,

we deduce that if P is chosen such that(
log(n)

log log n

n

)1/2

≤ P ≤ ns

(log(n) log log n)2s+1/2
, (5.36)

then the uniform separation rate of the test 1Tα>0 over B(l)s (P,M) satisfies

ρ
(
1Tα>0,B(l)s (P,M), γ

)
≤ C ′P

1
2s+1

(
log(n) log log n

n

) s
2s+1

. (5.37)

Remark. This final statement can allow the reader to understand our choice for the size of the model |M|
that we considered. Indeed, we chose for any l ∈ {1, 2, 3},Dl = {2J , 0 ≤ J ≤ log2

(
n/(log(n) log log n)2

)
}

in order to ensure that for values ofP saturing the right inequality in (5.36) (i.e. forP ≈ ns

(log(n) log logn)2s+1/2 ),
the upper-bound in Eq.(5.37) still tends to zero as n goes to +∞ for any possible values of the smooth-
ness parameter s.



Chapter 6

Selective Inference with the General-
ized Linear Lasso

Chapter Abstract

We investigate the distribution of the solutions of the generalized linear lasso (GLL), conditional on
some selection event. In this framework of post-selection inference (PSI), we provide rigorous defini-
tions of the selected and saturated models: two different paradigms that determine the hypothesis being
tested. Based on a conditional Maximum Likelihood Estimator (MLE) approach, we give a procedure
to obtain asymptotically valid PSI confidence regions and testing procedures for Generalized Linear
Models (GLMs). In a second stage, we focus on the sparse logistic regression and we exhibit conditions
ensuring that our conditional MLE method is valid. We present numerical simulations supporting our
theoretical results.
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6.1 Friendly introduction to post-selection inference

This chapter was originally motivated by the problem of error quantification for link prediction in ran-
dom graphs as explained in Section 1.3. It appears that the questions we asked ourselves in the context
of random graphs can be tackled in a more general framework, namely post-selection inference in gen-
eralized linear models. In this chapter, we will keep this level of generality and we encourage the reader
to read Section 1.3 to understand how our contributions find applications in the context of networks.

In this first section, we aim at providing a gentle introduction to the field of selective inference. The
section consists of three steps from a concrete motivation for post-selection inference to a mathematical
analysis of a specific framework. First, we describe the problem of publication bias in the scientific
literature that highlights the importance of selective inference. Next, we present the general principles
of selective inference. In a final subsection, we present exact methods for post-selective inference in the
linear Gaussian model.

6.1.1 The file drawer effect

In medicine, physics or engineering, one often needs to measure some quantity in order to detect a
suspected effect or gain information about a known one. Due to perturbations errors and noise coming
from instrument or environment, it is necessary to repeat several times the experiment in order to
average the fluctuations. It appears that it is not always possible (or desirable) for a single research team
to conduct enough simulations to draw a faithful conclusion on the presence or absence of the studied
effect. This can be typically due to financial or time reasons. In this context, the standard approach
consists in combining the results of different measurements of the same effect using the data collected
from the literature in order to improve the signal-to-noise ratio. The problem with this approach is that
the results collected from the literature are often not a representative sample. The reason is that works
presenting results that are not statistically significant are more likely to be unpublished (cf. Scargle
[2000]).
Let us recall that for a significance level of 5%, then in repeated studies, about 5% of studies of a sit-
uation where the null hypothesis is true will falsely reject the null hypothesis. Thus, if just (or even
predominantly) the statistically significant studies are published, the published record mis-represents
the true situation. This phenomenon - called the publication bias in the literature - can have catastrophic
scientific consequences. In particular,

• effects that are not real may appear to be supported by research,

• research teams could put a lot of effort answering a question that has been already studied but
not reported.

To cope with this issue, several journals are now completely devoted to the publication of studies with
negative results, among them, The Missing Pieces: A Collection of Negative, Null and Inconclusive Results
and The All Results Journal.
Let us now tackle the publication bias with a more mathematical perspective. Note that this discussion
is mainly inspired by [Tian and Taylor, 2015, Example 1]. We consider n different scientific research
groups and we assume that each of them makes m independent measurements of some quantity of
interest, whose true value is µ ∈ R. We consider that the measurements of i-th team are given by
(Y

(i)
k )k∈[m] and we assume that Y (i)

k ∼ N (µ, 1). Due to the publication bias, only the teams reporting

measurements whose sample mean Y
(i)

= 1
m

∑m
k=1 Y

(i)
k survives the file drawer effect

{i ∈ [n] | |
√
m Y

(i)| > 1},

get their paper published. Let us recall that we aim at testing with level α = 5% the null µ = 0 (absence
of effect) against the alternative µ ̸= 0 using the data collected from the published papers. In this
context, what is the correct rejection region allowing to obtain a testing procedure correctly calibrated?
To solve this question, we want to compute the positive real c > 0 such that

Pµ=0(|
√
m Y

(1)| > c | |
√
m Y

(1)| > 1) = 0.05.

Table 6.1 shows the difference in the rejection regions to obtain a well-calibrated test with or without
publication bias.
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c

P(|
√
mY | > c | |

√
mY | > 1) = 5% 2, 43

P(|
√
mY | > c) = 5% 1, 96

Table 6.1: Threshold c for the rejection region |
√
mY | > c ensuring a Type I error of 5% when the

distribution of
√
mY is either N (0, 1) or N (0, 1) conditional on the event {|

√
mY | > 1}.

The example of the file drawer problem shed light on the necessity to take into account the potential
selection procedure to provide valid inference methods.

6.1.2 Post-selection inference for statisticians

The old fashion to conduct inference was to collect data and then to test hypotheses. However as time
goes along, it becomes always cheaper to store large amount of data and statisticians are more and more
coping with high-dimensional problems, making most of standard inferences produced by common
software packages often unreliable [cf. Sur and Candès, 2019]. For this reason, it is now common to
perform some model selection step before making inference. This dimension reduction method allows
to circumvent the curse of dimensionality and to compute estimates relatively efficiently. Of course,
the model selection step is performed by looking at the data. Considering the example of maximum
likelihood estimation with a sparsity inducing norm, one needs to choose the hyper-parameter that
drives the tradeoff between the data-fidelity term and the regularization. This choice will lead to a
set of selected variables: the ones with non-zero coefficients for the optimal solution of the penalized
likelihood optimization problem.
A standard approach to provide valid inference procedure in this context is to use the so called data
splitting method. The idea is simply to split the data into two parts. The first part will be used to select
the model while the second part will be used for inference using the selected model with classical
statistical tools. This procedure is widely used in practice despite the paucity of the literature on the
subject. As explained in Fithian et al. [2014], data splitting solves the problem of controlling selective
errors but at a cost: we are tucking away a significant part of the data in the inference step (the one
we used to select the model). But this remark is also true at the first stage of the procedure (!) where
we do not use the data reserved for inference in the model selection step. Last but not least, some data
are structured in such a way that is not possible to split it into independent parts. This is the case for
example for time series.
For these reasons, post-selection inference aims at using all the data for both the model selection and the
inference steps. In this context, one needs to account for the model selection step to propose correctly
calibrated inference procedures. Typically, in the inference stage, we will condition the distribution
of the observed response on the so-called selection event. The selection event is defined as the set of
observations that would have led to the same selected model. Table 6.2 sheds light on the different use
of the data for PSI or for data splitting. In the next paragraph, we propose a brief presentation of exact
post-selection inference in the linear model with Gaussian noise.

Data Splitting
Selection

Inference

Selective Inference
Selection

Inference

Table 6.2: Usage of the data for the selection and inference stages for data splitting and post-selection
inference.
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6.1.3 Post-selection inference for the sparse linear regression with Gaussian
noise

Gaussian linear model: from selection to estimation. In linear regression with Gaussian noise, the
data arise from a multivariate normal distribution

Y ∼ N (Xϑ∗, σ2IdN ),

where X ∈ RN×d is the design matrix. In this succinct presentation, we will assume that σ2 > 0 is
known (and we refer to [Fithian et al., 2014, Section 4] for the interested reader that wants to tackle
the case where σ2 is unknown). We further consider that the columns of X are in general positions [cf.
Tibshirani, 2013, Section 2.2], meaning that the affine span of any k + 1 points σ1Xi1 , . . . , σk+1Xik+1

,
for arbitrary signs σ1, . . . , σk+1 ∈ {−1, 1}, does not contain any element of {±Xi : i /∈ {i1, . . . , ik+1}}.
Equivalently, this assumption means that no k-dimensional subspace L ⊂ RN , for k < min(N, d),
contains more than k+1 elements of the set {±X1, . . . ,±Xd}, excluding antipodal pairs. Let us point out
that the entries of the design matrix X ∈ RN×d are sampled from a continuous probability distribution
on RN×d, then the columns of X are in general positions with probability one (see [Tibshirani, 2013,
Section 2.2]).
We assume that the analyst selects the model using a ℓ1 penalty. Namely, given some hyper-parameter
λ > 0, she computes

ϑ̂λ ∈ arg min
ϑ∈Rd

{
1

2
∥Y −Xϑ∥22 + λ∥ϑ∥1

}
, (6.1)

and defines the set of active variables by

M := M̂(Y ) := {k ∈ [d] | ϑ̂λk ̸= 0}.

Once the set of active variables is obtained, the analyst computes the MLE estimate in the linear model
with design matrix XM where we consider only the features indexes by M , namely denoting s = |M |,

θ̂ ∈ arg min
θ∈Rs

{
∥Y −XMθ∥22

}
.

Since we assumed that the columns of the design matrix X are in general positions, we know that XM

has full column rank [cf. Tibshirani, 2013, Section 2.2] so that the MLE is unique and can be written as

θ̂ = X+
MY,

where X+
M =

(
X⊤
MXM

)−1
X⊤
M is the pseudo-inverse of the matrix XM .

Selective inference. In order to provide exact PSI, our goal is first to understand the distribution of
some transformation of the MLE θ̂ conditional on the so-called selection event EM which is defined by

EM := {Y ∈ RN | M̂(Y ) =M}.

The selection event EM corresponds to the set of observations that would have led to the same set
of active variables M . Lee et al. [2016] proved that the distribution of a linear transformation of θ̂
conditional on EM is known and has a closed-form expression. The next paragraph is dedicated to a
short presentation of this result. This allows to conduct selective inference on a linear transformation
of E[θ̂] = X+

Mµ
∗, where µ∗ = Xϑ∗. It becomes crucial at this point to understand the nature of this

quantity for which we will provide inference procedures. There are two distinct modeling frameworks
[cf. Fithian et al., 2014, Section 4].

• Either we are confident that the selected model is "relevant" in the sense that there exists some
θ∗ ∈ Rs (and then such vector is unique) such that µ∗ = Xϑ∗ = XMθ

∗. In this case, we say
that we work under the selected model and then we will conduct inference procedure on linear
transformations of θ∗. Let us point out that regression coefficients θ∗j = e⊤j X

+
Mµ

∗, j ∈ [s] can be
written in this form (where ej ∈ Rs is the vector with all entries set to 0 except the j-th which is
1).

• Or, we do not take the selected model M too seriously and we do not make the assumption that
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µ∗ belongs to the span of the columns of XM . In this case, we make inference on X+
Mµ

∗ which
simply corresponds to best linear predictor in the population for design matrix XM . We say in
this case that we work under the saturated model.

Description of the selection event as a union of polytopes. Since the optimization problem Eq.(6.1) is
convex and unconstrained, the Karush-Kuhn and Tucker (KKT) conditions are necessary and sufficient
conditions for optimality. One thus obtain that some vector ϑ̂ is an optimal solution to Eq.(6.1) if and
only if there exists Ŝ ∈ [−1, 1]d such that

X⊤
(
Y −Xϑ̂

)
= λŜ

Ŝk = sign(ϑ̂k) if ϑ̂k ̸= 0

Ŝk ∈ [−1, 1] if ϑ̂k = 0

(6.2a)

(6.2b)

(6.2c)

Since the columns of the design matrix are assumed to be in general positions, we know that the solution
to Eq.(6.1) is unique [cf. Tibshirani, 2013, Lemma 3]. From the first KKT condition (see Eq.(6.2a)), we
deduce that for any Y ∈ RN , there exists a unique vector Ŝ ∈ [−1, 1]d satisfying Eq.(6.2) and we denote
this vector Ŝ(Y ). In the following, we will identify the equicorrelation set defined by{

k ∈ [d] | |Ŝk(Y )| = 1
}
,

and the set of predictors with nonzero coefficients M̂(Y ) = {k ∈ [d] | ϑ̂λk ̸= 0}, also called "selected"
model. Since |Ŝk(Y )| = 1 for any ϑ̂λk ̸= 0, the equicorrelation set does in fact contain all predictors with
nonzero coefficients, although it may also include some predictors with zero coefficients. However,
for almost every λ, the equicorrelation set is precisely the set of predictors with nonzero coefficients,
see Lee et al. [2016]. This identification allows us to replace Eq.(6.2c) by

Ŝk ∈]− 1, 1[ if ϑ̂k = 0.

By working on the selection event EM , the KKT conditions can be equivalently written as
X⊤
M

(
Y −XM ϑ̂M

)
= λŜM

ŜM = sign(ϑ̂M )

∥X⊤
−M

(
Y −XM ϑ̂M

)
∥∞ < λ

(6.3a)

(6.3b)

(6.3c)

Taking a closer look at the KKT conditions, one can notice that it will be much more convenient to
condition on both the selected model EM and on the vector of signs ŜM . For this purpose, we denote
for any M ⊂ [d] with cardinality s and any SM ∈ {−1, 1}s,

ESM

M := {Y ∈ RN | M̂(Y ) =M, sign(ϑ̂)M = SM}.

Note that EM can be recovered from the sets ESM

M , SM ∈ {±1}s since

EM = ∪SM∈{−1,1}sESM

M . (6.4)

The impressive result obtained from Lee et al. [2016] and known as the polyhedral lemma states that the
set ESM

M is a polytope, namely

ESM

M = {Y ∈ RN | A(M,SM )Y ≤ b(M,SM )}, (6.5)

with

A(M,SM ) :=


1
λX

⊤
−M (Id− ProjXM

)

− 1
λX

⊤
−M (Id− ProjXM

)

−Diag(SM )
(
X⊤
MXM

)−1
X⊤
M

 ,
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b(M,SM ) :=

 1−X⊤
−M
(
X⊤
M

)+
SM

1+X⊤
−M
(
X⊤
M

)+
SM

−λDiag(SM )
(
X⊤
MXM

)−1
SM

 ,
and where we have denoted by ProjXM

the orthogonal projection on the span of the column of XM .
Hence, the distribution of Y conditionally onESM

M is a truncated multivariate normal distribution, trun-
cated to a polytope. If we did not condition on the signs, we would get a multivariate normal truncated
to a union of many polytopes, which would not be practical to work with.

Exact PSI methods in the Gaussian linear model. We wish to do inference about some linear trans-
formation of X+

Mµ
∗ as previously explained. In the selected model, we consider that there exists some

θ∗ ∈ Rs such that µ∗ = Xϑ∗ = XMθ
∗ and one can typically consider η = (X+

M )⊤ej ∈ RN (where ej is
the vector with all entries set to 0 except the j-th entry that is set to 1) so that η⊤µ∗ = θ∗j .
A natural statistic to use is η⊤Y which is – unconditionally – distributed as N (η⊤µ∗, σ2∥η∥22). In order
to do selective inference, we are interested in the distribution of η⊤Y conditionally on ESM

M , which is a
complicated mixture of truncated normals that will be computationally expensive to sample from. To
make this approach computationally tractable, we also condition on the value of the projection of Y onto
the space orthogonal to η, namely Proj⊥η Y . In the following, we denote by TN(a, b, I) the distribution
of the normal distribution N (a, b) truncated to the set I ⊂ R and by F Ia,b the cumulative distribution
function of TN(a, b, I). The polyhedral lemma can be used to prove that

η⊤Y | {ESM

M ,Proj⊥η Y }
(d)
= TN(η⊤µ∗, σ2∥η∥22, [V−(Proj⊥η Y,M, SM ),V+(Proj⊥η Y,M, SM )]), (6.6)

which is a truncated normal distribution for some truncation interval

[V−(Proj⊥η Y,M, SM ),V+(Proj⊥η Y,M, SM )].

This truncation interval is the line segment which is the intersection of the polytope {A(M,SM )Y ≤
b(M,SM )}with the line spanned by Proj⊥η Y . Let us stress that this equality in distribution in Eq.(6.6) is
not trivial and crucially uses the fact that η⊤Y and Proj⊥η Y are independent since they are projections
of a Gaussian vector with independent components along orthogonal directions. We can then use the
probability integral transform to obtain[

F
[V−(z,M,SM ),V+(z,M,SM )]

η⊤µ∗,σ2∥η∥2
2

(η⊤Y ) | {ESM

M , z = Proj⊥η (Y )}
]
∼ U([0, 1]). (6.7)

To reduce the notational clutter, let us denote F z(η⊤Y ) ≡ F
[V−(z,M,SM ),V+(z,M,SM )]

η⊤µ∗,σ2∥η∥2
2

(η⊤Y ) and Z =

Proj⊥η Y . Denoting pX the density of a random variable X conditional on ESM

M , using Eq.(6.7) we have
shown that for any z ∈ RN and any t ∈ R,

pFZ(η⊤Y ) |Z=z(t) =
p(FZ(η⊤Y ),Z)(t, z)

pZ(z)
= 1[0,1](t).

By integrating over z, we get that

pFZ(η⊤Y )(t) =

∫
z

pFZ(η⊤Y ) |Z=z(t)pZ(z)dz =

∫
z

1[0,1](t)pZ(z)dz = 1[0,1](t).

Hence, we proved that [
F

[V−(Z,M,SM ),V+(Z,M,SM )]

η⊤µ∗,σ2∥η∥2
2

(η⊤Y ) |ESM

M

]
∼ U([0, 1]). (6.8)

Eq.(6.8) shows that we obtained a pivotal quantity that can be used to provide exact post-selection
hypothesis testing methods or conditional confidence intervals on η⊤µ∗.

What about PSI conditional on EM? The cautious reader may be troubled by the proposed selective
inference methods from the previous paragraph. Indeed, the latter procedures are proved to be correctly
calibrated conditional on ESM

M , which is not the selection event EM . Actually, it is straightforward
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to notice that "inferences that are valid conditional on this finer event will also be valid conditional on EM"
[see Lee et al., 2016, Section 5]. We discuss with further details PSI methods conditional on the signs
in Section 6.9. If we want to only condition on the model EM , then we will have to understand the
distribution of η⊤Y , conditional on Y falling into a union of such polyhedra, that is

η⊤Y |EM
(d)
= η⊤Y | ∪SM∈{−1,+1}s {A(M,SM )Y ≤ b(M,SM )}. (6.9)

Using Eq.(6.4) and following a proof analogous to the case where we condition on ESM

M , one can show
that it holds [

F
∪SM∈{±1}s [V−(Z,M,SM ),V+(Z,M,SM )]

η⊤µ∗,σ2∥η∥2
2

(η⊤Y ) |EM
]
∼ U([0, 1]), (6.10)

where we recall that |M | = s.
To sum up the main results of this section, we end up with two different PSI procedures in the Gaussian
linear model.

• In case s = |M | is relatively small, one can afford to cover the 2s vectors of signs SM ∈ {−1,+1}s
to compute the truncation interval ∪SM∈{±1}s [V−(Z,M,SM ),V+(Z,M,SM )] arising in the pivotal
statistic from Eq.(6.10). By inverting this quantity, we obtain intervals with prescribed coverage
conditional on EM .

• To reduce the computational burden of the previous approach, one can simply decide to use the
pivotal quantity from Eq.(6.8) to provide valid PSI inference conditional on ESM

M (and thus also
valid conditional on EM ) where SM is the observed vector of signs. Note that this gain in com-
putational efficiency may be paid in statistical efficiency. When the signal is strong, there will be
in general only a small difference in the widths of the conditional confidence intervals obtained
using Eq.(6.8) or Eq.(6.10). On the other hand, when the signal is weak, the conditional confidence
intervals obtained from Eq.(6.8) will be in general much wider.

Visualization on a specific example. We consider a design matrix X ∈ R2×4 and we set ϑ∗ = [0, 0, 0, 0].
We assume that we observe the vector Y = [0.2,−0.2]. Using some regularization parameter λ > 0, we
obtain the following set of active variables M = {1, 2} and the observed vector of signs is ŜM (Y ) =
(−1,+1). Using both Eq.(6.4) and Eq.(6.5), we obtain the selection event EM as the union of polytopes.
Each polytope corresponds to a specific vector of signs SM ∈ {−1,+1}2 as presented in Figure 6.1.

0 (+,+)(−,−)

(+,−)

(−,+)

Figure 6.1: A geometric visualization of the selection event EM . EM is the union of polytopes (here
triangles). Each polytope corresponds to a specific vector of signs SM ∈ {−1,+1}2.

Since ϑ∗ = [0, 0, 0, 0], we can work under the selected model since θ∗ = [0, 0] always satisfies Xϑ∗ =
XMθ

∗. We aim at making inference about θ∗1 . To do so, we consider η = (X+
M )⊤e1. As previously

explained, we have two different approaches to make selective inference on θ∗1 .

• Either we decide to design our inference procedure working with the distribution of Y condi-
tional on E

(−1,+1)
M where (−1,+1) is the observed vector of signs. We know that the distribu-

tion of Y conditional on E
(−1,+1)
M is a multivariate Gaussian truncated to the triangle labeled

(−,+) on Figure 6.1. Figure 6.2 illustrates the truncated normal distribution from Eq.(6.6) of
η⊤Y | {ESM

M ,Proj⊥η Y }.
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• Or, we decide to pay an additional computational cost (tiny in this toy example where s = 2
is small) to reach higher statistical efficiency, i.e. more powerful testing methods or narrower
confidence intervals. To do so, we consider the distribution Y conditional on EM . We know
that Y is a mixture of truncated multivariate Gaussians. Each truncated multivariate Gaussian
is supported on one of the triangles from Figure 6.1. Figure 6.3 illustrates the distribution of
η⊤Y | {EM ,Proj⊥η Y } (cf. Eq.(6.9)) which is a truncated Gaussian where the truncation set is a
union of disjoint intervals.

Y

η Projη(Y )

Proj⊥η (Y )

0

V− V+

(−,+)

Figure 6.2: A geometric interpretation of why the event E(−1,+1)
M can be characterized as {V− ≤ η⊤Y ≤

V+}. V− and V+ are functions of only Proj⊥η (Y ), which is independent of η⊤Y .

Y

η

V−
2 V+

2
V−
3 V+

3V+
1V−

1

Figure 6.3: When we take the union over signs, the conditional distribution of η⊤Y is truncated to a
union of disjoint intervals. In this case, the Gaussian is truncated to the set ∪3i=1[V

−
i ,V

+
i ] .

•

The previous computations rely heavily on the fact that the model is linear, the noise is assumed to be
Gaussian and that the model has been selected using the LASSO. Tackling the problem of post-selection
inference outside of this specific setting is much more involved and one should not expect to get exact
PSI procedures for an arbitrary generalized linear model (GLM). In this chapter, we aim at pushing the
current state of knowledge further regarding PSI methods in GLMs. Let us stress that this chapter is
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not disconnected from the rest of this thesis since this work was originally motivated by the problem of
link prediction in random graphs. We refer to Section 1.3 for a presentation of the thought process that
led us from the link prediction problem on graphs to the results presented in this chapter.

6.2 Introduction

In modern statistics, the number of predictors can far exceed the number of observations available.
However, in this high-dimensional context, ℓ1 regularisation allows for a small number of predictors to
be selected (referred to as the selected support) while allowing for a minimax optimal prediction error,
see for instance [Van de Geer, 2016, Chapter 2]. The estimated parameters and support are not explicitly
known and are obtained by solving a convex optimisation program in practice. This makes inference of
the model parameters difficult if not impossible. One solution is to infer conditionally on the selected
support. In this framework, it is possible to give a confidence interval and to test any linear statistic.
The ubiquity of the logistic model to solve practical regression problems and the surge of high dimen-
sional data-sets make the sparse logistic regression (SLR) more and more attractive. In this context, it
becomes essential to provide certifiable guarantees on the output of the SLR, e.g. confidence intervals.

6.2.1 Post-Selection Inference for high-dimensional generalized linear model

We are interested in a target parameter ϑ⋆ ∈ Rd attached to the distribution Pϑ⋆ of N independent
response variables Y := (y1, . . . , yN ) ∈ YN ⊆ RN given by the data Z := (z1, . . . , zN ) where zi =
(xi, yi) ∈ X×Y with xi ∈ X ⊆ Rd a covariate, namely a vector of d predictors. The family of generalized
linear models, or GLMs for short, is based on modeling the conditional distribution of the responses
yi ∈ Y given the covariate xi ∈ X in an exponential family form, namely

Pϑ⋆(y|x) = hϑ⋆(y) exp
{y⟨x, ϑ⋆⟩ − ξ(⟨x, ϑ⋆⟩)

v

}
,

where v > 0 is a scale parameter, and ξ : R→ R is the partition function which is assumed to be of class
Cm+1 (with m a non-negative integer). With a slight abuse of notations, we will simply denote Pϑ∗(· |x)
by Pϑ∗(·). Standard examples are ξ(t) = t2/2 for the Gaussian linear model with noise variance v and
observation space Y = R, or v = 1, ξ(t) = log(1 + exp(t)) and Y = {0, 1} for the logistic regression. The
negative log-likelihood takes the form

∀ϑ ∈ Rd , LN (ϑ,Z) :=

N∑
i=1

ξ(⟨xi, ϑ⟩)− ⟨yixi, ϑ⟩ . (6.11)

We assume that the partition function ξ is differentiable, then the score function∇ϑLN (ϑ) is given by

∀ϑ ∈ Rd , ∇ϑLN (ϑ,Z) = X⊤(σ(Xϑ)− Y ) ,
where σ = ξ′ is the derivative of the partition function and X ∈ RN×d is referred to as the design
matrix whose rows are the covariates and the columns are the predictors. Note that σ(Xϑ) should be
understood as applying entrywise the function σ to the vector Xϑ. In a high-dimensional context one
has more predictors than observations (i.e., N ≪ d), and one would like to select a small number of
predictors to explain the response. We use an ℓ1-regularization to enforce a structure of sparsity in ϑ.
Our overall estimator is based on solving the generalized linear Lasso

ϑ̂λ ∈ arg min
ϑ∈Rd

{
LN (ϑ,Z) + λ∥ϑ∥1

}
(6.12)

where λ > 0 is a user-defined regularization hyperparameter. We assume that the negative log-likelihood
is strictly convex. This assumption is satisfied for instance in the Gaussian linear model or logistic re-
gression. In this case, it is necessary and sufficient that the solutions ϑ̂λ to (6.12) satisfy the following
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Karush–Kuhn–Tucker (KKT) conditions
X⊤
(
Y − σ(Xϑ̂λ)

)
= λŜ

Ŝk = sign(ϑ̂λk) if ϑ̂λk ̸= 0

Ŝk ∈ [−1, 1] if ϑ̂λk = 0

(6.13a)

(6.13b)

(6.13c)

Proposition 6.1 shows that there exists only one vector of signs Ŝ ∈ Rd such that (ϑ̂λ, Ŝ) satisfies the
KKT conditions for some ϑ̂λ ∈ Rd. The proof of Proposition 6.1 can be found in Section 6.8.1.

Proposition 6.1. Let Y ∈ YN and let the partition function ξ be strictly convex. Then, there exists a unique
Ŝ(Y ) such that for any couple (ϑ̂λ, Ŝ) satisfying the KKT conditions (cf. Eq.(6.13)) it holds that Ŝ = Ŝ(Y ).
Furthermore, one has

Ŝ(Y ) :=
1

λ
X⊤(Y − σ(Xϑ̂λ)),

where ϑ̂λ is any solution of the generalized linear Lasso as defined in (6.12).

We define the equicorrelation set as

M̂(Y ) := {k ∈ [d] | |Ŝk(Y )| = 1}.

In the following, we will identify the equicorrelation set and the set of predictors with nonzero co-
efficients {k ∈ [d] | ϑ̂λk ̸= 0}, also called "selected" model. Since |Ŝk(Y )| = 1 for any ϑ̂λk ̸= 0, the
equicorrelation set does in fact contain all predictors with nonzero coefficients, although it may also
include some predictors with zero coefficients. However, we work in this chapter with Assumption 6,
ensuring that the equicorrelation set is precisely the set of predictors with nonzero coefficients.

Assumption 6. Problem (6.12) is non degenerate: Ŝ(Y ) ∈ relint ∂∥ · ∥1, where relint denotes the relative
interior.

Let us highlight that this assumption has already been used in the context of GLMs [cf. Massias et al.,
2020, Assumption 8], and is common in works on support identification (cf. Candes and Recht [2013],
Vaiter et al. [2015]).
For any set of indexesM ⊆ [d] with cardinality s, the set of target parameters induced by the supportM
is Rs. We aim at making inference conditionally on the selection event EM defined as

EM :=
{
Y ∈ YN | M̂(Y ) =M

}
, (6.14)

namely, the set of all observations Y that induced the same equicorrelation set M with the generalized
linear lasso.

6.2.2 Characterization of the selection event

Following the approach of Lee et al. [2016], given some M ⊆ [d] with |M | = s and SM ∈ {−1,+1}s, we
first characterize the event

ESM

M := {Y ∈ EM | ŜM (Y ) = SM}, (6.15)

and we obtain EM as a corollary by taking a union over all possible vectors of signs SM . Proposition 6.2
gives a first description of ESM

M and its proof is postponed to Section 6.8.2.

Proposition 6.2. Let us consider M ⊆ [d] with |M | = s and SM ∈ {−1,+1}s. It holds

ESM

M =
{
Y ∈ YN | ∃θ ∈ Rs s.t. (i) X⊤

M (Y − σ(XMθ)) = λSM (6.16)

(ii) sign(θ) = SM

(iii)
∥∥X⊤

−M (Y − σ(XMθ))
∥∥
∞ < λ

}
,

were XM ∈ RN×s (resp. X−M ∈ RN×(d−s)) is the submatrix obtained from X by keeping the columns indexed
by M (resp. its complement).
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With Proposition 6.1, we proved the uniqueness of the vector of signs satisfying the KKT conditions as
soon as ξ is strictly convex. By considering additionally that XM has full column rank, we claim that
there exists a unique θ ∈ Rs that satisfies the condition (i) in the definition of the selection event ESM

M

(see Eq.(6.16)). This statement will be a direct consequence of Proposition 6.3 (proved in Section 6.8.3)
which ensures that the map Ξ arising in Eq.(6.16) and defined by

Ξ : Rs → Rs (6.17)

θ 7→ X⊤
Mσ(XMθ)

is a Cm-diffeomorphism whose inverse is denoted by Ψ.

Proposition 6.3. We consider that the partition function ξ is strictly convex and we further assume that the
set M ⊆ [d] is such that XM has full column rank. Then Ξ is a Cm-diffeomorphism from Rs to Im(Ξ) =
{X⊤

Mσ(XMθ) | θ ∈ Rs}.

Using Propositions 6.2 and 6.3, we are able to provide a new description of the selection event ESM

M

which can be understood as the counterpart of [Lee et al., 2016, Proposition 4.2].

Theorem 6.4. Suppose that ξ is strictly convex. Given some M ⊆ [d] with cardinal s such that XM has full
column rank and SM ∈ {−1, 1}s, it holds

ESM

M =
{
Y ∈ YN | s.t. ρ = −λSM +X⊤

MY satisfies (6.18)

(a) ρ ∈ Im(Ξ)

(b) Diag(SM )Ψ(ρ) ≥ 0

(c)
∥∥X⊤

−M (Y − σ(XMΨ(ρ)))
∥∥
∞ < λ

}
.

Remark. In the linear model, Ξ : θ 7→ X⊤
MXMθ has full rank and thus condition (a) from Eq.(6.18)

always holds.

6.2.3 Which parameters can be inferred?

Once a model has been selected, two different modeling assumptions are generally considered when
we derive post-selection inference procedures, see for instance [Fithian et al., 2014, Section 4]. This
choice appears to be essential since it determines the parameters on which inference is conducted. In
the following, we consider the mean value

π∗ := Eϑ∗ [Y ] = σ(Xϑ∗) . (6.19)

Note that π∗ allows to define the Bayes predictor in the logistic or the linear model. As presented
in Fithian et al. [2014], the analyst should decide to work either under the so-called saturated model or the
selected model. In the following, we discuss these concepts for arbitrary GLMs and Table 6.3 summarizes
the key concepts.

The (weak) selected model: Parameter inference. In the weak selected model, we consider that the data
have been sampled from the GLM (cf. Eq.(6.11)) and we assume that the selected model M is such that

X⊤
Mσ(Xϑ

∗) ∈ Im(Ξ) , (6.20)

and recall that X⊤
Mπ

∗ = X⊤
MEϑ∗ [Y ] = X⊤

Mσ(Xϑ
∗). This is equivalent to state that there exists some

vector θ∗ ∈ Rs satisfying
X⊤
Mπ

∗ = Ξ(θ∗) ,

and recall that Ξ(θ∗) = X⊤
Mσ(XMθ

∗). In this framework, we have the possibility to make inference on
the parameter vector θ∗ := Ψ(X⊤

Mπ
∗) itself.

In the selected model, we replace the condition from Eq.(6.20) by the stronger assumption that there exists
θ∗ ∈ Rs such that

XMθ
∗ = Xϑ∗. (6.21)

This assumption is always satisfied for the global null hypothesis ϑ∗ = 0 for which the aforementioned
condition holds with θ∗ = 0.



Chapter 6. Selective Inference with the Generalized Linear Lasso 194

Model Selected Weak selected Saturated

Assumption σ−1(π∗) ∈ Im(XM ) X⊤
Mπ

∗ ∈ Im(Ξ) None

Statistic of
interest Ψ(X⊤

MY ) Ψ(X⊤
MY ) X⊤

MY

Inferred
parameter

θ∗ ∈ Rs s.t.
π∗ = σ(XMθ

∗)

θ∗ ∈ Rs s.t. π∗ and
σ(XMθ

∗) have the
same projections on the

column span of XM

X⊤
Mπ

∗

Table 6.3: Once a model has been selected, we may infer some parameters assuming one of the three
modeling: selected model, weak selected model, and saturated model respectively based on the as-
sumptions described in the first row. In this case, inference on the quantities described on the third row
can be done from the statistic described in the second row.

The saturated model: Mean value inference. The assumption from Eq.(6.20) or (6.21) can be under-
stood as too restrictive since the analyst can never check in practice that this condition holds, except for
the global null. This is the reason why one may prefer to consider the so-called saturated model where
we only assume that the data have been sampled from the GLM.
In this case it remains meaningful to provide post-selection inference procedure for transformation of
π∗. A typical choice is to consider linear transformation of π∗ and among them, one may focus specif-
ically on transformation of X⊤

Mπ
∗. This choice is motivated by remarking that this quantity character-

izes the first order optimality condition for the unpenalized MLE θ̂ for the design matrix XM through
X⊤
MY = Ξ(θ̂), or by considering the example of linear model (as presented below).

The example of the linear model. Note that in linear regression, σ = Id and Ψ : ρ 7→
(
X⊤
MXM

)−1
ρ.

Hence, Eq.(6.20) is equivalent to Eq.(6.21) meaning that the selected and the weak selected models
coincide. Moreover, in both the saturated and the selected models, we aim at making inference on
transformations of Ψ(X⊤

Mπ
∗) = X+

Mπ
∗ (where X+

M is the pseudo-inverse of XM ). While in the (weak)
selected model, this quantity corresponds to the parameter vector θ∗ satisfying π∗ = XMθ

∗, in the
saturated model, it corresponds to the best linear predictor in the population for design matrix XM in
the sense of the squared L2-norm.

6.2.4 Inference procedures

We provide a general approach to obtain asymptotically valid PSI methods, both in the saturated and
the selected models. The proposed PSI methods rely on two key ingredients, namely conditional Cen-
tral Limit Theorems (CLTs) and conditional sampling. Before describing our selective inference proce-
dures, let us set the rigorous framework for which we provide our conditional CLTs.

Preliminaries. Given a non-decreasing sequence of positive integers (dN )N∈N converging to d∞ ∈
N ∪ {+∞}, we consider for any N a matrix X(N) ∈ RN×dN and a vector [ϑ∗](N) ∈ RdN . Let s ∈
[d1, d∞]∩N be a fixed and finite integer and let us consider for anyN a setM (N) ⊆ [dN ] with cardinality
s. Considering further a sequence of positive reals (λ(N))N∈N, we define E(N)

M as the selection event
corresponding to the tuple (λ(N),X(N),M (N)) meaning that

E
(N)
M :=

⋃
SM∈{±1}N

[
ESM

M

](N)
,

where
[
ESM

M

](N) is the set given by Eq.(6.18) when one uses the regularization parameter λ(N), the
design matrix X(N) and the set of active variables M (N). Considering that the YN -valued random
vector Y is distributed according to

P
(N)

π∗ (Y ) ∝ 1
Y ∈E(N)

M

P
(N)
π∗ (Y ), (6.22)
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with P(N)
π∗ := Pσ(X(N)[ϑ∗](N)), the cornerstone of our methods consists in proving a CLT for

[
X

(N)

M(N)

]⊤
Y

in the saturated model, see Eq.(6.23) (resp. a CLT for the conditional MLE Ψ(X⊤
MY ) in the selected

model, see Eq.(6.24)).

In Section 6.5, we consider the specific case of the logistic regression and we establish conditional CLTs
of the form given by Eqs.(6.23) and (6.24). The proofs of our CLTs rely on triangular arrays of dependent
random vectors of the form (ξi,N )i∈[N ]. For any fixed N and any i ∈ [N ], ξi,N is a random vector in Rs

which can be written as a function of the deterministic quantities λ(N), X(N), M (N) and of the random

variable Y with probability distribution P
(N)

π∗ . In Section 6.5, we provide conditions ensuring that the
rows of the triangular system

(
(ξi,N )i∈[N ], N ∈ N

)
satisfy some Lindeberg’s condition.

With this detailed framework now established, we will take the liberty in the remainder of this chapter
of adopting certain abuses of notation for the sake of readability. The notational clutter will be in partic-
ular reduced by forgetting to specify the dependence on N meaning that we will simply refer to X(N),

M (N), dN , [ϑ∗](N),P
(N)

π∗ , . . . as X, M , d, ϑ∗,Pπ∗ , . . . . Nevertheless, let us stress again that the integer s
is fixed and does not depend on N in our work.

Conditional CLTs. The cornerstone of our method is to establish conditional CLTs. More precisely,
considering that Y is distributed according to Pπ∗ = Pπ∗(· |EM ), we aim at providing conditions en-
suring that

• in the saturated model,

GN (π∗)−1/2(X⊤
MY −X⊤

Mπ
π∗
)

(d)−→
N→∞

N (0, Ids), (6.23)

for some GN (π∗) ∈ Rs×s and ππ
∗
∈ RN depending only on π∗ and EM ,

• in the selected model where Xϑ∗ = XMθ
∗,

V N (θ∗)1/2(Ψ(X⊤
MY )− θ(θ∗)) (d)−→

N→∞
N (0, Ids), (6.24)

for some V N (θ∗) ∈ Rs×s and θ(θ∗) ∈ Rs depending only on θ∗ and EM .

In the case of logistic regression, we give in Section 6.5 conditions ensuring that the CLTs from Eqs.(6.23)
and (6.24) hold.

Idyllic selective inference. Using the above mentioned conditional CLTs, one can obtain confidence
regions (CRs) with asymptotic level 1− α (for some α ∈ (0, 1)) conditional on EM as follows,

• in the saturated model, the CR for π∗ is defined as

{π | ∥GN (π)−1/2(X⊤
MY −X⊤

Mπ
π)∥22 ≤ χ2

s,1−α}, (6.25)

• in the selected model, the CR for θ∗ is defined as

{θ | ∥V N (θ)1/2(Ψ(X⊤
MY )− θ(θ))∥22 ≤ χ2

s,1−α}, (6.26)

where χ2
s,1−α is the quantile of order 1− α of the χ2 distribution with s degrees of freedom. Obviously,

covering the whole space to obtain in practice the CRs from Eqs.(6.25) and (6.26) is out of reach and one
could use a discretization of a bounded domain to bypass this limitation. A more involved issue is that
GN (π) and ππ , (resp. V N (θ) and θ(θ)) can be written as expectations with respect to the conditional
distribution Pπ (resp. Pθ). If closed-form expressions most of time do not exist, one can estimate the
latter quantities by sampling from Pπ (resp. Pθ). Depending on the studied GLM, this task may be
expensive and the proposed grid-based approaches to get CRs would be unusable in practice due to
the curse of dimensionality. In the next subparagraph, we propose an alternative method to overcome
this issue.
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Confidence regions in practice. Table 6.4 gives the main ideas allowing us to obtain a confidence
region for π∗ (resp. θ∗) in the saturated (resp. selected) model. While the blue terms are small with
high probability for N large enough thanks to the previous established conditional CLTs, the red terms
motivate us to choose our estimate π⋆ (resp. θ⋆) among the minimizers of the map π 7→ ∥X⊤

MY −
X⊤
Mπ

π∥2 (resp. θ 7→ ∥Ψ(X⊤
MY ) − θ(θ)∥2). This way, we circumvent the curse of dimensionality of the

above mentioned idyllic approach to obtain CRs. Nevertheless, the given CRs involve quantities that
are unknown in practice such as the constant κ1 (resp. κ2) in Table 6.4 that encodes the (local) Lipschitz
continuity of the inverse of the map π 7→ ππ (resp. θ 7→ θ(θ)). Note that the term ∥Proj⊥XM

(ππ
∗
− ππ

⋆

)∥2
arising in the CR for the saturated model illustrates that we only control what occurs on the span of the
columns of XM .

Saturated
model

∀π⋆, ∥π∗ − π⋆∥2 ≲ κ1∥ππ
∗
− ππ

⋆

∥2
≤ κ1

{
∥ProjXM

(ππ
∗
− Y )∥2 + ∥ProjXM

(Y − ππ
⋆

)∥2 + ∥Proj⊥XM
(ππ

∗
− ππ

⋆

)∥2
}

Selected
model

∀θ⋆, ∥θ∗ − θ⋆∥2 ≲ κ2∥θ(θ∗)− θ(θ⋆)∥2
≤ κ2

{
∥θ(θ∗)−Ψ(X⊤

MY )∥2 + ∥Ψ(X⊤
MY )− θ(θ⋆)∥2

}
Table 6.4: Confidence intervals.

In the case of logistic regression, we present in Section 6.6 with full details our selective inference pro-
cedures with theoretical guarantees.

Conditional sampling: A Monte-Carlo approach for hypothesis-testing. We consider hypothesis
tests with pointwise nulls as presented in Table 6.5. One can then compute estimate G̃N (π∗

0), π̃
π∗
0 (resp.

ṼN (θ∗0), θ̃(θ
∗
0)) of the unknown quantities GN (π∗

0), π
π∗
0 (resp. V N (θ∗0), θ(θ∗0)) by sampling from the con-

ditional null distribution Pπ∗
0

(resp. Pθ∗0 in the selected model). Using a Monte-Carlo approach with
the CLTs from Eqs.(6.23) and (6.24), one can derive testing procedures that are asymptotically correctly
calibrated.

Null and
alternative

Distributed approximately as
N (0, Ids) under H0

Saturated
model

H0 : {π∗ = π∗
0},

H1 : {π∗ ̸= π∗
0}

G̃N (π∗
0)

−1/2(X⊤
MY −X⊤

M π̃
π∗
0 )

Selected
model

H0 : {θ∗ = θ∗0},
H1 : {θ∗ ̸= θ∗0}

ṼN (θ∗0)
1/2(Ψ(X⊤

MY )− θ̃(θ∗0))

Table 6.5: Hypothesis testing.

In the case of logistic regression, we rely on a gradient alignment viewpoint of the selection event to
provide in Section 6.4 an algorithm which allows us to sample fromPπ∗ given any π∗. In Section 6.6, we
present our hypothesis tests in both the saturated and the selected models with theoretical guarantees.

6.2.5 Related works

In the Gaussian linear model with a known variance, the distribution of the linear transformation η⊤Y
(with η⊤ = e⊤kX

+
M ) is a truncated Gaussian conditionally on ESM

M and Proj⊥η (Y ). This explicit formu-
lation of the conditional distribution allows to conduct exact post-selection inference procedures [cf.
Fithian et al., 2014, Section 4]. However, when the noise is assumed to be Gaussian with an unknown
variance, one needs to also condition on ∥Y ∥2 which leaves insufficient information about θ∗k to carry
out a meaningful test in the saturated model [cf. Fithian et al., 2014, Section 4.2].
Outside of the Gaussian linear model, there is little hope to obtain a useful exact characterization of the
conditional distribution of some transformation of X⊤

MY . In the following, we sketch a brief review of
this literature, see references therein for further works on this subject.

• Linear model but non-Gaussian errors.
Let us mention for example Tian and Taylor [2017], Tibshirani et al. [2018] where the authors
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consider the linear model but relaxed the Gaussian distribution assumption for the error terms.
They prove that the response variable is asymptotically Gaussian so that applying the well-oiled
machinery from Lee et al. [2016] gives asymptotically valid post-selection inference methods.

• GLM with Gaussian errors.
Shi et al. [2020] consider generalized linear models with Gaussian noise and can then immediately
apply the polyhedral lemma to the appropriate transformation of the response.

We classify existing works with Table 6.6.

Noise Linear Model GLM

Gaussian Lee et al. [2016] Shi et al. [2020]

Non-Gaussian
Tian and Taylor [2017] and Our work and

Tibshirani et al. [2018] Taylor and Tibshirani [2018]

Table 6.6: Positioning of our contributions among some pioneering works on PSI in GLMs.

One important challenge that remains so far only partially answered is the case of GLMs without Gaus-
sian noise, such as in logistic regression. In Fithian et al. [2014], the authors derive powerful unbiased
selective tests and confidence intervals among all selective level-α tests for inference in exponential
family models after arbitrary selection procedures. Nevertheless, their approach is not well-suited to
account for discrete response variable as it is the case in logistic regression. In Section 6.3 of the for-
mer paper, the authors rather encourage the reader to make use of the procedure proposed by Taylor
and Tibshirani [2018] in such context. Both our work and Taylor and Tibshirani [2018] are tackling the
problem of post selection inference in the logisitic model. Nevertheless, the proposed methods rely on
different paradigms and we explain in Section 6.3 this difference in perspectives.

6.2.6 Contributions and organization of this chapter

Working with an arbitrary GLM (Sec.6.2 and 6.3).

1. We provide a new formulation of the selection event in GLMs shedding light on the Cm-diffeomorphism Ψ
that carries the geometric information of the problem (cf. Theorem 6.4). Ψ allows us to define rig-
orously the notions of selected/saturated models for arbitrary GLM (cf. Sec.6.2.3).

2. We provide a new perspective on post-selection inference in the selected model for GLMs through
the conditional MLE approach of which Ψ is a key ingredient (cf. Sec.6.3).

3. We introduce the C-cube conditions that are sufficient conditions in GLMs to obtain valid post-
selection inference procedures in the selected model based on the conditional MLE approach (cf.
Sec.6.3).

Considering the Sparse Logistic Regression (SLR) (from Sec.6.4).

4. Under some assumptions, we prove that the C-cube conditions hold for the SLR and we conduct
simulations to support our results.

5. We also derive asymptotically valid PSI methods in the saturated model for the SLR.

6. We provide an extensive comparison between our work and the heuristic from Taylor and Tibshi-
rani [2018] which is currently considered the best to use in the context of SLR [cf. Fithian et al.,
2014, Section 6.3], as far as we know.

Outline. In Section 6.3, we introduce the conditional MLE approach to tackle PSI in the selected model
and we stress the difference with the debiasing method from Taylor and Tibshirani [2018]. From Sec-
tion 6.4, we focus specifically on the SLR. In Section 6.4, we rely on a gradient-alignment viewpoint on
the selection event to design a simulated annealing algorithm which is proved–for an appropriate cool-
ing scheme–to provide iterates whose distribution is asymptotically uniform on the selection event. In
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Section 6.5, we provide two conditional central limit theorems that would be key theoretical ingredients
for our PSI methods presented in Section 6.6. In Section 6.6.1, we give PSI procedures in the selected
model while in Section 6.6.2 we focus on the saturated model. In Section 6.7, we present the results of
our simulations.

Notations. For any set of indexes M ⊆ [d] := {1, . . . , d} and any vector v, we denote by vM the sub-
vector of v keeping only the coefficients indexed by M , namely vM = (vk)k∈M . Analogously, v−M will
refer to the subvector (vk)k/∈M . |M | denotes the cardinality of the finite set M . For any x ∈ Rd, ∥x∥∞ :=
supi∈[d] |xi| and for any p ∈ [1,∞), ∥x∥pp :=

∑
i∈[d] x

p
i . For any A ∈ Rd×p, we define the Frobenius

norm of A as ∥A∥F := (
∑
i∈[d],j∈[p]A

2
i,j)

1/2 and the operator norm of A as ∥A∥ := supx∈Rp,∥x∥2=1 ∥Ax∥2.
We further denote by A+ the pseudo-inverse of A. Considering that A is a symmetric matrix, λmin(A)
and λmax(A) will refer respectively to the minimal and the maximal eigenvalue of A. ⊙ denotes the
Hadamard product namely for any A,B ∈ Rd×p, A ⊙ B := (Ai,jBi,j)i∈[d],j∈[p]. By convention, when a
function with real valued arguments is applied to a vector, one need to apply the function entrywise.
Idd ∈ Rd×d will refer to the identity matrix and N (µ,Σ) will denote the multivariate normal distribu-
tion with mean µ ∈ Rd and covariance matrix Σ. For any x ∈ Rd, R > 0 and for p ∈ [1,∞], we define
Bp(x,R) = {z ∈ Rd | ∥z∥p ≤ R}.
Let us finally recall that given some set of selected variables M ⊆ [d] with s := |M | and some ϑ∗ ∈ Rd,
we denote by Pπ∗ the distribution of Y conditional on EM , namely

Pπ∗(Y ) ∝ 1Y ∈EM
Pπ∗(Y ),

π∗ = σ(Xϑ∗) and where ∝ means equal up to a normalization constant (cf. Eq.(6.22)). By assuming
that ξ is strictly convex, one can compute Xϑ∗ from π∗, allowing us to denote equivalently Pπ∗ ≡ Pϑ∗

with an abuse of notation. In the selected model with θ∗ ∈ ΘM satisfying Eq.(6.21), we will also denote
Pπ∗ ≡ Pθ∗ .

6.3 Regularization bias and conditional MLE

In this section, we wish to emphasize the different nature of our approach and that of Taylor and Tibshi-
rani [2018] which we consider as the more relevant point of comparison, to the best of our knowledge.
While we rely on a conditional MLE viewpoint, the former paper consider a debiasing approach.

• The debiasing approach
ℓ1-penalization induced a soft-thresholding bias and one can first try to modify the solution of
the penalized GLM ϑ̂λ to approximate the unconditional MLE of the GLM using only the features
in the selected support M by some vector θ. Provided that we work with a correctly specified
model M–i.e., one that contains the true support {j ∈ [d] |ϑ∗j ̸= 0}–standard results ensure that the
unconditional MLE is asymptotically normal, asymptotically efficient and centered at ϑ∗M . If one
can show that the selection event only involve polyhedral constraints on a linear transformation
η⊤θ of the debiased vector θ, the conditional distribution of η⊤θ would be a truncated Gaussian.
This is the approach from Taylor and Tibshirani [2018] that we detail in Section 6.3.1.

• The conditional MLE viewpoint
In this chapter, we follow a different route: one can grasp the nettle by studying directly the
properties of the unpenalized conditional MLE.

6.3.1 Selective inference through debiasing

The idea behind the method proposed by Taylor and Tibshirani [2018] is that we need two key elements
to mimic the approach from Lee et al. [2016] proposed in the linear model with Gaussian errors:

• A statistic T (Y ) converging in distribution to a Gaussian distribution with a mean involving the
parameter of interest;

• A selection event that can be written as a union of polyhedra with respect to η⊤T (Y ) for some
vector η.
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In practice, a solution of the generalized linear Lasso (cf. Eq.(6.12)) can be approximated using the
Iteratively Reweighted Least Squares (IRLS). Defining

W (ϑ) = ∇2
ηLN (η)

∣∣
η=Xϑ

= Diag(σ′(Xϑ)),

and z(ϑ) = Xϑ− [W (ϑ)]−1∇ηLN (η)
∣∣
η=Xϑ

= Xϑ+ [W (ϑ)]−1(Y − σ(Xϑ)),

the IRLS algorithm works as follows.

1: Initialize ϑc = 0.
2: Compute W (ϑc) and z(ϑc).
3: Update the current value of the parameters with

ϑc ← argminϑ
1

2
(z(ϑc)−Xϑ)⊤W (ϑc)(z(ϑc)−Xϑ) + λ∥ϑ∥1.

4: Repeat steps 2. and 3. until convergence.

If the IRLS has converged, we end up with a solution ϑ̂λ of Eq.(6.12) and, for M = {j ∈ [d] | ϑ̂λj ̸= 0}, the
active block of stationary conditions (Eq. (6.16) (i)) can be written as

X⊤
MW

{
z −XM ϑ̂

λ
M

}
= λSM ,

where W = W (ϑ̂λ), z = z(ϑ̂λ) and SM = sign(θ̂λM ). The solution ϑ̂λM should be understood as a biased
version of the unpenalized MLE θ̂ obtained by working on the support M , namely

θ̂ ∈ arg min
θ∈Rs

N∑
i=1

ξ(⟨Xi,M , θ⟩)− ⟨yiXi,M , θ⟩.

If we work with a correctly specified model M–i.e., one that contains the true support {j ∈ [d] |ϑ∗j ̸= 0}–
then it follows from standard results that the MLE θ̂ is a consistent and asymptotically efficient estimator
of ϑ∗M (see e.g. [Van der Vaart, 2000, Theorem 5.39]). A natural idea consists in debiasing the vector of
parameters ϑλM in order to get back to the parameter θ̂ and to use its nice asymptotic properties for
inference. We thus consider

θ = ϑλM + λ
(
X⊤
MWXM

)−1
SM ,

so that θ satisfies
X⊤
MW {z −XMθ} = 0. (6.27)

If one replacesW and z in Eq.(6.27) byW (ϑ) and z(ϑ) (with the obvious notation that ϑM = θ and ϑ−M =
0), Eq.(6.27) corresponds to the stationarity condition of the unpenalized MLE for the generalized linear
regression using only the features in M .
Hence, Taylor and Tibshirani [2018] propose to treat the debiased parameters θ has asymptotically
normal centered at ϑ∗M with covariance matrix

(
X⊤
MW (ϑ∗)XM

)−1. Since ϑ∗ is unknown, they use a
Monte-Carlo estimate and replace W (ϑ∗) by W (ϑ̂λ) in the Fisher information matrix. By considering
that ϑ∗ = N−1/2β∗ where each entry of β∗ is independent of N , they claim that the selection event ESM

M

can be asymptotically approximated by

Diag(SM )
(
θ − λ

(
X⊤
MWXM

)−1
SM

)
≥ 0.

Hence, to derive post-selection inference procedure, they apply the polyhedral lemma to the limiting
distribution of N1/2θ, with M and SM fixed.

6.3.2 Selective inference through conditional MLE

We change of paradigm and we directly work with the conditional distribution. The conditional dis-
tribution given Y ∈ EM is a conditional exponential family with the same natural parameters and
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sufficient statistics but different support and normalizing constant:

Pθ(Y ) ∝ 1EM
(Y )

N∏
i=1

hθ(yi) exp
{yiXi,Mθ − ξ(Xi,Mθ)

v

}
,

where the symbol ∝ means "proportional to". When EM = YN (i.e., when there is no conditioning),
we will simply denote Pθ by Pθ. In the following we will denote by Eθ (resp. Eθ) the expectation with
respect to Pθ (resp. Pθ). We want to conduct inference on θ∗ (from Eq.(6.21)) based on the conditional
and unpenalized MLE computed on the selected model M , namely

θ̂ ∈ arg min
θ∈Rs

LN (θ, ZM ), (6.28)

where ZM = (Y,XM ) and where Y is distributed according to Pθ∗ . We aim at proving a Central Limit
Theorem for θ̂. A natural candidate for the mean of the asymptotic Gaussian distribution of θ̂ is the
minimizer of the conditional expected negative log-likelihood defined by

θ(θ∗) ∈ arg min
θ∈Rs

Eθ∗
[
LN (θ, ZM )

]
, (6.29)

which is the minimizer of the conditional risk θ 7→ Eθ∗
[
LN (θ, ZM )

]
.

In the following, when there is no ambiguity we will simply denote θ(θ∗) by θ. Hence, denoting

LN (θ, ZM ) =
∂LN
∂θ

(θ, ZM ) and LN (θ,XM ) = Eθ∗

[
∂LN
∂θ

(θ, ZM )

]
,

it holds that the conditional unpenalized MLE θ̂ and the minimizer θ of the conditional risk satisfy the
first order condition

LN (θ̂, ZM ) = 0 i.e. X⊤
M (Y − πθ̂) = 0⇔ θ̂ = Ψ(X⊤

MY ),

and LN (θ,XM ) = 0 i.e. X⊤
M (πθ

∗
− πθ) = 0⇔ θ = Ψ(X⊤

Mπ
θ∗), (6.30)

where πθ = Eθ[Y ] = σ(XMθ) and πθ = Eθ[Y ].

Let us now introduce what we will call the C-cube conditions in this chapter.

C1 We are able to sample from the distribution Pθ.

C2 Under appropriate conditions, we have the following CLT

u⊤[V N (θ∗)]1/2(θ̂ − θ) (d)−→
N→+∞

N (0, 1),

where u is a unit s-vector (with s = |M |), θ̂ = Ψ(X⊤
MY ) is the MLE, and V N (θ∗) is a positive

semi-definite (s× s)-matrix.

C3 We are able to compute efficiently Ψ(ρ) for any ρ ∈ Rs.

The C-cube conditions refer to C1: Conditional Sampling, C2: Conditional CLT and C3: Computation
of Ψ. In any GLM where the C-cube conditions are satisfied, one can adapt the methods of this chapter
to design asymptotically valid PSI procedures with respect to the selected model.

6.3.3 Discussion

Duality between conditional MLE and debiasing approaches. Oversimplifying the situation, our
approach could be understood as the dual counterpart of the one from Taylor and Tibshirani [2018] in
the sense that the former paper is first focused on getting an (unconditional) CLT and deal with the
selection event in a second phase. On the contrary, we are first focused on the conditional distribution
(i.e., we want to be able to sample from the conditional distribution) while the asymptotic (conditional)
distribution considerations come thereafter.
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What about the saturated model? In this section, we have presented the conditional MLE approach
in the selected model. Nevertheless, we provide in this chapter asymptotically valid post-selection
inference procedures on X⊤

Mπ
∗ in the saturated model for logistic regression. Let us stress that this

approach could also be adapted to obtain analogous methods in other GLMs.

Comprehensive comparison between our work and the one from Taylor and Tibshirani [2018]. In Tay-
lor and Tibshirani [2018], the authors consider only the more restrictive framework of the selected model
where Xϑ∗ = XMθ

∗ for some θ∗ ∈ Rs. Their method allows to conduct PSI inference on any linear
transformation of θ∗ (including in particular the local coordinates θ∗j for j ∈ [s]), and can be efficiently
used in practice. The authors do not provide a formal proof of their claim but rather motivate their
approach with asymptotic arguments where they consider in particular that ϑ∗ = N−1/2β∗ where each
entry of β∗ is independent of N .
On the other hand, we present global PSI methods in both the saturated and the selected models, in the
sense that statistical inference is conducted on the vector-valued parameter of interest. Our methods are
computationally more expensive than the one from Taylor and Tibshirani [2018], but they are proved
to be asymptotically valid under some set of assumptions that we discuss in details in Section 6.5.4.
Table 6.7 sums up this comparison.

Taylor and Tibshirani [2018] Our work

Selected model ✓ ✓

Saturated model ✗ ✓

Hypotheses tested in
the selected model

Simple: θ∗j = [θ∗0 ]j for some
j

Multiple: θ∗ = θ∗0

Formal proof ✗ ✓

Assumption on
ϑ∗ = α−1

N β∗ with entries
of β∗ independent of N

For the theoretical sketches
supporting their result, they

consider αN = N1/2.

Require αN = ω(N1/2), that
could be weakened

(Sec.6.5.4).

Low computational cost ✓ ✗

Table 6.7: Comparison between our work and the one from Taylor and Tibshirani [2018].

The logistic regression. In the remaining sections of this chapter, we focus on the logistic regression
case. This means in particular that ξ(x) = ln(1 + exp(x)) is the softmax function and its derivative
σ(x) = (1 + exp(−x))−1 is the sigmoid function. We prove that the C-cube conditions hold in this
framework under some assumptions, and we describe our methods for PSI for both the selected and
the saturated models.
Note that our work should be understood as an extension of the one from Meir and Drton [2017] to the
SLR. Indeed, the authors of the former paper propose a method to compute the conditional MLE after
model selection in the linear model. They show empirically that the proposed confidence intervals are
close to the desired level but they are not able to provide theoretical justification of their approach.

6.4 Sampling from the conditional distribution

In this section, we present an algorithm based on a simulated annealing approach that is proved to
sample states Y (t) uniformly distributed on the selection event EM for any M ⊆ [d] with cardinality s
in the asymptotic regimes as t → ∞. From this section, we consider the case of the logistic regression
where we recall that Y = (yi)i∈[N ] and for all i ∈ [N ], yi ∼ Ber(π∗

i ) with π∗ = σ(Xϑ∗).

6.4.1 Numerical method to approximate the selection event

In this section, we present a simulated annealing algorithm to approximate the selection event EM for
some setM ⊆ [d] . From Proposition 6.1 and the KKT conditions from (6.13), we know that the selection
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event EM can be written as

EM =
{
Y ∈ {0, 1}N | 1∥Ŝ−M (Y )∥∞−1<0, 11=mink∈M{|Ŝk(Y )|}

}
. (6.31)

Based on the expression of EM given in Eq.(6.31), we intro-
duce the function

bδ(x) = 1−
√(x

δ

)
∧ 1 ,

for some δ > 0 and we define the energy

E(Y ) := max {p1(Y ) , p2(Y )} ,
x

0 1

bδ(x)
1

δ
where

p1(Y ) := bδ

(
1− ∥Ŝ−M (Y )∥∞

)
and p2(Y ) :=

1

|M |
∑
k∈M

(1− |Ŝk(Y )|).

The energy E measures how close some vector Y ∈ {0, 1}N is to EM . With Lemma 6.5, we make this
claim rigorous by proving that for δ > 0 small enough, the selection event EM corresponds to the set of
vectors Y ∈ {0, 1}N satisfying E(Y ) = 0.

Lemma 6.5. For any M ⊆ [d], there exists δc := δc(M,X, λ) > 0 such that for all δ ∈ (0, δc), the selection
event EM = {Y ∈ {0, 1}N | M̂(Y ) =M} is equal to the set{

Y ∈ {0, 1}N | p1(Y ) = 0 and p2(Y ) = 0
}
.

Proof. Let us consider some δ ∈ (0, δc) where

δc := min
Y ∈EM

{1− ∥Ŝ−M (Y )∥∞}.

Note that Eq.(6.31) ensures that for any Y ∈ EM , ∥Ŝ−M (Y )∥∞ < 1. This implies that δc > 0 since the set
EM is finite.
It is obvious that for any Y ∈ {0, 1}N , the fact that p2(Y ) = 0 is equivalent to mink∈M |Ŝk(Y )| = 1. More-
over, thanks to our choice for the constant δ, it also holds that p1(Y ) = 0 is equivalent to ∥Ŝ−M (Y )∥∞ <
1. The characterization of the selection event EM given by Eq.(6.31) allows to conclude the proof.

Lemma 6.5 states that-provided δ is small enough–the selection event EM corresponds to the set of
global minimizers of the energy E : {0, 1}N → R+. This characterization allows us to formulate a simu-
lating annealing (SA) procedure in order to estimate EM . Let us briefly recall that simulated annealing
algorithms are used to estimate the set of global minimizers of a given function. At each time step, the
algorithm considers some neighbour of the current state and probabilistically decides between moving
to the proposed neighbour or staying at its current location. While a transition to a state inducing a
lower energy compared to the current one is always performed, the probability of transition towards
a neighbour that leads to increase the energy is decreasing over time. The precise expression of the
probability of transition is driven by a chosen cooling schedule (Tt)t where Tt are called temperatures and
vanish as t → ∞. Intuitively, in the first iterations of the algorithm the temperature is high and we
are likely to accept most of the transitions proposed by the SA. In that way, we give our algorithm the
chance to escape from local minima. As time goes along, the temperature decreases and we expect to
end up at a global minimum of the function of interest.
We refer to [Brémaud, 2013, Chapter 12] for further details on SA. Our method is described in Algo-
rithm 5 and in the next section, we provide theoretical guarantees. In Algorithm 5, P : {0, 1}N ×
{0, 1}N → [0, 1] is the Markov transition kernel such that for any Y ∈ {0, 1}N , P (Y, ·) is the probability
measure on {0, 1}N corresponding to the uniform distribution on the vectors in {0, 1}N that differs from
Y in exactly one coordinate.
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Algorithm 5 SEI-SLR: Selection Event Identification for SLR
Data: X, Y , λ, K0, T

1: Compute ϑ̂λ ∈ argmin
ϑ∈Rd

{LN (ϑ, (Y,X)) + λ∥ϑ∥1}

2: Set M = {k ∈ [d] | ϑ̂λk ̸= 0}
3: Y (0) ← Y
4: for t = 1 to T do
5: Y c ∼ P (Y (t−1), ·)
6: ϑ̂λ,c ∈ argmin

ϑ∈Rd

{LN (ϑ, (Y c,X)) + λ∥ϑ∥1}

7: Ŝ(Y c) = 1
λX

⊤(Y c − σ(Xϑ̂λ,c))
8: ∆E = E(Y c)− E(Y (t−1))
9: U ∼ U([0, 1])

10: Tt ← K0

log(t+1)

11: if exp
(
−∆E

Tt

)
≥ U then

12: Y (t) ← Y c

13: end if
14: end for

6.4.2 Proof of convergence of the algorithm

To provide theoretical guarantees on our methods in the upcoming sections, we need to understand
what is the distribution of Y (t) as t → ∞. This is the purpose of Proposition 6.6 which shows that the
SEI-SLR algorithm generates states uniformly distributed on EM in the asymptotic t→∞.

Proposition 6.6. [Brémaud, 2013, Example 12.2.12]
For a cooling schedule satisfying Tt ≥ 2N+1/ log(t + 1), the limiting distribution of the random vectors Y (t) is
the uniform distribution on the selection event EM .

Proposition 6.6 has the important consequence that we are able to compute the distribution of the binary
vector Y = (yi)i∈[N ] where each yi is a Bernoulli random variable with parameter π∗

i ∈ (0, 1) conditional
on the selection event. The formal presentation of this result is given by Proposition 6.7 which will be
the cornerstone of our inference procedures presented in Section 6.5.

Proposition 6.7. Let us consider M ⊆ [d] and some ϑ∗ ∈ Rd. We consider the random vector Y with distribu-
tion Pπ∗ where π∗ = σ(Xϑ∗). For a cooling schedule satisfying Tt ≥ 2N+1/ log(t+1), it holds for any function
h : {0, 1}N → R, ∑T

t=1 h(Y
(t))Pπ∗(Y (t))∑T

t=1Pπ∗(Y (t))
→

T→∞
Eπ∗ [h(Y )] almost surely.

Proof. Let us consider some map h : {0, 1}N → R. Then,

Eπ∗ [h(Y )] =

∑
y∈EM

h(y)Pπ∗(y)∑
y∈EM

Pπ∗(y)
=
E(h(UM )Pπ∗(Y = UM ))

E(Pπ∗(Y = UM ))
,

where UM is a random variable taking values in {0, 1}N which is uniformly distributed over EM . Then
the conclusion directly follows from Proposition 6.6.

6.5 Conditional Central Limit Theorems

6.5.1 Preliminaries

Before presenting our conditional CLTs, let us remind the framework in which we state our asymptotic
results. Let (dN )N∈N be a non-decreasing sequence of positive integers converging to d∞ ∈ N ∪ {+∞}
and let s ∈ [d1, d∞]∩N. For anyN , we consider [ϑ∗](N) ∈ RdN , λ(N) > 0,M (N) ⊆ [dN ] with cardinality s
and a design matrix X(N) ∈ RN×dN . We recall the definitions of the selection event E(N)

M corresponding

to the tuple (λ(N),M (N),X(N)) and of the conditional probability distribution P
(N)

π∗ given in Section
6.2.4. We assume that it holds
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• K := supN∈Nmaxi∈[N ],j∈M(N) |X(N)
i,j | <∞,

• there exist constants C, c > 0 (independent of N ) such that for any N ∈ N,

cN ≤ λmin(
[
X

(N)

M(N)

]⊤
X

(N)

M(N)) ≤ λmax(
[
X

(N)

M(N)

]⊤
X

(N)

M(N)) ≤ CN.

Remark. Note that the latter assumption holds in particular if the matrices
(

X(N)
√
N

)
N∈N

satisfy (uni-

formly) the so-called s-Restricted Isometry Property (RIP) condition [cf. Wainwright, 2019, Definition
7.10]. Let us recall that a matrix A ∈ RN×p satisfies the s-RIP condition if there exists a constant
δs ∈ (0, 1) such that for any N × s submatrix As of A, it holds

1− δs ≤ λmin(A
⊤
s As) ≤ λmax(A

⊤
s As) ≤ 1 + δs.

In Section 6.5.2, we start by presenting our first CLT for
[
X

(N)
M

]⊤
Y where Y is distributed according to

P
(N)

π∗ . This will be the cornerstone of our PSI procedures holding for the saturated model and presented
in Section 6.6.2. Thereafter, we prove in Section 6.5.3 a CLT for the conditional unpenalized MLE θ̂

working with the design X
(N)
M (see Eq.(6.28)). This conditional CLT will be the key theoretical ingredient

to derive the PSI methods presented in Section 6.6.1 when considering the selected model.

The proofs of our conditional CLTs make use of [Bardet
et al., 2008, Thm.1] and rely on triangular arrays ξ⃗ :=(
(ξi,N )i∈[N ], N ∈ N

)
where ξi,N is a random vector in Rs and

is a function of the deterministic quantities λ(N), X(N), M (N)

and of the random variable Y with probability distribution

P
(N)

π∗ . Most dependent CLTs have been proven for causal time
series (typically satisfying some mixing condition) and are
not well-suited to our case since conditioning on the selection
event introduces a complex dependence structure.

ξ1,1

ξ1,2 ξ2,2

ξ1,3 ξ2,3 ξ3,3

. . . . . . . . . . . .

ξ1,N ξ2,N ξ3,N . . . ξN,N

. . . . . . . . . . . . . . . . . .

The dependent Lindeberg CLT from [Bardet et al., 2008, Thm.1] gives us the opportunity to find con-
ditions involving mainly the covariance matrix of Y under which our conditional CLTs hold. More
precisely, we provide conditions ensuring that the lines of the Rs-valued process indexed by a triangu-
lar system ξ⃗ satisfy some Lindeberg’s condition. Let us stress that we discuss the assumptions of the
theorems presented in Sections 6.5.2 and 6.5.3 in Section 6.5.4.

To alleviate this notational burden, we will not specify the dependence on N in the remainder of the

chapter, meaning that we will simply refer to X(N), M (N), dN , [ϑ∗](N),P
(N)

π∗ , . . . as X, M , d, ϑ∗,Pπ∗ , . . . .
Nevertheless, let us stress again that the integer s is fixed and does not depend on N in our work.

6.5.2 A conditional CLT for the saturated model

We aim at providing a multiple testing procedure and a confidence interval for the parameter π∗ condi-
tionally to the selection eventEM . To do so, we prove in this section a CLT for X⊤

MY when Y is a random
variable on {0, 1}N following the multivariate Bernoulli distribution with parameter π∗ ∈ [0, 1]N con-
ditional on the event {Y ∈ EM}. Let us first recall the notation for the distribution of Y conditional on
EM in the saturated model

Pπ∗(Y ) ∝ 1EM
(Y )Pπ∗(Y ),

where the symbol ∝ means "proportional to". In the following, we will denote by Eπ∗ the expectation
with respect to Pπ∗ . With Theorem 6.8, we give a conditional CLT that holds under some conditions
that involve in particular the covariance matrix of the response Y under the distribution Pπ∗ , namely

Γ
π∗

:= Eπ∗

[
(Y − ππ

∗
)(Y − ππ

∗
)⊤
]
∈ [−1, 1]N×N ,

where ππ
∗
= Eπ∗ [Y ].

Theorem 6.8. We keep the notations and assumptions from Section 6.5.1. We denote π∗ = σ(Xϑ∗) and Y the
random vector taking values in {0, 1}N and distributed according to Pπ∗ . Assume further that
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1.
N∑
i=1

√
∥(X[i−1],M )⊤Γ

π∗

[i−1],[i−1]X[i−1],M∥F
(
1− 2ππ

∗
i

)2
=

N→+∞
o(N),

2. there exists σ2
min > 0 such that for any N ∈ N, ππ

∗

i (1− ππ
∗

i ) ≥ σ2
min for all i ∈ [N ].

Then it holds
u⊤[GN (π∗)]−1/2X⊤

M (Y − ππ
∗
)

(d)−→
N→+∞

N (0, 1),

where u is a unit s-vector and where GN (π∗) := X⊤
MDiag((σπ

∗
)2)XM with (σπ

∗
)2 := ππ

∗
⊙ (1− ππ

∗
).

6.5.3 A conditional CLT for the selected model

We now work under the condition that there exists θ∗ ∈ Rs such that XMθ
∗ = Xϑ∗. Given some Y ∈

{0, 1}N and provided that X⊤
MY ∈ Im(Ξ), Ψ(X⊤

MY ) is the MLE θ̂ of the unpenalized logistic model.
[Sur and Candès, 2019, Theorem 1] ensures that the MLE exists asymptotically almost surely when Y is
distributed as Pθ∗ . When the distribution of Y is Pθ∗ , we prove in Section 6.8.5 a weaker counterpart of
this result showing that for N large enough, the MLE exists with high probability.
We aim at providing a multiple testing procedure and a confidence interval for the parameter θ∗ con-
ditionally on the selection event. To do so, we first prove a CLT for the MLE θ̂ when Y is distributed
according to Pθ∗ (i.e., Y is a random variable on {0, 1}N following the multivariate Bernoulli distribu-
tion with parameter σ(XMθ

∗) conditioned on the event {Y ∈ EM}). The unconditional MLE θ̂ (using
only the features indexed by M ) is known to be consistent and asymptotically efficient meaning that
when Y is distributed according to Pθ∗ ,

u⊤[GN (θ∗)]1/2(θ̂ − θ∗) (d)−→
N→+∞

N (0, 1), (6.32)

where u is a unit s-vector and where

GN (θ) := X⊤
MDiag(σ′(XMθ))XM = X⊤

MDiag((σθ)2)XM ,

is the Fisher information matrix with (σθ)2 := πθ ⊙ (1− πθ) and πθ = Eθ[Y ].
In the following, we will consider the natural counterpart of the Fisher information matrixGN (θ∗) when
we work under the conditional distribution Pθ∗ ,

GN (θ∗) := X⊤
MDiag((σθ

∗
)2)XM , (σθ

∗
)2 := πθ

∗
⊙ (1− πθ

∗
), πθ

∗
= Eθ∗ [Y ].

Theorem 6.9 proves that the MLE θ̂ under the conditional distributionPθ∗ also satisfies a CLT analogous
to Eq.(6.32) by replacing respectively θ∗ andGN (θ∗)1/2 by θ(θ∗) (cf. Eq.(6.29)) and [GN (θ∗)]−1/2GN (θ(θ∗)).
This conditional CLT holds under some conditions that involve in particular the covariance matrix of
the response Y under the distribution Pθ∗ , namely

Γ
θ∗

= Eθ∗
[
(Y − πθ

∗
)(Y − πθ

∗
)⊤
]
∈ [−1, 1]N×N .

Theorem 6.9. We keep the notations and assumptions from Section 6.5.1. Let us consider θ∗ ∈ Rs and let us
denote by Y the random vector taking values in {0, 1}N and distributed according to Pθ∗ . Assume further that

1.
N∑
i=1

√
∥(X[i−1],M )⊤Γ

θ∗

[i−1],[i−1]X[i−1],M∥F
(
1− 2πθ

∗
i

)2
=

N→+∞
o(N),

2. there exists σ2
min > 0 such that for any N and for any i ∈ [N ],

πθ
∗

i (1− πθ
∗

i ) ∧ σ′(Xi,Mθ(θ
∗)) ≥ σ2

min.

3. there exists some K > 0 such that for any N ∈ N,

Tr
[
G

−1

N X⊤
MΓ

θ∗

XM

]
< K.
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Then,
u⊤[GN (θ∗)]−1/2GN (θ(θ∗))

(
θ̂ − θ(θ∗)

) (d)−→
N→+∞

N (0, 1),

where u is a unit s-vector and where we recall that θ̂ = Ψ(X⊤
MY ) is the MLE.

The proof of Theorem 6.9 can be found with full details in Section 6.8.5 and we only provide here the
main arguments. First we use Theorem 6.8 that shows that the distribution of [GN (θ∗)]−1/2LN (θ, ZM )
is asymptotically Gaussian using a Lindeberg Central Limit Theorem for dependent random variables
from Bardet et al. [2008]. Then, we show that for N large enough, the following holds with high proba-
bility: the MLE θ̂ exists and is contained within an ellipsoid centered at θ with vanishing volume. This
kind of result has already been studied in Liang and Du [2012] but the proof provided by Liang and Du
is wrong (Eq.(3.7) is in particular not true). As far as we know, we are the first to provide a correction of
this proof in Section 6.8.5. Let us also stress that working with the conditional distribution Pθ∗ brings
extra-technicalities that need to be handled carefully.
Using this consistency of θ̂ together with the smoothness of the map θ 7→ LN (θ, ZM ), one can convert
the previously established result for [GN (θ∗)]−1/2LN (θ, ZM ) = [GN (θ∗)]−1/2(LN (θ, ZM )− LN (θ̂, ZM ))

into a CLT for θ̂.

6.5.4 Discussion

In this section, we discuss informally the assumptions of both Theorems 6.8 and 6.9. The conditions of
Theorems 6.8 and 6.9 can be seen at first glance as arcane or restrictive. Without pretending that those
conditions are easy to check in practice, looking at these requirements through the lens of the usual
asymptotic alternative where ϑ∗ itself depends on N gives a different perspective. Such assumption on
ϑ∗ has been considered for example in Bunea [2008] or [Taylor and Tibshirani, 2018, Section 3.1]. Fol-
lowing this line of work, we consider that ϑ∗ = α−1

N β∗ where each entry of β∗ is independent of N and
(αN )N is a sequence of increasing positive numbers such that αN →

N→∞
+∞. We further assume β∗ is s∗-

sparse with support M∗ (and with s∗ independent of N ). Let us analyze the conditions of our theorems
in this framework by considering that EM = {0, 1}N (i.e. there is no conditioning). Then, condition

3 of Theorem 6.9 holds automatically since in this case X⊤
MΓ

θ∗

XM = GN (θ∗) and G
−1

N = [GN (θ∗)]−1,
meaning that K = s works. The condition 2 of Theorems 6.8 and 6.9 holds also automatically since
αN →

N→∞
+∞, while the condition 1 is satisfied as soon as αN =

N→∞
ω(N1/2).

The quantity αN is quantifying the dependence arising from conditioning on the selection event: the
weaker the dependence between the entries of the random response Y ∼ Pπ∗ , the smaller αN can be
chosen while preserving the asymptotic normal distribution. Note that in the papers Bunea [2008] and
[Taylor and Tibshirani, 2018, Section 3.1], the authors typically consider the case where αN ∼

N→∞
N1/2,

corresponding to the regime at which the validity of our CLTs may be questioned based on the simple
analysis previously conducted. Nevertheless, we stress that stronger assumptions on the design could
allow to bypass this apparent limitation. A promising line of investigation is the following: taking a
closer at the proofs of Theorems 6.8 and 6.9, one can notice that the condition 1 can actually be weakened
by

min
ν∈SN

N∑
i=1

√
∥(Xν([i−1]),M )⊤Γ

π∗

ν([i−1]),ν([i−1])Xν([i−1]),M∥F
(
1− 2ππ

∗

ν(i)

)2
=

N→+∞
o(N),

where SN is the set of permutations of [N ].

6.6 Selective inference

6.6.1 In the selected model

6.6.1.1 Multiple testing procedure

We keep the notations and the assumptions of Theorem 6.9. Given some θ∗0 ∈ Rs, we consider the
hypothesis test with null and alternative hypotheses defined by

H0 : {θ∗ = θ∗0} and H1 : {θ∗ ̸= θ∗0}. (6.33)
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The CLT from Theorem 6.9 naturally leads us to introduce the ellipsoid WN given by

WN :=

{
Y ∈ {0, 1}N

∣∣∣∣∣ ⋄ X⊤
MY ∈ Im(Ξ)

}
,

⋄
∥∥[GN (θ∗0)]

−1/2GN (θ(θ∗0))
(
Ψ(X⊤

MY )− θ(θ∗0)
)∥∥2

2
> χ2

s,1−α

where χ2
s,1−α is the quantile of order 1 − α of the χ2 distribution with s degrees of freedom. If πθ

∗
0

was known, we could compute θ(θ∗0) (using Eq.(6.30)) and thus GN (θ∗0). Then the test with rejection
region WN would be asymptotically of level α since Theorem 6.9 gives that

Pθ∗0 (Y ∈WN ) −→
N→+∞

α.

Based on this result, we construct an asymptotically valid multiple testing procedure for the test (6.33).
Our method consists in finding an estimate of the parameter πθ

∗
0 in order to approximate the rejection

region WN with a Monte-Carlo approach. From Proposition 6.6, we know that under an appropriate
cooling scheme, the asymptotic distribution of the states visited by our SEI-SLR algorithm (cf. Algo-
rithm 5) is the uniform distribution on the selection event. We deduce that under the null, we are able
to estimate πθ

∗
and thus θ using Eq.(6.30). This leads to the testing procedure presented in Proposi-

tion 6.10, whose proof is postponed to Section 6.8.7.

Proposition 6.10. We keep notations and assumptions of Theorem 6.9. We consider two independent sequences
of vectors (Y (t))t≥1 and (Z(t))t≥1 generated by Algorithm 5. Let us denote

π̃θ
∗
0 =

∑T
t=1Pθ∗0 (Y

(t))Y (t)∑T
t=1Pθ∗0 (Y

(t))
, θ̃ = Ψ(X⊤

M π̃
θ∗0 ), G̃N = X⊤

MDiag
(
π̃θ

∗
0 ⊙ (1− π̃θ

∗
0 )
)
XM ,

and WN :=

{
Y ∈ {0, 1}N

∣∣∣∣∣ ⋄ X⊤
MY ∈ Im(Ξ)

}
.

⋄
∥∥∥G̃−1/2

N GN (θ̃)
(
Ψ(X⊤

MY )− θ̃
)∥∥∥2

2
> χ2

s,1−α

Then the procedure consisting in rejecting the null hypothesisH0 when

ζN,T :=

∑T
t=1Pθ∗0 (Z

(t))1
Z(t)∈W̃N∑T

t=1Pθ∗0 (Z
(t))

> α,

has an asymptotic level lower than α in the sense that for any ϵ > 0, there exists N0 ∈ N such that for any
N ≥ N0 it holds,

P
( ⋃
TN∈N

⋂
T≥TN

{ζN,T ≤ α+ ϵ}
)
= 1.

6.6.1.2 Asymptotic confidence region

In the previous section, we proved that the MLE θ̂ satisfies a CLT with a centering vector that is not the
parameter of interest θ∗. Two questions arises at this point.

1. How can we compute a relevant estimate for θ∗?

2. Can we provide theoretical guarantees regarding this estimate?

Proposition 6.11 answers both questions. It provides a valid confidence region with asymptotic level 1−
α for any estimate θ⋆ of θ∗ where the width of the confidence region is asymptotically driven by ∥θ(θ⋆)−
θ̂∥2. The proof of Proposition 6.11 can be found in Section 6.8.8.

Proposition 6.11. We keep notations and assumptions of Theorem 6.9 and we assume further that there exist
p ∈ [1,∞] and κ,R > 0 such that

θ∗ ∈ Bp(0, R) and ∀θ ∈ Bp(0, R), λmin(Γ
θ
) ≥ κ,

where Bp(0, R) := {θ ∈ Rs | ∥θ∥p ≤ R}. Let us consider any estimator θ⋆ ∈ Bp(0, R) of θ∗. Then the
probability of the event

∥θ∗ − θ⋆∥2 ≤ C (κc)
−1
{
∥θ(θ⋆)− θ̂∥2 + ∥(σθ)−2∥∞

(
Nc2/C

)−1/2
√
χ2
s,1−α

}
,
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tends to 1− α as N →∞. We recall that (σθ)2 = σ′(XMθ(θ
∗)).

Remarks. In Proposition 6.11, note that the constants c and C can be easily computed from the design
matrix. Nevertheless, we point out that the confidence region from Proposition 6.11 involves two con-
stants (namely κ and σθ) that cannot be a priori easily computed in practice.
Proposition 6.11 proves that when N is large enough, the size of our confidence region is driven by the
distance ∥θ(θ⋆)− θ̂∥2. This remark motivates us to choose θ⋆ among the minimizers of the function

m : θ 7→ ∥θ(θ)− θ̂∥22.

In the sake of minimizing m, a large set of methods are at our disposal. In Section 6.7, we propose a
deep learning and a gradient descent approach for our numerical experiments.

6.6.2 In the saturated model

6.6.2.1 Multiple testing procedure

We keep the notations and the assumptions of Theorem 6.8. Given some π∗
0 ∈ RN , we consider the

hypothesis test with null and alternative hypotheses defined by

H0 : {π∗ = π∗
0} and H1 : {π∗ ̸= π∗

0}. (6.34)

The CLT from Theorem 6.8 naturally leads us to introduce the ellipsoid WN given by

WN =

{
Y ∈ {0, 1}N |

∥∥∥[GN (π∗
0)]

−1/2X⊤
M

(
Y − ππ

∗
0

)∥∥∥2
2
≥ χ2

s,1−α

}
,

where χ2
s,1−α is the quantile of order 1− α of the χ2 distribution with s degrees of freedom. If ππ

∗
0 was

known, we could compute GN (π∗
0). Then the test with rejection region WN would be asymptotically of

level α since Theorem 6.8 gives that

Pπ∗
0
(Y ∈WN ) −→

N→+∞
α.

Based on this result, we construct an asymptotically valid multiple testing procedure for the test (6.34).
Our method consists in finding an estimate of the parameter ππ

∗
0 in order to approximate the rejection

region WN with a Monte-Carlo approach. From Proposition 6.6, we know that under an appropriate
cooling scheme, the asymptotic distribution of the states visited by the SEI-SLR algorithm (cf. Algo-
rithm 5) is the uniform distribution on the selection event. We deduce that under the null, we are able
to estimate ππ

∗
0 and thus GN (π∗

0). This leads to the testing procedure presented in Proposition 6.12,
whose proof is strictly analogous to the one of Proposition 6.10.

Proposition 6.12. We keep notations and assumptions of Theorem 6.8. We consider two independent sequences
of vectors (Y (t))t≥1 and (Z(t))t≥1 generated by Algorithm 5. Let us denote

π̃π
∗
0 =

∑T
t=1Pπ∗

0
(Y (t))Y (t)∑T

t=1Pπ∗
0
(Y (t))

, G̃N = X⊤
MDiag

(
π̃π

∗
0 ⊙ (1− π̃π

∗
0 )
)
XM ,

and W̃N :=

{
Y ∈ {0, 1}N |

∥∥∥G̃−1/2
N X⊤

M

(
Y − π̃π∗

0

)∥∥∥2
2
> χ2

s,1−α

}
. Then the procedure consisting of rejecting

the null hypothesisH0 when

ζN,T :=

∑T
t=1Pπ∗

0
(Z(t))1

Z(t)∈W̃N∑T
t=1Pπ∗

0
(Z(t))

> α,

has an asymptotic level lower than α in the sense that for any ϵ > 0, there exists N0 ∈ N such that for any
N ≥ N0 it holds,

P
( ⋃
TN∈N

⋂
T≥TN

{ζN,T ≤ α+ ϵ}
)
= 1.
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6.6.2.2 Asymptotic confidence region

With Theorem 6.8, we proved that X⊤
MY with Y distributed according to Pπ∗ satisfies a CLT with an

asymptotic Gaussian distribution centered at X⊤
Mπ

π∗
. Using an approach analogous to Section 6.6.1.2,

we propose here to build an asymptotic confidence region for π∗. The proof of Proposition 6.13 is
postponed to Section 6.8.9.

Proposition 6.13. We keep the notations and the assumptions of Theorem 6.8 and we consider α ∈ (0, 1). We
assume further that there exist p ∈ [1,∞] and κ,R > 0 such that

π∗ ∈ Bp
(1N
2
, R
)

and ∀π ∈ Bp
(1N
2
, R
)
, λmin(Γ

π
) ≥ κ.

Let us consider any estimator π⋆ ∈ Bp(1N

2 , R) of π∗. Then the probability of the event

∥π∗ − π⋆∥2 ≤ (4κ)−1
{
∥ProjXM

(Y − ππ
⋆

)∥2 + Cc−1
√
χ2
s,1−α + ∥Proj⊥XM

(ππ
∗
− ππ

⋆

)∥2
}
,

tends to 1− α as N →∞.

Remarks.

• Analogously to Section 6.6.1.2, Proposition 6.13 motivates us to choose π⋆ among the minimizers
of the function

M : π 7→ ∥X⊤
Mπ

π −X⊤
MY ∥22.

As mentioned in the Section 6.6.1.2, one can rely for example on a deep learning or a gradient
descent method in order to reach a local minimum π⋆ for M .

• The term ∥Proj⊥XM
(ππ

∗
− ππ

⋆

)∥2 arising in the confidence region from Proposition 6.13 illustrates
that our conditional CLT from Theorem 6.8 holds on X⊤

MY and that we do not control what occurs
in the orthogonal complement of the span of the columns of XM . Nevertheless, let us comment
informally our result in the case where EM = {0, 1}N (meaning that there is no conditioning)
and where ϑ∗ is close to 0 (meaning that π∗ is close to 1N/2). In this framework, Γ

π
= Diag(π ⊙

(1 − π)) is close to 1
4 IdN for π in a small neighbourhood around 1N/2. Hence, we get that κ is

approximately 1
4 . Since it also holds that ππ

∗
− ππ

⋆

= π∗ − π⋆ (since EM = {0, 1}N ), we obtain
from Proposition 6.13 that a CR for ProjXM

π∗ with asymptotic coverage 1− α is

∥ProjXM
(π∗ − π⋆)∥2 ≤ ∥ProjXM

(Y − ππ
⋆

)∥2 + Cc−1
√
χ2
s,1−α.

6.7 Numerical results

The code to reproduce our results is available at the following url: https://github.com/quentin-duchemin/
LogPSI.

6.7.1 Sampling from the condition distribution

Description of the experiment. We test our approach under the global null, namely we consider ϑ∗ =
0. We work with N = 11, p = 20, λ = 1.7 and δ = 0.01. The entries of the design matrix X are i.i.d.
with a standard normal distribution. By choosing this toy example with a small value for N , we are
able to compute exactly the selection event by running over the 2N possible vectors Y ∈ {0, 1}N . We
start by sampling some vector Y0 ∈ {0, 1}N with i.i.d. entries with a Bernoulli distribution of parameter
1/2. Note the tuple (X, Y0λ) determined the set M which corresponds to the set of indexes i ∈ [d] such
that ϑ̂λi ̸= 0 where ϑ̂λ is defined by Eq.(6.12). Given the equicorrelation set M , we run 40 simulated
annealing paths of length T = 150, 000 using the SEI-SLR algorithm (see Algorithm 5).

Uniform distribution on the selection event. In the following, we identify each vector Y ∈ {0, 1}N
with the number between 0 and 2N − 1 = 2047 that it represents in the base-2 numeral system. Using
this identification, it holds on our example that EM = {160, 607, 863, 1184, 1440, 1887}.

https://github.com/quentin-duchemin/LogPSI
https://github.com/quentin-duchemin/LogPSI
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Figure 6.4.(a) shows the time spent in the selection event over the last 15, 000 time steps of the simulated
annealing path for each of our 40 simulations. One can see that around 75% of the generated paths are
spending at least 90% of their time in the selection event for the last 15, 000 time steps. Figure 6.4.(b)
presents the proportion of time spent in the different states of the selection event and outside of EM
working again with the last 15, 000 visited states for each of the 40 simulations.

(a) Proportion of simulations (vertical axis) spending at
least some x% of their time (horizontal axis) in the se-
lection event.

(b) Time spent in each state of EM and outside of EM .

Figure 6.4: Visualization of the time spent in the selection event keeping the last 15, 000 visited states of
each sequence provided by our algorithm SEI-SLR.

Figure 6.5: Last visited states of two simulated annealing paths. The dotted red lines indicate all the
states belonging to the selection event. The gray (respectively green) crosses indicate visited states that
do not belong (respectively that belong) to the selection event.

Figure 6.5 shows the last 15, 000 visited states for two specific simulated annealing paths. On the vertical
axis, we have the integers encoded by all possible vectors Y ∈ {0, 1}N . The red dashed lines represent
the states that belongs to the selection event EM . While crosses are showing the visited states on the
last 15, 000 time steps of the path, green crosses are emphasizing the ones that belong to the selection
event. On this example, we see that the SEI-SLR algorithm covers properly the selection event without
being stuck in one specific state of EM . Each simulated annealing path is jumping from a state of EM to
another, ending up with an asymptotic distribution of the visited states that approximates the uniform
distribution on EM (see Figure 6.4.(b)). Let us point that two neighboring states in space {0, 1}N will
not necessarily be encoded by close integers.
Figure 6.5 suggests that the vectors encoded by the integers 160, 1184 and 1440 are close in the space {0, 1}N .
Indeed, we see for example on the right plot of Figure 6.5 that in the last 5, 000 visited states, our al-
gorithm goes from one of these three states to another passing through almost no state that does not
belong to the selection event (this can be seen because there are only few gray crosses in the last 5, 000
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iterations). The same remark holds for the three states encoded by the integers 607, 863 and 1887.
However, we observe a large number of visited states that do not belong to EM when we perform a
transition from one of the state of the first group {160, 1184, 1440} to one of the state of the second
group {607, 863, 1887}. We can therefore legitimately think that the selection event separates into two
groups of fairly distant states. This is confirmed by Figure 6.6 which presents the Hamming distances
between the different vectors of EM and reveals the existence of two clusters.

Figure 6.6: Normalized (by N ) Hamming distances between the different states of the selection event.
We observe two distinct clusters.

Comparison with the linear model. The previous theoretical and numerical results show that our
approach allows to correctly identify the selection event EM . Nevertheless, this method suffers from
the curse of dimensionality since the random walks in the simulated annealings need to cover a state
space of 2N points. Let us mention that even in the linear model where the selection event EM has the
nice property to be a union of polyhedra, the method from Lee et al. [2016] to provide inference on a
linear transformation of Y can also cope with some computational issues. Indeed, the construction of
confidence intervals conditionally on the event EM requires the computation of 2s intervals (while the
computation of each of them requires at leastN3 operations) where s = |M | (see [Lee et al., 2016, Section
6]). Roughly speaking, both our approach in the logistic model and the one from [Lee et al., 2016, Section
6] in the linear model are limited in large dimensions. While in the linear case, computational efficiency
of the known methods mainly depends on s = |M |, the extra cost arising from the non-linearity of the
logistic model is their dependence on N .
Let us finally mention that in the Gaussian linear model (cf. Section 6.1.3), one can bypass the limitation
of computing the 2s intervals for each possible vector of dual signs on the equicorrelation set M by
conditioning further on the observed vector of signs ŜM (Y ) = sign(θ̂λ)M . Stated otherwise, instead of
conditioning on EM , we condition on ESM

M where SM = ŜM (Y ). This method reduces the computa-
tional burden but it will lead in general to less powerful inference procedures due to some information
loss which can be quantified through the so-called left-over Fisher information. In Section 6.9, we dis-
cuss with further details PSI when we condition additionally on the observed vector of signs.

6.7.2 Hypothesis Testing

Description of the experiment. We consider d = 40, N = 15, s = 2, ϑ∗ = [1, 1, 0, 0, . . . , 0] and X ∈
RN×d constructed as follows:

• We first sample X̃ ∈ RN×d with independent standard normal entries.

• We normalize the first two columns of X̃ (i.e. we divide each entry of one column by the L2-norm
of this column) and the result gives the two first columns of X.
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• We project each column j ∈ {3, . . . , d} onto Span(X1,X2)
⊥. Thereafter, we normalize the resulting

columns and we stack them to obtain the columns with index from 3 to d for the matrix X.

Using this design matrix allows us to guarantee that the so-called mutual incoherence property [cf.
Wainwright, 2019, Eq.(7.43b)] is satisfied. It is well known that this condition is used to ensure support
recovery for the lasso [cf. Wainwright, 2019, Theorem 7.21] and by choosing a regularization parame-
ter λ = 1.4, the selected support is equal to the true support M̂ = {1, 2}. Working with s = 2, we can
easily visualize the results of our multiple testing procedure. For any ν > 0, we consider θ∗0 = [ν, ν] and
we consider the hypothesis test (6.33).

Results. Figure 6.7 shows the way we compute the test statistic from Proposition 6.12: each visited
state Z(t) of the SEI-SLR algorithm is plotted using a different color depending on whether Z(t) ∈ W̃N

or Z(t) /∈ W̃N . Each sample is weighted proportionally to Pθ∗0 (Z
(t)) so that we reject the null if and

only if the sum of weights of samples falling outside of the orange ellipse is larger than ν times the total
mass of samples. In Figure 6.8, we show for ν ranging from 0 to 2 the total mass of samples falling into

the ellipse
(
W̃N

)c
. We see that our test controls that type I error at level α = 5%. Moreover, the test

seems much more powerful when ν < 1 compared to the case where ν > 1.

(a) θ∗0 = [0.1, 0.1] (b) θ∗0 = [0.9, 0.9]

Figure 6.7: The orange ellipse represents the set of parameter θ ∈ Rs such that ∥G̃−1/2
N GN (θ̃)(θ− θ̃)∥22 =

χ2
s,1−α. For each t, we plot the MLE Ψ(X⊤

MY
(t)) with a green plus if the point falls into the orange

ellipse and with a red cross otherwise. The size of the markers is proportional to Pθ∗0 (Y
(t)).

Figure 6.8: Value of the test statistic for θ∗0 = [ν, ν] with ν ranging from 0 to 2. The dashed vertical lines
show the values of ν so that we reject the null at level 5%.
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Let us highlight that we trained a feed-forward neural network with three hidden layers to approximate
Ψ = Ξ−1 where we recall the Ξ(θ) = X⊤

Mσ(XMθ) for any θ ∈ Rs.

6.7.3 Confidence region

As presented in Proposition 6.11 and the subsequent remark, the size of our confidence region is mainly
driven by the distance ∥θ(θ⋆) − θ̂∥2. This encourages us to choose our estimate θ̂∗ among the local
minimizers of the function m : θ 7→ ∥θ(θ) − θ̂∥2. In the following, we propose a deep-learning and a
gradient descent approach to achieve this goal.

6.7.3.1 Deep learning method

We train a feed forward neural network with ReLu activation function and three hidden layers. With
this network, we aim at estimating any θ ∈ Rs by feeding as input θ(θ). We generate our training dataset
by first sampling ntrain = 500 random vectors θi ∼ N (0, Ids), i ∈ [ntrain]. Then, for any i ∈ [ntrain] we
compute the estimate θ̃(θi) of θ(θi) as follows

π̃θi =

∑T
t=1Pθi(Y

(t))Y (t)∑T
t=1Pθi(Y

(t))
and θ̃(θi) = Ψ(X⊤

M π̃
θi),

where (Y (t))t≥1 is the sequence generated from the SEI-SLR algorithm (see Algorithm 5). We train
our network using stochastic gradient descent with learning rate 0.01 and 500 epochs. At each epoch,
we feed to the network the inputs (θ̃(θi))i∈[ntrain] with the corresponding target values (θi)i∈[ntrain].
We then compute our estimate θ⋆ of θ∗ by taking the output of our network when taking as input
the unpenalized MLE θ̂ using the design XM (cf. Eq.(6.28)). Figure 6.9 illustrates the result obtained
from this deep learning approach. We keep the experiment settings of Section 6.7.2 namely, we con-
sider ϑ∗ = (1 1 0 . . . 0)⊤ ∈ Rd and we choose the regularization parameter λ so that the selected model
corresponds to the true set of active variables, namely M = {1, 2}.

Figure 6.9: Visualization of the results obtained using our deep learning approach to compute an esti-
mate θ⋆ (the blue hexagone) of θ∗ (the red star). θ⋆ corresponds to the output of the neural network
when feeding as input the MLE θ̂ (the green triangle). We also plot the parameter θ(θ∗) (the brown plus)
and θ(θ⋆) (the brown cross).

6.7.3.2 Gradient descent method

As shown in the proof of the expression of Proposition 6.11 (cf. Eq.(6.53)), it holds

∀θ ∈ Rs, ∇θπθ = Γ
θ
XM .
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Recalling additionally that θ(θ) = Ψ
(
X⊤
Mπ

θ
)

(cf. Eq.(6.30)), we get that for any θ ∈ Rs,

∇θm(θ) = 2∇θθ(θ)(θ(θ)− θ̂)

= 2∇Ψ(X⊤
Mπ

θ)X⊤
MΓ

θ
XM (θ(θ)− θ̂)

= 2∇Ψ(X⊤
Mπ

θ(θ))X⊤
MΓ

θ
XM (θ(θ)− θ̂)

= 2
(
X⊤
MDiag(πθ(θ) ⊙ (1− πθ(θ)))XM

)−1

X⊤
MΓ

θ
XM (θ(θ)− θ̂).

Hence,
∇θm(θ) = 2

[
GN (θ(θ))

]−1
X⊤
MΓ

θ
XM (θ(θ)− θ̂).

Given some θ, πθ and Γ
θ

can be estimated using samples generated by the SEI-SLR algorithm (and thus
the same holds for θ(θ) = Ψ(X⊤

Mπ
θ) and for GN (θ(θ))).

Figure 6.10: Visualization of our gradient descent procedure to compute an estimate θ⋆ (the blue
hexagone) of θ∗ (the red star). The MLE θ̂ is the green triangle. We also plot the parameter θ(θ∗)
(the brown plus) and θ(θ⋆) (the brown cross).

6.8 Proofs

6.8.1 Proof of Proposition 6.1

Let us consider ϑ1, ϑ2 two vectors in Rd achieving the minimum in (6.12). Then, denoting ϑ3 = 1
2ϑ1 +

1
2ϑ2 it holds

LN (ϑ1, Z) + LN (ϑ2, Z)

2
+ λ
∥ϑ1∥1 + ∥ϑ2∥1

2
≤ LN (ϑ3, Z) + λ∥ϑ3∥1.

Since the triangle inequality gives ∥ϑ3∥1 ≤ ∥ϑ1∥1+∥ϑ2∥1

2 and since the function ξ is strictly convex, it
holds that Xϑ1 = Xϑ2. Indeed, otherwise we would have by strict convexity

LN (ϑ3, Z) + λ∥ϑ3∥1

=

N∑
i=1

(ξ(⟨xi, ϑ3⟩)− ⟨yixi, ϑ3⟩) + λ∥ϑ3∥1

≤
N∑
i=1

(
ξ(⟨xi,

ϑ1 + ϑ2
2

⟩)− 1

2
⟨yixi, ϑ1⟩ −

1

2
⟨yixi, ϑ2⟩

)
+

1

2
λ∥ϑ1∥1 +

1

2
λ∥ϑ2∥1

<
LN (ϑ1, Z) + LN (ϑ2, Z)

2
+ λ
∥ϑ1∥1 + ∥ϑ2∥1

2
.
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From the KKT conditions, we deduce that for a given Y ∈ YN , all solutions ϑ̂λ of (6.12) have the same
vector of signs denoted Ŝ(Y ) which is given

Ŝ(Y ) =
1

λ
X⊤

(
Y − σ(Xϑ̂λ)

)
,

where ϑ̂λ is any solution to (6.12).

6.8.2 Proof of Proposition 6.2

Partitioning the KKT conditions of Eq.(6.13) according to the equicorrelation set M̂(Y ) leads to

X⊤
M̂(Y )

(
Y − σ(X

M̂(Y )
ϑ̂λ
M̂(Y )

)
)
= λŜ

M̂(Y )

X⊤
−M̂(Y )

(
Y − σ(X

M̂(Y )
ϑ̂λ
M̂(Y )

)
)
= λŜ−M̂(Y )

sign(ϑ̂λ
M̂(Y )

) = Ŝ
M̂(Y )

∥Ŝ−M̂(Y )
∥∞ < 1

Since the KKT conditions are necessary and sufficient for a solution, we obtain that Y belongs to ESM

M

if and only if there exists θ ∈ Rs satisfying

X⊤
M (Y − σ(XMθ)) = λSM

sign(θ) = SM

∥X⊤
−M (Y − σ(XMθ)) ∥∞ < λ

6.8.3 Proof of Proposition 6.3

Let us consider θ, θ′ ∈ Rs such that Ξ(θ) = Ξ(θ′). Then we have

0 = X⊤
Mσ(XMθ)−X⊤

Mσ(XMθ
′)

= Ξ(θ)− Ξ(θ′)

=

∫ 1

0

∇Ξ(θt+ (1− t)θ′) · (θ − θ′)dt

=

∫ 1

0

X⊤
MDiag [σ′(XMθt+ (1− t)XMθ

′)]XM (θ − θ′)dt

= X⊤
M

(∫ 1

0

Diag [σ′(XMθt+ (1− t)XMθ
′)] dt

)
︸ ︷︷ ︸

=:D

XM (θ − θ′). (6.35)

Note that for any t ∈ [0, 1] and for any i ∈ [N ], {σ′(XMθt+ (1− t)XMθ
′)}i > 0 since ξ′′(u) = σ′(u) > 0

for any u ∈ R. We deduce that D ∈ RN×N is a diagonal matrix with strictly positive coefficients on the
diagonal. Eq.(6.35) gives that θ−θ′ ∈ Ker(X⊤

MDXM ) which implies that (θ−θ′)⊤X⊤
MDXM (θ−θ′) = 0.

This means that
N∑
i=1

Di,i [XM (θ − θ′)]2i = 0.

Since Di,i > 0 for all i ∈ [N ], we get that XM (θ − θ′) = 0, i.e. XMθ = XMθ
′. Since XM has full column

rank, this leads to θ = θ′.

Since Ξ is injective and of class Cm with a differential given by∇θΞ(θ) = X⊤
MDiag(σ′(XMθ))XM which

is invertible at any θ ∈ Rs under the assumptions of Proposition 6.3 Hence the global inversion theorem
gives Proposition 6.3.
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6.8.4 Proof of Theorem 6.8

For the sake of brevity, we will simply denoteGN (π∗) byGN . Let us further denote X⊤
M = [w1 | w2 | . . . | wN ],

where wi = xi,M ∈ Rs. The proof of Theorem 6.8 relies on [Bardet et al., 2008, Theorem 1]. In the fol-
lowing, we check that all the assumptions of [Bardet et al., 2008, Theorem 1] are satisfied. Denoting for

any i ∈ [N ], ξi,N = G
−1/2

N wi(yi − ππ
∗

i ), it holds

G
−1/2

N X⊤
M (Y − ππ

∗
) =

N∑
i=1

G
−1/2

N wi(yi − ππ
∗

i ) =

N∑
i=1

ξi,N .

Let us also point that Eπ∗ [ξi,N ] = 0. In the following, we will simply refer to ξi,N as ξi to ease the
reading of the proof. Let us denote further

AN =

N∑
i=1

Eπ∗
(
∥ξi∥32

)
.

One can notice that

Eπ∗
(
∥ξi∥32

)
= Eπ∗

[
(yi − ππ

∗

i )3
]
∥G−1/2

N wi∥32

≤
(

K√
cσmin

)3

N−3/2s3/2,

where we used that

∥G−1/2

N wi∥22 ≤ ∥G
−1/2

N ∥2 × ∥wi∥22 ≤ ∥G
−1

N ∥(sK2) ≤ (cσ2
minN)−1(sK2).

We deduce that

AN ≤
(

K√
cσmin

)3

N−1/2s3/2.

Hence AN →
N→∞

0 which the first condition that needed to be checked to apply [Bardet et al., 2008,

Theorem 1].
Let us now check the second condition from that Bardet et al. [2008] that consists in identifying the
appropriate asymptotic covariance matrix.

N∑
i=1

Covπ∗(ξi) =

N∑
i=1

Eπ∗

[
G

−1/2

N wiw
⊤
i G

−1/2

N (yi − ππ
∗

i )2
]

=

N∑
i=1

G
−1/2

N wiEπ∗(yi − ππ
∗

i )2︸ ︷︷ ︸
=(σπ∗

i )2

w⊤
i G

−1/2

N

= G
−1/2

N

N∑
i=1

wi(σ
π∗

i )2w⊤
i G

−1/2

N

= G
−1/2

N X⊤
MDiag

(
(σπ

∗
)2
)
XMG

−1/2

N

= G
−1/2

N GNG
−1/2

N

= Ids.

To apply [Bardet et al., 2008, Theorem 1], it remains to check that the dependent Lindeberg conditions
hold. For this, we consider some map f ∈ C3b (Rs,R) where C3b (Rs,R) is the set of functions from Rs to
Rwith bounded and continuous partial derivatives up to order 3. In the following, we denote

Wi = G
−1/2

N (X[i−1],M )⊤(Y − ππ
∗
)[i−1] =

i−1∑
a=1

ξa.

First dependent Lindeberg condition.
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For any i ∈ [N ], let us consider W ′
i (resp. ξ′i) an independent copy of the random vector Wi (resp. ξi).

Let us recall the following well-known result

Lemma 6.14. Let us consider two real valued random variables A,B on some probability space (Ω,F ,P). Let
us consider (A′, B′) an independent copy of the random vector (A,B). Then it holds,

Cov(A,B) =
1

2
E
[
(A−A′)(B −B′)

]
.

Using Lemma 6.14, the Cauchy-Schwarz inequality and Jensen’s inequalities, we get,

s∑
k,l=1

N∑
i=1

|Covπ∗(
∂2f

∂xl∂xk
(Wi), (ξi)k(ξi)l)|

=

s∑
k,l=1

N∑
i=1

|Covπ∗(
∂2f

∂xl∂xk
(Wi), (ξi)k(ξi)l)|

=

s∑
k,l=1

N∑
i=1

1

2
|Eπ∗

[(
∂2f

∂xl∂xk
(Wi)−

∂2f

∂xl∂xk
(W ′

i )

)
((ξi)k(ξi)l − (ξ′i)k(ξ

′
i)l)

]
|

≤
s∑

k,l=1

N∑
i=1

1

2
∥∇3f∥∞Eπ∗ (∥Wi −W ′

i∥2 × |(ξi)k(ξi)l − (ξ′i)k(ξ
′
i)l|)

≤
s∑

k,l=1

N∑
i=1

1

2
∥∇3f∥∞

√
Eπ∗ (∥Wi −W ′

i∥22)×
√
Eπ∗ (|(ξi)k(ξi)l − (ξ′i)k(ξ

′
i)l|2)

≤
s∑

k,l=1

N∑
i=1

∥∇3f∥∞
√
Varπ∗ (∥Wi∥2)×

√
Varπ∗ (|(ξi)k(ξi)l|)

≤ s
N∑
i=1

∥∇3f∥∞
√
Varπ∗ (∥Wi∥2)×

√√√√ s∑
k,l=1

Varπ∗ (|(ξi)k(ξi)l|),

where in the last inequality we used Jensen’s inequality. Let us upper-bound the terms Varπ∗ (∥Wi∥2)
and

∑s
k,l=1Varπ∗ (|(ξi)k(ξi)l|) independently. We have

Varπ∗ (∥Wi∥2)
≤ Eπ∗

(
∥Wi∥22

)
= Eπ∗

[
(Y − ππ

∗
)⊤[i−1]X[i−1],MG

−1/2

N G
−1/2

N (X[i−1],M )⊤(Y − ππ
∗
)[i−1]

]
= Eπ∗

[
Tr
(
G

−1/2

N (X[i−1],M )⊤(Y − ππ
∗
)[i−1](Y − ππ

∗
)⊤[i−1]X[i−1],MG

−1/2

N

)]
= Tr

(
G

−1/2

N (X[i−1],M )⊤Γ
π∗

[i−1],[i−1]X[i−1],MG
−1/2

N

)
,

and
s∑

k,l=1

Varπ∗ (|(ξi)k(ξi)l|)

=

s∑
k,l=1

((G
−1/2

N )k,:wi)
2((G

−1/2

N )l,:wi)
2

{
Eπ∗

[
(yi − ππ

∗

i )4
]
− Eπ∗

[
(yi − ππ

∗

i )2
]2}

=

s∑
k,l=1

((G
−1/2

N )k,:wi)
2((G

−1/2

N )l,:wi)
2(σπ

∗

i )2(1− 2ππ
∗

i )2

= ∥G−1/2

N wi∥42(σπ
∗

i )2(1− 2ππ
∗

i )2

≤ K4(cσ2
min)

−2 s
2

N2
(σπ

∗

i )2(1− 2ππ
∗

i )2,
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where (σπ
∗

i )2 = ππ
∗

i (1− ππ
∗

i ). Hence, coming back the first Lindeberg condition, we have (forgetting to
mention the constants K, s, c, σ2

min that do not depend on N , which is the sense of the symbol ≲),

s∑
k,l=1

N∑
i=1

|Covπ∗(
∂2f

∂xl∂xk
(Wi), (ξi)k(ξi)l)|

≲
1

N

N∑
i=1

∥∇3f∥∞
√
Tr
(
G

−1/2

N (X[i−1],M )⊤Γ
π∗

[i−1],[i−1]X[i−1],MG
−1/2

N

)
(1− 2ππ

∗
i )2(σπ

∗
i )2

≤ 1

N

N∑
i=1

∥∇3f∥∞
√
∥G−1

N ∥F ∥(X[i−1],M )⊤Γ
π∗

[i−1],[i−1]X[i−1],M∥F (1− 2ππ
∗
i )2(σπ

∗
i )2

≲
1

N

N∑
i=1

∥∇3f∥∞

√
1

N
∥(X[i−1],M )⊤Γ

θ∗

[i−1],[i−1]X[i−1],M∥F (1− 2ππ
∗
i )2(σπ

∗
i )2

≤ 1

N3/2
∥∇3f∥∞

N∑
i=1

√
∥(X[i−1],M )⊤Γ

π∗

[i−1],[i−1]X[i−1],M∥F (1− 2ππ
∗
i )2(σπ

∗
i )2,

where we used that ∥G−1
N ∥F ≤

√
s∥G−1

N ∥ ≲ N−1 (since G
−1

N has rank s, see Section 6.5.1). Hence, the
first dependent Lindeberg condition from Bardet et al. [2008] holds thanks to the assumptions made in
Theorem 6.8.

Second dependent Lindeberg condition.
Using an approach analogous to the one conducted for the first dependent Lindeberg condition, one
can obtain

s∑
l=1

N∑
i=1

|Covπ∗(
∂f

∂xl
(Wi), (ξi)l)|

≤
√
s

N∑
i=1

∥∇2f∥∞
√
Varπ∗ (∥Wi∥2)×

√√√√ s∑
l=1

Varπ∗ (|(ξi)l|)

≲
1√
N
∥∇2f∥∞

N∑
i=1

√
Tr
(
G

−1/2

N (X[i−1],M )⊤Γ
π∗

[i−1],[i−1]X[i−1],MG
−1/2

N

) (
1− 2ππ

∗
i

)2
(σπ

∗
i )2

≲
1√
N
∥∇2f∥∞

N∑
i=1

√
∥G−1

N ∥F ∥(X[i−1],M )⊤Γ
π∗

[i−1],[i−1]X[i−1],M∥F
(
1− 2ππ

∗
i

)2
(σπ

∗
i )2

≲
1

N
∥∇2f∥∞

N∑
i=1

√
∥(X[i−1],M )⊤Γ

π∗

[i−1],[i−1]X[i−1],M∥F
(
1− 2ππ

∗
i

)2
(σπ

∗
i )2,

where we used that

Varπ∗ (|(ξi)l|)

= Eπ∗
(
|(ξi)l|2

)
−
(
Eπ∗ |(ξi)l|

)2
= ((G

−1/2

N )l,:wi)
2

{
Eπ∗

(
(yi − ππ

∗

i )2
)
−
(
Eπ∗ |yi − ππ

∗

i |
)2}

= ((G
−1/2

N )l,:wi)
2

{
ππ

∗

i (1− ππ
∗

i )−
(
ππ

∗

i (1− ππ
∗

i ) + (1− ππ
∗

i )ππ
∗

i

)2}
= ((G

−1/2

N )l,:wi)
2ππ

∗

i (1− ππ
∗

i )
(
1− 4(1− ππ

∗

i )ππ
∗

i

)
= ((G

−1/2

N )l,:wi)
2(σπ

∗

i )2
(
1− 2ππ

∗

i

)2
≲

1

N
(σπ

∗

i )2
(
1− 2ππ

∗

i

)2
.
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Assuming that

N∑
i=1

√
∥(X[i−1],M )⊤Γ

π∗

[i−1],[i−1]X[i−1],M∥F
(
1− 2ππ

∗
i

)2
=

N→∞
o(N),

we obtain applying [Bardet et al., 2008, Theorem 1] the following CLT

G
−1/2

N X⊤
M (Y − ππ

∗
)

(d)−→
N→+∞

N (0, Ids).

6.8.5 Proof of Theorem 6.9

To make the notations less cluttered, we will simply denote in the following GN (θ∗) by GN and θ(θ∗)
by θ.

First step. We use Theorem 6.8 where we established a CLT for

−LN (θ, (Y,XM )) = X⊤
M (Y − πθ) = X⊤

M (Y − πθ
∗
) = X⊤

M (Y − ππ
∗
).

Let us highlight that the first equality comes directly from the definition of LN (θ, (Y,XM )) (see Sec-
tion 6.3.2), the second equality comes from Eq.(6.30) and the last equality holds since we work under
the selected model meaning that π∗ = σ(Xϑ∗) = σ(XMθ

∗) (and thus that Pθ∗ ≡ Pπ∗ ). Let us recall that
to prove Theorem 6.8, we used a variant of the Linderberg CLT for dependent random variables proved
by Bardet et al. [2008]. The proof of Theorem 6.8 is given in Section 6.8.4.

Second step. We now prove that for any ϵ > 0 there is some δ > 0 such that when N is large enough

Pθ∗
(

there is θ̂ ∈ NN (θ, δ) such that LN (θ̂, (Y,XM )) = 0
)
> 1− ϵ,

with NN (θ, δ) = {θ : ∥G1/2

N (θ − θ)∥2 ≤ δ}. Stated otherwise, we will prove that there exist a constant
δ > 0 and an integer Nδ ∈ N such that for any N ≥ Nδ , the following holds with high probability,

• the conditional MLE θ̂ exists,

• the conditional MLE θ̂ is contained in the ellipsoid NN (θ, δ) centered at θ.

Let us denote

F : θ ∈ Rs 7→ G
−1/2

N (LN (θ, (Y,XM ))− LN (θ, (Y,XM )))

= G
−1/2

N X⊤
M (πθ − πθ).

Note that F is a deterministic function and does not depend on the random variable Y . Moreover we
choose to leave implicit the dependence on N of F . We also point out that it holds for any θ ∈ Rs,

∇θF (θ) = −G
−1/2

N X⊤
MDiag(σ′(XMθ))XM = −G−1/2

N GN (θ).

Hence F is a C1 map with invertible Jacobian at any θ ∈ Rs and is injective (thanks to Proposition 6.3).
Applying the global inversion theorem, we deduce that F is a C1-diffeomorphism from Rs to Rs.

Sketch of proof.
In the following, we prove that for any ϵ, we can choose δ > 0 such that for some Nδ ∈ N and for any
N ≥ Nδ , it holds on some event EN satisfying Pθ∗(EN ) ≥ 1− ϵ,

G
−1/2

N LN (θ, (Y,XM )) ∈ F (NN (θ, δ))

⇔ G
−1/2

N (X⊤
Mπ

θ∗︸ ︷︷ ︸
=X⊤

Mπθ

−X⊤
MY ) ∈ F (NN (θ, δ)). (6.36)
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This would mean (by definition ofF ) that onEN , there exists some θ̂ ∈ NN (θ, δ) such thatG
−1/2

N LN (θ̂, (Y,XM )) =

0 or equivalently that LN (θ̂, (Y,XM )) = 0. A sufficient condition for Eq.(6.36) to hold is to check that
on the event EN it holds

∥G−1/2

N LN (θ, (Y,XM ))∥2 < inf
θ∈∂NN (θ,δ)

∥F (θ)∥2, (6.37)

where ∂NN (θ, δ) := {θ ∈ Rs | ∥G1/2

N (θ − θ)∥2 = δ}. This sufficient condition is a direct consequence of
Lemma 6.15 and Figure 6.11 gives a visualization of our proof strategy.

Lemma 6.15. Let f : Rs → Rs be a C1-diffeomorphism from Rs to f(Rs). Then for any closed space D ⊂ Rs it
holds

f(∂D) = ∂f(D),

where for any set U ⊆ Rs, ∂U = U\Ů with U the closure of the set U and Ů the interior of the set U .

Proof. As a C1-diffeomorphism, f is in particular a homeomorphism, and as such, it preserves the topo-
logical structures.

Rs

θ Space

• θ
NN (θ, δ)

F (NN(θ, δ))

• 0
×

× is G
−1/2

N LN (θ, (Y,XM ))

←→ has length infθ∈∂NN (θ,δ) ∥F (θ)∥2

F

Figure 6.11: Visualization support for the proof of the existence of the MLE with large probability in
a neighbourhood of θ. We show that with large probability, the orange cross is in the black circle (i.e.,
Eq.(6.37) holds) which implies that the orange cross belongs to F (NN (θ, δ)) (i.e., Eq.(6.36) holds). The

MLE is then defined as θ̂ = F−1(G
−1/2

N LN (θ, (Y,XM )) ∈ NN (θ, δ).

Let ϵ > 0 and let us consider

δ :=
K1/2

ϵ1/22C−1cσ2
min

, (6.38)

(the reason of this choice will become clear with Eq.(6.43)). Let us first notice that for any θ ∈ Rs,

LN (θ, (Y,XM ))− LN (θ, (Y,XM )) (6.39)

= X⊤
M (πθ − πθ) (6.40)

=

∫ 1

0

GN (tθ + (1− t)θ)dt︸ ︷︷ ︸
=:QN (θ)

(θ − θ), (6.41)

where we used that the Jacobian of the map θ 7→ X⊤
Mπ

θ = X⊤
Mσ(XMθ) is XMDiag(σ′(XMθ))XM =
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GN (θ). Recalling further that ∥G−1/2

N (θ − θ)∥2 = δ for any θ ∈ ∂NN (θ, δ), it holds,

inf
θ∈∂NN (θ,δ)

∥F (θ)∥2

= inf
θ∈∂NN (θ,δ)

∥G−1/2

N QN (θ)(θ − θ)∥2 (using Eq.(6.41))

= inf
θ∈∂NN (θ,δ)

∥G−1/2

N QN (θ)(θ − θ)∥2 ×
∥G1/2

N (θ − θ)∥2
∥G1/2

N (θ − θ)∥2

≥ inf
θ∈∂NN (θ,δ)

(θ − θ)⊤QN (θ)(θ − θ)

∥G1/2

N (θ − θ)∥2
(using the Cauchy Schwarz’s inequality)

= δ inf
θ∈∂NN (θ,δ)

(θ − θ)⊤G1/2

N

∥G1/2

N (θ − θ)∥2
G

−1/2

N QN (θ)G
−1/2

N

G
1/2

N (θ − θ)

∥G1/2

N (θ − θ)∥2
≥ δ inf

∥e∥2=1,θ∈∂NN (θ,δ)
e⊤G

−1/2

N QN (θ)G
−1/2

N e

= δ inf
∥e∥2=1,θ∈∂NN (θ,δ)

e⊤G
−1/2

N

∫ 1

0

GN (tθ + (1− t)θ)dtG−1/2

N e

= δ inf
∥e∥2=1,θ∈∂NN (θ,δ)

∫ 1

0

(
e⊤G

−1/2

N GN (tθ + (1− t)θ)G−1/2

N e
)
dt

≥ δ inf
∥e∥2=1,θ∈NN (θ,δ)

e⊤G
−1/2

N GN (θ)G
−1/2

N e

≥ δ
{

inf
∥e∥2=1

e⊤G
−1/2

N GN (θ)G
−1/2

N e− C δ

N1/2

}
=: IN (δ, θ), (6.42)

where in the penultimate inequality we used that θ ∈ NN (θ, δ) and the convexity ofNN (θ, δ). In the last
inequality, we used Lemma 6.16 whose proof is postponed to Section 6.8.6.

Lemma 6.16. Let us consider some δ > 0. Then for any N ∈ N and for any unit vector u ∈ Rs, it holds

sup
θ∈NN (θ,δ)

|u⊤G−1/2

N (GN (θ)−GN (θ))G
−1/2

N u| ≤ C δ

N1/2
,

where NN (θ, δ) = {θ ∈ Rs : ∥G1/2

N (θ − θ)∥2 ≤ δ} and where C is a constant that only depends on the
quantities s,K, c, σ2

min (that do not depend on N ).

To lower bound uniformly in N the term IN (δ, θ), we notice that

inf
∥e∥2=1

e⊤G
−1/2

N GN (θ)G
−1/2

N e

= inf
∥e∥2=1

e⊤G
−1/2

N

∥G−1/2

N e∥2
GN (θ)

G
−1/2

N e

∥G−1/2

N e∥2
∥G−1/2

N e∥22

≥ λmin(GN (θ)) inf
∥e∥2=1

∥G−1/2

N e∥22

≥ λmin(GN (θ))λmin(G
−1

N )

≥
(
σ2
mincN

)
×
(
4C−1N−1

)
≥ 4C−1cσ2

min,

where we used that for any i ∈ [N ], σ′(xi,Mθ) ≥ σ2
min. Let us denote Nδ := ⌈

( Cδ
2C−1cσ2

min

)2⌉ so that for
any N ≥ Nδ it holds

IN (δ, θ) ≥ δ2C−1cσ2
min.
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Using Markov’s inequality, we get that for any N ≥ Nδ ,

Pθ∗(∥G
−1/2

N LN (θ, (Y,XM ))∥2 ≥ IN (δ, θ))

≤ (IN (δ, θ))−2Eθ∗(∥G
−1/2

N LN (θ, (Y,XM ))∥22)

≤ (IN (δ, θ))−2Eθ∗((Y − πθ
∗
)⊤XMG

−1

N X⊤
M (Y − πθ

∗
))

= (IN (δ, θ))−2Eθ∗(Tr
[
(Y − πθ

∗
)⊤XMG

−1

N X⊤
M (Y − πθ

∗
)
]
)

= (IN (δ, θ))−2Eθ∗(Tr
[
XMG

−1

N X⊤
M (Y − πθ

∗
)(Y − πθ

∗
)⊤
]
)

= (IN (δ, θ))−2Tr
[
XMG

−1

N X⊤
MΓ

θ∗
]

= (IN (δ, θ))−2Tr
[
G

−1

N X⊤
MΓ

θ∗

XM

]
.

Hence, it holds for any N ≥ Nδ ,

Pθ∗(∥G
−1/2

N LN (θ, (Y,XM ))∥2 ≥ IN (δ, θ))

≤
Tr
[
G

−1

N X⊤
MΓ

θ∗

XM

]
IN (δ, θ)2

<
K

δ2(2C−1cσ2
min)

2

≤ ϵ, (6.43)

where the last inequality comes from the choice of δ (see Eq.(6.38)). From Eq.(6.42) and Eq.(6.43), we
deduce that for any N ≥ Nδ , it holds

Pθ∗(EN ) ≥ 1− ϵ,

where

EN :=

{
∥G−1/2

N LN (θ, (Y,XM ))∥2 < inf
θ∈∂NN (θ,δ)

∥F (θ)∥2

}
.

Hence, on the event EN , we define θ̂ = F−1(G
−1/2

N LN (θ, (Y,XM ))) which means by definition of F that
θ̂ is the conditional MLE, namely

LN (θ̂, (Y,XM )) = 0.

Third and final step. In the previous step, we proved that for N large enough, the MLE exists and
is contained in an ellipsoid centered at θ with vanishing volume with high probability. Now we show
how using this result to turn the CLT on LN (θ, (Y,XM )) from Theorem 6.8 into a CLT for θ̂.
We consider N ≥ Nδ and we work on the event EN of the previous step. Since LN (θ̂, (Y,XM )) = 0 by
definition of θ̂, we get that

LN (θ, (Y,XM )) = LN (θ, (Y,XM ))− LN (θ̂, (Y,XM ))

= X⊤
M (πθ − πθ̂)

=

∫ 1

0

GN (tθ + (1− t)θ̂)dt︸ ︷︷ ︸
=QN (θ̂)

(θ − θ̂),

where we used that the Jacobian of the map θ 7→ X⊤
Mπ

θ = XMσ(XMθ) is XMDiag(σ′(XMθ))XM =
GN (θ). From the Portmanteau Theorem [cf. Van der Vaart, 2000, Lemma 2.2]), we know that a sequence
of Rs-valued random vectors (Xn)n converges weakly to a random vector X if and only if for any
Lipschitz and bounded function h : Rs → R it holds

Eh(Xn) →
n→∞

Eh(X).
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Hence, we consider a Lipschitz and bounded function h : Rs → R. We denote by Lh > 0 the Lipschitz
constant of h. It holds for any N ≥ Nδ ,

|Eθ∗ [h(G
−1/2

N GN (θ)(θ − θ̂))]− Eθ∗
[
h
(
G

−1/2

N LN (θ, (Y,XM ))
)]
|

= |Eθ∗ [h(G
−1/2

N GN (θ)(θ − θ̂))]− Eθ∗ [h(G
−1/2

N QN (θ̂)(θ − θ̂))]|

≤ |Eθ∗
[
1EN

{
h(G

−1/2

N GN (θ)(θ − θ̂))− h
(
G

−1/2

N QN (θ̂)(θ − θ̂)
)}]
|+ 2∥h∥∞Pθ∗(EcN )

≤ Eθ∗
[
Lh1EN

∥G−1/2

N GN (θ)(θ − θ̂)−G−1/2

N QN (θ̂)(θ − θ̂)∥2
]
+ 2∥h∥∞ϵ

≤ LhEθ∗
[
1EN
∥G−1/2

N (GN (θ)−QN (θ̂))G
−1/2

N ∥∥G1/2

N (θ − θ̂)∥2
]
+ 2∥h∥∞ϵ

≤ Lhδ sup
θ∈NN (θ,δ)

∥G−1/2

N (GN (θ)−QN (θ))G
−1/2

N ∥+ 2∥h∥∞ϵ, (6.44)

where we used that on the event EN , θ̂ ∈ NN (θ, δ), i.e. ∥G1/2

N (θ − θ̂)∥2 ≤ δ. Moreover, for any θ′ ∈
NN (θ, δ) we have,

∥G−1/2

N (GN (θ)−QN (θ′))G
−1/2

N ∥

= sup
∥u∥2=1

|u⊤G−1/2

N (GN (θ)−QN (θ′))G
−1/2

N u|

≤ sup
∥u∥2=1

∫ 1

0

∣∣∣u⊤G−1/2

N (GN (θ)−GN (tθ + (1− t)θ′))G−1/2

N u
∣∣∣ dt

≤ sup
∥u∥2=1

sup
θ∈NN (θ,δ)

|u⊤G−1/2

N (GN (θ)−GN (θ))G
−1/2

N u|

≤ C δ

N1/2
, (6.45)

where in the penultimate inequality we used the convexity of the setNN (θ, δ) and in the last inequality
we used Lemma 6.16 (which is proved in Section 6.8.6). Using Eq.(6.44) and Eq.(6.45), we deduce that
for G ∼ N (0, Ids) we have

|Eθ∗ [h(G
−1/2

N GN (θ)(θ − θ̂))]− E[h(G)]|

≤ |Eθ∗ [h(G
−1/2

N GN (θ)(θ − θ̂))]− Eθ∗
[
h
(
G

−1/2

N LN (θ, (Y,XM ))
)]
|

+ |Eθ∗
[
h
(
G

−1/2

N LN (θ, (Y,XM ))
)]
− E[h(G)]|

≤ LhδC
δ

N1/2
+ 2∥h∥∞ϵ+ |Eθ∗

[
h
(
G

−1/2

N LN (θ, (Y,XM ))
)]
− E[h(G)]|. (6.46)

The CLT from Theorem 6.8 states that

G
−1/2

N LN (θ, (Y,XM ))
(d)−→

N→∞
N (0, Ids),

which means by the Portmanteau Theorem [cf. Van der Vaart, 2000, Lemma 2.2]) that

|Eθ∗
[
h
(
G

−1/2

N LN (θ, (Y,XM ))
)]
− E[h(G)]| →

N→+∞
0.

We deduce that for any ϵ > 0 and for any Lipschitz and bounded function h : Rs → R, one can choose
N large enough to ensure that the right hand side of Eq.(6.46) is smaller than 4∥h∥∞ϵ. Note that this is
true since the constant δ does not depend on N . This concludes the proof thanks to the Portmanteau
Theorem.
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6.8.6 Proof of Lemma 6.16

Let us first recall that GN (θ) = X⊤
MDiag(σ′(XMθ))XM and that X⊤

M = [w1 | w2 | . . . | wN ], where
wi = xi,M ∈ Rs. Let us consider some θ ∈ NN (θ, δ). We have that

GN (θ)−GN (θ) =

N∑
i=1

wi

[
σ′(w⊤

i θ)− σ′(w⊤
i θ)
]
w⊤
i

=

N∑
i=1

wi

∫ 1

0

σ′′(tw⊤
i θ + (1− t)w⊤

i θ)dt︸ ︷︷ ︸
=:Hi

w⊤
i (θ − θ)w⊤

i . (6.47)

We get using Eq.(6.47) that for any unit vector u ∈ Rs,

|u⊤G−1/2

N (GN (θ)−GN (θ))G
−1/2

N u|

=

∣∣∣∣∣
N∑
i=1

u⊤G
−1/2

N wiHiw
⊤
i (θ − θ)w⊤

i G
−1/2

N u

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

w⊤
i (θ − θ)× u⊤G

−1/2

N wiHiw
⊤
i G

−1/2

N u

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

w⊤
i (θ − θ)×Hi|w⊤

i G
−1/2

N u|2
∣∣∣∣∣

≤ max
1≤j≤N

|w⊤
j (θ − θ)|

N∑
i=1

|Hi||w⊤
i G

−1/2

N u|2

= max
1≤j≤N

|w⊤
j (θ − θ)| ∥H1/2X⊤

MG
−1/2

N u∥22, (6.48)

where H1/2 := Diag((|Hi|1/2)i∈[N ]). The proof is concluded by upper-bounding both terms involved in
the product of the right hand side of Eq.(6.48). Using the assumption of the design matrix presented in
Section 6.5.1 and recalling that θ ∈ NN (θ, δ), we have

max
1≤j≤N

|w⊤
j (θ − θ)| ≤ max

1≤j≤N
∥G−1/2

N wj∥2 ∥G
1/2

N (θ − θ)∥2︸ ︷︷ ︸
≤δ

= δK
√
(σ2

minc)
−1sN−1/2,

where we used that ∥G−1/2

N ∥2 = ∥G−1

N ∥ ≤ (cσ2
minN)−1 and that for any i ∈ [N ], ∥wi∥22 ≤ sK2. Since

|Hi| ≤ 1 for any i ∈ [N ],

∥H1/2X⊤
MG

−1/2

N u∥22 ≤ ∥X⊤
MG

−1/2

N u∥22

=

N∑
i=1

(w⊤
i G

−1/2

N u)2

≤
N∑
i=1

∥G−1/2

N wi∥22 ≤ (σ2
minc)

−1sK2,

where in the penultimate inequality we used Cauchy-Schwarz inequality.

6.8.7 Proof of Proposition 6.10

For any N ∈ N, let us denote

EN := {Z ∈ {0, 1}N |X⊤
MZ ∈ Im(Ξ)}. (6.49)
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In order to clarify the notations of this proof, let us stress that we denote in the following by Pθ∗0 the
distribution of Y , P1 the distribution of the sequence (Y (t))t≥1 and P2 the distribution of (Z(t))t≥1. Let
us consider some ϵ > 0.

Step 1: P1 almost sure convergences.
From Proposition 6.7, we know that under the nullH0∑T

t=1 Y
(t)Pθ∗0 (Y

(t))∑T
t=1Pθ∗0 (Y

(t))
→

T→∞
Eθ∗0 [Y ] = πθ

∗
0 P1 − almost surely. (6.50)

Since π̃θ
∗
0 →
T→∞

πθ
∗
0 P1-a.s., we know that P1-a.s, there exists some T1 ∈ N such that for any T ≥ T1 it

holds
∥π̃θ

∗
0 ⊙ (1− π̃θ

∗
0 )− πθ

∗
0 ⊙ (1− πθ

∗
0 )∥∞ < ϵ,

and since (σθ
∗
0 )2 ≥ (σmin)

2 > 0, we get by continuity of the inverse of a matrix that P1-a.s, there exists
some T2 ∈ N such that for any T ≥ T2, it holds

∥G̃−1
N −G

−1

N ∥ < ϵ2,

where we recall that
G̃N = X⊤

MDiag(π̃θ
∗
0 ⊙ (1− π̃θ

∗
0 ))XM ,

and
GN = X⊤

MDiag(πθ
∗
0 ⊙ (1− πθ

∗
0 ))XM .

From Eq.(6.50) and by continuity of the map Ψ, we get that P1-a.s. θ̃ = Ψ(X⊤
M π̃

θ∗0 ) →
T→∞

Ψ(X⊤
Mπ

θ∗0 ) =

θ(θ∗0) (see Eq.(6.30)). Hence, P1-a.s, there exists some T3 ∈ N such that for any T ≥ T3, it holds

∥θ̃ − θ∥2 ≤ ϵ.

Note that we left the dependence of π̃θ
∗
0 and θ̃ on T implicit.

Step 2: Comparing W̃N and WN .
It holds for any Z ∈ EN ,∣∣∣∥∥∥G̃−1/2

N GN (θ̃)
(
Ψ(X⊤

MZ)− θ̃
)∥∥∥

2
−
∥∥∥G−1/2

N GN (θ)
(
Ψ(X⊤

MZ)− θ
)∥∥∥

2

∣∣∣
≤
∣∣∣∥∥∥G̃−1/2

N GN (θ̃)
(
Ψ(X⊤

MZ)− θ
)∥∥∥

2
−
∥∥∥G−1/2

N GN (θ)
(
Ψ(X⊤

MZ)− θ
)∥∥∥

2

∣∣∣
+
∥∥∥G̃−1/2

N GN (θ̃)
(
θ − θ̃

)∥∥∥
2

≤ ∥G̃−1/2
N −G−1/2

N ∥∥GN (θ̃)∥
∥∥Ψ(X⊤

MZ)− θ
∥∥
2

+ ∥G−1/2

N ∥∥GN (θ̃)−GN (θ)∥
∥∥Ψ(X⊤

MZ)− θ
∥∥
2
+
∥∥X⊤

MXM

∥∥ ∥θ − θ̃∥2.
Using the Powers–Størmer inequality [cf. Powers and Størmer, 1970, Lemma 4.1] and denoting ∥M∥1
the Schatten 1-norm of any matrix M , it holds

∥G̃−1/2
N −G−1/2

N ∥2 ≤ ∥G̃−1/2
N −G−1/2

N ∥2F ≤ ∥G̃−1
N −G

−1

N ∥1 ≤ 2s∥G̃−1
N −G

−1

N ∥,

where in the last inequality we used that G̃N and GN have rank at most s. Hence, P1-a.s, for any T ≥
TN (ϵ) := max(T1, T2, T3) it holds∣∣∣∥∥∥G̃−1/2

N GN (θ̃)
(
Ψ(X⊤

MZ)− θ̃
)∥∥∥

2
−
∥∥∥G−1/2

N GN (θ)
(
Ψ(X⊤

MZ)− θ
)∥∥∥

2

∣∣∣
≤
∥∥Ψ(X⊤

MZ)− θ
∥∥
2

{
ϵ2sCN + (c(σmin)

2N)−1/2CNϵ
}
+ CNϵ =: CN (Z, ϵ).
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We get that P1-a.s, for any T ≥ TN (ϵ) it holds

sup
Z∈EN

∣∣∣∥∥∥G̃−1/2
N GN (θ̃)

(
Ψ(X⊤

MZ)− θ̃
)∥∥∥

2
−
∥∥∥G−1/2

N GN (θ)
(
Ψ(X⊤

MZ)− θ
)∥∥∥

2

∣∣∣
≤ sup
Z∈EN

CN (Z, ϵ) =: CN (ϵ).

Step 3: Conclusion.
Let us consider some η ∈ (0, 1 − α). Since CN (ϵ) goes to 0 as ϵ → 0, we deduce that we can choose ϵ
small enough such that P1-a.s., for any T ≥ TN (ϵ) it holds

∀Z ∈ EN , 1
Z∈W̃N

≤ 1Z∈WN (α+η), (6.51)

where

WN (α+ η) :=

{
Z ∈ {0, 1}N

∣∣∣∣∣ ⋄ X⊤
MZ ∈ Im(Ξ)

}
,

⋄
∥∥[GN ]−1/2GN (θ)

(
Ψ(X⊤

MZ)− θ
)∥∥2

2
> χ2

s,1−α−η

Recalling the definition of EN from Eq.(6.49) and using the definitions of WN (α + η) and W̃N , it also
holds trivially

∀Z ∈ {0, 1}N\EN , 0 = 1
Z∈W̃N

≤ 1Z∈WN (α+η) = 0. (6.52)

Using both Eq.(6.51) and Eq.(6.52), we deduce that

∀Z ∈ {0, 1}N , 1
Z∈W̃N

≤ 1Z∈WN (α+η),

and we then get that P1-a.s., for any T ≥ TN (ϵ), we have

ζN,T =

∑T
t=1Pθ∗0 (Z

(t))1
Z(t)∈W̃N∑T

t=1Pθ∗0 (Z
(t))

≤
∑T
t=1Pθ∗0 (Z

(t))1Z(t)∈WN (α+η)∑T
t=1Pθ∗0 (Z

(t))
.

The right hand side of the previous inequality converges P2-a.s. to Pθ∗0 (Y ∈ WN (α + η)) as T → +∞
thanks to Proposition 6.7. Since from Theorem 6.9 it holds,

lim sup
N→+∞

Pθ∗0 (Y ∈WN (α+ η)) ≤ α+ η,

we get that for any ϵ > 0, there exists N0 ∈ N such that for any N ≥ N0 it holds,

P
( ⋃
TN∈N

⋂
T≥TN

{ζN,T ≤ α+ ϵ}
)
= 1.

6.8.8 Proof of Proposition 6.11

Let us denote M : θ ∈ Rs 7→ X⊤
Mπ

θ. Since for any z ∈ {0, 1}N , Pθ(z) = exp(−LN (θ, (z,XM ))), we
get ∇θPθ(z) = −LN (θ, (z,XM ))Pθ(z). Recalling that πθ = Eθ[Y ], we have for any k ∈ [s],

∂πθ

∂θk
=

( ∑
w∈EM

Pθ(w)

)−2 ∑
w,z∈EM

Pθ(z)Pθ(w)z {LN (θ, (w,XM ))− LN (θ, (z,XM ))}k

= Eθ [Z {LN (θ, (W,XM ))− LN (θ, (Z,XM ))}k]
= Eθ

[
Z
{
X⊤
M (Z −W )

}
k

]
= Γ

θ
X:,M [k], (6.53)

where Z and W are independent random vectors valued in {0, 1}N and distributed according to Pθ.
Note that we used that for any W ∈ {0, 1}N , it holds

LN (θ, (W,XM )) = X⊤
M (σ(XMθ)−W ).
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Hence it holds
∀θ ∈ Rs, ∇M(θ) = X⊤

MΓ
θ
XM .

Suppose that we are able to compute an estimate θ⋆ ∈ Bp(0, R) of θ∗. Using that θ∗ ∈ Bp(0, R) and that

inf
θ∈Bp(0,R)

λmin (∇M(θ)) ≥ κλmin

(
X⊤
MXM

)
≥ cκN,

it holds

∥M(θ⋆)−M(θ∗)∥22 = ∥
∫ 1

0

∇M(tθ⋆ + (1− t)θ∗)(θ⋆ − θ∗)dt∥22

= (θ⋆ − θ∗)⊤
{∫ 1

0

∇M(tθ⋆ + (1− t)θ∗)dt
}2

(θ⋆ − θ∗)

≥ ∥θ⋆ − θ∗∥22 inf
θ∈Bp(0,R)

λmin(∇M(θ))2

≥ (cκN)2∥θ⋆ − θ∗∥22.

Noticing further that

sup
θ∈Rs

∥∇Ψ−1(θ)∥ = sup
θ∈Rs

∥X⊤
MDiag(σ′(XMθ))XM∥ ≤

1

4
CN,

we get

∥θ∗ − θ⋆∥2 ≤ (κcN)
−1 ∥X⊤

Mπ
θ⋆ −X⊤

Mπ
θ∗∥2

= (κcN)
−1 ∥X⊤

Mπ
θ(θ⋆) −X⊤

Mπ
θ(θ∗)∥2 (using Eq.(6.30))

≤ (κcN)
−1

sup
θ∈Rs

∥∇Ψ−1(θ)∥∥Ψ
(
X⊤
Mπ

θ(θ⋆)
)
−Ψ

(
X⊤
Mπ

θ(θ∗)
)
∥2

≤ C (κc)
−1 ∥Ψ

(
X⊤
Mπ

θ(θ⋆)
)
−Ψ

(
X⊤
Mπ

θ(θ∗)
)
∥2

= C (κc)
−1 ∥θ(θ⋆)− θ(θ∗)∥2

≤ C (κc)
−1
[
∥θ(θ⋆)− θ̂∥2 + ∥θ̂ − θ(θ∗)∥2

]
,

where we used that X⊤
Mπ

θ(θ∗) = X⊤
Mσ
(
XMθ(θ

∗)
)
= Ξ

(
θ(θ∗)

)
∈ Im(Ξ) and thus Ψ(X⊤

Mπ
θ(θ∗)) is well-

defined. Similarly, we have that X⊤
Mπ

θ(θ⋆) ∈ Im(Ξ). Since Theorem 6.9 gives that

Pθ∗
(
∥VN (θ∗)(θ̂ − θ)∥22 ≤ χ2

s,1−α

)
→

N→+∞
1− α,

with VN (θ∗) := [GN (θ∗)]−1/2GN (θ(θ∗)), we deduce (using the assumption of the design matrix from
Section 6.5.1) that the event

∥θ̂ − θ(θ∗)∥2 ≤ ∥[VN (θ∗)]−1∥∥VN (θ∗)(θ̂ − θ)∥2 ≤ ∥(σθ)−2∥∞c−1 (N/C)
−1/2

√
χ2
s,1−α,

holds with probability tending to 1− α as N → +∞. Note that we used that

∥GN (θ(θ∗))−1∥ ≤ (cN)−1∥(σθ)−2∥∞,

and that
∥[GN (θ∗)]1/2∥ ≤ (CN)1/2.

Hence we obtain an asymptotic confidence region for θ∗ of level 1− α.
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6.8.9 Proof of Proposition 6.13

Let us denoteR : π ∈ (0, 1)N 7→ ππ. It holds for any i ∈ [N ],

∂ππ

∂πi
=

( ∑
w∈EM

Pπ(w)

)−2 ∑
w,z∈EM

Pπ(z)Pπ(w)z {z − w}i
(
πi(1− πi)

)−1

= Eπ
[
Z(Z −W )⊤i

] (
πi(1− πi)

)−1
,

where Z and W are independent random vectors valued in {0, 1}N and distributed according to Pπ .
Hence it holds

∀π ∈ (0, 1)N , ∇R(π) = Γ
π
Diag(π ⊙ (1− π))−1.

Suppose that we are able to compute an estimate π⋆ ∈ Bp(1N

2 , R) of π∗. Then since it holds for any
v ∈ RN ,

inf
π∈Bp(

1N
2 ,R)

∥∇R(π)v∥2 ≥ 4κ∥v∥2,

we get that

∥R(π⋆)−R(π∗)∥2 = ∥
∫ 1

0

∇R(tπ⋆ + (1− t)π∗)(π⋆ − π∗)dt∥2

≥ 4κ∥π⋆ − π∗∥2.

Hence we have that

∥π∗ − π⋆∥2 ≤ (4κ)−1∥ππ
⋆

− ππ
∗
∥2

≤ (4κ)−1
{
∥ProjXM

(ππ
⋆

− Y )∥2 + ∥ProjXM
(Y − ππ

∗
)∥2

+ ∥Proj⊥XM
(ππ

⋆

− ππ
∗
)∥2
}
.

Since Theorem 6.8 gives that

Pπ∗

(
∥[GN (π∗)]−1/2(X⊤

MY −X⊤
Mπ

π∗
)∥22 ≤ χ2

s,1−α

)
→

N→+∞
1− α,

we deduce that the event

∥X⊤
MY −X⊤

Mπ
π∗
∥2 ≤ ∥[GN (π∗)]1/2∥∥[GN (π∗)]−1/2X⊤

M (Y − ππ
∗
)∥2

≤ (CN)1/2
√
χ2
s,1−α,

holds with probability tending to 1− α as N → +∞. Noticing further that for any vector v ∈ RN ,

∥ProjXM
v∥2 ≤ ∥XM

(
X⊤
MXM

)−1 ∥ × ∥X⊤
Mv∥2 ≤ (CN)1/2(cN)−1∥X⊤

Mv∥2,

we get that for any ϵ > 0, there exists N0 ∈ N such that for any N ≥ N0, it holds with at least 1− α− ϵ,

∥π∗ − π⋆∥2 ≤ (4κ)−1
{
∥ProjXM

(Y − ππ
⋆

)∥2 + Cc−1
√
χ2
s,1−α

+ ∥Proj⊥XM
(ππ

⋆

− ππ
∗
)∥2
}
.

Hence we obtain an asymptotic confidence region for π∗ of level 1− α.

6.9 Inference conditional on the signs

6.9.1 Leftover Fisher information

As highlighted in Fithian et al. [2014], conducting inference conditional on some random variable pre-
vents the use of this variable as evidence against a hypothesis. Selective inference should be understood
as partitioning the observed information in two sets: the one used to select the model and the one used
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to make inference. This communicating vessels principle is illustrated with the following inclusions
borrowed from Fithian et al. [2014].

F0 ⊂︸︷︷︸
used for selection

F(1Y ∈M) ⊂︸︷︷︸
used for inference

F(Y ).

Typically, let us assume that we condition on both the selected support M̂(Y ) = M and the observed
vector of signs ŜM (Y ) = SM ∈ {0, 1}|M |, meaning that M = ESM

M (cf. Eq.(6.15)). Even if the vector
of signs SM is surprising under H0, we will not reject unless we are surprised anew by observing the
response variable Y . Stated otherwise, when we condition on both the selected support and the vector
of signs, we cannot take advantage of the possible unbalanced probability distribution of the vector of
signs ŜM (Y ) conditionally onEM . Hence, conditioning on a finer σ-algebra results in some information
loss. Fithian et al. [2014] explain that we can actually quantify this waste of information. The Hessian
of the log-likelihood can be decomposed as

∇2
ϑLN (ϑ, Y |EM ) = ∇2

ϑLN (ϑ, ŜM (Y ) |EM ) +∇2
ϑLN (ϑ, Y | {EM , ŜM (Y )}). (6.54)

For any σ-algebra F ⊆ σ(Y ), we consider the conditional expectation

IY | F (ϑ) := −E
[
∇2
ϑLN (ϑ, Y | F) | F

]
.

The leftover Fisher information after selection at ŜM (Y ) is defined by IY | {EM ,ŜM (Y )}(ϑ). Taking expecta-
tion in both sides of Eq.(6.54) leads to

E
[
IY | {EM ,ŜM (Y )}(ϑ)

]
= E IY |EM

(ϑ)− E IŜM (Y ) |EM
(ϑ)

⪯ E IY |EM
(ϑ),

which can also be written as∑
SM∈{±1}s

P(ŜM (Y ) = SM |EM )EI
Y |ESM

M

(ϑ) ⪯ E IY |EM
(ϑ).

In expectation, the loss of information induced by conditioning further on the vector of signs is quanti-
fied by the information ŜM (Y ) carries about ϑ. Let us stress that this conclusion is only true in expecta-
tion and it may exist some vector of signs SM ∈ {−1,+1}s such that

IY |EM
(ϑ) ⪯ I

Y |ESM
M

(ϑ).

Hence, conditioning on the signs will generally lead to wider confidence intervals. Nevertheless, let us
stress that inference procedures correctly calibrated conditional onESM

M will be also valid conditional on
EM . More precisely, considering some transformation T : RN → R and real valued random variables
L(Y, SM ) < U(Y, SM ) such that for any vector of signs SM ∈ {−1,+1}s it holds

P
(
T (π∗) ∈ [L(Y, SM ), U(Y, SM )] |ESM

M

)
= 1− α,

the confidence interval has also (1− α) coverage conditional on the EM = {M̂(Y ) =M} since

P(T (π∗) ∈ [L(Y, ŜM (Y )), U(Y, ŜM (Y ))] | EM )

=
∑

SM∈{±1}s

P(ŜM (Y ) = SM |EM )P(T (π∗) ∈ [L(Y, SM ), U(Y, SM )] | ESM

M )︸ ︷︷ ︸
=1−α

= 1− α.

6.9.2 Discussion in the context of the Sparse Logistic Regression

Let us recall that in Taylor and Tibshirani [2018], the authors work in the selected model for logistic
regression. They consider a selected model M ⊆ [d] associated to a response vector Y = (yi)i∈[n] ∈
{0, 1}N where for any i ∈ [N ], yi is a Bernoulli random variable with parameter {σ(XMθ

∗)}i for some
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θ∗ ∈ Rs (s = |M |). As presented in Section 6.3, in Taylor and Tibshirani [2018] the authors claim the
following asymptotic distribution

θ ∼ N (ϑ∗M , GN (ϑ∗M )−1), (6.55)

where θ = ϑ̂λM+λGN (ϑ̂λM )−1ŜM (Y ).Note that this approximation corresponds to the one usually made
to form Wald tests and confidence intervals in generalized linear models. They claim that the selection
event {Y ∈ {0, 1}N : M̂(Y ) =M, ŜM (Y ) = SM} can be asymptotically approximated by

{Y : Diag(SM )
(
θ −GN (ϑ∗M )−1λSM

)
≥ 0}.

Let us denote by F [a,b]
µ,σ2 the CDF of aN (µ, σ2) random variable truncated to the interval [a, b]. Then they

use the polyhedral lemma to state that for some random variables V−
SM

and V+
SM

it holds[
F

[V−
SM

,V+
SM

]

ϑ∗
M[j]

,[GN (ϑ∗
M )−1]

j,j

(θj) | M̂(Y ) =M, ŜM (Y ) = SM

]
∼ U([0, 1]).

Several problems arise at this point.

1. Lack of theoretical guarantee due to the use of Monte-Carlo estimates.
The first problem is that both θ and the selection event {M̂(Y ) = M, ŜM (Y ) = SM} involve the
unknown parameter ϑ∗M through GN (ϑ∗M ). Taylor and al. propose to use a Monte-Carlo estimate
for GN (ϑ∗M ) by replacing it with GN (θ̂λ). Using this Monte-Carlo estimate, one can compute L
and U such that

F
[V−

SM
,V+

SM
]

L,[GN (ϑ∗
M )−1]

j,j

(θj) = 1− α

2
and F

[V−
SM

,V+
SM

]

U,[GN (ϑ∗
M )−1]

j,j

(θj) =
α

2
.

Then, [L,U ] is claimed to be a confidence interval with (asymptotic) (1 − α) coverage for ϑ∗M [j]

conditional on {M̂(Y ) =M, ŜM (Y ) = SM}, that is,

P(ϑ∗M [j] ∈ [L,U ] | M̂(Y ) =M, ŜM (Y ) = SM ) = 1− α.

2. Their approach is not well suited to provide more powerful inference procedures by condition-
ing only on EM .
In the linear model, Lee et al. [2016] also start by deriving a pivotal quantity by conditioning on
both the selected variables and the vector of signs. However, in the context of linear regression,
the vector of signs only appears in the threshold values V− and V+. Hence, conditioning only on
the selected variables {M̂(Y ) = M} simply reduces to take the union ∪SM∈{±1}s [V−

SM
,V+

SM
] for

the truncated Gaussian. In the method proposed by Taylor and Tibshirani [2018], the vector of
signs also appears in the computation of θ. The consequence is that the (asymptotic) distribution
of θ conditional on {M̂(Y ) =M} is not a truncated Gaussian anymore but a mixture of truncated
Gaussians. In this situation, it seems unclear how to take advantage of this structure to provide
more powerful inference procedures.
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Markov chain theory

A.1 Introduction

We consider a state space E and a sigma-algebra Σ on E which is a standard Borel space.

Definition A.1. [Roberts and Rosenthal, 2004, section 3.2] (Markov chains)
A sequence of random variables (Xi)i≥1 taking values in the measurable space (E,Σ) is a Markov chain
if for any random variable Y ∈ σ(Xi, i ≥ n).

E[Y |X1, . . . , Xn] = E[Y |Xn].

Among the set of Markov chains, we will focus on the specific class of homogeneous Markov chains,
namely Markov chains whose probability of transiting from one state to another does not depend on
the time step n but only on the considered states. The distribution of the chain is then completely
determined by its transition kernel and its initial distribution.

Definition A.2. [Meyn and Tweedie, 1993, section 3.2] (Transition kernel)
A map P : E × E → [0, 1] is called a transition kernel if the following statements hold.

• for any A ∈ Σ, P (·, A) is a measurable map on E.

• for any x ∈ E, P (x, ·) is a probability measure on E.

In the theory of Markov chains, two important settings need to be distinguished: the case where E is
a (finite or countable) discrete space and the case where E is a continuous space. This is an important
clarification since theoretical results regarding properties of Markov chains can depend of the discrete
or continuous nature of the state spaceE. Let us also stress that in the discrete case, the transition kernel
takes the form of a transition matrix and the problem of estimating P falls into the field of parametric
estimation. On the contrary when E is continuous, non-parametric methods are required. In this thesis,
we tackle the two different settings. In Chapter 2 we work with Markov chains on a finite and discrete
state space, in Chapter 3 we consider general state space (discrete or continuous), while our results from
Chapters 4 hold for general state spaces.

Definition A.3. The random process (Xi)i≥1 is a homogenous Markov chain with initial distribution χ
and transition kernel P if for any n ∈ N∗ and for any A1, . . . , An ∈ Σ,

P (X1 ∈ A1, . . . , Xn ∈ An) =
∫
x1∈A1

· · ·
∫
xn−1∈An−1

χ(dx1)P (x1, dx2) . . . P (xn−1, An).

In the following, we denote by (Xi)i≥1 a time homogeneous Markov chain on the state space (E,Σ)
with transition kernel P .

Definition A.4. A probability measure π on (E,Σ) is said to be a stationary measure for the Markov
chain (Xi)i≥1 if

∀A ∈ Σ,

∫
E

π(dx)P (x,A) = π(A).

231
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A.2 Ergodic and reversible Markov chains

Definition A.5. [Roberts and Rosenthal, 2004, section 3.2] (ϕ-irreducible Markov chains)
The Markov chain (Xi)i≥1 is said ϕ-irreducible if there exists a non-zero σ-finite measure ϕ on E such
that for all A ∈ Σ with ϕ(A) > 0, and for all x ∈ E, there exists a positive integer n = n(x,A) such that
Pn(x,A) > 0 (where Pn(x, ·) denotes the distribution of Xn+1 conditioned on X1 = x).

Definition A.6. [Roberts and Rosenthal, 2004, section 3.2] (Aperiodic Markov chains)
The Markov chain (Xi)i≥1 with stationary distribution π is aperiodic if there do not exist m ≥ 2 and
disjoint subsets A1, . . . , Am ⊂ E with P (x,Ai+1) = 1 for all x ∈ Ai (1 ≤ i ≤ m − 1), and P (x,A1) = 1
for all x ∈ Am, such that π(A1) > 0 (and hence π(Ai) > 0 for all i).

Definition A.7. [Roberts and Rosenthal, 2004, section 3.4] (Geometric ergodicity)
The Markov chain (Xi)i≥1 is said geometrically ergodic if there exists a stationary distribution π, ρ ∈
(0, 1) and C : E → [1,∞) such that

∥Pn(x, ·)− π∥TV ≤ C(x)ρn, ∀n ≥ 0, π−a.e x ∈ E,

where ∥µ∥TV := supA∈Σ |µ(A)|.

Definition A.8. [Roberts and Rosenthal, 2004, section 3.3] and [Meyn and Tweedie, 1993, Chapter 16]
(Uniform ergodicity)
The Markov chain (Xi)i≥1 is said uniformly ergodic if there exists an stationary distribution π and
constants 0 < ρ < 1 and L > 0 such that

∥Pn(x, ·)− π∥TV ≤ Lρn, ∀n ≥ 0, π−a.e x ∈ E,

where ∥µ∥TV := supA∈Σ |µ(A)|.
Equivalently, the Markov chain (Xi)i≥1 is uniformly ergodic if the whole space E is a small set, namely
if there exist an integer m ≥ 1, δm > 0 and a probability measure ν such that

∀x ∈ E, ∀A ∈ Σ, Pm(x,A) ≥ δmν(A).

Remark. A Markov chain geometrically or uniformly ergodic admits a unique stationary distribution
and is aperiodic.

Definition A.9. (Reversible Markov chain)
A Markov chain is said reversible if there exists a distribution π satisfying

π(dx)P (x, dy) = π(dy)P (y, dx). (A.1)

A straightforward remark is that any probability measure π that satisfies Eq.(A.1) is a stationary mea-
sure of the chain.

A.3 Spectral gap

This section is largely inspired from Fan et al. [2021] and [Jiang et al., 2018, Section 2.1]. Let us consider
that the Markov chain (Xi)i≥1 admits a unique stationary distribution π on E. For any real-valued,
Σ-measurable function h : E → R, we define π(h) :=

∫
h(x)π(dx). The set

L2(E,Σ, π) := {h : π(h2) <∞}

is a Hilbert space endowed with the inner product

⟨h1, h2⟩π =

∫
h1(x)h2(x)π(dx), ∀h1, h2 ∈ L2(E,Σ, π).

The map
∥ · ∥π : h ∈ L2(E,Σ, π) 7→ ∥h∥π =

√
⟨h, h⟩π,
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is a norm on L2(E,Σ, π). ∥ · ∥π naturally allows to define the norm of a linear operator T on L2(E,Σ, π)
as

Nπ(T ) = sup{∥Th∥π : ∥h∥π = 1}.

To each transition probability kernel P (x,B) with x ∈ E and B ∈ Σ stationary with respect to π, we can
associate a bounded linear operator h 7→

∫
h(y)P (·, dy) on L2(E,Σ, π). Denoting this operator P , we

get

Ph(x) =

∫
h(y)P (x, dy), ∀x ∈ E, ∀h ∈ L2(E,Σ, π).

Let L2
0(π) := {h ∈ L2(E,Σ, π) : π(h) = 0}. We define the absolute spectral gap of a Markov operator.

Definition A.10. (Absolute spectral gap) The Markov operator P admits an absolute spectral gap 1− λ
if

λ := sup

{
∥Ph∥π
∥h∥π

: h ∈ L2
0(π), h ̸= 0

}
< 1.

The next result provides a connection between the existence of an absolute spectral gap and uniform
ergodicity.

Proposition A.11. [Ferré et al., 2012, section 2.3]
A uniformly ergodic Markov chain admits an absolute spectral gap.

Denoting by P ∗ the adjoint or time-reversal operator of the Markov operator P , we can define the self-
adjoint operatorR = (P +P ∗)/2. The spectrum of a self-adjoint Markov operator likeR acting on L2

0(π)
is contained in [−1,+1]. The gap between 1 and the maximum of the spectrum of R is called the right
L2-spectral gap of P .

Definition A.12. (Right L2-spectral gap) The Markov operator P has right L2-spectral gap 1− λ+(R) if
the operator R = (P + P ∗)/2 satisfies

λ+(R) := sup{s : s ∈ spectrum of R acting on L2
0(π)} < 1.

Note that it holds (cf. [Jiang et al., 2018, Section 2]),

0 ≤ λ ≤ 1, −1 ≤ λ+(R) ≤ λ and max(λ+(R), 0) ≤ λ.

A.4 Splitting technique

We assume that the Markov chain (Xi)i≥1 is uniformly ergodic (see Definition A.8). We extend the
Markov chain (Xi)i≥1 to a new (so called split) chain (X̃n, Rn) ∈ E × {0, 1} (see [Meyn and Tweedie,
1993, Section 5.1] for a reminder on the splitting technique), satisfying the following properties.

• (X̃n)n is again a Markov chain with transition kernel P with the same initial distribution as (Xn)n.
We recall that π is the stationary distribution on the E.

• if we define T1 = inf{n > 0 : Rnm = 1},

Ti+1 = inf{n > 0 : R(T1+···+Ti+n)m = 1},

then T1, T2, . . . are well defined and independent. Moreover T2, T3, . . . are i.i.d.

• if we define Si = T1 + · · ·+ Ti, then the “blocks”

Y0 = (X̃1, . . . , X̃mT1+m−1), and Yi = (X̃m(Si+1), . . . , X̃m(Si+1+1)−1), i > 0,

form a one-dependent sequence (i.e. for all i, σ((Yj)j<i) and σ((Yj)j>i) are independent). More-
over, the sequence Y1, Y2, . . . is stationary and if m = 1 the variables Y0, Y1, . . . are independent.
In consequence, for any measurable space (S,B) and measurable functions f : S → R, the vari-
ables

Zi = Zi(f) =

m(Si+1+1)−1∑
j=m(Si+1)

f(X̃j), i ≥ 1,
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constitute a one-dependent sequence (an i.i.d. sequence ifm = 1). Additionally, if f is π-integrable
(recall that π is the unique stationary measure for the chain), then

E[Zi] = δ−1
m m

∫
fdπ.

• the distribution of T1 depends only on π, P , δm, µ, whereas the law of T2 only on P , δm and µ.

Remarks.

• Let us highlight that (X̃n)n is a Markov chain with transition kernel P and same initial distribution
as (Xn)n.

• Let us mention that we prove in Chapter 4 (cf. Proposition 4.2) that for any uniformly ergodic
Markov chain (Xi)i≥1, the regeneration times are exponentially integrable. This means that for
some τ ∈ (0,∞)

∥T1∥ψ1
< τ and ∥T2∥ψ1

< τ,

where ∥ · ∥ψ1
is the 1-Orlicz norm presented in Definition A.13.

Definition A.13. For α > 0, define the function ψα : R+ → R+ with the formula ψα(x) =
exp(xα)− 1. Then for a random variable X , the α-Orlicz norm is given by

∥X∥ψα
= inf {γ > 0 : E[ψα(|X|/γ)] ≤ 1} .

A.5 Concentration lemmas for Markov chains

A.5.1 Hoeffding inequality for uniformly ergodic Markov chains

Proposition A.14 is an Hoeffding bound for uniformly ergodic Markov chains. Some Hoeffding in-
equalities for uniformly ergodic Markov chains without condition on the initial distribution already
exist (see Glynn and Ormoneit [2002] or Boucher [2009]), but they require n to be large enough to hold
or can involve quantities related to the chain that we do not use in this thesis (such that the Drazin
inverse of I−P ). This is the reason why we propose here to present a different Hoeffding inequality for
uniformly ergodic Markov chains that holds for any sample size n, any initial distribution of the chain
and that only uses the notations of Section 4.2 from Chapter 4.

Proposition A.14. Let (Xi)i≥1 be a Markov chain on E uniformly ergodic (namely satisfying Assumption 1
from Chapter 4) with stationary distribution π and let us consider some function f : E → R such that
EX∼π[f(X)] = 0. Then it holds for any t ≥ 0

P

(∣∣∣∣∣
n∑
i=1

f(Xi)

∣∣∣∣∣ ≥ t
)
≤ 16 exp

(
− 1

K(m, τ)

t2

n∥f∥2∞

)
,

where K(m, τ) = 2Km2τ2 for some universal constant K > 0. We refer to Assumption 1 and the following
remark (or to [Duchemin et al., 2022b, Section 2]) for the definitions of the constants m and τ .

Proof of Proposition A.14. Let us first recall that under Assumption 1, the 1-Orlicz norm of the regener-
ation times of the split chain are bounded by some finite constant τ > 0 (see the remark at the end of
Section A.4 and Definition A.14). In this proof, we will use the notations introduced in Section A.4.
Since the chain (X̃n)n is distributed as (Xi)i≥1, we will identify (X̃i)i≥1 and (Xi)i≥1 in the proof.
Let us consider N = sup{i ∈ N : mSi+1 +m− 1 ≤ n}. Then,

∣∣ n∑
i=1

f(Xi)
∣∣ = ∣∣ N∑

l=0

Zl +

n∑
i=m(SN+1)

f(Xi)
∣∣ ≤ ∣∣ ⌊N/2⌋∑

l=0

Z2l

∣∣+ ∣∣ ⌊(N−1)/2⌋∑
l=0

Z2l+1

∣∣+ ∣∣ n∑
i=m(SN+1)

f(Xi)
∣∣. (A.2)

We have |
∑n
i=m(SN+1) f(Xi)| ≤ AmTN+1. So using the definition of the Orlicz norm and the fact that



Appendix A. Markov chain theory 235

the random variables (Ti)i≥2 are i.i.d., it holds for any t ≥ 0,

P
(∣∣ n∑
i=m(SN+1)

f(Xi)
∣∣ ≥ t) ≤ P(TN+1 ≥

t

Am
) ≤ P(max(T1, T2) ≥

t

Am
) ≤ 4 exp

(
− t

Amτ

)
.

In order to control the first two terms in (A.2), we need to describe the tail behaviour of the random
variable N with Lemma A.15.

Lemma A.15. (cf. [Adamczak, 2008, Lemma 5])
We denote R = ⌊3n/(ET2)⌋. If ∥T1∥ψ1

, ∥T2∥ψ1
≤ τ , then P(N > R) ≤ 2 exp

(
−nET2

8τ2

)
.

The random variableZ2l is σ(Xm(S2l+1), . . . , Xm(S2l+1+1)−1)-measurable. Hence the random variables (Z2l)l
are independent (see Section 4.2.3). Moreover, one has that for any l, E[Z2l] = 0. This is due to [Meyn
and Tweedie, 1993, Eq.(17.23) Theorem 17.3.1] together with the assumption that EX∼π[f(X)] = 0. Let
us finally notice for any l ≥ 0, |Z2l| ≤ AmT2l+1, so ∥Z2l∥ψ1

≤ Ammax(∥T1∥ψ1
, ∥T2∥ψ1

) ≤ Amτ . One
can similarly get that (Z2l+1)l are independent with E[Z2l+1] = 0 and ∥Z2l+1∥ψ1 ≤ Amτ for all l ∈ N.
Using these facts we have for any t ≥ 0,

P
(∣∣ ⌊N/2⌋∑

l=0

Z2l

∣∣+ ∣∣ ⌊(N−1)/2⌋∑
l=0

Z2l+1

∣∣ ≥ t)
≤ P

(∣∣ ⌊N/2⌋∑
l=0

Z2l

∣∣+ ∣∣ ⌊(N−1)/2⌋∑
l=0

Z2l+1

∣∣ ≥ t ,N ≤ R)+ 2 exp
(
− nET2

8τ2
)

≤ P
(

max
0≤s≤⌊R/2⌋

∣∣ s∑
l=0

Z2l

∣∣ ≥ t/2)+ P( max
0≤s≤⌊(R−1)/2⌋

∣∣ s∑
l=0

Z2l+1

∣∣ ≥ t/2)+ 2 exp
(
− nET2

8τ2
)

≤ 3P
(∣∣ ⌊R/2⌋∑

l=0

Z2l

∣∣ ≥ t/6)+ 3P
(∣∣ ⌊(R−1)/2⌋∑

l=0

Z2l+1

∣∣ ≥ t/6)+ 2 exp
(
− nET2

8τ2
)

(Using Lemma A.16)

≤ 12 exp
(
− 1

8
min

( t2

36RA2m2τ2
,

t

6Amτ

))
+ 2 exp

(
− nET2

8τ2
)
,

where we used Lemma 4.13 in the last inequality.

Lemma A.16. (cf. [Kwapień and Woyczyński, 1992, Proposition 1.1.1]) If X1, X2, . . . are independent Banach
space valued random variables (not necessarily identically distributed), and if Sk =

∑k
i=1Xi, then

P

(
max
1≤j≤k

∥Sj∥ > t

)
≤ 3 max

1≤j≤k
P (∥Sj∥ > t/3) .

Gathering the previous results, we obtain that for any t ≥ 0

P
(∣∣ n∑
i=1

f(Xi)
∣∣ ≥ t) ≤ 12 exp

(
− 1

8
min

( t2
(
ET2

)
36× 12× nA2m2τ2

,
t

12Amτ

))
+ 2 exp

(
− nET2

8τ2
)
+ 4 exp

(
− t

2Amτ

)
.

Since the left hand side of the previous inequality is zero for t ≥ nA, and since m ≥ 1, we obtain
Proposition A.14.

A.5.2 Bernstein’s inequality for non-stationary Markov chains

Proposition A.17 is an extension of the Bernstein type concentration inequality from Jiang et al. [2018]
to non-stationary Markov chains. We provide a proof of this result in this section.

Proposition A.17. Suppose that the sequence (Xi)i≥1 is a Markov chain satisfying Assumptions 1 and 4
from Chapter 4 with stationary distribution π and with an absolute spectral gap 1 − λ > 0 (cf. Defini-
tion A.10). Let us consider some n ∈ N\{0} and bounded real valued functions (fi)1≤i≤n such that for
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any i ∈ {1, . . . , n},
∫
fi(x)dπ(x) = 0 and ∥fi∥∞ ≤ c for some c > 0. Let σ2 =

∑n
i=1

∫
f2i (x)dπ(x)/n.

Then for any ϵ ≥ 0 it holds

P

(
n∑
i=1

fi(Xi) ≥ ϵ

)
≤
∥∥∥∥dχdπ

∥∥∥∥
π,p

exp

(
− ϵ2/(2q)

A2σ2 +A1cϵ

)
,

whereA2 := 1+λ
1−λ andA1 := 1

31λ=0+
5

1−λ1λ>0. q is the constant introduced in Assumption 4. Stated otherwise,
for any u > 0 it holds

P

(
1

n

n∑
i=1

fi(Xi) >
2quA1c

n
+

√
2quA2σ2

n

)
≤
∥∥∥∥dχdπ

∥∥∥∥
π,p

e−u.

Proof of Proposition A.17. Let us recall that we denote indifferently Pχ or P the probability distribution
of the Markov chain (Xi)i≥1 when the distribution of the first state X1 is χ, whereas Pπ refers to the
distribution of the Markov chain when the distribution of the first state X1 is the invariant measure π.
In Jiang et al. [2018], they proved that for any 0 ≤ t < (1− λ)/(5c), it holds

Eπ

[
et

∑n
i=1 fi(Xi)

]
≤ exp

(
nσ2

c2
(etc − tc− 1) +

nσ2λt2

1− λ− 5ct

)
.

We deduce that for any 0 ≤ t < (1− λ)/(5cq),

Eχ

[
et

∑n
i=1 fi(Xi)

]
≤ Eπ

[
dχ

dπ
(X1)e

t
∑n

i=1 fi(Xi)

]
≤
{
Eπ

[∣∣∣∣dχdπ (X1)

∣∣∣∣p]}1/p {
Eπ

[
eqt

∑n
i=1 fi(Xi)

]}1/q

=

∥∥∥∥dχdπ
∥∥∥∥
π,p

{
Eπ

[
eqt

∑n
i=1 fi(Xi)

]}1/q

≤
∥∥∥∥dχdπ

∥∥∥∥
π,p

{
exp

(
nσ2

c2
(etqc − tqc− 1) +

nσ2λq2t2

1− λ− 5cqt

)}1/q

=

∥∥∥∥dχdπ
∥∥∥∥
π,p

exp

(
nσ2

qc2
(etqc − tqc− 1) +

nσ2λqt2

1− λ− 5cqt

)
. (A.3)

Let us define

g1(t) =

{
0 if t < 0
nσ2

qc2 (e
tqc − tqc− 1) if t ≥ 0

and

g2(t) =


0 if t < 0
nσ2λqt2

1−λ−5cqt if 0 ≤ t < 1−λ
5cq

+∞ if t ≥ 1−λ
5cq

.

In order to lower-bound the convex conjugate of the function g1 + g2, we will need the convex con-
jugate of g1 and g2 which are provided by Lemma A.18. The proof of Lemma A.18 can be found in
Section A.5.2.1.

Lemma A.18. g1 and g2 are closed proper convex functions with convex conjugates

∀ϵ1 ∈ R, g∗1(ϵ1) =

{
nσ2

qc2 h1
(
ϵ1c
nσ2

)
if ϵ1 ≥ 0

+∞ if ϵ1 < 0
(A.4)

with h1(u) = (1 + u) log(1 + u)− u ≥ u2

2(1+u/3) for any u ≥ 0, and
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∀ϵ2 ∈ R, g∗2(ϵ2) =

{
(1−λ)ϵ2
qnσ2λ h2(

5cϵ2
nσ2λ ) if ϵ2 ≥ 0

+∞ if ϵ2 < 0
(A.5)

with h2(u) =
(

(
√
u+1−1
u

)2
≥ 1

2(u+2) .

Since g1(t) = O(t2) and g2(t) = O(t2) as t → 0+, tϵ − g1(t) − g2(t) > 0 for small enough t > 0,
and tϵ− g1(t)− g2(t) ≤ 0 for t ≤ 0. Hence

(g1 + g2)
∗(ϵ) = sup

0≤t<(1−λ)/(5cq)
ϵt− g1(t)− g2(t) = sup

t∈R
ϵt− g1(t)− g2(t).

• If λ > 0, then by the Moreau-Rockafellar formula [Rockafellar, 1970, Theorem 16.4], the convex con-
jugate of g1 + g2 is the infimal convolution of their conjugates g∗1 and g∗2 , namely

(g1 + g2)
∗(ϵ) = inf {g∗1(ϵ1) + g∗2(ϵ2) : ϵ = ϵ1 + ϵ2, ϵ1, ϵ2 ∈ R} .

Using (A.4) and (A.5), this reads as

(g1 + g2)
∗(ϵ) = inf

{
nσ2

qc2
h1

( ϵ1c
nσ2

)
+

(1− λ)ϵ22
qnσ2λ

h2

(
5cϵ2
nσ2λ

)
: ϵ = ϵ1 + ϵ2, ϵ1, ϵ2 ≥ 0

}
.

Bounding h1(u) ≥ u2

2(1+u/3) and h2(u) ≥ 1
2(u+2) , we have

(g1 + g2)
∗(ϵ) ≥ inf

{
1

qc2
c2ϵ21

2(nσ2 + cϵ1/3)
+

(1− λ)ϵ22
qnσ2λ

1
10cϵ2
nσ2λ + 4

: ϵ = ϵ1 + ϵ2, ϵ1, ϵ2 ≥ 0

}

≥ inf

{
ϵ21

2q(nσ2 + cϵ1/3)
+

(1− λ)ϵ22
2q

1

5cϵ2 + 2nσ2λ
: ϵ = ϵ1 + ϵ2, ϵ1, ϵ2 ≥ 0

}
.

Using the fact that ϵ21/a+ ϵ22/b ≥ (ϵ1 + ϵ2)
2/(a+ b) for any non-negative ϵ1, ϵ2 and positive a, b yield

(g1 + g2)
∗(ϵ) ≥ inf

{
(ϵ1 + ϵ2)

2

2q(nσ2 + cϵ1/3) +
2q

(1−λ) (5cϵ2 + 2nσ2λ)
: ϵ = ϵ1 + ϵ2, ϵ1, ϵ2 ≥ 0

}

= inf

{
ϵ2/(2q)

1+λ
1−λnσ

2 + cϵ1/3 +
5cϵ
1−λ −

5cϵ1
1−λ

: ϵ = ϵ1 + ϵ2, ϵ1, ϵ2 ≥ 0

}

≥ ϵ2/(2q)
1+λ
1−λnσ

2 + 5cϵ
1−λ

,

where we used for the last inequality that for any ϵ1 ≥ 0,

cϵ1/3−
5cϵ1
1− λ

=
cϵ1

3(1− λ)
(1− λ− 15) < 0.

• If λ = 0,

(g1 + g2)
∗(ϵ) = g∗1(ϵ) =

nσ2

qc2
h1

( ϵ1c
nσ2

)
≥ ϵ2/(2q)

nσ2 + cϵ/3
.

We deduce from the previous computations that for any t, ϵ ≥ 0 it holds
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Pχ

(
n∑
i=1

fi(Xi) ≥ ϵ

)
≤ e−ϵtEχ

[
et

∑n
i=1 fi(Xi)

]
using Markov’s inequality

≤ e−ϵt
∥∥∥∥dχdπ

∥∥∥∥
π,p

exp

(
nσ2

qc2
(etqc − tqc− 1) +

nσ2λqt2

1− λ− 5cqt

)
using (A.3)

≤
∥∥∥∥dχdπ

∥∥∥∥
π,p

exp (−(g1 + g2)
∗(ϵ))

≤
∥∥∥∥dχdπ

∥∥∥∥
π,p

×

 exp

(
− ϵ2/(2q)

1+λ
1−λnσ

2+ 5cϵ
1−λ

)
if λ > 0

exp
(
− ϵ2/(2q)
nσ2+cϵ/3

)
if λ = 0

.

A.5.2.1 Proof of Lemma A.18

The convex conjugate of g1 is usual and follows from easy computations. We focus on the convex
conjugate of g2 which requires non-trivial computations.
Let fϵ(t) = ϵt− nσ2λqt2

1−λ−5cqt for any 0 ≤ t < (1− λ)/(5cq). We have for any 0 ≤ t < (1− λ)/(5cq),

f ′ϵ(t) = ϵ− 2nσ2λqt(1− λ− 5cqt) + 5cq2nσ2λt2

(1− λ− 5cqt)2
.

Hence, for 0 ≤ t < (1− λ)/(5cq) such that f ′ϵ(t) = 0 we have
ϵ(1− λ− 5cqt)2 − 2nσ2λqt(1− λ− 5cqt)− 5cq2nσ2λt2 = 0

⇔ ϵ(1− λ)2 − 10ϵ(1− λ)cqt+ 25ϵc2q2t2 − 2nσ2λq(1− λ)t+ 10nσ2cq2λt2 − 5nσ2cq2λt2 = 0

⇔ ϵ(1− λ)2 − 10ϵ(1− λ)cqt+ 25ϵc2q2t2 − 2nσ2λq(1− λ)t+ 5nσ2cq2λt2 = 0.
We are looking for the roots of a polynomial of degree 2 in t. The discriminant is

∆ = (10ϵ(1− λ)cq + 2nσ2λq(1− λ))2 − 4ϵ(1− λ)2(25ϵc2q2 + 5nσ2cq2λ)

= 4(1− λ)2q2
[
(5ϵc+ nσ2λ)2 − ϵ(25c2ϵ+ 5nσ2cλ)

]
= 4(1− λ)2q2

[
25ϵ2c2 + 10nσ2λϵc+ n2σ4λ2 − 25c2ϵ2 − 5nσ2cλϵ

]
= 4(1− λ)2q2

[
5nσ2λϵc+ n2σ4λ2

]
= 4(1− λ)2q2n2σ4λ2 [u+ 1] ,

where u = 5cϵ
nσ2λ .

Hence, the roots of the polynomial of interest are of the form

10ϵ(1− λ)cq + 2nσ2λq(1− λ)±
√
∆

2 [25ϵc2q2 + 5nσ2cq2λ]

=
2(1− λ)qnσ2λ

[
5ϵc
nσ2λ + 1

]
±
√
∆

10q2cnσ2λ
[

5ϵc
nσ2λ + 1

]
=

1− λ
5cq

× u+ 1±
√
u+ 1

u+ 1
.

We deduce that the polynomial has a root in the interval [0, 1−λ5cq ) which is given by

t∗ :=
1− λ
5cq

× u+ 1−
√
u+ 1

u+ 1
,

and one can check that this critical point corresponds to a maximum of the function fϵ. We deduce that
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for any ϵ > 0,

g∗2(ϵ) = ϵt∗ − nσ2λq(t∗)2

1− λ− 5cqt∗

= t∗

{
ϵ−

nσ2λq 1−λ
5cq ×

u+1−
√
u+1

u+1

1− λ− 5cq 1−λ
5cq ×

u+1−
√
u+1

u+1

}
= t∗

{
ϵ−

nσ2λq
(
u+ 1−

√
u+ 1

)
5cq(u+ 1)− 5cq

(
u+ 1−

√
u+ 1

)}

= t∗

{
ϵ−

nσ2λq
(
u+ 1−

√
u+ 1

)
5cq
√
u+ 1

}
= t∗

{
ϵ− nσ2λ

5c
×
(
u+ 1−

√
u+ 1

)
√
u+ 1

}

= t∗

{
ϵ−

ϵ
(
u+ 1−

√
u+ 1

)
u
√
u+ 1

}
= t∗ϵ

{
u
√
u+ 1− u− 1 +

√
u+ 1

u
√
u+ 1

}
=

1− λ
5cq

ϵ× u+ 1−
√
u+ 1

u+ 1

{
u−
√
u+ 1 + 1

u

}
=

(1− λ)ϵ
q

1

5c
×
(√
u+ 1− 1

){√u+ 1− 1

u

}
=

(1− λ)ϵ2

qnσ2λ

(
√
u+ 1− 1)2

u2
=

(1− λ)ϵ2

qnσ2λ
h2(u),

where h2(u) = (
√
u+1−1)2

u2 . However, the function u 7→
√
u+ 1 is analytic on ]0,+∞[ and for any v ∈

]0,+∞[,
√
1 + v =

∞∑
k=0

vk

k!
ak,

where a0 = 1 and for all k ∈ N∗, ak = 1
2 (

1
2 − 1) . . . ( 12 − k + 1). Hence, we have

√
v + 1− 1

v
=

∞∑
k=1

vk−1

k!

1

2
(
1

2
− 1) . . . (

1

2
− k + 1) =

∞∑
k=0

vk

(k + 1)!

1

2
(
1

2
− 1) . . . (

1

2
− k)

=
1

2

∞∑
k=0

vk

(k + 1)!
bk =

1

2

∞∑
k=0

(v/2)k

k!
bk

2k

k + 1︸ ︷︷ ︸
≥1

≥ 1

2

∞∑
k=0

(v/2)k

k!
bk =

1

2
(v/2 + 1)−1/2 =

1√
2

1√
v + 2

,

where we have denoted b0 = 1 and for all k ∈ N∗, bk =
(
− 1

2

) (
− 1

2 − 1
)
. . .
(
− 1

2 − k + 1
)
. Hence we

proved that for any ϵ > 0,

g∗2(ϵ) =
(1− λ)ϵ2

qnσ2λ
h2(u) ≥

(1− λ)ϵ2

2qnσ2λ
× 1

u+ 2
with u =

5cϵ

nσ2λ
.
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Dynamique de croissance de grands réseaux à l’aide de
chaînes de Markov cachées

Résumé :

La première partie de cette thèse vise à introduire de nouveaux modèles de graphes aléatoires rendant compte
de l’évolution temporelle des réseaux. Plus précisément, nous nous concentrons sur des modèles de croissance où à
chaque instant un nouveau noeud s’ajoute au graphe existant selon une dynamique markovienne latente. Nous nous
intéresserons particulièrement au Stochastic Block Model et aux Graphes Aléatoires Géométriques pour lesquels
nous proposons des algorithmes permettant d’estimer les paramètres du modèle et de résoure des problèmes de
prédiction de lien ou de filtrage collaboratif.

L’étude théorique des algorithmes précédemment décrits mobilisent des résultats probabilistes poussés. Nous
avons notamment dû recourir à une inégalité de concentration pour les U-statistiques d’ordre deux pour des chaînes
de Markov uniformément ergodiques. La deuxième partie de cette thèse présente la preuve de ce résultat ainsi que
certaines applications importantes en Statistiques.

Toujours motivés par des problèmes de prédictions liens dans les graphes, nous nous intéressons dans un dernier
chapitre aux procédures d’inférence post-sélection dans le cadre de la régression logistique avec pénalité L1. Nous
prouvons un théorème central limite sous la distribution conditionnelle à l’événement de sélection et nous en
déduisons des procédures de test et des intervalles de confiance asymptotiquement valides.

Mots clefs : Graphes aléatoires, Chaines de Markov, Estimation non-paramétrique, Concentration
de la mesure, Opérateurs intégraux, Inférence post-sélection, Apprentissage séquentiel.

Growth dynamics of large networks using hidden Markov chains
Abstract :

The first part of this thesis aims at introducing new models of random graphs that account for the temporal
evolution of networks. More precisely, we focus on growth models where at each instant a new node is added to the
existing graph according to some latent Markovian dynamic. We are particularly interested in the Stochastic Block
Model and in Random Geometric Graphs for which we propose algorithms to estimate the unknown parameters
or functions defining the model and to solve link prediction problems.

The theoretical analysis of the above-mentioned algorithms requires advanced probabilistic tools. In particular,
we needed a concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. The second
part this thesis is dedicated to the proof of this result and to its important consequences in Statistics.

Still motivated by link prediction problems in graphs, we study post-selection inference procedures in the frame-
work of logistic regression with L1 penalty. We prove a central limit theorem under the distribution conditional
on the selection event and derive asymptotically valid testing procedures and confidence intervals.

Keywords: Random Graphs, Markov chains, Non-Parametric Estimation, Measure Concentration,
Integral Operators, Post-Selection Inference, Online Learning.
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