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Résumé

Cette thèse est consacrée à l’étude de la dynamique induite par réservoir dans les systèmes
quantiques ouverts ainsi qu’à l’apprentissage automatique au moyen de réservoirs photo-
niques classiques. Nous étudions la problématique générale de la dynamique d’ensembles
bipartis comprenant un système dont des modes d’intérêt indépendants sont couplés à
un réservoir dissipatif pompé doté d’une certaine extension spatiale. En particulier, nous
abordons le cas des réservoirs étendus quantiques, cohérents et markoviens. Dans le cadre
du formalisme de l’équation maîtresse de Lindblad, nous dérivons des expressions géné-
rales, indépendantes du modèle considéré, décrivant les processus cohérents et incohérents
médiés par de tels réservoirs dissipatifs et pompés et fournissons une description effective
de la dynamique réduite des modes du système. En nous servant d’unités optomécaniques
comme de cellules fondamentales, nous étudions le contrôle du transport de particules
médié par cavité dans des réseaux de résonateurs optomécaniques dont seules les cavités
sont mutuellement couplées et où les modes optiques se comportent comme un réservoir
non-local contrôlé. En particulier, nous montrons que le flux de phonons thermiques à tra-
vers de telles structures peut être contrôlé et dirigé par un réglage approprié de la phase
du pompage du réservoir. Nous donnons également une description quantique détaillée
des nano-résonateurs à disque en semi-conducteur, en modélisant le couplage fort entre
les excitons d’un puits quantique intégré en leur sein et leur déformation mécanique. Nous
présentons ensuite un nouvel algorithme pour la simulation numérique de l’évolution en
temps continu de systèmes quantiques ouverts à entropie modérée qui surmonte la com-
plexité de l’équation maîtresse de Lindblad par une représentation efficace de la matrice
densité. Nous appliquons cette méthode à la modélisation d’algorithmes quantiques brui-
tés. Enfin, nous présentons les machines à noyaux photoniques, des dispositifs optiques
capables d’effectuer des tâches d’apprentissage automatique au moyen de réservoirs photo-
niques. Nous en décrivons analytiquement le mécanisme d’apprentissage par des concepts
issus de la théorie des machines à noyaux, en en dévoilant les représentations internes.
Nous appliquons ce procédé à l’analyse spectrale ultrarapide de signaux radiofréquence
bruités par une mesure d’intensité optique des modes d’un réseau photonique, tant sur
des tâches de régression que de classification.

Mots-clés : optomécanique, systèmes quantiques ouverts, optique quantique, ingénierie
de réservoir, transport, équation maîtresse de Lindblad, méthodes numériques, simulation
de systèmes ouverts, circuits quantiques, calcul optique, calcul par réservoir, apprentissage
automatique, machines à noyau, traitement du signal.



Summary

This thesis is devoted to the study of reservoir-induced dynamics in open quantum sys-
tems and to machine learning with classical photonic reservoirs. We study the broad
problem of the dynamics of bipartite ensembles consisting of a set of independent system
modes of interest that are coupled to some spatially extended driven-dissipative reservoir.
In particular, we address the case of Markovian coherent quantum extended reservoirs.
Within the Lindblad master equation framework, we derive general model-independent
expressions for the coherent and incoherent processes mediated by such controlled driven-
dissipative reservoirs and provide an effective description of the reduced dynamics of the
system modes. By considering optomechanical units as our pivotal building block, we
investigate the control of cavity-mediated particle transport in lattices of cavity-coupled
optomechanical resonators, where the optical modes behave as a controlled nonlocal reser-
voir. In particular, we show that the flow of thermal phonons across such structures can
be controlled and directed by a proper tuning of the reservoir’s driving phase. We also
provide a detailed quantum description of semiconductor optomechanical nanodisc reson-
ators, modelling the strong coupling between excitons of an embedded quantum well and
their mechanical strain. We then present a novel algorithm for the numerical simulation
of the continuous-time evolution of open quantum systems with moderate entropy that
gets over the complexity of the Lindblad master equation by an efficient representation
of the density matrix. We apply such a method to model noisy quantum algorithms.
Finally, we introduce photonic kernel machines, learning devices capable of performing
machine-learning tasks on fast photonic reservoirs. We analytically describe the learning
mechanism with kernel-method concepts, unveiling the internal representations such a
photonic hardware relies upon. We apply this scheme to the ultrafast spectral analysis of
noisy radio-frequency signals from single-shot optical intensity measurements of photonic
lattices, on both regression and classification tasks.

Keywords: optomechanics, open quantum systems, quantum optics, reservoir engineer-
ing, particle transport, Lindblad master equation, numerical methods, simulation of open
systems, quantum circuits, optical computing, reservoir computing, machine learning,
kernel methods, signal processing.
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General introduction

Effective description

Physics was still in its infancy when the intractable many-body problem, readily identified
by Newton at the very end of his Principia [1], frustrated the reductionist approach to
the practical understanding of nature. Ever since, the confirmation of the many-body
discrete nature of the constituent elements of matter, both in diluted media, as shown by
Perrin [2] in his experimental confirmation of Einstein’s hypothesis on the atomic origin
of Brownian motion [3], and condensed matter, as elucidated in the Geiger-Marsden [4]
and von Laue’s [5] experiments, made it clear that the many-body problem was not
restricted to astrophysics but ubiquitous instead, casting doubt on the possibility of giv-
ing an exhaustive description of the world around us. Rather fortunately, universe is
highly structured and presents strong hierarchies between well-delimited energy scales
that adiabatically uncouple. At low energy scales, self-organisation mechanisms, such
as synchronisation or phase transitions, shape interacting particles into simpler ordered
phases of higher symmetry whose phenomenology significantly differs from that of their
constituents, as was very clearly expressed by Anderson in his famous More is differ-
ent [6]. This is for instance the case of atoms organised into crystalline structures, that
acquire novel mechanical, optical and electric properties absent from their building blocks.
Associated to these emergent symmetries are novel collective excitations that can be ac-
counted for by introducing quantised fields with proper quantum statistics just as for
elementary particles. This effective description greatly simplifies the problem. In the
aforementioned case of a solid, for instance, the complex description of the motional de-
grees of freedom of the macroscopic amount of interacting ions that compose its bulk
can be replaced by continuous displacement fields that effectively account for mechanical
vibrations at wavelengths much larger than the lattice parameter. Under some coherence
conditions, elementary excitations of these effective fields exhibit their quantised nature;
in this example, such quanta, known as phonons, display very simple bosonic statistics.

Nowadays, tremendous advances in the fabrication of micro- and nanodevices make it
possible to shape matter into structures that behave as elementary particles with desired
quantum statistics. Such macroscopic quantum systems [7] can be realised with a great
degree of control and isolation from the environment. Micro- and nanomechanical reson-
ators that effectively behave as resolved bosonic modes—phonons—can be fabricated with
angular frequencies ranging from 10 kHz to 10 GHz in a broad variety of geometries [8].
In circuit quantum electrodynamics, where quantum coherence extends over macroscopic
superconducting electric circuits, artificial atoms can be engineered to simulate quantum
optics and atomic physics [9–12]. These artificial quantum systems can be assembled into
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quantum circuits and used as building blocks of quantum computers and simulators. In
semiconductor heterostructures, the confinement of electron-hole pairs leads to effective
bosonic and spin-1/2 statistics in quantum wells and quantum dots, respectively. While
in vacuum photon-photon interactions would only be observed for gamma radiation at
energies of the order of the megaelectronvolt, in these materials such pairs mediate strong
optical self-interactions in the near infrared, that is at energies of the order of the ectron-
volt. This makes it a formidable playground for the practical study of quantum fluids of
light dressed by matter collective excitations [13].

However, because such excitations are supported by macroscopic objects, these often
cannot be described as completely isolated from their environment. Fortunately, this
can be yet again faithfully accounted for through a further level of effective description,
by modelling the environment as a reservoir composed of (infinitely) many degrees of
freedom that are allowed to exchange energy with the system. While this generally induces
thermalisation effects that have detrimental consequences on its coherence, it may be
used to one’s advantage. Indeed, by a clever design of the reservoir, a process known as
reservoir engineering, the dynamics of the system under consideration can be controlled
and peculiar quantum states of interest can be stabilised [14–21]. In this context, the
environment is seen as a resource rather than as an inconvenience.

These ideas will be mobilised throughout the first part of this thesis. A resonator con-
sisting of a disk-shaped micrometric piece of semiconductor will be first addressed. In such
a system, the great degree of spatial confinement leads to the emergence of well-resolved
optical and mechanical modes, that interact through radiation pressure. These will be
shown to be describable as parametrically coupled photon and phonon quanta in weak
interaction with their own thermal baths. The study of this standard optomechanical
setting will be complemented by the addition of a quantum well embedded in the disk [ζ].
Therein, the dressing of the photons by electron-hole pairs will be shown to yield a signi-
ficant increase of the bare optomechanical coupling, a feature of great interest in a wide
variety of quantum applications ranging from sensing [22–25] to quantum teleportation [β,
26, 27].

In the above optomechanical resonators, the optics and the mechanics have very dif-
ferent time scales, the former being much faster. This makes it possible to interpret
the optical mode as an externally tunable reservoir. By driving the optical mode close to
certain mechanical resonances, the motion of the mechanical degree of freedom can be con-
trolled to a great extent. This effective description will be lifted to a many-disk scenario
where resonators are arranged into lattices whose neighbouring sites are cavity-coupled.
In this geometry, the coupled optical modes may be regarded as a spatially extended
reservoir that mediates coherent and incoherent interactions between distant mechan-
ical modes. By giving a general description of the effective dynamics induced by such
driven-dissipative extended reservoirs, we will identify particular conditions upon which
a permanent heat flow running through the structure may be stabilised and controlled in
the absence of thermal bias [α].
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Efficient representation

In some situations, however, over-simplistic effective descriptions may fail in grasping the
physics of systems interacting with their environment. In such cases, one is generally left
with the problem of numerically simulating a many-body open quantum system. Due to
the exponential scaling of the Hilbert-space dimension with the number of units compos-
ing the system, simulating quantum many-body problems on a classical computer is, in
general, a formidable task. The size of the density matrix that encodes the state of open
quantum systems poses severe bounds on the system sizes that can be handled in practice
by a naive brute-force approach.

Several ideas have been put forward to overcome these limitations by introducing
efficient representations of this state. Among the most fruitful approaches, variational
methods [28] have recently furthered the investigation of large open quantum systems by
encoding their density matrices with parametrised variational ansätze. This was achieved
with a wide variety of ansätze, such as matrix-product states [29], tensor networks for
Markovian [30–35] and non-Markovian [36] environments, and, more recently, neural-
network architectures such as restricted Boltzmann machines [37–41] or autoregressive
models [41]. However, such representations usually rely on implicit assumptions about
the quantum correlations and/or the geometry of the system.

In many relevant situations, the state of the system under consideration is close to pure,
either because of the weakness of the coupling to the environment or because the state is
stabilised by reservoir engineering. Then, the density matrix has a very low entropy. Much
in the same way as low-entropy digital data can be efficiently compressed by choosing a
suitable encoding [42, 43], the density matrix can be faithfully represented by a truncated
set of carefully chosen base state vectors. This controlled lightweight representation of the
density matrix is at the core of the so-called corner-space renormalisation method [44],
that has been successfully applied to the steady-state determination of open quantum
systems with unprecedented sizes [44–48].

In the second part of this thesis, the dynamical corner-space method [γ], that extends
this approach to the continuous-time simulation of low-entropy open quantum systems
will be introduced. Thanks to this novel method, the spurious effects of noise on the
performance of highly entangling quantum circuits will be investigated within a realistic
description of their coupling to the environment, a situation relevant in today’s so-called
noisy intermediate-scale quantum era [49].

Feature-space representation

Another domain where high dimensionality can be an obstacle is that of data analysis.
In this context, being able to extract relevant refined information from raw data at high
throughput can be compromised by their dimensionality. A clear example of this is the
processing of ultrashort analogue pulsed signals containing some information of interest.
This involves two costly operations. Firstly, the signal has to be converted from analogue
to digital. This step involves the sampling of the input signal by some apparatus with
an adapted bandwidth and the storage of the raw digital data. Secondly, the digital data
have to be read from memory and treated by some processing unit to extract the features
of interest. Both operations can easily become a bottleneck. The state-of-the-art sampling



4 General introduction

rate, for instance, fundamentally limits the rate at which input signals can be supplied
to the processing chain as well as the band over which the analysis can be carried out.
Depending on the time resolution, the finite rate at which the memory can be accessed for
writing and reading also might limit the rate at which information can enter the pipeline.
Finally, the time involved in the actual digital processing operation can also entail a limit
on the final throughput.

A way around this may be found in reservoir computing. This machine-learning
paradigm is based upon a shallow architecture that well lifts to actual physical hard-
ware [50]. This scheme harnesses computing power from the (fast) nonlinear dynamics
of a physical system, viewed as a reservoir. The measure of the non-trivial response of
such reservoirs to the input signals of interest realises an embedding of the input data to a
so-called feature space. The device is then able to learn from example to identify the struc-
ture of the input data in this abstract space. Once trained, it is capable of extracting the
sought high-level information contained in the raw data from simple measurements. Since
it can be implemented on actual analogue hardware, it does not suffer from the analog-to-
digital encoding bottleneck. As a matter of fact, quantum reservoirs should be capable of
interfacing intrinsically analogue quantum inputs, as has been recently proposed [51–56].

A closely related scheme will be explored in the third part of this thesis, by introdu-
cing photonic kernel machines [δ, γ]. These are learning devices capable of performing
signal analysis tasks on fast photonic reservoirs. Their feature space will be shown to
be directly accessible from empirical data, unveiling the internal representations such a
photonic hardware relies upon. This scheme will be numerically proven efficient in per-
forming ultrafast spectral analysis of noisy radio-frequency signals from single-shot optical
intensity measurements of photonic lattices, on both regression and classification tasks.
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Structure of the manuscript
The thorough derivation of the quantum description of nanodisk optomechanical resonat-
ors will be addressed in Chapter 1. In this chapter, the modelling of the unitary dynamics
of a standard resonator as well as that induced by the coupling to its environment will
be discussed from first principles in Sec. I. Then, a hybrid disk resonator embedding a
quantum well will be introduced in Sec. II. Following our work [ζ], some of the results
of ongoing research on this hybrid structure to be soon submitted for publication will
be briefly presented therein. The various interactions between the optical, electronic and
acoustic modes present in this tripartite system will be discussed. Finally, the description
of this hybrid resonator will be brought to that of a polariton-mechanical resonator with
an enhanced radiation-pressure-like coupling.

In Chapter 2, the nonequilibrium dynamics induced by spatially extended reservoirs
will be discussed. The case of a generic bosonic reservoir under single-body external
driving and dissipation will be considered, both in discrete and continuous geometries.
General analytical expressions for the Liouvillian ruling the reduced dynamics of a system
in contact with such extended reservoirs will be derived in Sec. I within the Born-Markov
approximation. In Sec. II, this effective Liouvillian description will be completed by an
equivalent quantum Langevin-equation approach.

Chapter 3 will elaborate on the results of our work [α] on reservoir-induced perman-
ent heat currents in lattices of cavity-coupled optomechanical resonators. This system
will be studied within the framework introduced in Chapter 2. Under particular driving
conditions, the optical extended reservoir will be shown to be capable of stabilising states
exhibiting ever circulating cavity-mediated heat currents running through the optomech-
anical structure.

In Chapter 4, several numerical methods for simulating open quantum systems with
varying degrees of “quantumness” will be reviewed. Some of them will be adapted to the
treatment of systems interacting with extended reservoirs.

Chapter 5 will be devoted to the dynamical corner-space method for efficiently simu-
lating low-entropy open quantum systems. Its algorithm will first be presented in Sec. II;
its complexity will be compared to that of the state of the art. Following our work [γ],
we will apply this method to the continuous-time simulation of noisy entangling quantum
circuits and study the detrimental consequences of the environment on the fidelity of such
processors within realistic models of noise.

Photonic kernel machines will be discussed in Chapter 6. After presenting some gen-
eral theoretical concepts on kernel methods in Sec. II, physical kernel machines will be
introduced in Sec. III. The similarity measure and the feature-space representations at
the core of their learning mechanism will be first analytically discussed. Then, following
our work [δ, γ], some applications to the ultrafast analysis of radiofrequency signals will
be presented in Sec. IV by numerically simulating a possible implementation based on
photonic lattices.

Finally, the results obtained in the course of this thesis will be summarised in the
general conclusion, together with possible perspectives.
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1 Single-cavity quantum
optomechanics

This chapter is devoted to the study of single-cavity quantum optomechanics [8, 57] in
semiconductor nanodisk resonators [58]. These are micrometric disk-shaped structures en-
gineered from a semiconducting material acting as both high-finesse cavities for photons at
telecom wavelength and mechanical resonators with high quality factors at gigahertz fre-
quencies. Thanks to the strong spatial confinement, the colocalised optical and acoustic
modes of the structure become significantly coupled by a radiation-pressure-like inter-
action, giving rise to a very rich dynamics. This parametric interaction between the
optical intensity held within the disk and its mechanical motion is at the core of many
applications ranging from sensing [22–25] and laser cooling of a mechanical resonator to
its ground state [59–63] to optics-to-mechanics quantum-state teleportation [β, 26, 27]
and mechanically mediated superconducting qubit-to-photon transduction [64], includ-
ing mechanically assisted squeezed-light generation [65, 66], quantum mechanical-state
preparation [67–69], entanglement generation [70–73] or light-mediated quantum commu-
nication between remote mechanical resonators [74]. This parametric coupling can be
combined with additional degrees of freedom, opening even further perspectives [75–86].

We will give a thorough quantum description of the optical and mechanical modes
supported by such devices, bringing out the quantised nature of their elementary optical
and acoustic excitations. Photons will emerge as electromagnetic-field quanta from the
quantisation of the classical electromagnetic energy stored in the disk. Phonons will arise
as mechanical-motion quanta from the quantisation of the elastic energy of the disk’s
material. The wave functions associated to these particles as well as the Hamiltonian
operators that describe their unitary dynamics will then be identified. By describing the
environment as an uncorrelated reservoir and considering a harmonic external driving of
the optical mode, the fundamental phenomenology exhibited by the mechanical degree of
freedom will be reviewed.

Moreover, we will explore the possibility of enhancing the single-photon optomechan-
ical coupling factor by exploiting the strong coupling between the mechanical strain field
and the excitons of a quantum well embedded in the nanodisk resonator. We will present
a theoretical model describing this tripartite system where light, matter and sound are all
mutually coupled. The Hamiltonian of this hybrid resonator will be shown to be analog-
ous to that of the canonical optomechanical system with exciton polaritons playing the
role formerly held by photons and an improved optomechanical coupling.

This chapter is organised as follows. In Sec. I, the resonator’s optical whispering-
gallery modes and mechanical radial breathing modes will be described. Their quantum
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Hamiltonian operators will be derived from first principles in Subsecs. I.1 and I.2, re-
spectively. The action of the environment will be given an effective description within
the Lindblad master equation approach in Subsec. I.3. In Subsec. I.4, the optomechan-
ical interaction will be introduced; some of the resulting standard phenomenology will
be discussed in Subsec. I.5. The sideband cooling and heating mechanisms addressed
therein will serve to introduce the concepts of sideband and (anti-)Stokes scattering, that
will emerge as crucial in the next chapters. In Sec. II, a hybrid optomechanical reson-
ator embedding a quantum well will be theoretically described. A theory of the coupling
between the quantum-well excitons and the resonator resolved phonons will be presented
in Subsec. II.2. This will finally lead to a simpler description of the disk as a polariton-
mechanical resonator with an enhanced coupling strength in Subsec. II.3. Finally, Sec. III
will summarise the main results, concluding the chapter.

I Quantum description of an optomechanical resonator

Let us consider a piece of a semiconducting material of typical dimension L characterised
by some energy gap Egap. Because of the great difference in refractive index at either sides
of its boundary, the material may confine a certain set of modes of the electromagnetic
field within the bulk. Since no linear absorption is to be expected from the material for
photons of energy lower than that of the gap, such a piece of material can be regarded as
a transparent cavity for electromagnetic modes at wavelengths ranging from hc/Egap to
roughly L. Due to the elasticity of the material it is made of, such an object bears elastic
vibrational modes as well. The latter are several orders of magnitude lower in energy than
the former and thus likely to be thermally populated under coupling to a thermal bath.

By shrinking the typical dimension L to the order of the micron, the cavity’s optical
spectrum becomes well-resolved and only a finite discrete set of optical modes in the
telecom band remains isolated from the exterior. This goes hand in hand with a similar
effect for the object’s vibrational spectrum, which goes from the continuous spectrum of
the bulk and its characteristic linear dispersion relation to a set of well-resolved mechanical
modes. Upon cooling down such a hybrid high-quality-factor resonating structure towards
its ground state, quantum effects enter into play, exhibiting the resonator’s quantised
nature.

By considering the pivotal example of a nanodisk resonator, we here give a derivation
of the quantum Hamiltonian describing the unitary dynamics of a resonator’s optical
and mechanical modes by combining Dirac’s canonical quantisation prescription [87, 88]
and first-principle electromagnetism and elasticity theory. We extend this to the case of
a nanoring optomechanical resonators in Appendix A. We complete this description by
treating the interaction between these modes and their environment, thereby introducing
the Lindblad master equation, that combines both the unitary dynamics of the system
and the irreversible evolution induced by the environment onto the system into a unified
formalism.

This will later prove of crucial importance in Section II, when discussing the micro-
scopical theory of polariton optomechanics.
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Figure 1.1: (a) Semiconducting optomechanical nanodisk resonator on its pedestal.
In-plane view of its optical whispering-gallery modes, as given by Eq. (1.6), for (b)
p = 1, ` = 15, and (c) p = 2, ` = 10.

I.1 Photons: quantisation of the electromagnetic field

Many concave resonators exhibit normal modes travelling at their inner periphery, bearing
the name of whispering-gallery modes (WGM) and first described by Lord Rayleigh [89–
91] more than a century ago. We will here describe the WGMs of a semiconducting disk
of radius Rd and thickness Lz, as represented in Fig. 1.1 (a).

The electromagnetic energy density within the disk is given by

Uc = 1
2
(
ε‖E‖2 + 1

µ
‖B‖2

)
, (1.1)

where ε and µ denote the permittivity and the permeability of the medium, and where
the electric field E = −∂tA and the magnetic field B = ∇ × A can be expressed in
terms of the vector potential A. One may distinguish two possible polarisations of the
WGM under consideration: transverse-electric (TE) polarisation, corresponding to an
in-plane polarisation of the electric field; and transverse-magnetic (TM) polarisation,
corresponding to an electric field polarised along the direction orthogonal to the plane.
For reasons that will become clear in Sec. II, we will consider the former. For this choice
of polarisation, one has Az = 0 and thus A = Arer +Aθeθ ≡

∑
σ=±Aσeσ, with circularly

polarised components A± and the associated rotating unit vectors e± = e±iθ(er±ieθ)/
√

2.
It follows that

‖E‖2 =
∑
σ

Ȧ2
σ, ‖B‖2 =

∑
σ

{
(∂zAσ)2 + 1

r2 (∂θAσ)2 + (∂rAσ)2
}
. (1.2)

This implies that the electric and magnetic contributions here play a role analogous to
the kinetic and potential energies, respectively:

Tc = 1
2ε‖E‖

2, Vc = 1
2εc

2‖B‖2, (1.3)

where c = c0/n is the speed of light in the material, with n its refractive index. For a given
circular polarisation σ and upon integrating the Lagrangian density Lc = Tc−Vc over the
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domain of the disk, that will be henceforth denoted by Ω, the classical Lagrangian reads1

Lc =
∫

Ω
dr
{1

2εȦ
2
σ + 1

2εc
2Aσ

(
∂2
z + 1

r2∂
2
θ + 1

r
∂r[r]∂r

)
Aσ

}
. (1.4)

Our goal is here to perform the canonical quantisation of its associated classical
Hamiltonian. To do so, one first needs to bring this Lagrangian to a diagonal form.
This can be done by expanding the in-plane components of the vector potential on the
eigenbasis of the differential operator in the second member of the right-hand side. Equi-
valently, one may instead seek for the solutions of the Helmholtz equation, obtained via
the Euler-Lagrange equations. The latter here reads:

Äσ = −c2
(
∂2
z + 1

r2∂
2
θ + 1

r
∂r[r]∂r

)
Aσ. (1.5)

By separation of variables, this can be split into harmonic equations for the out-of-plane
and azimuthal dependences and a Bessel equation for the radial one, yielding the following
set of base wave functions

φ(c)
p,`(r, θ, z) = Np,`fq(kqz)J`(kp,`r) cos(`θ), φ̈p,` = −c2k2

p,`φ
(c)
p,`, (1.6)

where the wavevector kp,` = α`,p/Rd is a function of the disk radius and the pth root
of the `th Bessel function of the first kind α`,p. Rather unsurprisingly, we recover ex-
actly Rayleigh’s solution [90]. These are the so-called whispering-gallery modes. Their
normalisation is given by

Np,` =

√
2/V

|J`+1(kp,`Rd)|

(∫ dz
Lz
|fq(kqz)|2

)−1/2
. (1.7)

It follows from the above that WGMs are characterised by a radial index p and an
azimuthal index `, being p − 1 their number of internal nodes along the radial direction
and ` their number of azimuthal maxima. The profile of the mode along the out-of-plane
direction will be disregarded in the following, as it has no incidence on the optical spectrum
of the WGMs. A few examples of the electric-field amplitudes associated to such modes
are shown in Fig. 1.1 for different orders. As illustrated therein, the relevant azimuthal
orders are usually much higher than ` = 1. This confines most of the electromagnetic
energy at the periphery of the disks.

The field can thus be expanded in the WGM basis as follows:

Aσ(r, θ, z) =
+∞∑
p=1
`=0

Ap,`φ
(c)
p,`(r, θ, z). (1.8)

By making use of the orthonormality relation
∫

Ω drφ(c)?
p` (r)φ(c)

p′`′(r) = δp,p′δ`,`′ , the Lag-
rangian can be brought into a suitable diagonal form

Lc =
∑
p,`

(1
2 u̇

2
p` −

1
2c

2k2
p,`u

2
p`

)
, (1.9)

1Here the boundary conditions, Aσ∂rAσ|∂Ω = 0, Aσ∂θAσ|∂Ω = 0 and Aσ∂zAσ|∂Ω = 0, where ∂Ω
denotes the boundary of the domain Ω, were used to write the potential energy under the form of a
differential operator.
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where up,` =
√
εAp,`. By identifying the conjugated momentum πp,` = ∂u̇p,`Lc = u̇p,` and

Legendre-transforming the above Lagrangian, one gets the Hamiltonian of a harmonic
oscillator

Hc =
∑
p,`

u̇p,`πp,` − Lc =
∑
p,`

(1
2π

2
p,` + 1

2ωp,`u
2
p,`

)
, (1.10)

where ωp,` = ckp,` is the angular frequency associated to the WGM of orders (p, `). As
kp,` = α`,p/Rd, the frequency of a WGM is inversely proportional to the radius of the disk.

One can now apply the canonical quantisation prescription (up,`, πp,`) 7→ (ûp,`, π̂p,`),
with operators ûp,` and π̂p,` satisfying the canonical commutation relation [ûp,`, π̂p′,`′ ] =
i~δp,p′δ`,`′ , yielding

Ĥc =
∑
p,`

(1
2 π̂

2
p,` + 1

2ωp,`û
2
p,`

)
. (1.11)

By introducing the usual photon annihilation operators

âp,` =
√

ωp,`
2~ ûp,` + i

√
1

2~ωp,`
π̂p,`, (1.12)

such that âp,` and its adjoint â†p,` respectively subtract or add one excitation quantum in
theWGM of indices (p, `) and satisfy bosonic canonical commutation relations [âp,`, â

†
p′,`′ ] =

δp,p′δ`,`′ , one finally obtains the standard bosonic Hamiltonian for the harmonic oscillator:

Ĥc =
∑
p,`

~ωp,`(â†p,`âp,` + 1/2). (1.13)

This completely describes the unitary dynamics of the WGM’s elementary excitations:
the photons.

Let us clarify a few simplifying assumptions that were implicitly made in the above
derivation. Total internal reflection of the electromagnetic field was assumed at the in-
terface of the disk (i.e. strict Dirichlet boundary conditions). Due to the high level of
confinement of the electromagnetic field (Rd & λ), this is not exactly the case and, as
already noted by Rayleigh [91], part of the field leaks out of the disk’s volume. This
can be accounted for analytically by solving for the Helmholtz equation at either sides
of the boundary and introducing proper field-matching boundary conditions between the
solution in the inner domain, as given by Eq. (1.6), and the outwards-propagating dis-
turbance field D` (ibid.), beyond. Further details on this approach may be found, for
instance, in [92]. Another similar issue relates to the confinement along the out-of-plane
direction. For disks too thin, the electromagnetic field may vertically radiate outwards
of the disk’s domain, impacting the final quality factor. While both of these effects may
be integrated into the analytical description, they will be instead effectively treated as a
geometric contribution to the loss rate of the cavity in Sec. II.2.

I.2 Phonons: quantisation of the vibrational motion of an elastic
solid

Let us now consider the semiconducting disk described above from the mechanical point
of view. We will assume the disk to be made out of a homogeneous and isotropic material,
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as characterised by the associated pair of Lamé parameters (λ, µ) and its volumetric mass
ρ. In order to determine the mechanical eigenmodes of the disk, we shall identify its
classical Lagrangian.

An initial perturbation of the disk’s radial or vertical deformation profiles induces in-
ternal stresses that tend to restore it to its initial equilibrium situation. Inside a continu-
ous elastic material, these conservative forces derive from the following Hooke’s potential
density [93, Chapter 2]:

Um = 1
2σ

ikuik = 1
2λu

iiuii + µuikuik, (1.14)

where σik is the stress tensor, uik the strain tensor and summation over repeated indices is
implicit. We will consider that, in cylindrical coordinates (r, θ, z), the deformation profile
is given by a displacement of the form u(r, z) = ur(r)er + uz(r, z)ez. While it might
seem that within the assumption ∂zur = 0 the two acoustic polarisations, radial and
vertical, uncouple and can be treated independently, any in-plane stress within the disk
results in a sizeable strain uzz along the out-of-plane axis because of the finite Poisson
ratio ν ≡ λ

2(λ+µ) of the material. This difficulty can be circumvented by assuming the
disk to be in the plane-stress condition, routinely used for addressing thin plates. Under
this assumption, the state of the disk is such that σzz = 0, that is, the vertical strain
adapts to the presence of internal in-plane stresses at any point within the volume. By
implementing this constraint on Eq. (1.14), one is left with an identical expression for a
now two-dimensional disk with a modified first Lamé parameter:

Um = 1
2 λ̃u

iiuii + µuikuik (2D), λ̃ = 2µ
λ+ 2µλ. (1.15)

One accordingly has:

Um = λ̃+ 2µ
2

(
(∂rur)2 + (ur/r)2

)
. (1.16)

The disk is thus described by a single degree of freedom ur. By further introducing
its associated density of kinetic energy Tm = 1

2ρu̇
2
r, the Lagrangian density is given by

Lm = Tm − Um.

Radial breathing modes

Let us treat the identified free radially polarised component. Its associated modes, of great
experimental relevance, are known under the name of radial breathing modes (RBMs).
Their associated Lagrangian directly follows from Eq. (1.16) and reads

Lm =
∫

Ω
dr
{1

2ρu̇
2
r −

1
2ρc

2
s

(
(∂rur)2 + (ur/r)2

)}
, (1.17)

where

cs =
√

E

ρ(1− ν)2 (1.18)
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is the propagation speed of longitudinal acoustic waves in the material, expressed in terms
of Young’s modulus E and Poisson’s ratio ν. Up to a constant, integration by parts yields

Lm =
∫

Ω
dr
{1

2ρu̇
2
r −

1
2ρc

2
sur

( 1
r2 −

1
r
∂r[r]∂r

)
ur

}
. (1.19)

This Lagrangian can be diagonalised by introducing the following Fourier-Bessel expansion
of the radial displacement field ur(r):

ur(r) =
+∞∑
n=1

unφ
(m)
n (r), (1.20)

with

φ(m)
n (r) = NnJ1(Knr), N−1

n =
√
J2

1 (KnRd)− J0(KnRd)J2(KnRd), (1.21)

where the normalisation ensures that
∫

Ω drφ(m)
n (r)φ(m)

m (r) = VΩδn,m. Here, the wave vectors
Kn must satisfy a dynamical equilibrium condition at the boundaries of the disk. Indeed,
for the modes to correspond to stable stationary vibrational states of the resonating
material, the in-plane radial stress of the equivalent two-dimensional problem, σrr =
λ̃(urr + uθθ) + 2µurr = (λ̃ + 2µ)∂rur(r) + λ̃ur(r)/r, that is induced by the deformation
of the material, must vanish at the boundaries of the disk. Substituting therein the base
functions of Eq. (1.21), this leads to the following condition:

KnRdJ0(KnRd)− (1− ν)J1(KnRd) = 0. (1.22)

The wave vectors thus solely depend on the Poisson ratio of the disk’s material. We
provide the ten lowest wave vectors for GaAs in Table 1.1. Their dependence on the
radial order n is roughly linear.

K1Rd K2Rd K3Rd K4Rd K5Rd K6Rd K7Rd K8Rd K9Rd K10Rd

2.061 5.393 8.574 11.734 14.885 18.033 21.180 24.325 27.469 30.612

Table 1.1: Wave vectors of a GaAs disk’s first ten RBMs (ν = 0.32).

The radial displacement and strain profiles associated to the first two RBMs are shown in
Fig. 1.2 (a) and (b). Fig. 1.2 (c) compares the theoretical expression of the radial profile
of the first RBM to that obtained by means of axisymmetric finite-element simulations.
In the identified basis, the Lagrangian reduces to

Lm =
+∞∑
n=1

{1
2Mu̇2

n −
1
2MΩ2

nu
2
n

}
, (1.23)

whereM = ρV is the mass of the disk and Ωn = csKn its angular frequency. For a typical
disk of radius Rd ∼ 2–5 µm and thickness Lz ∼ 300 nm, one has M ∼ 10 pg and Ωn/2π ∼
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1 GHz. As for the WGM, the mechanical angular frequency is inversely proportional to the
radius of the disk. By identifying πn = ∂Lm/∂u̇n = Mu̇n and Legendre-transforming the
above, one obtains the classical Hamiltonian of a set of independent harmonic oscillators:

Hm =
∑
n

u̇nπn − Lm =
∑
n

{ 1
2Mπ2

n + 1
2MΩ2

nu
2
n

}
. (1.24)

One can now apply the canonical quantisation prescription as for the WGM according
to (un, πn) 7→ (ûn, π̂n), with [ûn, π̂m] = i~δn,m, yet again obtaining the customary quantum
harmonic-oscillator Hamiltonian:

Ĥm =
∑
n

{ 1
2M π̂2

n + 1
2MΩ2

nû
2
n

}
. (1.25)

This may be brought to the usual bosonic form by expressing the quantum conjugated
coordinates as quadratures of the bosonic creation and annihilation operators

ûn = xZPF
n (b̂n + b̂†n),

π̂n = −iMxZPF
n (b̂n − b̂†n),

(1.26)

with the zero-point fluctuations xZPF
n :=

√
〈0| û2

n |0〉 =
√
~/2MΩn, finally resulting in

Ĥm =
∑
n

~Ωn(b̂†nb̂n + 1/2). (1.27)

This completely describes the unitary dynamics of the RBM’s elementary excitations: the
phonons.

The advantage of carrying out the above derivation from first principles, as compared
to assuming Eq. (1.27), lies on being now able to relate explicitly the mechanical displace-
ment and the bosonic picture. Indeed, the mechanical displacement can now be given the
following operatorial expression:

ûr(r) =
∑
n

φ(m)
n (r)ûner =

∑
n

φ(m)
n (r)xZPF

n (b̂n + b̂†n)er, (1.28)

This will become important in Sec. II, when discussing the strong coupling between the
radial mechanical strain and a quantum well’s excitons.

The consistency of the normalisation may be verified by comparing the (infinite) energy
of the vacuum fluctuations 〈0| Ĥ |0〉 in the three pictures—direct, reciprocal and bosonic—

〈0|
{∫

Ω
drρc2

sûr(r)
(1
r
∂r[r]∂r −

1
r2

)
ûr(r)

}
|0〉 = 〈0|

∑
n

MΩ2
nû

2
n |0〉 =

∑
n

~Ωn

2 , (1.29)

where the Virial theorem [94] was employed.
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Figure 1.2: Radial displacement ur(r) and strain Σr(r) = ∇r · u(r) associated
to the (a) n = 1 and (b) n = 2 radial breathing modes. (c) Comparison of the
theoretically derived phonon wave function and that obtained by finite-element
calculations for a GaAs disk of radius Rd = 2 µm and thickness Lz = 300 nm.

I.3 Modelling the environment
The system we described so far cannot be faithfully described as completely isolated.
Indeed, many ways exist in which it may interact with its environment. As already
sketched, the optical-mode photons may radiate out of the disk as a result of the absence
of total inner reflection, whether due to a high confinement or to geometrical imperfections
at the boundaries [95]. Photons may also be lost through nonlinear scattering processes
in the material. Indeed, while linear absorbance in the bulk is in principle suppressed at
the relevant wavelengths, surface impurities may lead to the presence of levels in the band
gap of the semiconducting material, hence restoring linear absorption channels. Finally, in
any relevant setup, information about the optical field is retrieved by some experimental
means, inducing some inevitable interaction with the outside world. Neither can the
mechanics be considered independently of its environment. Indeed, a notable incoherent
process is the mechanical-mode thermalisation with the substrate via the disk’s pedestal.
Many other dissipation channels have sizeable contributions to its dynamics, whose effects
were shown to exhibit a significant and complex temperature dependence [96].

Fortunately, these effects may be accounted for independently from their microscopical
origin. This can be achieved via many approaches, such as the Lindblad master equation
or the quantum Langevin equation, that share in common the modelling of the environ-
ment as an infinite set of possibly coupled harmonic oscillators at thermal equilibrium
that are linearly coupled to the system. In any of these approaches, the aim is to obtain
an effective description of the system that does not involve keeping track of the evolu-
tion of the reservoir. Throughout this manuscript, the master equation approach will be
privileged, this section is no exception.

Let us consider some bosonic mode of our system, be it a photon or a phonon, described
by a bosonic operator â and vanishingly coupled to some large set of distinct bosonic
modes, as described by a set of annihilation operators {ĉλ}λ that represent the modes



16 Chapter 1. Single-cavity quantum optomechanics

of an external bath. These modes are described by the following harmonic-oscillator
Hamiltonians

ĤS = ~ω0â
†â, ĤB =

∑
λ

~ωλĉ†λĉλ, (1.30)

that, combined, describe the bare energy of the uncoupled bosons Ĥ0 = ĤS + ĤB. Ini-
tially, the system is described by some arbitrary density matrix ρ̂S(t) while the bath is
in a thermal statistical mixture ρ̂B = e−βĤB/Z, where β = 1/kBT is the usual inverse
temperature and Z = Tr[e−βĤB ] is the canonical partition function. At some reference
time t0, the system and its bath, originally independent, are put in contact and start to
exchange quanta by means of an interaction Hamiltonian of the form

ĤI = Ŝ ⊗ B̂ ≡ (â+ â†)⊗ 1√
N

∑
λ

(g?λĉλ + gλĉ
†
λ). (1.31)

The system-reservoir ensemble is considered as a closed system an thus evolves according
to the following unitary master equation

∂tρ̂SB = − i
~
[
Ĥ0 + ĤI, ρ̂SB

]
, (1.32)

where ρ̂SB is the density matrix of the bipartite ensemble. By moving to the interaction
picture induced by the unitary transform Õ(t) = eiĤ0(t−t0)/~Ôe−iĤ0(t−t0)/~, the dynamics
is solely generated by the interaction Hamiltonian

∂tρ̃SB = − i
~
[
H̃I, ρ̃SB

]
, (1.33)

and the solution may be expressed formally as

ρ̃SB(t) = ρ̃SB(t0)− i

~

∫ t

t0
dt′
[
H̃I(t′), ρ̃SB(t′)

]
. (1.34)

By inserting Eq. (1.34) into Eq. (1.33), one arrives to the following integro-differential
master equation:

∂tρ̃SB(t) = − i
~
[
H̃I(t), ρ̂SB(t0)

]
− 1

~2

∫ t

t0
dt′
[
H̃I(t), [H̃I(t′), ρ̃SB(t′)]

]
. (1.35)

One aims at describing the dynamics of the system, only, irrespective of the state of the
bath, as given by the system’s reduced density matrix ρ̂S = trBρ̂SB. For this purpose,
one traces out the bath’s degrees of freedom in the above expression to identify the
system’s effective master equation. By noting that trR{[H̃I(t), ρ̂SB(t0)]} = 0 and within the
Born approximation, which assumes that the system and its bath remain approximately
separable at any time ρ̂SB ≈ ρ̂S⊗ ρ̂B, straightforward manipulations lead to the following
dynamical equation, back to Schrödinger’s picture:

∂tρ̂S(t) = − i
~
[
ĤS, ρ̂S(t)

]
− 1

~2

∫ t−t0

0
dτ
{
G(τ)

[
Ŝ, e−iĤSτ/~

(
Ŝρ̂S(t− τ)

)
e−iĤSτ/~

]
+ H.c.

}
,

(1.36)
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with G a relevant correlation function of the reservoir. Neglecting the backaction of
the system on the bath, that is, assuming that the bath is “big” enough with respect
to the system, the state of the bath is time-translational invariant and one simply has
G(τ) = 〈B̂(τ)B̂(0)〉 ≡ trB[ρ̂BB̂(τ)B̂(0)]. This acts as a memory kernel of typical support
τB, that decreases with the amount of available modes in the bath.

Let us examine the second member of Eq. (1.36). The system operator Ŝ = â + â†

acts on the density matrix by either destroying or creating an excitation. (i) The term
Ŝρ̂S(t− τ) thus corresponds to a scattering event from the system to the reservoir or vice
versa happening at time t − τ in the recent past (note that τ . τB). (ii) The resulting
perturbed density matrix is then evolved by the bare Hamiltonian up to the present time
t and (iii) the operator Ŝ is actuated again. One thus sees that the reservoir-induced
effective dynamics of the system at time t is essentially ruled by all processes involving
single-body excursions from the bath (resp. system) into the system (resp. bath) and
lasting a time τ within the typical relaxation time of the bath τB. By assuming τB to
be much shorter than the typical timescales of the system, one can perform a partial
Markovian approximation consisting in neglecting the unitary evolution of the density
matrix during the (short) excursion times. By further taking the reference time to remote
past t0 → −∞, one obtains the Bloch-Redfield equation

∂tρ̂S = − i
~
[
ĤS, ρ̂S

]
+ 1

~2

{[
Û ρ̂S, Ŝ

]
+
[
Ŝ, ρ̂SÛ

†
]}
, (1.37)

with dressed system operators Û =
∫+∞

0 dτG(τ)S̃(−τ) = Γ(ω0)â + Γ(−ω0)â†, where
Γ(ω) =

∫+∞
0 dτG(τ)eiωτ . While preserving the trace 1 of the density matrix, this master

equation does not preserve its semipositivity due to the partial Markovian approximation
that breaks the causality of the evolution. This can be fixed by retaining only reson-
ant terms in the second member. By splitting bath’s spectrum into its Hermitian and
anti-Hermitian parts as Γ(ω) = 1

2γ(ω) + i~S(ω), this so-called secular or rotating-wave
approximation yields the celebrated Lindblad master equation [97–99]

∂tρ̂S = − i
~
[
Ĥ ′S, ρ̂S

]
+ γ(ω0)D[â]ρ̂S + γ(−ω0)D[â†]ρ̂S, (1.38)

where Ĥ ′S denotes the Lamb-shifted Hamiltonian, with an angular frequency renormalised
by the interaction with the reservoir as ω′0 = ω0 + S(ω0) + S(−ω0), and where, for any
Lindblad jump operator L̂, D[L̂] is a trace-preserving completely positive superoperator
acting on the density matrix as

D[L̂]ρ̂ = L̂ρ̂L̂† − 1
2{L̂

†L̂, ρ̂}, (1.39)

where curly brackets denote the anticommutator {Â, B̂} = ÂB̂ + B̂Â.
By introducing the bath’s density of states DB(ω) = 1

N

∑
λ δ(ω − ωλ), the Lamb shift

and the dissipation rates may be expressed explicitly as

S(ω) = p.v.
∫

dω′DB(ω′)|g(ω′)|2
{
N̄(ω′) + 1
ω − ω′

+ N̄(ω′)
ω + ω′

}
, (1.40)

γ(ω) =
2πDB(ω)|g(ω)|2(N̄(ω) + 1), ω ≥ 0;

2πDB(−ω)|g(−ω)|2N̄(ω), ω ≤ 0.
(1.41)
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This yields the final master equation driving the dynamics of the system’s bosonic mode:

∂tρ̂S = − i
~
[
Ĥ ′S, ρ̂S

]
+ γ(N̄ + 1)D[â]ρ̂S + γN̄D[â†]ρ̂S, (1.42)

with γ = 2πDB(|ω0|)|g(|ω0|)|2 the relaxation rate and N̄ = 1/(exp(β~ω0)− 1) the Planck
distribution at the bare oscillator energy. In this expression, D[â] is responsible for the
leakage of excitations from the system to the bath at a rate γ(N̄ + 1) while D[â†] in-
coherently injects excitations into the system from the bath at a rate γN̄ . This is il-
lustrated in Fig. 1.3. As may be trivially checked from the detailed-balance condition,
the steady state of the above Lindblad master equation is found to be a thermal state
ρ̂S(t→ +∞) = e−βĤS/Z whose thermal occupation is indeed Tr[ρ̂Sâ

†â] = N̄ .

0

1

n − 1

n

n + 1
γ(N̄ + 1)p(n + 1)

γ(N̄ + 1)p(n)

γN̄p(n)

γN̄p(n− 1)

Figure 1.3: Schematic illustration of the action of the dissipator on the diagonal
elements of the system’s density matrix p(n) = 〈n|ρ̂S|n〉.

Photon’s master equation

Let us now adapt the general result presented above to the case of a nanodisk’s WGM.
From Eq. (1.10) one has ωp,` = c0α`,p

nRd
. For a typical WGM of radial and azimuthal orders

of (p, `) = (1, 10) hosted by a disk of radius Rd = 1.5 µm, one has ~ω1,10 ≈ 0.5 eV and thus
at room temperature N̄ ≈ 6.3× 10−10. The second dissipator in Eq. (1.42) can thus be
safely neglected. The optical master equation will thus henceforth take the simpler form

∂tρ̂ = − i
~

[~ωcâ†â+ V̂p(t), ρ̂] + κD[â]ρ̂, (1.43)

where ωc is the bare cavity angular frequency (the Lamb shift is typically negligible), κ is
the optical decay rate and V̂p(t) is a time-dependent Hamiltonian describing the driving
of the cavity by means of an external monochromatic coherent optical field. This takes
the form

V̂p(t) = ~F (âe+iωpt + â†e−iωpt), (1.44)

where F is the amplitude of the driving and ωp the angular frequency of the pump. By
moving to a frame rotating with the drive’s phase, Ĥ 7→ Û(t)ĤÛ †(t), ρ̂ 7→ Û(t)ρ̂Û †(t),
where Û(t) = eiωpâ

†ât, one finally gets an equivalent time-independent master equation
for the cavity photons

∂tρ̂ = −i[−∆â†â+ F (â+ â†), ρ̂] + κD[â]ρ̂, (1.45)
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where ∆ = ωp−ωc denotes the detuning of the pump with respect to the cavity’s frequency.
The optical mode can thus be seen as a driven harmonic oscillator coupled to a zero-

temperature bath. In what follows, the ratio Qc = κ/ωc will be referred to as the cavity
quality factor.

Phonon’s master equation

From Eq. (1.23), the mechanical angular frequency is given by Ωn = csKn. For the first
RBM, of radial order n = 1, and a disk of radius Rd = 1.5 µm, one has ~Ω1 ≈ 4.45 µeV
and thus a thermal population of N̄ ≈ 5770 phonons at room temperature. Hence, the
finite temperature of the mechanical bath cannot be neglected. The mechanical master
equation will henceforth be expressed as

∂tρ̂ = −i[Ωmb̂
†b̂, ρ̂] + Γm(N̄m + 1)D[b̂]ρ̂+ ΓmN̄mD[b̂†]ρ̂, (1.46)

where Ωm denotes the angular frequency of the RBM of interest, Γm the mechanical
relaxation rate and N̄m the thermal steady-state phonon population. In what follows, the
ratio Qm = Γm/Ωm will be referred to as the mechanical quality factor.

Let us note however that the above derivation relies on a rotating approximation
valid in so far as the coherent dynamics of the system’s degrees of freedom happens at a
much faster timescale than that of the bath. While this situation, known as the quantum
optical limit [99], is perfectly legitimate both in the case of the optical mode and that of
a mechanical mode with a high mechanical quality factor, the approximation may break
down for mechanical resonators with mediocre quality factors. In particular, this model
can easily be shown to not match the classical dynamical equations of a thermalised
harmonic oscillator in the semiclassical limit. In such cases, one should fall back to the
Caldeira-Leggett model [100, 101] to faithfully account for the action of the environment
on the mechanical motion of the resonator.

I.4 The optomechanical coupling
So far, the optical WGM and the mechanical RBM under consideration were treated as
independent modes. Let us now describe the optomechanical interaction between these
two bosonic fields.

The most direct way photons and phonons may couple is through radiation pressure.
Indeed, we have seen that the angular frequency of some WGM of interest is inversely
proportional to the radius of the disk, ωp,` = c0α`,p

nRd
; then, as the disk boundaries move

outwards (inwards) due to the mechanical motion of the RBM, the energy of the photon
is decreased (increased). The WGM’s photons are thus sensitive to the mechanical mode.
Reciprocally, the optical field exerts some radiation pressure at the boundaries of the disk,
leading to a mechanical displacement.

This is most easily understood by considering a unidimensional Fabry-Pérot cavity in
which one of the mirrors is movable and harmonically confined around its initial equi-
librium position, as depicted in Fig. 1.4. The effect of the displacement x of the mobile
mirror on the angular frequency of the fundamental mode of the cavity can be classically
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written [8] as
ω[x] = 2πc/(L+ x) = ωc + x ∂xω[x]|x=0 +O(x2), (1.47)

where ω[x] denotes the parametric dependence of ω in the displacement x of the mirror
from its initial position x = 0. The quantised version of this is obtained by using the
same prescription as before. Defining g = −xZPF∂xω[x]|x=0 = ωcxZPF/L, the bare optical
Hamiltonian is modified as ~ωcâ†â 7→ ~(ωc − gx̂/xZPF)â†â. Then, the supplemental term
can be extracted into an optomechanical interaction Hamiltonian:

Ĥcm = −~gâ†â(b̂+ b̂†). (1.48)

This mechanism is here explained by simple common arguments but can be treated by
a rigorous canonical quantisation of the exact cavity and resonator modes with time-
dependent boundary conditions [102, 103]. We shall here sketch the derivation for the
radiation-pressure interaction between a nanodisk’s WGM and RBM.

L x

Driving

Figure 1.4: Schematic representation of a Fabry-Pérot-based cavity optomechanical
system. Photons circulate between the harmonically confined mobile end mirror
and the input mirror through which photons are pumped into the cavity.

Geometric contribution to the optomechanical coupling

Let us consider a TM-polarised WGM of order (p, `) and the nth RBM. These are com-
pletely described from the expressions of the associated vector potential operator and
mechanical displacement operator

Â(r) = φc(r)
√

~
2εckc

(â+ â†)ez, û(r) = φm(r)xZPF(b̂ + b̂†)er, (1.49)

with φc = φ(c)
p,`, kc = kp,`, φm = φ(m)

n , xZPF = xZPF
n .

The density of work exerted by the electromagnetic field on the dielectric takes the
form

Wcm = σijuij = σrrurr + σθθuθθ, (1.50)
where u is the usual mechanical strain tensor introduced in Subsec. I.2 and σ denotes
Maxwell’s stress tensor, as given by (see [104, Section 6.7], for instance)

σij = εEiEj + 1
µ
BiBj −

1
2
(
ε‖E‖2 + 1

µ
‖B‖2

)
δij. (1.51)
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Let us remark that, contrary to the common intuition, the strength of the radiation-
pressure coupling here depends upon the overlap between the optical energy density and
the mechanical strain, not the absolute mechanical displacement. This was already the
case for the paradigmatic Fabry-Pérot example, where ~g = ~ωcxZPF/L could be seen as
proportional to the “strain” (relative displacement) xZPF/L induced by a single vibrational
quantum, and now becomes explicit in expression (1.50). By specialising Maxwell’s tensor
to the considered WGM, one finally gets the optomechanical coupling Hamiltonian:

Ĥcm = −~gâ†â(b̂+ b̂†), (1.52)

with the optomechanical constant g given by2

g

ωc
=
∫

Ω
dr
{( 1

kc
∂rφc(r)

)2
xZPF∂rφm(r) +

( 1
kcr

∂θφc(r)
)2xZPF

r
φm(r)

}
. (1.53)

The strength of this contribution to the optomechanical coupling is proportional to the
optical angular frequency, and thus inversely proportional to the radius of the disk. It de-
pends on the radial orders of the mechanical and optical modes under consideration. Upon
choosing some specific set of modes, this contribution as well as that of the photoelasticity
can be numerically evaluated [105, 106].

I.5 The optomechanical master equation
This thorough quantum modelling process finally results in the following master equation
for the optomechanical resonator

∂tρ̂ = − i
~

[Ĥ, ρ̂] + κD[â]ρ̂+ Γm(N̄m + 1)D[b̂]ρ̂+ ΓmN̄mD[b̂†]ρ̂,

Ĥ/~ = −∆â†â+ F (â+ â†)− gâ†â(b̂+ b̂) + Ωmb̂
†b̂,

(1.54)

that summarises Eqs. (1.45), (1.46) and (1.52).
A rich phenomenology emerges from the interplay between the various distinctive

features of this model. Among these, let us first highlight the usually strong hierarchy
between the short optical and the long mechanical timescales. As a consequence, by
acting on the coherent drive at the optical timescale 1/κ one may avoid the dynamical
backaction of the mechanical subsystem onto the optics, thus allowing one to control the
mechanics through the external optical driving. A second feature is the strong depend-
ence on the detuning of the effective dynamics induced by the optomechanical coupling
in the so-called resolved-sideband regime (κ � Ωm). In this regime, the optical spec-
trum presents additional resonances corresponding to Stokes and anti-Stokes scattering
processes between the mechanical and the optical modes. These can thus be excited and
either enhanced or suppressed by proper tuning of the pump angular frequency. This
has found applications ranging from the ubiquitous sideband cooling scheme for cooling
down the mechanical oscillator [107–117] to quantum teleportation schemes [β, 26, 27].
Another very interesting feature derives directly from the form of the optomechanical

2Here, the Virial theorem was used.
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coupling. This coupling, by making intervene the optical population n̂, couples dynam-
ically its conjugated quantity, the optical phase φ̂ [118], to the mechanical displacement,
i∂tφ̂|Ĥ = ωc − gx̂/xZPF. The optomechanical coupling can therefore be interpreted as
the extent to which a mechanical displacement that is commensurate with the mechanical
zero-point fluctuations impacts the angular frequency of the optical state. This interfacing
ability of optomechanical resonators to optically perform the readout of a mechanical ele-
ment’s microscopic displacements very soon generated interest in the field of sensing [22–
25].

Sideband cooling and heating

Let us thereafter briefly discuss some of the basic optomechanical phenomenology that
will later prove useful to understand the main results of Chapter 2.

The master equation (1.54) can be greatly simplified by a suitable unitary transform-
ation. Indeed, operators can be displaced thanks to the following unitary transformation
Û = D̂(α)D̂(β), where D̂(α) = eαâ

†−α∗â and D̂(β) = eβb̂
†−β∗b̂. This eliminates all linear

terms in the Hamiltonian for the following choice of displacement:

α = F

∆̃ + iκ/2
, β = g|α|2

Ωm − iΓm/2
, (1.55)

where ∆̃ = ∆ + 2g2|α|2/Ωm is the nonlinearly shifted cavity detuning3. This can be seen
as a shift of the origin of the phase-space coordinates, (â, â†, b̂, b̂†) 7→ (â−〈â〉, â†−〈â〉?, b̂−
〈b̂〉, b̂† − 〈b̂〉?), to the mean-field solutions α = 〈â〉 and β = 〈b̂〉. In this displaced frame,
â and b̂ become annihilation operators of the fluctuation quanta around the mean-field
solutions.

Some non-trivial physics can readily be observed on the steady-state mean-field pop-
ulations. Indeed, squaring Eqs. (1.55), many stable solutions for the coherent optical
population Nc = |α|2 may exist to the nonlinear equation

[(
∆ + 2g2

Ωm

Nc

)2
+
(
κ

2

)2]
Nc = |F |2, (1.56)

yet, in the following, we will assume that one remains in the stable manifold.
The trivial quadratic Hamiltonian terms can also be absorbed into yet another unitary

transformation Û = e−i∆â
†ât+iΩmb̂†b̂t. This finally yields, to second order in the fluctuation

operators:
Ĥ ≈ −~g

√
Nc

{
(âe+i(∆̃−Ωm)t + â†e−i(∆̃+Ωm)t)b̂+ H.c.

}
. (1.57)

Only one term is left in this linearised Hamiltonian driving the dynamics of quantum fluc-
tuations. This is responsible for the Stokes and anti-Stokes scattering processes. Indeed,

3The quantum optical limit (see comment below Eq. (1.46)) actually gives ∆̃ = ∆+2g2|α|2Ωm/[Ω2
m+

(Γm/2)2], which is slightly off with respect to the semiclassical picture. Yet, this is negligible for Qm =
Ωm/Γm � 1 as will be the case throughout this thesis and may be fixed by using a Caldeira-Legget
approach for modelling the mechanical environment.
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in the well-resolved-sideband regime κ� Ωm, rapid non-resonant terms can be eliminated
within the rotating-wave approximation (RWA), finally yielding

Ĥ ≈

−g
√
Nc(â†b̂† + H.c.), ∆̃ ∼ +Ωm;

−g
√
Nc(â†b̂+ H.c.), ∆̃ ∼ −Ωm.

(1.58)

Thus, by driving the cavity in tune with the blue-shifted sideband (∆̃ ∼ Ωm) or the red-
shifted sideband (∆̃ ∼ −Ωm), one may inject excitations into the mechanical resonator
through Stokes processes, â†b̂†, or retrieve thermal phonons via anti-Stokes processes, â†b̂.
In the latter case, the scattered phonons are optically dissipated at a much higher rate
than that at which they are refilled from the mechanical thermal bath, thereby cooling
down the mechanical degree of motion. This is explained in Fig. 1.5, which well illustrates
the necessity of being in the resolved-sideband regime (κ � Ωm) in order to be able to
selectively pump phonons either in or out of the mechanical mode.

This intuition can be formalised in various ways. We will stick to the effective master
equation framework and perform an adiabatic elimination of the optical degree of freedom.
Details about the elimination of a driven-dissipative reservoir can be found, for instance,
in Refs. [20, 119] or, in optomechanics, in Refs. [120, 121] and [α, SM]. This approximation
relies on the Markovian assumption that there is hardly any backaction of the mechanics
onto the optics (κ � Γm) and that no significant entanglement builds up between the
two modes of the resonator. This is true for very low values of the coupling. The result
of this process yields

∂tρ̂m = −i[Ω̃mb̂
†b̂, ρ̂m] + Γm(N̄m + 1)D[b̂]ρ̂m + ΓmN̄mD[b̂†]ρ̂m

+ Γ(↓)
OptD[b̂]ρ̂m + Γ(↑)

OptD[b̂†]ρ̂m, (1.59)

where Ω̃m = Ωm + S(Ωm) + S(−Ωm) is the Lambd-shifted mechanical angular frequency,
a feature known as optical-spring effect in this context, and where Γ(↓)

Opt = ΓOpt(+Ωm)
and Γ(↑)

Opt = ΓOpt(−Ωm) are mechanical dissipation and gain rates induced by the optics.
These parameters have a crucial dependence on the detuning of the external drive and
are given hereafter:

S(ω) = g2Nc
∆̃ + ω

(∆̃ + ω)2 + (κ/2)2
, ΓOpt(ω) = g2Nc

κ

(∆̃ + ω)2 + (κ/2)2
. (1.60)

Several conclusions can be drawn from this result. Even though a driven-dissipative
cavity is very different from a continuous thermal bath, the new terms in the mechanical
master equation bear a resemblance to those obtained in Sec. I.3; by defining ΓOpt =
Γ(↓)

Opt−Γ(↑)
Opt and N̄Opt = Γ(↑)

Opt/ΓOpt, the mechanical mode may indeed be interpreted as in
contact with two thermal baths at different temperatures

∂tρ̂m = −i[Ω̃mb̂
†b̂, ρ̂m] + Γm(N̄m + 1)D[b̂]ρ̂m + ΓmN̄mD[b̂†]ρ̂m

+ ΓOpt(N̄Opt + 1)D[b̂]ρ̂m + ΓOptN̄OptD[b̂†]ρ̂m. (1.61)

The final thermal occupation being given by the weighted average over those of the two
baths:

N̄ eff
m = ΓmN̄m + ΓOptN̄Opt

Γm + ΓOpt
< N̄m ⇔ N̄Opt < N̄m. (1.62)
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Figure 1.5: Stokes (red) and anti-Stokes (blue) irreversible scattering processes
involved in sideband heating and cooling schemes. States |nphotons, nphonons〉 are
expressed in the displaced basis, nphotons being the number of quantum-optical fluc-
tuation quanta on top of the “classical” optical coherent population, and nphonons
the thermal phonon occupation. In the resolved-sideband regime (κ � Ωm),
for ωp = ωc ± Ωm (∆ = ±Ωm), the only resonant processes are given by
|0, n〉 ↔ |1, n± 1〉 → |0, n± 1〉, where the last path is made irreversible thanks to
the optical dissipation.
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Figure 1.6: (a) Optical damping rate ΓOpt as a function of the nonlinearly shif-
ted detuning. Negative values correspond to positive gain. Cooling is maximal at
the anti-Stokes sideband (dashed blue line); conversely, heating is maximal at the
Stokes sideband (dashed red line). (b) Optical spring effect (Lamb shift) as a func-
tion of the nonlinearly shifted detuning. (c) Effective Planck thermal population
associated to the optical “thermal bath” around the anti-Stokes sideband.
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These quantities are plotted as a function of the nonlinearly shifted detuning in Fig. 1.6
for various values of the ratio κ/Ωm. One sees that the optically induced dissipation rate
is maximum around the anti-Stokes sideband and all the more peaked that the resolved-
sideband condition is met. The Lamb shift instead vanishes at the sidebands and at
resonance with the cavity frequency (∆̃ = 0). The strength of this coherent shift decreases
slower than the optically induced dissipation; as a consequence, one may optically shift
the mechanical angular frequency without adding significant dissipation to the system
by driving the cavity off the sidebands. Finally, one observes that the thermal phonon
occupation associated to the optical bath is very sensitive to κ/Ωm. This implies that one
should be in the well-resolved sideband regime κ� Ωm for sideband-cooling applications.
In this regime, the minimal thermal occupation obtained by resonantly driving the system
at the anti-Stokes sideband is roughly given by N̄ eff

m ≈ 1
1+C N̄m, where C denotes the

cooperativity:
C = ΓOpt

Γm

∣∣∣∣
∆̃=−Ωm

' Nc × C0, C0 = 4g2

κΓm
. (1.63)

Here, C0 denotes the single-photon cooperativity, a good figure of merit for characterising
the magnitude of the dissipative coupling between the optical and the mechanical modes.
It follows from the above that, for C0 ∼ 1, one could in principle cool the resonator
down to its ground state with only Nc & N̄m photons. This has motivated a quest for
realising optomechanical resonators with large single-photon cooperativities, yet, with the
exception of cold atomic ensembles, the state of the art remains well below C0 = 1 [8].

Richness of the optomechanical coupling

We just gave the intuition and the theoretical description of some of the phenomenology
our theoretical findings will be elaborated on in the next chapter. But optomechanical res-
onators can exhibit many other peculiar behaviours stemming from the radiation-pressure
interaction such as self-induced optomechanical oscillations [122–126] or phase-locking and
synchronisation of coupled optomechanical resonators in a variety of configurations [127–
135]. The optomechanical Hamiltonian is also an excellent tool for reservoir engineering
and the basic ideas briefly presented above may be advantageously exploited to design ad
hoc models. For the sake of example, let us design a toy model for a phonon laser.

We shall begin with a very simple Hamiltonian describing an optomechanical resonator,
consisting of an optical mode described by â and a mechanical mode described by b̂, to
which an auxiliary cavity, of operator ĉ, is linearly coupled:

Ĥ/~ = ωâ†â− gâ†â(b̂+ b̂†) + Ωb̂†b̂− λ

2 (â†ĉ+ ĉ†â) + ωĉ†ĉ, (1.64)

where λ is the coupling constant between the nanodisk’s cavity and the external optical
mode and where we chose the two optical modes to have the exact same angular frequency
for simplicity. By introducing the bonding and antibonding modes â± = (â± ĉ†)/

√
2, with

associated angular frequencies ω± = ω ∓ λ/2, and going to a rotating frame through the
rotation Û(t) = exp(iω−â†−â−t + i(ω− − Ω)â†+â+t + iΩmb̂

†b̂t), the Hamiltonian can be
written equivalently, within the rotating-wave approximation, as

Ĥ = −δâ†+â+ + g

2(â†+â−b̂† + H.c.), (1.65)
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where δ = λ− Ω is the detuning of the angular frequency of the antibonding-to-bonding
transition with respect to the bare mechanical angular frequency.

Under non-resonant driving of the optics at some frequency higher than ω−, the dis-
sipative part of the system’s dynamics is described by

∂tρ̂|diss. = ΓD[b̂] + κ+D[â+] + κ−D[â−] + PD[â†−], (1.66)

where the mechanical mode was supposed in contact with a cryostat, for simplicity, and
P is the (pumping) rate at which non-resonant driving photons relax into the system.
Upon assuming κ+ � g, as is natural in optomechanics, one may adiabatically eliminate
the bonding mode â+, which (yet in the rotating frame) yields the final master equation4:

∂tρ̂ = − i
~
[
K
2 â
†
−â−b̂

†b̂, ρ̂
]

+ ΓD[b̂]ρ̂+ βD[b̂†â−]ρ̂+ κ−D[â−]ρ̂+ PD[â†−]ρ̂. (1.67)

where K = −δ g2/2
δ2+(κ+/2)2 is an effective cross-Kerr interaction and β = κ+g2/4

δ2+(κ+/2)2 and
effective rate of stimulated emission. The dynamical equations of motion satisfied by the
occupation operators n̂ = b̂†b̂ and N̂ = â†−â− directly follow from this:

γ−1∂tn̂ = +β̃N̂(n̂+ 1)− Γ̃− n̂,
γ−1∂tN̂ = −β̃N̂(n̂+ 1)− N̂ + P̃ ,

(1.68)

where γ ≡ κ− − P , and, for any parameter, x̃ ≡ x/γ. These are exactly the dynamical
equations of the famous Rice’s and Carmichael’s quantum theory for a semiconductor
laser [136]. In the context they were introduced in, 〈n̂〉 corresponds to the laser’s photon
population and 〈N̂〉 to the number of carriers. In contrast, here the lasing mode is of purely
phononic nature. Within a mean-field approach, one easily verifies that the steady-state
phonon population experiences a second-order phase transition in the (thermodynamical)
limit of β̃−1 → +∞:

〈n̂〉 = 1
2β̃

(
R− 1 +

√
(R− 1)2 + 4β̃R

)
β̃−1→+∞−−−−−−→ β̃−1 max(0, R− 1), (1.69)

with R = β̃P̃ /κ̃. It follows that the critical pump power is given by Pc = κ−. Past
this threshold, the phonon population rises linearly with the pump power and acquires
Poissonian statistics.

The example presented above is not to be confused with what is commonly referred
to as mechanical lasing in the optomechanical context, which is associated to a linewidth
narrowing of the mechanical mode in the regime of self-oscillations. This should con-
vince the reader of the wide range of phenomena hidden behind the seemingly simple
optomechanical coupling of Eq. (1.52) and of its convenience in the domain of reservoir
engineering.

4Notice that the effective dynamics of the system became U(1)-symmetric, which is crucial for the
emergence of a second order lasing transition.
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II Beyond photons and phonons: polariton optomechan-
ics

Many recent optomechanical applications involve the manipulation of the quantum state
of the mechanical degree(s) of freedom through Stokes and anti-Stokes processes reson-
ant at the sidebands. This encompasses ground-state sideband cooling [59–63], mech-
anically assisted squeezed-light generation [65, 66], quantum mechanical-state prepara-
tion [67–69], entanglement generation between photons [70], photons and phonons [71,
72], and distant phonon modes [73], mechanically mediated superconducting-qubit-to-
photon transduction [64], optics-to-mechanics quantum-state teleportation [β, 26, 27], or
light-mediated quantum communication between remote mechanical resonators [74]. The
peculiar dynamics involved in such applications is driven by the aforementioned paramet-
ric optomechanical interaction. In this context, the figure of merit that quantifies the
efficiency of the Stokes and anti-Stokes processes occurring at the sidebands is the single-
photon cooperativity C0 = 4g2/κΓm. Yet the bare optomechanical coupling strength g is
typically very small as compared to the optical relaxation rate κ. For a typical micromet-
ric GaAs disk, for instance, this is of the order of a few megahertz [58, 105, 106, 137], as
compared to κ ∼ 1 GHz and Ωm ∼ 1–10 GHz. Analogue figures are found in optomech-
anical crystals [138, 139]. One could in principle increment the number of photons in the
cavity by increasing the optical pump power so as to linearly enhance the effective cooper-
ativity C = Nc×C0. Working with such large photonic populations, however, can lead to
a significant heating of the material and degrade both the cavity’s quality factor and the
mechanical coherence, thereby limiting the maximum optomechanical cooperativity that
can be reached in practice [140].

In this section, we will explore the possibility of overcoming this bottleneck by exploit-
ing the strong interaction between a resonator’s phonons and quantum-well excitons in
order to boost the bare optomechanical coupling strength in hybrid nanodisk polariton-
mechanical resonators (see Refs. [81, 83] for a related scenario). Indeed, in the last couple
of decades, evidences of strong parametric optomechanical interactions were reported in
planar microcavities embedding quantum wells [141–145], first interpreted as an enhance-
ment of the optomechanical coupling and later as an interaction between phonons and
polaritons, hybrid exciton-photon quasiparticles. Very recently, resonances corresponding
to hybrid quasiparticles of excitonic, optical and acoustic nature were identified in ab ini-
tio numerical simulations [146]. We shall here give a first-principle theoretical description
of this interaction.

II.1 Quantum-well excitons

Let us describe a GaAs nanodisk optomechanical resonator of radius Rd and thickness
Lz embedding a quantum well of thickness LQW � Lz made from a alloy of GaAs and
InAs, as illustrated in Fig. 1.8 (a). We will here simply outline some standard concepts.
A detailed theoretical description of such semiconducting heterostructures may be found
elsewhere [148–152].
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Figure 1.7: (a) Band structure of bulk GaAs, as computed in [147] with a 30-band
k·pmethod. (b) First Brillouin zone, as highlighted in (a), within a parabolic band
approximation. The relevant conduction and heavy-hole bands are represented
with plain lines. The first five electron-hole bound states are represented as dashed
lines in the Coulomb potential. Adapted with permission from [148].
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Figure 1.8: (a) Schematic representation of a GaAs hybrid nanodisk resonator
embedding a InxGa1−xAs quantum well. Scales have been adapted for better read-
ability; in practice one typically has Rd ∼ 2 µm, Lz ∼ 300 nm and LQW ∼ 10 nm.
(b) Conduction- and valence-band profiles at the Γ point as a function of the
out-of-plane coordinate for a quantum well of thickness LQW = 8 nm and indium
fraction x = 5 % held at T = 4 K. First electron and heavy-hole envelopes along
the out-of-plane direction are shown at their associated energies, Ee = 1.499 eV
and Eh = 28.625 meV, respectively. For these parameters, Eg = 1.519 eV,
∆Ec = 41.750 meV, ∆Ev = 34.801 meV, so that E ′g/Eg ≈ 95 %.
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Excitons in bulk GaAs

The electronic band structure of bulk GaAs is shown in Fig. 1.7 (a). At proximity of the
Γ point (k = 0), it exhibits an energy gap of Eg = 1.519 eV that opens between the three
highest valence bands and the first conduction band. As depicted in Fig. 1.7 (b), close
to this point, the material is well described in terms of a parabolic four-band structure.
Hence, close to the centre of the Brillouin zone, one has the following quadratic dispersion
relations for the conduction and valence bands:

Ec(k) ' Eg + ~2k2

2m?
c

, Ev,i(k) ' −Ev,i(k)− ~2k2

2m?
i

. (1.70)

Here, m?
c denotes the effective mass of the conduction-band electron. The light- (lh)

and heavy-hole (hh) bands are degenerate at Γ, that is Ev,lh(0) = Ev,hh(0) ≡ 0, but have
different effective massesm?

hh > m?
lh. Finally, the split-off (so) band, of angular momentum

J = 1/2, lies below the two other valence bands, of angular momentum J = 3/2, as a
consequence of a significant spin-orbit energy splitting (Ev,so = 341 meV in bulk GaAs).
In what follows the light-hole and split-off bands will be disregarded.

An elementary excitation of this system results from the promotion of one electron from
either of the upper valence bands to the conduction band, thereby generating a positively
charged hole quasiparticle (h) and a negatively charged electron (e) at either sides of
the gap around k ≈ 0. This pair is subject to the attractive Coulomb interaction that
mutually couples its oppositely charged components. The resulting two-body problem
can be separated as usual into the centre-of-mass and relative-motion single-body ones,
yielding the following Hamiltonian

Ĥ = ~2

2M∇
2
R +

{
Eg + ~2

2µ∇
2
ρ −

1
2
hcR?

ρ/aB

}
, (1.71)

where R = m?e
M
re + m?h

M
rh is the position of the centre of mass of the electron-hole pair, of

massM = m?
e+m?

h, and ρ = re−rh is the relative position of the electron, with associated
relative mass µ = m?

em
?
h/M . The first term of this Hamiltonian correspond to the kinetic

energy associated to the free motion of the pair within the volume V of the bulk and
can thus be solved by introducing plane-wave wave functions with momentum K, of the
form V −1/2e−iK·R. The second term corresponds to the Hamiltonian of a hydrogen-like
atom with an effective reduced mass µ, an effective Rydberg constant hcR? = ~2/2µa2

B =
4.8 meV and an effective Bohr radius aB = 4πε~2/µe2 = 12 nm. Much in the same
way as for the hydrogen-atom problem, this gives rise to bound electron-hole states, as
represented in Fig. 1.7 (b), whose energies Epot

x (n) = Eg − hcR?/n2 are quantised by
the principal quantum number n ∈ N? and that spatially confine both particles within a
distance of n2/2 × aB. These bound states are known as excitons. The associated wave
functions are nothing more than the usual hydrogen-like atomic orbitals. In what follows,
we shall restrict ourselves to the lowest-energy exciton. This is described by the following
1s-exciton wave function:

φ(x)
K (R, r) = 2√

V a3
B

e−iK·Re−2ρ/aB . (1.72)
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Excitons in a quantum well

Let us now briefly describe how the presence of an InxGa1−xAs quantum well embedded
in the disk’s GaAs modifies the simple picture sketched above.

InAs has a lower energy gap than that of GaAs. Because of this, the energy gap of the
material is locally lowered within the quantum well, as represented in Fig. 1.8 (b). This
acts as a confining potential well in the vertical direction for both the electron and the
hole. Several consequences derive from this. Firstly, the degeneracy of light- and heavy-
holes at the Γ point is lifted and elementary excitations of the material no longer involve
the former. Secondly, excitons become partially localised in a two-dimensional domain of
thickness ∼ LQW comparable to the exciton Bohr radius. While the two-body problem
can still be split into two single-body problems for the centre-of-mass and relative degrees
of freedom, the partial vertical confinement breaks the isotropy of the latter, that can
thus no longer be solved in terms of hydrogen-like atomic orbitals.

Let us first proceed with the in-plane centre-of-mass degree of freedom. Its wave
function must be an eigenstate of the Hamiltonian

Ĥc.o.m = ~2

2M∇
2
R‖

+ Vc.o.m(R‖) + cst., (1.73)

where Vc.o.m(R‖ ∈ Ω) = 0 inside of the disk’s domain and infinite outside of it. This
amounts to solving the same Helmholtz equation as for the electromagnetic field. The
exciton’s in-plane centre-of-mass motion is thus described by the WGM wave function of
the disk’s photons:

Fp,`(R‖) ∝ J`(kp,`R‖) cos(`θ), (1.74)
where we used the same radial and azimuthal quantum numbers p and ` as for the photonic
wave function.

The remaining (coupled) degrees of freedom are described by the following Hamilto-
nian:

Ĥrel = ~2

2m?
e

∂2
ze + ~2

2m?
h

∂2
zh

+ ~2

2µ∇
2
ρ‖

+Vc(ze)+Vv(zh)+VC(ρ), VC(ρ) = −hcR?aB

2
√
ρ2
‖ + (ze − zh)2

,

(1.75)
where Vv,c are square potentials associated to the shift of the valence and conduction bands
in the quantum well, as depicted in Fig. 1.8 (b). This can be dealt with perturbatively by
first solving for the vertical dependence of the electron and hole wave functions χe,h(ze,h),
as shown in Fig. 1.8 (b), and then projecting the Coulomb potential on this zeroth-order
wave functions to obtain a new effective pseudo-potential V eff

C (ρ‖) for the in-plane relative
distance only [152, 153]. This may be iterated until convergence is reached, leading to
a separable wave function for the relative and out-of-plane dependences. As shown in
[148], the radial dependence of the lowest bound state’s wave function can be very well
approximated by a two-dimensional hydrogen-like atomic orbital with a reduced in-plane
Bohr radius and a higher binding energy. For a quantum well of thickness LQW = 8 nm
and indium fraction x = 5 %, these are given by aB = 8.3 nm and hcR? = 7.1 meV. One
finally has the following 1s-exciton wave function:

φ(x)
p,`(R,ρ) = Fp,`(R‖)φ(ρ‖)χh(zh)χe(ze), (1.76)
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with φ(ρ‖) ∼ exp(−2ρ‖/aB).
In the following, we shall adopt a second quantisation approach. In this framework,

the exciton ladder operator ĉ†p,` is defined such that it acts on the ground state by adding
an exciton to the system: ∣∣∣φ(x)

p,`

〉
= ĉ†p,` |GS〉 . (1.77)

In two dimensions, this operator satisfies quasi-bosonic commutation rules [ĉp,`, ĉ†p′,`′ ] =
δp,p′δ`,`′ −O(nSa2

B) [154, 155], where nS is the surface exciton density. We will henceforth
assume low excitonic densities, nSa2

B � 1, and therefore treat QW excitons as bosons.
Now that the exciton wave function was identified, the exciton many-body Hamiltonian

can be expressed in second quantisation:

Ĥx = ~ω(x)
p,` ĉ
†
p,`ĉp,` + V̂xx, (1.78)

where ω(x)
p,` denotes the angular frequency of the 1s excitons. Here, V̂xx accounts for the

two-body Coulomb repulsive interactions between distinct excitons. This term was shown
to be quartic in bosonic operators and to induce scattering processes between excitonic
modes with distinct wave vectors [156, 157]. However, in the limit aB � 2π/kp,` ∼ Rd,
this simplifies and bears the form a Kerr nonlinearity of strength Up,` [158, 159]:

Ĥxx = ~Up,`
2 ĉ†p,`ĉ

†
p,`ĉp,`ĉp,`. (1.79)

The optoelectronic Hamiltonian

Quantum-well excitons and TE-polarised cavity photons have similar energies. Thanks to
their colocalised and strong confinement, these strongly couple in the considered resonator.
In second quantisation, the minimal light-matter coupling for this system reads [152, 160]:

Ĥcx = −
〈
GS
∣∣∣e∑

i

Â(ri) · ṙi
∣∣∣φ(x)
p,`

〉
ĉp,` + H.c., (1.80)

where the sum is carried over all electrons, with positions ri, and the vector potential is
that identified in Eq. 1.8, Â(r) = Âp,`φ

(c)
p,`(r)e±. Upon neglecting counter-rotating terms

and up to a π/2 rotation of exciton’s field, this Hamiltonian reduces to the linear Rabi
coupling [158]:

Ĥcx = ~ΩR
(
â†p,`ĉp,` + H.c.

)
, (1.81)

where ~ΩR denotes the Rabi energy splitting. Analytical expressions for this coupling for
the exact same wave functions can be found in Ref. [92]. In the alloy here considered, this
is typically found around ΩR ∼ 1 THz.

This modelling process leads to a standard expression for the Hamiltonian of the
coupled quantum-well excitons and cavity photons. Neglecting the saturable anharmonic
exciton-photon interaction and the self-interaction of the optical field, this reads [159]:

Ĥ/~ = ωcâ
†â+ ωxĉ

†ĉ+ ΩR(â†ĉ+ ĉ†â) + U

2 ĉ
†ĉ†ĉĉ, (1.82)

where quantum numbers were dropped and notations were simplified for the cavity and
exciton angular frequencies, ωc and ωx, respectively.
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II.2 Theory of the coupling between quantum-well excitons and re-
solved phonons

So far, we have described the acoustic, optical and excitonic modes of the hybrid nan-
odisk resonator as well as the exciton self-interaction, the optoelectronic interaction and
the optomechanical interaction. The missing element in this description is the interac-
tion between the resonator’s phonons and the quantum-well excitons. As mentioned in
the introduction, this is expected to clearly dominate the bare optomechanical coupling
from both experimental and numerical evidence. We shall now derive the form of this
interaction and closed-form expressions for its strength.

The coupling between excitons and phonons originates from the effect of the mechan-
ical strain of the semiconducting material on its band structure as the result of a local
modulation of the lattice constant. As very soon identified [161–165], this induces an
energy shift well captured by the deformation potential [166]

U(re, rh) = aeΣn(re)− ahΣn(rh), (1.83)

where re and rh are the positions of the carriers, and ae and ah are the values of the
electron and hole deformation potentials in the material. In bulk GaAs, ae = −7.0 eV
for electrons and 2.7 eV for holes [167, 168]. Σn(r) = ∇r · un(r) denotes the mechan-
ical strain at r imputable to the presence of a phonon in the mechanical mode n under
consideration. Here, un(r) = xZPF

n φ(m)
n (r) denotes the corresponding displacement, where

xZPF
n =

√
~/2MmΩn is the magnitude of the zero-point fluctuations of the mechanical

degree of freedom, of mass Mm and angular frequency Ωn, and φ(m)
n its associated wave-

function, normalised to
∫
V dr|φ(m)

n (r)|2 = V , as given by Eq. (1.21) for RBMs. We now
dispose of all the necessary quantities to express this Hamiltonian for some given excitonic
and mechanical modes of quantum numbers λ = (p, `) and n, respectively. The second
quantisation prescription yields a parametric coupling of the optomechanical form [166,
169]:

Ĥxm = −~gλ,nxm b̂
†
λb̂λĉn + H.c., (1.84)

with the exciton-phonon coupling factor:

− ~gλ,nxm :=
〈
0, φ(x)

λ

∣∣∣ Û ∣∣∣φ(m)
n , φ(x)

λ

〉
=
∫
V

dredrhφ(x)?
λ (re, rh)U(re, rh)φ(x)

λ (re, rh)

=
∫

dR‖dρ‖dz|Fλ(R‖)|2|φ(ρ‖)|2
(
aeΣn(R‖ + mh

M
ρ‖ + zez)|χe(z)|2 (1.85)

− ahΣn(R‖ + me
M
ρ‖ + zez)|χh(z)|2

)
.

This expression can be greatly simplified by neglecting the exciton’s Bohr radius over
the mechanical in-plane wavelength, as already considered on writing Eq. (1.82), and the
thickness of the quantum well LQW . 10 nm over the typical out-of-plane variations of
the strain, none for an ideal RBM. Indeed, within these approximations, the exciton-
phonon coupling reduces to solely the overlap between the exciton’s envelope and the
single-phonon strain at the location of the well:

~gλ,nxm ' (ah − ae)
∫
S

dR‖|Fλ(R‖)|2Σn(R‖, zQW). (1.86)



II. Beyond photons and phonons: polariton optomechanics 33

1 5 10 15 20 25
WGM azimuthal order `

1

3

5

7

9

R
B

M
ra

d
ia

l
or

d
er
n

1 5 10 15 20 25
WGM azimuthal order `

1

3

5

7

9

−20

0

20

g x
m
/x

Z
P

F
(T

H
z/

n
m

)

−10

0

10

g x
m

(M
H

z)

(a) (b)

Figure 1.9: Electromechanical coupling in units of xZPF
n (panel (a)) and frequency

units (panel (b)) for a disk of radius Rd = 1 µm and thickness Lz = 320 nm bearing
a mechanical radial breathing mode of order n and an excitonic whispering gallery
mode of order (p, `) = (1, `).

Here, the in-plane exciton mode amplitude Fλ(R) exactly corresponds to the WGM’s,
given in Eq. (1.6). The single-phonon mechanical strain Σn can be easily obtained
from the phonon wave function of Eq. (1.21) as Σn(R) = (1/R‖)∂R‖ [R‖]φ(m)

n (R‖) =
Knx

ZPF
n NnJ0(KnR‖). Thus, for the disk, one finally has:

~gp,`;nxm ' (ah − ae)
xZPF
n

Rd

Ip,`;n, Ip,`;n := 2KnRdNn
J2
`+1(α`,p)

∫ 1

0
dξξJ2

` (α`,pξ)J0(KnRdξ), (1.87)

where the relative deformation potential (ae − ah) can be measured directly by applying
hydrostatic pressure on the material [167], xZPF

n /Rd quantifies the deformation of the
disk induced by the zero-point fluctuations and Ip,`;n is a dimensionless geometric overlap
integral between the exciton distribution and the strain field. Note that the latter does
not depend on the radius of the disk, as KnRd only depends on the Poisson ratio of
the material (see Table 1.1 for GaAs). Much in the same way as for the optomechanical
coupling, the ratio ~gp,`;nxm /xZPF

n gives a good characterisation of the coupling strength that
is independent from the resonator’s mass and angular frequency. This is found inversely
proportional to the radius of the disk, as for the geometric contribution to the disk’s
optomechanical coupling [106]. The linear dependence of its strength on the zero-point
deformation of the resonator is also very reminiscent of the radiation-pressure interaction
of the Fabry-Pérot cavity discussed in Subsec. I.4, whose rate was shown to be indeed
proportional to the relative displacement of its bounding mirror: gcm = ωcx

ZPF/L.
The value of the electromechanical coupling is reported in Fig. 1.9 for various pairs of

excitonic and mechanical modes. The geometry of the disk is chosen as in Ref. [105]. The
electromechanical coupling is here found one order of magnitude higher than that com-
puted therein for the bare photoelastic and geometric contributions to the optomechanical
coupling. In semiconducting nanoring resonators [170, 171] (see App. A for their mode
description) and micropillars [172] embedding a quantum well, where the overlap between
the strain field and quantum-well excitons is close to optimal, this improvement could
be of two orders of magnitude, as calculations not shown here suggest [ζ]. As shown in
Fig. 1.9, the electromechanical coupling presents an interesting dependence on the radial
order n of the mechanical RBM. Indeed, the coupling of even RBMs has opposite sign
with respect to the optomechanical one. For mechanical wave vectors too large with re-
spect to the WGM’s, the strain exhibits oscillations within the support of the WGM. The
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effect of the strain on the exciton energy is thus averaged out, resulting into vanishingly
small coupling factors.

II.3 Effective polaritonic description
In the rotating frame, the Hamiltonian of the entire tripartite system finally reads:

Ĥ/~ = ωcâ
†â+ ωxĉ

†ĉ+ ΩR(â†ĉ+ ĉ†â) + Ωmb̂
†b̂

+ U

2 ĉ
†2ĉ2 − gcmâ†â(b̂+ b̂†)− gxmĉ†ĉ(b̂+ b̂†). (1.88)

where ωc, ωx and Ωm are the cavity, exciton and mechanical angular frequencies, respect-
ively, ΩR the Rabi splitting, gcm and gxm the bare optomechanical and electromechanical
coupling rates, and U the exciton-exciton Kerr nonlinearity. The single-body part of the
optoelectronic Hamiltonian (first line) can be readily diagonalised in terms of two bosonic
fields:

Ĥ1/~ = ω−p̂
†
−p̂− + ω+p̂

†
+p̂+. (1.89)

These normal quasimodes are hybrid exciton-photon excitations known as polaritons.
These split into two branches: the lower (LP) and upper (UP) polariton branches whose
energies split with the optoelectronic interaction according to:

ω± = ωc + ωx
2 ±

√(
ωc − ωx

2

)2
+ Ω2

R. (1.90)

These polariton operators can be expressed in terms of the original exciton and photon
operators by means of the following unitary transformation:[

p̂−
p̂+

]
=
[
X C
−C X

] [
ĉ
â

]
, X = 1/

√
1 +

( ΩR

ω− − ωc

)2
, C = −1/

√
1 +

(
ω− − ωc

ΩR

)2
.

(1.91)
Here, X2 and C2 ≡ 1 − X2 respectively correspond to the exciton and cavity fractions
of the lower polariton, and reciprocally for the upper polariton. The avoided crossing of
Eq. (1.90) is shown in Fig. 1.10. At ωx = ωc, both polaritons are exactly half-exciton
half-photon and split in energy by ω+ − ω− = 2ΩR; out of resonance, they recover their
purity.

We shall now express the hybrid disk Hamiltonian in this natural basis. Two distinct
cases are to be considered.

Polariton transition resonant with the phonon energy

For very low values of the Rabi splitting, the transition between the upper and lower
polariton branches might become resonant with the angular frequency of the mechanical
oscillator: 2ΩR ∼ Ωm. In this scenario and within the rotating-wave-approximation, the
hybrid disk Hamiltonian reads:

Ĥ/~ =
∑
±

(
ω±p̂

†
±p̂± + U±

2 p̂†2± p̂
2
±

)
− K

2 p̂
†
+p̂+p̂

†
−p̂− + Ωmb̂

†b̂+ gtwm(p̂†−p̂+b̂
† + H.c.). (1.92)
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Figure 1.10: Upper and lower polariton angular frequencies as a functions of the
frequency mismatch between the cavity photons and the quantum-well excitons.
At ωc ≈ ωx, the spectrum exhibits an avoided crossing due to the optoelectronic
interaction that separates the two branches by twice the Rabi splitting ΩR.

Here, U+ = X4U and U− = C4U correspond to Kerr nonlinearities, each polariton mode
inherits the exciton repulsive interactions in proportion to its exciton fraction. K = 4XC
is a cross-Kerr interaction between the two polariton branches. Finally, the resulting
effective polariton-phonon interaction is a three-wave mixing term of strength gtwm =
|XC|(gxm − gcm) that allows for upper polaritons to be down-converted to the lower
mode by emitting one phonon in the mechanical resonator. This is of the form of the
Hamiltonian (Eq. (1.65)) of the model for phonon lasing proposed in Subsec. I.5. However,
this is a rather unnatural situation as the Rabi splitting is typically in the terahertz range
while the disk’s mechanical frequency lies around the gigahertz.

Quasiresonant driving of a polariton mode

The most experimentally relevant regime corresponds to a single polariton mode σ under
quasiresonant driving by some external coherent pump in the band ωp ∼ ωσ±Ωm. In this
situation, the hybrid disk Hamiltonian reads:

Ĥ/~ = ωσp
†
σp̂σ + Uσ

2 p̂†2σ p̂
2
σ + Ωmb̂

†b̂− gpmp̂†σp̂σ(b̂† + b̂). (1.93)

Up to the Kerr nonlinearity, this amounts to the usual optomechanical Hamiltonian where
the considered polariton mode acts as the optical field with an enhanced interaction
strength:

gpm =
X2gxm + C2gcm, σ = − (lower polariton)
C2gxm +X2gcm, σ = + (upper polariton)

. (1.94)

This expression can be easily understood, the electromechanical and optomechanical inter-
action strengths are weighted by the exciton and photon fractions in either polariton mode.
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This yields an effective polariton-mechanical parametric interaction; the phenomenology
of the system can thus to a great extent be understood as an optomechanical model where
now polaritons play the role of the usual photons and the bare optomechanical coupling is
enhanced by the presence of excitons coupling to the mechanics through the deformation
potential. This picture well agrees with the interpretation of the early experiments [141–
144].

The enhancement factor by which the single-photon cooperativity of the disk is in-
creased due to the presence of the quantum well reads, for the lower polariton:

Cpm
0

Com
0

=
(X2 gxm

gcm
+ C2)2

X2 γx
κ

+ C2 , (1.95)

where γx denotes the exciton linewidth. For a mechanical quality factor of Qm = 105

(Ωm = 1.6 GHz), a poor exciton linewidth of γx = 200 GHz, an optical linewidth of
κ = 60 GHz, parametric couplings of strength gxm = 10 MHz and gom = 1 MHz, and an
exciton fraction of X2 = 35 %, the enhancement is of exactly one order of magnitude.
Calculations to be soon submitted [ζ] show that the single-polariton cooperativity could
exceed unity in micropillar optomechanical resonators [172].

III Conclusion
In this chapter, we derived from first principles the master equation describing an op-
tomechanical nanodisk resonator. We discussed some of the phenomenology induced by
scattering processes occurring at the mechanical sidebands, both by addressing the stand-
ard sideband cooling mechanism and a more elaborated model for mechanical lasing.

A hybrid semiconducting nanodisk resonator embedding a quantum well was then
introduced and given a quantum description. In particular, an analytical expression for
the coupling between the quantum-well excitons and the resolved phonons of the disk was
derived. This tripartite resonator, comprising mutually coupled modes of both light, mat-
ter and acoustic nature, was then shown to be describable as an effective optomechanical
system with exciton polaritons playing the role of photons in standard cavity optomech-
anics with an enhanced parametric coupling, in qualitative agreement with experimental
observations [141–145] and ab initio numerical simulations [146].

Several interesting points remain to be addressed. In order to determine the maximal
enhancement of the parametric interaction in hybrid nanodisk resonators, a comprehens-
ive optimisation of the parameters of the disk and the orders of the relevant modes is
yet necessary. Calculations suggest that annular disks/rings [170, 171] and micropil-
lars [172] present very high degrees of spatial confinement of the strain and the quantum-
well excitons that could lead to cooperativities above unity for moderately high exciton
fraction [ζ]. These will soon be submitted for publication. Finally, the inhomogeneous
broadening of the exciton’s linewidth can pose severe limitations on the exciton fraction
that can be practically reached without strongly reducing the polaritonic quality factor.
These detrimental effects should also be investigated in order to explore the limits of the
increase in cooperativity here reported.

The original results of this chapter are contained in Ref. [ζ].



2 Dynamics induced by extended
reservoirs

The present chapter is devoted to the theoretical study of the dynamics induced by spa-
tially extended correlated reservoirs.

When discussing the sideband-cooling mechanism in Subsec. I.5 of the first chapter, we
saw how a driven-dissipative optical mode treated as a reservoir could induce a sensitive
change in the dynamics of the mechanical mode of interest. In this situation, we identi-
fied particular resonance conditions between local mechanical energies and local optical
transition energies upon which one could precisely control the dynamics of the mechanical
motion. We later extended this picture to the treatment of a system composed of three
interacting modes and identified that, by properly tuning the transition energy between
antibonding and bonding collective modes to that of the mechanical element, nonlocal
scattering events could be exploited in order to induce a lasing phase transition in which
an initially thermal mechanical oscillator would start to exhibit coherent oscillations and
Poissonian statistics.

We shall now address a slightly more complex situation where a set of local modes
of interest, our system, is put in local contact with a spatially extended reservoir. This
is illustrated in Fig. 2.1, where a set of local system modes is either in contact with a
lattice of interacting reservoir modes or immersed into some continuous field. Much in
the same way as before, the effective dynamics of the system will be driven by scattering
of local excitations of the system through the reservoir. The novelty here stems from the
possibility for a local excitation to be transduced into a reservoir fluctuation quantum,
scatter away from its initial position within the reservoir’s typical relaxation time, and
finally re-enter back into the system at another site.

This situation raises a number of fundamental conceptual issues. Firstly, on the pos-
sibility of engineering a reservoir-mediated coupling between distant and initially mutually
independent resonators. Secondly, on the role of a new parameter, the spatial correlation
length of the reservoir, in the effective dynamics induced on the system. Finally, whether
the time-irreversible nature of the Stokes and anti-Stokes scattering events translates into
a breaking of the spatial reversibility, that may generate reservoir-mediated directional
currents flowing between distant system modes. These, and in particular the link between
time and spatial irreversibility, will be the main subject of Chapter 3. The numerical
treatment of such spatially extended reservoirs will be addressed in Chapter 4.

This chapter is organised as follows. In Sec. I, spatially extended reservoirs will be
first introduced and their associated effective master equation will be derived in a general
driven-dissipative setting, both in the discrete and the continuous cases. The general res-
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ults of this section will then be translated to the quantum-Langevin-equation framework
in Sec. II.

b̂`

T`

F`

κ`

â`

J

b̂`

T`

â(r), F (r), κ(r)

(a) (b)

Figure 2.1: Schematic illustration of a set of system modes in contact with either
a discrete or a continuous driven-dissipative extended reservoir. (a) Discrete case:
the reservoir (in red) is described as a discrete set of bosonic operators â` coloc-
alised with the system’s modes (in grey) and arranged into some arbitrary lattice
geometry. (b) Continuous case: the reservoir (in red) is described by some con-
tinuous delocalised bosonic mode â(r). The system’s modes are in local contact
with the reservoir.

I Adiabatic elimination of a generic extended reservoir
Let us consider a bipartite configuration where a set of local modes of interest, henceforth
referred to as system, is in local contact with a spatially extended reservoir, as illustrated
in Fig. 2.1. The reservoir and system ensemble can be described by a Lindblad master
equation of the form1

∂tρ̂RS = −i[ĤR + ĤS + ĤI, ρ̂RS] +DRρ̂RS +DSρ̂RS, (2.1)

where ρ̂RS is the density matrix of the ensemble, ĤR(S) the reservoir (system) Hamiltonian,
DR(S) the reservoir (system) dissipators, and ĤI a local coupling Hamiltonian.

The discrete and continuous cases can be worked out similarly. In the following we
will treat in detail the case of a discrete extended reservoir and then briefly address how
the result generalises to the continuum.

I.1 Discrete extended reservoirs
We shall restrict our discussion to reservoirs that are subject to single-body loss and
single-body external harmonic driving, a situation relevant for photonic applications. In

1From now on, we switch to natural units, such that ~ = c0 = kB = G = 1.
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the rotating frame, this can be described by the following Hamiltonian and dissipator

ĤR = Ĥ (0)
R +

∑
i

(F ?
i âi + Fiâ

†
i ), DRρ̂R =

∑
i

κiD[âi]ρ̂R, (2.2)

where Ĥ (0)
R ≡ H (0)

R [â, â†] denotes the reservoir’s Hamiltonian in the absence of driving,
parametrised by the set of reservoir-mode bosonic operators {âi}i, and where Fi and
κi > 0 are the driving and dissipation strengths at site i, respectively. Without loss of
generality we will assume the operators Ĥ (0)

R and R̂ to be expressed as normally ordered
products of bosonic operators [173, 174], that is, where all annihilation operators are
placed on the right and all creation operators on the left.

In order to be able to perform the elimination of the reservoir’s degrees of freedom,
one needs to ensure that it behaves as a purely dissipative system. Indeed, the crucial
Markovian approximation the following derivation relies upon requires the reservoir cor-
relation functions to decay to zero fast enough. We shall therefore express the reservoir’s
master equation in terms of suitable fluctuation operators whose correlation functions
decay at the relaxation rate κ. To do so we introduce the following unitary transform-
ation Û = ∏

i D̂(αi)†, with the usual displacement operator D̂(αi) = exp(αiâ†i − α?i âi).
This transformation operates a shift of the phase-space coordinates of the reservoir. In
terms of the transformed coordinates, the Hamiltonian admits the following second-order
truncated Taylor expansion:

ĤR ≈ E0 +
∑
i

{(
Fi − iαiκi/2 + ∂α?iH

(0)
R [α,α?]

)
â†i + H.c.

}
+ 1

2Â
†
HÂ, (2.3)

where Â = (â1, . . . , â
†
1, . . .)T , Â

† = (â†1, . . . , â1, . . .), and H is the following (Hermitian)
Hessian matrix:

H =
[

H(I) H(II)

H(II)? H(I)T

]
, H (I)

ij = 1
2∂α

?
i
∂αjH

(0)
R [α,α?], H (II)

ij = ∂α?i ∂α?jH
(0)
R [α,α?]. (2.4)

Let us note that in the case of a quadratic Hamiltonian, the expansion in Eq. (2.3)
introduces no approximation. By choosing the parameters of the shift to correspond to
some stable solution α̃ of the eventually nonlinear equation

Fi − iα̃iκi/2 + ∂α̃?iH
(0)
R [α̃, α̃?] = 0, (2.5)

the reservoir becomes described, to second order in the fluctuation operators, by simply:

ĤR = 1
2Â

†
HÂ, DRρ̂R =

∑
i

κiD[âi]ρ̂R, (2.6)

where all linear driving terms exactly cancelled, leaving only dissipation.
Let us analyse this result. The steady-state solution of Eq. (2.6) is simply the vacuum

|0, 0, . . .〉. Indeed, all linear terms responsible for the driving of the reservoir disappeared
from the Hamiltonian, making the master equation purely dissipative (notice H = H†).
In the original frame, the steady state thus reads Û |0, 0, . . .〉 = |α̃1, α̃2, . . .〉, where |α〉 de-
notes a coherent state [175], that is, the solution of Eq. (2.5) corresponds to the mean-field
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steady-state solution of the original master equation (2.2). In the displaced frame, oper-
ators âi and â†i thus correspond to the annihilation or creation of a fluctuation quantum
on top of the coherent solution we just identified. Then, Eq. (2.6) describes the decay of
any quantum fluctuation that enters the reservoir. Due to the simple form of the fluctu-
ation’s master equation, one may now solve it for any correlation function. In particular,
all normally ordered reservoir operators and correlation functions decay to 0 in time; one
can proceed further with the adiabatic elimination of the lattice reservoir.

So far we did not yet consider the presence of the system of interest. It couples to
the reservoir through the interaction Hamiltonian, which may be written, without loss of
generality, as ĤI = λ

∑
i R̂i ⊗ Ŝi, where λ � 1 is a dimensionless scale “bookmark” and

where R̂i and Ŝi are operators acting at site i on the reservoir and the system Hilbert
spaces, respectively. Here, R̂i has the dimension of a frequency. Then, assuming that the
reservoir and the system remain separable at any time (Born approximation), one arrives
to an expression very similar to Eq. (1.36) for the reduced dynamics of the system [α,
Supplemental Material]:

∂tρ̂S(t) = LSρ̂S(t)− λ2∑
ij

∫ t−t0

0
dτ
{
Gij(τ)

[
Ŝi, e

LSτ
(
Ŝj ρ̂S(t− τ)

)]
+ H.c.

}
, (2.7)

where we assumed for simplicity that 〈ĤI〉(t → +∞) = 0. The superoperator LS here
denotes the system’s Liouvillian: LSρ̂ = −i[ĤS, ρ̂] +DSρ̂. The reservoir’s correlation func-
tion G is now given, in the displaced frame, by

G(τ) = 〈R̂i(t)R̂j(t− τ)〉 = 〈R̂i(τ)R̂j(0)〉 = 〈0|R̂i(τ)R̂j(0)|0〉 , (2.8)

where we used the time-translational invariance of the equilibrium state of the reservoir,
under the assumption of no significant backaction of the system on the stabilised reservoir.

The system operators may be decomposed as Ŝi = ∑
α ŝi(ωα) in terms of eigenoperators

of the dissipativeless system adjoint Liouvillian i[ĤS, ŝi(ωα)] = −iωαŝi(ωα), where the
eigenvalues {ωα}α correspond to all the possible transition energies between eigenstates
of the system Hamiltonian. ŝi(ωα > 0) acts as a generalised lowering operator that
induces a transition from some excited state to some other state lower in energy by ωα.
Conversely, ŝi(ωα < 0) corresponds to a generalised raising operator that increases the
system’s ernergy by an amount of ωα. The interpretation of the action of the reservoir on
the system then becomes very clear, as illustrated in Fig. 2.2. The correlation function
G is a memory kernel that decays roughly after τR ∼ 1/κ, acting as a cutoff for the
time integral. The term Ŝj ρ̂S(t− τ) corresponds to a scattering event happening at time
t − τ in the recent past where the system operator Ŝj acts locally at site j by inducing
some transition of energy ωα. This corresponds to the simultaneous action of R̂j on the
reservoir at this same location, as expressed by the first half of its correlation function
R̂j(t− τ) |0〉. Both the perturbed reservoir and system are then evolved for a time τ and
a similar scattering event takes place at present time t at some eventually different site i,
corresponding to the operator Ŝi in the commutator and to 〈0| R̂i(t+ τ) in the correlator.
The master equation therefore amounts to the sum of all such processes happening within
the reservoir’s typical relaxation time τ . τR.



I. Adiabatic elimination of a generic extended reservoir 41

ŝj(ωα) ŝ†i (ωα)
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t

j i
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Figure 2.2: Schematic representation of the leading scattering processes involved
in the master equation (2.7). At time t− τ , an excitation of energy ωα is absorbed
into the reservoir at site j under the action of the interaction Hamiltonian, thereby
inducing a transition between two system energy levels ωi → ωf such that ωf−ωi =
−ωα. The excitation propagates through the reservoir and is either dissipated
or scattered back into the system at site j at some later time t. The former is
responsible for dissipation whereas the latter preserves the energy of the system
and yields a nonlocal Lamb shift.

We shall now assume the reservoir fluctuations to decay much faster than the typ-
ical relaxation of the system (Markovian approximation) and, for consistency, that the
system was weakly coupled to its own local environment2 so that λ2exp(LSτR)ρ̂S ≈
λ2exp(−iK[ĤS]τR)ρ̂S, where K[Ĥ]ρ̂ := [Ĥ, ρ̂]. Within this second approximation, one
gets

∂tρ̂S(t) = −i
[
ĤS, ρ̂S(t)

]
− λ2∑

ij

∫
R+

dτ
{
Gij(τ)

[
Ŝi, e

−iĤSτ Ŝje
+iĤSτ ρ̂S(t)

)]
+ H.c.

}
. (2.9)

By now using the decomposition Ŝi = ∑
α ŝi(ωα) and performing the secular approxima-

tion introduced in Sec. I.3, one finally gets

∂tρ̂S(t) = −i
[
ĤS, ρ̂S(t)

]
−
∑
i,j,α

{
S(α)
ij

[
ŝ†i (ωα), [ŝj(ωα)ρ̂S(t)]

]
+ H.c.

}
, (2.10)

with the two-point reservoir spectrum S(α)
ij := Sij(ωα) = λ2 ∫

R+
Gij(τ)eiωατ . Contrary to

the local-reservoir case, its Lindblad form is not yet explicit at this point. This can be
achieved by identifying the Hermitian and anti-Hermitian components of the reservoir
spectrum at ωα: 1

2Γ(α) = (S(α) + S(α)†)/2 and Ω(α) = (S(α) − S(α)†)/2i, respectively. The
final dissipation rates follow from the diagonalisation of the former, as given by

diag(Γ(α)
1 ,Γ(α)

2 , . . .) = U(α)Γ(α)U(α)†, (2.11)
2This condition may be relaxed by expanding the system operators in the eigenbasis of the system’s

full adjoint Liouvillian L†S instead of solely iK[ĤS], where K[Ĥ]ρ̂ := [Ĥ, ρ̂].
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where U(α) is the diagonalising unitary matrix; the Lamb shift directly follows from the
latter. Finally, Eq. (2.10) simply becomes:

∂tρ̂S(t) = −i
[
ĤS +∑

ijαΩ(α)
ij ŝ
†
i (ωα)ŝj(ωα), ρ̂S(t)

]
+
∑
k,α

Γ(α)
k D[∑jU

(α)
kj ŝj(ωα)]ρ̂S(t). (2.12)

The effective dynamics induced by a generic lattice reservoir is therefore completely
determined by the spectral matrix S(α)(ω) evaluated at the angular frequencies of the
system’s transitions. This quantity depends solely on the correlation function (2.8), which
can be easily computed exactly for any choice of reservoir operator R̂i in the interaction
Hamiltonian, thanks to the state of the reservoir being Gaussian and to the quantum
regression theorem [99, 176–178]. Furthermore, one may note that, to second order in the
fluctuations, the only terms in the expansion of R̂i whose correlation functions are not
strictly equal to zero are those of zeroth and first order in reservoir fluctuation operators.
The most generic non-trivial coupling operator is thus of the form R̂i = t?i âi + tiâ

†
i ≡

[T†Â]i, with T = [ Θ
Θ? ], where Θ = diag(t1, t2, . . .). Then S(α) depends linearly on the

covariance matrix
C(τ ≥ 0) = 〈Â(τ)Â†(0)〉 = e−iBτC(0), (2.13)

where B = H − iK/2, with K = diag(κ1, . . . , κ1, . . .), is the Bogoliubov operator, that
generates the dynamics of the reservoir excitations according to a Bogoliubov-like equation
i∂tÂ = BÂ; and C(0) = [ 1 0

0 0 ] is the covariance matrix of the vacuum stemming from the
canonical commutation relations. Then, one finally obtains, in all generality:

S(α) = λ2T†
iC(0)

ωα1−B
T. (2.14)

This last Equation (2.14) together with Equations (2.11) to (2.12) are the main result
of the chapter. They describe the dynamics induced by the quantum fluctuations of any
generic driven-dissipative possibly nonlinear spatially extended reservoir around some
of its Gaussian equilibrium states. Remarkably, no assumption other than the usual
Born, Markov and no-backaction approximations was required in the derivation. Another
striking finding is that the effective dynamics induced by such a reservoir is of genuine
quantum origin. Indeed, it originates from the possibility for the various modes of the
system to exchange energy via travelling virtual excitations of the reservoir. This can
be seen explicitly in Eq. (2.14), where S(α) crucially depends on the contribution of the
canonical non-commutativity of bosonic operators to the vacuum covariance C(0), which
would otherwise be zero for a reservoir at zero temperature as was here considered.

Let us now examine more in details the general master equation (2.12). The reservoir
is responsible for the emergence of both new coherent terms in the Hamiltonian and new
dissipators. While this is reminiscent of the reduced dynamics of a system in contact
with a local reservoir, as described by Eq. (1.59), some notable differences exist. Indeed,
contrary to the case of a local reservoir, the coherent contribution does not merely take
the form of a Lamb shift, and instead may couple distant system modes. Furthermore,
off-diagonal elements of the form Ω(α)

ij may be complex, accounting for the phase that
may be picked up by a system’s excitation quantum travelling from site j to i via the
reservoir. This opens up an avenue for the design of complex couplings between system
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modes, whether they be of bosonic nature or not, allowing for the flexible construction of
effective lattice models with high connectivity. The new dissipators stemming from the
presence of the reservoir have peculiar properties as well; they are nonlocal in the system
operators ŝi(ωα). This has strong consequences on the effective dynamics. Indeed, this
may lead to a breaking of the reciprocity of the system [179–181] and induce directional
currents between system’s modes, as will be investigated in the Chapter 3.

As clearly appears in Eq. (2.14), the range p of the effective interactions and the
amount of nonlocality in the dissipative dynamics is related to the magnitude of S(α)

i,i+p
and thus to the correlation length of the reservoir ξc. To illustrate this, let us consider
some generic one-dimensional extended reservoir bearing the form of an homogeneous
chain of driven-dissipative bosonic modes with a tunnelling rate of −J , a drive’s detuning
of ∆ and a dissipation rate of κ. In this simple example, the Bogoliubov operator is
tridiagonal and can be explicitly inverted [182]. Then, |S(α)

i,i+p| ∼ (J/2)p/|∆ + ωα − iκ/2|p,
for J < κ. Upon tuning the external drive to match some system transition ωα, one has
|S(α)
i,i+p| ∼ exp(−p/ξc), with ξc = 1/ ln(κ/J), that is the range of the effective interactions

exactly corresponds to the system’s correlation length.

I.2 Continuous extended reservoirs
The same procedure can be applied to continuous reservoirs. Let us consider the case of
some bosonic field âr confined into some finite volume V . This could be, for instance, a
polariton condensate as described in [13]. By performing the same displacement trans-
formation as that introduced in the previous subsection, one gets that the most general
master equation for the quantum fluctuations of the reservoir is of the form

ĤR =
∫
V

drdr′Â†rHrr′Âr′ , DRρ̂R =
∫
V

drκrâr, (2.15)

where the modes Âr = (âr, â†r), satisfy some Bogoliubov dynamical equation i∂tÂr =∫
V dr′Brr′Âr′ [13], where the Bogoliubov operator Brr′ = Hrr′ − i

[
κr/2 0

0 κr/2

]
δ(r − r′) typ-

ically carries some dependence on the mean fields accounting for the nonlinearity of the
reservoir. Just as before, the system is then locally put in contact with these degrees of
freedom via an interaction Hamiltonian of the form

ĤI = λ
∑
i

R̂(ri)⊗ Ŝi, (2.16)

where R̂(ri) = t?i âri + tiâ
†
ri
≡ T †iÂ, with now T i =

[
ti
t?i

]
.

Under the above-discussed approximations, the system’s effective master equation is
identical to that of the previous subsection, Eq. (2.12), except for the expression of the
reservoir spectrum S(α)

ij =
∫

R+
dτeiωαGrirj(τ), that instead takes the following form

S(α)
ij = λ2

V
∑
k,k′
t†i
ic(0)φ?k(ri)φk′(rj)

ωα1−Bkk′
tj. (2.17)

where c(0) = [ 1 0
0 0 ], Bkk′ =

∫
V drdr′φk(r)Br,r′φ

?
k′(r′), and {φk}k denotes any complete

basis of L2(V) that satisfies the boundary conditions imposed by the original Hamiltonian
and the normalisation condition

∫
V drφ?k(r)φk′(r) = Vδk,k′ .

This further highlights the generality of the master equation (2.12).
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II The quantum Langevin approach to extended reser-
voirs

The above results were derived within the framework of the Lindblad master equation.
Even though this Liouvillian approach will be preferred throughout this manuscript, in
some contexts, however, an alternative and equivalent approach, the quantum Langevin
equation, may be more suitable or customary. This is especially true when dealing with
Gaussian or close-to-Gaussian models, such as those usually encountered in the field of
optomechanics. For reference, we shall here briefly address how our results translate into
this alternative picture.

The quantum Langevin equation

In the derivation of the optical master equation (1.42) in Sec. II.2, we obtained the re-
duced dynamical equation of the system by tracing out the bath. The quantum Langevin
approach instead integrates explicitly the (linear) equations of motion of the bath op-
erators and then substitutes the resulting expressions into the Heisenberg equation of
the system operators. Upon neglecting the backaction of the system on the equilibrium
state of the bath, the resulting interaction term in the equation of motion of the sys-
tem operators bears the form of a fluctuating force and the fate of the system becomes
completely determined by its two-point correlation function. Under similar Markovian
assumptions as those used in the derivation of the optical master equation, the fluctu-
ating force becomes delta-correlated and behaves as an operator-valued random variable
whose covariance only depends on the equilibrium state of the bath ρ̂B. The Heisenberg
motion of the system can then be described as a stochastic differential equation driven
by this fluctuating random force.

A detailed presentation of the theory behind the quantum Langevin equation approach
can be found elsewhere [178, 183]. Let us simply recall that, in this picture, a generic
thermal master equation in Lindblad form, as defined by the Liouville equation

∂tρ̂S = Lρ̂S = −i[ĤS, ρ̂S] + γ
{

(N̄ + 1)D[L̂]ρ̂S + N̄D[L̂†]ρ̂S
}
, (2.18)

and parametrised by some Lindblad operator L̂ acting on the system, translates into the
following Heisenberg stochastic dynamics for any given system operator Ô [183]

∂tÔ = L†Ô −
[
ξ̂†L̂− ξ̂L̂†, Ô

]
, (2.19)

where the noise operator satisfies bosonic statistics

〈ξ̂(t)〉B = 0, 〈ξ̂†(t)ξ̂(t′)〉B = γN̄δ(t− t′), 〈[ξ̂(t), ξ̂†(t′)]〉B = γδ(t− t′), (2.20)

with 〈{. . .}〉B ≡ trB[ρ̂B{. . .}]; and where the adjoint Liouvillian denotes the superoperator
such that Tr[ÔLρ̂] = Tr[ρ̂L†Ô] [99].
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Local thermal bath

For instance, for a bosonic site b̂, of Hamiltonian ĤS = ωb̂†b̂, in contact with a thermal
reservoir, L̂ = b̂, this leads to a simple Ornstein-Uhlenbeck process:

∂tb̂ = −(iω + γ/2)b̂+ ξ̂ ⇔ b̂(t) =
∫ t

−∞
dt′e−(iω+γ/2)(t−t′)ξ̂(t′), (2.21)

where the time at which the bath was put in contact with the system was taken in the
remote past t0 → −∞, for simplicity. Then, one has indeed that〈b̂†(t)b̂(t)〉B =

∫
R+

dτdτ ′e(iω−γ/2)τe−(iω+γ/2)τ ′〈ξ̂†(t− τ)ξ̂(t− τ ′)〉B = N̄ ,

〈[b̂(t), b̂†(t)]〉B =
∫
R+

dτdτ ′e−(iω+γ/2)τe(iω−γ/2)τ ′〈[ξ̂(t− τ), ξ̂†(t− τ ′)]〉B = 1.
(2.22)

As just appeared, the quantum noise is essential to capture the thermal population of
the bosonic site as well as to preserve the correct canonical commutation relations at any
time.

Extended reservoirs

Let us now consider the case of a lattice of bosonic sites all in contact with their respective
local thermal baths and with a common extended reservoir. The system is described by a
set of annihilation operators {b̂i}i. As we just saw, in the absence of extended reservoir,
the system is originally described by the following system of quantum Langevin equations

∂tb̂i = i
[
Ĥ, b̂i

]
− γi

2 b̂i + ξ̂i, (2.23)

where

〈ξ̂i(t)〉B = 0, 〈ξ̂†i (t)ξ̂j(t′)〉B = γN̄iδi,jδ(t− t′), 〈[ξ̂i(t), ξ̂†j (t′)]〉B = γδi,jδ(t− t′). (2.24)

We now couple this system to an extended reservoir as described by Eq. (2.12). To
simplify matters, we shall here treat only the case of a linear coupling to the reservoir, as
described by the following effective Liouvillian:

LERρ̂ = −i
[∑

ij(Ω(+)
ij + Ω(−)

ji )b̂†i b̂j, ρ̂
]

+
∑
k

(
Γ(+)
k D[∑jU

(+)
kj b̂j]ρ̂+ Γ(−)

k D[∑jU
(−)
kj b̂

†
j]ρ̂
)
, (2.25)

where Ω(±)
ij are two effective coherent reservoir-mediated hopping rates associated to col-

lective Stokes (−) and anti-Stokes (+) processes and Γ(±)
k the rates of the corresponding

incoherent processes. The latter as well as the unitary matrices U(±) follow from the above-
introduced eigendecomposition of the Hermitian matrices Γ(±) = U(±)† diag(Γ(±)

1 , . . .)U(±).
This Liouvillian translates into the following quantum Langevin equation for the system
modes:

∂tb̂ = i
[
Ĥ, b̂

]
− i(Ω(+) + Ω(−)T )b̂− 1

2Γb̂+ ξ̂, (2.26)

with now non-local dissipation rates

Γ = Γ(↑) − Γ(↓)T , Γ(↑)
ij = δi,jγiN̄i + Γ(−)

ij , Γ(↓)
ij = δi,jγi(N̄i + 1) + Γ(+)

ij , (2.27)
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and spatially correlated quantum noise. By introducing Ξ̂ =
[
ξ̂

ξ̂
†

]
, the noise is now char-

acterised by the following covariance matrix

〈Ξ̂(t)Ξ̂†(t′)〉ER = Γ
[
σ̄ 0
0 σ̄ + 1

]
δ(t− t′), (2.28)

where σ̄ = Γ−1Γ(↑), σ̄+1 = Γ−1Γ(↓). This bears a striking resemblance with the covariance
matrix of the noise operators of a local thermal bath as in Eq. (2.20):〈[

ξ̂†(t)ξ̂(t′) ξ̂(t)ξ̂(t′)
ξ̂†(t)ξ̂†(t′) ξ̂(t)ξ̂†(t′)

]〉
B

= γ

[
N̄ 0
0 N̄ + 1

]
δ(t− t′). (2.29)

In fact, σ̄ indeed corresponds to a thermal population towards which the system relaxes.
By considering an arbitrary non-squeezing quadratic Hamiltonian Ĥ = B̂

†
HB̂, where

B̂ =
[
b̂

b̂
†

]
, one finds3:

〈B̂(t)B̂†(t)〉R =
∫
R+

dτdτ ′e−(iH̃+Γ/2)τ 〈Ξ̂(t− τ)Ξ̂†(t− τ ′)〉BRe
−(iH̃+Γ/2)τ ′

=
[
Γ−1Γ(↑) 0

0 Γ−1Γ(↓)

]
≡
[
σ̄ 0
0 σ̄ + 1

]
. (2.30)

Thus, σ̄ij = 〈b̂†i b̂j〉t→+∞ corresponds to the steady-state single-particle density matrix and
can be obtained analytically as σ̄ = Γ−1Γ(↑), giving access to the steady-state populations
and coherences. This completes the analogy with the single-site thermal bosonic system
case.

The quantum Langevin equation (2.26) together with the covariance (2.28) give an
alternative complete quantum description of the reservoir-induced dynamics of the system.

3The Lamb shift was here absorbed into a redefinition of the Hamiltonian.



3 Permanent circulating heat currents
in rings of optomechanical

resonators

In this chapter, we shall study the effective phonon dynamics in lattices of cavity-coupled
optomechanical resonators whose photonic modes are coherently driven and whose mech-
anical modes are mutually uncoupled and connected to independent thermal baths. This
setup, of experimental relevance, furnishes an ideal playground for testing our theoret-
ical findings on spatially extended reservoirs. Indeed, much in the same way as we did
in the Subsec. I.5 of Chapter 1 when discussing sideband cooling, the light modes can
here be interpreted as playing the role of a fast driven-dissipative reservoir that mediates
the phononic out-of-equilibrium dynamics. By applying the prescription derived in the
Chapter 2 to optomechanical lattices, we will show that it is possible to stabilise sta-
tionary states that exhibit directional heat currents ever flowing through the structure
over arbitrary distance, despite the absence of thermal gradients and of direct coupling
between distinct mechanical resonators.

The chapter is structured as follows. The introductory Section I will give a general
overview of the context of this work. A model describing a set of cavity-coupled op-
tomechanical resonators will then be introduced in Sec. II. In Sec. III, the dynamics of
the system’s mechanical degrees of freedom will be given an effective description. Build-
ing on this reduced picture, permanent circulating heat currents will be identified in the
steady-state of rings of optomechanical resonators, in Sec. IV. The effective analytical
description will be numerically benchmarked in Sec. V, before concluding the chapter in
Sec. VI.

I Introduction
The emergence of persistent currents in many-body systems is closely related to fun-
damental concepts in classical and quantum physics. In classical electrodynamics, any
permanently magnetised object exhibits persistent electronic currents [184]. A conduct-
ing ring in the quantum coherent regime supports a permanent electric current when
pierced by an external magnetic field [185]. When pairing interactions are considered,
a superconductor cooled below its critical temperature displays persistent currents, and
a constant magnetic field builds up through any continuous loop of the material [186].
Systems with nontrivial topology can also give rise to persistent edge currents [187].

These manifestations of persistent currents involve two noticeable ingredients: (i) an
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external gauge field and (ii) the presence of a significant coherence extending over the en-
tire sample [188]. Recently, it was shown that these ingredients are not strictly required,
and that permanent currents in rings can instead be generated by reservoir engineering
[179, 188], where specific many-body quantum states with properties of interest are sta-
bilised [16, 189]. More than a mere source of decoherence, the environment becomes then
a tool to generate correlated phases, sometimes with no equilibrium counterpart [190]. In
this context, the study of systems driven by nonlocal dissipators has emerged, notably in
relation to nonreciprocal behaviours [179]. In several nonreciprocal realisations, a direct
coupling between two bosonic modes was engineered through a common ancillary degree
of freedom [181, 191, 192]. Very recently, the concept of engineered directionality was
theoretically scaled up to extended lattices, by tailoring ancilla-assisted interactions [188,
193–195].

Besides nonreciprocity, the coupling of independent mechanical modes to commonly
shared optical modes was proposed to transport phonons between distant resonators [120],
to model out-of-equilibrium quantum thermodynamics [121], and experimentally imple-
mented to phase-lock adjacent [132] and distant [133, 196] mechanical resonators. Yet,
many aspects of the nonlocal quantum dynamics of extended lattices in optomechanics
remain to be explored.

In the present chapter, we shall analytically study the effective dynamics of origin-
ally independent mechanical resonators coupled to extended lattices of driven-dissipative
optical cavities. By specialising the main result of the previous chapter, Eq. (2.12), to
lattices of optically coupled optomechanical resonators [8, 197], we will obtain the general
effective master equation governing the dynamics of the structure’s thermal phonons and
compare our predictions with a mean-field approach. Upon examining analytically the
steady-state of the model, we will show that, under certain driving conditions, rings of
cavity-coupled optomechanical resonators exhibit persistent whirling currents of thermal
phonons. This heat transport is uniquely mediated by spatially correlated quantum fluctu-
ations of the optical fields, in the absence of any direct mechanical coupling, and triggered
by a proper tuning of the phase of the optical drive. This phenomenon will be shown to
persist when mechanical resonators interact with independent thermal baths, over a wide
range of temperatures. The magnitude of this current will be expressed analytically within
a Born-Markov approximation.

II Model
The system under consideration consists of a network of L optomechanical resonators
whose optical modes are coherently driven by external laser fields. Neighbouring cavit-
ies are optically coupled to one another, while mechanical modes are not. This setting
is experimentally relevant, for instance, when considering an implementation with op-
tomechanical disk resonators, such as those described in Chapter 1. Indeed, each of these
resonators bears two modes of interest, an optical WGM and a mechanical RBM, coupled
through a radiation-pressure-like interaction. While no obvious way of directly coup-
ling the RBMs of distincts disks was yet identified that would preserve their remarkable
mechanical quality factor, the WGMs of neighbouring resonators couple rather naturally.
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Indeed, the periphery of each disk confines much of the electromagnetic field of its whis-
pering gallery modes of high azimutal order. This is accompanied by the presence of an
evanescent field radially propagating outwards at the vicinity of the peripheral boundaries
of the disk. By engineering the disks side by side, the evanescent optical fields of neigh-
bouring cavities hybridise, giving rise to a significant lateral coupling of the considered
WGMs. The same mechanism is exploited in order to couple an external coherent drive
of angular frequency ωp to the disks’ WGMs through a near waveguide [198, 199], that
brings the optomechanical resonator out of equilibrium. Such resonators can be fabric-
ated with ultralow site-to-site disorder [200]. One optomechanical cell is schematically
illustrated in Fig. 3.1 (a).

`−1 â`

F`

`+1

J J

γc

b̂`

g

T`

(a)`+ 1

`
`φ

(`+1)φ

T γc

J

(a) (b)

Figure 3.1: (a) Schematic representation of a single optomechanical cell and its nearest-
neighbour optical couplings. â` (b̂`) is the optical (mechanical) mode of index `. (b) Ring
of optomechanical disk resonators. Each site is optically driven with a phase that varies
as `φ, being ` the site number. Optical modes are coupled while mechanical ones are not.

While in the following we will focus on one-dimensional (1D) chains, we here consider,
for the sake of generality, an arbitrary network where the coupling between adjacent
photonic modes is fully specified by some L × L adjacency matrix A where A``′ = 1 if
the sites ` and `′ are coupled and A``′ = 0 otherwise. In the frame rotating at the driving
frequency ωp, the unitary part of the dynamics is described by the following Hamiltonian
[128]:

Ĥtot =
L∑
`=1

[
−∆`â

†
`â`+F ?

` â`+F`â
†
`−g`â

†
`â`(b̂`+ b̂†`)

]
− J2

L∑
`,`′=1

A``′ â
†
`â`′+

L∑
`=1

Ω(`)
m b̂
†
` b̂`, (3.1)

where â` and b̂` are, respectively, the photonic and phononic annihilation operators of
the `-th resonator, ∆` = ωp − ω(`)

c denotes the detuning of the driving laser frequency
with respect to the local bare cavity frequency ω(`)

c , F` is the (complex) amplitude of the
coherent drive, g` is the optomechanical vacuum coupling rate and J is the hopping rate
between connected optical cavities.

Incoherent processes associated to local photon losses (at a rate κ`) and phonon therm-
alisation with their respective thermal baths (at a rate Γ`) are taken into account by
means of a Lindblad master equation analogous to that obtained in Eq. (1.54) for a single
resonator, which fully determines the system evolution,

∂tρ̂(t) = Ltotρ̂(t) ≡ −i[Ĥtot, ρ̂(t)] +Dtotρ̂(t), (3.2)
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where
Dtotρ̂ =

L∑
`=1

{
Γ`
[
(N̄` + 1)D[b̂`]ρ̂+ N̄`D[b̂†`]ρ̂

]
+ κ`D[â`]ρ̂

}
, (3.3)

with D[L̂]ρ̂ = L̂ρ̂L̂† − 1
2{L̂

†L̂, ρ̂} and N̄` the average number of thermal phonons due
to the `th thermal bath. One here recognises the dissipators previously introduced in
Eqs. (1.42), (1.45) and (1.46).

With the notable exception of ultracold atomic ensembles [201, 202], the bare coupling
rate between the optical field and the mechanical motion is orders of magnitude lower than
that of the optical dissipation. Then, upon driving the optical mode to some stable pop-
ulation of coherent photons, the magnitude of the coupling between photons and thermal
phonons becomes enhanced by a factor

√
Nc ≡ 〈â†â〉1/2 that can be varied by playing on

the amplitude of the driving. One can thus always put oneself into a situation where the
optomechanical coupling is much lower than the typical optical relaxation time, that is
κ� 2gN1/2

c . Under this condition and in a regime where the system is dynamically stable,
as we shall assume in the following, the optical fluctuations are negligibly affected by the
mechanics and the coupled cavities can be regarded as an extended optical reservoir. Such
and optical reservoir possesses particularly suitable features for studying the dynamics in-
duced by the spatially extended reservoirs theoretically introduced in Chapter 2, as we
shall now see.

III Effective description
We aim at describing the effective dynamics of the resonators’ thermal phonons. To
this aim, let us split the fields into their steady-state mean-field values plus zero-mean
fluctuations as â` = α̃`+ĉ` and b̂` = β̃`+d̂`, where ĉ` is the operator associated to photonic
fluctuation quanta at site ` and d̂` that of the thermal phonons thereof. The scalars α̃` and
β̃` are chosen so as to be the steady-state solutions of the mean-field dynamical equations.
That is

F` − ∆̃`α̃` − i
κ`
2 α̃` −

J

2
∑
`′A``′α̃`′ = 0, β̃` = g`|α̃`|2

Ω(`)
m − iΓ`/2

, (3.4)

where ∆̃` ' ∆` + 2g2
` |α̃`|2/Ω(`)

m (for a high mechanical quality factor, see footnote 3)
denotes the nonlinearly shifted detuning of the cavity. Because of this shift of the cavity’s
angular frequency due to the mean mechanical displacement, the system may exhibit
multistability, i.e. Eq. (3.4) may have several solutions.

Outside of the multistable region, the Hamiltonian and the dissipator can be safely
expanded to second order in the fluctuations around the mean fields, yielding

Ĥ ′tot '
L∑
`=1

[
− ∆̃`ĉ

†
` ĉ` −

J

2
∑
`′A``′ ĉ

†
` ĉ`′ + V̂` + Ω(`)

m d̂
†
`d̂`

]
, (3.5)

where now the leading optomechanical interaction is given by V̂` = (G∗` ĉ`+G`ĉ
†
`)(d̂`+ d̂†`),

with G` = g`α̃`, and where a term of order O(gĉ2d̂) was neglected.
As became explicit in this frame, thermal phonons, as represented by d̂`, do not inter-

act with the coherent optical populations and are instead sensitive to the quantum optical
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fluctuations of the cavities, as represented by ĉ`. A second linked observation relates to
the possibility of tuning both the amplitude and the phase of G` via the external driv-
ing. This feature of the linearised optomechanical coupling makes it a powerful tool to
investigate reservoir-induced dynamics and proves crucial in the emergence of permanent
heat currents as we will see below. Finally, one remarks that this specific shift in the
operators exactly cancels all linear (driving) terms in the Hamiltonian while the dissip-
ator remains that of Eq. (3.3) upon substituting â`, b̂` → ĉ`, d̂`. It becomes thus clear
that, in this displaced frame, finite-lived (τc = 1/κ) quantum optical fluctuations are
not externally driven but may enter the reservoir from the mechanics through the now
linear optomechanical coupling (V̂`). Such fluctuation quanta can then travel through the
lattice by tunnelling from cavity to cavity until they are scattered back into some dis-
tant mechanical mode or leak out of the cavities due to optical losses. We will formalise
this intuition hereafter by looking at the reduced dynamics of the mechanical degrees of
freedom.

One has that any excitation entering the optical reservoir rapidly decays, ĉ`(t� τc) ≈
0, and thus that the state of the optical modes remains roughly the identified coherent
state, â`(t � τc) ≈ α̃`. As these optical fluctuations have little memory on timescales
larger than τc, the single-body two-time correlation functions of the optical reservoir decay
in time as those of a thermal bath at T = 0, allowing one to treat it within the Markovian
approximation. Within the Born-Markov approximation, the adiabatic elimination of the
lattice of optical cavities can be performed by applying the general result of Eq. (2.12),
yielding the following effective Hamiltonian and dissipator for the mechanical modes:

Ĥeff
m =

L∑
`=1

Ω(`)
m d̂
†
`d̂` +

L∑
`,`′=1

(Ω(+)
``′ + Ω(−)

`′` )d̂†`d̂`′ , (3.6)

Deff
m ρ̂m =

L∑
`=1

Γ`
(
(N̄` + 1)D[d̂`]ρ̂m + N̄`D[d̂†`]ρ̂m

)
+

L∑
`=1

(
Γ(+)
` D[β̂(↓)

` ]ρ̂m + Γ(−)
` D[β̂(↑)

` ]ρ̂m
)
,

(3.7)

where Ω(±) are the two nonlocal Lamb shifts associated to Stokes (−) and anti-Stokes (+)
collective scattering processes, and Γ(±)

` the corresponding dissipation rates, associated to
nonlocal lowering and raising jump operators β̂(l)

` . As identified in Chapter 2, all of these
are determined by the Hermitian and anti-Hermitian parts of the spectrum S(±) of the
reservoir:

S(±)
``′ = G?

`

[
i1

±Ω(`′)
m 1−B

]
``′
G`′ , (3.8)

with B = −J
2 A− diag({∆̃` + iκ`/2}), and in terms of which

Ω(±) = S(±) − S(±)†

2i ,
Γ(±)

2 = S(±) + S(±)†

2 = U(±)†Diag({Γ(±)
` /2})U(±), (3.9)

where U(±) are the unitary matrices that diagonalise the spectral matrix of the reser-
voir. Finally, the nonlocal jump operators are defined as β̂(↓)

` = ∑L
`′=1 U

(+)
``′ d̂`′ , β̂

(↑)
` =∑L

`′=1 U
(−)
``′ d̂

†
`′ . In this effective description, the lattice of cavities modifies the dynamics

of the mechanical modes by adding coherent phonon-hopping processes between previ-
ously uncoupled mechanical modes and acting as a thermal bath for L extended phononic
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modes {β̂(↓)
` }`, when β̂

(↑)
` = β̂(↓)†

` . Let us note that this last condition is not met in general.
This is in contrast with the reduced mechanical master equation of the single-resonator,
Eq. (1.59), where the jump operators corresponding to optically-induced transitions were
Hermitian conjugates. This has profound implications in the dynamics, as we will later
see.

Cavity-mediated interactions

It follows from Eqs. (3.6) and (3.7) that, as anticipated, originally independent and distant
mechanical modes indeed couple through the optical reservoir. To better understand
the dynamics described by this reduced master equation, let us look at the dynamical
equations of the thermal phonon operators:

i∂td̂` = Ω(`)
m d̂` − i

Γ`
2 d̂` +

∑
`′

(Ω(+)
``′ + Ω(−)

`′` )d̂`′ − i
∑
`′

Γ(+)
``′ − Γ(−)

`′`

2 d̂`′ . (3.10)

From this it becomes clear that Ω(±) and Γ(±)/2 respectively describe the coherent and
incoherent cavity-mediated coupling between distant mechanical resonators, whose index
indicate whether they originate from anti-Stokes (+) or Stokes (−) scattering processes.
We illustrate the dependence of both of these cavity-mediated interactions on the detuning
of the cavities in Fig. 3.2 (a) and Fig. 3.2 (b), for a periodic chain of optomechanical
resonators of length L = 32. Interestingly, one observes that the range and the phase
pattern of the cavity-mediated interactions crucially depends on the extended reservoir’s
parameters: (i) its correlation length, ξc ∼ J/κ; (ii) its intercavity coupling; and (iii)
the detuning of its drive. As briefly sketched in the introduction, two opposite regimes
can be distinguished when discussing reservoir-mediated interactions, that of two-body
interactions through a local ancilla, as in [188]; and that of all-to-all coupling through well-
resolved delocalised modes, as in [120, 121]. One may, by a proper choice of the distance
between disks, design interactions with a desired range. This makes it possible to study
the cavity-mediated dynamics and transport in a setting with varying connectivity, that
interpolates between these two contrasting situations, by simply relying on the correlation
length associated to the finite lifetime of the mediating-photon fluctuations.

In the dynamics of single phonons, as described by the adjoint master equation (3.10),
the presence of the reservoir induces both a coherent and an incoherent effect. This
bears a close resemblance to the single-resonator case, where the former corresponded
to the so-called optical spring effect and the latter to the sideband cooling or heating
of the mechanical degree of freedom. Here, one observes that due to the coupling J
between optical modes of neighbouring cavities, the two sidebands originally located at
∆̃(±) = ±Ωm acquire a finer structure, respectively splitting into L sidebands at ∆̃(±)

kn
=

±Ωm+J cos(kn), with kn = 2πn/L, comprised within angular frequency intervals of width
2J . This is illustrated in Fig. 3.2 (c) and Fig. 3.2 (d), that display the on-site optical spring
and optical dissipation strengths, around the new sidebands. The behaviour of these two
effective quantities is reminiscent from the single-resonator case, as depicted in Fig. 1.4.
This can be explained very simply by looking at the reservoir’s “density of states” DR(ω),
plotted in the top panel. Indeed, it follows from Fermi’s golden rule that the rate at
which a specific single-phonon transition can be induced by the reservoir on the system
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Figure 3.2: (a) Coherent and (b) incoherent coupling between sites ` and ` + p of
a periodic chain of optomechanical resonators as a function of the distance p and
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is proportional to DR(ω = ±Ωm), where ω = +Ωm corresponds to the absorption of one
thermal phonon by the reservoir and ω = −Ωm to the emission of a phonon into the
system. This is indeed what is observed in Fig. 3.2 (d), which closely follows the density
of states of the reservoir.

Cavity-mediated coherent transport

Let us first focus on the coherent effects induced by the reservoir by looking at the cavity-
mediated transport in such a ring. As is well known and may be checked from Fig. 1.4,
the best coherent-to-dissipative ratio is found in the bad-cavity limit κ � Ωm far from
the sidebands. In Fig. 3.3, we simulate the dynamics of a ring of length L = 20, which
is initially perturbed at site ` = 5 upon driving the reservoir far below resonance with
the anti-Stokes sidebands. Here, each site of the ring is initially prepared in a thermal
state containing N̄ = 100 thermal phonons, at equilibrium with its local thermal bath.
At t = 0, the fifth site is set out-of-equilibrium by the addition of 200 supplementary
phonons. Upon time evolution, one indeed observes the coherent diffusion of the thermal
population imbalance due to scattering through the reservoir.

The parity-broken optomechanical ring

As we just saw, the resonators’ cavities can indeed mediate reciprocal particle transport.
We now exploit the effective description derived above to study the emergence of per-
sistent directional heat currents in such rings. So far, we have discussed the case of a
homogeneous ring with identical parameters at every site. Such a lattice is parity sym-
metric, that is symmetric upon a spatial point reflection ` 7→ −`. For the ring to exhibit
directional currents, this parity must be broken. One may think of the common example
of a conducting spire, whose electron diffusion becomes directionally biased as the parity is
broken by the presence of a magnetic field piercing through the loop. This symmetry can
be broken either explicitly or spontaneously, we shall break it explicitly while preserving
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space-translational symmetry. To this aim, the cavities are driven individually with the
same intensity but with a site-dependent phase such that |F`| = F and Arg(F`) = `φ
with φ = 2πn/L and n ∈ Z, which creates a homogeneous phase gradient around the
ring. This situation is schematically illustrated in Fig. 3.1 (b). A similar strategy has
been adopted in Ref. [203] with optomechanical crystals where optical and mechanical
modes are strongly hybridised and neighbouring mechanical modes are directly coupled.
Following Eqs. (3.6) and (3.7), the unitary part of the mechanical effective dynamics is
governed by

Ĥeff
m =

∑
`

(Ωm + J (+)
0 + J (−)

0 )d̂†`d̂` +∑
±
∑
p≥1

J (±)
p

2
∑
`

(
d̂†`+pd̂`e

∓iφ×p + H.c.
)
, (3.11)

where
J (±)
p =

∑
k

eikp

L

|G|2(±Ωm + ∆̃ + J cos k)
(±Ωm + ∆̃ + J cos k)2 + (κ/2)2

(3.12)

is the real-valued amplitude of the effective complex coupling between p-distant modes.
Interestingly, the interaction between distinct mechanical modes now bears a complex
phase such that a phonon scattering between two sites through the reservoir picks up a
phase proportional to the signed distance between the exit and entry sites. Thus, the
reservoir acts as a synthetic gauge field for the thermal phonons. Such engineered syn-
thetic gauge fields [204, 205] have been well studied both theoretically and experimentally
[206, 207] in the context of cold atoms and are connected to the emergence of persistent
currents [208–210]. Coherent effects in Eq. 3.11 emerge in terms of two sets of directional
couplings, respectively noted by ±. This can be understood from second order perturba-
tion theory by examining the two mechanics-to-mechanics scattering processes having fi-
nite overlap 〈f |V̂`+pV̂`|i〉 and preserving the total energy: 〈f |G?

`+pĉ`+pd̂
†
`+p ×G`ĉ

†
`d̂`|i〉 and

〈f |G`+pĉ
†
`+pd̂

†
`+p ×G?

` ĉ`d̂`|i〉. These respectively correspond to scattering events happen-
ing around the anti-Stokes and Stokes resonances. During either process, the transported
phonon picks up opposed phases. Therefore, the magnitude of each of these directional
hopping channels, and thus the net effective flux of phonons, can be adjusted by setting
the drive detuning ∆ closer to either of the two sets of sidebands. This dependence is
complex in general, as shown in Fig. 3.4 for J (+)

p . For this figure, as for all the following
ones, parameters are L = 8, φ = 2π/L, |α̃|2 = 100, g/Ωm = 2× 10−3, κ/Ωm = 1× 10−1,
Γm/Ωm = 1× 10−3, and N̄ = 100.

The incoherent part of the effective dynamics now reads:

Deff
m ρ̂m =

L∑
`=1

Γm
(
(N̄ + 1)D[d̂`]ρ̂m + N̄D[d̂†`]ρ̂m

)
+
∑
k

(
Γk(+Ωm)D[d̃k]ρ̂m + Γk(−Ωm)D[d̃†−k]ρ̂m

)
. (3.13)

The collective jump operators are given by the Fourier modes d̃k = 1√
L

∑
`e
−ik`d̂` with

k ∈ {n×2π/L}L−1
n=0 and are responsible for dissipation taking place in the reciprocal space

at a rate
Γk(ω) = |G|2κ

(ω + J cos(k + φ) + ∆̃)2 + (κ/2)2
. (3.14)



56 Chapter 3. Permanent circulating heat currents in rings of optomechanical resonators

−π −φ 0 +φ +π
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Γ
±
k
(±

Ω
m

)/
2
×
κ
/|G
|2

J/κ = 0 J/κ = 1/6 J/κ = 1/3 J/κ = 1 J/κ = 8

Figure 3.5: Gain Γ−k(−Ωm) (dashed) and loss Γk(+Ωm) rates induced by the engineered
reservoir for various J/κ. ∆̃ = +Ωm − J for the gain rate and ∆̃ = −Ωm − J for the loss
rate. Here L = 8, the rest of parameters are given in the text.

Just as in the homogeneous case, our system has L Stokes sidebands at ∆̃(−)
k = Ωm −

J cos(k − φ) and L anti-Stokes sidebands at ∆̃(+)
k = −Ωm − J cos(k − φ), that can be

employed to respectively amplify or cool down collective mechanical modes. As appears
in Eq. (3.13), to any given pair of reservoir resonances ∆̃(±)

k , correspond an anti-Stokes
process at wavevector k and a Stokes process at wavevector −k. In Fig. 3.5 we show
the k-space asymmetry between the incoherent gain and loss rates for φ 6= 0 around
the lowest Stokes and anti-Stokes sidebands. Therefore, depending on the detuning, the
engineered optical reservoir acts onto the system by either absorbing collective excitations
with pseudomomentum k ∼ −φ (jump operator d̃k) or creating excitations with opposite
momentum k ∼ +φ (jump operator d̃†−k). Let us stress that this is not the result of
the optical driving being at resonance with any particular k mode as it holds when the
dissipation rate is of the order of the width of the optical lattice’s spectrum (J ∼ κ). In
such a regime, the concept of resonance has no longer any operative meaning.

Let us now investigate the steady state properties of this effective model by diag-
onalising the Liouvillian in the Fourier normal-mode basis as Ĥeff

m = ∑
kΩkd̃

†
kd̃k and

Deff
m ρ̂m = ∑

k

(
Γ(↓)
k D[d̃k]ρ̂m + Γ(↑)

k D[d̃†k]ρ̂m
)
, with

Ωk = Ωm +∑
±
|G|2(±Ωm + ∆̃ + J cos(k ± φ))

(±Ωm + ∆̃ + J cos(k ± φ))2 + (κ/2)2
, (3.15)

Γ(↓)
k = Γm(N̄ + 1) + Γk(+Ωm) , Γ(↑)

k = ΓmN̄ + Γ−k(−Ωm). (3.16)

Both the unitary and the dissipative parts of the Liouvillian are no longer even in k space
for finite φ, as a result of having explicitly broken the parity symmetry of the coupling
to the reservoir. The unitary effect is illustrated in Fig. 3.6 (a). As the phase gradient
φ is chosen finite, the dispersion relation of the normal lattice-modes acquires a Lamb
frequency shift centered around k = ∓φ close to either sidebands. In particular, we show
in Fig. 3.6 (b) the dispersion relation when the driving laser is operated around the lowest
anti-Stokes sideband (∆̃ = −J − Ωm − κ/2). This shows that the ground state of the
system has a finite momentum kGS = −φ and that it is located at the maximum of the
sideband cooling effect. While this has strong consequences in the transport properties of



IV. Discussion 57

−π −φ 0 +π

k

−2

−1

0

1

2

∆̃
/Ω

m

Ωk − Ωm

−π −φ 0 +π

k

−1.0

−0.5

0.0

0.5

1.0

U
n

it
s

of
|G
|2 /
κ

Γk(+Ωm)− Γ−k(−Ωm)

2

Ωk − Ωm

J/κ = 1/6

J/κ = 1/3

J/κ = 1

J/κ = 8

2
J

−
Ω

m
+

Ω
m

(a) (b)
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closed systems, here the fate of the system is completely ruled by the strong dissipative
effects occurring therein. The steady state of the mechanical part reads:

ρ̂ss =
⊗
k

e−βkΩkd̃†kd̃k

1− e−βkΩk
, Tk = Ωk

log
(
Γ(↓)
k /Γ

(↑)
k

) . (3.17)

From this, any operator can be evaluated. In particular, the steady-state thermal-phonon
occupations are given by the Planck distribution:

〈d̃†kd̃k〉ss = 1
eβkΩk − 1 = Γ(↑)

k

Γ(↓)
k − Γ(↑)

k

. (3.18)

IV Discussion
The phase gradient of the drive yields a permanent directional heat flow around the ring
of disks. Indeed, the continuity equation satisfied by the phonon number operator,

i[Ĥeff
m , d̂

†
`d̂`] = −

∑
p

(̂`→`−p + ̂`→`+p), (3.19)

with
̂`→`+p = −∑±J (±)

p

2i (d̂†`+pd̂`e∓iφp − H.c.), (3.20)

induces the following definition for a net circulating-current operator for the thermal
phonons:

̂C =
L∑
`=1

∑
p≥1

̂`→`+p = −
∑
k

∑
p≥1

∑
±
J (±)
p sin(p(k ± φ))d̃†kd̃k. (3.21)
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This includes all contributions corresponding to phonons flowing in one sense by jumps
between p-distant sites. The expectation value of this operator can be experimentally
determined by measuring the thermal populations 〈d̃†kd̃k〉, for example, from the L side-
bands in the mechanical noise spectrum measured at the output of some local resonator.
In optomechanical disk resonators, a secondary optical mode, such as a higher-order whis-
pering gallery mode of the disk, could be used for that purpose. For our effective model,
we get:

〈̂C〉ss = −
∑
k

∑
p≥1

∑
±J

(±)
p sin(p(k ± φ))

Γ(↓)
k /Γ

(↑)
k − 1

. (3.22)

The net permanent heat current whirling around the ring is thus simply QC = Ωm〈̂C〉ss.
The amount of this heat transported over a phonon lifetime is shown in single-phonon
energy units in Fig. 3.7 as a function of ∆̃/Ωm and J/κ. Its sign (propagation direction)
crucially depends on the detuning. Indeed, as occurred with the local optical spring ef-
fect, the cavity-mediated coupling changes sign when crossing a sideband. Regions in
gray correspond to sets of parameters for which the system is unstable. This includes the
emergence of bistability in the optical reservoir and the dynamical instability of the mech-
anics close to the Stokes sidebands, wherever the overall gain Γ(↑)

k exceeds the dissipation
Γ(↓)
k at any of the mechanical modes.
In Fig. 3.8 (a), we show the behaviour of each contribution Q`→`+p = Ωm

∑
`〈̂`→`+p〉 to

the total flow as a function of J when the detuning ∆̃ is adjusted to follow its maximum
(dash-dotted line of Fig. 3.7). Interestingly, QC is nonmonotonic in J/κ. For J . κ,
optical fluctuation quanta mediating the heat transport are short lived (τc . 1/J) and
are thus destroyed before reaching sites farther than their nearest neighbours. This implies
that the only sizeable contribution is that flowing by local steps in the clockwise direction.
Conversely, for J & κ, optical fluctuation quanta can be scattered farther across the
optical lattice before being destroyed by the cavity losses and the permanent heat flow is
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Figure 3.8: (a) Contributions
Q`→`+p = Ωm

∑
`〈̂`→`+p〉 and

net directional heat flow QC =∑
p≥1Q`→`+p along the dash-dotted

line of Fig. 3.7 as predicted by
our effective theory (lines) and
mean field (circles). (b) Sketch
of the two leading contributions
in (a). (c) Gradual triggering
of off-diagonal coherence g
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Figure 3.9: Imaginary part of the steady-state single-particle density matrix predicted
by the effective theory as given by Eq. 3.24 for L = 8, φ = 2 × 2π/L, |α̃|2 = 100,
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J/κ = 1 (a) and J/κ = 5 (b). Relative errors δ are 1.0 % (a) and 0.7 % (b). (c) δ as a
function of the effective optomechanical coupling and the intercavity coupling for L = 8,
φ = 2π/L, |α̃|2 = 100, ∆̃ = −J − Ωm − κ/2, κ/Ωm = 1× 10−1, Γm/Ωm = 1× 10−3 and
N̄ = 100. δ ≥ 5 % in the dashed region. (d) Relative error δ associated to the Fig. 3.7.

supported on supplementary directed graphs (see Fig. 3.8 (b)). In this case, a nonlocal
anticlockwise flow contributes to the nonmonotonic dependence on J/κ of the net current.
Fig. 3.8 (c) shows how longer-range correlations get gradually triggered as the J/κ ratio
is increased following the lowest anti-Stokes sideband (see arrow in Figure 3.7).
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V Benchmarking the effective description
In order to benchmark our effective description, we compute the exact steady-state covari-
ance matrix of both optical and mechanical fluctuations for the linearised model described
by Eq. (3.5) and extract the exact mean-field single-particle density matrix σ``′ = 〈d̂†`d̂`′〉ss
as given by:

σMF
`,`′ = lim

t→+∞

〈
φ̂ φ̂

†〉
L+`,L+`′

, (3.23)

where φ̂ = [ĉ1, . . . , d̂1, . . . , ĉ
†
1, . . . , d̂

†
1, . . .]T , and compare it to the single-particle density

matrix of the effective description, as explicitly given by

σeff
``′ = 1

L

∑
k

e−ik(`−`′)

Γ(↓)
k /Γ

(↑)
k − 1

, (3.24)

by computing the error δ = ‖σeff − σMF‖2/‖(σeff + σMF)/2‖2.
As shown in Fig. 3.8 (a), Fig. 3.8 (a), and Fig. 3.9, the analytical results obtained from

the effective theory match well the numerical solution of the linearised dynamics in a wide
regime of parameters.

VI Conclusion
We have studied the emergence of spatial correlations and permanent directional heat
currents across lattices of optomechanical resonators whose mechanical modes are origin-
ally uncoupled. In the above picture, quantum fluctuations of the optical fields mediate
effective long-range interactions between mechanical sites of both coherent and dissipative
nature, whose range is tunable via the correlation length of the reservoir. A remarkable
feature is the possibility to flow arbitrary phonon streams in directions and topologies that
seem to contradict common thermodynamic intuition, for example, a permanent phonon
heat flow can be generated in the absence of thermal gradient.

More generally, this investigation provides a clear instance of a broader class of physical
situations for which a weak coupling to an extended reservoir suffices to alter dramatically
the fate of an initially trivial set of independent modes. The effective description presented
here introduces an analytical tool for understanding quantum systems interacting via
extended close-to-Markovian reservoirs, a realm yet to be fully explored.

The results of this chapter are contained in Ref. [α].



4 Numerical methods for tackling
nonlocal dissipation

As we have seen throughout Chapters 2 and 3, the study of the dynamics induced by
spatially extended reservoirs involves integrating a master equation with nonlocal jump
operators. In this chapter, we will review a few of the most natural ways to address this
problem from a numerical perspective. The theoretical investigation of such systems can
be approached in a number of ways with varying degree of complexity, from a purely mean-
field level to a fully quantum picture, and so can their numerical simulation. The structure
of this chapter follows this progression. Sec. I will give an overview of the efforts that have
been put forward to overcome the challenges of simulating open quantum systems. These
difficulties will then be briefly sketched in Sec. II. In Sec. III and IV, we will adapt standard
mean-field approaches and the semiclassical truncated Wigner technique, respectively, to
the presence of nonlocal dissipation. Finally, the Monte Carlo wave function approach
will be introduced in Sec. V. The discussion of this method will serve as a link with the
Chapter 5, devoted to the study of the dynamical corner-space method, whose operating
principle will be related to the latter.

I Introduction
The simulation of extended closed quantum many-body systems on a classical computer
remains in general a quite complex problem as a result of the size of the Hilbert space
growing exponentially with the number of subsystems. This difficulty is all the more
challenging in the case of open quantum systems [211]. Indeed, the latter are described
by a density matrix whose number of elements scales as the square of the number of
components of a pure state vector. This object typically being a dense matrix, the sim-
ulation of open quantum systems can quickly become extremely demanding in terms of
RAM. Moreover, as opposed to the Hamiltonian that generates the unitary dynamics of
closed quantum systems, the master equation is driven by a non-Hermitian Liouvillian
superoperator, which further increases the computational complexity of the simulations.
All this poses severe bounds on the maximum size of the open quantum systems that may
be practically simulated by brute-force methods.

This has encouraged a considerable amount of works aimed at developing new al-
gorithms to overcome these limitations. In the past, mean-field methods have proven
very effective in the study of Bose-Einstein condensates [212–214], the phase-diagram in-
vestigation of correlated systems [215–218] and the simulation of quantum fluids [13, 219].
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Close-to-mean-field techniques such as truncated correlation hierarchies [220–223], linked
cluster expansions [224], cluster mean field [190, 225], cluster Gutzwiller [226, 227], trun-
cated phase-space representations [228–231] or Gaussian trajectories [232, 233] have been
investigated in boson and spin models. Methods able to capture, at least asymptotically,
arbitrary degrees of quantum correlations have also been proposed, by exactly reducing
the dimensionality of the problem exploiting exact symmetries of the system [234], by
stochastic methods such as Monte Carlo wave function [235–241] and real-time full config-
uration interaction Monte Carlo [242], or by the corner-space renormalisation method [44–
48], recently extended to real-time simulations [γ]. Finally, variational methods [28] have
recently furthered the investigation of large open quantum systems by reducing the com-
plexity of simulations to a polynomial scaling in the size of the system by efficiently
representing their states with parametrised variational ansätze. This was achieved with a
wide variety of ansätze, such as matrix-product states [29], tensor networks for Markovian
environments [30–35] and beyond [36], and, more recently, neural-network architectures
such as restricted Boltzmann machines [37–41] or autoregressive models [41].

II The Lindblad master equation

II.1 Direct picture
As already introduced in previous chapters, the Lindblad master equation that describes
the dynamics of an open quantum a system in contact with its environment bears the
form

∂tρ̂ = Lρ̂ = −i[Ĥ, ρ̂] +
∑
k

γkD[L̂k]ρ̂, (4.1)

where the Liouville superoperator L acts as the generator of the dynamics and is para-
metrised by a Hamiltonian operator Ĥ, that drives the coherent dynamics of the system,
and a set of superoperatorial dissipators D[L̂]ρ̂ = L̂ρ̂L̂† − 1

2{L̂
†L̂, ρ̂}, with {L̂k}k a set of

Lindblad jump operators and {γk}k their associated rates.

Time evolution

For finite-dimensional Hilbert spaces of dimension N , this linear ordinary differential
equation (ODE) can be numerically integrated by giving all involved operators a N ×N
matrix representation. In particular, for a system made of L n-dimensional identical
subsystems, for instance spins 1/2 (n = 2), the matrix is characterised by N2 = n2L real
scalars1. This scales as the square of the number components of a pure state vector. This
exponential trend poses a limit on the size of the systems that can practically be simulated.
Moreover, while operators Ĥ and {L̂k}k often have very sparse matrix representations, as
they typically involve at most two-site operators, the density matrix is in general dense in
the computational basis, in the absence of any particular symmetry2. This makes brute-
force integration of Eq. (4.1) very demanding in terms of RAM resources, as illustrated in

1Strictly, N2 − 1, due to the constraint on the trace
2A simple counterexample is that of U(1)-symmetric density matrices expressed in the Fock basis.

Indeed, for any operator ρ̂ symmetric under conjugation by Ûϕ ≡ eiϕâ
†â, one has that Tr[ρ̂â†p] =
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Fig. 4.1. By way of comparison, the state vector of a 20-spin-1/2 system weighs only 16
megabytes whereas its density matrix counterpart exceeds the terabyte. Still, for smaller
systems, this can be done by means of standard ODE solvers. In principle, Eq. (4.1) can
be integrated with explicit solvers such as Tsitouras’ order-5/4 Runge-Kutta method [243].
Yet, this ODE can become stiff when dealing with systems exhibiting very different time
scales or at the onset of a first-order phase transition, where the system is in a statistical
mixture of metastable states [244]. In this situation, stiff-stable implicit solvers can be
employed, such as order-2/3 L-stable Rosenbrock-W methods [245], or A-L stable stiffly-
accurate ESDIRK methods with splitting [246]. For most use cases, one can choose
methods that handle well reasonably stiff equations, such as the Dormand-Prince’s order-
5/4 Runge-Kutta method [247], as used by default in the QuantumOptics.jl suite [248],
or auto-switching methods3.
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Figure 4.1: Amount of RAM required to store a dense density matrix of an extended
system as a function of its number of sites. Light red squares correspond to bosonic
sites (top axis), with a local cut-off on the maximum number of excitations per
site of Nmax = 5. Blue circles correspond to spin-1/2 sites (bottom axis). Memory
use is expressed in log scale as powers of 1024 bytes.

Steady state solution

In many applications, one only wants to evaluate the steady state of Eq. (4.1). Time-
evolving the density matrix for long times, while effective, can be very slow, especially
close to a phase transition. Indeed, the long time dynamics of the density matrix, ρ̂(t)−
ρ̂ss ∝ e−Re[λ1]t, is governed by the eigenvalue λ1 of the Liouville superoperator L with
the smallest non-zero real part [250], the steady state being the eigenoperator associated

Tr[Ûϕρ̂â†pÛ†ϕ] = Tr[ρ̂
[
Ûϕâ

†Û†ϕ
]p] = einϕTr[ρ̂â†p], ∀ϕ; in particular, by choosing ϕ = 2π/(p + 1), it

follows that Tr[ρ̂â†p] = 0, ∀p. By now remarking that ρn,n+p = 〈n| ρ̂ |n+ p〉 =
√

n!
(n+p)!Tr[ρ̂â†p |n〉 〈n|]

and that
[
|n〉 〈n| ρ̂, Ûϕ

]
= 0, for ρ̂ U(1)-symmetric, it follows from the first lemma that the density matrix

is diagonal: ρn,n+p = 0, ∀p 6= 0.
3For reference, all these methods may be found under the names of Tsit5, Rosenbrock23, KenCarp4

and DP5, in order of appearance, in the suite DifferentialEquations.jl[249].
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to the zero eigenvalue. At a phase transition, this so-called Liouvillian gap closes in the
thermodynamic limit [244]: Re[λ1] → 0+. One has thus to wait for an asymptotically
long time. An alternative consists in looking for the solution of the linear systemLρ̂ss = 0,

Trρ̂ss = 1.
(4.2)

This corresponds to solving for the eigenproblem Lρ̂ = λρ̂ associated to the eigenoperator
ρ̂ss of L with zero eigenvalue λ = 0. This can be efficiently solved with matrix-free iterative
methods such as BiCGStab(`) [251] or IDR(s) [252, 253] for Hilbert-space sizes typically
below ten thousand states.

II.2 Adjoint picture
We just saw some of the intrinsic difficulties related to the classical simulation of the
quantum master equation. We saw that direct techniques are very limited in the size
of the systems that can be conveniently handled. One simple idea to circumvent the
exponential dimensionality of the density matrix is to focus on the time evolution of the
expectation values of the observables of interest, simple scalars. We shall now address
some of the delicate points that frustrate the scope of this naive approach.

The dynamical equation of any observable Ô is given by the adjoint master equa-
tion [99]

∂t〈Ô〉 = 〈L†Ô〉 =
〈
i[Ĥ, Ô] +

∑
k

γkD†[L̂k]Ô
〉
, (4.3)

where now L† denotes the adjoint Liouville superoperator andD†[L̂]Ô = L̂†ÔL̂−1
2{L̂

†L̂, Ô}
is the adjoint dissipator, with jump operators in the first term permuted with respect to
those in D[L̂].

The Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy

While this seems to solve completely the issues arising from the high dimensionality of
the density matrix, by casting the problem into that of integrating simple scalar fields,
the reality is quite different. Indeed, let us consider as an example the time evolution of
the second-order moments µ(2)

ij = 〈â†i âj〉 of the following many-body toy model:

Ĥ = U

2
∑
i

â†i â
†
i âiâi − J(â†1â2 + â†2â1), (4.4)

with local single-body losses at a rate κ. Here U is the strength of the nonlinearity and
J the hopping rate between the two sites. Eq. (4.3) yields

∂tµ
(2)
ij = +iJ(µ(2)

ı̃j − µ
(2)
ĩ )− κµ(2)

ij − iU(µ(4)
ijjj − µ

(4)
iiij) ≡ f2(µ(4), µ(2)), (4.5)

with 1̃ = 2, 2̃ = 1, and where µ(4)
ijk` = 〈â†i âj â

†
kâ`〉. From this example, one sees that

the system cannot be closed as the nonlinear terms in the adjoint Liouvillian lead to a
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hierarchy of coupled dynamical equations of the form

∂tµ
(2) = f2(µ(4), µ(2)),

...
∂tµ

(n) = fn(µ(n + 2), . . .).
(4.6)

This is known as the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [254–
258]. Nonlinear dissipative processes lead to a similar hierarchy [222].

In order to solve this system of coupled equations, one needs to perform a truncation.
The simplest truncation scheme corresponds to the mean-field approximation4:

µ(4)
ijk` = 〈â†i âj â

†
kâ`〉 ≈ 〈â

†
i âj〉〈â

†
kâ`〉 = µ(2)

ij µ
(2)
k` . (4.7)

This approximation assumes the state of the system is close to Gaussian and that its
moments can be factorised according to Isserlis’ theorem. Truncating next-order moments
instead corresponds to the Bogoliubov back-reaction approximation [259–261]:

µ(6)
ijk`mn = 〈â†i âj â

†
kâ`â

†
mân〉 ≈ µ(4)

ijk`µ
(2)
mn + µ(4)

ijmnµ
(2)
k` + µ(4)

k`mnµ
(2)
ij − 2µ(2)

ij µ
(2)
k`µ

(2)
mn. (4.8)

Higher-order self-consistent truncation schemes can be generated to arbitrary order as
described in Ref. [221].

So far, we have seen that simulating open quantum systems from the time evolution
of a set of observables of interest is generally subtle. We have then seen that this could
be achieved by introducing some simplifying assumptions on the statistics of the density
matrix of the system. We shall now see how these ideas translate to the simulation of
quantum systems in contact with extended reservoirs. We will first start this discussion
from the mean-field level.

III Mean field
Let us consider a bosonic system consisting in a set of sites, described by a set of anni-
hilation operators {âi}i, in contact with an extended Markovian reservoir. This is well
described by a master equation of the form:

∂tρ̂ = −i
[
ĤS, ρ̂

]
+DSρ̂+ LERρ̂, (4.9)

where ĤS and DS are the system’s bare Hamiltonian and dissipator, and LER the Li-
ouvillian describing all the coherent and incoherent processes induced by the extended
reservoir. As identified by Eq. (2.12), the latter is of the following general Lindblad form:

LERρ̂ = −i
[∑

ijαΩ(α)
ij ŝ
†
i (ωα)ŝj(ωα), ρ̂

]
+
∑
k,α

Γ(α)
k D[∑jU

(α)
kj ŝj(ωα)]ρ̂. (4.10)

Here, Ω(α) was a nonlocal Lamb shift, related to the anti-Hermitian part of the two-point
susceptibility of the reservoir S(α). The set of dissipation rates {Γ(α)

k /2}k was obtained as
4Here no squeezing was assumed.
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the eigenvalues of the Hermitian part Γ(α)/2 of this same susceptibility. These rates were
associated to a set of nonlocal jump operators {∑j U

(α)
kj ŝj(ωα)}k, expressed in terms of the

unitary matrix U(α) diagonalising Γ(α)/2. The operator ŝi(ωα) was a ladder operator acting
on the system at site i by inducing a transition ω → ω′ = ω−ωα between two eigenstates
of the system’s bare Hamiltonian. Their specific operatorial expression depends on the
specific reservoir-system coupling Hamiltonian under consideration.

For any system operator of interest Ô, this Liouvillian results into a very simple
dynamical equation:〈

L†ERÔ
〉

=
〈
i
[∑

ijαΩ(α)
ij ŝ
†
i (ωα)ŝj(ωα), Ô

]
+
∑
k,α

Γ(α)
k D†[

∑
jU

(α)
kj ŝj(ωα)]Ô

〉
(4.11)

=
∑
ij,α

〈
i
[
(Ω(α)

ij − iΓ(α)
ij /2)ŝ†i (ωα)ŝj(ωα), Ô

]〉
=
∑
ij,α

〈[
S(α)
ij ŝ

†
i (ωα)ŝj(ωα), Ô

]〉
.

Then, one has that the dynamical equation ruling the time evolution of any system oper-
ator is given by

∂t〈Ô〉 =
〈
i
[
ĤS − i

∑
ij,αS

(α)
ij ŝ

†
i (ωα)ŝj(ωα), Ô

]
+D†SÔ

〉
.

Upon setting the ladder operators corresponding to any particular problem of interest and
replacing Ô by an nth-order moment, this expression has a form suitable for performing,
if necessary, any of the truncation schemes presented above. In particular, by splitting
the moments according to Eq. (4.7), one obtains a set of closed mean-field equations.

III.1 Quantum Langevin equation
In practice, truncation schemes such as those presented above can reveal to be cumbersome
and inflexible. Another mean-field strategy, of wider interest, relies on the Bogoliubov
approximation of the quantum Langevin equation (2.26).

To simplify matters, let us from now on consider the case of a lattice of bosonic sites
linearly coupled to an extended reservoir. As given by Eq. (2.26), this is described by a
quantum Langevin equation of the form

∂tâi = i
[
Ĥ, âi

]
− i

∑
j

(Ωij − iΓij/2)âj + ξ̂i, (4.12)

with Ω a non-local Lamb shift, Γ = Γ(↓) − Γ(↑) a net nonlocal dissipation rate, both de-
pending on the parameters of the reservoir, and {ξ̂i}i a set of spatially correlated quantum
noise operators whose statistical properties were identified in Eq. (2.28) as

〈ξ̂i(t)〉 = 0, 〈[ξ̂i(t), ξ̂†j (t′)]〉 = Γijδ(t− t′), 〈ξ̂†i (t)ξ̂j(t′)〉 = Γ(↑)
ij δ(t− t′). (4.13)

We seek a solution to this system in the form of the Bogoliubov approximation [13]

âi(t) = αi(t) + δâi(t), (4.14)

where αi = 〈αi|âi|αi〉 is a complex field accounting for the coherent part of the state of
the system and δâi = âi−αi is a Gaussian quantum fluctuation operator. The dynamical
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equation for the classical field may be easily obtained by taking the expectation value of
Eq. (4.12) over a coherent-state ansatz |α〉 = |α1, α2, . . .〉 as

∂t 〈α|âi|α〉 = α̇i = i 〈α|
[
Ĥ, âi

]
|α〉 − i

∑
j

(Ωij − iΓij/2)αj. (4.15)

By considering, without loss of generality, a Hamiltonian given as a function of normally
ordered strings of bosonic operators Ĥ = H[â, â†], one finally obtains for the classical
part a possibly nonlinear ordinary differential equation reminiscent of the Gross-Pitaevskii
equation:

α̇i = −i∂α?iH[α,α?]− i
∑
j

(Ωij − iΓij/2)αj. (4.16)

This classical component completely misses the squeezing of the state of the system as well
as its thermal occupation. This is captured by the dynamical equation of the quantum
fluctuation field:

∂tÂ ' −i(H + Ω)Â− Γ/2)Â+ Ξ̂. (4.17)
where Â = (δâ1, . . . , δâ

†
1, . . .)T , Ξ̂ = (ξ̂1, . . . , ξ̂

†
1, . . .)T , and where anharmonicities of order

O(δâ3) were neglected in the Hamiltonian5. This is here expressed in terms of the following
(Hermitian) Hessian matrix:

H =
[

H(I) H(II)

H(II)? H(I)T

]
, H (I)

ij = 1
2∂α

?
i
∂αjH

(0)
R [α,α?], H (II)

ij = ∂α?i ∂α?jH
(0)
R [α,α?]. (4.18)

Equations (4.16) and (4.17) provide a mean-field description of the system that cap-
tures both the coherent and the (possibly squeezed) thermal populations.

III.2 Lyapunov equation
One is often interested in the steady state of the system under consideration. At mean-
field level, it is described by a Gaussian density matrix and thus the expectation values of
all observables may be determined from the two first moments α̃i = 〈âi〉ss and 〈ÂÂ†〉ss.
Both of these may be obtained from the above description.

It follows from Eq. (4.16) that the first can be obtained by solving the possibly non-
linear equation

− i∂α̃?iH[α̃, α̃?]− i
∑
j

(Ωij − iΓij/2)α̃j = 0. (4.19)

This can then be substituted into Eq. (4.18) to obtain the steady-state Hamiltonian H̃ of
the quantum fluctuations. The steady-state solution of the quantum covariance can then
be obtained by setting its time derivative to zero. It follows from Eq. (4.17) that

∂t〈ÂÂ
†〉ss = P〈ÂÂ†〉ss + 〈ÂÂ†〉ssP† + ΓC = 0, (4.20)

where P = −i(H̃ + Ω)− iΓ/2 and ΓC = dt〈Ξ̂Ξ̂
†〉ss, as given by

C =
[
Γ−1Γ(↑) 0

0 Γ−1Γ(↓)

]
. (4.21)

5Notice that the method induces no approximation in the case of a quadratic Liouvillian.
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The form of the Eq. (4.20) is known as the Lyapunov equation and is bound to fundamental
concepts in stability analysis [262]; the negativity of the real part of all eigenvalues of
P provides us with a stability criterion for the system. Then, upon introducing the
Lyapunov superoperator Λ̂X = PX + XP†, the steady-state covariance can be expressed
analytically as follows

〈ÂÂ†〉ss = −Λ̂−1ΓC. (4.22)

In principle, this solution can be obtained by explicitly inverting the Lyapunov superop-
erator in matrix representation. This is convenient for small systems. Another approach
consists in proceeding as we did for determining the steady-state density matrix of a Li-
ouvillian in Eq. (4.2) by solving for Λ̂〈ÂÂ†〉ss = −ΓC via matrix-free iterative methods
such as BiCGStab(`) [251] or IDR(s) [252, 253]. This makes the technique capable of
solving for the steady state of several thousand bosonic sites.

This technique captures all of the quantum features of quadratic open quantum mod-
els. It has thus been extensively exploited to investigate entanglement of multipartite
Gaussian states, notably in the context of optomechanics [79, 263–265], or dynamical
effects beyond the rotating wave approximation [266, 267].

IV Close to mean field
As we have seen this far, the main numerical limitations in the efficient simulation of open
quantum systems stems from the high dimensionality of the objects involved, namely the
density matrix and the Liouvillian superoperator. The reason for this is that their non-
commutativity was encoded into matrix representations whose dimension scales rather
unfortunately with the size of the system. A way around this is the phase-space formula-
tion of quantum mechanics [268]. In this picture, the density matrix can be represented by
a quasi-probability distribution [175, 269–271] with properties reminiscent from classical
statistical mechanics [272, 273]. Accordingly, operators can be expressed as differential
operators and their expectation values take the form of an ensemble mean of a scalar field
over this quasi-probability distribution [274, 275].

IV.1 Phase-space representation
In this subsection, we will give a phase-space description of the density matrix of a bo-
sonic system and show how its master equation may be expressed as a partial differential
equation on a quasi-probability distribution depending on scalar phase-space coordinates.

The density matrix

Let us consider a single quantum (an)harmonic oscillator, as described by bosonic ladder
operators (â, â†). The expectation value of an operator Ô on the (mixed) state of the
system ρ̂, is obtained by the identity

〈Ô〉 = Tr[ρ̂Ô]. (4.23)
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This synthetically encodes both the “classical” ensemble probability, associated to the
uncertainty of the specific realisation of the environment the system evolved in contact
with, and the “quantum” probability, related to the squared modulus of the coherent
components of the wave functions.

Since the seminal work of Wigner [269] in the early thirties, later followed by a set of
pioneering papers [270, 272, 273], there has been a significant number of attempts [175,
271] at theorising the correspondence between the above formalism and that of standard
statistical mechanics. In a series of papers published in 1969 [274, 275], Cahill and Glauber
concluded these efforts in a unified framework. According to this formalism, Eq. (4.23)
can be given the following integral expression:

〈Ô〉 = Os ≡
∫

d2αWs(α)Os(α), (4.24)

where the first equality is known as the optical equivalence theorem [175, 271, 274–277].
Here, Os(α) is a phase-space representation of the original operator Ô, and Ws represents
a quasi-probability distribution that associates a weight to each point (α, α?) of this
phase space. The latter corresponds to a decomposition of the density matrix in the
over-complete coherent-state basis {|α〉〈α|}α:

ρ̂ =
∫

d2αWs(α) |α〉〈α| , (4.25)

where the index s ∈ {−1, 0, 1} labels three possible equivalent ordering choices leading to
such a decomposition. While this distribution is correctly normalised,

∫
d2αWs(α) = 1,

and Eq. (4.24) bears a great resemblance to a statistical mean, Ws is not a standard
probability measure as it violates the first and third Kolmogorov axioms. Indeed, Ws can
in principle be non-positive and, as clearly appears from the above decomposition, does
not associate probabilities to mutually exclusive states, as 〈α|α′〉 6= 0, ∀(α, α′) ∈ C2.

As in standard statistical physics, this quasi-probability distribution and the moment-
generating characteristic function χs are simply related by the following Fourier transform

Ws(α) =
∫ d2α′

π2 χs(α′)eα
′?α−α?α′ , χs(α) = Tr[D̂s(α)ρ̂], (4.26)

where D̂s(α) = exp(αâ† − α?â+ 1
2s|α|

2) denotes the s-ordered displacement operator:

D̂s(α) = {D̂(α)}s =
∑
mn

αm(−α?)n
m!n! {â†mân}s. (4.27)

Here, {. . .}s denotes the s-ordering operation that brings strings of ladder operators into
anti-normal order (s = −1), symmetric (s = 0) or normal order (s = 1); for instance:

{â†â}−1 = ââ†, {â†â}0 = ââ† + â†â

2 , {â†â}+1 = â†â. (4.28)

It follows from Eqs. (4.26) and (4.27) that χs is indeed the (s-ordered) moment-generating
function

〈{â†mân}s〉 = ∂mα (−∂α?)nχs(α)
∣∣∣
α=0

, (4.29)
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and, thus, that one finally has indeed:

〈{â†mân}s〉 =
∫

d2αWs(α)α?mαn = {â†mân}s. (4.30)

As we just saw, the quasi-probability function gives a complete scalar description of
the state of an open quantum system. The expectation value of any product of ladder
operators, and thus any operator, can be evaluated as moments of this distribution. In
the following, we will restrict ourselves to the symmetric so-called Wigner distribution,
W ≡ W0, whose analytical properties are more adapted to a numerical treatment.

The master equation

We just saw how the density matrix could be expressed as a distribution function of the
phase-space coordinates. One now needs to express the master equation in this framework.
This requires to identify how the action of an operator onto the density matrix translates
in this picture. This can straightforwardly be done from Eq. (4.25), which induces the
following simple conversion rules [178]:

âρ̂↔ (α + 1
2∂α?)W (α),

â†ρ̂↔ (α? − 1
2∂α)W (α),

ρ̂â↔ (α− 1
2∂α?)W (α),

ρ̂â† ↔ (α? + 1
2∂α)W (α).

(4.31)

Upon applying this procedure, the master equation finally takes the form of a partial
differential equation of the form:

∂tρ̂ = Lρ̂ ↔ ∂tW (α) = F [α]W (α), (4.32)

where the differential operator F [α] can be interpreted as the quantum counterpart of the
Fokker-Planck operator. This approach straightforwardly generalises to the case of many
bosonic modes, as we shall next see.

Phase-space representation of the extended-reservoir Liouvillian

Let us consider again the example of the bosonic lattice system linearly coupled to an
extended reservoir as we did when discussing the quantum Langevin Eq. (4.12). The
associated Liouvillian was given by Eq. (2.25)

LERρ̂ = −i
[∑

ijΩij â
†
i âj, ρ̂

]
+
∑
k

(
Γ(+)
k D[∑jU

(+)
kj âj]ρ̂+ Γ(−)

k D[∑jU
(−)
kj â

†
j]ρ̂
)
. (4.33)

By applying the set of rules of Eq. (4.31), this translates as

LERρ̂ ↔ FERW (α), (4.34)

with

FER = −∂αi [(−iΩij−Γij/2)αj]−∂α?i [(+iΩ
ij?−Γij?/2)α?j ]+∂αi∂α?j (Γ

(+)ij+Γ(−)ji)/2, (4.35)

where Γ = Γ(+) − Γ(−).
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IV.2 The truncated Wigner approximation

We have seen that the phase-space representation of the master equation takes the form of
a partial differential equation (PDE) on a quasi-probability distribution. We determined
the representation of the extended-reservoir Liouvillian as a differential operator acting
on the Wigner distribution. This was of the form of a complex Fokker-Planck equation.
Yet in the presence of non-harmonicities in the Liouvillian, one cannot give it such a
simple interpretation. As a matter of example, let us consider the optomechanical master
equation:

∂tρ̂ = −i
[
Ĥ, ρ̂

]
+ κD[â]ρ̂+ Γm(N̄ + 1)D[b̂] + ΓmN̄D[b̂†],

Ĥ = −∆â†â+ F (â+ â†)− gâ†â(b̂+ b̂†) + Ωmb̂
†b̂.

(4.36)

This translates into the following PDE [278]:

∂tW (α, β) =− ∂α
[
+i∆ + igα(β + β?)− κ

2α− iF
]
W (α, β)

− ∂α?
[
−i∆− igα?(β + β?)− κ

2α
? + iF

]
W (α, β)

− ∂β
[
−iΩmβ − ig

(
|α|2 − 1

2
)
− Γm

2 β
]
W (α, β)

− ∂β?
[
+iΩmβ + ig

(
|α|2 − 1

2
)
− Γm

2 β?
]
W (α, β)

+ κ

2∂α
?∂αW (α, β) + Γm

2 (2N̄ + 1)∂β?∂βW (α, β)

+ i
g

4∂α
?∂α∂βW (α, β)− ig4∂α

?∂α∂β?W (α, β). (4.37)

The above expression no longer has the form of a complex Fokker-Planck equation due
to the third-order derivatives appearing in the last line. This instead resembles a third-
order Kramers-Moyal expansion [239, 279, 280]. The order of the expansion, in general,
depends upon the degree of nonlinearity of the Liouvillian. These higher-order terms make
it possible for the Wigner function to become negative on phase-space regions of surface
∆x∆p smaller than the Heisenberg uncertainty ~/2. At a semiclassical level (~ → 0),
this effect can be neglected. Then, by truncating the expansion to second order only,
one obtains a standard Fokker-Planck equation on a positive probability distribution.
This is known as the truncated Wigner approximation. For the most general analytic
multivariate distribution W (z), this has the general form:

∂tW (z) =− ∂zi [µi(z)]W (z)− ∂z?i [µ
i?(z)]W (z)

+ ∂z?i ∂zj [D
ij(z)]W (z) + 1

2∂zi∂zj [E
ij(z)]W (z) + 1

2∂z
?
i
∂z?j [E

ij?(z)]W (z),
(4.38)

where µ(z) corresponds to the drift term of the classical Fokker-Planck equation and
D(z) and E(z) are diffusion matrices.
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Stochastic unravelling of the Fokker-Planck equation

The solution to this Fokker-Planck equation can be sampled by stochastic trajectories, as
given by the following Itō equations of motion6

dz = µ(z)dt+ dN , (4.39)

with a possibly multiplicative noise characterised by increments dN with covariances
dN?

i dNj = Dij(z)dt and dNidNj = Eij(z)dt.
Therefore, within the truncated Wigner approximation, Eq. (4.37) can be numeric-

ally sampled from the numerical integration of the following scalar stochastic differential
equations:

dα =
(
i∆ + ig(β + β?)− κ

2
)
αdt− iFdt+

√
κ/2dWα,

dβ =
(
−iΩm + ig(|α|2 − 1/2)− Γm

2
)
βdt+

√
Γm(N̄ + 1/2)dWβ,

(4.40)

where dWλ are Wiener processes satisfying dW ?
λdWλ′ = δλ,λ′dt and dW n

λ = 0, ∀n. Sym-
metrically-ordered observables Ô = {O[â, â†, b̂†, b̂†]}s can then be evaluated by numerically
integrating these complex Langevin equations over many realisations of the noise. Each
realisation r yields a particular trajectory (α(r), β(r)) with an associated observable expect-
ation value O(r)

s . The final quantum-statistical expectation value can then be computed
as the average over all these realisations:

〈Ô(t)〉 = Os(t) = lim
Ntraj→+∞

1
Ntraj

Ntraj∑
r=1

O[α(r)(t), α(r)?(t), β(r)(t), β(r)?(t)]. (4.41)

Stochastic unravelling of the extended-reservoir Liouvillian

We can now apply this technique to the phase-space representation of the extended-
reservoir Liouvillian (4.35), yielding

dαi
∣∣∣
ER

=
∑
j

(−iΩij − Γij/2)αjdt+ dNi, (4.42)

with again dNn
i = 0, but now instead a spatially correlated diffusion matrix dN?

i dNj =
dt(Γ(+)

ij + Γ(−)
ji )/2. Symmetrically-ordered observables Ô = {O[â, â†]}s can be evaluated

just as before:

〈Ô(t)〉 = Os(t) = lim
Ntraj→+∞

1
Ntraj

Ntraj∑
r=1

O[α(r)(t),α(r)?(t)]. (4.43)

6This can be straightforwardly checked, by remarking that, for any test function f , ∂t〈f(z)〉 =∫
dzW (z)F†f(z), where F† = µ · ∂z + µ? · ∂z? + Dij∂z?

i
∂zj + 1

2E
ij∂zi∂zj + 1

2E
ij?∂z?

i
∂z?

j
follows from

Itō’s lemma. Then, by remarking that one equivalently has that ∂t〈f(z)〉 =
∫

dzf(z)∂tW (z), one finally
has, by integration by parts,

∫
dzf(z)∂tW (z) =

∫
dzf(z)FW (z), for any f , and thus the Fokker-Planck

equation ∂tW (z) = FW (z) of Eq. (4.38).
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We have seen that within the truncated Wigner approximation, one can simulate bo-
sonic systems dispensing with the computationally costly matrix representation of the
master equation. This requires to be able to compute efficiently large sets of trajectories
by integrating stochastic differential equations (SDEs) over as many realisations of the
quantum noise as necessary. These trajectories being independent from one another, this
can be conveniently performed on superscalar computing architectures. While in prin-
ciple this numerical integration can be performed by using any SDE solver, it was found
though that most conventional solvers fail in matching the right result when dealing with
metastability [281]. Unlike these, SOSRA2 and SOSRI2 [282] were shown to faithfully
approximate the exact quantum results [230], SOSRA2 being the most computationally
efficient. Such simulations can conveniently be done up to roughly 2500 bosonic modes.

V Beyond mean field
So far, we have seen how open quantum systems, and in particular bosonic systems in
contact with extended reservoirs, could be efficiently simulated on a classical computer.
This was made possible at the cost of performing mean-field or semi-classical approxima-
tions. We shall now briefly describe the Monte Carlo wave function (MCWF) algorithm, a
method relying on an exact stochastic unravelling of the master equation that circumvents
the above-identified RAM-usage bottleneck, allowing one to perform the fully-quantum
simulation of reasonably large quantum systems.

V.1 Quantum trajectories

Any measurement protocol can be represented as a set of measurement operators {M̂µ}mµ=0,
satisfying ∑µ M̂

†
µM̂µ = 1. At time t, such a measure induces a partial collapse of the

system’s state. This is given by the normalised average over all possible measurement
outcomes:

ρ̂(t) → ρ̂(t+ dt) =
∑
µ

M̂µρ̂(t)M̂ †
µ

pµ(t) , (4.44)

where pµ = 〈M̂ †
µM̂µ〉(t) is the probability of measuring the µth outcome. By introducing

the particular choice of measurement operators:M̂0 = 1̂− (iĤ + L̂†L̂/2)dt,
M̂1 = L̂dW,

(4.45)

where |dW |2 = dt, one may easily verify that the density matrix gets updated in time as
under the action of the Lindblad master equation:

ρ̂(t+ dt)− ρ̂(t) = −i[Ĥ, ρ̂(t)]dt+ dtD[L̂]ρ̂(t). (4.46)

The dynamics of an open system can thus be interpreted as the result of a continuous
weak measurement of the jump operator L̂ by the environment. Given the complete
measurement record r(t), such that r = 1 when the outcome of M̂1 was measured and
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r = 0 otherwise, the state of the system can be deduced deterministically. For instance,
for a cavity subject to single-body loss, as characterised by L̂ = â, the knowledge of the
times ti at which a boson escaped the system (r(ti) = 1) suffices to completely determine
the state of the cavity at any time. The times at which such quantum jumps take place
are non-deterministic; a specific realisation of the monitored evolution of the system,
bound to a specific outcome record, is called a quantum trajectory. In this picture, known
as monitored dynamics, the density matrix is interpreted as a statistical mixture of pure
trajectories resulting from our ignorance of the particular realisation of the outcome record
r(t).

The outcome record r(t) is a Poisson stochastic process (r ∈ {0, 1}). When M̂1 is
measured (r(t) = 1), with probability p1 = 〈M̂ †

1M̂1〉(t) = 〈L̂†L̂〉(t)dt, the state vector of
the system evolves according to

|ψ1(t+ dt)〉 = M̂1 |ψ(t)〉√
p1(t)

= L̂√
〈L̂†L̂〉(t)

|ψ(t)〉 . (4.47)

This corresponds to the collapse of the wave function upon the environment having suc-
cessfully measured the outcome of L̂. If instead M̂0 had been measured (r(t) = 0), with
associated probability p0 = 1− p1, the system’s state vector would have been updated as

|ψ0(t+ dt)〉 = M̂0 |ψ(t)〉
√
p0

=
{
1̂− dt

[
iĤ − 1

2 L̂
†L̂+ 1

2〈L̂
†L̂〉(t)

]}
|ψ(t)〉 . (4.48)

Interestingly, it here appears that the knowledge of the absence of measurement of L̂
induces a slight collapse of the wave function as well.

By combining these two equations, the evolution of the wave function is given by the
following stochastic differential equation [183]:

d |ψ(t)〉 = (1− dr(t)) |ψ0(t+ dt)〉+ dr(t) |ψ1(t+ dt)〉 − |ψ(t)〉

= dt
(〈L̂†L̂〉(t)− L̂†L̂

2 − iĤ
)
|ψ(t)〉+ dr(t)

(
L̂/
√
〈L̂†L̂〉(t)− 1

)
|ψ(t)〉 . (4.49)

This describes what is known as a piecewise-deterministic process. The dynamics of
the wave function is ruled by a deterministic pseudo-unitary evolution between a set of
quantum jumps occurring at random times resulting from the statistics of the stochastic
Poisson process r. Particular realisations of this process correspond to conditional single
trajectories {|ψ(i)〉}i. It follows from the above that one indeed recovers the solution of
the master Eq. (4.46) by averaging over all possible realisations, erasing the knowledge
about the measurement outcome:

ρ̂(t) = lim
Ntraj→+∞

1
Ntraj

Ntraj∑
i=1
|ψ(i)(t)〉〈ψ(i)(t)| . (4.50)

Thus, any observable may be calculated by averaging over enough trajectories:

Tr[ρ̂(t)Ô] = lim
Ntraj→+∞

1
Ntraj

Ntraj∑
i=1
〈ψ(i)(t)|Ô|ψ(i)(t)〉 . (4.51)
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V.2 Monte Carlo wave function
The Monte Carlo wave function method, independently introduced by Mølmer [236] and
Carmichael [239], is grounded on this quantum-trajectory approach [183] to quantum
dynamics. It starts from a straightforward generalisation of Eq. (4.49) to the case of
many dissipative channels:

d |ψ(t)〉 = dt
(∑

i

〈L̂†i L̂i〉(t)/2− iĤnh
)
|ψ(t)〉+ dr(t)

(∑
i

L̂i/
√
〈L̂†i L̂i〉(t)− 1

)
|ψ(t)〉 . (4.52)

The first term corresponds to a pseudo-unitary evolution of the system’s state vector under
de action of an effective non-Hermitian Hamiltonian Ĥnh = Ĥ − i

2
∑
i L̂
†
i L̂i; the second,

to a set quantum jumps, L̂i |ψ(t)〉, happening with probabilities dpi = 〈L̂†i L̂i〉(t)dt. This
can be numerically integrated between two time steps t and t+ δt in the following naive
manner:

(i) With probability 1 − ∑i δpi(t), the state is evolved according to the Schrödinger
equation:

|ψ(t+ δt)〉 = e−iĤnhδt |ψ(t)〉 . (4.53)

This indeed induces a loss in the norm of the state vector, 〈ψ(t+ δt)|ψ(t+ δt)〉 = 1−∑
i δpi(t) +O(δt2). The rest of the probability is recovered from the complementary

possible outcomes.

(ii) With probability δpi(t) = 〈L̂†i L̂i〉(t)δt, the following jump happens instead:

|ψ(t+ δt)〉 = L̂i |ψ(t)〉 /
√
δpi(t)/δt. (4.54)

While this algorithm converges to the right solution for δt → 0+, it is far from optimal
from a numerical perspective. Beyond the obvious overhead of having to generate ran-
dom numbers at every time step, this is an explicit first-order method with no obvious
way of performing adaptive time-stepping. In practice, modern implementations of this
method [248, 283, 284] instead rely on a faster-than-the-clock algorithm [285]:

(i) A random number pjump ∈ [0, 1] is generated encoding the probability that a jump
occurred;

(ii) |ψ(t)〉 is then evolved by integrating the Schrödinger equation i∂t |ψ(t)〉 = Ĥnh |ψ(t)〉
by employing an arbitrary ODE solver until the decreasing norm reaches 〈ψ(t)|ψ(t)〉 =
1− pjump;

(iii) at this point, the ith jump operator is chosen at random with probability pi(t)/pjump.
A jump is performed by applying the drawn jump operator and normalising the
resulting wave function:

|ψ(t)〉 → |ψ′(t)〉 = L̂i |ψ(t)〉 /
√
〈L̂†i L̂i〉(t−). (4.55)
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This cycle is then repeated until the final time of the simulation is attained.
This algorithm allows one to split the problem of simulating the time evolution of

the density matrix into that of simulating a possibly large set of independent quantum
trajectories with the complexity of evolving a closed system. It lifts well to superscalar
implementations and allows one to rather conveniently perform simulations on systems
whose Hilbert space dimension lies roughly below one hundred thousand states, for in-
stance an ensemble of 16 spin-1/2 sites. Yet, several drawbacks are to be considered.

V.3 Suboptimality of the Monte Carlo wave function algorithm
The above-presented method may be challenged in several circumstances. We have seen
that, for a Hilbert space of size N , this algorithm reduces the complexity of evolving
a N × N matrix to that of evolving Ntraj state vectors of length N . We shall discuss
whether this number of trajectories always scales favourably by considering a very simple
situation.

To make our discussion more formal let us introduce a finite-rank benchmarking dens-
ity matrix that we aim to sample with trajectories:

ρ̂(t) =
M∑
m=1

pm(t) |φm(t)〉〈φm(t)| , 〈φm(t)|φn(t)〉 = δm,n, ∀t. (4.56)

For simplicity, we assume this density matrix to preserve its rank and structure upon
time evolution. Then, the optimal time evolution scheme would consist in evolving theM
base states of this moving frame {|φm(t)〉}m while updating their associated probabilities
{pm(t)}m according to some mass equation, M here being roughly the width of the distri-
bution’s support. Two situations then pose problems to the Monte Carlo wave function
procedure.

High-entropy scenario

First, consider the simple distribution of eigenvalues pm = 1
M
, ∀m ∈ [1, N ]. In this

situation, the number of trajectories must clearly scale as the support of the distribution,
Ntraj ∼ M . Provided M ∼ N , the method is of no help in reducing the complexity
of the simulation, yet it scales as the optimal scheme and, therefore, no fully quantum
alternative may be found to this problem.

Low-entropy scenario

A second scenario where this method fails is all the more problematic as it is of practical
relevance. It is that of systems in very weak coupling with their environment whose state
is close to pure (M ∼ 1). This is the case, for instance, of NISQ-era [49] quantum devices.
To describe the shortcomings of the method in addressing this situation, let us consider
the case of an initially pure state |φ1〉 that evolves under the action of a weak measurement
as given by the jump operator L̂ =

√
κˆ̀. This could be for instance the case of a highly

populated Fock state subject to single-body dissipation, for which |φ1〉 = |N � 1〉 and
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ˆ̀= â. After some time ∆t, the state of the system is well described by Eq. (4.56) with

|φn〉 ∝ L̂n−1 |φ1〉 , pn+1/p1 = 〈φ1|ˆ̀† ˆ̀|φ1〉n (κ∆t)n
n! . (4.57)

For κ∆t� 1, the spectrum of the density matrix is very peaked Poisson distribution. The
density matrix is a mixture of the original pure state |φ1〉〈φ1| with a weight p1 ' 1− κ∆t
and a thermal tail of degraded states accounting for the rest of the probability κ∆t. For
κ∆t = 0.05, for instance, the distribution can practically be truncated to two states, with
probabilities of p1 ≈ 0.95 and p2 ≈ 0.05, respectively. The optimal integration scheme
should thus be able to proceed by evolving only two states. The situation is very different
for the Monte Carlo wave function, which converges poorly to the right distribution,
requiring a large amount of trajectories. This is due to the fact that, on average, 95% of
the trajectories are identical and correspond to the trivial evolution of a same trajectory
|φ(i)(t)〉 = |φ1〉, while only 5% explore the thermal tail of interest. 95% of the computing
resources are therefore wasted in performing a redundant task.

A rather natural way around this bias problem we just identified in low-entropy sys-
tems would be to add importance sampling [286] to the Monte Carlo wave function al-
gorithm. We will address this issue from a different perspective in the next chapter by
introducing a novel numerical algorithm: the dynamical corner-space method.
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5 The dynamical corner-space
method

In this chapter, we will introduce the dynamical corner-space algorithm for the time
evolution of low-entropy open quantum systems. This method efficiently computes the
time evolution of intermediate-scale open quantum systems with moderate entropy with
controllable accuracy. It will here be applied to the investigation of the continuous-
time dynamics of highly-entangling intermediate-scale quantum circuits in the presence
of dissipation and decoherence, beyond digital error models. By compressing the Hilbert
space to a time-dependent “corner” subspace that supports faithful representations of the
density matrix, a noisy quantum Fourier transform processor with up to 21 qubits will
be simulated on a classical computer. The large circuit sizes that can be reached in such
simulations will allow us to access the scaling behaviour of the error propagation with
the dissipation rates and the number of qubits. Moreover, depending on the dissipative
mechanisms at play, the choice of input state will be shown to have a strong impact on
the performance of the quantum algorithm.

This chapter is structured as follows: Sec. I provides an overview of the context in
which the dynamical corner-space method was devised and the challenges that it attempts
to address therein; Sec. II gives a detailed description of the algorithm the method builds
upon and of its numerical complexity; in Sec. III, the method is used to simulate realistic
noisy quantum circuits within a Lindblad master equation approach and investigate their
error behaviour; finally, Sec. IV concludes the chapter.

I Introduction
The tremendous advances on the control of artificial quantum systems, such as super-
conducting Josephson qubits [287] and trapped ions [288], are allowing dramatic pro-
gress towards the realisation of devices for quantum computation [289, 290]. The noisy
intermediate-scale quantum (NISQ) era [49] was reached, where error correction is not yet
possible due to daunting overheads [291], but where quantum advantage might be already
exploited for applications in quantum chemistry [292], optimisation [293] and even fin-
ance [294]. Scaling up quantum circuits and designing practically efficient quantum cor-
rection protocols make it of crucial importance to precisely understand the effects of both
incoherent and coherent sources of noise on quantum algorithms [295–298].

To meet these challenges, there is a strong need for accurate numerical simulations
of quantum hardware on classical computers [299–303]. In this perspective, the applic-
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ation of tensor-network methods to quantum-circuit simulation has been shown to be
effective to model circuits, although with restrictions on the amount of entanglement
building up through the circuit [304–308]. Modelling tools capable of describing realistic
error sources in experimentally relevant platforms are also fundamental, yet most exist-
ing simulators of quantum hardware consider only local and digital error models [289,
291, 309, 310]. In such models, the circuit is represented by a series of subsequently
applied unitary operations immediately followed by local error gates whose application is
supposed to mimic the degradation of the state due to the environment. While in close
proximity with classical error models, these two approximations do not necessarily hold,
especially for highly-entangling circuits [311], and remain a challenge in quantum error
correction [312]. In general, to account for realistic sources of noise in highly-entangling
circuits, one should resort to a continuous-time description, where the environment det-
rimental action is continuously integrated during the application of the quantum gates.
Upon neglecting non-Markovian effects, this can be realised within the framework of the
Lindblad master equation [99]. However, as explained in Chapter 4, such a description is
numerically expensive; for a chain of L qubits with Hilbert space dimension N = 2L, a
density matrix of size N×N must be evolved. Several proposals to reduce the complexity
of the task that do not limit entanglement exist, such as the Monte Carlo wave function
method [236, 239, 240] discussed therein, which reduces the problem to evolving many
wave functions. However, the number of such trajectories is not known in general [313]
and, in the case of weak dissipation, the method can quickly become equivalent to a
full integration of the master equation as a greater amount of trajectories are needed to
reach convergence. In recent years, there has been a growing interest in the idea that for
a certain class of low-entropy systems, a limited number of states spanning a so-called
“corner” subspace, can provide with a parsimonious and faithful representation of the
density matrix [44, 314–316]. Quantum processors, conceived to be as weakly dissipative
as possible and thus lowly entropic, belong to this class; so do stabilised arrays [20, 21],
cat qubit systems [317] and quantum hardware with state-of-the-art dissipation rates [49,
289].

In this chapter, we will investigate the continuous-time evolution of noisy intermediate-
scale quantum circuits. We will describe a time-dependent corner-space method with no
restriction on the degree of entanglement, circuit connectivity, physical dimension or noise
correlations and provide results with controllable accuracy. The discussion will focus on
the analysis of the role of dissipation and decoherence on the quantum Fourier transform
(QFT). This is an essential and highly-entangling quantum circuit at the heart of the
Shor algorithm [318], quantum phase estimation [319] and many algorithms related to the
hidden-subgroup problem [320]. We will demonstrate the capabilities of the dynamical
corner-space method by simulating the dissipative QFT up to 21 qubits with a high
accuracy, reporting a speedup of at least three orders of magnitude with respect to a full
integration of the master equation. We will see that the infidelity of the output state
of the dissipative QFT with respect to the output state of a unitary QFT surprisingly
scales polynomially with the system size, with an exponent that does not depend on
the dissipation rate. Furthermore, we will explore the impact of different dissipative
mechanisms on the fidelity and study how the initial state affects the performance of the
quantum computation.
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Figure 5.1: Sketch depicting one iteration of the time-dependent corner-space method.

II The dynamical corner-space method
Let us consider an open quantum system whose dynamics is governed by the following
Lindblad master equation [99]:

∂tρ̂ = Lρ̂ = −i[Ĥ, ρ̂] +
D∑
i=1

(
L̂iρ̂L̂

†
i −

1
2{L̂

†
i L̂i, ρ̂}

)
, (5.1)

where Ĥ is the system Hamiltonian acting on a Hilbert space H of dimension N , and L̂i
is the ith jump operator. At any time t, the solution ρ̂ may be approximated by

ρ̂(t) '
M(t)∑
k=1

pk(t) |φk(t)〉〈φk(t)| , pk(t) ≥ pk+1(t), ∀k, (5.2)

where pk(t) are theM(t) largest eigenvalues of ρ̂ at the time t and |φk(t)〉 their associated
eigenvectors. By construction, the controlled truncation error introduced by such an
approximation is monotonically decreasing with M and quantified by εM = 1−∑M

k=1 pk,
so that the decomposition becomes exact for M(t) = r(t), with r(t) denoting the rank
of ρ̂(t), equivalent to the α = 0 Rényi entropy [321]. Therefore, in a wide class of low-
entropy systems including most platforms relevant for quantum computing, ρ̂ is very well
approximated by M � N basis vectors, and even by M & 1 for close to pure states.
Henceforth, this number of components M will be referred to as the corner dimension.
The accuracy of the calculations will be controlled by a fixed maximum error ε with
εM ≤ ε enforced at any time.

It follows from the above that all the information of the density matrix is carried by a
set of weighted corner base vectors of the form √pk |φk〉; in some arbitrary computational
basis {|n〉}Nn=1, these can be represented by a N × M matrix with elements Cnk(t) =
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√
pk(t) 〈n|φk(t)〉. It indeed follows from Eq. (5.2) that

ρ̂(t) =
M(t)∑
k=1

pk(t) |φk(t)〉〈φk(t)| = Ĉ(t)Ĉ†(t). (5.3)

Then, the essential goal of this method is to efficiently perform the time-evolution of
the low-dimensional weighted corner basis Ĉ without ever reconstructing ρ̂. The evolution
Ĉ(t) 7→ Ĉ(t+ δt) over a small time step δt, schematically illustrated in Fig. 5.1, involves
two computational operations: (i) the calculation of the transition basis and (ii) the
dimensional reduction by projection onto the new principal components.

Step (i): The weighted corner basis Ĉ(t) evolves into the weighted transition basis
T̂ (t+ δt) as

ρ̂(t+ δt) =
D∑
i=0

M̂iρ̂(t)M̂ †
i =

M(D+1)∑
m=1
|ψm(t+ δt)〉〈ψm(t+ δt)| = T̂ (t+ δt)T̂ †(t+ δt). (5.4)

Here, the following Kraus map [183], equivalent to Eq. (5.1), was used:

eδtLρ̂ =
D∑
i=0

M̂iρ̂M̂
†
i , M̂0 = exp(−iδtH̃), M̂i≥1 =

√
δtL̂i, (5.5)

with H̃ = Ĥ − i
2
∑D
i=1L̂

†
i L̂i a non-Hermitian operator depending on the Hamiltonian and

the quantum jump operators. By construction, the transition basis T̂ (t + δt) is a N ×
[M(t)(D + 1)] rectangular matrix, where D is the number of dissipation channels. Its
mth column is given by |ψm(t+ δt)〉 = √pµM̂ν |φµ(t)〉, with ν = (m − 1) ÷M(t) and
µ = (m− 1) mod M(t) + 1. This bears close analogy to the monitored-dynamics picture
and the Monte Carlo wave function method sketched in Chapter 4. In that formalism, a
Kraus operator was drawn at random at every time step according to the probability for
an external observer to measure its outcome. This generated a single stochastic trajectory
conditioned by a specific record of the history of the outcomes. By then averaging over all
the realisations of this stochastic process, the density matrix was recovered as a marginal
law. We here instead employ a completely deterministic approach. At every time step,
all the (D + 1) possible trajectories branching from each of the corner’s M base state
vectors are generated, naturally weighted by their likelihood. Although exact, no further
processing would result in an exponential growth of the corner dimension with time. The
second step of the algorithm solves this problem.

Step (ii): The transition matrix is now projected to a new weighted corner basis Ĉ(t+
δt) of (lower) dimensionM(t+δt) ≤M(t)(D+1) via a new truncated eigendecomposition
P of the form of Eq. (5.3). Importantly, this is possible without ever reconstructing the
full density matrix. Indeed, the N × N matrix ρ̂(t + δt) = T̂ (t + δt)T̂ †(t + δt) and the
much smaller [M(t)(D+ 1)]× [M(t)(D+ 1)] matrix σ̂(t+ δt) = T̂ †(t+ δt)T̂ (t+ δt) share
the same non-zero eigenvalues pk. Moreover, the associated eigenvectors, |φk,ρ(t+ δt)〉
and |φk,σ(t+ δt)〉, respectively, are related by the identity [315, 322]:

√
pk |φk,ρ(t+ δt)〉 = T̂ (t+ δt) |φk,σ(t+ δt)〉 . (5.6)
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The components of the new decomposition can then be judiciously truncated to only
retain the leading M(t + δt) eigenvalues pk, yielding an updated weighted corner basis
Ĉ(t+ δt), with the same structure as the initial one Ĉ(t).

This procedure can be iterated for an arbitrary time with the possibility of tuning
the length of the time step δt and the tolerance parameter ε to control the accuracy at
the desired level. Crucially, the time evolution of the corner basis involves no explicit
reconstruction of the full density matrix. Indeed, the largest representation of the state
of the system involved in the process, the transition basis T̂ , is comparable in size to that
of M(D + 1)� N closed systems.

II.1 Complexity of the algorithm
The first step of the dynamical corner-space procedure involves computing sparse matrix-
dense vector operations of the form M̂ν |φµ〉, its complexity is thus M × (D + 1) times
that of evolving a closed system’s Schrödinger equation for a single time step. For sparse
Kraus operators with a maximum number of non-zero entries per row of x, typically a few,
the complexity of this step is of order O(xM [D+ 1]N), that is linear in the Hilbert-space
dimension N .

The second step involves three distinct operations. First, the small matrix σ̂ = T̂ †T̂
is constructed, involving a number of operations of order O(M [D + 1]N/2). Then, its
diagonalisation is of subleading complexity order O(M3[D+1]3). Finally, building up the
updated corner from the eigendecomposition of σ̂ is of complexity O(M [D + 1]N).

The overall complexity of the algorithm is thus linear in the density x of the Kraus
operators, the corner dimension, the number of dissipation channels and the size of the
Hilbert space:

O
(
xM [D + 1]N

)
. (5.7)

This is M [D + 1] times the complexity of the time evolution of a closed system. For
extended systems with subextensive entropy, this factor scales only polynomially with
the number of sites, instead of exponentially, as for the brute-force integration of the
density matrix. This represents an extraordinary numerical advantage.

II.2 Complexity of the evaluation of relevant metrics
The evaluation of relevant metrics in quantum information is challenging with quantum-
trajectory approaches. These rely on the evolution ofNtraj stochastic trajectories {|ψi(t)〉}Ntraj

i=1 .
The density matrix can then be reconstructed as ρ̂(t) = 1

Ntraj

∑Ntraj
i=1 |ψi(t)〉〈ψi(t)|. Many

metrics, such as fidelity and entanglement measures, namely concurrence, negativity, or
entanglement entropy [323], require constructing explicitly the (dense) density matrix of
the system and diagonalising it. In practice, the latter operation, of complexity O(N3),
is not feasible for systems larger than ∼ 15 qubits. In contrast, the corner-space method
yields explicitly both the eigenvalues {pk(t)}Mk=1 and the eigenvectors {|φk(t)〉}Mk=1 at every
time step, with no need for additional calculations.

To give a concrete example, let us consider the evaluation of the fidelity between two



84 Chapter 5. The dynamical corner-space method

arbitrary mixed states ρ̂ and ρ̂′ with rank M and M ′, respectively, as given by

F(ρ̂, ρ̂′) = Tr
[√√

ρ̂ρ̂′
√
ρ̂
]

=
M∑
m=1

〈
φm
∣∣∣{∑M

k,m=1 |φk〉Mkm 〈φm|
}1/2∣∣∣φm〉, (5.8)

with

Mkm =
M ′∑
k′=1

p′k′
√
pkpm 〈φk|φ′k′〉 〈φ′k′ |φm〉 , (5.9)

where p(′)
k and φ(′)

k correspond to the kth eigenvalue and eigenvector of ρ̂(′). This involves
computations of various degrees of complexity: the diagonalisation of the two density
matrices, of order O(N3); the construction of the matrixMkm, of order O(M ′ ×N); the
diagonalisation of the latter, of order O(M3); and, finally, the trace, of order O(M ×
N). When using trajectory-based methods, an additional subleading complexity of order
O(Ntraj ×M) is to be considered to account for the construction of the density matrices,
whereas the leading order O(N3) stemming from the density-matrix diagonalisations is to
be discarded when using the dynamical corner-space method, as the eigendecompositions
are known explicitly. A similar discussion can be made for the entropy. Then, for each
method, one finally has, to leading order and for M (′) � N , the following scaling figures
of merit:

Monte Carlo wave function Time-dependent corner-space
F(ρ̂, ρ̂′) O(N3) O(max(M,M ′)×N)
F(ρ̂, |φ〉) O(Ntraj ×N) O(M ×N)
S(ρ̂) O(N3) O(M)

In practice, the inconvenient scaling of the complexity for the Monte Carlo wave
function approach, stemming from the two density-matrix diagonalisations, combined
with the necessity of storing dense matrices well beyond the realistically available RAM
makes it impossible to compute the fidelity between two mixed states from trajectories
for systems larger than ∼ 15 sites.

III Discussion
We will now apply the method to the numerical simulation of quantum circuits. These
consist of a set of physical two-level systems on which the input state of the circuit is
encoded. Similar to classical digital circuits, a set of quantum “logical gates” is then
operated on this prepared system by enabling controlled interactions between pairs of
such units. These operations take the form of unitary transformations of the state of the
qubits. At the end of the process, the result of the quantum computation is encoded in
the final state of the system and available for readout.

These two-level systems can be engineered with a great degree of control and isolation
from the environment in several platforms, most notably in superconducting circuits [287,
324–326], trapped ions [288] and trapped atoms [327], for which complete sets of single-



III. Discussion 85

and multi-qubit gates were experimentally demonstrated [328–334], with circuits having
scaled from few units [334] to several tens of units within the last decade [289, 335–338].
In these physical implementations, the excited and fundamental levels |↑〉 and |↓〉 encode
the logical states |0〉 and |1〉, respectively. While counter-intuitive, this convention is
customary in related fields and will thus be employed through this chapter.
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Figure 5.2: (a) Quantum circuit representing the QFT in the presence of dissipation.
(b) Continuous-time evolution of the exponential of the von Neumann entropy S (dash-
dotted) with the input state |ψ0〉 defined in Eq. (5.17), for L = 8 qubits and γ/δ =
1× 10−3. The corner-space dimensionM(t) is also plotted (plain line). Temporal intervals
corresponding to Hadamard and controlled-phase gates are indicated by lighter (red) and
darker (blue) background colors, respectively. (c) Temporal build-up of the entanglement
entropy Sent(n), as defined in Eq. (5.19), as the different gates of the QFT are performed.

III.1 Application to the noisy QFT

The quantum Fourier transform

As a first application of the method, let us numerically simulate a noisy quantum Four-
ier transform (QFT) circuit. In doing so, we will consider the architecture depicted in
Fig. 5.2 (a). The input state to be Fourier transformed through the circuit is encoded
in the state of L qubits. Given an orthonormal computing basis {|n〉}Nn=0 spanning the
Hilbert space of the system, of dimension N = 2L, this circuit linearly transforms any
input of the form

|x〉 =
N−1∑
j=0

xj |j〉 , (5.10)
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where x is a vector of complex amplitudes, into

|x̃〉 = QFT(|x〉) =
N−1∑
k=0

x̃k |k〉 , with x̃k = 1√
N

∑
j

e2iπjk/Nxj. (5.11)

This therefore corresponds to the discrete Fourier transform of the N wave-function amp-
litudes. This operation can be reduced to subsequent applications of only two different
types of quantum gates [339], the Hadamard and the controlled-phase gates. In the local
basis:

ÛH |i = 1√
2

 1 1

1 −1

 , ÛR|jk =



1

1

1
e2πi/2k


. (5.12)

〈0i| 〈1i|

|0i〉

|1i〉

〈0j0k| 〈0j1k| 〈1j0k| 〈1j1k|
|0j0k〉

|0j1k〉

|1j0k〉

|1j1k〉

The number of involved such elementary gates, L(L+ 1)/2, is only polynomial in L =
log2(N); the complexity of the QFT algorithm is hence of order O(L2). In contrast, that
of the usual fast Fourier transform (FFT) is exponential: O(N logN) ∼ O(L2L). This
quantum advantage makes the QFT a central building block in many other algorithms.

Modelling the QFT circuit

In the following, the quantum gates introduced above will be executed via a continuous-
time evolution defined by an appropriate master equation taking the form of Eq. (5.1).
The effect of two types of noise will be addressed. We will first consider dissipative
processes induced by a weak coupling to a zero-temperature environment, as described
by jump operators of the form:

L̂i = √γσ̂−i . (5.13)
This corresponds to local decay processes from the excited qubit state |↑〉j ≡ |0〉 to the
lower energy qubit state |↓〉j ≡ |1〉. We will treat the effect of decoherence as well. This
will be described by local pure-dephasing jump operators:

L̂i = √γσ̂zi . (5.14)

Let us work in a frame rotating at the frequency of the qubit transition. Then, the
Hadamard gate acting on the ith qubit can be realised via the subsequent application of
the two following Hamiltonians:

Ĥ1
i = δ

2 σ̂
y
i , Ĥ2

i = δ

2 σ̂
z
i , (5.15)

for a time ∆tH,1 = π/2δ and ∆tH,2 = π/δ, respectively. This sequence corresponds to
the decomposition of the Hadamard gate into a π/2-rotation along the y-axis and a π-
rotation along the z-axis of the qubit’s Bloch sphere. The controlled-phase gates with
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control qubit j and target qubit k can instead be performed through the Hamiltonian:

Ĥj,k = δ

2 σ̂
z
j + δ

2 σ̂
z
k −

δ

2
(
σ̂zj σ̂

z
k + 1̂

)
, (5.16)

applied for a time ∆tR,k = π2−k/δ. For simplicity, we will assume sudden switching
between gate Hamiltonians and will not include coherent errors, although both effects
could be accurately described by the dynamical corner-space method.

A first example of the dynamics of such a circuit is presented in Fig. 5.2 (b) and
Fig. 5.2 (c). There, the initial state is chosen as

|ψ0〉 = QFT−1(|GHZ〉) = 1√
2N

N−1∑
n=0

(1 + e2iπn/N) |n〉 , (5.17)

so as to be the inverse of the Greenberger–Horne–Zeilinger (GHZ) state [340–342]:

|GHZ〉 = 1√
2

(|00...0〉+ |11...1〉) . (5.18)

The latter is known to be a maximally entangled state and exhibit multipartite entan-
glement under many entanglement measures. Through this choice, the output state is
ensured to be highly entangled, therefore demonstrating that entanglement is not a lim-
iting factor for the corner-space method. In panel (b) of Fig. 5.2, the time evolution of
the corner-space dimension M as well as the exponential exp(S) of the von Neumann en-
tropy S(ρ̂) = Tr[ρ̂ ln ρ̂] are shown, exhibiting similar trends. Panel (c) depicts the spatial
entanglement propagation as the circuit’s gates are progressively applied from the first to
the last qubit. This is quantified by the following entanglement entropy

Sent(n) ≡ S(Tr1,...,n[ρ̂]), (5.19)

that evaluates the magnitude of the inseparability between contiguous bipartitions of
the form {{1, . . . , n}, {n + 1, . . . , L}}. While this is a rigorous measure of entanglement
only for pure states [323], it still gives a valid qualitative description of the entanglement
temporal build-up for states close to pure, as here treated. Note that Sent(n) > S1 is
a sufficient condition for proving entanglement between the two subsystems 1 ⊕ . . . ⊕ n
and n + 1 ⊕ . . . ⊕ L. One sees that the initial localised entanglement spreads through
the system in close relation to the architecture of the circuit. As clearly follows from the
shading in panel (b), this takes place when the (entangling) controlled-phase gates are
applied.

Benchmarking the method

Let us benchmark the accuracy of our calculations against the results of an exact in-
tegration of the master equation for small values of L, the numbers of qubits. In what
follows, ρ̂γ and ρ̂(c)

γ denote the output density matrices of the noisy QFT obtained via the
exact integration and via the corner method, respectively. Instead, ρ̂0 denotes the ideal

1This corresponds to the violation of the classical identity SA ≤ SA⊕B .
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Figure 5.3: (a) Infidelity between the corner ρ̂(c)
γ and exact ρ̂γ output density matrices

as a function of the maximum corner dimension Mmax for different values of γTQFT and
L = 10 qubits. (b) Fidelity as a function of Mmax and L for γTQFT = 2.5× 10−2. Values
corresponding to Mmax = L are highlighted by hollow markers (fidelities F & 0.997
are found for Mmax ∼ L lnL). (c) Simulation time of the noisy QFT circuit versus the
number of qubits L for the exact solution of the master equation (squared markers) and the
dynamical corner-space method (circles) for two different values of the control parameter
ε. The dissipation rate is set to γTQFT = 2.5× 10−2. The initial state |ψ0〉 is that defined
in Eq. (5.17) for all three panels.

outcome of the noiseless QFT, which is a pure state. The results of this benchmarking
process are presented in Fig. 5.3 for fixed values of γTQFT, where TQFT denotes the phys-
ical duration of the QFT operation. This ensures that the output infidelity with respect
to ρ̂0 remains constant as the circuit size is increased. In particular, Fig. 5.3 (a) shows
the infidelity of the method 1−F(ρ̂(c)

γ , ρ̂γ) as a function of the rescaled maximum corner
dimension Mmax/L for L = 10. One sees that for Mmax ∼ 10L the exact results are ex-
cellently approximated by the time-dependent corner-space method for all the considered
values of γTQFT. The method still performs reasonably well for noise rates as high as
γTQFT = 1.5× 10−1, where the fidelity to the output of the noiseless circuit is as low as
F(ρ̂0, ρ̂γ) = 0.758. Fig. 5.3 (b) shows the fidelity of the method F(ρ̂(c)

γ , ρ̂γ) for different
numbers of qubits L as a function of the fraction Mmax/N between the dimension of the
basis spanning the corner and that of the basis of the entire Hilbert space. These results
show that the advantage of the dynamical corner-space method over exact integration
of the master equation increases with L. In particular, to match a desired fidelity, the
required corner dimension M is found to grow as L lnL with the system size. For L = 12,
an excellent agreement of the corner-space method with the exact integration is already
obtained for a fraction as low as Mmax/N = 10−2. Finally, in Fig. 5.3 (c), we compare the
computation time of the corner-space method to the exact integration, for two different
values of ε2. The corner-space method achieves an exponential speed-up with respect
to the master equation integration. This leads to simulations faster by more than three

2In evaluating these execution times, both the exact integration and corner-space calculations were
carried out on a single six-core Intel Xeon E5-2609 v3 processor at 1.9 GHz.
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orders of magnitude for L ∼ 15. Moreover, tuning the tolerance ε from 1× 10−4 down
to 5× 10−5 preserves the scaling of the simulation time with L. Simulations of up to 21
qubits are presented. This represents a Hilbert-space dimension (N = 2L) above 2 million
states, corresponding to (dense) density matrices weighting 64 TiB that could never have
been handled with a brute-force integration of the master equation (5.1). The method
presented above is thus capable of efficiently evolving such high-dimensional objects by
means of parsimonious corner representations of the density matrix.

Scaling laws

One can now evaluate the impact of incoherent processes on intermediate-scale devices
via a continuous-time description and determine the scaling of errors. In Fig. 5.4, the
fidelity F(ρ̂(c)

γ , ρ̂0) is shown for up to L = 21 qubits, for different values of γ/δ. Here, we
consider dissipation channels described by the jump operators L̂i = √γσ̂−i . Remarkably,
the infidelity scales only quadratically as a function of the number of qubits L. This
scaling dependence allows one to precisely estimate the impact of γ = 1/T1 on the QFT
algorithm, T1 being the energy relaxation time of the considered system.

Impact of initial states

Another key property is the dependence of the fidelity on the initial state, crucial to
redesign algorithms that rely preferentially on a certain class of states. In Fig. 5.5, we
address this question for the QFT by sampling initial states. Either energy relaxation
produced by the jump operators L̂i = √γσ̂−i or pure dephasing described by L̂i = √γσ̂zi
are considered. Only two simple parameters that characterise the initial state are found
to be crucial for the considered architecture: the total number nS of spins up and the
spin-up “barycenter”

B(ρ̂) = 1
nS

∑
`

`× Tr
[
|↑〉〈↑|` ρ̂

]
. (5.20)

Our findings show that, in presence of energy relaxation, the fidelity of the noisy QFT
decreases linearly with the number of spins up in the initial state. This is in stark contrast
to the case of pure dephasing, which shows no significant dependence on nS. The fidelity
also exhibits a strong dependence on the spin barycenter. Indeed, energy relaxation only
affects excited states and the circuit’s Hadamard gates are applied one qubit at a time
starting from the beginning of the chain. As a result, excited qubit states (spin up) close
to the end of the chain are rotated down to the Bloch-sphere equator by the Hadamard
gates later than those on the opposite end. Thus, they are globally more affected by
dissipation.

IV Conclusion
In this chapter, we investigated the role of dissipation and decoherence in noisy intermediate-
scale quantum circuits. Focusing on a circuit implementation of the key QFT algorithm,
we revealed the scaling behaviour of a noisy-circuit fidelity with the number of qubits and
explored its dependence on the initial state.
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To this end, a new numerical algorithm, dubbed dynamical corner-space method,
was introduced. By a judicious compression of the density matrix on a reduced corner
subspace, this was proven to faithfully reproduce the system’s dissipative dynamics. The
method was shown to not be limited by entanglement and particularly suitable for systems
with moderate entropy. This approach could be combined with efficient representations
of the corner-space wave functions, such as neural-network ansätze [343–347], to, ideally,
bring the exponential complexity of the simulation from exponential to only polynomial
in the number of qubits.

These qualities make the dynamical corner-space approach ideally tailored for the
NISQ era, providing a tool to improve our understanding of quantum hardware. The
presented method can indeed be applied in many contexts related to quantum information:
algorithm design for quantum feedback [348], machine learning for quantum control [349]
and quantum error mitigation [350]. Another interesting perspective could be to study
the effects of collective dissipation processes [234, 351] on the fidelity of physical quantum
circuits, an error that cannot be described within the digital error model framework.

The results of this chapter are contained in Ref. [γ].
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6 Photonic kernel machines

In the previous chapters, we considered the general problem of the dynamics induced by
optical reservoirs. We first started this discussion by addressing the case of a single op-
tomechanical resonator. This then led us to the study of the reduced dynamics induced by
fast optical lattices on a system consisting of a collection of slower mechanical resonators.
By eliminating the optical degrees of freedom, we identified that, with great generality,
the effective dynamics of the mechanical system was ruled by the spatially correlated
quasi-instantaneous response of the optical reservoir to mechanical perturbations. We
were able to completely describe this response by introducing a two-point susceptibility
S(ω). We then interested ourselves to the possibility of controlling the mechanical system
by externally tuning this reservoir susceptibility, for instance by modifying its typical
correlation length or by playing on the phase and detuning of the drive. In this context,
the reservoir was regarded as a valuable resource, able to correlate mechanical inputs and
control their effective dynamics. The approach to optical reservoirs that we shall adopt
in this chapter differs from that of the previous ones more in its goals than in its means.
Instead, we will here use the response of fast optical reservoirs as a resource to generate
useful representations of noisy input signals.

This chapter is devoted to the study of photonic kernel machines, learning devices
capable of performing machine-learning tasks on fast photonic reservoirs. It is organised
as follows. Sec. I will provide a general overview of the context behind this work. After
presenting some general concepts from kernel-machine theory in Sec. II, photonic kernel
machines will be introduced in Sec. III. Their learning mechanism as well as a physical
implementation will be discussed therein. In Sec. IV, this physical model will be applied
to the ultrafast spectral analysis of noisy radio-frequency signals from single-shot optical
intensity measurements of photonic lattices, on both regression and classification tasks.
Finally, conclusions will be drawn in Sec. V.

I Introduction
As a result of its intrinsically faster timescales, photonics was very soon envisioned as a
promising tool to outperform integrated electronics in terms of data processing rates [352].
In this perspective, optical setups ranging from matrix-vector multipliers [353], function
convolvers [354] and discrete Fourier-transforming processors [355] to non-von Neumann
parallel digital processors [356, 357] were proposed.
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Although these ideas quickly became outdated as a consequence of the fast rise of
silicon-based electronic processors, the latter have started to exhibit some of their limit-
ations. In particular, the emergence of machine learning applications operating on ever
increasing amounts of data, involving deeper and deeper neural-network architectures
with an increasing degree of complexity [358] has led to a situation where the progress of
available digital processor technology no longer keeps pace with the demand in computing
capabilities [359]. This trend has moreover gone hand in hand with an increase in the
consumption of computational and energy resources, casting doubt on its sustainability
[360].

This context has stimulated very interesting proposals aiming at surrogating the real-
isation of specific tasks that are computationally and energetically very demanding to
very specialised (electro-)optical devices. This process, reminiscent of current trends in
hardware acceleration technologies, such as graphical (GPUs) and tensor processing units
(TPUs), has already led to commercially available optical co-processors [361–364]. In the
recent years, this approach was scaled to deep architectures [365] and has proven spec-
tacularly powerful in the field of computer vision, by exploiting diffraction [366] or by
optical implementations of convolutional neural networks, both in free-space [367] and
on chip [368]. Such architectures are able to extract increasingly abstract representa-
tions [369] of the input images fed into the network by subsequent applications of pooled
optically-operated linear convolutions.

The most standard neural-network-based machine learning schemes present roughly
the following architecture: the digital data to be processed are transformed by a series
of consecutive layers that consist in a parametrised affine transformation followed by the
point-wise application of an elementary nonlinear activation function. Such a composition
of parametrised functions is then expected to approximate some target function of the
input upon a proper training process involving the optimisation of the parameters in
order to minimise the error of the model on some set of training examples. While this
sequential architecture is ideally suited for standard processors, which offer arbitrary
levels of programmability by design, the amount of parameters to be addressed during
the training process is in practice a hurdle to flexible optical implementations, having
progressed from roughly 63 thousands in the paradigmatic LeNet-5 convolutional neural
network [370] to several tens of millions on its nowadays counterparts [358]. The number
of parameters even exceeds tens of billions in some different modern architectures applied
to natural language processing tasks [371, 372].

Therefore, new machine learning paradigms that relax the above constraints, such as
echo-state networks [373–377] or reservoir computing [50, 378], have inspired theoretical
proposals and experimental realisations in a variety of settings, in optics [379, 380], integ-
rated photonics [381, 382], memristors [383, 384] and beyond [385, 386]. In the context
of optics, many fruitful configurations have been investigated, such as delay-line-based
setups [387–398], nonlinear polariton lattices [399–401] and backfed systems combining
linear light scattering and the measurement nonlinearity [402, 403].

Rather interestingly, together with this surge for harnessing computing power from
physical systems in line with the original ideas of optical computing, there has been a
resurgence in the criticism of the von Neumann architecture [404], whose limitations had
already been raised back then in the same context [357]. Such an architecture relies on
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physically separated processing and storage units connected through a bus. The latter’s
limited bandwidth results into a constant data traffic between the two units. This fun-
damental limit, coined as the “von Neumann bottleneck” [405], is the main constraint to
the energy and processing performance of nowadays processors [406]. This has lead to
important developments on in-memory computing in platforms such as memristor cross-
bars [407–418]. Beyond liquid-state machines/echo-state networks, several proposals have
been put forward to reconcile general-purpose machine learning and distributed memory
architectures. This, in particular, is the realm of neuromorphic computing, that has led
to significant work in the field of spintronics [419–423] and memristors [409, 411, 424–
435], notably the one articulated around spike-based machine-learning schemes [436–441].
Such architectures come not without their own technical difficulties. Because they rely on
co-located memory and processing resources, standard optimisation algorithms can prove
impractical, although novel optimisation procedures have recently been put forward to
overcome this obstacle by meeting their peculiar hardware design [442–446].

A second shortcoming of standard software machine learning relates to applications
involving analogue data that cannot be suitably interfaced with digital processors. In-
stances of this problem are, for example, situations where the input data to be analysed
are supplied at a throughput too high to be properly sampled in real time. This also
occurs when the data are intrinsically analogue, or when direct measurement processes
add noise or perturb the system being measured. The utmost example of this is provided
by genuinely quantum tasks with no classical counterparts, that involve quantum inputs.
This has stimulated many original works, ranging from image recognition tasks [56] to
quantum state control [51, 55, 447] and metrology [52, 53], under the name of quantum
neuromorphic computing [54].

We here propose to overcome these constraints by taking a distinct machine learning
paradigm, namely kernel machines [448, 449], to photonic hardware. We will describe
photonic kernel machines as well as the associated theoretical framework under very gen-
eral assumptions. We will explore the links between key concepts in support-vector-
machine (SVM) theory and those of the photonic kernel machine proposed here. We
will show that, in contrast with general reservoir computing schemes, knowledge about
the underlying internal representations handled by the proposed learning device may be
revealed from measurable data, providing direct understanding of the learning process of
actual hardware. By introducing a realistic physical model for a photonic kernel machine
based on a two-dimensional lattice of coupled linear optical cavities, we will numeric-
ally examine the performance of photonic kernel machines on regression and classification
tasks involving ultrafast spectral analysis of analogue radio-frequency (RF) signals in the
presence of noise, both with continuous and picosecond pulsed signals.

II General concepts
The results of this chapter will be focused on supervised learning problems. These can
be formulated as an optimisation problem in which one tries to best approximate a target
quantity y = f(x) of any given input x with a parametrised trial function f̂ . The input
data are distributed according to some possibly unknown distribution p(x) from which
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only a restricted set of examples {(x(i),y(i))}Ni=1 is known.
More precisely, in regression problems one seeks for the optimal parameters that make

f̂ the best fit for the known examples by approximating their unknown true functional
dependence f . A very simple example of such a task consists in fitting a curve from a set
of datapoints. In classification problems one aims at determining the function f̂ that best
associates to the input data x a set of labels y that characterises their belonging to one or
more classes. One example of this is determining if a patient is healthy or diseased from
a set of measured indicators. These approximation problems are expressed in practice as
the minimisation of some cost function J with respect to the parameters of the model to
be trained on a given set of examples.

A specific choice of parametrisation defines the architecture of the model. Many
architectures exist, ranging from shallow models [450], such as support vector machines
(SVM), tree-based models and reservoir computing, to deep-learning models [451], such
as feedforward, convolutional or recurrent neural networks. Here, we will exclusively
consider kernel machines and reservoir computing models, with a strong emphasis towards
the former. In this perspective, let us introduce some fundamental concepts and results
from the theory of kernel machines. These notions will reveal particularly useful in the
understanding of the physical model presented in Sec. III.2.

Feature-space embedding

In the context of regression, kernel machines approximate the target function by a para-
metrised linear expansion over a set of well-defined and possibly nonlinear orthogonal
transformations ψm as

f̂(x) =
M∑
m=1

wmx̃m + b = wT x̃+ b, (6.1)

with
x̃ := ψ(x), (6.2)

such that 〈ψm, ψn〉 =
∫

dxp(x)ψm(x)ψn(x) ∝ δm,n. Here, the set of functions ψ : x 7→ x̃
defines an embedding from the input space into a feature space of dimension M ≤ +∞,
with a new associated set of coordinates x̃1. Then, the parameters (w, b) of the trial
function define a hyperplane within this feature space.

As shown in Fig. 6.1(a), a nonlinear function in input space can become linear when
expressed in a higher-dimensional feature space spanned by nonlinear transformations of
the inputs. The feature-space embedding maps the original datapoints onto a hyperplane
therein. The model of Eq. (6.1) can thus perform regression by approximating the target
function as a parametric curve x̃ = ψ(x) supported on this possibly infinite-dimensional
hyperplane, whose parameters (w, b) are to be determined.

Binary classification can be operated in a similar way. Inputs x are associated to some
class a if f̂(x) > 0 and to the complementary class b otherwise. While this function might
be involuted in input space, it may also become linear in some suitable feature space, the
frontier between the two classes, f̂(x) = wT x̃ + b = 0, thus becoming the equation of a
plane. In this situation, the objective of the optimisation becomes finding the proper plane

1Note that this in general is not a diffeomorphism and thus stricto sensu not a change of coordinates.
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Figure 6.1: Schematic representation of the embedding from input to feature space kernel
machines rely upon. (a) An example of regression: the quadratic function f(x) = 3x −
x2 + 4 is linearly fitted after performing the embedding of Eq. (6.1), with ψ1(x) = x2 and
ψ2(x) = x. (b) An example of binary classification: after performing the embedding of
Eq. (6.1), with ψ1(x) = x1, ψ2(x) = x2 and ψ3(x) = x2

1 + x2
2, triangles (above the plane)

and dots (below the plane) become linearly separable in feature space. The resulting
input-space decision boundary f̂(x) = 0 is represented by a dashed line. Origins are
shifted to improve the legibility.

that well separates data belonging to different classes into two separate clusters lying at
either side of this linear decision boundary in feature space, as illustrated in Fig. 6.1 (b).
This learned linear decision boundary translates into a potentially non-trivial one back
in input space (dashed circle in Fig. 6.1 (b)). The same mechanism can be exploited to
perform K-class classification via the one-vs-one and one-vs-rest techniques, which split
the problem into respectively K(K − 1)/2 and K binary-classification problems.

The primal picture

In practice, kernel machines can be trained without explicitly setting some precise feature
map (6.1). This is achieved by introducing, under very general conditions, an expansion
over some set {hm}Mm=1 of M ≤ +∞ possibly-nonlinear functions in the form

f̂(x) =
M∑
m=1

βmhm(x) = βTh(x), (6.3)

where β is a vector including the set of parameters of the model 2. This corresponds to
the typical trial function used in the context of reservoir computing, where the readout
of the response of a nonlinear dynamical system to an external signal encoding the input
is exploited to generate the feature-space embedding. Under some proper choice of loss
function, reservoir computing may be strictly interpreted as a kernel machine.

2For simplicity, no bias is here considered, without loss of generality as one may always write f̂(x) =∑M
m=1 βmhm(x) + b =

∑M
m=0 βmhm(x), with h0 = 1 and β0 = b.
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Provided a set of training examples {(x(i), y(i))}Ni=1, the optimal set of parameters β̂ is
determined by minimising a cost function of the form

J(β) =
N∑
i=1

V
(
y(i), f̂(x(i))

)
+ λ

2‖β‖
2 , β̂ = arg min

β
J(β), (6.4)

where V (y(i), f̂(x(i))) is some pointwise error function on the predictions made by the
model that we want to minimise. Here λ is a “bias” hyperparameter that regularises the
optimisation in order to prevent the trained model from overfitting the training data-
set [450]. This mechanism will be explained in Subsec. II.2.

The dual picture

Thanks to the representer theorem, the solution f̂(x) = β̂
T
h(x) to this optimisation

problem can be rewritten equivalently [448, 450] as

f̂(x) =
N∑
i=1

α̂iK(x,x(i)), (6.5)

where K(x,x′) = h(x)h(x′)T = ∑M
m=1 hm(x)hm(x′) can be seen as a similarity kernel,

and α̂ is the set of optimal parameters of an equivalent dual problem:

J(α) =
N∑
i=1

V
(
y(i), f̂(x(i))

)
+ λ

2α
TKα , α̂ = arg min

α
J(α), (6.6)

with the kernel matrix Kij = K(x(i),x(j)). The feature map of Eq. (6.1) can thus also be
generated implicitly from a measure of similarity K(x,x′) between two inputs.

Upon a proper choice of error function, the training step takes the form of a convex
optimisation problem and can be straightforwardly solved. In particular, for a quadratic
error V (y, ŷ) = ‖y − ŷ‖2, the optimal parameters are given analytically by

α̂ = (K + λ1)−1Y ⇔ β̂ = (HTH + λ1)−1HTY, (6.7)

where Him = hm(x(i)) and Yik = y(i)
k .

The equivalence between the primal problem (6.4) and its dual (6.6) has as a strong
implication that one can in principle train an infinite-dimensional model (M = +∞)
with the optimisation of a finite set of parameters αi (N < +∞). The model can thus
approximate any function in the linear span of {x 7→ K(x,x(i)),∀i ≤ N}.

In practice, kernel machine practitioners choose a kernel suitable for their applic-
ations; among popular choices are linear kernels, K(x,x′) = xTx′; polynomial ker-
nels, K(x,x′) = (1 + xTx′/c)d; radial basis functions (RBF) [452, 453], K(x,x′) =
exp(−‖x− x′‖2

2/σ
2); or sigmoid kernels, K(x,x′) = tanh(κxTx′+θ); to name a few [454].

Very recently, “quantum” kernels of the form K(x,x′) = Tr[ρ̂(x)†ρ̂(x′)] or K(x,x′) =
〈Â(x)†Â(x′)〉, where ρ̂(x) and Â(x) denote quantum operators evolved through some
input-dependent unitary transformation Û [x] were proposed [455, 456] and even experi-
mentally implemented [456–458]. Quantum advantage on a classification task was demon-
strated on such kernel machines [459]; more recently, it was shown that circuit-based
“quantum neural networks” could be described as such quantum kernel machines [460].
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We have seen so far that the “abstract” feature-space embedding of the model ψ(x),
as defined in Eq. (6.2), can be implicitly generated in two practical ways: either by
parametrising an ansatz as a linear combination of known base functions h(x) (primal
problem), as in Eq. (6.3), or by making a specific choice of similarity kernel K(x,x′)
(dual problem), as in Eq. (6.5). Both of these approaches lead to equivalent yet different
optimisation problems. The trial and regularisation functions as well as the training
parameters, as expressed in the primal and dual equivalent pictures, are summarised in
Table 6.1.

Primal Dual

Trial function f̂(x) βTh(x) ∑
i αiK(x,x(i))

Regulariser R 1
2β

Tβ 1
2α

TKα

Training parameters β ≡ HTα (dim = M) α (dim = N)

Table 6.1: Summary of the main objects discussed in Sec. II in the two introduced pictures.

While the training of the model can be realised using either approach without ever
having to access the internal feature-space representations, the associated feature-space
embedding ψ(x) will be given explicit approximate expressions in the next section. This
will allow us to better interpret the learning and regularisation mechanisms in physical
kernel machines.

II.1 Feature-space inspection
Let us now identify the feature map (6.1) from a given kernel machine. One advantage
of support vector and kernel machines over reservoir computing is that their feature
space embedding may be straightforwardly examined. Indeed, for a symmetric positive
semidefinite kernel K, Mercer’s theorem ensures that it admits an eigendecomposition of
the form:

K(x,x′) =
M∑
m=1

γmφm(x)φm(x′), (6.8)

with γn+1 ≤ γn and 〈φm, φn〉 =
∫

dxp(x)φm(x)φn(x) = δm,n, where the measure was
chosen for convenience. The feature map of Eq. (6.1) can then be easily shown to be given
ψm(x) = √γmφm(x). We shall now identify the elements of this eigendecompositon.

Empirical eigenvalues and eigenfunctions of the kernel

To identify its eigenvalues and eigenvectors, one has to solve in principle for∫
dx′p(x′)K(x,x′)φ(x′) = γmφm(x). (6.9)

Yet these may be estimated from the N known training samples by replacing the input dis-
tribution p(x) with the empirical one p̂(x), such that

∫
dxp̂(x)f(x) = (1/N)∑i f(x(i)) [461].
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This yields a tractable discrete eigenvalue problem:

1
N

N∑
i=1

K(x,x(i))φ̂m(x(i)) = γ̂mφ̂m(x), (6.10)

in terms of empirical eigenvalues γ̂m and empirical eigenfunctions φ̂m. It follows that
the empirical eigenvalues correspond to the non-zero eigenvalues of either of the kernel
matrices K = HHT and k = HTH (let us recall Him = hm(x(i))). Indeed, because of
their Gram matrix structure, their eigendecompositions,

K = NUDγ̂UT , k = Nudγ̂uT , (6.11)

with Uim = φ̂m(x(i))/
√
N , share the same non-zero eigenvalues and can be related through

the following simple algebraic identity:

Un = 1√
Nγ̂n

Hun. (6.12)

In the physical model that will be studied below, designed to treat large datasets at a
very high rate, one has typically M � N and it becomes more suitable to work with the
M ×M matrix k.

Similarly, the empirical eigenfunctions can be determined from Eq. (6.10). By making
use of the property of Eq. (6.12), these finally read:

φ̂n(x) = 1√
Nγ̂n

uTnh(x). (6.13)

Empirical eigen feature map of the kernel

From Eq. (6.8) and Eq. (6.13), the kernel can be expanded into a series of empirical eigen
feature maps K(x,x′) = ∑M

m=1 ψm(x)ψm(x′), with orthogonal feature maps simply given
by

ψ̂m(x) =
√
γ̂mφ̂m(x). (6.14)

Thus, the internal functional representations of the model are independent from the op-
timisation process, completely determined by the statistics of the training samples and
can be estimated by diagonalising the matrix k.

The kernel links the abstract notion of similarity between two inputs x and x′, as
quantified by K(x,x′), into a distance between their feature-space representation x̃ and
x̃′. Indeed, K(x,x′) = x̃T x̃′, and thus d2(x̃, x̃′) = K(x,x) + K(x′,x′) − 2K(x,x′).
Therefore, even in the absence of any training, low-dimensional truncations of the kernel
eigen-feature expansion allow one to directly inspect the data x in its feature-space co-
ordinates x̃ = (ψ̂1(x), ψ̂2(x), . . .). For simple tasks, the first few leading components of x̃
usually suffice to visually access the structure of the input data.

As we saw in the previous subsection, the predictions of the model in the abstract
feature-space picture, f̂(x) = wT x̃ ≡ wTψ(x), take the form of a linear combination
of features whose weights, determined through training, can be geometrically interpreted
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as the parameters of a hyperplane. As a function of the primal parameters, this learned
hyperplane is characterised by

ŵ =
√
NuT β̂. (6.15)

Therefore, provided a set of generating functions {hm}m, we are now able to access to a
complete understanding of the model and its feature-space representations.

Further comments can be made about the feature-space structure. First, thanks to
the choice of measure, the feature maps may be thought of, up to the centring, as a
principal-component decomposition of the kernel [449, 462, 463]. This mean that they
embed the data from input space into the principal directions of the corresponding fea-
tures. Therefore, truncated sets of the features x̃ lie on the feature-space low-dimensional
manifolds that are the most statistically relevant to discriminate inputs. As we will see in
the next subsection, the regularisation will act as a soft cut-off on the dimension of these
manifolds.

II.2 Optimisation
So far, we have seen that the structure of the feature space is completely determined by the
kernel and the statistics of the training samples. The trial function then simply consists
in a linear combination of these features. The remaining step is to find the parameters
of this linear combination that lead to the best accuracy of the model. This optimisation
process is done through training.

The training can be performed either in the primal or the dual space, the former is
more adapted if the rankM of the kernel is smaller than the number of training examples
and conversely. We will here consider for latter convenience only the primal problem.
In shallow machine-learning models as that here described, this can performed in the
following way:

(i) The total amount of labelled examples {x(i), y(i)}i is first split into a training set
of size Ntrain and a testing set of size Ntest. The latter solely serves to evaluate
the accuracy of the trained model. Therefore, it should not be used at any stage
of the training process. For each input x in both sets of samples, the quantit-
ies {hm(x)}m are computed. In physical reservoir-computing and kernel-machine
schemes, hm(x(i)) corresponds to the measurement of the mth observable resulting
from the ith input example. This evaluation is only to be performed once.

(ii) The cost function, as given by Eq. (6.4), is minimised with respect to the parameters
of the model β for a given value of the hyperparameter λ and for the training set only.
This cost function involves an error function V (y(i),βTh(x(i))), whose evaluation
only involves the above-precomputed quantities. This function characterises the
error in estimating the target of the ith input in the training set. The choice of
error function depends on the task and is typically chosen so that the optimisation
problem is convex. For regression tasks, a popular choice is simply V (y, ŷ) = ‖y −
ŷ‖2, which corresponds to a least-square problem. In binary classification (y = ±1),
it is customary to choose a margin-maximising loss functions [464]. Popular choices
[450] are the SVM hinge loss, V (y, f̂(x)) = max(0, 1 − yf̂(x)), which makes f̂
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directly approximate the class label f(x) = y, or the binomial deviance ln(1 +
e−yf̂(x)), which makes f̂ instead approximate f(x) = ln(P(y = +1|x)/P(y = −1|x)).
Upon choosing any of these loss functions, the problem is convex and can be solved
either analytically, as in Eq. (6.7) for the square error, or by means of a convex
optimisation solver. This yields a set of optimal parameters β̂.

(iii) The trained model now makes estimations of the form f̂(x) = β̂
T
h(x). The final

accuracy of the trained model can then be evaluated on the testing data, to which
the model was yet never exposed, by comparing the predictions ŷ(i) = f̂(x(i)) to the
actual values y(i). This is done through a metric that may differ from the objective
function, in particular if regularisation was employed.

At the end of this process, one obtains a set of parameters β̂ and an accuracy associated
to some value of the regularisation strength λ. Let us now discuss more in details the role
of the regularisation on the learning of the model.

Regularisation: overcoming overfitting

The objective of the training procedure is to maximise the accuracy of the model’s pre-
dictions on data it was never exposed to, that is to be able to generalise. One of the most
detrimental obstacles to achieving this is overfitting. When the number of free parameters
of the model is too large as compared to the size of the training set and the complexity
of its statistics, the model can be prone to learn over-specific features of the training set
rather than general ones. This translates into a great generalisation error on the testing
set. Regularisation allows one to prevent this phenomenon by adding a penalty on the
degree of freedom of the model’s parameters, reducing its variance at the cost of acquiring
a larger bias.

In our case, this specific mechanism may be understood by decomposing the trial
function into the orthonormal basis of the kernel:

f̂(x) =
∑
m

〈φm, f̂〉φm(x) ≡
∑
m

f̂mφm(x), (6.16)

where the components f̂m may be interpreted as degrees of freedom of the model. It
follows from Eqs. (6.5) and (6.8) that f̂m = γm

∑
i αiφm(x(i)), then, the regularisation

penalty of Eq. (6.6) can be rewritten as

λR(α) = λ

2
∑
ijm

αiαjφm(x(i))γmφm(x(j)) ≡
∑
m

λm
2 |f̂m|

2, (6.17)

where λm = λ/γm. This means that the penalty on the magnitude of the mth component
of f̂ during the optimisation is inversely proportional to the variance of φm(x). Therefore,
the effect of the regularisation on the optimisation is to impose a soft cut-off on the
dimensionality of the feature-space hyperplane schematically illustrated in Fig. 6.1, while
preserving most of the original variance of the inputs by reducing it to only the most
statistically relevant directions.
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Hyperparameter training

The training of the hyperparameter λ can be done in several ways. For instance, one way
of doing this is by grid search, that is by sweeping λ within some bounds and retaining
the value at which the performance of the model was maximal. Care must be taken
though with the dataset used to assess this performance. Evaluating it on the training set
would be of no use in quantifying generalisation. While its evaluation on the testing set
would effectively be a measure of generalisation power, it would entail data leakage as the
optimal parameters and thus future predictions would be conditioned on the knowledge
of the test examples, thus compromising the fidelity of the final estimate of the model
accuracy in step (iii). One way around this is to partition the training set at step (ii) into
a training set and a validation set. Then, the training of the model’s parameters is carried
out on the former and the tuning of the hyperparameter by benchmarking the accuracy
of the model on the latter. Multiple variations around this idea exist. In the following we
will use k-fold cross-validation.

III Photonic kernel machines: taking the kernel to optical
hardware

The spectral analysis of radio-frequency signals is a very broad field with countless applic-
ations. We will mainly focus ourselves on the analysis of ultrashort pulsed signals. This
is relevant for instance in the field of pulse-Doppler radars. Such devices emit a pulsed
radio-frequency signal around some carrier frequency with some repetition rate and re-
ceive it back via an antenna after being reflected by a moving target. This reflected signal
is then measured and numerically processed to extract information about the position
and the velocity of the tracked target. The distance from the target to the emitter may
be estimated from the delay between the emission and reception times while the relative
velocity with respect to the receiver can be guessed from the magnitude of the Doppler
shift in the reflected signal. The repetition rate is limited by the processing time, which
is in turn bounded by the acquisition time.

Nowadays, the state of the art performances are obtained by direct sampling of the
signal sensed by the antenna. Yet, the sampling rate of state-of-the-art RF-sampling
analogue-to-digital converters (ADCs) lies below 4 GSPS (gigasamples per second), which
clearly limits the length of the pulses used. Indeed, to be able to measure 1000 samples of
a pulse of interest with such an ADC, one needs the pulse’s length to exceed roughly 25 µs.
Other strategies proceed by sweeping, yet if the sweep is performed over, for instance,
20 GHz, with a real-time bandwidth of 1 GHz, the analyser is blind 95% of the time. This
issue may be circumvented by operating several such analysers in parallel addressing each
a separate sub-band. However, the resulting devices are very expensive, heavy and bulky.

Acousto-optical spectrum analysers are also known, in which the signal to be analysed
is injected into a piezoelectric crystal (Bragg cell) after being converted into acoustic waves
that create variations in the diffraction index. The coherent input light is injected into
the transparent medium of the acousto-optical cell, and this light is diffracted according
to the spectrum of the initial signal. The laser image is collected by a CCD system. The
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amplitude of the outgoing signal is proportional to the amplitude of the radio-frequency
signal and the angle of deflection is almost proportional to the frequency of the signal.
Such acousto-optic analysers have found applications in astronomy.

In the optical frequency domain, spectral analysis can be performed by means of
spectrometers such as monochromators. Such devices perform a frequency sweep with
a power measurement at the selected frequency up to a certain spectral resolution. The
control of the mechanical element of the spectrometer allowing the frequency sweep greatly
limits the rate of acquisition of the spectrum of the signals to be analysed, which can be
at best of the order of 10 kHz for the most efficient devices.

As we have just seen, current electronics pose severe bounds on the achievable pro-
cessing throughput and on the pulse lengths. This context motivates the quest for tech-
nologies that go past these limitations. In what follows, we shall show that these may
be lifted by resorting to a learning all-optical processing device based upon the kernel-
machine concepts introduced above. We will first introduce a similarity kernel ideally
suited for this task although very expensive to evaluate. We will then show that this
kernel can be realised rather naturally by means of a single-shot intensity measurement of
a photonic lattice, making it possible to process complex radio-frequency signals in times
of the order of tens or hundreds of picoseconds.

III.1 Theoretical description
As we have seen above, learning with kernels starts from the introduction of a kernel
that serves as a measure of similarity between inputs. In particular, we will focus this
discussion on the spectral analysis of ultrashort pulsed signals. The spectral information
of such signals s(t) is encoded in their energy spectral density S[ω] = |s[ω]|2, where
s[ω] = (2π)−1/2 ∫ dte−iωts(t). Rather naturally, the similarity between two signals s(t)
and s′(t) can thus be given a general expression of the form:

K(S, S ′) =
∫

dωdω′S[ω]K(ω − ω′)S ′[ω′], (6.18)

where K(ω−ω′) is a function peaked around ω = ω′ and with a typical width δω. Such a
kernel compares two given input signals by contrasting their energy spectral densities at
each frequency with a certain tolerance on their fine structure at frequency scales below
δω. While this provides a good and flexible similarity metric, the practical numerical
evaluation of such a kernel is rather unsuitable. Indeed, this would require several costly
steps: (i) each pulse would have to be sampled in time at similar sampling rates over a time
interval larger than 2π/δω, (ii) the digitised signals would then have to be numerically
Fourier-transformed and stored, and, finally, (iii) each kernel evaluation would involve the
evaluation of a double integral. We shall next see that the feature-space embedding of
this kernel can be computed rather naturally on photonic hardware.

Let us consider an optical system consisting of a set of M generic normal modes, as
described in frequency space by their susceptibility to some ith pulsed input signal s(i)(t)
of interest:

α̂`[ω] = χ`[ω]
(
is(i)[ω] +

√
κ/2α̂in

` [ω]
)
, (6.19)
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where α̂`[ω] = (2π)−1/2 ∫ dte−iωtα̂`(t) is the Fourier-transformed annihilation operator
associated to the `th normal mode, α̂in

` its associated quantum Langevin input field, χ`[ω]
its susceptibility at frequency ω, and κ the loss rate.

Optical populations induced by the input pulse are measured via the collected radiated
power by a detector with some integration time ∆t larger than the length of the pulse,
i.e. ∆t� 1/∆ω, where ∆ω is the bandwidth of the signals to be analysed. The scattered
normal-mode populations are thus given by

n̄(i)
` ∝

1
∆t

∫
dt〈α̂†`α̂`〉t = 1

∆t

∫
dω〈α̂†`α̂`〉ω =

∫
dωh`(ω)S(i)[ω] ≡ 〈h`|S(i)〉 , (6.20)

where h`(ω) = ∆t−1|χ`[ω]|2 is the optical population susceptibility and S(i)[ω] = |s(i)[ω]|2
is the energy spectral density of the ith pulse.

From such a population measurement, vector-valued predictions on any input energy
spectral density S can thus be made of the form of those of a kernel machine as in Eq. (6.3):

f̂`(S) = [BT n̄]` ≡
∑
`′
B`′` 〈h`′|S〉 , (6.21)

For optical relaxation times of the order of tens of picoseconds, such predictions could in
principle be realised for ultrashort pulses at a throughput above the tens of gigahertz.

Let us check that the corresponding dual-picture kernel is indeed of the form of
Eq. (6.18) under some general assumptions on the optical-mode density spectrum of the
photonic system. This kernel takes the form:

K(S, S ′) =
∑
`

〈S|h`〉 〈h`|S ′〉 =
∫

dωdω′S[ω]K(ω, ω′)S ′[ω′]. (6.22)

We will focus on K(ω, ω′) = ∑
` h`(ω)h`(ω′). By considering that all normal modes of

the system share the same susceptibility shape, h`(ω) = h(ω − ω`), and for a continuous
optical-mode density spectrum ρ(ω), this is of the form:

K(ω, ω′) =
∫

dΩρ(Ω)h(ω − Ω)h(ω′ − Ω). (6.23)

By further assuming a smooth spectral density of spectral width much larger than the
normal modes’ linewidth, one may finally write:

K(ω, ω′) ≈ ρ
(
ω+ω′

2

) ∫
dth(t)h(−t)e−i|ω−ω′|t. (6.24)

The kernel is thus completely determined by the measured-observable susceptibility,
here the population: h(ω) = |χ[ω]|2/∆t. For instance, the susceptibility of a linear optical
mode χ`[ω] = 1/(−i(ω − ω`) + κ/2) translates into a Lorentzian kernel:

K(ω, ω′) ∝ 1
(ω − ω′)2 + κ2 , (6.25)

that was shown to perform better on some tasks than the more common RBF [465]. This
kernel indeed bears the desired form introduced in Eq. (6.18), with a spectral tolerance
δω = κ given by the mode linewidth.
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·
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{ŵ`}
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ŷ(i)[ω]

Figure 6.2: Illustration of the photonic kernel machine processing mechanism. Meas-
urement of the pulse-induced optical populations embeds the pulse’s energy spectral
density into some reciprocal space by projection onto a set of orthogonal base func-
tions {ψ̂`}`. The spectrum of the ith pulse is reconstructed by a linear combination
ŷ(i)[ω] = ∑

`′ w`′ [ω]〈ψ̂`′ |S(i)〉 of its reciprocal-space components (features) over some set of
learned functions {ŵ`}`. On this example, the learned functions {ŵ`}` are filtered ana-
logues of {ψ̂`}` and the photonic kernel machine is able to extract the spectrum of the
incoming pulse from its noisy background.

Inspecting the feature space of photonic kernel machines

One can access to the feature space associated to such a photonic kernel machine as well.
Indeed, its kernel admits the following eigendecomposition

K(S, S ′) =
∑
`

〈S|h`〉 〈h`|S ′〉 =
∑
`

γ` 〈S|φ`〉 〈φ`|S ′〉 , (6.26)

with empirical eigenfunctions and feature maps as given by Eqs. (6.13) and (6.14):

φ̂n(ω) = 1√
Nγ̂n

uTnh(ω), ψ̂n(ω) =
√
γ̂nφ̂n(ω), (6.27)

where un and the empirical eigenvalues γ̂n are obtained following Eq. (6.11) as the nth
eigenvector and eigenvalue of the matrix k/N = HTH/N , with Hi` = 〈h`|S(i)〉 = n̄(i)

` ,
and where h`(ω) = |χ`[ω]|2/∆t is the population susceptibility of the considered normal
modes. Strikingly, this kernel matrix, and thus the above feature-map embeddings, can
be directly constructed in experiments from the optical-population measurements over
the training set as

1
N
k``′ = 1

N

∑
i

n̄(i)
` n̄

(i)
`′ . (6.28)

Now that this set of orthogonal eigenfunctions was identified, feature-space coordinates
of the photonic kernel machine can be interpreted as reciprocal-space components S̃` =
〈ψ̂`|S〉 of any input spectrum in the span of {ψ̂`}`.

In particular, let us consider a regression problem with a target of the form ŷ(i)[ω`] =
f̂`(S(i)). From Eqs. (6.21) and (6.27), one has that the predictions bear the form of an
expansion

ŷ(i)[ω`] =
∑
`′
w`′ [ω`]〈ψ̂`′ |S(i)〉 (6.29)

of the feature-space coordinates over a set of learned “functions” {w`′}`′ , given by

w`′ [ω`] ≡
√
N [uTB]`′`, (6.30)



III. Photonic kernel machines: taking the kernel to optical hardware 107

as directly follows from Eq. (6.15).
In particular, by setting the trainable parameters by hand to w`′ [ω`] = ψ̂`′(ω`)/γ̂`′ , one

sees that ŷ(i)[ω`] = S(i)[ω`], that is, a photonic kernel machine is, at least, able to reproduce
the energy spectral density of a pulse s(t) from a single-shot intensity measurement,
provided the energy spectral density belongs to the linear span of {ψ̂`}`, as will be indeed
verified in Sec. IV.1. In practice, the task-dependent “functions” {w`′}`′ are learned during
the optimisation procedure and may be evaluated explicitly at the chosen frequency bins
{ω`}` from the measurement data and the training parameters B by making use of the
above expression. This picture is schematically illustrated in Fig. 6.2.

III.2 Physical implementation
We will apply the above theory to the ultrafast processing of radio-frequency pulsed signals
with a photonic lattice. The task consists in analysing a set of baseband radio-frequency
signals {s(i)(t)} over a bandwidth ∆ω around some reference angular frequency ω0 by
extracting some associated quantity of interest y, such as the energy spectrum or the
peak frequency. To this aim, let us introduce an adapted physical implementation of a
photonic-lattice-based kernel machine. The setup is schematically illustrated in Fig. 6.3.
It involves four successive elements.

Input signals enter the first unit of the system at an electro-optic modulator through
frequency mixing with an optical carrier, c(t) = c0 exp(−iωpt), resulting in a modulated
signal of the form F (i)(t) = s(i)(t)e−iωpt whose central angular frequency ωp + ω0 may be
shifted to accommodate the processing of signals in very different bands. The angular
frequency of the local oscillator is set to ωp = ω̄ − ω0, where ω̄ denotes the central
angular frequency of the lattice, to maximise the response of the system. The now optical
modulated signal is then routed to the photonic lattice, entering the cavities as a coherent
drive.

The second unit consists of a L × L quadratic photonic lattice whose cavities are
mutually coupled via near-field nearest-neighbour interactions. These cavities are coupled
to the external modulated drive with some arbitrarily spatially-dependent rate v`. In a
frame rotating at the drive’s frequency, the dynamics of such a lattice is described by the
following set of quantum Langevin equations:

∂tâ`(t) =
[
i(∆` + ω0)− κ`/2

]
â`(t) + i

∑
m∈v(`)

J〈m,`〉âm(t) + iv`s(t) +
√
κ`/2 âin

` (t), (6.31)

where â` is the photon annihilation operator at site `, ∆` = ωp − ω` is the detuning of
the local oscillator, κ` the optical relaxation rate, J〈m,`〉 the linear coupling rate between
cavities ` and m, s(t) the broadband driving signal, and v` the local weight of the coupling
of the `th cavity to the external drive. A high degree of control of the parameters is not
required. In the following numerical simulations, we will set uniform angular frequencies
ω` for simplicity and ∆ = −ω0, the rest of the parameters will be random variables.
J〈m,`〉 will be uniformly drawn in the interval [0, Jmax], κ` normally distributed around
κ̄ = zJmax/40 (z = 4) with a standard deviation of 10%, ∆ω = zJmax and v will be set
to a normalised random real vector.
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The third unit consists of a sensor that measures the intensity of the light radiated by
the optical cavities as they are externally driven by an input signal. These populations
are measured by time-averaging over some detector integration time ∆t and collected into
a vector n̄(i) = (n̄(i)

1 , . . . , n̄
(i)
L×L, 1)T , where a unit entry is added to get a supplementary

trainable parameter acting as a bias. In what follows, two measurement settings will be
considered:

(i) Measure of the local populations: n̄(i)
` ∝ 1

∆t
∫

dt〈â†`â`〉t. This corresponds, for in-
stance, to the experimental situation where the intensity that is vertically emitted
by the cavities is measured by a camera facing the lattice.

(ii) Measure of the normal-mode populations: n̄(i)
` ∝ 1

∆t
∫

dt〈α̂†`α̂`〉t. This corresponds,
for example, to the experimental situation where the field leaking from the cavities
is collected by an evanescently coupled waveguide and frequency-demultiplexed into
L× L frequency channels coupled to photodetectors.

Finally, a fourth unit performs a linear combination of the measured populations by
acting with a n × (L2 + 1) matrix of parameters B, to be optimised by training. The
output of this last unit is thus of the form ŷ(i) = BT n̄(i), as in Eq. (6.21).

LO
ωp

Noise

s(t)

|s[
ω
]|2

ω0

∆ω

vL×L

v2

v1

n̄1
n̄2

n̄L×L

1

B̂

=

n̄

=

ŷ

Figure 6.3: Schematic representation of a trained photonic-lattice-based kernel machine
estimating the energy spectral density of a noisy pulse from single-shot local intensity
measurements. The processing mechanism is the following: (i) A pulsed radio-frequency
signal s(i)(t) arrives to the device immersed in white noise, (ii) it is then transferred to an
optical carrier of angular frequency ωp thanks to an electro-optic modulator (⊗) and (iii)
coherently injected into a lattice of L × L linear cavities with random parameters. (iv)
The resulting optical populations are then measured through the light radiated by the
cavities and, finally, (v) the spectrum of the original noiseless signal is reconstructed by
linearly combining the measured quantities thanks to the fixed matrix B̂, obtained from
the previous training protocol.
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Training the lattice-based photonic kernel

The training starts from a training and a testing sets composed of Ntrain and Ntest signals,
respectively, each of the form {(s(i),y(i))}i, where s(i) denotes the ith signal and y(i) a set
of known associated features we want our system to learn how to estimate. In regression
tasks, these labels y(i) may take arbitrary values, whereas in binary classification tasks
y(i) = ±1 depending on whether the associated input s(i) belongs to a class or not.

The trial function of the untrained model is initially given by f̂(s(i)) = BT n̄(i). The
training is carried out as follows:

(i) Construct the matrix Y. From the known features {y(i)}i associated to the
samples of the training set, Y is first computed as Yin = y(i)

n .

(ii) Obtain the matrix H. Each input signal s(i) of the training set is fed into the
device at the electro-optic modulator and the resulting cavity populations n̄(i) are
measured by the sensor. All these measured populations are stored in a matrix
Him = n̄(i)

m .

(iii) Determine the optimal parameters B̂. For a chosen value of the regularisation
hyperparameter λ, one obtains the optimal parameters by minimising the objective
function as B̂ = arg minB J(B), with J(B) = ∑Ntrain

i=1 V (y(i), f̂(s(i))) + λ
2‖B‖

2
2, where

f̂(s(i)) = BT n̄(i), with n̄(i) as obtained in the previous step. For regression tasks, one
typically uses square errors V (y, ŷ) = ‖y − ŷ‖2, which directly yields B̂ = (HTH +
λ1)−1HTY, with Y and H as computed at steps (i) and (ii), respectively. For
classification tasks, one instead uses the hinge loss V (y, f̂(x)) = max(0, 1− yf̂(x))
and minimises the objective function by standard iterative methods.

(iv) Evaluate the accuracy of the model. The model is now trained. For any input
signal s fed into the system, features are now estimated according to f̂(s) = B̂T n̄,
from the measurement of the resulting populations n̄. Its accuracy can then be
tested on the testing set by comparing the predictions ŷ(j) = f̂(s(j)) to the known
features y(j), for every input signal s(j) in the testing set.

Experimentally accessing the feature space

The general feature-space-inspection ideas introduced above can be adapted to the present
architecture. We here briefly summarise the main identities that we shall use in the
following when studying the learning mechanism from experimentally accessible data.

The prediction associated to some signal s(i) can be written explicitly as an expansion
of the feature-space components,

ŷ(i)
n =

∑
n′
Wnn′〈ψ̂n′ |S(i)〉, (6.32)

where S(i) is the spectral density of the signal. The dual of the feature map can be easily
estimated as ψ̂m(ω) =

√
γ̂mφ̂m(ω) from the empirical eigenvalues {γ̂m}m and eigenfunc-

tions {φ̂m}m. The former are obtained from the experimental data as the eigenvalues
of the matrix k/Ntrain = HTH/Ntrain (note that k``′/Ntrain = 1

Ntrain

∑
i n̄

(i)
` n̄

(i)
`′ ); the latter
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Figure 6.4: (a) Energy spectral density averaged over 105 realisations of the noiseless
pulses, as given by Eq. (6.34), as well as that of a few individual realisations. (b) Mean
and interval between quantiles 5% and 95% for the optical spectra of 100 realisations of
a 30× 30 random photonic lattice.

are given by φ̂m(ω) = uTmh(ω)/
√
Ntrainγ̂m, where um is the mth eigenvector of k and

h`(ω) = |χ`[ω]|2/∆t is the population susceptibility of the `th measured mode. The para-
meters of the feature-space hyperplanes can be obtained from the trained parameters as
Ŵ =

√
Ntrainu

T B̂. Frequency-dependent features may be defined as ŷn = ŷ[ωn]. Then
one may equivalently write Eq. (6.32) as a mode decomposition over the basis of em-
pirical feature functions as ŷ(i)[ω] = ∑

n′ ŵn′ [ω]〈ψ̂n′ |S(i)〉. The hyperplanes can then be
interpreted as a set of learned functions, explicitly given by ŵn′ [ωn] = Ŵnn′ .

Benchmarking the photonic-lattice kernel machine

In the following, two different approaches will be employed to benchmark the above-
defined physical implementation of a photonic kernel.

In order to evaluate the ability of the model to estimate the spectrum of pulsed signals,
we will first use the modulus square of the fast Fourier transform (FFT) of the input
signals as a reference of energy spectral density. We will assume an ideal sampling of
the pulse over a centred window of time length ∆T = 5 × 2π/κ at a sampling rate of
fs = 200 × κ/2π. For cavities with 2π/κ ∼ 10 ps, this corresponds to a sampling rate of
fs = 10 THz. Note that this is more than three orders of magnitude beyond the state of
the art. Yet in the following the photonic kernel will be shown to outperform this rather
fictional ideal device.

We will also use a reservoir computing approach based on a nonlinear polaritonic
lattice as first introduced in Ref. [399]. This reservoir was numerically proven successful in
image and speech recognition tasks and chaotic time-series forecasting, and was recently
experimentally tested on an optical character recognition task [400]. This reservoir is
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modelled by the following discrete complex Ginzburg-Landau equation:

∂tα`(t) =
[

+ i(∆` + ω0) + γ − (Γ + ig)|α`(t)|2
]
α`(t) + i

∑
m∈v(`)

J〈m,`〉αm(t) + iv`s(t), (6.33)

where γ = P − κ/2 is a gain coefficient that accounts for the single-body decay rate κ/2
and the magnitude of the external pumping P , that brings the system close to instability.
Here, Γ and g respectively account for two-body dissipation and interaction processes.
The input signals are coherently injected in the same fashion as for the linear lattice. In
the following numerical simulations, we will set ∆ = −ω0, J〈m,`〉 uniformly drawn in the
interval [0, Jmax], Γ = zJmax/40 (z = 4), γ/Γ = 8× 10−4/2π, g/Γ = 1.6/2π, ∆ω = zJmax
and v to a normalised random real vector. The output of this model depends on the
amplitude of the input. In what follows, the input energy will be set to 50Γ.

The training of this model is realised exactly as for the photonic kernel machine, from
local population measurements n̄(i)

` ∝ 1
∆t
∫

dt|α`(t)|2.

IV Applications

IV.1 Spectrum estimation
As a first illustration of the learning capabilities of the above-described photonic kernel
machine, let us consider the extraction of the noiseless energy spectral density of an
ultrashort pulsed signal embedded into a noisy background. Given an input noisy pulsed
signal s(t)+ξ(t), this task consists in giving the best possible estimation ŷn of its frequency-
binned energy spectral density yn = |s[ωn]|2 regardless of the noisy background ξ(t).

In order to train and study the performance of the model, we generate training and
testing sets of Ntrain and Ntest pulses, respectively. To do so, we first generate known noise-
less random spectra of same total energy E0 =

∫
dωSss[ω] by cubic B-spline interpolation

of a set of Nb signal bins s̃n ≡ s̃[ωn], with frequency bins {ωn}n equally spaced within
the band [ω0 −∆ω/2, ω0 + ∆ω/2] and randomly sampled from a Boltzmann distribution
p[s̃n] = (1/Z)e−βV [s̃n] parametrised by the following potential:

V [s̃n] = a

Nb

Nb−1∑
n=1
|s̃n+1 − s̃n|2 + b

∣∣∣max
n
|s̃n|2 − Speak

∣∣∣2 + c
∣∣∣∣ stdn |s̃n|2 − S̄

∣∣∣∣2, (6.34)

with s̃i = 0, i = 1, Nb, Speak = 8S̄, S̄ = E0/∆ω. Here, a acts as stiffness parameter
whereas the b-term favours peaked spectra. Finally, the c-term prevents the sampled
spectra from sharing too similar shapes by favouring the presence of secondary peaks. The
parameters used throughout this section are Nb = 20, βa = βc = 100 and βb = 50. The
energy spectral densities of the obtained random noiseless spectra are shown in Fig. 6.4 (a),
where the average energy distribution is compared to S̄ and a few typical examples are
plotted, exhibiting various peaks with different heights. The choice of bandwidth (∆ω =
zJmax) ensures that all the power of the signal to be analysed can be sensed by the
photonic lattice, as shown in Fig. 6.4 (b), where the average optical spectrum of a large
random photonic lattice is plotted. The random spectra are then Fourier-transformed to



112 Chapter 6. Photonic kernel machines

the time domain and white noise ξ(t) is added to match some signal-to-noise ratio SNR,
here defined as the relative contribution of the noise to the total energy in the analysed
bandwidth, i.e. SNR = E−1

0
∫ ω0+∆ω/2
ω0−∆ω/2 dω|ξ[ω]|2.

We then simulate the response of the photonic lattice to each of the driving input
signals s(i)(t) of the training set by numerically integrating the coupled dynamical equa-
tions (6.31). For each signal, either the local and normal-mode populations are then
measured yielding a set of time-averaged populations n̄(i). The weights B are then op-
timised over the training data so as to minimise the square error between the prediction
of the photonic kernel machine ŷ and the known spectra of the noiseless pulses y. Upon
fine-tuning of the hyperparameter λ by 10-fold cross validation, the optimal weights B̂
are obtained analytically as explained above. The error of the trained model is then
evaluated on the test set. We here quantify this error by the relative misclassified energy
∆E/E0, where ∆E represents the energy area between the estimated and the actual en-
ergy spectral density curves of the original noiseless spectra. In Fig. 6.5, we use this metric
to benchmark our model against the ideal FFT of the input signal and a the nonlinear
polariton-based reservoir. For any of the chosen SNR values and lattice sizes, the photonic
kernel outperforms the other two approaches. Interestingly, the maximum performance is
already reached with lattices as little as 10×10, with an error in the reproduced spectrum
about three times smaller than that obtained by the ideal FFT procedure. In addition,
Fig. 6.6 shows the error frequency over the testing set for the three values of the SNR and
a 20× 20 photonic lattice. The (very unlikely) worst-case scenario over the testing set at
each value of the SNR is compared to the ideal targeted spectrum and that reconstructed
by the FFT in Fig. 6.7.

In order to understand how the device learns from training examples, let us make use
of the theoretical concepts introduced above. Regression by the implemented photonic
kernel machine is performed by a linear expansion ŷ(i)[ωn] = ∑

n′ ŵn′ [ωn]〈ψ̂n′|S(i)〉 of the
feature-space components 〈ψ̂n′ |S(i)〉 over a set of learned functions ŵ. The eigenvalues
γn and eigenfunctions ψn/

√
γn of the photonic kernel do not depend on the optimisation

procedure and can be given empirical estimations from the measured populations n̄(i) dur-
ing the training process, as described above. In Fig. 6.8 (a), we show the convergence of
the empirical eigenvalues as the amount of training examples is increased, that is already
reached for roughly Ntrain = 1000 with our training protocol. Figs. 6.8 (b) and (c) show
the leading empirical feature maps as well as the corresponding learned eigenfunctions.
On this task, one observes that the optimisation procedure leads to a set of learned func-
tions that correspond to filtered analogues of the empirical eigenfunctions of the kernel.
One sees from Fig. 6.8 (b) that the model builds a Fourier-sine expansion with a spec-
tral resolution cut-off at ∆ω/2πL2. While in principle the optimisation procedure may
be sensitive to any feature-space component within this bound, the ridge regularisation
introduced during the optimisation induces a soft cut-off for those whose associated ei-
genvalues have magnitudes lower than λ. This reduction to only the most statistically
relevant components of the functional basis prevents the model from overfitting the train-
ing set, which would undermine its generalisation capacity. In Fig. 6.8 (c), the effect of
the regularisation is clearly visible on the highest-order represented learned function, that
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computing model (dash-dotted) and the photonic kernel machine where either the local-
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lowest and highest errors over these realisations. For each realisation: Ntrain = 7000 and
Ntest = 3000.

0 5 10 15 20 25 30

∆E/E0 (%)

0

2

4

6

8

10

12

F
re

q
u

en
cy

ov
er

th
e

te
st

se
t

(%
)

F
F

T

F
F

T

F
F

T

SNR = 30 SNR = 20 SNR = 10
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over 5 realisations of a 20×20 photonic kernel machine. Ntest = 3000 for each realisation.
The error score of the FFT is shown as dashed lines for comparison and falls systematically
above the upper bound of that of the photonic kernel machine, in spite of being slower
and requiring an ideal sampling rate significantly beyond the state of the art.
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is completely filtered out. Hence, regularisation here manifests itself as a low-pass filter
on the learned decomposition.

From this figure, the interpretation of the the photonic kernel machine regression
mechanism becomes very clear: (i) the training set determines some optimal Fourier-like
decomposition of the spectra, (ii) the regularisation truncates the basis of such a decom-
position to its most statistically relevant components, and, finally, (iii) the optimisation
finds a set of smooth filtered base functions on which to expand back those components
to best reproduce the features, finally reconstructing the noiseless spectrum, from which
the noisy background uncorrelated with the training set was regularised out.

IV.2 Pulse shape recognition
We now show the performance of the same photonic kernel machine trained on a noisy-
pulse shape classification problem.

The task consists in determining whether the envelope of an input pulse is Gaussian
(y = 1) or Lorentzian (y = −1) from the measurement of the photonic populations of the
lattice in the presence of noise at the input port of the system. We prepare a set of pulses
with central angular frequencies uniformly drawn at random on the band of interest [ω0−
∆ω/2, ω0+∆ω/2] and full widths at half maximum (FWHM) normally distributed around
FWHM = ∆ω/20 with a relative standard deviation of 10%. The induced populations
are then time-integrated over some detection time ∆t yielding a vector of intensities n̄
that are finally linearly combined in such a way that the output of the photonic kernel
machine is now a scalar of the form f̂(S) = βT n̄. The output of the ith pulse may be
equivalently rewritten in terms of components of the feature map as f̂(S(i)) = wT S̃

(i) + b,
with S̃(i)

n = 〈ψn|S(i)〉. As discussed above, (w, b) defines the decision boundary of the
model as a hyperplane in feature space. Input pulses are then classified into either of the
two classes depending on whether their feature-space coordinates S̃(i) fall on either sides
of this plane. Hence, predictions are of the form ŷ(i) = sign(f̂(S(i))). The optimisation
process is realised by minimising the hinge loss V (y(i), f̂(S(i))) = max(0, 1− y(i)f̂(S(i))).
This is here achieved by means of a convex optimisation solver [466] for λ → 0+. The
classification process is illustrated in Fig. 6.9 for a 20 × 20 photonic kernel machine
and intermediate noise strength (SNR = 20). In panel (a), one observes that features
corresponding to either classes indeed cluster at either of the sides of the discriminating
hyperplane independently from the value of the FWHM. As it becomes clear in panel
(b), the predictions become less accurate as the distance from the separating hyperplane
becomes smaller, thereby giving an estimation of the likelihood of the prediction. This can
be made more explicit by calibrating the probability of the classifier. This probability is
shown in panel (c) as given by P(s(i) = “Gaussian”|f̂(S(i))) = [1+exp(−Af̂(S(i)) +B)]−1,
where the calibration parameters A and B were determined by Platt scaling [467].

The performance of a 20×20 trained photonic kernel machine is shown via its receiver
operating characteristic (ROC) curve in Fig. 6.10 for increasing noise strengths and the
two population measurement scenarios. This displays the sensitivity (true positive rate)
as one allows the specificity of the model to drop (higher false positive rates) by playing
on some external bias added to the trained model, the best trade-off being found at the
top left corner for no external bias. The ROC curve of an unbiased classifier that affects
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Figure 6.9: (a) Signed distance from the testing pulses’ features to the learned hyper-
plane (decision boundary) as a function of their FWHM for a 20 × 20 photonic kernel
machine under normal-mode measurement of the photonic populations. Dots correspond
to Gaussian pulses, squares to Lorentzian ones. Pulses falling above the decision bound-
ary (dashed line) are categorized as Gaussian by the classifier and conversely. SNR = 20,
Ntrain = 14000 and Ntest = 6000. (b) Frequency of each class as a function of the signed
distance to the discriminating hyperplane. (c) Probability that a pulse be Gaussian or
Lorentzian at any given value of its associated signed distance to the discriminating hy-
perplane.
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Figure 6.10: Receiver operating characteristic (ROC) curve for a 20× 20 photonic kernel
machine on the pulse shape classification task for three noise strengths and two measure-
ment scenarios. The closer to the top left corner, the better. The numerical values of their
associated sensitivities and specificities are on the right. Ntrain = 14000 and Ntest = 6000.



IV. Applications 117

pulses randomly to either shape class is plotted as well for comparison. The sensitivity
and specificity values of the trained classifier are given in the right panel of Fig. 6.10 for
both population-measurement protocols.

20 40

Lateral lattice size

10−4

10−3

10−2

10−1

R
es

ol
u

ti
on
√

M
S

E
(ω̂
−
ω

)/
∆
ω

SNR = 30

20 40

Lateral lattice size

SNR = 20

20 40

Lateral lattice size

SNR = 10
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Figure 6.11: Resolution of the photonic kernel machine on the testing set for either local-
mode (plain) or normal-mode (dashed) population measurements for increasing lattice
sizes L and three values of the signal-to-noise ratio. The performance of the nonlinear
polariton-based reservoir-computing scheme (dash-dotted) is shown for comparison. Data
is averaged over 5 realisations of the reservoir, error bars correspond to the intervals
between the lowest and highest resolutions over these realisations. Parameters are Ntrain =
7000 and Ntest = 3000.

IV.3 Frequency tracking
Above, only the case of pulsed input signals was investigated. In the following, we il-
lustrate the performance of the photonic kernel machine presented above on the analysis
of continuous radio-frequency signals by considering a task of frequency estimation of a
noisy sinusoidal signal.

To do so, we first generate a first set of training baseband signals consisting of com-
plex exponentials with random initial phases and angular frequencies ω uniformly drawn
between ω0 −∆ω/2 and ω0 + ∆ω/2, to which white noise is added so as to match some
signal-to-noise ratio SNR, here defined as the ratio between the average power of the
sinusoidal baseband signal and that of the noise. We then measure the steady-state pop-
ulations of the cavity resulting from the driving of the coupled cavities by the modulated
signals, here after a time τd = 10/κ̄, and use this vector of populations to make frequency
predictions of the form f̂(S) = βT n̄. The vector β is then optimised so as to minimise
the mean squared error between the estimated ω̂(i) = f̂(S(i)) and the actual ω(i) angular
frequencies of all signals in the training set, with a ridge-regularisation hyperparameter
determined from 10-fold cross validation.

The performance of the trained photonic kernel machine is finally evaluated on a test-
ing set composed of new random complex exponentials. The achieved average resolution
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is shown in Fig. 6.11 as a function of the lattice size for increasing values of the SNR,
revealing the performance of the above-described photonic kernel machine on the spectral
analysis of continuous radio-frequency signals. For cavities with 2π/κ ∼ 10 ps, the waiting
time would be as little as τd ∼ 10 ps.

V Conclusion
In this chapter, we theoretically proposed photonic kernel machines, a new approach for
optical ultrafast spectral analysis of noisy radio-frequency signals that translates kernel
methods to photonic hardware. Such devices realise regression or classification tasks
on high-dimensional data with throughputs above the gigahertz by utilising the optical
response of a set of optical modes to input analogue signals as a measure of similarity.

We first gave a theoretical description of photonic kernel machines under very general
assumptions. We analytically investigated the similarity kernel built-in in such devices
and were able to express it explicitly from the susceptibility of the measured observables.
Furthermore, we explored the feature maps associated to photonic kernel machines and
found that their expressions could be experimentally determined from population meas-
urements and the knowledge of the single-mode susceptibility.

We then studied a model describing a physical implementation consisting of a lattice
of coupled linear optical cavities. We numerically demonstrated its capabilities on various
regression and classification tasks, comprising the analysis of both pulsed and continuous
radio-frequency signals. In particular, the proposed setup proved efficient in predicting the
spectrum of picosecond pulses with nontrivial spectral structure from single-shot intensity
measurements. The simulated implementation was shown to be capable of predicting
spectra with higher fidelity than the ideal FFT of the noisy input signal. This latter
procedure being much slower and involving sampling rates beyond the reach of the state
of the art. Moreover, it was shown to be able to discriminate pulses with distinct shapes
as well as to estimate the angular frequency of continuous harmonic input signals. We
showed that, by adding noise at the input of the device during the training protocol, the
spurious effects of background noise on the predictive performance of the device could
be successfully mitigated. On a spectrum estimation task, we could extract the actual
feature maps associated to the simulated kernel machines as well as the basis of learned
functions the photonic kernel machine composes its predictions from. This allowed us to
interpret the photonic kernel machine regression mechanism and revealed the ability of
the system to filter out the uncorrelated background noise.

We believe that such devices, capable of analysing above one million radio-frequency
signals per second, may found applications in a broad variety of domains beyond spec-
troscopy. In the field of radio-frequency sensing, it could be used in pulse-Doppler radar
systems as a way to optically analyse the reflected signals. In this way, the rate of emis-
sion could be increased by orders of magnitude, by relaxing the limiting dependence on
the sampling rate of analogue-to-digital converters. In telecommunications, these devices
could be used, for instance, as a decoding means in frequency-shift keying protocols in-
volving high modulation rates in noisy environments. Finally, photonic kernel machines
could be integrated to more conventional machine learning pipelines as a means of extract-
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ing non-trivial digital features from analogue signals, acting as both an analogue-to-digital
converter and a preprocessing stage.

The original results of this chapter are contained in Refs. [δ, γ].
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General conclusion

In this thesis, we studied the reservoir-induced dynamics of open quantum systems as
well as the learning mechanism of classical photonic reservoirs. This work was structured
around three main axes: the effective description of quantum systems in contact with
local and spatially extended engineered reservoirs, the efficient numerical representation
and evolution of the state of open quantum systems and the use of photonic reservoirs
as hardware capable of realising ultrafast feature-space embeddings of high-dimensional
input data for machine learning applications.

In Chapter 1, we gave a quantised description of the coupled optical and mechan-
ical degrees of freedom of a semiconductor nanodisk resonator from first principles. We
completed this description by addressing the case of a hybrid resonator embedding a
quantum well comprising three mutually coupled degrees of freedom, of electronic, op-
tical and acoustic nature. We derived expressions for numerically evaluating the strong
electromechanical coupling between a resonator phonons and its quantum-well excitons.
We showed that, in such tripartite resonators, the dressing of photons by electron-hole
pairs could induce a significant increase of the bare optomechanical coupling, a feature of
great interest in a wide variety of quantum applications. In this regard, a more systematic
study of the confinement of the exciton density and the mechanical strain in disk resonat-
ors could further enhance the achievable optomechanical cooperativity. Other geometries
such as micropillars or annular disks embedding quantum wells could reach cooperativit-
ies above 1, as calculations suggest [ζ], opening new perspectives of optomechanics in the
strong-coupling regime.

While the coupling of a quantum system of interest to the outside world is generally
seen as detrimental in most contexts, structured environments referred to as engineered
reservoirs provide a way to externally tweak its fate. In Chapter 1, we gave some clear
examples of this in the optomechanical context. We first recalled the standard sideband
cooling process and the optical spring effect, mechanisms that allow one to optically con-
trol the mechanical motion of a resonator. We then showed that a further ancillary optical
degree of freedom could lead to a phonon lasing phase transition, radically changing the
statistics of the mechanical mode. On the basis of these optomechanical ideas, we de-
veloped a general framework for effectively describing the complex dynamics mediated by
spatially extended driven-dissipative reservoirs, in Chapter 2. General analytical expres-
sions for the Liouvillian ruling the reduced dynamics of a system in contact with bosonic
such reservoirs were derived within the Born-Markov approximation, both in discrete and
continuous geometries.

When studying lattices of cavity-coupled optomechanical resonators within the above
framework in Chapter 3, we showed that driven-dissipative extended reservoirs could me-
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diate both coherent and incoherent interactions between distant mechanical oscillators.
Under particular conditions on the driving of the reservoir, we could stabilise states exhib-
iting ever circulating cavity-mediated heat currents running through the optomechanical
structure [α]. Many extensions of this idea could be studied with the same formalism.
Particularly interesting prospects could be, for instance, the study of two-tone-driven [468,
469] extended reservoirs, that would induce many-body squeezing interactions, or the case
of nonlinear coupling of the system to the reservoir. An example of the latter is that of
parametric coupling, that would lead to effective cross-Kerr models, known for their rich
phase diagrams [470, 471].

In Chapter 4, we reviewed several numerical algorithms for simulating open quantum
systems, from mean-field to a purely quantum level. Some of these were adapted to the
treatment of systems in contact with extended reservoirs, or, more generally, described by
nonlocal dissipators. The intrinsic difficulties of simulating the open quantum many-body
problem as well as the shortcomings of the existing methods at efficiently simulating very
entangled systems led us to introduce the dynamical corner-space method [γ] in Chapter 5.
This algorithm proved capable of evolving lightweight parsimonious representations of the
density matrix of low-entropy systems. It was successfully applied to the continuous-time
simulation of noisy entangling quantum circuits with up to 21 qubits, a situation relevant
in today’s so-called noisy intermediate-scale quantum era [49]. This allowed us to study
the detrimental consequences of the environment on the fidelity of such processors within
realistic models of noise. This method opens many new perspectives in the simulation
of low-entropy quantum systems. For instance, the robustness to weak dissipation of
the quantum advantage recently identified in battery charging processes [472, 473] could
be numerically explored. Furthermore, this method could be combined with efficient
variational representations of the corner-space wave functions, such as neural-network
ansätze [343, 344, 346, 347], to, ideally, bring the exponential complexity of the simulation
from exponential down to polynomial in the number of qubits.

Finally, we introduced photonic kernel machines. We first described how usual kernel
machines are capable of learning from a similarity measure—the kernel—, and analytically
derived prescriptions for accessing to their internal feature-space representations. An
ideal similarity measure for comparing two signals was then symbolically introduced ad
hoc. We showed that the feature-space embeddings characterising this kernel could be
naturally obtained from single-shot measurements of the populations of a linear photonic
lattice. This motivated the introduction of a photonic-lattice-based kernel machine [δ, γ],
powered by physical hardware. The performance of such a device was finally numerically
demonstrated on the ultrafast spectral analysis of noisy radio-frequency signals, on both
regression and classification tasks. An interesting perspective would be to integrate such
devices into more conventional machine learning pipelines as a means of extracting non-
trivial digital features from analogue signals, acting as both an analog-to-digital converter
and a preprocessing stage.
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A Quantum description of an
optomechanical nanoring resonator

I Radial breathing modes
Under the plane stress condition σzz = 0, the Lagrangian of the radial motion of an
annulus of inner and outer radii Ra and Rb takes the form

Lr =
∫

Ω
dr
{1

2ρu̇
2
r + 1

2ρc
2
Pur

(1
r
∂r[r]∂r −

1
r2 + 1

Γ2
1
r2∂

2
θ

)
ur

}
, (A.1)

where cP is the sound velocity, as given by Eq. (1.18), Γ ≡ cP/cS =
√

2
1−ν is the sound-

velocity ratio in the material for two-dimensional geometries. In GaAs (ν = 0.32) this is
given by Γ ≈ 1.71.

This Lagrangian can be diagonalised by expanding the radial displacement into the
following basis

ur(r, θ) =
+∞∑
n=1
m=0

unmφn,m(r, θ), φn,m(r, θ) = NnmRnm(r)Θm(θ),
∫

Ω
dr|φn,m|2 = VΩ,

(A.2)
with

Rnm(r) = Jνm(Knmr) + xnmYνm(Knmr), Θm(θ) = cos(mθ), νm =
√

1 + (m/Γ)2,
(A.3)

and where Knm is the nth root of

(DYνm)(kRa)(DJνm)(kRb)− (DJνm)(kRa)(DYνm)(kRb) = 0, (A.4)

with D the differential operator associated to the considered boundary condition such
that (DR)(r ∈ ∂Ω) = 0, and

xnm = −(DJνm)(KnmRa)
(DYνm)(KnmRa)

. (A.5)

These modes have associated angular frequencies Ωn,m = KnmcP.
The orthogonality of the radial dependence Rnm of the eigenfunctions of the differ-

ential operator of the Liouvillian follows from it being symmetric. Indeed, one has, for



II. Whispering gallery modes 125

Knm 6= Kn′m′ ,

(K2
nm −K2

n′m′)
∫ Rb

Ra
drrRnm(r)Rn′m′(r) =

[
r
(
Rnm(r)∂rRn′m′(r)−Rn′m′(r)∂rRnm(r)

)]Rb
Ra

≡
[
Rnm(r)∂r[r]Rn′m′(r)−Rn′m′(r)∂r[r]Rnm(r)

)]Rb
Ra

.

(A.6)

The orthogonality of the base functions then follows from this identity for any choice of
boundary conditions among D = 1, ∂r, r−1∂r[r] and α∂r+βr−1. For a free solid, the latter
is the proper boundary condition. Indeed, the radial stress σrr = λ̃(urr+uθθ)+2µurr must
vanish at the boundaries. One then has σrr = 2µ

1−ν (∂r + ν
r
)ur, and thus that D = ∂r + ν

r
.

The deformation quantum associated to some excited mode resulting from this de-
composition is given by

Σ(r) = xZPF
nm

R
∂R[R]φn,m(R, θ)

= xZPF
nm

R

(
(1− νm)φn,m(R, θ) +KnmRNnm(Jνm−1(KnmR) + xnmYνm−1(KnmR))Θm(θ)

)
.

(A.7)

II Whispering gallery modes
The Hamiltonian density of the annulus’ whispering gallery modes is identical to the disk’s.
The diagonalisation can thus be performed by a decomposition on linear superpositions
of Bessel functions of the two kinds

Az(r, θ) =
+∞∑
p=1
`=0

Ap`φp`(r, θ), φp,`(r, θ) = N cav
p` R

cav
p` (r) cos(`θ),

∫
Ω

dr|φp,`|2 = 1, (A.8)

with
Rcav
p` (r) = J`(kp`r) + xp`Y`(kp`r), (A.9)

and where kp` is the pth root of

(DY`)(kRa)(DJ`)(kRb)− (DJ`)(kRa)(DY`)(kRb) = 0, (A.10)

with D the differential operator associated to the considered boundary condition such
that (DR)(r ∈ ∂Ω) = 0, and

xp` = −(DJ`)(kp`Ra)
(DY`)(kp`Ra)

. (A.11)

These modes have associated angular frequencies ωp,` = kp`c. Assuming perfect reflection
at the boundaries of the material as in Subsec. I.1 of Chap. 1, one simply has Dirichlet
boundary conditions. This corresponds to D = 1.



B Résumé substantiel

Cette thèse est consacrée à l’étude de la dynamique induite par réservoir dans les sys-
tèmes quantiques ouverts ainsi qu’à l’apprentissage automatique au moyen de réservoirs
photoniques classiques. Les divers matériaux qui la constituent sont organisés autour de
trois grands axes : (i) la description effective d’un système quantique en contact avec
son environnement, au cœur des discussions des chapitres 1 à 3 ; (ii) la représentation
efficace de l’état d’un système quantique ouvert ainsi que la simulation numérique de
son évolution temporelle, sujets abordés aux chapitres 4 et 5 ; et, enfin, (iii) l’extraction
de caractéristiques d’un signal au moyen d’un dispositif photonique « classique », faisant
l’objet du chapitre 6.

La modélisation quantique d’un nano-résonateur à disque en matériau semi-conducteur
est dérivée en détail au chapitre 1 en partant des lois physiques élémentaires de l’électro-
magnétisme et la théorie de l’élasticité. Un tel dispositif se comporte comme un système
biparti comprenant une cavité optique et un mode de déplacement mécanique mutuel-
lement couplés. Dans le formalisme de seconde quantification, cette procédure aboutit à
une description effective sous la forme d’une équation maîtresse de Lindblad régissant la
dynamique hors-équilibre du résonateur optomécanique (~ = 1) :

∂tρ̂ = −i[Ĥ, ρ̂] + κD[â]ρ̂+ Γm(N̄m + 1)D[b̂]ρ̂+ ΓmN̄mD[b̂†]ρ̂,
Ĥ = −∆â†â+ F (â+ â†)− gâ†â(b̂+ b̂) + Ωmb̂

†b̂;
(B.1)

où les opérateurs bosoniques associés aux modes optique et mécanique sont notés res-
pectivement par â et b̂ et satisfont les relations de commutation canoniques usuelles :
[â, â†] = [b̂, b̂†] = 1. Ci-dessus, l’opérateur ρ̂ désigne la matrice densité du système, don-
nant une caractérisation complète de son état quantique et statistique. L’hamiltonien Ĥ
décrit quant à lui l’évolution unitaire de cette dernière en l’absence d’interaction entre le
système et son environnement ; il est paramétré par le désaccord ∆ = ωp − ωc entre la
pulsation de la pompe ωp et celle de la cavité ωc, l’amplitude du pompage F , la magni-
tude du couplage optomécanique g ainsi que la pulsation du mode mécanique Ωm. Enfin,
les effets dissipatifs sont intégrés à cette description au moyen de dissipateurs, tels que
paramétrés par le superopérateur D[L̂]ρ̂ = L̂ρ̂L̂† − 1

2 L̂
†L̂ρ̂− 1

2 ρ̂L̂
†L̂, pour quelque opéra-

teur de saut arbitraire L̂. Ces termes modélisent la déperdition de photons de cavité à
un taux κ ainsi que la relaxation du mode mécanique à un taux Γm vers une population
stationnaire composée de N̄m phonons thermiques.

Dans la plupart des plate-formes expérimentales d’optomécanique, et celle-ci en par-
ticulier, le couplage optomécanique, tel qu’évalué par la cooperativité C0 = 4g2/κΓm, est
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extrêmement faible. Ce facteur de mérite quantifie l’efficacité des mécanismes d’interac-
tion optomécanique à proximité des bandes latérales (∆ ≈ ±Ωm). Dans la perspective
de dépasser ces limitations, nous étudions dans ce même chapitre un résonateur hybride
comprenant un puits quantique d’un alliage d’arséniure de gallium (GaAs) et d’arséniure
d’indium (InAs) intégré dans la matrice de GaAs du disque. Dans un tel système, les
paires liées électron-trou du puits — les excitons — et les photons de cavité s’hybrident
donnant lieu à des polaritons excitoniques. Le couplage intense entre ces mêmes excitons
et le champ de déformation induit par les phonons mécaniques (voir Fig. 1.9) médie une
interaction paramétrique entre polaritons et phonons en tout point similaire au couplage
optomécanique standard et à la magnitude significativement accrue, améliorant, par là
même, la coopérativité du dispositif. Les développements théoriques associés ainsi que des
expressions fermées permettant d’évaluer le couplage polariton-mécanique sont compilés
dans la section II.

Le chapitre 2 est consacré à la dérivation d’équations générales décrivant la dynamique
réduite d’un système en contact avec un réservoir quantique spatialement étendu. Dans le
cadre de l’approximation de Born-Markov, de telles expressions y sont dérivées pour un
réservoir constitué d’un nombre arbitraire de sites bosoniques et décrit par un hamiltonien
pratiquement arbitraire. Chose singulière, en présence de processus de pompage et de
dissipation linéaires agissant sur le réservoir, la dynamique effective du système ne dépend
que d’une fonction spectrale à deux points :

S(α) = λ2T†
iC(0)

ωα1−B
T, (B.2)

où T est une matrice ne dépendant que de la forme particulière du couplage entre le
réservoir et le système d’intérêt, C(0) est la matrice de covariance du vide résultant
des relations de commutation canoniques, ωα désigne l’énergie de la α-ième transition
entre deux niveaux d’énergie du système et B est la matrice de Bogoliubov décrivant
la dynamique pseudo-hermitienne des excitations élémentaires des champs du réservoir
autour de ses solutions de champ moyen. Ainsi, l’équation maîtresse du système prend la
forme suivante :

∂tρ̂S(t) = −i
[
ĤS +∑

ijαΩ(α)
ij ŝ
†
i (ωα)ŝj(ωα), ρ̂S(t)

]
+
∑
k,α

Γ(α)
k D[∑jU

(α)
kj ŝj(ωα)]ρ̂S(t), (B.3)

où ĤS désigne l’hamiltonien du système seul, la matrice Ω(α) = (S(α) − S(α)†)/2i ainsi
que les quantités {Γ(α)

k /2}k,α et {U(α)}α décrivent respectivement les processus cohérents
et incohérents médiés par le réservoir. Ces dernières correspondent aux valeurs propres
et matrices de passage associées à la diagonalisation de 1

2Γ(α) = (S(α) + S(α)†)/2. Enfin,
{ŝi(ωα)}i,α sont des opérateurs du système dont l’expression explicite dépend de ĤS et du
choix spécifique du couplage au réservoir.

Cette étude est étendue aux réservoirs décrits par des champs spatialement continus
et complétée par une approche équivalente : l’équation de Langevin quantique.

Au chapitre 3, le formalisme succinctement exposé plus haut est appliqué à l’étude
d’un ensemble de résonateurs optomécaniques arrangés en un réseau unidimensionnel
périodique de forme annulaire dont seules les cavités sont mutuellement couplées. Dans
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un premier temps, un tel système peut être décrit par une équation maîtresse de Lindblad,
∂tρ̂(t) = −i[Ĥtot, ρ̂(t)] + Dtotρ̂(t), dont les parties cohérente et incohérente sont définies,
respectivement, par l’hamiltonien

Ĥtot =
∑
`

[
−∆`â

†
`â`+F ?

` â`+F`â
†
`−g`â

†
`â`(b̂`+ b̂†`)

]
− J2

∑
`

(
â†`â`+1 + â†`+1â`

)
+
∑
`

Ω(`)
m b̂
†
` b̂`,

(B.4)
où J désigne l’amplitude du couplage entre cavités adjacentes, et le dissipateur

Dtotρ̂ =
∑
`

{
Γ`
[
(N̄` + 1)D[b̂`]ρ̂+ N̄`D[b̂†`]ρ̂

]
+ κ`D[â`]ρ̂

}
. (B.5)

En choisissant les amplitudes du pompage externe dans un certain rapport F` = Fei`φ et
en procédant à l’élimination adiabatique des degrés de liberté optiques conformément à
la procédure du chapitre 3, l’on obtient une description effective pour la partie mécanique
qui ne dépend plus que des opérateurs associés aux fluctuations thermiques d̂` = b̂`−〈b̂`〉.
Ainsi, l’hamiltonien mécanique effectif est donné par

Ĥeff
m '

∑
`

(Ωm + J (+)
0 + J (−)

0 )d̂†`d̂` +∑
±
∑
p≥1

J (±)
p

2
∑
`

(
d̂†`+pd̂`e

∓iφ×p + c.h.
)
. (B.6)

où J (±)
p , tel qu’exprimé explicitement à l’équation (3.12), est un couplage cohérent effectif

entre les sites ` et `+ p médié par les cavités (voir figure 3.4). Cette interaction effective
rend possible la circulation de phonons thermiques entre les divers modes mécaniques
localisés de la structure ainsi que l’établissement de corrélations spatiales entre ces der-
niers. Outre ces effets cohérents, le réservoir induit des processus dissipatifs, décrits par
le dissipateur effectif suivant :

Deff
m ρ̂m '

∑
`

Γm
(
(N̄ + 1)D[d̂`]ρ̂m + N̄D[d̂†`]ρ̂m

)
+
∑
k

(
Γk(+Ωm)D[d̃k]ρ̂m + Γk(−Ωm)D[d̃†−k]ρ̂m

)
, (B.7)

où {Γk(±Ωm)}k, tels qu’exprimés à l’équation (3.14), sont des taux de gain et de dissi-
pation (voir figure 3.5) associés aux transitions engendrées par le réservoir optique sur
les modes de Fourier de la structure, définis par d̃k = 1√

L

∑
`e
−ik`d̂` pour quelque pseudo-

moment k ∈ {n× 2π/L}L−1
n=0 , L désignant ici le nombre de résonateurs de la chaîne.

L’énergie thermique transitant autour de l’anneau ainsi décrit dans la direction ` →
` + 1 peut être exprimé très simplement grâce à l’équation de continuité ; en régime
stationnaire :

〈̂C〉ss = −
∑
k

∑
p≥1

∑
±J

(±)
p sin(p(k ± φ))

Γ(↓)
k /Γ

(↑)
k − 1

. (B.8)

Comme on l’observe aux figures 3.7 et 3.8, non seulement cette quantité n’est pas nulle
mais encore elle peut être contrôlée au moyen du désaccord ∆ de la pompe. Ainsi, de
l’action conjuguée de la dynamique hamiltonienne et des processus incohérents induits
par les champs optiques, résulte un flux permanent de chaleur tournant au travers de la
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structure, et ce malgré l’absence de gradient de température : un constat en contradiction
avec l’intuition par trop « naïve » découlant de l’équation (classique) de la chaleur. La
validité des approximations ayant abouti à ces résultats peut être vérifiée à la figure 3.9.

Le chapitre 4 est dédié à la discussion de la simulation numérique (classique) de sys-
tèmes quantiques ouverts en général, et des systèmes en contact avec des réservoirs étendus
en particulier. Diverses méthodes standard, adaptées aux régimes des plus semi-classiques
jusqu’aux plus quantiques, sont présentées. Certaines d’entre elles sont généralisées aux
liouvilliens présentant des opérateurs de saut non locaux, notamment la méthode dite de
Wigner tronquée (truncated Wigner approximation).

La discussion des limitations intrinsèques de la méthode de la fonction d’onde Monte
Carlo (Monte Carlo wave function) nous conduit à l’introduction d’une nouvelle méthode
numérique au chapitre 5 : la méthode du sous-espace dynamique (dynamical corner-space
method). Cette technique est basée sur la possibilité de décomposer la solution de l’équa-
tion maîtresse ρ̂(t) sous la forme :

ρ̂(t) '
M(t)∑
k=1

pk(t) |φk(t)〉〈φk(t)| , pk(t) ≥ pk+1(t), ∀k, (B.9)

où les {pk(t)}k sont les M(t) plus grandes valeurs propres à l’instant t et {|φ(t)〉k}k les
vecteurs propres associés. Lorsque l’entropie du système reste faible au cours de son évo-
lution temporelle, ce qui est notamment le cas lorsque celui-ci n’est que faiblement couplé
à son environnement, cette décomposition peut être tronquée à un nombre de compo-
santes M considérablement moindre que la dimension de l’espace de Hilbert originel. La
méthode du sous-espace dynamique permet de limiter l’évolution temporelle à ce nombre
très limité de composantes sans jamais reconstruire la matrice densité complète. S’ensuit
un énorme avantage sur le plan de la complexité numérique de la simulation. À titre
d’exemple, pour un ensemble de L spins 1/2, la complexité est réduite de O(2L × 2L) à
O(M × 2L). Cette accélération numérique est illustré au tableau de la section II.2 ainsi
qu’à la figure 5.3 (c). Dans ce même chapitre, l’algorithme est appliqué à la simulation en
temps continu d’un circuit réalisant la transformée de Fourier quantique en présence de
dissipation ou de déphasage. Nos simulations montrent (voir la figure 5.4), par exemple,
que l’erreur introduite par le couplage du circuit à un environnement extérieur croît qua-
dratiquement avec la taille du système L. Aussi montrons-nous que l’erreur imputable
à l’interaction avec l’environnement dépend sensiblement du type d’état à partir duquel
l’opération est menée (voir figure 5.5) et en identifions la caractérisation fonctionnelle.

Le chapitre 6, enfin, est dédié aux machines à noyau photonique : des dispositifs
opto-électroniques capables de réaliser des tâches d’apprentissage automatique (machine
learning) grâce à une puce photonique et des photo-détecteurs. Nous dressons tout d’abord
un aperçu général des divers concepts issus de la théorie des machines à vecteurs de
support utiles à la compréhension des machines à noyau et en présentons les relations
analytiques les plus fondamentales. En particulier, il apparaît que les machines à noyau
sont capables de tirer parti de la notion abstraite de similarité de leurs réponses à une série
de signaux d’entrée afin de s’entraîner à réaliser des tâches bien définies. Nous définissons
une mesure de similarité ad hoc entre des signaux radio-fréquences puis démontrons qu’elle
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peut être mise en œuvre naturellement par un dispositif physique constitué d’une puce
photonique couplée à un modulateur électro-optique et un ensemble de photo-détecteurs
(se rapporter à la figure 6.3 pour une représentation schématique du système ainsi décrit).
Enfin, à la section IV de cet ultime chapitre, nous simulons numériquement un tel dispositif
et montrons son efficacité dans l’analyse ultra-rapide de signaux radio-fréquences bruités,
tant pour des applications de régression comme de classification. Plus particulièrement,
nous l’entraînons à estimer le spectre d’impulsions ultra-courtes en présence de bruit
blanc (voir les figures 6.5, 6.6 et 6.7), la forme spectrale d’une série d’impulsions (voir
les figures 6.9 et 6.10) et la fréquence d’un signal continu harmonique, et ce en présence
de divers niveaux de bruit de fond non corrélé. Aussi examinons-nous les représentations
internes et apprises du dispositif entraîné au moyen des outils analytiques développés en
première partie de chapitre (voir la figure 6.8).
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