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Overview

Active matter, being intrinsically out of equilibrium, displays surprising collective
phenomena which are impossible in passive systems. In this Thesis we focus on
phase separation, which is one of the main collective phenomena displayed by act-
ive systems. First understood via an approximate mapping to equilibrium liquid-
vapor phase separation, it is nowadays clear that phase separated active systems
show not only quantitative, but even qualitative difference with respect to the equi-
librium phenomenology. This Thesis contributes in this direction.

Specifically, Chapter 1 introduces the main concepts and models that we use
in the rest of the Thesis. There, we introduce active matter as an emerging field
of non-equilibrium statistical mechanics, presenting some of its remarkable collect-
ive phenomena. Among all the different and fascinating displays of coordination
pertaining to active matter systems, we focus our attention on a particular kind
of phase separation, the motility-induced phase-separation, arising when particles de-
crease their self-propulsion in high density areas. Then, we discuss Active Model
B+, a generic field theory based on symmetry arguments; the latter, introduced to
describe phase separation in active systems, allowed to predict novel and unexpec-
ted types of phase separation: micro- and bubbly phase separation. We describe
their main features, and study the mechanism by which they arise, linked to the fact
that the classical Ostwald process can go into reverse because of activity.

In Chapter 2, we push forward our understanding of micro- and bubbly phase
separation by performing large-scale simulations of Active Model B+, studying
their statistical properties. Among our main results, we confirm that bubbly phase
separation is a bona-fide phase separation among a micro-phase separated state,
formed of vapor bubbles, and a homogeneous vapor phase. Moreover, we discover
unexpected features, such as the fact that the equilibration time-scale to the bubbly
phase-separated state is strongly dependent on system-size.

In Chapter 3, we discuss how the concept of interfacial tension should be under-
stood in active systems. By exploiting – once again – Active Model B+, we show
that no unique definition exists, and describe for the first time, both analytically and
numerically, the capillary surface tension, the quantity describing the fluctuations
of the liquid-vapor interface. We do so by deriving from first principles the capillary
wave theory for active systems. Moreover, surprisingly, we discover that the capil-
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lary interfacial tension can get negative because of activity, while still maintaining a
phase separated state. We thus describe the novel phase of matter that arise in such
a situation: a new type of micro-phase separation and an ‘active foam state’.

We conclude in Chapter 4 by presenting preliminary results on a minimal model
of diffusing bubbles interacting by reversed Ostwald ripening and coalescing upon
contact. This allows us to elucidate the statistical properties of bubbly and micro-
phase separation from a different perspective, and in particular to control the relat-
ive importance of reversed Ostwald ripening and coalescence. This might shed light
on the properties of bubbly and micro- phase separation in particle-based models
of active systems, where bubbles were found to have a very strong variability in
size [1, 2].

In Appendix A, we provide technical details about the integration of Active
Model B+ equations and the algorithms we used to analyze the data of our simula-
tions.

The results of Chapter 3 where published in [3]. Those contained in Chapters 2
and 4 are not yet published in peer-review journals.



Chapter 1

Phase separation in active matter
Systems

Active matter is a fascinating field of physics in which from simple, local interac-
tion between its constituents, is possible to observe the spontaneous emergence
of collective phenomena on length-scales much larger than the typical interaction
length. Beside the fascination of discovering how a school of fish is capable of re-
acting collectively to a predator, or what is the physics behind the acrobatic motion
of thousands of starling in the sky, the study of active matter might allow devising
new soft materials with properties that are impossible in the traditional ones.

This introductory chapter is devoted to the presentation of some fundamental
concepts in the study of active systems, while describing the main models that will
be studied all along the Thesis. In particular, in Sec. 1.2, we define what active
matter is, presenting a quick overview of experimental results, and placing it in the
context of non-equilibrium statistical mechanics. Among the beautiful collective
phenomena displayed by active systems, one of the most ubiquitous is phase separ-
ation, that we briefly overview in Sec. 1.3. Then, in Sec.1.4, we introduce field theor-
ies, a powerful tool used to study both equilibrium and non-equilibrium systems by
means of few first-principle assumptions. After stating the main assumptions, we
introduce and describe the phenomenology of Model B, the standard description of
phase separation in passive systems in absence of momentum conservation. Finally,
in Sec. 1.6, we discuss the particular case of field theories for active phase separ-
ation. In this latter section, we will introduce Active Model B+, one of the main
models that we are going to study in the rest of the Thesis, and its phenomenology.
This greatly differs from Model B because the Ostwald process can go into reverse
due to activity. When this happens, two new form of phase separation emerge:
either the coarsening is arrested to a finite lenght-scale (micro-phase separation),
or a micro-phase separated state coexists with a macroscopic homogeneous phase
(bubbly phase separation), sustaining a current in the steady state. The statistical
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1.1. STATISTICAL MECHANICS 14

properties of micro- and bubbly phase separation will be studied in Chap. 2.

1.1 Statistical mechanics

1.1.1 At equilibrium

Statistical mechanics is a formal framework used to predict the macroscopic proper-
ties of bodies starting from the microscopic dynamics of its constituents. Of particu-
lar interest are the so-called Thermodynamic systems, macroscopic systems whose be-
havior can be defined by a handful of thermodynamic properties (e.g. mass, volume,
internal energy, magnetization). If the latter are time and space independent, then
the system is said to be in equilibrium.

Thermodynamic systems may be described at different level of coarse-graining,
depending on the goal of the study. In most instances, for example, there is no
point in describing the air in a room in terms of quarks and electrons, but it is more
convenient to describe it in terms of atoms, molecules, or even – at the mesoscopic
level - by the Boltzmann or hydrodynamic equations. Likewise, polymers can be
described as a chain of interacting particles, while magnets can be described by
toy models as the Ising model. In the latter, the system is described by (discrete)
magnetic dipole moments generated by its magnetic atom. The common features of
all these systems is that the enormous number of degrees of freedom (of the order
of the Avogadro number ∼ 1023) allows for the emergence of statistical properties,
whose study is the focus of statistical mechanics.

The state of a system composed by N particles is fully characterized by its 6N
degrees of freedom, given by the momentum and position of each particle. We
can think of its state as being in the highly dimensional space of positions and mo-
menta, the phase space. In this contest, the evolution in time of the system describes
a trajectory in the phase space and is determined by the mechanical equations gov-
erning its microscopic dynamic. To fully predict the evolution in time of the system,
we would need to know all its 6N initial condition precisely, and to integrate the
same number of (coupled) equations. This is, in practice, not possible, nor desirable.
Rather than knowing the exact state of the system though all its microscopic details,
we are interested in its macroscopic properties, shared by an enormous number of
system configurations.

Statistical mechanics revolves around the concept of ensembles, consisting in
many virtual copies of the same system in different configurations. In other words,
ensembles are associated with the probability distribution of points in the phase
space. The kind of ensemble chosen for a specific system depends on which physical
constraints are applied to it. The easiest example is the micro-canonical ensemble,
used to describe isolated systems, in which energy and number of particles are
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conserved. In the latter, under the assumption of equal a priori probability, all the
states are considered equiprobable. Most of the real equilibrium system, though,
are actually able to exchange energy. In these cases the canonical ensemble is more
appropriate, allowing for fluctuations of energy around its mean value. It can be
shown that in the canonical ensemble the probability P that the system is found in
a state of energy E(C) is given by the Boltzmann-Gibbs distribution:

P (E) =
e−βE(C)

Z
(1.1)

where Z is the partition function of the system, and normalizes the probability
distribution P (E) to 1:

Z =
∑
C
e−βE(C) (1.2)

This, in turn, allow us to derive all system properties through its ensemble average.
Solving exactly equilibrium systems, in most case, reduces to the computation of
Z. It is fair to mention, though, that in practice, this can be very complicated. For
this reason, other techniques have been developed. Among the others, we recall
the renormalization group and Monte Carlo methods, often used for numerical
simulations.

Another powerful tool used in this context are field theories (e.g. the Ginzburg-
Landau theory of ferromagnetism). From this viewpoint, that will be reviewed
below, the system is described at continuum level, in terms of its slow fields, conser-
vation laws, symmetries and gradient expansion. The most well-known outcome
is the development of Renormalization Group [4]. This provided one of those rare
(unique?) examples of a technique capable of giving exact results even if applied to
a minimal model, under the assumption that scale-invariance is present (as it hap-
pens close to a critical point). Possibly less well-known, is the fact that field theories
in statistical mechanics often give accurate descriptions, sometimes even at quantit-
ative level, of phenomena that are not scale-invariant [5]. Examples in this direction
are coarsening laws in ordering kinetics [6], or the emergence of instabilities such as
the spinodal decomposition in phase separating systems. Furthermore, an advant-
age of field-theoretical approaches is the little freedom that is left in their definition.
In fact, there is much less freedom in defining a field theory than when setting up
a microscopic model, unless microscopic properties of the physical system at hand
(such as shape of the constituents, deformability and interactions) are very well
known. All these properties are typically very hard to control in soft matter, and
even harder to control in biological systems. For these reasons, field theories have
been widely developed in statistical mechanics and soft matter.
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1.1.2 Out of equilibrium

Most of real systems are out of equilibrium. Non-equilibrium systems arise in a
wide range of different context and can have very different properties. However,
it is possible to identify classes of system sharing similar phenomenologies and
properties.

First, there are systems slowly relaxing towards equilibrium. The timescales
involved may be much longer (like for glasses) or comparable to the observation
times (like for long-range interacting systems such as galaxies). In either cases, there
is a clear direction of relaxation.

A second class of non equilibrium problems is represented by those that cannot
reach equilibrium due to boundary conditions creating a steady current. Typical
examples are a piece of matter between two thermal reservoirs at different temper-
atures, or a fluid in which energy is continuously injected by, for example, heating.

We have a third class of non-equilibrium systems (subject of this work) known
as active matter, in which detailed balance is broken locally: active units are able to
transform some non-thermal (often chemical) energy present in the environment
into self-propulsion, or other functional mechanism. It goes without saying that an
isolated active system cannot last indefinitely, as the fuel has to be provided from the
external on a long enough time-scale. Yet, the time-scales at play (the one on which
new physics at the collective level arises and the one in which fuel is depleted) can
be so separated that it is meaningful to keep this class of non-equilibrium systems
distinct from the one above. In Sec. 1.2, we give a more specific definition and
presents the main fields of research in active matter.

Out of equilibrium, we do not dispose of the central formalism encoded in the
Boltzmann-Gibbs measure: we need to rely on other techniques, which are often
rooted in the dynamics. Important techniques are based on the study of stochastic
equations such as the Langevin equations, or of the time evolution of probability
distributions given by master and Fokker-Plank equations. Importantly, the field-
theoretical approach described above, and first developed for equilibrium systems,
is fully generalizable to non-equilbrium contexts.

While new theoretical approaches were developing, the computational power
of computers increased drastically in the last decade, allowing for extensive nu-
merical studies. In particular, computer can be used in two different ways: by
performing either simulations or calculations. The latter allows finding analytic
solutions that would be complicated or tedious to compute manually, while the
former allows one to directly observe the evolution of a system by means of its
dynamical equations (up to a certain finite precision). Among the others, very suc-
cessful approaches, routinely employed in non-equilibrium statistical mechanics,
are molecular dynamics (in its deterministic and stochastic versions), and numerical
integration of dynamical field theories.
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1.2 Active matter systems

1.2.1 What are active systems?

Active matter is a young field of non-equilibrium statistical mechanics that studies
system composed by a large collection of autonomous agents [7, 8, 9, 10]: non-
thermal (most often chemical) energy is dissipated locally by its constituents that
transform it into systematic motion (called hereby self-propulsion). Microscopic
units of active systems will be called active agents or active ‘particles’.

1.2.2 Active agents

In nature, we find a great variety of examples of active particles ranging across
scales. From humans, forming crowds or vehicles fluxes [11], and other human-
sized animals like sheep, fishes [12], birds [13] or herds of animals walking on
dry land [14], to micrometer-sized active units such as bacteria, algae, or protein
filaments, such as actin [15] or micro-tubules [16]. Beside living organism, in the
last decade several synthetic active systems have been engineered by scientists in
the lab: among others, Janus particles [17], micro-robots [18], vibrated asymmetric
disks [19] and Quincke rollers [20].

1.2.3 Collective behaviors

In active systems, due to the interactions between its active units and their ability to
self-propel, we can observe the emergence of many collective behaviors that have
no equilibrium counterpart. Strikingly, many macroscopic properties are shared by
very different systems. The natural question physicist tried to answer is whether
– like in equilibrium – is possible to define minimal models capable of describing
(qualitatively) various systems. This would allow to describe all the systems be-
longing to the same class, by mean of the same general theory. Even though we still
lack a complete answer, we can distinguish several classes of active matter systems
sharing similar microscopic properties and thus presenting the same macroscopic
behavior. For example, we can define several classes of systems according to the
presence or not of an ordered state, and if it is present, according to the nature
of broken symmetries in the ordered state (polar or nematic). Another important
criterion used to predict the behavior of active matter systems is the kind of mo-
mentum damping. In particular, we talk about wet active matter when momentum
is conserved. This is often the case in suspension of bacteria where hydrodynamic
interactions are relevant. On the contrary, for animals moving on lands or flock
of birds, we usually neglect the medium in which active agents are moving, and
momentum is not conserved. We then talk about dry active matter. In this Thesis,
in particular, we will only focus on dry active matter. The reason behind it is that
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the particular collective phenomena under our analysis, active phase separation,
most often happens close to a substrate (this in turn imply that momentum is not
conserved). It would be interesting to see the kind of new physics hydrodynamics
brings [21], but this is left to future studies.

Flocking: polar order In presence of microscopic aligning interactions between
active particles, we can observe fascinating flocking phenomena, in which all
particles are aligned (and move) in the same direction (i.e. we have polar order).
Flocking can be observed in various groups of social animals, like birds, fishes or
animal herds walking on dry lands (gnu, sheep, etc...). Strikingly, most of these
self-ordering phenomena, are observed in absence of a group leader, and come
from self-organization mechanisms [14]. An archetypal example is given by starling
flocks, for which data analysis of bird trajectories allowed to conclude that inter-
actions depend on topological rather than metric distances: each bird interact, on
average, with the 6 to 7 nearest neighbors, regardless of their distance [13]. Other
studies showed that collective response of bird flocks is achieved through scale-
free behavioral correlations [22, 23, 24]. When approaching the study birds flocks,
typical topics of interest are the emergence of collective motion, the characteriza-
tion of interactions between individuals and the response to predators attacks [25].
Similar studies have been carried out for school of fish: from the understanding of
phase transition emerging in large schools of fish [12], to the inference of interaction
rules between individuals from experimental data [26, 27]. We can observe sim-
ilar flocking states for simpler form of life, like suspension of bacteria, for which –
when bacterial densities are sufficiently large – we have the emergence of collective
motion with long range correlations and large density fluctuations [28, 29].

Nematic order Another important class of active systems, is represented by active
particle aligning nematically. This can happen in two ways. Either particles are
parallel but have a random head-tail orientation, or they do not present a head-tail
asymmetry, and are just aligned. A typical example is given by systems composed
by microtubules and molecular motors, presenting local nematic order and topolo-
gical defects [30]. For non-living systems, instead, we can have this kind of order in
vibrated copper-wire segments [31]. When hydrodynamic interactions are relevant,
instead, we can observe the so-called active turbolence. In [32], for example, was
observed a self-sustained turbulent motion for dense suspensions of Bacillus subtilis.

Phase separation in absence of alignment Another important class of active mat-
ter comprehend systems for which steric repulsion is crucial (e.g. for self-propelled
spherical particles [33]), or for which particles adapt their speed due to the density
of other particles they sense. This happens in some bacterial suspensions, where
bacteria slow-down due to quorum sensing, leading to the phase separation of the
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suspension dense cluster diffusing in a more dilute phase [34]. This kind of phase
separation, caused by a motility drop in presence of a particular denser area of bac-
teria, is known as motility-induced phase-separation and is the subject of Sec.1.3.1.

Other collective motions The above list of collective phenomena, and the relative
classification, is far from exhaustive and it just meant to give the reader the flavor
of the diffeent kind of systems and collective phenomena we can encounter in the
study of active matter. We now provide some more examples that do not fit in the
above classification.

Among other active system, we have the cytoskeleton[15], a versatile network of
protein filaments, that is a fundamental component of most cells; in particular, it
determines the cells shape, and is responsible for many fundamental cell events,
such as cell division and migration. To better understand these phenomena, vari-
ous experimental studies have reproduced active networks of molecular motors
and proteins filaments in vitro. These experiments have allowed to simulate the
self-organization of microtubules into both polar and nematic phases [35], and to
understand the contractile properties of active cytoskeletal networks [36]. Other
interesting studies showed how motile cells in dense bacterial suspensions can
self-organize into collective oscillatory motion, despite the erratic movement of the
singular bacterial cell [37] and how swarms of midgets, despite not showing global
order, display strong correlations in the motion of individuals [38](that is strongly
influenced by the presence of other midgets).

Synthetic active matter Finally, physicist have created synthetic active matter sys-
tems [39], either to device microrobots to perform complex tasks [40] or to improve
experimental control over active systems. A typical example is provided by Janus
particles [17], whose surfaces present different chemical or physical properties. In
particular, by exploiting different chemical reactions on its sides (e.g. the two emi-
spheres of a micro-sphere), is possible to generate a net motion of such objects. One
striking example of controllable active environment is given by suspensions of col-
loids with programmable interactions, for example by exploiting Janus particles
propelled though a light-induced mechanism [41, 42]. By focusing a laser beam on
single particles, is possible to control their motion according to the configuration of
other particles (tracked through digital optical microscopy).

Theoretical approaches There are several ways in which we can study active
matter. Agents-based models represent a widely investigated approach which often
seek qualitative (rather than quantitative) agreement with real active matter systems.
The success of this approach relies on its simplicity, that allows, on one hand, to
discriminate the fundamental ingredients leading to collective phenomena, and on
the other, to simulate them easily.
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Figure 1.1: Experimental realization of active matter systems.
(a) Fluorescence microscope image of a dense quasi-2d film of microtubules
and molecular motors that exhibits nematic order and topological defects. [30]
(b) Nematically-ordered phase of filamentous bacteria [28]
(c) experimental images of bacterial colony of S.typhimurium [43]
(d) Active nematic phase of vibrated copper-wire segments. From [31].
(e) Velocity field of starling in a flock of more than 103 birds from [23]
(f) Phase separation of a (quasi-)two-dimensional colloidal suspension of self-
propelled spherical particles into clusters and a dilute phase. [33]
(g) Pattern of an active network of microtubule, organized in vitro by the action
of molecular motors. [44]
(h) Microscopy images of Myxococcus xanthus cells undergoing phase separa-
tion via a nucleation and growth process from [34]

One of the first attempt in this direction was carried out by Vicsek [45], that
introduced a model of identical self-propelled particles, aligning their velocity with
the average neighbors one. Since the original model, various modification has been
proposed [46], creating a class of models describing a well characterized disorder
to order transition. Another example of minimal model is given by active Brownian
particles, diffusing at a constant speed, while their direction of motion is subject to
angular diffusion.

A different approach, investigated since when physicists got interested in act-
ive matter [7] is to study coarse-grained theories, such as continuum field theories,
that study the large-scales, long-time behavior of the system. The advantage of
this approach is that we can describe the system behavior by few fields. Moreover,
little freedom is left in defining systems at the large-scale, allowing to study generic
(i.e., independent of system details) and universal physics; this is at variance with
microscopic models, given that active matter systems are often too complex to be
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modeled from first principles. While it is clear that Vicsek model is a crude descrip-
tion of flocking and not much control is available on whether anything changes
upon changing the definition of the model, Toner-Tu theory (a continuum, general
theory of flocking [22]) might be exact at large scales. As we will make large use of
active field theories, we dedicate Sec.1.4 to introduce them in more details.

1.3 Active phase separation

1.3.1 MIPS

This Thesis studies phase separation in active systems. This is one of the most
fundamental and well known phenomena in the field. Because detailed balance
is broken, active systems can indeed show phase separation even in the absence
of attractive interactions, a phenomenon known as motility-induced phase separation
(MIPS)[47].

As the name suggest, MIPS is linked to the self-propulsion speed of particles and
its dependence on the local particle density. In particular, it is caused by positive
feedback between slowing down and accumulation. Self-propelled particles tend to
accumulate where they move more slowly, while slowing down in high density area.
Such dependence of the propulsion speed on the local density ρ, can arise in, at least,
two different ways. Some bacteria can measure the density of surrounding bacteria
by sensing the chemicals released by them, and adapt their speed accordingly. This
is what is called quorum-sensing in microbiology. Otherwise, the slowdown at high
density can be caused effectively by steric interactions: obviously a nearly hard-core
particle cannot move much if tightly surrounded by others. In both cases, one refer
to quorum sensing when the self-propulsion speed of particles is made dependent
of the local density.

It was shown[48] that when the positive feedback is strong enough the homo-
geneous state becomes unstable. In particular, if

d log(v)

d log(ρ)
< −1 (1.3)

the system phase-separates in a dense phase of slow particles, and a dilute phase of
fast movers.

MIPS was also observed experimentally in system composed by active colloidal
particles [33, 34]. The latter can be living organism, such as bacteria or algae, but
also synthetic micro-swimmers, like Janus particles. A general microscopic model
for this kind of system is to consider an ensemble of self-propelled units, whose
dynamics can be approximated by a density dependent propulsion speed v(ρ) and
a relaxation time τ associated to its direction of motion. Historically, MIPS was first
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theoretically predicted in models of swimming bacteria with discrete re-orientations
(though a ‘run and tumbling’ dynamics) interacting via quorum-sensing [47], and
then on active Brownian particles interacting more directly, through pairwise forces
at short distances [49]. It was then shown that when the motility is independ-
ent of motion direction, the two stochastic dynamics – run and tumble and active
Brownian – are actually equivalent (at leading order) for large length- and time-
scales [50].

MIPS can also be studied using continuum field theories. For example, when
propulsion speed depends only on the local density ρ (and not on its derivatives),
we can map, at large scales, pure quorum sensing models to the vapor-liquid phase
separation of equilibrium systems [48]. In particular, an explicit coarse-graining of
microscopic quorum sensing models shows that is possible to recover an effective
free energy equal to [47]

f(ρ) = ρ(log(ρ)− 1) +

∫ ρ

0
log v(s)ds . (1.4)

However, this mapping is complete only for particles whose self-propulsion velocity
depends locally on the density; otherwise, it breaks down when trying to recover the
liquid and vapor binodals. Nevertheless, these can be computed [51], for example
introducing generalized chemical potentials and pressure [52]. On the contrary, for
particles interacting through an isotropic, repulsive pair potential, is possible to
define a mechanical pressure that is constant in the two phases, but not to define a
chemical potential constant across the liquid and vapor phases [53].

All in all, phase separation as described by quorum-sensing model has not only
the same qualitative but even quantitative properties as equilibrium liquid-like
phase separation. It is however clear that more complex phenomenology can arise
in active phase separation, as we will discuss in the next section.

1.3.2 Phase separation beyond quorum-sensing

Unlike what was initially though, the description of active phase separation us-
ing quorum-sensing particles is far from describing the full phenomenology of the
phenomenon. This conclusion can be reached by following several hints, that both
simulations and the experimental world give us.

First, experiments on self-propelled colloids often show micro-phase separation
where clusters dimension arrest to a finite length and do not coarsen to system-size
scale [54, 55, 33]. This is in contrast with what happens at equilibrium, where the
so-called Ostwald ripening process makes big cluster grow and small one shrink,
leading to a full phase separated state. Some examples of arrested coarsening are
shown in Fig. 1.2. Several mechanisms can lead to such physics, as for example
chemical [56, 57], hydrodynamic interactions [58, 21] or alignment [55].
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Figure 1.2: ‘Cluster phase’ in self-propelled colloidal systems. From left to
right, pictures are taken from [54, 55, 33]

Second, simulations of dense suspensions of active Brownian particles interact-
ing through pairwise repulsive forces in 2 dimensions [59, 7], show that the dense
phase is more complex than a passive liquid (see Fig. 1.3). In particular, it is possible
to observe bubbles inside the dense phase. Bubbles nucleate in the liquid clusters
and then diffuse until reaching the vapor-liquid interface, where they are ejected.
This creates a mass current, manifestly breaking time reversal symmetry at a meso-
scopic scale. Such phenomena, hereby termed bubbly phase separation, is absent in
quorum-sensing models [60].

Figure 1.3: Snapshots of the local density field for simulation of active
Brownian particles (adapted from [59]).
Left: snapshot of bubbles inside the dense phase. Right: three successive snap-
shots showing a bubble being ejected when reaching the interface of the dense
phase.

Third, even more complex forms of phase separation have been observed in
experiments with nematodes [61].

Fourth, simulations on models of self-propelled particles with nearly hard-core
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interactions have recently shown that the internal structure of the dense phase can
be even more complex, showing regions with high hexatic order that are separated
by sharp defect lines [2]. More in general, the physics of active particle systems at
very high densities, and the transitions between liquid, hexatic and solid phases is
a delicate topic that has been investigated only since recently [62, 63].

All these hints pointed towards the need of a different, more complete theory
that goes beyond quorum-sensing active particles and their coarse-grained descrip-
tion. Active Model B+ was recently introduced in [60] as a generic theory of phase
separation in active systems under the sole assumption that density is the only slow
field. Although, by itself, this cannot thus describe very dense systems that might
show hexatic order, we will see in the next section that it gives surprisingly new
predictions on active phase separation. After introducing active field theories in
general, we will present such theory in Sec. 1.6.

1.4 Field theories for passive phase separation

A very powerful tool that can be used to study both passive and active systems
are field theories: continuum theories purposely describing the system under study
at mesoscopic level. Although microscopic details are lost, there are two significant
advantages of a mesoscopic approach: on one side, these theories can be built from
first principles; on the other, their simplicity often allows for analytical progress
otherwise not possible in microscopic models. In this context, the link with micro-
scopic parameters should be sought a-posteriori, measuring observable quantities –
such as, for example, the surface tension (more on this below) – that are set by the
parameters defining the field theory.

In passive systems, there is a well-defined path for building such field theories.
First, one must identify the slow fields, i.e. those that do not relax exponentially fast
in time; these are called order parameters Ψ(r, t). The order parameters needed
to fully describe active matter systems, depend on the nature of the system itself.
Among the most common examples we have:

• ρ, the density of a single-component, compressible fluid.

• v, the fluid velocity

• φ, the relative composition of a binary mixture.

• p, the polarization vector describing the orientation of polar particles.

The classical top-down approach [5, 64] provides a dynamical perspective that
retains fluctuations; In this context, the field theory describing the dynamics of
Ψ(r, t), is written on the basis of symmetries and gradient expansion (under the
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assumption that the gradients of the field are small). In other words, one performs
a Taylor expansion up to a given, fixed, order of Ψ(r, t). It must be noted, however,
that such expansions should contain all terms that do not violate any symmetry of
the problem.

Sometimes, field theoretical descriptions can be also obtained by direct coarse-
grain of microscopic models. This, unlikely the top-down approach described above,
allows to have a direct connection between the field theory coefficients and the
underlying microscopic dynamic. Such path is particularly powerful when one is
able to build microscopic models from first principles. As recalled before, however,
the microscopic models of active systems are themselves phenomenological, rather
based on first principle analysis. Therefore, it is unclear what can be gained by such
linking process, and the link might reveal not really useful in practice.

A typical field theory for Ψ has the form

Ψ̇(r, t) = G[Ψ] + ξ (1.5)

whereG is a functional of Ψ and ξ is the noise term. Setting the latter to zero provide
us the so-called ’hydrodynamic description’ of the system: a mean-field version of
the equations describing their average behavior. Even though this is sometimes
a good first approximation, we have to retain the noise part to study the system
fluctuations.

In equilibrium systems, in which particles do not dissipate energy locally, the
steady-state probability of the order parameters P [Ψ(r)] is unique and equal to the
Boltzmann distribution:

PB ∝ exp[−βF [Ψ]] (1.6)

Where F is the Helmholtz free energy, and is equal to the system Hamiltonian H
just if all the microscopic details are retained (i.e. no coarse-grain procedure is used).
Setting the steady state probability to the Boltzmann distribution is enough to fix
the noise term. In out of equilibrium systems, this does not hold. Therefore, the
form of the noise term must be explicitly obtained from the microscopic equations or
guessed. In the next sections we will review, following the terminology introduced
in [64], the so-called Model B, the canonical stochastic field theory for diffusive phase
separation of a conserved scalar field (without moment conservation).

1.4.1 Model B

One of the most successful field theories is Model B, which describes phase separa-
tion of an equilibrium system in the absence of momentum conservation. It can be
used to describe attractive Brownian particles close to a substrate or liquid-liquid
phase separation on short enough time-scales such that inertial effects of the fluid
can be neglected [6].

Let us consider a colloidal solution, in which insoluble particle diffuse in a fluid
medium, interacting among themselves. To study the colloidal particle motion we
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disregard all the degrees of freedom of the liquid, passing from a deterministic
description of the colloidal solution, to coupled Brownian motion equations. This is
justified if the motion of the particles is taking place close to a boundary with which
they can exchange momentum. In this situation, the only order parameter is ρ, the
particle density. The hydrodynamic equations read (with the noise current Jn = 0
for now):

ρ̇ = −∇J , (1.7)
J = −M [ρ]∇µ+ Jn (1.8)

where M is the mobility and is equal to M [ρ] = βρD[ρ], where D[ρ] is the particle
diffusivity and β = 1

KbT
the inverse temperature. For simplicity, we make this

dependence local D[ρ] = D(ρ). The particular form of (1.7) comes directly from the
fact that ρ is a conserved field. Since this is an equilibrium system, the chemical
potential µ(r) of (1.8) can be written as a functional derivative of a free energy F [ρ]:

µ(r) =
δF
δρ(r)

(1.9)

where F depends on the interaction among particles. For a sufficiently soft, pairwise
interaction potential w(r), it can be approximated with the mean-field free energy

βF [ρ] =

∫
ρ(r)(ln ρ(r)− 1) dr + β

∫
ρ(r1)ρ(r2)w(|r1 − r2|) dr1 dr2 . (1.10)

What is left now to do, is to specify the noise term in Eq. (1.7). It can be shown
that the fluctuation-dissipation theorem, or equivalently the request that 1.6 is the
stationary measure, implies:

Jn =
√

2ρD(ρ)Λ , (1.11)
〈Λi(r, t)Λj(r′, t′)〉 = δijδ(r − r′)δ(t− t′) (1.12)

where Λ is a Gaussian white noise. Note that, in this form, the noise is multiplicative
since in (1.11), the Gaussian noise is multiplied by a function of the field ρ.

Finally, to get Model B we need two more steps:

• Taylor expansion of F [ρ] in weak gradients around the critical density ρ0

• Taking a constant mobility M

The first step allows us to get rid of the non-local nature of the interaction term
(the second one in equation (1.10)). Assuming the variations of ρ to be slow in the
interaction range w(r), we can approximate (1.10) with a square gradient theory:

βF [ρ] =

∫ (
f(ρ) +

K

2
(∇ρ)2

)
dr . (1.13)
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If then we expand around a reference density ρ0. We pass from ρ to φ = ρ− ρ0

and get the scalar φ4 free energy:

F [φ] =

∫ (
a

2
φ2 +

b

4
φ4 +

K

2
(∇φ)2

)
dr, (1.14)

Where a = a(T ), while b and K are positive, and (for simplicity) independent of
temperature. Notice that f(φ) = a

2φ
2 + b

4φ
4 does not have a linear term in φ since

it would anyway disappear when performing the functional derivative of F . At
the same time, also the cubic term was set to zero by choosing ρ0 to be the critical
density (this implies that the third derivative of f in such point is zero: f ′′′(ρ) = 0).

The second step allows us to get rid of the multiplicative noise. Indeed, if we
neglect corrections of order φ in the mobility M we obtain:

M(φ) = (φ+ ρ0)βD(φ+ ρ0) ' βρ0D(ρ0) = M (1.15)

In principle this would be valid only in uniform phases or close to a critical
point where φ is small everywhere. However, there are good reasons to think that
this does not change the physics qualitatively, even in phase-separated systems. For
example, this approach is able to capture not only qualitatively, but even quantitat-
ively, the coarsening laws [6].

We finally get the equations for Model B:

∂tφ = −∇ · J , (1.16)
J = −M∇µ+

√
2MkBTΛ (1.17)

µ =
δF

δφ
= aφ+ bφ3 −K∇2φ, (1.18)

Although we ‘obtained’ it first from coarse-graining of a particle model, it should be
noted that exactly the same result would be obtained, in a much simpler way, just
invoking symmetry arguments and the fact that the density is the only slow field in
the dynamics.

1.4.2 Phase diagram of Model B

We can derive interesting properties of the system at a mean-field level. Let’s con-
sider uniform states φ(r) = φ0. Those states have a free energy density that is equal
to:

F

V
=
a

2
φ2

0 +
b

4
φ4

0 = f(φ0). (1.19)

Now, according to the sign of a(T ), we have two possible cases. When a > 0, f(φ0)
has a single minimum at φ0 = 0. This means that there is no way to lower the free
energy by introducing a phase separation. The state with minimal energy is be the
steady-state solution of Model B (with no noise). More interestingly, when a < 0,
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f(φ0) is a double well with minima at the two binodals ±φb (see Fig.1.4(b)). This
means that, for −φb < φ0 < φb, the free energy of a uniform state is larger than the
one of a phase separated state. As is it energetically favorable, the system phase-
separate in a dilute phase with density −φb (vapor phase), and a dense phase with
density φb (liquid phase). In particular, for a system of volume V and total density
φ0, the volume of the two phases Vl and Vv can be found from the conservation of
volume (Vl + Vv = V ) and density ((Vl − Vv)φb = V φ0). To be precise, when the
system is phase separated the free energy has a non-null contribution from the term
inK (the square gradient of φ). Anyway, this is a surface term scaling as V d−1 (since
it gives no contribution far from the interface) and is always worth paying if the
system is big enough(V d >> V d−1 for V →∞). Moreover, notice that the system is
linearly unstable in between the two spinodals φ̄ = ±φs = ±(−a/3b)1/2 since there
f ′′(φ0) < 0(see Fig. 1.4(b)).

When the noise D is not zero, we have a competition between energy and en-
tropy. It turns out that, increasing the noise D, approaches the two binodals values
until, for a critical noise value they meet at a tricritical point (see Fig.1.4(a)). Above
this point entropy dominates, and phase separation is destroyed. Below, in between
the binodals, the system phase separates. In particular, in between the spinodals,
the uniform density is linearly unstable, and the system initially phase-separates
through the so-called spinodal decomposition (in which bicontinous domains of
liquid and vapor are formed). Outside the binodals, the phase separation happen
though stochastic fluctuations of the majority phase, resulting in the nucleation of
bubbles [or clusters] of the minority phase. In both cases, the final state is a bulk
phase separated state.

Figure 1.4: (a) Phase diagram in the D × φ0 plane of Model B. (b) local free
energy for a state of uniform density φ(x, y) = φ0
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1.4.3 Interface and interfacial tension

Phase separation, and the shape of the interface, arises from a trade-off between the
cost of having a sharp interface (K term in (1.14)) and the price of having a density
that is not in the two minima φ(x) 6= ±φb (the local free energy term f(φ) would
prefer a sharp interface).

Since having an interface is associated with a cost in free energy (term K in
equation (1.14)), the system will try to minimize the contact surfaces between the
two phases. In most geometries this is achieved by means of a flat interface. In
this particular case is easy to find the interfacial profile. Indeed, by using the Lag-
range multiplier method, we can minimize F , subject to the boundary conditions
φ(±∞) = ±φb:

δ

δφ

[
F − β

∫
φdr

]
= 0 (1.20)

The functional derivative of F is the chemical potential:

µ(x) =
δF
δφ

= aφ+ bφ3 −K∇2φ (1.21)

Equation (1.20) requires µ to be constant. In particular, using the boundary condi-
tions we obtain:

µ(±φb) =

(
df(φ)

dφ

)
φ=φb

= 0 (1.22)

Then one can show [5] that µ(x) = 0 yields :

φ(x) = ± tanh

(
x− x0

ξeq

)
(1.23)

where ξeq =
√
−K
2a is the interfacial width and x0 the midpoint of the interface.

A crucial quantity in phase separation is interfacial tension. We can define it as
the excess of free energy per unit area of a flat interface [5]:

σeq =

∫
K(∂xφ0(x))2dx =

√
−8Ka3

9b2
. (1.24)

In equilibrium systems, the interfacial tension sets many physical properties. For
example, it sets the Laplace pressure drop across a liquid-vapor interface according
to its local curvature radius R. In particular, for a d-dimensional system we have:

∆P =
(d− 1)σeq

R
(1.25)

This pressure jump is responsible for the Ostwald ripening process, that determines
the growth of big bubbles at the expense of smaller one. To better understand this
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phenomenon, let’s imagine a phase-separated system with two bubbles of radii
R1 > R2 (both in equilibrium with the surrounding liquid). Due to the Ostwald
ripening process, we have a flux of density from the biggest bubble (that therefore
grows) to the smallest (that shrinks as a consequence). It is a well known fact that the
dynamics of the biggest bubble radiusR1 (and similarly the smallest, by exchanging
R1 and R2 ) follows:

Ṙ1 =
β

R∆φ

[
1

R2
− 1

R1

]
(1.26)

where ∆φ is equal to the difference in density between the two binodals, and β is
the Ostwald ripening rate depending on the interfacial tension though:

β =
(d− 1)σeq

∆φ
(1.27)

Notice that is the sign of σeq that favors the largest bubble.
The interfacial tension σeq is also linked to the so-called capillary wave theory.

In other words, it is responsible for the spectra of the interfacial fluctuations. In
particular, let h(x) be the height of a vapor-liquid interface and h(q) its Fourier
transform. Then, the average energy density of modes with absolute value q = |q|,
equal to S(q) = 〈|h(q)|2〉, is linked to σeq through:

q2S(q)

D
=

1

σeq
(1.28)

We will see in the next section and in Chapter 3 that for out of equilibrium systems,
this is not true anymore, and we cannot rely on a single definition of interfacial
tension.

1.5 Field theories for active phase separation

As we saw in Sec. 1.2, active systems violate microscopic time-reversal sym-
metry. For this reason, phenomena impossible in passive systems – like the motility-
induced phase-separation (MIPS) – can arise. As such, there is no fundamental
reason to expect that active phase separation is described by Model B in active sys-
tems. Yet, the route employed to build Model B, identifying the slow fields and
writing any term that is allowed by symmetries in a gradient expansion, remains
perfectly valid. For a phase separating system with a single slow field φ (density),
this means that all terms included in Model B should also be included in the field
theory of active phase separation.

It is then a fact that no novel non-linearity can be added to Model B, that is
relevant close to criticality in the Renormalisation-group sense (4-d perturbative
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expansion) [65]. Possibly due to this reason, for a long time, active phase separation
was understood via an approximate mapping to equilibrium liquid-vapor phase
separation [48]. Later on, it became clear how this mapping is actually only valid
when considering the zeroth order expansion of spatial gradients.

The first attempt to go beyond an equilibrium theory was provided in [51],
where the effect of adding the first non-integrable term to the chemical potential of
Model B lead to Active Model B. This is obtained by replacing Eq. 1.18 with

µ =
δF

δφ
+ λ(∇φ)2 = aφ+ bφ3 −K∇2φ+ λ(∇)φ)2, (1.29)

Crucially, the active term λ cannot be reabsorbed in the free energy of Eq. (1.32).
Despite its non equilibrium structure, Active Model B presents the same phenomen-
ology of equilibrium systems. In particular, it only introduces some changes in the
coexisting vapor and liquid densities of Model B.

The story got surprising when it was realized that including all terms at the
same order of the λ non-linearity (which is, at order∇4φ2) can dramatically change
the phenomenology of phase separation. This lead to Active Model B+ [60], which
indeed contains all terms at order ∇4φ2 in a gradient expansion. We now review
such model, on which a large part of this thesis is based.

Before that, we should note that Active Model B+ is just the simplest field theory
describing active phase separation, on top of which other ingredients could be
added if necessary. For example hydrodynamic [58, 66] or polar [67] fields can be
added if the phenomenology requires, retracing the path that has been developed
at equilibrium in the Hohenberg-Halperin construction [64]. This is still largely
unexplored.

1.6 Active Model B+

In this section, we will present Active Model B + (from now on AMB+), follow-
ing very closely the paper in which it was introduced [60]. All the figures are taken
from their article and rearranged to fit in a single column layout.

AMB+ [60] was introduced to describe active matter models in which time re-
versal symmetry is broken locally: is then a continuum field theory describing active
phase separation for a diffusive, conserved density field φ when momentum is not
conserved. The merits of this theory are the capability of describing all the various
kind of active phase separations – observed in both experiments and simulations
(see Sec. 1.3.2) – in a complete framework built on the basis of first principles. Start-
ing from the equations of Model B, if we keep an additive noise and M constant,
we can obtain AMB+ adding all the terms breaking time reversal symmetry up to a
order (O(∇4φ2). The theory obtained in this way is therefore the most general field
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theory describing the diffusive dynamics of a single scalar field (up to that order,
with coefficients independent of φ):

∂tφ = −∇ ·
(
J +
√

2DMΛ
)
, (1.30)

J/M = −∇
[
δF
δφ

+ λ|∇φ|2
]

+ ζ(∇2φ)∇φ . (1.31)

F [φ] =

∫ {
a

2
φ2 +

b

4
φ4︸ ︷︷ ︸

f(φ)

+
K(φ)

2
|∇φ|2

}
dr (1.32)

where K(φ) > 0. As it is standard for Model B, for simplicity we set M = 1 and
K(φ) = K = const. The dynamics reads

∂tφ = ∇2
(
aφ+ bφ3 −K∇2φ

)
+ λ∇2 |∇φ|2 − ζ∇

(
∇2φ∇φ

)
+
√

2DM∇Λ (1.33)

The differences between AMB+ equations and the one for Model B are the two
active terms in λ and ζ, breaking time reversal symmetry. By setting ζ = 0 we obtain
equations of Active Model B. Crucially, ζ is fundamentally different from λ. While
the λ term is added to the equilibrium chemical potential and merely introduces a
non-equilibrium correction to it; the ζ term allows ∇∧ J 6= 0 so that, even in steady
state, circulating real-space currents are possible. Notice that the rotational part
of J is (by definition) divergence-free and yields no contribution in the dynamics
of φ (1.30). Moreover, by Helmotz decomposition we can insert the rotational free
part of the ζ term inside the divergence part of equation (1.30), redefining the non-
equilibrium chemical potential. However, this new chemical potential µ[φ] is not
local anymore: we will see later how this completely changes the physics of phase
separation.

As in Model B, we have chosen the local free energy to be symmetric (f(φ) =
f(−φ)). We loose nothing in generality by doing this, as a cubic term can be reab-
sorbed shifting the density by a constant. It is now clear that we have the symmetry
under the exchange (φ, λ, ζ)→ −(φ, λ, ζ). Even though AMB+ is introduced on the
basis of first principles, it was shown in [60] that a closely related field theory can
be obtained by coarse-graining particles models.

1.6.1 Binodals

Let’s start by studying the mean-field case, where the noise is equal to zero (D = 0).
We will see in this section, how it’s possible to derive analytically the binodals. This
will allow us to build, in the next section, the mean-field phase diagram of AMB+.

The binodals for the vapor and liquid phase (φ1 and φ2, respectively) are defined
as the coexisting densities of two phases at steady state (vapor and liquid, or dense
and dilute) separated by a flat interface. Having a flat interface, in absence of noise,
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Figure 1.5: The binodals φ1 and φ2 (coexisting densities for a flat interface)
for K = 1 and any value of A in the mean-field limit (D = 0). The binodals
only depend on one combination of the two activity parameters (ζ − 2λ) and
not on these separately. Dashed lines indicate spinodal density defined by
f ′′(φs) = 0.

the density profile depends only on the normal coordinate x and the problem is
effectively one-dimensional. Then, the current in 1.31 reads:

J = −∂xµ (1.34)

µ = f ′(φ)−Kφ′′ +
(
λ− ζ

2

)
φ′2 (1.35)

where φ′ = ∂xφ, and we could regroup the ζ and λ terms since in d = 1 we have
∇(∇φ)2 = 2(∇2φ)∇φ. Hence, the properties of the system depends just on ζ − 2λ,
instead of the ζ and λ separately.

Now, to find φ1,2 we need to find the stationary solution φ(x) with boundary
conditions φ(±∞) = φ1,2 and a (smooth) interface around x = 0. At equilibrium
this can be done by imposing the equality of the chemical potential and thermody-
namic pressure across the interface. Turns out that the same can be done here by
introducing some pseudo-variables that lead to the definition of a pseudo-pressure
and (formally) to the same equations of equilibrium. All these pseudo-quantities
has no direct physical meaning and can be seen as mathematical tools that allow
us to convert the new mathematics of AMB+ to the more familiar passive one. In
particular, the pseudo-density ψ(φ) and pseudo-potential g(φ) satisfy:

∂2ψ

∂φ2
=
ζ − 2λ

K

∂ψ

∂φ
and

∂g

∂ψ
=
∂f

∂φ
(1.36)
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Of course, in the passive case, we recover the density field and local free energy:

ψ −−−−→
λ,ζ→0

φ (1.37)

g(φ) −−−−→
λ,ζ→0

f(φ) (1.38)

Then, similarly to the equilibrium case, we can impose the following two conditions
and compute the binodals:

• chemical potential balance: setting J = 0 implies µ = µ̄, a constant value
obtained from the boundary conditions:

µ̄ = f ′(φ1) = f ′(φ2) . (1.39)

• pseudo-pressure balance: multiplying (1.39) by ∂xψ and integrating across the
interface gives

P (φ1) = P (φ2) (1.40)

where the bulk pseudo-pressure P (φ) is defined in terms of ψ(φ) and g(φ) as

P (φ) = ψ(φ)µ̄− g(φ) . (1.41)

Explicit results are easily obtained numerically because the solutions to (1.36)
can be found explicitly (see Fig. 1.5). Notice that only in the passive limit (ζ = λ = 0)
the binodals are equal to the minima of the free energy density f(φ).

1.6.2 Correction to binodals for a finite-radius droplet

The same approach used for a flat interface can be generalized to curved ones,
considering a dense droplet in a dilute environment (see Fig. 1.6(a), the inset on
the right). The case of a vapor bubble in a liquid environment can be obtained
exploiting the duality relation (φ, λ, ζ)→ −(φ, λ, ζ).

Let us consider a stationary state given by a spherically symmetric droplet of
radius R with density far form the interface equal to φ+(R) (inside) and φ−(R) (out-
side). We look for the values of φ±(R) such that the configuration is stationary for
the mean-field dynamics. Exploiting the spherical symmetry we can once again
reduce our equations to one dimension, rewriting them with respect to the radial
coordinate from the center of the droplet r = |r|. Our aim is to compute the sta-
tionary densities far from the interface: φ(r = 0) = φ+ and φ(r = +∞) = φ−, with
φ+ > φ−.

The chemical potential can be rewritten including the irrotational part of the ζ
term:

µ[φ] =
δF
δφ

+ λ|∇φ|2 + µζ (1.42)
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Figure 1.6: Stationary values of the density for a spherical dense droplet in a
dilute environment in the mean-field approximation (D = 0). We plot in (a) the
inner density φ+(R) and in (b) the outer density φ−(R) as a function of droplet
radius R for two different sets of activity parameters: ζ = −1 and λ = 0.5
(red, corresponding to region A of Fig. 1.7a) and ζ = −4 and λ = −1 (blue,
corresponding to region B of Fig. 1.7a). Points indicate numerical simulations
results and lines indicate analytical ones. When the pseudo surface tension σ
is positive (red line), φ±(R) are both decreasing functions of R. Instead, when
σ < 0 (blue line), φ−(R) is increasing when R increases.

where µζ is obtained by applying the Helmoltz decomposition to the current pro-
duced by the term in ζ:

Jζ = ζ(∇2φ)∇φ = −∇µζ +∇∧A (1.43)

µζ(r) = −
∫
dr′ (∇ · Jζ)(r′)∇−2(|r− r′|) (1.44)

with∇−2(|r−r′|) being the Green function of the Laplacian. Since only the gradient
part of Jζ affects the dynamics ofφ, we can forget about A in the following. Crucially
however, this construction comes at the price of non-local chemical potential µζ [φ].

The full nonequilibrium chemical potential µ can be written using spherical
coordinates as:

µ = f ′(φ)−Kφ′′ − (d− 1)K

r
φ′ +

(
λ− ζ

2

)
φ′2

+ (d− 1)ζ

∫ ∞
r

φ′2(y)

y
dy . (1.45)

Here φ′ = ∂rφ. At steady state µ = µI(R), a constant value. As we did for the flat
interface, we proceed to find the two conditions used to compute the steady-state
density levels far from the interface:

• Chemical potential balance: Using the boundary conditions φ(0) = φ+ and
φ(+∞) = φ−, we have

µI(R) = f ′(φ−) = f ′(φ+) + ∆ (1.46)
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where

∆ = (d− 1)ζ

∫ ∞
0

φ′2(y)

y
dy (1.47)

=
(d− 1)ζ

R

∫ ∞
0

φ′2(y) dy +O
(

1

R2

)
. (1.48)

To go from (1.47) to (1.48) we have assumed a sharp interface limit (R� ξeq)
so that we can approximate 1/r as 1/R. Equation (1.46) states that the full
chemical potential µ inside the droplet is equal to that outside so that no
current flows across the interface at steady state. However, the equilibrium
part of the bulk chemical potential µeq(φ) = f ′(φ) has a jump ∆ across the
interface.

• Pressure balance: by multiplying (1.46) by ∂rψ, integrating across the interface,
and again assuming that R is much larger than the interfacial width, we get:

P (φ+) = P (φ−) +
(d− 1)σ

R
+O

(
1

R2

)
(1.49)

where σ is a pseudo-tension defined by

σ =
K

ζ − 2λ

[
ζS0 − 2λS1

]
(1.50)

and depends on the value of two constants that are functional of the full shape
of the interface:

S0 = e
ζ−2λ
K

φ2

∫ ∞
0

φ′2(y) dy (1.51)

S1 =

∫ ∞
0

φ′2(y)e
ζ−2λ
K

φ(y) dy . (1.52)

The pseudo-pressure balance is formally the same as in equilibrium, where
the Laplace pressure jump is equal to:

∆Peq =
(d− 1)σeq

R
(1.53)

σeq = K

∫ ∞
0

φ′2(y)dy (1.54)

here σeq is the equilibrium interfacial tension. Of course, at equilibrium (ζ =
λ = 0) we have σ → σeq.

The coexisting densities for a spherical droplet of radius R in a dilute environ-
ment φ± can now be derived from equations (1.46) and (1.49). In order to do so, we
need to know the precise shape of the interface. The latter can be computed perturb-
atively in 1/R (see [60] for more details). These results are shown in Fig. 1.6 (lines)
along with results from mean-field numerical simulation of AMB+. There is good
agreement between the two, given the relatively modest values of R simulated.
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Figure 1.7: Mean field phase diagram of AMB+ with K = 1 and any value
of A > 0, in d = 2, 3. Ostwald ripening is reversed where σ < 0. In region A,
σ > 0, and we have normal/forward Ostwald ripening for both bubbles and
droplets. In region B (resp. C) Ostwald ripening is reversed for dense droplets
dispersed in a dilute environment (resp. dilute bubbles in a dense environment).
Points are results from simulations of two droplets (red/square for reverse and
blue/circle for forward Ostwald ripening).

1.6.3 Mean-field phase diagram

Formally we have a lot of mathematics that can be written in the equilibrium form.
However, there is one crucial difference: at equilibrium the interfacial tension σeq
is always positive, while this is not always true in AMB+, where σ can become
negative. Studying the sign of equation (1.50) this happens when:

|ζ − 2λ| < −ζ
∣∣∣∣1− S0

S1

∣∣∣∣ . (1.55)

Once again, the analogous condition for a vapor bubble surrounded by the dense
liquid follows from the duality transformation (φ, λ, ζ) → −(φ, λ, ζ). This condi-
tions divide the λ × ζ phase diagram at D = 0 in three regions (see Fig. 1.7(a). In
region A, σ > 0 regardless of the sign of the interfacial curvature. In region B, σ < 0
for liquid droplets in a vapor environment but σ > 0 for vapor bubbles in a liquid
environment. In region C, conversely, σ is negative for vapor bubbles and positive
for liquid droplets.

Even though the way in which σ determines the pseudo-pressure jump at a
curved interface, is the same in which σeq influences equilibrium systems, it does
not have a direct connection to the physical mechanical tension as defined for active
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systems e.g. in [68]. For example, the presence of a negative pseudo-tension does
not cause interfaces to become unstable: the coexisting densities φ±(R) remain well
defined. The only effect of negative σ on them is to modulate their behavior with
R. In particular, at equilibrium, both φ± are decreasing functions of R, while this is
the case for AMB+ only if σ > 0! In Fig. 1.6 we show these two distinct behaviours
for a particular choice of λ and ζ within region A and B (as defined in Fig. 1.6).

1.6.4 Reverse Ostwald ripening

In this section, we show how negative pseudo-tension affects the Ostwald process,
allowing for new features never seen in passive systems. We focus here on region B
of Fig. 1.7(a); the behavior in region C then follows by the usual duality relation.

In region A, as in equilibrium systems, σ > 0 and consequently ∂Rφ−(R) is neg-
ative. This causes the so-called direct Ostwald ripening process in which the density
outside a small droplet is higher than the one outside a big one. This causes a cur-
rent flows toward bigger bubbles and therefore to macro phase-separated state. On
the contrary, in region B the sign of ∂Rφ−(R) is positive, causing the Ostwald ripen-
ing process to be reversed: the current flows now from big to smaller bubbles. This
allows active matter systems to be micro phase-separated as the reverse Ostwald
ripening tend to uniform the size of liquid cluster in the system.

This reasoning can be converted into equations by considering a droplet of liquid
of size R(t) surrounded by a sea of distant droplets such as the mean density of the
vapor phase at r = ∞ is φs = φ1 + ε(t), where ε is the supersaturation. It can be
shown [60] that the time evolution of the droplet radius R(t) is equal to:

Ṙ =
β

R∆φ

[
1

Rs
− 1

R

]
+O

(
1

R3

)
(1.56)

where Rs is a fixed-point radius, β is a rate parameter, and ∆φ = φ2 − φ1. The
explicit expressions for Rs is:

Rs =
∆ψ β

f ′(φs)∆ψ −∆g
(1.57)

and likewise for β:

β =
(d− 1)σ

∆ψ
. (1.58)

where ∆ψ = ψ(φ2)− ψ(φ1), and σ is the pseudo-tension defined in (1.50).
In equilibrium models and in region A of the mean-field phase diagram of

AMB+ (Fig. 1.7), the surface tension σ is always positive and thus β and Rs are also
positive. Rs is then an unstable fixed-point radius: droplets smaller than Rs shrink
and droplets larger than Rs grow.
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Figure 1.8: Steady state phase diagram as a function of global density φ0 =
1
V

∫
drφ for two different sets of activity parameters: ζ = 1, λ = −0.5 (region

A in Fig. 1.7(a)), and ζ = 4, λ = 1 (region C). These two points have the same
mean-field binodals, since ζ − 2λ = 2 in both cases. In A, the steady state
phase diagram resembles equilibrium Model B with full phase separation into
dense (yellow) and dilute (blue) phases. In C, besides the low and high density
uniform phases, we observe either bubbly phase separation or a bubbly liquid.
Since AMB+ is symmetric under (φ, λ, ζ) → −(φ, λ, ζ), the phase diagram in
region B is obtained by exchanging dense with dilute regions.

In AMB+ the pseudo-tension σ is negative in region B and C of the phase dia-
gram (Fig. 1.7) and so the rate β is also negative. It can be shown that for small
ε in regime B (σ < 0), Rs > 0 and β < 0. Rs is now a stable fixed point radius:
droplets of smaller than Rs grow and those larger than Rs shrink. This is the regime
of reverse Ostwald ripening for liquid droplets dispersed in a continuous vapor
phase.

Regime C in the mean field phase diagram (Fig. 1.7(a)) follows directly from
the duality relation of AMB+. Note that there is no choice of parameters for which
both droplets and bubbles are subject to the reverse Ostwald mechanism. As a
consequence, microphase separation occurs in AMB+ on one side of the phase
diagram or the other, but not both.

1.6.5 Finite noise phase-diagram

Thanks to the reverse Ostwald ripening process, we can have microphase-separated
stationary states, at least when the noise is present (the steady state is independent
on the initial condition chosen). Indeed in presence of noise, when droplets/bubbles
are nucleated, their size tends to converge to the average one of the others. We show
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in Fig. 1.8 the phase diagram, displaying the steady-state density field φ(x, y) as a
function of (average) global density φ0 = 1

V

∫
drφ(r, t).

Outside the binodals, φ0 < φ1 or φ0 > φ2, the uniform phase is always stable. In
region A (top row), the phase diagram resembles that of passive Model B, with bulk
phase separation into dense liquid and dilute vapor phases. The only difference is
given by the binodals value φ1,2 that are shifted.

The phenomenology in region C (bottom row) is much more interesting. Besides
the low-density and high-density uniform phases when φ0 is outside the binodals,
for φ1+φ2

2 . φ0 . φ2 in region C we observe initial coarsening of dilute bubbles. At
long times, however, the coarsening arrests and the number of bubbles fluctuates
around some average. This represents nonequilibrium microphase separation in
the form of a bubbly liquid. Again, in region B, the duality transformation allows
us to say that the steady state for the inverse parameters -λ, ζ is instead a cluster
phase. At global densities φ0 in the range φ1 . φ0 . φ1+φ2

2 within region C, the
system creates a globally inhomogeneous steady state resembling conventional bulk
phase separation, except that within the dense phase, vapor bubbles are continu-
ously formed and then expelled to the exterior bulk vapor (the same happens in
simulations of active Brownian particles interacting through a pairwise, repulsion
potential, as we saw in Fig.1.3). The bubbly phase separation is best understood
as a bulk coexistence between a bubbly liquid and a conventional vapor. By dual-
ity, there is a range of densities within region B in which there is bulk coexistence
between a cluster phase and dense liquid. No reports of this in either experiments
or particle-based simulations has been seen up to now.

The dynamical properties of the bubbly liquid phase (and its cluster-phase dual)
are intriguing. When the noise is low bubbles are created by nucleation and des-
troyed by coalescence with other bubbles. At high noises, however, they can also
disappear by shrinking.

In the next chapter, we analyze in details these two novel type of phase separ-
ations. In particular, beyond confirming these results, we will present some new
and unexpected results, related, for example, to the time convergence to the bubbly
liquid and to the bubbly phase separated state.



Chapter 2

Statistical properties of bubbly
phase separation and bubbly
liquid

In the previous chapter, we briefly reviewed our theoretical understanding of phase
separation in active systems. In particular, we presented various evidence, from
both experiments and numerical simulations, that its description in analogy with
the liquid-vapor phase separation in passive systems is far from satisfactory. Fur-
thermore, we discussed how field theoretical analysis [60] predicts that purely non-
equilibrium types of phase separation should be generically expected in active sys-
tems. Specifically, we reviewed Active Model B+ (AMB+), the minimal generaliza-
tion of Model B to systems where detailed balance is locally broken. This approach
predicted that the Ostwald process – the main mechanism leading to the completion
of phase separation in passive fluids – goes into reverse (σ < 0) at high enough activ-
ity. When this happens, the system self-organizes, depending on the global density,
into a micro-phase separated state formed of vapor bubbles (or liquid clusters), or
into bubbly phase separation (the coexistence of this microphase separated state
with an homogeneous phase).

Yet, [60] fell short of analyzing the statistical properties of both microphase sep-
arated state and bubbly phase separation. This is the aim of the present chapter,
where we performed large-scale numerical analysis of AMB+ to measure quantities
such as the bubble-size distribution, and the convergence time to equilibration. In
order to perform efficient simulations, we developed from scratch a parallel pseudo-
spectral code that integrates Eq. (1.30).

In Sec. 2.1, we detail and motivate our choice of parameters. Then, in Sec.2.2,
we confirm the phase diagram obtained in [60]. The following two sections, 2.3
and 2.4, are devoted to the in-depth study of the statistical properties of the bubbly
liquid and the bubbly phase separation, respectively. In Sec. 2.4.4, we focus on the

41
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study of the transition from the bubbly liquid and bubbly phase separation to the
homogeneous liquid and vapor phases, respectively. We end the chapter with 2.5,
by studying the characteristic domain growth of the density field. Details on the
numerical code we developed are given in Appendix A.
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2.1 Physical parameters

In this section, we present the physical parameters chosen to study AMB+ equa-
tions (1.30). Since our aim is to study the statistical properties of bubbly liquid,
and bubbly phase separation in depth, we focused on a particular choice of the
physical parameters. In fact, we performed a more extensive exploration of the
parameter space, but this did not reveal qualitative differences with respect to the
results presented here (outside the region of parameters studied in chapter 3).

Unless otherwise specified, the parameters appearing in (1.30)-(1.32) are chosen
as in [60]: K = 1,M = 1, b = −a = A = 1/4. Instead, we varied the noise level
D, the activity parameters ζ and λ, and the global density φ0 =

∫
φdr/V (that

being a conserved quantity, enters the dynamics through the initial conditions). For
simplicity, we restrict our study to the case of ζ = 2λ, which is particularly easy to
understand analytically, because the activity does not change the mean-field value
of the binodals (as we discussed in Sec.1.6).

Since AMB+ equations are symmetric under the exchange (φ, ζ, λ)→ −(φ, ζ, λ),
we concentrate on ζ > 0 case. As such, the reader should bear in mind that every
time we write about ’vapor bubbles’ in the micro-phase separated state (homogen-
eous bubbly phase), these results are also valid for ’liquid clusters’ in the micro-
phase separated state that they form, using the symmetry specified above.

We now briefly present the technical parameters used for our integration scheme.
We performed simulations of (1.30) in dimension d = 2, for system of size Lx × Ly
with periodic boundary conditions. Equations were integrated in time through a
direct Euler scheme with time-step dt = 0.02. The spatial part of the equations
was computed with a parallel pseudo-spectral code that allowed us to simulate
larger systems on longer time-scales with respect to simulations of previous studies
[60, 69, 51]. The space discretization is set to dx = 1. For a more detailed exposition,
and consideration on the stability of the equations, see A.1.

2.2 Phase diagram

As a first step, we confirm the finite-noise phase diagram of AMB+ that we
presented in Sec. 1.6. We indeed re-obtained it performing simulations with the
pseudo-spectral code described in Appendix A.

First, we simulated systems with sizes and times comparable with the relatively
modest ones used in [60] (Lx = Ly = 192 and t < 105). Then, we proceeded with
larger system-sizes and longer times. In both cases, we could observe the same
phenomenology of [60]: for low and high global densities φ0 the system is found
in a uniform state (vapor at low densities, and liquid at high ones). For intermedi-
ate density levels, the system phase separate between a dense phase (liquid) and
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a dilute one (vapor). In order to check whether the system is actually phase sep-
arated we build the PDF of the local density φ(x, y). This quantity, that we will
call P (φ), corresponds to the steady-state probability to have a density φ(x, y) in a
point chosen at random. When the system is phase separated, P (φ) displays two
peaks, the vapor one, at lower densities, and the liquid one. In Fig. 2.2 we see how
increasing the global density φ0, we have a transfer of probability from the vapor to
the liquid peak. A peculiar feature, that we will discuss in more details in Sec. 2.4.4,
is that while the vapor density remains constant, the liquid density varies with the
global density.

Figure 2.1: From left to right, snapshots of all the different phases of AMB+
along the line ζ = 2λ: homogeneous vapor phase, bubbly phase separation,
bubbly liquid phase, and homogeneous liquid. The definition of φV , φBL, φL
will be provided in the next sections.
D = 0.3, V = 512× 256.

In between the two homogeneous phases, we observe the bubbly liquid at higher
densities φ0 and the bubbly phase separation at lower ones. Notice that the two
phases cannot be discriminated by observing their P (φ). In Fig. 2.1 we present the
phase diagram for ζ = 2λ = 2, D = 0.3 and size 512× 256, by showing the steady-
state density field in the various phases we presented above. This is the equivalent
of the bottom row of Fig. 1.8. The two snapshot differ for the particular choice of
parameters (but both are in the region with reversed Ostwald ripening) and in the
shape of the bubbly liquid phase when the system is bubbly phase separated (i.e.
the second snapshots in both pictures). In one case is circular, in the other one is
a band. This is not surprising, since normal Ostwald ripening for the liquid phase
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minimize the lenght of the liquid-vapor interface, and therefore the actual shape
of bubbly liquid depends on the fraction of bubbly phase in the system and the
particular geometry of the system.

Being able to observe these phases confirms the validity of our code, and shows
at the same time the robustness of results presented in [60], when increasing time
and sizes. In the next sections, we perform an in-depth study of the statistical
properties of these phases. Then, we study the transitions between them.

Figure 2.2: PDF of the local density P (φ) for phase-separated states at differ-
ent global density φ0 (shown next to each curve). We can clearly see how P (φ)
displays two peaks, corresponding to the average vapor and liquid densities.
Curves in blue correspond to the bubbly phase separation, red ones to the bub-
bly liquid. Notice how increasing φ0, we have a transfer of probability from
the vapor to the liquid peak, and how the latter, unlike the vapor one, shifts at
larger densities (more on this in Sec. 2.4.4). Parameters are chosen as follows:
V = 512× 256, D = 0.3, ζ = 2λ = 2

2.3 Micro-phase separation (Homogeneous bubbly phase)

We start by studying the statistical properties of the micro-phase separated
state (that we otherwise call homogeneous bubbly phase). This is a micro-phase-
separated state between vapor bubbles (whose density is equal to the mean field
binodals, plus correction due to the noise and the interface curvature) and a liquid
background. We recall that AMB+ is invariant under (φ, λ, ζ) → −(φ, λ, ζ) so that
our results equally apply to the opposite values of λ and ζ, where one finds a micro-
phase separated state formed of liquid clusters. Taking this in mind, we refer below
to ’vapor bubbles’ for simplicity in the presentation.
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The properties of this phase are determined by the relation between the reverse
Ostwald ripening process and noise, whose is responsible for the nucleation and
coalescence processes. In the steady state, bubbles of vapor diffuse in the liquid
thanks to the presence of noise. This never ending random walk, allows bubbles
to meet and merge through coalescence events. The resulting bubble has a radius
R that is not in equilibrium with the outside liquid (in the sense explained in Fig.
1.6). It will therefore relax to the correct density, losing part of its volume. This
allows new nucleation events to take place, following a noise-induced density fluc-
tuation. At the same time, bubbles also interact via reverse Ostwald ripening, thus
uniforming their size to the average one of bubbles around them.

Figure 2.3: Homogeneous bubbly phase in the steady state at different noise
levels D and global densities φ0. System size: 512× 256. We can qualitatively
see how the number of bubbles, their average dimension and variability are
affected by φ0 and D.

When the Ostwald ripening process dominates over noise, nucleation and co-
alescence events happen on time-scales that are much longer then the ones needed
for the Ostwald process to uniformise the size of different bubbles. In this regime,
nucleation and coalescence events are rare, and all the bubbles in the system tend to
have the same typical size (with a small variability). The Ostwald ripening process
dominates over noise in three cases:

• When the noise level D is low. In this case bubbles diffuse slowly, and nucle-
ation events are rare.

• For large and negative surface tension σ, where the (reversed) Ostwald process
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is very fast. This happens far from to the transition line at σ = 0 of Fig. 1.7(a).
On the line ζ = 2λ this is obtained by increasing ζ.

• At fixed parameters of AMB+, increasing the global density towards the liquid
binodal makes both nucleation and coalescence more rare. If we were working
on Model B, indeed, it is known that the nucleation rate diverges approaching
the liquid binodal from below, and one expects a similar phenomenology here
(although checking it computationally is prohibitively expensive). Moreover,
increasing φ0 decreases the number of bubbles, and hence coalescence is sup-
pressed, as bubbles have to travel for longer in order to meet.

In order to quantitatively study the statistics of bubble sizes, we developed a
breath-first search algorithm, see Appendix A.2. This allows to extract the bubble
size distribution P (A). In Fig. 2.4, we can see that when reverse Ostwald ripening
dominates, P (A) is peaked around the typical bubble size and decays exponentially
fast away from it.
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Figure 2.4: Bubble size distribution P (A) in the bubbly liquid when Ostwald
ripening dominates over noise: bubbles have more or less all the same size.
The distribution P (A) is peaked around a typical value and has exponential
tail away from it. System parameters: φ0 = 0.6, D = 0.3, Lx = 2Ly = 512, ζ =
2λ = 2.

If now we increase the noise, or decrease either ζ = 2λ or the global density φ0,
we do not have time-scale separation between Ostwald ripening and the coalescence
processes. The typical size is less defined, and the bubble sizes variability increases.
This reflects on the shape of P (A): the typical size peak becomes less prominent,
the variability of bubbles increases and the exponential tails are slower. In Fig. 2.5,
we report the variation in shape of the bubble size distribution as we vary (one at
a time) φ0, ζ = 2λ and D. This proves the claims made above that all these three
parameters allow to vary the relative strength of the Ostwald process vs coalescence
and nucleation.
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Figure 2.5: Behavior of the bubble size distribution P (A) in the bubbly liquid
varying φ0, D and ζ = 2λ in the first, second and third column, respectively.
From top to bottom, the different rows represent the same data in linear, log-
log and log-lin scales. Notice how, the stronger is Ostwald ripening (for high
values of D, ζ or φ0), the more the distribution is peaked around a typical
value and the variability of the bubbles size is smaller. Moreover notice (last
row) that P (A) has an exponential tail whose slope depends on the parameters.
These were chosen as:
First column: variable φ0, D = 0.3, ζ = 2λ = 2, Lx = 2Ly = 512
Second column: φ0 = 0.4, variable D, ζ = 2λ = 2, Lx = 2Ly = 256
Third column: φ0, D = 0.3, variable ζ = 2λ, Lx = 2Ly = 256

The effect of the noise level D, and of the activity term ζ = 2λ, are not limited to
the competition between the Ostwald ripening and the coalescence (and therefore
to the bubble size variability). They also affect other aspects of the bubbly liquid,
such as the average number of bubbles or their size (see Fig. 2.6). In particular,
when D or ζ = 2λ increase, the average bubble number increases accordingly, while
their mean size decreases.

Getting an analytical understanding of how nucleation (and anti-nucleation that
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– albeit rare – is never exactly absent), bubble diffusion (and hence coalescence),
and Ostwald ripening compete in order to set a typical bubble size or – even more
deeply – the PDF of bubble sizes, seems out of reach. Indeed, there are several issues
blocking the way. Among these, the most difficult to overcome is the analytical un-
derstanding of nucleation. More precisely, the fact that we are dealing with a system
that does not have time-reversal symmetry, does not allow applying methods and
concept from classical nucleation theory (well-developed for homogeneous nucle-
ation in classical fluids). However, we will discuss in Chapter 4 a minimal model
that implements all the physical ingredients described above to describe directly
the dynamics and statistical properties of the bubbles.
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Figure 2.6: Average number of bubbles and volume in the steady-state as a
function of ζ = 2λ and D. The chosen parameters are:
(a,b): ζ = 2λ,D = 0.3, φ0 = 0.2, V = 512× 256
(c,d): ζ = 2λ = 2, φ0 = 0.6, V = 512× 512

2.3.1 Varying the global density

Of particular interest is the study of the average number of bubbles in the steady
state increasing φ0 (Fig. 2.7(a)). Strikingly, this function is not monotonous: it
increases for low values of φ0, reaches a maximum value, and then decreases to
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zero. In other word it exists a density φL above which no bubbles are found, and
the system is not phase separated anymore. In other words, this density sets the
transition from bubbly to homogeneous liquid.

To provide further proof of this fact, we studied the PDF of the local density P (φ)
(red curves of Fig. 2.2). As we previously discussed, we can interpret the second
peak of P (A) as the typical density value of the liquid, φ̄l). If we subtract to this
value the global density φ0 we obtain Fig. 2.7(c). The latter is clearly showing that
above a certain density (1.3 for the chosen parameters), φ̄l = φ0. In other words, we
no longer have two phases but just the liquid one: the system is homogeneous. In
Sec. 2.4.4, we investigate the asymptotic behavior of φL by increasing the system
size.

Figure 2.7: Some features of the bubbly liquid as a function of the global
density for two different sizes. Noise level D = 0.3 in all the cases.
(a) Density of bubbles ρbub = Nbubbles/V .
(b) Average bubble area in the steady state.
(c) Distance of the typical liquid density φ̄l (second peak of Fig. (c)) from φ0. It
becomes zero when the system is in the homogeneous liquid phase.

2.3.2 Convergence in time and system size

So far, we have presented results for a fixed system-size (Lx = 2Ly = 512 and 256).
We now study the convergence, both in time and system-size when the system goes
towards the micro-phase separated state. As we will see in the following, there is a
very strong difference between this case and the bubbly phase separated one. For
the moment, we only focus on the first case.

We estimate the typical time for convergence to the steady state τss by looking
at the time-series of the number of bubbles Nbub(t). More specifically, to compute
τss, we first obtain the average number of bubble 〈Nbub〉 in the steady-state and its
standard deviation ∆Nbub. Then, we evaluate τss as the first time Nbub(t) enters the
interval of width ∆Nbub around 〈Nbub〉 (see Fig. 2.8). In order to disregard significant
noise fluctuation, we performed this analysis on a smoothed time series, obtained
through a moving average.

When the system heads towards micro-phase separation, the convergence in
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Figure 2.8: Example of a time series of the number of bubble in the bubbly
liquid, before (gray) and after (blue) the smoothing process though a moving
average. The convergence time τss is computed as the first passage time of
Nbub(t) in the interval [〈Nbub〉 − ∆Nbub, 〈Nbub〉 + ∆Nbub] where 〈Nbub〉 is the
steady-state average of the number of bubbles and ∆Nbub its standard devi-
ation.

time is fast and practically independent of the system-size simulated (see Fig.
2.17(a,b)). This makes the statistical analysis of the homogeneous bubbly liquid
a relatively easy task. To study the convergence in system-size, we compared time-
series for different system sizes and check that they converge all to the same average
value, on the same typical time-scale. In the steady-state we expect to have a system-
size independent P (A) once convergence in the system size is achieved. The latter
is attained at relatively small system size (with respect to what we can comfortably
simulate with our code, and also compared to the bubbly phase separation, as we
will see in Sec. 2.4.1). See Fig. 2.9 for some examples.
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Figure 2.9: Convergence is system size of the bubble size distribution P (A) in
the bubbly liquid. As we can see, the system tends to converge in size faster
for φ0 = 0.4, where the distribution has shorter tails. Parameters: ζ = 2λ =
2, D = 0.3

2.4 Bubbly phase separation

At low density, we find the bubbly phase separation: a bulk phase separation
between the bubbly liquid at density φBL and a uniform vapor phase, in the form
of a macroscopic vapor reservoir (examples of the steady-state density field are
given in Fig. 2.10). The latter, in particular, is fundamentally different from a vapor
bubble. Indeed, even though they are both composed by vapor at the same density
(up to correction of order 1/R as we saw in Sec.1.6), its size scales linearly with the
system-size, and its presence is persistent in time. In other words, the bubbly liquid
at density φBL occupies a volume VBL of the system , while vapor at a density φV
occupies the rest of the volume VV = V −VBL respecting the lever rule, that imposes
the conservation of the global density φ0:

φ0V = φBLVBL + φV (V − VBL) (2.1)

This means that, exactly like in every bulk phase separation, varying φ0 from φV
to φBL, the system is found in a bubbly phase separated state with the volume of
bubbly liquid that goes from 0 to V (the volume of the vapor reservoir, conversely,
goes from V to 0).

The aim of the present section is to show that this state is indeed a bona-fide
phase separation between the micro-phase separated state and the homogeneous
vapor phase (that was hypothesized, but not proved, in [60]). Moreover, we will dis-
cuss the surprising fact that the convergence in time to the bubbly phase-separated
state, is extremely slow, and dramatically increases with system-size.
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Figure 2.10: Snapshot of BPS for two noise and φ0 values. System size 512×
256.

Proving this point is somehow delicate: while the density of the vapor reservoir
is uniform (in the sense that is given by the mean-field vapor binodal plus noise-
induced fluctuations), the bubbly liquid is, itslef, microphase separated between
the pure liquid and vapor bubbles. In order to obtain reliable results, we thus
need to use system-sizes that are much larger than the largest bubble observed in
the bubbly liquid. This is a very demanding task. Thanks to the efficient parallel
pseudo-spectral code that we developed, we were able to overcome this difficulty.

We considered systems in a rectangular geometry Lx × Ly = Lx/2. This is con-
venient because, when the system is phase separated, it presents a flat (on average)
interface between the micro-phase separated state and the vapor, which allows to
easily compute the average density within the bubbly liquid as a function of the
vertical coordinate y (see Fig. 2.11). We refer to this geometry saying that the system
forms a ‘band’. More precisely, we compute φV and φBL projecting the local density
φ(x, y) along the x-direction:

φ(x, t) =
1

Ly

∫ Ly

0
φ(x, y, t) (2.2)

Further averaging φ(x, t) over time, we obtain a smooth profile φ(x) = 〈φ(x, t)〉 (see
Fig.2.11). The two densities φV and φBL are then easily distinguishable, meaning
that the typical fluctuations within one of the two phases is much smaller than the
density difference between the vapor and the bubbly liquid.

If we are really in front of a phase-separated system, both φBL and φV must be
independent both from the global density and system-size when the latter is large
enough. This is what we prove in Fig. 2.12. It should be noted that obtaining these
results needed a considerable computational effort: the simulations at Lx = 1024,
even using our parallel pseudo-spectral code, run for a few months (we will discuss
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Projection Time average

Figure 2.11: In this figure we show how is possible to extract the smoothed
band profile φ(x) of the bubbly phase separated state, starting from the density
field φ(x, y, t). First, we extract the density profile of a single time t by project-
ing the local density φ(x, y, t) along the x−axis. Then, we averaged over time
φ(x, t) to smooth the profile. In this way we get: φ(x) = 〈φ(x, t)〉.

more in details below why this was necessary). In conclusion, we confirmed the
expectation that bubbly phase separation is – indeed – a phase separation between
the outside vapor region and a microphase separated bubbly liquid.

2.4.1 Convergence in time

We now study convergence in time to the bubbly phase separated state, and we
compare it to the one found when heading towards the homogeneous bubbly liquid.
A quantity that will provide useful to do so is the average density of the bubbly
liquid as a function of time φBL(t). Indeed, unlike standard liquid-vapor phase
separation, the dense phase, whose density is φBL(t), is itself microphase separated
and the interface between the two phases is not easily defined: it has frequent
large fluctuations and overhangs. Measuring it is not obvious at first sight; before
discussing the convergence in time and system size, we thus describe precisely our
procedure.

We have followed two procedures to measure φBL(t). In the first method, we
average the density in all the system but the vapor reservoir. In order to do so,
we locate the vapor reservoir using a breath first search algorithm (see Appendix
A.2) and then we average the density field outside it. The second, more refined
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Figure 2.12: Average density profile (obtained as explained in Fig. 2.11) in the
bubbly phase separation. We can clearly distinguish the two density levels of
the bubbly-liquid φBL and of the vapor φV . These do not depend on the global
density φ0, nor on the system size (when chosen large enough).
Simulation parameters: D = 0.3. Left: φ0 = −0.2. Right: Lx = 2Ly = 1024

method, relies on the projection of the density field along the x-axis φ(x) (as defined
in equation (2.2) and Fig. 2.11). It consists in extracting φBL(t) from the local
field φx,y projected along the axis perpendicular to the band (this will work just for
rectangular geometries), providing us the band profile. From there, we can perform
an average in the inner part of the bubbly liquid. This allows us to disregard the
interface and therefore to have more reliable estimates of φBL(t) (see Fig. B.2) as:

φBL(t) =
1

w

∫ x1+w

x1

φ(x, t) . (2.3)

More details are given in Appendix B.2.
In Fig. 2.13 we provide a comparison between the two methods to compute

φBL(t). They give qualitative consistent results. As expected, however, the first
method leads to a systematic overestimation since we are including the interface
between the micro-phase separated state and the vapor, which is much broader than
the liquid-vapor interface.

We now pass to discuss the convergence in time towards the bubbly phase sep-
arated state, comparing it to the case where it converges to micro-phase separation.
As for the bubbly liquid, we can compute the convergence time τss using the time-
series of the number of bubbles. However, for the bubbly-phase separation we can
also rely on the average density of the bubbly liquid φBL(t). In Fig. 2.14, we show
the comparison between the two time-series for the same system; As we can see,
they provide a consistent estimate of the convergence time (about 2× 107).

The convergence towards bubbly phase separated state, is strikingly different
from the one to the bubbly liquid. While, as already discussed in Sec. 2.3.2, τss is
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Figure 2.13: Comparison between the two methods used to compute the av-
erage density of the bubbly liquid φBL(t) in a bubbly phase-separated state.
In blue the simplest that consist in averaging the density in all the system but
the vapor reservoir (this method overestimates φBL(t)). In red the method that
relies on the band profile φ(x) as described in the text.
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Figure 2.14: Time series of the number of bubbles (left) and of the average
density inside the bubbly liquid (right) for the bubbly-phase state. Both time
series can be used to estimate the convergence time τss after which the system
is in the steady-state. Parameters are chosen as follows: D = 0.3, Lx = 2Ly =
1024, ζ = 2λ = 2.

independent of system size when converging towards the bubbly liquid, it depends
on it very strongly when the system is converging to a bubbly phase separated
state. In this case, varying the system-size between 256 × 128 to 1024 × 512, we
roughly estimate that τss increases linearly with the system volume. Importantly,
the same result is obtained starting from both uniform or band initial conditions (see
Appendix C.1 for a precise definition of the initial conditions). In Fig. 2.17(d), we
compare these two cases and show that the asymptotic values are the same. Once
again: obtaining results converged in time up to system size 1024× 512 was a con-
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siderable computational effort. For example, it took few months for the simulation
of size 1024× 512 to reach times of order 107.

ConvergedNot enough
bubbly liquid

Vapor reservoir 
too small

Figure 2.15: Sketch explaining the convergence in system size in the bubbly
phase separation. Let P (A) be the converged bubble size distribution for a
certain set of parameters. If now we consider a given system-size, and a certain
global density φ0, we fix both the volume of the vapor reservoir and of the
bubbly liquid. Then, if φ0 is too low (first system from the left) then the volume
of the bubbly liquid is not enough to accommodate the biggest bubble of P (A);
therefore, for that particular size, its bubble size distribution has shorter tails.
On the contrary, when φ0 is too large (third snapshot), the vapor reservoir has
size comparable with the biggest bubbles of the bubbly liquid. In other words,
we cannot distinguish its state from the bubbly liquid one.

Figure 2.16: System size convergence of the bubble size distribution P (A) for
D = 0.25 and ζ = 2λ = 2.
(a) P(A) converging in system size for Lx = Ly/2 = 512.
(b) Converged P (A) for different global densities.
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Uniform IC

Band IC

Figure 2.17: Convergence time τss and some time-series from which it was
computed. D = 0.3, Lx = 2Ly, ζ = 2λ = 2.
(a) Convergence time τss as a function of φ0 and system size Lx = 2Ly. In the
bubbly liquid (φ0 > 0.01) it does not depend much on system size, while in the
bubbly phase separation the dependence is dramatic. Initial conditions: bubbly
liquid: uniform (φ(x, y) = φ0), bubbly phase separation: band of uniform
liquid in a vapor background.
(b) Number of bubbles per unit volume in the bubbly liquid (φ0 = 0.2). The
convergence time is clearly system-size independent.
(c) Number of bubbles per unit volume in the bubbly phase separation (φ0 =
−0.2) for different system size. It clearly increases dramatically with Lx
(d) Number of bubbles versus time for different system sizes Lx and initial
conditions (band and uniform). With this plot we check that the system-size
dependence of τss in the bubbly phase separation was not an artifact due to
the different initial condition employed.

2.4.2 System size convergence

The convergence in time towards bubbly phase separation is even more striking,
given that our results are converged in system-size. We dedicate this section to
prove this point more rigorously with respect to Fig. 2.12, showing the density



59 CHAPTER 2. BUBBLY PHASE SEPARATION AND BUBBLY LIQUID

D φBL φV

0.2 0.21 -0.84
0.25 0.15 -0.77
0.3 0.01 -0.70

Table 2.1: Average dens-
ity of the vapor reservoir
and of the bubbly liquid
for system converged in
time and size. ζ = 2λ = 2.

profiles at different sizes and global densities.
As we saw already for the micro-phase separated state (Sec. 2.3.2), the most

stringent test of system-size convergence is provided by comparing the steady-state
PDF of bubble size P (A), that we now analyze. Moreover, we complement this
check by inspecting the time series of the number of bubbles and the average density
in the bubbly liquid φBL. Having limited computational resources, we had to choose
carefully the global densities φ0 at which we run our simulations. In Fig. 2.15 we
explain why, in general, we used intermediate densities that were sufficiently far
from the transitions to the bubbly liquid and the homogeneous vapor phase.

The bubble size distributions P (A) in the bubbly phase separation, are com-
posed by two separates part (Fig. 2.16). One, at smaller sizes, relative to bubbles in
the bubbly liquid. The other, at a separated, larger scale, concerns the vapor reser-
voir (seen as a big bubble by our algorithm to locate bubbles). Once the system-size
convergence is attained, the distribution relative to bubbles in the bubbly liquid,
is independent of system size, and of the global density φ0. On the contrary, by
increasing the volume of the system, the peak at large sizes shifts to larger sizes
accordingly. This is somehow obvious in the context of a bulk phase separation,
as the average volume occupied by the vapor reservoir scales linearly with system
volume (this can be directly obtained from the lever rule in Eq. (2.1)). In Fig. 2.16
we can see the converged bubble size distribution P (A) for noise level D = 0.25.

All these expectations are confirmed: the part of the P (A) corresponding to the
bubbly liquid does depend neither on the system size nor on the global density φ0,
and the peak describing the outer vapor scales linearly with system size.

A particularly strong form of system-size dependence is found setting the global
density close to φBL, the density of the bubbly liquid when the system is globally in
a bubbly phase separated state (see next section for an in-depth discussion of φBL).
In Fig. 2.18, we report results for φ0 = 0. At small system sizes, the system is found
in a microphase separated state. In such a regime, we find that the bubble PDF has
an intermediate power-law regime P (A) ∼ A−α, with α = 1.5. Increasing system
size, as far as φV < φ0 < φBL, the system settles in a bubbly phase separated state.
We show similar intermediate power laws in Fig. 2.19 for smaller noise levels. The
main differences with the previous case are the exponent α, here equal to 1.5, and
the persistence of this state in the asymptotic regime.

As we write this text, we still do not have an analytical understanding of how
and when these power laws arise. Interesting physics may be understood by study-
ing analytically this problem, and future studies may shed light on their emergence.
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Figure 2.18: Left: intermediate power law of the bubble size distribution
P (A) ∼ A−1.5 for D = 0.25, φ0 = 0, Lx = 512 = 2Ly. Notice how we pass
form a bubbly liquid state for small sizes (less than 512 × 256) to a bubbly
phase separated state by increasing system size. In red we represent for com-
parison the converged P (A) of the bubbly liquid state at φ0 = −0.2.
Right: snapshot of the density field in the steady-state for the same systems on
the left side. At φ0 = −0.2, the state is converged in time and system size. For
φ0 = 0 we can see various sizes (Lx = 2Ly = 1024, 512, 256), and how we pass
from a bubbly state to a bubbly-phase separated one.

Figure 2.19: This is the bubble size distribution P (A) for the bubbly phase
separation, showing an intermediate power law P (A) ∼ A−2. Simulations
parameters:
Left: ζ = 2λ = 2.4, φ0 = −0.3, D = 0.17
Right: ζ = 2λ = 2.4, φ0 = −0.2, D = 0.2
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2.4.3 Estimating φBL

As we have seen before, the microphase separated state exists only at high enough densities,
and it is replaced by bubbly phase separation at lower densities. Although it is obviously
very difficult to locate the precise transition value of the density, all our measurements are
compatible with the natural expectation that it corresponds to φBL, the value of the density
of the bubbly liquid when the system is, globally, bubbly phase separated. In this section,
in order to estimate φBL, we study the time-series of the average density inside the bubbly
liquid (e.g. see φBL(t) of Fig. 2.14). Once we determine when the system is in its steady state,
we average φBL(t) over time to obtain an estimate of φBL.
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2.4.4 Computing liquid and vapor densities

We now look more in details to the transitions towards the homogeneous liquid
and vapor phases. In particular, at low density we study the transition of the bub-
bly phase separation towards the homogeneous vapor phase (by decreasing global
density φ0). At higher densities, instead, we study the transition of the bubbly li-
quid towards the homogeneous liquid phase (by increasing φ0). We refer to these
transition density as φV and φL, respectively. Between these two transitions, the
one at low density is the easiest to understand. As we explained already, the bub-
bly phase separation is a bulk phase separation between two phases with defined
densities: φV for the vapor reservoir, and φBL for the bubbly liquid. Therefore, for
global densities below φV we only have the vapor phase. To determine φV we have
various choices.

A first way to estimate φV is to exploit the PDF of the local density field P (φ)
(some examples are reported in Fig. 2.2). It must be noted, however, that P (φ)
contains information on the vapor reservoir but also on the bubbles in the bubbly
liquid. No matter how big the system is, a fraction of the total vapor is contained in
small bubbles living inside the bubbly liquid. The latter, as we saw in Sec. 1.6, are
expected to have a density that is equal to the mean field binodal φ1 plus correction
of order 1/R (the inverse of their radius R). Hence, we expect this method to be
affected by systematic errors.

A second possibility is to compute φV as the average density of the vapor reser-
voir, when the system is bubbly phase separated. In practice, we can easily isolate
the latter using the algorithm to locate bubbles described in the Appendix A.2.1. At
small sizes this measurement is affected by the presence of the interface, for which
density values range from liquid to vapor levels. As the system size grows, however,
the interface becomes quickly much smaller than the volume of the system and the
estimate of φV becomes more and more reliable.

In Fig. 2.20 we show that the two methods described above give consistent
results with a systematic bias in the estimation via P (φ). In Table 2.1, we report
our estimates of φV for different noise value at ζ = 2λ: as expected, the highest the
noise, the further away φV is from its mean-field value (φV = φ1 = −1).

The estimation of φL in systems with finite noise is considerably harder. In
Sec. 2.3, we saw that for a given size, we have a transition to the homogeneous
liquid phase above a certain density. The latter can be extrapolated by studying the
dependence of observables like the average number of bubbles in the steady state
on φ0(Fig. 2.7). The next step is to understand how this density behaves in the limit
of infinite time and system-size.

In equilibrium phase separation, the transition towards the homogeneous liquid
takes place at a particular global density, which corresponds to (i) the average liquid
density in bulk phase separated systems; (ii) the second peak of the PDF of the local
density P (φ); (iii) the density at which the nucleation time-scale diverges.
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Figure 2.20: Estimate φ̃V of φV using the two methods described in the text,
and their behavior changing φ0 and system size. D = 0.3, Lx = 2Ly

It is natural to ask whether, in AMB+, one has a similar interpretation for the
density beyond which the system forms a homogeneous liquid. As we shall see,
the situation is more complex when Ostwald ripening is reversed. First, it is clear
that (i) above cannot be generalized to AMB+ when Ostwald ripening is reversed,
because the system is micro-phase separated.

Even (ii) cannot be exploited. Indeed, in the bubbly liquid the second peak of
P (φ), corresponding to the typical liquid density, is not constant with φ0, presenting
a clear shift as we increase the global density (see Fig. 2.2 and Appendix B.1 where
we check the stability of these results with time resolution). This behavior can be
easily explained through the following mean field argument. In Sec. 1.6, we saw
that for noiseless systems, the steady-state density of the liquid outside a bubble
depends on the bubble radius R, and hence on its size. When the system is in the
bubbly liquid state, the size of bubbles decreases when increasing φ0. Hence, the
liquid density is expected to increase as a function of φ0. Notice that this mean-
field understanding cannot be used to conclude whether there is a finite value of φ0

beyond which no bubble is found (homogeneous liquid). Indeed, as explained in
Sec.1.6, the correction to the binodals is known analytically only perturbatively in
1/R. Hence, such information cannot be extrapolated up to R = 0.

The last available route (iii) is to extrapolate φL from the divergence of the
nucleation time. This task, however, is computationally hard even for equilibrium
systems as one is looking for the divergence of the typical time of a rare event to
occur [5]. For these reasons, even at equilibrium, we could not obtain clean results
computationally. As a further layer of complexity, we have that out of equilibrium,
we lack the same analytical understanding of nucleation similar to the Kramer’s rate.
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2.5 Phase ordering kinetics

Domain coarsening induced by a temperature quench (phase ordering kinetics),
has been studied for over 50 years (see the review of Bray [6]) . One of the main
point addressed by these theories is the domain growth of the different phases in
the system. The theory relies on the so-called scaling hypothesis that assume the
existence, at late times, of a single characteristic length scale L(t) such that the
domain structure is statistically independent of time when lengths are scaled by
L(t). Given the density field φ(r, t), the characteristic length is computed relying
on the of structure factor S(q, t), defined as Fourier transform of the correlation
function:

C(r, t) = 〈φ(x+ r, t)φ(x+ r, t)〉 (2.4)

being therefore equal to:
S(q, t) = 〈φ(q)φ(−q)〉 (2.5)

where angle brackets indicate an average over different realization. The existence
of a single characteristic length scale, implied by the scaling hypothesis, is equival-
ent to say that the correlation function and the structure factor have the following
scaling forms:

C(r, t) = f(r/L) (2.6)
S(q, t) = Ldg(qL) (2.7)

where g = F [f ]. For this reason we are typically interested in the structure factor
S(q, t), obtained by averaging S(q, t) over shells of radius q = |q|:

S(q) = 〈|φ(q)|2〉q (2.8)

Finally, the typical length scale can be estimated as the inverse of the first moment
of S(q):

L(t) = 2π

∫
S(q)dq∫
qS(q)dq

(2.9)

In the classical phase-separated system the characteristic domain size grows as a
power law of the time andL(t) ∼ tα, where the exponentα depends on the transport
properties of the system. In particular, for diffusive systems with conserved fields
(i.e. the one described by Model B) it was firstly shown by Liftshitz [70] that, for
extremely off-critical systems (φ0 far from zero), α = 1/3. In these systems, bubbles
are scarce and so are coalescence events. The principal growing mechanism is
therefore the direct Ostwald ripening process. It was shown later on (by Siggia [71])
that the coalescence mechanism generates the same exponent. This is due to the
fact that diffusion processes limit the speed of the ordering kinetics in both cases.
After more than 20 years of debate since the first Liftshitz paper, Huse [72] extended
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the Liftshitz-Slyosov theory to cases presenting a bicontinuos structure of vapor
and liquid (φ0 is around zero in the language of Model B). In other words, the
theory was extended to cases in which the two phases occupy a comparable volume
fraction. His argument goes like this: along the interfaces the chemical potential
scales as µ ∼ σ/L, varying over a length scale of order L. The current, and therefore
the interface velocity v, scales as ∇µ ∼ σ/L2 , giving dL/dt ∼ σ/L2 and finally
L(t) ∼ (σt)1/3.

For active systems the debate is still ongoing. A recent example comes from
Pattanayak and his group [69], claiming that the growth of L(t) ∼ tα for Active
Model B presents a crossover between an early time Liftshiz-Slyosov exponent
α = 1/3 to a α = 1/4 at later times. This result is surprising, as it was obtained
when ζ = 0, in the case where Ostwald ripening is normal and hence there seems
to be no obvious mechanism leading to a late-time 1/4 growth law.
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Figure 2.21: Characteristic length scale L(t) growth in time. It displays a
power law that depends on the activity. System size 1024×1024, global density
chosen as the midpoint between mean-field binodals φ0 = φ2−φ1

2 . In particular:
(a,b) φ = 0 and (c) φ0 = 0, 0.06, 0.12 for λ = 0, 0.5, 1, respectively.

We would like now to present our attempt to understand their results in the
more general setting of AMB+. Simulations were done on square systems of size
Lx × Lx, starting from a random initial condition for a global density equal to the
mid-point of the mean-field binodals φ0 = φ1+φ2

2 . We simulated system on our usual
ζ = 2λ line, as well of the line corresponding to AMB (ζ = 0), to compare with [69].
As we can observe in Fig. 2.21, it seems from our results that the stronger is the
activity, the smallest is the speed of domains growth. This results in an apparent
power law growth L(t) ∼ tα with α ≤ 0.33. Moreover, differently from Pattanayak
work [69], we did not observer any ’early time t1/3’ growth. These results are rather
surprising, and we cannot exclude that are merely due to finite-size or finite-time
effects. Indeed, we actually know that the scaling problem can be delicate, and
therefore requires to be extra careful. This was for example shown in [73] for Model
H, which takes hydrodynamics into account. There, it emerges clearly that one
should be very careful in order to obtain the right exponents as the scaling regime
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for long times may need very long simulations and large systems.
Further investigation of these surprising results is an interesting future direction.

2.6 Conclusions

In this chapter, we performed an in-depth analysis of the statistical properties of
the bubbly liquid and of the bubbly phase separation in AMB+. These results were
achieved by means of our efficient parallel pseudo-spectral code, that allowed us to
simulate larger systems for longer times with respect to previous studies [60]. One
of the major results was to prove that the bubbly phase separation is, at least for the
parameters chosen and as was conjectured in [60], a bulk phase separation between
the bubbly liquid at global density φBL and the uniform vapor phase at density φV .

Remarkably, and thanks to a significant computational effort, we were able to
obtain results that are converged both in time and system-size, and in both the
microphase separated regime and the bubbly phase separation one. It was rather
surprising to discover that the convergence, both in time and system size, is signi-
ficantly longer when the system is heading towards bubbly phase separation than
when it is heading towards a microphase separated state. In particular, it was un-
expected that the typical time for convergence increases with system-size when
converging towards a bubbly phase-separated state even once that system-size con-
vergence is achieved. At this stage we have no analytical understanding of this
fact.

Some points remain unsolved and probably calls for analytical understanding.
In particular, our limited knowledge of nucleation processes in AMB+, did not allow
us to fully understand the infinite time and space limit of the transition between the
microphase separated state and the homogeneous liquid. This is so because we do
not have any estimation of the minimal vapor bubble that the system can support
(the analogous of the nucleation radius in equilibrium fluids).

Another open point that we could not fully resolve is whether activity changes
the standard t1/3 coarsening law that is well known for Model B [6]. Indeed, meas-
uring the scaling of the typical length scale when heading towards phase separation,
we did not find t1/3 except for Model B parameters, see Sec. 2.5. This is surprising,
it is currently unclear whether is just an artifact of the finite time and size of our
simulations.



Chapter 3

Capillary interfacial tension in
active phase separation:
Fluctuations of the liquid-vapor
interface and active foam state

As we saw in Sec. 1.4.1, in passive systems the interfacial tension is a well-defined
quantity and is responsible for the Ostwald ripening process and the Laplace pres-
sure jump. Moreover, it also determines the elastic properties of the interface by
setting the spectrum of capillary waves (that by definition are waves traveling along
the phase boundary of a fluid) [74].

In active systems a proper definition of the interfacial liquid-vapor interfacial
tension has been debated on the basis of numerical and analytical studies [75, 68,
76, 77, 78, 79, 80]. In this chapter, we will show that a unique definition of interfacial
tension does not exist. Indeed, we are able for the first time to determine analytically
σcw, the capillary wave interfacial tension that sets the fluctuation properties of the
interface and the spectrum of the capillary waves. We will also show that σcw differs
from σ, the tension introduced in Sec. 1.6 determining the Laplace pressure, and the
Ostwald ripening rate. Our results are based on the study of AMB+, which allowed
for significant analytical progress. Extending them to other active systems, such as
particle models is a very interesting future direction.

In passive systems undergoing phase-separation, the definition of the capillary
tension σcw emerges naturally by deriving an effective equation that describes the
evolution to a height perturbation to the interface. This was for example shown in
the framework of Model B in [81]. We generalise this work to AMB+, obtaining the
effective evolution of the interfacial height of the liquid-vapor interface explicitly,
and compare theoretical predictions with direct numerical simulations of AMB+.
This shows that we are able to capture perfectly both the decay rate of interfacial
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fluctuations and the spectrum of capillary waves.
Surprisingly, we further discover that σcw can get negative in a region of the

AMB+ phase diagram. In this case, the liquid-vapor interface is unstable against
height fluctuations with a mechanism similar to the one described by Mullins and
Sekerka in solidification [82]. In this regime, depending on the global composi-
tion, the system self-organizes, either into a microphase-separated state in which
coalescence is highly inhibited, or into an ‘active foam’ state. These represent new
types of active phase separation that were previously unknown; we characterize
numerically their statistical properties.

The results contained in this Chapter were published in Physical Review Letters
[3].

The Chapter is organized as follows. In Sec. 3.1, we derive the effective equation
for the interface. Our main result is (3.2); a reader not interested in the technical
details can skip the rest of this section. In Sec. 3.2 we derive the phase diagram at
mean-field level in terms of AMB+ in terms of σ and σcw. In Sec. 3.1 we derive and
verify by direct numerical simulations capillary wave theory. Finally, in Sec. 3.4,
we describe the instability of the interface when σcw < 0, explain why the system
remains phase separated, and the novel active phases we obtain in this regime: a
new micro-phase separated state and active foams.
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3.1 Effective equation for the interface

Let us assume the system is in phase separated with an interface that, on average,
is flat. Due to noise, though, this interface fluctuates in time. To describe these
fluctuations, we look for an effective equation describing the vertical displacement
from the rest position of the interface. Our analysis closely follow a technique
introduced in [6] for passive systems undergoing phase separation, and is valid for
small amplitude, long-wavelength perturbations of the interfacial height.

We first assume the absence of overhangs in the interface, so that is possible
to define a proper function ĥ(x, t), describing the interfacial height. The latter is
defined on a (d− 1) plane, and has in-plane and vertical coordinates (x, y) = r. On
a rapid time-scale, we expect diffusion to quasi-statically relax the value of φ(r, t)
to a value that depends only on the distance from the interface. Since the latter
is equivalent to the vertical distance from the interface (for small amplitude and
long-wavelength perturbations), we can make the following assumption (see also
Fig. 3.1):

φ(r, t) = ϕ(y − ĥ(x, t)), (3.1)

where ϕ is the interfacial profile. Notice that, since the mass is conserved, the spatial
average of ĥ is constant. We choose the reference frame for which this average is
zero.

Liquid

Gas

Figure 3.1: Graphical representation of the interface h(x, y). Following the
assumption made in the main text, we can write the field φ(x, y) in a point
(x, y) as a function ϕ(u) of the distance from the interface u. We represent the
interface in 2D for simplicity.

For convenience we report here the result of our analysis, along with the defin-
itions of the terms we will be using in the following. It turns out that ĥ solves a
non-local equation in space, so we work in terms of its Fourier transform h(qx, t).
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The effective equation for the interfacial height that we obtain is given by

∂th=−2σcw(q)q3

A(q)
h+χ+O(h2) (3.2)

where q = |q|,∇x is the gradient with respect to x, F [·] =
∫
dx e−iq·x · is the Fourier

transform operator along the x direction, and

A(q) =

∫
dy1dy2 ψ

′(y1)ϕ′(y2) exp (−q|y1 − y2|) . (3.3)

The capillary wave surface tension is given by

σcw(q) = σλ +
3ζ

2

∫
dy1dy2

(y1 − y2)

|y1 − y2|
ψ′(y1)ϕ′2(y2)

eq|y1−y2|

σλ = K

∫
dy ϕ′(y)ψ′(y) . (3.4)

Finally, the noise χ is Gaussian and has correlations:

〈χ(q1, t1)χ(q2, t2)〉 = Cχ(q1)δ(q1 + q2)δ(t1 − t2) (3.5)

where

Cχ(q) = 4(2π)d−1DB(q)

A2(q)
q +O(h2) (3.6)

B(q) =

∫
dy1dy2 ψ

′(y1)ψ′(y2) exp(−q|y1 − y2|) . (3.7)

In the next section, we show how such results are obtained. We will start from the
mean-field case D = 0, adding the noise in a second step.

3.1.1 Mean-field approximation

Before proceeding, we introduce a useful operator, the inverse of the Laplacian∇−2.
By definition, if we apply such operator on a function ŝ, the resulting∇−2ŝ(x, y) = ĝ
is such that ∇2ĝ = ŝ. It is easy to show that the Fourier transform of ĝ along x is
given by

g(q, y) = − 1

2q

∫
dy1e

−q|y−y1|s(q, y1) . (3.8)

this result will prove useful later on.
Setting D = 0 and applying∇−2 to Eq. (3.1) into Eq. (1.30) we obtain:

∇−2∂tϕ = f ′(ϕ)−K∇2ϕ+ λ|∇ϕ|2 − ζ∇−2∇ ·
[
(∇2ϕ)∇ϕ

]
(3.9)
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1. Model B

Let us first consider the equilibrium case λ = ζ = 0, hence generalizing the
approach of [81] to arbitrary q-values. Applying the chain rule to (3.9) gives

−∇−2
[
ϕ′∂tĥ

]
= f ′(ϕ)−Kϕ′′(1 + |∇xĥ|2) +Kϕ′∇2

xĥ

To localize the equation around the interface, we multiply by ϕ′ and integrate over
u = y − ĥ(x, t) across the interface:

−
∫
dy ϕ′(y − ĥ(x))∇−2

[
ϕ′∂tĥ

]
(x, y) = ∆f + σeq∇2

xĥ (3.10)

where ∆f = f(φ2)− f(φ1) and σeq was defined in Eq. (1.24). The last equality was
obtained by assuming that φ(y → ∞) = φ2 and φ(y → −∞) = φ1, and that ϕ′

vanishes in the bulk. Fourier transforming along the x direction and using (3.8)
gives the deterministic part of the effective interface equation for Model B

∂th = −2σeqq
3

Aeq(q)
h+O(h2) (3.11)

where

Aeq(q) =

∫
dy1dy2 ϕ

′(y1)ϕ′(y2) exp (−q|y1 − y2|) (3.12)

Observe that the term coming from ∆f in (3.10) is proportional to q multiplied by
the Dirac delta qδ(q), and thus vanishes.

2. AMB+

We now consider λ, ζ 6= 0. From (3.9), the analog of (3.10) now reads

−∇−2
[
ϕ′∂tĥ

]
= µλ + µζ (3.13)

where

µλ = f ′(ϕ) + (1 + |∇xĥ|2)(λϕ′2 −Kϕ′′) +Kϕ′∇2
xĥ

µζ = −ζ∇−2
{
∇x ·

[ (
ϕ′′|∇xĥ|2 − ϕ′∇2

xĥ+ ϕ′′
)

(3.14)(
−ϕ′∇xĥ

) ]
+∂y

[(
ϕ′′|∇xĥ|2 − ϕ′∇2

xĥ+ ϕ′′
)
ϕ′
]}

.

In order to progress we need to express AMB+ in term of the pseudo-variables
ψ, g (solutions of Eq. (1.36), cfr. Sec. 1.6). We then multiply (3.13) by ψ′, integrate
across the interface and apply the Fourier transform along x.



3.1. EFFECTIVE EQUATION FOR THE INTERFACE 72

Left-hand side For the left-hand side of (3.13) we obtain:

A(q)

2q
∂th(q, t) +O(h2) (3.15)

where A(q) is defined in equation (3.3).

Right-hand side, µλ On the right-hand side of (3.13), the first term in µλ vanishes
by straightforwardly applying the definition of g (Eq. (1.36)):

δ(q)

∫ ∞
−∞

duψ′(u)f ′(ϕ(u)) = g(ψ2)− g(ψ1) = 0

To evaluate the second term in µλ we exploit the definition of ψ in Eq. (1.36):∫ ∞
−∞

du (λϕ′2(u)−Kϕ′′(u))ψ′(u) =
ζ

2

∫ ∞
−∞

duϕ′2(u)ψ′(u) (3.16)

The contribution in (3.16) will be canceled by an opposite one coming from µζ . The
third term in µλ gives:

−q2σλh(q, t) (3.17)

where σλ was defined in equation (3.4).

Right-hand side, µζ We now consider µζ in (3.14). Expanding in powers of ĥ, we
have

∇2
x

(
1
ζµζ

)
= −1

2∂
2
y(ϕ′2) + 3

2∂y(ϕ
′2)∇2

xĥ (3.18)

−ϕ′2∇x · [∇2
xh∇xĥ]− ∂2

y(ϕ′2)|∇xĥ|2 +O(ζq3h3) .

Then, we Fourier transform, invert the Laplacian using (3.8) and exploit

∂ue
−q|y−u| = q sgn(y − u)e−q|y−u| (3.19)

where sgn is the sign function. Applying the same procedure as before and adding
up the result with (3.15), (3.16), (3.17) we obtain the deterministic part of (3.2).

3.1.2 Finite noise effect

We now consider the noise effect. First of all, we choose to work in the Stratonovich
convention. This is a natural choice, given that our Ansatz assumes that the density
field relaxes very rapidly to fluctuations of h. Within Stratonovich convention the
equality (we have used before)

∂tφ = −ϕ′(y − ĥ(x))∂tĥ(x) (3.20)
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is exact even when D 6= 0.
We are left with deriving the noise χ and show that its correlation is given by

(3.6). We first consider

ξ(x, y, t) = (∇−2η)(x, y, t) (3.21)

where η = −∇ ·
√

2DΛ. The noise term ξ, being a linear transformation of η, is also
a Gaussian noise. Its correlation reads

Cξ(x, y, t) = −2D∇−2δ(x)δ(y)δ(t) (3.22)

and its Fourier transform along x, using the inverse Laplacian expression in (3.8), is

Cξ(q, y, t) =
D

q
e−q|y|δ(t) (3.23)

The noise χ is given by

χ(q, t) =
2q

A(q)
F
[∫

dy ψ′(y − ĥ(x))ξ(x, y, t)

]
(q, t)

which is also Gaussian. It is now a lengthly but straightforward calculation to show
that the correlation of χ is given by (3.6). This concludes the derivation of the
effective interface equation (3.2).

3.1.3 Capillary wave tension

For wavelengths much larger than the interfacial width ξ ∼ ξeq = (K/2a)1/2, we can
replace σcw(q), A(q) and B(q) entering in the effective interface equation (3.2) with
their limiting values as q → 0. These, with a slight abuse of notation, are denoted
as σcw, A and B. Explicitly, the resulting capillary-wave tension σcw obeys

σcw = σλ − ζ
∫
dy

[
ψ(y)− ψ1 + ψ2

2

]
ϕ′2(y) (3.24)

where ψ1,2 = ψ(φ1,2) are the pseudo-densities at the binodals. As expected σcw

reduces, in the equilibrium limit (λ, ζ → 0), to the standard interfacial tension
σeq = K

∫
dy ϕ′2(y) [83] which governs not only the capillary fluctuation spectrum,

but also the Laplace pressure and the rate of Ostwald ripening [81, 6]. Switching on
activity breaks this degeneracy. Indeed, the tension determining the rate of Ostwald
ripening of a bubble was given in [60] as

σ = σλ − ζ
∫
dy [ψ − ψ(0)]ϕ′2(y) (3.25)

where ψ(0) is the value of the pseudo-density at the droplet center. Therefore σ is in
general not equal to σcw. However, σcw has a rather natural interpretation in terms
of σ: it is the average tension between the one experienced by vapor bubbles and
the one experienced by liquid droplets.
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3.2 AMB+ phase diagram in terms of surface tensions

In order to obtain explicit predictions from (3.2), we need to evaluate σcw, A and
B. We now describe how to obtain them with a simple numerical procedure we
implemented. This will allow us to draw the phase diagram of AMB+ in terms of
σcw.

The crucial ingredient to compute σcw, A and B is the interfacial shape ϕ(y). At
equilibrium, this is well-known [83]:

ϕeq(y) = ± tanh(y/ξeq) (3.26)

with ξeq =
√

2K/A and σeq =
√

8KA/9. We obtain, in this case, A = B = 4.
Another interesting limiting case, for which computations are easier, is 2λ = ζ.

It is readily shown that, in this case, ϕ = ϕeq so that σcw = σeq, that are still different
from the Ostwald tensions σ = σeq(1 ∓ ζ/K) for bubble growth (−), and liquid
droplet growth (+), respectively [60].

For general values of λ, ζ we do not have closed-form results for σcw; however,
a change of variable to w(ϕ) = ϕ′2 in the integrals defining σcw, A,B allows use of
a simple numerical procedure, as first used in [51], to find the low q behavior. First,
as shown in [60], the binodals are easily obtained numerically solving the coupled
equations

µ = f ′(φ1) = f ′(φ2) (3.27)
µψ1 − g(φ1) = µψ2 − g(φ2). (3.28)

It is then easy to show that w solves

Kw′ = (2λ− ζ)w = 2(f ′ − µ) (3.29)

which is solved by

w(x) = e−
ζ−2λ
K

x

[
c+

2

K

∫ x

1
e
ζ−2λ
K

y(f ′(x)− µ)dy

]
. (3.30)

The knowledge of φ1,2 allows to fix the integration constant c and the numerical
evaluation of w via (3.30) is straightforward.

By studying the sign of the interfacial tensions σcw and σ, we can build the full
phase diagram of AMB+ at a mean-field level (see Fig. 3.2). For small activity, or
for λζ < 0 both interfacial tension are positive. The system undergoes bulk phase
separation, exactly like in equilibrium. For higher activity levels and λζ > 0, we
find an area of the phase diagram for which σcw > 0 and σ < 0; here vapor bubbles
undergoing reversed Ostwald ripening have stable interfaces and, depending on
the global density, the system is either micro-phase separated or in bubbly phase
separation [60]. In Chapter 2 we studied the statistical properties of these two
phases in this area. At high activity, when λζ > 0, a new regime emerges where
σcw < 0 and liquid-vapor interfaces (also the flat ones) become locally unstable.
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Figure 3.2: Mean-field phase diagram of AMB+ for ζ > 0, showing sign
regimes of interfacial tensions σ and σcw. When σcw > 0, the interface is stable,
and unstable otherwise. Orange circles and blue squares respectively denote
the results of direct simulations of AMB+ where the interface instability is or
is not observed starting from a phase separated state with superposition of
noise (see snapshots on the right). This shows the accuracy of our analytical
prediction of the critical line σcw = 0. Right: interfacial instability (ζ = 1.5, λ =
2). To get the full phase diagram, we can exploit the symmetry (λ, ζ, φ) →
−(λ, ζ, φ) and obtain the other two transition lines for λ, ζ < 0. Notice that no
transition line is present when λζ < 0.

3.3 Capillary wave theory and decay rate of interfacial fluctu-
ations in active phase separation

We first consider the regime where σcw > 0. In the absence of noise, our theory
predicts that capillary tension governs the relaxation of the interface, through

h(q, t) = h(q, 0) exp(−t/τ(q)) (3.31)

where the typical time-scale τ(q) is defined by

1

τ(q)
=

2σcw(q)q3

A(q)
(3.32)

In order to compute τ(q) at q 6= 0, we extracted the interface profile from simulations
of AMB+ at D = 0. It is important to notice that such prediction holds for either
sign of the Ostwald tension σ.
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Figure 3.3: (a) Relaxation of S(q, t) in the regime σcw > 0 for a single mode
q = 2πn/Lx withLx = Ly = 256 and noiseD = 0. The initial condition, shown
in the snapshot on the right, corresponds to a flat liquid-vapor interface excited
by a sinusoidal perturbation corresponding to mode q. The dotted lines corres-
pond to the theoretical predictions obtained using τ(q) (3.32). Simulations are
done along the line ζ = 2λ, therefore all the theoretical prediction converge to
the same prediction for q → 0 (continuous gray line).
(b) Relaxation of S(q, t) for various ζ 6= λ and low wave-length (q =
2π4/Lx, Lx = Ly = 512). Dotted lines represent the theoretical prediction
for q → 0.
(c) Scaled structure factor q2S(q)/D vs q compared to the q → 0 analytical
prediction; results are averaged over 30 realizations of duration 106 after equi-
libration. A typical snapshot in steady state is shown on its right. Noise level
is equal to D = 5× 10−3.

To check this prediction, we performed simulations of AMB+ for D = 0 starting
from a phase separated state with the interface perturbed via a single mode q, and
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checked the relaxation of S(q, t) = 〈|h(q, t)|2〉 for such particular mode. Fig. 3.3
confirms Equation (3.31) perfectly for either sign of the Ostwald tension σ.

Our theory also predicts the stationary structure factor of the interface S(q) =
limt→∞〈|h(q, t)|2〉:

S(q) =
(2π)d−1D

σcw(q)q2

B(q)

A(q)
−−−−−→
qξ−1�1

(2π)d−1Deff

σcwq2
(3.33)

where Deff = D(ψ2−ψ1)/(φ2−φ1) is an effective capillary temperature. This result
generalizes the capillary wave theory. Its equilibrium analog, S(q) ∝ D/σeqq

2 [74],
is often justified using equipartition arguments but, even in equilibrium, higher
order gradient terms give sub-leading corrections at finite q [84, 85]. Hence the
hallmark of activity is not the similar corrections entering in (3.33); instead activity
impacts the interfacial fluctuations by renormalizing the temperatureD → Deff and,
separately, replacing σeq with σcw. Even though (3.33) also neglects the additional
nonlinearities omitted from (3.2), it is quite accurate at small D (Fig. 3.3). The use of
capillary wave theory in phase-separated active systems was previously advocated
heuristically [78, 68, 77] but until now, only qualitative estimates were provided for
the coefficient Deff/σcw in (3.33).

3.4 Unstable interfaces

We now turn to study the region where σcw < 0. Here, a drastically new non-
equilibrium phenomenology arises. Although the vapor-liquid interface is unstable
to height fluctuations, we will see that the system remains phase separated. Un-
like in equilibrium, where de-mixing itself cannot be sustained at negative tension,
the active interface does not undergo diffusive collapse but remains stable against
normal perturbations. After describing the stability to normal perturbations, we
describe the physical mechanism that drives the instability of the interface against
height perturbations. Finally, we perform numerical simulations of AMB+ at D 6= 0,
discuss the new phase separated steady states reached by the system when σcw < 0,
and study their statistical properties numerically.

3.4.1 Stability against normal perturbations

We start from showing that, whatever the sign of σ and σcw, the liquid vapor inter-
face is stable against normal perturbations of the flat interface ϕ at mean-field level
(D = 0). For simplicity, we restrict to the case of one-dimensional interfaces which,
due to mass conservation, take the form

φ(x, y, t) = ϕ(y) + ∂yε(y, t) (3.34)
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where ϕ is the profile of the interface perpendicular to it and, hence, it solves

∂2
y

[
f ′′(ϕ)−K∂2

yϕ+ (λ− ζ/2)ϕ′2
]

= 0 . (3.35)

Therefore, we have for ε

∂tε = Lε+O(ε2) (3.36)

where the linear operator L is

L = ∂y
[
f ′′(ϕ)−K∂2

y + (2λ− ζ)ϕ′∂y
]
∂y . (3.37)

We are thus led to study the spectrum of L. In equilibrium, this problem is tract-
able analytically because L is self-adjoint. It was found [86, 87] that the spectrum of
L is continuous and touches 0 in an infinite system (it is in fact (−∞, 0)), implying
that the decay of ε in time is algebraic in an infinite system. From (3.37) we see that
the same result applies for 2λ = ζ.

For generic λ and ζ, we studied numerically the spectrum of L for finite systems.
By Fourier transforming along y, and for the choice of a double well local free
energy f , we consider the kernel L(q1, q2) of L defined from the relation (Lε)(q1) =∫
dq2L(q1, q2)ε(q2) for any test function ε. Explicitly:

L(q1, q2) = (−Kq4
1 +Aq2)δ(q1 − q2) (3.38)

− 3Aq1q2Fy[ϕ2](q1 − q2)

+ (2λ− ζ)q1q
2
2(q1 − q2)Fy[ϕ](q1 − q2)

where Fy[·] denotes the Fourier transform operator along y. We discretised L(q1, q2)
on a grid with discretization step ∆x = 1 and total length Ly, so that qi = 2πni/Ly,
ni = 1, ..., N , N∆x = Ly. We then computed numerically the eigenvalues αi of L
for several values of λ, ζ. Some of our results are reported in Fig. 3.4, showing that
the qualitative picture is the same as at equilibrium: the spectrum of L is expected
to be continuous and to touch 0 for an infinite system.

It should be observed that these conclusions apply irrespectively of the sign of
both σ and σcw: in both cases, ϕ is stable against normal perturbations. This is
crucial in order to sustain phase separation even when σcw < 0, as we shall see
below it happens.

3.4.2 Instability against height perturbations

Next, we numerically simulated AMB+ at D = 0, with a noisy initial condition.
Orange and blue dots in Fig. 3.2 respectively represent cases where the interfacial
fluctuation is damped or amplified (Movie 1 of [3]), showing the accuracy of our
analytical predictions.
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Figure 3.4: Eigenvalues αi of L(q1, q2) for a system of linear size Ly = 128
in the vicinity of Re(αi) = 0 (the minimal eigenvalues for this system size
have real part of order −103), spatial discretization ∆x = 1 and values of the
parameters as in the legend. The solid lines are our estimate of the continuous
spectrum of L(q1, q2) in the infinite system-size limit, obtained from a fit of
the discrete spectrum. Although the spectrum is modified with respect to the
equilibrium case, its crucial properties are not: all eigenvalues are negative and
touch 0 in the infinite system-size limit implying that the vapor-liquid interface
is stable to normal perturbations but disturbances will only decay algebraically
in time. Inset: −Re(αi) for ζ = 2, λ = 0.5 as a function of i for three system
sizes, showing that the eigenvalue with the largest real part approaches zero.

The mechanism for the interfacial instability (Fig. 3.5) is reminiscent of the
Mullins-Sekerka instability driving pattern formation in solidification [82]. In both
cases the instability is driven by a single diffusing field: latent heat in crystal growth,
and density in the present situation. Such a diffusing field settles to quasi-stationary
values on the two sides of the interface which depend on the local curvature, with
extrema denoted by φB,D± in Fig. 3.5.

By approximating φB,D± as the densities near the interface of a vapor bubble (B)
or liquid droplet (D), we find that the diffusive current on the vapor side is always
stabilizing. In contrast, depending on whether Ostwald ripening is normal or re-
versed, the current on the liquid side is stabilizing or destabilizing. If both currents
are stabilizing, of course, the interface is stable. If not, the strongest current will
determine the interfacial behavior. When the current on the liquid side is destabil-
ising and stronger than the current on the vapor side, the interface is unstable. This
condition is met when σcw < 0 and fluctuations grow.
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Figure 3.5: Mechanism of the interfacial instability when σcw < 0. The densit-
ies on the two sides of the interface adjust quasi-statically at values that depend
on its local curvature, leading to diffusive density fluxes. That on the vapor
side is always stabilising (white arrow); that in the liquid is stabilising when
σ > 0 (arrow 1) and becomes destabilising when σ < 0 (arrow 2). This (one-
sided) reverse-Ostwald current does not trigger an instablity unless the current
in the liquid outweighs that in the vapor, which requires σcw < 0.

In Fig. 3.6 we support this mechanistic picture, plotting the quasi-static current
close to the perturbed interface. We consider three sets of parameter values corres-
ponding to normal Ostwald ripening (σ > 0), reversed Ostwald ripening but stable
interface (σ < 0, σcw > 0), and unstable interface (σ < 0, σcw < 0). The current
on the vapor side is always stabilizing while it is stabilizing in the liquid side only
if σ > 0. However, σ < 0 is not sufficient to drive the instability. For this, the
destabilizing current on the liquid side needs to be stronger than the one on the
vapor side. This happens only in the rightmost case of Fig. 3.6, which corresponds
to σcw < 0. To show this, we have measured the average current J̄L in the liquid
projected along ex = x/|x| defined as

J̄2
L =

∫
dx

∫
{y|φ(x,y,t)>φth}

dy(J · ex)2 (3.39)

and the analogous quantity in the vapor J̄V .
The instability of the flat interface is critical at the onset of the instability: when

crossing the critical λ value, the most unstable mode is the smallest available one
(q = 0 in an infinite system). To show this we exploited the analytical expression of
the damping rate of equation (3.32). In particular, we extracted from simulations at
D = 0 and system-size Lx = Ly = 256 the interfacial profile ϕ(y) and then used it to
evaluate τ(q) at arbitrarily low q. The results for ζ = 1 and varying λ are reported
in Fig. 3.7.
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Figure 3.6: Current J close to (left) the stable interface and normal Ostwald
ripening (ζ = 2λ = 0.5), (middle) stable interface and reversed Ostwald ripen-
ing for bubbles (ζ = 2λ = 2.2) and (right) unstable interface (ζ = λ = 2).
Simulations are at mean-field (D = 0). The liquid is shown in dark gray and
the magnitude of the current in colors. Only a small part of the system is
shown. We measured J̄V − J̄L = 0.04 for 2λ = ζ = 0.5, J̄V − J̄L = 0.08 for
2λ = ζ = 2.2 and J̄V − J̄L = −0.02 for 2λ = ζ = 2. This confirms that the
instability arises only when the current on the liquid side overwhelms the one
on the vapor side.

3.4.3 New active phases

To study the effects of the interface stability on the phenomenology of AMB+, we
performed simulations with a small but finite noise level (to ensure reproducible
steady states). Starting from a near-uniform initial state, we find that the final phase
separation is strongly affected by the interfacial instability. The stable case, σcw > 0,
was explored in [60]. For the unstable case, σcw < 0, the stationary states seen by
varying the global density φ0 =

∫
φdr/V are reported in Fig. 3.8 and Movie 2 of [3].

When φ0 lies outside the mean-field binodals φ1,2, the system remains homo-
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Figure 3.7: (Left) Damping rate 1/τ(q) vs q at ζ = 1.5 crossing the stability
line, located at λ ' 1.6. The most unstable mode (the minimum of 1/τ(q)) goes
to q = 0 as one approaches the critical λ. (Right) Plot of τ(q)/q3, showing that
the change of sign of the damping rate happens at the estimated critical value
of λ.

geneous. Within them, at large φ0 such that the liquid is the majority phase, we
find a microphase-separated state where coalescence of crowded bubbles is highly
inhibited. The bubble size distribution P (A) is strongly peaked, the more peaked
the lower the noise, suggesting that the average bubble size 〈A〉 is finite when
D → 0. Our results are converged in time for D > 0.1; at lower noise the system
gets trapped into metastable states, evolving only due to rare fluctuations of the
bubbles interface.

In Fig. 3.10 we plot the evolution, starting from an homogeneous state or a
fully phase separated state, of the average size of bubbles and their number while
converging to the microphase separated state. As shown, the convergence slows
down when decreasing the noise value. This is because the initially formed bubbles
are stable to small perturbations of their interface and evolution to the steady state
is possible only by rare events at low noise.

Understanding analytically the stability of circular bubbles would be key to
compute 〈A〉 and P (A). Clearly, though, the average size is not set by the most
unstable mode of the flat interface, as the steady state is attained by a series of
secondary instabilities (Movie 1 and 3 of [3]). This phenomenology is at odds with
the bubble phase at σcw > 0 [60], where a balance between nucleation, coalescence
and reversed Ostwald causes 〈A〉 → ∞ when D → 0. The difference between
these two microphase separated states is also apparent in the dynamical evolution
starting from bulk phase separation (Movie 3 of [3]). When σcw < 0 bubbles enters
the liquid by buckling of the interface, rather than by nucleation, as in the σcw > 0
case.
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Figure 3.8: (Top) phase diagram when σcw < 0 as a function of the global dens-
ity φ0 = −1,−0.4, 0.4, 1.2 at D = 0.05, Lx = 256, Ly = 512 and λ = 1.75, ζ = 2,
for which φ1 = −0.9, φ2 = 1.08. At high and low φ0, the system is homo-
geneous (liquid or vapor states). Within the binodals, when the liquid is the
majority phase, the system shows microphase-separated vapor bubbles whose
coalescence is highly inhibited. At lower φ0, the system forms a continuously
evolving active foam state. (Bottom): area distribution of vapor regions for the
active foam state (φ0 = −0.4) and in the microphase-separated state for the
noise values in the legend (φ0 = 0.2).
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Figure 3.9: PDF of the density for ζ = 2, λ = 1.75, D = 0.05 in a system
128× 256 and several global densities φ0 reported in the legend.
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Figure 3.10: Evolution in time of the average bubble size 〈A〉 and of their
number N(t) for ζ = 2, λ = 1.75 and various noise values starting either from
an uniform or from a band (a fully phase separated state with a flat interface).

When the liquid is the minority phase, bubbles cannot avoid touching and co-
alescing. One might expect that the system attains a micro-phase separated state of
liquid droplets (for ζ > 0); this is not the case because, as is clear from our mechan-
istic argument above, the interfaces bends toward the vapor side. Instead, we find
a previously unknown form of phase separation, which we call the ‘active foam’
state. Thin filaments of liquid are dispersed in the vapor phase, and continuously
break and reconnect. These filaments are bent on the most unstable length-scale
of the flat interface, as if there were an underlying ‘virtual packing’ of polyhedral
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bubbles separated by thin films – but with many of these films absent. The area dis-
tribution of the vapor regions (Fig. 3.8b) is now peaked at at size that corresponds
to the merging of two bubbles, but a power-law tail A−2 emerges, only cut off by
the system-size. Note that the boundaries in φ0 between the different phases of Fig.
3.8 are qualitative: while the vapor density is almost independent of φ0 the liquid
density varies markedly. In Fig. 3.9, we report the PDF of the density as a function of
the global density φ0. The vapor density is found, to a good accuracy, independent
of φ0. Instead, the liquid density varies rather significantly with φ0. This is expected
because of two reasons: the liquid density with which a finite size vapor bubble is
in equilibrium differs from the binodal [60] and the presence of multiple droplets
further change such value. Obtaining the dependence of the liquid density on φ0 is
an open problem.

3.5 Conclusions

A proper definition of the interfacial liquid-vapor interfacial tension in active
systems has been debated for long time [75, 68, 76, 77, 78, 79, 80]. We have shown
that a unique definition does not exist and, for the first time, we determined analyt-
ically σcw, the capillary wave interfacial tension that set the fluctuation properties of
the interface (capillary waves). Our results show that σcw differ from the tension de-
termining the Laplace pressure or the Ostwald ripening rate. Our analytical results
agree perfectly with simulations on AMB+.

The techniques introduced here could be used to elucidate the capillary tension
in particle-based active models, by applying them to various field-theoretical de-
scriptions obtained by explicit coarse-graining [60, 52, 88], or to describe confluent
biological tissues, where the measured interfacial tension was recently shown to be
dependent on the measuring protocol [89].

Finally, although the reversal of the “Ostwald tension” σ was previously un-
derstood [60], it is remarkable that (a) the capillary tension can likewise become
negative, and that (b) this leads to new types of phase separation including act-
ive foam states. Our approach is based on AMB+, whose generic, leading-order
form is agnostic as to the microscopic mechanisms underlying activity (and even
phase separation). This means that the microscopic ingredients needed for our new
phases remain to be identified. For the exact same reason, we expect them to be
widely present, not only in motility-induced phase separation [48], but in other
phase-separating systems with locally broken detailed balance, such as in biological
tissues [89].





Chapter 4

Minimal model for micro and
bubbly phase separation

In passive fluids Ostwald ripening is the main dynamical mechanism leading to
full phase separation. In active systems detailed balance is broken, and Ostwald
ripening can go into reverse (Sec. 1.6). This leads to a rich phenomenology: micro-
phase separation at low densities and bubbly phase separation at higher ones. In
Chapter 2, we studied the statistics of both these phases when system convergence
is attained within AMB+.

In models of self-propelled particles, bubbly phase separation was observed
already a decade ago in simulations of active brownian particles interacting by
pairwise repulsion [59], and more recent works confirmed it [2, 78]. Instead, the
micro-phase separated state formed of vapor bubbles was never observed in particle
models until very recently [1, 2] where they were found at densities below, but close,
to the liquid binodal.

Studying the statistical properties of bubbly phase separation and micro-phase
separation in particle models, however, has proven rather difficult. In [1], we have
shown computationally in two particle models that bubbles have a very strong vari-
ability in size, and asymptotic results both in time and system size can be practically
obtained only very close to the liquid binodal. Indeed, the PDF of bubble sizes was
found to be power-law for intermediate sizes of the bubbles, complicating the stat-
istical analysis. Attaining convergence within the bubbly phase-separated regime
has proven practically impossible so far.

Within bubbly phase separation, the macroscopic bubble shrinks by reversed
Ostwald ripening but grows by coalescence with smaller bubbles. While it is easy
to tune the rate of Ostwald ripening in AMB+ (because this is directly given the
surface tensions σ, that we related explicitly to AMB+ parameters), it is less clear
how to tune the diffusivity of bubbles in terms of AMB+ parameters, and hence
their coalescence rate.
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In order to study the relative effect of reversed Ostwald ripening and coalescence,
we introduce and study in this Chapter a minimal model where the degrees of
freedom are the vapor bubbles themselves (effective bubbles model). These diffuse
in space with diffusivity D, coalesce upon touching, and undergo reversed Ostwald
process with rate β. Differently from a similar model that we introduced in [1], the
present one takes care of the Ostwald process and of coalescence realistically. The
advantage of the effective bubbles model studied in this Chapter over AMB+ and
particle models is that we can independently tune the rate β of the Ostwald process
versus the diffusivity D of bubbles which, in turns, determines the coalescence rate.

Importantly, we show that the non-dimensional ratio D/β sets the strength of
finite-size effects and can change the density of the bubbly liquid when the system
is globally is bubbly phase-separated.

When D/β is small or large (with respect to unity), we obtain results that are
converged in system-size. At D/β � 1 we find micro-phase separation when the
liquid is the majority phase and bubbly phase separation when it is the minority
phase.

Upon increasing D/β, bubbly phase separation is favored: at fixed system size,
it is observed at higher densities. This suggests that this is the regime in which the
particle models as those studied in [59, 1] are. However, the bubble size distribution
broadens and finite-size effects increase so that obtaining convergence in system
size requires larger systems: we could obtain converged results up toD/β = 0.5 and
forD/β > 10. We further show that, at high diffusivity, the density φBL marking the
transition between micro-phase separation and bubbly phase separation increases,
and probably it converges to the liquid binodal in the limit of D/β →∞.

For intermediate values of 0.5 < D/β < 10 finite-size effects are stronger, and
we could not reach system-size convergence so far. It seems unlikely, however, that
different physics is at play. This point will be investigated in details in the near
future by means of a more efficient code.

The chapter is organized as follows: in Sec. 4.1, we present the model and its
parameters. Then, in Sec. 4.2, we study the D/β phase diagram, as well as the
statistical properties of the bubbly phase and bubbly phase separation. Finally, in
Sec. 4.2, we extend these results for D/β and discuss the differences. The technical
details concerning the algorithm we used are in Appendix C.1.
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4.1 Minimal model

As we saw in Chapter 2, the interplay between Ostwald ripening, bubble diffu-
sion and nucleation determines the statistical properties of bubbly phase separation
and bubbly liquid. By tuning the noise and activity parameters λ and ζ of AMB+
equations (1.30), we are, in practice, tuning the competition between reverse Os-
twald ripening and the bubble coalescence. It is essentially this competition that
determines the kind of phase-separation we have for a specific set of parameters.
In the following, we devise a minimal model where we can control independently
Ostwald ripening, nucleation and coalescence rate. We will see that this allows to
show that the crucial ingredient determining the statistical properties of micro- and
bubbly phase separation is the ratio between the rate of the Ostwald process and the
diffusivity of vapor bubbles. This is instead difficult to study within AMB+ because
one has no direct access to changing these rates independently (for example, chan-
ging λ, ζ in AMB+ does change the Ostwald ripening, but the effect on nucleation
or coalescence is not under control).

Our minimal model describes the evolution in time of N(t) bubbles diffus-
ing in a two-dimensional system of size V = L × L with periodic boundary
condition. Bubbles are spherical objects identified by their position and radius
(xi, Ri) ∈ (V,R+) and interact with each other directly, by coalescing upon contact,
and indirectly, though reverse Ostwald ripening. The total number of bubbles de-
crease through coalescence and increases though nucleation of bubbles of radius R0.
Crucially, the total volume of vapor VG =

∑N(t)
i πR2

i (t) is conserved, as we will see
more in details after the model definition.

Given the list of positions and radius of all N(t) bubbles in the system, the time
evolution from time t to t+ ∆t is achieved through the following steps:

1. Diffusion: bubbles diffuse freely in space through the following dynamics:

ẋi =

√
2D

Ri
ηi (4.1)

where ηi are Gaussian noise with zero mean, unitary variance, and correlations
given by 〈ηi(t)ηj(s)〉 = δijδ(t− s). D is a diffusivity constant per unit length
([D] = m3/s). For brevity, we will refer to it as diffusivity constant. It is indeed
very natural that a vapor bubble diffuses accordingly to (4.1), at least when R
is large enough, as this is the case for liquid droplets in a binary liquid ([71]).
It would be however interesting to obtain a first principle derivation of Eq.
(4.1).

2. Reversed Ostwald process: Each bubble i interacts with its first nearest neigh-
bor (that we will indicate with the symbol ∂i). For each bubble i and its nearest
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neighbor ∂i, the radius evolves through the Ostwald ripening dynamics (that
was derived in Eq. (1.56)):

Ṙi =
β

Ri

[
1

Ri
− 1

R∂i

]
(4.2)

Ṙ∂i =
β

R∂i

[
1

R∂i
− 1

Ri

]
(4.3)

where β > 0 is a free parameter of the model determining the Ostwald ripen-
ing rate, and is measured in [D] = m3/s. It is important to notice that Eq.
(4.2)-(4.3) conserve the total vapor volume of each pair of bubbles. Indeed, if
we compute the volume variation in the pair we obtain:

Ȧi + Ȧ∂i = 2π
[
RiṘi +R∂iṘ∂i

]
= 0 (4.4)

where we used 4.2 and 4.3 in the last passage.

3. Coalescence: Bubbles that are in contact with each other coalesce (i.e. merge
into one larger bubble). In particular, let’s consider the graph having bubbles
as nodes, and links (i, j) between them for each pair of bubbles i, j in contact
(i.e. whose distance d(i, j) is smaller than Ri + Rj). Connected components
on this graph are cluster of bubbles in contact, and can be found by running
a deep first search on the whole graph. We merge each cluster by creating a
new bubble positioned in the center of mass of the cluster. The volume of the
resulting bubble is equal to the one of the biggest bubble plus a portion αC of
the volume of the others. In equations:

N∑
j=1

(xj , Rj)→

∑n
j=1R

2
jxj∑n

j=1R
2
j

,

√√√√R2
i + αC

n−1∑
j 6=i

R2
j

 (4.5)

where 0 < αC < 1 is a parameter of the model, n is the total number of
bubbles in the cluster, and i is the largest bubble. Notice that i is singled out in
order for the total volume to be certainly larger than the volume of the largest
bubble.

4. Nucleation In step (c), each coalescence event lowers the amount of gas
volume by:

(1− αC)
∑

j 6=iR
2
j

R2
0

(4.6)

where i is the largest bubble that took part in the nucleation. To compensate
the vapor loss, we nucleate Nloss bubbles of radius R0, in such a way that
NlossπR

2
0 equates to the total vapor lost in the coalescence (up to fluctuations
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of order φR2
0 due to the discretization of Nloss). The positions of nucleated

bubbles are chosen at random, one at a time, until a position in which they do
not overlap with other bubbles is found.

As observed above, Ostwald ripening conserves the volume. At the same time,
the volume lost by coalescence is reintroduced through nucleation. Therefore, in
this model the total vapor volume is conserved (up to the fluctuations caused by
the fact that Nloss is an integer). We have:∑

i

πR2
i = const = VG (4.7)

The same is true for the vapor and liquid fractions in the system, vg = VG/V and
vl = 1−vg, respectively; we will describe the system through these parameters (that
enter the equations through initial conditions). In this sense, vg (or vl) has the same
role that the global density has in AMB+ and particles models. The two choices are
equivalent when considering constant vapor and liquid density φL and φV . Indeed,
there exist a bijective relationship between the volume fraction vg = Vg/V and the
global density φ0:

φ0 = φL + vg(φV − φL) . (4.8)

4.1.1 Discussion on the assumptions of the minimal bubble model

Let us comment on the assumptions made to define the minimal model defined
above. First, both in AMB+ and particle models, bubbles are not necessarily spher-
ical, having possibly more convoluted shapes according to some parameters choice.
Here, we disregard this aspect.

Second, we assumed bubbles to diffuse accordingly to (4.1). As already men-
tioned, this mimics what is known for liquid droplets in a binary liquid ([71]).

Third, we consider vapor and liquid densities that are constant, which is not
exactly true. The main reasons are the corrections of order 1/R to the vapor density
for bubble of radius R; and the fact that, both in continuum and particle models,
these quantity are fluctuating.

Fourth, our assumption that mass is lost during coalescence events it might be
surprising at first sight. In fact, there is a very clear physical reason for this. As
shown in Section 1.6, a vapor bubble of radius R is in equilibrium with a liquid
density that varies with R. Specifically, when Ostwald ripening is reversed for
vapor bubbles, the liquid density φ+(R) decreases with R (and this is the very
reason for which Ostwald ripening is reversed). Consider now two vapor bubbles
of equal radii R that coalesce into one of radius Rf . Once the resulting bubble has
equilibrated with the outer liquid, the density of such liquid is lower than the one
surrounding the original bubbles. This means that some of the vapor composing the
two initial bubbles is ejected in the outside liquid, and thus that Rf <

√
2R: mass
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is lost in a coalescence event. Because the Ostwald process conserves mass exactly,
this also means that nucleation is the only process that can take into account for the
mass lost during coalescence, and we approximate this process as instantaneous.
As such, we obtain a model that exactly conserves the total mass (as it must be).

Finally, the Ostwald ripening interaction between multiple vapor bubbles close
to each other is not known. Indeed, equation (1.56) for Ostwald ripening, considers
a bubble that is very far away from other bubbles and sees them just through a
correction to the density of the liquid. Setting up our model, we assumed that this
can be approximated as a sum of pairwise interactions and, for simplicity, we opted
for an interaction with just the nearest neighbor.

Despite our crude approximations, we show below that much of the phenomen-
ology found both in AMB+ and particle models is reproduced. This serves as a-
posteriori check that all these details are not crucial at phenomenological level, al-
though they could quantitatively change some of the fine properties of micro and
bubbly phase separation.

4.1.2 Parameters

In this section we will review in more details the parameters of the model and how
we choose them.

The free parameters in the model are:

• D > 0: set the diffusion constant for bubbles ([D] = m3/s). This should not be
confounded with the noise intensity D appearing in AMB+ equations (1.30).

• β: sets the speed with which a bubble loses or gains volume through the re-
verse Ostwald ripening process. The dimensions of β are the same as the
diffusivity D ([β] = m3/s). We choose β > 0, corresponding to reverse Os-
twald ripening. The opposite case, corresponds to systems with standard
equilibrium-like phase separation. In that case, the steady state is a single
large bubble (vapor-liquid bulk phase separation). Indeed, if we initialize
the system in a state with a large bubble in a sea a smaller bubbles, the large
bubble can only grow (though both Ostwald Ripening and coalescence). We
checked this fact numerically.

• 0 < αC < 1: 1 − αC sets how much mass is lost in a binary coalescence
([αC ] = 1). The higher αC , the more efficient the coalescence process is.

• R0 > 0: Radius at which bubbles are nucleated. It sets the spatial scale of the
system ([R0] = m).

• 0 < vg < 1: Vapor fraction in the system, computed as the total volume
occupied by vapor VG divided by the system volume V . As VG is conserved by
the dynamics of this model and V is constant, vg is also a conserved quantity.
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As we are free to choose time and a length scales arbitrarily, we fix 2R0 = 1 and
β = 1. Moreover, we focus on the diffusivity and Ostwald ripening interplay and
we fix αC = 0.9. Since β and L set the spatial and temporal scale of the simula-
tions, by varying D we are actually tuning the competition between diffusion – and
hence coalescence – and reverse Ostwald ripening. The same can be said for vg that
regulates the vapor at disposal in the system. Indeed, when less vapor is available
bubbles are more distant and the coalescence process is less important.

Technical parameters of the system are, instead, the system volume V = L× L
and the time resolution given by ∆t > 0. We used different temporal discretisations
for the bubble diffusion and the Ostwald dynamics. Indeed, the two processes
requires different precision to provide reliable results. For the Ostwald dynamics
we use ∆tOst = 0.01, as higher values resolves badly the nonlinearities of Eqs.
(4.2)-(4.3). Unless otherwise stated, ∆t = 0.1. In Appendix C.2 we describe the
motivation of this choice and its stability.

4.2 Low noise phase diagram

Is this minimal model able to reproduce the phenomenology of micro- and bub-
bly phase separation? We will show that this is not only the case, but that this
minimal model even shed light on the physics of these phases. In this section, we
start from the case of small D/β and hence the Ostwald process dominates over
coalescence. As we will see, in this regime finite-size effects are small and time-
convergence is fast: it is hence the simplest regime to study computationally. In
Section 4.3 we compare this regime to the opposite one, at high diffusivity D/β.

In Figure 4.1 we provide snapshots in the steady state for different vapor frac-
tions vg. Both microphase separation at high density and bubbly phase separation
at low density are observed. We then check whether the statistical properties of
these two phases are analogous to the one we studied in Chapter 2, and whether
this conclusion holds asymptotically in system size.

4.2.1 Micro-phase separation (homogeneous bubbly liquid)

At high densities 1− vg, the system is found in the micro-phase separated state. In
this phase a sea of bubbles of different sizes nucleate, diffuse, and coalesce. Analog-
ously at what we did in Chapter 2 for AMB+, we analyze the statistical properties
of the bubbly liquid by building and studying the bubble size distribution P (A). In
Figure 4.2, we report the results of these study: in the deep bubbly liquid the bubble
size distribution P (A) presents a peak corresponding to the typical size of bubbles,
and an exponential tail. These results are converged in both time and system-size.

For the system parameters presented in Figure 4.2, Ostwald ripening dominates
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Figure 4.1: Finite size phase diagram at fixed diffusivity D = 0.01. We can
observe the emergence of a micro-phase separated state that we identify with
the bubbly liquid, and a macro phase separated state between a large bubble
and a sea of smaller bubbles around (bubbly phase separation). Snapshots
for system size L = 400. From left to right, vapor fractions are as follows:
vg = 0.7, 0.6, 0.4, 0.05

Figure 4.2: Convergence in size of the PDF of bubble size P (A) in the bubbly
liquid at noise level D = 0.1 and vg = 0.3. From left to right we present the
same data in lin, loglin and log formats. Notice how P (A) presents a peak
corresponding to the typical bubble size, and exponential tails.

over coalescence: this results in bubbles with similar sizes and small size variability.
Now, if we increase the amount of vapor in the system (and thus vg) or the bubble
diffusivity D, the peak is less defined and the exponential cut-off is shifted at larger
values (see Fig. 4.3). This results in a larger average bubble size, as we see in Fig.
4.5. The mechanism behind this is the same we explained in Chapter 2. Indeed, by
increasing the vapor available in the system we decrease (on average) the distances
between bubbles, and favor coalescence over Ostwald ripening (that instead tends
to uniform bubble sizes); this generates a larger variability of bubbles sizes. In the
same way, if we increase diffusivity, bubbles will move faster and coalesce more
frequently.

In Chapter 1.6, we saw that a crucial difference between the bubbly liquid and
the bubbly phase separation reside in the convergence time. We will study this
aspect also in the minimal bubbles model, by extrapolating the convergence time
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(a) log-log (b) log-lin

(c) log-log (d) log-lin

Figure 4.3: Bubble size distribution P (A) in the bubbly liquid phase by vary-
ing vg (first line) and D (second one). In the first column we present the data
in log scale, while in the second in log-lin scale to highlight the exponential tail
of the distribution. Notice how, when coalescence is favored against Ostwald
ripening (by increasing vg or D) bubble size variability is increased: the peak
of P (A) becomes less prominent, and its exponential tails slower.
Parameters are chosen as follows:
(a,b): L = 200, D = 0.1, vg ∈ [0.1, 0.4]
(c,d): L = 200, D ∈ [0.01, 0.5], vg = 0.4

τss from the time series of the average number of bubbles Abub(t). In particular,
we use the same techniques used for AMB+ (see Section 2.3.2). As we can see in
Fig.4.4, convergence in time is fast and does not depend on system size. Indeed, by
changing system-size, we merely rescale fluctuations around the average value. On
the contrary we do have a dependence of τss on the diffusivity D: the higher D, the
faster the convergence time is. These results are very similar to those we obtained
in Chapter 2 for AMB+ in the homogeneous bubbly phase. We now turn to analyse
bubbly phase separation.
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(a) (b)

Figure 4.4: Behavior of the convergence time τss in the bubbly liquid (vg = 0.4)
when varying the diffusivity D.
(a) Time series of the average bubble size. For each diffusivity constant
(D = 0.01, 0.1, 1), we show three time series at different system sizes ((L =
50, 100, 200, from light to dark color). As we can see, the convergence time
does not depend on the system size while it depends on D.
(b) From time series analogous to the one in (a) we extracted the convergence
time τss as we described in Section 2.3.2 for AMB+. Notice how the conver-
gence time decreases when increasing D.

Figure 4.5: Average bubble size in bubbly liquid steady-state when varying
the diffusivity D. System size L = 300, gas fraction vg = 0.4.

4.2.2 Bubbly phase separation

As we saw in the previous section, in the bubbly liquid, for a fixed diffusivity con-
stant D, by increasing the vapor fraction vg, the bubble size variability increases:
the average bubbles size is larger and the exponential cut-off in P (A) shifts to larger
sizes. By further increasing the vapor fraction in the system (Fig. 4.6), we find the
bubbly phase separated state. This state is a macro-phase separated state between a
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vapor reservoir (i.e. the largest bubble in the systems, whose volume scales linearly
with the total volume V ) and bubbly liquid with a vapor fraction vg,BL. As is cus-
tomary in bulk phase separations, we then have (asymptotically) the bubbly phase
separation for volume fractions vg,BL < vg < 1.

(a) L = 200

Figure 4.6: Bubble size distribution P (A) passing through the transition
between bubbly liquid and bubbly phase separation by increasing the gas
fraction vg . Diffusivity level D = 0.1.

In other words, vg,BL corresponds to the vapor fraction vg beyond which the
transition from bubbly liquid towards bubbly phase separation happens. As we
will see in more details later, we estimate vg,BL ' 0.5: micro-phase separation is
found when the liquid is the majority phase, while bubbly phase separation is found
when the liquid is the minority phase.

We confirm this with two facts. First, we perform simulations at vg = 0.4 and
vg = 0.6; we observe that the system attains micro-phase separation in the former
case, and bubbly phase separation in the latter. Within the bubbly phase separated
regime, the distribution of bubble sizes does depend neither on system-size nor on
the overall value of vg, see Fig. 4.7. Analogous results were obtained at various
noise levels D/β ≤ 1.

We then measure vg,BL as the quantity of vapor in the bubbly liquid (i.e., exclud-
ing the macroscopic bubble). Precisely:

vg,BL =
V − Vg
V − Vvr

. (4.9)

where Vvr is the volume occupied by the macroscopic vapor bubble. This second
procedure gives vg,BL ∼ 0.49− 0.5 for small values of D/β, see Fig. 4.8.

We finally study the convergence time τss to the bubbly phase separated state
in Fig. 4.9. In particular, we exploit the time-series of vg,BL(t) as defined above.
Interestingly, as it was the case in AMB+, and at variance to the case where the
system is heading towards the micro-phase separated state, the convergence time
increases with system-size. We thus confirm the robustness of this surprising result.
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(a) vg = 0.6 (b) vg = 0.6

(c) L = 800

Figure 4.7: Bubble size distribution P (A) in the bubbly phase separation at
D = 0.01 (a) and D = 0.1 (b). We can see how it does not depend on system
size or vapor fraction vg when converged in system size. In (c) we show that
the distribution of bubbles in the microphase separated state does not depend
on the overall volume fraction vg either (D = 0.01).

By doing so we obtained Fig. 4.8, from which we can see that vg,BL ≈ 0.49.
Finally, in Fig. 4.8(b) we see that the same value is attained for simulations with
different vg.

Concluding, for systems at low diffusivity D we are able to study the system
asymptotically both in time and system-size at any overall density (here represented
by the amount of vapor in the system vg). This confirms the presence of microphase
separation when 0 < vg < vg,BL (liquid is the majority phase) and bubbly phase
separation when it is the minority phase vg,BL < vg < 1. All the properties of the
bubbly phase separated state that we found in AMB+ state are retrieved, among
which the surprising increase of the typical time needed to converge to such state.
We now investigate the regime of high diffusivity.
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(a) vg = 0.6 (b) D = 0.001

Figure 4.8: Steady-state vapor fraction in the bubbly liquid as a function of
the linear system size L.
(a) Various (low) diffusivity levels D are shown.
(b) The same asymptotic level is reached for different vapor fractions vg .

(a) (b)

Figure 4.9: (a) In the bubbly phase separation, the convergence time τss in-
creases exponentially with system-size. Various diffusivity level D are shown.
vg = 0.6.
(b) Vapor fraction in the bubbly liquid for D = 0.1, vg = 0.6 and different
system sizes L. From these time series we extracted τss of Fig.(a).

4.3 Intermediate and high bubbles diffusivity

Increasing D/β increases finite-size effects; obtaining convergence in time and
system-size becomes harder. In this section, we study the effect of increasing D
on the system properties and on the convergence in system-size. This study is still
ongoing, and we present here preliminary results.

First, we build in Fig.4.12 (a,b) the phase diagram at finite system-size for
L = 200 and L = 400 by performing simulations at various diffusivity levels D
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Figure 4.10: Tentative phase diagram D/β vs 1− vg in the asymptotic regime
of the effective bubble model.

and vapor fraction vg. The phase diagram at finite system-size is necessarily am-
biguous, as both micro-phase separation and bubbly phase separation are precisely
defined only asymptotically. Neverthless, analysing the bubble size distribution
P (A), we distinguish the following cases: (blue dots) the distribution of bubble
sizes is continuous and monotonous decreasing with A; (yellow dots) is when P (A)
shows a peak at large values of A. Observe that this can correspond either to a peak
well-separated from the size distribution of other bubbles, when there is a bubble
much larger than all the others, or not; we do not distinguish these two cases for
the moment, as there is not a simple way to do so without comparing results at
different sizes.

The first clear conclusion is that, increasing D/β at fixed system-size, favors
bubbly phase separation. Indeed, for D/β > 1, this is observed even for vg < 0.5.
This is natural, given that a large bubble will increase by coalescence and shrink by
reversed Ostwald ripening.

We now turn to study finite-size effects focusing on vg = 0.4 and vg = 0.6, see
Fig. 4.12 (c,d). As already shown in Section 4.2.1, at low D/β we easily attain
convergence in time and system-size both to the micro- and bubbly phase separated
one. In fact, we have also attained convergence in system-size at high values of
D/β, where the system converges to bubbly phase separation at both values of vg,
see Fig. 4.11 and 4.12 (c,d). This proves that the transition line between micro-phase
separation, asymptotically, shifts to lower values of vg upon increasing D. Indeed,
consistently, the measure for vg,BL ' 0.065 at D = 20 based both on simulations
performed at vg = 0.4 and vg = 0.6.

The case of intermediate values of D/β is the most difficult to study as the finite-
size effects are larger so that convergence will be attained at larger systems and
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longer times. However, we have no sign of qualitative differences at play. As such
our current conclusion is that the phase diagram of the model is qualitatively given
by Fig. 4.10. In the near future, we will check such statement in details optimising
the code we employed; this is possible as the bottleneck for large systems is given
by a single step, nucleation, which can be made more efficient.

Figure 4.11: Asymptotic con-
vergence in system size of the
bubbly phase separation at high
diffusivity (D = 20).
(a) Bubble size distribution
P (A) convergence for vg = 0.4
at various system sizes L
(b) Bubble size distribution
P (A) varying vapor fraction
when convergence in size is at-
tained (at least for vg = 0.4 and
0.3).
(c) Fraction of gas in the bubbly
liquid vg,BL convergence with
size. Different curves represent
different vapor fractions.

(a)

(b)

(c)
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Bubbly phase-separated Converged ConvergedBubbly liquid

(a) L = 200 (b) L = 400

(c) vg = 0.6 (d) vg = 0.4

Figure 4.12: (a,b) Finite size D × 1− vg phase diagram for two different sizes,
L = 200 and L = 400. Blue and yellow dots represent, respectively, where
we observe the microphase separated state (homogeneous bubbly liquid) or
bubbly phase separation. See the main text for a precise definition of the two
cases at finite system-size. Red and black dots represents where we see these
two phases and the statistics of the bubble-size distribution is converged both
in time and system-size. Clearly, increasing diffusivity at fixed system-size is
favoring bubbly phase separation, which is observed even when the liquid is
the majority phase (vg < 0.5).
(c,d) System size behavior of the phase diagram in (a,b) for fixed vapor fraction
vg = 0.4 and vg = 0.6 and various diffusivity levels D.
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4.4 Conclusions

In this chapter we studied a minimal model of vapor bubbles nucleating, diffus-
ing, coalescing and interacting with the first neighbors through Ostwald Ripening.
This confirms all statistical properties that we have found in Chapter 2 when study-
ing AMB+. The advantage of this model is that it allows to tune independently the
rate of Ostwald ripening β and the diffusion constant of bubbles D, which determ-
ines their coalescence rate.

Importantly we discovered that finite-size effects and the timescale for conver-
gence to the steady state crucially depend on the non-dimensional parameter D/β.
For low and high values of D/β, we obtained results converged in both time and
system size.

When D/β � 1, the transition between bubbly phase separation and the micro-
phase separated state happens at vg = 0.5: the system is in the homogeneous bubbly
phase when the liquid is the majority phase and it is bubbly phase separated when
the liquid is the minority phase. IncreasingD/β, such transition line moves to lower
values of vg (larger global densities). Bubbly phase separation is found even when
the liquid is the majority phase.

Models of active particles undergoing MIPS, are often observed in the bubbly
phase separated regime even at global densities where the liquid is the majority
phase [1, 2, 59]; this suggests that these models are in the regime of intermediate
or large D/β. The minimal model studied in this Chapter teaches us that finding
a way to tune D/β in these particle models is a very interesting avenue, crucial to
control finite-size effects, and is left for the future.

At intermediate values of the diffusivity (D/β ∼ 1), we were unable so far
to obtain results that are converged in system-size. Yet, our preliminary results
indicates that no novel physics is at play, except for the fact that finite-size effects
are stronger in this regime. This point will be clarified in the near future by means
of a more efficient code. We will also look for a first principle derivation of the
diffusion law (4.1) that we have assumed for vapor bubbles and/or consider the
case where D ∝ Rα, α > 0, which might be similar to the limit of large D values in
the model studied here.





Chapter 5

Conclusions

Active phase separation is one among the most fundamental collective phenomena
that we can observe in active matter systems. In particular, due to its intrinsic
non-equilibrium nature, it displays features that cannot be observed at equilibrium.
Strikingly, active systems, unlike equilibrium ones, can phase separate even in
the absence of attraction among particles [47, 48]. This is driven by the positive
feedback between the slow-down of particles in high density areas and vice-versa,
their accumulation in slow moving areas. This phenomenon is known as motility-
induced phase-separation (MIPS) and has been widely studied in the literature.
MIPS was first understood via an approximate mapping to equilibrium liquid-vapor
phase separation; it is nowadays clear that in active systems more complex types of
phase separation can arise, as we contributed to show with this Thesis.

Specifically, in Chapter 2 and 3, we adopted the coarse grained point of view
of Active Model B+ (AMB+) [60], a minimal field theory built on symmetry ar-
guments and conservation laws that describes phase separation in the absence of
time-reversal symmetry. Then, in Chapter 4 we define and study a minimal model
of diffusing bubbles to link our AMB+ results, with those that have been recently
observed in models of repulsive active particles [1, 2].

We now review our main results.
Field theoretical analysis of active phase-separation predicts the emergence of

purely non equilibrium types of phase separation in active systems. This feature
stem form the possibility of active system to have a negative interfacial tension
linked to the Ostwald process, that can therefore go into reverse [60]. When this
happens, the system self-organizes in either a micro phase-separated state, in which
vapor bubbles diffuse in a dense liquid phase (bubbly liquid), or in a bulk phase-
separated state in which bubbly liquid coexists with an outer homogeneous vapor
(bubbly phase separation). In Chapter 2, we performed an in-depth numerical
study of the statistical properties of these two phases, by using an efficient pseudo
spectral code that we developed. Thanks to this numerical effort we were able
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to simulate large system, and for longer times with respect to previous attempts
[60]; we were able to attain convergence in both time and system size, in both
phases. This allowed us to obtain one of the major results of the chapter, by proving
that the bubbly phase separation is indeed a bona-fide phase separation between
the bubbly liquid and the uniform vapor phase (both with a well-defined density).
Surprisingly, we discovered that the convergence, both in time and system size,
is significantly longer when is towards bubbly phase separation (rather than the
microphase separated state); moreover, the typical convergence time increases with
system-size.

Despite our results, we were unable to fully understand some points, that calls
for future studies (especially analytical ones). In particular, the behavior of the con-
vergence time towards the bubbly phase separated state, the infinite time and space
limit of the transition from the microphase separated state to the homogeneous
liquid, and finally the coarsening law of growing domains.

In Chapter 3, we entered the long-lasting debate about a proper definition of
interfacial tension in active system. In passive systems, the interfacial tension is a
well-defined quantity, and is responsible for several phenomena, like the Ostwald
ripening process, the Laplace pressure jump, and the elastic properties of the in-
terface; on the contrary, we have shown that in active systems it is not possible to
adopt one single definition for it.

We have described, both analytically and numerically, the capillary wave in-
terfacial tension responsible for the fluctuation properties of the interface and the
spectrum of the capillary waves. In particular, we did so by deriving from first prin-
ciples the capillary wave theory for active system and see how it differs from the
one responsible for Ostwald ripening. With that, we were able to perfectly predict
the decay rate of interfacial fluctuations and the spectrum of capillary waves fully
from first principles.

Surprisingly, moreover, we discovered that the capillary interfacial tension can
get negative because of activity, while still maintaining a phase separated state. In
such situation, analogously at what happen when the Ostwald tension is negat-
ive, novels phases of matter arise: a new type of micro-phase separation where
coalescence is highly inhibited and an ‘active foam state’. These were previously
unknown, and we studied their properties.

The techniques we introduced in Chapter 3 could be used in the future to elucid-
ate the capillary tension in particle-based active models, by applying them to vari-
ous field-theoretical descriptions obtained by explicit coarse-graining [60, 52, 88], or
to describe confluent biological tissues, where the measured interfacial tension was
recently shown to be dependent on the measuring protocol [89].

The results contained in Chapter 3 were recently published in Physical Review
Letters [3].

We concluded with Chapter 4, by presenting preliminary results on a minimal
model of diffusing bubbles interacting by reversed Ostwald ripening and coales-
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cing upon contact. One of the main reasons to study this model was to shed light
on the properties of bubbly and micro- phase separation in particle-based models
of active systems, where bubbles were found to have a very strong variability in
size [1, 2], a fact that made it very complicated to study the statistical properties of
these two phases. Indeed, in particle models, attaining system-size convergence
within the bubbly phase-separated regime has proven practically impossible so far,
while convergence in the bubbly liquid can be attained just very close to the liquid
binodal [1].

The advantage of the effective bubble model we introduced and studied, is that
it allows to tune independently the rate of Ostwald ripening β and the diffusion
constant of bubbles D, which determines the coalescence rate of bubbles. Our main
result was to show that D/β sets the strength of finite-size effects and changes the
density of the bubbly liquid when the system is bubbly phase-separated. For small
and large values of the non-dimensional ratio D/β we attained convergence in
system-size both in the micro-phase separated regime and in the regime of bubbly
phase separation. At intermediate values of the diffusivity (D/β ∼ 1), we were
unable so far to obtain results that are converged in system-size, but our preliminary
results indicate that no novel physics is at play (except for the fact that finite-size
effects are stronger in this regime). We plan to clarify this point in the near future.

Interestingly, models of active particles undergoing MIPS are often observed
in the bubbly phase separated regime even at global densities where the liquid is
the majority phase [1, 2, 59]; this suggests that these models are in the regime of
intermediate or large D/β. The minimal model studied in this Chapter teaches us
that finding a way to tune D/β in these particle models is a very interesting avenue,
crucial to control finite-size effects, and is left for the future.





Chapter 6

Synthèse en français

La séparation de phase active est l’un des phénomènes collectifs les plus fonda-
mentaux que nous pouvons observer dans les systèmes de matière active. En par-
ticulier, en raison de sa nature intrinsèque de non-équilibre, elle présente des cara-
ctéristiques qui ne peuvent être observées à l’équilibre. Etonamment, les systèmes
actifs, contrairement aux systèmes à l’équilibre, peuvent se séparer en phase même
en l’absence d’attraction entre les particules [47, 48]. Ce phénomène est dû à la rétro-
action positive entre le ralentissement des particules dans les zones à forte densité
et vice-versa, leur accumulation dans les zones à mouvement lent. Ce phénomène
est connu sous le nom de séparation de phase induite par la motilité (MIPS) et a
été largement étudié dans la littérature. La MIPS a d’abord été comprise via une
cartographie approximative de la séparation de phase liquide-vapeur à l’équilibre
; il est aujourd’hui clair que dans les systèmes actifs, des types plus complexes de
séparation de phase peuvent apparaître, comme nous avons contribué à le montrer
dans cette thèse.

Plus précisément, dans les Chapitres 2 et 3, nous avons adopté le point de vue
à grand échelle du modèle actif B+ (AMB+) [60], une théorie de champ minimal
construite sur des arguments de symétrie et des lois de conservation qui décrit la
séparation de phases en l’absence de symétrie temporelle inverse. Ensuite, dans le
chapitre 4, nous définissons et étudions un modèle minimal de bulles diffusantes
pour relier nos résultats AMB+, avec ceux qui ont été récemment observés dans des
modèles de particules actives répulsives [1, 2].

Nous passons maintenant en revue nos principaux résultats.
La théorie des champs applique à la séparation de phase active prédite

l’émergence de types de séparation de phase purement non équilibrés dans les
systèmes actifs. Cette caractéristique provient de la possibilité pour un système
actif d’avoir une tension interfaciale négative liée au processus d’Ostwald, qui peut
donc s’inverser [60]. Cela signifie, par exemple, qu’en présence d’une séparation
de phases, les petites bulles de vapeur se développent au détriment des grandes.
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Lorsque cela se produit, le système s’auto-organise soit dans un état de micro-
séparation de phase, dans lequel les bulles de vapeur diffusent dans une phase
liquide dense (liquide bouillonnant), soit dans un état de séparation de phase en
vrac dans lequel le liquide bouillonnant coexiste avec une vapeur homogène externe
(séparation de phase bouillonnante, voir Fig. 6.1).

Figure 6.1: De gauche à droite, des instantanés des différentes phases de
l’AMB+ rencontrées lors de l’augmentation de la densité globale φ0 : phase
vapeur homogène, séparation de phase bouillonnante, phase liquide bouillon-
nante et liquide homogène.

Dans le Chapitre 2, nous avons effectué une étude numérique approfondie des
propriétés statistiques de ces deux phases, en utilisant un code pseudo spectral
efficace que nous avons développé. Grâce à cet effort numérique, nous avons pu
simuler de grands systèmes, et pour des temps plus longs par rapport aux tentatives
précédentes [60] ; nous avons pu atteindre la convergence à la fois en temps et en
taille de système, dans les deux phases. Cela nous a permis d’obtenir l’un des
résultats majeurs du chapitre, en prouvant que la séparation de phase de bulles
est bien une séparation de phase authentique entre le liquide de bulles et la phase
vapeur uniforme (tous deux avec une densité bien définie). Pour ce faire, nous
avons étudié les propriétés statistiques du liquide de bulle à travers sa distribution
de taille de bulle et son profil de densité (voir Fig.6.2 et 6.3). De manière surprenante,
nous avons découvert que la convergence, à la fois en temps et en taille de système,
est significativement plus longue lorsqu’on se dirige vers la séparation de phase
bouillonnante (plutôt que vers le liquide bouillonnante) ; de plus, le temps de
convergence typique augmente avec la taille du système.
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Figure 6.2: Convergence de la distribution de la taille des bulles P (A)
(a) P (A) convergeant en taille de système.
(b) P (A) convergent pour différentes densités globales φ0.

Figure 6.3: Profil de densité moyenne dans la séparation de phases à bulles
(avec une géométrie de bande). Nous pouvons clairement distinguer les deux
niveaux de densité du liquide de bulle φBL et de la vapeur φV . Ceux-ci ne
dépendent pas de la densité globale φ0, ni de la taille du système (lorsqu’elle
est choisie suffisamment grande).

Malgré nos résultats, nous n’avons pas été en mesure de comprendre pleinement
certains points, qui appellent à des études futures (en particulier analytiques). En
particulier, le comportement du temps de convergence vers l’état de séparation de
phases bouillonnantes, la limite de temps et d’espace infinie de la transition du
liquide bouillonnant vers le liquide homogène, et enfin la loi de croissance des
domaines en formation.

Dans le Chapitre 3, nous avons entamé un débat de longue haleine sur la défin-
ition correcte de la tension interfaciale dans les systèmes actifs. Dans les systèmes
passifs, la tension interfaciale est une quantité bien définie, et elle est responsable
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de plusieurs phénomènes, comme le processus de maturation d’Ostwald, le saut
de pression de Laplace, et les propriétés élastiques de l’interface ; au contraire,
nous avons montré que dans les systèmes actifs, il n’est pas possible d’adopter une
définition unique pour elle.

Nous avons décrit, tant analytiquement que numériquement, la tension interfa-
ciale des ondes capillaires responsable des propriétés de fluctuation de l’interface et
du spectre des ondes capillaires. En particulier, nous l’avons fait en dérivant à partir
des premiers principes, la théorie des ondes capillaires pour le système actif et en
voyant comment elle diffère de celle responsable de la maturation d’Ostwald. Grâce
à cela, nous avons pu prédire parfaitement le taux de décroissance des fluctuations
interfaciales et le spectre des ondes capillaires à partir des premiers principes.

De manière surprenante, nous avons en outre découvert que la tension interfa-
ciale capillaire peut devenir négative en raison de l’activité, tout en maintenant un
état de séparation de phases. Dans une telle situation, de manière analogue à ce qui
se passe lorsque la tension d’Ostwald est négative, de nouvelles phases de matière
apparaissent : un nouveau type de séparation de microphases où la coalescence est
fortement inhibée et un "état de mousse active". Ces phases (voir Fig.6.4) étaient
auparavant inconnues, et nous avons étudié leurs propriétés.

Les techniques que nous avons présentées dans le Chapitre 3 pourraient être
utilisées à l’avenir pour élucider la tension capillaire dans les modèles actifs à base
de particules, en les appliquant à diverses descriptions théoriques de champ ob-
tenues par un raisonnement grossier explicite [60, 52, 88], ou pour décrire des tissus
biologiques confluents, où il a été récemment démontré que la tension interfaciale
mesurée dépendait du protocole de mesure [89].

Les résultats contenus dans le Chapitre 3 ont été récemment publiés dans Phys-
ical Review Letters [3].

Nous avons conclu avec le chapitre 4, en présentant des résultats prélimin-
aires sur un modèle minimal de bulles diffusantes interagissant par maturation
d’Ostwald inversée et coalesçant au contact (voir fig. 6.5).

L’une des principales raisons d’étudier ce modèle était de faire la lumière sur
les propriétés du liquide bouillonnant et de la séparation des phases bouillonnant
dans les modèles de particules de systèmes actifs, où l’on a constaté que les bulles
avaient une très forte variabilité de taille [1, 2], un fait qui rendait très compliquée
l’étude des propriétés statistiques de ces deux phases. En effet, dans les modèles
de particules, il s’est avéré pratiquement impossible jusqu’à présent d’atteindre la
convergence de la taille du système dans le régime de séparation des phases bouil-
lonnant , alors que la convergence dans le liquide bouillonnant peut être atteinte
juste très près de la binodale du liquide [1].

L’avantage du modèle de bulles effectif que nous avons introduit et étudié, est
qu’il permet de régler indépendamment le taux de maturation d’Ostwald β et la
constante de diffusion des bulles D, qui détermine le taux de coalescence des bulles.
Notre principal résultat a été de montrer que D/β définit la force des effets de taille
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Figure 6.4: (En haut) diagramme de phase lorsque la tension interfaciale re-
sponsable de la propriété élastique de l’interface est négative (σcw < 0) en fonc-
tion de la densité globale A haute et basse densité globale φ0, le système est
homogène (états liquide ou vapeur). Pour des valeurs intermédiaires lorsque
le liquide est la phase majoritaire, le système présente des bulles de vapeur
(microseparation de phase) dont la coalescence est fortement inhibée. À des
valeurs inférieures de φ0, le système forme un état de mousse active en évolu-
tion continue. (En bas) : distribution de la surface des régions de vapeur pour
l’état de mousse active (gauche) et dans l’état de microphase séparée (droite).
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Figure 6.5: Diagramme de phase de taille finie à faible diffusivité. Nous
pouvons observer l’émergence d’un état de micro-séparation de phase que
nous identifions avec le liquide bouillonnant, et un état de macro-séparation
de phase entre une grande bulle et une mer de bulles plus petites autour (sé-
paration de phase bouillonnante). De gauche à droite, les fractions de vapeur
diminuent (donc la densité globale φ0 augmente).

finie et modifie la densité du liquide de bulle lorsque le système est en phase de
séparation de bulles. Pour des valeurs petites et grandes du rapport non dimen-
sionnel D/β, nous avons atteint une convergence dans la taille du système à la fois
dans liquide bouillonnant et dans le régime de séparation en phase bouillonnante.
Pour des valeurs intermédiaires de la diffusivité (D/β ∼ 1), nous n’avons pas été en
mesure jusqu’à présent d’obtenir des résultats qui convergent en taille de système,
mais nos résultats préliminaires indiquent qu’aucune nouvelle physique n’est en
jeu (excepté le fait que les effets de taille finie sont plus forts dans ce régime). Nous
prévoyons de clarifier ce point dans un avenir proche.

Il est intéressant de noter que les modèles de particules actives subissant MIPS
sont souvent observés dans le régime de séparation de phases bouillonnantes, même
à des densités globales où le liquide est la phase majoritaire [1, 2, 59] ; ceci suggère
que ces modèles se trouvent dans le régime deD/β intermédiaire ou grand. Le mod-
èle minimal étudié dans ce chapitre nous apprend que trouver un moyen d’accorder
D/β dans ces modèles de particules est une avenue très intéressante, cruciale pour
contrôler les effets de taille finie, et est laissée pour le futur.



Appendix A

Simulations and data analysis

This appendix is devoted to the explanation of the code we developed and used to
simulate AMB+ equations (1.30) in Chapter 2 and 3, as well as the algorithms that we
developed to analyze the resulting outcomes. In Sec. A.1, we describe the algorithm
used to integrate in time the equations, its stability and performance. Then, in Sec.
A.2, we present two fundamental algorithms we employed to perform the data
analysis on the density field φ(x, y). In particular, we describe the algorithms to
locate vapor bubbles and liquid-vapor interfaces (in a bulk phase separated system).
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A.1 Integrating AMB+ equations

In this section, we present the code used to integrate Eq. (1.30) to obtain the
results described in Chapter 2 and 3.

Eq. (1.30) is a nonlinear partial differential equation describing the time evolu-
tion of the conserved density field φ(x, t) at spatial coordinate x. The objective is
to integrate such equations in two dimensions for systems of volume V = Lx × Ly
using periodic boundary conditions. This setup is particularly convenient com-
putationally, as it allows implementing, using simple Fourier transforms, pseudo-
spectral codes. The density field φ(x, y, t) is defined on a Nx × Ny square lattice.
The distance between neighboring lattice points is equal to dx.

Throughout our study, we employed three types of initial conditions:

• uniform: the local density is uniformly set to a constant value:

φ(x, y, t = 0) = φ0 (A.1)

That is a stationary solution of Eq. 1.30 when D = 0.

• random uniform: obtained from the uniform initial condition by adding un-
correlated noise to each lattice point:

φ(x, y, t = 0) = φ0 + ψ (A.2)

where ψ is a uniform random variable and takes values in the interval [−a, a].
We used this initial condition when simulating systems with D = 0.

• band: phase-separated state between uniform liquid and vapor phases in
contact through a flat interface. This corresponds to a band of liquid in a
vapor background (or vice-versa):

φ(x, y, t = 0) =


φ1 0 ≤ x ≤ x1,∀y
φ2 x1 ≤ x ≤ x2, ∀y
φ1 x2 ≤ x ≤ Lx, ∀y

(A.3)

where φ1 and φ2 are usually chosen to be the mean field binodals value (±1
for ζ = 2λ = 2), while x1 − x2 depends on the chosen global density:

φ0 = 1/V

∫ Lx

0

∫ Ly

0
dxdy φ(x, y) (A.4)

Time evolution between time t and t + dt is computed using a direct Euler
scheme. So, writing (1.30) in the form:

dφ(t)

dt
= G[φ] (A.5)
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Where G is a functional of φ, we have:

φ(t+ dt) = φ(t) + dtG[φ(t)] (A.6)

The code used to compute G in the original paper introducing AMB+ [60], is based
on a finite difference algorithm. Instead, we opted for a pseudo-spectral imple-
mentation, as it is expected to be much more accurate. We explore the differences
between these two approaches in the next two sections.

A.1.1 Finite difference algorithm

In the finite difference algorithm a derivative is simply treated like a difference,
using a Taylor expansion. At first order, for example:

f(x+ dx) = f ′(x)dx+ ... (A.7)

gives:
df(x)

dx
≈ f(x+ dx)− f(x)

dx
(A.8)

higher order approximation that consider more lattice neighbors (in 1 or two direc-
tions) can be adopted to increase the precision of this method (that being algebraic
for construction, goes like O(1/(dx)n) for approximation of order n).

The development of a stable finite-difference code in [60] required the use of an
approximation of high order (n = 8), and rotationally symmetric approximations
of the equations of motion. The reason behind this are two. First, AMB+ equations
contains high order derivatives are. Second, we know that nucleation events of
spherical objects (vapor bubbles and liquid droplets) play a major role.

To gain accuracy and overcome these problems we developed a pseudo-spectral
code, that relies on Fourier transforms to compute derivatives; being therefore ex-
ponentially precise in dx. Moreover, pseudo-spectral algorithms are generally easy
to parallelize thanks to the existing libraries for Fast Fourier Transform (FFT). In the
next section, we will see in details how it works.

A.1.2 Pseudo-spectral algorithm

The pseudo-spectral method is one of the main techniques used to solve nonlinear
(and possibly noisy) partial differential equations. It exploits Fourier transforms
to compute the linear terms of the equations, and in particular the derivatives, as
they become simple multiplications in Fourier space. The non-linearities of the
equation, instead, are expensive in the inverse space. Indeed, for a function f
defined on N lattice points, even a simple quadratic term becomes a convolution
whose computational cost is O(N2):

F [f(x, t)f(x, t)] = F [f(x, t)] ∗ F [f(x, t)] (A.9)



A.1. INTEGRATING AMB+ EQUATIONS 118

Where F is the Fourier transform operator, defined along with its inverse as follows:

F [·] =

∫
dx e−iq·x · (A.10)

F−1[·] =
1

2π

∫
dx eiq·x · (A.11)

For higher order nonlinearities the computational cost is even larger. For this
reason, in a pseudo-spectral code, they are computed in the direct space. The price
to pay for exploiting the best that the two worlds (direct and inverse space) have to
offer, is the computation of several Fourier transforms and their inverse at each time
step. This operation is done using the fast Fourier transform algorithm that scales
asO(N logN). Notice that for complex terms mixing derivatives and nonlinearities,
we need to go back and forth the Fourier space several times. For example, the
Fourier transform of ∇

(
∇2φ(x)∇φ(x)

)
would be computed as follow:

− q2F
{
F−1[−iqF [φ(x)]] F−1[−q2F [φ(x)]]

}
(A.12)

As is it customary when dealing with nonlinear differential equations, we use anti-
aliasing to set to zero high frequency terms of the Fourier transform. The aliasing
error comes from the fact that we are representing the field φ(x, y) on a discrete
lattice: this means that high frequency signals that cannot be resolved are inter-
preted as lower frequency one. This introduces the so-called aliasing error that
leads to errors in the numerical solutions and/or destabilize the code. One way to
deal with is the two-third rule proposed by Orszag. Since the field φ(x) is defined
on a lattice of Nx × Ny points (with Nx and Ny even), its Fourier transform φ(q)
is defined on an inverse lattice of Nx × Ny points. Wave-numbers take values
(nx, ny)ε[−Nx

2 + 1, Nx2 ]× [−Ny
2 + 1,

Ny
2 ]. The two-third rule consist in setting at each

time-step:

φ(q)→


0 qx < −Nx

2 + 1 + Nx
12 or qx >

Nx
2 − Nx

12 α = x, y

φ(q) otherwise

(A.13)

This is especially needed after the computation of a nonlinearity that creates
higher-frequency terms. For example, if we multiply two sinus of frequency ω we
get an higher frequency term:

sin(ωx) sin(ωx) = −1

2
cos(2ωx) (A.14)

Moreover, in our case, there is another advantage of setting to zero higher fre-
quency terms. Indeed, we are dealing with stochastic differential equations and
adding uncorrelated noise to each lattice point in the system. Big fluctuations of
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noise (even if they are rare events) might results in code instability if not resolved
well enough in time and space. With the anti-aliasing method we are effectively
adding correlation in the noise terms at high frequencies, limiting the effect of such
rare events.

AMB+ equations are characterized by the presence of mixed terms (containing
both nonlinearities and derivatives), and uncorrelated noise. This makes this code
particularly susceptible to instabilities when space or time resolution are not suffi-
ciently high. This is particularly true for nucleation events. As the nucleated objects
in this model are spherical, the stability of the code for the same resolution is greater
if the equations are explicitly isotropic. Therefore, instead of intergrating directly
AMB+ equations 1.30, we manipulated their expression to explicit the isotropy of
the deterministic part:

φ̇ = ∇2

(
aφ+ bφ3 −

(
ζ

2
+ λ

)
φ∇2φ

)
+
λ

2
∇4(φ2) +

(
ζ

2
− κ
)
∇4φ− ζ

2
(∇2φ)2 +∇η

(A.15)

Finally, a few words about the implementation of the noise. In our code we
perform the dynamical time-step to evolve the field φ(x, t) in the Fourier space.
The noise is therefore added through its Fourier components. In particular, for a
wave-vector q the corresponding noise term is:

n(q) = F [∇η] = (ξ1 + iξ2)|q| (A.16)

where i is the imaginary unit, and ξ1,2 are two independent random number dis-
tributed as a unitary Gaussian with zero mean. Of course, since we want to add
real noise in direct space, we have to impose n(q) = [n(−q)]∗, where the symbol ∗
denotes the complex conjugate.

A.1.3 Parallel code and performances

To obtain the results discussed in the Chapter 2 and 3 we had to integrate Eq. 1.30
for long times and large scales. To obtain a fast and efficient code we parallelised it.
This allows for a significant speed gain, since we multiple processors work at the
same time (in parallel) to integrate the equations. In our case, the system is divided
in vertical slices, that are integrated by a different processor. To compute Fourier
transforms or global observables the processors exchange information. Parallelising
the code allowed us to speed up our simulations up to a factor 10 for the largest
systems used (Lx = 1024, Ly = 512).

Importantly, we have to determine, for each system size, the optimal number of
processors working in parallel. Indeed, if the number of processor is too large, code
performances starts to worsen; this happens when the communication time between
processors becomes comparable to the one spent to actually solve the equations. In
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other words, the reason behind this is that the slices surface becomes comparable
with their volume. The optimal number of processor also depends on the speed
of the communication, and must therefore be determined for the particular cluster
of processors used. The speed gain of parallelization is large, but we can further
improve it by working on the Fourier transforms. The latter represent the actual
bottle-neck of the code being the only operation of order O(N logN). There are at
least two ways to improve the code speed. First, FFTW libraries are more efficient
when system dimensions are a power of 2. Therefore, by using Lx = 2n with n an
integer number, we obtain a code that is about 10% more efficient with respect to a
system with same volume but Lx 6= 2n. Then, we can reduce to the minimum the
number of Fourier transform computed in a pseudo-spectral step. Notice however
that this gain is marginal with respect to the parallelization.

A.1.4 Data storage

We saved snapshots of the system (i.e. the array of the values of φ(x, y) for each
x, y of the simulation lattice) at regular intervals to produce images of the systems
at a given time or, in some cases, to be able to post-process the data (compute
observables after the simulation was ended). The files were saved in a binary format
to keep their size as low as possible. Moreover, most of the time, we computed the
observable on the fly (during the simulation), saving the time spent post-processing
raw data and space on the disk. This was especially useful in cases for which we
needed more statistics. Saving binary files, on the other hand, allows computing
new observable of interest on simulations already completed, avoiding sending
them again (especially useful for long ones). The files containing observables (like
the number of bubbles, the average gas density and so on) were instead saved as
simple text files so that the information were readily available to be seen or plotted.

A.1.5 Code stability

The pseudo-spectral method is a very powerful tool allowing us to simulate AMB+
equations with good resolution and efficiency. Anyway, as we saw, AMB+ equations
are characterized by the addition of uncorrelated noise on neighbors sites and com-
plicated mixed terms (comprising both nonlinearities and derivatives). For these
reasons obtaining stable and reliable simulations may be challenging, especially
due to the sudden nucleation events. We already discussed how we can mitigate
such problems, here we see the limits of our code. If the non equilibrium term λ and
ζ are sufficiently small we are able to get stable and reliable simulations with a fairly
good resolution. In particular we can choose time and space resolution dt = 0.02
an dx = 1. In Fig.A.1.5 we delimit the region of parameters around Model B (i.e.
ζ = λ = 0), in which (for high noise level D = 0.3) we can exploit such resolution.
By decreasing the noise we can extend this region a little more.
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Figure A.1: Region of the ζ × λ phase space in which the code is stable with
accuracy dt = 2 × 10−2 and dx = 1 (blue dots). Test are done for system
dimensions L = 256× 128, at high noise (D = 0.3). The solid line represent is
the transition between reverse and direct Ostwald ripening process.

Crucially, when leaving this region, the non equilibrium terms become bigger,
and the space-time resolution required to have a stable code increases very quickly
(even in the deterministic case, starting from a random initial condition), making
practically impossible to do perform simulations. To give the reader an idea of this
phenomenon we report in table A.1 the minimum resolution needed to have stable
simulations in the deterministic case (D = 0) along the line ζ = 2λ. What makes
things more complicated is that (A.1.2) contains space derivatives of order four:
this means that increasing the space resolution by a factor α needs a corresponding
increase in time resolution of α4.

ζ = 2λ dt dx

2.7 2.5 10−2 1
3 10−3 1
3.2 10−4 0.25
3.5 <10−6 <0.25

Table A.1: Scaling of the minimal resolution needed to have a stable code in
our simulations along the line ζ = 2λ for D = 0. Notice, for example, that
increasing ζ from 3.2 to 3.5 we need a resolution that makes the code at least
400 times slower!

As a last remark, we want to point out that the finite-difference code used in
[60], is less affected by the increase of the non-linear terms and allowed to perform
simulations for λ = 1 and ζ = 4, that we cannot reach with the pseudo-spectral
code.
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A.2 Data analysis

In this section, we present the most important algorithms that we used to analyze
the density field φ(x, y). Namely, the algorithms used to locate vapor bubbles and
identify the interface between liquid and vapor phase.

A.2.1 Algorithm to locate bubbles

In order to study the properties of the bubbly liquid and the bubbly phase separ-
ation, we need to locate bubbles and compute their area. To this end we consider
the disconnected graph composed by the 2-dimensional grid of lattice points on
which we are solving the AMB+ equation. In this graph two neighbors node are
connected if they are both in the vapor state. A bubble of size n is then just a cluster
of n (connected) nodes. To find all the clusters we run a deep-first search algorithm
on a binary version of the density field φb (that assumes values 0 in the vapor phase
and 1 in the liquid one).

We report the full algorithm in more details:

• Smoothing: The field φ(x, y) is smoothed to reduce the noise. The smoothing
is performed by evolving the density field for 8 steps thought the deterministic
dynamics of AMB+. From φ(x, t) we obain φs(x, y).

• Vapor-liquid discrimination: φs(x, y) is binarized in the following way:

φb(x, y) =

{
0 φs(x, y) ≤ φ̄
1 otherwise

(A.17)

where φ̄ is an intermediate density level between the vapor and the liquid one.
In particular, we choose φ̄ = 0, the intermediate point between the mean-field
binodals on the ζ = 2λ line. The points (x, y) where φb = 0 are considered as
vapor, the others as liquid.

• Breath first search: the algorithm is performed by scanning linearly the bin-
arized field φb. Each time we find a point for which φb = 0 and that does not
belong to the list of visited nodes (initially empty), we find a cluster. We then
run the breath first algorithm to identify the other points of the cluster. When
the the breath first algorithm ends, we continue the scanning procedure until
the last node.

The breath first search algorithm is implemented on the cluster k as follows:

1. We insert the point in the list of visited ones.

2. If φb = 0 we label it with k, increase the cluster size by one and insert its
4 neighbors in the queue.
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3. If the queue is not empty we repeat (a,b) for the next point in the list.

One important point to notice is that we create an algorithm that is not recursive.
In this way we avoid to hit the maximum recursion depth limit (that depends on
the programming language and on the machine used to run the code). Indeed this
is very likely when trying to locate the vapor reservoir of the bubbly phase (the
algorithm sees it as a very large bubble).

In Fig. A.2 we can see the results of running the algorithm on two different
cases.

Figure A.2: Two examples of how the algorithm to locate bubbles works. On
the right of each couple of images we have the density field φ(x, y), on the left
the bubbles found by the algorithm (description in the text). Here, different
bubbles have different colors.

A.2.2 Bubble size distribution

In order to study the statistical properties of the bubbly liquid and bubbly phase sep-
aration, we study the PDF of the bubble size. This quantity, that we will call bubble
size distribution P (A), corresponds to the probability that the size of a bubble drawn
at random in the steady-state is equal to A. Since we compute P (A) on the fly (i.e.
during the simulation), we need to save a certain number of Pt(A) each computed
on a different time interval t, t+ ∆t. In this way we can average over distributions
Pt(A) in the steady-state (disregarding the initial transient). To build Pt(A) we run
(every Npdf time-steps) the algorithm to locate the bubbles described in the previ-
ous section, and compute their area. Every time we count the number N(A, t) of
bubbles having area A at time-step t. Finally, Pt(A) corresponds to:

Pt(A) =

∑∆t/Npdf
i=0 N(A, t+ iNpdf )∑∞

A=0

∑∆t/Npdf
i=0 N(A, t+ iNpdf )

(A.18)
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This ensure that P (A) is an actual PDF. Indeed we have:

∞∑
A=0

Pt(A) = 1 (A.19)

A.2.3 Identification of the interface

In this section, we describe the algorithm we used to locate the interface between
vapor and liquid in a systems that is fully phase separated, without bubbles and
with an interface passing through the full system (see Fig.A.3). If the interface is
along the x-axis the algorithm is as follow: For every coordinate x, we scan the
pixel starting in the vapor phase until we find the first pixel in the liquid phase. To
do that we find the first ȳ such that φ(x, ȳ) > φth, choosing φth = (φ1 + φ2)/2 in
between the mean-field binodals φ1,2. For that x the interface position along in the
y direction is set to:

h(x) = ȳ +
φ(x, ȳ)− φth

φ(x, ȳ)− φ(x, ȳ + ∆x)
. (A.20)

Different values of φth do not change the results as far as φth is sufficiently
far from the binodals. Notice that if we had overhangs, we would need a more
sophisticated algorithm to find the interface. In Fig. A.3, we can see the algorithm
in action.

Figure A.3: Interface localization using the algorithm described in the text.
Grey line: curve of the points (x, ȳ), where ȳ is the first liquid pixel starting
from the top. Black line: h(x) computed with Eq. (A.2.3). For visualization
purposes we show just the top part of a system of size 512× 64. Moreover, we
squeeze the image along x (this results in rectangular pixels).
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A.3 Conclusion

In this chapter, we presented the main algorithms used to integrate AMB+ equa-
tions and analyze the density field. In particular, we described the parallel pseudo-
spectral algorithm used to integrate the spatial part of the equations and justified its
choice. Then, we briefly presented the algorithms used to analyze the density field
φ(x, t), to locate the vapor bubbles and interfaces in phase-separated states. The
two following chapters, 2 and 3, are instead devoted to the study of AMB+ physics
using the algorithm described here.





Appendix B

AMB+

B.1 Liquid density shift stability with time resolution

In Sec. 2.4.4, we saw the difficulties emerging while estimating the asymptotic
behavior of φL. One of them is that we cannot extrapolate this value from the second
peak of the PDF of the local field P (φ), unlike in equilibrium, since it shifts with
global density φ0. Here, we check the stability of this density shift – and incidentally
of all our results in the bubbly liquid phase – when increasing time resolution. The
first observation is that, for high global density values φ0, we need a higher time
resolution than dt = 0.02 to stabilize our the code. Even at lower φ0, decreasing
dt slightly changes the PDF of the local density field P (φ). The effect of increasing
dt is similar to the one obtained by increasing D: the peaks of P (φ) are broader
and get closer to each other. A part than that, the global picture remains the same.
Indeed, the shift of the second peak of P (φ), although slightly smaller for higher
time resolutions, remains evident when convergence in time resolution is attained
(see Fig. B.1).
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Figure B.1: (a) PDF of the local density P (φ) varying dt. In the bubbly liquid,
the choice of a higher time resolution changes the shape of P (φ). In particular,
the higher the time resolution, the more peaked is the distribution. At the same
time we have a slight shift of the peaks positions. Parameters: D = 0.3, φ0 =
−0.2.
(b) Position of the liquid peak of P (φ) as a function of the global density φ0 for
noise D = 0.3. The different curves have a different time resolution. In this Fig.
the convergence is reached at high φ0, while in Fig. (c) we reach it for φ0 = 0.2.
This proves that the shift is still present even when we reach convergence in
dt.
(c) Convergence in time-resolution of the position of the liquid peak of P (φ)
for D = 0.3, φ0 = 0.2

B.2 Algorithm to extract φBL from the density profile

In Sec.2.4.1, we saw how it is possible to estimate the convergence time towards
the bubbly phase separated state, by studying the time series of the average density
inside the bubbly liquid φBL. Here we present the algorithm used to extrapolate φBL
from the density profile φ(x, t) (as defined in equation (2.2) and shown in Fig.2.11).

The algorithm is as follows (see also Fig. B.2):

• Compute the distance between the maximum and minimum of φ(x, t):

∆φmax = φmax − φmin (B.1)

• Consider the threshold given by the following density value:

φth = φmin + α∆φmax (B.2)

• Determine the vapor region as the one containing the maximum number of
consecutive point with φ(x, t) < φth (considering the periodic boundary con-
ditions).

• Determine the band interfaces as the values x′1 and x′2 delimiting the vapor
region. The width of the band is equal to: w′ = x′1 − x′2
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Figure B.2: Example of a density profile φ(x, t), from which we extract the
average density in the bubbly liquid φBL(t) (by averaging φ(x, t) in the orange
area). See the main text for the complete algorithm and the definition of the
various symbols.

• Discard the interfacial part by considering just a fraction of the band width
f = w/w′. This delimits the region (x1, x2 = x1 +w) on which to compute the
bubbly liquid density.

• Compute the bubbly liquid density as:

φBL(t) =
1

w

∫ x1+w

x1

φ(x, t) (B.3)

The parameter of the algorithm are the threshold level (controlled through α)
and the fraction of band considered f . In order to detect the interface and the bulk of
the bubbly liquid reliably, we need to optimize these two parameters. In particular,
we choose α = 0.4, getting a threshold closer to φV (the density level with smaller
fluctuations), and f = 0.6. The exact values of f and α do not really matter as far as
they are reasonable. This method, once the parameters are chosen correctly, is not
affected by systematic errors like the naive one. For large systems such as the one
shown in Fig. 2.11, is reliable and provides a good estimate of φBL(t).





Appendix C

Minimal model

C.1 Code implementation

In this section, we describe the main algorithms used to simulate our model,
and present some considerations about efficiency. The main algorithms used in the
model are the research of the nearest neighbors (for the Ostwald ripening step), the
determination of the bubbles that are in contact (for the coalescence step), and the
nucleation.

C.1.1 Efficiency

Our model deals with N(t) spatially extended object whose radius is variable and
goes fromR0 = 0.5 (for the newly nucleated bubbles) up to L/2 (due to their circular
shape) for bubbly phase separated configurations. Interactions between bubbles are
both local (by contact) and with their nearest neighbor. In particular, having exten-
ded objects of variable size, we cannot blindly apply the usual boxing algorithms
used in particles models to increase efficiency. The latter rely on partitioning the
space in a grid of boxes. Each particle belongs to a particular box. Therefore, inter-
actions can be computed locally in the box (and in the surrounding ones, if needed).
This allows one to reduce the computational cost of pairwise operation from O(N2)
toO(N). Of course, this kind of technique, can be used just in absence of long range
interactions. We will see, however, a modification of the boxing algorithm can be ap-
plied for both the coalescence process and the research of the closest bubble. Finding
alternative solutions to the brute force algorithm used to find the nearest neighbors
and the bubbles that are in contact, is vital to simulate large system sizes. Indeed,
the easiest solution is to compute all the N(N − 1)/2 ∼ N2 distances between
bubbles in the system. This solution is of computational complexity of orderO(N2).
Notice that even the nucleation process suffer from this problem: at each time step,
we nucleate a certain number of bubbles that is, roughly speaking, a fraction of the
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total number of bubbles. For each of them, we need to extract a random position
and check whether they collide with other bubbles. Checking the collision with all
the other particle lead to a computational complexity of order O(N2).

C.1.2 Nearest neighbor algorithm

To simulate the Ostwald ripening dynamics, we need to find for each bubble its
nearest neighbor. In order to avoid computing all the distances between bubbles,
we rely on a kind of boxing algorithm by dividing the system in a grid of squares.
Then, for each bubble, we look for the nearest neighbors in a certain finite radius
around it. We now describe the algorithm in more details.

First, we create an occupancy arrayO(i, j): each element of the array correspond
to a box in the system, and has value equal to the label of the bubble occupying it
(partially or completely) or −1 if it is not occupied. To create O(i, j), we perform
a loop over all the bubbles. For each bubble n, we set O(i, j) = n for all the boxes
(i, j) occupied by the bubble. The creation of the occupancy array O(i, j) needs
an algorithm whose computational cost does not scale with system volume. Once
again, cycling through all the boxes and checking if their distance from the bubble
center is smaller or equal than the bubble radius is an expensive choice that scales
with system volume V = L× L > N2. To avoid this, we use the equation of a circle
to determine, for each coordinate i, which boxes (i, j) are occupied.

Once we have the occupation array, we perform another loop over the bubbles.
For each bubble n, we compute the distances d(n, i) from every other bubble i oc-
cupying at least one box in a radius r+Rn fromxn. The smallest distance determines
the nearest neighbor. In order to avoid loops on too many boxes, we optimized the
research radius r value to 1.5 times the average bubble distance ξ, approximated to:

ξ =

√
V (1− vg)
πN(t)

(C.1)

where we divide the available volume outside vapor bubbles V (1 − vg) by their
number N(t). This algorithm has computational complexity that scales linearly
with the number of bubbles.

C.1.3 Coalescence

In this section, we present the algorithm we used to find bubbles in contact and
coalesce them. The easiest solution would be to compute the distances d(i, j)
between all the couples of bubbles (i, j) and check which of them has distance
d(i, j) < Ri + Rj . This method, although easy to implement, has a computational
cost of O(N2). In order to use a more efficient algorithm, we rely on the occupancy
matrix O(i, j). Initially O(i, j) = −1 ∀(i, j) to indicate that no box has been visited.
Then, we perform a loop over all the bubbles. For each bubble n (with center in
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xn, yn and radiusRn), we scan all the boxes (i, j) for which xn−R < i < xn+R and
yn−R < j < yn+R. For each scanned box (i, j), we check if the box was previously
visited (i.e. if O(i, j) 6= −1). If not, we set O(i, j) = n. If yes, then O(i, j) is equal
to some number k as a result of a previous scan of that box. We check if bubble n
overlaps with bubble k (this is the case if d(n, k) < Rn +Rk). If the bubbles overlap,
we assign both bubbles to the same cluster. Finally, if Rn < Rk we set O(i, j) = n.
Once all clusters are determined, I can apply the coalescence formula (3) on each of
them.

C.1.4 Nucleation

After the coalescence step, we nucleate a certain number of bubbles aN to com-
pensate the vapor volume loss caused by αC . For each nucleation event, we extract
random positions until the newly nucleated bubble does not overlap with any other
bubble. The probability that a point chosen at random is inside a bubble is vg. The
probability that a bubble of radius R0 positioned at random is in contact with an-
other one is larger than this. Indeed, in this case the excluded volume is composed
by the volume occupied by vapor bubble plus a shell of width R0 outside each of
them. Therefore, the average number of trials before a good position is found is
larger than 1

1−vg . For this reason, the nucleation can become a bottleneck when deal-
ing with large vapor fractions. Finally, the number of operations required by this
algorithm is higher than a

1−vgN
2. The probability that a randomly chosen position is

inside a certain bubble n, is proportional to its volume. Therefore, ordering bubbles
by their size we improve the code efficiency. Indeed, this reduces the number of
distances we have to compute when choosing a trial position that would bring
the bubble to overlap. In particular, the ordering step can be performed every Ns

time-step though a quick-sort algorithm whose computational cost is O(N logN).
Despite the efficiency gain, the algorithm is still of computational costO(N2). How-
ever, it was not the bottleneck for most simulations. For this reason, we did not
improve it further. Anyway, to access larger system we will need a linear algorithm.
We plan to improve its performances to be able to reach larger system sizes at high
diffusivity D.

We now list some possible improvements. An efficient way to proceed would be
to recompute the occupancy matrix and then extract randomly one of the boxes that
are not occupied by other bubbles. This may create problems at high vapor fractions
vg, as there may be no available empty boxes. Otherwise, one could choose at
random a box (empty or not) and check overlapping just with the bubbles occupying
it. In these solutions nucleation would scale linearly with the number of bubbles N .
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C.2 Stability with decreasing time-discretization

In this section we will justify our choice of time-resolution for the bubble dif-
fusion and confirm its stability. First, we must notice that the choice of ∆t is done
based on physical reasons. Specifically, ∆t has to be chosen in such a way that the
typical discrete displacement in a time-step is much smaller than the size of a single
bubble. In others words: √

D

R2
0

∆t� R0 (C.2)

that implies:

∆t� R3
0

D
(C.3)

If this condition is not met, the chosen time-resolution is not sufficient to resolve
bubbles trajectories. In particular, at each time-step bubbles have a non-negligible
probability to move across other bubbles, without touching them and therefore
coalescing. So, even though the choice of ∆t does not pose any stability problem, by
using a large ∆twe are underestimating the coalescence process. In our simulations,
unless otherwise stated, we fix ∆t = 0.1. Strictly speaking, this choice is appropriate
only for small diffusivity values, while already at D = 1 we have: R

3
0
D = 0.125 that is

just slightly larger than ∆t = 0.1. We will anyway use ∆t = 0.1 for higher diffusivity
values. Despite leading to (small)) systematic overestimation (or underestimation)
of some observables, we will see that it does not change the physics of the features
we primarily investigate.

In order to asset the effect on the choice of temporal resolution ∆t, we simulated
a bubbly phase separated system at high diffusivity D = 5 for system size L = 200.
In Fig. C.1 we can observe how, by increasing ∆t, we underestimate more and
more the effect of coalescence. This reflects on various observables: the average
number of bubbles in the steady state is higher, while their size is smaller; at the
same time the vapor fraction in the bubbly liquid is larger (although is less affected
than the average number and size of bubbles). Finally, we can see how the bubble
size distribution conserves the same shape. This suggests that while our estimates
of some observables is slightly different (of about ±10− 20% between ∆t = 0.1 and
lower values), the basic physics does not change. Our choice of ∆t = 0.1 is therefore
practically justified even for higher diffusivity values.



135 APPENDIX C. MINIMAL MODEL

(a) (b)

(c) (d)

Figure C.1: Behavior of some key observables when changing temporal res-
olution through ∆t in the bubbly phase separated state (D = 5, L = 200, vg =
0.6). As we can see, for high ∆t values, the coalescence process is underes-
timated. This results in steady-state with more bubbles that are smaller on
average. This does ot change the global physics of the state that is bubbly
phase separated for all the time resolution considered. Moreover, while the
bubble size distribution P (A) is slightly different when changing ∆t, its shape
is just slightly affected. Notice the behavior with ∆t of the observables con-
sidered is not monotonic. This is actually due to the fact the for ∆t < 0.01,
along with ∆t (related bubble diffusion) we also had to decrease the temporal
resolution of the Ostwald process ∆tOst (that we otherwise set to 0.01, as dis-
cussed in 4.1.2).
(a) Average bubble size (including the vapor reservoir)
(b) Average number of bubbles
(c) Average vapor fraction in the bubbly liquid
(d) Bubble size distribution P (A) for two different ∆t
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Titre: Séparation de phase dans la matière active
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Résumé: La matière active désigne une classe des
systèmes hors-équilibre dans laquelle l’énergie est dis-
sipée localement par ses constituants pour se trans-
former en mouvement. Grâce à l’interaction entre les
particules, il y a une grande variété de phénomènes col-
lectifs. Ainsi, dans certains systèmes, il peut y avoir
une séparation de phase entre des zones de haute et
basse densité, même en l’absence de force d’attraction.
À la base de la séparation de phase appelée motility-
induced phase-separation (MIPS), il y a une rétroac-
tion positive entre l’accumulation des particules et
la diminution de la vitesse. Les particules bougent
plus lentement dans les zones à forte densité et donc
s’accumulent.

La séparation de phase MIPS est le sujet de cette
thèse et on va l’étudier avec différents points de vue.
Dans un premier temps, on adopte l’approche du mod-
èle active B+, qui est une théorie des champs capable de
prédire l’existence de nouvelles séparations de phase
telles que : une séparation microphase où des bulles de

vapeur diffusent dans un milieu dense, et une sépara-
tion macrophase où il y a une phase dense en équilibre
avec une phase diluée à l’extérieur. En particulier, on
confirme l’existence de ces phases asymptotiquement
et on étudie leurs propriétés statistiques. On trouve que
le temps de relaxation vers l’état stationnaire dépend
de la taille du système pour la séparation macrophase.

Ensuite, on étudie le concept de tension superfici-
elle et on montre qu’en matière active on ne peut pas
avoir qu’une définition, mais on doit définir plusieurs
tensions superficielles.

Pour conclure, on fait le lien entre le modèles de
particules et la théorie des champs en étudiant un
modèle minimal de bulles développé pour identifier
les ingrédients minimaux dans la séparation de phase
MIPS, c’est-à-dire la compétition entre la diffusion des
boules et l’Ostwald ripening (le mécanisme qui per-
met aux petites bulles de grandir au détriment des plus
grandes).

Title: Phase Separation in Active Systems: Non-Equilibrium Fingerprints

Keywords: Phase separation, Phase Transition, Dry systems, Acive matter, Non-equilbrium statistical mech-
anics, Self-organisation

Abstract: Active matter is intrinsically out of equi-
librium because energy is converted into systematic
motion by its constituents, and exhibit fascinating col-
lective phenomena. One of them is phase separation
between dense and dilute regions which, unlike in
equilibrium, can happen even in absence of attraction
among particles.
In this Thesis, we study phase separation in active
systems. First, we adopt the coarse-grained point of
view of Active Model B+, a field theory based on sym-
metry arguments and conservation laws. This predicts
the emergence of novel types of phase separation, im-
possible in equilibrium: a microphase separated state
and bubbly phase separation (the coexistence between
this microphase separated state and the homogeneous
phase). In the first part of the Thesis, we study the stat-
istical properties of micro and bubbly phase separation,
confirm their asymptotic existence and show how the

time convergence to the steady state is system size de-
pendent in the bulk phase separation.
Secondly we study the concept of interfacial tension in
active systems, and derive from first principles (and for
the first time) the capillary wave tension, which determ-
ines the elasticity of active liquid-vapor interfaces. By
doing so, we show that no unique definition of surface
tension can exist in active systems, thus ending a long-
dated debate. Discovering that the capillary interfacial
tension can become negative because of activity, we
also find new types of phase separation, among which
a previously unknown ‘active foam’ state.
Finally, we introduce and study a minimal model for
the dynamics of vapor bubbles in micro and bubbly
phase separation. Thanks to this, we shed light on the
statistical properties of these phases and on how they
might be controlled in the future in particle-based mod-
els.
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