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Abstract

In this thesis, we are mainly interested in the theoretical and numerical study of certain

equations that describe the dynamics of dislocation densities. Dislocations are microscopic

defects in materials, which move under the effect of an external stress.

As a first work, we prove a global in time existence result of a discontinuous solution to

a diagonal hyperbolic system, which is not necessarily strictly hyperbolic, in one space

dimension. Then in another work, we broaden our scope by proving a similar result to

a non-linear eikonal system, which is in fact a generalization of the hyperbolic system

studied first. We also prove the existence and uniqueness of a continuous solution to the

eikonal system. After that, we study this system numerically in a third work through

proposing a finite difference scheme approximating it, of which we prove the convergence

to the continuous problem, strengthening our outcomes with some numerical simulations.

On a different direction, we were enthused by the theory of differential contraction to evo-

lutionary equations. By introducing a new distance, we create a new family of contracting

positive solutions to the evolutionary p-Laplacian equation.
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Résumé

Dans cette thèse, nous nous sommes principalement intéressés à l’étude théorique et

numérique de quelques équations qui décrivent la dynamique des densités des dislocations.

Les dislocations sont des défauts microscopiques qui se déplacent dans les matériaux sous

l’effet des contraintes extérieures.

Dans un premier travail, nous démontrons un résultat d’existence globale en temps des so-

lutions discontinues pour un système hyperbolique diagonal qui n’est pas nécessairement

strictement hyperbolique, dans un espace unidimensionnel. Ainsi dans un deuxième tra-

vail, nous élargissons notre portée en démontrant un résultat similaire pour un système

d’èquations de type eikonal non-linéaire qui est en fait une généralisation du système

hyperbolique déjà étudié. En effet, nous prouvons aussi l’existence et l’unicité d’une so-

lution continue pour le système eikonal. Ensuite, nous nous sommes intéressés à l’analyse

numérique de ce système en proposant un schéma aux différences finies, par lequel nous

montrons la convergence vers le problème continu et nous consolidons nos résultats avec

quelques simulations numériques.

Dans une autre direction, nous nous sommes intéressés à la théorie de contraction différen-

tielle pour les équations d’évolutions. Après avoir introduit une nouvelle distance, nous

construisons une nouvelle famille des solutions contractantes positives pour l’équation

d’évolution p-Laplace.
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1 General introduction

This thesis dissertation is mainly concerned with the modeling, theoretical and numerical

analysis of certain non-linear equations of Hamilton-Jacobi type that appear naturally in

the modeling of the dynamics of dislocations, where the latter are microscopic defects in

materials.

On a different direction at the end, we were interested in the theory of differential con-

traction to the solutions of the evolutionary p-Laplacian equation.

This introduction is organized as follows: In Section 1, we introduce the reader into the

theory of dislocations, where we discuss elaborately some of their properties and their

historical background, along with the equations we have considered to model their move-

ment, and the type of solutions these equations have. We then mention our contributions

in this theory in Sections 2, 3, and 4. In Section 5, we talk briefly about the theory of

differential contraction, and we mention the work we have done in order to create a new

family of contracting solutions to the evolutionary p-Laplacian equation.

1 Introduction to the dynamics of dislocations

1.1 Physical motivation

A dislocation is a linear crystallographic defect or irregularity within a crystal structure

that contains an abrupt change in the arrangement of its atoms. The movement of

dislocations allows closely packed crystal planes to slide over each other at low stress

level. This phenomenon is known as glide or slip, as we can see in Figure 1.1. Thus, a

dislocation defines the boundary between slipped and unslipped regions of a material and

as a result, must either form a complete loop, intersect other dislocations or defects, or

extend to the edges of the crystal. For example, the black curves in Figure 1.2 represent

dislocations present in a thin Silicon sample at a scale of 1 µm = 10−9 m.

Some types of dislocations can be visualized as being caused by the termination of a plane
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1. INTRODUCTION TO THE DYNAMICS OF DISLOCATIONS

Figure 1.1: Slip mechanism illustration in plastic deformation.

of atoms in the middle of a crystal. In such a case, the surrounding planes are not straight,

but instead bend around the edge of the terminating plane so that the crystal structure

is perfectly ordered on either side. The analogy with a stack of paper can clarify more

the idea: if a half piece of paper is inserted in a stack of papers, the defect in the stack is

only noticeable at the edge of the half sheet. We refer to the work of Hirth, Lothe, Mura

[56], Hull, Bacon [57], and Nabarro [74] for a complete introduction into the theory of

dislocations.

Figure 1.2: Dislocations in a thin Silicon specimen.

The concentration of dislocations in a crystal is represented by its density, which is defined

as the number of dislocation lines traversing a certain unitary section. In this dissertation,

we are interested in the dynamics of dislocation densities.

1.1.1 Historical background

The first to analyze theoretically the linear defects in materials was Volterra [84] in 1907.

From a mechanical point of view, in 1934, Polanyi [78], Taylor [82] and Orowan [75],

independently, proposed that these defects were the principle explanation of plastic de-

formations in materials, at the microscopic level. With the evolution of Transmission

Electron Microscopy technique in 1956 (TEM for short), where thin foils of a certain ma-

terial are prepared to be rendered transparent under the electron beam of a microscope,

the first direct observations of dislocations were done by Bollman [18] and Hirsh, Horne,

2



CHAPTER 1. GENERAL INTRODUCTION

Whelan [55]. These observations allowed us to test and verify some theoretical predictions

of dislocations, such as their length, thickness, and speed. It is important to mention that

the number and arrangement of dislocations influences many properties of materials such

as hardness, yield strength, and ductility.

The theoretical study of dislocations, along with the development of means to investigate

and record them, allowed us to better understand the elementary mechanisms at the origin

of the plastic deformation in materials.

1.2 Properties of dislocations

There are two primary types of dislocations: the glissile and the sessile, which are mobile

and immobile dislocations respectively. We are mainly concerned with some properties of

the moving ones in this work.

1.2.1 Burgers vector

Under an external stress, the dislocations move in a crystallographic plane called the slip

plane. The displacement of a dislocation is characterized by a vector
−→
b called Burgers

vector [24]. Physically, the Burgers vector represents the magnitude and the direction of

the strain carried by a dislocation.

1.2.2 Types of moving dislocations

There are two main types of mobile dislocations: the edge and the screw dislocations.

The dislocations found in real materials are of mixed type, meaning that they have the

characteristics of both edge and screw dislocations.

• Edge dislocations: This type of dislocations occurs when an extra half plane of atoms

is introduced between certain crystal planes of the material, distorting their organization.

When an external force is applied on one side of the material, this half plane starts to pass

through the material, breaking and rejoining crystal planes, until it reaches the boundary

of the material. In this case, the line direction of the half plane (dislocation line) is

perpendicular to the Burgers vector. As we can see in Figure 1.3, the red planes represent

the atomic crystal planes in a material, and the half plane of atoms can be seen in the

middle with the dislocation line (in blue) at its end being perpendicular to the Burgers

vector
−→
b .

• Screw dislocations: In order to get a clear idea of screw dislocations, imagine you

cut along a plane through a cube, and you slip one half a bit (creating a step), leaving

3



1. INTRODUCTION TO THE DYNAMICS OF DISLOCATIONS

Figure 1.3: Illustration of an edge dislocation.

the two halves to reattach together. Now, if you repeat the same process, but you do not

cut all the way through the cube, the boundary of the cut is a screw dislocation. In this

case, the dislocation line is parallel to the Burgers vector. This is reflected in Figure 1.4.

Figure 1.4: Illustration of a screw dislocation.

•Mixed dislocations: In many materials, dislocations are found where the line direction

and Burgers vector are neither perpendicular nor parallel and these dislocations are called

mixed dislocations, consisting of both screw and edge character, as we can see in Figure

1.5. They are characterized by φ, the angle between the line direction and Burgers vector,

where φ = π/2 for pure edge dislocations and φ = 0 for screw dislocations.

1.2.3 Movement of dislocations

A dislocation can move in a plane that contains the dislocation line and the Burgers vector.

This is known as slipping or sliding (See Figure 1.6). In case of a screw dislocation, there

are many planes the dislocation can slip in, as the dislocation line and the Burgers vector

are parallel. However, there is only one plane an edge dislocation can slip in, since in this

case the dislocation line and the Burgers vector are perpendicular.

4



CHAPTER 1. GENERAL INTRODUCTION

Figure 1.5: Illustration of a mixed dislocation.

Figure 1.6: Illustration of dislocation sliding.

Another type of movement for edge dislocations is climbing. This takes place when a

vacancy occurs between the atoms surrounding the edge dislocation. The atom in the

dislocation line closest to the vacancy can either jump up or down, depending on the

position of the vacancy, in the half plane of the edge dislocation (See Figure 1.7). The

movement of the vacany would make the entire dislocation shift up or down in location.

What distinguishes sliding from climbing is that the first occurs under a shear stress

(external stress), whereas the second is caused from the motion of the atoms within the

material (internal stress). Another difference is that climbing happens much more rapidly

in high temperatures, due to the increase of vacancies between the atoms of materials,

while sliding is not much affected by temperature changes.

5



1. INTRODUCTION TO THE DYNAMICS OF DISLOCATIONS

Figure 1.7: Illustration of the displacement of atoms.

In our work, we are interested in a model that describes the dynamics of a finite number

of edge dislocations each propagating in a different slipping plane following a Burgers

vector. We announce in the following subsection the main systems we study.

1.3 Equations considered

We will mention later on some works that have been done considering the systems listed

in the following two subsections.

1.3.1 Eikonal system

The main system of equations we study in this part of the thesis is of the form




∂tu
i(t, x) = λi(t, x, u(t, x)) |∂xui(t, x)| in (0, T )× R,

ui(0, x) = ui0(x) in R,

(1.1)

for T > 0 and i = 1, . . . , d, where d ∈ N∗. The functions ui are real valued, ∂tui and ∂xui

represent the time and spatial derivatives of ui respectively, and the term λi represents

the velocity of ui. This system was initially proposed in 2 dimensions. We will show the

complete modeling of this bidimensional model and how we can retrieve system (1.1) from

it in Chapter 2.

System (1.1) can be seen as the “level-set approach” system associated to the motion of

the front Γit := {x : ui(t, x) = 0} with a normal velocity λi(t, x, u(t, x)) depending on the

solution u and affected by λj(t, x, u(t, x)) for j ̸= i. Osher and Sethian [76] introduced

the level set method (numerically) to study such problems. The rigorous treatment was

developed later by Evans, Spruck [51] and Chen, Giga, Goto [31], independently.

For system (1.1) we prove an existence and uniqueness result of a continuous solution (see

6



CHAPTER 1. GENERAL INTRODUCTION

Chapter 4), and we propose a convergent finite difference scheme approximating it (see

Chapter 5).

1.3.2 Diagonal hyperbolic system

If we omit the absolute value in system (1.1), it becomes a diagonal hyperbolic system of

transport equations. For such kind of systems, we have proven an existence result of a

discontinuous solution assuming the system is not necessarily strictly hyperbolic, where

the notion of strictly hyperbolic system here means that

λ1 < · · · < λd.

In other words, the (d × d) diagonal matrix with (λi(t, x, u(t, x)))i=1,...,d as the diagonal

has d distinct eigenvalues. Physically speaking, transport equations can intervene in the

modeling of several natural phenomena, such as road traffic, gas dynamics, and of course

the dynamics of dislocations.

The previously mentioned equations are first order non-linear Hamilton-Jacobi equations.

The question now is: what are the kinds of solutions we construct for such equations?

The answer is in the following subsection.

1.4 Hamilton-Jacobi equations and viscosity solutions

Consider the following first order Hamilton-Jacobi system

∂tu
i(t, x) +H i(t, x, u(t, x), ∂xu

i(t, x)) = 0 in (0,+∞)× R, (1.2)

where i = 1, . . . , d with d ∈ N∗, the Hamiltonians H i : (0,+∞)× R× Rd × R −→ R are

given for every i = 1, . . . , d, and they are in general non-linear. It is clear that the eikonal

and diagonal hyperbolic systems mentioned in the previous section are in the form of

(1.2).

Usually in the study of partial differential equations, when one can not find a classical

solution, we directly think of weak solutions or variational solutions, where we multiply

by a smooth test function, and we integrate by parts in order to throw the derivatives that

we can not easily handle onto the test function. In the case of Hamilton-Jacobi equations,

due to the non-linearity of the Hamiltonians, we can not apply this technique. Nonethe-

less, this reasoning of “transferring the derivatives onto a test function” , along with the

Maximum Principle, gave a glimpse of a new kind of solutions. At this point, the notion

7



1. INTRODUCTION TO THE DYNAMICS OF DISLOCATIONS

of viscosity solutions came to light, and it was the foundation of the vanishing viscosity

solutions to first order Hamilton-Jacobi equations in the sense introduced in Subsection

1.4.2.

The idea of viscosity solutions for Hamilton-Jacobi equations was first introduced and

set forth in the 1980’s by Crandall, Lions and Evans [34, 35, 36, 50, 69]. Actually, the

first to introduce the idea of weak viscosity solutions was Evans [50], then Crandall and

Lions [36] proved the uniqueness of such solutions, which established the firm foundation

to the theory of viscosity solutions to first order equations. Many great textbooks have

been written in the framework of viscosity solutions to Hamilton-Jacobi equations, such

as Bardi and Capuzzo-Dolcetta [7], Barles [8], Koike [62], Chapter 10 in Evans [49], and

Cannarsa and Sinestrari [28].

The definitions and ideas presented in this section are mainly adapted from the books

of Evans [49, Chapter 10], Barles [9], and Tran [83]. We remark that the simplest pre-

sentation of viscosity solutions is in the case where d = 1, we are, however, presenting

this theory in the case of a system of equations in order to remain in coherence with our

results later on.

1.4.1 Origin of viscosity solutions

Consider the following system of equations

∂tu
i(t, x) +H i(t, x, u(t, x), ∂xu

i(t, x), ∂2xxu
i(t, x)) = 0 in (0,+∞)× R, (1.3)

where H i : (0,+∞)×R×Rd×R×R −→ R. We say that the Hamiltonians H i are elliptic

if and only if the following ellipticity condition is satisfied for every i = 1, . . . , d

H i(t, x, u, p, r1) ≤ H i(t, x, u, p, r2) if r2 ≤ r1, (1.4)

for every t ∈ (0,+∞), x ∈ R, u ∈ Rd, p ∈ R, and r1, r2 ∈ R.

The notion of viscosity solutions was originally inspired by the Maximum Principle of

elliptic equations. In the following theorem, we recall this principle for parabolic equations.

We note that parabolic equations are a particular case of elliptic ones.

Theorem 1.1 (Maximum Principle).

We say that u = (ui)i=1,...,d ∈ (C2((0,+∞) × R))d is a classical solution of (1.3) if and

only if

8



CHAPTER 1. GENERAL INTRODUCTION

for all φ ∈ C2((0,+∞)×R), if (t0, x0) is a maximum of ui−φ for every i = 1, . . . , d, we

have

∂tu
i(t0, x0) +H i(t0, x0, u(t0, x0), ∂xφ(t0, x0), ∂

2
xxφ(t0, x0)) ≤ 0, (1.5)

and for all φ ∈ C2((0,+∞)×R), if (t0, x0) is a minimum of ui−φ for every i = 1, . . . , d,

we have

∂tu
i(t0, x0) +H i(t0, x0, u(t0, x0), ∂xφ(t0, x0), ∂

2
xxφ(t0, x0)) ≥ 0. (1.6)

We remark that (1.5) and (1.6) have sense even if ∂xui and ∂2xxu
i are not defined at (t0, x0).

In other words, (1.5) and (1.6) do not require the existence neither of ∂xui(t0, x0) nor of

∂2xxu
i(t0, x0), but only that of ui(t0, x0). Thus, a natural condition that allows us to give

sense to (1.5) and (1.6) is the continuity, or even less, the semi-continuity. From this

point, the first definition of viscosity solutions was introduced, and it is quoted in the

following definition (see Barles [12]).

Definition 1.1 (Viscosity solutions).

We say that u = (ui)i=1,...,d ∈ (C((0,+∞)×R))d is a viscosity solution of (1.3) if and only

if for all φ ∈ C2((0,+∞)×R), if (t0, x0) ∈ (0,+∞)×R is a local maximum of ui − φ for

i = 1, . . . , d, we have (1.5), and for all φ ∈ C2((0,+∞)× R), if (t0, x0) ∈ (0,+∞)× R is

a local minimum of ui − φ for i = 1, . . . , d, we have (1.6). If u verifies only (1.5) (resp.

(1.6)), we say that u is viscosity sub-solution (resp. super-solution).

As we can see now, the ellipticity condition (1.4) plays an essential role in the previous

definition.

We now come to realize that in the case where equation (1.3) is of first order, i.e. the

Hamiltonians do not depend on ∂2xxu
i, inequalities (1.5) and (1.6) make no sense. How-

ever, they were the bedrock of the vanishing viscosity solutions in the sense given in the

following subsection.

1.4.2 Vanishing viscosity solutions

This technique was developed in order to solve first order Hamilton-Jacobi equations. The

idea was based on adding a certain viscosity to the equation, making it a second order

one, in order to make use of the main definition of viscosity solutions (Definition 1.1).

This technique is presented formally in what follows.

If we have, for i = 1, . . . , d, the following problem




∂tu
i(t, x) +H i(t, x, u(t, x), ∂xu

i(t, x)) = 0 in (0,+∞)× R,

ui(0, x) = ui0(x) in R,

(1.7)

9
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where the initial data and the Hamiltonians are given. For ε > 0, we consider




∂tu
i
ε(t, x) +H i(t, x, uε(t, x), ∂xu

i
ε(t, x)) = ε∂2xxu

i
ε(t, x) in (0,+∞)× R,

uiε(0, x) = ui0(x) in R.

(1.8)

Under suitable conditions on ui0 and H i for i = 1, . . . , d, the previous problem admits a

smooth solution. Next, we hope that when we pass to the limit as ε → 0, the smooth

solution of (1.8) converges to some sort of weak solution of (1.7). First we must study

the behavior of the sequence (uiε)ε. It turns out that in practice, we can always prove

that uiε, ∂xu
i
ε, and ∂tuiε are uniformly bounded in L∞((0,+∞)×R). This shows that the

sequence (uiε)ε is compact in C(K) for every compact K ⊂ R. Thus, by the Ascoli-Arzela

compactness theorem, we can extract a subsequence, denoted (uiεj)εj that converges locally

uniformly in [0,+∞)× R to some limit ui for i = 1, . . . , d. The question now is whether

u = (ui)i=1,...,d solves (1.7) in some sense.

If we go back to the beginning of this section, we have said that the notion of vanishing

viscosity solutions was inspired by the Maximum Principle and the idea of transferring

the derivatives onto a smooth test function. We will illustrate the method in the case of

continuous solutions:

Assume that the Hamiltonians and the initial data are continuous. We fix a smooth test

function φ ∈ C∞((0,+∞)× R) and we suppose that for every i = 1, . . . , d

ui − φ has a strict local maximum at some point (t0, x0) ∈ (0,+∞)× R. (1.9)

This means that

(ui − φ)(t0, x0) > (ui − φ)(t, x),

for all points (t, x) in the neighborhood of (t0, x0), such that (t, x) ̸= (t0, x0).

Now, as uiεj converges to ui locally uniformally, we claim that for every εj > 0 sufficiently

small, there exists a point (tεj , xεj) such that

(tεj , xεj) → (t0, x0) as i→ ∞, (1.10)

uiεj − φ has a local maximum at (tεj , xεj). (1.11)

Thus, we can see that
∂xu

i
εj
(tεj , xεj) = ∂xφ(tεj , xεj),

∂tu
i
εj
(tεj , xεj) = ∂tφ(tεj , xεj),

−∂2xxuiεj(tεj , xεj) ≥ −∂2xxφ(tεj , xεj).

(1.12)

10
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Consequently, by (1.10), (1.11) and (1.12), we can obtain

∂tφ(tεj , xεj) +H i(tεj , xεj , uεj(tεj , xεj), ∂xφ(tεj , xεj))

= ∂tu
i
εj
(tεj , xεj) +H i(tεj , xεj , uεj(tεj , xεj), ∂xu

i
εj
(tεj , xεj))

= εj∂
2
xxu

i
εj
(tεj , xεj)

≤ εj∂
2
xxφ(tεj , xεj).

Finally, since φ is smooth and H i, ui0 are continuous for every i = 1, . . . , d, we pass to the

limit as εj → 0 to deduce

∂tφ(t0, x0) +H i(t0, x0, u(t0, x0), ∂xφ(t0, x0)) ≤ 0. (1.13)

We say in this case that u is a continuous viscosity sub-solution of (1.7). Similarly, if we

have assumed in (1.9) that ui−φ admits a strict local minimum at (t0, x0), then we would

have reached

∂tφ(t0, x0) +H i(t0, x0, u(t0, x0), ∂xφ(t0, x0)) ≥ 0, (1.14)

and in this case we say that u is a continuous viscosity super-solution of (1.7). Finally,

we say that u is a continuous viscosity solution of (1.7) if it is both a viscosity sub- and

super- solution of (1.7).

Remark 1.1. The maximum in (1.9) does not necessarily have to be strict. If we assume

that ui−φ has a local maximum at (t0, x0), then we can simply modify the test function

by taking for example φ̃(t, x) = φ(t, x) + |t − t0|2 + |x − x0|2, so that we assure the new

text function touches the graph of ui from above.

Therefore, we have constructed the existence and the meaning of continuous vanishing

viscosity solution in the case of first order Hamilton-Jacobi equations. There are other

definitions to viscosity solutions, which are all based on inequalities (1.13) and (1.14), and

can be found in Evans [49], Barles [8], and Tran [83].

It is important to mention that the definition of a continuous viscosity solutions can be

generalized to the discontinuity case, which is in fact the framework of our results. Using

the technique presented in this subsection, we will be able to formulate another meaning

of a vanishing viscosity solution. This new formulation includes the fact that we regu-

larize the velocities and initial data before adding a viscosity term. Thus, we will show

the existence of discontinuous viscosity solutions using a careful analysis of the vanishing

11



2. EXISTENCE RESULT OF A DISCONTINUOUS VISCOSITY SOLUTION

viscosity solutions technique presented in this subsection.

After defining the type of solutions we will be working with, we are now ready to present

our contribution in the fields of dislocation dynamics and viscosity solutions in the fol-

lowing three sections.

2 Existence result of a discontinuous viscosity solution

In this section, we quote the existence result that we have proven to a 1-dimensional

diagonal hyperbolic system, not necessarily strictly hyperbolic, of transport equations.

This work is motivated by the following model

∂tu
i =

(
∑

j=1,...,d

Aiju
j

)
∂xu

i for i = 1, . . . , d,

where (Aij)i,j=1,...,d is a non-positive symmetric matrix, which describes the dynamics of

dislocation densities in the case of several sliding directions. We refer to Chapter 2 for

the detailed modeling of the system considered.

More precisely, our main concern was to find solutions of the form u(t, x) = (ui(t, x))i=1,...,d

to the following system




∂tu
i(t, x) = λi(t, x, u(t, x))∂xu

i(t, x) in (0, T )× R,

ui(0, x) = ui0(x) in R,

(1.15)

where d is an integer, T > 0, and i = 1, . . . , d. We were able to prove the global in

time existence of a discontinuous viscosity solution under the following condition on the

velocities λi, for every i = 1, . . . , d

λi ∈ L∞((0, T )× R×K) for T > 0 and for all compact K ⊂ Rd, (1.16)

and assuming the initial data ui0 satisfy for every i = 1, . . . , d

ui0 ∈ L∞(R) ∩BV (R), (1.17)

where BV (R) is the space of functions of bounded variations given by

BV (R) =
{
f ∈ L1

loc(R); TV (f) < +∞
}
,

with TV (f) being the total variation of f defined as

TV (f) = sup

{∫

R

f(x)ϕ′(x)dx; ϕ ∈ C1
c (R) and ∥ϕ∥L∞(R) ≤ 1

}
.

12
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We mention earlier that we have taken the space BV (R) endowed with the semi-norm

|f |BV (R) = TV (f).

We recall now some results done in the framework of diagonal hyperbolic systems. In the

case of strictly hyperbolic systems, Lax [63] proved the existence of a Lipschitz solution

in the case (2× 2) of system (1.15). This result was then extended to the case of (d× d)

rich strictly hyperbolic systems by Serre [79, Vol. II]. Also, for general (d × d) strictly

hyperbolic systems, Bianchini and Bressan [17] proved a global existence and uniqueness

result assuming the initial data had small total variation. Their approach was mainly

based on a careful analysis of the vanishing viscosity method. Furthermore, an existence

result has first been proved by Glimm [52] in the special case of conservative equations.

We can also mention that an existence result has been also obtained by LeFloch, Liu [65]

and LeFloch [64, 66], in the non-conservative case. Moreover, El Hajj and Monneau [46]

have shown the existence and uniqueness of a continuous solution for strictly hyperbolic

systems assuming the initial data were non-decreasing functions.

For (d × d) systems that are not necessarily strictly hyperbolic, we mention a global ex-

istence and uniqueness result of a continuous solution for non-decreasing initial data by

El Hajj and Monneau [45]. There result was based on the same entropy estimate that

was proven in their previous work [46]. Moreover, El Hajj, Ibrahim and Rizik [44] have

recently proven the existence of a discontinuous viscosity solution under certain monotony

conditions on the velocities and the initial data.

We have established for system (1.15) the global in time existence of a discontinuous

viscosity solution in some weak sense, which we define later, without any monotony con-

ditions neither on the velocities nor on the initial data. In the case of non-decreasing

initial data, we can obtain as a consequence of this result that the constructed solution

is a classical discontinuous viscosity solution.

In order to prove so, we have first regularized the initial data and the velocities by clas-

sical convolution, then we have added the viscosity term η∂2xxu
i
ε, where η denotes the

diffusion coefficient of the parabolic regularization, and ε corresponds to the mollifiers.

This brought us to consider the following system




∂tu
i
ε,η(t, x) = η∂2xxu

i
ε,η(t, x) + λiε(t, x, uε,η(t, x))∂xu

i
ε,η(t, x) in (0, T )× R,

uiε,η(0, x) = ui0,ε(x) in R,

(1.18)

13
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where for every i = 1, . . . , d

ui0,ε ∈ L∞(R) ∩ C∞(R), and ∂xu
i
0,ε ∈ Lp(R) ∀ 1 ≤ p ≤ ∞, (1.19)

and

λiε ∈ W 1,∞((0, T )× R×K) ∩ C∞((0, T )× R× Rd), for all compact K ⊂ R. (1.20)

We can now quote in the following theorem the existence result we have proven on system

(1.15), which is discussed elaborately in Chapter 3.

Theorem 1.2. (Global existence result in a weak sense)

Suppose that assumptions (1.16) and (1.17) are satisfied. Then, we have

i) Global existence and uniqueness of a smooth solution

There exists a unique classical solution uε,η = (uiε,η)i=1,...,d of (1.18) belonging to the space

(C∞((0, T ) × R))d ∩ (W 1,∞((0, T ) × R))d, and satisfying for all T > 0 and i = 1, . . . , d,

the following uniform a priori estimates

∥∥uiε,η
∥∥
L∞((0,T )×R)

≤
∥∥ui0
∥∥
L∞(R)

, (1.21)

∥∥∂xuiε,η
∥∥
L∞((0,T );L1(R))

≤
∣∣ui0
∣∣
BV (R)

, (1.22)

∥∥∂tuiε,η
∥∥
L∞((0,T );W−1,1(R))

≤
(
1 +

∥∥λi
∥∥
L∞((0,T )×R×K0)

) ∣∣ui0
∣∣
BV (R)

, (1.23)

where K0 =
d∏

i=1

[
−
∥∥ui0
∥∥
L∞(R)

,
∥∥ui0
∥∥
L∞(R)

]
.

ii) Sub- and super-solutions of (1.15)

Let uε,η be the solution of (1.18), given in (i). Then the upper and lower relaxed semi-

limits u =
(
ui
)
i=1,...,d

and u = (ui)i=1,...,d, which are defined, respectively, as

ui(t, x) = lim sup⋆uiε,η(t, x) = lim sup
(ε,η)−→(0,0)
(s,y)−→(t,x)

uiε,η(s, y), (1.24)

and

ui(t, x) = lim inf⋆u
i
ε,η(t, x) = lim inf

(ε,η)−→(0,0)
(s,y)−→(t,x)

uiε,η(s, y), (1.25)

are a couple of discontinuous viscosity sub- and super- solutions of system (1.18) (in the

sense of Definition 3.2).

14
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iii) Convergence and existence of a weak solution

Assume that uiε,η satisfies (1.21), (1.22) and (1.23) for i = 1, . . . , d. Then, up to the

extract of a subsequence, the function uiε,η converges, as ε and η tend to zero, to a function

ui ∈ L∞((0, T )× R
)
∩ L∞((0, T ); BV (R)

)
∩ C

(
[0, T ); L1

loc(R)
)
, (1.26)

strongly in C ([0, T ); L1
loc(R)).

Moreover, ui satisfies, for all T > 0 and for i = 1, . . . , d, the following inequalities

∥∥ui
∥∥
L∞((0,T )×R)

⩽
∥∥ui0
∥∥
L∞(R)

, (1.27)

∥∥ui
∥∥
L∞((0,T );BV (R))

⩽
∣∣ui0
∣∣
BV (R)

, (1.28)

and the following equality

ui(t, ·) = ui(t, ·) = ui(t, ·), except at most on a countable set in R, ∀ t ∈ [0, T ). (1.29)

We will outline briefly the strategy of the proof to the previous theorem. The existence

of a unique solution to (1.18) is based on a Fixed Point argument applied to the integral

form of this equation. Then, by a Bootstrap argument, we can show that this solution

is smooth. After that, we show that this smooth solution satisfies the L∞ and the BV

bounds (1.21) and (1.22) respectively. These estimates will allow us to pass to the limit

when the regularization vanishes. Then, using the stability results of viscosity solutions,

along with the finite speed propagation property (given in Lemma 3.4) that is proven

on the smooth solution of (1.18), we will be able to pass to the limit as ε, η → 0, and

show that the upper and lower relaxed semi-limits, which are defined in (1.24) and (1.25),

are discontinuous viscosity sub- and super- solutions of (1.15) respectively, in the sense

of discontinuous viscosity solutions introduced by Ishii [58] for Hamilton-Jacobi systems

(recalled in Definition 3.2). Finally, reaching some (ε, η)- independent a priori estimates,

we will be able to show that ui(t, ·) is equal to ui(t, ·) in an almost everywhere sense.

Hence, we have established the existence of a function u = (ui)i=1,...,d, such that its upper

semi-continuous envelope (resp. lower semi-continuous envelope) coincides almost every-

where with its upper relaxed semi-limit (resp. lower relaxed semi-limit). This is what we

mean by a discontinuous viscosity solution in a weak sense in this work.

In the case of non-decreasing initial data, we can actually prove the existence of a discon-

tinuous viscosity solution, i.e., we will obtain a function u that is both a viscosity sub- and

super- solution of (1.15). In this case, we have an absolute equality between the upper
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semi-continuous envelope of u (resp. the lower semi-continuous envelope) and the upper

relaxed semi-limit (resp. lower relaxed semi-limit). This is announced in the following

theorem.

Theorem 1.3. (Global existence of non-decreasing discontinuous viscosity so-

lution)

Assume that (1.16) and (1.17) are satisfied. Suppose that ui0 ∈ L∞(R) and the function

ui0 is non-decreasing for i = 1, . . . , d, then system (1.15) admits a discontinuous non-

decreasing viscosity solution u =
(
ui
)
i=1,...,d

(in the sense of Definition 3.2), such that for

i = 1, . . . , d, ui satisfies (1.21), (1.22), and (1.23).

In the proof of Theorem 1.3, we will employ the finite speed propagation property in

order to prove that the upper semi-continuous envelope of ui (resp. lower semi-continuous

envelope) is in fact equal to the upper relaxed semi-limit (resp. lower relaxed semi-limit)

of ui, in the case where the initial data are non-decreasing functions. This will lead us to

the existence of a classical viscosity solution. The proof is demonstrated in Section 6 of

Chapter 3.

3 Existence and uniqueness result of a continuous vis-

cosity solution

In this section, we show that under certain extra conditions on the velocities λi, we can

obtain the existence and uniqueness of a continuous viscosity solution to (1.15). However,

we will be studying a more general case of system (1.15). More precisely, we consider





∂tu
i(t, x) = λi(t, x, u(t, x))|∂xui(t, x)| in (0, T )× R,

ui(0, x) = ui0(x) in R.

(1.30)

We have two main results for this system. First, we have proven the global in time

existence of a discontinuous viscosity solution assuming the velocities λi verify (1.16) and

the initial data ui0 satisfy (1.17), for every i = 1, . . . , d, as in the previous section.

As a second result, we show that this discontinuous viscosity solution would be continuous

and unique if we assume that the initial data are also continuous, and the velocities satisfy,
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for every i = 1, . . . , d, the following assumptions

λi ∈ C((0, T )× R×K) for T > 0 and for all compact K ⊂ Rd,

there exists M1 > 0 such that, for all x, y ∈ R and t ∈ (0, T ),

|λi(t, x, u)− λi(t, y, u)| ≤M1|x− y|.

(1.31)

It is important to note here that the regularity assumptions imposed on the velocities

and initial data in order to prove the existence and uniqueness of a continuous viscosity

solution are optimal for such systems.

Let us now mention some results proven on system (1.30). El Hajj, Ibrahim, and Rizik

have proved in [44] an existence result of a discontinuous viscosity solution in the same

sense we have introduced in Section 2, but under a monotony condition on the veloci-

ties. In other words, they have shown the existence of a function u = (ui)i=1,...,d such

that its upper relaxed semi-limit u = (ui)i=1,...,d is a viscosity sub-solution of (1.30), and

its lower relaxed semi-limit u = (ui)i=1,...,d is a viscosity super-solution of (1.30), with

ui(t, ·) = ui(t, ·) almost everywhere in R. We will prove the same result without any

monotony assumptions on the velocities. We also mention that, El Hajj and Oussaily

[47] have proven the existence and uniqueness of a continuous viscosity solution to (1.30)

under a certain monotony on the velocities using an entropy and a BV estimate. It is

proven by considering a parabolic regularization of the main system and then passing to

the limit when the regularization vanishes. This result is a generalization of their previous

work [48] for a (2× 2) eikonal system.

The proof of our first result, which is the global existence of a discontinuous viscosity

solution, is quite similar to the proof of Theorem 1.2. We consider a parabolic regulariza-

tion of the system understudy and we pass to the limit when the regularization vanishes

using some uniform a priori estimates. To that end, we give the following theorem.

Theorem 1.4 (Existence of a discontinuous viscosity solution to (1.30)).

Assume that (1.16) and (1.17) are satisfied. Then the following points hold

i) Existence and uniqueness to the regularized problem

There exists a unique Lipschitz solution uε,η = (uiε,η)i=1,...,d of




∂tu
i
ε,η(t, x) = η∂2xxu

i
ε,η(t, x) + λiε(t, x, uε,η(t, x))|∂xuiε,η(t, x)| in (0, T )× R,

uiε,η(0, x) = ui0,ε(x) in R.

(1.32)
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where λiε and ui0,ε are the regularization of λi and ui0 by classical convolution respectively,

belonging to the space (C([0, T );W 1,∞(R)))d, and satisfying for all T > 0 and i = 1, . . . , d,

the following uniform estimates

∥∥uiε,η
∥∥
L∞((0,T )×R)

≤
∥∥ui0
∥∥
L∞(R)

, (1.33)

∥∥∂xuiε,η
∥∥
L∞((0,T );L1(R))

≤
∥∥∂xui0

∥∥
L1(R)

, (1.34)

∥∥∂tuiε,η
∥∥
L∞((0,T );W−1,1(R))

≤
(
1 +

∥∥λi
∥∥
L∞((0,T )×R×K0)

) ∣∣ui0
∣∣
BV (R)

, (1.35)

where W−1,1(R) is the dual of W 1,∞(R), and

K0 =
d∏

i=1

[
−
∥∥ui0
∥∥
L∞(R)

,
∥∥ui0
∥∥
L∞(R)

]
.

ii) Sub- and super- solutions of (1.30)

Let uε,η be the unique solution of (1.32) constructed in (i). Then the upper and lower

relaxed semi-limits u =
(
ui
)
i=1,...,d

and u = (ui)i=1,...,d, are a couple of discontinuous dis-

continuous viscosity sub- and super- solutions of system (1.30) (in the sense of Definition

4.1).

iii) Convergence

Assume that the solution uiε,η of (1.32) satisfies (1.33), (1.34) and (1.35) for i = 1, . . . , d.

Then, up to the extraction of a subsequence, the function uiε,η converges, as ε and η tend

to zero, to a function

ui ∈ L∞((0, T )× R
)
∩ L∞((0, T ); BV (R)

)
∩ C

(
[0, T ); L1

loc(R)
)
, (1.36)

strongly in C ([0, T ); L1
loc(R)).

Moreover, ui satisfies, for all T > 0 and for i = 1, . . . , d, the following inequalities

∥∥ui
∥∥
L∞((0,T )×R)

⩽
∥∥ui0
∥∥
L∞(R)

, (1.37)

∥∥ui
∥∥
L∞((0,T );BV (R))

⩽
∣∣ui0
∣∣
BV (R)

, (1.38)

and the following equality

ui(t, ·) = ui(t, ·) = ui(t, ·), except at most on a countable set in R, for all t ∈ [0, T ).

The elaborate proof of this theorem can be found in Section 2 of Chapter 4.
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Our second result in this work was based on the quasi-monotony assumption we imposed

on (1.30), in the sense of Ishii, Koike [58, 59]. In other words, we assumed that the

velocities λi verify, for every i = 1, . . . , d

λj(t, x, s)− λj(t, x, r) ≥ 0 for all vectors r = (ri)i=1,...,d, s = (si)i=1,...,d

such that rj − sj = max
i∈{1,...,d}

(ri − si) ≥ 0.

(1.39)

Theorem 1.5 (Existence and uniqueness of a continuous solution to (1.30)).

Suppose that (1.16), (1.17), (1.31), (1.39) hold, and that the initial data ui0 are also

continuous functions on R for every i = 1, . . . , d. Then, there exists a unique continuous

viscosity solution of (1.30) satisfying (1.37) and (1.38).

The proof of this theorem is based on the comparison principle. First, in order to prove

the existence of a continuous viscosity solution, we will show that ui and ui, the sub- and

super- solutions constructed in Theorem 1.4, are equal for every x ∈ R and t ∈ [0, T ).

As we already have from the definition of relaxed semi-limits that ui ≤ ui, for every

i = 1, . . . , d, then by exploiting the comparison principle, we will be able to prove that

ui ≥ ui, for every i = 1, . . . , d. This is announced in the following proposition.

Proposition 1.1 (Comparison Principle).

Assume (1.16), (1.17), (1.31), (1.39) hold, and that the initial data ui0 are also continuous

functions on R for every i = 1, . . . , d. Let u = (ui)i=1,...,d and u = (ui)i=1,...,d be respectively

discontinuous viscosity sub- and super solutions of (1.30), in the sense of Definition 4.1.

Then, if ui(·, 0) ≤ ui(·, 0) in R we get ui ≤ ui in R× [0, T ) for every i = 1, . . . , d.

As a consequence of this proposition, we can also obtain the uniqueness of the continuous

solution.

We also apply the proven results to a 1-dimensional system describing the dynamics of

dislocation densities that was initially proposed in 2 dimensions by Groma and Balogh

[53, 54], where the dislocations are considered as points moving in the plane (x1, x2),

propagating to the left and to the right, following two Burgers vectors ±(1, 0). In the

1-dimensional model, we assume that the dislocations depend on 1 variable x = x1 + x2

only, which reduces the 2D model into a 1D one. More precisely, this 1D system is of the
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form




∂tv
1(t, x) = −

(
(v1 − v2)(t, x) + β

∫ 1

0

(v1 − v2)(t, y)dy + a(t)

)∣∣∣∂xv1(t, x)
∣∣∣ in (0, T )× R,

∂tv
2(t, x) =

(
(v1 − v2)(t, x) + β

∫ 1

0

(v1 − v2)(t, y)dy + a(t)

)∣∣∣∂xv2(t, x)
∣∣∣ in (0, T )× R,

(1.40)

where v1, v2 represent the left and right propagating dislocations, and ∂xv
1, ∂xv

2 are the

dislocation densities corresponding to each type. The constant β depends on the elastic

coefficients and the material size, while the function a(t) represents the exterior shear

stress. We refer to [41] for more details about the modeling.

We recall some results for system (1.40). El Hajj has shown in [39] the existence and

uniqueness of a non-decreasing solution in the space W 1,2
loc ((0, T )×R), based on an L2 en-

ergy estimate. Also, El Hajj and Forcadel [41] have shown the existence and uniqueness of

a Lipschitz continuous viscosity solution for non-decreasing initial data. In the framework

of discontinuous solutions, El Hajj, Ibrahim, and Rizik [42] have proved a global existence

result of a BV solution to system (1.40). In the case of (2 × 2) systems in 2-dimension,

Cannone, El Hajj and Monneau [29] have proved a global existence and uniqueness result

using an entropy estimate. In the same context, we mention a local existence result by

El Hajj [40] in Hölder spaces.

We apply the result of Theorem 1.5 to the local case of system (1.40), i.e, when β = 0,

in order to deduce the existence and uniqueness of a continuous viscosity solution to this

system.

4 Convergence result of a finite difference scheme

Finally, in this section, we present a numerical study to the problem presented in the

previous section. We propose a semi-explicit scheme, which preserves the L∞ and BV

estimates proven in the continuous case, that permits us to simulate the solutions we have

constructed in Theorems 1.4, 1.5.

We first consider the discretization

Ξ =
{
i∆x, i ∈ Z

}
, ΞN =

{
0, . . . , (∆t)N

}
,

where N is a positive integer, and we take a time step ∆t > 0 such that ∆t = T/N , and
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a space step ∆x > 0. We denote by uα the continuous solution and by uα,ni the associated

discrete solution defined as an approximation of uα(n∆t, i∆x). For uni = (uα,ni )α=1,...,d, we

introduce the following semi-explicit scheme



uα,n+1
i − 1

2

(
uα,ni+1 + uα,ni

)

∆t
− λα(tn+1, xi, u

n+1
i )

∣∣uα,ni+1 − uα,ni
∣∣

∆x
= 0,

uα,0i = uα,0|ε| (xi),

∀α ∈ {1, . . . , d},

(1.41)

where uα,0|ε| is a regularization by convolution of the initial data uα0 to (1.30), where

ε = (∆t,∆x), for α = 1, . . . , d.

We will mention some numerical results known in the framework of Hamilton-Jacobi

equations. Using the notion of monotone numerical Hamiltonians introduced by Osher

and Sethian [76], Alvarez, Carlini, Monneau, and Rouy [5, 4] have proved the convergence

of explicit schemes approximating a non-local eikonal equation. In addition, Souganidis

[81] have shown the convergence of general finite difference schemes approximating first

order Hamilton-Jacobi equations. He also provides explicit error estimates.

In framework of non-decreasing solutions, Leveque [67] have considered approximations

to conservative hyperbolic systems. For non-conservative systems, Monasse and Monneau

[73] have presented a convergent semi-explicit scheme assuming the system is strictly hy-

perbolic.

Our purpose is first to recover the properties of the solution of (1.30) at the discrete

level, then to prove the convergence of the discrete solution. In order to do so, we will

first consider a continuous linear interpolation of the discrete points (uα,ni )n,i, denoted by

uα,ε for ε = (∆t,∆x). Then, we show that this interpolation function preserves the L∞

and the BV estimates (1.37) and (1.38) respectively. These estimates, along with the

discrete finite speed propagation property, and the stability, consistency, and monotony

of the scheme, allow us to show that the upper and lower relaxed semi-limits uα and uα

of uα,ε are, respectively, discontinuous viscosity sub- and super- solutions of system (1.30)

in the sense of discontinuous viscosity solutions introduced by Ishii in [58, Definition 2.1]

for Hamilton Jacobi systems. Moreover, we will be able to prove that uα(t, ·) and uα(t, ·)
coincide almost everywhere in space and uniformly in time for all t ∈ [0, T ), as in Theorem

1.4. Finally, in the case where system (1.30) verifies the comparison principle, i.e. under

the conditions of Theorem 1.5, we will be able to prove that uα,ε converges to the unique

continuous solution of (1.30).
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We set uni = (uα,ni )α=1,...,d, un = (uni )i∈Z, and we introduce the box

U =
d∏

α=1

[
−∥uα0∥L∞(R) , ∥uα0∥L∞(R)

]
.

We say that un ∈ UZ if uni ∈ U for all i ∈ Z. We also assume that the velocities satisfy

the following assumption




there exists M > 0 such that

d∑

α=1

|λα(t, x, u)− λα(t, x, v)| ≤M |u− v|, for all u, v ∈ Rd,
(1.42)

where |w| =
d∑

α=1

|wα|, for w = (w1, . . . , wd).

Next, we assume that

∆t

∆x
= min

(
1

2Λ
,

1

2M ∥u0∥(L∞(R))d

)
= γ, (1.43)

where ∥u0∥(L∞(R))d =
d∑

α=1

∥uα0∥L∞(R), and

Λ = sup
α∈{1,...,d}

∥λα∥L∞((0,T )×R×U) .

We can now present our results in this work

Theorem 1.6 (Existence of BV discrete solution).

Assume (1.16), (1.17), (1.42), and (1.43) hold. Then we have

i) (Existence)

Let un ∈ UZ. Then there exists a unique solution un+1 ∈ UZ to the semi-explicit scheme

(1.41).

(ii) (Discrete BV estimate)

The discrete gradient, which is defined as

θα,n
i+ 1

2

=
uα,ni+1 − uα,ni

∆x
, (1.44)

verifies the following estimate
∑

i∈Z

∣∣∣θα,n+1

i+ 1
2

∣∣∣ ≤
∑

i∈Z

∣∣∣θα,n
i+ 1

2

∣∣∣ , for n = 0, . . . , N − 1. (1.45)
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Theorem 1.7 (Convergence of the solution of the numerical scheme).

Assume (1.16), (1.17), (1.42), and (1.43) are satisfied. Consider the solution (un)n=0,...,N

of the scheme (1.41) for the time step ∆t and the space step ∆x. Let us denote by

ε = (∆t,∆x) and uε a continuous linear interpolation function defined as

uε(n∆t, i∆x) = uni , for n = 0, . . . , N, i ∈ Z.

Then the following points hold

i) Estimates on uε

The function uε = (uα,ε)α=1,...,d verifies

∥uα,ε∥L∞((0,T )×R) ≤ ∥uα0∥L∞(R) , (1.46)

∥uα,ε∥L∞((0,T );BV (R)) ≤ |uα0 |BV (R), (1.47)

∥∂tuα,ε∥L∞((0,T );L1(R)) ≤
(
1 +

2

γ
+ Λ

)
|uα0 |BV (R) . (1.48)

ii) Convergence

The upper and lower relaxed semi-limits of uα,ε, which are defined as

uα(t, x) = lim sup⋆uα,ε(t, x) = lim sup
ε−→0

(s,y)−→(t,x)

uα,ε(s, y),

and

uα(t, x) = lim inf⋆u
α,ε(t, x) = lim inf

ε−→0
(s,y)−→(t,x)

uα,ε(s, y),

are a couple of discontinuous viscosity sub- and super-solutions of (1.30) (in the sense of

Definition 5.2).

iii) Equality between uα and uα

Assume uα,ε satisfies (1.46), (1.47) and (1.48) for every α = 1, . . . , d. Then, up to the

extract of a subsequence, the function uα,ε converges, as ε→ 0, to a function

uα ∈ L∞((0, T )× R
)
∩ L∞((0, T ); BV (R)

)
∩ C

(
[0, T ); L1

loc(R)
)
,

strongly in C ([0, T ); L1
loc(R)).

Moreover, uα satisfies, for all T > 0 and for α = 1, . . . , d, estimates (1.37), (1.38) and

the following equality

uα(t, ·) = uα(t, ·) = uα(t, ·), except at most on a countable set in R, for all t ∈ [0, T ).
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iv) Unique solution

If (1.31), (1.39) are also satisfied, and vα0 are continuous for every α = 1, . . . , d, then uα,ε

converges to the unique solution of (1.30).

We end this section with some numerical simulations illustrated in the local case of system

(1.40), i.e for β = 0, based on scheme (1.41). We equip this system with non-decreasing

initial data of the form

u10(x) = u20(x) = u0(x) = uper(x) + L0x,

where uper are 1-periodic functions. We have illustrated numerical simulations under

suitable time and space steps satisfying (1.43), for a(t) = 3t, and L0 = 0.5.

As it is represented in Figure 1.8(a), we assumed that the dislocation densities ∂xu1, ∂xu2

are not uniformly distributed in space at t = 0. In other words, there exists regions with

concentrated dislocation densities, and other regions with no dislocations at all. This

assumption is quite natural as dislocations in materials are not uniformly distributed in

reality. When we exert an exterior stress, we notice that they begin to diffuse inside the

material (Figure 1.8(b), 1.8(c)), to reach a constant density that is equal to L0 = 0.5, and

fill the entire material at t = 1, as we can see in Figure 1.8(d).

5 New contraction result to the evolutionary p-Laplacian

equation

Our purpose in this part of the thesis is to present a new contraction family for the

evolutionary p-Laplacian equation

∂tu(t, x) = ∆pu(t, x) in QT = (0, T )× Ω, (1.49)

where T > 0, and Ω ⊂ Rn, such that n ≥ 1, is an open connected subset with smooth

boundary. The symbol ∆p represents the nonlinear p-Laplacian operator, which is defined

as

∆pu = ∇ · (∇u|∇u|p−2) = div(∇u|∇u|p−2) for 1 ≤ p ≤ ∞. (1.50)

It is a quasi-linear, elliptic partial differential operator of second order.

In simple terms, when we study the "contraction" of the solutions to a certain evolutionary

equation, what we seek to know is whether these solutions are approaching each other

with time or not. The use of the word "approach" implies the action of a distance, and

24



CHAPTER 1. GENERAL INTRODUCTION

(a) t=0 (b) t=0.1

(c) t=0.5 (d) t=1

Figure 1.8: Dislocations densities distribution ∂xu
1(·, t), ∂xu2(·, t) at several instants.

this in fact is what is genuine about our work, the distance being used itself. Normally,

contraction results are found in Sobolev spaces, such as L2(Ω), H1(Ω), or even H−1(Ω),

but in our studies, we will be introducing a new distance constructed between the solutions

of the equation understudy, and thus developing a new meaning of "contracting solutions".

5.1 Physical interpretation

In what follows, Ω ⊂ Rn is a bounded, open set with smooth boundary ∂Ω. The p-

Laplacian operator is the nonlinear generalization of the linear Laplacian operator

∆u = ∆xu =
n∑

i=1

∂2xixiu where x = (x1, . . . , xn). (1.51)

Notice that for p = 2, equation (1.49) reduces to the well-known Heat equation

∂tu = ∆u. (1.52)
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These two equations are of diffusion type, and they are derived from the Continuity

equation, which physically describes the evolution in time of the density of a certain

quantity ϕ. In the book of Evans [49, chapter 2], it is mentioned that, for V ⊂ Ω being

any smooth subset of Ω, the rate of change of the total quantity within V is equal to the

negative of the net flux through ∂V . In other words, no material is created or destroyed.

This phenomenon is translated mathematically as

d

dt

∫

V

ϕ dx = −
∫

∂V

J · ν dS,

J being the flux density. Thus, using Stokes theorem, we have

∂tϕ = −∇ · J, (1.53)

since V was arbitrary. The flux J of a diffusing material moves, according to Fick’s first

law, from regions of high density into regions of low density with a magnitude that is

proportional to the local density gradient, but points in the opposite direction. Thus, we

have

J = −µ(ϕ, x)∇ϕ(t, x), (1.54)

where µ(ϕ, x) is the diffusive coefficient of the density ϕ. Then, by replacing (1.54) in

(1.53), we get the Diffusion equation

∂tϕ(t, x) = ∇ · (µ(ϕ, x)∇ϕ(t, x)). (1.55)

This equation can intervene in the interpretation of a wide variety of physical phenomena,

depending on the value of µ.

A work by Benedikt et al. [15], shows that a nonlinear form of Darcy’s Law along with

the Continuity Equation leads to the evolutionary p-Laplacian equation (1.49).

5.2 Some previous results

It is known that for Ω ⊂ Rn bounded domain with Lipschitz continuous boundary, the

energy functional

φ(u) =

∫

Ω

|∇u|pdx, (1.56)

associated with the p-Laplacian operator ∆pu = ∇ · (∇u|∇u|p−2), gives rise to strongly

continuous nonlinear (linear if p = 2) semigroups of contractions on L2(Ω) (see for exam-

ple [32, Theorem 4.8]). A classical result by Minty [71] (see also Evans [49, Chapter 9], or
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the monograph by Brézis [22]) shows that every convex, lower semi-continuous functional

φ on a Hilbert space H generates a strongly continuous semigroup (nonlinear in general)

of contractions on D(φ).

Moreover on the contraction of the solutions to the p-Laplacian equation (1.49), it is easy

to show that ∥u(t, ·)∥W 1,p(Ω) ≤ ∥u0∥W 1,p(Ω) for all t, since

d

dt

(
1

p

∫

Ω

|∇u|pdx
)

=

∫

Ω

∇(∂tu)∇u|∇u|p−2dx = −
∫

Ω

(div(∇u|∇u|p−2))2dx ≤ 0.

Similarly,
d

dt

(
1

p

∫

Ω

|u|pdx
)

= −(p− 1)

∫

Ω

|∇u|2|∇u|p−2|u|p−2dx ≤ 0.

5.3 New contraction result

Here, we present our contribution in the theory of differential contraction to the evolu-

tionary p-Laplacian equation. We consider, for Ω ⊂ Rn an open connected subset with

smooth boundary and p > 1, equation (1.49) equipped with the following initial and

boundary conditions





u(t, x) = 0 on (0, T )× ∂Ω,

u(0, ·) = u0 in Ω.

(1.57)

The initial condition u0 satisfies

u0 ≥ 0 in Ω. (1.58)

We announce our main result in the following theorem.

Theorem 1.8.

Let u and v be two solutions of (1.57), belonging to the space C2(QT ), with initial data

u0 and v0 respectively, both satisfying (1.58). For p > 1, q > 1, and α ∈ R such that

0 < α− < α < 1, where

α− :=
4(q − 1)(p− 1)

4q(q − 1)(p− 1)− p2q2
+ 1,

we have ∫

Ω

(vα − uα)q+dx ≤
∫

Ω

((v0)
α − (u0)

α)q+ dx. (1.59)

As a consequence of this theorem, we obtain that the solutions of (1.57) have non-

decreasing Lr(Ω) norm for r = αq ≥ 1, which is a quite known result for the p-Laplacian

operator (See [16]). Thus, we have the following corollary.
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Corollary 1.1.

Under the conditions of Theorem 1.8, a solution u satisfies, for all r ≥ 1, the following

estimate

∥u(t)∥Lr(Ω) ≤ ∥u0∥Lr(Ω) , for all t > 0. (1.60)

Before giving the idea of the proof of Theorem 1.8, we first construct a distance between

its positive solutions. We introduce the function

w0 : [0, 1] → C2(Ω)

s 7→ w0(s) =: w
s
0,

where w0 ∈ C2
(
[0, 1];C2(Ω)

)
is a path joining u0 to v0. In other words, we have w0

0 = u0

and w1
0 = v0.

Next, we construct the function

w : [0, 1]×QT → R

(s, t, x) 7→ w(s, t, x),

where for all s ∈ [0, 1], we have w(s, ·, ·) =: ws(·, ·) is a solution of (1.57) with initial data

ws0. It is clear that w0 = u and w1 = v.

Now we define the set

E =
{
w ∈ C2

(
[0, 1]×QT

)
: w0 = u and w1 = v

}
, (1.61)

which is a set of paths connecting u to v.

Definition 1.2 (A pseudo-distance).

Given two C2(QT )-solutions u and v of (1.57), we define the following pseudo-distance

d(u, v) := inf
w∈E

A(w with A(w) :=

∫ 1

0

ds

∫

Ω

(w+)
γ (w

′
+)

q

q
dx, (1.62)

where the set E was defined in (1.61), γ ∈ R, and q ∈ R∗
+.

We note here that we will working with positive paths only. Thus, the term A(w) becomes

A(w) =

∫ 1

0

ds

∫

Ω

wγ
(w′

+)
q

q
dx. (1.63)

In order to prove Theorem 1.8, first we show that the distance defined in the previous

definition can be explicitly expressed in terms of the solutions as follows

d(u, v) = inf
w∈E

∫ 1

0

ds

∫

Ω

wγ
(w′)q+
q

dx =
1

qαq

∫

Ω

(vα − uα)q+dx, (1.64)
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where α = 1+ γ

q
. Then, we differentiate the quantity A(w) defined in Definition 1.2 with

respect to time, and we try to see where this derivative is negative. It does not necessarily

admit a domain where it is negative, but in the case of system (1.57), we were able to

construct such a domain. Then, using inequality (1.64), we can obtain the main result

(1.59). The proof of Corollary 1.1 derives directly from Theorem 1.8 by assuming that u

is identically zero.
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2 Modeling

In this chapter, we present the physical derivation of a model describing the dynamics of

dislocation densities. This chapter is based on the previous work of El Hajj, Monneau

[45, Section 5].

In reality, models describing the dynamics of dislocations are three dimensional. How-

ever, we will assume that the geometry of the problem is invariant by translation in the

x3-direction. This reduces our problem to the study of planar dislocation densities propa-

gating in the plane (x1, x2), following a Burgers vector b, which also belongs to the plane

(x1, x2).

This chapter is divided into three sections. First in Section 1, we present the two di-

mensional model with multi-slip directions. Then in Section 2, we show how the two

dimensional model reduces into a one dimensional one in a particular geometry, where we

assume the dislocation densities depend on the variable x = x1 + x2. Finally in Section

3, we explain how the dynamics of dislocation densities can be described by the following

system




∂tu
i(t, x) +

(
d∑

j=1

Aiju
j

)
∂xu

i(t, x) = 0, on (0,+∞)× R, for i = 1, . . . , d,

ui(0, x) = ui0(x), on R, for i = 1, . . . , d,

(2.1)

where A = (Aij)i,j=1,...,d is a non-negative symmetric matrix, which is a particular case of

the systems studied in Chapters 3, 4, 5.

1 The bidimensional model

We denote by X the vector X = (x1, x2) ∈ R2. We consider a crystal filling the entire

space R2, with v = (v1, v2) : R2 → R2 as its displacement, where we have not yet

introduced any time dependence.
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Here, we are studying edge dislocations. We assume that we have d directions of slid-

ing such that each direction corresponds to the Burgers vector bk = (bk1, b
k
2) ∈ R2, for

k = 1, . . . , d. This leads to d different types of dislocations that propagate in the plane

(x1, x2) following the direction of bk, for k = 1, . . . , d.

We introduce the total strain

ε(v) =
1

2
(∇v + t∇v), where (∇v)ij =

∂vi
∂xj

,

which is a symmetric matrix defined by

ε(v) = (εij(v))i,j=1,2 , with εij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.

The total strain can be divided into two parts

εij(v) = εeij + εpij, with εp =
d∑

k=1

ε0,kuk,

where εeij is the elastic strain, and εpij is the plastic one. The scalar function uk is the

plastic displacement associated to the k-th slip system whose shear tensor ε0,k is defined

by

ε0,kij =
1

2

(
bki n

k
j + nki b

k
j

)
, (2.2)

where nk = (nk1, n
k
2) is a unit vector orthogonal to the Burgers vector bk.

In order to simplify the presentation, we assume the simplest possible periodicity of the

unknowns.

Assumption (H):

i) The function v is Z2-periodic with
∫

(0,1)2
v dX = 0.

ii) For each k = 1, . . . , d, there exists Lk ∈ R2 such that uk(X)− Lk ·X is Z2-periodic.

iii) The integer d is even with d = 2N and we have for k = 1, . . . , N , the following

Lk+N = Lk, nk+N = nk, bk+N = −bk , ε0,k+N = −ε0,k.

iv) We denote by τ k ∈ R2 a unit vector parallel to bk such that τ k+N = τ k.

We choose Lk such that τ k · Lk ≥ 0.

32



CHAPTER 2. MODELING

We note that, as a consequence of Assumption (H), the plastic strain εpij is Z2-periodic.

The stress matrix is then given by

σ = Λ: εe(v), i.e, σij =
∑

k,l=1,2

Λijkl ε
e
kl for i, j = 1, 2,

where Λ = (Λijkl)j,j,k,l=1,2 are the constant elastic coefficients of the material, satisfying

for some constant m > 0
∑

i,j,k,l=1,2

Λijkl εij εkl ≥ m
∑

i,j=1,2

ε2ij, (2.3)

for all symmetric matrices ε = (εij)ij, that is, εij = εji.

Then, the stress is assumed to satisfy the elasticity equation

div σ = 0, i.e,
∑

j=1,2

∂σij
∂xj

= 0, for i = 1, 2. (2.4)

On the other hand, the plastic displacement uk is assumed to satisfy the following trans-

port equation

∂tu
k = ckτ k · ∇uk, with ck =

∑

i,j=1,2

σij ε
0,k
ij .

This equation can be interpreted by observing that

θk = τ k · ∇uk ≥ 0, (2.5)

is the density of edge dislocations associated to the Burgers vector bk moving in the

direction τ k with the velocity ck. Here, ck is also called the resolved Peach-Koehler force

in the physical literature. In particular, we see that the dislocation density θk satisfies

the following conservation law

∂tθ
k = div

(
ckτ kθk

)
.

Finally, for k = 1, . . . , d, the functions uk and v are then assumed to depend on (t,X) ∈
(0,+∞) × R2 and to be solutions of the coupled system (see Yefimov [85, Ch. 5] and

Yefimov, Van der Giessen [86])





div σ = 0 on (0, T )× R2,

σ = Λ : (ε(v)− εp) on (0, T )× R2,

ε(v) =
1

2
(∇v + t∇v) on (0, T )× R2,

εp =
∑

k=1,...,d

ε0,kuk on (0, T )× R2,

∂tu
k = (σ : ε0,k)τ k.∇uk on (0, T )× R2, for k = 1, . . . , d,

(2.6)
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which is, in coordinates, equivalent to





∑

j=1,2

∂σij
∂xj

= 0 on (0, T )× R2, for i = 1, 2,

σij =
∑

k,l=1,2

Λijkl (εkl(v)− εpkl) on (0, T )× R2,

εij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
on (0, T )× R2,

εpij =
∑

k=1,...,d

ε0,kij u
k on (0, T )× R2,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for i, j = 1, 2

∂tu
k =



∑

i,j∈{1,2}
σijε

0,k
ij


 τ k.∇uk on (0, T )× R2, for k = 1, . . . , d,

(2.7)

where the unknowns of this system are u = (uk)k=1,...,d and the displacement v = (v1, v2),

and ε0,kij is defined in (2.2). We also note that these equations are compatible with the

periodicity conditions (i)-(ii) of Assumption (H).

For a detailed physical presentation of a model with multi-slip directions, we refer to

Yefimov, Van der Giessen [86] and Yefimov [85, Ch. 5], and to Groma, Balogh [54] for the

case of a model with a single slip direction. See also Cannone et al. [29] for a mathematical

analysis of the Groma, Balogh model.

2 The unidimensional model

In this section, we are interested in a particular geometry where the dislocation densities

depend only on one variable x = x1 + x2, which transforms the 2-dimensional model pre-

sented in the previous section into a 1-dimensional one. More precisely, we assume the

following

Assumption (H ′):

i) The functions v(t,X) and uk(t,X)− Lk ·X depend only on the variable x = x1 + x2.

ii) For k = 1, . . . , d, the vector τ k = (τ k1 , τ
k
2 ) satisfies τ k1 + τ k2 = 1.
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CHAPTER 2. MODELING

iii) For k = 1, . . . , d, the vector Lk = (Lk1, L
k
2) satisfies Lk1 = Lk2.

In this particular 1-dimensional geometry, we denote by the function v = v(t, x), which is

1-periodic in x. If we set lk =
Lk1 + Lk2

2
, we get

Lk ·X = lk · x+
(
Lk1 + Lk2

2

)
(x1 − x2).

By (iii) of Assumption (H ′), we see that u =
(
uk(t, x)

)
k=1,...,d

is defined such that

uk(t, x)− lk · x is 1-periodic in x for every k = 1, . . . , d.

Now, we can integrate the equation of elasticity, i.e. the first equation of (2.6). Using

the Z2-periodicity of the unknowns (see (i)-(ii) of assumption (H)), and the fact that

ε0,k+N = −ε0,k (see (iii) of Assumption (H)), we can easily conclude that the strain

εp is a linear function of
(
uj − uj+N

)
j=1,...,N

, and

(∫ 1

0

(
uj − uj+N

)
dx

)

j=1,...,N

(2.8)

This leads to the following lemma.

Lemma 2.1 (Stress for the 1D model).

Under (i)-(iii) of Assumption (H), and (i)-(iii) of Assumptions (H ′), we have

−σ : ε0,i =
d∑

j=1

Aiju
j +

d∑

j=1

Qij

∫ 1

0

ujdx, for i = 1, . . . , N, (2.9)

where for i, j = 1, . . . , N




Aij = Aji and Ai+N j = −Aij = Ai j+N ,

Qij = Qji and Qi+N j = −Qij = Qi j+N .

(2.10)

Moreover, the matrix A = (Aij)i,j=1,...,d is non-negative.

The proof of this lemma will be given at the end of this section.

Finally, using Lemma 2.1, we can eliminate the stress and reduce the problem to a 1-

dimensional system of d transport equations depending only on the function ui, for i =

1, . . . , d. Naturally, from (2.9) and (ii) of (H ′), this 1D model has the following form

∂tu
i +

(
d∑

i=1

Aiju
j +

d∑

j=1

Qij

∫ 1

0

ujdx

)
∂xu

i = 0, on (0, T )× R, for i = 1, . . . , d, (2.11)
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with

∂xu
i ≥ 0, for i = 1, . . . , d, (2.12)

using (2.5).

Now, we give the proof of Lemma 2.1.

Proof of Lemma 2.1.

For the 2-dimensional model, using the fact that εe is Z2-periodic, we consider the follow-

ing elastic energy on the periodic cell

Eel =
1

2

∫

(0,1)2
Λ: εe : εedX.

By definition of σ and εe, we have for i = 1, . . . , d

σ : ε0,i = −∇uiE
el. (2.13)

On the other hand, using (i)-(iii) of (H ′), with x = x1 + x2, we can verify that the elastic

energy can be rewritten as

Eel =
1

2

∫ 1

0

Λ: εe : εedx.

Replacing εe by its expression (2.8), we get

Eel =
1

2

∫ 1

0

N∑

j=1

Aij(u
j − uj+N)(ui − ui+N)dx

+
1

2

N∑

j=1

Qij

(∫ 1

0

(uj − uj+N)dx

)(∫ 1

0

(ui − ui+N)dx

)
,

for some symmetric matrices Aij = Aji, Qij = Qji. In particular, joint to (2.13) gives

exactly (2.1) and (2.10).

Let us now consider the functions wi = ui − ui+N such that
∫ 1

0

widx = 0, for i = 1, . . . , N. (2.14)

From (2.3), we deduce that

0 ≤ Eel =
1

2

∫ 1

0

N∑

i,j=1

Aijw
iwjdx.

36



CHAPTER 2. MODELING

More precisely, for all i = 1, . . . , N and for all w̄i ∈ R, we set

wi =





w̄i on

[
0,

1

2

]
,

−w̄i on

[
1

2
, 1

]
,

which satisfies (2.14). Finally, we obtain that

0 ≤ Eel =
1

2

∫ 1

0

N∑

i,j=1

Aijw̄
iw̄jdx.

As this is valid for every w̄i, we deduce that A is a non-negative matrix.

□

3 Derivation of the non-periodic model

Starting from the model (2.11)-(2.12) where the function ui(t, x)− li · x is 1-periodic in x

for every i = 1, . . . , d, we now wish to get rid of the periodicity. More precisely, we have

the following lemma.

Lemma 2.2 (Non-periodic model).

Let u be a solution of (2.11)-(2.12). Suppose that Lemma 2.1 is verified and ui(t, x)− lk ·x
is 1-periodic in x. Let

ujδ(t, x) = uj(δt, δx), for a small δ > 0, and for j = 1, . . . , d,

such that, for every j = 1, . . . , d

ujδ(0, ·) → ūj(0, ·), as δ → 0, and ūj(0,±∞) = ūj+N(0,±∞). (2.15)

Then, ū = (ūj)j=1,...,d formally is a solution of

∂tū
i +

(
d∑

j=1

Aijū
j

)
∂xū

i = 0, on (0, T )× R, (2.16)

where the matrix A is non-negative and ∂xūi ≥ 0 for every i = 1, . . . , d.

We remark that the limit problem (2.16) is of type of (2.1).

Now we give the proof of Lemma 2.2 formally.
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3. DERIVATION OF THE NON-PERIODIC MODEL

Formal proof of Lemma 2.2.

Here, we know that uiδ − δli · x is (1/δ)-periodic in x, and satisfies for i = 1, . . . , d

∂tu
i
δ +

(
d∑

j=1

Aiju
j
δ + δ

d∑

j=1

Qij

∫ 1
δ

0

ujδ dx

)
∂xu

i
δ = 0, on (0, T )× R. (2.17)

For simplification, we assume that the initial data uδ(0, ·) converges to a function ū(0, ·)
such that ∂xuδ(0, ·) has a support in (−R,R) ⊂

(
− 1

2δ
, 1
2δ

)
uniformly in δ, where R is a pos-

itive constant. Using (2.15) and the fact that the matrix Q is an antisymmentric matrix

given by (2.10), we expect that the velocity in (2.17) remains uniformly bounded as δ → 0.

Thus, using the finite speed propagation property, we can see that there exists a constant

C independent of δ, such that ∂xuδ(t, ·) has a support in (−R− Ct,R + Ct) ⊂
(
− 1

2δ
, 1
2δ

)

uniformly in δ. Moreover, from (2.15) and the fact that

d∑

j=1

Qij

∫ 1
δ

0

ujδ dx =
N∑

j=1

Qij

∫ 1
δ

0

(
uj − uj+N

)
dx,

we deduce that
d∑

j=1

Qij

∫ 1
δ

0

ujδ dx,

remains bounded uniformly in δ. Then, formally, the non-local term vanishes and we get

for i = 1, . . . , d

d∑

j=1

Aij u
j
δ + δ

d∑

j=1

Qij

∫ 1
δ

0

ujδ dx −→
d∑

j=1

Aijū
j, as δ → 0,

which proves that ū is a solution of (2.16), with A being a non-negative matrix.

□
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3 Global existence to a diagonal

hyperbolic system

This chapter is an article, written in collaboration with Ahmad El Hajj and Mustapha

Jazar, that was accepted in Nonlinearity journal.

In this work, we study a non-linear diagonal hyperbolic system in one space dimension.

Using a BV estimate, we will be able to show the existence of a discontinuous viscosity

solution to system understudy. In order to achieve this, we consider first a parabolic

regularization of the main system, and we prove that the regularized system admits a

unique solution. Then, using some uniform a priori, along with stability results of viscosity

solutions, we will be able to pass to the limit and prove the existence to the main problem.
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Global existence to a diagonal hyperbolic system for
any BV initial data

Maryam Al Zohbi, Ahmad El Hajj, Mustapha Jazar

Abstract

In this paper, we study the existence of solutions for a diagonal hyperbolic system, that is not necessarily strictly

hyperbolic, in one space dimension, considering discontinuous BV initial data without any restrictions on the size

of its norm. This system appears naturally in various physical domains, particularly in isentropic gas dynamics

and dislocation dynamics in materials. In the case of strictly hyperbolic systems, an existence and uniqueness

of a discontinuous solution result is available for BV initial data with small norm, whereas several existence and

uniqueness results have been presented for non-decreasing continuous solutions. In the present paper, we show the

global in time existence of discontinuous viscosity solutions to a diagonal hyperbolic system for every initial data

of bounded total variation, without the assumption that the system is strictly hyperbolic. Up to our knowledge,

this is the first global existence result of large discontinuous solutions to this system.

AMS Classification: 35L45, 35F55, 35A23, 35D40.

Key words: Non-linear hyperbolic system, non-linear transport system, BV estimate, discontinuous viscosity

solution.

1 Introduction and main result

1.1 Setting of the problem

In this paper, we are interested in existence results for solutions of the form u(t, x) =

(ui(t, x))i=1,...,d, to the following one dimensional hyperbolic system





∂tu
i(t, x) = λi(t, x, u(t, x))∂xu

i(t, x) in (0, T )× R,

ui(0, x) = ui0(x) in R,

(3.1)

for T > 0 and i = 1, . . . , d, where d ∈ N∗. The functions ui are real valued, ∂tui and

∂xu
i represent the time and spatial derivatives of ui respectively. Here, the velocity λi is

assumed to satisfy, for all i = 1, . . . , d, the following assumption
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CHAPTER 3. GLOBAL EXISTENCE TO A DIAGONAL HYPERBOLIC SYSTEM

λi ∈ L∞((0, T )× R×K) for T > 0 and for all compact K ⊂ Rd. (3.2)

Our purpose in this work is to establish the global existence of discontinuous viscosity

solutions to system (3.1) assuming (3.2) and the following regularity on the initial data

ui0 ∈ L∞(R) ∩ BV (R), (3.3)

where BV (R) is the space of functions of bounded variations given by

BV (R) =
{
f ∈ L1

loc(R); TV (f) < +∞
}
,

with TV (f) being the total variation of f defined as

TV (f) = sup

{∫

R

f(x)ϕ′(x)dx; ϕ ∈ C1
c (R) and ∥ϕ∥L∞(R) ≤ 1

}
.

In the following, we take the space BV (R) endowed with the semi-norm |f |BV (R) = TV (f).

Note that BV functions are integrable functions whose distributional derivative is a finite

Radon measure.

Our study of system (3.1) is initially motivated by the consideration of a model describing

the dynamics of dislocation densities (see [45, Section 5] for more details about the model),

which is given by

∂tu
i =

(
∑

j=1,...,d

Aiju
j + a(t)

)
∂xu

i for i = 1, . . . , d, (3.4)

where (Aij)i,j=1,...,d is a non-positive symmetric matrix. This model can be seen as a

special case of system (3.1).

Let us mention that El Hajj and Forcadel proved in [41] the existence and uniqueness of

a non-decreasing Lipschitz continuous viscosity solution of (3.4), in the particular case

where d = 2. Moreover, the existence and uniqueness of a non-decreasing solution was

shown by El Hajj [39], in [W 1,2
loc ([0,+∞)× R)]2.

For system (3.1), most of the results are done in the case where the system is strictly

hyperbolic. We will recall some of the most significant ones.

First, in the case of (2× 2) strictly hyperbolic systems, Lax proved in [63], the existence

of a Lipschitz solution to system (3.1). This result was extended by Serre [79, Vol II] to

the case of (d× d) rich strictly hyperbolic systems.
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For general (d × d) strictly hyperbolic systems, Bianchini and Bressan proved in [17] a

striking global existence and uniqueness result assuming that the initial data has small

total variation. This approach is mainly based on a careful analysis of the vanishing

viscosity approximation. An existence result has first been proved by Glimm [52] in the

special case of conservative equations. We can also mention that an existence result has

been also obtained by LeFloch, Liu [65] and LeFloch [64, 66], in the non-conservative case.

Moreover, based a new entropy estimate, El Hajj and Monneau were able to prove in [46]

the existence and uniqueness of a continuous solution for strictly hyperbolic systems with

non-decreasing initial data.

On the other hand, in the general case of (d × d) hyperbolic systems (not necessarily

strictly hyperbolic), it is worth mentioning that the global existence of a continuous solu-

tion has been shown in El Hajj, Monneau [45] for non-decreasing initial data, basing on

the same entropy estimate used in [46].

Let us also mention that, using the framework of discontinuous viscosity solutions, a sim-

ilar result to that presented in this paper for a particular equation of one-dimensional

scalar eikonal type was initially shown in [19], which corresponds to system (3.1) in the

case d = 1, assuming that the velocity is independent of the solution and considering ad-

ditionally non-decreasing initial data. After that, this work was generalized in the thesis

of Vivian Rizik, first in [43] for a particular quasi-monotone (2 × 2) system (similar to

(3.4)) and then in [44], for a more general (d× d) system of non-linear eikonal type. This

last result gives the existence of a global discontinuous viscosity solution for system (3.1)

only in the case of non-decreasing initial data and under some monotonicity conditions

on the velocities λi. We show in this paper the global in time existence of a discontinuous

solution for the (d × d) hyperbolic system (3.1) without any monotonicity condition on

the velocity and considering any initial data with bounded total variation (not necessarily

non-decreasing). To achieve this result, we consider the parabolic regularization of system

(3.1) and we show that the smooth solution satisfies some new fundamental a priori esti-

mates, in particular a BV bound and a finite speed propagation property, which remains

valid even for data that is not necessarily non-decreasing (contrary to what was done in

[44]). Moreover, thanks to these key estimates, we were able to pass here to the limit

when the regularization vanishes, without any monotonicity restrictions on the velocity.

This is what makes the presented work interesting and novel, and up to our knowledge

this is the first work established in this direction, with very weak regularity on the data.

42



CHAPTER 3. GLOBAL EXISTENCE TO A DIAGONAL HYPERBOLIC SYSTEM

In the framework of viscosity solutions, Ishii, Koike [59] and Ishii [58], have shown exis-

tence and uniqueness of continuous viscosity solutions for Hamilton-Jacobi systems of the

form




∂tu
i +Hi(t, x, u,Du

i) = 0 with u = (u1, . . . , ud) ∈ Rd, x ∈ RN , and t ∈ (0,+∞),

ui(0, x) = ui0(x) for x ∈ RN ,

where the Hamiltonian Hi is quasi-monotone in u (see the definition in Ishii, Koike [59,

Th. 4.7]).

In this paper, we present a global in time existence of a discontinuous viscosity solution

to the hyperbolic system (3.1), without any monotony conditions neither on the velocities

λi nor on the solution, considering any BV initial data.

Let us return to the key steps followed to prove our existence results. First, we regularize

by classical convolution the velocities and the initial data which were announced in (3.1)

as follows

ui0,ε(x) = ui0 ⋆ ρ
1
ε(x) and λiε(t, x, w) = λ̂i ⋆ ρd+2

ε (t, x, w) ∀ (t, x, w) ∈ R×R×Rd, (3.5)

where λ̂i is an extension of λi by 0 for all i = 1, . . . , d. Moreover, ρnε for n = 1 and

n = d+ 2 are the standard mollifiers defined as

ρnε (·) =
1

εn
ρn
( ·
ε

)
, such that ρn ∈ C∞

c (Rn), supp{ρn} ⊆ B(0, 1), ρn ≥ 0, and
∫

Rn

ρn = 1.

This approximation brings us to consider, for every 0 < ε ≤ 1 and i = 1, . . . , d, the

following system





∂tu
i
ε(t, x) = λiε(t, x, uε(t, x))∂xu

i
ε(t, x) in (0, T )× R,

uiε(0, x) = ui0,ε(x) in R.

(3.6)

In order to obtain a better regularity on the solution, we will add the viscosity term

η∂2xxu
i
ε to the first equation of the previous system, for 0 < η ≤ 1. As a first step,

we prove the existence and uniqueness of a smooth solution to the following parabolic
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regularized system




∂tu
i
ε,η(t, x) = η∂2xxu

i
ε,η(t, x) + λiε(t, x, uε,η(t, x))∂xu

i
ε,η(t, x) in (0, T )× R,

uiε,η(0, x) = ui0,ε(x) in R,

(3.7)

through a fixed point argument. After that, using the stability result of viscosity solutions,

we pass to the limit as (ε, η) → (0, 0) to go back to the solution of (3.1). In other words, we

will show that the upper and lower relaxed semi-limits, of Barles and Perthame [10, 11],

which are defined as follows

ui(t, x) = lim sup⋆uiε,η(t, x) = lim sup
(ε,η)−→(0,0)
(s,y)−→(t,x)

uiε,η(s, y), (3.8)

and

ui(t, x) = lim inf⋆u
i
ε,η(t, x) = lim inf

(ε,η)−→(0,0)
(s,y)−→(t,x)

uiε,η(s, y), (3.9)

are a couple of discontinuous viscosity sub- and super-solutions of system (3.1) in the

sense of discontinuous viscosity solutions introduced by Ishii in [58, Definition 2.1] for

the Hamilton-Jacobi system and recalled below in Definition 3.2. Finally, reaching some

(ε, η)-independent a priori estimates, we will be able to prove an almost everywhere

equality between ui and ui in R, for all t > 0. This proves the existence of a function

u = (ui)i=1,...,d, where ui is defined as a strong limit of uiε,η in C([0, T );L1
loc(R)), such that

the upper semi-continuous envelope (resp. lower semi-continuous envelope) of u coincides

with the upper relaxed semi-limit (resp. lower relaxed semi-limit). This leads us later

on into using a weaker notion of the standard one that is usually used for discontinuous

viscosity solutions. All of this is possible thanks to the uniform BV bound obtained on

uiε,η, and the finite speed propagation property of the equation.

1.2 Main results

In this subsection, we first present, in Theorem 3.1, a global existence result of a discon-

tinuous viscosity solution of (3.1) in a certain weak sense. As a consequence, we show in

Theorem 3.2 that this solution is a classical discontinuous viscosity solution of (3.1) in

the case of non-decreasing initial data.

Remark 3.1. Before stating our main results, we will first clarify what we mean by a

discontinuous viscosity solution "in a certain weak sense". We will show that there exists

a sub-solution ui and a super-solutions ui for (3.1), that are equal in space except on
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a countable set of points in R, that is, we will have ui(t, ·) = ui(t, ·) = ui(t, ·) almost

everywhere in R, for every i = 1, . . . , d and t ∈ [0, T ). In other words, we will show that

the upper semi-continuous envelope (resp. the lower semi-continuous envelope) of the

solution ui coincides with the upper relaxed semi-limit of ui (resp. lower relaxed semi-

limit) almost everywhere only, in contrary to the classical definition where they coincide

everywhere.

Theorem 3.1. (Global existence result in a weak sense)

Suppose that assumptions (3.2) and (3.3) are satisfied. Then, we have

i) Global existence and uniqueness of a smooth solution

There exists a unique classical solution uε,η = (uiε,η)i=1,...,d of (3.7) belonging to the space

(C∞((0, T ) × R))d ∩ (W 1,∞((0, T ) × R))d, and satisfying for all T > 0 and i = 1, . . . , d,

the following uniform a priori estimates
∥∥uiε,η

∥∥
L∞((0,T )×R)

≤
∥∥ui0
∥∥
L∞(R)

, (3.10)

∥∥∂xuiε,η
∥∥
L∞((0,T );L1(R))

≤
∣∣ui0
∣∣
BV (R)

, (3.11)

∥∥∂tuiε,η
∥∥
L∞((0,T );W−1,1(R))

≤
(
1 +

∥∥λi
∥∥
L∞((0,T )×R×K0)

) ∣∣ui0
∣∣
BV (R)

, (3.12)

where K0 =
d∏

i=1

[
−
∥∥ui0
∥∥
L∞(R)

,
∥∥ui0
∥∥
L∞(R)

]
.

ii) Sub- and super-solutions of (3.1)

Let uε,η be the solution of (3.7), given in (i). Then the relaxed semi-limits u =
(
ui
)
i=1,...,d

and u = (ui)i=1,...,d, are a couple of discontinuous viscosity sub- and super- solutions of

system (3.1) (in the sense of Definition 3.2), where ui and ui are, respectively, the upper

relaxed semi-limit and the lower relaxed semi-limit defined in (3.8) and (3.9).

iii) Convergence and existence of a weak solution

Assume that uiε,η satisfies (3.10), (3.11) and (3.12) for i = 1, . . . , d. Then, up to the

extraction of a subsequence, the function uiε,η converges, as ε and η tend to zero, to a

function

ui ∈ L∞((0, T )× R
)
∩ L∞((0, T ); BV (R)

)
∩ C

(
[0, T ); L1

loc(R)
)
, (3.13)

strongly in C ([0, T ); L1
loc(R)).

Moreover, ui satisfies, for all T > 0 and for i = 1, . . . , d, the following inequalities
∥∥ui
∥∥
L∞((0,T )×R)

⩽
∥∥ui0
∥∥
L∞(R)

, (3.14)
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∥∥ui
∥∥
L∞((0,T );BV (R))

⩽
∣∣ui0
∣∣
BV (R)

, (3.15)

and the following equality

ui(t, ·) = ui(t, ·) = ui(t, ·), except at most on a countable set in R, for all t ∈ [0, T ).

(3.16)

The key point to establish this theorem is the uniform BV estimate (3.11) on uiε,η. We

first show that the smooth solution of the parabolic regularized system (3.7) admits the

L∞ bound (3.10) and the fundamental BV estimate (3.11). These estimates will allow

us to pass to the limit when the regularization vanishes. Then we will show, from the

classical stability properties of viscosity solutions, that the relaxed semi-limits u and u

are, respectively, sub- and super-solutions of (3.1) . These estimates also imply that the

set of the discontinuous points, with respect to x, of the solution u is at most countable.

Taking into account the finite speed propagation property of (3.1) and the time contin-

uous estimate (3.12), it is then possible to show this property uniformly in time, which

proves in particular (3.16).

We note that, the solution u = (ui)i=1,...,d constructed in Theorem 3.1-(iii) as the limit of

uε,η = (uiε,η)i=1,...,d, is in the sense on Remark 3.1. In other words, due to the discontinuity

of the solutions, we are not capable to affirm that the upper semi-continuous envelope

(resp. the lower semi-continuous envelope) of u is equal to the sub-solution u (resp. the

super-solution u) over the entire space, as it’s usually considered in the classical study of

discontinuous viscosity solutions. Nevertheless, thanks to the discontinuity property of

BV functions, we can prove that this is valid almost everywhere, which is reflected by

equality (3.16).

However, in the framework of non-decreasing solutions, it is possible to prove the existence

of a standard discontinuous viscosity solution, namely proving the equality between the

sub-solution u (resp. the super-solution u) and the upper semi-continuous envelope (resp.

the lower semi-continuous envelope) over (0, T ) × R. Thus we announce the following

theorem.

Theorem 3.2. (Global existence of non-decreasing discontinuous viscosity so-

lution)

Assume that (3.2) and (3.3) are satisfied. Suppose that ui0 ∈ L∞(R) and the function ui0 is

non-decreasing for i = 1, . . . , d, then system (3.1) admits a discontinuous non-decreasing
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viscosity solution u =
(
ui
)
i=1,...,d

(in the sense of Definition 3.2), such that for i = 1, . . . , d,

ui satisfies (3.13), (3.14), and (3.15).

1.3 Organization of the paper

This paper is organized as follows: in Section 2, we show the local existence and uniqueness

of a Lipschitz solution to the parabolic regularized system (3.7). Then in Section 3, we

prove the (ε, η)-uniform BV estimate, and another uniform a priori estimate. Section 4

is devoted to the proof of the global in time existence result of the parabolic regularized

system (3.7), announced in Theorem 3.1 (i). Then, in Section 5, using the finite speed

propagation property of (3.7), we prove Theorem 3.1 (ii). After that, by passing to the

limit as ε and η tend to zero and using a compactness argument, we display the proof of

Theorem 3.2. Finally, in Section 7, we present the proof of Theorem 3.1 (iii), using again

the finite speed propagation property.

2 Local solution for parabolic regularized equation

In this section, we prove the existence and uniqueness of a solution to a parabolic reg-

ularized equation obtained by the regularization of problem (3.1). More precisely, we

consider, for 0 < η ≤ 1 and i = 1, . . . , d, the following system





∂tv
i
η(t, x) = η∂2xxv

i
η(t, x) + λ̃i(t, x, vη(t, x))∂xv

i
η(t, x) in (0, T )× R,

viη(0, x) = vi0(x) in R,

(3.17)

where for all i = 1, . . . , d, we have

vi0 ∈ L∞(R) ∩ C∞(R) and ∂xv
i
0 ∈ Lp(R) for all 1 ≤ p ≤ +∞, (3.18)

and

λ̃i ∈ W 1,∞((0, T )× R×K) ∩ C∞((0, T )× R× Rd), for all compact K ⊂ R. (3.19)

Theorem 3.3. (Existence and uniqueness of a Lipschitz solution to (3.17))

Assume that (3.18) and (3.19) hold. Then, there exists T ∗ > 0, such that system (3.17)

admits a unique solution vη = (viη)i=1,...,d belonging to the space (C∞((0, T ∗) × R))d ∩
(W 1,∞((0, T ∗)× R))d and satisfying, for all i = 1, . . . , d, the following estimate

∥∥viη
∥∥
L∞((0,T ∗)×R)

≤
∥∥vi0
∥∥
L∞(R)

. (3.20)
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Moreover, there exists a constant ξp depending on ∥vi0∥L∞(R), ∥∂xvi0∥Lp(R) and T ∗ such that

∥∥∂xviη
∥∥
L∞((0,T ∗);Lp(R))

≤ ξp, for all 1 ≤ p ≤ +∞. (3.21)

To prove this theorem, we need the following Lemma.

Lemma 3.1.

Let Gη(t, x) =
1√
4πtη

e−
x2

4tη be the standard heat kernel. If we note Gη(t) = Gη(t, ·), then

for all t > 0, we have

(i) ∥Gη(t)∥Lp(R) =





Kpt
1
2p

− 1
2 where Kp =

(
1

(4πη)
p−1
2
√
p

) 1
p

, for 1 ≤ p < +∞

1√
4πηt

, for p = +∞.

(ii) ∥∂xGη(t)∥Lp(R) = ζpt
1
2p

−1 where ζp =

(
Γ
(
p+1
2

)

2p−1p
p+1
2 π

p
2 ηp−

1
2

) 1
p

for all 1 ≤ p < +∞.

For the proof of this Lemma, we refer to Pazy [77, Theorem 5.2].

Proof of Theorem 3.3.

The proof is outlined in four steps.

Step 1. (Rewriting the equation in its integral form):

Problem (3.17) can be written in its integral form, for every i = 1, . . . , d, as follows

viη(t, x) = Gη(t) ⋆ v
i
0(x) +

∫ t

0

(
Gη(t− s) ⋆ λ̃i(s, ·, vη(s, ·))∂xviη(s, ·)

)
(x)ds.

In other words, we consider the following problem





vη(t, x) = (viη(t, x))i=1,...,d, v0(x) = (vi0(x))i=1,...,d,

vη(t, x) = Gη(t) ⋆ v0(x) + B(vη)(t, x),

(3.22)

where for r(t, x) = (ri(t, x))i=1,...,d, and ∂xr(t, x) = (∂xr
i(t, x))i=1,...,d, we have

B(r)(t, x) =

∫ t

0

(
Gη(t− s) ⋆ A

(
s, ·, r(s, ·)

)
· ∂xr(s, ·)

)
(x)ds,
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with

A
(
s, ·, r(s, ·)

)
=




λ̃1(s, ·, r(s, ·)) 0 0 · · · 0

0 λ̃2(s, ·, r(s, ·)) 0 · · · 0
...

. . .
...

0 · · · 0 λ̃d(s, ·, r(s, ·))




.

In what follows, we show some estimates to prove in particular the contraction of the op-

erator B, and therefore the existence and uniqueness of a solution to (3.17) by applying

a fixed point argument.

Step 2. (A priori estimates on B and Gη(·) ⋆ v0):
Given any Banach space (Y, ∥·∥Y ), in the rest of the paper we consider the norm on Y d

as

∥w∥Y d =
∑

i=1,...,d

∥∥wi
∥∥
Y
, for w = (w1, . . . , wd) ∈ Y d.

Consider, for T > 0, the spaces

F =
{
r = (ri)i=1,...,d : r ∈ (L∞(R))d and ∂xr ∈ (L1(R))d

}
,

equipped with the norm ∥r∥F = ∥r∥(L∞(R))d + ∥∂xr∥(L1(R))d , and

FT =
{
r = (ri)i=1,...,d : r ∈ (L∞((0, T )× R))d and ∂xr ∈ (L∞((0, T );L1(R)))d

}
,

equipped with the norm ∥r∥FT
= ∥r∥(L∞((0,T )×R))d + ∥∂xr∥(L∞((0,T );L1(R)))d .

We introduce the subspace XT of FT defined as follows

XT =
{
r ∈ FT : ∥r∥FT

≤ ∥v0∥F + 1
}
. (3.23)

We define, for T > 0, the two constants Λ1 and Λ2 as follows





Λ1 = max
i∈{1,...,d}

∥∥∥λ̃i
∥∥∥
L∞((0,T )×R×K1)

, where K1 =
[
− ∥v0∥F − 1, ∥v0∥F + 1

]d
,

∣∣λ̃i(t, x, u)− λ̃i(t, x, v)
∣∣ ≤ Λ2 ∥u− v∥(L∞((0,T )×R))d for all i = 1, . . . , d.

(3.24)
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We remark that, for all r ∈ XT , we have

∥B(r)(t, ·)∥F =

∥∥∥∥
∫ t

0

Gη(t− s) ⋆ A
(
s, ·, r(s, ·)

)
· ∂xr(s, ·)ds

∥∥∥∥
(L∞(R))d

+

∥∥∥∥
∫ t

0

∂xGη(t− s) ⋆ A
(
s, ·, r(s, ·)

)
· ∂xr(s, ·)ds

∥∥∥∥
(L1(R))d

≤
d∑

i=1

∫ t

0

∥∥∥Gη(t− s) ⋆ λ̃i(s, ·, r(s, ·))∂xri(s, ·)
∥∥∥
L∞(R)

ds

+
d∑

i=1

∫ t

0

∥∥∥∂xGη(t− s) ⋆ λ̃i(s, ·, r(s, ·))∂xri(s, ·)
∥∥∥
L1(R)

ds

≤
d∑

i=1

∫ t

0

∥∥∥Gη(t− s)
∥∥∥
L∞(R)

∥∥∥λ̃i
∥∥∥
L∞((0,T )×R×K1)

∥∥∥∂xri(s, ·)
∥∥∥
L1(R)

+
d∑

i=1

∫ t

0

∥∥∥∂xGη(t− s)
∥∥∥
L1(R)

∥∥∥λ̃i
∥∥∥
L∞((0,T )×R×K1)

∥∥∥∂xri(s, ·)
∥∥∥
L1(R)

.

We employ Lemma 3.1 (i) for p = +∞ in the first line of the previous inequality, and

Lemma 3.1 (ii) for p = 1 in the second line. Thus we get, for 0 < t ≤ T , the following

estimate

∥B(r)∥FT
≤ 3Λ1√

ηπ

√
T ∥r∥FT

. (3.25)

In addition, we have

∥Gη(t) ⋆ v0∥F = ∥Gη(t) ⋆ v0∥(L∞(R))d + ∥Gη(t) ⋆ ∂xv0∥(L1(R))d

=
d∑

i=1

∥∥Gη(t) ⋆ v
i
0

∥∥
L∞(R)

+
d∑

i=1

∥∥Gη(t) ⋆ ∂xv
i
0

∥∥
L1(R)

≤
d∑

i=1

∥∥vi0
∥∥
L∞(R)

+
d∑

i=1

∥∥∂xvi0
∥∥
L1(R)

= ∥v0∥F ,

where we have used Lemma 3.1 (i) for p = 1 in the last line. Thus we have

∥Gη(·) ⋆ v0∥FT
≤ ∥v0∥F . (3.26)

Step 3. (Fixed point argument):

We choose to work in the Banach space XT , defined in (3.23). Now we introduce the
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mapping

J : XT → XT

r 7→ J(r) = Gη(·) ⋆ v0 +B(r).

We will show that J is well-defined and contracting for T small enough. First, we will

prove that J is well-defined.

Let r ∈ XT , using (3.25) and (3.26), we get

∥J(r)∥FT
≤ ∥v0∥F +

3Λ1√
ηπ

√
T ∥r∥FT

≤ ∥v0∥F +
3Λ1√
ηπ

√
T
(
∥v0∥F + 1

)
,

Then, taking

T ≤ ηπ
(
3Λ1

(
∥v0∥F + 1

))2 := T ∗
1 ,

implies that J is well-defined in XT ∗
1
.

It remains to show that J is a contraction on XT for a certain T . Indeed, let r1, r2 ∈ XT ,

∥J(r1(s, ·))− J(r2(s, ·))∥F = ∥B(r1(s, ·))− B(r2(s, ·))∥F

≤
d∑

i=1

∫ t

0

∥∥∥Gη(t− s) ⋆
(
λ̃i(s, ·, r1(s, ·))∂xri1(s, ·)− λ̃i(s, ·, r2(s, ·))∂xri2(s, ·)

)∥∥∥
L∞(R)

ds

+
d∑

i=1

∫ t

0

∥∥∥∂xGη(t− s) ⋆
(
λ̃i(s, ·, r1(s, ·))∂xri1(s, ·)− λ̃i(s, ·, r2(s, ·))∂xri2(s, ·)

)∥∥∥
L1(R)

ds.

Applying Hölder’s inequality, we get

∥J(r1(s, ·))− J(r2(s, ·))∥F

≤
d∑

i=1

∫ t

0

∥∥∥Gη(t− s)
∥∥∥
L∞(R)

∥∥∥λ̃i(s, ·, r1(s, ·))∂xri1(s, ·)− λ̃i(s, ·, r2(s, ·))∂xri2(s, ·)
∥∥∥
L1(R)

ds

+
d∑

i=1

∫ t

0

∥∥∥∂xGη(t− s)
∥∥∥
L1(R)

∥∥∥λ̃i(s, ·, r1(s, ·))∂xri1(s, ·)− λ̃i(s, ·, r2(s, ·))∂xri2(s, ·)
∥∥∥
L1(R)

ds.

Using again Lemma 3.1 (i) for p = +∞ and Lemma 3.1 (ii) for p = 1, we obtain

∥J(r1)− J(r2)∥FT
≤ 3√

ηπ

√
T
(
Λ1 + Λ2(∥v0∥F + 1)

)
∥r1 − r2∥FT

.
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Then, taking

T <
ηπ

(
3
(
Λ1 + Λ2(∥v0∥F + 1)

))2 := T ∗
2 .

This implies that J is a contraction on the space XT ∗
2
.

Hence, by Fixed Point Theorem, there exists a unique solution vη to system (3.22) in

XT ∗ , where T ∗ = min(T ∗
1 ,

T ∗
2

2
), that verifies in particular (3.21). This shows that vη is a

solution of system (3.17) over (0, T ∗)× R.

Step 4. (Lp-Regularity):

In this step, we prove estimate (3.21) for some T > 0.

We will start with the case where 1 ≤ p < +∞. Differentiating the integral equation in

(3.22) with respect to x, then considering the norm in Lp(R), we get

∥∥∂xviη(t, ·)
∥∥
Lp(R)

≤
∥∥Gη(t) ⋆ ∂xv

i
0

∥∥
Lp(R)

+

∫ t

0

∥∥∥∂xGη(t− s) ⋆ λ̃i(s, ·, vη(s, ·))∂xviη(s, ·)
∥∥∥
Lp(R)

ds

≤
∥∥Gη(t)

∥∥
L1(R)

∥∥∂xvi0
∥∥
Lp(R)

+

∫ t

0

∥∥∂xGη(t− s)
∥∥
Lp(R)

∥∥λ̃i
∥∥
L∞((0,T )×R×K1)

∥∥∂xviη(s, ·)
∥∥
L1(R)

ds.

We employ Lemma 3.1 (i) for p = 1 in the second line, and Lemma 3.1 (ii) in the third

line, to get

∥∥∂xviη(t, ·)
∥∥
Lp(R)

≤
∥∥∂xvi0

∥∥
Lp(R)

+ ζpΛ1 ∥vη∥FT

∫ t

0

(t− s)
1
2p

−1ds

≤
∥∥∂xvi0

∥∥
Lp(R)

+ 2pζpΛ1

(
∥v0∥F + 1

)
T

1
2p .

Then, taking the supremum over t, leads to the following estimate for all 1 ≤ p < +∞
∣∣∣∣∣∣∣∣

∥∥∂xviη
∥∥
L∞((0,T );Lp(R))

≤Mp,

Mp := ∥∂xv0∥(Lp(R))d + 2pζpΛ1

(
∥v0∥(L∞(R))d + ∥∂xv0∥(L1(R))d + 1

)
T

1
2p .

(3.27)

Next, we consider 1 < p < +∞ in order to obtain an estimate on
∥∥∂xviη

∥∥
(L∞((0,T )×R))d

. In

this case, we have from estimate (3.27) that viη ∈ L∞((0, T );Lp(R)) for all i = 1, . . . , d.

Again, differentiating equation (3.22) with respect to x, then taking the norm in L∞(R),
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we obtain

∥∥∂xviη(t, ·)
∥∥
L∞(R)

≤
∥∥Gη(t) ⋆ ∂xv

i
0

∥∥
L∞(R)

+

∫ t

0

∥∥∥∂xGη(t− s) ⋆ λ̃i(s, ·, vη(s, ·))∂xviη(s, ·)
∥∥∥
L∞(R)

ds

≤
∥∥Gη(t)

∥∥
L1(R)

∥∥∂xvi0
∥∥
L∞(R)

+

∫ t

0

∥∥∂xGη(t− s)
∥∥
Lq(R)

∥∥λ̃i
∥∥
L∞((0,T )×R×K1)

∥∥∂xviη(s, ·)
∥∥
Lp(R)

ds,

where q is the conjugate of p (i.e., 1
p
+ 1

q
= 1). We employ Lemma 3.1 (i) for p = 1 in the

second line, and Lemma 3.1 (ii) in the third line. Thus we get

∥∥∂xviη(t, ·)
∥∥
L∞(R)

≤
∥∥∂xvi0

∥∥
L∞(R)

+ ζqΛ1

∥∥∂xviη
∥∥
L∞((0,T );Lp(R))

∫ t

0

(t− s)
1
2q

−1ds

≤
∥∥∂xvi0

∥∥
L∞(R)

+ 2qζqΛ1

∥∥∂xviη
∥∥
L∞((0,T );Lp(R))

T
1
2q ,

which leads to the following estimate

∥∥∂xviη
∥∥
(L∞(0,T )×R)

≤ ∥∂xv0∥(L∞(R))d + 2qζqΛ1MpT
1
2q := Np. (3.28)

Thus, estimates (3.27) and (3.28) prove estimate (3.21), in particular for T = T ∗.

Step 5. (Existence of a bounded smooth solution):

Using Lp-regularity for parabolic equations, we can show by classical Bootstrap argument

that the solution vη of (3.17) belongs to (C∞((0, T ∗)×R))d∩ (W 1,∞((0, T ∗)×R))d∩ XT ∗ .

Also, by applying the Maximum principle Theorem for parabolic equations (see Lieberman

[68, Th. 2.10]) on system (3.17), we can obtain estimate (3.20). We remark that Fixed

Point theorem gives us existence and uniqueness in XT ∗ . However, by an independent

argument valid for regular and Lipschitz solutions, which is based on applying a Maximum

Principle to the equation satisfied by the difference of two distinct solutions, we can have

the uniqueness in the space (W 1,∞((0, T ∗)× R))d.

3 A priori uniform estimates on the smooth solution

In this section, we show two η-uniform estimates on the local solution of equation (3.17)

obtained in Theorem 3.3.

The first one concerns the BV estimate of the equation and is a key result.
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Lemma 3.2 (BV estimate).

Assume that (3.18) and (3.19) hold. Let vη = (viη)i=1,...,d be a solution of (3.17) in

(C∞((0, T ) × R))d ∩ (W 1,∞((0, T ) × R))d ∩ FT , that satisfies, for all i = 1, . . . , d, es-

timates (3.20) and (3.21) for some T > 0. Then, for all 0 < η ≤ 1, the solutions viη
satisfy the following estimate

∫

R

|∂xviη(t, x)|dx ≤
∫

R

|∂xvi0(x)|dx, for all i = 1, . . . , d, and 0 < t ≤ T. (3.29)

Proof of Lemma 3.2.

First, we introduce the smooth function

βδ(x) =
√
x2 + δ2 for all 0 < δ ≤ 1.

Differentiating the first equation in (3.17) with respect to x and then multiplying by

β′
δ(∂xv

i
η), we get

∂t
(
βδ(∂xv

i
η)
)
= η(∂3xxxv

i
η)β

′
δ(∂xv

i
η) +

d

dx

(
λ̃i(t, x, vη)∂xv

i
η

)
β′
δ(∂xv

i
η). (3.30)

Let ϕ ∈ C∞(R) be a cut-off function taking values in [0, 1], supported by the interval

[−2, 2] and ϕ(x) ≡ 1 on [−1, 1]. Multiplying (3.30) by ϕR(·) = ϕ( ·
R
), for R > 0, and

integrating over the spatial variable, we get

∂t

[∫ 2R

−2R

βδ(∂xv
i
η(t, x))ϕR(x)dx

]
= η

∫ 2R

−2R

∂x(∂
2
xxv

i
η(t, x))β

′
δ(∂xv

i
η(t, x))ϕR(x)dx

︸ ︷︷ ︸
I1

+

∫ 2R

−2R

d

dx

(
λ̃i(t, x, vη(t, x))∂xv

i
η(t, x)

)
β′
δ(∂xv

i
η(t, x))ϕR(x)dx

︸ ︷︷ ︸
I2

.

(3.31)

We note that these computations are justified since viη ∈ C∞((0, T ) × R)) for all i =

1, . . . , d. In what follows, we will show that the terms I1 and I2 are bounded uniformly

in η and δ.

Step 1. (Estimate of I1):
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From integration by parts, we have

I1 = −η
[∫ 2R

−2R

(
∂2xxv

i
η(t, x)

)2
β

′′

δ (∂xv
i
η(t, x))ϕR(x)dx

+
1

R

∫ 2R

−2R

∂2xxv
i
η(t, x)β

′
δ(∂xv

i
η(t, x))ϕ

′
( x
R

)
dx

]
.

Thanks to the convexity of βδ and the positivity of ϕR, we know that

(
∂2xxv

i
η(t, x)

)2
β

′′

δ (∂xv
i
η(t, x))ϕR(x) ≥ 0.

This implies that I1 satisfies the following inequality

I1 ≤ − η

R

∫ 2R

−2R

∂2xxv
i
η(t, x)β

′
δ(∂xv

i
η(t, x))ϕ

′
( x
R

)
dx

= − η

R

∫ 2R

−2R

∂x
(
βδ(∂xv

i
η(t, x))

)
ϕ′
( x
R

)
dx.

Integrating again by parts the right hand side of the above inequality, we get

I1 ≤
η

R2

∫ 2R

−2R

βδ(∂xv
i
η(t, x))ϕ

′′
( x
R

)
dx.

Using the fact that βδ(x) ≤ δ + |x| and estimate (3.21) for p = +∞, we obtain

I1 ≤
η

R

(
4δ +

ξ∞
R

)
∥ϕ′′∥L∞(R) . (3.32)

Step 2. (Estimate of I2):

We start by splitting the integral as follows

I2 =

∫ 2R

−2R

d

dx

(
λ̃i(t, x, vη(t, x))

)
∂xv

i
η(t, x)β

′
δ(∂xv

i
η(t, x))ϕ

( x
R

)
dx

+

∫ 2R

−2R

λ̃i(t, x, vη(t, x))∂
2
xxv

i
η(t, x)β

′
δ(∂xv

i
η(t, x))ϕ

( x
R

)
dx.
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3. A PRIORI UNIFORM ESTIMATES ON THE SMOOTH SOLUTION

Using the property β′
δ(x) =

x

βδ(x)
in the first integral of I2, we get

I2 =

∫ 2R

−2R

(
∂xv

i
η(t, x)

)2

βδ(∂xviη(t, x))

(
d

dx

(
λ̃i(t, x, vη)

))
ϕ
( x
R

)
dx

+

∫ 2R

−2R

λ̃i(t, x, vη)∂x
(
βδ(∂xv

i
η(t, x))

)
ϕ
( x
R

)
dx

=

∫ 2R

−2R

δ2 +
(
∂xv

i
η(t, x)

)2

βδ(∂xviη(t, x))

(
d

dx

(
λ̃i(t, x, vη)

))
ϕ
( x
R

)
dx

+

∫ 2R

−2R

λ̃i(t, x, vη)∂x
(
βδ(∂xv

i
η(t, x))

)
ϕ
( x
R

)
dx

−
∫ 2R

−2R

δ2

βδ(∂xviη(t, x))

(
d

dx

(
λ̃i(t, x, vη)

))
ϕ
( x
R

)
dx

=

∫ 2R

−2R

(
βδ(∂xv

i
η(t, x))

(
d

dx

(
λ̃i(t, x, vη)

)))
ϕ
( x
R

)
dx

+

∫ 2R

−2R

λ̃i(t, x, vη)∂x
(
βδ(∂xv

i
η(t, x))

)
ϕ
( x
R

)
dx

−
∫ 2R

−2R

δ2

βδ(∂xviη(t, x))

(
d

dx

(
λ̃i(t, x, vη)

))
ϕ
( x
R

)
dx

=

∫ 2R

−2R

∂x

(
βδ(∂xv

i
η(t, x))λ̃

i(t, x, vη)
)
ϕ
( x
R

)
dx

︸ ︷︷ ︸
J1

−
∫ 2R

−2R

δ2

βδ(∂xviη(t, x))

(
d

dx

(
λ̃i(t, x, vη)

))
ϕ
( x
R

)
dx

︸ ︷︷ ︸
J2

.

Integrating by parts in J1, and using again the property βδ(x) ≤ δ + |x|, we get

|J1| ≤
∣∣∣∣
1

R

∫ 2R

−2R

(
δ +

∣∣∂xviη(t, x)
∣∣
)
λ̃i(t, x, vη)ϕ

′
( x
R

)
dx

∣∣∣∣

≤ δ

R

∫ 2R

−2R

∣∣∣λ̃i(t, x, vη)ϕ′
( x
R

)∣∣∣ dx+
1

R

∫ 2R

−2R

∣∣∣∂xviη(t, x)λ̃i(t, x, vη)ϕ′
( x
R

)∣∣∣ dx,
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which implies, using (3.20) and (3.21) for p = 1, that

J1 ≤
∥∥∥λ̃i
∥∥∥
L∞((0,T )×R×K̃0)

(
4δ +

1

R
∥∂xvi∥L∞((0,T );L1(R))

)∥∥ϕ′∥∥
L∞(R)

≤
∥∥∥λ̃i
∥∥∥
L∞((0,T )×R×K̃0)

(
4δ +

ξ1
R

)∥∥ϕ′∥∥
L∞(R)

, (3.33)

where K̃0 =
d∏

i=1

[
−
∥∥vi0
∥∥ ,
∥∥vi0
∥∥
]
.

Using the property βδ(x) ≥ δ in J2 and again Hölder’s inequality, we get

|J2| ≤ δR

∥∥∥∥
d

dx
λ̃i
∥∥∥∥
L∞((0,T )×R×K̃0)

∥∥∥ϕ
∥∥∥
L1(R)

.

We have

d

dx
λ̃i(t, x, vη(t, x)) = ∂xλ̃

i(t, x, vη(t, x)) +
d∑

j=1

∂xv
i
η(t, x)

∂λ̃i

∂vj
(t, x, vη(t, x)).

Thus we can show that
∥∥∥∥
d

dx
λ̃i
∥∥∥∥
L∞((0,T )×R×K̃0)

≤
∥∥∥∂xλ̃i

∥∥∥
L∞((0,T )×R×K̃0)

+ max
1≤j≤d

∥∥∥∥
∂λ̃i

∂vj

∥∥∥∥
L∞((0,T )×R×K̃0)

∥∥∥∂xvη
∥∥∥
(L∞((0,T )×R))d

≤
∥∥λ̃i
∥∥
W 1,∞((0,T )×R×K̃0)

(
1 + dξ∞

)
, (3.34)

where we have used inequality (3.21) for p = +∞ in the second line. Using estimate

(3.34) in J2 we obtain

J2 ≤ δR
(
1 + dξ∞

)∥∥ϕ
∥∥
L1(R)

∥∥λ̃i
∥∥
W 1,∞((0,T )×R×K̃0)

. (3.35)

Combining (3.33) and (3.35), we get

I2 ≤ Λ̃1

(
4δ +

ξ1
R

)∥∥ϕ′∥∥
L∞(R)

+ δR
(
1 + dξ∞

)∥∥ϕ
∥∥
L1(R)

∥∥λ̃i
∥∥
W 1,∞((0,T )×R×K̃0)

, (3.36)

where Λ̃1 = max
i∈{1,...,d}

∥∥∥λ̃i
∥∥∥
L∞((0,T )×R×K̃0)

.

Step 3. (Passage to the limit):

Integrating (3.31) in time on (0, t), for 0 < t < T , we get

∫ 2R

−2R

βδ(∂xv
i
η(t, x))ϕR(x)dx ≤

∫ 2R

−2R

βδ(∂xv
i
0(x))ϕR(x)dx+ T (I1 + I2).
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Passing to the limit in the previous estimate, as δ goes to 0, we obtain

∫ 2R

−2R

|∂xviη(t, x)|ϕR(x)dx ≤
∫ 2R

−2R

|∂xvi0(x)|ϕR(x)dx+
ηTξ∞
R2

∥ϕ′′∥L∞(R) +
Λ̃1Tξ1
R

∥∥ϕ′∥∥
L∞(R)

,

where we have used estimates (3.32) and (3.36). According to the monotone convergence

theorem, we get, by passing to the limit as R → +∞ in the previous inequality

∫

R

|∂xviη(t, x)|dx ≤
∫

R

|∂xvi0(x)|dx,

which is the desired result.

The following estimate will provide the compactness in time of the solution vη = (viη)i=1,...,d

given in Theorem 3.3, uniformly with respect to η.

Lemma 3.3 (Estimate on the time derivative of the solution).

Assume that (3.18) and (3.19) hold. Let W−1,1(R) be the dual space of W 1,∞(R), and

vη = (viη)i=1,...,d be a solution of (3.17) in (C∞((0, T )× R))d ∩ (W 1,∞((0, T )× R))d ∩ FT ,

that satisfies, for all i = 1, . . . , d, estimates (3.20) and (3.21) for some T > 0. Then, for

all 0 < η ≤ 1 and i = 1, . . . , d, the solutions viη of (3.17) satisfy the following estimate

∥∥∂tviη
∥∥
L∞((0,T );W−1,1(R))

≤
(
1 +

∥∥λ̃i
∥∥
L∞((0,T )×R×K̃0)

)∥∥∂xvi0
∥∥
L1(R)

, (3.37)

where K̃0 =
d∏

i=1

[
−
∥∥vi0
∥∥ ,
∥∥vi0
∥∥
]
.

Proof of Lemma 3.3.

The idea is somehow to bound ∂tv
i
η using the available bounds on the right hand side

of equation (3.17). The proof is given by duality. Multiplying equation (3.17) by ϕ ∈
L1((0, T );W 1,∞(R)) and integrating on (0, T )× R, we get

∫

(0,T )×R

ϕ∂tv
i
η = η

∫

(0,T )×R

ϕ∂2xxv
i
η

︸ ︷︷ ︸
I1

+

∫

(0,T )×R

ϕλ̃i(t, x, vη)∂xv
i
η

︸ ︷︷ ︸
I2

.

Integrating by parts in I1, for all 0 < η ≤ 1, we obtain

|I1| ≤
∣∣∣∣
∫

(0,T )×R

∂xϕ · ∂xviη
∣∣∣∣ ≤ ∥∂xϕ∥L1((0,T ),L∞(R))

∥∥∂xviη
∥∥
L∞((0,T );L1(R))

≤ ∥ϕ∥L1((0,T );W 1,∞(R))

∥∥∂xvi0
∥∥
L1(R)

, (3.38)

where we have used the BV estimate (3.29) in the second line.
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Similarly for the term I2, from (3.20) and (3.29), we have

|I2| ≤
∥∥λ̃i
∥∥
L∞((0,T )×R×K̃0)

∥ϕ∥L1((0,T );L∞(R))

∥∥∂xviη
∥∥
L∞((0,T );L1(R))

≤
∥∥λ̃i
∥∥
L∞((0,T )×R×K̃0)

∥∥ϕ
∥∥
L1((0,T );W 1,∞(R))

∥∥∂xvi0
∥∥
L1(R)

. (3.39)

Collecting (3.38) and (3.39), we get
∫

(0,T )×R

ϕ∂tv
i
η ≤

(
1 +

∥∥λ̃i
∥∥
L∞((0,T )×R×K̃0)

)∥∥∂xvi0
∥∥
L1(R)

∥ϕ∥L1((0,T );W 1,∞(R))

Then, by duality, we deduce that

∥∥∂tviη
∥∥
L∞((0,T );W−1,1(R))

≤
(
1 +

∥∥λ̃i
∥∥
L∞((0,T )×R×K̃0)

)∥∥∂xvi0
∥∥
L1(R)

.

4 Global existence of a solution to (3.7)

In this section, we give the proof of Theorem 3.1 (i). First of all, we are going to prove

that the local in time solution obtained in Section 2 can be extended to a global one.

Theorem 3.4 (Global existence of Lipschitz continuous solution of (3.17)).

Assume that (3.18) and (3.19) hold. Then, for all 0 < η ≤ 1 and all T > 0, system (3.17)

admits a unique solution vη = (viη)i=1,...,d belonging to the space (C∞((0, T ) × R))d ∩
(W 1,∞((0, T ) × R))d and satisfying, for all i = 1, . . . , d, estimates (3.20), (3.29), and

(3.37), for all T > 0.

Proof of Theorem 3.4.

From Theorem 3.3, we have the local existence of a solution vη = (viη)i=1,...,d to system

(3.17). It remains to show that this local solution can be indeed extended into a global

one.

We argue by contradiction. Assume there exists a maximum time Tmax such that, we

have existence of solutions to system (3.17) in the function space FTmax
. Similarly,

as in Steps 4 and 5 of the proof of Theorem 3.3, we can obtain by a Bootstrap ar-

gument that viη ∈ W 1,∞((0, Tmax) × R) ∩ C∞((0, Tmax) × R) for every i = 1, . . . , d.

Consequently, viη verifies (3.20) for T ∗ = Tmax, and (3.21) for a certain constant ξp =

ξp(∥vi0∥L∞(R) , ∥∂xvi0∥Lp(R) , Tmax). Thus, estimates (3.29) and (3.37) hold for T = Tmax.

Now, for every µ > 0, we consider system (3.17) with the initial conditions

vi0,µ(x) = viη(Tmax − µ, x) for all i = 1, . . . , d.
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We apply, for the second time, the same techniques of the proof of Theorem 3.3 with vi0,µ
to deduce that there exists a time T ∗

µ such that system (3.17) admits a unique solution

defined until the time

T0 = (Tmax − µ) + T ∗
µ ,

with

T ∗
µ = min




ηπ
(
3Λµ(∥v0,µ∥F + 1)

)2 ,
ηπ

(
3
(
Λµ + Λ2(∥v0,µ∥F + 1)

))2


 ,

where v0,µ = (vi0,µ)i=1,...,d and Λµ is defined as Λ1 with replacing v0 by v0,µ in (3.24). Ac-

cording to (3.20) and (3.29) we know that v0,µ is µ-uniformly bounded in F and therefore

there exists a constant

C
(
η,Λ1,Λ2, Tmax, ∥v0∥(L∞(R))d , ∥∂xv0∥(L1(R))d

)
> 0,

independent of µ such that T ∗
µ ≥ C > 0. Passing to the limit µ → 0, we can see that

lim
µ→0

T ∗
µ ≥ C > 0. This implies that T0 > Tmax (for small µ). Thus we have a contradiction,

and then we can construct a solution vη ∈ W 1,∞((0, T )×R)∩C∞((0, T )×R) for all T > 0.

4.1 Proof of Theorem 3.1 (i)

In this subsection, we prove the global existence and uniqueness result of a smooth solution

to system (3.7), that was announced in Theorem 3.1 (i).

By assumptions (3.2) and (3.3) and by classical properties of the mollifiers ρ1ε, ρ
d+2
ε , we can

see that, for all ε, η > 0, the functions ui0,ε and λiε (defined in (3.5)) satisfy assumptions

(3.18) and (3.19) for every i = 1, . . . , d. Thus, we can apply Theorem 3.4, with λ̃i = λiε

and vi0 = ui0,ε, in order to prove that system (3.7) admits a unique smooth solution

uε,η =
(
uiε,η
)
i=1,...,d

satisfying, for all i = 1, . . . , d, the following estimates

∥∥uiε,η
∥∥
L∞((0,T )×R)

≤
∥∥ui0,ε

∥∥
L∞(R)

, (3.40)

∥∥∂xuiε,η(t, ·)
∥∥
L1(R)

≤
∥∥∂xui0,ε

∥∥
L1(R)

, for all t ∈ [0, T ), (3.41)

∥∥∂tuiε,η
∥∥
L∞((0,T );W−1,1(R))

≤
(
1 +

∥∥λiε
∥∥
L∞(R×R×Rd)

)∥∥∂xui0,ε
∥∥
L1(R)

. (3.42)

If we note by λ̂i the extension of λi by zero outside (0, T )× R×K0 where

K0 =
d∏

i=1

[
−
∥∥ui0
∥∥
L∞(R)

,
∥∥ui0
∥∥
L∞(R)

]
,
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then by classical properties of the mollifiers, we know that (see Ambrosio et al. [6, Theorem

2.2 (b)], for the third estimate)

∥∥ui0,ε
∥∥
L∞(R)

≤
∥∥ui0
∥∥
L∞(R)

∥∥λiε
∥∥
L∞(R×R×Rd)

≤
∥∥λ̂i
∥∥
L∞(R×R×Rd)

≤
∥∥λi
∥∥
L∞((0,T )×R×K0)

∥∥∂xui0,ε
∥∥
L1(R)

≤ TV (ui0) =
∣∣ui0
∣∣
BV (R)

,

(3.43)

which joint to (3.40), (3.41) and (3.42) imply (3.10), (3.11) and (3.12).

5 Discontinuous viscosity sub- and super- solutions

In this section, we prove the existence of discontinuous viscosity sub- and super- solutions

to system (3.1), as it was announced in Theorem 3.1 (ii). This section is divided into

two subsections. First, in Subsection 5.1, we introduce some useful results for viscosity

solutions. Then, in Subsection 5.2, we give the proof of Theorem 3.1 (ii).

5.1 Some useful results

We begin by giving the following finite speed propagation property, valid on the continuous

viscosity solutions of (3.7).

Lemma 3.4. (Finite speed propagation property)

Under assumptions (3.2) and (3.3), if uε,η = (uiε,η)i=1,...,d is the unique continuous viscosity

solution of (3.7), given by Theorem 3.1 (i), then uiε,η satisfies, for all h ≥ 0, the following

estimate∫

R

Gη(t, y) min
|z−(x−y)|≤Λt

uiε,η(h, z)dy ≤ uiε,η(t+ h, x)

≤
∫

R

Gη(t, y) max
|z−(x−y)|≤Λt

uiε,η(h, z)dy,

(3.44)

for all (t, x) ∈ [0, T − h) × R, where Gη(t, x) =
1√
4πηt

e−
x2

4ηt is the standard heat kernel

given in Lemma 3.1, and Λ is defined as

Λ = max
i∈{1,...,d}

∥∥λi
∥∥
L∞((0,T )×R×K0)

. (3.45)

Proof of Lemma 3.4.

Let us start by proving the right hand side of (3.44), in viscosity sense, namely

uiε,η(t+ h, x) ≤
∫

R

1√
4πηt

e−
y2

4ηt max
|z−(x−y)|≤Λt

uiε,η(h, z)dy. (3.46)
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We proceed in two steps.

Step 1. First, we note that uiε,η is also a continuous viscosity solution of (3.7) since it is

a smooth solution. Let ui,hε,η(t, x) = uiε,η(t+ h, x). Then, we can see that

∂tu
i,h
ε,η(t, x) = ∂tu

i
ε,η(t+ h, x) = λiε

(
t+ h, x, uε,η(t+ h, x)

)
∂xu

i
ε,η(t+ h, x) + η∂2xxu

i
ε,η(t+ h, x)

= λiε
(
t+ h, x, uhε,η(t, x)

)
∂xu

i,h
ε,η(t, x) + η∂2xxu

i,h
ε,η(t, x)

≤ Λ
∣∣∂xui,hε,η(t, x)

∣∣+ η∂2xxu
i,h
ε,η(t, x),

since we have by (3.43) that λiε(t+h, x, u
h
ε,η(t, x)) ≤ ∥λi∥L∞((0,T )×R×K0)

≤ Λ . This implies

that ui,hε,η is a viscosity sub-solution to the following system




∂tw(t, x)− η∂2xxw(t, x)− Λ|∂xw(t, x)| = 0,

w(0, x) = w0(x) = uiε,η(h, x)

(3.47)

Step 2. We will try to find a viscosity super-solution to (3.47). Consider the function

w(t, x) =

∫

R

Gη(t, y)ψ(t, x− y)dy, (3.48)

where ψ is the unique continuous viscosity solution of the system




|∂tψ(t, x)| = Λ|∂xψ(t, x)|

ψ(0, x) = uiε,η(h, x),

(3.49)

which is given by the Lax-Oleinik formula in [9, Lemma 2.1], as

ψ(t, x) = sup
|y−x|≤Λt

w0(y).

Using the property ∂tGη(t, y) = η∂2yyGη(t, y) for all t > 0, we get

∂tw(t, x) =

∫

R

∂tGη(t, y)ψ(t, x− y)dy +

∫

R

Gη(t, y)∂tψ(t, x− y)dy

=

∫

R

η∂2yyGη(y, t)ψ(t, x− y)dy +

∫

R

Gη(t, y)Λ
∣∣∂xψ(t, x− y)

∣∣dy

= η

∫

R

Gη(t, y)∂
2
xxψ(t, x− y)dy + Λ

∫

R

∣∣Gη(t, y)∂xψ(t, x− y)
∣∣dy

≥ η∂2xxw(t, x) + Λ
∣∣∂xw(t, x)

∣∣,
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this implies that w is a viscosity super-solution to equation (3.47).

Therefore, using the comparison principle (see [13, Theorem 1.1]), we deduce that

uiε,η(t+ h, x) ≤ w(t, x), on (0, T )× R,

which implies (3.46).

The same proof is done for the inequality
∫

R

1√
4πηt

e−
y2

4ηt min
|z−(x−y)|≤Λt

uiε,η(h, z)dy ≤ uiε,η(t+ h, x),

by considering the equation ∂tw(t, x) − η∂2xxw(t, x) + Λ|∂xw(t, x)| = 0. In this case, we

take ψ(t, x) = inf
|y−x|≤Λt

w0(y).

Now we will give, in the following Lemma, an important relation between the envelopes

of the velocities λi and their relaxed semi-limits, and another relation between the initial

data ui0 and its regularization.

Lemma 3.5. (Envelopes)

i) (Envelopes of the initial data)

Assume that ui0 is a locally bounded function on R. Let ui0,ε be the standard regularization

of the function ui0 defined in (3.5). Then, we have

max
|x−x0|≤c

ui0,ε(x) ≤ max
|x−x0|≤c+ε

ui0(x), where c > 0. (3.50)

ii) (Envelopes of the velocity)

Assume that λi is locally bounded on (0, T )×R×Rd for all T > 0. Let λiε be the standard

regularization of the functions λi defined in (3.5). Noting

λ
i
(t, x, r) = lim sup

ε−→0
(s,y,w)−→(t,x,r)

λiε(s, y, w), and λi(t, x, r) = lim inf
ε−→0

(s,y,w)−→(t,x,r)

λiε(s, y, w).

Then, we have

λ
i
(t, x, r) ≤ (λi)

⋆
(t, x, r) and (λi)⋆(t, x, r) ≤ λi(t, x, r) for all (t, x, r) ∈ [0, T )×R×Rd,

where (λi)
⋆ and (λi)⋆ are respectively the upper and lower semi-continuous envelopes of

λi.

Proof of Lemma 3.5

63
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Proof of (i):

Using classical properties of mollifiers, we have

ui0,ε(x) = ui0 ⋆ ρ
1
ε(x) =

∫

R

ui0(y)ρ
1
ε(x− y)dy ≤ max

|x−y|≤ε
ui0(y)

∫

R

ρ1ε(x− y)dy

≤ max
|x−y|≤ε

ui0(y),

this implies that

max
|x−y|≤c

ui0,ε(y) ≤ max
|x−y|≤c+ε

ui0(y).

Proof of (ii):

We only show the proof of the first inequality, the second is proved similarly. Indeed, we

know that there exists a sequence (ϵn, tϵn , xϵn , rϵn) → (0, t, x, r), as n goes to +∞, such

that

λ
i
(t, x, r) = lim

n−→+∞
λiεn(tϵn , xϵn , rϵn).

From (3.5), we can see that

λiεn(tϵn , xϵn , rn) =

∫

(0,T )×R×K0

λi(τ, y, w)ρd+2
ϵn

(tϵn − τ, xϵn − y, rϵn − w) dydτdw

≤ max
|y−xϵn |≤ϵn,|τ−tϵn |≤ϵn

|w−rϵn |≤ϵn

λi(τ, y, w),

where we have used the fact that ρd+2
ϵn

≥ 0 and
∫
Rd+2 ρ

d+2
ϵn

= 1. Thanks to the convergence,

as n → +∞, of (ϵn, tϵn , xϵn , rϵn) to (0, t, x, r), we can deduce that for every α > 0 there

exists nα > 0, such that, for all n ≥ nα, we have

λiεn(tϵn , xϵn , rn) ≤ max
|y−x|≤2α,|τ−t|≤2α

|w−r|≤2α

λi(τ, y, w).

Now, we pass to the limit, n → +∞, firstly and then α → 0, we get λ
i
(t, x, r) ≤

(λi)
⋆
(t, x, r).

□

5.2 Existence of sub and super solutions of (3.1)

In this subsection, we prove Theorem 3.1 (ii). Before illustrating the proof, we introduce

the definitions of continuous and discontinuous viscosity solutions for systems (3.17) and

(3.1) respectively. For a complete overview of viscosity solutions, we refer the reader to

[9, 35, 37].
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5.2.1 Definitions of viscosity solutions

Definition 3.1. (Continuous viscosity sub-solution, super-solution, and solu-

tion)

Assume that λ̃i is a continuous function on (0, T )×R×Rd, and v0 = (vi0)i=1,...,d is a con-

tinuous function on R. Let u = (ui)i=1,...,d be a continuous function defined on (0, T )×R.

(1) (Continuous viscosity sub-solution)

We call u a continuous viscosity sub-solution of (3.17) if it satisfies

(i) ui(0, x) ≤ vi0(x), for every i = 1, . . . , d, and x ∈ R.

(ii) If whenever ϕ ∈ C2((0, T ) × R), i = 1, . . . , d, and ui − ϕ attains its local maximum

at (t0, x0) ∈ (0, T )× R, then we have

∂tϕ(t0, x0)− λ̃i
(
t0, x0, u(t0, x0)

)
∂xϕ(t0, x0)− η∂2xxϕ(t0, x0) ≤ 0. (3.51)

(2) (Continuous viscosity super-solution)

We call u a continuous viscosity super-solution of (3.17) if it satisfies

(i) ui(0, x) ≥ vi0(x), for every i = 1, . . . , d, and x ∈ R.

(ii) If whenever ϕ ∈ C2((0, T ) × R), i = 1, . . . , d, and ui − ϕ attains its local minimum

at (t0, x0) ∈ (0, T )× R, then we have

∂tϕ(t0, x0)− λ̃i
(
t0, x0, u(t0, x0)

)
∂xϕ(t0, x0)− η∂2xxϕ(t0, x0) ≥ 0. (3.52)

(3) (Continuous viscosity solution)

A continuous function u is a viscosity solution of (3.17) if and only if it is a viscosity sub-

and super-solution of (3.17).

Next, we are going to recall the definition of discontinuous viscosity solutions for system

(3.1) introduced by Ishii in [58, Definition 2.1].

For a given function f with values into R, we write f = f+ − f− where f+ and f− are

defined respectively as

f+ =
|f |+ f

2
and f− =

|f | − f

2
.

It is clear that f+ ≥ 0 and f− ≥ 0.

Also, we denote by f ⋆ and f⋆ the respective upper and lower semi-continuous envelopes

of a locally bounded function f defined on an open domain in Rn and given by
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f ⋆(X) = lim sup
Y→X

f(Y ) and f⋆(X) = lim inf
Y→X

f(Y ) for X ∈ Rn. (3.53)

For a vector u = (u1, . . . , ud) locally bounded on [0, T ) × R for all T > 0, we write

u⋆ = ((u1)⋆, . . . , (ud)⋆) and u⋆ = ((u1)⋆, . . . , (u
d)⋆).

Given two locally bounded functions v = (vi)i=1,...,d and u = (ui)i=1,...,d on [0, T )×R such

that (vi)⋆ ≤ (ui)⋆ for every i = 1, . . . , d, we define the set

Euv (t, x) =
d∏

i=1

[
(vi)⋆(t, x), (u

i)⋆(t, x)
]
.

Definition 3.2. (Discontinuous viscosity sub-solution, super-solution and solu-

tion)

Assume that λ = (λi)i=1,...,d is locally bounded on (0, T )× R× Rd and u0 = (ui0)i=1,...,d is

locally bounded on R. Let v = (vi)i=1,...,d, u = (ui)i=1,...,d be two locally bounded func-

tions on [0, T )×R such that (vi)⋆ ≤ (ui)⋆ for every i = 1, . . . , d. We say that u and v are

a couple of discontinuous viscosity sub- and super- solutions of (3.1) if they satisfy the

following two conditions

(i) • (ui)⋆(0, x) ≤ (ui0)
⋆(x), for all i = 1, . . . , d and x ∈ R.

• (vi)⋆(0, x) ≥ (ui0)⋆(x), for all i = 1, . . . , d and x ∈ R.

(ii) • Whenever a test function ϕ ∈ C2((0, T )× R), i = 1, . . . , d and (ui)⋆ − ϕ attains a

local maximum at (t0, x0) ∈ (0, T )× R, then we have

min
{
∂tϕ(t0, x0)− (λi)⋆(t0, x0, r)(∂xϕ)

+(t0, x0) + (λi)⋆(t0, x0, r)(∂xϕ)
−(t0, x0) :

r ∈ Euv (t0, x0), ri = (ui)⋆(t0, x0)
}
≤ 0.

(3.54)

• Whenever ϕ ∈ C2((0, T )× R), i = 1, . . . , d and (vi)⋆ − ϕ attains a local minimum

at (t0, x0) ∈ (0, T )× R, then we have

max
{
∂tϕ(t0, x0)− (λi)⋆(t0, x0, r)(∂xϕ)

+(t0, x0) + (λi)⋆(t0, x0, r)(∂xϕ)
−(t0, x0) :

r ∈ Euv (t0, x0), ri = (vi)⋆(t0, x0)
}
≥ 0.

(3.55)

Finally, we call a function w = (wi)i=1,...,d a discontinuous viscosity solution of (3.1) if w⋆

and w⋆ verify conditions (i) and (ii).

Remark 3.2. We can replace ϕ ∈ C2((0, T )×R) by ϕ ∈ C1((0, T )×R), in the previous

definition.
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Noting that the minimum and the maximum in (3.54) and (3.55) are attained, since the

sets
{
r ∈ Rd : r ∈ Euv (t0, x0), ri = (ui)⋆(t0, x0)

}
and

{
r ∈ Rd : r ∈ Euv (t0, x0), ri = (ui)⋆(t0, x0)

}

are non-empty and compact and moreover (λi)⋆ and (λi)⋆ are upper and lower semi-

continuous, respectively.

5.2.2 Proof of Theorem 3.1 (ii)

We only prove the result for the sub-solution case, the super-solution case can be proved

analogously. Let uε,η = (uiε,η)i=1,...,d be the solution of (3.7), constructed in Theorem 3.1

(i). We have to prove that the relaxed semi-limit (ui)⋆ = ui is a discontinuous viscosity

sub-solution of (3.1), in the sense of Definition 3.2. We do this in two steps.

Step 1. (Meaning of the initial data):

We will prove that u = (u1, . . . , ud) = (u)∗, satisfies (1)-(i) in Definition 3.2. It is sufficient

to prove the following inequality

ui(0, x) ≤ (ui0)
⋆(x) for all x ∈ R, i = 1, . . . , d. (3.56)

From the definition of ui, we know that there exists a sequence (εn, ηn, tεn,ηn , xεn,ηn) →
(0, , 0, 0, x) as n→ +∞, such that

ui(0, x) = lim
n−→+∞

uiεn,ηn(tεn,ηn , xεn,ηn).

For the sake of simplicity, we will use the notation (εn, ηn) = dn.

Using Lemma 3.4 with h = 0, t = tdn and x = xdn , we get

uidn(tdn , xdn) ≤
∫

R

1√
4πηntdn

e
− y2

4ηntdn max
|z−(xdn−y)|≤Λtdn

uidn(0, z)dy

≤ 1√
π

∫

R

e−y
2

max
|z−(xdn−y

√
4ηntdn)|≤Λtdn

uidn(0, z)dy

≤ 1√
π

∫

|y|≤β
e−y

2

max
|z−(xdn−y

√
4ηntdn)|≤Λtdn

uidn(0, z)dy

︸ ︷︷ ︸
K1

+
1√
π

∫

|y|≥β
e−y

2

max
|z−(xdn−y

√
4ηntdn)|≤Λtdn

uidn(0, z)dy

︸ ︷︷ ︸
K2

,
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where β ∈ R. The convergence of (εn, ηn, tdn , xdn) to (0, 0, 0, x) as n −→ +∞, implies

that for all α > 0, there exists nα > 0, such that, for all n ≥ nα, we have

εn ≤ α, ηn ≤ α, |xdn − x| ≤ α and tdn ≤ α.

Then by Lemma 3.5 (i), for Λ = α(Λ + 2β + 1), we get

K1 ≤
1√
π

max
|z−x|≤Λ

ui0,εn(z)

∫ β

−β
e−y

2

dy ≤ 1√
π

max
|z−x|≤Λ+α

ui0(z)

∫ β

−β
e−y

2

dy. (3.57)

For K2, as y2e−y
2 ≤ 1, we get by using the classical properties of the mollifiers that

K2 ≤
1√
π
max
z∈R

∣∣ui0,εn(z)
∣∣
∫

|y|≥β
e−y

2

dy ≤ 1√
π

∥∥ui0
∥∥
L∞(R)

∫

|y|≥β

1

y2
dy ≤ 2

β
√
π

∥∥ui0
∥∥
L∞(R)

.

(3.58)

Collecting (3.57) and (3.58), we obtain

uidn(tdn , xdn) ≤
1√
π

max
|z−x|≤Λ+α

ui0(z)

∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

.

Passing to the limit in the previous inequality as n −→ +∞ first, we get

ui(0, x) ≤ 1√
π

max
|z−x|≤Λ+α

ui0(z)

∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

.

Then, we pass to the limit, as α −→ 0, to get

ui(0, x) ≤ 1√
π
(ui0)

⋆(x)

∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

.

Lastly, passing to the limit as β −→ +∞, we deduce inequality (3.56).

□

Step 2. (Meaning of the equation):

We will show that u = (u1, . . . , ud) = (u)∗, satisfies (1)-(ii) in Definition 3.2. Indeed,

let ϕ ∈ C2((0, T ) × R), and suppose that, for i = 1, . . . , d, the function ui − ϕ attains

its local maximum at (t0, x0) ∈ (0, T ) × R. Then, (t0, x0) is strict local maximum of

ui − ϕ̃, where ϕ̃(t, x) = ϕ(t, x) + |t − t0|2 + |x − x0|2. By a usual technique used in the

theory of viscosity solutions (see Barles [9, Lemma 4.2]), we can say that there exists

a subsequence (ϵim, tϵim , xϵim) → (0, t0, x0) when m → +∞, such that (tϵim , xϵim) is local

maximum of ui
εim,η

i
m
− ϕ̃ and

ui(t0, x0) = lim
m−→+∞

uiεim,ηim(tϵim , xϵim).
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Moreover, from Theorem 3.1 (i), we know that uεim,ηim = (uj
εim,η

i
m
)j=1,...,d is a continuous

viscosity solution of system (3.7) in the sense of Definition 3.1, thus

∂tϕ̃(tϵim , xϵim)− λiϵim(tϵim , xϵim , u
1
εim,η

i
m
(tϵim , xϵim), . . . , u

i
εim,η

i
m
(tϵim , xϵim), . . . , u

d
εim,η

i
m
(tϵim , xϵim))∂xϕ̃(tϵim , xϵim)

− ηim∂
2
xxϕ̃(tϵim , xϵim) ≤ 0.

If we write ∂xϕ̃(tϵim , xϵim) = (∂xϕ̃(tϵim , xϵim))
+ − (∂xϕ̃(tϵim , xϵim))

−, we get

∂tϕ̃(tϵim , xϵim)− λiϵim(tϵim , xϵim , u
1
εim,η

i
m
(tϵim , xϵim), . . . , u

i
εim,η

i
m
(tϵim , xϵim), . . . , u

d
εim,η

i
m
(tϵim , xϵim))(∂xϕ̃(tϵim , xϵim))

+

+ λiϵim(tϵim , xϵim , u
1
εim,η

i
m
(tϵim , xϵim), . . . , u

i
εim,η

i
m
(tϵim , xϵim), . . . , u

d
εim,η

i
m
(tϵim , xϵim))(∂xϕ̃(tϵim , xϵim))

−

− ηim∂
2
xxϕ̃(tϵim , xϵim) ≤ 0.

Since uj
εim,η

i
m

are uniformly bounded for j = 1, . . . , d, we can extract a subsequence (inde-

pendent of j), still noted ϵim, such that
∣∣∣∣∣∣∣∣

lim
m−→+∞

uj
εim,η

i
m
(tϵim , xϵim) = rj for j ̸= i,

lim
m−→+∞

ui
εim,η

i
m
(tϵim , xϵim) = ri = ui(t0, x0).

Now, passing to the inferior limit m −→ +∞ in the previous inequality satisfied by ϕ̃, we

get

∂tϕ(t0, x0)− λ
i
(t0, x0, r

1, . . . , ri, . . . , rd)(∂xϕ(t0, x0))
+

+ λi(t0, x0, r
1, . . . , ri, . . . , rd)(∂xϕ(t0, x0))

− ≤ 0 with ri = ui(t0, x0).

Which proves, using Lemma 3.5 (ii), that

min
{
∂tϕ(t0, x0)− (λi)⋆(t0, x0, r)(∂xϕ)

+(t0, x0) + (λi)⋆(t0, x0, r)(∂xϕ)
−(t0, x0) :

r ∈ Euu (t0, x0), ri = ui(t0, x0)
}
≤ 0.

and therefore u = (u1, · · · , ud) is viscosity sub-solution of (3.1). Similarly, we can verify

that u = (u1, · · · , ud) satisfies (3.55).

□

6 Existence of a viscosity solution for non-decreasing

initial data

In this section, we will prove Theorem 3.2. First, we show some preliminary results in

Subsection 6.1. Then in Subsection 6.2, we demonstrate the proof of Theorem 3.2.
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6.1 Preliminary results

First we recall some properties valid on bounded BV (R)-functions.

Lemma 3.6. (Properties of BV -functions, [6])

Let f be a bounded BV (R)-function. Then, the following hold

i) f is continuous except at most on a countable set,

ii) The right and left limits

f(x+) = lim
y→x
y>x

f(y), f(x−) = lim
y→x
y<x

f(y)

exists at every point x ∈ R. Moreover, there exists a unique right-continuous function fr

(resp. left-continuous function fl) coinciding with f except on a countable set.

iii) There exists a pair of non-decreasing functions f 1, f 2 ∈ L∞(R) such that f = f 1−f 2.

The following lemma shows a local estimate valid on sequences of non-decreasing functions

converging locally and strongly in L1(R).

Lemma 3.7. (Sequences of non-decreasing functions)

i) Sequence of non-decreasing functions strongly convergent in L1
loc(R)

Let (ϕϵ,η)(ϵ,η) be a sequence of non-decreasing functions defined on R such that ϕϵ,η → ϕ

strongly in L1
loc(R), as (ϵ, η) → (0, 0), with ϕ a non-decreasing function also defined on R.

Then, for all a > 0 and 0 < δ ≤ a
2
, there exists ϵδa, η

δ
a > 0, such that, for every 0 < ϵ ≤ ϵδa

and 0 < η ≤ ηδa, the following estimate holds

−δ + ϕ(x− δ) ≤ ϕϵ,η(x) ≤ δ + ϕ(x+ δ), ∀x ∈ [−a, a]. (3.59)

ii) Sequence of non-decreasing functions strongly convergent in C([0, T ];L1
loc(R))

Let (ϕϵ,η)(ϵ,η) be a sequence of functions defined on [0, T )×R such that, for all t ∈ [0, T ),

the function ϕϵ,η(t, ·) is non-decreasing on R. Assume, moreover, that ϕϵ,η → ϕ strongly in

C([0, T );L1
loc(R)), as (ϵ, η) → (0, 0), with, for all t ∈ [0, T ), the function ϕ(t, ·) is defined

and non-decreasing on R. Then, for all a > 0 and 0 < δ ≤ a
2
, there exists ϵδa,T , η

δ
a,T > 0,

such that, for every 0 < ϵ ≤ ϵδa,T and 0 < η ≤ ηδa,T , the following estimate holds

−δ + ϕ(t, x− δ) ≤ ϕϵ,η(t, x) ≤ δ + ϕ(t, x+ δ), ∀x ∈ [−a, a], ∀t ∈ [0, T ).

Lemma 3.8. (Sequence of BV (R) functions)

Let (ϕϵ,η)(ϵ,η) be a sequence of functions, defined on R, uniformly bounded in L∞(R) ∩
BV (R) and strongly convergent to ϕ ∈ L∞(R) ∩ BV (R) in L1

loc(R), with ϕ a right-

continuous function. Then, there exists a subsequence (ϕϵ′,η′)(ϵ′,η′) such that, for all a > 0
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and for all 0 < δ ≤ a
2
, there exists ϵδa, η

δ
a > 0 such that, for all 0 < ϵ ≤ ϵδa and 0 < η ≤ ηδa,

the following estimate holds

−2δ + ϕ1(x− δ)− ϕ2(x− δ) ≤ ϕϵ′,η′ ≤ 2δ + ϕ1(x+ δ)− ϕ2(x− δ), ∀x ∈ [−a, a] (3.60)

where ϕ1 and ϕ2 are two bounded, right-continuous and non-decreasing functions on R

satisfying ϕ = ϕ1 − ϕ2.

For the proof of these two previous lemmas see [19, section 6.1].

We end this subsection with the following compactness lemma.

Lemma 3.9. (Simon’s Lemma [80, Corollary 4])

Let X, B and Y be three Banach spaces, where X →֒ B with compact embedding and B →֒
Y with continuous embedding. If (θn)n is a sequence uniformly bounded in L∞((0, T );X)

and (∂tθn)n is uniformly bounded in Lr((0, T );Y ) where r > 1, then, (θn)n is relatively

compact in C((0, T );B).

6.2 Proof of Theorem 3.2

6.2.1 Passing to the limit as ε and η tend to zero

Let uε,η =
(
uiε,η
)
i=1,...,d

be the solution of (3.7), constructed in Theorem 3.1 (i). From

estimates (3.10), (3.11) and (3.12), we can say that, for all compact K0 ⊂ R, (uiε,η)ε,η

is uniformly bounded in L∞((0, T );BV (K0)) ∩ L∞((0, T ) × K0) and (∂tu
i
ε,η)ε,η is uni-

formly bounded in L∞((0, T );W−1,1(K0)). Using Simon’s lemma in the particular case

X = BV (K0), B = L1(K0), Y = W−1,1(K0) and the following compact embedding

BV (K0) →֒ L1(K0), we can extract a subsequence, denoted by (ui(εn,ηn)K0
)(εn,ηn)K0

, that

converges strongly in L∞((0, T );L1(K0)) to some limit ui, as n → +∞. By a standard

diagonalization procedure, we can extract a subsequence (uiεn,ηn)εn,ηn (independent of i

and K) that converges to the limit ui strongly in C([0, T );L1(K)) for all compact K ⊂ R.

Now, thanks to estimates (3.10) and (3.11) we can extract a subsequence, still denoted

by (uiεn,ηn)εn,ηn , satisfying the following convergences

∣∣∣∣∣∣∣∣∣∣∣∣

uiεn,ηn −→ ui, strongly in C([0, T );L1(K)), for all compact K ⊂ R,

uiεn,ηn −→ ui, weakly- ⋆ in L∞((0, T )× R),

uiεn,ηn −→ ui, weakly- ⋆ in L∞((0, T );BV (R)).

(3.61)
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Taking the lim inf in estimates (3.10), (3.11) and using the lower semi-continuity of ∥ ·
∥L∞(R) and | · |BV (R), we can prove that ui satisfies (3.13), (3.14) and (3.15). Since, for all

t ∈ [0, T ), the function ui(t, ·) ∈ L∞(R) ∩ BV (R), then by property (ii) of Lemma 3.6,

we know that this function coincides with a right-continuous function almost everywhere

in R and consequently in L1
loc(R). This allows us to consider, in the following, a right-

continuous limit with respect to the space variable.

6.2.2 Existence of a discontinuous viscosity solution

It remains to prove that the limit u is a discontinuous viscosity solution of (3.1). Since

we have proved in Theorem 3.1 (ii) that u and u are respectively discontinuous viscosity

sub- and super- solutions, then it is sufficient to show that

ui(t, x) = (ui)⋆(t, x) and ui(t, x) = ui⋆(t, x) for all (t, x) ∈ [0, T )×R, and i = 1, . . . , d.

We will only show the proof of the first equality, the second can be proved in a similar

way. We proceed in two steps.

Step 1. We will prove the following inequality for i = 1, . . . , d,

ui(t, x) ≤ (ui)⋆(t, x). (3.62)

Let a > 0, x ∈ [−a
2
, a
2
] and t ∈ [0, T ). In fact, by the definition of ui, we know that there

exists a sequence (εm, ηm, tεm,ηm , xεm,ηm) → (0, 0, t, x), when m→ +∞, such that

ui(t, x) = lim
m−→+∞

uiεm,ηm(tεm,ηm , xεm,ηm).

We will use the notation (εm, ηm) = dm.

For all α > 0, we can state that, there exists mα > 0, such that, for all m ≥ mα, we have

εm ≤ α, ηm ≤ α, |xdm − x| ≤ α and |tdm − t| ≤ α.

Using Lemma 3.4, with

hα =





t− α if t > 0,

0 if t = 0,

72



CHAPTER 3. GLOBAL EXISTENCE TO A DIAGONAL HYPERBOLIC SYSTEM

we get that, for all m ≥ mα and α > 0 such that hα ≥ 0,

uidm(tdm , xdm) ≤
∫

R

1√
4πηm(tdm − hα)

e
− y2

4ηm(tdm
−hα) max

|z−(xdm−y)|≤Λ(tdm−hα)
uidm(hα, z)dy

≤ 1√
π

∫

R

e−y
2

max∣∣∣z−
(
xdm−y

√
4ηm(tdm−hα)

)∣∣∣≤2αΛ

uidm(hα, z)dy

≤ 1√
π

∫

|y|≤β
e−y

2

max∣∣∣z−
(
xdm−y

√
4ηm(tdm−hα)

)∣∣∣≤2αΛ

uidm(hα, z)dy

︸ ︷︷ ︸
L1

+
1√
π

∫

|y|≥β
e−y

2

max∣∣∣z−
(
xdm−y

√
4ηm(tdm−hα)

)∣∣∣≤2αΛ

uidm(hα, z)dy

︸ ︷︷ ︸
L2

,

where β ∈ R. Then, for Λ̃ = α(2Λ + 2
√
2β + 1), we get

L1 ≤
1√
π

max
|z−x|≤Λ̃

uidm(hα, z)

∫ β

−β
e−y

2

dy. (3.63)

For L2, as y2e−y
2 ≤ 1, we get

L2 ≤
1√
π
max
z∈R

∣∣uidm(hα, z)
∣∣
∫

|y|≥β
e−y

2

dy ≤

1√
π

∥∥uidm
∥∥
L∞(R)

∫

|y|≥β

1

y2
dy ≤ 2

β
√
π

∥∥ui0
∥∥
L∞(R)

,

(3.64)

where we have used estimate (3.10). Collecting (3.63) and (3.64), we obtain

uidm(tdm , xdm) ≤
1√
π

max
|z−x|≤Λ̃

uidm(hα, z)

∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

. (3.65)

Moreover, from the Maximum Principle of (3.7) and since the initial data is non-decreasing,

we know that uidm is non-decreasing (with respect to x) and therefore, for all m ≥ mα, we

have

uidm(tdm , xdm) ≤
1√
π
uidm

(
hα, x+ α(2Λ + 2

√
2β + 1)

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

.

Now, as we have indicated in Subsubection 6.2.1, since uidm satisfies estimates (3.10) and

(3.11),we can extract a subsequence, still denoted by (uidm)dm , that converges in the sense

of (3.61) to a function ui. Since uidm is non-decreasing (with respect to x), then for all
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t ∈ [0, T ) the limit ui(t, ·) can be considered non-decreasing and defined on R. By the

previous inequality and Lemma 3.7 (ii), we obtain that, for all 0 < α ≤ αa, where

αa =





min

(
f t

2
,

a

2(2Λ + 2
√
2β + 1)

)
if t > 0,

a

2(2Λ + 2
√
2β + 1)

if t = 0,

there exists mα
a,T > 0, such that, for every m ≥ mα

a,T , we have

uidm(tdm , xdm) ≤
1√
π
ui
(
hα, x+ 2α(Λ +

√
2β + 1)

)∫ β

−β
e−y

2

dy + α +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

.

Passing to the limit m→ +∞, then α → 0, and lastly β → +∞, we obtain (3.62).

Step 2. It remains to show that

(ui)⋆(t, x) ≤ ui(t, x). (3.66)

Consider a > 0, x ∈ [−a
2
, a
2
] and t ∈ [0, T ). In fact, from the definition of (ui)⋆ we know

that there exists a sequence (tϵm , xϵm) → (t, x), when m→ +∞, such that

(ui)⋆(t, x) = lim
m−→+∞

ui(tϵm , xϵm).

Similarly, as in Step 1, we can state that, for all α > 0, there exists mα > 0, such that,

for all m ≥ mα, we have

|xϵm − x| ≤ α and |tϵm − t| ≤ α.

However, using Lemma 3.7 (ii), we know that, for all 0 < α ≤ a
2
, there exists kαa,T , ℓ

α
a,T > 0

and two subsequences 0 < εαk
≤ α and 0 < ηαℓ

≤ α such that, for every k ≥ kαa,T and

ℓ ≥ ℓαa,T ,

ui(tϵm , xϵm) ≤ uiεαk
,ηαk

(tϵm , xϵm + α) + α ≤ sup
εαk

≤α,|s−t|≤α

ηαℓ
≤α,|y−x|≤2α

uiαk,ηαk
(s, y) + α.

Passing to the limit m→ +∞ and then α → 0, we obtain (3.66).

□
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7 Link between sub and super solutions in the general

case

Finally, in this section, we give the proof of Theorem 3.1 (iii). Let uε,η = (uiε,η)i=1,··· ,d

be the solution of (3.7), constructed in Theorem 3.1 (i). As explained in the beginning

of the proof of Theorem 3.2, we can extract a subsequence (uiεn,ηn)εn,ηn satisfying (3.61)

with limit ui that verifies (3.13), (3.14) and (3.15). Moreover, for all t ∈ [0, T ), ui(t, ·) is

a right-continuous function on R. It remains to show equality (3.16). For a clear presen-

tation, we will perform this in three steps.

Step 1. (Regularity in time estimate):

Let T > 0, a > 0, β ∈ R, and set γ = 2(Λ +
√
2β + 1). First, we will show that there

are two bounded and non-decreasing functions ui,1 and ui,2 satisfying ui = ui,1 − ui,2 for

every i = 1, . . . , d, and the following inequalities

1√
π

(
− 2h+ ui,1(t, x− hγ)− ui,2(t, x+ hγ)

)∫ β

−β
e−y

2

dy − 2

β
√
π

∥∥ui0
∥∥
L∞(R)

≤

ui(t+ h, x) ≤ ui(t+ h, x) ≤

1√
π

(
2h+ ui,1(t, x+ hγ)− ui,2(t, x− hγ)

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

,

(3.67)

for all x ∈ [−a
2
, a
2
], t ∈ [0, T ) and for all h > 0 verifying

h ≤ a

2(2Λ + 2
√
2β + 1)

and t+ h < T. (3.68)

We begin with the proof of the right inequality in (3.67), namely,

ui(t+h, x) ≤ 1√
π

(
2h+ui,1(t, x+hγ)−ui,2(t, x−hγ)

)∫ β

−β
e−y

2

dy+
2

β
√
π

∥∥ui0
∥∥
L∞(R)

. (3.69)

Indeed, consider h > 0 satisfying (3.68), by the definition of ui, we know that there exists

a sequence (εm, ηm, t
h
εm,ηm

, xεm,ηm) → (0, 0, t+ h, x), when m→ +∞, such that

ui(t+ h, x) = lim
m→+∞

uiεm,ηm(t
h
εm,ηm

, xεm,ηm) = lim
m→+∞

uidm(t
h
dm
, xdm).

Now, the convergence (εm, ηm, t
h
dm
, xdm) → (0, 0, t+ h, x) when m→ 0, implies that there

exists mh > 0, such that, for all m ≥ mh, we have

εm ≤ h, ηm ≤ h, |thdm − t− h| ≤ h and |xdm − x| ≤ h.
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Using Lemma 3.4, we have, for all m ≥ mh,

uidm(t
h
dm
, xdm) ≤

∫

R

1√
4πηm(thdm − t)

e
− y2

4ηm(th
dm

−t) max
|z−(xdm−y)|≤Λ(th

dm
−t)
uidm(t, z)dy.

By a change of variable, and repeating the same computation done in step 1 of Subsub-

section 6.2.2, we obtain

uidm(t
h
dm
, xdm) ≤

1√
π

max
|z−x|≤h(2Λ+2

√
2β+1)

uidm(t, z)

∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

. (3.70)

Since, for all t ∈ [0, T ), the sequence uidm(t, ·) is uniformly bounded in L∞(R) ∩ BV (R)

and converges strongly in L1
loc(R), we can deduce, from Lemma 3.8, that there exists a

subsequence uidn(t, ·) and a positive constant nha,t, such that, for all n ≥ nha,t, we have

uidn(t, y) ≤ 2h+ ui,1(t, y + h)− ui,2(t, y − h), ∀y ∈ [−a, a], (3.71)

where ui,1 and ui,2 are two bounded, right-continuous and non-decreasing functions (with

respect to x) satisfying ui = ui,1−ui,2 for every i = 1, . . . , d. Collecting (3.70) and (3.71),

we obtain that, for all h > 0 satisfying (3.68) and for all n ≥ nha,t,

uidn(t
h
dn
, xdn) ≤

1√
π

(
2h+ ui,1(t, x+ hγ)− ui,2(t, x− hγ)

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

.

We pass to the limit n→ +∞ to get (3.69). Similarly, using the finite speed propagation

property and the fact that uidm(t, ·) is uniformly bounded in L∞(R) ∩ BV (R), we can

prove the left inequality in (3.67), namely,

1√
π

(
− 2h+ ui,1(t, x− hγ)− ui,2(t, x+ hγ)

)∫ β

−β
e−y

2

dy − 2

β
√
π
≤ ui(t+ h, x). (3.72)

Step 2. (Right and left continuity):

Let T > 0 and t ∈ [0, T ). Since ui,1(t, ·), ui,2(t, ·) are bounded and non-decreasing

functions on R for every i = 1, . . . , d, then, from property (ii) of Lemma 3.6, we know

that, the right and left limits of these functions exist at every point x ∈ R. This implies

that, for all α > 0 and x ∈ [−a
2
, a
2
], there exists hαa,t > 0, such that, for all 0 < z ≤ hαa,t

and i = 1, . . . , d, we have
∣∣∣∣∣∣∣

ui,1(t, x+ z) ≤ α
4
+ ui,1r (t, x)

ui,2(t, x+ z) ≤ α
4
+ ui,2r (t, x)

and

∣∣∣∣∣∣∣

−ui,1(t, x− z) ≤ α
4
− ui,1l (t, x)

−ui,2(t, x− z) ≤ α
4
− ui,2l (t, x)

(3.73)
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where ui,1r (t, ·), ui,2r (t, ·), are right-continuous functions on R and ui,1l (t, ·), ui,2l (t, ·) are

left-continuous functions on R. Note that, in here, the choice of the constant hαa,t does

not depend on x, that is a consequence of the Heine-Cantor Theorem.

Now, let T > 0, t ∈ [0, T ) and α > 0, we can see that, if we denote

h̄αa,t,T = min

(
hαa,t
γ
,

a

2(2Λ + 2
√
2β + 1)

,
α

4
,
T − t

2

)
,

then, for all 0 < h ≤ h̄αa,t,T , assumption (3.68) holds. Therefore, we obtain

ui(t+ h, x) ≤ 1√
π

(
2h+ ui,1(t, x+ hγ)− ui,2(t, x− hγ)

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

≤ 1√
π

(
α + ui,1r (t, x)− ui,2l (t, x)

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

,

(3.74)

where we have used (3.69) in the first inequality and (3.73) in the second one. Similarly,

using (3.72) and (3.73), we can prove that, for all x ∈ [−a
2
, a
2
], t ∈ [0, T ), α > 0 and

0 < h ≤ h̄αa,t,T , we have

− 2

β
√
π

∥∥ui0
∥∥
L∞(R)

+
1√
π

(
ui,1l (t, x)− ui,2r (t, x)− α

)∫ β

−β
e−y

2

dy ≤ ui(t+ h, x). (3.75)

Step 3. (Link between u and u):

Let T > 0, x ∈ [−a
2
, a
2
], t ∈ [0, T ) and α > 0. In Step 2, we proved that, there exists a

positive constant h̄αa,t,T , such that, for all i = 1, . . . , d and 0 < h ≤ h̄αa,t,T , we have

ui(t+ h, x) ≤ 1√
π

(
ui,1r (t, x)− ui,2l (t, x) + α

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

−ui(t+ h, x) ≤ − 1√
π

(
ui,1l (t, x)− ui,2r (t, x)− α

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

.

(3.76)

Since
⋃
t∈[0,T )[t, t+ h̄αa,t,T ] is a cover of [0, T

2
], then there is a finite number Nα

a of ordered

intervals, satisfying
∣∣∣∣∣∣∣

⋃
0≤j≤Nα

a
[ταa,j, τ

α
a,j + h̄αa,ταa,j ,T ] ⊃

[
0, T

2

]
with ταa,0 = 0

and ταa,j+1 = ταa,j + h̄αa,ταa,j ,T for j = 1, · · · , Nα
a − 1

This expression joint to (3.76) and the fact that R =
⋃
a∈Q[−a

2
, a
2
] shows that, for all

x ∈ R, τ ∈ [0, T
2
], and for all positive constant α ∈ Q, there exist two indices a0 ∈ Q and
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0 ≤ k ≤ Nα
a0

, such that,

ui(τ, x) ≤ 1√
π

(
ui,1r (ταa0,k, x)− ui,2l (ταa0,k, x) + α

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

−ui(τ, x) ≤ − 1√
π

(
ui,1l (ταa0,k, x)− ui,2r (ταa0,k, x)− α

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

.

(3.77)

Moreover, from property (ii) of Lemma 3.6, we know that, for all positive constants α, a ∈
Q and 0 ≤ j ≤ Nα

a , the functions ui,1r (ταa,j, ·), ui,1l (ταa,j, ·) (resp. ui,2r (ταa,j, ·), ui,2l (ταa,j, ·))
coincide with ui,1(ταa,j, ·) (resp. ui,2(ταa,j, ·)) except on a countable set on R, denoted Dα

a,j.

Now, we define the following countable set

D =
⋃

a,α∈Q

⋃

0≤j≤Nα
a

Dα
a,j.

Thanks to (3.77), we can see that, for all x /∈ D, τ ∈ [0, T
2
] and for all positive constant

α ∈ Q, there exist two indices a0 ∈ Q and 0 ≤ k ≤ Nα
a0

, such that

ui(x, τ) ≤ 1√
π

(
ui,1(x, ταa0,k)− ui,2(x, ταa0,k) + α

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

≤ 1√
π

(
ui(x, ταa0,k) + α

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

−ui(x, τ) ≤ − 1√
π

(
ui,1(x, ταa0,k)− ui,2(x, ταa0,k)− α

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

≤ − 1√
π

(
ui(x, ταa0,k)− α

)∫ β

−β
e−y

2

dy +
2

β
√
π

∥∥ui0
∥∥
L∞(R)

.

Adding the previous inequalities, we deduce that, for all rational number α > 0, x /∈ D

and τ ∈ [0, T
2
],

0 ≤ ui(τ, x)− ui(τ, x) ≤ 2α√
π

∫ β

−β
e−y

2

dy +
4

β
√
π

∥∥ui0
∥∥
L∞(R)

.

Passing to the limit α → 0 and β → +∞, and replacing T by 2T , we get

ui(τ, ·) = ui(τ, ·), except at most on a countable set in R, for all τ ∈ [0, T ], and i = 1, . . . , d.

(3.78)

This equality allows us to link the sub-solution ui and the super-solution ui. It remains

to show that

ui(τ, ·) = ui(τ, ·) except at most on a countable set in R, for all τ ∈ [0, T ].
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To do this, it is sufficient to use, the right continuity of the functions ui(τ, ·), ui,1(τ, ·) and

Lemma 3.7 (i). Indeed, let α > 0, the right continuity of the functions ui(τ, ·), ui,1(τ, ·),
implies that, for all x ∈ [−a

2
, a
2
], there exists α1

a,τ > 0, such that, for all 0 < δ ≤ α1
a,τ , we

have
ui(τ, x) ≤ α + ui(τ, x+ δ)

= α + ui,1(τ, x+ δ)− ui,2(τ, x+ δ)

≤ 2α + ui,1(τ, x)− ui,2(τ, x+ δ)

(3.79)

where ui,1, ui,2 are the right-continuous non-decreasing functions, given in (3.71). How-

ever, using Lemma 3.7 (i), we know that, for all 0 < δ ≤ a
2
, there exists kαa,τ , ℓ

α
a,τ > 0 and

two subsequences 0 < ϵk ≤ δ, 0 < ηℓ ≤ δ such that for every k ≥ kαa,τ , ℓ ≥ ℓαa,τ

∣∣∣∣∣∣∣

ui,1(x, τ) ≤ δ
2
+ ui,1ϵk,ηℓ(τ, x+

δ
2
)

−ui,2(τ, x+ δ) ≤ δ
2
− ui,2ϵk,ηℓ(τ, x+

δ
2
),

(3.80)

where the sequences ui,1ϵk,ηℓ and ui,2ϵk,ηℓ satisfy the following equality uiϵk,ηℓ = ui,1ϵk,ηℓ − ui,2ϵk,ηℓ .

Finally, bringing together the two inequalities (3.79) and (3.80), we can see that, for all

0 < δ ≤ min(a
2
, α1

a,τ ), k ≥ kαa,τ and ℓ ≥ ℓαa,τ , we have

ui(τ, x) ≤ 2α + δ + uiϵk,ηℓ(τ, x+
δ

2
) ≤ 2α + δ + sup

ϵk≤δ, |s−τ |≤δ

ηℓ≤δ, |y−x|≤2δ

uiϵk,ηℓ(s, y).

To complete the proof, we pass to the limit δ → 0 and then α → 0, to get ui(τ, x) ≤
ui(τ, x). Similarly, we can show that ui(τ, x) ≤ ui(τ, x), which joint to (3.78) proves the

desired result.

□

Remark 3.3. Note that, equality (3.16) implies that the functions ui, ui also satisfy

estimates (3.14) and (3.15).

Remark 3.4. The classical question to be asked after an existence result, is the uniqueness

of the constructed solution. In the case of system (3.1), the uniqueness of the solution

remains an open question under the conditions considered in this work. Normally, we can

apply a Comparison Principle in order to prove the uniqueness of the solution. However,

even trying to prove such an argument to (3.1) in an almost everywhere sense is still

too difficult. We can try to impose some monotony on the velocities λi; for example if

we consider that the system is quasi-monotonic in the sense of Ishii, Koike [59], and by
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taking continuous or maybe piece-wise continuous initial data, perhaps then a Comparison

Principle in space can be applied in order to prove the uniqueness of the solution.
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4 Existence and uniqueness to a

Hamilton-Jacobi system

This chapter is a submitted article that is written in collaboration with Ahmad El Hajj

and Mustapha Jazar.

In this work, we study the existence and uniqueness of a non-linear eikonal system in

one space dimension. We prove first the existence of a discontinuous viscosity solution by

regularizing the problem and passing to the limit as the regularization vanishes. Then,

by the means of a Comparison Principle, we show that this discontinuous solution would

be continuous if we assume that the initial data are also continuous functions, and under

the extra supposition of quasi-monotony we impose on the system. As a consequence, we

obtain the uniqueness of this continuous solution. We also present an application to a

particular system that models the dynamics of dislocations densities.
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Existence and uniqueness results to a system of
Hamilton-Jacobi equations

Maryam Al Zohbi, Ahmad El Hajj, Mustapha Jazar

Abstract

We study the existence and uniqueness of a nonlinear system of eikonal equations in one space dimension for any

BV initial data. We present two results. In the first one, we prove the existence of a discontinuous viscosity

solution without any monotony conditions neither on the velocities nor on the initial data. In the second, we

show the continuity of the constructed solution under continuous initial data, and continuous velocities verifying

a certain monotony condition. We present an application to a system modeling the dynamics of dislocations

densities.

AMS Classification: 35F21, 49L25, 35D40, 34A12, 74H20, 74H25, 35B51, 35F55, 35L40, 35L45.

Key words: Hamilton-Jacobi equations, non-linear eikonal equations, viscosity solution, uniqueness, compra-

sion principle, dislocations dynamics.

1 Introduction and main results

1.1 Setting of the problem

In this paper, we are interested in a non-linear strongly coupled Hamilton-Jacobi system

of the form




∂tu
i(t, x) = λi(t, x, u(t, x))|∂xui(t, x)| in (0, T )× R,

ui(0, x) = ui0(x) in R,

(4.1)

where T > 0 and i = 1, . . . , d, such that d ∈ N∗. The functions ui are real valued, ∂tui

and ∂xu
i represent the time and spatial derivatives of ui respectively. The velocity λi is

assumed to satisfy, for all i = 1, . . . , d, the following assumption

λi ∈ L∞((0, T )× R×K) for T > 0 and for all compact K ⊂ Rd. (4.2)
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CHAPTER 4. EXISTENCE AND UNIQUENESS TO A HAMILTON-JACOBI SYSTEM

Our study of system (4.1) is motivated by the consideration of a model describing the

dynamics of dislocations densities (see [45, Section 5] for more details about the model),

which is given by

∂tu
i =

(
∑

j=1,...,d

Aiju
j

)
|∂xui| for i = 1, . . . , d, (4.3)

where (Aij)i,j=1,...,d is a real matrix. This model can be seen as a special case of system

(4.1). From another point of view, we remark that system (4.1) can be seen as the “level-

set approach” system associated to the motion of the front Γit := {x : ui(t, x) = 0} with a

normal velocity λj(t, x, u) depending on the solution u and affected by λj(t, x, u) for i ̸= j

(see for instance Barles et al. [12]).

We aim in this work to establish first the existence of a discontinuous viscosity solution

assuming we have (4.2) and the following regularity on the initial data

ui0 ∈ L∞(R) ∩ BV (R) for every i = 1, . . . , d, (4.4)

where BV (R) is the space of functions of bounded variations given by

BV (R) =
{
f ∈ L1

loc(R); TV (f) < +∞
}
,

with TV (f) being the total variation of f defined as

TV (f) = sup

{∫

R

f(x)ϕ′(x)dx; ϕ ∈ C1
c (R) and ∥ϕ∥L∞(R) ≤ 1

}
.

Then, we will show that this discontinuous solution would be continuous if we assume

that the system is quasi-monotone in the sense of Ishii, Koike [59, 60], along with (4.4)

and

ui0 ∈ C(R) for every i = 1, . . . , d, (4.5)

and assuming the velocities verify (4.2) and the following assumptions for every i =

1, . . . , d,

λi ∈ C((0, T )× R×K) for T > 0 and for all compact K ⊂ Rd,

there exists M1 > 0 such that, for all x, y ∈ R and t ∈ (0, T ),

|λi(t, x, u)− λi(t, y, u)| ≤M1|x− y|.

(4.6)

We refer the reader to [9, 35, 37] for a complete overview on viscosity solutions. In the

following, we take the space BV (R) endowed with the semi-norm |f |BV (R) = TV (f).
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Note that BV functions are integrable functions whose distributional derivative is a finite

Radon measure.

In order to prove the existence of a discontinuous solution of (4.1), first we will consider,

for every i = 1, . . . , d and 0 < ε, η ≤ 1, the following parabolic regularization




∂tu
i
ε,η(t, x) = η∂2xxu

i
ε,η(t, x) + λiε(t, x, uε,η(t, x))|∂xuiε,η(t, x)| in (0, T )× R,

uiε,η(0, x) = ui0,ε(x) in R.

(4.7)

The functions λiε and ui0,ε are the regularizations of λi and ui0 by classical convolution,

which are defined as

ui0,ε(x) = ui0 ⋆ ρ
1
ε(x) and λiε(t, x, w) = λ̂i ⋆ ρd+2

ε (t, x, w) ∀ (t, x, w) ∈ R×R×Rd, (4.8)

where λ̂i is an extension of λi by 0 for all i = 1, . . . , d. Moreover, ρnε for n = 1 and

n = d+ 2 are standard mollifiers defined as

ρnε (·) =
1

εn
ρn
( ·
ε

)
, such that ρn ∈ C∞

c (Rn), supp{ρn} ⊆ B(0, 1), ρn ≥ 0, and
∫

Rn

ρn = 1.

We will show that (4.7) admits a unique Lipschitz solution by the means of a Fixed Point

argument. Then, by using stability results of viscosity solutions, we will be able to pass

to the limit as (ε, η) → (0, 0), and show that the upper and lower relaxed semi-limits of

Barles and Perthame [10, 11], which are defined as

ui(t, x) = lim sup⋆uiε,η(t, x) = lim sup
(ε,η)−→(0,0)
(s,y)−→(t,x)

uiε,η(s, y), (4.9)

and

ui(t, x) = lim inf⋆u
i
ε,η(t, x) = lim inf

(ε,η)−→(0,0)
(s,y)−→(t,x)

uiε,η(s, y), (4.10)

are a couple of discontinuous viscosity sub- and super-solutions of system (4.1) in the sense

of discontinuous viscosity solutions introduced by Ishii in [58, Definition 2.1] for Hamilton-

Jacobi systems that is recalled below in Definition 4.1. Then, by applying the comparison

principle, we will be able to show the continuity of these discontinuous solutions under

(4.5) and (4.6), in the case where system (4.1) is quasi-monotone (defined below in (H)).

The uniqueness of the continuous solution is obtained again by a comparison principle.

1.2 A brief review of some related literature

Several studies have been made on (4.1), of which we will mention some. In El Hajj et al.

[44], the global existence of a discontinuous viscosity solution has been obtained, under a
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certain monotony condition on the velocities. However, without any such monotony con-

ditions, EL Hajj and Oussaily recently proved in [48] the global existence and uniqueness

of a continuous viscosity solution, basing on an entropy and a BV estimate. In this work,

we treat the case of discontinuous solutions without any monotony conditions.

We note that in the case of nondecreasing solutions, system (4.1) becomes a diagonal

hyperbolic system. For such systems, many existence and uniqueness results have been

made. We will recall some of the most significant ones.

First, in the case of (2 × 2) strictly hyperbolic system with nondecreasing initial data,

Lax proved in [63], the existence and uniqueness of nondecreasing smooth solutions. Also,

assuming that the initial data is nondecreasing, an existence and uniqueness result of a

continuous solution was proved in El Hajj, Monneau [46] for a general (d × d) diagonal

strictly hyperbolic system. The proof in [46] is based on a global existence result of a

continuous nondecreasing solution established previously in El Hajj, Monneau [45], where

the system is assumed to be hyperbolic but not necessarily strictly hyperbolic. Also,

in the case of (d × d) strictly hyperbolic systems, Bianchini and Bressan proved in [17]

a global existence and uniqueness result assuming that the initial data had small total

variation. This approach is mainly based on a careful analysis of the vanishing viscosity

approximation. We can also mention that an existence result has been also obtained by

LeFloch, Liu [65] and LeFloch [64, 66], in the non-conservative case.

Many authors have worked on Hamilton-Jacobi equations in several space dimensions with

discontinuous coefficients. We mention the work of Camilli and Siconolfi [26, 27], where

comparison principles, existence and uniqueness results, stability properties, and repre-

sentations formulas of viscosity solutions have been made, under the assumptions that the

Hamiltonian H(x, p) is measurable with respect to the space variable x and convex in p.

We can also point out the work of Chen and Hu [30], where they establish the existence

and uniqueness of Lipschitz continuous viscosity solutions, assuming the Hamiltonian is

nonnegative and Lipschitz continuous. What is genuine about our work is that we will

show the existence of viscosity solutions assuming our Hamiltonians (velocities λi) are

only bounded functions.

We note that the system understudy in this paper is strongly coupled. However, it is

important to mention that the case of weakly coupled Hamilton-Jacobi equations have

been widely studied in the literature. For instance, Camilli and Loreti proved in [25] two
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comparison theorems on the system

Hi(x,Du
i) +

M∑

j=1

cij(u
i − uj) = 0, i = 1, . . . ,M,

by imposing convexity and coercivity conditions on the Hamiltonians Hi. Many other

results have been brightened up under such conditions. Loreti and Vergara Caffarelli

proved the existence and uniqueness of variational solutions in [70]. Also, the authors in

Mitake et al. [72] were able to characterize all sub-solutions of their system and represent

explicitly some of which enjoy a certain maximality property.

In this paper, we present two results that remain valid whether the system is strictly

hyperbolic or not strictly hyperbolic, and without any monotony conditions on the initial

data. First, we show the global existence of a discontinuous viscosity solution to (4.1)

without any monotony conditions on the velocities for any BV initial data. Second, we

prove the continuity of the obtained solution by using the Comparison Principle, assuming

that the initial data are continuous and the velocities are Lipschits functions in space

verifying certain monotony conditions. Then, as a consequence, we obtain the uniqueness

of the solution.

1.3 Main results

In this subsection, we first present, in Theorem 4.1, the global existence of a discontinuous

viscosity solution to (4.1). Then, we show, in Theorem 4.2, that this solution is continuous

for continuous initial data and under certain monotony conditions on the velocities. Lastly,

we present an application to the case of the dynamics of dislocations densities in Theorem

4.3.

Theorem 4.1 (Existence of a discontinuous viscosity solution to (4.1)).

Assume that (4.2) and (4.4) are satisfied. Then the following points hold.

i) Existence and uniqueness to the regularized problem

There exists a unique Lipschitz solution uε,η = (uiε,η)i=1,...,d of (4.7) belonging to the space

(C([0, T );W 1,∞(R)))d, and satisfying for all T > 0 and i = 1, . . . , d, the following uniform
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estimates
∥∥uiε,η

∥∥
L∞((0,T )×R)

≤
∥∥ui0
∥∥
L∞(R)

, (4.11)

∥∥∂xuiε,η
∥∥
L∞((0,T );L1(R))

≤
∥∥∂xui0

∥∥
L1(R)

, (4.12)

∥∥∂tuiε,η
∥∥
L∞((0,T );W−1,1(R))

≤
(
1 +

∥∥λi
∥∥
L∞((0,T )×R×K0)

) ∣∣ui0
∣∣
BV (R)

, (4.13)

where W−1,1(R) is the dual of W 1,∞(R), and

K0 =
d∏

i=1

[
−
∥∥ui0
∥∥
L∞(R)

,
∥∥ui0
∥∥
L∞(R)

]
. (4.14)

ii) Sub- and super- solutions of (4.1)

Let uε,η be the unique solution of (4.7) constructed in (i). Then the upper and lower relaxed

semi-limits u =
(
ui
)
i=1,...,d

and u = (ui)i=1,...,d, are a couple of discontinuous discontinuous

viscosity sub- and super- solutions of system (4.1) (in the sense of Definition 4.1).

iii) Convergence

Assume that the solution uiε,η of (4.7) satisfies (4.11), (4.12) and (4.13) for i = 1, . . . , d.

Then, up to the extract of a subsequence, the function uiε,η converges, as ε and η tend to

zero, to a function

ui ∈ L∞((0, T )× R
)
∩ L∞((0, T ); BV (R)

)
∩ C

(
[0, T ); L1

loc(R)
)
, (4.15)

strongly in C ([0, T ); L1
loc(R)).

Moreover, ui satisfies, for all T > 0 and for i = 1, . . . , d, the following inequalities
∥∥ui
∥∥
L∞((0,T )×R)

⩽
∥∥ui0
∥∥
L∞(R)

, (4.16)
∥∥ui
∥∥
L∞((0,T );BV (R))

⩽
∣∣ui0
∣∣
BV (R)

, (4.17)

and the following equality

ui(t, ·) = ui(t, ·) = ui(t, ·), except at most on a countable set in R, for all t ∈ [0, T ).

(4.18)

Our second result relies on the supposition that system (4.1) is quasi-monotone. This

means that the velocities verify the following condition

λj(t, x, s)− λj(t, x, r) ≥ 0 for all vectors r = (ri)i=1,...,d, s = (si)i=1,...,d such that

rj − sj = max
i∈{1,...,d}

(ri − si) ≥ 0.

(H)
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Theorem 4.2 (Existence and uniqueness of a continuous solution to (4.1)). Sup-

pose that (4.2), (4.4), (4.5), (4.6) and (H) hold. Then, there exists a unique continuous

viscosity solution of (4.1) satisfying (4.16) and (4.17).

1.3.1 Unique continuous solution for dislocations’ dynamics

Now, we present an application of Theorem 4.2 to a nonlinear system that appears in the

modeling of the dynamics of dislocations densities in materials.

A dislocation is a linear crystallographic defect or irregularity within a crystal structure

that contains an abrupt change in the arrangement of its atoms.

Here, we are interested in a particular 1D model initially proposed in 2D dimensions by

Groma and Balogh [53, 54], in order to describe the dynamics of dislocations densities.

This 2D model is written in a specific geometry, where the dislocations are considered

as points in the plane (x1, x2), propagating to the left and to the right, following two

Burger’s vectors ±b = ±(1, 0). In the 1D sub-model, we suppose that the dislocations

densities depend only on the variable x = x1 + x2, which transforms the 2D model into a

1D model. We refer the reader to El Hajj and Forcadel [41, Lemma 3.1] for more details

about the modeling.

More precisely, we consider the following system




∂tρ
+(x, t) = −

(
(ρ+ − ρ−)(x, t) + α

∫ 1

0

(ρ+ − ρ−)(y, t)dy + a(t)

)∣∣∣∂xρ+(x, t)
∣∣∣ in R× (0, T ),

∂tρ
−(x, t) =

(
(ρ+ − ρ−)(x, t) + α

∫ 1

0

(ρ+ − ρ−)(y, t)dy + a(t)

)∣∣∣∂xρ−(x, t)
∣∣∣ in R× (0, T ),

(4.19)

where ρ+, ρ− are the unknown scalars, that we denote for simplicity by ρ±. These two

functions, ρ+ and ρ−, are respectively the representations of the left-propagating and right-

propagating dislocations. Their spatial derivatives ∂xρ+, ∂xρ− represent the dislocations

densities of +,− type respectively. The constant α depends on the elastic coefficients and

the material size, while the function a(t) represents the exterior strain field.

The initial conditions associated to system (4.19) are defined as follows

ρ±(0, x) = ρ±0 (x) = P±
0 (x) + a0x on R, (4.20)

where P±
0 are 1-periodic functions. In particular, ρ+0 − ρ−0 is 1-periodic. The use of the

periodic boundary conditions is a way of regarding what is going on in the interior of the

material away from its boundary, assuming the material understudy is made up entirely

of small and similar subsets.
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Remark 4.1. Mathematically speaking, we could have just considered periodic initial

conditions, without the linear part in (4.20). However, the use of periodic plus linear con-

ditions is totally physical, as the dislocations densities are considered to be non-decreasing

functions in this model.

Applying Theorem 4.2 to the local case (α = 0) of system (4.19) yields the following

result, where we note that the set T = R/Z is the [0, 1) periodic interval.

Theorem 4.3 (Existence and uniqueness of a continuous solution).

Assume that α = 0, and suppose that the functions P±
0 introduced in (4.20) verify

P±
0 ∈ C(T) ∩ BV (T), (4.21)

and the function a satisfies

a ∈ C[0, T ). (4.22)

Then, there exists a unique continuous viscosity solution of system (4.19)-(4.20).

The proof of this theorem derives naturally from Theorem 4.2, since system (4.19) verifies

condition (H) in the case where α = 0.

1.4 Organization of the paper

This paper is organized as follows: in Section 2, we prove the existence of a discontinuous

viscosity solution result, that was announced in Theorem 4.1. Section 3 is devoted to

the proof of Theorem 4.2, where we show by the means of a comparison principle, the

continuity and the uniqueness of the solution constructed in Theorem 4.1, under certain

extra conditions. Finally in Section 4, we present an application of Theorem 4.2 to the

dynamics of dislocations, presented in Theorem 4.3.

2 Existence of a discontinuous solution

In this section, we prove the existence of a discontinuous viscosity solution of (4.1), that

was announced in Theorem 4.1. First, we recall in the following subsection a well-known

compactness lemma, along with the definition of discontinuous viscosity solutions for

system (4.1).

2.1 Some useful results

We first recall Simon’s Compactness Lemma.
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Lemma 4.1. (Simon’s Lemma [80, Corollary 4])

Let X, B and Y be three Banach spaces, where X →֒ B with compact embedding and B →֒
Y with continuous embedding. If (θn)n is a sequence uniformly bounded in L∞((0, T );X)

and (∂tθn)n is uniformly bounded in Lr((0, T );Y ) where r > 1, then, (θn)n is relatively

compact in C((0, T );B).

Next, we are going to recall the definition of discontinuous viscosity solutions for system

(4.1) introduced by Ishii in [58, Definition 2.1].

We denote by f ⋆ and f⋆ the respective upper and lower semi-continuous envelopes of a

locally bounded function f defined on an open domain in Rn and given by

f ⋆(X) = lim sup
Y→X

f(Y ) and f⋆(X) = lim inf
Y→X

f(Y ) for X ∈ Rn. (4.23)

For a vector u = (u1, . . . , ud) locally bounded on [0, T ) × R for all T > 0, we write

u⋆ = ((u1)⋆, . . . , (ud)⋆) and u⋆ = ((u1)⋆, . . . , (u
d)⋆).

Given two locally bounded functions v = (vi)i=1,...,d and u = (ui)i=1,...,d on [0, T )×R such

that (vi)⋆ ≤ (ui)⋆ for every i = 1, . . . , d, we define the set

Euv (t, x) =
d∏

i=1

[
(vi)⋆(t, x), (u

i)⋆(t, x)
]
.

Definition 4.1. (Discontinuous viscosity sub-solution, super-solution and solu-

tion)

Assume that λ = (λi)i=1,...,d is locally bounded on (0, T )× R× Rd and u0 = (ui0)i=1,...,d is

locally bounded on R. Let v = (vi)i=1,...,d, u = (ui)i=1,...,d be two locally bounded func-

tions on [0, T )×R such that (vi)⋆ ≤ (ui)⋆ for every i = 1, . . . , d. We say that u and v are

a couple of discontinuous viscosity sub- and super- solutions of (4.1) if they satisfy the

following two conditions

(i) • (ui)⋆(0, x) ≤ (ui0)
⋆(x), for all i = 1, . . . , d and x ∈ R.

• (vi)⋆(0, x) ≥ (ui0)⋆(x), for all i = 1, . . . , d and x ∈ R.

(ii) • Whenever a test function ϕ ∈ C1((0, T )× R), i = 1, . . . , d and (ui)⋆ − ϕ attains a

local maximum at (t0, x0) ∈ (0, T )× R, then we have

min
{
∂tϕ(t0, x0)− (λi)⋆(t0, x0, r)|∂xϕ(t0, x0)| : r ∈ Euv (t0, x0), ri = (ui)⋆(t0, x0)

}
≤ 0.

(4.24)
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• Whenever ϕ ∈ C1((0, T )× R), i = 1, . . . , d and (vi)⋆ − ϕ attains a local minimum

at (t0, x0) ∈ (0, T )× R, then we have

max
{
∂tϕ(t0, x0)− (λi)⋆(t0, x0, r)|∂xϕ(t0, x0)| : r ∈ Euv (t0, x0), ri = (vi)⋆(t0, x0)

}
≥ 0.

(4.25)

Finally, we call a function w = (wi)i=1,...,d a discontinuous viscosity solution of (4.1) if w⋆

and w⋆ verify conditions (i) and (ii).

Noting that the minimum and the maximum in (4.24) and (4.25) are attained, since the

sets
{
r ∈ Rd : r ∈ Euv (t0, x0), ri = (ui)⋆(t0, x0)

}
and

{
r ∈ Rd : r ∈ Euv (t0, x0), ri = (ui)⋆(t0, x0)

}

are non-empty and compact and moreover (λi)⋆ and (λi)⋆ are upper and lower semi-

continuous, respectively.

2.2 Proof of Theorem 4.1

We proceed in three steps.

Step 1. (Proof of (i)):

The proof of Theorem 4.1-(i) is a classic application of the Fixed Point Theorem in Banach

spaces. We will explain briefly what we will do. First, we regularize the non-linear term

|∂xuiε,η|, in (4.7), by replacing it with the smooth function βδ(∂xuiε,η), where βδ is defined

as

βδ(x) =
√
x2 + δ2 for all 0 < δ ≤ 1. (4.26)

Then, we truncate the function βδ by plugging in the function

ψδ(·) = ϕ(
√
δ ·), (4.27)

where ϕ ∈ C∞(R) is a cut-off function taking values in [0, 1], supported by the interval

[−2, 2] and ϕ(x) ≡ 1 on [−1, 1].

This brings us to consider for all 0 < δ ≤ 1 , i = 1, . . . , d, and for uε,η,δ = (uiε,η,δ)i=1,...,d,

the following problem




∂tu
i
ε,η,δ(t, x)− η∂2xxu

i
ε,η,δ(t, x) = λiε(t, x, uε,η,δ)ψδ(x)βδ(∂xu

i
ε,η,δ(t, x)) on (0, T )× R,

uiε,η,δ(0, x) = ui0,ε(x) x ∈ R,

(4.28)
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where for all i = 1, . . . , d, we have

ui0,ε ∈ C∞(R) ∩ L∞(R), ∂xu
i
0,ε ∈ Lp(R) for all 1 ≤ p ≤ +∞, (4.29)

and

λiε ∈ W 1,∞((0, T )× R×K) ∩ C∞((0, T )× R× Rd), for all compact K ⊂ R. (4.30)

Next, we will write (4.28) in its integral form, for all i = 1, . . . , d, as follows

uiε,η,δ(t, x) = Gη(t)⋆u
i
0,ε(x)+

∫ t

0

Gη(t−s)⋆
(
λiε(s, ·, uε,η,δ(s, ·))ψδ(·)βδ(∂xuiε,η,δ(s, ·))

)
(x)ds,

where Gη(t, x) =
1√
4πηt

e−
x2

4ηt is the standard heat kernel. In other words, we consider

the following problem




uε,η,δ(t, x) = (uiε,η,δ(t, x))i=1,...,d
, uε,η,δ(0, x) = u0,ε(x) = (ui0,ε(x))i=1,...,d

,

uε,η,δ(t, x) = Gη(t) ⋆ u0,ε(x) + B(uε,η,δ)(t, x),

(4.31)

where, for r(t, x) = (ri(t, x))i=1,...,d, we have

B(r)(t, x) =

∫ t

0

Gη(t−s)⋆




βδ(∂xr
1(s, ·))ψδ(·) · · · 0

...
. . .

...

0 · · · βδ(∂xr
d(s, ·))ψδ(·)







λ1ε(s, ·, r(s, ·))
λ2ε(s, ·, r(s, ·))

...

λdε(s, ·, r(s, ·))




(x)ds.

We introduce, for T > 0, the following three Banach spaces

X =
{
r = (ri)i=1,...,d ∈ (L∞(R))d; ∂xr

i ∈ L1(R)
}
, (4.32)

equipped with the norm ∥r∥X =
d∑

i=1

∥ri∥L∞(R) +
d∑

i=1

∥∂xri∥L1(R), and

XT =
{
r = (ri)i=1,...,d ∈ (L∞((0, T )× R))d; ∂xr

i ∈ L∞((0, T );L1(R))
}
,

equipped with the norm ∥r∥XT
=

d∑

i=1

∥ri∥L∞((0,T )×R) +
d∑

i=1

∥∂xri∥L∞((0,T );L1(R)), and lastly

YT =
{
r ∈ XT ; ∥r∥XT

≤ ∥v0∥X + 1
}
.

Then, we define the mapping

T : YT → YT

r → T (r) = Gη(·) ⋆ v0 +B(r).
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We prove that this mapping is well-defined and is a contraction on YT ∗ for a certain

T ∗ > 0. This enables us to apply the Fixed Point Theorem in order to say that there

exists a unique fixed point which is the unique solution of (4.31). Moreover, we can prove

that there exists a constant ξδp depending on ∥ui0,ε∥L∞(R), ∥∂xui0,ε∥Lp(R), and T ∗ such that

∥∂xuiε,η,δ∥L∞((0,T ∗);Lp(R)) ≤ ξδp for all 1 ≤ p ≤ +∞. (4.33)

Then, by using Lp-regularity of parabolic equations and the fact that βδ and λiε are

regular, we can show by classical Bootstrap arguments that uε,η,δ ∈ (C∞((0, T ∗)× R))d ∩
(W 1,∞((0, T ∗)× R))

d ∩ YT ∗ . After that, we can prove via the maximum principle for

parabolic equations (see Lieberman [68, Theorem 2.10]) that the smooth solution uiε,η,δ
verifies

∥uiε,η,δ∥L∞((0,T ∗)×R) ≤ T ∗δΛ̃i + ∥ui0∥L∞(R) for all i = 1, . . . , d, (4.34)

where

Λ̃i = ∥λi∥L∞((0,T )×R×K̃0)
, (4.35)

with

K̃0 =
d∏

i=1

[
−1−

∥∥ui0
∥∥
L∞(R)

,
∥∥ui0
∥∥
L∞(R)

+ 1
]
.

Then, using the compactness lemma by Simon, inherited from (4.33) and (4.34), we will

be able to pass to the limit as δ → 0, and prove the existence of (4.7). Estimate (4.11)

comes from passing to the limit as δ → 0 is (4.34). The proof of the BV estimate (4.12)

and the time derivative estimate (4.13) can be found in [47]. Finally, using (4.11) and

(4.12) we will be able to prove the global in time existence of a solution uε,η to (4.7)

belonging to the space (C([0, T ));W 1,∞(R))
d for T > 0. We refer to [47, Theorem 5.1] for

the complete proof of this step.

Step 2. (Proof of (ii)):

We have to prove that the upper and lower relaxed semi-limits u and u of uε,η verify the

conditions of discontinuous viscosity sub- and super- solutions, given in Definition 4.1,

respectively. We introduce the finite speed propagation property, valid on the smooth

solutions of (4.7). Indeed, under assumptions (4.2) and (4.4), if uε,η = (uiε,η)i=1,...,d is the

unique solution of (4.7), given by Theorem 4.1-(i), then uiε,η satisfies, for all h ≥ 0, the

following estimate
∫

R

Gη(t, y) min
|z−(x−y)|≤Λt

uiε,η(h, z)dy ≤ uiε,η(t+ h, x) ≤
∫

R

Gη(t, y) max
|z−(x−y)|≤Λt

uiε,η(h, z)dy,

(4.36)
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for all (t, x) ∈ [0, T − h)× R, where K0 is defined in (4.14), and

Λ = max
i∈{1,...,d}

∥∥λi
∥∥
L∞((0,T )×R×K0)

. (4.37)

We refer to [3, Lemma 5.1] for the proof of this estimate.

Now, using estimate (4.36) combined with the property

max
|x−x0|≤c

ui0,ε(x) ≤ max
|x−x0|≤c+ε

ui0(x), where c > 0,

allows us to give sense to the initial data, as it is precised in Definition 4.1 (1)-(i) and

(2)-(i). See [3, Section 5] for more details. However, to give meaning to the system, in

other words, to prove Definition 4.1 (1)-(ii) and (2)-(ii), we use the stability results of

discontinuous viscosity solutions, along with the following properties

λ
i
(t, x, r) ≤ (λi)

⋆
(t, x, r) and (λi)⋆(t, x, r) ≤ λi(t, x, r) for all (t, x, r) ∈ [0, T )×R×Rd,

where

λ
i
(t, x, r) = lim sup

ε−→0
(s,y,w)−→(t,x,r)

λiε(s, y, w), and λi(t, x, r) = lim inf
ε−→0

(s,y,w)−→(t,x,r)

λiε(s, y, w).

We refer the reader also to [3, Section 5] for a complete elaboration of the preceding

information.

Step 3. (Proof of (iii)):

We proceed as in [3, Section 6]. Indeed, for uε,η =
(
uiε,η
)
i=1,...,d

being the solution of (4.7),

constructed in Theorem 4.1-(i), and from estimates (4.11), (4.12), (4.13) and Simon’s

Lemma, we can extract a subsequence, denoted by (ui(εn,ηn)K0
)(εn,ηn)K0

, that converges

strongly in L∞((0, T );L1(K0)) to some limit ui, as n→ +∞. By a standard diagonaliza-

tion procedure, we can extract a subsequence (uiεn,ηn)εn,ηn (independent of i and K) that

converges to the limit ui strongly in C([0, T );L1(K)) for all compact K ⊂ R. Now, thanks

to estimates (4.11) and (4.12) we can extract a subsequence, still denoted by (uiεn,ηn)εn,ηn ,

satisfying the following convergences

∣∣∣∣∣∣∣∣∣∣∣∣

uiεn,ηn −→ ui, strongly in C([0, T );L1(K)), for all compact K ⊂ R,

uiεn,ηn −→ ui, weakly- ⋆ in L∞((0, T )× R),

uiεn,ηn −→ ui, weakly- ⋆ in L∞((0, T );BV (R)).
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Taking the lim inf in estimates (4.11), (4.12) and using the lower semi-continuity of ∥ ·
∥L∞(R) and | · |BV (R), we can prove that ui satisfies (4.15), (4.16) and (4.17). The proof

of (4.18) is based on the Finite Speed Propagation Property (4.36) and the BV estimate

(4.12), in particular, the discontinuity of BV functions in dimension one. See [3, Section

7] for more details.

□

3 Unique continuous solution

In this section, we give the proof of Theorem 4.2. We will first show that the discontinuous

viscosity sub-solution u and super-solution u, given by Theorem 4.1, are continuous under

assumptions (4.2), (4.4), (4.5), (4.6) and (H). We already have ui ≤ ui for every i =

1, . . . , d, from the definition of upper and lower relaxed semi-limits (see (4.9) and (4.10)).

Then, by the use of the comparison principle, we will be able to show that we also have

ui ≥ ui for every i = 1, . . . , d, which proves that the solution u is indeed continuous.

Thus, we present the following proposition.

Proposition 4.1.

Assume (4.2), (4.4), (4.5), (4.6) and (H) hold. Let u = (ui)i=1,...,d and u = (ui)i=1,...,d

be respectively discontinuous viscosity sub- and super solutions of (4.1), in the sense of

Definition 4.1, where the functions ui satisfy

max
i∈{1,...,d}

(
∥ui∥L∞(T×(0,T ))

)
≤M0. (4.38)

Then, if ui(·, 0) ≤ ui(·, 0) in R we get ui ≤ ui in R× [0, T ) for every i = 1, . . . , d.

Proof of Proposition 4.1:

Let us denote by

Msup = max
i∈{1,...,d}

sup
R×[0,T ]

(
V
i − V i

)
,

where V
i
(x, t) = ui(x, t)e−γt and V i(x, t) = ui(x, t)e−γt. We remark that V

i
and V i are

respectively discontinuous viscosity sub- and super- solutions of the equation

∂tV
i = −γV i + λi(t, x, u)|∂xV i|. (4.39)

It is sufficient to prove that Msup ≤ 0. Let us suppose by contradiction that Msup > 0.

We proceed in two steps.
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Step 1. (Doubling the variables):

We duplicate the variables by considering, for all ϵ, β, η and α positives

ψ(x, y, t, s, i) = V
i
(x, t)− V i(y, s)− |x− y|2

2ϵ
− |t− s|2

2β
− η

T − t
− α(|x|2 + |y|2).

We note that ψ(·, ·, ·, ·, ·) is a locally bounded function in R2 × [0, T )2 × {1, . . . , d}.

We can think that the maximum of ψ notedM(ϵ, β, α, η, γ) = sup
(x,y)∈R2,(t,s)∈[0,T ]2

i∈{1,...,d}

ψ(x, y, t, s, i),

is similar with Msup.

The idea is justified by the following lemma.

Lemma 4.2. Let (x, y, t, s, k) be a maximum of ψ. If we define M ′ = lim
(h,k)→(0,0)

Mk
h , where

Mk
h = sup

|x−y|,|t−s|≤h

|x|,|y|≤ 1√
k

(
V
i
(x, t)− V i(y, s)

)
, then the following properties hold

1. α|x|2, α|y|2 ≤ 2M0.

2. lim
β→0

|t− s| = lim
ϵ→0

|x− y| = 0.

3. t < T − η

2M0
< T .

4. lim inf
α→0

lim inf
ϵ→0

lim inf
β→0

lim inf
η→0

(
V
i
(x, t)− V i(y, s)

)
=

lim sup
α→0

lim sup
ϵ→0

lim sup
β→0

lim sup
η→0

(
V
i
(x, t)− V i(y, s)

)
=M ′.

5. lim inf
α→0

lim inf
ϵ→0

lim inf
β→0

lim inf
η→0

M(ϵ, β, α, η, γ) =

lim sup
α→0

lim sup
ϵ→0

lim sup
β→0

lim sup
η→0

M(ϵ, β, α, η, γ) =M ′.

6. lim inf
α→0

lim inf
ϵ→0

lim inf
β→0

lim inf
η→0

( |x− y|2
2ϵ

+
|t− s|2
2β

)
=

lim sup
α→0

lim sup
ϵ→0

lim sup
β→0

lim sup
η→0

( |x− y|2
2ϵ

+
|t− s|2
2β

)
= 0

7. t, s are positive if ϵ, β, α and η are sufficiently small.

Proof of Lemma 4.2:

Using the fact that V
i
and V i are bounded for every i ∈ {1, . . . , d}, we deduce that

lim
|x|,|y|→∞

ψ(x, y, t, s, i) = −∞,
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and so the function ψ reaches a maximum at a point (x, y, t, s, i) ∈ R2×(0, T )2×{1, . . . , d}.
We know that Msup = max

k∈{1,...,d}
sup

R×[0,T ]

(
V
i − V i

)
> 0, then there exists (x∗, t∗, i∗) ∈ (0, 1)×

(0, T )× {1, . . . , d}, such that

V
i∗

(x∗, t∗)− V i∗(x∗, t∗) > 0.

Then, we have

ψ(x∗, x∗, t∗, t∗, i∗) ≤M(ϵ, β, α, η),

which implies

0 < V
i∗

(x∗, t∗)− V i∗(x∗, t∗) ≤M(ϵ, β, α, η) +
η

T − t∗
+ 2α|x∗|2,

0 < M(ϵ, β, α, η, γ) +
η

T − t∗
+ 2α|x∗|2.

Then, for η and α small enough, we get

M(ϵ, β, α, η, γ) > 0. (4.40)

We then deduce

α(|x|2 + |y|2) < V
i
(x, t)− V i(y, s) ≤ 2M0,

where we have used (4.38) for the second inequality. Multiplying the previous inequality

by α yields (1) and

lim
α→0

α|x| = lim
α→0

α|y| = 0.

In the same way, we have
|x− y|2

2ϵ
+

|t− s|2

2β
< 2M0 (4.41)

and so

lim
ϵ→0

|x− y|2 = lim
β→0

|t− s| = 0.

We also deduce that
η

T − t
< V

i
(x, t)− V i(y, s) ≤ 2M0,

Which leads to

t < T − η

2M0

< T.

Now we prove (4). We recall that Mk
h = sup

|x−y|,|t−s|≤h

|x|,|y|≤ 1√
k

(
V
i
(x, t)− V i(y, s)

)
.
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Let (xh,kn , yh,kn , th,kn , sh,kn ) be such that

V
i
(xh,kn , th,kn )− V i(yh,kn , sh,kn ) ≥Mk

h − 1

n
,

with |xh,kn − yh,kn |, |th,kn − sh,kn | ≤ h and |xh,kn |, |yh,kn | ≤ 1√
k
. We then have

Mk
h − 1

n
− h2

2ϵ
− h2

2β
− η

T − thn
− 2α

k

≤ V
i
(xh,kn , th,kn )− V i(yh,kn , sh,kn )− |xh,kn − yh,kn |2

2ϵ
− |th,kn − sh,kn |2

2β

− η

T − th,kn
− α

(
|xh,kn |2 + |yh,kn |2

)

≤M(ϵ, β, η, α, γ)

≤ V
i
(x, t)− V i(y, s).

We pass to the limit infimum and limit supremum in the following order: η → 0, h → 0,

β → 0, ϵ → 0, α → 0 and lastly k → 0. Thus, using the fact that the function

V
i
(x, t)− V i(y, s) is upper semi-continuous and so Mk

h has a limit, we get

M ′ − 1

n
≤ lim inf

α→0
lim inf
ϵ→0

lim inf
β→0

lim inf
η→0

(
V
i
(x, t)− V i(y, s)

)

≤ lim sup
α→0

lim sup
ϵ→0

lim sup
β→0

lim sup
η→0

(
V
i
(x, t)− V i(y, s)

)

≤ lim sup
α→0

lim sup
ϵ→0

lim sup
β→0




sup
|x−y|≤

√
4ϵM0

|t−s|≤
√
4βM0

|x|,|y|≤
√

2M0
α

(
V
i
(x, t)− V i(y, s)

)




≤ lim
h′→0
k′→0


 sup

|x−y|,|t−s|≤h′
|x|,|y|≤ 1√

k′

(
V
i
(x, t)− V i(y, s)

)



≤M ′,

for some h′, k′ such that
√
4ϵM0,

√
4βM0 ≤ h′ and k′ ≤ α

2M0

, where we have used (4.41)

and Lemma 4.2-(1) in the third line. Then, by passing to the limit as n→ +∞, we deduce

(4).
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In the same way we can prove (5) and (6).

Finally, to prove (7), we suppose for example t = 0. From (1), we can see that x, y, t, s

are uniformly bounded with respect to η, β, and ϵ. Then we have, up to the extract of a

subsequence

lim
(ϵ,β,η)→(0,0,0)

(x, y, t, s) = (ẑ, ẑ, τ̂ , τ̂), lim
(ϵ,β,η)→(0,0,0)

i = i = î. (4.42)

Passing to the limit as η → 0, β → 0 then ϵ → 0, and using the fact that V
i
and V i are

upper and lower semi-continuous functions respectively, we get

lim sup
ϵ→0

lim sup
β→0

lim sup
η→0

(
V
i
(x, 0)− V i(y, s)

)
≤

V
î
(ẑ, 0)− V î(ẑ, 0) = uî(ẑ, 0)− uî(ẑ, 0) = 0.

(4.43)

The last equality is valid since we have

ui0(·) = (ui0)⋆(·) ≤ ui(·, 0) ≤ ui(·, 0) ≤ ui(·, 0) ≤ (ui0)
⋆(·) = ui0(·) for every i = 1, . . . , d,

using the fact that ui and ui are discontinuous viscosity sub- and super- solutions of

(4.1) respectively. This means that ui(·, 0) = ui(·, 0) = ui0. Then, from (4.43) we deduce

that M ′ ≤ 0. However, M ′ > 0 (see Lemma 4.2-(5)) and for ϵ, β, η, α small, we get a

contradiction.

A similar proof can be made if we consider the case where s = 0.

Step 2. (Obtaining a contradiction):

We take ϵ, β, α and η small enough such that t > 0 and s > 0 (see Lemma 4.2-(7)). We

can remark that the function

(x, t) → V
i
(x, t)−

(
V i(y, s) +

|x− y|2
2ϵ

+
|t− s|2
2β

+
η

T − t
+ α(|x|2 + |y|2)

)

reaches a maximum at (t, x). By using the test-function

ϕ1(x, t) = V i(y, s) +
|x− y|2

2ϵ
+

|t− s|2
2β

+
η

T − t
+ α(|x|2 + |y|2),

and the fact that u = (ui)i=1,...,d is a sub-solution of (4.1) and that λi is continuous for
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every i = 1, . . . , d, we deduce that

min

{
γV

i
(t, x) +

(t− s)

β
+

η

(T − t)
2 − λi(t, x, r(t, x))

∣∣∣∣
(x− y)

ϵ
+ 2αx

∣∣∣∣ :

r ∈ U(t, x), ri = ui(t, x)

}
≤ 0.

Then we get

γV
i
(t, x) +

(t− s)

β
+

η

(T − t)
2 − λi(t, x, r1(t, x))

∣∣∣∣
(x− y)

ϵ
+ 2αx

∣∣∣∣ ≤ 0, (4.44)

for some r1 = (rj1)j=1,...,d such that ri1(t, x) = ui(t, x).

On the other hand, we deduce that the function

(s, y) → V i(s, y)−
(
V
i
(t, x)− |x− y|2

2ϵ
− |t− s|2

2β
− η

T − t
− α(|x|2 + |y|2)

)

reaches a minimum at (s, y). By using the test-function

ϕ2(s, y) = V
i
(t, x)− |x− y|2

2ϵ
− |t− s|2

2β
− η

T − t
− α(|x|2 + |y|2),

and the fact that u = (ui)i=1,...,d is a super-solution of (4.1), we deduce that

max
{
γV i(s, y)+

(t− s)

β
−λi(s, y, r(s, y))

∣∣∣∣
(x− y)

ϵ
− 2αy

∣∣∣∣ : r ∈ U(s, y), ri = ui(s, y)
}
≥ 0.

Then we get

γV i(s, y) +
(t− s)

β
− λi(s, y, r2(s, y))

∣∣∣∣
(x− y)

ϵ
− 2αy

∣∣∣∣ ≥ 0, (4.45)

for some r2 = (rj2)j=1,...,d such that ri2(s, y) = ui(s, y).

By subtracting (4.45) from (4.44), we deduce that

γ(V
i
(t, x)− V i(s, y))− λi(t, x, r1(t, x))

∣∣∣∣
(x− y)

ϵ
+ 2αx

∣∣∣∣

+ λi(s, y, r2(s, y))

∣∣∣∣
(x− y)

ϵ
− 2αy

∣∣∣∣ ≤ 0.

(4.46)

As we have done in (4.42), we can extract a subsequence such that

lim
(β,η)→(0,0)

(x, y, t, s) = (x̃, ỹ, τ̃ , τ̃), lim
(β,η)→(0,0)

i = i = ĩ
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Sending η → 0 then β → 0 in (4.46), we obtain

γ
(
lim inf
β→0

lim inf
η→0

(
V
ĩ
(t, x)− V ĩ(s, y)

))
− λĩ(τ̃ , x̃, r1(τ̃ , x̃))

∣∣∣∣
x̃− ỹ

ϵ
+ 2αx̃

∣∣∣∣

+ λĩ(τ̃ , ỹ, r2(τ̃ , ỹ))

∣∣∣∣
x̃− ỹ

ϵ
− 2αỹ

∣∣∣∣ ≤ 0.

(4.47)

By adding and subtracting the terms λĩ(τ̃ , x̃, r2(τ̃ , ỹ))
∣∣∣ x̃−ỹϵ + 2αx̃

∣∣∣ and λĩ(τ̃ , ỹ, r2(τ̃ , ỹ))
∣∣∣ x̃−ỹϵ + 2αx̃

∣∣∣
to inequality (4.47), we get

γ
(
lim inf
β→0

lim inf
η→0

(
V
ĩ
(t, x)− V ĩ(s, y)

))

+
(
λĩ(τ̃ , x̃, r2(τ̃ , ỹ))− λĩ(τ̃ , x̃, r1(τ̃ , x̃))

) ∣∣∣∣
x̃− ỹ

ϵ
+ 2αx̃

∣∣∣∣

+ λĩ(τ̃ , ỹ, r2(τ̃ , ỹ))

(∣∣∣∣
x̃− ỹ

ϵ
− 2αỹ

∣∣∣∣−
∣∣∣∣
x̃− ỹ

ϵ
+ 2αx̃

∣∣∣∣
)

+
(
λĩ(τ̃ , ỹ, r2(τ̃ , ỹ))− λĩ(τ̃ , x̃, r2(τ̃ , ỹ))

) ∣∣∣∣
x̃− ỹ

ϵ
+ 2αx̃

∣∣∣∣ ≤ 0.

(4.48)

From (4.40), we can see that

V
i
(t, x)− V i(s, y) ≥ 0.

Thus we have

0 ≤ V
i
(t, x)− V i(s, y) ≤ lim sup

β→0
lim sup
η→0

(
V
i
(t, x)− V i(s, y)

)
= V

ĩ
(τ̃ , x̃)− V ĩ(τ̃ , ỹ)

= e−γτ̃
(
uĩ(τ̃ , x̃)− uĩ(τ̃ , ỹ)

)
≤ uĩ(τ̃ , x̃)− uĩ(τ̃ , ỹ).

Then by applying (H) in the first line of (4.48), we get

γ
(
lim inf
β→0

lim inf
η→0

(
V
ĩ
(t, x)− V ĩ(s, y)

))
+ λĩ(τ̃ , ỹ, r2(τ̃ , ỹ))

(∣∣∣∣
x̃− ỹ

ϵ
− 2αỹ

∣∣∣∣−
∣∣∣∣
x̃− ỹ

ϵ
+ 2αx̃

∣∣∣∣
)

+
(
λĩ(τ̃ , ỹ, r2(τ̃ , ỹ))− λĩ(τ̃ , x̃, r2(τ̃ , ỹ))

) ∣∣∣∣
x̃− ỹ

ϵ
+ 2αx̃

∣∣∣∣ ≤ 0.

Finally, using (4.6), we obtain

γ
(
lim inf
β→0

lim inf
η→0

(
V
ĩ
(t, x)−V ĩ(s, y)

))
−2αΛi(|x̃|+ |ỹ|)−M1

|x̃− ỹ|2
ϵ

−2αM1|x̃||x̃− ỹ| ≤ 0.

Passing to the limit as ϵ → 0 then α → 0, we get according to (1), (2), (4) and (6) in

Lemma 4.2

γM ′ ≤ 0,
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which contradicts our supposition. Hence, we obtain the continuity of the solution.

□

Remark 4.2. Under the same conditions of Proposition 4.1, we can obtain the uniqueness

of the solution by proving the following Comparison Principle

if ui(·, 0) ≤ vi(·, 0) in R we get that ui ≤ vi in R× [0, T ) for every i ∈ {1, . . . , d},

where u = (ui)i=1,...,d and v = (vi)i=1,...,d are two bounded continuous viscosity solutions

of (4.1).

4 Application to dislocations dynamics

In this section, we present an application of the results proven in the previous sections to

a system modeling the dynamics of dislocations densities. In other words, we will prove

Theorem 4.3.

Let us mention some previous results for system (4.19). In El Hajj [39], basing on an

energy estimate, the global existence and uniqueness of a non-decreasing solution in

W 1,2
loc (R × (0, T )) has been obtained. However, without any monotony assumptions on

the initial data, El Hajj and Forcadel proved in [41] the existence and uniqueness of a

Lipschitz solution, using the notion of viscosity solutions. They also proposed a con-

vergent numerical scheme and proved a Crandall-Lions error type estimate between the

continuous solution and its numerical approximation. Moreover, we can point out the re-

sult done by El Hajj and Boudjerada in [19], who were able to prove the global existence

of discontinuous viscosity BV solutions for scalar one dimensional nonlinear and nonlo-

cal eikonal equations, including in particular the case d = 1 in system (4.1), where the

velocity does not contain the solution. This result has been extended to a more general

nonlinear (2×2) system in El Hajj et al. [43]. Further more, in El Hajj, Oussaily [48], the

global existence of a continuous viscosity solution has been presented, which was based

on an entropy estimate and under a control on the gradient of the solution.

We omit the proof of the existence to system (4.19), and we refer the reader to El Hajj et

al. [43], where the global existence of a discontinuous viscosity solution has been obtained

under (4.20) and assuming we have the following conditions

P±
0 ∈ L∞(T) ∩ BV (T), a ∈ L∞(0, T ). (4.49)
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Proof of Theorem 4.3:

It suffices to prove that system (4.19) satisfies the quasi-monotony condition (H) when

α = 0. We denote, for ρ = (ρ+, ρ−), by

λ+(t, x, ρ) = ρ+(t, x)− ρ−(t, x) + a(t), and λ−(t, x, ρ) = −(ρ+(t, x)− ρ−(t, x)) + a(t).

Let r = (r+, r−) and s = (s+, s−) be two vectors such that rj − sj = max
k∈{+,−}

(rk − sk) ≥ 0.

We have

λj(t, x, r)− λj(t, x, s) = j
(
r+ − r− + a(t)

)
− j
(
s+ − s− + a(t)

)

= j
(
(r+ − s+)− (r− − s−)

)

= sign
(
(r+ − s+)− (r− − s−)

) (
(r+ − s+)− (r− − s−)

)

=
∣∣(r+ − s+)− (r− − s−)

∣∣ ≥ 0.

This ends the proof.

□
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5 Convergent scheme approximating

an eikonal system

This chapter is a submitted article that is written in collaboration with Ahmad El Hajj

and Mustapha Jazar.

In this work, we propose a finite difference scheme approximating the eikonal system

considered in Chapter 4. We show that a certain linear interpolation function of the

discrete running points of the scheme verify the same L∞ and BV estimates proven

in the continuous problem. We also prove that this interpolation function converges

to a viscosity solution of the continuous problem considered. Finally, we present some

numerical illustrations to a particular case of the main eikonal system understudy.
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Convergent semi-explicit scheme to a non-linear eikonal

system

Maryam Al Zohbi, Ahmad El Hajj, Mustapha Jazar

Abstract

We consider a system of non-linear eikonal equations in one space dimension that describes the evolution of in-

terfaces moving with non-signed strongly coupled velocities. We have recently proven the global existence and

uniqueness of viscosity solutions for this system, under a BV estimate. In this paper, we propose a semi-explicit

scheme that satisfies the same BV estimate proven in the continuous case, at the discrete level, and we show that

a certain linear interpolation of the discrete solution to the scheme converges to a viscosity solution of the main

system considered. We also provide some numerical simulations in the case of dislocations dynamics.

AMS Classification: 35A21, 35F50, 65N06, 35D40, 35A23.

Key words: Hamilton-Jacobi equations, non-linear eikonal system, finite difference scheme, viscosity solution,

discrete gradient estimates.

1 Introduction and main results

In this paper, we present a convergence result for a semi-explicit scheme considering the

framework of non-linear Hamilton-Jacobi equations. Before stating our main results, we

recall first in Subsection 1.1 the setting of the continuous problem, along with the existence

and uniqueness results that were recently proven in [2].

1.1 The continuous problem

We are going to propose a finite difference scheme approximating non-linear Hamilton-

Jacobi systems of the form




∂tv
α(t, x) = λα(t, x, v(t, x))|∂xvα(t, x)| in (0, T )× R,

vα(0, x) = vα0 (x) in R,

(5.1)
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CHAPTER 5. CONVERGENT SCHEME APPROXIMATING AN EIKONAL SYSTEM

where T > 0, v(t, x) = (vα(t, x))α=1,...,d with d ∈ N∗. The functions vα are real valued,

∂tv
α and ∂xv

α represent the time and spatial derivatives of vα respectively. We have

presented in Chapter 4 two results for this system. First, we have proven the global

existence of a discontinuous solution under the following condition on the velocities λα,

for every α = 1, . . . , d

λα ∈ L∞((0, T )× R×K) for T > 0 and for all compact K ⊂ Rd, (5.2)

and assuming the initial data vα0 satisfies

vα0 ∈ L∞(R) ∩ BV (R), for every α,= 1 . . . , d, (5.3)

where BV (R) is the space of functions of bounded variations given by

BV (R) =
{
f ∈ L1

loc(R); TV (f) < +∞
}
,

with TV (f) being the total variation of f defined as

TV (f) = sup

{∫

R

f(x)ϕ′(x)dx; ϕ ∈ C1
c (R) and ∥ϕ∥L∞(R) ≤ 1

}
.

We take the space BV (R) endowed with the semi-norm |f |BV (R) = TV (f). We note that

BV functions are integrable functions whose distributional derivative is a finite Radon

measure.

Second, we proved in Chapter 4 the existence and uniqueness of a continuous solution

under (5.2), (5.3), and assuming also the initial data vα0 are continuous functions on R,

for every α = 1, . . . , d, and the velocities verify the following conditions

λα ∈ C((0, T )× R×K) for T > 0 and for all compact K ⊂ Rd,

there exists M1 > 0 such that, for all x, y ∈ R and t ∈ (0, T ),

|λα(t, x, u)− λα(t, y, u)| ≤M1|x− y|,

λj(t, x, s)− λj(t, x, r) ≥ 0 for all vectors r = (rα)α=1,...,d, s = (sα)α=1,...,d such that

rj − sj = max
α∈{1,...,d}

(rα − sα) ≥ 0.

(5.4)

Now, we restate formally these results in the following subsection.
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1.1.1 Recall of previous results

Theorem 5.1 (Discontinuous viscosity solutions to (5.1), [Chap. 4, Th. 4.1]).

Assume (5.2) and (5.3) hold. Then, there exists two functions v1 = (vα1 )α=1,...,d and v2 =

(vα2 )α=1,...,d which are discontinuous viscosity sub- and super- solutions of (5.1) respectively

(in the sense of Definition 5.2 mentioned below). Moreover, vα1 (t, ·) and vα2 (t, ·) coincide

almost everywhere in space, uniformly for all t ∈ [0, T ), satisfying the following estimates

∥∥vαj
∥∥
L∞((0,T )×R)

≤ ∥vα0 ∥L∞(R) , for j = 1, 2, (5.5)

∥∥vαj
∥∥
L∞((0,T );BV (R))

≤ |vα0 |BV (R) , for j = 1, 2. (5.6)

Theorem 5.2 (Existence and uniqueness of a continuous solution to (5.1),

[Chap. 4, Th. 4.2]).

Suppose that vα0 are continuous for every α = 1, . . . , d, and that (5.2), (5.3), and (5.4)

hold. Then, there exists a unique continuous viscosity solution of (5.1) satisfying (5.5)

and (5.6).

1.2 The discrete problem

In order to reconstruct the properties of the continuous problem at the discrete level, we

consider the following mesh discretization

Ξ =
{
i∆x, i ∈ Z

}
, ΞN =

{
0, . . . , (∆t)N

}
, (5.7)

where N is an integer such that ∆t = T/N , and ∆t, ∆x are positive steps of discretization.

The discrete running point is (tn, xi) with tn = n∆t and xi = i∆x. To avoid any ambiguity

in notations, we denote by vα the continuous solution and by uα,ni the associated discrete

solution defined as an approximation of vα(n∆t, i∆x). Before introducing our scheme, we

first regularize the initial data vα0 by classical convolution as follows

uα,0|ε| (x) = vα0 ⋆ ρ|ε|(x), ∀x ∈ R, (5.8)

where ε = (∆t,∆x), and ρ|ε| is the standard mollifier defined as

ρ|ε|(·) =
1

|ε|ρ
( ·
|ε|

)
, such that ρ ∈ C∞

c (R), supp{ρ} ⊆ B(0, 1), ρ ≥ 0, and
∫

R

ρ = 1.

We now can introduce, for uni = (uα,ni )α=1,...,d, the following numerical scheme of Lax-

Friedrichs type
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



uα,n+1
i − 1

2

(
uα,ni+1 + uα,ni

)

∆t
− λα(tn+1, xi, u

n+1
i )

∣∣uα,ni+1 − uα,ni
∣∣

∆x
= 0,

uα,0i = uα,0|ε| (xi),

∀α ∈ {1, . . . , d}.

(5.9)

In the following, we denote by

λα,n+1
i = λα(tn+1, xi, u

n+1
i ).

We set θα,n
i+ 1

2

as the discrete approximation of the gradient ∂xuα, given as

θα,n
i+ 1

2

=
uα,ni+1 − uα,ni

∆x
. (5.10)

Our purpose is first to recover the properties of the solution of (5.1) at the discrete level,

then to prove the convergence of the discrete solution. First, we will consider a continuous

linear interpolation of the discrete points (uα,ni )n,i, denoted by uα,ε for ε = (∆t,∆x).

Then, we show that this function satisfies the L∞ and the BV estimates (5.5) and (5.6).

These estimates, along with the discrete finite speed propagation property (given below in

Lemma 5.1) and the stability, consistency, and monotony of the scheme, allow us to show

that the upper and lower relaxed semi-limits of uα,ε (see Barles and Perthame [10, 11]),

which are defined as

uα(t, x) = lim sup⋆uα,ε(t, x) = lim sup
ε−→0

(s,y)−→(t,x)

uα,ε(s, y), (5.11)

and

uα(t, x) = lim inf⋆u
α,ε(t, x) = lim inf

ε−→0
(s,y)−→(t,x)

uα,ε(s, y), (5.12)

are, respectively, discontinuous viscosity sub- and super- solutions of system (5.1) in the

sense of discontinuous viscosity solutions introduced by Ishii in [58, Definition 2.1] for

Hamilton Jacobi systems that is recalled below in Definition 5.2. Moreover, we will be

able to prove that uα(t, ·) and uα(t, ·) coincide almost everywhere in space and uniformly

in time for all t ∈ [0, T ), as in Theorem 5.1. Finally, in the case where system (5.1) verifies

the comparison principle, i.e. under the conditions of Theorem 5.2, we will be able to

prove that uα,ε converges to the unique continuous solution of (5.1).
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1.3 Main results

We set uni = (uα,ni )α=1,...,d, un = (uni )i∈Z. We introduce the box

U =
d∏

α=1

[
−∥vα0 ∥L∞(R) , ∥vα0 ∥L∞(R)

]
, (5.13)

and we say that un ∈ UZ if uni ∈ U for all i ∈ Z. Also, we assume the velocities λα verify

the following condition




there exists M > 0 such that

d∑

α=1

|λα(t, x, u)− λα(t, x, v)| ≤M |u− v|, for all u, v ∈ Rd,

(5.14)

where |w| =
d∑

α=1

|wα|, for w = (w1, . . . , wd).

Next, we assume that

∆t

∆x
= min

(
1

2Λ
,

1

2M ∥v0∥(L∞(R))d

)
= γ, (5.15)

where ∥v0∥(L∞(R))d =
d∑

α=1

∥vα0 ∥L∞(R), and

Λ = sup
α∈{1,...,d}

∥λα∥L∞((0,T )×R×U) . (5.16)

Theorem 5.3 (Existence of BV discrete solution).

Assume (5.2), (5.3), (5.14), and (5.15) hold. Then we have

i) (Existence)

Let un ∈ UZ. Then there exists a unique solution un+1 ∈ UZ to the semi-explicit scheme

(5.9).

(ii) (Discrete BV estimate)

The discrete gradient θα,n
i+ 1

2

, defined in (5.10), verifies the following estimate

∑

i∈Z

∣∣∣θα,n+1

i+ 1
2

∣∣∣ ≤
∑

i∈Z

∣∣∣θα,n
i+ 1

2

∣∣∣ , for n = 0, . . . , N − 1. (5.17)

Theorem 5.4 (Convergence of the solution of the numerical scheme).

Assume (5.2), (5.3), (5.14), and (5.15) are satisfied. Consider the solution (un)n=0,...,N of
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the scheme (5.9) for the time step ∆t and the space step ∆x. Let us denote by ε = (∆t,∆x)

and uε a continuous linear interpolation function defined as

uε(n∆t, i∆x) = uni , for n = 0, . . . , N, i ∈ Z.

Then the following points hold

i) Estimates on uε

The function uε = (uα,ε)α=1,...,d verifies

∥uα,ε∥L∞((0,T )×R) ≤ ∥vα0 ∥L∞(R) , (5.18)

∥uα,ε∥L∞((0,T );BV (R)) ≤ |vα0 |BV (R), (5.19)

∥∂tuα,ε∥L∞((0,T );L1(R)) ≤
(
1 +

2

γ
+ Λ

)
|vα0 |BV (R) . (5.20)

ii) Convergence

The upper and lower relaxed semi-limits of uα,ε, defined in (5.11) and (5.12), are a couple

of discontinuous viscosity sub- and super-solutions of (5.1) (in the sense of Definition

5.2).

iii) Equality between uα and uα

Assume uα,ε satisfies (5.18), (5.19) and (5.20) for every α = 1, . . . , d. Then, up to the

extract of a subsequence, the function uα,ε converges, as ε→ 0, to a function

uα ∈ L∞((0, T )× R
)
∩ L∞((0, T ); BV (R)

)
∩ C

(
[0, T ); L1

loc(R)
)
, (5.21)

strongly in C ([0, T ); L1
loc(R)).

Moreover, uα satisfies, for all T > 0 and for α = 1, . . . , d, estimates (5.5), (5.6) and the

following equality

uα(t, ·) = uα(t, ·) = uα(t, ·), except at most on a countable set in R, for all t ∈ [0, T ).

(5.22)

iv) Unique solution

If (5.4) is also satisfied, and vα0 are continuous for every α = 1, . . . , d, then uα,ε converges

to the unique solution of (5.1).

Remark 5.1. It is possible to prove a similar result, as in Theorem 5.4-(i),(ii),(iii), to

the case of transport systems of the form




∂tv
α(t, x) = λα(t, x, v(t, x))∂xv

α(t, x) in (0, T )× R,

vα(0, x) = vα0 (x) in R,

(5.23)
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under assumptions (5.2) and (5.3). In other words, if we consider the scheme defined in

(5.9) without the absolute value, we can show that it converges to (5.23), and that it

also satisfies the same estimates proven on the discontinuous solution of (5.23), which is

constructed in Al Zohbi, El Hajj, Jazar [3].

1.4 A brief review of some related literature

Let us mention some numerical results known in the framework of Hamilton-Jacobi equa-

tions. In [4, 5], Alvarez et al. proved the convergence of explicit finite difference schemes

approximating a non-local eikonal Hamilton-Jacobi equation, using the notion of mono-

tone numerical Hamiltonians introduced by Osher and Sethian [76]. Also, we can refer to

the work of Souganidis [81], where convergence of general approximation finite difference

schemes to first order Hamilton-Jacobi equations is discussed, provided with explicit error

estimates.

We note that in the case of non-decreasing solutions, system (5.1) becomes a hyperbolic

system. Numerical schemes for such systems are mainly written in the case where the

system is of conservative form, which enables one to recover the correct Rankine-Hugonoit

shock relations. We refer to Leveque [67] for a review of the main classes of the existing

schemes.

For non-conservative hyperbolic systems, Monasse and Monneau proved in [73] a conver-

gence result of a semi-explicit scheme for a diagonal hyperbolic system assuming that it

is strictly hyperbolic, and using a discrete gradient entropy estimate that was proven in

the continuous case [46]. This result was done in the framework of vanishing viscosity

solutions, introduced by Bianchini and Bressan in [17]. Also, Boudjerada et al. recently

shown in [20] the convergence of an implicit scheme, based on some Lipschitz discrete

estimates, to the same problem considered in [46], but assuming the system is not neces-

sarily strictly hyperbolic.

It is important to mention that the case where d = 2 in system (5.1) can be a model to

the dynamics of dislocations densities, which is the study of the movement of microscopic

defects in materials. In this framework, El Hajj and Forcadel proved in [41] a convergence

result of an explicit scheme to the Lipschitz continuous solution of the system considered.

There work was inspired by Alvarez et al. [5], in proving a Crandall-Lions [38] rate of

convergence estimate. We also mention that recently El Hajj and Oussaily have shown

the convergence of an implicit scheme to the same system considered in [41], assuming
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the initial data are non-decreasing functions. Their result was based on an L2 gradient

estimate, that was proven in the continuous case, and endowed to the scheme considered.

1.5 Organization of the paper

This paper is organized as follows: in Section 2, we present the discrete estimates on the

solution of (5.9) and on the interpolation function of the discrete running points uα,ni ,

as it was announced in Theorem 5.3 and Theorem 5.4-(i). Then in Section 3, using the

discrete finite speed propagation property and the discrete estimates proven on uα,ε, we

prove Theorem 5.4-(ii) and (iv). After that, by passing to the limit and using again the

discrete finite speed propagation property, we finish the proof of Theorem 5.4-(iii), in

Section 4. Finally, in Section 5, we present some numerical simulations to a particular

case of (5.1) modeling the dynamics of dislocations densities.

2 Existence of BV discrete solution to (5.9)

In this section, we prove Theorem 5.3 and Theorem 5.4-(i). The proof of Theorem 5.3-(i)

is achieved using the Fixed Point Theorem in Banach spaces. Whereas, to prove Theorem

5.3-(ii) and Theorem 5.4-(i), we will first derive an evolution in time equation satisfied

by the discrete gradient θα,n
i+ 1

2

, that was defined in (5.10). Indeed, if we consider the same

time discretization of θα,n
i+ 1

2

as we did for uα,ni in (5.9), we can observe that θα,n
i+ 1

2

satisfies

the following equation

θα,n
i+ 1

2

=
1

2

(
θα,n
i+ 3

2

+ θα,n
i+ 1

2

)
+

∆t

∆x
λα,n+1
i+1

∣∣∣θα,n
i+ 3

2

∣∣∣− ∆t

∆x
λα,n+1
i

∣∣∣θα,n
i+ 1

2

∣∣∣ . (5.24)

We now proceed to the proof of Theorem 5.3.

Proof of Theorem 5.3.

Proof of (i):

We define for all v = (vαi )α∈{1,··· ,d},i∈Z ∈ UZ, and UZ was introduced after (5.13), the

mapping

Funi ,uni+1
: UZ −→ UZ

v −→ Funi ,uni+1
(v) =

(
F α
uni ,u

n
i+1

(v)
)
α=1,...,d

,

such that

F α
uni ,u

n
i+1

(v) =
1

2

(
uα,ni+1 + uα,ni

)
+

∆t

∆x
λα(tn+1, xi, vi)

∣∣uα,ni+1 − uα,ni
∣∣ . (5.25)
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According to (5.25), we can see that scheme (5.9) can be written as




uα,n+1
i = F α

uni ,u
n
i+1

(un+1), for i ∈ Z, n ∈ {0, . . . , N − 1}, and un ∈ UZ,

uα,0i = uα,0|ε| (xi).

(5.26)

We aim now to show that the mapping Funi ,uni+1
is a well-defined contraction on UZ. This

enables us to deduce, by the Fixed Point Theorem in Banach spaces, the existence of a

unique fixed point to Funi ,uni+1
in UZ, which is the unique solution of (5.9). Thus to prove

so, we proceed in two steps.

Step 1. (Funi ,uni+1
is well-defined):

Let v = (vαi )α∈{1,··· ,d},i∈Z ∈ UZ. From (5.25), we can remark that

F α
uni ,u

n
i+1

(v) =

(
1

2
+

∆t

∆x
λα(tn+1, xi, vi) sign

(
uα,ni+1 − uα,ni

))
uα,ni+1

+

(
1

2
− ∆t

∆x
λα(tn+1, xi, vi) sign

(
uα,ni+1 − uα,ni

))
uα,ni .

Using (5.15), we can clearly see that Funi ,uni+1
(v) is a convex combination of uni+1 and uni ,

which are both in U . Hence, we deduce that Funi ,uni+1
(v) is in UZ.

Step 2. (Funi ,uni+1
is a contraction):

We equip UZ with the following norm (l∞)d

∥v∥(l∞)d =
d∑

α=1

sup
i∈Z

|vαi | .

We remark, for all α = 1, . . . , d and v = (vαi )α∈{1,··· ,d},i∈Z ∈ UZ, w = (wαi )α∈{1,··· ,d},i∈Z ∈ UZ,

that

∥∥∥Funi ,uni+1
(v)− Funi ,uni+1

(w)
∥∥∥
(l∞)d

=
d∑

α=1

sup
i∈Z

∣∣∣F α
uni ,u

n
i+1

(v)− F α
uni ,u

n
i+1

(w)
∣∣∣

≤ ∆t

∆x

d∑

α=1

sup
i∈Z

∣∣uα,ni+1 − uα,ni
∣∣ ∣∣λα(tn+1, xi, vi)− λα(tn+1, xi, wi)

∣∣

≤ 2
∆t

∆x
M ∥v0∥(L∞(R))d ∥v − w∥(l∞)d ,

where we have used (5.14) in the last line. Thus, under (5.15), we deduce that Funi+1,u
n
i

is

a contraction on UZ.
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Therefore, by the Fixed Point Theorem, we deduce that there exists a unique solution of

(5.9) belonging to UZ.

Proof of (ii):

We will prove estimate (5.17) by recurrence, as we have from (5.6) that
∑
i∈Z

θα,0
i+ 1

2

is finite

for every i ∈ Z. Assume that the sum
∑
i∈Z

θα,n
i+ 1

2

is bounded for every i ∈ Z. Let ϕ ∈ C∞(R)

be a cut-off function taking values into [0, 1], and supported by the interval [−2, 2], with

ϕ ≡ 1 on [−1, 1]. Multiplying (5.24) by the function ϕRi = ϕR(xi) = ϕ
(
xi
R

)
for R > 0, we

get

θα,n+1
i ϕRi =

1

2

(
θα,n
i+ 3

2

+ θα,n
i+ 1

2

)
ϕRi +

∆t

∆x
λα,n+1
i+1

∣∣∣θα,n
i+ 3

2

∣∣∣ϕRi − ∆t

∆x
λα,n+1
i

∣∣∣θα,n
i+ 1

2

∣∣∣ϕRi

= θα,n
i+ 3

2

(
1

2
+

∆t

∆x
λα,n+1
i+1 sign

(
θα,n
i+ 3

2

))
ϕRi + θα,n

i+ 1
2

(
1

2
− ∆t

∆x
λα,n+1
i sign

(
θα,n
i+ 1

2

))
ϕRi .

Using (5.15), we can obtain
∣∣∣θα,n+1

i+ 1
2

ϕRi

∣∣∣ ≤ 1

2

(∣∣∣θα,n
i+ 3

2

ϕRi

∣∣∣+
∣∣∣θα,n
i+ 1

2

ϕRi

∣∣∣
)
+

∆t

∆x
λα,n+1
i+1 θα,n

i+ 3
2

ϕRi − ∆t

∆x
λα,n+1
i θα,n

i+ 1
2

ϕRi

=
1

2

( ∣∣∣θα,n
i+ 3

2

(
ϕRi − ϕRi+1 + ϕRi+1

)∣∣∣+
∣∣∣θα,n
i+ 1

2

ϕRi

∣∣∣
)
− ∆t

∆x
λα,n+1
i θα,n

i+ 1
2

ϕRi

+
∆t

∆x
λα,n+1
i+1 θα,n

i+ 3
2

(
ϕRi − ϕRi+1 + ϕRi+1

)

≤ 1

2

(∣∣∣θα,n
i+ 3

2

ϕRi+1

∣∣∣+
∣∣∣θα,n
i+ 1

2

ϕRi

∣∣∣
)
+

1

2

∣∣∣θα,n
i+ 3

2

(
ϕRi − ϕRi+1

)∣∣∣+
∆t

∆x
λα,n+1
i+1 θα,n

i+ 3
2

(
ϕRi − ϕRi+1

)

+
∆t

∆x

(
λα,n+1
i+1 θα,n

i+ 3
2

ϕRi+1 − λα,n+1
i θα,n

i+ 1
2

ϕRi

)
.

Summing over i ∈ Z on the right side of the previous inequality and over i ∈ IR on the

left side, where IR = {i ∈ Z/xi ∈ [−2R, 2R]}, we obtain, as the last term in the previous

inequality vanishes, that
∑

i∈IR

∣∣∣θα,n+1

i+ 1
2

ϕRi

∣∣∣ ≤
∑

i∈Z

∣∣∣θα,n
i+ 1

2

ϕRi

∣∣∣+
1

2

∑

i∈Z

∣∣∣θα,n
i+ 3

2

(
ϕRi − ϕRi+1

)∣∣∣
︸ ︷︷ ︸

K1

+
∆t

∆x

∑

i∈Z
λα,n+1
i+1 θα,n

i+ 3
2

(
ϕRi − ϕRi+1

)

︸ ︷︷ ︸
k2

.

(5.27)

We wish now to bound K1 and K2. By applying the Mean Value Theorem over each

interval [xi, xi+1], we get using (5.5) and the properties of mollifiers that

K1 ≤
∆x

R
∥ϕ′∥L∞(R)

∑

i∈Z

∣∣∣θα,n
i+ 1

2

∣∣∣ ,
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and

K2 ≤ Λ
∆x

R
∥ϕ′∥L∞(R)

∑

i∈Z

∣∣∣θα,n
i+ 1

2

∣∣∣ .

Then applying these bounds on K1 and K2, and multiplying by ∆x gives

∑

i∈IR

∣∣∣θα,n+1

i+ 1
2

ϕRi

∣∣∣∆x ≤
(
1 +

∆x

2R
∥ϕ′∥L∞(R) + Λ

∆t

R
∥ϕ′∥L∞(R)

)∑

i∈Z

∣∣∣θα,n
i+ 1

2

∣∣∣∆x,

where we have also used the fact that ϕR ≤ 1.

Therefore, by using Monotone Convergence Theorem, we pass to the limit as R → +∞
to obtain ∑

i∈Z

∣∣∣θα,n+1

i+ 1
2

∣∣∣∆x ≤
∑

i∈Z

∣∣∣θα,n
i+ 1

2

∣∣∣∆x.

□

In the following subsection, we give the proof of Theorem 5.4-(i) by introducing first a

linear interpolation fucntion uα,ε, for ε = (∆t,∆x), of the discrete points uα,ni for every

α ∈ {1, . . . , d}, n ∈ {0, . . . , N}, and i ∈ Z.

2.1 The Q1-extension uε

Let (t, x) ∈ [0, T ] × R. Then, there exists i ∈ Z and n ∈ {0, . . . , N − 1} such that

(t, x) ∈ [tn, tn+1]× [xi, xi+1], where xi = i∆x and tn = n∆t. For ε = (∆t,∆x), we define

the Q1-extension of the function defined on the grid, for any (t, x) ∈ [tn, tn+1]× [xi, xi+1],

by

uε(t, x) =

(
t− tn
∆t

)[(
x− xi
∆x

)
un+1
i+1 +

(
1− x− xi

∆x

)
un+1
i

]

+

(
1− t− tn

∆t

)[(
x− xi
∆x

)
uni+1 +

(
1− x− xi

∆x

)
uni

]
= (uα,ε(t, x))α=1,...,d .

(5.28)

In particular, we can see that

uε(tn, xi) = uni , for n ∈ {0, . . . , N}, i ∈ Z.

We shall now proceed to the proof of the first point in Theorem 5.4.

Proof of Theorem 5.4-(i).

• L∞ estimate on uε:
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From Theorem 5.3-(i), we deduce that the terms un+1
i+1 , un+1

i , uni+1, and uni are all in U ,

for all i ∈ Z and for all n ∈ {0, . . . , N}. From (5.28), we remark that uε is a convex

combination of un+1
i+1 , un+1

i , uni+1. Then uε ∈ U , which implies, for every α = 1, . . . , d, that

∥uα,ε∥L∞((0,T )×R) ≤ ∥vα0 ∥L∞(R) .

• BV estimate on uε:

We have for (t, x) ∈ [tn, tn+1]× [xi, xi+1]

∂xu
ε(t, x) =

(
t− tn
∆t

)
θn+1
i+ 1

2

+

(
1− t− tn

∆t

)
θn
i+ 1

2
,

which implies, using (5.17), the fact that uα,0|ε| is a smooth function and the properties of

mollifiers, that
∫

R

|∂xuα,ε(t, x)| dx ≤
(
t− tn
∆t

)∑

i∈Z

∣∣∣θα,n+1

i+ 1
2

∣∣∣∆x+
(
1− t− tn

∆t

)∑

i∈Z

∣∣∣θα,n
i+ 1

2

∣∣∣∆x

≤
∑

i∈Z

∣∣∣θα,0
i+ 1

2

∣∣∣∆x ≤
∑

i∈Z

∣∣∣uα,0|ε| (xi+1)− uα,0|ε| (xi)
∣∣∣

≤
∑

i∈Z

∫ xi+1

xi

∣∣∣∂xuα,0|ε| (x)
∣∣∣ dx =

∫

R

∣∣∣∂xuα,0|ε| (x)
∣∣∣ dx

=
∣∣∣uα,0|ε|

∣∣∣
BV (R)

≤ |vα0 |BV (R) .

Hence, we obtain

∥uα,ε∥L∞((0,T );BV (R)) ≤ |vα0 |BV (R).

• Time regularity for uε:

From (5.28), we get

∂tu
α,ε(t, x) =

1

∆t

(
x− xi
∆x

)(
uα,n+1
i+1 − uα,n+1

i

)
− 1

∆t

(
x− xi
∆x

)(
uα,ni+1 − uα,ni

)
+

1

∆t

(
uα,n+1
i − uα,ni

)
.

Inserting (5.9) in this equality yields

∂tu
α,ε(t, x) =

1

∆t

(
x− xi
∆x

)(
uα,n+1
i+1 − uα,n+1

i

)
− 1

∆t

(
x− xi
∆x

)(
uα,ni+1 − uα,ni

)

+
1

∆x
λα,n+1
i

∣∣uα,ni+1 − uα,ni
∣∣+ 1

2

(
uα,ni+1 − uα,ni

)
,

which implies, using the discrete BV estimate (5.17) and (5.15)
∫

R

|∂tuα,ε(t, x)| ≤
(
2

γ
+ Λ +

∆x

2

)∑

i∈Z

∣∣∣θα,0
i+ 1

2

∣∣∣∆x.
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Finally, using the properties of mollifiers, and the fact that ∆x
2

is very small, we obtain

(5.20).

3 Discontinuous viscosity sub and super solutions

In this section, we prove that the upper and lower relaxed semi-limits of uε are, respec-

tively, discontinuous viscosity sub- and super-solutions of (5.1), as it was announced in

Theorem 5.4-(ii). Also, we will show that in the case where system (5.1) verifies a com-

parison principle, then uε converges to the unique solution of (5.1).

This section is divided into two parts. In Subsection 3.1, we introduce some useful results

and definitions. Then, in Subsection 3.2, we give the proof of Theorem 5.4-(ii).

3.1 Some useful results

We begin with the following discrete finite speed propagation property, valid on the in-

terpolation function defined in (5.28).

Lemma 5.1 (Discrete finite speed propagation property).

The function uε, defined in (5.28) verifies for all n0 ≥ 0, the following estimate

min
|xj−xi|≤γtn0

uε,α(tn, xj) ≤ uε,α(tn+n0 , xi) ≤ max
|xj−xi|≤γtn0

uε,α(tn, xj), (5.29)

where γ =
1

γ
and γ is defined in (5.15).

Proof of Lemma 5.1.

We will only prove the right inequality, as the left one can be proved analogously. From

(5.9) and (5.15), we have

uα,n+1
i =

(
1

2
+

∆t

∆x
λα,n+1
i sign

(
uα,n+1
i+1 − uα,ni

))
uα,ni+1

+

(
1

2
− ∆t

∆x
λα,n+1
i sign

(
uα,n+1
i+1 − uα,ni

))
uα,ni

≤
(
1

2
+

∆t

∆x
λα,n+1
i sign

(
uα,n+1
i+1 − uα,ni

))
max
|j−i|≤1

uα,nj

+

(
1

2
− ∆t

∆x
λα,n+1
i sign

(
uα,n+1
i+1 − uα,ni

))
max
|j−i|≤1

uα,nj

≤ max
|j−i|≤1

uα,nj .
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By recurrence, we get

uα,n+n0

i ≤ max
|j−i|≤n0

uα,nj ,

which is equivalent to

uε,α(tn + tn0 , xi) ≤ max
|j−i|≤n0

uε,α(tn, xj).

Now, as xi = i∆x and tn = n∆t, we get

uε,α(tn + tn0 , xi) ≤ max
|xj−xi|≤∆x

∆t
tn0

uε,α(tn, xj).

Using (5.15) in the previous inequality yields

uε,α(tn + tn0 , xi) ≤ max
|xj−xi|≤ 1

γ
tn0

uε,α(tn, xj).

□

Now, we will recall the definitions of monotony, stability, and consistency for scheme (5.9).

We denote by f ⋆ and f⋆ the respective upper and lower semi-continuous envelopes of a

locally bounded function f defined on an open domain in Rn and given by

f ⋆(X) = lim sup
Y→X

f(Y ) and f⋆(X) = lim inf
Y→X

f(Y ) for X ∈ Rn. (5.30)

Consider a point (tn, xi) in the grid Ξ × ΞN , introduced in (5.7). From (5.9) and (5.28),

we can define the following operator

Sαε (tn+1, xi, u
n+1
i , uε,α) :=

1

∆t

(
uα,n+1
i − 1

2
(uα,ε(tn+1 −∆t, xi +∆x) + uα,ε(tn+1 −∆t, xi))

)

− λα(tn+1, xi, u
n+1
i ))

|uα,ε(tn+1 −∆t, xi +∆x)− uα,ε(tn+1 −∆t, xi)|
∆x

.

(5.31)

We can see then that scheme (5.9) is equivalent to

Sαε (tn+1, xi, u
n+1
i , uε,α) = 0. (5.32)

Definition 5.1 (Monotony, Stability, and Consistency).

We say that the numerical scheme (5.9), is

• Monotone: if and only if

Sαε (t, x, u, ψ1) ≤ Sαε (t, x, u, ψ2), for every ψ1 ≥ ψ2 (i.e. ψ1(t, x) ≥ ψ2(t, x) ∀(t, x)),

such that ψ1, ψ2 ∈
[
−∥vα0 ∥L∞(R) , ∥vα0 ∥L∞(R)

]
.
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• Stable: if and only if uε = (uα,ε)α=1,...,d, defined in (5.28), is bounded independently of

ε.

• Consistent: if and only if the following inequalities are satisfied for every test function

ϕα ∈ C1((0, T )× R), and ξ = (ξα)α=1,...,d

lim sup
y→x,s→t
ξ→0,ε→0

ψj→rj ∀j ̸=α

Sαε

(
s, y,

(
ψ1, . . . , ψα−1, ϕα(s, y), ψα+1, . . . , ψd

)
+ ξ, ϕα + ξα

)
≤

∂tϕ
α(t, x)− (λα)⋆

(
t, x,

(
r1, . . . , rα−1, ϕα(t, x), rα+1, . . . , rd

))
|∂xϕα(t, x)|,

(5.33)

lim inf
y→x,s→t
ξ→0,ε→0

ψj→rj ∀j ̸=α

Sαε

(
s, y,

(
ψ1, . . . , ψα−1, ϕα(s, y), ψα+1, . . . , ψd

)
+ ξ, ϕα + ξα

)
≥

∂tϕ
α(t, x)− (λα)⋆

(
t, x,

(
r1, . . . , rα−1, ϕα(t, x), rα+1, . . . , rd

))
|∂xϕα(t, x)|.

(5.34)

Now, we shall prove in the following lemma that the scheme (5.9) is indeed stable, con-

sistent, and monotone in the sense of Definition 5.1.

Lemma 5.2 (Monotony, consistency, and stability of Sαε ).

Assume (5.15) is satisfied. Then, the scheme defined in (5.9) is monotone, stable and

consistent, in the sense of Definition 5.1.

Proof of Lemma 5.2.

The stability of the solution uα,ni of (5.9) is given by Theorem 5.3-(i). For that reason, we

only demonstrate the proofs of the consistency and monotony. We thus proceed in two

steps.

Step 1. (Consistency):

Let ϕα ∈ C1((0, T )× R), and ξ = (ξα)α=1,...,d. From (5.31), we can see that

Sαε

(
s,y,

(
ψ1, . . . , ψα−1, ϕα(s, y), ψα+1, . . . , ψd

)
+ ξ, ϕα + ξα

)
=

1

∆t

(
ϕα(s, y)− 1

2

(
ϕα(s−∆t, y +∆x) + ϕα(s−∆t, y)

))

−λα
(
s,y,

(
ψ1, . . . , ψα−1, ϕα(s, y), ψα+1, . . . , ψd

)
+ ξ
) |ϕα(s−∆t, y +∆x)− ϕα(s−∆t, y)|

∆x
.

Thus, by passing to the lim sup and the lim inf as y → x, s → t, ξα → 0, ε → 0, and

ψj → rj for all j ̸= α, we can deduce (5.33) and (5.34). Hence, scheme (5.9) is consistent.
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Step 2. (Monotony):

The operator Sαε , defined in (5.31), can be written as

Sαε (t, x, u, ψ) =
uα − T α

ε (ψ(t−∆t, x))

∆t
,

where

T α
ε (ψ(t−∆t, x)) =

1

2
(ψ(t−∆t, x+∆x) + ψ(t−∆t, x))+

∆t

∆x
λα(t, x, u)

∣∣ψ(t−∆t, x+∆x)− ψ(t−∆t, x)
∣∣.

In order to show that Sαε is monotonic in the sense of Definition 5.1, it suffices to prove

that T α
ε is non-decreasing with respect to ψ(t − ∆t, x + ∆x) and ψ(t − ∆t, x). Under

(5.15), we can show that the derivatives of T α
ε with respect to ψ(t − ∆t, x + ∆x) and

ψ(t−∆t, x) are positive, and so T α
ε is non-decreasing. Hence, Sαε is non-increasing in the

sense of Definition 5.1.

□

3.2 Existence of sub and super solutions to (5.1)

This subsection is devoted to the proof of Theorem 5.4-(ii), (iv). Before illustrating the

proof, we recall the definition of discontinuous viscosity solutions for system (5.1), intro-

duced by Ishii in [58, Definition 2.1]. For a complete overview on viscosity solutions, we

refer the reader to Barles [9], Crandall and Ishii [35], and to Crandall and Lions [37].

For a vector u = (u1, . . . , ud) locally bounded on [0, T ) × R for all T > 0, we write

u⋆ = ((u1)⋆, . . . , (ud)⋆) and u⋆ = ((u1)⋆, . . . , (u
d)⋆).

Given two locally bounded functions v = (vα)α=1,...,d and u = (uα)α=1,...,d on [0, T ) × R

such that (vα)⋆ ≤ (uα)⋆ for every α = 1, . . . , d, we define the set

Euv (t, x) =
d∏

α=1

[
(vα)⋆(t, x), (u

α)⋆(t, x)
]
.

Definition 5.2. (Discontinuous viscosity sub-solution, super-solution and solu-

tion)

Assume that λ = (λα)α=1,...,d is locally bounded on (0, T ) × R × Rd and v0 = (vα0 )α=1,...,d

is locally bounded on R. Let v = (vα)α=1,...,d, u = (uα)α=1,...,d be two locally bounded

functions on [0, T )×R such that (vα)⋆ ≤ (uα)⋆ for every α = 1, . . . , d. We say that u and

v are a couple of discontinuous viscosity sub- and super- solutions of (5.1) if they satisfy

the following two conditions
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(i) • (uα)⋆(0, x) ≤ (vα0 )
⋆(x), for all α = 1, . . . , d and x ∈ R.

• (vα)⋆(0, x) ≥ (vα0 )⋆(x), for all α = 1, . . . , d and x ∈ R.

(ii) • Whenever a test function ϕα ∈ C1((0, T )×R), α = 1, . . . , d and (uα)⋆−ϕα attains

a local maximum at (tα0 , x
α
0 ) ∈ (0, T )× R, then we have

min
{
∂tϕ

α(tα0 , x
α
0 )− (λα)⋆(tα0 , x

α
0 , r)|∂xϕα(tα0 , xα0 )| :

r ∈ Euv (tα0 , xα0 ), rα = (uα)⋆(tα0 , x
α
0 )
}
≤ 0.

(5.35)

• Whenever ϕα ∈ C1((0, T )×R), α = 1, . . . , d and (vα)⋆−ϕα attains a local minimum

at (tα0 , x
α
0 ) ∈ (0, T )× R, then we have

max
{
∂tϕ

α(tα0 , x
α
0 )− (λα)⋆(t

α
0 , x

α
0 , r)|∂xϕα(tα0 , xα0 )| :

r ∈ Euv (tα0 , xα0 ), rα = (vi)⋆(t
α
0 , x

α
0 )
}
≥ 0.

(5.36)

Finally, we call a function w = (wα)α=1,...,d a discontinuous viscosity solution of (5.1) if

w⋆ and w⋆ verify conditions (i) and (ii).

Now, we can proceed to the proof of Theorem 5.4-(ii).

Proof of Theorem 5.4-(ii).

We only prove the result for the sub-solution case, as the super-solution one can be proved

analogously. Let uε be the interpolation function defined in (5.28). We have to show that

its upper relaxed semi-limit (uα)⋆ = uα is a discontinuous viscosity sub-solution of (5.1),

in the sense of Definition 5.2. We proceed in two steps.

Step 1. (Meaning of the initial data):

We will show that u = (u1, . . . , ud) satisfies the first inequality of Definition 5.2-(i). It is

sufficient to prove the following

uα(0, x) ≤ (vα0 )
⋆(x), for all x ∈ R, α = 1, . . . , d. (5.37)

From the definition of uα, we know that there exists a sequence (εn, tεn , xεn) → (0, 0, x)

as n→ +∞, such that

uα(0, x) = lim
n→+∞

uεn,α(tεn , xεn).

From the definition of uα,ε (5.28), we deduce that if (tεn , xεn) ∈ [tn0 , tn0+1] × [xi, xi+1],
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then

uεn,α(tεn , xεn) =

(
tεn − tn0

∆t

)[(
xεn − xi

∆x

)
uα,n0+1
i+1 +

(
1− xεn − xi

∆x

)
uα,n0+1
i

]

+

(
1− tεn − tn0

∆t

)[(
xεn − xi

∆x

)
uα,n0

i+1 +

(
1− xεn − xi

∆x

)
uα,n0

i

]
.

Using Lemma 5.1 with tn = 0 on the term uα,n0+1
i+1 yields

uα,n0+1
i+1 = uεn,α(tn0+1, xi+1) ≤ max

|xj−xi+1|≤γtn0+1

uα,εn(0, xj)

≤ max
|xj−xi+1|≤γtn0+1

(∫

R

vα0 (z)ρ|εn|(xj − z)dz

)

≤ max
|xj−xi+1|≤γtn0+1

(
max

|z−xj |≤|εn|
vα0 (z)

)
,

where we have used in the second line the definition of the function uα,0|ε| given in (5.8),

and in the third line we used the properties of mollifiers. Furthermore, the convergence

as n → +∞ of (εn, tεn , xεn) → (0, 0, x) implies that for all β > 0, there exists nβ > 0,

such that, for all n ≥ nβ, we have

|εn| ≤ β, |xεn − x| ≤ β, and tεn ≤ β.

Thus, for every β > 0 and n ≥ nβ, we get as ∆x,∆t ≤ |εn| ≤ β, that

uα,n0+1
i+1 ≤ max

|z−x|≤β(2γ+3)
vα0 (z).

If we repeat the same process on each of the terms uα,n0+1
i , uα,n0

i+1 , and uα,n0

i , we obtain

uα,εn(tεn , xεn) ≤ max
|z−x|≤β(2γ+3)

vα0 (z).

Passing to the limit as n→ +∞ gives

uα(0, x) ≤ max
|z−x|≤β(2γ+3)

vα0 (z).

Finally, we pass to the limit as β → 0 to obtain (5.37).

Step 2. (Meaning of the equation):

Here, we want to show that uα satisfies the first inequality of Definition 5.2-(ii). This is

an adaptation of a result by Barles, Souganidis [14] for systems of equations, using the

definition of Ishii, Koike [59, 60] of viscosity solutions. Let ϕα ∈ C1((0, T )×R) such that
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uα − ϕα attains a local maximum at (tα0 , x
α
0 ) ∈ (0, T ) × R. Up to a slight modification

of this test function, we can assume that ϕα is tangent from above to uα at (tα0 , x
α
0 ) ∈

(0, T )× R. By a standard technique used in the theory of viscosity solutions (see Barles

[9, Lemma 4.2]), we can say that there exists a subsequence (εαm, t
α
nm
, xαim) → (0, tα0 , x

α
0 )

when m→ +∞, such that (tαnm
, xαim) is a local maximum of uα,ε

α
m − ϕα and

uα(tα0 , x
α
0 ) = lim

m→+∞
uα,ε

α
m(tαnm

, xαim).

We define ξm = (ξαm)α=1,...,d, such that

ξαm = uα,ε
α
m(tαnm

, xαim)− ϕα(tαnm
, xαim).

It is then clear that uα,ε
α
m(tαnm

, xαim) = ϕα(tαnm
, xαim) + ξαm, and

uα,ε
α
m(t, x) ≤ ϕα(t, x) + ξαm, ∀(t, x) in the neighborhood of (tαnm

, xαim).

Let ψm = (ψβm)β=1,...,d, where

ψβm =





uβ,ε
α
m(tαnm

, xαim)− ξβm if β ̸= α

ϕα(tαnm
, xαim) if β = α.

Then using the monotony of the operator Sαεαm , we get

Sαεαm
(
tαnm

, xαim , ψm + ξm, ϕ
α + ξαm

)
≤ Sαεαm

(
tαnm

, xαim , ψm + ξm, u
α,εαm

)

= Sαεαm

(
tαnm

, xαim ,
(
ψ1
m + ξ1m, . . . , ψ

α−1 + ξα−1
m ,ϕα(tαnm

, xαim) + ξαm, ψ
α+1 + ξα+1

m , . . . , ψdm + ξdm

)
, uα,ε

α
m

)

= Sαεαm

(
tαnm

, xαim ,
(
u1,ε

α
m(tαnm

, xαim), . . . ,u
α,εαm(tαnm

, xαim), . . . , u
d,εαm(tαnm

, xαim)
)
, uα,ε

α
m

)

= Sαεαm

(
tαnm

,xαim , u
εαm(tαnm

, xαim), u
α,εαm

)
= 0,

using (5.32). Now, as ψβm are uniformly bounded for every β = 1, . . . , d, we can extract a

subsequence (independent of β), still denoted ψβm, such that

lim
m→+∞

ψβm = rβ for β ̸= α,

lim
m→+∞

ψαm = rα = ϕα(tα0 , x
α
0 ) = uα(tα0 , x

α
0 ).

(5.38)

Then, for r = (r1, . . . , rα−1, ϕα(tα0 , x
α
0 ), r

α+1, . . . , rd), we obtain from the consistency of
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Sαεαm , that

∂tϕ
α(tα0 , x

α
0 )− (λα)⋆(tα0 , x

α
0 , r) |∂xϕα(tα0 , xα0 )| ≤

lim inf
y→xα0 ,s→tα0
ξ→0,ε→0

ψj→rj∀j ̸=α

Sαε

(
s, y, (ψ1, . . . , , ψα−1, ϕα(s, y), ψα+1, . . . , rd) + ξ, ϕα + ξα

)

≤ lim inf
m→+∞

Sαεαm

(
tαnm

,xαim , ψm + ξm, ϕ
α + ξαm

)

≤ lim inf
m→+∞

Sαεαm

(
tαnm

,xαim , u
εαm(tαnm

, xαim), u
α,εαm

)
= 0.

Hence, we deduce form the previous inequality that

min
{

∂tφ
α(tα0 , x

α
0 )− (λα)⋆(tα0 , x

α
0 , r)|∂xφ

α(tα0 , x
α
0 )| : r ∈ Eu

u (t
α
0 , x

α
0 ), r

α = u
α(tα0 , x

α
0 )
}

≤ 0, (5.39)

and therefore, u = (uα)α=1,...,d is a viscosity sub-solution of (5.1). Similarly, we can verify

that u = (uα)α=1,...,d satisfies (5.36).

□

Proof of Theorem 5.4-(iv).

Under the suppositions of Theorem 5.2, we know that system (5.1) verifies a comparison

principle (see [2, Th 1.2] for more details) and therefore we can obtain that uα ≤ uα for

every α = 1, . . . , d. Then using the fact that uα ≤ uα, for every α = 1, . . . , d, we deduce

that the function uα,ε converges to the unique solution of system (5.1).

□

4 Link between sub and super solutions

Finally in this section, we prove Theorem 5.4-(iii). Namely, we will show that the upper

and lower relaxed semi-limits uα and uα of uα,ε are equal in spaces, for every α = 1, . . . , d,

except at most on a countable set of points. First, we present some preliminary results in

Subsection 4.1, then we demonstrate the proof of Theorem 5.4-(iii) in Subsection 4.2.

4.1 Preliminary results

First we recall some properties valid on bounded BV (R) functions.

Lemma 5.3. (Properties of BV -functions, [6])

Let f be a bounded BV (R)-function. Then, the following hold

i) f is continuous except at most on a countable set,
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ii) The right and left limits

f(x+) = lim
y→x
y>x

f(y), f(x−) = lim
y→x
y<x

f(y)

exists at every point x ∈ R. Moreover, there exists a unique right-continuous function fr

(resp. left-continuous function fl) coinciding with f except on a countable set.

iii) There exists a pair of non-decreasing functions f 1, f 2 ∈ L∞(R) such that f = f 1−f 2.

The following lemma shows a local estimate valid on sequences of non-decreasing functions

converging locally and strongly in L1(R).

Lemma 5.4. (Sequences of non-decreasing functions)

i) Sequence of non-decreasing functions strongly convergent in L1
loc(R)

Let (ϕε)ε be a sequence of non-decreasing functions defined on R such that ϕε → ϕ strongly

in L1
loc(R), as ε → 0, with ϕ a non-decreasing function also defined on R. Then, for all

a > 0 and 0 < δ ≤ a
2
, there exists εδa > 0, such that, for every 0 < ε ≤ εδa, the following

estimate holds

−δ + ϕ(x− δ) ≤ ϕε(x) ≤ δ + ϕ(x+ δ), ∀x ∈ [−a, a]. (5.40)

ii) Sequence of non-decreasing functions strongly convergent in C([0, T ];L1
loc(R))

Let (ϕε)ε be a sequence of functions defined on [0, T ) × R such that, for all t ∈ [0, T ),

the function ϕε(t, ·) is non-decreasing on R. Assume, moreover, that ϕε → ϕ strongly in

C([0, T );L1
loc(R)), as ε → 0, with, for all t ∈ [0, T ), the function ϕ(t, ·) is defined and

non-decreasing on R. Then, for all a > 0 and 0 < δ ≤ a
2
, there exists εδa,T > 0, such that,

for every 0 < ε ≤ εδa,T , the following estimate holds

−δ + ϕ(t, x− δ) ≤ ϕε(t, x) ≤ δ + ϕ(t, x+ δ), ∀x ∈ [−a, a], ∀t ∈ [0, T ).

Next, we show in the following lemma a local estimate valid on sequences of bounded and

BV functions converging locally and strongly in L1(R).

Lemma 5.5. (Sequence of BV (R) functions)

Let (ϕε)ε be a sequence of functions, defined on R, uniformly bounded in L∞(R)∩BV (R)

and strongly convergent to ϕ ∈ L∞(R) ∩ BV (R) in L1
loc(R), with ϕ a right-continuous

function. Then, there exists a subsequence (ϕε′)ε′ such that, for all a > 0 and for all

0 < δ ≤ a
2
, there exists εδa > 0 such that, for all 0 < ε ≤ ϵδa, the following estimate holds

−2δ + ϕ1(x− δ)− ϕ2(x− δ) ≤ ϕε′(x) ≤ 2δ + ϕ1(x+ δ)− ϕ2(x− δ), ∀x ∈ [−a, a] (5.41)

where ϕ1 and ϕ2 are two bounded, right-continuous and non-decreasing functions on R

satisfying ϕ = ϕ1 − ϕ2.
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For the proof of the three previous lemmas see [19, section 6.1].

We end this subsection with the following compactness lemma.

Lemma 5.6. (Simon’s Lemma [80, Corollary 4])

Let X, B and Y be three Banach spaces, where X →֒ B with compact embedding and B →֒
Y with continuous embedding. If (θn)n is a sequence uniformly bounded in L∞((0, T );X)

and (∂tθn)n is uniformly bounded in Lr((0, T );Y ) where r > 1, then, (θn)n is relatively

compact in C((0, T );B).

4.2 Proof of Theorem 5.4-(iii)

Let uε be the interpolation function defined in (5.28). From estimates (5.18), (5.19),

and (5.20), we can say that, for all compact K0 ⊂ R, (uα,ε)ε is uniformly bounded in

L∞((0, T )×K0)∩L∞((0, T );BV (K0)) and (∂tu
α,ε)ε is uniformly bounded in L∞((0, T );L1(K0)).

Using Simon’s lemma (Lemma 5.6), in the particular case where X = BV (K0), B = Y =

L1(K0), and the following compact embedding BV (K0) →֒ L1(K0), we can extract a sub-

sequence denoted by (uα,εmK0
)εm,K0 that converges strongly in L∞((0, T );L1(K0)) to some

limit uα, as m → 0. By a standard diagonalization procedure, we can extract a subse-

quence (uα,εm)εm (independent of α and K0) that converges to the limit uα strongly in

C([0, T );L1(K)) for all compact K ⊂ R. Now, thanks to estimates (5.18) and (5.19) we

can extract a subsequence, still denoted by (uα,εm)εm , satisfying the following convergences

∣∣∣∣∣∣∣∣∣∣∣∣

uα,εm −→ uα, strongly in C([0, T );L1(K)), for all compact K ⊂ R,

uα,εm −→ uα, weakly- ⋆ in L∞((0, T )× R),

uα,εm −→ uα, weakly- ⋆ in L∞((0, T );BV (R)).

(5.42)

Taking the lim inf in estimates (5.18), (5.19) and using the lower semi-continuity of

∥ · ∥L∞(R) and | · |BV (R), we can prove that uα satisfies (5.5) and (5.6). Since, for all

t ∈ [0, T ), the function uα(t, ·) ∈ L∞(R) ∩ BV (R), then by property (ii) of Lemma 5.3,

we know that this function coincides with a right-continuous function almost everywhere

in R and consequently in L1
loc(R). This allows us to consider, in the following, a right-

continuous limit with respect to the space variable.

Now we can show that uα(t, ·), uα(t, ·), and uα(t, ·) verify equality (5.22). For a clear
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presentation, we’ll perform this in three steps.

Step 1. (Regularity in time estimate):

Let T > 0, a > 0, and we set ζ = 4γ + 3, where γ was defined in Lemma 5.29. First,

we will show that there exists two bounded and non-decreasing functions wα,1 and wα,2

satisfying, for every α = 1, . . . , d, the following inequalities

−2h+ wα,1(t, x− hζ)− wα,2(t, x+ hζ) ≤ uα(t+ h, x)

≤ uα(t+ h, x) ≤ 2h+ wα,1(t, x+ hζ)− wα,2(t, x− hζ),
(5.43)

for all x ∈ [a
2
, a
2
], t ∈ [0, T ), and for all h > 0 verifying

h ≤ a

4(2γ + 1)
, and t+ h < T. (5.44)

We begin with the proof of the right inequality in (5.43), namely,

uα(t+ h, x) ≤ 2h+ wα,1(t, x+ hζ)− wα,2(t, x− hζ). (5.45)

Consider h > 0 satisfying (5.44). By the definition of uα, we know that there exists a

sequence (εm, t
h
εm
, xεm) → (0, t+ h, x) when m→ +∞, such that

uα(t+ h, x) = lim
m→+∞

uα,εm(thεm , xεm).

Now, the convergence (εm, t
h
εm
, xεm) → (0, t+ h, x) as m→ +∞, implies that there exists

mh > 0, such that, for all m ≥ mh, we have

|εm| ≤ h, |xεm − x| ≤ h, and |thεm − t− h| ≤ h.

Assume t ∈ [tn, tn+1] and t + h ∈ [tn0 , tn0+1] for n ≤ n0. As uα,εm(thεm , xεm) is a function

of uα,n0+1
i+1 , uα,n0+1

i , uα,n0

i+1 , and uα,n0

i , then applying Lemma 5.1 on each of these terms on

[tn0 , tn0+1]× [xi, xi+1] gives, for ñ ∈ {n0, n0 + 1}, ĩ ∈ {i, i+ 1}

uα,ñ
ĩ

≤ max
|xj−xĩ|≤γ(tñ−tn)

uα,εm(tn, xj)

≤ max
|xj−x|≤h(4γ+2)

uα,εm(tn, xj),

which yields

uα,εm(thεm , xεm) ≤ max
|xj−x|≤h(4γ+2)

uα,εm(tn, xj).

As t = tn + c∆t, for 0 ≤ c ≤ 1, we introduce the function wα,ε defined as

wα,ε(t, x) = uα,ε(t− c∆t, x). (5.46)
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Inserting this function in the previous inequality gives

uα,εm(thεm , xεm) ≤ max
|xj−x|≤h(4γ+2)

wα,εm(t, xj). (5.47)

It is clear that wα,ε satisfies estimates (5.18), (5.19), and (5.20). Then, since for all

t ∈ [0, T ), the sequence wα,εm(t, ·) is uniformly bounded in L∞(R) ∩ BV (R), we can

use the same reasoning as in the beginning of this section, to show that this sequence

converges uniformly in L1
loc(R). Thus, we can deduce from Lemma 5.5 that there exists a

subsequence wα,εn(t, ·) and a positive constant nha,t, such that, for all n ≥ nha,t, we have

wα,εn(t, y) ≤ 2h+ wα,1(t, y + h)− wα,2(t, y − h), ∀ y ∈ [−a, a], (5.48)

where wα,1 and wα,2 are two bounded, right-continuous and non-decreasing functions (with

respect to x) satisfying wα = wα,1 − wα,2, for every α = 1, . . . , d. Collecting (5.47) and

(5.48), we obtain that, for all h > 0 satisfying (5.44) and for all n ≥ nha,t

uα,εn(thεn , xεn) ≤ 2h+ wα,1(t, x+ hζ)− wα,2(t, x− hζ).

We pass to the limit as n → +∞ to get (5.45). Similarly, using the discrete finite

speed propagation property, specifically, the left inequality in (5.29), we can prove the left

inequality in (5.43), namely

−2h+ wα,1(t, x− hζ)− wα,2(t, x+ hζ) ≤ uα(t+ h, x). (5.49)

Step 2. (Right and left continuity):

Let T > 0 and t ∈ [0, T ). Since wα,1(t, ·), wα,2(t, ·) are bounded and non-decreasing

functions on R for every α = 1, . . . , d, then, from property (ii) of Lemma 5.3, we know

that, the right and left limits of these functions exist at every point x ∈ R. This implies

that, for all β > 0 and x ∈ [−a
2
, a
2
], there exists hβa,t > 0, such that, for all 0 < z ≤ hβa,t

and i = 1, . . . , d, we have
∣∣∣∣∣∣∣

wα,1(t, x+ z) ≤ β

4
+ wα,1r (t, x)

wα,2(t, x+ z) ≤ β

4
+ wα,2r (t, x)

and

∣∣∣∣∣∣∣

−wα,1(t, x− z) ≤ β

4
− wα,1l (t, x)

−wα,2(t, x− z) ≤ β

4
− wα,2l (t, x)

(5.50)

where wα,1r (t, ·), wα,2r (t, ·) are right-continuous functions on R and wα,1l (t, ·), wα,2l (t, ·) are

left-continuous functions on R. Note that, here the choice of the constant hβa,t does not

depend on x, that is a consequence of the Heine-Cantor Theorem.
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Now, let T > 0, t ∈ [0, T ) and β > 0, we can see that, if we denote

h̄βa,t,T = min

(
hβa,t
ζ
,

a

4(2γ + 1)
,
β

4
,
T − t

2

)
,

then, for all 0 < h ≤ h̄βa,t,T , assumption (5.44) holds. Therefore, we obtain

uα(t+ h, x) ≤ 2h+ wα,1(t, x+ hζ)− wα,2(t, x− hζ) ≤ β + wα,1r (t, x)− wα,2l (t, x), (5.51)

where we have used (5.45) in the first inequality and (5.50) in the second one. Similarly,

using (5.49) and (5.50), we can prove that, for all x ∈ [−a
2
, a
2
], t ∈ [0, T ), β > 0 and

0 < h ≤ h̄βa,t,T , we have

−β + wα,1l (t, x)− wα,2r (t, x) ≤ uα(t+ h, x). (5.52)

Step 3. (Link between uα and uα):

Let T > 0, x ∈ [−a
2
, a
2
], t ∈ [0, T ) and β > 0. In Step 2, we proved that, there exists a

positive constant h̄βa,t,T , such that, for all α = 1, . . . , d and 0 < h ≤ h̄βa,t,T , we have

uα(t+ h, x) ≤ β + wα,1r (t, x)− wα,2l (t, x)

−uα(t+ h, x) ≤ β − wα,1l (t, x) + wα,2r (t, x).
(5.53)

Since
⋃
t∈[0,T )[t, t+ h̄βa,t,T ] is a cover of [0, T

2
], then there is a finite number Nβ

a of ordered

intervals, satisfying
⋃

0≤j≤Nβ
a

[τβa,j, τ
β
a,j+h̄

β

a,τ
β
a,j ,T

] ⊃
[
0,
T

2

]
with τβa,0 = 0 and τβa,j+1 = τβa,j+h̄

β

a,τ
β
a,j ,T

for j = 1, . . . , Nβ
a−1.

This expression joint to (5.53) and the fact that R =
⋃
a∈Q[−a

2
, a
2
] shows that, for all

x ∈ R, τ ∈ [0, T
2
], and for all positive constant β ∈ Q, there exist two indices a0 ∈ Q and

0 ≤ k0 ≤ Nβ
a0

, such that,

uα(τ, x) ≤ β + wα,1r (τβa0,k0 , x)− wα,2l (τβa0,k0 , x)

−uα(τ, x) ≤ β − wα,1l (τβa0,k0 , x) + wα,2r (τβa0,k0 , x).
(5.54)

Moreover, from property (ii) of Lemma 5.3, we know that, for all positive constants

β, a ∈ Q and 0 ≤ k ≤ Nβ
a , the functions wα,1r (τβa,k, ·), w

α,1
l (τβa,k, ·) (resp. wα,2r (τβa,k, ·),

wα,2l (τβa,k, ·)) coincide with wα,1(τβa,k, ·) (resp. wα,2(τβa,k, ·)) except on a countable set on R,

denoted Dβ,α
a,k . Now, we define the following countable set

D =
d⋃

α=1

⋃

a,β∈Q

⋃

0≤k≤Nβ
a

Dβ,α
a,k .

130



CHAPTER 5. CONVERGENT SCHEME APPROXIMATING AN EIKONAL SYSTEM

Thanks to (5.54), we can see that, for all x /∈ D, τ ∈ [0, T
2
] and for all positive constant

β ∈ Q, there exist two indices a0 ∈ Q and 0 ≤ k0 ≤ Nβ
a0

, such that

uα(τ, x) ≤ β + wα,1(τβa0,k0 , x)− wα,2(τβa0,k0 , x) ≤ β + wα(τβa0,k0 , x)

−uα(τ, x) ≤ β − wα,1(τβa0,k0 , x) + wα,2(τβa0,k0 , x) ≤ β − wα(τβa0,k0 , x).

Adding the previous inequalities, we deduce that, for all rational number α > 0, x /∈ D

and τ ∈ [0, T
2
],

0 ≤ uα(τ, x)− uα(τ, x) ≤ 2β.

Passing to the limit β → 0, and replacing T by 2T , we get

uα(τ, ·) = uα(τ, ·), except at most on a countable set in R, for all τ ∈ [0, T ], α = 1, . . . , d.

(5.55)

This equality allows us to link the sub-solution uα and the super-solution uα. It remains

to show that

uα(τ, ·) = uα(τ, ·) except at most on a countable set in R, for all τ ∈ [0, T ].

To do this, it is sufficient to use, the right continuity of the function uα(τ, ·) and Lemma

5.4 (i). Indeed, let β > 0, the right continuity of the functions uα(τ, ·) implies that, for

all x ∈ [−a
2
, a
2
], there exists β1

a,τ > 0, such that, for all 0 < δ ≤ β1
a,τ , we have

uα(τ, x) ≤ β + uα(τ, x+ δ) = β + uα,1(τ, x+ δ)− uα,2(τ, x+ δ)

≤ 2β + uα,1(τ, x)− uα,2(τ, x+ δ)

(5.56)

where uα,1, uα,2 are the right-continuous non-decreasing functions, given in (5.48). How-

ever, using Lemma 5.4 (i), we know that, for all 0 < δ ≤ a
2
, there exists kβa,τ > 0 and a

subsequence 0 < εk ≤ δ, such that for every k ≥ kαa,τ ,

∣∣∣∣∣∣∣

uα,1(τ, x) ≤ δ
2
+ uα,εk1 (τ, x+ δ

2
)

−uα,2(τ, x+ δ) ≤ δ
2
− uα,εk2 (τ, x+ δ

2
),

(5.57)

where the sequences uα,εk1 and uα,εk2 satisfy the following equality uα,εk = uα,εk1 − uα,εk2 .

Finally, bringing together the two inequalities (5.56) and (5.57), we can see that, for all

0 < δ ≤ min(a
2
, β1

a,τ ), k ≥ kαa,τ , we have

uα(τ, x) ≤ 2β + δ + uα,εk(τ, x+
δ

2
) ≤ 2β + δ + sup

ϵk≤δ,|s−τ |≤δ
|y−x|≤2δ

uα,εk(s, y).
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To complete the proof, we pass to the limit δ → 0 and then β → 0, to get uα(τ, x) ≤
uα(τ, x). Similarly, we can show that uα(τ, x) ≤ uα(τ, x), which joint to (5.55) proves the

desired result.

□

5 Numerical simulations

We consider in this section a simplified model of (5.1) that describes the dynamics of

dislocations densities, where a dislocation is a linear crystallographic defect or irregularity

within a material. This particular model was initially proposed in 2D dimensions by

Groma and Balogh [53, 54], where the dislocations are considered as points moving in

the plane (x1, x2), propagating to the left and to the right, following two vectors ±(1, 0).

In a specific geometry, we assume that the dislocations densities depend on one variable

x = x1 + x2, which reduces the 2D model into a 1D one. We refer to El Hajj, Forcadel

[41] for more details about the modeling.

More precisely, this 1D model can be expressed as




∂tv
1(t, x) = −

(
(v1 − v2)(t, x) + β

∫ 1

0

(v1 − v2)(t, y)dy + a(t)

)∣∣∣∂xv1(t, x)
∣∣∣ in (0, T )× R,

∂tv
2(t, x) =

(
(v1 − v2)(t, x) + β

∫ 1

0

(v1 − v2)(t, y)dy + a(t)

)∣∣∣∂xv2(t, x)
∣∣∣ in (0, T )× R,

(5.58)

where v1, v2 are the scalar functions, representing respectively the right and left propagat-

ing dislocations. Their spatial derivatives ∂xv1, ∂xv2 represent the dislocations densities

corresponding to each type. The constant β depends on the elastic coefficients and the

material size, while the function a(t) represents the exterior shear stress.

It is clear that in the particular case where β = 0, the model (5.58) reduces to the following

system 



∂tv
1(t, x) = −

(
(v1 − v2)(t, x) + a(t)

)∣∣∣∂xv1(t, x)
∣∣∣ in (0, T )× R,

∂tv
2(t, x) =

(
(v1 − v2)(t, x) + a(t)

)∣∣∣∂xv2(t, x)
∣∣∣ in (0, T )× R,

(5.59)

which is indeed in the form of system (5.1).

We equip system (5.59) with non-decreasing initial data of the form

v10(x) = v20(x) = v0(x) = vper(x) + L0x,

where vper are periodic functions of period 1. The use of periodic plus linear boundary

conditions is a way of regarding what is going on inside the material, away from the
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CHAPTER 5. CONVERGENT SCHEME APPROXIMATING AN EIKONAL SYSTEM

boundaries. We thus model a periodic distribution for the two dislocations types, with a

spatial period of length 1.

Now, we will demonstrate numerical simulations of system (5.59), using scheme (5.9) and

choosing discretization parameters ∆t,∆x that satisfy (5.15), under a stress of a(t) = 3t,

and L0 = 0.5. As it is represented in Figure 5.1(a), we assumed that the dislocations

densities are not uniformly distributed in space at t = 0, in other words, there exists

regions with concentrated dislocations, and others without any dislocations at all. We

remark here that if a(t) = 0, then the dislocations will not propagate. However, when we

exert an exterior stress, we notice that the dislocations densities begin to diffuse inside

the material (Figure 5.1(b),5.1(c)), to reach a constant density that is equal to L0 = 0.5,

and fill the entire material at t = 1, as we can see in Figure 5.1(d).

We remark that when a(t) is non-stationary, system (5.59) behaves as a diffusion equation

(see Briani, Monneau [23] for further details).
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5. NUMERICAL SIMULATIONS

(a) t=0 (b) t=0.1

(c) t=0.5 (d) t=1

Figure 5.1: Dislocations densities distribution ∂xv
1(·, t), ∂xv2(·, t) at several instants.
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6 New contraction to the

evolutionary p-Laplacian equation

This chapter is in collaboration with Mustapha Jazar and Ghada Chamycem.

In this work, we present a new contraction result to the positive solutions of the evolu-

tionary p-Laplacian equation by introducing a new distance that depends on certain paths

constructed between the solutions of the given equation, and showing that this distance

is decreasing on a certain domain.

We have some primary outcomes of a similar result in the case where the solutions can

change sign.
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1. INTRODUCTION AND MAIN RESULT

New contraction result to the positive solutions of the
evolutionary p-Laplacian equation

Maryam Al Zohbi, Ghada Chmaycem, Mustapha Jazar

Abstract

For Ω ⊂ Rd an open connected subset with smooth boundary, and p > 1, we prove a new

contraction result to the positive solutions of the evolutionary p-Laplacian equation, by

introducing a new distance between the solutions. This distance also enables us to obtain,

as a consequence, the well known result which states that the solutions of the p-Laplacian

evolutionary equation have non-decreasing Lr(Ω) norm for r ≥ 1.

AMS Classification: 47H20, 47H35, 47H09.

Key words: Non-linear operators, p-Laplace operator, contraction distance.

1 Introduction and main result

We consider, for Ω ⊂ Rd an open connected subset with smooth boundary and p > 1, the

following p-Laplacian problem





∂tu(t, x) = ∆pu(t, x) in QT = (0, T )× Ω,

u(t, x) = 0 on ∂(0, T )× Ω,

u(0, ·) = u0 in Ω.

(6.1)

The initial condition u0 satisfies

u0 ≥ 0 in Ω. (6.2)

It is known that for Ω ⊂ Rd bounded domain with Lipschitz continuous boundary, the

energy functional

φ(u) =

∫

Ω

|∇u|pdx, (6.3)

associated with the p-Laplacian operator ∆pu = ∇ · (∇u|∇u|p−2), gives rise to strongly

continuous nonlinear (linear if p = 2) semigroups of contractions on L2(Ω) (see for ex-

ample [32, Th. 4.8]). A classical result by Minty [71] (see also Evans [49, Ch. 9], or the
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CHAPTER 6. NEW CONTRACTION TO THE EVOLUTIONARY P -LAPLACIAN EQUATION

monograph by Brézis [22]) shows that every convex, lower semi-continuous functional φ

on a Hilbert space H generates a strongly continuous semigroup (nonlinear in general) of

contractions on D(φ).

Moreover on the contraction results known for (6.1), it is easy to show that ∥u(t)∥W 1,p(Ω) ≤
∥u0∥W 1,p(Ω) for all t, since

d

dt

(
1

p

∫

Ω

|∇u|pdx
)

=

∫

Ω

∇(∂tu)∇u|∇u|p−2dx = −
∫

Ω

(∂tu)
2dx ≤ 0.

Similarly,
d

dt

(
1

p

∫

Ω

|u|pdx
)

= −(p− 1)

∫

Ω

(∇u)2|∇u|p−2|u|p−2dx ≤ 0.

In this work, we introduce a new pseudo-metric between positive solutions of (6.1), in

order to design a new family of contraction to this system. To that end, we announce our

main result in Theorem 6.1.

In what follows, we denote by (f)+ the positive part of a scalar function f .

Theorem 6.1.

Let u and v be two solutions of (6.1), belonging to the space C2(QT ), with initial data

u0 and v0 respectively, both satisfying (6.2). For p > 1, q > 1, and α ∈ R such that

0 < α− < α < 1, where

α− :=
4(q − 1)(p− 1)

4q(q − 1)(p− 1)− p2q2
+ 1, (6.4)

we have ∫

Ω

(vα − uα)q+dx ≤
∫

Ω

((v0)
α − (u0)

α)q+ dx. (6.5)

As a consequence of this theorem, we obtain that the solutions of (6.1) have non-increasing

Lr(Ω) norm for r ≥ 1, which is a quite known result for the p-Laplacian operator (See

[16]). Thus, we have the following corollary.

Corollary 6.1.

Under the conditions of Theorem 6.1, the solution v satisfies, for all r ≥ 1, the following

estimate

∥v(t)∥Lr(Ω) ≤ ∥v0∥Lr(Ω) , for all t > 0. (6.6)
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The proof of this corollary is obvious if Theorem 6.1 is valid. The following section is

devoted to the proof of the Theorem 6.1. It is divided into two Sections. First in Section

2, we illustrate the distance which will be used in the contraction argument. Then in

Section 3, we show that this distance admits indeed a domain of contraction for the

positive solutions of system (6.1), hence, proving Theorem 6.1, and as a consequence we

obtain Corollary 6.1.

2 Construction of a distance

Our main tool in the proof of the contraction is a new distance constructed between the

solutions. Let u and v be two solutions of (6.1), belonging to the space C2(QT ), with

positive initial data u0 and v0 respectively. We introduce the function

w0 : [0, 1] → C2(Ω)

s 7→ w0(s) := w
(s)
0 ,

where w0 ∈ C2
(
[0, 1];C2(Ω)

)
is a path joining u0 to v0. In other words, we have w(0)

0 = u0

and w(1)
0 = v0.

Next, we construct the function

w : [0, 1]×QT → R

(s, t, x) 7→ w(s, t, x),

where for all s ∈ [0, 1], we have w(s, ·, ·) =: w(s)(·, ·) is a solution of (6.1) with initial data

w
(s)
0 . It is clear that w(0) = u and w(1) = v.

Now we define the set

Wu
v =

{
w ∈ C2

(
[0, 1]×QT

)
: w(0) = u and w(1) = v

}
, (6.7)

which is a set of paths connecting u to v.

Definition 6.1 (A pseudo-distance).

Given two C2(QT )-solutions u and v of (6.1), we define the following pseudo-distance

d(u, v) := inf
w∈Wu

v

A(w) with A(w) :=

∫ 1

0

ds

∫

Ω

wγ+
(w′)q+
q

dx, (6.8)

where the set Wu
v was defined in (6.7), γ ∈ R, and q ∈ R∗

+.
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Remark 6.1. (i) It is known that the p-Laplacian operator generates a positive semi-

group; meaning that a solution u is positive whenever its initial data u0 is positive.

(ii) As we only consider positive solutions, it is meaningful then to consider only the

positive paths w joining u to v in the definition of the set Wu
v , and thus

A(w) =

∫ 1

0

ds

∫

Ω

wγ
(w′)q+
q

dx. (6.9)

What is interesting about this distance is that it can be explicitly expressed in terms of

the solutions. To this end, we introduce the following lemma.

Lemma 6.1.

For α = 1 + γ

q
, where q ∈ R∗

+ and γ ∈ R, the distance defined in Definition 6.1 can be

explicitly written as follows

d(u, v) = inf
w∈Wu

v

∫ 1

0

ds

∫

Ω

wγ
(w′)q+
q

dx =
1

qαq

∫

Ω

(vα − uα)q+dx. (6.10)

Proof of Lemma 6.1.

The proof of this Lemma is done in two steps.

Step 1.

We will prove the following inequality

inf
w∈Wu

v

A(w(t)) ≥ 1

qαq

∫

Ω

(vα − uα)q+dx. (6.11)

We have

A(w) =

∫ 1

0

ds

∫

Ω

wγ
(w′)q+
q

dx

=
1

qαq

∫

Ω

dx

∫ 1

0

(
∂

∂s
wα
)q

+

ds.

Now we apply Jensen’s inequality. Thus we get

A(w) =
1

qαq

∫

Ω

dx

∫ 1

0

(
∂

∂s
wα
)q

+

ds ≥ 1

qαq

∫

Ω

dx

(∫ 1

0

∂

∂s
wαds

)q

+

=
1

qαq

∫

Ω

([
wα
]s=1

s=0

)q

+

dx

=
1

qαq

∫

Ω

(vα − uα)q+dx.
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So we get

A(w) ≥ 1

qαq

∫

Ω

(vα − uα)q+dx for any w ∈ Wu
v .

Hence we obtain inequality (6.11).

Step 2.

Now we shall prove the following inequality

inf
w∈Wu

v

A(w) ≤ 1

qαq

∫

Ω

(vα − uα)q+dx. (6.12)

Consider the path w̃ ∈ Wu
v defined by w̃ := ((vα − uα)s+ uα)

1
α .

We have

d(u, v) = inf
w∈Wu

v

A(w) ≤ A(w̃) =

∫ 1

0

ds

∫

Ω

w̃γ
(w̃′)q+
q

dx =
1

qαq

∫

Ω

dx

∫ 1

0

(
∂

∂s
w̃α
)q

+

ds

=
1

qαq

∫

Ω

(vα − uα)q+dx.

Consequently, we obtain inequality (6.12).

Therefore, inequalities (6.11) and (6.12) lead to (6.10).

3 Contraction of the distance

In this section, we present the proof of Theorem 6.1, and we show how we can easily

obtain Corollary 6.1.

Proof of Theorem 6.1.

Denote by Ω+ =: {x ∈ Ω : w′(x, t, s) ≥ 0}. We poceed in two steps.

Step 1. (Derivation of A with respect to time)

Differentiating the first equation in (6.1) with respect to the variable s, we deduce that

the equation satisfied by w′ is

∂tw
′ = (p− 1) div

(
∇w′|∇w|p−2

)
. (6.13)
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Using (6.13) in the derivative of the quantity A(w) (defied in (6.9)), we get

d

dt
A(w) =

d

dt

(
1

q

∫ 1

0

ds

∫

Ω+

wγ(w′)qdx

)

=
1

q

∫ 1

0

ds

∫

Ω+

(
(γwγ−1∂tw(w

′)q + q(w′)q−1∂tw
′wγ
)
dx

=
1

q

∫ 1

0

ds

∫

Ω+

(
γwγ−1(w′)q div

(
∇w|∇w|p−2

)

+ q(p− 1)(w′)q−1wγ div
(
∇w′|∇w′|p−2

) )
dx.

Applying Green’s formula we get

d

dt
A(w) =− 1

q

∫ 1

0

ds

∫

Ω+

(
γ∇
(
wγ−1(w′)q

)
∇w|∇w|p−2

+ q(p− 1)∇
(
(w′)q−1wγ

)
∇w′|∇w|p−2

)
dx

=− 1

q

∫ 1

0

ds

∫

Ω+

(
γ
(
(γ − 1)wγ−2∇w(w′)q + q(w′)q−1∇w′wγ−1

)
∇w|∇w|p−2

+ q(p− 1)
(
(q − 1)(w′)q−2∇w′wγ

+ γwγ−1∇w(w′)q−1
)
∇w′|∇w|p−2

)
dx

=− 1

q

∫ 1

0

ds

∫

Ω+

wγ(w′)q|∇w|p−2
(
γ(γ − 1)w−2|∇w|2 + γqw−1(w′)−1∇w∇w′

+ q(q − 1)(p− 1)(w′)−2|∇w′|−2 + γq(p− 1)w−1(w′)−1∇w∇w′
)
dx

=− 1

q

∫ 1

0

ds

∫

Ω+

wγ(w′)q|∇w|p−2
(
γ(γ − 1)|∇ lnw|2 + γqp∇ lnw∇ lnw′

+ q(q − 1)(p− 1)|∇ lnw′|
)
dx

=−
∫ 1

0

ds

∫

Ω+

wγ(w′)q|∇w|p−2



∇ lnw

∇ lnw′



t

M

(
∇ lnw

∇ lnw′

)
dx,
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where

M =




γ(γ − 1)

q

γp

2

γp

2
(q − 1)(p− 1)


 .

Since M is a real symmetric square matrix, and (q − 1)(p − 1) > 0, then M is positive

definite if and only if detM > 0, which is equivalent to having the condition γ− < γ < 0,

where

γ− :=
4(p− 1)(q − 1)

4(p− 1)(q − 1)− p2q
.

Then we get
d

dt
A(w) ≤ 0 on Ω+ whenever γ ∈ (γ−, 0), or equivalently, whenever

α ∈ (α−, 1).

Step 2. (Verification of inequality (6.5))

By Lemma 6.1, we have

1

qαq

∫

Ω

(vα − uα)q+dx = inf
w∈Wu

v

A(w(t)) ≤ A(w(t)) ≤ A(w(0)),

for any w ∈ Wu
v and α ∈ (α−, 1) by step 1.

Thus

inf
w∈Wu

v

A(w(t)) ≤ inf
w∈Wu

v

A(w(0)) = d(u0, v0) =
1

qαq

∫

Ω

(vα0 − uα0 )
q
+dx.

Hence, we have proved inequality (6.5).

Proof of Corollary 6.1.

Applying Theorem 6.1 for u ≡ 0, inequality (6.5) reduces to
∫

Ω

vαq+ dx ≤
∫

Ω

vαq0+dx, i.e.,
∫

Ω

vαqdx ≤
∫

Ω

vαq0 dx,

since we are working with positive solutions only. Hence, we get (6.6) for any r := αq =

q + γ ∈ (γ− + q, q). Notice that the contraction result holds for all q > 1, therefore

inequality (6.6) is valid here for all r ≥ 1.

□

Another application of the distance defined in Definition 6.1 can be found in [33].

142



Conclusion and perspectives

As a conclusion, we have proven 4 main results in this thesis dissertation, of which 3 are

motivated by the dynamics of dislocations, and the fourth is a contraction result to the

evolutionary p-Laplacian equation.

The first main result was a global in time existence of a discontinuous viscosity solution to

a diagonal hyperbolic system of transport equations in one space dimension. The proof of

this result was accomplished by considering a parabolic regularization of the main system

and then passing to the limit when the regularization vanishes. The same technique was

then employed in order to prove a similar result on an eikonal system, which is in fact

a generalization of the hyperbolic system studied in the first result. The second main

result was proving the existence and uniqueness of a continuous solution to the same

eikonal system. This result was based on a Comparison Principle. The third and final

main result in this field of study, was proving that a certain semi-explicit finite difference

scheme approximating the eikonal system converges to a discontinuous viscosity solution

of this system. We have applied these last two results to a particular periodic case of the

main eikonal system. In addition, we have provided our final result with some numerical

simulations.

On a different approach, our fourth result in this dissertation was creating a new family

of contracting positive solutions to the evolutionary p-Laplacian equation. This result

was possible due to the construction of a certain distance between the solutions of the

p-Laplacian equation considered.

After this thesis, we are planning first to apply the result of Chapter 3 to a system that

models the dynamics of isentropic gas, which is also of diagonal hyperbolic type, in one

space dimension. We will show that this system admits a discontinuous viscosity solution

in distributional sense.
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3. CONTRACTION OF THE DISTANCE

We also plan on studying different models describing the dynamics of dislocations, with

the aim of better understanding their mechanism and effect to materials. Of these models

we mention one by Acharya [1], where building on some fundamental laws of kinematics or

conservation, a full time-dependent 3D system of equations governing the rate of plastic

distortion tensor is formulated. We are also interested in the 2D Frenkel–Kontorova model

[21, 61] which describes a chain of classical particles with nearest neighbor interactions.

This model was originally introduced to describe the structure and dynamics of a crystal

lattice near a dislocation core.

From a numerical point of view, we will try to prove an error estimate between the con-

tinuous solution and its numerical approximation as a continuation of the work presented

in Chapter 5.

In addition, after this thesis we are planning to carry out a homogenization study of the

hyperbolic system studied in Chapter 3, with the aim of applying the results to the dy-

namics dislocations. Due to the fact that dislocations are disordered microscopic defects,

it is natural to try homogenizing their behavior or effect to the macroscopic level.

As for the theory of differential contraction, we aim in improving our result on the p-

Laplacian evolutionary equation, in order to include all solutions, whether positive or

negative. We already have primary results on how to enhance the distance used. Moreover,

we will try to modify our distance so that it can applied on equations that are not

necessarily of divergence type.
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