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Electrical insulators made of polymeric materials are widely used in various applications, from 

electronic components to electrical machines. Among the electrical insulators with a complex 

formulation, this work will focus on Low-Density Polyethylene (LDPE). This work addresses the 

transport of electrical energy in high-voltage cables under DC stress. This electrical stress induces 

internal charges called space charge, whose accumulation is directly linked to the degradation of 

the dielectric, leading to the electrical insulator breakdown. The major difficulty arises from the 

fact that phenomena describing the dielectric aging is not fully-understood. Therefore, Additional 

studies are required to understand this charge accumulation and the mechanisms by which the 

insulator is affected to develop strategies for material improvement and the formulation of 

behavioral laws under stress.  

There exist two main approaches that could be useful for these studies; they are known as 

experimental and numerical modeling approaches. The originality of this study lies in the intention 

to enhance the numerical modeling approach by integrating it with the experimental one using 

optimization tools, which can provide many beneficial information. 

Most of the actual physical concepts used right now to describe charge transport in solid dielectrics 

have been studied for more than 30 years. Two physical models have been developed in our 

laboratory to describe the Bipolar Charge Transport (BCT) in LDPE under DC stress. These 

models are known as fluid models, and they are defined as follows:  

• Model 1: This model considers two levels of traps (shallow and deep traps), as well as the 

most essential phenomena taking place inside dielectrics, such as injection, hopping mobility, 

and the recombination process of positive and negative carriers. Two kinds of carriers are 

considered in this model, mobile or trapped. These carriers are generated by a modified-

Schottky injection at the metal-dielectric interface and are extracted without a barrier. The 

model is based on Poisson's equation and the conservation law of charges. 

• Model 2: This model is similar to Model 1; however, the main feature of this model is that 

trap depths are represented by an exponential distribution, instead of considering only two 

levels of traps. Besides, all charges are supposed to be trapped with no mobile charges. 

Since the scientific approach addressed in this study is innovative in our research community, it is 

preferred to start with a model considering the physical phenomena that are irrelevant to each other 

and capable of describing the charge transport in LDPE under DC stress. For this reason, we 

adopted Model 1 for this study instead of using Model 2. This model requires a large number of 
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unknown parameters that represent the physical phenomena taking place in dielectrics, such as 

injection barrier, mobility, trapping, and de-trapping coefficients. Most of these parameters cannot 

be predicted, observed, or estimated by independent experiments. For this reason, an optimization 

algorithm is used to optimize the BCT model to provide a realistic representation of the physical, 

electrical, and chemical phenomena of dielectrics under stress. Our study employed this algorithm 

to find the best model parameters by minimizing the sum of the squares of the deviations between 

the experimental and simulated data. Experimental data that have been used are the net density of 

charges measured by the Pulsed Electro-Acoustic method (PEA) along with what is known as 

charging current measurements. On the other side, the simulated density of charge and current 

could be obtained by the BCT model developed for LDPE under DC stress. All experiments and 

samples preparations were performed at LAPLACE Laboratory. This thesis is composed of five 

chapters, as follows:  

Chapter 1 presents the state of art of this study, which highlights the essential physical phenomena 

used to describe the charge transport in LDPE. The first part of this chapter presents the chemical 

and physical properties of polymers, particularly LDPE. Besides, the charge transport and charge 

generation phenomena in LDPE will be addressed in detail. Furthermore, the mathematical model 

used in this study is proposed to describe the charge transport and electrical behavior in LDPE, 

which addresses most of the microscopic and macroscopic phenomena during the polarization and 

depolarization processes. The second part of this chapter shows the contributions made by several 

researchers over the previous 30 years to the BCT model. In conclusion, the main objective of the 

thesis will be presented by specifying the issues we are trying to solve. 

Numerical optimization is not widely used in our community of research. For this reason, Chapter 

2 reviews the basic concepts of optimization that should be well understood in order to apply 

optimization to a specific problem, such as, global and local optimality conditions. The general 

form of an optimization problem can be classified according to the nature of the objective function 

and constraints. Thus, many optimization models depending on the type of the cost functions and 

constraints will be presented and discussed in order to know which one represents the problem we 

are attempting to solve. 

The main goal of Chapter 3 is to reveal the most suitable optimization algorithm for solving our 

problem. The first part provides a detailed investigation of optimality requirements that 

demonstrates the strong and weak points of the most significant algorithms that could be applied 
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for optimizing the BCT model. Five optimization algorithms will be studied for estimating the 

unknown set of parameters related to the BCT model. All the algorithms will be compared in detail 

by examining their robustness, efficiency, and accuracy when applied to the BCT model. Then the 

best algorithm will be chosen to be used in the following sections. 

Chapter 4 proposes an original method based on a dual approach Simulation/Experiment that 

helps to optimize and critically analyze the BCT model (i.e., highlighting the weaknesses and 

strengths). This approach aims at constructing a multi-objective cost function that integrates both 

current and charge experiments with varying electrical fields in a single cost function. Then, this 

cost function will be minimized using the algorithm chosen in Chapter 3. Besides, the sample 

conditioning and the experimental setups utilized for this study will be discussed. Since this study 

aims to combine both current and charge experiments in a single cost function, the samples were 

carefully manufactured with specific characteristics to suit both experiments. Finally, the results 

will be discussed and analyzed in depth. 

Finally, Chapter 5 focuses on studying and analyzing the charge injection phenomena taking place 

at the electrodes using optimization tools. Several types of surface electrodes will be considered 

in this chapter, that are: gold, aluminum, copper, and semi-conductor. This chapter intends to 

compare the nature of different electrodes by classifying the amount of injected charges through 

each one. However, it is quite difficult to obtain an accurate value of the injected charges during 

voltage application using the PEA method. Yet, it is possible to roughly estimate and compare the 

quantity of injected charges at short time, and then identify the influence of the surface electrode 

type. As in Chapter 4, optimization tools will be used to find the unknown parameters representing 

the injection barrier height that can fit experiments with model simulations. Finally, the 

experimental measurements will be compared with simulated results obtained by the BCT model 

to highlight the reliability of the presented method. 
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I.1 Introduction 

The vast majority of the actual physical concepts used to depict charge transport and breakdown 

in solid dielectrics, have been studied for more than 30 years. These studies provided a wealth of 

information regarding amorphous semiconductor [1], charge localization and transport [2], charge 

states in polymers [3], hopping conduction, space charge limited current, interface states, etc. 

Some great review articles depict the basis of our present information in this area [4]–[10]. T. J. 

Lewis [4], [8] discussed charge transport, charge injection, and breakdown in polymeric insulators, 

especially in polyethylene. H. J. Wintle [5], [7] studied the basic physics of insulators, such as, 

charge motion and trapping phenomena. T. Mizutani [9] and S. Boggs [10] addressed the high 

field phenomena in insulating polymers.  

Despite this physical mechanism background, studies on charge transport modeling have been 

limited over the past 30 years. Most of the time, they have considered analytical models in simple 

case studies or under prohibitive conditions rather than real conditions of materials in electrical 

systems. The trouble for advancing such models has been the absence of essential information, 

such as carriers traps, charge mobility and their local density, etc. Besides, information on the 

microscopic process controlling charge transport was inaccessible, since all the experimental 

measurements depended on strategies said to be "integral", which acquired the information in time 

and/or in space (for instance: potential surface measurement of a dielectric resulting from an 

internal distribution of charges). Two advancements have contributed to change the situation:  

• the first is due to the enormous increase of the computers calculating power and to the 

improvement of computational techniques [5];  

• while the second concerns the advancement of the experimental techniques which today 

permit the measurement of the internal distribution of the space charge as a function of 

time.  

The birth and the development of these measurement techniques indicate a significant advance in 

the dielectric area. Several methods have arisen to measure the space charge on polymers and have 

provided new information, especially on Polyethylene (PE) [11]–[16]. These methods provide 

some new information, such as the carriers' polarity, mobility of charge carriers, or the trap's depth 
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using different electric fields and temperatures. Most information on recombination processes can 

be obtained by combining space charge calculation techniques with various spectroscopic 

techniques, showing whether the transport is bipolar or unipolar [17], [18]. 

Furthermore, other factors that have impressively changed the situation and provided a boost to 

the improvement of models describing the charge transport phenomena within insulating polymers 

under stress are: 

• The evolution towards a compact system in power electronics and, more generally, in all 

the domains of electrical engineering, leads to an increase in power density, with two 

consequences for polymeric insulations: first, these materials are consistently exposed to 

strong stresses, often close to their limits; second, manufacturers are developing new 

instruments capable of making best estimations of the intrinsic limits of the insulator used 

to ensure the security of their usage; 

• The demand for safer electrical systems is principally due to their use in sensitive 

applications (large-scale electrical networks, embedded networks, complex systems, etc.). 

That is why new predictive models that anticipate the effects of chemical and/or physical 

defects should be formulated; 

• The development of new materials for electrical insulation, such as, composites with 

inorganic charges on a micro- or nano- metric scale [19], with chemical functionalization 

(by addition or grafting) of the matrix or the charges. The models must be appropriately 

formulated to fit these results. 

The aim of this chapter is not to evaluate previously published modeling works or to introduce 

new dielectric physical concepts. We intend to show that by considering the accumulated 

knowledge in transport physics, there is a major potential to improve simulation practices to model 

the behavior of polymer insulators under electrical stress. Hence, this work tries to provide a 

realistic representation of physical, electrical, and chemical phenomena at the microscopic scale 

that are not properly handled in macroscopic models. The term "modeling" is used here in its 

general context; "some techniques will be based on microscopic principles, while others may be 

based on macroscopic models, depending on the nature of the problem''. These models provide a 

wide range of data that can be used for a variety of purposes, such as further understanding the 

mechanics of insulating materials or developing new scientific and industrial applications.  
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In the first section of the chapter, we will discuss the chemical and physical properties of polymers, 

particularly Low-Density Polyethylene (LDPE). The basics of molecular properties, such as 

defects, trap levels, and carrier’s generation will be described. In the second part, we will describe 

the space charge in polymers. This part will address the charge transport and charge generation 

phenomena taking place in LDPE. In the third section, a mathematical model is proposed to 

describe the charge transport and electrical behavior in LDPE. This model addresses most of the 

microscopic and macroscopic phenomena taking place in LDPE during the polarization and 

depolarization processes, such as injection, recombination, trapping, and detrapping phenomena. 

Also, the evolution process of this model is discussed by showing the contributions made by 

several researchers over the previous 30 years. Finally, the main objective of the PhD is presented 

by specifying the issues we are trying to solve and the solutions that will be addressed in the 

following sections.  

Among insulating materials with a large bandgap, polyethylene (PE) stands out for its simple 

chemical structure (repetitive unit CH2), its chemical inertness, and its numerous electrical 

engineering applications. This material has been most often considered for several fundamental 

studies (molecular descriptions, macroscopic modeling), making it by far the most studied 

material. 

I.2 Chemical and physical properties of polymers 

I.2.1  Polymers 

A polymer is a long organic chain consisting of smaller repetitive simple molecules, called 

monomeric molecules. The electrical properties of these macromolecules depend on the chemical 

nature of the chain units, their design, and eventually their operating conditions. The question is 

to determine the relationship between the material's electrical properties and the microscopic 

structure. At the macroscopic scale, a polymer is considered a homogenous substance. Still, at a 

smaller scale, its structure is significantly more complicated due to the number of constituent 

atoms, the arrangement of these atoms between them, and implementation parameters. The 

chemical and physical structure of a polymer will then be defined. Then, in terms of structural 

features and transport processes, we'll concentrate more particularly on the properties of 

polyethylene, our research material. 
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I.2.1.1 Chemical structure 

A polymer is generated by linking the repeated units together through covalent connections (which 

come from forming a bond between the monomers). The polymer backbone is made up of carbon 

chains. The monomers may be inserted in a straight line or a branching pattern during the 

polymerization process. These two types of configurations are called linear and branched. Such 

structures are associated with the bulk of the initial monomer and/or chemical products, making it 

possible to connect chains laterally to the macromolecule skeleton. The synthesis of a polymer is 

achieved in various ways: anionic polymerization, cationic, radical, emulsion polymerization. The 

common point among these syntheses is the presence of initiators and/or catalysts, which are added 

to increase polymerization speed. Unfortunately, the "pure" polymers are fragile. They can suffer 

degradation, which leads to a change in their chemical structure and physical properties under 

different sources (heat, moisture, light, etc.). Therefore, they cannot be used as they are. During 

their development, the manufacturers add various substances which modify their properties: 

• Anti-oxidants, which prevent polymers from reacting in the presence of oxygen in the air 

• Cross-linking mechanisms, which after a chemical reaction can bind to the polymer chains 

to form inter-molecular bridges. These agents allow the formation of a macromolecular 

network, which gives the material a better mechanical and thermal stability. 

• Other additives can also be added, such as plasticizers, dyes etc., depending on the 

properties required.  

In the process of polymerization, all those additional additives can react with other molecules, and 

sample substrates can contain their degradation products. 

It is difficult to classify or measure all impurities in the substructure, but there is a particular 

discrepancy in these products. We call this disorder of chemical type because residues from the 

polymer's synthesis primarily cause it. We will later see the role these impurities can play in the 

charge transport in these materials. 

I.2.1.2 Physical structure  

By physical structure, we mean the architecture of the chain during the elaboration of the polymer. 

The simplest arrangement is the arrangement of the atoms or groups of atoms with each other. 

These can be arranged by rotating around the covalent bonds to adopt the conformation that 

requires the least energy. 
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The orderly character of molecules or atoms over large distances is referred to as crystallinity. 

There are often defects, such as ramifications, and the polymer only partially crystallizes. It is 

referred to as semi-crystalline. It has two phases: a crystalline, well-ordered phase and an 

amorphous phase. If no structure exists, the polymer is amorphous. 

As discussed in the previous paragraph, chemical impurities deform the crystallographic mesh, 

modifying the physical structure of the polymer. These physical structure distortions result in an 

imbalance within the polymer structure, which we can refer to as a physical or conformational 

disorder. 

I.2.2 Defects in polymers 

Low density polyethylene is semi-crystalline, consisting of a crystalline part organized in the form 

of lamellae of approximately 10 nm in size, and an amorphous part. The lamellar molecular 

arrangement is shown in Figure 1a. The amorphous part is due to the conformational and chemical 

disorder, introduced among others by the unsaturated species as shown in Figure 1b. 

 

Figure 1: Some defects encountered in low-density polyethylene. a) conformational defects in the amorphous zone, 
b) examples of unsaturated species at the origin of the chemical disorder. [24] 

LDPE materials contain different structural irregularities and defects, such as branch points, 

conformational defects, or cross-links. Such defects may arise due to the faulty chemical process 

of linking monomer units, yielding an undesired linkage and breakage of chemical regularity [25]. 

Another chemical defect is branching, which occurs when a linear polymer chain splits into two 

separate chains that occur at different rates. Furthermore, cross-links produce unique mechanical 

properties, e.g., rubber elasticity is due to cross-linking [26]. Defects can also occur in the 

conformational coiling of polymer chains [25]. Conformational defects arise due to kinetic and 

energetic influences in the crystallization of an otherwise chemical and stereo-chemically regular 

chain. Conformational errors may also be strongly caused by chemical or stereo-chemical defects; 

induced conformational defects are also named.  
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Defects in polymers have been studied using several experimental techniques, including Scanning 

Electron Microscopy (SEM), image analyzer, and Transmission Electron Microscopy (TEM) [27]. 

With SEM, it has been possible to determine the voids, grain-size, and free-volume in polymeric 

materials. X-ray diffraction measurements were helpful in imaging vacancies, clusters, and 

dislocations in the crystalline regions of polymeric materials.  

The temperature dependence of density, electrical conductivity, and the dielectric constant, as well 

as the frequency dependence of each of these parameters, can give information on the dynamic 

nature of the defects. Additionally, there have been problems associated with isolating situations 

in which specific structural defects have a clearly defined role in controlling macroscopic 

properties. In the same manner, the study of defects in polymers is a reasonable source that 

provides a relation between microscopic and macroscopic structural properties that are the 

fundamental theme of all material science.  

Obviously, it is quite difficult to obtain a clear observation of the chemical and physical defects in 

polymers. For this reason, in this work, one of the essential targets is to better understand the 

defects by using a dual approach (experimental/modeling). 

I.2.3 Trap sites 

One of the major goals of this research is to investigate the defects in conducting polymers. The 

chemical and physical structures of the material might be used to analyze these defects. Trapping 

levels are commonly used to characterize defects inside a material. Only two trapping levels will 

be addressed in our model: shallow traps, which represent the material's physical defects, and deep 

traps, which represent the material's chemical defects.  

I.2.3.1 Shallow traps 

In general, the shallow trap states represent the physical defects and structural inconsistencies 

inside the material [28], [29], which produce a reduction in the carrier mobility. Shallow traps 

feature energetic depths in the range of 0.05–0.75 eV (Figure 2) [30], [31], (measured from the 

original band edge) and have high densities in the range of 1026–1027 m-3 [28], [29], [32]. The 

carriers residence time in the shallow traps is on the order of 10−11 to 10−13 s, which tends to be 

consistent with the fact that these sites support transport but do not allow stability of the charges 

for the long-term that are detected using traditional techniques. For instance, based on the authors, 

we find several values for the average inter-trap value [32]–[35]. 
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In the material, the major mode of spatial charge transport takes place in the shallow trap states. 

Yet, due to their low energetic barrier and minor spacing, transport in between them occurs at a 

particularly high speed, so that carriers within shallow traps cannot be measured with PEA nor 

productively represented in the simulation model.  

 

Figure 2: Simplified description of the polyethylene band gap 

I.2.3.2 Deep traps 

 Deep states are physio-chemical defects inside the material that allow the material to display slow 

charge decay [29], [30]. Deep traps are known to have energetic depths, 𝑤𝑡𝑟 in the range of 0.9–2 

eV (Figure 2) with a density in the range of 1020– 1021 𝑚−3 [28], [34]. Because of their low 

density, inter-deep trap conduction without the interaction of inter-level and shallow traps is highly 

improbable. In our manuscript, deeply trapped carriers are referred to as “trapped”. 

The residence time of the charges in the deep traps is much higher than those encountered for 

shallow traps, in the order of 4.6 × 10−3s to 5.1 × 105s [36], and charges can be stabilized by 

deep traps for virtually infinite durations. 

I.2.4 Polyethylene (LDPE) 

The polymer we have chosen to study is polyethylene. It is a member of the vinyl polymer family 

and is derived from the polymerization of ethylene, or ethene (Figure 3). The repetition of the basic 

unit makes it possible to obtain polyethylene of chemical formula [-C2H4-]n (Figure 4), where n 

represents the degree of polymerization of the molecule. 
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Figure 3: Ethylene molecule, monomer of polyethylene. 

 

Figure 4: Chemical structure of polyethylene 

 

Its electrical and mechanical qualities (Table 1) have made it a preferred material for high voltage 

cable insulation. Polyethylene (PE) has good insulating properties such as resistivity, dielectric 

strength, and dielectric losses. Hence, it has been widely used in a large variety of applications in 

the electrical and electronic industry. As the primary insulation of a power cable, the PE material 

could be subjected to a large amount of heat when high power is transmitted through the cable 

line. Furthermore, due to the low thermal conductivity of the PE matrix, the phenomenon of heat 

accumulation is quite severe, which could accelerate the thermal degradation of cable insulation 

and lead to dielectric breakdown [20]–[23], posing a threat to the power system's safe operation. 

 

Table 1: Electrical and mechanical characteristics of low-density polyethylene [24]]. 

Material LDPE 

Density (g ⋅ cm−3) 0.92 

Rate of crystallinity (%) 55-70 

Electrical rigidity at 23 °C (kV.mm−1) 80 

Permittivity at 23 °C and 50Hz 2.3 

Glass transition temperature (°C) -110 

Melting temperature (°C) 110-120 

 

There are several types of polyethylene, which are differentiated by their chemical structure. High-

density polyethylene (HDPE), obtained at low pressure, is a linear crystalline, rigid polymer where 
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molecules can pack more closely. Low-density polyethylene (LDPE), produced at higher 

pressures, is a tough and flexible polymer characterized by long branches and semi-crystalline. 

However, LDPE is simpler to process, and its cost is much lower. Therefore, the LDPE was chosen 

to be studied in our research. 

I.3 Space charge generation and transport 

Space charge is a concept in which excess electric charge is treated as a continuum of charge 

distributed over a region of space (either a volume or an area) rather than distinct point-like 

charges. This model typically applies when charge carriers have been emitted from some region 

of a solid and if they are sufficiently spread, or the charged atoms or molecules left behind in the 

solid can form a space charge region. The space charge phenomena could be described by 

addressing two major topics: how carriers are generated and how they are transported. The 

following sections describe the two processes in detail. 

I.3.1 Charge generation 

The generation of charge mechanisms are important to the successful applications of dielectric 

materials because it is challenging to access phenomena occurring at a microscopic scale. There 

are three kinds of generation mechanisms in dielectric films, that are: 

• irradiation  

• ionization  

• injection conduction mechanism  

Electron-beam irradiation is an alternative way to generate charges in insulating materials at 

controlled positions and quantities in order to monitor their behavior regarding transport 

phenomena under the space charge induced electric field or external field applied. Similarly, 

charges could be generated when an electric charge is ionized. Ionization is the process by which 

an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often 

in conjunction with other chemical changes. The mechanisms of charge generation at the interfaces 

are known as "injection conduction." Numerous studies conducted on this subject have provided 

a partial understanding of these interface-controlled processes, particularly for metal-insulator type 

interfaces. In our case, the charges are assumed to be produced only by injection at both electrodes, 

with no consideration given to irradiation or ionization processes. 

https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Continuum_mechanics
https://en.wikipedia.org/wiki/Charge_carriers
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The injection conduction mechanisms depend on the electrical properties at the electrode-dielectric 

contact. The barrier height at the electrode dielectric interface is the most important parameter in 

this type of conduction mechanism. The injection conduction mechanisms include: 

• Schottky or thermionic emission  

• Fowler-Nordheim tunneling,  

• thermionic-field emission.  

The current caused by thermionic emission is strongly dependent on the temperature, whereas the 

tunneling current is almost temperature independent. Aside from the barrier height at the electrode-

dielectric interface, the effective mass of the conduction carriers in dielectrics is also a critical 

feature for the injection conduction mechanisms. 

I.3.1.1 Schottky or thermionic emission. 

Schottky emission is a conduction mechanism at the electrodes [37], [38], where the electrons in 

the metal will overcome the energy barrier at the metal-dielectric contact, if they can obtain enough 

energy from thermal activation to pass into the dielectric. Thermionic emission is one of the most 

frequently observed conduction mechanisms in dielectric films, especially at relatively high 

temperatures. Figure 5 shows the metal-insulator energy band diagram when the metal electrode 

is under negative bias with respect to the dielectric and the semiconductor substrate. The image 

force can reduce the energy barrier height at the metal-dielectric contact. The barrier-lowering 

effect caused by the image force is defined as the Schottky effect. Such conduction mechanism 

due to electron emission from the metal to the dielectric is called thermionic emission or Schottky 

emission. The expression of Schottky emission is 

𝐽𝑖𝑛𝑗 = 𝐴 ∙ 𝑇2 ∙ 𝑒𝑥𝑝 (−
𝑞 ∙ 𝑤𝐵

𝑘𝐵 ∙ 𝑇
) [𝑒𝑥𝑝 (

𝑞

𝑘𝐵 ∙ 𝑇
√

𝑞 ⋅ 𝐸

4𝜋𝜀0𝜀𝑟
)] (1) 

where, 𝐽𝑖𝑛𝑗 is the current density; D is the thickness of the material; T is the absolute temperature, 

𝑞 = 1.6 × 10−19 𝐶 is the elementary charge, 𝑤𝐵 is the injection barrier, respectively, 𝑘𝐵 stands 

for Boltzmann constant, 𝐸 is the electric field, 𝜀0 = 8.85 × 10−12 𝐹. 𝑚−1 is the permittivity of 

vacuum and 𝜀𝑟 = 2.3 is the material relative permittivity. 
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Figure 5: Schematic energy band diagram of Schottky emission in metal-insulator structure. 

 

𝐴 =  
4𝜋𝑞𝑘2𝑚∗

ℎ3
 =  

120𝑚∗

𝑚0
= 1.2 × 106 𝐴𝑚−2𝐾−2  

Where 𝐴 is the effective Richardson constant, 𝑚0 is the free electron mass, 𝑚∗ is the effective 

electron mass in dielectric, ℎ is the Planck’s constant. 

I.3.1.2 Fowler-Nordheim tunneling. 

According to classical physics, the electrons will be reflected if their energy is less than that of the 

potential barrier. However, quantum mechanics predicts that when the potential barrier is thin 

enough (<10 nm), the electron wave function will pass through. Hence, due to the tunneling effect, 

the probability of electrons being on the opposite side of the potential barrier is not zero. Figure 6 

represents the schematic energy band diagram of Fowler-Nordheim (F-N) tunneling. F-N 

tunneling arises when the applied electric field is strong enough to allow the electron wave function 

to pass through the potential barrier and into the dielectric's conduction band. The F-N tunneling 

current is expressed as: 

𝐽𝑖𝑛𝑗 =
𝑞3𝐸2

8𝜋ℎ𝑞𝑤𝐵
exp [−

8𝜋(2𝑞𝑚𝑇
∗ )

1
2

3ℎ𝐸
𝑤𝐵

3/2
]  (2) 

 

where 𝑚𝑇
∗  is the tunneling effective mass in dielectric; the other notations are the same as defined 

before. The tunneling current may be computed by measuring the current-voltage (I-V) properties 

of the devices at very low temperatures. At such a low temperature, the thermionic emission 

becomes negligible and the tunneling injection is dominant. 
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Figure 6: Schematic energy band diagram of Fowler-Nordheim emission in metal-insulator structure 

I.3.1.3 Thermionic-field emission 

Thermionic-field emission occurs between field emission and Schottky emission. In this condition, 

the tunneling electrons should have an energy level between the Fermi level of metal and the 

conduction band edge of the dielectric. The schematic energy band diagram of thermionic-field 

emission is illustrated in Figure 7. The current density due to thermionic-field emission can be 

expressed as [39]: 

𝐽 =
𝑞2√𝑚(𝑘𝑇)

1
2𝐸

8ℎ2𝜋5/2
exp(−

𝑞𝑤𝐵

𝑘𝑇
) exp [

ℎ2𝑞2𝐸2

24𝑚(𝑘𝑇)3
] (3) 

 

 

Figure 7: Schematic energy band diagram of thermionic-field emission in metal-insulator structure. 

• To summarize what has been stated so far, charges can be produced in dielectric films by 

three different conduction mechanisms: ionization, irradiation, or injection at electrodes. 

In our case, the charges are assumed to be produced only by injection at both electrodes, 
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with no consideration given to irradiation or ionization processes. Accordingly, many 

processes, such as Schottky emission, Fowler-Nordheim tunneling, or thermionic-field 

emission, are involved in the generation via injection at electrodes. The difference between 

thermionic emission, thermionic-field emission, and field emission is illustrated in Figure 

8. Based on the used material and the experimental conditions (i.e., the considered electric 

field range is [0 𝑘𝑉.𝑚𝑚−1 − 60 𝑘𝑉.𝑚𝑚−1]) used in this research, only the Schottky 

emission is considered in our model to describe the generation of charges at electrodes, 

while the other mechanisms are neglected.  

 

Figure 8: Comparison of thermionic-field emission, thermionic emission, and field emission 

I.3.2 Charge transport mechanism 

The charge transport mechanisms depend on the electrical properties of the dielectric itself. The 

trap energy level in the dielectric films is the most important parameter in this type of conduction 

process. The charge transport mechanisms include:  

• Poole-Frenkel emission 

• Hopping conduction 

• Ohmic conduction 

• Space charge-limited conduction 

• Diffusion conduction 

I.3.2.1 Poole-Frenkel Emission. 

 Poole-Frenkel (P-F) emission entails a mechanism that is very similar to Schottky emission; in 

particular, the thermal excitation of electrons may emit from trap states into the conduction band 

of the dielectric. Also, the P-F emission is sometimes entitled as the internal Schottky emission. 

Considering an electron in a trapped state, an applied electric field across the dielectric film can 
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reduce the electron's Coulomb potential energy. The reduction in potential energy may enhance 

the probability of an electron being thermally excited out of the trap and into the dielectric's 

conduction band. The schematic energy band diagram of P-F emission is shown in Figure 9. For a 

Coulombic attraction potential among electrons and traps, the current density due to the P-F 

emission is  

𝐽 = 𝑞𝜇𝑁𝐶𝐸 exp

[
 
 
 
 −𝑞 (𝜙𝑇 − √

𝑞𝐸
𝜋𝜀𝑟𝜀0

 )

𝑘𝑏𝑇

]
 
 
 
 

 (4) 

 

Where 𝜇 is the electronic drift mobility, 𝑁𝐶 is the density of states in the conduction band, 𝜙𝑇 is 

the trap energy level, and the other notations are the same as defined before. Because P-F emission 

is caused by thermal activation in the presence of an electric field, this conduction mechanism is 

frequently observed at high temperatures and strong electric fields. 

 

Figure 9: Schematic energy band diagram of Poole-Frenkel emission in metal-insulator structure. 

I.3.2.2 Hopping Conduction. 

Hopping conduction is made by thermal excitation above a potential barrier, by quantum tunneling 

effect of trapped electrons “hopping” from one trap site to another in dielectric films. Figure 10 

shows the schematic energy band diagram of hopping conduction. The expression of hopping 

conduction is [40]–[42]: 

𝐽 = 𝑞𝑎𝑛𝑣 exp (
𝑞𝑎𝐸

𝑘𝑏𝑇
 ) exp (−

𝑞𝜙𝑇

𝑘𝑏𝑇
) (5) 
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where 𝑎 is the mean hopping distance (i.e., the mean spacing between trap sites), 𝑣 is the frequency 

of thermal vibration of electrons at trap sites, and 𝜙𝑇 is the energy level from the trap states to the 

bottom of conduction band (𝐸𝐶); 𝑛 is the electron density in the conduction band of the dielectric, 

the other terms are as defined above. The P-F emission corresponds to the thermionic effect and 

the hopping conduction corresponds to the tunnel effect. The thermionic mechanism allows 

carriers to cross the trap barrier in P-F emission. However, in hopping conduction, the carrier 

energy is lower than the maximum energy of the potential barrier between two trapping sites. In 

this situation, the carriers can still use the tunnel mechanism to move. 

 

Figure 10: Energy band diagram of hopping conduction in metal-insulator structure. 

I.3.2.3 ohmic conduction 

Ohmic conduction is produced by the movement of mobile electrons and holes in the conduction 

band and valence band, respectively. In ohmic conduction, a linear relationship occurs between 

the electric field and current density. Figure 11 shows a schematic energy band diagram of the 

Ohmic conduction. Despite the fact that dielectrics have a high energy band gap by definition, 

thermal excitation will generate a small number of carriers. For example, electrons from the 

valence band or the impurity level may be excited to the conduction band. The carrier numbers 

will be extremely low but they are not zero. The current density of ohmic conduction can be 

defined as:  

𝑗 = 𝜎𝐸 = 𝑞𝜇𝐸𝑛 (6) 
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The magnitude of this current is very small. This current mechanism may be observed when there 

is no significant contribution from other conduction mechanisms of current transport in dielectrics 

[40].  

 

Figure 11: Energy band diagram of ohmic conduction in metal-insulator structure. 

I.3.2.4 space charge-limited conduction (SCLC) 

The main objective of models based on the Space Charge-Limited conduction (SCLC) is to 

determine the external current of electronic carriers in a medium without traps, with only one level 

of trapping, or with an exponential distribution of trapping levels. The carrier concentration should 

be sufficiently high to produce a significant variation in the electric field and, therefore, a variation 

in the carriers drift velocity [43], [44]. 

The SCLC mechanism is similar to the transport conduction of electrons in a vacuum diode. A 

vacuum diode's cathode can emit electrons with a Maxwellian distribution of initial velocities (𝑉). 

The corresponding charge distribution can be written by the Poisson’s equation: 

𝜕2𝑉(𝑥)

𝜕𝑥2
= −

𝜌(𝑥)

𝜀0
 (7) 

 

Moreover, in the steady state, the continuity equation is  

𝐽 = 𝑞𝑛(𝑥)𝑣(𝑥) (8) 

 

where 𝑣 = [
2𝑞𝑉(𝑥)

𝑚
]
1/2
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In solid dielectrics, the SCLC is caused by the injection of electrons or holes at an ohmic contact. 

The continuity equation includes the diffusion component and can be written as  

𝐽 = 𝑞𝑛(𝑥)𝑣(𝑥) + 𝑞𝐷
𝑑𝑛

𝑑𝑥
 (9) 

I.3.2.5 Diffusion 

Diffusion is a natural motion of species atoms, molecules, ions [45] or electronic carriers [46] – 

which is due to a gradient of chemical potential. At a first approximation [45], transport by 

diffusion can be seen as the first derivative of species concentration in the three directions of space. 

Besides, the mobility of a highly diluted ion solution is related to the diffusion coefficient by the 

Nernst–Einstein equation:  

𝜇 =
𝑞𝐷

𝑘𝑇
      (10) 

 

This relationship presumes that ions mobility is linked to the molecular motion within the polymer 

[47]. In polymers, diffusion is often supposed negligible in the transport equations. The proposition 

of neglecting diffusion comes from the fact that the concentration gradients are not very 

significant. In fact, even when the simplest case of neutral species is considered, the diffusion 

coefficients can change in a significant manner, according to the size of the molecules that diffuse.  

 

• To summarize what has been stated so far, the preceding section described numerous 

charge transport processes that occur in dielectrics. In our model, the hopping mechanism 

is the main phenomena considered in our model to explain dielectric transportation 

phenomena. The other mechanisms are completely ignored. 

I.4 Mathematical modeling of charge transport 

The bipolar charge transport (BCT) model is illustrated in Figure 12. Consider a flat sample of 

insulating material of thickness D that is sandwiched between a semiconducting and a stainless-

steel (i.e., anode and cathode). A positive or negative DC voltage V0 is applied to the electrode at 

zero time, while the other electrode is grounded. Since the electrodes radii are much greater than 

the dielectric sample’s thickness, the edge effect can be neglected [5]. The study of charge 

transport in the flat sample can, therefore, be reduced to a one-dimensional domain. In such a case, 

most of the parameters are functions of coordinate 𝑥 along with insulation thickness and time t. 
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Two kinds of carriers are considered in the model, being either trapped or mobile. Charge carriers 

transported between shallow traps are referred to as mobile electrons and holes, whereas those 

being captured in the deep trapping centers are referred to as trapped electrons and holes. 

 

Figure 12: Schematic representation of the conduction and trapping/de-trapping model for LDPE. 𝑤𝑒  𝑎𝑛𝑑 𝑤ℎ  are 
injection barriers for electrons and holes; 𝑅0, 𝑅1, 𝑅2, 𝑎𝑛𝑑 𝑅3 are reduction pre-factors multiplied by the Langevin’s 
recombination reduction pre-factor, 𝐵𝑒  𝑎𝑛𝑑 𝐵ℎ  represents the trapping parameters, 𝐷𝑒  𝑎𝑛𝑑 𝐷ℎ  represents the 
detrapping parameters; 𝑎𝑒  𝑎𝑛𝑑 𝑎ℎ  represents the distance between two shallow traps, 𝑤𝑚𝑜𝑒

 and 𝑤𝑚𝑜ℎ
 are electron 

and hole depth for a single shallow trapping level. 

 

Next, we present the different physical phenomena that have been used in fluid modeling. 

Whatever the physical model of transport is considered, and neglecting the polarization, the 

mathematical problem is reduced to three main equations: (11) transport equation, poisson’s 

equation (12), and continuity equation (13), below, considering a 1D problem along the spatial 

coordinate 𝑥. 

𝑗𝑒,ℎ(𝑥, 𝑡) = 𝑞 ⋅ 𝜇𝑒,ℎ(𝑥, 𝑡) ∙ 𝐸(𝑥, 𝑡) ∙ 𝑛𝑒,ℎ(𝑥, 𝑡) (11) 

1

𝑞
∙
𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
=

−𝑛(𝑥, 𝑡)

𝜀0𝜀𝑟
 (12) 

𝜕𝑛𝑒,ℎ(𝑥, 𝑡)

𝜕𝑡 
+

1

𝑞

𝜕𝑗𝑒,ℎ(𝑥, 𝑡)

𝜕𝑥
−

𝐷𝜕2𝑛𝑒,ℎ(𝑥, 𝑡)

𝜕𝑥2
= 𝑠𝑖(𝑥, 𝑡) (13) 
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I.4.1 Basic equations 

I.4.1.1 Transport equation 

Charge transport is described by a hopping mechanism in which carriers move from site to site by 

tunneling a potential barrier. Mobile electrons and holes are associated with effective mobility. 

This mobility accounts for the possible trapping and de-trapping in shallow traps with a short-term 

residence. To introduce the hopping mechanism, the apparent effective mobilities 𝜇𝑒,ℎ in equation 

(14) are defined by the depth of shallow traps 𝑤𝑚𝑜𝑒,ℎ
:  

𝜇𝑒,ℎ(𝑥, 𝑡) =
2𝑣𝑎𝑒,ℎ

𝐸(𝑥, 𝑡)
∙ exp (−

𝑞𝑤𝑚𝑜𝑒,ℎ

𝑘𝐵𝑇
) ∙ sinh (

𝑞𝐸(𝑥, 𝑡)𝑎𝑒,ℎ

2𝑘𝐵𝑇
) (14) 

 

Where 𝑤𝑚𝑜𝑒,ℎ
 is the depth for a single trapping level, 𝑣 =

𝑘B𝑇

ℎ
= 6.21012 × 10−12 𝑠−1  is the 

frequency of the phonons at room temperature, i.e., it is the number of times per second that the 

trapped electron or hole strikes the barrier of the trap and 𝑎 =  3.8 × 10−9 𝑚 is the average 

distance between traps.  

 

The motion of mobile carriers 𝑛𝑒 and 𝑛ℎ, results in a conductive drift current density defined as: 

𝑗𝑑𝑟𝑖𝑓𝑡 = 𝑞(𝑛𝑒𝜇𝑒 + 𝑛ℎ𝜇ℎ)𝐸 (15) 

 

where 𝜇𝑒 and 𝜇ℎ are, respectively, electron and hole mobilities in 𝑚2 ⋅ 𝑉−1. 𝑠−1, 𝑞 is the 

elementary charge in 𝐶 and 𝐸 is the applied electric field in 𝑉 ⋅ 𝑚−1. 𝑛𝑒 and 𝑛ℎ are the net charge 

density for electrons and holes. Hence, the transport equation is defined as:  

𝑗𝑒,ℎ(𝑥, 𝑡) = 𝑞 ⋅ 𝜇𝑒,ℎ(𝑥, 𝑡) ∙ 𝐸(𝑥, 𝑡) ∙ 𝑛𝑒,ℎ(𝑥, 𝑡) (16) 

I.4.1.2 Poisson’s equation 

The Poisson's equation expresses the electric field distribution inside the material as a function of 

net charge density: 

1

𝑞
∙
𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
=

−𝑛(𝑥, 𝑡)

𝜀0𝜀𝑟
 (17) 

 

Where V is the applied voltage with 𝐸 =
𝜕𝑉(𝑥,𝑡)

𝜕𝑥
. t is the time and x is the position. 

However, the net charge density is written as: 
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𝑛(𝑥, 𝑡) = 𝑛ℎ𝜇(𝑥, 𝑡) + 𝑛ℎ𝑡(𝑥, 𝑡) − 𝑛𝑒𝜇(𝑥, 𝑡) − 𝑛𝑒𝑡(𝑥, 𝑡) 

 
(18) 

I.4.1.3 Continuity equations 

Progressive change in charge density in time and space can be expressed as continuity equations 

for charge transport, such as:  

𝜕𝑛(𝑥, 𝑡)

𝜕𝑡 
+

1

𝑞

𝜕𝑗(𝑥, 𝑡)

𝜕𝑥
−

𝐷𝜕2𝑛(𝑥, 𝑡)

𝜕𝑥2
= 𝑠𝑖(𝑥, 𝑡) (19) 

 

As mentioned previously, the diffusion phenomena is neglected in our model. Equation (19) will 

be substituted by Equation (20): 

𝜕𝑛𝑒,ℎ(𝑥, 𝑡)

𝜕𝑡 
+

1

𝑞

𝜕𝑗𝑒,ℎ(𝑥, 𝑡)

𝜕𝑥
= 𝑠𝑖(𝑥, 𝑡) (20) 

 

The source terms 𝑠𝑒𝜇, 𝑠𝑒𝑡, 𝑠ℎ𝜇 and 𝑠ℎ𝑡 (respectively, for mobile electrons, trapped electrons, mobile 

holes, and trapped holes) of Equation (20) elucidate and sort out the microscopic phenomena and 

processes inside the dielectric other than the transport process, i.e., recombination, trapping and 

de-trapping. The recombination terms that have been included in the model have the Langevin 

form [48], which is usually applied when at least one kind of the carriers is mobile. A reduction of 

the recombination rates has been considered by introducing reduction pre-factors 𝑅1..3. 

The source term equations are defined as:  

𝜕𝑛𝑒µ

𝜕𝑡
+

1

𝑞
⋅
𝑑𝑗𝑒µ(𝑥, 𝑡)

𝜕𝑥
  = 𝑠𝑒𝜇   = −

𝑅1𝜇𝑒

𝜀0𝜀𝑟

𝑛ℎ𝑡𝑛𝑒𝜇 −
𝑅3(𝜇𝑒 + 𝜇ℎ)

𝜀0𝜀𝑟

𝑛𝑒𝜇𝑛ℎ𝜇 − 𝐵𝑒𝑛𝑒𝜇 (1 −
𝑛𝑒𝑡

𝑁0𝑒𝑡

) + 𝐷𝑡𝑟𝑒
𝑛𝑒𝑡 

 
𝜕𝑛𝑡𝑒

𝜕𝑡
                               =  𝑠𝑒𝑡  = −

𝑅2𝜇ℎ

𝜀0𝜀𝑟

𝑛𝑒𝑡𝑛ℎ𝜇 − 𝑅0𝑛𝑒𝑡𝑛ℎ𝑡 + 𝐵𝑒𝑛𝑒𝜇 (1 −
𝑛𝑒𝑡

𝑁0𝑒𝑡

) − 𝐷𝑡𝑟𝑒
𝑛𝑒𝑡 

  
𝜕𝑛ℎµ

𝜕𝑡
+

1

𝑞
⋅
𝜕𝑗ℎµ(𝑥, 𝑡)

𝜕𝑥
= 𝑠ℎ𝜇   =  −

𝑅2𝜇ℎ

𝜀0𝜀𝑟

𝑛𝑒𝑡𝑛ℎ𝜇 −
𝑅3(𝜇𝑒 + 𝜇ℎ)

𝜀0𝜀𝑟

𝑛𝑒𝜇𝑛ℎ𝜇 − 𝐵ℎ𝑛ℎ𝜇 (1 −
𝑛ℎ𝑡

𝑁0ℎ𝑡

) + 𝐷𝑡𝑟ℎ
𝑛ℎ𝑡 

 
𝜕𝑛ℎ𝑡

𝜕𝑡
                              =  𝑠ℎ𝑡   = −

𝑅1𝜇𝑒

𝜀0𝜀𝑟

𝑛ℎ𝑡𝑛𝑒𝜇 − 𝑅0𝑛𝑒𝑡𝑛ℎ𝑡 + 𝐵ℎ𝑛ℎ𝜇 (1 −
𝑛ℎ𝑡

𝑁0ℎ𝑡

) − 𝐷𝑡𝑟ℎ
𝑛ℎ𝑡 

(21) 

 

𝑅𝑖=0..3 are the reduction pre-factors multiplied by the Langevin’s recombination rate, 𝐵𝑒,ℎ are the 

trapping rates for electrons and holes, 𝐷𝑡𝑟𝑒,ℎ
  are the de-trapping rates for electrons and holes, 𝑁0𝑒𝑡 

and 𝑁0ℎ𝑡 are the maxima trapped charge densities for electrons and holes, respectively. 𝑛𝑒𝜇 and 
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𝑛ℎ𝜇 are the densities of mobile electrons and holes, 𝑛𝑒𝑡 and 𝑛ℎ𝑡 are the densities of trapped 

electrons and holes. Equation (21) can be applied to all species present in the material. 

 

The de-trapping rate is defined by a de-trapping coefficient 𝑤𝑡𝑟𝑒,ℎ
, such as: 

𝐷𝑡𝑟𝑒,ℎ
= 𝑣 ⋅ exp (

−𝑤𝑡𝑟𝑒,ℎ

𝑘𝐵𝑇
) (22) 

 

The sum of the continuity equations for each type of charge leads to the global continuity equation, 

function of the net charge density:  

𝜕𝑛(𝑥, 𝑡)

𝜕𝑡 
+

1

𝑞

𝜕𝑗(𝑥, 𝑡)

𝜕𝑥
= 0 (23) 

 

Where 𝑗 represents here the conduction current density. This equation expresses the variation in 

time and space of the net charge density. It is valid whatever the condition considered (transient 

or at equilibrium). 

I.4.2 Numerical space charge models 

Many numerical models to study polymeric materials performance in DC insulating systems have 

been proposed. The models can generally be divided into two categories, one that simulates the 

macroscopic behavior of the material based on conductivity data obtained as a function of 

temperature and electric field, and the other that describes the microscopic characteristics of space 

charge within a dielectric system.  

The simulation results from both models will properly represent the charging density profiles and 

electric field distributions in the bulk of dielectrics and their progress over time compared with the 

experimental results. However, compared with models based on the varying conductivity, charge 

transport models are actually more physical since they represent the carriers transport processes in 

the dielectric (including charged trapping, detrapping and recombination), and especially consider 

the charge injection at the interface between the electrodes and the dielectric. Many researchers 

have further developed these kinds of models in order to achieve a better fit with experimental 

data, and most attempts have been made to explain the charge dynamics in solid-dielectric 

materials. The most famous models are represented in Table 2. 
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Table 2: Characteristics of the physical models for bipolar transport from 1994 to 2021. Model improvements by 
each researcher are written in bold. 

Reference Charge Injection 
Charge 

Extraction 
Charge 

Transport 
Charge Trapping 

Charge 
recombination 

Other Parameters 

Alison [49] 
Constant source 

at both 
electrodes 

Non-blocking 
electrodes 

Constant 
effective 
mobility 

One deep 
trapping level, 
no detrapping 

For mobile and 
trapped charges 

  Symmetric 

Fukuma [50] 

Schottky 
injection at 

both 
electrodes 

Extraction 
barriers 

Hopping 
conduction 

between sites 
of the same 

energy 

One deep 
trapping level, 
no detrapping 

For mobile 
carriers 

Joule heating 
effects 

accounted for 
initial bulk 
charges 

Symmetric 

Kaneko [51] 
Schottky 

injection at both 
electrodes 

Non-blocking 
electrodes 

Hopping 
conduction 

between sites of 
the same 
energy 

no deep 
trapping 

For mobile 
carriers 

  Non-sym 

Le Roy [52] 
Schottky 

injection at both 
electrodes 

Non-blocking 
electrodes 

Constant 
effective 
mobility 

Trapping on 
one deep level 

with 
detrapping 

For mobile and 
trapped charges 

Initial bulk 
charges 

Non-sym 

Boufayed [34] 
Schottky 

injection at both 
electrodes 

Non-blocking 
electrodes 

Hopping 
mobility 

dependent on 
charge density 

and field 

Exponential 
distribution of 

trap levels 

For mobile and 
trapped charges 

  Non-sym 

Baudoin [53] 
Schottky 

injection at both 
electrodes 

Non-blocking 
electrodes 

Constant 
effective 
mobility 

Exponential 
distribution of 

trap levels 

Langevin form 
for mobile and 

trapped 
charges 

Steady state 
Non-sym 
and sym 

Chen [64] 
Schottky 

injection at both 
electrodes 

Non-blocking 
electrodes 

Constant 
effective 
mobility 

Trapping on one 
deep level with 

detrapping 

For mobile and 
trapped charges 

corona-
charging setup 

Symmetric 

Baudoin [55] Injection rule 
Non-blocking 

electrodes 

Hopping 
mobility 

dependent on 
charge density 

and field 

Exponential 
distribution of 

trap levels 

For mobile and 
trapped charges 

EL intensity Symetrical 

Le Roy [35] 
Modified 

Schottky at both 
electrodes 

Non-blocking 
electrodes 

Hopping 
mobility 

dependent on 
charge density 

and field 

Exponential 
distribution of 

trap levels 

For mobile and 
trapped charges 

Temperature 
distribution 

equation 
(steady state) 

Non-Sym 

Zhan [56] 
Schottky at 

bottom and top 
+ Threshold 

Non-blocking 
electrodes 

Hopping 
mobility 

dependent on 
charge density 

and field 

Exponential 
distribution of 

trap levels 

For mobile and 
trapped charges 

heat transfer 
equation 
(thermal 

transient) 

Non-Sym 

Doedens [57] 

Modified 
Schottky and 

Fowler-
Nordheim 

Non-blocking 
electrodes 

Hopping 
mobility 

dependent on 
charge density 

and field 

Exponential 
distribution of 
trapping and 
detrapping 

levels. Trap rate 
depending on E 

For mobile and 
trapped charges 

Diffusion, 
three levels of 

trap 
Non-Sym 

Zhan [58] 
Schottky at 

bottom and top 
+ Threshold 

Non-blocking 
electrodes 

Constant 
effective 
mobility 

Exponential 
distribution of 

trap levels 

For mobile and 
trapped charges 

Ionization, 
Diffusion 

Non-Sym 
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Alison and Hill (1994): In 1994, [49] Alison and Hill published a pioneering model to reproduce 

accumulations of space charges on a 2.5 mm sample of cross-linked polyethylene (XLPE), that 

considered transient procedures for charge generation and transport in cable insulation exposed to 

DC stresses (XLPE). The model included charging generation through injection into and through 

material bulk related to trapping and recombination at insulation-electrode interfaces. 

The principle for all model space charges lies in the explanation of the material charge conduction 

and mechanism of the electrical transport. The Alison-Hill model attempts to explain bipolar 

transport and spatial charging in solid dielectrics with high dc tension. The transport of bipolar 

materials is defined by an efficient mobility mechanism. This feature distinguishes the model from 

others. Charging carriers are effectively injected through electrodes, electrons from the cathode 

and holes from the anode. Injection takes the form of the Schottky mechanism, which overcomes 

a possible interface obstacle. After accessing the material, the carriers drift through the material 

characterized by effective mobility under the influence of the applied field. During the movements, 

many carriers are stuck in deep trap centers in localized states, thus reducing the overall number 

of charges. However, in the model there is no extraction barrier. On the other hand, they are 

expected to recombine with their opposite species (electrons with holes). Due to the fact that 

oppositely charged species are being considered in the numerical computation, trapping and 

recombination between these species have also been taken into account in the numerical 

calculation. 

 

Fukuma et al. (1994): The model of Fukuma et al. [50], [59] was more comprehensive than what 

was previously described. The generation of charges is made by two-electrode and based on 

Schottky injection law. They also considered that the charges were present in the dielectric before 

the voltage was applied. Transport is characterized by hopping mechanism, as the two moving 

species can only be trapped at a low trapping level for a short time. At both interfaces, a possible 

barrier to carrier extraction is considered. 

The recombination of mobile carriers is also considered. The barriers are symmetrical for both 

species (hopping, injection, and extraction). 

 As for the previous model, the results are space charge profiles which are compared to the 

experimental data of Li and Takada [60]. Besides, the model has been applied for a material 

containing an internal interface between two layers of XLPE [59]. 
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K. Kaneko et al. (1999): Kaneko [51] presented the macroscopic model with related assumptions 

to those of the model of Alison and Hill. The used material for simulation is LDPE. Bipolar charges 

are produced by a mechanism of the Schottky law and transported by hopping. There is no deep 

trap and the extraction barrier is assumed to be negligible. The recombination between holes and 

electrons is considered. The outcomes are space charge distribution and current density curve, 

compared to experimental measurements. The hypotheses did not allow them to achieve results 

that were consistent with the experimental data, emphasizing the importance of taking deep 

trapping into account. 

 

S. Le Roy et al. (2004-2005): Le Roy [66] has proposed a model to characterize charge transport, 

trapping and recombination phenomena, experimentally observed by charge and discharge current 

measurements, space charge profiles and electroluminescence measurements, for LDPE. No 

extraction barrier has been applied.  

The model is based on the theories of Alison and Hill [49], however detrapping is introduced here. 

The approach is based on the existence of two very distinct zones in the trap energy distribution in 

polyethylene. The first one, which is very similar to the conduction band, has a trap depth of no 

more than 0,3 eV. The second varies from 0.5 to 1.5 eV due to chemical disorder. 

It appears that the model is able to reproduce the essential characteristics observed under a DC 

stress: the space charge profiles and their dynamics under polarization and depolarization, the 

charge and discharge currents and electroluminescence [62]. 

 

F. Boufayed et al. (2006): Instead of two single trap levels (shallow and low traps) used in other 

simulations, a model was developed by Boufayed et al. [63], [64], which introduced a more 

practical exponential distribution of traps. The study material was XLPE. The distribution 

parameters are based on distribution of Quirke et al. [65], [66] and molecular simulation of the 

physical and chemical traps. These traps are discreetly distributed and transformed into continuous 

distribution. A hopping mechanism is used for describing the transport. Quirke et al. assume that 

the traps are filled up from the lower energy level. Here, the recombination is not considered. The 

simulated results do not quite correlate with the experiment [34], which is explained by very 
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interdependent processes (transportation, trapping, variation in mobility) and the complexities of 

the considered material 

 

F. Baudoin et al. (2008): F. Baudoin [53] has provided a method for a direct resolution in the 

steady-state of a bipolar charge transport model to understand how the various processes involved 

in the model act on the simulated current-voltage characteristic. Charge generation, transfer, 

trapping, and recombination are all included in the model. The steady-state solution obtained using 

this method is consistent with that obtained using a resolution in in dynamic conditions at long 

time, thereby validating the problem's statistical and computational treatments. 

• The steady-state charge transport model was used to compare symmetrical and 

unsymmetrical transport parameters. 

• The recombination terms that have been included in the model have the Langevin form. 

• Highlight the importance of the role of recombination processes in the shape of the J –V 

characteristic. 

 

G. Chen et al (2009): George Chen [67] proposed a modified bipolar charge injection model to 

account for surface charge decay of corona-charged polymeric materials. The model can take care 

of field dependent carrier mobility and readily explains the surface potential decay with different 

charging times. The results provided by corona-charged samples shows a double injection from 

both electrodes. The new model reveals that the surface potential cross-over phenomenon can 

occur under bipolar charge injection. 

 

F. Baudoin et al. (2011-2012): The authors suggest a charge transport model that considers the 

electroluminescence phenomena (EL) in polyethylene films under ac stress [55]. Charge 

injection/extraction, transport, and recombination are also included in the model. The following 

are some of the modifications made by Baudoin: 

• The conventional Richardson–Schottky equation has been replaced by this injection rule 

since the latter causes inconsistencies in the barrier height value [52], [68]: 

𝑗𝑒,ℎ(𝑥, 𝑡) = 𝛼 exp(𝛽𝐸(𝑥, 𝑡)) (24) 

Thus, 𝑗𝑒 (0, 𝑡 ) and 𝑗ℎ (𝐷, 𝑡 ) are the injection fluxes of electrons and holes, respectively; 𝛼 and 𝛽 

are constants. 
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• The space charge is instantaneously defined in the space charge volume, which stays 

constant over time regardless of the applied field, i.e., charge transport is ignored.  

• Injected or transported charges will either be trapped or recombine with the trapped charges 

of opposite polarity. 

 

S. Le Roy et al (2016): The bipolar charge transport model was extended to a cylindrical structure 

(cable geometry) in 2016 by Le Roy et al. [35], taking into account a steady temperature gradient 

through the insulation. The simulation results demonstrate how geometry and temperature 

influence charge densities and the distributions of electrical field respectively. 

A modified Schottky law was introduced at each electrode, which ensures that the injected current 

density for a zero field is also zero. 

 

Y. Zhan et al (2019): In 2019, Yupeng Zhan [56] suggested a more realistic condition, i.e., thermal 

transients, in order to model charging behavior in a cable geometry. Based on the time dependent 

heat transfer equation, the temperature distribution across the insulation at each time step could be 

obtained. With varying temperatures and field distributions, the evolution of space charge and 

electric field has been studied. Furthermore, the effects of the thermal transient on the dynamics 

of space charging were considered by applying a current flow in cable heart. The model also 

includes an electric threshold field to redefine the electrode injection charges. Such that, the 

Schottky injection law dominates when the applied electric field exceeds the threshold, and ohmic 

conduction takes over under the low field. 

 

Y. Zhan et al (2020): A modified bipolar charge transport model is introduced by Yunpeng Zhan 

in 2020 [58], and utilized to simulate the space charge behavior in LDPE and XLPE, by 

considering the ionization. The used model takes into account impurity dissociation, and was able 

to effectively predict the features of hetero charge formation. 

• The process of charge transport was defined under the constant DC field at room 

temperature by a constant effective mobility of carriers  

• Diffusion processes have been considered with a diffusion coefficient, which is supposed 

to describe the natural motion of chemical species based on the space gradient of particle 

concentration. 
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• In this model, the charge generation in the clean LDPE is considered from injection at the 

electrodes following the Schottky law, and a threshold electric field has been considered 

(10kV/mm), at which the charge injection takes place, was introduced by [56]  

 

E. Doedens et al (2020): Espen Doedens and Serdyuk [57] developed a more complete model than 

the previously mentioned ones. This model is designed to efficiently characterize the bipolar 

charge transportation and space charge phenomena in solid dielectrics, particularly in XLPE and 

LDPE, with high DC stresses.  

The following are some of the modifications made by Doedens: 

• Diffusion phenomenon is considered in this model. 

• Both the modified Schottky law and Fowler–Nordheim mechanism are used to describe 

the generation of charges on both electrodes. 

• The charge injection equations have been modified to account for rough interfacial 

geometry (surface roughness). 

• A new approach is used to reduce the injection rate even further below a particular (ohmic) 

field threshold. Field threshold is achieved by using a smooth Heaviside (step) function 

[57]. 

• This model considers three types of traps: shallow traps, inter-level traps, and deep traps. 

Which, in comparison to the previous ones, offers a more realistic situation. 

• Trapping and detrapping rates are characterized by new equations considering the influence 

of electric field variation.  

I.5 Problem formulation 

One of the challenges in studying fluid models is that physical models must be very complex in 

order to simulate a continuously increasing number of experimental measurements, leading to an 

increased number of parameters, most of them are unknown in alternative ways. This type of model 

requires a set of initial experimental conditions, such as temperature, applied voltage, and 

dielectric thickness, as well as a large number of unknown parameters, such as injection barrier, 

mobility, trapping, and de-trapping coefficients. Most of these parameters cannot be predicted, 

observed, or estimated by independent experiments. In other words, it is an elusive task to compute 

this kind of parameters that best fit the experimental data. A variety of methods have been used to 

approximate the parameter values, some of which are based on ab initio methods based on the 
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materials used, while others are based on the charge density results obtained by PEA. Other 

researchers used an optimization algorithm to approximate these parameters by solving the inverse 

problem using PEA's experimental data. The following are several parameter approximations 

made by various researchers: 

• The PEA measurements have been used by several researchers [1], [69], [70], to 

approximate the charge mobility. Depending on the type of carrier and the temperature, 

the final parametrization produces mobilities in the range of 10−12 − 10−14 𝑚2𝑉−1𝑠−1.  

• Quirke et al. [29] proposed a trapping depth range that is close to 1 eV using ab initio 

methods. Other research on LDPE and XLPE [70], in particular, has found the similar 

order of trapping depth parameters (0.9–1 eV), which correspond to chemical traps (double 

bonds). 

• For electron injection, the theoretical injection barrier height corresponding to a gold–

polyethylene interface is 5 eV. When this value is applied to the Schottky law, the 

simulated current density is ten decades lower than the experimental value. This 

theoretical value does not account the local interface conditions (local field strengthening 

on specific locations, chemical impurities forming deep traps) and therefore cannot be 

used in simulations. Other research proposed different values of the injection barriers of 

the order of 1 eV based on the outcomes of charge transport models in polyethylene [50], 

[51], [71]. 

• Some of the parameters, such as recombination coefficients, could not be defined easily 

by experiments. For this purpose, the criticality of the parameters was examined, i.e., by 

studying the effects of modifying the given parameter on the model outputs [72]. It has 

been shown [72] that the recombination coefficients do not play a major role in simulating 

results at low temperatures or short periods of polarization. By considering one of these 

cases, recombination coefficients do not change the current density to a significant degree, 

and they weakly affect the charge density in the dielectric, in the limit of the investigated 

range of recombination rates from 10−5 to 1 m3/Cs.  

To summarize what has been presented so far, many alternative methods and techniques have been 

utilized to find an adequate set of parameters that can match any experimental data obtained by 

PEA or current measurements. However, the optimal values of the parameters have not yet been 

achieved. 
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As a conclusion, the major objective of this study is to provide an original approach that contributes 

to identifying a unique set of parameters that provide a good correlation between experimental and 

simulated results of charge and current densities using any experimental conditions. 
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II.1 Introduction 

Optimization is a branch of applied mathematics concerned with minimizing a function in a 

defined domain while keeping various variables (or unknowns)  in consideration [1]–[3]. In other 

words, optimization aims to identify values for the variables that will best achieve the optimum 

value of the function. The function is known as the cost function or the objective function in this 

context. The objective or cost function is a mathematical equation describing a specific problem 

that should be minimized or maximized. For example, the relative error between experimental data 

and a numerical model is an example of a cost function that should be minimized to fit the model 

to the experimental measurements. 

Historically, optimization approaches were initially used to solve difficulties with human logistics 

and transportation management [4]–[6]. The discipline of optimization is still a very active area of 

research. For example, optimization tools are used in engineering and manufacturing to find the 

best and most durable material structures [7]. Besides, while speaking about business, optimization 

is usually used in business domain to find the highest profits with the lowest costs [8]. 

In recent years, the field of optimization has gotten much interest, owing to significant advances 

in computer technology, such as the availability of efficient software, high-speed computers, and 

artificial neural networks. Optimization is present in every aspect of life, such as, airline 

scheduling, finance, internet routing and engineering design [9], [10]. We continuously attempt to 

optimize anything in engineering and industry, reducing costs and energy consumption or 

increasing profit, production, performance, time, and efficiency.   

The objective function cannot be described in clear analytical terms (i.e., this sort of functions is 

called black-box functions) in most engineering and industrial applications since the dependency 

on the design factors of the objective are complex and implicit. Therefore, this form of black-box 

optimization frequently necessitates the use of numerical modeling, which is often 

computationally costly, such as computational fluid dynamics [11] or finite element analysis [12]. 

In addition, all optimization strategies are iterative, requiring several function evaluations. 

Accordingly, every method that enhances simulator efficiency or minimizes the number of 

function evaluations is essential. Indeed, in numerical optimization, it is necessary to properly 

characterize the problem being addressed to determine which algorithm to employ.  
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 There is no universal optimization technique; instead, various algorithms are customized to a 

particular type of optimization problem. It is typically the user's responsibility to choose the best 

algorithm for a specific application. This is a critical decision since it might determine whether the 

problem is addressed quickly or slowly and whether the optimal solution can be found or not. We 

must choose an optimization algorithm that can effectively find a solution once applied to the 

model. Good mathematical formulas known as optimality criteria may be employed in numerous 

situations to verify that the current set of variables reflects the problem's solution. If the optimality 

or stopping criteria aren't achieved, optimality criteria might provide valuable contribution into 

enhancing the existing estimated solution. Techniques like sensitivity analysis (e.g., Sobol Index) 

[13], which shows the inputs sensitivity on the outputs of a model, can improve the model's 

behavior by fixing or eliminating some parameters that do not influence the model outputs.  

This chapter aims to offer a detailed discussion of numerical optimization methods and a decision 

tree of optimization approaches that the reader may use to understand each technique employed 

throughout the chapter. 

II.2 Optimization basic concepts  

Optimization is the mathematical term for the minimization or maximizing of a function subject 

to variable constraints. The optimization problem is stated as follows: 

 

min
𝑥∈ℝ𝑛

𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝒳  
(1) 

Where 𝑓:ℝ𝑛 → ℝ is the objective function, which is a (scalar) function in terms of 𝑥 that we aim 

to maximize or minimize; 𝑥 is the vector of 𝑛 variables, which are also known as unknowns or 

parameters:  

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] 

The elements in this vector can be modified in order to minimize the objective function 𝑓 . A 

solution or minimizer is denoted by 𝑥⋆ from among all points in the feasible set  𝒳 that minimizes 

the objective function, such that, 

𝑓(𝑥⋆) ≤ 𝑓(𝑥), ∀𝑥 ∈ 𝒳. 

Figure 13 shows an example of a one-dimensional optimization problem. 



Chapter II 

57 
 

 

Figure 13: A one-dimensional optimization problem. Note that the minimum is the best in the feasible set, lower 
points may exist outside the feasible region. 

II.2.1 Minimum and maximum 

The maxima and minima (the corresponding plurals of maximum and minimum) of a function are 

the function's highest and lowest values, either within a specific range (local) or over the entire 

domain (global). 

Indeed, we can simply demonstrate that the problems  min
𝑥∈𝒳

𝑓(𝑥) and max
𝑥∈𝒳

−𝑓(𝑥)  (with or without 

constraints) are equivalent since they contain the same set of solutions, such that: 

 

min
𝑥∈𝒳

𝑓(𝑥) = max
𝑥∈𝒳

−𝑓(𝑥) (2) 

Since the search for a maximum is equivalent to the search for a minimum, we will limit ourselves 

in this chapter to minimization problems. Furthermore, if 𝒳 = ℝ𝑛 , we claim the issue is 

unconstrained. If 𝒳 is a closed set of ℝ𝑛, then we say that the problem is constrained. 

II.2.2 Gradient and Hessian 

The gradient and the hessian of 𝑓 are the vectors and matrices defined by: 

𝛻𝑓(𝑥) = (
𝜕𝑓(𝑥)

𝜕𝑥𝑖
)

𝑖=1..𝑛

=

(

 
 
 
 
 𝜕𝑓(𝑥)

𝜕𝑥1

𝜕𝑓(𝑥)
𝜕𝑥2

⋮
𝜕𝑓(𝑥)
𝜕𝑥𝑛 )

 
 
 
 
 

∈ ℝ𝑛 (3) 
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𝛻2𝑓(𝑥) = (
𝜕2𝑓(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
)

𝑖,𝑗=1..𝑛

=

(

 
 
 
 
 

𝜕𝑓2(𝑥)

𝜕𝑥1
2

𝜕𝑓2(𝑥)

𝜕𝑥1𝜕𝑥2
⋯

𝜕𝑓2(𝑥)

𝜕𝑥1𝜕𝑥𝑛

𝜕𝑓2(𝑥)

𝜕𝑥2𝜕𝑥1

𝜕𝑓2(𝑥)

𝜕𝑥2
2 ⋯

𝜕𝑓2(𝑥)

𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓2(𝑥)

𝜕𝑥𝑛𝜕𝑥1

𝜕𝑓2(𝑥)

𝜕𝑥𝑛𝜕𝑥2
⋯

𝜕𝑓2(𝑥)

𝜕𝑥𝑛
2 )

 
 
 
 
 

∈ ℝ𝑛×𝑛 (4) 

 

For a matrix 𝐴 ∈ ℝ𝑛×𝑛, we recall the definitions of positivity (noted ≻ 0) and semi-definite 

positivity (noted ≽ 0): 

We say that 𝐴 ≽ 0 if and only if:  

𝑣𝑇𝐴𝑣 ≥ 0,      ∀𝑣 ∈ ℝ𝑛 (5) 

And 𝐴 ≻ 0 if and only if: 

𝑣𝑇𝐴𝑣 > 0,      ∀𝑣 ∈ ℝ𝑛\{0ℝ𝑛} (6) 

II.2.3 Critical Points 

Figure 14 shows a univariate function 𝑓(𝑥) with several critical points where the derivative is zero, 

which are helpful in explaining optimization concerns. When minimizing 𝑓(𝑥), we would like to 

find a global minimizer or a value of 𝑥 for which 𝑓(𝑥) is minimized. Unfortunately, proving that 

a specific point is at a global minimum has often been challenging. Usually, the most we can do is 

to check whether it is at a local minimum or not. The different types of critical points are defined 

as: 

• Local: A point 𝑥⋆ is a weak local minimizer if: 

∃δ > 0 such that 𝑓(𝑥⋆) ≤ 𝑓(𝑥), ∀ 𝑥⋆ ∈ 𝐵(𝑥, δ). 

Where 𝐵(𝑥, δ) = {𝑥 ∈ ℝ𝑛 s. t. ‖𝑥 − 𝑥⋆‖ <  δ } 

A strong local minimizer, also known as a strict local minimizer, is a point that strictly 

minimizes 𝑓 within a neighborhood 𝐵(𝑥, δ) (i.e., a ball of center 𝑥 and radius δ). In other 

words, 𝑥⋆ is a strong local minimizer if: 

∃δ > 0 such that 𝑓(𝑥⋆) < 𝑓(𝑥), ∀ 𝑥⋆ ∈ 𝐵(𝑥, δ). 

 A weak local minimizer is a local minimizer that is not a strong local minimizer. Figure 

14 shows two types of local minima: strong local minima and weak local minima.  
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• Inflection: Figure 14 also shows an inflection point where the derivative is zero, but the 

point does not locally minimize 𝑓. An inflection point is where the sign of the second 

derivative of 𝑓 changes, which corresponds to a local minimum or maximum of 𝑓′.  

• Global: Most optimization algorithms work by first trying to locate any feasible solution, 

and then attempting to find another (better) feasible solution that minimizes the value of 

the objective function. The global minimum of an objective function is achieved at the 

global solution, as presented in Figure 14. A point 𝑥⋆ is a global minimum if: 

𝑓(𝑥⋆) ≤ 𝑓(𝑥), ∀𝑥 ∈ ℝ𝑛. 

 

Figure 14: Examples of critical points of interest to optimization algorithms (where the derivative is zero) on a 
univariate function 

II.2.4 Necessary Conditions for Local Minima 

Many approaches of numerical optimization target local minimum requirements. We usually don't 

know if the local minimum is a global minimum or not. The conditions we discuss in this section 

assume that the objective function is differentiable. We also assume that the problem is 

unconstrained in this part. 

The following conditions are necessary for 𝑥 to be at a local minimum of 𝑓: 

• ∇𝑓(𝑥) = 0, the first-order necessary condition (FONC) 

• ∇2𝑓(𝑥) is positive semi-definite, the second-order necessary condition (SONC) 

A simple analysis may be used to determine the FONC and SONC. 𝑥⋆ must be less than the values 

surrounding it in order to be at a local minimum: 

𝑓(𝑥⋆) ≤ 𝑓(𝑥 + ℎ) ⟺ 𝑓(𝑥⋆) − 𝑓(𝑥 + ℎ) ≤ 0 (7) 
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If we write the second-order approximation for 𝑓(𝑥⋆), we get: 

𝑓(𝑥⋆ + ℎ) = 𝑓(𝑥⋆) + ∇𝑓(𝑥⋆)⊤ℎ +
1

2
ℎ⊤ ∇2𝑓(𝑥⋆)ℎ + O(ℎ3) (8) 

 

We know that at a minimum, the first derivative must be zero, and we neglect the higher-order 

terms. Rearranging, we get: 

1

2
ℎ⊤ ∇2𝑓(𝑥⋆)ℎ = 𝑓(𝑥 + ℎ) − 𝑓(𝑥⋆) ≥ 0 (9) 

 

This is the definition of a positive semi-definite matrix, and we recover the SONC. The FONC and 

SONC are essential for optimality, but they are not sufficient. For unconstrained optimization of a 

twice-differentiable function, if the FONC is met and ∇2𝑓(𝑥) is positive definite, 𝑥 is guaranteed 

to be at a strong local minimum. These conditions are collectively known as the second-order 

sufficient condition. Figure 15 shows some examples about SONC and FONC of the necessary but 

insufficient conditions for strong local minima. 

 

Figure 15: Examples of the necessary but insufficient conditions for strong local minima. 

II.3 Types of Optimization Problems 

The general form problems (1) may be classified in terms of the nature of the objective function 

and the nature of the constraints. Particular forms of the objective function and the constraints give 

rise to specialized algorithms that are more efficient. From this point of view, five different types 

of optimization models are discussed in this section, that are, Unconstrained optimization problems 

(2.5.1.1), Constrained optimization problems (2.5.1.2), Nonlinear programming problems 

(2.5.2.1), Nonlinear programming problems (2.5.2.2), and Least Squares optimization problems 

(2.5.3). 
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II.3.1 Constrained and unconstrained optimization problems 

II.3.1.1 Unconstrained optimization problems 

As previously mentioned, unconstrained optimization problems arise when 𝒳 = ℝ𝑛 in (1). That 

is to say, unconstrained optimization are the problems when we try to minimize an objective 

function that depends on real variables with no constraints on their values. An unconstrained 

optimization problem can be of any kind (linear or nonlinear). The mathematical formulation is 

defined as: 

min
𝑥

𝑓(𝑥), (10) 

Where 𝑥 ∈ ℝn is a real vector of n ≥ 1 components and 𝑓:ℝn → ℝ is the cost function.  

Even with some natural variables limitations, it can be safe to ignore the constrained as they do 

not influence the answer and do not affect the algorithm’s behavior. 

In order to solve problem 12, suppose that we know how to evaluate (directly or by finite 

difference) the gradient ∇𝑓(𝑥) of 𝑓 at any point of the search space. Descent methods are iterative 

algorithms which starts from initial point 𝑥0, construct a sequence of iterates 𝑥𝑘 defined as: 

𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘𝑑𝑘, 

Where 𝑠𝑘 is the step length of the displacement, 𝑑𝑘 ∈ ℝn is the descent direction of 𝑓 at 𝑥𝑘 

verifying the inequality: 

𝛻𝑓(𝑥) 𝑑𝑘 < 0, 

A descent algorithm is thus completely characterized by the way the descent directions 𝑑𝑘 are 

constructed and the step length 𝑠𝑘 that one takes in these directions. Furthermore, the descent 

Algorithm 1: General for unconstrained problems 

Input condition: 𝑥0 

1: while stop criteria is not achieved, do 

2:    Compute a search direction 𝑑𝑘 such that 𝛻𝑓(𝑥) 𝑑𝑘 < 0 

3:          Find a step length 𝛼𝑘, such that 𝑓(𝑥𝑘  +  𝛼𝑘  𝑥𝑘)  <  𝑓(𝑥𝑘)  

4:              Update the design variables: 𝑥𝑘+1 = 𝑃𝑘 + 𝛼𝑘𝑑𝑘 

5:     𝑘 ←  𝑘 +  1  

6: return 𝑥𝑘 
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directions 𝑑𝑘 is usually calculated by a standard method, such as gradient descent 𝑑𝑘 = −𝛻𝑓(𝑥𝑘) 

or newton’s method 𝑑𝑘 = −
∇𝑓(𝑥𝑘)

𝛻2𝑓(𝑥𝑘)
. 

II.3.1.2 Constrained optimization problems 

Constrained optimization problems [14]–[16] are addressed in various scientific domains, such as 

structural optimization, engineering design, economics, allocation, and location concerns. 

Constrained optimization (CO) problems arise from models in which constraints play an essential 

role, such as imposing financial limitations in an economic problem or shape constraints in a design 

problem.  

The CO problem can be represented as the following nonlinear programming problem: 

min𝑓(𝑥) ,   𝑥 ∈ 𝒳 ⊂ ℝ𝑛, (11) 

Subject to the linear or nonlinear constraints:  

𝑔𝑖(𝑥) = 0, 𝑖 = 1, … ,𝑚. (12) 

ℎ𝑖(𝑥) ≤ 0, 𝑖 = 1, … ,𝑚. (13) 

Constraints can also be expressed as range constraints, which specify that the values of some 

decision variables must lie within specific closed intervals of ℝ, such as 𝑎 ≤ 𝑥 ≤  𝑏 with 𝑎, 𝑏 ∈

ℝ .Besides, a and b can be unbounded such that [𝑎, 𝑏]  = ] − ∞, 𝑏] or [𝑎, +∞ [ (i.e., negative or 

positive constraints). Another well-known type of constraints known as nonlinear inequalities 

represents the complex connections between the variables. For example, the polynomial 

constraints such as ‖𝑥‖2
2 ≤ 𝑎. 

The CO problems can be solved using several methods, such as: Lagrange multipliers, Penalty 

methods, etc... 

• Lagrange multipliers: The method of Lagrange multipliers [17], [18] is a strategy for 

finding the local maxima and minima of a function subject to equality constraints. The 

main concept is to transform a constrained problem into a form such that the derivative test 

of an unconstrained problem can be applied. The connection between the function's 

gradient and the gradients of the constraints easily leads to a reformulation of the original 

problem known as the Lagrangian function. 

The approach is summarized as follows: in order to get the maximum or minimum of a 

function 𝑓(𝑥) subjected to the equality constraint 𝑔𝑖(𝑥), form the Lagrangian function, 

 

https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Constraint_(mathematics)
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ℒ(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆𝑔(𝑥) (14) 

then calculate the stationary points of ℒ considered as a function of 𝑥 and the Lagrange 

multiplier 𝜆. The solution to the initial constrained optimization is always a saddle point of 

the Lagrangian function, which may be found among the stationary points by the 

definiteness of the bordered Hessian matrix. The Lagrange multiplier approach is widely 

applied to solve complicated constrained optimization problems. Furthermore, the 

Lagrange multiplier approach is generalized by the Karush–Kuhn–Tucker conditions, 

which may account for inequality constraints of the form ℎ(𝑥) ≤ 0. 

• Penalty methods: A penalty approach [19] replaces a constrained optimization problem 

with a set of unconstrained problems whose solutions converge to the solution of the 

original constrained problem. Unconstrained problems are obtained by adding a term to the 

objective function known as penalty function, which consists of a penalty parameter 

multiplied by a measure of constraint violation. When the constraints are violated, the 

measure of violation is nonzero, and it is zero in the region where the constraints are not 

violated. 

The method can be summarized as follows: find the maximum or minimum of a function 

𝑓(𝑥) subjected to the equality constraint ℎ𝑖(𝑥) ≤ 0.  

This problem can be solved as a series of unconstrained minimization problems: 

min𝐶𝑘(𝑥) = 𝑓(𝑥) + 𝜎𝑘‖𝐼(ℎ𝑖(𝑥))‖1
2, (15) 

where 𝐼(ℎ𝑖(𝑥)) = max(0, ℎ𝑖(𝑥))
2
. 

In the above equations, 𝐼(ℎ𝑖(𝑥)) is the exterior penalty function, while 𝜎𝑘  are the penalty 

coefficients. In each iteration 𝑘 of the method, we increase the penalty coefficient 𝜎𝑘. Solve 

the unconstrained problem (17) and use the solution as the initial guess for the next 

iteration. Solutions of the successive unconstrained problems will eventually converge to 

the solution of the original constrained problem. 

II.3.2 Linear and nonlinear programming problem 

II.3.2.1 Linear programming problems 

The problem is called a linear programming problem [3],[15] when the objective function and all 

constraints are all linear functions in terms of 𝑥. These problems are the most commonly 

https://en.wikipedia.org/wiki/Stationary_point
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formulated and solved optimization problems with management, finance, and economics 

applications.  

A problem is considered to be linear when the objective and constraints are linear. Every linear 

problem may therefore be placed as follows: 

min 𝑐𝑇𝑥 

s.t {
𝐴𝑥 = 𝑏
𝑥 ≥ 0

 
(16) 

Where 𝑐 ∈ ℝn, 𝐴 ∈ ℝp×n, 𝑎𝑛𝑑 𝑏 ∈ ℝp. 

The reason for the popularity of linear forms for constraints and objectives in problem formulation 

is that they are the simplest algorithms to be used.  

II.3.2.2 Nonlinear programming problems 

Nonlinear programming problems (NLP) [3], [20], in which at least part of the constraints or the 

objective are nonlinear functions, tend to arise naturally in the physical sciences and engineering, 

and are becoming frequent in management and economic sciences as well. Nonlinear programming 

is certainly a helpful method, since numerous aspects of our world do not behave linearly. 

In NLP, a nonlinear objective function may be minimized or maximized subject to bounded 

constraints, linear constraints, or nonlinear constraints, where the constraints might be inequalities 

or equalities. A nonlinear minimization problem is an optimization problem of the form: 

min𝑓(𝑥) 

𝑠. 𝑡. 𝑔𝑖(𝑥) ≤ 0 ∀𝑖 ∈ {1,… ,𝑚} 

        ℎ𝑗(𝑥) = 0 ∀𝑗 ∈ {1,… , 𝑝} 

(17) 

II.3.3 Least Squares optimization 

Least Square Optimization (LSO) [1], [21] is one of the most popular optimization problems, and 

it may be used to describe all of the previous examples. In other words, LSO problems might be 

linear, nonlinear, constrained, or unconstrained. The LSO technique is a classic regression analysis 

strategy for approximating the solution of overdetermined systems (sets of equations with more 

equations than unknowns) by minimizing the sum of the squares of the residuals in the outcomes 

of each individual equation. Least-squares problems occur while fitting a parameterized 

mathematical model to a set of data points by minimizing an objective defined as the sum of the 

squares of the model function and data point errors. There are two types of least-squares problems: 

linear and nonlinear least-squares, based on whether the residuals are linear in all unknowns.  
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One of the advantages of using LSO is the ability to fit a wide variety of functions is the most 

significant benefit of nonlinear least squares optimization over many other approaches. While 

many scientific and technical processes may be successfully represented using linear models or 

other relatively basic types of models, many others are fundamentally nonlinear. 

Theory: Consider a set of 𝑚 data points (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚), where 𝑥i is an independent 

variable and 𝑦i is a dependent variable whose value is found by observation. On the other side, we 

have the model function 𝑦 =𝑓(𝑥,𝑃), that in addition to the variable 𝑥 also depends on n parameters, 

such that,  

𝑃 =  (𝑃1, 𝑃2, … , 𝑃𝑛) 

The main target of the least-squares method is to identify a point 𝑃⋆ which minimizes the sum of 

squares of nonlinear function 𝐶(𝑃). 

A model's fit to a data point is quantified by its residual, which is defined as the difference between 

the experimental value and the value predicted by the model: 

𝑟𝑖(𝑃) = 𝑦𝑖 − 𝑓(𝑥, 𝑃), 

The least-squares method determines the optimal parameter values by minimizing the 

residual’s sum of squared , S: 

𝐶(𝑃) = ∑𝑟𝑖
2

𝑛

𝑖=1

=
1

2
𝑟𝑇(𝑃)𝑟(𝑃),          𝑃 ∈ ℝ𝑛, 𝑚 ≥ 𝑛 

∇𝐶(𝑃) = 𝐽𝑟(𝑃)𝑟(𝑃) 

∇2𝐶(𝑃) = 𝐽𝑟(𝑃)⊤𝐽𝑟(𝑃) + 𝐻𝑟(𝑃)𝑟(𝑃) 

Where 𝐽𝑟(𝑃) and 𝐻𝑟(𝑃) are respectively the Jacobian and Hessian of 𝑟. 

This Hessian is usually very expensive to calculate. In addition, in the neighborhood of the 

optimum (theoretical validity domain of Newton's method) 𝑟 will be small, making the 

contribution of the term 𝐻𝑟(𝑃)𝑟(𝑃) negligible. It is therefore wise to ignore it and thus consider 

that: 

∇2𝐶(𝑃) = 𝐽𝑟(𝑃)⊤𝐽𝑟(𝑃) 

https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Sum_of_squared_residuals
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This approximation is known as the Gauss-Newton hypothesis [22]. It allows to approach ∇2𝐶(𝑃) 

by first derivatives and to ensure, on the other hand, that ∇2𝐶(𝑃) is always positive semi-definite. 

This hypothesis leads to the so-called Gauss-Newton algorithm.  

II.4 Based derivative and free derivative 

II.4.1 Derivative-Based Algorithms 

The information of derivatives is used in derivative-based or gradient-based algorithms [20]. The 

objective function must be sufficiently smooth to allow for the existence of first (and typically 

second) derivatives. For smooth continuous-domain problems, derivative-based optimization is 

effective in locating local optima. However, it may cause some issues when 𝑓 is disconnected or 

when 𝑓 is costly to evaluate, non-smooth, or noisy, causing derivatives to be useless. Derivative-

based algorithms are frequently employed in various applications and discrete modeling [23], [24].  

The problem to be solved is to optimize an objective function 𝑓: 

 

min
𝑥∈ℝ𝑛

𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝒳  
(18) 

The variables are updated at each major iteration 𝑘 using  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 

Where 𝑑𝑘 is the search direction for major iteration 𝑘, and 𝛼𝑘 is the accepted step length from the 

line search. 

Thus, to solve problem (18), one must solve the following two subproblems:  

1) The computation of a search direction 𝑑𝑘,  

Algorithm 2: Gauss-Newton      

Input condition: 𝑃0 ∈  ℝ𝑛  

1:    while stop criteria is not achieved, do 

2:      Calculate 𝛼𝑘 the solution of 𝐽𝑟(𝑃𝑘  )⊤ 𝐽𝑟(𝑃𝑘 )𝛼𝑘 = −𝐽(𝑃𝑘  )𝑟(𝑃𝑘  ) 

3:         𝑃𝑘+1 ← 𝑃𝑘  + 𝛼𝑘 

4:     𝑘 ← 𝑘 + 1 

5:    return 𝑃𝑘 
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2) Then, search for an acceptable step size 𝛼𝑘. 

Derivative-based algorithms use derivative information of 𝑓 to find a good search direction, since 

for example the gradient gives the direction of steepest descent. The various types of derivative-

based algorithms are classified based on the method that is used for computing the search direction.  

Some difficulties that may affect the derivative-based algorithms convergence are: 

• No analytical description of the function (e.g., simulation). 

• Multiple global optima (e.g., multimodal). 

• Stochastic function evaluation (e.g., noisy). 

• Discontinuous objective function (e.g., regions with invalid solutions). 

 

Two of the most important algorithms are given as an example of derivative based algorithms: 

Gradient descent and Newton’s methods. 

II.4.1.1 Gradient descent methods (First-order algorithms) 

Gradient methods are based on the following idea: since the gradient 𝛻𝑓(𝑥𝑘) is the direction of the 

largest increase of 𝑓 at the point 𝑥𝑘, it is natural to move in the opposite direction. Thus, the 

directions of descent are defined by 𝑑𝑘 = −𝛻𝑓(𝑥𝑘) , generating a sequence of iterates defined by: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘
𝛻𝑓(𝑥𝑘)

‖𝛻𝑓(𝑥𝑘)‖
 , with 𝑠𝑘 > 0 

The distinction between all approaches based on gradient descent methods will be in the choice 

of the step length 𝛼𝑘. 

Algorithm 3: Gradient descent 

Input condition: 𝑥0 ∈  ℝ𝑛  

1 :  while stop criteria is not achieved, do 

2:      Calculate a search direction 𝑑𝑘 = −
𝛻𝑓(𝑥𝑘)

‖𝛻𝑓(𝑥𝑘)‖
 

3:       Find a step length 𝛼𝑘, such that 𝑓(𝑥𝑘  +  𝛼𝑘  𝑑𝑘)  <  𝑓(𝑥𝑘) 

4:   Update the variables: 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 

4:      𝑘 ← 𝑘 + 1 

5:  return 𝑥𝑘 



Chapter II 

68 
 

II.4.1.2 Newton’s method (Second-order algorithms) 

The general principle of this method is to minimize about 𝑥𝑘, the quadratic approximation of 𝑓, 

𝑚𝑘: 

𝑚𝑘(𝑥𝑘 + 𝑠) = 𝑓(𝑥𝑘) + ∇𝑓(𝑥𝑘)
⊤ ⋅ 𝑠 +

1

2
𝑠⊤ ⋅ 𝛻2𝑓(𝑥𝑘)

⊤ ⋅ 𝑠 

The minimum 𝑠 of 𝑚𝑘, called Newton's direction at point 𝑥𝑘 can be found by solving:  

∇𝑚𝑘(𝑥𝑘 + 𝑠) = 0 

Thus,  

𝛻2𝑓(𝑥𝑘) ⋅ 𝑠𝑘 = −∇𝑓(𝑥𝑘) 

An iteration of Newton's algorithm is then written:  

𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘 

However, convergence is only assured if the initial point 𝑥0 is sufficiently close to 𝑥⋆. Moreover, 

at each iteration 𝑘, 𝑠𝑘 exists and verifies ∇𝑓(𝑥𝑘) ⋅ 𝑠𝑘 < 0 if and only if 𝛻2𝑓(𝑥𝑘) > 0. These two 

restrictions make Newton's algorithm, described by Algorithm 4, of limited interest. Nevertheless, 

several methods and algorithms were introduced to overcome these two limitations, such as: DFP, 

BFGS, trust region, etc. 

II.4.2 Derivative free Algorithms 

Derivative-free optimization [25] is a branch of mathematical optimization that does not 

require derivative information to identify optimal solutions. Sometimes information regarding the 

derivative of the objective function 𝑓 is unavailable, unreliable, or impractical to obtain. For 

example, 𝑓 might be noisy, non-smooth, or time-consuming to evaluate, so that methods that rely 

Algorithm 4: Newton’s method 

Initial conditions: 𝑥0 ∈ ℝ𝑛 

1: while stop criteria is not achieved, do 

2:     Calculate Newton’s direction 𝑠𝑘 the solution of 𝛻2𝑓(𝑥𝑘) ⋅ 𝑠𝑘 = −∇𝑓(𝑥𝑘) 

3:      𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘 

4:     𝑘 ← 𝑘 + 1 

5: return 𝑥𝑘 

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Derivative
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on derivatives or approximate them via finite differences are insignificant. In such circumstances, 

the optimization problem is called derivative-free optimization. 

It is well known that the derivatives of any function one wants to optimize, provide a lot of 

important information. That is, for continuously differentiable functions, the “standard” 

mathematical characterization of a local minimum, provided by the first-order necessary 

conditions, necessitates that the first-order derivatives be zero. However, there have always been 

many instances when derivatives are unavailable or inaccurate for several reasons.  

Indeed, optimization with no derivatives is viewed as one of the most significant and challenging 

fields and one with huge practical promise in computer science and engineering. Derivative-free 

optimization is now in high demand due to the increasing complexity of mathematical modeling, 

the sophistication of scientific computing. 

In many optimization problems arising from engineering, scientific, and artificial intelligence 

applications, objective functions, and constraints are available only as the output of a black-box or 

simulation model that does not provide derivative information. Such situations demand the use of 

derivative-free methods. 

Derivative-based algorithms are efficient, but they may impose certain strict requirements on the 

objective functions. If the objective functions are discontinuous, derivative-free methods may be 

more efficient and logical. One of the most prevalent reasons for employing derivative-free 

approaches in the early days of nonlinear optimization was probably the user's lack of knowledge. 

Users understood they wanted to enhance their present solution, but they wanted to use something 

simple and easy to explain, so they utilized free derivative approaches, even when better 

algorithms were available.  

II.5 Conclusion 

Numerical optimization is not widely utilized in our community of research. For this reason, this 

chapter reviewed the basic concepts of optimization that should be well understood in order to 

know how to apply optimization on a specific problem. The most important types of optimization 

problems depending on the type of the cost functions and constraints were presented and discussed. 

All the information provided in this chapter will be used in the following chapter to identify the 

nature of our problem, which will help in selecting the most suitable algorithms that could help in 

solving our problem. 

https://en.wikipedia.org/wiki/Finite_difference
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III.1 Introduction 

Fitting a model to a set of experimental observations is an important topic that is addressed by 

various researchers in many scientific fields. Consider a set of experimental data 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} ∈ ℝ2𝑛, which relate an input variable 𝑥 with an output variable 𝑦. 

The unknown relationship between 𝑥 and 𝑦 can be modeled by a functional relationship 𝑦 =

𝑓(𝑥, 𝑃), where 𝑃 are unknown parameters related to the model and 𝑦 is the output produced by 

the model. Thus, the problem of modeling the unknown relationship between 𝑥 and 𝑦 can be 

reduced to finding a value of 𝑃 that minimizes the error measure between model outputs 𝑓(𝑥𝑖 , 𝑃) 

and experimental data 𝑦𝑖. In the Nonlinear Least Squares (NLS) problem, the error measure is 

considered as the sum of the squares of the deviations between experimental data and simulation 

data. Thus, the methodology is as follows: assume that we need to find a set of parameters vector 

𝑃⋆ such that it minimizes the cost function 𝐶(𝑃), defined as: 

 

𝐶(𝑃) = ‖𝑦 − 𝑓(𝑥, 𝑃)‖2
2 

(19) 

The Nonlinear Least Squares (NLS) problem to be solved is thus defined as:  

 

min
𝑃∈ℝ𝑛

𝐶(𝑃) 

𝑠. 𝑡.  𝑙𝑏 ≤ 𝑃 ≤  𝑢𝑏 
(20) 

Where 𝑙𝑏 and 𝑢𝑏 represents the upper and lower bounds of the parameters, respectively;  

In our case, the bipolar charge transport model is considered to be optimized. Such models require 

some Experimental Conditions (EC) such as temperature, applied voltage, polarization time, etc., 

alongside a set of parameters such as injection barriers, mobilities, trapping, de-trapping, and 

recombination coefficients. Most of these parameters are not predictable, observed, or estimated 

from independent experiments. This makes the simulation of experimental data liable to 

ambiguities. The main target of this research is to find a unique set of parameters that provides a 

good correlation between experimental (𝑓𝑒𝑥𝑝) and simulated data (𝑓𝑠𝑖𝑚(𝑃)) for any EC (Figure 

16). The outputs of the BCT model could not be described by an analytic function (e.g., 

simulation). Thus, the derivative cannot be calculated directly; instead, it should be approximated. 
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Thus, the BCT model is considered as a blackbox function. Several optimization algorithms are 

utilized to compute the optimal set of parameters related to the bipolar charge transport model. 

These algorithms are used to minimize the sum of the squares of the deviations between 

experimental data and simulation data. Two experimental sources could be employed in our case, 

namely charge density and current density measurements. Charge density is measured by the PEA 

method along with what is known as charging current measurement. On the other hand, a bipolar 

charge transport model developed for LDPE is used to generate the simulated data. 

 

Figure 16: Principle of the optimization technique. P is the set of unknown parameters, x represents the 
displacement, t represents the time, 𝑓𝑒𝑥𝑝 are the experimental data, 𝑓𝑠𝑖𝑚 are the simulated data, EC are the 

experimental conditions. 

Iterative optimization methods start with a guess for the variable 𝑃 and iterates through a series of 

better guesses (called "iterations") until they reach a minimum. One algorithm differs from another 

based on the technique of moving from one iteration to the next. In our case, the cost function has 

no analytical description; hence, the first and second derivatives are obtained by an approximation 

instead of being analytically computed (i.e., the first and second derivatives are approximated 

using finite difference methods). 

 Effective algorithms should have the following characteristics: 

• Robustness: The algorithm should find an appropriate optimal solution for any starting 

point ranging in the domain of search. 

• Efficiency: The time of computation, number of iterations, and the functions evaluation 

should not be very big. 

• Accuracy: They should be able to identify a solution with good accuracy. 

Even if an efficient optimization technique is used, evaluating the objective functions might take 

a long time based on the cost function complexity. For the BCT model, some simulations might 
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take hours, days, or even weeks. This means that finding the most suitable optimization algorithm 

for solving our problem is a challenging task. 

This chapter provides a detailed investigation of optimality requirements, as well as accuracy and 

efficiency analysis that demonstrates the strong and weak points of the most significant algorithms 

that could be applied for optimizing the BCT model. Five optimization algorithms are considered 

for estimating the unknown set of parameters related to the BCT model. These algorithms are 

defined as: Trust Region Reflective Algorithm (TRRA), Levenberg-Marquardt (LM), Nelder-

Mead (NM), Genetic Algorithm (GA), and Particle Swarm (PS). These algorithms will be 

employed to estimate a set of 8 unknown parameters that will be defined in the following sections. 

All the considered optimization algorithms will be compared in detail by examining the robustness, 

efficiency, and accuracy of each one when applied to optimize the BCT model. 

III.2 Algorithms  

With the increasing reliance on modeling optimization problems in practical applications, several 

optimization algorithms have been proposed for solving blackbox cost functions. Such algorithms 

do not expect first or second-order derivatives to be analytically accessible. The black box 

optimization algorithms are composed of two categories: the direct search algorithms and 

stochastic algorithms. In the following sections, 3 types of direct search algorithms will be 

addressed: Trust Region Reflective, Levenberg-Marquardt, and Nelder-Mead. Besides, 2 types of 

stochastic algorithms are considered: Genetic and Particle Swarm algorithms.  

III.2.1 Direct search Algorithms 

Direct optimization algorithms are used for objective functions for which the gradient cannot be 

directly calculated. Gradient information is approximated from the outputs of the objective 

function using the finite difference methods. The algorithms have deterministic procedures and 

often assume that the objective function has a single global optimum. 

There are many examples of direct search algorithms, however, the most suitable algorithms for 

solving our problem will be presented and used in this chapter. They are: Trust Region Reflective 

Algorithm (TRRA), Levenberg-Marquardt algorithm (LM), and Nelder-Mead algorithm (NM).  
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III.2.1.1 Trust Region Reflective Algorithm (Constrained) 

TRRA [1] is one of the most important numerical optimization methods in solving nonlinear Least 

squares (NLS) problems. The TRRA is classified as one of the derivative-based algorithms where 

it uses both gradient and hessian information to find a good search direction.  

Assume that we are interested in finding the value of a set of parameters vector of real variables 

𝑃⋆such that it minimizes the cost function 𝐶(𝑃): 

 

min
𝑃∈ℝ𝑛

 𝐶(𝑃) 

                                       𝑠. 𝑡.   𝑙𝑏 ≤ 𝑃 ≤  𝑢𝑏                      
(21) 

The concept of the trust region method is to approximate 𝐶(𝑃)  with a quadratic function 𝑚𝑘 [2], 

which reflects the behavior of function 𝐶(𝑃) in a neighborhood of 𝑃, defined as 𝑁(𝑃), which is 

called the ‘’trust region’’, around the current point 𝑥. Following Taylor’s theorem, 𝐶(𝑃𝑘) can be 

approximated by the quadratic function 𝑚𝑘(𝑠), in the form: 

 

𝑚𝑘(𝑃𝑘 + 𝑠) = 𝐶(𝑃𝑘) + ∇𝐶(𝑃𝑘)
⊤ ⋅ 𝑠 +

1

2
𝑠⊤ ⋅ 𝛻2𝐶(𝑃𝑘)

⊤ ⋅ 𝑠 (22) 

where ∇𝐶(𝑃𝑘) ∈ ℝ𝑛 is the gradient of 𝐶(𝑃) and ∇2𝐶(𝑃𝑘) ⊂ ℝ𝑛×𝑛 the hessian of 𝐶(𝑃) evaluated 

at 𝑃𝑘.  

For instance, there are directions along which 𝑚𝑘(𝑠) is unbounded from below. In this case, ‖𝑠‖ 

is infinite. Therefore, to ensure the convergence of the iteration, the TRRA defines a region around 

the iterate 𝑃𝑘 in which we can trust 𝑚𝑘, called “Trust Region”. In practice, the trust region N is 

usually considered as a sphere defined by Euclidean norm ‖𝑠‖ ≤ 𝑟𝑘, where the scalar 𝑟𝑘 is called 

the trust region radius. The two key points of trust region algorithms are therefore computing and 

updating the radius of the trust region 𝑟𝑘 and solving the trust region sub-problem. The trust region 

sub-problem to be solved is thus defined as: 

 

min
𝑠∈ℝ𝑛

   𝑚𝑘(𝑃𝑘 + 𝑠) 

                           𝑠. 𝑡.    ‖𝑠‖2 ≤ 𝑟𝑘                              
(23) 

 If 𝐶(𝑃𝑘 + 𝑠) < 𝐶(𝑃𝑘), the current point 𝑃𝑘 is updated to be 𝑃𝑘 + 𝑠, and the trust region 𝑁(𝑃) can 

remain the same for the next step. Otherwise, 𝑃 remains unchanged and trust region 𝑁(𝑃) will be 

reduced for the next iteration and the trust region sub-problem will be solved again. There are 
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several approximation methods for solving the trust region sub-problem, where the two most used 

are the Dogleg method [3] and the of Seihaug-Toint [4]. 

The radius of the trust region is determined by trial and error. At the first iteration, 𝑟0 is set 

arbitrarily. Then, at each iteration, the quality of the solution 𝑠𝑘
⋆ of the sub-problem is evaluated 

and 𝑟𝑘 is adjusted according to this evaluation. The evaluation of the quality of the solution is 

carried out using the quantity: 

𝑙 =
𝐶(𝑃𝑘 + 𝑠𝑘

⋆) − 𝐶(𝑃𝑘)

𝑚𝑘(𝑃𝑘 + 𝑠𝑘
⋆) − 𝑚𝑘(𝑃𝑘)

 

which corresponds to the ratio of the increase (positive or negative) of 𝐶(𝑃) to quadratic 

approximation function 𝑚𝑘. If 𝑚𝑘 is reliable, this amount should be close to, or even greater than 

1. Inversely if it is close to 0, 𝑚𝑘 is not reliable. Practically, in order to characterize these cases 

and to update 𝑟𝑘, let us introduce the constants 𝜂1 and 𝜂2 such that 0 < 𝜂1 ≤ 𝜂2 < 1. Defines three 

cases: 

If 𝑙 ≥  𝜂2 then 𝑚𝑘 is very reliable and 𝑟𝑘 is doubled 

If 𝜂1 ≤ 𝑙 < 𝜂2 then the match between 𝑚𝑘 and 𝐶 is not perfect, but if it allowed to reduce the 

value of 𝐶, then it can be assumed reliable and 𝑟𝑘 is not modified. 

If 𝑙 < 𝜂1 then 𝑚𝑘 is not reliable and 𝑟𝑘 is reduced to 
1

2
‖𝑠𝑘

⋆‖. 

To give an idea, we fix in practice 𝜂1 = 0.01 and 𝜂2 = 0.9. The whole algorithm is summarized 

in Algorithm 1. 

Advantages of TRRA 

• TRRA accept bound constraints 

• It uses both gradient and hessian information, making it more robust compared to 

derivative free algorithms. 

• The subproblem 𝑚𝑘(𝑠) is defined in lower dimension, thus they are more suitable for large 

scale compared to other algorithms 

Limitations of TRRA 

• TRRA may not suitable for all problems, especially problems which are noisy or problems 

with discontinuous objective function 
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• The subproblem 𝑚𝑘(𝑠)  may need to be resolved several times in one iteration before 

obtaining an acceptable trial step, thus the total cost of computation for one iteration might 

be expensive. 

 

 

III.2.1.2 Levenberg-Marquardt (unconstrained) 

The Levenberg–Marquardt algorithm (LM) is used to solve non-linear least squares problems. 

However, as with many fitting algorithms, the LM finds only a local minimum, which is not 

necessarily the global minimum. The LM algorithm is a combination of the Gauss-Newton 

Algorithm (GN) and the Gradient Descent algorithm. The LM algorithm is more robust than the 

Algorithm 1: Trust Region method 

Initial conditions: 𝑃0 ∈ ℝ𝑛, 𝜂1, 𝜂2, 𝑟0    

1: while stop criteria is not achieved, do 

2:     Calculate 𝑠𝑘
⋆ by solving the subproblem (3) by using Dogleg or Steigaug-Toint 

methods 

3:     Calculate 𝑙 =
𝑓(𝑥𝑘+𝑠𝑘

⋆)−𝑓(𝑥𝑘)

𝑚𝑘(𝑥𝑘+𝑠𝑘
⋆)−𝑚𝑘(𝑥𝑘)

   

4:     if 𝑙 < 𝜂1 then  

5:       𝑥𝑘+1 ← 𝑥𝑘 

6:       𝑟𝑘 ←
1

2
‖𝑠𝑘

⋆‖ 

7:    if not 

8:       𝑥𝑘+1 ← 𝑥𝑘 + 𝑠𝑘 

9:       if 𝑙 ≥ 𝜂2, then 

10:          𝑟𝑘+1 ← 2𝑟𝑘 

11:        if not 

12:          𝑟𝑘+1 ← 𝑟𝑘 

13:     𝑘 ← 𝑘 + 1 

14: return 𝑥𝑘 

https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Local_minimum
https://en.wikipedia.org/wiki/Global_minimum
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GN algorithm, which means that it will often find a solution even if it starts very far from the 

minimum. On the other hand, for well-behaved functions and reasonable parameters, LM tends to 

be a bit slower than the GN. Like other numerical minimization algorithms, the Levenberg-

Marquardt algorithm is an iterative procedure used especially for NLS problems. NLS are 

optimization problems defined as: 

 

min  
1

2
‖𝑟(𝑃)‖2

2 (24) 

Where 𝑟: ℝ𝑛 → ℝ𝑛 is a twice differentiable function.  

 To solve an NLS problem, the first step is to apply the Newton’s method directly. To do this, let 

us calculate the gradient and the Hessian of the problem. If 𝐶(𝑃) is the cost function defined as: 

 

𝐶(𝑃) =
1

2
𝑟𝑇(𝑃)𝑟(𝑃), 

𝛻𝐶(𝑃) = 𝐽𝑟(𝑃)𝑟(𝑃) 

𝛻2𝐶(𝑃) = 𝐽𝑟(𝑃)𝐽(𝑃) + 𝐻(𝑃)𝑟(𝑃) 

Where 𝐽𝑟(𝑃) and 𝐻𝑟(𝑃) are respectively the Jacobian and the hessian of 𝑟(𝑃). 

This Hessian is in general very expensive to calculate. In addition, the optimum 𝑟 will be small, 

making the contribution of the term 𝐻𝑟(𝑃)𝑟(𝑃) negligible. It is therefore better to ignore it and 

thus consider that: 

𝛻2𝐶(𝑃) ⋍ 𝐽𝑟(𝑃)⊤𝐽𝑟(𝑃) 

 

This approximation is known as the Gauss-Newton hypothesis (defined in chapter 2). It allows on 

the one hand, to approach 𝛻2𝐶(𝑃) by primary derivatives and to ensure, on the other hand, that 

𝛻2𝐶(𝑃) is always positive semi-definite. This hypothesis leads to the Gauss-Newton algorithm 

(defined in chapter 2). 

However, the convergence of this method is not guaranteed. Indeed, if 𝑃0 is too far from a local 

optimum, then 𝐽𝑟(𝑃𝑘)
⊤  𝐽𝑟(𝑃𝑘) can be singular or ill-conditioned. Nevertheless, these 

disadvantages are related to the Newton’s method and not to the Gauss-Newton hypothesis itself. 

In order to overcome these obstacles, it is therefore possible to solve an approximated quadratic 

sub-function instead of solving the original cost function. This obstacle could be solved by 

increasing the diagonal hessian to make it positive and better conditioned. 
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This approach is known as the Levenberg-Marquardt (LM) algorithm, 

which is detailed in the Algorithm 2. 

If 𝐽𝑟(𝑃𝑘)
⊤ 𝐽𝑟(𝑃𝑘) is singular or ill-conditioned, LM introduces an approximation of the hessian 

matrix which makes it always positive definite, such that, 𝐻𝑘 = 𝐽𝑟(𝑃𝑘)
𝑇 𝐽𝑟(𝑃𝑘) + 𝜇𝑘𝐼𝑛, with 𝜇𝑘 

(damping parameter) chosen such that 𝐻𝑘 is positive definite and 𝐼𝑛 is an identity matrix. Then we 

solve, as usual, the Newton Step equation:  

𝛻2𝐶(𝑃)𝑠𝑘 = −𝛻𝐶(𝑃) 

⟺ (𝐽𝑟(𝑃𝑘)
⊤ 𝐽𝑟(𝑃𝑘) + 𝜇𝑘𝐼𝑛) 𝑠𝑘 = −𝐽𝑟(𝑃𝑘)𝑟(𝑃𝑘) 

 

Advantages of LM 

• It uses both gradient and hessian information, which make it more robust compared to 

derivative free algorithms. 

Algorithm 2: Levenberg-Marquardt  

Initial conditions: 𝑃0 ∈ ℝ𝑛, 𝜇0    

1:  while stop criteria is not achieved, do 

2:     Calculate 𝛼𝑘  

3:     Factorization of 𝐽𝑟(𝑃𝑘)
⊤𝐽𝑟(𝑃𝑘) 

4:     if  𝐽𝑟(𝑃𝑘)
⊤ 𝐽𝑟(𝑃𝑘) ≻ 0 then 

5:          solve 𝐽𝑟(𝑃𝑘)
⊤ 𝐽𝑟(𝑃𝑘)𝑠𝑘 = −𝐽𝑟(𝑃𝑘)𝑟(𝑃𝑘) 

6:      if not 

7:          Calculate 𝜇𝑘 such that (𝐽𝑟(𝑃𝑘)
𝑇 𝐽𝑟(𝑃𝑘) + 𝜇𝑘𝐼𝑛) ≻ 0 

8:           solve (𝐽𝑟(𝑃𝑘)
⊤ 𝐽𝑟(𝑃𝑘) + 𝜇𝑘𝐼𝑛)𝑠𝑘 = −𝐽𝑟(𝑃𝑘)𝑟(𝑃𝑘) 

9:       𝑃𝑘+1 ← 𝑃𝑘 + 𝛼𝑘𝑠𝑘 

10:     𝑘 ← 𝑘 + 1 

11:  return 𝑃𝑘 
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• LM algorithm combines the advantages of gradient-descent and Gauss-Newton methods. 

It inherits the speed advantage of the Gauss–Newton algorithm and the stability of the 

steepest descent method 

• The hessian does not need to be calculated as they are estimated from the gradient of the 

residuals. 

Limitations of LM 

• The LM does not handle any type of constraints. 

• LM may not be suitable for all problems, especially problems which are noisy or problems 

with discontinuous objective function 

 

III.2.1.3 Nelder-Mead Algorithm 

The Nelder-Mead algorithm (NM) or simplex search algorithm, originally published in 1965 [5], 

is one of the best known algorithms for multidimensional unconstrained optimization without 

derivatives. The NM is quite simple to understand and implement in practice, because it does not 

require gradient computation (i.e., derivative free), which makes it suitable for problems with non-

smooth functions or blackbox optimization problems. For these reasons, it is very popular in many 

fields of science and technology, especially in chemistry, physics, and medicine [6]–[8]. It is 

widely used to solve parameter estimation and statistical problems where the function values are 

uncertain or subject to noise. It can also be used for problems with discontinuous functions, which 

occurs frequently in statistics and experimental mathematics [9]. 

Assume 𝐶(𝑃): ℝ𝑛 → ℝ be the cost function to be minimized. This method starts with a simplex 

(i.e., polytope) of 𝑛 +  1 vertices, which is a point of ℝ𝑛 , denoted 𝑃0, 𝑃1 … , 𝑃𝑛  , such that 𝐶(𝑃0) ≤

𝐶(𝑃1) ≤ ⋯ ≤ 𝐶(𝑃𝑛) , see Figure 17. 

We are trying to minimize 𝐶, 𝑃0 is the best point and 𝑃𝑛 is the bad one. At each iteration, the bad 

point 𝑃𝑛 is eliminated, and another point is accepted into the simplex. This process continues until 

convergence is achieved. An example of the process is illustrated in Figure 17, 18, 19, 20 and 21. 

Suppose that our simplex the one represented in Figure 17, such that: 𝐶(𝑃0) ≤ 𝐶(𝑃1) ≤ 𝐶(𝑃2) 

http://www.scholarpedia.org/article/Optimization
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Figure 17: Example of a simplex in ℝ2 

Construct a symmetric point 𝑃𝑠 = 𝑃𝑔 + (𝑃𝑔 − 𝑃2) of 𝑃2 with respect to the center of gravity 𝑃𝑔, as 

represented in Figure 18. 

 

 

Figure 18: Reflection operation of the simplex 

if 𝐶(𝑃𝑠) < 𝐶(𝑃0), then enlarge the simplex in the direction of 𝑃𝑠, such that, 𝑃𝑎 = 𝑃𝑔 + 2(𝑃𝑔 − 𝑃2), 

as shown in Figure 19. 

if 𝐶(𝑃𝑎) < 𝐶(𝑃𝑠) then 𝑃2 is eliminated and 𝑃𝑎 becomes the new vertex of the new simplex 

 

Figure 19: expand operation of the simplex 
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If 𝐶(𝑃1) ≤ 𝐶(𝑃𝑠) < 𝐶(𝑃2), reduce the simplex (outside), such that 𝑃𝑟 = 𝑃𝑔 +
1

2
(𝑃𝑠 − 𝑃𝑔), as 

shown in Figure 20. 

 

Figure 20: Outside reduction operation of the simplex 

If 𝐶(𝑃1) < 𝐶(𝑃2) ≤ 𝐶(𝑃𝑠), reduce the simplex (inside), such that 𝑃𝑟 = 𝑃𝑔 +
1

2
(𝑃2 − 𝑃𝑔), as shown 

in Figure 21. 

 

Figure 21: Inside reduction operation of the simplex 

 

if 𝐶(𝑃𝑟) < 𝐶(𝑃𝑠) then 𝑃2 is eliminated and 𝑃𝑟 becomes the new vertex of the new simplex 

if 𝐶(𝑃𝑠) < 𝐶(𝑃𝑟) then 𝑃2 is eliminated and 𝑃𝑠 becomes the new vertex of the new simplex. 
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The algorithm is detailed in the Algorithm 3. 

 

 

Algorithm 3: Nelder-Mead  

Initial conditions:  𝑛 + 1 points 𝑃0, … , 𝑃𝑛    

1:  while Stop criteria is not achieved, do 

2:     evaluate f at each of the initial points such that: 𝐶(𝑃0) ≤ 𝐶(𝑃1) ≤ ⋯ ≤ 𝐶(𝑃𝑛)  

3:     Calculate the center of gravity 𝑃𝑔 of the points 𝑃0, … , 𝑃𝑛 

4:     Construct a symmetric point 𝑃𝑠 = 𝑃𝑔 + (𝑃𝑔 − 𝑃𝑛) of 𝑃𝑛 with respect to the center 

of gravity 𝑃𝑔.  

5:          if 𝐶(𝑃𝑠) < 𝐶(𝑃0) then 

6:              Enlarge the simplex in the direction of 𝑃𝑠: 

7:               𝑃𝑎 ← 𝑃𝑔 + 2(𝑃𝑔 − 𝑃𝑛) 

8:               if 𝐶(𝑃𝑎) < 𝐶(𝑃𝑠) then 

9:                   𝑃𝑛 ← 𝑃𝑎 

10:             if not  

11:                𝑃𝑛 ← 𝑃𝑠 

12:         if 𝐶(𝑃𝑛−1) < 𝐶(𝑃𝑠)  then  

13:             Reduce the simplex: 

14:              𝑃𝑟 ← 𝑃𝑛 +
1

2
(𝑃𝑔 − 𝑃𝑛) 

15:              if 𝐶(𝑃𝑟) < 𝐶(𝑃𝑠) then 

16:               𝑃𝑛 ← 𝑃𝑟 

17:      if not  

18:        𝑃𝑛 ← 𝑃𝑠 

19: return 𝑃𝑛 
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Advantages of Nelder-Mead 

• Does not require any derivative information (i.e., derivative free problems). 

• NM is quite simple to understand and very easy to implement in practice  

• Optimizes both continuous and discrete functions and also suits multi-objective problems. 

• The Nelder-Mead method frequently gives significant improvements in the first few 

iterations and quickly produces quite satisfactory results.  

• The method typically requires only one or two function evaluations per iteration (i.e., This 

is very important in applications where each function evaluation is very expensive or time-

consuming) 

Limitations of Nelder-Mead 

• The method can take an enormous number of iterations with negligible improvement in 

function value. 

• Extremely depending on the choice of the optimization starting point 

 

III.2.2 Stochastic Algorithms 

Stochastic optimization algorithms are algorithms that make use of randomness in the search 

procedure for objective functions for which derivatives cannot be calculated. Many stochastic 

algorithms are inspired by biological or natural processes and may be referred to as 

“metaheuristics” as a higher-order procedure providing the conditions for a specific search of the 

objective function. They are also referred to as “black box” optimization algorithms. 

Stochastic optimization algorithms provide an alternative approach that allows less optimal local 

solutions to be found within the search procedure, which may increase the probability of the 

procedure locating the global optima of the objective function. Algorithms of this type are 

proposed for the most challenging optimization problems that may have noisy function evaluations 

or many global optima (multimodal). Two kinds of stochastic optimization algorithms will be 

addressed in this chapter, which are, Genetic Algorithm and Particle Swarm Algorithm. 

III.2.2.1 Genetic Algorithm 

The Genetic Algorithm (GA) [10] is a global search heuristic technique based on the principles 

of genetics and natural selection. It is frequently used to find optimal solutions to difficult 

problems that may take a lifetime to solve. It employs techniques that are inspired by evolution, 

https://en.wikipedia.org/wiki/Metaheuristic


Chapter III 

88 
 

such as mutation, crossover, and selection. The algorithm searches for the best solution in the 

search space that optimizes the cost function. GA does not require gradient computation of the 

cost function (i.e., derivative free), which makes it suitable for problems with non-smooth 

functions or blackbox optimization problems. The algorithm starts with randomly generated 

parameters, then the parameters are tested using a fitness value which is obtained from the cost 

function, and finally the best ones are selected probabilistically from the current iteration. Iteration 

terminates when the desired fitness value is obtained or the maximum number of iterations has 

been reached.  

Briefly, the iterative procedure of GA is as following: 

1. Generate N random parameters by normal random distribution  

2. Evaluation of parameters (i.e., calculate the fitness of each parameter) 

3. Selection of the best parameters according to the probability of fitness values and eliminate 

the others 

4. Reproduce new parameters by crossover and mutation (i.e., random modification of 

certain parameters) 

The key point of this algorithm is the step where the new parameters are reproduced by 

crossover and mutation. The iterative procedure of the genetic algorithm’s evolution is 

illustrated in Figure 22.  

Advantages of Genetic Algorithm 

• Does not require any derivative information (i.e., derivative free problems). 

• More accurate than many traditional methods. 

• Optimizes both continuous and discrete functions and also multi-objective problems. 

• Suitable for problems with a large search space or many parameters. 

Limitations of Genetic Algorithm 

• GAs are not suitable for all problems, especially problems which are simple and for which 

derivative information is available. 

• Cost function is calculated repeatedly which might be computationally expensive for some 

problems. 

• If not implemented properly, the GA may not converge to the optimal solution. 
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Figure 22: The description of one iteration of the genetic algorithm’s evolution which operates in four stages: 
Evaluation, where we calculate the fitness of each parameter randomly generated; Selection, where it chooses 
a relatively fit subset of individuals for breeding; Crossover, where it recombines pairs of breeders to create a 
new population; and Mutation, where it potentially modifies portions of new chromosomes to help maintain 

the overall genetic diversity. Arrows in the figure indicate the transitions into the next genetic operation within 
one generation. 

III.2.2.2 Particle Swarm Algorithm 

Particle Swarm algorithm (PS) [11] has become one of the most promising optimization techniques 

for solving global optimization problems. In the past few years, PS has been successfully applied 

in many research and application areas [12], [13]. PS is a metaheuristic as it makes few or no 

assumptions about the problem being optimized and performs very well on a wide range of 

problems, including high-dimensional problems and some that are very difficult to solve using 

classic numerical optimization techniques. Also, PS does not require gradient computation of the 

cost function (i.e., derivative free), which makes it suitable for problems with non-smooth 

functions or blackbox problems. However, metaheuristics such as PS do not guarantee that a global 

optimal solution can be found for some class of problems. 

The PS system solves problems by having a population (swarms) of candidate solutions (particles). 

These particles move through the search domain with a specified velocity in the search for an 

optimal solution. Each particle keeps track of its coordinates in the search space, which are 

associated with the best solution it has achieved so far. This value is called "personal best." Another 

value that is tracked by the PS is the best value obtained so far by any particle in the neighbors of 

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Global_optimum
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the particle. This location is called local best. When a particle takes all the population as its 

topological neighbors, the best value is called global best. 

Let  𝐶(𝑃): ℝ𝑛 → ℝ be the cost function to be minimized with 𝑙𝑏 ≤ 𝑃 ≤  𝑢𝑏 . The function takes 

a candidate solution as an argument in the form of a vector of real numbers and produces a real 

number as output which indicates the objective function value of the given candidate solution. The 

goal is to find a solution 𝑃⋆ for which 𝐶(𝑃⋆) ≤ 𝐶(𝑃) for all 𝑃 in the search-space. 

Let 𝑛 be the number of particles in the swarm, each having a position 𝑥𝑖 ∈ ℝ𝑛  in the search-space 

and a velocity vi ∈ ℝ𝑛. At iteration 𝑘, the position of particle 𝑖 = 1,… , 𝑛 is denoted by 𝑥𝑖(𝑘) and 

the velocity by v𝑖(𝑘). The position of particle 𝑖 at iteration 𝑡 is simply the previous position (at 

iteration 𝑘 –  1) plus the velocity at the previous iteration, such that: 

𝑥𝑖(𝑘) = 𝑥𝑖(𝑘 − 1) + v𝑖(𝑘 − 1)  

The fitness of a position is determined by the value of the cost function at that position. The best 

position visited by a particle, 𝒑𝒊(𝒌), is simply the position visited by particle 𝑖 in iterations 1,… , 𝑘 

with the minimal function value, i.e., it is the position corresponding to the optimal value of 

𝑝𝑖(𝑘) = min{𝐶(𝑥𝑖(0)),… , 𝐶(𝑥𝑖(𝑘))}, where 𝐶 is the cost function. Similarly, the best position 

visited by any particle in the swarm, known as the global best, 𝒈(𝒌), is the position corresponding 

to the optimal value of: 

{𝐶(𝑥1(0)),… , 𝐶(𝑥1(𝑘)), 𝐶(𝑥𝑛(0)),… , 𝐶(𝑥𝑛(𝑘))}. 

Thus, the velocity of particle 𝑖 at iteration 𝑡 is:  

 𝑣𝑖(𝑘) = 𝑐0𝑣𝑖(𝑘 − 1) + 𝑐1𝑟1(𝑥𝑖(𝑘) − 𝑝𝑖(𝑘)) + 𝑐2𝑟2(𝑥𝑖(𝑘) − 𝑔(𝑘)) 

Where 𝑟1 and 𝑟2 are chosen randomly by a uniform distribution on the interval [0,1]. The constants 

𝑐0, 𝑐1 and 𝑐2 weight each of the three components of the particle’s velocity, which are defined to 

control the behavior and efficiency of the PS method. 

PS iterative procedure is detailed in Algorithm 5. The procedure of updating particle position and 

velocity is illustrated in Figure 23. 

https://en.wikipedia.org/wiki/Row_vector
https://en.wikipedia.org/wiki/Real_number
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Figure 23: Updating Particle Position and Velocity 

 

Advantages of Particle Swarm 

• Does not require any derivative information (i.e., derivative free). 

• A very efficient global search algorithm. 

• PS is less sensitive to the nature of the objective function compared to the predictable 

mathematical approaches and other heuristic methods 

• PS has limited number of parameters including only inertia weight factor and two 

acceleration coefficients in comparison with other competing heuristic optimization 

methods.  

• PS techniques can generate high-quality solutions within shorter calculation time and stable 

convergence characteristics than other stochastic methods [14]. 

 

Limitations of Particle Swarm 

• It requires a longer computation time compared to direct search algorithms. 

• It could easily fall into local optimum in high-dimensional space 

 



Chapter III 

92 
 

 

Algorithm 4: Particle Swarm 

Initial conditions:  𝑛 particles ,  𝑙𝑏: Lower bounds, ub: Upper bounds 

1:   initialize the particle’s position with random distribution: 𝑥𝑖~⋃(𝑙𝑏, 𝑢𝑏) 

2:   initialize the particle’s velocity with random distribution: vi~⋃(−|𝑢𝑏 − 𝑙𝑏|, |𝑢𝑏 − 𝑙𝑏|) 

3:  while Stop criteria is not achieved, do 

4:   Calculate fitness value of each particle : 𝐶(𝑃𝑖) 

5:     if  𝐶(𝑃𝑖) < 𝐶(𝑔) then 

6:          update the swarm’s best known position: 𝑔 ← 𝑃𝑖 

7:   while a termination criterion is not met do 

8:       for each particle  𝑖 = 1,… , 𝑛  do 

9:         for each dimension  𝑘 = 1,… , 𝑑 do 

10:        pick random numbers: 𝑐0, 𝑐1, 𝑐2~⋃(0,1) 

11:         update the particle’s velocity:  

𝑣𝑖(𝑘) = 𝑐0𝑣𝑖(𝑘 − 1) + 𝑐1𝑟1(𝑥𝑖(𝑘) − 𝑝𝑖(𝑘)) + 𝑐2𝑟2(𝑥𝑖(𝑘) − 𝑔(𝑘)) 

12:         update the particle’s position:  

𝒙𝒊(𝑘) = 𝑥𝑖(𝑘 − 1) + v𝑖(𝑘) 

13:       if 𝐶(𝑥𝑖(𝑘)) < 𝐶(𝑝𝑖) then 

14:              update the particle’s best known position: 𝑃𝑖 ← 𝑥𝑖 

15:               if 𝐶(𝑃𝑖) < 𝐶(𝑔) then 

16:                update the swarm’s best known position: 𝑔 ← 𝑃𝑖 

17: return 𝑃𝑖 
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III.3 Comparison between optimization algorithms 

It is worth mentioning that the examples shown in the following sections are a simplified version 

of our model (i.e., only 8 unknown parameters are considered and only a small period of 

polarization time is considered, see Table 3). When the optimization technique is used on a large 

amount of data, the computation time may become prohibitive. That is to say, one of the important 

aspects that should be investigated to determine algorithm efficiency is time consumption.  

Subsequently, several initial points have been tested to validate the optimization outcomes, but 

only one of them has been chosen and presented in this section. The example was chosen in which 

it might summarize all the possibilities we could face during the optimization process. The upper 

and lower bounds of the parameters (Table 3) are considered based on the experimental approaches 

made by various researchers [15]–[17]. 

 

Table 3: Units, Symbols and bounds of the unknown parameters. 

Parameters 
Barrier height of 

injection 
Trapping depth 

Trapping 

coefficient 

Detrapping 

coefficient 

Unit eV eV s−1 s−1 

Symbol 𝑤𝑒             𝑤ℎ 𝑤𝑚𝑜𝑒
         𝑤𝑚𝑜ℎ

 𝐵𝑒               𝐵ℎ 𝐷𝑒             𝐷ℎ 

Lower Bound (lb) 1 0.3 0 0 

Upper Bound (ub) 1.3 0.72 1 1 

 

In this section, only the charge density data will be studied since it provides more information than 

the current density data. 

The methodology is as follows, assume that we want to find the value of a set of parameters vector 

of real variables 𝑃⋆ such that it minimizes the cost function 𝐶(𝑃), defined as: 

𝐶(𝑃) = ‖𝑛𝐸𝑥𝑝 − 𝑛𝑆𝑖𝑚(𝑃)‖ (25) 

Where 𝑛𝑆𝑖𝑚(P) are the simulated charge density by the BCT model in terms of unknown 

parameters P and 𝑛𝐸𝑥𝑝 represents the experimental charge density.  

The optimization problem to be solved is thus defined as:  

min
𝑃∈ℝ𝑛

𝐶(𝑃) 

𝑠. 𝑡.  𝑙𝑏 ≤ 𝑃 ≤  𝑢𝑏 
(26) 
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Five different optimization algorithms are used to solve Problem (26). All the algorithms were 

implemented and coded in MATLAB. TR and LM were implemented using the “lsqnonlin” 

function. GA was implemented using the “ga” function. NM algorithm was applied using the 

“fminsearchbnd” function. Finally, the PS algorithm was applied using the “particleswarm” 

function. 

III.3.1 Optimization using simulated data 

The major purpose of this section is to examine five alternative optimization algorithms to validate 

and evaluate their convergence performance by applying them on the BCT model, then compare 

their outputs to determine the most appropriate one for solving our problem.  

In this part, the experimental data are simulated using a bipolar charge transport model using a set 

of parameters known as 𝑃𝐸𝑥𝑎𝑐𝑡 (displayed in Table 2), which are obtained from the literature [18]. 

Thus, the cost function will be defined as: 

𝐶(𝑃) = ‖𝑛𝑆𝑖𝑚(𝑃𝑒𝑥𝑎𝑐𝑡) − 𝑛𝑆𝑖𝑚(𝑃)‖ (27) 

Where 𝑛𝑆𝑖𝑚(P) are the simulated charge density by the BCT model in terms of unknown 

parameters P and 𝑛𝑆𝑖𝑚(𝑃𝑒𝑥𝑎𝑐𝑡) represents the charge density data that are obtained by simulating 

the BCT model using simulated by 𝑃𝑒𝑥𝑎𝑐𝑡.  

The model in this part intends to model the behavior of 200 µ𝑚 LDPE under a constant DC stress 

of -30kV/mm for 500 s of polarization time at 25 °𝐶 using a set of parameters 𝑃𝐸𝑥𝑎𝑐𝑡, that are 

displayed in Table 4. 

Table 4 represents the optimal set of parameters produced by each one of the used optimization 

algorithms. 𝑃𝑇𝑅𝑅𝐴, 𝑃𝐿𝑀, 𝑃𝑁𝑀, 𝑃𝐺𝐴, and 𝑃𝑃𝑆,  are the optimal parameters produced respectively by, 

TRRA, LM, NM, GA, and PS. 

Table 5 represents the time of computation, the number of iterations, and the number of evaluated 

functions required by each algorithm to find the optimal solution. Also, it represents the relative 

error which evaluates the cost function using the obtained optimal solutions. 
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Table 4: Optimized parameters using five optimization algorithms. 𝑃0 is the starting point of the optimization 

algorithm, 𝑃𝐸𝑥𝑎𝑐𝑡  represents the parameters we are trying to find. 𝑃𝑇𝑅𝑅𝐴, 𝑃𝐿𝑀, 𝑃𝑁𝑀, 𝑃𝐺𝐴, and 𝑃𝑃𝑆,  are the optimal 

parameters produced respectively by, TRRA, LM, NM, GA, and PS. 

parameters 𝑤𝑒   𝑤ℎ          𝑤𝑚𝑜𝑒
         𝑤𝑚𝑜ℎ

        𝑤𝑡𝑟𝑒
 𝑤𝑡𝑟ℎ

 𝐵𝑒 𝐵ℎ 

𝑃𝑒𝑥𝑎𝑐𝑡 1.21 1.10 0.71 0.60 0.97 0.76 0.006 0.0030 
𝑃0 1.15 1.15 0.65 0.65 0.84 0.84 0.001 0.0010 

Algorithms 

𝑃𝑇𝑅𝑅𝐴 1.21 1.10 0.71 0.60 0.97 0.76 0.006 0.0001 
𝑃𝐿𝑀 1.21 1.10 0.71 0.60 0.97 0.98 0.006 0.0000 
𝑃𝑁𝑀 1.19 1.17 0.66 0.64 0.85 0.88 0.999 0.1523 
𝑃𝐺𝐴 1.23 1.10 0.68 0.60 0.80 0.80 0.981 0.0702 
𝑃𝑃𝑆 1.20 1.09 0.66 0.60 0.93 0.76 0.078 0.7501 

 

Table 5: The time of computation, the number of iterations, and the number of evaluated functions required by 
each algorithm to find the optimal solution. 𝐶(𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙) represents the value of cost function at the optimal 

solution found by each algorithm. 

Algorithms Elapsed Time (s) Number of 
iterations 

Func-count Relative error 
 𝐶(𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙) 

TRRA 1435 73 666 8.2322 × 10−9 
LM 403 21 205 0.0005 

NM 1196 1028 1601 0.3336 

GA 135185 339 68000 0.0119 

PS 530248 1600 128080 43.6800   

 

Based on Table 4 and Table 5, GA and PS took a very long time to converge toward the 

optimal solution, compares to other algorithms. Besides, PS produced a very high relative error 

(i.e., the convergence of 𝑃𝑆 was found to be bad in comparison to other algorithms, where 

𝐶(𝑃𝑃𝑆) =  43.68 is very high compared to the other algorithms). According to Table 4, comparing 

𝑃𝑃𝑆 with 𝑃𝐸𝑥𝑎𝑐𝑡 proofs the bad convergence of PS algorithm, where most of the parameters did not 

converge to the exact value.  

Besides, based on Table 4, it is obvious that TRRA is the most accurate algorithm compared to the 

others. This could be noticed by comparing the relative error produced by each optimal solution 

(𝐶(𝑃𝑇𝑅𝑅𝐴) < 𝐶(𝑃𝐿𝑀) < 𝐶(𝑃𝐺𝐴) < 𝐶(𝑃𝑁𝑀) < 𝐶(𝑃𝑃𝑆)). This also could be noticed from Table 4, 

where all the parameters achieved their exact value when TRRA was used, while for other 

algorithms, most of the parameters did not converge to the exact value.  

Furthermore, based on Table 5, its clear that LM has the lowest computation time and number of 

iterations, compared to other algorithms. Also, according to the relative error produced by 𝑃𝐿𝑀 



Chapter III 

96 
 

(𝐶(𝑃𝐿𝑀)), it is found that 𝑃𝐿𝑀 is near to 𝑃𝐸𝑥𝑎𝑐𝑡, where most of the parameters converged to their 

exact values. 

Finally, the parameters produced by NM (𝑃𝑁𝑀) are not compatible with the exact parameters 

(𝑃𝐸𝑥𝑎𝑐𝑡). Although, when the NM method is performed using a different starting point (𝑃0), the 

outcomes are identical to 𝑃𝐸𝑥𝑎𝑐𝑡. That is to say, the NM method was found to be extremely 

dependent on the starting point of the optimization processes. 

To summarize what has been stated so far, TRRA and LM was found to be the most appropriate 

algorithms for solving our problem. TRRA had the most accurate optimal solution, whereas LM 

converged faster than all the other algorithms. GA produced an acceptable optimal solution but it 

required a lot of computation time to be achieved. PS produced a very weak optimal solution with 

a lot of time to be achieved. Finally, NM converged quickly but the produced optimal parameters 

did not match 𝑃𝐸𝑥𝑎𝑐𝑡, since NM was found to be very sensitive with respect to the choice of initial 

starting points. Table 6 shows the outcomes of the NM algorithm using two different starting 

points. The results displayed in Table 6 show that if the initial starting point 𝑃0  was chosen near 

to the optimal solution (Example 1), NM can find the exact value of most of the parameters. 

However, if 𝑃0  was chosen randomly (Example 2), NM may not achieve the exact values of the 

parameters we are seeking to find.  

Table 6: NM outcomes using 2 different initial starting points 

parameters 𝑤𝑒 𝑤ℎ 𝑤𝑚𝑜𝑒
 𝑤𝑚𝑜ℎ

 𝑤𝑡𝑟𝑒
 𝑤𝑡𝑟ℎ

 𝐵𝑒 𝐵ℎ 

𝑃𝑒𝑥𝑎𝑐𝑡 1.21 1.10 0.71 0.60 0.97 0.76 0.006 0.003 

𝑃0 1.19 1.13 0.68 0.62 0.95 0.77 0.005 0.002 

𝑃𝑁𝑀 1.21 1.10 0.71 0.60 0.97 0.76 0.006 0.016 

𝑃0 1.30 1.20 0.60 0.68 0.80 0.85 0.100 0.200 

𝑃𝑁𝑀 1.29 1.28 0.60 0.70 0.81 0.88 0.053 0.173 

 

III.3.2 Optimization using experimental data (PEA)  

Another approach is used in this subsection to compare and validate the optimization algorithms 

so that the best one will be chosen. This approach aims to optimize the same cost functions as in 

the previous subsection, but with PEA experimental data rather than model data. 

Thus, the cost function will be defined as: 

𝐶(𝑃) = ‖𝑛𝑒𝑥𝑝 − 𝑛𝑆𝑖𝑚(𝑃)‖ (28) 

Example 1 

Example 2 
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Where 𝑛𝑆𝑖𝑚(P) are the simulated charge density by the BCT model in terms of unknown 

parameters P and 𝑛𝐸𝑥𝑝 are the experimental charge density obtained by PEA. 

Figure 24 shows the experimental space charge behavior as a function of time and position with 

500 𝑠 of charging cycle on a 200 𝜇𝑚 thick LDPE film containing some antioxidants, with -

30 𝑘𝑉/𝑚𝑚 applied field at 40 °𝐶. The x-axis represents the polarization time (hours) of the 

experiment, and the y-axis represents the position (μm). The color bar represents the quantities of 

electrons and holes in terms of 𝐶/𝑚3. The blue color represents the electrons and the red color 

represents the holes. In order to avoid the representation of the capacitive and image charges beside 

the electrodes, only the data in the range of [25 µm -175 µm] are presented.  

 

Figure 24:Experimental net density of charge. Applied field: -30 kV/mm, 500s of polarization, at 40 °𝐶 Sample 
thickness: 200 µm. 25 µm beside electrodes are neglected, color bar provides charge density scale in 𝐶 ⋅ 𝑚−3 

The outcomes of the optimization algorithms are displayed in Table 7 and Table 8. Table 7 

represents the optimal set of parameters produced by each one of the used optimization 

algorithms. 𝑃𝑇𝑅𝑅𝐴, 𝑃𝐿𝑀, 𝑃𝑁𝑀, 𝑃𝐺𝐴, and 𝑃𝑃𝑆,  are the optimal parameters produced respectively 

by, TRRA, LM, NM, GA, and PS. 

Table 8 represents the time of computation, the number of iterations, and the number of evaluated 

functions required by each algorithm to find the optimal solution. Also, it represents the relative 

error which evaluates the cost function using the obtained optimal solutions. 
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Table 7: Optimized parameters using five optimization algorithms.𝑃0 is the starting point of the optimization 
algorithm, 𝑃𝐸𝑥𝑎𝑐𝑡  represents the parameters we are trying to find. 𝑃𝑇𝑅𝑅𝐴, 𝑃𝐿𝑀, 𝑃𝑁𝑀, 𝑃𝐺𝐴, and 𝑃𝑃𝑆,  are the optimal 

parameters produced respectively. 

Parameters 𝑤𝑒   𝑤ℎ          𝑤𝑚𝑜𝑒
         𝑤𝑚𝑜ℎ

        𝑤𝑡𝑟𝑒
 𝑤𝑡𝑟ℎ

 𝐵𝑒 𝐵ℎ 

𝑃0 1.15 1.15 0.65 0.65 0.84 0.84 0.001 0.001 

Algorithms 

𝑃𝑇𝑅𝑅𝐴 1.20 1.09 0.70 0.60 0.94 0.76 0.013 0.708 

𝑃𝐿𝑀 1.19 1.10 0.59 0.61 1.17 0.66 0.207 −0.089    

𝑃𝑁𝑀 1.22 1.13 0.71 0.6 0.84 0.89 0.154 0.080 

𝑃𝐺𝐴 1.22 1.16 0.67 0.62 0.88 0.84 0.515 0.627 

𝑃𝑃𝑆 1.20 1.09 0.60 0.61 0.93 0.77 0.999 0.031 

 

Table 8: The time of computation, the number of iterations, and the number of evaluated functions required by 
each algorithm to find the optimal solution. 𝐶(𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙) represents the value of cost function at the optimal 

solution found by each algorithm. 

Algorithms Computation 
Time (s) 

Number of 
iterations 

Func-count Relative error 
𝐶(𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙) 

TRRA 1486 57 580 0.083 

LM 5820 26 289 0.353 

NM 3945 996 1554 0.111 

GA 154908 457 91600 0.133 

PS 688911 1761 158580 0.101 

 

Based on Table 7, it is obvious that TRRA is the most accurate algorithm compared to the others. 

This could be noticed by comparing the relative error produced by each optimal solution (i.e., 

𝐶(𝑃𝑇𝑅𝑅𝐴) < 𝐶(𝑃𝐿𝑀) < 𝐶(𝑃𝐺𝐴) < 𝐶(𝑃𝑁𝑀) < 𝐶(𝑃𝑃𝑆)). Besides, TRRA is found to be the most 

efficient algorithm compared to the others, where the optimal solution was found with minimal 

computation time compared to the other algorithms. The findings in Table 7 reveal that LM is not 

suitable for optimizing the BCT model, because the value of holes trapping coefficient (𝐵ℎ) was 

found with a negative sign, which is wrong because the trapping coefficient is known physically 

as a positive parameter. This is due to the fact that the LM algorithm does not handle bound 

constraints. This makes LM a bad choice for solving our problems.  

Besides, it could be seen from Table 8 that the LM consumed more time than TRRA, even that the 

number of iteration (=26 iterations) needed by LM is less than that of needed by TRRA (=57 

iterations). This is due to the absence of the bounds for LM algorithm, and then the parameters 

converged a bad optimal solution that slows the BCT model performance at each iteration.  

Furthermore,  
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Table 8 shows that GA and PS produced an accurate optimal solution based on the value of the 

relative error (i.e., 𝐶(𝑃𝐺𝐴) = 0.133 and 𝐶(𝑃𝑃𝑆) = 0.101)) but the computation time was 

prohibitive for both algorithms.  

NM algorithm produced an accurate optimal solution (𝐶(𝑃𝑁𝑀) = 0.111) with an acceptable 

computational time (=3945 s), however, the NM failed to converge into the exact value of the 

parameters in the previous subsection. That is to say, NM algorithm extremely dependent of the 

initial starting point. Whereas, TRRA was always able to find an acceptable set of parameters with 

any initial set of parameters. This shows that TRRA is more robust than NM algorithm while 

optimizing the BCT model. 

\  

 

Figure 25: Simulated Charge density obtained by BCT model. TRRA: simulated by using 𝑃𝑇𝑅𝐴, LM: simulated by 
using 𝑃𝐿𝑀, NM: simulated using 𝑃𝑁𝑀, GA: simulated by using 𝑃𝐺𝐴, and PS: simulated by using 𝑃𝑃𝑆 
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Figure 25 represents the simulated charge density obtained by BCT model. Where TRRA: 

simulated by using PTRRA, LM: simulated by using PLM, NM: simulated using PNM, GA: simulated 

by using PGA, and PS: simulated by using PPS. According to Figure 25, it is obvious that the 

simulated results obtained by 𝑃𝑇𝑅𝑅𝐴 and 𝑃𝑃𝑆 provide the best correlation between experimental 

and simulated cartography’s. These results are comparable with results presented in Table 8, where 

the minimal relative error was found for 𝑃𝑇𝑅𝑅𝐴 (𝐶(𝑃𝑇𝑅𝑅𝐴) = 0.083) and 𝑃𝑃𝑆 (𝐶(𝑃𝑃𝑆) = 0.101).  

III.4 Conclusion 

The parameters of the charge transport model were optimized using five different optimization 

algorithms. In order to select the most reliable algorithm, a trivial example was employed to 

examinate all the considered algorithms. To find the best algorithm, two distinct approaches were 

employed. The first approach optimizes parameters using modeled data, whereas the second 

approach optimizes experimental charge density data obtained by using the PEA method. TRRA 

was found to be the most suitable algorithm for this type of problem in both approaches (Table 9). 

When compared to the other methods, TRRA had the best convergence rate and the shortest 

calculation time. NM might also be a good option, but it is totally dependent on the initial point 

selection, making TRRA the preferable option. The accuracy of GA is acceptable; however, the 

calculation time is quite long. LM was found to be efficient but it may converge to an 

unsatisfactory solution due to the fact that the LM method does not handle bound constraints. 

 

Table 9:Comparison of algorithms with respect to robustness, efficiency, and accuracy 

Algorithm Robustness Efficiency Accuracy 

TRRA ✓  ✓  ✓  

LM    x ✓     x 

NM    x ✓     x 

GA ✓     x     x 

PS    x    x    x 
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IV.1 Introduction 

In the previous chapter, several optimization algorithms were applied to a simple example of our 

problem to compare them and choose the best one. Trust Region Reflective Algorithm (TRRA) 

was found to be the most suitable algorithm to solve our problem and achieve our target. Thus, the 

main target of this chapter is to apply TRRA considering all the unknown parameters we are 

seeking to find.  

Indeed, the proposed model which is described in chapter 1, requires some experimental conditions 

such as temperature and applied voltage, alongside a set of unknown parameters, including 

injection barrier, mobility, trapping and detrapping rates, and recombination coefficients. Most of 

these parameters cannot be predicted, detected, or estimated using independent experiments. For 

this reason, this chapter proposes an original method based on a dual approach 

(Simulation/Experiment) that helps to critically analyze the BCT model (i.e., highlighting the 

weaknesses and strengths) and to have a good correlation between simulated and experimental 

behavior. This could be done by minimizing the difference between experimental and simulated 

data for both current and charge experiments using TRRA with several electrical fields. 

This study considers the two most accessible experiments in our laboratory, which are the net 

charge density that is obtained using the PEA method, and the current density obtained from 

external charging current measurements. Many other experimental sources could be considered in 

future to enhance our approach, such as electroluminescence. On the other side, the BCT model 

established for LDPE under DC stress is used to estimate the simulated charge and current 

densities.  

This study shows the importance and influence of incorporating current and charge density 

measurements together with varying electric fields on the optimization algorithm behavior. For 

simplicity reasons, the majority of the proposed models in the literature considered that the 

trapping and detrapping rates remain constant as the electric field increases [1]–[3]. However, 

experiments have widely established that these rates are proportional to the electric field [4], [5]. 

For this reason, TRRA is applied in this paper using several experimental measurements with 

varying applied fields to understand the impact of the applied electric field on the trapping and 

detrapping rates.  
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This chapter is composed of five sections. After this brief introduction, the second section presents 

the sample conditioning and the experimental set ups utilized for this study, with an example 

illustrating the outputs of each experiment. In the third section, we will present the strategy used 

to optimize the BCT model based on specific experimental protocol. In the fourth section, TRRA 

is applied using several cost functions to find the optimal set of parameters that fit all of the 

provided experiments. Finally, the results are discussed and analyzed in depth. 

IV.2 Sample preparation and characterization tools 

IV.2.1 Material preparation 

The LDPE samples are manufactured in the laboratory using a heating press with BOREALIS 

polyethylene resin pellets. Since our study aims at performing all experiments using the same 

LDPE film, it was thus manufactured with specific characteristics to be suitable for all used 

experiments (i.e., the LDPE film thickness should be in the range [100 μm –  200 μm]). The 

thickness of the samples depends on the mass of pellets, the temperature, and the pressure during 

the manufacturing protocol. 

The LDPE pellets are sandwiched between two polyimide films that are placed on the aluminum 

disc (2-3 inches) of the heating press (Figure 26). These films prevent the LDPE sample from a 

direct contact with the press aluminum disc, which are not smooth. They also allow for easier 

removal of the LDPE sample after processing. A 200 μm Polytetrafluoroethylene (PTFE) spacer 

with an internal diameter of 80 mm is placed between the polyimide films and serves as a mold 

for the LDPE. Figure 27 shows the pressure and temperature cycle used to prepare the LDPE 

samples. No pressure is applied on the pellets until reaching a temperature of 155 °C (10 minutes), 

in order to melt them. The pressure is then progressively increased to 2.5 tons, while remaining at 

155 °C for 10 minutes. Finally, a temperature set point of 30 °C is set. It takes around 40 minutes 

for the cooling process to complete. To avoid the formation of bubbles, the pressure remained 

steady at 2.5 tons until the temperature reached 30 °C. For preparing the LDPE sample, we used 

0.8 g of LDPE pellets to obtain disks of 150 μm thickness, and 60 mm diameter (Figure 28). For 

current measurements, the LDPE should be metallized by coating the sample by a surface electrode 

on both sides. The process of metallization is presented in the following section. 
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Figure 26: Press equipment used for preparing LDPE films from pellets 

 

Figure 27: Protocol for preparing the LDPE samples 

 

  

Figure 28: Geometry of LDPE sample. (left) picture of an LDPE, (right) schematic geometry of LDPE 

IV.2.2 Sputtering metallization  

Sputtering metallization technique was first observed in 1852, during the operation of discharge 

tubes, and since then, this method has been widely used for thin film metal deposition [6]. The 

mechanism of sputtering is based on moment transfer [7]. A DC voltage is applied between the 

metal target (cathode) and the substrate (anode) after evacuation of air and introduction of argon 

at a pressure of about 6 × 10−2 mbar. The cathode-anode gap can vary according to the models 

from 4 to 10 cm. The anode holder is cooled by water circulation. Under the effect of the electric 
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field, the ions are attracted by the cathode (target) and the electrons move towards the anode and 

maintain the plasma. Figure 29 shows the sputtering device used for the gold deposits. 

The metallization is essential for current measurements to ensure a good contact between the 

electrodes and LDPE film (i.e., current measurements are very sensitive and require a good contact 

between the sample and electrodes). Furthermore, for space charge measurements, the LDPE was 

metallized to provide symmetrical electrodes, the same as for current measurements (i.e., the upper 

electrode of a PEA cell is a semiconductor and the lower electrode is aluminum). 

In this study, the gold deposit was performed by sputtering on both sides of the LDPE samples. 

The LDPE sample is sandwiched between two masks that are used to choose the shape of the gold 

deposit, which is in our case a 10 mm diameter circle (see Figure 30). With this method, the 

thickness of the deposit layer is not homogeneous in the plane of the sample and follows the shape 

of a Gaussian: thin at the edges (30 nm) and thicker in the center (50 nm) of the sample.  

 

Figure 29: Sputtering machine used for metallization 

 

Figure 30: LDPE sample after sputtering metallization 
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IV.2.3 Current measurement 

The cell used for current measurements consists of a flat sample of insulating material of thickness 

D that is sandwiched between two electrodes with 1 cm diameter that have been optically polished 

(see Figure 31). A positive or negative DC voltage 𝑉0 is applied to the upper electrode at zero time, 

while the other electrode is grounded. Furthermore, Keithley 6512 is used to measure the current 

𝐼(𝑡) during the application of the electrical stress.  

 

 

Figure 31: Current measurement cell 

 

 It is possible to estimate the total current density 𝐽𝑐 by: 

𝐽𝑐(𝑡) =
𝐼(𝑡)

𝑆
 (29) 

Where S is the area of the surface electrode.  

The curve displayed in Figure 32 represents the absolute value of the current density with respect 

to polarization time under a -60 𝑘𝑉/𝑚𝑚 (-9 𝑘𝑉) DC stress with 3 hours of charging cycle on 

LDPE film of thickness 𝐿 = 150 𝜇𝑚. The x-axis represents the polarization time (seconds) of the 

experiment, and the y-axis represents the current density (A/m2). It is clear that the charge density 

does not reach a stable state where it keeps decreasing, even after 3 hours of polarization. 

According to Adamec and Calderwood [8], a weak polarization process is dominant in LDPE at 

short periods and it is a function of the applied field. The polarization of the dipoles inside the bulk 

might explain the initial slope at short time (𝑡 < 10 seconds). Moreover, at short time, the current 

measurements are unreliable due to the used electrometer. For these reasons, the first 10 seconds 

won’t be considered. 
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Figure 32: Absolute experimental current density. Applied field: −60 𝑘𝑉/𝑚𝑚 at room temperature, 3 hours of 
polarization, LDPE coated with a gold layer at both sides. Sample thickness: 150 μm. 

IV.2.4 Pulsed Electro-Acoustic method: Charge density measurement 

IV.2.4.1  Principle of PEA method 

The presence of space charges in materials is a phenomenon which has been studied for many 

years [9], [10]. However, understanding of the generation, transport, and trapping modes of these 

charges has not yet been achieved. Amongst the numerous techniques developed to detect the 

presence of space charges in materials [11], this chapter focuses on the PEA method. It is an 

acoustic technique for the detection of the net density of charge (i.e., the algebraic sum of all 

electrical charges). It was developed in Japan by Maeno and his colleagues in 1988 [12]. The 

sample is placed between the two electrodes of the PEA cell, the lower electrode made of 

aluminum and the upper electrode is made of semi-conductor. The PEA cell could be placed in a 

thermal chamber in order to control the measurement temperature. The principle of this method 

consists in applying electrical pulses with a pulse generator to a sample placed under DC or AC 

voltage. Under the effect of the pulses, the space charges in the dielectric move around their point 

of origin. Figure 33 shows the principle of PEA for a negative charge implanted in the sample. 

These negative charges induce a positive image charges on each electrode. When a pulse electric 

field up(t) is applied across the sample, an acoustic wave is created by displacement of the charges 

around their original position. These signals contain information about the position of the charges 

in the volume of the dielectric as well as their quantity. This wave 𝑃∆(t) propagates at a speed of 
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sound in the material and is collected by a piezoelectric sensor. This piezoelectric sensor translates 

the wave 𝑃∆(t) into an electrical signal vs(t). Then, a signal processing is performed to estimate the 

space charge profiles as a function of the thickness and time.  

 

 

Figure 33: Principle of PEA method 

IV.2.4.2  Experimental device 

The schematic diagram of the PEA device is shown in Figure 34. It is made up of the following 

elements: 

1) A pulse generator that provides an electrical signal with a frequency of 1kHz and amplitude 

250V in order not to influence the charge distribution in the material. 

2) A high voltage DC source used to polarize the sample. 

3) A digital oscilloscope and a computer for data acquisition and digital processing, 

respectively. 

The upper electrode of the PEA cell is made of semi-conductor, with a diameter 10 mm and the 

lower electrode is made of aluminum. Below the lower electrode, there is a 9 μm PVDF 

(polyvinylidene fluoride) piezoelectric sensor. The PEA cell we use has a spatial resolution of 

about 10 μm and a sensitivity of 0.1 C/m3. All the space charge measurements presented in this 

manuscript have been performed using this method. An example of a charge density measurement 

using PEA is represented in Figure 35. 
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Figure 34: PEA device 

 

 

Figure 35: Experimental net density of charge. Applied field: -60 𝑘𝑉/𝑚𝑚, 3h of polarization, at room temperature. 
Sample thickness: 150 µm, color bar provides charge density scale in 𝐶/𝑚3. 

The cartography displayed in Figure 35 shows the variation of space charge behavior with respect 

to time and position under a DC stress at -60 𝑘𝑉/𝑚𝑚 (−9 𝑘𝑉) with 3 hours of charging cycle on 

LDPE film of thickness 𝐿 = 150 𝜇𝑚. The cartographies are more convenient than 2D graphs to 

compare several experiments with long polarization time. The x-axis represents the polarization 

time (hours) of the experiment, and the y-axis represents the position (μm) through the sample 

thickness. The color bar represents the quantities of positive charges (in red) and negative charges 

(in blue) in terms of 𝐶/𝑚3. All the cartographies represented in this chapter have the same range 

that is [-2 , 2] 𝐶/𝑚3. In this example, the cathode is the upper electrode and the anode is the lower 

electrode, such that electrons are injected from the cathode and holes are injected from the anode. 

According to Figure 35, the positive and negative charges are detected immediately after the 

voltage is applied. The dominance negative charge could be seen with a powerful and quick 
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injection over a short period of time (Zone 1). After 600 seconds (Zone 2), the positive charges 

have the advantage inside the bulk of insulation, compared to negative charges.  

IV.3 Experimental results 

IV.3.1 Experimental protocol 

In this study, two different experiments have been carried out using the same LDPE sample. 

Experiment 1 aims to measure the charge density in LDPE at three levels of fields of -20, -40, 

and −60 𝑘𝑉/𝑚𝑚. The same protocol is used for Experiment 2 for measuring the current density. 

Both experiments consist of polarization of 3 hours and a short-circuiting period of 24 hours each, 

as shown in Figure 36. The sample has been discharged 24 hours after each measurement to 

eliminate the charges in the bulk as much as possible. Space charge measurements were performed 

using the PEA technique. The current density was obtained by the known external current 

measurements. The experimental protocol is illustrated in Figure 36. 

 

Figure 36: Experimental protocol of polarization/short-circuit (150 µm thick LDPE film). 

 

Since the study is based on a dual approach (experiment/simulation), it was better to perform all 

the measurements using the same sample and exactly on the same location. This was done to ensure 

that all experiments were done using the same thickness and same material properties. Since all 

the measurements were performed on the same sample, the sample was discharged for 24 hours 

after each experiment to remove as many charges as possible from the bulk. However, it is well 

known that it is difficult to eliminate all the charges from the material. For this reason, a finite 

charge density can be set as an initial condition in the simulated model (𝛼) with 𝐶.𝑚−3 as a unit. 

This level of charge is assumed to simulate a residual charge which is likely to exist in any 
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dielectric but is not seen in space charge measurements due to the limited sensitivity of the 

detection techniques (order of 0.1 𝐶.𝑚−3) or to the fact that densities of positive and negative 

charges are locally equal, giving a zero net charge density.  

IV.3.2 Experimental measurements 

Figure 37 shows the variation of space charge behavior with electric field as a function of time and 

position at −20,−40, and −60 𝑘𝑉/𝑚𝑚, respectively, from left to right. The amount of injected 

charge increases as the applied voltage increased. Few amount of charges are observed inside the 

bulk with a field of −20 𝑘𝑉/𝑚𝑚, either because the net charge density is zero or because the 

detection techniques are restricted in sensitivity (0.1 𝐶/m3). Positive and negative charges are 

detected immediately in the bulk after the voltage is applied at higher fields (i.e., −40,−60 

𝑘𝑉/𝑚𝑚). These charges are injected at the anode and cathode, respectively, and move through 

the dielectric towards the opposite electrode.  

 

 

Figure 37: Space charge profiles as a function of the time and sample thickness, for fields of −20,−40 𝑎𝑛𝑑 60 𝑘𝑉/
𝑚𝑚, from left to right, at room temperature. LDPE sample is coated by a gold layer on both sides. The color bar 

provides charge density scale in 𝐶/𝑚3. 

Regardless of the applied voltage, the dominance negative charge could be seen with a powerful 

and quick injection over a short period of time. After 500 seconds, the dominance of positive 

charges could be observed inside the bulk of insulation. Moreover, the mobility of electron seems 

to be higher than that of holes at any electric field. 

Figure 38 represents the net density of charge for -60 𝑘𝑉/𝑚𝑚 applied electric field at 2 periods of 

time, 100 s (blue) and 1000 s (red). Based on Figure 38, it is obvious that the amount of the negative 

charges is more than the amount of positive in the bulk of LDPE at short time (𝑡 < 500 𝑠). After 

500 seconds, the amount of positive charges increased inside the bulk of insulation, whereas the 

amount of negative charges decreased.  
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Figure 38: Net density of charge for −60 𝑘𝑉/𝑚𝑚 applied electric field at 2 periods of time, 100 s (blue) and 1000 s 
(red) 

 Figure 39 represents the absolute current density with respect to time for applied fields 

−20, −40 𝑎𝑛𝑑 − 60 𝑘𝑉/𝑚𝑚. It is obvious that the current density increases with respect to the 

applied electric field. Besides, even after three hours of polarization, the experimental current 

density seems to be decreasing with respect to polarization time and does not attain a stationary 

state. Furthermore, all the experimental current density curves have nearly the same slope.  

As mentioned previously, the first 10 seconds of experimental current measurements will be 

ignored during the optimization process. 

 

Figure 39: Absolute current density versus time for applied fields of (blue): −20 𝑘𝑉/𝑚𝑚, (red): −40 𝑘𝑉/𝑚𝑚, 
(yellow): −60 𝑘𝑉/𝑚𝑚 

IV.4 Problem formulation 

IV.4.1 Selection of model parameters  

All the unknown parameters of the BCT defined in Chapter 1 will be optimized in this section.  
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An additional parameter (𝛼) is included in this chapter which represents the initial charges inside 

LDPE before starting the experiment. According to the protocol presented in Figure 40, 6 

experiments are performed; thus, 6 additional parameters will be added to the optimization 

procedure to estimate the initial net charge density before each experiment. According to Figure 

40, 𝛼𝐸𝑥𝑝1
−20 , 𝛼𝐸𝑥𝑝1

−40 , 𝛼𝐸𝑥𝑝1
−60  represents the initial net charge density before starting space charge 

measurements for fields −20,−40 and −60 𝑘𝑉/𝑚𝑚, respectively. Also, 𝛼𝐸𝑥𝑝2
−20 , 𝛼𝐸𝑥𝑝2

−40  and 𝛼𝐸𝑥𝑝2
−60  

represents the initial net charge density before starting current measurements for fields 

−20, −40 𝑎𝑛𝑑 − 60 𝑘𝑉/𝑚𝑚, respectively. The units, symbols, and bounds of all the unknown 

parameters are displayed in Table 10. 

 

Figure 40: Experimental protocol showing the initial net density of charges before each experiment. 

Table 10: Units, Symbols and bounds of the unknown parameters. 

Parameters 

Barrier 

height of 

injection 

Shallow 

trapping 

depth 

Trapping 

coefficient 

Detrapping 

coefficient 

Recombination 

reducation 

pre-factor 

Inter-

trap 

distance 

Initial 

charge 

density 

Unit eV eV s−1 s−1 unitless 𝑛𝑚 𝐶/𝑚3 

Symbol 𝑤𝑒    𝑤ℎ 𝑤𝑚𝑜𝑒
  𝑤𝑚𝑜ℎ

 𝐵𝑒    𝐵ℎ 𝐷𝑒     𝐷ℎ 𝑅1        𝑅2         𝑅3 𝑎𝑒     𝑎ℎ 𝛼 

Lower 

Bound (lb) 
1 0.3 0 0 0.001 0 0 

Upper 

Bound (ub) 
1.3 0.72 1 1 1 20 15 

 

The lower and upper bounds are chosen based on previous experimental measurements made by 

various researchers, such that: 

• For electron injection, the theoretical injection barrier height corresponding to a gold–

polyethylene interface is 5 eV. When this value was applied to the Schottky law, the 
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simulated current density is ten decades lower than the experimental value. This 

theoretical value does not account the local interface conditions (local field strengthening 

on specific locations, chemical impurities forming deep traps) and therefore cannot be 

used in simulations. Other research proposed different values of the injection barriers in 

the range [1 𝑒𝑉 − 1.3 eV]  based on the outcomes of charge transport models in 

polyethylene [13], [14]. Therefore, this range will be considered in our study. 

• The PEA measurements have been used by several researchers [15], [16] to approximate 

the charge mobility. Depending on the type of carrier and the temperature, the final 

estimation produced mobilities in the range of 10−12 − 10−14 𝑚2𝑉−1𝑠−1. Thus, the ideal 

range of shallow trapping depth is [0.3 − 0.72 𝑒𝑉] and inter-trap distance in the range 

[0 − 20 𝑛𝑚]. 

• Some of the parameters, such as recombination coefficients, could not be defined easily 

by experiments. For this purpose, the criticality of the parameters was examined, i.e., by 

studying the effects of modifying the given parameter on the model outputs [17]. It has 

been shown that the recombination coefficients do not play a major role in simulating 

results at low temperatures or short periods of polarization. By considering one of these 

cases, recombination coefficients do not change the current density to a significant degree, 

and they weakly affect the charge density in the dielectric, in the limit of the investigated 

range of recombination rates from 10−5 to 1 m3/Cs. Thus, the ideal range of 

recombination pre-factors is [10−3  − 1]. 

Furthermore, in the literature, almost all of the present models consider the trapping and detrapping 

rates constant with respect to the increase of the electric field [1]–[3]. Nevertheless, based on 

experimental studies, it is suspected that these rates are related to the electric field, temperature, or 

other experimental conditions [4], [5]. It is worth mentioning that the detrapping phenomenon has 

previously been described using an equation that estimates the rate of detrapping as a function of 

temperature. However, no equations exist that could describe trapping and detrapping phenomena 

as a function of the electric field. 

It is therefore essential to better understand trapping and detrapping processes in the material. For 

this reason, twelve additional parameters were introduced into the optimization process, where 

each one represents the trapping and detrapping coefficients at a different electric field. The 

additional parameters are defined in Table 11. 
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Where 𝐵𝑒𝑖
, 𝐵ℎ𝑖

 are the trapping rates of electrons and holes, respectively, for 𝑖 =

−20, −40 and − 60 𝑘𝑉/𝑚𝑚 represents the applied fields used for our measurements. 𝐷𝑒𝑖
, 𝐷ℎ𝑖

 

are the detrapping rates of electrons and holes, respectively, for 𝑖 = −20,−40 and − 60 𝑘𝑉/𝑚𝑚 

represents the applied fields used for our measurements. 

Table 11: Trapping and detrapping parameters for different electric fields 

Electric field Trapping rate of 

electrons 

Trapping rate of 

holes 

Detrapping rate of 

electrons 

Detrapping rate of 

holes 

−20 𝑘𝑉/𝑚𝑚 𝐵𝑒−20
 𝐵ℎ−20

 𝐷𝑒−20
 𝐷ℎ−20

 

−40 𝑘𝑉/𝑚𝑚 𝐵𝑒−40
 𝐵ℎ−40

 𝐷𝑒−40
 𝐷ℎ−40

 

−60 𝑘𝑉/𝑚𝑚 𝐵𝑒−60
 𝐵ℎ−60

 𝐷𝑒−60
 𝐷ℎ−60

 

 

The intensity of the deep trapping process is described by the detrapping coefficient 𝐷𝑒,ℎ, which 

reflect the detrapping rate per unit of time, are defined as: 

𝐷𝑡𝑟𝑒 = 𝐷𝑒 ⋅ 𝑛𝑒𝑡 (30) 

𝐷𝑡𝑟ℎ = 𝐷ℎ ⋅ 𝑛ℎ𝑡 (31) 

 

Previous studies proposed an equation to estimate the detrapping rates 𝐷𝑒,ℎ with respect to 

temperature, such that:  

𝐷𝑒,ℎ = 𝑣 ∙ 𝑒xp (
−𝑤𝑡𝑟𝑒,ℎ

𝑘𝐵𝑇
) (32) 

 

Where 𝑣  is the frequency of the phonons, 𝑤𝑡𝑟𝑒,ℎ
 are the barrier heights to escape from deep traps, 

𝑘B = 1.381 × 10−23 𝐽/𝐾 stands for Boltzmann constant, and T is the temperature. 

In this study, instead of using Equation 5, the detrapping rates 𝐷𝑒,ℎ will be supposed as an unknown 

parameter that varies depending on the electric field (Table 11), because the temperature is 

constant. 

In total, 27 unknown model parameters are included in the optimization process. The trapping and 

detrapping phenomena are described by using 12 distinct parameters (as shown in Table 11), to 

evaluate their values at different electric fields. 6 additional parameters are introduced to the 

optimization process to evaluate the initial charge density at the beginning of each experiment. 

Besides, 2 parameters are used to represent the injection barrier heights of electrons and holes. 2 
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parameters represent the shallow trap depth of electrons and holes. 2 represent the inter-trap 

distance between two shallow traps. Finally, 3 parameters represent the recombination process 

between different types of carriers.  

In our case, TRRA is used to estimate the unknown variables to achieve the minimum squared 

difference between the experimental and simulated data (Figure 41). It was implemented and 

coded in MATLAB using “lsqnonlin” function. 

 

 

Figure 41: Principle of the optimization technique. 𝑃 is the set of unknown parameters, 𝑥 represents the position, 
𝑡 represents the time, 𝑓𝑒𝑥𝑝 are the experimental data, 𝑓𝑠𝑖𝑚 are the simulated data. 

The first and most important step to start an optimization method is to select the starting point of 

the optimization algorithm. A bad choice of the starting point, especially in our case (i.e., large 

number of unknown parameters), may produce a prohibitive time of computation, as well as the 

convergence rate that may be also affected (Figure 42). In order to avoid this, a particular technique 

has been used to produce an initial approximation of 𝑃0 that has the potential to converge faster to 

the optimal solution. After studying the sensitivity of each parameter with respect to time using 

Sobol’s method [19], results show that exact values of 𝑤𝑒 and 𝑤ℎ can be well approximated by 

optimizing the data of the first [10 − 300] seconds of polarization (i.e., the injection parameters 

are the most effective parameters at short time). In other words, optimizing the difference between 

experimental and simulated results, using the data of the first 300 seconds, will produce a good 

approximation for 𝑤𝑒 and 𝑤ℎ, and thus, a good approximation for the starting point 𝑃0. For this 

reason, the optimization process will be divided into two steps. First, all parameters will be 

optimized, considering only the first 300 seconds. Then, the optimal set of parameters produced 

by the first step will be used as the starting point to optimizing the data considering the total 

polarization time. 
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Figure 42: Good and bad starting points of optimization 

IV.4.2  Strategy to choose a cost function  

The methodology is as follows: assume that we need to find the value of a set of parameters vector 

of real variables 𝑃⋆ such that it minimizes the cost function 𝐶(𝑃), defined as: 

𝐶(𝑃) = ‖𝑓𝐸𝑥𝑝 − 𝑓𝑆𝑖𝑚(𝑃)‖ (33) 

Where 𝑓𝑆𝑖𝑚(𝑃) are the simulated data by the BCT model and 𝑓𝐸𝑥𝑝 represents the experimental 

data. 𝑓𝐸𝑥𝑝 can be substituted by several experimental measurements, such as, charge density, 

current density, or electroluminescence, etc.. In this study, we will only focus on using the charge 

and current density measurements.  

Thus, the optimization problem to be solved is defined as:  

min
𝑃∈ℝ𝑛

𝐶(𝑃) 

𝑠. 𝑡.  𝑙𝑏 ≤ 𝑃 ≤  𝑢𝑏 
(34) 

 

The major objective of this research is to identify a unique set of parameters that can fit both 

current and charge experiments, regardless of the used experimental conditions (EC). 

It has recently been proved [20] that integrating multiple experiments with different experimental 

conditions and applying them in the optimization process can help in enhancing the convergence 

accuracy and efficiency of the optimization algorithm toward the globally optimal set of 

parameters (Figure 43). 
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Figure 43: The strategy used for finding the unique optimal solution that fit all experiments. 𝐸𝐶𝑖=1..3  are three 
different experimental conditions, 𝑇𝑖  is the temperature, 𝐸𝑖  is the applied electric field, 𝑡𝑝𝑖

 is polarization time 

 

Three different electric fields are considered, such that, 𝐸1 = −20 𝑘𝑉/𝑚𝑚, 𝐸2  =  −40 𝑘𝑉/𝑚𝑚, 

and 𝐸3  =  −60 𝑘𝑉/𝑚𝑚 respectively for EC1, EC2 and EC3. Three hours of polarization time are 

used for all the experiments such that, 𝑡𝑝1
= 𝑡𝑝2

= 𝑡𝑝3
= 3 hours. All experiments are performed 

at room temperature (T1 = T2 = T3 = 20 ℃) 

Therefore, in this section the TRRA will be used to optimize a multi-objective cost function. This 

cost function can be formulated in 3 different ways, such that:  

Case 1: The cost function uses only the data provided by the current density measurements. 

 

 
min
𝑃∈ℝ𝑛

 𝐶1(𝑃) 

𝑠. 𝑡.  𝑙𝑏 ≤ 𝑃 ≤  𝑢𝑏 
(35) 
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where  

𝐶1(𝑃) =
‖𝑗𝑒𝑥𝑝 − 𝑗𝑠𝑖𝑚(𝑃)‖−20𝑘𝑉⋅𝑚𝑚−1

‖𝑗𝑒𝑥𝑝‖−20𝑘𝑉⋅𝑚𝑚−1
+

‖𝑗𝑒𝑥𝑝 − 𝑗𝑠𝑖𝑚(𝑃)‖−40𝑘𝑉⋅𝑚𝑚−1

‖𝑗𝑒𝑥𝑝‖−40𝑘𝑉⋅𝑚𝑚−1
+

‖𝑗𝑒𝑥𝑝 − 𝑗𝑠𝑖𝑚(𝑃)‖−60𝑘𝑉⋅𝑚𝑚−1

‖𝑗𝑒𝑥𝑝‖−60𝑘𝑉⋅𝑚𝑚−1
 

 

Case 2: The cost function uses only the data provided by the charge density measurements. 

 
min
𝑃∈ℝ𝑛

 𝐶2(𝑃) 

𝑠. 𝑡.  𝑙𝑏 ≤ 𝑃 ≤  𝑢𝑏 
(36) 

Where  

𝐶2(𝑃) =
‖𝑛𝑒𝑥𝑝 − 𝑛𝑠𝑖𝑚(𝑃)‖−20𝑘𝑉⋅𝑚𝑚−1

‖𝑛𝑒𝑥𝑝‖−20𝑘𝑉⋅𝑚𝑚−1
+

‖𝑛𝑒𝑥𝑝 − 𝑛𝑠𝑖𝑚(𝑃)‖−40𝑘𝑉⋅𝑚𝑚−1

‖𝑛𝑒𝑥𝑝‖−40𝑘𝑉⋅𝑚𝑚−1
+

‖𝑛𝑒𝑥𝑝 − 𝑛𝑠𝑖𝑚(𝑃)‖−60𝑘𝑉⋅𝑚𝑚−1

‖𝑛𝑒𝑥𝑝‖−60𝑘𝑉⋅𝑚𝑚−1
 

 

Case 3: The cost function uses the data for both charge and current density measurements  

        (i.e., the combination of case 1 and case 2) 

 
min
𝑃∈ℝ𝑛

 𝐶3(𝑃) 

𝑠. 𝑡.  𝑙𝑏 ≤ 𝑃 ≤  𝑢𝑏 
(37) 

 

Where: 

• 𝐶3(𝑃) = 𝐶1(𝑃) + 𝐶2(𝑃) 

• 𝑃 is a vector that contains all the unknown parameters related to the BTC model 

• ‖⋅‖ is the Euclidean norm or 2-norm.  

• 𝑗𝑒𝑥𝑝(𝑡) are the experimental current density.  

• 𝑗𝑠𝑖𝑚(𝑡, 𝑃) are the simulated current density computed using the bipolar charge transport 

model in terms of P. 

• 𝐶1(𝑃) represents the relative error between 𝑗𝑒𝑥𝑝 and 𝑗𝑠𝑖𝑚(𝑃), so then 𝐶1(𝑃) is a unit-less 

scalar. 

• 𝑛𝑒𝑥𝑝 are the experimental data charge density.  

• 𝑛𝑠𝑖𝑚(𝑃) are the simulated charge density computed using the bipolar charge transport 

model in terms of parameters P. 

• 𝐶2(𝑃) represents the relative error between 𝑛𝑒𝑥𝑝 and 𝑛𝑠𝑖𝑚(𝑃), so then 𝐶2(𝑃) is a unit-less 

scalar. 
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• 𝑙𝑏 and 𝑢𝑏 are lower and upper bounds of the parameters respectively.  

IV.5 Parameters optimization using TRRA 

IV.5.1 Influence of the cost function on the optimization outputs 

In the following section, the three cases will be examined and compared to choose the most helpful 

cost function that can provide the best optimal solution compared to other cost functions. 

IV.5.1.1  Cost function using current density  

 In this section, TRRA is used to calculate the unknown parameters to achieve the minimum 

squared difference between the experimental and simulated current density using three different 

applied fields (−20,−40 and −60 𝑘𝑉/𝑚𝑚). Consequently, the cost function to be minimized is 

defined as:  

𝐶1(𝑃) =
‖𝑗𝑒𝑥𝑝 − 𝑗𝑠𝑖𝑚(𝑃)‖−20𝑘𝑉⋅𝑚𝑚−1

‖𝑗𝑒𝑥𝑝‖−20𝑘𝑉⋅𝑚𝑚−1
+

‖𝑗𝑒𝑥𝑝 − 𝑗𝑠𝑖𝑚(𝑃)‖−40𝑘𝑉⋅𝑚𝑚−1

‖𝑗𝑒𝑥𝑝‖−40𝑘𝑉⋅𝑚𝑚−1
+

‖𝑗𝑒𝑥𝑝 − 𝑗𝑠𝑖𝑚(𝑃)‖−60𝑘𝑉⋅𝑚𝑚−1

‖𝑗𝑒𝑥𝑝‖−60𝑘𝑉⋅𝑚𝑚−1
 

 

 

Figure 44: Experimental current density (blue) versus simulated current density (red) using the optimal parameters 
𝑃1, for applied fields of −20,−40,−60 𝑘𝑉/𝑚𝑚, from left to right. 

 

When 𝐶1(𝑃) was minimized, TRRA produced an optimal set of parameters defined as 𝑃1. Figure 

44 shows that 𝑃1 was capable of producing a very good match between experimental and simulated 

current density for the three fields under consideration. The simulated current does not reach a 

stationary state for all considered fields, which is consistent with the experimental measurements. 

Let us have a look at the simulated charge density obtained by BCT model using 𝑃1, which are 

displayed in Figure 45. The upper row of this figure represents the experimental space charge 

profiles obtained by PEA for three applied fields in (−20, −40,−60 𝑘𝑉/𝑚𝑚). The lower row of 

Figure 45 represents the space charge profiles obtained from simulating the three applied fields in 

(−20,−40,−60 𝑘𝑉/𝑚𝑚) using the BCT model using 𝑃1. 
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According to Figure 45, if the charge density is simulated using 𝑃1 (parameters obtained by 

optimizing only current density data (𝐶1)), a significant difference could be noticed between 

experimental and simulated outcomes. Thus, 𝑃1 is found as a local optimal solution that only fits 

the experimental current measurements and contradicts the space charge experimental 

measurements. However, our target is to find a global or unique set of parameters that is able to fit 

both current and charge measurements at the same time. It is worth mentioning that charge density 

data may provide more information than current measurements as the space charge measurements 

are offered with respect to time and position, whereas the current measurements are only with 

respect to time. For this reason, the next section will focus on optimizing the parameters by 

minimizing the difference between experimental and simulated charge density instead of current 

density.  

 

Figure 45: Space charge profiles as a function of the time and sample thickness at room temperature, for fields of 
−20,−40 𝑎𝑛𝑑 − 60 𝑘𝑉/𝑚𝑚, from left to right. Upper row: experimental charge density (PEA). Lower row: 

simulated charge density using 𝑃1 

IV.5.1.2  Cost function using charge density  

Here TRRA is used to minimize the squared difference between the experimental and simulated 

charge density using three different electric fields. Thus, the cost function to be optimized is 

defined as:  

 

𝐶2(𝑃) =
‖𝑛𝑒𝑥𝑝 − 𝑛𝑠𝑖𝑚(𝑃)‖

−20𝑘𝑉⋅𝑚𝑚−1

‖𝑛𝑒𝑥𝑝‖−20𝑘𝑉⋅𝑚𝑚−1

+
‖𝑛𝑒𝑥𝑝 − 𝑛𝑠𝑖𝑚(𝑃)‖

−40𝑘𝑉⋅𝑚𝑚−1

‖𝑛𝑒𝑥𝑝‖−40𝑘𝑉⋅𝑚𝑚−1

+
‖𝑛𝑒𝑥𝑝 − 𝑛𝑠𝑖𝑚(𝑃)‖

−60𝑘𝑉⋅𝑚𝑚−1

‖𝑛𝑒𝑥𝑝‖−60𝑘𝑉⋅𝑚𝑚−1
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The optimal set of parameters found by optimizing 𝐶2(𝑃) is defined as 𝑃2 and the obtained results 

are displayed in Figure 46. Based on this figure, there is a good correlation between experimental 

and simulated data for all applied fields, with the simulated patterns being compatible with the 

experimental ones. Furthermore, most of the properties highlighted in the experiment are reflected 

by the model, such as the fast injection of negative charges at short period and then the advantage 

of positive charges inside the bulk after 500 seconds. 

 

Figure 46: Space charge profiles as a function of the time and sample thickness at room temperature, for fields of 
−20,−40 𝑎𝑛𝑑 − 60 𝑘𝑉/𝑚𝑚, from left to right. Upper row: experimental charge density (PEA). Lower row: 

simulated charge density using 𝑃2 

Same as what we have done previously, let us check the current density obtained by simulating 

BCT model using 𝑃2, which are represented in Figure 47. 

For all considered applied fields, the difference between the experimental and simulated current 

density is found to be more than a decade. Despite the fact that charge density provides more 

information than current measurements, when the current density is simulated using 𝑃2, a 

significant mismatch could be noticed between experimental and simulated outcomes (Figure 47). 

Thus, 𝑃2 is found as a local optimal solution that only fits the experimental charge density 

measurements and contradicts the current experimental measurements. 
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Figure 47: Experimental current density (blue) versus simulated current density (red) using the optimal parameters 
𝑃2, for applied fields of −20,−40,−60 𝑘𝑉/𝑚𝑚, from left to right. 

IV.5.1.3  Optimization using both current and charge densities  

As mentioned previously, our main target is to find a unique set of parameters able to fit both 

current and charge experimental data simultaneously. However, according to the results 

represented in case 1 and case 2, it has been proved that 𝑃1 and 𝑃2 can produce a good correlation 

between experimental and simulated current and charge densities individually. On the other side, 

when 𝑃1 is used to simulate the charge density, or when 𝑃2 is used to simulate current density, an 

apparent discrepancy between experimental and simulated results could be observed. For this 

reason, TRRA is used in this section to minimize the squared difference between the experimental 

and simulated of both charge and current densities. Both cost functions will be combined in a 

single cost function 𝐶3(𝑃). In order to combine 𝐶1 and 𝐶2 in a single cost function 𝐶3, both 

functions were normalized as you can see in Equations 35 and 36 (Unit-less outputs). The cost 

function to be optimized is defined as: 

 

𝐶3(𝑃) = 𝐶1(𝑃) + 𝐶2(𝑃) 

 

𝐶3(𝑃) =
‖𝑗

𝑒𝑥𝑝
− 𝑗

𝑠𝑖𝑚
(𝑃)‖

−20𝑘𝑉⋅𝑚𝑚−1

‖𝑗
𝑒𝑥𝑝

‖
−20𝑘𝑉⋅𝑚𝑚−1

+
‖𝑗

𝑒𝑥𝑝
− 𝑗

𝑠𝑖𝑚
(𝑃)‖

−40𝑘𝑉⋅𝑚𝑚−1

‖𝑗
𝑒𝑥𝑝

‖
−40𝑘𝑉⋅𝑚𝑚−1

+
‖𝑗

𝑒𝑥𝑝
− 𝑗

𝑠𝑖𝑚
(𝑃)‖

−60𝑘𝑉⋅𝑚𝑚−1

‖𝑗
𝑒𝑥𝑝

‖
−60𝑘𝑉⋅𝑚𝑚−1

+
‖𝑛𝑒𝑥𝑝 − 𝑛𝑠𝑖𝑚(𝑃)‖

−20𝑘𝑉⋅𝑚𝑚−1

‖𝑛𝑒𝑥𝑝‖−20𝑘𝑉⋅𝑚𝑚−1

+
‖𝑛𝑒𝑥𝑝 − 𝑛𝑠𝑖𝑚(𝑃)‖

−40𝑘𝑉⋅𝑚𝑚−1

‖𝑛𝑒𝑥𝑝‖−40𝑘𝑉⋅𝑚𝑚−1

+
‖𝑛𝑒𝑥𝑝 − 𝑛𝑠𝑖𝑚(𝑃)‖

−60𝑘𝑉⋅𝑚𝑚−1

‖𝑛𝑒𝑥𝑝‖−60𝑘𝑉⋅𝑚𝑚−1

 

 

The optimized set of parameters 𝑃3 produced by minimizing 𝐶3(𝑃) are displayed in Table 12, 13 

and 14. The comparison between the experimental measurements and the simulated results using 
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𝑃3 are represented in Figure 48 and Figure 49. All the results are discussed in the following 

sections. 

Table 12: Optimized parameters 𝑃3  obtained by minimizing 𝐶3(𝑃) 

Parameters  𝑤𝑒              𝑤ℎ 𝑤𝑚𝑜𝑒           𝑤𝑚𝑜ℎ
 𝑅1          𝑅2         𝑅3 𝑎𝑒          𝑎ℎ 

𝑃3 1.184       1.200 0.563        0.602 1            1           1 2.4         1.1 

 

Table 13: Optimized trapping and detrapping parameters obtained by minimizing 𝐶3(𝑃) 

Electric field 𝐵𝑒 𝐵ℎ 𝐷𝑒 𝐷ℎ 

−20 𝑘𝑉/𝑚𝑚 0.6770 0.0125 0.0030 0.0003 

−40 𝑘𝑉/𝑚𝑚 0.6772 0.0301 0.0034 0.0012 

−60 𝑘𝑉/𝑚𝑚 0.6802 0.0963 0.0035 0.0092 

 

Table 14: Optimal values of the initial net density of charges parameters by minimizing 𝐶3(𝑃) 

Parameters 𝛼𝐸𝑥𝑝1
−60  𝛼𝐸𝑥𝑝1

−40  𝛼𝐸𝑥𝑝1
−20  𝛼𝐸𝑥𝑝2

−60  𝛼𝐸𝑥𝑝2
−40  𝛼𝐸𝑥𝑝2

−20  

𝑃3  0.01 0.02 0.03 1.25 5.49 14.7 

 

Figure 48 shows that 𝑃3 can produce a good match between experimental and simulated current 

density, for all considered fields. The difference in current density between the experimental and 

simulated results is less than a quarter of a decade. It is worth noting that it is extremely difficult 

to find a single set of parameters that can match numerous current measurements simultaneously, 

because the experimental current measurements are not stable, and the curve shape may change if 

the same experiment is repeated twice. This is one of the factors that influenced the correlation 

between experimental and simulated current. 

 

Figure 48: Experimental current density (blue) versus simulated current density (red) using the optimal 
parameters 𝑃3, for applied fields of −20,−40,−60 𝑘𝑉/𝑚𝑚 (from right to left). 
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Figure 49: Space charge profiles as a function of the time and sample thickness at room temperature, for fields of 
−20,−40 𝑎𝑛𝑑 − 60 𝑘𝑉/𝑚𝑚, from left to right. Upper row: experimental charge density (PEA). Lower row: 

simulated charge density using 𝑃3 

It is clear from Figure 49 that 𝑃3 can also produce a good match between experimental and 

simulated charge density for all of the three applied fields in (−20,−40,−60 𝑘𝑉/𝑚𝑚). Most of 

the properties highlighted in the experiment, such as the dominance of negative charge at a short 

time, then the dominance of positive charges until the end of the experiment, are reflected by the 

model.  

IV.5.2 Parameter analysis 

Section 5 shows that the optimized parameters 𝑃3 are more reliable than 𝑃1 and 𝑃2 since 𝑃3 can 

suit both current and charge densities. Thus, the discussion part will be focused on analyzing and 

interpreting the results provided by 𝑃3 (Table 12, 13 and 14). 

IV.5.2.1  Recombination rate 

The recombination reduction pre-factors 𝑅𝑖 is introduced in order to capture the effect of reduced 

Langevin recombination. Based on Table 12, the optimal values of the recombination reduction 

pre-factors (𝑅1 = 𝑅2 = 𝑅3 = 1), prove that Langevin’s recombination form fully describes the 

recombination process with no reduction is taking place. The recombination rate could be 

evaluated by substituting 𝑅𝑖=1,…,3 in Equations 38, 39 and 40.  

For recombination rate between mobile electrons (𝑒𝜇) and trapped holes (ℎ𝑡):  
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𝑆𝑒𝜇−ℎ𝑡 = 𝑅1

𝜇𝑒

𝜀0𝜀𝑟
 (38) 

 

For recombination between mobile holes (ℎ𝜇) and trapped electrons (𝑒𝑡): 

𝑆𝑒𝑡−ℎ𝜇 = 𝑅2

𝜇ℎ

𝜀0𝜀𝑟
 (39) 

 

For recombination between mobile electrons (𝑒𝜇) and mobile holes (ℎ𝜇): 

𝑆𝑒𝜇−ℎ𝜇 = 𝑅3

(𝜇𝑒 + 𝜇ℎ)

𝜀0𝜀𝑟
 (40) 

 

In our model, the recombination rate is approximately stable with respect to time and position. 

Thus, the recombination rate is evaluated by computing its average value with respect to time and 

position. 

 

Figure 50: recombination rate between different types of carriers.  

Figure 50 represents the recombination rate between different kinds of carriers with respect to the 

applied electric field. The outputs are simulated using the BCT model using 𝑃3. The blue curve 

represents the recombination rate between trapped electrons and mobile holes; the red curve 

represents the recombination rate between mobile electrons and mobile holes; and finally, the 

black curve represents the recombination between mobile electrons and trapped holes. The curves 

demonstrate that recombination between trapped electrons and mobile holes (blue) has the lowest 

recombination rate compared to other recombination processes. Furthermore, the recombination 

rate between mobile electrons and mobile holes (red) is equivalent to that between mobile electrons 
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and trapped holes (black). In addition to the discussed field dependencies of the recombination 

rates, their temperature dependency also exists and follows the consideration of the mobility 

equation. 

IV.5.2.2  Trapping and detrapping rates 

Figure 51 represents the optimal values of trapping and detrapping rates at fields ranging from 

−20 𝑘𝑉/𝑚𝑚 to −60 𝑘𝑉/𝑚𝑚 found by TRRA. Based on Figure 51, both trapping and detrapping 

rates are found to be increasing with the increase of the electric field. Besides, the trapping rates 

of electrons and holes are greater than the detrapping rates at any electric field. Also, the trapping 

rate of electrons is much higher than that of holes. Moreover, the rise of the trapping and detrapping 

rates of electrons with respect to the electric field is insignificant compared to the increase of the 

rates for holes. 

It is worth noting that these results are based on only three different applied fields 

(−20,−40, and −60 𝑘𝑉/𝑚𝑚), which may be inaccurate. Additional experiments should be 

indroduced to the optimization process to improve the estimation of trapping and detrapping rates 

behavior at different fields, which could contribute to construct an empirical law able to 

characterize the trapping and detrapping rates in terms of the electric field. 

 

Figure 51: Trapping and detrapping rates in 𝑠−1 for electrons and holes as a function of applied field at 20°C 

IV.5.2.3  Mobility 

The electrons and holes mobility could be estimated using Figure 52 by estimating the velocity of 

negative (blue) and positive (red) charges at short time (𝑡 = 10 𝑠). The velocity could be 

experimentally estimated by computing the slope equation which is found by determining the 
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amount of rise (or drop) of the line between two different points. The slope equation is defined as 

Δ𝑥

Δ𝑡
. Where 𝑥 is the difference in y-coordinates for the two points, 𝑡 is the difference in x-coordinates 

for these two points. Since only few amount of injected charges are detected at the beginning of 

the experiment, the range of the color map is reduced in this part to [−1,1] 𝐶/𝑚3 to have a pure 

representation of the injection process of negative and positive charges. Only the experiment with 

−20 𝑘𝑉/𝑚𝑚 applied electric field could be used in this case to estimate the mobility of carriers.  

For the PEA method, the electric field is applied with a ramp of 0.25 𝑘𝑉/𝑠 and thus it needs around 

10 𝑠 to achieve −20 𝑘𝑉/𝑚𝑚 applied electric field. Moreover, PEA needs more than 30 𝑠 to reach 

−40 or −60 𝑘𝑉/𝑚𝑚 applied electric field. However, as mentioned previously, we should use the 

data provided at a short period (𝑡 < 15 𝑠) in order to get a clear representation of carrier mobility. 

For this reason, the experiment with −20 𝑘𝑉/𝑚𝑚 electric field is the only one that could 

contribute to estimating the experimental mobility of both carriers. It is worth mentioning that this 

kind of approximation is not totally accurate, but it could provide additional useful information, 

such as the range of mobility values for both carriers. 

 

Figure 52: Experimental net density of charge. Applied field: −20 𝑘𝑉/𝑚𝑚. First 20 seconds of polarization process, 
temperature: 20 °C, sample thickness: 150 µ𝑚, color bar provides charge density scale in 𝐶/𝑚3. 𝑥0 = 0 µ𝑚 for 

positive charges at 𝑡 = 0 and 𝑥0 = 150 µ𝑚 for negative charges at 𝑡 = 0. 𝑥1 represents the position at 𝑡 = 10 𝑠. 

For the electrons:  

𝑣𝑒(−20𝑘𝑉𝑚𝑚−1) ≈ 7.2 𝜇𝑚/𝑠 

For the holes:  

𝑣ℎ(−20𝑘𝑉𝑚𝑚−1) ≈ 2.8 𝜇𝑚/𝑠 

where 𝑣𝑒 and 𝑣ℎ are the approximated experimental velocities of electrons and holes respectively  
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Now to compute the experimental mobility of the electrons and holes, one has to substitute the 

velocity values in Equation 41: 

𝑣𝑒,ℎ =  𝜇𝑒,ℎ𝑒𝑥𝑝
× |𝐸0| (41) 

Where 𝐸0 is the initial applied electric field, and 𝜇𝑒,ℎ𝑒𝑥𝑝
 is the approximated experimental mobility 

of electrons and holes. The results are displayed in Table 15. 

On the other hand, the simulated mobility of electrons and holes obtained by the BCT model using 

𝑃3 could be evaluated by substituting 𝑤𝑚𝑜𝑒, 𝑤𝑚𝑜ℎ, 𝑎𝑒 and 𝑎ℎ in mobility equation, defined as: 

𝜇𝑒,ℎ(𝑥, 𝑡) =
2𝑣𝒂𝒆,𝒉

𝐸(𝑥, 𝑡)
∙ exp (−

𝑞𝒘𝒎𝒐𝒆,𝒉

𝑘𝐵𝑇
) ∙ sinh (

𝑞𝐸(𝑥, 𝑡)𝒂𝒆,𝒉

2𝑘𝐵𝑇
) (42) 

 

Hence, experimental and simulated mobility values of electrons and holes are displayed in Table 15.  

Table 15: Comparison between experimental and simulated mobility values of electrons and holes in 𝒎𝟐. 𝑽−𝟏. 𝒔−𝟏. 

Electric field 𝜇𝑒 𝜇𝑒𝑒𝑥𝑝
 𝜇ℎ 𝜇ℎ𝑒𝑥𝑝

 

−20 𝑘𝑉/𝑚𝑚 3.5 × 10−13 3.6 × 10−13  1.35 × 10−14 1.4 × 10−13  
−40 𝑘𝑉/𝑚𝑚 5 × 10−13  1.5 × 10−14  

−60 𝑘𝑉/𝑚𝑚 9 × 10−13  1.8 × 10−14  

 

According to Table 15, (mobility values obtained from the experimental measurements), the 

mobility of electrons is found greater than the mobility of holes for any applied field. These results 

are in agreement with the simulated mobility values that are displayed in Table 15 (mobility values 

obtained by simulating the BCT model using 𝑃3), where the mobility of electrons is greater than 

that of holes. Besides, the simulated mobility of electrons is found to be sensitive with respect to 

electric field compared to the mobility of holes. For example, the mobility of electrons increased 

from 3.5× 10−13 to 9× 10−13 𝑚2. 𝑉−1. 𝑠−1, however, the mobility of holes increased slightly from 

1.35× 10−14 to 1.8× 10−14 𝑚2. 𝑉−1. 𝑠−1. Furthermore, the experimental and simulated mobilities 

of electrons are found to be approximately the same.  

IV.5.2.4  Initial charge conditions 

The optimal values of the initial net charge density parameters are displayed in Table 14. While 

performing the space charge measurements (i.e., Experiment 1, Figure 40), the initial charge 

density inside the bulk is found to be increasing after performing a new experiment on the same 

LDPE sample (i.e., 𝛼𝐸𝑥𝑝1
−60 < 𝛼𝐸𝑥𝑝1

−40 < 𝛼𝐸𝑥𝑝1
−20 ). It is worth noting that Experiment 1 started with 
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highest applied electric field −60 𝑘𝑉/𝑚𝑚. The same for the current measurements (i.e., 

Experiment 2, Figure 40), the initial charge density is found to be increasing after performing a 

new experiment (𝛼𝐸𝑥𝑝2
−60 < 𝛼𝐸𝑥𝑝2

−40 < 𝛼𝐸𝑥𝑝2
−20 ). It should be mentioned that current measurements 

were performed after finishing the space charge measurements.  

The quantity of charges obtained during the current measurements are very high compared to the 

charges found initially during the space charge measurements  

(i.e., 𝛼𝐸𝑥𝑝2
−20 ≫ 𝛼𝐸𝑥𝑝1

−20 ). This may be due to the fact that two different discharging techniques were 

used for each experiment. For the charge space measurements, the sample was manually 

discharged by placing the sample between two aluminum discs. Whereas for the current 

measurements, the sample was discharged by grounding both electrodes without touching the 

sample. 

IV.6 Conclusion 

In order to improve the BCT model, TRRA has been applied to identify a unique optimal set of 

parameters that best match both current and charge density measurements at varying electric fields 

(−20,−40,−60 𝑘𝑉/𝑚𝑚). Three distinct cases were examined in this chapter, where each 

example assumed a specific cost function to highlight the difficulties of finding a unique 

parameter. First, the cost function considered only the current density data for the optimization 

process. The outputs of TRRA revealed a strong correlation between experimental and simulated 

current density. Furthermore, if the charge density is simulated using these parameters, a 

significant mismatch is noticed between the experimental and simulated charge density. In the 

second case, the cost function examined only the charge density data in the optimization process. 

The outputs of TRRA provided a good match between experimental and simulated charge density, 

but does not fit the experimental current density. Finally, the third cost function was created to 

incorporate both charge and current data in the optimization process. The findings obtained by 

applying the third cost function demonstrated a strong correlation between experimental and 

simulated outputs for both current and charge density data. Then, all the obtained optimal 

parameters were analyzed and discussed. The optimal values of the recombination reduction pre-

factors prove that the recombination process is entirely characterized by Langevin’s recombination 

form with no reduction taking place. The optimal values of the mobility indicate that the mobility 

of electrons is higher than that of holes, which is consistent with the literature. Furthermore, the 
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experimental mobility values were approximated by calculating the slope of charge movement 

over a short time (𝑡 ≤ 10 𝑠), then these values were compared to the values provided by the BCT 

model. The experimental and simulated mobility values were found quite near to each other and 

varied in the same range. The outcomes of mobility values could be used as a starting point of 

optimization process in our future work.  

The optimal values of trapping and detrapping rates revealed that both trapping and detrapping 

rates increase with the increase of the electric field. Besides, the trapping rate is found to be greater 

than the detrapping rate for both carriers at any field. Moreover, the trapping rate of electrons was 

found to be much greater than that of holes. Whereas the detrapping rates of electrons and holes 

are found to be approximately equal. 

Finally, the initial charges inside the bulk were observed to be rising after performing a new 

experiment on the same LDPE sample, even though the sample was discharged for 24 hours. The 

results also anticipated that the discharge strategy influenced the discharging process. The manual 

discharging technique used for charge density measurements seems to be more effective than 

maintaining the sample between electrodes. 

The obtained optimal parameters properly suited both current and charge densities at varying 

electric fields. As noted earlier, the major objective of this work is to find a unique set of 

parameters that match both current and charge using any experimental conditions. In this study, 

only experiments with varying electric fields were examined, however, if the polarity of the electric 

field is reversed, the parameters may not suit the experimental outputs anymore. Thus, our 

technique might be further enhanced by introducing additional experiments with alternative 

experimental conditions (i.e., opposite polarity or varying temperatures) or adding another source 

of measurements (i.e., electroluminescence).  
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V.1 Introduction 

In the previous chapter, TRRA was used to find a unique set of parameters to fit both current and 

charge density data with varying electric fields. The obtained parameters produced a good 

correlation between experimental and simulated results. Unfortunately, the obtained parameters 

are not sufficient to predict the charge behavior for all experimental conditions. For this reason, 

the physical phenomena should be critically analyzed individually to understand their impact on 

the charge distribution. In this chapter, we will only focus on studying the charge injection 

phenomena taking place at the electrodes using optimization tools. 

In practice, the effects of electrode materials on charge injection processes are often addressed and 

have become a growing area of interest due to their influence on the space charge behavior [1]. 

Early experimental studies [2], [3] indicated that the electrode materials have a significant effect 

on the magnitude of the conduction current and space charge distribution. The major difficulty 

arises from the fact that there exist only a little knowledge regarding the charge injection at the 

electrodes and the trapping processes taking place in the bulk of LDPE.  

In the present study, the effect of four different electrode materials (i.e., gold (Au), aluminum 

(Al), semiconductor (Sc), and copper (Cu)), on the charge injection process will be investigated 

using the PEA technique. In order to reduce the influence of impurities such as antioxidants and 

cross-linking byproducts on space charge formation [3], additive-free LDPE was selected in the 

present study so that the effect of electrode materials on charge formation can be examined. 

It is important to note that the work presented in this chapter is a preliminary study. It is the first 

step to better understand the injection mechanism at the surface electrode in order to enhance its 

numerical modeling behavior. 

This chapter is divided into four sections. After this brief introduction, the second section will give 

a detailed explanation of the material preparation and the experimental protocol done in our 

laboratory. Besides, we will present the experimental measurements obtained by PEA using 

different surface electrodes. The third part will be concerned with optimizing the parameters using 

the experimental data, and finally, we will discuss and analyze the results. 
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V.2 Experimental measurements 

V.2.1 Material preparation and Experimental Protocol 

In this chapter, four LDPE samples with the same characteristics are manufactured to perform the 

experimental measurements using different electrodes. Indeed, the LDPE films are prepared using 

the same technique mentioned in chapter 4. Each sample is metallized with different kinds of 

materials on the surface. All samples are 150 µm thick and have a diameter of 80 mm. Three 

different metallic electrodes (Au, Al and Cu) with a diameter of 10 mm and a 50 nm thickness 

were sputter-coated onto the LDPE samples. In the case of Sc, a film of 75 μm thickness with a 

diameter of 10 mm was manufactured in our laboratory using a heating press. The Sc was attached 

to the LDPE sample by adding some silicon oil between them to guarantee good contact. 

The same experimental protocol is applied to the four different samples discussed previously 

Figure 53. The experimental protocol aims to measure the charge density in LDPE of thickness 

150 µm at two levels of fields, of −40 and −60 𝑘𝑉/𝑚𝑚, using the PEA method. As shown in 

Figure 53, each measurement consists of a polarization time of 90 minutes and a short-circuiting 

period of 24 hours between them.  

 

Figure 53: Material preparation and experimental protocol 

The sample has been discharged 24 hours after each measurement to eliminate the charges in the 

bulk as much as possible. The samples have been placed accurately in the PEA cell to ensure that 

all measurements are carried out at the same location while applying different electric fields.  

V.2.2 Charge density profiles for all experiments 

After performing all the measurements displayed in the protocol, the experimental results are 

displayed in Figure 54, 3, 4 and 5. All of the cartography in this section depicts the variation of 
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space charge behavior with respect to time and position under a DC stress at −40 and 

−60 𝑘𝑉/𝑚𝑚 (−6 𝑘𝑉 and −9 𝑘𝑉, respectively).  

In the following we try to study how different types of surface electrodes affect the injection 

process. However, this study is difficult to be done based on experimental data provided by PEA 

method, which are partially linked to the limited spatial and temporal resolution. For this reason, 

we intend to compare the nature of different electrodes using only the charge distribution 

cartography. These cartographies provide a tendency of charge build-up at short time that could 

be used to analyze the impact of surface electrodes on the injection process. 

V.2.2.1 Space charge distribution with gold electrodes (Au-LDPE-Au) 

 

Figure 54: Space charge profiles as a function of the time and sample thickness, for fields of −40 𝑎𝑛𝑑 −
60 𝑘𝑉/𝑚𝑚, from left to right, at room temperature. LDPE sample is coated by a gold layer on both sides. 

For −40 𝑘𝑉/𝑚𝑚 of applied field (left side of Figure 54), positive (red) and negative (blue) charges 

are detected immediately after the voltage is applied. The electrons could be observed with a strong 

and rapid injection directly after applying the voltage. Moreover, the mobility of electrons seems 

to be higher than that of holes. For a short time (t < 300 s), the number of negative charges is 

greater than the number of positive ones inside the bulk of LDPE sample. For a time greater than 

600 s, positive charges predominate inside the bulk of the insulator, compared to negative charges. 

Furthermore, after 1500 s of polarization, the insulator seems to reach an equilibrium state in terms 

of the space charge distribution, since the net density of charges remains stable until the end of the 

experiment. For −60 𝑘𝑉/𝑚𝑚 of applied field (right side of Figure 54), the same behavior takes 

place inside the bulk as it does under −40 𝑘𝑉/𝑚𝑚 of applied field. Furthermore, the number of 

injected charges increases as the applied voltage is increased.  
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V.2.2.2 Space charge distribution with Aluminum electrodes (Al-LDPE-Al) 

 

Figure 55: Space charge profiles as a function of the time and sample thickness, for fields of −40 and −60 𝑘𝑉/𝑚𝑚, 
from left to right, at room temperature. LDPE sample is coated by an Aluminum layer on both sides. 

According to Figure 55, for −40 𝑘𝑉/𝑚𝑚 (Left) applied field, negative charges are observed 

immediately after the voltage is applied. Only a few positive charges are injected compared to the 

quantity of negative charges through aluminum surfaces. Negative charges have the advantage 

inside the bulk of insulation compared to positive charges at any time of polarization. Moreover, 

the mobility of electrons seems to be higher than that of holes. After 1000 seconds, the behavior 

of the insulator seems to reach an equilibrium state in terms of the space charge distribution and 

amount of injected charge (i.e., the number of positive and negative charges remains stable until 

the end of the experiment). Moreover, the number of positive charges in the bulk of LDPE with 

aluminum electrodes appears to be less than the positive charges in the bulk of LDPE with gold 

electrodes. For −60 𝑘𝑉/𝑚𝑚 applied field (right), the same behavior takes place inside the bulk 

as it does under −40 𝑘𝑉/𝑚𝑚 of applied field. Moreover, the number of injected electrons 

significantly increases with the increase in the applied field. 

V.2.2.3 Space charge distribution with copper electrodes (Cu-LDPE-Cu)  

According to Figure 56, for −40 𝑘𝑉/𝑚𝑚 (Left) applied field, the negative charge could be seen 

with a strong and rapid injection directly after applying the voltage. Indeed, the behavior of 

negative charges is compatible with the behavior of LDPE with gold and aluminum electrodes at 

short time. Moreover, the mobility of electrons seems to be higher than that of holes. At short time 

(𝑡 <  300 seconds), the number of negative charges is greater than the number of positive ones 

inside the bulk of LDPE sample. Furthermore, for a time greater than 500 𝑠, positive charges have 

the advantage within the bulk of the insulator, compared to negative charges.  
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Figure 56 : Space charge profiles as a function of the time and sample thickness, for fields of −40 and −60 𝑘𝑉/
𝑚𝑚, from left to right, at room temperature. LDPE sample is coated by a copper layer on both sides. 

The behavior of positive charges after 500 s is identical to the positive charges behavior for LDPE 

with gold electrodes. Furthermore, for 5400 s of polarization, the insulator did not reach an 

equilibrium state in terms of the space charge distribution, where the net density of charges drops 

with respect to time. The equilibrium state was not reached maybe due to the impact of the trapped 

and detrapping phenomena or another microscopic phenomena taking place inside the bulk such 

as recombination between carriers. For −60 𝑘𝑉/𝑚𝑚 applied field (right), the same behavior takes 

place inside the bulk as it does under −40 𝑘𝑉/𝑚𝑚 of applied field. Moreover, the number of 

negative and positive charges significantly increases with the increase in the applied field. 

V.2.2.4 Space charge distribution with Semiconductor electrodes (Sc-LDPE-Sc) 

 

Figure 57: Space charge profiles as a function of the time and sample thickness, for fields of −40 and −60 𝑘𝑉/𝑚𝑚, 
from left to right, at room temperature. LDPE sample is coated by a Semi-conductor layer on both sides. 

According to Figure 57, for −40 𝑘𝑉/𝑚𝑚 (Left) applied field, the negative charge could be seen 

with a strong and rapid injection at the beginning of the experiment. Moreover, the mobility of 
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electrons seems to be higher than that of holes. For short time (t < 300 seconds), the number of 

negative charges is greater than the number of positive charges. For a time greater than 600 s, 

positive charges have the advantage inside the bulk of the insulator compared to negative charges. 

Furthermore, the insulator did not reach an equilibrium state in terms of the space charge 

distribution as the net density of charges drops after time passes. 

For −60 𝑘𝑉/𝑚𝑚 applied field (right), the same behavior takes place inside the bulk as it does 

under −40 𝑘𝑉/𝑚𝑚 of applied field. Moreover, the number of negative and positive charges 

significantly increases with the increase in the applied field. 

V.2.3 Qualitative analysis 

Experimentally, the effect of surface electrodes on the injection process could be observed at short 

time after applying the electric field. After long time of polarization, it is difficult to understand 

the effect of surface electrodes on the injection process because many additional phenomena took 

place inside dielectrics, such as recombination, trapping and detrapping phenomena. 

The measurements demonstrated that for both electrons and holes, semi-conductor injects the 

maximum amount of charges compared to other electrodes, then the copper was found in the 

second stage. Furthermore, the gold and aluminum surfaces were found with the minimum charge 

injection compared to semi-conductor and copper. Besides, for gold and aluminum measurements, 

it is difficult to identify which material inject more than the other using PEA method. Thus, from 

the carrier injection point of view, the experimental measurements indicated that for electrons and 

holes, the increasing order depending on material type is as follows: 𝐴𝑙 ≈ 𝐴𝑢 < 𝐶𝑢 < 𝑆𝑐. 

V.3 Optimization using all experimental data 

After presenting the experimental measurements and analyzing the obtained results, now TRRA 

will be applied to estimate the injection barrier heights of each surface electrode, as well as all the 

other unknown parameters related to BCT model. The aim of this part is to analyze the capability 

of electrode materials to inject charges into dielectrics by comparing two different approaches, 

experimentally and simulation. 

V.3.1 Unknown parameters 

The units, symbols, and bounds of all the considered unknown parameters are displayed in Table 

16, 17, 18 and 19. 
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Table 16: Units, Symbols, and range of the unknown parameters 

Parameters Trapping depth 
Recombination reduction 

pre-factors 
Inter-Trap 

Unit 𝑒𝑉 Unitless 𝑛𝑚 

Symbol 𝑤𝑚𝑜𝑒
  𝑤𝑚𝑜ℎ

 𝑅1        𝑅2         𝑅3 𝑎𝑒    𝑎ℎ 

Range [0.3 − 0.73] [0.001 − 1] [0 − 1] 

 

As mentioned previously, the goal of this section is to understand the effect of the surface electrode 

on the injection process. This could be achieved by computing the values of the barrier height of 

injection of each of the surfaces used in this section (Au, Al, Cu, and Sc). Thus, four additional 

unknown parameters are introduced to the optimization process. The unknown injection barrier 

height parameters are represented in Table 16. 

Table 17: Unknown injection barrier heights parameters for each surface electrode 

Electrode Gold (Au) Aluminum (Al) Copper (Cu) Semi-conductor (Sc) 

Symbols 𝑤𝑒𝐴𝑢
     𝑤ℎ𝐴𝑢

 𝑤𝑒𝐴𝑙
        𝑤ℎ𝐴𝑙

 𝑤𝑒𝐶𝑢
        𝑤ℎ𝐶𝑢

 𝑤𝑒𝑆𝑐
            𝑤ℎ𝑆𝑐

 

Unit 𝑒𝑉 𝑒𝑉 𝑒𝑉 𝑒𝑉 

Range [0.9 − 1.3] [0.9 − 1.3] [0.9 − 1.3] [0.9 − 1.3] 

 

According to the experimental protocol (Figure 53) used in this chapter, two different electric 

fields (−40 and −60 𝑘𝑉/𝑚𝑚) are applied to the same LDPE sample with different surface 

electrodes (Au, Al, Cu, and Sc). As in Chapter 4, the trapping and detrapping parameters are 

supposed to vary with the variation of the electric field. For this reason, the trapping and detrapping 

parameters to be found are as follows: 

Table 18: Unknown trapping and detrapping parameters for different electric fields 

Electric field Trapping coefficient Detrapping coefficient 

−40 𝑘𝑉/𝑚𝑚 𝐵𝑒−40
   ,    𝐵ℎ−40

 𝐷𝑒−40  
 ,    𝐷ℎ−40

 

−60 𝑘𝑉/𝑚𝑚 𝐵𝑒−60   
,    𝐵ℎ−60

 𝐷𝑒−60
   ,    𝐷ℎ−60

 

Unit 𝑠−1 𝑠−1 

Range [0 − 1] [0 − 1] 
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The initial charges inside the bulk are represented by the parameters 𝛼𝑖 and 𝛽𝑖 (see Figure 58), 

where 𝑖 = 𝐴𝑢, 𝐴𝑙, 𝐶𝑢 or 𝑆𝑐. Based on the results obtained in Chapter 4 (Table 14), the initial 

charges in virgin LDPE samples were found to be approximately equal to zero, thus, 𝛽𝑖 = 0 𝐶/𝑚3 

for any surface electrode. Therefore, 4 parameters are introduced to the optimization process to 

express the initial charges before starting the experiments of −40 𝑘𝑉/𝑚𝑚 electric field, that are,  

𝛼𝐴𝑢, 𝛼𝐴𝑙, 𝛼𝐶𝑢 and 𝛼𝑆𝑐 (Figure 58 and Table 19). 

 

Figure 58: Experimental protocol showing the initial net density of charges before each experiment 

 

Table 19: Initial net charge density parameters for all types of surface electrodes 

Parameters 𝛼𝐴𝑢 𝛼𝐴𝑙  𝛼𝐶𝑢 𝛼𝑆𝑐  

Unit 𝐶/𝑚3 𝐶/𝑚3 𝐶/𝑚3 𝐶/𝑚3 

Range [0 − 15] [0 − 15] [0 − 15] [0 − 15] 

 

In total, 27 unknown model parameters are included in the optimization process. The starting point 

of the optimization process are the optimal parameters obtained in Chapter 4. This was done to 

enhance the robustness and the efficiency of the optimization algorithm.  

In this chapter, TRRA is used to find the unknown parameters that minimize the cost function 𝐶(𝑃) 

combining all the experiments.  

min
𝑃∈ℝ𝑛

 𝐶(𝑃) 

𝑠. 𝑡.  𝑙𝑏 ≤ 𝑃 ≤  𝑢𝑏 
(43) 

The cost function to be optimized is defined as: 
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𝐶(𝑃) =
‖𝑛exp𝐴𝑢 − 𝑛𝑠𝑖𝑚(𝑃)‖−40𝑘𝑉⋅𝑚𝑚−1

‖𝑛exp𝐴𝑢 ‖−40𝑘𝑉⋅𝑚𝑚−1
+

‖𝑛exp𝐴𝑢 − 𝑛𝑠𝑖𝑚(𝑃)‖−60𝑘𝑉⋅𝑚𝑚−1

‖𝑛exp𝐴𝑢 ‖−60𝑘𝑉⋅𝑚𝑚−1

+
‖𝑛exp𝐴𝑙 − 𝑛𝑠𝑖𝑚(𝑃)‖−40𝑘𝑉⋅𝑚𝑚−1

‖𝑛exp𝐴𝑙 
‖−60𝑘𝑉⋅𝑚𝑚−1

+
‖𝑛exp𝐴𝑙 − 𝑛𝑠𝑖𝑚(𝑃)‖−60𝑘𝑉⋅𝑚𝑚−1

‖𝑛exp𝐴𝑙 
‖−60𝑘𝑉⋅𝑚𝑚−1

+
‖𝑛exp𝐶𝑢 − 𝑛𝑠𝑖𝑚(𝑃)‖−40𝑘𝑉⋅𝑚𝑚−1

‖𝑛exp𝐶𝑢 ‖−40𝑘𝑉⋅𝑚𝑚−1
+

‖𝑛exp𝐶𝑢 − 𝑛𝑠𝑖𝑚(𝑃)‖−60𝑘𝑉⋅𝑚𝑚−1

‖𝑛exp𝐶𝑢 ‖−60𝑘𝑉⋅𝑚𝑚−1

+
‖𝑛exp𝑆𝑐 − 𝑛𝑠𝑖𝑚(𝑃)‖−40𝑘𝑉⋅𝑚𝑚−1

‖𝑛exp𝑆𝑐 
‖−40𝑘𝑉⋅𝑚𝑚−1

+
‖𝑛exp𝑆𝑐 − 𝑛𝑠𝑖𝑚(𝑃)‖−60𝑘𝑉⋅𝑚𝑚−1

‖𝑛exp𝑆𝑐 
‖−60𝑘𝑉⋅𝑚𝑚−1

 

V.3.2 Charge distribution: experimental vs simulation 

In this section, the experimental results obtained by PEA method are presented with the simulated 

results obtained by BCT model using the optimal parameters obtained by TRRA (Figure 59, 60, 

61 and 62). All the obtained cartographies and parameters will be compared and discussed in the 

following sections.  

 

Figure 59: Space charge profiles as a function of the time and thickness of the sample, for fields of −40 𝑘𝑉/𝑚𝑚 
(left column) and −60 𝑘𝑉/𝑚𝑚 (right column) at room temperature. Upper row: experimental measurements 
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(PEA). Lower row: simulated results. The LDPE sample is coated by gold layer at both sides.

 

Figure 60: Space charge profiles as a function of the time and thickness of the sample, for fields of −40 𝑘𝑉/𝑚𝑚 
(left column) and −60 𝑘𝑉/𝑚𝑚 (right column) at room temperature. Upper row: experimental measurements 

(PEA). Lower row: simulated results. The LDPE sample is coated by aluminum layer at both sides. 

 

Figure 61: Space charge profiles as a function of the time and thickness of the sample, for fields of −40 𝑘𝑉/𝑚𝑚 
(left column) and −60 𝑘𝑉/𝑚𝑚 (right column) at room temperature. Upper row: experimental measurements 
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(PEA). Lower row: simulated results. The LDPE sample is coated by copper layer at both sides.

 

Figure 62: Space charge profiles as a function of the time and thickness of the sample, for fields of −40 𝑘𝑉/𝑚𝑚 
(left column) and −60 𝑘𝑉/𝑚𝑚 (right column) at room temperature. Upper row: experimental measurements 

(PEA). Lower row: simulated results. The LDPE sample is coated by semi-conductor layer at both sides. 

V.3.3 Discussion  

V.3.3.1 Space charge distribution 

According to Figure 59, 60, 61 and 62, 𝑃⋆ provided a good correlation between experimental and 

simulated charge density data for −40 𝑘𝑉/𝑚𝑚 and −60 𝑘𝑉/𝑚𝑚 for all considered surface 

electrodes. The model was able to reproduce most of the characteristics presented in the 

experiment, such as the dominance of the negative charges, due to strong injection at short time 

(𝑡 < 300 𝑠). The advantage of positive charges for time greater than 600 s inside the bulk of the 

LDPE sample, compared to negative ones could also be observed. Moreover, the mobility of 

negative charges seems to be greater than that of positive ones at short time. 

For gold electrodes, both experimental and simulated outputs show that insulator seems to reach 

an equilibrium state in terms of the space charge distribution for 𝑡 > 1000 𝑠. 

For LDPE with aluminum electrodes, the model was able to reproduce most of the characteristics 

presented in the experiment, such as, the small quantity of positive charges injected compared to 

the quantity of negative charges. Also, the advantage of negative inside the bulk of insulation 
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compared to positive charges at any time of polarization. Furthermore, for both experimental and 

simulated outputs, the insulator reached an equilibrium state in terms of the space charge 

distribution where the net density of charges keeps stable for 𝑡 > 1000 𝑠. 

For LDPE samples with copper and semiconductor electrodes, the experimental measurements 

show that the insulator did not reach an equilibrium state in terms of the space charge distribution 

where the net density of charges keeps dropping inside the bulk as the time passes. On the other 

hand, the BCT model was not able to reproduce this decay of the net density of charges (i.e., after 

1000 s, the simulated net density of charges remains stable). 

V.3.3.2 Optimal parameters 

The optimized set of parameters 𝑃⋆ produced by minimizing 𝐶(𝑃) are displayed in Table 20, 21, 

22 and 23. All the optimal parameters are presented but the discussion will focus on the parameters 

representing the barrier height of injection and the initial net density of charges. These parameters 

are the ones linked to the nature of surface electrode. 

Table 20: Optimal values of the injection barrier height parameters for different electrodes 

Electrodes Au Al Cu Sc 

Parameters 𝑤𝑒𝐴𝑢
      𝑤ℎ𝐴𝑢

 𝑤𝑒𝐴𝑙
      𝑤ℎ𝐴𝑙

 𝑤𝑒𝐶𝑢
      𝑤ℎ𝐶𝑢

 𝑤𝑒𝑆𝑐
      𝑤ℎ𝑆𝑐

 

𝑃⋆ 1.133  1.170 1.140  1.194 1.116   1.132 0.980   1.000 

 

Table 21: Optimal values of the initial net density of charges parameters 

Parameters 𝛼𝐴𝑢 𝛼𝐴𝑙 𝛼𝐶𝑢 𝛼𝑆𝑐  

𝑃⋆  0.1 0.2 0.1 4.7 

 

Table 22: Optimized parameters 𝑷⋆  obtained by minimizing 𝑪(𝑷) 

Parameters 𝑤𝑚𝑜𝑒
     𝑤𝑚𝑜ℎ

 𝑅1           𝑅2            𝑅3 𝑎𝑒         𝑎ℎ 

𝑃⋆  0.71        0.62       0.001        1               1 5.08      1.88 

 

Table 23: Optimized trapping and detrapping parameters using current density measurements data. 

Electric field 𝐵𝑒 𝐵ℎ 𝐷𝑒 𝐷ℎ 

−40 𝑘𝑉/𝑚𝑚 0.0006 0.0279 0.0004 0.0026 
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−60 𝑘𝑉/𝑚𝑚 0.0341 0.0281 0.0049 0.0028 

V.3.3.2.1 Injection barrier height 

Based to the results displayed in Table 20, the barrier height for injecting positive charges is found 

to be greater than the barrier height for injecting negative charge for all the examined surface 

electrodes. According to the modified Schottky law (i.e., Equation 1), it is known that if the 

injection barrier height parameter increases, the quantity of injected carriers decreases, and the 

inverse is also true. Therefore, the quantity of injected electrons is found to be more than that of 

the holes through all electrodes. 

Moreover, these optimal parameters can be used to compare the quantity of injected carriers 

through surface electrodes of different nature. 

For negative charges: The semi-conductor is found to be the material that injects the highest 

number of negative charges compared to all other surfaces electrodes (i.e., lowest barrier height 

compared to other materials, 𝑤𝑒𝑆𝑐
= 0.980 𝑒𝑉). Then the copper (𝑤𝑒𝐶𝑢

= 1.116 𝑒𝑉) was found in 

the second stage, where it injects more electrons than gold (𝑤𝑒𝐴𝑢
= 1.133 𝑒𝑉) and aluminum 

(𝑤𝑒𝐴𝑙
= 1.140 𝑒𝑉). Finally, the aluminum surface injects the minimum quantity of negative 

charges compared to all other surfaces. From the carrier injection point of view, the results indicate 

that for electrons, the increasing order depending on material type is as follows: 𝐴𝑙 < 𝐴𝑢 < 𝐶𝑢 <

𝑆𝑐.  

For positive charges: Based on the optimal values of the injection barrier height, it is obvious that 

semi-conductor is the material that injects the highest number of positive charges compared to all 

other surfaces (i.e., lowest barrier height compared to other materials, 𝑤ℎ𝑆𝑐
= 1.000 𝑒𝑉). Then in 

the second stage, we find the copper (𝑤ℎ𝐶𝑢
= 1.132 𝑒𝑉), which injects more positive charges than 

gold and aluminum. Finally, the injection of positive charges through gold (𝑤ℎ𝐴𝑢
= 1.170 𝑒𝑉) is 

more than the injection through aluminum (𝑤ℎ𝐴𝑙
= 1.194 𝑒𝑉). Thus, from the carrier injection 

point of view, the increasing order depending on material type for holes is as follows: 𝐴𝑙 < 𝐴𝑢 <

𝐶𝑢 < 𝑆𝑐. These results are similar to the classification obtained for negative carriers. 

Experimentally, from the carrier injection point of view, the qualitative analysis presented in 

subsection V.2.3 indicated that for both electrons and holes, the increasing order depending on 

material type is as follows: 𝐴𝑙 ≈ 𝐴𝑢 < 𝐶𝑢 < 𝑆𝑐. Therefore, the optimal parameters obtained by 

TRRA are found to be compatible with the experiment measurements. 
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V.3.3.2.2 Initial charge density 

The optimal values of the initial net charge density parameters are presented in  

Table 21. The obtained results reveal that only a small quantity of initial charges is detected inside 

the bulk of the sample for LDPE with metal electrodes (i.e., 𝛼𝐴𝑢 ≈ 𝛼𝐴𝑢 ≈ 𝛼𝐴𝑢 ≈ 0.1 𝐶/𝑚3). The 

amount of initial charges detected in LDPE with semi-conductor electrodes (i.e., 𝛼𝑆𝑐 =

4.7 𝐶/𝑚3), is significantly greater than the charges detected in LDPE with metal electrodes. These 

results suggest that the discharging of a sample is easier when using metal electrodes instead of 

semi-conductor. Thanks to TRRA, we are now able to have a better knowledge of the influence of 

surface materials on the discharging phenomena. However, additional experiments should be 

performed to confirm the validity of these results. 

V.4 Conclusion 

TRRA has been applied to identify the optimal set of parameters that best fit charge density 

measurements with four different surface electrodes at varying electric fields. The optimal 

parameters provided a good correlation between experimental and simulated charge density data 

for −40 𝑘𝑉/𝑚𝑚 and −60 𝑘𝑉/𝑚𝑚 electric fields, for all considered surface electrodes. Besides, 

the model was able to reproduce most of the characteristics presented in the experimental 

measurements. The optimal values of the injection barrier height parameters were found to be 

correlated with the experimental measurements, which indicate that for both electrons and holes, 

the order is as follows: 𝑆𝑐 > 𝐶𝑢 > 𝐴𝑢 > 𝐴𝑙. Furthermore, the parameters representing the 

injection barrier heights of 𝐴𝑢 and 𝐴𝑙 were found near to each other, which is similar to the results 

observed experimentally. 

The optimal parameters representing the initial charges inside the bulk show that the discharging 

of a sample is easier when using metal electrodes instead of semi-conductor.  

As mentioned previously, the obtained optimal parameters properly suited all experiments with 

different surface electrodes and with varying electric fields. Unfortunately, the obtained results do 

not yet match the parameters that we are intending to find. For example, the trapping, detrapping, 

and injection parameters were found to be different from the values obtained in Chapter 4. Thus, 

it is a challenging task to find a unique set of parameters that can fit several experiments with 

different experimental conditions (e.g., different surface electrodes, varying electric fields, or 

varying temperatures). This is one of the weaknesses of the BCT model that may be enhanced in 

our future work.  



Chapter V 

153 
 

 

References 

[1] G. Chen, T. Y. G. Tay, A. E. Davies, Y. Tanaka, and T. Takada, “Electrodes and charge injection in low-density 

polyethylene using the pulsed electroacoustic technique,” IEEE Trans. Dielect. Electr. Insul., vol. 8, no. 6, pp. 867–

873, Dec. 2001, doi: 10.1109/94.971439. 

[2] D. M. Taylor and T. J. Lewis, “Electrical conduction in polyethylene terephthalate and polyethylene films,” 

J. Phys. D: Appl. Phys., vol. 4, no. 9, pp. 1346–1357, Sep. 1971, doi: 10.1088/0022-3727/4/9/315. 

[3] G. Chen, Y. Tanaka, T. Takada, and L. Zhong, “Effect of polyethylene interface on space charge formation,” 

IEEE Trans. Dielect. Electr. Insul., vol. 11, no. 1, pp. 113–121, Feb. 2004, doi: 10.1109/TDEI.2004.1266324. 

[4] N. H. Ahmed and N. N. Srinivas, “Review of space charge measurements in dielectrics,” IEEE Trans. Dielect. 

Electr. Insul., vol. 4, no. 5, pp. 644–656, Oct. 1997, doi: 10.1109/94.625650. 

[5] T. Maeno, T. Futami, H. Kushibe, T. Takada, and C. M. Cooke, “Measurement of spatial charge distribution 

in thick dielectrics using the pulsed electroacoustic method,” IEEE Trans. Elect. Insul., vol. 23, no. 3, pp. 433–439, 

Jun. 1988, doi: 10.1109/14.2384. 

[6] E. Doedens, E. M. Jarvid, R. Guffond, and Y. V. Serdyuk, “Space Charge Accumulation at Material Interfaces 

in HVDC Cable Insulation Part II—Simulations of Charge Transport,” Energies, vol. 13, no. 7, p. 1750, Apr. 2020, doi: 

10.3390/en13071750. 

 

 





 

 

 

 

 

 

 

 

Conclusion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  



Conclusion 

157 
 

This work is concerned with understanding the transport mechanisms in solid dielectrics in order 

to predict their behavior under electrical stress. Experimental measurement alone does not clearly 

represent the microscopic phenomena inside dielectrics under electrical stress, such as trapping, 

detrapping, and recombination processes. Consequently, a BCT model was developed by our 

research team (DSF) that helps in predicting the dynamic behavior of LDPE under DC stress. This 

model provides a realistic representation of physical, electrical, and chemical phenomena at a 

microscopic scale that could not be accessible by experimental approaches. Our BCT model 

considers the trapping, de-trapping, injection, mobility, and recombination processes of positive 

and negative carriers. These carriers are generated by a modified Schottky injection law at the 

metal-dielectric interface and are extracted without any barriers. The BCT model is based on three 

basic equations that are known as the transport, Poisson, and continuity equations. Such models 

require some initial experimental conditions, such as temperature, applied voltage, polarization 

time, etc., alongside a set of parameters, such as injection barriers, mobility of carriers, trapping 

rate, de-trapping rate, and recombination coefficients. Most of these parameters cannot be 

predicted by independent experiments. For this reason, the numerical modeling approach was 

coupled with the experimental approach in this study, which provided a lot of beneficial 

information that contributed to estimating the unknown parameters.  

To enhance the BCT model and to be able to estimate the behavior of dielectrics under DC stress 

using any experimental conditions, one must find a unique set of parameters that can always 

provide a good correlation between experimental and simulated data. Therefore, the principal 

objective of this study was to provide an original approach that contributes to identifying this 

unique set of parameters. Consequently, optimization tools have been introduced to find the best 

set of parameters that minimize the sum of the squares of the deviations between experimental and 

simulated data.  

Experimental data that has been used includes net density charge measured by the Pulsed Electro-

Acoustic method along with what is known as current measurements for measuring the current 

density. Moreover, the simulated data of charge and current densities were obtained by the BCT 

model developed for LDPE under DC stress. 

Five distinct optimization algorithms were discussed and compared before choosing the most 

suitable one to optimize the BCT model. The best algorithm was chosen by analyzing and 

comparing the robustness, accuracy, and efficiency of each algorithm, which reveals the strong 
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and weak points of each algorithm. In order to select the most reliable algorithm, a trivial example 

was employed to examine all the considered algorithms. TRRA was found to be the most suitable 

algorithm for this type of problem. Compared to the other methods, TRRA had the best 

convergence rate and the shortest computation time. 

TRRA has been applied to identify the optimal set of parameters that best match both current and 

charge density measurements at varying electric fields (-20, -40, -60 kV/mm). Three distinct cases 

were examined, where each example assumed a specific cost function. This chapter highlights the 

difficulty of finding a unique set of parameters that can suit several experiments. For example, if 

the cost function considered only the current density data for the optimization process. The outputs 

of TRRA revealed a strong correlation between experimental and simulated current density. 

Furthermore, if the charge density was simulated using the obtained parameters, a significant 

mismatch was noticed between the experimental and simulated charge densities. Thus, a multi-

objective function was formed, aiming at incorporating both charge and current data in a single 

cost function. The findings obtained by the new cost function demonstrated a strong correlation 

between experimental and simulated outputs for both current and charge density data at varying 

electric fields. Nevertheless, only experiments with varying electric fields were examined in this 

study; however, if the polarity of the electric field is reversed or if the temperature changed, the 

parameters may not suit the experimental outputs anymore. Hence, our technique might be further 

enhanced by introducing additional experiments with alternative experimental conditions (i.e., 

opposite polarity or varying temperatures) or by adding another source of measurements (i.e., 

electroluminescence).  

In addition, the physical phenomena in the BCT model were analyzed based on the obtained 

optimal parameters. For example:  

• The optimal values of the recombination reduction pre-factors proposed that the 

recombination processes are entirely characterized by Langevin’s recombination form with 

no reduction taking place. 

• The optimal values of the mobility indicate that the mobility of electrons is higher than that of 

holes, which is consistent with the literature. Moreover, the experimental and simulated mobility 

values were found quite near to each other and varied in the same range. 
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• The optimal values of trapping and detrapping rates revealed that both trapping and detrapping 

rates increase with the increase of the electric field. Besides, the trapping rate was found to be 

greater than the detrapping rate for both carriers at any given field.  

• Finally, the initial charges inside the bulk were observed to be rising after performing a new 

experiment on the same LDPE sample, even though the sample was discharged for 24 hours. 

The results also anticipated that the technique used for discharging the sample might influence 

the discharging process.  

All the physical phenomena were analyzed based on the simulation approach obtained by the BCT 

model, considering the model weaknesses that may affect the reliability of the outcomes (i.e., some 

features are neglected in the model for simplicity reasons).  

Finally, TRRA has been applied to better understand the influence of surface electrodes on the injection 

barrier height parameters using four different surface electrodes (i.e., 𝐴𝑢, 𝐴𝑙, 𝐶𝑢, and 𝑆𝑐) at varying 

electric fields (i.e., −40 𝑘𝑉/𝑚𝑚 and −60 𝑘𝑉/𝑚𝑚). The obtained optimal parameters provided a good 

correlation between experimental and simulated charge density data for all considered surface electrodes.  

Thanks to optimization techniques, the optimal values of the injection barrier height parameters were 

found to be compatible with the experimental measurements, which indicate that for both electrons and 

holes, the order is as follows: 𝑆𝑐 > 𝐶𝑢 > 𝐴𝑢 > 𝐴𝑙.  

Moreover, the mobility of electrons was found to be greater than that of holes, and the trapping and 

detrapping rates increased with the increase in electric field. Hence, the optimal parameters of the 

mobility, trapping, and detrapping were found to be consistent with the results obtained in Chapter 4.  

Finally, the optimal parameters representing the initial charges inside the bulk show that the discharging 

of a sample is easier when using metal electrodes instead of semi-conductor.  

The obtained optimal parameters properly suited all experiments with different surface electrodes and 

with varying electric fields. Unfortunately, the obtained results do not yet match the parameters that we 

intend to find. For example, the values of trapping, detrapping, and injection parameters were found to 

be different from the values obtained in Chapter 4. Thus, it is challenging to find a unique set of 

parameters that can fit several experiments with different experimental conditions (e.g., different surface 

electrodes, varying electric fields, or varying temperatures, opposite polarity). This is one of the 

weaknesses of the BCT model that may be enhanced in our future work. Many additional features could 

be added to the BCT model that could contribute to optimizing it by finding a unique set of parameters 

that suit any experiment (i.e., diffusion, depolarization, etc..). Additional experiments may also contribute 
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to construct an equation able to characterize the trapping and detrapping rates in terms of the electric 

field. 

Indeed, this work is only a key step in the development of a model capable of predicting the charge 

distribution in a solid dielectric. The following are some of the future perspectives for this work: 

• In any modeling process, sensitivity analysis approaches are critical for identifying the influence 

of the inputs on the outcome. This assists in the identification of the most important experimental 

conditions to consider during the optimization process. One of the most efficient global 

sensitivity analysis methods that could be used in this study is the Sobol Sensitivity Analysis 

method. Sobol sensitivity analysis can be used to reveal the most essential experiments to be 

evaluated in the optimization process, rather than employing a large number of experiments to 

find a unique set of parameters. 

• Introducing another source of experiments into the optimization process, such as 

electroluminescence measurements. This can provide additional information that could help in 

finding the most accurate set of parameters that can fit any experimental measurement, especially 

recombination rates.  

• In this study, we considered several experiments with varying electric fields. In future work, 

adding experiments with varying temperatures or reversing the electric field polarity can be 

helpful and may contribute to finding a unique set of parameters. 

• In this study, the depolarization (after removing the electric field) process was not considered in 

the optimization process. Indeed, the data from the depolarization period could provide additional 

important information that could enhance the behavior of the optimization algorithm toward the 

global optimal solution. 

• The optimization technique proposed in this study can be further improved by using meta-model 

approaches (e.g., kriging or SVM). These techniques could make it possible to replace the 

computationally expensive cost function by a much less expensive one (surrogate modeling). 

These models will allow further sensitivity studies and global minimization approaches (e.g., 

genetic algorithm) relying on a large number of function evaluations to be performed.

 



 


