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Summary

Large-scale recordings of neural activity are nowadays widely carried out in many

experimental labs, leading to the important question of how to extract the essential

structures in population data. One common way of doing so is through the use of

dimensionality reduction methods. However, interpretation of the results of these

tools can be fraught with difficulties. Most commonly, linear methods such as

principal component analysis (PCA) are used due to their minimal assumptions

and ease of implementation. While they work well in finding linear projections of

the data that explain most variance, they also usually display a tail of components,

among which several resemble higher-order functions of some other components.

We refer to these as ‘higher-order’ components (HOCs). While these HOCs suggest

that the true underlying neural manifold is non-linear, it is still unclear how they

emerge and how they should be interpreted.

In this thesis, we argue that these HOCs largely arise due to a well-known non-

linearity — individual neuronal activity is non-negative, which yields a curvature to

the neural manifold, but the resulting HOCs are otherwise functionally irrelevant.

We lead our investigation with the crucial assumptions that readouts of population

activity should be linear and lower-dimensional, and that overall firing rates should

be limited for reasons of energy efficiency. We show, in simulations, that when neural

activities are generated under these assumptions, then PCA sometimes extracts

the true underlying signals, but often displays a tail of HOCs to compensate for

the curvature of the manifold. We explain these findings geometrically and show

that they resemble the HOCs often observed in real data. To remedy this issue,

we propose a set of dimensionality reduction methods that incorporate the non-

negativity constraints in a meaningful way. We validate our methods against ground

truth data, but also show, in an example experimental dataset, that incorporating

this simple non-linearity affords a more condensed description of the data than PCA.

However, it is possible that the neural manifold exhibits some additional non-

linearity besides the non-negativity constraints. We hypothesize lastly in this thesis,

v



that this non-linearity may emerge according to the computations done by the net-

work. However, a clear understanding of computations done by biologically realistic

neural networks is still missing. We complement this thesis by investigating the

computations done by spiking neural networks (SNNs). We show that a broad class

of SNNs can be understood through a framework inspired from convex optimiza-

tion theory, with the network parameters intimately linked to the parameters of

the underlying convex optimization problems. Thanks to this perspective, we show

that input-driven SNNs fundamentally compute convex input-output functions and

these computations can be understood (and learnt) geometrically. Finally, we show

in simulations, that the resulting networks can display several biological features

such as asynchronous and irregular spike trains, robustness to perturbations, among

others.
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Chapter 1

General Introduction

Ever since the painstaking task by Santiago Ramón y Cajal in meticulously describ-

ing the fine organisation of nerve cells in neural tissues (Cajal, 1906), the individual

neuron has been considered as the central unit of anatomy of the nervous system.

Mostly due to technological limitations, the approach to study the nervous system

has then been to measure the activity of one cell at a time, e.g. via single-cell elec-

trophysiology (Hubel et al., 1957). This nonetheless, led to the important discovery

that neurons would often respond to specific features of the outside world, which

defined their receptive fields (Barlow, 1953; Hubel and Wiesel, 1959). Since then,

a standard approach to understand brain functions has been to map such recep-

tive fields across various brain areas across several species (e.g. (Mountcastle, 1957;

Georgopoulos et al., 1982; Desimone et al., 1984)).

However, with more recent theoretical and experimental discoveries (Yuste, 2015;

Eichenbaum, 2018), it is becoming questionable whether studying single neurons

alone remains a promising route going forward. Instead, increasingly prevalent is

the idea that neurons in a population collectively form a functional unit (Saxena

and Cunningham, 2019). Thus, measuring the joint activity of the neurons in the

population would be necessary to unravel emergent properties of the network —

i.e. properties that arise from neuronal interactions in the network, but cannot be

obtained from any individual neuron alone — to understand brain function. Ac-

cordingly, there has been a fervent endeavour, largely empowered by major advances

in recording techniques in recent years (Stevenson and Kording, 2011; Ahrens et al.,

2012; Stringer et al., 2019a), to record simultaneously as many neurons as possible.

The hope is that these recordings would give a representative view of the population,

and thus would allow us to advance our understanding of the brain.

This long-sought data however, presents a fundamental challenge in itself. As the
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data has as many dimensions as the number of recorded neurons, and each neuron

has its own unique activity traced over time, the data is both high-dimensional and

complex. Consequently, questions of how to make sense of it or how to even start

exploring and visualizing it immediately appear. A common approach to address

these questions has been through statistical methods, namely dimensionality reduc-

tion methods, that aim to find a smaller set of variables that summarize the joint

activity of the neurons (Cunningham and Yu, 2014; Pang et al., 2016). The hope

is that these variables would then capture the essential structures in the data, and

yield succinct and interpretable descriptions of what the brain might be representing

and computing.

While these methods have generally led to key insights in neural population

data (Cunningham and Yu, 2014; Keemink and Machens, 2019), interpretations of

the results are not always straightforward. Usually, these methods predict many

more structures in the data than can immediately be understood and interpreted.

Hence, it is an open question what these other structures mean. In this thesis, we

largely focus on this issue of how to correctly interpret the structures in population

data resulting from dimensionality reduction, in particular linear methods. In the

rest of this introductory chapter, we will review the motivation for dimensionality

reduction and then, will make more concrete this issue of interpretations.

1.1 Analysing high-dimensional neural data

With major advances in recording techniques in recent years, we can nowadays

record simultaneously from hundreds to thousands of neurons across a range of

species. As noted in (Stevenson and Kording, 2011), the number of neurons that we

can record simultaneously has been increasing exponentially with time (see Fig. 1.1

for a timeline) and today, up to 104 neurons in the visual cortex of mice (Stringer

et al., 2019a) or even, the whole brain of larval zebrafish (Ahrens et al., 2012))

can be recorded. As a result, the data we are collecting are becoming increasingly

high-dimensional as each recorded neuron contributes a dimension.

At the same time, as soon as hundreds of neurons are taken into consideration,

the joint activity of these neurons becomes highly complex. This issue is even more

severe in higher-order areas of the brain, e.g. the prefrontal cortex (PFC): despite

the simplicity of tasks that need to be solved, it is usually observed that the neuronal

responses display a dazzling degree of heterogeneity (Brody et al., 2003; Machens

et al., 2010; Mante et al., 2013; Rigotti et al., 2013). As an example, we illustrate
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A B

Figure 1.1: Exponential growth in number of neurons that can be recorded. Figure
from (Stevenson and Kording, 2011) (A) Number of neurons recorded across several
studies as a function of time. This number has been increasing exponentially, dou-
bling approximately every seven years. (B) Timeline of recording techniques from
single-electrode to in-vivo optical imaging that allowed this increase in (A).

in Fig. 1.2, the heterogeneity of neuronal activity in the PFC of monkeys during a

working memory task (Romo et al., 1999; Brody et al., 2003). To solve the task, the

animals needed to keep information about a first stimulus (F1) in memory for some

time (a delay period) and compare it to a second stimulus (F2) that arrived after

the delay period. Interestingly, during the task, the recorded neurons displayed a

vast diversity of responses, with various degrees of tuning to the stimulus, to elapsed

time and combinations of both (Brody et al., 2003; Machens et al., 2010)(Fig. 1.2C).

This immediately raises the question of how to make sense of this data, and thereby

reach conclusions about brain functions.

1.1.1 Neuron-by-neuron analysis to understand population

data

When the experiment involves a behavioural task, one common approach has been

been to relate individual neuronal responses to the task variables, e.g. task param-

eters or stimulus, which hopefully would then give clues about what the population

is doing. This can be done, e.g. by regressing the neuronal responses onto the task

variables (e.g. (Brody et al., 2003) for the PFC dataset we mentioned earlier) and

thereby, infer the tuning of the neurons to these variables according to the regres-

sion coefficients. In turn, to understand the representation of these task variables

at the population level, the distribution of these regression coefficients across all the
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recorded neurons can then be computed to give a probabilistic description of the

population.

However, this neuron-by-neuron analysis may fail to give a coherent and inter-

pretable picture of the joint neural responses at the population level (Wohrer et al.,

2013). This is because this analysis is strongly biased towards the model used to

explain individual neuronal activity; the regression model, for instance, may fail to

capture the fine details of neuronal responses and thus, when the resulting regression

coefficients are brought together, they will miss out on possibly important structures

in the population. For example, as we mentioned earlier, neuronal responses are typ-

ically highly heterogeneous in higher-order brain areas, with simultaneous tuning to

various task parameters (Mante et al., 2013; Kobak et al., 2016; Rigotti et al., 2013;

Raposo et al., 2014), and it is unlikely that the neuronal model would capture all

these intricacies in the data. Hence, this two-step approach of analysing population

data will most likely lose some information.

1.1.2 Analysis of neural populations via dimensionality

reduction

To address the above issue, one can instead directly (in one step) analyse the en-

semble of recorded neurons, instead of first looking at single neurons and then

extrapolating to the population. A common approach to do so is through the use of

dimensionality reduction methods (Cunningham and Yu, 2014; Pang et al., 2016).

When recording many neurons in the population, say N neurons, the activity

patterns reside in an N -dimensional space. However, it might be the case that

several of these neurons covary according to smaller number of explanatory variables,

say M < N of these variables. Dimensionality reduction methods then aim to

extract these M unobserved, or latent, variables from the population data, which

will provide a summary of the data.

The M explanatory variables are usually extracted according to an objective

specific to each method. For instance, the putative most commonly used method,

namely Principal Component Analysis (PCA), aims to find latent variables, or prin-

cipal components, that explain most variance in the data. The data variance not

captured by these PCs are then discarded as noise. Importantly, in contrast to

the previous approach (see section above), dimensionality reduction methods, irre-

spective of their individual objective, take all information across the ensemble of

recorded neurons into account to find statistical features of interest in the data.

4
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Figure 1.2: Highly heterogeneous neuronal activities in the prefrontal cortex (PFC)
of monkeys while they solve a simple somatosensory working memory task (Romo
and Salinas, 2003). Figure adapted from (Machens et al., 2010). (A) Cartoon of the
task adapted from (Romo and Salinas, 2003). The monkey needed to distinguish
whether a second vibrotactile stimulus, F2, was stronger than a first stimulus, F1,
after a delay period, or not. Thereupon, the monkey needed to make a decision
by pressing one of the buttons. (B) Color code according to the first stimulus.
(C) Smoothed peri-stimulus histograms from nine example cells from PFC. These
nine example cells illustrate the heterogeneity in neuronal responses despite the
simplicity of the task. (D) First six principal components (PCs) that summarize
the data from a monkey; numbers in circle show the ordering of the PCs according
to variance explained (percentages on top).

Already for exploring and visualizing population data, dimensionality reduction

can be a very useful tool. Indeed, instead of looking at the N -dimensional neural

activity patterns which can be highly complex, it would suffice to simply look at

the smaller M -dimensional latent variables to start building intuitions on what the

data is representing. For instance, coming back to the PFC dataset (Fig. 1.2), upon

applying PCA on the data during the delay period, it was found that around 95% of

the variance of the data could be explained with M = 6 PCs (Machens et al., 2010)

(Fig. 1.2D). Thus, the simplified and cleaner description of the data can hopefully,

yield easier interpretations, from which one can draw conclusions on brain function.

As a method to deal with the complexity of neural data, dimensionality re-
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Figure 1.3: Examples where dimensionality reduction on neural population revealed
functional principles of the circuit. (A) Decision making process in leeches between
swimming (blue) and crawling (red) under the same sensory stimulus that could
elicit either of the behaviours (Briggman et al., 2005). Analysing the population
activity showed that the decision making process follows a dynamical system in the
low dimensional space that branches off according to the choice to be made. The
choices could be discriminated earlier from the joint neuronal activities than from
any single neuronal activity. (B) Coding for odor identity using neural transients in
locusts (Mazor and Laurent, 2005). When either of the two odors were presented
(red or blue), the neural trajectory in the low-dimensional space would leave its
baseline activity (B) and move to a steady state or fixed point (FP). When the
stimulus is extinguished, the low-dimensional population trajectory returns to the
baseline. Interestingly, this study revealed that the transients allow better discrim-
inability of odor identities, long before the fixed points were reached, thus pointing
to a novel emergent computational rule of the population.

duction has surprisingly been highly successful, as demonstrated by a multitude

of studies (e.g. (Briggman et al., 2005; Machens et al., 2010; Mante et al., 2013;

Churchland et al., 2012; Bathellier et al., 2008; Gallego et al., 2018)). This success

is largely attributed to the fact that the bulk of neural activity tends to reside in

a lower-dimensional subspace. Although theoretical work are now coming up to

explain this phenomenon (Gao et al., 2017; Mastrogiuseppe and Ostojic, 2018), one

hypothesis has been that the true underlying, or latent, signals of brain activity are

in fact low-dimensional and these latent signals are then mapped onto the activi-

ties of many neurons. The brain would then be operating and computing on these

low-dimensional latent signals — the so-called ‘strong principle’ of dimensionality

reduction (Humphries, 2020). One posited advantage of this scheme is that it af-

fords the system with robustness against the fragility of any individual neuron in

the system; even if a neuron dies, or is perturbed in any other ways, this will not

lead to any system failure.
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According to this hypothesis, extracting the underlying signals of population

activity will give insights on how the neural circuit functions. There are indeed,

some experimental evidence suggesting that the dynamics of the low-dimensional

signals could be a motif for brain computations. For example, Briggman et al.

(2005) recorded and analysed populations of sensory neurons in leeches and showed

that the low-dimensional dynamic profile of the population activity revealed the

decision making process between two behavioural outputs, namely swimming and

crawling (Fig. 1.3A). Interestingly, their analysis of neural population revealed a

circuit computation, that would not have been accessible through the analysis of

single neurons only. As another example, Mazor and Laurent (2005) showed that

the low-dimensional dynamic profile of population activity in the insect’s olfactory

system exhibited transients that allowed to compute odor identities, long before the

circuit reached a steady state of activity (Fig. 1.3B). This neural population analysis

thus revealed a new computational scheme that could be used by insects to identify

odors.

1.2 Interpreting results of dimensionality

reduction

Although dimensionality reduction has provided key insights for understanding neu-

ral population data (Cunningham and Yu, 2014; Keemink and Machens, 2019), in-

terpreting the results of these methods can still be fraught with difficulties. Usually,

the methods will extract several features in the data in order to meet some objective,

e.g. maximizing variance as in PCA (Bishop, 2006). Nevertheless, not all of these

features can immediately be understood and interpreted. This is because inter-

pretations are usually limited to the experimenters’ knowledge of the experimental

paradigm, e.g. task rules (what should be computed or solved) and experimen-

tally controlled task parameters, as well as, observed behavioural responses, either

elicited or spontaneous. Hence, it is still an open question what the other features

in the data mean. Yet, to advance our understanding of the data, elucidating the

meaning of these features is crucial.

To bring home this point, we go back to the PFC dataset mentioned earlier

(Fig. 1.2). We recall that the animal needed to memorize a first stimulus, F1, during

a delay period to solve the task. When PCA was applied to the data (Machens et

al., 2010), we saw that ∼ 95% of variance of the data could be explained with

the first six PCs (Fig. 1.2D, ordered according to the variance explained by each
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r1
r2

r3

Figure 1.4: Schematic to illustrate intrinsic and embedding dimensions (figure
adapted from Humphries (2020)). The manifold in brown can be curved, in which
case it is embedded in a three-dimensional space. Thus, a data point on the manifold
can be characterized by values along axes (r1, r2, r3). However, the manifold truly
has only two intrinsic dimensions and thus, the same data point can be described
equally well with only two variables.

component). There, we observe that the first PC shows a ramping activity without

any particular tuning to F1 (the colored traces, with each color corresponding to an

F1 stimulus, overlap) and thus, one could interpret this component as reflecting the

coding for time by the population. The third PC, on the other hand, shows a roughly

flat activity over time, but the colored traces are now separated. This component

may then be interpreted as the population coding for stimulus, F1. However, this

population analysis also reveals several other PCs. Yet, it is unclear how these

should be interpreted. If the PCs are truly reflecting underlying mechanisms of the

neural circuit, then it is crucial that they should also be understood and interpreted

for us to reach overall conclusions about brain functions.

However, we immediately face an important conundrum: how can we be sure that

the features that appear upon reducing dimension reflect the functionally relevant

latent signals of population data. Another possibility could be that these features

emerge according to the assumptions in our analytical methods and thus, it would

be misleading to attribute any functional meaning to them.

One particular confound that makes this issue of interpretations worse is when

the observations of neural activity roughly lie along a surface, or manifold, which is

non-linear in the state space. We show a schematic of such a manifold in Fig. 1.4

(adapted from (Humphries, 2020)). The neural manifold (in brown) can take, e.g. a

saddle shape, in which case it occupies a three-dimensional space, or its embedding

dimensionality is three. However, the minimum number of variables needed to

describe this manifold, or its intrinsic dimensionality (Camastra, 2003), is only two.
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A confound thus arises since the manifold can equally be described in two different

ways, using either the embedding dimensions or the intrinsic dimensions and our

methods may yield either of the descriptions. This consequently leads to the question

of how do we tease apart these descriptions in order to reach correct interpretations

of the data, and therefrom, come to conclusions of any underlying principles that

the brain might be using.

In this thesis, we are interested in understanding the implications of the above

confound due to the non-linearity of the manifold when interpreting the results

of commonly used linear dimensionality reduction methods. In particular, we ask

whether there are some intrinsic non-linearities along the neural manifold that would

persist across datasets, irrespective of the task or stimulus and if so, can we charac-

terize their effects on the results of these methods? Ultimately, we hope that once

such confounds are elucidated, interpreting the results of dimensionality reduction

will be clearer, which will get us a step closer in understanding the brain.

1.3 Organization of the thesis

In Chapter 2 of this thesis, we analyse a few example datasets of neural population

recordings using some standard linear dimensionality reduction methods, e.g. PCA.

We show that while some results of the analysis can immediately be understood and

interpreted with regards to the experimental paradigm, several additional compo-

nents are also observed (similar to PFC dataset example we considered earlier in

Fig. 1.2). Interestingly though, we show that among these additional components,

several display a characteristic geometry and these latter components consistently

appear across datasets. For reasons that will come clearer later, we will refer to

them as higher-order components (HOCs). However, it is still an open question

how these HOCs emerge, what their geometry tells us about the data, and what

they mean.

In Chapter 3, we argue that these HOCs do not reflect any underlying ‘true’

latent signals in the data, but rather appear as a reflection of the characteristic

shape that the neural manifold takes. We hypothesize that this characteristic shape

largely arises due to a well-known non-linearity — individual neuronal activity is

constrained to be non-negative — under two crucial assumptions: (1) readouts of

population activity are linear and low-dimensional and (2) population activity is

limited for energy efficiency reasons. When the manifold is then described using

the (linear) axes of the space in which it is embedded (e.g. as in Fig. 1.4), then
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these HOCs are bound to appear. Importantly though, they have no functional

meaning with regards to the neural circuit, since the true underlying signals reside

in a lower-dimensional (or intrinsic) subspace.

In Chapter 4, we propose that we can get closer to the true latent signals of neu-

ral population data simply by incorporating the non-negativity constraints in our

analytical methods. In this endeavour, we build a set of dimensionality reduction

methods that, similar to linear dimensionality reduction methods, assume that the

latent signals should be obtained through a linear mapping, but goes further by en-

forcing these constraints in the model predictions. Upon validating our methods on

both simulated and real data, we show that indeed, incorporating these constraints

allow us to find a more succinct description of the data compared to a standard

linear dimensionality reduction method, namely principal component analysis.

However, it is possible that the neural manifold exhibits some additional non-

linearity, besides the non-negativity constraints. We hypothesize in the rest of the

thesis, that this additional non-linearity is defined according to the computations

that can be done by the network. However, to understand the implications of net-

work computations on the manifold, the computations must first be understood. In

Chapter 5, we complement this thesis by addressing, within a novel framework in-

spired from convex optimisation theory, the computations that can be done by neural

networks of biophysical spiking neurons. We show that such networks can funda-

mentally compute convex input-output functions, and interestingly the resulting

networks can display commonly observed biological features such as asynchronous

and irregular spike trains, robustness to perturbations, among others.
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Chapter 2

Higher-order principal

components from neural data

2.1 Introduction

Nowadays, large-scale recordings of neural populations are more widely carried out

in many experimental labs yielding ever more complex datasets. Thus, making sense

of these data is becoming increasingly important. One approach has been to analyse

individual recorded neurons, but this has proved to be quite challenging as soon as

hundreds of neurons are considered. Even in simple experimental task paradigms, for

example, individual neurons often display highly heterogeneous response patterns

(Machens et al., 2010; Laurent, 2002; Brody et al., 2003) which has been a big

hurdle to interpret the data (see 1). An alternative approach has been to leverage

the fact that the recorded neurons belong to an underlying common network and

thus, must share some features across the recorded ensemble. The goal then, has

been to extract these shared features. One common way to do so is through the

use of dimensionality reduction methods which have yielded key insights on what

several brain areas might be representing (Cunningham and Yu, 2014; Keemink and

Machens, 2019). These methods try to find a lower-dimensional set of variables,

which may not be directly observed, that could explain the data. The hope is that

these variables can more easily be interpreted and thus, yield better insights on the

population recordings.

However, such interpretations can be fraught with difficulties. Most commonly,

linear methods such as principal component analysis (PCA) are used, partly due to

their ease of implementation and minimal underlying assumptions. These methods

work well in capturing the linear manifolds where most variance in the data reside.
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At the same time, they usually display a tail of components and intriguingly, sev-

eral of them often appear as higher-order functions, e.g. higher-order polynomials,

of some other component. As a result, we refer to them as ‘higher-order compo-

nents’. Nonetheless, a clear understanding on the occurrence of these higher-order

components is still missing thus, making interpretation of these results ambiguous.

In this chapter, we analyse three datasets to show the occurrence of these higher-

order components in different brain areas. Since we will use linear dimensionality

reduction methods here, we first start in section 2.2 with a brief overview of the

principles underlying many such methods and then, consider its predictions on these

datasets in section 2.3. In particular, we will show that these methods not only

extract low-dimensional population structures that we interpret but also, many

additional components, some of which resemble higher-order components. Finally,

we discuss in section 2.4 the implications of these results in our search for neural

mechanisms.

Acknowledgements. This chapter is a result of several collaborations. The au-

thor thanks the CRCNS database for providing the monkey PFC data (Romo et al.,

2016), the Renart lab for providing the rat’s primary auditory cortex (A1) data

and the Kiani lab for providing the monkey lateral intraparietal (LIP) data. The

analysis on the LIP data is a result of a fruitful collaboration with the Kiani lab, in

particular, with Gouki Okazawa. He carried out the Canonical Correlation Analysis

(CCA), which the author replicates in this chapter. This analysis is also part of a

preprint (Okazawa et al., 2021).

2.2 Principles underlying linear dimensionality

reduction methods

One condition for dimensionality reduction methods to work is that the N recorded

neurons in the population covary according to a smaller number, M < N , of ex-

planatory variables. These explanatory variables are not directly observed, hence

are often termed latent variables, and can be some common inputs or factors that

drive the network of neurons. A main problem that the methods then address is how

to find and extract these variables. To do so, each method sets a specific objective

supported by some underlying assumptions.

We focus throughout this chapter on the class of linear dimensionality reduction

methods. A common assumption these methods make is that the latent variables, z,
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can be extracted by taking a weighted linear combination of the observed population

activity, r, or mathematically,

ẑ = Dr (2.1)

where D is an M × N matrix of weights that describes how much each individual

neuron contribute to the latent variable. Several studies have demonstrated that

such a simple linear mapping is often sufficient to capture the stimulus set and

other task parameters present during the experiment as well as both elicited and

spontaneous animal behaviour (Kobak et al., 2019; Cowley et al., 2017; Stringer

et al., 2019b; Churchland et al., 2012). Also, it has enabled to identify important

dynamical structures in the neural populations that are experimentally relevant

(Kobak et al., 2019; Cowley et al., 2017; Stringer et al., 2019b; Churchland et al.,

2012). This suggests that this assumption of linearity could be an actual mechanism

for downstream areas of the brain to decode important information coming from

upstream areas.

A complementary view of dimensionality reduction methods is to find a set of

latent variables that best reconstruct the data. Many linear methods, e.g, PCA,

demixed Principal Component Analysis (dPCA) (Kobak et al., 2016; Brendel et al.,

2011), factor analysis (FA), again assume that this mapping is linear. In other words,

the data is reconstructed as a weighted linear combination of the latent variables,

z, or mathematically,

r̂ = Fz (2.2)

where F is a skinny N ×M matrix that contains the coupling weights of the latent

variables to the reconstructed neurons.

These two views can be brought together within an autoencoder framework that

re-codes its inputs to give an alternative representation. In the context here, the

autoencoder would take as input the observed population activity, r, produce an

under-complete internal representation (or latent representation), in a hidden layer

with a smaller number of variables, and reconstructs the population activity r̂ as its

output. The goal would then be to keep the reconstructed data, given the bottleneck,

somewhat faithful to the observed activity, which can achieved by minimizing some

loss function, e.g. the squared-error loss, ‖r− r̂‖22, used in PCA, with respect to

the coupling weights. We illustrate such an autoencoder with linear mappings in

Fig. 2.1A.

Nonetheless, the linear methods can differ by adding extra assumptions distinct

to each method. PCA, for example, finds a lower dimensional description of the
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Figure 2.1: Illustration of linear dimensionality reduction methods for three neurons
and two latent variables. (A) A linear autoencoder that takes a sample input of
observed neuronal activities (r1, r2, r3), maps it linearly (through weights D) onto
a bottleneck with latent variables (z1, z2) and finally reconstructs as its output a
linear estimate (r̂1, r̂2, r̂3) of the input (through weights F). The sample can now
be described according to (z1, z2). (B) This panel is adapted from Cunningham and
Yu, 2014. The black dots are the samples fed to the autoencoder in (A) at different
time points. They trace out a trajectory in the neural space but effectively only
visit a plane (grey) in that 3D space. Thus, the samples can be equivalently be
described according to a new coordinate system (z1, z2) that describes the plane.
The coordinates along each of the two axis for different samples now describe the
evolution of the latent variables. In this illustration, the linear maps are sufficient
to perfectly reconstruct the data.

data in an unsupervised way while assuming that the latent variables should be

uncorrelated and explain maximum variance in the data. It thus, reconstructs the

data by setting F = D> and assumes an orthonormal basis, i.e. DD> = I, for the

latent variables. But, methods can also be designed to find axes that best align

with respect to individual task parameters. dPCA is one such method that maxi-

mizes variance related to task parameters, but is not constrained to find orthogonal

axes. Thus, depending on the purpose of the study, the method needs to be chosen

accordingly but, overall, linear dimensionality reduction methods will find the best

linear manifold that describes the data according to some objectives.

2.3 Interpreting latent variables predicted by

linear dimensionality reduction methods

In this section, we will analyse three datasets using linear dimensionality reduction

methods. We will show that the above principles common to these methods yield

low-dimensional descriptions of the data and we can interpret some of the predicted

latent variables or components with respect to the parameters present in the exper-
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imental paradigm. However, we will show that these variables only capture a small

proportion of the total variance in the data while the other variables cannot be eas-

ily interpreted. In particular, several of the latter variables appear as higher-order

functions of the interpretable latent variables. This consequently raises the question

as to how this tail of components appears and how to interpret those higher-order

components.

2.3.1 Population recordings in primary auditory cortex of

rats

The first dataset that we analyse comes from a study by Kobak et al. (2019). There,

the authors investigated how the neural representations for a simple auditory stimu-

lus are affected by the global dynamics of the brain or ‘brain states’ which can vary

along a continuum. At its lower end (or inactive states), the population activity ex-

hibits periods of firing and of silence (up and down states, respectively) while at the

other end (active states), the neural activity is more tonic and asynchronous. The

authors were particularly interested in understanding how the geometry of the rep-

resentations (organisation of the signal and noise subspaces) changes as a function

of the brain states.

In their study, the authors evoked different brain states by administering ure-

thane anaesthetics (Clement et al., 2008) to rats. At the same time, they recorded

neurons simultaneously in area A1 of the auditory cortex while the animals were

presented with noise-bursts played via miniature headphones (Pardo-Vazquez et

al., 2019). See the cartoon in Fig. 2.2A(i) as an illustration of the experimental

paradigm. The stimulus was two-dimensional, parameterized according to:

• Inter-aural Level Difference (ILD) - the difference in sound intensity in

dB between the two ears, also thought as the cue used by rodents for sound lo-

calization. The ILD was varied over 12 values [±1.5,±3,±4,±6,±12,±20 db].

• Absolute Binaural Level (ABL) - the arithmetic mean of sound intensities

at the right and left ears. This was changed over the values [20, 40, 60 db].

Fig. 2.2A(ii) shows the 36 experimental conditions (12 x 3) that were presented to

the animal with noise bursts lasting 150 ms separated by ∼ 850 ms.

Here, we analyse, using PCA, one exemplary recording session where the brain

activity was in the active state. During this brain state, as Kobak et al. (2019)
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pointed out, the signal plane, the principal noise axis and the axis along which the

global population activity fluctuates (global axis) tend to become orthogonal to each

other (Fig. 2.2(iii)), which is favourable for PCA.

In this session, 114 neurons were recorded simultaneously and applying PCA

allows us to find a lower-dimensional description of the population activity. After

smoothing the spike trains to reflect instantaneous firing rates, we computed the

peri-stimulus histograms (PSTHs) by averaging the data over trials for each stimulus

condition. We further chose a time window of 350ms from the onset of stimulus for

this analysis. Since the temporal activity was approximately flat for each condition,

we averaged it over time which resulted in 36 mean stimulus responses. We then

apply PCA to the mean responses to extract a low-dimensional description of the

population activity.

The first two principal components that this analysis yields, capture quite well

the grid structure of the stimulus presented to the animal as shown in Fig. 2.2B.

Indeed, we see that projections on the first principal axis (PC1) results in a sepa-

ration of the different sized dots corresponding to the different ABLs. Conversely,

PC2 separates the different colored dots, thus reflecting the ILDs. Note that this

plane spanned by the first two principal axes is analogous to the signal plane that

we described earlier (Fig. 2.2A(iii).

However, if we consider how much variance these two dimensions explain, they

capture only around 55% of the total variance while the rest is explained by a tail of

components as we see in Fig. 2.2C. Interestingly, by considering two additional com-

ponents, PC3 and PC4, we see that the activity along those axes form a curvature

with respect to the ILDs for each ABL (see Fig. 2.2D; a second-order polynomial is

fitted to the data points to emphasize the curvature). Particularly, we see a strong

curvature at low mean intensity (ABL = 20 dB) for PC3 while PC4 shows strong

curvature at high mean intensity (ABL = 60 dB). Thus, PC3 and PC4 appear as

’higher-order’ components in this analysis.

In summary, although the first two PCs already reflect the stimulus structure in

this experiment, PCA still predicts additional components that display curvatures

that resemble high-order functions of what previous PCs capture. This suggests

that the neural manifold must also have a similar curvature that these additional

components are reflecting. Yet, it is unclear as to what causes this curvature, which

makes interpretations of this PCA analysis ambiguous. A possibility could be that

these components reflect some underlying biological mechanisms, which need to be
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Figure 2.2: PCA applied to an exemplary recording session of neurons in the primary
auditory cortex (A1) of rats (Kobak et al., 2019) anaesthetised under urethane which
causes spontaneous transitions in global population dynamics (Clement et al., 2008).
In this session, the population was in the active state (tonic and asynchronous
neural activities). (A)(i) Cartoon of the experimental paradigm. (ii) The stimulus
conditions were presented in a grid structure. The colors correspond to ILD and the
dot sizes correspond to ABL. (iii) Schematic of the geometric analysis using PCA in
(Kobak et al., 2019). The salient axes are the global axis (determines fluctuations in
population activity during up-down transitions), signal plane (passes through mean
stimulus responses) and noise axis (direction where the noise cloud stretches most).
We extract this signal plane by applying PCA on the mean responses. (B) The first
two PCs obtained reflect the grid-like structure of the stimulus set. PC1 captures
the ABL (separation of dot sizes) while PC2 reflects the ILD (separation of colours).
(C) Cumulative variance explained by the first 15 principal components. The first
two PCs capture only around 55% of total variance. (D) Plotting the third and forth
PCs (rows) against ILDs for each ABL (columns) shows curvatures for each ABL.
We fitted a second-order polynomial - pale blue trace to emphasize the shape of the
curvature. These PCs resemble second-order components of the first two PCs.
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deciphered.

2.3.2 Single units recordings in prefrontal cortex of

monkeys

We next reconsider a dataset of single unit recordings from the PFC of monkeys

(Chapter 1, Fig. 1.2) to show that comparable higher-order components persist in

other brain areas. As a reminder, this dataset was recorded while the animals

performed a somatosensory working memory task (Romo et al., 1999; Brody et al.,

2003). In this task, monkeys received a first vibrotactile stimulus of frequency, F1,

at their fingertip followed by a second one of frequency, F2, after a delay period.

They then had to discriminate whether the first frequency was stronger than the

second one, i.e. F1 > F2, or not. The monkeys reported their decision by pressing

one of the two available buttons as shown in the cartoon in Fig. 2.3A. Here, we

analyse the neural recordings from two monkeys (’RR014’ and ’RR015’) and for

both of them, the delay period was 3 seconds. Also, the stimulus F1 was in the

set [10, 14, 18, 24, 30, 34 Hz] for both monkeys. Pooling across them resulted in 1325

recorded units.

We are interested in this analysis, similarly to (Machens et al., 2010), on the

neural representation of the stimulus F1 during the delay period. However, in this

task, individual neurons displayed highly heterogeneous responses (see Fig. 1.2) with

mixed selectivity to the stimulus and other factors not experimentally controlled.

Applying PCA on this data does not yield low-dimensional representations that

can be interpreted with regards to the stimulus, unlike the previous dataset. As a

result, we resort to an alternative dimensionality reduction method, namely demixed

principal component analysis (dPCA) (Kobak et al., 2016), which similar to PCA,

is a linear method, but has the additional constraint of predicting components that

separate dependencies on task parameters in the population activity.

The population also encodes the decision information but, since we are only

considering the delay period, hence before the arrival of F2, no informed decision

can be made. So, we do not need to demix the decision related activity in this time

window. The dPCA results we will show closely match those reported in Kobak

et al. (2016) where the algorithm was developed and applied to several datasets,

including this one. However, the purpose of this present analysis is different.

We observe that the population activity is dominated by the condition-independent

variables; they explain most of the variance in the data (Fig. 2.3C(i)). We can also
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see this by looking at the population firing rate over time, obtained by averaging

the PSTHs over all recorded units: in Fig. 2.3B, we see that the population activity,

when conditioned on F1 stimuli (each corresponding to a colored trace) almost over-

lap, thus showing that other factors and not the stimulus are dominant. However,

dPCA still allows us to find a set of decoding axes in the neural space that separate

the F1 dependent activity (Fig. 2.3E) from the time-varying condition-independent

activity (Fig. 2.3D).

In Fig. 2.3D, E, we plot the three most prominent decoding axes for the condition-

independent and stimulus-dependent activity respectively. We observe in Fig. 2.3E(i)

that the F1 dependent activity persists during the delay period with F1 tuning

clearly shown by the first component, as was previously noted in Machens et al.

(2010), Brody et al. (2003), and Barak et al. (2010). We can average over time, here

in the interval of 1 to 3 seconds where the activity looks roughly flat for components

1 and 3, to look at the mean stimulus responses. Fig. 2.3E(ii) reflects again the

tuning of the activity to F1 during the delay period. The first components reflects

clearly the linear tuning of the population with F1. Interestingly, however, we now

observe that the third component exhibits a curvature as a function of F1 stimuli;

a second-order polynomial was fitted to the mean responses to emphasize this.

We note that in order to solve this task, the monkey needs to memorize the

F1 stimulus during the delay period until the F2 stimulus appears, upon which it

can make the required comparison. Thus, having an accurate neural representation

of F1 should be enough and indeed, this is well captured by the F1 tuning of the

first demixed component in Fig. 2.3E. With this decoding axis, F1 information can

then be readout by a downstream area to make the correct decision. Yet, similar

to the previous dataset, we see that a tail of components is observed (Fig. 2.3C).

It is again a puzzle as to what these additional components are representing, in

particular, those that appear as higher-order functions.
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Figure 2.3: Demixed PCA (Kobak et al., 2016) applied to recordings of PFC neu-
rons while monkeys performed a somatosensory working memory task (Romo et
al., 1999). (A) Cartoon of the experimental paradigm adapted from (Romo and
Salinas, 2003). (B) Population firing rate obtained by averaging the PSTHs over
neurons for each F1 stimulus. Grey vertical lines correspond to the different time
events in the task. The data was analysed during the delay period. The legend
shows the F1 stimuli in this dataset with corresponding colour code used across
the figure. (C)(i) Cumulative variance explained by the first ten components that
demix condition-independent activity. (ii) Same as (i) but the components now
demix F1-dependent activity. (D) First three condition-independent components
across time obtained by projecting the PSTHs on the respective dPCA decoding
axes. The traces overlap each other to show the condition independence. (E)(i)
First three stimulus-dependent components across time. (ii) Same as (i), but now
averaging the above components over a time window ranging from 1 to 3 seconds.
The mean responses in coloured dots are plotted against F1. dPC1 shows the per-
sistence of F1 tuning during the delay period which is required to solve the task.
dPC3 forms a curvature to which we fitted a second-order polynomial - pale blue
trace. It resembles a higher-order component given the linear tuning of the first
component.
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2.3.3 Single units recordings in lateral intraparietal area of

monkeys

Finally, we analyse a dataset of 70 neurons recorded in the LIP of two monkeys

while they performed a motion discrimination task (Kiani and Shadlen, 2009). In

this task, monkeys viewed randomly moving dots and were required to report the

direction of perceived motion. We illustrate this task in Fig. 2.4A. A trial started

when a monkey fixated at a central point on the screen (middle red dot) after which

two possible choice targets appeared; one in the response field (RF) (grey shaded

region), of the neuron under study which we denote as Tin and the other, in the

opposite hemifield, denoted as Tout. Then, the random-dot motion stimulus was

presented, centered at the fixation point, for a variable duration (100 to 900ms)

followed by a delay period (1200-1800ms) where the monkey continued fixation.

Thereafter, the fixation point was extinguished, which instructed the monkeys (as

a go cue) to report its decision by making a saccade to one of the direction-choice

targets. The monkey was rewarded upon a correct choice. The net motion of dots

was towards one of the targets and the difficulty of the stimulus was controlled by

changing the percentage of coherently moving dots (or, motion coherence) which was

chosen from the following values [0,±1.6,±3.2,±6.4,±12.8,±25.6,±51.2%]. The

sign of coherence indicates the direction of motion; the Tin choice was associated

with positive coherence.

Such a motion task has extensively been used to study the neural mechanism

of perceptual decision-making, e.g. (Britten et al., 1992; Gold and Shadlen, 2007;

Shadlen and Newsome, 2001; Roitman and Shadlen, 2002). In the LIP area, it has

been shown that when the motion of the dots supports the Tin target, the neuron

often displays ramping activity which suggests that it might be integrating evidence

into a decision variable (DV). However, in these studies, the neural population is

often sub-sampled with selection biases from the experimenter and thus might not

provide an overall view of the population. For example, the LIP neurons that are

studied are often those that show significant persistent activity during the delay

period of a memory-guided saccade task (Colby and Goldberg, 1999; Gnadt and

Andersen, 1988; Shadlen and Newsome, 2001). In that task, a target is briefly

presented in the visual field of the monkey and after a delay period, the monkey is

required to saccade to the remembered position of the target. The target position

is then varied across trials and the RF of the neuron is subsequently defined as the

position in the visual field that causes the neuron to be persistently active during

the delay period. It is this RF that is then set as one of the choice target (Tin) in the
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motion discrimination task. However, it is unclear how the response of the neuron

would change if the motion of dots points in other directions rather than towards

the RF.

Since we are mostly interested in describing population responses here, having

a homogeneous sampling of the population is crucial to reach an unbiased view of

what it is representing. We go one step in this direction by constructing a surro-

gate dataset by assuming that whenever, for a given LIP neuron under study, the

motion of the dots points towards Tout, there will be another neuron, not recorded,

whose RF will be at that target. Thus, this latter neuron will exhibit the oppo-

site responses, which we approximate using the reversed responses of the recorded

neuron conditioned on motion coherence. For concreteness, suppose neuron 1 fires

at (x1, . . . , xk) Hz for the k signed stimulus conditions, then we assume there is

an unrecorded neuron 71 that would respond as (xk, . . . , x1) for the same k stimu-

lus conditions. In other words, we build this surrogate dataset by simply flipping

these conditional responses for all neurons and together with the original dataset,

we analyse a population of 140 neurons.

Similar to the previous datasets, we apply linear dimensionality reduction meth-

ods to find latent structures in the data. Proceeding as before, we obtain the

trial-averaged neural responses for each neuron for each motion coherence. To avoid

confounded representations with mixtures of both correct and error choices, in the

following analysis we select trials with correct choices only. Following past studies

(Shadlen and Newsome, 2001; Kiani and Shadlen, 2009), we group the motion co-

herences according to 0-3.2%, 6.4%, 12.8%, 25.6%, 51.2% to give five strength levels

(thus, 10 signed stimulus conditions) that we color-coded in Fig. 2.4. At 0% coher-

ence, the correct target was assigned randomly. Fig. 2.4B shows the populations

average PSTHs after stimulus onset. In the inset, we show the population firing rate

of the original dataset (70 neurons) where we see the typical ordering of firing rates

of LIP neurons as previously reported in (Roitman and Shadlen, 2002; Shadlen and

Newsome, 2001). The firing rates of the neurons are high for stimuli supporting

the Tin choice (solid trace) and low for stimuli in favour of the Tout choice (dashed

trace). Due to how we build our dataset, this split according to choices disappears

upon averaging over all 140 neurons; the solid and dashed traces for each stimu-

lus strength tend to overlap. Nonetheless, there is a general temporal trend in the

population firing that is condition-independent.

Here, we analyse this data in a 250-550 ms time window. To separate the

condition-independent activity from the stimulus-dependent activity, we again apply
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Figure 2.4: Demixed PCA applied to recordings of LIP neurons while monkeys per-
formed a motion discrimination task (Kiani and Shadlen, 2009). (A) Cartoon of
the task adapted from the original study. In the legend, solid lines correspond to
Tin and dashed lines to Tout; the colors are the different stimulus strengths. (B)
Population average firing rates of original and surrogate dataset with correct trials;
the original data only in inset where the responses for Tin and Tout gradually di-
verge due to the task structure. (C) Cumulative explained variance by the first ten
components that demix condition-independent and stimulus-dependent activity, re-
spectively. (D) First three demixed principal components for condition-independent
activity. (E)(i) Stimulus-dependent dPCs. (ii) Same as (i), now averaged over a time
window 350-450ms. The dots are the mean responses for correct choices to different
stimulus strengths. dPC1 captures the decision variable. dPC2 shows a curvature
in the neural manifold, fitted with a second-order polynomial. (iii) The curvature is
more prominent in a 3D space with the top three components. The fitted trajectory
is obtained by fitting polynomials to each component as in (ii) but for different time
windows.

23



dPCA. Fig. 2.4D shows the three most prominent decoding axes for the condition-

independent activity (the colored traces almost overlap with each other) and simi-

larly, Fig. 2.4E shows the dominant decoding axes for the stimulus.

We observe in this time window, that the stimulus-dependent activity domi-

nates the population activity as measured by the amount of variance they explain

(Fig. 2.4C). The first component in Fig. 2.4E, in particular, shows that this axis

possibly captures choice information as the dashed and solid lines diverge over time.

In supplementary figure 2.7A, we verified that the traces overlap at the onset of

stimulus (t=0 ms) by projecting the data with a wider time window on the the axes

obtained from this analysis. This is expected since there is no evidence to make an

informed decision at that time.

We also see that the colored traces for different motion coherences diverge over

time, suggesting that this axis is also capturing the DV. This is made clearer by

looking at the time-averaged activity as a function of motion strength (Fig. 2.4E(ii)).

Here, we averaged over a 100ms time window, centered at 400ms. We see that the

first component, upon averaging, displays the separation of choice (separation of

empty dots for negative coherences and full dots for positive coherences), but there

is also a linear gradation of the activity conditional on stimulus strength, thus

reflecting the DV, or amount of evidence in the stimulus, required to solve the task.

This gradation becomes more prominent over time (see supplementary figure 2.7B)

which suggests the integration of evidence.

Interestingly, however, we see that several additional components can be ob-

served upon this dPCA analysis. In particular, the second stimulus-dependent dPC

reflects a curvature in the neural manifold (Fig. 2.4E(ii); a second-order polynomial

was fitted to the mean responses). This curvature is more salient when we look at

the activity in a three-dimensional dPC space (see Fig. 2.4E(iii); polynomials fitted

to the projected data). We observe that the major axis of the curvature seems to

distinguish the difficulty associated with the stimulus — the easy stimuli (positive

and negative coherence) appear towards the ends of the fitted polynomial while the

harder stimuli get closer at the peak of the curvature. One may then posit that the

population is explicitly encoding the stimulus difficulty in a curved manifold which

may have some functional purpose in solving the task.

One possibility could be that the neural representation along a curved manifold

allows to compute both the choice and the confidence associated with it since both

DV and stimulus difficulty could, in principle, be readout by a downstream area
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according to two distinct axes (e.g. decoding axes 1 and 2 from dPCA for stimulus-

dependent activity). However, following an analysis done by Gouki Okazawa in the

laboratory of Roozbeh Kiani, we will next show that intriguingly, this curvature

does not bear on the confidence of the monkey.

In this motion discrimination task, the monkey also had the option on a random

half of the trials to terminate a trial by making a saccade to a third target (Kiani

and Shadlen, 2009). A smaller reward (≈ 80% of the reward of a correct choice)

was guaranteed upon this choice. The trial would start as before and during the

delay period, at least 500ms after the stimulus viewing, this ‘sure target’, (Ts),

would appear. We illustrate this in Fig. 2.5A. As previously demonstrated (Kiani

and Shadlen, 2009), the monkey would choose Ts based on certainty, choosing it

more frequently on difficult trials. In other words, whenever it chose Ts, it was an

indication of low confidence. Also, from the neural responses of LIP neurons, it has

been shown that one could predict the monkey’s Ts choices. So, if encoding stimulus

difficulty explicitly had a functional role in the computation for confidence associated

with a choice, then projecting the LIP responses on an axis representing stimulus

difficulty (major axis of the curvature, here) would, in principle, be predictive of Ts

choices.

Gouki tested whether this was the case by first identifying axes in the state space

of N = 70 neurons (original dataset) that best captured the DV and the stimulus

difficulty by doing a canonical correlation analysis (CCA) (Hotelling, 1992). CCA

allowed to find a pair of axes, one most correlated with the signed stimulus strength

(‘DV axis’) and the other, being most correlated to the unsigned stimulus strength,

a proxy for stimulus difficulty (‘difficulty axis’). To avoid any artefacts, the analysis

was cross-validated whereby, the axes were first obtained using a random half of

correct trials and prediction made on the remaining half by projecting the data on

these axes (see section 2.5.2 for supplementary details on this analysis). Note that

CCA is an alternative way of finding decoding axes with explicit labels, but unlike

dPCA the targets for the projections need to be specified (here, signed and unsigned

stimulus strengths). We replicate below the results that they obtained.

As seen in Fig. 2.5B, these two axes provide a two-dimensional description of

the population data, which captured the curvature in the neural manifold as before

(test data was projected on these axes and averaged over a time window 350-450ms

after stimulus onset). We now show that projections on the difficulty axis were not

predictive of the monkey’s confidence. Following the original analysis, we projected

the correct trials for all stimulus strengths, and the error and Ts trials for the three
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Figure 2.5: Canonical correlation analysis (CCA) on 70 LIP neurons in a motion
discrimination task with confidence jugdements. The curvature in the neural man-
ifold was not predictive of confidence. (A) The confidence of the monkey could be
assessed in a variant of the task where an additional target, Ts, would appear on a
random half of the trials. Upon choosing it, the monkey opted out and received a
smaller reward. (B) Population activity projected on the best axes that encode DV
and stimulus difficulty. These CCA axes were obtained upon cross-validation and
using correct trials only. The plot show the time-averaged projected responses (test
data) in a time window 350-450ms after stimulus onset. A second-order polynomial
was fitted to the data to emphasize the curvature. The DV axis indicates evidence
supporting Tout and Tin. (C) Projected neural responses for each stimulus strength
and choice in the same time window as in (B). The DV axis is redefined here,
with values indicating correct and error choices, with more positive values meaning
stronger evidence for correct choices. While projections along DV axis separates the
choices, projected responses for the low confidence choice (sure target, Ts) are not
distinguishable from those of higher confidence choices (Tin, Tout) along the difficult
axis. (D) Residuals of projected population responses projected on the DV axis. A
clear separation of the choices is obtained. (E) The residuals, when projected on
the difficulty axis, had no marked separations, suggesting that the curvature in the
manifold is not predictive of confidence.
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weakest stimulus strengths. For these latter stimulus strengths, the error and Ts

choices were present in all sessions (for easier stimulus, the monkey hardly made

errors or chose Ts). As shown in Fig. 2.5C, distinct projections corresponding to

different choices were obtained along the DV axis. However, when projected on

the stimulus difficulty axis, no clear separation of low-confidence choices, Ts, from

the higher-confidence ones (Tin or Tout) was obtained (see supplementary details in

section 2.5.2).

To further quantify these observations, we projected the residuals for fixed stim-

ulus strength, as in the original study, along the DV and difficulty axis to see if

they were predictive of confidence during decision formation. This residual analysis

addresses the confound that a change in stimulus strength leads to changes along

both DV and stimulus difficult axes due to the curved manifold. For each axis, these

residuals were computed by taking the mean of the projected data over the three

choices, within each coherence, and subtracting this mean from the projected data

for each choice. This removed the effect of stimulus strength which was the major

source of co-variation of these axes and as a result, isolated the effects of variations

on one axis, while keeping projections on the other axis constant. Finally, the resid-

uals were averaged over the stimulus strengths for each choice. We see in Fig. 2.4D

that the residual projections along the DV axis showed a clear separation of the

three choices. However, this was not the case when the residuals were projected

along the difficulty axis (Fig. 2.4E); the residuals for the sure choice were not dis-

tinguishable from those when the animal made correct and incorrect choices, thus

reinforcing that this axis does not bear on the animal’s confidence.

In summary, we showed that dPCA revealed latent structures in the population

data that reflected the integration of evidence which is crucial to make an informed

decision in this task. Nonetheless, additional components also appeared which sug-

gest that neural manifold has a curvature that is dependent on the motion strength.

In particular, the curvature seems to encode the stimulus difficulty and one could

posit that this information could be used for confidence judgements. However, repli-

cating an analysis done by Gouki Okazawa,we showed that, in fact, this curvature

does not seem to be relevant for computing the confidence associated with a choice.

One possibility could be that the neural mechanism for confidence operates on a

different pathway and does not use the information along the difficulty axis. In

this case, it remains unclear what functional role does this curvature in the neural

manifold serve.
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2.4 Discussion

In this chapter, we analysed three datasets (Kobak et al., 2019; Romo et al., 1999;

Kiani and Shadlen, 2009), using commonly used linear dimensionality reduction

methods, namely PCA, dPCA and CCA. While in the first dataset, PCA was able

to find dimensions in the data that could be interpreted with regards to the stimuli, it

is not generally case that it will find low-dimensional representations of the data that

correspond to the stimulus. We thus used more targeted dimensionality reduction

methods, i.e. dPCA and CCA in the other datasets.

We showed that, while these methods successfully extracted low-dimensional

structures in the population data that we could interpret, they also predicted a

tail of components. Amongst them, some of these components resembled higher-

order functions of some other components, and thus we referred to them as ‘higher-

order’ components. This suggests that the true underlying manifold is non-linear.

However, a clear understanding of how these higher-order components emerge and

what they represent is still missing. We discuss below a few hypotheses.

1. Distortions in the manifold due to noise. One hypothesis could be that

the noise in neuronal activities is sufficiently structured that it distorts an oth-

erwise linear manifold. However, averaging across trials as we did here should

have reduced the effect of the noise. Also, it seems unlikely that such structure

in the noise would persist across the datasets to yield similar distortions.

2. Curvature due to task structure. One possibility could be that the cur-

vature that these dimensionality reduction methods capture is due to the spe-

cific structure in the task or stimulus set that elicits neural responses only in

portions of the high-dimensional neural space. As an example, consider an

experiment where gratings of different orientations are presented on a screen

while neurons in the early visual cortex are recorded. Then, one might expect

that the responses of neurons encoding this stimulus set would also display

a similar circular structure (see Fig. 2.6). In other words, we would not be

measuring neural responses across the whole neural manifold, but only those

elicited in a circle due to the structure in the stimulus set. Thus, the overall

shape of the manifold may be different.

To address this, one might consider a multitude of tasks and hope that the

elicited responses cover more widely the neural manifold and thus, get a better

parametrization of its shape. As a result, the apparent curvature, which arose

due to the samples of measured neural activity from a specific task structure,
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Figure 2.6: Illustration of a curved neural manifold due to a specific stimulus struc-
ture. Neurons encoding the orientation of the gratings in the pixel space are likely
to have their responses lying on a circular trajectory in the neural space.

might disappear. Yet, as we showed, the higher-order components seem to

persist across several tasks, which suggests that curvature may be a feature of

the overall neural manifold, and is not stimulus or task specific.

3. Curvature due to neural computations. One other hypothesis is that the

curvature in the manifold arises due to additional computations that might be

required e.g., to generate accurate neural representations or to solve the tasks.

The higher-order components would then be reflecting these computations

along extra dimensions in the state space.

However, as we showed in the LIP dataset (Kiani and Shadlen, 2009), the

curvature which seemed to reflect stimulus difficulty, was not functional in

the computation for confidence. Thus, functional purpose of this curvature

remains unclear as the linear DV axis was sufficient for the animal to make

a choice. In the PFC dataset (Romo et al., 1999) also, we showed that the

stimulus tuning during the delay period, crucial to solve the task, was already

captured by a linear component. Yet, additional higher-order components also

appeared and their computational roles remain unclear. Given the experimen-

tal paradigms in the datasets that we analysed, we believe that computations

done by the network might not be the dominant aspect yielding a curved

manifold, although we cannot entirely neglect this hypothesis.

4. Curvature due to coding constraints. We propose an alternative hy-

pothesis which is that the overall curvature in the neural manifold is due to

coding constraints, and is not functionally relevant. One well known con-

straint underlying neural representations is that individual neuronal activity

is constrained to be non-negative. We will show in the next chapter how such

a simple non-linearity can change the shape of the manifold if the neural code
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is to be energetically efficient and the relevant information is readout linearly.

We will also how these lead to higher-order components that resemble those

we described here.

2.5 Supplementary details

2.5.1 Preprocessing of neural data

• A1 dataset in rats (Kobak et al., 2019). First, we filtered the spike trains

with a Gaussian kernel (σ = 10 ms) and sampling rate of 200 Hz to pro-

duce trial-by-trial instantaneous firing rates. By averaging over the trials for

each experimental condition, we then computed the peri-stimulus histograms

(PSTHs). For the plots in the figure, we analysed the PSTHs over a time

window of 350ms after stimulus onset and we compute the mean responses by

averaging over time.

• PFC dataset in monkeys (Romo et al., 1999). In this analysis, we used

the same pre-processing steps as Kobak et al. (2016). Recording sessions were

selected such that all the six F1 frequencies were present and only correct

trials were analysed. Also, there was a selection of neurons such that for each

neuron there was a minimum of 5 trials for each condition. Neurons that had

mean firing rates above 50Hz were excluded to avoid biasing the variance-

based analysis. This resulted in 1325 neurons. Note that this number differs

from Kobak et al. (2016) as they also considered the decision of the monkey

in this selection process. The spike trains were filtered with a Gaussian kernel

(σ = 50 ms) and sampling rate of 100 Hz to produce instantaneous firing rates.

PSTHs were computed by averaging over trials for each frequency.

• LIP dataset in monkeys (Kiani and Shadlen, 2009). The spike trains were

filtered using a Gaussian kernel (σ = 25 ms) and window size of 100 ms

to produce instantaneous firing rates. For the dPCA analysis, these were

averaged over correct trials for each stimulus strength to yield PSTHs. Due to

the small number of neurons in this dataset, we did not pre-select neurons as in

the previous dataset, but the results were obtained after cross-validation using

the same approach as in (Kobak et al., 2016). dPCA was applied on a dataset

of 140 neurons (original+ surrogate). For the CCA analysis, following the

original analysis, we computed PSTHs using spike counts for the 70 neurons

of the original dataset.
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2.5.2 Details on CCA for the LIP dataset

CCA is a linear dimensionality reduction method that, given two datasets, R and

P, finds low-dimensional mappings RA and PB such that the correlation between

these mappings is maximized.

To find these axes, a matrix of task parameters, P, that approximated DV and

stimulus difficulty was first designed. Since the DV for a fixed stimulus duration

is proportional to the signed stimulus strength, s, while the stimulus difficulty is

defined as the negative absolute value of the stimulus strength, −|s| (negative val-

ues since motion strength 51.2% is easier than motion strength, say, 25.6%), P was

built using these values. The other matrix R was the PSTHs of the 70 LIP neurons

but, restricted to a smaller time window (350-450ms after stimulus onset). A short

time window was chosen in order to allow approximation of DV and stimulus diffi-

culty based on the task parameters; the proportionality constant between stimulus

strength and DV changes over time, as the DVs for different stimulus strengths

diverge from each other. Finally, a 2D projection of the neural responses that best

correlates with the task parameters was computed as RAB−1. Note that a PCA

was first done on the PSTHs to attempt denoising the data prior to CCA and

in our replication, we kept the first 20 PCs that explained 93.9% of the variance.

This choice of number of PCs was not critical for the results obtained (the original

analysis tested a range of dimensions from 10 to 40).

Note that in Fig. 2.5B, the DV axis ranges between Tin and Tout correct choices,

with more positive values indicating stronger evidence for Tin. In Fig. 2.5C, D,

however, since we are interested in comparing the projected responses across choices,

the DV axis is aligned with respect to the correct target such that now, the DV axis

ranges between correct and error choices. To make this point clearer, consider an

example. Suppose the projected neural response along DV axis for x% coherence

stimulus is α and that, for −x% coherence is β (assuming positive coherence is

towards Tin target), we averaged this activity together i.e., (α−β)/2. For α1 and β1

being the projected responses along the difficulty axis for x% and −x% coherences,

respectively, we simply computed the average as (α1 + β1)/2.
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Figure 2.7: Results from demixed PCA on recordings of LIP neurons over different
time windows. dPCA was fitted as before over a time window of 250-500ms after
stimulus onset. (A) Data over the time window 0-600ms (with 0ms being the onset
of the stimulus) is now projected to show the neural responses at stimulus onset
for different components. (B) Stimulus-dependent dPCs averaged over different
time windows. The first component shows that linear gradation of mean responses
conditional on motion coherence becomes more evident over time. The curvature in
the manifold as captured by the second component becomes more prominent over
time.
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Chapter 3

A theory for higher-order

principal components

3.1 Introduction

Neurons in the brain communicate mainly through spikes which are discrete events.

The quantification of neuronal activity as the number of spikes per unit time or

firing rate is therefore, bound to be non-negative. While this simplest form of non-

linearity on neuronal activity is well-known, linear dimensionality reduction methods

do not explicitly take this into account and its specific effect or importance for these

methods is less clear.

In this chapter, we study this effect under two crucial assumptions. First, we

assume that the effective readouts from the high-dimensional population activity

are linear and are low-dimensional (Assumption 1). This assumption is present in

all linear dimensionality reduction methods (see Chapter 2), and the extracted la-

tent variables from these methods would correspond, in some sense, to the readouts.

Given the successes of these linear methods in uncovering various insightful popula-

tion structures in neural data (Cunningham and Yu, 2014; Keemink and Machens,

2019), we hypothesize that linear readouts could be a biologically plausible mech-

anism employed by the brain. Our second assumption is that overall population

activity is limited for reasons of energetic efficiency (Assumption 2). This assump-

tion is motivated by the common observation that spike emissions are metabolically

costly (Laughlin, 2001; Attwell and Laughlin, 2001) and thus, need to be economised

while relaying maximum information in each spike (Barlow, 1969; Levy and Baxter,

1996).
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We start this chapter by revisiting a classic problem in Neuroscience which is

how neurons ‘encode’ relevant information into their firing rates (section 3.2). This

will allow us to look at the implications of our assumptions on the neural code.

We show that when neural activities are generated under these assumptions, the

resulting neural manifold, i.e. the surface in the neural space on which the neural

activities lie on, becomes curved so as not to violate the non-negativity constraints.

Importantly though, the relevant signals should still be retrieved through a linear

readout despite the curvature (Assumption 1). However, when a linear method

such as PCA is applied to samples from this manifold, we show that many more

principal components than the dimensionality of the readouts are predicted so as to

compensate for the curvature in the manifold. We explain this finding geometrically

and show that several of these components resemble higher-order functions, e.g.

polynomials of increasing order, of some other components. We thus refer to them

as higher-order components (HOC) and remark that they resemble the puzzling

‘higher-order’ components that we found when analysing real data as in Chapter 2.

This raises the possibility that these components appear in real data due to coding

constraints that bend the neural manifold.

We next turn to numerical simulations to investigate in more depth this effect

of the non-negativity constraints on the predictions of PCA (sections 3.4 & 3.5).

We consider two neural network models that incorporate our assumptions to sim-

ulate the ground truth data and we show, in this case, that the neural manifold is

approximated by specific, piecewise-linear surfaces in the high-dimensional neural

space, along which the population trajectories move. Then, PCA sometimes ex-

tracts the correct low-dimensional linear readouts, but often, also displays a tail of

higher-order components due to the kinks in the manifold of piecewise-linear sur-

faces. Importantly though, these higher-order components do not reflect any of the

underlying signals, nor any computations thereupon, and thus do not have any func-

tional meaning. This consequently warrants caution when interpreting the results

of linear methods when analysing neural data.

3.2 Coding problem revisited

In this section, we look at the implications of our aforementioned assumptions on the

neural code. This will allow us to understand the effect of the non-negativity con-

straints on individual neuronal activities on linear dimensionality reduction meth-

ods. A common observation is that we can decode meaningful low-dimensional

structures in population recordings as linear readouts (Chapter 2). We now turn
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this around and ask how should the information have been ‘encoded’ in the first

place by the population to achieve the said readouts.

A direct implication of our first assumption — population readouts are lower-

dimensional — is that the same readout can be obtained by several population

activity patterns in the upstream population, or in other words, the population

activity is redundant. We illustrate this point in a network schematic of two neurons

that encodes a one-dimensional signal. Suppose, for example, that the population

activity is read out as the difference in activities of the two neurons (Fig. 3.1A).

Then, as we show in Fig. 3.1B, any neural combination that falls on the dashed

orange line gives the same readout. In fact, these neural combinations reside in

the null-space of the decoding weights and in this illustration, forms a line. Thus,

only by switching lines (i.e. going orthogonal to the null direction or along the

coding direction) can a different signal be encoded. So, as the input signal changes,

the population activity (red dot) will switch from one of the dashed orange line

to the next. Effectively, the population activities corresponding to different input

samples will lie on a surface in the neural space, or a neural manifold (e.g. the

blue-green curve in Fig. 3.1B). Importantly however, this manifold is not uniquely

defined since for any given input, there are many possible combinations of neuronal

activities (lying on a dashed orange line) that would yield the same readout.

Given this vast set of possible network representations yielding the same readout,

we ask whether this coding problem can be addressed from a normative perspec-

tive. In particular, we ask how should the network encodes its inputs given our

understanding of the constraints that biological networks face. In the following, we

describe several possible coding schemes and discuss their plausibility.

One of the simplest mapping from input signals to firing rates of the network is

the linear one. This means that the firing rates of the neurons are obtained as linear

combinations of the signals and we can also add an offset term to all neurons to

capture any baseline activity. In fact, due to the mathematical convenience of such

a coding scheme, it underlies many linear dimensionality reduction methods, e.g.

PCA, dPCA (Kobak et al., 2016) when formulated as neural networks (see Chapter

2). However, linear encoding suffers from some strong limitations. First, firing rates

are non-negative and thus, this scheme can code only a limited signal range. As we

illustrate in Fig. 3.1C, for a given offset, the non-negativity constraint is violated

for several input signals (crossed-out circles). To address this, the offset can sim-

ply be increased, which then moves the manifold (blue-green) up the non-negative

quadrant, thus affording it a wider coding range. However, this is not ideal for two
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Figure 3.1: Illustrating the effects of assuming linear readouts and neural redun-
dancy on the neural code. (A) Cartoon of a two-neuron network with a 1D readout.
The decoded signal is for example, the difference in activity of the two neurons.
(B) Illustrating a neural manifold (blue-green). Each neuron defines an axis in the
neural space. Due to neural redundancy, combinations of network activity lying
on a dashed orange line results in the same readout. Only by switching from one
orange line to the next does the decoded signal change. Neural activity for a given
input is illustrated as a red dot. As the input changes, the corresponding neural
activity moves on the neural manifold. (C) If the manifold is linear manifold, the
range for coding is limited due to the non-negativity constraints; the crossed-out red
circles illustrate the network activities that violate these constraints. Moving the
manifold north-east to remedy for this, however, entails an energetically expensive
code. (D) A non-linear manifold can expand the range for coding. To maintain
an energetically efficient code, the manifold should be bent towards the origin. (E)
The curvature in (D) can be pushed further so that the manifold goes along the
axes to maximise energy efficiency. But this means that the whole population can
become silent (at the origin), which is experimentally unlikely. (F) Although the
manifold can be twisted and tangled to further expand the coding range, this may
not be desirable either. Different inputs can yield network activity patterns (empty
red circles) that lie on the same dashed orange line, and thus a linear readout can-
not discriminate between these inputs. A more complicated readout would then be
needed, but this may not easily be implemented in biological circuits.
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reasons. First, the code becomes energetically expensive as the overall population

activity increases (Laughlin, 2001; Attwell and Laughlin, 2001) and second, in the

middle of the quadrant, all the neurons are active which contradicts the usually

observed sparsity of firing in several cortical areas (Wohrer et al., 2013).

In order to expand the dynamic range for coding, a simple solution would be

to bend the neural manifold by introducing a non-linearity in the encoder. Ideally,

we would want the curvature to bend towards the origin as this favours an ener-

getically inexpensive code with low overall firing rates (Fig. 3.1D). We could push

this curvature even further such that the neural manifold now goes along the axes

as in Fig. 3.1E. However, situations where the whole population becomes silent (at

the origin) are usually not experimentally observed, except e.g., when the animal is

under anaesthesia and exhibit up-and-down states (Clement et al., 2008). Also, in

such a coding scheme, whenever one neuron is active, all the other neurons in the

population need to be kept below spiking threshold. This may also require energy

and a tradeoff between signalling and resting costs might be required (Niven and

Laughlin, 2008).

Moreover, not all non-linearities are desirable. For instance, if the manifold is

all twisted up as in Fig. 3.1F, a linear decoder would fail to disambiguate distinct

signals which have their neural representations falling in the null-space of the decoder

(open red circles). Following the arguments that we laid out above, we posit that

the neural manifold should resemble the one in Fig. 3.1D, under our assumptions.

Importantly, despite the curvature in the manifold, we should still be able to

linearly decode linearly the underlying signal (here, a one-dimensional signal) from

the neural activities. Similarly, linear methods such as PCA aim to find the latent

variables in data through a linear mapping, but the non-negativity constraints on

neuronal activities are not explicitly taken into account by these methods. In this

chapter, we are primarily interested in understanding how these constraints, and

thus the curved neural manifold, affects the results of PCA in finding the true

underlying signals in the data.

Given the picture of how the neural manifold should be shaped in this illustra-

tive example, we will start by characterising geometrically the principal components

that PCA returns when applied to samples from this manifold. We will then inves-

tigate, using neural network models that incorporate our assumptions, what these

constraints entail in higher-dimensional examples.
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3.3 Geometry of principal components when the

neural manifold is curved

From the above illustrative example, we consider the neural manifold to resemble

the one in Fig. 3.1D. The samples in the manifold (red dots) are obtained as the

underlying input changes, which we can imagine as some command signal to the

network that varies as a function of some task parameter. For example, it could

vary linearly as in Fig. 3.2E. When PCA is then applied to this data, it finds a new

coordinate system consisting of orthogonal axes to represent the data. The axes

are arranged in order of amount of variance they each capture when the data is

projected onto them with the first axis capturing most variance.

Here, we are particularly interested in the representations that PCA gives in the

new coordinate system. Fig. 3.2A shows the first axis, or dominant dimension with

most variance. By projecting the data onto it (pale red), we see this results in a best

linear approximation for the data. This approximation, as we recall from Chapter 2,

can be formulated as an autoencoder where PCA finds an optimal linear map of the

data onto a one-dimensional bottleneck (decoding step) and back up to the state

space (encoding step) such that the reconstructed activity is as close as possible

to the original trajectory (see inset of Fig. 3.2A). The autoencoder then yields a

bottleneck representation (blue node in middle layer) which corresponds to the first

principal component (PC). By plotting the latter against the task parameter, we see

that it reflects the underlying input signal to the network (compare Fig. 3.2B and

E). Thus, PCA would allow us to estimate, in an unsupervised way, the underlying

explanatory variable for the population activity, which here is the input signal.

However, this first axis does not explain all the variance in the data. PCA

finds a subsequent dimension that maximizes the variance of the projected data

in the residual subspace. Fig. 3.2C shows this second axis and similarly, we can

project the data onto it. A second PC or bottleneck representation corresponds

to the activity along this axis which we can again plot as a function of the task

parameter (Fig. 3.2D). PCA now predicts a component that looks roughly quadratic,

to reflect the curvature in the manifold. Given its characteristic shape, we refer to

this second component as a ‘higher-order’ component. Importantly, note that this

second PC compensates for the fact that the population trajectory is bent due to

coding constraints, but it has no functional relevance for the neural code since the

true explanatory variable is already captured by the first component.

In reducing dimensionality, we would probably be fine with PCA on this toy
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Figure 3.2: Geometry of predicted principal components (PCs) when the neural
trajectory is bent (blue-green) due to coding constraints. PCA finds a new two-
dimensional coordinate system to represent the data. (A) The first principal axis
captures most variance when the data (dark red dots) is projected onto it. The
projections give the best linear approximation (light red dots). (Inset) PCA as an
autoencoder. This linear approximation is equivalent to the best linear reconstruc-
tion of the data after passing it through a bottleneck (blue node). (B) The activity
of the bottleneck in (A) or first PC, when plotted against the task parameter, varies
linearly, reflecting the input signal in (E). (C) A second principal axis, orthogonal
to the first, is predicted to capture the remaining variance. It yields a different re-
construction of the data (light red dots). (Inset) PCA autoencoder as in (A) except
that a different readout is obtained (olive). (D) The second decoded signal or PC
displays a ‘quadratic-like’ shape against the task parameter. This PC reflects the
curvature in the manifold due to coding constraints. (E) The network input, not
known to PCA, is a linear function of the input and correctly captured by the first
PC. The second PC has no coding function.
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example as we would choose the first principal component to summarize the data as

it captures most variance. However, this schematic illustrates one important point:

even though there is only one input signal and that we started with an assumption

of linear readout to generate the neural activities, which PCA incorporates too in

its decoding step, PCA still predicts an additional component that does not reflect

any underlying signal. In other words, the number of dimensions needed to describe

this manifold, or its intrinsic dimensionality, is one. But PCA shows that the

dimensionality of space that the manifold occupies, or its embedding dimensionality

(Camastra, 2003), is higher and the extra dimensions in the embedding may not

reflect anything functional in the data.

In a real experimental setting of course, the true underlying explanatory variables

are unknown and thus, need to be inferred from the data. Estimating these latent

variables using linear methods such as PCA leads us to a conundrum: are the

predicted components truly reflecting some underlying signals or are they simply

compensating for the curvature in the manifold and are thus, functionally irrelevant?

We next show via network simulations that when the network’s size and inputs are

scaled up, the embedding dimensionality increases significantly compared to the

intrinsic dimensionality, and thus these functionally irrelevant components become

fairly consequential.

3.4 Modelling neural activities of the brain

To understand the effect of the non-negativity constraints on linear dimensionality

reduction methods, we resort to numerical simulations, which provide us with the

ground truth against which we can compare the predictions of these methods. In

the following subsections, we take a small detour by first describing the two neural

network models that we will use in our simulations to generate non-negative neuronal

activities.

3.4.1 Neural network model with static non-linearity

A standard way to incorporate the non-negativity constraints in a neural network

is by introducing a non-linearity when generating the network activities. A simple

approach is to first encode the inputs linearly, followed by a static non-linearity

which is the basis for a linear-nonlinear (LN) network model. Such network model

dates as early as the first perceptron (Rosenblatt, 1958) and has widely been used in

both artificial neural networks (LeCun et al., 2015) and biologically-inspired network
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Figure 3.3: Illustration of the linear-nonlinear (LN) network model. (A) Schematic
of a network of two neurons encoding an input signal, x. The network firing rates are
rectified to be non-negative via a ‘ReLu’ non-linearity. (B) Threshold linear tuning
curves are obtained. (C) In the neural space, the manifold of network activities is
piecewise-linear.

models (Chichilnisky, 2001; Pillow et al., 2005). Mathematically, the LN network

model encodes its inputs x into its firing rates r according to,

r = g(Fx + b) (3.1)

where F are the coefficients for the linear combination of the inputs, b is a bias term

that captures any baseline activity in the population and g(.) is a chosen non-linear

function. We illustrate this transformation schematically in Fig. 3.3A.

A commonly used non-linearity is the rectified-linear unit (ReLu) which re-

turns the element-wise maximum between some input vector v and 0 i.e. g(v) =

max(v, 0). This rectifies the outputs of the network (here, firing rates of neurons)

to be non-negative as demonstrated by the tuning curves schematics in Fig. 3.3B.

For a given set of parameters (F,b), the neural trajectory in the neural space is

bent towards the origin; in fact it has a piecewise-linear shape due to the chosen

nonlinearity (rectification).

Such an LN model can be stacked up in layers to create an augmented neural

network model which can do arbitrary non-linear computations. With more sophis-

ticated learning algorithms, such networks have had tremendous success in many

machine learning applications (LeCun et al., 2015). However, they have some clear

shortcomings to explain biological observations. First, optimizing the parameters

in such networks for effective computations does not guarantee that the internal

neural representation at each layer is energetically efficient. This is because the

training of the networks is usually done irrespective of the level of neuronal activ-

ities (unless, high firing rates are explicitly penalized). Second, when such layers

are implemented using biophysical spiking neurons, the firing patterns of the neu-

rons are often quite regular (Eliasmith and Anderson, 2004), which contradicts the
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observed highly irregular and asynchronous spiking activity in several cortical areas

(Denève and Machens, 2016).

3.4.2 Neural network model with optimal representations

We now consider an alternative modelling framework that can address the issues

mentioned above. In this framework, the neural network is set as an autoencoder

to find optimal neural representations for its inputs. The network aims to reach an

optimal tradeoff between two competing aims: (1) the representation as determined

by the readout of the population activity needs to be accurate with respect to the

inputs and (2) the representation needs to be achieved at low computational costs,

in particular, through limited firing rates. As a result, the network representations

become energetically efficient.

Moreover, it has been shown that when such an optimality principle is incor-

porated into spiking networks, they usually display important biological features

such as such as irregular and asynchronous spike trains, trial-to-trial variability and

excitatory-inhibitory balance (Boerlin et al., 2013; Barrett et al., 2016). This arises

because the neurons in the resulting networks share information through lateral

connections, a feature that is not present in feedforward networks as the LN model

(see an example architecture of such networks in Fig. 2.1A). Due to the neuronal

interactions, the spiking network also reduces redundancy since no two spikes code

for the same information, thus abiding to the ‘efficient coding hypothesis’ — a core

idea in theoretical neuroscience (Atick and Redlich, 1990; Barlow, 1969).

Here, we build on this framework by hypothesizing that the networks not only

code for some observed input signals, x, but are also driven by a set of latent

variables which yield a net modulatory effect on the global population activity.

This effect can be summarized according to a global background signal, z, that we

model as another input to the network. In analogy to the dataset (Kobak et al.,

2019) that we analysed in Chapter 2, z would be the modulatory signal that enables

fluctuations of the global population activity along up-and-down states. Recall that

during up-and-down states, the population would transition from periods of firing

(up-states) to periods of silence (down-states). For simplicity, we will keep in the

following analysis that z is a one-dimensional signal.

We now formalize the above ideas into a loss function. First, following our

assumption of linear readouts, we define an estimate, x̂, of some M -dimensional

input signal, x, as a linear combination of the firing rates generated by the network
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of N neurons, i.e.,

x ≈ x̂ = Dr (3.2)

where D ∈ RM×N is a matrix of decoder weights. Similarly, an estimate of the

background signal is obtained as ẑ = u>r and we fix u to be an N-dimensional

vector with only positive entries, i.e. ui > 0 for all i ∈ 1, . . . , N so that this estimate

is a weighted average of the population activity. Finally, we quantify the cost of

generating the network representations via a cost function, C(r), that depends on

the population firing rates, r. Then, the tradeoff between cost and accuracy of

representations can be formulated with an optimisation problem:

Minimize
r

(
E(r) = ‖x−Dr‖22 + β||z − u>r||22 + µC(r)

)
subject to r ≥ 0

(3.3)

The first term in the objective quantifies the accuracy of the code for representing

observed inputs, x. Similarly, the second term determines the accuracy in decoding

the background signal but note that since u is set to be all-positive, an increase in

z necessarily leads to an increase in the overall population activity. Thus the back-

ground signal becomes a modulatory signal of the population activity. Furthermore,

we introduce a parameter β > 0 that allows us to explicitly control the importance

of representing this background signal in the neural code. Note that although the

background signal can also be read out linearly here, we will assume that the im-

portant signals for a give task or computation remain the signals, x, and thus the

readout for x should remain accurate. Finally, the third term determines the cost

of the representations with parameter µ > 0 controlling this cost-accuracy tradeoff.

In particular, if C(r) = ‖r‖1 is the L1-norm, then a sparse code is encouraged

with a small proportion of neurons in the population being active at a time (Rolls

et al., 1998; Olshausen and Field, 1996). Alternatively, if C(r) = ‖r‖22, then the

overall population activity is shrunk, whereby many neurons fire at lower rates, thus

encouraging a more distributed code across the population. In this chapter, we focus

on the latter cost for mathematical convenience as it yields a convex quadratic ob-

jective function. Mathematically, the optimisation problem in 3.3 then corresponds

to a quadratic program (QP) (Boyd et al., 2004). As was noted by Barrett et al.

(2013), the solution to this QP in fact corresponds to the time-averaged activity of

the spiking networks mentioned earlier in this section, for constant inputs. Since

we are primarily interested in this chapter in the input-output mappings, we will

solve the QP to generate the firing rates of the network for given inputs. We re-

serve a more in-depth discussion of how spiking neural networks generate neural

representations in Chapter 5.
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Figure 3.4: Illustration of the autoencoder network with energetically efficient neural
representations. The firing rates for each constant input sample are obtained as a
solution to a quadratic program (QP) (Barrett et al., 2013). (A) Schematic of the
network with two neurons and two inputs — (1) a signal, x that fluctuates and
(2) a constant background signal, z that modulates overall population activity. In
contrast to a feedforward network, the population shares information through lateral
connections. (B) Tuning curves of the neurons as a function of the varying input,
x. When one neuron hits the zero-boundary, the other neuron keeps an accurate
readout for x by changing its activity and thus, displays a kink in its tuning curve.
(C) The neural trajectory is piecewise-linear. The background signal modulates the
overall population activity by moving the middle piece of the trajectory along the
u> direction.

3.4.3 Contrasting the network with firing rates computed

by QP with the LN network

Owing to lateral connections, the network implementation of the previous framework

(Barrett et al., 2013; Barrett et al., 2016) differs from the feedforward LN network

model. In particular, the lateral connections afford the network with more versatility

in the input to firing rates mapping than the LN models. For instance, when one of

the neuron in the network hits the zero threshold, this information reaches the other

neurons, which in turn, change their responses to maintain an accurate readout.

This can also be understood through the QP optimisation perspective where the

optimisation task is distributed across the network, and thus when one of the neuron

hits the hard non-negativity constraint, other neurons in the network have to change

their activity for an optimal solution. This effect is reflected by kinks in the tuning

curves of the neurons as we see in Fig. 3.4B.

We can further show that this feature endows the network with representations

that cannot easily be approximated by the LN network’s output. We can already il-

lustrate this in a network of three neurons receiving a two-dimensional input (x1, x2)

on a 2D grid in the interval [−1, 1]. For the sake of illustration, we consider the

tuning surface of one of the neurons (see Fig. 3.5A). We see that it exhibits creases

that only partially span the input space. This arises due to the other neurons’ re-
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Figure 3.5: Contrasting the representations from the linear-nonlinear (LN) network
and those predicted by quadratic programming (QP). (A) Tuning surface of a neu-
ron calculated by QP when simulating a network of 3 neurons for a 2D input. It
exhibits creases due to information from the other neurons, received through lateral
connections in the network. (B) Contour map of the tuning surface in (A) with level
curves in red. After fitting a weighted sum of three rectified-linear units (ReLu’s) to
this surface, each ReLu unit becomes active in a domain of the input space (colored
region), with grey being the inactive or zero activity area. Each ReLu surface has
a crease that cuts through the entire input domain (colored straight line) while in
thick black are the creases of the tuning surface from (A). Thus, only an approx-
imation to the QP tuning surface can be obtained using weighted combination of
ReLu’s, due the nature of the ReLu non-linearity.

sponses which reach our neuron under consideration. These creases are more more

clearly seen in Fig. 3.5B as the thick black lines.

In contrast, when we fit the weighted sum of three ReLu units 1 to this tuning

surface, each individual unit exhibits creases that span the whole input space; in

Fig. 3.5B, the straight colored lines correspond to creases of individual ReLu’s which

cut though the whole input domain. Thus, we will need many such ReLu’s to get a

better approximation to this QP solution (Amos and Kolter, 2017). We will see in

Chapter 4 that this feature affords the network more representational power than the

LN network, although this comes at greater computation costs since an optimisation

problem needs to be solved for each input sample (Amos and Kolter, 2017) and from

a network perspective, would require extensive lateral wiring amongst neurons in

the network.

1With P firing rates samples, rQP
i , from the tuning surface, we learn parameters (D,F,b)

that minimize the loss function L =
∑P

i ||r
QP
i −Dg(Fxi + b)||22 where g(v) = max(v, 0) is the

elementwise maximum.
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3.5 Tail of higher-order principal components in

synthetic data

Now that the neural network models that we will use are fully described, we can

return to our initial problem: how are the predictions of PCA affected by the non-

negativity constraints of neuronal activities in higher-dimensional examples. We will

show, in this section, that when PCA is applied to synthetic data generated using

these models, it sometimes extract the correct latent variables, but also predicts a

tail of higher-order components. We will study this effect in various examples of

increasing dimensionality of both the inputs to the network and its size.

3.5.1 Simple example with a one-dimensional varying

input signal

To visualize the principal components that PCA predicts, we start with a simple

example of a network of 30 neurons that encodes a varying input signal, x, and

a constant background signal, z, with rates predicted by quadratic programming

(QP) (equation (3.3)). Due to the chosen decoder weights and the constant back-

ground signal, the network displays inhomogeneous responses as seen by the tuning

curves in Fig. 3.6B with mixed selectivity to both positive and negative parts of the

input signal, x, and non-monotonicity of these functions. Note that without the

background signal in this one-dimensional input example, the tuning curves remain

fairly regular (Fig. 3.6D).

We now apply PCA to the firing rates generated (Fig. 3.6B), bearing in mind

that there is a linear readout of the population activity that recovers accurately the

varying input signal in the simulation (see Fig. 3.6C). PCA predicts a first compo-

nent that correctly reflects the underlying input signal, x (although of a different

scale). However, it also finds two additional higher-order components that resem-

ble polynomials of increasing order (Fig. 3.6E). Interestingly, they also resemble the

higher-order components that we found in real data (Chapter 2). Had we not known

the ground truth in this simulation, these higher-order components can mislead us

to overestimate the (intrinsic) dimensionality of the data, and make interpretations

less clear.
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Figure 3.6: Simple network simulation with a varying 1D signal x and a constant
background signal, z = 0.7, with firing rates calculated by quadratic programming
(QP). PCA predicts higher-order components due to the non-negativity constraints
on firing rates. (A) Decoder weights for the simulation. (B) Tuning curves of N = 30
neurons in the network as x varies in the interval [−1, 1]. (C) A one-dimensional
readout recovers this input signal accurately despite the inhomogeneity in the net-
work responses. (D) In the absence of a background signal, the inhomogeneity of the
tuning curves disappears. (E) PCA predicts 3 components to explain the variance
in this data; explained variance by each component shown as a percentage in the
red box. The first principal component (PC) correctly reflects input signal x, but
predicts two additional higher-order components to compensate for the curvature
in the neural manifold due to the non-negativity constraints. These are function-
ally irrelevant. Additional parameters: background cost, β = 1, quadratic cost,
µ = 1e− 05.
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3.5.2 Network with higher-dimensional inputs

We next show that these higher-order components can become fairly consequential

when the dimensionality of the inputs increases. As an example, we consider a

network model that encodes a three-dimensional input. We model this input as

follows: for each dimension of the signal, we draw P = 1000 random samples from

a standard Gaussian distribution with zero mean and unit variance, i.e. N (0, 1),

and apply a Gaussian filter that smooths over adjacent points, thus mimicking a

continuous temporal signal. We illustrate each dimension of the input signal as thick

and pale colored trace in Fig. 3.7A.

We then fed this input to the neural network with population activity calculated

by QP. As in the previous example, we add a constant background signal, z = 2, with

an all-positive decoder weight for its readout that modulates the global population

activity. Once the population data has been generated, we checked that a linear

readout is sufficient to recover the true input signals. As shown in Fig. 3.7A, each

dimension of the readout (thin, dark colored traces) overlaps with the corresponding

dimension of the input signal (think, paler traces of corresponding colour). Given

that we used the same decoder weights, D, used in the generative network (see

equation 3.3), this observation is not surprising.

However, when PCA was applied to this data, it predicted several additional

components than the true number of dimensions in the input signal. To capture

∼ 95% of the variance in the data, it required nine components (Fig. 3.7B), thus

overestimating the (intrinsic) dimensionality of the data. Furthermore, the first

three PCs failed to match the input signals (Fig. 3.7A(ii); the input signals and

PCs were normalized for better comparison). To further quantify this difference, we

computed the principal angles between the subspaces for the first three PCs and the

input signal, x. These angles were computed using the same algorithm proposed in

Knyazev and Argentati (2002); the minimum angle between pairs of basis vectors

(defined by the decoder weights from PCA and those used to decode signal x in the

QP algorithm) was computed recursively, with each basis vector coming from an

individual subspace. In descending order, the angles were [55.1, 48.3, 42.8] degrees,

showing the mismatch between the subspaces. Hence, with the first three PCs, we

would end with an incorrect representation of the data.

Next we check if these observations hold when the background signal was not

encoded (by setting β = 0 in equation (3.3)). In this case, PCA again predicted more

components (see Fig. 3.7C), although the misrepresentation of the underlying input
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Figure 3.7: PCA predicts several additional principal components (PCs) than the
dimensionality of inputs to a network of N = 100 neurons. Firing rates are com-
puted using QP. (A)(i) The 3D input, x (think and pale traces) and a constant
background signal, z = 2 (dashed line) fed to the network. The background sig-
nal was turned off in one of the simulations. A linear readout of the population
activity with the right decoder weights recovers the inputs (overlapping thin and
dark traces). (ii) First three PCs compared to the input signals in a simulation
with the constant background signal. They were normalized for better comparisons.
(iii) Same as (ii) but without the background signal. (B) Cumulative variance ex-
plained upto a threshold of 95%. Although there were 4 inputs (x and z), PCA
needs 9 dimensions in the neural state space to reach the threshold. Since z is
fixed, the intrinsic dimensionality is 3 (red circle). (C) Same as (B) but, for sim-
ulation without the background signal. Simulation parameters: quadratic cost
µ = 1e− 05; background cost β = 1e− 05 for A(i)(ii), B(i) and β = 0 for A(iii), C;
decoding weights, D, were randomly sampled from a standard Gaussian distribution
and normalized over neurons (length of decoder weight for each neuron set to 0.1;
background weights, u, were randomly sampled from a uniform distribution.
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signals was less strong (Fig. 3.7A(iii)) with principal angles being [19.9, 16.5, 5.4]

degrees. While coding for the background signal leads to more principal components,

a phenomenon which we will explore further in a later section, in all cases the non-

negativity constraints on firing rates can lead to misrepresentations of the data when

using linear methods such as PCA.

Effect of energy efficiency constraints on PCA predictions

In the above simulation, the network model we considered generated neural rep-

resentations that were also energetically efficient. Here we study the effect of this

energy constraint, together with the non-negativity constraints, on the predictions

by PCA. One way to do this analysis is to consider neural representations that in-

corporate the non-negativity constraints, without necessarily abiding to an energy

efficiency principle and contrast the PCA results on such data. In fact, the alterna-

tive network modelling approach we discussed earlier, namely the LN model, allows

us to address this. To enable comparisons with the previous model, we set the LN

network as an autoencoder so that the input can be read out linear using weights

(D,u) (same as in the previous model) from the population activity. Then, we learn

the model’s parameters, namely feedforward weights, F, and biases, b so that the

readout is accurate. This can be formalized as minimizing the following loss,

L(F, b) =
P∑
i

(
||xi −Dg(Fxi + b)||22 + β||z − uTg(Fxi + b)||22

)
(3.4)

with respect to parameters (F,b) over all the P -samples. Note that this loss function

makes the readouts for both signal x and fixed background signal z explicit.

After learning the parameters using same inputs and network size as in the

previous simulation, we verify that a linear readout with weights, D, recovers the

relevant input signal, x. Fig. 3.8A(i) shows that the readout is accurate. We then

apply PCA to the generated firing rates. Although more principal components than

the number of dimensions in the input can again be observed (see Fig. 3.8B), we find

that fewer additional components than in the previous simulation are required. This

occurs even though the distribution of mean firing rates (computed by averaging over

the P samples) across neurons shows that many neurons have close to zero firing

rates (see Fig. 3.8C) i.e. the neurons hit the zero-threshold in this simulation also.

The energetic constraints in the previous model thus seem to change the nature of

the neural representations which entail in a longer tail of ‘higher-order’ components.

We explore this effect in more depth in the next section.
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A(i)
B

C
(ii)

Figure 3.8: Generating firing rates in an auto-encoder with rectified-linear units (LN
model). For given decoding weights, the auto-encoder optimizes its feed-forward
weights and biases so that the readout of population activity matches the inputs.
(A)(i) Same varying inputs as in Fig. 3.7. Linear readouts of the firing rates (thin
and dark traces) match the input signals (thick and pale traces) (ii) The first three
principal components (thin traces) plotted against the inputs (think pale traces).
This linear projection of the data fails at recovering the input signals. (B) Cumu-
lative explained variance upto a threshold of 95%. (C) Distribution of mean firing
rates obtained by averaging over samples for each neuron. For both models (QP
and LN), several neurons hit the zero-threshold, but less ‘higher-order’ components
are observed here.

3.5.3 Consequence of a modulating background signal on

linear dimensionality

As we observed earlier, when the network’s representations are optimized under

energy constraints, PCA tends to significantly overestimate the (intrinsic) dimen-

sionality of the data, despite the fact that a linear readout with the correct decoder

accurately retrieves the underlying input signals. Recall that the dimensionality of

the inputs to the network defines the intrinsic dimensionality of the manifold. Thus,

this raises the question as to how many dimensions PCA predicts as the energy re-

quirements fluctuate. In fact, we can probe this question explicitly as the network

codes for a background signal, z, which effectively modulates the global popula-

tion activity and hence, the energy requirements. An increased z should increase

the overall population activity, thus yielding a less energetically efficient code (also,

corresponding to moving the population activity north-east along the non-negative
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orthant, as in Fig. 3.4C). As a result, we can use variations of the background signal

and its importance in the code, to determine how the energy requirements affect

the shape of the neural manifold, and thus the results of PCA.

We first consider a network of three neurons encoding a one-dimensional signal.

This allows us to visualize the resulting 1D manifold as the energy requirements

vary. We consider three regimes of our model with optimal neural representations:

(i) no background signal is coded by the network i.e. β = 0, (ii) a moderate back-

ground signal is coded i.e. (z moderate, β > 0) and (iii) the coded background signal

is large i.e. (z large, β > 0). Fig. 3.9 shows the resulting manifold across the three

different regimes. When the network’s activity is not modulated by a background

signal, the resulting manifold is bent all the way to the origin (Fig. 3.9A) and is

embedded in a lower-dimensional subspace. However, in the presence of a moderate

background activity, the manifold becomes twisted in the ambient space (Fig. 3.9B)

since the network now needs to code for the relevant 1D signal while having its the

overall activity moved towards a set-point, z. To yield an optimal representation

under the non-negativity constraint that each neuron faces, the manifold then ex-

hibits several kinks. As a result, the embedding becomes higher-dimensional; in

this example, the manifold explores all the dimensions of the ambient space. Fi-

nally, when the background signal becomes increasingly strong, the manifold moves

further north-east the non-negative orthant, such that for the range of the input

signal, individual neurons hardly hit the zero-threshold. Hence, the manifold has

fewer kinks (Fig. 3.9B) and its embedding becomes lower-dimensional.

To further quantify these observations in higher-dimensional networks, we ex-

plore the parameter-space defined by (β, z) for the background activity and measure

the resulting linear dimensionality, K, given by PCA. The optimal firing rates are

again computed by QP (equation 3.3). Recall that β controls the importance of cod-

ing for the background signal while z determines the level of the signal. To quantify

the linear dimensionality, K, we computed the cumulative variance explained by the

components and determine the number of components needed to reach an arbitrary

cutoff threshold, T = 80%, of explained variance, or mathematically,

K(T ) = arg min
K̃

K̃ s.t.

∑K̃
i λi∑N
i λi

≥ T (3.5)

where λi is the ith eigenvalue of the N -dimensional neural population covariance

matrix used in the PCA algorithm.

However, it is possible that sufficiently strong background signals would over-

whelm the code (for β > 0), in which case, the readout for the relevant signals, x
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Figure 3.9: 1D neural manifold resulting from a network of 3 neurons encoding
a 1D signal. The manifold is shaped differently according to a background signal
that modulates overall population activity. (A) No background signal. The
background signal is not important in the code, and this results in a manifold
that bends all the way to the origin while exploring only a few dimensions of the
ambient neural space. (B) Moderate background signal. To maintain optimal
neural representations in the presence of a moderate background signal, the manifold
exhibits many more kinks and thus explores more dimensions within the ambient
space. (C) Strong background signal. For increasingly strong background signal,
the manifold moves up the non-negative orthant. For the range of input signal
encoded, individual neurons do not hit the zero-threshold and thus, yield optimal
representations without kinks along the manifold.

would be poor. Thus, to check this, we further quantify the fitness of the readout,

x̂ = Dr (where D is also used in QP algorithm when generating firing rates) by

computing its distance from the inputs, x. In particular, we will use the R2 metric

obtained by comparing the readout value, x̂ji , for dimension j and for sample i with

the true input sample, xji , and then averaging over all input dimensions as follows,

R2 =
1

M

M∑
j

(
1−

∑P
i (xji − x̂

j
i )

2∑P
i (xji − x̄j)2

)
(3.6)

where x̄j is the average input value for a dimension, j. Note that the closer the R2

value is to its maximum possible value, i.e. 1, the more accurate is the readout.

In the following simulations, we will fix for simplicity, the decoding weights of

the background signal as a vector of ones i.e., u = 1, instead of being random

positive numbers. Then, the background signal can be decoded as the sum of the

neuronal activities. As before, each dimension of the input signal is modelled by

taking random samples from a standard normal Gaussian, N (0, 1), but the filtering

step is omitted as this would entail further parameter choices. Then, for each input

sample, we generate firing rates for a network of N = 200 neurons using quadratic

programming. Furthermore, we vary the dimensionality of the input signals from

M = 5 to M = 40 for the same network size.
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In Fig. 3.10, we show the resulting dimensionality upon applying PCA on the

synthetic firing rates (contours on the left column) and R2 values of the linear

readouts (contours on the right column) as a function of the parameters (β, z). We

observe that when the background signal has little importance in the code (low

β), PCA needs fewer dimensions to explain the data. This would correspond to

the unlikely regime where the neural manifold has a curvature that almost goes

to the origin as in Fig. 3.9A. Conversely, when β is highest, the readouts for the

relevant signals (across a wide range of z) are poor (low R2), especially as the input

dimensionality, M , increases. At the same time, when the background signal, z,

becomes sufficiently big, the (embedding) dimensionality predicted by PCA gets

closer to the true input (intrinsic) dimensionality (observed more clearly for M =

5, 10). This is because when z is sufficiently high, the neural manifold gets closer

to a linear regime for the range of input values being coded by the network (the

manifold would be substantially up in the non-negative orthant as in Fig. 3.9C).

However, this regime, as we discussed earlier, is again unlikely as the code becomes

energetically very costly.

We can in turn, consider the more realistic regime where both β and z take

moderate values. Then, the background activity will have relative importance, but

the readouts for the input signals, x, would remain accurate. In a low-dimensional

network (i.e. few neurons), the manifold would resemble the one in Fig. 3.9B, but

this picture becomes more complex in bigger networks. This can be seen by the

sharp increase in dimensionality that PCA predicts in Fig. 3.10 as compared to the

dimensionality, M , of the inputs. This can be explained by the fact that the neural

manifold becomes tiled with a multitude of piecewise-linear surfaces to maintain an

optimal code where the inputs can still be read out linearly while the firing rates

are kept as low as possible. As a result, PCA compensates for these kinks in the

manifold by predicting many more principal components.

This simulation is of course, a very rough sketch of what could be happening in

reality. For example, the input signals, e.g. sensory signals, would be smoother with

temporal correlations and each dimension might be correlated with each other. Also,

the connectivity of the network may be more structured, instead of just random, to

generate neural representations. As a result, we can expect that the dimensionality

predicted by PCA would be lower. However, this numerical analysis still reveals an

important insight: when the neural code is closed to being energetically efficient, a

regime which we discussed earlier as being more plausible, as well as is bounded from

below to be non-negative, the neural manifold can become non-trivially shaped so
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Figure 3.10: The dimensionality predicted by PCA is affected by the energy con-
straints of the neural code together with the non-negativity constraints. Population
firing rates of N = 200 neurons are simulated using quadratic programming for
inputs of varying dimensionality, M = 5, 10, 20, 40. (Left column) Contour plots
of dimensionality as a function of parameters (β, z). The dimensionality as pre-
dicted by PCA is significantly overestimated for moderate values of the parameters.
(Right column) Contour plots of the accuracy of the readout, measured by R2. The
accuracy gets worse for higher β.
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as to maintain an accurate readout. As a result, linear methods that are agnostic to

such constraints might give flawed interpretations of the data and in the context of

dimensionality reduction, can significantly overestimate the intrinsic dimensionality

of the neural manifold.

Additional details for the simulations: In the above analysis, P = 1500 points

were sampled from a standard normal distribution for each input dimension. Simi-

larly, the decoding weights, D, were sampled from a standard normal distribution,

but normalized and scaled across neurons so that all neurons had the same decoding

vector length of 0.05 which yielded reasonable magnitudes for the firing rates. The

firing rates were computed using quadratic programming for each input sample (an

M -dimensional vector) while the parameters (z, β) were varied between 100 to 102

and between 10−7 to 10−3, respectively, on a logarithmic grid. The quadratic cost,

µ that limits overall firing rates was fixed at 1e− 05 throughout.

3.6 Discussion

In this chapter, we showed that when linear readouts of population activity are low-

dimensional and that the neural code faces energy constraints, the non-negativity

constraints on neuronal activities lead to a curvature in the neural manifold. We

explored geometrically the implications of such a curvature on the results of lin-

ear methods such as PCA. We showed in simulations using two different neural

network models that, although the input signals to a neural network can be read

out accurately with a linear decoder from the population activity, PCA has diffi-

culty to extract the correct latent structures in the data, and often compensates

for the curvature in the manifold with a set of ‘higher-order’ components which are

functionally irrelevant.

While both network models we considered here incorporate the non-negativity

constraints, they nonetheless have different predictions of how such constraints shape

the neural manifold. In particular, one of the models we considered, generate firing

rates according to an optimality principle between accurate representations and

computational costs which can yield more complex neural representations. Upon

a parameter space exploration, we showed that this model can yield non-trivially

shaped neural manifolds embedded in the neural space. PCA consequently predicted

a long tail of components to capture the non-linearities of the manifold, although

a correct decoder could retrieve the inputs that generated the manifold. As such,

these inputs defined the intrinsic dimensionality of the manifold, which was much
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lower than the number of components predicted by PCA. Interestingly, a recent

work by Stringer et al. (2019a) showed that when a variant of PCA was applied

to recordings of large populations of neurons in the visual cortex of mice, a long

tail of components was similarly observed. However, an explanation for how the

network generates this potentially high-dimensional representation is still missing.

It may be possible that the simple coding constraints as we discussed here could

be a contributing factor to this result, although according to our theory the true

(intrinsic) dimensionality would in fact be lower. This may be an interesting avenue

for future research work.

However, as we discussed in Chapter 2, there may be other possible explanations

besides coding constraints that would lead to curvatures in the neural manifold and

hence, the observed ‘higher-order’ components in data. To address the validity of

our theory, we seek to test it by considering dimensionality reduction methods that

incorporate the coding constraints mentioned here and compare the results to a

linear method such as PCA. In the next chapter, we set on this purpose by building

dimensionality reduction methods that, similarly to PCA, assume that the latent

variables can be estimated through a linear map, but predict the neural data with

the non-negativity constraints incorporated in a meaningful way. If these constraints

are indeed present in real data, these methods should be able to find a more succinct

representation of the data as they would be able explain the neural manifold better

with fewer latent variables.
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Chapter 4

The need to incorporate coding

constraints in dimensionality

reduction methods

4.1 Introduction

The goal of dimensionality reduction methods when applied to neural data is to find

a description of the recorded population activity of many neurons with a smaller

number of explanatory variables. The hope is that these variables, often termed as

latent variables, capture the essential structures in population data and are more

easily interpretable. Most commonly, linear methods such as principal component

analysis (PCA) are used and have successfully revealed important low-dimensional

structures across several datasets through linear mappings of the measured neuronal

activities, e.g. (Mazor and Laurent, 2005; Briggman et al., 2005; Machens et al.,

2010; Bathellier et al., 2008). While neuronal activity (as measured, e.g. in firing

rate) is non-negative by definition, these methods however, do not explicitly take

this simplest form of non-linearity into account. As we discussed in Chapter 3, this

non-linearity can lead to a tail of higher-order components which are functionally

irrelevant. This is problematic as we risk overestimating significantly the (intrinsic)

dimensionality of the data as well as misinterpreting what is being represented.

One way to address these issues is through the use of non-linear dimensionality

reduction methods, but they usually come with difficulties of their own (Cunning-

ham and Yu, 2014). For example, general-purpose methods such as Isomap (Tenen-

baum et al., 2000) and Locally Linear Embedding (LLE) (Roweis and Saul, 2000) use

local neighbours to compute low-dimensional embeddings of high-dimensional data
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onto non-linear manifolds. However, for an accurate estimation of this manifold,

the high-dimensional neural space needs to be evenly sampled, which is typically

not the case in current neural datasets due to the restricted nature of standard

experimental paradigms; e.g. the stimulus set or the elicited behaviour during the

experiment may not be rich enough and thus, the evoked neural responses would

more likely visit only part of the space. As a result, differences in the samples of

neural activity may become overly emphasized in the low-dimensional embeddings

and thus, can result in a distorted view of the manifold. Also, these methods are

fragile in the presence of noise (Boots and Gordon, 2012) which is usually ubiquitous

in neural data. For these reasons, they may not be ideal for analysing neural data.

In recent years, nonetheless, there has been significant effort to develop non-

linear dimensionality reduction methods targeted for neural data, e.g. (Low et al.,

2018; Pandarinath et al., 2018; Whiteway and Butts, 2017). Among these methods,

several can be understood as autoencoder neural networks where the latent variables

are estimated through a deterministic mapping from the measured population activ-

ity down to a bottleneck (decoding step). Then, for the given latent variables in the

bottleneck, the population activity is reconstructed (encoding step) with the goal

that it remains as closed as possible to the observed data. This consequently, results

in bottlenecks that optimally compress the data given the assumptions of the model

on the decoder and encoder. A common approach is to approximate the decoding

and encoding functions e.g. by using recurrent neural networks (Pandarinath et al.,

2018) or deep neural networks (Whiteway et al., 2019; Hinton and Salakhutdinov,

2006). From a machine learning perspective, this approach works well but does not

not necessarily reveal the mechanisms that the brain could be using to give rise

to these representations. One way to address this, is to add biology-inspired con-

straints in the methods and determine how well these constraints help in explaining

the data.

In this chapter, we remain within the modelling framework of autoencoders for

dimensionality reduction, but we go further by incorporating explicit constraints on

the mappings of our autoencoders. For reasons we discussed in previous chapters

of this thesis, we will assume that the latent variables can be estimated as low-

dimensional linear readouts of the population activity, i.e. the decoder is linear

similar to the PCA algorithm. Then, we will enforce the reconstruction of the data

(encoder) to be non-negative. We will consider two ways of doing so based on

network models in Chapter 3. As a reminder, the first approach will build on the

standard linear-nonlinear (LN) network model that first maps the latent variables
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linearly, followed by a non-linearity while the second approach explicitly enforces

the reconstructed activities to be energetically efficient.

Finally, we check the predictions of incorporating such constraints in dimen-

sionality reduction methods by validating them on both synthetic and and real

data. We show that they can significantly outperform linear methods such as PCA

simply because of the non-negativity constraints. Although both methods incorpo-

rate the non-negativity constraints, we further show that they can have different

performances when fitting data as they make different predictions of how the non-

negativity constraints shape the neural manifold.

4.2 Dimensionality reduction and latent variable

models

One motivation for using dimensionality reduction methods when analysing neural

data is that one suspects that the high-dimensional activity of many recorded neu-

rons vary according to a smaller number of explanatory but unobserved variables,

or latent variables. Successfully extracting these latent variables would then pro-

vide a succinct representation of the data. A classical approach for dimensionality

reduction is through latent variable modelling, which uses probabilistic models to

explain complicated statistical structures in the data according to an informative

lower-dimensional set of latent variables. More concretely, a latent variable model

assumes that observations of population activity, r, are distributed conditionally to

some unknown latent variables, z, i.e. p(r|z) where p is some probability distribu-

tion.

Since the latent variables are not directly observed, they need to be estimated

from the data. Latent variable models commonly approach this inference problem

within a Bayesian framework. After defining a probabilistic model of the observa-

tions given the latent variables, i.e. p(r|z), the posterior distribution of the latent

variables given the observations, i.e. p(z|r) is then inferred. This inference will

depend, of course, on the chosen prior distribution of the latent variables, p(z).

However, defining the probability distributions to model neural data, especially the

priors of the latent variables, and subsequently, fitting the model parameters and

inferring the latent variables within this Bayesian framework may not be an easy

task. In this chapter, we consider instead a simpler modelling approach, namely

the autoencoder neural network. In particular, such networks need not impose any

particular distributional assumptions on the latent variables.
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4.3 Model formulation as autoencoders

The autoencoder neural network aims to reproduce its input after building an in-

ternal representation for it through a set of hidden layers. When unconstrained,

the network learns a trivial identity transformation without necessarily capturing

any interesting features in its input. However, one way to prevent the network to

simply learn the identity function is to force the network to learn an under-complete

representation of its input, so that the autoencoder then becomes a dimensionality

reduction technique.

In the models that we consider here, the network receives as input some observed

population activity, r, and is constrained to produce an under-complete internal rep-

resentation with a smaller number of latent variables, z, than the number of recorded

neurons. From this internal representation, the network is then tasked to yield as

its output, a prediction of the population activity, r̂. Importantly, in contrast to la-

tent variable models, the mapping from the observed activity to latent variables i.e.

z = fdec(r) (decoding step) and that from latent variables to reconstructed activity

i.e. r̂ = fenc(z) (encoding step) are deterministic functions fdec and fenc. Hence,

the latent variables will no longer be random variables. Interestingly however, in

many cases the latent variables estimated in this approach can be interpreted as the

mean of some posterior distribution, p(z|r), in the latent variable model (Roweis

and Ghahramani, 1999; Bengio et al., 2017).

4.3.1 Modelling latent variables

In the models that we build here, we will simply assume, in accordance with previous

chapters, that the latent variables can be estimated through a linear map, i.e. fdec is

a linear function of the observed population activity. Note that in PCA, the latent

variables or principle components are estimated similarly. Mathematically, for an

observed data point, rk where k is the index of the sample, we assume that the

corresponding latent variables, zk for that sample is given as,

zk = Drk (4.1)

With N recorded neurons of the population and M latent variables, D then corre-

sponds to an M ×N matrix of weights that determines how each observed neuronal

activity needs to be combined to give rise to the latent variables. The number of

latent variables, M , is a free parameter of the model and to reduce dimensionality,

we need to set M < N . Since we mainly concern ourselves with electrophysiological

data here, r can be interpreted as a vector of spike counts or firing rates of the N
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recorded neurons and a data point can be for example, the measured activity of the

population at a time point.

In this framework, the latent variables, z, should correspond to all factors that

drive neural activity. They could be related to observables in the experiment, e.g.,

stimulus, behaviour, pupil dilation (Stringer et al., 2019b; Musall et al., 2019; Kobak

et al., 2019; Vinck et al., 2015) or to hidden variables, e.g., internal states of the

animal such as thirst, motivation, attention that we cannot directly measure. How-

ever, we will not make any assumption here, about how they relate to experimental

variables when finding them.

4.3.2 Modelling neural activity given the latent variables

Once some latent variables, z, are estimated, the autoencoder then attempts to pre-

dict the population activity according to some function fenc(z). For mathematical

convenience, methods such as PCA assume that fenc is linear (Fig. 4.1A(i)). How-

ever, as we discussed in Chapter 3, this does not guarantee that the non-negativity

constraints on neuronal activities would be satisfied. Thus, inspired by the neural

network models we discussed earlier (see Chapter 3), we propose instead two differ-

ent non-linear transformations during the encoding step such that the non-negativity

constraints are satisfied. We describe these approaches in a dimensionality reduction

context below.

Predicting firing rates from linear-nonlinear networks

A standard approach to satisfy the non-negativity constraints would be to apply a

non-linearity to the predictions in the encoding step. A simple way would be to first

map the latent variables linearly, followed by some non-linearity, e.g. a rectification.

This guarantees that the modelled firing rates will remain above the zero-threshold.

Thus, for latent variables, zk, (k being the index of the sample) the reconstructed

neural activity can be modelled as,

r̂k = max(Fzk + b, 0) (4.2)

where F is an N ×M matrix that determines the coupling weights between each

latent variable and each neuron and b is a vector of bias terms that determines the

baseline activity. The modelled firing rates are now threshold-linear functions of

the latent variables, or fenc will be defined according to equation 4.2. We illustrate

these functions in Fig. 4.1B(ii).
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Figure 4.1: Illustration of the different autoencoders considered in this chapter.
They all have a linear mapping from the observed population activity to the latent
space, but differ according to their reconstructions of the data. (A)(i) PCA recon-
structs the data linearly by taking the transpose of its decoder weights, D. (ii)
The resulting ‘tuning curves’ of the reconstructed neurons are linear as a function
of some underlying latent signal and violate the non-negativity constraints on firing
rates. (B)(i) The LN autoencoder adds a static non-linearity, e.g. ‘ReLu’, in its re-
construction. (ii) The resulting ‘tuning curves’ are now threshold-linear as the firing
rates are rectified to be non-negative. (C)(i) The QP autoencoder reconstructs the
population activity using an optimization procedure. The equivalent neural network
approach for this reconstruction mediates shared information through lateral con-
nections such that the predicted population activity remains optimal. (ii) Due to
the lateral connections, kinks can appear in the ‘tuning curve’ of a neuron whenever
some other neuron in the population hits the zero-boundary.

Combining this non-linear encoder with the linear decoder1 (Fig. 4.1B(i)), this

method then falls within the class of PCA-type non-linear dimensionality reduction

methods, with explicitly defined non-linearities. Methods in this class have previ-

ously been shown capable of extracting features in the data that a standard PCA

algorithm would not. For example, Karhunen and Joutsensalo (1994) showed that

by just adding one non-linearity to the internal representations of the autoencoder,

the resulting algorithm can also capture higher-order moments in the data, rather

than just the first two moments. This consequently, enabled the method to find la-

1Note that we are departing slightly from the terminologies commonly used for autoencoders.
We are defining, within a neuroscience context, the decoder as the transformation from observed
neural activity to the latent variables and the encoder as the transformation from latent variables
to predicted neural activity.
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tent variables that were more independent, and not just uncorrelated. More recently,

Whiteway and Butts (2017) proposed a method that rectifies the latent variables to

be non-negative. Interestingly, they showed that this allowed the method to extract

latent variables that could more easily be interpreted with regards to the experimen-

tal paradigm, as compared to PCA when applied to the same dataset. Note that in

our method though, the non-linearity is only applied during data reconstruction.

However, modelling the firing rates in this way do not explicitly take into ac-

count possible energy constraints that the network faces. As we discussed previously

(Chapter 3), these constraints can effectively change the nature of the neural repre-

sentations. We next consider an alternative model for reconstructing the data. In

particular, the model will not only satisfy the non-negativity constraints, but also

limit overall network activities for energy efficiency reasons.

Predicting firing rates with energy efficiency constraints

In this model, the data is reconstructed according to an optimality principle. Similar

to the neural network model we described in Chapter 3, the reconstructed activity

should accurately represent the latent variables, but with limited firing rates. So,

once some latent variables zk have been estimated for a data point indexed k, the

encoder attempts at reconstructing the observed sample of neural activity as the

solution to the following optimization problem,

r̂k = arg min
r̃≥0

‖zk −Dr̃‖22 + µ ‖r̃‖22 (4.3)

Note that r̃ is the optimization variable. So this optimization problem aims to find

optimal firing rates, r̂k, that would recover the previously estimated latent variables

zk (estimated from recorded neural activity, see above) through a linear readout,

but are constrained by a quadratic cost so that high population firing rates are

penalized. The cost-accuracy tradeoff is controlled by parameter µ > 0. We point

out that in this model, the fenc function is defined implicitly within this optimization

problem.

For given latent variables, zk, and parameters (D, µ), the reconstructed firing

rates are obtained by solving the corresponding quadratic program (QP) (equation

4.3). We can in turn think of a network implementation as in Chapter 3 to solve

this QP. In particular, the properties of the neural representations are preserved, i.e.

the firing rates of each reconstructed neuron will be piecewise-linear functions of the

latent variables (see Fig. 4.1C(ii)). This is because, as we can recall, the optimization

task is distributed across the network such that whenever a neuron hits the zero-
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threshold, the other neurons in the network subsequently adjust their activities so

as to maintain an optimal solution. This is possible due to the shared information

mediated through lateral connections. We illustrate this network architecture in

Fig. 4.1C(i). However, we point out that here, we will simply use a QP solver

(Wright and Nocedal, 1999)) to find the optimal neuronal activities.

4.3.3 Learning model parameters and inferring latent

variables

The complete autoencoders are obtained by combining the decoding and encoding

steps. We will refer to the autoencoder with explicit non-linearity as the LN autoen-

coder (Fig. 4.1B) and the one with implicit non-linearity defined in an optimization

problem as the QP autoencoder (Fig. 4.1C). We now turn to the problem of how to

learn the model parameters and infer the latent variables.

In latent variable models, a common approach to do so is through the expectation-

maximisation (EM) algorithm (Bishop, 2006), which is an iterative algorithm that

cycles between two modes. In the first mode (E-step), the latent variables are in-

ferred for some random initial set of model parameters. This is usually done through

Bayesian inference as we discussed earlier. The second mode (M-step) attempts to

optimize the model parameters to best explain the data, given the estimated latent

variables in the E-step. The algorithm alternates between these two modes until

some convergence criterion is met. In our deterministic autoencoder network models

however, we do not need to resort to probabilistic inference. Rather, we will learn

the model parameters through direct optimization of some loss function.

Here, we will use a standard loss function, similar to PCA, defined as squared

reconstruction error between the predicted firing rates, r̂ and the observed data, r,

summed over all P samples. This loss function becomes,

L(θ) =
P∑
k

‖r̂k(θ)− rk‖22 (4.4)

where θ denotes the set of parameters for each model. The autoencoder then aims

to minimize this loss by optimizing the parameters. We describe next how this can

be done.

For some initial decoder weights, D, the latent variables, z (we omit the sample

index here for simplicity), can be estimated from the observed data according to

equation 4.1 (somewhat akin to the E-step). In fact, we will assume that the latent
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variables should be uncorrelated similar to PCA, and thus we enforce the decoder

weight matrix, D, to be orthonormal i.e. DD> = I. Note that for PCA, this

constraint is necessary to find uncorrelated latent variables that explain the greatest

amount of variance.

Then, the neuronal activities can be predicted according to encoding models

(fenc) that we described earlier, for the estimated latent variables. For the LN

autoencoder, we can start with some random parameters (F,b) to do this computa-

tion (equation 4.2). This yields predicted neuronal activities, r̂, and thus, an error,

e = r̂ − r, can be determined. This error can then be back-propagated to update

the model parameters, here θ = {D,F,b}, to minimize the loss function, and thus

explain the observed data better (somewhat akin to the M-step). With the updated

parameters, a new estimate of the latent variables is obtained, which gives a new

prediction for the neuronal activities and hence, a new error that is back-propagated.

This process is repeated until the global error over all samples is minimized. Note

that we enforce the orthogonality constraint on D at each update for all models. We

describe in more depth how the updates are computed to optimize the parameters

in the Methods section below.

4.4 Results

4.4.1 Validation on synthetic data

To understand the nature of the solutions when incorporating a non-linearity in

the reconstruction step of the autoencoders, we resort to synthetic data where the

ground truth is known. We will simulate the data in two ways using the neural

network models we described in Chapter 3: we first simulate firing rates with energy

efficiency constraints, i.e. compute them using quadratic programming and second,

we generate them through a linear-nonlinear mapping of the network’s inputs.

In particular, we are interested in whether our methods can eliminate the need for

the higher-order components that PCA produces to explain the data (see chapter

3), and thus get us closer to the true latent variables. Thus, we will compare

the performance of our methods to PCA. Recall that all these methods, including

PCA, estimate the latent variables through a linear map of the observed population

activity, but only differ by how they reconstruct the data.

Since the autoencoders try to simultaneously estimate the latent variables (de-

coding step) and reconstruct the population activity (encoding step), we will test
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the following two things:

1. We will determine whether our methods can correctly estimate the low-dimensional

subspace for the true latent variables. We do so by measuring the principal

angles between the true and estimated subspaces. Since each subspace will

be characterized by a set of basis vectors, we compute the principal angles by

measuring the angles between these vectors (see Methods for more details).

We choose this measurement rather than, for example measuring the error

between the predicted and true latent variables, since our methods can suffer

from a rotational degeneracy, characteristic of models that involve matrix-

vector multiplication as in equation 4.2 (for any orthogonal matrix A, the

solution Fz is equivalent to (FA>)(Az) since A>A = I). Thus our methods

can predict latent variables in the correct subspace, but be off from the true

latent variables by a rotation. As a result, using a metric based on error can

yield poor performance.

2. We will determine whether our methods can accurately reconstruct the ob-

served data. To this end, we will measure the amount of variance that the

model can explain from the data for a given number, M , of latent variables

defining the bottleneck size of the autoencoder. By increasing this size and

measuring the corresponding amount of variance explained, we can determine

the number of latent variables needed to recover the full data. This number

would then correspond to the dimensionality predicted by the methods, which

can then be compared with the true dimensionality of the simulated data.

Data simulation using quadratic programming

In a first simulation, we generated firing rates with M = 10 latent variables which

provided inputs to a network of N = 100 neurons. The first nine of these latent

variables were modelled as filtered Gaussian signals while the last one was kept as a

roughly constant positive signal corrupted with Gaussian noise to model the level of

background activity. The firing rates were computed using quadratic programming

(equation 4.3). The decoder weights used in the QP algorithm were also drawn

randomly from a Gaussian distribution for the first nine dimensions and was kept

all positive for the last dimension. This ensures that that background signal will be

read out as a weighted average of the population activity (see Chapter 3). Further,

the decoder weights were set to be orthonormal. See the Methods section for further

details on this simulation.
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We then fitted the parameters of PCA, LN and QP autoencoders to the synthetic

data for different sizes of the bottlenecks in the models. Fig. 4.2A shows the relative

performance of the methods in terms of the amount of variance they explain as a

function of the number of components or latent variables. We observe that both

the LN and QP autoencoders outperform PCA by explaining more variance in the

data with fewer components. Although all the methods estimate the latent variables

as linear projections of the data, the increase in performance by the LN and QP

autoencoders is explained by the fact that they incorporate a non-linearity to satisfy

the non-negativity constraints on firing rates when reconstructing the data.

The QP autoencoder inferred the correct number of latent variables, i.e. M = 10,

which allowed it to reconstruct the data almost perfectly (∼ 99% explained vari-

ance). This is not surprising since the data was generated using the same math-

ematical framework in the first place. But, with its inferred ten latent variables,

the LN autoencoder was also able to explain ∼ 80% of the variance in the data,

outperforming PCA which only explained ∼ 40%.

This simulation emphasizes the need of incorporating the non-negativity con-

straints in dimensionality reduction methods. Due to these constraints, the manifold

was non-trivially shaped with high (linear) dimensionality, as determined by PCA,

for its embedding in the neural space. However, incorporating the non-negativity

constraints in our methods allowed to find a significantly better estimate of its

intrinsic dimensionality, i.e. the number input variables used to simulate the data.

We remark nonetheless, that the QP autoencoder had worse performance than

PCA and the LN autoencoder for models with one latent variable. This is because

these latter methods have more degrees of freedom in fitting the data for each bot-

tleneck. In the case of PCA, the data is centered beforehand and thus the PCA

algorithm does not need to estimate this mean. We cannot use this centering proce-

dure in the other autoencoders as this would lead to positive and negative values in

the centered data, while the autoencoders try to reconstruct non-negative neuronal

activities. In the case of the LN autoencoder, besides the weight parameters, it

also learns a set of bias parameters, b, when fitting the data and this equips the

method with enough flexibility to capture any baseline activity or global mean of

the data, even for models with one latent variable. Interestingly, despite having

fewer parameters, the QP autoencoder quickly catches up with the LN autoencoder

and even outperforms it as the number of components increases.

We next checked whether the different methods found the correct subspace for
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Figure 4.2: Validating the autoencoders on data simulated using quadratic program-
ming (QP). The network of 100 neurons receives inputs from 10 latent variables.
(A) Performance of the methods in explaining the data. By incorporating the non-
negativity constraints, our methods significantly outperform PCA. The QP autoen-
coder finds the correct number of latent variables (i.e. M = 10) to fully explain the
data, while the LN autoencoder explains 80% of variance with a bottleneck of 10
dimensions. (B) Comparing the subspaces found by the methods to the true sub-
space by measuring the principal angles between them. The decoder weights learnt
by the model provided a basis for the estimated subspace, and thus were used to
compute the angles. The QP autoencoder was able to find a subspace close to the
true subspace of latent variables.

the ten latent variables. To do so, we measured the principal angles between the

inferred subspaces by each method and the true subspace (Fig. 4.2B). We used the

basis given by the fitted and true decoder weights to characterize these subspaces

and measure the angles (see Methods). We observe that the QP autoencoder found

a subspace that was close to the true one (although, not perfect) showing that the

method can find a rough estimate of the true latent subspace as well as reconstruct

the population data. Although the LN autoencoder and PCA found roughly similar

subspaces (similar principal angles), the LN autoencoder reconstructed better the

data as it satisfied the non-negativity constraints.

Data simulation using the linear-nonlinear network model

In a second simulation, we look at whether the autoencoders can explain the data

when it is generated using the LN network model (see equation 4.2). The same
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ten latent variables as in the previous simulations, provided inputs to this network

(same size as before). For a better comparison to the previous simulation, we set the

LN network model as an autoencoder. Instead of generating random firing rates, we

trained the network parameters, i.e. encoding weights, F, and bias, b, such that the

inputs should be retrieved through a linear readout of the generated neural activity

according to the decoder weights, D, used in the previous simulation (see Methods).

We then applied the different autoencoders to this synthetic data.
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Figure 4.3: Validating the autoencoders on data simulated using the LN network
model. The same 10 latent variables as in the simulation in (Fig. 4.2) provided
inputs to a network 100 neurons. The network parameters were learnt so that
the latent variables could be linearly read out from the population activity using
the same decoder weights as in the previous simulation. (A) Model performance in
explaining the data. Both the LN and QP autoencoders required the correct number
of latent variables to explain the data, thus outperforming PCA. (B) Comparing
inferred and true subspaces by measuring the principal angles between them.

In Fig. 4.3A, we observe unsurprisingly, that the LN autoencoder explains the

data with the correct number of latent variables (i.e. M = 10). Interestingly

however, the QP autoencoder was also able to explain fully the data with its ten

inferred latent variables, despite its initial disadvantage that it has fewer free pa-

rameters compared to the other methods to fit the data. This observation, together

with the fact that in the previous simulation the LN autoencoder did not manage

to fully explain the data with its M = 10 latent variables (Fig. 4.2A), suggest that

the QP autoencoder potentially has more representational power than the LN au-

toencoder. Although this still needs to be proven formally, which we keep for future
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work, part of the explanation for this feature can be understood with respect to

the geometric picture we obtained in Chapter 3 (Fig. 3.5) where we saw that the

network model with neural activity computed by QP can display solutions that can

only be approximated by the LN network model.

4.4.2 Validation on a dataset from the auditory cortex of

rats

We now check if we can get more condensed representations for real population

recordings simply by incorporating the non-negativity constraints in our methods

while keeping the assumption that the latent variables should be obtained through

a linear decoder. We analyse here an example experimental dataset (Kobak et

al., 2019) that we presented earlier in Chapter 2. We choose this dataset as the

neurons were recorded simultaneously and thus, the neural responses measured in a

recording session should belong to the same underlying neural manifold. This can

then be leveraged to capture any coordinated responses across the neurons in the

population, and possibly lead to a better estimate of the neural manifold. Note that

the other datasets that we considered in chapter 2 were obtained using single-unit

recordings on multiple sessions and days and thus, the datasets may not reflect a

common manifold as it could be changing e.g. due to cell death or re-wiring of the

circuit.

In this dataset, we recall that population recordings were carried out in the

auditory cortex (area A1) of anaesthetised rats while they were presented with noise

bursts. The stimulus was parameterized according to inter-aural level difference

(ILD) and absolute binaural level (ABL). Roughly N ∼ 100 isolated neurons were

recorded in a session and we analyse here 8 example sessions. In a session, a trial

consisted of an ILD-ABL pair that was presented to the animal for 150ms. We choose

to analyse the spike counts in a time window from 50ms to 100ms after stimulus

onset, which results in anN -dimensional vector for each stimulus presentation. Since

there were 36 different ILD-ABL combinations in this experiment, each presented

100 times, we thus obtain 3600 (36 x 100) trials. We then determine how well the

different autoencoders can reconstruct the cross-validated data according to different

number of latent variables which we vary between 1 and 40. As before, we choose

the fraction of variance explained as the metric to evaluate performance. Since we

do not know the number of ‘true’ latent variables in real data, we compare the

performance of the different methods for each size of the bottleneck.

Fig. 4.4 shows the results of this analysis. We found that incorporating the
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Figure 4.4: Validating the autoencoders with non-negativity constraints on an ex-
ample dataset (Kobak et al., 2019). Neurons were recorded simultaneously in the
auditory cortex of anaesthetized rats while noise bursts were played. We analysed
8 example recording sessions. (A) Performance on an example recording session of
the methods in reconstructing the spike counts in a time window 50-100ms after
the onset of the stimulus. The data was cross-validated (5-fold c.v.). Traces corre-
spond to the mean over the folds (error bars are s.e.m.). Due to the predictions of
the methods when incorporating the non-negativity constraints when reconstructing
the data, they outperform PCA although they similarly estimated the latent vari-
ables as linear readouts of the population activity. Owing to the energy efficiency
constraint in the QP autoencoder, it finds a closer match to the data. (B) Percent-
age difference in variance explained by the autoencoders over PCA as a function
of the number of components in the models. The traces correspond to the mean
across the 8 recording sessions (error bars are the s.e.m.). For models of larger bot-
tlenecks, the QP autoencoder outperforms the LN autoencoder consistently across
these recording sessions.
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non-negativity constraints in the autoencoders generally allows them to explain

more variance in the data with fewer number of latent variables, i.e. they can find a

better match to the data with a fewer number of explanatory variables. We show the

results on an example recording session in Fig. 4.4A. We see that the methods show

roughly similar performance with models of less than 5 components, but a marked

difference over PCA appears for higher dimensions. Interestingly, despite an initially

similar performance, the QP autoencoder departs from the LN autoencoder as the

number of latent variables increases (M > 5) and can almost perfectly reconstruct

the data with roughly 25 components, thus reducing the dimensionality to around

a quarter of the number of recorded neurons. This improvement in performance

over the LN autoencoder was observed across several sessions (see supplementary

Fig. 4.6).

We summarize the results of our analysis across multiple sessions in Fig. 4.4B

where we computed the difference in the amount of variance explained by the non-

linear autoencoders and PCA as a function of the number of components. By nor-

malizing this difference by the variance explained by PCA, we obtain the percentage

change in performance of the LN and QP autoencoders over PCA. The error bars

are the standard error of the mean (s.e.m.) across sessions. We see that in general,

incorporating the non-negativity constraints yields an improvement over PCA, al-

though the QP autoencoder has negative performance for small bottlenecks. As we

discussed previously, this is because the latter method faces the initial disadvantage

that it has less degrees of freedom (fewer parameters) to fit the data compared to

the other methods. Nonetheless, it quickly catches up and substantially outperforms

both PCA and the LN autoencoder as the number of components in the model in-

creases. We also observe that the percentage increase in performance eventually

goes down for both methods since the additional amount of variance they explain

with increasing number of dimensions saturates.

These results overall emphasize the importance of incorporating the non-negativity

constraints in our methods when analysing neural data. Both the LN and QP au-

toencoders were able to explain the data better with fewer latent variables compared

to PCA, although all the methods estimated the latent variables through a linear

mapping. This shows that the (intrinsic) dimensionality of the manifold is in fact,

much smaller than what PCA would predict and interestingly, the meaningful vari-

ables to explain the data can potentially still be obtained via a linear transformation.

Furthermore, similar to the results from the first simulated dataset, the QP au-

toencoder outperformed the LN autoencoder by explaining more variance in the data
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for a given number of latent variables. As we showed previously, modelling the neu-

ronal activities according to an optimality principle where an efficiency constraint is

imposed, can yield different predictions of how the non-negativity constraints shape

the neural manifold. Given that the QP autoencoder provided a better estimate

to the data collected from the rats’ auditory cortex, it might be the case that this

brain region faces similar constraints when generating its representations.

4.5 Discussion

While each recorded neuron adds a dimension to the state space, the measured neu-

ral population activities usually lie along a manifold, which can usually be described

according to a smaller set of latent variables. Dimensionality reduction methods aim

to extract these variables for a succinct description of the data. In this chapter, we

argued that these methods should incorporate the natural non-negativity of neuronal

activities in order to find more accurate estimates of the latent variables underlying

the data.

We considered two PCA-like dimensionality reduction methods that incorporate

these constraints in a meaningful way. We described our methods within an au-

toencoder framework. Similar to the standard PCA algorithm, we assumed that

the methods should estimate the latent variables as a linear combination of ob-

served neuronal activities. However, unlike PCA, the methods should satisfy the

non-negativity constraints when reconstructing the data given some estimated latent

variables. In this chapter, we investigated two approaches of doing this reconstruc-

tion and hence, the two methods. The first method, namely the LN autoencoder,

predicts non-negative neural activity by first mapping the latent variables linearly,

followed by an explicit non-linearity (a rectification, here). A similar approach has

previously been used in a dimensionality reduction context (Whiteway and Butts,

2017; Karhunen and Joutsensalo, 1994). The second method we proposed, namely

the QP autoencoder, predicts the neural activity as a solution to a quadratic pro-

gramming problem that aims to generate optimal neural representations that are

energetically efficient. The non-negativity constraints are implemented as a hard

constraints in the optimization problem, yielding an implicitly defined non-linearity.

We showed, in simulations, that incorporating the non-negativity constraints in

our methods resulted in marked improvements in performance compared to the PCA

algorithm. Although all the methods estimated the latent variables through a linear

mapping, the LN and QP autoencoders were better at estimating the true (intrinsic)
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dimensionality of the manifold. PCA, on the other hand, predicted a tail of principal

components, significantly overestimating the dimensionality of the manifold and

thus, pointing to a potential ambiguity when interpreting these components; had

we not known the ground truth, it would be unclear how these components should

be interpreted. It would be misleading to attribute functional meaning to them,

since many of these components arise to compensate for the curvature of in the

manifold. Put another way, these components provide a linear description of the

space in which the manifold is embedded, but may not reflect the true underlying

signal of the manifold.

We also validated our methods in an example dataset (Kobak et al., 2019) of

simultaneously recorded neurons in the rats’ auditory cortex. We showed that again

the LN and QP autoencoders outperformed PCA. Interestingly though, we observed

that the QP autoencoder could explain more variance in the data than the LN

autoencoder, for comparative number of latent variables. Given the results from

our numerical simulations, we suspect that this is because the QP autoencoder has

more representational power than the LN autoencoder. This has previously been

demonstrated but for more general quadratic programs (Amos and Kolter, 2017). It

would be interesting in future work, to check whether the QP autoencoder generally

outperforms the LN autoencoder across several datasets. This would then suggest

that the brain might indeed be facing in its code, similar energy efficient constraints,

which delineated the non-linearity of the QP autoencoder.

Finally, coming back to the experimental dataset that we analysed, we recall

that the stimulus set presented to the animal during the neural recordings was

only two-dimensional. However, even though our methods provided a more succinct

description of the data than PCA, they still required many more latent variables

than the dimensionality of the stimulus set to capture most variance. Thus, it is

intriguing what these latent variables mean. One possibility could be that they

represent other factors such as the internal states of the animal that are not directly

observed during the experiment. These factors would still lead to variability in the

neural recordings and thus, are captured as these additional latent variables.

However, it might also be the case that the neural manifold displays additional

non-linearities, stemming for example from the dendritic tree (Stuart et al., 2016) or

synapses (Markram, 2003) of individual neurons or from the connectivity structure

of the network. As a result, the non-negativity constraints alone would be insuffi-

cient to explain these non-linearities, and consequently our methods would require

additional (or functionally irrelevant) components to compensate for them. In other
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words, had our methods been able to capture these additional non-linearities when

reconstructing the data, it would require even fewer latent variables to explain the

data. One way to remedy for this, could be to use a ‘black-box’ approach, e.g. a

deep autoencoder (Hinton and Salakhutdinov, 2006), to find the smallest possible

set of latent variables to explain the data. A downside of this approach however, is

that the resulting mappings may not have any functional relevance for the neural

circuit, and thus does not add to our understanding of how these non-linearities in

the manifold emerge.

Alternatively, a hypothesis-driven approach can be used: we hypothesize in the

rest of this thesis that, besides the non-negativity constraints, the network exhibits

a non-linearity which allows it to perform some non-linear computations. This in

turn, should be reflected in the shape of the neural manifold. However, to be able to

explain how such computations shape the manifold, one must first understand the

nature of computations that can be done by neural networks. In other words, we

first need to characterize the specific non-linearity (if any) that emerges according

to these computations. Yet, even today, a clear understanding of the computations

done by networks of biophysical spiking neurons is still missing, although spikes are

ubiquitous in the brain. In the next chapter, we switch gears and propose a new

framework of how to understand some of these computations.
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4.6 Methods

We describe our dimensionality reduction methods as autoencoder neural networks.

The autoencoder network functions in two steps. It first estimates the latent vari-

ables, zk ∈ RM through a deterministic map, fdec, of its input sample of observed

population activity, rk ∈ RN where k is the index of the sample. A sample could

be the measured population activity at a time point. N is the number of neurons

recorded in the population and M is a free parameter determining the number of

latent variables in the model. To reduce dimensionality, we set M < N and thus M

becomes the size of the bottleneck of the autoencoder. The second step in the func-

tioning of the autoencoder is to predict as its output the neural activity, r̂k ∈ RN

from the estimated latent variables, again through a deterministic map, fenc.

In all the methods we consider here, we will assume that the latent variables are

estimated through a linear mapping of the observed population activity, i.e. fdec is

linear. Specifically, we set

zk = Drk (4.5)

where D ∈ RM×N is the decoder matrix. We consider next the two different models

we used for reconstructing the data and describe in depth how to optimize their

parameters to infer the latent variables and fit the neural data.

4.6.1 Fitting the LN autoencoder

Once some latent variables, zk ∈ RM , have been estimated (k being the index

of the data sample), the LN autoencoder attempts to reconstruct the observed

sample of neural activities. It does so by using the linear-nonlinear (LN) model

where the latent variables are first mapped linearly, followed by a non-linearity (i.e.

fenc mapping is given by the LN model). Here, we use a rectification function,

g(a) = max(a, 0), which returns the element-wise maximum, as the non-linearity

and thus, the predicted neural activity will be non-negative. The reconstructed

neural activity is given as,

r̂k = g(Fzk + b). (4.6)

where F ∈ RN×M is a coupling matrix and b ∈ RN is a bias vector. Thus, an

error, ek = r̂k − rk, between the predicted and observed neuronal activities can be

calculated.

The parameters of the autoencoder should be optimized to minimize this error

over all data samples. We do so by minimizing the following loss function with
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respect to the parameters:

L(F,D,b) =
P∑
k

‖r̂k − rk‖22

=
P∑
k

‖g(FDrk + b)− rk‖22

=
P∑
k

‖g(Fzk + b)− rk‖22 (4.7)

where ‖v‖2 is the L2-norm of the vector, v, and P is the total number of observed

samples. We also include regularization terms for the model parameters, which

prevents overfitting the training dataset and thus, allows to generalize better to

the test data (Bishop, 2006). As a result, the loss function with regularization is

augmented as follows:

L(F,D, b) =
P∑
k

‖g(Fzk + b)− rk‖22 +
λ1
2
‖F‖2F +

λ2
2
‖D‖2F +

λ3
2
‖b‖22 (4.8)

where ‖A‖F is the Frobenius norm of the matrix A defined as ‖A‖F =
√∑

i

∑
j(A

2
ij).

The hyper-parameter, λi, determines the strength of the regularization; as λi in-

creases, it encourages the values in the parameters to be smaller. These hyper-

parameters, λi, are determined using cross-validation as we describe in section 4.6.3

below.

Computing gradients for optimization

We now consider how this loss function can be minimized. We use a stochastic

gradient descent method to optimize the parameters, θ = {F,D,b}, of the model

to do so. Instead of computing the full gradient with respect to all data samples

which is computationally costly, we consider only a few random samples or mini-

batch in a learning epoch to compute a descent direction for this minimization. For

a single data point (omitting the sample index for simplicity), it can be shown that

the gradients will satisfy:

∂L

∂F
= diag′ (Fz + b) ezT + λ1F (4.9)

∂L

∂D
= F> diag′(Fz + b)er> + λ2D (4.10)

∂L

∂b
= 2 diag′ (Fz + b) e + λ3b (4.11)

We recall that e is the error between predicted and observed activity. Thus, to

update the parameters, we are back-propagating the error for a given prediction.
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diag′ is a differential operator that takes an input vector of dimensionality, N , and

returns a diagonal matrix of size N × N with diagonal entries, g′i, which is the

derivative of the non-linearity function g, evaluated at each entry, i, of the input

vector. Since g is the ‘ReLu’ function here, it is not differentiable at zero. We use

a sub-differentiable approach common in neural networks literature by setting the

derivative to be zero at zero (Hara et al., 2015). As a result,

g′i(v) =

1, if vi > 0

0, otherwise
(4.12)

Learning the parameters of the LN autoencoder

To start the learning, we first run a PCA on the data and initialise the weight

parameters (F,D) with the weights obtained from the PCA (i.e. choosing the first

M eigenvectors and its transpose). The bias parameters, b are initialised randomly.

Given this initial decoder weights, a first estimate of the latent variables, z can be

made according to equation 4.5, and thus an initial prediction can be computed

(equation 4.6).

In a learning epoch, indexed n, the training data is shuffled and the samples

are divided into mini-batches. For a given mini-batch we compute the gradient by

taking sum of the partial derivatives (equations 4.9 to 4.11) over the samples in the

mini-batch. We then update the parameters of the model according to the following

rules:

D← D− ε1(n)
∑
j

∂Lj
∂D

F← F− ε2(n)
∑
j

∂Lj
∂F

(4.13)

b← b− ε3(n)
∑
j

∂Lj
∂b

where the index, j runs over samples in the mini-batch. εi is the learning rate.

To guarantee convergence of the algorithm, the learning rates need to decay over

epochs. We use an adaptive learning rate, following the ADAM optimiser (Kingma

and Ba, 2014), to do so.

Furthermore, we constrain the decoder weights, D, to be orthonormal; after

each update as in equation 4.13, we further project D on the closest point on the

manifold of orthogonal matrices (Stiefel manifold). Thus, the decoder weights are
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finally updated according to,

D> ← D>(DD>)−0.5 (4.14)

Finally, with the updated parameters, we can make new inferences of the latent

variables (equation 4.5), and new predictions of neural activity (equation 4.6) for

another mini-batch of data points. We refer to this as the forward pass of the

algorithm. Then, for these predictions, we can back-propagate the errors accrued to

re-update the parameters. We call this second step the backward pass. We alternate

between these forward and backward passes across all the mini-batches and then

reshuffle the data on the next learning epoch. We repeat the above procedure over

many epochs until the algorithm converges.

4.6.2 Fitting the QP autoencoder

Similar to the LN autoencoder, the QP autoencoder attempts at reconstructing the

observed population activity after the latent variables, zk, have been estimated for

a data point indexed, k. Instead of using an explicit non-linearity however, the QP

autoencoder models the reconstructed neural activity as the solution to a quadratic

program (i.e., the fenc mapping is implicitly defined). Thus, the predicted neural

activity is given as,

r̂k = arg min
r̃≥0

E(r̃) (4.15)

where

E(r̃) = ‖zk −Dr̃‖22 + µ ‖r̃‖2 (4.16)

is a quadratic objective function. Note that r̃ is the optimization variable. Also, the

non-negativity constraints are set as hard constraints in this optimization problem.

To get a prediction, we solve the QP using a standard Python QP solver ‘Quadprog’

(Goldfarb and Idnani, 1983). As before, an error, ek = r̂k−rk, between the predicted

and observed neural activity can then be calculated.

To optimize the parameters of the autoencoder, we will use a similar loss function

as in the LN autoencoder,

L(D, µ) =
P∑
k

‖r̂k − rk‖22

Note that this loss function implicitly depends on the parameters in the set θ =

{D, µ} through the QP solution r̂. We next consider how these parameters can be

learnt to minimize the loss.
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Computing gradients for optimization

We learn the weight parameters D using again a stochastic gradient descent method.

Since µ is only a positive scalar here, we optimize it using a cross-validation method

instead (see section 4.6.3). This allowed us to minimize numerical instabilities. We

describe next how we optimize D for a fixed µ.

Computing the gradients in this framework is a bit more involved than the LN

autoencoder since the predicted activity is only obtained through an optimization

problem and cannot easily be expressed analytically. To approach this learning

problem, we first phrase it as a bi-level optimization problem where the upper level

involves minimising the loss function with respect to the parameters D and the

lower level is our QP, which is a minimisation problem of the function E(r) with

respect to non-negative arguments r > 0. This can be written as:

Minimize
D

(
L(D) =

P∑
k

‖r̂k(D)− rk‖22

)
subject to r̂k(D) = arg min

r̃≥0
E(r̃)

(4.17)

Recall that rk is the observed data sample, r̂k is the predicted activity by the

autoencoder and r̃ is the optimization variable of the QP.

We consider now how the derivatives of the loss function with respect to D can

be computed for a data point (omitting the index for simplicity). Given the loss

function in the upper level problem, we can write its derivative as,

∂L

∂D
= 2e

∂r̂

∂D
(4.18)

where e is the error as defined above for a sample. Thus, to compute this derivative,

we will need to compute the derivative of the model prediction, r̂ with respect to D.

Since r̂ is the solution (fixed point) of the lower level problem (or QP), computing

this derivative involves differentiating through an argmin operator.

While there are several ways to reach some form of differentiation through the

argmin operator, we take a simple approach inspired from Gould et al. (2016). We

will use an interior point method (Boyd et al., 2004) to reach an equation that an

approximate QP solution would satisfy and then use ideas of implicit differentia-

tion to compute the derivatives at the fixed points (QP solution) (Dontchev and

Rockafellar, 2009).

In this interior point method, we aim to augment the loss function of the QP

with its N inequality constraints, r̃ ≥ 0, by means of a barrier function. We use
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Figure 4.5: Illustration of the log-barrier function for one neuron. Figure adapted
from Boyd et al. (2004). The inequality constraint, r > 0, can be made implicit in
the objective of the QP via an indicator function which returns 0 whenever r > 0,
else it is infinite. This is shown by the dashed line. The log-barrier relaxes this
function. The bigger the hyper-parameter, t, is, the closer it is to the indicator
function and thus, the closer we are to the original QP.

the following log-barrier function −1
t

log(r̃) to relax an inequality constraint; r̃ is an

element of the vector, r̃. We illustrate this function in Fig. 4.5). The parameter,

t, controls the steepness of the function. The bigger the value of t, the closer is

the function to an indicator function, and thus becomes a better approximation

to the inequality constraint. By introducing a log-barrier for each neuron, we can

approximate the QP problem as,

Minimize
r̃

(
tE(r̃)−

N∑
j

log(r̃j)

)
(4.19)

where we multiplied the objective by t to simplify notations (this does not change

the argmin solution). Note that this optimization problem will favour r̃ > 0 as when

r̃ approaches zero, the value of the objective rapidly increases. The parameter, t,

can also be interpreted as controlling the penalty in violating the non-negativity

constraints.

Given our new objective function, we can now find an equation for its fixed

point. We do so by taking its derivative w.r.t. r̃ and setting to zero. For the sake

of clarity, we will use the notation v−1 to denote a vector with element 1
vi

at the ith

entry. Then, we can show that the fixed point, r̂ of the approximate QP problem

(equation 4.19) satisfies,

t
(

[DTD + µI]r̂ −DTz
)
− r̂−1 = 0 (4.20)

Note that we made a slight abuse of notation since r̂ now corresponds to the ap-

proximate QP solution that will depend on t, and thus may slightly differ from the
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true QP solution.

Finally, we can take derivatives on both side of equation 4.20 with respect to D

to evaluate ∂r̂
∂D

. We can then plug this back in equation 4.18 to get the gradients
∂L
∂D

that we use to optimize the parameters, D. We show in Appendix A the full

derivation for this gradient.

Learning the weights of the QP autoencoder

As before, to start the learning, we initialise the weight parameters with those

obtained from a PCA on the dataset. This gives us a first estimate of the latent

variables (equation 4.5) and a prediction for the neural activity (equation 4.15).

In a learning epoch, we shuffle the data and divide it into mini-batches. For a

given mini-batch, we compute the gradients (equation 4.18) and update the param-

eters D as follows,

D← D− ε(n)
∑
k

∂Lk
∂D

(4.21)

We then orthogonalize D(n+1) by projecting it on the Stiefel manifold according to

equation 4.14. We again use an adaptive learning rate, ε, that changes with learning

epoch, n.

Finally, with the updated parameters, we can make new inferences of the latent

variables (equation 4.5)and new predictions of the neural activity (equation 4.15).

This allows us to compute the new error which we can back-propagate to re-update

the parameters. As in the LN autoencoder, we repeat this cycle between forward

pass and backward pass over many epochs until convergence on the training data.

4.6.3 Models evaluation

Cross-validation

To select the regularization parameters in the LN autoencoder and the quadratic

cost term, µ, in the QP model, we use a 5-fold cross-validation method. After

shuffling the data, it is divided into 5 chunks of roughly equal size, with 4 used for

training and 1 for testing the model predictions. By taking different combinations

of train and test sets, we get 5 non-overlapping testing blocks.

For the LN autoencoder, we assume that λ1 = λ2 = λ3 = λ and run the

autoencoder for 5 values of λ between 10−7 to 10−3 on a logarithmic grid. For each
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λ, we learnt the parameters on the training set and measured mean squared error of

the reconstructed population activity on the test set. We repeated this procedure

five times for the different train-test fold and averaged the resulting mean squared

errors. We selected the optimal λ which gave the minimum error.

Similarly, for the QP autoencoder, we optimize the parameter µ using cross-

validation. µ was chosen from 5 values between 10−7 to 10−3 on a logarithmic grid.

Note that a model is defined for each dimensionality, M , and thus, this procedure

is repeated across models with different sizes of the bottleneck.

Measuring performance

To assess the quality of the model fits, we first measured how well the models

can explain the observed population activity. For all models, the parameters were

first learnt on the training data. Then, using these learnt parameters and cross-

validated hyper-parameters, the predicted neural activities on the test data, Rrecons.

were computed. Note that we also did the train-test splitting of the data when

running PCA, where the mean of the data and weight parameters were evaluated

on the training set.

To evaluate the goodness-of-fit of a model with bottleneck size M , we measured

how much variance, V , it explains, which is defined as,

explained variance, V =
‖Rtest‖2F − ‖Rrecons.‖2F

‖Rtest‖2F
(4.22)

where Rtest is a Ptest×N matrix containing the test set. Ptest is the number of data

points in the test set. Note that Rrecons. changes as a function of the size of the

bottleneck in the model and thus, the explained variance, V is a function of M . We

do this evaluation for both synthetic and real data over different values of M .

To determine the change in performance of either the LN or QP autoencoder

over PCA, we computed the percentage difference in explained variance captured

by the LN or QP autoencoder and PCA as follows:

∆V = 100× (VLN/QP − VPCA)/VPCA (4.23)

A positive ∆V implies that the LN or QP autoencoder explains more variance than

PCA in the data for a given bottleneck of size, M .

Since the simulated data provided us with the ground truth, we also evaluated

whether the methods were able to retrieve the correct subspace. Since the methods
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faced a rotational degeneracy, similar to PCA, we did not directly compare the

predicted latent variables with the true latent variables in the simulations. First, we

determined whether the correct dimensionality was predicted, simply by looking at

how much variance each model was able to capture and then determining if the model

with the right bottleneck size explained all the variance in the data. Second, to

determine how close the subspaces were, we measured the principal angles between

them. We characterized a subspace by the row space defined by fitted decoder

weights of each method. The dimensionality of that subspace corresponds to the

rank of the decoder weights. Then, the principal angles between two subspaces were

determined by finding recursively the minimum angle between pairs of basis vectors

from either subspace (Knyazev and Argentati, 2002). This was implemented using

Python’s Scipy module (scipy.linalg.subspace angles).

4.6.4 Simulating synthetic data

To validate our methods, we simulated two sets of ground truth data, each using a

different network model described in Chapter 3. Both networks consisted of N = 100

neurons receiving as inputs M = 10 latent variables, z which we modelled as follows:

Each of the first nine dimensions was constructed by drawing P = 2500 random

samples from a Gaussian distribution with zero mean and unit variance, i.e. N (0, 1),

and then filtered. The last latent variable was set at a constant z = 1, but corrupted

with white noise (samples drawn from the following Gaussian N (0, 0.3)).

Then, we designed the readout weights D ∈ RM×N as follows: each dimension

(or row of D) was drawn from a Gaussian distribution with the first nine from

N (0, 1) while the last one from N (1, 0.2). The latter decoder weights were all

positive. As a result, the last latent variable can be interpreted as a background

signal obtained as the weighted average of the population activity. Finally, the

weights D were orthonormalized according to equation 4.14. The decoder weights

for the background signal remained all positive after this procedure.

In the first simulation, the firing rates were computed using quadratic program-

ming (QP) (see equation 4.3) with decoder weights, D. The parameter controlling

the quadratic cost to penalize high firing rates was set as µ = 1e−05. In the second

simulation, the firing rates were generated using the linear-nonlinear (LN) network

model (see equation 4.2. The parameters of the model, namely the feedforward

weights F and bias, b, were learnt such that the latent variables, z could be read

out linearly from the generated population activity using decoder weights, D. Split-
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ting the decoder weights as D =

[
D̃

u>

]
where u is a vector containing the decoder

weights for the background signal, these parameters were learnt by minimizing the

following loss function

L(F, b) =
P∑
i

(
||zi1:M−1 − D̃g(Fzi + b)||22 + β||ziM − uTg(Fzi + b)||22

)
(4.24)

Superscript i corresponds to the index of the data point while the subscript 1 : M−1

selects the first M − 1 elements of the M -dimensional vector z.
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Figure 4.6: Performance of the dimensionality reduction methods on the experimen-
tal dataset (Kobak et al., 2019), across eight different recording sessions.
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Chapter 5

Understanding computations by

spiking neural networks

5.1 Introduction

The brain can generate internal representations of features in the world and com-

pute over these representations to yield meaningful outputs, e.g. behavioural out-

comes. These representations and computations are essentially mediated by sparse

and irregular spiking activity of networks of neurons. In the previous chapters, we

primarily investigated neural manifolds generated by network models using rate-

based units (that give continuous-valued approximations to spiking activities), and

showed that the manifolds can exhibit curvatures due to coding constraints. How-

ever, the coding constraints might not be the only source for the non-linearity along

the neural manifold. Another possibility could be that the manifold reflects some

additional non-linearity that arises according to the underlying computations done

by the network. However, to start understanding the implications of network com-

putations on the shape of neural manifolds, one must first understand the nature of

computations that can be done by the network.

Although spikes are ubiquitous in the brain, even today, much of neuroscience

theory still relies on models using rate-based units to understand core network com-

putations (e.g. (Rubin et al., 2015; Sussillo et al., 2015; Mastrogiuseppe and Ostojic,

2018)). Understanding the computations in spike-based network models, or Spik-

ing Neural Networks (SNNs), has proven more challenging. While SNNs have long

been established as computationally powerful (Maass, 1997), only recently have they

started to display competitive results to standard rate-based networks in machine

learning applications. This has partly been due to novel and efficient spike-based
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learning rules (Bohte et al., 2002; Huh and Sejnowski, 2018; Zenke and Ganguli,

2018), but mainly through transferring insights from rate to spiking networks (Elia-

smith and Anderson, 2004; Stöckl and Maass, 2020; Sorbaro et al., 2020). Thus,

even if these SNNs can now be trained to achieve high performance in solving some

tasks, this approach does not necessarily yield any further insights on the underlying

computations compared to their rate-based counterparts.

A key hurdle has been that spiking networks are hard to treat analytically due

to the discrete nature of spike events. Major insights have often been limited to

bottom-up approaches based on randomly connected networks (Vreeswijk and Som-

polinsky, 1996; Brunel, 2000; Maass et al., 2002), or to single neuron computations

based on spike-timing (Hopfield, 1995; Gütig and Sompolinsky, 2006; Gütig, 2016).

An alternative way to understand SNN computations has been to derive spiking be-

havior directly from some loss functions with biology-inspired constraints (Hu et al.,

2012; Boerlin et al., 2013; Tang et al., 2017; Pehlevan, 2019). Using this approach,

it has been shown that the time-averaged activity of some SNNs can solve some

underlying convex optimization problems. For instance, the networks can be de-

signed to efficiently represent their inputs as an auto-encoder by solving a quadratic

program (QP) (Barrett et al., 2013; Moreno-Bote and Drugowitsch, 2015) or learn

sparse representations by solving a linear program (LP) (Chou et al., 2018).

In this chapter, we attempt at reconciling the computational power of SNNs with

an understanding of the nature of these computations. We build on the aforemen-

tioned approaches, as well as some recent geometric insights (Calaim et al., 2020), to

propose a new framework based on convex optimization theory to understand SNN

computations. We show that virtually all input-driven (or inhibition-dominated)

SNNs (Abbott et al., 2016) are intimately tied to convex optimization problems

(Boyd et al., 2004), with network connectivity, timescales, and firing thresholds

being intricately linked to the parameters of the underlying optimization problems

(section 5.2). In particular, we show that our framework can capture as a specific

parametrization, the autoencoder neural network with optimal representations that

we discussed earlier (see Chapter 3, section 3.4), but with the optimization now

carried out using spikes. As a result, the arguments on how the neural manifold

is shaped due to coding constraints would still hold in this framework, albeit the

presence of noise due to spikes.

However, we can go beyond computing the identity function of the autoencoder

(since we would only be representing the input) and show that this perspective from

convex optimization affords new geometric insights into more general computations
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performed by SNNs. Using these insights, we clarify the input-output functions of

input-driven SNNs that solve convex optimization problems (section 5.3.1). We show

geometrically that such SNNs effectively compute convex, piecewise-linear functions

according to their connectivity, and thus can approximate any convex input-output

function. The computational power of convex input-output transformations in a

network layer has previously been demonstrated in a pure machine-learning context

(Amos and Kolter, 2017; Agrawal et al., 2019), and without a specific network

implementation in mine. We here show that SNNs provide a natural implementation

of such transformations.

Furthermore, we show that the geometric perspective of our framework enables

us to understand SNNs beyond solving convex optimization problems. First, we

show that we can understand more general network dynamics, e.g. bi-stability and

periodicity, of SNNs which are not necessarily input-driven (section 5.3.2). Second,

we illustrate how local learning rules to implement a given computation can be

derived (section 5.4). Ultimately, we show that the resulting SNNs display many

features from biological networks such as irregular and asynchronous firing patterns

and robustness to various perturbations. We therefore, propose that such networks

are closer to biology than standard rate-based networks and point to the possibility

that biological networks could be doing similar computations.

Notes and acknowledgements. This chapter is largely adapted from a previ-

ously published work (Mancoo et al., 2020). The author points out that he has

worked closely with Sander Keemink, in the lab of Christian Machens, to arrive at

the results presented here. In particular, Sander has provided important insights

on the computations done by SNNs (section 5.3) and showed how the network can

solve a classification task, whilst exhibiting biological features (Fig. 5.8). After a

joint effort to understand different network behaviours in this framework (section

5.3.2), the simulations for Fig. 5.5 were originally designed by him.

5.2 Spiking neural networks and convex

optimization

In this section, we aim to provide the link between spiking neural networks (SNNs)

and convex optimization problems. SNNs can be modeled with a broad range of

neuron models. In this chapter, we focus on arguably the most common model,

namely Leaky Integrate-and-Fire (LIF) neurons.

91



5.2.1 Leaky integrate-and-fire neurons

The LIF neuron is one of the simplest models to capture the core principles underly-

ing spiking biophysical neurons. A network of N such neurons is governed according

to following two key ingredients:

• First, the membrane potentials, V (t) ∈ RN , of the neurons are described as

evolving according to a differential equation, where t stands for time,

V̇(t) = −λV(t) + Fc(t) + Ωs(t) + Ibg(t), (5.1)

Parameter λ determines the membrane leak time-constant, c(t) ∈ RK is a

K-dimensional time-varying input, F ∈ RN×K are the feed-forward weights,

Ω ∈ RN×N are the recurrent weights, s(t) ∈ RN are the neural spike trains

described as a sequence of firing in time and modelled as a sum of delta-

functions, si(t) =
∑

tj
δ(t− tj), and Ibg(t) ∈ RN are background currents or

noise.

• Second, each neuron has a threshold, Ti, and it emits a spike whenever its

membrane potential, Vi, crosses its threshold. Then, immediately after the

neuron spikes, its voltage is reset to a resting potential, Ri, which here is

implicitly implemented in the diagonal terms of Ω which are all negative, so

that Ri = Ti − Ωii.

We illustrate this process for an integrate-and-fire neuron in Fig. 5.1.
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Figure 5.1: Illustration of an integrate-and-fire neuron. Its membrane potential or
voltage is integrated over time in the presence of a constant driving input until it
reaches a threshold, Ti. A spike is subsequently emitted that resets the membrane
potential to Ri. The spike train (black dots) is a record of spiking events at different
time points, tj.
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5.2.2 Linear and quadratic programming and their

geometry

The key insight that we bring forward here is that the dynamics described above and

resulting computations of SNNs can be examined through the lens of a convex opti-

mization problem with inequality constraints. In fact, inequality constraints have a

natural correlate in spiking networks since the membrane potentials of neurons are

bounded from above by their thresholds.

We start with a fairly generic optimization problem,

Minimize
y

(
E(y) =

λ

2
y>y + b>y

)
subject to Fx−Gy ≤ T

(5.2)

where y is an M -dimensional optimization variable , b is a bias, and x is a K-

dimensional input to the problem. The remaining variables, F ∈ RN×K ,G ∈
RN×M ,T ∈ RN and the positive scalar λ are parameters of the optimization prob-

lem. This optimization problem is convex as both the objective function and the

constraints form convex sets. In particular, this type of optimization problem is

generally referred to as a quadratic program (QP) — a quadratic objective function

with affine constraints. If λ = 0, then the optimization problem becomes a linear

program (LP) — a linear objective function with affine constraints (Boyd et al.,

2004). Importantly, due to the hard inequality constraints, not all minimizers of

the objective function are permissible; the inequality constraints define a feasible

set (see Fig. 5.2 as an example) and the minimizer must belong to that set.

Before mapping this optimization problem onto the spiking network, equation (5.1),

we first review its geometric interpretation. We can rewrite the i-th inequality con-

straint as G>i y ≥ F>i x− Ti, where the (column) vectors Fi and Gi refer to the i-th

rows of F and G, respectively. Each inequality constraint thereby divides the y-

space (where the optimization variable resides) into two half-spaces. The boundary

is defined at equality. Fig. 5.2A shows an example for a two-dimensional optimiza-

tion variable (M = 2) with three constraints (N = 3). Each colored region shows

the half-space where the corresponding inequality constraint is violated. The union

of colored half-spaces thus defines the infeasible set for the optimization problem,

and the white area is the feasible set. The QP solution, y?, should correspond to the

closest point to the unconstrained solution b
λ

but within the feasible set (Fig. 5.2A,

red star.)
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Figure 5.2: Convex optimization and SNNs. (A) Illustration of a quadratic program
(QP). Dashed grey circles are the contours of the objective with unconstrained
minimum at −b

λ
. Each neuron or inequality constraint divides the space into half-

spaces with shaded regions being infeasible. The QP solution (red star) is attained
within the feasible set (unshaded). (B) Configuration of a network of 3 neurons with
connectivity matrices labelled. For inputs (x1, x2), the network produces the outputs
(y1, y2) that can be readout linearly (C) Dynamics of a spiking network solving a QP.
(i) The trajectory of the network’s readout (orange) bounces back into the feasible
set each time it hits a boundary. Gradually, the readout approaches the optimum
point. (ii) Neural activity over time with corresponding readouts jumping about the
QP solution. The corresponding spikes and voltages are shown below. (D) Same as
(C) but the spiking network is now solving a linear program. The dynamics is now
driven by b and does not leak to the unconstrained minimum.
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5.2.3 Gradient descent under constraints

Now that the optimization problem is defined, we can ask how would an algorithm

proceed to solve it. Several highly efficient algorithms exist to solve QPs (Boyd

et al., 2004; Nocedal and Wright, 2006). Here, we start with one of the simplest:

gradient descent. We can take the derivative of the objective function in problem

5.2 to find the descent direction and this yields in continuous time, the following

differential equation

ẏ = −∂E
∂y

= −λy − b. (5.3)

However, following this trajectory alone can drive the optimization variable outside

the feasible set. To avoid this, we introduce a bouncing mechanism whereby each

boundary reflects y into a direction Di whenever y hits it 1. By modelling each such

bounce as a delta function, we then obtain the following optimization dynamics

ẏ = −λy − b + Ds(t), (5.4)

where s(t) is the N -dimensional vector of bouncing events, similar to the spike trains

introduced above (equation 5.1), and D ∈ RM×N is the matrix of bounce directions.

To achieve the correct solution to the optimization problem, the direction of each

bounce is crucial. For now, we will simply assume that y bounces back orthogonal to

the respective boundary. This means that bounce direction, Di should be parallel to

the normal vector of the boundary, Gi and into the feasible, or mathematically Di ∝
Gi (with non-negative constant of proportionality). This condition is sufficient,

although not necessary, to guarantee that the optimization variable approaches a

minimum of the loss function within the feasible set. Eventually, y approximates

the true solution to the QP with a discretization error, η, which depends on the

size of the jumps as defined by the length of Di. We illustrate this in Fig. 5.2(C,

D), where the orange trajectory shows the dynamics of y due to descent on the loss

function, interspersed with bouncing events, whenever one of the boundaries is hit.

Once close to the solution (red star), the dynamics jumps back and forth around the

true solution. If we set the parameter λ = 0, the dynamics now moves y close to the

solution of a linear program (LP) which lies at a vertex as seen in Fig. 5.2D (Boyd

et al., 2004). In contrast to Fig. 5.2C, the optimization dynamics is now driven by

a constant drift, −b, rather than an exponential decay.

1Note that Di refers to the i-th column of D while Fi and Gi are the i-th rows of F and G,
but expressed as column vectors.
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5.2.4 From convex optimization to the voltage dynamics of

LIF neurons

To link this optimization problem to SNNs, we first define the left-hand-side of the

inequality constraints in optimization problem 5.2 as the voltages of the neurons,

V = Fx −Gy, and the parameters, T, on the right-hand-side as their thresholds.

The dimensionality of the network is then set by the number of such inequality

constraints. Furthermore, we assume that the input x, just as the optimization

variable y, are time-dependent variables. By taking the temporal derivative of the

voltages, we then obtain

V̇ = Fẋ−Gẏ (5.5)

= Fẋ + λGy + Gb−GDs(t) (5.6)

= −λV + F(λx + ẋ)−GDs(t) + Gb. (5.7)

Equation (5.6) follows from equation (5.5) by replacing ẏ by its dynamics (5.4), and

equation (5.7) follows from (5.6) by using the definition of the voltage.

Interestingly, we have now recovered the voltage dynamics of a network of LIF

neurons, similar to equation (5.1) we introduced earlier. The parameter λ, tied to

the quadratic loss function in the optimization problem, determines the membrane

leak time-constant, the matrix F has become the feed-forward weight matrix with

inputs c(t) = λx+ẋ, the matrix G, together with the matrix of bouncing directions,

D, has become the recurrent weight matrix, Ω = −GD, the bouncing events, s(t),

are now the spike trains, and the bias b is an external current fed to the network via

the weights G. Since there is a direct correspondence from the voltage dynamics to

the dynamics of the optimization variable, the resulting SNN thus implements the

gradient optimization described above. It solves quadratic programs if the voltages

of the neurons leak i.e. λ > 0 or linear programs in the absence of such leaks i.e.

λ = 0, up to a discretization error, η.

If we define the instantaneous firing rates of neurons, r(t), as the filtered versions

of their spike trains, i.e., ṙ = −λr+s(t), then we recover our optimization variable as

the instantaneous linear readout of a downstream layer since it satisfies y = Dr− b
λ

(this can be checked simply by taking the time-derivative of y, from which we

recover equation 5.4). We illustrate the behavior of the network in Fig. 5.2(C and

D) while solving a QP and LP problem, respectively; the network’s instantaneous

output ultimately provides a solution to the QP and LP.
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5.2.5 Example networks

We now show that several previously proposed SNNs fit into this framework. Here,

we list a few (in all cases setting the bias, b = 0, for simplicity):

• ReLu Layer. If we assume independent neurons, we get M = N , and G =

D> = I. In this case, y = r and we can integrate the voltage dynamics,

equation 5.7, over time to get the following equation for the voltages V =

Fx− r ≤ T, which we can re-write as r ≥ Fx−T. Since the objective of the

optimization problem is quadratic, we find that the SNN dynamics leads to

the solution

r = max(Fx−T,0) + η. (5.8)

Thus, the input-output function of the network is essentially a ‘ReLu’ function

besides the additional term η that captures the error due to the jumps about

the fixed point.

• Spike Coding networks. If we assume G = F, the integrated voltage equa-

tion then becomes V = Fx−FDr ≤ T, which is the voltage definition of the

‘spike coding’ networks learnt in (Brendel et al., 2020). These networks have

been shown to generate biologically realistic activity (asynchronous, irregular

spiking, balance of excitation and inhibition).

• Sparse Coding networks. If we additionally assume G = F = D>, the

voltages become V = D>x−D>Dr ≤ T, and we recover the voltage equation

in previously proposed auto-encoder SNNs (Barrett et al., 2013; Boerlin et al.,

2013). In fact, these SNNs find energy-efficient neural representations of their

inputs, similar to the networks we discussed in Chapter 3, although in the

latter case the representations were generated using firing rates.

To clarify this link of energy efficiency between the QP that optimizes over

firing rates in Chapter 3 and the optimization problem here, we resort to

the latter’s Lagrange dual formulation (Boyd et al., 2004). As we show in

the derivations below, with the weight parameter choices made above (and

using Lagrangian multipliers r ≥ 0), the ‘argmin’ solution to the resulting

dual optimization problem becomes equivalent to the classical sparse coding

(Olshausen and Field, 1996) firing rates solution, given as,

r? = arg min
r≥0

||x−Dr||2 + r>T, (5.9)

We note that the thresholds, T, now explicitly appear in the objective function

and effectively implement a sparsity cost on the firing rates. Although this fea-
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ture was implicitly captured when simulating previous SNNs, we here provide

a more formal understanding of the sparsity effects of the spiking thresholds.

Derivation of the dual problem. With the above parameter choices and

λ = 1, using Lagrange multipliers r ≥ 0, the Langragian, L, is obtained by

augmenting the loss function in problem 5.2 with its constraints, i.e.,

L(y, r) =
1

2
y>y + r>

(
D>(x− y)−T

)
(5.10)

The Lagrange dual function is then defined as the minimum value of the

Lagrangian over y:

g(r) = inf
y

(1

2
y>y + r>(D>(x− y)−T)

)
(5.11)

At its minimum, we obtain y = Dr. Plugging this back into g(r) yields the

dual problem:

Minimize
r

(
1

2
r>D>Dr− r>D>x + r>T

)
subject to r ≥ 0

(5.12)

which has the same ‘argmin’ solution as equation 5.9.

5.2.6 Configuration for input-driven networks

However, we can also free ourselves from strictly solving convex optimization prob-

lems (QPs and LPs), and consider more generally, what happens if we choose the

bouncing directions D differently, i.e., not necessarily orthogonal to the boundaries.

For instance, we can simply choose D such that the optimization variable y

remains within the feasible set. One way to enforce this is to have the bounce

direction, Di to make an angle of at most 90◦ to the normal vector, Gi, for each

boundary i, or mathematically, we need G>i Di ≥ 0. This necessary condition means

that the diagonal elements of the recurrent connectivity need to be negative, i.e.,

Ωii = −G>i Di ≤ 0, which simply corresponds to the requirement that a neuron’s

self-reset after it spikes (which we model through the diagonal entries of Ω) to be

negative.

However, this is not a sufficient condition for y to remain in the feasible set

after the jump. We illustrate this in a two-neurons schematic in Fig. 5.3A. From

the initial position, ya, a jump along D1 keeps the optimization variable within the

feasible set (unshaded region). But, the same jump is infeasible if the initial position
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A B

Figure 5.3: Conditions to keep the optimization variable, y, within the feasible set
(unshaded area) using a two-neurons schematic. (A) When the bounce direction,
D1, of neuron 1 is less than 90◦ to the normal vector of its boundary, G1, this
can prevent y from jumping into its infeasible region (pink), e.g. the jump from
ya. But this is not sufficient as shown by the jump from yb. (B) A sufficient but
not necessary condition is to keep D1 angled less than 90◦ to the normal vector of
the other neuron’s boundary, G2. Thus, the jump from yb does not cross into the
infeasible half-space defined by the second neuron (pale blue).

is yb. A solution would be to constrain the bounce direction for a given neuron to

be angled at most 90◦ to the normal vectors of the boundaries of all other neurons.

Thus, a sufficient (but not necessary) for each jump to remain in the feasible set is

to set Ωij = −G>i Dj ≤ 0 (see Fig. 5.3B).

Note that due to these conditions, the recurrent connections become all-inhibitory,

in which case the excitation in the network comes from external inputs and hence,

input-driven (Abbott et al., 2016). In all cases, the dynamics of the network will

effectively wander along the boundary of the feasible set, and this boundary can

therefore be thought of as the manifold on which the SNN dynamics evolves.

5.3 Understanding computations in SNN layers

5.3.1 Input-driven networks

Given the link between SNNs and convex optimization, we now consider the possible

computations done by such networks. More specifically, we will study how the

output, y, read out from the network’s activities, changes as a function of the

input, x. For simplicity, we will assume b = 0. For now, we will consider input-

driven networks where the optimization variable remains in the feasible set (see

above). To guarantee that the SNNs approximate the solution of the underlying

optimization problem, we choose Di ∝ Gi and Gij ≥ 0, which together keep the
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Figure 5.4: Interpreting spiking network computations. (A) Example network of
six interconnected neurons performing one-dimensional transformations. The cor-
responding input-output function is illustrated on the right in (x, y)-space. Solid
lines illustrate neural boundaries, and the dotted line corresponds to the resulting
input-output functions (minus the discretization error η) generated by the network.
(B) Changing or silencing a single neuron (red cross) does not substantially change
the overall input-output function, thus showing the locality of the representation.
(C) Same as in (A), but for a 2D input. Now each neuron’s inequality boundary
corresponds to a plane in 3D space. Different neurons are active in different parts of
this space (colored patches), and locally determine the slope of the output function
(as shown by the contours). White corresponds to having no neurons active. The
output function is shown in 3D on the right.

recurrent connectivity all-inhibitory.

One-dimensional outputs

When the output of the network has dimensionality M = 1, we can write each

neuron’s voltage inequality as F>i x − Giy ≤ Ti. Solving for y, we then obtain the

set of inequalities y ≥ (F>i x − Ti)/Gi. Since the dynamics of the spiking network

minimizes the loss L = λy2/2, the final solution will either be y = 0 which is the

unconstrained minimum, or for a given x be bouncing off at a point on the boundary
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of some active neuron j, given by y = (F>j x− Tj)/Gj.

As x changes, if a different neuron now has its boundary overshadowing the other

boundaries and is above the origin, then that neuron becomes active. The output

function is thus determined locally by each neuron’s boundary, until either y = 0

or another neuron becomes active instead. We can therefore write the input-output

function as

y = f(x) = max
(

0,
F>1 x− T1

G1

,
F>2 x− T2

G2

, ...
)

+ η, (5.13)

which is effectively a piecewise-linear function which partitions the space according

to a set of linear equations (see Fig. 5.4A). Importantly, each neuron only acts within

a limited local range, which endows the network with a certain inherent robustness

to single neuron changes in parameters and even cell death, as this would only

locally affect the input-output function (Fig. 5.4B). In this one-dimensional case,

the network then behaves as a ‘maxout’ unit, which has previously been shown to

be universal approximators (Goodfellow et al., 2013).

M-dimensional outputs

Conceptually, the extension to M -dimensional outputs is not difficult. A given neu-

ron’s spiking boundary is described by all points satisfying F>i x−G>i y = Ti, which

can be viewed as a (K+M−1)-dimensional hyperplane in the (K+M)-dimensional

space defined by u = (x,y). As before, each neuron’s hyper-plane divides the space

into a feasible and infeasible region. The solution is constrained to lie either at

y = 0 or be bouncing off one (or more) of these hyperplanes. Consequently, the

solution comes from a piecewise-linear, convex function of the input x.

5.3.2 Moving beyond solving convex optimization

problems

By considering different alignments of the bouncing directions and neuronal bound-

aries and not restricting the networks to solve QPs and LPs, we show here that this

framework can also give geometric insights of more general network dynamics e.g.

bi-stability or periodicity.

We consider in a first example a scenario where the SNN exhibits bi-stable dy-

namics due to a specific configuration of the bounce directions (Fig. 5.5A). With a

small nudge, e.g. noise, that can change the initial state from either points A or B,

the dynamics lead the network’s output, y, to systematically different equilibrium
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Figure 5.5: Other dynamics e.g. bi-stable or periodic dynamics are obtained un-
der different configurations of the network parameters. These can be understood
geometrically within the same framework. (A) Bi-stable network dynamics. (i)
Starting from point A or B leads to different equilibrium points with the readout
trajectory following different paths. (ii) Behaviour of the networks under different
initial conditions. (B) Periodic network dynamics. (i) The readout trajectory, due
to some excitation, follows a cyclical path when the feasible set is closed. The exci-
tation is due to the green and yellow neurons allowing the solution to move outside
the feasible set. (ii) Network behaviour that leads to this dynamics. The readouts
follow a cyclical pattern over time.
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points (black stars). The network’s output is driven close to one of the two attrac-

tors about which it then jumps back and forth. We illustrate the behaviour of the

network in Fig. 5.5A(ii).

In a general setting, the recurrent connectivity, Ω = −GD, needs not be all-

inhibitory. We can thus design the connectivity such that excitation recurrent con-

nections drive y outside of the feasible set. Such excitations can either decay quickly

if the next neuron moves the solution back into the feasible set, or they may self-

sustain if subsequently active neurons keep pushing the solution out of the feasible

set. We show in Fig. 5.5B an example network that displays periodic dynamics due

to a small amount of excitation. In this case, the feasible set is closed forming a

polytope (Fig. 5.5B(i)) and the green and olive neurons push the solution outside

the feasible set. As a result, the solution follows a cycle (orange trajectory) not

reaching a fixed point. Periodic patterns in the network’s readouts can also be seen

in Fig. 5.5B(ii).

5.4 A geometric view on supervised learning in

SNNs

The above considerations have given us a better understanding of the computations

performed by a single layer of spiking neurons. An immediate question that arises

next is whether the parameters of the network can be learnt for a desired computa-

tion. Although a full-fledged set of learning rules is beyond the scope of this thesis,

we will show next that the geometric insights in this framework provide us with a

new avenue to address the learning problems in a supervised setting with biologi-

cal constraints. In particular, we will concern ourselves with input-driven networks

where the input-output functions are clearly defined (see section 5.3.1).

5.4.1 Learning through basis functions

Let us first consider how the network parameters can be learnt in a classical sense.

One simple approach is to consider the outputs of the neurons at a given layer to

form a set of basis functions, which can then be combined linearly for arbitrary

input-output transformations by training the output weights (LeCun et al., 2015;

Eliasmith and Anderson, 2004). The same applies within our framework. By using

random parameters F, G, D, and T, a rich set of (convex) basis functions as the

M -dimensional output of the network can be generated. If the set is rich enough,

these basis functions can then be combined to approximate arbitrary, non-convex
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input-output functions. Geometrically, this approach corresponds to having a fixed

set of N neural hyper-planes in an M -dimensional space (Fig. 5.4C), and requires

a high dimensionality (in both the number of neurons and the readout space) to

generate a rich enough basis-set. However, instead of following this standard route,

we will investigate here the problem of directly adjusting the neural hyper-planes

themselves in order to learn specific (convex) input-output functions.

5.4.2 Learning the neural hyper-planes

How can the neural hyperplanes (each hyperplane corresponding to an inequality

constraint in the optimization problem) be adjusted to make the network’s output,

y, match a desired target, ỹ? One approach would be to define a loss function over

the global error, e = y − ỹ, and then minimize it e.g. using gradient descent to

find the best set of parameters (Amos and Kolter, 2017; Agrawal et al., 2019; Gould

et al., 2016). However, this approach yields highly non-local parameter updates and

thus, it is not feasible for biological networks.

From the geometric interpretation of the problem, we note three facts. First,

individual neurons do not have direct access to the global variable, y, or to the error,

e = y− ỹ, but rather get indirect information through a projection on their encoder

weights, Gi. Second, at spike-time, this projection satisfies G>i y = F>i x− Ti which

is the boundary equation (see Fig. 5.2). So, a neuron can get information about

y only when there is a spike event. Third, the end result of learning should be

that each boundary locally supports the target function from below, or becomes

tangential to its epigraph2 in (x,y)-space, and that the output function is properly

distributed across neurons (e.g. see Fig. 5.4A).

From these insights, we propose the following learning scheme. To prevent over-

shadowed neurons from ever participating, we allow neurons to drift their boundaries

slowly to the epigraph by lowering their thresholds, Ṫj = −λT , ∀j ∈ 1, . . . , N , where

λT determines the speed of the drift. This encourages neurons whose boundaries are

far away from the target to eventually approach the epigraph from below, thereby

compete with the other neurons, start spiking, and thus take part in the learning.

At the same time, we let all neurons that emit spikes to adjust their boundaries

and redistribute them along the epigraph. To do so, we take a simple approach

and minimize the projected error on each neuron’s encoding weights. For one data

2The epigraph of a function f : RK → R is defined as epi f = {(x, t)|x ∈ dom f, f(x) ≤ t}
(Boyd et al., 2004)
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Figure 5.6: Supervised learning of spiking networks. (A) Illustrating the effect of
learning the feed-forward weights, F and thresholds T in (x, y)-space. Learning Ti
for neuron i translates its spiking boundary as an offset and learning Fi changes its
slope. With competition across neurons, the violet neuron only learns to fit data
points in its partition. (B) Illustrating the locality of the learning rules in y-space
(assuming unit vectors for the sake of illustration). (i) For a given input x, the
parameters F and T effectively determine by how much each spiking boundary is
translated from the center of coordinates. (ii) At the solution (red star), two neurons
are active and they individually try to minimize the projected error. Either a change
∆Fi or ∆Ti in (A) leads to a translation of the boundary in y-space. According to
the learning rules, the size of the translation will be G>i e which brings each spiking
boundary closer to the target (red dot).

point, we therefore minimize the loss

L =
1

2

Nact∑
i

||G>i (y − ỹ) ||2 =
1

2

Nact∑
i

||F>i x− Ti −G>i ỹ||2 (5.14)

where Nact is the subset of neurons that are active for a given input-output pair.

Here, we focus only on learning the feed-forward weights, F, and thresholds, T,

which will be sufficient to guarantee some distribution along the epigraph; more

general and efficient rules should also include changes in the recurrent connectivity

Ω = −GD as well (e.g. along the same lines as in (Brendel et al., 2020)) but this is

beyond the scope of this thesis. By computing the corresponding gradients, we get

the following rules for i ∈ Nact:

∆Ti = −α ∂L
∂Ti

= α
(
F>i x− Ti −G>i ỹ

)
= αG>i e (5.15)

∆Fi = −α ∂L
∂Fi

= −α
(
F>i x− Ti −G>i ỹ

)
x> = −α(G>i e)x, (5.16)

where α is the learning-rate. To ensure that the drift in thresholds does not dominate

the learning, we set λT � α. Additionally, to encourage a proper distribution of the

code across neurons, we introduce a cost, µ, on spikes which further hyperpolarizes

a neuron after it spikes, i.e., it lowers the reset after a spike to Ri = Ti−Ωii−µ. This
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cost limits arbitrarily high activity of individual neurons and can be thought of as

a type of regularization similar to what has previously been used in SNNs (Boerlin

et al., 2013).

We illustrate the effects of these rules in Fig. 5.6. Whenever a neuron spikes, it

shifts and rotates its spiking boundary by ∆Ti and ∆Fi, respectively, in (x, y)-space,

thereby reaching a partition of the input-target (x, ỹ) samples. Assuming that dif-

ferent neurons start out with different random parameters, by presenting different

input-target pairs many times, neurons can thus jointly find a piecewise-linear fit

of a target function, e.g. as in Fig. 5.4A. To get further intuition of these rules,

we consider its effect in a two-dimensional output space, for a single input-target

sample. The parameters F and T, for a given input, x, effectively determine the per-

pendicular distance of each boundary from the center of coordinates (Fig. 5.4B(i)).

When the solution (red star) sits at a corner of two boundaries, the corresponding

neurons spike and use their local information about the projected error to individ-

ually minimize it (Fig. 5.4B(ii)). This results in changes ∆Ti and ∆Fi (i ∈ Nact)

causing each active neuron to translate its boundary closer to the target (red dot).

5.4.3 Simple paraboloid example

To demonstrate the effect of the learning rule in a simple toy example, we trained

an SNN with N = 50 neurons to reproduce a paraboloid in 3D-space defined as

ỹ = 0.3(x21 + x22). We show its contour plot in Fig. 5.7C. During a learning epoch,

the inputs were randomly sampled from one hundred equally spaced points in the

range, [−4, 4], for each x-dimension. In each trial, a sampled input-target pair (x, ỹ)

was fed to the SNN for four seconds of simulation time (using the forward Euler

method). To reduce the effect of spikes due to transients as the input changed across

trials, we only started training one second after the onset of the trial. We ran the

algorithm for 100 epochs with each epoch covering the whole input space. Finally, we

turned off the teaching signal and ran the network with learnt parameters. Fig. 5.7B

shows the contours of the network readout (averaged over the last few time bins)

which is a piecewise linear fit to the paraboloid. By color coding the background of

the contour plot based on which neurons spike, we see a more distributed but still

distinct partitioning of the input space after learning (contrast Fig. 5.7A and B).
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Before learning
A B C

After learning Target

Figure 5.7: Learning a paraboloid for N=50 neurons. (A) The contour plot of
network output before learning with background color coded according to which
neurons are active. If no neuron participates, the partition is colored white. Each
neuron locally determines the slope of the output function (as shown by the con-
tours). (B) Contour plot after learning. It is a piecewise-linear approximation of
the target function shown in (C). The more diverse colored patches illustrates the
distribution of the code after learning. (C) Contour plot of the target function.

5.5 A larger spiking network

Finally, we demonstrate that the resulting networks exhibit many features of biolog-

ical systems when they are scaled up. Our examples so far have focused on simple

toy scenarios with only a one-dimensional output (M = 1), which leaves mostly

one neuron active at a time. As a result, the neurons fire regularly (see Fig. 5.2C

for an illustration) which is biologically unrealistic (Denève and Machens, 2016).

But, this is no longer true when the readout is higher-dimensional. For example, in

a two-dimensional output setting (M = 2), we can already find solutions that sit

at corner points where boundaries intersect, in which case two neurons are active

simultaneously (as in Fig. 5.2D). For higher dimensions, this quickly leads to more

realistic and complex spiking behavior.

We demonstrate this observation with a network trained to classify a vector of

three input pixels (K = 3). The inputs consist of three dimensional vectors with

each element being either a zero or one, i.e. x = [x1, x2, x3] with xi ∈ {0, 1}. This

creates a set of seven stimulus possibilities and the zero input (x = 0) (Fig. 5.8A(i)).

Then, for classification of these inputs, we create a 7-dimensional readout (M = 7).

Whenever one of the seven possible pixel combinations is detected, the corresponding

dimension of the readout should jump up from a baseline level. In the absence of

any inputs, all dimensions of the readout are equal and set at that baseline level (see

Fig. 5.8A(ii) as an example). Throughout all simulations, we added small amounts
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Figure 5.8: Spiking behavior in larger networks, illustrated with a simple classifi-
cation network. (A) (i) Set of 3D stimulus inputs to the network corresponding to
combinations of pixels of zeros and ones. (ii) Example classification by the network.
In a trained network, noise was further added on the stimulus inputs (hence, the
grey shade). The network classifies the input as a jump from the baseline in one
of its 7-dimensional readout. (B) Network activity after training as a function of
different input combinations. (i) Stimulus inputs presented to the network. (ii)
Corresponding network readouts, with colors corresponding to the possible input
combinations. The network correctly classifies the inputs despite the noise. (iii)
Asynchronous and irregular underlying spike patterns. Halfway through the simu-
lation, 40% of the population is knocked out, but the computations are preserved.
(iv) Voltages of three neurons highlighted in (iii). Spikes are illustrated by vertical
lines. Network parameters: N = 300, λ = 2, D = 0.1G>, µ = 0.1, σV = 0.1.
Learning parameters: α = 0.1, λT = 0.001, both decaying across epochs according
to exp(−0.001nepoch), for 750 epochs. Perturbation noise parameters: σstim = 0.1,
σOU = 0.1, λOU = 10.
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of Gaussian noise to the voltages. The network is then trained using the above rules

to solve this simple classification task.

After training, we test the robustness of the resulting network by adding several

perturbations not present during learning. First, each input pixel was corrupted

by a random offset drawn from a Gaussian distribution on each trial (leading to

different shades of grey in Fig. 5.8B(i)), as well as a drifting noise process over time

(simulated by an Ornstein-Uhlenbeck (OU) process). Second, we silenced 40% of

the neural population halfway through the simulation.

The resulting network after training, operates in a biologically realistic regime

with irregular spiking patterns, robustness to perturbations, and low firing rates

(see Fig. 5.8B). The irregularity of spiking stems largely from the complex spiking

dynamics around the idealized solution point, rather than the voltage noise alone.

Also, the network computation is robust to cell death; the network is still able to

classify the input patterns despite 40% of the neurons knocked-out. This robustness

emerges due to the redundancy in the neural representations since eliminating neu-

rons, and thereby their boundaries, does not substantially change the feasible set

(see Fig. 5.4B for an illustration and also (Barrett et al., 2016)). Finally, whereas

eliminating neurons increases firing rates in the remaining neurons to compensate,

adding neurons decreases population firing rates, and each neuron’s activity can

thereby be made arbitrarily sparse. In our published work (Mancoo et al., 2020),

we also show that the network operates in a regime of balanced excitation and inhi-

bition and is further robust to synaptic delays, a feature that has not been captured

in previous work on similar networks (Boerlin et al., 2013; Barrett et al., 2016).

5.6 Discussion

In this chapter, we used insights from convex optimization theory to develop a new

framework to understand SNNs. We showed how a broad class of SNNs fundamen-

tally solve QPs and LPs, expanding on what had previously been shown (Barrett

et al., 2013; Moreno-Bote and Drugowitsch, 2015; Chou et al., 2018), but with

the solution obtained as an instantaneous readout (i.e. not requiring temporal

integration). As a result, we gained key geometric insights on the dynamics as

well as computations performed by SNNs. We showed that when the network is

inhibition-dominated (or input-driven), it can generate convex input-output func-

tions, or convex sets defined by their epigraphs. Thus, we can now understand

SNNs as computing arbitrary, convex transformations of their inputs, according to
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the connectivity of the neurons.

It may also be possible to think of SNNs and the brain as fundamentally solv-

ing convex optimization problems. Since many optimization problems can in fact,

be relaxed to convex ones, this may not be such a crazy thought. In the frame-

work here, the epigraph of the input-output function was obtained through a linear

transformation of the neuronal activities (i.e. the output was obtained as a linear

readout). Consequently, the epigraph of the input to neuronal activities function

should also be convex since it is the ‘inverse image’ of the input-output epigraph

under a linear transformation (Boyd et al., 2004). It may then be the case that the

neural manifold would display some additional non-linearity to preserve the convex-

ity property underlying the network computations. It would be interesting to see in

future work if signatures of such computations can be found in neural data.

In this work, we primarily focused on input-output functions by restricting the

SNNs to the input-driven (inhibition-dominated) regime. This was achieved by con-

straining the connectivity to be all-inhibitory (i.e. −G>i Dj ≤ 0), which we believe

is realistic from a functional point of view, since inhibition is thought to dominate

during awake behaviour (Haider et al., 2013). However, we also showed that this

constraint can be relaxed and the geometric picture of our framework is still useful

to understand the resulting network dynamics. In particular, we showed that sus-

tained network activity can arise when each neuron violates in succession some other

neuron’s inequality constraint. Perhaps, this framework can be extended to under-

stand geometrically the role of recurrent excitation in self-driven network regimes.

Finally, we point out that we restricted our analysis here to the leaky-integrate-and-

fire neural network model as it is one of the most commonly used models. Yet, it

may be possible that the dynamics of other spiking neural network models can sim-

ilarly, be understood through an optimization lens, where their dynamics would be

minimizing some objective function. We leave this as an avenue for future research

work.
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Chapter 6

Conclusions and perspectives

With major ongoing advances in recording techniques, the neural data that we

are collecting are becoming increasingly high-dimensional and complex. If we aim

to elucidate the mechanisms of the brain through such data, the latter must first

be understood. A promising route to this end has been through dimensionality

reduction. This thesis was meant to contribute to the quest of understanding neural

data, via the dimensionality reduction pathway. We summarize our findings below.

6.1 Summary of the thesis

While dimensionality reduction has been very useful in understanding some aspects

of neural data (Cunningham and Yu, 2014), interpreting the results, thereof, may

not always be straightforward. In Chapter 2, we analysed some examples datasets

using some common linear dimensionality reduction methods. We showed that when

methods such as principal component analysis (PCA) were applied, they extracted

low-dimensional structures in the data that we could interpret with regards to the

stimulus or task of the experiment. At the same time, they also displayed many ad-

ditional components to capture the remaining variance in the data. Interestingly, we

observed that several of these extra components resembled higher-order functions,

e.g. polynomials of increasing order, of some other component, or ‘higher-order’

components (HOCs). While these HOCs persisted across datasets, there is still no

clear explanation of what they mean. This thesis aimed to shed some light on these

HOCs.

In Chapter 3, we argued that these HOCs were largely a reflection of the char-

acteristic non-linear shape that the neural manifold takes under a very simple non-

linearity: individual neuronal activity, as measured in its firing rate, is non-negative.
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Our argument rested on two key assumptions: first, we assumed that readouts of

population activity should be linear and low-dimensional and second, that popula-

tion activity should be limited for reasons of energy efficiency. We explained geo-

metrically how the neural manifold is then bound to be bent to preserve a suitable

dynamic range for coding. We explored, using numerical simulations, the implica-

tions of this non-linearity on the results of linear methods such as PCA. We showed

that while the correct latent variables could be extracted by means of a linear de-

coder, PCA had difficulty to do the same. PCA sometimes extracted the correct

latent variables, but often displayed a tail of HOCs to compensate for the curva-

ture in the manifold. Hence, these HOCs in the simulated data were functionally

irrelevant as they did not represent any of the inputs, nor any underlying computa-

tions. Had we not known the ground truth, then these HOCs could mislead us to

overestimate the dimensionality of the data and incorrectly assign some function to

them.

To address this issue, we proposed in Chapter 4, a set of dimensionality reduction

methods that incorporate the above coding constraints. These methods retain the

assumption that the latent variables should be estimated as a linear mapping of the

observed population activity, but enforce the coding constraints when predicting the

neural activity given the latent variables. We showed that when these methods were

applied to simulated data, they could find better estimates of the true (intrinsic)

dimensionality of the data, compared to PCA. We further validated our methods on

an example experimental dataset and showed that they could find a more succinct

description by explaining more variance in the data with fewer latent variables, than

PCA.

However, the neural manifold could exhibit additional non-linearities, besides the

non-negativity constraints. We hypothesized in this thesis that the neural manifold

can display some additional non-linearity that reflects the underlying computations

done by the network. But to be able to understand the implications of such com-

putations on the shape of the neural manifold and on data analysis, one must first

understand the nature of these computations. In Chapter 5, we complemented this

thesis by investigating the computations done by spiking neural networks (SNNs).

We developed a new framework inspired from convex optimisation theory to show

that a broad class of SNNs can fundamentally compute convex input-output func-

tions, where the outputs are obtained through a linear mapping of the neural ac-

tivities. We explained geometrically how such non-linear transformations occur

according to the connectivity structure of the network. We further, showed that the

112



resulting networks display many features observed in the cortex such as irregular

and asynchronous spike trains and robustness to perturbations.

6.2 Perspectives and future work

Finally, we conclude this thesis by putting in perspectives some of the keys findings of

this work. We highlight their implications to our future endeavours of understanding

high-dimensional neural data. We also add some criticisms to our approaches, and

discuss what is still missing and what should be done in future work.

Functionally irrelevant higher-order components

Even today, most experiments employ highly-simplified stimuli or task structures to

probe specific mechanisms of the brain. However, the brain arguably, has evolved to

solve more complex tasks and thus, we might expect in the future, that experimental

designs will become more sophisticated to explore in more depth the intricacies of

brain functions.

However, despite the simplicity of current experimental paradigms, interpreting

the neural data can still be fraught with difficulties. As we saw in Chapter 2,

although the stimuli and behavioural task (if any) were quite simple, analysing the

population data yielded patterns, in particular, higher-order components (HOCs),

that are not immediately interpretable. Thus, before moving to more sophisticated

experiments where the number of these HOCs may become more significant, it

would be critical that they are first elucidated so as to understand the resulting

neural data.

In this thesis, the key prediction of our theory (Chapter 3) is that these HOCs

are functionally irrelevant and thus, ignoring them when interpreting neural data

would not be harmful. For example, going back to the lateral intraparietal (LIP)

data (Kiani and Shadlen, 2009) that we analysed in Chapter 2, we found that the

activity of one of the HOCs was correlated with the difficulty associated with the

stimulus. Since this stimulus difficulty information could be read out linearly (i.e.

could be retrieved easily), one may have expected the neural circuit that computes

confidence associated with a choice to use that information. However, we found

surprisingly, that this HOC did not bear on the monkey’s confidence. One possibility

may then be that the correlation between stimulus difficulty and the HOC was, in

fact, coincidental: according to our theory, the HOC simply appeared to compensate
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for the curvature of the manifold and thus, does not reflect any underlying function

of the system.

Non-linear neural manifold despite linear readouts

One assumption we made throughout this thesis was that the important underlying

signals of neural activity should be obtained through a linear mapping — a transfor-

mation also present in all linear dimensionality reduction methods. We motivated

this assumption by the numerous successes of these methods in finding important

structures in neural population data that are experimentally relevant (e.g. as re-

viewed in (Cunningham and Yu, 2014; Keemink and Machens, 2019)), which suggest

that the brain might actually, be implementing such a mechanism to decode relevant

information.

An important finding we bring forth in this work is that, even if the true under-

lying low-dimensional variables, or latent variables, of the manifold can be obtained

through a linear mapping, the neural manifold can still be non-linear. We explained

that the non-linearity can emerge due to non-negativity constraints on individual

neuronal activities when the neural code faces energetic constraints. Importantly

though, a clear distinction should be made between describing the manifold using

its true (intrinsic) underlying variables and describing it using the axes that span

the space in which it is embedded. Linear methods such as PCA, even if they incor-

porate a linear decoder, can only describe the manifold in terms of its embedding

space. However, this description, as we highlighted in this thesis, may not corre-

spond to the underlying signals and thus, care should be taken when interpreting

the results.

Estimating latent variables with biology-inspired constraints

If the brain effectively operates and computes on some lower dimensional set of

latent variables, then extracting and interpreting them is crucial to enhance our

understanding of brain functions. However, since these variables are not directly

observed, estimating them ultimately relies on the assumptions or constraints in

our methods when analysing neural data. Thus, any interpretations of the results,

in particular when extrapolating to give functional meaning to the estimated latent

variables, should be done with care (e.g. we should distinguish components that

appear in neural data due to the curvature of the manifold from latent variables

that reflect input signals or underlying computations).
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In Chapter 4, we proposed dimensionality reduction methods that similar to

PCA, estimate the latent variables through a linear mapping of the observed neural

activity, but further incorporate some biology-inspired constraints when predicting

the data. One advantage of constructing analytical methods in this way is that

we can hypothesize on the mechanistic principles of the brain (e.g. linear readouts

and energy efficiency in coding, in our case) and then test these hypotheses when

applying the methods to neural data. Thus, not only will we find an estimate of

the latent variables, but also provide some understanding of how these internal

representations emerge.

However, a main criticism of our approach is that it remains unclear whether

the estimated latent variables correspond to the ‘true’ latent variables (even though

our methods did better than PCA, thus giving us some guarantee that we are on

the right track). Of course, we can never be sure of what the true latent variables

are, but we can still check how our methods fare against what may be possible.

To this end, modern machine-learning techniques, e.g. deep autoencoders (Hinton

and Salakhutdinov, 2006), or recurrent neural networks (Pandarinath et al., 2018),

could be useful. Even if, these methods only approximate the function that yields

the latent variables without necessarily shedding light on the biological or functional

purpose of this transformation, they can hopefully extract the smallest set of esti-

mated latent variables that would explain the data. By comparing these predictions

with the results of our methods, this will then inform us if our methods missed on

some keys aspects of the data. Thereupon, we can refine the assumptions or con-

straints in our methods if needed. We point out that such a comparison needs to be

done in future work in order to put into perspective the importance of incorporating

coding constraints in our dimensionality reduction methods.

Additional intrinsic non-linearities that shape the neural

manifold

Since the HOCs were observed across several datasets, they likely emerged according

to some inherent non-linearity in the system. This may arise, e.g. from the biophysi-

cal properties of individual neurons. In this thesis, we posited that a likely candidate

leading to the characteristic shape of the neural manifold is the non-negativity con-

straint on individual neuronal activity. We showed that indeed, this constraint can

produce a curved neural manifold, that would yield principal components resembling

HOCs (Chapter 3).

However, there may be other intrinsic non-linearities in the system. For example,
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synaptic connections between individual neurons or the integration of synaptic in-

puts in the dendritic tree of a neuron can be characterised by diverse non-linearities

(Markram, 2003; Poirazi et al., 2003). These non-linearities could also have a func-

tional purpose (e.g. for computations). But overall, they can contribute to an over-

all non-linear neural manifold, and consequently would affect of results of analytical

methods, especially linear dimensionality reduction methods. It would be interesting

in future work to investigate if, similarly to the non-negativity constraints, whether

such intrinsic non-linearities in the system contribute to a shape of the manifold

that can be characterised geometrically and see if they can also be incorporated in

a meaningful way in our dimensionality reduction methods.
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Appendix A

Gradient derivations for QP

autoencoder

To fit the parameters of the autoencoder, we first phrased it as a bi-level optimisation

problem (equation 4.17) and minimize the reconstruction error of the model using

gradient descent. We now show how the gradient with respect to (w.r.t.) parameters,

D ∈ RM×N can be computed where N is the number of neurons and M is the

number of latent variables. Note that these parameters are implicit in the lower

level problem (QP) and thus, to compute the gradient we will need to differentiate

through the lower-level problem. We will use an implicit differentiation method at

the fixed points of the QP which we approximated using a log-barrier function. For

a data point, recall that the following equation is satisfied:

t
(

[D>D + µI]r̂ −D>z
)
− r̂−1 = 0 (A.1)

where z = Dr are the estimated latent variables obtained through a linear mapping

of the observed population activity, r. r̂ is the model prediction (QP solution),

parameter t controls the log-barrier penalty and r̂−1 denotes an N-dimensional vector

with element 1
r̂i

at the ith entry. To compute the gradient, we need to reach an

expression for the 3D tensor ∂r̂
∂D

(see equation 4.18) and we do so by taking the

implicit derivative w.r.t. D on both sides of the above equation A.1. We first

consider part
(
D>D+ λI

)
r̂−D>z of equation 4.18, and we would like to find an

expression of its derivative w.r.t. D. In sum notations, this is:

∂

∂Dmn


N∑
j

M∑
l

D>ilDlj r̂j︸ ︷︷ ︸
1

+λr̂i −
M∑
l

D>il zl︸ ︷︷ ︸
2

 (A.2)
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Computing the derivatives w.r.t. terms 1 and 2:

Term 1 (using product rule):

∂

∂Dmn

(
N∑
j

M∑
l

D>ilDlj r̂j

)
=

N∑
j

Dmj r̂jδi,n +
N∑
j

M∑
l

D>ilDlj
∂r̂j
∂Dmn

+D>imr̂n

Term 2 (using product rule):

∂

∂Dmn

M∑
l

D>il zl = zmδi,n +D>imrn

Joining these together, expression (A.2) is equivalent to:

N∑
j

Dmj r̂jδi,n+
N∑
j

M∑
l

D>ilDlj
∂r̂j
∂Dmn

+D>imr̂n+λ
∂r̂i
∂Dmn

+
N∑
j

βuiuj
∂r̂j
∂Dmn

−zmδi,n−D>imrn

(A.3)

Then, taking the derivatives of the remaining terms in equation A.1 and plugging

in the above expression, we can show that, after moving terms around, we get:

N∑
j

(
M∑
l

tD>ilDlj + tλδi,j +
1

r̂2j
δi,j

)
∂r̂j
∂Dmn

= t

(
zmδi,n +D>imrn −

N∑
j

Dmj r̂jδi,n −D>imr̂n

)

Using the following shorthand notations z −Dr̂ = b, H = D>D + λI and recon-

struction error, e = r− r̂, the above equation simplifies to:

N∑
j

(
tHij +

1

r2j
δi,j

)
∂r̂j
∂Dmn

= t
(
bmδi,n +D>imen

)
(A.4)

Note that ∂r̂
∂D

is a stack of matrices and we can rearrange it such that a matrix

in this stack, denoted as Jm, is the Jacobian matrix ∂r̂
∂Dm

where Dm is the mth

row of D. Jm will be an N × N matrix, with its (j, n)-entry being the derivative

of neuron j w.r.t. the weight of neuron n for given latent variable indexed, m.

Using the additional shorthand notation of A being an N×N diagonal matrix with

jth diagonal element to be 1
r̂2j

, we can write the derivative with respect to Dm in

matrix-vector format as:

(tH +A)Jm = t
(
bmI + (Dm)>(e)>

)
(A.5)

Note that only the right hand side (RHS) of this equation changes for different data

points since only the reconstruction error e would change. We introduce the sample

index, k, to emphasize this dependency and rewrite the RHS in shorthand format,
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Cm
k = t

(
bmI + (Dm)>(ek)

>). Thus, our Jacobian matrix could be evaluated as

follows for a data point:

Jm = (tH +A)−1Cm
k (A.6)

However, we note that we do not need an explicit form for the Jacobian matrix, but

rather want to compute its matrix-vector product with the error, i.e., e>k J
m, as in

equation 4.18. This means that for every latent variable indexed m ∈ {1, . . . ,M},
we need to compute the following dot product:

e>k J
m = e>k (tH +A)−1Cm

k = κ>Cm
k (A.7)

Thus, we do not need to invert the matrix (tH +A), but rather solve the following

system of linear equations for κ:

(tH +A)κ = ek (A.8)

Hence, to compute a row in the matrix of derivatives, ∂L
∂D
∈ RM×N (equation 4.18),

we need to solve for κ in equation A.8 and compute Cm
k for a data point, indexed

k.
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MOTS CLÉS

Réduction de la dimensionnalité, contraintes de non-négativité, réseaux de neurones à impulsions

RÉSUMÉ

Les enregistrements à grande échelle de l’activité neuronale sont maintenant largement réalisés dans de nombreux
laboratoires, ce qui soulève l’importante question de comment extraire les structures essentielles des données. Une
approche courante consiste à réduire leur dimensionnalité. Cependant, l’interprétation des résultats peut être parsemée
de difficultés. Le plus souvent, les méthodes linéaires telles que l’analyse en composantes principales (ACP) fonctionnent
bien pour trouver des projections linéaires des données qui expliquent la majorité de la variance, mais généralement,
elles présentent également une suite de composantes, dont plusieurs ressemblent à des fonctions d’ordre supérieur de
certaines autres composantes. On les appellera “composantes d’ordre supérieur” (COS). Bien que ces COS suggèrent
que la variété neurale est non linéaire, il n’est pas encore clair comment elles apparaissent et ce qu’elles signifient.
Nous soutenons ici que ces COS apparaissent en grande partie à cause d’une non-linéarité bien connue — l’activité
neuronale est non-négative, ce qui fait plier la variété neurale, mais les COS résultants ne sont pas pertinents d’un point
de vue fonctionnel. Nous menons notre analyse en partant de deux hypothèses essentielles: la lecture de l’activité de la
population doit être linéaire et à faible dimension, et le taux d’activité global doit être limité pour des raisons énergétiques.
Nous montrons, dans des simulations, que lorsque des activités neurales sont générées sous ces hypothèses, alors l’ACP
extrait parfois les vrais signaux sous-jacents, mais affiche souvent une suite de COS pour compenser la courbure de la
variété. Nous expliquons ces résultats de manière géométrique et proposons des méthodes de type ACP qui incorporent
les contraintes de non-négativité de manière constructive. Nous validons nos méthodes avec des données de simulation,
mais nous montrons aussi, sur un exemple de données expérimentales, que l’incorporation de cette simple non-linéarité
permet une description plus concise que l’ACP.
Cependant, il est possible qu’en plus des contraintes de non-négativité, la variété neurale présente une certaine non-
linéarité supplémentaire. Nous supposons, en dernier lieu, que cette non-linéarité peut apparaı̂tre en fonction des compu-
tations effectuées par le réseau. Cependant, une compréhension claire de ces computations par des réseaux neuronaux
proches de la biologie est toujours manquante. Nous complétons cette thèse en examinant les computations accomplies
par les réseaux de neurones à impulsions (SNNs), dans un nouveau cadre inspiré de la théorie de l’optimisation con-
vexe. Nous montrons qu’une large gamme de réseaux neuronaux calculent essentiellement des fonctions d’entrée-sortie
convexes. De plus, ces réseaux peuvent également afficher plusieurs caractéristiques biologiques telles que des suites
de potentiels d’action asynchrones et irréguliers, la robustesse aux perturbations, entre autres.

ABSTRACT

Large-scale recordings of neural activity are now widely carried out in many experimental labs, leading to the question
of how to extract the essential structures in population data. One common approach is to use dimensionality reduction
methods. However, interpretation of the results of these tools can be fraught with difficulties. Most commonly, linear
methods such as principal component analysis (PCA) work well in finding linear projections of the data that explain most
variance, but usually, also display a tail of components, among which several resemble higher-order functions of some
other components, or ‘higher-order’ components (HOCs). While these HOCs suggest that the true neural manifold is
non-linear, it is still unclear how they emerge and what they mean.
In this thesis, we argue that these HOCs largely arise due to a well-known non-linearity — individual neuronal activity is
non-negative, which bends the neural manifold, but the resulting HOCs are otherwise functionally irrelevant. We lead our
investigation with the crucial assumptions that readouts of population activity should be linear and lower-dimensional, and
that overall firing rates should be limited for energetics reasons. We show, in simulations, that when neural activities are
generated under these assumptions, then PCA sometimes extracts the true underlying signals, but often displays a tail
of HOCs to compensate for the curvature of the manifold. We explain these findings geometrically and propose a set of
PCA-like methods that incorporate the non-negativity constraints in a meaningful way. We validate our methods against
ground truth data, but also show, in an example experimental dataset, that incorporating this simple non-linearity affords
more succinct representations of the data than PCA.
However, it is possible that the neural manifold exhibits some additional non-linearity besides the non-negativity con-
straints. We hypothesize lastly, that this non-linearity may emerge according to the computations done by the network.
Yet, a clear understanding of such computations by biologically realistic neural networks is still missing. We complement
this thesis by investigating the computations done by spiking neural networks (SNNs), within a new framework inspired
from convex optimisation theory. We show that a broad class of SNNs fundamentally compute convex input-output func-
tions. Interestingly, these networks can also display several biological features such as asynchronous and irregular spike
trains, robustness to perturbations, among others.

KEYWORDS

Dimensionality reduction, non-negativity constraints, spiking neural networks
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