
HAL Id: tel-03765873
https://theses.hal.science/tel-03765873

Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-Quality-Time Fault Tolerant Task Mapping on
Multicore Architectures

Minyu Cui

To cite this version:
Minyu Cui. Energy-Quality-Time Fault Tolerant Task Mapping on Multicore Architectures. Hardware
Architecture [cs.AR]. École normale supérieure de Rennes, 2022. English. �NNT : 2022ENSR0031�.
�tel-03765873�

https://theses.hal.science/tel-03765873
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE NORMALE
SUPERIEURE RENNES
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Minyu CUI

Energy Quality Time Fault Tolerant Task Mapping on Multicore Ar-
chitectures

Thèse présentée et soutenue à Rennes , le 24/06/2022
Unité de recherche : IRISA (UMR 6074), Institut de Recherche en Informatique et Systèmes Aléatoires

Rapporteurs avant soutenance :

Christophe JEGO Professeur des Universités, Bordeaux INP
Smail NIAR Professeur des Universités, Université Polytechnique Hauts-de-France
Composition du Jury :
Examinateurs : Daniel CHILLET Professeur des Universités, Université Rennes1

Christophe JEGO Professeur des Universités, Bordeaux INP
Smail NIAR Professeur des Universités, Université Polytechnique Hauts-de-France
Claire PAGETTI Ingénieur de recherche HDR, ONERA

Dir. de thèse : Emmanuel CASSEAU Professeur des Universités, Université de Rennes 1
Co-enc. de thèse : Angeliki KRITIKAKOU Maître de Conférences, Université de Rennes 1

ACKNOWLEDGEMENT

During my PhD studies, I have met many people who affected me personally and scientifically.
Their presence was essential and meaningful to support me to come here, I dedicate all my thanks
to them.

I would firstly like to thank my supervisors Prof. Emmanuel Casseau and Prof. Angeliki
Kritikakou, for the guidance, encouragement and advice during the past few years. This disser-
tation could not have been completed without their consistent help. I would also like to mention
a special thank to Prof. Lei Mo for his guidance and advice in the discussion of research works.

Secondly, I would like to thank the members of the TARAN team in Inria Rennes for the
interesting scientific discussions in reading group and relaxing coffee breaks.

Finally, I would like to thank all the people who love me and whom I love, those who
accompany me on my life journey and give me their love, support and kindness.

3

TABLE OF CONTENTS

List of acronyms 7

List of figures 11

List of tables 13

Introduction 27

1 Background 31
1.1 Multicore Architecture . 31
1.2 Task Model . 32
1.3 DVFS Schemes . 34
1.4 Power and Energy Consumption Model . 35
1.5 Fault Tolerance and Reliability Model . 36

1.5.1 Fault Origin . 36
1.5.2 Reliability Model . 37
1.5.3 Main Fault Tolerance Techniques . 38

1.6 Real-Time Task mapping in Multicore Systems 39

2 Energy-Reliability-Time Multi-criteria Task Mapping Mechanisms in SoA 41
2.1 Task Mapping Targeting Energy Minimization 41

2.1.1 Task Mapping Without Reliability Guarantee 42
2.1.2 Task Mapping With Reliability Guarantee 44

2.2 Task Mapping Targeting Reliability Maximization 48
2.2.1 Task Mapping Without Fault Tolerance 49
2.2.2 Task Mapping With Fault Tolerance . 49

2.3 Task Mapping Targeting Schedule-Length Minimization 50
2.3.1 Task Mapping Without Fault Tolerance 50
2.3.2 Task Mapping With Fault Tolerance . 51

2.4 Limitations of SoA Task Mapping Approaches . 52

3 Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions 55
3.1 Motivation Example . 55

5

TABLE OF CONTENTS

3.2 Task Mapping Problem for Independent Tasks 57
3.2.1 System Model . 57
3.2.2 Problem Constraints . 58
3.2.3 Objective Function and Problem Formulation 60
3.2.4 Evaluation . 63

3.3 Task Mapping Problem for dependent tasks . 78
3.3.1 System Model . 78
3.3.2 Problem Constraints . 79
3.3.3 Objective Function and Problem Formulation 80
3.3.4 Evaluation . 82

3.4 Conclusion . 98

4 Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions 99
4.1 Independent Tasks under Task Level DVFS . 99

4.1.1 Reliability-aware Fault-tolerant Task Mapping heuristic 99
4.1.2 Evaluation results . 103

4.2 Independent Tasks under Processor Level DVFS 111
4.2.1 Reliability-aware Fault-tolerant Task Mapping heuristic 111
4.2.2 Evaluation results . 115

4.3 Independent Tasks under System Level DVFS . 121
4.3.1 Reliability-aware Fault-tolerant Task Mapping heuristic 121
4.3.2 Evaluation results . 124

4.4 Dependent Tasks under Task Level DVFS . 130
4.4.1 Reliability-aware Fault-tolerant Task Mapping heuristic 130
4.4.2 Evaluation results . 134

4.5 Dependent Tasks under Processor Level DVFS 143
4.5.1 Reliability-aware Fault-tolerant Task Mapping heuristic 143
4.5.2 Evaluation Results . 144

4.6 Dependent Tasks under System Level DVFS . 151
4.6.1 Reliability-aware Fault-tolerant Task Mapping heuristic 151
4.6.2 Evaluation results . 152

4.7 Conclusion . 158

5 Conclusions and Perspectives 159
5.1 Summary . 159
5.2 Future work and perspectives . 160

Bibliography 161

6

LIST OF ACRONYMS

SoA State of Art
DVFS Dynamic Voltage and Frequency Scaling
WCET Worst Case Execution Time
WCEC Worst Case Execution Cycle
SL Schedule Length of DAG
EST Earliest Start Time
LFT Latest Finish Time
st Actual start time
ft Actual finish time of task
et Execution time
pred All immediate predecessors
succ All immediate successors
SC Selected Configuration
NC New checked Configuration
proc Task set that are allocated on processor
RAFTM Proposed Reliability-aware Fault-tolerant Task Mapping approach
RAM Reliability-Aware Mapping approach in SoA
TDM Duplication Mapping approach in SoA
O_RAFTM Proposed RAFTM approach with optimal solutions
H_RAFTM Proposed RAFTM approach with heuristic solutions
O_RAM RAM approach with optimal solutions
H_RAM RAM approach with heuristic solutions
O_TDM TDM approach with optimal solutions
H_TDM TDM approach with heuristic solutions
EC Energy consumption
RI Reliability improvement
CT Computation time

7

LIST OF FIGURES

1 Ordonnancement de tâches sur système multicœur. 22
2 Proposed task mapping approaches and related DVFS levels 25
3 General overview of the proposed reliability-aware fault-tolerant task mapping

approach . 25

1.1 A DAG task graph with a global deadline D. 32
1.2 Time parameters for a periodic task. 33
1.3 Cause to transient faults. 37
1.4 Reliability as a function of frequency. 38
1.5 Task mapping on multicore architecture. 40

3.1 Feasibility for independent tasks under all DVFS schemes. 66
3.2 Energy consumption (mJ) for independent tasks (N = 10) under all DVFS schemes. 67
3.3 Energy consumption (mJ) for independent tasks (N = 20) under all DVFS schemes. 68
3.4 Reliability improvement for independent tasks (N = 10) under all DVFS schemes. 72
3.5 Reliability improvement for independent tasks (N = 20) under all DVFS schemes. 73
3.6 O_RAFTM task duplication under all DVFS schemes. 74
3.7 Computation time on a logarithmic scale (N = 10, M = 4) under all DVFS

schemes. 77
3.8 Feasibility for dependent tasks under all DVFS schemes. 83
3.9 Energy consumption (mJ) for dependent tasks (N = 10) under all DVFS schemes. 86
3.10 Energy consumption (mJ) for dependent tasks (N = 20) under all DVFS schemes. 87
3.11 Reliability improvement for dependent tasks (N = 10) under all DVFS schemes. 89
3.12 Reliability improvement for dependent tasks (N = 20) under all DVFS schemes. 90
3.13 O_RAFTM duplication percentage (N = 10, M = 2 and M = 4, and N = 20,

M = 4 and M = 6) for dependent tasks under all DVFS schemes. 91
3.14 Feasibility for dependent tasks (M = 4) with λl0 = 4 × 10−4 and λh0 = 5 × 10−4

for TL-DVFS scheme. 94
3.15 Energy consumtpion for dependent tasks (M = 4) with λl0 = 4 × 10−4 and

λh0 = 5× 10−4 for TL-DVFS scheme. 95
3.16 Reliability improvement for dependent tasks (M = 4) with λl0 = 4 × 10−4 and

λh0 = 5× 10−4 for TL-DVFS scheme. 96

8

LIST OF FIGURES

3.17 O_RAFTM task duplication percentage for dependent tasks (a) N = 10, and b)
N = 20, M = 4) with λl0 = 4× 10−4 and λh0 = 5× 10−4 for TL-DVFS scheme. . 97

4.1 Feasibility of optimal and heuristic approaches for independent tasks under TL-
DVFS scheme. 104

4.2 Energy consumption (mJ) of optimal and heuristic approaches for independent
tasks under TL-DVFS scheme. 105

4.3 Reliability improvement of optimal and heuristic approaches for independent tasks
under TL-DVFS scheme. 106

4.4 Feasibility of heuristics for independent tasks under TL-DVFS scheme. 108
4.5 Energy consumption (mJ) of heuristics for independent tasks under TL-DVFS

scheme. 109
4.6 Reliability improvement of heuristics for independent tasks under TL-DVFS scheme.110
4.7 Computation time (sec) of heuristics for independent tasks under TL-DVFS scheme.111
4.8 Feasibility of optimal and heuristic approaches for independent tasks under PL-

DVFS scheme. 114
4.9 Energy consumption (mJ) of optimal and heuristic approaches for independent

tasks under PL-DVFS scheme. 115
4.10 Reliability improvement of optimal and heuristic approaches for independent tasks

under PL-DVFS scheme. 116
4.11 Feasibility of heuristics for independent tasks under PL-DVFS 118
4.12 Energy consumption (mJ) of heuristics for independent tasks under PL-DVFS

scheme. 119
4.13 Reliability improvement of heuristics for independent tasks under PL-DVFS scheme.120
4.14 Computation time (sec) of heuristics for independent tasks under PL-DVFS scheme.121
4.15 Feasibility of optimal and heuristic approaches for independent tasks under SL-

DVFS scheme. 123
4.16 Energy consumption (mJ) of optimal and heuristic approaches for independent

tasks under SL-DVFS scheme. 124
4.17 Reliability improvement of optimal and heuristic approaches for independent tasks

under SL-DVFS scheme. 125
4.18 Computation time (sec) of optimal and heuristic approaches for independent tasks

under SL-DVFS scheme. 126
4.19 Feasibility of heuristics for independent tasks under SL-DVFS scheme. 127
4.20 Energy consumption (mJ) of heuristics for independent tasks under SL-DVFS

scheme. 128
4.21 Reliability improvement of heuristics for independent tasks under SL-DVFS scheme.129
4.22 DAG obtained from real code kernels. 135

9

LIST OF FIGURES

4.23 Feasibility of optimal and heuristic approaches for dependent tasks under TL-
DVFS scheme. 135

4.24 Energy consumption (mJ) of optimal and heuristic approaches for dependent
tasks under TL-DVFS scheme. 136

4.25 Reliability improvement of optimal and heuristic approaches for dependent tasks
under TL-DVFS scheme. 136

4.26 Feasibility of heuristics (real-world DAGs) for dependent tasks under TL-DVFS
scheme. 138

4.27 Energy consumption (mJ) of heuristics (real-world DAGs) for dependent tasks
under TL-DVFS scheme. 139

4.28 Reliability improvement of heuristics (real-world DAGs) for dependent tasks un-
der TL-DVFS scheme. 140

4.29 Computation time (sec) of heuristics (real-world DAGs) for dependent tasks under
TL-DVFS scheme. 140

4.30 Feasibility of heuristics (large randomly generated DAG, N = 100) for dependent
tasks under TL-DVFS scheme. 141

4.31 Energy consumption (mJ) of heuristics (large randomly generated DAG, N =
100) for dependent tasks under TL-DVFS scheme. 141

4.32 Reliability improvement of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under TL-DVFS scheme. 142

4.33 Computation time (sec) of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under TL-DVFS scheme. 142

4.34 Feasibility of optimal and heuristic approaches for dependent tasks under PL-
DVFS scheme. 145

4.35 Energy consumption (mJ) of optimal and heuristic approaches for dependent
tasks under PL-DVFS scheme. 145

4.36 Reliability improvement of optimal and heuristic approaches for dependent tasks
under PL-DVFS scheme. 145

4.37 Feasibility of heuristics (real-code DAGs) for dependent tasks under PL-DVFS
scheme. 147

4.38 Energy consumption (mJ) of heuristics (real-code DAGs) for dependent tasks
under PL-DVFS scheme. 148

4.39 Reliability improvement of heuristics (real-code DAGs) for dependent tasks under
PL-DVFS scheme. 148

4.40 Computation time (sec)of heuristics (real-code DAGs) for dependent tasks under
PL-DVFS scheme. 149

10

LIST OF FIGURES

4.41 Feasibility of heuristics (large randomly generated DAG, N = 100) for dependent
tasks under PL-DVFS scheme. 149

4.42 Energy consumption (mJ) of heuristics (large randomly generated DAG, N =
100) for dependent tasks under PL-DVFS scheme. 150

4.43 Reliability improvement of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under PL-DVFS scheme. 150

4.44 Computation time (sec) of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under PL-DVFS scheme. 150

4.45 Feasibility of optimal and heuristic approaches for dependent tasks under SL-
DVFS scheme. 153

4.46 Energy consumption (mJ) of optimal and heuristic approaches for dependent
tasks under SL-DVFS scheme. 154

4.47 Reliability improvement of optimal and heuristic approaches for dependent tasks
under SL-DVFS scheme. 154

4.48 Feasibility of heuristics (real-code DAGs) for dependent tasks under SL-DVFS
scheme. 155

4.49 Energy consumption (mJ) of heuristics (real-code DAGs) for dependent tasks
under SL-DVFS scheme. 156

4.50 Reliability improvement of heuristics (real-code DAGs) for dependent tasks under
SL-DVFS scheme. 156

4.51 Feasibility of heuristics (large randomly generated DAG, N = 100) for dependent
tasks under SL-DVFS scheme. 157

4.52 Energy consumption (mJ) of heuristics (large randomly generated DAG, N =
100) for dependent tasks under SL-DVFS scheme. 157

4.53 Reliability improvement of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under SL-DVFS scheme. 158

5.1 Proposed task mapping approaches and related DVFS levels 159
5.2 General overview of the proposed reliability-aware fault-tolerant task mapping

approach . 161

11

LIST OF TABLES

2.1 Representative State-of-the-Art targeting energy minimization. 42
2.2 Representative State-of-the-Art approaches targeting reliability maximization. . . 49
2.3 Representative State-of-the-Art approaches targeting schedule-length minimization. 50

3.1 Motivational Example. (*Optimal solutions are highlighted in bold). 56
3.2 Main Notations . 58
3.3 Platform and benchmark characteristics . 64
3.4 Min., avg. and max. energy consumption (mJ) of O_RAFTM under all DVFS

schemes. 70
3.5 Min., avg. and max. energy saving gains (%) under all DVFS schemes. 71
3.6 Computation time (sec) for independent tasks (N = 10, M = 2) under all DVFS

schemes. 75
3.7 Computation time (sec) for independent tasks (N = 10, M = 4) under all DVFS

schemes. 75
3.8 Computation time (sec) for independent tasks (N = 20, M = 2) under all DVFS

schemes. 76
3.9 Computation time (sec) for independent tasks (N = 20, M = 4) under all DVFS

schemes. 76
3.10 Main notations for dependent tasks . 78
3.11 Min, avg. and max energy gains (%) for dependent tasks under all DVFS schemes. 85
3.12 Computation time (sec) for dependent tasks (N = 10, M = 4) under all DVFS

schemes. 92
3.13 Computation time (sec) for dependent tasks (N = 20, M = 4) under all DVFS

schemes. 92
3.14 Computation time (sec) for dependent tasks (N = 20, M = 6) under all DVFS

schemes. 93
3.15 Computation time (sec) (N = 10, M = 4) with λl0 = 4× 10−4 and λh0 = 5× 10−4

for TL-DVFS scheme. 97
3.16 Computation time (sec) (N = 20, M = 4) with λl0 = 4× 10−4 and λh0 = 5× 10−4

for TL-DVFS scheme. 97

4.1 Main notations for independent tasks under TL-DVFS scheme. 100

12

LIST OF TABLES

4.2 Computation time (sec) of optimal and heuristic approaches for independent tasks
under TL-DVFS scheme. 107

4.3 Computation time (seconds) of optimal and heuristic approaches for independent
tasks under PL-DVFS scheme. 117

4.4 Main notations for dependent tasks under TL-DVFS scheme. 130
4.5 Computation time (sec) of optimal and heuristic approaches for dependent tasks

under TL-DVFS scheme. 137
4.6 Computation time (sec) of optimal and heuristic approaches for dependent tasks

under PL-DVFS scheme. 146
4.7 Computation time (sec) of optimal and heuristic approaches for dependent tasks

(N = 10) under SL-DVFS scheme. 154

13

RÉSUMÉ EN FRANÇAIS

Contexte

Les systèmes critiques pour la sécurité consistent généralement en des systèmes où des
garanties doivent être fournies sur la sécurité et la fiabilité des applications critiques, ce qui
implique à la fois une tolérance élevée aux pannes et des contraintes temporelles strictes (temps
réel) [1]. Par exemple, les systèmes avioniques sont constitués d’applications avec des niveaux
élevés d’assurance de conception [2] et fonctionnant à des altitudes élevées exposées aux ray-
onnements. Les systèmes spatiaux consistent en des applications de contrôle de la navigation
fonctionnant dans l’espace extra-atmosphérique avec des particules et un rayonnement électro-
magnétique à haute énergie. Les systèmes automobiles ont des applications comme par exemple
un capteur dans une roue pour à la fois le contrôle de la stabilité et la régulation de l’accélération
et sont soumis à des particules alpha, des pics de température élevés et de l’interférences électro-
magnétiques [3]. Ces stimuli naturels sont à l’origine de défauts qui impactent le fonctionnement
du système [4]. De plus, au cours des trente dernières années, la taille du code des applica-
tions avioniques, spatiales et automobiles a considérablement augmenté [5]. Ces systèmes font
face à une croissance exponentielle des exigences de performances, et les futures applications
automobiles et aérospatiales nécessiteront des ressources de calcul encore plus performantes [1].

Pour faire face aux demandes croissantes de performances, le marché grand public s’est
tourné vers les architectures multicœurs, en raison de la consommation d’énergie et des limites
de dissipation thermique des processeurs monocœurs [1]. D’une manière générale, les multicœurs
offrent des réductions de taille, de poids, de puissance consommée et ont des capacités de calcul
élevées par rapport aux processeurs monocœur, et peuvent donc intégrer plusieurs applications
sur la même plate-forme [6]. Cependant,deux principaux défis scientifiques sont soulevés par
l’utilisation des multicœurs.

Le premier défi est la consommation d’énergie élevée qui est devenue l’un des plus grands
obstacles au développement des systèmes informatiques hautes performances, en particulier pour
les systèmes à budget énergétique limité, tels que les objets connectés alimentés par batterie ou
à récupération d’énergie. Les smartphones utilisent des architectures multicœurs hétérogènes,
telles que big.LITTLE [7], qui se compose de gros cœurs optimisés en termes de performances et
de petits cœurs optimisés en énergie avec une seule architecture de jeu d’instructions (ISA) [8].
Les cartes embarquées pour les objets connectés, telles Raspberry Pi, Odroid, Edison, Jetson
et Artik, disposent également de plusieurs cœurs [9, 10, 11]. Par conséquent, les plates-formes

15

LIST OF TABLES

multicœurs ont été améliorées avec la possibilité de régler leur tension et leur fréquence (gestion
dynamique de la tension et de la fréquence (DVFS) pendant l’exécution pour équilibrer les
performances du système et les économies d’énergie.

Le deuxième défi est que le système multicœur lui-même est susceptible de subir des dé-
fauts en raison de la nature des systèmes électroniques. Conjugués à la réduction de la taille
des transistors, les systèmes multicœurs deviennent de plus en plus sensibles aux conditions de
fonctionnement et à l’impact environnemental [12]. Dans les systèmes électroniques, la variation
de la tension de seuil dépend de la largeur du transistor, tandis que des trous ou de petites fis-
sures dans les interconnexions entraînent des problèmes de source fermée ou ouverte. L’activité
électrique et les points chauds sont inévitables et ils provoquent une électromigration, une in-
stabilité de température de polarisation et une diaphonie, qui sont des sources de défauts. Pour
améliorer la fiabilité du multicœur, soit des processeurs durcis aux radiations sont utilisés, soit
le système est répliqué [13]. La première solution conduit à des systèmes avec des capacités de
calcul limitées et nécessite une expertise de conception difficile à trouver. La seconde solution a
un coût et une consommation d’énergie élevés. Pour réduire les coûts tout en assurant la fiabilité,
la réplication des ressources et le surdimensionnement du système doivent être évités, dans la
mesure du possible.

En tenant compte des deux défis présentés ci-dessus, afin d’exploiter pleinement les fonction-
nalités des systèmes multicœurs tout en visant une exécution de l’application à la fois fiable,
économe en énergie et satisfaisant la contrainte temps-réel, des méthodes sont nécessaires pour
décider de l’exécution efficace des tâches. La manière dont les tâches sont exécutées sur une
plateforme est déterminée par plusieurs facteurs. Le premier facteur est l’ordonnancement (à
quel moment chaque tâche commence son exécution) et l’allocation (sur quel processeur chaque
tâche est exécutée) des tâches. Le deuxième facteur est la décision de l’assignation de la tension
et la fréquence du processeur lorsqu’il exécute une tâche spécifique, ce qui détermine le temps
d’exécution de la tâche. Pour les applications critiques, les limites de pire temps d’exécution
(Worst Case Execution Time (WCET)) sont utilisées car elles sont nécessaires pour garantir la
fiabilité et le bon comportement fonctionnel.

Modèles systèmes et ordonnancement temps-réel de tâches

L’objectif de cette thèse est de trouver un compromis multicritères d’un ordonnancement de
tâches sur des architectures multicœurs, tolérant aux fautes, efficace en énergie et temps-réel.
Dans un premier temps, nous définissons l’architecture et les modèles systèmes utilisés dans
cette thèse :

Les architectures multicœurs

Pour répondre à l’augmentation rapide des besoins de calcul, à une faible consommation du

16

LIST OF TABLES

système, ainsi qu’assurer un parallélisme élevé dans l’exécutions des applications, les systèmes
multicœurs sont des plates-formes prometteuses pour les systèmes embarqués temps réel. Sur le
marché des circuits, de nombreux fabricants de puces, par exemple AMD et Intel, ont lancé des
puces multicœurs avec un nombre croissant de cœurs, comme par exemple la série Intel Xeon. Une
architecture multicœur se compose de deux ou plusieurs unités de traitement séparées (cœurs)
sur un seul circuit intégré. Chaque cœur exécute les instructions du processeur en même temps,
ce qui augmente la vitesse globale du calcul parallèle. Les architectures multicœurs peuvent
être caractérisées comme des systèmes homogènes ou hétérogènes. Les systèmes multicœurs ho-
mogènes incluent des cœurs identiques comme certains systèmes sur puce multiprocesseurs (MP-
SoC) couramment utilisés construits avec des cœurs ARM Cortex [14]. Les systèmes multicœurs
hétérogènes combinent différents cœurs, comme par exemple l’architecture ARM big.LITTLE
avec de « gros » processeurs avec des performances plus élevées mais gourmandes en énergie,
comme l’A-15, et des « petits » processeurs avec des performances inférieures mais une meilleure
efficacité énergétique, comme l’A-7 [15]. Dans cette thèse, pour faciliter l’approche (mais sans
perte de généralité), nous nous concentrons sur des plateformes homogènes [16] comme par
exemple le système Cortex-A53 quadricœur Arm.

Le modèle de tâches

Comme introduit dans [17], une tâche fait référence à un ensemble d’activités cohérentes qui
sont exécutées afin d’atteindre un but dans un domaine donné. Une application est généralement
représentée par un ensemble de tâches. Selon les relations entre les tâches, deux catégories de
modèles de tâches sont considérées dans cette thèse, à savoir les tâches indépendantes et les tâches
dépendantes. Lorsque, dans certaines applications, des activités de calcul peuvent être exécutées
dans un ordre arbitraire, celles-ci peuvent être considérées comme des tâches indépendantes.
Sinon, les tâches sont dépendantes : elles doivent respecter les relations de précédence (ou de
dépendance), c’est-à-dire qu’une tâche s’appuie sur des entrées fournies par d’autres tâches. De
telles relations de dépendance entre tâches sont utilisées pour construire des graphes acycliques
dirigés (directed acyclic graphs : DAG) pour décrire l’application [18]. Les DAG sont utilisés pour
la représentation du calcul, de la communication et des dépendances des tâches applicatives. Un
graphe DAG G consiste en une paire G = {V ,E} où V est l’ensemble des sommets et E est
l’ensemble des arêtes dirigées qui représentent la communication de données entre les tâches [19].
Un sommet cotrespond à une tâche et une arête représente une relation de dépendance. Pour
deux tâches τi et τj , si (τi, τj) ∈ E, la tâche τj dépend de la tâche τi et ne peut commencer
son exécution qu’une fois τi ait terminé son exécution. Si une tâche τj dépend de la tâche τi
(c’est-à-dire que la tâche τi et la tâche τj ont une relation de dépendance directe), alors la tâche
τi est appelée un prédécesseur de la tâche τj et τj est appelée un successeur de la tâche τi. Si
une tâche n’a pas de prédécesseur (successeur), elle est appelée tâche d’entrée (tâche de sortie).

Pour fournir des garanties de synchronisation pour les systèmes temps réel durs, le WCET

17

LIST OF TABLES

doit être pris en compte lors de l’analyse et la conception du système. Le WCET d’une tâche est
une estimation du temps d’exécution le plus long parmi tous les cas possibles. Le WCET d’une
tâche dépend de la fréquence du processeur et des interférences dues à l’exécution parallèle
de tâches sur le système multicœurs. Étant donné que la technique DVFS affecte le temps
d’exécution, le WCET est donné en cycles d’exécution dans le pire des cas (Worst-Case Execution
Cycle : WCEC), c’est-à-dire le nombre total de cycles CPU nécessaires dans le pire des cas,
comme étudié dans [20, 21]. De plus, la date limite d’exécution est le temps avant lequel une
tâche doit se terminer afin de satisfaire la contrainte temps réel du système. Dans cette thèse,
nous considérons des applications de type trames, où l’exécution d’une application fonctionne
de manière cyclique et où toutes les tâches de l’application doivent se terminer dans une période
appelée trame [22, 23]. Les tâches sont libérées en début de trame et doivent avoir terminé leur
exécution lors de la trame, ce qui détermine la date limite de l’application. Dans cette thèse, la
période est considérée comme égale à la date limite globale à l’ensemble des tâches.

Les différents schémas de DVFS

Avec les systèmes multicœurs, la consommation d’énergie est devenue un facteur crucial, en
particulier pour les systèmes avec un budget énergétique limité tels que les objets communicants
alimentés par batterie ou à récupération d’énergie. En conséquence, des techniques de gestion
adaptative ont été établies pour maximiser l’efficacité énergétique [24]. La gestion dynamique
de la tension et de la fréquence (DVFS) est un mécanisme bien connu qui gère la consomma-
tion d’énergie dynamique en réduisant simultanément la tension et la fréquence d’alimentation
du processeur, pendant l’exécution de la tâche [25, 24, 26]. La gestion de la fréquence et de la
tension [27] peut être implémentée de plusieurs manières dans les plates-formes matérielles mul-
ticœurs. La première approche est la gestion globale de la fréquence et de la tension où un seul
contrôleur est utilisé pour gérer la tension et la fréquence pour tous les cœurs simultanément.
Par conséquent, tous les cœurs fonctionnent à la même fréquence. La deuxième approche est la
gestion individuelle de la fréquence et de la tension où chaque cœur a son propre contrôleur et
peut fonctionner à différents niveaux de tension et de fréquence, comme par exemple les pro-
cesseurs Haswell-EP [28] et AMD Ryzen [29]. Compte tenu du coût matériel des contrôleurs,
il existe des approches hybrides qui combinent une gestion globale et individuelle de la tension
et de la fréquence, par exemple Ryzen 1700x [27]. Par conséquent, trois catégories de schémas
DVFS peuvent exister en ce qui concerne l’attribution des tensions/fréquences aux tâches :

— DVFS au niveau tâche: L’attribution de fréquence est effectuée par tâche, c’est-à-dire
que chaque tâche peut être exécutée à son propre niveau de fréquence. Les fréquences
attribuées à chaque tâche sont indépendantes. Ce mécanisme DVFS est envisagé dans de
nombreux travaux récents tels que [30, 31, 32, 33].

— DVFS au niveau processeur: L’attribution de fréquence est effectuée par processeur;
toutes les tâches affectées à un même processeur sont exécutées avec la même fréquence.

18

LIST OF TABLES

Les fréquences attribuées aux processeurs sont indépendantes.

— DVFS au niveau système La même fréquence est affectée à tous les processeurs de la
plate-forme, et la fréquence est modifiée en même temps pour tous les processeurs. Un tel
schéma est appliqué par exemple dans [34, 35]

Modèle de consommation de puissance et d’énergie Dans une plate-forme multicœur com-
patible DVFS, la puissance consommée se compose généralement de deux parties : la puissance
dynamique qui est causée par l’activité lors de l’exécution et la puissance statique due au courant
de fuite [25]. La puissance statique est constante et indépendante de la tension et de la fréquence
du système. Étant donné que dans cette thèse nous utilisons la gestion dynamique de la tension
et de la fréquence pour gérer la consommation d’énergie, nous nous concentrons donc sur la ré-
duction de la puissance dynamique, comme in [36] [37]. Nous adoptons un modèle de puissance
largement utilisé, comme dans [25, 26, 33] :

P (f) = Ps + Pd = Ps + ~(Pind + Pdep) (1)

Ps est la puissance statique qui est consommée pour maintenir le fonctionnement de base
du circuit et qui peut être annulée lors de la mise hors tension du circuit. La puissance dy-
namique Pd comprend deux parties : 1) une composante de puissance consommée indépendante
de la fréquence Pind qui est causée par des modules périphériques comme la mémoire et des pé-
riphériques externes lorsque le système est en mode actif [26], qui peut être supprimé en mettant
le système en mode veille, et 2) la puissance consommée dynamique du processeur et de tous les
autres périphériques dépendant de la fréquence, Pdep. ~ est un facteur qui décrit les modes du
système, c’est-à-dire que lorsque ~ = 1, le système est en mode actif et la puissance dynamique
est effective, sinon lorsque ~ = 0, le système est en veille mode et aucune puissance dynamique
n’apparait. Pdep peut être exprimé comme Pdep = Cefff

m où Ceff est la capacité de commuta-
tion effective et m est l’exposant de puissance dynamique, normalement non inférieur à 2. Ceff
et m sont des constantes qui dépendent des caractéristiques du processeur/de la technologie.
Dans cette thèse, nous nous concentrons principalement sur la puissance consommée dynamique
dépendant de la fréquence, où la puissance consommée totale du système est dominée par la
puissance consommée par les processeurs pour exécuter des tâches. Plusieurs schémas DVFS
présentés ci-dessus sont utilisés pour ajuster la fréquence/tension afin de minimiser la puissance
consommée totale du système.

Modèles de tolérance aux fautes et de fiabilité L’exécution correcte d’une application
peut être menacée par plusieurs sources, telles que les rayonnements [38] et les interférences élec-
tromagnétiques. Une faute est un défaut physique ou une imperfection qui se produit dans un
composant matériel ou logiciel [39]. Une faute peut entraîner un écart par rapport à l’exactitude
ou à la précision du calcul, qui devient alors une erreur. Une défaillance est un écart par rap-

19

LIST OF TABLES

port à la valeur réelle et attendue. Un système est dit défaillant si le service qu’il fournit à
l’utilisateur s’écarte de la conformité à la spécification pendant une période de temps donnée [40].
En général, les fautes sont les sources d’erreurs et les erreurs les sources de défaillance [39]. Les
fautes matérielles peuvent généralement être classés en deux types : fautes permanentes et fautes
transitoires en fonction de la durée de la faute. Pendant la durée de vie normale d’un système,
les fautes transitoires se produisent plus fréquemment que les fautes permanentes, et sont donc
considérées comme les principales menaces pour la bonne exécution des applications [32, 41].
En raison de la réduction de la taille des transistors, les systèmes sont devenus plus sensi-
bles aux fautes transitoires [42]. Dans cette thèse, nous considérons les fautes transitoires. Une
faute transitoire reste active pendant une courte période. Les causes des fautes transitoires sont
principalement environnementales, telles que les particules (un impact de neutrons de rayons
cosmiques ou de particules α), les décharges électrostatiques, les baisses de puissance électrique,
la surchauffe ou les chocs mécaniques. Pour les systèmes compatibles DVFS, un niveau de ten-
sion/fréquence faible est plus susceptible de provoquer une faute transitoire. Le modèle de fautes
transitoires suit une distribution de Poisson avec un taux de fautes moyen λ [36] où le taux de
faute est le nombre de fautes attendu par unité de temps [39]. Pour les systèmes compatibles
DVFS avec L paires de niveaux de tension/fréquence {(v1, f1), ..., (vL, fL)}, le taux de faute à
la fréquence fl suit une distribution exponentielle :

λ(fl) = λ0 × 10d
fmax−fl

fmax−fmin (2)

où λ0 est le taux de faute moyen à la fréquence maximale, d (appelé facteur de sensibilité)
est une constante, utilisée pour mesurer la sensibilité du taux de faute à la gestion dynamique
de la tension/fréquence. fmax et fmin sont respectivement la fréquence maximale et minimale
dans les L niveaux de tension/fréquence. La fiabilité de l’exécution d’une tâche est la probabilité
d’exécuter la tâche sans faute. Lors de l’exécution d’une application, selon la loi de défaillance
exponentielle [39], la fiabilité d’une exécution varie de façon exponentielle en fonction de son
temps d’exécution comme

R(fl) = e−λ(fl)×t (3)

où t est la durée d’exécution et qui est inversement proportionnelle à la fréquence. L’exécution
d’une application est d’autant plus fiable que la fréquence augmente.

En pratique, il est impossible de construire un système parfait sans apparition de fautes,
en particulier avec la diminution de la technologique [43]. Pour améliorer la fiabilité d’un sys-
tème, plusieurs approches utilisent une fréquence élevée pour obtenir une grande fiabilité pour
l’exécution de l’application. Mais avec l’augmentation de la complexité d’un système, la fiabil-
ité du système diminue considérablement même en appliquant la fréquence la plus élevée pour

20

LIST OF TABLES

exécuter des tâches. Par exemple, en supposant que la fiabilité d’une tâche est très élevée, par
exemple 99,999% à fréquence maximale, lorsque le système comporte 10 tâches, la fiabilité du
système après exécution de ces 10 tâches est de 99,99% ; lorsque le système a 20 tâches, cette
valeur diminue à 99,98%, et lorsque le système a 100 tâches, la valeur est de 99,9%. Pour un
système avec des exigences de fiabilité élevées, l’exigence de fiabilité ne peut pas être satisfaite
en utilisant uniquement la haute fréquence. La tolérance aux fautes est la capacité d’un système
à continuer à exécuter ses fonctions prévues en présence de fautes.

Il existe différentes approches pour implémenter la tolérance aux fautes. Dans cette thèse,
nous considérons une technique de réplication active pour implémenter la tolérance aux fautes.
La réplication de tâches [24, 32, 37, 44, 45, 46, 47] est une technique largement adoptée pour
tolérer les fautes transitoires. Elle est basée sur la redondance spatiale : plusieurs copies d’une
tâche sont exécutées sur différents cœurs. Il existe deux approches principales pour assurer la
réplication. Avec la réplication passive, chaque tâche est répliquée plusieurs fois et ces répliques
sont exécutées sur différents processeurs [24, 32, 37, 45]. Ce faisant, il est peu probable que
toutes les répliques d’une tâche échouent à l’exécution. Un vote majoritaire est opérée à la fin de
l’exécution afin de déterminer la valeur du résultat. Avec la réplication passive [46, 47], chaque
tâche a une copie principale et une copie de sauvegarde. La copie de sauvegarde n’est activée
que lorsque la copie principale échoue dans son exécution. Un dispositif de détection d’erreur
permet de savoir à la fin de l’exécution si la copie s’est exécutée correctement ou non.

Ordonnancement temps-réel de tâches dans les systèmes multicœurs Dans un système
multicœur, étant donné une application composée de plusieurs tâches, l’ordonnancement temps-
réel de tâches s’attache à résoudre en fait deux problèmes : 1) l’allocation de tâches, qui décide
de l’allocation tâche-cœur (sur que cœur est exécuté quelle tâche) ; 2) l’ordonnancement des
tâches proprement dit, qui est l’affectation temporelle des tâches (quand une tâche commence
à s’exécuter). Dans cette thèse, nous effectuons l’ordonnancement des tâches au moment de la
compilation, c’est ce qu’on appelle un ordonnancement statique. Les systèmes temps réel, tels que
la robotique, les applications automobiles et les systèmes de contrôle de vol, sont des systèmes
informatiques qui doivent réagir dans des délais précis aux événements de l’environnement [22].
Comme nous nous concentrons sur les systèmes temps réel durs, l’exactitude de la sortie du
système dépend non seulement du résultat fonctionnel du calcul, mais également du moment
auquel les résultats sont produits [32]. La figure 1 illustre un ordonnancement de tâches sur une
plate-forme multicœur. En supposant qu’il y a deux cœurs, les six tâches et que la date limite
globale est D, l’allocation tâche-cœur est obtenue en affectant les tâches 0, 2, 3, 5 au cœur 1 et
les tâches 1,4 au cœur 2 . Les dates de début de chaque tâche sont {0, t1, t3, t5}. La contrainte de
temps est satisfaite dans cet ordonnancement car l’heure de fin d’exécution de la tâche la plus
tardive ne dépasse pas D.

La plupart des cœurs modernes prennent en charge une large gamme de tensions et de

21

LIST OF TABLES

(a) Multicore platform (b) Task mapping with 6 tasks and 2 cores

Figure 1: Ordonnancement de tâches sur système multicœur.

fréquences [22] gérée par DVFS. La gestion dynamique de la tension/fréquence a un impact im-
portant sur la consommation d’énergie, la fiabilité et la vitesse d’exécution. Malheureusement,
les effets/conséquences sont généralement contradictoires. Par exemple, lorsqu’une fréquence
plus basse est utilisée, le coût énergétique peut être diminué, mais cela a un impact négatif
sur la fiabilité et entraîne également des temps d’exécution plus longs. Généralement avec la
diminution de la consommation d’énergie, la qualité d’exécution de l’application se dégrade.
Avec l’augmentation de la taille des applications, l’allocation et l’ordonnancement d’un ensem-
ble de tâches à un groupe de cœurs sous plusieurs contraintes, telles que le coût énergétique,
les performances temporelles, la fiabilité, sont devenues un défi majeur dans les architectures
temps réel multicœurs modernes. Par conséquent, il est intéressant d’étudier des algorithmes
d’ordonnancement de tâches appropriés qui permettent d’optimiser le compromis entre fiabilité,
vitesse d’exécution et efficacité énergétique.

Motivations et contributions

La fiabilité et la consommation d’énergie sont devenues deux préoccupations majeures dans
les systèmes informatiques modernes. Bien que la tolérance aux fautes et la gestion de l’énergie
aient été largement étudiées, la cogestion de la fiabilité du système et de l’efficacité énergé-
tique n’a été abordée que récemment. Les approches existantes pour les plates-formes multi-
cœurs considèrent généralement que l’allocation des tâches est donnée à l’avance ou qu’il est
fixe, lors de l’exploration de la marge de temps disponible pour l’ordonnancement des tâches.
Le couplage complexe entre les variables d’optimisation de l’ordonnancement des tâches et
l’affectation de la tension et de la fréquence empêche les algorithmes d’atteindre la solution
optimale. Par conséquent, des méthodes sous-optimales sont généralement proposées sur la base
de 1) l’approximation/relaxation du problème et 2) l’utilisation d’heuristiques. Par rapport aux
approches existantes, la thèse se concentre sur la conception de nouvelles méthodologies pour
résoudre efficacement le problème de l’exécution de tâches sur des plates-formes multicœurs en
abordant conjointement ces facteurs.

Dans cette thèse, nous nous intéressons à combiner le DVFS et des techniques de tolérance

22

LIST OF TABLES

aux fautes pour décider de l’exécution de l’application sur des architectures multicœurs et ex-
ploiter l’impact de trois schémas de DVFS représentatifs des schémas DVFS existant dans
les plateformes multicœurs récentes. Tout d’abord, nous concevons des méthodologies pour
l’ordonnancement des tâches sur des plates-formes multicœurs qui fournissent des solutions op-
timales pour les modèles de tâches indépendants et dépendants et pour les trois schémas de
DVFS. Ensuite, pour faire face au temps de calcul élevé nécessaire pour obtenir des solutions
optimales, nous proposons un ensemble d’heuristiques qui fournissent des solutions quasi opti-
males avec un temps de calcul réduit. Lors de l’analyse expérimentale, nous avons utilisé des
graphes de tâches générés aléatoirement et des graphes de tâches d’applications réelles pour
évaluer le comportement des approches proposées.

Pour mieux comprendre les contributions de cette thèse, nous posons les questions suivantes
:

1. Que comprend l’ordonnancement des tâches dans les problèmes étudiés dans
cette thèse ?

Nous avons étudié deux groupes de problèmes d’ordonnancement des tâches : le premier
groupe concerne les tâches indépendantes. L’objectif des problèmes étudiés est de minimiser
la consommation d’énergie sous des contraintes de temps réel et de fiabilité, en déterminant
simultanément l’allocation des tâches, la duplication des tâches et l’affectation des fréquences. Le
deuxième groupe concerne les tâches dépendantes ayant le même objectif sous des contraintes de
temps réel, de fiabilité et de dépendance des tâches en déterminant simultanément l’allocation des
tâches, l’ordonnancement des tâches (date de début d’exécution de chaque tâche), la duplication
des tâches et l’affectation des fréquences.

2. Comment obtenir les solutions optimales pour les problèmes d’ordonnancement
des tâches étudiés sachant qu’ils sont connus comme étant des problèmes NP-
difficiles ?

En général, il est compliqué d’obtenir des solutions optimales pour les problèmes d’ordonnancement
de tâches sur des plates-formes multicœurs car elles sont NP-difficiles. Les problèmes étudiés sont
d’abord formulés sous forme de programmation non linéaire mixte en nombres entiers (MINLP),
puis une méthode de remplacement de variables est utilisée pour transformer de manière équiva-
lente les problèmes MINLP sous forme de problèmes en programmation linéaire mixte en nombres
entiers (MILP) et qui peuvent être résolus avec des outils de type solveur, tels que Gurobi ou
Cplex. Cette partie est présentée au Chapitre 3.

3. Quelles sont les idées centrales des approches heuristiques proposées pour les
problèmes étudiés ?

Afin de faire face à des temps de calcul longs pour obtenir les solutions optimales, un ensemble
d’heuristiques est proposé. Le principe des heuristiques proposées consiste en deux phases : une
phase d’élagage et une phase d’ordonnancement. La phase d’élagage ne maintient que les config-

23

LIST OF TABLES

urations de tâches qui satisfont les contraintes de fiabilité. Ensuite, la phase d’ordonnancement
minimise l’énergie consommée sous contraintes de temps réel pour les tâches indépendantes et
sous contraintes de temps réel et de précédence pour les tâches dépendantes. La phase d’élagage
exclut les solutions inutiles dans l’espace des solutions et la phase d’ordonnancement utilise les
solutions restantes pour rechercher les solutions quasi optimales aux les problèmes étudiés.

Dans cette thèse, nous avons considéré et évalué trois niveaux DVFS comme expliqué dans
la section 3.2 . Nous avons proposé une série de méthodologies d’ordonnancement des tâches qui
peuvent être classées en deux groupes : 1) les algorithmes optimaux qui fournissent les solutions
optimales, et 2) les algorithmes heuristiques qui fournissent des solutions quasi optimales, mais
nécessitant beaucoup moins de calculs (voir figure 2). La figure 3 décrit l’idée générale de
l’approche proposée RAFTM (Reliability-Aware Fault-Tolerant Task Mapping) basée sur la
technique de duplication partielle pour répondre à la tolérance aux fautes. Dans l’approche
proposée, nous fixons à deux le nombre maximal de répliques pour chaque tâche et sélectionnons
une partie de l’ensemble de tâches pour effectuer la duplication.

Tout d’abord, les algorithmes optimaux pour les modèles de tâches indépendants et dépen-
dants sous trois schémas de DVFS sont étudiés au chapitre 3, en utilisant une méthode de
remplacement de variables pour transformer de manière équivalente les problèmes MINLP origin-
aux dans les formes MILP, puisque les problèmes MILP peuvent être résolus à l’aide de solveurs
d’optimisation. Cependant, le temps pour obtenir une solution avec de telles approches opti-
males devient rapidement trop important à moins que l’application ait très peu de tâches. Nous
étendons donc l’approche proposée à des algorithmes heuristiques au Chapitre 4. En nous con-
centrant sur chaque schéma de DVFS, nous proposons les heuristiques correspondantes pour
les modèles de tâches indépendantes et dépendantes. Enfin, nous menons un grand nombre
d’expériences pour des graphes de tâches générés aléatoirement et pour des graphes de tâches
d’applications réelles afin d’évaluer les approches proposées. Pour des solutions optimales, nous
comparons nos approches avec deux autres approches de l’état d l’art. Les résultats expérimen-
taux montrent que les approches proposées permettent de gagner en énergie consommée et en
capacité d’obtenir des solutions réalisables. Pour les approches basées sur des heuristiques, nous
comparons d’abord les heuristiques proposées à des solutions optimales pour analyser l’écart de
performance. De plus, des expériences sont réalisées pour évaluer les algorithmes heuristiques
proposés par rapport à deux autres algorithmes heuristiques de l’état d l’art. Nos algorithmes
heuristiques donnent des résultats très proches des algorithmes optimaux tout en ayant une
complexité de calcul faible, et surpassent les heuristiques de l’état de l’art en matière d’énergie
consommée et de capacité d’obtention de solutions réalisables.

24

LIST OF TABLES

Figure 2: Approches proposées d’ordonnancement des tâches pour différents niveaux de DVFS et différents
modèles de tâches.

Figure 3: Présentation générale de l’approche proposée d’ordonnancement des tâches tolérant aux fautes et
tenant compte de la fiabilité

25

LIST OF TABLES

Organisation du document

Le mémoire de thèse est organisé de la manière suivante:

— Dans le chapitre 1, nous introduisons brièvement les concepts de base qui seront utilisés
dans le reste du document. Dans un premier temps, nous présentons le modèle de plates-
formes multicœurs. Ensuite, nous décrivons brièvement les deux modèles de tâches qui
sont utilisés dans les problèmes étudiés. Comme l’objectif de la thèse est de minimiser
la consommation d’énergie, nous introduisons le modèle de puissance/énergie et les trois
schémas de DVFS utilisés. De plus, la thèse portant sur la fiabilité, nous présentons les
principales sources de fautes et les modèles de fautes. Enfin, nous introduisons plusieurs
techniques de tolérance aux fautes en nous concentrant sur les approches de réplication de
tâches.

— Dans le chapitre 2, nous présentons les travaux de l’état de l’art liés à notre sujet. Trois caté-
gories de problèmes d’ordonnancement des tâches sont introduites en fonction de l’objectif
du problème étudié. La première catégorie vise à minimiser la consommation d’énergie.
Plusieurs approches d’ordonnancement des tâches sans et avec tolérance aux fautes sont
brièvement présentées. La deuxième catégorie vise la maximisation de la fiabilité. En-
suite, la troisième catégorie se concentre sur la minimisation de la durée d’exécution de
l’application. Enfin, nous concluons avec les limites des approches d’ordonnancement des
tâches de l’état de l’art.

— Dans le chapitre 3, nous présentons d’abord le problème étudié dans cette thèse pour
les tâches indépendantes et dépendantes sous trois schémas de DVFS en tant que prob-
lèmes MINLP. Ensuite, nous décrivons comment transformer de manière équivalente les
formulations MINLP en formulations MILP. Pour l’évaluation expérimentale, les solutions
optimales sont obtenues à l’aide du solveur Gurobi. Les résultats montrent que les ap-
proches optimales proposées permettent d’obtenir une consommation d’énergie plus faible
et trouvent des solutions lorsque d’autres approches de l’état de l’art ne parviennent pas
à obtenir des solutions pour le problème traité.

— Dans le chapitre 4, nous considérons les mêmes problèmes étudiés qu’au chapitre 3 et nous
proposons des heuristiques pour obtenir des solutions quasi-optimales avec une complex-
ité de calcul raisonnable. Des résultats expérimentaux utilisant divers graphes de tâches
générées aléatoirement ainsi que provenant d’applications réelles sont présentés pour éval-
uer les heuristiques proposées en comparaison des solutions optimales et d’heuristiques de
l’état de l’art.

— Dans le chapitre conclusion, nous concluons notre travail de thèse par un résumé des
travaux effectués et nous proposons des perspectives à ces travaux.

26

INTRODUCTION

Context

The safety-critical domain industries usually consist of systems where guarantees must be
provided on safety and reliability for the critical applications, implying both high fault tolerance
and hard real-time constraints [1]. For example, avionics systems consist of applications with
high Design Assurance Levels (DAL) [2] operating in high altitudes exposed to radiation. Space
systems consist of navigation control applications operating in outer space with extreme par-
ticle and high-energy electromagnetic radiation. Automotive systems have applications, among
others, in the same wheel sensor for stability control and for the acceleration regulation while
they suffer from alpha particles, high temperature peaks and electromagnetic interferences [3].
These natural and technical stimuli are the source of faults that impact the system function-
ality [4]. Furthermore, within last thirty years, the code size of avionics, space and automotive
applications has significantly increased [5]. These systems face exponential growth in perfor-
mance requirements, whereas future automotive and aerospace applications will require higher
performance computing resources [1].

To deal with the increasing performance demands, the consumer market has shifted towards
multicore architectures, due to power consumption and heat dissipation limits of single proces-
sors [1]. Generally speaking, multicores provide a Space, Weight and Power reductions (SWaP)
and massive computing capabilities compared with single core processors, while they can in-
tegrate several applications on the same platform [6]. However, two main scientific challenges
raised by the use of multicores.

The first challenge is high energy consumption which has become one of the biggest obstacles
to develop green and high performance computing systems, especially for systems with limited
energy budget, such as battery powered or energy-harvesting Internet of Things (IoT) devices.
Smartphones use heterogeneous multicore architectures, such as big.LITTLE [7], which consists
of performance-optimized big cores and energy-optimized little cores with a single Instruction
Set Architecture (ISA) [8]. Embedded boards for Internet of Thing (IoT), such as Raspberry Pi,
Odroid, Edison, Jetson, and Artik also provide multiple cores [9, 10, 11]. The use of multiple
cores supports efficiently the IoT services, but the increase in the number of cores puts pressure
on the energy resource of the device, since the power and energy consumptions are increased [48].
Hence, multicore platforms have been enhanced with the capability of scaling their voltage and
frequency (Dynamic Voltage and Frequency Scaling - DVFS) during execution to balance system

27

Introduction

performance and energy savings.
The second challenge is that the multicore system itself is susceptible to faults due to the na-

ture of electronic systems. Combined with the reduction of the transistor size and the technology,
multicore systems are becoming more and more sensible to the operating conditions and to the
environmental impact [12]. In electronic systems, the variation on the threshold voltage depends
on the transistor width, whereas voids or small cracks in the wiring lead to close or open source
problems. The current or voltage activity and hot spots are inevitable during the system opera-
tion, but they cause electromigration, Bias Temperature Instability (BTI) and crosstalk, which
are sources of faults. To improve the multicore reliability, either radiation-hardened processors
are used or the system is replicated [13]. The former solution develops systems with limited
computation capabilities and it requires a difficult-to-find design expertise, which combines dig-
ital and analogue electronics with semiconductor physics. The latter solution has high cost and
energy consumption. To reduce the cost while providing reliability, the resources replication and
the system oversizing has to be avoided, whenever possible.

Taking the above two challenges into consideration, in order to fully exploit the features
of multicore systems, while obtaining both reliable and energy efficient application execution
meeting system specifications, methods are required to decide the efficient execution of the tasks
on multicores with scalable operating features. The way that tasks are executed on a platform
is decided by several factors. The first factor is the task mapping, which refers to both the task
allocation (on which processor each task is executed) and the task scheduling (at which time
each task starts its execution). The second factor is the decision of the voltage and frequency
assignment of the processor when it runs a specific task, which determines the execution time of
the task. For critical applications, Worst Case Execution Time (WCET) bounds are used since
they are required for guarantees regarding reliability and correct functional behaviour.

Motivation and Goals

Reliability and energy consumption have become two major concerns in modern computing
systems. Although both fault tolerance and energy management have been extensively (but often
independently) studied, the co-management of system reliability and energy efficiency has been
addressed only recently. The existing approaches on multicore platforms usually consider that
the task allocation is upfront given or it is fixed, when exploring the available time slack for task
scheduling. The complex coupling among optimization variables of task mapping and voltage
and frequency assignment prohibits the algorithms to achieve the optimal solution. Therefore,
sub-optimal methods are usually proposed based on 1) problem approximation/relaxation, and
2) heuristics. Compared with the existing approaches, the thesis focuses on designing novel
methodologies to efficiently solve the problem of task execution on multicore platforms by jointly

28

Introduction

addressing all aforementioned factors.
In this thesis, we are interested in combining DVFS and fault tolerance techniques to decide

the execution of the application on multicore architectures and exploit the impact of three
DVFS schemes, which are representative of DVFS schemes existing in recent platforms. First,
we design methodologies for task mapping on multicore platforms that provide optimal solutions
for both independent and dependent task models under three DVFS schemes. Then, to cope with
high computation time required to obtain optimal solutions, we propose a set of heuristics that
provide near-optimal solutions with reduced computation time, leading to scalable approaches.
Overall, we used synthetic and real-world task graphs to evaluate the behavior of the proposed
approaches during the experimental analysis.

To better understand the contributions of this thesis, we pose the questions:
1. What does the task mapping include in the studied problems in this thesis?
We studied two groups of task mapping problems: the first group is for independent tasks.

The objective of studied problems is to minimize energy consumption under real-time, relia-
bility requirement constraints by simultaneously determining task allocation, task duplication
and frequency assignment. The second group is for dependent tasks with same objective under
real-time, reliability requirement and task dependency constraints by simultaneously determin-
ing task allocation, task scheduling (execution start time of each task), task duplication and
frequency assignment.

2. How to obtain the optimal solutions for studied task mapping problems since
they are known as NP-hard problems?

In general, it is complicated to obtain optimal solutions for task mapping problems on mul-
ticore platforms since they are NP-hard. The studied problems are firstly formulated as Mixed-
Integer-Nonlinear-Programming (MINLP) forms, then a variable replacement method is used to
safely and equivalently transfer the MINLP problems into Mixed-Integer-Linear-Programming
(MILP) forms which can be solved with solver tools, such as Gurobi, Cplex or Matlab. This part
is presented in Chapter 3.

3. What are the core ideas for the proposed heuristics approaches for the studied
problems?

To cope with long computation time to obtain the optimal solutions, a set of heuristics is
proposed. The proposed heuristics consist of two phases: a pruning phase and a mapping phase.
First, a pruning phase maintains only the task configurations that satisfy reliability constraints.
Then, a mapping phase minimizes the total energy consumption under real-time constraints
for independent tasks and under real-time and precedence constraints for dependent tasks. The
pruning phase excludes the unnecessary solutions in the solution space and the mapping phase
uses the remaining solutions of the pruning phase to search for the near-optimal solutions for
the studied problems.

29

Introduction

Thesis structure

This thesis is organized as follows:

— In Chapter 1, we briefly introduce the background information of the basic concepts,
which will be used in the rest of this thesis. Firstly, we present the model for the multicore
platforms. Then, we briefly describe the two task models that are used in the studied
problems. As the goal of the thesis is to minimize energy consumption, we introduce the
power/energy model and the three DVFS schemes used as energy management method.
Furthermore, since the thesis focuses on reliability, we present the main sources of faults
and the fault models. Last, we summarise several fault tolerance techniques and we focus
on task replication approaches.

— In Chapter 2, we present the State-of-Art (SoA) works related to our topic. Three cat-
egories of task mapping problems are introduced based on the objective of the studied
problem. The first category aims at minimizing energy consumption. Several task map-
ping approaches without and with fault tolerance are briefly presented. The second cate-
gory aims at reliability maximization. Then, the third category focuses on minimizing the
schedule length of the application execution. Finally, we conclude with the limitations of
SoA task mapping approaches.

— In Chapter 3, we firstly present the problem studied in this thesis for both independent and
dependent tasks under three DVFS schemes as MINLP problems. Then, we describe how to
safely and equivalently transfer the MINLP forms into MILP forms. For the experimental
evaluation, the optimal solutions are obtained using Gurobi solver tool. Results show that
the proposed optimal approaches achieve better energy consumption and find solutions,
when other SoA approaches fail to obtain solutions for the studied problem.

— In Chapter 4, we consider the same studied problems as in Chapter 3 and we propose
heuristics to obtain near-optimal solutions with a reasonable computational complexity.
Experimental results using various task graphs from both synthetic and real-world appli-
cations are presented to evaluate the proposed heuristics with optimal solutions and SoA
heuristics.

— In Chapter 5, we conclude our thesis with an overview of the presented work and summarize
future perspectives of our work.

30

Chapter 1

BACKGROUND

We start this thesis by providing the required background regarding the main concepts of
energy-quality-time fault tolerant task mapping on multicore architectures, which is the topic
of this thesis. Initially, we define the architecture and task models. The architecture is multicore
platforms described in Section 1.1. Section 1.2 presents the notations of two main types of task
models which are commonly studied in task mapping problems. Dynamic-Voltage-Frequency-
Scaling (DVFS) scheme is an important technique to jointly manage energy consumption, timeli-
ness and reliability of task execution. Three DVFS schemes are introduced in Section 1.3. Then,
we provide the power/energy consumption model in Section 1.4. Reliability is one metric to
measure the quality of task execution, as far as reliable execution is necessary. We present the
main origins of faults and how to use mathematical methods to build reliability models. Then
we introduce main fault tolerance techniques in Section 1.5. Finally, in Section 1.6, we focus on
the real-time task mapping systems studied in this thesis.

1.1 Multicore Architecture

To meet the rapidly increasing computation needs, low resource consumption, as well as en-
suring the high parallelism of multiple application executions, multicore systems are becoming a
promising platform for real-time embedded systems. In recent chip market, many chip manufac-
tures, e.g. AMD and Intel, have been releasing multicore chips with increasing number of cores,
e.g Intel Xeon Series. A multicore architecture consists of two or more separate processing units
(cores) on a single integrated circuit. Each core executes CPU instructions at the same time,
increasing overall speed for parallel computing.

Multicore architectures can be characterised as homogeneous and heterogeneous systems.
Homogeneous multicore systems include identical cores like some commonly used Multipro-
cessor system-on-chip (MPSoC) built with ARM Cortex cores [14]. Heterogeneous multicore
systems combine different cores, e.g. ARM big.LITTLE architecture with big processors with
higher performance but power energy hungry, such as A-15, and LITTLE processors with lower
performance but better energy efficiency, such as A-7 [15]. In this thesis, to ease the approach
but without loss of generality, we focus on homogeneous platforms where all processors share a
set of frequencies [16] e.g. the Arm quad-core Cortex-A53 system.

31

Chapter 1 – Background

1.2 Task Model

As introduced in [17], a task refers to a set of coherent activities that are performed in order
to achieve a goal in a given domain. An application is generally represented by a set of tasks.
According to the relations between tasks, two categories of task models are considered in this
thesis, i.e., independent tasks and dependent tasks. When, in certain applications, computational
activities can be executed in arbitrary order, these can be considered as independent tasks.
Otherwise, tasks are dependent: they have to respect the precedence (or dependency) relations,
i.e., whether a task relies on inputs provided by other tasks. Such dependency relations between
tasks are used to build directed acyclic graphs (DAG) to describe the application [18]. DAGs
are employed for the representation of the computation, communication and dependencies of
the application tasks. Figure 1.1 illustrates a simple DAG graph with 6 tasks.

Figure 1.1: A DAG task graph with a global deadline D.

A DAG graph G consists of a pair G = {V ,E} where V is the set of vertices and E is the
set of direct edges which denotes the data communication among tasks [19]. A vertex denotes
a task and an edge presents a dependency relationship. For two tasks τi and τj , if (τi, τj) ∈ E,
task τj depends on task τi and can start its execution only after τi finishes its execution. Each
vertex is characterised by the Worst-Case-Execution Time (WCET) of the corresponding task.
The weights of edges depict the communication cost (in amount of data or in time), when tasks
are mapped on different cores. In this thesis, we assume that the communication cost (in time)
is included in the WCET of the tasks. If a task τj is dependent on task τi (i.e., task τi and task
τj have direct dependency relation), then task τi is called a predecessor of task τj and τj is called
a successor of task τi. If a task has no predecessor (successor), it is called entry task (exit task).
Note that, independent task sets do not have dependency relations.

To provide timing guarantees for hard real-time systems, the WCET must be considered
during system analysis and design. The WCET of a job of a task is an estimation of the longest

32

1.2. Task Model

execution time among all possible cases. The WCET of a task depends on the processor frequency
and the interferences occuring due to the parallel execution of tasks in multicores. Since DVFS
affects execution time, the WCET is given in Worst-Case Execution Cycles (WCEC), i.e., the
total number of CPU cycles needed in the worst-case, as studied in [20, 21].

Furthermore, deadline is the time before which a task must finish in order to guarantee
timing results for real-time applications. For instance, all six tasks should finish before the global
deadline D in Figure 1.1. Depending on the consequences when the deadline is not met [22],
the deadline is characterised as: 1) hard if the results produced after the deadline can cause
catastrophic consequences; 2) firm if the results produced after the deadline are useless, but do
not cause catastrophic consequences; and 3) soft if the results produced after the deadline can
be used, but with a degradation on performance. In this thesis, hard deadlines are considered.

In many embedded real time systems, the execution of application tasks operates on a cyclic
basis. Therefore, a task may release multiple jobs in a regular or irregular way. Period is the
minimum time interval between two successive jobs of a task [19]. Therefore, a task set can be
characterised by:

1. Periodic tasks where jobs are released in a regular way. A periodic task τi is denoted by
following tuples τi = {φi, pi, eti, di}, where φi is the phase of the task; pi is the period of
the task, i.e., the time interval between the release time of two consecutive jobs, eti is the
execution time of the task and di is is the relative deadline of the task. Fig 1.2 illustrates a
periodic task with eti = 2, di = 3 and pi = 5. The phase is considered zero. The first job j0 of
the task is released at time zero, it executes for 2 time units, then the next job j1 is released
at time 5, etc. Jobs are released at t = 5k where k = 0, 1, ..., n. The hyper period of the task
set is the time after which the pattern of job release times is repeated. The hyper period (H)
of a set of periodic tasks is defined as the least common multiple (lcm) of periods of all n
tasks in that set [49], i.e., H = lcm(p1, ..., pn).

Figure 1.2: Time parameters for a periodic task.

2. Aperiodic tasks In aperiodic tasks, jobs are released at randomly time intervals. Aperiodic
tasks usually have soft deadlines or no deadlines. When tasks are finished after their deadlines
or without deadlines, the results of their execution may be used but with a performance

33

Chapter 1 – Background

degradation [22]. If a task only generate one job, the period is considered as infinite.

3. Sporadic tasks Sporadic tasks behave similarly to periodic tasks for the repetition and
similarly to aperiodic tasks for the randomness of job releases. For sporadic tasks, the jobs
are generated separately by at least “period” time units.

In this thesis, we consider the frame-based applications, where the execution of an application
operates on a cyclic basis and all application tasks should finish within a period called a frame [22,
23]. Frame-based applications are used in systems that use timeline scheduling [22] and pipelined
scheduling [50]. All tasks are released in the beginning of the frame and must complete the
execution within the frame, which determines the deadline of the application. In this thesis, the
period is considered as equal to the global deadline for frame-based tasks.

1.3 DVFS Schemes

On multicore systems, the energy consumption has become a crucial factor, especially for
systems with a limited energy budget such as battery powered or energy-harvesting Internet
of Things(IoT) devices. As a result, adaptive management techniques have been established
to maximize energy efficiency [24]. Dynamic Voltage and Frequency Scaling (DVFS) is a well-
known mechanism that manages dynamic energy consumption by simultaneously scaling down
the processor supply voltage and frequency, during task execution [25, 24, 26]. Frequency and
voltage scaling [27] can be implemented in several ways in hardware multicore platforms. The
first approach is global frequency and voltage scaling where a single voltage controller is used
to scale voltage and frequency for all cores simultaneously. Therefore all cores run at a same
frequency. The second approach is individual frequency and voltage scaling where each core has
its own voltage controller and can run at different voltage and frequency level, e.g. in Haswell-
EP [28] and AMD Ryzen [29] processors. Considering the hardware cost of the controllers,
hybrid approaches exist that combine global and individual voltage and frequency scaling, e.g.
Ryzen 1700x [27]. Therefore, three categories of DVFS schemes can exist regarding the frequency
assignment to tasks:

1. Task-level(TL) DVFS: The frequency assignment is performed per task, i.e., each task can
be executed at its own frequency level. The frequencies assigned to each task are independent.
This DVFS mechanism is considered for platforms in many recent works such as [30, 31, 32,
33].

2. Processor-level(PL) DVFS: The frequency assignment is performed per processor, thus all
tasks, mapped on the same processor, are executed with the same frequency. The frequencies
assigned to processors are independent. Variants of PL-DVFS scheme are applied in existing
hardware platforms, e.g., clock frequency is controlled per core in Intel-Xeon E5620, and used
in the literature, e.g., PL-DVFS is applied in [51] for example.

34

1.4. Power and Energy Consumption Model

3. System-level(SL) DVFS: The same frequency is assigned to all processors of the platform,
and the frequency is modified at the same time for all processors. Such a SL-DVFS is applied
for example in the dependent platform with runtime adjusting of [34, 35]

1.4 Power and Energy Consumption Model

Similar to [24, 26, 31], we assume that the relationship of voltage and frequency is almost
linear. Therefore, in the rest of this thesis, we will use the term frequency scaling to express the
simultaneous change of voltage and frequency. In a DVFS-capable multicore platform, power
consumption generally consists of two parts: dynamic power consumption which is caused by
execution activities and static power consumption due to the leakage current [25]. Static power
is constant and independent of system voltage and frequency. Since in this thesis we use voltage
and frequency scaling to manage energy consumption, therefore we focus on dynamic power
reduction, as in [36] [37]. We adopt a system-level power model that is widely used, as in [25,
26, 33]:

P (f) = Ps + Pd = Ps + ~(Pind + Pdep) (1.1)

Ps is the static power which is consumed to maintain the basic running of circuits and can be
removed when switching off the circuit. Dynamic power consumption Pd includes two parts:
1) a frequency-independent power consumption component Pind which is caused by peripheral
modules like memory and external devices when system is in active mode [26], which can be
removed by putting the system into sleep mode, and 2) the dynamic power consumption of CPU
and all other frequency-dependent devices, Pdep. ~ is a factor that describes the system modes,
i.e., when ~ = 1, the system is in active mode, and dynamic power is consumed, otherwise when
~ = 0, the system is in sleep mode and no dynamic power is consumed. Pdep can be expressed as
Pdep = Cefff

m where Ceff is effective switching capacitance and m is dynamic power exponent,
normally no smaller than 2. Both Ceff andm are constants that depend on processor/technology
characteristics.

In this thesis, we mainly focus on the frequency-dependent dynamic power consumption,
where total energy consumption of the system is dominated by the energy consumed by pro-
cessors to execute tasks. Multiple DVFS schemes introduced above are used to adjust the fre-
quency/voltage scaling in order to minimize total energy consumption of system.

35

Chapter 1 – Background

1.5 Fault Tolerance and Reliability Model

1.5.1 Fault Origin

The correct execution of an application can be threatened by several sources, such as radi-
ation [38] and electromagnetic interference. A fault is a physical defect, imperfection, or flaw
that occurs in a hardware or software component in [39]. A fault can cause a deviation from
correctness or accuracy in computation, which becomes an error. A failure is a deviation from
actual and expected value. A system is said to have a failure if the service it delivers to the
user deviates from compliance with the system specification for a given period of time [40]. In
general, faults are the sources of errors and errors the sources of failures [39]. Considering the
origin of hardware faults, there are two main sources of faults [39]:

1. Component Defects: Component defects can cause many hardware faults. These include
manufacturing imperfections, random device defects, and components wear-outs. Component
failure caused by physical component defects is when a component is not functioning or
performing as expected. It eventually damages the product. These defects may result in a
complete breakdown or degradation in the performance of the device.

2. External Factors: Faults caused by external factors come from the environment, the user or
the operator. External factors include temperature, vibration, electrostatic discharge, nuclear
or electromagnetic radiation that affect the system. For instance, a fault caused by an external
factor includes a cell in a memory to flip to an opposite value due to radiation.

Hardware faults generally can be classed into two types: permanent faults and transient faults
according to the fault duration.

1. Permanent Faults: A fault is permanent if its impact cannot be removed from the system
without external action. These faults usually occur due to physical defects in the hardware,
such as shorts in a circuit, core aging, broken interconnections or stuck bits in the mem-
ory [39]. Permanent faults can be detected by online test routines that work concurrently
with the normal system operation.

2. Transient Faults: A transient fault (also called soft error) stays active for a short time
period. The causes of transient faults are mostly environmental, such as particles (the
hit of cosmic ray neutrons or α-particles), electrostatic discharge, electrical power drops,
overheating or mechanical shock. For example, in Fig 1.3 energetic particles such as α-
particles can create minority carriers when they cross through the silicon bulk, this may
be collected by the source/drain diffusions, altering the voltage value of these nodes causing
a logic error [52].

During the normal lifetime period of the system, transient faults occur more frequently than
permanent faults, and thus it is considered as the main threats for the correct execution of

36

1.5. Fault Tolerance and Reliability Model

applications [32, 41]. Due to the technology size reduction and the increasing scaling of CMOS
technology, systems have become more susceptible to transient faults [42]. For DVFS-enable
systems, a lower voltage/frequency scaling is more probable to cause a transient fault. In this
thesis, we consider transient faults.

Figure 1.3: Cause to transient faults.

1.5.2 Reliability Model

The model of transient faults follows a Poisson distribution with an average fault rate λ [36]
where fault rate is the expected number of faults per time unit [39]. For DVFS-enable systems
with L pairs of voltage/frequency levels {(v1, f1), ..., (vL, fL)}, the fault rate at frequency fl

follows an exponential distribution:

λ(fl) = λ0 × 10d
fmax−fl

fmax−fmin (1.2)

where λ0 is the average fault rate at maximum frequency, d (called sensitivity factor) is a
constant, used to measure the sensitivity of fault rate to voltage/frequency scaling. fmax and
fmin are the maximum and minimal frequency in the L voltage/frequency levels respectively.

The reliability of a task execution is the probability of executing the task without any fault.
During application execution, according to exponential failure law [39], the reliability of an
execution varies exponentially as a function of its execution time as

R(fl) = e−λ(fl)×t (1.3)

where t is the time duration of the execution which is inversely proportional to the frequency.
As shown in Fig 1.4, the execution of an application has increasing reliability with the frequency
increasing.

37

Chapter 1 – Background

Figure 1.4: Reliability as a function of frequency.

1.5.3 Main Fault Tolerance Techniques

In practice, it is impossible to build a perfect system without fault occurrence especially with
technology node decreasing [43]. To improve system reliability, several approaches use a high
frequency to obtain a high reliability for the application execution. But with the complexity
of a system increasing, the reliability of system drastically decrease even applying the highest
frequency to execute tasks. For example, assuming the reliability of an individual task is very
high, e.g. 99.999% at maximum frequency, when the system has 10 tasks, the reliability of
the system after executing these 10 tasks is 99.99%; when the system has 20 tasks, this value
decreases to 99.98%, and when the system has 100 tasks, the value is 99.9%. For system with high
reliability requirements, the reliability requirement cannot be met by only using high frequency.
Fault tolerance is the ability of a system to continue performing its intended functions in presence
of faults while providing required reliability need.

There are various approaches to achieve fault tolerance. Redundancy is a commonly used fault
tolerance technique. Redundancy is the provision of the system with functional capabilities that
would be unnecessary in a fault-free environment [40], such as a replicated hardware component,
an additional check bit attached to a flow of digital data, or additional lines of program code to
verify the correctness of the program’s results [40]. There are two categories of redundancy:

1. Space Redundancy: Space Redundancy (also called spatial redundancy) provides additional
components, functions, or data items that are unnecessary for fault-free operation. Space re-
dundancy is further classified into hardware, software, and information redundancy. Hardware-
based techniques change the original architecture of the system or its components by adding
extra hardware modules [53]. Such techniques are implemented during the design of the sys-

38

1.6. Real-Time Task mapping in Multicore Systems

tem. Techniques based on hardware redundancy include 1) Duplication With Comparison
(DWC) [54] in which it duplicates all components and a comparator module is added to
detect a mismatch between both results and 2)Triple/N- Modular Redundancy (T/N-MR)
in which processing units triplicate or replicate a task to produce the output [53].

2. Time Redundancy: With time redundancy (also called temporal redundancy), the computa-
tion is repeated onto the same computing hardware component multiple times and the results
are then compared to a stored copy of the previous result [54, 53]. Techniques based on time
redundancy need a high time overhead because they require multiple time slots to perform
the same operation.

To provide fault tolerance for task execution, two commonly used fault tolerance techniques
based on the aforementioned redundancy:

1. Task Recovery:Task recovery [41, 55, 56, 26] is applied based on temporal redundancy,
i.e., by exploring the available time slack during application execution and schedule recovery
task(s) in the form of re-executing faulty task(s) usually at maximum frequency to recuperate
system reliability.

2. Task Replication:Task replication [24, 32, 37, 44, 45, 46, 47] is another widely adopted
technique to tolerate transient faults. It is based on space redundancy and multiple copies
of every task are executed on different cores. There are two main approaches to provide
replication. In passive replication [46, 47] (primary-backup) each task has a primary copy and
back-up copy. The back-up copy is activated only when the primary copy fails its execution.
In back-up fault tolerance technique, a fault detection mechanism is assumed to detect if
there is a fault after task execution. In active replication (N-Module redundancy), each task is
replicated multiple times (replicas) and these replicas are executed on different processors [24,
32, 37, 45]. By doing so, it is unlikely that all replicas of a task fail the execution. Error
detection is provided at the end of execution so that we know whether the copy executed
correctly or not. In this thesis, we consider an active replication technique to provide fault
tolerance.

1.6 Real-Time Task mapping in Multicore Systems

In a multicore system, given an application consisting of multiple tasks, task mapping solves
two problems: 1) task allocation, which is the spatial assignment that decides the task-to-core
allocation; 2) task scheduling, which is the temporal assignment that provides the start time
for each task. In this thesis, we perform task mapping at compile time, so it is called static
mapping. Real-time systems, such as robotics, automotive applications and flight control sys-
tems, are computing systems that must react within precise time constraints to events in the
environment [22]. As we focus on hard real-time systems, the correctness of the system output

39

Chapter 1 – Background

(a) Multicore platform (b) Task mapping with 6 tasks and 2 cores

Figure 1.5: Task mapping on multicore architecture.

depends not only on the logical result of the computation but also on the time at which the
results are produced [32]. Fig. 1.5 depicts an example of task mapping on multicore platform.
Assuming there are two cores, the six tasks in Fig 1.1, and the global deadline is D, the task-
to-core allocation is achieved by mapping tasks 0, 2, 3, 5 to core 1, and tasks 1,4 to core 2. The
start times of each task are {0, t1, t3, t5}. The timing constraint is satisfied in this task mapping
as the longest finish time of all tasks (called schedule length or makespan) does not exceed D.

Most modern cores support a wide range of voltages and frequencies [22] which is managed
by DVFS. Voltage/frequency scaling has an important impact on energy consumption, reliability
achievement and timeliness. Unfortunately, consequences are usually contradictory. For instance,
when a lower frequency is used, the energy cost can be decreased, but this impacts negatively
reliability and also causes longer execution times, which may lead to infeasible solution especially
in real-time systems. Generally with energy cost decreasing, the quality of application execution
is degraded. With application size increasing, allocating and scheduling a set of tasks to a group
of cores under several constraints, such as energy cost, performance, reliability has become a
major challenge in modern multicore real-time architectures. Therefore, it is worthy to study
proper task mapping algorithms which can optimize the tri-criteria trade-off between reliability,
timeliness and energy efficiency for task execution on multicore platforms.

40

Chapter 2

ENERGY-RELIABILITY-TIME

MULTI-CRITERIA TASK MAPPING

MECHANISMS IN SOA

In this chapter, we review the recent works that focus on task mapping on multicore plat-
forms when considering energy consumption, reliability achievement and timeliness. High energy
consumption has become one of the biggest obstacles to the rapid development of computing
systems, and reducing energy consumption is an important research area in past decade and
is also necessary for sustainable computing systems. To meet the increasing demand of high
performance in safety-critical systems, reliability requirement has been considered in some in-
dustrial safety standards like ISO 26262 for automotive systems, DO-178B for avionics systems
and IEC 61508 for industrial software systems. Energy saving and reliability enhancement are
two irrelevant and normally conflicting issues when designing modern multicore platforms. Min-
imizing the schedule length (also called makespan) of a parallel application in order to obtain an
effective execution is another fundamental issue which has attracted much attention, especially
for data-intensive application. According to the above different goals, the studied task mapping
problems in state-of-art (SoA) works can be summarized into three categories: energy mini-
mization, reliability maximization and schedule-length minimization. In Section 2.1, we describe
task mapping algorithms with energy minimization goal. In section 2.2, we present task mapping
algorithms to maximize the reliability of the tasks in the system. Then, Section 2.3 describes
representative scheduling algorithms proposed to reduce the overall schedule length required to
execute the application.

2.1 Task Mapping Targeting Energy Minimization

Table 2.1 summarises representative task mapping approaches with DVFS technique. Abbre-
viation terms are: Energy Budget (EB), Real-Time (RT), and Reliability (R) for the constraints,
maximizing system Reliability (mR), minimizing schedule length (mS) and minimizing Energy
consumption (mE) for the objective of the approach. Tasks are Independent (I) or Dependent

41

Chapter 2 – Energy-Reliability-Time Multi-criteria Task Mapping Mechanisms in SoA

(D). The platform has Homogeneous (HO), Heterogeneous (HE) or Single (S) processor (s).
Based on the problem formulation and solving method, solutions are Feasible (F) or Optimal
(O). Fault tolerance is provided by task Recovery (Rec) or task Replicas (Rep). Next sections
describe these approaches.

2.1.1 Task Mapping Without Reliability Guarantee

Regarding minimizing energy consumption, which is also the objective in this thesis, ap-
proaches exist without considering reliability guarantee. First, we introduce some works without
considering reliable execution, i.e., the reliability of task execution is not taken into account.
The authors studied the problem of minimizing the power consumption of multiple-processor-
core systems using multiple variable supply voltages and proposed a method to simultaneously
do task allocation, task scheduling and voltage assignment for multiple processor-core systems
in [57] and [58]. Originally, the problem is formulated using Mixed-Integer Non-Linear Program-
ming (MINLP) model. It is known that task mapping problem is NP-hard problems. Optimal
solution is given by introducing two modifications to enhance the efficiency of solving the origi-

Table 2.1: Representative State-of-the-Art targeting energy minimization.

Ref. Goal Task Platform Fault tol. Constraints Sol.
mE I D HO HE S Rec Rep RT EB R F O

[57]
√ √ √ √ √

[58]
√ √ √ √ √

[34, 35]
√ √ √ √ √

[59]
√ √ √ √ √

[60]
√ √ √ √ √ √

[25]
√ √ √ √ √

[61]
√ √ √ √ √

[62]
√ √ √ √ √

[63]
√ √ √ √ √

[51]
√ √ √ √ √ √

[41]
√ √ √ √ √ √

(
√

)
[55, 56]

√ √ √ √ √ √ √

[26]
√ √ √ √ √ √ √

[64]
√ √ √ √ √ √

(
√

)
[65]

√ √ √ √ √ √
(
√

)
[66]

√ √ √ √ √ √ √

[30]
√ √ √ √ √ √ √

[67]
√ √ √ √ √ √ √

[68]
√ √ √ √ √ √

[69]
√ √ √ √ √ √ √ √

[32, 45]
√ √ √ √ √ √ √

[70]
√ √ √ √ √ √

[24]
√ √ √ √ √ √

[37]
√ √ √ √

(
√

)
√

(
√

)
√

[44]
√ √ √ √ √ √

[71]
√ √ √ √ √ √ √

[72]
√ √ √ √ √ √ √

[73]
√ √ √ √ √ √ √

Prop.
√ √ √ √ √ √ √ √

42

2.1. Task Mapping Targeting Energy Minimization

nal MINLP problem, given that the complexity is large for solving the MINLP problem in [57].
However, for large scale task-sets, the complexity is very high so that the solution cannot be
obtained in reasonable time. The authors proposed a divide-and-conquer heuristic algorithm to
solve the large task-sets efficiently. The allocated and scheduled Task Flow Graph (AS-TFG)
is divided into several small partitions where the MINLP problems are easier to solve in [58].
After the optimal solution of each partition is found by solving the MINLP formulation, all the
local optimal solutions of all the partitions are integrated together and combined as nonlinear
programming (NLP) problem which tries to further optimize the total energy. In this way, a very
good approximate global optimum solution can then be obtained. The authors proposed a novel
Relaxation-based Iterative Rounding Algorithm (RIRA) to achieve minimum total energy con-
sumption for all tasks without violating the deadline constraint under three types of platforms,
i.e., dependent platform without runtime adjusting where all of the processors must operate at
a common frequency and the shared frequency cannot be adjusted during runtime after setting
the initial frequency, dependent platform with runtime adjusting where the initial frequency can
be adjusted during runtime, and independent platform where processors can operate at different
frequencies at any time and can adjust their execution frequencies independently in [34, 35, 59].
The initial task mapping problem is formulated as a binary integer problem, then relaxed to
be a convex optimization problem by relaxing the binary variables (such as xi,j , which denotes
task i is allocated to processor j) as continuous in [0, 1]. Iteratively, the current-to-be-scheduled
task is one by one allocated to the most possible processor which achieves highest xi,j obtained
by solving the convex optimization problem. By doing this, the proposed algorithm achieved
near-optimal scheduling under most cases. The studied problem is extended to dependent tasks
in [59]. After the task-to-processor allocation is achieved in a same way like above, the authors
developed a genetic algorithm to do task scheduling by searching voltage/frequency assignment
for both tasks and communications in the application.

Instead of assuming Worst-Case-Execution-Time (WCET) as used in most works, the task
execution time is modeled as a probabilistic random variable in [60]. Using a probabilistic ap-
proach can be applicable because the worst case assumption may not be practical in reality and
thus increases unnecessary cost. The authors studied heterogeneous assignment with probability
problem which is useful for both hard and soft real-time systems. Given the number of different
type of processors and an application modelled as a probabilistic data flow graph, the goal is to
find the proper type of processor for each task so that the total cost is minimized and deadline
constraint is met with a guaranteed confidence probability. The authors provided both optimal
solutions for the simple application case like a tree or simple path, and near-optimal solutions
for more general problems.

As said previously, when talking about energy (power) consumption, two parts are generally
considered: dynamic energy (power) consumption and static energy (power) consumption. As

43

Chapter 2 – Energy-Reliability-Time Multi-criteria Task Mapping Mechanisms in SoA

said previously, Dynamic Voltage and Frequency Scaling (DVFS) is a technique to reduce dy-
namic power consumption by reducing voltage and frequency of a processor. Static power (such
as leakage power) consumption cannot be ignored especially as the increasing of chip density
leads to dramatic increase of static power. Dynamic Power management (DPM) [25, 30] is ap-
plied to explore the idle time interval to reduce static power by switching the processor to a
lower power consuming mode like sleep mode. An energy-minimization problem is formulated
under deadline constraints by integrating DVFS and DPM in [25]. The authors proposed a tech-
nique to directly model the idle time intervals of processors so that DPM can be integrated into
the problem formulation. The optimal solution is obtained by solving a Mixed-Integer-Linear-
Programming (MILP) formulation problem with CPLEX solver tool.

In cloud computing, cost-minimization is a critical issue. The authors studied the problem
to decide the number of allocated processors, the type of each processor and task scheduling on
processors in order to minimize total costing with a given usage cost per time unit [61]. The
optimal solution is proposed by iterating through all possible configurations which caused a large
time complexity. A heuristic is proposed to reduce time complexity while keeping approximately
optimal solution by separately deciding processor type selection and task scheduling.

2.1.2 Task Mapping With Reliability Guarantee

For safety-critical applications, task reliable executions must be taken into account. Relia-
bility of an application is defined as the probability of executing an application without meeting
failure. Energy management and reliability enhancement have been jointly studied with the ad-
vent of DVFS technique. The authors investigated how frequency and voltage scaling effects on
the fault rate in [36]. Focusing on transient faults, two fault rate models are proposed based on
how voltage and frequency scaling changes the fault rate. The exponential fault rate model is
largely used in recent works when on transient faults and also used in this thesis. Based on the
exponential fault and an occurrence considering Poisson distribution, the reliability is given as
introduced in Section 1.5.2.

As depicted in equations 1.2 and 1.3 in Section 1.5.2, a higher frequency provides a higher
reliability for a task execution, while this will cause higher energy consumption. Energy saving
and reliability enhancement are two conflicting objectives as studied in [62, 63, 51]. The au-
thors in [62] studied the problem of energy consumption minimization of a reliable application
on heterogeneous systems without using fault tolerance. The problem is decomposed into two
sub-problems, i.e., satisfying reliability goal by transferring the reliability goal of the application
to the reliability of each task, and minimizing energy consumption by selecting the processor
with minimum energy consumption while satisfying its reliability requirement for each task. The
authors in [63] presented a workflow for the scheduling problem by jointly minimizing energy
consumption and maximizing system reliability which is a bi-objective problem under deadline

44

2.1. Task Mapping Targeting Energy Minimization

constraint. A genetic algorithm is developed to obtain a fine pareto front. The authors stud-
ied the problem of power consumption and reliability trade-off optimization on heterogeneous
multiprocessor systems with DVFS under schedule length and reliability constraints in [51]. A
heuristic-modified whale optimization algorithm [74] is proposed to search for solution of task-
to-processor mapping, and determine the task execution order on each processor by using a
downward-ranking heuristic. Tasks on critical path are rescheduled to reduce makespan without
increasing energy consumption and adjust the frequency to maintain high system reliability.

Applying high frequency can provide a high reliability for task executions while this also
lead to large energy consumption. To cope with this issue, fault tolerance is an effective way
to provide reliable execution which has been studied in recent researches. We briefly introduce
some typical approaches which provide fault-tolerance techniques introduced in Section 1.5.3.

Task Recovery Fault Tolerance

Executing the tasks at maximum platform frequency may lead to some time slack. Using
DVFS technique, the available time slack can be reserved to execute a recovery task (individ-
ual [41, 55] or shared [56, 26]) with the maximum frequency, to preserve reliability and remaining
time slack can be used to scaled down voltage and frequency for other tasks in order to save
energy. If an error is detected, the recovery task is called up. Task recovery is proposed to guar-
antee reliability requirement by exploring the slack time in application execution combined with
DVFS technique in [41, 55, 56, 26] with the goal to minimize energy consumption. Taking a
single task model (a set of aperiodic tasks) into account in [41], the authors studied the problem
how to use the given dynamic time slack to schedule an additional recovery task in order to
preserve its reliability for each task. Except the time slack used to schedule a recovery task,
the remaining slack can be used to save energy by reducing voltage and frequency assignment
to task execution. Instead of only considering one task at a time in [41] when allocating slack
to execute tasks, the authors considered all tasks are considered at same time when allocating
slack to individual tasks to guarantee the reliability target for each task in [55]. In these two
works, an individual recovery task for each task is scheduled which is quite conservative. Shared
recovery technique is applied where the recovery task(s) can be used for any task when it fails
its execution in [56, 26]. Generalized shared recovery mechanism is proposed in [56] where a
few number of recovery tasks are shared among all tasks to achieve system reliability target.
The authors solved the energy minimization problem for independent tasks by determining how
many recovery tasks are reserved and frequency-to-task assignment under reliability and dead-
line constraints. Dependent tasks are considered in [26], the authors addressed similar problem
as in [56] to find execution order of dependent tasks and their frequency assignment under task
deadline and precedence constraints so that the total energy consumption is minimized while
preserving system reliability requirement. Dependent tasks with common deadline in heteroge-

45

Chapter 2 – Energy-Reliability-Time Multi-criteria Task Mapping Mechanisms in SoA

neous systems is considered in the studied energy minimization problem under reliability and
global deadline constraints in [66]. The authors addressed the scheduling of energy-reliability
trade-offs for hard real-time applications on heterogeneous embedded systems in [67]. Given a
fixed number of transient faults and task-to-processor allocation, the proposed approach deter-
mined voltage scaling and start time of each task to minimize total energy consumption, while
satisfying the real-time and reliability constraints.

Among other works applying recovery technique to provide fault tolerance, the authors in
[64] presented an energy efficient quasi-static scheduling algorithm which consists of an offline
feasibility analysis and an online voltage scaling. The static slack in offline task scheduling and
dynamic slack due to variations in actual task execution time are both utilized to schedule
recovery tasks. Neither scheduling a separate recovery for each task nor shared recovery for all
tasks, the authors in [65] selected a subset of tasks to share the reserved resource to schedule
recovery tasks. Given a task set, it is partitioned into fault-unprotected task set which is executed
with highest frequency, and fault-protected task set with a scaled down frequency. Tasks in fault-
protected set share a reserved time slack to schedule a recovery task if a fault occurs.

Task Replication Fault Tolerance

Another effective fault tolerance technique is applying task replication. We introduce some
representative approaches, aiming at energy savings, which apply replication schemes to provide
fault-tolerance. Primary-backup is a passive replication to provide fault tolerance [69, 68, 46].
Traditionally primary-backup technique is used for promising fault tolerance in dual-processor
systems [69, 68]. Regarding minimizing energy consumption, the authors studied the energy
efficiency of dual-processor system in [68]. Two copies (primary and backup copies) of each task
are executed in different processors. One processor executes the primary copy and the other one
executes the backup copy. When the primary copy of the task is executed without fault, the
other processor stops executing the backup copy. Two power management schemes are applied
to reduce energy consumption: the first one is static power management which takes WCET into
account and schedules tasks in the offline fashion, the second one is dynamic power management
which utilizes the time slack between tasks’ actual execution time for further energy reduction at
runtime. Considering both homogeneous and heterogeneous dual-processor systems, the authors
applied a modified primary-backup technique to maintain reliability when DVFS is used to
reduce energy consumption in [69]. Rather than the pessimistic WCET assumption, the actual
execution time in practice can be less, so there can exist some available time slack which can be
used to save energy by scaling down voltage and frequency when executing tasks. A side effect
of reducing voltage is the increasing rate of transient faults, so extra copies are scheduled to
account for the loss of reliability due to frequency scaling.

In recent literature, active replication has attracted much attention. Replication has several

46

2.1. Task Mapping Targeting Energy Minimization

advantages as an energy efficient fault tolerant technique. First, by applying multiple replicas
for a task, the reliability requirement can be guaranteed especially when a task has very high
reliability threshold. In this case, replication is the only way to achieve the high reliability.
Second, it can explore the frequency space to execute some replicas at a low frequency to
save energy without sacrificing the reliability requirement using DVFS. Aiming at minimizing
total energy consumption, some researches compute the required number of replicas (also called
replication degree) to always meet reliability constraints [32, 45, 24, 70]. The authors in [32]
studied the problem of obtaining a given task level reliability for a set of independent tasks
under deadline constraints by deciding the number of replicas and frequency assignment for
each task. Heuristics are typically proposed, due to high computation complexity or NP-hard
problems. A first-fit decreasing heuristic is used to find the processor for each replicas in [32] and
Earliest-Deadline-First scheduling heuristic decides if the processor is fit for the replicas. The
replicas of a task are allocated to different processors at same frequency. Starting with initial
configuration where all replicas are executed at maximum frequency to get the initial static
mapping and scheduling for all tasks, if there exists available resource, an iterative procedure
is used by searching all possible configurations (i.e. the degree of replication and frequency
assignment) for each task. A dynamic scheduling and mapping is developed to further reduce
energy consumption by cancelling the other replicas when one replica is executed correctly.
In [45], the authors took [32] as the reference paper and improved the scheduling algorithm by
1) using a layered worst-fit decreasing heuristic which selects the least-loaded processor as a
fit for current scheduled task replicas, and 2) instead of allocating all replicas of a task before
moving to next task, the first replica of each task is allocated to the fit processor, and then the
second replica of each task (if it exists), and so on. Same problem as [32, 45] is studied except the
platform is heterogeneous in [70]. Due to the processor heterogeneity, it cannot be known how
many replicas are needed for a task to meet the reliability requirement before knowing the task-
to-processor allocation, because different processors in heterogeneous platforms have different
fault rate and frequency levels. So the way to calculate how many replicas needed like in [32, 45]
cannot be used. To tackle this, the authors in [70] assumed full replication where all processors
are added to schedule a replica for each task. Starting from computing the reliability by only
considering the first replica on first processor, if it does not meet reliability threshold, then a
replica is added. This is done iteratively still either the reliability threshold is met (replication
setting and allocation for this task is finished) or the added total processor number exceeds the
number of processors in the given platform (not feasible problem).

Dependent tasks are considered to be executed on heterogeneous systems with a system
reliability goal in [24]. The authors first proposed an energy efficient scheduling with reliability
goal without fault tolerance by deciding processor and frequency combinations of the tasks to
minimize total energy consumption under a system reliability constraint, which consists of three

47

Chapter 2 – Energy-Reliability-Time Multi-criteria Task Mapping Mechanisms in SoA

steps: prioritizing tasks, transferring system reliability goal to each task and reducing energy
consumption. Then an energy efficient fault tolerant scheduling is proposed by applying active
replication. It also include three steps where prioritizing tasks and transferring system reliability
goal to each task are same, while in the third step, the later scheduling algorithm selects multiple
processor and frequency combinations for the replicas of each task. This implies the replicas of
a same task are not necessary to be executed at same frequency.

However, the increased number of replicas leads to large energy consumption, combined with
a negative impact on execution time. When the real-time constraints are strict, solutions may
not exist. To reduce this negative impact, the number of replicas must be restricted. Duplication
is one kind of replication where at most two replicas of a task are executed (original copy and
duplication copy). In [44] a linear chain workflow is considered and the goal is to minimize total
energy consumption under timing constraints. Even though there is no reliability constraint, two
ideas are applied to guarantee reliable execution: 1) if an error strikes a task’s execution, this
task is re-executed at maximum frequency, and 2) some tasks are selected to be duplicated on
a different processor at same frequency to mitigate the effect of failures. A heuristic is proposed
to tackle the studied problem by determining which tasks to be duplicated and which frequency
to execute the tasks.

Optimization problems with multiple objectives are studied in [37]. Considering the objective
of minimizing total energy consumption, an Integer Linear Programming (ILP) approach maps
independent tasks on a heterogeneous platform to satisfy a given percentage target of duplicated
tasks, under a cost constraint where the number of processors are fixed. Then a heuristic algo-
rithm based on Earliest Deadline First (EDF) is proposed for the energy minimization problem
under cost, duplication percentage and deadline constraints.

In our published works [71, 72, 73] and this thesis (Prop.), duplication is applied as the fault
tolerance technique to provide reliable execution. Different from most SoA works where replicas
of a task are executed at the same frequency, we let the different replicas (original copy and
duplication copy) to be potentially executed at different frequencies which is more efficient to
manage energy consumption.

2.2 Task Mapping Targeting Reliability Maximization

As discussed in section 1.5.2, a high frequency can provide a high reliability for the task
execution, and indeed this approach is employed a lot especially in safety-critical domains.
Nowadays replication is also utilized a lot as an effective reliability management technique. Let
assume that the reliability of the execution of a task 0.9 and the task is executed with three
replicas. This task will fail its execution only if all three replicas fail their execution, which has
a probability of (1− 0.9)3. The reliability considering the three replicas is 1− (1− 0.9)3 = 0.999

48

2.2. Task Mapping Targeting Reliability Maximization

which is largely increased. Regarding reliability enhancement, except the works introduced in
Section 2.1, this section introduces approaches aim at maximizing reliability under timing, energy
budget and/or reliability requirements, summarized in Table 2.2.

2.2.1 Task Mapping Without Fault Tolerance

Some approaches without fault tolerance map only original tasks [75, 76, 77]. In [75] the
authors studied the problem of deciding frequency assignment to a set of tasks on uni-processor
with the goal of maximizing overall reliability under given energy budget and global deadline
constraints. First an optimal static solution is provided under the assumption that all tasks are
executed with worst-case workload. Then by detecting if there exists early completion in actual
execution at runtime, the frequencies can be adjusted to improve all reliability by making best
use of the total energy budget. A bi-objective scheduling algorithm is proposed to optimize both
reliability and schedule length on heterogeneous systems in [76]. To maximize the reliability, the
problem is built with independent unitary tasks under a given makespan. DVFS technique is not
supported in this work. The optimal solution is provided by deciding task-to-processor allocation.
For the bi-objective optimization, the authors proposed an algorithm that approximated the
Pareto-curve. Similarly, in [77], the reliability maximization is studied under global deadline
and energy budget, including communication energy cost. The authors proposed a three-step
reliability management algorithm, namely, prioritizing tasks, allocating communication edges
and reclaiming time slack.

2.2.2 Task Mapping With Fault Tolerance

Some approaches with fault tolerance aiming at maximizing reliability are studied in [78, 79]
where replication is applied and [80, 14] where both permanent and transient faults are con-
sidered. In [78] the authors presented a replication-based scheduling for maximizing system
reliability while meeting reliability threshold for each task. The reliability model includes com-
munication reliability. A two-step heuristic is proposed by deciding the number of replicas for
each task. Redundancy Multithreading (RMT) is a prominent technique to mitigate transient
faults. In [79] a combination use of Simultaneous Redundant Threading (SRT) in which running

Table 2.2: Representative State-of-the-Art approaches targeting reliability maximization.

Ref. Goal Task Platform Fault tol. Constraints Sol.
mR I D HO HE S Rec Rep RT EB R F O

[75]
√ √ √ √ √ √ √

[76]
√

(
√

)
√ √ √ √

(
√

)
[77]

√ √ √ √ √ √

[78]
√ √ √ √ √ √

[79]
√ √ √ √ √

[80, 14]
√ √ √ √ √ √ √

49

Chapter 2 – Energy-Reliability-Time Multi-criteria Task Mapping Mechanisms in SoA

all replicas on the same processor and Chip-level Redundant Multithreading (CRT) in which
replicas are executed on different processors is utilized to provide fault tolerance, which also
provides additional choices for balancing the usage of cores and for optimizing reliability.

Other approaches jointly considered transient faults and permanent faults in reliability opti-
mization [80, 14]: Soft-Error Reliability (SER) related to transient faults and lifetime reliability
(measured in form of mean time to failure, MTTF) related to permanent faults. Given energy
budget and global deadline constraints, the objective in [80] is to jointly maximize lifetime
(MTTF) and soft-error reliability by determining what tasks to be replicated, task-to-processor
allocation and when to start time. Task replication is adopted to tolerate transient faults as well
as to limit the execution of too many tasks which has a negative effect on processor aging. Similar
problem is studied in [14] in which the number of replicas of each task is given while satisfying
energy budget, global deadline and task dependency constraints. An evolutionary algorithm is
proposed to find solutions to the multi-objective optimization problem.

2.3 Task Mapping Targeting Schedule-Length Minimization

Schedule length is an important performance metric in computationally intensive comput-
ing systems which can support execution of several applications. These systems need effective
utilization of the limited resources such that applications can be completed as early as possible.
Table 2.3 summarizes these approaches.

2.3.1 Task Mapping Without Fault Tolerance

Regarding minimizing schedule length without taking fault tolerance into account, some
works have proposed several heuristics for similar problems: 1) heterogeneous earliest finish
time algorithm and the critical path on a processor algorithm when there is a bounded number
of heterogeneous processors [81], 2) cluster-based task scheduling algorithm where tasks are
clustered to minimize the worst schedule length when there is a large number of heterogeneous
processors [82], and 3) partitioning and scheduling algorithm which focuses on maximizing the

Table 2.3: Representative State-of-the-Art approaches targeting schedule-length minimization.

Ref. Goal Task Platform Fault tol. Constraints Sol.
mS I D HO HE S Rec Rep RT EB R F O

[81]
√ √ √ √

[82]
√ √ √ √

[83]
√ √ √ √

[18]
√ √ √ √

[84]
√ √ √ √ √ √

[85, 86]
√ √ √ √

[47]
√ √ √ √

(
√

)
√

[87]
√ √ √ √ √ √ √ √

[88]
√ √ √ √ √ √

50

2.3. Task Mapping Targeting Schedule-Length Minimization

overall completion time of the critical path [83]. In [18] the authors built a rule-based model
to maximize the parallelism of DAG task graph first, then a scheduling method is proposed
by ordering tasks in three sequences 1) critical path, 2) early predecessors path of the critical
path, and 3) longer paths to reduce the schedule length. In [84], the authors addressed the
problem of finding a proper processor and frequency for each task to generate minimum schedule
length under energy budget and global deadline constraints. The proposed algorithm suggested
a weighted-based mechanism to pre-assign energy consumption for unscheduled tasks and then
transfer all processor and frequency combinations to select the best combination for each task.

We have introduced task duplication is an effective technique to tolerate fault occurrence as
well as to provide reliability guarantee in Section 2.1. Task replication may also be an efficient way
to improve performance when scheduling parallel tasks with dependency constraints normally
presented in the form of Directed Acyclic Graph (DAG). We focus on such approaches here.
In [47], granularity is defined as the ratio of the sum of the slowest commutation times of each
task to the sum of the slowest communication times along each edge. It is called coarse grain,
if a task graph has a granularity equal or larger than 1, otherwise it is called fine grain. For
fine grain DAG tasks, unnecessary communication delays occur when a task has its predecessors
on different processors. By applying task duplication, the unnecessary communication delays
can be eliminated, thereby reducing the overall completion time of the application. Regarding
minimizing schedule length, task duplication based technique is considered in [86, 85]. The
objective is to assign a set of dependent tasks to different processors such that all tasks can finish
execution as soon as possible. Task duplication-based clustering algorithm is proposed in [85] to
generate initial task clusters. Task duplication is adopted when a task’s critical predecessor is
not on the same processor. A duplication copy of this critical predecessor is added on the same
processor of the current task. New clusters are merged to further shorten the schedule length.
In [86] the goal is to minimize both schedule length and energy consumption. The authors
proposed two duplication-based algorithms. According to the decision to select which tasks to
be duplicate, one algorithm selects the tasks to be duplicated when the schedule length can be
shortened while the energy increase is within a given threshold. The other algorithm defines a
ration as the division of energy saving and schedule length reduction. A task is selected to be
duplicated if its ration value is within a given threshold.

2.3.2 Task Mapping With Fault Tolerance

Regarding minimizing schedule length with fault tolerance, task replication is applied in [47,
87, 88]. A task mapping and scheduling algorithm which adopts full replication is proposed
in [47] under a given number ε of failures when dependent tasks and heterogeneous platform
are considered. Each task is executed with ε + 1 copies and each copy is allocated to different
processor. After determining the task priority, the first ε + 1 processors with minimum finish

51

Chapter 2 – Energy-Reliability-Time Multi-criteria Task Mapping Mechanisms in SoA

time are selected to executed these ε+ 1 copies for the current scheduled task. Then a variant of
the proposed algorithm is designed to reduce the communication cost induced by the replication
mechanism. The authors in [87] addressed the problem of mapping a set of DAG tasks onto
multicore heterogeneous platforms such that total execution time is minimized under power
consumption, failure rate and temperature constraints. Based on list scheduling where the list
of tasks is ordered in a fixed order, which can be determined e.g. by the priority of executing
the tasks, a heuristic is proposed by applying active replication and DVFS to trade off failure
rate and the number of replicas. Besides, the optimal scheduling is obtained using Integer Linear
Programming (ILP) and solved by CPLEX solver. In [88] the authors studied the problem of
makespan optimization jointly considering reliability, temperature and stochastic characteristics
of precedence-constrained tasks. An affinity (probability)-driven task allocation and scheduling
approach is proposed and a heuristic is designed by assigning a task to the processor with highest
affinity (i.e., most possible processor to execute the task).

2.4 Limitations of SoA Task Mapping Approaches

Although both reliability and energy management have been extensively (but often indepen-
dently) studied, their co-management has been addressed only recently as in some SoA works
presented in Section 2.1 and Section 2.2. Without particularly considering multi-objective ap-
proaches, the main limitations can be summarized as below:

1. Task mapping without fault tolerance: Without providing fault tolerance, one category
of such approaches focuses on meeting the reliability requirements, considering only original
tasks (and thus, no duplication) [62, 51]. However, these methods usually assign high fre-
quencies to tasks, which it does not only cause large energy consumption, but it also may not
always satisfy the reliability constraints, even with the highest processor frequency.

2. Recovery task executed at maximum frequency: Many approaches have applied task re-
covery to provide fault tolerance [41, 55, 56, 26, 66, 67, 64], where the recovery task(s) are
normally executed at maximum frequency. First, the negative effect is energy consumption
at maximum frequency. Furthermore, these works assume there is a fixed number of faults.
An energy and reliability trade-off to tolerate the given number of faults is then searched
[67] which is less practical. Furthermore, some works considered quite simple systems like
uni-processor platforms [64] rather than multi-processors platforms.

3. Task replication: Task replication, which is also the technique we have considered in this
PhD thesis, can be applied to provide fault tolerance. Full replication where each task of the
application is replicated on multiple different processors, such as in [32, 47], leads to large
energy consumption, combined with a negative impact on the execution time because the
end-times of tasks are delayed, due to the execution of task replicas. One way to cope with

52

2.4. Limitations of SoA Task Mapping Approaches

this issue is to do partial task replication. In this case, not all the tasks in the task set but only
a part of the task set is selected to do replication on different processors. In [78, 24], partial
replication is performed with heuristics without considering timing constraints. In [32, 45], it
is assumed all replicas of a task are executed at the same frequency, leading once again to a
high energy consumption.

Considering the above limitations, in this thesis we apply task replication as the fault toler-
ance technique to decide the execution behavior of the application on multicore architectures.
Partial replication is studied where we decide which tasks from the task set to be duplicated in
order to not cause large energy consumption due to the execution of task replicas. The proposed
approach is expected to be a good trade-off between reliability, energy consumption, and real
time constraint, compared to no duplication with high frequency to meet reliability, thus leading
to a large energy consumption or duplication of every task where real time constraint is difficult
to satisfy with strict deadlines. Furthermore, we target three DVFS schemes implemented in
recent multicore platforms or proposed in recent researches to manage energy consumption. To
evaluate the performance of our proposed techniques, we have done a large set of experiments
to compare the results of the proposed approach with the task mapping approach when fault
tolerance technique is not applied and with the approach when full replication is used.

53

Chapter 3

ENERGY EFFICIENT FAULT TOLERANT

TASK MAPPING WITH OPTIMAL

SOLUTIONS

In this chapter, we introduce the task mapping problem of minimizing total energy consump-
tion under real-time and reliability requirement constraints and provide the means to obtain
optimal solutions. Firstly, a motivation example is given in section 3.1 to explain how the du-
plication technique can provide a trade-off between energy savings and reliability enhancement.
In section 3.2, we describe the studied problem for independent tasks, while section 3.3 extends
the problem to dependent tasks, under three DVFS schemes providing optimal solutions. Ex-
perimental results are presented in sections 3.2.4 and 3.3.4, showing that the proposed approach
outperforms two SoA approaches used to solve the studied problems with optimal solutions.

3.1 Motivation Example

Initially, we show the benefits of the proposed Reliability-aware Fault-tolerant Task Mapping
(RAFTM) approach through a motivational example. We consider a simple case with a single
task only, under the TL-DVFS scheme, having Worst Case execution Cycles equal to W =
4× 108, a reliability threshold equal to 0.9995 and the first five voltage/frequency levels of the
platform used in the experiment section (Table 3.3). Table 3.1 depicts the possible solutions
(Sol.), with the selected voltage/frequency level (f) 1 2, reliability (R), execution time (t), and
energy consumption (E = Pl × t). Columns f1-f5 corresponds to the execution of only the
original task at frequency fi (i.e., no duplication), while columns f1/f1-f5/f5 corresponds to the
execution of both the original and its replica at frequencies fi and fj respectively.

Table 3.1.a enumerates all feasible solutions found by a particular approach and that sat-
isfy only the reliability constraint, order with increasing execution time, for i) the proposed

1. To ease the presentation, in the rest of the document we will talk about frequency levels or more generally
about frequency adjusting. However voltage and/or frequency adjusting are both concerned.

2. In Table 3.1, fi are ordered in increasing voltage/frequency values (f1 is the level with lowest voltage and
frequency, f5 is the level with highest voltage and frequency)

55

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

Table 3.1: Motivational Example. (*Optimal solutions are highlighted in bold).

Sol. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
f f1 f2 f3 f4 f5 f1/f1 f1/f2 f1/f3 f1/f4 f1/f5
R 0.9753 0.9964 0.9994 0.9999 ∼1 0.9994 0.9999 ∼1 ∼1 ∼1
t 0.4994 0.4825 0.4677 0.4547 0.4431 0.9988 0.9818 0.9671 0.9541 0.9425
E 2.1169 2.7905 3.6959 4.926 6.6141 4.2338 4.9074 5.8128 7.0429 8.731
Sol. S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
f f2/f2 f2/f3 f2/f4 f2/f5 f3/f3 f3/f4 f3/f5 f4/f4 f4/f5 f5/f5
R ∼1 ∼1 ∼1 ∼1 ∼1 ∼1 ∼1 ∼1 ∼1 ∼1
t 0.9649 0.9501 0.9372 0.9256 0.9353 0.9224 0.9108 0.9094 0.8978 0.8862
E 5.581 6.4864 7.7165 9.4046 7.3918 8.6219 10.31 9.852 11.5401 13.2282

a) Feasible solutions of three approaches under reliability constraint only
RAFTM S5,S4,S20,S19,S18,S17,S16,S14,S15,S13,S10,S12,S9,S11,S8,S7
RAM S5,S4
TDM S20,S19,S18,S17,S16,S14,S15,S13,S10,S12,S9,S11,S8,S7

b) Feasible and optimal* solutions under reliability and deadline constraints
D [0,0.4431) [0.4431, 0.4547) [0.4547, 0.8862) [0.8862, 0.8978) [0.9818, -)

RAFTM - S5 S5,S4 S4-S5,S20 S4-S5,S7-S20
RAM - S5 S5,S4 S5,S4 S5,S4
TDM - - - S20 S7-S20

approach (RAFTM), ii) the Reliability-Aware Mapping (RAM) approach, which satisfies the
reliability constraint without any task duplication, and iii) the Task Duplication Mapping ap-
proach (TDM), always performing task duplication (more details about RAFTM and TDM are
given in the experimental section).

Table 3.1.b explores how the deadline constraint (D) affects the feasible and optimal so-
lutions. For instance, when 0.8862 ≤ D < 0.8978, S4 is the optimal solution. The proposed
approach can find the solutions {S4-S5,S20} including the optimal solution. RAM obtains the
solutions {S4,S5}, also including S4. However, for TDM, only one solution is feasible, i.e., S20,
while for more strict deadlines no solution is found. Therefore, in this case, full replication based
approaches, such as TDM, are not able to find optimal solutions, due to too strict deadline con-
straints, even for only a single task. For more relaxed deadlines, when 0.9818 ≤ D, the proposed
approach can find the solutions {S4-S5,S7-S20}, where S7 is the optimal solution. TDM obtains
the solutions {S7-S20}, also including the optimal solution. However, RAM obtains the solutions
{S5,S4}, i.e., without the optimal solution.

Therefore, reliable original execution based approaches, such as RAM, cannot exploit energy
efficient solutions due to no task duplication, leading to higher energy consumption. Full dupli-
cation approaches, such as TDM, do duplication for every task which may also lead to larger
energy consumption and fail to find solutions especially at strict deadlines. In our work, the
proposed RAFTM approach exploits the benefits of the aforementioned methods by applying
partial task duplication where some of the tasks are selected to do duplication, whenever it is
advantageous.

56

3.2. Task Mapping Problem for Independent Tasks

3.2 Task Mapping Problem for Independent Tasks

To simplify the problem, we first target independent tasks. The goal is to minimize the
total energy consumption of the system, subject to a set of reliability and real-time constraints.
To achieve that, we decide: 1) frequency assignment of original and duplicated tasks (s); 2)
duplication of original tasks (σ); 3) allocation of original tasks and duplicated tasks (q, d). The
following paragraphs describe the constraints and objective function in the studied problem.

3.2.1 System Model

Based on Chapter 1, we first briefly introduce the task model, power consumption model and
reliability model. Table 3.2 summarizes the main notations and their definitions. For the sake of
thesis presentation, when original and duplicated tasks must be distinguished in mathematical
formulations, the subscript k ∈ {o, d} indicates the original task (o) or the duplicated task (d).
If no subscript exists, the mathematical formulation is valid for both.
Task Model: We consider a set of N independent tasks, i.e., {τ1, . . . , τN}. Each task τi is
measured in Worst Case Execution Cycles (WCEC) Wi. All tasks must be executed before a
common deadline D, which is the scheduling period. No preemption occurs between different
tasks executed on the same processor. Without loss of generality, in the rest of the paper, the
release times of all tasks are considered at the start of the scheduling period. Rthi denotes the
reliability threshold of task τi. Each task has its own reliability constraint, since functions of an
application exhibit distinct significance and/or vulnerabilities, due to variations in the spatial
and temporal vulnerabilities of different instructions [89].
Platform and Power Model: A multicore platform is considered with M homogeneous pro-
cessors, i.e., {θ1, . . . , θM}. The multicore platform can support three DVFS schemes introduced
in Section 1.3, i.e., i) task-level DVFS (TL-DVFS), ii) processor-level DVFS (PL-DVFS), and iii)
system level DVFS (SL-DVFS). For each core, there are L different Voltage/Frequency (V/F)
pairs {(v1, f1), . . . , (vL, fL)}. When task τi is assigned with frequency fl, its execution time is
calculated as eti = Wi

fl
. For each processor θm, the power consumption introduced in Section 1.4

is modeled as the sum of static power P stal and dynamic power P dynl , i.e., Pl = P stal + P dynl .
The dynamic power consumption with V/F level (vl, fl) is given by P dynl = Ceffv

2
l fl, which is

a common used model assuming that frequency and voltage scaling have a linear relation.
Fault Model and Reliability: We focus on soft errors that follow a Poisson Distribution with
fault rate λ(f) at frequency f introduced in Section 1.5.2, modeled as λ(f) = λ0× 10d

fmax−f
fmax−fmin ,

and the reliability of an original task at frequency fl is given by Roi (fl) = e−ϕi(fl), where
ϕi(fl) = λ(fl)×etoi . If the reliability of original task τi is larger than its reliability constraint, the
execution is considered as reliable, and, thus, the reliability of τi (donated as Ri) is not modified,
i.e., Ri = Roi . Otherwise, the task τi is duplicated and the duplication task (also called replica)

57

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

Parameters Definitions

M {1, . . . ,M}, with M number of processors
N {1, . . . , N}, with N number of tasks
L {1, . . . , L}, with L number of voltage/frequency levels
Wi WCEC of task τi
D global deadline
τoi /τ

d
i the original/duplication copy of task τi

(vl, fl) the lth voltage/frequency level
Rthi reliability threshold of task τi
Roi reliability of original copy of task τi
Rdi reliability of duplication copy of task τi
etoi execution time of original copy of task τi
etdi execution time of duplication copy of task τi
Binary Variables Definitions

σi = 1 if task τi is duplicated, else σi = 0
qim = 1 if τoi executes on processor θm, else qim = 0
dim = 1 if τdi executes on processor θm, else dim = 0
TL-DVFS: sil = 1, if original task of τi executes with fl, else sil = 0

cil = 1, if duplication task of τi executes with fl, else cil = 0
PL-DVFS: sml = 1, if processor θm executes with fl, else sml = 0
SL-DVFS: sl = 1, if system executes with fl, else sl = 0

Table 3.2: Main Notations

is executed on a different processor and the reliability of τi becomes Ri = 1− [1−Roi][1−Rdi],
where Rdi is the reliability of duplication task of τi.

3.2.2 Problem Constraints

Frequency Assignment

We consider the three DVFS schemes introduced in Section 1.3. The frequency assignment
constraints for TL-DVFS, PL-DVFS and SL-DVFS schemes are given below:

1. Frequency assignment under TL-DVFS: Under TL-DVFS, the platform applies DVFS
per task, and each task can only be assigned with one frequency level:

∑
l∈L

sil = 1, ∀i ∈N , (3.1)

∑
l∈L

cil = σi, ∀i ∈N . (3.2)

2. Frequency assignment under PL-DVFS: When the platform supports PL-DVFS, each
processor can have a single frequency level and the tasks assigned to the processor are

58

3.2. Task Mapping Problem for Independent Tasks

executed with the same frequency:

∑
l∈L

sml = 1, ∀m ∈M , (3.3)

3. Frequency assignment under SL-DVFS: When the platform supports SL-DVFS, all pro-
cessors are assigned with the same frequency:

∑
l∈L

sl = 1. (3.4)

Task Duplication Decision

We assume a task is executed successfully if at least one replica is executed without faults [24,
32, 44, 70]. Different replicas of a task are executed on different processors, having a higher
probability of correct execution. If all replicas are executed on the same processor and the
processor faulty, no execution manages to be correct.

Since all tasks need to be executed with original copy, then σi = 1 when 1 ≤ i ≤ N . If
0 < Roi ≤ Rthi , the task needs to be duplicated, σN+i = 1, else (i.e., ri > Rthi), only the original
task is executed, thus, σN+i = 0. In order to describe this behaviour, the following Lemma is
introduced.

Lemma 1. Let x and y denote two discrete variables where 0 < xmin ≤ x ≤ xmax ≤ 1 and
0 < ymin ≤ y ≤ ymax ≤ 1. Let c denote a binary variable. Given the determination i) if
0 < x ≤ y, c = 1, and ii) if x > y, c = 0, we have δ − (1 + δ)c ≤ x − y ≤ 1 − c, where δ is
positive small value.

Proof. Let C1 : δ − (1 + δ)c ≤ x − y and C2 : x − y ≤ 1 − c. i) If x < y, then x − y < 0. For
C1, c must be 1. For C2, c can be either 0 or 1. To satisfy C1 and C2 at the same time, we have
c = 1. If x = y, for C1, c must be 1 due to x− y = 0 and δ > 0. For C2, c can be either 0 or 1.
Similarly, we obtain c = 1. ii) If x > y, for C1, c can be either 0 or 1. However, c must be 0 in
C2 due to x− y > 0. Hence, c must be 0 if x > y.

for instance, considering TL-DVFS scheme, since there are L pairs of voltage/frequency, for
the values of task Roi , potentially we have Roi ∈ {e−ϕi(f1), . . . , e−ϕi(fL)}. According to Lemma 1,
the relationship between Ri(fl), Rthi and σi is linearized as follows:

δi − (1 + δi)σN+i ≤
∑

l∈L
sile
−ϕi(fl) −Rthi ≤ 1− σN+i, ∀i ∈N . (3.5)

Similarly, for PL-DVFS and SL-DVFS schemes, the duplication decisions are formulated as:

δi − (1 + δi)σN+i ≤
∑

m∈M
qim

(∑
l∈L

sml
)
e−ϕi(fl) −Rthi ≤ 1− σN+i, ∀i ∈N . (3.6)

59

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

δi − (1 + δi)σN+i ≤
∑

l∈L
sle
−ϕi(fl) −Rthi ≤ 1− σN+i, ∀i ∈N . (3.7)

Task Allocation

We do not consider task migration in this work. For each task τi, it is executed on one
processor: ∑

m∈M
qim = σi, ∀i ∈N . (3.8)

If a task is duplicated, the original and its replica are allocated on different processors [44, 24]:

∑
m∈M

dim = σi, ∀i ∈N , (3.9)

qim + dim ≤ 1, ∀i ∈N , ∀m ∈M . (3.10)

Real-Time Requirement

Tasks (original and duplicated) assigned on processor θm should be executed within a com-
mon deadline D, thus

∑
i∈N

qimet
o
i +

∑
i∈N

dimet
d
i ≤ D, ∀m ∈M , (3.11)

3.2.3 Objective Function and Problem Formulation

In this work, the objective function is related to the energy consumption of tasks’ execution.
We first present in details the problem forumaltion for the TL-DVFS scheme, and then extend
to the PL-DVFS and SL-DVFS schemes.

TL-DVFS scheme

Considering TL-DVFS scheme, the energy consumption of task τi (original and duplicated)
is Ei =

∑
l∈L silPl

Wi
fl
, so the total system energy consumption is

Es =
∑

i∈N

(∑
l∈L

sil
Wi

fl
Pl

)
, (3.12)

Based on the objective function and the aforementioned problem constraints, the Primal

60

3.2. Task Mapping Problem for Independent Tasks

Problem (PP−TL) considering TL-DVFS is formulated as

PP-TL : min
s,c,q,σ,d

∑
i∈N

(∑
l∈L

sil
Wi

fl
Pl

)
(3.13)

s.t.

 (3.1), (3.2), (3.5), (3.8), (3.9), (3.10), (3.11)

sil, cil, qim, σi, dim ∈ {0, 1}, ∀i ∈N , ∀m ∈M , ∀l ∈ L.

Since the nonlinear items exist in Equation (3.11) (i.e., qimetoi and dimetdi), PP−TL is an
Integer Non-linear Programming (INLP) problem, which is difficult to solve optimally. In order
to find the optimal solution, as well as to simplify the structure of the problem, we equivalently
transform PP−TL to an MILP problem. By applying variable replacement method, the
nonlinear variable combinations are replaced equivalently by an MILP formulation. First, we
observe that sil ∈ {0, 1} andWi is large enough, one cycle has a negligible impact on the solution.
Thus, etoi and etdi can be relaxed to the continuous variables: 0 ≤ etoi =

∑
l∈L sil

Wi
fl
≤ Ti and

0 ≤ etdi =
∑
l∈L cil

Wi
fl
≤ Ti, where Ti = Wi

fmin
. To linearize qimetoi and dimetdi , we introduce the

following lemma:

Lemma 2. Given two positive constants s1 and s2, there are two constraint spaces P1 =
{[t, b, x]|t = bx,−s1 ≤ x ≤ s2, b ∈ {0, 1}} and P2 = {[t, b, x]| − bs1 ≤ t ≤ bs2, t+ bs1 − x− s1 ≤
0, t− bs2 − x+ s2 ≥ 0, b ∈ {0, 1}}, then P1
 P2.

Proof. i) P1 ⇀ P2 : According to t = bx and −s1 ≤ x ≤ s2, then −bs1 ≤ t ≤ bs2. Based on
−s1 ≤ x ≤ s2 and b ∈ {0, 1}, then (b − 1)(x − s2) ≥ 0 and (b − 1)(x + s1) ≤ 0. Therefore,
t − bs2 − x + s2 ≥ 0 and t + bs1 − x − s1 ≤ 0 hold. ii) P1 ↼ P2 : When b = 0, t = 0 and
−s1 ≤ x ≤ s2 according to P2 space definition. When b = 1, then −s1 ≤ t = x ≤ s2 from P2.
Thus, P1
 P2.

Based on Lemma 2, the continuous variables αim = qimet
o
i and βim = dimet

d
i are introduced,

and Equation (3.11) can be replaced by:

∑
i∈N

αim +
∑

i∈N
βim ≤ D, ∀m ∈M , (3.14a)

− Tiqim + αim ≤ 0, −etoi + αim ≤ 0, Tiqim + etoi − αim ≤ Ti,

∀i ∈N , ∀m ∈M , (3.14b)

− Tidim + βim ≤ 0, −etdi + βim ≤ 0, Tidim + etdi − βim ≤ Ti,

∀i ∈N , ∀m ∈M . (3.14c)

61

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

Therefore, the primal problem (3.13) is equally reformulated as follows:

RAFTM-TL : min
s,c,q,d,σ,β,

eto,etd

∑
i∈N

∑
l∈L

Pl
Wi

fl
(sil + cil) (3.15)

s.t.

(3.1), (3.2), (3.5), (3.8), (3.9), (3.10), (3.14a), (3.14b), (3.14c)

−
∑

l∈L
Wi

fl
sil + etoi = 0, ∀i ∈N ,

−
∑

l∈L
Wi

fl
cil + etdi = 0, ∀i ∈N ,

sil, cil, qim, dim, σim, βim ∈ {0, 1}.

0 ≤ etoi , etdi , αim, βim ≤ Ti, ∀i ∈N , ∀m ∈M , ∀l ∈ L.

Since all the variables (binary and continuous) are coupled linearly with each other, RAFTM−TL
is an MILP problem.

Extension to PL-DVFS and SL-DVFS schemes

When supporting PL-DVFS and SL-DVFS schemes, the total energy consumption is given
by

Es =
∑

i∈N

[∑
m∈M

qim

(∑
l∈L

sml
Wi

fl
Pl

)
, (3.16)

Es =
∑

i∈N

(∑
l∈L

sl
Wi

fl
Pl

)
+
∑

i∈N

(∑
l∈L

σisl
Wi

fl
Pl

)
, (3.17)

Then, the studied problems under PL-DVFS and SL-DVFS are formulated as:

PP-PL : min
s,q,d,σ

∑
i∈N

[∑
m∈M

qim

(∑
l∈L

sml
Wi

fl
Pl

)

+
∑

m∈M
dim

(∑
l∈L

sml
Wi

fl
Pl

)]
(3.18)

s.t.

 (3.3), (3.6), (3.8), (3.9), (3.10), (3.11)

sml, qim, dim, σi ∈ {0, 1}, ∀i ∈N , ∀m ∈M , ∀l ∈ L.

PP-SL : min
s,q,d,σ

∑
i∈N

(∑
l∈L

sl
Wi

fl
Pl

)
+
∑

i∈N

(∑
l∈L

σisl
Wi

fl
Pl

)
(3.19)

s.t.

 (3.4), (3.7), (3.8), (3.9), (3.10), (3.11)

sl, qim, dim, σi ∈ {0, 1}, ∀i ∈N , ∀m ∈M , ∀l ∈ L.

62

3.2. Task Mapping Problem for Independent Tasks

PP−PL and PP− SL are INLP problems. Similarly we can apply the variable replace-
ment method explained above to safely and equivalently transfer into MILP forms. We do not
repeat the process here. Except the notations introduced in Table 3.2, the extra notations used
in this part are summarized in Table 3.10.

3.2.4 Evaluation

The aim of this section is to compare the proposed optimal task mapping approach (O_RAFTM)
with existing task mapping approaches and explore the impact that different DVFS schemes may
have in the task mapping decisions. The experiments are based on simulations, where at each ex-
perimental set-up the same platform and power model are used, in order to compare the quality
of the obtained results among TL-DVFS, PL-DVFS and SL-DVFS schemes. Since the studied
problems are formulated as MILP problems, they can be solved using optimization solver tools
like CPLEX and Gurobi.

Experimental set-up

Regarding the DVFS, L = 6 voltage/frequency levels are used, based on the work of [90] con-
sidering 64 nm technology, as depicted in Table 3.3. To obtain realistic inputs for our experiments
regarding the WCEC of the tasks, we count the execution cycles and Memory Accesses (MA)
of common benchmarks from MiBench suite [91], using Comet simulator, which is based on a a
high-level C++ model with 32-bit RISC-V ISA and standard 5-stage pipeline [92]. The sources
of timing variability are eliminated to obtain safe and context-independent measurement [93]
without interferences (WCECiso). Then, the WCECinf , considering worst case interferences from
the other processors, is computed. As the contribution of this paper is not WCET estimation,
a trivial pessimistic approach is applied: all processors may conflict during a memory access.
Thus, the interference cost is given by (M-1)*MA*Main_Memory_Access_Delay (Table 3.3).

The proposed approach (O_RAFTM) is compared to two SoA approaches which also pro-
vide optimal solutions: i) the Reliability-Aware Mapping (O_RAM) approach, similar to [62]
and “ESRG” algorithm in [24], and ii) the Duplication Mapping approach (O_TDM), always
performing task duplication, similar to [32, 24], when the number of replicas is two, or to [37],
with 100% task duplication. O_RAM is the typical way to meet the required reliability without
replication by adjusting frequency and/or voltage to meet reliability. From a fault tolerant point
of view, O_TDM is a very good approach since it always duplicate the tasks.

A large and diverse set of experiments is performed, by tuning:

1. Number of processors (M = 2, 4).

2. Size of task set (N = 10, 20).

63

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

Table 3.3: Platform and benchmark characteristics

l f1 f2 f3 f4 f5 f6

fl (GHz) 0.801 0.8291 0.8553 0.8797 0.9027 1.0
vl (V) 0.85 0.90 0.95 1.00 1.05 1.1
Ceff 7.3249 8.6126 10.238 12.315 14.998 18.497

Main Memory Access Delay 200 cycles

Benchmark MA WCECiso
WCECinf

M = 2 M = 4
matmul (int) 371,957 3,313,958 77,705,358 226,488,158
matmul (int64) 507,133 4,055,289 78,446,689 308,335,089
qsort (int) 184,089 875,616 75,267,016 111,329,016
qsort (int64) 259,553 1,219,854 75,611,254 156,951,654
qsort (float) 185,437 1,745,122 76,136,522 113,007,322
dijkstra 117,151 766,369 75,157,769 71,056,969
blowfish 110,330 3,058,991 77,450,391 69,256,991
stringsearch 597,608 13,093,544 87,484,944 371,658,344
WCEC W [1×108, 4× 108]
Rth [0.999, 0.9995]
λ0, d 5×10−5, 3

3. Platform DVFS scheme (from flexible TL-DVFS to more restricted PL-DVFS and SL-
DVFS).

4. Average failure rate (λ0 = 5 × 10−5 faults/sec) with a failure rate constant (d0 = 3) of
processor fault model [36].

5. For each experiment, the characteristics of a task are summarized in Table 3.3:

— WCEC: Based on WCECinf (Table 3.3), the WCEC of each task is selected within the
range [1 × 108, 4 × 108], incorporating the time overhead for frequency (and supply
voltage) changes (e.g., 10–150 µs [66, 94]) and the sanity checks at the end of a
task [32].

— Reliability threshold Rthi : Selected within the range [0.9990, 0.9995], considering a
typical magnitude 10−3 for reliability target [32]. Such a reliability target for a task
is inline with safety standards, such as ISO 26262 for automotive systems, DO-178B
for avionics systems and IEC 61508 for industrial software systems [62, 24].

— Global deadline D (from strict D to more relaxed ones, using D = k× N
M ×

1
2(Cmax

fmin
+

Cmax
fmax

), with a step of 0.1 for N = 10 and 0.2 for N = 20 by adjusting k).

Note that the above numbers provide only specific values to problem parameters for exper-
iments, without affecting the problem structure. The approaches are implemented and solved
with Gurobi 9.0.2 (MILP solver) on several servers, as hundreds of experiments took place.

To evaluate the behavior of the proposed approach, we compute:

1. Feasibility, i.e., the number of experiments where a solution is found out of the total
number of experiments (NE), in each set-up.

64

3.2. Task Mapping Problem for Independent Tasks

2. Energy Consumption (EC) in mJ of the solutions provided by each approach.

3. Reliability Improvement (RI) (RI = Ri − Rthi), i.e., the task reliability above the task
reliability threshold in each set-up, for all approaches.

4. Task duplication, i.e., the average percentage of tasks that O_RAFTM approach decided
to duplicate out of the total number of experiments (NE), in each set-up.

5. Computation time (CT), i.e., the average time required for each approach to find a solution
out of the total number of experiments (NE), in each set-up.

Note that an approach may fail to find a solution, especially in strict deadlines. In order to
fairly compare the energy consumption, reliability improvement and the computation time, we
present the average values of the experiments where both compared approaches (i.e., O_RAFTM
vs O_RAM, or O_RAFTM vs O_TDM) were able to find a solution. We apply the same
approach in all the experiments of this work.

Experimental Results

Feasibility: Fig. 3.1 depicts the feasibility of TL-DVFS scheme for all approaches. Note that
as we observed no real difference in the feasibility behavior among TL-DVFS, PL-DVFS and
SL-DVFS schemes in the performed experiments, we present only the TL-DVFS feasibility.

Comparing O_RAFTM and O_TDM feasibilities, O_RAFTM can find solutions in signif-
icantly more experiments, because O_RAFTM is not obliged to duplicate every task, whereas
O_TDM does. More precisely, when feasibility has not reached 100%, for both approaches,
O_RAFTM finds a solution, on average, in 63.5% (Fig. 3.1a), 60.5% (Fig. 3.1b), 65.26% (Fig. 3.1c)
and 61.5% (Fig. 3.1d) more experiments than O_TDM. We also observe that TDM finds so-
lutions only after the deadline D = 1.9 (Fig. 3.1a), D = 0.9 (Fig. 3.1b), D = 4.4 (Fig. 3.1c)
and D = 2.2 (Fig. 3.1d). Moreover, O_RAFTM achieves 100% feasibility in earlier deadlines
than O_TDM, i.e., D = 1.5 (Fig. 3.1a), D = 0.8 (Fig. 3.1b), D = 3 (Fig. 3.1c) and D = 1.6
(Fig. 3.1d). With increasing number of processors (comparing left and right parts in Fig. 3.1),
the capability of O_TDM to find solutions improves, as more processors are available to sched-
ule original and duplication tasks. Furthermore, all approaches achieve 100% feasibility at later
deadlines.

Comparing O_RAFTM with O_RAM feasibilities, they have the same feasibility, due to
the values of reliability thresholds, i.e., the reliability thresholds can be achieved by executing
the original task with a high processor frequency.

Energy consumption: Energy consumption (EC) in mJ achieved by the proposed approach
compared to O_RAM and O_TDM, is depicted in Fig. 3.2 and Fig. 3.3 Notice that, when
points do not appear in the figures, the corresponding approach found no solutions. Table 3.5

65

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

depicts the achieved minimum, average and maximum energy gains compared to O_RAM and
O_TDM approaches. The minimum gain is zero (or close to) for strict deadlines for RAM, since
O_RAFTM behaves as RAM in this case, executing reliably only the original tasks, i.e., with no
duplication. For relaxed deadlines, O_RAFTM behaves as O_TDM, duplicating all tasks. The
next paragraphs describe in more details the energy consumption results based on the different
tuned parameters.

Number of processors: When the task set size is the same and the number of processors increases,
we observe that O_RAFTM, compared to O_RAM, provides solutions with lower energy con-
sumption and the average energy savings are increasing. For instance, on average, gains change
from 29.8% to 40.8% (TL-DVFS), 17.2% to 37.0% (PL-DVFS) and 29.5% to 54.9% (SL-DVFS),
when M increases from 2 to 4 with N = 10. In fact, with processor number increasing, the
proposed approach has more available resources, thus it can duplicate more tasks and execute
them with low frequency and guarantee the reliability requirements. Energy consumption is thus
reduced. On the contrary, RAM should always meet the reliability constraint. Although it uses
more processors to execute in parallel the tasks, it cannot reduce their energy consumption, as
O_RAFTM can do, due to the fact that the reliability constraints have to be satisfied using

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 3.1: Feasibility for independent tasks under all DVFS schemes.

66

3.2. Task Mapping Problem for Independent Tasks

(a) TL-DVFS, M = 2 (b) TL-DVFS, M = 4

(c) PL-DVFS, M = 2 (d) PL-DVFS, M = 4

(e) SL-DVFS, M = 2 (f) SL-DVFS, M = 4

Figure 3.2: Energy consumption (mJ) for independent tasks (N = 10) under all DVFS schemes.

67

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

(a) TL-DVFS, M = 2 (b) TL-DVFS, M = 4

(c) PL-DVFS, M = 2 (d) PL-DVFS, M = 4

(e) SL-DVFS, M = 2 (f) SL-DVFS, M = 4

Figure 3.3: Energy consumption (mJ) for independent tasks (N = 20) under all DVFS schemes.

68

3.2. Task Mapping Problem for Independent Tasks

only original tasks (no duplication).

Compared to O_TDM, the energy savings of the proposed approach are reduced when the
processor number increases. For instance, on average, gains change from 103.9% to 69.8% (TL-
DVFS), 77.1% to 51.8% (PL-DVFS) and 61.8% to 34.1% (SL-DVFS), when M increases from 2
to 4 with N = 10. Actually, with more processors or with more relaxed deadlines, the proposed
approach and O_TDM tend to behave similarly, i.e., duplicating all tasks. However, with less
processors, O_RAFTM can execute more tasks using only the original copy, while O_TDM has
to duplicate all tasks, thus increasing the energy consumption.

Number of tasks: As expected, with task number increasing, more energy is consumed in all
approaches, under all DVFS schemes. When the number of tasks is increased from N = 10 to
N = 20, with the same number of processors, the energy savings remain high for the proposed
approach, under all three DVFS schemes. With task number increasing and a given number of
processors, it takes a wider deadline region for the energy saving gains to become stable. For
instance, for N = 10 and TL-DVFS, during the deadline region D = [1, 3.7] (top Fig. 3.2a),
the energy gain of O_RAFTM, compared to O_RAM, increases with the deadline becoming
more relaxed. After D = 3.7, the energy gain becomes stable. For N = 20 with same number of
processors (Fig. 3.3a), the energy gain increases with increasing deadline during a wider region
D = [2.6, 6.6], and after D = 6.6, it stays fixed. A similar behavior is observed for O_RAFTM,
compared to O_TDM, but with energy saving gain decreasing. Actually, with more tasks, a
larger time is required for their execution, until more relaxed deadlines where energy saving
gains become stable.

DVFS scheme: When considering only the proposed approach O_RAFTM, the energy con-
sumption is depicted in Table 3.4. The minimal (min.), average (aver.) and maximum (max.)
of energy consumption of each group of experiments are obtained among all deadlines. a gen-
eral observation is that TL-DVFS scheme achieves promising energy savings for O_RAFTM.
Actually the frequency assignment in TL-DVFS is the most flexible one, since it is performed
per task. PL-DVFS comes next, as it performs frequency assignment per processor. SL-DVFS
is the least flexible DVFS scheme, since all tasks are assigned the same frequency. For example,
taking N = 20 and M = 4 into account, the min., aver., and max. of energy consumption is
62.7, 59.2, and 95.2 (mJ) under TL-DVFS, 53.2, 63.3 and 101.4 (mJ) under PL-DVFS, and 55.2,
68.8, and 103.5 (mJ) under SL-DVFS. When comparing the proposed approach O_RAFTM
with O_RAM and O_TDM, the energy gains are given in Table 3.5. Comparing the energy
gains of TL-DVFS and PL-DVFS schemes, the average energy gains, between O_RAFTM and
O_RAM, are decreased, e.g., from 40.8% to 37.0% and 38.8% to 35.4%, for N = 10 and N = 20,
whenM = 4. Comparing to SL-DVFS, the average energy savings are increased, especially when
the number of processors in the platform becomes larger, e.g., from 40.8% to 54.9% and from
38.8% to 52.3%, for N = 10 and N = 20, when M = 4. With the most flexible DVFS scheme,

69

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

i.e., TL-DVFS, O_RAM performs a more fine-grained frequency assignment, achieving a lower
energy consumption, compared to SL-DVFS. With SL-DVFS, O_RAM is obliged to select a
high frequency, in order to meet the highest reliability threshold among the tasks, and thus, all
tasks must be executed with this high frequency, leading to large energy consumption. On the
contrary, O_RAFTM is able to better exploit frequency assignment, even for the less flexible
SL-DVFS scheme. Regarding O_TDM, comparing the average energy gains between TL-DVFS
and PL-DVFS and SL-DVFS schemes, we observe a decrease, e.g., from 103.9% (TL-DVFS)
to 77.1% (PL-DVFS) and to 61.8% (SL-DVFS), for N = 10 and M = 2, as the flexibility in
deciding frequencies is reduced.

Table 3.4: Min., avg. and max. energy consumption (mJ) of O_RAFTM under all DVFS
schemes.

N M TL-DVFS PL-DVFS SL-DVFS
Min. Aver. Max. Min. Aver. Max. Min. Aver. Max.

10 2 27.31 33.63 43.27 28.69 40.83 47.40 30.41 43.18 47.40
10 4 27.31 31.04 39.19 27.85 33.59 45.05 30.41 37.97 46.55
20 2 52.67 63.67 93.18 53.87 76.55 103.56 55.17 79.00 103.56
20 4 52.67 59.24 95.24 53.24 63.29 101.45 55.17 68.82 103.56

Deadline restriction: From Fig. 3.2 and Fig. 3.3, we observe that the energy gains, between the
proposed approach and O_RAM, remain small at strict deadlines. For instance, for N = 20 and
M = 2, the energy gain is smaller than 10% for D = 2.2 to D = 3.4 in TL-DVFS (Fig. 3.3a)
and smaller than 5% for D = 2.2 to D = 5.8 in PL-DVFS (Fig. 3.3c), and for D = 2.2 and
D = 5.6 in SL-DVFS (Fig. 3.3e). When the deadline is strict, the proposed approach behaves
as O_RAM: there is no available time slack, and thus, O_RAFTM assigns high frequencies
without applying task duplication. At less strict deadlines, the proposed approach explores any
available time slack to duplicate tasks. For instance, for N = 20 and M = 2, the energy gain
reaches its maximum for D = 6.2 to D = 7.6 in TL-DVFS (Fig. 3.3a), D = 6.6 to D = 7.6 in
PL-DVFS (Fig. 3.3c), and D = 6.2 to D = 7.6 in SL-DVFS (Fig. 3.3e). The trend is inverted
between the proposed approach and O_TDM. When O_TDM can find solutions, the energy
gain reaches its maximum at strict deadlines, since the proposed approach can execute original
tasks at a high frequency, while O_TDM requires duplication of all tasks. The minimum (0% for
most cases) is observed at quite relaxed deadlines, since in this case O_RAFTM and O_TDM
behave similarly.

Reliability Improvement: Fig. 3.4 and Fig. 3.5 show the reliability achievements of all
approaches and DVFS schemes.

Regarding O_RAFTM, it achieves higher reliability than O_RAM, except in very strict
deadlines. Compared to O_TDM, O_RAFTM provides lower reliability for tight deadlines, as

70

3.2. Task Mapping Problem for Independent Tasks

Table 3.5: Min., avg. and max. energy saving gains (%) under all DVFS schemes.

TL-DVFS PL-DVFS SL-DVFS
N M Min. Avg. Max Min. Avg. Max Min. Avg. Max

O_RAFTM vs O_RAM
10 2 0 29.8 53.9 0 17.2 59.6 0 29.5 89.4
10 4 0 40.8 53.9 0 37.0 53.9 0 54.9 89.4
20 2 0 31.2 49.7 0 16.9 54.1 0 29.9 81.1
20 4 0 38.8 49.7 0 35.4 49.7 0 52.3 81.1

O_RAFTM vs O_TDM
10 2 0.1 103.9 298.7 0 77.1 229.8 0 61.8 180.0
10 4 0.1 69.8 296.6 0.1 51.8 295.6 0 34.1 180.0
20 2 0.01 87.3 280.9 0 69.7 258.4 0 55.5 159.8
20 4 0.01 32.9 248.1 0.1 29.6 232.7 0 21.4 157.1

it partially duplicates the task-set. However, as discussed in next section, O_RAFTM can find
solutions when O_TDM cannot. When the deadline is not so strict, e.g., for D = 1.9 to D = 3
in TL-DVFS (Fig. 3.4b) and PL-DVFS (Fig. 3.4d), O_RAFTM achieves the same reliability as
O_TDM, since they behave in a similar way.

Regarding O_RAM, it has the lowest reliability in TL-DVFS, without violating the reliability
constraints. This is because O_RAM has as requirement to meet the reliability threshold. How-
ever, for the less flexible in frequency assignment PL-DVFS and SL-DVFS schemes, O_RAM
is obliged to select a higher frequency, even for tasks with lower reliability threshold. As a re-
sult, the achieved reliability of O_RAM is increased, especially in SL-DVFS scheme where all
tasks are executed with same frequency. This can be observed that in third row (SL-DVFS) in
Fig. 3.4 and Fig. 3.5, O_RAM generally achieves higher reliability than in first row (TL-DVFS)
and second row (PL-DVFS) in Fig. 3.4 and Fig. 3.5. Another observation is that the proposed
approach and O_RAM obtain same reliability at strict deadlines, e.g., when D = 1 to D = 1.5 in
TL-DVFS (Fig. 3.4a) and D = 1 to D = 1.4 in PL-DVFS (Fig. 3.4c), because in strict deadlines
O_RAFTM behaves as O_RAM. Regarding O_TDM, when it can find a solution, it provides
a high reliability, since it duplicates all tasks. Therefore, changing from TL-DVFS to PL-DVFS
and SL-DVFS, has a low impact on the achieved reliability. When a solution is found in strict
deadlines, it has usually high reliability, but at the price of high energy consumption, due to
the high frequencies required to meet the strict deadlines. For all DVFS schemes in relaxed
deadlines, the reliability achieved by the proposed approach and O_TDM is the same, since
O_RAFTM and O_TDM behave similarly, when deadlines are relaxed enough.

Task duplication: Fig. 3.6 depicts the percentage of duplicated tasks by O_RAFTM in all
DVFS schemes. We remind O_RAM approach does not duplicate tasks (0%) and O_TDM
duplicates all tasks (100%). Under same set-up, except the cases of very strict and very relaxed
deadlines, O_RAFTM decides the highest task duplication in TL-DVFS, and the least in SL-

71

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

(a) TL-DVFS, M = 2 (b) TL-DVFS, M = 4

(c) PL-DVFS, M = 2 (d) PL-DVFS, M = 4

(e) SL-DVFS, M = 2 (f) SL-DVFS, M = 4

Figure 3.4: Reliability improvement for independent tasks (N = 10) under all DVFS schemes.

72

3.2. Task Mapping Problem for Independent Tasks

(a) TL-DVFS, M = 2 (b) TL-DVFS, M = 4

(c) PL-DVFS, M = 2 (d) PL-DVFS, M = 4

(e) SL-DVFS, M = 2 (f) SL-DVFS, M = 4

Figure 3.5: Reliability improvement for independent tasks (N = 20) under all DVFS schemes.

73

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20,M = 2 (d) N = 20, M = 4

Figure 3.6: O_RAFTM task duplication under all DVFS schemes.

DVFS. The reasons are the flexibility in assigning task frequencies in different DVFS schemes
and the reliability threshold’s value. TL-DVFS assigns frequencies per task, providing more
opportunities in duplicating task and executing them with low frequency, in order to achieve
energy savings. In SL-DVFS, all tasks are executed with same frequency, and thus, the task
frequency assignment is restricted. This reduces the possibilities to reduce energy consumption,
by task duplication and execution with lower energy consumption. At strict deadlines, for all
DVFS schemes, few tasks are duplicated. This is because the execution of duplicated tasks
requires time and resources. Thus, it is not possible to duplicate tasks and meet the strict
deadlines. When the number of processors is increased, more tasks can be duplicated. When the
deadline is more relaxed, O_RAFTM takes advantage of the time slack and duplicates more
tasks, using lower frequencies, and thus, achieving less energy consumption. At very relaxed
deadlines, the percentage of task duplication does not always reach 100% for TL-DVFS and
PL-DVFS, as SL-DVFS does. This occurs when the reliability threshold of a task is satisfied,
by executing only the original task and, at same time, its energy consumption is lower than the
energy consumption when the task is duplicated.

74

3.2. Task Mapping Problem for Independent Tasks

Table 3.6: Computation time (sec) for independent tasks (N = 10, M = 2) under all DVFS
schemes.

TL-DVFS PL-DVFS SL-DVFS
D O_RAFTM O_RAM O_TDM O_RAFTM O_RAM O_TDM O_RAFTM O_RAM O_TDM
1.0 0.11 0.06 - 2.48 0.18 - 0.38 0.08 -
1.1 3.81 1.62 - 1.67 0.15 - 0.41 0.09 -
1.2 1.23 0.50 - 1.07 0.11 - 0.29 0.16 -
1.3 1.77 0.08 - 1.27 0.16 - 0.45 0.13 -
1.4 0.82 0.03 - 1.23 0.10 - 0.36 0.14 -
1.5 1.96 0.62 - 1.13 0.09 - 0.28 0.14 -
1.6 0.53 0.01 - 1.01 0.29 - 0.26 0.17 -
1.7 1.82 0.01 - 0.73 0.12 - 0.28 0.17 -
1.8 2.56 0.01 - 0.80 0.06 - 0.26 0.26 -
1.9 1.85 0.01 - 0.92 0.06 - 0.25 0.16 -
2.0 2.38 0.01 1.51 1.20 0.09 0.20 0.27 0.17 0.39
2.1 2.81 0.02 9.98 1.23 0.06 0.49 0.30 0.18 0.47
2.2 2.29 0.02 8.55 1.74 0.04 0.53 0.29 0.15 0.40
2.3 2.95 0.02 13.49 1.94 0.03 1.61 0.32 0.16 0.42
2.4 2.93 0.02 12.81 2.25 0.03 0.83 0.37 0.16 0.45
2.5 3.37 0.02 6.70 3.01 0.02 0.60 0.28 0.15 0.40
2.6 3.96 0.02 14.11 3.88 0.02 0.78 0.32 0.18 0.38
2.7 1.80 0.01 14.49 3.15 0.02 0.66 0.27 0.16 0.38
2.8 1.58 0.01 11.95 3.75 0.02 0.70 0.29 0.14 0.36
2.9 1.19 0.01 11.17 4.68 0.01 0.60 0.26 0.16 0.34
3.0 1.05 0.01 7.76 4.78 0.02 0.51 0.26 0.18 0.33
3.1 0.86 0.01 8.79 4.29 0.02 0.78 0.29 0.18 0.32
3.2 0.49 0.01 6.05 4.41 0.01 0.94 0.32 0.17 0.31
3.3 0.32 0.01 10.87 7.80 0.02 0.72 0.31 0.16 0.31
3.4 0.17 0.01 6.48 5.89 0.01 0.66 0.28 0.15 0.29
3.5 1.03 0.01 2.50 3.51 0.02 0.20 0.25 0.15 0.25
3.6 0.06 0.01 0.73 2.92 0.02 0.09 0.24 0.16 0.24
3.7 0.04 0.01 0.84 1.70 0.02 0.11 0.24 0.15 0.22

3.8-4.0 0.01 0.01 0.01 0.13 0.02 0.06 0.23 0.15 0.22

Table 3.7: Computation time (sec) for independent tasks (N = 10, M = 4) under all DVFS
schemes.

TL-DVFS PL-DVFS SL-DVFS
D O_RAFTM O_RAM O_TDM O_RAFTM O_RAM O_TDM O_RAFTM O_RAM O_TDM
0.5 - - - - - - - - -
0.6 6.79 6.84 - 57.62 9.78 - 0.51 0.21 -
0.7 10.72 2.82 - 45.81 8.93 - 0.55 0.25 -
0.8 10.03 0.45 - 76.49 6.39 - 0.43 0.25 -
0.9 37.59 0.02 - 110.45 2.03 - 0.49 0.23 -
1.0 37.44 0.01 0.26 112.50 0.51 2312.10 0.34 0.20 0.94
1.1 60.24 0.01 3755.76 183.62 0.30 110698.16 0.46 0.20 1.17
1.2 830.27 0.01 2283.87 269.00 0.50 4260.27 0.48 0.20 0.91
1.3 217.16 0.01 1335.57 566.26 0.08 38399.02 0.58 0.21 1.05
1.4 215.56 0.01 702.14 424.56 0.03 46466.88 0.67 0.21 0.85
1.5 273.33 0.01 2991.75 438.05 0.03 196016.53 0.56 0.20 0.91
1.6 9.52 0.01 3390.81 191.38 0.03 162484.17 0.48 0.20 0.76
1.7 1.16 0.01 214.75 35026.12 0.03 120531.33 0.50 0.21 0.48
1.8 5.62 0.01 13.83 31.67 0.03 41.78 0.32 0.20 0.30

1.9-3.0 0.03 0.02 0.03 0.58 0.04 0.33 0.29 0.22 0.27

75

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

Table 3.8: Computation time (sec) for independent tasks (N = 20, M = 2) under all DVFS
schemes.

TL-DVFS PL-DVFS SL-DVFS
D O_RAFTM O_RAM O_TDM O_RAFTM O_RAM O_TDM O_RAFTM O_RAM O_TDM
2.2 - - - - - - - - -
2.4 3.38 9.17 - 3.46 0.27 - NaN 0.09 -
2.6 2.95 26.80 - 6.39 0.80 - 0.66 0.20 -
2.8 2.47 47.22 - 3.10 0.12 - 0.45 0.16 -
3.0 1.42 0.23 - 2.07 0.10 - 0.20 0.17 -
3.2 2.25 1.07 - 2.44 0.10 - 0.11 0.16 -
3.4 2.36 0.01 - 3.78 0.09 - 0.16 0.18 -
3.6 1.59 0.01 - 3.65 0.11 - 0.28 0.17 -
3.8 2.55 0.01 - 4.79 0.27 - 0.11 0.18 -
4.0 2.39 0.01 - 5.50 0.21 - 0.13 0.19 -
4.2 2.43 0.01 - 4.73 0.46 - 0.27 0.16 -
4.4 3.31 0.01 - 4.26 0.13 - 0.34 0.22 -
4.6 4.62 0.01 6.26 4.25 0.81 0.56 0.25 0.15 0.36
4.8 4.87 0.01 7.04 3.45 0.48 0.67 0.23 0.17 0.40
5.0 4.28 0.01 2.44 3.46 0.08 0.79 0.25 0.17 0.41
5.2 4.51 0.01 4.28 7.76 0.05 1.33 0.22 0.20 0.47
5.4 3.85 0.01 4.36 28.74 0.04 1.18 0.23 0.17 0.48
5.6 2.97 0.01 5.21 48.56 0.03 1.50 0.30 0.17 0.47
5.8 2.67 0.01 7.40 73.50 0.03 0.96 0.59 0.17 0.45
6.0 1.51 0.01 6.33 98.67 0.06 0.97 0.20 0.22 0.34
6.2 2.13 0.02 2.94 65.51 0.06 0.47 0.23 0.17 0.34
6.4 0.82 0.02 2.00 42.77 0.04 0.40 0.19 0.15 0.27
6.6 0.24 0.02 0.63 6.06 0.03 0.34 0.31 0.14 0.29
6.8 0.03 0.01 1.13 8.28 0.03 0.79 0.19 0.17 0.31
7.0 0.05 0.01 0.19 11.32 0.03 0.31 0.20 0.21 0.28
7.2 0.02 0.01 0.42 13.92 0.03 0.28 0.36 0.18 0.27
7.4 0.02 0.01 0.02 0.38 0.03 0.27 0.17 0.18 0.29
7.6 0.02 0.01 0.02 0.39 0.03 0.27 0.55 0.27 0.27

Table 3.9: Computation time (sec) for independent tasks (N = 20, M = 4) under all DVFS
schemes.

TL-DVFS PL-DVFS SL-DVFS
D O_RAFTM O_RAM O_TDM O_RAFTM O_RAM O_TDM O_RAFTM O_RAM O_TDM
1.0 - - - - - - - - -
1.2 2576.81 63381.17 - 207.57 99.97 - 0.66 0.30 -
1.4 1909.92 57079.83 - 7040.64 172.35 - 0.58 0.17 -
1.6 521.33 791.30 - 1401.37 25.66 - 0.40 0.15 -
1.8 673.87 0.08 - 16611.93 7.37 - 0.26 0.16 -
2.0 399.08 0.07 - 8037.54 0.98 - 0.35 0.18 -
2.2 1237.58 0.04 - 24671.73 0.12 - 0.41 0.17 -
2.4 4356.88 0.05 189.97 2041.74 0.13 17625.22 0.50 0.17 1.38
2.6 165.41 0.05 1193.19 48888.64 0.15 19109.32 0.83 0.24 2.12
2.8 38.65 0.05 1447.58 76090.41 0.12 82873.64 5.30 0.18 3.71
3.0 25.84 0.04 4258.07 86462.91 0.11 8431.17 1.02 0.18 0.88
3.2 3.80 0.05 31173.63 47538.99 0.12 11296.63 0.78 0.23 0.45
3.4 0.19 0.04 4917.95 202.77 0.17 3509.51 0.63 0.33 0.43
3.6 0.87 0.05 11.45 34489.84 0.07 63.94 0.38 0.25 0.25

3.8-6.0 0.04 0.02 0.03 1.64 0.06 0.52 0.28 0.15 0.14

76

3.2. Task Mapping Problem for Independent Tasks

(a) TL-DVFS (b) PL-DVFS

(c) SL-DVFS

Figure 3.7: Computation time on a logarithmic scale (N = 10,M = 4) under all DVFS schemes.

Computation Time: Tables 3.6, 3.7, 3.8 and 3.9 provide the average time required to find the
solution, for all approaches and DVFS schemes. The ’-’ means that there is no feasible solution
found at the corresponding deadlines. Generally speaking, for the proposed approach, less time
is needed to obtain the solutions when deadline is strict or relaxed. However, for intermediate
deadlines, more time is required, since O_RAFTM explores the available time slack to decide
which, and how many, tasks to be duplicated, without violating constraints, while consuming
the least energy. O_TDM is the most time expensive approach, because all tasks are duplicated,
increasing the number of tasks to be scheduled, and thus, the time to find the solutions. For
O_RAM, as it only executes original tasks, it takes the least time to obtain a solution. However,
it provides less energy savings as we observed previously.

Taking N = 10 andM = 4 as a representative example, the computation time in logarithmic
form is depicted in Fig 3.7. We observe that O_RAFTM consumes more time than O_RAM
especially at strict deadlines. O_TDM consumes more time than O_RAFTM at strict deadlines
(when O_TDM finds a solution,) and consumes same time as O_RAFTM when deadlines are
relaxed due to that O_RAFTM and O_TDM behave in similar way in these cases.

With same number of tasks and different number of processors (Table 3.6, Table 3.7, Table 3.8

77

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

and Table 3.9), more time is required when more resources are available: in this case, the solver
requires more time to optimally decide how to use the extra processors in order to obtain the
global optimal solution. One can see that computation time becomes sometimes very high for
M = 4. We will discuss about a way to cope this issue in Chapter 4.

Regarding different DVFS schemes, for all approaches, more time is consumed to obtain
solutions under PL-DVFS compared to TL-DVFS especially when there are more processors,
and least time is consumed under SL-DVFS. This is due to the fact that all processors run at
same frequency under SL-DVFS as explained above.

3.3 Task Mapping Problem for dependent tasks

In this section, we extend the task mapping problem, with the goal of minimizing the system
energy consumption subject to a set of reliability and real-time constraints, for dependent tasks.
Similar to the case of independent tasks, the proposed approach concurrently decides: 1) task
frequency assignment (s), 2) task duplication decision (σ), 3) task allocation (q). Furthermore,
the proposed approach also decides the task start time (ts) since we focus on tasks with depen-
dencies. We will describe the proposed approach under TL-DVFS scheme, and then extend it
to PL-DVFS and SL-DVFS.

3.3.1 System Model

We adapt the system model by extending the task model presented in the previous section.
We consider an application consisting ofN frame-based non-preemptive dependent tasks, which
is represented by a Directed Acyclic Graph (DAG) G(V,E), where V denotes the set of N tasks
and E represents the partial order, corresponding to the precedence constraints among tasks. All
the tasks are released at time 0 and have a global deadline D, given by the application frame H.
We consider that the global deadline is equal to the application frame, i.e., D = H. The ready
time of a task is the time instant at which all its predecessors have been completed. If a task
has no predecessors (successors), it corresponds to an entry task τentry (exit task τexit). A task

Notations Definitions

− Table 3.2
Parameters
N {1, . . . , 2N}, with 2N number of tasks
Oij Oij = 1 if task τj is dependent on task τi, else, Oij = 0
H frame size
Continuous Variables
tsi the start time of task τi

Table 3.10: Main notations for dependent tasks

78

3.3. Task Mapping Problem for dependent tasks

is ready for execution when all its predecessors have been completed. Similar to Section 3.2.1,
each task τi is described by a tuple {Wi, R

th
i }, where Wi is the Worst Case Execution Cycles

(WCEC) and Rthi is its reliability threshold. To better formulate the studied problem, we define
the task set is extended with N duplicated tasks, i.e., N = {1, . . . , N,N + 1, . . . , 2N}. Tasks
{τ1, . . . , τN} are original tasks and tasks {τN+1, . . . , τ2N} are duplicated tasks. At this step, we
thus assume every task may be duplicated.

3.3.2 Problem Constraints

The problem constraints regarding frequency assignment, task duplication decision,
task allocation introduced in Section 3.2.2 are still valid and re-formulated as follows:

∑
l∈L

sil = σi, ∀i ∈N . (3.20)

δi − (1 + δi)σN+i ≤
∑

l∈L
sile
−ϕi(fl) −Rthi ≤ 1− σN+i, ∀i ∈N . (3.21)

∑
m∈M

qim = σi, ∀i ∈N . (3.22a)

qim + qN+i,m ≤ 1, ∀i ∈N , ∀m ∈M . (3.22b)

The real-time requirement is modified due to the dependency constraints since the exit
task must be executed before the deadline Di,

tsexit +
∑

l∈L
sil
Wexit

fl
≤ D. (3.23)

For DAG-based dependent tasks, we also need to set the following two constraints:

Task non-overlapping

When task τi is executed on processor θm with frequency fl, its execution time is
∑
l∈L sil

Wi
fl

and, as tasks are executed in a non-preemptive manner, the task end time is tei = tsi +
∑
l∈L sil

Wi
fl
.

We need to guarantee that a task execution cannot overlap with any other task execution, when
assigned to the same processor. The ordering of tasks, assigned on the same processor, is given
by a binary matrix w = [wij]2N×2N . For any two tasks τi and τj , when wij = 1, tasks τi and
τj are allocated on the same processor, and τi is executed before τj . Otherwise, either τi and
τj are allocated on different processors or τi is executed after τj . Therefore, when both qim = 1
and qjm = 1, only one of wij and wji can be equal to 1, i.e., wij +wji = 1. Otherwise, both wij
and wji are equal to 0, i.e., wij + wji = 0. On this basis, the non-overlapping constraints are

79

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

formulated as:

tei ≤ tsj + (2− qim − qjm)H + (1− wij)H, ∀i, j ∈N , ∀m ∈M , i 6= j, (3.24)

wij + wji =
∑

m∈M
qimqjm, ∀i, j ∈N , i 6= j, (3.25)

Task dependencies

Based on the task graph, we introduce a Task Dependency matrix O = [oij]2N×2N . When
oij = 1, task τi precedes task τj and (3.26) becomes tsj ≥ tsi +

∑
l∈L sil

Wi
fl
. Otherwise, (3.26) is

always satisfied.

tsj + (1− oij)H ≥ tsi + oij
∑

l∈L
sil
Wi

fl
, ∀i, j ∈N , i 6= j. (3.26)

3.3.3 Objective Function and Problem Formulation

TL-DVFS scheme

The goal is to minimize total energy consumption, thus the Primal Problem (PP−TL) for
dependent tasks is formulated as an MINLP:

PP-TL : min
s,q,σ,
w,ts

∑
i∈N

(∑
l∈L

sil
Wi

fl
Pl

)
(3.27)

s.t.

(3.20), (3.21), (3.22a), (3.22b), (3.23), (3.24), (3.25), (3.26)

σi = 1, i ∈N

sil, qim, σi, wij ∈ {0, 1}, 0 ≤ tsi ≤ D,

∀i ∈N , ∀m ∈M , ∀l ∈ L.

The variable replacement method explained previously in this chapter (see Section 3.2.3)
is used to transfer the above MINLP problem into MILP form. Let hmij = qimqjm (i, j ∈ N ,
m ∈M , i 6= j) and hmii = 0, when i = j. (3.25) can be equally expressed as

wij + wji = hmij , ∀i, j ∈N , i 6= j, (3.28)

− qim + hmij ≤ 0, −qjm + hmij ≤ 0, qim + qjm − hmij ≤ 1,

∀i, j ∈N , ∀m ∈M , i 6= j. (3.29)

Then, the above PP−TL for dependent tasks is reformulated as the following MILP prob-

80

3.3. Task Mapping Problem for dependent tasks

lem:

RAFTM-TL : min
s,q,σ,
w,h,ts

∑
i∈N

(∑
l∈L

sil
Wi

fl

)
Pl (3.30)

s.t.

(3.20), (3.21), (3.22a), (3.22b), (3.23), (3.24), (3.28), (3.29), (3.26)

σi = 1, i ∈N

sil, qim, σi, wij , h
m
ij ∈ {0, 1}, 0 ≤ tsi ≤ Di,

∀i ∈N , ∀m ∈M , ∀l ∈ L.

Extension to PL-DVFS and SL-DVFS schemes

When platforms support PL-DVFS, the constraints of frequency assignment, task du-
plication decision and real-time requirement introduced in Section 3.3.2 are considered
but re-formulated as follows: ∑

l∈L
sml = 1, ∀i ∈M . (3.31)

δi − (1 + δi)σN+i ≤
∑

m∈M
qim

(∑
l∈L

sml
)
e−ϕi(fl) −Rthi ≤ 1− σN+i, ∀i ∈N . (3.32)

tsexit +
∑

m∈M
qim

(∑
l∈L

sml
)Wexit

fl
≤ D. (3.33)

The proposed approach with PL-DVFS can be formulated as

PP-PL : min
s,q,σ,
w,ts

∑
i∈N

[∑
m∈M

qim

(∑
l∈L

sml
Wi

fl
Pl

)]
(3.34)

s.t.

(3.31), (3.32), (3.22a), (3.22b), (3.24), (3.33), (3.28), (3.29), (3.26)

σi = 1, i ∈N

sml, qim, σi, wij ∈ {0, 1}, 0 ≤ tsi ≤ Di,

∀i ∈N , ∀m ∈M , ∀l ∈ L.

When platforms support SL-DVFS, the constraints of frequency assignment, task du-
plication decision and real-time requirement introduced in section 3.3.2 are considered but
re-formulated as follows: ∑

l∈L
sl = 1. (3.35)

δi − (1 + δi)σN+i ≤
∑

l∈L
sle
−ϕi(fl) −Rthi ≤ 1− σN+i, ∀i ∈N . (3.36)

81

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

tsexit +
∑

l∈L
sl
Wexit

fl
≤ D. (3.37)

The proposed approach with SL-DVFS can be formulated as

PP-SL : min
s,q,σ,
w,ts

∑
i∈N

[∑
m∈M

qim

(∑
l∈L

sml
Wi

fl
Pl

)]
(3.38)

s.t.

(3.35), (3.36), (3.22a), (3.22b), (3.24), (3.37), (3.28), (3.29), (3.26)

σi = 1, i ∈N

sml, qim, σi, wij ∈ {0, 1}, 0 ≤ tsi ≤ Di,

∀i ∈N , ∀m ∈M , ∀l ∈ L.

Both PP−PL and PP− SL are MINLP problems. The variable replacement method
explained in section 3.2.3 is used to equivalently transfer the above MINLP problem into MILP
forms RAFTM−PL and RAFTM− SL and we do not repeat the process here.

3.3.4 Evaluation

In this section, we evaluate the performance of the proposed approach considering depen-
dent task model compared to the two SoA approaches O_RAM and O_TDM introduced in
section 3.2.4. The results are provided with optimal solutions using Gurobi solver. We consid-
ered two set-ups in this evaluation section. In the first set-up we explore the impact of the
different DVFS schemes, when the reliability constraints can be always met with the higher
frequency of the platform, similar to the previous section. In the second set-up, we evaluate the
behavior of the proposed approaches when the reliability constraints cannot always be met with
the higher frequency of the platform, under the TL-DVFS scheme.

Experimental set-up: Reliability constraints always met

In this first set-up, the platform characteristics are the same as presented in section 3.2.4 in
Table 3.3. A large and diverse set of experiments is performed, by tuning the:

1. Number of processors (M = 2, 4, 6).

2. Size of task set (N = 10, 20).

3. Platform DVFS scheme (TL-DVFS, PL-DVFS, and SL-DVFS).

4. For a task set size, 10 experiments are performed. For each experiment, the task charac-
teristics (Wi and Rthi) are selected as in section 3.2.4. The deadline D is tuned a with a
step of 0.05 for N = 10 and 0.1 for N = 20 by adjusting k).

82

3.3. Task Mapping Problem for dependent tasks

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 4 (d) N = 20, M = 6

Figure 3.8: Feasibility for dependent tasks under all DVFS schemes.

Similar to the independent task section, the approaches are implemented and solved with Gurobi
9.0.1 (MILP solver) on several servers, as hundreds of experiments took place. We present a
subset of the experiments (TL-DVFS, PL-DVFS and SL-DVFS for N = 10, M = 2 and M = 4
and N = 20, M = 4 and M = 6.

As we done for independent tasks, to evaluate the approaches, the metrics of Feasibility,
Energy consumption (EC), Reliability Improvement (RI), Duplication percentage and Compu-
tation time (CT) are considered.

Experimental results: Reliability constraints always met

Feasibility: The feasibility of O_RAFTM, O_RAM and O_TDM is depicted in Fig. 3.8, for
N = 10 with M = 2 and M = 4 (Fig. 3.8a and Fig. 3.8b) and for N = 20 with M = 4 and
M = 6 (Fig. 3.8c and Fig. 3.8d).

Regarding the comparison with O_TDM, O_RAFTM is able to find solutions in significantly
more experiments than O_TDM, since O_RAFTM is not obliged to duplicate reliable tasks,
compared to O_TDM. When feasibility is not 100% for both approaches, O_RAFTM can find
a solution, on average, in 61%, 30%, 33% and 10% more experiments than O_TDM (Fig. 3.8).

83

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

As an example, when k = 1, k = 1.1, k = 1.2 (N = 20 and M = 4), O_TDM cannot find any
solution. As the number of processors is increased, e.g., from M = 4 to M = 6, the capability
of O_TDM to find solutions improves, as more cores are available to schedule the duplicated
tasks, until approaching the O_RAFTM feasibility with 6 processors. O_RAFTM achieves 100%
feasibility in earlier deadlines than O_TDM, i.e., k = 0.8 (N = 10 and M = 4) and k = 1.5
(N = 20 and M = 4, N = 20 and M = 6). When the deadline becomes relaxed (and O_TDM
can always find solutions), i.e., k = 0.9 (N = 10 and M = 4), k = 1.9 (N = 20 and M = 4),
and k = 1.6 (N = 20 and M = 6), O_RAFTM has a similar behaviour with O_TDM, since it
decides to duplicate the majority of the tasks, achieving similar gains, as explained in the next
section.

Regarding the comparison with O_RAM, in this experimental set-up, O_RAFTM and
O_RAM have the same feasibility, since the reliability constraints can always be met by execut-
ing only the original task with a high processor frequency. Note that we explore the difference
of feasibility between O_RAFTM and O_RAM in the second experimental set-up, where high
frequencies cannot always satisfy reliability thresholds. When the number of cores increases,
feasibility behaviour of O_RAFTM and O_RAM is not changed, due to the dependencies of
the task graph.

Energy consumption: The energy consumption (EC) in mJ of O_RAM and O_TDM, com-
pared to the proposed approach, is depicted in Fig. 3.9 and Fig. 3.10. The minimum, average and
maximum gains are depicted in Table 3.11. Note that, the minimum gain is 0 between O_TDM
and O_RFTAM, when the deadlines are less strict. When deadline is relaxed, O_RFTAM per-
forms duplication for all tasks, as O_TDM. Compared to O_RAM, we observe a minimum gain
of 0, only in very few strict deadlines, either with a high number of tasks while few processors
or due to SL-DVFS, where the frequency assignment is very restricted. In the strict deadlines,
O_RFTAM and O_RAM have a similar behavior: applying a high frequency to meet the timing
constraint, thus no duplication is possible. From the obtained results, we can make the following
general observations:

— When the number of tasks is increased from N = 10 to N = 20 with the same number
of cores (from Fig. 3.9b to Fig. 3.10a, from Fig. 3.9d to Fig. 3.10c, and from Fig. 3.9f to
Fig. 3.10e), the energy savings remain high for the proposed O_RFTAM approach, compared
to O_RAM and O_TDM.We observe a slight decrease in average savings regarding O_RAM
in TL-DVFS and PL-DVFS schemes, due to the fact that O_RFTAM behaves as O_RAM
in very strict deadlines. On the one hand, O_RAM consumes more energy compared to
O_RFTAM, as Table 3.11 shows. On the other hand, O_RFTAM is able to find solutions
in more cases, compared to O_TDM, especially for strict deadlines, as Fig. 3.8 shows.

— When the number of cores increases from M = 4 to M = 6, with the same number of tasks

84

3.3. Task Mapping Problem for dependent tasks

N = 20, (from Fig. 3.10a to Fig. 3.10b, from Fig. 3.10c to Fig. 3.10d, and from Fig. 3.10e
to Fig. 3.10f), the energy savings of O_RFTAM compared to O_RAM are enlarged, on
average, to 47.3% (TL-DVFS), 45.7% (PL-DVFS), and 72.3% (SL-DVFS). In fact, when
more processors are available, our proposed approach has more freedom to use the available
processors when performing the task mapping, minimizing the total energy consumption.

— Among different DVFS schemes, we observed that SL-DVFS has a higher impact on the ob-
served gains of O_RFTAM vs O_RAM, compared to the impact it has on the observed gains
of O_RFTAM vs O_TDM, as the number of tasks and cores increases. When the supported
DVFS scheme is flexible, O_RAM performs a more fine-grained assignment, achieving a
lower energy consumption. However, when SL-DVFS is supported, O_RAM is obliged to
select a high frequency in order to meet the highest reliability threshold of the tasks and
executes all tasks with this high frequency, causing large energy consumption. On the other
hand, the proposed O_RFTAM can exploit task duplication, applying a lower frequency,
and thus, reducing the energy consumption, when time slack is available for relaxed deadline
cases.

Table 3.11: Min, avg. and max energy gains (%) for dependent tasks under all DVFS schemes.

TL-DVFS PL-DVFS SL-DVFS
N M Min Avg. Max Min Avg. Max Min Avg. Max

O_RAFTM vs O_RAM
10 2 0 23.54 54.94 0 10.72 52.33 0 15.49 73.6
10 4 5.02 40.69 56.35 1.81 35.49 53.44 0 43.23 80.17
20 4 1.16 41.53 59.98 0 37.11 59.98 0 58.34 105.7
20 6 9.76 47.35 59.98 8.63 45.71 59.61 0 72.29 105.7

O_RAFTM vs O_TDM
10 2 0 91.93 261.83 0 79.21 218.5 0 66.35 170.72
10 4 0 37.27 149.93 0 36.68 149.04 0 37.6 137.75
20 4 0 33.55 123.05 0 37.46 140.71 0 30.02 130.32
20 6 0 17.94 90.86 0 19.83 114.77 0 22.98 113.99

With a more detailed observation, when both O_RFTAM and O_TDM approaches can find
solutions, O_RFTAM provides a solution that consumes significantly less energy. More precisely,
whenN = 20 andM = 4, for TL-DVFS we observe a maximum gain of 123.0%, with an average
gain of 33.5%, for PL-DVFS, we observe a maximum gain of 140.7% with an average gain of
37.5%, and, for SL-DVFS, there is a maximum gain 130.3%, with an average gain of 30.0%.

Furthermore, O_RFTAM finds a solution, that consumes less energy than O_RAM, since
O_RFTAM can duplicate some tasks in order to use lower frequencies, reducing energy con-
sumption. When the deadline is not so strict (part of graph with almost flat average gain in
the sub-plot of Fig. 3.9 and Fig. 3.10), the highest energy gains are observed. More precisely,
when M = 4, we observe an average gain of 40.7% (TL-DVFS), 35.5% (PL-DVFS), and 43.2%

85

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

(a) TL-DVFS, M = 2 (b) TL-DVFS, M = 4

(c) PL-DVFS, M = 2 (d) PL-DVFS, M = 4

(e) SL-DVFS, M = 2 (f) SL-DVFS, M = 4

Figure 3.9: Energy consumption (mJ) for dependent tasks (N = 10) under all DVFS schemes.

86

3.3. Task Mapping Problem for dependent tasks

(a) TL-DVFS, M = 4 (b) TL-DVFS, M = 6

(c) PL-DVFS, M = 4 (d) PL-DVFS, M = 6

(e) SL-DVFS, M = 4 (f) SL-DVFS, M = 6

Figure 3.10: Energy consumption (mJ) for dependent tasks (N = 20) under all DVFS schemes.

87

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

(SL-DVFS) for N = 10 and an average gain of 41.5% (TL-DVFS), 37.1% (PL-DVFS), and
58.3% (SL-DVFS) for N = 20. When M = 6 and N = 20, the observed average gain is 47.3%
(TL-DVFS), 45.7% (PL-DVFS), and 72.3% (SL-DVFS). For very strict deadlines, the energy
gains of O_RFTAM and O_RAM are similar; O_RFTAM behaves as O_RAM, since there is
no available time slack, and thus, O_RFTAM assigns high frequencies, without task duplica-
tion. We observe minimum gains when k = 0.5 (N = 10) and k = 1 (N = 20). When SL-DVFS
and less cores are used (M = 4), O_RFTAM cannot exploit duplication and use different fre-
quencies to reduce energy consumption, and thus, it behaves as RAM. When time slack exists,
O_RFTAM can take advantage of it and duplicate some tasks, if energy gains can be achieved.

Reliability Improvement: We also compare the reliability improvement with regard to the
reliability threshold in Fig. 3.11 and Fig. 3.12, for the three DVFS schemes and forN = 10 with
M = 2 and M = 4 and N = 20 with M = 4 and M = 6. Generally:

— Regarding O_RAM, when TL-DVFS is considered, it has the lowest reliability improvement.
This is because O_RAM only requires to meet the reliability threshold in order to find a
solution. However, when PL-DVFS and SL-DVFS are considered, O_RAM is obliged to select
a higher frequency, even for tasks with lower reliability threshold, due to the restrictions in
the DVFS schemes. As a result, the reliability improvement of O_RAM is increased, when
the DVFS schemes are more restricted. Note that, when the number of tasks is increased in
SL-DVFS, O_RAM is obliged to always select high frequencies to meet the highest reliability
threshold, among all tasks, and then, use this frequency for task execution, even if time slack
exists.

— Regarding O_RAFTM, it provides higher reliability improvements than O_RAM, for all
deadlines. For tight deadlines, it provides lower reliability improvements than O_TDM, as it
partially duplicates the task set. However, as discussed in the previous section, O_RAFTM
is more capable of finding solutions compared to O_TDM, and with significantly reduced
energy consumption. When the deadline is not so strict, it provides the same reliability
improvements as O_TDM, since they behave in a similar way with duplication.

— Regarding O_TDM, since it always duplicates the tasks, it provides a high reliability im-
provement, if it can find a solution. Therefore, going from TL-DVFS to PL-DVFS and SL-
DVFS, does not have a high impact on the reliability improvement. Moreover, when a solution
is found in strict deadlines, it has typically significant reliability improvement, at the price
of large energy consumption, since high frequencies are required to meet the strict timing
constraints.

Task duplication: Fig. 3.13 depicts the task duplication of the proposed approach. We remind
O_RAM approach does not apply duplication for any task (0%) and O_TDM duplicates all tasks

88

3.3. Task Mapping Problem for dependent tasks

(a) TL-DVFS, M = 2 (b) TL-DVFS, M = 4

(c) PL-DVFS, M = 2 (d) PL-DVFS, M = 4

(e) SL-DVFS, M = 2 (f) SL-DVFS, M = 4

Figure 3.11: Reliability improvement for dependent tasks (N = 10) under all DVFS schemes.

89

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

(a) TL-DVFS, M = 4 (b) TL-DVFS, M = 6

(c) PL-DVFS, M = 4 (d) PL-DVFS, M = 6

(e) SL-DVFS, M = 4 (f) SL-DVFS, M = 6

Figure 3.12: Reliability improvement for dependent tasks (N = 20) under all DVFS schemes.

90

3.3. Task Mapping Problem for dependent tasks

(100%). For all DVFS schemes, as expected, when the deadline is more relaxed, O_RAFTM can
duplicate more tasks using lower frequency, thus achieving less energy consumption, due to the
available time slack. Furthermore, as all processors have the same frequency in SL-DVFS, this
DVFS scheme has less flexibility in task duplication and scheduling, when deadlines are strict. In
Fig. 3.13, there are two interesting observations: i) for some points, the duplication percentage
decreases, when deadline is relaxed (Fig. 3.13c, when D = 1.2 for TL-DVFS, and Fig. 3.13d,
when D = 1.2 for both TL-DVFS and PL-DVFS), and ii) the duplication percentage does
not reach 100% for TL-DVFS and PL-DVFS, as SL-DVFS does. The reason is the flexibility to
decide the task frequency for different DVFS schemes, and the reliability threshold’s value. When
the task’s reliability threshold can be satisfied without duplication and with a low frequency,
and energy consumption is less than the energy consumption when duplicating with the lowest
frequency, then TL-DVFS and PL-DVFS schemes do not duplicate the task. However, with
SL-DVFS, the same frequency must be assigned to all processors. Hence, a task with a high
reliability constraint forces other tasks with low reliability constraints to execute with a higher
frequency than the required one. As a result, duplication does not provide benefits, even if time

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 4 (d) N = 20, M = 6

Figure 3.13: O_RAFTM duplication percentage (N = 10, M = 2 and M = 4, and N = 20,
M = 4 and M = 6) for dependent tasks under all DVFS schemes.

91

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

slack exists. Due to these reasons, the duplication percentage is usually smaller for SL-DVFS,
compared to TL-DVFS and PL-DVFS, except for relaxed enough deadlines.

Computation Time: Tables 3.12 to 3.14 provide the time required to find a solution, when
N = 10 and N = 20 with M = 4, and N = 20 with M = 6. Comparing Table 3.13 and Ta-
ble 3.12, with more tasks, more time is required to find a solution, as expected. For O_RAFTM,
when the deadline is very strict or very relaxed, less time is needed to obtain the solutions.
However, with intermediate deadlines, more time is required as O_RAFTM needs to explore
the available time slack to decide which, and how many, tasks to be duplicated, without violat-
ing constraints, while consuming the least energy. O_TDM is the most running time expensive
approach, because all tasks need to be duplicated, increasing the number of tasks to be sched-
uled, and thus, the time to find the solutions. Similar to independent tasks, O_RAM is the least
running time expensive approach. However, as we have seen previously, this approach provides
less energy savings compared to O_RAFTM.

Table 3.12: Computation time (sec) for dependent tasks (N = 10, M = 4) under all DVFS
schemes.

deadline(D) 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

TL DVFS
O_RAFTM 0.45 0.57 0.95 2.17 3.31 4.31 3.77 3.11 5.57 1.47 1.92 3.71 0.51 0.3 0.27

O_RAM 0.3 0.25 0.27 0.22 0.43 0.33 0.16 0.16 0.21 0.18 0.18 0.16 0.19 0.16 0.19
O_TDM 2.52 0.56 0.61 0.97 1.53 2.65 2.45 2.08 1.26 1.08 0.72 0.72 0.55 0.36 0.37

PL DVFS
O_RAFTM 1.65 6.03 8.2 15.26 24.06 32.3 34.38 40.76 29.12 29.05 13.9 13.54 10.94 4.19 3.51

O_RAM 0.82 1.78 1.51 1.7 1.94 1.72 1.79 1.79 2.15 2.22 1.87 1.88 2.1 1.77 1.84
O_TDM 2.55 2.27 1.7 4.45 5.97 9.17 5.04 4.97 4.83 3.61 3.22 2.47 2.34 1.84 1.87

SL DVFS
O_RAFTM 0.28 0.19 0.26 0.83 1.47 1.86 1.18 1.13 0.84 0.92 0.67 0.59 0.53 0.27 0.23

O_RAM 0.11 0.08 0.11 0.09 0.19 0.2 0.2 0.07 0.09 0.08 0.08 0.09 0.09 0.08 0.08
O_TDM 0.48 0.14 1.02 1.64 1.51 2.5 1.83 1.59 1.43 1.7 0.88 0.68 0.71 0.54 0.44

Table 3.13: Computation time (sec) for dependent tasks (N = 20, M = 4) under all DVFS
schemes.

deadline(D) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

TL DVFS
O_RAFTM 14.9 61 74.9 138.2 202.1 256.9 327.3 219 1039.3 1054.7 126.8 58.7 123.1

O_RAM 0.07 0.04 0.067 0.054 0.041 0.061 0.066 0.045 0.043 0.036 0.053 0.052 0.044
O_TDM - - - 9188.3 1550.4 1015.9 1165.4 2304.7 2814.6 1350.6 700.6 549.3 237.8

PL DVFS
O_RAFTM 228.6 662.2 529.9 1092 1815 4665 15722 4676 33294 70465 24239 24054 24072

O_RAM 84.3 99.2 44.4 74.3 76.5 65.5 52.4 55 56.3 41.7 42.8 57.4 56.3
O_TDM - - - 2740 5677.5 5084.1 9641.1 14770.4 10571.4 8235.2 5517.1 3619.0 3169.6

SL DVFS
O_RAFTM 0.53 0.3 5.76 14.14 21.69 98.22 91.88 183.39 1301.28 585.03 65.29 28.56 15.08

O_RAM 0.08 0.06 0.038 0.069 0.045 0.066 0.059 0.036 0.027 0.026 0.025 0.037 0.025
O_TDM - - - 238.51 230.59 304.66 370.62 1099.44 686.62 225.18 239.50 154.98 41.93

92

3.3. Task Mapping Problem for dependent tasks

Table 3.14: Computation time (sec) for dependent tasks (N = 20, M = 6) under all DVFS
schemes.

deadline(D) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

TL DVFS
O_RAFTM 0.8 58.1 26.9 89.9 81.9 109.8 58.6 62.8 59.8 14.7 2.5 0.7 0.6

O_RAM 0.07 0.06 0.08 0.09 0.10 0.06 0.05 0.05 0.07 0.05 0.06 0.08 0.05
O_TDM - 70.8 333.4 124.4 298.2 227.4 70.5 160.6 203.4 39.8 2.9 1.4 0.9

PL DVFS
O_RAFTM 114.2 697.3 730.8 661.5 859.5 824.0 1090.1 503.3 569.2 188.6 95.9 82.5 75.0

O_RAM 566.0 397.9 533.6 671.5 546.1 820.5 954.5 562.0 687.4 693.2 799.0 1113.8 700.0
O_TDM - 2861.2 2874.1 5312.8 8795.7 1477.3 1237.6 1243.7 1794.6 232.5 41.7 42.2 35.2

SL DVFS
O_RAFTM 0.4 0.3 1.4 12.1 12.6 23.5 19.2 19.7 16.1 21.3 5.9 4.7 5.6

O_RAM 0.09 0.07 0.06 0.12 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.05 0.04
O_TDM - 8.7 111.0 37.8 71.9 83.0 52.3 52.6 41.9 32.8 19.5 20.2 16.3

Experimental set-up: Reliability constraints not always met

In this second experimental set-up, we explore the behavior of O_RAFTM and O_RAM
at different failure rates λ0 under TL-DVFS scheme 3. First, we extend the range of the task
reliability threshold, in order to have few tasks with higher reliability requirements. Then, we
tune the parameter λ0 in order to change the failure rate. This experimental set-up shows how
the fault model influences the ability of obtaining feasible solutions, through a slight increase of
λ0. We will show that the proposed approach provides better results than O_RAM, with the
fault rate changing. These modifications will affect only the proposed O_RAFTM and O_RAM
approaches, since they use the reliability constraint to decide the task mapping. Two different
values λ0 are chosen for experiments: λl0 = 4× 10−4, and λh0 = 5× 10−4.

Experimental results: Reliability constraints not always met

Feasibility: Fig. 3.14 depicts the ability of O_RAM, compared to O_RAFTM, to obtain
feasible solution, for λl0 = 4 × 10−4 (Fig. 3.14a and Fig. 3.14c) and λh0 = 5 × 10−4 (Fig. 3.14b
and Fig. 3.14d), with N = 10 and N = 20, M = 4. Generally:

— On the one hand, as the λ0 increases, the reliability of a task, due to the processor fault
rate, is decreased. Therefore, with λ0 increasing, the capability of O_RAM to always find
a frequency, that meets the reliability threshold of all tasks, decreases, especially for tasks
with high reliability requirements. On the other hand, even with λ0 increasing, O_RAFTM
is able to still meet these high reliability requirements, by duplicating tasks and assigning
a high frequency. This can be observed by comparing Fig. 3.14a to Fig. 3.14b, where the
feasibility of O_RAM is reduced by 20%, and Fig. 3.14c to Fig. 3.14d, where the feasibility
of O_RAM is reduced by 30%. However, O_RAFTM feasibility remains the same, always
finding a solution at relaxed deadlines.

3. we remind λ0 is the average fault rate at maximum frequency, see section 1.5.2

93

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

(a) N = 10, λl0 = 4× 10−4 (b) N = 10, λh0 = 5× 10−4

(c) N = 20, λl0 = 4× 10−4 (d) N = 20, λh0 = 5× 10−4

Figure 3.14: Feasibility for dependent tasks (M = 4) with λl0 = 4× 10−4 and λh0 = 5× 10−4 for
TL-DVFS scheme.

— As the number of tasks increases, the feasibility is affected. As we observe by comparing
Fig. 3.14a to Fig. 3.14c and Fig. 3.14b to Fig. 3.14d, the curves of O_RAM and O_RAFTM
separate at stricter deadlines, whenN = 20, compared to the ones whenN = 10. Comparing
the feasibility between the first and the second set-ups, we observe that the feasibility of first
set-up can be 100% for both and O_RAM, with a smaller average fault rate λ0 at relaxed
deadlines. However, with the average fault rate increasing, it is not possible for O_RAM
to find a solution satisfying the reliability requirements, even with maximum frequency and
relaxed deadline. This observation worsens with λ0 increasing. Thus, with a different fault
model, executing only the original task may not be able to provide reliable execution. Repli-
cation is needed in order to guarantee the reliability threshold of the tasks. It is the reason
why O_RAFTM find solutions much more easily than O_RAM when deadline is not too
strict.

Energy Consumption: Fig. 3.15 depicts the energy consumption of O_RAM, compared to
the proposed approach, when RAM found a solution.

94

3.3. Task Mapping Problem for dependent tasks

(a) N = 10, λl0 = 4× 10−4 (b) N = 10, λh0 = 5× 10−4

(c) N = 20, λl0 = 4× 10−4 (d) N = 20, λh0 = 5× 10−4

Figure 3.15: Energy consumtpion for dependent tasks (M = 4) with λl0 = 4 × 10−4 and λh0 =
5× 10−4 for TL-DVFS scheme.

— As the λ0 increases, the processor sensibility to faults is increased. Then, the energy gains are
slightly reduced, from 11.61% to 8.51% (N = 10, Fig. 3.15a to Fig. 3.15b) and from 12.41%
to 9.23% (N = 20, Fig. 3.15c to Fig. 3.15d), on average This is due to the fact that, based
on λ(f) (see Section 3.2.1), the reliability with same frequency decreases, when λ0 increases.
In order to guarantee a reliable execution, a high frequency must be assigned to meet the
reliability requirement, leading to higher energy consumption for the proposed approach
under same condition except when λ0 increasing from λl0 = 4×10−4 to λh0 = 5×10−4, which
makes the energy gains between O_RAFTM amd O_RAM reduced.

— Comparing the first and second set-ups, we have similar observation by comparing Fig. 3.9b
with Fig. 3.15a and Fig. 3.15b, and Fig. 3.10a with Fig. 3.15c and Fig. 3.15d, the energy
savings are decreased between O_RAFTM and O_RAM. For instance, from 36.6% (first
set-up) to 11.61% and 8.51%, on average when N = 10 and M = 4 with λ0 increasing from
λ0 = 5× 10−5, to λl0 = 4× 10−4 and to λh0 = 5× 10−4.

95

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

(a) N = 10, λl0 = 4× 10−4 (b) N = 10, λh0 = 5× 10−4

(c) N = 20, λl0 = 4× 10−4 (d) N = 20, λh0 = 5× 10−4

Figure 3.16: Reliability improvement for dependent tasks (M = 4) with λl0 = 4 × 10−4 and
λh0 = 5× 10−4 for TL-DVFS scheme.

Reliability Improvement: Fig. 3.16 depicts the reliability improvement of O_RAFTM and
O_RAM, for the cases where O_RAM was able to find a solution. Generally, when more energy
is consumed, we can observe the trend that a higher reliability achievement is obtained. With
λ0 increasing, the reliability decreases under same conditions. A higher frequency is needed to
meet the reliability requirement for O_RAM, which increases the energy consumption and the
reliability achievement. On the basis of satisfying the reliability requirements, O_RAM achieves
a slightly better reliability improvement than our approach, while it sacrifices the ability of
obtaining feasible solutions.

Task Duplication: The percentage of duplicated task is depicted in Fig. 3.17. As Based
on the fault model in Section 1.5.2, the reliability decreases with higher λh0 . When the timing
constraints are always satisfied, a higher λh0 with the same frequency, leads to lower reliability. To
meet reliability constraints, either a very high frequency is assigned to original tasks, or a relative
high frequency is required for both original and duplicated tasks. The first option consumes less
energy in this case. As observed in Fig. 3.17a and Fig. 3.17b O_RAFTM duplicates more tasks

96

3.3. Task Mapping Problem for dependent tasks

(a) N = 10 (b) N = 20

Figure 3.17: O_RAFTM task duplication percentage for dependent tasks (a) N = 10, and b)
N = 20, M = 4) with λl0 = 4× 10−4 and λh0 = 5× 10−4 for TL-DVFS scheme.

when λl0 = 4× 10−4, specifically with relaxed deadlines, which sounds reasonable.

Computation Time: Table 3.15 and 3.16 give the time needed to obtain a solution for our
proposed O_RAFTM and O_RAM after the extension of fault rate λ0. Similar to the time
analysis in set-up 1, O_RAM needs less running time than our proposed approach when finding
a feasible solution, at the price of more energy consumption and less ability to obtain feasible
solutions. Of course computation time increases with number of processors. And similarly to
experiment set-up 1, strict and very relaxed deadlines takes less time than other deadlines.

Table 3.15: Computation time (sec) (N = 10, M = 4) with λl0 = 4 × 10−4 and λh0 = 5 × 10−4

for TL-DVFS scheme.

deadline(D) 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

λl
0

O_RAFTM 0.77 0.93 1.01 1.49 1.48 2.00 1.28 1.31 1.21 0.74 0.68 0.66 0.62 0.64 0.62
O_RAM 0.07 0.04 0.06 0.07 0.13 0.19 0.12 0.05 0.06 0.05 0.06 0.06 0.05 0.04 0.04

λh
0

O_RAFTM 0.67 0.61 0.87 1.18 0.87 1.39 0.80 0.72 0.66 0.55 0.53 0.58 0.55 0.57 0.50
O_RAM 0.10 0.05 0.05 0.06 0.13 0.20 0.13 0.05 0.05 0.08 0.05 0.05 0.05 0.04 0.07

Table 3.16: Computation time (sec) (N = 20, M = 4) with λl0 = 4 × 10−4 and λh0 = 5 × 10−4

for TL-DVFS scheme.

deadline(D) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

λl
0

O_RAFTM 26.85 194.76 98.45 208.45 224.04 315.23 167.25 326.79 278.74 99.46 216.81 31.26 4.79
O_RAM 0.04 0.03 0.02 0.05 0.03 0.04 0.04 0.04 0.03 0.02 0.02 0.03 0.02

λh
0

O_RAFTM 32.08 206.57 583.86 156.99 155.10 117.55 155.63 174.00 19.15 24.26 33.65 3.52 3.06
O_RAM 0.05 0.03 0.03 0.05 0.04 0.05 0.05 0.04 0.04 0.02 0.03 0.04 0.02

97

Chapter 3 – Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions

3.4 Conclusion

In this chapter, we discussed task mapping of both independent tasks and dependent tasks
on multiprocessor systems. Our contributions in this chapter include formulating the studied
problem by jointly deciding the frequency assignment to tasks, task allocation to processors and
the tasks to be duplicated in order to minimize total energy consumption, under real-time and
reliability requirement constraints. As a fault tolerance technique, we show the importance of
applying partial duplication where decisions need to be made to select the part of the set of tasks
to be duplicated. This approach provides a good trade-off between energy saving and reliability
improvement. This reliability-aware Fault-tolerant Task Mapping (RAFTM) approach can be
used to solve the studied problems under task level (TL), processor level (PL) and system level
(SL) DVFS schemes.

First, we presented the problems we want to address for both independent tasks and de-
pendent tasks. The problems are originally formulated as non-linear problems. We proved that
a reliable replacement method can be used to safely and equivalently transfer the non-linear
problems into Mixed-Integer-Linear-Programming (MILP) problems, which can be solved with
optimal solutions.

Then, we provided simulation-based evaluations for our proposed approach and two other
SoA approaches which focus on solving the same problems for comparison. A large number
of experiments are done. As expected, experimental results show that TL-DVFS achieves less
energy consumption, thanks to flexibility in task frequency assignment, compared to SL-DVFS.
Results show that the proposed approach is generally able to provide better energy savings, and
at the same time, higher feasibility even when existing approaches may fail to find a solution,
without violating timing and reliability constraints, under the three possible DVFS schemes.

98

Chapter 4

ENERGY-EFFICIENT FAULT TOLERANT

TASK MAPPING WITH HEURISTIC

SOLUTIONS

As shown in the previous chapter, since the problem of task mapping on multicore platforms is
NP-hard, it is time-consuming to obtain optimal solutions, even when a few number of tasks and
processors is considered. Therefore, it is not practically realistic to search for optimal solutions
especially when the problem size becomes large. In this chapter, we propose a set of heuristic
algorithms to solve the problems presented in Chapter 3 in order to reduce the computational
complexity and obtain near-optimal solutions. The heuristic algorithms for task mapping we
propose under the three DVFS schemes for independent tasks are presented in Sections 4.1, 4.2
and 4.3. We first describe in details the heuristic idea for TL-DVFS in Section 4.1. Then we
highlight the parts that are different for PL-DVFS and SL-DVFS. The heuristic algorithms for
task mapping when tasks have dependencies are then explained in Sections 4.4, 4.5 and 4.6.
Experiment results based on simulations are provided and comparison with SoA approaches is
done.

4.1 Independent Tasks under Task Level DVFS

4.1.1 Reliability-aware Fault-tolerant Task Mapping heuristic

We propose a Reliability-aware Fault-tolerant Task Mapping heuristic (H_RAFTM) to solve
the task mapping problem for independent tasks when supporting TL-DVFS, presented in Sec-
tion 3.2. Table 4.1 summarizes the main notations. The proposed heuristic is based on the
following definitions and constraints:

Definition 1 (Configuration). A task may be executed in several different configurations in the
procedure of task mapping. A configuration j of a task τi is a 7-tuple set, denoted as
Cji = {foi , fdi , etoi , etdi , Eoi , Edi , Ri}, where foi (fdi) is the assigned frequency, etoi (etdi) is the re-
quired execution time, Eoi (Edi) is the energy consumption of the original (duplicated) task and

99

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

Notations Definitions

τo
i /τ

d
i the original/duplicated copy of task τi

(vl, fl) the lth voltage/frequency level
Wi WCET of task τi

D the global deadline
Rth

i reliability threshold of task τi

TotalETm total workload of processor θm

eti execution time of task τi

ranki the rank of task τi

Cj
i the jth configuration of task τi

SCi scheduled configuration of task τi in current task mapping

TM
C
j
i

i the mapping of task τi in configuration Cj
i

AM the mapping of the application

Table 4.1: Main notations for independent tasks under TL-DVFS scheme.

Ri is the reliability of the task τi (original and potentially duplicated task). If the task is not
duplicated, we have fdi = etdi = Edi = 0.

Definition 2 (Task Mapping). A mapping of a task τi, under the task configuration Cji , is a
6-tuple set, denoted as TMCj

i
i = {Cji , θoi , θdi }, where θoi (θdi) is the allocated processor for original

(duplicated) task.

Definition 3 (Application Mapping). The mapping of the application (AM) is given by the
set of mappings of N original tasks and S ⊆ N duplicated tasks. The mapping is valid if the
real-time constraints are satisfied.

Definition 4 (Total Execution Time). The total execution time of a processor θm is TotalETm =∑
θi=θm,i∈N ,k∈{o,d} et

k
i .

Constraint 1 (Reliability Constraint). A task must be executed meeting its reliability require-
ment, i.e., Ri ≥ Rthi .

Constraint 2 (Deadline constraint). The application must finish before the deadline D. For
each processor, all tasks (including original and potentially duplicated tasks) allocated on it must
be executed within D:

∑
i∈N ,θo

i =θm
etoi +

∑
i∈N ,θd

i =θm
etdi ≤ D,∀m ∈M . (4.1)

The total execution time of each processor should not exceed the global deadline D .

The proposed heuristic is described by Algorithm 1 and it has two phases:

1. Phase A obtains, per task, the set of possible configurations that meet the reliability con-
straint, ordered in decreasing energy consumption.

100

4.1. Independent Tasks under Task Level DVFS

Algorithm 1 Proposed H_RAFTM algorithm for independent tasks under TL_DVFS scheme.
Input: Task graph (G) and set of processors (M).
Output: Application mapping (AM).

// Phase A
1: for each task τi in N do
2: RTEi = {Cji : C

j
i is the j − th configuration of τi} ;

3: FCi = RTEi - {Cji : Ri < Rthi };
4: BCi = {FCi: fdi = 0};
5: for each bc in BCi of task τi do
6: PCi = FCi - {FCi: fdi 6= 0 ∧

∑
{etoi , etdi } ≥ etbci ∧

∑
{Eoi , Edi } > Ebci };

7: end for
8: rPCi = {PCi: PCi[j] decreasing energy consumption};
9: end for

// Phase B
10: for each task τi in N do
11: Compute ranki;
12: end for
13: PL-T = {N : ordered in decreasing rankτi};
14: for each task τi in PL-T do
15: SCi = rPCi[0];
16: Obtain TMSCi

i (θm with minm∈M TotalETm);
17: end for
18: AM0 = {TMSCi

i , i ∈N };
19: Compute {TotalETAM0

m , m ∈M} of AM0;
20: if ∃TotalETAM0

m > D then
21: Infeasible problem, algorithm stops.
22: else if ∀TotalETAM0

m = D then
23: AM = AM0, algorithm stops.
24: else if ∃TotalETAM0

m < D then
25: AM relaxation (Algorithm 2);
26: end if

2. Phase B obtains the application mapping, by allocating tasks to processors using the least
total energy consumption, under real-time constraints.

Phase A: Task configurations under reliability constraint.

Phase A (L. 1-9) is applied per task. For each task (L. 1), a Reliability, execution Time,
Energy consumption (RTE) table is created based on all possible configurations (L. 2). A pruning
step removes the task configurations that do not satisfy the reliability constraint (L. 3). The
result is the Feasible Configurations (FC) space of the task. FCi considering only the original task
τ oi (when fdi = 0, no duplicated task exists) serve as Baseline Configurations (BC) (L. 4). The
next step prunes any feasible configuration with duplicated tasks, if both energy consumption
and execution time are larger than any BCi (L. 5-7). The result is the Possible Configurations
(PC) space. The PCs are ranked based on decreasing energy consumption (rPC) (L. 8).

101

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

Phase B: Application mapping under real-time constraint

Phase B uses Phase A task configurations and performs the application mapping, subject to
the real-time constraint. Phase B consists of three steps (L. 10-26):
Step 1 (L. 10-13): Priorities are given to tasks for task allocation based on the largest-average-
execution-time-first rule. We define the rank value of each task as ranki = eti (L. 11). In the
rest of the manuscript, for any set X, |X| denotes the size of set X. The average execution time
of a task is computed by the average execution time among all possible configurations, i.e.,

eti =
∑
j∈PCi,k∈{o,d} et

k
i [j]

|PCi|
(4.2)

where etki [j] defines the execution time of task i under configuration j. The Priority List of tasks
(PL-T) is ordered in decreasing rank value (L. 13).
Step 2 (L. 14-23): The initial application mapping AM0 is generated to check if the problem
is feasible and time slack is available. For each task, AM0 uses the first configuration in rPCi
as the Selected Configuration SCi (L. 15). For each task, choosing the processor with least
TotalET , we obtain the task mapping (TMSCi

i) (L. 16). The set of all task mappings provides
the AM0 (L. 18) and the total execution time of all processors TotalET0 is obtained (L. 19). If
the total execution time of some processors exceeds the global deadline D, the studied problem
is infeasible (L. 20-21), and the algorithm stops. If the total execution time of all processors is
equal to the deadline, the initial application mapping is the final mapping and the algorithm
stops (L. 22-23).
Step 3: (L. 24-26) Otherwise, if there is no processor that its workload exceeds D, and for
some processors, time slack exists after the initial task mapping is obtained (L. 24), the mapping
can be relaxed leading to energy savings. Overall, different task configurations and different tasks
can be relaxed. Algorithm 2 decides which task and with which configuration to be selected for
relaxation (L. 25). As a first step, the current mapping (AM , TotalET) is initialised with the
initial mapping (AM0, TotalETAM0) (L. 1). The algorithm is applied iteratively, until there
is no available time slack for relaxation or all tasks have reached their configuration with the
least energy consumption (L. 2). Before the relaxation, we compute the energy saving (ES) and
execution time increase (TI) for each task and each remaining configuration, compared to the
first configuration used in current task and application mapping (L. 3-7). We combine two criteria
to select the task, with a potential new configuration (NC), to do the relaxation in order to save
energy. First, we consider a global search among all tasks with all their possible configurations
to select a new configuration (NC) for a task that achieves the highest value ES/TI (L. 8) and
this task τrel with new selected configuration SCτrel

is selected to do the relaxation. Also a local
search explores rPCi sequentially for each task, by selecting always the first configuration, for
relaxation (L. 9). Note that, when the conditions in L. 2 cannot be satisfied for the first time,

102

4.1. Independent Tasks under Task Level DVFS

Algorithm 2 Mapping Relaxation Algorithm for independent tasks under TL_DVFS scheme.
1: AM = AM0, TotalET = TotalETAM0 ;
2: while ∃TotalET < D and rPCi> 1(∀τi) do
3: for each task τi in N do
4: for each configuration j(j 6= 0) in rPCi do
5: Compute ESi[j] and TIi[j] compared to configuration j = 0;
6: end for
7: end for

// global search relaxation:
8: τrel = τi with NCτrel = rPCi[j] : rPCi[j] = maxi∈N

{∑
c∈rPCi(ESi[c]/TIi[c])

}
;

// local search relaxation:
9: τrel = τi with NCτrel = rPCi[0], i ∈N ;

10: for each task τi in PL-T do
11: Obtain TMSCi

i (θm with minm∈M TotalET);
12: end for
13: AM = {TMSCi

i , i ∈N};
14: Compute TotalETAMm of current AM for each processor θm;
15: for each configuration in rPCτrel do
16: rPCτrel = rPCτrel - {rPCτrel : Ejτrel ≥ E

NCτrel
τrel };

17: end for
18: end while

the global search is stopped and the local search is applied. By combining the global and local
search, we can fully explore the available time slack for relaxation, especially for exploring in a
fine-grained way the time slack left after the global search. After selecting a task with a new
configuration, all task mappings are updated accordingly (L. 10-12). Furthermore, application
mapping AM (L. 13) and the total execution time TotalET for each processor are obtained (L.
14). Last, for the relaxed task with the new selected configuration (NCτrel

), all configurations
that have a higher energy consumption than the selected one are removed from rPCτrel

(L.
15-17).

4.1.2 Evaluation results

This section evaluates the proposed heuristic (H_RAFTM) with i) the optimal approach
using Gurobi 9.0.2 (O_RAFTM) presented in Section 3.2.4, and ii) two SoA heuristics. similar
to Chapter 3, the SoA approaches are the heuristic versions of a) the Reliability-Aware Map-
ping (H_RAM), that meets the reliability constraint without task duplication, similar to [62]
and ESRG algorithm in [24], and b) the Task Duplication Mapping (H_TDM), applying task
duplication for all tasks, similar to [32, 24], when the number of replicas is two, or to [37], with
100% task duplication.

The model of the processor, the parameters of tasks and the reliability requirements are
same as in Table 3.3 in Section 3.2.4. A large and diverse set of experiments is performed, by
tuning the:

103

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

1. Number of processors (M = 2, 4).

2. Size of task set (N = 10, 20).

3. For each application task graph, a number of experiments (denoted as NE) is performed,
each time with different task characteristics (Wi and Rthi).

To evaluate the approaches, the Feasibility, Energy Consumption (EC) in mJ, Reliability
Improvement (RI) and Computation time (CT) in seconds (sec.) are presented.

Comparison with the optimal approach

This section compares the behavior of proposed heuristic and optimal solutions for inde-
pendent tasks under TL-DVFS, considering small scale problems. We present the results for
NE = 10, considering random graphs with N = 10 and N = 20 original tasks and M = 2 and
M = 4 processors.

Regarding feasibility, as shown in Fig. 4.1, when the deadline is relaxed, the H_RAFTM
achieves same feasibility as the optimal approach O_RAFTM. Overall, when the deadline is

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.1: Feasibility of optimal and heuristic approaches for independent tasks under TL-DVFS
scheme.

104

4.1. Independent Tasks under Task Level DVFS

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.2: Energy consumption (mJ) of optimal and heuristic approaches for independent tasks
under TL-DVFS scheme.

strict, the H_RAFTM feasibility is very close to the optimal feasibility. The average difference
between H_RAFTM and O_RAFTM, before the deadline for which both are able to achieve
100% feasibility, is 5% (Fig. 4.1a) when N = 10 and M = 2. A slightly higher difference (16.7%)
is observed when N = 10 and M = 4 (Fig. 4.1b). When N = 20 the average difference is 1.67%
for M = 2 (Fig. 4.1c) and 2.5% for M = 4 (Fig. 4.1d).

Regarding energy consumption, as shown in Fig. 4.2, overall, H_RAFTM consumes slightly
more energy than O_RAFTM. H_RAFTM consumes on average 2.14% when N = 10 and
M = 2 (Fig. 4.2a) and 5.85% M = 4 (Fig. 4.2b) more energy than the optimal solutions, when
the number of tasks is increased to 20, H_RAFTM consumes on average 1.12% for M = 2
(Fig. 4.2c) and 1.96% for M = 4 (Fig. 4.2d) more than the optimal solution. When the deadline
is relaxed, H_RAFTM and O_RAFTM obtain solutions with the same energy consumption
since the proposed heuristic is able to fully explore available time slack for task mapping.

Regarding reliability improvement, H_RAFTM provides overall comparable reliability im-
provement with the optimal solutions at the price of consuming slightly more energy for a given
deadline, as depicted in Fig. 4.3.

105

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) N = 10,M = 2 (b) N = 10,M = 4

(c) N = 20,M = 2 (d) N = 20,M = 4

Figure 4.3: Reliability improvement of optimal and heuristic approaches for independent tasks
under TL-DVFS scheme.

The average computation time of O_RAFTM and H_RAFTM is computed taking into
account the experiments when a feasible solution is found. Table 4.2 shows the results in seconds
per deadline D. It can be observed that, although few tasks and processors are used, the time
to obtain the optimal solution is very long, especially when there are more tasks (N = 20)
and processors M = 4. The difference in computation time between optimal approach and the
proposed H_RAFTM, on average, is ×104 when deadlines are not very relaxed. This is due to
the fact that the computational complexity to obtain optimal solutions for NP-hard problems
increases dramatically with problem size increasing.

Overall, the obtained results show that i) H_RAFTM provides near-optimal solutions, and
ii) as expected, H_RAFTM takes significantly less time to obtain the results compared to the
optimal approaches.

Comparison with heuristic approaches

The feasibility of the proposed and the two SoA heuristics is depicted in Fig. 4.4. Comparied
to H_TDM, the proposed H_RAFTM can find solutions in significantly more experiments than

106

4.1. Independent Tasks under Task Level DVFS

Table 4.2: Computation time (sec) of optimal and heuristic approaches for independent tasks
under TL-DVFS scheme.

N = 10, M = 2
D 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3

O_RAFTM 3.81 1.32 1.77 0.87 1.96 0.53 1.82 2.56 1.85 2.38 2.81 2.29 2.95
H_RAFTM ∼ 0.01

D 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6-4.0
O_RAFTM 2.93 3.37 3.96 1.80 1.58 1.19 1.05 0.86 0.49 0.32 0.17 1.03 ∼0.05
H_RAFTM ∼ 0.01

N = 10, M = 4
D 0.6 0.7 0.8 0.9 1.0 1.1 1.2

O_RAFTM 10.34 11.44 9.47 37.59 37.44 60.24 830.27
H_RAFTM ∼ 0.01

D 1.3 1.4 1.5 1.6 1.7 1.8 1.9-3.0
O_RAFTM 217.16 215.56 273.33 9.52 1.16 5.62 ∼0.03
H_RAFTM ∼ 0.01

N = 20, M = 2
D 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

O_RAFTM 3.85 2.95 2.47 1.42 2.25 2.36 1.59 2.55 2.39 2.43 3.31
H_RAFTM 0.01 ∼ 0.02 ∼ 0.03

D 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6-7.6
O_RAFTM 4.62 4.87 4.28 4.51 3.85 2.97 2.67 1.51 2.13 0.82 ∼0.06
H_RAFTM ∼ 0.03 ∼ 0.04

N = 20, M = 4
D 1.2 1.4 1.6 1.8 2.0 2.2

O_RAFTM 3058.33 1909.92 521.33 673.87 399.08 1237.58
H_RAFTM 0.02 ∼ 0.03

D 2.4 2.6 2.8 3.0 3.2 3.4-6.0
O_RAFTM 4356.88 165.41 38.65 25.84 3.80 ∼0.11
H_RAFTM ∼ 0.04

H_TDM, especially when the deadline is not fully relaxed or the number of cores is reduced.
When tasks meet their reliability constraint, H_RAFTM does not need to duplicate these tasks.
However, H_TDM duplicates all tasks, and thus, it is able to find solutions only when the
deadline is relatively relaxed or several processors exist to run the tasks in parallel. Before
obtaining 100% feasibility for both approaches, on average, H_RAFTM finds a solution in more
experiments than H_TDM, i.e., 66.0% with M = 2 and 63.3% with M = 4, for N = 10, and
68.6% with M = 2 and 68.3% with M = 4 for N = 20. Note that, H_RAFTM and H_RAM
have the same feasibility. This behavior is explained as follows: when H_RAM finds a solution,
it means that the reliability constraint of all tasks can be met by executing only the original
task with a high frequency. After obtaining all possible configurations in Phase A, for each task,
the configurations (PC) of H_RAFTM always include all the configurations (PC) of H_RAM.
In this case, H_RAFTM can also find the H_RAM solution.

The energy consumption obtained by the solutions of the three heuristics is depicted in
Fig. 4.5. Comparing H_RAFTM and H_RAM (first row), we observe that they consume similar

107

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.4: Feasibility of heuristics for independent tasks under TL-DVFS scheme.

energy at very strict deadlines, when the number of processors is small. In this case, H_RAFTM
behaves similarly to H_RAM, i.e., mainly executing the original tasks with the frequency re-
quired to achieve the reliability constraint. With deadline relaxing, H_RAFTM starts to con-
sume less energy than H_RAM. H_RAFTM achieves this gain by exploring the available time
slack to duplicate tasks in order to save energy, e.g., up to 53.5% for N = 10 and 49.5% for
N = 20 at relaxed deadlines. Similarly, when more processors are available, H_RAFTM can take
advantage of these resources and execute duplicated task in parallel. Comparing H_RAFTM
and H_TDM (second row), as H_TDM applies task duplication for every task, it cannot find
solutions in very strict deadlines. When H_TDM starts finding solutions at a relatively re-
laxed deadline, H_RAFTM is able to use the available time slack to do partial duplication.
Therefore, considering the experiments where both H_RAFTM and H_TDM can find solu-
tions, H_RAFTM consumes significantly less energy than H_TDM. For the decision to do
partial duplication, H_RAFTM selects the task configuration, if exists, with only the original
task, meeting the reliability constraint and consuming less energy than configurations with du-
plicated tasks. Since H_TDM duplicates all tasks, its energy consumption can be significant,
when it finds a solution. In very relaxed deadlines, H_RAFTM and H_TDM behave similar,

108

4.1. Independent Tasks under Task Level DVFS

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.5: Energy consumption (mJ) of heuristics for independent tasks under TL-DVFS
scheme.

i.e., duplicate the tasks with configurations when less energy is consumed.

The reliability improvement is given in Fig. 4.6. H_RAFTM achieves higher reliability
than H_RAM (first row), except in very strict deadlines when H_RAFTM behaves similar
to H_RAM without task duplication. As explained above, when there is not available time slack
to perform duplication, H_RAFTM behaves similar to H_RAM as most of the tasks are exe-
cuted with only their original copy. Compared to H_TDM (second row), H_RAFTM provides
lower reliability for tight deadlines, as it duplicates only a part of the task-set. The same relia-
bility improvement can be achieved in relaxed deadlines, since both H_RAFTM and H_TDM
duplicate tasks similarly.

The computation time in seconds of H_RAFTM, H_RAM and H_TDM heuristics is de-
picted in Fig. 4.7. Overall, when the deadline increases, the trends are as follows: the H_RAM

109

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.6: Reliability improvement of heuristics for independent tasks under TL-DVFS scheme.

computation time remains stable and the H_RAFTM and H_TDM computation times slightly
increase. The computation time to obtain a feasible solution increases with deadline relaxing,
due to the fact that the proposed heuristic explores the PC space for each task, based on the
deadline constraints. Therefore, the more relaxed the deadline is, the larger is the PC space
to be explored per task, and thus, more time is needed. Note that, the H_TDM is generally
the most expensive approach in terms of computation time, when deadline is very relaxed. This
behavior is due to the fact that all tasks are duplicated, which increases the total number of
tasks (original task and duplicated task) to be scheduled, and thus, the number of PCs in each
task PC space, and the time required to find a solution. For H_RAM, since it only executes
original tasks, it has a reduced number of PCs in the PC space, taking the least time to obtain
a solution. However, it provides less energy savings as explained above, especially at relaxed
deadlines.

110

4.2. Independent Tasks under Processor Level DVFS

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.7: Computation time (sec) of heuristics for independent tasks under TL-DVFS scheme.

4.2 Independent Tasks under Processor Level DVFS

4.2.1 Reliability-aware Fault-tolerant Task Mapping heuristic

The proposed Reliability-aware Fault-tolerant Task Mapping heuristic (H_RAFTM) is lever-
aged in order to be able to handle the PL-DVFS scheme. The aforementioned definitions and
constraints for TL-DVFS scheme are valid and any difference will be explicitly described. Algo-
rithm 3 describes the proposed approach, which is explained in the next paragraphs.

Phase A: Task configurations under reliability constraint.

The Phase A for H_RAFTM adapted for PL-DVFS is similar to the H_RAFTM for TL-
DVFS. However, there is a difference when configurations are pruned. Under PL-DVFS, a higher
number of possible configurations are kept for each task in phase A (L. 6 in Algorithm 3) com-

111

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

pared to TL-DVFS (L. 6 in Algorithm 1). Configurations where one frequency, used to execute
original or duplicated task, is equal to the frequency of baseline configurations (BC), are pruned
(L. 6 in Alg. 3), similar to TL-DVFS scheme (L. 6 in Alg. 1). However, configurations where one
of the frequencies, used to execute the original and duplicated tasks, is equal to the frequency of
baseline configurations, but the minimal execution time of original and duplicated tasks is larger
than the execution time of the baseline configurations and the total energy consumption is higher
than baseline configurations, i.e.,

∑
{etoi , etdi } ≥ etbci ∧

∑
{Eoi , Edi } > Ebci (L. 6 in Algorithm 1),

are pruned under TL-DVFS while kept under PL-DVFS scheme. In PL-DVFS, all tasks executed
on same processor have the same frequency. Therefore, we need to keep these configurations,
since the final frequency depends on all tasks allocated on the same core. To illustrate that with
an example, let’s assume that the BC of a task is the following: the original task is executed with
f5 with an energy consumption equal to 4.108mJ. A configuration that uses f2/f5 for original
and duplicated tasks with higher energy consumption than 4.108 mJ is pruned according to L.
6 in Alg. 3. However, this configuration is still kept under PL-DVFS, because PL-DVFS has less
flexibility in frequency assignment compared to TL-DVFS. The frequency assignment depends
on the task allocation that is performed at later later steps, and over-pruning at this step will
lead to infeasible solutions. To avoid this, we keep the configurations with

∑
{etoi , etdi } ≥ etbci ∧∑

{Eoi , Edi } > Ebci under PL-DVFS.

Phase B: Application mapping under real-time constraint

Phase B uses Phase A task configurations and performs the application mapping, subject to
deadline constraint introduced in Equation (4.1). Phase B consists of three steps (L. 10-26):
Step 1 (L. 10-14): This step is the same as described by Equation 4.2, where priorities are
given to tasks for task allocation based on the largest-average-execution-time ranki = eti (L.
11). The Priority List of tasks (PL-T) is ordered in decreasing rank value (L. 13). We list all
possible combinations of Frequency-To-Processor (FTP) assignment for all processors (L. 14)
and order them in a decreasing order based on the the sum of frequency indexes, named rFTP,
which describes the ranked FTP space. For instance, assumingM = 3, the first group is FTP =
{fL−1, fL−1, fL−1}, where all processors are assigned with highest frequency fL−1, whereas the
last group is FTP = {f0, f0, f0} when all processors are assigned with lowest frequency. Since the
processors are homogeneous, we consider identical the combinations where the sum of frequency
indexes is the same. For example, FTP = {f0, f1, f2} and FTP = {f2, f0, f1} correspond to the
same FTP group with a sum of frequency indexes equal to 3.
Step 2 (L. 15-25): The initial application mapping AM0 is used to check whether the problem
is feasible and time slack is available. To obtain initial task mapping AM0, we start with FTP =
{fL−1, . . . , fL−1} where all cores are assigned with the highest frequency fL−1 (L. 15). For each
FTP group, we list all available configurations (ACs) for each task from the PC space (L. 17).

112

4.2. Independent Tasks under Processor Level DVFS

Algorithm 3 Proposed H_RAFTM algorithm for independent tasks under PL_DVFS scheme.
Input: Task graph (G) and set of processors (M).
Output: Application mapping (AM).

// Phase A
1: for each task τi in N do
2: RTEi = {Cji : C

j
i is the j-th configuration of τi} ;

3: FCi = RTEi - {Cji : Ri < Rthi };
4: BCi = {FCi: fdi = 0};
5: for each bc in BCi of task τi do
6: PCi = FCi - {FCi: fdi 6= 0 };
7: end for
8: rPCi = {PCi: PCi[j] increasing energy consumption};
9: end for

// Phase B
10: for each task τi in N do
11: Compute ranki;
12: end for
13: PL-T = {N : ordered in decreasing rankτi};
14: Obtain all possible frequency-to-processor groups (FTP) and order in decreasing sum of frequency

index;
15: Start with all processor in highest frequency fL−1, i.e., FTP = {fL−1, ..., fL−1}
16: for each task τi in PL-T do
17: List all available configurations (AC);
18: Compute TMSCi

i (θm with minm∈M TotalETm);
19: end for
20: AM0 = {TMSCi

i , i ∈N};
21: Compute TotalETAM0

m of AM0 for each processor θm;
22: if ∃TotalETAM0

m > D then
23: Infeasible problem, algorithm stops.
24: else if ∀TotalETAM0

m = D then
25: AM = AM0, algorithm stops.
26: else if ∃TotalETAM0

m < D then
27: AM relaxation (Algorithm 4);
28: end if

For example, the frequency assignments for a task among all its ACs with FTP={f0, f1, f2} can
be f0/f1, f0/f2 and f1/f2 for the execution of original and duplicated tasks. The two available
cores with the least TotalET are chosen to execute the original and duplicated tasks for τi (L.
18). If a task does not need to be duplicated, the execution time of the duplicated task is set zero.
The set of all task mappings provides the AM0 (L. 20) and the total execution time TotalET
for each processor is obtained (L. 21). If there exists any processor that its TotalET exceeds the
deadline, the problem is infeasible (L. 22-23), and the algorithm stops. If the TotalET for all
processors is equal to the deadline, the initial application mapping is the final mapping and the
algorithm stops (L. 24-25).
Step 3: (L. 26-28) Otherwise, if time slack exists for some processors based on the initial
task mapping (L. 26), the frequency assignments can be relaxed leading to energy savings.

113

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

Algorithm 4 Mapping Relaxation algorithm for independent tasks under PL_DVFS scheme.
1: AM = AM0, TotalET = TotalETAM0 ;
2: while TotalET < D (∃θ) and |rFTP | > 1 do
3: for each FTP in rFTP do
4: for every task τi in PL-T do
5: List all available configurations (AC);
6: Compute TMSCi

i (θmwithminm∈M TotalET)
7: end for
8: AM = {TMSCi

i , i ∈N};
9: Compute TotalETAMm of AM for each processor θm;
10: end for
11: remove FTP from rFTP
12: end while

Alg. 4 selects the FTP for the new application mapping. Initially, the current mapping (and
its TotalET for each processor) is initialised with the initial mapping (L. 1). The algorithm is
applied iteratively, as long as there exists time slack for a processor and the last FTP group is
not reached (L. 2). In each iteration, the first FTP group in rFTP is selected (L. 3). Then, we

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.8: Feasibility of optimal and heuristic approaches for independent tasks under PL-DVFS
scheme.

114

4.2. Independent Tasks under Processor Level DVFS

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.9: Energy consumption (mJ) of optimal and heuristic approaches for independent tasks
under PL-DVFS scheme.

list all available configurations (ACs) for each task according to the selected FTP group (L. 5)
and the task mapping is computed (L. 6). The new application mapping AM (L. 8) and the
total execution time TotalET for each processor (L. 9) are obtained. If there still exists time
slack, the current FTP is removed from rFTP (L. 11) and a new iteration with the next FTP
group is explored.

4.2.2 Evaluation results

Comparison with the optimal approach

Regarding feasibility, as shown in Fig. 4.8, the obtained results show that the feasibility of
PL-DVFS is the same as the feasibility of TL-DVFS in Section 4.1.2. This behavior is explained
based on the fact that in each experiment, the first deadline, where a feasible solution can be
obtained, is the same among different DVFS schemes. The initial task mapping starts with every
task in TL-DVFS and every processor in PL-DVFS assigned with highest frequency, which meets
the reliability constraints.

Regarding energy consumption, as shown in Fig. 4.9, in general, H_RAFTM consumes

115

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.10: Reliability improvement of optimal and heuristic approaches for independent tasks
under PL-DVFS scheme.

slightly more energy than O_RAFTM. Before the deadline, for which both obtained solutions
consume the same energy, H_RAFTM consumes, on average, 3.9% (N = 10 andM = 2), 10.8%
(N = 10 and M = 4), 2.5% (N = 20 and M = 2) and 5.8% (N = 20 and M = 4) more en-
ergy than the optimal solutions. When deadline is relaxed, H_RAFTM and O_RAFTM obtain
solutions with the same energy consumption, similar to the results obtained for TL-DVFS.

Regarding reliability improvement, as shown in Fig. 4.10, H_RAFTM provides higher reli-
ability improvements than optimal solutions at the price of consuming slightly more energy at
strict deadlines.

The average computation time of O_RAFTM and H_RAFTM is computed over the number
of experiments when a feasible solution is found for both approaches. Table 4.3 shows the results
in seconds per deadline D. Similar to TL-DVFS, it can be observed that although few tasks and
processors are used, the time to obtain the optimal solution is very long, especially when a
higher number of tasks (N = 20) and processors (M = 4) is used and when deadlines are not
very relaxed. The difference on computation time between optimal approach and the proposed
H_RAFTM on average is around a factor of ×5× 104 when N = 20 and M = 4.

116

4.2. Independent Tasks under Processor Level DVFS

Table 4.3: Computation time (seconds) of optimal and heuristic approaches for independent
tasks under PL-DVFS scheme.

N = 10, M = 2
D 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

O_RAFTM 1.67 1.23 1.27 1.29 1.13 1.01 0.73 0.80 0.92 1.20 1.23 1.74 1.94 2.25
H_RAFTM ∼ 0.02

D 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8-4.0
O_RAFTM 3.01 3.88 3.15 3.75 4.68 4.78 4.29 4.41 7.80 5.89 3.51 2.92 1.70 0.13
H_RAFTM ∼ 0.02

N = 10, M = 4
D 0.6 0.7 0.8 0.9 1.0 1.1 1.2

O_RAFTM 104.78 53.31 75.08 110.45 112.50 183.62 269.00
H_RAFTM 0.15 0.16 ∼ 0.17

D 1.3 1.4 1.5 1.6 1.7 1.8 1.9-3.0
O_RAFTM 566.26 424.56 438.05 191.38 35026.12 31.67 ∼0.58
H_RAFTM ∼ 0.17

N = 20, M = 2
D 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.6 4.0 4.2 4.4 4.6 4.8

O_RAFTM 4.00 6.39 3.10 2.07 2.44 3.78 3.65 4.79 5.50 4.73 4.26 4.25 3.45
H_RAFTM 0.03 ∼ 0.04

D 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4-7.6
O_RAFTM 3.46 7.76 28.74 48.56 73.50 98.67 65.51 42.77 6.06 8.28 11.32 13.92 ∼0.38
H_RAFTM ∼ 0.04

N = 20, M = 4
D 1.2 1.4 1.6 1.8 2.0 2.2 2.4

O_RAFTM 237.01 7040.64 1401.37 16611.93 8037.54 24671.73 2041.74
H_RAFTM ∼ 0.3

D 2.6 2.8 3.0 3.2 3.4 3.6 3.8-6.0
O_RAFTM 48888.64 76090.41 86462.91 47538.99 202.77 34489.84 ∼1.64
H_RAFTM ∼ 0.3

Comparison with heuristic approaches

The feasibility of the three heuristics is depicted in Fig. 4.11, where we observe similar
trends TL-DVFS scheme. Since the initial task mapping starts with every task and processor
assigned with highest frequency, the existence of the feasible solution exists is the same among
the different DVFS schemes.

The energy consumption obtained by the solutions of the three heuristics is depicted in
Fig. 4.12. Comparing H_RAFTM and H_RAM, we observe that they consume similar energy
at very strict deadlines except few cases, where the number of processors is small (Fig 4.12b).
In this case, H_RAFTM behaves similarly to H_RAM, i.e., mainly executing the original tasks
with the frequency required to achieve the reliability constraint. In few deadlines, such asD = 0.6
in Fig 4.12b, H_RAFTM consumes slightly more energy than H_RAM. This occurs because
in PL-DVFS scheme, when deciding which potential processors to execute a task, we choose
the processors (e.g., θ1 and θ2) with EST. If this task has a configuration with both original
and duplicated tasks in which the frequencies fit θ1 and θ2, this configuration is selected even
though the energy consumption is higher. While for H_RAM, since no duplication is used such a
configuration does not exist. With deadline relaxing, H_RAFTM starts to consume less energy

117

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) N = 10,M = 2 (b) N = 10,M = 4

(c) N = 20,M = 2 (d) N = 20,M = 4

Figure 4.11: Feasibility of heuristics for independent tasks under PL-DVFS

than H_RAM. The gains start to flatten at earlier deadlines with processor number increasing
from M = 2 to M = 4. H_RAFTM achieves gains by exploring the available time slack to
duplicate tasks in order to save energy, e.g., up to 55.2% for N = 10 and 52.2% for N = 20
at relaxed deadlines. Comparing H_RAFTM and H_TDM, the observations are similar to TL-
DVFS, i.e., H_TDM cannot find solutions in very strict deadlines as it applies task duplication
for every task. When H_TDM becomes able to find solutions at relatively relaxed deadlines, the
solutions of H_TDM consume much more energy than H_RAFTM. In very relaxed deadlines,
H_RAFTM and H_TDM behave similarly, i.e., duplicate the tasks with configurations when
less energy is consumed.

The reliability improvement obtained by the solutions of the heuristics is depicted in Fig. 4.13.
The observations are similar to TL-DVFS scheme, shown in Section 4.1.2. The difference is that
H_RAM achieves higher reliability than H_RAFTM, except in very strict deadlines. We remind
that RI is the reliability improvement computed as the difference of actual reliability and the
reliability threshold. Therefore, all approaches satisfy the reliability constraint. Even through
H_RAM achieves a higher RI in few strict deadlines, it has higher energy consumption.

The computation time of H_RAFTM, H_RAM and H_TDM heuristics is depicted in

118

4.2. Independent Tasks under Processor Level DVFS

(a) N = 10,M = 2 (b) N = 10,M = 4

(c) N = 20,M = 2 (d) N = 20,M = 4

Figure 4.12: Energy consumption (mJ) of heuristics for independent tasks under PL-DVFS
scheme.

119

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) N = 10,M = 2 (b) N = 10,M = 4

(c) N = 20,M = 2 (d) N = 20,M = 4

Figure 4.13: Reliability improvement of heuristics for independent tasks under PL-DVFS scheme.

Fig. 4.14. The observations are similar to TL-DVFS, i.e., H_TDM takes the most time to
obtain the solution and H_RAM takes the least time, while our approach is in between. The
computation time stays stable when the deadline increases. Under PL-DVFS if available time
slack exists, different FTP combinations are explored for relaxation. For each FTP combination,
the available configurations per task are obtained. The total number of available configurations
per task is similar and as the heuristics do task mapping based on the available configurations
of each FTP combination, the computation time does not change a lot.

120

4.3. Independent Tasks under System Level DVFS

(a) N = 10,M = 2 (b) N = 10,M = 4

(c) N = 20,M = 2 (d) N = 20,M = 4

Figure 4.14: Computation time (sec) of heuristics for independent tasks under PL-DVFS scheme.

4.3 Independent Tasks under System Level DVFS

4.3.1 Reliability-aware Fault-tolerant Task Mapping heuristic

In this part, we present the proposed Reliability-aware Fault-tolerant Task Mapping heuristic
(H_RAFTM) adapted for SL-DVFS scheme.

Phase A: Task configurations under reliability constraint.

Since in SL-DVFS all processors have the same frequency, all tasks are executed at same
frequency. Different from TL-DVFS and PL-DVFS, the Reliability, execution Time, Energy
consumption (RTE) table (L. 1) is created based on all possible configurations that include either
only the original task or the original and duplicated tasks with same frequency. The remaining
pruning (obtain Feasible Configurations (FC) (L. 3) space, the Possible Configurations (PC)

121

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

space (L. 6) and the ranked PCs in increasing energy consumption (rPC) (L. 8)) are the same
as in Section 4.2.1.

Phase B: Application mapping under real-time constraint

Phase B uses Phase A task configurations and performs the application mapping, subject to
Deadline constraint introduced in Equation 4.1. Phase B consists of three steps (L. 10-26):
Step 1 (L. 10-14): Similar to PL-DVFS, the Priority List of tasks (PL-T) is ordered in decreas-
ing rank value (L. 10-13). We define a variable called Frequency-to-system (FTS) assignment,
which represents the frequency assigned to all processors of the system. We list all possible L
Frequency-to-system (FTS) assignment groups in (L. 14) and put them in frequency decreasing
order in order to obtain the ranked rFTS space.

Algorithm 5 Proposed H_RAFTM algorithm for independent tasks under SL_DVFS scheme.
Input: Task graph (G) and set of processors (M).
Output: Application mapping (AM).

// Phase A
1: for each task τi in N do
2: RTEi = {Cji : C

j
i is the j-th configuration of τi} ;

3: FCi = RTEi - {Cji : Ri < Rthi };
4: BCi = {FCi: fdi = 0};
5: for each bc in BCi of task τi do
6: PCi = FCi - {FCi: fdi 6= 0 };
7: end for
8: rPCi = {PCi: PCi[j] increasing energy consumption};
9: end for

// Phase B
10: for each task τi in N do
11: Compute ranki;
12: end for
13: PL-T = {N : ordered in decreasing rankτi};
14: Obtain all frequency-to-system groups (FTS) and put them in order of frequency decreasing;
15: Start with all processor in highest frequencyfL−1, i.e., FTS = {fL−1, . . . , fL−1}
16: for each task τi in PL-T do
17: Obtain available configurations (AC);
18: Compute TMSCi

i (θm with minm∈M TotalETm);
19: end for
20: AM0 = {TMSCi

i , i∈N};
21: Compute TotalETAM0

m of AM0 for each processor θm;
22: if ∃TotalETAM0

m > D then
23: Infeasible problem, algorithm stops.
24: else if ∀TotalETAM0

m = D then
25: AM = AM0, algorithm stops.
26: else if ∃TotalETAM0

m < D then
27: AM relaxation (Algorithm 6);
28: end if

122

4.3. Independent Tasks under System Level DVFS

Algorithm 6 Mapping Relaxation algorithm for independent tasks under SL_DVFS scheme.
1: AM = AM0, TotalET = TotalETAM0 ;
2: while TotalET < D (∃θ) and |rFTS| > 1 do
3: for each FTS in rFTS do
4: for every task τi in PL-T do
5: List all available configurations (AC);
6: Compute TMSCi

i (θmwithminm∈M TotalET)
7: end for
8: AM = {TMSCi

i , i ∈N};
9: Compute TotalETAMm of AM for each processor θm;

10: end for
11: remove FTS from rFTS
12: end while

Step 2 (L. 15-25): The initial application mappingAM0 is generated with FTS = {fL−1, . . . , fL−1},
where all processors are assigned with the highest frequency fL−1 (L. 15). For each FTS group,
there is only one available configuration (AC) for each task from the PC space (L. 17). Two
available cores with least TotalET are chosen to execute the original and (potential) duplicated

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.15: Feasibility of optimal and heuristic approaches for independent tasks under SL-
DVFS scheme.

123

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.16: Energy consumption (mJ) of optimal and heuristic approaches for independent
tasks under SL-DVFS scheme.

task τi (L. 18), as in PL-DVFS. After obtaining initial application mapping (L. 20), according
to the TotalET of each task, we decide whether the problem is infeasible (L. 22-23) or the initial
application mapping is the final result(L. 24-25).
Step 3: (L. 26-28) Otherwise, if a processor has time slack (L. 26), the frequency assignment
can be relaxed. Initially, the current mapping and the TotalET for each processor is initialised
with the initial mapping (L. 1). Algorithm 6 explores every FTS group iteratively to obtain the
corresponding application mapping until the end conditions are met, similar to the relaxation
algorithm for PL-DVFS.

4.3.2 Evaluation results

Comparison with optimal approach

Regarding feasibility, it remains the same as TL-DVFS and PL-DVFS schemes, as shown in
Fig. 4.15, since the initial task mapping starts always with the highest frequency.

Regarding energy consumption in Fig. 4.16, in general, H_RAFTM consumes slightly more
energy than O_RAFTM in very strict deadlines. Compared to the behavior observed in TL-

124

4.3. Independent Tasks under System Level DVFS

(a) N = 10,M = 2 (b) N = 10,M = 4

(c) N = 20,M = 2 (d) N = 20,M = 4

Figure 4.17: Reliability improvement of optimal and heuristic approaches for independent tasks
under SL-DVFS scheme.

DVFS and PL-DVFS schemes, the difference between the proposed heuristic and the optimal
approach remains small for SL-DVFS. This behavior is explained since SL-DVFS has the least
flexibility in frequency assignment. In more details, before the EC curves overlap, H_RAFTM
consumes on average 0.7% and 2.6% for N = 10 when M = 2 and M = 4, 0.28% and 1.1%
for N = 20 when M = 2 and M = 4 more energy than the optimal solution. When deadline is
relaxed, H_RAFTM and O_RAFTM obtain solutions with the same energy consumption.

Regarding reliability improvement, H_RAFTM can provide slightly higher reliability im-
provement than optimal solution at the price of consuming slightly more energy at strict dead-
lines, as depicted in Fig. 4.17. The difference of reliability improvement between H_RAFTM
and O_RAFTM remains compared to the other two DVFS schemes as explained above.

Fig 4.18 shows the average computation time of O_RAFTM and H_RAFTM under SL-
DVFS in seconds per deadline D. Similar to TL-DVFS and PL-DVFS schemes, the proposed
heuristic consumes significanlty less time to find a solution than the optimal approach. Moreover,
since SL-DVFS has the worst flexibility in frequency assignment, for both optimal and heuristic
approaches, the computation to find a solution is largely reduced compared to the other two

125

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) N = 10, M = 2 (b) N = 10, M = 4

(c) N = 20, M = 2 (d) N = 20, M = 4

Figure 4.18: Computation time (sec) of optimal and heuristic approaches for independent tasks
under SL-DVFS scheme.

DVFS schemes.
Overall, the obtained results show that i) H_RAFTM provides near-optimal solutions, and

ii) as expected, H_RAFTM takes less time to obtain the results compared to the optimal
approaches, under all three DVFS schemes.

Comparison with other heuristics

The feasibility of the three heuristics under SL_DVFS is depicted in Fig. 4.19. The trend is
similar to TL-DVFS and PL-DVFS. As explained previously, whether a feasible solution exists
or not is similar among the different DVFS schemes.

The energy consumption is depicted in Fig. 4.20. The observations are similar to those when
we compared the heuristics under TL-DVFS and PL-DVFS schemes. Overall, we observe that
slightly more energy is consumed for each heuristic as the flexibility of three DVFS schemes
decreases from TL-DVFS to SL-DVFS. For example, when N = 10 with M = 2, in relaxed
deadlines, the final energy consumption of H_RAFTM, H_RAM and H_TDM is 27.3 mJ, 41.9
mJ and 27.3 mJ under TL-DVFS, 28.7 mJ, 43.6 mJ and 28.7 mJ under PL-DVFS, and 30.4 mJ,

126

4.3. Independent Tasks under System Level DVFS

(a) N = 10,M = 2 (b) N = 10,M = 4

(c) N = 20,M = 2 (d) N = 20,M = 4

Figure 4.19: Feasibility of heuristics for independent tasks under SL-DVFS scheme.

51.8 mJ, and 30.4 mJ under SL-DVFS. This behavior is because with decreasing DVFS flexibility,
all heuristics have more constraints in frequency assignemnt and thus energy consumption. Since
SL-DVFS is the least flexible one, if a task needs high frequency to meet its reliability constraint,
it forces the remaining tasks to be executed in a higher frequency than they require, increasing
energy consumption.

The reliability improvement is depicted in Fig. 4.21. H_RAFTM and H_RAM achieve same
reliability improvement at strict deadlines, while H_RAM achieves higher reliability improve-
ment than H_RAFTM, when the deadline is relaxed, but it consumes more energy. We remind
that as long as the reliability improvement is positive, the reliability constraint is satisfied.
H_TDM achieves higher reliability than H_RAFTM before relaxed deadlines and same relia-
bility improvement as H_RAFTM at relaxed deadlines.

The computation time of H_RAFTM, H_RAM and H_TDM heuristics under SL-DVFS is
low. For each heuristic, when Phase A finishes, few possible configurations (PC) are kept. Thus,
it takes less time to obtain application mapping then TL-DVFS and PL-DVFS. For instance,
when N = 20 withM = 4, the time to obtain a solution for H_RAFTM, H_RAM and H_TDM
is 0.01 sec, 0.003 sec and 0.01 sec, respectively.

127

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) N = 10,M = 2 (b) N = 10,M = 4

(c) N = 20,M = 2 (d) N = 20,M = 4

Figure 4.20: Energy consumption (mJ) of heuristics for independent tasks under SL-DVFS
scheme.

128

4.3. Independent Tasks under System Level DVFS

(a) N = 10,M = 2 (b) N = 10,M = 4

(c) N = 20,M = 2 (d) N = 20,M = 4

Figure 4.21: Reliability improvement of heuristics for independent tasks under SL-DVFS scheme.

129

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

4.4 Dependent Tasks under Task Level DVFS

We adapt the proposed heuristic in order to solve the task mapping problem of dependent
tasks, described by a DAG task graph G, over M processors, with the goal of minimizing the
total energy consumption by deciding the: 1) task duplication, 2) assignment of frequencies to
tasks, 3) allocation of tasks to processors, 4) start time of tasks, subject to reliability, real-time
and task precedence constraints. Table 4.4 summarises the main notations and definitions.

Notations Definitions

τo
i /τ

d
i the original/duplicated copy of task τi

(vl, fl) the lth voltage/frequency level
Wi WCEC of task τi

D the global deadline
Rth

i reliability threshold of task τi

SL schedule length of DAG G
ESTi earliest start time of task τi

LFTi latest finish time of task τi

sti actual start time of task τi

fti actual finish time of task τi

eti execution time of task τi

slacki time slack of task τi

Pred{τi} all immediate predecessors of task τi

Succ{τi} all immediate successors of task τi

proc{m} task set that are allocated on processor θm

avail{m} earliest available time of processor θm to execute a task
SCi Scheduled configuration of task τi in current task mapping
NCi New checked configuration of task τi to be selected to do relaxation

Table 4.4: Main notations for dependent tasks under TL-DVFS scheme.

4.4.1 Reliability-aware Fault-tolerant Task Mapping heuristic

In order to leverage the proposed heuristic for dependent tasks under TL-DVFS scheme,
we extend the definitions and the constraints presented in Section 4.1.1 in order to include the
precedence constraints.

Definition 5 (Task Mapping). A mapping of a task τi, under the task configuration Cji , is
denoted as TMCj

i
i = {Cji , θoi , θdi , stoi , stdi }, where θoi (θdi) is the allocated processor, and stoi (stdi)

is the start time of the original (duplicated) task. If a task is not duplicated, then fdi = 0, the
duplicated task takes no execution time, i.e., stdi = ftdi .

Definition 6 (Application Mapping). The mapping of the application (AM) is given by the
set of mappings of N original tasks and S ⊆ N duplicated tasks. The mapping is valid if task
precedence and real-time constraints are satisfied.

130

4.4. Dependent Tasks under Task Level DVFS

Constraint 3 (Precedence constraints). Based on the dependencies defined by the task graph,
a task τi can start execution only when all task predecessors (including duplicated tasks) are
completed. Then, the Earliest Start Time (EST) of τi is

ESTi =

 0, if τi = τentry

max
τj∈Pred{τi}

{EFTj}, else
(4.3)

where Pred{τi} is the set of τi’s predecessors, and EFTj = ESTj + etj is the Earliest Finish
Time (EFT) of task τj.

Constraint 4 (Deadline constraint). The application must finish before the deadline D. The
schedule length SL of task graph G, under a given application mapping AM , is determined by
the latest finish time of exist tasks:

SLAM = max{ftτexit} ≤ D. (4.4)

Due to precedence constraints, the start time of a task is sti ≥ ESTi. Our goal is to exploit
the available time slack to save energy, thus, we initially consider that tasks start execution as
soon as possible, i.e., sti = ESTi, ∀τi, in order to increase the probability of executing all tasks
without exceeding the deadline.

Constraint 5 (Non-overlapping constraint). Only a single task should be executed on a processor
at a given time instance. Taking into account the earliest available time, avail[m], when processor
θm is ready to execute a task, ESTi is modified as

ESTi =

0, if τi = τentry

max

 max
τj∈Pred{τi}

{EFTj},

avail[m],

 , else (4.5)

Algorithm 7 describes the two phases of the proposed heuristic.

Phase A: Task configurations under reliability constraint.

Phase A (L. 1-9) in Algorithm 7 is same as Phase A of Section 4.1.1 under TL-DVFS scheme,
where we consider only the reliability constraint.

Phase B: Application mapping under precedence and real-time constraints.

Phase B consists of three steps (L. 10-26):
Step 1 (L. 10-13): Priorities are given to tasks for task allocation based on the upward rank
value [24], ranki, which is common for original and duplicated tasks (L. 10-12):

131

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

Algorithm 7 Proposed H_RAFTM algorithm for dependent tasks under TL-DVFS scheme.
Input: Task graph (G) and set of processors (M).
Output: Application mapping (AM).

// Phase A
1: for each task τi in N do
2: RTEi = {Cji : C

j
i is a configuration of τi} ;

3: FCi = RTEi - {Cji : Ri < Rthi };
4: BCi = {FCi: fdi = 0};
5: for each configuration bc in BCi do
6: PCi = FCi - {FCi: fdi 6= 0 ∧ min{etoi , etdi } ≥ etbc ∧

∑
{Eoi , Edi } > Ebc};

7: end for
8: rPCi = {PCi: PCi decreasing energy consumption};
9: end for

// Phase B
10: for each task τi in N do
11: Compute ranki (Eq. (4.6));
12: end for
13: PL-T = {N : ordered in decreasing ranki};
14: for each task τi in PL do
15: SCi = rPCi[0];
16: Compute TMSCi

i (sti = ESTi in Eq. (4.5));
17: end for
18: AM0 = {TMSCi

i };
19: Compute SLAM0 ;
20: if SLAM0 > D then
21: Infeasible problem, algorithm stops.
22: else if SLAM0 = D then
23: AM = AM0, algorithm stops.
24: else if SLAM0 < D then
25: AM relaxation (Algorithm 8);
26: end if

ranki =

 eti, if τi = τexit

eti + max
τj∈Succ{τi}

{rankj}, else
(4.6)

where eti = (
∑L
l=1Wi/fl)/L is the average computation time of τi and Succ{τi} the imme-

diate successors of τi. The Priority List of tasks (PL-T) is ordered in decreasing rank value (L.
13).

Step 2 (L. 14-23): The initial application mapping AM0 is generated to check if the problem
is feasible and time slack is available. For all task, AM0 uses the first configuration in rPCi as
the Selected Configuration SCi (L. 15). Setting sti = ESTi to Equation 4.5, we obtain the task
mapping (TMSCi

i) per task (L. 16). The set of all task mappings provides the AM0 (L. 18) and
its schedule length SLAM0 is obtained (L. 19). If it is higher than the deadline, the problem is

132

4.4. Dependent Tasks under Task Level DVFS

Algorithm 8 Mapping Relaxation Algorithm for dependent tasks under TL-DVFS scheme.
1: AM = AM0, SL = SLAM0 ;
2: while SL < D and rPCi> 1(∀τi) do
3: for each task τi in N do
4: NCAi = rPCi[0];

5: NCBi = rPCi[j] with max
{ ∑
k∈{o,d}

(
ESj

τk
i

/TIj
τk
i

)}
;

6: NCi = (ENCAi ≤ ENCBi ?NCAi : NCBi);
7: Compute TMNCi

i , i ∈N (sti = ESTi in Eq. (4.5));
8: AMi =

{
TMNCi

i

}
;

9: Compute SLAMi
;

10: SLIi = SLAMi − SL;

11: Gaini =

∑
k∈{o,d}

(
ES

NCi

τk
i

/TI
NCi

τk
i

)
SLIi

;
12: end for
13: for each task τi in N do
14: Compute slackAMi

(Eqs. (4.4), (4.5), (4.8));
15: end for
16: τrel = τi with arg maxi∈N (Gaini) ∧ (TINCii ≤ slackAMi);
17: AM = AMτrel and SL = SLAMτrel

;
18: for each configuration pc in rPCτrel do
19: rPCτrel = rPCτrel - {rPCτrel : Epc ≥ ESCτrel};
20: end for
21: end while

infeasible (L. 20-21), and the algorithm stops. If it is equal to the deadline, the initial application
mapping is the final mapping and the algorithm stops (L. 22-23).

Step 3: (L. 25-26) If the initial schedule length is less than the deadline (L. 24), time slack
exists. Different task configurations and different tasks that can be relaxed, leading to energy
savings. Algorithm 8 decides the task to be relaxed and its configuration. Initially, the current
mapping (schedule length) is initialised with the initial mapping (schedule length) (L. 1). The
algorithm is applied iteratively, until the schedule length reaches the deadline or all tasks reach
their configuration with the least energy consumption (L. 2). First, an inner search decides a new
configuration per task (L. 3-14). We combine two criteria to select a potential New Configuration
(NCi) for a task. NCAi explores rPCi sequentially, by selecting always the first configuration.
NCBi selects the configuration in rPCi with the highest value (ESjτo

i
/TIjτo

i
)+(ESj

τd
i

/TIj
τd

i

), where

ESjτo
i
(ESj

τd
i

) is the energy savings and TIjτo
i
(TIj

τd
i

) the time increase of task τi in configuration
j, compared to the current selected configuration SCi. The final selected configuration NCi is
the one with the minimum energy consumption (L. 6). After selecting a new task configuration,
all task mappings are updated accordingly (L. 7-9). The new application mapping AMi (L. 8)
and its schedule length SLAMi (L. 9) are obtained. The difference of SLAMi with the schedule
length of the current mapping SL provides the Schedule Length Increase (SLIi), when task τi

133

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

changes its current configuration SCi to NCi (L. 10). With this information, the overall gain
(Gaini), considering both energy and time, that this configuration modification will bring to the
overall mapping, is computed (L. 11). After the inner search finishes, the global decision takes
place (L. 13-21). The time slack of each task in the current mapping (slackAMi) based on task
mobility through Eqs. (4.5), (4.7), (4.8) (L. 13-15):

slackAMi = LFTi − ESTi − eti. (4.7)

The Latest Finish Time (LFT) of τi is:

LFTi =

D, if τi = τexit

min

min

τp∈Proc{τi}
{LSTp},

min
τj∈Succ{τi}

{LSTj},

 , else (4.8)

where LSTi = LFTi − eti is the Latest Start Time (LST) of task τi. Proc{τi} is the processor
where the task is allocated and τp are the tasks, scheduled after task τi, on the same processor.
The task (and its corresponding configuration) to be relaxed (τrel) is the task with highest overall
gain, whose time increase in this new configuration is not larger than its available slack in the
current mapping (L. 16). Last, the selected configuration for the relaxed task, the application
mapping and its schedule length are updated (L. 16-17) and all configurations that have a higher
energy consumption than the selected one are removed from rPCτrel

(L. 18-20).

4.4.2 Evaluation results

This section evaluates the proposed heuristic (H_RAFTM) with i) the optimal approach
(O_RAFTM) in Section 3.3.4 and ii) two SoA heuristics H_RAM and H_TDM. The parameters
for the set-up are provided by Table 3.3 in Section 3.2.4. To compare with optimal solutions,
experiments are performed with the number of processorsM = 2 andM = 4 for N = 10 original
tasks. To compare with other heuristics, we used randomly generated task graphs and graphs
obtained both from real-world kernels, i.e., Fast Fourier Transformation (FFT) (N = 15) and
Gaussian Elimination (GE) (N = 14) [24, 62]. Fig 4.22 depicts the shape of parallelism obtained
by FFT and GE DAGs. Random generation is used for comparison with optimal approach
(N = 10) and for evaluation of the scalability of the heuristics (100). A large and diverse set of
experiments is performed, by tuning the:

1. Number of processors (M = 2, 4, 6).

2. Size of task set (N = 10, 14, 15, 100).

3. For each application task graph, a number of experiments (denoted as NE) is performed,
each time with different task characteristics (Wi and Rthi).

134

4.4. Dependent Tasks under Task Level DVFS

The Feasibility, Energy Consumption (EC), Reliability Improvement (RI) and Computation
time (CT) are presented.

(a) Fast Fourier Transform (FFT) (b) Gaussian Elimination (GE)

Figure 4.22: DAG obtained from real code kernels.

Comparison with optimal approach

We evaluate the obtained solutions when solved by the proposed heuristic (H_RAFTM) and
the optimal approach (O_RAFTM) for NE = 10 experiments considering random graphs with
N = 10 tasks, M = 2, M = 4 and M = 6 processors.

Regarding feasibility, when M = 2, the H_RAFTM feasibility is very close to the optimal
feasibility, as shown in Fig. 4.23, except for a few cases when the deadline is strict. The average
difference before achieving 100% feasibility is 3.3%. With the number of processors increasing
to M = 4 (Fig. 4.23b) and M = 6 (Fig. 4.23c), H_RAFTM and O_RAFTM achieve the same
feasibility, since more resources are available to execute the original and potentially duplicated

(a) N = 10,M = 2 (b) N = 10,M = 4 (c) N = 10,M = 6

Figure 4.23: Feasibility of optimal and heuristic approaches for dependent tasks under TL-DVFS
scheme.

135

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

tasks.

(a) N = 10,M = 2 (b) N = 10,M = 4 (c) N = 10,M = 6

Figure 4.24: Energy consumption (mJ) of optimal and heuristic approaches for dependent tasks
under TL-DVFS scheme.

Regarding energy consumption in Fig. 4.24, H_RAFTM generally consumes slightly more
energy than O_RAFTM. When deadline is relaxed, H_RAFTM and O_RAFTM obtain solu-
tions with the same energy consumption. H_RAFTM consumes on average 6.5% (M = 2), 2.9%
(M = 4) and 1.6% (M = 6) more energy than the optimal solutions. With the processor number
increasing, the energy consumption of both proposed heuristic and optimal solution flattens at
earlier deadlines, since there are more processors available to perform the task mapping, and
thus, more opportunities to start the tasks earlier.

(a) N = 10,M = 2 (b) N = 10,M = 4 (c) N = 10,M = 6

Figure 4.25: Reliability improvement of optimal and heuristic approaches for dependent tasks
under TL-DVFS scheme.

Regarding reliability improvement, H_RAFTM provides more reliability improvement than
optimal solutions at the price of consuming slightly more energy under the same deadlines, as
depicted in Fig. 4.25.

The average computation time of O_RAFTM and H_RAFTM is computed over the number
of experiments that a feasible solution is found over all NE experiments. Table 4.5 shows the
results in seconds per deadline D. It can be observed that although few tasks and processors
are used, the time to obtain the optimal solution is very long, on average ×104 more than the

136

4.4. Dependent Tasks under Task Level DVFS

Table 4.5: Computation time (sec) of optimal and heuristic approaches for dependent tasks
under TL-DVFS scheme.

N = 10, M = 2
D 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

O_RAFTM 424.8 523.4 537.1 275.5 432.2 739.7 832.7 1,645.6 2,349.0
H_RAFTM 0.15 0.13 0.14 0.17 0.17 0.20 0.22 0.23 0.29

D 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
O_RAFTM 3,358.1 5,368.3 4,543.9 9,335.6 11,974.2 13,038.4 19,364.5 27,312.9 19,378.6
H_RAFTM 0.32 0.31 0.36 0.33 0.36 0.35 0.41 0.42 0.42

D 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8-4
O_RAFTM 13,155.9 21,493.1 24,228.4 77,477.5 5,472.0 4,868.6 4,096.3 2.5
H_RAFTM 0.49 0.52 0.47 0.52 0.56 0.58 0.59 0.63

N = 10, M = 4
D 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

O_RAFTM 14.9 61.0 74.9 138.2 202.1 256.9 327.3 219.0 1039.3 1054.7 126.8
H_RAFTM 0.19 0.26 0.27 0.30 0.35 0.27 0.33 0.43 0.47 0.50 0.57

D 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 -
O_RAFTM 58.7 123.1 4.9 1.9 1.4 0.6 1.8 1.0 1.8 2.3 -
H_RAFTM 0.59 0.66 0.64 0.70 0.68 0.67 0.68 0.69 0.66 0.78 -

N = 10, M = 6
D 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

O_RAFTM 0.83 58.10 26.95 89.89 81.87 109.82 58.60 62.77 59.77 14.69 2.49
H_RAFTM 0.32 0.27 0.33 0.48 0.54 0.50 0.58 0.68 0.69 0.70 0.67

D 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 -
O_RAFTM 0.74 0.65 0.63 0.66 0.66 0.64 0.64 0.63 0.60 0.60 -
H_RAFTM 0.76 0.74 0.76 0.80 0.84 0.77 0.76 0.76 0.71 0.72 -

proposed H_RAFTM.
Overall, the conclusions for dependent tasks under TL-DVFS are that i) H_RAFTM provides

near-optimal solutions, and the solutions tend to converge to the optimal ones with the number
of processors increasing, and ii) as expected, H_RAFTM takes significantly less time to obtain
the results compared to the optimal approaches.

Comparison with other heuristics

i) Real code DAGs: The feasibility of the three heuristics for FFT and GE benchmarks with
NE = 20 experiments is depicted in Fig. 4.26. Comparing to H_TDM, the proposed H_RAFTM
can find solutions in significantly more experiments than H_TDM, especially when the deadline
is not fully relaxed or number of cores is reduced. When tasks meet their reliability constraint,
H_RAFTM does not need to duplicate these tasks. However, H_TDM duplicates all tasks, and
thus, it is able to find solutions only when the deadline is relatively relaxed or several processors
exist to run the tasks in parallel. Before obtaining 100% feasibility for both approaches, on
average, H_RAFTM finds a solution in more experiments than H_TDM, i.e., 70.2% for FFT
and 59.4% for GE (M = 2), 47.5% for FFT and 14.5% for GE (M = 4) and 19.7% for FFT
and 2.9% for GE (M = 6). Note that, H_RAFTM and H_RAM have the same feasibility.
This behavior is explained as follows: when H_RAM finds a solution, it means the reliability

137

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.26: Feasibility of heuristics (real-world DAGs) for dependent tasks under TL-DVFS
scheme.

constraint of all tasks can be met by executing only the original task with a high frequency. In
this case, H_RAFTM is also able to find this solution.

The energy consumption obtained by the solutions of the heuristics for FFT and GE is
depicted in Fig. 4.27. Comparing H_RAFTM and H_RAM, we observe that they consume
similar energy at very strict deadlines, when the number of processors is small. In this case,
H_RAFTM behaves similarly to H_RAM, i.e., mainly executing the original tasks with the fre-
quency required to achieve the reliability constraint. With deadline relaxing, H_RAFTM starts
to consume less energy than H_RAM. H_RAFTM achieves this gain by exploring the available
time slack to duplicate tasks in order to save energy, e.g., up to ∼50.9% for FFT at relaxed
deadlines. Similarly, when more processors are available, H_RAFTM can take advantage of
these resources and execute duplicated task in parallel. Comparing H_RAFTM and H_TDM,
as H_TDM applies task duplication for every task, it cannot find solutions in very strict dead-
lines. H_RAFTM consumes significantly less energy than H_TDM. H_RAFTM selects the
task configuration, if exists, with only the original task, meeting the reliability constraint and
consuming less energy than configurations with duplicated tasks. Since H_TDM duplicates all
tasks, its energy consumption can be significant, when it finds a solution. In relaxed deadlines,
H_RAFTM behaves similar to H_TDM, i.e. duplicates the tasks when less energy is consumed.

The reliability improvement obtained by the solutions of the three heuristics is depicted in

138

4.4. Dependent Tasks under Task Level DVFS

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.27: Energy consumption (mJ) of heuristics (real-world DAGs) for dependent tasks
under TL-DVFS scheme.

Fig. 4.28. H_RAFTM achieves higher reliability than RAM, except in very strict deadlines when
H_RAFTM behaves similar to H_RAM without task duplication. As explained above, this is
because most of the tasks are executed with only their original copy when there is not avail-
able time slack to perform duplication at strict deadlines. Compared to H_TDM, H_RAFTM
provides lower reliability for tight deadlines, as it duplicates only a part of the task-set. The
same reliability improvement can be achieved in relaxed deadlines, since both H_RAFTM and
H_TDM duplicate tasks similarly.

The computation time of H_RAFTM, H_RAM and H_TDM heuristics is depicted in
Fig. 4.29. Overall, when the deadline increases, the trend of computation time for H_RAM
is to remain stable, for H_RAFTM to slightly increase and for H_TDM to increase with a
higher factor. The computation time to obtain a feasible solution increases with deadline re-
laxing, due to the fact that the proposed heuristic explores the PC space for each task, based
on the deadline constraints. Therefore, the more relaxed the deadline is, the larger is the PC
space to be explored per task, and thus, more time is needed. Note that, H_TDM is the most
expensive approach in terms of computation time. This behavior is due to the fact that all tasks
are duplicated, which increases the total number of tasks to be scheduled and the number of
PCs in each task PC space, and thus, the time to find a solution. For H_RAM, it only executes
original tasks, thus it has a reduced number of PCs in the PC space, taking the least time

139

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.28: Reliability improvement of heuristics (real-world DAGs) for dependent tasks under
TL-DVFS scheme.

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.29: Computation time (sec) of heuristics (real-world DAGs) for dependent tasks under
TL-DVFS scheme.

140

4.4. Dependent Tasks under Task Level DVFS

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.30: Feasibility of heuristics (large randomly generated DAG, N = 100) for dependent
tasks under TL-DVFS scheme.

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.31: Energy consumption (mJ) of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under TL-DVFS scheme.

to obtain a solution. However, it provides less energy savings as explained above, especially at
relaxed deadlines.

ii) Large random generated DAGs: We evaluate the quality of solutions obtained by
H_RAFTM, H_RAM and H_TDM heuristics for a large randomly generated task graph with
N = 100, M = 2, M = 4 and M = 6 processors, and NE = 10 experiments. The obtained
results verify the previous observations regarding feasibility, energy consumption, reliability im-
provement and computation time, for the three heuristics. For instance, as the deadline is not
fully relaxed or number of cores is reduced H_RAFTM has increased feasibility compared to
H_TDM, i.e., 84.8% for M = 2, 85.7% for M = 4 and 83.8% for M = 6. Moreover, as the
number of processors is increased the energy consumption is reduced as lower frequencies can
be selected and partial task duplication can be applied by H_RAFTM, as long as the reliability
constraint is met.

Regarding computation time, it is increased when the number of tasks increases as expected,
but still remains low compared to the prohibited computation time required for the optimal
approach. For a small randomly generated task with N = 10 (Table 4.5 when M = 2 and

141

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.32: Reliability improvement of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under TL-DVFS scheme.

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.33: Computation time (sec) of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under TL-DVFS scheme.

M = 4), the proposed heuristic takes less than 1 sec to find a solution for all experiments
whereas for a large randomly generated task graph with N = 100, the average computation time
(considering all experiments and deadlines) in Fig 4.33 is 144 sec (M = 2), 159 sec (M = 4)
and 212 sec (M = 6). Comparing the computation time of the three heuristics for large DAG
N = 100, the average computation time for H_RAM is 52 sec (M = 2), 66 sec (M = 4) and 75
sec (M = 6). For H_TDM, the average computation time is 488 (M = 2), 501 sec (M = 4) and
718 sec (M = 6). Overall, we observe that the H_TDM is the more time consuming approach,
and H_RAM the least time consuming approach. However, H_TDM is not able to always find
solutions, whereas H_RAFTM finds solutions with always same or less energy consumption
compared to H_RAM and H_TDM.

142

4.5. Dependent Tasks under Processor Level DVFS

Algorithm 9 Proposed H_RAFTM algorithm for dependent tasks under PL-DVFS scheme.
Input: Task graph (G) and set of processors (M).
Output: Application mapping (AM).

// Phase A
1: for each task τi in N do
2: RTEi = {Cji : C

j
i is a configuration of τi} ;

3: FCi = RTEi - {Cji : Ri < Rthi };
4: BCi = {FCi: fdi = 0};
5: for each bc in BCi do
6: PCi = FCi - {FCi: fdi 6= 0 };
7: end for
8: rPCi = {PCi: PCi in increasing energy consumption};
9: end for

// Phase B
10: for each task τi in N do
11: Compute rankτi (Eq. (4.6));
12: end for
13: PL-T = {N : ordered in decreasing rankτi};
14: Obtain all possible frequency-to-processor groups (FTP) and put them in sum of frequency index

decreasing order to get rFTP ;
15: Start with FTP = {fL−1, ..., fL−1}
16: for each task τi in PL-T do
17: List all available configurations (AC);
18: Compute TMSCi

i (sti = ESTi in Eq. (4.5));
19: end for
20: AM0 = {TMSCi

i , i ∈N};
21: Compute SLAM0 (Eq. (4.4));
22: if SLAM0 > D then
23: Infeasible problem, algorithm stops.
24: else if SLAM0 = D then
25: AM = AM0, algorithm stops.
26: else if SLAM0 < D then
27: AM relaxation (Algorithm 10);
28: end if

4.5 Dependent Tasks under Processor Level DVFS

4.5.1 Reliability-aware Fault-tolerant Task Mapping heuristic

Algorithm 9 depicts the proposed H_RAFTM under PL-DVFS scheme. The definition of
variables used in Section 4.2.1 and Section 4.4.1 are valid also for this part.

Phase A: Task configurations, under reliability constraint.

Phase A (L. 1-9) is applied per task as in Phase A described in Section 4.2.1 under PL-DVFS
scheme.

143

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

Phase B: Application mapping, under precedence and real-time constraints.

Phase B uses Phase A task configurations and performs the application mapping, subject to
the same precedence and real-time constraints in Equations (4.3), (4.4), (4.5). Similarly, tasks
start execution as soon as possible, i.e., sti = ESTi, i ∈ N as well. We explore the frequency-
to-processor (FTP) combinations to do relaxation if available time slack exists, similarly as in
Section 4.2.1. Phase B consists of three steps (L. 10-28):
Step 1 (L. 10-14): The Priority List of tasks (PL-T) is obtained similar as in Section 4.4.1
(L. 13). All possible Frequency-to-processor (FTP) assignment groups are listed and ordered
in decreasing sum of frequency index in order to obtain the ranked rFTC space, same as in
Section 4.2.1 (L. 14).
Step 2 (L. 15-25): Similarly, the initial application mapping AM0 is generated to check if the
problem is feasible and time slack is available where all processors are assigned with the highest
frequency fL−1 (L. 15). For each FTP group, we list all available configurations (AC) for each
task from the PC space (L. 17) and decide task mapping for each task (including original and
potential duplicated tasks) as in Section 4.2.1, except that we also consider task dependencies
in Equation (4.5) when selecting the processors to execute the task. After initial task mapping
AM0 and its schedule length SLAM0 are obtained (L. 20-21), we check if relaxation is possible.
Step 3 (L. 26-28): If available time slack exists (L. 26), Algorithm 10 is applied to relax
the frequency assignment for energy savings by exploring different FTP groups iteratively as in
Section 4 but taking into account task dependencies during task mapping (L. 6 in Algorithm 10).
The algorithm ends based on the same condition as in Section 8.

Algorithm 10 Mapping Relaxation Algorithm for dependent tasks under PL-DVFS scheme.
1: AM = AM0, SL = SLAM0 ;

// iteration of all available FTP groups:
2: while SL < D and |rFTC| > 1 do
3: for each FTP in rFTP do
4: for every task τi in PL-T do
5: List all available configurations (AC)
6: Compute TMSCi

i (sti = ESTi in Eq. (4.5))
7: end for
8: AM = {TMSCi

i , i ∈N};
9: Compute SL (Eq. (4.4));
10: end for
11: remove FTP from rFTP
12: end while

4.5.2 Evaluation Results

The experimental set-up for mapping dependent tasks under PL-DVFS is the same as TL-
DVFS scheme, presented in Section 4.4.2.

144

4.5. Dependent Tasks under Processor Level DVFS

Comparison with optimal approach

Regarding feasibility when we compare the heuristic and optimal approaches under PL-
DVFS, simialr observations are obtained to TL-DVFS scheme. The feasibility stays same among
different DVFS schemes also for dependent tasks, since the initial application mapping is based

(a) N = 10,M = 2 (b) N = 10,M = 4 (c) N = 10,M = 6

Figure 4.34: Feasibility of optimal and heuristic approaches for dependent tasks under PL-DVFS
scheme.

(a) N = 10,M = 2 (b) N = 10,M = 4 (c) N = 10,M = 6

Figure 4.35: Energy consumption (mJ) of optimal and heuristic approaches for dependent tasks
under PL-DVFS scheme.

(a) N = 10,M = 2 (b) N = 10,M = 4 (c) N = 10,M = 6

Figure 4.36: Reliability improvement of optimal and heuristic approaches for dependent tasks
under PL-DVFS scheme.

145

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

Table 4.6: Computation time (sec) of optimal and heuristic approaches for dependent tasks
under PL-DVFS scheme.

N = 10, M = 2
D 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

O_RAFTM 424.84 523.42 526.67 259.41 416.04 739.68 832.69 1645.61 2348.98
H_RAFTM ∼ 0.02

D 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
O_RAFTM 3358.08 5368.34 4543.89 9335.59 11974.15 13038.35 19364.46 27312.94 19378.63
H_RAFTM ∼ 0.02

D 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9-4.0
O_RAFTM 13155.91 21493.13 24228.42 77477.48 5471.98 4868.59 4096.25 1.82 ∼2.8
H_RAFTM ∼ 0.02

N = 10, M = 4
D 1.0 1.1 1.2 1.3 1.4 1.5 1.6

O_RAFTM 228.63 662.25 529.92 1092.20 1814.96 4665.41 15722.03
H_RAFTM ∼ 0.17 ∼ 0.18

D 1.7 1.8 1.9 2.0 2.1 2.2 2.3
O_RAFTM 4675.72 33294.03 70465.02 24238.97 24054.44 24072.35 154.44
H_RAFTM ∼ 0.18

D 2.4 2.5 2.6 2.7 2.8 2.9 3.0
O_RAFTM 137.59 114.27 118.70 111.94 116.85 125.94 93.17
H_RAFTM ∼ 0.18

N = 10, M = 6
D 1.0 1.1 1.2 1.3 1.4 1.5 1.6

O_RAFTM 114.19 697.34 730.76 661.47 859.47 824.04 1090.08
H_RAFTM 0.89 0.87 0.91 0.92 0.92 0.94 0.94

D 1.7 1.8 1.9 2 2.1 2.2 2.3
O_RAFTM 503.30 569.25 188.64 95.91 82.54 75.01 36.54
H_RAFTM 0.94 0.93 0.93 0.93 0.94 0.94 0.94

D 2.4 2.5 2.6 2.7 2.8 2.9 3
O_RAFTM 40.27 32.15 18.56 13.26 5.26 3.21 2.80
H_RAFTM 0.94 0.93 0.93 0.93 0.93 0.93 0.93

on the highest frequency.
Regarding energy consumption in Fig. 4.35, similar trends can be found as TL-DVFS,

H_RAFTM generally consumes slightly more energy than O_RAFTM under PL-DVFS when
deadlines are not relaxed enough while the difference of performance between O_RAFTM and
H_RAFTM under PL-DVFS is slightly bigger than TL-DVFS. More details are that H_RAFTM
consumes on average 4.4% (M = 2), 5.6% (M = 4) and 8.1% (M = 6) more energy than the
optimal solutions under PL-DVFS.

Regarding reliability improvement, we observe similar trends, i.e., the H_RAFTM provides
more reliability improvements than optimal solutions when deadlines are strict, as depicted in
Fig. 4.36.

The average computation time of O_RAFTM and H_RAFTM is shown in Table 4.6. The
computation complexity is largely reduced when the heuristic is used to solve the problem.

Overall, similar are the conclusions for dependent tasks under PL-DVFS, i.e., H_RAFTM
provides near-optimal solutions with largely reduced computation complexity compared to op-
timal approach.

146

4.5. Dependent Tasks under Processor Level DVFS

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.37: Feasibility of heuristics (real-code DAGs) for dependent tasks under PL-DVFS
scheme.

Comparison with other heuristics

i) Real-code DAGs:
The feasibility under PL-DVFS of the heuristics is depicted in Fig. 4.37. Overall, the obser-

vations for PL-DVFS scheme are similar to TL-DVFS scheme.
The energy consumption obtained the three heuristics for FFT and GE is depicted in

Fig. 4.38. Comparing the proposed heuristic with H_RAM and H_TDM, we observe similar
trends regarding the energy consumption as in TL-DVFS scheme in Section 4.4.2. Comparing
PL-DVFS with TL-DVFS, slightly more energy is consumed at strict deadlines for all the three
heuristics. For example, for the FFT graph with M = 4, under TL-DVFS in Fig. 4.27c, the
energy consumption of H_RAFTM, H_RAM and H_RAFTM, H_TDM at the first deadline
is 54.7 mJ, 55.6 mJ and 46.5 mJ, 100.6 mJ, respectively, while under PL-DVFS in Fig. 4.38c
the corresponding values are 68.5 mJ, 68.5 mJ, and 54.3 mJ, 137.0 mJ, respectively. This is
explained based on the fact that PL-DVFS has less flexibility in frequency assignment compared
to TL-DVFS, and thus, a lower capability to achieve energy savings.

The reliability improvement obtained by the three heuristics is depicted in Fig. 4.39. H_RAFTM
generally achieves higher reliability than RAM, except in a few deadlines. Compared to H_TDM,
H_RAFTM provides lower reliability for tight deadlines, as it duplicates only a part of the
task-set. The same reliability improvement can be achieved in relaxed deadlines, when both

147

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.38: Energy consumption (mJ) of heuristics (real-code DAGs) for dependent tasks under
PL-DVFS scheme.

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.39: Reliability improvement of heuristics (real-code DAGs) for dependent tasks under
PL-DVFS scheme.

148

4.5. Dependent Tasks under Processor Level DVFS

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.40: Computation time (sec)of heuristics (real-code DAGs) for dependent tasks under
PL-DVFS scheme.

H_RAFTM and H_TDM duplicate tasks in a similar way.
The computation time of H_RAFTM, H_RAM and H_TDM heuristics is depicted in

Fig. 4.40. Note that, in general, similar to Section 4.2.2 under PL-DVFS, H_TDM is the most
expensive approach in terms of computation time. For H_RAM, as it only executes the original
tasks, it has a reduced number of PCs in the PC space, taking the least time to obtain a solu-
tion. All experiments for these two real-code graphs take within 0.04 seconds or approximate 2
seconds when M = 6 to obtain solutions.

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.41: Feasibility of heuristics (large randomly generated DAG, N = 100) for dependent
tasks under PL-DVFS scheme.

149

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.42: Energy consumption (mJ) of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under PL-DVFS scheme.

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.43: Reliability improvement of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under PL-DVFS scheme.

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.44: Computation time (sec) of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under PL-DVFS scheme.

150

4.6. Dependent Tasks under System Level DVFS

ii) Large random generated DAGs: We compare the quality of three heuristics for a large
randomly generated task graph with N = 100, M = 2, M = 4 and M = 6 processors, and
NE = 10 experiments. Previous observations regarding feasibility, energy consumption, re-
liability improvement and computation time for the three heuristics are also verified by the
experiments with the large randomly generated DAG.

Regarding computation time, it is increased when the number of processors and tasks in-
creases as expected, but still remains low compared to the prohibited computation time required
for the optimal approach. For a small randomly generated task with N = 10 (Table 4.6 when
M = 2, M = 4 and M = 6), the proposed heuristic takes less than 0.2 seconds to find a solution
at strict deadlines, whereas for a large randomly generated task with N = 100, the average
computation time (considering all experiments and deadlines) is ∼ 0.2 seconds (M = 2), ∼ 1.8
sec (M = 4) and ∼ 9 seconds (M = 6). Comparing the computation time of the three heuristics
for large DAGs N = 100, the average computation time for H_RAM is ∼ 0.03 (M = 2), ∼ 0.17
(M = 4) and ∼ 0.51 seconds (M = 6). For H_TDM, the average computation time is ∼ 0.3
(M = 2), ∼ 3 (M = 4) and ∼ 14 seconds (M = 6). Overall, we observe that the H_TDM is
the more time consuming approach, and H_RAM the least time consuming approach. However,
H_TDM is not able to always find solutions, whereas H_RAFTM finds solutions with always
same or less energy consumption compared to H_RAM and H_TDM.

4.6 Dependent Tasks under System Level DVFS

4.6.1 Reliability-aware Fault-tolerant Task Mapping heuristic

The proposed heuristic under SL-DVFS is depicted in Algorithm 11.

Phase A: Task configurations, under reliability constraint.

Phase A (L. 1-9) is applied per task in the same way as Phase A described in Section 4.3.1.

Phase B: Application mapping, under precedence and real-time constraints.

Phase B uses Phase A task configurations and performs the application mapping, subject
to the same precedence and real-time constraints in Equations (4.3), (4.4), (4.5). Similarly, we
set the tasks to start execution as soon as possible, i.e., sti = ESTi, i ∈ N and explore all the
possible frequency-to-system (FTS) combinations to do relaxation, as in Section 4.3.1. Phase B

consists of three steps (L. 10-28):
Step 1 (L. 10-14): The Priority List of tasks (PL-T)(L. 13) and all possible ranked rFTS space
are obtained as for TL-DVFS scheme (Section 4.4.1).

151

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

Algorithm 11 Proposed H_RAFTM algorithm for dependent tasks under SL-DVFS scheme.
Input: Task graph (G) and set of processors (M).
Output: Application mapping (AM).

// Phase A
1: for each task τi in N do
2: RTEi = {Cji : C

j
i is a configuration of τi} ;

3: FCi = RTEi - {Cji : Ri < Rthi };
4: BCi = {FCi: fdi = 0};
5: for each bc in BCi do
6: PCi = FCi - {FCi: fdi 6= 0 };
7: end for
8: rPCi = {PCi: PCi in increasing energy consumption};
9: end for

// Phase B
10: for each task τi in N do
11: Compute rankτi (Eq. (4.6));
12: end for
13: PL-T = {N : ordered in decreasing rankτi};
14: Obtain all possible frequency-to-system groups (FTS) and put them in sum of frequency index

decreasing order to get rFTS;
15: Start with the system run in highest frequency, i.e., FTS = {fL−1, . . . , fL−1}
16: for each task τi in PL-T do
17: List all available configurations (AC);
18: Compute TMSCi

i (sti = ESTi in Eq. (4.5));
19: end for
20: AM0 = {TMSCi

i , i ∈N};
21: Compute SLAM0 (Eq. (4.4));
22: if SLAM0 > D then
23: Infeasible problem, algorithm stops.
24: else if SLAM0 = D then
25: AM = AM0, algorithm stops.
26: else if SLAM0 < D then
27: AM relaxation (Algorithm 12);
28: end if

Step 2 (L. 15-25): After the initial task mapping AM0 and its schedule length SLAM0 are
obtained (L. 20-21), we checked whether the relaxation is possible.
Step 3: (L. 26-28) If available time slack exists, Algorithm 12 is applied to explore other
FTS frequency assignments to save energy, similar to the heuristic for the independent tasks
(Algorithm 6) except that task dependencies are taken into account when task mapping ie
performed.

4.6.2 Evaluation results

The experimental set-up for mapping dependent tasks under SL-DVFS is the same as TL-
DVFS scheme, presented in Section 4.4.2.

152

4.6. Dependent Tasks under System Level DVFS

Algorithm 12 Mapping Relaxation Algorithm for dependent tasks under SL-DVFS scheme.
1: AM = AM0, SL = SLAM0;

// iteration of all available FTS groups:
2: while SL < D and |rFTS| > 1 do
3: for each FTS in rFTC do
4: for every task τi in PL-T do
5: Compute TMSCi

i (sti = ESTi in Eq. (4.5))
6: end for
7: AM = {TMSCi

i , i ∈N};
8: Compute SL (Eq. (4.4));
9: end for

10: remove FTS from rFTS
11: end while

Comparison with optimal approach

We present the results of the proposed heuristic (H_RAFTM) and the optimal solution
(O_RAFTM) for NE = 10 considering random graphs with N = 10 tasks, M = 2, M = 4 and
M = 6 processors.

Regarding feasibility under SL-DVFS, the observations for TL-DVFS and PL-DVFS schemes
hold also in this configuration.

Regarding energy consumption in Fig. 4.46, H_RAFTM generally consumes slightly more
energy than O_RAFTM when deadlines are strict and the same energy at relaxed deadlines.
For dependent tasks, compared to TL-DVFS and PL-DVFS, the energy consumption difference
between H_RAFTM and O_RAFTM is the the smallest ones under SL-DVFS. This is because
SL-DVFS has the least flexibility in frequency assignment. Under SL-DVFS scheme, H_RAFTM
consumes on average 0.23% (M = 2), 1.3% (M = 4) and 0% (M = 6) more energy than the
optimal solutions.

(a) N = 10,M = 2 (b) N = 10,M = 4 (c) N = 10,M = 6

Figure 4.45: Feasibility of optimal and heuristic approaches for dependent tasks under SL-DVFS
scheme.

Regarding reliability improvement, similarly, H_RAFTM provides comparative reliability
improvement compared to optimal solutions depicted in Fig. 4.47.

153

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) N = 10,M = 2 (b) N = 10,M = 4 (c) N = 10,M = 6

Figure 4.46: Energy consumption (mJ) of optimal and heuristic approaches for dependent tasks
under SL-DVFS scheme.

(a) N = 10,M = 2 (b) N = 10,M = 4 (c) N = 10,M = 6

Figure 4.47: Reliability improvement of optimal and heuristic approaches for dependent tasks
under SL-DVFS scheme.

Table 4.7: Computation time (sec) of optimal and heuristic approaches for dependent tasks
(N = 10) under SL-DVFS scheme.

N = 10, M = 2
D 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

O_RAFTM 3.92 3.71 2.70 4.89 8.91 8.25 111.49 209.70 864.68
H_RAFTM ∼ 0.005

D 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
O_RAFTM 1970.62 2216.28 1762.50 5956.50 3431.95 2781.67 0.22 0.20 0.28
H_RAFTM ∼ 0.005

D 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9-4.0
O_RAFTM 0.20 0.12 0.14 0.17 0.18 0.23 0.16 0.20 ∼0.18
H_RAFTM ∼ 0.005

N = 10, M = 4
D 1.0 1.1 1.2 1.3 1.4 1.5 1.6

O_RAFTM 0.53 0.30 5.76 14.14 21.69 98.22 91.88
H_RAFTM ∼ 0.005

D 1.7 1.8 1.9 2.0 2.1 2.2 2.3
O_RAFTM 183.39 1301.28 585.03 65.29 28.56 15.08 9.00
H_RAFTM ∼ 0.005

D 2.4 2.5 2.6 2.7 2.8 2.9 3.0
O_RAFTM 9.71 6.24 5.79 1.82 2.20 0.63 0.50
H_RAFTM ∼ 0.005

N = 10, M = 6
D 1.0 1.1 1.2 1.3 1.4 1.5 1.6

O_RAFTM 0.36 0.33 1.35 12.09 12.60 23.52 19.20
H_RAFTM 0.005 ∼ 0.006

D 1.7 1.8 1.9 2 2.1 2.2 2.3
O_RAFTM 19.71 16.12 21.28 5.90 4.71 5.57 4.79
H_RAFTM ∼ 0.006

D 2.4 2.5 2.6 2.7 2.8 2.9 3
O_RAFTM 1.26 3.21 0.63 0.50 0.35 0.23 0.25
H_RAFTM ∼ 0.006

154

4.6. Dependent Tasks under System Level DVFS

Table 4.7 shows the average computation time of O_RAFTM and H_RAFTM in seconds
per deadline D. Similarly we observe that H_RAFTM can largely reduce the computation
complexity compared to the optimal approach.

Overall, same conclusion for dependent tasks under SL-DVFS can be made that H_RAFTM
provides near-optimal solutions with largely reduced computation complexity compared to op-
timal approach.

Comparison with other heuristics

i) Real-word DAGs: The feasibility under SL-DVFS of the three heuristics is depicted in
Fig. 4.48. Same observation can be found as under TL- and PL-DVFS, we do not repeat here.

The energy consumption obtained by the solutions of the three heuristics for FFT and GE
is depicted in Fig. 4.49. Similar observation can be concluded that H_RAFTM and H_RAM
have similar trend of energy consumption at very strict deadlines except few cases for FFT when
M = 2. This is caused by the least flexibility SL-DVFS has in scaling frequency and not enough
processors (M = 2), if one task needs high frequency to mee H_RAFTM consumes significantly
less energy than H_TDM at strict deadlines and similar energy when relaxed deadlines compared
to H_TDM, same as explained before.

The reliability improvement obtained by the three heuristics is depicted in Fig. 4.50, leading

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.48: Feasibility of heuristics (real-code DAGs) for dependent tasks under SL-DVFS
scheme.

155

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.49: Energy consumption (mJ) of heuristics (real-code DAGs) for dependent tasks under
SL-DVFS scheme.

(a) FFT,M = 2 (b) FFT,M = 4 (c) FFT,M = 6

(d) GE,M = 2 (e) GE,M = 4 (f) GE,M = 6

Figure 4.50: Reliability improvement of heuristics (real-code DAGs) for dependent tasks under
SL-DVFS scheme.

156

4.6. Dependent Tasks under System Level DVFS

to similar results obtained when the independent task set is considered in Section 4.3.2.

The computation time of H_RAFTM, H_RAM and H_TDM heuristics is low, within 0.02
seconds for any experiment.

ii) Large random generated DAGs: We compare the quality of solutions obtained by
H_RAFTM, H_RAM and H_TDM heuristics for a large randomly generated task graph with
N = 100, M = 2, M = 4 and M = 6 processors, and NE = 10 experiments. Previous observa-
tions regarding feasibility, energy consumption, reliability improvement and computation time
for the three heuristics are also verified by these experiments.

Comparing the computation time of the three heuristics for large DAGs, the average com-
putation time is 0.1 seconds for all experiments which is largely reduced compared to the other
two DVFS schemes. The reason is that less possible configurations (PC) are kept compared to
TL-DVFS and PL-DVFS after Phase A is finished. Thus, the time to obtain application mapping
is largely reduced.

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.51: Feasibility of heuristics (large randomly generated DAG, N = 100) for dependent
tasks under SL-DVFS scheme.

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.52: Energy consumption (mJ) of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under SL-DVFS scheme.

157

Chapter 4 – Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions

(a) M = 2 (b) M = 4 (c) M = 6

Figure 4.53: Reliability improvement of heuristics (large randomly generated DAG, N = 100)
for dependent tasks under SL-DVFS scheme.

4.7 Conclusion

In this chapter, we have performed task mapping with partial redundancy of both indepen-
dent tasks and dependent tasks on multicore platforms under three DVFS schemes. We have
proposed heuristic algorithms based on list scheduling to obtain near-optimal solutions, with
significantly reduced complexity.

Because the different DVFS schemes are applied in a different way regarding frequency
assignment, the heuristics we propose are each time adapted to the specific DVFS scheme. The
core idea for all DVFS schemes, when deciding the processor to execute a task, is based on
Earliest-Start-Time (EST) first policy. Another important part in the proposed heuristics is
that a relaxation algorithm is applied to explore available time slack which selects the task and
configuration to do a relaxation that leads to energy saving.

Then, we provided simulation-based evaluations for our proposed heuristics. A large number
of experiments are done considering with both real-code task graphs and randomly generated
graphs. To evaluate the performance of the proposed heuristics, we first compare the solutions
obtained by the proposed heuristics with the optimal solutions. The proposed heuristics are also
compared with two SoA approaches which solve the same problem. Experimental results show
that our proposed heuristics achieve closed performance on feasibility and energy consumption
with optimal solutions while largely decrease the computation time. Compared to the other two
SoA heuristics, and as it could have been expected from chapter 3, the proposed approach is
able to provide better energy savings, and at the same time, higher feasibility even when existing
approaches may fail to find a solution, without violating timing and reliability constraints.

158

Chapter 5

CONCLUSIONS AND PERSPECTIVES

5.1 Summary

With the adventure of multicore systems and the increasing needs for high performance
computing, energy consumption, reliable execution, and real-time guarantees, they have become
important but conflicting concerns when designing efficient task mapping methodologies. Effi-
cient task mapping approaches are of major interests in order to achieve low energy consumption,
reliable and real-time execution at same time. Dynamic Voltage and Frequency Scaling (DVFS)
technique is important to manage the optimization problems of energy-reliability-timeliness task
mapping. In general, most recent works utilize DVFS technique at task level and only few ap-
proaches consider processor level. In this PhD thesis, we consider and evaluated three DVFS
levels as explained in Section 3.2 . We proposed a series of task mapping methodologies that
can be categorized into two groups: 1) optimal algorithms which provide the optimal solutions,
and 2) heuristic-based algorithms which provide near-optimal, but much less time consuming
solutions (see Fig. 5.1).

Figure 5.1: Proposed task mapping approaches under different DVFS levels and task models.

Targeting the studied problems, Fig. 5.2 depicts the general idea of the proposed Reliability-
Aware Fault-Tolerant Task Mapping (RAFTM) approach based on partial duplication technique

159

which provides fault tolerance. Task replication is widely used as a fault tolerance technique
which replicate multiple copies for each task. In the proposed approach we set the maximum
number of replicas for each task to two, and select a part of the task set to do duplication. One
can notice the constraints are not always exactly taken into account as it is shown in Fig 5.2 (for
example reliability constraint is taken as a primary input for the heuristic-based approaches),
however this figure shows the big picture of the proposed approaches.

First the optimal algorithms for independent and dependent task models under three DVFS
schemes are studied in Chapter 3, by using a variable replacement method to safely and equiv-
alently transfer the original MINLP problems into MILP forms, since MILP problems can be
solved using optimization solvers, such as Gurobi and CPLEX tools. However, the time to obtain
a solution with such optimal approaches rapidly becomes too large unless the application has
very few tasks. We thus extend the proposed approach to heuristic algorithms in Chapter 4.
Focusing on each DVFS schemes, we propose the corresponding heuristics for both independent
and dependent task models. Finally, we conduct a large number of experiments for both ran-
domly generated task graphs and real-world task graphs to evaluate our proposed approaches.
For optimal solutions, we compare our approaches with two other SoA approaches. Experimental
results show that our proposed approaches achieve better energy saving and ability to obtain
feasible solutions. For heuristic-based approaches, we first compare our proposed heuristics with
optimal solutions to analyze the gap of performance. Furthermore, experiments are done to
evaluate the proposed heuristic algorithms against two other SoA heuristic algorithms. In con-
clusion, our proposed heuristic algorithms perform closed to the optimal algorithms with a large
reduction of computational complexity, and outperform the SoA heuristics in energy saving and
finding feasible solutions.

5.2 Future work and perspectives

Several possible extensions of this thesis can be interesting for future work.
In this thesis, we focus on homogeneous platforms where all processors share the same

architecture and micro-architecture resources. Each core is identical in this system. The first
extension for future work is that to replace the homogeneous platform by a heterogeneous one, for
example a platform where two or more types of cores exist which differ in architecture or micro-
architecture. Such an example of a simple heterogeneous multicore system is the combination of
a microprocessor core with a micro-controller class core (for example, mix of Cortex-A, Cortex-M
or DSP cores).

Moreover, when formulating the studied problem for dependent tasks, we first assume that
the communication cost between tasks when they are executed on different processors is included
into the Worst-Case-Execution-Time cost. Another assumption is the communication between

160

Figure 5.2: General overview of the proposed reliability-aware fault-tolerant task mapping approach

tasks are considered as reliable. By removing these two assumptions, we can take communica-
tion cost and communication reliability into consideration to get a more realistic solution and
guarantee a reliable application execution.

Another interesting extension of this work is individual deadlines for each task. Actually we
mainly focus on the global deadline for the task graph since we use frame-based task models in
this thesis. Worst case execution cycles of each task is also considered in this thesis as we focus
on design-time phase when designing task mapping methodologies, which can be too pessimistic
if the worst-case execution cycles of a task is much longer than the average. It may be worthy to
find a way to take into account the real execution cycles in the run-time phase to further save
resource consumption.

The energy-reliability-timeliness multi-criteria are the conflicting but important concerns in
modern task mapping on multicore platforms. Besides aiming at energy minimization under
reliability and deadline constraints as we have studied in this thesis, one of our future work
is taking reliability maximization or schedule length minimization into consideration under en-
ergy/deadline and energy/reliability constraints, and studying related task mapping approaches.

To end this thesis, fault-tolerant has been a very active domain in recent years. Although
there is still a long journey for solving more practical and complicated task mapping problems
with the adventure of new techniques, we hope our solutions proposed in this thesis will be
helpful to people who work on such related problems.

161

MY PUBLICATIONS

[1] M. Cui, L. Mo, A. Kritikakou, and E. Casseau, “Energy-aware Partial-Duplication Task
Mapping under Real-Time and Reliability Constraints,” in SAMOS 2020-International Con-
ference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS),
Samos / Virtual, Greece, 2020.

[2] M. Cui, A. Kritikakou, L. Mo, and E. Casseau, ““fault-tolerant mapping of real-time parallel
applications under multiple dvfs schemes,” in 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021, pp. 387–399.

[3] ——, “Near-optimal energy-efficient partial-duplication task mapping,” in 26th Ada-Europe
International Conference on Reliable Software Technologies (AEiC 2022), 2022.

[4] M. Cui, A. Kritikakou, L. Mo, and E. Casseau, “Energy-efficient partial-duplication
task mapping under multiple dvfs schemes,” International Journal of Parallel Program-
ming(IJPP), Springer, Published online 16 February 2022, https://doi.org/10.1007/s10766-
022-00724-7, pp. 1–28, 2022.

[5] M. Cui, A. Kritikakou, L. Mo, and E. Casseau, “Near-optimal energy-efficient partial-
duplication task mapping,” Journal of System Architecture (JSA), Elsevier,Under Review,
2022.

162

BIBLIOGRAPHY

[1] Executive summary report. Mixed-critical systems. In European Commission Workshop on
Mixed-critical systems, 2012.

[2] A. Kritikakou, C. Pagetti, M. Roy, et al. Distributed run-time wcet controller for concurrent
critical tasks in mixed-critical systems. In 22nd International Conference on Real-Time
Networks and Systems, page 139, 2014.

[3] N. Navet and F. Simonot-Lion. Fault tolerant services for safe in-car embedded systems.
In The Embedded Systems Handbook, CRC Press, 2005.

[4] D. P. Siewiorek and P. Narasimhan. Fault-tolerant architectures for space and avionics
applications. 2005.

[5] S. Girbal, M. Moretó, A. Grasset, et al. On the convergence of mainstream and mission-
critical markets. In Design Automation Conference (DAC), pages 1–10, 2013.

[6] F. Lemonnier, G. M. Almeida P. Millet, et al. Towards future adaptive multiprocessor soc:
an innovative approach for flexible architectures. In International Conference on Embedded
Computer Systems (SAMOS), pages 228–235, 2012.

[7] Where does big.little fit in the world of dynamiq? In https://community.arm.com/arm-
community-blogs/b/architectures-and-processors-blog/posts/where-does-big-little-fit-in-the-
world-of-dynamiq, 2017.

[8] R. Kumar, D.M. Tullsen, and P. Ranganathan. Single-isa heterogeneous multi-core ar-
chitectures for multithreaded workload performance. IEEE/ACM Annual International
Symposium on Computer Architecture, 32(2), 2004.

[9] C. Baun. Mobile clusters of single board computers: an option for providing resources to
student projects and researchers. Springer Plus, 5(1):article 360, 2016.

[10] T. Guan, Y. wang, L. Duan, et al. On-device mobile landmark recognition using binarized
descriptor with multifeature fusion. ACM Trans. on Intelligent Systems and Technology,
7(1):article 12, 2015.

[11] M. Zhu and K. Shen. Energy discounted computing on multicore smartphones. In Inter-
national Conference on Advanced and Trusted Computing (ATC), 2016.

163

[12] M. Psarakis D. Gizopoulos, S. V. Adve, et al. Architectures for online error detection
and recovery in multicore processors. In Design Automation and Test Europe Conference
(DATE), 2011.

[13] M. Pignol. Dmt and dt2 : two fault-tolerant architectures developed by cnes for cots-based
spacecraft supercomputers. In International On-Line Testing Symposium (IOLTS), 2006.

[14] J. Zhou, J. Sun, X. Zhou, et al. Resource management for improving soft-error and lifetime
reliability of real-time MPSoCs. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 38(12):2215–2228, 2019.

[15] S. Kamdar and N. Kamdar. big. little architecture: Heterogeneous multicore processing.
International Journal of Computer Applications, 119:35–38, 06 2015.

[16] C. Jalier, D. Lattard, A. Jerraya, et al. Heterogeneous vs homogeneous mpsoc approaches
for a mobile lte modem. In 2010 Design, Automation Test in Europe Conference Exhibition
(DATE 2010), pages 184–189, 2010.

[17] C. Duursma, O. Olsson, and U. Sundin. Task model definition and task analysis proces.
An Advanced and Comprehensive Methodology for Integrated KBS Development, 1998.

[18] S. Zhao, X. Dai, I. Bate, et al. Dag scheduling and analysis on multiprocessor systems:
Exploitation of parallelism and dependency. In 2020 IEEE Real-Time Systems Symposium
(RTSS), pages 128–140, 2020.

[19] M. Qamhieh. Scheduling of Parallel Real-time DAG Tasks on Multiprocessor Systems. PhD
thesis, 2015.

[20] C. Xian, Y. H. Lu, and Z. Li. Dynamic voltage scaling for multitasking real-time sys-
tems with uncertain execution time. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 27(8):1467–1478, 2008.

[21] A. Saifullah, S. Fahmida, V. Modekurthy, et al. Cpu energy-aware parallel real-time schedul-
ing. In The 32nd Euromicro Conference on Real-Time Systems (ECRTS ’20), volume 165,
pages 1–24, 2020.

[22] G. C. Buttazzo. Hard real-time computing systems: Predictable scheduling algorithms and
applications. In Real-Time Systems Series, Springer, 2011.

[23] F. Poursafaei, M. Bazzaza Morteza, M. Kafshdooz, et al. Slack clustering for schedul-
ing frame-based tasks on multicore embedded systems. Microelectronics Journal, Elsevier,
81:144–153, 2015.

164

[24] G. Xie, Y. Chen, X. Xiao, et al. Energy-efficient fault-tolerant scheduling of reliable parallel
applications on heterogeneous distributed embedded systems. IEEE Trans. on Sustainable
Computing, 3(3):167–181, 2018.

[25] Gang Chen, Kai Huang, and Alois Knoll. Energy optimization for real-time multiprocessor
system-on-chip with optimal dvfs and dpm combination. ACM Trans. Embedded Computing
Systems, 13(3s), 2014.

[26] B. Zhao, H. Aydin, and D. Zhu. Shared recovery for energy efficiency and reliability en-
hancements in real-time applications with precedence constraints. ACM Trans. on Design
Automation of Electronic Systems, 18(2), 2013.

[27] A. Guliani and M. M. Swift. Per-application power delivery. In The Fourteenth EuroSys
Conference 2019,.

[28] D. Hackenberg, R. Schöne, T. Ilsche, et al. An energy efficiency feature survey of the
intel haswell processor. In 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop, pages 896–904, 2015.

[29] AMD Inc., R. Schöne, T. Ilsche, et al. Processor programming reference (ppr) for amd
family 17h model 01h, revision b1 processors. 2017.

[30] K. Huang, X. Jiang, X. Zhang, et al. Energy-efficient fault-tolerant mapping and scheduling
on heterogeneous multiprocessor real-time systems. IEEE Access, 6:57614–57630, 2018.

[31] M. Salehi, A. Ejlali, and B. M. AI-Hashimi. Two-phase low-energy n-modular redundancy
for hard real-time multi-core systems. IEEE Trans. on Parallel and Distributed Systems,
27(5):1497–1510, 2016.

[32] M. A. Haque, H. Aydin, and D. Zhu. On reliability management of energy-aware real-
time systems through task replication. IEEE Trans. on Parallel and Distributed Systems,
28(3):813–825, 2017.

[33] S. Safari, M. Ansari, G. Ershadi, et al. On the scheduling of energy-aware fault-tolerant
mixed-criticality multicore systems with service guarantee exploration. IEEE Trans. on
Parallel and Distributed Systems, 30(10):2338–2354, 2019.

[34] D. Li and J. Wu. Energy-aware scheduling for frame-based tasks on heterogeneous mul-
tiprocessor platforms. IEEE 2012 41st International Conference on Parallel Processing,
2012.

[35] D. Li and J. Wu. Minimizing energy consumption for frame-based tasks on heterogeneous
multiprocessor platforms. IEEE Trans. on Parallel and Distributed Systems, 26(3):810–823,
2015.

165

[36] D. Zhu, R. Melhem, and D. Mosse. The effects of energy management on reliability in
real-time embedded systems. IEEE/ACM International Conference on Computer Aided
Design(ICCAD), pages 35–40, 2004.

[37] S. Tosun. Energy- and reliability-aware task scheduling onto heterogeneous MPSoC archi-
tectures. Journal of Supercomputing, Springer, 62(1), 2012.

[38] R. C. Baumann. Radiation-induced soft errors in advanced semiconductor technologies.
IEEE Trans. Device and Materials Reliability, 5(3):305–316, 2005.

[39] E. Dubrova. Fault tolerant design: An introduction. In Springer, 2008.

[40] J. C. Laprie. Dependable computing and fault tolerance: Concepts and terminology. IEEE
Computer Society, (9):2–11, 1985.

[41] Dakai Zhu. Reliability-aware dynamic energy management in dependable embedded real-
time systems. In 12th IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS’06), pages 397–407, 2006.

[42] M. Ebrahimi, A. Evans, M. B. Tahoori, et al. Comprehensive analysis of alpha and neu-
tron particle-induced soft errors in an embedded processor at nanoscales. In 2014 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1–6, 2014.

[43] S. Rehman. Reliable Software for Unreliable Hardware – A Cross-Layer Approach. PhD
thesis, 2015.

[44] C. Gou, A. Benoit, M. Chen, et al. Reliability-aware energy optimization for throughput-
constrained applications on MPSoC. In IEEE 24th International Conference on Parallel
and Distributed Systems, pages 1–10, 2018.

[45] L. Han, L. C. Canon, J. Liu, et al. Improved energy-aware strategies for periodic real-time
tasks under reliability constraints. In 2019 IEEE Real-Time Systems Symposium (RTSS),
pages 17–29, 2019.

[46] Q. Zheng, B. Veeravalli, and C. K. Tham. On the design of fault-tolerant scheduling strate-
gies using primary-backup approach for computational grids with low replication costs.
IEEE Trans. on Computers, 58(3):380–393, 2009.

[47] A. Benoit, M. Hakem, and Y. Robert. Fault tolerant scheduling of precedence task graphs
on heterogeneous platforms. In 2008 IEEE International Symposium on Parallel and Dis-
tributed Processing, pages 1–8, 2008.

[48] J. Choi, B. Jung, and Y. Choi. An adaptive and integrated low-power framework for
multicore mobile computing. In J. Mobile Information Systems, 2017.

166

[49] I. Ripoll and R. Ballester-Ripoll. Period selection for minimal hyperperiod in periodic task
systems. IEEE Trans. on Computers, 62(9):144–153, 2013.

[50] K. S. Chatha and R. Vemuri. Hardware-software partitioning and pipelined scheduling of
transformative applications. IEEE Trans. Very Large Scale Integr. Syst., 10:193–208, 2002.

[51] Z. Deng, D. Cao, H. Shen, et al. Reliability-aware task scheduling for energy effciency on
heterogeneous multiprocessor systems. The Journal of Super computing, 2021.

[52] D. Rossi, M. Omana, F. Toma, et al. Multiple transient faults in logic: an issue for next
generation ics? 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT’05), 2005.

[53] J. R. Azambuja, F. Kastensmidt, and J. Becker. Hybrid fault tolerance techniques to detect
transient faults in embedded processors. Springer, 2014.

[54] Omer Qadir. Hardware Architecture for a Bi-directional Protein Processor Associative Mem-
ory. PhD thesis, 11 2011.

[55] D. Zhu and H. Aydin. Energy management for real-time embedded systems with reliability
requirements. In 2006 IEEE/ACM International Conference on Computer Aided Design,
pages 528–534, 2006.

[56] B. Zhao, H. Aydin, and D. Zhu. Generalized reliability-oriented energy management for
real-time embedded applications. In 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 381–386, 2011.

[57] L. Leung, C. Tsui, and W. Ki. Simultaneous task allocation, scheduling and voltage assign-
ment for multiple-processors-core systems using mixed integer nonlinear programming. In
2003 International Symposium on Conference: Circuits and Systems (ISCAS ’03).

[58] L. Leung, C. Tsui, and W. Ki. Minimizing energy consumption of multiple-processors-core
systems with simultaneous task allocation, scheduling and voltage assignment. IEEE Asia
and South Pacific Design Automation Conference(ASP-DAC), 2004.

[59] D. Li and J. Wu. Energy-efficient contention-ware application mapping and scheduling on
noc-based mpsocs. Journal of Parallel and Distributed Computing, Elsevier, 2016.

[60] M. Qiu and E. H. M. Sha. Cost minimization while satisfying hard/soft timing constraints
for heterogeneous embedded systems. ACM Trans. on Design Automation of Electronic
Systems, 14(2), 2009.

[61] M. W. Convolbo and J. Chou. Cost-aware dag scheduling algorithms for minimizing execu-
tion cost on cloud resources. Journal of Supercomputing, Springer, 72(3):985–1012, 2016.

167

[62] G. Xie, Y. Chen, Y. Liu, et al. Resource consumption cost minimization of reliable parallel
applications on heterogeneous embedded systems. IEEE Trans. on Industrial Informatics,
13(4):1629–1640, 2017.

[63] L. Zhang, K.Li, C. Li, et al. Bi-objective workflow scheduling of the energy consumption and
reliability in heterogeneous computing systems. Information Sciences,Springer, 379:241–
256, 2017.

[64] T. Wei, P. Mishra, K. Wu, et al. Quasi-static fault-tolerant scheduling schemes for
energy-efficient hard real-time systems. Journal of Systems and Software, Elsevier,
85(6):1386–1399, 2012.

[65] Zheng Li, Li Wang, Shuhui Li, et al. Reliability guaranteed energy-aware frame-based
task set execution strategy for hard real-time systems. Journal of Systems and Software,
Elsevier, 86(12):3060–3070, 2013.

[66] L. Zhang, K. Li, K. Li, et al. Joint optimization of energy efficiency and system reliability
for precedence constrained tasks in heterogeneous systems. Int. Journal of Electrical Power
&Energy Systems, 78:499–512, 2016.

[67] P. Pop, K. H. Poulsen, and V. Izosimovand others. Scheduling and voltage scaling for
energy/reliability trade-offs in fault-tolerant time-triggered embedded systems. In 2007 5th
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pages 233–238, 2007.

[68] S. Hua, P. R. Pari, and G. Qu. Dual-processor design of energy efficient fault-tolerant sys-
tem. In IEEE 17th International Conference on Application-specific Systems, Architectures
and Processors (ASAP’06), pages 239–244, 2006.

[69] R. Sridharan and R. Mahapatra. Reliability aware power management for dual-processor
real-time embedded systems. In Design Automation Conference(DAC), pages 819–824,
2010.

[70] Y. Gao, L. Han, J. Liu, et al. Minimizing energy consumption for real-time tasks on
heterogeneous platforms under deadline and reliability constraints. Research Report RR-
9403, Inria - Research Centre Grenoble – Rhône-Alpes, 2021.

[71] M. Cui, L. Mo, A. Kritikakou, and E. Casseau. Energy-aware Partial-Duplication Task
Mapping under Real-Time and Reliability Constraints. In SAMOS 2020-International Con-
ference on Embedded Computer Systems: Architectures, Modeling and Simulation, Samos /
Virtual, Greece, 2020.

168

[72] M. Cui, A. Kritikakou, L. Mo, and E. Casseau. Fault-tolerant mapping of real-time parallel
applications under multiple dvfs schemes. In 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 387–399, 2021.

[73] M. Cui, A. Kritikakou, L. Mo, and E. Casseau. Energy-efficient partial-duplication
task mapping under multiple dvfs schemes. International Journal of Parallel Program-
ming(IJPP), Springer, 2021.

[74] N. Rana, Muhammad Shafie Abd Latiff, and Shafi’i Muhammad Abdulhamid et al. Whale
optimization algorithm: a systematic review of contemporary applications, modifications
and developments. In Neural Computing and Applications volume, page 16245–16277, 2020.

[75] B. Zhao, H. Aydin, and D. Zhu. On maximizing reliability of real-time embedded applica-
tions under hard energy constraint. IEEE Trans. on Industrial Informatics, 6(3):316–328,
2010.

[76] J. J. Dongarra, E. Jeannot, E. Saule, et al. Bi-objective scheduling algorithms for optimizing
makespan and reliability on heterogeneous systems. In Proceedings of the Nineteenth Annual
ACM Symposium on Parallel Algorithms and Architectures, ACM, SPAA ’07, page 280–288,
2007.

[77] L. Zhang, K. Li, W. Zheng, et al. Contention-aware reliability efficient scheduling on hetero-
geneous computing systems. IEEE Trans. on Sustainable Computing, 3(3):182–194, 2018.

[78] S. Wang, K. Li, J. Mei, et al. A reliability-aware task scheduling algorithm based on
replication on heterogeneous computing systems. Journal of Grid Computing, Springer,
15(1):23–39, 2017.

[79] K. H. Chen, G. von der Brüggen, and J. J. Chen. Reliability optimization on multi-core
systems with multi-tasking and redundant multi-threading. IEEE Trans. on Computers,
67(4):484–497, 2018.

[80] A. Das, A. Kumar, B. Veeravalli, et al. Combined dvfs and mapping exploration for lifetime
and soft-error susceptibility improvement in mpsocs. In 2014 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1–6, 2014.

[81] H. Topcuoglu, S. Hariri, and M. Y. Wu. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. on Parallel and Distributed Systems,
13(3):260–274, 2002.

[82] H. Kanemitsu, M. Hanada, and H. Nakazato. Clustering-based task scheduling in a large
number of heterogeneous processors. IEEE Trans. on Parallel and Distributed Systems,
27(11):3144–3157, 2016.

169

[83] R. Mayer, C. Mayer, and L. Laich. The tensorflow partitioning and scheduling problem:
It’s the critical path! In Proceedings of the 1st Workshop on Distributed Infrastructures for
Deep Learning, DIDL ’17, page 1–6. Association for Computing Machinery, 2017.

[84] Z. Quan, Z. Wang, T. Ye, et al. Task scheduling for energy consumption constrained parallel
applications on heterogeneous computing systems. IEEE Trans. on Parallel and Distributed
Systems, 31(5):1165–1182, 2020.

[85] K. He, X. Meng, Z. Pan, et al. A novel task-duplication based clustering algorithm for
heterogeneous computing environments. IEEE Trans. on Parallel and Distributed Systems,
30(1):2–14, 2019.

[86] Z. Zong, A. Manzanares, X. Ruan, et al. Ead and pebd: Two energy-aware duplication
scheduling algorithms for parallel tasks on homogeneous clusters. IEEE Trans. on Com-
puters, 60(3):360–374, 2011.

[87] A. Abdi, A. Girault, and H. Zarandi. Erpot: A quad-criteria scheduling heuristic to optimize
execution time, reliability, power consumption and temperature in multicores. IEEE Trans.
on Parallel and Distributed Systems, 30(10):2193–2210, 2019.

[88] K. Cao, J. Zhou, P. Cong, et al. Affinity-driven modeling and scheduling for makespan
optimization in heterogeneous multiprocessor systems. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 38(7):1189–1202, 2019.

[89] M. Salehi, M. K. Tavana, S. Rehman, et al. DRVS: Power-efficient reliability manage-
ment through dynamic redundancy and voltage scaling under variations. In IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED), pages 225–230,
2015.

[90] G. Quan and V. Chaturvedi. Feasibility analysis for temperature-constraint hard real-time
periodic tasks. IEEE Trans. on Industrial Informatics, 6(3):329–339, 2010.

[91] Matthew Guthaus, Jeffrey Ringenberg, Daniel Ernst, Todd Austin, Trevor Mudge, and
Richard Brown. Mibench: A free, commercially representative embedded benchmark suite.
In International Workshop on Workload Characterization, pages 3–14, 01 2002.

[92] S. Rokicki, D. Pala, J. Paturel, et al. What you simulate is what you synthesize: Designing
a processor core from c++ specifications. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–8, 2019.

[93] Deverge J. F and I. Puaut. Safe measurement-based wcet estimation. OpenAccess Series
in Informatics, 1, 01 2005.

170

[94] Yifeng Guo, Dakai Zhu, and Hakan Aydin. Reliability-aware power management for parallel
real-time applications with precedence constraints. In 2011 International Green Computing
Conference and Workshops, pages 1–8, 2011.

171

Titre : Ordonnancement de tâches sur architectures multicoeurs avec des contraintes d’énergie, de
temps réel et de tolérance aux fautes

Mot clés : architectures multicoeurs, ordonnancement temps réel, tolérance aux fautes, consommation

d’énergie

Résumé : Le contexte de cette thèse est l’ordon-
nancement de tâches sur architectures multipro-
cesseurs et avec prise en compte de la tolérance
aux fautes. Dans ce contexte, la technique de
DVFS (Dynamic Voltage and Frequency Scaling)
est généralement utilisée pour économiser l’éner-
gie des processeurs. Malheureusement, lorsque
la fréquence et/ou la tension est réduite, l’éner-
gie diminue mais la fiabilité diminue également. A
l’inverse, l’utilisation de fréquences et ou tensions
plus élevées permet d’augmenter la fiabilité mais
au dépend de l’augmentation de la consommation
d’énergie.

Dans le cadre de cette thèse, pour minimiser
la consommation d’énergie tout en respectant les
contraintes de temps réel et de fiabilité, le principe
retenu est de combiner la technique du DVFS pour
limiter la consommation d’énergie et la réplication

de certaines tâches pour satisfaire la contrainte de
fiabilité.

La méthode proposée a d’abord été formali-
sés sous la forme d’un problème de programma-
tion non linéaire mixte en nombre entier, problème
ensuite transformé en un problème équivalent de
programmation linéaire mixte en nombres entiers
pour sa résolution. Afin de réduire le temps néces-
saire pour trouver une solution, une technique de
type heuristique est ensuite proposée. Les expé-
rimentations montrent que les heuristiques propo-
sées permettent d’obtenir des résultats quasi opti-
maux, avec un temps de calcul faible par rapport
à ceux obtenus par des solveurs, et, en compa-
raison avec d’autres approches heuristiques de la
littérature, permettent d’obtenir une consommation
d’énergie plus faible tout en étant capable d’aboutir
plus souvent à des solutions.

Title: Energy-Quality-Time Fault Tolerant Task Mapping on Multicore Architectures

Keywords: multicore architectures, real-time scheduling, fault tolerance, energy consumption

Abstract: The context of this thesis is the mapping
of tasks on multicore architectures and taking fault
tolerance into account. In this context, the tech-
nique of DVFS (Dynamic Voltage and Frequency
Scaling) is generally used to save energy. Unfortu-
nately, when frequency and/or voltage is reduced,
energy decreases but reliability also decreases.
Conversely, the use of higher frequencies and/or
voltages increases the reliability but at the expense
of increased energy consumption.

In the context of this thesis, to minimize en-
ergy consumption while respecting real-time and
reliability constraints, the principle we adopted is to
combine the DVFS technique to limit energy con-
sumption and the replication of certain tasks to sat-

isfy the reliability constraint.

The proposed method was first formalized as
a mixed integer nonlinear programming problem,
then transformed into an equivalent mixed integer
linear programming problem for its resolution. In or-
der to reduce the time needed to find a solution,
a heuristic-based technique is then proposed. Ex-
periments show that the proposed heuristics make
it possible to obtain almost optimal results, with a
low computation time compared to those obtained
by solvers, and, in comparison with other heuristic-
based approaches of the literature, make it pos-
sible to obtain a lower energy consumption while
being able to come up with solutions more often.

	List of acronyms
	List of figures
	List of tables
	Introduction
	Background
	Multicore Architecture
	Task Model
	DVFS Schemes
	Power and Energy Consumption Model
	Fault Tolerance and Reliability Model
	Fault Origin
	Reliability Model
	Main Fault Tolerance Techniques

	Real-Time Task mapping in Multicore Systems

	Energy-Reliability-Time Multi-criteria Task Mapping Mechanisms in SoA
	Task Mapping Targeting Energy Minimization
	Task Mapping Without Reliability Guarantee
	Task Mapping With Reliability Guarantee

	Task Mapping Targeting Reliability Maximization
	Task Mapping Without Fault Tolerance
	Task Mapping With Fault Tolerance

	Task Mapping Targeting Schedule-Length Minimization
	Task Mapping Without Fault Tolerance
	Task Mapping With Fault Tolerance

	Limitations of SoA Task Mapping Approaches

	Energy Efficient Fault Tolerant Task Mapping with Optimal Solutions
	Motivation Example
	Task Mapping Problem for Independent Tasks
	System Model
	Problem Constraints
	Objective Function and Problem Formulation
	Evaluation

	Task Mapping Problem for dependent tasks
	System Model
	Problem Constraints
	Objective Function and Problem Formulation
	Evaluation

	Conclusion

	Energy-Efficient Fault Tolerant Task Mapping with Heuristic Solutions
	Independent Tasks under Task Level DVFS
	Reliability-aware Fault-tolerant Task Mapping heuristic
	Evaluation results

	Independent Tasks under Processor Level DVFS
	Reliability-aware Fault-tolerant Task Mapping heuristic
	Evaluation results

	Independent Tasks under System Level DVFS
	Reliability-aware Fault-tolerant Task Mapping heuristic
	Evaluation results

	Dependent Tasks under Task Level DVFS
	Reliability-aware Fault-tolerant Task Mapping heuristic
	Evaluation results

	Dependent Tasks under Processor Level DVFS
	Reliability-aware Fault-tolerant Task Mapping heuristic
	Evaluation Results

	Dependent Tasks under System Level DVFS
	Reliability-aware Fault-tolerant Task Mapping heuristic
	Evaluation results

	Conclusion

	Conclusions and Perspectives
	Summary
	Future work and perspectives

	Bibliography

